LOCATING-DOMINATING SETS OF FUNCTIGRAPHS

MUHAMMAD MURTAZA, MUHAMMAD FAZIL, IMRAN JAVAID∗, HIRA BENISH

ABSTRACT. A locating-dominating set of a graph G is a dominating set of G such that every vertex of G outside the dominating set is uniquely identified by its neighborhood within the dominating set. The location-domination number of G is the minimum cardinality of a locating-dominating set in G. Let G_1 and G_2 be the disjoint copies of a graph G and $f: V(G_1) \to V(G_2)$ be a function. A functigraph F^f_G consists of the vertex set $V(G_1) \cup V(G_2)$ and the edge set $E(G_1) \cup E(G_2) \cup \{uv: v = f(u)\}$. In this paper, we study the variation of the location-domination number in passing from G to F^f_G and find its sharp lower and upper bounds. We also study the location-domination number of functigraphs of the complete graphs for all possible definitions of the function f. We also obtain the location-domination number of functigraph of a family of spanning subgraph of the complete graphs.

1. INTRODUCTION

Locating-dominating sets were introduced by Slater [23, 25]. The initial application of locating-dominating sets was fault-diagnosis in the maintenance of multiprocessor systems [19]. The purpose of fault detection is to test the system and locate the faulty processors. Locating-dominating sets have since been extended and applied. The decision problem for locating-dominating sets for directed graphs has been shown to be an NP-complete problem [5]. A considerable literature has been developed in this field (see [2, 6, 9, 15, 17, 22, 23, 24]). In [4], it was pointed out that each locating-dominating set is both locating and dominating set. However, a set that is both locating and dominating is not necessarily a locating-dominating set.

We use G to denote a connected graph with the vertex set $V(G)$ and the edge set $E(G)$. The degree of a vertex v in G, denoted by $deg(v)$, is the number of edges to which v belongs. The open neighborhood of a vertex u of G is $N(u) = \{v \in V(G): uv \in E(G)\}$ and the closed neighborhood of u is $N[u] = N(u) \cup \{u\}$. Two vertices u, v are adjacent twins if $N[u] = N[v]$ and non-adjacent twins if $N(u) = N(v)$. If u, v are adjacent or non-adjacent twins, then u, v are twins. A set of vertices is called a twin-set if every two distinct vertices of the set are twins.

Key words and phrases. Location-domination number, Functigraph.
2010 Mathematics Subject Classification. 05C69, 05C12
∗ Corresponding author: imran.javaid@bzu.edu.pk.
Formally, we define a locating-dominating set as: A subset L_D of the vertices of a graph G is called a locating-dominating set of G if for every two distinct vertices $u, v \in V(G) \setminus L_D$, we have $\emptyset \neq N(u) \cap L_D \neq N(v) \cap L_D \neq \emptyset$. The location-domination number, denoted by $\lambda(G)$, is the minimum cardinality of a locating-dominating set of G.

The functigraph has its foundations back in the idea of permutation graph [7] and mapping graph [10]. A permutation graph of a graph G with n vertices consists of two disjoint identical copies of G along with n additional edges between the two copies according to a given permutation on n points. In a mapping graph, the additional n edges between the two copies are defined according to a given function between the vertices of the two copies. The mapping graph was rediscovered and studied by Chen et al. [8], where it was called the functigraph. Thus, a functigraph is the generalized form of permutation graph in which the function f need not necessarily a permutation. In the recent past, a number of graph variants were studied for functigraphs. Eroh et al. [12] studied that how metric dimension behaves in passing from a graph to its functigraph and investigated the metric dimension of functigraphs on complete graphs and on cycles. Eroh et al. [11] investigated the domination number of functigraph of cycles in great detail, the functions which achieve the upper and lower bounds. Qi et al. [16, 21] investigated the bounds of chromatic number of functigraph. Kang et al. [18] investigated the zero forcing number of functigraphs on complete graphs, on cycles, and on paths. Fazil et al. [13, 14] have studied fixing number and distinguishing number of functigraphs. The aim of this paper is to study the variation of location-domination number in passing from a graph to its functigraph and to find its sharp lower and upper bounds.

Formally, a functigraph is defined as: Let G_1 and G_2 be the disjoint copies of a connected graph G and let $f : V(G_1) \rightarrow V(G_2)$ be a function. A functigraph F^f_G of the graph G consists of the vertex set $V(G_1) \cup V(G_2)$ and the edge set $E(G_1) \cup E(G_2) \cup \{uv : v = f(u)\}$. Unless otherwise specified, all the graphs G considered in this paper are simple, non-trivial and connected. Throughout the paper, we will denote $V(G_1) = A_1$, $V(G_2) = A_2$, $f(V(G_1)) = I$, $|I| = k$, a locating-dominating set of F^f_G with the minimum cardinality by L^*_D, the elements of A_1 and A_2 are denoted by u and v, respectively and each section of this paper has different labeling for the elements of A_1 and A_2.

This paper is organized as follows. Section 2 gives the sharp lower and upper bounds for the location-domination number of functigraphs. This section also establishes the connection between the location-domination number of graphs and their corresponding functigraphs in the form of realizable result. Section 3 provides the location-domination number of functigraphs of the complete graphs for all possible definitions of the function f. In Section 4, we investigate the location-domination
number of the functigraph of a family of spanning subgraphs of the complete graphs for all possible definitions of constant function f.

2. Some basic results and bounds

By the definitions of twin vertices and twin-set, we have the following straightforward result:

Proposition 2.1. [20] Let T be a twin-set of cardinality $m \geq 2$ in a connected graph G. Then, every locating-dominating set L_D of G contains at least $m - 1$ vertices of T.

Theorem 2.2. [23] Let G be a graph of order $n \geq 2$, then $\lambda(G) = n - 1$ if and only if $G = K_n$ or $G = K_1, n - 1$, where K_n and $K_1, n - 1$ are the complete graph and complete bipartite graph of order n.

Lemma 2.3. Let G be a graph of order $n \geq 2$ and F^f_G be its corresponding functigraph. If λ is the location-domination number of F^f_G, then $2n + 1 \leq 2^\lambda + \lambda$.

