ARITHMETIC BEHAVIOUR OF FROBENIUS SEMISTABILITY OF SYZYGY BUNDLES FOR PLANE TRINOMIAL CURVES

V. TRIVEDI

Abstract. Here we consider the set of bundles \(\{ V_n \}_{n \in \mathbb{N}} \) associated to the plane trinomial curves \(k[x,y,z]/(h) \). We prove that the Frobenius semistability behaviour of the reduction mod \(p \) of \(V_n \) is a function of the congruence class of \(p \) modulo \(2\lambda_h \) (an integer invariant associated to \(h \)).

As one of the consequences of this, we prove that if \(V_n \) is semistable in char 0 then its reduction mod \(p \) is strongly semistable, for \(p \) in a Zariski dense set of primes. Moreover, for any given finitely many such semistable bundles \(V_n \), there is a common Zariski dense set of such primes.

1. Introduction

In this paper we discuss the problems regarding Frobenius semistability behaviour of a vector bundle on a nonsingular projective curve.

Recall that a vector bundle \(V \) on a nonsingular projective curve \(X \) is semistable if for any subbundle \(W \subset V \), we have \(\mu(W) \leq \mu(V) \) where \(\mu(W) = \text{deg } W/\text{rank } W \). If \(V \) is not semistable then it has the unique Harder-Narasimhan filtration

\[
0 \subset V_1 \subset \cdots \subset V_n = V \quad \text{such that} \quad \mu(V_1) > \mu(V_2/V_1) \cdots > \mu(V/V_{n-1}),
\]

where \(V_i/V_{i-1} \) is semistable. In this case one defines \(\mu_{\text{max}}(V) = \mu(V_1) \) and \(\mu_{\text{min}}(V) = \mu(V/V_{n-1}) \). Though in characteristic 0, the pull back of a semistable vector under a finite map is semistable, the same is not always true in positive characteristics. On the other hand, the definition of semistability implies that, if \(F : X \to X \) is the Frobenius morphism, and if \(F^*V \) is semistable, then so is \(V \). However, if \(V \) is a semistable and such that \(F^*V \) is not semistable then by the results of Shepherd-Barron [SB] (Corollary 2.5) and X.Sun [S] (Theorem 3.1) there is a bound on \(\mu_{\text{max}}(F^*V) - \mu_{\text{min}}(F^*V) \) in terms of the genus of the curve and the rank of the vector bundle \(V \).

We say a bundle \(V \) is strongly semistable if \(F^s V \) is semistable for all \(s \geq 0 \), where \(F^s \) is the \(s \)-th iterated Frobenius. Recall that unlike semistable bundles, strongly semistable bundles in char \(p > 0 \) behave like semistable bundles in char 0, in many respects. On the other hand there is a result of Langer (Theorem 2.7 of [L]), which says that if \(V \) is a vector bundle (in a fixed char \(p \)) then there is \(s_0 >> 0 \) such that the HN filtration of \(F^{s_0}V \) is the strongly semistable HN filtration, i.e., there is \(s_0 >> 0 \) such that the HN filtration of \(F^{s_0}V \) consists of strongly semistable subquotients.

Now, suppose \(X \) is a nonsingular curve defined over a field of characteristic 0 and \(V \) is a vector bundle on \(X \) and if \(V_p \) denotes the “reduction mod \(p \)” of \(V \), then reduction mod \(p \) of the HN (Harder-Narasimhan) filtration of \(V \) is the HN Filtration of \(V_p \), for \(p >> 0 \). This is a consequence of the openness of the semistability condition (see [Mar]). However such an openness condition does not hold for Frobenius semistability.

2010 Mathematics Subject Classification. 13D40, 14H60, 14J60, 13H15.

Key words and phrases. Taxicab distance, Hilbert-Kunz multiplicity, characteristic 0, semistability, Frobenius semistability and strong semistability, Harder-Narasimhan filtration.
For example, let \(V = Syz(x, y, z) \) be the syzygy bundle on \(X = \text{Proj} \, R \), where \(R = \text{k}[x, y, z]/(x^4 + y^4 + z^4) \) of char \(p \geq d^2 \) then, by [HM] and [T1] it follows that:

\[
\begin{align*}
p \equiv \pm 1 \pmod{8} & \implies F^*V \text{ is semistable for all } s \geq 0 \\
p \equiv \pm 3 \pmod{8} & \implies V \text{ is semistable and } F^*V \text{ has the HN filtration } \\
& \quad \mathcal{L} \subset F^*V \quad \text{and} \quad \mu(\mathcal{L}) = \mu(F^*V) + 2.
\end{align*}
\]

Note that if \(V \) (in characteristic 0) has semistable reduction mod \(p \) for infinitely many primes \(p \) then it is semistable in char 0 to begin with, due to the openness of the semistability property. We look at the following questions.

1. If \(V \) is a semistable vector bundle on \(X \) defined over \(\mathbb{Q} \) then is \(V_p \) (the reduction mod \(p \)) strongly semistable for \(p \) in a Zariski dense set of \(\mathbb{Z} \)?
2. If \(s_0 \) is a number such that \(F^{s_0}V_p \) has strong HN filtration, then can one describe such an \(s_0 \) in terms of the invariants of the curve \(X \), for all but finitely many \(p \)?
3. Is the Frobenius semistability behaviour (i.e., the minimal number \(s_0 \) and the instability degree \(\mu_{\text{max}}(F^{s_0}V_p) - \mu_{\text{min}}(F^{s_0}V_p) \)) a function of the congruence class of \(p \) (modulo) \(N \), for some integer invariant \(N \) of the curve \(X \), for all but finitely many \(p \)? (instead, we may ask if for some finite Galois extension \(K \) of \(\mathbb{Q} \), the Frobenius semistability of \(V_p \) depends only on the splitting behaviour of \(p \) in \(\mathcal{O}_K \) (the ring of integers), for all but finitely many \(p \)).

Here, in this paper, we look at the bundles which arise from the syzygy bundles \(W_n \) of trinomial plane curves \(C \) in \(\mathbb{P}^2 \), defined by the short exact sequences

\[
0 \rightarrow W_n \rightarrow \mathcal{O}_C \oplus \mathcal{O}_C \oplus \mathcal{O}_C \rightarrow \mathcal{O}_C(n) \rightarrow 0,
\]

where the third map is \((s_1, s_2, s_3) \rightarrow (s_1x^n, s_2y^n, s_3z^n)\). The bundle \(W_n \) is alternatively denoted by \(Syz(x^n, y^n, z^n) \).

Recall that if \(V \) is a rank 2 vector bundle on a nonsingular projective curve \(X \) defined over a field of characteristic \(p > 0 \) then either (a) \(V \) is strongly semistable, i.e., \(F^*V \) is semistable for every \(s \geq 0 \), or (b) for some \(s \geq 0 \), \(F^*V \) is not semistable, and hence it has the nontrivial HN filtration, namely \(\mathcal{L} \subset F^*V \) such that \(\mathcal{L} \) is a line bundle with \(\mu(\mathcal{L}) > \mu(F^*V) \). Note that for such an \(s \), the HN filtration of \(F^*V \) is the strong filtration and \(\mu_{\text{max}}(F^*V) - \mu_{\text{min}}(F^*V) = 2(\mu(\mathcal{L}) - \mu(F^*V)) \).

In this paper we answer the above questions and generalize the above result of Monsky for the set of vector bundles

\[
S_{st} = \{ V_n \mid \pi \circ V_n = \pi^*W_n, \pi : X \rightarrow C \text{ the normalization of } C, \}
\]

\[
W_n \text{ is a syzygy bundle of } C, \quad C \in \{ \text{trinomial curves} \}, \quad n \in \mathbb{N},
\]

where by a trinomial curve \(C \) we mean \(C = \text{Proj} \, \text{k}[x, y, z]/(h) \), for a homogeneous irreducible trinomial \(h \). If a trinomial curve \(C \) is nonsingular then \(V_n = W_n \).

Let \(h \) be a trinomial plane curve of degree \(d \), then following Monsky [Mo2], it is either \text{irregular} or \text{regular} (see beginning of section (2)). For irregular trinomials, the following theorem settles all the above questions.

Theorem 1.1. Let \(h \) be a irregular trinomial of degree \(d \) and let \(r \) be the multiplicity of the irregular point (note \(r \geq d/2 \)). Then for all \(n \geq 1 \),

1. If \(r = d/2 \) implies that the bundle \(V_n \) is strongly semistable and
2. If \(r > d/2 \) implies that the bundle \(V_n \) is not semistable to begin with. Moreover it has the HN filtration \(\mathcal{L} \subset V_n \) such that \(\mu(\mathcal{L}) = \mu(\mathcal{L}) + (2r - d)^2n^2/4d \).

In particular the semistability behaviour of \(V_n \) is independent of the characteristic \(p \), (equivalently one can say that it depends on the single congruence class \(p \equiv 1 \pmod{1} \)).

