Output Synchronization of Nonlinear Systems under Input Disturbances

He Bai† and S. Yusef Shafi‡

Abstract—We study synchronization of nonlinear systems that satisfy an incremental passivity property. We consider the case where the control input is subject to a class of disturbances, including constant and sinusoidal disturbances with unknown phases and magnitudes and known frequencies. We design a distributed control law that recovers the synchronization of the nonlinear systems in the presence of the disturbances. Simulation results of Goodwin oscillators illustrate the effectiveness of the control law. Finally, we highlight the connection of the proposed control law to the dynamic average consensus estimator developed in [1].

I. INTRODUCTION

Synchronization of diffusively-coupled nonlinear systems is an active and rich research area [2], with applications to multi-agent systems, power systems, oscillator circuits, and physiological processes, among others. Several works in the literature study the case of static interconnections between nodes in full state models [3]–[9] or phase variables in phase coupled oscillator models [10]–[13]. Additionally, the adaptation of interconnection weights according to local synchronization errors between agents is attracting increasing attention. The authors of [14] proposed a phase-coupled oscillator model in which local interactions were reinforced between agents with similar behavior and weakened between agents with divergent behavior, leading to enhanced local synchronization. Several recent works have considered adaptation strategies based on local synchronization errors [15]–[17]. Related problems for infinite-dimensional systems have been considered in [18], [19].

Common to much of the literature is the assumption that the agents to be synchronized are homogeneous with identical dynamics, and are furthermore not subject to disturbances. However, recent work has considered synchronization and consensus in the presence of exogenous inputs. In [1], the authors addressed the problem of robust dynamic average consensus (DAC), in which the use of partial model information about a broad class of time-varying inputs enabled exact tracking of the average of the inputs through the use of the internal model principle [20] and the structure of the proportional-integral average consensus estimator formulated in [21]. The problem of DAC is highly relevant to distributed estimation and sensor fusion [22]–[25]. In [26], the authors proposed an application of the internal model principle and the robust DAC estimator in [1] to distributed Kalman filtering. In [27], the internal model principle was used in connection with passivity to achieve adaptive motion coordination. The internal model principle has also been useful in establishing necessary and sufficient conditions for output regulation [28] and synchronization [29]–[31]. Reference [32] proposed internal model control strategies in which controllers were placed on the edges of the interconnection graph to achieve output synchronization under time-varying disturbances. Recent work has also addressed robust synchronization in cyclic feedback systems [33] and in the presence of structured uncertainties [34].

In this paper, we consider synchronization of nonlinear systems that satisfy an incremental passivity property and are subject to a class of disturbance inputs, including constants and sinusoids with unknown phases and magnitudes and known frequencies. Constant and sinusoidal disturbances are common in control systems, due to biases in outputs of sensors and actuators, vibrations, etc. Building on the robust DAC estimator in [1], we design a distributed control law that achieves output synchronization in the presence of disturbances by defining an internal model subsystem at each node corresponding to the disturbance inputs.

A key property of our approach is that local communication, computation and memory requirements are independent of the number of the systems in the network and the network connectivity, which is of interest in dense networks under processing and communication constraints. In contrast to the edge-based approach [32], which defines an internal model subsystem for each edge in the graph, our approach introduces such a subsystem only to each node, offering the advantage of a reduced number of internal states. Furthermore, it is easily extended to an adaptive setting where the interconnection strengths of the coupling graph are modified according to local synchronization errors.

We next relate the control law we have derived to the robust DAC estimators studied in [1], and show that a specific choice of node dynamics and control law allows us to verify conditions in [1, Theorem 2], guaranteeing that the output asymptotically tracks the average of the inputs. The present paper also provides a constructive approach to designing such a robust DAC estimator, which has not yet been addressed.

The rest of the paper is organized as follows. Section II reviews the output synchronization of incrementally passive systems, and provides examples using Goodwin oscillators illustrating the effect of disturbances. Our main result on output synchronization under disturbances is presented Section III. In Section IV, we illustrate the effectiveness of our control law using the example of Goodwin oscillators presented in Section III. In Section V, we demonstrate that the control law lends a constructive approach to designing a robust dynamic average consensus estimator. Conclusions and future work are discussed in Section VI.

Notation: Let 1_N be the $N \times 1$ vector with all entries 1. Let
I_N be the $N \times N$ identity matrix. The notation $\text{diag}(k_1, \cdots, k_n)$ denotes the n by n diagonal matrix with k_i on the diagonal. Let the transpose of a real matrix A be denoted by A^T.

II. OUTPUT SYNCHRONIZATION WITHOUT INPUT DISTURBANCES

In this section, we briefly review the output synchronization results presented in [35], and provide an illustrative example using Goodwin oscillators.

