Synthesis, Spectral Characterization, Computational Revisions, Toxicology Studies In Addition To Biotic Studies of O-Phenylenediamine Based Schiff Base and Its Transition Metal Complexes

Kalichamy Indra¹*, Arulannandham Xavier¹, Balasundaram Harinathan²
1. Department of Chemistry, The Madura College, Madurai-625011, Madurai Kamaraj University, Tamil Nadu, India.
2. Department of Microbiology and Biotechnology, NMSSVN College, Madurai-625021. Madurai Kamaraj University, Tamil Nadu, India.

ABSTRACT

(E)-2-(1-((2-aminophenyl)imino)ethyl)phenol (APIEP) was charity in place of a ligand in lieu of the synthesis of a succession of metallic multiplexes, wherever the metals were Ni(II), Fe(III) and Zn(II). The structural sorts of the ligand in addition to the contrived multiplexes remained characterized by means of numerous spectral as well as diagnostic practices. FT-IR spectra exhibited that the liberty ligand APIEP accomplishes by means of tridentate with hydroxyl, amine and imine moiety were co-ordination sites to all the metal ions. The FT-IR stretching frequency for the above co-ordination sites were varied after co-ordination with Ni(II), Fe(III) then Zn(II) metallic salts. The metallic complexes exhibits octahedral geometry, it was confirmed by spectral techniques. Natal activities of the ligand APIEP voguish accumulation en route on behalf of its multiplexes have remained verified against anti-oxidant and anti-microbial strains. All the metallic multiplexes partake superior biotic doings than the free APIEP. The computational analysis like biological activity prediction, cell line cytotoxicity, acute rate toxicity, environmental toxicity and docking of the samples were done with online software and commercial docking software.

Keywords: O-phenylenediamine, 2-hydroxy acetophenone, metal complexes, computational studies, toxicology, biological activities.

*Corresponding Author Email: keerthixavi1968@gmail.com
Received 28 July 2020, Accepted 07 August 2020
INTRODUCTION

The study of metals bioaccumulation as well as its associations for human health were plentiful miscellaneous usages then performance an imperative protagonist voguish the industry-dominated humanoid civilization. Certain metals have disapprovingly significant physical as well as biochemical roles voguish biotic systems plus whichever their deficit otherwise surplus can lead en route for riot of metabolic rate and consequently in the direction of innumerable syndromes. Quite a few metals in addition to metalloids were indispensable in lieu of (natal) life expectancy. They performance vital physiological as well as biochemical protagonists voguish the body as they might perhaps remain a portion of biomolecules such as enzymes, which catalyze biochemical responses voguish the body 1.

Transition metallic multiplexes were thriving renowned in lieu of their propensity en route for intermingle by means of DNA foremost en route for the rupture of this biomolecule 2-4. Multiplexes partaking the azomethine functional clutch (—CH=N—), which were notorious as Schiff bases, were of prodigious reputation voguish copious arenas such as the therapeutic as well as pharmaceutical turfs owing en route for their existence resourceful organic imitation intermediates because of their structural variety and simplicity in their synthesis 5-8. This sequences of compounds furthermore march a sweeping array of biological endeavors, such as anti-tuberculosis, anti-cancer, analgesic, anti-inflammatory, anti-convulsant, anti-bacterial and anti-fungal accomplishments. Furthermore, Schiff bases bring about as of copious heterocycles have remained stated en route for retain cytotoxic, anti-convulsant, anti-proliferative, anti-microbial and anti-cancer activities 9-12. Heterocycles devouring nitrogen, sulfur in addition to thiazole moieties establish the core structure of a number of in nature fascinating compounds. Mono- in addition to di- azomethine Schiff base chelates of heterocyclic derivatives devour augmented improved attentiveness voguish the framework of bio-inorganic chemistry 13.

It was well known that some co-ordination compounds may inhibit cancer cell multiplication due to binding and damage to cancer DNA 2, 4, 14. It was requisite en route for pattern metallic multiplexes by way of a reduced amount of lethal, target-peculiar as well as spending non-covalent binding modus in the direction of DNA 15. Conflicting intercalators, groove binders inevitability partake springy structures 16. DNA (Deoxyribo Nucleic Acid) straighten effectiveness of the metallic multiplexes takes stayed comprehensively deliberate towards pinpoint their impending as anti-cancer medications 17-18.

In this work (E)-2-(1-((2-aminophenyl)imino)ethyl)phenol(APIEP) and its Ni(II), Fe(III) in addition to Zn(II) complexes have been synthesized from O-phenylenediamine with 2-hydroxy
acetophenone and their structural description was done using spectrometric approaches like UV-Vis, FT-IR, 1H-NMR, 13C-NMR, ESI-MS in addition EPR spectroscopy approaches. Anti-oxidant study was done for the prepared samples with DPPH as a control as well as ascorbic acid as the standard. The anti-bacterial activities of compounds have intentional in contradiction of the species like Escherichia-coli and Staphylococcus aureus in mutually the positive control and negative control by using well diffusion method. The anti-fungal studies contrary to Candida albicans (227), Penicillium chrysogenum or P. notatum (formerly) (160) by means of Clotrimazole maintained as a standard. The molecular docking studies were carried out against EGFR kinase (5GTY) further tyrosine kinase (4O75), which were apt oncological bull's eye intended for remedial interruption owing en route for their noteworthy protagonist of deviant gesturing cancer as well as its contribution voguish guideline of progression, immigration as well as apoptosis of tumor cells. This artefact methodically appraisals the miscellaneous traits of metals as constituents through a exceptional attention proceeding their ecofriendly diligence, venomousness in lieu of blooming organisms in addition to bioactivity 1.

