Seiberg-Witten Equations on \mathbb{R}^8

Ayşe Hümeýra Bilge
Department of Mathematics, Institute for Basic Sciences
TUBITAK Marmara Research Center
Gebze-Kocaeli, Turkey
E.mail : bilge@mam.gov.tr

Tekin Dereli
Department of Physics
Middle East Technical University
Ankara, Turkey
E.mail : tekin@dereli.physics.metu.edu.tr

Şahin Koçak
Department of Mathematics
Anadolu University
Eskişehir, Turkey
E.mail : skocak@vm.baum.anadolu.edu.tr

Abstract

We show that there are no nontrivial solutions of the Seiberg-Witten equations on \mathbb{R}^8 with constant standard spin^c structure.
1. Introduction

The Seiberg-Witten equations are meaningful on any even-dimensional manifold. To state them, let us recall the general set-up, adopting the terminology of the forthcoming book by D. Salamon ([1]).

A spinc-structure on a $2n$-dimensional real inner-product space V is a pair (W, Γ), where W is a $2n$-dimensional complex Hermitian space and $\Gamma : V \to \text{End}(W)$ is a linear map satisfying

$$\Gamma(v)^* = -\Gamma(v), \quad \Gamma(v)^2 = -\|v\|^2$$

for $v \in V$. Globalizing this defines the notion of a spinc-structure $\Gamma : TX \to \text{End}(W)$ on a $2n$-dimensional (oriented) manifold X, W being a $2n$-dimensional complex Hermitian vector bundle on X. Such a structure exists iff $w_2(X)$ has an integral lift. Γ extends to an isomorphism between the complex Clifford algebra bundle $C_c(TX)$ and $\text{End}(W)$. There is a natural splitting $W = W^+ \oplus W^-$ into the $\pm i^n$ eigenspaces of $\Gamma(e_2n, e_{2n-1} \cdots e_1)$ where e_1, e_2, \cdots, e_{2n} is any positively oriented local orthonormal frame of TX.

The extension of Γ to $C_2(X)$ gives via the identification of $\Lambda^2(T^*X)$ with $C_2(X)$ a map

$$\rho : \Lambda^2(T^*X) \to \text{End}(W)$$

given by

$$\rho\left(\sum_{i<j} \eta_{ij} e_i^* \wedge e_j^*\right) = \sum_{i<j} \eta_{ij} \Gamma(e_i)\Gamma(e_j).$$

The bundles W^\pm are invariant under $\rho(\eta)$ for $\eta \in \Lambda^2(T^*X)$. Denote $\rho^\pm(\eta) = \rho(\eta)|_{W^\pm}$. The map ρ (and ρ^\pm) extends to

$$\rho : \Lambda^2(T^*X) \otimes \mathbb{C} \to \text{End}(W).$$

(If $\eta \in \Lambda^2(T^*X) \otimes \mathbb{C}$ is real-valued then $\rho(\eta)$ is skew-Hermitian and if η is imaginary-valued then $\rho(\eta)$ is Hermitian.)

A Hermitian connection ∇ on W is called a spinc connection (compatible with the Levi-Civita connection) if

$$\nabla_v(\Gamma(w)\Phi) = \Gamma(w)\nabla_v\Phi + \Gamma(\nabla_v w)\Phi$$

where Φ is a spinor (section of W), v and w are vector fields on X and $\nabla_v w$ is the Levi-Civita connection on X. ∇ preserves the subbundles W^\pm.

1
There is a principal $Spin^c(2n) = \{ e^{i\theta} x | \theta \in \mathbb{R}, x \in Spin(2n) \} \subset C^c(\mathbb{R}^{2n})$ bundle P on X such that W and TX can be recovered as the associated bundles
\[W = P \times_{Spin^c(2n)} C^{2n}, \quad TX = P \times_{Ad} \mathbb{R}^{2n}, \]
Ad being the adjoint action of $Spin^c(2n)$ on \mathbb{R}^{2n}. We get then a complex line bundle $L_{\Gamma} = P \times_{\delta} \mathbb{C}$ using the map $\delta : Spin^c(2n) \to S^1$ given by $\delta(e^{i\theta} x) = e^{2i\theta}$.

There is a one-to-one correspondence between $spin^c$ connections on W and $spin^c(2n) = Lie(Spin^c(2n)) = spin(2n) \oplus i\mathbb{R}$-valued connection-1-forms $\hat{A} \in \mathbf{A}(P) \subset \Omega^1(P, spin^c(2n))$ on P.

