Introduction

Since October 2015, Brazil has had an alarming number of suspected cases of newborns with microcephaly. During that period, the concomitance with zika virus infection in the country aroused the suspicion of an association between these conditions. Therefore, the World Health Organization (WHO) declared a public health emergency in February 2016 [1, 2].

Microcephaly is defined as a clinical sign of congenital malformation in children presenting occipitofrontal circumference two standard deviations lower than the mean compared to children of the same age, sex, and ethnicity [3]. It is a rare condition, with an incidence of 5.9 cases per 10,000 live births in the United States of America [4], and its diagnosis can be confirmed as delayed brain development identified by imaging tests, such as intrauterine ultrasonography (US) or computer tomography (CT) after childbirth.

This congenital malformation has many causes, such as genetic factors and congenital infections, and it is also associated with social factors. Among the congenital infections, cytomegalovirus [5], rubella [6–8], toxoplasmosis [9], and syphilis [10] stand out as the leading agents. Low education, alcohol abuse, and inadequate prenatal care are also associated with microcephaly [4]. However, a study revealed that 41% of microcephaly cases do not have a definitive cause and are categorized as idiopathic cases [11].

Current studies have confirmed the biological plausibility of a link between zika virus and microcephaly: case reports have confirmed stillbirths infected by zika virus [12]; other studies have shown brain tissue tropism caused by zika virus [13], the vertical transmission of zika through...
the placenta [12, 14], an ecological association [15], and a higher incidence of malformations in pregnancies with confirmed Zika infections [16].

According to many authors [17, 18], studies must be developed to obtain more information about this malformation outbreak, including the temporal patterns of the complications after the epidemic waves [19] and its repercussion in the present and future generations.

This present case-control study was performed in the state of Ceará, Northeastern Brazil, to contribute to the understanding of the association between Zika virus infection and microcephaly and to draft new political-administrative measures for its management.

Methods

Study design

This exploratory case-control study intended to identify protective factors and risk factors for microcephaly in the state of Ceará, Northeastern Brazil – the Brazilian region with the highest incidence of microcephaly.

The cases were defined as children with a clinical diagnosis of microcephaly with an imaging diagnosis of microcephaly performed by computed tomography (CT) or intrauterine ultrasonography (US). The children were born after October 2015, correlating the first trimester of pregnancy with the period of the Zika virus epidemic. These newborns were identified not only in public and private maternity records but also in reference services for tracking and infant development until June 2017.

The controls were children without microcephaly, showing a cephalic perimeter larger than the 95% percentile for age according to WHO curves, as well as no signs or symptoms of congenital malformations. They were identified near the residence of each child in the group of cases, with the same age or within a two-month range, ensuring the homogeneity of temporal and environmental exposure in both groups.

Study setting and population

The study population included children of both sexes born from October 2015 until June 2017 who live in the State of Ceará.

Ceará is one of the poorest States in Brazil, ranking 17th in the Human Development Index (0.682) out of the 27 States in the country [20]. Ceará is in the northeastern region of Brazil, and approximately 93% of its land area of 148,000 km² presents a semiarid climate [21]. With a population of 8 million inhabitants [18], and an annual average of 128,000 live births [21], the state is the fourth in total confirmed microcephaly cases (137 cases) and the first in total of fetal and neonatal deaths resulting from microcephaly (24 cases, 16.9%) [22]. The territory of Ceará comprises 184 municipalities, and there have been confirmed cases of microcephaly in 53 (28.8%) of them [22].

Study sample

This study of prevalent cases aimed to enroll a sample of children with a confirmed diagnosis of microcephaly born in Ceará through June 2017. The control group of children was recruited using a ratio of two controls for each case to increase the sample power [23]. The data were collected from 58 randomly selected cases, and from this sample size, it is possible to detect an odds ratio (OR) of 2.3, with a 5% significance level and 80% sample power for exposure with 28% prevalence in the control group.

Data collection

Children diagnosed with microcephaly were identified by the infant care network, collecting mothers’ names and their respective addresses. We obtained the data from these units: the Assis Chateaubriand Maternity School – MEAC, the main public maternity of Ceará; the Albert Sabin Children’s Hospital – HIAS, reference for infant diseases of greater complexity in the Northeastern region of Brazil; and the Core of Treatment and Precocious Stimulation – NUTEP, reference service for children’s precocious stimulation in Ceará.