Given a regular trinomial \(h \), there are associated positive integers \(\lambda \) and \(\lambda_h \) (see Notations 3.1). Following is the main result of this paper:
Theorem 1.2. Let h be a regular trinomial of degree d then for given $n \geq 1$, there is a well defined set theoretic map
\[
\Delta_{h,n} : \left(\frac{\mathbb{Z}/2\lambda_h \mathbb{Z}}{\{1,-1\}}\right) \rightarrow \left\{0, \frac{1}{\lambda_h}, \frac{2}{\lambda_h}, \ldots, \frac{\lambda_n-1}{\lambda_h}\right\} \times \{0,1,2,\ldots, \phi(2\lambda_h) - 1\} \cup \{(1,\infty)\}
\]
such that, given $p \geq \max\{n, d^2\}$, we have
\[
p \equiv \pm l \pmod{2\lambda_h} \text{ and } \Delta_{h,n}(l) = (1,\infty) \implies V_n \text{ is strongly semistable and}
\]
p \equiv \pm l \pmod{2\lambda_h} \text{ and } \Delta_{h,n}(l) = (t,s) \implies s \text{ is the least integer such that } F^{**}V_n \text{ is not semistable}

and $F^{**}V_n$ has the HN filtration $\mathcal{L} \subset F^{**}V_n$ with $\mu(\mathcal{L}) = \mu(F^{**}V_n) + \frac{\lambda}{2}(1 - t)$.

The existence of such a map has several consequences:

1. The Frobenius semistability behaviour of V_n, for a regular trinomial, is a function on the congruence class of $\pm p \pmod{2\lambda_h}$ (which are atmost $\phi(2\lambda_h)/2$ in number).

In Section 4, we compute $\Delta_{h,n}(1)$, for every h and do more elaborate computations for symmetric (Definition 4.2) trinomials.

2. In particular we deduce that (Theorem 4.6) if $p \geq \max\{n, d^2\}$ then a semistable bundle V_n is always strongly semistable for $p \equiv \pm 1 \pmod{2\lambda_h}$, hence given a finite subset $\{V_{n_1}, \ldots, V_{n_m}\}$ of semistable bundles of S_m (see (1.1)), the set of primes p, for which every V_{n_i} is strongly semistable, is a Zariski dense set (Corollary 5.7).

Moreover V_1 over a regular trinomial is always semistable and hence

(i) for a given finite set of syzygy bundles V_1 of regular trinomial curves, there is a Zariski dense set of primes, for which each of the bundles is strongly semistable. On the other hand

(ii) for any symmetric trinomial h of degree $d \geq 4$ and $d \not\equiv 5$, we show that there is a Zariski dense set of primes for which V_1 is not strongly semistable.

3. The existence of such a map $\Delta_{h,n}$ also implies that if there is one prime $p \geq \max\{n, d^2\}$ such that V_n is not strongly semistable then (i) there is a Zariski dense set of primes for which V_n fails to be strongly semistable, and infact (ii) (Theorem 5.5) there is a Zariski dense set of primes for which the first Frobenius pull back F^*V_n is not semistable.

4. Since either (i) V_n is strongly semistable or (ii) $F^{**}V_n$ is not semistable for some $0 \leq s < \phi(2\lambda_n)$, to check the strongly semistability of V_n, (i.e., to check the semistability of $F^{**}V_n$, for every $s \geq 0$), it is enough to check that $F^{**}V_n$ is semistable for $s = \phi(2\lambda_n)$.

It would be interesting to know if such properties as in (1)-(4) hold in greater generality.

Moreover, because of the bound on s (Theorem 5.5 and Remark 5.7), for any given explicit trinomial curve $\text{Proj } R$ given by h, we can compute $\Delta_{h,n}(l)$ (see Remark 5.8). Therefore for any $p \geq \{n, d^2\}$ ($p = \text{char } R$) we get an effective algorithm to compute $e_{HK}(R, (x^n, y^n, z^n))$ and the HN slopes for all the Frobenius pull backs of V_n.

We compute some concrete examples. By Corollary 5.9 if h is symmetric trinomial of degree d then it is trivial to check if the bundle V_n is semistable or not, for all $p \equiv \pm 1 \pmod{2\lambda_h}$, $p > \max\{n, d^2\}$.

We give some examples, where V_n need not be strongly semistable and have complicated Frobenius semistability behaviour. In particular we look at the Klein d-curve, $h = x^{d-1}y + y^{d-1}z + z^{d-1}x$. Let $d \geq 4$ be even then Monsky’s computation in [Mo2] gives
\[
p \equiv \pm(d-1) \pmod{2\lambda_h} \implies V_2 \text{ is semistable and } F^*V_1 \text{ is not semistable such that } \mu(\mathcal{L}) = \mu(F^*V_1) + (d^2 - 3d)/2
\]

In Corollary 4.7, we prove, for $3.2^{m-2} < d - 1 < 3.2^{m-1}$ if
\[
p \equiv \lambda_h \pm 2 \pmod{2\lambda_h} \implies F^{m-1}V_1 \text{ is semistable and } F^{m*}V_1 \text{ is not semistable and } \mu(\mathcal{L}) = \mu(F^{m*}V_1) + (d-2) \left(2[d-1 - 3.2^{m-2}] + 2\right).
\]
In this paper we crucially used an old result of Monsky for plane trinomial curves which involves the notion of taxicab distance (introduced in [H] and [HM]):

Theorem (Monsky) (see Theorem 2.3 for a more precise version) Let $R = k[x, y, z]/(h)$, where h is a regular trinomial of degree d over a field of char $k = p > 0$. Then

$$e_{HK}(R, (x^n, y^n, z^n)) = \frac{3dn^2}{4} + \frac{1}{p^{2s}} \left(\frac{\lambda(1 - t_{pn})}{2}\right)^2,$$

where, either $s = \infty$, or $s < \infty$ and $(1 - t_{pn}) > 0$ with $t_{pn} = T_d(p^s t_n)$.

We combine this with the result from [T1] which gave a dictionary between $e_{HK}(R, (x^n, y^n, z^n))$ and the Frobenius semistability behaviour of the syzygy bundle V_n.

Theorem (see Theorem 5.1 for the more precise version) of [T1]): If $p \geq \max\{n, d^2\}$ then, $s = \infty$ implies that bundle V_n is strongly semistable. If $0 \leq s < \infty$ then it is the least number such that $F^{**}V_n$ is not semistable. Moreover, for the HN filtration of

$$0 \subset \mathcal{L} \subset F^{**}(V_n),$$

we have $\mu(\mathcal{L}) = \mu(F^{**}(V_n) + \frac{\lambda(1 - t_{pn})}{2}$.

To prove the main theorem 3.5 for a regular trinomial h, we define a set $S_h \subset \mathbb{Z} / 2\lambda h \mathbb{Z})^3$, which is a disjoint union of four sets T_{ijk}.

We consider the set $L_{odd} = \{(u_1, u_2, u_3) \in \mathbb{Z}^3\},$ (which was introduced in ([H] and [Mo2]) as the disjoint union of four sets $\{L_{odd,}\}$.

For each δ and l, $n \geq 1$, we define a map (Lemma 3.3) $f_{L_n}^\delta: \mathbb{N} \cup \{0\} \to (\mathbb{Z} / 2\lambda h \mathbb{Z})^3$ and characterize the numbers s and t_{pn} (given as in the above theorem of Monsky) in terms of the set $\bigcup_i (f_{1,n}^\delta(\mathbb{Z} / 2\lambda h \mathbb{Z}) \mathbb{Z})^\delta$: The integer s is the minimum element of the set and if $s \in \text{Im}(f_{1,n}^\delta) \cap T_{ijk}$ (and i, j, k will be unique with this property), then $f_{L,n}(s)$ and i, j, k determine t_{pn} for all $p \equiv \pm l$ (mod $2\lambda h$).

The very definition of $f_{L,n}^\delta$ implies that the map factors through $\mathbb{Z} / \phi(2\lambda h) \mathbb{Z}$ and $f_{L,n}^\delta = f_{L^2,n}^\delta$, which gives a well defined map $\Delta_{h,n}$ as in Theorem 3.5.

As a corollary, for all $p \equiv \pm 1$ (mod $2\lambda h$), we get a simple expression for all trinomials h of degree d (Corollaries 6.1 (1) and 6.2 (2):

$$e_{HK}(k[x, y, z]/(h), (x, y, z)) = \frac{3d}{4}$$

if h is a regular trinomial,

$$= \frac{3d}{4} + \frac{2r^2}{4d},$$

if h is a irregular trinomial, where h has the point of multiplicity $r \geq d/2$.

In Corollary [6,2] when h is a Klein d-curve defined over a field of char $p > 0$ such that $p \equiv \lambda h \pm 2$ (mod $2\lambda h$), (as expected from the discussion above) we generate a more complex one.

Remark 1.3. As stated earlier, for the Fermat quartic, the function $\Delta_{h,1}$ is completely known by the result of [HM]. For the Fermat curve ($h = x^d + y^d + z^d$) and Klein d-curve ($h = x^{d-1}y + y^{d-1}z + z^{d-1}x$) Monsky [Mo2] has computed $\Delta_{h,1}(d-1)$, for even d, and $\Delta_{h,1}(\lambda \pm (2d-2))$ for odd $d > 5$ where h is a Klein d-curve.

Questions about Frobenius semistability of V_n for the Fermat curve are also studied extensively in works of Brickmann-Kaid, Brenner, Kaid, Stäbler etc. (see the recent paper [BK] and references given there).

2. Preliminaries

Let $h \in k[x, y, z]$ be a homogeneous irreducible trinomial of degree d, i.e., $h = M_1 + M_2 + M_3$ where M_i are monomials of degree d.

By Lemma 2.2 of [Mo2], one can divide such an h in two types:

1. h is ‘irregular’ if one or more of the points $(1, 0, 0), (0, 1, 0), (0, 0, 1)$ of \mathbb{P}^2 has multiplicity $\geq d/2$ on the plane curve h.

