The role of the immune response mediator genes polymorphism in the predisposition to juvenile idiopathic arthritis

Liliia Sh. Nazarova 1, Ksenia V. Danilko 1, Viktor A. Malievsky 1, Akhat B. Bakirov 1,2, Tatiana V. Viktorova 1,3

1 Bashkir State Medical University, Ufa, Russia
2 Ufa Research Institute of Occupational Health and Human Ecology, Ufa, Russia
3 Institute of Biochemistry and Genetics, Ufa, Russia

Received 12 January 2019, Revised 3 May 2019, Accepted 8 August 2019

Abstract: Objective — The aim of the work was to study the contribution of the immune response mediator genes polymorphism (TNFA rs1800629, LTA rs909253, IL1B rs16944, IL2-IL21 rs6822844, IL2RA rs2104286, IL6 rs1800795, IL10 rs1800872, MIF rs755622, CTLA4 rs3087243, NFKB1 rs28362491, PTPN22 rs2476601, PADI4 rs2240336) to the formation of the predisposition to juvenile idiopathic arthritis (JIA) and its clinical variants.

Material and Methods — The JIA group included 330 patients and the control group – 342 volunteers without autoimmune diseases from the Republic of Bashkortostan, Russia. Genotyping was conducted by the real-time polymerase chain reaction.

Results — Taking into account the differences by sex, it was established, that the alleles/genotypes of the TNFA rs1800629, LTA rs909253, IL2-IL21 rs6822844, PTPN22 rs2476601 polymorphic loci and the TNFA rs1800629*G – LTA rs909253*G haplotype are associated with the development of JIA as a whole (p<0.05); alleles/genotypes of the LTA rs909253, IL1B rs16944, IL2-IL21 rs6822844, IL2RA rs2104286, IL6 rs1800795, IL10 rs1800872, MIF rs755622, CTLA4 rs3087243, NFKB1 rs28362491, PTPN22 rs2476601 polymorphic loci and the TNFA rs1800629*G – LTA rs909253*G haplotype — with some of JIA clinical variants (p<0.05).

Conclusion — In this work, the relationship of the alleles, genotypes and haplotypes of a number of the immune response mediator genes polymorphic loci with the risk of the development of JIA and its clinical variants was established. Specific associations were observed for girls and boys, which indicates the existence of sexual dimorphism in the JIA pathogenesis.

Keywords: juvenile idiopathic arthritis, predisposition, polymorphic loci, association, sexual dimorphism.

Cite as Nazarova LS, Danilko KV, Malievsky VA, Bakirov AB, Viktorova TV. The role of the immune response mediator genes polymorphism in the predisposition to juvenile idiopathic arthritis. Russian Open Medical Journal 2019; 8: e0408.

Introduction

Juvenile idiopathic arthritis (JIA) is one of the most common chronic rheumatic diseases in children [1]. An important role in the JIA development is given to the immune response disorders, arising in genetically predisposed individuals [2-4].

Among the key mediators of the immune response, the cell surface molecules (including proteins of the major histocompatibility complex), pro- and anti-inflammatory cytokines, transcription factors, enzymes and other regulatory molecules can be particularly highlighted. Polymorphism, which is characteristic for many of the corresponding genes, causes pronounced interindividual variability, including the variability in the predisposition to JIA [2-4].

In recent years, a relatively large number of studies, including genome-wide association studies (GWAS), have been performed to detect the specific JIA risk markers. Nevertheless, the question is still open [3, 4]. Only for a small number of candidate genes polymorphic variants the association was confirmed in independent studies, and their total contribution to the explanation of the hereditary predisposition to JIA is rather small [3, 4]. In addition, the results of replicative studies are often contradictory, which may be due to a variety of factors, such as the use of different approaches for describing JIA phenotypes and for patients grouping, incorrect selection criteria and insufficient sample size, genotyping errors, and true population differences [4].

The aim of the work was to study the contribution of the immune response mediator genes polymorphism (TNFA rs1800629, LTA rs909253, IL1B rs16944, IL2-IL21 rs6822844, IL2RA rs2104286, IL6 rs1800795, IL10 rs1800872, MIF rs755622, CTLA4 rs3087243, NFKB1 rs28362491, PTPN22 rs2476601, PADI4 rs2240336) to the formation of the predisposition to JIA and its clinical variants.

Material and Methods

Study design and subjects

A case-control study was conducted. The study was approved by the expert council on biomedical ethics of Bashkire State Medical University (Ufa, Russia). The JIA group included 330 patients who...
underwent examination and treatment in the cardio-
rheumatological department of the Republican Children's Clinical
Hospital in 2011-2017. The JIA diagnosis was established according
to the International League of Associations for Rheumatology
(ILAR) criteria [5]. The presented JIA clinical variants and their ratio
in our sample are shown in Table 1. As a control group, 342
volunteers without autoimmune diseases were selected. All
participants of the study (for the JIA group – parents of all
patients) signed the voluntary informed consent. The age of the
examined patients was 9.05 (4.99, 13.30) years, and of the
controls – 18.00 (18.00, 19.00) years (data presented as median
with low and upper quartiles). The ratio of males and females in
the JIA and control groups was 34.24%/65.76% and
30.99%/69.01%, respectively. All the individuals included in the
study were residents of the Republic of Bashkortostan (Russia) and
belonged to the following ethnic groups: Tatars (25.54%), Russians
(21.72%), Bashkirs (13.13%), mixed and others (39.62%).

Genotyping

DNA isolation from the lymphocytes of the whole blood
samples was performed using a standard phenol-chloroform
method [6]. Genotyping of all the individuals for the 12
polymorphic loci (TNFA rs1800629, LTA rs909253, IL1B rs16944,
IL2-IL21 rs6822844, IL2RA rs2104286, IL6 rs1800795, IL10
rs1800872, MIF rs755622, CTLA4 rs3087243, NFκB1 rs28362491,
PTPN22 rs2476601, PADI4 rs2240336) was conducted by the real-
time polymerase chain reaction (StepOnePlus™ Real-Time PCR
System, Applied Biosystems, USA). Sequence-specific primers and
allele-specific probes were designed and synthesized by the “DNK
syntez” company (Russia). The distribution of the polymorphic loci
variants in patients with JIA and in the control group is shown in the
Supplementary Tables 1-5 (Appendix 1).

