Acentralizers of Abelian groups of rank 2

Zahar Mozafar, Bijan Taeri

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

Let G be a group. The Acentralizer of an automorphism α of G, is the subgroup of fixed points of α, i.e., $C_G(\alpha) = \{ g \in G \mid \alpha(g) = g \}$. We show that if G is a finite Abelian p-group of rank 2, where p is an odd prime, then the number of Acentralizers of G is exactly the number of subgroups of G. More precisely, we show that for each subgroup U of G, there exists an automorphism α of G such that $C_G(\alpha) = U$. Also we find the Acentralizers of infinite two-generator Abelian groups.

Mathematics Subject Classification (2010). 20D45, 20D25

Keywords. automorphism, centralizer, acentralizer, finite groups

1. Introduction

Throughout the article, the usual notation will be used, for example \mathbb{Z}_n denotes the cyclic group of integers modulo n, \mathbb{Z}_n^* denotes the group of invertible elements of \mathbb{Z}_n. Let G be a group. We denote $\text{cent}(G) = \{ C_G(g) \mid g \in G \}$, where $C_G(g)$ is the centralizer of the element g in G. Then for any natural number n, a group is called n-centralizer if $|\text{cent}(G)| = n$. There are some results on finite n-centralizers groups (see [1–7,10,13,15]). The study of n-centralizer infinite groups was initiated in [9]. Let $\text{Aut}(G)$ be the group of automorphisms of G. If $\alpha \in \text{Aut}(G)$, then the Acentralizer of α in G is defined as

$$C_G(\alpha) = \{ g \in G \mid \alpha(g) = g \}$$

which is a subgroup of G. In particular, if $\alpha = \tau_a$ is an inner automorphisms of G induced by $a \in G$, then $C_G(\tau_a) = C_G(a)$ is the centralizer of a in G. Let $\text{Acent}(G)$ be the set of Acentralizers of G, that is

$$\text{Acent}(G) = \{ C_G(\alpha) \mid \alpha \in \text{Aut}(G) \}.$$

The group G is called n-Acentralizer, if $|\text{Acent}(G)| = n$.

It is obvious that G is 1-Acentralizer group if and only if G is a trivial group or \mathbb{Z}_2. Nasrabadi and Gholamian [12] proved that G is 2-Acentralizer group if and only if $G \cong \mathbb{Z}_4, \mathbb{Z}_p$ or \mathbb{Z}_{2p} for some odd prime p. Furthermore, they characterized 3, 4, 5-Acentralizer groups.

*Corresponding Author.

Email addresses: z.mozafar@math.iut.ac.ir (Z. Mozafar), b.taeri@cc.iut.ac.ir (B. Taeri)

Received: 05.06.2018; Accepted: 11.11.2018
Lemma 1.1 ([12]). Let H and T be finite groups. Then
\[|\text{Acent}(H)| |\text{Acent}(T)| \leq |\text{Acent}(H \times T)|. \]
In addition if $|H|$ and $|T|$ are relatively prime, then
\[|\text{Acent}(H)| |\text{Acent}(T)| = |\text{Acent}(H \times T)|. \]
Therefore, if G is a finite nilpotent group of order $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where p_i, $i = 1, \ldots, r$, are distinct primes and $k_i \geq 1$, then
\[|\text{Acent}(G)| = \prod_{i=1}^{r} |\text{Acent}(G_{p_i})|, \]
where G_{p_i}'s are the Sylow p_i-subgroup of G.

Thus in order to find the number of Acentralizers of a finite nilpotent (in particular Abelian) group G, it is enough to find the number of Acentralizers of its Sylow subgroups.

In this paper we compute $|\text{Acent}(G)|$, considering G to be a cyclic group of prime power order and of order $p_1^{k_1} \cdots p_r^{k_r}$, where p_i for $i = 1, \ldots, r$ are distinct primes, an elementary Abelian group of prime power order, group of the form $\mathbb{Z}_{p^m} \times \mathbb{Z}_{n^r}$, where m, n are positive integers and p is a prime and finally a free Abelian group of rank 2.

2. Preliminaries

We begin with computing of Acentralizers of finite cyclic groups. We show that if G is a cyclic group of odd order, then $|\text{Acent}(G)|$ is equal to the number of subgroups of G, while if $|G|$ is even, $|\text{Acent}(G)|$ is less than the number of subgroups of G.