MATERIALS AND METHOD

Constituents and Physical Measurements

2-hydroxy acetophenone (Sigma-Aldrich, 97%), O-phenylenediamine (Sigma-Aldrich, 95%), CH$_3$COOH, (Merck, 99%), NiSO$_4$, FeCl$_3$ and ZnSO$_4$.7H$_2$O have purchased. All the composites in addition to the diluters were of investigative rating used starved of any supplementary refinement. Elemental investigates (C, H as well as N) have accomplished spending an Elementary Vario EL elemental analyzer CHNS Mode. The Infrared spectra (4000-400 cm$^{-1}$) on behalf of KBr discs had achieved by means of a JASCO FT-IR-4100 spectrophotometer. UV–Vis spectral investigation intended for the fashioned multiplexes have accomplished in DMSO spending Nujol mull by means of a Shimadzu UV-Vis 240 spectrophotometer hip the array 190–1100 nm. The infrared spectra of every multiplexes as well as ligand have chronicled by means of KBr pills taking place a JASCO FT-IR 410 double beam infrared spectrophotometer happening the array of 400–4000 cm$^{-1}$. Standard electron impact mass spectra (ESI) had chronicled spending a Finnigan MAT 8222 Spectrometer at 70 eV at micro diagnostic division of IIT, Madras. The spectra had make note on behalf of the multiplexes as dense forms at room temperature (RT) plus solutions of multiplexes liquefied voguish acetonitrile by dint of 77 K. The 1H-NMR and 13C-NMR investigation partaken carried out voguish DMSO-d$_6$ spending a Varian Mercury Oxford NMR 300 Hz at room temperature through consuming TMS as a peripheral regular at Madurai Kamaraj University, Madurai. The Electron Spin Resonance study as well as the Electrospray Ionization Mass
Spectrometry (ESI-MS) investigates have chronicled voguish LCQ Fleet at IIT, Madras. The anti-oxidant study was carried out in Sankaralingam Bhuvaneswari college of Pharmacy, Amateur. The anti-bacterial study was done at Athmic Biotech Pvt.Ltd. Kerala. The anti-fungal study was carried out at Corx Life Science, in Trichy.

Biological Assay

The anti-oxidant study was done centered on the technique followed in the literature \(^{19-22}\). To assess toxicity, range of samples in contrast to *Escherichia coli* in addition to *Staphylococcus aureus* with negative control as well as for positive control was evaluated by the literature\(^ {23}\). The anti-fungal activity study was finished against Candida albicans then Penicillium notatum by the protocol followed in the literature.

Computational Studies

The computational analysis dealing with biological activity prediction, cell line cytotoxicity, acute rate toxicity \(^ {24}\), environmental toxicity and docking studies were carried out \(^ {17,3}\).

Synthesis of the (E)-2-(1-((2-aminophenyl)imino)ethyl)phenol(APIEP)

![Scheme 1: Synthesis of APIEP and its Metal Complexes](image_url)
The azo ligand (E)-2-(1-((2-aminophenyl)imino)ethyl)phenol(APIEP) reared ready by means of liquefying 1.36 gm (0.01 mol) of 2-hydroxy acetophenone in 25 ml of ethanol then 1.08gm (0.01mol) of O-phenylenediamine in 25 ml of ethanol and 2 drops of dil. acetic acid were supplementary en route for the overhead solution. Bring about solution was formerly refluxed in lieu of nearby 10 hours at 60⁰C. Filtered off the precipitous formerly, sweep away over purified water as well as ethanol and dried to end with air dehydrated (yield: 75 %). Scheme 1 embodies the imitation route of azo dye ligand and its upcoming metal complexes.

Synthesis of Metallic Multiplexes

Metallic multiplexes have been ready over and done with collaborating appropriate quantities of the APIEP (0.452 gm, 2 mmol) in ethanol (20% V/V) using (1 mmol) of the hydrated metal salts or unhydrated metal salts in absolute ethanol. The resulting solutions have then refluxed through stirring on behalf of 4 hours; the solid complexes which separated out on hot have been collected by filtration and dried in vacuum desiccator over anhydrous CaCl₂.

RESULTS AND DISCUSSION

The elemental investigation (C, H, N) of the metal chelates exhibited that they may be embodied by the formula [M(APIEP)₂], where (M = Ni(II), Fe(III) in addition to Zn(II)) of multiplexes. The analytical facts of the ligand in addition to its agreeing metallic multiplexes were exposed voguish (Table 1).

Table 1: Physical Data of APIEP and its Metal Complexes

Compound	Molecular formula	C %	H %	N%	O %	Colour	M.P C°	Yield (%)
APIEP	C₁₄H₁₄N₂O	74.31	6.24	12.38	7.07	Brown	176	67
(APIEP)₂Ni	C₂₈H₂₄NiN₄O₂	66.30	4.77	11.05	6.31	Light	228	54
(APIEP)₂Fe	C₂₈H₂₄FeN₄O₂	66.68	4.80	11.11	6.34	Brown	201	57
(APIEP)₂Zn	C₂₈H₂₄ZnN₄O₂	65.44	4.71	10.90	6.23	Light	121	56

Experimental FT-IR Spectroscopy

The FT-IR band of APIEP Schiff base chelate exhibited discriminate crew of the γ (-CH=N) azomethine cluster by the side of 1627 cm⁻¹, this crew was get rid of towards subsidiary wavenumbers (1606-1623 cm⁻¹) voguish circumstance of the bands of manufactured transition metallic multiplexes, this consequence inveterate that the –CH=N nitrogen atom contributed hip the coordination en route for metallic ions ⁵⁵. Regarding APIEP at liberty ligand, distending trembling of γ(O-H) band was being there next to 3436 cm⁻¹, this band was wiped out
subsequently. Complexation owing en route for the deprotonation of -OH group in addition to the co-ordination of oxygen atom in the direction of metallic ions. The ν(C-O) distending trembling of phenolic cluster parade subsequent to 1252 cm\(^{-1}\) voguish occasion of APIEP Schiff base ligand. This gang was get rid of to higher wavenumbers (1313-1358 cm\(^{-1}\)) subsequently. Complexation for the reason that of involvement of phenolic cluster oxygen atom voguish the co-ordination through means of association of the C-O-M linkage.

