タイトル	Title
	Metabolic alterations in plasma after laparoscopic sleeve gastrectomy
著者	Author(s)
	Yoshida, Naofumi / Kitahama, Seiichi / Yamashita, Tomoya / Hirono, Yasuko / Tabata, Tokiko / Saito, Yoshihiro / Shinohara, Ryohei / Nakashima, Hitomi / Emoto, Taku / Hirota, Yushi / Takahashi, Tetsuya / Ogawa, Wataru / Hirata, Ken-ichi
掲載誌・巻号・ページ	Citation
	Journal of Diabetes Investigation, 12(1):123-129
刊行日	Issue date
	2021-01
資源タイプ	Resource Type
	Journal Article / 学術雑誌論文
版区分	Resource Version
	publisher
権利	Rights
	© 2020 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
DOI	10.1111/jdi.13328
JaLCDOI	
URL	http://www.lib.kobe-u.ac.jp/handle_kernel/90007769

PDF issue: 2021-04-28
Metabolic alterations in plasma after laparoscopic sleeve gastrectomy

Naofumi Yoshida1, Seiichi Kitahama2, Tomoya Yamashita1*, Yasuko Hirono2, Tokiko Tabata1, Yoshihiro Saito1, Ryoei Shinohara3, Hitomi Nakashima3, Takuo Emoto1, Yushi Hirota4, Tetsuya Takahashi4,5, Wataru Ogawa4, Ken-ichi Hirata1

1Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan, 2Department of Bariatric and Metabolic Surgery, Center for Obesity, Diabetes and Endocrinology, Chibune General Hospital, Osaka, Japan, 3NITTO Pharmaceutical Industries, LTD., Kyoto, Japan, 4Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan, and 5Department of Diabetes and Endocrinology, Center for Obesity, Diabetes and Endocrinology, Chibune General Hospital, Osaka, Japan

Keywords
Laparoscopic sleeve gastrectomy, Metabolites, Obesity

*Correspondence
Tomoya Yamashita
Tel.: +81-78-382-5846
Fax: +81-78-382-5859
E-mail address: tomoya@med.kobe-u.ac.jp

J Diabetes Investig 2021; 12: 123–129
doi: 10.1111/jdi.13328

Clinical Trial Registry
University Hospital Medical Information Network Clinical Trials Registry
UMIN000035635

INTRODUCTION
The prevalence of obesity has increased to pandemic levels over the past 50 years1. Obesity represents one of the most important chronic diseases worldwide, and is associated with adverse health consequences throughout an individual’s life1–3. Given its dramatically escalating prevalence, therapeutic interventions are increasingly being considered for treating obesity and its associated metabolic diseases2.

In particular, surgical interventions have rapidly gained popularity4. A recent systematic review and meta-analysis showed surgery substantially reduces long-term (>10 years) bodyweight5. Furthermore, bariatric surgery reduces long-term mortality7. Laparoscopic sleeve gastrectomy (LSG), which is a simple procedure and has a lower complication rate than other bariatric operations, results in stable and adequate weight loss, and improves comorbidities in morbidly obese patients8–10. In Japan, LSG is the only procedure covered by insurance; thus, it has garnered significant attention. Although a substantial body of evidence shows that LSG is beneficial for reducing bodyweight and ameliorating metabolic disorders, little is known about systemic metabolic changes after LSG. Consequently, the present study aimed to compare plasma metabolite concentrations from before and 3 months after LSG using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS), which relatively and absolutely evaluates 916 and 110 ionic metabolites, respectively, to evaluate changes in obesity pathogenesis.

METHODS
Study participants
Between May 2019 and October 2019, morbidly obese patients scheduled to undergo LSG at Chibune General Hospital were consequently recruited for this study. All included patients provided oral and written informed consent; the study was carried out according to the principles of the Declaration of Helsinki. This study was approved by the ethics committees of Kobe University (No. 180355) and Chibune General Hospital (No.
20190422A), and was registered with the UMIN Clinical Trials Registry (UMIN000035635). LSG procedure was carried out following the guidelines of the Japanese Society for Treatment of Obesity: patients whose body mass index (BMI) ≥ 35 kg/m2 or BMI ≥ 32 kg/m2 with comorbidities. All patients received a dietary intervention for approximately 6 months before LSG. The definition of remission of diabetes was as follows: fasting plasma glucose < 126 mg/dL and glycohemoglobin $< 6.5\%$ with the absence of treatment.

