Irreducibility of G-varieties defined by quadrics.

César Massria,1,*

aDepartamento de Matemática, FCEN, Universidad de Buenos Aires, Argentina

Abstract

Let \(g \) be a complex simple Lie algebra, \(G \) a simply connected Lie group with Lie algebra \(g \) and \(V \) a module. We will study the irreducibility of \(G \)-varieties defined by quadrics in \(\mathbb{P}V \).

Keywords: Irreducibility, Varieties defined by quadrics, Simple Lie algebra, Orbit closure

2010 MSC: 14N05, 14M17

Introduction.

We will study a question raised in the exercise [4, 15.44 Hard Exercise]. Let \(V = \mathbb{C}^n \) be the standard representation of \(\mathfrak{sl}_n(\mathbb{C}) \) and consider the following decomposition

\[S^2(\wedge^k V) = \bigoplus_{i \geq 0} \Theta_{2i}, \]

where \(\Theta_{2i} \) is an irreducible representation of \(\mathfrak{sl}_n(\mathbb{C}) \). Let \(C^p(Gr^k(V)) \) be the \(p \)-restricted chordal variety of the Grassmannian of subspaces of dimension \(n - k \): that is, the union of chords \(LM \) joining pair of planes meeting in a subspace of dimension at least \(k - 2p + 1 \). In the exercise we must prove that the ideal in degree two of \(C^p(Gr^k(V)) \) is

\[I(C^p(Gr^k(V)))_2 = \bigoplus_{i \geq p} \Theta_{2i}, \]

and the authors asked what is the actual zero locus of these quadrics? In the present paper we will generalize the situation to the following:

Let \(g \) be a simple Lie algebra and let \(G \) be the simply connected Lie group with Lie algebra \(g \), let \(V \) be a representation and \(G \cdot y \subseteq \mathbb{P}V \) be the closure of an orbit in the projective space \(\mathbb{P}V \).

Theorem. The zero locus of quadrics in \(I(G \cdot y)_2 \) is an irreducible variety.

As an application of this result, we will prove that there exist \(y \in C^p(Gr^k(V)) \) such that \(I(C^p(Gr^k(V)))_2 = I(G \cdot y)_2 \) and then, the zero locus of \(I(C^p(Gr^k(V)))_2 \) is an irreducible variety. This gives an answer to the question in [4, 15.44 Hard Exercise].

*Address for correspondence: Departamento de Matemática, FCEN, Universidad de Buenos Aires, Argentina

Email address: cmassri@dm.uba.ar (César Massri)

1The author was fully supported by CONICET, Argentina
After the previous motivation let’s present our notations. We will work with a simple Lie algebra g, a module V and a simply connected Lie group G with Lie algebra g. For each $y \in PV$ consider the orbit $G.y \subseteq PV$ and the zero locus of its ideal in degree two,

$$M_y = \{ x \in PV \mid q(x) = 0 \forall q \in I(G.y) \}.$$

We will prove that M_y is irreducible. If the closure of the orbit $G.y$ is defined by quadrics, the variety M_y is obviously irreducible. It is equal to $G.y$. Also, if the vector y corresponds to a maximal weight vector of V, then the orbit is automatically closed, [4, p.388, claim 23.52], for example, the Veronese variety, the Grassmannian and partial frags varieties [3, §9.3]. In these cases, the variety M_y is irreducible by trivial reasons (it is an orbit).

This article is divided in four sections. In section one we give some preliminaries. In section two we define the notion of a multi-matrix. The space of multi-matrixes arise naturally in the proof of the irreducibility of M_y. In section three we prove that the variety M_y is irreducible (see 11). First we show in 6 that for every $y \in V$ there exist a multi-matrix A such that

$$M_y \cong \{ ABA' \mid B \in \text{Cat}, \, \text{rk}(ABA') \leq 1 \},$$

where Cat is the space of catalectic multi-matrixes (see definitions in 2). Second, in 9 we give a characterization of the space $\{ ABA' \mid B \in \text{Cat} \}$, and with this, we prove in 11 that M_y is isomorphic to the irreducible variety $\{ P^2 \mid P \in \text{im}A' \}$ where P^2 is the square of the polynomial P. In section four we give some applications of the result.

1. Preliminaries.

We will work with the universal enveloping algebra of g,

$$Ug = \left(\bigoplus_{n \geq 0} g^\otimes n \right) / I, \quad I = \langle D \otimes E - E \otimes D - [D, E] \rangle.$$

Elements of Ug are the classes of non-commutative polynomials in g. Our goal in this section is to prove the following

Theorem. Let $y \in V$, then there exists $r \in \mathbb{N}$, $(D_1, \ldots, D_r) \in g^r$, $N \in \mathbb{N}_0^r$ such that for every $Q \in Ug$, we have

$$Q(yy) = \sum_{i_1, j_1=0}^{N_1} \cdots \sum_{i_r, j_r=0}^{N_r} b_{i_1+j_1, \ldots, i_r+j_r} \frac{D_1^{i_1} \cdots D_r^{i_r} y \cdot D_1^{j_1} \cdots D_r^{j_r} y}{i_1! \cdots i_r! j_1! \cdots j_r!},$$

where the coefficients $b_{0,0}, \ldots, b_{2N_1, \ldots, 2N_r}$, depends on Q. In a more compact form, the formula is

$$Q(yy) = \sum_{i, j=0}^{N} b_{i+j} \frac{D_i^y D_j^y}{i! j!}.$$

This theorem will help us to study the irreducibility of M_y. But first let’s start with the following Lemmas.
We will consider the basis of

\[\frac{D_1^n \ldots D_r^p(y y)}{n_1! \ldots n_r!} = \sum_{i+j=n_1, \ldots, i+r=n_r} \frac{D_1^i \ldots D_r^j y y}{i_1! \ldots i_r! j_1! \ldots j_r!}. \]