The data collection was conducted in the children’s households through a questionnaire containing data from the mothers, the children, and their families. The field research team composition was one supervisor and six interviewers, all of them with nursing or physiotherapy degrees and with proper training for the interview and anthropometric measurements. The team made five attempts to find the mother and her child at home to collect the data.

The anthropometric measurements of the children (cases and controls) were carried out just after the mother’s interview. The occipitofrontal perimeter was measured using a retractable inelastic measuring tape with a security lock (1.5 m in size and 1 mm precision). A portable digital scale measured the weight with a capacity of 180 kg and an accuracy of 100 g, and the weight was obtained with the child on the mother’s lap followed by subtracting the mother’s weight. The measurement of the children’s length was performed with the child lying down on an infant anthropometer, with a size of 1.5 m and precision of 1 mm.

Quality control

To reduce memory bias, we checked the data from the pregnancy and the prenatal care in the Pregnancy Booklet (official medical record of pregnant women in Brazil), which is provided by the maternity ward presenting the gestation registers and the prenatal consultations. Children’s data, such as cephalic perimeter and weight at birth, were confirmed by the Child’s Health Booklet (official medical record for children in Brazil), which is provided by the Ministry of Health to all children at birth.

The scales were calibrated according to the producer’s indication. A random sample of 10% of the questionnaires was repeated by the field supervisor to identify possible errors and fill the gaps to validate the quality of the data collection. The data was double entered in the software program to solve typing errors or data loss.

Variables

The dependent variable, the outcome, refers to the presence or absence of microcephaly, with a confirmed diagnosis by clinical or imaging criteria (CT scan or intrau-
The independent variables were grouped and categorized into the blocks described below. Diseases during pregnancy included the following – self-reported and confirmed by the pregnancy booklet: zika virus infection diagnosed by a medical doctor, joint pain, clinical syndromes with a skin rash, eye pain, cytomegalovirus, syphilis, rubella, toxoplasmosis, AIDS, flu or other viruses.

The exposures during pregnancy included the following – self-reported: if one had contact with solvents, inks, varnishes, poisons, hair dye or smoothing agents with ammonia; if the mother underwent tests with radiation during pregnancy (X-ray or CT), magnetic resonance imaging, tobacco use, and alcohol consumption.

Data analysis

Bivariate analysis was performed, calculating the proportions of categorical variables and measures of central tendency and dispersion for numeric variables. The differences found between the cases and controls were evaluated for statistical significance using the chi-square test for categorical variables, students’ t-test was used for numeric variables with normal distribution, and the Mann-Whitney test was used for numeric variables with nonnormal distribution. The Kolmogorov-Smirnoff test evaluated the normality of variables. Additionally, if one cell registered fewer than five cases, we used Fisher’s exact test.

Analyses were performed using SPSS software, version 17, SPSS Inc., considering a p-value ≤ 0.05.

Ethical aspects

The study was submitted to the Ethics Committee through the Brazil Platform, following all the norms of the 466/2012 Resolution of the National Council of Health of the Ministry of Health [25], and it was approved under protocol number 1.449.427. All the mothers who agreed to participate in the research signed informed consent forms.

Results

Children’s baseline characteristics

The median age and sex of cases and controls were not different (nine months and 57% male). However, there was a difference between cephalic perimeters (35 and 31 centimeters), birth weights (2.67 and 3.22 kg), and gestational ages, as shown in Table 1.

Diseases during pregnancy

The mothers of the patients had two-times more fevers than the mothers of the controls (p-value = 0.022), and these cases of illness were earlier in the first trimester in cases (p = 0.032). Among the women who received a diagnosis during pregnancy, there was a predominance of zika virus syndrome in the pregnant women from the cases, while the majority of the mothers of the controls had urinary tract infections or conditions other than zika (p = 0.040). The signs and symptoms were muscular pain, joint pain, weakness, and skin changes, also showing a difference between the groups (0.028, 0.002, 0.041, <0.001, respectively). Mothers of the cases showed almost twice as many reports of insect bites during pregnancy. The odds ratio of having zika virus of the cases compared to the controls was 10.35 (p-value < 0.001) (Table 2).

Exposures during pregnancy

From all the evaluated exposures, only the exposure to radiation before and during pregnancy had different odds between the groups (0.010 and 0.036 for radiography and tomography, respectively). Contact with chemical agents, repellents, and other substances did not present significant p values (Table 3).

Multivariate analysis

After the multivariate analysis, the variable infection by zika virus remained independently associated, with a p-value of 0.018 and odds ratio of 14.68 (1.59–134.83) (Table 4).

