Abstract

We present a systematic study of the perovskite-related system La$_{2-x}$Sr$_x$Cu$_{1-y}$Ru$_y$O$_{4-\delta}$ using Cu L$_{2,3}$; Ru L$_{2,3}$, and O K X-ray absorption spectroscopy (XAS), magnetic and electrical measurements. This system can be regarded as hole-doped via substitution of La by Sr and to be electron-doped via substitution of Ru by Cu, and thus the question as to the distribution of the charge carriers and the interaction between Cu and Ru ions are central to our understanding of these novel systems. The comparison of the experimental data with the crystal-field-multiplet calculations shows clearly that the charge balance for $x/2y > 1$ is predominantly achieved by an increase of the Ru valence from Ru(IV) to Ru(V), while Cu remains in the Cu(II) oxidation state. © 2002 Elsevier Science B.V. All rights reserved.

PACS: 78.70.Dm; 71.28.+d; 79.60

1. Introduction

The discovery of high-temperature superconductors (HTSs) [1] has initiated a large number of studies on the system La$_{2-x}$Sr$_x$CuO$_4$, which has the simplest crystal structure among the variety of high-temperature superconductors known today. The parent, unsubstituted compound La$_2$CuO$_4$ is an antiferromagnetic insulator. Upon Sr-substitution it becomes superconducting with a maximum value of T_c for $x = 0.15$ [2]. At higher doping superconductivity disappears again and La$_{2-x}$Sr$_x$CuO$_4$ shows a normal metallic behavior [2]. This has lead to further extensive research of the consequences of substituting the La or Cu atoms by other metals.

Recently, superconductivity was also found in the system Sr$_2$RuO$_4$ at rather low temperatures ($T_c \approx 1$ K) [3]. Sr$_2$RuO$_4$ is the first non-copper-oxide superconductor with the same K$_2$NiF$_4$-type structure as La$_{2-x}$Sr$_x$CuO$_4$. Very little is known about...
other members of the La$_{2-x}$Sr$_x$Cu$_{1+y}$Ru$_y$O$_{4+d}$ system [4–6], which can be considered to be hole-doped via substitution of La by Sr and electron-doped by the substitution of Ru for Cu. Two previous studies [7,8] indicate that single phase La$_{2-x}$Sr$_x$Cu$_{1+y}$Ru$_y$O$_{4+d}$ exists in the regions $0 \leq x \leq 2$ and $0 \leq y \leq 1$ with $x > 2y$ and $x < 1 + 2y$, which are illustrated in the schematic phase diagram of Fig. 1. Two of the most important parameters that control the electronic behavior of these materials are the valences of the Cu and Ru ions. For $\delta = 0$ and $x = 2y$, Cu and Ru have the valence states of Cu(II) and of Ru(IV), as in La$_2$CuO$_4$ and Sr$_2$RuO$_4$, respectively. For $x > 2y$, thermogravimetric measurements have shown that up to 40% of the Ru or Cu cations adopt a higher oxidation state [7,8], which then is either due to formation of Cu(III) or Ru(V) ions. In the case of high values of the ratio $x/2y$, the system tends to become oxygen-deficient. This leads finally to a breakdown of the K$_2$NiF$_4$-type structure when the oxygen deficiency reaches $\delta \leq 0.3$ [7]. Within a simple ionic picture copper is in a Cu$^{2+}$ (3d9) state in La$_2$CuO$_4$. Strong tetragonal elongation of the CuO$_6$ octahedron lifts the degeneracy of the e$_g$ orbitals – d(x^2-y^2) and d(z^2) – with the former being formally half-filled. According to the Zaanen–Sawatzky–Allen classification scheme, La$_2$CuO$_4$ is a charge transfer insulator, in which the on-site Coulomb correlation energy U_{dd}, (> 8 eV) is greater than the charge transfer energy, δ [9]. This results in a gap defined by the charge transfer energy between the O 2p and Cu 3d dominated states. Thus, the holes near the Fermi energy (E_F) induced by Sr-doping have mainly O 2p character. In the case of the undoped 4d transition metal oxide Sr$_2$RuO$_4$, the Ru 4d4 configuration gives rise to metallic behavior, since significant the dispersion of 4d-related states and the strong hybridization between Ru 4d and O 2p states smear out a possible splitting of the t$_{2g}$ orbitals induced by the Jahn–Teller effect. The in plane resistivity has a linear temperature dependence from 20 to 300 K. Energy band structure calculations indicate that three hybridized Ru d–O 2p π bands cross E_F [10,11], where the density of states has mainly Ru 4d character mixed with some O 2p character.

In the mixed Cu/Ru system, the question then arises as to whether for $x > 2y$ charge balance is achieved by hole creation in Cu 3d states, giving rise to Cu(III) ions, or in Ru 4d states resulting in Ru(V). In each case the electronic and magnetic properties are immediately an interesting issue.

Spectroscopic studies using X-ray absorption (XAS) at the Cu L$_{3,2}$ and O K edges are well known to be standard methods for studying Cu valence and the hybridization between Cu 3d and O 2p states in cuprates [12–17]. In addition, our previous combined theoretical and experimental work on model Ru(IV) and Ru(V) oxides indicated that the Ru L$_{2,3}$ XAS spectra – as concerns both their energy position and spectral profile – are sensitive to the valence state of Ru [18]. In this contribution we present a systematic study of the La$_{2-x}$Sr$_x$Cu$_{1-y}$Ru$_y$O$_{4-d}$ system using XAS at the Cu 2p$_{1/2,3/2}$(L$_{2,3}$), Ru 2p$_{1/2,3/2}$(L$_{2,3}$), and O 1s (K) thresholds with the aim of answering the above questions. In addition, we have employed magnetization studies to explore whether the system exhibits superconductivity or long-range magnetic order and have carried out electrical resistivity measurements to monitor the effects of the 4d–3d interaction.