Consider a group of N identical Single-Input-Single-Output (SISO) nonlinear systems \mathcal{H}_i, $i = 1, \cdots, N$, given by

\begin{align}
\mathcal{H}_i: \quad & \dot{x}_i = f(x_i) + g(x_i)u_i \\
& y_i = h(x_i).
\end{align}

We assume that \mathcal{H}_i satisfies the incremental output-feedback passivity (IOFP) property, i.e., given two solutions of \mathcal{H}_i, $x_i(t)$ and $\tilde{x}_i(t)$, whose input-output pairs are $(u_i(t), y_i(t))$ and $(\tilde{u}_i(t), \tilde{y}_i(t))$, there exists a positive semi-definite incremental storage function $S(\delta x(t)) \in C^1$, with $S(0) = 0$ such that

\begin{equation}
S(\delta x(t)) \leq -\gamma(\delta y)^2 + \delta y \delta u
\end{equation}

where $\delta x = x_i - \tilde{x}_i$, $\delta y = y_i - \tilde{y}_i$, and $\delta u = u_i - \tilde{u}_i$, and $\gamma \in \mathbb{R}$. When $\gamma \geq 0$, \mathcal{H}_i is incrementally passive (IP). When $\gamma > 0$, \mathcal{H}_i is incrementally output-strictly passive (IOSP). It is easy to show that for linear systems, passivity and output-strict passivity are equivalent to IP and IOSP, respectively.

Example 1: Goodwin oscillators. Consider that each \mathcal{H}_i, $i = 1, \cdots, 4$, is a Goodwin oscillator described by

\begin{equation}
\mathcal{H}_i: \quad \begin{aligned}
\dot{x}_{i1} &= -b_1x_{i1} + (u_i - x_{i4}) \\
\dot{x}_{i2} &= -b_2x_{i2} + b_2x_{i1} \\
\dot{x}_{i3} &= -b_3x_{i3} + b_3x_{i2} \\
\dot{x}_{i4} &= \frac{1}{1 + x_{i3}} \\
y_i &= x_{i1}
\end{aligned}
\end{equation}

where $b_i > 0$, $i = 1, 2, 3$. In [35], the given Goodwin oscillator model (see equation (13) and Theorem 1 in [35]) was shown to be IOFP with

\begin{equation}
\gamma = -1 + \gamma_1\gamma_2\gamma_3\gamma_4\cos(\varphi_F)^k
\end{equation}

in which γ_j is the secant gain for the dynamics of x_{i_j}, $k = 1, 2, 3$, and γ_4 is the maximum slope of the static nonlinearity $-\frac{1}{1 + x}$ for $x > 0$. Given φ_F, we have $\gamma_1 = \frac{1}{p}$, $\gamma_2 = \frac{b_2}{b_1} = 1$, and $\gamma_3 = \frac{b_3}{b_3} = 1$.

In this example, we choose $b_k = 0.5$, $k = 1, 2, 3$, and $p = 20$. Therefore, $\gamma_1 = 2$, $\gamma_2 = \gamma_3 = 1$, and $\gamma_4 = 5$. Therefore, the Goodwin oscillator \mathcal{H}_i is IOFP with $\gamma = -0.75$, which means that \mathcal{H}_i possesses a shortage of incremental passivity.

The information flow between the \mathcal{H}_i systems is described by a bidirectional and connected graph G. If the bidirectional edge (i, j) exists in G, y_i and y_j are available to \mathcal{H}_i and \mathcal{H}_j, respectively. We denote by E the set of edges in G. We define a weighted graph Laplacian matrix L_p of G, whose elements are given by

\begin{equation}
(L_p)_{ij} = \begin{cases}
\sum_{k \in E} p_{ik} & i = j \\
-1 & i \neq j,
\end{cases}
\end{equation}

where $p_{ij} = p_{ji} \geq 0$, $p_{ij} > 0$ only if $(i, j) \in E$. Since G is undirected, L_p is symmetric and satisfies $1^T L_p = 0_N$ and $L_p 1_N = 0_N$. Let μ_2 be the second smallest eigenvalue of L_p. Because G is connected, $\mu_2 > 0$.

Theorem 2 in [35] showed that the outputs of each \mathcal{H}_i are asymptotically synchronized by the following control

\begin{equation}
u_i = -\sum_{u_j \in E} p_{ij} (y_i - y_j) \quad \forall i \in [1, \cdots, n],
\end{equation}

if solutions to the closed-loop system (1), (2), and (7) exist and $\mu_2 > -\gamma$. Letting $u = [u_1, \cdots, u_N]^T$ and $y = [y_1, \cdots, y_N]^T$, we obtain a compact form of (7):

\begin{equation}u = -L_p y.
\end{equation}

Example 2: Synchronization of four Goodwin oscillators. We consider four Goodwin oscillators and use the control in (7) to synchronize their outputs. If we choose $u_i = 0$, $\forall i$, the output of each system exhibits oscillations, as shown in Fig. 1. Because the initial conditions of the four Goodwin models are not the same, the oscillations are out of phase.