In a more compact notation we have,

\[\frac{D^r(y y)}{n!} = \sum_{i+j=n} \frac{D^i y D^j y}{i! j!}, \]

where \(D^r := D_1^r \ldots D_r^r \) and \(k! := k_1! k_2! \ldots k_i! \).

Proof. Given \(D_r \in \mathfrak{g} \), we have

\[D_r^k(ab) = \sum_{l=0}^k \binom{k}{l} (D_r^l a)(D_r^{k-l} b) \]

The result follows by induction. \(\square \)

We are assuming that the Lie algebra \(\mathfrak{g} \) is simple. For each positive root \(\beta \), let \(X_\beta \in \mathfrak{g}^\beta, Y_\beta \in \mathfrak{g}^{-\beta} \) and \(H_\beta \in \mathfrak{h} \) such that \([X_\beta, Y_\beta] = H_\beta\). From a result in [7, p.57] we know that if \(W \) is irreducible and has a maximal weight vector \(w \), then \(Y_{\beta_1}^{m_1} \ldots Y_{\beta_k}^{m_k} w, m_i \in \mathbb{N}_0 \), generates \(W \) as a vector space. In the next Lemma we will prove that there is a similar result without the hypothesis on \(w \).

Lemma 1. Let \(W \) be a finite dimensional representation. Given \(w \in W \) there exists \(r \in \mathbb{N} \), \((D_1, \ldots, D_r) \in \mathfrak{g}'\) with

\[D_i \in \{X_{\beta_1}, Y_{\beta_1}, \ldots, X_{\beta_k}, Y_{\beta_k}\}, \]

such that \(\{D_1^{m_1} \ldots D_r^{m_r} w\}_{m_1, \ldots, m_r \geq 0} \) generates \(U \mathfrak{g} w \) as a vector space. In a more compact form, the set may be written as \(\{D^r w\}_{m \geq 0} \).

Proof. Let \(p_1, \ldots, p_s \in U \mathfrak{g} w \) be the maximal weight vectors of the representation \(U \mathfrak{g} w \) and let \(P_1, \ldots, P_s \in U \mathfrak{g} \) be the non-commutative polynomials such that \(P_i w = p_i \). By the Poincar-Birkhoff-Witt Theorem, [4, p.486], if \(E_1, \ldots, E_s \) is a basis of \(\mathfrak{g} \) then every element in \(U \mathfrak{g} \) is a linear combination of the monomials

\[\{E_1^{m_1} \ldots E_s^{m_s}\}, \quad m_1, \ldots, m_s \geq 0. \]

We will consider the basis of \(\mathfrak{g} \) obtained by the root decomposition,

\[\{X_{\beta_1}, Y_{\beta_1}, H_{\beta_1}, \ldots, X_{\beta_k}, Y_{\beta_k}, H_{\beta_k}\}. \]

Given that \(H = [X, Y] = XY - YX \) in \(U \mathfrak{g} \) we may suppose that \(H \) does not appear in the monomials of \(P_i \). Let \(D_1 = Y_{\beta_1} \), \(\ldots, D_k = Y_{\beta_k} \) and let’s define \(D_{k+1}, \ldots, D_r \). Let \(D_{k+1} \) be the first variable of the first monomial of \(P_1 \), \(D_{k+2} \) the second variable of the first monomial of \(P_1 \), finally let \(D_r \) be the last variable of the last monomial of \(P_s \).

Note that with all the polynomials formed with the monomials of the form \(D_1^{m_1} \ldots D_r^{m_r} w \), we obtain, in particular, the polynomials

\[Y_{\beta_1}^{m_1} \ldots Y_{\beta_k}^{m_k} P_i w = Y_{\beta_1}^{m_1} \ldots Y_{\beta_k}^{m_k} P_i \]

that generates, as a vector space, the whole representation \(U \mathfrak{g} p_i \). \(\square \)
Lemma 3. Let \(V \) be a finite dimensional representation, \(r \in \mathbb{N} \) and \((D_1, \ldots, D_r) \in g' \).

\[
D_i \in \{X_{\beta_i}, Y_{\beta_i}, \ldots, X_{\beta_i}, Y_{\beta_i}\}.
\]

Given \(u \in V \) there exist \(N \in \mathbb{N}_0 \) such that

\[
D_1^{N_i+\ell_i} D_2^{N_i+\ell_2} \cdots D_r^{N_i+\ell_r} u = 0, \quad \forall k_1, \ldots, k_r \geq 0.
\]

In a more compact form, we may write

\[
D^{N+k} u = 0, \quad \forall k \geq 0.
\]

Proof. Assume first that \(u \) has a particular weight \(\mu \), that is, \(u \in V^\mu \). If \(D_r = X_\beta \) then \(D_r^\mu u \in V^{\mu+\beta} \), else if \(D_r = Y_\beta \) then \(D_r^\mu u \in V^{\mu-\beta} \). Given that \(V \) is finite dimensional it has finite weights, then there exist \(\ell \in \mathbb{N} \) such that \(D_\ell^\mu u = 0 \).

