Another multiplicity result for the periodic solutions of certain systems

BIAGIO RICCERI

Abstract: In this paper, we deal with a problem of the type

\[
\begin{align*}
(\phi'(u'))' &= \nabla_x F(t, u) \quad \text{in } [0, T] \\
u(0) &= u(T), \quad u'(0) = u'(T),
\end{align*}
\]

where, in particular, \(\phi\) is a homeomorphism from an open ball of \(\mathbb{R}^n\) onto \(\mathbb{R}^n\). Using the theory developed by Brezis and Mawhin in [1] jointly with our minimax theorem proved in [3], we obtain a general multiplicity result, under assumptions of qualitative nature only. Three remarkable corollaries are also presented.

Key words: periodic solution; Lagrangian system of relativistic oscillators; minimax; multiplicity; global minimum.

2010 Mathematics Subject Classification: 34A34; 34C25; 49J35; 49J40.

1. Introduction

In what follows, \(L, T\) are two fixed positive numbers. For each \(r > 0\), we set \(B_r = \{x \in \mathbb{R}^n : |x| < r\}\) (\(|\cdot|\) being the Euclidean norm on \(\mathbb{R}^n\)) and \(\overline{B}_r\) is the closure of \(B_r\).

We denote by \(\mathcal{A}\) the family of all homeomorphisms \(\phi\) from \(B_L\) onto \(\mathbb{R}^n\) such that \(\phi(0) = 0\) and \(\phi = \nabla \Phi\), where the function \(\Phi : \overline{B}_L \to]-\infty, 0]\) is continuous and strictly convex in \(\overline{B}_L\), and of class \(C^1\) in \(B_L\). Notice that 0 is the unique global minimum of \(\Phi\) in \(\overline{B}_L\).

We denote by \(\mathcal{B}\) the family of all functions \(F : [0, T] \times \mathbb{R}^n \to \mathbb{R}\) which are measurable in \([0, T]\), of class \(C^1\) in \(\mathbb{R}^n\) and such that \(\nabla_x F\) is measurable in \([0, T]\) and, for each \(r > 0\), one has \(\sup_{x \in B_r} |\nabla_x F(\cdot, x)| \in L^1([0, T])\), with \(F(\cdot, 0) \in L^1([0, T])\).

Given \(\phi \in \mathcal{A}\) and \(F \in \mathcal{B}\), we consider the problem

\[
\begin{align*}
(\phi(u'))' &= \nabla_x F(t, u) \quad \text{in } [0, T] \\
u(0) &= u(T), \quad u'(0) = u'(T) .
\end{align*}
\]

A solution of this problem is any function \(u : [0, T] \to \mathbb{R}^n\) of class \(C^1\), with \(u([0, T]) \subset B_L\), \(u(0) = u(T), u'(0) = u'(T)\), such that the composite function \(\phi \circ u'\) is absolutely continuous in \([0, T]\) and one has \((\phi \circ u')(t) = \nabla_x F(t, u(t))\) for a.e. \(t \in [0, T]\).

Now, we set

\[
K = \{u \in \operatorname{Lip}([0, T], \mathbb{R}^n) : |u'(t)| \leq L \text{ for a.e. } t \in [0, T], u(0) = u(T)\} ,
\]

\(\operatorname{Lip}([0, T], \mathbb{R}^n)\) being the space of all Lipschitzian functions from \([0, T]\) into \(\mathbb{R}^n\).

Clearly, one has

\[
\sup_{[0, T]} |u| \leq LT + \inf_{[0, T]} |u| \tag{1.1}
\]

for all \(u \in K\).
Next, consider the functional $I : K \to \mathbb{R}$ defined by

$$I(u) = \int_0^T (\Phi(u'(t)) + F(t, u(t))) dt$$

for all $u \in K$.