![Figure 1: FT-IR Spectrum of APIEP and its Metal Complexes](image)

Table 2: FT-IR Spectroscopy Data of APIEP and its Metal Complexes

Compound	γ(OH) (Cm\(^{-1}\))	γ(C=N) (Cm\(^{-1}\))	ν(C-O) (Cm\(^{-1}\))	γ(M-N) (Cm\(^{-1}\))	γ(M-O) (Cm\(^{-1}\))	δ(NH\(_2\)) (Cm\(^{-1}\))	ν(NH\(_2\)) (Cm\(^{-1}\))
APIEP	3436	1627	1252	-	-	1578	3379
(APIEP)\(_2\)Ni	-	1617	1333	448	563	1546	3268
(APIEP)\(_2\)Fe	-	1606	1313	503	572	1557	3342
(APIEP)\(_2\)Zn	-	1623	1358	501	574	1550	3367

The ν(N-H\(_2\)) distending frequency of –NH\(_2\) group was existing at 3379 cm\(^{-1}\) in the free APIEP. This band was lifted en route for subordinate frequency voguish circumstance of metal complexes.
These yield sanction that the nitrogen atom of the amino group co-ordinated to metal ions. The bending vibration motion δ(NH$_2$) of -NH$_2$ group at 1578 cm$^{-1}$ in APIEP was get rid of to 1546-1578 cm$^{-1}$ in the case of its metal complexes. This result was due to the involvement of NH$_2$ group in complexation. In all the metal complexes two new bands give the impression in the range 448 cm$^{-1}$ to 503 cm$^{-1}$ and 563 cm$^{-1}$ to 574 cm$^{-1}$ regarding M-N and M-O bond. This FT-IR report was displayed in Figure 1 and Table 2.

Electronic Spectral Revisions

The electrical gamut of APIEP ligand in addition to their metallic multiplexes have carried out in DMSO solution. The APIEP exhibits the ensemble at 35,088 cm$^{-1}$, 31,847 cm$^{-1}$ and 26,667 cm$^{-1}$ can remain allotted towards intra ligand $\pi \rightarrow \pi^*$ in addition to $n \rightarrow \pi^*$ transition. In complexes these rate of recurrence undergo a bathochromic shift due to co-ordination of imino nitrogen as well as amine group of 0-phenylenediamine moiety. The Ni (II) 19,011 cm$^{-1}$ regarding $^6A_{1g}(F) \rightarrow ^4A_{1g}+^4E_g$ transition corresponds to octahedral geometry. Fe(III) exhibited ensembles at 20,576 cm$^{-1}$ and 17,301 cm$^{-1}$ regarding $^6A_{1g} \rightarrow ^4A_{1g}+^4E_g$ and $^6A_{1g}(F) \rightarrow ^4T_{2g}(G)$ of octahedral geometry. Zn(II) had a frequency at 18,382 cm$^{-1}$ was for LMCT of octahedral geometry. UV-Visible Spectrum of the APIEP plus (APIEP)$_2$ Ni were shown in Figure 2 and UV-visible spectroscopy data of APIEP in addition to its metallic multiplexes were presented voguish Table 3.

![Figure 2: UV-Visible Spectrum of the APIEP and (APIEP)$_2$Ni](image-url)
Table 3: UV-Visible Spectroscopy Data of APIEP and its Metal Complexes

Compound	ν(Cm$^{-1}$)	μ_{eff}(BM) (per metal ion)	Assignment	Geometry suggested
APIEP	(285)35,088,	-	$\pi \rightarrow \pi^*$	-
	(314)31,847,		$n \rightarrow \pi^*$	
	(375)26,667			
(APIEP)$_2$Ni	(526)19, 011	3.82	$3A_{2g}(F) \rightarrow 3T_{1g}(P)$	Octahedral
(APIEP)$_2$Fe	(486)20,576	5.90	$6A_{1g}(F) \rightarrow 4A_{1g}+4E_g$	Octahedral
	(578)17,301,			
(APIEP)$_2$Zn	(544)18,382	Diamagnetic	LMCT	Octahedral

1H-NMR spectroscopy

The 1H-NMR Spectrum of APIEP (a) and (APIEP)$_2$Zn (b) were given away in Fig. 3. The APIEP displayed the peak at 5.35 ppm was in authority for NH$_2$ functional group. The aromatic protons pragmatic in the region 7.1-7.85 ppm exposed small shifts in the complexes which occurred owing to distinction in the electron solidity and steric constraints owed to chelate creation in (APIEP)$_2$Zn with reverence to APIEP. The multiplet at 7.6-7.3 ppm was in authority for (13H, Ar-H) 30. The frequency in the array of 9.7-9.8 ppm conformed the phenolic (-OH) group in APIEP, it upon coordination to Zn(II) ion, this phenolic peak in the (APIEP)$_2$Zn was disappeared $^{30-32}$. In the (APIEP)$_2$Zn, it indicated that the co-ordination of NH$_2$ group to the Zn(II) had a higher shift from 5.35 to 6.83 ppm. Compared to the Schiff base ligand the Zn(II) complex had a slight upfield shift of 0.01-0.15 ppm in the resonance peaks of the aromatic ring 33.