Proposition 2.1. Let G be a cyclic group of order $m = p_1^{k_1} \cdots p_r^{k_r}$, where $p_1 < p_2 < \cdots < p_r$ are distinct primes and k_1, \ldots, k_r are positive integers. Then
\[|\text{Acent}(G)| = \begin{cases} (k_1 + 1) \cdots (k_r + 1) & \text{if } p_1 \neq 2 \\ k_1 (k_2 + 1) \cdots (k_r + 1) & \text{if } p_1 = 2 \end{cases} \]

Proof. First let $G = \langle a \rangle$ be a cyclic group of order p^n, where p is an odd prime and n a positive integer. For every $0 \leq k \leq n$, let $G_k = \langle a^{p^{n-k}} \rangle$ be the unique subgroup of G of order p^k. If α is defined as $\alpha(a) = a^{1+p^k}$, then α is an automorphism of G and
\[\alpha(a^{p^{n-k}}) = (a^{p^{n-k}})^{(1+p^k)} = a^{p^{n-k}} \]
and so $C_G(\alpha) = G_k$. Hence every subgroup of G is an Acentralizer of G and $|\text{Acent}(G)| = n + 1$. Similarly we can see that if $p = 2$, then every non-identity subgroup of G is an Acentralizer of G and $|\text{Acent}(G)| = n$.

Now suppose that G is a cyclic group of order $m = p_1^{k_1} \cdots p_r^{k_r}$, where p_i, $i = 1, \ldots, r$, are distinct odd primes. Then, by Lemma 1.1, $|\text{Acent}(G)| = (k_1 + 1) \cdots (k_r + 1)$, which is the number of subgroups of G. Also if G is a cyclic group of order $m = 2^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, where p_i, $i = 1, \ldots, r$, are distinct odd primes, then $|\text{Acent}(G)| = k_1 (k_2 + 1) \cdots (k_r + 1)$. Note that in this case the number of subgroups of G is $(k_1 + 1)(k_2 + 1) \cdots (k_r + 1)$. □

The following question arises naturally.

What is $|\text{Acent}(G)|$, where G is a finite Abelian group?

We show that an elementary Abelian p-group G is a m-Acentralizer group, where m is the number of subgroups of G. The proof of the following result is well-known which is brought for completeness.
Proposition 2.2. Let G be an elementary Abelian group of order p^n. Then $|\text{Acent}(G)|$ is the number of subgroups of G, that is

$$|\text{Acent}(G)| = c_0 + c_1 + \cdots + c_{n-1} + c_n,$$

where $c_0 = 1$ and $c_k = \frac{(p^n-1)(p^n-p)\cdots(p^n-p^{k-1})}{(p^k-1)(p^k-p)\cdots(p^k-p^{k-1})}$ for $k = 1, \ldots, n-1$.

Proof. We note that G is a vector space over \mathbb{Z}_p and for each $1 \leq k \leq n$, there are c_k subspaces of dimension k in V. To see this, first we count the number of k-element linearly independent subsets in G. Every such set generates a k-dimensional subspace of G. Let $\{v_1, \ldots, v_k\}$ be linearly independent. The vector v_1 (which is a non-zero vector) could be selected in $p^n - 1$ ways, the vector v_2 (which is not a multiple of v_1) in $p^n - p$ ways, \ldots, and v_k (which is not a linear combination of $v_1, v_2, \ldots, v_{k-1}$) in $p^n - p^{k-1}$ ways. So there are $t = (p^n - 1)(p^n - p)\cdots(p^n - p^{k-1})$ linearly independent k-element subsets of G.

Every basis of $W := \text{span}\{v_1, \ldots, v_k\}$ generate the same subspace and, as shown above, there are $s = (p^k - 1)(p^k - p)\cdots(p^k - p^{k-1})$ basis of W. Therefore there are t/s distinct k-dimensional subspaces of G.

We show that for every subspace W of V, there exists $\alpha \in \text{Aut}(V)$ such that α induces identity just on W, that is $C_V(\alpha) = W$. Let W be a k-dimensional subspace of V. Then there exists a subspace U of V such that $V = W \oplus U$. Let $\mathcal{S} = \{w_1, \ldots, w_k, u_1, \ldots, u_t\}$ be a basis of V, where $\{w_1, \ldots, w_k\}$ is a basis of W and $\{u_1, \ldots, u_t\}$ be a basis of U. If $t \geq 2$, then we can define α on V as follows: $\alpha(w_i) = w_i$, $i = 1, \ldots, k$, $\alpha(u_i) = u_1 + u_2$, $\alpha(u_i) = u_{i+1}$, $i = 2, \ldots, t - 1$, $\alpha(u_t) = u_1$. Thus α is an automorphism of V inducing identity just on W. If $t = 1$ then α can defined as $\alpha(w_i) = w_i$, $i = 1, \ldots, k$, $\alpha(u_1) = u_1 + w_1$. If $t = 0$, that is $W = V$, then α is the identity automorphism.

