Consumo de micronutrientes durante el embarazo y la lactancia
Micronutrient intake during pregnancy and lactation

Jorly Mejía-Montilla1,2, Nadia Reyna-Villasmil2b, Eduardo Reyna-Villasmil2c

RESUMEN
El estado nutricional adecuado de la mujer antes, durante y después del embarazo es fundamental para evitar complicaciones obstétricas y perinatales. Los micronutrientes son esenciales para el desarrollo materno y fetal. El embarazo tiene una demanda metabólica especial de nutrientes de alta calidad. Además, la ingesta adecuada de micronutrientes puede mejorar directamente la calidad de la leche materna. Los suplementos pueden satisfacer la creciente demanda de estos elementos durante el embarazo y la lactancia, reduciendo el riesgo de anomalías congénitas fetales, patologías obstétricas y desarrollo de enfermedades crónicas en la edad adulta. Sin embargo, existe información contradictoria sobre la eficacia y seguridad de los suplementos nutricionales durante el embarazo. Es importante que el personal médico pueda brindar consejos precisos y adecuados basados en evidencia sobre el consumo de suplementos durante el embarazo, ya que no todas las embarazadas necesitan utilizar suplementos en forma regular, pero es necesario identificar a las gestantes con riesgo de presentar alguna deficiencia. El objetivo de esta revisión fue analizar los efectos del consumo de micronutrientes en el embarazo y la lactancia.

Palabras clave. Vitaminas, Minerales, Micronutrientes, Embarazo, Lactancia.

ABSTRACT
Adequate nutritional status of women before, during and after pregnancy is essential to avoid obstetric and perinatal complications. Micronutrients are essential for maternal and fetal development. Pregnancy has a special metabolic demand for high quality nutrients. In addition, adequate micronutrient intake can directly improve the quality of breast milk. Supplements can meet the increased demand for these elements during pregnancy and lactation, reducing the risk of fetal congenital anomalies, obstetric pathologies and development of chronic diseases in adulthood. However, there is conflicting information on the efficacy and safety of nutritional supplements during pregnancy. It is important that medical personnel can provide accurate and appropriate evidence-based advice on supplementation during pregnancy, as not all pregnant women need to use supplements on a regular basis, but it is necessary to identify pregnant women at risk for deficiency. The objective of this review was to analyze the effects of micronutrient intake in pregnancy and lactation.

Key words: Vitamins, Minerals, Micronutrients, Pregnancy, Lactation.

Introducción:
El embarazo cambia los requerimientos de nutrientes y alimentos consumidos por la madre, lo que tiene impactos potenciales sobre la salud. Cualquier alteración nutricional puede afectar negativamente el crecimiento fetal, dando lugar a patologías como insuficiencia placentera, parto pretérmino y malformaciones fetales. Por tanto, la dieta de la embarazada debe ser equilibrada y variada, con suplementación individualizada de micronutrientes a dosis óptimas para alcanzar la salud materna y el correcto crecimiento fetal(1,2). No solo se debe satisfacer las necesidades energéticas durante el embarazo, sino también crear reservas energéticas a ser utilizadas durante la lactancia(3).

En las décadas previas no han existido directrices unificadas sobre el consumo de nutrientes durante el embarazo. El número insuficiente de estudios experimentales debido a las controversias éticas contribuyó a este hecho(4). Existen mitos sobre la nutrición de las embarazadas que circulan en los ámbitos sociales, independientemente del nivel socioeconómico y educativo(5,6).

Rev Peru Ginecol Obstet. 2021;67(4) 1
La demanda energética de las embarazadas cambia con relación al periodo preconcepcional. El aumento del peso corporal (desarrollo fetal, placentario y materno) es acompañado por incremento del metabolismo basal(3,7). La demanda energética por cada trimestre del embarazo se muestra en la tabla 1. El gasto energético adicional durante el primer trimestre es insignificante. Durante el segundo trimestre, la demanda energética está asociada al crecimiento de los tejidos maternos (volumen plasmático, aumento de volumen de los órganos reproductores y glándulas mamarias, acumulación de tejido adiposo) y en el tercer trimestre está marcado por el desarrollo fetal(8-10). La Organización Mundial de la Salud estimó que el gasto energético adicional durante el segundo y tercer trimestre del embarazo sería alrededor de 300 kcal/día(3).