In [1], Brezis and Mawhin proved the following result:

THEOREM 1.A ([1], Theorem 5.2). - *Any global minimum of I in K is a solution of problem $(P_{\phi,F})$.*

In [4], using Theorem 1.A jointly with the theory developed in [2], we obtained the following multiplicity theorem:

THEOREM 1.B ([4], Theorem 3.1). - *Let $\phi \in A$, $F \in B$ and $G \in C^1(\mathbb{R}^n)$. Moreover, let $\gamma : [0, +\infty[\to \mathbb{R}$ be a convex strictly increasing function such that $\lim_{s \to +\infty} \frac{\gamma(s)}{s} = +\infty$. Assume that the following assumptions are satisfied:

(i_1) for a.e. $t \in [0, T]$ and for every $x \in \mathbb{R}^n$, one has

$$\gamma(|x|) \leq F(t, x) ;$$

(i_2) $\lim \inf_{|x| \to +\infty} \frac{G(x)}{|x|} > -\infty$;

(i_3) the function G has no global minima in \mathbb{R}^n ;

(i_4) there exist two distinct points $x_1, x_2 \in \mathbb{R}^n$ such that

$$\inf_{x \in \mathbb{R}^n} \int_0^T F(t, x) dt < \max \left\{ \int_0^T F(t, x_1) dt, \int_0^T F(t, x_2) dt \right\}$$

and

$$G(x_1) = G(x_2) = \inf_{B_c} G$$

where

$$c = LT + \gamma^{-1} \left(\frac{1}{T} \max \left\{ \int_0^T F(t, x_1) dt, \int_0^T F(t, x_2) dt \right\} \right) .$$

Then, for every $\psi \in L^1([0, T]) \setminus \{0\}$, with $\psi \geq 0$, there exists $\tilde{\lambda} > 0$ such that the problem

$$\begin{cases}
(\phi(u'))' = \nabla_x (F(t, u) + \tilde{\lambda} \psi(t) G(u)) & \text{in } [0, T] \\
u(0) = u(T) , \ u'(0) = u'(T)
\end{cases}$$

has at least two solutions which are global minima in K of the functional

$$u \to \int_0^T (\Phi(u'(t)) + F(t, u(t)) + \tilde{\lambda} \psi(t) G(u(t))) dt .$$

Clearly, condition (i_4) is a little involved and has a typical quantitative nature, due to the presence of the constant c. This kind of drawback, however, is largely compensated by the great generality of the conclusion, due to its validity for any $\psi \in L^1([0, T]) \setminus \{0\}$, with $\psi \geq 0$.

The aim of the present short paper is to give a further contribution to the subject, adopting assumptions of qualitative nature only, in the spirit of Theorem 1.2 of [5].

2. Results

The two main tools we will use to prove our main theorem are as follows:
THEOREM 2.1 ([3], Theorem 1.2). - Let X be a topological space, E a real vector space, $Y \subseteq E$ a non-empty convex set and $J : X \times Y \to \mathbb{R}$ a function which is lower semicontinuous and inf-compact in X, and concave in Y. Moreover, assume that

$$\sup_y \inf_x J < \inf_x \sup_y J .$$

Then, there exists $\hat{y} \in Y$ such that the function $J(\cdot, \hat{y})$ has at least two global minima.

PROPOSITION 2.1 ([5], Proposition 2.2). - Let X,Y be two non-empty sets and $f : X \to \mathbb{R}$, $g : X \times Y \to \mathbb{R}$ two given functions. Assume that there are two sets $A,B \subseteq X$ such that:

(a) $\sup_{A} f < \inf_{B} \sup_{Y} f$;
(b) $\sup_{y \in Y} \inf_{x \in A} g(x,y) < 0$;
(c) $\inf_{x \in B} \sup_{y \in Y} g(x,y) < 0$;
(d) $\inf_{x \in X \setminus B} \sup_{y \in Y} g(x,y) = +\infty$.

Then, one has

$$\sup_{y \in Y} \inf_{x \in X} (f(x) + g(x,y)) < \inf_{x \in X} \sup_{y \in Y} (f(x) + g(x,y)) .$$

A set $Y \subseteq L^1([0,T])$ is said to have property P if

$$\sup_{\psi \in Y} \int_0^T \psi(t) h(t) dt = +\infty$$

for all $h \in C^0([0,T]) \setminus \{0\}.$

Our main result is as follows:

THEOREM 2.1. - Let $\phi \in \mathcal{A}$, $F \in \mathcal{B}$ and $G \in C^1(\mathbb{R}^n)$. Assume that:

