Dynamic Time Scan Forecasting

Marcelo Azevedo Costa - Production Engineer/UFGM (macosta@ufmg.br)
Ramiro Ruiz-Cárdenas - Consultant
Leandro Brioschi Mineti - Falconi Consultants for Results
Marcos Oliveira Prates - Statistics/UFGM

Just Another Time Series Model?
Hybrid AI - Where data-driven and model-based methods meet
Wordcloud analysis using the presentation titles:
Learning (list of the titles)

- Merging optimization and **machine learning**
- Language-based representation learning for acting and planning
- **Machine learning** to accelerate solving of constraint programs
- Primal heuristics for mixed-integer programming through a **machine learning** lens
- A hybrid approach to safe learning in automatic control
- Learning beam search: utilizing **machine learning** to guide beam search for solving combinatorial optimization problems
- A fast matheuristic for two-stage stochastic programs through supervised learning
- Seeking transparency in **machine learning** through optimized explanations
- **Machine learning**-supported decomposition algorithms for a large scale hub location problem
- Learning-based model predictive control with applications to autonomous racing and multi-agent coverage control
- Learning probabilistic circuits using stochastic computation graphs
- Reinforcement learning for guiding metaheuristics
- Learning stationary nash equilibrium policies in n-player stochastic games with independent chains
Learning (list of the titles)

1) Language-based representation learning for acting and planning
2) A hybrid approach to safe learning in automatic control
3) Learning beam search: utilizing machine learning to guide beam search for solving combinatorial optimization problems
4) A fast matheuristic for two-stage stochastic programs through supervised learning
5) Learning-based model predictive control with applications to autonomous racing and multi-agent coverage control
6) Learning probabilistic circuits using stochastic computation graphs
7) Reinforcement learning for guiding metaheuristics
8) Learning stationary nash equilibrium policies in n-player stochastic games with independent chains
What is Learning?

- The acquisition of knowledge or skills through study, experience, or being taught (Oxford Dictionary)

Hybrid AI - Where **data-driven and model-based** methods meet

Hybrid AI - Where **LEARNING** methods meet
What about **Machine Learning**? Data-driven methods?

How many different **Machine Learning** methods exist?

Regarding Machine Learning Models:

- **✓** What is your **favorite** Machine Learning model?

- **✓** What is your **second** favorite Machine Learning model?

 1. \(\text{Ada (Boosted Classifications Trees)} \)
 2. \(\text{AdaBag (Bagged AdaBoost)} \)
 50. \(\text{evtree (Tree Models from Genetic Algorithms)} \)
 51. \(\text{knn (k Nearest Neighbors)} \)
 124. \(\text{nnet (Neural Networks)} \)
 227. \(\text{xyf (Self-Organizing Maps)} \)

Appendix A: Encyclopedia of Machine Learning Models in **caret**
Statistical Elements of **Machine Learning**

Statistical Decision Theory

\[f(x) = E(Y|X = x) \]

The best prediction of \(Y \) at any point \(X=x \) is the conditional mean (pg. 18)

Since there is typically at most one observation at any point \(x \), we settle for:

\[\hat{f}(x) = \frac{1}{N_k(x)} \sum_{N_k(x)} y_i | x \]
The Wind Speed Time Series Case Study

Wind speed data from January 1, 2009 to December 31, 2015 at every 30 minutes (61,341 observations).

Final goal: one-day-ahead prediction, i.e., 48 Steps ahead
Time Series Forecasting Literature Review
Makridakis Competitions (M-competition)
by Spyros Makridakis

- **M-Competition** (1982)
- **M2-Competition** (1993)
 - The M2-Competition - A real-time judgmentally based forecasting study (International Journal of Forecasting)
- **M3-Competition** (2000)
 - The M3-Competition: results, conclusions and implications (International Journal of Forecasting)
- **M4-Competition** (2020)
 - The M4 Competition: 100,000 time series and 61 forecasting methods (International Journal of Forecasting)
- **M5-Competition** (2021)
 - M5 accuracy competition: Results, findings, and conclusions (International Journal of Forecasting)
- **M6-Competition** (2022-2024)

https://forecasters.org/resources/time-series-data/
Main findings

Machine Learning Time Series Problem

https://forecasters.org/resources/time-series-data/
Main findings

- M5-Competition (2021)
 - The M5 "Accuracy" competition clearly showed that **ML methods have entered the mainstream of forecasting applications**, at least in the area of retail sales forecasting.
 - **From a practical perspective, it is necessary to determine the extra costs incurred to run ML methods** versus the standard statistical methods, and whether their accuracy improvements would justify higher costs.

https://forecasters.org/resources/time-series-data/
Some Machine Learning results

Multi-Layer-Perceptron
(Neural Network)

Do larger data sets require more complex methods?

Not necessarily!
Selected methods for Wind Speed (Time Series) Forecasting based on Literature Review

- **Näive method**
 - replicate the observed wind speed in the previous day, i.e., the last 48 observations, as the forecast values.