Condition	Case	Control	Total			
	n or median	% or interquartile	n or median	% or interquartile	n or median	% or interquartile
Sex						
Male	29	50.9%	69	60.0%	98	57.0%
Female	28	49.1%	46	40.0%	74	43.0%
Age in months	6.50	4.0–21.0	11.00	4.0–20.0	9	4.0–20.0
Birth weight	2.67	2.3–3.0	3.22	2.8–3.7	3.010	2.6–3.4
Cephalic perimeter	31.00	29.5–32.0	35.00	34.0–35.5	33.0	31.0–35.0
Timing of birth						
Normal	45	77.6%	94	81.7%	139	80.3%
Preterm	12	20.7%	9	7.8%	21	12.1%
Post term	1	1.7%	9	7.8%	10	5.8%
Not specified	0	0.0%	3	2.6%	3	1.7%

Table 1: Baseline and birth characteristics of the sample.
Table 2: Ratios of diseases presented by the mother during pregnancy in cases and controls.

Condition	Case	p value			
Fever	n or median	% or interquartile	n or median	% or interquartile	
Yes, once	16	28.1%	16	13.9%	**0.022**
Yes, more than once	9	15.8%	11	9.6%	
No fever	32	56.1%	88	76.5%	
Gestation month of fever	n or median	% or interquartile	n or median	% or interquartile	
Days of fever	2	1.0–3.0	3	3.0–5.0	**0.057**
Fever intensity	n or median	% or interquartile	n or median	% or interquartile	
Low	11	50.0%	6	26.1%	0.151
Moderate	8	36.4%	9	39.1%	
High	3	13.6%	8	34.8%	
Any appointment with a physician	n or median	% or interquartile	n or median	% or interquartile	
Yes	18	58.1%	26	66.7%	**0.449**
No	12	38.7%	13	33.3%	
Do not remember	1	3.2%	0	0.0%	
Diseases during pregnancy	n or median	% or interquartile	n or median	% or interquartile	
Other	8	47.0%	12	46.1%	**0.040**
Urinary infection	1	5.2%	12	46.1%	
Zika	8	47.0%	2	7.6%	
Headache intensity	n or median	% or interquartile	n or median	% or interquartile	
Low	8	15.1%	16	17.4%	0.865
Moderate	10	18.9%	20	21.7%	
High	14	26.4%	19	20.7%	
None	21	39.6%	37	40.2%	
Stiff neck	n or median	% or interquartile	n or median	% or interquartile	
Yes	5	9.6%	14	14.4%	0.599
No	47	90.4%	81	83.5%	
Do not remember	0	0.0%	1	1.0%	
Eye pain	n or median	% or interquartile	n or median	% or interquartile	
Yes	12	22.2%	14	15.2%	**0.227**
No	41	75.9%	78	84.8%	
Do not remember	1	1.9%	0	0.0%	
Photophobia	n or median	% or interquartile	n or median	% or interquartile	
Yes	10	18.5%	13	13.5%	**0.417**
No	44	81.5%	83	86.5%	
Seizures	n or median	% or interquartile	n or median	% or interquartile	
Generalized	2	3.7%	1	1.0%	**0.527**
Focal	2	3.7%	4	4.1%	
Disorientations	n or median	% or interquartile	n or median	% or interquartile	
Yes	0	0.0%	5	5.2%	**0.172**
No	54	100.0%	90	93.8%	
Do not remember	0	0.0%	1	1.0%	
Amnesia	n or median	% or interquartile	n or median	% or interquartile	
Yes	2	3.8%	5	5.4%	**0.678**
No	51	96.2%	87	93.5%	
Do not remember	0	0.0%	1	1.1%	
Behavioral changes	n or median	% or interquartile	n or median	% or interquartile	
Yes	13	24.1%	29	30.2%	**0.422**
No	41	75.9%	67	69.8%	
Dyspnea	n or median	% or interquartile	n or median	% or interquartile	
Yes	16	30.2%	27	28.7%	**0.851**
No	37	69.8%	67	71.3%	

