Could baseline health-related quality of life (QoL) predict overall survival in metastatic colorectal cancer? The results of the GERCOR OPTIMOX 1 study

Momar Diouf1,2*, Benoist Chibaudel3, Thomas Filleron5, Christophe Tournigand6, Marine Hug de Larauze4, Marie-Line Garcia-Larnicol5, Sarah Dumont3, Christophe Louvet7, Nathalie Perez-Staub3, Alexandra Hadengue4, Aimery de Gramont3 and Franck Bonnetain2,4

Abstract

Background: Health-related quality of life (QoL) has prognostic value in many cancers. A recent study found that the performance of prognostic systems for metastatic colorectal cancer (mCRC) were improvable. We evaluated the independent prognostic value of QoL for overall survival (OS) and its ability to improve two prognostic systems’ performance (Köhne and GERCOR models) for patients with mCRC.

Methods: The EQ-5D questionnaire was self-completed before randomization in the OPTIMOX1, a phase III trial comparing two strategies of FOLFOX chemotherapy which included 620 previously untreated mCRC patients recruited from January 2000 to June 2002 from 56 institutions in five countries. The improvement in models’ performance (after addition of QoL) was studied with Harrell’s C-index and the net reclassification improvement.

Results: Of the 620 patients, 249 (40%) completed QoL datasets. The Köhne model could be improved by LDH, mobility and pain/discomfort; the C-index rose from 0.54 to 0.67. The associated NRI for 12-month death was 0.23 [0.05; 0.46]. Mobility and pain/discomfort could be added to the GERCOR model: the C-index varied from 0.63 to 0.68. The NRI for 12 months death was 0.35 [0.12; 0.44].

Conclusions: Mobility and pain dimensions of EQ5D are independent prognostic factors and could be useful for staging and treatment assignment of mCRC patients. Presented at the 2011 ASCO Annual Meeting (#3632).

Background

Colorectal cancer (CRC) is the third most diagnosed cancer in men and the second most diagnosed in women, with over 1.2 million new cases and 608 700 deaths worldwide in 2008 [1]. About up to half (20% to 50%) of CRC patients will develop metastases during the course of their disease [2] and approximately 35% are diagnosed with synchronous metastases [2,3]. Standard treatments for metastatic CRC (mCRC) are based on chemotherapy.

As is the case for many cancers, CRC staging is essential for optimal patient management. Accurate prognostication facilitates both therapeutic decisions and stratification in randomized clinical trials of cancer treatments. In CRC, the well-known TNM staging system is predominantly used [4]. In mCRC, two validated prognostic classification systems can be applied: Köhne prognostic index [5] for patients receiving front-line fluoropyrimidine monotherapy and GERCOR (Groupe Coopérateur Multidisciplinaire en Oncologie) prognostic index [6] for patients with oxaliplatin-based or irinotecan-based regimens. However, the models’ ability to discriminate between patients on the basis of their prognosis (as measured by the C-index [7]) is still relatively modest. Thus, improvement of these prognostic indicators is required [6].

* Correspondence: diouf.momar@chu-amiens.fr
1 Direction de la Recherche Clinique et de l’Innovation, Centre Hospitalier Universitaire Amiens, Nord, 1, Place Victor Pauchet, F-80054, Amiens, Cedex, France
2 Methodology and quality of life in oncology Unit, EA 3181 CHU Besançon and the Qualité de Vie et Cancer clinical research platform, Dijon, France
Full list of author information is available at the end of the article

© 2014 Diouf et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
In palliative care patients, the prognostic value of health-related quality of life (QoL) has been demonstrated for several types of cancer [8-10]. For mCRC patients, QoL is known to be an independent prognostic factor for overall survival (OS) [8,11]. Hence, QoL is a candidate for the improvement of existing prognostic indices. Given

Variable	Class	All patients	Available QoL	Missing QoL	All patients
Age		N %	N %	N %	P
≤65	353	57	138	55	215
>65	267	43	111	45	156
Gender	Male	367	59	151	216
	Female	252	41	98	154
PS	0	333	54	122	49
	1	239	38	110	44
	2	48	8	17	7
Number of sites	1	354	58	147	59
	>1	260	42	102	41
Liver involvement	No	149	24	52	21
	Yes	460	76	197	79
Metastases	Synchronous	415	68	168	68
	Metachronous	196	32	80	32
Adjuvant chemotherapy	No	488	79	200	81
	Yes	130	21	48	19
Tumour site	Colon	398	64	160	64
	Rectum	211	34	86	35
	both	11	2	3	1
LDH	≤1xULN	380	61	134	56
	>1xULN	240	39	115	44
ALP	≤1xULN	350	56	129	52
	>1xULN	270	44	120	48
CEA	≤1xULN	177	28	61	25
	>1xULN	443	72	188	75
EuroQoL	Mobility	1	223	81	223
	Self-care	1	255	93	255
	Usual activities	1	193	71	193
	Pain/discomfort	1	137	50	137
	Anxiety/depression	1	145	53	145
VAS score	70 [10–100] **	70 [10–100] **	70 [10–100] **	70 [10–100] **	70 [10–100] **

* Median (range).
ULN= Upper Limit of Normal.
VAS= visual analogue scale.
PS= performance status.
ALP= alkaline phosphatase.
LDH= serum lactate dehydrogenase.
that QoL is a multidimensional concept, there is a need to identify the QoL dimensions associated with OS for each specific type of cancer. The results of a recent study showed that social functioning (as measured with the EORTC QLQ-C30 tool) is an independent prognostic factor for survival in mCRC patients [12]. The objective of the present study was to assess the independent prognostic value of QoL in mCRC and evaluate its ability to improve the Köhne and GERCOR prognostic indices.

