Observing Strategy for the Legacy Surveys

KAYLAN J. BURLEIGH,1, 2 MARTIN LANDRIAU,2 ARJUN DEY,3 DUSTIN LANG,4, 5 DAVID J. SCHLEGEL,2 PETER E. NUGENT,1, 2 ROBERT BLUM,3 JOSEPH R. FINDLAY,6 DOUGLAS P. FINKBEINER,7 DAVID HERRERA,8 KLAUS HONSCHEID,8 STEPHANIE JUNEAU,3 IAN MCGREER,9 AARON M. MEISSNER,3 JOHN MOUSTAKAS,10 ADAM D. MYERS,10 ANNA PATEJ,11 EDWARD F. SCHLAFLY,12 FRANCISCO VALDES,3 ALISTAIR R. WALKER,13 BENJAMIN A. WEAVER,3 CHRISTOPHE YÈCHE,14 AND THE DECaLS, MzLS, AND BASS TEAMS

1Department of Astronomy, University of California at Berkeley
501 Campbell Hall #3411, Berkeley, CA 94720, USA
2Lawrence Berkeley National Laboratory
One Cyclotron Road, Berkeley, CA 94720, USA
3NSF’s Optical–Infrared Astronomy Research Laboratory
P.O. Box 26732, Tucson, AZ 85719, USA
4Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, Ontario, N2L 2Y5, Canada
5Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
6Department of Physics & Astronomy
University of Wyoming, 1000 E. University, Dept. 3905, Laramie, WY 82071, USA
7Harvard-Smithsonian Center for Astrophysics
Harvard University, 60 Garden Street, Cambridge, MA 02138, USA
8Department of Physics, Ohio State University
191 West Woodruff Avenue, Columbus, Ohio 43210, USA
9Steward Observatory, University of Arizona
933 N. Cherry Avenue, Tucson, AZ 85721, USA
10Department of Physics & Astronomy, Siena College
515 Loudon Road, Loudonville, NY, USA 12211
11Stanford Law School, 559 Nathan Abbott Way, Stanford, CA 94305, USA
12Lawrence Livermore National Laboratory
7000 East Ave, Livermore, CA 94550, USA
13Cerro Tololo Inter-American Observatory, NSF’s Optical–Infrared Astronomy Research Laboratory
Casilla 603, La Serena, Chile
14CEA, Centre de Saclay, IRFU/DPhP, F-91191 Gif-sur-Yvette, France

(Received February 12, 2020; Revised ???, 2020; Accepted ???, 2020)

Submitted to AJ

ABSTRACT

The Legacy Surveys, a combination of three ground-based imaging surveys, have mapped 16,000 deg² in three optical bands (g, r, and z) to a depth 1–2 mag deeper than the Sloan Digital Sky Survey (SDSS). Our work addresses one of the major challenges of wide-field imaging surveys conducted at ground-based observatories: the varying depth that results from varying observing conditions at Earth-bound sites. To mitigate these effects, two of the Legacy Surveys (the Dark Energy Camera Legacy Survey, or DECaLS; and the Mayall z-band Legacy Survey, or MzLS) employed a unique strategy to dynamically adjust the exposure times as rapidly as possible in response to the changing observing conditions. We present the tiling and observing strategies used by these surveys. We demonstrate that the tiling and dynamic observing strategies jointly result in a more uniform-depth survey that has higher efficiency for a given total observing time compared with the traditional approach of using fixed exposure times.

Corresponding author: Martin Landriau
mlandriau@lbl.gov
1. INTRODUCTION

The Legacy Surveys\(^1\) (see Dey et al. 2019, henceforth Paper 1) are a combination of three imaging surveys that have mapped two contiguous areas totaling 16,000 deg\(^2\) in three optical bands (\(g\), \(r\) and \(z\)) to depths 1–2 mag deeper than the Sloan Digital Sky Survey imaging (SDSS; e.g. Abazajian et al. 2009). The three surveys that make up the Legacy Surveys are: the DECam Legacy Survey (DECaLS); the Mayall \(z\)-band Legacy Survey (MzLS); and the Beijing-Arizona Sky Survey (BASS). DECaLS uses the Blanco 4-m telescope and Dark Energy Camera (DECam; Flaugher et al. 2015) located at Cerro Tololo, Chile; MzLS uses the Mosaic-3 camera (Dey et al. 2016) at the Mayall Telescope located at Kitt Peak in Arizona; and BASS uses the Bok 2.3-m telescope/90Prime camera on Kitt Peak (Williams et al. 2004). MzLS was completed in early 2018 and the other two surveys were completed in early 2019.

