Gormley, M., Chahal, R., Gallacher, N., & Bell, C. N. A. (2019). A conventional surgical approach for removal of an ectopic tooth in the nasal cavity. BMJ Case Reports, 12(8). https://doi.org/10.1136/bcr-2019-231279

Peer reviewed version
License (if available): CC BY-NC
Link to published version (if available): 10.1136/bcr-2019-231279

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via BMJ Publishing Group at https://casereports.bmj.com/content/12/8/e231279.long. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/
Case report

A conventional surgical approach for removal of an ectopic tooth in the nasal cavity

Mark Gormley,1 Ramanjot Chahal,2 Nicola Gallacher,2 Christopher Bell1

SUMMARY
A 40-year-old female patient presented to ears, nose and throat complaining of cacosmia and discharge from the left maxillary sinus. Her CT scan revealed an ectopic supplemental nasal tooth which could not be removed by nasoendoscopy. Therefore, a conventional intraoral surgical approach was taken. In this case, we discuss the indications for conventional surgical removal of teeth from the nasal cavity when a nasoendoscopic approach is not possible. We highlight the potential pitfalls of both conventional and nasoendoscopic approaches, including some essential considerations when treatment planning these cases.

BACKGROUND
Extra-oral ectopic teeth are rare, with intranasal incidence reported ranging from 0.1% to 1% in the general population. Published case series have demonstrated that a less invasive nasoendoscopic approach can be successful, but given the variation in position of ectopic teeth within the nasal cavity and paranasal sinuses, a conventional surgical approach is sometimes required. This patient presented with common symptoms including chronic rhinosinusitis-like symptoms and discharge, which warranted further clinical and radiographic investigation.

CASE PRESENTATION
A 40-year-old female patient presented to ears, nose and throat (ENT) complaining of cacosmia and discharge from the left maxillary sinus. The female had a history of epilepsy for which Tegrretol was taken, with no known allergies and was a never smoker. On presentation, the patient complained of intermittent left nostril obstruction, associated with a foul-smelling discharge ongoing for years. She also had a degree of left-sided sinus facial discomfort and a history of recurrent sinus infection. An initial diagnosis of chronic rhinosinusitis affecting the left side was given. There were no signs of facial trauma or displaced teeth and all teeth in the upper arch could be accounted for.

INVESTIGATIONS
Her orthopantomogram (figure 1A) and CT (figure 1B) scan revealed an ectopic supplemental nasal tooth. The tooth was situated within the left nasal cavity close to the lower meatus and resembled a canine, with its root abutting the junction of the hard palate and alveolar ridge. It was positioned around 4 mm posterior from the anterior nasal spine. No significant pathology was seen in relation to the nasal cavity or paranasal sinuses, which were clear. ENT attempted but failed to remove the tooth using a nasoendoscopic approach, given its position. With the patient awake ENT prepared the nose with topical decongestant and local anaesthetic (2.5% phenylephrine and 5% lidocaine). A direct rigid zero-degree nasal endoscope (Karl Storz, Germany) was used (ie, rigid rhinoscopy) and grasping forceps. On the second attempt under general anaesthetic, we again attempted the procedure using the a flexible fibreoptic nasoendoscope, with visualisation on a C-MAC (Karl Storz) video monitor but had a second operator unsuccessfully try to remove the tooth using Fickling forceps.

DIFFERENTIAL DIAGNOSIS
The radiographic investigations were suggestive of a foreign body in the nose; however, the morphology and pulp chamber lead us to confirm that this was a tooth. Other potential differential diagnoses to consider in this region include the following:

► Dermoid cyst
► Exostosis
► Calciﬁed polyp
► Rhinolith
► Benign tumours, including haemangioma, osteoma, calciﬁed polyps, enchondroma
Inflammatory lesions due to syphilis, tuberculosis or fungal infection can be found. Malignant tumours, such as chondrosarcoma and osteosarcoma, can also occur. Inflammatory lesions due to syphilis, tuberculosis or fungal infection with calcification can be found.

TREATMENT

A conventional intraoral approach was employed. In preparation for the procedure, an oropharyngeal throat pack was placed to plan for displacement of the tooth via the naso-pharynx. This was tucked behind the posterior aspect of the soft palate.

