Volatile compounds release by the hair pencils in male Prophantis smaragdina (Lepidoptera: Crambidae: Spilomelinae)

Oriane Lavogez, Centina Pinier, Samuel Nibouche, Brigitte Frerot

To cite this version:
Oriane Lavogez, Centina Pinier, Samuel Nibouche, Brigitte Frerot. Volatile compounds release by the hair pencils in male Prophantis smaragdina (Lepidoptera: Crambidae: Spilomelinae). Journal of Insect Science, 2017, 17 (6), pp.1-5. 10.1093/jisesa/iex094. hal-02622250

HAL Id: hal-02622250
https://hal.inrae.fr/hal-02622250
Submitted on 26 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Volatile Compounds Release by the Hair Pencils in Male Prophantis smaragdina (Lepidoptera: Crambidae: Spilomelinae)

Oriane Lavogez,1,2,3 Centina Pinier,4 Samuel Nibouche1 and Brigitte Frérot4

1CIRAD, UMR PVBM, F-97410 St Pierre, La Réunion, France, 2Université de La Réunion, UMR PVBM, F-97410 St Pierre, La Réunion, France, 3Société Coopérative Agricole Bourbon Pointu, F-97430 Le Tampon, La Réunion, France, 4INRA, UMR 1392, Institut d’Écologie et des Sciences de l’Environnement de Paris, Route de St Cyr, F-78026 Versailles, France, 5Corresponding author, e-mail: oriane.lavogez@gmail.com

Received 7 July 2017; Editorial decision 16 October 2017

Abstract

Courtship behavior in several pyralid species is associated with the exposure to male hair pencils (HPs) or special scales that released volatile compounds. HP chemicals induce conspecific female and/or male behaviors and are therefore qualified as male pheromones. Preliminary observation on the coffee berry moth (CBM), Prophantis smaragdina Butler (Lepidoptera: Crambidae: Spilomelinae) mating behavior showed that the male displays abdominal HPs located on the last abdominal segment. The aim of the study was to identify the male volatile compounds and assess the results by electroantennography (EAG) on male and female antennae. Gas chromatography coupled to mass spectrometry analysis of male HP emissions showed five aromatic compounds identified as phenylacetaldehyde, phenylethyl alcohol, creosol, perillyl alcohol, and methyl anthranilate. EAG results showed that creosol elicited a significantly higher response than the control (hexane) on both male and female antennas. On female antennas, response to methyl anthranilate and phenylacetaldehyde was also significantly higher than the response to the control. Those results suggest that the creosol could play a behavioral role on conspecific male and female CBM during courtship behavior and mating choice. Methyl anthranilate and phenylacetaldehyde could also play a role on female behavior. Perillyl alcohol is for the first time identified as an insect product.

Key words: GC-MS, EAG, mating behavior, male hair pencil compound, Methyl anthranilate

Moth mating behavior relies on male attraction by the female sex pheromone. After locating the female and landing in the vicinity, the male undertakes a courtship more or less sophisticated, leading to a copulation attempt and female acceptance. In several species, the courtship behavior in male moths is associated with the display of scent-releasing organs called androconial scales, scent fans, hair pencils (HPs) or coremata, from which volatile compounds are emitted (Birch et al. 1990). The females detect the compounds during the courtship and a kind of chemical dialog is established between the male and the female (Baker 1983, Jacquin et al. 1991). PH chem-}

© The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
some islands in the south-western Indian Ocean (Waller et al. 2007, Guillermet 2009). Preliminary observations showed that females initiate the calling behavior between three and a half and nine hours after the beginning of the scotophase and mating occurs between four and nine hours after the beginning of the scotophase (Chartier, Lavogez, unpublished data). The male exhibited a very short courtship (less than 2 s) for a successful copulation, whereas for unsuccessful mating it lasts longer because of the replication the male attempts to copulate. When close to the female, the male curves the abdomen and attempts to copulate. At this stage, male abdominal HPs are displayed and a fragrance can be smelt by the human nose. These preliminary observations suggest that the male CBM emitted volatile compounds that may act as a pheromone during the courtship behavior. When mating has occurred, the pair assumes a ‘tail to tail’ position.

