Parametric and non-parametric estimation of reference intervals for routine laboratory tests: an analysis of health check-up data for 260 889 young men in the South Korean military

Taeyun Kim, Hyunji Choi, Sun Min Lee

ABSTRACT

Objectives Determination of reference intervals (RIs) using big data faces several obstacles due to heterogeneity in analysers, period and ethnicity. The present study aimed to establish the RIs for routine common blood count (CBC) and biochemistry laboratory tests in homogeneous, healthy, male Korean soldiers in their 20s using a large health check-up data set, comparing parametric and non-parametric estimation.

Design A multicentre, cross-sectional study.

Setting Seven armed forces hospitals in South Korea.

Participants A total of 609 649 men underwent health examination when promoted to corporal between January 2015 and September 2021. 260 889 eligible individuals aged 20–25 were included in the analysis.

Main outcomes and measures The RIs were established by parametric and non-parametric methods. In the parametric approach, maximum likelihood estimation was applied to measure the Box-Cox transformation parameter and the values at the 2.5th and 97.5th percentiles were recalculated. The non-parametric approach adopted the Tukey’s exclusion test and the values at the 2.5th and 97.5th percentiles were obtained. Classification by body mass index was also performed.

Results The obtained RIs for haematology parameters were comparable between devices. If the values followed a Gaussian distribution, parametric and non-parametric methods were well matched for haematology and biochemical markers. When the values were right-skewed, the upper limits were higher with parametric than with non-parametric methods. Participants with obesity showed higher RIs for CBC, some liver function tests and some lipid parameters than participants without obesity.

Conclusions Using data from healthy, male Korean soldiers in their 20s, we proposed the RIs for CBC and biochemical parameters, comparing parametric and non-parametric estimation. As such approaches based on large data sets become more prevalent, further studies are needed to discriminate eligible individuals and determine RIs in an extrapolated sample.

INTRODUCTION

Establishing the reference intervals (RIs) and the reference values for laboratory markers is important in supporting decision-making in clinical practice.1 RIs have been widely calculated by estimating the 0.025 and 0.975 percentiles, 95% CI, from a healthy population.2 When using non-parametric values, according to the Clinical Laboratory Standards Institute guidelines, it is considered that a minimum of 120 healthy individuals is required to calculate the 90% CI of the upper and lower reference limits. However, since a large volume of data is easily accessible nowadays, analytical approaches based on high-volume data have been conducted in clinical laboratory medicine.3 In this regard, extension from a few examinees to a real-world population to overcoming the limitation in numbers might be worthy, although appropriate harmonisation of medical records might be challenging.

Direct sampling is a traditional approach that refers to generating RIs from a preselected population with measurement and determination in order. On the contrary, indirect sampling selects results from routine pathology results in a mixed population, which may contain healthy and unhealthy individuals together. Appropriate statistical techniques, such as the truncated maximum
likelihood method, are then applied to determine RIs.4 Data mining, a process of extracting and uncovering new information from a large volume of data, is an indirect method of establishing RIs. However, data from diseased individuals may overlap and this heterogeneity is one of the major hurdles of an indirect method.4

Several real-world approaches using ‘big data’ have been performed to build the RIs for blood sampling results. For example, a single-centre study in Korea evaluated the RI for common blood count (CBC) in 804623 individuals aged 3–99 using a single haematological device.5 However, whether unhealthy subjects have been excluded is questionable and the study only estimated the CBC values. Another single ‘big data’ approach in the Netherlands recruited more than seven million test results and rigorously analysed the RIs for 18 commonly used clinical parameters.6 However, they presumed a healthy population not based on clinical information but the distribution of test results. The heterogeneity originating from the intralaboratory differences and the mixed distribution of test results. The heterogeneity originating from the intralaboratory differences and the mixed distribution of test results.

In this regard, establishing RIs using a large volume of data in a homogeneous healthy adult group might be worthy. Therefore, the present study aims to analyse the health check-up data of about 26000 healthy Korean soldiers in their 20s, suggest the RIs for CBC and several chemical parameters, partition the samples by body mass index (BMI), and compare the RIs between parametric and non-parametric methods and between analytical instruments.

