EVASIVE PROPERTIES OF SPARSE GRAPHS AND SOME LINEAR EQUATIONS IN PRIMES

IGOR E. SHPARLINSKI

Abstract. We give an unconditional version of a conditional, on the Extended Riemann Hypothesis, result of L. Babai, A. Banerjee, R. Kulkarni and V. Naik (2010) on the evasiveness of sparse graphs.

1. Introduction

A Boolean function of m variables is called evasive if its deterministic query (decision-tree) complexity is m.

A graph property \mathcal{P}_n of n-vertex graphs is a collection of graphs on the vertex set $\{1, \ldots, n\}$ that is invariant under relabelling of the vertices. A property \mathcal{P}_n is called monotone if it is preserved under the deletion of edges. The trivial graph properties are the empty set and the set of all graphs. We say that \mathcal{P}_n is evasive if the Boolean function on

$$m = \frac{n(n - 1)}{2}$$

variables, deciding whether an n-vertex graph given by the adjacency matrix belongs to \mathcal{P}_n, is evasive.

The famous Karp Conjecture asserts that any monotone nontrivial graph property is evasive, see [1, Theorem 1.4 (b)] and references therein.

Towards this conjecture, Babai, Banerjee, Kulkarni and Naik [1, Theorem 1.4 (b)] have shown that, under the Extended Riemann Hypothesis, for any fixed $\varepsilon > 0$, any nontrivial monotone property of graphs on n vertices with at most $n^{5/4 - \varepsilon}$ edges is evasive for a sufficiently large n.

The unconditional result of [1, Theorem 1.4 (c)] is much weaker, and applies to graphs with at most $cn \log n$ edges (for some absolute constant $c > 0$).

Furthermore, under the so-called Chowla Conjecture about the smallest prime in an arithmetic progression (which goes far beyond of what the Extended Riemann Hypothesis immediately implies), Babai, Banerjee, Kulkarni and Naik [1, Theorem 1.4 (a)] show that for any fixed
\(\varepsilon > 0 \), any nontrivial monotone property of graphs on \(n \) vertices with at most \(n^{3/2-\varepsilon} \) edges is evasive for a sufficiently large \(n \).

These estimates rely on some results about the distribution of primes in arithmetic progressions. Here we show that the Bombieri-Vinogradov theorem, see [8, Theorem 17.1], is sufficient to replace the Extended Riemann Hypothesis and so we obtain the same result unconditionally which improves [1, Theorem 1.4 (c)] that gives the evasiveness for graphs on \(n \) vertices with at most \(n \log n \) edges.

Theorem 1. There is a function \(f(n) = n^{5/4+o(1)} \) such that any nontrivial monotone property of graphs on \(n \) vertices, with at most \(f(n) \) edges, is evasive for a sufficiently large \(n \).

Furthermore, we show that using a different approach, based on a result of Balog and Sárközy [3] about prime divisors of sum-sets (which in turn is based on sieve methods), one can obtain much stronger estimates that hold for almost all \(n \).

We need to introduce some notation. For an integer \(k \), we use \(P(k) \) to denote the largest prime divisor of \(k \) (we also set \(P(1) = 0 \)).

Theorem 2. Assume that for some real positive \(\alpha < 1 \) and \(A \) we have
\[
\#\{r \leq z : \text{r prime, } P(r-1) > r^{\alpha}\} \geq A \frac{z}{\log z}
\]
as \(z \to \infty \). Then for any positive \(\gamma \leq \alpha \) there is a constant \(c(\alpha, \gamma, A) > 0 \) that depends only on \(\alpha \), \(\gamma \) and \(A \) such that for all but at most \(O\left(x^{\max\{0.2\gamma-1\}}(\log x)^4\right) \) integers \(n \leq x \) any nontrivial monotone property of graphs on \(n \) vertices with at most \(c(\alpha, \gamma, A)n^{1+\gamma} \) edges, is evasive.

