Serum RNA profiling in the 10-year period prior to diagnosis of testicular germ cell tumour

Joshua Burton a, Sinan U. Umub, Hilde Langsethb, Tom Grotmolb, Tom K. Grimsrudb, Trine B. Haugena* and Trine B. Roungeb,c*

a Faculty of Health Sciences, OsloMet – Oslo Metropolitan University, Oslo, Norway;
b Department of Research, Cancer Registry of Norway, Oslo, Norway;
c Department of Informatics University of Oslo, Oslo, Norway

*Equal contribution

Corresponding authors:
Trine B. Haugen. tribha@oslomet.no, OsloMet – Oslo Metropolitan University, Pilestredet 50, 0167 Oslo. +4799152426
Trine B. Rounge. trine.rounge@kreftregisteret.no, Department of Research, Cancer Registry of Norway, Oslo, Norway, phone +47 99604304

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Although testicular germ cell tumour (TGCT) overall is highly curable, patients may experience late effects after treatment. An increased understanding of the mechanisms behind the development of TGCT may pave the way for better outcome for patients. To elucidate molecular changes prior to TGCT diagnosis we sequenced small RNAs in serum from 69 patients who were later diagnosed with TGCT and 111 matched controls. The deep RNA profiles, with on average 18 million sequences per sample, comprised of nine classes of RNA, including microRNA. We found that circulating RNA signals differed significantly between cases and controls regardless of time to diagnosis. Different levels of TSIX related to X-chromosome inactivation and TEX101 involved in spermatozoa production are among the interesting findings. The RNA signals differed between seminoma and nonseminoma TGCT subtypes, with seminoma cases showing lower levels of RNAs and nonseminoma cases showing higher levels of RNAs, compared with controls. The differentially expressed RNAs were typically associated with cancer related pathways. Our results indicate that circulating RNA profiles change during TGCT development according to histology and may be useful for early detection of this tumour type.

Keywords: RNA profiling, serum, testicular cancer, pre-diagnostic, seminoma, nonseminoma, sequencing, miRNA, cancer
Introduction

Testicular germ cell tumour (TGCT) is diagnosed in 1% of men worldwide and is the most common malignancy in males between 20 and 39 years of age. The incidence rates are still rising [Trabert, 2015], and some of the highest incidences are found in Northern Europe [Znaor et al., 2014]. The etiology is largely unknown, although genetic components and conditions during pregnancy seem to play a role. [Elzinga-Tinke et al., 2015]. The susceptibility to TGCT is shown to have a strong familial link, with a fourfold increased risk for fathers and eightfold for brothers [Hemminki and Li, 2004; Dong et al., 2001]. The polygenic nature of TGCT has been recognised and more than 50 susceptibility genes have been identified [Kristiansen et al., 2015; Wang et al., 2017; Litchfield et al., 2018; Das et al., 2019]. The susceptibility loci contain genes linked to germ cell development and sex determination, as well as genes related to tumour growth/suppression. The main histologic subtypes of TGCT are seminoma, nonseminoma and mixed, making up around 50%, 30% and 20%, respectively [Oosterhuis and Looijenga, 2005].

TGCT is a highly curable disease since the introduction of cisplatin-based chemotherapy with a 5-year survival rate of above 95% [Trama et al., 2015]. However, there is an increased risk of long-term side effects including secondary non-germ cell (GC) cancers, cardiovascular disease, and hypogonadism. [Haugnes et al., 2012; Raphael et al., 2019; Bucher-Johannesen et al., 2019].

The current guidelines presented by the European Association of Urology [Laguna, 2020] for the diagnosis of TGCT include several techniques, including ultrasound imaging for initial diagnosis and serum markers for specific subtype diagnosis and prognosis [Richie et al., 1982; Germà-Lluch et al., 2002: Murray et al., 2016]. The serum markers used are alpha-fetoprotein, hCG and LDH, however alpha-fetoprotein is only seen in yolk-sac tumour and hCG is expressed by trophoblasts only. The presence of histological markers is also used for diagnosis. For germ cell neoplasia in situ (GCNIS), the markers include OCT3/4, PLAP, CD117, and SALL 4 [Laguna, 2020]. Furthermore, it has been shown that the metabolic biomarkers leptin and resistin may predict cancer mortality due to their function of inducing pro-tumorigenic environment that further promotes tumour initiation, angiogenesis, and metastasis [Akinyemiju, 2018].

RNAs, such as microRNA (miRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA), regulate gene expression on transcriptional and post-transcriptional levels and have been shown to be present in serum [Umu et al., 2018]. The differential composition of RNAs in circulation can help determine diagnosis as well as the developmental stage of the tumour [Fernandez-Mercado et al., 2015]. Circulating miRNAs have been identified as both prognostic and diagnostic markers in biliary tract cancer (BTC), which has led to earlier diagnosis and less invasive procedure compared with previously used techniques [Letelier, 2016]. Exosomal miRNAs have also been observed in colorectal cancer (CRC). Specifically, miR-150-5p and miR-99b-5p were found to be downregulated in CRC patients compared to healthy patients [Zhao et al., 2019]. Differential levels of
circulating RNA were also observed in pre-diagnostic serum samples in lung cancer patients, with an overall dynamic trend when advancing clinically [Umu et al., 2020].

In TGCT patients, high expression of miRNAs belonging to the clusters miR-302/367 and miR-371-373 has been found in serum [Palmer et al., 2010; Murray et al., 2011; Gillis et al., 2007]. Small RNA sequencing performed on TGCT tissue samples revealed miRNAs profiles to differ between normal and TGCT tissues, as well as between histological subtypes. A genome wide downregulation or loss of piRNAs was observed in TGCT, through mechanisms such as hypermethylation in CpG islands on genes associated with piRNAs [Rounge et al., 2015; Ferreira et al., 2014; Das et al., 2019].