Fig. 1. Schematic phase diagram of La$_{2-x}$Sr$_x$Cu$_{1+y}$Ru$_y$O$_{4+d}$, which is divided into three regions for $x > 2y$. The lines $x = 2y$, $x = 3y$ and $x = 2y + 0.4$ make region (1) [light grey shading], where we have the Ru valence v(Ru) < 5 and $\delta = 0$. The lines $x = 2y + 0.4$ and $y = 0.4$ make region (2) [dark grey shading], where we have v(Ru) ≤ 5 and $\delta > 0$. The region (3) [hatched] lies below lines $x = 3y$ and $y = 0.4$, where we have v(Ru) $= 5$ and $\delta > 0$. The capital letters on the diagram indicate the stoichiometry of each sample, as listed in Table 1. For details, see text.
2. Experimental

Polycrystalline samples of La$_{2-x}$Sr$_x$Cu$_{1-y}$Ru$_y$O$_{4-d}$ were prepared according to the procedures given in [7]. Throughout this contribution, we will refer to the systems in question using capital letters which represent a set of values for x, y and d denoted (x, y, d) which are summarized in Table 1. The Sr$_2$Ru$_2$O$_9$ sample was prepared as described in [19]. The purity of the compounds was checked using X-ray powder diffraction (XRD). All samples (unless otherwise stated) were found to be single phase. The K_2NiF_4-type structure was verified using Rietveld refinements as shown in Fig. 2. Detailed information regarding these refinements can be found in [7,8].

The magnetic investigations reported here were performed using a SQUID (VTS-905 from Biomagnetic Materials) and were carried out in the temperature range 6–300 K with an external magnetic field of 0.1 T. Electrical resistivity measurements were performed on pressed powder pellets in the temperature range 300–575 K using a standard four-probe technique and a Hewlett-Packard 4284A supply.

The combined thermogravimetric/mass spectrometric measurements were carried out using a Netzsch STA 409 thermoanalytic system connected to a Balzers QMG 421 mass spectrometer by a capillary coupling system. In these experiments about 50 mg of material was heated to 1000 °C at a rate of 10 °C/min under a constant flow of 50 ml/min forming gas (N$_2$/H$_2$ 95:5%).

The O K and Cu L$_{2,3}$ XAS spectra were recorded at BESSY (Berlin) using the SX700/II monochromator. The O K and Cu L$_{2,3}$ XAS spectra were recorded in fluorescence yield (FY) and total electron yield (TEY) modes, respectively. At the O K and Cu L$_3$ thresholds, the experimental resolutions were 0.2 and 0.5 eV, respectively. Prior to the measurements, the sample surfaces were scraped in situ with a diamond file at a base pressure of 5 \times 10^{-10} mbar.

The O K and Cu L$_{2,3}$ XAS spectra were recorded at BESSY (Berlin) using the SX700/II monochromator. The O K and Cu L$_{2,3}$ XAS spectra were recorded in fluorescence yield (FY) and total electron yield (TEY) modes, respectively. At the O K and Cu L$_3$ thresholds, the experimental resolutions were 0.2 and 0.5 eV, respectively. Prior to the measurements, the sample surfaces were scraped in situ with a diamond file at a base pressure of 5 \times 10^{-10} mbar.

Table 1
Ru valence v(Ru) in La$_{2-x}$Sr$_x$Cu$_{1-y}$Ru$_y$O$_{4-d}$ as obtained from Eqs. (3)–(5) (see text)

Sample name	X	Y	v(Ru)	δ	Magnetism
A	2	1	4	0	SG
B	1.76	0.8	4.20	0	SG
C	2	0.9	4.22	0	SG
D	1.36	0.6	4.27	0	SG
E	1.64	0.7	4.34	0	SG
F	1.2	0.5	4.40	0	SG
G	0.74	0.3	4.47	0	AF
H	2	0.8	4.50	0	SG
I	1.76	0.7	4.51	0	SG
J	2	0.7	4.57	0.1	SG
K	1.68	0.6	4.67	0.04	SG
L	1.5	0.5	4.80	0.05	SG
M	1.7	0.5	4.80	0.15	SG
N	1.28	0.4	5	0.04	CW
O	1.64	0.4	5	0.22	CW
P	1.36	0.2	>5	0.28	CW

δ was obtained from thermogravimetric measurements. SG, AF and CW denote spin-glass, antiferromagnetic and Curie-Weiss magnetic behaviour, respectively.

The Ru L$_{2,3}$ XAS spectra were recorded in transmission geometry at the EXAFS-II beamline at HASYLAB, using a Si(111) double-crystal monochromator. This resulted in an experimental resolution of \approx 0.8 eV (FWHM) at the Ru L$_3$ threshold (2838 eV). Depending on the Ru content, 5–10 mg of the material in question was
mixed with 20 mg polyethylene powder and pressed into a pellet of 13 mm diameter.

