Supporting Information

Thermodynamics of the Isomerization of Monoterpene Epoxides

Julián E. Sánchez-Velandiaa,b,c, Jaime-Andrés Becerraa, Sol. M. Mejíab, Aída L. Villaa,*, Fernando Martínez Oc.

aUniversidad de Antioquia UdeA, Engineering Faculty, Chemical Engineering Department, Environmental Catalysis Research Group, Calle 70 No. 52–21, 1226, Medellín, Colombia.

bFacultad de Ciencias, Departamento de Química, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ) - Línea de investigación en Química Computacional- Pontificia Universidad Javeriana, Bogotá, Colombia.

cCentro de Investigación en Catálisis, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia

*Correspondence to: Aída-Luz Villa, Universidad de Antioquia UdeA, Engineering Faculty, Chemical Engineering Department, Environmental Catalysis Research Group, Calle 70 No. 52–21, 1226, Medellín, Colombia. E-mail: aida.villa@udea.edu.co. Phone: (574) 2198535.

CONTENT

1. Group Contribution Methods for calculating thermodynamic properties

1.1. Benson (B)
1.2. Joback-Reid (JR)
1.3. Constantinou-Gani (CG)
1.4. Ghasemitabar-Movagharnejad (GM)
1.5. Tahami-Movagharnejad-Ghasemitabar (TMG)
1.6. Abdi-Movagharnejad-Ghasemitabar (AMG)

LIST OF FIGURES

Figure S1. Tendencies of enthalpy and Gibbs free energy of reaction as a function of reciprocal of dielectric constant for a) \(\alpha\)-pinene epoxide isomers and b) \(\beta\)-pinene epoxide isomers.
1. Group Contribution Methods for calculating thermodynamic properties

1.1. Benson method (B)

The Benson method is the most used group contribution methodology to estimate thermodynamic properties of organic compounds. Benson et al. developed a technique for estimating the standard enthalpy of formation \(\Delta H_f^{\circ},298 \) in gas phase Eq. (S1). The principle of its procedure is to calculate the properties by the partial addition of group contributions \(n_k \) composing molecules whose values are found in the literature [1]. The contribution of each group \(k \) in the standard enthalpy of formation is given by \(H_f^{\circ},298_k \).

\[
H_f^{\circ},298 = \sum_k n_k H_f^{\circ},298_k
\]

(S1)

In this method the group is expressed as E-(A)\(_x\)(B)\(_y\)(C)\(_z\), where E is the central atom, typically C, C\(_{\text{dbl}}\) (sp\(^2\) or double bond carbon) or O. The elements (A, B, C) correspond to groups which are bound to the central atom, and the subscripts \(x, y \) and \(z \) refer to the amount of the respective atom bonded.

1.2. Joback-Reid method (JR)
The Joback-Reid is a group contribution method for the estimation of physical properties of pure compounds (normal boiling point \(T_b \), normal freezing point \(T_f \), critical pressure \(P_c \), critical temperature \(T_c \), critical volume \(V_c \), ideal gas enthalpy of formation \(\Delta H_{o,298}^f \), ideal gas Gibbs energy of formation \(\Delta G_{o,298}^f \), ideal gas heat capacities \(\Delta C^o_p \), normal enthalpy of vaporization \(\Delta H_{vb} \), and enthalpy of fusion \(\Delta H_f \)), by Eq. (S2) to Eq. (S11). It uses a common set of structural groups. High accuracy is not claimed, but the methods is often as accurate as or more accurate than other techniques in common use.

\[
T_b = 198.2 + \sum \\
T_f = 122.5 + \sum \\
T_c = T_b \left[0.584 + 0.965 \sum - \left(\sum \right)^2 \right]^{-1} \\
P_c = \left(0.113 + 0.0032n_A - \sum \right)^{-2} \\
V_c = 17.5 + \sum \\
\Delta H_{o,298}^f = 68.29 + \sum \\
\Delta G_{o,298}^f = 53.88 + \sum \\
\Delta C^o_p = \sum (a) - 37.93 + [\sum (b) + 0.210]T + [\sum (c) - 3.91 \times 10^{-4}]T^2 \\
\quad + [\sum (d) + 2.06 \times 10^{-7}]T^3 \\
\Delta H_{vb} = 15.30 + \sum \\
\Delta H_f = -0.88 + \sum
\]

The notation \(\sum \) indicates that, for the particular property of interest, one sums the product of the number of times a group appears in the compound and the group contributions [2].

