Feasibility Study of Park and Ride City of Depok

Muhamad Khodam Fauzi, Tedy Murtedjo, Rulhendri Rulhendri
Civil Engineering Study Program Ibn Khaldun University Bogor, INDONESIA
E-mail: fauzikhodam@gmail.com

Received February 8, 2021 | Accepted March 18, 2021 | Published September 20, 2022

ABSTRACT

Depok City is a city in West Java Province, Indonesia. The city is located just south of Jakarta, which is between Jakarta and Bogor. The total population of Tangerang Regency in 2020 is ± 2,457,745 people according to the Central Statistics Agency (BPS) of Depok City. Depok City which has an area of 200.29 km. This research was conducted to determine the feasibility level of the Park and Ride development plan in Depok City. Traffic counting surveys and interviews were carried out on the main road sections which were then processed using Microsoft Excel to determine the parking accumulation until the fluctuation of motorbikes and cars was known. Furthermore, the interview data is processed to determine the amount of public interest in the development of Park and Ride which is reviewed based on gender, age, trip duration, trip intent, parking duration, monthly fuel expenditures, desired parking rates and those who agree to use Park and Ride when the survey was conducted at 06.00-21.00 WIB on Jalan Jatijajar Terminal area. From the results of processing this data using Microsoft Excel, the characteristics of Park and Ride facilities users and also the number of users of Park and Ride facilities for motorbikes were found to be 421, while for cars of 116 with a plan age until 2021, this proves that there is a need to increase interest in motorbikes Park and Ride development at Jatijajar Depok Terminal.

Keywords: park and ride; Jatijajar terminal; transportation; motorcycles; terminal.

INTRODUCTION

Depok City is one of the city partners for DKI Jakarta after Tangerang, Bogor and Bekasi which are currently developing quite rapidly as regions with respect to the City, relying on the service and trade sectors. With an area of ± 200.29 km2 and a population of 1,809,120 people. With the provision of Park and Ride facilities at Jatijajar Terminal, Depok City is expected to be able to encourage private vehicle users, especially road users who travel commuting and their activity areas are in line with transportation. mass so that they want to park their private vehicles in park and ride facilities and continue the journey to the destination city using mass transportation, and be able to encourage the economy of the Depok City Government. Transportation is one aspect that plays a direct role in the development of an urban area. City development causes a person's mobility to increase, so it is necessary to have transportation infrastructure that can support his movement needs. Transportation has two main roles, namely as a tool for directing development in urban areas and as a means for the movement of people and goods arising from activities in that area.

Travel is carried out in every activity. Activities that support travel are very important to learn. Travel facilities carried out in the study area, allow vehicles and people to always move. The movement of people and goods along with the consequences of the pattern of travel of people and goods as well. Someone will move according to the planning that is done so that the planning will be successful according to the context that is carried out. To determine activities that require travel time. Travel time depends on how fast it is (Syaiful S, Pratama Y, 2019; Syaiful S, Hariyadi D, 2019; Syaiful S et.al, 2020).

Understanding people in making a move will have a big influence on a person's behavior. This behavior depends on the form adapted to the current situation. People will travel with a clear purpose. The purpose of the trip must be carried out as planned. The destination area must also have been determined in advance, so that the trip takes place without significant obstacles. This condition is always a concern for every good activity (Syaiful S, Fadly A, 2020; Syaiful S et.al, 2021; Syaiful S, Rusfana H, 2022; Syaiful S et.al, 2022).
All movement of people is a journey in the future. This condition demands a clear and directed path. This path affects the surface hardness and clear shape in terms of the surface traversed. The journey of people and goods is determined by how much influence is significant. According to this effect, it is related to the road conditions above. So that the better the path traversed, the faster people will reach their destination. Remembering people's journey is very important. The importance of travel is measured by activities that are always well planned (Syaiful S et.al, 2022; Syaiful S, Lasmana L, 2020).

