Characteristics of Patient Encounters for Athletic Training Students During Clinical Education: A Report from the AATE Research Network

Cailee E. Welch Bacon
Julie M. Cavallario
Old Dominion University, jcavalla@odu.edu
Stacy E. Walker
R.Curtis Bay
Bonnie L. Van Lunen
Old Dominion University, bvanlune@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/pt_pubs

Part of the Clinical Psychology Commons, Physical Therapy Commons, Sports Sciences Commons, Sports Studies Commons, and the Vocational Education Commons

Original Publication Citation
Welch Bacon, C. E., Cavallario, J. M., Walker, S. E., Bay, R. C., & Van Lunen, B. L. (2022). Characteristics of patient encounters for athletic training students during clinical education: A report from the AATE research network. Journal of Athletic Training. https://doi.org/10.4085/1062-6050-526-21

This Article is brought to you for free and open access by the Rehabilitation Sciences at ODU Digital Commons. It has been accepted for inclusion in Rehabilitation Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Characteristics of Patient Encounters for Athletic Training Students During Clinical Education: A Report From the Association for Athletic Training Education Research Network

Cailee E. Welch Bacon, PhD, ATC*†; Julie M. Cavallario, PhD, ATC‡; Stacy E. Walker, PhD, ATC§; R. Curtis Bay, PhD||; Bonnie L. Van Lunen, PhD, ATC‡

*Department of Athletic Training, †Department of Interdisciplinary Health Sciences, and ‡School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa; ‡College of Health Sciences, Old Dominion University, Norfolk, VA; §School of Kinesiology, Ball State University, Muncie, IN

Context: To enhance the quality of patient care, athletic training students (ATSs) should experience a wide variety of clinical practice settings, interact with diverse patient populations, and engage with patients who have a wide variety of conditions. It is unclear in what ways, if any, ATSs have diverse opportunities during clinical experiences.

Objective: To describe the characteristics of patient encounters (PEs) ATSs engaged in during clinical experiences.

Design: Multisite panel design.

Setting: Twelve professional athletic training programs (5 bachelor’s, 7 master’s).

Patients or Other Participants: A total of 363 ATSs from the athletic training programs that used E*Value software to document PEs during clinical experiences.

Main Outcome Measure(s): During each PE, ATSs were asked to log the clinical site at which the PE occurred (college or university, secondary school, clinic, or other), the procedures performed during the PE (eg, knee evaluation, lower leg flexibility or range of motion, cryotherapy), and the patient’s diagnosis, with the International Classification of Diseases, Tenth Revision code (eg, S83.512A knee sprain, anterior cruciate ligament).

Results: A total of 30,630 PEs were entered by 338 ATSs across 278 unique clinical settings. More than 80% of PEs occurred in college or university and secondary school settings. More than half of the diagnoses were categorized as affecting the lower body region. Examination and evaluation procedures and application of therapeutic modality procedures each contributed approximately 27% of procedures.

Conclusions: It was surprising that ATSs were not gaining experience in all clinical practice settings in which athletic trainers commonly practice. Our data suggest that students may be consigned to working with patients who have more frequently occurring injuries, which may not prepare them for the realities of autonomous clinical practice. These findings indicate that directed efforts are needed to ensure that ATSs are provided opportunities to engage with diverse patient populations who have a variety of conditions in an array of clinical site types during their clinical experiences.

Key Words: clinical experience, clinical site, diverse patient populations, athletic training services

Key Points

- Three-quarters of patient encounters logged by athletic training students occurred within the college or university and secondary school settings, yet as of 2021, only 43% of certified athletic trainers were employed in these settings.
- The patient population demographics, percentages of diagnoses managed, and percentages of procedures performed by athletic training students in this study did not align with the available evidence on the practice patterns of athletic trainers, suggesting that the patient encounters students engage in during clinical experiences may not adequately prepare them for clinical practice.
- Widespread patient-encounter tracking provides a multitude of benefits, including the ability to (1) conduct quality improvement initiatives to assess the patient populations with whom students can engage and (2) evaluate the need to incorporate other clinical education opportunities, such as standardized patient and simulation scenarios.
- Athletic training students can also use patient-encounter tracking to identify personal strengths and weaknesses to guide future professional development as well as to create a patient care portfolio that can be used during the employment process to demonstrate strengths in managing a given patient population.
are beneficial in helping to encourage active roles, bringing theory taught in the classroom into clinical practice and building students’ confidence.5-6 Models of clinical education that encompass components such as the site type, preceptor-to-student ratio, and timing when it occurs in the curriculum vary widely, and no singular model has proven to be superior thus far.7