Methods
Patients
Individual patient data from the OPTIMOX1 phase III trial were analysed. The 620 evaluable patients from OPTIMOX1 were recruited from January 2000 to June 2002 from 56 institutions in five countries. In this trial, the oxaliplatin stop-and-go strategy proved to be as good as a continuous oxaliplatin-based chemotherapy strategy in previously untreated mCRC patients. The trial’s inclusion and exclusion criteria are detailed elsewhere [13].

Quality of life assessment
Quality of life was self-reported by the patient using the generic EQ-5D questionnaire (also known as EuroQol) [14], which has five dimensions (mobility, self-care, usual activities, pain/discomfort and anxiety/depression) rated as one of three levels ("no problems","some problems" and "extreme problems", coded as 1, 2 and 3, respectively). The EQ-5D also includes a 100-centimetre visual analogue scale (VAS) for the self-assessment of overall health (0 = worst possible score; 100 = best possible score).

The GERCOR and Köhne prognostic indices
The Köhne prognostic index [5] comprises four variables: performance status (PS), number of metastatic sites, alkaline phosphatase (ALP) level and white blood cell (WBC) count. The GERCOR prognostic index [6] is based on two variables: PS and serum lactate dehydrogenase (LDH) level. Patients are classified into three risk groups (low, intermediate and high) in both models.

Statistical analysis
Demographic and clinical characteristics were summarized as frequency and percentage. In order to check whether selection bias was present, the patients’ clinical characteristics were compared (with chi-squared test or Fisher’s exact test) as a function of the available QoL data at baseline.

Overall survival was defined as the time from randomization to death (regardless of the cause) or last follow-up (censored data). All randomized patients with complete QoL data were included in the statistical analysis.

![Overall survival according to QoL availability](image)

Figure 1 Overall survival (in months) of patients lacking QoL data (dotted line; n = 371) and patients with available QoL data (solid line; n = 249). Log-rank p value = 0.62. The median survival times for patient with and without QoL datasets were 18.6 months (95% CI [17.0 - 21.6]) and 20.8 months (95% CI = [19.5–22.2]), respectively.
Univariate and multivariate analysis were performed using Cox proportional hazards modelling, with calculation of the hazard ratio (HR) and the corresponding 95% two-sided confidence intervals (95%CI).

In order to evaluate the independent prognostic value of QoL, we built two multivariate models with backward selection. The first model included all demographic and clinical variables associated with OS (p<0.1) in univariate analysis. The second model included demographic, clinical and QoL variables with p<0.1 in univariate analysis. Improvements in the prognostic index was evaluated by adding clinical variables (other than those used to

Table 2 Univariate and multivariate Cox analyses

Variable	Univariate analysis	Multivariate analysis	Multivariate analysis							
	Class	HR	95% CI	P	HR	95% CI	P	HR	95% CI	P
Age	≤65	1			1			1		
	>65	1.42	1.06 – 1.89	0.0178	1.44	1.23 – 1.73	0.0001	1.35	1.16 – 1.59	0.0002
Gender	Male	1								
	Female	1.06	0.79 – 1.42	0.6945						
PS	0	1			1			1		
	1-2	1.84	1.38 – 2.46	<0.0001	1.86	1.66 – 2.12	<0.0001	1.82	1.62 – 2.04	<0.0001
	>1	1.47	1.10 – 1.97	0.0094	1.48	1.08 – 2.05	0.0160	1.48	1.07 – 2.04	0.0176
Number of sites	No	1			1			1		
	Yes	1.14	0.83 – 1.58	0.4699						
Liver involvement	No	1			1			1		
	Yes	1.14	0.79 – 1.65	0.4699						
Metastases	Synchronous	1			1			1		
	Metachronous	0.89	0.61 – 1.30	0.5403						
Adjuvant chemotherapy	No	1			1			1		
	Yes	1.05	0.76 – 1.41	0.68						
LDH	≤1xULN	1			1			1		
	>1xULN	2.04	1.48 – 2.80	<0.0001	1.93	1.39 – 2.68	<0.0001	1.83	1.31 – 2.55	0.0004
APL	≤1xULN	1			1			1		
	>1xULN	1.60	1.20 – 2.14	0.0016						
CEA	≤1xULN	1			1			1		
	>1xULN	1.48	1.01 – 2.18	0.0444						
EuroQoL Medical care	Mobility	1			1			1		
		2-3	1.90	1.33 – 2.71	0.0004	1.66	1.12 – 2.48	0.0117		
		1			1			1		
	2-3	1.52	0.88 – 2.62	0.1322	1			1		
	2-3	1.20	0.88 – 1.64	0.2553	1			1		
	1-2	1.39	1.04 – 1.86	0.0239	1			1		
	1-2	1.45	1.09 – 1.93	0.0116	1			1		
	1-2	1.001	0.996 – 1.005	0.7975	1			1		
Harrell’s C index		0.65 [0.61 – 0.69]	0.67 [0.63 – 0.71]	0.65*	0.66*					
Schimper statistic		9.32%	10.42%							