Las deficiencias nutricionales, incluso en embarazadas con dietas adecuadas y variadas, pueden aparecer en forma selectiva, debido a contenidos dietéticos bajos de proteínas y a la capacidad individual de absorción y metabolismo de los nutrientes. Las principales deficiencias que pueden aparecer son: vitaminas (ácido fólico, vitamina D, A y E), minerales (hierro y yodo), macroelementos (magnesio y calcio) y ácidos grasos poliinsaturados(4,9). Los estudios nutricionales han mostrado que la dieta de las embarazadas generalmente carece de cantidades suficientes de ácido fólico, ácidos grasos poliinsaturados, hierro, yodo, vitamina D y otros minerales - vitaminas esenciales para la salud de materna y el desarrollo fetal(11,12). El objetivo de esta revisión fue analizar los efectos del consumo de micronutrientes en el embarazo y la lactancia.

Comunicaciones

Las deficiencias nutricionales, incluso en embarazadas con dietas adecuadas y variadas, pueden aparecer en forma selectiva, debido a contenidos dietéticos bajos de proteínas y a la capacidad individual de absorción y metabolismo de los nutrientes. Las principales deficiencias que pueden aparecer son: vitaminas (ácido fólico, vitamina D, A y E), minerales (hierro y yodo), macroelementos (magnesio y calcio) y ácidos grasos poliinsaturados(4,9). Los estudios nutricionales han mostrado que la dieta de las embarazadas generalmente carece de cantidades suficientes de ácido fólico, ácidos grasos poliinsaturados, hierro, yodo, vitamina D y otros minerales - vitaminas esenciales para la salud de materna y el desarrollo fetal(11,12). El objetivo de esta revisión fue analizar los efectos del consumo de micronutrientes en el embarazo y la lactancia.

Metodología de la búsqueda de la información

Entre julio y diciembre de 2020 se examinaron bases de datos electrónicas de literatura científica biomédica (UpToDate, OVIDSP, ScienceDirect, SciELO y PUBMED) para investigar los artículos elegibles en los últimos 21 años (2000 - 2021). De igual forma se buscaron los índices de las principales revistas mundiales y nacionales. Los términos de búsqueda en las bases de datos empleados fueron: “Consumo”, “Vitaminas”, “Micronutrientes”, “Minerales”, “Embarazo” y “Lactancia”, en inglés y en español, y estudios realizados en humanos. De un total de 35 artículos publicados, se eliminaron 5 por estar duplicados. De los 30 restantes, 2 fueron posteriormente excluidos por aportar datos insuficientes. En esta revisión se incluyó los aportes más relevantes vigentes sobre los efectos del consumo de vitaminas y minerales durante el embarazo y el periodo de lactancia.

Consumo de vitaminas y minerales en las embarazadas

El consumo de micronutrientes aumenta la posibilidad de buen resultado obstétrico y reducción del riesgo de complicaciones(13-16). Los estudios nutricionales muestran que cerca de la cuarta parte de las embarazadas admite utilizar diferentes suplementos durante la gestación, a pesar de la falta de recomendaciones médicas para su consumo(11). Los suplementos multivitaminicos están ampliamente disponibles y pueden adquirirse sin prescripción en establecimientos comerciales, por la creencia que son inofensivos. El consumo descontrolado de preparados con múltiples ingredientes -más allá del periodo adecuado a las necesidades clínicas- está asociado con riesgo de sobredosis e interacciones con otros fármacos prescritos(12). Por este motivo, es recomendable consultar al médico tratante antes de iniciar su consumo, pues es necesario considerar las características de la dieta, hábitos alimentarios y necesidades individuales de nutrientes de la gestante (por ejemplo, enfermedades crónicas). El mayor riesgo de efectos adversos está asociado al consumo excesivo de vitamina A, betacaroteno, calcio, cobre, flúor, hierro y zinc(13).

Hierro

Es un micronutriente esencial en el proceso de respiración tisular, formación de hemoglobina, síntesis de ADN y regulación del sistema inmunne. Además, mejora el metabolismo hepático y regula la concentración de colesterol. La deficiencia de hierro en embarazadas es común, principalmente por el bajo contenido dietético de hierro fácilmente digerible y la malabsorción.