3. Results

3.1. Magnetism and conductivity

A large variation of the magnetic properties was found in the system La$_{2-x}$Sr$_x$Cu$_{1-z}$Ru$_z$O$_{4-z}$. In this paper, only three typical examples are shown. A more extended study will be published elsewhere. As can be seen from Fig. 3, the sample P(1.36, 0.2, 0.28) (dashed curve) shows an almost ideal Curie–Weiss (CW) behavior in the magnetic susceptibility between 6 K and room temperature, which represents the magnetic behavior found for most of the samples studied. In a number of samples, e.g. E(1.64, 0.7, 0) in Fig. 3, the magnetic susceptibility, χ_{mol}, shows a markedly different behavior below 20 K, depending on whether the sample is field-cooled or zero-field-cooled. The data indicate a typical spin-glass (SG) behavior which had been observed previously by Kim et al. for the series LaSr$_n$CuRuO$_{n+5}$ (with $n = 1, 2, 3$) [6].

The third class of magnetic behavior is shown for the sample G(0.74, 0.3, 0) in Fig. 3, which shows an antiferromagnetic phase (AF) transition at

![Fig. 2. Rietveld refinement data for the La$_{0.36}$Sr$_{1.64}$Cu$_{0.3}$Ru$_{0.7}$O$_{4-\delta}$ sample.](image)

![Fig. 3. Magnetic susceptibility, χ_{mol}, of La$_{2-x}$Sr$_x$Cu$_{1-z}$Ru$_z$O$_{4-z}$, showing a Curie–Weiss behavior for P(1.36, 0.2, 0.28) (solid line), a spin-glass behavior for E(1.64, 0.7, 0) (filled circles for field-cooled and open circles for zero-field-cooled), and an antiferromagnetic transition at $T_N \approx 117$ K for G(0.74, 0.3, 0) (filled squares for field-cooled and open squares for zero-field-cooled).](image)
$T_N \approx 117$ K. Below T_N the field-cooled and the zero-field-cooled curves are only slightly split. This class of compounds was found to possess an unusually large a axis and a short c axis [7]. The magnetic properties of studied compounds are summarized in Table 1. The electrical resistivity, ρ, exhibits a maximum at $y \approx 0.5$ for a given x, in agreement with previous work [6], where an increase of ρ with y in the region $y < 0.5$ had been reported. This could be a consequence of the disorder induced by the randomly distributed Cu and Ru atoms in the (Cu,Ru)O$_2$ planes. Along a similar vein, it has been found that metallic Sr$_2$RuO$_4$ can be driven insulating through changes in doping in Sr$_2$Ir$_{1-x}$Ru$_x$O$_4$ [26]. Previously, La$_{0.5}$Sr$_{1.5}$Cu$_{0.5}$Ru$_{0.5}$O$_4$ and La$_{0.25}$Sr$_{1.75}$Cu$_{0.5}$Ru$_{0.5}$O$_4$ have been prepared with the aim of obtaining metallic formal Ru(V) oxides [5]. However, these systems were found to be semiconducting and there was no evidence for the existence of long-range magnetic order.

3.1.1. Thermogravimetry

The reduction of the different samples started between 300 and 450 $^\circ$C and was finished between 650 $^\circ$C and 900 $^\circ$C. As the reaction temperature strongly depends on both the chemical composition and the morphology of the samples (in particular the particle size), we were unable to find a systematic relationship between the start or end temperatures and the values of x, y and δ, respectively. The mass spectra (monitored simultaneously) indicated that H$_2$O was the only volatile reaction product. This is an important additional information as weight losses due to the evolution of other gases (e.g., CO$_2$ from unreacted carbonates) would have led to incorrect values of δ. In addition, the absence of such signals can be taken as an additional confirmation of the sample quality.

From the weight loss during reduction and the known values of x and y, the oxygen deficiency δ can easily be calculated. Fig. 4 shows a plot of δ as a function of x for various samples with $y = 0.1, 0.3, 0.5$ and 0.7, respectively. From repeated measurements of selected samples we estimate the error in δ to be approximately ± 0.03. From Fig. 4 it can be seen that for small ratios of x/y the oxygen content is close to the value of 4. On increasing this ratio, the structure starts to become oxygen deficient. The dependence of δ on x and y can well be approximated by the following formulae:

\begin{equation}
\delta \approx 0 \quad \text{for } x \leq 2y + 0.4
\end{equation}

\begin{equation}
\delta \approx \frac{x}{2} - y - 0.2 \quad \text{for } x > 2y + 0.4.
\end{equation}

For values of $\delta > 0.3$ the K$_2$NiF$_4$ structure becomes unstable and impurity peaks can be found in the XRD patterns. For example, a sample with $x = 1.28, y = 0.1$, already contained minor impurity phases visible in the XRD traces. Therefore, it is not surprising that this sample shows a deviation from the above relationship as can be seen in Fig. 4.

3.2. Cu L$_{2,3}$ XAS spectra

Fig. 5 shows the Cu L$_{2,3}$ XAS spectra of some selected compounds of the series La$_{2-x}$Sr$_x$Cu$_{1-y}$Ru$_y$O$_{4-\delta}$, together with those of CuO and La$_2$Li$_{0.5}$Cu$_{0.5}$O$_4$ as Cu(II) and Cu(III) references, respectively. The strong single peak observed for all La$_{2-x}$Sr$_x$Cu$_{1-y}$Ru$_y$O$_{4-\delta}$ systems lies at energies
ranging from 930.7 to 931.4 eV, and is shifted by only jD_{60}: 3 eV with respect to that of CuO at 931.2 eV for most of the samples. Sample B(1.76,0.8,0) is one exception with a 0.5 eV shift to lower energy. We attribute this larger shift to strong excitonic effects [12], which is a reasonable supposition considering the narrow linewidth for this oxide. The single peak in CuO is assigned to a 2p 3d10 final state arising from the 3d9 initial state of Cu(II). In contrast, the strong peak in the Cu(III) reference compound La$_2$Li$_{0.5}$Cu$_{0.5}$O$_4$ lies 1.7 eV above the peak of CuO and is attributed to a predominantly 2p 3d10 L final state (L denotes a hole in the O 2p ligand orbitals). The weak satellite at \sim9 eV above the main peak in La$_2$Li$_{0.5}$Cu$_{0.5}$O$_4$ is assigned to a predominantly 2p 3d8 final state, which thus exhibits multiplet splitting [13,17,22].

