CHARACTERIZATION OF THE MONOTONICITY BY THE INEQUALITY

DINH TRUNG HOA, HIROYUKI OSAKA, AND JUN TOMIYAMA

Abstract. Let \(\varphi \) be a normal state on the algebra \(B(H) \) of all bounded operators on a Hilbert space \(H \), \(f \) a strictly positive, continuous function on \((0, \infty) \), and let \(g \) be a function on \((0, \infty) \) defined by \(g(t) = \frac{f}{f(t)} \). We will give characterizations of matrix and operator monotonicity by the following generalized Powers-Størmer inequality:

\[
\varphi(A + B) - \varphi(|A - B|) \leq 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}),
\]

whenever \(A, B \) are positive invertible operators in \(B(H) \).

1. Introduction

Throughout the paper, \(M_n \) stands for the algebra of all \(n \times n \) matrices, \(M_n^+ \) denote the set of positive semi-definite matrices. We call a function \(f \) matrix convex of order \(n \) or \(n \)-convex in short (resp. matrix concave of order \(n \) or \(n \)-concave) whenever the inequality

\[
f(\lambda A + (1 - \lambda)B) \leq \lambda f(A) + (1 - \lambda)f(B), \; \lambda \in [0, 1]
\]

(resp. \(f(\lambda A + (1 - \lambda)B) \geq \lambda f(A) + (1 - \lambda)f(B) \), \(\lambda \in [0, 1] \)) holds for every pair of selfadjoint matrices \(A, B \in M_n \) such that all eigenvalues of \(A \) and \(B \) are contained in \(I \). Matrix monotone functions on \(I \) are similarly defined as the inequality

\[
A \leq B \implies f(A) \leq f(B)
\]

for any pair of selfadjoint matrices \(A, B \in M_n \) such that \(A \leq B \) and all eigenvalues of \(A \) and \(B \) are contained in \(I \). We call a function \(f \) operator convex (resp. operator concave) if for each \(k \in \mathbb{N} \), \(f \) is \(k \)-convex (resp. \(k \)-concave) and operator monotone if for each \(k \in \mathbb{N} \) \(f \) is \(k \)-monotone.

Let \(n \in \mathbb{N} \) and \(f : [0, \alpha) \to \mathbb{R} \). In [5] the second and the third author discussed about the following 3 assertions at each level \(n \) among them in order to see clear insight of the double piling structure of matrix monotone functions and of matrix convex functions:

(i) \(f(0) \leq 0 \) and \(f \) is \(n \)-convex in \([0, \alpha) \),

(ii) For each matrix \(a \) with its spectrum in \([0, \alpha) \) and a contraction \(c \) in the matrix algebra \(M_n \),

\[
f(c^*ac) \leq c^*f(a)c,
\]

(iii) The function \(f(t) \) (\(= g(t) \)) is \(n \)-monotone in \((0, \alpha) \).

It was shown in [5] that

\[
(i)_{n+1} \prec (ii)_{n} \sim (iii)_{n} \prec (i)_{\frac{n}{n+1}},
\]

\(^{14}\)Research partially supported by the JSPS grant for Scientific Research No. 20540220.

Date: 15, July, 2012.

2000 Mathematics Subject Classification. 46L30, 15A45.

Key words and phrases. Operator monotonicity, trace, generalized Powers-Størmer’s inequality, positive functional.
where denotation \((A)_m \prec (B)_n\) means that “if \((A)\) holds for the matrix algebra \(M_m\), then \((B)\) holds for the matrix algebra \(M_n\)”.

In this article, using an idea in [4] we can get the concave version of the above observation. Namely, for \(n \in \mathbb{N}\) and \(f : [0, \alpha) \to \mathbb{R}\) we consider the following assertions:

(iv) \(f(0) \geq 0\) and \(f\) is \(n\)-concave in \([0, \alpha)\),
(v) For each matrix \(a\) with spectrum in \([0, \alpha)\) and a contraction \(c\) in the matrix algebra \(M_n\),
\[f(c^* ac) \geq c^* f(a)c,\]
(vi) The function \(\frac{f(t)}{f(t)}\) is \(n\)-monotone in \((0, \alpha)\).