ULN = Upper Limit of Normal.

* = Optimism-corrected C-index.
build the prognostic index) and QoL variables (with p<0.1 in univariate analysis) to a model with backward selection (Köhne or GERCOR index being forced in the model). Patients with available QoL data for whom Köhne and GERCOR indices could be calculated were considered for prognostic systems’ improvement.

The models were compared by calculating the Schemper statistic [15] and Harrell’s C index [7]. The Schemper statistic is equivalent to R^2 in linear regression and quantifies the proportion of the survival variability that is explained by the model. Briefly, the higher the Schemper statistic is, the more accurate the OS predictions would be. Harrell’s C index estimates discriminate capability, i.e. the ability to distinguish between high-risk and low-risk patients. The C-index varies from 0.5 (no discrimination) to 1 (perfect discrimination). Optimism-corrected C-index was calculated using 200 bootstrap replications.

Category-free net reclassification improvement [16] (NRI) was also calculated at various moments (12, 24 and 36 months), in order to evaluate the additional utility of QoL domains and other clinical factors. NRI quantifies “the correctness of upward and downward reclassification or movement of predicted probabilities as a result of adding a new marker”. The confidence interval for NRI was calculated using the percentiles of 1000 bootstrap replications.

We also performed a sensitivity analysis using the multiple-imputation technique [17,18] (with 10 replications) for missing QoL data. The choice of 10 replications was prompted by the large amount of missing QoL data in the trial (60%). In line with Van Buuren’s method [19], the demographic and clinical variables initially included in the final complete-data model, those associated with the lack of QoL data and those strongly associated with OS (albeit absent from the final model) were used as predictors for the imputation of missing QoL data using a logistic regression model (QoL coded as 2–3 vs. 1). Multiple imputation with 10 replications (of the original database) consisted in creating 10 plausible values for each missing data and thus generating 10 new complete databases. For each of the new databases, a standard analysis was performed and the results were combined into a single estimation of the parameter of interest, while taking account of the uncertainty of the imputation technique [20]. Variables selected more than 5 times out of 10 replications were included in the multivariate model after multiple imputations.

Since there was no within-imputation variance according to the Schemper statistic, the pooled estimate was presented as the median [range] [20].

Construction of the a modified prognostic index was based on linear transformation as follows: The regression

Figure 2 Overall survival (in months) of patients with mobility problems (as coded 2–3) (dotted line; n = 54) and patients without mobility problems (as coded 1) (solid line; n = 223). Log-rank p value = 0.0011.

The median survival times were 20.9 (95% CI = [18.6–24.9]) months and 11.8 (95% CI = [11.1–17.3]) months for patients without problems (coded as 1) and those with problems (as coded 2–3), respectively.
The coefficient for each variable selected in the final multivariate complete case Cox model was divided by the lowest coefficient and rounded to the nearest integer [21]. The sum of these integers is the maximum score (M) for the modified index; hence the new score varied from zero to M. According to the score, the modified prognostic index was then arbitrary divided into three risk groups: good prognostic, intermediate prognostic and poor prognostic.

Survival distributions were estimated using the Kaplan-Meier method [22] and compared with the log-rank test. All statistical analyses were carried out using SAS® software (version 9.2, SAS Institute Inc., Cary, NC) and R.2.12.0 software (free) using the Design, SurvIDINRI (for NRIs) and Multivariate Imputation by Chained Equations packages (http://www.multiple-imputation.com/). P-values were two-sided and variables with p<0.05 were considered significantly associated with OS in multivariate models.

Results

Patient characteristics

The patient baseline characteristics are summarized in Table 1, most of them were male (59%) and 43% were over the age of 65. Synchronous metastasis was predominant (68%) and most of the patients with metastatic liver involvement had adjuvant chemotherapy (66%, 130/196).

Data on QoL was available for 249 of the 620 patients in the original OPTIMOX1 cohort (40%). Normal serum LDH was significantly more frequent in patients with missing QoL data. Patients with missing QoL data also tended to have lower serum ALP levels, a better PS and less liver involvement compared to patients with available QoL. Of the 249 patients, 75% died after a median follow-up period of 35.8 months (95% CI = [33.8–38.4]). There was no apparent correlation between the availability of QoL datasets and OS (Log-rank pvalue = 0.62; Figure 1).