![Fig. 1. Because of different initial conditions, the outputs of four Goodwin oscillators are not synchronized when $u_i = 0$ in (4).](image)

We next implement the control (7). The graph G is chosen to be a cycle graph and all nonzero p_{ij} in (6) are set to 1. The second smallest eigenvalue of L_p, μ_2, is 2, satisfying $\mu_2 > -\gamma$. Fig. 2 shows that the outputs of these four oscillators are synchronized.

Now suppose that the input u_i is subject to some constant input disturbance ϕ_i, $i = 1, \cdots, 4$. That is, $u = \phi - L_p y$, where $\phi = [\phi_1, \cdots, \phi_N]^T$. The simulation result with $\phi = [0.26, 0.8, 0.05, 0.55]^T$ is shown in Fig. 3 where we observe that the outputs of the four Goodwin oscillators are not synchronized due to the nonidentical disturbances ϕ_i.

In the next section, we present a distributed design that recovers output synchronization in the presence of a class of input disturbances, including constants and sinusoids with unknown phases and magnitudes and known frequencies.
We consider the scenario where the input u_i for each \mathcal{H}_i is subject to a class of unknown disturbances $\phi_i(t) \in \mathbb{R}$, i.e.,

$$u_i = \bar{u}_i + \phi_i.$$

We assume that each disturbance ϕ_i can be characterized by

$$\dot{\xi}_i = A \xi_i, \quad \xi_i(0) \in \mathbb{R}^n$$

(10)

$$\phi_i = C \xi_i,$$

(11)

in which $A \in \mathbb{R}^{n \times n}$ satisfies $A = -A^T$ and the pair (A, C) is observable. Since the eigenvalues of A lie on the imaginary axis, ϕ_i can consist of both constants and sinusoids. We assume that the matrix A is available.

Our objective is to design the control \bar{u}_i such that the outputs of \mathcal{H}_i, $i = 1, \cdots, N$, synchronize. We consider the following control:

$$\bar{u}_i = - \sum_{(i,j) \in E} p_{ij}(y_i - y_j) - \sum_{(i,j) \in E} n_{ij}(\eta_i - \eta_j),$$

(12)

where p_{ij} is defined as in (6) and $n_{ij} = n_{ji} \geq 0$ and $n_{ij} > 0$ only if $(i, j) \in E$. The first term in (12) is the same as (7). For the second term, we design η_i to be the output of an internal model system G_i given by

$$G_i : \dot{\zeta}_i = A \zeta_i + B_i \sum_{(i,j) \in E} n_{ij}(y_i - y_j)$$

(13)

$$\eta_i = B_i^T \zeta_i,$$

(14)

where (A, B_i^T) is designed to be observable and $\zeta_i(0)$, the initial condition of ζ_i, may be arbitrarily chosen.

Because $A = -A^T$ and G_i is a linear system, it is straightforward to show that G_i is passive and thus incrementally passive from $\sum_{(i,j) \in E} n_{ij}(y_i - y_j)$ to η_i. We will make use of the incremental passivity of G_i to prove the synchronization of the outputs y_i in the presence of ϕ_i.

Theorem 1: Consider the nonlinear systems \mathcal{H}_i in (1) and (2) satisfying (3) with the input given in (9), (12), (13) and (14). Suppose that $\gamma + \mu > 0$. If the solutions are bounded, then the outputs y_i synchronize asymptotically:

$$\lim_{t \to \infty} (y_i(t) - \frac{1}{N} \sum_{i} y_i(t)) = 0, \quad \forall i \in \{1, \ldots, N\}.$$

(15)

Let $\bar{u}_i = [\bar{u}_1, \cdots, \bar{u}_N]^T$ and $\eta = [\eta_1, \cdots, \eta_N]^T$ and define another weighted graph Laplacian L_i as

$$(L_i)_{ij} = \begin{cases} \sum_{j} n_{ij} & i = j \\ -n_{ij} & i \neq j, \end{cases}$$

(16)

where $n_{ij} = n_{ji} \geq 0$, $n_{ij} > 0$ only if $(i, j) \in E$. Then the control in (12) can be rewritten as

$$\bar{u} = -L_p y - L_i \eta.$$

(17)

The diagram in Fig. 4 shows the closed-loop system given by (1), (2), (9), (12), (13) and (14).