1.3. Constantinou-Gani method (CG)
Constantinou and Gani developed a group contribution method for the estimation of properties of pure organic compounds. In this method the estimation comprises two levels of contributions: the basic level uses contribution for first-order groups i and in the second level a small set of second-order group contributions j are introduced. The methodology is useful in the estimation of normal boiling point T_b, critical properties (temperature T_c, pressure P_c, and volume V_c), normal melting point T_m, standard enthalpy of vaporization at 298 K ΔH_v, standard Gibbs energy ΔG_f and standard enthalpy of formation at 298 K ΔH_f, by Eq. (S12) to Eq. (S19).

The first and second order group contributions data and the values of the additional adjustable parameters in the equations are presented in the main reference of the method [3]. Table S1 shows an application example of the method in the estimation of pinocarveol properties.

Table S1. Example of Pinocarveol properties estimation by Constantinou-Gani method.
Pinocarveol

t_{ci}	p_{ci} (bar^{0.5})	v_{ci} (m^{3}/kmol)	t_{bi}	t_{mi}	h_i (kJ/mol)	g_f (kJ/mol)	h_{ci} (kJ/mol)	n
1.6781	0.019904	0.07504	0.8894	0.464	-45.947	-8.03	4.116	2
3.492	0.010558	0.05576	0.9225	0.9246	-20.763	8.231	4.65	2
4.033	0.001315	0.03153	0.6033	0.3557	-3.766	19.848	2.771	3
4.8823	-0.010404	-0.00034	0.2878	1.6479	17.119	93.745	1.284	1
8.9582	0.01259	0.07327	1.7957	2.0018	64.145	88.402	6.797	1
9.7292	0.005148	0.03897	3.2152	3.5979	-181.422	-158.589	24.529	1

First-order groups

4-ring	6-ring	CH-CH_{m}=CH_{a}	CH_{m,cyclic}-OH
-1.2978	0.847999	-0.385	0.3233
0.001171	0.002257	0.005675	0.006917
-0.00851	0.01636	0.00826	-0.02297
0.3563	0.1957	-0.09	-0.069
99.455	1.5656	-0.2361	9.5209
92.573	-9.66	4.504	-16.333
1	1	2	1

Second-order groups

Properties	\(T_c (K) \)	\(P_c \) (bar)	\(V_c \) (m^{3}/kmol)	\(T_b (K) \)	\(T_m (K) \)	\(\Delta H_{f,298} \) (kJ/mol)	\(\Delta G_{f,298} \) (kJ/mol)	\(\Delta H_{v,298} \) (kJ/mol)
	689.9	27.91	0.4651	490.7	315.2	-151.57	149.61	69.70

1.4. Ghasemitabar- Movagharnejad method (GM)

The Ghasemitabar-Movagharnejad method (GM) is an improved second order group contribution method developed to determine the normal boiling point \(T_b \) of organic compounds by Eq. (S20) to Eq. (S24). This method is based on the Joback's first order functional groups with some changes and some newly added functional groups developed from experimental data. Contribution values are optimized using 2036 experimental data of organic components ranging from 1-36 carbon atoms and molecular weight 26-555 (g mol\(^{-1}\)), including heavy and complex polycyclic aromatic compounds. In this method, it is tried to distinguish most of the structural isomers and stereoisomers by second order functional groups. First and second order functional groups of the hydrocarbons and hydrocarbon derivatives containing carbon, hydrogen, oxygen, nitrogen, sulfur, fluorine, chlorine, bromine and iodine atoms, are also included. The results of the new method are compared to several well-known methods. The average absolute relative deviation of normal boiling point predictions for 2036 organic compounds is 1.01075\% [4].