(2) h is ‘regular’, i.e., the exponents e_1 of x in M_1, e_2 of y in M_2 and e_3 of z in M_3, respectively, are all $> d/2$.

Moreover any regular h is equivalent (i.e., one equation is obtained from the other equation by some permutation of x, y and z) to one of the following:

(a) Type (I): $h = x^{a_1}y^{a_2} + y^{b_1}z^{b_2} + z^{c_1}x^{c_2}$, where $a_1, b_1, c_1 > d/2$, (here $e_1 = a_1$, $e_2 = b_1$ and $e_3 = c_1$).

(b) Type (II): $h = x^{d} + x^{a_1}y^{a_2}z^{a_3} + y^{b_2}z^{c}$, $a_2, c > d/2$, (here $e_1 = d$, $e_2 = a_2$ and $e_3 = c$).

Given a regular trinomial h, Monsky defines a set of positive integers $(\alpha, \beta, \nu, \lambda)$ as follows: $\alpha = c_1 + e_2 - d$, $\beta = c_1 + e_3 - d$ and $\nu = e_2 + e_3 - d$. Moreover $\lambda = \frac{1}{d}\det(A)$, where A is a 3×3 matrix formed from the exponents of x, y and z in M_1, M_2 and M_3.

Notations 2.1. In particular, given a regular trinomial h, we can associate positive integers $\alpha, \beta, \nu, \lambda > 0$ as follows:

1. Type (I) $h = x^{a_1}y^{a_2} + y^{b_1}z^{b_2} + z^{c_1}x^{c_2}$, denote $\alpha = a_1 + b_1 - d$, $\beta = a_1 + c_1 - d$, $\nu = b_1 + c_1 - d$, $\lambda = a_1b_1 + a_2c_2 - b_1c_2$.

2. Type (II) $h = x^{d} + x^{a_1}y^{a_2}z^{a_3} + y^{b_2}z^{c}$, denote $\alpha = a_2$, $\beta = c$, $\nu = a_2 + c - d$ and $\lambda = a_2c - a_3b$.

Moreover we denote $t = (t_1, t_2, t_3) = (\alpha/\lambda, \beta/\lambda, \nu/\lambda)$.

Definition 2.2. We recall the following definition given in [HM] and [Mo2], where $p = \text{char} \ k > 0$: Let $L_{odd} = \{ u = (u_1, u_2, u_3) \in \mathbb{Z}^3 \mid \sum_i u_i \text{ odd} \}$. For any $u \in L_{odd}$ and for $s \in \mathbb{Z}$ and $n \geq 1$, the \textit{taxicab distance} between the triples $p^stn = (p^st_1n, p^st_2n, p^st_3n)$, and u is $TD(p^stn, u) = \sum_i |p^st_i - u_i|$. They define $\delta^s(tn) = p^{-s}(1 - Td(p^stn, u))$, and s is the smallest integer such that $Td(p^stn, u) < 1$, for some $u \in L_{odd}$. If there is no such pair then they define $\delta^s(tn) = 0$.

Following is the crucial Theorem 2.3 of [Mo2]

Theorem 2.3. Let $R = k[x, y, z]/(h)$, where h is a regular trinomial of degree d. Then
\[
\epsilon_{HK}(R, (x^n, y^n, z^n)) = \frac{3dn^2}{4} + \frac{\lambda^2}{4d} [\delta^s(tn)]^2 = \frac{3dn^2}{4} + \frac{\lambda^2}{4dp^{2s}} (1 - Td(p^stn))^2,
\]
where α, β, ν and λ are as in Notations 2.1.

We extend the definition of Monsky to every integer l, as follows.

Definition 2.4. For an integer $l \geq 1$ we denote $Td(l^st) = Td(l^st, u)$, if there exists a $u \in L_{odd}$ such that $Td(l^st, u) < 1$ (note that such a u is unique if it exists).

Lemma 2.5. (1) The triple (α, β, ν) satisfies the triangle inequalities: $\alpha < \beta + \nu$, $\beta < \alpha + \nu$ and $\nu < \beta + \alpha$.

(2) and $2\lambda \geq \alpha + \beta + \nu$. Moreover

(3) the inequality $Td(l^{-stn}, u) < 1$ has no solution, for $s > 0$ and $l \geq n$.

Proof. The triangle inequalities of (1) are obvious as pointed out in [Mo2].

(2) Let $\alpha, \beta, \nu, \lambda$ be the associated integers to the trinomial h of type (I). Then $2\lambda < \alpha + \beta + \nu$ implies $b_1(a_1 - c_2 - 1) + a_2c_2 + d/2 + a_2 < c_1$.

But $a_1 - c_2 - 1 \geq 0$. Now if $a_1 - c_2 - 1 \geq 1$ then $b_1(a_1 - c_2 - 1) + a_2c_2 + d/2 + a_2 > d \geq c_1$, which is a contradiction. (b) If $a_1 - c_2 - 1 = 0$ then $a_1 = t + 1$ and $c_2 = t$, where $d = 2t + 1$ or $d = 2l$. Now

$h_1 = a_1(c_2 + 1) + a_2c_2 + d/2 + a_2 = t^2 + d/2 + t > t + 1 = c_1$,

which is again a contradiction.
(2) (ii) Let $\alpha, \beta, \nu, \lambda$ be associated to the trinomial h of type (II). Then

$$2\lambda < \alpha + \beta + \nu \implies 2a\nu - a\beta < a\beta + c - d/2 \implies (a_2 - 1)(c - 1) - 1 + d/2 < a\beta,$$

which is not possible as $a_2 - 1 \geq a_3$, $c - 1 \geq b$ and $d \geq 2$.

This proves part (2).

(3) Let $t = (t_1, t_2, t_3) = (\alpha/\lambda, \beta/\lambda, \nu/\lambda)$. Note that $s > 0$ and $l \geq n$ implies $0 \leq |t_1n/l^*| = |\alpha n/\lambda| < 1$. Let $u = \{u_1, u_2, u_3\} \in L_{odd}$. Hence for u_1 odd we have $|t_1n/l^* - u_1| = 1 - |\alpha n/\lambda|$ and for u_1 even we have $|t_1n/l^* - u_1| = \alpha n/\lambda$. Similar assertions hold for u_2 and u_3. (i) If u_1, u_2 and u_3 are odd then $Td(l^{-*}tn, u) = 3 - (\alpha + \beta + \nu)n/l^*\lambda$. Therefore the existence of a solution for

$$Td(l^{-*}tn, u) < 1 \implies 2\lambda l^* < (\alpha + \beta + \nu)n \implies 2\lambda < (\alpha + \beta + \nu).$$

which is not possible by (2).

(ii) Suppose only one of the u'_i's is odd. Without loss of generality we assume that u_1 is odd then u_2 and u_3 are even. Now $Td(l^*t, u) < 1$ if and only if $\beta + \nu < \alpha$, which contradicts (1). This proves the lemma. \square

3. Main theorem

Throughout this section h denotes a regular trinomial.

Notations 3.1. Let $\alpha, \beta, \nu, \lambda$ integers associated to h as in Notations 2.1. Let $a = \gcd(\alpha, \beta, \nu, \lambda)$. Then we denote

$$\lambda_h = \frac{\lambda}{a}, \alpha_1 = \frac{\alpha}{a}, \beta_1 = \frac{\beta}{a}, \nu_1 = \frac{\nu}{a}.$$

Definition 3.2. Let

$$\delta = (\delta_1, \delta_2, \delta_3) \in \{(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)\} \subset L_{odd}.$$

For given such δ, we say $u \in L_{odd}^{\delta}$ if $u = (2v_1 + \delta_1, 2v_2 + \delta_2, 2v_3 + \delta_3)$, where v_1, v_2, v_3 are integers.

Thus we can partition L_{odd} into four disjoint sets

$$L_{odd} = \bigcup_{\delta} L_{odd}^{\delta} = L_{odd}^{(1,1,1)} \cup L_{odd}^{(1,0,0)} \cup L_{odd}^{(0,1,0)} \cup L_{odd}^{(0,0,1)}.$$

Definition 3.3. Let $R = (\mathbb{Z}/2\lambda_h\mathbb{Z})^3$. We say the element $(w_1, w_2, w_3) \in \mathbb{Z}^3$ represents (or is the representative of) $w \in R$ if $(w_1, w_2, w_3) = w \mod (2\lambda_h\mathbb{Z})^3$ such that $0 \leq w_1, w_2, w_3 < 2\lambda_h$.

We define

$$S_h = T_{000} \cup T_{100} \cup T_{010} \cup T_{001} \cup T_{110} \cup T_{011} \cup T_{101} \cup T_{111} \subset R,$$

where, for $(i, j, k) \in \{0, 1\}^3$,

$$T_{ijk} = \{w \in R \mid 2\lambda_h i + (1)^i w_1 + 2\lambda_h j + (1)^j w_2 + 2\lambda_h k + (1)^k w_3 < \lambda_h, \ (w_1, w_2, w_3) \text{ represents } w\}.$$

For example

$$T_{000} = \{w \in R \mid w_1 + w_2 + w_3 < \lambda_h, \ \text{where } (w_1, w_2, w_3) \text{ represents } w\} \quad \text{and}$$

$$T_{100} = \{w \in R \mid 2\lambda_h - w_1 + w_2 + w_3 < \lambda_h, \ \text{where } (w_1, w_2, w_3) \text{ represents } w\}, \ etc..$$

Note that

$$(\text{the representatives of } T_{ijk}) \subset [i\lambda_h, (i + 1)\lambda_h) \times [j\lambda_h, (j + 1)\lambda_h) \times [k\lambda_h, (k + 1)\lambda_h] \subset \mathbb{Z}^3.$$

In particular the set S_h is a disjoint union of $\{T_{ijk}\}_{i,j,k \in \{0,1\}}$.