Most of the patients had good QoL: 81%, 93%, 71%, 50% and 53% had no problems in terms of mobility, self-care, usual activities, pain/discomfort and anxiety/depression, respectively. The median VAS score was 70 (range = [10–100]).

Univariate analysis

Given that “extreme problems” (coded as 3) were infrequent, QoL item scores were pooled into two classes (i.e. a score of 1 vs. a score of 2 or 3). We also combined PS into 2 classes (0 vs. 1–2), due to the low proportion of patients with a PS score of 2.

Univariate analyses of clinical and QoL variables are summarized in Table 2. High serum LDH, poor PS, high serum ALP, >1 metastatic sites, age>65, high serum CEA, mobility problems (as coded 2–3) (Figure 2),

Table 3 Improvement of Köhne prognostic index

Köhne prognostic index	HR (95% CI)	P value	c-index	Schenper (%)	NRI (95% CI)
Köhne (2 vs. 1)	1.11 [0.80 – 1.55]	=0.5114	NRI at 12 months = 0.23 ([0.07; 0.46])		
Köhne (3 vs. 1)	2.17 [1.25 – 3.75]	=0.0056	NRI at 24 months = 0.31 ([0.16; 0.44])		
LDH (>1ULN vs. ≤ 1ULN)	2.09 [1.53 – 2.87]	<0.0001	0.67 [0.63 –0.71]	10.8 NRI at 36 months = 0.27 ([0.02; 0.50])	
Mobility (2–3 vs. 1)	1.56 [1.05 – 2.32]	=0.0266	*0.66		
Pain/discomfort (2–3 vs. 1)	1.60 [1.17 – 2.18]	=0.0031			

Köhne (2 vs. 1) 1.11 [0.80 – 1.55] =0.5114 NRI at 12 months = 0.23 ([0.07; 0.46])

Köhne (3 vs. 1) 2.17 [1.25 – 3.75] =0.0056 NRI at 24 months = 0.31 ([0.16; 0.44])

LDH (>1ULN vs. ≤ 1ULN) 2.09 [1.53 – 2.87] <0.0001 0.67 [0.63 –0.71] 10.8 NRI at 36 months = 0.27 ([0.02; 0.50])

Mobility (2–3 vs. 1) 1.56 [1.05 – 2.32] =0.0266 *0.66

Pain/discomfort (2–3 vs. 1) 1.60 [1.17 – 2.18] =0.0031

Table 3 Improvement of Köhne prognostic index with clinical and QoL factors: complete-case analysis

Köhne prognostic index	HR (95% CI)	P value	c-index	Schenper (%)	NRI (95% CI)
Köhne (2 vs. 1)	1.11 [0.80 – 1.55]	=0.5114	NRI at 12 months = 0.23 ([0.07; 0.46])		
Köhne (3 vs. 1)	2.17 [1.25 – 3.75]	=0.0056	NRI at 24 months = 0.31 ([0.16; 0.44])		
LDH (>1ULN vs. ≤ 1ULN)	2.09 [1.53 – 2.87]	<0.0001	0.67 [0.63 –0.71]	10.8 NRI at 36 months = 0.27 ([0.02; 0.50])	
Mobility (2–3 vs. 1)	1.56 [1.05 – 2.32]	=0.0266	*0.66		
Pain/discomfort (2–3 vs. 1)	1.60 [1.17 – 2.18]	=0.0031			

Köhne (2 vs. 1) 1.11 [0.80 – 1.55] =0.5114 NRI at 12 months = 0.23 ([0.07; 0.46])

Köhne (3 vs. 1) 2.17 [1.25 – 3.75] =0.0056 NRI at 24 months = 0.31 ([0.16; 0.44])

LDH (>1ULN vs. ≤ 1ULN) 2.09 [1.53 – 2.87] <0.0001 0.67 [0.63 –0.71] 10.8 NRI at 36 months = 0.27 ([0.02; 0.50])

Mobility (2–3 vs. 1) 1.56 [1.05 – 2.32] =0.0266 *0.66

Pain/discomfort (2–3 vs. 1) 1.60 [1.17 – 2.18] =0.0031

Table 3 Improvement of Köhne prognostic index with clinical and QoL factors after multiple imputation

Köhne prognostic index	HR (95% CI)	P value	c-index	Schenper (%)	NRI (95% CI)
Köhne (2 vs. 1)	1.24 [0.97 – 1.58]	=0.0780			
Köhne (3 vs. 1)	2.15 [1.43 – 3.24]	=0.0002			
LDH (>1ULN vs. ≤ 1ULN)	1.99 [1.61 – 2.46]	<0.0001	0.66 [0.59 –0.73]	8.63 [7.74 – 10.8]	
Mobility (2–3 vs. 1)	1.39 [1.06 – 1.83]	=0.0191	R = 65%		
Pain/discomfort (2–3 vs. 1)	1.67 [1.20 – 2.31]	=0.0031	R = 113%		

