Extensions of Barrier Sets to Nonzero Roots of the Matching Polynomials

Cheng Yeaw Ku * K.B. Wong †

September 29, 2009

Abstract

In matching theory, barrier sets (also known as Tutte sets) have been studied extensively due to its connection to maximum matchings in a graph. In this paper, we first define \(\theta \)-barrier sets. Our definition of a \(\theta \)-barrier set is slightly different from that of a barrier set. However we show that \(\theta \)-barrier sets and barrier sets have similar properties. In particular, we prove a generalized Berge’s Formula and give a characterization for the set of all \(\theta \)-special vertices in a graph.

KEYWORDS: matching polynomial, Gallai-Edmonds Decomposition, barrier sets, extreme sets

1 Introduction

All the graphs in this paper are simple and finite.

Definition 1.1. An \(r \)-matching in a graph \(G \) is a set of \(r \) edges, no two of which have a vertex in common. The number of \(r \)-matchings in \(G \) will be denoted by \(p(G, r) \). We set \(p(G, 0) = 1 \) and define the matching polynomial of \(G \) by

\[
\mu(G, x) = \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r p(G, r)x^{n-2r}.
\]

We shall denote the multiplicity of \(\theta \) as a root of \(\mu(G, x) \) by \(\text{mult}(\theta, G) \). Let \(u \in V(G) \), the graph obtained from \(G \) by deleting the vertex \(u \) and all edges that contain \(u \) will be denoted by \(G \setminus u \). Inductively if \(u_1, \ldots, u_k \in V(G) \), \(G \setminus u_1 \ldots u_k = (G \setminus u_1 \ldots u_{k-1}) \setminus u_k \). Note that the order of which vertex is being deleted first is not important, that is, if \(i_1, \ldots, i_k \) is a permutation of \(1, \ldots, k \), we have \(G \setminus u_1 \ldots u_k = G \setminus u_{i_1} \ldots u_{i_k} \). Furthermore if \(X = \{u_1, \ldots, u_k\} \), \(G \setminus X = G \setminus u_1 \ldots u_k \).

The followings are properties of \(\mu(G, x) \).

*Department of Mathematics, National University of Singapore, Singapore 117543. E-mail: matkcy@nus.edu.sg
†Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: kb-wong@um.edu.my.
Theorem 1.2. (Theorem 1.1 on p. 2 of [1])

(a) \(\mu(G \cup H, x) = \mu(G, x)\mu(H, x) \) where \(G \) and \(H \) are disjoint graphs,

(b) \(\mu(G, x) = \mu(G \setminus e, x) - \mu(G \setminus uv, x) \) if \(e = \{u, v\} \) is an edge of \(G \),

(c) \(\mu(G, x) = xu(G \setminus u, x) - \sum_{i \sim u} \mu(G \setminus ui, x) \) where \(i \sim u \) means \(i \) is adjacent to \(u \),

(d) \(\frac{d}{dx} \mu(G, x) = \sum_{i \in V(G)} \mu(G \setminus i, x) \) where \(V(G) \) is the vertex set of \(G \).

It is well known that all roots of \(\mu(G, x) \) are real. Throughout, let \(\theta \) be a real number and \(\text{mult}(\theta, G) \) denote the multiplicity of \(\theta \) as a root of \(\mu(G, x) \). In particular, \(\text{mult}(\theta, G) = 0 \) if and only if \(\theta \) is not a root of \(\mu(G, x) \). By Theorem 5.3 on p. 29 and Theorem 1.1 on p. 96 of [1], one can easily deduce the following lemma.

Lemma 1.3. Let \(G \) be a graph and \(u \in V(G) \). Then

\[
\text{mult}(\theta, G) - 1 \leq \text{mult}(\theta, G \setminus u) \leq \text{mult}(\theta, G) + 1.
\]

As a consequence of Lemma 1.3, we can classify the vertices in a graph with respect to \(\theta \) as follows:

Definition 1.4. (see [2, Section 3]) For any \(u \in V(G) \),

(a) \(u \) is \(\theta \)-essential if \(\text{mult}(\theta, G \setminus u) = \text{mult}(\theta, G) - 1 \),

(b) \(u \) is \(\theta \)-neutral if \(\text{mult}(\theta, G \setminus u) = \text{mult}(\theta, G) \),

(c) \(u \) is \(\theta \)-positive if \(\text{mult}(\theta, G \setminus u) = \text{mult}(\theta, G) + 1 \).