Parking

According to the Directorate General of Land Transportation No.8 of 2009, the meaning of parking is the activity of not moving a vehicle temporarily with the driver not leaving the vehicle. Parking is one element of the means that cannot be separated from the road transportation system as a whole. Parking facilities must be available at the destination (offices, shopping, entertainment or recreation places, etc.) and at home (in the form of a garage or parking setting). If not available, the road space will become a parking space, which means reducing the effective width of the road and thereby reducing the effective width of the road and the capacity of the space concerned. The next consequence is traffic jams (Tamin, 2008). The role of parking facilities in the transportation system can be seen from its function in providing travel destinations from traffic movements. Problems that arise in parking facilities if the parking requirements do not match or exceed the available parking requirements is that vehicles cannot be accommodated so that it will interfere with the smooth flow of traffic on the surrounding roads. The parking pattern on the road is parallel and angular parking patterns. However, on-street parking is not always permitted due to traffic conditions. We can only recommend which one is best applied to road bodies (Warpani, 2002).

RESEARCH METHODS

The research was carried out in July to August 2020. And the location of this research was carried out in the area around Jatijajar Terminal. With an area of land to be built a park and ride 1,786 m².

![Figure 1. Location planning](image)

The stages of this research are shown in the form of a flow chart as follows:
RESULTS AND DISCUSSION
Parking Characteristics

The parking survey at Jatijajar Terminal was conducted for 12 hours (06:00 - 21:00) for four-wheeled and 2-wheeled vehicles. The following are the results of the parking survey at the Jatijajar Terminal parking lot:

Table 1. Accumulated parking at Jatijajar Terminal

Execution time	Vehicle amount	Car	Motorcycle				
	Accumulated in	Accumulated out	Accumulated in	Accumulated out	Car total	Motorcycle total	
06.00-07.00	12	3	26	21	5	12	26
07.00-08.00	15	4	41	20	5	15	41
08.00-09.00	23	5	57	25	9	23	57
Table 2. Parking survey at Jatijajar terminal

Execution time	Car	Motorcycle				
	accumulated	in	out	accumulated	in	out
06.00-07.00	12	5	3	12	15	13
07.00-08.00	20	10	2	31	28	9
08.00-09.00	23	5	2	34	10	7
09.00-10.00	33	15	5	42	13	5
10.00-11.00	34	3	2	57	25	10
11.00-12.00	37	6	3	81	32	8
12.00-13.00	39	4	2	82	12	11
13.00-14.00	42	7	4	91	23	14
14.00-15.00	50	13	5	95	14	10
15.00-16.00	54	11	7	104	27	18
16.00-17.00	56	5	3	111	20	13
17.00-18.00	59	10	7	113	11	9
18.00-19.00	51	2	10	108	10	15
19.00-20.00	42	3	12	100	12	20
20.00-21.00	33	1	10	90	7	17
amount	100	77	259	179		

Figure 3. Graph of Accumulated Car Parking at Jatijajar Terminal
Figure 3. Graph of Accumulated Car Parking at Jatijajar Terminal

Parking Capacity

Table 3. The results of the parking capacity calculation

Allocation	Unit (SRP for passenger cars)	Need for Parking Space
Trading center		
Shops	SRP/100 m² efektive floor area	3.5 – 7.5
Supermarkets	SRP/100 m² efektive floor area	3.5 – 7.5
Public service		
Non public service	SRP/100 m² efektive floor area	1.5 – 3.5
Public service	SRP/100 m² efektive floor area	1.5 – 3.5
School	SRP/student	0.7 – 1.0
Apartemen /lodging	SRP/room	0.2 – 1.0
Hospital	SRP/beds	0.2 – 1.3
Cinema	SRP/seats	0.1 - 0.4
No	Type of building	Total
Terminal parking		935

Apartment Parking Space Needs

No	SRP	Number of parking spaces (SRP)
1	Public facilities	14,025
	Station coefficient 1,5	

Motorcycle parking capacity

Car parking capacity

The highest parking accumulation is at 17: 00-18: 00 as many as 59 vehicles parked at Jatijajar Terminal. That way the parking index or parking turnover rate can be calculated.