Köhne (2 vs. 1) 1.24 [0.97 – 1.58] =0.0780

Köhne (3 vs. 1) 2.15 [1.43 – 3.24] =0.0002

LDH (>1ULN vs. ≤ 1ULN) 1.99 [1.61 – 2.46] <0.0001 0.66 [0.59 –0.73] 8.63 [7.74 – 10.8]

Mobility (2–3 vs. 1) 1.39 [1.06 – 1.83] =0.0191 R = 65%

Pain/discomfort (2–3 vs. 1) 1.67 [1.20 – 2.31] =0.0031 R = 113%

LDH = lactate dehydrogenase.
ULN = Upper Limit of Normal.
* = bootstrap C-index.
R = relative increase in variance due to missing data.
QoL = Quality of Life.
HR = Hazard ratio.
NRI = net reclassification improvement.
For multiple imputations, a logistic model was used: response variable = Qol scale (2–3 vs. 1) and exploratory variables were number of metastatic sites, liver involvement, WHO Performance Status, CEA, APL and LDH.
Variables considered in the imputation method (last model) were selected more than 5 times among the 10 replications of multiple imputations (see statistical method).
pain/discomfort problems (as coded 2–3) and anxiety/depression problems (as coded 2–3) were associated with a poorer prognosis. There were no significant associations between the risk of death and self-care (p = 0.1322), usual activities (p = 0.2553) and the VAS score (p = 0.1280) QoL scales on the other.

Multivariate analysis
The results for multivariate analyses are summarized on Table 2.

In the first model, high LDH, >1 metastatic sites and poor PS were associated with a shorter survival.

In the second model, high LDH, >1 metastatic sites, poor PS and mobility problems were associated with a shorter survival.

After multiple imputations, the pooled HR for mobility was 1.57 (95% CI = [1.16–2.12]) (p = 0.0043) in the model including LDH, the number of metastatic sites, PS, ALP, pain/discomfort and mobility (Additional file 1).

Improvement of prognostic indices
In order to evaluate improvements in performance of the Köhne and GERCOR prognostic indices, we first calculated their performance in our population (Table 3).

Table 3 Improvement of the Köhne prognostic index

Variable	HR (95% CI)	P value	c-index	Schemper (%)	NRI (95% CI)
GERCOR (2 vs. 1)	1.82 [1.43 – 2.33]	<0.0001	0.63 [0.61-0.66]	*0.63	6.44
GERCOR (3 vs. 1)	3.10 [2.38 – 4.05]	<0.0001	0.63 [0.61-0.66]	*0.63	6.44

Table 4 Improvement of the GERCOR prognostic index

GERCOR prognostic index
Variable
GERCOR (2 vs. 1)
GERCOR (3 vs. 1)
Mobility (2–3 vs. 1)
Anxiety/depression (2–3 vs. 1)

Improve of the GERCOR prognostic index clinical and QoL factors: complete-case analysis

GERCOR (2 vs. 1)	1.77 [1.36 – 2.30]	<0.0001	0.67 [0.63-0.71]	*0.67	11.52
GERCOR (3 vs. 1)	2.49 [1.84 – 3.38]	<0.0001	0.67 [0.63-0.71]	*0.67	11.52
Mobility (2–3 vs. 1)	1.25 [1.00 – 1.57]	=0.0480	0.67 [0.64-0.71]	*0.67	11.52
Pain/discomfort (2–3 vs. 1)	1.42 [1.08 – 1.86]	=0.0120	R = 60%	0.67	138%

Improve of the GERCOR prognostic index clinical and QoL factors: multiple imputation

GERCOR (2 vs. 1)	1.77 [1.36 – 2.30]	<0.0001	0.67 [0.63-0.71]	*0.67	11.52
GERCOR (3 vs. 1)	2.49 [1.84 – 3.38]	<0.0001	0.67 [0.63-0.71]	*0.67	11.52
Mobility (2–3 vs. 1)	1.25 [1.00 – 1.57]	=0.0480	0.67 [0.64-0.71]	*0.67	11.52
Pain/discomfort (2–3 vs. 1)	1.42 [1.08 – 1.86]	=0.0120	R = 60%	0.67	138%

LD = lactate dehydrogenase.
ULN = Upper Limit of Normal.
* = bootstrap C-index.
R = relative increase in variance due to missing data.
QoL = Quality of Life.
HR = Hazard ratio.
NRI = net reclassification improvement. For multiple imputations, a logistic model was used: response variable=QoL scale (2–3 vs. 1) and exploratory variables were number of metastatic sites, liver involvement, WHO Performance Status, CEA, APL and LDH. Variables considered in the imputation method (last model) were selected more than 5 times among the 10 replications of multiple imputations (see statistical method).