(Contd.)
Condition	Case	Control	p value	
	n or median	% or interquartile	n or median	% or interquartile
Precordialgia	Yes	4 7.4% 14 14.4%	0.202	
	No	50 92.6% 83 85.6%		
Dysarthria	Yes	0 0.0% 6 6.3%	0.062	
	No	53 100.0% 89 93.7%		
Epigastralgia	Yes	10 18.5% 17 17.5%	0.879	
	No	44 81.5% 80 82.5%		
Diarrhea	Yes	5 9.4% 10 10.3%	0.864	
	No	48 90.6% 87 89.7%		
Nausea	Yes	33 61.1% 58 60.4%	0.933	
	No	21 38.9% 38 39.6%		
Sore throat	Yes	6 11.1% 21 21.6%	0.105	
	No	48 88.9% 76 78.4%		
Cough	Yes	13 24.1% 23 24.0%	0.987	
	No	41 75.9% 73 76.0%		
Back pain	Yes	27 50.0% 58 59.8%	0.245	
	No	27 50.0% 39 40.2%		
Muscle pain	Yes	14 26.9% 12 12.5%	**0.028**	
	No	38 73.1% 84 87.5%		
Joint pain	Yes	23 42.6% 19 19.6%	**0.002**	
	No	31 57.4% 78 80.4%		
Difficulty moving	Yes	12 22.6% 14 14.9%	0.237	
	No	41 77.4% 80 85.1%		
Joint edema	Yes	17 31.5% 25 26.0%	0.600	
	No	37 68.5% 70 72.9%		
	Do not remember	1 0.0% 3 1.0%		
Paralysis	Ascending	1 1.9% 3 3.2%	0.629	
	No	53 98.1% 91 96.8%		
Weakness	Generalized	13 24.1% 9 9.6%	**0.041**	
	Focal	4 7.4% 13 13.8%		
	No	37 68.5% 72 76.6%		
Conjunctivitis	Yes	0 0.0% 2 2.1%	0.290	
	No	52 100.0% 92 97.9%		
Bleeding	Yes	10 19.6% 16 17.2%	0.720	
	No	41 80.4% 77 82.8%		
Skin changes	Yes	25 48.1% 14 14.7%	**<0.001**	
	No	27 51.9% 81 85.3%		
Thick skin	Yes	11 42.3% 5 27.8%	0.325	
	No	15 57.7% 13 72.2%		
Spot with a border	Yes	3 12.0% 0 0.0%	0.128	
	No	22 88.0% 18 100.0%		

(Contd.)
Condition	Case	Control	p value			
	n	median	%	n	median	%
Erythema	17	68.0%	7	38.9%		
No	8	32.0%	11	61.1%		
Vesicles	1	4.0%	0	0.0%		
No	24	96.0%	18	100.0%		
Itchy spots	11	44.0%	6	33.3%		
No	14	56.0%	12	66.7%		
Petechiae	16	64.0%	7	38.9%		
No	9	36.0%	11	61.1%		
Bruises	3	12.0%	0	0.0%		
No	22	88.0%	18	100.0%		
Stings during pregnancy	17	30.9%	18	16.4%		
No	38	69.1%	92	83.6%		
Zika infection	27	46.6%	9	7.8%		
No	31	53.4%	107	92.2%		
Diagnosis of zika by a health professional						
Yes	18	81.8%	6	66.7%		
No	4	18.2%	3	33.3%		
Gestation month of zika diagnosis	3	2.0–4.0	5	3.0–6.0		
What was the severity of zika?	Low	63.6%	7	87.5%		
Moderate	4	18.2%	1	12.5%		
High	4	18.2%	0	0.0%		
Internment due to zika	Yes	0.0%	1	11.1%		
No	21	100.0%	8	88.9%		
Had dengue fever	Yes	1.8%	1	0.9%		
No	56	98.2%	115	99.1%		
Had chikungunya	Yes	1.8%	0	0.0%		
No	56	98.2%	116	100.0%		
Had rubella	No	57.0%	116	100.0%		
Had toxoplasmosis infection	Yes	3.5%	3	2.6%		
No	55	96.5%	113	97.4%		
Had cytomegalovirus infection	Yes	3.5%	0	0.0%		
No	55	96.5%	116	100.0%		
Had herpes	Yes	3.5%	1	0.9%		
No	55	96.5%	115	99.1%		
Had syphilis	Yes	1.8%	1	0.9%		
No	56	98.2%	115	99.1%		
Had AIDS	No	56.0%	116	100.0%		
Had hypertension	Yes	5.5%	18	15.8%		
No	52	94.5%	96	84.2%		

(Contd.)
Discussion

The results of this case-control study indicate that infection by zika virus diagnosed by a physician in the first trimester was, independently, the risk factor most strongly associated with microcephaly, with an adjusted OR of 14.68 (95% CI 1.59–134.83) and high statistical significance (p < 0.001) despite the small sample size. The prevalence of zika virus infection in mothers of children born with microcephaly, confirmed by diagnostic methods suggested by the WHO, was 46.6%, against only 7.8% of mothers who had healthy children during the same period, as suggested by case series [16] and ecological [15] studies and also from another case-control study, in a state near Ceará [26].