We can generalize the above result. In fact we can show that if V is a vector space over any field, then every subspace of V is a centralizer of an automorphism of V.

We need to know the structure of subgroups of direct products. We briefly recall the discussions on pages 34-36 of [14] about subgroups of direct products. A subgroup D of $G = H \times K$ such that $DH = G = DK$ and $D \cap H = \{1\} = D \cap K$ is called a diagonal in G (with respect to H and K). If $H \cong K$ and $\delta : H \rightarrow K$ is an isomorphism, then

$$D(\delta) = D(H, \delta) = \{x\delta(x) : x \in H\}$$

is a diagonal in G (with respect to H and K). Conversely, if D is a diagonal in G (with respect to H and K), then there exists a unique isomorphism $\delta : H \rightarrow K$ such that $D = D(\delta)$. Thus there is a bijection between diagonals (with respect to H and K) and isomorphisms of H to K.

Every subgroup U of a direct product $G = H \times K$ is a diagonal in a certain section of G. More precisely, there is natural isomorphism

$$\frac{UK \cap H}{U \cap H} \cong \frac{UK \cap K}{U \cap K}.$$
Conversely, let $W_1 \leq U_H \leq H$ and $W_2 \leq U_K \leq K$ be subgroups of direct factors. For every isomorphism $\delta : \frac{U_H}{W_1} \rightarrow \frac{U_K}{W_2}$ there exists a subgroup $U \leq G$ such that $U_H = UK \cap H, U_K = UH \cap K, W_1 = U \cap H$ and $W_2 = U \cap K$, namely

$$U = D(U_H, \delta) = \{xy : x \in U_H, y \in \delta(xW_1)\}.$$

Thus in order to recover the subgroups of $G = H \times K$ we need the isomorphisms between the sections (i.e., intervals in the subgroup lattice) in $\{[1], H\}$ respectively $\{[1], K\}$. Also every subgroup of a direct product $G = H \times K$ is a direct of the form $H_1 \times K_1$, where $H_1 \leq H$ and $K_1 \leq K$ or is a diagonal.

Set $G \cong \mathbb{Z}_{pm} \times \mathbb{Z}_{pn}$, where $1 \leq m \leq n$. First of all, we have the direct product of chains of length m respectively n, that is, $(m+1)(n+1)$ subgroups. Second, we have m
sections of order \(p \) from the first direct factor and \(n \) sections of order \(p \) from the second direct factor. Thus for each pair of 1-segments correspond to the isomorphisms \(\mathbb{Z}_p \rightarrow \mathbb{Z}_p \) of these sections we have \(p - 1 \) diagonals i.e., \(mn(p - 1) \).

Third, we have \(m - 1 \) sections of order \(p^2 \) from the first direct factor and \(n - 1 \) sections of order \(p^2 \) from the second direct factor. Thus for each pair of 2-segments correspond to the isomorphisms \(\mathbb{Z}_{p^2} \rightarrow \mathbb{Z}_{p^2} \) of these sections we have \(p^2 - p \) diagonals i.e., \((m - 1)(n - 1)(p^2 - p) \).

In general, for every \(k \in \{0, 1, \ldots, n - m\} \), we have \(m - (k - 1) \) sections of order \(p^k \) from the first direct factor and \(n - (k - 1) \) sections of order \(p^k \) from the second direct factor. Thus for each pair of \(k \)-segments correspond to the isomorphisms \(\mathbb{Z}_{p^k} \rightarrow \mathbb{Z}_{p^k} \) of these sections we have \(p^k - p^{k-1} \) diagonals i.e., \((m - k + 1)(n - k + 1)(p^k - p^{k-1}) \). Thus we have the following result.

Theorem 2.3 ([8]). Let \(G \cong \mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} \) with \(m \leq n \). Then, the number of subgroups of \(G \) is

\[
(m + 1)(n + 1) + \sum_{k=0}^{m-1} (m - k)(n - k)(p^{k+1} - p^k).
\]

Fix an isomorphism

\[
G \cong \mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n}
\]

with \(1 \leq m \leq n \) and let \(\mathbb{Z}_{p^m} \cong \langle a \rangle \), \(\mathbb{Z}_{p^n} \cong \langle b \rangle \). Given an endomorphism \(\alpha : G \rightarrow G \) we get \(\alpha(a) = a^i b^j \) and \(\alpha(b) = a^r b^s \), for some integers \(0 \leq i, r < p^m \) and \(0 \leq j, s < p^n \).