Tabla 1. Demanda energética de las embarazadas.
Fase del embarazo
Primer trimestre
Segundo trimestre
Tercer trimestre

* Si la embarazada tiene un peso por debajo del peso normal (índice de masa corporal < 18.5 kg/m2), es necesario aumentar la ingesta energética durante el primer trimestre de embarazo.
Esta deficiencia conduce a anemia ferropénica, trastornos inmunes, patologías mentales y cardíacas. La anemia durante el embarazo aumenta el riesgo de parto pretérmino y de peso bajo al nacer(3).

Las fuentes alimenticias más ricas en hierro incluyen: carnes rojas (especialmente hígado), semillas de legumbres, huevos, semillas de calabaza y girasol, albaricoques secos, espinacas y col rizada. El hierro hemo en los productos animales se absorbe mejor que el no hemo que se encuentra en los alimentos vegetales. La coadministración de vitamina C y el pH ácido del tracto gastrointestinal facilitan la absorción, mientras que los alimentos ricos en fitatos (cereales y legumbres), taninos (té, café e infusiones de hierbas) y fibra dietética dificultan su captación(3).

Las dosis recomendadas son de 27 mg/día durante el embarazo y 20 mg/día durante la lactancia, las cuales deben aumentarse en casos de enfermedades gastrointestinal o en mujeres con dietas veganas o vegetarianas(9). Hasta el momento, no existen informes de intoxicación alimentaria. Son síntomas de sobredosis las náuseas, diarrea, vómitos, trastornos del sistema nervioso central, riñones, hígado y sistema cardiovascular.

En embarazadas con anemia conocida (concentraciones de hemoglobina menores a 11 mg/dL) es necesario iniciar la suplementación con preparaciones de hierro oral a dosis de 30 mg/día, aumentando hasta 60 y 120 mg/día, después de la octava semana de embarazo. Las sales de hierro tienen buenos efectos clínicos cuando se utilizan como tabletas orales de liberación prolongada. Además, tienen menos efectos secundarios gastrointestinal, alta biodisponibilidad de hierro elemental y mayor aceptación del tratamiento por las mujeres(17). Las embarazadas con riesgo de desarrollar anemia deben iniciar el consumo de suplementos a dosis de 20 mg/día antes de la concepción.

ÁCIDO FÓLICO

 Está presente en alimentos en 150 formas diferentes de folato (sales de ácido fólico). Es responsable de la regulación del crecimiento y la división celular, en especial del sistema digestivo, nervioso y hematopoyético. Su absorción se produce en el intestino delgado y posteriormente se une a las proteínas plasmáticas y es convertida en una coenzima involucrada en la síntesis de los ácidos nucleicos. El ácido fólico de los suplementos y medicamentos es una forma sintética estable que debe reducirse a tetrahidrofolato en las células para poder ser biológicamente activo(18).

El ácido fólico es fundamental en el período preconcepcional, durante el embarazo y en la lactancia. Está asociado a la disminución del riesgo de defectos del tubo neural, alteraciones cardíacas y urinarias congénitas fetales. Además, reduce el riesgo de aborto espontáneo y trombosis materna. La suplementación durante el segundo y tercer trimestre del embarazo previene la anemia megaloblastica secundaria a la deficiencia de vitamina B12 y folato(18).

La dosis recomendada de ácido fólico es de 0,4 mg/día y su consumo debe iniciarse 6 semanas antes de la concepción(11). En caso de antecedentes de defectos del sistema nervioso en embarazos previos, anemia megaloblastica, hiperhomocisteinemia, uso de fármacos que reducen la absorción de ácido fólico (por ejemplo, anticonceptivos orales y fármacos antiepilépticos), obesidad, antecedentes de hábito tabáquico o consumo de alcohol, la dosis puede aumentarse a 5 mg/día(11). La administración conjunta con otras vitaminas (B6 y B12) y vitamina C facilitan su absorción. La sobredosis, aunque rara, puede ser perjudicial durante el inicio del embarazo y aumenta el riesgo de complicaciones obstétricas(11).