Proof. Let $L \subset V(F^f_G)$ be a non-empty set and $|L| = \lambda$. Let $v \in V(F^f_G) \setminus L$, then $N(v) \cap L$ is a subset of L. If L is a locating-dominating set of F^f_G, then $N(v) \cap L$ for all $v \in V(F^f_G) \setminus L$ must be non-empty distinct subsets of L, which is possible only when the number of non-empty subsets of L are greater than or equal to the number of vertices in $V(F^f_G) \setminus L$. Since the number of non-empty subsets of L is $2^\lambda - 1$ and the number of vertices in $V(F^f_G) \setminus L$ is $2n - \lambda$. Therefore the result follows. \qed

![Figure 1. The functigraph of $K_{1,n-1}$ when f is constant and $I = \{v_n\}$. Black vertices form a locating-dominating set with the minimum cardinality.](image-url)
Theorem 2.4. Let G be a graph of order $n \geq 3$, then $3 \leq \lambda(F_G^I) \leq 2n - 2$. Both bounds are sharp.

Proof. Since $n \geq 3$, therefore by Lemma 2.3, $7 \leq 2^\lambda + \lambda$ which yields $3 \leq \lambda$. For the sharpness of the lower bound, let $G = P_3$ be the path graph of order 3 and f be identity function, then $\lambda(F_G^I) = 3$. For the upper bound, we consider the most worse cases in which $\lambda(G) = n - 1$ and f is a constant function. If $\lambda(G) = n - 1$, then by Theorem 2.2, G is either K_n or $K_{1,n-1}$. It is proved in Lemma 3.1 that $\lambda(F_G^I) = 2n - 3$, whenever $G = K_n$ and f is a constant function. Therefore, we consider $G = K_{1,n-1}$ and f is constant. Let $V(G_1) = A_1 = \{u_1, ..., u_{n-1}\} \cup \{u_n\}$ where each of the vertices $u_1, ..., u_{n-1}$ is adjacent to u_n. Similarly, label the corresponding vertices of $A_2 = \{v_1, ..., v_{n-1}\} \cup \{v_n\}$. We define a constant function $f : A_1 \rightarrow A_2$ by $f(u_i) = v_n$ for all $1 \leq i \leq n$. The corresponding functigraph F_G^I is shown in the Figure 1. Our claim is $\lambda(F_G^I) = 2n - 2$. Since $\{u_1, ..., u_{n-1}\} \cup \{v_1, ..., v_{n-1}\}$ is a locating-dominating set of F_G^I, therefore $\lambda(F_G^I) \leq 2n - 2$. Let L_D be a locating-dominating set of F_G^I. Since F_G^I contains disjoint twin sets $\{u_1, ..., u_{n-1}\}$ and $\{v_1, ..., v_{n-1}\}$, therefore by Proposition 2.1, L_D must contains at least $n - 2$ vertices from each of these twin sets and hence $\lambda(F_G^I) \geq 2n - 4$. Without loss of generality, assume L_D contains $\{u_1, ..., u_{n-2}\}$ and $\{v_1, ..., v_{n-2}\}$ from each of these twin sets. We claim that L_D contains at least two vertices from the set $B = \{u_{n-1}, u_n, v_{n-1}, v_n\}$. If $|L_D \cap B| = 0$, then $N(u_{n-1}) \cap L_D = N(v_{n-1}) \cap L_D = \emptyset$, a contradiction. If $|L_D \cap B| = 1$, then there are the following possible cases. If $L_D \cap B = \{u_{n-1}\}$ or $L_D \cap B = \{u_n\}$, then $N(u_{n-1}) \cap L_D = \emptyset$, a contradiction. If $L_D \cap B = \{v_{n-1}\}$, then $N(u_{n-1}) \cap L_D = N(v_{n-1}) \cap L_D$, a contradiction. If $L_D \cap B = \{v_n\}$, then $N(u_{n-1}) \cap L_D = \emptyset$, a contradiction. Thus, $|L_D \cap B| \geq 2$ and consequently $|L_D| \geq 2n - 2$. Hence, $\lambda(F_G^I) = 2n - 2$ and the result follows. \hfill \Box

Lemma 2.5. For any integer $t \geq 2$, there exist a connected graph G such that $\lambda(F_G^I) - \lambda(G) = t$.

Proof. We construct the graph G by taking the path graph P_3 and label its vertices as u_1, u_2 and u_3. Attach $t - 1$ pendants with u_1 and label them as $u_{1,i}$ where $1 \leq i \leq t - 1$. This completes the construction of the graph G. Take another copy of G and label the corresponding vertices with v_1, v_2, v_3 and $v_{1,i}$ where $1 \leq i \leq t - 1$. Define a constant function $f : A_1 \rightarrow A_2$ which maps every vertex of A_1 to $v_1 \in A_2$. First we prove that $\lambda(G) = t$. Consider the set $\{u_1, u_3, u_{1,1}, ..., u_{1,t-2}\}$, then the reader can easily verify that this is a locating-dominating set of cardinality t and hence $\lambda(G) \leq t$. Let L_D be a locating-dominating set of G. Since G contains $\{u_{1,1}, ..., u_{1,t-1}\}$ twin vertices, therefore by Proposition 2.1, $\lambda(G) \geq t - 2$. Without loss of generality, assume $L_D \cap \{u_{1,1}, ..., u_{1,t-1}\} = \{u_{1,1}, ..., u_{1,t-2}\}$. Our claim is L_D contains at least two elements from $B = \{u_1, u_2, u_3, u_{1,t-1}\}$. If $|L_D \cap B| = 0$, then $N(u_{1,t-1}) \cap L_D = \emptyset$, a contradiction. If $|L_D \cap B| = 1$, then we discuss four possible
cases. If \(L_D \cap B = \{u_{1,t-1}\} \), then \(L_D \cap N(u_2) = \emptyset \), a contradiction. If \(L_D \cap B = \{u_1\} \), then \(L_D \cap N(u_3) = \emptyset \), a contradiction. If \(L_D \cap B = \{u_2\} \) or \(L_D \cap B = \{u_3\} \), then \(L_D \cap N(u_{1,t-1}) = \emptyset \), a contradiction. Thus, \(|L_D \cap B| \geq 2\) and consequently \(|L_D| \geq t\). Thus, \(\lambda(G) = t \).