![Figure 3 (a) - 1H-NMR Spectrum of APIEP](image-url)
Figure 3 (b) - 1H-NMR Spectrum of (APIEP)$_2$ Zn

13C-NMR Spectral Studies

The 13C-NMR data of APIEP exposed in Figure 4 had numerous magnetically non-equivalent carbons present in the compound. The peak in the region 111.00-129.73 ppm was for aromatic carbon 30. The peak in 77.84 ppm was for (-CH$_2$) carbon 34. The resonance crowning at 10.22 ppm was owed to the C-CH$_3$ carbons 34. The band among 149.54 ppm was responsible for azomethine group existing in the ligand which had get rid to upfield in the complex owed to co-ordination 33. The C-OH carbon dispensed at δ 163.57 ppm.

Figure 4: 13C-NMR Spectrum of APIEP
ESI-MS spectral studies

The Scheme 2 represents disintegration array of the novel Schiff base ligand (APIEP) and the Fig. 5 displays the ESI-MS spectrum of the APIEP (a) and (APIEP)\textsubscript{2}Co (b) complex. The ESI-MS band of the ligand indicated, characteristic quasi molecular ion crowning at m/z 226 which may confirm the molecular formulae of APIEP as \((C_{14}H_{14}N_{2}O)35-36\). The APIEP fragmentation peaks appeared at m/z 226, 225, 210, 196, 180, 132, 105, 93 and 78 was meant for \([C_{14}H_{14}N_{2}O]\), \([C_{14}H_{13}N_{2}O]\), \([C_{14}H_{12}NO]\), \([C_{13}H_{10}NO]\), \([C_{13}H_{10}N]\), \([C_{9}H_{7}N]\), \([C_{7}H_{7}N]\), \([C_{6}H_{7}N]\) and \([C_{6}H_{6}]\).

Figure 5 (a): ESI – MS spectrum of the APIEP
Figure 5 (b): ESI – MS spectrum of the (APIEP)$_2$Co complex

Scheme 2: Fragmentation pattern of the novel Schiff base ligand (APIEP)
EPR Spectroscopy

Table 4 explored the spin Hamiltonian parameters of (APIEP)$_2$Fe complex at LNT and the Fig. 6 exposed the EPR spectrum of (APIEP)$_2$Fe. The EPR spectrum of (APIEP)$_2$Fe revealed the $g|| = 3.718$, $g\perp = 1.960$ and $g_{av} = 3.6113$ respectively. The $g||$ assessment was superior to the $g\perp$, so the unpaired electrons were localized in the $d_{x^2-y^2}$ orbital. These records allotted en route for octahedral geometry of the Fe(III) multipart. The G assessment was superior than 4 which signposts there was on, no account exchange dealings flanked by the neighboring Fe(III) centers. From the EPR data, it was estimated that $A|| (123) > A\perp (15)$ for iron. If the assessment of $g||$ was greater than 2.3, the metallic – ligand linkage was in essence ionic at that time if the value was fewer than 2.3, then the nature of linkage flanked by them was covalent character. The pragmatic $g||$ for (APIEP)$_2$ Fe complex was higher than 2.3, symptomatic of that the iron complex had ionic character.

![EPR spectrum of (APIEP)$_2$ Fe](image)

Figure 6: EPR spectrum of (APIEP)$_2$ Fe

Complex	g-tensor	$A \times 10^{-4}$ (cm$^{-1}$)	$g		/A		$	G	
(APIEP)$_2$Fe	3.718	1.960	5.418	3.6113	123	15	76.5	302	4.1749

Table 4: The spin Hamiltonian parameters of (APIEP)$_2$ Fe complex at LNT

BIOLOGICAL STUDIES

Anti-oxidant activity

The DPPH scavenging doings of APIEP in addition some of its metal complexes were revealed in Table 5. The radical scavenging ability of the liberty ligand was originated end route on behalf of 63.92%, then again upon complexation, the aforementioned increased meaningfully. It was
pragmatic that the metal complexes have greater doings than the free ligand. The DPPH radical rummaging capacity of the verified samples can thus be graded voguish the mandate: Ascorbic acid > (APIEP)\(_2\)Zn > (APIEP)\(_2\)Fe > (APIEP)\(_2\)Ni > APIEP \(^{38}\).

Table 5: DPPH scavenging activity of APIEP and its metal complexes

Compound	DPPH scavenging (%)
Ascorbic acid	84.93
APIEP	63.92
(APIEP)\(_2\)Ni	64.98
(APIEP)\(_2\)Fe	69.01
(APIEP)\(_2\)Zn	71.23

Anti-bacterial studies

The Schiff base ligand had extra anti-bacterial activity than former ligands used and this activity was owed to the being there of electron releasing groups such as -Ph, -OH, and –N=CH- \(^{39}\). The anti-bacterial study effects were presented in the Figure 7. Based on the study report for the positive strain *Staphylococcus aureus* in addition to the negative strain *Escherichia coli*, the complexes bared better activity than the free ligand\(^{29, 35, 40}\). Anti-bacterial doings of the multiplexes increased by way of increase voguish concentration\(^{25}\). Complexes were good activity than the free ligand but less active than the standard drug \(^{10}\).