The standard heuristic suggests that the condition of Theorem 2 holds with any \(\alpha < 1 \). Unconditionally, by a result of Baker and Harman [2], it is known that we can take
\[\alpha = 0.677\]
for some \(A > 0 \). Thus, with \(\gamma = \alpha = 0.677 \) we derive:

Corollary 3. There is an absolute constant \(c > 0 \), such that for all but at most \(O(x^{0.354}(\log x)^4) \) integers \(n \leq x \) any nontrivial monotone property of graphs on \(n \) vertices, with at most \(cn^{1.677} \) edges, is evasive.

Finally, taking \(\gamma = 1/2 \) and \(\alpha = 0.677 \) in Theorem 2, we obtain an unconditional version of the bound of [1, Theorem 1.4 (a)] however with a small exceptional set.
Corollary 4. There is an absolute constant $c > 0$, such that for all but at most $O((\log x)^4)$ integers $n \leq x$ any nontrivial monotone property of graphs on n vertices, with at most $cn^{3/2}$ edges, is evasive.

We note that in [1, Theorem 1.4 (a)] the bound of Corollary 4 (in a slightly weaker form $n^{3/2-\varepsilon}$ for any $\varepsilon > 0$) is established for all sufficiently large n under the so-called Chowla Conjecture. However proving this conjecture seems to be far beyond the capabilities of the modern number theory.

2. Preparations

Throughout the paper, the implied constants in the symbols ‘O’, ‘\ll’ and ‘\gg’ may occasionally, where obvious, depend on the small real parameter $\varepsilon > 0$ and are absolute otherwise. We recall that the notations $U = O(V)$, $U \ll V$ and $V \gg U$ are all equivalent to the assertion that the inequality $|U| \leq c|V|$ holds for some constant $c > 0$.

Our main technical tool is the following result obtained and used in [1, Section 5]. For an integer $n \geq 1$ we define the function

$$f(n) = \max_{(k,p,q,r) \in \mathcal{W}_n} \min \{ p^2k, pk, qr \},$$

where the maximum is taken over the set \mathcal{W}_n of all quadruples (k,p,q,r) of integers $k \geq 1$ and primes p, q, r with

$$n = kp + r \quad \text{and} \quad r \equiv 1 \pmod{q}.$$

Lemma 5. There is an absolute constant $c > 0$ such that any nontrivial monotone properties of graphs on n vertices with at most $cf(n)$ edges is evasive for a sufficiently large n.

In [1, Section 5] individual results about the distribution of primes in arithmetic progressions, have been obtained to get lower bounds on $f(n)$ and thus on the evasiveness of sparse graphs.

Here we use several results about the distribution of primes in arithmetic on average to improve the estimates from [1, Section 5].

For integers $m > a \geq 0$ and a real $y > 0$, let

$$\psi(y; m, a) = \sum_{n \leq y} \Lambda(y),$$

where, as usual, Λ denotes the von Mangoldt function given by

$$\Lambda(n) = \begin{cases}
\log p & \text{if } n \text{ is a power of the prime } p, \\
0 & \text{if } n \text{ is not a prime power}.
\end{cases}$$

We also use $\varphi(m)$ to denote the Euler function of m.

We now recall (a somewhat simplified) version of the Bombieri-Vinogradov theorem, see [8, Theorem 17.1].

Lemma 6. For every $A > 0$ there exists B such that for any real $z > 1$,
\[
\sum_{m \leq z/(\log z)^B} \max_{y \leq z} \max_{\gcd(a,m)=1} \left| \frac{\psi(y; m, a) - y}{\varphi(m)} \right| \ll \frac{z}{(\log z)^A}.
\]

Finally, by a straightforward modification of a result of Balog and Sárközy [3, Theorem 2] (which in the original formulation applies to $P(a + b)$ rather than to $P(a - b)$) we have:

Lemma 7. There is an absolute constant $c > 0$ such that for any sets $A, B \subseteq \{1, \ldots, N\}$ with
\[
\#A \#B \geq cN \log N^2
\]
we have
\[
\max_{a \in A, b \in B} P(a - b) \gg \frac{(\#A \#B)^{1/2}}{\log N}.
\]

We recall that when both sets A and B are large (of cardinalities of order N) an improvement of Lemma 7 is given by Sárközy and Stewart [10], see also a survey of related results given by Stewart [12].