(a1) there exists $q > 0$ such that

$$\lim_{|x| \to +\infty} \frac{\inf_{t \in [0,T]} F(t,x)}{|x|^q} = +\infty$$

and

$$\limsup_{|x| \to +\infty} \frac{|G(x)|}{|x|^q} < +\infty ;$$

(a2) there exists $r \in [\inf_{\mathbb{R}^n} G, \sup_{\mathbb{R}^n} G]$ such that

$$\max \left\{ \inf_{x \in G^{-1}([-\infty,r])} \int_0^T F(t,x) dt, \inf_{x \in G^{-1}([r,\infty])} \int_0^T F(t,x) dt \right\} < \int_0^T \inf_{x \in G^{-1}(r)} F(t,x) dt .$$

Then, for every non-empty convex set $Y \subseteq L^\infty([0,T])$ with property P, there exists $\psi \in Y$ such that the problem

$$\begin{cases}
(\phi(u'))' = \nabla_x (F(t,u) + \psi(t)G(u)) & \text{in } [0,T] \\
u(0) = u(T), \ u'(0) = u'(T)
\end{cases}$$

has at least two solutions which are global minima in K of the functional

$$u \to \int_0^T (\Phi(u')(t) + F(t,u(t)) + \psi(t)G(u(t))) dt .$$

PROOF. Fix a non-empty convex set $Y \subseteq L^\infty([0,T])$ with property (P). Let $C^0([0,T],\mathbb{R}^n)$ be the space of all continuous functions from $[0,T]$ into \mathbb{R}^n, with the norm $\sup_{[0,T]} |u|$. To achieve the conclusion,
we are going to apply Theorem 2.A taking $X = K$, regarded as a subset of $C^0([0,T], \mathbb{R}^n)$ with the relative topology, and $J : K \times Y \to \mathbb{R}$ defined by

$$J(u, \psi) = \int_0^T \left(\Phi(u'(t)) + F(t, u(t)) \right) dt + \int_0^T \psi(t) (G(u(t)) - r) dt$$

for all $(u, \psi) \in K \times Y$. Clearly, $J(u, \cdot)$ is concave in Y. Fix $\psi \in Y$. By Lemma 4.1 of [1], $J(\cdot, \psi)$ is lower semicontinuous in K. Let us show that $J(\cdot, \psi)$ is inf-compact in K. By (a_1), there exist $k, \delta, \nu > 0$, with

$$\nu > k \|\psi\|_{L^\infty},$$

such that

$$|G(x)| \leq k(|x|^q + 1)$$

for all $x \in \mathbb{R}^n$ and

$$F(t, x) \geq \nu|x|^q$$

for all $t \in [0,T]$ and $x \in \mathbb{R}^n \setminus B_\delta$. Since $F \in \mathcal{B}$, there exists $M \in L^1([0,T])$ such that

$$|\nabla_x F(t, x)| \leq M(t)$$

for all $t \in [0,T]$ and $x \in B_\delta$. By the mean value theorem, we have

$$F(t, x) - F(t, 0) = \langle \nabla_x F(t, \xi), x \rangle$$

for some ξ in the segment joining 0 and x. Consequently, for all $t \in [0,T]$ and $x \in B_\delta$, we have

$$|F(t, x)| - |F(t, 0)| \leq |F(t, x) - F(t, 0)| \leq \delta M(t)$$

and so, if we put

$$\beta(t) = \nu \delta^q + M(t) \delta + |F(t, 0)|,$$

we have

$$F(t, x) \geq \nu |x|^q - \beta(t)$$

for all $t \in [0,T]$ and $x \in \mathbb{R}^n$. Now, set

$$\eta = -\int_0^T \beta(t) dt + \Phi(0) T - r \int_0^T |\psi(t)| dt,$$

and

$$\eta_1 = \eta - k \int_0^T |\psi(t)| dt.$$

For each $u \in K$, with $\sup_{[0,T]} |u| \geq LT$, taking (1.1), (2.1), (2.2), (2.3) into account, we have

$$J(u, \psi) \geq \int_0^T F(t, u(t)) dt - \int_0^T |\psi(t) G(u(t))| dt + \Phi(0) T - r \int_0^T |\psi(t)| dt$$

$$\geq \nu \int_0^T |u(t)|^q dt - \int_0^T |\psi(t) G(u(t))| dt + \eta \geq \nu \int_0^T |u(t)|^q dt - k \|\psi\|_{L^\infty} \int_0^T |u(t)|^q dt + \eta_1$$

$$\geq (\nu - k \|\psi\|_{L^\infty}) T \left(\inf_{[0,T]} |u| \right)^q + \eta_1 \geq (\nu - k \|\psi\|_{L^\infty}) T \left(\sup_{[0,T]} |u| - LT \right)^q + \eta_1$$