The primary purpose of the Legacy Surveys is to provide targets for the Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration et al. 2016a,b)). DESI is a robotically actuated 5,000-fiber spectrograph that will survey 14,000 deg\(^2\) of sky in order to make a Stage-IV measurement of dark energy. Spectra and redshifts of more than 30 million galaxies and quasars will be obtained over this five-year survey. DESI was installed at prime focus on the Mayall 4-m telescope in Kitt Peak, Arizona and will begin operations in 2020.

In addition to providing targets for DESI, the Legacy Surveys have already dramatically improved the utility of existing spectroscopic and imaging datasets, by spanning the SDSS footprint and being 1–2 mag deeper, with better image quality, than either the SDSS or the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS 1, or PS1) \(3\pi\) survey (Chambers et al. 2016). Existing spectroscopic datasets in the DESI footprint include SDSS, the Two-degree-Field Galaxy Redshift Survey (2dF), and the WiggleZ Dark Energy Survey (WiggleZ), and imaging datasets include the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010). Increasing \(g\), \(r\), and \(z\)-band depths by 1.5–2 mags, increases the number of \(z > 0.5\) galaxies that have imaging measurements by about a factor of 30. No other currently planned survey will provide this depth of optical imaging over as large a footprint as the Legacy Surveys, and with as much overlap with northern surveys. For example, the Dark Energy Survey has observed 5,000 deg\(^2\) of the southern sky, overlapping only about 1000 deg\(^2\) of the SDSS footprint (The Dark Energy Survey Collaboration 2005).

All previous ground-based wide-field imaging surveys have used fixed exposure times per band, which results in survey depths that vary across the survey footprint due to both terrestrial and extraterrestrial constraints. Terrestrial constraints include the observing conditions (i.e., cloud cover, transparency, delivered image quality, sky brightness) and telescope limitations (e.g., zenith distance of observation, telescope pointing accuracy, telescope tracking accuracy, focus, etc.). Extraterrestrial constraints include the extinction due to Galactic and Solar System dust, zodiacal dust, sky brightness, Galactic cirrus and other sources of diffuse emission, and source crowding. Cosmological surveys require a uniformity of depth over a large area, and hence imaging surveys with varying depth are generally truncated near their shallowest depth or are subjected to uncertain completeness corrections.

In this paper, we describe the innovative approach employed in our observing strategy for DECaLS and MzLS (the observing strategy for BASS is presented in Zou et al. 2017). Instead of adopting a fixed exposure time, we analyzed images contemporaneously in order to dynamically adjust the exposure time to ensure a near-constant depth for each image. This procedure allowed us to optimally use the available telescope time with the minimum of reobservation. This optimization was particularly important given that the imaging surveys had to be completed to a minimum depth in less than four years due to the DESI construction and installation schedule.

The paper is organized as follows. In section 2, we present the choices of tiling for DECaLS and MzLS. In section 3, we describe the goals of our observing strategy. In section 4, we discuss how we implemented dynamic observing.

2. TILING STRATEGY

2.1. General Concepts

Wide-field imaging surveys typically aim to cover one or more contiguous areas of sky much larger than the footprint of the imaging camera. The Legacy Surveys represent a particularly extreme case where we have imaged a 16,000 deg\(^2\)

\(^1\) http://legacysurvey.org
Observing Strategy for the Legacy Surveys

Table 1. Camera Properties

Camera	CCDs	Amplifiers (per CCD)	Pixels (per CCD)	Pixel Scale (deg2)	FOV (deg2)	Fill Factor
DECam	62	2	4094 x 2046	0.262	3.18	0.87
Mosaic3	4	4	4079 x 4054	0.260	0.36	0.95
90Prime	4	4	4096 x 4032	0.455	1.16 x 1.16	0.94

Pixel Scale: arcsec / pixel.
FOV: Camera field of view including CCD gaps and dead CCDs.
Fill Factor: Fraction of the FOV that is covered by CCDs.

region using cameras that have fields of view of between 0.36 and 3.18 deg2 (see Table 1). In addition, all of the camera focal planes are CCD mosaics that have gaps between individual CCDs. Hence, an efficient tiling pattern has to both cover the entire area with as few tiles as possible, and also cover all of the CCD gaps to some minimum depth driven by the science requirements.

