Fast Multi-Scale Community Detection based on Local Criteria within a Multi-Threaded Algorithm

Erwan Le Martelot
Department of Computing
Imperial College London
London SW7 2AZ, United Kingdom
e.le-martelot@imperial.ac.uk

Chris Hankin
Department of Computing
Imperial College London
London SW7 2AZ, United Kingdom
c.hankin@imperial.ac.uk

December 11, 2013

Abstract

Many systems can be described using graphs, or networks. Detecting communities in these networks can provide information about the underlying structure and functioning of the original systems. Yet this detection is a complex task and a large amount of work was dedicated to it in the past decade. One important feature is that communities can be found at several scales, or levels of resolution, indicating several levels of organisations. Therefore solutions to the community structure may not be unique. Also networks tend to be large and hence require efficient processing. In this work, we present a new algorithm for the fast detection of communities across scales using a local criterion. We exploit the local aspect of the criterion to enable parallel computation and improve the algorithm’s efficiency further. The algorithm is tested against large generated multi-scale networks and experiments demonstrate its efficiency and accuracy.

Keywords: community detection, local criterion, multi-scale, fast computation, large networks, parallel computation, multi-threading

1 Introduction

Social interactions, Internet, telephone networks, power grids, transportation networks, protein interactions, all have in common that they can be represented and studied as graphs, or networks [12]. Network science grew to become a wide-reaching field where advances impact many others fields. In the past decade the field of community detection attracted a lot of interest considering community structures as important features of real-world networks [3]. Commonly, community detection refers to finding groups of nodes more densely connected internally than externally. As opposed to clustering methods which commonly involve a given number of clusters, communities are usually unknown, can be of unequal size and density, and can be hierarchical [3, 10]. Finding communities can provide information about the underlying structure of a network and its functioning. It can also be used as a more compact representation of the network, for instance for visualisations.

Techniques to uncover communities may consider the network as a whole (global perspective) or may explore smaller areas progressively through their neighbourhoods (local perspective). Usually global techniques run faster but impose crisp boundaries while local techniques are slower
but allow overlapping communities. Also scale parameters can be used to bias the detection towards clusters of various sizes. Community detection can therefore be approached in several ways. This resulted in the creation of various methods to address the problem [3, 11]. In general, community detection methods use a criterion to rank communities and an optimisation algorithm to process the data. These criteria consider either a global or a local perspective. The algorithms often rely on heuristics in order to process the data in a reasonable amount of time. Indeed the division into communities of a network is an NP-hard task [3] and datasets in real-world problems are often large. Therefore a significant emphasis must be put on producing algorithms with a low complexity. Also networks often have several levels of organisation [17], leading to different relevant communities at various scales (or resolutions). Accurate community detection in a network therefore implies uncovering communities at identified scales of relevance.

Recently [8] addressed this issue and introduced a method for the efficient detection of communities across scales on large networks. This method was implemented by two algorithms, respectively designed for global and local criteria. Both algorithms can handle large graphs, with only the local criteria one enabling overlapping communities. Yet the local criteria algorithm has a greater complexity, polynomial, compared to the global criteria algorithm which has a linear complexity. Therefore the performance of the local criteria algorithm is significantly inferior to the performance of the global criteria one and its scalability is reduced. While enabling overlapping communities increases the complexity of the task it would still be desirable to reach a scalability comparable to the one of the global criteria algorithm.

To address this we focus in this work on the local criteria approach and present an algorithm implementing the method from [8] with an improved efficiency. The algorithm also exploits features of local criteria to enable multi-threading at its core.

The following section reviews the relevant contributions found in the literature. Then our new algorithm is presented. It is followed by experiments performed on large networks and conclusions.

