SUPPLEMENTARY FILE SUPPORTING:

Title: Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis.

In Cellular and Molecular Life Sciences

Author information

Authors: Elke De Schutter 1,2,3,†, Jana Ramon 4,†, Benjamin Pfeuty 5, Caroline De Tender 6,7, Stephan Stremersch 4, Koen Raemdonck 4, Ken Op de Beeck 3,8, Wim Declercq 1,2, Franck B. Riquet 1,2,9,§ and Kevin Braeckmans 4,§ and Peter Vandenabeele 1,2,§,*

† These authors contributed equally to this work
§ Shared senior authorship

1 VIB Center for Inflammation Research, 9052 Ghent, Belgium
2 Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
3 Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Antwerp, Belgium.
4 Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
5 Université de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France
6 Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
7 Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, 9820 Merelbeke, Belgium
8 Center for Oncological Research, University of Antwerp and Antwerp University Hospital, 2610 Antwerp, Belgium
9 Université de Lille, 59000 Lille, France

*Correspondence: Peter.Vandenabeele@irc.vib-ugent.be (P. Vandenabeele)
Table S1 sgRNA sequences, PCR and sequencing primers used for Gsdme CRISPR-Cas9 gene editing

Sequence	Forward Sequence (5’→3’)	Reverse complement (5’→3’)
Guide sequence	TCCCAATAGCCCGCTCTTA	TAAGAGCGGGGCTATTGGGA
Primers	GCATTCAATACATGGTTTTTG	TAATCACCCCTAGGGCTCTTG

Fig. S1 Total amount of cell death, represented by the sum of the AnnV+/SB- and SB+ cells, in L929sAhFas cells with (L929sAhFas iGSDME+) or without (L929sAhFas iGSDME-) doxycycline-induced GSDME expression when treated with anti-Fas. AnnV, Annexin V; LsFas, L929sAhFas; NTC, non-treatment control; SB, SYTOX Blue
Fig. S2 Optimization of AuNP concentrations using a fixed laser fluence of 1.6 J/cm² in L929sAhFas cells. **a** Delivery efficiency of FITC-labeled dextran of 10 kDa (FD10) in function of increasing AuNP concentrations. **b** Metabolic activity in function of increasing AuNP concentrations. AuNPs, gold nanoparticles; Ctrl, control.
Fig. S3 Cell death kinetics, as determined by the SB staining, in untreated and photoporated cells, both in Gsdme WT and Gsdme KOcl2 L929sAhFas cells in function of anti-Fas treatment. KO, knockout; LsFas, L929sAhFas; SB, SYTOX Blue; WT, wild-type
Fig. S4 Comparison of the relative mean fluorescence intensity (rMFI, relative to the untreated SB- population) for different sizes of FITC-labeled dextrans, between the SB- and SB low+ population after 8 h of anti-Fas treatment. a FITC-labeled dextran 4 kDa (FD4) and 10 kDa (FD10). b FITC-labeled dextran 500 kDa (FD500) and 2000 kDa (FD2000). FD, FITC-labeled dextran; LsFas, L929sAhFas; SB, SYTOX Blue