Furthermore if \(u \) is not \(\theta \)-essential but it is adjacent to some \(\theta \)-essential vertex, we say \(u \) is \(\theta \)-special.

It turns out that \(\theta \)-special vertices play an important role in the Gallai-Edmonds Decomposition of a graph (see [3]). One of our main result is a characterization of the set of these vertices in terms of \(\theta \)-barriers.

Note that if \(\text{mult}(\theta, G) = 0 \) then for any \(u \in V(G) \), \(u \) is either \(\theta \)-neutral or \(\theta \)-positive and no vertices in \(G \) can be \(\theta \)-special. By Corollary 4.3 of [2], a \(\theta \)-special vertex is \(\theta \)-positive. Therefore

\[
V(G) = D_\theta(G) \cup A_\theta(G) \cup P_\theta(G) \cup N_\theta(G),
\]

where

\(D_\theta(G) \) is the set of all \(\theta \)-essential vertices in \(G \),

\(A_\theta(G) \) is the set of all \(\theta \)-special vertices in \(G \),

\(N_\theta(G) \) is the set of all \(\theta \)-neutral vertices in \(G \),

\(P_\theta(G) = Q_\theta(G) \setminus A_\theta(G) \), where \(Q_\theta(G) \) is the set of all \(\theta \)-positive vertices in \(G \),
is a partition of $V(G)$. Note that there is no 0-neutral vertices. So $N_0(G) = \emptyset$ and $V(G) = D_0(G) \cup A_0(G) \cup P_0(G).

Definition 1.5. (see [2] Section 3) A graph G is said to be θ-critical if all vertices in G are θ-essential and $\text{mult}(\theta, G) = 1$.

The Gallai-Edmonds Structure Theorem describes a certain canonical decomposition of $V(G)$ with respect to the zero root of $\mu(G, x)$. In [3], Chen and Ku proved the Gallai-Edmonds Structure Theorem for graph with any root θ.

Theorem 1.6. (Theorem 1.5 of [3]) Let G be a graph with θ a root of $\mu(G, x)$. If $u \in A_\theta(G)$ then

(i) $D_\theta(G \setminus u) = D_\theta(G),$
(ii) $P_\theta(G \setminus u) = P_\theta(G),$
(iii) $N_\theta(G \setminus u) = N_\theta(G),$
(iv) $A_\theta(G \setminus u) = A_\theta(G) \setminus \{u\}.$

Theorem 1.7. (Theorem 1.7 of [3]) If G is connected and every vertex of G is θ-essential then $\text{mult}(\theta, G) = 1$.

By Theorem 1.6 and Theorem 1.7, it is not hard to deduce the following whose proof is omitted. For convenience, a connected component will be called a component.

Corollary 1.8.

(i) $A_\theta(G \setminus A_\theta(G)) = \emptyset, D_\theta(G \setminus A_\theta(G)) = D_\theta(G), P_\theta(G \setminus A_\theta(G)) = P_\theta(G), \text{ and } N_\theta(G \setminus A_\theta(G)) = N_\theta(G).

(ii) $G \setminus A_\theta(G)$ has exactly $|A_\theta(G)| + \text{mult}(\theta, G)$ θ-critical components.

(iii) If H is a component of $G \setminus A_\theta(G)$ then either H is θ-critical or $\text{mult}(\theta, H) = 0$.

(iv) The subgraph induced by $D_\theta(G)$ consists of all the θ-critical components in $G \setminus A_\theta(G)$.

Let G be a graph. The number of odd components in G is denoted by $c_{\text{odd}}(G)$. Recall the following famous Berge’s Formula.