We will show that \((iv)_{n+1} \prec (v)_{n} \sim (vi)_{n} \prec (iv)_{\frac{n}{2}}\).

As an application we investigate the generalized Powers-Størmer inequality from the point of matrix functions, which was introduced in [4]. Let \(\varphi\) be a normal state on the algebra \(B(H)\) of all bounded operators on a Hilbert space \(H\), \(f\) be a strictly positive, continuous function on \((0, \infty)\), and let \(g\) be a function on \((0, \infty)\) defined by \(g(t) = \frac{t}{f(t)}\).

We will consider the following inequality
\[
\varphi(A + B) - \varphi(|A - B|) \leq 2\varphi(f(A)\frac{1}{2} g(B) f(A)^{\frac{1}{2}}),
\]
where \(A, B\) are positive invertible operators in \(B(H)\).

It will be shown that:

1. If the inequality holds true for any positive invertible \(A, B\), then the function \(g\) is operator monotone.
2. When \(\dim H = n < \infty\), if \(\varphi\) is canonical trace and \(f\) is \((n + 1)\)-concave, then the inequality holds.
3. When \(\dim H = n < \infty\), if the inequality holds, then the state \(\varphi\) has the trace property if and only if the function \(g\) satisfies the condition
\[
\inf_{\lambda > \mu} \frac{\sqrt{g'(\lambda)g'(\mu)}}{\sqrt{g(\lambda) - g(\mu)}} = 0.
\]

2. Hansen-Pedersen’s inequality for matrix functions

For a long time it has been known the following equivalency. When \(f\) is strictly positive, continuous function on \((0, \infty)\), the followings are equivalent ([3, 2.6. Corollary]):

1. \(f\) is operator concave.
2. \(\frac{f}{f(t)}\) is operator monotone

The following result is the matrix function versions of the above observation.

Theorem 2.1. Let \(n \in \mathbb{N}\) and \(f : [0, \alpha) \to \mathbb{R}\) be a continuous function for some \(\alpha > 0\) such that \(0 \notin f([0, \alpha))\). Let us consider the following assertions:

4. \(f\) is \(n\)-concave with \(f(0) \geq 0\).
5. For all operators \(A \in M_n\) with its spectrum in \([0, \alpha)\) and all contraction \(C\)
\[f(C^* AC) \geq C^* f(A)C.\]
(6) \(g(t) = \frac{t}{f(t)} \) is \(n \)-monotone on \((0, \alpha)\).

Then we have

\[
(4)_{n+1} \prec (5)_n \sim (6)_n \prec (4)_{\frac{n}{2}}.
\]

Proof. The implication \((4)_{n+1} \prec (5)_n\):

Since \(f \) is \((n+1)\)-concave, \(-f\) is \((n+1)\)-convex. From [5] we know that for an operator \(A \in M_n \) with its spectrum in \([0, \alpha)\) and a contraction \(C \)

\[
(-f)(C^*AC) \leq C^*(-f)(A)C,
\]

hence

\[
f(C^*AC) \geq C^*f(A)C.
\]

The implication \((5)_n \sim (6)_n\):

Since \(f(C^*AC) \geq C^*f(A)C \) for an operator \(A \in M_n \) with its spectrum in \([0, \alpha)\) and a contraction \(C \), we know that

\[
(-f)(C^*AC) \leq C^*(-f)(A)C.
\]

Then, from [5] we know that \(-\frac{f(t)}{t}\) is \(n \)-monotone. Since the function \(-\frac{1}{t}\) is operator monotone, \(-\frac{1}{\frac{f(t)}{t}}\) is \(n \)-monotone, that is, \(\frac{t}{f(t)} \) is \(n \)-monotone.