Symptoms of the infectious arboviruses syndrome, mainly occurring during the first trimester of pregnancy, associated with skin rash or joint pain, have shown an association with the development of microcephaly in the bivariate analysis. Additionally, there was a higher risk of mosquito bites during pregnancy reported by the mothers of children with microcephaly.

A preliminary laboratory case-control study conducted in another state in the northeastern region of Brazil identified a high prevalence of zika virus infection in mothers of infants with microcephaly (80%) and the mothers of controls (64%) using RT-PCR and new serological methods. However, zika virus infection did not occur in any children in the control group [27].

This study contributed to the investigation of epidemiological factors, not only the maternal infections and exposures already studied, but also identified factors such as radiation exposure. Additionally, it found an association of microcephaly with maternal exposure to radiological examinations during pregnancy, although this association did not remain after controlling for confounders. Other authors [28, 29] have reported this association with radiation and congenital disabilities; however, this is not fully established. We have not yet found mention in the literature of studies that have specifically evaluated this association.

This study was validated by the difference in the means of cephalic perimeter (CP) among the case and control groups. The average CP of the children with microcephaly was below that found by Rocha et al. (2016), who performed an evaluation study to check the normality parameters of CP in children born at term in the Brazilian Northeast, before the context of the epidemic of microcephaly [30]. Other biological criteria evaluated ensured uniformity between the groups in addition to CP, including gestational age and sex.

Despite alcohol abuse and smoking during pregnancy being causes of congenital malformations [4, 31], no association with microcephaly was found in this study.

As Von der Hagen et al. (2014) discussed, 41% of microcephaly cases are idiopathic [11]. The absence of a significant correlation in this study between the classic factors of teratogenesis, such as alcohol or tobacco [32], led to an investigation of other causes, such as the epidemic of the zika virus.

Condition	Case	Control	p value			
	n or median	% or interquartile	n or median	% or interquartile		
Had eclampsia	Yes	1	3.3%	2	3.3%	1.000
	No	29	96.7%	58	96.7%	0.078
Had preeclampsia	Yes	0	0.0%	6	10.0%	0.292
	No	29	100.0%	54	90.0%	0.370
Had diabetes	Yes	1	1.8%	6	5.3%	0.947
	No	54	98.2%	108	94.7%	0.390
Had kidney disease	Yes	1	3.3%	5	8.3%	0.390
	No	29	96.7%	55	91.7%	0.390
Had anemia	Yes	12	21.1%	23	20.2%	0.534
	No	45	78.9%	91	79.8%	0.390
Had the flu	Yes	18	31.6%	44	38.3%	0.390
	No	39	68.4%	71	61.7%	0.390
Had diarrhea	Yes	8	14.0%	7	6.1%	0.082
	No	49	86.0%	108	93.9%	0.082
Had an allergy	Yes	5	8.9%	5	4.3%	0.225
	No	51	91.1%	111	95.7%	0.225
Had asthma	Yes	1	3.3%	1	1.7%	0.613
	No	29	96.7%	59	98.3%	0.613
Table 3: Ratios of exposures of the mother during pregnancy in cases and controls.