We next employ the incremental passivity property of both \mathcal{H}_i and G_i and the symmetry of L_i to prove Theorem 1.
Proof: Define the orthogonal projection matrix $\Pi \in \mathbb{R}^{N \times N}$ by:

$$\Pi = I_N - \frac{1}{N} 1_N 1_N^T. $$

(18)

We first consider the storage function

$$V = \frac{1}{2N} \sum_{i=1}^{N} \sum_{j=1}^{N} \left[-\gamma (y_i - y_j)^2 + (y_i - y_j)(u_i - u_j) \right],$$

(19)

whose time derivative along (11) and (2) is given by

$$\dot{V} \leq \frac{1}{2N} \sum_{i=1}^{N} \sum_{j=1}^{N} \left[-\gamma (y_i - y_j)^2 + (y_i - y_j)(u_i - u_j) \right]$$

(20)

$$= -\gamma y^T \Pi y + y^T \Pi \mu,$$

(21)

The equality in (21) follows because

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \left[(y_i - y_j)(u_i - u_j) \right]$$

(22)

$$= \sum_{i=1}^{N} \left[(y_i 1_N - y)^T (u_i 1_N - u) \right]$$

(23)

$$= \sum_{i=1}^{N} \left[N y_i u_i + u^T 1_N y_i - y_i 1_N^T u - 1_N^T 1_N^T y_i u \right]$$

(24)

$$= 2Ny^T u - u^T 1_N y_i^T + y^T 1_N^T u = 2Ny^T \Pi u.$$

(25)

We substitute (9) into (21) and obtain

$$\dot{V} \leq -\gamma y^T \Pi y + y^T \Pi (\phi + \hat{\nu}).$$

(26)

Noting (17), we further get

$$\dot{V} \leq -\gamma y^T \Pi y + y^T \Pi (\phi - L_t \eta - L_p y)$$

(27)

$$= -y^T (\gamma \Pi + L_p y) y + y^T (\Pi \phi - L_t \eta).$$

We next consider auxiliary systems

$$\hat{z}_i = A_{\delta} z_i, \; \hat{z}_i(0) \in \mathbb{R}^n, \; i = 1, \cdots, N,$$

(28)

$$\lambda_i = B_{\delta}^T z_i,$$

(29)

where the initial conditions of $z_i, \hat{z}_i(0)$, will be chosen later, and define $\lambda = [\lambda_1, \cdots, \lambda_N]^T$. We let

$$\delta = [\delta_1, \cdots, \delta_N]^T.$$

(30)

with $\delta = [\hat{\delta}_1, \cdots, \hat{\delta}_N]^T$.

We claim that we can appropriately choose $\hat{z}_i(0), \; i = 1, \cdots, N$, such that

$$\Pi \phi = L_t \lambda.$$

(31)

To see this, we consider the following systems:

$$\hat{x}_i = A \hat{z}_i, \; \hat{x}_i(0) \in \mathbb{R}^n, \; i = 1, \cdots, N,$$

(32)

$$\hat{\phi}_i = C \hat{x}_i.$$

(33)

We define a $(N - 1) \times N$ matrix Q that satisfies $Q 1_N = 0$, $QQ^T = I_{N-1}$ and $Q^T Q = \Pi$. We let

$$\Gamma = Q^T (QLQ^T)^{-1} Q$$

(34)

and denote by Γ_{ij} the element at the ith row and jth column of Γ. The inverse of QLQ^T exists because 1_N spans the null spaces of L_I and Q. Note that Γ is the Moore-Penrose pseudoinverse of L_I.

We first show that choosing $\hat{\xi}_i(0) = \sum_{j=1}^{N} \Gamma_{ij} \hat{x}_j(0), \; i = 1, \cdots, N$ guarantees

$$\Pi \phi = L_t \phi.$$

(35)

where $\phi = [\hat{\phi}_1, \cdots, \hat{\phi}_N]^T$. Note that $\hat{\xi}_i(0) = \sum_{j=1}^{N} \Gamma_{ij} \hat{x}_j(0)$ results in $\phi = \Gamma \phi$. Using (35), we obtain

$$QLQ^T \phi = Q \phi.$$

(36)

Pre-multiplying (36) by Q^T and noting $Q^T Q L_I = \Pi L_I = L_I$ verify (35).