Consequently

$$\sup_{[0,T]} |u| \leq \left(\frac{J(u, \psi) - \eta_1}{(\nu - k \|\psi\|_{L^\infty}) T} \right)^{\frac{1}{q}} + LT.$$
Fix $\rho \in \mathbb{R}$. By (2.4), the set $C_\rho := \{ u \in K : J(u, \psi) \leq \rho \}$ turns out to be bounded. Moreover, the functions belonging to C_ρ are equi-continuous since they lie in K. As a consequence, by the Ascoli-Arzelà theorem, C_ρ is relatively compact in $C^0([0, T], \mathbb{R}^n)$. By lower semicontinuity, C_ρ is closed in K. But K is closed in $C^0([0, T], \mathbb{R}^n)$ and hence C_ρ is compact. The inf-compactness of $J(\cdot, \psi)$ is so shown. Now, to obtain the strict minimax inequality required by Theorem 2.1, we use Proposition 2.A. By (a_2), there are $x_1, x_2 \in \mathbb{R}^n$ such that

$$G(x_1) < r < G(x_2)$$

and

$$\max \left\{ \int_0^T F(t, x_1) dt, \int_0^T F(t, x_2) dt \right\} < \inf_{x \in G^{-1}(r)} F(t, x).$$

Now, put

$$A = \{ x_1, x_2 \},$$

$$B = \{ u \in K : u([0, T]) \subseteq G^{-1}(r) \}$$

and define $f : K \to \mathbb{R}$, $g : K \times Y \to \mathbb{R}$ by

$$f(u) = \int_0^T (\Phi(u'(t)) + F(t, u(t))) dt,$$

$$g(u, \psi) = \int_0^T \psi(t)(G(u(t)) - r) dt$$

for all $u \in K$, $\psi \in Y$. Since the constant functions (from $[0, T]$ into \mathbb{R}^n) belong to K, we think of A as a subset of K. With these choices, in connection with Proposition 2.A, (a) is a simple consequence of (2.6); (b) follows immediately from (2.5); (c) is obvious since $g(u, \psi) = 0$ for all $u \in B$. Finally, concerning (d), observe that, if $u \in K \setminus B$, then the continuous function $G \circ u - r$ is not zero and hence $\sup_{\psi \in Y} g(u, \psi) = +\infty$ since Y has property (P). Therefore, Proposition 2.A ensures that

$$\sup_{\psi \in Y} \inf_{K} J < \inf_{K} \sup_{Y} J.$$

Now, our conclusion follows directly from Theorem 2.1 and Theorem 1.A. \(\triangle \)

We now point out three remarkable corollaries of Theorem 2.1.

COROLLARY 2.1. - Let $\phi \in \mathcal{A}$, $F \in \mathcal{B}$ and $G \in C^1(\mathbb{R}^n)$. Besides condition (a_1), assume that $F(t, \cdot)$ is even for all $t \in [0, T]$, that G is odd and that

$$\inf_{x \in \mathbb{R}^n} \int_0^T F(t, x) dt < \int_0^T \inf_{x \in G^{-1}(0)} F(t, x) dt.$$

Then, the conclusion of Theorem 2.1 holds.

PROOF. By assumption, there is $\hat{x} \in \mathbb{R}^n$ such that

$$\int_0^T F(t, \hat{x}) dt < \int_0^T \inf_{x \in G^{-1}(0)} F(t, x) dt.$$

So, $G(\hat{x}) \neq 0$. Assume, for instance, that $G(\hat{x}) > 0$. Then, since G is odd, $G(-\hat{x}) < 0$. But, since $F(t, \cdot)$ is even, we have

$$\int_0^T F(t, \hat{x}) dt = \int_0^T F(t, -\hat{x}) dt.$$

Therefore, condition (a_2) is satisfied with $r = 0$, and the conclusion of Theorem 2.1 follows. \(\triangle \)
COROLLARY 2.2. - Let $\phi \in \mathcal{A}$ and let $F, G \in C^1(\mathbb{R}^n)$, with $\lim_{|x|\to\infty} G(x) = +\infty$. Besides condition (a$_1$), assume that there exists a point $x_0 \in \mathbb{R}^n$ which is, at the same time, the unique global minimum of G and a strict local, not global, minimum of F.