2 Background

In the recent years several multi-scale criteria and associated methods to uncover communities across scales on large networks. This method was implemented by two algorithms, respectively designed for global and local criteria. Both algorithms can handle large graphs, with only the local criteria one enabling overlapping communities. Yet the local criteria algorithm has a greater complexity, polynomial, compared to the global criteria algorithm which has a linear complexity. Therefore the performance of the local criteria algorithm is significantly inferior to the performance of the global criteria one and its scalability is reduced. While enabling overlapping communities increases the complexity of the task it would still be desirable to reach a scalability comparable to the one of the global criteria algorithm.

To address this we focus in this work on the local criteria approach and present an algorithm implementing the method from [8] with an improved efficiency. The algorithm also exploits features of local criteria to enable multi-threading at its core.

The following section reviews the relevant contributions found in the literature. Then our new algorithm is presented. It is followed by experiments performed on large networks and conclusions.
of starting from scratch. To deal with small variations as well as larger variations between successive sets of communities, the method uses two phases. One phase performs subtle changes at the node level. The second phase performs coarser operations at the community level. These phases alternate until no further refinement is possible for a given scale parameter. Then the method uses the current outcome as a starting point for the next scale. The first phase of subtle changes is performed using a growth function that expands communities until no further improvement of the criterion can be made. The larger change phase merges communities that overlap significantly, thus reducing the amount of communities while maintaining their integrity.

Initially the method was implemented for two local criteria: the criterion from Lancichinetti et al. [7] and the the criterion from Huang et al. [5]. However experiments showed that the criterion from [7] was more efficient and faster to optimise. We therefore chose here to reuse this criteria. In [7] the authors introduced the fitness of a community c

$$f_c = \frac{k^n_c}{(k^n_c + k^o_n)^\alpha}$$

and then test whether a node i should join a community c by computing the fitness of i with respect to c as

$$f_{i}^{c} = f_{c+i} - f_{c-i}$$

The parameter α sets the scale of the method. Large values of α lead to small communities while small values lead to large ones. We will hereafter call this fitness function the LFK criterion.

The criterion is used in the growth phase. The idea for growing communities is to start from an initial node called seed or from an existing community and then grow the community by successively adding neighbour nodes that improve the criterion value until no node can be added. Candidate nodes for joining the community are considered in order using a max priority queue with ranking factor $\frac{2d_{in}}{(d_{in} + d_{out})^\alpha}$ to rank nodes, where d_{in} is the sum of edge weights from a node to a community and d_{out} the remaining edge weights of the node. Once all possible nodes have been added, the algorithm checks whether the member nodes of the community still contribute to the criterion improvement. If they no longer do, they are removed. The growth algorithm is given in Algorithm 1.

Algorithm 1 Fast method from [8] to grow a community c using the criterion from [7].

1: Create neighbour nodes max priority queue using factor $\frac{2d_{in}}{(d_{in} + d_{out})^\alpha}$
2: while priority queue is not empty do
3: Pick first node n
4: if n improves Q_{c} then
5: Add n to c
6: Update or add in priority queue neighbours of n not in c
7: end if
8: end while
9: if a node has been added then
10: while Number of iterations $< k$ do
11: for all nodes n in c do
12: Recompute $Q_{c \setminus n}$
13: if $Q_{c \setminus n} > Q_c$ then
14: n is removed from c
15: end if
16: end for
17: Exit while loop if no node could be removed
18: end while
19: end if
Regarding the merging phase, local criteria are not suitable. They are designed to consider the addition or removal of nodes to a community in order to perform a growth process. They are not designed to assess larger operations such as the merging of several communities. Therefore the second phase merges communities if they overlap significantly. As communities grow independently from one another in the first phase, some may overlap. The overlap ratio for merging is controlled by a threshold η. Two communities C_1 and C_2 are merged if

$$\max\left(\frac{|C_1 \cap C_2|}{|C_2|}, \frac{|C_1 \cap C_2|}{|C_1|}\right) \geq \eta.$$

($|C|$ refers to the cardinality of C.) By default $\eta = 0.5$ so a community merges into another one if at least half of the nodes belong also to the other one.