We next show that by selecting $z_i(0)$ in (28) appropriately, we ensure $\lambda = \hat{\phi}$ and achieve (31) due to (35). In particular, we choose $z_i(0) = O_B^{-1} O_C \hat{\xi}_i(0)$, where O_B is the observability matrix of (28) and (29) and O_C is the observability matrix of (32) and (33). Since $z_i(0) = O_B^{-1} O_C \hat{\xi}_i(t)$, $z_i(t) = O_B^{-1} O_C \hat{\xi}_i(t)$, which means $O_B z_i(t) = O_C \hat{\xi}_i(t)$. Noting that the first row of O_B and O_C is B_t^T and C, respectively, we have $\lambda_i = B_t^T z_i = C \hat{\xi}_i, \; i = 1, \cdots, N$.

Having proved that (31) can be achieved by appropriately selecting $z_i(0)$ in (28), we now consider the following storage function:

$$W = \frac{1}{2} \sum_{i=1}^{N} \delta_i^T \delta_i.$$

(37)

Using (13), (14), (28) and (29), we obtain:

$$W = \sum_{i=1}^{N} \delta_i^T B_i \sum_{(i,j) \in E} n_{ij} (y_i - y_j)$$

(38)

$$= (\eta - \lambda)^T L_I y.$$

(39)

The sum $Z = V + W$ yields

$$\dot{Z} = \dot{V} + \dot{W}$$

$$\leq -y^T (\gamma \Pi + L_p y) y + y^T (\Pi \phi - L_t \eta) + (\eta - \lambda)^T L_I y$$

$$= -y^T (\gamma \Pi + L_p y) y + y^T (\Pi \phi - L_t \eta)$$

(40)

By choosing $z_i(0)$ in (28) such that (31) is guaranteed, we have

$$\dot{Z} \leq -y^T (\gamma \Pi + L_p y) y.$$

(41)

Noting $y^T L_p y = (Qy)^T QL_p Q^T (Qy) \geq \mu_2 (Qy)^T Qy$, we obtain from (41)

$$Z \leq -y^T (\gamma \Pi + L_p y) y \geq 0.$$

(42)

By integrating both sides of (42), we see that Qy is in L_2. Furthermore, the boundedness of solutions implies that \dot{y}_i and thus y_i are bounded for all i. An application of Barbalat’s Lemma [36] implies that $Qy \rightarrow 0$ as $t \rightarrow \infty$. Thus, the $\Pi y \rightarrow 0$ as $t \rightarrow \infty$, which, together with (18), leads to (15).
ith node needs to maintain one internal model subsystem for each of its neighboring nodes. For our node-based approach, each node maintains only one internal model subsystem in total and the dimension of ζ_i is independent of the number of the nodes in the network and the number of neighbors of the ith nodes. This is advantageous in dense networks under processing and communication constraints. A comparison between the performance of the node-based and edge-based approaches is currently being pursued by the authors.

In [12], the two Laplacian matrices L_p and L_t are obtained from the same graph G with different weights p_{ij} and n_{ij}. Theorem 1 is easily extended to the case where L_p and L_t correspond to two different connected graphs. It is also straightforward to generalize Theorem 1 to Multiple-Input-Multiple-Output (MIMO) systems with possibly different graphs for each output.

Furthermore, we may incorporate adaptive updates of the weights p_{ij} and n_{ij} of the Laplacian matrices L_p and L_t according to

$$\begin{align*}
p_{ij} &= \alpha_{ij}(y_i - y_j)^2 \\
n_{ij} &= \beta_{ij}(y_i - y_j)^2
\end{align*}$$

when i and j are neighbors in the graphs represented by L_t and L_p, respectively, and with $\alpha_{ij} = \alpha_{ji} > 0, \beta_{ij} = \beta_{ji} > 0$. Such an update law increases the weights p_{ij} and n_{ij} according to the local output synchronization error between nodes i and j, and may be implemented at each node. In order to maintain symmetry, the gains would be chosen to satisfy $\alpha_{ij} = \alpha_{ji}$ and $\beta_{ij} = \beta_{ji}$, and each pair of nodes i and j would update weights beginning from the same initial conditions $p_{ij}(0) = p_{ji}(0), n_{ij}(0) = n_{ji}(0)$. In the event that the graphs for L_p and L_t were identical, only one set of weight updates would be necessary. The proofs and illustrations of these results are omitted in the interest of brevity, and an extended discussion will appear in a longer version of the paper.

IV. Motivating example revisited

We now implement our control law, given in (9) and (12), to recover the synchronization of the outputs of the four oscillators. All nonzero n_{ij} in (16) are set to 1. The initial conditions and the disturbance ϕ remains the same as in Example 2. Fig. 5 shows that the outputs of the oscillators are asymptotically synchronized. Note that Theorem 1 only guarantees the synchronization of the outputs y_i and may not recover the nominal oscillations of y_i shown in Fig. 2. In fact, as manifested in the proof of Theorem 1 (cf. (27) and (41)), the internal model based control $L_i \eta$ in (17) only compensates for the effects due to $\Pi \phi$, the difference between ϕ and $\frac{1}{N} N \phi$. Therefore, if $1^T \phi \neq 0$, the remaining disturbance $\frac{1}{N} N \phi$ still enters the system. However, it does not affect the synchronization.