Now consider the trace-part A of \hat{A}: $A = \frac{1}{2n} trace(\hat{A})$. This is an imaginary valued 1-form $A \in \Omega^1(P, i\mathbb{R})$ which is equivariant and satisfies
\[A_p(p \cdot \xi) = \frac{1}{2n} trace(\xi) \]
for $v \in T_pP, g \in Spin^c(2n), \xi \in spin^c(2n)(where p \cdot \xi$ is the infinitesimal action). Denote the set of imaginary valued 1-forms on P satisfying these two properties by $\mathbf{A}(\Gamma)$. There is a one-to-one correspondence between these 1-forms and $spin^c$ connections on W. Denote the connection corresponding to A by ∇_A. $\mathbf{A}(\Gamma)$ is an affine space with parallel vector space $\Omega^1(X, i\mathbb{R})$. For $A \in \mathbf{A}(\Gamma)$ the 1-form $2A \in \Omega^1(P, i\mathbb{R})$ represents a connection on the line bundle L_{Γ}. Because of this reason A is called a virtual connection on the virtual line bundle $L_{\Gamma}^{1/2}$. Let $F_A \in \Omega^2(X, i\mathbb{R})$ denote the curvature of the 1-form A. Finally, let D_A denote the Dirac operator corresponding to $A \in \mathbf{A}(\Gamma)$,
\[C^\infty(X, W^+) \to C^\infty(X, W^-) \]
defined by
\[D_A(\Phi) = \sum_{i=1}^{2n} \Gamma(e_i) \nabla_{A,e_i}(\Phi) \]
where $\Phi \in C^\infty(X, W^+)$ and e_1, e_2, \cdots, e_{2n} is any local orthonormal frame.

The Seiberg-Witten equations can now be expressed as follows. Fix a $spin^c$ structure $\Gamma : TX \to End(W)$ on X and consider the pairs $(A, \Phi) \in \mathbf{A}(\Gamma) \times C^\infty(X, W^+)$. The SW-equations read
\[D_A(\Phi) = 0, \quad \rho^+(F_A) = (\Phi\Phi^*)_0 \]
where $(\Phi\Phi^*)_0 \in C^\infty(X, End(W^+))$ is defined by $(\Phi\Phi^*)(\tau) = \langle \Phi, \tau > \Phi$ for $\tau \in C^\infty(X, W^+)$ and $(\Phi\Phi^*)_0$ is the traceless part of $(\Phi\Phi^*)$.

2
In dimension $2n = 4$, $\rho^+(F_A) = \rho^+(F_A^+) = \rho(F_A^+)$ (where F^+ is the self-dual part of F and the second equality understood in the obvious sense), and therefore self-duality comes intimately into play. The first problem in dimensions $2n > 4$ is that there is not a generally accepted notion of self-duality. Although there are some meaningful definitions ([2],[3],[4],[5],[6]) (Equivalence of self-duality notions in [2],[3],[5],[6] has been shown in [7], making them more relevant as they separately are), they do not assign a well-defined self-dual part to a given 2-form. Even though $\rho^+(F_A)$ is still meaningful, it is apparently less important due to the lack of an intrinsic self-duality of 2-forms in higher dimensions.

The other serious problem in dimensions $2n > 4$ is that the SW-equations as they are given above are overdetermined. So it is improbable from the outset to hope for any solutions. We verify below for $2n = 8$ that there aren’t indeed any solutions.

In dimension $2n = 4$ it is well-known that there are no finite-energy solutions ([1]), but otherwise whole classes of solutions are found which are related to vortex equations ([8]). In the physically interesting case $2n = 8$ we will suggest a modified set of equations which is related to generalized self-duality referred to above. These equations include the 4-dimensional Seiberg-Witten solutions as special cases.

2. Seiberg-Witten Equations on R^8

We fix the constant spinc structure $\Gamma : R^8 \rightarrow C^{16 \times 16}$ given by

$$\Gamma(e_i) = \begin{pmatrix} 0 & \gamma(e_i) \\ -\gamma(e_i)^* & 0 \end{pmatrix}$$

($e_i, i = 1, 2, ..., 8$ being the standard basis for R^8), where

$$\gamma(e_1) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad \gamma(e_2) = \begin{pmatrix} i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -i & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -i \end{pmatrix}.$$
\[
\gamma(e_3) = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix},
\]

\[
\gamma(e_4) = \begin{pmatrix}
0 & i & 0 & 0 & 0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -i & 0 & 0 \\
0 & 0 & -i & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & i \\
0 & 0 & 0 & 0 & 0 & 0 & i & 0
\end{pmatrix},
\]

\[
\gamma(e_5) = \begin{pmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix},
\]

\[
\gamma(e_6) = \begin{pmatrix}
0 & 0 & i & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & i & 0 & 0 & 0 \\
i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -i & 0 & 0 \\
0 & i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -i & 0 \\
0 & 0 & -i & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i & 0 & 0 & 0 & 0
\end{pmatrix},
\]
\[
\gamma(e_7) = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
\end{pmatrix},
\]
\[
\gamma(e_8) = \begin{pmatrix}
0 & 0 & 0 & i & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & i & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\
i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & i & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & i & 0 & 0 & 0 \\
\end{pmatrix}.
\]

(We obtain this spin\(^c\) structure from the well-known isomorphism of the complex Clifford algebra \(C^c(\mathbb{R}^{2n})\) with \(\text{End}(\Lambda^* \mathbb{C}^n)\).)