\[
T_b(K) = T_1(K) + T_2(K) \tag{S20}
\]
\[T_1(K) = \sum_i N_i(t_{bi}) + Q_1 \sum_j N_j(t_{bj}) \] (S21)

\[T_2(K) = Q_2(aM_W^3 + bM_W^2 + cM_W) + d \] (S22)

\[Q_1 = N_C + \sum_{i=1}^{N_A} X_i U_i \] (S23)

\[Q_2 = N_C + \sum_{i=1}^{N_A} X_i V_i \] (S24)

1.5. Tahami-Movagharnejad-Ghasemitabar (TMG)

The Tahami-Movagharnejad-Ghasemitabar method (TMG) is an improved second order group contribution method developed to estimate critical constants (temperature, pressure, and volume) of organic compounds by Eq. (S25) to Eq. (S38). The functional groups of Joback and Reid method are employed with some changes as first order functional groups and some second order functional groups are also defined and added to them. The critical constants of most structural isomers and stereoisomers are distinguished in this method by considering the second order functional groups. The hydrocarbons and hydrocarbon derivatives considered in this research include carbon, hydrogen, oxygen, nitrogen, sulfur, fluorine, chlorine, bromine, and iodine atoms. The percentage of the average absolute relative deviations are 1.12\% for critical temperature, 2.69\% for critical pressure, and 2.67\% for critical volume [5].

For critical temperature:

\[T_C = C \left[\ln \left(S_{T1} + S_{T1} \left(\sum_i N_i T_{ci} \right) + \left(\sum_i N_i T_{ci} \right)^2 \right) + \left(\sum_j N_j T_{cj} \right)^2 \right] \] (S25)

\[C = a + b T_b + c T_b^2 + d T_b^3 \] (S26)

\[S_{T1} = \sum_{k=1}^{N_A} s_{T1k} + \ln (N_{atoms}) \] (S27)

\[S_{T2} = \sum_{k=1}^{N_A} s_{T2k} + \ln (N_{atoms}) \] (S28)
For critical pressure:

\[
P_C = C \left[\left(S_{P1} + S_{P2} \left(\sum_{i} N_i P_{ci} \right) + \left(\sum_{i} N_i P_{ci} \right)^2 \right)^{-1} + \left(S_{P3} + S_{P4} \left(\sum_{j} N_j P_{cj} \right) + \left(\sum_{j} N_j P_{cj} \right)^2 \right)^{-1} \right]^{-1} \tag{S29}
\]

\[
C = \frac{\exp \left(a_1 + b_1 T_b \right)}{a_2 + b_2 M_W} \tag{S30}
\]

\[
S_{P1} = \sum_{k=1}^{N_A} s_{P1k} \tag{S31}
\]

\[
S_{P2} = \sum_{k=1}^{N_A} s_{P2k} \tag{S32}
\]

\[
S_{P3} = \sum_{k=1}^{N_A} s_{P3k} \tag{S33}
\]

\[
S_{P4} = \sum_{k=1}^{N_A} s_{P4k} \tag{S34}
\]

\[
S_{P5} = \sum_{k=1}^{N_A} s_{P5k} \tag{S35}
\]

For critical volume:
\[V_C = \sum_i N_i V_{ci} + \left(S_{V1} + \sum_j N_j V_{cj} \right) N_{atoms} + S_{V2} N^2_{atoms} \]
(S36)

\[S_{V1} = \sum_{k=1}^{N_A} S_{V1k} \]
(S37)

\[S_{V2} = \sum_{k=1}^{N_A} S_{V2k} \]
(S38)