We next present two examples where the oscillations of y_i can also be recovered.

1) $1^T \phi = 0$: As discussed above, if $1^T \phi = 0$, all the disturbances are compensated for by our control. We choose $\phi = [-0.155 \ 0.385 \ -0.365 \ 0.135]^T$ such that $1^T \phi = 0$. The simulation results in Fig. 6 illustrate that the outputs of the four Goodwin oscillators exhibit synchronized oscillations as in Example 2.

2) Synchronize with a reference: In this example, we suppose that for some H_i, say, $i = 1$, no disturbance enters H_1, that is, $\phi_1 = 0$. Then H_1 can be considered as a reference (a leader) and it can choose to implement $u_1 = -L_p^T y$, where L_p is the first row of L. The other oscillators have the same disturbance inputs as in Example 2 and implement (9) and (12). With the modification, the simulation results in Fig. 7 show the recovery of both the oscillation and the synchronization of the outputs.

V. Design of dynamic average consensus estimators

In this section, we establish the connection of the developed control in (12) with the dynamic average consensus (DAC) estimator studied in [1]. For the DAC problem, the
terms ϕ_i are considered useful inputs rather than disturbances, and the objective is to design \mathcal{H}_i and G_i such that the output y_i asymptotically tracks the average over all ϕ_i, i.e.,
$$\lim_{t \to \infty} \left(\frac{1}{N} \sum_{i=1}^{N} y_i(t) \right) = \frac{1}{N} \sum_{i=1}^{N} \phi_i(t) = 0.$$

We note that the structure shown in Fig. 4 is the same as the structure of the DAC estimators studied in [1] (cf. [1, Fig. 1]). In [1, Theorem 2], three conditions were developed to ensure that the objective in (44) is satisfied for a broad class of time-varying inputs, including constant, ramp, and sinusoidal inputs. However, [1] did not provide a specific design of DAC estimators that guarantees the three conditions for ϕ_i defined in (10) (11). We now provide a constructive approach to designing such a DAC estimator. We will show that the resulting DAC estimator consists of an IOSP \mathcal{H}_i and the G_i defined in (12)-(14).

We assume that \mathcal{H}_i is a linear time invariant system. In (13), we let $B_i = B, \forall i$. We also assume $L_p = L_1$. For the ease of discussion and comparison with [1], we convert the state space representations used in Section III to frequency domain. Towards this end, let the Laplace transforms of the disturbances ϕ_i in (10) and (11) be $\frac{\phi_i(s)}{u_i(s)}$, $i = 1, \ldots, N$. Due to the skew symmetry of A in (10), the $d(s)$ can be one of the following three forms:

$$d(s) = \begin{cases} s(s^2 + \omega^2_1)(s^2 + \omega^2_2) \cdots (s^2 + \omega^2_r), & r \geq 1 \\ (s^2 + \omega^2_1)(s^2 + \omega^2_2) \cdots (s^2 + \omega^2_r), & r \geq 1, \end{cases}$$

where $\omega_i > 0$ and $\omega_i \neq \omega_j, \forall i \neq j$. Let the order of $d(s)$ be m.

We denote by $h_i(s)$ and $g(s)$ the transfer function of \mathcal{H}_i from the input u_i to the output y_i, and the transfer function of G_i from $\sum_{i \in E} n_j(y_i - y_j)$ to η_i, respectively. Let $n_0(s)$ and $d_0(s)$ represent the numerator and denominator polynomials of a transfer function $g(s)$, respectively.

We claim that the objective in (44) is achieved with the control in (12) and $h_i(s)$ chosen in the form of
$$h_i(s) = h(s) = \frac{n_0(s)}{d(s) + n_0(s)}, \quad \forall i,$$

where $n_0(s)$ is a non-minimum stable polynomial of order $m - 1$ and ϵ is a sufficiently small positive constant. Note that when $m = 1$, that is, $d(s) = s$, we choose $n_0(s)$ to be a positive constant. We prove our claim by demonstrating that the control in (12) and $h_i(s)$ in (46) satisfy the three conditions specified in [1, Theorem 2].