Circulating RNAs in TGCT patients have allowed for a less invasive and a more specific histology at diagnosis [Laguna, 2020]. However, pre-diagnostic circulating RNA changes in TGCT have yet to be studied.

The aim of this study was to investigate the role of RNA in the development of TGCT in serum samples collected in a 10-year period prior to diagnosis. Furthermore, we investigated how differences in circulating RNAs were related to histologies and time periods before diagnosis. Differences in RNAs profiles were then used in functional enrichment analysis, and RNAs with stable patterns were investigated further.

Materials and Methods

Study design and participants

All samples included were retrieved from the Janus Serum Bank (JSB). JSB is a population-based cancer research biobank containing serum samples from 318 628 individuals collected from 1972 to 2004 [Langseth et al., 2017; Hjerkind et al., 2017]. The TGCT cases were identified by linking the JSB to the Cancer Registry of Norway using the Norwegian individually unique national identity numbers. The prediagnostic serum samples were donated up to 10 years before the diagnosis. We drew 111 cancer-free Janus participants for comparison of RNA levels with the cancer cases. The control subjects had to be alive and free from cancer, except for non-melanoma skin cancer, at the time of their matched case's diagnosis, and up to 10 years after blood collection. Controls were matched on age, time of blood collection and blood donor group (dependent on their county of residence, year of collection and method of storage), and as a result of these matching criteria, the average age at sample donation was 35 years (standard deviation of 6.5/6.7 respectively) for both cases and controls.

Previous studies have shown the feasibility of using long-term archived serum samples for RNA analyses and the variability of the RNA levels [Umu, et al., 2018; Rounge et al., 2015; Rounge
et al., 2018]. The methods and analyses of the TGCT serum samples were similar to studies by Umu et al [Umu et al., 2019]. The donors have given broad consent for the use of the samples in cancer research. The study was approved by the Norwegian regional committee for medical and health research ethics (REC no: 24 846, 2012/1590).

Laboratory processing of serum to RNA profiles

We extracted RNAs from 400 µl serum using phenol-chloroform phase separation and the miRNeasy Serum/Plasma kit (Cat. no 1071073, Qiagen) using a QIAcube (Qiagen). NEBNext® Small RNA Library Prep Set for Illumina (Cat. No E7300, New England Biolabs Inc.) was used for small RNA-seq library preparation. RNA molecules from 17 to 47 nt in length were selected. We sequenced 12 samples per lane of a HiSeq 2500 (Illumina). Additional information is available in our previous study [Umu et al., 2018].

Bioinformatics analyses

Total number of reads generated was 3.5 billion with an average sampling depth of 18.4 million raw reads. AdapterRemoval v2.1.7 [Schubert et al., 2016] was used to trim for adapters. We then mapped the collapsed reads to human genome version hg38 with Bowtie2 v2.2.9, with 10 alignments per read being allowed. Our annotation set consist of miRBase(v.22) [Kozomara and Griffiths-Jones, 2014] for miRNAs, pirBAs for piRNAs [Zhang et al., 2014] and GENCODE [Harrow et al., 2012] for other RNAs. IsomiR and tRF profiles were obtained through SeqBuster [Pantano et al., 2010] and MINTmap, respectively [Loher et al., 2017]. In the analyses, we included RNAs with at least 5 reads in more than 20% of the samples. Details are available in our previous study [Umu et al., 2018].

The optmatch R package [github.com/markmfredrickson/optmatch] allowed us to find optimally matched sets of controls (Table S1.) for each analysis. The analyses were matched on age, histology when appropriate and technical artefacts. The technical artefacts accounted for differences in pre-analytical treatment and storage time [Rounge et al., 2015; Umu et al., 2018], termed blood donor groups. The DESeq2 R package (v1.18.1) [Love et al., 2014] was used for the differential expression analyses using the default generalized linear model with a negative binomial distribution.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using kegga function from the limma R package. The inputs included mRNA, miRNA and isomiR targets extracted from miRDB (v5.0) predictions [Wong and Wang, 2015] with a cut off score of >60.

To exploit the full statistical power of the dataset when identifying RNAs that differ in cases and controls regardless of other factors, we first compared all cases and controls. To identify histology (determined by ICD-O (3rd revision) codes) specific RNA signals, we compared the RNA levels of seminoma with those of the matched controls, and similarly for nonseminomas and matched controls. To identify RNA signals according to the time between blood draw and diagnosis we divided
prediagnostic time into four discrete time intervals, 0 to 2, 2 to 5, 5 to 8 and 8 to 10 years. We selected these intervals to optimize resolution on time to diagnosis while still having sufficient statistical power. To make the time windows comparable with respect to statistical power, the cut points were chosen to secure the same number of cases and controls, and similar proportions of histologies.

Results

Reduced levels of RNAs in TGCT cases

To identify differentially expressed RNAs in all TGCT cases (n=79) against matched controls (n=111), we analysed 4231 RNAs that passed our inclusion criteria. Of these, we identified 818 RNAs that were differentially expressed with a p-adjusted value ≤ 0.05, and 88 of these had a log2 fold change (log2fc) outside the range {-1,1} (figure 1a.). The majority of these RNAs (82) had reduced levels in cases compared to controls, with an average log2fc = -1.37 and p-adjusted = 0.00032. The RNAs showing reduced levels were primarily isomiRs and mRNA fragments, whereas the few elevated RNAs consisted of lncRNAs, mRNA fragments and a tRF (figure 1b.).

RNA signals differ with histological subtype

We compared RNA levels in seminoma and nonseminoma cases with control samples. As seen for all cases combined, seminomas exhibited a similar pattern with reduced level for the majority of the differentially expressed RNAs.