1.6. Abdi-Movagharnejad-Ghasemitabar method (AMG)

The Abdi-Movagharnejad-Ghasemitabar method (AMG) is a new group contribution method developed by Abdi et al. to estimate enthalpy of vaporization at normal boiling temperature \(\Delta H^o_{vb} \) (kJ mol\(^{-1}\)) of organic compounds by Eq. (S39) to Eq. (S40). The new group contribution method is a modification to the Joback-Reid method and gives more accurate estimations of the enthalpy of vaporization at normal boiling temperature of organic compounds. Group contribution values are optimized using 3950 experimental data of organic components with a molecular weight range of 28-565 (g mol\(^{-1}\)) and number of carbon atoms range of 1-40. The results of the new method on 3950 different organic compounds shows a percentage average relative error of 1.683%.

\[\Delta H^o_{vb} = C + \sum_i n_i (\Delta H_{vb})_i + \sum_j n_j (\Delta H_{vb})_j \]
(S39)

\[
C = a + b M_W + c M_W^2 + d M_W^3
\]
(S40)

In equation (S39), \(n_i \) indicates the number of times the first-level group \(i \) appears in the molecular structure, \((\Delta H_{vb})_i\) is the first order group contribution of type \(i \), \(n_j \) indicates the number of times the second-level group \(j \) appears in the molecular structure, \((\Delta H_{vb})_j\) is the second-order group contribution of type \(j \) and \(M_W \) is the molecular weight of the desired compound. The parameters \(a, b, c, d \) in equation (S40) are optimized for each molecular weight range and are presented in the literature [6].

The first-level and second-level order group contributions data and the values of the additional adjustable parameters for the methods TMG and AGM are presented in their main references.
the selected set of terpenes the constant parameters are listed in Table S2. Table S3 shows an application example of the previous methods in the estimation of α-pinene epoxide properties. Table S5 to Table S7 summarize the results of the application of the previous methods in the properties estimation of the selected terpenes, including the Ruzicka method (see main reference for development).

Table S2. Values of the additional adjustable parameters for the methods TMG and AGM for the set of selected terpenes.

Parameter	\(T_b \)	\(T_c \)	\(\Delta H_{v298} \)					
\(T_b \)	80 ≤ \(M_w \) < 140	140 ≤ \(M_w \) < 190	350 ≤ \(T_b \) ≤ 500	\(500 \leq T_b \leq 680 \)	\(400 \leq T_b \leq 530 \)	\(100 \leq M_w \leq 150 \)	\(150 \leq M_w \leq 200 \)	\(100 \leq M_w \leq 230 \)
\(a \)	-2.47E-06	-1.00E-06	23.50322	24.00654	2.15E-10	-	-	16.224
\(b \)	2.78E-04	-3.18E-05	0.24955	0.25571	8.51E-04	-	-	0.073
\(c \)	3.49E-02	5.58E-02	-2.83E-05	-3.98E-05	-	0.34583	0.321	-1.76E-04
\(d \)	199.26548	189.14878	4.69E-08	3.53E-08	-	1.06E-04	2.53E-04	-4.34E-08

Method

\(s_{1k} \)	\(s_{2k} \)	\(s_{3k} \)	\(s_{4k} \)	\(s_{5k} \)	\(s_{6k} \)	\(s_{7k} \)	\(s_{8k} \)	\(U_{i-C} \)	\(U_{i-O} \)		
C	124.65149	-19.3004	0.03701	0.38302	1.05351	1.58913	-0.0843	-0.03196	0.0687		
H	9.78975	2.84E-07	-0.0055	0.00497	-0.02629	0.06404	-0.23924	-0.0801	2.77E-04	V_{i-C}	0.84921
O	-4.31095	1.03728	2.58E-12	0.2359	0.21805	0.00548	0.00503	-0.117E-05	-3.40E-08	V_{i-O}	-1.36996

*For critical pressure estimation \(a = a_1, b = b_1, c = a_2 \) and \(d = b_2 \).