The Cu L$_{2,3}$ edges therefore clearly reveal that in most compounds discussed here the copper ions remain divalent [Cu(II)]. Only at very high $x/2y$ ratios in region 3 of Fig. 1 (i.e., close to the breakdown of the K$_2$NiF$_4$-type structure) such as for P(1.36,0.2,0.28), can one see a weak shoulder (indicated by an arrow in Fig. 5) at the energy of the main peak of La$_2$Li$_{0.5}$Cu$_{0.5}$O$_4$. Such a weak shoulder has also observed previously in La$_2$-Sr,CuO$_4$ [12,14,27], where the holes in CuO$_2$ plane created by Sr doping have mainly O 2p and only little Cu 3d character. This is a result of the fact that to achieve a 3d8 configuration for Cu$^{3+}$ state in a simple ionic description, it would be necessary to overcome the particularly large Coulomb correlation energy U_{dd}. In the case of La$_2$Li$_{0.5}$Cu$_{0.5}$O$_4$, each CuO$_4$ plaquette (which is isolated from the next CuO$_4$ plaquette by the Li–O sublattice) has one additional hole. This hole has mainly O 2p character resulting in a dominant 2p 3d10 L final state in Cu L$_{2,3}$ XAS. A similar spectral feature has also been found in the Cu(III) oxide NaCuO$_2$ in which a 90° Cu–O–Cu interaction pathway causes the inter-plaquette interaction to be weak, leading to a behavior of analogous that an isolated CuO$_4$ plaquette [23]. In strong contrast to these quasi isolated Cu(III)O$_4$ plaquette systems, for the Cu(III) oxide LaCuO$_3$ which has an 180° Cu–O–Cu interaction pathway leading to stronger inter-plaquette hopping and metallic conductivity, a double-peaked Cu L$_3$ structure has been found [22].

3.3. Ru L$_{2,3}$ XAS spectra

The fact that the Cu valence remains essentially unchanged upon Sr doping leads to the conclusion that the Ru ions play the central role as regards the charge balance in these compounds. In the following, we first present our observations as regards the spectral response at the Ru L$_{2,3}$ excitation edge for a change of Ru valence and then give a theoretical interpretation of the data. For 4d transition metal (TM) oxides, the larger band-like character of the 4d states and the weaker Coulomb repulsion energy U_{dd} mean that these systems are generally significantly less dominated by correlation effects than their 3d counterparts.
Thus, it costs less energy to remove a 4d electron from a Ru ion than to remove a 3d electron from a Cu ion. Compared with the situation as regards 3d TM L_2 and L_3 XAS spectra [28], both the experimental and theoretical study of 4d TM L_{2,3} XAS spectra lag far behind. It is usually assumed that the 4d TM L_{2,3} XAS spectra reflect directly the unoccupied 4d orbitals, and thus the spectra have often been interpreted in terms of crystal-field or molecular-orbital theories [29–32]. In the case of O_h local symmetry, it is then expected that the intensity ratio of transitions into the crystal-field-splitted t_{2g} and e_g states \(I(t_{2g})/I(e_g) \) is 0.5 for Ru(IV) [4d^4] and increases to 0.75 for Ru(V) [4d^3] at both the L_2 and the L_3 edges. Recently, however, it was recognized that the intra-atomic Coulomb interaction and the 4d spin–orbit coupling strongly modify the spectral features in Ru L_{2,3} XAS spectra [18,33], as concerns both their energy position and the intensity ratio of the t_{2g} and e_g-related features. Therefore only a combined experimental and theoretical study in which the model explicitly takes multiplet and spin–orbit coupling effects into account can give reliable information on the valence of Ru.

For simplicity, we first show in Fig. 6 the Ru L_{2,3} XAS spectra of Sr_2Cu_{1-y}Ru_yO_4 with \(y = 1[A(2,1,0), 0.9[C(2,0.9,0)], and 0.7[J(2,0.7,0.1)] \) together with those of Sr_4Ru_2O_9 (bottom) as a Ru(V) reference. To ease comparison, the L_2 spectra (open symbols) have been shifted by 129 eV (the Ru 2p spin–orbit splitting) and have been multiplied by 2.1 such that their high energy feature matches the corresponding feature in the L_3 spectra (filled symbols). In each case, the lower and the higher energy component basically reflects transitions into t_{2g} and e_g-related states, respectively. The intensity ratio, \(I(t_{2g})/I(e_g) \), is higher at the L_3 edge than at the L_2 edge for the Ru(IV) compound Sr_2RuO_4, but this situation is reversed for the Ru(V) compound Sr_4Ru_2O_9. The observed spectral ratios are significantly different from those expected from crystal-field and molecular-orbital theories, as has been discussed in detail in [18]. In addition, on going from Ru(IV) to Ru(V), the energy position of both components of the L_2 and L_3 XAS spectra are shifted by 1.5 eV to higher energies.