In total, 112 RNA signals were different in seminomas compared to controls, 102 with lower RNA levels and 10 with elevated levels (figure 2a). Similar to all TGCT cases, the majority of the downregulated RNAs, with a mean log2fc values of -1.35, consisted of mRNA fragments and isomiRs, whereas the upregulated RNAs consisted of lncRNAs, mRNA fragments, piRNAs, and tRFs (figure 2c).

In contrast to TGCT and seminomas, where the differences compared to controls were generally large, nonseminomas had 63 RNAs with reduced levels and 46 RNAs with elevated levels (figure 2b), with mean log2fc values of -0.131 and 1.34 respectively. The majority of the RNAs with reduced levels consisted of mRNA fragments and isomiRs, as was also observed with all TGCT, a result driven by the seminomas. However, in nonseminomas the elevated RNAs showed higher proportions of isomiRs, and mRNA fragments, piRNAs and miRNAs as the second most abundant types (figure 2d).

RNA signals are not associated with time to diagnosis
To investigate if there is any association between RNA signals and time to diagnosis, four different time frames during the prediagnostic period were examined. The RNA signals in all time frames exhibited similar patterns to the overall prediagnostic TGCT patterns, with the majority of significantly differentially expressed RNAs having reduced levels. This was strongest in the 2-5 years time frame with 282 RNA levels being reduced and 64 RNAs with elevated levels. The 0-2 years time frame showed the least amount of differentially expressed RNAs, with 93 RNAs showing reduced levels and 18 with elevated levels (figure 3a). Fragments containing mRNAs constitute the major proportion of the significantly changed RNAs in all time frames. However, in the 2-5 years time frame, a higher number of piRNAs (76 out of 244) had different levels, and furthermore, in the 8-10 years, the higher proportion was isomiRs (64 out of 155) (figure 3b).

Specific RNA signals are independent of histology and time to diagnosis

A number of RNAs are specific or common to histologies and time frames as illustrated by the venn diagrams in figure 4. A total of 83 out of 88 of the RNAs identified were observed in both seminoma separately and all TGCT profiles. Furthermore, seminomas and nonseminomas shared 35 RNAs, and the majority of these were either mRNA fragments or isomiRs (figure 4a & c).

An investigation into the common RNAs between time frames showed that 18 RNAs are consistently differentially expressed at all time frames, and that these RNAs were piRNAs and mRNA fragments. RNAs from the 2-5 years time frame, which has the highest number of RNAs above our cut-off, consisted of primarily piRNAs (figure 4b & d).

mRNA fragments have consistently reduced levels in TGCT cases compared to controls

To investigate the stability of TGCT RNAs over time, we looked at nine RNAs with the lowest adjusted p values which appeared in all four time frames and their associated log2fc. Primarily, the significantly reduced RNAs were mRNA fragments which showed a relatively stable log2fc over time. BHLHE41 showed some dynamic changes across the time frames with a log2fc range between -1.91 to -3.45, however, this could still be considered stable due to the overall log2fc remaining negative. Of all the mRNAs, a slight overall increase in log2fc was observed over time, with a mean log2fc of -2.91 at 0-2 years and -2.52 at 8-10 years. However, the lowest average log2fc appears at 2-5 years with a mean of -3.08, followed by a mean of -3.06 at 5-8 years. This showed that during the extended time frame of 0-8 years, there was a stability in the RNA levels, with a slight increase at 8-10 years (figure 5).
Common cancer related pathways were enriched in specific time periods and histologies

Enrichment analysis showed multiple pathways enriched for significant miRNA targets and mRNA fragments. Of the significant pathways, only one (Axon guidance $[\text{mean } p \text{ adjusted } = 0.0094]$) appeared in all seven subgroups, and two appeared in six of the seven sub-analyses (Ras signalling pathway $[\text{mean } \text{padj} = 0.10]$, MAPK signalling pathway $[\text{mean } \text{padj} = 0.043]$). In total there are 19 pathways that span at least 3 of the time frames, with the remaining 6 only appearing in two of the four. Nonseminoma and 0-2 year time frame had the lowest number of significant enriched pathways with only 3 pathways in each.

Looking at each sub analysis, enrichment of miRNAs and mRNA fragments among the 88 significant RNAs in all TGCTs revealed several cancer related pathways, including mTOR, MAPK and ErbB2 (figure 6). In seminomas the expressed miRNAs and mRNA fragments also showed the cancer related pathways mTOR, MAPK and AMPK as well as the proteoglycans in cancer pathway. Similar pathways were present in nonseminomas as well, with miRNAs and mRNA fragments showing cancer related pathways, with mTOR, MAPK, ERBb2 and PI3K-Akt showing highest significance (figure 6). Finally, all four time frames showed significant pathways, including the mTOR signalling pathway which was one of the top 10 most significant pathways throughout, with the MAPK and Erb2 pathways also showing up once more within the time frames (figure 6).

Discussion

We found the RNA profiles in pre-diagnostic serum of TGCT patients to be different from that of controls, and observed that the difference was relatively stable across the pre-diagnostic time period of 10 years. Although previous studies have identified TGCT specific RNA profiles in patients [Palmer et al., 2010; Murray et al., 2011; Gillis et al., 2007], this has not been described for the pre-diagnostic period, as seen in our study. In contrast to our findings, highly dynamic pre-diagnostic RNA signals have been observed in lung cancer and breast cancer samples [Umu et al., 2020; Lund et al., 2016; Holden et al., 2017]. The reason for this contrast may partly be due to the localization of the tumour within the testis. Typically, the developed GCNIS is found above the basement membrane in seminiferous tubules, which are located in the intratesticular environment and therefore separate from the bloodstream via the blood testis barrier (BTB) [Spiller and Bowles, 2017; Reuter, 2005]. The BTB’s primary function is to prevent both antibodies and T lymphocytes from affecting the testis [Bart et al., 2002]. Furthermore, angiogenesis in breast and lung cancer is well documented, showing a closer physical interaction between these tumours and circulatory system than what applies to TGCT [Herbst et al., 2005; Longatto et al., 2010]. GCNIS may also be less affected by the immune
system [Endo and Inoue, 2019; Weis and Cheresh, 2013] as the BTB provides adequate protection against immune response during the early stages of the malignant growth. Another potential implication of the presence of the BTB function is a delay in serum signals. Changes in the GCNIS embedded in the seminiferous tubules do not necessarily appear in blood unless the tumour causes disruption of the BTB. [Cheng and Mruk, 2012]. Further studies are needed to show how the interference of TGCT with the BTB affects the levels of circulating RNAs.

