Sums of the digits in bases 2 and 3

Jean-Marc Deshouillers, Laurent Habsieger,
Shanta Laishram, Bernard Landreau

November 28, 2016

To Robert Tichy, for his 60th birthday

Abstract

Let $b \geq 2$ be an integer and let $s_b(n)$ denote the sum of the digits of the representation of an integer n in base b. For sufficiently large N, one has

$$\text{Card}\{n \leq N : |s_3(n) - s_2(n)| \leq 0.1457205 \log n\} > N^{0.970359}.$$

The proof only uses the separate (or marginal) distributions of the values of $s_2(n)$ and $s_3(n)$.

1 Introduction

For integers $b \geq 2$ and $n \geq 0$, we denote by “the sum of the digits of n in base b” the quantity

$$s_b(n) = \sum_{j \geq 0} \varepsilon_j, \text{ where } n = \sum_{j \geq 0} \varepsilon_j b^j \text{ with } \forall j : \varepsilon_j \in \{0, 1, \ldots, b - 1\}.$$

Our attention on the question of the proximity of $s_2(n)$ and $s_3(n)$ comes from the apparently non related question of the distribution of the last non zero digit of $n!$ in base 12 (cf. [2] and [3]).

\[1\text{Indeed, if the last non zero digit of } n! \text{ in base 12 belongs to } \{1, 2, 5, 7, 10, 11\} \text{ then } |s_3(n) - s_2(n)| \leq 1; \text{ this seems to occur infinitely many times.}\]
Computation shows that there are $48 \, 266 \, 671 \, 607$ positive integers up to 10^{12} for which $s_2(n) = s_3(n)$, but it seems to be unknown whether there are infinitely many integers n for which $s_2(n) = s_3(n)$ or even for which $|s_2(n) - s_3(n)|$ is significantly small.

We do not know the first appearance of the result we quote as Theorem 1; in any case, it is a straightforward application of the fairly general main result of N. L. Bassily and I. Kátaı [1]. We recall that a sequence $A \subset \mathbb{N}$ of integers is said to have asymptotic natural density 1 if

$$\text{Card}\{n \leq N : n \in A\} = N + o(N).$$

Theorem 1. Let ψ be a function tending to infinity with its argument. The sequence of natural numbers n for which

$$\left(\frac{1}{\log 3} - \frac{1}{\log 4}\right) \log n - \psi(n) \sqrt{\log n} \leq s_3(n) - s_2(n) \leq \left(\frac{1}{\log 3} - \frac{1}{\log 4}\right) \log n + \psi(n) \sqrt{\log n}$$

has asymptotic natural density 1.

Our main result is that there exist infinitely many n for which $|s_3(n) - s_2(n)|$ is significantly smaller than $\left(\frac{1}{\log 3} - \frac{1}{\log 4}\right) \log n = 0.18889... \log n$. More precisely we have the following:

Theorem 2. For sufficiently large N, one has

$$\text{Card}\{n \leq N : |s_3(n) - s_2(n)| \leq 0.1457205 \log n\} > N^{0.970359}. \quad (1)$$

The mere information we use in proving Theorem 2 is the knowledge of the separate (or marginal) distributions of $(s_2(n))_n$ and $(s_3(n))_n$, without using any further information concerning their joint distribution.

In Section 2, we provide a heuristic approach to Theorems 1 and 2; the actual distribution of $(s_2(n))_n$ and $(s_3(n))_n$ is studied in Section 3. The proof of Theorem 2 is given in Sections 4.

Let us formulate three remarks as a conclusion to this introductory section.
It seems that our present knowledge of the joint distribution of s_2 and s_3 (cf. for example C. Stewart [5] for a Diophantine approach or M. Drmota [4] for a probabilistic one) does not permit us to improve on Theorem 2.

Theorem 2 can be extended to any pair of distinct bases, say q_1 and q_2: more than computation, the Authors have deliberately chosen to present an idea to the Dedicatee.

Although we could not prove it, we believe that Theorem 2 represents the limit of our method.

Acknowledgements The authors are indebted to Bernard Bercu for several discussions on the notion of “spacing” between two random variables, a notion to be developped later. They also thank the Referees for their constructive comments. The first, third and fourth authors wish to thank the Indo-French centre CEFIPRA for the support permitting them to collaborate on this project (ref. 5401-A). The first named author acknowledges with thank the support of the French-Austrian project MuDeRa (ANR and FWF).