A Le Fort I incision was made in the maxillary buccal sulcus (figure 2A) and the piriform fossa identified (figure 2B). A Caldwell-Luc approach involving removal of a boney window in the upper left canine/premolar region was attempted on the awake patient in this case and a second attempt was made to remove the tooth under general anaesthetic using a flexible fiberoptic nasoendoscope with computer assistance and two operators. One randomised control trial demonstrated a clear benefit for both diagnosis and investigation using video-assisted nasoendoscopy over traditional direct flexible nasoendoscopy, but did not compare management. There were no studies comparing rigid versus flexible nasoendoscopy.

This case demonstrates that there is still a role for a conventional surgery when nasoendoscopy fails. A conventional surgical approach is more invasive and care has to be taken to avoid the creation of an oronasal fistula which may require a complex multilayered closure. Around 25% of oronasal fistulas occur following the initial surgical repair of cleft palate or less commonly following septoplasty. We found no reports of oronasal fistula as a complication following the removal of an ectopic tooth from the nasal cavity, yet it remains a potential complication. Hauer et al discussed that when removing midline supernumerary teeth, a modified maxillary vestibular buccal technique, with subperiosteal intranasal dissection resulted in superior visibility of the surgical field, reduced postoperative morbidity and lowered the risk of complications, in comparison to an intraoral palatal approach. The technique employed in this case (figure 2A-E) is similar to that described by Hauer et al.

Conversely, Mariannetti et al showed that patients treated with a transnasal endoscopically assisted approach required less postoperative analgesia, in contrast with conventional surgery and the average operative time was shorter. Displacement of the tooth was not possible in this case, and the tooth was retrieved with multichannel rhinoscopy with potential associated morbidity.

OUTCOME AND FOLLOW-UP

The patient was assessed following surgery at a 4-week review and made a full recovery. No specimen was sent to histopathology as it was identifiable as a tooth (figure 2E).

DISCUSSION

There are a number of learning points from this case. First, during the procedure, it was noted that there had been a delay of almost 12 months between the CT scan and treatment date. A delay of this length in the provision of treatment is concerning, as ectopic teeth can move position or become dislodged during this time. Rocca and Siliffant described a case, in which, a displaced root migrated from the apex of the socket up to the ostium of the maxillary antrum via the function of the respiratory epithelium’s ‘muco-ciliary escalator’ where it was then discharged. In our case, we too questioned intraoperatively whether the tooth had moved during the time between radiographic imaging and the date of surgery, due to the continued difficulty visualising and locating the tooth.

Second, the use of an oropharyngeal throat pack, placed behind the posterior soft palate demonstrates good practice. Under general anaesthetic to prevent possible airway compromise or aspiration, had the tooth possibly been displaced via the nasopharynx. Inhalation of avulsed teeth during general anaesthesia has been well reported and can result in the need for bronchoscopy with potential associated morbidity.

The first reported ectopic nasal tooth was recorded in 1934 and since then many cases have been documented in both paediatric and adult cohorts, with a proposed incidence of between 0.1% and 1% in the general population. Due to the relative rarity of ectopic teeth developing fully within the nasal cavity, there is a lack of evidence with regards to the best treatment, as most studies remain underpowered due to the small number of cases. Management often involves removal of the tooth using a transnasal endoscopically assisted approach. Rigid rhinoscopy was attempted on the awake patient in this case and a second attempt was made to remove the tooth under general anaesthetic using a flexible fiberoptic nasoendoscope with computer assistance and two operators. One randomised control trial demonstrated a clear benefit for both diagnosis and investigation using video-assisted nasoendoscopy over traditional direct flexible nasoendoscopy, but did not compare management. There were no studies comparing rigid versus flexible nasoendoscopy.

