A CONVERSE TO SCHREIER’S INDEX-RANK FORMULA

RALPH STREBEL

1. Let G be a group and let φ be a real-valued function, defined on all subgroups G_1 with finite index in G. Call φ submultiplicative if the inequality

(1) $\varphi(G_2) \leq [G_1 : G_2] \cdot \varphi(G_1)$

holds for all pairs of subgroups $G_2 \leq G_1$ of G with G_2 a subgroup of finite index in G; call it multiplicative if equality holds throughout in inequality (1).

The rank $\text{rk}(G)$ of a finitely generated group G is, by definition, the minimal number of elements generating it. By a Theorem of Reidemeister’s, subgroups with finite index in finitely generated groups are finitely generated; moreover, the rank function on its subgroups of finite index is submultiplicative (see, e.g., [MKS66, p. 89, Thm. 2.7]). For finitely generated free groups, a sharper result holds: Schreier’s index-rank formula ([Sch27] or [LS01, p. 16, Prop. 3.9]) asserts that the function $\text{rk} - 1$ is multiplicative. It follows that the function $\text{rk} - 1$ is submultiplicative on every finitely generated group.

2. In [LvdD81, § 2] Lubotzky and van den Dries ask whether a finitely generated group G is necessarily free if its function $\text{rk} - 1$ is multiplicative and if, in addition, G is residually finite. One has, of course, to require that G contains sufficiently many subgroups of finite index in order to rule out counter-examples like finitely generated infinite simple groups or, more concretely, G. Higman’s 4-generator 4-relator group $\langle a_1, a_2, a_3, a_4 | a_i a_{i+1} a_i^{-1} a_{i+2}^{-1} \rangle$ for all $i \in \mathbb{Z}/4\mathbb{Z}$ (see [Hig51] or [Ser77, p. 18, Prop. 6] for a discussion of this group).

3. In this note the question raised by Lubotzky and van den Dries is shown to have an affirmative answer:

Theorem 1. A finitely generated, residually finite group for which the function $\text{rk} - 1$ is multiplicative is necessarily free.

Theorem 1 will be a consequence of

Lemma 2. Let $G \neq \{1\}$ be a finitely generated, residually finite group. Choose a presentation $\pi: F(\mathcal{X})/R \to G$ with $F(\mathcal{X})$ a free group of rank $\text{rk}(G)$. If $R \neq \{1\}$, select an element $r \in R \setminus \{1\}$ of minimal length. Then r is a member of a basis of a subgroup F_1 of F that contains R and has finite index in F.

Proof. Let r be represented by the freely reduced word $w = s_1 s_2 \cdots s_m$ with letters s_i in $\mathcal{X} \cup \mathcal{X}^{-1}$. By the minimal property of r, no non-empty, proper subword $s_i \cdots s_{i+1} \cdots s_j$ of w represents a relator in R and thus the initial segments

(2) 1, s_1, s_1 s_2, \ldots , s_1 s_2 \cdots s_{m-1}

of w map to distinct elements of G. As the group G is residually finite and finitely generated, there exists therefore a normal subgroup $G_1 \triangleleft G$ of finite index such that the initial segments listed in (2) represent distinct elements of the quotient group G/G_1. Let F_1 denote the full preimage of G_1 under the projection $\pi: F(\mathcal{X}) \to G$.

Date: October 8, 2018.
The property just stated can then be rephrased by saying that the initial segments \(w \) of \(x \) represent distinct cosets of \(F_1 \) on \(F \). The list \(w \) is thus a partial Schreier transversal of \(F_1 \) in \(F \); it can be enlarged to a Schreier transversal \(T_1 \) of \(F_1 \) in \(F \).

Let \(X_1 \) be the basis of \(F_1 \) obtained from \(T_1 \) by Schreier’s method.