In athletic training, clinical experiences have been identified as opportunities for students to have realistic and meaningful opportunities to apply the knowledge and skills they have acquired in the classroom.1 The authenticity of patient interactions and the existence of a positive, realistic learning environment have been lauded as 2 of the many pedagogical benefits of athletic training clinical education for decades.1,8 During this time, however, many changes have occurred to clinical experience requirements in athletic training education. Students are now required to have sufficient clinical experience, under the supervision of an athletic trainer (AT) or physician, to gain appreciable skills in the treatment of emergent, behavioral health, musculoskeletal, neurologic, endocrine, dermatologic, cardiovascular, respiratory, and gastrointestinal conditions, among others.9 Students are further expected to interact with patient panels that expose them to patients of various ages, genders, socioeconomic status, and levels of physical activity and competition to prepare them for the complexity of athletic training practice.9 Unfortunately, across most health professions, it is clear that despite the requirements for significant and diverse clinical experiences, a gap exists between the knowledge acquired in the classroom and the application of knowledge and skills in clinical experiences.2

Historically, athletic training students (ATSs) have measured their clinical experience in hours spent at clinical sites, though researchers10,11 have demonstrated that, in some cases, more than half the time spent at clinical experience was unengaged, and the amount of time spent in clinical education did not reflect performance on the credentialing examination. In medical education, patient volume during residency, not the number of accumulated hours, was the influential aspect of clinical experiences relative to residents’ scores on the standardized in-training examination, with each additional 50 patients encountered resulting in a predictable 1% increase in score.12 Although the authors10,11 of preliminary research have highlighted some beneficial aspects of clinical experiences, hours spent in clinical experience alone do not provide the information needed to demonstrate that students have gained experience with the necessary patient panels or health conditions.

Additional information is needed to explore the details related to the quality and quantity of patient encounters (PEs) for students and how these affect students’ abilities to function autonomously as competent practitioners. Therefore, the purpose of our study was to examine the characteristics of PEs that occurred during professional ATSs’ clinical experiences.

METHODS

Design

We used a multisite panel design to track PE data entered in the E*Value software platform (MedHub) by professional ATSSs during 1.5 calendar years. Before the start of this study, institutional review board approval was obtained from the sponsoring institutions as well as from the individual participating institutions when warranted.

Participants

We recruited program directors from Commission of Accreditation of Athletic Training Education–accredited professional athletic training programs (ATPs), and to be eligible to participate, the following inclusion criteria had to be met: (1) used E*Value for at least 1 year before the study, (2) required students to track PEs (case logging) in E*Value during clinical experiences, and (3) have a Board of Certification (BOC) 3-year aggregate first-time pass rate of greater than 85%. Twelve of 15 eligible programs (5 bachelor’s, 7 master’s) agreed to participate.

Informed consent forms were signed by the program directors (n = 12), and 363 students from these programs volunteered to participate. All PEs recorded by students occurred as a part of their organized clinical experience each semester. Before data collection, 1 member of the research team worked with each program director to ensure that the Case Logs Module in the program’s E*Value account included all of the necessary data fields.

Instrumentation

Data were collected via the Case Logs Module in E*Value. The Case Logs Module permits students to securely log data specific to clinical experiences. PEs, patient procedural opportunities (input related to procedures and International Classification of Diseases, Tenth Revision (ICD-10) codes [https://www.cms.gov/Medicare/Coding/ICD-10]), and use of the core competencies via custom questions. For each PE, students entered the type of encounter (ie, actual PE, practice encounter with peer or preceptor, didactic practice scenario, or immersive or nonimmersive), patient demographics (ie, gender [man, woman, transgender] and age [pediatric = <18 years old, adult = >18 years old]), the amount time spent with the patient (15-minute intervals from 0–120 minutes), the type of site at which the PE occurred (ie, college or university, secondary school, clinic, or other), the level of participation the student had in each encounter (ie, observed, assisted, or performed),13 the procedures performed during the PE (eg, ankle injury evaluation, lower leg flexibility/range of motion, or cryotherapy), and the patient’s diagnosis, with ICD-10 code (eg, S93.409A sprain or strain, ankle).

Procedures

Before data collection, both programmatic and student-level training sessions were conducted via video conference with each program to ensure that all stakeholders were comfortable with the study procedures and to answer any questions. These training sessions occurred during spring 2018 and fall 2018. Data collection began with only 3 programs in spring 2018 so we could be certain that all study procedures and processes were in place. No adjustments to the data-collection procedures were warranted after the spring 2018 semester, so we included the data from those 3 programs in the final analyses.

At the beginning of the 2018–2019 academic year, all 12 programs began data collection. The program director, clinical education coordinator, or both monitored student...
data entry in E*Value and provided reminders to students throughout each semester. Data were downloaded and transferred to the research team every 2 weeks during the year. After the study period (spring 2019), participating programs received a research study honorarium. A detailed description of the study procedures has been published.14

Data Analysis

Data entered for all PEs were uploaded into SPSS (version 27; IBM Corp) for analysis. Summary statistics, including means ± SDs, counts, and percentages, were tabulated for the various PE variables. During data analysis, diagnoses and procedures were further reduced into categories. For the diagnoses, each diagnostic code was separated into 1 of 6 categories based on the body region. Because participating programs were permitted to add procedural options for students to record in E*Value, we used a general inductive approach to align the programmatic procedural options with the original 70 procedures provided to all participating programs. During this process, 414 recorded procedures were removed from data analysis because they described an event that, while important for clinical experiences, did not align with providing patient care (eg, documentation of PE, conversation with preceptor about PE). Finally, each procedure was placed in 1 of 5 categories based on the thematic procedural area.