Theorem 1.9. $\text{mult}(0, G) = \max_{X \subseteq V(G)} c_{\text{odd}}(G \setminus X) - |X|.$

Definition 1.10. Motivated by the Berge’s Formula, a barrier set is defined to be a set $X \subseteq V(G)$ for which $\text{mult}(0, G) = c_{\text{odd}}(G \setminus X) - |X|$. An extreme set is defined to be the set for which $\text{mult}(0, G \setminus X) = \text{mult}(0, G) + |X|$.

Properties of extreme and barrier sets can be found in [3] Section 3.3. In fact a barrier set is an extreme set. An extreme set is not necessary a barrier set, but it can be shown that an extreme set is contained in some barrier set. In general the union or intersection of two barrier sets is not a barrier set. However it can be shown that the intersection of two (inclusionwise) maximal barriers set is a barrier set. $A_0(G)$ is a barrier and extreme set. It can be shown that $A_0(G)$ is in fact the intersection of all the maximal barrier sets in G. Here we extend this fact to $A_\theta(G)$:

Theorem 1.11. Suppose $N_\theta(G) = \emptyset$. Then $A_\theta(G)$ is the intersection of all maximal θ-barrier sets in G.

3
2 Properties of θ-barrier sets

The number of θ-critical components in G is denoted by $c_\theta(G)$. An immediate consequence of part (a) of Theorem 1.2 and Theorem 1.7 is the following inequality which is used frequently.

$$\text{mult}(\theta, G \setminus X) \geq c_\theta(G \setminus X) \quad \text{for any } X \subseteq V(G).$$

We prove the following analogue of Berge’s Formula.

Theorem 2.1. [Generalized Berge’s Formula]

$$\text{mult}(\theta, G) = \max_{X \subseteq V(G)} c_\theta(G \setminus X) - |X|.$$

Proof. We claim that, $c_\theta(G \setminus X) \leq |X| + \text{mult}(\theta, G)$ for all $X \subseteq V(G)$. Suppose the contrary. Then $c_\theta(G \setminus X) > |X| + \text{mult}(\theta, G)$ for some $X \subseteq V(G)$. Recall that $\text{mult}(\theta, G \setminus X) \geq c_\theta(G \setminus X)$. Together with Lemma 1.3, we have $\text{mult}(\theta, G) \geq \text{mult}(\theta, G \setminus X) - |X| > \text{mult}(\theta, G)$, a contradiction. Hence $c_\theta(G \setminus X) \leq |X| + \text{mult}(\theta, G)$ for all $X \subseteq V(G)$.

Now it is sufficient to show that there is a set $X \subseteq V(G)$ for which $\text{mult}(\theta, G) = c_\theta(G \setminus X) - |X|$. By (ii) of Corollary 1.8 and taking $X = A_\theta(G)$, we are done.

Definition 2.2. Motivated by the Generalized Berge’s Formula, we define a θ-barrier set to be a set $X \subseteq V(G)$ for which $\text{mult}(\theta, G) = c_\theta(G \setminus X) - |X|$.

We define a θ-extreme set to be a set $X \subseteq V(G)$ for which $\text{mult}(\theta, G \setminus X) = \text{mult}(\theta, G) + |X|$.

Note that the definitions of 0-extreme set and extreme set coincide. But the definitions of 0-barrier set and barrier set are different. Our next proposition shows that a 0-barrier set is a barrier set.

Proposition 2.3. A 0-barrier set is a barrier set.

Proof. Let X be a 0-barrier set. Then $c_0(G \setminus X) = \text{mult}(0, G) + |X|$. Note that $c_0(G \setminus X) \leq c_{\text{odd}}(G \setminus X)$. Using Theorem 1.9, we conclude that $c_{\text{odd}}(G \setminus X) = \text{mult}(0, G) + |X|$. Hence X is a barrier set.

The converse of Proposition 2.3 is not true. In Figure 1, $X = \{u, v\}$ is a barrier set in G but it is not a 0-barrier set.

![Figure 1](image.png)
However we have a weak converse of Proposition 2.3.

Proposition 2.4. A (inclusionwise) maximal barrier set is a maximal 0-barrier set.