3. Proof of Theorem 1

Let us fix some $\varepsilon > 0$, and consider the products $m = pq$ where p and q are distinct primes from the interval $[n^{1/4-\varepsilon}, 2n^{1/4-\varepsilon}]$. Clearly for some constant $c > 0$ there are at least $M_1 \geq cn^{1/2-2\varepsilon}/(\log x)^2$ such values of m. On the other hand, by Lemma 6 applied with $A = 3$, we see that the number M_2 of $m \in [n^{1/2-2\varepsilon}, 4n^{1/2-2\varepsilon}]$ with
\[
\max_{y \leq n/2} \max_{\gcd(a,m)=1} \left| \frac{\psi(y; m, a) - y}{\varphi(m)} \right| \geq \frac{n}{10m}
\]
satisfies
\[
M_2 \frac{n}{4n^{1/2-2\varepsilon}} \ll \frac{n}{(\log n)^3},
\]
or
\[
M_2 \ll \frac{4n^{1/2-2\varepsilon}}{(\log n)^3}.
\]
Hence $M_2 < M_1$ for a sufficiently large n. We now choose any two distinct primes $p, q \in [n^{1/4-\varepsilon}, 2n^{1/4-\varepsilon}]$ such that for $m = pq$ we have
\[
\max_{y \leq n/2} \max_{\gcd(a,m)=1} \left| \frac{\psi(y; m, a) - y}{\varphi(m)} \right| < \frac{n}{10m}.
\]
In particular, if for these \(p \) and \(q \) we define \(a \in [0, m - 1] \) by the congruences
\[
a \equiv n \pmod{p} \quad \text{and} \quad a \equiv 1 \pmod{q}
\]
we have
\[
\psi(n/2; m, a) - \psi(n/4; m, a) \geq \frac{n}{4\phi(m)} - \frac{n}{5m} > 0.
\]
Thus there is a prime \(r \in [n/4, n/2] \) with \(r \equiv a \pmod{pq} \). Setting \(k = (n-r)/p \), we obtain a representation of the form (2) which implies that for the function (1)
\[
f(n) \gg n^{3/4-\varepsilon}.
\]
Since \(\varepsilon \) is arbitrary, by Lemma 5 the result now follows.

4. PROOF OF THEOREM 2

Clearly it is enough to show that the result holds for all but possibly \(O((\log x)^3) \) integers \(n \in [x/2, x] \).

From the definition of \(\alpha \) we see that there is a constant \(c_0 > 0 \) such that for the set
\[
R = \{ r \in [c_0x, x/4] : r \text{ prime, } P(r - 1) > r^{\alpha} \}
\]
we have
\[
(3) \quad \#R \gg x/\log x.
\]
Assume that for an integer \(n \in [x/2, x] \) there is with \(r \in R \) with \(P(n-r) \geq n^{\gamma} \). Taking \(p = P(n-r) \), \(q = P(r-1) \) and writing \(n = pk + r \), we see that \(pk > n/2 \). Thus for the function (1) we have
\[
f(n) \gg \min \{ np, nr, r^{1+\alpha} \} \gg n^{1+\gamma}.
\]
Let \(E \) be the set of remaining integers \(n \in [x/2, x] \) for which for all \(r \in R \) we have \(P(n-r) \leq n^{\gamma} \). We see from Lemma 7 applied with \(A = E \) and \(B = R \), that for any \(\varepsilon > 0 \) we have either
\[
\#E \#R \leq x(\log x)^2
\]
or
\[
\frac{(\#E \#R)^{1/2}}{\log x} \ll x^{\gamma}.
\]
Thus, recalling (3), we see that
\[
\#E \ll x^{\max\{0,2\gamma-1\}(\log x)^3}
\]
and the result now follows.
5. Comments