We indicate this situation by a matrix \(\begin{bmatrix} i & j \\ r & s \end{bmatrix} \). Observe that the relations \(a^{p^m} = 1 \) and \(b^{p^n} = 1 \) yield \(j \equiv 0 \pmod{p^{n-m}} \). Note that if \(n = m \), then certainly \(\text{Aut}(G) = \text{GL}_2(p^m) \), the group of invertible 2 \times 2 matrices over the ring \(\mathbb{Z}_{p^m} \) of integers \(\pmod{p^m} \).

Theorem 2.4 ([11, Corollary 3]). Let \(G \cong \mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} \) with \(m < n \). Then, the matrix

\[
\begin{bmatrix} i & r \\ j & s \end{bmatrix}
\]

represents

1. an endomorphism of \(G \) if and only if \(i \in \mathbb{Z}_{p^m} \), \(j \equiv 0 \pmod{p^{n-m}} \), \(r \in \mathbb{Z}_{p^n} \) and \(s \in \mathbb{Z}_{p^n} \);
2. an automorphism of \(G \) if and only if \(i \in \mathbb{Z}_{p^m} \), \(j \equiv 0 \pmod{p^{n-m}} \), \(r \in \mathbb{Z}_{p^n} \) and \(s \in \mathbb{Z}_{p^n} \).

3. Main results

In this section we compute \(|\text{Acent}(G)| \), where \(G \cong \mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} \). First we show that if \(p \)

is odd, then \(|\text{Acent}(G)| \) is equal to total number of subgroups of \(G \).

Theorem 3.1. Let \(G \cong \mathbb{Z}_{p^m} \times \mathbb{Z}_{p^n} \), where \(m \leq n \) and \(p \) is odd prime, then \(|\text{Acent}(G)| \) is equal to the number of subgroups of \(G \), that is

\[
|\text{Acent}(G)| = (m + 1)(n + 1) + \sum_{k=0}^{m-1} (m - k)(n - k)(p^{k+1} - p^k).
\]

Proof. Let \(G = A \times B, A = \langle a \rangle \cong \mathbb{Z}_{p^m}, B = \langle b \rangle \cong \mathbb{Z}_{p^n}, m \leq n \). Let \(\alpha \) be an automorphism of \(G \) such that \(\alpha(a) = a^i b^j \) and \(\alpha(b) = a^r b^s \), where \(0 \leq i, r < p^m \) and \(0 \leq j, s < p^n \). By Theorem 2.4, \(\gcd(i, p^m) = 1 \), \(\gcd(s, p^n) = 1 \), and \(j \equiv 0 \pmod{p^{n-m}} \). Since

\[
\alpha(a^x b^y) = (\alpha(a))^x (\alpha(b))^y = (a^i b^j)^x (a^r b^s)^y = a^{ix+ry} b^{jx+sy}
\]

we have
$$C_G(\alpha) = \{a^xb^y \mid \alpha(a^xb^y) = a^xb^y\}$$
$$= \{a^xb^y \mid a^{ix+ry}b^{ix+sy} = a^xb^y\}.$$
Hence the elements of $C_G(\alpha)$ is of the form a^xb^y, where (x, y) is a solution of the following equation
$$\begin{cases} ix + ry = x \pmod{p^m}, \\ jx + sy = y \pmod{p^n} \end{cases}$$
that is
$$\begin{cases} (i - 1)x + ry = 0 \pmod{p^m}, \\ jx + (s - 1)y = 0 \pmod{p^n}. \end{cases}$$
(1)
Let $A_u = \langle a^{p^{m-u}} \rangle$ be the unique subgroup of A of order p^u, $u = 0, 1, \ldots, m$; and let $B_v = \langle b^{p^{n-v}} \rangle$ be the unique subgroup of B of order p^v, $v = 0, 1, \ldots, n$. Then G has $(m + 1)(n + 1)$ subgroups of the form $A_u \times B_v$, $u = 0, \ldots, m$, $v = 0, \ldots, n$. For every $u = 0, \ldots, m$ and $v = 0, \ldots, n$ we find an automorphism α of G inducing identity just on $A_u \times B_v$. If we choose $i = 1 + p^u$, $j = 0$, $r = 0$, and $s = 1 + p^v$ then α defined by $\alpha(a) = a^{1+p^u}$ and $\alpha(b) = b^{1+p^v}$ is an automorphism of G, such that $C_G(\alpha) = A_u \times B_v$.

For every $k = 1, \ldots, m$ we have the diagonals corresponding to the automorphisms $\mathbb{Z}_{p^k} \rightarrow \mathbb{Z}_{p^k}$, which give $p^k - p^{k-1}$ diagonals for each pair of k-segments. So there are $(m - k + 1)(n - k + 1)(p^k - p^{k-1})$ diagonal subgroups corresponding to the automorphisms between sections of order p^k. We find these subgroups explicitly and automorphisms of G inducing identity just on these subgroups.