The present paper described identification of five male HP volatile compounds using gas chromatography coupled to mass spectrometry (GC-MS) and electroantennography (EAG) on female and male CBMs.

Materials and Methods

Insect Rearing

Imagos used for our experiments came from field-collected larvae which were reared in the laboratory. Green coffee berries (Coffea spp.) were harvested during the fructification phase every 1 to 2 wk on six different cultivars in the coffee international germplasm collection of the French Development Research Institute (21°18'S, 55°18'E and on ‘Bourbon Pointu’ cultivar in five fields (21°04'S, 55°18'E for two fields; 21°14'S, 55°30'E; 21°12'S, 55°20'E and 21°04'S, 55°18'E) on Reunion Island. Coffee berries were spread on plastic-lid butter dishes (25 × 13 cm) and put inside a 30-cm fine-mesh nylon net cubic cage kept at 25 ± 1°C, 60 ± 10% relative humidity, and 12:12 L:D photoperiod. In the field, final instar CBM larvae fall on the ground and spin a cocoon with a folded dry leaf for the prepupa and pupa stages. To reproduce this in the laboratory, double layers of paper towel were put into the cage under the elevated lid of the butter dish containing the berries allowing the larvae to pupate. Every week, rotten and dry berries were removed and replaced. Pupae were collected, sexed, and put separately in 30-cm fine-mesh nylon net cubic cages with 2% sucrose solution under the same temperature and relative humidity conditions until emergence. Female and male cages were kept in two separate rooms to avoid odor experiences between the two sexes.

Chemicals

Synthetic chemicals methyl 2-aminobenzoate (methyl anthranilate) (>99%), p-mentha-1,8-diene-7-ol (perillyl alcohol) (>95%), 2-phenylacetaldehyde (phenylacetaldehyde) (>90%) and 2-methoxy-4-methylphenol (creosol) (>98%) were purchased from Sigma Aldrich (St-Quentin Fallavier, France).

Extractions of Male HP Volatile Compounds for GC-MS

Preliminary tests showed a better GC-MS detection of male HP volatile compounds after collection on Solid Phase MicroExtraction (SPME) fibre extraction than after solvent extraction (Frérot et al. 1997). HP volatile compounds were identified on SPME fibres according to the protocol described by Ameline (1999), during the day. HPs from one male of 3–10 d (Fig. 1) were excited and placed individually on a drop of physiological solution on the wall of a 2-ml vial. An SPME fibre was inserted into the vial for 2 h then removed from the vials and kept at −4°C before analysis. Simultaneously, five heads were in hexane (200 µl) as control. Four replications of each collection were prepared.

Male HP Extraction for EAG

For EAG, five excised pairs of HPs from 3- to 10-d-old males were put in 200 µl of hexane and kept at −4°C until use.

GC-MS Analysis

SPME fibres containing HP volatiles and head extracts were analyzed using a Bruker Scion 436-GC linked to a Bruker Scion SQ detector. The oven was equipped with a fused silica capillary column (30 m × 0.32 mm i.d.) Rxi-5SilMS (0.25-µm film thickness, Restek) and was programmed from 50 to 300°C at 8°C/min. The carrier gas was helium N60 at constant flow of 2 ml/min. Each SPME fibre was manually inserted in the injector and the HP compounds desorbed in splitless mode, 5 min at 250°C. Mass spectra were recorded in electron impact mode at 70 eV. Kovats’ retention indexes (RI) were computed using n-alkane solution from C10 to C24, eluted under the same conditions as the samples. HP compounds were identified according to their RI and to their mass spectra compared with the INRA library of synthetic compounds and NIST 2014 library (NIST 2014). HP compounds which were also detected in head extracts were not further selected.