Statistical analysis

Statistical processing of the results was carried out using
Microsoft Excel, SNPsStats, R v.3.4.2, PowerMarker v.3.25,
STATISTICA v.10 (StatSoft, Inc.) [7-9].

To compare the genotype and allele frequency distribution in the
JIA patients group and in the control group the two-tailed
Fisher's Exact test was used. The differences were considered
statistically significant at p<0.05. A similar analysis was also
performed separately for boys and girls and for specific clinical
variants of the disease. The multiple testing correction of the p-
values was carried out by applying a permutation test with a 10000
permutations (p<0.05). Therefore, the haplotypes of these loci have
also been studied as the potential risk markers for the
development of JIA and its clinical variants.

Testing for the deviations from the Hardy-Weinberg
equilibrium was carried out in the SNPsStats package. There were
no significant deviations from the Hardy-Weinberg equilibrium for
the TNFA rs1800629, LTA rs909253, IL1B rs16944, IL2RA
rs2104286, IL6 rs1800795, IL10 rs1800872, MIF rs755622, CTLA4
rs3087243, NFκB1 rs28362491, PTPN22 rs2476601, PADI4
rs2240336 polymorphic loci in both groups (JIA and control)
(p>0.05). A slight deviation from the Hardy-Weinberg equilibrium
was established for the IL2-IL21 rs6822844 polymorphic locus in the
control group (p=0.019), but considering that the controls
were selected according to the specified criteria (age, sex, the
absence of autoimmune diseases), this locus was kept for the
subsequent analysis.

Results

The established relationship of the alleles, genotypes and
haplotypes of a number of the immune response mediator genes
polymorphic loci with the risk of the development of JIA and its
clinical variants is shown in the Table 2.

Taking into account the differences by sex, the risk predictors
of the development of JIA as a whole were identified among the
alleles/genotypes of the loci TNFA rs1800629 (for girls), LTA
rs909253 (for boys), IL2-IL21 rs6822844 (for girls), PTPN22
rs2476601 (for girls), as well as among the haplotypes of the
TNFA rs1800629 – LTA rs909253 loci (for boys). In addition, the
predictors of the formation of some JIA clinical variants were established:

- Rheumatoid factor positive polyarthritis (alleles/genotypes
 of the locus IL6 rs1800795 (for both the general group of boys and girls),
 MIF rs755622 (only for the general group of boys and girls));
- Rheumatoid factor negative polyarthritis (alleles/genotypes
 of the loci LTA rs909253 (for boys), IL2RA rs2104286 (for boys),
 IL10 rs1800872 (for boys) and the haplotype TNFA rs1800629*G –
 LTA rs909253*G (for boys));
- Persistent oligoarthritis (alleles/genotypes of the loci LTA
 rs909253 (only for the general group of boys and girls),
 IL1B rs16944 (for boys), IL2-IL21 rs6822844 (for boys), IL6 rs1800795
 (both for girls and for boys), IL10 rs1800872 (only for the general group
 of boys and girls), NFκB1 rs28362491 (only for the general group
 of boys and girls), PTPN22 rs2476601 (for girls) and the haplotype
 TNFA rs1800629*G – LTA rs909253*G (for boys));
- Extended oligoarthritis (alleles/genotypes of the loci IL2-IL21
 rs6822844 (for girls), CTLA4 rs3087243 (for girls), PTPN22
 rs2476601 (for girls));
- Enthesitis related arthritis (alleles/genotypes of the loci LTA
 rs909253 (for boys), IL6 rs1800795 (only for the general group
 of boys and girls), NFκB1 rs28362491 (for boys), PTPN22 rs2476601
 (for boys) and the haplotype TNFA rs1800629*G – LTA rs909253*G
 (for boys));

Table 1. Clinical characteristics of the JIA group

JIA clinical variants	Total (%)	Boys / Girls
	n (p<0.05)	% (p<0.05)
Systemic arthritis	29 (8.79)	14/15 (48.28/51.72)
Rheumatoid factor positive	6 (1.82)	1/5 (16.67/83.33)
polyarthritis		
Rheumatoid factor negative	86 (26.06)	17/69 (19.77/80.23)
polyarthritis		
Persistent oligoarthritis	98 (29.70)	33/65 (33.67/66.33)
Extended oligoarthritis	46 (13.94)	5/41 (12.74/87.26)
Enthesitis related arthritis	35 (10.61)	29/6 (82.67/17.34)
Psoriatic arthritis	8 (2.42)	3/5 (60/40)
Undifferentiated arthritis	22 (6.77)	11/11 (50.00/50.00)
The whole group	330 (100)	113/217 (34.24/65.76)

Hereinafter: n, number of patients in the groups; p<0.05, frequency in the corresponding JIA clinical variant group.

Table 2. Haplotype frequencies of immune response mediator genes

Loci	Boys / Girls	OR (95% CI)			
IL1B	IL2-IL21	IL6	IL10	TNFA	LTA
rs909253	rs1800629	rs1800795	rs1800872	rs755622	rs909253
0.027 (0.100 - 0.590)	0.234 (0.078 - 0.703)	0.156 (0.053 - 0.490)	0.147 (0.049 - 0.481)	0.202 (0.066 - 0.618)	

In addition, the odds ratio (OR) with the Baptista-Pike exact
conditional 95% confidence interval (95% CI) were calculated [11].

Given that the TNFA and LTA genes are located in the same
cluster on chromosome 6, the linkage disequilibrium test for the
TNFA rs1800629 and LTA rs909253 polymorphic loci was
performed in the SNPsStats package, which showed almost
complete linkage disequilibrium at 99.94% (D=0.0807, D'=0.9994, r=0.5438, p=0.000). Therefore, the haplotypes of these loci have
also been studied as the potential risk markers for the
development of JIA and its clinical variants.