Clearly the exponent $5/4$ in Theorem 1 comes from the limit $z^{1/2+o(1)}$ of averaging in the Bombieri-Vinogradov theorem, see Lemma 6. However under the Elliott-Halberstam conjecture, which essentially asserts that the averaging in Lemma 6 can be extended up to $z^{1-\varepsilon}$ for any fixed $\varepsilon > 0$, see [8, Section 17.1], allows to replace $5/4$ with $3/2$. This is the same result as the one obtained in [1] under the Chowla conjecture. Note that the Chowla conjecture applies to individual progressions and thus may be more difficult to establish than the Elliott-Halberstam conjecture. Furthermore, under the Elliott-Halberstam conjecture, one can take any $\alpha < 1$ in Theorem 2.

Finally, we recall that there are stronger versions of this results due to Bombieri, Friedlander and Iwaniec [4] and Mikawa [9], see also a recent result of Fourvry [7]. Unfortunately all these results require some restrictions on the residues classes a in $\psi(y,m,a)$ to which they apply. This makes them difficult to use for our purpose.

Acknowledgements

The author is very grateful to László Babai, John Friedlander and Raghav Kulkarni for a number of very useful discussions.

This work was initiated when the author was visiting the Centre for Quantum Technologies at National University of Singapore and triggered by the very enthralling seminar talk by Raghav Kulkarni. The hospitality and support of this institution are gratefully acknowledged.

During the preparation of this work the author was supported in part by the Australian Research Council Grant DP130100237.

References

[1] L. Babai, A. Banerjee, R. Kulkarni and V. Naik, ‘Evasiveness and the distribution of prime numbers’, Proc. 27th Symp. on Theoretical Aspects of Comp. Sci., Nancy, 2010, Leibniz International Proceedings in Informatics, Vol. 5, 2010, 71–82 (available from http://drops.dagstuhl.de/opus/volltexte/2010/2445).
[2] R. C. Baker and G. Harman, ‘Shifted primes without large prime factors’, Acta Arith., 83 (1998), 331–361.
[3] A. Balog and A. Sárközy, ‘On sums of sequences of integers, II, J. Acta Math. Acad. Sci. Hungar., 44 (1984), 169–179.
[4] E. Bombieri, J. B. Friedlander and H. Iwaniec, ‘Primes in arithmetic progressions to large moduli’, Acta Math., 156 (1986), 203–251.
[5] E. Bombieri, J. B. Friedlander and H. Iwaniec, ‘Primes in arithmetic progressions to large moduli II’, Math. Ann., 277 (1987), 361–393.
[6] E. Bombieri, J. B. Friedlander and H. Iwaniec, ‘Primes in arithmetic progressions to large moduli, III’, J. Amer. Math. Soc., 2 (1989), 215–224.
É. Fouvry, ‘On binary cyclotomic polynomials’, Algebra and Number Theory, (to appear).

H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc., Providence, RI, 2004.

H. Mikawa, ‘On primes in arithmetic progressions’, Tsukuba J. Math. 25 (2001), 121–153.

A. Sárközy and C. L. Stewart, ‘On divisors of sums of integers, II’, J. Reine Angew. Math., 365 (1986), 171–191.

R. Scheidweiler and E. Triesch, ‘A lower bound for the complexity of monotone graph properties’, SIAM J. Discrete Math., 27 (2013), 257–265.

C. L. Stewart, ‘On prime factors of integers which are sums or shifted products’, Anatomy of Integers, CRM Proc. and Lecture Notes, Vol. 46, Amer. Math. Soc., Providence, R.I., 2008, 275–287.

Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

E-mail address: igor.shparlinski@mq.edu.au