RESULTS

Data on 30,630 PEs were entered by 338 ATSs across 278 unique clinical experience settings (149 college or university sites, 95 secondary school sites, 23 clinic sites, and 11 other sites) from the 12 participating programs between the beginning of spring 2018 and the end of spring 2019. Demographic variables of the participating programs have been published.14

Characteristics of the Clinical Experiences

More than half of the reported PEs occurred in the college or university setting (n = 20,070, 65%), followed by the secondary school setting (n = 8,343, 27.2%), clinic (n = 1,622, 5.3%), and other (n = 589, 1.9%) settings; missing = 6 (Table 1). A total of 10,999 PEs (35.9%) occurred during immersive clinical experiences, and 274 students (81.1%) recorded at least 1 encounter during an immersive experience, while 18,228 PEs (59.5%) occurred during nonimmersive clinical experiences (1,403 missing), and 241 students (71.3%) recorded at least 1 encounter during a nonimmersive experience. Slightly more than half of the PEs were supervised by a male preceptor (n = 16,472, 53.8%) compared with 14,109 PEs (46.1%) supervised by a female preceptor (49 missing).

Characteristics of the PEs

Most PEs recorded were performed (n = 21,801, 71.2%) by the ATS, followed by assisted (n = 5,053, 16.5%) and observed (n = 3,669, 12.0%); missing = 107. Patient gender was 58.8% men (n = 17,990) and 41.2% women (n = 12,630); transgender = 1, missing = 9, with 27.5% of PEs being pediatric cases (n = 8,418) and 72.5% being adult cases (n = 22,205); missing = 7. More than half (n = 18,021, 58.8%) of the encounters recorded were 1 to 15 minutes long; missing = 107 (Figure 1).

Slightly more than 24,500 diagnoses were reported across all PEs recorded (1.2 ± 0.65 diagnoses per encounter). The lower extremity body region accounted for more than half of all diagnoses (57.6%; n = 14,144) and nonorthopaedic diagnoses for the least (3.0%, n = 734; Figure 2). The most common diagnoses were ankle sprain or strain (10.5%, n = 2,573), low back pain (4.4%, n = 1,069), and knee sprain anterior cruciate ligament (4.3%, n = 1,062). The 5 most frequently reported diagnoses per body region by clinical experience setting are displayed in Table 2.

A total of 40,853 patient care procedures were recorded during the 30,630 PEs (1.4 ± 1.1 procedures per encounter). The evaluation and examination procedural category accounted for the most procedures (n = 11,189, 27.4%), closely followed by the application of therapeutic modality category (n = 11,043, 27.0%) and care, treatment, and rehabilitation category (n = 10,388, 25.4%; Figure 3). The most frequent procedures were knee or thigh rehabilitation (n = 3,201, 7.8%), massage (n = 3,138, 7.7%), and cryotherapy (n = 2,933, 7.2%). The 5 most frequently reported procedures per procedural type category by clinical experience setting are shown in Table 3.

DISCUSSION

Participants experienced more than 90% of all PEs in collegiate or university and secondary school settings, regardless of whether the experience was immersive or nonimmersive. Patient diagnoses were similar between the collegiate or university and secondary school settings, and although slight variations existed in the procedures performed in the 2 settings, participants logged relatively homogeneous encounters. The lack of diversity among clinical site settings may affect the types of patients treated during clinical experiences, which is concerning if the goal is to prepare ATSs to treat a wide variety of patients on entering the profession.
Clinical Experience Practice Settings

The BOC tracks the breakdown of all professional settings in which certified ATs are employed. As of December 2021, only 43% of BOC–certified ATs practiced clinically in either the collegiate or university or secondary school settings (BOC, email communication, December 2021). However, three-quarters of the PEs logged by our participants occurred in these 2 practice settings. Other practice settings, such as physician practices, rehabilitation clinics, performing arts, or industrial settings, may offer a much wider range of patient ages and increased exposure to non-sport patient populations and associated conditions, and most importantly, may offer opportunities to engage in care of patients with comorbidities, polypharmacy, or other lifelong conditions that clinicians treating patients in these settings need.9 Our findings indicate that students might not be gaining enough experience in the clinical settings in which they may ultimately go on to practice after completing their professional education. These results suggest the need to deeply reevaluate the clinical education opportunities provided to students as well as the patient characteristics those clinical education opportunities should involve.