Electroantennography

EAG is an effective tool to evaluate and record the olfactory responses of insects although the technique reflects only the antennae nerve activity. The insects aged 3- to 10-d old were immobilized using a 1-ml micropipette tip cut at the extremity to allow the head to pass through. EAG electrodes were filled with Ringer solution. The reference electrode was inserted into the eye, and the recording electrode covered the antenna tip whose distal part was removed. Tested synthetic chemicals were impregnated onto a strip of filter paper (10 × 5 mm), and then placed in a disposable glass pipette. While the air was continuously blown over the head of the moth (40 ml/s), the pipette tip containing the stimulation was inserted in a hole at the end of the glass tube carrying the air stream and an air puff was sent inside this pipette for 0.5 s at 12 ml/s for the stimulation. The signals
were amplified and connected to Labview (Labview 5.1, National Instruments, USA) for electrophysiological trace observation. The response of the antennae was expressed in mV. Six treatments were compared: the control was 1 µl of hexane, 10 µl of HP extract, methyl anthranilate, perillyl alcohol, phenylacetaldehyde, and creosol at 1 µg/µl were blown once on five different female antennas and on four different male antennas with an interval of at least 1 min between successive stimulations. The order of the six treatments was randomly changed for each antenna.

Statistical Analysis of EAG Data
The comparison of the antennal responses elicited by the treatments was carried out using a linear mixed model. The treatments, the sex, and the treatment × sex interaction were considered as fixed effects. The order of the treatment within each antenna was added as a fixed effect quantitative covariate, to take into account a possible change in antenna response to stimulus with time. The sex × succession order was nonsignificant and therefore discarded from the model. Antennae were considered as a random replication effect. The analysis was carried out using SAS procedure MIXED (SAS Institute 2008). The comparison was carried out by computing the differences of least squared mean, and the significance of differences was tested using a t-test, using the procedure MIXED (with the LSMEANS instruction). As the sex effect appeared nonsignificant, it was discarded from the model. As the treatment × sex interaction appeared significant, each treatment was compared to the control within each sex. The depolarization data were submitted to a Log transformation before analysis to achieve a normal distribution of the residuals of the model.

Results

GC-MS Analysis
GC-MS analysis of male HP emission showed five compounds (Fig. 2) identified according to the NIST 2014 library (NIST 2014) and confirmed by analyzing the synthetic molecules in the same GC-MS conditions. Comparison of the RI computed with the retention time of external standard made with C10 to C22 hydrocarbons (Table 1), and mass spectra confirmed the identity of each component. Two minor compounds were identified as: phenyl acetaldehyde about 4% (1) (CAS Number 122-78-1) (M+ = 120, 12.5%; m/z = 91 [100%], 65 [30%], 51 [8%], 39 [17%]) and 2-phenyl ethanol about 7% (2) (phenethyl alcohol, CAS Number 60-12-8), (M+ = 122, 10%, m/z = 91 [100%], 65 [30%], 51 [8%], 39 [18%]). Three main compounds were identified as: creosol, about 20% (3) (2-Methoxy-4-methylphenol, CAS Number 93-51-6) M+ = 138, 75%, m/z = 123 (100%), 95 (67%), 67 (75%), 39 (63%); perillyl alcohol, about 25% (4) (p-Mentha-1,8-diene-7-ol, CAS Number 18457-55-1), M+ = 152 (5%), m/z = 39 (100%), 121 (25%), 91 (63%), 79 (75%), 76 (75%), 53 (50%); and methyl anthranilate, about 27% (5) (Methyl 2-aminobenzoate, CAS Number 134-20-3) M+ = 151 (50%), m/z = 119 (100%), 92 (75%), 65 (38%) 39 (12%).

EAG Recording
Male HP extract and four out of the five identified aromatic molecules: methyl anthranilate, perillyl alcohol, phenyl acetaldehyde, and creosol were tested by EAG on male and female antennas (Fig. 3). The EAG responses were significantly different among the tested compounds (F= 23.13; df=5, 33; P< 0.001). The interaction between chemical compounds and the sex of the insect was also significant (F= 3.63; df= 6, 33; P= 0.007). However, the amplitude of antennal response was not significant between male and female (F=0.30; df = 1, 7; P = 0.603).