For every $u = k, \ldots, m$, $v = k, \ldots, n$ and for every t with $\gcd(p^k, t) = 1$, the isomorphism
$$\delta_k : A_u/A_{u-k} \rightarrow B_v/B_{v-k}$$
$$a^{p^{m-u}}A_{u-k} \rightarrow b^{p^{n-v}}B_{v-k}$$
gives a diagonal subgroup
$$D_{u,v,t} = \{xy \mid x \in A_u, y \in \delta_k(xA_{u-k})\}$$
$$= \{a^{p^{m-u}\ell_1}y \mid 1 \leq \ell_1 \leq p^u, y \in b^{p^{n-v}\ell_1}B_{v-k}\}$$
$$= \{a^{p^{m-u}\ell_1}b^{p^{n-v}\ell_1}b^{p^{n-(v-k)}}\ell_2 \mid 1 \leq \ell_1 \leq p^u, 1 \leq \ell_2 \leq p^{v-k}\}$$
$$= \{a^{p^{m-u}\ell_1}b^{p^{n-v}(\ell_1 t + \ell_2 p^k)} \mid 1 \leq \ell_1 \leq p^u, 1 \leq \ell_2 \leq p^{v-k}\}.$$
We find an automorphism of G inducing identity just on $D_{u,v,t}$. We must choose i, j, r, s such that $(p^{m-u}\ell_1, p^{n-v}(\ell_1 t + \ell_2 p^k))$ is a solution of (1) that is
$$\begin{cases} p^{m-u}(i - 1)\ell_1 + p^{n-v}(\ell_1 t + \ell_2 p^k) = 0 \pmod{p^m}, \\ p^{m-u}j\ell_1 + p^{n-v}(s - 1)(\ell_1 t + \ell_2 p^k) = 0 \pmod{p^n}. \end{cases}$$
If we choose $i = 1 + p^u$, $s = 1 + p^v$, $j = p^{n-m+u}$, and $r = p^{n-n+v}$, then α, defined by $\alpha(a) = a^{1+p^u}b^{p^{m-u}}$ and $\alpha(b) = b^{1+p^v}$, is an automorphism of G such that $C_G(\alpha) = D_{u,v,t}$.

Thus we have shown for every subgroup M of G there exists $\alpha \in \text{Aut}(G)$ such that $C_G(\alpha) = M$. Hence $|\text{Acent}(G)|$ is equal to total number of subgroups of G and the proof is completed.

To compute $|\text{Acent}(\mathbb{Z}_{2^m} \times \mathbb{Z}_{2^n})|$, we need to find the subgroups of $\mathbb{Z}_{2^m} \times \mathbb{Z}_{2^n}$, which are not Acentralizers.
Lemma 3.2. Let $G = A \times B$, $A = \langle a \rangle \cong \mathbb{Z}_{2^m}$, $B = \langle b \rangle \cong \mathbb{Z}_{2^n}$, $m \leq n$. The following subgroups are not centralizers of G.

1. $A_u = \langle a^{2^m-u} \rangle$, where $u = 0, 1, \ldots, m$.
2. $B_v = \langle b^{2^n-v} \rangle$, where $v = 1, 2, \ldots, n - m - 1$, and
3. $D_{u,v,t}$, where $k = v \leq u, u = k, \ldots, m, v = k, \ldots, n$ for every t with gcd$(2^k, t) = 1$ and $k = 1, \ldots, m$.

Proof. First we show that the element b^{2^n-1} is a unique element of order 2 in G, which is fixed by every automorphism of G. Let α be an automorphism of G. We know that $\alpha(a) = a^i b^j$ and $\alpha(b) = a^k b^s$, where $0 \leq i, j < 2^m$ and $0 \leq k, s < 2^n$. By Theorem 2.4, gcd$(i, 2^m) = 1$, gcd$(s, 2^n) = 1$, and $j \equiv 0 \pmod{2^{n-m}}$; so $i - 1$ and $s - 1$ are even. Therefore,

$$\alpha(b^{2^n-1}) = (a^i b^j)^{2^n-1} = a^{2^n-1} b^{2^n-1 s} = (a^2)^{2^{n-1} - 1} b^{2^n - 1(s-1)} b^{2^n - 1} = b^{2^n - 1}.$$

Since $b^{2^n-1} \notin A_u$, $u = 0, \ldots, m$, and $b^{2^n-1} \notin D_{u,v,t}$, $v \leq u$, it follows that A_u and $D_{u,v,t}$ are not centralizers.