The modified Köhne index varied from 0 to 22 points.
Poor prognosis: 15 to 22 points.
Intermediate prognosis: 8 to 14 points.
Good prognosis: 0 to 6 points.
Figure 3 Survival strata according to the Köhne prognostic model before and after improvement. A: Overall survival (in months) for good, intermediate and poor prognosis according to the Köhne prognostic model. Median survival = 20.7 [17.7 – 24.4] for the group with good prognosis (n = 134); Median survival = 18.6 [17.1 – 25.4] for the group with intermediate prognosis (n = 84); Median survival = 9.0 [7.3 -14.7] for the group with poor prognosis (n = 18). Log-rank p = 0.0013. Optimism corrected C-index = 0.54. B: Overall survival (in months) for good, intermediate and poor prognosis according to the modified Köhne group. Median survival = 27.0 [21.1 – 37.5] for the group with good prognosis (n = 57); Median survival = 18.4 [16.5 – 21.6] for the group with intermediate prognosis (n = 146); Median survival = 11.3 [9.0 – 16.9] for the group with poor prognosis (n = 33). Log-rank p<0.0001. Optimism corrected C-index = 0.60.
C-index and Schemper statistic were improved while the NRIs were significantly different from zero (Table 3). A modified Köhne prognostic index was built using the above variables (Table 5).

Survival distributions for the Köhne and improved Köhne prognostic systems are shown in Figure 3 A&B. The Results of multiple imputations are summarized in Table 3.

A complete-case analysis of the GERCOR prognostic classification revealed that mobility and Anxiety/depression could improve performance: the C-index, Schemper statistic, and NRI are summarized in Table 4.

Based on these two new QoL scales, a modified GERCOR prognostic system was built using the above variables (Table 6).

Survival distributions for the GERCOR and improved GERCOR prognostic systems are shown in Figure 4A and Figure 4B.

The Results of multiple imputations are summarized in Table 4.

Discussion

In this study, EuroQol mobility dimension appeared to be the third most important prognostic factor (measured by the hazard ratio) for overall survival in unresectable mCRC, after serum LDH level and ECOG performance status. Self-reported QoL is known to be associated with OS in several types of cancer [8,9,11,12]. Our present results confirmed the independent prognostic value of QoL scales in patients with mCRC [8,11,12]. Our first multivariate model (including clinical and biochemical variables) revealed the prognostic value of LDH, PS and the number of metastatic sites, whereas our second model (with the addition of QoL) confirmed the value of LDH, PS and the number of metastatic sites and further identified the QoL “mobility” scale as an independent prognostic factor.

After multiple imputations, the mobility QoL scale remained significant despite its high associated relative increase in variance due to missing data imputation. Pain/discomfort was not significant but showed a prognostic value after the multiple-imputation analysis; this may be partially related to the high increase in variance due to missing QoL data.

We found that the Köhne prognostic system could be improved by including LDH, mobility and pain/discomfort in both complete-case and imputation analyses. Moreover, the GERCOR prognostic index was improved by mobility and anxiety/depression in a complete-case analysis and by ALP, mobility and pain/discomfort after multiple imputations. This difference in the selection of variables may be due to lack of power in the complete-case analysis albeit ALP was at the limit of statistical significance. Therefore the GERCOR prognostic index was essentially improved by QoL scales. The added value of QoL scales (completed by the patient) for improvements of the two prognostic systems revealed that the patient’s perception of his/her disease was an important information to record for prognosis assessment in addition to the clinician’s evaluation [23].

Despite a marked increase in variance due to missing data, the mobility and pain/discomfort QoL dimensions significantly improved the Köhne and GERCOR staging systems. This result comforted the independent prognostic value of these QoL scales in mCRC patients. The results for complete-case and multiple-imputation analysis were very similar. QoL significantly improved the prognostic indices with both methods (complete-case and multiple-imputation analyses). This may be related to the fact that the complete-case analysis was not biased. In fact, patients with and without QoL data at inclusion did not differ in terms of the median survival time [24] (i.e. missingness was not related to outcome).

It should be noted that such a large improvement in the C-index from 0.54 to 0.66 for the Köhne prognostic index has rarely been reported in prognostic studies. After the addition of both clinical and QoL factors, the NRIs were also statistically significant for both the Köhne and the GERCOR prognostic systems (95% CIs did not contained zero). The independent prognostic value of mobility and pain/discomfort QoL scales (using the EQ-5D) for mCRC is compatible with the result of Efficace [12] regarding the prognostic value of social functioning scale (using the EORTC QLQ-C30). In fact, mobility and pain problems could impair the social functioning QoL dimension.

One of the present study’s strengths relates to its use of the easily understood and rapidly completed EQ-5D.