Male HP extract caused a significantly higher antennal response than the control on both female and male antennas (P<0.001 on both male and female). Among the four synthetic molecules tested by EAG, only creosol response was significantly higher than the control and equivalent to the response elicited by male HP extract on both female and male antennas (P<0.001 on both male and female). On female antennas, response to methyl anthranilate and phenylacetaldehyde was significantly higher than the response to the control (respectively, P = 0.0328 and P = 0.0263) but perillyl alcohol response did not (P= 0.1179). On male antennas, methyl anthranilate, phenylacetaldehyde, and perillyl alcohol responses were not significantly higher than the response to the control (respectively, P = 0.8957, P= 0.1493, and P = 0.6446).

Discussion
The HPs of CBM released a blend of phenylacetaldehyde (9%), 2-phenyl ethanol (3%), creosol (37%), perillyl alcohol (18%),
and methyl anthranilate (33%). Phenylacetaldehyde and 2-phenyl ethanol were already identified as an attractant in numerous species of insect, including some Lepidoptera. Both molecules were identified in male HP of Noctuidae (Bestmann et al. 1977). According to Pherobase (El-Sayed 2016), creosol, perillyl alcohol, and methyl anthranilate are not components of male Lepidoptera HPs, neither of female pheromone. Creosol is a floral compound mainly identified in Asparagales and once reported as present in an Arthropod, although the role was not specified (Taira and Arakaki 2002). Methyl anthranilate is also a plant fragrance, and there are few records as an insect product. It was identified as a pheromone compound in ants (Duffeld et al. 1980; Lloyd et al. 1984; Lloyd et al. 1989; Oldham et al. 1994a, b) and was previously identified as an attractant in the soy beetle (Imai et al. 1997), thrips (Murai et al. 2000), and beneficial insects (James 2005). Perillyl alcohol is a trickier molecule, mainly found in the essential oil of various plants such as lavender, sage, and known as a mosquito repellent and as a treatment for cancer. We did not find any report on this compound as an animal product.

The significant EAG responses on both male and female antennae induced by male HP extracts showed that both sexes detected the male emission (with no significant difference of antennal response between male and female), suggesting that the blend released may act on male and female behavior, qualifying it as a pheromone. Numerous studies show a correlation between EAG responses to a compound and a behavioral response, either positive or negative (Floyd et al. 1976, Baker and Haynes 1989, Landon et al. 1997, Liendo et al. 2005, Dötterl et al. 2006). Mating behavior did not occur under laboratory conditions; thus, we were not able determine the role of HP emission on male and female reproductive behavior.

Table 1. Mean ratio, retention times (RT), and retention indexes (RI) of the five aromatic compounds found in male hair pencil SPME fibre extracts (N = 4 hair pencil SPME fibre extracts)

Molecule names	Ratio (%) ± SD	RT (min) ± SD	Synthetic	RI (min) ± SD	Synthetic
Phenyl acetaldehyde	4.51 ± 4.32	5.25 ± 0.05	5.35	1,043.40	1,041.9
2-phenyl ethanol	7.40 ± 3.57	6.40 ± 0.06	6.307	1,113.00	1,114.5
Creosol	20.98 ± 9.55	7.71 ± 0.07	7.62	1,189.03	1,192.1
Perillyl alcohol	25.80 ± 9.95	9.59 ± 0.08	9.47	1,301.35	1,301.9
Methyl anthranilate	27.01 ± 21.25	10.26 ± 0.06	10.20	1,342.53	1,344.3

Fig. 3. Mean of female and male antennal response (mV ± SEM) to hair pencil extracts and four aromatic compounds identified in male hair pencils of the Cottle berry moth. Treatments labeled are significantly different than the antennal response to the control. ***P ≤ 0.001, **P ≤ 0.01, *P ≤ 0.05.
Significant responses of creosol on female and male antennas compared to the control (with no significant difference of antennal response between male and female) suggest that this compound plays a behavioral role on both conspecific male and female CBM during courtship and/or the mating period. Significant responses of methyl anthranilate and phenylacetaldehyde on female antennas compared to the control only could also suggest a role on female behavior.