In 2017, the Excellence in Physical Therapist Education Task Force noted that, due to the consistent evidence that physical therapists were ill-prepared to meet evolving societal needs on completion of their entry-level degree preparation, physical therapy clinical education practices needed reform.15 However, the Task Force also noted that little incentive existed for programs to reform their clinical education structure if licensing examination performance continued to be the only universal measure of effective education and such programs continue to have high rates of graduate licensure success.15 Furthermore, the report noted that many physical therapy clinical education models have not been updated during the processes of degree elevation, which likely contributes to program graduates who are unable to manage the care of patients across the lifespan.15 It seems highly plausible, based on the lack of variety

Figure 1. Length of patient encounters reported by setting (%).

Figure 2. Diagnoses reported by body region (%).
Body Region	Overall (n = 24,559)	College or University (n = 15,926)	Secondary School (n = 6,594)	Clinic (n = 1,787)
	No. (%)		No. (%)	No. (%)
Upper extremity				
Shoulder pain, unspecified (M25.519)	980 (18.4)	686 (19.4)	234 (17.3)	53 (13.5)
Labral tear, shoulder (S43.439A)	416 (7.8)	345 (9.8)	129 (9.5)	37 (9.4)
Sprain or strain, hand or finger (S63.90XA)	365 (6.9)	225 (6.4)	84 (6.2)	22 (5.6)
Sprain or strain, elbow, unspecified (S66.919A)	283 (5.3)	220 (6.2)	67 (4.9)	21 (5.4)
Sprain or strain, neck (S13.4XXA)	279 (5.2)	205 (5.8)	60 (4.4)	16 (4.1)
Lower extremity				
Sprain or strain, ankle (S83.409A)	2573 (18.2)	1572 (16.7)	939 (24.7)	149 (19.0)
Sprain, ACL, knee (S83.512A)	1062 (7.5)	693 (7.4)	258 (6.8)	67 (8.5)
Knee pain (M25.569)	816 (5.8)	585 (6.2)	220 (5.8)	49 (6.3)
Sprain or strain, hip or groin (S73.109A)	770 (5.4)	524 (5.6)	216 (5.7)	35 (4.5)
Hamstring tendinitis (M77.9)	720 (5.1)	522 (5.5)	170 (4.5)	31 (4.0)
Head or face				
Concussion (S06.0XXA)	674 (59.0)	279 (54.5)	356 (64.6)	36 (50.7)
Contusion of face, scalp, and neck (S00.93XA)	83 (7.3)	41 (8.0)	34 (6.2)	5 (7.0)
Postconcussion syndrome (F07.81)	35 (3.1)	17 (3.3)	17 (3.1)	4 (5.6)
Trunk				
Pain, low back (M54.5)	1069 (59.6)	820 (62.9)	195 (51.0)	42 (47.7)
Sprain or strain, unspecified, back (S23.9XXA)	321 (17.9)	226 (17.3)	86 (22.5)	7 (8.0)
Contusion, chest or rib (S20.219A)	99 (5.5)	74 (5.7)	43 (11.3)	7 (8.0)
Disc hemiation, unspecified (M15.19)	82 (4.6)	51 (3.9)	17 (4.5)	5 (5.7)
Arthralgia pelvis, hip, or thigh (M25.559)	55 (3.1)	33 (2.5)	14 (3.7)	5 (5.7)
Body Region	Overall (n = 24,559)	College or University (n = 15,926)	Secondary School (n = 6,594)	Clinic (n = 1,787)
-------------	---------------------	-----------------------------------	-----------------------------	-------------------
	No. (%)	No. (%)	No. (%)	No. (%)
Nonorthopaedic				
Headache, general (R51)	128 (17.4)	62 (16.1)	50 (24.9)	36 (25.9)
Upper respiratory infection, acute, NOS (J06.9)	81 (11.0)	39 (10.1)	32 (15.9)	21 (15.1)
Dehydration (E86.0)	63 (8.6)	35 (9.1)	25 (12.4)	15 (10.8)
Heat exhaustion, unspecified (T67.5XXA)	59 (8.0)	29 (7.5)	20 (10.0)	9 (6.5)
Asthma (J45.909)	46 (6.3)	26 (6.7)	18 (9.0)	7 (5.0)
Nonspecific				
Encounter for other general examination (Z00.8)	726 (51.1)	398 (52.0)	159 (51.8)	161 (51.4)
Encounter for general examination without complaint, suspected, or reported diagnosis for general adult health examination without abnormal findings (Z00.00)	173 (12.2)	79 (10.3)	31 (10.1)	88 (28.1)
Encounter for screening, unspecified (Z13.9)	106 (7.5)	71 (9.3)	22 (7.2)	27 (8.6)
Encounter for screening for musculoskeletal disorder (Z13.82)	67 (4.7)	36 (4.7)	17 (5.5)	10 (3.2)
Encounter for screening for musculoskeletal disorder (Z13.82)	52 (3.7)	28 (3.7)	14 (4.6)	8 (2.6)

Abbreviations: ACL, anterior cruciate ligament; ICD-10, International Classification of Diseases, Tenth Revision (https://www.cms.gov/Medicare/Coding/ICD10); NOS, not otherwise specified.