METHODS

Study participants

As a result of conscription in South Korea, all male citizens perform compulsory military service and undergo physical examination at the Military Manpower Administration before enlistment in the army. Cases of severe physical or mental illnesses are exempted from mandatory military service. Therefore, men without significant illnesses are likely to be serving in the Korean military. After joining the army, about 1 year later, all Korean soldiers undergo additional physical examination when they are promoted to the rank of a corporal from a private first class.

Electronic medical records between January 2015 and September 2021 from the New Defense Medical Information System of the Korean armed forces database were extracted. The medical data of 609349 men who underwent medical examination before their promotion to the corporal across 18 armed forces hospitals were acquired. Of the hospitals, three (n=41113) were excluded due to lack of information on haematological and biochemical test devices. Due to heterogeneity in analytical instruments, we then excluded eight hospitals (n=293799) and selected seven hospitals that use the biochemical devices of the same company and the haematological equipment from two different companies. We selected soldiers aged 20–25 with a low probability of having a disease and excluded 13548 aged <20 or ≥25. Finally, 260889 healthy Korean soldiers in their 20s were included in the analysis.

Informed consent was waived due to the study’s retrospective nature and because anonymous clinical data were used for analysis.

Laboratory tests and analytical instruments

The results for the following haematology test parameters were collected: haemoglobin (Hb, g/L), haematocrit (Hct, %), red blood cell count (RBC, 1012/L), white blood cell count (WCC, 109/L) and platelet (PLT, 109/L). The XN series (Sysmex, Kobe, Japan) were used in five hospitals. Four of them used an XN-1000 analyser and one hospital used an XN-3000. ADVIA 2120i (Siemens Healthcare Diagnostics, Eschborn, Germany) was used in two hospitals.

The results for the following chemistry parameters were collected: creatinine (mg/dL), aspartate aminotransferase (AST, IU/L), alanine aminotransferase (ALT, IU/L), gamma glutamyl transferase (GGT, IU/L), total cholesterol (mg/dL), triglyceride (mg/dL), high-density lipoprotein (HDL) cholesterol (mg/dL), low-density lipoprotein (LDL) cholesterol (mg/dL) and fasting glucose. The Beckman Coulter AU series (Beckman Coulter, Miami, USA) were used to measure these biochemical parameters in seven hospitals. Of the hospitals, four, two and one used AU-480, AU-680 and AU-5800, respectively.

Routine external quality control management procedures for laboratory tests were performed under the Korean Association of External Quality Assessment Service. All hospitals performed internal quality controls and the analytical devices are calibrated in line with the instructions provided by the manufacturers.

Calculation of RIs

Both parametric and non-parametric methods were used to calculate the RIs for haematological and chemical parameters. Considering there is no consensus on which method is appropriate to draw RIs from large-volume data, we adopted both parametric and non-parametric methods. The non-parametric method was applied using steps similar to the process used in the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) study8 (1) distributions of the individual parameters were graphically, preliminary inspected using a quantile-quantile graph and a histogram; (2) the Tukey’s exclusion test, where values below Q1–1.5×IQR or above Q3+1.5×IQR are excluded, was used to identify outliers; and (3) the values at the 2.5th and 97.5th percentiles were then defined as the lower and upper limits. The parametric method was applied using the sequences adopted in previous studies by Arzideh et al9 and Zierk et al10: (1) a Box-Cox transformation based on kernel density estimation, which may maximise the likelihood function, was used to transform the data into a symmetric distribution; (2) the distribution’s 2.5th and 97.5th percentiles were
obtained; and (3) the log-transformed value was then recalculated into the real value. In addition, classification according to the presence of obesity, defined by the Korean Society for the Study of Obesity guideline, was performed11: non-obese (<25.0 kg/m2) and obese (25.0–30.0 kg/m2) groups. The Mann-Whitney U test was used to compare differences between obese and non-obese individuals. All statistical analyses were performed using R V.4.1.2 software for Windows (R Development Core Team) and Analyse-it (Analyse-it Software, Leeds, UK).

Patient and public involvement

There is no patient and public involvement.

RESULTS

CBC parameters (eg, Hb, Hct, RBC, WCC and PLT) and biochemical markers (eg, creatinine, AST, ALT, GGT, lipid profiles and fasting glucose) are depicted in figures 1 and 2. WCC and PLT count and most liver function parameters (eg, AST, ALT and GGT) revealed a non-Gaussian distribution. In terms of lipid profile, triglyceride distribution violated the normality and presented right skewness. These distribution patterns are ascertained in online supplemental tables S1 and S2. The mean value was higher than the median value for WCC, PLT, AST, ALT, GGT and lipid profiles, reflecting a right-skewed distribution.