Table S3. Example of α-Pinene epoxide properties estimation by Ghasemitabar-Movagharnejad et al. methods.

\(T_{ci} (K) \)	\(P_{ci} \) (bar \(0.5 \))	\(V_{ci} \) (cm\(^3\)/mol)	\(T_{bi} (K) \)	\(\Delta H_{ubi} \)	\(n \)	
α-Pinene epoxide						
\(CH_3 \) (1)	0.11478	0.04023	72.56818	13.0945	0.965	3
\(CH_2 \) (ss) (2)	-0.10066	0.0212	43.1586	23.3777	1.74	2
\(CH \) (ss) (3)	0.14457	0.01776	33.80241	20.1251	1.591	3
\(C \) (ss) (4)	0.25246	0.00246	25.56758	17.7436	0.924	2
Substance	\(C_v,298.15\)/\(R\)	\(C_v,298.15\)/(J mol\(^{-1}\) K\(^{-1}\))	\(C_p,298.15\)/\(R\)	\(C_p,298.15\)/(J mol\(^{-1}\) K\(^{-1}\))	\(S^o,298.15\)/(J mol\(^{-1}\) K\(^{-1}\))	
---------------------------------	-----------------	---------------------------------	-----------------	---------------------------------	------------------	
\(\alpha\)-Pinene epoxide	19.79	164.56	20.79	172.88	380.62	
Campholenic aldehyde	21.42	178.11	22.42	186.44	429.70	
Fencholenic aldehyde	21.51	178.78	22.51	187.11	441.29	
trans-\(\alpha\)-Carveol	19.27	160.21	20.27	168.53	398.48	
Pinocarveol	20.72	172.21	21.72	180.54	397.44	
Isopinocamphone	21.16	175.90	22.16	184.22	422.63	
\(\beta\)-Pinene epoxide	20.43	169.87	21.43	178.20	396.60	
Myrtenol	19.65	163.34	20.65	171.63	392.25	
Perillyl alcohol	19.40	161.29	20.40	169.58	385.43	
	20.92	173.89	21.92	182.21	427.73	

\(a\)The values of \(C_p,298.15\) were calculated with the relation: \(C_p - C_v = R\).
Table S5. Critical properties and acentric factor of terpenes present in α- and β-pinene epoxides isomerization.

Substance/Method	Property	$T_{c,i}$ / K	$p_{c,i}$ / bar	$v_{c,i}$ / (m3 kmol$^{-1}$)	$Z_{c,i}$	ω_i	Ref.								
		JR	CG	TMG	J*	Avg.	Ref.	JR	CG	TMG	J*	Avg.	Def*	Ref.	Def*
α-Pinene		655.1	631.0	715.9	644.0	661.5±38	632	28.9	26.8	34.3	27.6	29.4±3.4	27.6		
β-Pinene		648.5	640.7	675.9	643.0	652.0±16	643	28.8	29.3	31.6	27.6	29.3±1.7	27.6		
α-Pinene epoxide		676.8	649.9	663.2	676.5	666.6±13	-	30.9	31.8	27.3	30.9	30.2±2	-		
β-Pinene epoxide		694.6	661.0	729.2	694.3	694.8±28	-	33.0	30.2	31.8	33.0	32.0±1.4	-		
trans-Carveol		731.9	695.0	734.3	731.7	723.2±19	-	29.3	27.6	29.6	29.3	29.0±0.9	-		
Isopinocamphone		727.9	624.9	794.2	727.6	718.6±70	-	28.3	31.6	29.2	28.3	29.4±1.6	-		
Pinocarveol		723.3	689.9	689.2	723.1	706.4±19	-	30.8	27.9	29.9	30.8	29.8±1.3	-		
Fencholic aldehyde		698.0	661.3	677.2	697.7	681.1±20	-	28.0	24.5	29.1	28.0	27.4±2	-		
Campholic aldehyde		698.0	661.3	672.3	697.7	682.4±18	-	28.0	24.5	29.3	28.0	27.4±2.1	-		
Perillyl alcohol		736.8	702.5	746.7	736.5	730.6±19	-	30.4	24.1	28.2	30.4	28.3±3	-		
Myrtanal		696.5	663.5	747.9	696.2	701.0±35	-	29.5	30.1	32.2	29.5	30.4±1.3	-		
Myrtenol		734.4	685.3	825.6	734.2	744.9±59	-	32.0	28.4	31.9	32.0	31.1±1.8	-		