Aproximadamente el 50% de la población femenina puede presentar alteraciones de la actividad de la enzima metiltetrahidrofolato reductasa, que limitan la absorción del ácido fólico, a pesar de su suministro adecuado. Estas mujeres, además de la dosis diaria, necesitan la suplementación simultánea de formas activas de folato en forma de sal de calcio(15,19).

CALCIO

Es el componente básico de dientes y huesos. Participa en la conducción neuromuscular, coagulación sanguínea, regulación de la función cardíaca y vasos sanguíneos. Junto al magnesio, es responsable del control de la presión arterial. El calcio de los productos vegetales se absorbe mucho menos debido a la presencia simultánea de fitatos y oxalatos, pero la suplementación si-
multánea con vitamina D y el consumo de lactosa aumenta la biodisponibilidad y facilitan su absorción(4).

La deficiencia de calcio aumenta la excitabilidad nerviosa y el riesgo de trastornos de la coagulación y puede provocar hipertensión arterial. Las deficiencias crónicas provocan raquitismo infantil y osteomalacia, junto a mayor riesgo de osteoporosis en la edad adulta. La hipercalcemia puede estar asociada con concentraciones elevadas de vitamina D y suplementos con alto contenido de calcio. Las fuentes alimenticias más ricas en calcio son leche, queso, yogur, pescados de los que se pueda comer las espinas (sardinas, anchoas) y mariscos (gambas, langostinos)(20). Hasta la fecha, no existen informes de casos de hipercalcemia con una dieta adecuada.

Los requerimientos diarios varían entre 800 y 1 000 mg/día en mujeres mayores de 19 años y 1 100 a 1 300 mg/día en mujeres menores de 19 años; en caso de ingesta insuficiente de calcio en la dieta, los requerimientos pueden aumentar hasta 1 200 mg/día. No obstante, se puede suplementar hasta 1 000 mg/día, dependiendo de las necesidades individuales de cada caso(20).

No existen evidencias suficientes de la efectividad del enriquecimiento de alimentos o administración de suplementos de calcio durante la etapa preconcepcional o inicial del embarazo para la prevención de complicaciones maternas y perinatales. Aunque los estudios publicados han mostrado algunos efectos benéficos, presentan deficiencias metodológicas (grupos muestrales pequeños y coadministración de otros suplementos y antioxidantes)(21).

VITAMINA D

Regula las concentraciones plasmáticas de calcio y fosfatos, afecta la mineralización ósea materno-fetal, modula las funciones de los sistemas hematopoyético e inmunológico, facilitando la adaptación para el mantenimiento del embarazo(6). Además, tiene propiedades antiproliferativas, por lo que puede ser útil en la prevención del cáncer gastrointestinal y mamario. También tiene efectos benéficos en la disminución del riesgo de condiciones como preeclampsia, diabetes gestacional, vaginosis bacteriana, enfermedades autoinmunes y enfermedades cardiovasculares(22,23).

El 80% de la vitamina D proviene de la síntesis cutánea luego de la exposición a la luz solar y el 20% restante es absorbido por el tracto gastrointestinal. En países con cuatro estaciones bien diferenciadas, la síntesis efectiva solo es posible en los meses de mayor cantidad de luz solar (parte de la primavera, del otoño y durante todo el verano). Para lograr concentraciones óptimas, el tiempo de exposición a la luz solar debe ser mayor de 30 minutos, sin el uso de cremas protectoras con filtros ultravioleta y que el 20% de la superficie corporal esté expuesta a la luz (por ejemplo, cara y antebrazos). La deficiencia conduce a alteraciones en la mineralización ósea (osteopenia u osteoporosis), trastornos inmunes y mayor riesgo de patologías neonatales e infantiles como raquitismo sintomático fetal, peso bajo y talla del recién nacido y menor desarrollo físico y mental durante el primer año de vida(22). La dosis recomendada es de 2 000 UI/día durante el periodo preconcepcional, embarazo y lactancia(1).

ÁCIDOS GRASOS POLIINSATURADOS OMEGA-3

Los ácidos grasos poliinsaturados son componentes básicos de la doble membrana lipídica celular. Tienen funciones fundamentales en la transmisión de impulsos eléctricos en los nervios periféricos y la retina. Además, regulan las concentraciones de lipoproteínas de baja densidad y triglicéridos, reduciendo el riesgo de aterosclerosis e hipertensión(24).