Lemma 3.4. For a given δ as given in Equation 2.7 and for given integers $n, l \geq 1$, let

$$f_{l, \delta}^h : \mathbb{N} \cup \{0\} \rightarrow (\mathbb{Z}/2\lambda_h\mathbb{Z})^3,$$

given by $s \rightarrow (l^s \alpha_1 n - \delta_1 \lambda_h, l^s \beta_1 n - \delta_2 \lambda_h, l^s \nu_1 n - \delta_3 \lambda_h) = \lambda_h (l^s tn - \delta) \mod (2\lambda_h\mathbb{Z})^3$ be a set theoretic map. Then
(1) for an integer \(s \geq 0 \), the element \(f_{l,n}^\delta(s) \in S_h \) if and only if \(Td(l^tn, u) < 1 \) has a solution for some \(u \in L_{odd}^\delta \). Moreover,

(2) in this case, \(f_{l,n}^\delta(s) \) determines \(Td(l^tn, u) \):

\[
Td(l^tn) = 2(i + j + k)(-1)^i \frac{w_1}{\lambda_h} + (-1)^j \frac{w_2}{\lambda_h} + (-1)^k \frac{w_3}{\lambda_h},
\]

where \((w_1, w_2, w_3)\) is the representative of \(f_{l,n}^\delta(s) \) and \((i, j, k)\) is the triple such that \(f_{l,n}^\delta(s) \in T_{ijk} \).

Proof. Suppose \(Td(l^tn, u) < 1 \) has a solution for some \(u \in L_{odd}^\delta \). Then we have \(u = (2v_1 + \delta_1, 2v_2 + \delta_2, 2v_3 + \delta_3) \), for some integers \(v_1, v_2 \) and \(v_3 \). Therefore \(Td(l^tn, u) < 1 \) implies

\[
|l^\alpha_1n - \delta_1\lambda_h - 2v_1\lambda_h| + |l^\beta_1n - \delta_2\lambda_h - 2v_2\lambda_h| + |l^\nu_1n - \delta_3\lambda_h - 2v_3\lambda_h| < \lambda_h
\]

Let \((w_1, w_2, w_3)\) be the representative of \(f_{l,n}^\delta(s) \). Then

\[
(w_1, w_2, w_3) = (l^\alpha_1n - \delta_1\lambda_h, l^\beta_1n - \delta_2\lambda_h, l^\nu_1n - \delta_3\lambda_h, l^\nu_2n - \delta_3\lambda_h + 2k_3\lambda_h)
\]

for some integers \(k_1, k_2 \) and \(k_3 \). Hence by Equation (3.3),

\[
\frac{w_1}{2\lambda_h} - (v_1 + k_1) + \frac{w_2}{2\lambda_h} - (v_2 + k_2) + \frac{w_3}{2\lambda_h} - (v_3 + k_3) < \frac{1}{2}
\]

Now

\[
w_1 \in [0, \lambda_h] \implies v_1 + k_1 = 0 \quad \text{and} \quad \frac{w_1}{2\lambda_h} - (v_1 + k_1) = \frac{w_1}{2\lambda_h}.
\]

If \(w_1 \in [\lambda_h, 2\lambda_h) \) then \(v_1 + k_1 = 1 \) and \(\frac{w_1}{2\lambda_h} - (v_1 + k_1) = 1 - \frac{w_1}{2\lambda_h} \). In other words

\[
w_1 \in [i\lambda_h, (i + 1)\lambda_h) \implies v_1 + k_1 = i \quad \text{and} \quad \frac{w_1}{2\lambda_h} - (v_1 + k_1) = i - \frac{w_1}{2\lambda_h}.
\]

Similar statements hold for \(w_2 \) and \(w_3 \). Now Equation (3.3) gives

\[
i + \frac{1}{2\lambda_h} + j + \frac{1}{2\lambda_h} + k + \frac{1}{2\lambda_h} < \frac{1}{2},
\]

which implies \(f_{l,n}^\delta(s) \in T_{ijk} \subset S_h \).

Conversely, let \(f_{l,n}^\delta(s) \in S_h \) then there exists a unique \(T_{ijk} \) such that \(f_{l,n}^\delta(s) \in T_{ijk} \). Therefore \(f_{l,n}^\delta(s) \) is represented by \((w_1, w_2, w_3) \in \mathbb{Z}^3 \) such that

\[
2\lambda hi + (-1)^i w_1 + 2\lambda hj + (-1)^j w_2 + 2\lambda hk + (-1)^k w_3 < \lambda_h.
\]

Let

\[
(w_1, w_2, w_3) = (l^\alpha_1n - \delta_1\lambda_h + 2k_1\lambda_h, l^\beta_1n - \delta_2\lambda_h + 2k_2\lambda_h, l^\nu_1n - \delta_3\lambda_h + 2k_3\lambda_h).
\]

Then, by inequality (3.4), we have

\[
Td(l^tn, u) = \left| \frac{l^\alpha_1n}{\lambda_h} - u_1 \right| + \left| \frac{l^\beta_1n}{\lambda_h} - u_2 \right| + \left| \frac{l^\nu_1n}{\lambda_h} - u_3 \right| < 1,
\]

where

\[
u = (\delta_1 - 2k_1 + (-1)^i2i, \delta_2 - 2k_2 + (-1)^j2j, \delta_3 - 2k_3 + (-1)^k2k) \in L_{odd}^\delta.
\]

This also proves that \(Td(l^tn) = 2(i + j + k)(-1)^i w_1/\lambda_h + (-1)^j w_2/\lambda_h + (-1)^k w_3/\lambda_h \), which proves part (2) of the lemma and hence the lemma.

\[\square\]

Theorem 3.5. Let \(h \in k[x, y, z] \) be a regular trinomial over a field of char \(p > 0 \). Consider the set theoretic map

\[
\Delta_{h,n} : \left(\frac{\mathbb{Z}/2\lambda_h\mathbb{Z}}{\{1, -1\}} \right) \times \left\{ \frac{1}{\lambda_h}, \frac{2}{\lambda_h}, \ldots, \frac{\lambda_h - 1}{\lambda_h} \right\} \times \{0, 1, \ldots, \phi(2\lambda_h) - 1\} \cup \{(1, \infty)\},
\]

given by \(l \to (Td(l), Ds(l)) \), where \(Ds(l) = s \geq 0 \) is the smallest integer, for which \(Td(l^tn, u) < 1 \) has a solution for some \(u \in L_{odd} \) and \(Td(l) := Td(l^tn, u) \). If there is no such \(s \) then \(\Delta_{h,n}(l) = (1, \infty) \).
Remark 3.7.

Proof. (1) By Lemma 3.4, the inequality $T_d(l^*tn, u) < 1$ has a solution if and only if $f^\delta_{l,n}(s) \in S_h$, for some δ (if it does then $f^\delta_{l,n}(s) \in S_h$, for a unique δ). Hence $D_s(l) = \min\{s' \mid s' \in (\bigcup_0^\infty \text{Im}(f^\delta_{l,n})) \cap S_h\}

Let $B = \{0, 1, \frac{2}{\lambda_h}, \ldots, \frac{\lambda_h - 1}{\lambda_h}\} \times \{0, 1, \ldots, \phi(2\lambda_h) - 1\} \cup \{(1, \infty)\}$, and let $\mathbb{Z}_{\geq 0} \to B$ be the map given by $l \mapsto (T_d(l), D_s(l))$. By the definition of $f^\delta_{l,n}$, it follows that $f^\delta_{l,n}(s) = f^\delta_{l+2\lambda_h,n}(s)$, for all $s \geq 0$. Therefore, by Lemma 3.4(2), $D_s(l) = D_s(l + 2\lambda_h)$ and $T_d(l) = T_d(l + 2\lambda_h)$. Hence the above map factors through $\mathbb{Z}/2\lambda_h\mathbb{Z} \to B$, which gives a well defined map $(\mathbb{Z}/2\lambda_h\mathbb{Z})^* \to \mathbb{Z}/2\lambda_h\mathbb{Z} \to B$.

Now let $l' = 2\lambda_h - l$ then $l'^* = 2\lambda_hk - (-l)^*$, for some integer k. If s is even then $f^\delta_{l',n}(s) = f^\delta_{l,n}(s)$. If s is odd then $l'^* = 2\lambda_hk - l^*$. Let $u = (u_1, u_2, u_3) \in L^\delta_{odd}$ such that $T_d(l'^*tn, u) < 1$ has a solution. Then

$$T_d(l'^*tn, u) = \left|\frac{l'^*\alpha_1n}{\lambda_h} - u_1\right| + \left|\frac{l'^*\beta_1n}{\lambda_h} - u_2\right| + \left|\frac{l'^*\nu_1n}{\lambda_h} - u_3\right| = T_d(l'^*tn, u') < 1,$$

where $u' = (2k\alpha_1n - u_1, 2k\beta_1n - u_2, 2k\nu_1n - u_3) \in L^\delta_{odd}$. This implies that for any $s \geq 0$, $f^\delta_{l,n}(s) \in S_h$ if and only if $f^\delta_{l,n}(s) \in S_h$ and $T_d(l'^*tn) = T_d(l'^*tn)$. Hence $(T_d(l), D_s(l)) = (T_d(l'), D_s(l'))$. This gives the well defined map $(\mathbb{Z}/2\lambda_h\mathbb{Z})^* \to \mathbb{Z}/2\lambda_h\mathbb{Z} \to B$, which is $\Delta_{h,n}$.

