Apatite subspecies depend on their halogen and hydroxyl content; chlorapatite, hydroxylapatite and fluorapatite, with additional substitution of other elements within the lattice such as rare earth elements (REE), sodium, strontium and manganese also possible. Rare earth elements are vital to green and emerging technologies, with demand set to outstrip supply. Apatite provides a possible future source of REE. Processing rare earth deposits is often complex, with surface behaviour having a significant effect on the optimization of a process flow sheet. The effect of enrichment of natural apatite and the doping of synthetic apatite on surface behaviour can be determined by measuring the zeta potential and the isoelectric point of the mineral.

In this paper, we review zeta potential studies of natural and synthetic apatite to determine the effect of elemental enrichment on surface behaviour. Fifty three studies of natural apatite and forty four studies of synthetic apatite were reviewed. The isoelectric point of apatite varied from pH 1 to pH 8.7, with studies of apatite specified to be >90% pure reducing the variation to pH 3 to pH 6.5. Of the four studies of rare earth enriched apatite found, three had IEP values between pH 3 and pH 4. A study of synthetic apatite showing enrichment of between 1 and 10% by the REE europium does not affect surface behaviour. However, no studies were found that investigated the effect of common REE processing reagents on REE enriched apatite zeta potentials. Therefore, in addition to comparing previous studies we also therefore present new zeta potential measurements of apatite from a REE enriched deposit under water and common flotation collector conditions. The IEP value of this apatite under water conditions was at pH 3.6, shifting to pH 3.5 under both hydroxamic acid and betacol conditions. When compared to previous studies, the behaviour of REE enriched apatite under collector conditions is similar to non-REE apatite. This result could be important for future processing of apatite enriched with REE, and therefore global apatite and rare earth supply.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Fluorapatite, Hydroxylapatite, Chlorapatite, Zeta potentials, Rare earth elements

Abbreviations: HREE, Heavy Rare Earth Elements; IEP, IsoElectric Point; LREE, Light Rare Earth Elements; PZC, Point of Zero Charge; REE, Rare Earth Elements.

* Corresponding author.

E-mail address: co308@exeter.ac.uk (C.L. Owens).

https://doi.org/10.1016/j.cis.2019.01.004

0001-8686/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The motivation for this review is to enable researchers who investigate the mineral apatite, to make use of the existing literature which due to inconsistencies in naming practices and methodologies is currently difficult to effectively compare and contrast. The mineral apatite was named after the Greek word for deceit, due to its ability to show in many crystal forms and shapes, some of these effects are due to enrichments of different elements within the structure [1]. Apatite is the main source of phosphate that is mined industrially [2]. As well as being present in mineral form in ore bodies around the world and on both mars and the moon, natural apatite is also present in bones and teeth within mammals [3–5]. Since its discovery within bones, the synthesis of apatite has been identified as important for bone grafts and replacements, with work also investigating its uses as a drug delivery system [6,7]. Synthetic apatite doped with the REE europium has uses in ink jet printing, whereas natural apatite enriched with hydrothermal alteration is of interest due to resource scarcity [8,9].

1.1. Types of apatite

Although the discovery of apatite in mineral form was in 1827 the naming and renaming of the species and sub species, has been ongoing for the last 190 years [10]. According to the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA-CNMNC), currently there are only three minerals of the apatite group. Chlorapatite, fluorapatite and hydroxylapatite, named after the substitution of chlorine, fluoride and hydroxyl anion into the crystal lattice respectively [1]. The chemical composition and example geographic locations of apatite are shown in Table 1.

As the IMA-CNMNC was only created in 1959, many more names for apatite are used in earlier literature [14–16]. These include, but are not limited to, collophane and francolite [17–19]. Both these names are still used regularly in published literature even though they do not appear on the IMA-CNMNC master list (July 2017 IMA-CNMNC). Changes within the IMA-CNMNC naming practices, with species of apatite being renamed in both 2008 and 2010, makes a clear historical record of apatite studies challenging to identify [1,16]. Although there is no master list of discredited species, this review has brought together the most common mineral names for apatite that are now discredited by IMA-CNMNC in Table 2.

Table 2 does not list all synonyms for apatite, these include but are not limited to, naurite, collophanite, ornithite, saamite, and glaubapartite [26]. As these names are not used in common literature relating to zeta potentials we do not explore them further in this review. For future research on apatite to be easily accessible clear naming practices are vital to make sure that studies are not repeated or overlooked in the literature, this paper recommends adhering to the CNMNC nomenclature.

Since the understanding that apatite is a constituent of mammalian teeth and bones, there has been research into synthetic production of apatite as a bone replacement [27]. The first synthetic apatite used as a bone replacement was in 1920 and since then a massive field of interdisciplinary research has developed overlapping dentistry, medicine and materials science [28,29]. Although initially used as a possible bone replacement, synthetic apatite, more commonly hydroxylapatite (HAP), has a lower tensile strength than natural bone and currently is mostly researched as a coating to stronger materials such as titanium for bone replacements [30]. For a review of the full uses of synthetic apatite in medicine, see Ridi et al., [31]. Synthetic apatite is investigated further in a review of literature in section 2.2.

1.2. Apatite as a source of REE

Apatite can substitute up to half the elements within the periodic table into its structure, and as such can become enriched with a number of different elements during either formation or a later hydrothermal alteration [2,32]. Enrichment and alterations can be used to reflect early environments, from geological processes to early sea temperatures and paleo environments [33]. Sometimes the enrichment of a particular element makes the apatite of interest for that enrichment alone, for example in Songwe Hill, Malawi, apatite enriched with REE is under development as a REE mine [34].

The rare earth elements (REE) consist of the lanthanide series of elements plus scandium and ytrrium [33]. They are often subdivided into either light REE (LREE) or heavy REE (HREE) depending on their atomic number, with HREE often more valuable than LREE [35,36]. REE have become relevant in the modern economy due to their uses in batteries and catalytic converters as well as wind turbines and mobile phones [37]. REE are contained within over 200 minerals, however

Apatite	Chemical formula	Theoretical chemical composition	Deposits	Reference
Hydroxyapatite	Ca10(PO4)6(OH)	Ca 39%, P 18%, O 41%, H 0.02%	Jocao pegmatite, Minas Gerais, Brazil	Bajot et al., [11]
Chlorapatite	Ca10(PO4)6Cl	Ca 38%, P 17%, O 37%, Cl 6.8%	Breves deposit, Carajas, Brazil	Tallarico et al., [12]
Fluorapatite	Ca10(PO4)6F2	Ca 39%, P 18.4%, O 38%, F 3.7%	Adirondack Mountains, NY, USA	Lupulescu et al., [13]
extracting them is complex, hence the “rare” within their name. Apatite is known as host to REE and is a possible source for future expansion in the market [38]. The ability to mine for both phosphate and REE enables a more cost efficient mining practice. There are two processes of REE enrichment within apatite, the first is the substitution of REE$^{3+}$ and Na$^+$ for Ca$^{2+}$ within the apatite, the second is P$^{5+}$ substituted with atoms at the solids surface [50], whereas P$^{5+}$ substituted with atoms at the surface of the solid will acquire a charge due to the composition of the face of the solid. This domain can be described according to the electrical double layer [58]. For more details into deposits of REE bearing apatite currently identiﬁed in literature (as of 2018).

1.3. Surface charge and zeta potential measurements

When a solid surface is submerged in an aqueous solution, the surface of the solid will acquire a charge due to the composition of the atoms at the solids surface [50–56]. The magnitude and sign of this charge is affected by the ions within the liquid and the ions at the surface of the solid. This domain can be described according to the electrical double layer (EDL) [57]. Zeta potential measurements are a common method of interpreting the electrical double layer [58]. For more details into the electrical double layer see Greenwood [59] or Hunt et al. [58]. The electrical double layer is usually deﬁned by the iso electric point (IEP) or the point of zero charge (PZC). The IEP is the measurement of the shear plane [57]. Although often quoted interchangeably, IEP and PZC are different, with IEP being the conditions under which the zeta potential is zero whereas PZC occurs when the surface is uncharged [56]. The aqueous medium in which the zeta potential is measured can affect both the magnitude of the zeta potential and the IEP and PZC. Ions which can affect the surface are called ‘potential determining ions’ [60]. Zeta potentials are measured by a wide range of methods ranging from electro-osmosis to streaming potential [58].