In this study we found that differentially expressed levels of mRNAs were related to both testis development and known cancer pathways, as well as the lncRNA, TSIX which exhibited increased levels in TGCT patients. The role of TSIX in X-chromosome inactivation (XCI) has been widely reported [Del Rosario et al., 2017; Gayen et al., 2015; Turner et al., 2002], acting as the antisense repressor of XCI. The expression of TSIX is limited to pluripotent cells and the testis. A zinc finger protein, GLI, binds to the 5’ ends of TSIX to reduce TSIX expression and block the initiation of XCI. Physiologically, XCI is observed during spermatogenesis, but can also be expressed in TGCTs through supernumerary X chromosome constitution [Lobo et al., 2019]. XCI has been observed in TGCT of different histogenesis and may be a potential biomarker for some types of TGCT [Looijenga et al., 1997].

Alongside increased levels of TSIX, we also observed a positive log2fc with RAB21, an oncogene involved in mediating endocytosis and connected to the tumorigenesis and vesicle transport mechanisms of the other Rab proteins [Tzeng and Wang, 2016]. The silencing of RAB21 has also been utilised to induce apoptosis in glioma cells and can also be used to significantly inhibit cell growth [Ge et al. 2017]. The increased presence of RAB21 in the serum of patients after diagnosis of TGCT has not been observed before, however, previous studies have elucidated the function of a similar RAS family associated protein, RAB12, in rat testis development, especially noting the high expression in Sertoli cells (SC) [Iida et al., 2005]. RAB GTPases have been identified as mediators for vesicle trafficking in cancer, including both RAB21 and RAB12 [Tzeng et al., 2016].

Investigating of the different histology patterns showed that despite the increased positive log2fc in nonseminomas, there are still RNA signals, such as mRNA TEX101, that are independent of the histology. TEX101 is involved in the production of spermatozoa, and studies using animal models have shown that males with a disrupted TEX101 gene often produce spermatozoa that are unable to fertilise, despite looking normal [Fujihara et al., 2013]. Previous studies have found links between TGCT and changes in fertility [Skakkebæk et al., 2001]. These findings include men with TGCT having fewer children than average, as well as a lower proportion of those children being male. Other studies have found that abnormal semen characteristics can be observed in men who later develop TGCT, indicating that these two aspects are aetiologically linked [Jacobsen et al., 2000].

As hypothesised previously, the functions of the mRNAs identified as stable across all time frames could give some indication as to how GCNIS develops into tumours. Fragments of the mRNA for AP000295.1 had lower levels in cases compared to controls. AP000295.1 mRNA expression has
been previously noted in the Human Protein Atlas (HPA) project, and HPA shows RNA-seq tissue data with high protein-coding transcripts per million (pTPM) counts of AP000295.1 in the blood constituents, granulocytes and monocytes [Uhlen et al., 2015]. AP000295.1 belongs to a network of genes associated with kinase binding and type I interferon binding, AP000295.1 is also a paralog of the gene IFNAR2 with 100% match between target and query genes as seen using Ensembl (release 99) [Cunningham et al., 2019]. Of note here is that IFNAR2 has been detected on the surface of pre-Sertoli cells (pSC) [Edgar et al., 2013]. Previous studies have demonstrated the importance of Sertoli cells in the BTB formation and homeostasis [Gerber et al., 2016], thus potentially explaining the presence of an RNA signal in serum despite the impermeable BTB. Through the reduction in expression of IFNAR2 in pSC’s surface, inadequate formation and maintenance of the BTB could occur, causing a breakdown of this filter between the testis and the blood, thus explaining higher presence of signals of tumour development in serum.

Circulating miRNAs have been identified as both prognostic and diagnostic markers in biliary tract cancers (BTC), and this has led to earlier diagnosis and less invasive procedure of BTC than previously used techniques [Letelier, 2016]. The circulating miRNAs used for BTC diagnosis were reported to be stable in serum and showed significantly different miRNA expression in patients with BTC and controls, and there also may be ethnic differences. Circulating biomarkers has also been identified in colorectal cancer (CRC), specifically the exosomal miRNAs, miR-150-5p and miR-99b-5p were found to be downregulated in CRC patients compared to healthy individuals [Zhao et al., 2019]. This demonstrates the potential for their later use in clinical settings as a non-invasive diagnostic technique.

Pathways enrichment analysis showed overall many associated cancer related pathways across the 10-year period prior to TGCT diagnosis. The time frames 2-5 and 5-8 years prior to diagnosis showed the highest numbers of enriched pathways, many of which were cancer related. A possible explanation for the absence of enriched pathways in the 0-2 year time interval, could be an overall increase of all RNA types in serum as the tumour develops, this would effectively mask cancer pathways from being detected due to the large amounts of noise from aberrant RNA expression.

A strength of this study is the large and robust RNA dataset. To our knowledge this is the largest study of the RNA profiles from TGCT patients prior to diagnosis also including harmonized confounders collected from health surveys [Hjerkind, 2017]. The time interval throughout which the samples were collected is also a strength of this study. With up to 10 years time before diagnosis we were able to observe TGCT development and elucidate the body’s response.