Once the basic tiling strategy was identified, we defined a total of three independent tilings, with each tiling offset from the other two by some prescribed amount. Three tilings ensure that the footprint is almost entirely covered, while also minimizing the amount of area that does not have at least two images at any given position. Two-pass coverage is useful both to discriminate and mask any particle events or other detector-based anomalies, and to boost signal-to-noise compared to a single pass. We used a Monte Carlo process of different offsets for the tiling sets for each camera in order to select the offsets that maximized three-pass coverage while minimizing one-pass coverage.

The detailed implementations for each camera are described in the following two subsections.

2.2. Implementation for DECaLS

DECam has a roughly circular field of view $a_{\text{FoV}} = 3.18$ deg2 (Flaugher et al. 2015). To cover the entire sky, the ideal tiling would require $N = 4\pi (180/\pi)^2/a_{\text{FoV}} = 12973$ tiles (see Table 1).

For defining the tiling for DECaLS, we adopted the approach of Hardin, Sloane and Smith\(^2\), who considered the general problem of covering a sphere uniformly with a fixed number of points. We selected the pre-computed icosahedral arrangements of Hardin et al. with tiling N_{tile} that was close in number to but greater than N (i.e., the minimum number while still providing sufficient overlap with the neighboring tile). We investigated the icosahedral tilings with $N_{\text{tile}} = \{15252, 15392, 15872, 16002, 16472, 16752\}$ and settled on $N = 15872$ as providing the optimal solution with 99.98% and 98.01% of the sky having at least 2 and 3 exposures respectively, using a 3-pass strategy.

Each of the three passes consists of copies of this tiling, offset by $[\Delta RA, \Delta Dec]$ of $[0,0]$ deg, $[0.2917,0.0833]$ deg and $[0.5861,0.1333]$ deg for each respective pass. This solution results in fractional coverage within the DESI footprint as shown in Table 2. Ideally, we would obtain three-image coverage of 100%, but this is not possible with a three-pass strategy given the gaps between the DECam CCDs. The resulting tiling for DECaLS is shown in Figure 1 along with the as-observed coverage statistics (which include pointing errors during the observations).

2.3. Implementation for MzLS

The Mosaic3 has an approximately square on-sky footprint with a field of view of $35.89' \times 36.06'$ (Table 1; see also Dey et al. 2016). Given the smaller size and roughly square footprint, we settled on a tiling pattern that was aligned along rows of constant declination, with adjacent frames separated by $1.7'$, ensuring overlap on all four sides. The resulting map has 122,765 tile centers in a single pass; the two other passes are offset by $11.7'$ and $23.5'$ in declination, respectively (or $1/3$ and $2/3$ of the field of view).

This choice of tiling ensures that 99.5% of the footprint is covered by at least 3 exposures (see Table 2). The tiling for MzLS is shown in Figure 2 along with the as-observed coverage statistics.

3. OBSERVING STRATEGY

\(^2\) see http://neilsloane.com/icosahedral.codes/
Figure 1. Tiling strategy in the DECaLS survey. DECam has 62 science CCDs, but during the course of the survey, one or two CCDs have been inoperative. In the example exposure shown, CCD N30 is inoperative, leaving a hole in the edge of the hexagonal footprint. The first column shows a region of sky (about 5.5° wide) covered with our “Pass 1” tiling, with a single exposure in the top row and neighboring tiles in the second row. The bottom row shows the approximate coverage statistics, where the x-axis represents the number of repeat exposures. The black lines should be compared to the numbers in table 2 and show the fraction of sky that have at least \(N + 1\) exposures; the difference between the pass 3 numbers and those in the table result mainly from small pointing errors. The blue histograms show the fraction of sky that only have \(N + 1\) exposures. The second and third columns show the coverage after our “Pass 2” and “Pass 3” tilings have been added, respectively.