1.4. Use of zeta potential measurements of apatite

There have been many studies investigating processing of apatite, investigations into reagents used inﬂation such as oleic acid and sodium oleate [17,52]. Froth ﬂotation of apatite is one of the main methods of mining the mineral from host ores [61]. Selecting the correct reagents is important in optimizing the process. As each deposit is composed of many different minerals, many studies have been conducted on apatite to identify the optimum conditions for separating from a speciﬁc mineral mix. Reagents can be divided into collectors, depressants, pH modiﬁers and frothers. Collectors attach to the mineral to make it hydrophobic, and depressants, which attach to the gangue (waste) minerals to induce hydrophilicity or prevent interaction with collectors.

In ﬂotation research the adsorption mechanisms of different collectors are important as they may vary across different pH values [60]. The collector mechanism eg. Chemisorption or physisorption can be inferred by zeta potential measurements and directly measured using FTIR and UV spectroscopy. If the collector attaches using physisorption then opposite charges attract, if the collector adsorbs chemically the zeta potential will exhibit a change. The mechanism for hydroxamic adsorption on apatite has previously been investigated by Yu et al. [62]. Alkyl hydroxamic acid was found to chemisorb onto apatite by ionic bonding of the oxygen atoms to the calcium at the surface. Fatty acids are one of the most common collectors for apatite as they are cheap [61]. Fatty acids chemically adsorb onto the surface of ﬂuorapatite by bonding to the Ca site, with hydrogen bonding between the O at the surface and the H of the fatty acid [63]. Pan et al. [64] investigated the adsorption of fatty acids onto hydroxylapatite, with the positive ends of the amino acids attatching to the Ca sites and the negative ends ﬁtting to the P or OH sites.

Although the Khibiny nepheline syenite complex, Kola peninsula, Russia is one of the largest igneous apatite deposits, with apatite enriched with REE, this review could ﬁnd very little published research relating to ﬂotation of Khibiny ore ([65] Table 3.) Houot [65] showed Khibiny was ﬂoated with tall oil collectors and sodium silicate as a depressant. Published research may be limited due to non-disclosure agreements, or not have been published in English [66]. Processing of REE enriched apatite deposits has previously been explored by Soltani et al., [49] and Harbi et al., [67]. The processing of britholite, the end member of the REE$^{3+}$ and Si$^{4+}$ substitution in apatite, has previously

Name	Named for/by	Current status	Recent references	New Name* according to IMA-CNMNC	References
Francolite	Wheal Franco, Devon	Discredited 2008	Caird et al., [20], Elmandy et al., [18]	Fluorapatite	
Lewistonite	Locality of Lewiston, Utah	Discredited 1978	–	Fluorapatite	Larsen and Shannon [21], Dunn [22]
Dehnrite	Locality of Detm, Germany	Discredited 1978	–	Fluorapatite	Larsen and Shannon [23], Dunn [22]
Callophane	Sandberger [23] “Kollophan”	Discredited 1943	–	Fluorapatite	Rogers [14], Frondel [24], Sandberger [25]

Table 2
List of discredited and out of use mineral species of apatite. Current status is based upon Commission on New Mineral, Nomenclature and Classification, International Minerals Association (CNMNC).

Table 3
Adapted from Broom-Fendley et al., [32]. A sample of REE enriched apatite deposits. This list includes a selection of REE enriched apatite deposits and is not representative of the entire list of deposits. *REE denotes investigations into the mineralogy of deposits and does not represent the enrichment of all apatite within the deposit or its economic viability.
been investigated by Yang et al. [68]. Britholite was only a secondary ore mineral to epidote in the deposit with other ore minerals being the REE fluorcarbonate minerals, parsite, synchysite and bastnäsite. The ore was processing using flotation with recovery of britholite at 85% to the 96–100% of the fluorcarbonate REE minerals (parsite, synchysite and bastnäsite). The flotation used a selection of collectors in the flotation including fatty acids and hydroxamic acids. Sodium Silicate and starch were selected as depressants.

However, there are other studies investigating processing of apatite via bacteria such as using Cellulose enzyme (Aspergillus Niger) as a depressant [17]. Some research in mineral processing include the use of oily bubbles to collect apatite instead of conventional gas/water bubbles [69]. Other papers have investigated the theoretical surface change of apatite with a theoretical IEP value at pH 7.2 conditioned in water in the presence of CO₂ [69].

As there is such a wide range of research in which zeta potentials are used, this study aims to review and consolidate previous zeta potential data for apatite to create a comprehensive review. In particular comparing synthetic apatite doped with REE, Chen et al. [8] studied hydroxylapatite doped with Eu, to natural apatite enriched with REE. This review will link to new zeta potential measurements of apatite from a REE enriched deposit in Section 3. This comparison will highlight any differences in zeta potential and consequently collector adsorption, which will affect subsequent separation by froth flotation. These results will be applicable to a wide range of deposits containing REE enriched apatite such as Songwe Hill, Malawi and Kovdor Russia [32,43]. This is also an interdisciplinary approach of applying biomedical research to mineral processing applications.

2. Review of previous studies of apatite

This reviews aim is to consolidate and analyze previous studies of apatite surface behaviour to produce a reference for future use, with a particular focus on natural forms of apatite. One of the findings of the review is that the methodology used to measure zeta potentials changes between disciplines, this partly is driven by the circumstances of the minerals use. For example for studies on calcium phosphate ceramics used in bone, the zeta potential is a measure of the bone structure formation and so this is conducted over 400 h [71]. In contrast, research into mineral processing as it is less time dependent and studies do not often reference over how long the value has been taken over [72]. As this review primarily investigates studies which research the natural mineral forms of apatite, the selection criteria aims to distinguish studies of particular interest in this review. A full review of synthetic apatite is out of the scope of this review, as it is likely to exceed the length at least twice of the studies of interest will be highlighted that relate to REE enrichment and ion substitution. However the IEP and PZC of synthetic apatite is reviewed along with surface behaviour of different types of synthetic apatite and REE enriched synthetic apatite.

In selecting papers within the review certain areas were omitted. Not included

- Octo-calcium phosphate.
- Studies where only one pH value was tested.
- Lack of clear description with sample identification or origin.
- When electrolyte solutions were not comparable to other studies. For example oleic acid [17], phosphonates [73], phosphor-citrate [74], sodium oleate [75]. Comparing these studies is beyond the scope of this review.
- When apatite is used as a coating for another material, for example coating apatite titanium and silica [30].
- Measurement must be at low wt% not at high wt% so no measurements conducted in slurry [76].

The review is divided into two main subsections, natural apatite (2.1) and synthetic apatite (2.2).

2.1. Natural apatite

Natural apatite studies mainly focus on the area of mineral processing for optimizing phosphate mining. Of the 53 studies of natural apatite reviewed, ten specified point of zero charge, forty seven specified IEP values. Due to the large number of studies we have subdivided the tables into IEP values and PZC studies, with the IEP values being subdivided into fluorapatite and other types of apatite. The majority of the studies in the last decade originate from China, as over 50% of the world’s phosphate rock mined in 2016 was from China [77].

Table 4 overviews the fundamental studies of zeta potentials of apatite not listed explicitly as fluorapatite. There was thirty three studies that this review could identify, of those thirty three, four were listed as collophonite with another four listed as francolite, both of these names are now discredited under the IMCNC [24]. It is not unexpected that some studies would use historical names for apatite due to textbooks not being updated with the many changes to naming nomenclature. Another cause of the use of discredited names could be due to translation errors.

Comparing the studies is problematic due the lack of information in some categories and different methods for reporting the information, previous work by Jordens et al. [101] has shown methodology has a significant effect. Future work comparing identical apatite samples under different methodologies would be of interest. The grind size varies significantly between <2 μm and <74 μm, which has also previously been shown to effect zeta potentials in certain measurement techniques.