![Anti-bacterial studies](image)

Figure 7: MIC of APIEP, (APIEP)\(_2\) Fe, (APIEP)\(_2\)Ni and (APIEP)\(_2\)Zn against the tested organisms *Escherichia coli* and *Staphylococcus aureus*
Anti-fungal study

The anti-fungal activity results were listed in Figure 8. Based on the report both the metal complexes and the ligand have very efficient activity, but the metallic multiplexes partake superior doings than the ligand. Schiff base as well as the aforementioned chelates might enrich the antimicrobial activity in mutually (*Candida albicans* and *Penicillium notatum*) strains because of the azomethine nitrogen clutch. The doings of the metallic complexes could remain elucidated happening the origin of chelation theory and connotation effect 29, 41. Chelation condensed the polarization of the metallic atom due to fractional distribution of the aforementioned positive charge by means of the contributor clusters in addition conceivable π electron delocalization inside the entire chelate sphere. The lipophilic natural surroundings of the vital atom also increased which preferred the aforementioned penetration from side to side the phospholipid stratum of the cell film 42. The anti-fungal activity increased with increase in concentration of the compound 26, 35.

![Graph](image)

Figure 8: MIC of APIEP, (APIEP)₂ Fe, (APIEP)₂ Ni and (APIEP)₂ Zn against the tested organisms *Candida albicans* and *Penicillium notatum*

COMPUTATIONAL STUDIES

Biological activity prediction

The biological activity of the APMIN was evaluated by means of PASS online software. The APIEP Schiff base had better activity towards Histone deacetylase class III inhibitor than its corresponding amine and aldehyde. Biological activity prediction of APIEP was shown in Table 6.
Table 6. Biological activity prediction of APIEP

Pa	Pi	Activity
0.756	0.001	Histone deacetylase class III inhibitor
0.665	0.006	Leukotriene-B4 20-monooxygenase inhibitor
0.633	0.005	Thiol protease inhibitor
0.614	0.008	Antineoplastic (colon cancer)
0.611	0.026	Thioredoxin inhibitor
0.585	0.021	NAD(P)+-arginine ADP-ribosyltransferase inhibitor
0.644	0.090	Ubiquinol-cytochrome-c reductase inhibitor
0.590	0.056	Antiseborrheic
0.447	0.022	Antiparasitic

Pa- probability of active, Pi- probability of inactive

Cell line cytotoxicity

Cell line cytotoxicity prediction of APIEP was evaluated by means of PASS online software. Based on that the APIEP had activity towards the cancer cell line and it does not had any activity towards the non-tumor cell line. So the prepared APIEP used to preserve the endangered species cells from cancer. The cell line cytotoxicity report was revealed in Table 7.

Table 7: Cell line cytotoxicity prediction of APIEP

Cancer cell line prediction result	Pa	Pi	Cell-line	Cell-line full name	Tissue	Tumor type
Cancer cell line prediction result	0.720	0.005	SK-MEL-28	Melanoma	Skin	Melanoma
Cancer cell line prediction result	0.546	0.041	Hs 683	Oligodendroglioma	Brain	Gioma
Cancer cell line prediction result	0.522	0.057	A549	Lung carcinoma	Lung	Carcinoma

Pa- probability of active, Pi- probability of inactive

Rat acute toxicity predicted by GUSAR

The rat acute toxicity predicted for the APIEP by GUSAR online software. The report reveals that the acute toxicity of APIEP had falls in applicability domain of model[13]. So the APIEP was environmental friendly one. In the Table 8 rat acute toxicity predicted for APIEP by GUSAR was summarized.

Table 8: Rat acute toxicity predicted by GUSAR

Rat IP LD50	Rat IV LD50	Rat Oral LD50	Rat SC LD50
Log10(mmol/kg)	log10(mmol/kg)	log10(mmol/kg)	log10(mmol/kg)
0.376 in AD	-0.687 in AD	0.910 in AD	0.910 in AD
(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
537,300 in AD	46,560 in AD	1838,000 in AD	884,800 in AD
Rat IP LD50	Rat IV LD50	Rat Oral LD50	Rat SC LD50
Classification	Classification	Classification	Classification
Class 5 in AD	Class 4 in AD	Class 4 in AD	Class 4 in AD
IV - Intravenous route of administration
Oral - Oral route of administration
SC - Subcutaneous route of administration
in AD - compound falls in applicability domain of models
out of AD - compound was out of applicability domain of models

Environmental toxicity predicted by GUSAR

Environmental toxicology was a multidisciplinary arena of discipline worried through the learning of the harmful effects of various chemical, biological and physical agents on living organisms. Ecotoxicology was a sub discipline of environmental toxicology concerned with studying the harmful effects of toxicants at the population and ecosystem levels. The environmental toxicology study of APIEP fall in applicability domain of model. So the APIEP was nontoxic to the environment. This Environmental toxicity predicted by GUSAR report was exposed in Table 9.

