Combination of Albumin-Globulin Score and Sarcopenia to Predict Prognosis in Patients With Renal Cell Carcinoma Undergoing Laparoscopic Nephrectomy

Weipu Mao, Nieke Zhang, Keyi Wang, Qiang Hu, Si Sun, Zhipeng Xu, Junjie Yu, Can Wang, Saisai Chen, Bin Xu, Jianping Wu, Hua Zhang and Ming Chen

We conducted a multicenter clinical study to construct a novel index based on a combination of albumin-globulin score and sarcopenia (CAS) that can comprehensively reflect patients' nutritional and inflammatory status and assess the prognostic value of CAS in renal cell carcinoma (RCC) patients. Between 2014 and 2019, 443 patients from 3 centers who underwent nephrectomy were collected (343 in the training set and 100 in the test set). Kaplan-Meier curves were employed to analyze the impact of albumin-globulin ratio (AGR), albumin-globulin score (AGS), sarcopenia, and CAS on overall survival (OS) and cancer-specific survival (CSS) in RCC patients. Receiver operating characteristic (ROC) curves were used to assess the predictive ability of AGR, AGS, sarcopenia, and CAS on prognosis. High AGR, low AGS, and nonsarcopenia were associated with higher OS and CSS. According to CAS, the training set included 60 (17.5%) patients in grade 1, 176 (51.3%) patients in grade 2, and 107 (31.2%) patients in grade 3. Lower CAS was linked to longer OS and CSS. Multivariable Cox regression analysis revealed that CAS was an independent risk factor for OS (grade 1 vs. grade 3: aHR = 0.08; 95% CI: 0.01–0.58, p = 0.012; grade 2 vs. grade 3: aHR = 0.47; 95% CI: 0.25–0.88, p = 0.018) and CSS (grade 1 vs. grade 3: aHR = 0.12; 95% CI: 0.02–0.94, p = 0.043; grade 2 vs. grade 3: aHR = 0.31; 95% CI: 0.13–0.71, p = 0.006) in RCC patients undergoing nephrectomy. Additionally, CAS had higher accuracy in predicting OS (AUC = 0.687) and CSS (AUC = 0.710) than AGR, AGS, and sarcopenia. In addition, similar results were obtained in the test set. The novel index CAS developed in this study, which reflects patients’ nutritional and inflammatory status, can better predict the prognosis of RCC patients.

Keywords: renal cell carcinoma, combination of albumin-globulin score, sarcopenia, albumin-globulin score, sarcopenia, prognostic indicator, nephrectomy
INTRODUCTION

Renal cell carcinoma (RCC), alternatively referred to as renal cancer, is 1 of the most prevalent malignancies of the urinary system. It is common cancer with morbidity of 2–3% in systemic malignant tumors and 80–85% in renal cancers (1). Due to its increasing incidence, 170,000 RCC patients died worldwide in 2018, with a mortality rate of ~2.7% (2). When RCC is early detected, it can be effectively treated with radical or partial nephrectomy, with a 5-year survival rate of 93% (3). However, over 30% of patients progress to advanced RCC at the first diagnosis, and 10–20% of patients with early RCC experience recurrence after treatments (4). Advanced RCC patients have a decreased 5-year survival rate of 67% due to regional and distant metastases (5).

Apart from the time of diagnosis, numerous other factors affect the prognosis of RCC patients, such as tumor size, pathological stage, and other biochemical indicators (6). Albumin (ALB) and globulin (GLB) are indicators of systemic nutritional status, and their ratio (AGR) is an independent prognostic factor for RCC patients (7). Albumin-globulin score (AGS) is another model based on ALB and GLB (8). However, no previous studies have investigated the relationship between AGR and AGS and long-term outcomes in RCC patients undergoing nephrectomy.

Sarcopenia is an emerging index of nutritious status, an extensive and progressive skeletal muscle disease characterized by loss of muscle mass and strength (9). Sarcopenia was assessed by measuring lumbar skeletal muscle index (SMI) and total psoas index (TPI) preoperatively using computed tomography (CT). Recently, sarcopenia was reported to be connected to inflammatory diseases, malignancies, and malnutrition (10). Sarcopenia, in particular, is a poor prognostic indicator in various tumors, including hepatocellular carcinoma, gastroesophageal tumor, colorectal cancer, and urothelial carcinomas (11), and our previous study found that sarcopenia is a risk factor for the survival time of cancer patients, including RCC and bladder cancer (12, 13).

This study aimed to determine the influence of AGR, AGS, and sarcopenia on the prognosis of RCC patients treated with laparoscopic nephrectomy and to build a novel index based on a combination of AGS and sarcopenia (CAS) that can more comprehensively reflect the nutritional and inflammatory status of RCC patients and investigate the prognostic ability of CAS in RCC patients undergoing laparoscopic nephrectomy.