The RIs for haematology tests determined and established by both parametric and non-parametric methods in healthy Korean soldiers aged 20–25 are tabulated in table 1. Similar RIs between the XN series and ADVIA 2120i were observed in all study subjects. In terms of WCC and PLT, which were distributed with a right tail, the values at the 97.5th percentile were higher in the parametric than in the non-parametric method. In addition, in all examined soldiers, 26.4\% were obese and partitioning of RIs according to BMI revealed the values of Hb, Hct, RBC, WCC and PLT to be higher in obese than in non-obese individuals.

Figure 1 Distribution of haematological markers.

Figure 2 Distribution of creatinine, liver function tests and lipid profiles. ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma glutamyl transferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
Table 1 Comparison of RIs for haematological tests in healthy Korean soldiers aged 20–25 years old determined by non-parametric and parametric methods

	XN series (XN-1000 and XN-3000)	ADVIA 2120i								
	2.5th percentile	97.5th percentile	2.5th percentile	97.5th percentile						
	Non-parametric	Parametric	Non-parametric	Parametric	Non-parametric	Parametric				
Hb (g/L)	180793	139	138	172	172	60466	139	138	172	173
Hct (%)	181524	41.1	40.9	50.5	50.7	60326	41.2	41.0	51.2	51.7
RBC (10^{12}/L)	181669	4.6	4.6	5.8	5.8	60900	4.5	4.5	5.7	5.7
WCC (10^{9}/L)	179167	4.3	4.3	10.2	10.9	60499	4.3	4.3	9.9	10.5
PLT (10^{9}/L)	180909	170	170	339	350	60245	167	167	344	359

	XN series (XN-1000 and XN-3000)	ADVIA 2120i									
	2.5th percentile	97.5th percentile	2.5th percentile	97.5th percentile							
	Non-parametric	Parametric	Non-parametric	Parametric	Non-parametric	Parametric					
Obese (BMI ≥25.0 kg/m²)	n	48537	140	139	173	174	16372	140	139	173	174
		51690	41.4	41.3	50.8	51.0	17396	41.5	41.3	51.6	52.0
		51582	4.7	4.6	5.9	5.9	17505	4.6	4.5	5.8	5.8
		50971	4.6	4.6	10.6	11.3	17417	4.5	4.5	10.3	10.8
		51419	176	175	350	361	17328	172	170	354	370

	XN series (XN-1000 and XN-3000)	ADVIA 2120i									
	2.5th percentile	97.5th percentile	2.5th percentile	97.5th percentile							
	Non-parametric	Parametric	Non-parametric	Parametric	Non-parametric	Parametric					
Non-obese (BMI <25.0 kg/m²)	n	131096	138	137	171	172	44328	138	137	172	172
		130931	41.0	40.8	50.4	50.5	44035	41.0	40.9	51.1	51.5
		130648	4.6	4.6	5.8	5.8	44255	4.5	4.5	5.7	5.7
		128919	4.2	4.3	10.0	10.8	43970	4.2	4.2	9.7	10.3
		130129	169	168	334	345	43742	166	166	338	355

The non-parametric method determined the RIs by excluding the outliers using Tukey’s test and adopting the values at the 2.5th and 97.5th percentiles.

The parametric method determined the RIs using the recalculated values at the 2.5th and 97.5th percentiles followed by Box-Cox transformation.

BMI, body mass index; Hb, haemoglobin; Hct, haematocrit; PLT, platelet; RBC, red blood cell; RI, reference interval; WCC, white cell count.
Kim T, et al. BMJ Open 2022;12:e062617. doi:10.1136/bmjopen-2022-062617

The established RIs for common chemistry examinations in healthy Korean soldiers in their 20s according to the parametric and non-parametric methods are summarised in Table 2. The parametric method presented higher RIs than the non-parametric approach for AST, ALT, GGT and triglyceride levels. Some lipid profiles (eg, total cholesterol, triglyceride and LDL cholesterol) were higher in obese than in non-obese soldiers (<0.001), while HDL cholesterol level was lower in obese soldiers (<0.001).