Of the 13 papers on fluorapatite reviewed in Table 5, the IEP values ranged between 1 [78] to 8.7 [77]. As fluorapatite is the most common mineral species of apatite, it is expected that fluorapatite would have the largest number of studies specified.

Table 6 reviews the point of zero charge studies of apatite. The point of zero charge is between pH 4.5 and pH >12.

The IEP in Fig. 1 varies from pH₉₉₉₉₉ of 1 to 8.7, the PZC in comparison only ranges from 4.5 to 8.4. This variation has previously been attributed to a number of various factors, ranging from sample purity to methodology, which are further illuminated below.

2.1.1. Effect of type of apatite

As apatite is divided into three species, fluorapatite, chlorapatite and hydroxylapatite, of the 30 values of IEP denoted in Fig. 1, 17 specify fluorapatite, 2 chlorapatite, and 3 hydroxylapatite. The remaining 8 studies do not specify what type of apatite/collophane/francolite. Of these sub studies it is expected that a large percentage of them are fluorapatite as its most common mineral subspecies of apatite.

Mishra [99] and Simukanga and Lomb [95] investigate the surface behaviour of chlorapatite from Broken Hill, Australia and Chilimbwe, Zambia respectively. The IEP values they obtain are pH 6 and pH 6.7 showing close similarity between the IEP of chlorapatite samples. Hydroxylapatite surface behaviour is analyzed in three papers Vulcnic et al. [90], Kou et al. [88] and Hu et al. [92], only Hu et al. [92] and Kou et al. [88] specify an IEP at pH 3 and pH 4 respectively. This shows a similar range of IEP to chlorapatite compared to fluorapatite which has a range of over 7.7. The location of the sample from Kou et al. [88] is not specified however the sample from Hu et al. [92] was from Wangji Mine, China. From this analysis the IEP value of chlorapatite (6, 6.7) is greater than the IEP of hydroxylapatite (3, 4). The zeta potentials of chlorapatite, hydroxylapatite, and fluorapatite are shown in Fig. 2.

From Fig. 2, chlorapatite has a more positive zeta potential than hydroxylapatite from the four studies compared [88,92,95,99]. The three studies of fluorapatite plotted showed a large variation within zeta potentials [92,102,105].

There are no studies of PZC of chlorapatite and hydroxylapatite however there are seven studies of fluorapatite PZC [19,106,110,112–114]. This may not be due to specific selection of fluorapatite but rather that fluorapatite is the most common natural form of apatite. The PZC of
fluorapatite ranged from pH 4.5 [112] to pH 8.15 [113]. Attention should be paid in the future to the exact species of apatite used in the study as additional work on hydroxyapatite and chlorapatite is of particularly interest.

2.1.2. The effect of sample purity

Purity of the sample is not always specified within research so can be difficult to quantify in a review. The methodology for investigating purity also varies, with some studies quoting in percentage terms the purity whereas other use wt% of P₂O₅. Studies were selected which had specified in percentage the purity of the sample above 90%. There are eleven studies which specify purity over 90% in Table 4 and that state a value of IEP for apatite; these are Cheng et al. [103], Yu et al. [78], Li et al., [79], Yu et al., [62], Cao et al., [112], Yang et al., [85], Vucinic et al., [90], Olivier et al., [89], Raju et al., [107], Wu et al., [113] and Rao et al., [108]. The range of IEP from these studies is reduced from pH 3 [81,90] to pH 6.5 [61]. This however is not an accurate analysis of species ed in percentage the purity of the sample above 90%. There are eleven studies which specify purity over 90% in Table 4 and that state a value of IEP for apatite; these are Cheng et al. [103], Yu et al. [78], Li et al., [79], Yu et al., [62], Cao et al., [112], Yang et al., [85], Vucinic et al., [90], Olivier et al., [89], Raju et al., [107], Wu et al., [113] and Rao et al., [108]. The range of IEP from these studies is reduced from pH 3 [81,90] to pH 6.5 [61]. This however is not an accurate analysis of species names taken from paper description, may be out of date for IMA-CNMNC. Deposit type denotes the format of demonstrating this did not report in percentages. A selection of these high purity studies are plotted in Fig. 3.

Table 4

Mineral	Deposit/Type of Deposit*Ac	Country	Purity	Size μm	PZC	IEP	Electrolyte	Method	Reference
Apatite	–	–	P₃O₅ 41.95 wt%	5	2.8	1 M/L KCl	–	Electrophoresis	Jong et al., [52]
Apatite	Wards natural science establishment	Canada	P₃O₅ 46.06 wt%	-20	4.2	10⁻³ M KCl	–	Electrophoresis	Zhou et al., [69]
Collophane	Shansi Province	China	CaO 49.1 wt%	-2	2	10⁻³ M/dm³ NaCl	–	Micro-electrophoresis	Merma et al., [84]
Collophane	Guizhou Province	China	P₃O₅ 38.66 wt%	-20	4.2	10⁻³ M KCl	–	Electrophoresis	Filippova et al., [83]
Collophane	Dayouke phosphate mine, Hubei Province	China	Handpicked	-2	2	10⁻³ M/dm³ NaCl	–	Micro-electrophoresis	Merma et al., [84]
Collophane	Zhongxiong, Hubei Province	China	P₃O₅ 38.66 wt%	-20	4.2	10⁻³ M KCl	–	Electrophoresis	Filippova et al., [83]
Collophane	–	–	CaO 49.08%	-30	3	1 M KCl	–	Electrophoresis	Yang et al., [85]
Collophane	Tulear Province, Fort Dauphin	Madagascar	P₃O₅ 33.68 wt%, CaO 49.08%	-20	1.5	10⁻³ M NaNO₃	–	Electrophoresis	Fillipov et al., [86]
Apatite	From Centre for Mineral Technology Brazil	China	0.99	-20	<2.5	10⁻³ M NaCl	–	Electrophoresis	Elmadhy et al., [87]
Apatite	Obtained through Geological Museum of China	China	P₃O₅ 31.85 wt%, CaO 49.08%	-74	1.5	10⁻³ M KCl	–	Electrophoresis	Elmadhy et al., [87]
Apatite	Tulear Province, Fort Dauphin	Madagascar	No impurities	25	4	1 M KCl	–	Electrophoresis	Kou et al., [88]
Apatite	Carbonatitico Alcalino Compex	Brazil	92% pure	-	<8	–	–	Electroosmosis	Oliveira et al., [89]
Hydroxyapatite	Lisini deposit, Bosilegrad	Serbia	98.45% pure	5	<5	–	Electroosmotically Sorbic et al., [90]	Vucinic et al., [90]	
Opatite	Salitre Phosphorite (Si O2)	Brazil	–	7.1	–	–	Electroosmotically Sorbic et al., [90]	Vucinic et al., [90]	
Apatite	Salitre Weathered Phosphorite (High SiO2)	Brazil	–	~6.5	<2.5	10⁻³ M NaCl	–	Electrophoresis	Barros et al., [91]
Apatite	Salitre Pyroxenite (high SiO2 apatite)	Brazil	–	6.6	<2.5	10⁻³ M NaCl	–	Electrophoresis	Barros et al., [91]
Apatite	Salitre Phosphorite (high iron/mg apatite)	Brazil	–	7.2	–	–	Electroosmosis	Barros et al., [91]	
Apatite	Salitre Phosphorite (high iron/mg apatite)	Brazil	–	8.1	–	–	Electroosmosis	Barros et al., [91]	
Hydroxyapatite	Wangji Mine	China	Handpicked	-5	3.2	10⁻³ M KNO₃	Electrokinetic and titration	Perrone et al., [19]	
Apatite	Oulad Abdoun trace REE 363.3 ppm	Morocco	P₃O₅ 31.78 wt%	34	8.4	4.8	Electroosmosis	Zheng et al., [94]	
Fluoro-hydroxyapatite	Chilimbwe deposit	Zambia	Handpicked	-2	6	10⁻³ M NaCl	Micro-electrophoresis	Simukanga and Lombé [95]	
Francolite	Kaluwe deposit	Zambia	Handpicked	-2	3.8	10⁻³ M NaCl	Micro-electrophoresis	Simukanga and Lombé [95]	
Apatite	Broken Hill Lead-zinc	Australia	-2	6.7	2×10⁻³ M NaClO₄	Micro-electrophoresis	Mishra et al., [99]		
Table 5
Fundamental Studies of zeta potential of natural fluorapatite. Mineral name taken from paper description, may be out of date for IMA-CNMNC. Deposit type denotes the most information the source material provides, if no location is provided the acquisition company is listed. DI water is Deionized water DS water is distilled water.