Assume now that \(u \) is a general vector of \(V \), so we can decompose it as \(u = \sum u_i \) where each \(u_i \) has weight \(\mu_i \). From the previous paragraph we know that for each \(i \) there exist \(\ell_i \) such that \(D_\ell^\mu u_i = 0 \). So if we take the maximum of \(|\ell_i|\), there exist \(\ell \in \mathbb{N} \) such that \(D_\ell^\mu u = 0 \).

Finally, let’s see that for a given \(u \in V \), there exist \((N_1, \ldots, N_r) \in \mathbb{N}_0^r \) such that

\[
D_1^{N_1+\ell_1} D_2^{N_2+\ell_2} \cdots D_r^{N_r+\ell_r} u = 0, \quad \forall k_1, \ldots, k_r \geq 0.
\]

Let \(N_r \) be such that \(D_r^{N_r} u = 0 \). Let \(N_{r-1} \) be the maximum of \(|\ell_i|\) where \(\ell_i \) is such that \(D_\ell^\mu u_i = 0 \) for \(0 \leq i \leq N_r \). In general, let \(N_i \) be such that \(D_r^{N_r}(D_\ell^{N_1} \cdots D_r^\mu u) = 0 \) for all \(0 \leq i_j \leq N_i \).

Theorem 4. Let \(y \in V \), then there exists \(r \in \mathbb{N} \) and \((D_1, \ldots, D_r) \in g' \) such that for every \(Q \in U_g \), we have

\[
Q(yy) = \sum_{i,j=0}^{N} b_{ij} \frac{D_i^y D_j^y}{i! j!}.
\]

where the coefficients \(b_0, \ldots, b_{2N} \) depends on \(Q \).

Proof. From [1] there exists \((D_1, \ldots, D_r) \in g' \) such that \(\{D^\mu(yy)\}_{\mu=0} \) generates \(U_g(yy) \) as a vector space. From [2] there exist \(N \) big enough such that \(\{D^\mu(yy)\}_{\mu=0}^{2N} \) still generates \(U_g(yy) \) and also \(D^{N+k}y = 0 \) for \(k \geq 0 \). Finally,

\[
Q(yy) = \sum_{\mu=0}^{2N} b_{\mu} D^\mu(yy) = \sum_{\mu=0}^{2N} \sum_{i+j=\mu} b_{i} D_i^y D_j^y = \sum_{\mu=0}^{N} b_{\mu} \frac{D_i^y D_j^y}{i! j!}.
\]

The first equality follows because \(\{D^\mu(yy)\}_{\mu=0}^{2N} \) generates \(U_g(yy) \) as a vector space, the second equality follows from [1] and the last equality follows from the fact that \(D^{N+k}y = 0 \) for every \(k \geq 0 \).
2. Multi-matrixes.

The definitions of multi-matrix and multi-vector given here are a particular case of the definition of matrix in [1].

Let \(r \in \mathbb{N} \), for each \(N = (N_1, \ldots, N_r) \in \mathbb{N}_0^r \) let

\[N := \{(i_1, \ldots, i_r) | 0 \leq i_k \leq N_k \}. \]

A multi-vector is a function \(v : N \rightarrow \mathbb{C} \), equivalently, an element of \(\mathbb{C}^N \). A multi-matrix is an element \(A \in \mathbb{C}^{N \times N} \).

For each \(i, j \in \mathbb{N}_0^r \), let \(A_{ij} := A(i, j) \) be the coordinates of the multi-matrix \(A \).

In the vector space of multi-matrixes we have operations of addition, product and transpose.

The addition is defined if the multi-matrixes are of the same size. The product \(AA' \) is defined if \(A \in \mathbb{C}^{N_1 \times N_2}, A' \in \mathbb{C}^{N_2 \times N_3} \).

\[
(A + A')_{ij} = A_{ij} + A'_{ij}, \quad (AA')_{ij} = \sum_{k=0}^{N} A_{ik}A'_{kj}, \quad (A')_{ij} = A_{ji}
\]

The notation \(\sum_{k=0}^{N} \) means \(\sum_{k \in \mathbb{N}} \).

A multi-matrix \(B \in \mathbb{C}^{N \times N} \) is catalectic if \(B_{ij} = b_{i+j} \) for some \(b \in \mathbb{C}^{2N} \). The projective space of catalectic multi-matrixes is

\[
\text{Cat} := \{ (B) \in \mathbb{C}^{N \times N} | B_{ij} = b_{i+j}, \ b \in \mathbb{C}^{2N} \}.
\]

Note that a catalectic multi-matrix \(B \) is symmetric, \(B' = B \).