The whole group

© 2019, LLC Science and Innovations, Saratov, Russia www.romj.org

ISSN 2304-3415, Russian Open Medical Journal
2019. Volume 8. Issue 4 (December). Article CID e0408
DOI: 10.15275/ruosmj.2019.0408

Rheumatology

Page dimensions: 595.3x841.9
Table 2. The relationship between the immune response mediator genes polymorphic loci variants and the risk of development of JIA and its clinical variants

JIA and its clinical variants	The sex	The risk predictors
JIA as a whole		
the general group of boys and girls	TNFA rs1800629*AA (p=0.021, OR=0.10, 95% CI 0.00-0.581), PTPN22 rs2476601*GA (p=0.029, OR=0.48, 95% CI 0.21-1.04), IL6 rs1800829*AA (p=0.016, OR=1.41, 95% CI 1.07-1.85)	
the general group of girls	haplotype TNFA rs1800629*G - LTA rs909253*G (p=0.016, OR=1.41, 95% CI 1.07-1.85)	
boys	TNFA rs1800629*AA (p=0.031, OR=0.032, 95% CI 0.00-0.075), IL2-RA rs6828444*TT (p=0.039, OR=0.037, 95% CI 0.012-0.861)	
girls	PTPN22 rs2476601*GG (p=0.039, OR=0.041, 95% CI 0.001-0.952), PTPN22 rs2476601*AA (p=0.029, OR=0.031, 95% CI 1.048-2.392)	
	haplotype TNFA rs1800629*G - LTA rs909253*G (p=0.018, OR=1.79, 95% CI 1.11-2.89)	
Rheumatoid factor positive polyarthritis		
the general group of boys and girls	LTA rs909253*AG (p=0.007, OR=0.007, 95% CI 0.001-0.194), IL6 rs1800795*CC (p=0.002, OR=0.003, 95% CI 1.00-1.01)	
boys	MIF rs756522*CC (p=0.031, OR=0.028, 95% CI 0.001-0.075), IL2-RA rs24104286*GA (p=0.039, OR=0.037, 95% CI 0.012-0.87)	
girls	IL10 rs1800872*CC (p=0.040, OR=0.037, 95% CI 0.001-0.194), IL10 rs1800872*TA (p=0.047, OR=0.048, 95% CI 1.205-3.475)	
	haplotype TNFA rs1800629*G - LTA rs909253*G (p=0.041, OR=0.001, 95% CI 0.000-0.075)	
Rheumatoid factor negative polyarthritis		
the general group of boys and girls	LTA rs909253*GA (p=0.030, OR=0.031, 95% CI 0.000-0.745), MIF rs756522*CC (p=0.031, OR=0.028, 95% CI 0.001-0.075)	
boys	LTA rs909253*AA (p=0.034, OR=0.035, 95% CI 0.090-0.887), IL2-RA rs24104286*GA (p=0.039, OR=0.037, 95% CI 0.012-0.87)	
girls	IL10 rs1800872*CC (p=0.040, OR=0.037, 95% CI 0.001-0.194), IL10 rs1800872*TA (p=0.047, OR=0.048, 95% CI 1.205-3.475)	
	haplotype TNFA rs1800629*G - LTA rs909253*G (p=0.041, OR=0.001, 95% CI 0.000-0.075)	
Persistent oligoarthritis		
the general group of boys and girls	IL6 rs1800795*GC (p=0.046, OR=0.048, 95% CI 0.295-0.988), PTPN22 rs2476601*GA (p=0.012, OR=0.012, 95% CI 1.250-4.204)	
boys	IL6 rs1800795*GC (p=0.010, OR=0.008, 95% CI 1.250-4.204), IL6 rs1800795*GC (p=0.019, OR=0.019, 95% CI 0.000-0.745)	
girls	IL6 rs1800795*GC (p=0.019, OR=0.019, 95% CI 0.000-0.745), IL6 rs1800795*GC (p=0.019, OR=0.019, 95% CI 0.000-0.745)	
	haplotype TNFA rs1800629*G - LTA rs909253*G (p=0.002, OR=0.003, 95% CI 1.00-1.01)	
Extended oligoarthritis		
the general group of boys and girls	IL6 rs1800795*GC (p=0.002, OR=0.003, 95% CI 1.00-1.01), IL6 rs1800795*GC (p=0.019, OR=0.019, 95% CI 0.000-0.745)	
boys	IL6 rs1800795*GC (p=0.002, OR=0.003, 95% CI 1.00-1.01), IL6 rs1800795*GC (p=0.019, OR=0.019, 95% CI 0.000-0.745)	
girls	IL6 rs1800795*GC (p=0.019, OR=0.019, 95% CI 0.000-0.745), IL6 rs1800795*GC (p=0.019, OR=0.019, 95% CI 0.000-0.745)	
	haplotype TNFA rs1800629*G - LTA rs909253*G (p=0.002, OR=0.003, 95% CI 1.00-1.01)	
Enthesitis related arthritis		
the general group of boys and girls	LTA rs909253*AG (p=0.002, OR=0.003, 95% CI 1.00-1.01), LTA rs909253*AG (p=0.002, OR=0.003, 95% CI 1.00-1.01)	
boys	LTA rs909253*AG (p=0.002, OR=0.003, 95% CI 1.00-1.01), LTA rs909253*AG (p=0.002, OR=0.003, 95% CI 1.00-1.01)	
girls	LTA rs909253*AG (p=0.002, OR=0.003, 95% CI 1.00-1.01), LTA rs909253*AG (p=0.002, OR=0.003, 95% CI 1.00-1.01)	
	haplotype TNFA rs1800629*G - LTA rs909253*G (p=0.004, OR=0.007, 95% CI 1.44-4.56)	
Psoriatic arthritis		
the general group of boys and girls	LTA rs909253*AG (p=0.001, OR=0.001, 95% CI 1.00-3.87)	
boys	LTA rs909253*AG (p=0.001, OR=0.001, 95% CI 1.00-3.87), LTA rs909253*AG (p=0.002, OR=0.026, 95% CI 0.001-0.194)	
girls	LTA rs909253*AG (p=0.002, OR=0.026, 95% CI 0.001-0.194), LTA rs909253*AG (p=0.002, OR=0.026, 95% CI 0.001-0.194)	
	haplotype TNFA rs1800629*G - LTA rs909253*G (p=0.008, OR=0.087, 95% CI 1.05-4.54)	
Psoriatic arthritis (the haplotype TNFA rs1800629*G - LTA rs909253*G only for the general group of boys and girls).