Mineral	Deposit/Type of deposit	Country	Purity	Size μm	PZC	IEP	Electrolyte	Method	Reference
Fluorapatite	Van Waters and Rogers	China	>95% pure	<37	8.7	4.3	Water	DI water	Nduwa-Mushidi [102]
Fluorapatite	Qiaping Phosphate company	China	>95% pure	<37	8.7	4.3	Water	DI water	Cheng et al. [103]
Fluorapatite	Itataia deposit	Brazil	P2O5 9.9 wt%	<5	3	4	Water	Electrophoretic mobility	Santos et al. [104]
Fluorapatite	Spira/Pedras Altas, Bahia State	Brazil	Very pure analyzed	<10	7.7	1	0.01–0.05 M NaCl	Microelectrophoresis	Nunes et al. [105]
Fluorapatite	Paraibab	Brazil	Synthetic	30	6.4	6.3	Electrokinetic and titration	Perrone et al. [19]	
Fluorapatite	Gregory, Bottley and Lloyd	Zambia	Handpicked	>2	3.8	DS water	Micro-electrophoresis	Raju et al. [167]	
Fluorapatite	Kahwe deposit	South Africa	97% pure	5	4	3 M KNO3	Electrophoresis	Tao, Antti, Fossberg [108]	
Fluorapatite	Gregory, Bottley, and Lloyd	Canada	97% pure	5	4	3 M KNO3	Electrophoresis	Rao, Antti, Fossberg [108]	
Fluorapatite	Labasco Laboratories, Gothenburg, Sweden	P2O5 9.3 wt%, CaO 52.1 wt%, F 2.7%	<5	3	Water	Micro-electrophoresis	Pugh and Stenius [109]		
Fluorapatite	Christmas Island	Indian Ocean	<2	3.5	2 × 10⁻³ M NaCl	Micro electrophoresis	Mishra [99]		
Fluorapatite	Durango	Mexico	<2	5.5	2 × 10⁻³ M NaCl	Micro electrophoresis	Mishra [99]		
Fluorapatite				7	6	10–3 M KNO2		Somasundaran [110]	

![Fig. 3](https://example.com/image.png)

Fig. 3 plots four of the high purity studies identified from Tables 4, 5, and 6, in comparison to Fig. 2, there is a noticeable reduction in variation in zeta potential values. From these results highly pureapatite of has an IEP of between pH 3 and pH 6.5. However as half the studies were fluorapatite and half where unknown as Yang et al. [85] and Yu et al. [62] did not specify the mineral enrichment, it is unknown if they are a different type of apatite than fluorapatite. If they are this could affect the results and therefore this topic needs further attention.

2.1.3. Effect of electrolyte

The electrolytes used in the papers reviewed in Table 4–6 varied. Six studies specified the electrolyte the used was water, either pure or distilled [102,103,105,108,109,112]. Nine studies specified KCl as the electrolyte however the concentration varied between 10⁻¹ M to 10⁻³ M [52,69,78,80,81,83,87,88,111]. Seven specified NaCl [80,82,84,85,99,106,107] and five specified KNO3 [79,92,93,104,108], however the concentration used of the electrolytes varied, therefore it is difficult to determine what effect the electrolyte choice had on the IEP or PZC.

The potential determining ions of apatite have been studied in many deposits with H⁺ and OH⁻ ions commonly accepted as potential determining [110]. Somasundaran [110] investigated F, Ca and P ions and determined that P was definitely potential determining and Ca and F have a major effect of the zeta potential. Mishra [99] also investigated potential determining ions also concluding Ca and P had major effects, in particular the type of electrolyte used to determine IEP could affect the IEP. Fillipova et al. [83] conducted zeta potential measurements under both NaNO3 and KCl concentrations, using the NaNO3 electrolyte reduced the zeta potential and IEP value. Fillipova et al. [83] suggested this was due to NO3⁻ and Na⁺ ions blocking the diffuse layer due to their larger size compared to Cl⁻ and K⁺ ions [116–118]. As there are many dissolved ions in flotation, the analysis of the supernatant in a flotation system is important in identifying the ions present. Bell et al. [111] found that...
KNO₃, KCl, KClO₄, (CH₃)₄NCl are indifferent electrolytes [114]. From these studies Ca, F, P, NaNO₃ ions/electrolytes are potential determining and KNO₃, KCl, KClO₄, CH₃NCl are indifferent ions.

2.1.4. The effect of location

Deposit location has previously been investigated by Mishra [99] and Simukanga and Lombe [108]. Both of these studies could find no link between apatite types/deposit location and surface behaviour. This is not in line with new research from Owens et al., [119] into the mineral bastnäsite, which showed there was a possible link between locality and zeta potential measurements. Due to the limited number of papers that reference the source of the apatite, this study is unable to complete any statistical analysis. However, there exist a few papers that investigate either the same location of sample or multiple samples from the same location.

Santos et al., [104] discusses previous studies investigating apatite from the Itaia deposit in Brazil, these investigations find no IEP value of apatite with all values at negative potentials at the pH values investigated. This implies that multiple samples of Itaia apatite may have the same surface behaviour. Apatite samples from Tulear Province, Fort Dauphin, Madagascar were also investigated by both Fillipov et al., [86] and Fillipova et al., [83]. Both studies did not specify what type of apatite was acquired but showed IEP values of 1.5 and < 3. Investigation of the literature suggests that fluorapatite is the apatite group mineral from Tulear Province [120].

Barros et al., [91], in contrast investigated five samples of apatite from different areas of the Salitre deposit in Brazil due to problems with processing of the apatite. They found IEP values ranged from 6.5 to 8.1, however these could be attributed to contamination within the crystal lattice with concentrations of silicon, iron and magnesium altering the IEP to in one case closer to magnetite. In the case of apatite from the Itaia deposit, Brazil and Fort Dauphin, Madagascar there does seem to a correlation between locality of source and surface behaviour agreeing with findings from Owens et al., [119].

2.1.5. Other effects

Most measurements contained within this review are at room temperature (21° C-26° C) however Cheng et al., [103] conducted zeta potential measurements at 10° C. This can be assumed to be due to matching seasonal fluctuation at the mine site.
The majority of studies within Table 4-6 conducted the measurements either by electrophoresis or streaming potential. As a large number of studies do not clearly specify a technique for measuring zeta potential this study is unable to determine if the technique affects the value of zeta potential. Previous studies have noted a significant effect of difference in methodologies on samples of bastnasite as investigated by Jordens et al., [101]. Here, the work suggested that there could be a difference between electroacoustic and electrophoresis measurements [101].

2.2. Synthetic apatite

Synthetic apatite can suggest what highly pure non enriched apatite would behave like, due to the composition being set at fabrication. Since first being synthesized in the early 20th century, synthetic apatite can now be produced by a number of different methods, ranging from sol gel to hydrothermal methods [121,122]. For more details on sol gel see Jilavenkatesca and Contrate [123]. The methodology of producing synthetic apatite affects a wide range of parameters, ranging from surface roughness to crystal size [124]. Previous investigations by Skwarek et al., [51] and Skwarek et al., [125] have shown that the synthesis of the apatite also effect the zeta potential values.

As up to half the elements in the periodic table can be substituted into apatite without it losing its form, there are many avenues in which materials science can investigate in the process of finding a perfect biomaterial replacement for bone [2]. Substitutions within synthetic apatite for medical purposes are often desired to increase the materials bioactivity and osteoconductivity [126]. Doping of particular elements within natural apatite [32]. Table 7 lists the PZC values of synthetic apatite when studied using zeta potential methodology.