A total of 252 patient encounters did not identify the clinical experience setting and were therefore removed from this analysis.
accreditation standards. The lack of required clinical education, programs might not have made significant changes to the model of clinical education, specifically relying on the clinical education sites primarily used during undergraduate education.

The “2020 Standards for Accreditation of Professional Athletic Training Programs” from the Commission on Accreditation of Athletic Training Education requires that programs provide clinical practice opportunities for students in settings where ATs commonly practice but falls short of requiring specific site types, which is consistent with other health care profession clinical education accreditation standards. The lack of required clinical settings likely contributes to programs continuing to rely on a homogeneous clinical experience site rotation. Program administrators, although not mandated to exceed the minimal accreditation requirements, should consider the totality of the athletic training clinical practice settings when identifying the clinical site opportunities that would best prepare students for the multifarious practice settings available on completion of their professional education. Furthermore, the combination of additional clinical practice setting opportunities in conjunction with tracking interactions would increase the ability of program administrators to provide customized learning opportunities to prepare students to meet the needs of diverse patient populations.

Patient Diagnoses

Our participants managed lower extremity injuries during more than half of their PEs. Previous researchers in athletic training indicated that concussion diagnoses accounted for 12% of diagnoses, but only 5% of the PEs our participants managed were associated with head or face diagnoses. Additionally, lower extremity diagnoses accounted for about a quarter of those in athletic training practice, yet they represented 57% of the diagnoses recorded by our participants. Data examining the incidence of injury in pediatric and adolescent populations support the more frequent occurrence of lower extremity injury, consistent with our findings; however, those findings showed that lower extremity injury prevalence in patients 10 to 19 years of age ranged from 38% to 51% of injuries, which was still less than that reported by our participants. The same authors found the prevalence of upper extremity injury in patients 10 to 19 years of age ranged from 36% to 51%, far more often than recorded by our participants. Our data suggest that students may be consigned to managing patients with more commonly occurring injuries, such as ankle sprains, and not as regularly included in the management of complex clinical cases, such as rotator cuff tears, concussions, or potentially more chronic health conditions. However, our methods did not require students to document all patient cases that occurred during their clinical experience; thus, we are unable to confirm this supposition.

When we examined the data by clinical site type, it was evident that students saw patients with similar diagnoses at collegiate or university and secondary school clinical sites for all body regions. Even in the clinic setting, lower extremity diagnoses were more than twice as frequent as upper extremity diagnoses. Yet PEs documented in a clinic were the only ones in which students gained experience treating long-term health conditions such as arthritis, spinal stenosis, and scoliosis. Our participants recorded only 16% of PEs at clinic sites. If rehabilitation clinics or physician practice settings were used more often in athletic training clinical education, students would gain considerable experience treating conditions across the lifespan.

Procedures Performed

Even though three-quarters of the PEs reported by our participants were in collegiate or university or secondary school settings, the procedures the students recorded did not necessarily align with the procedures performed by ATs in those settings. For example, Lam et al noted that nearly half of all procedures performed by ATs in secondary school practice settings were evaluations or reevaluations; about one-quarter, therapeutic modality application; and 8%, prevention or protection (strapping). We found that only 28% of the students’ PEs involved evaluation and examination procedures; 27%, modality application; and 9%, prevention or protection. This comparison suggests that ATs are relegated to carrying out low-level tasks, such as taping, bracing, and applying prescribed modalities, rather than being involved in the more critical-thinking and higher-level, decision-making tasks such as examination and diagnosis that are likely occurring at their clinical sites. To ensure that students gain the most from each clinical experience, PE tracking by ATPs could mitigate situations in which preceptors accept students with the intention of engaging them in roles other than those of an ATS. By doing so, program administrators will be able to see what students are doing at each site to make decisions about the effectiveness of the preceptor or value of the site for clinical experiences.

More than half (59%) of the reported PEs in our study fell within the range of 1 to 15 minutes in length. Standard
Table 3. Top 5 Procedures Reported per Procedural Type Category by Clinical Experience Setting