Table 6 Modified GERCOR prognostic index

	0 point	1 point	2 points	3 points	4 points
GERCOR	GERCOR I	GERCOR II	GERCOR III		
Mobility score	1	2-3			
Pain/discomfort score	1	2-3			

The modified GERCOR index varied from 0 to 5 points.
Poor prognosis: 4 to 5 points.
Intermediate prognosis: 2 or 3 points.
Good prognosis: 0 or 1 point.
Figure 4 Survival strata according to the GERCOR prognostic model before and after improvement. A: Overall survival (in months) for good, intermediate and poor prognosis according to the GERCOR prognostic system. Median survival = 28.7 [24.5 – 38.9] for the group with good prognosis (n = 73); Median survival = 19.9 [18.1 – 23.9] for the group with intermediate prognosis (n = 97); Median survival = 12.1 [10.0 – 15.4] for the group with poor prognosis (n = 66). Log-rank p<0.0001. Optimism corrected C-index = 0.65. B: Overall survival (in months) for good, intermediate and poor prognosis according to the modified GERCOR prognostic system. Median survival = 28.2 [24.5 – 37.5] for the group with good prognosis (n = 68); Median survival = 21.6 [18.7 – 26.2] for the group with intermediate prognosis (n = 90); Median survival = 11.5 [10.0 – 14.7] for the group with poor prognosis (n = 78). Log-rank p<0.0001. Optimism corrected C-index = 0.66.
The EQ-5D was chosen because it was expected to be less time consuming and could prevent missing data. However, EQ-5D is not a cancer-specific questionnaire like the EORTC QLQ-C30 and it constitutes a limitation of our study. The high proportion of missing data (60%) and its large variability between countries (ranged from 5% to 66%) constitute another limitation in the generalizability of our results. Such a large heterogeneity in missing data might be related to the trial logistic and/or each country’s culture. It is also important to note than our population came from a randomized controlled trial with restrictive inclusion and non inclusion criteria and might not be representative of mCRC patients in general [25]. Quality of Life may be an important parameter to record when assessing the situation of mCRC patients, since it improved the accuracy of OS prediction and greatly improved the two best-known prognostic classification systems for mCRC. We consider that QoL domains are important factors in the field of stratified therapy in the sense that knowing some aspect of the patient’s self-reported QoL level could be decisive in the choice of different treatment options in the area of tailored medicine. By way of an example, a clinician might wish to avoid a treatment with pain as side-effect if the patient reported preexisting pain symptoms. Pain and mobility could also serve as an inclusion and/or stratification factor in randomized, controlled trials in mCRC.

Conclusion

Our results confirmed the prognostic value of QoL in mCRC patients. Thus, QoL scores should be recorded as it could give supplementary information to the clinician regarding the prognosis of a patient as well as in the judgment of an acceptable treatment side effect.

Additional file

Additional file 1: Results of the multivariate analysis after QoL imputation.

Abbreviations

QoL: Quality of life; mCRC: Metastatic colorectal cancer; OS: Overall survival; EQ-5D: Generic measure of health status developed by the EuroQol Group; HR: Hazard ratio; CI: Confidence interval; CRC: Colorectal cancer; TNM: Tumor Node Metastasis; GERCOR: Groupe Coopérateur Multidisciplinaire en Oncologie; EORTC: European Organization for Research and Treatment of Cancer; VAS: Visual analogue scale; PS: Performance status; ALP: Alkaline phosphatase; LDH: Lactate dehydrogenase; ITT: Intention to treat; NRI: Net reclassification improvement; CEA: Carcinoembryonic antigen; HDL: High density lipoprotein.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MD, BC, FB, AG, CL, CT, TF, NP, SD, AH, MH and MG the seven authors are justifiably credited with authorship, according to the authorship criteria. In detail: MD BC TF FB – conception, design, analysis and interpretation of data, drafting of the manuscript, final approval given; AG CL CT SD NP AH MH MG BC – acquisition of data, interpretation of data, critical revision of manuscript, final approval given. All authors read and approved the final manuscript.

Acknowledgements

The authors thank Dr. David Fraser for advice in English.

Author details

1. Direction de la Recherche Clinique et de l’Innovation, Centre Hospitalier Universitaire Amiens, Nord, 1, Place Victor Pauchet, F-80054, Amiens, Cedex, France. 2. Methodology and quality of life in oncology Unit, EA 3181 CHU Besançon and the Qualité de Vie et Cancer clinical research platform, Dijon, France. 3. Department of medical oncology, Hôpital Saint-Antoine, Assistance Publique des Hôpitaux de Paris, UPMC Paris V, Paris, France. 4. Oncology Multidisciplinary Research Group (GERCOR), Paris, France. 5. Biostatistics Unit, Claudius Régaud Institute, Toulouse, France. 6. Department of medical oncology, Hôpital Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, Paris, France. 7. Department of medical oncology, Institut Mutualiste Montsouris, Paris, France.