Then, for each $\gamma \in L^1([0,T])$, with $\inf_{[0,T]} \gamma > 0$, and for each non-empty convex set $Y \subseteq L^\infty([0,T])$ with property (P), there exists $\psi \in Y$ such that the problem

$$
\begin{cases}
(\phi(u'))' = \nabla_x (\gamma(t) F(u) + \psi(t) G(u)) & \text{in } [0,T] \\
u(0) = u(T), \ u'(0) = u'(T)
\end{cases}
$$

has at least two solutions which are global minima in K of the functional

$$u \to \int_0^T (\Phi(u'(t)) + \gamma(t) F(u(t)) + \psi(t) G(u(t))) dt .$$

PROOF. By assumption, there are $x_1 \in \mathbb{R}^n$ and $\rho > 0$ such that

$$F(x_1) < F(x_0) < F(x)$$

for all $x \in B(x_0, \rho) \setminus \{x_0\}$. Now, observe that, since G is inf-compact (being coercive) and x_0 is the unique global minimum of G, for each sequence $\{y_k\}$ in \mathbb{R}^n such that $\lim_{k \to \infty} G(y_k) = G(x_0)$, we have $\lim_{k \to \infty} y_k = x_0$. As a consequence, we can fix $r > G(x_0)$ so that

$$G^{-1}(]-\infty, r[)) \subseteq B(x_0, \rho) .$$

From (2.7) and (2.8), it follows that

$$G(x_1) > r$$

as well as, by compactness,

$$F(x_0) < \inf_{x \in G^{-1}(r)} F(x) .$$

At this point, it is clear that, for each $\gamma \in L^1([0,T])$, with $\inf_{[0,T]} \gamma > 0$, the function $(t,x) \to \gamma(t) F(x)$ satisfies conditions (a$_1$) and (a$_2$) and the conclusion follows. \(\triangle \)

Recall that a real-valued function on a convex subset of a vector space is said to be quasi-convex if its sub-level sets are convex.

COROLLARY 2.3. - Let $n = 1$ and let $\phi \in \mathcal{A}$, $F \in \mathcal{B}$, $G \in C^1(\mathbb{R})$. Besides condition (a$_1$), assume that G is strictly monotone and that $x \to \int_0^T F(t,x) dt$ is not quasi-convex.

Then, the conclusion of Theorem 2.1 holds.

PROOF. By assumption, there are $x_1, x_2, x_3 \in \mathbb{R}$, with $x_1 < x_3 < x_2$, such that

$$\max \left\{ \int_0^T F(t,x_1) dt, \int_0^T F(t,x_2) dt \right\} < \int_0^T F(t,x_3) dt .$$

Moreover, the numbers $G(x_1) - G(x_3)$ and $G(x_2) - G(x_3)$ have opposite signs and $G^{-1}(G(x_3)) = \{x_3\}$. Therefore, condition (a$_2$) is satisfied with $r = G(x_3)$, and the conclusion follows. \(\triangle \)

Acknowledgement. The author has been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, “Piano della Ricerca 2016/2018 Linea di intervento 2”.
References

[1] H. BREZIS and J. MAWHIN, *Periodic solutions of Lagrangian systems of relativistic oscillators*, Commun. Appl. Anal., 15 (2011), 235-250.

[2] B. RICCERI, *Well-posedness of constrained minimization problems via saddle-points*, J. Global Optim., 40 (2008), 389-397.

[3] B. RICCERI, *On a minimax theorem: an improvement, a new proof and an overview of its applications*, Minimax Theory Appl., 2 (2017), 99-152.

[4] B. RICCERI, *Multiple periodic solutions of Lagrangian systems of relativistic oscillators*, in “Current Research in Nonlinear Analysis - In Honor of Haim Brezis and Louis Nirenberg”, Th. M. Rassias ed., 249-258, Springer, 2018.

[5] B. RICCERI, *Miscellaneous applications of certain minimax theorems II*, Acta Math. Vietnam., to appear.

Department of Mathematics and Informatics
University of Catania
Viale A. Doria 6
95125 Catania, Italy
e-mail address: riczer@dmi.unict.it