Conversely, if \(\frac{t}{f(t)} \) is \(n \)-monotone, then \(-\frac{1}{\frac{f(t)}{t}} = \frac{(-f)(t)}{t}\) is \(n \)-monotone from the operator monotonicity of \(-\frac{1}{t}\), hence we know in [5] that for an operator \(A \in M_n \) with its spectrum in \([0, \alpha)\) and a contraction \(C \)

\[
(-f)(C^*AC) \leq C^*(-f)(A)C,
\]

that is,

\[
f(C^*AC) \geq C^*f(A)C.
\]

The implication \((6)_n \prec (4)_{\frac{n}{2}}\): Since \(\frac{t}{f(t)} \) is \(n \)-monotone, the function \(-\frac{f(t)}{t}\) is \(n \)-monotone by [4] Lemma 2.2. Hence, \(-f\) is \([\frac{n}{2}]\)-convex by [5], that is, \(f \) is \([\frac{n}{2}]\)-concave. \(\Box \)

3. Characterization of matrix monotonicity

The following result was proved in [4] under the condition that the function \(f \) is \(2n \)-monotone. But using the concavity we will show that the condition of \(f \) is weakened. Note that the \(2n \)-monotonicity of a function \(f \) on \([0, \infty)\) implies the \(n \)-concavity of \(f \) by [1] Theorem V.2.5.

Theorem 3.1. Let \(\text{Tr} \) be the canonical trace on \(M_n \) and \(f \) be a \((n+1)\)-concave function on \([0, \infty)\) such that \(f((0, \infty)) \subset (0, \infty) \). Then for any pair of positive matrices \(A, B \in M_n \)

\[
\text{Tr}(A) + \text{Tr}(B) - \text{Tr}(|A - B|) \leq 2 \text{Tr}(f(A)^{\frac{n}{2}}g(B)f(A)^{\frac{n}{2}}),
\]

where \(g(t) = \left\{ \begin{array}{ll} \frac{t}{f(t)} & (t \in (0, \infty)) \\ 0 & (t = 0) \end{array} \right. \).
Proof. Since \(f \) is \((n + 1)\)-concave, we know that the function \(g \) is \(n \)-monotone from Theorem 2.1. Moreover, by a standard argument (see, for example, [1, Theorem V.2.5]) it is clear that the function \(f \) is \((n + 1)\)-monotone, and hence \(n \)-monotone. Repeating the similar argument as in the proof of [4, Theorem 2.1] with mentioned properties of \(f \) and \(g \), we will get the conclusion. \(\square \)

From the above Theorem 3.1 we consider the following converse problems.

Let \(n \in \mathbb{N} \) and \(\varphi \) be a faithful positive linear functional on \(M_n \), \(f \) be a strictly positive, continuous function on \((0, \infty)\), and let \(g \) be a function on \((0, \infty)\) defined by \(g(t) = f(t)^{\frac{1}{2}} \).

Suppose that for any positive invertible \(A, B \in M_n \)

\[
\varphi(A + B) - \varphi(|A - B|) \leq 2\varphi(f(A^{\frac{1}{2}})g(B)f(A^{\frac{1}{2}})).
\]

Then:
Problem 1: Is it true that \(f \) is \(n \)-monotone?
Problem 2: Is \(\varphi \) a scalar positive multiple of the canonical trace?

The following examples give a contribution to the attempt to answer problem 1.

Example 3.2. Let \(f(t) = t^2 \) on \((0, \infty)\). It is well-known that \(f \) is not 2-monotone. We now show that the function \(f \) does not satisfy the inequality (1). Indeed, let us consider the following matrices

\[
A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.
\]

Then we have

\[
AB^{-1}A = \frac{2}{3}A.
\]