Two cases now arise. If \(s_m \) belongs to \(X \), the word \(w = s_1 \cdots s_{m-1} \cdot s_m \) represents an element of the basis \(X_1 \) of \(F_1 \). Otherwise, we replace the element \(x = s_1^{-1} \) of the basis \(X \) by its inverse \(x^{-1} = s_m \) and arrive at a new basis \(X' = (X \setminus \{x\}) \cup \{s_m\} \) of \(F \). Let \(T' \) be the set of words obtained from \(T \) by rewriting each element in \(T \) as a word in \(X' \). Then \(T' \) is a transversal of the subgroup \(F_1 \) in \(F \) and the basis derived from \(X' \) and \(T' \) by Schreier’s method contains the word \(r^{-1} = (s_m^{-1} \cdots s_1^{-1}) \).

But if so \(F_1 \) admits again a basis that contains \(r \).

We are left with deducing Theorem 1 from Lemma 2. Suppose \(G \) has rank \(m \); let \(F \) be a free group of the same rank and choose an epimorphism \(\pi: F \to G \).

If \(\pi \) is injective the group \(G \) is free, as claimed. Otherwise, the kernel \(R \) of \(\pi \) is not reduced to the unit element, whence Lemma 2 gives us a subgroup \(F_1 \) of \(F \) having finite index in \(F \) and comprising \(R \) and, in addition, a basis \(X_1 \) of \(F_1 \) that contains an element \(r' \in R \). Since the function \(\text{rk} \) is multiplicative on \(F \), this basis has \((m-1) \cdot \text{card}(F/F_1) + 1\) elements, one of which lies in the kernel of \(\pi \), whence \(G_1 \) is generated by no more than \((\text{rk} \cdot G - 1) \cdot \text{card}(G/G_1)\) elements. The function \(\text{rk} \) is therefore not multiplicative on \(G \), contrary to hypothesis.

4. One may ask how far the function \(\rho = \text{rk} \cdot G \) can deviate from being multiplicative. For some groups an explicit answer is available. If, e.g., \(G \) is free abelian, the function \(\text{rk} \cdot G \) is constant; if \(G \) is an orientable surface group with presentation

\[
\langle a_1, b_1, \ldots, a_g, b_g \mid \prod_{i=1}^{g} [a_i, b_i] = 1 \rangle
\]

the facts that subgroups of finite index are again of this form and that the Euler characteristic is multiplicative imply the relation

\[
\rho(G_1) = [G : G_1] \cdot \rho(G) + (1 - [G : G_1]),
\]

valid for all subgroups \(G_1 \) of finite index in an orientable surface group.

5. I found the proof of Theorem 1 at the beginning of 1980 and communicated my argument to Alex Lubotzky; he encouraged me to turn my sketch into a formal proof. This task was carried out in 1981; the typescript was finished in December of that year. I sent one of my preprints to Jean-Pierre Serre; he commented on it in a long letter at the beginning of 1982. I am very grateful to him for his critical remarks and suggestions. They have been incorporated into this new, amended and abridged, version of my original note.

References

[Hig51] Graham Higman, *A finitely related group with an isomorphic proper factor group*, J. London Math. Soc. **26** (1951), 59–61. MR 0038347 (12,390b)

[LS01] Roger C. Lyndon and Paul E. Schupp, *Combinatorial group theory*, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1977 edition. MR 1812024 (2001i:20064)

[LvdD81] A. Lubotzky and L. van den Dries, *Subgroups of free profinite groups and large subfields of \(\mathbb{Q} \)*, Israel J. Math. **39** (1981), no. 1-2, 25–45. MR 617288

[MKS66] Wilhelm Magnus, Abraham Karrass, and Donald Solitar, *Combinatorial group theory: Presentations of groups in terms of generators and relations*, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1966. MR 0207802 (34 #7617)

[Sch27] Otto Schreier, *Die Untergruppen der freien Gruppen*, Abh. Math. Sem. Hamburg Univ. **5** (1927), 161–183.

[Ser77] Jean-Pierre Serre, *arbres, amalgames, \(SL_2 \)*, Société Mathématique de France, Paris, 1977, avec un sommaire anglais, rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46. MR 0476875 (57 #16426)