The changes in the Ru L_{2,3} XAS spectra occurring upon increasing Ru valence described above can be well reproduced by crystal-field-multiplet calculations (CFMCs) as is shown in Fig. 6. The solid and dashed lines below the spectra of Sr_2RuO_4 and Sr_4Ru_2O_9 are the theoretical curves obtained for the L_3 and L_2 edges, respectively. The intensity ratio \(I(t_{2g})/I(e_g) \) at both the L_2 and L_3 edges has been found to be very sensitive to the intra-atomic Coulomb interaction, represented by the corresponding Slater integral and to the 4d spin–orbit coupling [18,33]. Considering the strong covalency between the transition metal d and the...
respectively, is obtained by

\[N \{ \text{energy position} \} = V \]

We can thus conclude that the upward shift in the \(\Delta \) region (2), where the \(\text{Cu}^{3+} \) is pentavalent i.e., \(n(\Delta) > 0 \), is consistent with the conclusion that the Ru valence increases with an increase of the \(\Delta \) region only the Cu \(t_{2g} \) manifoldsthan on the high-lying \(\text{Cu}^{3+} \) orbitals. The \(\text{vacancies} \) will lead to a redistribution of electron density from \(z^2 \) band to \(x^2 - y^2 \) band [5]. The electronic structure of both compounds are very similar to that of \(\text{La}_0.5\text{Sr}_{1.5}\text{Cu}_0.5\text{RuO}_4 \) and \(\text{La}_{0.25}\text{Sr}_{1.75}\text{Cu}_0.5\text{Ru}_0.5\text{O}_{4-\delta} \) studied previously, in which attempts to observe metallic conductivity by doping-induced introduction of the \(t_{2g}e_g^0 \) configuration had failed [5]. Thus, considering this fact together with the above mentioned resistivity data, it would appear that itinerant electronic transport is hindered by the presence of \(\text{Cu}^0 - \text{Ru}^0 - \text{Cu} \) pathways.

Region (3) in Fig. 1 lies below the lines \(x = 3y \) and \(y = 0.4 \) and we have \(v(\text{Ru}) = 5 \) and \(\delta > 0 \). In this region the holes can be located in the \(\text{CuO}_4 \) plaquettes as in the case of \(\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-y}\text{Ru}_{0.5}\text{O}_{4-\delta} \), however, the charge hopping is suppressed by the \(\text{Cu}^0 - \text{Ru}^0 - \text{Cu} \) interaction pathways as discussed above. The Ru valences of 4.22 for \(C(2,0.9,0) \) [region (1)] and 4.57 for \(J(2,0.7,0.1) \) [region (2)] are consistent with the conclusion presented here that the Ru valence increases with increasing Cu concentration in the \(\text{Sr}_2\text{Cu}_{1-y}\text{Ru}_{0.5}\text{O}_{4-\delta} \) system.

The Ru \(L_{2.3} \) spectra of the more complicated \(\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-y}\text{Ru}_{0.5}\text{O}_{4-\delta} \) compounds \(x \neq 0 \) and \(y \neq 0 \) are shown in Fig. 7 with increasing ruthenium valence from top to bottom. One can clearly see a shift of the peak position to higher energy and an increase of the \(I(t_{2g})/I(e_g) \) intensity ratios at the Ru \(L_2 \) edge with increasing Ru valence. In the case of the sample \(\text{N}(1.28,0.4,0.04) \), the Ru is pentavalent i.e., \(n(V) = 1 \), with the spectral fea-
cles [both as regards the energy position and \(I(t_{2g})/I(e_g) \)] being the same as those of the Ru(V) reference compound \(\text{Sr}_4\text{Ru}_2\text{O}_9 \). In the foregoing, we have observed that the intensity ratio \(I(t_{2g})/I(e_g) \) in the L\(_2\) XAS spectra is the most sensitive spectral parameter to monitor an increase in Ru valence on going from Ru(IV) to Ru(V). This is a result of the larger intensity transfer from the \(e_g \)-related to the \(t_{2g} \)-related peak in the Ru L\(_2\) XAS spectrum (as compared to the Ru-L\(_3\) spectrum), which in turn is due to the differences in the intra-atomic interactions in the Ru(IV) \([4d^4]\) and Ru(V) \([4d^3]\) configurations, as shown in the theoretical spectra of Fig. 6. We stress that this spectral behavior is unexpected from crystal-field or molecular-orbital theories of the Ru L\(_{2,3}\) XAS, which predict the same ratio for the L\(_2\) and L\(_3\) spectra.

