Potential of optical frequency domain imaging for differentiation between early and advanced coronary atherosclerosis

Takahiro Imanaka1,2 · Kenichi Fujii2 · Takamasa Tanaka1,2 · Koji Yanaka1,2 · Toshio Kimura1,2 · Nagataki Yoshihara1,2 · Kojiro Miki1,2 · Kenji Kawai1,2 · Hirokuni Akahori1,2 · Rika Kawakami2,3 · Hiroyuki Hao3 · Seiichi Hirota2,3 · Masaharu Ishihara1,2

Received: 25 October 2021 / Accepted: 13 March 2022 / Published online: 8 August 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Purpose This study evaluated whether optical frequency domain imaging (OFDI) accurately distinguish between fibroatheroma (FA) and pathological intimal thickening (PIT) compared with histopathology.
Methods A total of 631 histological cross-sections from 14 autopsy hearts were analyzed for the comparison between OFDI and histological images. Of those, 190 (30%) sections were diagnosed with PIT and 120 (19%) with FA. The OFDI signal attenuation rate was calculated from an exponential. The lipid length was measured longitudinally by detection of sequential OFDI frames within a plaque segment containing lipids. The lipid arc was measured with a protractor centered in the center of the lumen. The fibrous cap thickness was defined as the minimum thickness of the signal rich band overlying PIT and FA.
Results There was no significant difference in the OFDI signal attenuation rate between FA and PIT (3.09 ± 1.04 versus 2.79 ± 1.20, p = 0.13). However, the lipid length was significantly longer, the maximum lipid arc was significantly larger, and the fibrous cap thickness was significantly thinner in FA than in PIT (7.5 [4.3–10.3] mm versus 4.3 [2.7–5.8] mm, p < 0.0001, 125 [101–174]° versus 96 [74–131]°, p < 0.0001, and 220 [167–280] µm versus 260 [190–332] µm, p = 0.019).
Conclusions This study revealed OFDI may have the potential capability for discriminating FA from PIT based on the longitudinal and circumferential extent of lipid plaque, although the OFDI signal attenuation rate was similar between FA and PIT.

Keywords Atherosclerosis · Optical coherence tomography · Coronary artery disease · Histopathology

Introduction

Over the decades, atherosclerosis of human coronary artery progresses in stages, with early atherosclerotic lesion developing into advanced stage lesion, under the influence of various factors. Pathologic intimal thickening (PIT) is an early atherosclerotic lesion consisting of proteoglycans and extracellular lipid and is observed close to medial wall 1, 2. In contrast, fibroatheroma (FA) is a progressive stage of atherosclerotic lesion. FA is characterized by presence of necrotic core, which is characterized by discrete collections of cellular debris and cholesterol crystal, and is distinguished from PIT lesions by the presence of a necrotic core 3. Notably, thin-cap FA, referring to as a vulnerable plaque, is a precursor lesion of plaque rupture and may lead to acute coronary syndrome (ACS). Therefore, differentiating FA from PIT is clinically important.

Optimal coherence tomography (OCT) and optical frequency domain imaging (OFDI) are light-based imaging devices that can clearly visualize various morphological features of coronary arteries 4. Based on optical properties, OCT is able to distinguish different tissue types, such as fibrous, lipid-rich, necrotic, or calcified tissue 5. Lipid-rich plaques on OCT images are visualized as a signal-poor region with a diffuse border due to multiple scattering in lipids at light wavelengths of approximately 1,300 nm 5. Given
that lipid components are common to both FA and PIT, it is unclear whether OCT can be used to accurately distinguish between FA and PIT. Therefore, in the current study, we analyzed the differences in OFDI findings between FA and PIT in comparison with histopathology.

Methods

Study subject

Thirty-nine coronary arteries from 14 human cadaver hearts were analyzed for the comparison between OFDI and histological images. All three major coronary arteries were collected from 11 patients, whereas only two major coronary arteries were collected from three patients due to hypoplasia of the coronary arteries. The cause of death was cardiovascular disease in seven cadavers, non-cardiac-related in six cadavers, and unknown in the remaining one cadaver. The experimental study protocol was approved by the Institutional Review Board of Hyogo College of Medicine (approval number 3766).