It should be noted that the Rheumatoid factor positive polyarthritis and Psoriatic arthritis patients samples were small, which is why the sex stratification was not carried out. Associations with the development of the Systemic arthritis for the studied polymorphic variants of the immune response mediator genes were not detected, including in the sex-stratified analysis (p>0.05).

Discussion

As a result of this work, the relationship of the alleles, genotypes and haplotypes of a number of the immune response mediator genes polymorphic loci with the risk of the development of JIA and its clinical variants – Rheumatoid factor positive polyarthritis, Rheumatoid factor negative polyarthritis (only in boys), Persistent oligoarthritis, Extended oligoarthritis, Psoriatic arthritis – was established. Specific associations were observed for girls and boys, which indicates the existence of sexual dimorphism in the JIA pathogenesis. For girls, the risk markers of JIA in general, as well as of Persistent oligoarthritis and Extended oligoarthritis were established, and for boys – of JIA in general and of Rheumatoid factor negative polyarthritis, Persistent oligoarthritis, Psoriatic arthritis (Table 3).

Some of the examined polymorphic variants of the immune response mediator genes have previously been studied for a relationship with the JIA development in separate ethnic groups, but the results are contradictory. Nevertheless, the data of a number of papers are generally consistent with the results of the present study. The protective effect on the development of JIA and/or its clinical variants was shown for the TNFA rs1800629*A allele in the works of Schmeling H. et al. (2006), Kaalla M.J. et al. (2013), Reinards T.H. et al. (2015); for the IL2-IL21 rs6822844*T allele – in the works of Albers H.M. et al. (2009), Hinks A. et al. (2010); for the IL2RA rs2104286*G allele – in the works of Hinks A. et al. (2009), Thompson S.D. et al. (2010) [12-18]. According to Crawley E. et al. (1999), the presence of ATA-containing genotypes of the IL10 gene rs1800896, rs1800871 and rs1800872 polymorphic loci haplotypes was significantly more characteristic for patients with Extended oligoarthritis, than for those with Persistent oligoarthritis [19]. A number of authors have shown that the PTPN22 rs2476601*A allele marks an increased risk of the development of JIA in general and of some of its variants [2, 13, 18, 20-22]. According to the latest data, the association of the PTPN22 rs2476601*A allele with the JIA development is characteristic only for girls [23].

At the same time, according to a number of studies, the TNFA rs1800629*A allele marks an increased risk of the development of JIA in general (in the Mexican population) or its polyarticular (in the Serbian population) and oligoarticular (in the British population) variants [24-26]. Several studies have reported the absence of a relationship between the TNFA rs1800629 polymorphic locus variants and the risk of the JIA development in the Portuguese, Spanish, Turkish, Czech, German, French and Italian populations [27-32]. A replicative study of Ellis et al. (2013) did not reveal the relationship of the IL2-IL21 rs6822844 polymorphic locus alleles with the JIA development in the Australian population [33]. Prahalad et al. (2009) and Reinards et al. (2015) reported the absence of a relationship of the IL2RA rs2104286 polymorphic locus alleles with the development of JIA or its variants in children of European descent, and Ellis et al. (2013) – with the development of JIA in the Australian population [14, 33, 34]. Oen et al. (2005) also reported the absence of association of the IL10 rs1800896, rs1800871 and rs1800872 polymorphic locus genotypes and the genotypes of their haplotypes with the development of JIA and its variants in children of European descent [35]. In the Chinese and Hungarian populations, no relationship was found between the PTPN22 rs2476601 polymorphic locus variants and the development of JIA, however, the sample size in these studies was relatively small [36, 37].
When analyzing the MIF rs755622 polymorphic locus, Donn et al. (2002) found that the MIF rs755622*C allele marks an increased risk of the JIA development in children from the UK [38]. Several studies (on samples of European origin [from the USA and Germany], as well as in the Turkish population) have reported on the absence of a relationship of the MIF rs755622 polymorphic locus alleles and genotypes with the development of JIA and / or its variants [13, 27, 39]. At the same time, Reinders et al. (2015) found that the MIF rs755622*C allele marks a protective effect on the JIA development in children of European descent [14].

The CTLA4 rs3087243 polymorphic locus has been studied in JIA by several authors groups. Suppiah et al. (2006), Prahalad et al. (2008) and Ellis et al. (2013) did not reveal any independent associations of the CTLA4 rs3087243 polymorphic locus variants (in isolated analysis, excluding haplotypes) with the JIA development in individuals from Northern Ireland, the USA (predominantly of Northern European ancestry) and Australia, respectively [33, 40, 41]. However, Hinks et al. (2010) on a sample of European origin from the UK, as well as in a meta-analysis with the inclusion of the Prahalad et al. (2008) data showed a borderline significance level (p=0.05) for the rarer occurrence of the CTLA4 rs3087243*A allele in JIA patients than in controls [16].

The observed inconsistency of the results is probably related to the samples characteristics (including sample size, ethnic factors), the pronounced clinical heterogeneity of JIA and the presence of sexual dimorphism in the disease pathogenesis, which indicates the need to consider these aspects when studying the molecular genetic basis of JIA.

Conclusion

In this work, the relationship of the alleles, genotypes and haplotypes of a number of the immune response mediator genes polymorphic loci with the risk of the development of JIA and its clinical variants was established. Specific associations were observed for girls and boys, which indicates the existence of sexual dimorphism in the JIA pathogenesis.