Entre los ácidos grasos poliinsaturados omega-3, el ácido docosahexaenoico es el más importante para el embarazo y la lactancia. Diferentes investigaciones han mostrado que tienen efectos benéficos sobre la resultante obstétrica - perinatal: aumento del peso del recién nacido (sin aumentar el riesgo de macrosomía), reducción del riesgo de parto pretérmino y correcto desarrollo psicomotor infantil en los primeros años de vida(25). El consumo adecuado en la dieta materna reduce el riesgo de alteraciones del estrés oxidativo y de los marcadores inflamatorios(26).

Los alimentos ricos en ácidos grasos poliinsaturados son pescado y otros mariscos (atún, arenques, y sardinas), nueces y semillas (linaza y chía) y aceites de plantas (linaza, y soja). La dosis recomendada es de 600 mg/día (preferiblemente antes de las 20 semanas de embarazo y durante el periodo de lactancia). En caso de ingesta in-
suficiente de fuentes naturales, dieta baja en ácidos grasos insaturados o riesgo elevado de parto pretérmino, puede elevarse hasta 1 000 mg/día(1). Hasta la fecha, no existen informes de sintomatología relacionada con sobredosis de ácidos grasos omega-3.

YODO

Es un elemento esencial para el funcionamiento de la glándula tiroides. La tiroxina y triyodotironina regulan el desarrollo y funcionamiento del sistema nervioso, muscular, cardíaco y renal. La ingesta insuficiente de yodo por la embarazada puede provocar el desarrollo de bocio materno y retraso mental en el recién nacido(4,14). En embarazadas con hipotiroidismo, existe aumento del riesgo de aborto espontáneo, muerte intrauterina del feto, parto pretérmino e hipotiroidismo infantil(27). Las necesidades durante el embarazo son de 160 μg/día y durante la lactancia de 210 μg/día(11).

MAGNESIO

Es un macroelemento intracelular importante ya que, junto al potasio, es necesario para la función de más de 300 enzimas. Participa en la síntesis de proteínas, conducción de los estímulos neuromusculares, termorregulación, control de la presión arterial y homeostasia mineral ósea(3). La deficiencia provoca apatía, debilidad y depresión. En las embarazadas, puede manifestarse con calambres musculares, una indicación para la suplementación(28). Las fuentes alimenticias ricas en magnesio son los cereales, legumbres, frutos secos, cacao, pescado y patatas.

Los requerimientos diarios varían entre 300 mg/día (embarazo) y 265 mg/día (lactancia) en mujeres mayores de 19 años a 335 mg/día (embarazo) y 300 mg/día (lactancia) en mujeres menores de 19 años. No obstante, se puede suplir hasta 1 000 mg/día dependiendo de las necesidades individuales de cada caso(9).

VITAMINA E

Es un antioxidante poderoso que protege contra el estrés oxidativo y el daño de las membranas celulares. Sus propiedades llevan al fortalecimiento de los vasos sanguíneos, interviene en la síntesis de los factores de coagulación y disminuye la agregación plaquetaria. Además, regula la función del tejido musculoesquelético. Sus principales sitios de depósito son el tejido adiposo y las glándulas suprarrenales(4,29).

La vitamina E está presente más comúnmente en productos de origen vegetal (aceites vegetales, aceitunas, nueces, almendras, girasol, calabaza, semillas de sésamo y legumbres). El requerimiento de las embarazadas es de 10 a 19 mg/día(29). La sintomatología del exceso de concentraciones consiste en fatiga, debilidad muscular y deterioro de las capacidades mentales. La deficiencia es rara y la suplementación está indicada en casos de enfermedades del tracto gastrointestinal y dietas pobres en ácidos grasos poliinsaturados(4).

VITAMINA A

Es una sustancia con propiedades antiinflamatorias, antioxidantes y antiproliferativas que está almacenada en el tejido adiposo. Contribuye con la regulación de la recepción de estímulos luminosos en la retina, responsable de la integridad de las membranas celulares y de la biosíntesis de melanina - colágeno, afectando el estado de la piel, cabello y uñas. Sus efectos antiinflamatorios y antiproliferativos contribuyen a la prevención del cáncer de colon, mama, próstata y pulmón(30).