Table 2. Tiling Solutions for DECaLS and MzLS

N	DECaLS	MzLS
0	1.000	1.000
1	0.9998	1.000
2	0.9801	0.9950
3	0.7443	0.8500

Note – The DECaLS and MzLS columns are the fraction of the sky footprint having a given number of repeat exposures (N).
Figure 2. Tiling strategy in the MzLS survey. The Mosaic3 camera has 4 CCDs, each with a field of view about $0.3^\circ \times 0.3^\circ$, with small gaps between the CCDs. The first column shows a region of sky (about 2.5° wide) covered with our “Pass 1” tiling, with a single exposure in the top row and neighboring tiles in the second row. The bottom row shows the approximate coverage statistics, where the x-axis represents the number of repeat exposures. The black lines should be compared to the numbers in table 2 and show the fraction of sky that have at least $N + 1$ exposures; the difference between the pass 3 numbers and those in the table result mainly from small pointing errors. The blue histograms show the fraction of sky that only have $N + 1$ exposures. The second and third columns show the coverage after our “Pass 2” and “Pass 3” tilings have been added, respectively.

3.1. Optimizing for Photometric Calibration and Image Quality

Three passes, each constituting a complete tiling of the footprint as described in the previous section, were chosen to maximize the scientific uniformity and utility of the survey. In order to ensure that a given survey could be photometrically calibrated, we reserved the first tiling of the footprint (“Pass 1”) for times with photometric conditions when the seeing was good (i.e., $<1.3''$). We reserved the second tiling (“Pass2”) for times with either photometric conditions or good seeing. We reserved the third tiling (“Pass 3”) for times when neither of these conditions were met, but were still deemed acceptable. This strategy was designed to ensure that every point within the survey footprint had at least one image that could be photometrically calibrated, and at least one image that had good seeing.

3.2. Optimizing the Nightly Plan

As much as possible, we scheduled observations during bright time (i.e. when the Moon was above the horizon, or the Sun’s altitude was between -10 deg and -15 deg) in z-band and reserved dark time for g and r. With these constraints on the Sun and Moon imposed, dark-time and bright-time observations were then planned independently.

In addition, at all times, we restricted observations to airmass ≤ 2.4 and to pointings that were separated from the Moon by at least 40 deg to 50 deg, with the exact separation determined by the Moon’s phase. We also avoided placing bright planets within 1.2 deg of our observed fields. We enforced minimum and maximum exposure times (see Table 3)
Table 3. Exposure times (sec) for DECaLS and MzLS

to ensure that we didn’t exceed depth when observing conditions were excellent, and to prevent saturation and curtail long exposures in poor conditions.

The basic logic we adopted was:

1. Tag tiles with bad exposures as unobserved.
2. Rank order by RA and split unobserved tiles by filter.
3. Remove tiles that are too close to the median position of the Moon and planets (Mars–Neptune) over the night.
4. Rank order the list of future observing nights, starting with the desired night, by LMST and then split each night into 1-minute-spaced intervals in LMST.
5. Split the LMST list into dark and bright time.
6. For bright and dark time respectively, match the rank-ordered RA and LMST lists by minimizing the time difference between them.
7. Retain LMSTs that are within 5 deg of each RA.
8. The “annealing” process: Randomly swap the LMST of two tiles. Accept the new positions if the total airmass is reduced. Repeat 400 times.
9. For DECaLS only: Prioritize the tiles for building that night’s plan. Observations are chosen preferentially at declinations near dec = 0, with a penalty of 1/100.0 per deg away from the equator. Also prioritize selecting tiles near the last observation, with a penalty of 1/10.0 per deg for distances more than 2 deg away. Priorities are increased (doubled) for observations of tiles that have been previously observed in at least one other filter. Increase priority for observations of the same tile. This should preferentially schedule pairs of g + r exposures in dark time. Priorities set to 0 for tiles within 1.20 deg of Mars–Neptune.
10. Build the plan for the night. Pass 1 is preferentially selecting pass 1 tiles, then pass 2, then pass 3, then repeat. Pass 2 is preferentially selecting pass 2 tiles, then pass 3 etc.
11. Observations begin and end at 12 deg twilight for DECaLS, and 10 deg for MzLS.
12. The “untangling” process. Reduce slews by splitting tiles into blocks (consecutive tiles having slews > 5 deg) and then trying all permutations of the blocks. After this the tiles are split again, using blocks of 8 consecutive tiles, and the best permutation is chosen.
13. Create a list of reserve tiles for bright and dark time from the list of observed and unobserved tiles that are closest to transit and sufficiently far from the Moon and planets.
14. Observe tiles at their assigned LMST.