DISCUSSION

The present study inspected a large volume of data from haematological and biochemical laboratory tests in non-obese individuals (<0.001). This level of difference was irrespective of analytical devices and methods.

The non-parametric method determined the RIs by excluding the outliers using Tukey’s test and adopting the values at the 2.5th and 97.5th percentiles. The parametric method determined the RIs using the recalculated values at the 2.5th and 97.5th percentiles followed by Box-Cox transformation.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; GGT, gamma glutamyl transferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; RI, reference interval.

Table 2	Comparison of RIs for biochemistry tests in healthy Korean soldiers aged 20–25 years old determined by non-parametric and parametric methods			
All n	2.5th percentile	97.5th percentile		
Creatinine (mg/dL) 245869	Non-parametric 0.7	0.7	Parametric 1.2	1.2
AST (IU/L) 245879	14.0	14.6	33.0	51.0
ALT (IU/L) 245860	9.0	8.9	37.0	69.0
GGT (IU/L) 245873	9.0	9.0	32.0	49.7
Total cholesterol (mg/dL) 245699	122.0	122.0	228.0	237.0
Triglyceride (mg/dL) 223134	34.0	34.5	154.0	232.0
HDL cholesterol (mg/dL) 238172	37.0	37.0	73.3	76.3
LDL cholesterol (mg/dL) 238171	63.0	63.0	152.0	159.0
Glucose, fasting (mg/dL) 245880	76.0	75.0	105.0	107.0
Obese (BMI ≥25.0 kg/m²) n	2.5th percentile	97.5th percentile		
Creatinine (mg/dL) 64905	Non-parametric 0.7	0.7	Parametric 1.2	1.2
AST (IU/L) 60668	15.0	15.0	37.0	63.0
ALT (IU/L) 60996	10.8	11.0	53.0	106.0
GGT (IU/L) 61029	10.0	10.0	42.7	72.0
Total cholesterol (mg/dL) 64845	125.0	125.0	241.0	249.0
Triglyceride (mg/dL) 60449	37.0	37.8	205.0	301.0
HDL cholesterol (mg/dL) 62943	35.0	35.0	69.0	72.0
LDL cholesterol (mg/dL) 63170	67.0	67.0	163.0	170.1
Glucose, fasting (mg/dL) 64496	78.0	77.0	107.0	108.0
Non-obese (BMI <25.0 kg/m²) n	2.5th percentile	97.5th percentile		
Creatinine (mg/dL) 174499	Non-parametric 0.7	0.7	Parametric 1.2	1.2
AST (IU/L) 166055	14.0	14.0	32.0	46.0
ALT (IU/L) 165833	9.0	9.0	32.0	49.0
GGT (IU/L) 167123	9.0	9.0	28.0	38.0
Total cholesterol (mg/dL) 173968	121.0	121.0	223.0	230.7
Triglyceride (mg/dL) 161294	33.0	34.0	137.0	194.0
HDL cholesterol (mg/dL) 168015	38.0	38.0	74.5	77.6
LDL cholesterol (mg/dL) 168061	62.0	62.0	145.0	152.0
Glucose, fasting (mg/dL) 173468	76.0	75.0	105.0	106.0

The non-parametric method determined the RIs by excluding the outliers using Tukey’s test and adopting the values at the 2.5th and 97.5th percentiles. The parametric method determined the RIs using the recalculated values at the 2.5th and 97.5th percentiles followed by Box-Cox transformation.
in 260,889 healthy Korean soldiers aged 20–25, with the individuals classified by obesity status. Both parametric and non-parametric methods were used to calculate the RIs. Within the study period, no significant differences by year were observed. The analytical devices and the population were stable over the study period. However, the distribution of data among the seven hospitals was not equal (online supplemental figure 1). In CBC tests, the estimated RIs were comparable between parametric and non-parametric methods. The estimated RIs showed concordance between analytical instruments, and obesity was associated with the difference in the RIs for haematological tests. The upper limit values of some chemistry markers were higher in the parametric than in the non-parametric method. This might have originated from the right-skewed distribution of raw data, where the Tukey’s test excludes a bunch of data in the right tail. In addition, we showed that the RIs for biochemical parameters differed between obese and non-obese individuals.