Proof. Let X be a maximal barrier set. Note that $|X| + \text{mult}(0, G) \geq \text{mult}(0, G \setminus X) \geq c_{\text{odd}}(G \setminus X) = |X| + \text{mult}(0, G)$, where the first inequality follows from Lemma 1.3 and the last inequality follows from the fact that X is a barrier set. Therefore, equality holds throughout whence $\text{mult}(0, G \setminus X) = c_{\text{odd}}(G \setminus X)$ and 0 is a root of multiplicity 1 in each of the odd components in $G \setminus X$.

We claim that an odd component in $G \setminus X$ is 0-critical. Suppose the contrary. Let H be an odd component in $G \setminus X$ and H is not 0-critical. Then $A_0(H) \neq \emptyset$. Now $\text{mult}(0, H) = 1$. By (ii) of Corollary 1.8 $c_0(H \setminus A_0(H)) = |A_0(H)| + 1$. Since $c_0(H \setminus A_0(H)) \leq c_{\text{odd}}(H \setminus A_0(H))$, by Theorem 1.9 we conclude that $c_{\text{odd}}(H \setminus A_0(H)) = |A_0(H)| + 1$. Therefore $c_{\text{odd}}(G \setminus (X \cup A_0(H))) = c_{\text{odd}}(G \setminus X) - 1 + c_{\text{odd}}(H \setminus A_0(H)) = |X| + \text{mult}(0, G) - 1 + |A_0(H)| + 1 = |X \cup A_0(H)| + \text{mult}(0, G)$. But then $X \cup A_0(H)$ is a barrier set in G, a contrary to the maximality of X. Hence an odd component in $G \setminus X$ must be 0-critical. This means that $c_{\text{odd}}(G \setminus X) = c_0(G \setminus X)$ and X is a 0-barrier set. By Proposition 2.3 we conclude that X must be a maximal 0-barrier set. \qed

Now we shall study the properties of θ-barrier and θ-extreme sets.

Lemma 2.5. A subset of a θ-extreme set is a θ-extreme set.

Proof. Let X be an θ-extreme set and $Y \subseteq X$. Now $\text{mult}(\theta, G \setminus X) = \text{mult}(\theta, G) + |X|$. By Lemma 1.3 $\text{mult}(\theta, G \setminus Y) \leq \text{mult}(\theta, G) + |Y|$. If Y is not θ-extreme then $\text{mult}(\theta, G \setminus Y) < \text{mult}(\theta, G) + |Y|$, and by Lemma 1.3 again, $\text{mult}(\theta, G \setminus X) \leq \text{mult}(\theta, G \setminus Y) + |X \setminus Y| < \text{mult}(\theta, G) + |X|$, a contradiction. Hence a subset of an θ-extreme set is θ-extreme. \qed

Lemma 2.6. If X is a θ-barrier [\theta-extreme] set and $Y \subseteq X$ then $X \setminus Y$ is a θ-barrier [\theta-extreme] set in $G \setminus Y$.

Proof. Note that $c_0(G \setminus X) = |X| + \text{mult}(\theta, G)$. By Theorem 2.1 and Lemma 1.3 $c_0(G \setminus X) \leq |X \setminus Y| + \text{mult}(\theta, G \setminus Y) \leq |X \setminus Y| + \text{mult}(\theta, G) + |Y| = |X| + \text{mult}(\theta, G)$. Hence $c_0(G \setminus X) = |X \setminus Y| + \text{mult}(\theta, G \setminus Y)$ and $X \setminus Y$ is a θ-barrier set in $G \setminus Y$. \qed

Lemma 2.7. Every θ-extreme set of G lies in a θ-barrier set.