Funding

The work was supported by:

i) Government project: "Study of molecular genetic mechanisms of formation of multifactorial pathologies", No. 11500810015 (08 June 2015).

ii) Grant of the Republic of Bashkortostan to young scientists and youth scientific teams, contract N 6 (25 March 2016).

iii) The program "Participant of the Youth Scientific and Innovation Contest" ("UMNIK"), contracts No. 10/16859 (28 May 2012) and No. 10/20810 (01 July 2013).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the standards of the Local ethical committee of Bashkir State Medical University (Ufa, Russia) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

1. Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet 2007; 369(9563): 767-778. https://doi.org/10.1016/S0140-6736(07)60363-8.

2. Hersh AO, Prahalad S. Immunogenetics of juvenile idiopathic arthritis: A comprehensive review. J Autoimmun 2015; 64: 113-124. https://doi.org/10.1016/j.jaut.2015.08.002.

3. Cobb JE, Hinks A, Thomson W. The genetics of juvenile idiopathic arthritis: current understanding and future prospects. *Rheumatology (Oxford)* 2014; 53(4): 592-599. https://doi.org/10.1093/rheumatology/ket314.

4. Prahalad S, Glass DN. A comprehensive review of the genetics of juvenile idiopathic arthritis. *Pediatr Rheumatol Online J* 2008; 6: 11. https://doi.org/10.1186/1546-0096-6-11.

5. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. *J Rheumatol 2004; 31(2): 390-392. https://www.ncbi.nlm.nih.gov/pubmed/14760812.

6. Mathew CG. The isolation of high molecular weight eukaryotic DNA. *Methods Mol Biol* 1985; 2: 31-34. https://doi.org/10.1385/089606-4.31.

7. Liu K, Muse SV. PowerMarker: an integrated analysis environment for genetic marker analysis. *Bioinformatics* 2005; 21(9): 2128-2129. https://doi.org/10.1093/bioinformatics/bti282.

8. R Core Team; R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2017. https://www.r-project.org.

9. Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. *Bioinformatics* 2006; 22(15): 1928-1929. https://doi.org/10.1093/bioinformatics/bt626.

10. Westfall PH, Young SS. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. New York, USA: Wiley, 1993; 360 p.

11. Fagerland MW, Lydersen S, Laake P. Recommended confidence intervals for two independent binomial proportions. *Stat Methods Med Res* 2015; 24(2): 224-254. https://doi.org/10.1177/0962280211415469.

12. Schmeling H, Wagner U, Peterson A, Horneff G. Tumor necrosis factor alpha promoter polymorphisms in patients with juvenile idiopathic arthritis. *Clin Exp Rheumatol* 2006; 24(1): 103-108. https://www.ncbi.nlm.nih.gov/pubmed/16539828.

13. Kaalla MJ, Broadaway KA, Rohani-Pichavant M, Conneely KN, Whiting A, Ponder L, et al. Meta-analysis confirms association between TNFA-G238A variant and JIA, and between PTNP22-C1858T variant and oligoarticular, RF-polymorphic and RF-positive polyarticular JIA. *Pediatr Rheumatol Online J* 2013; 11(1): 40. https://doi.org/10.1186/1546-0096-11-40.

14. Reinders TH, Albers HM, Brinkman DM, Kamphuis SS, van Rossum MA, Girschick HJ, et al. CD226 (DNAM-1) is associated with susceptibility to juvenile idiopathic arthritis. *Ann Rheum Dis 2015; 74(12): 2193-2198. https://doi.org/10.1136/annrheumdis-2013-205138.*

15. Albers HM, Kurreeman FA, Stoeken-Rijsbergen G, Brinkman DM, Kamphuis SS, van Rossum MA, et al. Association of the autoimmune locus 4q27 with juvenile idiopathic arthritis. *Arthritis Rheum* 2009; 60(3): 901-904. https://doi.org/10.1002/art.24296.

16. Hinks A, Eyre S, Ke X, Barton A, Martin P, Flynn E, et al. Association of the AFF3 gene and IL2/IL21 gene region with juvenile idiopathic arthritis. *Genes Immun* 2010; 11(2): 194-198. https://doi.org/10.1038/gene.2009.105.

17. Hinks A, Ke X, Barton A, Eyre S, Bowes J, Worthington J, et al. Association of the IL2RA/CD25 gene with juvenile idiopathic arthritis. *Arthritis Rheum* 2009; 60(1): 251-257. https://doi.org/10.1002/art.24187.

18. Thompson SD, Sudman M, Ramos PS, Marion MC, Ryan M, Tsoras M, et al. The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTNP2, COG5, and ANGPT1. *Arthritis Rheum* 2010; 62(11): 3265-3276. https://doi.org/10.1002/art.27688.
19. Crawley E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P. Polymorphic haplotypes of the interleukin-10 5′ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. *Arthritis Rheum* 1999; 42(6): 1101-1108. https://doi.org/10.1002/(SICI)1529-0131(199906)42:6<1101::AID-AIRH43.0.CO;2-T.

20. Viken MK, Amundsen SS, Kvien TK, Boberg KM, Gilbow IM, Lillevy B, et al. Association analysis of the 1856C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. *Genes Immun* 2005; 6(3): 271-273.https://doi.org/10.1038/sj.gene.6364178.

21. Hinks A, Barton A, John S, Bruce I, Hawkins C, Griffiths CE, et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. *Arthritis Rheum* 2005; 52(6): 1694-1699. https://doi.org/10.1002/art.21049.

22. Lee YH, Bae SC, Song GG. The association between the functional PTPN22 1858 C/T and MIF -173 C/G polymorphisms and juvenile idiopathic arthritis in a meta-analysis. *Inform Res* 2012; 63(5): 411-415.https://doi.org/10.4011/doi:0011-012-0447-5.

23. Goulielmos GN, Chiaroni I, Villanueva EA, Trowbridge OC, Weyand P. PTPN22 rs2488457 is a genetic risk factor for juvenile idiopathic arthritis in a cohort of European origin. *J Rheumatol* 2012; 39(12): 2606-2612.https://doi.org/10.3899/jrheum.120455.