Set \(\tilde{A} = A \oplus \text{diag}(1, \cdots, 1) \) and \(\tilde{B} = B \oplus \text{diag}(1, \cdots, 1) \) in \(M_n \). Then, \(\tilde{A} \leq \tilde{B} \) and for a faithful linear functional \(\varphi \) on \(M_n \)

\[
\varphi(f(\tilde{A}^{\frac{1}{2}})g(\tilde{B})f(\tilde{A}^{\frac{1}{2}})) = \varphi(\tilde{A}B^{-1}\tilde{A})
\]

\[
= \varphi\left(\frac{2}{3}A \oplus \text{diag}(1, \cdots, 1)\right)
\]

\[
< \varphi(A \oplus \text{diag}(1, \cdots, 1))
\]

\[
= \varphi(\tilde{A}).
\]

On the contrary, since \(\tilde{A} \leq \tilde{B} \), from the inequality (1) we have

\[
\varphi(\tilde{A}) + \varphi(\tilde{B}) - \varphi(\tilde{B} - \tilde{A}) \leq 2\varphi(f(\tilde{A}^{\frac{1}{2}})g(\tilde{B})f(\tilde{A}^{\frac{1}{2}})),
\]

or

\[
\varphi(\tilde{A}) \leq \varphi(f(\tilde{A}^{\frac{1}{2}})g(\tilde{B})f(\tilde{A}^{\frac{1}{2}})),
\]

and we have a contradiction. \(\square \)
Now we will show that for $p > 1$ the function $f(t) = t^p$ does not satisfy the special inequality from inequality (1) for a faithful positive linear functional.

Example 3.3. It will be shown that for $f(t) = t^p$ ($p > 1$) and a faithful positive linear functional φ on M_n, the following inequality does not always hold:

\[
\varphi(A) \leq \varphi(f(A)^{1/2}g(B)f(A)^{1/2}) \quad (0 \leq A \leq B).
\]

Note that when $0 < A \leq B$ the inequality (2) can be deduced from the inequality (1) directly.

Since $A \leq B$, we can suppose that $B = A + tC$ for some positive number t and positive matrix C. Hence inequality (1) becomes

\[
\varphi(A) \leq \varphi(f(A)^{1/2}g(A + tC)f(A)^{1/2}).
\]

On the other hand, we have

\[
g(A + tC) = g(A) + t \cdot \left. \frac{dg(A + tC)}{dt} \right|_{t=0} + R(A, C, t),
\]

where $\lim_{t \to 0} \frac{||R(A, C, t)||}{t} = 0$.

From (3) and (4) we get

\[
\varphi(A) \leq \varphi(f(A)^{1/2}(g(A) + t \cdot \left. \frac{dg(A + tC)}{dt} \right|_{t=0} + R(A, C, t))f(A)^{1/2})
\]

\[
= \varphi(A) + t\varphi(f(A)^{1/2} \cdot \left. \frac{dg(A + tC)}{dt} \right|_{t=0} \cdot f(A)^{1/2} + o(t).
\]

From that, we get

\[
\varphi(f(A)^{1/2} \cdot \left. \frac{dg(A + tC)}{dt} \right|_{t=0} \cdot f(A)^{1/2}) \geq 0 \quad (\forall A, C \geq 0).
\]

Let us assume that $\varphi(\cdot) = \text{Tr}(S \cdot)$, where $S = \text{diag}(s, 1)$ ($s \in [0, 1]$). For $\beta > 0$ and $\alpha \in [0, 1]$, let us consider the 2×2 matrices

\[
C = \begin{pmatrix}
\frac{\alpha^2}{\alpha^2 - 1} & \frac{\alpha\sqrt{1 - \alpha^2}}{1 - \alpha^2} \\
\frac{\alpha\sqrt{1 - \alpha^2}}{1 - \alpha^2} & \frac{1}{\alpha^2}
\end{pmatrix} \quad \text{and} \quad A = \beta P_1 + \alpha P_2,
\]

where

\[
P_1 = \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad P_2 = \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}.
\]

Then by identifying M_2 as a C^*-subalgebra $M_2 \oplus O_{n-2}$ of M_n, we may assume that $\varphi(\cdot) = \text{Tr}(S \cdot)$, where $S = \text{diag}(s, 1)$ ($s \in [0, 1]$).