Level of Use of Parking Areas

Parking index

The highest parking accumulation is at 17: 00-18: 00 as many as 59 vehicles parked at Jatijajar Terminal, Depok City. Thus the parking index or parking turnover rate can be calculated as follows:

\[
\text{Car Parking Index} = \frac{\text{Number of Vehicles}}{\text{Highest accumulation}} = \frac{59}{100} = 1.694
\]
Motorcycle Parking Index = Number of Vehicles
Highest accumulation

\[
\frac{259}{113} = 2.292
\]

Turn over

Turn Over or the level of parking land use is obtained by comparing the number of parking vehicles with the parking capacity provided. The following is the Turn Over of four-wheeled vehicles and motorbikes:

\[
\text{(Turn OverMobil} = \frac{\text{Number of Parking Vehicles}}{\text{Parking Capacity}}) = \frac{100}{4.9} = 20,408
\]

\[
\text{(Turn OverMotor} = \frac{\text{Number of Parking Vehicles}}{\text{Parking Capacity}}) = \frac{259}{32,164} = 8,052
\]

Table 4. Parking and turnover index

	Parking index	Turn over
Motorcycle	2.292	8,052
Car	1.694	20,408

Interview

An interview survey was conducted to determine the number of demands and also to determine the characteristics of park and ride users at Jatijajar Terminal. The survey was carried out by conducting direct interviews with parking users who were carrying out activities in the terminal environment located in the parking lot. Interviews were conducted between 6:00 am and 8:00 am within a few working days.

Survey results on the number of potential park and ride users

Based on the desired parking rates
Based on the number of Park and Ride users using motorbikes

Figure 4. Diagram of motorbike users based on desired parking rates

Figure 5. Diagram of car users based on desired parking rates

Figure 6. Diagram of motorcycle users based on the desire to use park and ride services
Figure 7. Diagram of car users based on their desire to use park and ride services

Demand Park and Ride

In the interview results for motorbikes, it was found that the number of people who wanted to use the park and ride facilities was 56%. Meanwhile, for cars, people who want to use park and ride facilities are 51%.

Demand park and ride for motorbikes

The data obtained for motorbikes are:

- Total Vehicle Volume = 431 vehicles
- Error Percentage = 44%
- Percentage of desire = 56%

\[
\text{Demand Park and Ride} = 0.56 \times 431 = 241
\]

\[
\text{Demand maximum} = 241 + (241 \times 0.44) = 347 \text{ vehicles}
\]

\[
\text{Demand minimum} = 241 - (241 \times 0.44) = 134 \text{ vehicles}
\]

From the calculation above, the maximum demand is selected. Therefore, it can be concluded that the number of park and ride demand for motorbike users in 2021 is 347 vehicles.

Demand park and ride for cars

The data obtained for the car are:

- Total Vehicle Volume = 127 vehicles
- Error Percentage = 49%
- Percentage of desire = 51%

\[
\text{Demand Park and Ride} = 0.51 \times 127 = 64
\]

\[
\text{Demand maximum} = 64 + (64 \times 0.49) = 95 \text{ vehicles}
\]
Demand minimum

\[= 64 - (64 \times 49\%)\]

\[= 32 \text{ vehicles}\]

From the calculation above, the maximum demand is selected. Therefore, it can be concluded that the number of park and ride demand for car users in 2021 is 95 vehicles.

Estimated Income Scenarios.