3. The irreducibility of \(M_y \).

Let \(G \) be a simple Lie group with Lie algebra \(g \), let \(V \) be a finite dimensional representation and let \(y \in V \) be a non-zero vector. Recall the definition of \(M_y \),

\[M_y = \{ x \in \mathbb{P}V \mid q(x) = 0 \ \forall q \in I(G.y) \}. \]

Lemma 5. The variety \(M_y \) may be defined as

\[M_y = \{ (x) \in \mathbb{P}V \mid xx \in Ug(yy) \}. \]

where \(Ug(yy) \) is the smallest \(g \)-module that contains \(yy \in S^2(V) \).

Proof. Consider the vector space generated by the elements of the form \(g.yy \in S^2(V) \),

\[S = \langle g.yy \mid g \in G \rangle \subseteq S^2(V). \]

The vector space \(S \) is the smallest \(G \)-module that contains \(yy \). Using the \(G \)-isomorphism \(\phi : S^2(V^\vee) \rightarrow S^2(V)^{\vee} \) we can identify a quadratic polynomial \(q \in I(G.y) \) with a linear functional \(\phi_q \) such that \(\phi_q(xx) = 2q(x) \). In fact we have the following,

\[S^\vee := \{ \phi \in S^2(V)^{\vee} \mid \phi(s) = 0 \ \forall s \in S \} = \]
\{\phi \in S^2(V) \mid \phi(gy, gy) = 0 \forall g \in G\} \cong \{q \in S^2(V^\vee) \mid q(\gamma y) = 0 \forall \gamma \in G\} = I(G, y)_2.

Given that \(S\) is the smallest \(G\)-module that contains \(yy\), it is equal to the \(g\)-module \(Ug(yy)\), then
\[
M_y = \{x \in PV \mid \phi(x) = 0 \forall \phi \in I(G, y)_2\} = \{x \in PV \mid \phi(xx) = 0 \forall \phi \in I(G, y)_2\} = \{x \in PV \mid xx \in S\} = \{x \in PV \mid xx \in Ug(yy)\}.
\]

\[\]

Theorem 6. Let \(y \in V\) and \(\ell = \dim V\), then there exists a multi-matrix \(A \in \mathbb{C}^{\ell \times N}\) depending on \(y\) such that
\[
M_y \cong \phi_A(Cat) \cap V
\]

where \(\phi_A(B) = ABA'\) and \(V\) is the Veronese variety. \(V = \{(xx') \mid x \in \mathbb{C}^{\ell \times 1}\}\). Note that the space \(\phi_A(Cat) \cap V\) consist of symmetric \(\ell \times \ell\)-matrixes, i.e. \(\phi_A(Cat) \cap V \subseteq PS^2(\mathbb{C}^\ell)\).

Proof. Consider the Veronese map \(v_2\),
\[
v_2 : PV \longrightarrow PS^2(V), \quad (x) \longmapsto (xx).
\]
Its image is the Veronese variety \(V\). From [5, exercise 2.8] we know that \(M_y \cong v_2(M_y)\),
\[
v_2(M_y) = \{(xx) \mid (x) \in M_y\} = \{(xx) \mid xx \in Ug(yy)\} = \{(xx) \mid xx = Q(yy)\}, \quad Q \in Ug.
\]

Fix a basis of \(V\), \([v_1, \ldots, v_N]_I\), then we can write the elements \(D^I y/j!\),
\[
\frac{D^I y}{j!} = \sum_{k=1}^\ell b_{ik} v_k,
\]
then, by \([\ref{bcv}]\) we have
\[
Q(yy) = \sum_{i,j=0}^N b_{ij} D^I y/j! = \ell \sum_{k,l=1}^\ell \left(\sum_{i,j=0}^N b_{ij} a_k a_l \right) v_k v_l.
\]

The element \(Q(yy)\) is of the form \(xx\), where \(x = \sum_{k=1}^\ell \lambda_k v_k\) if and only if,
\[
\left(\sum_{k=1}^\ell \lambda_k v_k \right) = Q(yy) \quad \Longleftrightarrow \sum_{i,j=0}^N b_{ij} a_k a_l = \lambda_k \lambda_l, \quad \forall k, l \Longleftrightarrow \langle ABA' \rangle \in \mathcal{V}.
\]

where \(B \in \mathbb{C}^{N \times N}\) and \(A \in \mathbb{C}^{\ell \times N}\) are such that \(R_{ij} = b_{ij}, A_{ki} = a_{ik}\).

With this theorem at hand, we can now prove the irreducibility of \(M_y\). First we will characterize \(\phi_A(Cat)\) and then its intersection with \(V\). Let’s introduce some notations,
Notation 7. Let $V_1, V_2 \subseteq V$ be two linear subspaces, then we will denote

$$V_1 \oplus V_2 := V_1 \otimes V_2 \bigoplus V_2 \otimes V_1 \subseteq S^2(V).$$

Another notation that we are going to use is the map $\mu : S^2(\mathbb{C}^N) \rightarrow \mathbb{C}^{2N}$. Given two multi-vectors $f, g \in \mathbb{C}^N$, let $\mu(f, g)$ be the multi-vector in \mathbb{C}^{2N} defined by

$$\mu(f, g)_{\alpha} = \sum_{\alpha_1 \alpha_2 = \alpha} f_{\alpha_1} g_{\alpha_2}.$$

We will call μ the polynomial multiplication or the convolution product. This is because an element $f \in \mathbb{C}^N$ may be considered as a polynomial in r variables of degree N; the coefficient of the monomial $\alpha = (i_1, \ldots, i_r) \in N$ is $f(\alpha)$, then for $f, g \in \mathbb{C}^N$, we may consider the product $\mu(f, g) \in \mathbb{C}^{2N}$.