The sample size is still a limitation, and stratified analyses on histology and time to diagnosis could benefit from an increase in statistical power. Serum samples and survey data were collected over a period of more than 30 years, and lifestyle factors such as smoking and BMI have changed within this time period as well as carcinogens in the environment, such as organochlorine pesticides.
[Irigaray et al., 2007; Belpomme et al., 2007; McGlynn and Trabet, 2012]. This was partially controlled for by matching.

Primarily, the new insights into TGCT carcinogenesis help us better understand the development of the disease, which is thought to be initiated in utero. Stable serum RNAs in the pre-diagnostic period have the potential to be biomarkers for earlier detection. Early diagnosis of TGCT would lead to less use of cisplatin treatment, and thereby reduce long-term adverse effects, such as risk of second primary cancer and cardiovascular disease. Hazard ratios for all secondary cancers after a single cisplatin-based chemotherapy cycle were significantly lower than hazard ratios after two or more cycles [Hellesnes et al., 2019].

In conclusion, RNA levels associated with cancer related pathways were different between individuals who developed TGCT, compared to matched controls. There is some loss of pathway signals closer to diagnosis, however, there is inherent reduced levels of serum RNAs in cases compared to controls for most of the 10 year pre-diagnostic follow-up time. The presence of these stable RNA signals may help in the identification of biomarkers give insights to molecular mechanisms driving TGCT development.

Acknowledgements

We would like to acknowledge Cecilie Bucher-Johannessen, Marianne Lauritzen, Kari Furu and Magnus Leithaug for performing laboratory and coordination tasks. We acknowledge the Norwegian Institute of Public Health for access to survey data in this study. The sequencing service was provided by the Norwegian Sequencing Centre (http://www.sequencing.uio.no), a national technology platform hosted by Oslo University Hospital and the University of Oslo supported by the Research Council of Norway and the Southeastern Regional Health Authority.

Funding Details

This work was supported by the Research Council of Norway's program ‘Human Biobanks and Health Data’ [229621/H10, 248791/H10] and internal funds of OsloMet – Oslo Metropolitan University and Cancer Registry of Norway.

Disclosure of interest
No potential conflict of interest was reported by the authors.

Dataset Availability

The datasets generated and analysed during the current study are not publicly available since individual privacy could be compromised but are available from the corresponding author on reasonable request and with appropriate approvals.

References

Akinyemiju T, Moore JX, Judd SE, Pisu M, Goodman M, Howard VJ, Long L, Safford M, Gilchrist SC, Cushman M. Pre-diagnostic biomarkers of metabolic dysregulation and cancer mortality. Oncotarget 2018; 9:16099–109.

Baglietto L, Ponzi E, Haycock P, Hodge A, Bianca Assumma M, Jung C-H, Chung J, Fasanelli F, Guida F, Campanella G, et al. DNA methylation changes measured in pre-diagnostic peripheral blood samples are associated with smoking and lung cancer risk. Int J Cancer 2017; 140:50–61.

Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ. The multitude and diversity of environmental carcinogens. Environ Res 2007; 105:414–29.

Bucher-Johannessen C, Page CM, Haugen TB, Wojewodzic MW, Fosså SD, Grotmol T, Haugnes HS, Rounge TB. Cisplatin treatment of testicular cancer patients introduces long-term changes in the epigenome. Clin Epigenetics 2019; 11:179.

Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev 2012; 64:16–64.

Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, Bennett R, Bhai J, Billis K, Boddu S, et al. Ensembl 2019. Nucleic Acids Res 2019; 47:D745–51.

Das MK, Kleppa L, Haugen TB. Functions of genes related to testicular germ cell tumour development. Andrology 2019; 7:527–35.

Dong C, Lönnstedt I, Hemminki K. Familial testicular cancer and second primary cancers in testicular cancer patients by histological type. Eur J Cancer 2001; 37:1878–85.

Edgar R, Mazor Y, Rinon A, Blumenthal J, Golan Y, Buzhor E, Livnat I, Ben-Ari S, Lieder I, Shitrit A, et al. LifeMap Discovery™: the embryonic development, stem cells, and regenerative medicine research portal. PLoS One 2013; 8:e66629.

Elzinga-Tinke JE, Dohle GR, Looijenga LH. Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis. Asian J Androl 2015; 17:381–93.
Endo H, Inoue M. Dormancy in cancer. Cancer Sci 2019; 110:474–80.

Fernandez-Mercao M, Manterola L. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids. Journal of cellular [Internet] 2015; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jcmm.12625

Ferracin M, Lupini L, Mangolini A, Negrim M. Circulating Non-coding RNA as Biomarkers in Colorectal Cancer. Adv Exp Med Biol 2016; 937:171–81.

Ferreira HJ, Heyn H, Garcia del Muro X, Vidal A, Larriba S, Muñoz C, Villanueva A, Esteller M. Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics 2014; 9:113–8.

Filho AL, Lopes JM, Schmitt FC. Angiogenesis and Breast Cancer [Internet]. Journal of Oncology 2010; 2010:1–7. Available from: http://dx.doi.org/10.1155/2010/576384

Fujihara Y, Tokuhiro K, Muro Y, Kondoh G, Araki Y, Ikawa M, Okabe M. Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proc Natl Acad Sci USA 2013; 110:8111–6.

Gayen S, Maclary E, Buttigieg E, Hinten M, Kalantry S. A Primary Role for the Tsix IncRNA in Maintaining Random X-Chromosome Inactivation. Cell Rep 2015; 11:1251–65.

Gerber J, Heinrich J, Brehm R. Blood--testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction 2016; 151:R15–27.