Parallel computing has also recently been used for community detection. In [15] the authors presented a crisp community detection algorithm for the optimisation of modularity or conductance. Their implementation enables fast computation but relies on specific hardware with massive parallelism and is therefore not easily portable. Another approach using parallel computation was presented in [18]. The authors present an algorithm based on the label propagation algorithm [13] using GPGPU. Their experiments demonstrate the speed efficiency of their approach. These two approaches provide good insights into the usage of parallelism in community detection methods, yet they are more focussed on parallelism than usability and accuracy. Also both approaches ignore the multi-scale aspect of communities in real-world data.

In this work we design a new algorithm following the steps of the method from [8]. However we add a focus on parallelism to speed up the algorithm while making it usable by any user. The algorithm is designed to exploit the parallelism offered by the multi-core architecture present in most recent computers.

3 Algorithm

Local approaches have the advantage of only working with local information. Each area of interest in a network can thus potentially be explored independently from others. This distribution of tasks suits a parallel computation approach. Therefore we present a new algorithm implementing the method from [8] and making extensive use of parallel computation. The pseudo-code is given in Algorithm 2.

The algorithm is initialised with a set of nodes called seeds that will form the initial communities. Note that precomputed communities can also be given instead. Seeds are selected randomly from a candidate set, removed from it and added to the seed set. All the neighbours of this seed are then removed from the set of remaining seed candidates. This prevents starting different communities from neighbour nodes which would very likely result in similar communities and hence waste computing resources. A second rule can consider discarding also the neighbours of neighbours and thus guarantees a minimum of two intermediate nodes between two seeds. As each seed will be a community to process the number of seeds chosen initially impacts the runtime of the algorithm. Therefore reducing the number of seeds is important. However it may also reduce the accuracy of the algorithm.

Once communities have been initialised the algorithm begins its loop through all scale parameters. For each scale, while changes can be made the algorithm keeps analysing the current scale. The implementation from [8] follows two phases. In the first one communities are grown. In the second one significantly overlapping communities are merged. We keep these two phases here with some modifications. First communities are grown in parallel. When a community is modified it is then added to a list of communities to check for merging. The second phase consists of the checking and merging steps. All the communities on this check list are processed in parallel to find whether they overlap beyond a merging threshold. When two communities overlap enough the pair is added to a merge list. Finally the merge list is processed. All pairs
Algorithm 2 Parallel multi-scale community detection algorithm for local criteria.

1: if a set of initial communities is given in input then
2: Set it as the current set of communities
3: else
4: Initialise all nodes with a least 2 connections as potential seeds: seedset = set of all seeds
5: while seedset is not empty do
6: Initialise new community c with a seed n
7: Remove from seedset the seed n and all its neighbours
8: if second seed rule applies then
9: Remove from seedset the neighbours of neighbours of n
10: end if
11: end while
12: end if
13: for all scale parameters p do
14: while changes can be made do
15: Reinitialise the list of node membership sets memsets
16: Split the set of communities into t distinct subsets and launch t threads
17: for all communities c in the thread subset do \(\implies\) Running in each thread
18: Grow c according to the criterion tuned by p
19: if c changed then
20: Add c to the set C_C of communities to check for merging
21: end if
22: end for
23: Split the set of communities to check C_C into t distinct subsets and launch t threads
24: for all communities to check c in the thread subset do \(\implies\) Running in each thread
25: Initialise for each community a counter count of nodes shared with c
26: for all nodes n in c do
27: for all communities c_n in memsets[n] do
28: Increment count[c_n]
29: if count[c_n] reaches the merging threshold then
30: Add the pair of communities (c, c_n) to the set of communities to merge C_M
31: Exit loop for current community c
32: end if
33: end for
34: end for
35: end for
36: while the set of communities to merge C_M is not empty do
37: Split in t distinct subsets the pairs that have no community overlap
38: Remove the pairs from C_M
39: Launch t threads
40: for all pair of communities (c_1, c_2) in the thread subset do \(\implies\) Running in each thread
41: Merge communities into c_1
42: All references to c_2 on the merge set are renamed c_1
43: end for
44: end while
45: end while
46: Store community set and Q for p
47: end for
48: return Community sets and associated Qs

that have no community in common are merged in parallel. Then references are updated in the remaining communities to merge (e.g. if c_2 merged in to c_1, references to c_2 are renamed c_1) and the parallel merging process is repeated until all pairs of communities have been merged.