The following Proposition gives an isomorphism between $\phi_A(Cat)$ and $\mathbb{P}(\mu(\text{im} A', \text{im} A'))^\vee$. This isomorphism is the restriction of the following one:

Lemma 8. There exist an isomorphism between the projective space of catalectic multi-matrixes, Cat, and the dual of the image of $\mu : S^2(\mathbb{C}^N) \rightarrow \mathbb{C}^{2N}$

$$\phi_A(Cat) \rightarrow \mathbb{P}(\mu(S^2(\mathbb{C}^N)))^\vee, \quad B \rightarrow \tilde{B}.$$

where $b \in \mathbb{C}^{2N}$ is a multi-vector that defines B and the associated linear functional $\tilde{B} : \mathbb{C}^{2N} \rightarrow \mathbb{C}$ is $\tilde{B}(x) = b'x$.

Even more, $B : S^2(\mathbb{C}^N) \rightarrow \mathbb{C}$ as a symmetric form, $x'By$, is equal to the symmetric form $\tilde{B} \circ \mu : S^2(\mathbb{C}^N) \rightarrow \mathbb{C}$ given by $\tilde{B}(\mu(x, y))$.

Proof. First of all, let’s see that the map μ is surjective. Let x_i be the multi-vector that has a 1 in the i-th place and 0 in the rest. The multi-vectors $[x_i]_{i \in \mathbb{C}^N}$ generate \mathbb{C}^{2N} and also, $x_i \in \text{im}(\mu)$. Then μ is surjective.

The definition of a catalectic multi-matrix B implies that there exist a multi-vector $b \in \mathbb{C}^{2N}$ such that $B_{ij} = b_{i+j}$. It is easy to see that this multi-vector b is unique, suppose b, b' defines the same catalectic multi-matrix, then

$$b_i = B_{ij} = b_i', \quad b_{N+j} = B_{N+j} = b_{N+j}'.$$

Note that the multi-vector b is the concatenation of the 0-row and N-column of B.

Finally, we have defined a linear isomorphism $B \rightarrow \tilde{B}$ and also,

$$x'_i B x_j = B_{ij} = b_{i+j} = \tilde{B}(\mu(x_i, x_j)).$$

\[\square\]

Proposition 9. Let $\mu : S^2(\mathbb{C}^N) \rightarrow \mathbb{C}^{2N}$ be the polynomial multiplication. Let $A \in \mathbb{C}^{N \times N}$, then

$$\phi_A(Cat) \rightarrow \mathbb{P}(\mu(\text{im} A', \text{im} A'))^\vee, \quad ABA' \rightarrow \tilde{B}|_{\mu(\text{im} A', \text{im} A')}.$$

is a linear isomorphism. We will identify multi-matrixes ABA' with functionals on $\mu(\text{im} A', \text{im} A')$.

7
Proof. Let B be a catalectic multi-matrix, $b \in \mathbb{C}^\infty_N$ its associated multi-vector and let $A \in \mathbb{C}^{\times N}$. Let x_i be the multi-vector that has a 1 in the i-th place and a 0 in the rest, then

$$(ABA')_{ij} = x_i^t ABA' x_j = (x_i A')^t B (A' x_j) = \overline{b}(\mu(A' x_i, A' x_j)).$$

Let’s see that the following linear map is well defined and has an inverse,

$$\phi_{A} (\text{Cat}) \to \mathbb{P}(\mu(\text{im}A', \text{im}A)^\vee),$$
$$ABA' \to \overline{b}_{[\mu(\text{im}A', \text{im}A)^\vee]}.$$

Suppose $AB_1A' = AB_2A'$ then

$$\overline{b}_1(\mu(A' x_i, A' x_j)) = (AB_1A')_{ij} = (AB_2A')_{ij} = \overline{b}_2(\mu(A' x_i, A' x_j)).$$

Suppose $\overline{b}_1_{[\mu(\text{im}A', \text{im}A)^\vee]} = \overline{b}_2_{[\mu(\text{im}A', \text{im}A)^\vee]}$ then

$$(AB_1A')_{ij} = \overline{b}_1(\mu(A' x_i, A' x_j)) = \overline{b}_2(\mu(A' x_i, A' x_j)) = (AB_2A')_{ij}.$$

\[\square\]

By now we have the isomorphism $\phi_{A} (\text{Cat}) \cong \mathbb{P}(\mu(\text{im}A', \text{im}A)^\vee)$, but we need to characterize those linear functionals that corresponds to multi-matrices $(ABA') \in \mathcal{V}$. In the next Theorem, we will prove that the following map parameterize them.