[511]
| Myrtenol | 0.504 | 0.501 | 0.401 | 0.504 | 0.477±0.051 | - | 0.264 | - | 0.775 | - |

JR: Joback-Reid, CG: Constantinou-Gani, TMG: Tahami-Movagharnejad-Ghasemitabar, J*: Joback from Aspen Plus, Avg.: average, Ref.: references simulated or obtained experimentally [7]. Def*: estimated by definition equations from critical properties in Aspen Plus.
Table S6. Phase change properties of terpenes present in α- and β-pinene epoxides isomerization.

Property	\(T_{b,i} / K \)	\(\Delta H_{fus,i} / (kJ \text{ mol}^{-1}) \)													
	JR	CG	GM	J*	Avg.	Ref.	JR	CG	AMG	R*	Avg.	Ref.			
\(\alpha \)-Pinene	445.9	429.8	409.1	429.3	428.5±15	428.0 [8]	429 [9]	430 [10]	436 [11]	37.35	42.5	36.41	38.36±3	44.6±0.1 [12]	45.4 [13]
\(\beta \)-Pinene	440.9	428.9	418.0	439.2	431.8±11	439.15 [14]	36.55	41.7	37.92	36.82	38.25±2	45.8±0.1 [12]			
\(\alpha \)-Pinene epoxide	462.4	459.0	447.0	462.2	455.6±8	-	39.01	44.2	40.66	41.17±2	42.0±4				
\(\beta \)-Pinene epoxide	471.4	468.5	457.7	471.2	467.2±6	-	39.49	48.3	39.80	41.97	-				
\(\text{trans} \)-Carveol	536.2	485.1	515.3	536.0	518.1±24	499.7 [16]	55.02	69.1	48.13	44.00	57.01±9	-			
Isopinocamphone	504.9	417.7	482.0	504.7	477.3±41	-	40.33	37.9	43.64	44.73	41.65±3				
Pinocarveol	528.4	490.7	472.7	528.2	505.0±28	-	52.92	69.7	44.00	55.54	55.54±11	-			
Fencholenic aldehyde	492.1	472.2	450.0	491.9	476.5±20	-	44.33	53.0	41.43	45.26	45.9±5	-			
Camoholenic aldehyde	492.1	472.2	450.3	491.9	476.6±20	-	44.33	53.0	40.56	45.26	45.77±5	-			
Perillyl alcohol	540.8	504.2	520.0	540.6	526.4±18	-	55.33	70.0	47.50	57.41	57.55±9	-			
Myrtanal	485.7	469.3	476.3	485.5	479.2±8	-	42.80	50.8	43.13	44.37	45.28±4	-			
Myrtenol	538.0	495.9	493.0	537.8	516.2±25	494.7 [16]	54.03	66.9	44.11	57.83	55.72±9	-			

