Zero-temperature phase diagram for strongly correlated nanochains

Yan Luo, Claudio Verdozzi, and Nicholas Kioussis

Citation: Journal of Applied Physics 95, 7198 (2004); doi: 10.1063/1.1689611
View online: http://dx.doi.org/10.1063/1.1689611
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/95/11?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Phase diagram of compressively strained nickelate thin films
APL Mater. 1, 032110 (2013); 10.1063/1.4820431
Pressure-energy correlations in liquids. IV. "Isomorphs" in liquid phase diagrams
J. Chem. Phys. 131, 234504 (2009); 10.1063/1.3265957
Transport Properties of Strongly Correlated Electrons in Quantum Dots Using a Simple Circuit Model
AIP Conf. Proc. 850, 1384 (2006); 10.1063/1.2355222
Magnetic materials for finite-temperature quantum computing
J. Appl. Phys. 97, 10R511 (2005); 10.1063/1.1860832
Multistep switching phase diagram of ferromagnetic ring structures
J. Appl. Phys. 95, 6639 (2004); 10.1063/1.1689491
Zero-temperature phase diagram for strongly correlated nanochains

Yan Luo, a) Claudio Verdozzi, and Nicholas Kioussis b)
Department of Physics, California State University, Northridge, California 91330-8268

(Received on 8 January 2004)

Recently there has been a resurgence of intense experimental and theoretical interest on the Kondo physics of nanoscopic and mesoscopic systems due to the possibility of making experiments in extremely small samples. We have carried out exact diagonalization calculations to study the effect of the energy spacing Δ of the conduction band on the ground-state properties of a dense Anderson model nanochain. The calculations reveal for the first time that the energy spacing tunes the interplay between the Kondo and Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions, giving rise to a zero temperature Δ versus hybridization phase diagram with regions of prevailing Kondo or RKKY correlations, separated by a free spins regime. This interplay may be relevant to experimental realizations of small rings or quantum dots with tunable magnetic properties. © 2004 American Institute of Physics. [DOI: 10.1063/1.1689611]

The possibility of making experiments in extremely small samples has lead to a resurgence of both experimental and theoretical interest of the physics of the interaction of magnetic impurities in nanoscopic and mesoscopic nonmagnetic metallic systems. A few examples include quantum dots,1 quantum boxes,2 and quantum corrals.3 Recent scanning tunneling microscope experiments4 studied the interac-

...tuning$^{(3)}$ of number of conduction electrons on the interplay between the Kondo and RKKY interactions. While the cluster properties depend on cluster geometry and size,12 the present calculations treat exactly the Kondo and RKKY interactions. Our results show that tuning Δ and the parity of the total number of electrons can drive the nanocluster from the Kondo to the RKKY regime, giving rise to a zero-temperature energy spacing versus hybridization phase dia-
g...
bolsition from the RKKY to the Kondo regime.

As V increases, this is due to the fact that for smaller values of the hopping parameter of $t = 0.2$ (closed symbols) and $t = 1.2$ (open symbols), respectively. As expected, for weak hybridization V the local nearest-neighbor RKKY (Kondo) SCF is large (small), indicating strong short-range antiferromagnetic coupling between the f–f local moments, which leads to long range magnetic ordering for extended systems. As V increases, $\langle S_i^f S_{i+1}^f \rangle$ decreases, whereas the $\langle S_i^c S_i^c \rangle$ increases (in absolute value) saturating at large values of V. This gives rise to the condensation of independent local Kondo singlets at low temperatures, i.e., a disordered spin liquid phase. Interestingly, as t or Δ decreases the f–c spin correlation function is dramatically enhanced while the f–f correlation function becomes weaker, indicating a transition from the RKKY to the Kondo regime.

In Fig. 2 we present the average local f (circles) and c (squares) moments as a function of hybridization for two values of the hopping matrix element $t = 0.2$ (closed symbols) and $t = 1.2$ (open symbols), respectively. As with the local moment, the local nearest-neighbor RKKY SCF shows a strong dependence on the hybridization parameter V. The solid curve denotes the crossover point of the spin–spin correlation function in Fig. 1; the dashed curve denotes the set of points where the on-site total moment square $\langle (\mu_f^c)^2 \rangle$ vanishes. The effect of lowering the energy spacing Δ is to decrease (increase) the f (c) local moment, thus tuning the magnetic behavior of the system. Note that the maximum value of the c local moment increases as Δ decreases. This is due to the fact that for smaller t values the kinetic energy of conduction electrons is lowered, allowing conduction electrons to be captured by f electrons to screen the local f moment, thus leading to an enhancement of the local c moment.