OFDI imaging procedure

Three major coronary arteries, including the left anterior descending artery, the circumflex artery, and the right coronary artery with the surrounding fatty tissue, were carefully removed from the autopsy hearts after death for ex vivo OFDI imaging. The surrounding fatty tissue was carefully dissected from each coronary specimen. Before OFDI examination, using a tapered surgical needle, multiple 6−0 proline sutures were carefully inserted into the plaque segment as a reference point for matching between the OFDI and histological images. This method was successfully performed in previous comparative studies that compared histological findings and intravascular ultrasound (IVUS) images 6,7. Side branches were tied off with sutures to preserve a perfusion pressure of main vessels during the OFDI examination. A 0.014-inch guidewire was advanced to the distal end of each harvested major coronary artery, followed by an OFDI catheter (LUNAWAVE, Terumo Corporation, Tokyo, Japan). OFDI images of the entire vessel were acquired at a pullback rate of 20 mm/s (160 frames/s).

Histopathological preparation and assessment

After OFDI examination, each coronary artery was fixed in 10% neutral buffered formalin for 48 h. The ring-like arterial specimens obtained at the same level as the imaging study were decalcified for 5 h, before being embedded in paraffin and cut every 3 mm into 4-µm transverse sections perpendicular to the longitudinal axis of the artery. All histological sections were stained with hematoxylin & eosin, elastic van Gieson, and Masson’s trichrome stain. Coronary plaques were classified using the modified American Heart Association classification 2 into the following categories: Adaptive intimal thickening, defined as lesions with predominantly fibrous tissue and no macrophage and lipid pool; PIT, defined as lesions with lipid pools and no apparent necrosis; FA, defined as lesions comprised of lipid pools and necrotic cores, including cholesterol clefts and cellular debris with an overlying fibrous cap; fibrocalcific plaque, defined as lesions with calcification and absence or fractions of a necrotic core; and healed plaque, defined as lesions composed of smooth muscle cells, proteoglycans, and collagen type III, with or without an underlying disrupted fibrous cap and necrotic core. Histological assessment of each cross-section was performed by a single experienced pathologist (R.K.) who was blinded to the OFDI findings. When the pathologist (R.K.) had difficulty in making a pathological diagnosis, the final diagnosis was determined by discussing with another pathologist (H.H.).

Co-registration of OFDI images with histology

All OFDI images were co-registered with histologic sections by an experienced investigator. Adjustments were made using the sutures and luminal configuration or anatomical landmarks such as vessel branches, thus improving the accuracy of registration. A total of 228 histological segments were excluded due to difficulties with co-registration. Finally, 631 pairs of matched images were acquired from OFDI with corresponding histological sections.

Quantitative OFDI analysis

OFDI image analysis was performed only when histological cross-sections of paired images were classified as a FA or PIT. An OFDI-derived lipid image was defined as a diffusely bordered, signal-poor region 8, 9. OFDI was reviewed longitudinally, and the lipid length was measured by detection of sequential OFDI frames within a plaque segment containing lipids. The lipid arc measurements were made by defining the circumferential extent of the lipidic tissue from the lumen center at the cross-section of minimum lumen area. The fibrous cap thickness was defined as the minimum thickness of the signal rich band overlying the
OFDI-derived lipid image (Fig. 1). The OFDI signal intensity was calculated on each corresponding OFDI cross-section using Image J software (National Institutes of Health, Rockville, Maryland, USA). Because the OFDI signal intensity of lipid tissue should gradually decrease from the surface to the inside, the attenuation of lipid signal intensity was analyzed by fitting it to a single exponential function:

\[y = A \times \exp^{-Bx} \]

where index B represents an “attenuation rate” (Fig. 2). OFDI images were analyzed by an experienced observer (T.I.) who was blinded to the clinical and histopathological presentations.