Next we prove that \(\lambda(F_G^f) = 2t \). Consider the set \(\{u_1, u_3, u_{1,1}, \ldots, u_{1,t-2}, v_1, v_3, v_{1,1}, \ldots, v_{1,t-2}\} \), then the reader can easily verify that this is a locating-dominating set of \(F_G^f \) of cardinality \(2t \) and hence \(\lambda(F_G^f) \leq 2t \). Since \(f \) is a constant function, therefore the sets \(\{u_{1,1}, \ldots, u_{1,t-1}\} \) and \(\{v_{1,1}, \ldots, v_{1,t-1}\} \) are also disjoint twin sets of \(F_G \) each of cardinality \(t - 1 \), therefore by Proposition 2.1, \(\lambda(F_G^f) \geq 2t - 4 \).

Let \(L_D \) be a locating-dominating set of \(F_G^f \). Without loss of generality, assume \(L_D \cap \{u_{1,1}, \ldots, u_{1,t-1}\} = \{u_{1,1}, \ldots, u_{1,t-2}\} \) and \(L_D \cap \{v_{1,1}, \ldots, v_{1,t-1}\} = \{v_{1,1}, \ldots, v_{1,t-2}\} \).

As \(f \) is a constant function, therefore by using the similar arguments as in the case of graph \(G \), the locating-dominating set \(L_D \) of \(F_G^f \) must contains at least two elements from each of the sets \(\{u_{1,1}, u_{2,3}, u_{1,t-1}\} \) and \(\{v_{1,2}, v_{3}, v_{1,t-1}\} \) and consequently, \(|L_D| \geq 2t\). Thus, \(\lambda(F_G^f) = 2t \) and the result follows.

\[\square\]

3. THE LOCATION-DOMINATION NUMBER OF FUNCTIGRAPH OF THE COMPLETE GRAPHS

We find the location-domination number of functigraph of the complete graphs for all possible definitions of the function \(f \). In this section, we use the following terminology for labeling the vertices of functigraph. Let \(G \) be a complete graph of order \(n \) and \(f : A_1 \to A_2 \) be a function. Let \(v \in I \subset A_2 \), then we denote the set \(\{f^{-1}(v)\} \subset A_1 \) by \(\Psi_v \) and its cardinality by \(s = |\Psi_v| \ (1 \leq s \leq n) \). If \(s = 1 \) for some \(v \in I \), then we name the edge \(vf^{-1}(v) \in E(F_G^f) \) as a functi matching of \(F_G^f \). The discussion has two parts, the first part discuss the cases in which \(F_G^f \) does not have any functi matching and in the second part \(F_G^f \) have at least one functi matching. For the first part of discussion, let \(F_G^f \) does not have any functi matching. In this case, we label the vertices of \(I \) as: \(I = \{v_1, v_2, \ldots, v_k\} \) where the subscript index is assigned to each \(v \) according to the index of corresponding \(s_i = |\Psi_{v_i}| \ (1 \leq i \leq k) \), where \(s_i \) are assinged indices according as \(s_1 \geq s_2 \geq \ldots \geq s_k \). The set \(A_2 \setminus I \) is a twin set of \(F_G^f \) and we denote the set by \(\Phi = A_2 \setminus I \). The vertices of \(\Phi \) are labeled as \(\Phi = \{v_{k+1}, v_{k+2}, \ldots, v_n\} \). The vertices of \(A_1 \) are labeled as: \(\Psi_{v_i} = \{u_{1,i}, u_{2,i}, \ldots, u_{s_i}\} \) and for each \(i = 2, \ldots, k \), \(\Psi_{v_i} = \{u_{i,1}, u_{i,2}, \ldots, u_{i,s_i}\} \), where the indices \(l_j \) \((j = 1, 2, \ldots, s_i)\) for fix \(i \) are given by \(l_j = \sum_{m=1}^{i-1} s_m + j \). The labeling of vertices of a functigraph of the complete graph \(K_9 \) for \(k = 3 \) is illustrated in the Figure 2(a) where the functigraph does not have any functi matching. It can be seen that for each \(i \ (1 \leq i \leq k) \), \(s_i \geq 2 \), \(\Psi_{v_i} \subset A_1 \) is a twin-set of vertices. Also, \(\cup_{i=1}^{k} \Psi_{v_i} = A_1 \) and \(\sum_{i=1}^{k} s_i = n \).
Lemma 3.1. Let \(G = K_n \) be the complete graph of order \(n \geq 2 \), and \(f : A_1 \to A_2 \) be a constant function, then

\[
\lambda(F_G^f) = \begin{cases}
2n-2, & \text{if } n = 2 \\
2n-3, & \text{if } n \geq 3
\end{cases}
\]

Proof. For \(n = 2 \), \(F_G^f \) is the complete graph \(K_3 \) with a pendant attached with any one of the vertices of \(K_3 \). Clearly, \(\lambda(F_G^f) = 2n-2 \). For \(n \geq 3 \), \(F_G^f \) with constant \(f \) has \(I = \{v_1\} \) and using the labeling as defined earlier \(\Psi_{v_1} = \{u_1, ..., u_n\} \) and \(\Phi = \{v_2, ..., v_n\} \). Let \(L^*_D \) be a locating-dominating set of \(F_G^f \) with the minimum cardinality. By Proposition 2.1, \(|L^*_D \cap \Psi_{v_1}| \geq n - 1 \) and \(|L^*_D \cap \Phi| \geq n - 2 \). Thus, \(\lambda(F_G^f) \geq 2n-3 \). Moreover, \(A_1 \setminus \{u_n\} \cup A_2 \setminus \{v_1, v_n\} \) is locating-dominating set of \(F_G^f \), and hence \(\lambda(F_G^f) \leq 2n-3 \) and the result follows.

Theorem 3.2. Let \(G \) be the complete graph of order \(n \geq 4 \) and \(F_G^f \) does not have functi matchings. If \(1 < k < n \), then \(\lambda(F_G^f) = 2n-k-2 \)

Proof. For \(1 < k < n \), \(I = \{v_1, v_2, ..., v_k\} \). First we prove that the set \(L = \{\cup_{i=1}^k \Psi_{v_i} \setminus \{u_{s_i}\}\} \cup \{\Phi \setminus \{v_n\}\} \) is a locating-dominating set of \(F_G^f \) with the cardinality \(|L| = \sum_{i=1}^k s_i - 1 + (n-k-1) = 2n-k-2 \). Since \(V(F_G^f) \setminus L = \{u_{s_1}, v_1, ..., v_k, v_n\} \). We prove that all the elements of \(V(F_G^f) \setminus L \) have distinct non-empty neighbors in \(L \).