According the rules [Eqs. (1) and (2)] set up from the thermogravimetric measurements, sample P\((1.36, 0.2, 0.28)\) lies in region (3) of the phase diagram shown in Fig. 1, and thus \(v(\text{Ru}) \) should be greater than five. However, the experimental Ru L\(_{2,3}\) spectrum is identical with that of sample N\((1.28, 0.4, 0.04)\), which has \(v(\text{Ru}) = 5 \), being at the border of regions (2) and (3) in the phase diagram. Inspection of Fig. 7 shows that sample N (and thus also P) has a Ru L\(_{2,3}\) spectrum essentially identical to that of the simple Ru(V) reference compound \(\text{Sr}_4\text{Ru}_2\text{O}_9 \). In the case of sample P (formally with a valency greater than pentavalent), the charge balance is in fact achieved by the large oxygen deficit of \(\delta = 0.28 \) and by a small number of holes located in the CuO\(_6\) octahedra, and seen in the Cu L\(_{2,3}\) XAS spectra as a shoulder structure visible in Fig. 5. In both Figs. 6 and 7 one can see a narrowing of the both \(t_{2g} \)- and \(e_g \)-related peaks in the Ru L\(_{2,3}\) edges as the Ru valence increases. The reason for this might be that Cu(II) and Ru(IV) are Jahn–Teller ions, causing distortions of the metal–oxygen octahedra of 6–7% and of 27% in \(\text{Sr}_2\text{RuO}_4 \) [10] and \(\text{La}_2\text{CuO}_4 \) [34], respectively. The Jahn–Teller related splitting of \(e_g \) into \(b_{1g}(d_{xz}^2 - d_{yz}^2) \) and \(a_{1g}(d_{xy}^2) \) as well as of \(t_{2g} \) into \(b_{2g}(d_{xy}) \) and \(e_g(d_{xz}, d_{yz}) \) is in fact too small to be experimentally resolved, and thus results only in an extra increase of the linewidth in \(\text{Sr}_2\text{RuO}_4 \). In \(\text{La}_{2-x}\text{Sr}_x\text{Cu}_{1-y}\text{Ru}_y\text{O}_{4-\delta} \) a linear decrease of this distortion with increasing Ru valence is expected, since Ru(V) ions \((t_{2g}^3)\) exhibit no Jahn–Teller activity. In the case of J\((2, 0.7, 0.1)\), we have found that \(d(B - O_2)/d(B - O_1) \) is reduced to 1%. In Fig. 8 we summarize the energy shifts of the \(t_{2g} \)- (filled circles) and \(e_g \)-related (closed diamonds) features obtained from the Ru L\(_3\) XAS spectra and the intensity ratio \(I(t_{2g})/I(e_g) \) (filled squares) from the Ru L\(_2\) spectra as a function of \(v(\text{Ru}) \). The open symbols show the values for the Ru(V) reference compound \(\text{Sr}_4\text{Ru}_2\text{O}_9 \).

3.4. O K XAS spectra

In general, in O K XAS spectra, the correlation effects are much weaker than in the TM L\(_{2,3}\) XAS
spectra, i.e., an agreement between the experimental spectra and the results of band structure calculations is plausible [28,35,36]. Therefore, O K XAS spectra are usually studied in order to explore unoccupied states with O 2p character above \(E_F \) induced by covalence in the ground state, or by doping-induced hole occupancy of the O 2p states. The O K XAS spectra of La\(_{2-x}\)Sr\(_x\)CuO\(_4\) had been intensively studied previously both experimentally and theoretically in polarization-dependent measurements [12,14,15]. In Fig. 9 the single pre-edge peak in the undoped system La\(_{2-x}\)Sr\(_x\)CuO\(_4\) (a charge transfer insulator), can be identified with the upper Hubbard band (UHB) i.e., a transition into the empty state of the copper 3d\((x^2 - y^2)\) orbitals which have an admixture of O 2p character. Upon doping, a new electronic state – the Zhang–Rice singlet (ZRS) occurs [37]. This feature is shifted by about 1.5 eV to lower energy with respect to the UHB-related peak, and is often referred to as the doping hole state. From point view of the valence, it has already been mentioned that with increasing valence of the metal ion, the pre-edge peak is shifted to lower energy. In this work we concentrate on the O-K XAS spectral features from the RuO\(_6\) octahedra, where the doped holes are basically trapped.