Regarding the growth function, in order to prevent the growth of communities already overlapping significantly with others we added a test at the beginning of the growth function from Algorithm 1. The test checks the amount of shared nodes with each overlapping communities. If an overlap reaches the merging threshold then the growth function returns such that Algorithm 2 on lines 19 to 21 adds the community to the list of communities to check for merging.
The community still requires further checking as after all communities have been grown, their structure may have changed and the merging may no longer be required.

The community memberships are maintained and updated in a list of membership sets. Each node has its own community membership set. These sets are updated each time a node is added to a community or removed from one. As several growth functions run simultaneously the memberships may be requested concurrently for reading and writing. Therefore we implemented these membership sets as atomic sets using the readers-writers problem solution with priority to writers (second R/W solution) from [2]. The modified growth function we use here is given in Algorithm 3.

Algorithm 3 Modified growth function.

1: Initialise shared node counter for communities to 0
2: for all nodes n in the community do
3: Get community membership of n from membership atomic set memset[n]
4: for all communities c of n do
5: if c is not the current community being grown then
6: Increment the node counter for c
7: if the counter for c reaches the merge threshold then
8: Return true (for Algorithm on lines 19-21)
9: end if
10: end if
11: end for
12: end for
13: Create neighbour nodes max priority queue using factor \(\frac{2 \cdot d_{in}}{(d_{in} + d_{out})^n} \)
14: while priority queue is not empty do
15: Pick first node n
16: if n improves \(Q_c \) then
17: Add n to c
18: Add c to memset[n]
19: end if
20: end while
21: if a node has been added then
22: while Number of iterations < k do
23: for all nodes n in c do
24: Recompute \(Q_c \cap n \)
25: if \(Q_c \cap n > Q_c \) then
26: n is removed from c
27: end if
28: Remove c from memset[n]
29: end if
30: end for
31: end while
32: exit while loop if no node could be removed
33: end if

In the growth process, we reused the local criterion (LFK) from [7] based on the results from [8]. Any other local criterion could be used though.

Complexity Analysis: The seeds initialisation run in \(O(n \cdot d) \) where \(n \) is the number of nodes and \(d \) the average degree of a node. Using the second seed rule it runs in \(O(n \cdot d^2) \). Then the algorithm runs through all scale parameters \(p \). This number of parameters being small in front of \(n, p \) does not affect the overall complexity. For each parameter the algorithm loops as long as changes can be made, which enables the alternation of the growth and the merging phases. In practice this loop is repeated only a few times. The reinitialisation of the membership list is done in \(O(n) \) by scanning through all nodes in all communities. Preparing the additional data needed by the threads is done in constant time.
The complexity of the growth process is difficult to evaluate. The first phase testing the overlapping with other communities runs in $O(n_k \cdot n_c \cdot r)$ where n_k is the average community size for a given scale, n_c is the number of communities and r represents the ratio of overlapping communities. If this ratio is low, it runs in $O(n_k)$. The creation of the priority queue is done in $O(n_k \cdot d)$. Note that the direct access to the set of neighbour nodes of a community requires the maintenance of a neighbours set structure for each community. This maintenance requires a few additional operations during the growth process. Then for all nodes n_k in the queue, the LFK criterion is calculated iterating through the d edges (on average) of each node. If a node is added the queue is amended in up to $O(d^2)$ as each neighbour of the added node may be added to the queue and iterating through its edges is required to compute the ranking factor. Therefore this part runs in up to $O(n_k \cdot d^2)$. As in practice not all nodes are added the complexity is lower. The final set of loops checking whether a node should still belong to the community is performed in practice only a few times. The inner loop iterates through the n_k nodes and computes the criterion value of the node in d steps. If the node is removed, up to $O(d^2)$ operations are needed to update the set of neighbours. Therefore this part also runs in $O(n_k \cdot d^2)$ but again, in practice, not all neighbours are removed. The growth process therefore runs between $O(n_k \cdot d)$ and $O(n_k \cdot d^2)$ for each community. A quick sort at the end of the function is used to keep the community nodes sorted. This operation has a complexity of $O(n_k \cdot \log(n_k))$. As this remains in the scale of the previous complexity ranges, it will be ignored.