This proves assertion (1) of the theorem.

(2) Since $f^\delta_{l,n} = f^\delta_{l,n+2\lambda_h}$, assertion (2) follows.

(3) If $D_s(l) < \infty$ then $f^\delta_{l,n}(s) \in S_h$, for some $s \in \mathbb{Z}_{\geq 0}$. Let order of t in $(\mathbb{Z}/2\lambda_h\mathbb{Z})^*$ be t. We can write $s = kt + r$, for some integers k and r such that $0 \leq r < t$. Then $l'^* = l'^*t = (2\lambda_hk + 1)t'$, for some $k \in \mathbb{Z}$. This implies $f^\delta_{l,n}(s) = f^\delta_{l,n}(r)$, as $\alpha_1, \beta_1, \nu_1, \lambda_h$ are integers. Hence $D_s(l) \leq r < O(l)$. This proves the assertion (3).

(4) Note that s is the minimal integer such that $f^\delta_{l,n}(s) \in S_h$ if and only if s_1 is the minimal integer such that $f^\delta_{l'^{s_1},n}(s_1) \in S_h$. Moreover $f^\delta_{l,n}(s) = f^\delta_{l'^{s_1},n}(s_1)$. Therefore $\Delta_{h,n}(l'^{s_1}) = (t, s_1)$. This proves the assertion (4) and hence the theorem.

Corollary 3.6. Let $s \geq 0$ and $1 \leq l < 2\lambda_h$ be integers. Then

$$T_d(l'^*tn) = T_d(p'^*tn) \quad \text{for} \quad p \geq n \quad \text{where} \quad p \equiv \pm l \pmod{2\lambda_h}.$$

Moreover, in that case

$$T_d(l'^*tn) = T_d((2\lambda_h - l)^*tn) = T_d(l'^*tn + 2\lambda_h)) = T_d(p'^*tn).$$

Proof. It follows from Theorem 3.5.
Remark 3.8. Given an explicit trinomial h of degree d over a field of char $p > 0$, let $p \equiv l \pmod{2\lambda_h}$ then we can compute $\Delta_{h,n}(l)$ in an effective way: Let $O(l)$ be the order of l in $\mathbb{Z}/2\lambda_h \mathbb{Z}$ (in fact can take $O(l)$ to be the order of l in $\mathbb{Z}/2\lambda_h \mathbb{Z}$), we look for the first $0 \leq s \leq O(l) - 1$, where $T_d(l^* t_n u) = \sum_i |l^* t_n u_i| < 1$ has a solution for some $u \in L_{od}$. If there is such a solution then $\Delta_{h,n}(l) = (s, t, s)$. Otherwise $\Delta_{h,n}(l) = (1, \infty)$.

4. Computations of some values of $\Delta_{h,n}$

We will see that $\Delta_{h,n}(l \mod 2\lambda_h)$ determines the Frobenius data (Lemma 2.3) of V_n over the trinomial h, for $p \equiv \pm l \pmod{2\lambda_h}$ and also Hilbert-Kunz multiplicity (Theorem 5.3) of $k[x,y,z]/(h)$ with respect to the ideal (x^n, y^n, z^n), we compute some of them.

Theorem 4.1. Let h be a regular trinomial then

1. For $n = 1$, $\Delta_{h,n}(1 \mod 2\lambda_h) = (1, \infty)$.
2. In general, for $n > 1$,

 $\begin{align*}
 &\text{either } \Delta_{h,n}(1 \mod 2\lambda_h) = (0, \infty), \\
 &\text{or } \Delta_{h,n}(1 \mod 2\lambda_h) = (T_d(1), 0).
 \end{align*}$

Proof. Since the order of the element $l = 1$ is 1 in $\mathbb{Z}/2\lambda_h \mathbb{Z}^*$. Assertion (2) follows from Theorem 4.1 (3).

To prove Assertion (1), it is enough to show that $T_d(t, u) < 1$ has no solution. Note that $\alpha, \beta, \nu < \lambda$. Therefore $\alpha/\lambda, \beta/\lambda, \nu/\lambda < 1$.

Let $u \in L_{od}$ be a solution for $T_d(t, u) < 1$. Then u_1 odd implies $u_1 = 1$ which implies $|\alpha/\lambda - u_1| = 1 - \alpha/\lambda$, and u_1 even implies $u_1 = 0$ and $|\alpha/\lambda - u_1| = \alpha/\lambda$.

(i) Suppose only one of the u_i’s is odd. Without loss of generality we assume that u_1 is odd then u_2 and u_3 are even. Now $T_d(t, u) = 1 - \alpha/\lambda + \beta/\lambda + \nu/\lambda < 1$ if and only if $\beta + \nu < \alpha$, which contradicts Lemma 2.3 (1).

(ii) Suppose u_1, u_2 and u_3 are odd. Then $T_d(t, u) = 1 - \alpha/\lambda + 1 - \beta/\lambda + 1 - \nu/\lambda < 1$ implies $2\lambda < \alpha + \beta + \nu$, which is not true by Lemma 2.3 (2). This proves that $T_d(t, u) < 1$ has no solution for any $s \in \mathbb{Z}$ and $u \in L_{od}$. Hence $\Delta_{h,n}(1) = (1, \infty)$. This proves (1). □

4.1. Some Computations of $\Delta_{h,n}$ for symmetric trinomial curves.

Definition 4.2. A trinomial curve h of degree d is symmetric if $h = x^a y^p z^r + y^a z^p x^r + z^a x^p y^r$.

Remark 4.3. A trinomial curve is symmetric if and only if $\alpha = \beta = \nu$. One can easily check that if $T_d(l^* t_n u) < 1$ has a solution for some $(u_1, u_2, u_3) \in L_{od}$ then $u_1 = u_2 = u_3$ and u_1 is odd.

Corollary 4.4. Let h be a symmetric curve of degree d. For a given $n \geq 1$, we have

1. $\Delta_{h,n}(1 \mod 2\lambda_h) = (T_d(1), D_s(1)) = \left(3|m_1 - \frac{\alpha n}{\lambda}|, 0\right)$, if $|m_1 - \frac{\alpha n}{\lambda}| < 1/3,$
2. $\Delta_{h,n}(1 \mod 2\lambda_h) = (1, \infty)$ otherwise,

where m_1 is one of the nearest odd integer to $\alpha n/\lambda$.

Proof. By Theorem 4.1 it is enough to compute $T_d(t n, u)$.

If $\alpha n/\lambda$ is an even integer then one of the u_i’s, say u_1, is equal to $\alpha n/\lambda \pm 1$, which implies $T_d(t n) \geq 1$. So $D_s(1) = \infty$. On the other hand for any nearest odd integer m_1 to $\alpha n/\lambda$, we have $|m_1 - \frac{\alpha n}{\lambda}| \geq 1$. This proves the corollary for when $\alpha n/\lambda$ is an even integer.

Therefore we can assume that $\alpha n/\lambda$ is not an even integer, and m_1 is the unique nearest odd integer m_1.

Let $u = (u_1, u_2, u_3) \in L_{od}$ be a solution for $T_d(t n, u) < 1$ then $u_1 = m_1$ and hence $T_d(t n, u) = 3|m_1 - \alpha n/\lambda|$, which is < 1 if and only if $|m_1 - \alpha n/\lambda| < 1/3$.

This implies $\Delta_{h,n}(1 \mod 2\lambda_h) = (3|m_1 - \alpha n/\lambda|, 0)$ if $|m_1 - \alpha n/\lambda| < 1/3$. Otherwise $\Delta_{h,n}(1) = (1, \infty)$. □
Lemma 4.6. Let h be a symmetric curve of degree $d \geq 4$ and $d \neq 5$. Then there is $l' \in (\mathbb{Z}/2\lambda h\mathbb{Z})^*$ such that $\Delta_{h,1}(l') \neq (1, \infty)$. In fact there is $l' \in (\mathbb{Z}/2\lambda h\mathbb{Z})^*$ such that

\[
\begin{align*}
\Delta_{h,1}(l') &= (6/\lambda h, 1) \quad \text{if } d \text{ is odd} \\
\Delta_{h,1}(l') &= (3/\lambda h, 1) \quad \text{if } d \text{ is even and } \lambda h \text{ is even} \\
\Delta_{h,1}(l') &= (t, m) \quad \text{if } d \text{ is even and } \lambda h \text{ is odd},
\end{align*}
\]

where $1 \leq m < \infty$ and (t, m) is given as in Lemma 4.7.

Proof. (1) Note that d odd implies α, λ and hence $\alpha_1, \lambda h$ are both odd. Since $\gcd(d, 2\lambda h) = 1$, the map $\mathbb{Z}/2\lambda h\mathbb{Z} \rightarrow (\mathbb{Z}/2\lambda h\mathbb{Z})^*$ given by $l \bmod 2\lambda h \mapsto l\alpha_1 \bmod 2\lambda h$ is bijective.