Procedural Type	Overall (n = 40853)	Setting	College or University (n = 26477)	Secondary School (n = 11868)	Clinic (n = 1866)
	No. (%)	Setting	No. (%)	No. (%)	No. (%)
Protection and prevention					
Ankle injury protection	1809 (40.4)	College or University	Ankle injury protection	901 (37.5)	Knee injury protection 29 (26.6)
Wrist injury prevention	442 (9.9)	College or University	Wrist injury protection	305 (12.7)	Injury or illness prevention 15 (13.8)
Foot injury prevention	437 (9.8)	College or University	Hand or finger injury	259 (10.8)	Ankle injury protection 13 (11.9)
Injury or illness prevention	377 (8.4)	Secondary School	Knee injury protection	194 (8.1)	Shoulder or upper arm injury protection 11 (10.1)
		Clinic	Knee injury protection	154 (7.5)	Hand or finger injury 10 (9.2)
Knee injury protection	372 (8.3)	College or University	Foot injury protection	185 (7.7)	General medical evaluation 334 (33.6)
		College or University	Injury or illness prevention	145 (7.5)	Knee (tibiofemoral) joint injury evaluation 112 (13.3)
Evaluation and examination					
Ankle injury evaluation	1373 (12.3)	College or University	Ankle injury evaluation	709 (11.8)	General medical evaluation 334 (33.6)
General medical evaluation	1333 (11.9)	College or University	General medical	698 (11.6)	Knee (tibiofemoral) joint injury evaluation 112 (13.3)
Shoulder or upper arm injury evaluation	1019 (9.1)	College or University	Shoulder or upper arm injury evaluation	558 (9.3)	Shoulder or upper arm injury evaluation 93 (9.3)
Concussion evaluation	864 (7.7)	College or University	Knee (tibiofemoral) joint injury evaluation	468 (7.8)	Knee (tibiofemoral) joint injury evaluation 63 (6.3)
Knee (tibiofemoral) joint injury evaluation	859 (7.7)	College or University	Lumbar spine or sacroiliac injury evaluation	428 (7.1)	Knee (patellofemoral) joint injury evaluation 266 (6.6)
Hip, thigh, or knee flexibility and range of motion	1853 (49.4)	College or University	Hip, thigh, or knee flexibility and range of motion	1299 (49.2)	Ankle injury evaluation 441 (49.3)
Lower leg flexibility and range of motion	677 (18.0)	College or University	Lower leg flexibility and range of motion	465 (17.6)	Hip, thigh, or knee flexibility and range of motion 95 (50.0)
Shoulder flexibility and range of motion	654 (17.4)	College or University	Shoulder flexibility and range of motion	451 (17.1)	Shoulder flexibility and range of motion 52 (27.4)
Elbow or forearm flexibility and range of motion	231 (6.2)	College or University	Elbow or forearm flexibility and range of motion	169 (6.4)	Shoulder flexibility and range of motion 22 (7.4)
Trunk or neck flexibility and range of motion	211 (5.6)	College or University	Trunk or neck flexibility and range of motion	162 (6.1)	Shoulder flexibility and range of motion 22 (11.6)
Knee or thigh rehabilitation	3201 (30.8)	College or University	Knee or thigh rehabilitation	2180 (30.7)	Elbow or forearm flexibility and range of motion 32 (3.6)
Foot, ankle, or lower leg rehabilitation	2358 (22.7)	College or University	Foot, ankle, or lower leg rehabilitation	1588 (22.4)	Elbow or forearm mobility and range of motion 10 (5.3)
Shoulder or upper arm rehabilitation	1471 (14.2)	College or University	Shoulder or upper arm rehabilitation	1119 (15.8)	Knee or thigh rehabilitation 195 (43.2)
Acute injury care	1310 (12.6)	College or University	Acute injury care	780 (11.0)	Shoulder or upper arm rehabilitation 26 (9.5)
Lower extremity injury care	574 (5.5)	College or University	Lower extremity injury care	397 (5.6)	Lower extremity injury care 151 (5.5)
Massage	3138 (28.4)	College or University	Massage	2682 (32.1)	Lower extremity injury care 104 (24.7)
Cryotherapy	2933 (26.6)	College or University	Electrotherapy or electrical stimulation	1846 (22.1)	Lower extremity injury care 441 (19.8)
Electrotherapy or electrical stimulation	2297 (20.8)	College or University	Cryotherapy	1820 (21.8)	Lower extremity injury care 104 (24.7)
Thermotherapy	1255 (11.4)	College or University	Ultrasound	942 (11.3)	Lower extremity injury care 3 (2.5)
Ultrasound	1098 (9.9)	College or University	Thermotherapy	812 (9.7)	Lower extremity injury care 3 (2.5)
		Secondary School	Ultrasound	116 (5.2)	Lower extremity injury care 3 (2.5)
		Clinic			
Ankle injury protection	901 (37.5)	Clinic	Ankle injury protection	13 (11.9)	Ankle injury protection 13 (11.9)
Wrist injury protection	305 (12.7)	Clinic	Wrist injury protection	167 (8.8)	Ankle injury protection 13 (11.9)
Foot injury prevention	259 (10.8)	Clinic	Knee injury protection	145 (7.5)	Shoulder or upper arm injury protection 11 (10.1)
Injury or illness prevention	194 (8.1)	Clinic	Knee injury protection	130 (6.7)	Hand or finger injury 10 (9.2)
Knee injury protection	887 (45.6)	Clinic	Foot injury protection	130 (6.7)	General medical evaluation 334 (33.6)
Wrist injury prevention	270 (13.9)	Clinic	Injury or illness prevention	15 (13.8)	Knee (tibiofemoral) joint injury evaluation 112 (13.3)
Hand or finger injury protection	167 (8.8)	Clinic	Ankle injury protection	13 (11.9)	Shoulder or upper arm injury protection 11 (10.1)

a A total of 642 patient encounters did not identify the clinical experience setting and were removed from this analysis; 407 procedures were categorized as not relevant to patient care and were removed from this analysis.
evaluations may reasonably be conducted during 15-minute interactions; however, it seems likely that, if ATSs were truly being provided the opportunity to conduct rehabilitation programs, longer PE interactions would have been reported. A 2016 survey of physical therapists demonstrated that 99% of patient appointments were ≥30 minutes, with nearly half lasting 60 minutes. About 25% of the reported procedures in our study fell into the care, treatment, and rehabilitation categories, but only 9.3% lasted long enough to account for a typical rehabilitation appointment (≥30 minutes).