The complexity of the checking and merging parts may vary. Checking if two communities overlap significantly is done in linear time, as well as merging them. The theoretical worst case is when all communities are checked against all the other communities, in which case the complexity reaches $O(n_k^2 \cdot n_k)$. In practice communities are only checked against their neighbour communities, bringing the complexity to $O(n_k \cdot n_k)$. The worst case for merging is when a community merges with all the others successively which could reach $O(n_k \cdot n_k)$. This however can only happen at some specific scales when a mega community suddenly forms by absorbing the other communities. As this result (i.e. all nodes in one community) is not relevant to a community structure analysis it can be discarded. The merging is most cases consists in merging in linear time a set of pairs of communities. It is therefore expected to run with a complexity close to linear.

Overall the growth process is the part with the greatest complexity, running with a complexity between $O(n_k \cdot d)$ and $O(n_k \cdot d^2)$. Over all the communities $n_k \cdot n_c \geq n$ as $n_k \cdot n_k = n$ when there is no overlap. Therefore $n_k \cdot n_c \cdot d \geq m$, with m the number of edges. It gives an overall complexity in $\Omega(m)$ which represents the lowest bound when there is no overlap during computation. In practice growing communities are expected to overlap and to potentially merge. Therefore the overlapping feature is used throughout the algorithm. Yet the overlapping is limited to a certain ratio and makes some nodes and edges processed more than once. It is thus expected to increase the constant factor only. We can therefore expect a linear complexity with respect to the number of edges.

Also throughout these operations described above some instructions operating on data structures (e.g. sets implemented as red-black trees) have a complexity of $\log(n_k)$. As a result the overall complexity may be slightly super linear with an additional \log factor.

4 Experiments

This section presents experiments that were performed to assess our algorithm. A dedicated implementation was coded in C++ (using C++11)\footnote{The code developed for this work is available for download from \url{http://www.elemartelot.org}} All experiments were run under MacOS X.
10.7.4 on a desktop computer iMac 3.06GHz Intel Core i3 with 4GB of RAM. The machine has 4 cores. Our implementation by default launches as many threads as there are cores. Therefore for these experiments it launches at most 4 threads for growth, checking and merging (see Algorithm 3).

In order to test the algorithm’s performance and perform a comparative analysis of the criteria we used the benchmark from Lancichinetti et al. [6] that was designed to provide networks with communities at both micro and macro scales and encompassing properties found in real-life networks.

Regarding the scale parameters, we use a logarithmic sampling of the scale values within the interval of relevance to each criterion. The scale sampling is given by

\[\text{Values} = V_{\text{min}} + (A - V_{\text{min}}) \cdot \frac{1 - \log([1 : 1 : X])}{\log(X)} \]

where X is the number of values we want in the sample, \([1 : 1 : X]\) the vector of values between 1 and X incremented by 1 between each value. The formula returns a vector of X sample values within the interval \([V_{\text{min}}, A]\) with values around \(V_{\text{min}}\) close to each other and then progressively spreading out towards \(A\).