Statistical analysis

Continuous variables are expressed as mean ± standard deviation or median (Q1–Q3). The normality of the distribution was analyzed using the Shapiro–Wilk test, and homoscedasticity was analyzed using the Bartlett test. Continuous variables were compared using Student’s t-test or Wilcoxon rank sum test. The area under the receiver operating characteristic (ROC) curve was evaluated to determine the best cutoff of lipid length and the FA angle. P-values < 0.05 were considered statistically significant. Statistical analyses were performed with the use of JMP Pro 14.2.0 (SAS Institute Inc., Cary, NC, USA).

Results

On histological evaluation of 631 matched cross-sections, 208 (33%) sections were diagnosed with adaptive intimal thickening, 190 (30%) with PIT, 120 (19%) with FA, 104 (17%) as fibrocalcific, and 9 (1%) as healed plaque according to the modified AHA classification. The median length of coronary artery segments imaged by OFDI pullbacks was 71 mm (range: 17–150 mm).

Quantitative OFDI analysis

All cross sectional images of both PIT and FA showed low intensity area with diffuse border. There was no significant difference in the optical attenuation coefficient between FA and PIT (3.09 ± 1.04 versus 2.79 ± 1.20, p = 0.13) (Fig. 3 A). However, the lipid length was significantly longer in FA than in PIT (7.5 [4.3–10.3] mm versus 4.3 [2.7–5.8] mm, p < 0.0001) (Fig. 3 B). ROC analysis identified 5.8 mm as the optimal cutoff point for prediction of the lipid length of FA (sensitivity, 66% and specificity, 74%; area under the curve, 0.73; p < 0.0001) (Fig. 4 A). Furthermore, the maximum lipid arc was significantly larger in FA than in PIT (125 [101–174]° versus 96 [74–131]°, p < 0.0001) (Fig. 3 C). ROC analysis identified 113° as the optimal cutoff point for prediction of the maximum FA angle (sensitivity, 70% and specificity, 68%; area under the curve, 0.71; p < 0.0001) (Fig. 4 B). The fibrous cap thickness was significantly thinner in FA compared with PIT (220 [167–280] µm versus...
Fig. 2 Measurement method of optical attenuation coefficient

(A) OFDI image showing a low signal intensity area with a diffuse border. (B) The OFDI signal intensity was calculated from the luminal surface by Image J software, and fitted to the following approximate formula: $y = A \times e^{-Bx}$. Index B reflects an “attenuation rate”. This index rate was defined as an optical attenuation coefficient. The OFDI signal attenuation rate measured from the luminal surface to the leading edge of the outer lumen was 4.23

OFDI = optical frequency domain imaging
OFDI is accepted as a high-resolution intracoronary imaging modality to assess morphological features of native coronary arteries in comparison with other imaging modalities. Given that it is recognized that OFDI is capable of differentiating lipid tissue from fibrous and calcific tissue, OFDI is widely used as a promising imaging modality for identifying vulnerable plaques in clinical settings. Pathologic features of vulnerable plaques are characterized by a large necrotic core with an overlying thinner fibrous cap. Moreover, on OFDI, lipidic tissues appear as signal-poor regions with diffuse borders because of multiple scattering in lipids at light wavelengths of approximately 1,300 nm. A previous ex vivo imaging study validated this finding with ex vivo OCT imaging of diseased atherosclerotic arterial segments obtained at autopsy, and reported a sensitivity and specificity of 90–94% and 90–92% for lipidic plaques, respectively.

Discussion

The main findings of this study are as follows: (1) the lipid length was significantly longer and the maximum lipid arc was significantly larger in FA than in PIT, and (2) the OFDI signal attenuation rate was similar between FA and PIT. To the best of our knowledge, this is the first study to report the differences in OFDI findings between “lipids” at an early stage and those at an advanced stage, in comparison with histopathology.

![Image](attachment:image.png)

Fig. 3 Optical attenuation coefficients, lipid length, maximum lipid arc, and fibrous cap thickness of PIT and FA. (A) There was no significant difference in optical attenuation coefficient between the two groups. (B) The lipid length was significantly longer in FA than in PIT. (C) The maximum lipid arc was significantly larger in FA compared to PIT. (D) The fibrous cap thickness was significantly thinner in FA compared with PIT. FA = fibrous cap atheroma; PIT = pathological intimal thickening.