Proof. Let X be a θ-extreme set and $T = A_0(G \setminus X) \cup X$. Then

$$c_0(G \setminus T) = c_0(G \setminus (A_0(G \setminus X) \cup X))$$
$$= c_0((G \setminus X) \setminus A_0(G \setminus X))$$
$$= |A_0(G \setminus X)| + \text{mult}(\theta, G \setminus X) \quad \text{(by (ii) of Corollary 1.8)}$$
$$= |A_0(G \setminus X)| + \text{mult}(\theta, G) + |X| \quad \text{(\(X\) is \(\theta\)-extreme)}$$
$$= |T| + \text{mult}(\theta, G),$$

and hence T is a θ-barrier set. \qed

Lemma 2.8. Let X be a θ-barrier set. Then X is a θ-extreme set.
Proof. Recall from (1) that $\text{mult}(\theta, G \setminus X) \geq c_\theta(G \setminus X)$. Since $c_\theta(G \setminus X) = |X| + \text{mult}(\theta, G)$, by Lemma 2.8 we have

$$\text{mult}(\theta, G) \geq \text{mult}(\theta, G \setminus X) - |X| \geq c_\theta(G \setminus X) - |X| = \text{mult}(\theta, G).$$

Hence $\text{mult}(\theta, G \setminus X) = \text{mult}(\theta, G) + |X|$ and so X is a θ-extreme set. \hfill \Box

Note that in general a θ-extreme set is not a θ-barrier set. In Figure 1, $X_1 = \{u\}$ is a 0-extreme set but it is not a 0-barrier set.

Lemma 2.9. Let X be a θ-barrier set and H be a component of $G \setminus X$. Then either H is θ-critical or $\text{mult}(\theta, H) = 0$.

Proof. Note that $c_\theta(G \setminus X) = |X| + \text{mult}(\theta, G)$. By Lemma 2.8 X is a θ-extreme set. Therefore $\text{mult}(\theta, G \setminus X) = \text{mult}(\theta, G) + |X| = c_\theta(G \setminus X)$. Now if H is not θ-critical and $\text{mult}(\theta, H) > 0$, then by (1), $\text{mult}(\theta, G \setminus X) > c_\theta(G \setminus X)$, a contradiction. Hence either H is θ-critical or $\text{mult}(\theta, H) = 0$. \hfill \Box

Lemma 2.10. Let X be a maximal θ-barrier set. Let H be a component of $G \setminus X$ and $\text{mult}(\theta, H) = 0$. Then for all $u \in V(H)$, u is θ-neutral in H. Furthermore for all $Y \subseteq V(H)$ and $Y \neq \emptyset$, $c_\theta(H \setminus Y) \leq |Y| - 1$.

Proof. Suppose H has a θ-positive vertex, say u. Then $\text{mult}(\theta, H \setminus u) = 1$. By (ii) of Corollary 1.8 $c_\theta((H \setminus u) \setminus A_\theta(H \setminus u)) = |A_\theta(H \setminus u)| + \text{mult}(\theta, H \setminus u) = |A_\theta(H \setminus u)| + 1$. But then

$$c_\theta(G \setminus (X \cup \{u\} \cup A_\theta(H \setminus u))) = c_\theta(G \setminus X) + c_\theta((H \setminus u) \setminus A_\theta(H \setminus u)) = |X| + \text{mult}(\theta, G) + |A_\theta(H \setminus u)| + 1 = |X \cup \{u\} \cup A_\theta(H \setminus u)| + \text{mult}(\theta, G),$$

and so $X \cup \{u\} \cup A_\theta(H \setminus u)$ is a θ-barrier in G, a contrary to the maximality of X. Hence for all $u \in V(H)$, u is θ-neutral in H.

Since $Y \neq \emptyset$, there is a $y \in Y$. Let $Y' = Y \setminus y$ and $H' = H \setminus y$. Note that $\text{mult}(\theta, H \setminus y) = 0$ since y is θ-neutral in H. By Theorem 2.1 $c_\theta(H' \setminus Y') \leq |Y'|$. Since $H \setminus Y = H' \setminus Y'$, we have $c_\theta(H \setminus Y) \leq |Y| - 1$. \hfill \Box

Lemma 2.11. Let G be θ-critical. Then for all $Y \subseteq V(G)$ and $Y \neq \emptyset$, $c_\theta(G \setminus Y) \leq |Y| - 1$.