The information change between community sets is measured using the normalised mutual information (NMI) for overlapping communities from [7] which is an alternative definition to the one from [4]. To analyse how much change there is between successive community sets we measure the NMI averaged over \(p\) successive scales. We use \(p = 3\) and \(p = 5\) in our experiments. A short range reveals a potentially short consistency between community sets while a longer range reveals longer consistencies. The longer the consistency the more robust to scale variation a community set is, and the more confidence we can have in the relevance of the set.

4.1 Accuracy

In this sets of experiments we compare the accuracy of the initial LFK algorithm from [8] with our new algorithm designed for multi-threading. We use three setups for our new algorithm. The first setup is the default setup using multi-threading (4 threads on our machine). The second one uses only one thread in order to assess the algorithm in a non multi-threaded environment. The third setup uses multi-threading but initialises the seeds with the second rule (not allowing neighbours of neighbours of seeds to be seeds). Figure 1 shows the results of the multi-scale analysis on a generated network with \(10^4\) nodes, about \(10^5\) edges, \(\mu_1 = 0.05\) and \(\mu_2 = 0.2\). Therefore 5% and 20% of the edges belonging respectfully to the macro and micro communities point outside their communities.

Overall the micro and macro communities are well detected by all setups. The new algorithm, whether using multi-threading or just one thread, detects well the micro and macro communities. However we can observe on Figure 1(d) that the setup using the second seed rule detects the micro communities with less accuracy. This is visible on the NMI with the reference communities plot where the NMI value peak (around scale 0.75) is lower for the micro-communities than the same peak for the other setups. Similarly the NMI across successive communities peaks at a lower height than with the other setups. Hence while there is a detection of micro-communities between scales 0.7 and 0.8, the second seed rule version is less confident in its detection (NMI across community sets) and indeed less accurate (NMI with reference communities) than the other setups. The detection of macro communities is however as accurate as with the other setups. As the selection of seeds is coarser, the analysis at a micro scale may then be coarser, hence a less accurate detection in micro-communities and a similar accuracy for macro communities.
Figure 1: Result analysis along the scale parameter using a generated network with $n = 10^4$ nodes, $m \approx 10^5$, $\mu_1 = 0.05$ and $\mu_2 = 0.2$. The top plot indicates the number of communities uncovered with the two intended community set’s size shown in black straight lines. The second plot shows the averaged NMI between successive uncovered sets of communities: 3 in (red) full and 5 in (blue) dashed. The third plot shows the NMI with the two intended partitions: in (red) full the micro communities and in (blue) dashed the macro communities. The results are presented for (a) the new algorithm, (b) the initial algorithm from [8], (c) the new algorithm using only one thread, and (d) the new algorithm using the second seed rule.

The same experiment is repeated setting $\mu_1 = 0.2$ and $\mu_2 = 0.4$. Therefore there is significantly more noise in the communities: 20% and 40% of the edges belonging respectfully to the macro and micro communities point outside their communities.

On Figure 2 we first observe that the initial algorithm from [8] does not detect any community set. Indeed the number of communities suddenly drops from several hundreds to only one. This suggests that all communities suddenly merged into one at a given scale parameter value. This algorithm indeed checks all possible combinations of communities to merge at each merging step. Even though this can provide a better accuracy in ensuring that all communities overlapping significantly are properly merged, it can also lead to the premature emergence of a mega community, thus missing relevant divisions. The new algorithm presented in this work avoids this drawback by only allowing communities that have grown to be checked for merging. This means that if a community has not grown, it cannot join another community. Another community that was grown can join it though.

The next observation is that the new algorithm clearly detects the macro communities with
Figure 2: Result analysis along the scale parameter using a generated network with $n = 10^4$ nodes, $m \approx 10^5$, $\mu_1 = 0.2$ and $\mu_2 = 0.4$. The top plot indicates the number of communities uncovered with the two intended community set’s size shown in black straight lines. The second plot shows the averaged NMI between successive uncovered sets of communities: 3 in (red) full and 5 in (blue) dashed. The third plot shows the NMI with the two intended partitions: in (red) full the micro communities and in (blue) dashed the macro communities. The results are presented for (a) the new algorithm, (b) the initial algorithm from [8], (c) the new algorithm using only one thread, and (d) the new algorithm using the second seed rule.