Received: 18 October 2013 Accepted: 29 April 2014

Published: 13 May 2014

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61:69–90.
2. Field K, Lipton L: Metastatic colorectal cancer-past, progress and future. World J Gastroenterol 2007, 13(30):3800–3815.
3. Tolpecht G, Grothe F, Alberts S, Bahl HR, Köhne CH: Neoadjuvant treatment of unresectable colorectal liver metastases: correlation between tumour response and resection rates. Ann Oncol 2005, 16:1311–1319.
4. Jessup JM, Gunderson LL, Greene FL, Washington MK, Compton CC, Sobin LH, Minsky B, Goldberg RM, Hamilton SR: Staging System for Colon and Rectal Cancer. Ann Surg Oncol 2010, 2011(18):1513–1517.
5. Köhne CH, Cunningham D, Di Costanzo F, Glimelius B, Aranda E, Scheithauer W, Rougier P, Palmer M, Wils J, Baron B, Pignatti F, Schöffski P, Michelet S, Hecker H: Clinical determinants of survival in patients with 5-Fluorouracil-based treatment for metastatic colorectal cancer: results of a multivariate analysis of 3823 patients. Ann Oncol 2002, 13(2):308–317.
6. Chibaudel B, Bonneterre F, Tournigand C, Bengrine-Lefève L, Teixeira L, Attu P, Desrémé J, Larsen AK, André T, Louvet C, de Gramont A: Simplified prognostic model in patients with oxaliplatin-based or irinotecan-based first-line chemotherapy for metastatic colorectal cancer: A GERCOR study. Oncologist 2011, 16(9):1228–1238.
7. Harrell FE, Lee KL, Mark DB: Tutorial in biostatistics. Multivariable prognostic models issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996, 15:361–387.
8. Montazeri A: Quality of life data as prognostic indicators of survival in cancer patients: an overview of the literature from 1982 to 2008. Health Qual Life Outcomes 2009, 7:102.
9. Quinten C, Coens C, Mauer M, Comte S, Sprangers MA, Cleeland C, Osoba D, Bjorl K, Bottomley A, EORTC Clinical Groups: Baseline quality of life as a prognostic indicator of survival: a meta-analysis of individual patient data from EORTC QLQ-C30 clinical trials. Lancet Oncol 2009, 10:865–871.
10. Diouf M, Filleron T, Barbare JC, Fin L, Picard C, Bouché D, Oahan L, Paoletti X, Bonnaire F: The added value of quality of life (QoL) for prognoses of overall survival in patients with palliative hepatocellular carcinoma. J Hepatol 2013, 58:509–521.
11. Braun DP, Gupta D, Grutsch JF, Staren ED: Can changes in health related quality of life scores predict survival in stage III and IV colorectal cancer? Qual Life Res 2011, 19:621.
12. Efficace F, Innamorato PF, Bjarnason G, Coens C, Humblet Y, Tumolo S, Genest D, Tampellini M, Bottomley A, Gauñi C, Focan C, Giacchetti S, Lévy F: Chronotherapy Group of the European Organisation for Research and Treatment of Cancer: Validation of patient’s self-reported social functioning as an independent prognostic factor for survival in metastatic colorectal cancer patients: results of an international study by the Chronotherapy Group of the European Organisation for Research and Treatment of Cancer. J Clin Oncol 2008, 26:2020–2026.
13. Tournigand C, Cervantes A, Figer A, Lledo G, Flesch M, Buyse M, Mineur L, Carola E, Etienne PL, Rivera F, Chirivella I, Perez-Staub N, Louvet C, André T, de Gramont A: OPTIMOX1: A randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-go fashion in advanced colorectal cancer—a GERCOR study. J Clin Oncol 2006, 24:394–400.

14. Group EQ: EuroQol—a new facility for the measurement of health-related quality of life. Health Policy 1990, 16:199–208.

15. Schm dismissions accuracy and explained variation. Stat Med 2003, 22:2299–2308.

16. Pencina MJ, D’Agostino RB, Steyerberg EW: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011, 30:11–21.

17. CLARK TG, Altman DG: Developing a prognostic model in presence of missing data; an ovarian cancer study. J Clin Epidemiol 2003, 56:28–37.

18. Marshall M, Altman DG, Royston P, Holder RL: Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol 2010, 10:7.

19. Van Buuren S, Boshuizen HC, Knook DL: Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med 1999, 18:681–694.

20. Marshall M, Altman DG, Holder RL, Royston P: Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. BMC Med Res Methodol 2009, 9:57.

21. Tournoux-Facon C, Paoletti X, Barbare JC, Bouché O, Rougier P, Dahan L, Lombard-Bohas C, Faroux R, Raoul JL, Bedenne L, Bonnetain F: Development and validation of a new prognostic score of death for patients with hepatocellular carcinoma in palliative setting. J Hepatol 2011, 54(1):108–114.

22. Kaplan EL, Meier P: Non parametric estimation from incomplete observations. J Am Stat Assoc 1958, 53:457–481.

23. Mauer M, Bottamley A, Coens C, Goyet C: Prognostic factor analysis of health-related quality of life data in cancer: statistical methodological evaluation. Expert Rev Pharmacoecon Outcomes Res 2008, 8(2):179–196.

24. Vach W, Blettner M: Missing data in epidemiologic studies. In Encyclopedia of Biostatistics. New York: John Wiley & Sons; 1998:2641–2654.

25. Moons KGM, Royston P, Vergouwe Y, Grobbee DE, Altman DG: Prognosis and prognostic research: what, why, and how? Br Med J 2009, 338:b575. 1317–1520.