Condition	Case	Control			
	n or median	% or interquartile	n or median	% or interquartile	
Worked during pregnancy					
Yes, outside home	20	35.1%	31	27.2%	0.235
Yes, at home	8	14.0%	10	8.8%	
No	29	50.9%	73	64.0%	
Contact with ink					
Yes, during pregnancy	16	27.6%	35	30.7%	0.822
Yes, before	1	1.7%	1	0.9%	
No	41	70.7%	78	68.4%	
Contact with varnishes					
Yes, during pregnancy	8	13.8%	9	7.9%	0.168
Yes, before	1	1.7%	0	0.0%	
No	49	84.5%	105	92.1%	
Contact with solvents					
Yes, during pregnancy	8	13.8%	12	10.4%	0.291
Yes, before	1	1.7%	0	0.0%	
No	49	84.5%	103	89.6%	
Contact with tails					
Yes, during pregnancy	9	15.8%	14	12.2%	0.637
Yes, before	0	0.0%	1	0.9%	
No	48	84.2%	100	87.0%	
Contact with repellents					
Yes, during pregnancy	20	34.5%	55	47.8%	0.095
No	38	65.5%	60	52.2%	
Contact with pesticides					
Yes, during pregnancy	4	7.0%	7	6.1%	0.814
No	53	93.0%	108	93.9%	
Contact with poisons					
Yes, during pregnancy	7	12.3%	19	16.8%	0.438
No	50	87.7%	94	83.2%	
Contact with pesticides					
Yes, during pregnancy	0	0.0%	2	1.8%	0.314
No	57	100.0%	112	98.2%	
Contact with hair dye					
Yes, during pregnancy	8	13.8%	21	18.4%	0.443
No	50	86.2%	93	81.6%	
Contact with enamels					
Yes, during pregnancy	33	56.9%	67	59.3%	0.953
Yes, before	1	1.7%	2	1.8%	
No	24	41.4%	44	38.9%	
Contact with capillary smoothing with ammonia					
Yes, during pregnancy	2	3.4%	6	5.3%	0.667
Yes, before	0	0.0%	1	0.9%	
No	56	96.6%	107	93.9%	
Contact with capillary straighteners without ammonia					
Yes, during pregnancy	2	3.4%	6	5.2%	0.672
Yes, before	0	0.0%	1	0.9%	
No	56	96.6%	108	93.9%	
Performed radiographs					
Yes, during pregnancy	6	10.5%	2	1.8%	0.010
No	51	89.5%	112	98.2%	
Performed CT scans					
Yes, during pregnancy	0	0.0%	1	0.9%	0.036
Yes, before	3	5.4%	0	0.0%	
No	53	94.6%	113	99.1%	

(Contd.)
Condition	Case	Control	p value			
Performed Magnetic Imaging	Yes, during pregnancy	2	4.8%	0	0.0%	0.074
Resonance	Yes, before	1	2.4%	1	1.0%	
Imaging	No	39	92.9%	98	99.0%	
Smoked during pregnancy	Yes, all the days	1	17%	5	4.3%	0.272
	Yes, some days	2	3.4%	1	0.9%	
	No, stopped smoking	3	5.2%	2	1.7%	
	No, never smoked	52	89.7%	108	93.1%	
Number of cigarettes per day	15	10.0–20.0	7	4.0–10.0	0.333	
Alcohol consumption during pregnancy	Yes, a little	5	8.8%	11	9.5%	0.999
	Yes, moderate	1	1.8%	2	1.7%	
	Yes, a lot	1	1.8%	2	1.7%	
	No	50	87.7%	101	87.1%	

Table 4: Multivariate analysis of the determinants of microcephaly.

Condition	B	S.E.	Adjusted OR	Adjusted OR CI 95%	p-value	
Zika virus	2.686	1.131	14.680	1.598	134.833	0.018
Muscle pain	0.480	0.711	1.617	0.401	6.517	0.499
Joint pain	0.731	0.602	2.078	0.638	6.768	0.225
Skin changes	–0.321	0.905	0.725	0.123	4.277	0.723
Sting during pregnancy	0.115	0.796	1.122	0.236	5.345	0.885
Radiography	0.261	0.908	1.298	0.219	7.692	0.774
CT Scan	–0.434	0.899	0.648	0.111	3.777	0.630

Block 1: Zika virus, muscle pain, joint pain, skin changes, stings during pregnancy.
Block 2: Radiography, CT scan.

Microcephaly may not be the only outcome in children infected with zika virus, and other neurological disorders can develop after birth [33, 34]. This study was developed with a community design that is well-suited for other risk factors beyond zika infections but with their environmental and socioeconomically correlated factors. Additionally, the emergency situation requires an exploratory study of a broad spectrum. In this sense, we evaluated more than 200 variables, including various epidemiological factors.

Limitations
The memory bias was considered during the data collection using health records whenever possible. Confirmation bias is possible, but there was great diffusion in Brazil of the possible association between zika virus and microcephaly, which has generated a widespread awareness further than the mothers of infants with microcephaly.

Acknowledgements
To all the mothers who helped the advance on the understanding of this disease.

Competing Interests
The authors have no competing interests to declare.