This study is the largest to suggest RIs, with the strength of evaluating a group of non-diseased adults of a single ethnicity in their 20s. Of all enlisted men within the study period, about 2% were multicultural. Considering more than 3000 individuals are required to derive the RIs for each decade of life in their 20s, 30s and 40s, there is a paucity of data establishing the RIs for the age group in their 20s from a large population. The current results from a large number of samples could be advantageous, considering that a small sample size may produce selection bias and that variation in estimating the RIs for a population is largely affected by the sample size. The established RIs align with the previous results from big data approaches.

An analysis using the data set of the Canadian Health Measures Survey used the non-parametric rank method to establish the RIs for common haematological parameters and showed comparable values for Hb, Hct, RBC, WCC and PLT with the current study. In terms of partitioning, we observed that the RIs for haematological values were higher in obese than in non-obese individuals. Several studies support this observation, linking obesity, proinflammatory cytokines and increased erythropoiesis. Waist circumference was positively correlated with Hb, Hct, RBC, WCC and PLT. A nationwide population-based cohort study revealed that high Hb level was associated with increased OR for metabolic syndrome. We also obtained positive correlation coefficients between BMI and all examined haematological indices with p<0.001 (data not shown). Given that a prediction model proposed an increasing trend in obesity in Korean adults, estimating 62% of men would have obesity by 2030, a careful interpretation of laboratory tests by BMI might be necessary.

The established RIs for AST, ALT, GGT, total cholesterol, triglyceride, LDL cholesterol and fasting glucose levels were higher in obese than in non-obese, while HDL cholesterol was lower in obese participants. Elevated liver enzyme levels are associated with obesity in the adult population. However, due to interlaboratory variability in the upper limit of normal liver enzyme levels, an RI based on strictly defined reference population by different analysers should be established. This study agrees with the previous report regarding lipid profiles, where total cholesterol, LDL cholesterol and triglyceride levels were higher in obese than in non-obese individuals. Therefore, it might be plausible to determine the RIs for liver function tests and lipid profiles based on an individual’s clinical condition.

A big data-driven approach to determining RIs has been introduced to clinical laboratory medicine for several years. The application of big medical data has also facilitated advances in bioinformatics, precision medicine, public health informatics and artificial intelligence in imaging. Using stored laboratory results has an advantage in terms of data availability. This merit makes collecting data from specific subpopulations more accessible. For example, Tyler et al showed that the RIs in critically ill patients were significantly different from those in healthy outpatients, indicating cautious decision-making in the intensive care unit based on the RIs from a healthy control. Another merit lies in the representativeness of the RIs from big data. A truly large number of study participants may permit generation of population-representative reference limits. A Canadian nationally representative health survey enrolled 11,999 samples of citizens aged 3–79, and robust RIs spanning from children to the elderly were extracted.

However, several hurdles exist when estimating RIs using big data. This approach does not guarantee high-quality RIs due to mixed, incomplete clinical data. Several statistical methods have been introduced to improve the reliability of RIs. For example, Ammer et al developed the refineR algorithm, which can be freely accessible by downloading open-source R package. Other approaches, such as kosmic algorithm or the truncated minimum χ^2 method, might improve the generalisability of indirect methods in calculating RIs from real-world data. In addition, data used in the indirect approach may involve noise. It might be very challenging to separate healthy from non-healthy individuals. The intersection point between those individuals could be determined using Box-Cox transformation following kernel density estimation, which was adopted in the current study. Although the range of age covered in this study was only 6 years, the study participants were likely healthy individuals. We used health check-up data from the outpatient setting, which is recommended because this sample selection could minimise the enrolment of patients in acute pathophysiological conditions.

In terms of methods for RI determination, both direct and indirect approaches have been used. The direct method calculates RIs from predefined healthy individuals, whether selecting them before collecting blood samples, a priori, or after, a posteriori. True randomisation would be important in this method, but requires extensive cost, time and effort to represent the target...
population. Generally, the direct method recruits small numbers of the population, which could cause selection bias. The indirect method selects a large number of individuals from a mixed population, which may contain not only non-diseased but also diseased individuals, and measures RIs based on robust statistical methods. Because the method could not select healthy individuals using predetermined specific criteria, individuals who are diseased or in a subclinical state could influence the RIs. In this regard, individuals in the current study are large in number, are unlikely to have a disease and are of a single race. This may be advantageous in combining the merits of direct and indirect methods.