MATERIALS AND METHODS

Study Design and Patients

This multicenter research retrospectively collected clinical data from 590 RCC patients who underwent partial or radical nephrectomy at Zhongda Hospital Southeast University, Shanghai Tenth People’s Hospital, and Shidong Hospital from January 2014 to December 2019. The inclusion criteria were set as follows: patients with pathologically diagnosed RCC; and patients who received surgical treatment with therapeutic purposes for the first time. The exclusion criteria were set as follows: patients who received other anticancer treatment before nephrectomy, such as transcatheter arterial chemoembolization, radiofrequency ablation, or chemotherapy; patients with other malignant tumors; and patients without complete medical records or lost to follow-up. After screening, this study finally included 443 patients.

A total of 343 patients from Zhongda Hospital Southeast University were included as the training set, and 100 patients from Shanghai Tenth People’s Hospital and Shidong Hospital were adopted to the test set. All included patients have signed written informed consent. The methodology of this study followed the criteria outlined in Declaration of Helsinki (as revised in 2013) and was ethically approved by Ethics Committees and Institutional Review Boards of all participating institutions.

Clinical Data Collection and Follow-Up

Baseline information, laboratory examination, and imaging findings of all patients were reviewed and retrieved from hospital electronic medical records. The collected basic characteristics of patients include age, gender, body mass index [BMI, calculated by weight (kg)/height^2 (m^2)], hypertension, diabetes, cardiovascular disease, smoking, surgery type, hemoglobin, ALB, GLB, AGR, AGS, SMI, platelets, neutrophils, lymphocytes, and survival time. Tumor-related clinic pathological features were also collected, including laterality, AJCC stage, TNM stage, and Fuhrman grade. All included patients were followed up to December 2020 by telephone every 3 months. The laboratory test data were measured 2 days before surgery or closest to the time of surgery. Neutrophil to lymphocyte ratio (NLR) is the ratio of neutrophils to lymphocytes, whereas platelet to lymphocyte ratio (PLR) is the ratio of platelets to lymphocytes. AGR is the ratio of serum ALB to GLB. According to previous studies, AGS = 0 means ALB > 41.7 g/L and GLB < 28.6 g/L, AGS = 2 means ALB < 41.7 g/L and GLB > 28.6 g/L, and AGS = 1 for the remaining patients (8). The diagnosis of sarcopenia was determined based on previous studies (12). CAS was defined as follows: patients with low AGS (AGS = 0) and non-sarcopenia were included in CAS grade 1, patients with high AGS (AGS = 1/2) and sarcopenia were included in CAS grade 3, and the remaining patients were included in CAS grade 2. Overall survival (OS) was calculated from the surgical treatment date to death date or the last follow-up. Cancer-specific survival (CSS) was calculated from the date of therapeutic resection to the date of death due to RCC.

Statistical Analysis

Continuous data are presented as mean ± standard deviation (SD) and categorical data as number (%). Categorical variables were analyzed using chi-square test or Fisher’s exact tests and continuous variables were analyzed using t-test. AGR was determined using receiver operating characteristic (ROC) curves and patients were divided into AGR > 1.33 and AGR ≤ 1.33 groups according to AGR levels. Patients with AGS = 0 were included in the low AGS group, and those with AGS = 1 or 2 were included in the high AGS group. We divided patients into sarcopenia and non-sarcopenia groups according to SMI.

Kaplan-Meier curves were employed to assess the effects of AGR, AGS, SMI, and CAS on OS and CSS. ROC curves were
TABLE 1 | Baseline characteristics of patients in the training and test sets.

