Propionibacterium acnes is known as a Gram-positive bacterium constituting a significant part of the human skin microbiota (1). Its natural habitat is mainly the lipid-rich sebaceous glands (2, 3). Acne vulgaris is a common chronic skin disease and is usually associated with the detection of this organism. Moreover, P. acnes is more frequently identified in device-related infections (4, 5), producing biofilm in this context (6). Recently, this species has been subdivided into several phylogenetic types that were subsequently afforded subspecies status (7).

We present here the genome sequence of Propionibacterium namnetense NTS 31307302T isolated at Nantes University Hospital, France, during a bone infection (8). The isolate showed beta-hemolysis on a blood agar plate and was recently described as being related to P. acnes (9). Strain NTS 31307302T is resistant to rifampin, as it has been already reported for in vitro-selected mutants (10) or clinical strains of P. acnes involved in biofilm or device-related infections (11).

P. namnetense NTS 31307302T was grown overnight at 37°C on a Schaedler agar plate (Oxoid, United Kingdom) under an anaerobic atmosphere. Genomic DNA was extracted using a DNeasy blood and tissue kit (Qiagen Gmbh, Germany), according to the provider’s recommendation. A paired-end library was prepared with the NEBNext Ultra DNA library prep kit for Illumina (NEB) with the NEBNext Multiplex Oligo kit (NEB). The library was sequenced in paired-end mode on the MiSeq Sequencer (Illumina, USA). De novo assembly was performed with Velvet 1.2.10 and VelvetOptimiser 2.2.5 (optimal hash value, 127). A total of 2,846,458 reads were assembled into 24 contigs (15 of them >1 kb) with an average coverage of 127×. Contig reordering and annotation were performed with Mauve 2.3.1 (12) and the NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP) (13), respectively. Average nucleotide identities (ANI) were calculated using Oat 0.91 (14).

The final assembly has a total length of 2,369,664 bp, an N\textsubscript{50} of 626 kb, and a G+C content of 60.5%. About 2,136 coding sequences (CDSs), 46 tRNAs, 84 pseudogenes, three rRNAs, and three noncoding RNAs were revealed by annotation.

To determine genomic differences between P. namnetense NTS 31307302T and the closely related P. acnes KPA171202, ATCC 11828, and ATCC 6919T, we performed a genomic comparison. The draft genome size of the newly sequenced strain is 2.37 Mb, which is 5.02 to 9.81% smaller than P. acnes reference strains. The ANI value was 88.5%. Interestingly, our strain showed an ANI value of 99.52% with P. acnes SK182B-JCVI (accession no. AFU/N00000000.1), recovered during the Human Microbiome Project, which is significantly above the cutoff value of 95% for species delineation (14). Therefore, this strain is likely to be another isolate of this species. Comparing both sequences of the rpoB gene, we observed only one point mutation at nucleotide 1319 (G→A) in strain NTS 31307302T leading to an amino acid modification at position 440 (R440H), previously described to be involved in rifampin resistance in P. acnes (11).

This draft genome of P. namnetense NTS 31307302T will be used for studying virulence factors associated with bone infection, especially hemolysin, lipase, or hyaluronidase (15).

Accession number(s). The draft sequence of P. namnetense NTS 31307302T studied in this project has been deposited at DDBJ/EMBL/GenBank under the accession no. LW001000001. The version described in this paper is LW001000001.1.

ACKNOWLEDGMENTS
This work was supported by an internal grant. We are grateful to the staff for the IRS-1 DNA sequencing platform for their advice and technical help.

FUNDING INFORMATION
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
REFERENCES

1. Findley K, Grice EA. 2014. The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathog 10:e1004436. http://dx.doi.org/10.1371/journal.ppat.1004436.

2. Aubin GG, Portillo ME, Trampuz A, Corvec S. 2014. Propionibacterium acnes, an emerging pathogen: from acne to implant-infections, from phylotype to resistance. Méd Mal Infect 44:241–250. http://dx.doi.org/10.1016/j.medmal.2014.02.004.

3. Leccia MT, Auffret N, Poli F, Claudel J-P, Corvec S, Dreno B. 2015. Topical acne treatments in Europe and the issue of antimicrobial resistance. J Eur Acad Dermatol Venereol 29:1485–1492. http://dx.doi.org/10.1111/jdv.12989.

4. Portillo ME, Corvec S, Borens O, Trampuz A. 2013. Propionibacterium acnes: an underestimated pathogen in implant-associated infections. BioMed Res Int 2013:804391. http://dx.doi.org/10.1155/2013/804391.

5. Bémer P, Corvec S, Tariel S, Asseray N, Boutoille D, Langlois C, Tequi B, Druegon H, Passuti N, Touchais S. 2008. Significance of Propionibacterium acnes-positive samples in spinal instrumentation. Spine 33:E971–E976. http://dx.doi.org/10.1097/BRS.0b013e31818e28dc.

6. Furustrand Tafin U, Trampuz A, Corvec S. 2012. Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother 56:1885–1891. http://dx.doi.org/10.1128/AAC.00552-11.

7. Dekio I, Culak R, Misra R, Gaulton T, Fang M, Sakamoto M, Ohkuma M, Oshima K, Hattori M, Gharbia SE, Shah MN. 2015. Dissecting the taxonomic heterogeneity within Propionibacterium acnes: proposal for Propionibacterium acnes subsp. acnes nov. and Propionibacterium acnes subsp. elongatum subsp. nov. Int J Syst Evol Microbiol 65:4776–4787. http://dx.doi.org/10.1099/ijse.0.000648.

8. Aubin GG, Bémer P, Kambarev S, Patel NB, Lemenand O, Caillion J, Lawson PA, Corvec S. 3 June 2016. Propionibacterium namnetense sp. nov., isolated from a human bone infection. Int J Syst Evol Microbiol [Epub ahead of print.] http://dx.doi.org/10.1099/ijsem.0.012014.

9. Corvec S, Luchetta J, Aubin GG. 2015. Letter to the editor: is hemolysis a clinical marker of Propionibacterium acnes orthopedic infection or a phylogenetic marker? Am J Orthop Belle Mead NJ 44:E61–E62.

10. Furustrand Tafin U, Trampuz A, Corvec S. 2013. In vitro emergence of rifampicin resistance in Propionibacterium acnes and molecular characterization of mutations in the rpoB gene. J Antimicrob Chemother 68:523–528. http://dx.doi.org/10.1093/jac/dks428.

11. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomson N, White O. 2008. Toward an online repository of Standard Operating Procedures (SOPs) for (meta) genomic annotation. Omics J Integr Biol 12:137–141. http://dx.doi.org/10.1089/omi.2008.0017.

12. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. http://dx.doi.org/10.1371/journal.pone.0011147.

13. Lee I, Kim YO, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. http://dx.doi.org/10.1099/ijsem.0.00760.

14. Scholz CF, Brüggemann H, Lomholt HB, Tettelin H, Kilian M. 2016. Genome stability of Propionibacterium acnes: a comprehensive study of indels and homopolymeric tracts. Sci Rep 6:20662. http://dx.doi.org/10.1038/srep20662.