4. DYNAMIC OBSERVING

4.1. General Concepts

Observing conditions at ground-based observatories change due to temporal and spatial changes in atmospheric transparency and stability, thermal imbalances between the telescope, dome and ambient environment, and the spatial location of celestial objects at the time during which they are observed.
In an ideal world, observing conditions can be monitored during each on-sky integration as it is in progress, and the total duration of the ongoing exposure can be modified in real time to ensure that the image being taken reaches the appropriate depth. This could be accomplished using, say, non-destructive reads to monitor the actual image data as it is being collected, or alternatively using some proxy to estimate the current conditions in the region (e.g., a guide or photometric camera co-located with the telescope and pointed at the same spot in the sky).

The hardware realities of the Mosaic3 and DECam instruments prevented us from implementing any real-time exposure control. However, we were able to implement the next best option: to analyze each image as soon as it was taken, estimate the image quality, transparency, resulting depth and telescope pointing offset, and then correct these as soon as possible, typically with a lag of 1 or 2 images.

At both the Mayall and Blanco telescopes, dynamic exposures were implemented using two (Python) software “bots”: both monitored the observing conditions and telescope pointing offsets, with one (copilot) providing a graphical view of the derived estimates and the other (decbot/mosbot in the cases of DECam/Mosaic3, respectively) writing the required scripts and interfacing with the instrument to modify the exposure time. These codes are all publicly available. We describe the individual pieces of this process below.

4.2. Copilot: A Graphical Display

For each raw image, copilot measures the seeing, sky brightness, atmospheric transparency, and photometric zeropoint. The bot extrapolates from the central 1000x1000 pixels of a single CCD or amplifier to infer statistics for the entire exposure (CCD N4 for DECam and amplifier IM4 for Mosaic3). For the observers, copilot displays plots of seeing, sky brightness, transparency, and RA and Dec offsets. Figure 3 shows the summary plot from 30 March 2017.

The combination of copilot and either mosbot or debot performs on-the-fly image reductions, which we describe briefly below:

Detrending — The first step is to apply bias b and gain g:

$$I(e^-) = (I(ADU) - b) \cdot g$$

where I is the raw image from the CCD or amplifier being used for the analysis, and then to estimate the sky level by sigma-clipping the central pixels. This provides a measure of the sky brightness m_{sky}, assuming the canonical zeropoint for the given camera and filter.

Source detection — We correlate the image with a matched filter consisting of a 2D Gaussian with a FWHM of 5 pixels, and flagging pixels with S/N $\geq 20 \sigma_{\text{sky}}$. Aperture photometry is carried out for these (unresolved or “star-like”) sources using an aperture with diameter 7″ (constant pixel scale) and a sky annulus with diameter 14–20″ (constant pixel scale). The source counts (N_{e-}) are then counts in the object aperture minus the mode of sky annulus times the area of the object aperture. In AB magnitudes this is

$$m_{\text{AB}} = -2.5 \log_{10} \left(\frac{N_{e-}}{t_{\text{exp}}} \right) + ZP_0.$$

where t_{exp} is the exposure time. The following restrictions are applied to ensure a clean sample of sources:

- $N_{e-} > 0$.
- $12 < m_{\text{AB}} < 22$.
- no bad pixels within 5 pixels of the centroid.

Seeing quality determination — We estimate the seeing by fitting a circular 2D Gaussian to all sources with $20 < \text{S/N} < 100$, where noise includes the Poisson noise from both the sky and the source, and only the FWHM is allowed to vary. The seeing we record is the median of the best-fit FWHM values.