Then (5) becomes

\[
\alpha^2(1 - \frac{\beta f'(\beta)}{f(\beta)}) + (1 - \alpha^2)(1 - \frac{\alpha f'(\alpha)}{f(\alpha)}) \geq 0.
\]

Since $f(t) = t^p$, for any $\alpha, \beta > 0$ we have

\[
1 - \frac{\beta f'(\beta)}{f(\beta)} = 1 - \frac{\alpha f'(\alpha)}{f(\alpha)} = 1 - p < 0.
\]

It implies that the latter inequality (3) does not hold true for any $\alpha \in [0, 1]$, and the inequality (2) will not hold true.

In particular, even φ is the canonical trace on M_n, the inequality (2) will not hold true.
From above argument, we can find many counterexamples for the functions not of the form \(f(t) = t^p \) \((p > 1)\). For example, if function \(f \) on some \((0, a)\) satisfies condition \(f(t) < tf'(t) \), then inequality (2) is not true. \(\square\)

Here we will give a positive answer on problem 2 for some class of functions \(g \), namely, it will be shown that inequality (2) characterizes the trace property of \(\varphi \).

Proposition 3.4. Let \(n \in \mathbb{N} \) and \(\varphi \) be a faithful positive linear functional on \(M_n \). Let \(f \) be a strictly positive, continuous function on \((0, \infty)\), and let \(g \) be a function on \((0, \infty)\) defined by \(g(t) = t^p f(t) \). Suppose that

\[
\varphi(A) \leq \varphi(f(A)^{1/2}g(B)f(A)^{1/2}),
\]

whenever any pair of positive invertible \(A, B \in M_n \) such that \(0 < A \leq B \).

Then \(\varphi \) has the trace property if and only if \(g \) satisfies the condition

\[
\inf_{\lambda > \mu} \frac{\sqrt{\lambda} g'(\lambda)}{\sqrt{\lambda} g'(\mu)} = 0.
\]

Proof. The conclusion follows from the same steps in the proof of [6, Theorem 2.2], but we put the sketch of the proof for readers.

Let \(S \) be a positive definite matrix such that \(\varphi(X) = \text{Tr}(XS) \) \((X \in M_n)\). Then the trace property of \(\varphi \) is equivalent to the condition that \(S \) is a positive scalar multiple of the identity matrix. Taking into consideration \(\varphi(V^* \cdot V) = \text{Tr}((\cdot VS)V^*) \)

for all unitary \(V \) and that \(VSV^* \) is diagonal for a unitary \(U \), we may assume that that \(\varphi(\cdot) = \text{Tr}(\cdot S^{1/2}) \), where \(S = \text{diag}(s, 1) \) \((s \in [0, 1])\). For \(\beta > 0 \) and \(\alpha \in [0, 1] \), let us consider the matrices

\[
U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} \frac{s}{\alpha} & \frac{s}{\alpha^2} \\ \frac{s}{\alpha \sqrt{1 - \alpha^2}} & \frac{s}{\lambda \sqrt{1 - \alpha^2}} \end{pmatrix}
\]

and

\[
A = \lambda P_1 + \mu P_2,
\]

where

\[
P_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.
\]

And (7) becomes

\[
\frac{\alpha}{\sqrt{1 - \alpha^2}} \frac{f(\lambda)^{1/2} f'(\lambda)}{f(\lambda)^{1/2}} g'(\lambda) + \frac{\sqrt{1 - \alpha^2}}{\alpha} \frac{f(\mu)^{1/2} f'(\mu)}{f(\lambda)^{1/2}} g'(\mu) \geq 2 \frac{1 - s g(\lambda) - g(\mu)}{1 + s} \frac{\lambda - \mu}{\lambda \mu}.
\]

Put

\[
t = \frac{\alpha}{\sqrt{1 - \alpha^2}} \quad \text{and} \quad \delta = \frac{1 - s}{1 + s}.
\]