260 [190–332] µm, p = 0.019) (Fig. 3D). ROC analysis identified 240 µm as the optimal cutoff point for prediction of the fibrous cap thickness (sensitivity, 66% and specificity, 58%; area under the curve, 0.61; p < 0.038) (Fig. 4 C). Representative images of FA and PIT are shown in Fig. 5.
by another ex vivo study that showed >90% sensitivity and specificity for identifying lipidic plaques by OCT in 40 human cadavers. However, there is a pitfall in the diagnosis of lipidic plaques by OFDI in that the OFDI signal could be attenuated because of multiple scattering, not only in the necrotic core, but also in any lipid components, because of the features of near-infrared light. Therefore, we previously reported that the diagnostic accuracy of OCT for characterizing thin-cap FA, using histology as a standard, was only 41%. The majority of tissue, falsely diagnosed as thin-cap fibroatheroma on OCT, was categorized as PIT. In line with our findings, a previous study showed that CD68-stained dense foam cell infiltration creates a highly scattered layer that casts a dark shadow on the tissue behind, and therefore appears as a thin-cap FA. In the current study, PIT without a necrotic core, which was considered

Fig. 4 ROC and area under the curve for predicting the presence of FA
(A) ROC analysis of the lipid length of FA. (B) ROC analysis of the lipid arc of FA. (C) ROC analysis of the fibrous cap thickness of FA
ROC = receiver operating characteristic; FA = fibrous cap atheroma

Fig. 5 Representative images of PIT and FA
(A) Histopathological cross-section of PIT (hematoxylin & eosin; scale bar = 1000 μm). A magnified image of the boxed area in A the accumulation of foam cells (hematoxylin & eosin; scale bar = 100 μm). (B) A corresponding OFDI image from the same area in A showing a low signal intensity area. The maximum angle was 93°. The fibrous cap thickness was 170 μm. (C) The lipid length was 4.8 mm. (D) Histopathological cross section of a FA (hematoxylin & eosin; scale bar = 1000 μm) showing a necrotic core (asterisks). (E) A corresponding OFDI image from the same area in E showing a large low signal intensity area. The maximum angle was 138°. The fibrous cap thickness was 110 μm. (F) The lipid length was 7.3 mm, which was longer than that in PIT
PIT = pathological intimal thickening; FA = fibrous cap atheroma; OFDI = optical frequency domain imaging
as early-stage atherosclerosis, appeared as a low-signal-intensity tissue with diffusely delineated borders due to strong signal attenuation on OFDI. When the tissue contained a lipid component, the attenuation coefficient of the OFDI light signal was similar regardless of the presence of a necrotic core. These results are supported by a previous ex vivo OCT that showed a similar index of plaque attenuation of OCT signal between FA and PIT. Because the necrotic core and other lipid components have similar OFDI attenuation coefficients, it remains difficult to distinguish between PIT and FA on a single cross-sectional OFDI image in vivo.

IVUS is also a useful device to characterize plaque composition and detect vulnerable plaques with eccentric pattern, positive remodeling, and ultrasound attenuation. As mentioned above, we have previously analyzed the diagnostic accuracy of OCT and IVUS for detecting thin-cap FA of human autopsy specimens, with histology as the gold-standard. Although the diagnostic accuracy of OCT and IVUS for detecting thin-cap FA were 41% and 19%, respectively, the combined use of OCT and IVUS increased the diagnostic accuracy up to 69%. Therefore, the use of a hybrid imaging catheter combining OFDI and IVUS may provide more accurate diagnosis of atherosclerotic plaque in the clinical catheterization laboratory. First, the entire lesion should be reviewed by IVUS, and when there is a plaque with positive remodeling and strong ultrasound attenuation, it should be observed by OFDI. If OFDI showed larger arc and longitudinally longer low intensity area with thin fibrous cap observed, it could be considered as vulnerable FA. Furthermore, near infrared spectroscopy IVUS (NIRS-IVUS) has been introduced recently as an intracoronary imaging modality to detect lipid core plaque by spectroscopy and morphological features by greyscale IVUS. In this regard, an intravascular combined catheter with dual NIRS-IVUS and OFDI capabilities may provide much more accurate diagnosis of vulnerable FA in vivo.