Let $l = \lambda h + 2$ then there is $l' \in (\mathbb{Z}/2\lambda h\mathbb{Z})^*$ such that $l = l'\alpha_1 \bmod 2\lambda h$. If $\lambda h > 6$ then $\Delta_{h,n}(l') = (3|\alpha n/\lambda h - 2| - 1, 1)$.

If $d > 12$ then $\lambda h \geq (a_1 - a_2) + a_1 a_2/(a_1 - a_2) > 6$. One can check that for $d = 7, 9, 11$ also $\lambda h > 6$. In particular $\Delta_{h,1}(l') = (6/\lambda h, 1)$, if $d > 5$ is odd.

(2) (a) If d and λh are even then α_1 is odd, which implies $\gcd(d, 2\lambda h) = 1$. Let $l = \lambda h + 1$ then there is $l' \in (\mathbb{Z}/2\lambda h\mathbb{Z})^*$ such that $l = l'\alpha_1 \bmod 2\lambda h$. If $\lambda h > 3$ (which holds for $d \geq 4$) then $3|l'\alpha/\lambda - 1| = 3/\lambda h < 1$. Therefore $\Delta_{h,n}(l') = (3/\lambda h, 1)$.

(2) (b) Let d be even and λh be odd. In Lemma 4.8 for $n = 1$ we have $m_1 = 1$, which implies $|\alpha/\lambda - 1| > 1/3$. In particular, there is $1 \leq m \infty$ such that $\Delta_{h,1}(\lambda h \pm 2) = (t, m) \neq (1, \infty)$. This proves the theorem.

\[\square\]

Lemma 4.6. Let h be a symmetric trinomial of even degree such that λh is odd. Let m_{1} denote a nearest odd integer to $\alpha n/\lambda$. Then the number

\[
|m_1 - \alpha n/\lambda| \in \{1\} \bigcup \left(0, \frac{1}{3}\right] \bigcup \left[1 - \frac{4}{3.2^m}, 1 - \frac{2}{3.2^m}\right),
\]

and

\[
|\alpha n/\lambda - m_1| = 1 \quad \text{or} \quad \frac{1}{3} \Rightarrow \Delta_{h,n}(\lambda h \pm 2) = (1, \infty).
\]

(2) $|\alpha n/\lambda - m_1| \in \left(0, \frac{1}{3}\right] \Rightarrow \Delta_{h,n}(\lambda h \pm 2) = \left(3|\alpha n/\lambda - m_1|, 0\right).$

(3) If $m \geq 1$ then $|\alpha n/\lambda - m_1| \in \left(1 - \frac{4}{3.2^m}, 1 - \frac{2}{3.2^m}\right) \Rightarrow \Delta_{h,n}(\lambda h \pm 2) = (3.2^m \left|\alpha n/\lambda - m_1\right| - (1 - \frac{1}{2^m}), m).$

Proof. Assertions (1) and (2) can be easily checked. Assertion (3) can be checked by dividing it into two cases:

(1) $|\alpha n/\lambda - m_1| \in \left(1 - \frac{4}{3.2^m}, 1 - \frac{1}{2^m}\right)$ and

(2) $|\alpha n/\lambda - m_1| \in \left(1 - \frac{1}{2^m}, 1 - \frac{2}{3.2^m}\right).
\[\square\]

Corollary 4.7. Let h be symmetric trinomial of degree $d \geq 4$. If for $l \in (\mathbb{Z}/2\lambda h\mathbb{Z})^*$ there is an integer $s \geq 0$ such that

\[
3l^s/4 \leq \lambda/\alpha < 3l^s/2 \quad \text{then} \quad \Delta_{h,1}(l) = (3|l^s\alpha/\lambda - 1|, s).
\]

In particular if $h = x^{d-1}y + y^{d-1}z + z^{d-1}x$, where $d \geq 4$.

(1) Suppose d is an even integer. Then (such an $m \geq 2$ always exists)

\[
3.2^{m-2} \leq d - 1 < 3\cdot 2^{m-1} \quad \Rightarrow \quad \Delta_{h,1}(\lambda \pm 2) = (3|1 - 2^m\alpha/\lambda|, \{m\}).
\]
Consider the canonical sequence of \mathcal{O}s where the third map is given by (ε). Let C be an irreducible curve of degree d over a field of characteristic p. Now it is easy to check the rest.

$\Delta_{h,1}(\lambda + 2) = (1, \infty)$.

$(1/\lambda, \{3\})$.

$(6\alpha/\lambda, \{1\})$.

Proof. First part of the corollary can be checked by considering two case (1) $3l^s/4 \leq \lambda/\alpha < l^s$ and (2) $l^s \leq \lambda/\alpha < 3l^s/4$.

For the second part note that d even implies $\alpha = d - 2$ even and $\lambda = (d - 1)(d - 2) + 1$ odd. Hence $\lambda \pm 2 \in (\mathbb{Z}/2\mathbb{Z})^\ast$.

Hence the assertion follows from the first part of the corollary.

Now if d is odd then for any $s \geq 0$, we have $(\lambda \pm 2)^s/\lambda = \text{odd integer} + (\pm 2)^s \alpha/\lambda$ as λ and α are both odd. Now it is easy to check the rest.

\Box

5. Semistability of Syzygy Bundles

Let $C = \text{Proj} \ R$, where R is an irreducible plane curve given by a homogeneous polynomial h of degree d over a field of characteristic p. Let $\pi : X \to C$ be the normalization of C. Consider the canonical sequence of \mathcal{O}_X-modules

$$0 \to W_n \to \mathcal{O}_C \oplus \mathcal{O}_C \oplus \mathcal{O}_C \to \mathcal{O}_C(n) \to 0,$$

where the third map is given by $(s_1, s_2, s_3) \mapsto (s_1x^n, s_2y^n, s_3z^n)$.

We recall the following Theorem 5.3 of [T1],

Theorem 5.1. Let C be an irreducible curve of degree $d \geq 4$. Let $\pi : X \to C$ be the normalization of C. Consider the canonical sequence of \mathcal{O}_X-modules

$$0 \to W_1 \to \mathcal{O}_C \oplus \mathcal{O}_C \oplus \mathcal{O}_C \to \mathcal{O}_C(1) \to 0.$$

Then

1. either $e_{HK}(R, (x, y, z)) = 3d/4$ and $V_1 = \pi^*W_1$ is strongly semistable, or

2. $e_{HK}(R, (x, y, z)) = \frac{3d}{4} + \frac{\tilde{t}^2}{4dp^2s^s}$,

where \tilde{t} is an integer such that $0 < \tilde{t} \leq d(d - 3)$ and $s \geq 0$ is the least number such that $F^{ss}(V_1)$ is not semistable. Moreover, for the HN filtration of

$$0 \subset \mathcal{L} \subset F^{ss}(V_1), \quad \mu(\mathcal{L}) = \mu(F^{ss}(V_1)) + \frac{\tilde{t}}{2}.$$

Remark 5.2. If V_1 is replaced by V_n, then the same argument (see Lemma 4.7 and Corollary 4.11 of [T1], to justify the appearance of n^2 in the expression) shows that

$e_{HK}(R, x^n, y^n, z^n) = \frac{3dn^2}{4} + \frac{\tilde{t}^2}{4dp^2s^s}$,

where $0 \leq \tilde{t} \leq d(d - 3)$ and s is the least integer for which $F^{ss}V_n$ is not semistable.

As we pointed out in [T1], the bound on \tilde{t} in terms of d (which was obtained in [T1], using result from [SB] and [S]), gave a dictionary between s and \tilde{t} and e_{HK} (although for $p > d(d - 3)$).
For example in 1993 Hans-Monsky [HM] have explicitly compute e_{HK} for the plane curve $h = z^4 + y^4 + z^4$:

$$e_{HK}(k[x, y, z]/(h), (x, y, z)) = 3 + (1/p^2) \text{ if } p \equiv \pm 3 \pmod{8}$$

$$= 3 \text{ if } p \equiv \pm 1 \pmod{8}.$$

Now, by Theorem 5.3 it is immediate that, for $p \geq 5$, $\tilde{l} = 4$ and $s = 1$, for $p \equiv \pm 3 \pmod{8}$. This means V is semistable but F^*V is not semistable. On the other hand, it says that V_1 is strongly semistable if $p \equiv \pm 1 \pmod{8}$.

Theorem 5.3. Let $R = k[x, y, z]/(h)$, where h is a regular trinomial of degree d and k is a field of characteristic $p > 0$. If $p \geq n$ and $p \equiv \pm l \pmod{2\lambda_h}$ then

$$e_{HK}(R, (x^n, y^n, z^n)) = \frac{3dn^2}{4} + \frac{\lambda^2}{4d} \left[\frac{1-t}{p^s} \right]^2,$$

where $\Delta_{h, n}(l) = (Td(l), Ds(l)) = (t, s)$ is as given in Definition 2.4.

Proof. If $p \geq n$, then by Lemma 2.3 (3), $\text{Td}(p^sn, u) < 1$ has no solution for any $s < 0$. Hence the minimum integer s, for which $\text{Td}(p^sn, u) < 1$ has a solution for some $u \in L_{odd}$, is nonnegative. Therefore, by Theorem 5.3 and Corollary 3.6

$$\delta^*(an/\lambda, \beta n/\lambda, \nu n/\lambda) = p^{-s}(1-t),$$

where $\delta^*(an/\lambda, \beta n/\lambda, \nu n/\lambda)$ is given as in Theorem 2.3. Now the theorem follows from Theorem 2.3.