Note that \(0 < \alpha < 1 \iff 0 < t < \infty \).
Then it is clear that \(s = 1 \) iff \(\delta = 0 \). The latter inequality is described as
\[
\frac{1}{2} \left(t \frac{f(\lambda)^{1/2}}{f(\mu)^{1/2}} g'(\lambda) + \frac{1}{t} \frac{f(\mu)^{1/2}}{f(\lambda)^{1/2}} g'(\mu) \right) \geq \delta \frac{g(\lambda) - g(\mu)}{\lambda - \mu}.
\]
Hence, by considering arithmetic-geometric mean inequality in the left-hand side, we have
\[
\sqrt{g'(\lambda)g'(\mu)} \geq \delta \frac{g(\lambda) - g(\mu)}{\lambda - \mu}.
\]
Therefore, the condition that \(\varphi \) has the trace property, that is, the condition \(s = 1 \) or \(\delta = 0 \) is given by
\[
\inf_{\lambda > \mu} \frac{\sqrt{g'(\lambda)g'(\mu)}}{g(\lambda) - g(\mu)} = 0.
\]
\(\square \)

Example 3.5. For \(g(x) = t^2 \) (i.e. \(f(t) = 1/t \)) on \((0, \infty)\) which satisfies the condition \([\delta] \), and for any \(n \in \mathbb{N} \)
\[
\text{Tr}(A) \leq \text{Tr}(f(A)^{1/2}g(B)f(A)^{1/2})
\]
whenever \(0 < A \leq B \) in \(M_n \).

Indeed, by assumption we have \(B^{-1} \leq A^{-1} \). Consequently,
\[
A \leq B = BB^{-1}B \leq BA^{-1}B.
\]
Therefore,
\[
\text{Tr}(A) \leq \text{Tr}(BA^{-1}B) = \text{Tr}(A^{-1/2}B^2A^{-1/2}).
\]
\(\square \)

We have the following inequality for the exponential functions \(g(t) = e^t \) on \((a, \infty)\) which satisfies the condition \([\delta] \).

Example 3.6. For any natural number \(n \), we have
\[
\text{Tr}(A) \leq \text{Tr}((Ae^{-A})^{1/2}e^B(Ae^{-A})^{1/2})
\]
whenever \(0 < A \leq B \) in \(M_n \).

Indeed, let \(A, B \) in \(M_n \) such that \(0 < A \leq B \). Since \(0 < A \), we have
\[
0 < Ae^{-A} \quad \text{and} \quad 0 < \log(Ae^{-A}).
\]
Besides,
\[
0 < A \leq B \quad \Rightarrow \quad 0 < A \leq \log(Ae^{-A}) + B.
\]
Consequently,
\[
0 < A \leq \log(Ae^{-A}) + B \leq e^{\log(Ae^{-A})+B}.
\]
On account of Golden-Thompson’s Inequality, from the latter inequality it follows
\[
\text{Tr}(A) \leq \text{Tr}(e^{\log(Ae^{-A})+B})
\leq \text{Tr}(e^{\log(Ae^{-A})}e^B)
\leq \text{Tr}(Ae^{-A}e^B)
= \text{Tr}((Ae^{-A})^{1/2}e^B(Ae^{-A})^{1/2}).
\]
On the contrary, when \(g(t) = t^2 \), the inequality \(\mathbf{\square} \) does not hold always.

Example 3.7. Let \(g(t) = t^2 \). Suppose that the inequality \(\mathbf{\square} \) holds for \(0 < A \leq B \) in \(M_2 \). Then we have
\[
\text{Tr}(A) \leq \text{Tr}(A^{-1}BA^{-1})
\]
for \(0 < A \leq B \). Set \(A = \text{diag}(2, 2) \) and \(B = A \). Since \(A^{-1} = \text{diag} \left(\frac{1}{2}, \frac{1}{2} \right) \), we have
\[
4 = \text{Tr}(A) \leq \text{Tr}(A^{-1}AA^{-1})
= \text{Tr}(A^{-1}) = 1,
\]
and a contradiction. \(\square \)

4. Characterization of Operator Monotonicity

The following lemma is obvious.