In the current study, we found that FA had a significantly longer and larger arc of low signal intensity area on OFDI compared to PIT. To date, there are no histopathological data investigating the size of lipid components in FA and PIT. However, PIT is considered a progressive lesion in the early stages of atherosclerosis and represents a precursor lesion to FA. Therefore, if PIT is a precursor lesion of FA, it is reasonable to assume that FA contains more lipid components than PIT. A previous clinical study has reported that the length of the lipid pool estimated by OCT was significantly longer in lesions with ≥ 50% ST resolution than in lesions with < 50% ST resolution. Furthermore, another OCT study revealed a linear relationship between the intrastent protrusion area and the lipid index, which was calculated as the lipid area multiplied by the lipid length. These clinical data may support our finding that FA contained a larger amount of lipid components than PIT. Although several studies have reported the usefulness of embolic protection devices to reduce the risk of intraprocedural distal embolization, previous prospective randomized trials failed to show the effectiveness of its routine use during the procedure. Therefore, intervention cardiologists who are responsible for the interpretation of OFDI imaging should evaluate plaque morphology by looking at the entire segment, not just a single cross-section.

Limitation

There were several limitations in the current study. First, a lack of cardiac motion may have affected the OFDI images acquired ex vivo. Second, a positional discrepancy both OFDI images and histological cross-sections may have influenced the results. Therefore, utmost care was taken to ensure that OFDI images matched the histology. Finally, immunochemical staining to identify macrophages was not performed in the present study.
Conclusions

This study revealed that OFDI may have the potential to discriminate FA from PIT, based on the longitudinal and circumferential extent of lipid plaque, although the OFDI signal attenuation rate does not differ significantly.

Acknowledgements The authors thank the staffs in the Department of Surgical Pathology at Hyogo College of Medicine for their excellent assistance for the study.

Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethics declarations

Conflicts of interest Takahiro Imanaka has nothing to declare for this study. Masaharu Ishihara received research fund from Amgen Inc. (Japan), and lecture fees from Bayer Yakuhin, Ltd. (Japan), Daiichi Sankyo Company (Japan), Nippon Boehringer Ingelheim Co., Ltd. (Japan), and Otsuka Pharmaceutical Co., Ltd. (Japan), and scholarship funds from Abbott Co., Ltd. (Japan), Otsuka Pharmaceutical Co., Ltd. (Japan), MICRO Pharmaceutical Co., Ltd. (Japan), Orbusneich Medical K. K. (Japan), Kowa Pharmaceutical Co., Ltd. (Japan), Mitsubishi Tanabe Pharma Corporation (Japan), Terumo Corporation (Japan), Nipro Corporation (Japan), Lifeline Co., Ltd. (Japan), Bayer Yakuhin, Ltd. (Japan), Fukuda Denshi Co., Ltd. (Japan), and Boston Scientific K.K. (Japan), and endowed departments from Abbott (Japan), Medtronic Japan Co., Ltd. (Japan), and Nippon Boehringer Ingelheim Co., Ltd. (Japan). No other potential conflicts of interest relating to this article were reported.

Ethics approval The study protocol was approved by the Institutional Review Board of Hyogo College of Medicine (approval number 3766).