Table 5. Estimated annual revenue for scenario 1

No	Type	Volume	Unit price (Rp)	Time	Unit	Income
1	Motorcycle parking	347	Rp 5.000	360	day	Rp 624,600,000
2	Car parking	95	Rp 15.000	360	day	Rp 513,000,000
3	Retail land lease	1	Rp 50,000,000	1	year	Rp 50,000,000
4	Rental food court area	3	Rp 50,000,000	1	year	Rp 150,000,000

Total Rp 1,337,600,000

Table 6. Estimated annual revenue for scenario 2

No	Type	Volume	Unit price (Rp)	Time	Unit	Income
1	Motorcycle parking	347	Rp 3.000	360	day	Rp 374,760,000
2	Car parking	59	Rp 10.000	360	day	Rp 342,000,000
3	Retail land lease	1	Rp 50,000,000	1	year	Rp 50,000,000
4	Rental food court area	3	Rp 50,000,000	1	year	Rp 150,000,000

Total Rp 916,760,000

Estimated Operating Costs

Table 7. Estimated annual expenditure

No	Operational Costs	Volume	Unit price (Rp)	Time	Unit	Expenses/year
1	Officer Salary	8	Rp 4,200,000	12	month	Rp 403,200,000
2	Electricity Usage	132	Rp 1,645	4320	hours	Rp 937,771,085
3	Allocation of Care	1320	Rp 60,000	1	year	Rp 79,200,000

Total Rp 1,420,171,085

Table 8. Estimated expenditures for park and ride development

No	Type	Volume	Unit
1	Land area	1786	m²
	Building coverage area	0.80	
Building area	1428	m²	
---------------	------	----	
Motorcycle parking	378.00	m²	
Car park	1.050.00	m²	
Number of towers	1.00	towers	
Number of towers/units	1.00	unit	
Number of units/floors	1.00	floors	
Total GFA	1.428.00	m²	
Number of units	1.00	unit	
Unit size Avr	2.560.00	m²	
Motorcycle/floors	347.00	Unit	
Car/floors	95.00	Unit	
Total number of vehicles	442.00	pax	
Land value	12.000.00	per m²	
Project development stage	2.00	year	
Project age	25.00	year	
Building costs	4.000.000	Rp	
Total development costs	5.715.200.000	Rp	

Figure 7. Economic Feasibility Analysis Table Scenario 1

Parameter	Scenario 1	Scenario 2
Building area	1428	m²
Motorcycle parking	378.00	m²
Car park	1.050.00	m²
Number of towers	1.00	towers
Number of towers/units	1.00	unit
Number of units/floors	1.00	floors
Total GFA	1.428.00	m²
Number of units	1.00	unit
Unit size Avr	2.560.00	m²
Motorcycle/floors	347.00	Unit
Car/floors	95.00	Unit
Total number of vehicles	442.00	pax
Land value	12.000.00	per m²
Project development stage	2.00	year
Project age	25.00	year
Building costs	4.000.000	Rp
Total development costs	5.715.200.000	Rp

Figure 8. Economic Feasibility Analysis Table Scenario 2
In accordance with the investment criteria, namely:

NPV ≥ 1
IRR ≥ Loan interest rate at the bank
BCR ≥ 1

So from the results of the economic analysis for the first scenario meet the above criteria with an IRR of 2.9%, NPV more than 1 and a BCR of 1.13

CONCLUSION

Based on the results and discussion that have been described, the following conclusions can be drawn. From the results of the analysis using stated preference, it is found that the probability percentage of people who will use Park and Ride in Jatijajar Terminal, Depok City is as follows, percentage of motorcyclists: 56%, percentage of motorists: 51%. From the results of the projected increase in vehicles in Depok City, namely motorbikes by 5% and cars by 3% as well as data on potential Park and Ride users obtained from the interview survey, the maximum demand for Park and Ride is 347 motorbikes and as many as cars. 95 units. Payback analysis exists in the 19th year after development. For motorbike parking rates, IDR 5,000 and IDR 15,000 for car parking

REFERENCES

Abu bakar, 2011, Parkir Perencanaan dan penyelenggaraan fasilitas parkir, Jakarta, Transindo Gastama Media.

Ahmad Munawar. (2004). Manajemen Lalu Lintas Perkotaan. Yogyakarta: Penerbit Beta Offset

Anonymous. (2010). Victoria Transport Policy Institute, Canadian Think Tank Seeking to Improve Transportation Planning and Transportation Policy. Canada

Anonymous. (1998). Direktorat Jendral Perhubungan Darat, Pedoman Perencanaan dan Pengoperasian Fasilitas Parkir, Jakarta.