We show the centralizer of α is not equal to B_v, $v = 1, 2, \ldots, n - m - 1$. Suppose that $C_G(\alpha) = B_v$. Then $b_v^{2^n-1} = \alpha(b_v^{2^n-1}) = a^{2^n-1} b^{2^n-1 s}$. Since $m + 1 \leq n - v \leq n - 1$, $a^{2^n-1} = 1$. Therefore $b_v^{2^n-1} = b^{2^n-1 s}$ so $b^{2^n-1(s-1)} = 1$. Hence $2^{n-1}(s-1) \equiv 0 \pmod{2^n}$.

If $s = 1$, then $\alpha(b) = a^i b$ and so $\alpha(b^{2^n-1}) = a^{2^n-1} b^{2^n-1 s} = b^{2^n-1}$. But $b^{2^n-1} \notin B_v$. Thus $s \neq 1$.

If $j = 0$, then $\alpha(a) = a^i$ and so $\alpha(a^{2^n-1}) = a^{2^n-1 i} = a^{2^n-1(i-1)} a^{2^n-1} = a^{2^n-1}$. But $a^{2^n-1} \notin B_v$. Hence $j \neq 0$. Since gcd$(2^n, s) = 1$, there exists t with $t = 1, \ldots, n - 1$, such that gcd$(2^n, s-1) = 2^t$. If $n - m - t \leq n - 1$, then $\alpha(b^{2^n-1}) = a^{2^n-1} b^{2^n-1 s} = b^{2^n(s-1)} b^{2^n} = b^{2^m}$. Thus $b^{2^n} \notin B_v$. Hence $1 \leq t \leq n - m - 1$. Hence $s - 1 = 2^t k'$ where k' is odd.

If $j = 2^{n-t} h$, where h is odd, then

$$\alpha(a^{2^n-1} b^{2^n-1}) = \alpha(a)^{2^n-1} \alpha(b)^{2^n-1} = a^{2^n-1} b^{2^n-1 j} = a^{2^n-1} b^{2^n-1}.$$

Since $2^{n-1} j + 2^{n-t}(s-1) = 2^n - 1 h + 2^{n-t} k' = 2^{n-1} (h + k')$ and $h + k'$ is even, $2^{n-1} j + 2^{n-t} (s-1) \equiv 0 \pmod{2^n}$, we have $\alpha(a^{2^n-1} b^{2^n-1}) = a^{2^n-1} b^{2^n-1}$. But $a^{2^n-1} b^{2^n-1} \notin B_v$.

If $j = 2^{n-m} h$, where h is even, then

$$\alpha(a^{2^n-1} b^{2^n-1}) = \alpha(a)^{2^n-1} \alpha(b)^{2^n-1} = a^{2^n-1} b^{2^n-1 j} = a^{2^n-1} b^{2^n-1}.$$

Since $2^{n-1} j + 2^{n-t} (s-1) = 2^n - 1 h + 2^t k' = 2^{n-1} (h + 2k')$ and $h + 2k'$ is even, $2^{n-1} j + 2^{n-t} (s-1) \equiv 0 \pmod{2^n}$. Hence $\alpha(a^{2^n-1} b^{2^n-1}) = a^{2^n-1} b^{2^n-1}$. But $a^{2^n-1} b^{2^n-1} \notin B_v$. Thus B_v is not an Automizer.

□
In the following theorem we show that $|\text{Acent}(G)|$, where $G \cong \mathbb{Z}_{2^m} \times \mathbb{Z}_{2^n}$ is less than the number of subgroups of G.

Theorem 3.3. Let $G \cong \mathbb{Z}_{2^m} \times \mathbb{Z}_{2^n}$, where $m \leq n$, then

$$|\text{Acent}(G)| = (m + 1)(n + 1) + \sum_{k=0}^{m-1} (m - k)(n - k)(2^{k+1} - 2^k) - (n - m - 2 + 2^{m+1}).$$

Proof. Using the notation of the proof of Theorem 3.1, we have,

$$\begin{cases}
(i - 1)x + ry = 0 \pmod{2^m}, \\
(jx + (s - 1)y = 0 \pmod{2^n}.
\end{cases}$$