Germà-Lluch J. Clinical Pattern and Therapeutic Results Achieved in 1490 Patients with Germ-Cell Tumours of the Testis: the Experience of the Spanish Germ-Cell Cancer Group (GG) [Internet]. European Urology 2002; 42:553–63. Available from: http://dx.doi.org/10.1016/s0302-2838(02)00439-6

Gillis AJM, Rijlaarsdam MA, Eini R, Dorssers LCJ, Biermann K, Murray MJ, Nicholson JC, Coleman N, Dieckmann K-P, Belge G, et al. Targeted serum miRNA (TSmiR) test for diagnosis and follow-up of (testicular) germ cell cancer patients: a proof of principle. Mol Oncol 2013; 7:1083–92.

Graff RE, Meisner A, Ahearn TU, Fiorentino M, Loda M, Giovannucci EL, Mucci LA, Pettersson A. Pre-diagnostic circulating sex hormone levels and risk of prostate cancer by ERG tumour protein expression. Br J Cancer 2016; 114:939–44.

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22:1760–74.

Haugnes HS, Bosl GJ, Boer H, Gietema JA, Brydøy M, Oldenburg J, Dahl AA, Bremnes RM, Fosså SD. Long-term and late effects of germ cell testicular cancer treatment and implications for follow-up. J Clin Oncol 2012; 30:3752–63.

Hellesnes R, Kvammen Ø, Myklebust TÅ, Bremnes RM, Karlsdottir Á, Negaard HFS, Tandstad T,
Wilsgaard T, Fosså SD, Haugnes HS. Continuing increased risk of second cancer in long-term testicular cancer survivors after treatment in the cisplatin era. Int J Cancer 2020; 147:21–32.

Hemminki K, Li X. Familial risk in testicular cancer as a clue to a heritable and environmental aetiology [Internet]. British Journal of Cancer 2004; 90:1765–70. Available from: http://dx.doi.org/10.1038/sj.bjc.6601714

Hjerkind KV, Gislefoss RE, Tretli S, Nystad W, Bjørge T, Engeland A, Meyer HE, Holvik K, Ursin G, Langseth H. Cohort Profile Update: The Janus Serum Bank Cohort in Norway. Int J Epidemiol 2017; 46:1101–2f.

Iida H, Noda M, Kaneko T, Doiguchi M, M?ri T. Identification of rab12 as a vesicle-associated small GTPase highly expressed in Sertoli cells of rat testis [Internet]. Molecular Reproduction and Development 2005; 71:178–85. Available from: http://dx.doi.org/10.1002/mrd.20294

Jacobsen R. Risk of testicular cancer in men with abnormal semen characteristics: cohort study [Internet]. BMJ 2000; 321:789–92. Available from: http://dx.doi.org/10.1136/bmj.321.7264.789

Kalavská K, Kucerová L, Schmidtová S, Chovanec M, Mego M. Cancer Stem Cell Niche and Immune-Active Tumor Microenvironment in Testicular Germ Cell Tumors [Internet]. Advances in Experimental Medicine and Biology 2020; :111–21. Available from: http://dx.doi.org/10.1007/978-3-030-36214-0_9

Keller A, Rouge T, Backes C, Ludwig N, Gislefoss R, Leidinger P, Langseth H, Meese E. Sources to variability in circulating human miRNA signatures [Internet]. RNA Biology 2017; 14:1791–8. Available from: http://dx.doi.org/10.1080/15476286.2017.1367888

Keller A, Leidinger P, Gislefoss R, Haugen A, Langseth H, Staehler P, Lenhof H-P, Meese E. Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis [Internet]. RNA Biology 2011; 8:506–16. Available from: http://dx.doi.org/10.4161/rna.8.3.14994

Keller A, Leidinger P, Bauer A, ElSharawy A, Haas J, Backes C, Wendenschlag A, Giese N, Tjaden C, Ott K, et al. Toward the blood-borne miRNome of human diseases [Internet]. Nature Methods 2011; 8:841–3. Available from: http://dx.doi.org/10.1038/nmeth.1682

Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data [Internet]. Nucleic Acids Research 2014; 42:D68–73. Available from: http://dx.doi.org/10.1093/nar/gkt1181

Kristiansen W, Karlsson R, Rouge TB, Whittington T, Andreassen BK, Magnusson PK, Fossa SD, Adami H-O, Turnbull C, Haugen TB, et al. Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor [Internet]. Human Molecular Genetics 2015; 24:4138–46. Available from: http://dx.doi.org/10.1093/hmg/ddv129

Laguna, M.P., Albers, P., Algaba, F., Bokemeyer, C., Boormans, B.L., Fischer, S., Fizazi, K., Gremmsels, H., Nicol, D., Nicolai, N., et al. (2020). European Association of Urology Guidelines. 2020 Edition. (European Association of Urology Guidelines Office).
Langseth H, Gislefoss RE, Martinsen JI, Dillner J, Ursin G. Cohort Profile: The Janus Serum Bank Cohort in Norway. Int J Epidemiol 2017; 46:403–4g.