Characteristic	All Patients	Training Set	Test Set	P-value
Total patients	443	343	100	
Age, y, mean (SD)	58.02 (12.44)	57.47 (12.56)	59.90 (11.89)	0.086
Age categorized, y				
≤65	318 (71.8)	255 (74.3)	63 (63.0)	0.027
>65	125 (28.2)	88 (25.7)	37 (37.0)	
Gender				0.442
Male	296 (66.8)	226 (65.9)	70 (70.0)	
Female	147 (33.2)	117 (34.1)	30 (30.0)	
BMI, kg/m², mean (SD)	24.60 (3.55)	24.69 (3.62)	24.30 (3.29)	0.330
BMI categorized, kg/m²				0.032
<25	251 (56.7)	185 (53.9)	66 (66.0)	
≥25	192 (43.3)	158 (46.1)	34 (34.0)	
Hypertension				0.444
No	251 (56.7)	191 (55.7)	60 (60.0)	
Yes	192 (43.3)	152 (44.3)	40 (40.0)	
Diabetes				0.993
No	372 (84.0)	288 (84.0)	84 (84.0)	
Yes	71 (16.0)	55 (16.0)	16 (16.0)	
Cardiovascular diseases				0.211
No	392 (88.5)	300 (87.5)	92 (92.0)	
Yes	51 (11.5)	43 (12.5)	8 (8.0)	
Smoking				0.883
No	370 (83.5)	286 (83.4)	84 (84.0)	
Yes	73 (16.5)	57 (16.6)	16 (16.0)	
Surgery type				<0.001
Partial nephrectomy	268 (60.5)	187 (54.5)	81 (81.0)	
Radical nephrectomy	175 (39.5)	156 (45.5)	19 (19.0)	
Laterality				0.580
Left	224 (50.6)	171 (49.9)	53 (53.0)	
Right	219 (49.4)	172 (50.1)	47 (47.0)	
AJCC stage				0.200
I	329 (74.3)	256 (74.6)	73 (73.0)	
II	28 (5.9)	19 (5.5)	7 (7.0)	
III	60 (13.5)	45 (13.1)	15 (15.0)	
IV	28 (6.3)	23 (6.7)	5 (5.0)	
T-stage				1.000
T1	336 (75.8)	260 (75.8)	76 (76.0)	
T2	30 (6.8)	23 (6.7)	7 (7.0)	
T3	66 (14.9)	51 (14.9)	15 (15.0)	
T4	11 (2.5)	9 (2.6)	2 (2.0)	
N-stage				0.590
N0	425 (95.0)	330 (96.2)	95 (95.0)	
N1	18 (4.1)	13 (3.8)	5 (5.0)	
M-stage				0.585
M0	424 (95.7)	327 (95.3)	97 (97.0)	
M1	19 (4.3)	16 (4.7)	3 (3.0)	
Fuhrman grade				0.915
I	74 (16.7)	55 (16.0)	19 (19.0)	
II	278 (62.3)	216 (63.0)	60 (60.0)	

(Continued)
stage, T1 stage, N0 stage, M0 stage, and Fuhrman II grade. In addition, no statistically difference was observed in survival time between patients in training and test sets.

As indicated in Table 2, in the training set, 82 (23.9%) patients were classified into low AGS group and 261 (76.1%) patients into high AGS (AGS = 1/2) group according to AGS, while 215 (62.7%) patients had non-sarcopenia and 128 (37.3%) patients had sarcopenia assessed by SMI. Kaplan-Meier survival curves indicated that high AGR, low AGS, and non-sarcopenia predicted higher overall survival (OS) and cancer-specific survival (CSS) in both training and test sets (Figure 2 and Supplementary Figure 1). There was an increased proportion of patients aged >65 years, BMI < 25 kg/m² in high AGS group or sarcopenia group. In addition, other variables, such as surgical type, hemoglobin, ALB, GLB, and AGR, were comparable between low and high AGS or sarcopenia and non-sarcopenia groups.

When stratified by CAS grade, 60 (17.5%) patients were CAS grade 1, 176 (51.3%) patients were CAS grade 2, and 107 (31.2%) patients were CAS grade 3. Table 3 displays the relationship between CAS and patient clinicopathology. We found that CAS grade 3 group had a higher percentage of age >65 years, female, BMI <25 kg/m², AJCC III/IV stage, T3–4 stage, N1 stage, M1 stage, and Fuhrman III/IV grade than those in the other two groups. In training and test sets, survival time progressively decreased with increasing CAS grade, and patients with CAS grade 3 were associated with the lowest OS and CSS (Figure 3 and Supplementary Figure 2). In addition, statistical differences existed among the three groups in age, BMI, surgical type, hemoglobin, ALB, GLB, and AGR variables.

In addition, we constructed three multivariate Cox regression models to assess the correlation of CAS with OS and CSS (Table 4). The results revealed that CAS was consistently an independent risk factor for OS (extended model: CAS grade 1 vs. CAS grade 3: aHR = 0.08; 95% CI: 0.01–0.58, p = 0.012; CAS grade 2 vs. CAS grade 3: aHR = 0.47; 95% CI: 0.25–0.88, p = 0.018) and CSS (extended model: CAS grade 1 vs. CAS grade 3: aHR = 0.12; 95% CI: 0.02–0.94, p = 0.043; CAS grade 2 vs. CAS grade 3: aHR = 0.31; 95% CI: 0.13–0.71, p = 0.006), whether in the basic, core, or extended models and CAS grade 3 was associated with the worst prognosis.