Proof. Since $Y \neq \emptyset$, there is a $y \in Y$. Let $Y' = Y \setminus y$ and $G' = G \setminus y$. Note that $\text{mult}(\theta, G \setminus y) = 0$ since y is θ-essential in G. By Theorem 2.1 $c_\theta(G' \setminus Y') \leq |Y'|$. Since $G \setminus Y = G' \setminus Y'$, we have $c_\theta(G \setminus Y) \leq |Y| - 1$. \hfill \Box

In general the union or intersection of two θ-barrier sets is not necessary a θ-barrier set. In Figure 1, $X_2 = \{u, v, w\}$ and $X_3 = \{v, w, z\}$ are two 0-barrier sets. But $X_2 \cap X_3$ and $X_2 \cup X_3$ are not a 0-barrier set. However the intersection of two maximal θ-barrier sets is a θ-barrier set.

Theorem 2.12. The intersection of two maximal θ-barrier sets is a θ-barrier set.
Proof. Let X and Y be two maximal θ-barrier sets. Let G_1, G_2, \ldots, G_k be all the θ-critical components of $G \setminus X$ and H_1, H_2, \ldots, H_m be all the components of $G \setminus Y$. Note that $k = |X| + \mult(\theta, G)$. Let $X_i = X \cap V(H_i)$, $Y_i = Y \cap V(G_i)$ and $Z = X \cap Y$. By relabelling if necessary we may assume that $X_1, \ldots, X_{m_1} \neq \emptyset$, $Y_1, \ldots, Y_{k_1} \neq \emptyset$, but $X_{m_1+1} = \cdots = X_m = Y_{k_1+1} = \cdots = Y_k = \emptyset$, and also that $k_1 \leq m_1$. Note that G_{k_1+1}, \ldots, G_k are θ-critical components in $(G \setminus X) \setminus Y$. So each of them is contained in a component of $G \setminus Y$. Now let us count the number of G_i’s where $k_1 + 1 \leq i \leq k$ that are contained in some H_j.

Suppose $m_1 + 1 \leq j \leq m$. Then H_j is a component in $(G \setminus X) \setminus Y$. So if $G_i \subseteq H_j$, we must have $G_i = H_j$. Furthermore G_i is a component of $G \setminus Z$. By Theorem 2.1 the number of such G_i’s is at most $c_\theta(G \setminus Z) \leq |Z| + \mult(\theta, G)$.

Suppose $1 \leq j \leq m_1$. Let G_{i_1}, \ldots, G_{i_t} be all the G_i’s that are contained in H_j. Then G_{i_1}, \ldots, G_{i_t} are θ-critical components in $H_j \setminus X_j$. By Lemma 2.9 H_j is either θ-critical or $\mult(\theta, H) = 0$. If $\mult(\theta, H) = 0$, we have, by Lemma 2.10 $c_\theta(H_j \setminus X_j) \leq |X_j| - 1$. If H_i is θ-critical, we have, by Lemma 2.11 $c_\theta(H_j \setminus X_j) \leq |X_j| - 1$. Therefore in either cases, we have $t \leq |X_j| - 1$.

The number of G_i’s where $k_1 + 1 \leq i \leq k$ that are disjoint from Y is at most

\[
c_\theta(G \setminus Z) + \sum_{j=1}^{m_1} (|X_j| - 1) \leq |Z| + \mult(\theta, G) + |X \setminus Z| - m_1
\]

\[
= |X| + \mult(\theta, G) - m_1
\]

\[
= k - m_1
\]

\[
\leq k - k_1.
\]

Since this number is exactly $k - k_1$, we infer that equality must hold throughout. Hence $c_\theta(G \setminus Z) = |Z| + \mult(\theta, G)$ and Z is a θ-barrier set.

\Box

3 Characterizations of $A_\theta(G)$

A characterization of $A_\theta(G)$ is that it is the minimal (inclusionwise) θ-barrier set (see Theorem 3.5). Furthermore if $N_\theta(G) = \emptyset$, we have another characterization of $A_\theta(G)$, that is, it is the intersection of all maximal θ-barrier sets in G (see Theorem 3.6).