Plasma metabolite extraction and CE-TOFMS analysis

Blood samples, taken in a fasting state, were collected in tubes containing ethylenediaminetetraacetic acid disodium salt. CE-TOFMS analysis was carried out using an Agilent capillary electrophoresis system (Agilent Technologies, Waldbronn, Germany) by Human Metabolome Technologies11. The systems were connected by a fused silica capillary (50 μm i.d. x 80 cm total length) with a commercial electrophoresis buffer as the electrolyte. Spectrometry analysis was carried out over a range from 50 to 1,000 m/z. Peaks were extracted using MasterHands automatic integration software version 2.17.1.11 (Keio University, Yamagata, Japan), and analyzed to determine their m/z, peak area and migration time12. The areas of annotated peaks were subsequently normalized based on internal standard levels and sample amounts, and used to calculate absolute metabolite concentrations. The list of

Table 1 | Changes in clinical parameters for 15 patients after laparoscopic sleeve gastrectomy

Variables	Before LSG	After LSG	P-value
Age (years)	52.2 ± 6.5	33.5 ± 6.1	<0.0001
Sex (female), n (%)	12 (80)	12 (80)	$>$0.99
Body mass index (kg/m2)	40.8 ± 6.6	33.5 ± 6.1	<0.0001
Comorbidities, n (%)			
Diabetes mellitus	10 (67)	5 (33)	0.14
Hypertension	11 (73)	9 (60)	0.70
Dyslipidemia	13 (87)	12 (80)	$>$0.99
Sleep apnea syndrome	4 (27)	4 (27)	$>$0.99
Medication, n (%)			
ACE-I/ARB	9 (60)	5 (33)	0.27
Calcium channel blocker	7 (47)	6 (40)	0.99
Antiplatelet/anticoagulant	2 (13)	2 (13)	0.99
PPI/H2 blocker	6 (40)	10 (67)	0.27
Statin/fibrate	12 (80)	5 (33)	0.025
Insulin analogs	4 (27)	1 (7)	0.33
DPP4 inhibitor	2 (13)	0 (0)	0.48
SGLT2 inhibitor	7 (47)	2 (13)	0.11
GLP-1 analogs	3 (20)	1 (7)	0.60
Metformin	6 (40)	0 (0)	0.017
α-Glucosidase inhibitors	2 (13)	0 (0)	0.48
Laboratory data			
Aspartate transaminase (U/L)	31.5 ± 15.8	206 ± 48	0.013
Alanine transaminase (U/L)	32.2 ± 14.7	193 ± 60	0.0032
γ-Glutamyl transpeptidase (U/L)	30.7 ± 17.0	19.1 ± 89	0.011
Lactate dehydrogenase (U/L)	192.1 ± 58.6	164.7 ± 33.1	$<$0.0001
Alkaline phosphatase (U/L)	214.4 ± 43.7	246.3 ± 58.6	0.0033
Blood urea nitrogen (mg/dL)	142.4 ± 42	144 ± 56	0.84
Creatinine (mg/dL)	0.7 ± 0.2	0.7 ± 0.2	0.87
Fasting plasma glucose (mg/dL)	119.2 ± 20.4	118.7 ± 32.3	0.95
Glycohemoglobin (%)	66 ± 0.8	61 ± 0.9	0.021
Total cholesterol (mg/dL)	176.9 ± 35.3	205.4 ± 45.7	0.048
HDL-C (mg/dL)	48.8 ± 15.1	56.9 ± 15.0	$<$0.0001
LDL-C (mg/dL)	103.8 ± 33.9	127.7 ± 42.7	0.056
Triglycerides (mg/dL)	168.1 ± 101.2	131.3 ± 73.8	0.069
C-reactive protein (mg/dL)	1.0 ± 1.9	0.44 ± 0.7	0.27

Data are shown as mean ± standard deviation for normally distributed data, or n (%). Analysis was carried out using the paired t-test or Fisher’s exact test, as appropriate. ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; DPP4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; HDL-C, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; LSG, laparoscopic sleeve gastrectomy; PPI, proton pump inhibitor; SGLT2, sodium–glucose cotransporter 2.
metabolites we evaluated is listed online (https://humanmetabolome.com/jp/services/annotation-en).