The following Lemma explicitly relates $\Delta_{h, n}(l \mod 2\lambda_h)$ and the Frobenius semistability data of the syzygy bundle V_n over h, for the set of primes $p \equiv \pm l \pmod{2\lambda_h}$, where $p \geq \{n, d^2\}$.

Lemma 5.4. Let $R = k[x, y, z]/(h)$, where h is a regular trinomial of degree d over an algebraically closed field of characteristic $p > 0$. Let $p \geq \{n, d^2\}$ and let $p \equiv \pm l \pmod{2\lambda_h}$. For $\Delta_{h, n}$ as in Theorem 5.3

1. If $\Delta_{h, n}(l) = (1, \infty)$ then V_n is a strongly semistable bundle.
2. If $\Delta_{h, n}(l) = (t, s) \neq (1, \infty)$ then s is the least integer for which F^sV_n is not semistable. Moreover $F^s(V_n)$ has the HN filtration

\[0 \subset \mathcal{L}_n \subset F^s(V_n), \quad \text{where} \quad \deg \mathcal{L}_n = \mu(F^sV_n) + \frac{\lambda}{2}(1-t).\]

Proof. (1) If $\Delta_{h, n}(l) = (1, \infty)$, then $e_{HK}(R, (x^n, y^n, z^n)) = 3dn^2/4$ and therefore V_n is strongly semistable.

(2) Let $\Delta_{h, n}(l) = (t, s) \neq (1, \infty)$. By Theorem 5.3 and Equation 5.1, we have

$$e_{HK}(R, (x^n, y^n, z^n)) = \frac{3dn^2}{4} + \frac{\lambda^2}{4d} \left[\frac{(1-t)}{p^s} \right]^2 = \frac{3dn^2}{4} + \frac{l^2}{4dp^{2s}},$$

where $0 \leq \tilde{l} \leq d(d-3)$ and $s_1 \geq 0$ is the least integer for which $F^{s_1}V_n$ is not semistable. Note, by Lemma 2.3 the integer $s \geq 0$. This implies that

$$\frac{\tilde{l}}{p^{s_1}} = \frac{\lambda}{p^s}(1-t).$$

Let $(u_1, u_2, u_3) \in L_{odd}$ such that $t = \text{Td}(p^su, u) < 1$. Therefore $0 < \lambda(1-t) < \lambda$. On the other hand

$$\lambda(1-t) = a\lambda_h(1-t) = a(\lambda_h - |p^s\alpha_1 n - \lambda_h u_1| - |p^s\beta_1 n - \lambda_h u_2| - |p^s\nu_1 n - \lambda_h u_3|) \in \mathbb{Z}.$$

This implies $\lambda(1-t) \leq \lambda$ is a positive integer. This with the fact that $0 \leq \tilde{l} \leq d(d-3)$ implies that, for $p \geq d^2$, we have $s_1 = s$ and hence $\tilde{l} = \lambda(1-t)$. This proves the lemma. \(\square\)
Recall that a trinomial curve is irregular or regular. For the irregular trinomials the semistability behaviour is very explicit and independent of the char p as stated in Theorem 4.1 a proof of which is along the same line as in Theorem 4.9 of [T2].

In the light of Lemma 5.3 all the results in this section are immediate consequence of the results of the previous sections.

Following result gives the periodicity in the behaviour of \{V_n\}_{n \in \mathbb{N}} where \(V_n\) are syzygy bundles on a fixed trinomial \(h\).

Theorem 5.5. For a regular trinomial defined over a field of characteristic \(p\), if \(p \geq n + 2\lambda_h\), then for any \(s \geq 0\),

1. the bundle \(F^{*s}V_n\) is semistable if and only if \(F^{*s}V_{n+2\lambda_h}\) is semistable. Moreover,
2. \(F^{*s}V_n\) has the HN filtration \(0 \subset L_n \subset F^{*s}V_n\) if and only if \(F^{*s}V_{n+2\lambda_h}\) has the HN filtration \(0 \subset L_{n+2\lambda_h} \subset F^{*s}V_{n+2\lambda_h}\) and in that case we have \(\deg L_{n+2\lambda_h} = \deg L_n - 3\lambda_h dp^s\).

Proof. Follows from Corollary 3.6. □

Following theorem implies that every semistable bundle \(V_n\) over a trinomial is strongly semistable for a Zariski dense set of primes.

Theorem 5.6. Let \(R = k[x, y, z]/(h)\) be a regular trinomial, where \(k\) is an algebraically closed field of characteristic \(p > 0\). Let \(p \equiv \pm 1 \pmod{2\lambda_h}\) and \(p \geq d^2\) then

1. \(V_1\) is strongly semistable and
2. if, in addition, \(p \geq n\) then
 a. either \(V_n\) is strongly semistable or
 b. \(V_n\) itself is not semistable and has the HN filtration
 \[
 0 \subset L_n \subset \pi^*(V_n) \text{ where } \deg L_n = -\frac{3nd}{2} + \frac{\lambda}{2}(1-t),
 \]
 where \(t = |\alpha n/\lambda - u_1| + |\beta n/\lambda - u_2| + |\gamma n/\lambda - u_3| < 1\) for a unique \((u_1, u_2, u_3) \in \mathbb{L}_{odd}\).

Corollary 5.7. If \(V_{n_1}, \ldots, V_{n_s}\) are semistable syzygy bundles on trinomials \(h_1, \ldots, h_s\) respectively then they are all strongly semistable for primes \(p\) in a Zariski dense set

Proof. Let \(\lambda_h = 1\) if \(h\) is an irregular trinomial. If \(\lambda = l.c.m.(\lambda_{h_1}, \ldots, \lambda_{h_s})\) then for \(p \equiv \pm 1 \pmod{2\lambda}\) the assertion holds. □

Following theorem asserts that to check the strong semistability property of a syzygy bundle \(V_n\) over a trinomial \(h\), it is sufficient to check the semistability of \(V_n, F^{*s}V_n, \ldots, F^{*d}V_n\), where \(s < \phi(2\lambda_h)\).

Theorem 5.8. If \(p \geq \max\{n, d^2\}\), then either

1. \(V_n\) is strongly semistable or
 a. there is \(s < \phi(2\lambda_h)\) such that \(F^{*s}(V_n)\) is not semistable.
 In fact if \(p \equiv \pm 1 \pmod{2\lambda_h}\) then \(F^{*s}(V_n)\) is not semistable for some \(s < \text{order of } l \in (\mathbb{Z}/2\lambda_h\mathbb{Z})^*\)
 b. If there is a prime \(p \geq \max\{n, d^2\}\) such that \(V_n\) is not strongly semistable then there is a Zariski dense set for which \(F^{*s}V_n\) is not semistable.

Proof. Part (1) (a) and (b) follow from Theorem 5.5 (3). For part (2) suppose \(p \geq \max\{n, d^2\}\) such that \(V_n\) is not strongly semistable. There is \(l \in (\mathbb{Z}/2\lambda_h\mathbb{Z})^*\) such that \(p \equiv \pm 1 \pmod{2\lambda_h}\). By Corollary 3.6 we have \(\Delta_{h,n}(l) = (t, s) \neq (1, \infty)\). Therefore there exists \(u \in L_{odd}\) such that \(Td(l^tn, u) < 1\). Now \(l^t \in (\mathbb{Z}/2\lambda_h\mathbb{Z})^*\) such that \(\Delta_{h,n}(l^t) = (t, 1)\). Therefore for \(p \equiv \pm l^t \pmod{2\lambda_h}\), the bundle \(F^{*s}V_n\) is not semistable. □

By the following corollary it is trivial to check if a syzygy bundle \(V_n\), of a symmetric (see Definition 4.2) regular trinomial, is semistable or not.
Corollary 5.9. Let $p \equiv \pm 1 \pmod{2\lambda_n}$ and $p \geq \max\{n, d^2\}$ and let h be a symmetric trinomial of degree d. Let m_1 denote any of the nearest odd integer to an/λ.

1. If $\frac{an}{\lambda} - m_1 \geq \frac{1}{3}$ then V_n is semistable (and hence strongly semistable), and
2. if $|m_1 - an/\lambda| < \frac{1}{3}$, then V_n is not semistable and has the HN filtration

$$0 \subset L_n \subset V_n \text{ where } \deg L_n = -\frac{3nd}{2} + \frac{3\lambda}{2} \left(\frac{1}{3} - \frac{|an}{\lambda} - m_1\right).$$

Corollary 5.10. Let h be a symmetric trinomial of degree $d \geq 4$ but $d \neq 5$ then, for $p > d^2$,

1. V_1 is strongly semistable for a Zariski dense set of primes and
2. V_1 is semistable but not strongly semistable for a Zariski dense set of primes.

Proof. Follows from Theorem 4.11 (1) and Theorem 4.5

Corollary 5.11. Let X be the plane curve given by $h = x^{d-1}y + y^{d-1}z + z^{d-1}x$ where k is a field of characteristic $p \geq d^2$. Let

$$0 \to V \to H^0(X, O_X(1)) \otimes O_X \to O_X \to 0,$$

be the canonical map.