3 https://github.com/legacysurvey/obsbot
On-the-fly photometric calibration—We compute photometric zeropoints relative to the PS1 catalogs, and astrometric offsets from the Gaia DR1 catalogs (Gaia Collaboration et al. 2016a,b). Note that we actually use a single PS1-Gaia catalog, created using a 3.5″ matching radius. There are occasional holes in the Gaia catalogs in regions that contain plenty of genuine PS1 stars, so our astrometry reverts to only using PS1 in such regions. We enforce the following constraints on the PS1-Gaia catalog:

- there can only be exactly 1 match between the catalogs.
- the PS1 catalog must not flag the source, in g, r, and z-band as coming from a bad CCD region, containing bad pixels, or having NaN fluxes.
- sources must have a “star-like” color in the range: $0.4 < g - r < 2.7$, where $g - r$ denotes the PS1 median PSF magnitude color.

The instrumental zeropoint is the difference between the PS1 magnitude of a source (m_{PS1}) and our measured aperture magnitude (m_{AB}), and the 2.5σ-clipped median for all sources in a CCD,

$$ZP = \text{Med}(m_{\text{PS1}} - m_{\text{AB}}) + ZP_0,$$

ZP_0 is a band-dependent fiducial zeropoint we obtained during nights with excellent conditions near the start of DECaLS and MzLS observations. The relative atmospheric transparency, i.e. the fraction of light that penetrates the Earth’s atmosphere relative to a good night at the start of the survey, can then be computed from the zeropoint,

$$T_{rel} = 10^{\frac{-0.4[ZP_0 - ZP - K(X-1)]}{10}},$$
where K is the atmospheric extinction coefficient and X is the airmass.

Depth and exposure factor estimates—The 5σ AB magnitude depth, with Galactic extinction $AE(B-V)$ removed, is

$$m_{\text{depth}} = -2.5 \log_{10} \left(\frac{5 \sigma_{\text{sky,eff}}}{t_{\text{exp}}} \right) + ZP - AE(B-V)$$

where $\sigma_{\text{sky,eff}}$ is the square root of sky counts from a region having the size of the source,

$$\sigma_{\text{sky,eff}} = \sqrt{\sigma_{\text{sky}}^2 N_{\text{eff}}}$$

where N_{eff} is the noise equivalent area, i.e. the effective number of pixels of an astrophysical source on the CCD, given by

$$N_{\text{eff}} = \left(\sum_i v_i \right)^2 / \sum_i v_i^2$$

where v_i is the value of the PSF at each pixel. If the source is an extended object, then v_i is the value of the PSF convolved with the object’s surface brightness profile. The Legacy Survey Data Releases instead use the quantities psfnorm and galnorm, which are equal to $N_{\text{eff}}^{-1/2}$. For speed of computation, the copilot uses an approximation for N_{eff} instead:

$$\hat{N}_{\text{eff}} \approx 4\pi \sigma_{\text{sec}}^2 + 8.91 r_{\text{half}}^2 + P_{\text{sc}}^2 / 12,$$

where $r_{\text{half}} = 0.45''$ for extended sources and $r_{\text{half}} = 0''$ for point-sources. This approximation is based on the assumption that the seeing is Gaussian, which results in slightly under-predicting the true value of N_{eff} if the seeing profile has larger wings (e.g., if it is better represented by a Moffat profile). In fact, this approximation systematically underestimates the true N_{eff} by 20–40%, but we have found that a linear model ($A\hat{N}_{\text{eff}} + B$) for each camera and psfnorm/galnorm pair agrees well with the true N_{eff}.

The exposure time w.r.t. the value under nominal conditions is given by:

$$\frac{t_{\text{exp}}}{t_{\text{exp,0}}} = \frac{N_{\text{eff}}}{N_{\text{eff,0}}} \frac{1}{T_{\text{rel}}^2} \times 10^{0.8[K(X-1)+AE(B-V)]-0.4(m_{\text{sky}}-m_{\text{sky,0}})}.$$

This value is used to determine the duration of the upcoming exposure. Finally, the copilot compares the depth attained by a given image to the desired depth, which is defined as detecting the canonical 0.45'' exponential disk galaxy at $S/N=5$. The success factor of the observation is presented as the “Exposure Factor”, $R_{\text{expfac}} \equiv t_{\text{observed}}/t_{\text{desired}}$, i.e., the ratio between the actual exposure time used for the image and the exposure time that would have been needed to reach depth. The Exposure Factor is reported on the graph that is visible to the observer.