From the 19 studies reviewed in Table 7 the PZC ranged from pH 4.3 to pH 8.7 [54,72].

Mineral	Synthesis method	Ca/P ratio	Purity	Size (micro m)	PZC	IEP	Background electrolyte	Method	Study
Hydroxylapatite (HAP1)	Liu et al., 2003	1.66	6.64	4	0.001–0.1 mol/dm3 NaCl	Skwarek, Janusz, Sternik [51]			
Hydroxylapatite (HAP2)	Suzuki et al., 1998	1.65	6.22	4	0.001–0.1 mol/dm3 NaCl	Skwarek, Janusz, Sternik [51]			
Hydroxylapatite (HAP3)	Dean-Mo et al., 1995	1.64	6.43	4	0.001–0.1 mol/dm3 NaCl	Skwarek, Janusz, Sternik [51]			
Carbonate hydroxylapatite	Liu et al., 2003	6.5	pH 6.2, −14 mV	Skwarek and Janusz [127]					
Hydroxylapatite	Suzuki et al., 1998	6.5	pH 7.1 −12 mV	Skwarek and Janusz [127]					
Hydroxylapatite	Dean-Mo et al., 1995	6.7	3	Skwarek et al., [125]					
Hydroxylapatite	'Wet method'	6.5	<5	Skwarek et al., [125]					
Hydroxylapatite	8.3	6.4	6.2	Skwarek et al., [128]					
calcium deficient Hydroxylapatite	6 (3 mins), 7 (168 h)	6.4	6.2	Skarsila [129]					
Hydroxylapatite	Synthetic	8.7	KCl	Mishra [72]					
Hydroxylapatite	Synthetic	6.7	no ions	Bell, Posner and Quirk [114]					
Hydroxylapatite	Synthetic	7.6	KCl	Nic and Clarke [130]					
Hydroxylapatite	Synthetic	7.6	Potentiometric titration	Leach [132]					
Hydroxylapatite	Synthetic	7.6	NaCl	Mattson et al., 1951 [133]					
Calcium phosphate	1.73	NaOAc	Membrane potentials	Klein [54]					

From the 26 papers reviewed the IEP ranged from pH 3 to 8.1 [125,139]. There was a wide range of ions used as electrolytes with KCl, NaCl being the most common (Table 7–8). As many of the apatite samples were synthesized using different methodologies, and previous studies [51,125] have shown that this affects the IEP, direct comparison between studies is difficult. The solid to solution ratio also varied and this has also been found to effect the zeta potential significantly [143]. However, this is the most comprehensive list of apatite zeta potentials created thus far in the literature. The effect of apatite type (chlorapatite, hydroxylapatite and fluorapatite) and the effect of doping in synthetic apatite is compared in Fig. 4 and Fig. 5 respectively (REE, Cl, F, Si).

2.2.1. The type of synthetic apatite

Fig. 4 shows that hydroxyapatite behaves very differently between studies, which is expected due to different synthesis methods, of the four hydroxyapatite zeta potential shown none had close correlation although all started at low surface charge at higher pH and increased. Fahami et al., [138] shows lower zeta potential values than natural studies, which may be due to the production method of synthetic apatite. These values are all lower than natural samples, which can be attributed to them not being enriched with any other elements and having a greater purity. The limited comparison between studies can be attributed to the small range in pH values for three of the plot lines [138]. The zeta potential of hydroxyapatite at pH 8 varies from −50 mV [140] to −5 mV [141], this could be due to a large range of reasons from production method to electrolyte used (Table 8).

The study by Fahami et al., [138] into different types of synthetic apatite showed the close relationship between fluorapatite and hydroxylapatite, whereas chlorapatite had a slightly lower surface charge between pH 5 and 9, although the zeta potential decreased at pH 9 compared to increasing surface charge at pH 9 for fluorapatite. As no study investigated the zeta potential of fluorapatite and chlorapatite under...
2.2.2. The effect of doping

The effect of adding certain ions to synthetic apatite has been investigated in great detail in regards to the osteoconductive properties but the surface behaviour in relation to zeta potential is not always investigated [144]. Fig. 5 shows studies of hydroxyapatite doped with F, Cl, Ca, and Si in different concentrations and the effect of zeta potential in comparison to stoichiometrically pure hydroxyapatite. The addition of Si to hydroxyapatite decreases the zeta potential of the surface as shown by Botelho et al. [140] the surface charge at pH 8 is decreased from -52 mV to -70 mV, the IEP value is also shifted to a lower pH (5.5 to 3.8). In comparison the addition of F and Cl to the hydroxyapatite lattice increases the zeta potential of hydroxyapatite, with greater concentrations of these ions increasing the zeta potential to a larger degree [139]. This behaviour is extended to the addition of Ca ions with Skwarek and Janusz [129] showing an increase in zeta potential from -52 mV to -70 mV.

Table 8

Studies that give IEP values of synthetic apatite.

Mineral	Synthesis method	Ca/P ratio	Purity Size (micro m)	PZC	IEP	Background electrolyte	Method	Study
Hydroxyapatite (HAP1)	Liu et al., 2003	1.66	6.64 4	0.001–0.1 mol/dm3 NaCl	Skwarek, Janusz, Sternik [51]			
Hydroxyapatite (HAP2)	Suzuki et al., 1998	1.65	6.22 4	0.001–0.1 mol/dm3 NaCl	Skwarek, Janusz, Sternik [51]			
Hydroxyapatite (HAP3)	Dean-Mo et al., 1995	1.64	6.43 4	0.001–0.1 mol/dm3 NaCl	Skwarek, Janusz, Sternik [51]			
Hydroxyapatite	doped with Sc/S	1.68	3.2 wt% 32	pH 7.4, −27 mV	Latifi et al., [134]			
Hydroxyapatite Zn	1.74	41	pH 7.4, 6 mV	0.001 M KCl	Scudeller et al., [135]			
Hydroxyapatite Sr	1.68	0.125	pH 7.4, 21 mV	0.154MNaCl	Fahnri et al., [137]			
Fluorapatite	0.1 mol/dm3 NaCL	1.9	milled	pH 7.4, 22.52 mV	0.154MNaCl	Scudeller et al., [135]		
Hydroxyapatite (Ag doped)	13 wt% Ag	1.9	622 nm	pH 7, 28.2 mV	0.154MNaCl	Skwarek and Beall [138]		
Hydroxyapatite (Eu doped)	9.5% Ag	1.9	832 nm	pH 7, 6.5 mV	0.154MNaCl	Skwarek and Beall [138]		
Hydroxyapatite with 0.125 sub F, Cl ions	x = 0	pH 7.4, −21 mV	purified water	electrophoretic	Skwarek et al., [129]			
Hydroxyapatite with 0.25 sub F, Cl ions	x = 0.25	pH 7.4, −28 mV	purified water	electrophoretic	Skwarek et al., [129]			
Hydroxyapatite with 0.375 sub F, Cl ions	x = 0.375	pH 7.4, −20 mV	purified water	electrophoretic	Skwarek et al., [129]			
Fluorapatite	x = 0	pH 7.4, −37 mV	purified water	electrophoretic	Skwarek et al., [129]			
Chlorapatite	x = 1	pH 7.4, −27.5 mV	0.154MNaCl	electrophoretic	Skwarek et al., [129]			
12 wt% ZnO Carbonate	Chlorapatite	Mechanoelectrochemical reaction	1.9	milled	pH 7.4, −22.52 mV	0.154MNaCl	Skwarek et al., [125]	
13 wt% ZnO Carbonate	chlorapatite	Mechanoelectrochemical reaction	1.9	milled	pH 7, 20.85 mV	0.154MNaCl	Skwarek et al., [125]	
Hydroxyapatite	Liu et al., 2003	1.6	7.5	3	0.01 M NaCl	Skwarek and Beall [138]		
Hydroxyapatite	Suzuki et al., 1998	1.6	7.05	3	0.01 M NaCl	Skwarek and Beall [138]		
Hydroxyapatite	Dean-Mo et al., 1995	1.6	6.7	3	0.01 M NaCl	Skwarek and Beall [138]		
Hydroxyapatite	Wet method	6.5	−5	0.01 M NaCl	Skwarek et al., [128]			
Hydroxyapatite Hayek and Stadtmann 1955	1.6	8.1	0.1 M NaCl	electrophoretic	Skwarek et al., [128]			
Hydroxyapatite Penel et al., 1997	1.7	5.7	0.1 M NaCl	electrophoretic	Skwarek and Beall [138]			
Fluorapatite	Hayek and Stadtmann 1955	1.6	8.1	0.1 M NaCl	electrophoretic	Skwarek and Beall [138]		
Fluorapatite Penel et al., 1997	1.7	5.7	0.1 M NaCl	electrophoretic	Skwarek and Beall [138]			
Hydroxyapatite	8.3	6.4	6.2	0.01 M KNO3	micro electrophoresis/titration	Skarsila [129]		
Hydroxyapatite with 0.8 wt% Si	0.8 wt% silicon	20–53 micro meters	3.8	10–4 M/L KNO3	Botelho, Lopes, Gibson [140]			
Hydroxyapatite		20–53 micro meters	5.5	10–4 M/L KNO3	Botelho, Lopes, Gibson [140]			
Hydroxyapatite		20–53 micro meters	7.3	10–3 M/L KCl	Rodriguez-Lorencio, Vallet-Regi [141]			
Fluorapatite Dental hygiene	600	3.7	fluorapatite supernatant	triply distilled water	electrophoretic	Rao et al., [142]		
Hydroxyapatite Dental hygiene	−	>5	8	0.01 N HNO3–KOH	electrophoretic	Ducheyne et al., [71]		