Statistical analysis
Results are expressed as the mean ± standard deviation for normally distributed data. Postoperative results were compared with preoperative baseline data using a paired t-test. The Fisher’s exact test was used to compare categorical variables. Spearman’s rank correlation coefficient was calculated to discover a link between two parameters. For all tests, P-values <0.05 were considered statistically significant. Principal coordinate analysis and z-scores were calculated using JMP version 14 (SAS Institute, Cary, NC, USA). All other data supporting the study findings are available from the corresponding author on reasonable request.

RESULTS

Baseline patient characteristics
Baseline patients characteristics, comorbidities, medications and laboratory data before LSG are listed in Table 1. The mean patient age was 52.2 ± 6.5 years, 12 patients were women. The mean BMI before LSG was 40.8 ± 6.6 kg/m².

Changes to body composition and metabolic status after laparoscopic sleeve gastrectomy
The mean follow-up period was 92.1 ± 2.2 days. Changes to body composition and other parameters are shown in Table 1 and Figure 1a,b. BMI (40.8 ± 6.6 kg/m² vs 33.5 ± 6.1 kg/m², P < 0.0001), body fat mass (48.1 ± 13.2 kg vs 37.1 ± 13.2 kg, P < 0.0001) and body muscle mass (51.2 ± 11.1 kg vs 46.2 ± 9.6 kg, P < 0.0001) decreased significantly after LSG. Post-surgery liver function, as assessed by aspartate transaminase, alanine transaminase, γ-glutamyl transpeptidase, lactate dehydrogenase and alkaline phosphatase, improved significantly. Furthermore, glycohemoglobin levels decreased significantly, despite efforts to wean patients off antidiabetic medications. The remission rate of diabetes was 50% (patients 1, 6, 10, 12 and 15). In contrast, with the high discontinuation rates of statin/fibrate, total cholesterol and low-density lipoprotein were elevated. C-reactive protein levels, an indicator for systemic inflammation, tended to be decreased after LSG (1.0 ± 1.9 mg/dL vs 0.44 ± 0.7 mg/dL, P = 0.27).

Changes in plasma metabolites after laparoscopic sleeve gastrectomy
Overall, 185 metabolites were detected, of which 48 could be quantified (Table S1). Principal coordinate analysis showed a dramatic change in the metabolite profile after LSG (Figure 2a). A volcano plot comparing the statistical significance and the post-LSG metabolite fold-change shows that 19 metabolite concentrations significantly changed after LSG. Plasma levels of 14 metabolites, including branched chain amino acids (BCAA; valine, leucine, isoleucine) and other essential amino acids (EAA; tryptophan and phenylalanin), tyrosine, choline, creatine, ornithine, hypoxanthine, 2-oxoisovaleric acid, 2-hydroxybutyric acid, N,N-dimethylglycine and uridine decreased significantly after LSG. In contrast, plasma levels of five metabolites, including citric acid, succinic acid, malic acid, arginine and glycine, increased significantly after LSG (Figure 2b). A heatmap of the z-scores for BMI and each metabolite show that LSG altered metabolites related to the tricarboxylic acid cycle and essential amino acids (Figure 2c).

Associations of plasma metabolites with clinical indices
Figure 3 shows the association between BMI and laboratory data and 48 metabolites. Several metabolite concentrations were significantly correlated with liver function, lipid profile, glucose, glycohemoglobin and C-reactive protein.