1. If $p \equiv \pm 1 \pmod{\lambda}$. Then V is strongly semistable.
2. If $p \equiv \pm 2 \pmod{\lambda}$, d is even and
 a. If $d = 4$ then F^*V is semistable and the HN filtration of $F^{2*}V$ is given by
 $$0 \subset L \subset F^2(V) \text{ with } \mu(L) = \mu(F^{2*}V) + 2$$
 b. If $d \geq 6$ and $m \geq 2$ such that (1) $3.2^{m-2} \leq d - 1 < 2^m$ then $F^{m-1*}V$ is semistable and the HN filtration of $F^{m*}V$ is given by
 $$0 \subset L \subset F^{m*}(V) \text{ with } \mu(L) = \mu(F^{m*}V) + 2\alpha(d - 1 - 3.2^{m-2}) + 2,$$
 c. If $2^m \leq d - 1 < 3.2^{m-1}$ then $F^{m-1*}V$ is semistable and the HN filtration of $F^{m*}V$ is given by
 $$0 \subset L \subset F^{m*}(V) \text{ with } \mu(L) = \mu(F^{m*}V) + \alpha(3.2^{m-1} - (d - 1)) - 1.$$
3. If $p \equiv \pm 2 \pmod{\lambda}$ and d is odd then
 a. For $d \geq 7$, the bundle V is semistable and for the HN filtration $0 \subset L \subset F^*V$, we have
 $$\mu(L) = \mu(F^*V) + \left(\frac{\lambda - 6\alpha}{2}\right).$$
 b. If $d = 5$, $F^{2*}V$ is semistable and the HN filtration $0 \subset L \subset F^{3*}V$, we have
 $$\mu(L) = \mu(F^{3*}V) + \frac{7}{2}.$$

Proof. Follows from Corollary 4.17

6. Hilbert-Kunz multiplicity

Throughout this section $R = k[x, y, z]/(h)$, where h is trinomial of degree d and k is a field of char $k = p > 0$.

Corollary 6.1. Let $R = k[x, y, z]/(h)$, where h is a trinomial of degree d. Let $n \geq 1$.

1. If h is an irregular trinomial then

$$e_{HK}(R, (x^n, y^n, z^n)) = \frac{3dn^2}{4} + \frac{(2r - d)^2n^2}{4d},$$

where r is the multiplicity of the irregular point.
(2) If h is a regular trinomial then
\[e_{HK}(R, (x^n, y^n, z^n)) = \frac{3dn^2}{4} + \frac{\lambda^2}{4dp^2} (1 - t)^2,\]
where $\lambda(1 - t) \leq \lambda$ is a nonnegative integer and $0 \leq s < \phi(2\lambda h)$ and t and s are constant on the congruence classes of $p \mod (2\lambda h)$.

Corollary 6.2. If h is a regular trinomial then

1. for all $p \geq n + 2\lambda h$,
\[e_{HK}(R, (x^{n+2\lambda h}, y^{n+2\lambda h}, z^{n+2\lambda h})) = e_{HK}(R, (x^n, y^n, z^n)) + 3d(n\lambda h + 1).\]

2. if $p \equiv \pm 1 \pmod{2\lambda h}$ then we have
\[e_{HK}(R, (x, y, z)) = \frac{3d}{4},\]

(a) \[\frac{\alpha n}{\lambda} - m_1 \geq \frac{1}{3} \implies e_{HK}(R, (x^n, y^n, z^n)) = \frac{3dn^2}{4},\]

(b) \[\frac{\alpha n}{\lambda} - m_1 < \frac{1}{3} \implies e_{HK}(R_{p}, (x^n, y^n, z^n)) = \frac{3dn^2}{4} + \frac{9\lambda^2}{4d} \left[\frac{1}{3} - \frac{\alpha n}{\lambda} - m_1\right]^2.\]

2. If d is odd and ≥ 5 then there is $l' \in (\mathbb{Z}/2\lambda h\mathbb{Z})^\ast$ such that for $p \equiv \pm l' \pmod{2\lambda h}$
\[e_{HK}(R, (x, y, z)) = \frac{3d}{4} + \frac{\lambda^2}{4dp^2} \left[1 - \frac{6}{\lambda h}\right]^2.\]

3. If $d \geq 4$ is even such that
(a) λh is even then
\[e_{HK}(R, (x, y, z)) = \frac{3d}{4} + \frac{\lambda^2}{4dp^2} \left[1 - \frac{6}{\lambda h}\right]^2.\]

(b) If λh is odd. Then
\[e_{HK}(R_{p}, (x^n, y^n, z^n)) = \frac{3dn^2}{4} + \lambda^2 \left[\frac{1}{4} - t\right]^2,\]
where $\Delta_{h,n}(\lambda \pm 2) = (t, s) \neq (1, \infty)$ (hence $0 < t < 1$ and $0 \leq s < \infty$) is given as in Lemma 4.6.

Corollary 6.4. Let $p \equiv \lambda \pm 2 \pmod{2\lambda}$ and let $h = x^{d-1}y + y^{d-1}z + z^{d-1}x$, where $d \geq 4$ (in this case $\lambda = \lambda_h$).

1. Suppose d is an even integer.
\[d = 4 \implies e_{HK}(R, (x, y, z)) = 3 + \frac{7}{p^3}.\]

Let $d \geq 6$. Let $m \geq 2$ such that $3.2^{m-2} < d - 1 < 2^m$. Then
\[e_{HK}(R, (x, y, z)) = \frac{3d}{4} + \frac{4}{dp^2m} \left[\alpha (d - 1 - 3.2^{m-2}) + 1\right]^2.\]
If $2^m < d - 1 < 3 \cdot 2^{m-1}$. Then
\[e_{HK}(R, (x, y, z)) = \frac{3d}{4} + \frac{1}{dp^{2m}} \left[\alpha (3.2^{m-1} - (d - 1)) - 1 \right]^2. \]

(2) Suppose d is odd then
\[d = 5 \implies e_{HK}(R, (x, y, z)) = \frac{3d}{4} + \frac{1}{dp^2} \left[\frac{49}{4} \right]^2. \]
\[d \geq 7 \implies e_{HK}(R, (x, y, z)) = \frac{3d}{4} + \frac{1}{4dp^2} [(d - 2)(d - 7) + 1]^2. \]

Remark 6.5. If h is a regular trinomial of degree $d = 3$ then it is an elliptic plane curve. Note that e_{HK} with respect to the maximal ideal was first computed in [BC] and [Mo3]. Also on an elliptic curve every semistable bundle is strongly semistable by [MR] (Theorem 2.1).

Remark 6.6. For R as in Corollary 6.4 Monsky in [M1] had computed e_{HK} in the following situation:

(1) If $d \geq 4$ is even and $p \equiv \pm (d - 1) \pmod{2\lambda}$ then
\[e_{HK}(R) = \frac{3d}{4} + \frac{(d^2 - 3d)^2}{4dp^2}. \]

(2) If $d \geq 5$ is odd and $p \equiv \lambda \pm (2d - 2) \pmod{2\lambda}$, $p \neq 2$ then
\[e_{HK}(R) = \frac{3d}{4} + \frac{(d^2 - 3d - 3)^2}{4dp^2}. \]

References

[BK] Brinkmann, D., Kaid, A., Rank-2 syzygy bundles on Fermat curves and an application to Hilbert-Kunz functions, Beitr. Algebra Geom. 57 (2016), no. 2, 321342.

[BC] Buchweitz, R., Chen, Q., Hilbert-Kunz functions of cubic curves and surfaces, J. Algebra 197 (1997) 246-167.

[H] Han, C., The Hilbert-Kunz function of a diagonal hypersurfaces, Ph.D. thesis, Brandeis University, 1991.

[HM] Han, C., Monsky, P., Some surprising Hilbert-Kunz functions, Math. Z., 214 (1993), no. 1, 119-135.

[L] Langer, A., Semistable sheaves in positive characteristic, Ann. Math. 159 (2004).

[Mar] Maruyama, M., Openness of a family of torsion free sheaves, J. Math. Kyoto Univ. 16-3 (1976), 627-637.

[MR] Mehta, V., Ramanathan, A., Homogeneous bundles in characteristic p, in Algebraic geometry – open problems (Ravello, 1982), Lecture Notes in Math., 997, Springer, Berlin, 1983, 315 - 320.

[Mo1] Monsky, P., The Hilbert-Kunz function, Math. Ann. 263 (1983) 43-49.

[Mo2] Monsky, P., The Hilbert-Kunz multiplicity of an irreducible trinomial, Journal of Algebra 304 (2006) 1101-1107.

[Mo3] Monsky, P., The Hilbert-Kunz function of a characteristic 2 cubic, J. Algebra 197 1997, 268-277.

[Sb] Shepherd-Barron, N.I., Semistability and reduction mod p, Topology, 37 (1998), no. 3, 659-664.

[S] Sun, X., Remarks on Semistability of G-Bundles in Positive Characteristic, Composition Mathematica, Vol. 119, (1999), 41-52.

[T1] Trivedi, V., Semistability and Hilbert-Kunz multiplicity for curves, J. of Algebra, 284 (2005), 627-644, [arXiv:math/0402245] [math.AC] 21 Feb 2004.

[T2] Trivedi, V., Strong semistability and Hilbert-Kunz multiplicity for singular plane curves, Contemp. Math., 390, Amer.Math.Soc. 2005, 165-173.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-400005, India

E-mail address: vija@math.tifr.res.in