Lemma 3.1. If X is a θ-barrier or a θ-extreme set then $X \subseteq A_\theta(G) \cup P_\theta(G)$.

Proof. By Lemma 2.8 we may assume X is a θ-extreme. Let $x \in X$. By Lemma 2.5 $\{x\}$ is a θ-extreme set. Therefore $\mult(\theta, G \setminus x) = \mult(\theta, G) + 1$ and x is θ-positive. So $x \in A_\theta(G) \cup P_\theta(G)$ and $X \subseteq A_\theta(G) \cup P_\theta(G)$.

\Box

Lemma 3.2. Let X be a θ-barrier set. If $X \subseteq A_\theta(G)$ then $X = A_\theta(G)$.

Proof. Note that $c_\theta(G \setminus X) = \mult(\theta, G) + |X|$. By Lemma 2.7 we conclude that $A_\theta(G \setminus X) = \emptyset$. By Theorem 1.6 $A_\theta(G \setminus X) = A_\theta(G) \setminus X$. Hence $X = A_\theta(G)$.

We shall require the following result of Godsil [2].
Theorem 3.3. (Theorem 4.2 of [2]) Let θ be a root of $\mu(G, x)$ with non-zero multiplicity k and let u be a θ-positive vertex in G. Then

(a) if v is θ-essential in G then it is θ-essential in $G \setminus u$;

(b) if v is θ-positive in G then it is θ-essential or θ-positive in $G \setminus u$;

(c) if u is θ-neutral in G then it is θ-essential or θ-neutral in $G \setminus u$.

Lemma 3.4. Let $u \in P_\theta(G)$. Then $A_\theta(G) \subseteq A_\theta(G \setminus u)$.

Proof. If $A_\theta(G) = \emptyset$, then we are done. Suppose $A_\theta(G) \neq \emptyset$. Let $v \in A_\theta(G)$. Then v is adjacent to a θ-essential vertex w. By Theorem 3.3, w is θ-essential in $G \setminus u$ and v is either θ-positive or θ-essential in $G \setminus u$. Suppose v is θ-essential in $G \setminus u$. Then $\text{mult}(\theta, G \setminus uv) = \text{mult}(\theta, G)$. By Theorem 1.6, $u \in P_\theta(G) = P_\theta(G \setminus v)$. Since v is θ-special in G, v is θ-positive in G (see Corollary 4.3 of [2]). So $\text{mult}(\theta, G \setminus uv) = \text{mult}(\theta, G) + 2$, a contradiction. Therefore v is θ-positive in $G \setminus u$. Since v is adjacent to w, we must have $v \in A_\theta(G \setminus u)$. Hence $A_\theta(G) \subseteq A_\theta(G \setminus u)$. \hfill \Box

Theorem 3.5. Let X be a θ-barrier set in G. Then $A_\theta(G) \subseteq X$. In particular, $A_\theta(G)$ is the minimal θ-barrier set.

Proof. By Lemma 3.1, $X \subseteq A_\theta(G) \cup P_\theta(G)$. We shall prove the result by induction on $|X \cap P_\theta(G)|$. Suppose $|X \cap P_\theta(G)| = 0$. Then $X \subseteq A_\theta(G)$ and by Lemma 3.2, $X = A_\theta(G)$. Suppose $|X \cap P_\theta(G)| \geq 1$. We may assume that if X' is a θ-barrier set in G' with $|X' \cap P_\theta(G')| < |X \cap P_\theta(G)|$, then $A_\theta(G') \subseteq X'$.

Let $x \in X \cap P_\theta(G)$. By Lemma 2.4, $X' = X \setminus x$ is a θ-barrier set in $G' = G \setminus x$. By Lemma 3.1 and Lemma 3.4, we have $X' \subseteq A_\theta(G') \cup P_\theta(G')$ and $A_\theta(G) \subseteq A_\theta(G')$. Therefore $|X' \cap P_\theta(G')| < |X \cap P_\theta(G)|$. By induction $A_\theta(G') \subseteq X'$. Hence $A_\theta(G) \subseteq X$. \hfill \Box

In general, $A_\theta(G)$ is not the intersection of all maximal θ-barrier sets in G. For instance, in Figure 2, $\text{mult}(\sqrt{3}, G) = 0$ and $A_{\sqrt{3}}(G) = \emptyset$. Now $\{u\}$ is the only maximal $\sqrt{3}$-barrier set. But $A_{\sqrt{3}}(G) \neq \{u\}$. However we can show that $A_\theta(G)$ is the intersection of all maximal θ-barrier sets in G if $N_\theta(G) = \emptyset$.