In our case \(X = \mathbb{R}^8, W = \mathbb{R}^8 \times \mathbb{C}^{16}, W^+ = \mathbb{R}^8 \times \mathbb{C}^8\) and \(L_\Gamma = L_{\Gamma^{1/2}} = \mathbb{R}^8 \times \mathbb{C}\). Consider the connection 1-form

\[
A = \sum_{i=1}^{8} A_i dx_i \in \Omega^1(\mathbb{R}^8, i\mathbb{R})
\]
on the line bundle \(\mathbb{R}^8 \times \mathbb{C}\). Its curvature is given by

\[
F_A = \sum_{i<j} F_{ij} dx_i \wedge dx_j \in \Omega^2(\mathbb{R}^8, i\mathbb{R})
\]

where \(F_{ij} = \frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}\). The spin\(^c\) connection \(\nabla = \nabla_A\) on \(W^+\) is given by

\[
\nabla_i \Phi = \frac{\partial \Phi}{\partial x_i} + A_i \Phi
\]

\((i = 1, \ldots, 8)\) where \(\Phi : \mathbb{R}^8 \to \mathbb{C}^8\).

\[
\rho^+ : \Lambda^2(T^*X) \otimes \mathbb{C} \to \text{End}(W^+)
\]
is given by
Proof: Trivial but tedious manipulation with the linear system.

Acknowledgement

There are no nontrivial solutions of the Seiberg-Witten equations on \(R^8 \) with constant standard spin\(^c \) structure, i.e.

\[\rho^+(F_A) = (\Phi \Phi^*)_0 \] (alone) implies \(F_A = 0 \) and \(\Phi = 0 \).

Proof: Trivial but tedious manipulation with the linear system.

\[(\Phi \Phi^*)_0 = \begin{pmatrix} \phi_1 \bar{\phi}_1 - 1/8 \sum \phi_i \bar{\phi}_i & \phi_1 \bar{\phi}_2 & \ldots & \phi_1 \bar{\phi}_8 \\ \phi_2 \bar{\phi}_1 & \phi_2 \bar{\phi}_2 - 1/8 \sum \phi_i \bar{\phi}_i & \ldots & \phi_2 \bar{\phi}_8 \\ \vdots & \vdots & \ddots & \vdots \\ \phi_8 \bar{\phi}_1 & \phi_8 \bar{\phi}_2 & \ldots & \phi_8 \bar{\phi}_8 - 1/8 \sum \phi_i \bar{\phi}_i \end{pmatrix} \]

It was remarked by Salamon([1],p.187) that \(\rho^+(F_A) = 0 \) implies \(F_A = 0 \) (i.e.reducible solutions of 8-dim. SW-equations are flat.)

It can be explicitly verified that all solutions are reducible and flat:

Proposition: There are no nontrivial solutions of the Seiberg-Witten equations on \(R^8 \) with constant standard spin\(^c \) structure, i.e.

\[\rho^+(F_A) = (\Phi \Phi^*)_0 \] (alone) implies \(F_A = 0 \) and \(\Phi = 0 \).

The above work is based on a talk given at the 5th Gökova Geometry-Topology Conference held at Akyaka-Muğla, Turkey during May, 1996.
References

[1] D.Salamon, Spin Geometry and Seiberg-Witten Invariants (April 1996 version)(to appear).

[2] A.Trautman, Int.J.Theo.Phys.16(1977)561.

[3] D.H.Tchrakian, J.Math.Phys.21(1980)166.

[4] E.Corrigan, C.Devchand, D.B.Fairlie, J.Nuyts, Nucl.Phys.B 214(1983)452.

[5] B.Grossman, T.W.Kephart, J.D.Stasheff, Commun.Math.Phys.96(1984)431
Erratum:ibid,100(1985)311.

[6] A.H.Bilge, T.Dereli, Ş.Koçak, Lett.Math.Phys.36(1996)301.

[7] A.H.Bilge, Self-duality in dimensions 2n > 4, [dg-ga/9604002]

[8] C.Taubes, SW → Gr, J. of the A.M.S.9,3(1996).