This case demonstrates that there is still a role for a conventional surgery when nasoendoscopy fails. A conventional surgical approach is more invasive and care has to be taken to avoid the creation of an oronasal fistula which may require a complex multilayered closure. Around 25% of oronasal fistulas occur following the initial surgical repair of cleft palate or less commonly following septoplasty. We found no reports of oronasal fistula as a complication following the removal of an ectopic tooth from the nasal cavity, yet it remains a potential complication. Hauer et al discussed that when removing midline supernumerary teeth, a modified maxillary vestibular buccal technique, with subperiosteal intranasal dissection resulted in superior visibility of the surgical field, reduced postoperative morbidity and lowered the risk of complications, in comparison to an intraoral palatal approach. The technique employed in this case (figure 2A-E) is similar to that described by Hauer et al.

Conversely, Mariannetti et al showed that patients treated with a transnasal endoscopically assisted approach required less postoperative analgesia, in contrast with conventional surgery and the average operative time was shorter. Displacement of the tooth was not possible in this case, and the tooth was retrieved with multichannel rhinoscopy with potential associated morbidity.
tooth and subsequent airway compromise is still a potential risk with nasoendoscopy, so care must be taken when retrieving a tooth or foreign body. ¹¹

There are no absolute contraindications to nasoendoscopy, except perhaps ensuring the skill and experience of the operator. Severe nasal obstruction, craniofacial trauma with a risk of inadvertent intracranial instrumentation, severe epistaxis or difficult tooth position, as in our case, should be taken into consideration when treatment planning and may mean a conventional surgical approach is required. This case report describes in detail a conventional buccal approach which may be required when nasoendoscopic techniques fail.

Patient’s perspective

Despite having a more invasive procedure, I was glad to have the tooth in my nose removed given that symptoms, including bad smell, were affecting my quality of life every day. I was concerned regarding initial postoperative bleeding from my nose but this stopped shortly after.

Learning points

- Use of a conventional surgical approach to remove teeth from the nasal cavity when nasoendoscopy fails.
- Use of an oropharyngeal throat pack under general anaesthetic to ensure collection of teeth displaced via the nasopharynx and to prevent airway compromise. Operators must be vigilant to prevent aspiration under general anaesthetic or during an awake nasoendoscopy.
- Ensure preoperative imaging is up-to-date, to aid accurate treatment planning and to avoid unnecessary procedures.

Patient consent for publication

Obtained.

Provenance and peer review

Not commissioned; externally peer reviewed.

REFERENCES

1. Moeller ML, Bille J, Fuglsang M. Retained tooth in the nasal cavity: a rare cause of nasal congestion. *BMJ Case Rep* 2019;12:e226745.
2. Lee FP. Endoscopic extraction of an intranasal tooth: a review of 13 Cases. *Laryngoscope* 2001;111:1027–31.
3. Tocaciu S, Silifant P. Spontaneous clearance of a dislodged root in the maxillary antrum. *Oral Surg* 2018;11:224–7.
4. Savage C, Zwischenberger JB. Tooth Extraction From the Distal Bronchus 12 Days After Traumatic Aspiration: Extraction of a Chronically Aspirated Tooth. *Journal of Bronchology* 2002;9:232–3.
5. Endicott CL. A case of a supernumerary incisor erupting into the nose. *Br Dent J* 1934;56:385.
6. Chen A, Huang JK, Cheng SJ, et al. Nasal teeth: report of three cases. *AJNR Am J Neuroradiol* 2002;23:671–3.
7. Lau JCT, Leong AC. The C-MAC® video-assisted nasoendoscopy vs traditional direct flexible nasoendoscopy: A pilot randomised controlled study. *Clin Otolaryngol* 2018;43:966–9.
8. Alhadithy RA, Alsaleh SA. Oronasal fistula post-septoplasty. *Saudi Med J* 2017;38:310–3.
9. Sadhu P. Oronasal fistula in cleft palate surgery. *Indian J Plast Surg* 2009;42 Suppl:123.
10. Hauer L, Hrusak D, Jambura J, et al. Modified maxillary vestibular approach with subperiostal intranasal dissection for surgical extractions of mesiodentes impacted in the floor of the nasal cavity. *J Craniomaxillofac Surg* 2019;47:1–5.
11. Marianetti TM, Torroni A, Gasparini G, et al. Transnasal endoscopic approach to the impacted maxillary canine. *J Craniolaf Surg* 2014;25:1859–61.