Receiver operating characteristic (ROC) curves were utilized to evaluate the prognostic ability of AGR, AGS, SMI, NLR, PLR, and CAS in RCC patients undergoing laparoscopic nephrectomy (Table 5). We discovered that CAS had higher predictive power for OS (training set: AUC = 0.687, 95% CI: 0.607–0.766, p < 0.001; test set: AUC = 0.724, 95% CI: 0.557–0.891, p = 0.012) and CSS (training set: AUC = 0.710, 95% CI: 0.613–0.808, p < 0.001; test set: AUC = 0.805, 95% CI: 0.648–0.962, p = 0.004) than the other five indicators in training and test sets (Figure 4 and Supplementary Figure 3).

DISCUSSION

In the current study, given the prognostic value of ALB, GLB, and sarcopenia in RCC patients, we combined them to...
TABLE 2 | Comparison between AGS, SMI and clinic pathological characteristics in training set.

Characteristic	AGS	SMI	P-value	Non-sarcopenic	Sarcopenic	P-value			
	Low (0)	High (1/2)		No. (%)	P-value				
Total patients	82	261		215	128				0.001
Age, y, mean (SD)	53.00 (12.79)	58.87 (12.18)	<0.001	55.73 (11.72)	60.40 (13.40)	<0.001			
Age categorized, y				68 (82.9)	187 (71.6)	175 (81.4)	70 (62.5)		0.209
	<65	>65		14 (17.1)	74 (28.4)	40 (18.6)	48 (37.5)		
Gender				58 (70.7)	168 (64.4)	147 (68.4)	79 (61.7)		
	Male	Female		24 (29.3)	90 (35.6)	68 (31.6)	49 (38.3)		
BMI, kg/m², mean (SD)	25.07 (3.68)	24.57 (3.60)	0.271	25.38 (3.42)	23.53 (3.66)	<0.001			
BMI categorized, kg/m²				<25	≥25				0.660
	39 (47.6)	146 (55.9)		114 (53.0)	71 (55.5)				
Hypertension				43 (52.4)	115 (44.1)	101 (47.0)	57 (44.5)		
	0.551								
Diabetes				68 (82.9)	220 (84.3)	178 (82.8)	110 (85.9)		
	0.769								
Cardiovascular diseases				48 (58.5)	143 (54.8)	114 (53.0)	77 (60.2)		
	0.383								
Smoking				8 (9.8)	35 (13.4)	24 (11.2)	19 (14.8)		
	0.831								
Surgery type				69 (84.1)	217 (83.1)	181 (84.2)	105 (82.0)		
Partial nephrectomy	54 (65.9)	133 (51.0)		131 (60.9)	56 (43.8)				0.002
Radical nephrectomy	28 (34.1)	128 (49.0)		84 (39.1)	72 (56.2)				
Laterality				0.217					
Left	46 (66.1)	126 (48.3)		103 (47.9)	69 (53.9)				
Right	36 (43.9)	135 (51.7)		112 (52.1)	59 (46.1)				
AJCC stage				0.484					
I	67 (81.7)	189 (72.4)		163 (75.8)	93 (72.7)				0.749
II	3 (3.7)	16 (6.1)		13 (6.0)	6 (4.7)				
III	8 (9.8)	37 (14.2)		26 (12.1)	19 (14.8)				
IV	4 (4.9)	19 (7.3)		13 (6.0)	10 (7.8)				
T-stage				0.334					
T1	67 (81.7)	193 (73.9)		166 (77.2)	94 (73.4)				0.530
T2	4 (4.9)	19 (7.3)		16 (7.4)	7 (5.5)				
T3	8 (9.8)	43 (16.5)		28 (13.0)	23 (18.0)				
T4	3 (3.7)	6 (2.3)		5 (2.3)	4 (3.1)				
N-stage				0.316					
N0	81 (98.8)	249 (95.4)		206 (95.8)	124 (96.9)				0.774
N1	1 (1.2)	12 (4.6)		9 (4.2)	4 (3.1)				
M-stage				0.376					
M0	80 (97.6)	247 (94.6)		206 (95.8)	121 (94.5)				0.604
M1	2 (2.4)	14 (5.4)		9 (4.2)	7 (5.5)				