Lemma 10. Let $A \in \mathbb{C}^{\times N}$ then the following map is well defined

$$\Psi : \text{Gr}^1(\text{im}A') \to \mathbb{P}(\mu(\text{im}A', \text{im}A)^\vee), \quad W \to \mu(\text{W.im}A', \text{im}A)^\vee = \langle \phi \rangle,$$

where $\text{Gr}^1(\text{im}A')$ is the variety of hyperplanes in $\text{im}A'$ and the symbol \circ is the annihilator of vector spaces $\mu(\text{W.im}A') \subseteq \mu(\text{im}A').$, that is, $\ker \phi = \mu(\text{W.im}A')$.

Proof. Let’s see first that the map

$$\text{Gr}^1(\text{im}A') \to \mathbb{P}(\mu(\text{im}A', \text{im}A)^\vee), \quad W \to \mu(\text{W.im}A', \text{im}A)^\vee = \langle \phi \rangle$$

is well defined. Let $W \in \text{Gr}^1(\text{im}A')$ and consider the following short exact sequence

$$0 \to \ker \mu \cap (\text{W.im}A') \to \text{W.im}A' \to \mu(\text{W.im}A') \to 0.$$

Let $K := \ker \mu \cap (\text{im}A')$ and given that $W \subseteq \text{im}A'$ we have

$$\ker \mu \cap (\text{W.im}A') = \ker \mu \cap (\text{im}A') \cap (\text{im}A'. \text{im}A') = K \cap (\text{W.im}A').$$

Let’s see that in fact $K \subseteq W\text{im}A'$. Let $v \in \text{im}A'$ be such that $(v) \circ W = \text{im}A'$, then $(v,v) \circ W\text{im}A' = \text{im}A'. \text{im}A'$. Given that $v \neq 0$ we have

$$\mu(\overline{v}v) = 0 \implies v,v \notin K \implies (v,v) \cap K = 0 \implies K \subseteq W\text{im}A'.$$

In other words, for any $W \in \text{Gr}^1(\text{im}A')$ we have $K \subseteq W\text{im}A'$ then the following two short exact sequences have the same kernel K,

$$0 \to K \to \text{W.im}A' \xrightarrow{\mu} \mu(\text{W.im}A') \to 0.$$
then \(\mu(W,\text{im}A') \) is a hyperplane of \(\mu(\text{im}A',\text{im}A') \), so the following morphism is well defined,

\[
Gr^1(\text{im}A') \to Gr^1(\mu(\text{im}A',\text{im}A')), \quad W \to \mu(W,\text{im}A').
\]

Identifying \(Gr^1(\mu(\text{im}A',\text{im}A')) \) with \(\mathbb{P}(\mu(\text{im}A',\text{im}A'))^\vee \), for every hyperplane \(W \subseteq \text{im}A' \), there exist a functional \(\phi: \mu(\text{im}A',\text{im}A') \to \mathbb{C} \) such that \(\mu(W,\text{im}A') = \ker \phi \), specifically,

\[
Gr^1(\text{im}A') \to \mathbb{P}(\mu(\text{im}A',\text{im}A'))^\vee, \quad W \to \mu(W,\text{im}A')^\vee \equiv \langle \phi \rangle.
\]

We are now in the position to prove the irreducibility of \(M_y \),

Theorem 11. Let \(A \in \mathbb{C}^{t\times N} \) then \(\phi_A(Cat) \cap \mathcal{V} \) is irreducible. As a corollary, given \(y \in \mathcal{V} \) there exist a multi-matrix \(A \) such that \(M_y \equiv \phi_A(Cat) \cap \mathcal{V} \) (see [5]), then the variety \(M_y \) is irreducible.

Proof. Let’s see first that the image of \(\Psi \) corresponds to multi-matrixes \(ABA' \in \mathcal{V} \) (for the definition of \(\Psi \) see [10]).

From [5] we know that the multi-matrix \(ABA' \) has associated a functional \(\hat{b}^\dagger|_{(\mu(\text{im}A',\text{im}A'))} \). Even more \(\text{rk}(ABA') \leq 1 \) if and only if there exist a codimension one hyperplane \(W \subseteq \text{im}A' \) such that \(x^tABA'y = 0 \) for all \(A'y \in W \) and for all \(A'x \in \text{im}A' \). This is equivalent to \(\hat{b}^\dagger(\mu(A'x,A'y)) = 0 \) for all \(A'y \in W \) and for all \(A'x \in \text{im}A' \), i.e.

\[
\text{rk}(ABA') \leq 1 \iff \exists W \in Gr^1(\text{im}A') \mid \mu(W,\text{im}A') \subseteq \ker(\hat{b}^\dagger|_{(\mu(\text{im}A',\text{im}A'))}),
\]

where \(Gr^1(\text{im}A') \) is the variety of hyperplanes in \(\text{im}A' \).

We know from [10] that \(\mu(W,\text{im}A') \) is an hyperplane of \(\mu(\text{im}A',\text{im}A') \), and then the kernel of \(\hat{b}^\dagger|_{(\mu(\text{im}A',\text{im}A'))} \) must be equal to \(\mu(W,\text{im}A') \). In other words, the image of \(\Psi \) corresponds to those functional whose kernel are equal to \(\mu(W,\text{im}A') \) for some \(W \in Gr^1(\text{im}A') \), equivalently, the image of \(\Psi \) corresponds to multi-matrixes \(ABA' \in \mathcal{V} \).