pH 5 the IEP value for these synthetic minerals is unable to be determined.
increase in the zeta potential with the addition of Ca to the lattice. Hydroxylapatite from the studies by Skwarek and Janusz [127] and Fahami et al., [138] did not demonstrate IEP in any of their values.

The IEP range of natural apatite is from pH 1 to pH 8.7, with synthetic apatite ranging from pH 3 to pH 8.1 (Tables 3, 4). The IEP in natural apatite was affected by the species present with chlorapatite being found to have a greater IEP on average than hydroxylapatite. The IEP of natural fluorapatite ranged so widely it was not possible to determine if it may be different from either chlorapatite or hydroxylapatite. The synthetic chlorapatite also had a less negative zeta potential than hydroxylapatite, showing this behaviour extends from synthetic apatite to natural apatite and vice versa [138]. As the majority of the focus of synthetic apatite research is on hydroxylapatite the range of values in the IEP of this type is large however the range can be attributed to factors including synthesis method and measurement technique.

Natural apatite has element substitutions within its crystal lattice, due to enrichment either during formation or later in hydrothermal alteration [145,146]. If only zeta potential studies which specified high purity were selected, then range of IEP values is reduced to pH 3 to pH 6.3, which is more in line with the IEP values range of synthetic apatite. Impurities such as additional F and Cl ions have been shown to alter the zeta potential significantly in studies of synthetic apatite [138]. As many natural apatite have substitutions of these ions and others within their lattice it is reasonable that the IEP should be different with different enrichments and deposits. The specific enrichment of apatite in deposits could link to similarities in zeta potentials such of those identified in Tulear Province, Madagascar and Itaia, Brazil in this review [82,86].

One of the aims of this study is therefore, to review the surface behaviour of both natural and synthetic apatite to provide a resource for future research. A secondary goal is to determine the effect of enrichment of apatite has on surface behaviour. The effect of enrichment on surface behaviour is particular important in the flotation of apatite deposits, which often contain significant enrichment with additional elements. As many studies have been conducted on processing unenriched apatite it is useful for research to determine if these flow sheets can be applied to enriched apatite. REE enriched apatite surface behaviour has been researched by a number of studies [83,86]. However, currently there are no studies of the zeta potentials of REE enriched apatite under collectors. For this reason in this paper we present work on REE enriched apatite under two types of collector, hydroxamic acid and fatty acid. This research should be applicable to a large number of REE enriched apatite deposits such as Hoidas Lake, Canada and Jacquia, Brazil.

3. Materials and methods

3.1. Mineral sample

Apatite from Jacupiranga, Brazil was used for zeta potential measurements (Acquired from Dr. Broom-Fendley, Camborne School of Mines, University of Exeter, UK). Samples from the same location have previously been used in Broom-Fendley et al., [147]. Jacupiranga is a well-studied alkaline carbonatite complex in Sao Paulo State, Brazil first formed 131 Ma in the Cretaceous [45,148–150]. Apatite samples from the Jacupiranga deposit have previously shown high enrichment with REE, with fluid inclusions within the minerals being of interest to research into the formation of carbonate deposits [150]. The apatite within Jacupiranga has previously been shown to be fluorapatite with F content between 2.21 and 0.62% and a REE enrichment of between 1000 and 3000 ppm [45,150,151]. Chemical and composition analysis of the sample was conducted using X-Ray fluorescence (ARL PERFORM’X Sequential X-Ray Fluorescence Spectrometer, Thermo Fisher) at Colorado School of Mines. Elemental compositional is given in Table 9.

Two types of collectors were supplied by Axis House (hydroxamic acid) and Betachem (fatty acid). These collectors were selected due to previous research into the effect of fatty acid and hydroxamates on surface behaviour has been researched by a number of studies [83,86]. How ever, currently there are no studies of the zeta potentials of REE enriched apatite under collectors. For this reason in this paper we present work on REE enriched apatite under two types of collector, hydroxamic acid and fatty acid. This research should be applicable to a large number of REE enriched apatite deposits such as Hoidas Lake, Canada and Jacquia, Brazil.

3.2. Zeta potential measurements

The apatite minerals were ground to 100% passing 80 μm using steel ring mill (Angstrom Model TE250 Ring Pulverizer). Samples were suspended in water at 0.02 g per 40 mL after which they were agitated on a shaking table for 20 min before each measurement. The same methodology as Owens et al., [119] was used for zeta potential measurements. Zeta potential measurements were conducted using the Microtrac Stabino Particle Charge Mapping surface chemistry device at Colorado School of Mines, U.S.A. Measurements were conducted from...
pH 3.5 to pH 11, with NaOH and HCl were used to adjust pH. Previous studies have shown that Na ions reduce the value of zeta potential and IEP of apatite therefore the results may be lower than other studies [86].

4. Results

Measurements were conducted from pH 3.5 to pH 11, and showed an IEP of apatite at pH 3.8. Fig. 7 shows the results of zeta potential measurements of apatite in water, hydroxamic acid (5 × 10^{-4} M) and fatty acids (5 × 10^{-3} M). Under both hydroxamic and fatty acid conditions the zeta potential is shifted to a lower charge over the entire pH range investigated with the IEP shifted <3.5. The shift of IEP to a lower value under hydroxamic acid conditions and fatty acid conditions is consistent with early work by Yu et al., [62] and Cao et al., [112] respectively.

Nduwa-Mushidi et al. [81] was selected due to the use of the same methodology and equipment. These five studies plus the results from this review were plotted in Fig. 7. Fig. 7 shows that there was a wide range of zeta potential values from apatite studies, although there are common characteristics of the zeta potential curves in which as higher pH values the zeta potential was negative and at lower pH values the zeta potential was positive. The IEP of studies plotted in Fig. 7 ranging from <2 to 8.7.

This review has identified that studies into apatite enriched with REE have already been conducted in particular, into the synthetic doping of apatite with Eu [8]. However there has been no comparison that this study could find that compared the enrichment of natural REE apatite and synthetic REE enriched apatite. The four studies identified as investigating the zeta potential of apatite with REE enrichment are plotted in Fig. 8 [8,81,83,86]. Of the four studies, one was synthetically produced hydroxyapatite [8] and the other three were natural apatite. The exact type of apatite (fluorapatite, chlorapatite, hydroxyapatite) is not identified within the papers. The enrichment within each apatite is slightly different with Chen et al., [8] hydroxyapatite doped with 5% europium. Chen et al., [8] also investigated the doping of hydroxyapatite with between 1 and 10% of europium at pH 9, which showed little variation. This indicates that doping of between 1 and 10% of europium in apatite does not affect surface behaviour. The apatite studied in Zhou et al., [81] was enriched with 0.77% cerium. Filippova et al., [83] and Fillipov et al., [86] both investigated apatite with enrichment of 2402 ppm of cerium and 1102 ppm of lanthanum. All the natural apatites in Fig. 9 were enriched with LREE. As LREE are the predominant REE in apatite deposits this is not unexpected.