DISCUSSION
This is the first report of non-targeted plasma metabolomics analysis using CE-TOFMS, and to identify metabolic changes in morbidly obese patients before and after LSG. In the present study group, 50% of patients showed remission of diabetes, which is consistent with a previous report. Our key findings showed that: (i) LSG decreased plasma BCAA and EAA levels; and (ii) LSG increased plasma tricarboxylic acid cycle intermediates, such as citric acid, succinic acid and malic acid. Furthermore, we identified several metabolites that are significantly associated with clinical indices.

We observed a significant reduction of BCAA and EAA after LSG. There are several studies showing that BCAA and EAA contribute to the development of obesity. Previous reports from other Asian countries showed that Roux-en-Y gastric bypass also significantly decreased blood BCAA levels, as assessed by liquid chromatography-mass spectrometry in obese patients. BCAA levels are regulated by BCAA catalytic enzyme activity in adipose tissues, and can be used as predictive biomarkers for obesity and insulin resistance, thus, decreased BCAA levels might reflect improved adipose tissue function. Furthermore, EAA and choline, which are predominantly present within eggs, red meat and fish, were reduced after LSG. These results might derive from reduced
food intake after LSG. Otherwise, gut microbiota can metabo-
lize EAA and choline19–21; thus, alterations in the gut micro-
biota after LSG, as has been previously reported22–24, might
help explain the reductions in EAA and choline levels. Given
that gut microbiota differ among ethnicities, it might be better
to establish evidence in each country.

Figure 2 | The alteration of plasma metabolites after laparoscopic sleeve gastrectomy. (a) Principal coordinate analysis was carried out to compare the distribution of metabolites before (dot) and after (circle) laparoscopic sleeve gastrectomy (LSG). (b) A volcano plot of statistical significance compared with the post-LSG fold-change of concentrations. (c) A heatmap of z-scores for body mass index (BMI) and 48 metabolites. Arg, arginine; CA, citric acid; Cr, creatine; DG, dimethylglycine; Gly, glycine; HA, hydroxybutyric acid; Ile, isoleucine; Leu, leucine; MA, malic acid; Met, methionine; N.S., not significant; OA, oxoisovaleric acid; Orn, ornithine; Phe, phenylalanine; SA, succinic acid; TCA, tricarboxylic acid; Trp, tryptophan; Tyr, tyrosine; Val, valine.
Interestingly, levels of metabolites related to the tricarboxylic acid cycle were significantly elevated after LSG. Previous human trials also showed increased serum citric acid levels, as assessed by liquid or gas chromatography-mass spectrometry after LSG and Roux-en-Y gastric bypass25,26. Furthermore, a study in mice showed that compared with a normal chow-fed diet, a high-fat diet depressed levels of tricarboxylic acid cycle intermediates in the blood and liver27. Collectively, these indicate that LSG and its associated weight loss might improve mitochondrial function.

In summary, we identified dynamic alterations in plasma metabolite concentrations 3 months after LSG in 15 morbidly obese Japanese patients. Although food intake and the changes of medication might affect the plasma metabolite concentrations28,29, the present results support LSG as an effective therapeutic strategy for treating obesity not only as a weight loss surgery, but also as a metabolomic intervention30. The present findings have the potential to show how LSG ameliorates obesity and present novel therapeutic targets for treating obesity.

ACKNOWLEDGMENTS

We are indebted to the study participants and grateful to the medical staff for their cooperation. We also thank Shinsuke Nakajima, Hiroyuki Sato and Reiko Oshima for their excellent...
support. This work was supported by PRIME from the Japan Agency for Medical Research and Development (18069370, TY), Japan Society for the Promotion of Science KAKENHI Grant Number 19K23944 (NY), 19H03653 (TY), and Japan Innovative Bioproduction Kobe from the Ministry of Education, Culture, Sports and Technology, Hyogo Science and Technology Association (TY).