Activity	Prediction Value	Applicability Domain
Bioaccumulation factor Log10(BCF)	1,129	In AD
Daphnia magna LC50 - Log10(mol/L)	5,840	In AD
Fathead Minnow LC50 Log10(mmol/L)	-1,557	In AD
Tetrahymena pyriformis IGC50 - Log10(mol/L)	1,302	In AD

Docking

The molecular docking studies were done by the procedure. The docking score of APIEP, (APIEP)$_2$Ni, (APIEP)$_2$Fe and (APIEP)$_2$Zn with EGFR kinase (5GTY) was follows as: -229.12 kJ/mol$^{-1}$, 310.83 kJ/mol$^{-1}$, -311.84 kJ/mol$^{-1}$ and -328.18 kJ/mol$^{-1}$ and with tyrosine kinase (4O75) was follows as: -209.59 kJ/mol$^{-1}$, 253.92 kJ/mol$^{-1}$, 254.07 kJ/mol$^{-1}$, and -250.98 kJ/mol$^{-1}$. In both the cases of EGFR kinase and tyrosine kinase all the metal complexes have higher affinity to bind than the APIEP. This result reveals the groove mode of binding between the DNA and the compounds. The docking images of APIEP and its metal complex were displayed in Figure 9(a) and 9(b).
CONCLUSION

Three metal complexes (Ni(II), Fe(III) and Zn(II)) with their ligand E-2-(1-[(2-aminophenyl)imino]ethyl)phenol have been synthesized. These complexes were show octahedral environment. The UV, FT-IR, EPR, ESI-MS, 1H-NMR and 13C-NMR spectroscopy results were interpreted. The EPR output revealed that the (APIEP)$_2$Fe complex had ionic character. All the complexes have higher biological activity than the free APIEP. Among the DPPH radical scavenging ability of all the tested samples the (APIEP)$_2$Zn had higher anti-oxidant activity. The (APIEP)$_2$Fe had greater antibacterial activity towards both the positive and negative strains Staphylococcus aureus and Escherichia-coli. The (APIEP)$_2$Zn had greater antifungal activity towards both the positive and negative strains Candida albicans and Penicillium notatum. The APIEP Schiff base had better activity towards Histone deacetylase class III inhibitor than its corresponding amine and aldehyde. The cell line cytotoxicity study revealed that the APIEP had better activity towards the tumor cell line than the non-tumor cell line. Based on the docking analysis of EGFR kinase (APIEP)$_2$Zn and tyrosine kinase (APIEP)$_2$Fe metal complexes have higher affinity to bind with DNA than the APIEP and other metals with groove mode of binding. The acute toxicity and environmental toxicity revision reveals that APIEP fall in applicability domain of model. So the APIEP was nontoxic to the environment.

REFERENCES

1. Hazrat Ali, Ezzat Khan, Ikram Ilahi, Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation, Journal of Chemistry, 2019: DOI: https://doi.org/10.1155/2019/6730305.
2. Tugba Aycan, Humeyra Pasaoglu, Investigation of spectral and structural properties of a coordination compound with phthalic acid: DFT and molecular docking studies, Journal of Coordination Chemistry, 2020: DOI: 10.1080/00958972.2020.1742331.

3. Anindita De, Hari Prakash Ray, Preeti Jain, Harsimrut Kaur, Nikita Singh, Synthesis, characterization, molecular docking and DNA cleavage study of transition metal complexes of o-vanillin and glycine derived Schiff base ligand, J. of Molecular Structure, 2020: 1199, 126901-126909.

4. Jino Johnson, A. Yardily, Synthesis, spectral investigation, thermal, molecular modeling and bio-molecular docking studies of a thiazole derived chalcone and its metal complexes, Journal of Coordination Chemistry, 2020: DOI: 10.1080/00958972.2020.1795145.

5. Xavier, N. Srividhya, “Synthesis and Study of Schiff base Ligands”, IOSR Journal of Applied Chemistry (IOSR-JAC), e-ISSN: 2278-5736. 2014: 7(11), 06-15.

6. Fatemeh Forouzandeh, Hassan Keypour, Mohammad Hasan Zebajrdian, Masoumeh Mahmoudabadi, Leila Hosseinzadeh, Roya Karamian, Masoumeh Ahmadi Khoei, Robert William Gable, Synthesis, characterization and X-ray crystal structure of potentially N6O2 coordinating macrocyclic Schiff base ligands and their Mn(II), Zn(II) and Cd(II) complexes; cytotoxic, antibacterial properties and competitive 7Li NMR studies, Polyhedron, 2018: DOI: https://doi.org/10.1016/j.poly.2018.12.052.

7. Alaa El-Din H. Sayed, Remon M. Zaki, Adel M. Kamal El-Dean, Abdullah Y. Abdulrazzaq, The biological activity of new thieno[2,3-c]pyrazole compounds as antioxidants against toxicity of 4-nonylphenol in Clarias gariepinus, Toxicology Reports, 2015: 2, 1445-1453.

8. P. Gopu, B. Akila, A. Xavier, Synthesis and Characterization of Schiff base and its Transition Metal Complexes, Journal of Chemistry and Chemical Sciences, 2016: 6(6), 586-595.

9. Huizhi Kou, Yang Wang, Peipei Ding, Jianfen Li, Baoxian Shi, A new macrocyclic heterobinuclear Cu(II)-Zn(II)complex: synthesis, crystal structure, phosphate hydrolysis, and DNA binding studies, Journal of Coordination Chemistry, 2019: 72:10, 1683-1696.

10. Mohamed Gaber, Nadia El-Wakiel, Osama M. Hemeda., Cr(III), Mn(II), Co(II), Ni(II) and Cu(II) complexes of 7-((1H-benzo[d]imidazol-2-yl)diazeny])-5-nitroquinolin-8-ol,synthesis, thermal, spectral, electrical measurements, molecular modeling and biological Activity, Journal of Molecular Structure, 2019: 1180, 318-329.