4.3. Implementation for MzLS

For each on-sky exposure that is written to disk, mosbot analyzes a single CCD amplifier to (a) determine the sky level; (b) detect sources and measure the FWHM; (c) match them to sources from the PanSTARRS1 catalog; (d) derive the zero point of the image; (e) compare this zero point to the fiducial zero point to determine the transparency; and (f) derive the attained depth of the image. In addition, mosbot determines the airmass and Galactic extinction of the next pointing, uses an empirical relation to predict the band-dependent seeing given that pointing’s airmass, and calculates the needed exposure time to reach depth using Eqn. 9.

mosbot only corrects the exposure time for upcoming observations; the pointing offset of the telescope (which is computed and displayed by both mosbot and copilot), has to be corrected by the night-time observer, and is typically done while the exposure is reading out.

4.4. Implementation for DECaLS

At the beginning of DECaLS, nightly observations began with nominal exposure times that the observers modified on hour time scales as conditions changed. On Feb. 25, 2015, we started using copilot and decbot. Similarly to mosbot for MzLS, decbot uses the most recent raw image on disk to predict the exposure time needed to reach depth.
at the next pointing. Tiles with the earliest LMST are added to the queue while all tiles with LMST in the past are ignored.

While decbot and mosbot can also choose the Pass Number based on the derived conditions, the observers could force a pass in conditions that were at the limit between passes. This could be used to avoid large slews as the surveys progressed, which might have produced uneven completion rates in different passes.

With DECam, the slewing to the next pointing is simultaneous with reading out the CCD. On average, slewing is faster (about 30 sec for less than 5 deg) than read out, so the next exposure usually begins before the image is built, compressed and written to disk after which copilot can update the exposure time. The observing software cannot change the exposure time once the exposure begins, so observers would have to wait another 2 minutes (the average exposure time) before using the updated exposure time. We find that exposure times based on the conditions 2–3 min ago are generally an improvement compared to fixed exposure times, but not always. copilot takes less than 10 sec to analyze an image, so if we could have read out and written an exposure in less than 20 sec then our prediction for the exposure time would only have been outdated by roughly 30 seconds.

As in the case of MzLS, decbot only corrects the exposure time for upcoming observations; the pointing offset of the telescope has to be corrected by the night-time observer by temporarily pausing the exposure queue.

4.5. Survey Efficiency Gains with Dynamic Observing

Dynamic exposure times allow the observations to compensate, ideally in real time, for the variable conditions to ensure that each image reaches depth. This is demonstrated in Figure 4 which shows the cumulative distributions of the exposure factors for the Pass 1, 2 and 3 images in two cases: the actual MzLS and DECaLS images obtained under the dynamic exposure time operations; and what would have resulted if we had used our fiducial exposure time (see Table 3). In the case of the actual observations, we have restricted our selection to frames with exposure times between the minimum and maximum times allowed. In the case of MzLS observations, the exposure time was corrected with a typical lag time corresponding to 1 frame; for DECaLS, this was 2 frames, due to the structure of the queuing software. Even so, the dynamic observation results in dramatic gains, especially in the cases of the Pass 2 and 3 observations which are obtained under non-photometric and/or poor seeing conditions. In the case of the fixed exposure times, we would have had to reobserve a larger number of the shallow fields, resulting in extra on-sky observing time and extra overheads (primarily due to telescope slews, dome rotations, and CCD readouts). In addition to saving time by not underexposing, dynamic observing can save time by not exposing for longer than is necessary. This can be seen from Figure 5 which shows the relative depths of MzLS and DECaLS exposures using our dynamic exposure strategy versus what we would have achieved with fixed exposure times, either averaged over the whole survey or adjusted every night. The distributions for lags of 1–2 exposures is much narrower around the prescribed depth than for the two fixed exposure time scenarios, especially in the case of z-band, for which there are long tails at high relative magnitudes.

5. CONCLUSIONS

We have presented the overall observing strategy that was used by the DECaLS and MzLS surveys, for which we implemented a novel approach of using a dynamic observing strategy, where the exposure times automatically varied in response to observing conditions in order to preserve uniformity of survey depth. We also implemented a strategy by which every position within the footprints of these surveys was targeted at least once under photometric conditions and at least once under conditions of good seeing. This method results in a demonstrably more uniform survey which can be conducted optimally given a finite observing time and which is better suited to cosmological studies near the depth-limit of a survey. DECaLS and MzLS are the first surveys to use automated dynamic exposure times.