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15: 288–298.
2. Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med 2017; 376: 254–266.
3. Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128-9 million children, adolescents, and adults. Lancet 2017; 390: 2627–2642.
4. Sjöström L. Surgical intervention as a strategy for treatment of obesity. Endocrine 2000; 13: 213–230.
5. Kral JG, Näslund E. Surgical treatment of obesity. Nat Clin Pract Endocrinol Metab 2007; 3: 574–583.
6. O’Brien PE, Hindle A, Brennan L, et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Obes Surg 2019; 29: 3–14.
7. Pontiroli AE, Morabito A. Long-term prevention of mortality in morbid obesity through bariatric surgery. A systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann Surg 2011; 253: 484–487.
8. Braghetto I, Korn O, Valladares H, et al. Laparoscopic sleeve gastrectomy: surgical technique, indications and clinical results. Obes Surg 2007; 17: 1442–1450.
9. Karmali S, Schauer P, Birch D, et al. Laparoscopic sleeve gastrectomy: an innovative new tool in the battle against the obesity epidemic in Canada. Can J Surg 2010; 53: 126–132.
10. Chopra A, Chao E, Etkin Y, et al. Laparoscopic sleeve gastrectomy for obesity: can it be considered a definitive procedure? Surg Endosc 2012; 26: 831–837.
11. Ohashi Y, Hirayama A, Ishikawa T, et al. Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol Biosyst 2008; 4: 135–147.
12. Sugimoto M, Wong DT, Hirayama A, et al. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010; 6: 78–95.
13. Samczuk P, Ciborowski M, Kretowski A. Application of metabolomics to study effects of bariatric surgery. J Diabetes Res 2018; 2018: 6270875.
14. Min T, Prior SL, Churm R, et al. Effect of laparoscopic sleeve gastrectomy on static and dynamic measures of glucose homeostasis and incretin hormone response 4-years post-operatively. Obes Surg 2020; 30: 46–55.
15. Luo P, Yu H, Zhao X, et al. Metabolomics study of Roux-en-Y gastric bypass surgery (RYGB) to treat type 2 diabetes patients based on ultraperformance liquid chromatography–mass spectrometry. J Proteome Res 2016; 15: 1288–1299.
16. Tan HC, Khoo CM, Tan MZ-W, et al. The effects of sleeve gastrectomy and gastric bypass on branched-chain amino acid metabolism 1 year after bariatric surgery. Obes Surg 2016; 26: 1830–1835.
17. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9: 311–326.
18. Herman MA, She P, Peroni OD, et al. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem 2010; 285: 11348–11356.
19. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472: 57–63.
20. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368: 1575–1584.
21. Shoai S, Ghaffari P, Kovatcheva-Datchary P, et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab 2015; 22: 320–331.
22. Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: preliminary findings in obese women undergoing bariatric surgery. Psychosom Med 2017; 79: 880–887.
23. Ehtahed H-S, Angoorani P, Hasani-Ranjbar S, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathogen 2018; 116: 13–21.
24. Kikuchi R, Irie J, Yamada-Goto N, et al. The impact of laparoscopic sleeve gastrectomy with duodenoejunal bypass on intestinal microbiota differs from that of laparoscopic sleeve gastrectomy in Japanese patients with obesity. Clin Drug Investig 2018; 38: 545–52.
25. Samczuk P, Luba M, Godzien J, et al. “Gear mechanism” of bariatric interventions revealed by untargeted metabolomics. J Pharm Biomed Anal 2018; 151: 219–226.
26. Wijayatunga NN, Sams VG, Dawson JA, et al. Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes/Metab Res Rev 2018; 34: e3045.
27. Patel DP, Krausz KW, Xie C, et al. Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. *PLoS One* 2017; 12: e0177953.

28. Safai N, Suvitaival T, Ali A, et al. Effect of metformin on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (CIMT) trial. *Diabetic Med* 2018; 35: 944–953.

29. Myoenzono K, Yoshikawa T, Kumagai H, et al. Changes in plasma amino acid concentrations in overweight and obese men after weight loss program including dietary modification and aerobic exercise. *J Phys Fitness Sports Med* 2020; 9: 43–51.

30. Frühbeck G. Bariatric and metabolic surgery: a shift in eligibility and success criteria. *Nat Rev Endocrinol* 2015; 11: 465–477.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | Alteration of plasma metabolites after laparoscopic sleeve gastrectomy. *P* < 0.05, **P* < 0.01, ***P* < 0.001. LSG, laparoscopic sleeve gastrectomy.