Author Contributions
Author’s contributions were as follows: Hermano Alexandre Lima Rocha, Sabrina Gabriele Maia Oliveira Rocha, Luciano Lima Correia, Antônio José Lédio Alves da Cunha, Álvaro Jorge Madeiro Leite, Jocileide Sales Campos, Lucas Silveira do Nascimento, Tereza de Jesus Pinheiro Gomes Bandeira and Anamaria Cavalcante e Silva have made substantial contributions to conception and design and on revising the manuscript critically for relevant intellectual content and on drafting the article and revising it critically for important intellectual content.
References

1. Wentzel M. Zika: OMS declara emergência internacional por microcefalia Suíça. BBC; 2016 [citado 2016 14/04/2016]. Available from: http://www.bbc.com/portuguese/noticias/2016/02/160201_oms_zika_mw_rb.

2. Heymann DL, Hodgson A, Sall AA, et al. Zika virus and microcephaly: Why is this situation a PHEIC? The Lancet. 2016; 387(10020): 719–21. DOI: https://doi.org/10.1016/s0140-6736(16)00320-2

3. Woods CG. Human microcephaly. Current opinion in neurobiology. 2004; 14(1): 112–7. DOI: https://doi.org/10.1016/j.conb.2004.01.003

4. Krauss MJ, Morrissey AE, Winn HN, Amon E and Leet TL. Microcephaly: An epidemiologic analysis. American Journal of Obstetrics and Gynecology. 2003; 188(6): 1484–90. DOI: https://doi.org/10.1067/mob.2003.452

5. Yamamoto AT, Figueiredo LT and MussiPinhata MM. Prevalência e aspectos clínicos da infecção congênita por citomegalovírus. J Pediatr (Rio J). 1999; 75: 23–8. DOI: https://doi.org/10.2223/jped.252

6. Tokugawa K, Ueda K, Fukushige J, Koyanagi T and Hisanaga S. Congenital rubella syndrome and physical growth: A 17-year, prospective, longitudinal follow-up in the Ryukyu Islands. Reviews of Infectious Diseases. 1986; 8(6): 874–83. DOI: https://doi.org/10.1093/clinids/8.6.874

7. Macfarlane DW, Boyd RD, Dodrill CB and Tufts E. Intrauterine rubella, head size, and intellect. Pediatrics. 1975; 55(6): 797–801.

8. Yazigi A, De Pecoulas AE, Vauloup-Fellous C, Grangeot-Keros L, Ayoubi JM and Picone O. Fetal and neonatal abnormalities due to congenital toxoplasmosis mimicking microcephaly-lymphedema-chorioretinal dysplasia. Japanese Journal of Ophthalmology. 2010; 54(6): 626–8. DOI: https://doi.org/10.1007/s10488-010-0108-9

9. Ozeki Y, Shimada Y, Tanikawa A, Horiguchi M, Takeuchi M and Yamazaki T. Congenital toxoplasmosis mimicking microcephaly-lymphedema-chorioretinal dysplasia. Japanese Journal of Ophthalmology. 2010; 54(6): 626–8. DOI: https://doi.org/10.1007/s10488-010-0108-9

10. Leone BN, Bonelli C and Dragoni G. Agenesis of the corpus callosum-congenital syphilis-microcephaly. Clinical observations and considerations. Rassegna di neuropsychiatria e scienze affini. 1961; 15: 430–43.

11. von der Hagen M, Pivarsci M, Liebe J, et al. Diagnostic approach to microcephaly in childhood: A two-center study and review of the literature. Developmental Medicine and Child Neurology. 2014; 56(8): 732–41. DOI: https://doi.org/10.1111/dmcn.12425

12. Martines RB. Notes from the field: Evidence of Zika virus infection in brain and placental tissues from two congenitally infected newborns and two fetal losses—Brazil, 2015. MMWR Morbidity and Mortality Weekly Report. 2016; 65. DOI: https://doi.org/10.15585/mmwr.mm6506e1er

13. Li C, Xu D, Ye Q, et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell; 2016. DOI: https://doi.org/10.1016/j.stem.2016.10.017

14. Besnard M, Lastère S, Teissier A, Cao-Lormeau V and Musso D. Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill. 2014; 19(14): 1–5. DOI: https://doi.org/10.2807/1560-7917.ES2014.19.13.20751

15. Jaenisch T, Rosenberger KD, Brito C, Brady O, Brasil P and Marques ETA. Risk of microcephaly after Zika virus infection in Brazil, 2015 to 2016. Bulletin of the World Health Organization. 2017; 95(3): 191–8. DOI: https://doi.org/10.2471/BLT.16.178608

16. Honein MA, Dawson AL, Petersen EE, et al. Birth defects among fetuses and infants of us women with evidence of possible zika virus infection during pregnancy. JAMA. 2017; 317(1): 59–68. DOI: https://doi.org/10.1001/jama.2016.19006

17. Brasil. INFORME EPIDEMIOLÓGICO Nº 28 – SEMANA EPIDEMIOLÓGICA (SE) 21/2016 (22/05 A 28/05/2016) MONITORAMENTO DOS CASOS DE MICROCEFALIA NO BRASIL. In: Saúde MD, editor. Brasília 2016.