This study has several limitations. First, because only healthy military soldiers in their 20s were included in the analysis, data classification according to parameters such as age, sex or ethnicity was not feasible. Second, although individuals in the current study were considered healthy, noise due to unrecognised or subclinical health status could exist. For example, a soldier was healthy at enlistment, but a disease might newly occur before the physical examination. Third, an examination of CBC differential profiles was not performed. Despite these limitations, with sufficiently large sample size, the study showed the RIs for CBC and common clinical chemistry parameters in healthy Korean men in their 20s. Considering sample size planning has been crude in many studies and in healthy Korean men in their 20s using parametric but non-parametric methods. We observed differences in the RIs for haematological markers and common biochemical tests between obese and non-obese individuals, and clinicians should interpret the test results cautiously according to their anthropometric values.

CONCLUSIONS

By analysing a large sample size of healthy soldiers, we suggest the RIs for CBC and common clinical chemistry parameters in homogeneous Korean men in their 20s using parametric but non-parametric methods. We observed differences in the RIs for haematological markers and common biochemical tests between obese and non-obese individuals, and clinicians should interpret the test results cautiously according to their anthropometric values.

REFERENCES

1. Koerin G, Sikaris KA, Jones GRD, et al. Evidence-based approach to harmonised reference intervals. Clin Chim Acta 2014;432:99–107.
2. Clinical and Laboratory Standards Institute. Defining, establishing, and verifying reference intervals in the clinical laboratory: Approved Guideline—Third edition. EP EP28-A3. In: Clinical and laboratory medicine. Clin Chem 2016;61:1433–40.
3. Tolan NV, Parnas ML, Baudhuin LM, et al. "Big data" in laboratory medicine. Clin Chem 2015;61:1433–40.
4. Jones GRD, Haeckel R, Loh TP, et al. Indirect methods for reference interval determination — review and recommendations. Clin Chem Lab Med 2018;57:20–9.
5. Nah EH, Kim S, Cho S, et al. Complete blood count reference intervals and patterns of changes across pediatric, adult, and geriatric ages in Korea. Ann Lab Med 2018;38:503–11.
6. den Elzen WPJ, Brouwer N, Thelen MH, et al. NUMBER: standardized reference intervals in the Netherlands using a ‘big data’ approach. Clin Chem Lab Med 2018;57:42–56.
7. Arzidin F, Brandhorst G, Gurr E. An improved indirect approach for determining reference limits from intra-laboratory data bases exemplified by concentrations of electrolytes. J Lab Med 2009;33:52–66.
8. Colantonio DA, Kyrakiopoulou L, Chan MK, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem 2012;58:854–66.
9. Arzidin F, Wosniok W, Gurr E, et al. A plea for intra-laboratory reference limits. part 2. a bimodal retrospective concept for determining reference limits from intra-laboratory databases.
demonstrated by catalytic activity concentrations of enzymes. *Clin Chem Lab Med* 2007;45:1043–57.

10. Zierk J, Arzideh F, Haeckel R, et al. Indirect determination of pediatric blood count reference intervals. *Clin Chem Lab Med* 2013;51:663–72.

11. Seo MH, Lee W-Y, Kim SS, et al. 2018 Korean society for the study of obesity guideline for the management of obesity in Korea. *J Obes Metab Syndr* 2019;28:40–5.

12. Kim HM. Can “Multicultural Soldiers” Serve the Nation? The Social Debate about the Military Service Management of Mixed-Race Draftees in South Korea. In: Multiculturalism in East Asia: a transnational exploration of Japan, South Korea and Taiwan. Rowman & Littlefield International, 2016: 127–40. ISBN: 9781783484973.

13. Ichihara K, Boyd JC, IFCC Committee on Reference Intervals and Decision Limits (C-RIDL). An appraisal of statistical procedures used in derivation of reference intervals. *Clin Chem Lab Med* 2010;48:1537–51.

14. Martinez-Sanchez L, Marques-Garcia F, Ozarda Y, et al. Big data and reference intervals: rationale, current practices, harmonization and standardization prerequisites and future perspectives of indirect determination of reference intervals using routine data. *Adv Lab Med* 2021;2:9–16.