As noted previously, interactions that involve examination and diagnosis, modality application, or prevention or protection might be completed in <15 minutes. Still, in traditional medical facility treatment centers, patients typically expected PEs to last ≤20 minutes but described higher levels of satisfaction and perceived improved care when the provider spent more time with them. Although ATSs can likely perform certain tasks relatively quickly, it is possible that this impedes their ability to comprehensively address patient-centered care.

The link between the time spent with patients and the types of procedures performed most often suggests that ATSs are assigned to complete less complicated tasks that are quickly performed and likely require less comprehensive patient communication or clinical decision making. Athletic training students may not have been included in the more difficult clinical decision-making opportunities in which their preceptors engaged on a regular basis, which undoubtedly affected their ability to handle such cases on completion of their academic program. Researchers observed that newly credentialed ATs faced challenges regarding their confidence and decision making during the first few months in practice. Additionally, the types of past clinical education experiences have been linked to the ease of the transition into clinical practice.

If ATPs adopt widespread PE tracking, a multitude of benefits can result. First, program administrators could conduct quality improvement initiatives in their own program’s clinical education by assessing the patient populations students can engage with and subsequently increase the variety of clinical experience sites to address student needs. Second, in the process of self-assessing their clinical education, program administrators can target additional clinical education options, such as standardized patients and simulation scenarios, to address patient populations or conditions to which students are not exposed during their clinical experiences. Third, the opportunity for students to use PE tracking data to develop patient care portfolios fosters their skills in self-assessing their professional performance and assists in identifying their strengths and weaknesses for future professional development plans. Students can also use patient care portfolios during the employment process to demonstrate their strengths with given patient populations when seeking employment in those settings.

LIMITATIONS AND FUTURE RESEARCH

Our results should be interpreted in the context of the study limitations. Despite efforts to support the understanding of the tool’s reporting features, data collection relied on the accuracy of self-reported behaviors of ATSs during clinical experiences. Future investigators should consider triangulating student-reported PEs with preceptors to ensure the reliability of the logged information. Future researchers should also examine the relationship between student-reported PEs and their BOC examination results and perceived levels of confidence in their ability to practice autonomously.

CONCLUSIONS

Using PE logging, programs should be able to determine if students are truly prepared to enter autonomous practice in a variety of practice settings with a variety of patient types. Our current clinical education practices do not appear to be preparing students to practice in a variety of clinical settings, which may severely limit their opportunities to gain experience treating patients across the lifespan. Program administrators should consider revamping their current clinical education structure to include more variety in clinical sites, specifically ensuring that students experience sites outside of high school or collegiate sports. Student-developed patient portfolios would also help students and program administrators demonstrate the variety of patients treated by each student and ensure that students are well prepared to treat patients across the lifespan.

ACKNOWLEDGMENTS

The National Athletic Trainers’ Association Foundation General Grant Program and A.T. Still University Strategic Research Fund Grant Program provided financial support for this investigation. We acknowledge E*Value for their technical support in assisting us with setting up case logging across all participating programs.

REFERENCES

1. Benes SS, Mazerolle SM, Bowman TG. The impact of clinical experiences from athletic training student and preceptor perspectives. *Athl Train Educ J*. 2014;9(4):156–165. doi:10.4085/0904156
2. O’Brien CW, Anderson R, Ayzenberg B, et al. Employers’ viewpoint on clinical education. *J Allied Health*. 2017;46(3):131–137.
3. Bell K, Bosshuizen HPA, Scherpbier A, Dornan T. When only the real thing will do: junior medical students’ learning from real patients. *Med Educ*. 2009;43(11):1036–1043. doi:10.1111/j.1365-2923.2009.03508.x
4. Hopayian K, Howe A, Dagley V. A survey of UK medical schools’ arrangements for early patient contact. *Med Teach*. 2007;29(8):806–813. doi:10.1080/01421590701543125
5. Ottenheijm RGP, Zwiering PJ, Scherpbie AJA, Metsemakers JFM. Early student-patient contacts in general practice: an approach based on educational principles. *Med Teach*. 2008;30(8):802–808. doi:10.1080/01421590802047265
6. Howe A, Dagley V, Hopayian K, Lillicrap M. Patient contact in the first year of basic medical training—feasible, educational, acceptable? *Med Teach*. 2007;29(2–3):237–245. doi:10.1080/01421590701294356
7. Lekkas P, Larsen T, Kumar S, et al. No model of clinical education for physiotherapy students is superior to another: a systematic review. *Aust J Physiother*. 2007;53(1):19–28. doi:10.1016/s0004-9514(07)70058-2
8. Mensch JM, Ennis CD. Pedagogic strategies perceived to enhance student learning in athletic training education. *J Athl Train*. 2002;37(4 suppl):S199–S207.
9. Standards. Commission on Accreditation of Athletic Training Education. Published 2020. Accessed August 12, 2020. https://caate.net/pp-standards/