In Fig. 3 we present the energy spacing versus V zero-temperature phase diagram of the nanocluster, which illustrates the interplay between Kondo and RKKY interactions. In the RKKY region $\langle S_i^f S_{i+1}^f \rangle$ is larger than the $\langle S_i^c S_i^c \rangle$ and kinetic energy of conduction electrons is lowered, allowing conduction electrons to be captured by f electrons to screen the local f moment, thus leading to an enhancement of the local c moment.
the total local moment is non zero; in the Kondo regime \(\langle S_i^z S_{i+1}^z \rangle \) is smaller than \(\langle S_i^z S_i^z \rangle \), the total local moment vanishes, and the ground state of the system is composed of independent local singlets. The solid curve indicates the crossover point, i.e., \(\langle S_i^z S_{i+1}^z \rangle = \langle S_i^z S_i^z \rangle \). The dashed curve denotes the set of points where the on-site total local moment \(\mu = 0 \). Thus, in the intermediate regime, which will be referred to as the free spins regime, \(\langle S_i^z S_{i+1}^z \rangle \) is smaller than \(\langle S_i^z S_i^z \rangle \), the \(f \) moment is partially quenched, and \(\mu \neq 0 \). Interestingly, we find that the free spins regime becomes narrower as the average level spacing \(\Delta \) is reduced. This result may be interpreted as a quantum critical regime for the nanochain due to the finite energy spacing, which eventually reduces to a quantum critical point when \(\Delta \to 0 \).

We have also examined the effect of changing \(N_{el} \) from \(N_{el} = 12 \) \((S_g = 0)\) to \(N_{el} = 11 \) \((S_g = 1/2)\) for \(t = 1 \). We find: (a) an enhancement of the local Kondo SCF \(\langle S_i^z S_{i+1}^z \rangle \) from \(-0.01\) to \(-0.12\) and (b) a suppression of the \(f-f \) SCF \(\langle S_i^z S_{i+1}^z \rangle \) from \(-0.58\) to \(-0.20\) (due to the broken symmetry for \(N_{el} = 11 \), the \(f-f \) SCFs range from \(-0.5\) to \(+0.02\)). This interesting tuning of the magnetic behavior can be understood in terms of the (single versus double) topmost occupied conduction level: For \(N_{el} \) even, double occupancy prevents spin-flip transitions, thus weakening the Kondo correlations.\(^2\)

In conclusion, we have carried exact diagonalization calculations which reveal that the: (1) energy spacing and (2) parity of \(N_{el} \) give rise to a tuning of the magnetic behavior of a dense Kondo nanochain. This interesting and important tuning can drive the nanocluster from the Kondo to the RKKY regime, i.e., a tunable \(\Delta \) versus \(V \) zero-temperature phase diagram at the nanoscale. The results indicate the presence of an intermediate free spins regime which becomes narrower as the energy spacing is reduced. Our conclusions should be relevant to experimental realizations\(^3\) of small clusters and quantum dots, with appropriate tuning of the energy spacing.

The research at California State University Northridge (CSUN) was supported through NSF under Grant Nos. DMR-0097187, NASA under Grant No. NCCS-513, and the Keck and Parsons Foundations grants. The calculations were performed on the the CSUN Massively Parallel Computer Platform supported through NSF under Grant No. DMR-0011656.

\(^1\)D. G. Gordon, H. Shtrikman, D. Mahalu, D. A. Magder, U. Meirav, and M. A. Kaster, Nature (London) 391, 15 (1998).
\(^2\)W. B. Thimm, J. Kroha, and J. V. Delft, Phys. Rev. Lett. 82, 2143 (1999).
\(^3\)H. C. Manoharan, C. P. Lutz, and D. M. Eigler, Nature (London) 403, 51 (2000).
\(^4\)T. W. Odom, J. L. Huang, C. L. Cheung, and C. M. Lieber, Science 290, 1549 (2000).
\(^5\)P. Schlottmann, Phys. Rev. B 65, 174407 (2002).
\(^6\)H. Hu, G. M. Zhang, and L. Yu, Phys. Rev. Lett. 86, 5558 (2001).
\(^7\)P. S. Cornaglia and C. A. Balseiro, Phys. Rev. B 66, 115303 (2002).
\(^8\)P. Simon and I.Affleck, Phys. Rev. Lett. 89, 206602 (2002).
\(^9\)P. Schlottmann, Phys. Rev. B 65, 024431 (2002).
\(^10\)R. Jullien and R. M. Martin, Phys. Rev. B 26, 6173 (1982).
\(^11\)K. Tsutsui, Y. Ohita, R. Eder, S. Maekawa, E. Dagotto, and J. Riera, Phys. Rev. Lett. 76, 279 (1996).
\(^12\)G. M. Pastor, R. Hirsch, and B. Mühlschlegel, Phys. Rev. Lett. 72, 3879 (1994).
\(^13\)B. Coqblin, C. Lacroix, M. S. Gusmao, and J. R. Iglesias, Phys. Rev. B 67, 064417 (2003).
\(^14\)A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. V. Löhneysen, E. Bucher, R. Tamazashvili, and P. Coleman, Nature (London) 407, 351 (2000).