Lemma 4.1. Let \(A = (a_{ij}) \), \(B = (b_{ij}) \) be positive invertible in \(M_n \) and \(S \) be the density operator on an infinite dimensional, separable Hilbert space \(H \). Suppose that \(a_{11} > b_{11} \). Then there exist an orthogonal system \(\{\xi_i\}_{i=1}^\infty \subset H \) and \(\{\lambda_i\}_{i=1}^\infty \subset [0, 1) \) such that
\[
\sum_{i=1}^\infty \lambda_i = 1, \quad S\xi_i = \lambda_i\xi_i, \quad \text{and} \quad \sum_{i=1}^n a_{ii}\lambda_i > \sum_{i=1}^n b_{ii}\lambda_i.
\]

Theorem 4.2. Let \(\varphi \) be a normal state on \(B(H) \), \(f \) be a strictly positive, continuous function on \((0, \infty) \), and let \(g \) be a function on \((0, \infty) \) defined by \(g(t) = \frac{1}{t^m} \). Suppose that for any positive invertible \(A, B \in B(H) \)
\[
\varphi(A + B) - \varphi(|A - B|) \leq 2\varphi(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}}).
\]
Then the function \(g \) on \((0, \infty) \) is operator monotone.

Proof. Let \(S_\varphi \) be a density operator on \(H \) such that \(\varphi(X) = \text{Tr}(S_\varphi X) \) for all \(X \in B(H) \).

Suppose that \(g \) is not operator monotone. We have, then, there exist \(n \in \mathbb{N} \) and invertible positive matrices \(A, B \) in \(M_n \) with \(A \leq B \) such that \(g(A) \not\leq g(B) \). Hence, \(A \not\leq f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}} \).

Let \(A = [a_{ij}] \) and \(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}} = [b_{ij}] = B' \). Since \(S_\varphi \) is a density operator, from Lemma 4.1 there exist an orthogonal system \(\{\xi_i\}_{i=1}^\infty \subset H \) and \(\{\lambda_i\}_{i=1}^\infty \subset [0, 1) \) such that
\[
\sum_{i=1}^\infty \lambda_i = 1 \quad \text{and} \quad \sum_{i=1}^n a_{ii}\lambda_i > \sum_{i=1}^n b_{ii}\lambda_i.
\]

Let \(\rho: M_n \to (\sum_{i=1}^n |\xi_i\rangle\langle\xi_i|)B(H)(\sum_{i=1}^n |\xi_i\rangle\langle\xi_i|) \) be a canonical inclusion defined by \(\rho([x_{ij}]) = \sum_{i,j=1}^n x_{ij}|\xi_i\rangle\langle\xi_j| \). Let \(C = \rho(A) + \sum_{i=n+1}^\infty |\xi_i\rangle\langle\xi_i| \) and \(D = \rho(B) + \sum_{i=n+1}^\infty |\xi_i\rangle\langle\xi_i| \).

We have, then, both operators \(C \) and \(D \) are invertible on \(H \) with \(C \leq D \). Note that
\[
\rho(f(A)^{\frac{1}{2}})\rho(g(B))\rho(f(A)^{\frac{1}{2}}) = \rho(f(A)^{\frac{1}{2}}g(B)f(A)^{\frac{1}{2}})
= \sum_{i=1}^n b_{ij}|\xi_i\rangle\langle\xi_j|.
\]
We have, then,
\[f(C) = \rho(f(A)) + f(1) \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i| \]
\[f(C)^{\frac{1}{2}} g(D) f(C)^{\frac{1}{2}} = (\rho(f(A)) + f(1) \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i|)^{\frac{1}{2}} \]
\[\left(\rho(g(B)) + \frac{1}{f(1)} \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i| (\rho(f(A)) + f(1) \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i|)^{\frac{1}{2}} \right) \]
\[\rho(f(A))^{\frac{1}{2}} \rho(g(B)) \rho(f(A))^{\frac{1}{2}} + \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i| \]
\[= \rho(f(A))^{\frac{1}{2}} \rho(g(B)) \rho(f(A))^{\frac{1}{2}} + \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i| \]
\[= \sum_{i,j=1}^{n} b_{ij} |\xi_i\rangle\langle\xi_j| + \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i| \]