Dynamic exposure times may be crucial to future ground based surveys, such as DESI and LSST, because they conserve telescope time and increase depth uniformity. They also improve searches for transients, such as moving objects, because non-varying transients should have a similar probability of detection in images taken at different epochs.

Our method currently necessitates lag times of 1–2 exposures, and removing this constraint would further improve uniformity of depth. Amongst surveys currently underway, HETDEX uses exposure times based on the conditions immediately before the start of the exposure (ML developed an exposure time calculator and a next field selector for this survey and we confirmed, through private communication with an active member of the collaboration, that these were being used during operations). Fully dynamic exposure times are being implemented for DESI, where guide cameras will be used to estimate seeing and transparency.
Figure 4. The cumulative exposure factors for dynamically chosen exposure times (solid) and fixed fiducial exposure times under same observing conditions (dashed). Passes 1, 2 and 3 are in black, blue and red, respectively.

The Legacy Surveys consist of three individual and complementary projects: the Dark Energy Camera Legacy Survey (DECaLS; NOAO Proposal ID # 2014B-0404; PIs: David Schlegel and Arjun Dey), the Beijing-Arizona Sky Survey (BASS; NOAO Proposal ID # 2015A-0801; PIs: Zhou Xu and Xiaohui Fan), and the Mayall z-band Legacy Survey (MzLS; NOAO Proposal ID # 2016A-0453; PI: Arjun Dey). DECaLS, BASS and MzLS together include data obtained, respectively, at the Blanco telescope, Cerro Tololo Inter-American Observatory, NSF’s Optical–Infrared Astronomy Research Laboratory (NSF’s OIR Lab); the Bok telescope, Steward Observatory, University of Arizona; and the Mayall telescope, Kitt Peak National Observatory, NSF’s OIR Lab. The Legacy Surveys project is honored to be permitted to conduct astronomical research on Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham Nation.

NSF’s OIR Lab is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.

This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaboration. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo, Financiadora de Estados e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the NSF’s Optical–Infrared Astronomy Research
Figure 5. Histograms of relative depth for all dynamically observed MzLS and DECaLS images with exposure times within the allowed range. Both surveys had a 1–2 exposure lag, so blue and green lines show the relative depths we achieved with dynamic exposures. Purple and red lines show the distributions for a fixed exposure time equal to the average needed exposure time for the whole survey and per night, respectively.
ADM was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0019022.

REFERENCES

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543, doi: 10.1088/0067-0049/182/2/543

Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, ArXiv e-prints. https://arxiv.org/abs/1612.05560

DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016a, ArXiv e-prints. https://arxiv.org/abs/1611.00036

Dey, A., Rabinowitz, D., Karcher, A., et al. 2016, in Proc. SPIE, Vol. 9908, Ground-based and Airborne Instrumentation for Astronomy VI, 99082C

Dey, A., Schlegel, D. J., Lang, D., et al. 2019, AJ, 157, 168, doi: 10.3847/1538-3881/ab089d

Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, AJ, 150, 150, doi: 10.1088/0004-6256/150/5/150

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016a, A&A, 595, A1, doi: 10.1051/0004-6361/201629272

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2016b, A&A, 595, A2, doi: 10.1051/0004-6361/201629512

The Dark Energy Survey Collaboration. 2005, ArXiv Astrophysics e-prints

Williams, G. G., Olszewski, E., Lesser, M. P., & Burge, J. H. 2004, in Proc. SPIE, Vol. 5492, Ground-based Instrumentation for Astronomy, ed. A. F. M. Moorwood & M. Iye, 787–798

Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868, doi: 10.1088/0004-6256/140/6/1868

Zou, H., Zhou, X., Fan, X., et al. 2017, PASP, 129, 064101, doi: 10.1088/1538-3873/aa65ba
Facility: KPNO:Mayall (Mosaic3)
Facility: Steward:Bok (90Prime)
Facility: CTIO:Blanco (DECam)
Facility: WISE
Facility: Gaia