24. Jiménez-Morales S, Velázquez-Cruz R, Ramírez-Bello J, Bonilla-González E, Romero-Hidalgo S, Escamilla-Guerrero G, et al. Tumor necrosis factor-alpha is a common genetic risk factor for asthma, juvenile rheumatoid arthritis, and systemic lupus erythematosus in a Mexican pediatric population. *Hum Immunol* 2009; 70(4): 251-256.https://doi.org/10.1016/j.humimm.2009.01.027.

25. Zeggini E, Thomson W, Kiatkowskia D, Richardson A, Ollier W, Donn R, et al. Linkage and association studies of single-nucleotide polymorphism-tagged tumor necrosis factor haplotypes in juvenile oligoarthritis. *Arthritis Rheum* 2002; 46(12): 3304-3311. https://doi.org/10.1002/art.10698.

26. Jiménez-Morales S, Velázquez-Cruz R, Ramírez-Bello J, Bonilla-González E, Rentero-Hidalgo S, Escamilla-Guerrero G, et al. Tumor necrosis factor-alpha is a common genetic risk factor for asthma, juvenile rheumatoid arthritis, and systemic lupus erythematosus in a Mexican pediatric population. *Hum Immunol* 2009; 70(4): 251-256.https://doi.org/10.1016/j.humimm.2009.01.027.

27. Mittersi B, Drynda S, Bóchow G, Klein W, Oppermann J, Kekow J, et al. Complex genetic predisposition in adult and juvenile rheumatoid arthritis. *BMJ Genet* 2004; 5: 2. https://doi.org/10.1186/1471-2156-5-2.

28. Kimura M, Tanioka M, Kitajima Y, Hasegawa M, et al. Association of macrophage migration inhibitory factor gene polymorphisms with juvenile idiopathic arthritis. *Kidney Int* 2006; 70(4): 251-256.https://doi.org/10.1111/j.1529-8817.2006.00700.x.

29. Vandenbroeck K. The CTLA4 +49 A/G and CT60 polymorphisms and their role in the pathogenesis of rheumatoid arthritis. *Rheumatology (Oxford)* 2005; 44(9): 1115-1121. https://doi.org/10.1093/rheumatology/keh689.

30. Donn R, Alourfi Z, De Benedetti F, Meazza C, Zeggini E, Lunt M, et al. Mutations in the TLR2 gene in patients with juvenile rheumatoid arthritis. *Scand J Rheumatol* 2004; 33(1): 40-46.https://doi.org/10.1080/03009740410001177.

31. Zylberberg L, Zylberberg J, Zylberberg A, Zylberberg D, Zylberberg B, et al. The role of TLR2 and TLR4 in the pathogenesis of rheumatoid arthritis. *Ann Rheum Dis* 2005; 64(2): 110-114.https://doi.org/10.1136/ard.2004.017112.

32. Jiménez-Morales S, Velázquez-Cruz R, Ramírez-Bello J, Bonilla-González E, Rentero-Hidalgo S, Escamilla-Guerrero G, et al. Tumor necrosis factor-alpha is a common genetic risk factor for asthma, juvenile rheumatoid arthritis, and systemic lupus erythematosus in a Mexican pediatric population. *Hum Immunol* 2009; 70(4): 251-256.https://doi.org/10.1016/j.humimm.2009.01.027.

33. Ellis JA, Chavez RA, Peziz A, Ponsoby AL, Akikusa JD, Allen RC, et al. Independent replication analysis of genetic loci with previous evidence of association with juvenile idiopathic arthritis. *Pediatr Rheumatol Online J* 2013; 11(1): 12. https://doi.org/10.1186/1546-0996-11-12.

34. Pralahad S, Hansen S, Whiting A, Guthery SL, Clifford B, McNally B, et al. Variants in TNFAIP3, STAT4, and C12orf30 loci associated with multiple autoimmune diseases are also associated with juvenile idiopathic arthritis. *Arthritis Rheum* 2009; 60(7): 2124-2130.https://doi.org/10.1002/art.24618.

35. Oen K, Malleson PN, Cabral DA, Rosenberg AM, Petty RE, Nickerson P, et al. Cytokine genotypes correlate with pain and radiologically defined joint damage in patients with juvenile rheumatoid arthritis. *Rheumatology (Oxford)* 2005; 44(9): 1115-1121. https://doi.org/10.1093/rheumatology/keh689.
Supplementary Table 1. Analysis of the distribution of the polymorphic loci alleles and genotypes in patients with JIA and in the control group

Gene	Polymorphic locus	Alleles	Subjects	The whole group (f+m)	Female (f)	Male (m)	n (f+m)	f+m : f : m				
TNFA		G/A	patients	Alleles and frequencies, %	Alleles and frequencies, %	Alleles and frequencies, %	n (f+m)					
			controls	(1/2/2)	(1/2/2)	(1/2/2)						
LTA		A/G	patients	10.2	80.1/19.0/7.0	10.4	79.3/20.0/7.0	11.8	76.5/23.5/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL18		C/T	patients	32.4	45.3/54.7/0.0	30.4	48.4/51.6/0.0	32.8	49.0/51.0/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL2-1		G/T	patients	31.8	47.6/52.4/0.0	31.8	46.2/53.8/0.0	32.8	49.0/51.0/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL2RA		A/G	patients	17.9	65.3/30.9/3.0	16.7	65.3/30.9/3.0	19.0	65.3/30.9/3.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL6		G/C	patients	35.4	37.6/47.9/14.3	36.0	35.0/53.9/11.1	36.8	42.3/57.7/9.9	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL10		C/A	patients	37.1	47.4/51.5/0.0	36.0	39.4/60.6/1.0	39.4	49.9/50.1/0.5	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
CTLA4		G/A	patients	25.0	49.9/49.1/0.0	25.5	49.9/49.1/0.0	26.5	49.9/49.1/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
NFKB1		I/D	patients	17.8	35.6/47.5/6.5	17.8	35.6/47.5/6.5	17.8	35.6/47.5/6.5	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
PTPN22		G/T	patients	21.9	46.8/53.2/0.0	21.9	47.1/52.9/0.0	21.9	47.1/52.9/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
PADI4		A/G	patients	13.6	63.0/37.0/0.0	13.6	63.0/37.0/0.0	13.6	63.0/37.0/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106

Hereinafter: (1), the major allele; (2), the minor allele; (11), (12), (22), genotypes homozygous for the major and minor alleles, respectively; (12), heterozygous genotype; f+m, female and male; f, female; m, male.