11. B. Akila, A. Xavier, Amalgamation of Novel Schiff Base Ligand and Its Transition Metal Complexes and Their Biological Activity, Int Res J Pure & Applied Chemistry, 2019: 18(2), 1-13.
12. N.M. Abdul khader Jailani, A. Xavir, A. Mumtaj, Synthesis and Characterization of Transition Metal Complexes with new Schiff base Ligand, Journal of Advanced Applied Scientific Research, 2017: 1-9, 39-53.

13. Hoda El-Ghamry, Nadia El-Wakiel, Abeer Khamis, Synthesis, structure, antiproliferative activity and molecular docking of divalent and trivalent metal complexes of 4H-3,5-diamino-1,2,4-triazole and α-hydroxynaphthaldehyde Schiff base ligand, Appl Organometal Chem. 2018: DOI: https://doi.org/10.1002/aoc.4583.

14. Polina A. Galkina, Mikhail A. Proskurnin, Supramolecular interaction of transition metal complexes with albumins and DNA: Spectroscopic methods of estimation of binding parameters, Appl. Organometal Chem., 2018: DOI: https://doi.org/10.1002/aoc.4150.

15. Azees Khan Haleel, Dharmasivam Mahendiran, Ummer Muhammed Rafi, Vijaykumar Veena, Sugumar Shobana, Aziz Kalilur Rahman, Tetrazolo[1,5-a]pyrimidine-based metal(II) complexes as therapeutic agents: DNA interaction, targeting topoisomerase I and cyclin-dependent kinase studies, Inorganic and Nano-Metal Chemistry, 2019: DOI: https://doi.org/10.1080/24701556.2019.1571514.

16. Azees Khan Haleel, Ummer Muhammed Rafi, Dharmasivam Mahendiran, Liviu Mitu, Vijaykumar Veena, Aziz Kalilur Rahman, DNA profiling and in vitro cytotoxicity studies of tetrazolo[1,5-a]pyrimidine-based copper(II) complexes, Biometals, 2019: 32, 611–626.

17. Porkodi Jeyaraman, Alagarraj Arunadevi, Raman Natarajan, In silico and in vitro studies of transition metal complexes derived from curcumin –isoniazid Schiff Base, Journal of Biomolecular Structure and Dynamics, 2019: DOI: https://doi.org/10.1080/07391102.2019.1581090.

18. Arezoo Jamshidvand, Mehdi Sahihi, Valiollah Mirkhani, Majid Moghadam, Iraj Mohammad poor-Baltork, Shahram Tangestaninejad, Hadi Amiri Rudbari, Hadi Kargar, Reza Keshavarzi, Sajjad Gharaghani, Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: Influence of substitutions on DNA-binding, Journal of Molecular Liquids, 2018: 253, 61–71.

19. Sanaa M. Emam, Saeyda A Abouel Enein, Fatma I. Abouzayed, Synthesis, spectral characterization, thermal studies and biological activity of (Z)-5-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-6-hydroxy-2-mercaptopyrimidin-4(3H)-one and its metal complexes, Appl. Organometal Chem., 2017: 4073, DOI: https://doi.org/10.1002/aoc.4073.

20. Antonio do Nascimento Cavalcante, Layana Karine Farine Farias Lima, Cristiany Marinho Araujo, Felipe Pereira da Silva Santos, Matheus Oliveira do Nascimento, Joao Marcelo de Castro and Sousa Mahendra Rai, Chistiane Mendes Feitosa, Toxicity, cytotoxicity,
mutagenicity and in vitro antioxidant models of 2-oleyl-1,3-dipalmitoyl-glycerol isolated from the hexane extract of *Platonia insignis* MART seeds, Toxicology Reports, 2020: 7, 209-216.

21. Sulekh Chandra, Deepali Jain, Amit Kumar Sharma, Pratibha Sharma, Coordination Modes of a Schiff Base Pentadentate Derivative of 4-Aminoantipyrine with Cobalt(II), Nickel(II) and Copper(II) Metal Ions: Synthesis, Spectroscopic and Antimicrobial Studies, Molecules, 2009: 14, 174-190.

22. Sun-Yup Shim, Ji-Hyun Kim, Kang-Hee Kho, Mina Lee, Anti-inflammatory and antioxidative activities of lemon myrtle (*Backhousia citriodora*) leaf extract, Toxicology Reports, 2020: 7, 277-281.

23. Pritam Sadhukhan, Mousumi Kundu, Shalu Rana, Raj Kumar, Joydeep Das, Parames C.S., Microwave induced synthesis of ZnO nanorods and their efficacy as a drug carrier with profound anticancer and antibacterial properties, Toxicology Reports, 2019: 6, 176-185.

24. Ermias Lulekal, Solomon Tesfaye, Selam Gebrechristos, Kassahun Dires, Tizazu Zenebe, Nigus Zegeye, Gezu Feleke, Abayneh Kassahun, Yoseph Shiferaw, Awol Mekonnen, Phytochemical analysis and evaluation of skin irritation, acute and sub-acute toxicity of *Cymbopogon citratus* essential oil in mice and rabbits, Toxicology Reports, 2019: 6, 1289-1294.

25. Chellaian Justin Dhanaraj, Jijo Johnson, Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014: 118, 624-631.

26. Sabrina Belaid, Anne Landreau, Safia Djebbar, Ouassini Benali-Baitich, Gilles Bouet, Jean-Philippe Bouchara, Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N,N0-O-phenylenediamine(salicylideneimine), Journal of Inorganic Biochemistry, 2008: 102, 63–69.

27. R. Chira Bhattacharjee, Pankaj Goswami, Paritosh Mondal, Synthesis, reactivity, thermal, electrochemical and magnetic studies on iron(III) complexes of tetradentate Schiff base ligands, Inorganica Chimica Acta, 2012: 387, 86-92.