Let $A_u = \langle a^{2^{m-u}} \rangle$ be the unique subgroup of A of order 2^u, $u = 0, 1, \ldots, m$; and let $B_v = \langle b^{2^{n-v}} \rangle$ be the unique subgroup of B of order 2^v, $v = 0, 1, \ldots, n$. Then G has $(m + 1)(n + 1)$ subgroups of the form $A_u \times B_v$, $u = 0, \ldots, m$, $v = 0, \ldots, n$. By Lemma 3.2, $A_u = \langle a^{2^{m-u}} \rangle$ for $u = 0, 1, \ldots, m$ and $B_v = \langle b^{2^{n-v}} \rangle$ for $v = 1, \ldots, n - m - 1$ are not Acentralizers. For every $u = 1, \ldots, m$ and $v = 1, \ldots, n$, we find an automorphism α of G inducing identity just on $A_u \times B_v$. If we choose $i = 1 + 2^u$, $j = 0$, $r = 0$, and $s = 1 + 2^v$ then defined by $\alpha(a) = a^{1+2^u}$ and $\alpha(b) = b^{1+2^v}$ is an automorphism of G, such that $C_G(\alpha) = A_u \times B_v$. For $u = 0$ and $v = n - m, \ldots, n$, we find an automorphism α of G inducing identity just on $A_u \times B_v$. If we choose $i = 1$, $j = 2^{m-r}$, $r = 2^{m-n+v}$, and $s = 1$ then defined by $\alpha(a) = ab^{2^{m-v}}$ and $\alpha(b) = a^{2^{m-n}+v}$ is an automorphism of G, such that $C_G(\alpha) = A_u \times B_v$. Also by Lemma 3.2, $D_{u,v,t}$, $v \leq u$ are not Acentralizers. For other $D_{u,v,t}$ the proof is similar to Theorem 3.1. Hence

$$|\text{Acent}(G)| = (m + 1)(n + 1) + \sum_{k=0}^{m-1} (m - k)(n - k)(2^{k+1} - 2^k) - (m + 1)(n + 1) + \sum_{k=0}^{m-1} (m - k)(n - k)(2^{k+1} - 2^k) - (n - m - 2 + 2^{m+1})$$

and the result follows. \hfill \Box

In the rest of the paper we find the Acentralizers of infinite two generator Abelian groups. We start with free Abelian groups. Let G be a free Abelian group of rank 2. Note that $\text{Aut}(G) = \text{GL}_2(\mathbb{Z})$, the group of invertible 2 by 2 matrices over \mathbb{Z}. If $\{a, b\}$ is a basis of G and α is an automorphism of G, then $\alpha(a) = ai^{ij}b^j$ and $\alpha(b) = a^r b^s$, where $i, j, r, s \in \mathbb{Z}$, and $i s - j r \neq 0$. Since

$$C_G(\alpha) = \{a^{x}b^{y} | a^{ix+ry}b^{ix+sy} = a^{x}b^{y}\},$$

the elements of $C_G(\alpha)$ is of the form $a^{x}b^{y}$, where (x, y) is a solution of the following equation

$$\begin{cases}
(i - 1)x + ry = 0 \\
jx + (s - 1)y = 0.
\end{cases}$$

Let H be a non-trivial subgroup of G. First suppose that $\text{rank}(H) = 1$. Then there exists a basis $\{a, b\}$ of G such that $\{a^{u}\}$, where u is a positive integer, is a basis of H. If $u = 1$, then $H = \langle a \rangle$ and so $H = C_G(\alpha)$, where α is an automorphism of G defined by $\alpha(a) = a$ and $\alpha(b) = ab$. We claim that if $u > 1$, then there is no automorphism α with $C_G(\alpha) = H$. Suppose that $C_G(\alpha) = H$, for some $\alpha \in \text{Aut}(G)$. Since $a^{u} = \alpha(a^{u}) = a^{uj}b^{ju}$, $j = 0$, and $i = 1$ and so $\alpha(a) = a$. Thus $\langle a \rangle \leq C_G(\alpha) = H$, and so $u = 1$, which is contradiction.
Suppose that \(\text{rank}(H) = 2 \). Then there exists a basis \(\{a, b\} \) of \(G \) such that \(\{a^u, b^v\} \), where \(u \) and \(v \) are positive integers with \(u \parallel v \), is a basis of \(H \). We find an automorphism \(\alpha \) such that \(H = C_G(\alpha) \). If \(u + v + 1 \neq 0 \), then we define \(\alpha(a) = a^{1+v}b^{-v} \) and \(\alpha(b) = a^{-u}b^{1+v} \) (that is \(i = 1 = v, j = -v, r = -u, \) and \(s = 1 = u \)). If \(u + v + 1 = 0 \), then we define \(\alpha(a) = a^{u^2+uv+1}b^{u^2+uv-2} \) and \(\alpha(b) = a^{-u^2}b^{1-u^2} \) (that is \(i = 1 = u^2 + v, j = u^2 + u - 2, \) \(r = -u^2, \) and \(s = 1 = 1 - u^2 \)). In any case it is easy to see that \(H = C_G(\alpha) \).