2 A heuristic approach

As a warm-up for the actual proofs, we sketch a heuristic approach. A positive integer n may be expressed as

$$n = \sum_{j=0}^{J(n)} \varepsilon_j(n)b^j, \text{ with } J(n) = \left\lfloor \frac{\log n}{\log b} \right\rfloor.$$

If we consider an interval of integers around N, the smaller is j the more equidistributed are the $\varepsilon_j(n)$’s, and the smaller are the elements of a family $\mathcal{J} = \{j_1 < j_2 < \cdots < j_s\}$ the more independent are the $\varepsilon_j(n)$’s for $j \in \mathcal{J}$. Thus a first model for $s_b(n)$ for n around N is to consider a sum of $\left\lfloor \frac{\log N}{\log b} \right\rfloor$ independent random variables uniformly distributed in $\{0, 1, \ldots, b - 1\}$. Thinking of the central limit theorem, we even consider a continuous model, representing $s_b(n)$, for n around N by a Gaussian random variable $S_{b,N}$ with expectation and variance given by

$$\mathbb{E}(S_{b,N}) = \frac{(b - 1) \log N}{2 \log b} \text{ and } \mathbb{V}(S_{b,N}) = \frac{(b^2 - 1) \log N}{12 \log b}.$$
In particular
\[E(S_{2,N}) = \frac{\log N}{\log 4} \quad \text{and} \quad E(S_{3,N}) = \frac{\log N}{\log 3}, \]
and their standard deviations have the order of magnitude \(\sqrt{\log N} \).

Towards Theorem 1. In [1], it is proved that a central limit theorem actually holds for \(s_b \); more precisely, the following proposition is the special case of the first relation in the main Theorem of [1], with \(f(n) = s_b(n) \) and \(P(X) = X \).

Proposition 1. For any positive \(y \), as \(x \) tend to infinity, one has
\[
\frac{1}{x} \text{Card} \left\{ n < x : |s_b(n) - \mathbb{E}(S_{b,n})| < y (\mathbb{V}(S_{b,n}))^{1/2} \right\} \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-y}^{y} e^{-t^2/2} dt.
\]

Theorem 1 easily follows from Proposition 1: the set under our consideration is the intersection of 2 sets of density 1.

Towards Theorem 2. If we wish to deal with a difference \(|s_3(n) - s_2(n)| < u \log n \) for some \(u < \left(\frac{1}{\log 3} - \frac{1}{\log 4} \right) \) we must, by what we have seen above, consider events of asymptotic probability zero, which means that a heuristic approach must be substantiated by a rigorous proof. Our key remark is that the variance of \(S_{3,N} \) is larger than that of \(S_{2,N} \); this implies the following: the probability that \(S_{3,N} \) is at a distance \(d \) from its mean is larger that the probability that \(S_{2,N} \) is at a distance \(d \) from its mean. So, we have the hope to find some \(u < \left(\frac{1}{\log 3} - \frac{1}{\log 4} \right) \) such that the probability that \(|S_{2,N} - \mathbb{E}(S_{2,N})| > u \log N \) is smaller than the probability that \(S_{3,N} \) is very close to \(\mathbb{E}(S_{2,N}) \). This will imply that for some \(\omega \) we have \(|S_{3,N}(\omega) - S_{2,N}(\omega)| \leq u \log N \).

3 On the distribution of the values of \(s_2(n) \) and \(s_3(n) \)

In order to prove Theorem 2 we need
• an upper bound for the tail of the distribution of \(s_2 \),
• a lower bound for the tail of the distribution of \(s_3 \).
3.1 Upper bound for the tail of the distribution of s_2

Proposition 2. Let $\lambda \in (0, 1)$. For any
\[
\nu > 1 - ((1 - \lambda) \log(1 - \lambda) + (1 + \lambda) \log(1 + \lambda)) / \log 4
\]
and any sufficiently large integer H, we have
\[
\text{Card}\{n < 2^H : |s_2(n) - H| \geq \lambda H\} \leq 2^{2H\nu}. \tag{2}
\]

Proof. When $b = 2$, the distribution of the values of $s_2(n)$ is simply binomial; we thus get
\[
\text{Card}\{0 \leq n < 2^H : s_2(n) = m\} = \binom{2H}{m}.
\]
Using the fact that the sequence (in m) $\binom{2H}{m}$ is symmetric and unimodal plus Stirling’s formula, we obtain that when $m \leq (1 - \lambda)H$ or $m \geq (1 + \lambda)H$, one has
\[
\binom{2H}{m} \leq \frac{H^{O(1)}(2H)^{2H}}{((1 - \lambda)H)^{(1 - \lambda)H}((1 + \lambda)H)^{(1 + \lambda)H}} \\
\leq \frac{H^{O(1)}((1 - \lambda)(1 + \lambda))^{H}}{2^{(1 - ((1 - \lambda) \log(1 - \lambda) + (1 + \lambda) \log(1 + \lambda))/2 \log 2)}} 2^H.
\]
Relation (2) comes from the above inequality and the fact that the left hand side of (2) is the sum of at most $2H$ such terms. \hfill \square

3.2 Lower bound for the tail of the distribution of s_3

Proposition 3. Let L be sufficiently large an integer. We have
\[
\text{Card}\{n < 3^L : s_3(n) = \lfloor L \log 3 / \log 4 \rfloor\} \geq 3^{0.970359238L}. \tag{3}
\]