28. Jehan Al-Humaidi Y., In situ alkaline media: Synthesis, spectroscopic, morphology and anticancer assignments of some transition metal ion complexes of 1-((2-aminophenylimino) methyl) naphthalen-2-ol Schiff base, Journal of Molecular Structure, 2019: 1183, 190-201.
29. D. Shiva leela, B. Ushaiah, G. Anupama, M. Sunita, C. Gyana Kumari, Synthesis, Characterization, Antimicrobial, DNA Binding and Cleavage Studies of Mixed Ligand Cu(II), Co(II) Complexes, J. Fluoresc., 2014: DOI: 10.1007/s10895-014-1496-7.

30. Ibtihal Kadhim Kareem, Fawzi Yahya Waddai, Ghusoon Jawad Abbas, Synthesis, Characterization and biological activity of Some Transition Metal Complexes with New Schiff Base Ligand Type (NNO) Derivative from Benzoin, J Pharm. Sci. & Res., 2019: 11(1), 119-124.

31. Abbar Noor Al-Shwereefi, SalihHadiKadhim and Waleed Abbas Jawad, Synthesis and study of Fe(III), Co(II), Ni(II) and Cu(II) complexes of new Schiff’s base ligand derived from 4-amino antipyrine, Inter. Peer. Rev. J., J. of Applicable Chemistry, 2013: 2(3), 438-446.

32. Nasima Khan, Farhana Afroz Mst. Nadira Begum, Satyajit Roy Rony, Suriya Sharmin, Fatema Moni, Choudhury Mahmood Hasan, Koushik Shaha, Md. Hossain Sohrab, Endophytic Fusarium solani: A rich source of cytotoxic and antimicrobial napthaquinone and aza-anthraquinone derivatives, Toxicology Reports, 2018: 5, 970-976.

33. Reka- Stefana Mezey, Traian Zaharescu, Marius Eduard Lungulescu, Virgil Marinescu, Sergiu Shova, Tudor Rosu, Structural characterization and thermal behaviour of some azomethine compounds derived from pyridoxal and 4-aminoantipyrine, J. Thrm. Anal. Calorim., 2016: DOI:10.1007/s10973-016-5680-7.

34. D. Premnath, P. Mosae Selvakumar, P. Ravichandiran, G. Tamil Selvan, M. Indiraleka, Jannet Vennila, Synthesis and spectroscopic characterization of fluorescent 4-aminoantipyrine analogues: Molecular docking and in vitro cytotoxicity studies, J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015: 153, 118-123.

35. Shubha S. Kumar, S. Biju, V. Sadasivan, Synthesis, structure characterization and biological studies on a new aromatic hydrazone, 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-2,2-dimethyl-1,3-dioxane-4,6-dione, and its transition metal complexes, Molecular Structure, 2017: DOI:10.1016/j.molstruc.2017.11.057.

36. P. Mosa Selvakumar, E. Suresh, P.S. Subramanian, Synthesis, spectral characterization and structural investigation on some 4-aminoantipyrine containing Schiff base Cu(II) complexes and their molecular association, Polyhedron, 2007: 26, 749-756.

37. Mohammad Shakir, Nausheen Bano, Mohammad Ahmar Rauf, Mohammad Owais, Pharmacologically significant tetraaza macrocyclic metal complexes derived from isatin and 3,4-diaminobenzophenone:Synthesis, spectral studies and comparative in vitro
biological Assessment, Indian Academy of Sciences, 2017: DOI: https://doi.org/10.1007/s12039-017-1398-8.

38. Jeyaraman Porkodi, Natarajan Raman, Synthesis, characterization and biological screening studies of mixed ligand complexes using flavonoids as precursors, Applied Organometallic Chemistry, 2017: DOI: https://doi.org/10.1002/aoc.4030.

39. Omar Hamad Shihab Al-Obaidi, Binuclear Cu(II) and Co(II) Complexes of Tridentate Heterocyclic Shiff Base Derived from Salicylic aldehyde with 4-Aminoantipyrine, Bioinorganic Chemistry and Applications, 2012: Article ID 601879, 6 pages, DOI:10.1155/2012/601879.

40. M. Sivarankaran Nair, D. Arish, J. Johnson, Synthesis, characterization and biological studies on some metal complexes with Schiff base ligand containing pyrazolone moiety, Journal of Saudi Chemical Society, 2013: DOI: http://dx.doi.org/10.1016/j.jscs2013.04.007.

41. Jan Mohamed Mir, Ram Charitra Maurya, Nitric oxide functionalized molybdenum(0)pyrazolone Schiff base complexes: thermal and biochemical study, RSC Adv., 2018: 8, 35102-35130.

42. M.M. El-ajaly, H.A. Abdullah, Ahmed Al-janga, E. E. Saad, A. A. Maihub, Zr(IV), La(III), and Ce(IV) Chelates with 2-[(4-[(Z)-1-(2-Hydroxyphenyl)ethylidene]aminobutyl)-ethanamidoyl]phenol: Synthesis, Spectroscopic Characterization, and Antimicrobial Studies, Advances in Chemistry, Article ID 987420, 2014: 15, DOI: http://dx.doi.org/10.1155/2015/987420.

43. Iswar Hazarika, K.M. Geetha, P. Sivakami Sundari, Divya Madhu, Acute oral toxicity evaluation of extracts of Hydrocotyle sibthorpioides in wister albino rats as per OECD 425 TG, Toxicology Reports, 2019: 6, 321–328.