Supplementary Table 2. Analysis of the distribution of the polymorphic loci alleles and genotypes in patients with Rheumatoid factor negative polyarthritis and in the control group

Gene	Polymorphic locus	Alleles	Subjects	The whole group (f+m)	Female (f)	Male (m)	n (f+m)	f+m : f : m				
TNFA		G/A	patients	Alleles and frequencies, %	Alleles and frequencies, %	Alleles and frequencies, %	n (f+m)					
			controls	(1/2/2)	(1/2/2)	(1/2/2)						
LTA		A/G	patients	17.4	68.4/28.8/3.0	16.7	69.9/28.6/3.0	18.9	65.3/31.2/3.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL18		C/T	patients	35.4	37.6/47.9/14.3	35.4	37.6/47.9/14.3	35.4	37.6/47.9/14.3	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL2-1		G/T	patients	41.0	47.6/52.4/0.0	37.3	47.8/52.2/0.0	39.4	47.8/52.2/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL2RA		A/G	patients	18.4	65.3/30.9/3.0	17.8	65.3/30.9/3.0	17.8	65.3/30.9/3.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL6		G/C	patients	32.8	42.3/57.7/9.9	31.9	40.9/59.1/9.3	34.0	42.3/57.7/9.9	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
IL10		C/A	patients	29.4	49.9/49.1/0.0	29.4	49.9/49.1/0.0	29.4	49.9/49.1/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
CTLA4		G/A	patients	33.3	47.4/51.5/0.0	33.3	47.4/51.5/0.0	33.3	47.4/51.5/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
NFKB1		I/D	patients	13.6	63.0/37.0/0.0	13.6	63.0/37.0/0.0	13.6	63.0/37.0/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
PTPN22		G/T	patients	19.9	68.4/28.8/3.0	19.9	68.4/28.8/3.0	19.9	68.4/28.8/3.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106
PADI4		A/G	patients	22.6	47.4/52.6/0.0	22.6	47.4/52.6/0.0	22.6	47.4/52.6/0.0	86.9/17.2/0.9	342 : 236 : 106	342 : 236 : 106

© 2019, LLC Sciences and Innovation, Saratov, Russia www.rjom.org
Supplementary Table 3. Analysis of the distribution of the polymorphic loci alleles and genotypes in patients with Persistent oligoarthritis and in the control group

Polymorphic locus	Alleles	Subjects	The whole group (f+m)	Female (f)	Male (m)	n1	n0	f+m : f : m			
			Alleles and genotypes, %	Alleles and genotypes, %	Alleles and genotypes, %						
			(2)	(11)/(12)/(22)	(2)	(11)/(12)/(22)	(2)	(11)/(12)/(22)	(2)	(11)/(12)/(22)	(f+m : f : m)
TNFA	1800629	G/A	11.2	78.2/20.4/1.0	10.0	80.0/20.0/0.0	13.6	75.8/12.3/1.0	98	65/33	
LTA	909253	A/G	13.2	76.3/21.1/2.6	14.4	73.7/23.7/2.5	10.4	82.1/15.1/2.8	134	236/106	
IL1B	16944	C/T	35.7	43.9/40.8/15.3	36.2	40.0/47.7/12.3	34.8	51.5/7.7/3.2	98	65/33	
IL2-21	6826844	G/T	29.4	49.1/43.0/7.9	30.3	47.0/45.7/3.6	27.4	53.8/37.8/2.8	134	236/106	
IL2RA	2104286	G/C	32.7	43.9/46.9/9.2	37.7	35.4/54.8/10.8	22.7	60.6/33.7/1.6	98	65/33	
IL6	1800795	G/C	37.9	38.9/46.5/14.6	37.1	39.0/47.9/13.1	39.6	38.7/34.1/17.9	134	236/106	
IL10	1800872	C/A	37.2	83.7/16.3/0.0	10.8	78.5/21.5/0.0	2.0	99.6/0.0/0.0	98	65/33	
MIF	755622	G/C	12.1	78.7/18.4/2.9	12.3	78.8/17.3/1.8	11.8	79.0/18.1/1.9	236	236/106	
CTLA4	3087243	G/A	24.0	56.3/28.5/12.8	23.8	56.9/27.5/12.1	24.2	60.9/30.5/12.1	98	65/33	
NFKB1	23862491	I/D	24.0	56.3/28.5/12.8	23.8	56.9/27.5/12.1	24.2	60.9/30.5/12.1	98	65/33	
PTPN22	2476601	G/A	26.1	77.4/22.6/0.0	27.6	75.7/24.3/0.0	28.1	74.2/23.8/0.0	98	65/33	
PADI4	2240336	G/A	26.1	77.4/22.6/0.0	27.6	75.7/24.3/0.0	28.1	74.2/23.8/0.0	98	65/33	

Supplementary Table 4. Analysis of the distribution of the polymorphic loci alleles and genotypes in patients with Extended oligoarthritis and in the control group