Let \(G = A \times B \), where \(A = \langle a \rangle \cong \mathbb{Z} \) and \(B = \langle b \rangle \cong \mathbb{Z}_m \). If \(\alpha \) is an automorphism of \(G \), then \(\alpha(a) = a^tb \) and since \(\alpha(b) \) is of finite order, \(\alpha(b) = b^s \), where \(\gcd(n, s) = 1 \). Since \(B \) is a characteristic subgroup of \(G \), it follows that a subgroup of \(A \) is not an Acentralizer of \(\alpha \).

Suppose that \(C \) is a subgroup of \(G \) and \(\alpha \) is an automorphism of \(G \) such that \(C = C_G(\alpha) \).

Case I: If \(i \neq 1 \), then \(x = 0 \). So \(C = C_G(\alpha) \) is a subgroup of \(B \). For any divisor \(d \) of \(n \), let \(B_d = \langle b^{n/d} \rangle \) be the unique subgroup of order \(d \). It is easy to see that such automorphism exists. In fact if we define \(\alpha(a) = a^tb \) and \(\alpha(b) = b^{1+d} \), then \(\alpha \) is an automorphism of \(G \) and \(C_G(\alpha) = B_d \).

Case II: If \(x
eq 0 \), then \(i = 1 \). Let \(t = \gcd(j, n) \). Then \(\alpha(a^{n/t}) = a^{n/t}b^{j/t} = a^{n/t}(b^{j/t})^n \) and so \(a^{n/t} \in C_G(\alpha) \). If \(a^{t} = a^{b^\ell} \), then \(a^\ell = a^{b^\ell} \) and \(n \mid j\ell \). Therefore \(\frac{n}{t} \mid \frac{j}{\ell} \). Hence \(x \) is a multiple of \(n/t \). It follows that \(b^{n/t} \in C_G(\alpha) \) and \(n \mid (s - 1)y \). Let \(v = \gcd(s - 1, n) \). Then \(\frac{n}{t} \mid \frac{s - 1}{v} \) and so \(\frac{n}{t} \mid y \). Hence \(b^{n/v} \in C_G(\alpha) \). It follows that \(C_G(\alpha) = \langle a^{n/t} \rangle \times \langle b^{n/v} \rangle \).

It is easy to see that such automorphism exists. In fact, if \(t \) and \(v \) are two arbitrary divisors of \(n \) then \(\alpha(a) = ab^t \) and \(\alpha(b) = b^{1+v} \) defines an automorphism of \(G \) and \(C_G(\alpha) = \langle a^{n/t} \rangle \times \langle b^{n/v} \rangle \).

Acknowledgment. The authors gratefully thank the anonymous referee for the constructive comments and recommendations which definitely helped to improve the readability and quality of the paper.

References

[1] A. Abdollahi, S.M.J. Amiri, and A.M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (1), 43–57, 2007.

[2] S.M.J. Amiri and H. Rostami, Centralizers and the maximum size of the pairwise noncommuting elements in finite groups, Hacet. J. Math Stat. 46 (2), 193–198, 2017.

[3] A.R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2), 139–146, 2000.

[4] A.R. Ashrafi, Counting the centralizers of some finite groups, J. Korean Comput. Appl. Math. 7 (1), 115–124, 2000.

[5] A.R. Ashrafi and B. Taeri, On finite groups with a certain number of centralizers, J. Appl. Math. Comput. 17 (12), 217–227, 2005.

[6] A.R. Ashrafi and B. Taeri, On finite groups with exactly seven element centralizers, J. Appl. Math. Comput. 22 (1-2), 403–410, 2006.

[7] S.M. Belcastro and G.J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (5), 366–374, 1994.

[8] Gr.G. Călugăreanu, The total number of subgroups of a finite Abelian group, Sci. Math. Jpn. 60 (1), 157–167, 2004.
A centralizers of Abelian groups of rank 2

[9] J. Dutta, A characterization of 4-centralizer groups, Chin. J. Math. (N.Y.) Article ID:871072, 2 pages, 2013.

[10] J. Dutta, On a problem posed by Belcastro and Sherman, Kyungpook Math. J. 56 (1), 121–123, 2016.

[11] M. Golasiński and D.L. Goncalves, On automorphisms of finite Abelian p-groups, Math. Slovaca 58 (4), 405–412, 2008.

[12] M.M. Nasrabadi and A. Gholamian, On finite n-Acentralizers groups, Comm. Algebra 43 (2), 378–383, 2015.

[13] R.K. Nath, Commutativity degree of a class of finite groups and consequences, Bull. Aust. Math. Soc. 88 (3), 448–452, 2013.

[14] R. Schmidt, Subgroup lattices of groups, De Gruyter Exp. Math., 14. Walter de Gruyter, 1994.

[15] M. Zarrin, On element-centralizers in finite groups, Arch. Math. (Basel) 93, 497–503, 2009.