Behavioral bioassays on males and females with HP extracts and HP volatile compounds are necessary to understand the role of each molecule in CBM courtship behavior.

Acknowledgments

We dedicate this article to the memory of Serge Quilici who initiated the project. We would like to thank Cedric Lallemand for technical help in the field, the farmers Patrick Bernard, Stephane Benard, Maximin Techer, Henri Ya-Sin, and Isabelle Law-Yat for giving us access of their coffee field. We also thank Frederick Chirooleu for helping us in statistical analysis and Antoine Franck for providing us with very high quality pictures. We are grateful to Andrew Hobson for proof reading the English version correction of this article. The authors thank the Plant Protection Platform (3P, IBISA) where EAG and extraction experiments were carried out. We are grateful to the Institut de Recherche pour le Développement (IRD) through the CIFRE PhD Grant No. 2013/4106 for O. Lavogez.

References Cited

Ameline, A. 1999. Identification de la phénomène sexuelle de sesamia nonagrioides lef. (lep., noctuidae) et contribution à la compréhension des mécanismes de la confusion sexuelle. Etude comportementale, physico-chimique et piègeage sexuel. thèse dissertation. Université Paris XIII.

Aplin, R. T., and M. C. Birch. 1970. Identification of odorous compounds from male Lepidoptera. Experientia. 26: 1193–1194.

Baker, T. C. 1983. Variations in male oriental fruit moth courtship patterns due to male competition. Experientia. 39: 112–114.

Baker, T. C., and K. F. Haynes. 1989. Field and laboratory electroantennographic measurements of pheromone plume structure correlated with orien-tal fruit moth behaviour. Physiol. Entomol. 14: 1–12.

Bestmann, H. J., O. Vostrowsky, and H. Platz. 1977. Pheromone XII. Männchenduftstoffe von Noctuidae (Lepidoptera). Experientia. 33: 874–875.

Birch, M., D. Lucas, and P. White. 1989. The courtship behavior of the cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae), and the role of male hair-pencils. J. Insect Behav. 2: 227–239.

Birch, M. C., G. M. Poppy, and T. C. Baker. 1990. Scents and eversible scent structures of male moths. Annu. Rev. Entomol. 35: 25–58.

Blum, M. S. 1987. Biosynthesis of arthropod exocrine compounds. Annu. Rev. Entomol. 32: 381–413.

Dötterl, S., A. Jürgens, K. Seifert, T. Laube, B. Weissbecker, and S. Schütz. 2006. Nursery pollination by a moth in Silene latifolia: the role of odours in Pterostichus flavofuscescens (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 12: 347–351.

Floyd, M. A., D. A. Evans, and P. E. Howse. 1976. Electrophysiological and behavioural studies on naturally occurring repellents to Reticulitermes lucifugus. J. Insect Physiol. 22: 697–701.

Frérot, B., C. Malosse, and A.-H. Cain. 1997. Solid-phase microextraction (SPME): A new tool in pheromone identification in lepidoptera. Journal of High Resolution Chromatography 20: 340–342.

Hillier, N. K., and N. J. Vickers. 2004. The role of heliothine hairpencil compounds in female Heliothis vespertina (Lepidoptera: Noctuidae) behavior and mate acceptance. Chem. Senses. 29: 499–511.

Hillier, N. K., and N. J. Vickers. 2011. Hairpencil volatiles influence interspecific courtship and mating between two related moth species. J. Chem. Ecol. 37: 1127–1136.

Hirai, K. 1977. Observations on the function of male scent brushes and mating behavior in Leucania separata W. and Mamestra brassicae L.: Lepidoptera, Noctuidae. Appl. Entomol. Zool. 12: 347–351.