![Figure 2](image-url)
Theorem 3.6. Suppose $N_\theta(G) = \emptyset$. Then $A_\theta(G)$ is the intersection of all maximal θ-barrier sets in G.

Proof. By Theorem 3.5, $A_\theta(G)$ is contained in the intersection of all maximal θ-barriers in G. It is sufficient to show that for each $x \in V(G) \setminus A_\theta(G)$ there is a maximal barrier that does not contain x. If $x \in D_\theta(G)$, by Lemma 3.1, x is not contained in any θ-barriers and thus any maximal θ-barriers. Suppose $x \in P_\theta(G)$. Then x is contained in a component H in $G \setminus A_\theta(G)$ with $\text{mult}(\theta, H) = 0$. Note that $|V(H)| \geq 2$, for $x \in P_\theta(G) = P(G \setminus A_\theta(G))$ and $\text{mult}(\theta, H \setminus x) = 1$ (see Theorem 1.2). By (c) of Theorem 1.2 and the fact that $\text{mult}(\theta, H) = 0$, we deduce that there is a vertex $y \in V(H \setminus x)$ for which $\text{mult}(\theta, H \setminus xy) = 0$. Now $y \in P_\theta(G)$ for $N_\theta(G) = \emptyset$. Furthermore x is θ-essential in $H \setminus y$. Therefore $x \notin A_\theta(H \setminus y)$ and by (ii) of Corollary 1.8, $c_\theta((H \setminus y) \setminus A_\theta(H \setminus y)) = |A_\theta(H \setminus y)| + 1$. Hence

$$c_\theta(G \setminus (A_\theta(G) \cup \{y\} \cup A_\theta(H \setminus y))) = c_\theta(G \setminus A_\theta(G)) + c_\theta((H \setminus y) \setminus A_\theta(H \setminus y))$$

$$= |A_\theta(G)| + \text{mult}(\theta, G) + |A_\theta(H \setminus y)| + 1$$

$$= |A_\theta(G) \cup \{y\} \cup A_\theta(H \setminus y)| + \text{mult}(\theta, G),$$

and so $A_\theta(G) \cup \{y\} \cup A_\theta(H \setminus y)$ is a θ-barrier set not containing x. Let Z be a maximal θ-barrier set containing $Y = A_\theta(G) \cup \{y\} \cup A_\theta(H \setminus y)$. By Lemma 2.6, $Z \setminus Y$ is a θ-barrier set in $G \setminus Y$. Using Theorem 1.6 and the fact that x is θ-essential in $H \setminus y$, we can deduce that $x \notin D_\theta(G \setminus Y)$. By Lemma 3.1, we conclude that $x \notin Z \setminus Y$ and hence $x \notin Z$. The proof of the theorem is completed.

Since $N_0(G) = \emptyset$, by Theorem 3.6 and Proposition 2.4, we deduce the following classical result.

Corollary 3.7. (Theorem 3.3.15 of [4]) $A_0(G)$ is the intersection of all maximal barrier sets in G.

References

[1] C. D. Godsil, *Algebraic Combinatorics*, Chapman and Hall, New York (1993).

[2] C. D. Godsil, *Algebraic matching theory*, The Electronic Journal of Combinatorics 2 (1995), # R8.

[3] W. Chen and C.Y. Ku, *An analogue of the Gallai-Edmonds Structure Theorem for nonzero roots of the matching polynomial*, J. Combin. Theory Ser. B (2009), doi:10.1016/j.jctb.2009.05.001.

[4] L. Lovász and M.D. Plummer, *Matching Theory*, Elsevier Science Publishers, Budapest (1986).