Letelier P, Riquelme I, Hernández AH, Guzmán N, Farias JG, Roa JC. Circulating MicroRNAs as Biomarkers in Biliary Tract Cancers. Int J Mol Sci [Internet] 2016; 17. Available from: http://dx.doi.org/10.3390/ijms17050791

Litchfield K, Loveday C, Levy M, Dudakia D, Rapley E, Nsengimana J, Tim Bishop D, Reid A, Huddart R, Broderick P, et al. Large-scale Sequencing of Testicular Germ Cell Tumour (TGCT) Cases Excludes Major TGCT Predisposition Gene [Internet]. European Urology 2018; 73:828–31. Available from: http://dx.doi.org/10.1016/j.eururo.2018.01.021

Litchfield K, UK Testicular Cancer Collaboration, Levy M, Orlando G, Loveday C, Law PJ, Migliorini G, Holroyd A, Broderick P, Karlsson R, et al. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor [Internet]. Nature Genetics 2017; 49:1133–40. Available from: http://dx.doi.org/10.1038/ng.3896

Loher P, Telonis AG, Rigoutsos I. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data. Sci Rep 2017; 7:41184.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [Internet]. Genome Biology 2014; 15. Available from: http://dx.doi.org/10.1186/s13059-014-0550-8

McGlynn KA, Trabert B. Adolescent and adult risk factors for testicular cancer [Internet]. Nature Reviews Urology 2012; 9:339–49. Available from: http://dx.doi.org/10.1038/nrurol.2012.61

Meyts ER-D. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects [Internet]. Human Reproduction Update 2006; 12:303–23. Available from: http://dx.doi.org/10.1093/humupd/dmk006

Meyts ER-D, McGlynn KA, Okamoto K, Jewett MAS, Bokemeyer C. Testicular germ cell tumours [Internet]. The Lancet 2016; 387:1762–74. Available from: http://dx.doi.org/10.1016/s0140-6736(15)00991-5

Murray MJ, Huddart RA, Coleman N. The present and future of serum diagnostic tests for testicular germ cell tumours [Internet]. Nature Reviews Urology 2016; 13:715–25. Available from: http://dx.doi.org/10.1038/nrurol.2016.170

Oosterhuis JW, Wolter Oosterhuis J, Looijenga LHI. Testicular germ-cell tumours in a broader perspective [Internet]. Nature Reviews Cancer 2005; 5:210–22. Available from: http://dx.doi.org/10.1038/nrc1568

Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res 2010; 38:e34.

Rajpert-De Meyts E, Nielsen JE, Skakkebaek NE, Almstrup K. Diagnostic markers for germ cell
neoplasms: from placental-like alkaline phosphatase to micro-RNAs. Folia Histochem Cytobiol 2015; 53:177–88.

Raphael MJ, Wei X, Karim S, Robinson AG, Bedard PL, Booth CM. Neurotoxicity Among Survivors of Testicular Cancer: A Population-based Study [Internet]. Clinical Oncology 2019; 31:653–8. Available from: http://dx.doi.org/10.1016/j.clon.2019.04.008

Reuter VE. Origins and molecular biology of testicular germ cell tumors. Mod Pathol 2005; 18 Suppl 2:S51–60.

Richie JP, Birnholz J, Garnick MB. Ultrasonography as a diagnostic adjunct for the evaluation of masses in the scrotum. Surg Gynecol Obstet 1982; 154:695–8.

Rounge TB, Furu K, Skotheim RI, Haugen TB, Grotmol T, Enerly E. Profiling of the small RNA populations in human testicular germ cell tumors shows global loss of piRNAs [Internet]. Molecular Cancer 2015; 14. Available from: http://dx.doi.org/10.1186/s12943-015-0411-4

Rounge TB, Lauritzen M, Langseth H, Enerly E, Lyle R, Gislefoss RE. microRNA Biomarker Discovery and High-Throughput DNA Sequencing Are Possible Using Long-term Archived Serum Samples [Internet]. Cancer Epidemiology Biomarkers & Prevention 2015; 24:1381–7. Available from: http://dx.doi.org/10.1158/1055-9965.epi-15-0289

Rounge TB, Umu SU, Keller A, Meese E, Ursin G, Tretli S, Lyle R, Langseth H. Circulating small non-coding RNAs associated with age, sex, smoking, body mass and physical activity [Internet]. Available from: http://dx.doi.org/10.1101/247155

Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging [Internet]. BMC Research Notes 2016; 9. Available from: http://dx.doi.org/10.1186/s13104-016-1900-2

Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 2001; 16:972–8.

Spiller CM, Bowles J. Germ cell neoplasia in situ: The precursor cell for invasive germ cell tumors of the testis [Internet]. The International Journal of Biochemistry & Cell Biology 2017; 86:22–5. Available from: http://dx.doi.org/10.1016/j.biocel.2017.03.004

Trabert B, Chen J, Devesa SS, Bray F, McGlynn KA. International patterns and trends in testicular cancer incidence, overall and by histologic subtype, 1973-2007 [Internet]. Andrology 2015; 3:4–12. Available from: http://dx.doi.org/10.1111/andr.293

Trama A, Foschi R, Larrañaga N, Sant M, Fuentes-Raspall R, Serraino D, Tavilla A, Van Eycken L, Nicolai N, EUROCAR-5 Working Group: Survival of male genital cancers (prostate, testis and penis) in Europe 1999-2007: Results from the EUROCAR-5 study. Eur J Cancer 2015; 51:2206–16.

Tzeng H-T, Wang Y-C. Rab-mediated vesicle trafficking in cancer [Internet]. Journal of Biomedical Science 2016; 23. Available from: http://dx.doi.org/10.1186/s12929-016-0287-7
Uhlen M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjöstedt E, Asplund A, et al. Tissue-based map of the human proteome [Internet]. Science 2015; 347:1260419–1260419. Available from: http://dx.doi.org/10.1126/science.1260419

Umu SU, Langseth H, Bucher-Johannessen C, Fromm B, Keller A, Meese E, Lauritzen M, Leithaug M, Lyle R, Rounge TB. A comprehensive profile of circulating RNAs in human serum. RNA Biol 2018; 15:242–50.

Umu SU, Langseth H, Keller A, Meese E, Helland Å, Lyle R, Rounge TB. A 10-year prediagnostic follow-up study shows that serum RNA signals are highly dynamic in lung carcinogenesis. Mol Oncol 2020; 14:235–47.