15. Adeli K, Raizman JE, Chen Y, et al. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian health measures survey. *Clin Chem* 2015;61:1075–86.

16. Vuong J, Qiu Y, La M, et al. Reference intervals of complete blood count constituents are highly correlated to waist circumference: should obese patients have their own "normal values"? *Am J Hematol* 2014;89:671–7.

17. He S, Gu H, Yang J, et al. Hemoglobin concentration is associated with the incidence of metabolic syndrome. *BMC Endocr Disord* 2021;21:53.

18. Baik I. Forecasting obesity prevalence in Korean adults for the years 2020 and 2030 by the analysis of contributing factors. *Nutr Res Pract* 2018;12:251–7.

19. Ali N, Sumon AH, Farih KA, et al. Assessment of the relationship of serum liver enzymes activity with general and abdominal obesity in an urban Bangladeshi population. *Sci Rep* 2021;11:6640.

20. Dutta A, Saha C, Johnson CS, et al. Variability in the upper limit of normal for serum alanine aminotransferase levels: a statewide study. *Hepatology* 2009;50:1957–62.

21. Yadav D, Gupta M, Mishra S, et al. Reference interval for lipid profile in North Indian population from Rajasthan according to various partitioning criteria. *Clin Chim Acta* 2013;426:145–51.

22. Luo J, Wu M, Gopukumar D, et al. Big data application in biomedical research and health care: a literature review. *Biomed Inform Insights* 2016;8:1–10.

23. Tyler PD, Du H, Feng M, et al. Assessment of intensive care unit laboratory values that differ from reference ranges and association with patient mortality and length of stay. *JAMA Netw Open* 2018;1:e184521–e21.

24. Ammer T, Schützenmeister A, Prokosch H-U, et al. refineR: a novel algorithm for reference interval estimation from real-world data. *Sci Rep* 2021;11:16023.

25. Zierk J, Arzideh F, Kapsner LA, et al. Reference interval estimation from mixed distributions using truncation points and the Kolmogorov-Smirnov distance (kosmic). *Sci Rep* 2020;10:1704.

26. Wosniok W, Haeckel R. A new indirect estimation of reference intervals: truncated minimum chi-square (TMC) approach. *Clin Chem Lab Med* 2019;57:1933–47.

27. Obstfeld AE, Patel K, Boyd JC, et al. Data mining approaches to reference interval studies. *Clin Chem* 2021;67:1175–81.

28. Wellek S, Lackner KJ, Jennen-Steinmetz C, et al. Determination of reference limits: statistical concepts and tools for sample size calculation. *Clin Chem Lab Med* 2014;52:1686–94.
Table S1. Descriptive statistics of hematologic tests in healthy 20-25 years Korean soldiers.

	XN series (XN 1000 and XN 3000)	ADVIA 2120i				
	n	mean (SD)	median (IQR)	n	mean (SD)	median (IQR)
Hb (g/dL)	181,217	15.53 (0.88)	15.5 (1.1)	61,322	15.54 (0.9)	15.6 (1.2)
Hct (%)	181,214	45.71 (2.49)	45.7 (3.2)	61,322	46.31 (2.74)	46.3 (3.6)
RBC (10^6/uL)	181,214	5.19 (0.32)	5.19 (0.42)	61,322	5.08 (0.32)	5.08 (0.42)
WBC (10^3/uL)	182,215	6.98 (1.73)	6.75 (2.19)	61,322	6.76 (1.59)	6.55 (1.97)
PLT (10^3/uL)	182,212	249.86 (46.21)	246 (60)	61,321	252.82 (49.18)	249 (64)

	XN series (XN 1000 and XN 3000)	ADVIA 2120i				
	n	mean (SD)	median (IQR)	n	mean (SD)	median (IQR)
Hb (g/dL)	49,189	15.65 (0.87)	15.7 (1.1)	16,656	15.66 (0.91)	15.7 (1.2)
Hct (%)	49,188	46.04 (2.48)	46 (3.3)	16,656	46.67 (2.73)	46.7 (3.7)
RBC (10^6/uL)	49,188	5.25 (0.32)	5.25 (0.43)	16,656	5.13 (0.32)	5.13 (0.43)
WBC (10^3/uL)	49,188	7.31 (1.75)	7.08 (2.23)	16,656	7.03 (1.62)	6.8 (2.00)
PLT (10^3/uL)	49,185	257.99 (47.55)	254 (62)	16,656	260.17 (50.85)	256 (66)