18. IBGE. Censo Demográfico Brasileiro 2010. In: IBGE, editor. http://www.ibge.gov.br/home/ Acesso em 26 de junho de 2016. Brasília 2010. p. 2013.

19. de Oliveira WK, de França GVA, Carbó EH, Duncan BB, de Souza Kuchenbecker R and Schmidt MI. Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: A surveillance-based analysis. The Lancet. 2017; 390(10097): 861–70. DOI: https://doi.org/10.1016/s0140-6736(17)31368-5

20. Ipea P. Atlas do Desenvolvimento Humano – Ceará. Atlas do Desenvolvimento Humano no Brasil; 2013.

21. IPECE. Ceará em números 2011. In: Gestão SdPe, editor. Fortaleza 2011.

22. Brasil. INFORME EPIDEMIOLÓGICO Nº 43 – SEMANA EPIDEMIOLÓGICA (SE) 36/2016 (04/09 A 10/09/2016) MONITORAMENTO DOS CASOS DE MICROCEFALIA NO BRASIL. In: COES, editor. 2016.

23. Taylor Jeremy MG. Choosing the number of controls in a matched case-control study, some sample size, power and efficiency considerations. Statistics in Medicine. 1986; 5(1): 29–36. DOI: https://doi.org/10.1002/sim.4780050106

24. Transmissíveis MdSsdVeSddVdD. Protocolo de vigilância e resposta à ocorrência de microcefalia e/ou alterações do sistema nervoso central (SNC). Ministério da Saúde Brasília; 2015.

25. Brasil. Resolução nº 466, de 12 de dezembro de 2012. In: Saúde MdSCNd, editor. Diário Oficial da União; 2013.
26. de Araújo TVB, de Alencar Ximenes RA, de Barros Miranda-Filho D, et al. Association between microcephaly, Zika virus infection, and other risk factors in Brazil: Final report of a case-control study. The Lancet Infectious Diseases. 2018; 18(3): 328–36. DOI: https://doi.org/10.1016/S1473-3099(17)30727-2
27. de Araujo TV, Rodrigues LC, de Alencar Ximenes RA, et al. Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: Preliminary report of a case-control study. The Lancet Infectious Diseases; 2016.
28. Sever LE, Gilbert ES, Hessol NA and McIntyre JM. A case-control study of congenital malformations and occupational exposure to low-level ionizing radiation. American Journal of Epidemiology. 1988; 127(2): 226–42. DOI: https://doi.org/10.1093/oxfordjournals.aje.a114799
29. Fenig E, Mishaeli M, Kalish Y and Lishner M. Pregnancy and radiation. Cancer Treatment Reviews. 2001; 27(1): 1–7. DOI: https://doi.org/10.1053/ctrv.2000.0193
30. Rocha HAL, Correia LL, Leite AJM, et al. Microcephaly: Normality parameters and its determinants in northeastern Brazil: A multicentre prospective cohort study. Bull World Health Organ E-pub; 2016. DOI: https://doi.org/10.2471/BLT.16.171215
31. Abdel-Salam G and Czeizel AE. A case-control etiologic study of microcephaly. Epidemiology (Cambridge, Mass). 2000; 11(5): 571–5. DOI: https://doi.org/10.1097/00001648-200009000-00013
32. Leviton A, Kuban K, Allred EN, et al. Antenatal antecedents of a small head circumference at age 24-months post-term equivalent in a sample of infants born before the 28th post-menstrual week. Early Human Development. 2010; 86(8): 515–21. DOI: https://doi.org/10.1016/j.earhumdev.2010.07.001
33. Johansson MA, Mier-y-Teran-Romero L, Reefhuis J, Gilboa SM and Hills SL. Zika and the risk of microcephaly. New England Journal of Medicine. 2016; 375(1): 1–4. DOI: https://doi.org/10.1056/NEJMp1605367
34. Brasil P, Pereira JP, Jr, Moreira ME, et al. Zika virus infection in pregnant women in Rio de Janeiro. The New England Journal of Medicine. 2016; 375(24): 2321–34. DOI: https://doi.org/10.1056/NEJMo1602412