10. Miller MG, Berry DC. An assessment of athletic training students’ clinical-placement hours. *J Athl Train.* 2002;37(4 Suppl):S229–S235.

11. Turocy PS, Comfort RE, Perrin DH, Gieck JH. Clinical experiences are not predictive of outcomes on the NATABOC examination. *J Athl Train.* 2000;35(1):70–75.

12. McCoy CP, Stenerson MB, Halvorsen AJ, Homme JH, McDonald FS. Association of volume of patient encounters with residents’ in-training examination performance. *J Gen Intern Med.* 2013;28(8):1035–1041. doi:10.1007/s11606-013-2398-0

13. Cavallario JM, Van Lunen BL, Hoch JM, Hoch M, Manspeaker SA, Pribesh SL. Athletic training student core competency implementation during patient encounters. *J Athl Train.* 2018;53(3):282–291. doi:10.4085/1062-6050-314-16

14. Welch Bacon CE, Cavallario JM, Walker SE, Bay RC, Van Lunen BL. Core competency-related professional behaviors during patient encounters: a report from the AATE Research Network. *J Athl Train.* 2022;57(1):99–106. doi:10.4085/542-20

15. Mairella KK. Best practice for physical therapist clinical education. American Council of Academic Physical Therapy. Published 2017. Accessed August 20, 2021. https://acapt.org/docs/default-source/hot-topics/best-practice-for-physical-therapist-clinical-education-rc-13-14-report-to-2017-house-of-delegates.pdf?sfvrsn=4c20b7d8_4

16. 2020 Standards for Accreditation of Professional Athletic Training Programs. Commission on Accreditation of Athletic Training Education. Accessed April 9, 2022. https://caate.net/wp-content/uploads/2018/09/2020-Standards-for-Professional-Programs-copyedited-clean.pdf

17. Edler JR, Eberman LE, Walker S. Clinical education in athletic training. *Athl Train Educ J.* 2017;12(1):46–50. doi:10.4085/120146

18. Lam KC, Marshall AN, Valovich McLeod TC, Snyder Valier AR. Injury and treatment characteristics of sport-specific injuries from 2013–2020: a report from the athletic training practice-based research network. *J Athl Train.* 2021;56(6S):S-152.

19. Fugløjer S, Dissing KB, Hestbæk L. Prevalence and incidence of musculoskeletal extremity complaints in children and adolescents: A systematic review. *BMC Musculoskeletal Disorder.* 2017;18:418. doi:10.1186/s12891-017-1771-2

20. Lam KC, Snyder Valier AR, Valovich McLeod TC. Injury and treatment characteristics of sport-specific injuries sustained in interscholastic athletics: a report from the athletic training practice-based research network. *Sports Health.* 2015;7(1):67–74. doi:10.1177/1941738114555842

21. Chorzewski R. AAOE physical therapy survey: white paper with summary results. American Association of Orthopedic Executives. Published January 2016. Accessed August 20, 2021. https://www.multibriefs.com/briefs/aaoe/whitepaper011216.pdf

22. Dugdale DC, Epstein R, Pantilat SZ. Time and the patient-physician relationship. *J Gen Intern Med.* 1999;14(Suppl 1):S34–40. doi:10.1046/j.1525-1497.1999.00263.x

23. Lin CT, Albertson GA, Schilling LM, et al. Is patients’ perception of time spent with the physician a determinant of ambulatory patient satisfaction? *Arch Intern Med.* 2001;161(11):1437–1442. doi:10.1001/archinte.161.11.1437

24. Walker SE, Thrasher AB, Singe SM, Rager JL. Challenges for newly credentialed athletic trainers during their transition to practice. *J Athl Train.* 2019;54(11):1197–1207. doi:10.4085/1062-6050-387-17

25. Singe SM, Bowman TG, Kilbourne BF, Barrett JL. Longitudinal examination of transition to practice for graduates of professional master’s programs: socializing factors. *Athl Train Educ J.* 2020;15(2):148–155. doi:10.4085/1947-380X-100-19

Address correspondence to Cailee E. Welch Bacon, PhD, ATC, Department of Athletic Training and School of Osteopathic Medicine in Arizona, A.T. Still University, 5850 E Still Circle, Mesa, AZ 85206. Address email to cwelch@atsu.edu.