(Continued)
TABLE 2 | Continued

Characteristic	AGS	P-value	SMI	P-value		
	Low (0)	High (1/2)		Non-sarcopenic	Sarcopenic	
	No. (%)	No. (%)		No. (%)	No. (%)	
Fuhrman grade						
I	15 (18.3)	40 (15.3)	0.437	38 (17.7)	17 (13.3)	0.708
II	53 (64.8)	163 (62.5)		134 (62.3)	82 (64.1)	
III	14 (17.1)	50 (19.2)		38 (17.7)	26 (20.3)	
IV	0 (0.0)	8 (3.1)		5 (2.3)	3 (2.3)	
Hemoglobin (g/L), mean (SD)	140.46 (16.10)	130.84 (21.00)	<0.001	135.40 (18.60)	129.33 (22.52)	0.007
ALB, [g/L, mean (SD)]	44.79 (2.22)	39.93 (6.08)	<0.001	41.57 (4.97)	40.29 (4.99)	0.022
GLB, [U/L, mean (SD)]	24.35 (2.85)	30.22 (5.68)	<0.001	28.75 (5.72)	28.93 (5.73)	0.782
AGR [mean, (SD)]	1.87 (0.25)	1.36 (0.28)	<0.001	1.50 (0.34)	1.45 (0.35)	0.186
Survival time (months)	35.48 (19.44)	31.74 (18.68)	0.119	32.84 (19.50)	32.28 (17.92)	0.791

Continuous data are presented as the mean ± standard deviation and categorical data as n (%). For categorical variables, P-values were analyzed by chi-square tests. For continuous variables, the t-test for slope was used in generalized linear models. For AJCC stage, T-stage, N-stage, M-stage, and Fuhrman grade, Fisher’s exact test was used.

SD, standard deviation; BMI, Body mass index; AJCC, American Joint Committee on Cancer; ALB, albumin; GLB, globulin; AGR, albumin to globulin ratio; AGS, albumin-globulin score; SMI, skeletal muscle index.

FIGURE 2 | Kaplan-Meier curves for OS and CSS stratified by AGR, AGS and SMI in the training set. (A,D) AGR OS and CSS; (B,E) AGS OS and CSS; (C,F) SMI OS and CSS. OS, overall survival; CSS, cancer-specific survival; AGR, albumin to globulin ratio; AGS, albumin-globulin score; SMI, skeletal muscle index.

construct a new index (CAS), providing a more comprehensive response to systemic nutritional and inflammatory status. CAS has been demonstrated to have a predictive role in patients with intrahepatic cholangiocarcinoma (ICC). By retrospectively analyzing clinical data from 613 ICC patients, Li et al. (14) found that CAS was strongly associated with long-term postoperative outcomes for surgically treated ICC patients. We conducted a multicenter study to investigate the impact of CAS on the
TABLE 3 | Comparison between CAS and clinic pathological characteristics in training set.

Characteristic	CAS 1	CAS 2	CAS 3	P-value	
Grade 1	Grade 2	Grade 3			
Total patients	60 (17.5)	176 (51.3)	107 (31.2)		
Age, y (mean (SD))	51.23 (12.56)	57.52 (11.05)	60.89 (13.63)	<0.001	
Age categorized, y	<65	50 (83.3)	141 (80.1)	64 (59.8)	
	>65	10 (16.7)	35 (19.9)	43 (40.2)	
Gender	Male	42 (70.0)	121 (68.8)	63 (58.9)	0.180
	Female	18 (30.0)	55 (31.2)	44 (41.1)	
BMI, kg/m², mean (SD)	25.72 (3.51)	25.05 (3.45)	25.32 (3.68)	<0.001	
BMI categorized, kg/m²	<25	27 (45.0)	98 (55.7)	60 (56.1)	0.310
	≥25	33 (55.0)	78 (44.3)	47 (43.9)	
Hypertension	No	33 (55.0)	97 (55.1)	61 (57.0)	0.946
	Yes	27 (45.0)	79 (44.9)	46 (43.0)	
Diabetes	No	48 (80.0)	152 (86.4)	88 (82.2)	0.430
	Yes	12 (20.0)	24 (13.6)	19 (17.8)	
Cardiovascular diseases	No	53 (88.3)	158 (89.8)	89 (83.2)	0.261
	Yes	7 (11.7)	18 (10.2)	18 (16.8)	
Smoking	No	52 (86.7)	145 (82.4)	89 (83.2)	0.742
	Yes	8 (13.3)	31 (17.6)	18 (16.8)	
Surgery type	Partial nephrectomy	45 (75.0)	96 (54.5)	46 (43.0)	<0.001
	Radical nephrectomy	15 (25.0)	80 (45.5)	61 (57.0)	
Laterality	Left	32 (53.3)	86 (48.9)	54 (50.5)	0.834
	Right	28 (46.7)	90 (51.1)	53 (49.5)	
AJCC stage	I	49 (81.7)	134 (76.1)	73 (68.2)	0.237
	II	2 (3.3)	11 (6.2)	6 (5.6)	
	III	5 (8.3)	24 (13.6)	16 (15.0)	
	IV	4 (6.7)	7 (4.0)	12 (11.2)	
T-stage	T1	49 (81.7)	137 (77.8)	74 (69.2)	0.155
	T2	3 (5.0)	17 (9.4)	7 (6.5)	
	T3	5 (8.3)	24 (13.6)	22 (20.6)	
	T4	3 (5.0)	2 (1.1)	4 (3.7)	
N-stage	N0	59 (98.3)	169 (96.0)	102 (95.3)	0.644
	N1	1 (1.7)	7 (4.0)	5 (4.7)	
M-stage	M0	58 (96.7)	171 (97.2)	98 (91.6)	0.102
	M1	2 (3.3)	5 (2.8)	9 (8.4)	