La deficiencia de vitamina A (retinol) es rara y sus manifestaciones son visión borrosa, piel seca, cabello y uñas quebradizas. El exceso es tóxico y puede causar defectos congénitos fetales (alteraciones neurológicas y cardiovasculares). Las fuentes alimenticias más ricas incluyen al aceite de pescado, hígado, leche, productos lácteos, yema de huevo. El requerimiento de las embarazadas es de 770 μg/día y debe ser suplementada solo en casos muy específicos de enfermedades del tracto digestivo, inmunodeficiencia, estrés crónico o dieta deficiente en grasas(30).

CONCLUSIONES

El consumo adecuado de micronutrientes en embarazadas debe estar basado en características individuales, ya que esta no sustituye los efectos de una dieta variada y equilibrada. Una dieta inadecuada puede afectar negativamente la resultante materno-perinatal. La suplementación específica para cada deficiencia debe iniciarse en el periodo preconcepcional para minimizar el riesgo de complicaciones obstétricas y anomalías perinatales.
Referencias bibliográficas

1. Jouanne M, Oddoux S, Noël A, Voisin-Chiret AS. Nutrient requirements during pregnancy and lactation. Nutrients. 2021;13(2):692. doi: 10.3390/nu13020692

2. Persson PB, Persson AB. Foetal programming. Acta Physiol (Oxf). 2019;227(4):e13403. doi: 10.1111/apha.13403

3. Simeoni U, Armengaud JB, Siddeek B, Tolsa JP. Perinatal origins of adult disease. Neonatology. 2018;113(4):393-9. doi: 10.1159/000487618

4. Kot K, Kosik-Bogacka D, Lanocha-Arendarcyzyk N, Malinowski W, Szymański S, Mularczyk M, et al. Interactions between 14 elements in the human placenta, fetal membrane and umbilical cord. Int J Environ Res Public Health. 2019;16(9):1615. doi: 10.3390/ijerph16091615

5. Grieger JA, Hutchesson MJ, Cooray SD, Bahri Khomami M, Zaman S, Segan L, et al. A review of maternal overweight and obesity and its impact on cardiometabolic outcomes during pregnancy and postpartum. Ther Adv Repro Health. 2021;15:2633494120986544. doi: 10.1177/2633494120986544

6. Parisi F, di Bartolo I, Savasi VM, Cetin I. Micronutrient supplementation in pregnancy: Who, what and how much? Obstet Med. 2019;12(1):5-13. doi: 10.3390/ijerph16091615

7. Wendolowicz A, Staflańska E, Ostrowska L. Influence of selected dietary components on the functioning of the human nervous system. Roz Paniest Zakl. Hig. 2018;69(1):15-21.

8. Brown HL, Smith GN. Pregnancy complications, cardiovascular risk factors, and future heart disease. Obstet Gynecol Clin North Am. 2020;47(3):387-95. doi: 10.1016/j.ogc.2020.04.009

9. Jun S, Gahche JJ, Potischman N, Dwyer JT, Guenther PM, Saunder KA, et al. Dietary supplement use and its micronutrient contribution during pregnancy and lactation in the United States. Obstet Gynecol. 2020;135(3):623-33. doi: 10.1097/AOG.0000000000003657

10. Lackovic M, Filimonovic D, Mihajlovic S, Milicic B, Filipovic I, Rovcani M, et al. The influence of increased pregnancy body mass index and excessive gestational weight gain on pregnancy course and fetal and maternal perinatal outcomes. Healthcare (Basel). 2020;8(4):362. doi: 10.3390/healthcare8040362

11. Bailey RL, Pac SG, Fulgoni VL, Reidy KC, Catalano PM. Estimation of total usual dietary intakes of pregnant women in the United States. JAMA Netw Open. 2019;2(6):e195967. doi: 10.1001/jamanetworkopen.2019.5967

12. Diab L, Krebs NF. Vitamin excess and deficiency. Pediatr Rev. 2018 Apr;39(4):161-79. doi: 10.1542/pir.2016-0068

13. KinsSELLA MW, Omar S, ScherinBsky K, Vidler M, Magee LA, von Dadelszen P, et al. Effects of maternal nutritional supplements and dietary interventions on placental complications: An umbrella review, meta-analysis and evidence map. Nutrients. 2021;13(2):472. doi: 10.3390/nu13020472