Proof. The positive integer L being given, we write any integer $n \in [0, 3^L)$ in its non necessarily proper representation, as a chain of exactly L characters, $\ell_i(n)$ of them being equal to i, for $i \in \{0, 1, 2\}$, the sum $\ell_0(n) + \ell_1(n) + \ell_2(n)$ being equal to L, the total number of digits in this representation. One has
\[
\text{Card}\{0 \leq n < 3^L : s_3(n) = m\} = \sum_{\ell_0 + \ell_1 + \ell_2 = L, \ell_1 + 2\ell_2 = m} \frac{L!}{\ell_0!\ell_1!\ell_2!}. \tag{4}
\]

\footnote{For example, when $L = 5$, the number "sixty" will be represented as 02020. Happy palindromic birthday, Robert!}
In order to get a lower bound for the left hand side of \((4)\), it is enough to select one term in its right hand side. We choose

\[
\begin{align*}
 l_2 &= \lfloor 0.235001144L \rfloor; \\
 l_1 &= \lfloor L \log 3 / \log 4 \rfloor - 2l_2; \\
 l_0 &= L - l_1 - l_2.
\end{align*}
\]

A straightforward application of Stirling’s formula, similar to the one used in the previous subsection, leads to \((3)\). \(\square\)

4 Proof of Theorem 2

Let \(N\) be sufficiently large an integer. We let \(K = \lfloor \log N / \log 3 \rfloor - 2\) and \(H = \lfloor (K - 1) \log 3 / \log 4 \rfloor + 2\). We notice that we have

\[
 N/81 \leq 3^{K-1} < 3^K < 2^{2H} \leq N. \tag{5}
\]

We use Proposition 2 with \(\lambda = 0.14572049 \log 4\), which leads to

\[
 \text{Card}\{n \leq 2^{2H} : |s_2(n) - H| \geq \lambda H\} \leq 2^{0.970359230 \times 2H} \leq N^{0.970359230}. \tag{6}
\]

For any \(n \in [2 \cdot 3^{K-1}, 3^K)\) we have \(s_3(n) = 2 + s_3(n - 2 \cdot 3^{K-1})\) and so it follows from Proposition 3 that we have

\[
\begin{align*}
 &\text{Card}\{n \in [2 \cdot 3^{K-1}, 3^K) : s_3(n) = H\} \\
 &= \text{Card}\{n < 3^{K-1} : s_3(n) = H - 2\} \\
 &= \text{Card}\{n < 3^{K-1} : s_3(n) = [(K - 1) \log 3 / \log 4]\} \\
 &\geq 3^{0.970359238(K-1)} \geq N^{0.970359237}.
\end{align*}
\]

This implies that we have

\[
 \text{Card}\{n \leq 2^{2H} : s_3(n) = H\} \geq N^{0.970359237}. \tag{7}
\]

From \((6)\) and \((7)\), we deduce that for \(N\) sufficiently large, we have

\[
 \text{Card}\{n \leq N : |s_2(n) - s_3(n)| \leq 0.1457205 \log n\} \geq N^{0.970359}. \tag{8}
\]

\(\square\)
References

[1] N. L. Bassily, I. Kátai, Distribution of the values of q-additive functions, on polynomial sequences, Acta Math. Hungar. 68 (1995), 353-361.

[2] J-M. Deshouillers, I. Ruzsa, The least non zero digit of $n!$ in base 12, Pub. Math. Debrecen 79 (2011), 395-400.

[3] J-M. Deshouillers, A footnote to The least non zero digit of $n!$ in base 12, Unif. Distrib. Theory, 7 (2012), 71-73.

[4] M. Drmota, The joint distribution of q-additive functions, Acta Arith. 100 (2001), 17-39.

[5] C. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 6372.

Addresses

Jean-Marc DESHOULLERS
jean-marc.deshouillers@math.u-bordeaux.fr
Bordeaux INP, Université de Bordeaux, CNRS
Institut Mathématique de Bordeaux, UMR 5251
33405 Talence, France

Laurent HABSIEGER
habsieger@math.univ-lyon1.fr
Université de Lyon, CNRS UMR 5208, Université Claude Bernard Lyon 1,
Institut Camille Jordan
69622 Villeurbanne Cedex, France

Shanta LAISHRAM
shanta@isid.ac.in
Indian Statistical Institute
7 SJS Sansanwal Marg
110016 New Delhi, India

Bernard LANDREAU
bernard.landreau@univ-angers.fr
Université d’Angers, CNRS
LAREMA Laboratoire Angevin de REcherche, UMR 6093, FR 2962
49045 Angers, France

Key words: sums of digits, expansion in bases 2 and 3

AMS 2010 Classification number: 11K16