(Continued)
Mao et al. CAS Predicts the Prognosis of RCC Patients

FIGURE 3 Kaplan-Meier curves for OS and CSS stratified by CAS grade in the training set. (A), CAS OS; (B), CAS CSS. OS, overall survival; CSS, cancer-specific survival; CAS, combination of albumin-globulin score and sarcopenia.

TABLE 4 Hazard ratios of overall survival (OS) and cancer-specific survival (CSS) was calculated according to CAS in training set.

Characteristic	Basic Model	Core Model	Extended Model			
	aHR (95% CI)	P-value	aHR (95% CI)	P-value	aHR (95% CI)	P-value
Overall Survival						
CAS	<0.001		0.08 (0.01–0.58)	0.012	<0.001	
Grade 1	0.07 (0.01–0.48)	0.007	0.09 (0.01–0.67)	0.018		
Grade 2	0.40 (0.21–0.73)	0.003	0.43 (0.23–0.80)	0.008		
Grade 3	Reference		Reference			
Cancer-specific Survival						
CAS	<0.001		0.12 (0.02–0.94)	0.043		
Grade 1	0.09 (0.01–0.67)	0.019	0.14 (0.02–0.93)	0.042		
Grade 2	0.26 (0.11–0.59)	0.001	0.28 (0.12–0.66)	0.003		
Grade 3	Reference		Reference			

*Adjusted covariates: Basic model: age, gender, BMI, hypertension, diabetes, cardiovascular diseases and smoking; Core model: basic model plus surgery type and laterality; Extended model: core model plus AJCC stage, T stage, N stage, M stage and Fuhrman grade.

BMI, Body mass index; AJCC, American Joint Committee on Cancer; aHR, adjusted hazard ratio; CI, confidence interval; CAS, combination of albumin-globulin score and skeletal muscle index.

Sarcopenia is not a simple loss of weight or slimming tissue, but a progressive and widespread loss of skeletal muscle mass, strength, and body skeletal muscle. As the decline of skeletal muscle mass may be reversible, sarcopenia has important implications for guiding clinical practice (27). Some studies have demonstrated that establishing a regular exercise and nutritional support program before operation can lead to increased daily calorie and protein intake, as well as a significant increase in grip strength (28, 29). In the study, we found that 44.5% of the sarcopenia patients had BMI ≥ 25 kg/m². The coexistence of obesity and sarcopenia is increasing, and these people are also at risk of their complications (30). Additionally, sarcopenia is more prevalent in elderly patients, contributing to sarcopenia patients’ increased risk of death. For lean patients with low BMI, early intervention and increased dietary supplements with protein, vitamin D and antioxidants can slow sarcopenia progression (31, 32).

To our knowledge, this is the first multicenter clinical study to explore the prognostic value of CAS in RCC patients undergoing nephrectomy. For calculating CAS grade, ALB, GLB, and SMI for calculating sarcopenia are more readily available clinically and less costly. In addition, CAS grade combines three indicators, ALB, GLB, and sarcopenia, to accurately reflect...
patients’ nutritional and inflammatory status and expand the predictive ability of individual indicators of ALB, GLB, or sarcopenia for RCC patients.

This study also has several limitations. First, we excluded other treatment modalities, which will have an impact on prognosis. Second, we did not assess the patient’s quality of life, energy level, and postoperative nutritional status. Finally, although this is a multicenter study, it remained a retrospective study which requires a larger sample size than a prospective study.

CONCLUSION

We successfully constructed an index (CAS) that can more accurately predict the prognosis of RCC patients undergoing laparoscopic nephrectomy.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can be found here. The datasets used and analyzed during the
current study are available from the corresponding author on reasonable request.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by The methodology of this study was ethically approved by the Ethics Committees and Institutional Review Boards of all participating institutions (SHSY-IEC-BG/02.04/04.0-81602469 and ZDKYSB077). The patients/participants provided their written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

AUTHOR CONTRIBUTIONS

WM, JW, HZ, and MC conception and design. BX and MC administrative support. SS, ZY, JY, CW, SC, and BX collection and assembly of data. WM and KW data analysis and interpretation. WM, NZ, KW, and QH manuscript writing. All authors are final approval of manuscript.