Russia is unusual in containing apatite that is enriched with HREE [30]. In comparison to the zeta potential measurements of other apatite samples plotted in Fig. 7, apatite enriched by REE does not appear to have significantly different surface behaviour.

From studies into doping by synthetic apatite it can be demonstrated that small % (1–5%) of ions such as F, Cl, Ca and Si can significantly affect the zeta potential measurements of a mineral [127,138,140]. From reviewing the purity of the natural apatite used in many of the mineral processing studies it becomes apparent that a large % contain contamination, with ions or increased concentrations of certain elements or do not specify the exact purity [91]. Although REE enrichment (up to 10%) does not appear from the studies reviewed here to have a significant effect on zeta potential values of apatite other ions do and this may be why there is such a large range in both IEP values and zeta potential curves. Recent work by Filippova et al., [154] on calcite and fluorapatite has shown that impurities may be linked to the calcium dissolution and collector adsorption.

Although the zeta potential of apatite under aqueous conditions is important for minerals processing and in particular flotation it is essential to also determine the effect of reagents. As the reagents are the chemicals which make the surface of a mineral hydrophobic or hydrophilic. In this study we investigated the effect of hydroxamic acid and fatty acid on the surface of apatite from a REE enriched deposit. To compare these values, the results of zeta potential investigations from Nduwa-Mushidi et al., [102] were also extracted. Nduwa-Mushidi et al., [102] was selected due to the use of the same methodology and equipment, these results are plotted on Fig. 9.

In Fig. 9 all zeta potentials showed a negative zeta potential at a pH above 9, with the addition of hydroxamic acid in both this study and Nduwa-Mushidi et al., [102] causing the zeta potential to reduce to a lower charge. Nduwa-Mushidi et al., [102] showed a shift of IEP from pH 8.7 to around pH 4.8 with the addition of hydroxamic acid. In this study the IEP was shifted from 3.8 to <2. The magnitude of the shift

Fig. 6. Plots of REE enriched apatite zeta potential measurements under water conditions, hydroxamate acid, fatty acids.

Fig. 7. Comparison of zeta potential measured in this study with other studies. Curves are fitted for ease of eye and are meant not to demonstrate data.
between studies was of the order of magnitude expected as in previous studies some hydroxamic acids have a larger effect on flotation than others [155]. The mole per liter used was also different with this study using 5×10^{-4} M and Nduwa-Mushidi et al. [102] using 10^{-3} M. The behaviour of apatite containing REE under hydroxamic collector is similar to apatite not containing REE, this may allow apatite containing REE to be processed the same way as its non-enriched counterparts.

As apatite is one of the most bountiful minerals on the planet and a wide range of deposits exist which contain REE bearing apatite, this is of future interest to REE sourcing [2,38]. The results from this review show that REE enriched apatite behaves similarly to non-enriched apatite, and is effected by hydroxamic acid and fatty acid in a similar way. Previous work by Filipov et al. [83] of a REE enriched apatite under micro flotation showed a high recovery with sodium oleate, similar to non REE enriched apatite. As many deposits such as Hoidas Lake, Canada and Jaquia, Brazil contain REE enriched apatite [42,47] the use of reagent regimes already well researched on apatite is very useful for mineral processing. Although apatite is most commonly enriched with LREE, which are less valuable than HREE some deposits, such as Songwe Hill, Malawi are enriched with HREE making mining more economically viable. These REE deposits could supply the future green technology.

From reviewing the previous studies of apatite there are many studies investigating the surface behaviour of apatite however few give full details of the source location, type and purity of the apatite. Of the thirty studies of natural apatite reviewed in this paper, eight did not give the species of apatite making it challenging to determine the effect of specific parameters. To be able to better compare future studies, greater detail is this area as well as more detail in the background electrolytes used is needed. More recent work goes into more detail with the methodology enabling easier comparison. The future of the field of mineral processing of enriched apatites is bright due to the increased economic viability of deposits which drives industrial research. The increased use of REE in technology such as wind turbines props the increase in exploration of deposits such as those in Hoidas Lake.

Future research into apatite surface behaviour should focus on creating synthetic samples that are more representative of minerals within mineral processing. Although many studies of synthetic apatites have been conducted, their properties do not always match the properties of natural apatite. This should be improved as manufacturing of synthetic minerals is refined. More studies of hydroxylapatite and chlorapatite is also important due to possible differences in their surface behaviour. Also recent work using attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy to indicate the bonding between mineral and reagents is particularly pertinent in improving the understanding of flotation chemistry and could be applied to enriched apatite studies [155,156].

6. Conclusion

In this review, previous research into the surface behaviour of apatite with different elemental enrichments was analyzed, bringing together a resource for future researchers in this area. The inconsistent naming of the species of apatite is also highlighted, with studies of the discredited mineral names collophane and francolite still common in the literature. 53 studies of natural apatite and 44 studies of synthetic apatite were reviewed. The iso electric points of the natural apatite studies reviewed ranged from pH 1 to pH 8.7, with the IEP of synthetic apatite IEP ranging from pH 3 to pH 8.1. When the purity of natural apatite studied was >90% the IEP value ranged from pH 3 and pH 6. These results indicate that there is a wide range of surface behaviour of apatite, which has previously been attributed to different methodologies and enrichments within the natural apatite. Comparing studies showed chlorapatite had a higher zeta potential than hydroxyapatite in natural apatite, which agrees results from synthetic chlorapatite and hydroxylapatite. This shows in flotation that chlorapatite and hydroxyapatite may behave differently.

There were four studies that compared the surface behaviour of REE element enriched apatite. Rare earth elements are important for a wide range of technologies from mobile phones to wind turbines and have been listed as critical by the European Union due to the instability in their supply chain. Apatite provides a possible source of rare earth elements for the future. The four studies of REE enriched apatites showed that the IEP value ranged between pH 3 to pH 4.2, where IEP was recorded. When synthetic apatite was doped with between 1 and 10% of europium, a rare earth element, there was little change in surface behaviour, indicating that surface behaviour does not change with enrichment or doping. However, no studies were found that investigated REE enriched apatite surface behaviour under collectors such as hydroxamates and fatty acids, which are commonly used in rare earth element flotation.

Due to the lack of zeta potential studies of REE enriched apatite under collector regimes, additional measurements were therefore conducted to investigate them. The IEP of REE enriched apatite from Brazil was measured at pH 3.6 in water conditions. The surface charge of the REE enriched apatite under hydroxamic and fatty acid conditions was highly reduced, giving a IEP of <3.5. This behaviour is similar to non-REE enriched apatite surface behaviour. Thereby indicating that REE enrichment does not affect the surface behaviour of apatite under common rare earth collectors. This implies that flotation research into
apatite could be applied to future mineral processing of REE enriched apatite. In summary, the main conclusions of this study are (1) naming practices within the literature are inconsistent, (2) methodologies and enrichment effect the surface properties of apatite, and (3) any variations in the surface properties are not evident in the processing of the minerals using standard flotation collectors.

Conflicts of interest
None.

Acknowledgements
Special thanks to Dr. Sam Broom-Fendley for supplying apatite samples used within this study, which were from Jacupiranga, Brazil. C.L. Owens thanks Dr. Broom-Fendley for his advice and guidance on REE enrichment in apatite. This research was conducted thanks to funding by the UK’s Natural Environment Research Council, United Kingdom SoS RARE Grant Agreement No. NE/M 011429/1 and Mkango Resources Ltd. Support was also provided by Kroll Institute for Extractive Metallurgy, Department of Metallurgy and Materials Engineering, Colorado School of Mines. Work could not have been conducted without collaboration between the Critical Materials Institute and the SoS RARE project. Special thanks to Hao Cui and Dylan Everly of Colorado School of Mines for support on the Microtrac Stabino equipment and XRF. Travel costs for visiting researcher collaboration provided by a Camborne School of Mines Travel Trust Grant.