Finally it is noteworthy that the micro-communities are not detected by any method. Experiments show that the technique based on this criterion is not very resistant to noise. This is consistent with the results from [8] that showed that global criteria approaches cope better with noise than local approaches (within the scope of the criteria under study).

To investigate further the accuracy of the algorithms based on the amount of noise introduced in the communities, the algorithm has been run on various networks varying the values of μ_1 and μ_2. These results are summarised below in Table 1.
Table 1: Scale parameter range where the macro and then micro communities were spotted. Clearly identified ranges use the interval notation [], values of interest with no clear stable range but a clear NMI peak (weak detection) are given using the notation () and the empty set denotes no detection of the community scale. The first network’s results are shown in Figure 1 and the third network’s results are shown in Figure 2.

Criteria	$\mu_1 = 0.05$, $\mu_2 = 0.2$	$\mu_1 = 0.05$, $\mu_2 = 0.3$	$\mu_1 = 0.2$, $\mu_2 = 0.4$	$\mu_1 = 0.3$, $\mu_2 = 0.4$
LFK2	[0.44,0.58] [0.7,0.8]	[0.39,0.80] (0.85,0.95)	[0.75] 0	0 0
LFK2 1th	0.44,0.58 [0.7,0.8]	0.44,0.80 (0.9,0.95)	0.76,0.71 0	0 0
LFK2 sr2	0.44,0.58 [0.7,0.8]	[0.39,0.70] (0.9)	(0.72) 0	0 0
LFK	0.44,0.58 [0.7,0.8]	[0.44,0.76] (0.9,1.0)	0 0	0 0

4.2 Speed Performance and Memory Usage

To assess the scalability of our algorithm we used networks with between 10^4 and 10^7 edges generated with $\mu_1 = 0.1$ and $\mu_2 = 0.2$. We also set $V_{min} = 0.5$ and $A = 1$. Indeed, if we consider Figure 1 and the results from Table 1 all the relevant detection is done by $\alpha = 0.5$ and lower scale values have either the same set of communities or one community. Somewhere between 0.4 and 0.5, all communities merge into one. Such a set of operations may become sequential with the creation of a mega-community absorbing others and is of limited interest to assess parallel computation. Therefore we run the speed experiments on scales where a significant amount of communities co-exist and where parallel computation can take place. The results are presented in Figure 3(a).

We can observe that our new algorithm runs with a linear complexity, as expected from the complexity study, while the initial algorithm from [8] runs with a polynomial complexity. Therefore our new algorithm can process a network of 10^7 edges over 100 scales in about 7 minutes. Using only one thread the same network can be processed in about 12 minutes. The algorithm can therefore run very efficiently on mono-processor machines. Finally the version of our new algorithm using the second seed rule runs even faster and can process the same network in about 5 minutes. This result is comparable to and even faster than the fastest result obtained in [8] with the global algorithm which does not allow for overlapping communities. Our new algorithm thus brought the local criterion based algorithm with overlapping communities to the same complexity and efficiency as the global criterion algorithms.

Memory usage is also measured and given in Figure 3(b). The larger the networks, the more memory needed to store them and any related data structure the algorithm requires. We expect and can observe a usage growing linearly with the network size. The new algorithm requires a bit of additional memory compared to the one from [8] due to the threads data structures. We also observe that the version of the algorithm using the second seed rule consistently uses less memory than the version using the regular seed rule. As the number of communities to grow is reduced, the amount of memory needed is lessened.