We first show that condition a) in [1, Theorem 2] is satisfied. Note that $n_0(s) - d_0(s) = -\epsilon d(s)$, which ensures $d(s)|n_0(s) - d_0(s)|$). We now employ [37, Lemma] to show that $h(s)$ is strictly positive real (SPR) and thus $d_0(s)$ is a stable polynomial. To see this, we rewrite (46) as
$$h(s) = \frac{1}{\epsilon} \frac{n_0(s)}{d(s)}.$$

Because ϵ is sufficiently small and $n_0(s)$ is a stable polynomial of order $m - 1$, the conditions in [37, Lemma] are satisfied. Therefore, $h(s)$ is SPR and $d_0(s)$ is a stable polynomial. Note that because $h(s)$ is SPR, it holds that $h(s)$ is IFOP with $\gamma > 0$.

It is easy to verify from (13) and (45) that $d_0(s) = d(s)$ and thus condition b) in [1, Theorem 2] is satisfied.

Condition c) is equivalent to the stability of the transfer function $\frac{h(s)g(s)}{1 + h(s)g(s)} = (m + 1, s, \Lambda, \Lambda_i \geq 0)$, is stable [36] and thus the stability of $\frac{h(s)g(s)}{1 + h(s)g(s)}$ follows.

With the three conditions in [1, Theorem 2] verified, we conclude that (44) is achieved.

Our choice of $h(s)$ and $g(s)$ yields a constructive passivity-based design for a DAC estimator for constant and sinusoidal ϕ_i. Because $h(s)$ is SPR and thus IOSP, this design has the same structure shown in Fig. 4. It is a special case of [1, Theorem 2], which applies to a broader class of inputs, such as ramp signals.

We present a simulation example below to show the effectiveness of our design of $h(s)$ and $g(s)$.

A. Simulation

We choose $d(s) = (s^2 + 2s^2)s$, which means that the inputs ϕ_i are linear combinations of a constant and a $\frac{1}{2}$ Hz sinusoid. We first design $g(s)$ as
$$\begin{pmatrix} \dot{\xi}_r \\ \dot{\eta}_r \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} \xi_r \\ \eta_r \\ u \end{pmatrix}$$

Next we choose $h(s) = \frac{s + 0.4}{(s^2 + 2s^2 + s + 0.4)^2}$. From [37], we compute that for any $\epsilon < 1.25$, $h(s)$ is SPR. We select $\epsilon = 0.01$.

![Fig. 7. The outputs of the four Goodwin oscillators when $\phi_1 = 0$, and \mathcal{H}_i employs only the proportional feedback ϕ_i while the other \mathcal{H}_i ($i = 2, 3, 4$) implement ϕ_i and ϕ_i. Under this modification, the outputs also exhibit synchronized oscillations as in Example 2.](image-url)
work, we will demonstrate the use of adaptive updates of the coupling graph to reduce time to synchronize, and will address additional classes of disturbances and controller designs.

References

[1] H. Bai, R. A. Freeman, and K. M. Lynch, “Robust dynamic average consensus of time-varying inputs,” in 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010, pp. 3104–3109.
[2] J. Hale, “Diffusive coupling, dissipation, and synchronization,” Journal of Dynamics and Differential Equations, vol. 9, no. 1, pp. 1–52, 1997.
[3] M. Arcak, “Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems,” Automatica, vol. 47, no. 6, pp. 1219–1229, 2011.
[4] A. Pogromsky and H. Nijmeijer, “Cooperative oscillatory behavior of mutually coupled dynamical systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 2, pp. 152–162, 2001.
[5] W. Wang and J.-J. E. Slotine, “On partial contraction analysis for coupled nonlinear oscillators,” Biological Cybernetics, vol. 92, pp. 38–53, 2005.
[6] G. Stan and R. Sepulchre, “Analysis of interconnected oscillators by dissipativity theory,” IEEE Transactions on Automatic Control, vol. 52, no. 2, pp. 256–270, 2007.
[7] G. Russo and M. Di Bernardo, “Contraction theory and master stability function: linking two approaches to study synchronization of complex networks,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 2, pp. 177–181, 2009.
[8] L. Scardovi, M. Arcak, and E. Sontag, “Synchronization of interconnected systems with applications to biochemical networks: An input-output approach,” IEEE Transactions on Automatic Control, vol. 55, no. 6, pp. 1367–1379, 2010.
[9] L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized coupled systems,” Physical Review Letters, vol. 80, no. 10, pp. 2109–2112, 1998.
[10] Y. Kuramoto, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics. Springer, 1975, pp. 420–442.
[11] S. Strogatz, “From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators,” Physica D: Nonlinear Phenomena, vol. 143, no. 1, pp. 1–20, 2000.
[12] N. Chopra and M. Spong, “On exponential synchronization of Kuramoto oscillators,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 353–357, 2009.
[13] F. Dörfler and F. Bullo, “Exploring synchronization in complex oscillator networks,” arXiv Preprint: arXiv:1209.1335, 2012.
[14] S. Assenzo, R. Gutiérrez, J. Gómez-Gardeñes, V. Latora, and S. Boccaletti, “Emergence of structural patterns out of synchronization in networks with competitive interactions,” Scientific Reports, vol. 1, 2011.
[15] J. Zhou, J.-a. Lu, and J. Lu, “Adaptive synchronization of an uncertain complex dynamical network,” IEEE Transactions on Automatic Control, vol. 51, no. 4, pp. 652–656, 2006.
[16] P. DeLellis, M. DiBernardo, and F. Garofalo, “Novel decentralized adaptive strategies for the synchronization of complex networks,” Automatica, vol. 45, no. 5, pp. 1312–1318, 2009.
[17] W. Yu, P. DeLellis, G. Chen, M. di Bernardo, and J. Kurths, “Distributed adaptive control of synchronization in complex networks,” IEEE Transactions on Automatic Control, vol. 57, no. 8, pp. 2153–2158, 2012.
[18] M. A. Demetriou, “Design of consensus and adaptive consensus filters for distributed parameter systems,” Automatica, vol. 46, no. 2, pp. 300–311, 2010.
[19] ——, “Synchronization and consensus controllers for a class of parabolic distributed parameter systems,” Systems & Control Letters, vol. 62, no. 1, pp. 70–76, 2013.
[20] B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, pp. 457–465, 1976.
[21] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence properties of dynamic average consensus estimators,” in 45th IEEE Conference on Decision and Control. IEEE, 2006, pp. 338–343.
[22] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks and distributed sensor fusion,” in 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’05). IEEE, 2005, pp. 6698–6703.