Caltrope, Peter, 1980. Transit Oriented Development Design Guidelines. California: Caltrope Associates.

Cristian Geanta Mantiri, “Perencanaan Park and Ride Terminal Ubung Untuk Mendukung Bus Trans Sarbagita Koridor 6 Denpasar, Bali” Institut Teknologi Sepuluh Nopember.

Fahmi, Khairul. (2014). Analisa kapasitas ruang parkir. Kota Pasir Pengaraian. Jurnal APTEK Vol.6 No.1.

Kementerian Negara Lingkungan Hidup, 2009. Peraturan Menteri Negara Lingkungan Hidup Nomor 8 Tahun 2009 tentang Baku Mutu Air Limbah Bagi Usaha dan/atau Kegiatan Pembangkit Listrik Tenaga Terminal Lalu Lintas. Jakarta.
Syaiful Syaiful, Yogi Pratama. (2019). Sustainable Studies about General Public Transport Performance in the City Of Bogor, ARPN Journal of Engineering and Applied Sciences 14 (18), 3241-3247.

Syaiful Syaiful, Dony Hariyadi. (2019). Case Study on Sustainable T-Junction Cibinong City Mall (CCM) in Bogor Indonesia, ARPN Journal of Engineering and Applied Sciences 14 (17), 2960-2971.

Syaiful Syaiful, Heru Prayoga, Juang Akbaradin. (2020). Sustainable about the Need of Parking Systems at the Mall RDS Bogor, ARPN Journal of Engineering and Applied Sciences 15 (22), 2620-2626.

Syaiful Syaiful, Ahmad Fadly. (2020). Analysis of the Effectiveness of Bus Services Outside of Campus IPB Dramaga Bogor. ASTONJADRO: CEAESJ 9 (2), 173-186.

Syaiful Syaiful, Hermanto Siregar, Ernan Rustiadi, Eri Susanto Hariyadi. (2021). Traffic Improvement Strategy in Transportation System Using AHP Method. ARPN Journal of Engineering and Applied Sciences 16 (22), 2431-2439.

Syaiful Syaiful, Hendra Rusfana. (2022). Rigid Pavement Planning In Traffic: Case Study In Cihara Road And Pemuda Road, Bogor Regency, Indonesia. Journal of Applied Engineering Science, 1-13.

Syaiful Syaiful, Hermanto Siregar, Ernan Rustiadi, Eri Susanto Hariyadi. (2022). Performance of Three Arms Signalized Intersection at Salabenda in Bogor Regency, ASTONJADRO: CEAESJ, 11(1),pp.13-29.

Syaiful Syaiful, Muhammad Nanang Prayudyanto, Rulhendri Rulhendri, Puri Anita Lestari, Aqies Nailii Nabila, Salma Leandra Damiana, Haldiana Haldiana, (2022). Vehicle traffic volume analysis due to sound generated in front of the RS. Hermina Bogor. ASTONJADRO: CEAESJ 11 (2), 475-489.

Syaiful Syaiful, Lian Lasmana. (2020). A study on level of railway road damage with sustainable PCI method. ARPN Journal of Engineering and Applied Sciences 15 (8), 962-968.

Tamin, O. Z (2008). Perencanaan, Pemodelan & Rekayasa Transportasi: Teori, Contoh Soal, dan Aplikasi. Bandung: ITB Bandung

Tamin, O.Z. (1997). “Perencanaan dan Pemodelan Transportasi”, Teknik Sipil Institut Teknologi Bandung.

Vuchic, V.R. (1976). Urban Public Transportation Systems and Technology, Prentice-Hall, Englewood Cliffs, New Jersey.

Warpiani, P. Suwardjoko. (2002). Pengelolaan Lalu Lintas dan Angkutan Jalan. Bandung: Penerbit Warpani, Suwardjoko. 1990. Merencanakan Sistem Perangkutan. Bandung: Penerbit ITB.