	XN series (XN 1000 and XN 3000)	ADVIA 2120i				
	n	mean (SD)	median (IQR)	n	mean (SD)	median (IQR)
Hb (g/dL)	132,028	15.48 (0.88)	15.5 (1.2)	44,666	15.5 (0.9)	15.5 (1.2)
Hct (%)	132,026	45.59 (2.48)	45.6 (3.3)	44,666	46.18 (2.73)	46.2 (3.6)
RBC (10^6/uL)	130,027	5.17 (0.32)	5.16 (0.42)	44,666	5.06 (0.31)	5.06 (0.42)
WBC (10^3/uL)	130,027	6.86 (1.71)	6.63 (2.14)	44,666	6.67 (1.56)	6.46 (1.91)
PLT (10^3/uL)	130,027	246.82 (45.33)	243 (58)	44,665	250.08 (48.25)	246 (62)

SD = standard deviation, IQR = inter-quartile range, RI = reference interval, Hb = hemoglobin, Hct = hematocrit, RBC = red blood cell, WBC = white blood cell, PLT = platelet, BMI = body mass index.
Table S2. Descriptive statistics of chemistry tests in healthy 20-25 years Korean soldiers.

All soldiers	n	mean (SD)	median (IQR)
Creatinine (mg/dL)	242,532	0.94 (0.13)	0.94 (0.17)
AST (IU/L)	242,541	24.73 (19.02)	22 (7)
ALT (IU/L)	242,522	22.85 (19.7)	18 (11)
GGT (IU/L)	242,536	19.79 (12.8)	17 (8.8)
Total cholesterol (mg/dL)	242,363	172.08 (29.46)	169.6 (37.1)
Triglyceride (mg/dL)	234,750	87.81 (56.83)	73 (47)
HDL cholesterol (mg/dL)	234,870	53.94 (10.16)	53 (13)
LDL cholesterol (mg/dL)	234,869	104.36 (24.65)	102 (32)
Glucose, fasting (mg/dL)	242,545	91.16 (8.29)	91 (10)

Obese (BMI ≥25.0 kg/m²)	n	mean (SD)	median (IQR)
Creatinine (mg/dL)	65,841	0.93 (0.14)	0.93 (0.17)
AST (IU/L)	65,845	26.94 (18.13)	23 (8)
ALT (IU/L)	65,840	31.31 (28.9)	23 (17)
GGT (IU/L)	65,843	25.04 (18.27)	20 (13)
Total cholesterol (mg/dL)	65,771	179.5 (31.96)	177 (41.8)
Triglyceride (mg/dL)	64,098	109.6 (76.54)	89 (67)
HDL cholesterol (mg/dL)	64,126	50.61 (9.6)	50 (12)
LDL cholesterol (mg/dL)	64,124	112.43 (26.53)	110 (34)
Glucose, fasting (mg/dL)	65,843	92.19 (8.56)	92 (10)

Non-obese (BMI <25.0 kg/m²)	n	mean (SD)	median (IQR)
Creatinine (mg/dL)	176,691	0.94 (0.13)	0.94 (0.17)
AST (IU/L)	176,696	23.91 (19.27)	21 (6)
ALT (IU/L)	176,682	19.7 (13.59)	17 (9)
GGT (IU/L)	176,693	17.83 (9.3)	16 (7)
Total cholesterol (mg/dL)	176,592	169.31 (27.97)	167 (36)
Triglyceride (mg/dL)	170,652	79.62 (44.69)	68.4 (40)
HDL cholesterol (mg/dL)	170,744	55.19 (10.08)	54 (13)
LDL cholesterol (mg/dL)	170,745	101.33 (23.18)	99 (29.8)
Glucose, fasting (mg/dL)	176,702	90.77 (8.16)	91 (10)

SD = standard deviation, IQR = inter-quartile range, RI = reference interval, AST = aspartate aminotransferase, ALT = alanine aminotransferase, GGT = gamma glutamyl transferase, HDL = high density lipoprotein, and LDL = low density lipoprotein.