Polymorphic locus	Alleles	Subjects	The whole group (f+m)	Female (f)	Male (m)	n1	n0	f+m : f : m			
			Alleles and genotypes, %	Alleles and genotypes, %	Alleles and genotypes, %						
			(2)	(11)/(12)/(22)	(2)	(11)/(12)/(22)	(2)	(11)/(12)/(22)	(f+m : f : m)		
TNFA	1800629	G/A	7.6	84.8/15.2/0.0	8.5	82.9/17.1/0.0	0.0	100.0/0.0/0.0	46	41/5	
LTA	909253	A/G	32.5	76.3/21.1/2.5	32.8	73.7/23.7/2.5	37.8	66.6/15.4/12.5	134	236/106	
IL1B	16944	C/T	29.4	49.1/43.0/7.9	30.3	47.0/45.7/3.6	27.4	53.8/37.8/2.8	98	65/33	
IL2-21	6826844	G/T	39.1	37.0/47.8/15.2	35.4	41.5/46.3/12.2	7.0	0.0/60.0/40.0	46	41/5	
IL2RA	2104286	G/C	39.1	37.0/47.8/15.2	35.4	41.5/46.3/12.2	7.0	0.0/60.0/40.0	46	41/5	
IL6	1800795	G/C	36.7	69.6/20.3/9.8	37.7	69.0/21.9/9.2	37.3	39.6/62.4/12.2	98	65/33	
IL10	1800872	C/A	37.2	68.4/28.4/3.2	32.6	66.6/24.4/11.1	23.4	38.8/43.1/13.8	34	30/5/15.0	
MIF	755622	G/C	38.0	34.8/53.4/10.9	40.2	31.8/67.7/1.1	18.9	69.0/21.9/1.1	98	65/33	
CTLA4	3087243	G/A	36.4	42.7/45.3/12.0	36.4	39.4/48.3/12.3	30.7	50.3/38.7/11.6	134	236/106	
NFKB1	23862491	I/D	36.4	42.7/45.3/12.0	36.4	39.4/48.3/12.3	30.7	50.3/38.7/11.6	134	236/106	
PTPN22	2476601	G/A	35.4	42.7/45.3/12.0	36.4	39.4/48.3/12.3	30.7	50.3/38.7/11.6	134	236/106	
PADI4	2240336	G/A	39.1	71.2/27.3/2.0	19.9	68.3/17.8/1.3	0.0	100.0/0.0/0.0	98	65/33	
Supplementary Table 5. Analysis of the distribution of the polymorphic loci alleles and genotypes in patients with Enthesitis related arthritis and in the control group

Gene	rs	Alleles	Subjects	The whole group (f+m)	Female (f)	Male (m)	n_{f+m}			
			Alleles and genotypes frequencies, %	Alleles and genotypes frequencies, %	Alleles and genotypes frequencies, %					
			(1)/(2)/(3)	(1)/(2)/(3)	(1)/(2)/(3)					
TNFA	1800629	G/A	patients	71.7	85.7/14.3/0.0	16.7	66.7/33.3/0.0	5.2	89.7/10.3/0.0	35.6 : 29
			controls	41.4	22.9/71.4/5.7	33.3	33.3/66.7/0.0	43.1	20.7/77.2/6.9	35.6 : 29
IL1B	16944	C/T	patients	40.0	42.9/34.3/22.9	33.3	50.0/33.3/16.7	41.4	41.4/34.5/24.1	35.6 : 29
			controls	39.9	38.9/48.5/14.6	37.1	39.0/47.9/13.1	39.6	38.7/43.4/17.9	35.6 : 29
IL2-21	6822844	G/T	patients	7.7	88.6/11.4/0.0	8.3	83.3/16.7/0.0	5.2	89.7/10.3/0.0	35.6 : 29
			controls	7.1	78.7/18.4/2.9	12.3	78.8/17.8/3.4	11.8	78.3/19.8/1.9	35.6 : 29
IL2RA	2104286	A/G	patients	17.1	68.6/28.6/2.9	25.0	50.0/50.0/0.0	15.5	72.4/24.1/3.4	35.6 : 29
			controls	17.4	68.4/28.4/3.2	16.7	69.9/26.7/3.4	18.9	65.1/32.1/2.8	35.6 : 29
IL6	1800795	G/C	patients	38.6	45.7/31.4/22.9	33.3	50.0/33.3/16.7	39.7	44.8/31.0/24.1	35.6 : 29
			controls	34.2	42.1/47.4/10.5	32.8	43.2/47.9/8.9	37.3	39.6/46.3/14.2	35.6 : 29
IL10	1800872	C/A	patients	37.1	42.9/40.0/17.1	33.3	50.0/33.3/16.7	37.9	41.4/41.7/17.2	35.6 : 29
			controls	31.6	47.7/41.5/10.8	32.6	46.2/42.4/11.4	29.2	50.9/39.6/9.4	35.6 : 29
MIF	755622	G/C	patients	14.3	74.3/22.9/2.9	8.3	83.3/16.7/0.0	15.5	72.4/24.1/3.4	35.6 : 29
			controls	21.8	60.2/36.0/3.8	22.2	59.7/36.0/4.2	20.8	61.3/35.8/2.8	35.6 : 29
CTLA4	3087243	G/A	patients	32.9	45.7/42.9/11.4	16.7	66.7/33.3/0.0	36.2	41.4/44.8/13.8	35.6 : 29
			controls	34.6	42.7/45.3/12.0	36.4	39.4/48.3/12.3	30.7	50.0/38.7/11.3	35.6 : 29
NFKB1	28362491	I/D	patients	52.9	28.6/37.1/34.3	50.0	33.3/33.3/33.3	53.4	27.6/37.9/34.5	35.6 : 29
			controls	44.9	31.0/48.2/20.8	47.2	28.4/48.7/22.9	39.6	36.8/47.2/16.0	35.6 : 29
PTPN22	2476601	G/A	patients	18.6	65.7/34.3/0.0	25.0	66.7/16.7/16.7	17.2	65.5/34.5/0.0	35.6 : 29
			controls	9.4	83.0/15.2/1.8	9.4	82.6/16.2/1.3	9.4	84.0/13.2/2.8	341 : 235 : 106
PADI4	2240336	G/A	patients	51.4	22.9/51.4/25.7	38.3	16.7/50.0/33.3	50.0	24.1/51.7/24.1	35.6 : 29
			controls	43.1	32.3/49.3/18.5	43.2	32.6/48.3/19.1	42.9	31.4/51.7/17.1	341 : 235 : 106