FUNDING

This study was supported by the National Natural Science Foundation of China (81672551), the Scientific Research Foundation of Graduate School of Southeast University (YBPY2173), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_0156), Jiangsu Provincial Key Research and Development Program (BE2019751), Innovative Team of Jiangsu Provincial (2017XKJQW07), and The National Key Research and Development Program of China (SQ2017YFSF090096), and the Fundamental Research Funds for the Central Universities (2242021S40011).

ACKNOWLEDGMENTS

We thank Home for Researchers (www.home-for-researchers.com) for editing this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2021.731466/full#supplementary-material

Supplementary Figure 1 | Kaplan-Meier curves for OS and CSS stratified by AGR, AGS and SMI in the test set. A and D, AGR OS and CSS; B and E, AGS OS and CSS; C and F, SMI OS and CSS. OS, overall survival; CSS, cancer-specific survival; AGR, albumin to globulin ratio; AGS, albumin-globulin score; SMI, skeletal muscle index.

Supplementary Figure 2 | Kaplan-Meier curves for OS and CSS stratified by CAS grade in the test set. A, CAS OS; B, CAS CSS. OS, overall survival; CSS, cancer-specific survival; CAS, combination of albumin-globulin score and sarcopenia.

Supplementary Figure 3 | Comparison of area under ROC curves for AGR, AGS and CAS grade in predicting OS and CSS in the test set. A, OS ROC curves; B, CSS ROC curves. OS, overall survival; CSS, cancer-specific survival; ROC, receiver operator characteristic; AUC, area under the curve; AGR, albumin to globulin ratio; AGS, albumin-globulin score; SMI, skeletal muscle index; CAS, combination of albumin-globulin score and sarcopenia.

REFERENCES

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. (2021) 71:7–33. doi: 10.3322/caac.21654
2. Margulis V, Sagalowsky AI. Penile cancer: management of regional lymphatic drainage. Urol Clin North Am. (2010) 37:411–9. doi: 10.1016/j.ucl.2010.04.009
3. Jin X, Liang Y, Liu D, Luo Q, Cai L, Wu J, et al. An essential role for GLUT5-mediated fructose utilization in exacerbating the malignancy of clear cell renal carcinoma. Cell Biol Toxicol. (2019) 35:471–83. doi: 10.1007/s10565-019-09478-4
4. Tannir NM, Pal SK, Atkins MB. Second-line treatment landscape for renal cell carcinoma: a comprehensive review. Oncologist. (2018) 23:540–55. doi: 10.1634/theoncologist.2017-0534
5. He X, Guo S, Chen D, Yang G, Chen X, Zhang Y, et al. Preoperative albumin to globulin ratio (AGR) as prognostic factor in renal cell carcinoma. J Cancer. (2017) 8:258–65. doi: 10.7150/jca.16525
6. Li X, Qin S, Sun X, Liu D, Zhang B, Xiao G, et al. Prognostic significance of albumin-globulin score in patients with operable non-small-cell lung cancer. Ann Surg Oncol. (2018) 25:3647–59. doi: 10.1245/s10434-018-6715-z
7. Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by special interest groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. (2010) 29:154–9. doi: 10.1016/j.clnu.2009.12.004
8. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. (2019) 393:2636–46. doi: 10.1016/S0140-6736(19)31389-9
9. Shachar SS, Williams GR, Muss HR, Nishijima TF. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer. (2016) 57:58–67. doi: 10.1016/j.ejca.2015.12.030
10. Mao W, Wang K, Zhang H, Lu H, Sun S, Tian C, et al. Sarcopenia as a poor prognostic indicator for renal cell carcinoma patients undergoing nephrectomy in China: a multicenter study. Clin Transl Med. (2021) 11:e270. doi: 10.1002/ctm2.270
11. Mao W, Ma B, Wang K, Wu J, Xu B, Geng J, et al. Sarcopenia predicts prognosis of bladder cancer patients after radical cystectomy: a study based on the Chinese population. Clin Transl Med. (2020) 10:e105. doi: 10.1002/ctm2.105
12. Li H, Dai J, Lan T, Liu H, Wang J, Cai B, et al. Combination of albumin-globulin score and skeletal muscle index predicts long-term outcomes of intrahepatic cholangiocarcinoma patients after curative resection. Clin Nutr. (2021) 40:3891–900. doi: 10.1016/j.clnu.2021.04.038
13. McMillan DC, Watson WS, O’Gorman P, Preston T, Scott HR, McArdle CS. Albumin concentrations are primarily determined by the body cell mass and the systemic inflammatory response in cancer patients with weight loss. Nutr Cancer. (2001) 39:210–3. doi: 10.1207/S15327914nc39_8
14. Fryhofer GW, Sloan M, Sheph N. Hypoalbuminemia remains an independent predictor of complications following total joint arthroplasty. J Orthop. (2019) 16:552–8. doi: 10.1016/j.jor.2019.04.019
15. Tamura K, Ando R, Takahara K, Ito T, Kanoa K, Yasui T, et al. Development of novel ACN (albumin, C-reactive protein and neutrophil-to-lymphocyte ratio); AGR OS and CSS; B, CSS ROC curves. OS, overall survival; CSS, cancer-specific survival; ROC, receiver operator characteristic; AUC, area under the curve; AGR, albumin to globulin ratio; AGS, albumin-globulin score; SMI, skeletal muscle index; CAS, combination of albumin-globulin score and sarcopenia.
ratio) prognostication model for patients with metastatic renal cell carcinoma receiving first-line molecular-targeted therapy. *Urol Oncol.* (2021) 39:78e1–8. doi: 10.1016/j.urolonc.2020.08.029

