Electronic Supplementary Information (ESI)

Catalytic ozonation of dichloromethane at low temperature and even room temperature on Mn-loaded catalysts

Yaxin Duana, Peixi Liua, Fawei Linb, Yong Hea, Yanqun Zhua, Zhihua Wanga

aState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
bSchool of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P.R. China

*Corresponding authors.
E-mail Address: wangzh@zju.edu.cn (ZH. Wang)
Fig. S1. DCM conversion curves at 100 ~ 450 °C of O₂ catalytic oxidation over the samples.

Fig. S2. Stability performance of the M/A-II with O₃/DCM=6 at 20 °C. (conditions: DCM initial concentration = 100 ppm; GHSV ≈ 30000 h⁻¹).
Fig. S3. (a) ~ (e) SEM and (f) ~ (j) EDS mapping images of all catalysts. (a) ~ (e) and (f) ~ (j) correspond to M/A-I, M/A-II, M/T, M/Z-I and M/Z-II in order, respectively.
Fig. S4. TEM images of all catalysts. (a) and (b) correspond to M/A-I, and (c) – (f) correspond to M/A-II, M/T, M/Z-I and M/Z-II, respectively. (Due to the lack of high photographic magnification, the M/A-I data can be roughly FFT measured to a lattice spacing of 2.41 Å, which can correspond to the converted lattice spacing of PDF# 04-0877 for Al₂O₃)
Fig. S5. N\textsubscript{2} adsorption and desorption isotherms and pore size distribution curves of Mn-loaded catalysts.

Fig. S6. Py-IR spectra of M/Z-II, M/T and M/A-II.
Fig. S7. XPS spectrum of S 2p after SO₂ single and both SO₂ and H₂O effect.

Fig. S8. Byproducts concentration of DCM ozone catalytic oxidation on M/A-II with the dynamic effects of SO₂.
Fig. S9. XPS spectrum of Cl 2p after (a) 20 °C stability test (b) 120 °C stability test and (c) 120 °C H₂O effect test; and the Mn 2p₂/₃ after catalytic ozonation on the M/A-II with the effects of (d) SO₂ and (e) simultaneous presence of water vapor and SO₂.
Fig. S10. Carbon/chlorine balance plots for all catalytic reactions in this study. (a) and (b) are the five catalysts carbon balance and chlorine balance from 20 to 120 °C reactions, respectively, corresponding to Fig. 2 (a) ~ (d) in the revised version; (c) is the reaction of changing the initial molar ratio of O₃/DCM at 120 °C on M/A-II, corresponding to Fig. 2 (e) ~ (f) in the revised version. (d) to (f) are the reactions at 120 °C on M/A-II when SO₂, water vapor, and both SO₂ and water vapor are introduced.
Fig. S11. By-products of catalytic ozonation of DCM at 20 °C and 120 °C on M/A-II measured by CG-MS after collection in adsorption tubes.

Table S1
Binding energy and species distribution of Mn 2p_{2/3} for M/A-II in different reaction environments.

Catalysts	Mn²⁺ (eV)	Mn³⁺ (eV)	Mn⁴⁺ (eV)	Mn²⁺/Mn (%)	Mn³⁺/Mn (%)	Mn⁴⁺/Mn (%)
Fresh M/A-II	/	642.68	644.43	/	69.84	30.16
SO₂ M/A-II	641.00	642.69	644.71	9.87	60.03	30.09
SO₂+H₂O M/A-II	641.08	642.96	644.79	7.92	59.36	29.50
Table S2
The specific information on the by-products of the exhaust gas detected by GC-MS after adsorption tube collection.

No.	Molecular name	Molecule formula	Molecular structure
1	Chloropropylene	C₃H₅Cl	![molecule](image)
2	Trichloromethane	CHCl₃	![molecule](image)
3	Carbon tetrachloride	CCl₄	![molecule](image)
4	1,2-dichloroethane	C₂H₂Cl₂	![molecule](image)
5	1,2-dichloropropane	C₃H₆Cl₂	![molecule](image)
6	1,1,2-trichloroethane	C₂H₅Cl₃	![molecule](image)
7	Tetrachlorethylene	C₂Cl₄	![molecule](image)
8	1,1,2,2-tetrachloroethane	C₂H₂Cl₄	![molecule](image)

According to Fig. S11, that all experiments have reached the carbon balance within 10% error range. For the chlorine balance, the visible chlorine balance only reaches 60 ~ 80% in the absence of water vapor. When a high concentration of water vapor was introduced, the value of Ratio of Cl\textsubscript{in-out} decreased to nearly zero and the visible chlorine balance was achieved. In addition, the carbon balance deviated from normal in Fig. S11 (a) when reacting on M/T at 20 ~ 60 °C. One reason is that M/T has poor low temperature performance and cannot oxidize DCM to CO\textsubscript{x}, thus generating more byproducts CH\textsubscript{3}OH which may compete with DCM. The second reason is the higher boiling point of CH\textsubscript{3}OH, i.e., CH\textsubscript{3}OH (64.7 °C) > DCM (39.8 °C), which could stay on the surface of M/T and affect the carbon balance. Similarly, in Fig. S11 (d), after the poisoning of M/A-II by the erosion of high concentration of SO\textsubscript{2}, more CH\textsubscript{3}OH production was detected at the same time. Therefore, it could be said that the poisoned M/A-II also had difficulty in resisting the CH\textsubscript{3}OH production and the carbon balance deviated from the normal.