Now, \(N(u_{s_i}) \cap L = \cup_{i=1}^k \Psi_{v_i} \setminus \{u_{s_i}\} \setminus \{v_n\}, N(v_i) \cap L = \{\Psi_{v_i} \setminus \{u_{s_i}\}\} \cup \{\Phi \setminus \{v_n\}\}, \) for each \(i \) where \(2 \leq i \leq k \). \(N(v_1) \cap L = \Psi_{v_1} \setminus \{u_{s_1}\} \cup \{\Phi \setminus \{v_n\}\}, \) \(N(v_n) \cap L = \Phi \setminus \{v_n\} \). Thus, \(L \) is a locating-dominating set of \(F_G^f \). Hence, \(\lambda(F_G^f) \leq 2n-k-2 \). Let \(L^*_D \) be a locating-dominating set of \(F_G \) with the minimum cardinality. Then by Proposition 2.1, \(L^*_D \)
must contains $s_i - 1$ vertices of the disjoint twin sets Ψ_{v_i} for each i, $1 < i \leq k$ and $n - k - 1$ vertices of the twin set Φ. Therefore, $\lambda(F^f_G) \geq 2n - 2k - 1$. Without loss of generality, assume the set $L_D \cap \Psi_{v_i} = \Psi_{v_i} \setminus \{u_{s_i}\}$, $L_D \cap \Psi_{v_i} = \Psi_{v_i} \setminus \{u_{t_i}\}$ for each i ($2 \leq i \leq k$) and $L_D^* \cap \Phi = \Phi \setminus \{v_n\}$. Now consider the two element sets $\{u_{s_1}, v_i\}$ and $\{u_{t_1}, v_i\}$ ($2 \leq i \leq k$). We claim that L_D^* contains atleast one element from exactly $k - 1$ sets of these two element sets. Consider $u_{s_1}, v_1 \notin L_D^*$. Next we prove that one vertex from $\{u_{s_i}, v_i\}$ ($2 \leq i \leq k$) must belongs to L_D^* for all i ($2 \leq i \leq k$). Suppose on contrary that both v_i and u_{s_i} do not belong to L_D^* for some i ($2 \leq i \leq k$). Then $N(u_{s_i}) \cap L_D^* = N(u_{s_i}) \cap L_D^*$, a contradiction. Similarly, by considering $u_{t_i}, v_i \notin L_D^*$ for some i ($2 \leq i \leq k$) and using similar arguments we leads to a contradiction. Thus, L_D^* must contains atleast one element from exactly $k - 1$ sets of these two element sets. Consequently, $|L_D^*| \geq 2n - k - 2$. Hence, $\lambda(F^f_G) = 2n - k - 2$.

For the second part of discussion, let F^f_G has atleast one functi matching. In this case, we label the vertices of I as: $I = \{v_1, v_2, ..., v_{k'}, v_{k'+1}, ..., v_{k}\}$ where ($1 \leq k' < k$) and the subscript index is assigned to each v according to the index of corresponding s_i ($1 \leq i \leq k$), where s_i are assigned indices according as $s_1 \geq s_2 \geq ... \geq s_{k'} > s_{k'+1} = ... = s_k = 1$. Notations of Φ and Ψ_{v_i} ($1 \leq i \leq k')$ are same as used earlier. The labeling of vertices of a functigraph of the complete graph K_6 for $k = 6$ and $k' = 2$ is illustrated in the Figure 2(b) where the functigraph has four functi matchings. It can be seen that for each i ($k'+1 \leq i \leq k$), $s_i = 1$ and $\Psi_{v_i} = \{u_{s_i}, v_i\}$ and the edge $u_{s_i}v_i \in E(F^f_G)$ is a functi matching of F^f_G.

Lemma 3.3. Let $G = K_n$ be the complete graph of order $n \geq 2$ and $f : A_1 \rightarrow A_2$ be a bijective function, then

$$\lambda(F^f_G) = \begin{cases} n, & \text{if } n = 2, 3 \\ n-1, & \text{if } n \geq 4 \end{cases}$$

Proof. For $n = 2$, F^f_G is a cyclic graph of order 4 and hence $\lambda(F^f_G) = 2$ by [3]. For $n = 3$, F^f_G is a triangular prism of order 6 and $\lambda(F^f_G) \geq 3$ by Lemma 2.3 whereas A_1 is a locating-dominating set of F^f_G with the cardinality 3. For $n \geq 4$, we have the labeling as defined earlier $I = A_2 = \{v_1, ..., v_n\}$ and $\Psi_{v_i} = \{u_i\}$ for all i ($1 \leq i \leq n$) and hence $A_1 = \{u_1, ..., u_n\}$. Consider the set $L = \{u_1, ..., u_{n-2}, v_n\}$. We prove that L forms a locating-dominating set of F^f_G. As $N(u_{n-1}) \cap L = \{u_1, ..., u_{n-2}\}$, $N(u_n) \cap L = \{u_1, ..., u_{n-2}, v_n\}$. Also, $N(v_i) \cap L = \{u_i, v_n\}$ for all $1 \leq i \leq n-2$ and $N(v_{n-1}) \cap L = \{v_n\}$. Thus, L forms a locating-dominating set of F^f_G and $\lambda(F^f_G) \leq n-1$. Next we prove that $\lambda(F^f_G) \geq n-1$. Suppose on contrary there exist a locating-dominating set L_D of cardinality $n - 2$, then either $|L_D \cap A_1| \leq n - 2$ or $|L_D \cap A_2| \leq n - 2$. Assume $|L_D \cap A_1| = n - 2 - j$ and $|L_D \cap A_2| = j$ where $0 \leq j \leq n - 2$. Since u_i, v_i forms functi matching of F^f_G for all i ($1 \leq i \leq n$). Therefore without loss of generality assume that $L_D \cap A_1 = \{u_1, u_2, ..., u_{n-2-j}\}$. If L_D is a locating-dominating set of F^f_G, then the vertices of $A_1 \setminus L_D = \{u_{n-1-j}, u_{n-j}, ..., u_n\}$ must have distinct
neighbors in \(L_D \) which is possible only \(|L_D \cap A_2| = j + 2 \), a contradiction. Thus, \(\lambda(F_G^f) \geq n - 1 \) and the result follows. \(\square \)