Considering the splitting of the \(t_{2g} \) orbitals in the context of the Jahn–Teller and spin–orbit interactions, one would expect the \(\Gamma_{8}^{4,2} \) and \(\Gamma_{8}^{3,4} \) orbitals to be totally occupied and the \(\Gamma_{8}^{1,2} \) orbital to be empty [18]. However, the Ru 4d states are significantly more extended and more strongly hybridized than Cu 3d states, leading to a larger band dispersion in the Sr\(_2\)RuO\(_4\) [10]. The results of
band structure calculations indicate that three bands cut E_F, which falls on the low-energy side (-0.06 eV) of a sharp peak arising from a van Hove singularity (VHS) in the electronic density of states (DOS) \cite{10}. Two holes are found to reside in these bands. The TM-O hybridization results in open shell O 2p orbitals leading to the low lying O 2p unoccupied states detected in the O-K XAS spectra. The strong peak B in the O K XAS spectra of Sr$_2$RuO$_4$ in Fig. 9 corresponds to the spectra. The strong peak B in the O K XAS openshell O$_2$p orbitals leading to the low lying O states. These bands cut the density of states (DOS) \cite{10}. The outcome of these competing tendencies is that the low-lying peak B in the Sr$_2$RuO$_4$ spectrum is not much different from the pre-edge peak in La$_2$CuO$_4$. The spectral weight from the e$_g$-related states is low (see feature C) and in the band structure calculations extends from 1–4 eV above E_F \cite{10,11}. The O K XAS spectra of Sr$_2$RuO$_4$ show better agreement with DOS obtained by Oguchi \cite{11} than by Singh \cite{10}. The overall spectral features are very similar to those obtained previously by Schmidt et al. \cite{25}. However, in contrast to the analysis of \cite{25} we wish to point out that structure D at 533.4 eV mainly originates from SrO states. This assignment is supported by the spectrum of Sr$_2$Ru$_2$O$_9$, in which the spectral feature from the RuO$_6$ units is shifted by 1 eV to lower energy upon increasing the Ru valence from Ru(IV) to Ru(V), which results in a better separation of the RuO$_6$-related state from the SrO band. This shift to lower energy occurs in a manner fully analogous to the behavior observed in the spectra of 3d-TM oxides due to the increase of covalence with increasing valence \cite{16,38}. Thus, the e$_g$-related peak in Sr$_3$Ru$_2$O$_9$ is individually identifiable in the energy range 530.5–532.5 eV. It is evident that the lower energy t$_{2g}$-related peak at 528.5 eV is narrower than the broad higher energy e$_g$-related peak as already observed in the Ru L$_{2,3}$ XAS spectrum discussed earlier. This is a direct result of the stronger covalent dσ-like mixing between the O-2p and Ru-4d(e$_g$) orbitals. Ru(V) with the t$_{2g}$e$_g$ configuration has been known to possess a high spin state ($S = 3/2$) and also shows antiferromagnetic spin order in Ba$_2$LaRuO$_6$ \cite{38}. If holes were to be doped into both the CuO$_6$ and RuO$_6$ octahedra, the O K XAS spectra of La$_3$...Sr$_2$-Cu$_{1-\delta}$Ru$_{y}\delta$O$_{6-\delta}$ would be rather complicated as the UHB structure in La$_2$CuO$_4$ lies only 0.8 eV above peak B in Sr$_2$RuO$_4$ and the ZRS structure originating from hole doping of the cuprate would strongly overlap with the first pre-edge peak in the Ru(V) oxides. Additionally, this superimposition would occur for both the in-plane and out-of-plane spectral structures in polarization-dependent data. However, if the doped holes are trapped only in the RuO$_6$ octahedra, the O K XAS spectra would then directly monitor the modification of the hole density interms of the growth of a low lying spectral feature arising solely from the Ru(V)O$_6$ octahedra. Based upon these considerations, we discuss here only the O K spectra of Sr$_2$Cu$_{1-\delta}$Ru$_{\delta}$O$_4$, since the UHB feature from the Cu(II)O$_6$ octahedra lies a comfortable 1.8 eV above the Ru 4d t$_{2g}$-related feature from the Ru(V)O$_6$ octahedra. The O K spectra of Sr$_2$Cu$_{1-\delta}$Ru$_{\delta}$O$_{6-\delta}$ are shown in Fig. 9. The spectrum of sample C [δ(Ru) = 4.22] exhibits a low-energy shoulder visible below the main Ru(IV) t$_{2g}$-related feature. This shoulder lies at the same energy as the first pre-edge peak in Sr$_2$Ru$_2$O$_9$ and thus is assigned to holes in t$_{2g}$ states in Ru(V)O$_6$ octahedra. On further increasing the δ(Ru) to 4.57 (sample J) the Ru(V) t$_{2g}$-features becomes dominant and the Ru(IV) t$_{2g}$-related structure overlaps partly with the UHB from the Cu(II)O$_6$ octahedra and is thus no longer resolvable as a separate peak. From Fig. 9 we can conclude that with increasing Cu concentration in Sr$_2$Cu$_{1-\delta}$Ru$_{\delta}$O$_4$ the Ru...
valence increases, as was proven earlier in the context of the Ru $L_{2,3}$ XAS spectra. This leads, then, to the creation of high spin $S = 3/2$ Ru(V) ions, which if considered as 'impurities' will not be beneficial for superconductivity.

4. Summary

From a systematic study of the Cu $L_{2,3}$, Ru $L_{2,3}$, and O K XAS spectra of the system La$_{2-x}$Sr$_x$Cu$_{1-y}$Ru$_y$O$_4$, combining both experiment and theory, we have found that for $x > 2y$, the charge balance upon Sr and Ru doping is achieved by an increase of the Ru valence from Ru(IV) to Ru(V) when going from region (1) to region (3) [via region (2)] of the phase diagram shown in Fig. 1, with a pure Ru(V) valence being reached at the border between regions (2) and (3). At all stages the Cu remains essentially divalent. In region (3) of the phase diagram, Ru remains as Ru(V), and charge balance requirements lead to an oxygen deficit δ and a transfer of holes into the CuO$_6$ octahedra, before leading finally to a breakdown of the K$_2$NiF$_4$-type structure at high δ. Although hole counts of up to 0.2 holes per CuO$_6$ octahedra can be reached in region (3), these systems are not superconductors. By comparison with data from band structure calculations, we have found that the O K XAS spectra exhibit a larger unoccupied DOS just above E_F in undoped Sr$_2$RuO$_4$ than is the case in over-doped La$_{2-x}$Sr$_x$CuO$_4$. The doped holes in the Ru(V)O$_6$ octahedra are reflected by the appearance of lower energy structure in the O K XAS spectra by comparison with a simple Ru(V) reference compound.

The lower Coulomb repulsion energy U for Ru than for Cu makes Ru valence fluctuations significantly more favourable in the 4d electron system, resulting in Ru(IV) → Ru(V) transitions upon hole doping. The introduction of these high-spin Ru(V) ($S = 3/2$) centers most likely brings with it a strong impurity effect in the mixed (Cu,Ru)O$_2$ planes, which is not beneficial for superconductivity. Indeed, analysis of the electrical resistivity indicate that the presence of Cu–O–Ru–O–Cu interaction pathways mainly suppresses conductivity.

Acknowledgements

We thank F. Grasset and J. Darriet for providing the Sr$_2$RuO$_4$ sample and the staff of BESSY and HASYLAB for experimental assistance. This work was supported in part by the Deutsche Forschungsgemeinschaft within SFB 463, SFB 484, and SFB 608.