Imai, T., S. Tsuchiya, M. Mackawa, T. Fujimori, and S. W. Leal. 1997. Methyl anthranilate, a novel attractant for the soybean beetle, Anomala rufocuprea Motschulsky (Coleoptera: Scarabaeidae). Appl. Entomol. Zool. 32: 45–48.

Jacquin, E., P. Nagnan, and B. Frerot. 1991. Identification of hairpencil secretion from maleMamestra brassicae (L.)(Lepidoptera: Noctuidae) and electroantennogram studies. J. Chem. Ecol. 17: 239–246.

James, D. G. 2005. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J. Chem. Ecol. 31: 481–495.

Landon, F., S. Ferary, D. Pierre, J. Auger, J. C. Biemont, J. Lieveux, and J. Pouzat. 1997. Sitosia lineataeus plant-odors and their components: effect on locomotor behavior and peripheral sensitivity variations. J. Chem. Ecol. 23: 2161–2173.

Lassance, J.-M., and C. Löfstedt. 2009. Concerted evolution of male and female display traits in the European corn borer, Ostrinia nubilalis. BMC Evol. Biol. 7: 1–12.

Liendo, C., F. Morillo, P. Sánchez, W. Muñoz, J. Guerra, A. Cabrera, and J. V. Hernández. 2005. Offactory behavior and electroantennographic responses of the cocoa beetle, Steirastroma breve (Coleoptera: Cerambycidae). Fla. Entomol. 88: 117–122.

Lloyd, H., N. Schmuff, and A. Heftetz. 1984. Chemistry of the male mandibular gland secretion of the carpenter ant, Camponotus thoracicus fellah Emery. Comp. Biochem. Physiol. B: Comp. Biochem. 78: 687–689.

Lloyd, H., M. Blum, R. Snelling, and S. Evans. 1989. Chemistry of mandibular and Dufour’s gland secretions of ants in genusMyrmecocystus. J. Chem. Ecol. 15: 2589–2599.

Murai, T., T. Imai, and M. Mackawa. 2000. Methyl anthranilate as an attractant for two thrips species and the thrips parasitoid Ceratostomites menes. J. Chem. Ecol. 26: 2357–2365.

Nishida, R., T. C. Baker, and W. L. Roelofs. 1982. Hairpencil pheromone components of male oriental fruit moths, Grapholitha molesta. J. Chem. Ecol. 8: 947–959.

NIST 2014. NIST/EPA/NIH Mass Spectral Library computer program, version 2.2. By NIST, Gaithersburg, MD, USA: National Institute of Standards and Technology.

Oldham, N. J., E. D. Morgan, B. Gobin, and J. Billen. 1994a. First identification of a trail pheromone of an army ant (Anietus species). Cell. Mol. Life Sci. 50: 763–765.

Oldham, N. J., E. David Morgan, B. Gobin, E. Schoeters, and J. Billen. 1994b. Volatile secretions of old world army antAenictus rotundatus and chemotaxonomic implications of army ant dufour gland chemistry. J. Chem. Ecol. 20: 1297–1305.

Phelan, P. L., P. J. Silk, C. J. Northcott, S. H. Tan, and T. C. Baker. 1986. Chemical identification and behavioral characterization of male wing pheromone of Ephestia elutella (Pyralidae). J. Chem. Ecol. 12: 135–146.

Roscoe, L. E., P. Silk, and E. S. Eveleigh. 2016. Evidence of male hair pencil pheromone in Choristoneura fumiferana (Lepidoptera: Tortricidae). J. Insect Sci. 16: 27.

SAS Institute. 2008. OnlineDoc® 9.2. Cary computer program, version by SAS Institute: NC.

Taira, J., and K. Arakaki. 2002. Secretions of Chamberlinius hualienensis Wang (Polydesmida: Paradoxosomatidae) during the reproductive migration stage. Appl. Entomol. Zool. 37: 621–624.