14. Ramakrishnan U, Grant FK, Goldenberg T, Bui V, Imdad A, Bhutta ZA. Effect of multiple micronutrient supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:153-67. doi: 10.1111/j.1365-3016.2012.01276.x

15. Zhang Y, Zhou H, Perkins A, Wang Y, Sun J. Maternal dietary nutrient intake and its association with preterm birth: A case-control study in Beijing, China. Nutrients. 2017;9(3):221. doi: 10.3390/nu9030221

16. Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of early nutrition, physical activity and sleep on the fetal programming of disease in the pregnancy: A narrative review. Nutrients. 2020;12(12):3900. doi: 10.3390/nu12123900

17. Garzon S, Cacciato PM, Certelli C, Salvaggio C, Magliarditi M, Rizzo G. Iron deficiency anemia in pregnancy: novel approaches for an old problem. Oman Med J. 2020;35(5):e166. doi: 10.5001/omj.2020.108

18. Heseker H. Folic acid and other potential measures in the prevention of neural tube defects. Ann Nutr Metab. 2011;59(1):41-5. doi: 10.1159/000323216

19. Li WX, Dai SX, Zheng JJ, Liu JQ, Huang JF. Homocysteine metabolism gene polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) jointly elevate the risk of folate deficiency. Nutrients. 2015;7(8):6670-87. doi: 10.3390/nu7085303

20. Singh RB, Mishra S, Kumar S, Tiwari AM, De Meester F, Goyal RK, Kartikey K, Singh M. Micronutrient formulations for prevention of complications of pregnancy. Front Biosci (Schol Ed). 2018;10:175-84. doi: 10.2741/s507

21. Hofmeyr GJ, Manyame S. Calcium supplementation commencing before or early in pregnancy, or food fortification with calcium, for preventing hypertensive disorders of pregnancy. Cochrane Database Syst Rev. 2017;9(9):CD011192. doi: 10.1002/14651858.CD011192.pub2

22. Palacios C, Kostiku LK, Peña-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. 2019;7(7):CD008873. doi: 10.1002/14651858.CD008873.pub4

23. Ramasamy I. Vitamin D Metabolism and guidelines for vitamin D supplementation. Clin Biochem Rev. 2020;41(3):103-26. doi: 10.33176/ACAB-20-00006

24. Harris MA, Reece MS, McGregor JA, Wilson JW, Burke SM, Wheeler M, et al. The Effect of Omega-3 docosahexaenoic acid supplementation on gestational length: randomized trial of supplementation compared to nutrition education for increasing n-3 intake from foods. Biomed Res Int. 2015;2015:26. doi: 10.33176/AACB-20-00006

25. Makrides M. ω-3 fatty acids in pregnancy: Time for action. J Nutr. 2019;149(4):549-50. doi: 10.1093/jn/nxy309

26. Sley EG, Rosen EM, van’t Erve TJ, Sathyanarayana S, Barrett ES, Nguyen RHN, et al. Omega-3 fatty acid supplement use and oxidative stress levels in pregnancy. PLoS One. 2020;15(10):e0240244. doi: 10.1371/journal.pone.0240244

27. Henjum S, Aakre I, Lilleengen AM, Garnweidner-Holme L, Borthne S, Pajalic Z, et al. Suboptimal iodine status among pregnant women in the Oslo Area, Norway. Nutrients. 2020;12(10):e123078. doi: 10.3390/nu1210123078

28. Makrides M, Crosby DD, Bain E, Cawther CA. Magnesium supplementation in pregnancy. Cochrane Database Syst Rev. 2014;2014(4):CD000937. doi: 10.1002/14651858.CD000937.pub2

29. Aziz A. Many tocopherols, one vitamin E. Mol Aspects Med. 2018;61:92-103. doi: 10.1016/j.mam.2017.06.004

30. Gannon BM, Jones C, Mehta S. Vitamin A requirements in pregnancy and lactation. Curr Dev Nutr. 2020;4(10):nzaa142. doi: 10.1093/cdn/nzaa142