Property	\(T_{fus,i} / K \)	\(\Delta H_{fus,i} / (kJ \text{ mol}^{-1}) \)						
	JR	CG	Aspen	Avg.	Ref.	JR	Aspen	Avg.
\(\alpha \)-Pinene	267.8	220.3	209.15	232.4±25	197.64 [17]	11.43	12.10	11.77±3
\(\beta \)-Pinene	268.2	222.8	211.61	234.2±24	210.35 [18]	9.44	10.30	9.87±0.4
\(\alpha \)-Pinene epoxide	325.7	274.5	-	300.1±26	-	15.69	-	15.69
\(\beta \)-Pinene epoxide	326.4	267.7	-	297.0±29	-	12.52	-	12.52
\(\text{trans} \)-Carveol	264.0	297.8	-	280.9±17	-	16.89	-	16.89
Isopinocamphone	318.5	216.0	-	267±25	-	11.18	-	11.18
Pinocarveol	324.7	315.2	-	320.0±5	-	14.60	-	14.60
Fencholenic aldehyde	288.3	251.5	-	269.9±18	-	13.49	-	13.49
Camoholenic aldehyde	288.3	251.5	-	269.9±18	-	13.49	-	13.49
Perillyl alcohol	268.2	226.3	-	247.2±21	-	15.82	-	15.82
	Myrtanal		Myrtenol					
-----	----------	-----	----------	-----				
JR	Joback-Reid	CG	Constantinou-Gani	GM	Ghasemitabar-Movagharnejad			
J*	Joback from Aspen Plus	AMG	Abdi-Movagharnejad-Ghasemitabar	R*	Ruzicka method from Aspen Plus			
Avg.	average	Ref.	references simulated or obtained experimentally					
	292.2	272.7	-	282.5±10	-	13.96	-	13.96
	328.6	255.0	-	291.8±37	-	15.52	-	15.52
Table S7. Constants of liquid heat capacities simulation of the terpenes present in α- and β-pinene epoxides isomerization. Aspen Plus, Ruzicka method [19].

\[
C_{pl,i} / (J \text{ kmol}^{-1} \text{ K}^{-1}) = a_i + b_i T + c_i T^2
\]

Substance	\(a_i\)	\(b_i\)	\(c_i\)	ΔT / K
α-Pinene	151113.309	-289.73074	1.85386301	237.4 - 429.3
β-Pinene	136582.04	-151.532776	1.61221425	242.9 - 439.2
α-Pinene epoxide	183798.563	-488.501575	2.30909574	255.6 - 462.2
β-Pinene epoxide	179006.91	-375.722729	2.0235921	260.6 - 471.2
trans- Carveol \(a\)	-63528.27	789.0699	0.15321	264 – 534.5
Isopinocamphone	220996.849	-134.749938	1.16123606	279.1 - 504.7
Pinocarveol \(a\)	-105351.25	991.2487	-0.02117	319.2 - 529
Fencholenic aldehyde	144928.228	335.093876	0.528114395	272.0 - 491.9
Campholenic aldehyde	144928.228	335.093876	0.528114395	272.0 - 491.9
Perillyl alcohol	-11623.5187	1280.65238	-0.68735971	299.0 - 540.6
Myrtenal	96514.4995	364.368435	0.627502721	268.5 - 485.5
Myrtenol	-65231.9039	1257.0982	-0.248119945	297.4 - 537.8

\(a\) Obtained by regression of the liquid heat capacity data within the software Aspen Plus.
Figure S1. Tendencies of enthalpy and Gibbs free energy of reaction as a function of dielectric constant for a) α-pinene epoxide isomers and b) β-pinene epoxide isomers.

References

[1] S. W. Benson and I. John Wiley and Sons, *Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters*, 2nd ed. New York, 1976.

[2] K. G. Joback and R. C. Reid, “Estimation of pure-component properties from group-contributions,” *Chem. Eng. Commun.*, vol. 57, no. 1–6, pp. 233–243, 1987, doi: 10.1080/00986448708960487.

[3] L. Constantinou and R. Gani, “New group contribution method for estimating properties of pure compounds,” *AIChE J.*, vol. 40, no. 10, pp. 1697–1710, 1994, doi: 10.1002/aic.690401011.

[4] H. Ghasemitabar and K. Movagharnejad, “Estimation of the normal boiling point of organic compounds via a new group contribution method,” *Fluid Phase Equilib.*, vol. 411, pp. 13–23, 2016, doi: https://doi.org/10.1016/j.fluid.2015.11.029.