References

[1] J.G. Bednorz, K.A. Müller, Z. Phys. B 64 (1986) 189.
[2] K. Sreedhar, C.N.R. Rao, Mater. Res. Bull. 25 (1990) 1235.
[3] Y. Maeno, H. Hashida, K. Yoshida, S. Nishizaki, T. Fujita, G. Bednorz, F. Lichtenberg, Nature (London) 372 (1994) 32.
[4] K. Ramesha, S. Uma, N.Y. Vasanthacharya, J. Gopalarathnam, J. Solid State Chem. 128 (1997) 169.
[5] M.P. Atfield, P.D. Battle, S.K. Bollen, S.H. Kim, A.V. Powell, M. Workman, J. Solid State Chem. 96 (1992) 344.
[6] S.H. Kim, P.D. Battle, J. Magn. Magn. Mater. 123 (1993) 273.
[7] S. Ebbinghaus, A. Reller, Solid State Ionics 101–103 (1997) 369.
[8] S. Ebbinghaus, M. Fröba, A. Reller, J. Phys. Chem. B 101 (1997) 99099.
[9] J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55 (1985) 418.
[10] D.J. Singh, Phys. Rev. B 52 (1995) 1358.
[11] T. Oguchi, Phys. Rev. B 51 (1995) 1385.
[12] see e.g. J. Fink, N. Nücker, E. Pellegrin, H. Romberg, M. Alexander, M. Knupfer, J. Electron Spectrosc. Relat. Phenom. 66 (1994) 395.
[13] Z. Hu, C. Mazumdar, G. Kaindl, F.M.F. de Groot, S.A. Warda, D. Reinen, Chem. Phys. Lett. 297 (1998) 321.
[14] C.T. Chen, L.H. Tjeng, J. Kwo, H.L. Kao, P. Rudolf, F. Sette, R.M. Fleming, Phys. Rev. Lett. 68 (1992) 2543.
[15] C.T. Chen, F. Sette, Y. Ma, M.S. Hybertsen, E.B. Stechel, W.M.C. Foulkes, M. Schulte, S.-W. Cheong, A.S. Cooper, L.W. Rupp Jr., B. Batlogg, Y.L. Soo, Z.H. Ming, A. Krol, Y.H. Kao, Phys. Rev. Lett. 66 (1991) 104.
[16] Z. Hu, G. Kaindl, S.A. Warda, D. Reinen, F.M.F. de Groot, B.G. Müller, J. Chem. Phys. Lett. 101 (1994) 6570.
[17] C. Dussarrat, J. Formpeyrine, J. Darriet, Eur. J. Solid State Chem. 32 (1995) 3.
[18] L. Tröger, D. Arvanitis, K. Baberschke, H. Michaelis, U. Grimm, E. Zschech, Phys. Rev. B 46 (1992) 3283.
[21] J. Jaklevic, J.A. Kirby, M.P. Klein, A.S. Robertson, Solid State Commun. 23 (1997) 679.

[22] K. Okada, A. Kotani, J. Phys. Soc. Jpn. 68 (1999) 666.

[23] M.S. Golden, C. Dürr, A. Koitzsch, S. Legner, Z. Hu, S. Borisenko, M. Knupfer, J. Fink, J. Electron Spectrosc. Relat. Phenom. 117 (2001) 203.

[24] S. Ebbinghaus, Z. Hu, A. Reller, J. Solid State Chem. 156 (2001) 194.

[25] M. Schmidt, T.R. Cummins, M. Bürk, D.H. Lu, N. Nücker, S. Schuppler, F. Lichtenburg, Phys. Rev. B 53 (1996) R14761.

[26] R.J. Cava, B. Batlogg, K. Kiyono, H. Takagi, J.J. Krajewski, W.F. Peck Jr., L.W. Rupp Jr., C.H. Chen, Phys. Rev. B 49 (1994) 1890.

[27] A. Fujimori, H. Namatame, K. Akeyama, N. Kosugi, Phys. Rev. B 49 (1994) 7913.

[28] F.M.F. de Groot, Doctoral Thesis, Katholieke Universiteit Nijmegen, 1991.

[29] C. Sugiura, M. Kitamura, S. Muramatsu, J. Chem. Phys. 84 (1986) 4824.

[30] G.N. George, W.E. Cleland Jr., J.H. Enemark, B.E. Smith, C.A. Kipke, S.A. Roberts, S.P. Cramer, J. Am. Chem. Soc. 112 (1990) 2541.

[31] C. Sugiura, M. Kitamura, S. Muramatsu, J. Phys. Chem. Solids 49 (1988) 1095.

[32] T.K. Sham, J. Am. Chem. Soc. 105 (1983) 2269.

[33] F.M.F. de Groot, Z. Hu, M.F. Lopez, G. Kaindl, F. Guillot, M. Tronic, J. Chem. Phys. 101 (1994) 6570.

[34] V.B. Grande, H. Müller-Buschbaum, M. Schweizer, Z. Anorg. Chem. 428 (1977).

[35] M. Abbate, R. Potze, G.A. Sawatzky, A. Fujimori, Phys. Rev. B 49 (1994) 7210.

[36] A. Fujimori, I. Hase, M. Nakamura, H. Namatame, Y. Fujishima, Y. Tokura, Abbate, F.M.F. de Groot, M.T. Czyzyk, J.C. Fuggle, O. Strebel, F. Lopez, M. Domke, G. Kaindl, Phys. Rev. B 46 (1992) 9841.

[37] F.C. Zhang, T.M. Rice, Phys. Rev. B 37 (1994) 330.

[38] P.D. Battle, J.B. Goodenough, R. Paice, J. Solid State Chem. 46 (1983) 234.