[23] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman, “Decentralized environmental modeling by mobile sensor networks,” IEEE Transactions on Robotics, vol. 24, no. 3, pp. 710–724, 2008.

[24] J. Cortés, “Distributed kriged kalman filter for spatial estimation,” IEEE Transactions on Automatic Control, vol. 54, no. 12, pp. 2816–2827, 2009.

[25] T. Hatanaka and M. Fujita, “Cooperative estimation of averaged 3-d moving target poses via networked visual motion observer,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 623–638, 2013.

[26] H. Bai, R. A. Freeman, and K. M. Lynch, “Distributed kalman filtering using the internal model average consensus estimator,” in American Control Conference (ACC). IEEE, 2011, pp. 1500–1505.

[27] H. Bai, M. Arcak, and J. Wen, Cooperative Control Design A Systematic, Passivity-Based Approach, ser. Communications and Control Engineering. Springer, 2011, vol. 89.

[28] A. Pavlov and L. Marconi, “Incremental passivity and output regulation,” Systems & Control Letters, vol. 57, no. 5, pp. 400–409, 2008.

[29] P. Wieland, R. Sepulchre, and F. Allgöwer, “An internal model principle is necessary and sufficient for linear output synchronization,” Automatica, vol. 47, no. 5, pp. 1068–1074, 2011.

[30] P. Wieland, J. Wu, and F. Allgöwer, “On synchronous steady states and internal models of diffusively coupled systems,” IEEE Transactions on Automatic Control, vol. 58, no. 10, pp. 2591–2602, 2013.

[31] C. De Persis and B. Jayawardhana, “On the internal model principle in formation control and in output synchronization of nonlinear systems,” in 51st IEEE Annual Conference on Decision and Control (CDC). IEEE, 2012, pp. 4894–4899.

[32] M. Bürger and C. De Persis, “Internal models for nonlinear output agreement and optimal flow control,” in IFAC Symposium on Nonlinear Control Systems (NOLCOS), vol. 9, no. 1, 2013, pp. 289–294.

[33] A. O. Hamadeh, G.-B. Stan, and J. Gonçalves, “Robust synchronization in networks of cyclic feedback systems,” in 47th IEEE Conference on Decision and Control. IEEE, 2008, pp. 5268–5273.

[34] A. Dhawan, A. Hamadeh, and B. Ingalls, “Designing synchronization protocols in networks of coupled nodes under uncertainty,” in American Control Conference (ACC), 2012. IEEE, 2012, pp. 4945–4950.

[35] G.-B. Stan, A. Hamadeh, R. Sepulchre, and J. Gonçalves, “Output synchronization in networks of cyclic biochemical oscillators,” in American Control Conference (ACC), 2007, pp. 3973–3978.

[36] H. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice Hall, 2002.

[37] A. Steinberg, “A sufficient condition for output feedback stabilization of uncertain dynamical systems,” IEEE Transactions on Automatic Control, vol. 33, no. 7, pp. 676–677, July 1988.