Summing up, we have the following isomorphisms that implies the irreducibility

\[
\phi_A(Cat) \cap \mathcal{V} = \{ (ABA') \mid \text{rk}(ABA') \leq 1 \} = \{ (ABA') \mid \exists W \in Gr^1(\text{im}A'), \mu(W,\text{im}A') \subseteq \ker(\hat{b}^\dagger) \equiv \{ (ABA') \mid \exists W \in Gr^1(\text{im}A'), \mu(W,\text{im}A') = \ker(\hat{b}^\dagger|_{(\mu(\text{im}A',\text{im}A'))}) \} = \{ \mu(W,\text{im}A')^\vee \in \mathbb{P}(\mu(\text{im}A',\text{im}A'))^\vee \mid W \in Gr^1(\text{im}A') \}.
\]

Let’s characterize the last variety. Consider an inner product in \(\text{im}A' \) and for every \(W \in Gr^1(\text{im}A') \) let \((v) = W^\perp \). From the proof of [10] it is easy to see that \(\mu(v,v) \cap \mu(W,\text{im}A') = \mu(\text{im}A',\text{im}A') \), then

\[
\{ \mu(W,\text{im}A')^\vee \mid W \in Gr^1(\text{im}A') \} \equiv \{ (\mu(v,v)) \mid v \in \text{im}A' \} \subseteq \mathbb{P}(\mu(\text{im}A',\text{im}A')).
\]
4. Applications.

Corollary 12. Let V be a representation of a simple Lie algebra \mathfrak{g}. Let G be a simply connected Lie group with Lie algebra \mathfrak{g} and let $X \subseteq \mathbb{P}V$ be a variety stable under G with a dense orbit $G.y$. Then M_y is the intersection of quadrics that contains X. M_y is an irreducible variety and $I(X)_2 = I(M_y)_2$.

Proof. Follows from the fact that the smallest \mathfrak{g}-module that contains $yy \in S^2(V)$ is the same as the smallest G-module that contains $yy \in S^2(V)$, that is, $U\mathfrak{g}(yy) = \langle G.y \rangle$. Then

$I(X)_2 = \{q \mid q(x) = 0, x \in X\} = \{q \mid q(g.y) = 0, g \in G\} =$

$\{q \mid q((G.yy)) = 0\} = \{q \mid q(U\mathfrak{g}(yy)) = 0\} = U\mathfrak{g}(yy)^\circ = I(M_y)_2$.

Recall that M_y is generated in degree two. □

Remark 13. In [2, 1.3.29] there is a sufficient condition for a variety to have a dense orbit. It says that when the action of G in V has a finite number of orbits, any irreducible G-stable variety $X \subseteq \mathbb{P}V$ is the closure of an orbit $G.y$.

In the next Theorem we will give another result that guarantees that the base-locus of quadrics containing a variety is irreducible. The hypothesis is over the module V independently of the varieties. But first we will need a Lemma:

Lemma 14. Let W be a \mathfrak{g}-module and let $w = w_1 + \ldots + w_k \in W$, with $w_i \in W_i$, $w_i \neq 0$ and W_i a simple submodule of W ($1 \leq i \leq k$). Suppose that $W_i \nleq W_j$ for $i \neq j$ then

$U\mathfrak{g}w = W_1 \oplus \ldots \oplus W_k$

Proof. Let p_i be a maximal weight vector of W_i of weight ω_i ($1 \leq i \leq k$). Given that $W_i \nleq W_j$ the weights $\omega_i \in \mathfrak{h}^\circ$ are all different ([7, p.58]).

Case one: Assume that $w = p_1 + \ldots + p_k$ is a sum of maximal weight vectors. Given that they are all different, there exist $P \in U\mathfrak{g}$ such that $P w = P p_i \neq 0$ for some $1 \leq i \leq k$. On the other hand, given that $P p_i \neq 0$, it generates the whole submodule W_i and then there exist $Q \in U\mathfrak{g}$ such that $Q P w = p_i$. Finally we proceed by induction for $w - p_i$.

Case two: If $w = w_1 + \ldots + w_k$ then there exist $P \in U\mathfrak{g}$ such that $P w$ is a sum of maximal weight vectors. Then apply case one. □

Theorem 15. Let V be a G-module such that $S^2(V) = W_1 \oplus \ldots \oplus W_k$, $W_i \nleq W_j$. Let $X \subseteq \mathbb{P}V$ be an irreducible G-stable variety. Then there exists a generic $y \in X$ such that

$M_y = \langle \langle x \rangle \in \mathbb{P}V \mid q(x) = 0 \forall q \in I(X)_2 \rangle$.

In other words, the intersection of the quadrics that contains X is an irreducible variety.

Proof. Let $C \subseteq V$ be the irreducible cone associated to $X \subseteq \mathbb{P}V$. Let S_X be the smallest submodule of $S^2(V)$ that contains $\{cc \mid c \in C\}$. Given $W_i \subseteq S_X$, let $\pi_i : S^2(V) \to W_i$ be the projection to W_i and

$H_i := \{\pi_i = 0\} = \ker \pi_i$.

10
Note that \(S_X \not\subsetneq H_i \) and given that \(H_i \) is a module, we have \(\{cc \mid c \in C\} \not\subsetneq H_i \).

Let \(H := \bigcup_i H_i \), then \(\{cc \mid c \in C\} \setminus H \) is a Zariski dense subset of \(\{cc \mid c \in C\} \). Then there exist a generic \(yy \not\in H \) such that \(y \in C \).

\[
yy = \sum a_iw_i, \quad a_i = \pi_i(yy) \neq 0 \implies U(y) = S_X.
\]

The last implication follows from [4]. Finally \(I(X)_2 = S_X^c = U(y) = I(M_{j_2}) \).

Remark 16. With this Theorem we can answer the question of the exercise [4, 15.44 Hard Exercise] (see the Introduction of this paper). Using the fact that \(S^2(\wedge^4 V) \) has a decomposition into non-isomorphic simple submodules,

\[
S^2(\wedge^4 V) = \bigoplus_{i \geq 0} \Theta_{2i},
\]

and that the \(p \)-restricted chordal variety \(C^p(Gr^4(V)) \) is irreducible we can say that the intersection of all the quadrics that contains \(C^p(Gr^4(V)) \) is an irreducible variety.

Corollary 17. Let \(V \) be a \(G \)-module such that \(S^2(V) = W_1 \oplus \ldots \oplus W_k, W_i \not\cong W_j \). Let \(X \subseteq PV \) be a \(G \)-stable variety defined by quadrics. Then there exists \(x_1, \ldots, x_r \in X \) such that the irreducible components of \(X \) are of the form \(X = M_{j_1} \cup \ldots \cup M_{j_r} \).

Proof. Let \(X = X_1 \cup \ldots \cup X_s \) be the decomposition of \(X \) into irreducible components. Let \(x_1 \in X_1 \) be a generic element and consider the irreducible variety \(M_{j_1} \) defined by \(I(X)_1 \), then

\[
I(M_{j_1})_2 = I(X_1)_2 \supseteq I(X)_2.
\]

Given that \(M_{j_1} \) and \(X \) are defined by quadrics, \(M_{j_1} \subseteq X \), also, \(X_1 \subseteq M_{j_1} \). Being \(M_{j_1} \) irreducible, we have \(M_{j_1} = X_1 \). Repeat this for the remaining components \(X_i, 2 \leq i \leq s \).

Corollary 18. Let \(V \) be a \(G \)-module such that \(S^2(V^c) = W_1 \oplus \ldots \oplus W_k, W_i \not\cong W_j \). Let \(X \subseteq PV \) be a \(G \)-stable variety defined by

\[
I(X)_2 = W_2 \oplus \ldots \oplus W_k
\]

then \(X \) is irreducible. Even more, if the ideal in degree two is

\[
I(X)_2 = W_{s+1} \oplus \ldots \oplus W_k
\]

then \(X \) has at most \(\varphi(s) \) irreducible components (it could be irreducible like in [4], or even empty).

The set function \(\varphi(s) \) count the maximum number of subsets \(\{S_1, \ldots, S_{\varphi(s)}\} \) of a set of \(s \) elements such that \(S_i \not\subsetneq S_j \). We have \(\varphi(1) = 1, \varphi(2) = 2, \varphi(3) = 3, \varphi(4) = 6 \).

Proof. First note that \(S^2(V^c) \) has all the simple submodules non-isomorphic if and only if \(S^2(V) \) has all the simple submodules non-isomorphic. Assume now that \(I(X)_2 = W_2 \oplus \ldots \oplus W_k \) then the ideal in degree two of an irreducible component \(M_{j_1} \) contains \(I(X)_2 \).

\[
I(X)_2 \subseteq I(M_{j_1})_2.
\]

then the simple module \(W_1 \) is in \(I(M_{j_1})_2 \) or not. In both cases \(X \) is irreducible.

Assume now that \(I(X)_2 = W_{s+1} \oplus \ldots \oplus W_k \). Let \(X = M_{j_1} \cup \ldots \cup M_{j_s} \) be the irreducible decomposition of \(X \). The simple submodules of \(I(M_{j_1})_2 \) that are not contained in \(I(X)_2 \) determine a subset \(S_i \subseteq \{1, \ldots, s\} \). Note that \(M_{j_i} \not\subseteq M_{j_j} \) if and only if \(S_i \not\subseteq S_j \).
Acknowledgments.

I would like to thank my advisor, Fernando Cukierman, for the very useful discussions, ideas and suggestions. All the ideas presented here were given by him. This work was supported by CONICET, Argentina.

References

References

[1] N. Bourbaki, *Éléments de mathématique. Algèbre. Chapitres 1 à 3*, Hermann, Paris, 1970.
[2] N. Chriss and V. Ginzburg, *Representation theory and complex geometry*, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2010. Reprint of the 1997 edition.
[3] W. Fulton, *Young tableaux*, vol. 35 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry.
[4] W. Fulton and J. Harris, *Representation theory*, vol. 129 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
[5] J. Harris, *Algebraic geometry*, vol. 133 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1992. A first course.
[6] D. Mumford, *Varieties defined by quadratic equations*, in Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29–100.
[7] J.-P. Serre, *Complex semisimple Lie algebras*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. Translated from the French by G. A. Jones, Reprint of the 1987 edition.