5 Conclusion

In this paper we presented an algorithm for the fast detection of communities across scales using a local criterion. This work is based on previous work [8] which introduced a method for the fast multi-scale detection of communities. The method was implemented into two algorithms: one designed for global criteria and one designed for local criteria. However the local criteria
implementation was significantly less efficient than the global criteria implementation. Indeed the local criteria based implementations allow communities to overlap which increases the complexity of the task. In this work we addressed this issue by introducing a new algorithm based on the method from \cite{8} and designed for multi-threading. Complexity analysis showed that the new algorithm is expected to run with linear complexity, as opposed to the initial algorithm that exhibits polynomial complexity. Experiments corroborated this theoretical result and demonstrated the improved efficiency but also accuracy of the new algorithm over the algorithm from \cite{8}. Experiments also showed that the algorithm remains very efficient without using parallelism (i.e. running a single thread). The addition of threads hence lowers the overall running time. It is expected that a largely parallel architecture can enable significant speed-ups. Also two initialisation rules were suggested for the creation of the initial communities. The first rule leads to the best accuracy while the second rule may sacrifice a bit of accuracy, particularly when communities have many edges pointing outside (e.g. a lot of noise), for an improved efficiency. Using the second seed rule our algorithm runs faster than the fastest global criterion algorithm from \cite{8}, making it the fastest implementation of the fast multi-scale community detection method.

Acknowledgements
This work was conducted as part of the Making Sense\cite{2} project financially supported by EPSRC (project number EP/H023135/1).

References
[1] Alex Arenas, Alberto Fernandez, and Sergio Gomez. Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10:053039, Jan 2008.

[2] Pierre J. Courtois, F. Heymans, and David L. Parnas. Concurrent control with “readers” and “writers”. Communications of the ACM, 14(10):667–668, October 1971. ISSN 0001-0782.

[3] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010. ISSN 0370-1573.

Making sense project: \url{http://www.making-sense.org}
[4] Ana L. N. Fred and Anil K. Jain. Robust data clustering. *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 2:128–133, 2003. ISSN 1063-6919.

[5] Jianbin Huang, Heli Sun, Yaguang Liu, Qinbao Song, and Tim Weninger. Towards online multiresolution community detection in large-scale networks. *PLoS ONE*, 6(8):e23829, 08 2011.

[6] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. *Physical Review E*, 80(1):016118, 2009.

[7] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping and hierarchical community structure in complex networks. *New Journal of Physics*, 11(3): 033015, 2009.

[8] Erwan Le Martelot and Chris Hankin. Fast multi-scale detection of relevant communities in large scale networks. *The Computer Journal*, 2013.

[9] Erwan Le Martelot and Chris Hankin. Multi-scale community detection using stability optimisation. *The International Journal of Web Based Communities (IJWBC)* Special Issue on Community Structure in Complex Networks, 9(3), 2013.

[10] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Statistical properties of community structure in large social and information networks. In *Proceeding of the 17th international conference on World Wide Web*, WWW ’08, pages 695–704, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-085-2.

[11] Jure Leskovec, Kevin J. Lang, and Michael Mahoney. Empirical comparison of algorithms for network community detection. In *Proceedings of the 19th international conference on World wide web*, WWW ’10, pages 631–640, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8.

[12] Mark E. J. Newman. *Networks, an Introduction*. Oxford University Press, 1st edition, 2010.

[13] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to detect community structures in large-scale networks. *Physical Review E*, 76:036106, Sep 2007.

[14] J. Reichardt and S. Bornholdt. Statistical mechanics of community detection. *Physical Review E*, 74(1 Pt 2):016110, July 2006. ISSN 1539-3755.

[15] E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A. Bader. Parallel community detection for massive graphs. In *10th DIMACS Implementation Challenge - Graph Partitioning and Graph Clustering*. Atlanta, Georgia, February 2012.

[16] Peter Ronhovde and Zohar Nussinov. Local resolution-limit-free Potts model for community detection. *Physical Review E*, 81(4):046114, April 2010.

[17] Herbert A. Simon. The architecture of complexity. *Proceedings of the American Philosophical Society*, 106(6):467–482, December 1962.

[18] J. Soman and A. Narang. Fast community detection algorithm with gpus and multicore architectures. In *Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International*, pages 568 –579, may 2011.