Theorem 3.4. Let \(G \) be the complete graph of order \(n \geq 3 \) and \(F_G^f \) has at least one matching. If \(1 < k < n \), then

\[
\lambda(F_G^f) = \begin{cases}
2n - k - 1, & \text{if } n = 3, \ k = 2, \\
2n - k - 2, & \text{if } n \geq 4, \ k \geq 2.
\end{cases}
\]

Proof. (i) For \(n = 3 \) and \(k = 2 \), let \(f : A_1 \to A_2 \) be defined as \(f(u_i) = v_1 \), where \(i = 1, 2 \) and \(f(u_3) = v_2 \). By Lemma 2.3, \(\lambda(F_G^f) > 2 \). Moreover, \(\{u_1, u_3, v_2\} \) forms a locating-dominating set of \(F_G^f \). Thus, \(\lambda(F_G^f) = 3 \).

(ii) For \(n \geq 4 \) and \(2 \leq k \leq n - 1 \). Since \(F_G^f \) has matching, therefore there exists a \(k' \) \((1 \leq k' < k)\) such that \(s_i = 1 \) for all \(i \) \((k' + 1 \leq i \leq k)\). Thus we use the labeling as described earlier for the vertices of \(A_1 \) and \(A_2 \). Let \(L_D^* \) be a locating-dominating set of \(F_G^* \) with the minimum cardinality. The proof consists of the following claims:

1. **Claim.** The set \(L = \bigcup_{i=1}^{k'} \Psi_{v_i} \setminus \{u_{s_i}\} \cup \{\Phi \setminus \{v_n\}\} \) is a locating-dominating set of the cardinality \(|L| = \sum_{i=1}^{k'} s_i - 1 + (n - \sum_{i=1}^{k'} s_i) + (n - k - 1) = 2n - k - 2 \).
 Proof of claim: Since \(V(F_G^f) \setminus L = \{u_{s_1}, u_{s_{k'}} + k, v_1, \ldots, v_{k'}, v_{k'+1}, \ldots, v_{k+1}, v_n\} \), we prove that all the elements of \(V(F_G^f) \setminus L \) have distinct neighbors in \(L \).

Now, \(N(u_{s_1}) \cap L = A_1 \setminus \{u_{s_1}, u_{s_{k'}} + k\}, N(u_{s_{k'}} + k) \cap L = A_1 \setminus \{u_{s_1}, u_{s_{k'}} + k\} \cup \{v_k\}, N(v_1) \cap L = \Psi_{v_1} \setminus \{u_{s_1}\} \cup \{v_k\} \cup \{\Phi \setminus \{v_n\}\}, \) for each \(i \) where \(2 \leq i \leq k' \), \(N(v_i) \cap L = \Psi_{v_i} \cup \{v_k\} \cup \{\Phi \setminus \{v_n\}\}, \) for each \(i \) where \(k' + 1 \leq i \leq k - 1 \), \(N(v_n) \cap L = \{u_{i_{s_i} + i-k'}\} \cup \{v_k\} \cup \{\Phi \setminus \{v_n\}\}, \) and \(N(v_{n'}) \cap L = \{v_k\} \cup \{\Phi \setminus \{v_n\}\} \).

Thus, \(L \) is a locating-dominating set of \(F_G^f \) and hence, \(\lambda(F_G^f) \leq 2n - k - 2 \).

2. **Claim.** \(\lambda(F_G^f) \geq n + \sum_{i=1}^{k'} s_i - k - 2 \).
 Proof of claim: By Proposition 2.4, \(L_D^* \) must contains \(s_i - 1 \) vertices of the disjoint twin sets \(\Psi_{v_i} \) for each \(i, 1 < i \leq k' \) and \(n - k - 1 \) vertices of the twin set \(\Phi \). Therefore, \(\lambda(F_G^f) \geq \sum_{i=1}^{k'} (s_i - 1) + (n - k - 1) = n + \sum_{i=1}^{k'} s_i - k' - k - 1 \). Without loss of generality, assume the set \(L_D^* \cap \Psi_{v_i} = \Psi_{v_i} \setminus \{u_{s_i}\}, L_D^* \cap \Psi_{v_{i}} = \Psi_{v_{i}} \setminus \{u_{i_{s_i}}\} \) for each \(i \) \((2 \leq i \leq k')\) and \(L_D^* \cap \Phi = \Phi \setminus \{v_n\} \).

Now consider the two element sets \(\{u_{s_1}, v_i\} \) and \(\{u_{s_i}, v_i\} \) \((2 \leq i \leq k')\). We claim that \(L_D^* \) must contains at least one element from exactly \(k' - 1 \) sets of these two element sets. Consider \(\{u_{s_1}, v_i\} \not\subset L_D^* \). We prove that one vertex from \(\{u_{i_{s_i}}, v_i\} \) \((2 \leq i \leq k')\) must belong to \(L_D^* \) for all \(i \) \((2 \leq i \leq k')\). Suppose on contrary that both \(u_{i_{s_i}} \) and \(v_i \) do not belong to \(L_D^* \) for some \(i \) \((2 \leq i \leq k')\). Then \(N(u_{i_{s_i}}) \cap L_D^* = N(u_{s_1}) \cap L_D^*, \) a contradiction. Similarly, by considering \(\{u_{i_{s_i}}, v_i\} \not\subset L_D^* \) for some \(i \) \((2 \leq i \leq k')\) and using the similar arguments we lead to a contradiction. Thus \(L_D^* \) must contains at least one
element from exactly $k' - 1$ sets of these two element sets. Consequently,
\[\lambda(F_G^f) \geq n + \frac{k'}{2} \sum_{i=1}^{k'} s_i - k - 2. \]

(3) **Claim.** \[|L_D^* \cap \{u_{i,k'+1}, u_{i,k'+2}, \ldots, u_k, v_{k'+1}, v_{k'+2}, \ldots, v_k\}| = n - \frac{k'}{2} \sum_{i=1}^{k'} s_i. \]

Proof of claim: As \(u_{i,k'+i}v_{k'+i} \in E(F_G^f) \) for each \(i \) (1 \(\leq \) \(i \) \(\leq \) \(k' \)) form the functi matchings of \(F_G^f \). We take the assumptions that we have proved in Claim 2 that \(L_D^* \cap \Psi_v = \Psi_v \setminus \{u_{s_1}\} \), \(L_D^* \cap L_\phi = L_\phi \setminus \{v_{k}\} \) for each \(i \) (2 \(\leq \) \(i \) \(\leq \) \(k' \)) and \(L_D^* \cap \Phi = \Phi \setminus \{v_{n}\} \). Now consider the two element sets \(\{u_{i,k'+i}, v_i\} \) \((k'+1 \leq i \leq k) \) as the sets of two end vertices of the functi matchings of \(F_G^f \).

We prove that \(L_D^* \) must contains exactly one element from each of these \(k-k' \) sets. Suppose on contrary \(\{u_{i,k'+i}, v_i\} \not\subseteq L_D^* \) for some \(i \) (\(k'+1 \leq i \leq k \)), then \(N(u_{i,k'+i}) \cap L_D^* = N(u_{i,k'+i}) \cap L_D^* \), a contradiction. Thus either \(u_{i,k'+i} \) or \(v_i \) for each \(i \) (\(k'+1 \leq i \leq k \)) (not both to maintain the minimality of \(L_D^* \)) must belong to \(L_D^* \) to make distinct neighborhood of \(u_{i,k'+i} \) in \(L_D^* \). Hence,
\[|L_D^* \cap \{u_{i,k'+1}, u_{i,k'+2}, \ldots, u_k, v_{k'+1}, v_{k'+2}, \ldots, v_k\}| = k - k' = n - \frac{k'}{2} \sum_{i=1}^{k'} s_i. \]

Since the sets used to prove Claim 2 and Claim 3 are disjoint subsets of \(V(F_G^f) \), therefore combining Claim 2 and Claim 3 we get \(\lambda(F_G^f) \geq 2n - k - 2 \). Combining this with Claim 1 we get the required result. \[\square \]

Corollary 3.5. Let \(G \) be the complete graph of order \(n \geq 4 \) and let \(F_G^f \) contains \(p \) functi matchings, then \(\lambda(F_G^f) \geq p. \) The bound is sharp.

Proof. The result follows from proof of Claim 3 of Theorem 3.4. Sharpness of the bound follows from Lemma 3.3 where \(f \) is a bijective function. \[\square \]

Corollary 3.6. Let \(G \) be the complete graph of order \(n \geq 4 \). Then \(\lambda(G) = \lambda(F_G^f) \) if and only if \(k = n - 1 \).

Proof. The result follows by Theorem 3.4 for \(n \geq 4 \). \[\square \]

4. **Location-Domination Number of Functigraph of a family of spanning subgraphs of the Complete Graphs**

A vertex \(u \in V(G) \) is called a saturated vertex, if \(\deg(u) = |V(G)| - 1 \). Since any two saturated vertices are adjacent twins, therefore the set of all saturated vertices of a graph forms a twin set represented by \(T^s \). Let \(e' \in E(G) \) be an edge that joins two saturated vertices of \(G \), then the spanning subgraph of \(G \) which is obtained by removing the edge \(e' \) is denoted by \(G - e' \). Similarly, \(H_i = G - ie' \) \((1 \leq i \leq \lfloor \frac{n}{2} \rfloor) \) denotes a spanning subgraph of \(G \) that is obtained by removing \(i \) edges \(e' \), where \(e' \) joins two saturated vertices of \(G \). It may also be noted that after removing the edge \(e' \), the two saturated vertices that are connected by \(e' \), are converted to non-adjacent twins and hence forms a twin set of cardinality 2. The twin set obtained after removing the \(i \)th edge \(e' \) is denoted by \(T_i^s \), \((1 \leq i \leq \lfloor \frac{n}{2} \rfloor) \). Thus, \(H_i \) \((1 \leq i \leq \lfloor \frac{n}{2} \rfloor) \) has \(i \) twin sets \(T_i^s \) of non-adjacent twins, each of cardinality
Further, if n is even and $i = \frac{n}{2}$, then $T^s = \emptyset$. We label the vertices in H_i as follows:
$T^s_i = \{u_{i}^{1}, u_{i}^{2}\} \ (1 \leq i \leq \lfloor \frac{n}{2} \rfloor)$ and $T^s = \{u_{2i+1}, u_{2i+2}, ..., u_n\} \ (1 \leq i < \frac{n}{2})$. The following theorem gives location-domination number of functigraph of $G - i\varepsilon$.

Lemma 4.1. Let G be the complete graph of order $n = 4$ and f be a constant function, then $\lambda(F_{H_i}^f) = 4 \ (1 \leq i \leq 2)$.

Proof. Since f is a constant function, therefore assume that $I = \{v\} \subset A_2$. If $v \in T^s_j \subset A_2$ for some $j \ (1 \leq j \leq 2)$, then $T^s_j \subset A_2$ is not twin set in $F_{H_i}^f$. Similarly if $v \in T^s \subset A_2$, then $T^s \subset A_2$ is not a twin set in $F_{H_i}^f$. Let a set $L \subset V(F_{H_i}^f)$, such that L has exactly one element from each twin set of $F_{H_i}^f$. We discuss the following cases.

(1) If $i = 1$ and $v \in T^s_i \subset A_2$, then without loss of generality assume $v = v^1_1$. Also, the sets $T^s_i, T^s \subset A_1$ and $T^s \subset A_2$ are twin sets in the corresponding $F_{H_i}^f$ each with the cardinality 2. Thus by Proposition 2.1, $\lambda(F_{H_i}^f) \geq 3$. There are 8 possible choices for the set L. If we take $L = \{u^1_1, u_3, v_3\}$, then $N(v^1_2) \cap L = N(v_4) \cap L$ which implies that L is not a locating-dominating set. Similarly, the other 7 choices for L do not form locating-dominating set and hence, $\lambda(F_{H_i}^f) \geq 4$. Also, the set $\{u^1_1, u_3, v_3, v_4\}$ forms a locating-dominating set of $F_{H_i}^f$. Hence, the result follows.

(2) If $i = 1$ and $v \in T^s \subset A_2$, then without loss of generality assume $v = v^1_3$. The corresponding functigraph $F_{H_i}^f$ has twin sets $T^s, T^s_i \subset A_1$ and $T^s_i \subset A_2$ each of the cardinality 2. Then it can be seen that 8 possible choices of the set L do not form locating-dominating set of $F_{H_i}^f$, therefore $\lambda(F_{H_i}^f) \geq 4$. Also, the set $\{u^1_1, u_3, v^1_1, v_4\}$ forms a locating-dominating set of $F_{H_i}^f$.

(3) If $i = 2$ and $v \in T^s \subset A_2$, then $T^s = \emptyset$. Without loss of generality assume $v = v^1_1$. The corresponding functigraph $F_{H_2}^f$ has twin sets $T^s, T^s_i \subset A_1$ and $T^s \subset A_2$ each of the cardinality 2. By Proposition 2.1, $\lambda(F_{H_2}^f) \geq 3$. There are 8 possible choices for the set L. If $L = \{u^1_1, u_2, v^1_2\}$, then $N(v^1_2) \cap L = \emptyset$. If $L = \{u^1_1, u_2, v^1_2\}$, then $N(v^1_2) \cap L = \emptyset$. Thus, L is not locating-dominating set. Similarly, the remaining 6 choices for the set L do not form locating-dominating set. Hence, $\lambda(F_{H_2}^f) \geq 4$. Also the set $\{u^1_1, u^1_2, v^1_2, v^1_3\}$ forms a locating-dominating set of $F_{H_2}^f$. The case when $i = 2$ and $v \in T^s \subset A_2$ can also be proved by the similar arguments.
Figure 3. The labeling of the vertices of $F^f_{H_i}$ when $n = 7$, $i = 2$, f is a constant function, $I = \{v\}$ and v is a non-saturated vertex of A_2. Black vertices form a locating-dominating set of $F^f_{H_i}$ with the minimum cardinality.

Theorem 4.2. Let G be the complete graph of order $n \geq 5$ and f be a constant function such that $I = \{v\} \subset A_2$, then

$$\lambda(F^f_{H_i}) = \begin{cases}
2n - 2i - 3, & \text{if } 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1 \text{ and } v \text{ is a saturated vertex of } A_2 \\
2n - 2i - 2, & \text{if } 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1 \text{ and } v \text{ is a non-saturated vertex of } A_2 \\
n - 1 & \text{if } n \text{ is even and } i = \frac{n}{2} \\
2\left\lfloor \frac{n}{2} \right\rfloor & \text{if } n \text{ is odd and } i = \left\lfloor \frac{n}{2} \right\rfloor.
\end{cases}$$

Proof. Since f is a constant function, therefore the collection $\{T_1^f, T_2^f, \ldots, T_i^f, T^s\}$ of twin subset of A_2 are also twin sets in the corresponding $F^f_{H_i}$. If $v \in T_j^f \subset A_2$ for some j ($1 \leq j \leq i$), then $T_j^f \subset A_2$ is not twin set in $F^f_{H_i}$. Similarly if $v \in T^s \subset A_2$, then $T^s \subset A_2$ is not twin set in $F^f_{H_i}$. We discuss the following cases

1. When $1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1$ and $v \in T_j^f \subset A_2$ for some j ($1 \leq j \leq i$). Then without loss of generality assume that $v = v_j^1$. The corresponding $F^f_{H_i}$ have twin sets $T_1^f, T_2^f, \ldots, T_i^f, T^s \subset A_1$ and $T_1^f, \ldots, T_{j-1}^f, T_j^f, T_{j+1}^f, \ldots, T_i^f, T^s \subset A_2$. By Proposition 2.1 $\lambda(F^f_{H_i}) \geq 2i - 1 + 2(n - 2i - 1) = 2n - 2i - 3$. Let a set $L \subset V(F^f_{H_i})$, such that L has all the elements except one element of each of these twin subsets. There are $2^{2i-1}(n - 2i - 1)^2$ choices for choosing the elements of the set L. Each choice for the set L does not contain an element of the set $T^s \subset A_2$. Without loss of generality assume that $v_n \not\in L$,

then $N(v_f^2) \cap L = N(v_n) \cap L$. Thus, L is not a locating-dominating set of $F^t_{H_i}$ for all choices of the set L. Hence, $\lambda(F^t_{H_i}) \geq 2n - 2i - 2$. Also the set $\{u_1, u_2, \ldots, u_{n-1}, v_1, v_1, v_2, \ldots, v_{j-1}, v_j, v_{j+1}, \ldots, v_n\}$ is a locating-dominating set with cardinality $2n - 2i - 2$. Thus $\lambda(F^t_{H_i}) = 2n - 2i - 2$.

(2) When $1 \leq i \leq \lfloor \frac{n}{2} \rfloor - 1$ and $v \in T^s \subset A_2$. Then without loss of generality assume that $v = v_n$. The corresponding $F^t_{H_i}$ have twin sets $T_1^t, T_2^t, \ldots, T_i^t, T^s \setminus \{v_n\} \subset A_1$ and $T_1^t, \ldots, T_i^t, T^s \setminus \{v_n\} \subset A_2$. By Proposition 2.1 $\lambda(F^t_{H_i}) \geq 2i + (n - 2i - 1) + (n - 2i - 2) = 2n - 2i - 3$. Also the set $L = \{u_1, u_2, \ldots, u_{n-1}, v_1, v_2, \ldots, v_{j-1}, v_j, v_{j+1}, \ldots, v_n\}$ is a locating-dominating set of $F^t_{H_i}$ with the cardinality $2n - 2i - 3$. Thus $\lambda(F^t_{H_i}) = 2n - 2i - 3$.

(3) When $i = \frac{n}{2}$ and n is even, then $T^s = \emptyset$ and $v \in T_j^t \subset A_2$ for some j ($1 \leq j \leq i$). Then without loss of generality assume that $v = v_j$. The corresponding $F^t_{H_i}$ have twin sets $T_1^t, T_2^t, \ldots, T_i^t \subset A_1$ and $T_1^t, \ldots, T_j^t, T_{j+1}^t, \ldots, T_i^t \subset A_2$. By Proposition 2.1 $\lambda(F^t_{H_i}) \geq i + (i - 1) = n - 1$. Also, the set $L = \{u_1, u_2, \ldots, u_{n-1}, v_1, v_2, \ldots, v_{j-1}, v_j, v_{j+1}, \ldots, v_1\}$ is a locating-dominating set of $F^t_{H_i}$ with cardinality $n - 1$. Thus $\lambda(F^t_{H_i}) = n - 1$.