- **Time series based approaches**
 - TBATS (Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components) model
 - ARIMA (Autoregressive Integrated Moving Average) model

- **Hybrid approaches**

- **Machine learning approaches**

- **Analog-based approaches**
 - PSF (Pattern Sequence-Based Forecasting) algorithm
 - AnEn (weather analogs ensemble) method
 - Dynamic Time Scan Forecasting (Renewable Energy, 2021)
Scan Statistics

✓ Clustering of random points in two dimensions. *Biometrika* 52 (1965), 263-267.

✓ Kulldorff M. A spatial scan statistic. *Communications in Statistics: Theory and Methods*, 1997; 26:1481-1496.

November 9, 2022
Clustering of random points in two dimensions
by J. I. Naus

Objective: (anomaly detection) to obtain the upper and lower bounds of the probability of finding at least one cluster of dimensions \(v \) and \(u \) containing at least \(n \) points,

\[
P(n \mid N, u, v).
\]

Clustering of random points in two dimensions. *Biometrika* **52** (1965), 263-267.
Scan Statistics in Time Series

Scanning window

\[\hat{\mu}_{\text{inside}} \neq \hat{\mu}_{\text{outside}} \]
Dynamic Time Scanning Process

Scanning process

![Diagram of wind speed over time with hour index and wind speed (m/s) axes.](image_url)
Dynamic Time Scanning Process

Scanning process

\[y[w] = \beta_0[w] + \beta_1[w] x_t[w] \]

Similarity function:

\[y[w] = f(x_t[w]) \]
Dynamic Time Scan Forecasting

$$f^[[w]](x_{t+w+h})$$
Dynamic Time Scan Forecasting

The **median** function is used to create the final point forecasts to minimize extreme values.
Case study

Required parameters:
- window size = 20
- best matches = 7
- k.prediction = 48 (forecast steps)
Parameter tuning

1) **Window size:**
 - 18, 24 e 36 days

2) **f(x): Similarity function:**

 \[y = \beta_0 + \beta_1 x \] (linear)

 \[y = \beta_0 + \beta_1 x + \beta_2 x^2 \]

 \[y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 \]

3) **Best matches**
 - 5, 12, 24

Ensemble version: combining the n elements of a grid of parameters **with** best forecast performance in the previous day.

scanning window: 96, 192, 288, 384 and 480

best matches: 5, 10, 30, 50, 70 and 90

Similarity functions of degrees: 1, 2 and 3

120 different combinations of the three parameters.
Ensemble Dynamic Time Scan Forecasting

(a) Projected values.

(b) Empirical prediction interval.
Data Validation

November 21, 2011 to June 22, 2016 (241,200 observations)

Winter	Spring	Summer	Autumn
2015-06-28	2015-09-30	2016-01-31	2016-04-03
2015-07-04	2015-10-01	2016-02-05	2016-04-05
2015-08-08	2015-10-26	2016-02-24	2016-04-12
2015-08-11	2015-12-02	2016-02-25	2016-04-13
2015-09-18	2015-12-06	2016-03-13	2016-05-18

Divided into two groups based on the variability of the wind speed through its diurnal cycle, as influenced by the prevalent turbulence intensity.

Forecast objective: **48 steps ahead - next 24 hours.**
Results

(Using different error statistics)

Days with **greater** wind speed variability

Method	MAE	RMSE	sMAPE	MAPE	MF	AvgRelMAE
naïve	2.36	2.79	0.31	31.45	0.0032	1.000
ARIMA	2.27	2.60	0.31	34.00	0.0033	0.989
TBATS	2.04	2.39	0.28	29.47	0.0025	0.935
NNET.1(*)	1.96	2.34	0.27	28.25	0.0028	0.903
NNET.2	2.04	2.39	0.28	26.59	0.0023	0.900
STL+ETS	2.10	2.41	0.29	26.52	0.0022	0.913
hybrid.1	2.16	2.52	0.27	30.32	0.0021	1.007
hybrid.2(*)	1.89	2.22	0.25	25.80	0.0018	0.893
PSF	2.87	3.26	0.38	44.70	0.0047	1.149
AnEn	3.00	3.35	0.38	52.58	0.0096	1.145
forecAn	1.91	2.28	0.27	26.37	0.0021	**0.869**
DTSF	**1.72**	**2.07**	**0.23**	26.84	0.0021	0.871
eDTSF	1.89	2.27	0.25	26.98	0.0020	0.891
Days with **less** wind speed variability

Method	vgRelMAE
naïve	1.000
ARIMA	0.878
TBATS	0.821
NNET.1(*)	0.909
NNET.2	0.875
STL+ETS	0.890
hybrid.1	1.016
hybrid.2(*)	0.875
PSF	0.928
AnEn	0.908
forecAn	0.866
DTSF	0.931
eDTSF	0.791

(a) Projected values.
Visual conclusion

\[\hat{f}(x) = \frac{1}{N_k(x)} \sum_{N_k(x)} y_i | x \]

Scanning data may provide a simpler and effective **Machine Learning** solution!

https://github.com/leandromineti/DTScanF
“Before presenting the five winning methods, we note that most of the methods utilized **LightGBM**, which is a ML algorithm for performing nonlinear regression using gradient boosted trees (Ke et al., 2017)“.

“The **winner** used an equal weighted combination (**arithmetic mean**) of various **LightGBM** models”

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting.