The True Costs of Cesarean Sections for Patients in Rural Rwanda: Accounting for Post-Discharge Expenses in Estimated Health Expenditures

Anne Niyigena (niyianne@gmail.com)
Partners In Health

Barnabas Alayande
Harvard Medical School

Laban Bikorimana
Partners In Health

Elizabeth Miranda
Harvard Medical School

Niclas Rudolfson
Lund University: Lunds Universitet

Deogratias Ndagijimana
Partners In Health

Fredrick Kateera
Partners In Health

Robert Riviello
Brigham and Women's Hospital

Bethany Hedt-Gauthier
Harvard Medical School Department of Global Health and Social Medicine

Research

Keywords: Cost of post-operative care, healthcare cost, follow-up care, catastrophic health expenditure, cesarean, c-section, rural, health insurance, poverty, healthcare access.

Posted Date: October 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-944592/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Introduction: While it is recognized that there are costs associated with postoperative patient follow-up, risk assessments of catastrophic health expenditures (CHEs) due to surgery in sub-Saharan Africa rarely include expenses after discharge. We describe patient-level costs for cesarean section (c-section) and follow-up care up to postoperative day (POD) 30 and evaluate the contribution of follow-up to CHEs in rural Rwanda.

Methods: We interviewed women who delivered via c-section at Kirehe District Hospital between September 2019 and February 2020. Expenditure details were captured on an adapted surgical indicator financial survey tool and extracted from the hospital billing system. CHE was defined as health expenditure of $\geq 10\%$ of annual household expenditure. We report the cost of c-section up to 30 days after discharge, the rate of CHE among c-section patients stratified by in-hospital costs and post-discharge follow-up costs, and the main contributors to c-section follow-up costs.

Results: Of the 479 participants in this study, 90\% were classified as impoverished before surgery and an additional 6.4\% were impoverished by the c-section. The median out-of-pocket costs up to POD30 was US$122.16 (IQR: $102.94, $148.11); 63\% of these expenditures were attributed to post-discharge expenses or lost opportunity costs (US$77.50; IQR: $67.70, $95.60). To afford c-section care, 64.4\% borrowed money and 18.4\% sold possessions. The CHE rate was 27\% when only considering direct and indirect costs up to the time of discharge and 77\% when including the reported expenses up to POD30. Transportation and lost household wages were the largest contributors to post-discharge costs.

Conclusion: Costs associated with surgical follow-up are often neglected in financial risk calculations but contribute significantly to the risk of CHE in rural Rwanda. Insurance coverage for direct medical costs is insufficient to protect against CHE. Innovative follow-up solutions to reduce costs of patient transport and compensate for household lost wages need to be considered.

Introduction

Access to emergency obstetric care, including cesarean sections (c-sections), is an essential part of a functional health system [1]. However, inequalities in c-section access have been reported across and within countries [2,3]. Financial barriers are the most cited driver of c-section inaccessibility [4], with poor access most affecting the economically deprived [5–7]. Limited access to c-sections is associated with higher risks of poor outcomes for mothers and their babies [4,8].

C-sections are considered cost-effective interventions, costing US$251 to US$3,462 per disability adjusted life year saved [9]. However, women who deliver via c-section are at risk of financial hardship. Studies in sub-Saharan Africa have estimated the direct costs of c-section to be $144-$426 [10–12], a considerable amount compared to the average regional gross domestic product (GDP) per capita of $4,195 in 2019[13]. Even when direct costs are heavily subsidized, indirect costs put a woman and her family in financial risks [14]. Studies have shown that surgery in general [15,16], and c-sections specifically [17,18], can be
financially catastrophic for a patient's family. However, these studies fail to include the extended costs for surgery, and potentially underestimating the true risk of catastrophic health expenditures (CHEs) due to surgery.

In Rwanda, the location of this study, 28% of patients undergoing peritonitis surgery suffered CHEs as a result of the surgery [19]. While these studies include direct and indirect medical costs up to the time of discharge, we are unaware of any study of surgery in Africa that considers costs associated with postoperative follow-up after discharge. In this paper, we describe the financial costs of c-section care for Rwandan women delivering via c-section at a rural district hospital, including direct and indirect costs of all care received up to postoperative day (POD 30), and estimate the full risk of CHE for these women.

Methods

Study setting

This study was nested in a prospective cohort study conducted at Kirehe District Hospital, which aimed to evaluate the feasibility and acceptability of a telemedicine intervention for the diagnosis of post-hospital discharge surgical site infections by community health workers. Kirehe District Hospital is located in the Eastern Province of Rwanda and is managed by Rwanda’s Ministry of Health with technical support from Partners In Health/Inshuti Mu Buzima (PIH/IMB), a Boston-based non-governmental organization that provides technical support to the Ministry of Health.

In Rwanda, c-sections are typically performed at district hospitals by general practitioners (GPs) [20], and at Kirehe District Hospital, c-section is the most commonly performed surgery. After delivery, women are monitored in a post-c-section ward and usually discharged on POD 3. In Rwanda, there are no standardized guidelines for c-section follow-up; however, at Kirehe District Hospital, c-section patients are asked to visit the local peripheral health centers three days post-discharge for wound inspection and dressing change and to continue follow-up until deemed unnecessary by the health center nurse.

Approximately 83% of the Rwandan population has health insurance and 96.1% of insured rural residents are enrolled in the community-based health insurance (CBHI) program [21]. Rwanda's CBHI is based on a 4-tier wealth system called *Ubudehe*, with the bottom tier including the poorest and the upper tier including the wealthiest Rwandans. For those in *Ubudehe* 1, CBHI premium is fully subsidized by the government; individuals in *Ubudehe* 2 and 3 pay CBHI premiums of approximately US$3 per person each year and those in *Ubudehe* 4 pay a premium of US$7 per person per year[22]. Individuals in *Ubudehe* 1 pay no copayment at point of care while those in *Ubudehe* 2-4 incur a 10% copayment for direct medical services.

Data collection

Enrollment data collection: Women who delivered via c-section at Kirehe District Hospital between September 23rd, 2019 and February 22nd, 2020 were enrolled after c-section delivery and prior to
discharge. All participants provided informed consent prior to data collection. Data collectors administered sociodemographic and clinical characteristics questionnaires before patients were discharged from the hospital; data were directly entered into REDCap data management software [23]. Patients also responded to a financial survey, described below. Data on healthcare expenditures was extracted from OpenMRS, an online database tracking details on patients’ medical care and expenses.

Follow-up data collection: At enrollment, respondents provided cell phone numbers (their own, a relative’s or a neighbor’s) on which they could be contacted. On POD 30 (± 1 day), data collectors administered a phone-based follow-up interview to assess post-discharge follow-up activities. The costs of post-discharge c-section follow-up were assessed in terms of expenses for medical care, expenses for transport, and lost wages due to seeking follow up care at the health centers. Study participants that could not be reached by the phone number they provided at discharge were contacted in person by a local community health worker and a telephone survey was administered on the community health worker’s telephone. Three attempts on three different days were made in an effort to maximize the response rate; individuals not contacted after three attempts were considered lost-to-follow-up. The POD30 response rate was 84%.

Financial Survey: The financial survey included questions adapted from the Program in Global Surgery and Social Change National Surgical Obstetric Anesthesia Plan surgical indicator questionnaire [24]. We added the following variables to the core questionnaire: estimates of monthly household income, self-reported routine monthly household expenditure, whether the patient had to borrow money or sell possessions to pay for the current hospitalization, and household monthly consumption as a sum of expenditures for food and drink, transportation, livestock, housing, transportation fees, school fees, and healthcare in the past months. Non-monetary income such as agricultural harvest was converted into Rwandan Franc (RWF) using the price of local goods at the time of data collection. Lost wages were estimated using daily wages for the occupation of the patients and caregiver at the time, and reported in RWF.

Definition of key terms: We stratified expenses into two main categories: in-hospital costs and post-discharge follow-up costs. The in-hospital costs include expenditures from when a woman left her home to seek care for delivery until the time of discharge. In-hospital costs were further grouped into direct medical, direct non-medical, and indirect costs. Direct medical costs included payments for medical supplies, medications, laboratory exams, surgical procedure, imaging, consultation, and hospital bed. Direct non-medical costs included expenses of a caregiver during hospitalization, food and transport from home to hospital. Indirect costs included household lost wages due to hospitalization. Post-discharge follow-up costs included direct medical cost paid at the health center in addition to indirect follow-up costs. The direct non-medical follow-up costs included transport from hospital to home for the patient and caregiver, transportation to the health center for patient and caregiver; while indirect follow up costs included lost wages due to delayed return to work and lost wages of both the patient seeking follow-up care and that of the accompanying caregiver. We chose to include the cost of transport from
the hospital to home after the c-section in the follow-up care costs as these expenses are generally not factored in CHE studies and allows for direct comparability of our results.

Poverty was defined using the World Bank definitions, defined as a daily expenditure below $1.90 per person per day [25]. Catastrophic health expenditure (CHE) has been variously defined as out-of-pocket healthcare expenses that exceeds 10% of total annual household expenditure or income [26,27], or as spending greater than 40% of the annual household income, excluding subsistence needs, on health care[28]. For this study, we defined CHE as healthcare spending of greater than 10% of annual household consumption to align with the definition of the United Nations’ Sustainable Development Goals 3.8.2 [29]. The annual household consumption was defined as a sum of annual expenditures on food and drink, transportation, livestock, housing, transportation fees, school fees, healthcare and other expenses.

Statistical analysis

We restricted our analysis to patients who responded to the financial questionnaires at both time points. We also restricted our analyses to individuals who sought follow-up care at the health center at least once during the first 30 postoperative days so we could estimate the costs associated to follow-up care. All tradeable financial expenses, such as in-hospital expenses and transport fees, were converted into US dollars (US$) using the nominal exchange rate at study start date (October, 2019), and US$1 equated RWF916.17 [30]. All non-tradeable expenses, including salaries and lost wages were converted to US$ using the 2019 Rwanda purchasing power parity (PPP) conversion factor for personal consumption of 317.18 [31].

We describe our sample using frequency and percentages for categorical variables, mean and standard deviation (SD) for normally distributed continuous variables, and median and interquartile range (IQR) for continuous variables with non-normal distributions. We summarize the financial cost of c-section care stratified by Rwanda’s four-tier wealth classification by in-hospital and follow-up care components, using median and interquartile range. We summarize each of the main cost contributors as a percentage of the overall costs. We also calculated incidence of CHE for all expense categories and reported the frequencies and percents.

We determined the daily expenditure per person in the household as a sum of individual expenses of the household divided by the household size, and report the proportion of participants who lived below the poverty line, before c-section delivery. We then calculated the total expenditure remaining after paying c-section cost, and estimated the proportion of women whose spending is below poverty line. The percentage of people who were pushed into extreme poverty by c-section delivery reflects people whose annual total expenditure were above poverty line at baseline, but who fell below poverty after paying for the costs of c-section care up through POD30.

Results
In total, 479 patients were included in this study, of whom 68.7% were aged less than 30 years, and the majority (94.8%) were insured by CBHI (Table 1). Approximately 10% of patients belonged to the lowest Ubudehe category, 84.7% were farmers and the median annual household income was US$532.8 (IQR: $232.8, $859.1). The median travel time from home to health center was 30 minutes (IQR: 15, 60 minutes) and from health center to hospital was 40 minutes (IQR: 5, 60 minutes). For the 433 (81%) patients who first sought care at the health center prior to going to Kirehe District Hospital, 61.6% were transported to the hospital in ambulance and 26.9% walked to the hospital.

The median household size was 4 people (IQR: 3, 6) (Table 1). The annual household expenditure was US$504.8 (IQR: $331.8, $751.8), translating to a daily expenditure of US$0.3 (IQR: $0.2, $0.5) per person. An overwhelming majority of women (90%) were from households living below the international extreme poverty line. Over half of participants (64%) borrowed money and 18.4% sold possessions to cover c-section related costs.
Table 1
Characteristics of c-section patients at Kirehe District Hospital (N=479)

Variable	Frequency	Percent
	N=479	(%)
SOCIO DEMOGRAPHIC CHARACTERISTICS		
Age		
<18	17	3.6
18-30	312	65.1
31-40	131	27.3
>40	19	4.0
Level of education		
Less than completed primary school	48	10.0
Completed primary school	314	65.6
Secondary school or more	117	24.4
Occupation		
Farmer	406	84.7
Employed	54	11.3
Unemployed	19	4.0
Ubudehe* categories (N=477)		
Ubudehe 1	44	9.2
Ubudehe 2	258	54.1
Ubudehe 3 & 4	175	36.7
Insurance Type		
Community Based Health Insurance or *Mutuelle*	454	94.8
Private	25	5.2
CLINICAL CHARACTERISTICS		
Parity		
Primiparous (1)	167	34.9
Multiparous (2-5)	277	57.8
Grand-multiparous (>5)	35	7.3
Variable	Frequency	Percent
---	-----------	---------
Antenatal Care Visits (N=478)		
1 to 4	473	98.9
Greater than 4	5	1.1
Patients with postoperative complications¶	10	2.1
Number of post discharge follow up visits Median (IQR)	2	(1-3)
ACCESS TO HOSPITAL AND HEALTH CENTER		
Mode of transport (health center to hospital)		
Ambulance	295	61.6
Walked	129	26.9
Public Transport	15	3.1
Private transport	2	0.4
Travel times		
Home to health center (min) Median (IQR)(N=435)	30	(15,60)
Health center to hospital (min) Median (IQR)(N=434)	40	(5,60)
HOUSEHOLD FINANCIAL CHARACTERISTICS		
Household size, Median (IQR)	4	(3,6)
Self-reported annual income, (USD), Median (IQR)	1510.4	(1028.0,2435.5)
Self-reported annual household expenditure, (USD)§, Median (IQR) N=476	504.8	(331.8,751.8)
Daily expenditure/person, (USD)§ median (IQR)	0.3	(0.2-0.5)
Living below international poverty line¶	431	90.0
Borrowed money to afford c-section expenses N=478	308	64.4
Sold possessions to afford c-section expenses (N=474)	87	18.4

*4-tier wealth system the bottom tier represents the least privileged and the upper tier is for the financially better off.

¶ Post-operative complications include surgical site infections, post-partum hemorrhage... etc
†Patients who presented directly to the district hospital without going through a health centre
§Converted to USD using nominal exchange rate at study start date (October, 2019) 1 USD = 916.17 RWF
international extreme poverty line= 1.9USD
Table 2 summarizes the out-of-pocket costs of c-section by expense categories.
Up to the time of discharge, the median direct medical costs of cesarean section was US$8.8 (IQR: $8.0, $9.7) and indirect costs was USD$15.0 (IQR: $10.1, $21.7). The median total costs up to the time of hospital discharge was US$40 (IQR: $30.4, $55.7). These costs ranged from US$23.7 (IQR: $15.3, $38.3) for patients in Ubudehe 1, US$37.9 (IQR: $29.9, $54.3) for patients in Ubudehe 2, and US$46.0 (IQR: $35.9, $60.5) for patients in Ubudehe 3 and 4.

For post-discharge costs, the median number of follow-up visits at the health center was 2 (IQR: 1, 3) and the cost of medical bills was US$0.5 (IQR: $0.3, $0.7). The median post-discharge costs of c-section was US$71.4 (IQR: $60.7, $81.8) for patients in Ubudehe 1, US$77.5 (IQR: $67.7, $95.6) for patients in Ubudehe 2, US$79.7 (IQR: $71.1, $97.8) for patients in Ubudehe 3 and 4.

The total cost of c-section up to POD 30 was US$100.5 (IQR: $87.2, $118.4) for Ubudehe 1, US$119.4 (IQR: $102.6, $149.2) for Ubudehe 2, and US$134.1 (IQR: $113, $161.3) for Ubudehe 3 and 4. The cost of post-discharge expenses contributed 64.3% of these costs.

On average, 55.3% of the overall cost was taken up for post discharge lost wages, 15.8% for post discharge follow up at the health center, 13.3% for caregiving and 11.0% for transportation.

Expenses are converted to USD using nominal exchange rate at study start date (October, 2019) 1 USD = 916.17 RWF

When including only the costs up to the time of discharge, the cost of c-section was catastrophic for 3.0% of patients if only accounting for direct medical expenses and 27.0% when non-medical expenses were included (Figure 1). Patients in Ubudehe 1 had the lowest rate of CHE up to discharge (13.0%) compared to the rate of 29.0% for patients in Ubudehe 2 and Ubudehe 3 and 4. When considering all costs through POD 30, the overall cost of c-section was catastrophic for 77.0% of patients. An additional 6.4% of patients were pushed into extreme poverty by the cost of the c-section.

Discussion

To our knowledge, this is the first study in a low- income country setting to estimate the comprehensive patient-level cost of c-section while including the cost of follow-up. We reported the direct medical cost of c-section of US$8.8, the cost of post-discharge follow-up of US$77.5 and the overall patient-level cost of c-section of US$122.2 during 30 days after-delivery. Over a third of women experienced financial catastrophe due to the costs associated with post-discharge care alone, and when combined with costs incurred prior to discharge, c-sections were financially catastrophic for over three-quarters of women. The vast majority of women who delivered at Kirehe District Hospital were poor prior to surgery and the cost of cesarean section was further impoverishing to 6.4% of women.

The direct cost of c-section found in this study is significantly lower compared to the costs of c-section in Mali (US$152.0), Nigeria (US$246.0), and the Democratic Republic of Congo (US$79.7) [10,18,32].The
substantially lower out-of-pocket payments for c-sections in Rwanda most likely reflects the cost cushion provided by Rwanda’s robust health insurance system. In our study, nearly all c-section patients were insured through CBHI. Although CBHI may offset the direct medical costs of c-sections, previously estimated in Rwanda as US$339.0 from the health facility perspective [11] c-section patients paid an additional US$31.4 in non-medical costs while still in the hospital. Moreover, the direct and indirect cost of c-section up to discharge was catastrophic for 27.0% of women, which is comparable to previous report of CHE among peritonitis patients in Rwanda [19]; but lower compared to the 60.0% incidence of CHE from c-section reported in India [33].

Surprisingly, the full cost of cesarean section rose to US$122.2 and was catastrophic for 77% of women when follow-up costs were considered. The tripling of out of pocket expenditures by follow-up costs implies that the full financial picture of c-section care can only be truly understood when post-discharge costs are examined. Most costs covered by health insurance globally are expenditures linked to direct medical services [34–36], but this misses the substantial follow-up costs. For example, despite full coverage of direct medical cost for people in Ubudehe 1, the incidence of CHE in this group within 30 days post-cesarean was 74.0%. Interestingly, women in Ubudehe 2 had the highest risk of CHE during their hospital stay, reflecting their increased vulnerability of their low incomes combined with lower coverage of expenses by CBHI. This corroborates the argument that health insurance that covers direct medical costs, though essential, is not sufficient to financially protect poor patients [35,36].

While the majority of women in this study were already poor, c-section delivery exacerbated financial hardship of poor women and threatens their living standards, as reflected by the fact that more than two-thirds of women sold assets or borrowed money to afford c-section surgery and hospitalization. The sales of property in order to afford obstetric surgery care in rural Rwanda was found to be higher than in Ethiopia (4.4%) and most other LMICs [37].

Major contributors to overall c-section costs included post discharge lost wages (55.3%), costs of post discharge follow up at health center (15.8%), costs of caregiving (13.3%), and transportation costs (11%). Similarly, major cost drivers of post-discharge expenditure included lost wages (84.7%) and transportation (11.5%). Follow up interventions and models that reduce lost wages and eliminate transportation costs may contribute to a reduction in CHE [16,38,39]. Examples of innovative holistic interventions including transportation interventions, like the Uganda Reproductive Health Voucher Project, can be adapted to the local context [40,41]. We are also exploring innovative mHealth strategies and contextualized community-based follow-up strategies that allow for home-based care to reduce the cost of follow-up as well as the physical burden of traveling [42].

Addressing lost wages will be challenging. While paid maternity leave for women employed in formal work sectors is a national policy in Rwanda [43], the majority of patients in rural Rwanda are farmers and do not have access to these job-protected maternity leave packages. C-sections have been found to impose further health costs if mothers return to work prior to recovery [44], and further studies are needed
to explore the appropriate time to resume work after c-cesarean section, with consideration to mitigating lost wages in both the formal work sectors and for farmers.

Our findings should be interpreted in light of some limitations. Firstly, the calculations of household expenditure depended on patient memory and based on predetermined expense categories. Patients may have failed to accurately report expenditures or missed expenses that did not align with a category. Secondly, estimates of the cost of post-discharge follow up were based on reports from patients who decided to seek care on their own, because currently, there is no protocol for post-c-section follow-up. Thus, our findings do not fully reflect the true cost of c-section follow, if such follow-up protocols existed.

Conclusion

When full costs are considered, c-section care confers significant risk of financial catastrophe on already impoverished households in rural Rwanda, despite the presence of a robust and widespread CBHI policy. Indirect non-medical cost and the holistic cost of follow up for c-section from a patient perspective exceeds that of receiving initial medical care, and must be considered in development of policy and relevant intervention. Modelling of the financial implication of various follow up strategies should be encouraged to determine the most efficient, safe, and financially protective models of cost subsidy.

Ethics statement

This study had ethical approval from the Rwandan National Ethics Committee (Kigali, Rwanda, No.326/RNEC/2019) and Harvard Medical School (IRB18-1033). Adult patients were read information about the study, and voluntarily signed the consent prior to enrollment. We obtained voluntary assent from individuals less than 18 years, with signed consent from their parents or guardians.

Declarations

Ethics statement

This study had ethical approval from the Rwandan National Ethics Committee (Kigali, Rwanda, No.326/RNEC/2019) and Harvard Medical School (IRB18-1033). Adult patients were read information about the study, and voluntarily signed the consent prior to enrollment. We obtained voluntary assent from individuals less than 18 years, with signed consent from their parents or guardians.

Consent for publication

We do not disclose any personal information of our participants. Thus, consent for publication is not applicable.

Data availability.

Data is available upon a reasonable request, by emailing niyianne@gmail.com
Competing interests

The authors declare no competing interests associated with this study.

Funding

The parent study was funded by NIH grant No: R21TW011229.

Authors Contribution

AN, BA and BHG conceived this study and drafted the manuscript. AN, LB, DN and EM led the implementation of the parent study and data collection. AN, NR and BA performed data analysis. LB, EM, NR, DN, FK, RR and BHG contributed to the interpretation of findings. All authors revised the manuscript and approved the final draft for submission to publication.

Acknowledgements

We would also like to acknowledge the Rwanda's Ministry of Health, the leadership of Kirehe District Hospital, and the clinical team in the postoperative ward for allowing the implementation of the parent study. In addition to coauthors contribution, this paper received input from Wendy Williams, Deena El-Gabri and Belain Eyob, as part of a writing group.

References

1. Burkholder TW, Bergquist HB, Wallis LA. Governing access to emergency care in Africa. African J. Emerg. Med. 2020.

2. Boatin AA, Schlotheuber A, Betran AP, Moller AB, Barros AJD, Boerma T, et al. Within country inequalities in caesarean section rates: Observational study of 72 low and middle income countries. BMJ. 2018;360.

3. Harrison MS, Goldenberg RL. Cesarean section in sub-Saharan Africa. Matern Heal Neonatol Perinatol [Internet]. 2016;2:6. Available from: https://doi.org/10.1186/s40748-016-0033-x

4. Irani M, Deering S. Challenges affecting access to cesarean delivery and strategies to overcome them in low-income countries. Int J Gynaecol Obstet Off organ Int Fed Gynaecol Obstet. United States; 2015;131:30–4.

5. Ushie BA, Udoh EE, Ajayi Al. Examining inequalities in access to delivery by caesarean section in Nigeria. PLoS One [Internet]. Public Library of Science; 2019;14:e0221778–e0221778. Available from: https://pubmed.ncbi.nlm.nih.gov/31465505

6. Ajayi Al. Inequalities in access to birth by caesarean section in the context of user fee exemption for maternal health services in southwest and north central Nigeria. Int Health [Internet]. 2020; Available from: https://doi.org/10.1093/inthealth/ihz118
7. Olukade T, Yaya S, Bishwajit G, Uthman OA. Socio-demographic determinants of post-caesarean neonatal mortality in Nigeria. J Obstet Gynaecol J Inst Obstet Gynaecol. England; 2020;40:342–8.

8. Volpe FM. Correlation of Cesarean rates to maternal and infant mortality rates: An ecologic study of official international data. Rev Panam Salud Publica/Pan Am J Public Heal. 2011;29:303–8.

9. Alkire BC, Shrim MG, Dare AJ, Vincent JR, Meara JG. Global economic consequences of selected surgical diseases: A modelling study. Lancet Glob Heal. 2015;3.

10. Deboutte D, O’Dempsey T, Mann G, Faragher B. Cost-effectiveness of caesarean sections in a post-conflict environment: A case study of Bunia, Democratic Republic of the Congo. Disasters. 2013;37.

11. Odhiambo J, Ruhumuriza J, Nkurunziza T, Rivieiro R, Shrim M, Lin Y, et al. Health Facility Cost of Cesarean Delivery at a Rural District Hospital in Rwanda Using Time-Driven Activity-Based Costing. Matern Child Health J [Internet]. Springer US; 2019;23:613–22. Available from: http://dx.doi.org/10.1007/s10995-018-2674-z

12. Mengistu T, Berruti A, Krivelyova A, Swor M, Waite R, Maro G. Cost of providing emergency obstetric care in Tanzania’s Kigoma region. Int J Health Plann Manage [Internet]. 2019/07/03. 2019;34:e1510–9. Available from: https://pubmed.ncbi.nlm.nih.gov/31270861

13. O’Neill A. Sub-Saharan Africa: Gross domestic product (GDP) per capita in current prices from 2014 to 2024 [Internet]. Statista.com. 2021 [cited 2021 Mar 20]. Available from: https://www.statista.com/statistics/805567/gross-domestic-product-gdp-per-capita-in-sub-saharan-africa/

14. Bennis I, De Brouwere V. Fee exemption for caesarean section in Morocco. Arch Public Heal. 2012;70.

15. Nguyen H, Ivers R, Jan S, Pham C. Cost of surgery and catastrophic expenditure in people admitted to hospital for injuries: estimates from a cohort study in Vietnam. Lancet [Internet]. 2015;385:S50. Available from: https://www.sciencedirect.com/science/article/pii/S0140673615608455

16. Shrim MG, Alkire BC, Grimes C, Chao TE, Poenaru D, Verguet S. Cost-Effectiveness in Global Surgery: Pearls, Pitfalls, and a Checklist. World J Surg. United States; 2017;41:1401–13.

17. Ntambue AM, Malonga FK, Cowgill KD, Dramaix-Wilmet M, Donnen P. Incidence of catastrophic expenditures linked to obstetric and neonatal care at 92 facilities in Lubumbashi, Democratic Republic of the Congo, 2015. BMC Public Health. BMC Public Health; 2019;19:1–15.

18. Arsenault C, Fournier P, Philibert A, Sissoko K, Coulibaly A, Tourigny C, et al. Emergency obstetric care in Mali: catastrophic spending and its impoverishing effects on households. Bull World Health Organ [Internet]. 2013/01/17. World Health Organization; 2013;91:207–16. Available from: https://pubmed.ncbi.nlm.nih.gov/23476093

19. Rickard JL, Ngarambe C, Ndayizeye L, Smart B, Majyambere JP, Rivieiro R. Risk of Catastrophic Health Expenditure in Rwandan Surgical Patients with Peritonitis. World J Surg. United States; 2018;42:1603–9.

20. Petroze RT, Nzayisenga A, Rusanganwa V, Ntakiyiruta G, Calland JF. Comprehensive national analysis of emergency and essential surgical capacity in Rwanda. Br J Surg. England; 2012;99:436–43.
21. Nyandekwe M, Nzayirambaho M, Kakoma JB. Universal health insurance in Rwanda: major challenges and solutions for financial sustainability case study of Rwanda community-based health insurance part I. Pan Afr Med J [Internet]. The African Field Epidemiology Network; 2020;37:55. Available from: https://pubmed.ncbi.nlm.nih.gov/33209182

22. Mukangendo M, Nzayirambaho M, Hitimana R, Yamuragiye A. Factors Contributing to Low Adherence to Community-Based Health Insurance in Rural Nyanza District, Southern Rwanda. Haughton J, editor. J Environ Public Health [Internet]. Hindawi; 2018;2018:2624591. Available from: https://doi.org/10.1155/2018/2624591

23. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81.

24. Program in Global Surgery and Social Change. Financial Risk Protection Survey Financial Risk Protection Survey. :1–3. Available from: https://docs.wixstatic.com/ugd/d9a674_8da150554fe348f4bfcba71613faad9d.pdf

25. The World Bank. Poverty Forecasts [Internet]. 2015 [cited 2021 Sep 23]. Available from: https://www.worldbank.org/en/publication/global-monitoring-report/poverty-forecasts-2015

26. Wagstaff A, Flores G, Hsu J, Smitz M-F, Chepynoga K, Buisman LR, et al. Progress on catastrophic health spending in 133 countries: a retrospective observational study. Lancet Glob Heal. England; 2018;6:e169–79.

27. Hailemichael Y, Hanlon C, Tirfessa K, Docrat S, Alem A, Medhin G, et al. Catastrophic health expenditure and impoverishment in households of persons with depression: a cross-sectional, comparative study in rural Ethiopia. BMC Public Health [Internet]. 2019;19:930. Available from: https://doi.org/10.1186/s12889-019-7239-6

28. World Health Organization. Distribution of health payments and catastrophic expenditures Methodology by Ke Xu [Internet]. Geneva PP - Geneva: World Health Organization; 2005. Available from: https://apps.who.int/iris/handle/10665/69030

29. Taylor ZW, Bicak I. Goal 3: Ensure healthy lives and promote well-being for all at all ages. 2019;10:61–5. Available from: https://unstats.un.org/sdgs/metadata/

30. Rwanda Franc to US Dollar Exchange Rate History For 1 November 2019 (01/11/19) [Internet]. [cited 2021 Sep 25]. Available from: https://www.exchangerates.org.uk/RWF-USD-01_11_2019-exchange-rate-history.html

31. The World Bank. PPP conversion factor, GDP (LCU per international $) - Rwanda | Data [Internet]. [cited 2021 Sep 25]. Available from: https://data.worldbank.org/indicator/PA.NUS.PPPP?locations=RW

32. Adamu AN, Adamu H, Yabagi Al, Sa’ad Z. 0011 Expenditure on Emergency Obstetric Care in a Tertiary Health Centre in Northern Nigeria. Int J Gynecol Obstet. 2012;119:S264–5.

33. Govil D, Mohanty SK, Narzary PK. Catastrophic household expenditure on caesarean deliveries in India. J Popul Res. 2020;37.
34. Abadi T, Mebratie AD. Cost of treating maternal complications and associated factors in Mekelle General Hospital, northern Ethiopia. Risk Manag Healthc Policy. 2021;14.

35. Ravit M, Philibert A, Tourigny C, Traore M, Coulibaly A, Dumont A, et al. The Hidden Costs of a Free Caesarean Section Policy in West Africa (Kayes Region, Mali). Matern Child Health J [Internet]. 2015;19:1734–43. Available from: https://doi.org/10.1007/s10995-015-1687-0

36. Thomson S, Cylus J, Evetovits T. Can people afford to pay for health care? Regional report. World Heal Organ. 2019;1–116.

37. Akalu T, Guda A, Tamiru M, Mariam DH. Examining out of pocket payments for maternal health in rural Ethiopia: Paradox of free health care un-affordability. Ethiop J Heal Dev. 2012;26:251–7.

38. H. L. How a simple travel voucher is saving the lives of pregnant African women [Internet]. CSMonitor.com. 2014 [cited 2021 Sep 24]. Available from: https://www.csmonitor.com/USA/Foreign-Policy/2014/0109/How-a-simple-travel-voucher-is-saving-the-lives-of-pregnant-African-women

39. Xu K, Evans DB, Kawabata K, Zeramdini R, Klavus J, Murray CJL. Household catastrophic health expenditure: a multicountry analysis. Lancet (London, England). England; 2003;362:111–7.

40. Ali M, Farron M, Azmat SK, Hameed W. The logistics of voucher management: The underreported component in family planning voucher discussions. J. Multidiscip. Healthc. 2018.

41. The World Bank. Vouchers that Make Having a Baby Safe and Cheap for More Ugandan Women [Internet]. 2017 [cited 2021 Sep 24]. Available from: https://www.worldbank.org/en/news/feature/2017/05/30/vouchers-that-make-having-a-baby-safe-and-cheap-for-some-ugandan-women

42. Sonderman KA, Nkurunziza T, Kateera F, Gruendl M, Koch R, Gaju E, et al. Using mobile health technology and community health workers to identify and refer caesarean-related surgical site infections in rural Rwanda: a randomised controlled trial protocol. BMJ Open. 2018;8:e022214.

43. Anatole Uzayisenga. Rwanda: Relief for Working Mothers As Maternity Leave Benets Scheme Comes Into Force. [Internet]. New Times. 2016 [cited 2021 Sep 24]. Available from: https://allafrica.com/stories/201611220103.html

44. Stoddard C, Stock WA, Hogenson E. The Impact of Maternity Leave Laws on Cesarean Delivery. B E J Econom Anal Policy [Internet]. De Gruyter; 2016 [cited 2021 Sep 24];16:321–64. Available from: https://www.degruyter.com/document/doi/10.1515/bejeap-2015-0015/html

Table

Due to technical limitations, table 2 is only available as a download in the Supplemental Files section.

Figures
Figure 1

Incidence of catastrophic health expenditure by Ubudehe categories.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table2.docx