Original data presented here relating to REE enriched apatite is publicly accessible at the British Geological Surveys National Geoscience Data Centre [157].

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.cis.2019.01.004.

References
[1] Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakowan J, White TJ. Nomenclature of the apatite supergroup minerals. Eur J Miner 2010;22:163.
[2] Hughes JM. Presidential address. The many facets of apatite. Am Miner 2015;100:1031.
[3] Pasteris JD. A mineralogical view of apatitic biomaterials. Am Miner 2016;101:2594.
[4] Greenwood JP, Itoh S, Sakamoto N, Vicenzi EP, Yurimoto H. Hydrogen isotope evidence for loss of water from Mars through time. Geophys Res Lett 2008:35.
[5] Normand MD, Nemchin AA. A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet Sci Lett 2014;388:387.
[6] Itozaka M, Sugiyma T, Ohno T, Wada E, Katagiri Y. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res Part B 1998;40:319.
[7] Palazzo E, Iafisco M, Laforgia M, Margiotta N, Natali G, Bianchi CL, et al. Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antimicrobial activity. Adv Funct Mater 2017;27:1180.
[8] Chen X, Jin X, Tan J, Li W, Chen M, Yao L, et al. Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing. J Colloid Interf Sci 2007;312:2180.
[9] Wall F, Swinden S, Hall M, Brown C, Beer G, Sheepeers J, et al. Mkango Resources Limited, Songwe REE Project, Malawi: Ni 43–101 Pre-Feasibility Report. Technical Report MSA Group (Pty) Ltd; 2014.
[10] Jones AP, Wall F, Williams CT. Rare earth minerals: chemistry, origin and ore deposits, 75 Springer Science & Business Media; 1995.
[11] Wall F, Rolat A, Pell RS. Responsible sourcing of critical metals. Elements 2017;13:113.
[12] Hatch CP. Dynamics in the global market for rare earths. Elements 2012;8:341.
[13] Chalkmoumdian AR, Wall F. Rare earth elements: minerals, mines, magnets (and more). Elements 2012;8:333.
[14] Hughes JM, Cameron M, Mariano A. Rare earth element ordering and structural variations in natural rare-earth bearing apatites. Am Miner 1991;76:1165.
[15] Oberti R, Ottolini L, Ventura GD, Parodi GC. On the symmetry and crystal chemistry of lithiotil: new structural and microanalytical data. Am Miner 2001;86:1006.
[16] Dawson JB, Hinton RW. Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Miner Mag 2003:67:921.
[17] Walter AV, Nahon D, Flicoteaux R, Girard JP, Melin F, Herrath A, et al. Behaviour of major and trace elements and fractionation of REE under tropical weathering of a typical apatitic rich carbonatite from Brazil. Earth Planet Sci Lett 1995;136:391.
[18] Kempe U, Götz J. Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Miner Mag 2002:66:151.
[19] Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Munns AM, et al. Rare earths and other trace elements in minerals from skarn assemblages, Hillslide iron oxide–gold–cobalt–gold deposit, Yorke Peninsula, South Australia. Lithos 2014;184:456.
[20] Horning-Jkjgaard I. Rare earth elements in sòtvitic carbonatites and their mineral phases. J Petrol 1998;39:2105.
[21] Halpin KM. The characteristics and origin of the Hoidas Lake REE deposit (MSc Dissertation). Canada: University of Saskatchewan; 2010.
[22] Pandur K, Andselli KM, Kontak DJ, Halpin KM, Creighton S. Petrographic and mineralogical nomenclature in volumes 1–50 of the American Mineralogist. Am Miner 1966:1247.
[23] Perrone J, Fournet B, Biffl E. Surface characterization of synthetic and mineral carbonatite fluoroapatites. J Colloid Interface Sci 2002;249:441.
[24] Card RA, Pufahl PK, Huett EE, Abraham MB, Roche AJD, Kyser TK. Eucalanian stomatolites and intertidal phosphorite of the salitite formation, Brazil: phosphogenesis during the neoproterozoic oxygenation event. Sediment Geol 2017;350:55.
[25] Larsen ES, Shannon EV. The minerals of the phosphate nodules from near Fairford, Utah. Am Miner 1930:15:307.
[26] Dunn PJ, Dehnrite and lewisonite: discriminated. Miner Mag 1978:42:282.
[27] Larsen ES, Shannon EV. Two phosphates from Dehnrn, dehnrite and clandalite. Am Miner 1930:15:303.
[28] Frondel C. Mineralogy of the calcium phosphates in insular phosphate rock. Am Miner 1943:28:215.
[29] Sandberger F. Ueber Isoklas und Kolloloph, zwei neue Phosphate. Adv Synth Catal 1870:2:125.
[30] Feischl M. Index of new mineral names, discriminated minerals, and changes of mineralogical nomenclature in volumes 1–50 of the American Mineralogist. Am Miner 1966:1247.
[31] Wall F, Williams CT. Rare earth minerals: chemistry, origin and ore deposits, 75 Springer Science & Business Media; 1995.
[32] Wall F, Rolat A, Pell RS. Responsible sourcing of critical metals. Elements 2017;13:113.
[33] Hatch CP. Dynamics in the global market for rare earths. Elements 2012;8:341.
[34] Chalkmoumdian AR, Wall F. Rare earth elements: minerals, mines, magnets (and more). Elements 2012;8:333.
[35] Hughes JM, Cameron M, Mariano A. Rare earth element ordering and structural variations in natural rare-earth bearing apatites. Am Miner 1991;76:1165.
[36] Oberti R, Ottolini L, Ventura GD, Parodi GC. On the symmetry and crystal chemistry of lithiotil: new structural and microanalytical data. Am Miner 2001;86:1006.
[37] Dawson JB, Hinton RW. Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Miner Mag 2003:67:921.
[38] Walter AV, Nahon D, Flicoteaux R, Girard JP, Melin F, Herrath A, et al. Behaviour of major and trace elements and fractionation of REE under tropical weathering of a typical apatitic rich carbonatite from Brazil. Earth Planet Sci Lett 1995;136:391.
[39] Kempe U, Götz J. Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Miner Mag 2002:66:151.
[40] Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Munns AM, et al. Rare earths and other trace elements in minerals from skarn assemblages, Hillslide iron oxide–gold–cobalt–gold deposit, Yorke Peninsula, South Australia. Lithos 2014;184:456.
[41] Horning-Jkjgaard I. Rare earth elements in sòtvitic carbonatites and their mineral phases. J Petrol 1998;39:2105.
[42] Halpin KM. The characteristics and origin of the Hoidas Lake REE deposit (MSc Dissertation). Canada: University of Saskatchewan; 2010.
[43] Pandur K, Andselli KM, Kontak DJ, Halpin KM, Creighton S. Petrographic and mineral chemical characteristics of the Hoidas Lake Deposit, Northern Saskatchewan, Canada: Constraints on the origin of a distinct magmatic-hydrothermal REE system. Econ Geol 2016;111:667.
[44] Kon Y, Hoshino M, Sanematsu K, Morita T, Tsunematsu M, Okamoto N, et al. Geochemical characteristics of apatite in heavy REE-rich deep-sea mud from Minamitorishima area. Southeastern Jpn Resour Geol 2014;64:47.
[45] Soltani F, Abdalhay M, Javad Koleini SM, Moradkhani D. Selection of an appropriate leaching method for light REEs from Esfordi flotation concentrate based on mineral characterization. J South Afr Inst Min Metall 2017;117:443.
[46] Nelson DG, Featherstone JDB, Duncan JF, Cutress TW. Effect of carbonate and hydroxyapatite synthesis mechanistic study in the processing of apatite concentrates using the hydroxy apatite synthesis method. Adsorpt Sci Technol 2017:35:507.
[47] Jiang K, Han Y, Ryon S. Flotation mechanism of oleic acid amine on apatite. Colloids Surf A 2017;523:127.