(4) When $i = \lfloor \frac{n}{2} \rfloor$, n is odd and $v \in T_j^t \subset A_2$ for some j ($1 \leq j \leq i$). In this case, $T^s = \{v_n\}$ is not a twin set. Without loss of generality assume that $v = v_j$. The corresponding $F^t_{H_i}$ have twin sets $T_1^t, T_2^t, \ldots, T_i^t \subset A_1$ and $T_1^t, \ldots, T_{j-1}^t, T_{j+1}^t, \ldots, T_i^t \subset A_2$. By Proposition 2.1 $\lambda(F^t_{H_i}) \geq i + (i - 1) = 2i - 1$. Let a set $L \subset V(F^t_{H_i})$, such that L has all the elements except one element of each of these twin subsets. Each choice for the set L does not contain v_n. Then, $N(v_j^2) \cap L = N(v_n) \cap L$ for all choices of the set L. Thus, L is not a locating-dominating set of $F^t_{H_i}$ for all choices of the set L and hence, $\lambda(F^t_{H_i}) \geq 2i$. Also, the set $\{u_1, u_2, \ldots, u_{n-1}, v_1, v_2, \ldots, v_{j-1}, v_j, v_{j+1}, \ldots, v_1\}$ is a locating-dominating set with cardinality $2i$. Thus $\lambda(F^t_{H_i}) = 2\lfloor \frac{n}{2} \rfloor$.

(5) When $i = \lceil \frac{n}{2} \rceil$, n is odd and $v \in T^s \subset A_2$. In this case, $T^s = \{v_n\}$ is not a twin set and $v = v_n$. The corresponding $F^t_{H_i}$ have twin sets $T_1^t, T_2^t, \ldots, T_i^t \subset A_1$ and $T_1^t, \ldots, T_i^t \subset A_2$. By Proposition 2.1 $\lambda(F^t_{H_i}) \geq 2i$. Also, the set $L = \{u_1, u_2, \ldots, u_{n-1}, v_1, v_2, \ldots, v_1\}$ is a locating-dominating set with cardinality $2i$. Thus $\lambda(F^t_{H_i}) = 2\lceil \frac{n}{2} \rceil$.

□

References

[1] T. Y. Berger-Wolf, W. E. Hart and J. Saia, Discrete sensor placement problems in distribution networks, J. Math. Comp. Modeling, 42(13)(2005), 1385-1396.

[2] N. Bertrand, I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes on chains and cycles, European J. Combin., 25(2004), 969-987.
[3] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo and M. L. Puertas, On locating and dominating sets in graphs, *Workshop de Matemática Discreta Algarve/Andaluca–VI Encuentro Andaluz de Matemática Discreta*, (2009), 19-22.

[4] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo and M. L. Puertas, Locating dominating codes, *Appl. Math. Comput.*, 220(2013), 38-45.

[5] I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes: NP-completeness results for directed graphs, *IEEE Trans. Inform. Theory*, 48(2002), 2192-2200.

[6] I. Charon, O. Hudry and A. Lobstein, Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard, *Theor. Comput. Sci.*, 290(2003), 2109-2120.

[7] G. Chartrand and F. Harary, Planar permutation graphs, *Ann. Inst. H. Poincare*, 3(1967), 433-438.

[8] A. Chen, D. Ferrero, R. Gera and E. Yi, Functigraphs: An extension of permutation graphs, *Math. Bohem.*, 136(1)(2011), 27-37.

[9] C. J. Colbourn, P. J. Slater and L. K. Stewart, Locating-dominating sets in series parallel networks, *Congr. Numer.*, 56(1987), 135-162.

[10] W. Dorfler, On mapping graphs and permutation graphs, *Math. Slovaca*, 28(3)(1978), 277-288.

[11] L. Eroh, R. Gera, C. X. Kang, C. E. Larson and E. Yi, Domination in functigraphs, *arXiv preprint arXiv:1106.1147*.

[12] L. Eroh, C. X. Kang and E. Yi, On metric dimension of functigraphs, *Discrete Math., Alg. and Appl.*, 5(04) (2013), 1250060.

[13] M. Fazil, I. Javaid and M. Murtaza, On fixing number of functigraphs, *arXiv preprint arXiv:1611.03346*.

[14] M. Fazil, M. Mutaza, U. Ali and I. Javaid, On distinguishing number of functigraphs, *arXiv preprint arXiv:1612.00971*.

[15] A. Finbow and B. L. Hartnell, On locating-dominating sets and well-covered graphs, *Congr. Numer.*, 56(1987), 135-162.

[16] W. Gu and G. Qi, Attainability of the chromatic number of functigraphs, *In Pervasive Sys., Alg. and Net. (ISPAN), 2012 12th International Symposium*, (2012), 143-148.

[17] I. Honkala, T. Laihonen and S. Ranto, On locating-dominating codes in binary hamming spaces, *Disc. Math. Theor. Comput. Sci.*, 6(2004), 265-282.

[18] C. X. Kang and E. Yi, On zero forcing number of functigraphs, *arXiv preprint arXiv:1204.2238*.

[19] M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, On a new class of codes for identifying vertices in graphs, *IEEE Transactions on Information Theory* 44(1998), 599-611.

[20] M. Murtaza, I. Javaid and M. Fazil, Locating-dominating sets and identifying codes of a graph associated to a finite vector space, *arXiv preprint arXiv:1701.08537*.

[21] G. Qi, S. Wang and W. Gu, On the chromatic number of functigraphs, *J. of Interconn. Net.*, 13(2012), 1250011.

[22] D. F. Rall and P. J. Slater, On location-dominination numbers for certain classes of graphs, *Congr. Numer.*, 45(1984), 97-106.

[23] P. J. Slater, Dominating and reference sets in a graph, *J. Math. Phys. Sci.*, 22(1988), 445-455.

[24] P. J. Slater, Fault-tolerant locating-dominating sets, *Disc. Math.*, 249(2002), 179-189.

[25] P. J. Slater, Domination and location in acyclic graphs, *Networks*, 17(1987), 55-64.