References

1. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275
2. Yahagi K, Kolodgie FD, Otsuka F, Finn AV, Davis HR, Joner M et al (2016) Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol 13:79–98
3. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W, Richardson M et al (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 85:391–405
4. Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swan son EA et al (1996) Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 93:1206–1213
5. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlen dorf KH et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645
6. Kawasaki M, Takatsu H, Noda T, Ito Y, Kumishima A, Arai M et al (2001) Noninvasive quantification of tissue characteristics and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: comparison between histology and integrated backscatter images. J Am Coll Cardiol 38:486–492
7. Okubo M, Kawasaki M, Ishihara Y, Takeyama U, Kubota T, Yamaki T et al (2008) Development of integrated backscatter intravascular ultrasound for tissue characterization of coronary plaques. Ultrasound Med Biol 34:655–663
8. Fujii K, Kubo T, Otake H, Nakazawa G, Sonoda S, Hibi K et al (2020) Expert consensus statement for quantitative measurement and morphological assessment of optical coherence tomography. Cardiovasc Interv Ther 35:13–18
9. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG et al (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072
10. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB et al (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 39:604–609
11. Sonoda S, Hibi K, Okura H, Fujii K, Honda Y, Kobayashi Y (2020) Current clinical use of intravascular ultrasound imaging to guide percutaneous coronary interventions. Cardiovasc Interv Ther 35:30–36
12. Otsuka F, Joner M, Prati F, Virmani R, Narula J (2014) Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol 11:379–389
13. Allen TJ, Hall A, Dhillon AP, Owen JS, Beard PC (2012) Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range. J Biomed Opt 17:061209
14. Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y et al (2006) Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol 97:1172–1175
15. van Soest G, Regar E, Goderie TP, Gonzalez N, Koljenovic S, van Leenders GJ et al (2011) Pitfalls in plaque characterization by OCT: image artifacts in native coronary arteries. JACC Cardiovasc Imaging 4:810–813
16. Gnanadesigan M, Hussain AS, White S, Scoltock S, Baumbach A, van der Steen AF et al (2017) Optical coherence tomography attenuation imaging for lipid core detection: an ex vivo validation study. Int J Cardiovasc Imaging 33:5–11
17. Kolodgie FD, Burke AP, Nakazawa G, Virmani R (2007) Is pathologic intimal thickening the key to understanding early plaque progression in human atherosclerotic disease? Arterioscler Thromb Vasc Biol 27:986–989
18. Ikenaga H, Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Miura F et al (2013) Longitudinal extent of lipid pool assessed by optical coherence tomography predicts microvascular no-reflow after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J Cardiol 62:71–76
19. Uzu K, Shinke T, Otake H, Takaya T, Osue T, Iwasaki M et al (2012) Morphological and pharmacological determinants of peri-procedural myocardial infarction following elective stent implantation: Optical coherence tomography sub-analysis of the PRASFIT-Elective study. J Cardiol 70:545–552
20. Fujii K, Hao H, Shibuya M, Imanaka T, Fukunaga M, Miki K et al (2015) Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study. JACC Cardiovasc Imaging 8:451–460
21. Kotani J, Mintz GS, Castagna MT, Pinnow E, Berzinger CO, Bui AB et al (2003) Intravascular ultrasound analysis of infarct-related and non-infarct related arteries in patients who presented with an acute myocardial infarction. Circulation 107:2889–2893
22. Yamagishi M, Terashima M, Awano K, Kijima M, Nakatani S, Daikoku S et al (2000) Morphology of vulnerable coronary
plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol 35:106–111
23. Yamada R, Okura H, Kume T et al (2007) Histological characteristics of plaque with ultrasonic attenuation: a comparison between intravascular ultrasound and histology. J Cardiol 50:223–228
24. Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM et al (2018) Detection lipid core of coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging 1:634–648
25. Goldstein J, Maini B, Dixon S, Brilakis E, Grines C, Rizik D et al (2011) Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circulation Cardiovasc Intervent 4:429–437
26. Tsujita K, Sugiyama S, Sumida H, Shimomura H, Yamashita T, Yamanaga K et al (2015) Impact of Dual Lipid Lowering Strategy With Ezetimibe and Atorvastatin on Coronary Plaque Regression in Patients With Percutaneous Coronary Intervention: Insights From Multicenter Randomized Controlled PRECISE-IVUS Trial. J Am Coll Cardiol 66:495–507
27. Hibi K, Kozuma K, Sonoda S, Endo T, Tanaka H, Kyono H et al (2018) A Randomized Study of Distal Filter Protection Versus Conventional Treatment During Percutaneous Coronary Intervention in Patients With Attenuated Plaque Identified by Intravascular Ultrasound. JACC Cardiovasc Interv 11:1545–1555

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.