But
\[\varphi(C) = \text{Tr}(S_{\varphi}(\rho(A)) + \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i|) \]
\[= \sum_{i=1}^{n} (S_{\varphi}(\rho(A))|\xi_i\rangle|\xi_i\rangle) + \sum_{i=n+1}^{\infty} \lambda_i \]
\[= \sum_{i=1}^{n} a_{ii} \lambda_i + \sum_{i=n+1}^{\infty} \lambda_i \]
\[> \sum_{i=1}^{n} b_{ii} \lambda_i + \sum_{i=n+1}^{\infty} \lambda_i \]
\[= \sum_{i=1}^{n} (S_{\varphi}(\rho(f(A))^{\frac{1}{2}} g(D) f(A)^{\frac{1}{2}})|\xi_i\rangle|\xi_i\rangle) + \sum_{i=n+1}^{\infty} \lambda_i \]
\[= \text{Tr}(S_{\varphi}(\rho(f(A)^{\frac{1}{2}} g(D) f(A)^{\frac{1}{2}}) + \sum_{i=n+1}^{\infty} |\xi_i\rangle\langle\xi_i|) \]
\[= \varphi(f(C)^{\frac{1}{2}} g(D) f(C)^{\frac{1}{2}}) \]

On the contrary, since \(0 < C \leq D \) we have from the assumption
\[\varphi(C + D) - \varphi(|C - D|) \leq 2\varphi(f(C)^{\frac{1}{2}} g(D) f(C)^{\frac{1}{2}}) \]
\[2\varphi(C) \leq 2\varphi(f(C)^{\frac{1}{2}} g(D) f(C)^{\frac{1}{2}}) \]
\[\varphi(C) \leq \varphi(f(C)^{\frac{1}{2}} g(D) f(C)^{\frac{1}{2}}), \]
and this is a contradiction. Therefore, the function \(g \) is operator monotone. \(\square \)
Corollary 4.3. Under the same conditions in Theorem 4.2 f is operator monotone on $(0, \infty)$.

Proof. This follows from [3, Corollary 6].

References

[1] R. Bhatia, Matrix analysis, Graduate texts in mathematics, Springer New York, 1997.
[2] Iu. L. Dalezkii AND S. G. Krein, Formula of differentiation of function depending on Hermitian matrices. Doklad Akademii Nauk. 76(1)(1951) 13-16.
[3] F. Hansen AND G. K. Pedersen, Jensen’s inequality for operator and Löwner’s theorem, Math. Ann., 258(1982) 229-241.
[4] D. T. Hoa, H. Osaka AND H. M. Toan, On generalized Powers-Størmer’s inequality, preprint(arxiv:1204:6665).
[5] H. Osaka AND J. Tomiyama, Double piling structure of matrix monotone functions and of matrix convex functions, Linear Algebra and its Applications 431(2009) 1825-1832.
[6] T. Sano AND T. Yatsu, Characterizations of tracial property via inequalities, Journal of Ineq. in Pure and Appl. Math., 19(2006).
[7] D. T. Hoa AND O. E. Tikhonov, To the theory of operator monotone and operator convex functions, Izv. Vyssh. Uchebn. Zaved. Mat., 3(2010) 9-14 [Translation: Russian Mathematics, 54(3)(2010) 7-11]

Center of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang, Vietnam
E-mail address: dinhtrunghoa@duytan.edu.vn

Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
E-mail address: osaka@se.ritsumei.ac.jp

Prof. Emeritus of Tokyo Metropolitan University, 201 11-10 Nakane 1-chome, Meguro-ku, Tokyo, Japan
E-mail address: juntomi@med.email.ne.jp