Viereck J, Thum T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury [Internet]. Circulation Research 2017; 120:381–99. Available from: http://dx.doi.org/10.1161/circresaha.116.308434

Weis SM, Cheresh DA. A wake-up call for hibernating tumour cells [Internet]. Nature Cell Biology 2013; 15:721–3. Available from: http://dx.doi.org/10.1038/ncb2794

Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations [Internet]. Nucleic Acids Research 2015; 43:D146–52. Available from: http://dx.doi.org/10.1093/nar/gku1104

Zhang P, Si X, Skogerbø G, Wang J, Cui D, Li Y, Sun X, Liu L, Sun B, Chen R, et al. piRBase: a web resource assisting piRNA functional study [Internet]. Database 2014; 2014. Available from: http://dx.doi.org/10.1093/database/bau110

Zhao YJ, Song X, Niu L, Tang Y, Song X, Xie L. Circulating Exosomal miR-150-5p and miR-99b-5p as Diagnostic Biomarkers for Colorectal Cancer [Internet]. Frontiers in Oncology 2019; 9. Available from: http://dx.doi.org/10.3389/fonc.2019.01129

Znaor A, Lortet-Tieulent J, Jemal A, Bray F. International variations and trends in testicular cancer incidence and mortality. Eur Urol 2014; 65:1095–106.
Figures

Figure 1

(a) Scatter plot showing the log2 fold change for cases and controls. Cases = 79, Controls = 111.

(b) Bar graph showing the count of different RNA types: hairpin, IncRNA, miRNA, miscRNA, mRNA fragments, piRNA, tRNA.

Type: hairpin, IncRNA, miRNA, miscRNA, mRNA fragments, piRNA, tRNA.
Figure 5
Figure 6

Acron guidance	43/181	25/181	33/181	22/181	64/181	51/181	26/181
Ras signaling pathway	44/252	32/252	44/252	16/252	77/252	50/252	27/252
MAPK signaling pathway	60/269	70/269	97/269	24/269	94/269	19/269	37/269
Signaling pathways regulating pluripotency of stem cells	43/160	31/160	17/160	15/160	44/160	31/160	20/160
Retinal cell carcinoma	16/89	28/89	10/89	12/89	32/89	21/89	13/89
Phospholipase D signaling pathway	32/148	44/148	21/148	9/148	53/148	16/148	20/148
Pathways in cancer	43/221	13/221	70/221	87/221	30/221	75/221	
Neurotrophin signaling pathway	30/119	37/119	21/119	10/119	51/119	32/119	13/119
mTOR signaling pathway	35/163	41/163	20/163	16/163	81/163	33/163	20/163
Long-term potentiation	25/167	24/167	15/167	5/167	26/167	18/167	13/167
Insulin signaling pathway	33/137	37/137	16/137	9/137	52/137	24/137	22/137
Insulin resistance	29/108	22/108	21/108	11/108	45/108	32/108	18/108
FoxO signaling pathway	32/121	47/121	10/121	11/121	53/121	37/121	21/121
Focal adhesion	37/199	45/199	32/199	18/199	64/199	52/199	24/199
ErbB signaling pathway	17/26	30/26	16/26	6/26	41/26	26/26	13/26
EGFR tyrosine kinase inhibitor resistance	13/79	24/79	13/79	6/79	34/79	24/79	13/79
Autophagy - animal	34/157	45/157	20/157	20/157	52/157	32/157	18/157
AMPK signaling pathway	28/120	30/120	15/120	10/120	45/120	26/120	10/120
Yersinia infection	31/105	47/105	14/105	18/105	43/105	32/105	13/105
Ubiquitin mediated proteolysis	26/104	32/104	13/104	12/104	41/104	24/104	13/104
T cell receptor signaling pathway	24/119	20/119	10/119	11/119	36/119	26/119	13/119
Sphingolipid signaling pathway	29/129	30/129	23/129	7/129	39/129	22/129	17/129
Relaxin signaling pathway	42/13	32/13	30/13	20/13	62/13	52/13	20/13

Figure Captions

Figure 1. a) Differential RNA levels in pre-diagnostic serum samples from 79 TGCT cases and 111 matched controls. Pink represent RNAs with >1 log2 fold change reduced levels in cases and blue represent RNAs with >1 log2 fold change increased levels in cases, compared to controls. b) RNA class composition of the significantly elevated and reduced RNAs.

Figure 2. a) Differential RNA expression between seminomas and controls; b) Differential RNA expression between nonseminomas and controls; Pink represent RNAs with >1 log2 fold change reduced levels in cases and blue represent RNAs with >1 log2 fold change increased levels in cases, compared to controls. c & d) RNA class composition of elevated and reduced RNA levels with associated histology.

Figure 3. a) Differential RNA expression between cases and matched controls, across four time frames prior to diagnosis with equal sample sizes. Pink represent RNAs with >1 log2 fold change reduced levels in cases and blue represent RNAs with >1 log2 fold change increased levels in cases, compared to controls. b) RNA class composition of elevated and reduced significant RNA levels for the associated time frames.
Figure 4. Venn diagram showing the number of a.) RNAs which are dependent and independent on histological subtype; b.) RNAs which are dependent and independent on single time periods or are observed in multiple time periods. c.) Types of RNAs differentially present in only seminomas and nonseminomas, and the 35 common types shared between both; d.) Types of differentially present RNAs unique to each time frame as well as those 18 shared between all four time frames.

Figure 5. Log2 fold change of RNAs that had significantly stably changed levels between cases and controls in all four time periods.

Figure 6. KEGG pathways enriched for differentially expressed mRNAs and miRNA targets for all TGCT vs controls, seminoma vs controls, nonseminomas vs controls, 0-2, 2-5, 5-8 and 8-10 years prior to diagnosis vs controls are shown. The pathways are colour coded according to p values and the number of enriched genes and total number of genes in the pathways are also shown. The 25 most commonly enriched pathways for these analyses were selected for presentational purposes.