[5] S. Tahami, K. Movagharnejad, and H. Ghasemitabar, “Estimation of the critical
constants of organic compounds via a new group contribution method,” *Fluid Phase Equilib.*, vol. 494, pp. 45–60, 2019, doi: https://doi.org/10.1016/j.fluid.2019.04.022.

[6] S. Abdi, K. Movagharnejad, and H. Ghasemitabar, “Estimation of the enthalpy of vaporization at normal boiling temperature of organic compounds by a new group contribution method,” *Fluid Phase Equilib.*, vol. 473, pp. 166–174, 2018, doi: https://doi.org/10.1016/j.fluid.2018.06.006.

[7] C. L. Yaws, *Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety and Health Related Properties for Organic and Inorganic Chemicals*. McGraw-Hill, New York, NY, 1999.

[8] S. Winstead, B.K Morse, E. Grunwald, H.W Jones, J. Corse, D. Trifan, H. Marshall. “Neighboring Carbon and Hydrogen. VII. Reactivity of Some Alicyclic and Bicyclic Derivatives,” *J. Am. Chem. Soc.*, vol. 74, no. 5, pp. 1127–1132, 1952, doi: 10.1021/ja01125a003.

[9] M. Lecat, “Azeotropes of Ethyl Urethane and other Azeotropes,” *Seances Acad. Sci.*, vol. 217, p. 273, 1943.

[10] J. W. Kern, R. L. Shriner, and R. Adams, “Platinum and palladium oxides as catalysts in the reduction of organic compounds. IX. The reduction of olefins,” *J. Am. Chem. Soc.*, vol. 47, no. 4, pp. 1147–1158, 1925, doi: 10.1021/ja01681a034.

[11] S. Uchida, “Essential oil of formosan hinoki (chamaecyparis obtusa, S. et Z.) wood,” *J. Am. Chem. Soc.*, vol. 38, no. 3, pp. 699–702, 1916, doi: 10.1021/ja02260a022.

[12] Y. An, Xuwu; Hu, Riheng; Wang, Hu; Wu, Mali; Zou, “Enthalpies of Vaporization of α- and β-Pinene,” *Acta Phys. Chim. Sin*, vol. 3, no. 6, pp. 668–671, 1987.

[13] R. A. Clará, A. C. G. Marigliano, and H. N. Sólimo, “Density, viscosity, and refractive index in the range (283.15 to 353.15) K and vapor pressure of α-pinene, d-limonene, (±)-linalool, and citral over the pressure range 1.0 kPa atmospheric pressure,” *J. Chem. Eng. Data*, vol. 54, no. 3, pp. 1087–1090, 2009, doi: 10.1021/je8007414.

[14] D. R. Lide, *CRC Handbook of Chemistry and Physics*, 86th ed. CRC Press, 2005.

[15] A. van Roon, J. R. Parsons, and H. A. J. Govers, “Gas chromatographic determination of vapour pressure and related thermodynamic properties of monoterpenes and biogenically related compounds,” *J. Chromatogr. A*, vol. 955, no. 1, pp. 105–115, 2002, doi: http://dx.doi.org/10.1016/S0021-9673(02)00200-5.

[16] C. Inc, “Catalog Handbook of Fine Chemicals, Aldrich Chemical Company,” 1990.

[17] T. Eriksen, “Physical and Thermodynamic Properties of Terpenes . 11 . The Heats of Combustion,” *J. Am. Chem. Soc.*, vol. 247, no. 3, pp. 23–25, 1954.

[18] J. Timmermans, “Freezing points of organic compounds. VVI New determinations,” *Bull. Soc. Chim. Belg*, vol. 61, p. 393, 1952.

[19] V. Ruzicka and M. Za’bransky, “Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature Using Group Additivity: An Amendment,”