18. Peng D, Zhang CJ, Tang Q, Zhang L, Yang KW, Yu XT, et al. Prognostic significance of the combination of preoperative hemoglobin and albumin levels and lymphocyte and platelet counts (HALP) in patients with renal cell carcinoma after nephrectomy. *BMC Urol.* (2018) 18:20. doi: 10.1186/s12894-018-0333-8

19. Du XJ, Tang LL, Mao YP, Sun Y, Zeng MS, Kang TB, et al. The pretreatment albumin to globulin ratio has predictive value for long-term mortality in nasopharyngeal carcinoma. *PLoS ONE.* (2014) 9:e94473. doi: 10.1371/journal.pone.0094473

20. Azab B, Kedia S, Shah N, Vonfrolio S, Lu W, Naboush A, et al. The value of the pretreatment albumin/globulin ratio in predicting the long-term survival in colorectal cancer. *Int J Colorectal Dis.* (2013) 28:1629–36. doi: 10.1007/s00384-013-1748-z

21. Nicholson JP, Wolmarans MR, Park GR. The role of albumin in critical illness. *Br J Anaesth.* (2000) 85:599–610.

22. Otsuka M, Kamasako T, Uemura T, Takeshita N, Shinozaki T, Kobayashi M, et al. Prognostic role of the preoperative serum albumin: globulin ratio after radical nephroureterectomy for upper tract urothelial carcinoma. *Int J Urol.* (2018) 25:871–8. doi: 10.1111/iju.13767

23. Li XH, Gu WS, Wang XP, Lin JH, Zheng X, Zhang L, et al. Low preoperative albumin-to-globulin ratio predicts poor survival and negatively correlated with fibrinogen in resectable esophageal squamous cell carcinoma. *J Cancer.* (2017) 8:1833–42. doi: 10.7150/jca.19062

24. Zhang F, Sun P, Wang de S, Wang Y, Zhang DS, et al. Low preoperative albumin-globulin score predicts favorable survival in esophageal squamous cell carcinoma. *Oncotarget.* (2016) 7:30550–60. doi: 10.18632/oncotarget.8868

25. Mayr R, Gierth M, Zeman F, Reiffen M, Seeger P, Wezel F, et al. Sarcopenia as a comorbidity-independent predictor of survival following radical cystectomy for bladder cancer. *J Cachexia Sarcopenia.* (2018) 9:505–13. doi: 10.1002/jcsm.12279

28. Yamamoto K, Nagatsu Y, Fukuoka Y, Hirao M, Nishikawa K, Miyamoto A, et al. Effectiveness of a preoperative exercise and nutritional support program for elderly sarcopenic patients with gastric cancer. *Gastric Cancer.* (2017) 20:913–8. doi: 10.1007/s10120-016-0883-4

31. Park HJ, Cho JH, Kim HJ, Park JY, Lee HS, Byun MK. The effect of low body mass index on the development of chronic obstructive pulmonary disease and mortality. *J Intern Med.* (2019) 286:573–82. doi: 10.1111/joim.12949

32. Lee HN, Chang YS, Wu YH, Wu CH, Wang CJ. Sarcopenia in female patients with Alzheimer’s disease are more likely to have lower levels of haemoglobin and 25-hydroxyvitamin D. *Psychogeriatrics.* (2020) 20:858–64. doi: 10.1111/psg.12593