Background and Aim
There exists increased demineralization risk of enamel adjacent to fixed orthodontic attachments by cariogenic bacteria (e.g., Streptococcus mutans, Streptococcus sobrinus) and inadequate data about commonly used orthodontic cements. Thus, we evaluated the antibacterial effects of three common domestic and foreign orthodontic cements (Glass ionomer, Zinc phosphate, & polycarboxylate) on two cariogenic pathogens (S. mutans & S. sobrinus).

Methods & Materials
In this laboratory study, after culturing two standard strains of Streptococcus mutans and Subrinus bacteria and concentrating and diluting them, a direct contact test was used to evaluate the antibacterial properties of types of cement. The study groups (n=5) included the following: three types of glass ionomer resilience cement, Hoffman’s zinc phosphate and Hoffman’s polycarboxylate, and three glass ionomer cement, zinc phosphate, and carboxylate from Aria Dent factory in Iran. The acquired data were analyzed using SPSS v. 17.

Ethical Considerations
The present study was approved by Ethics Committee of Babol University of Medical Sciences (Code: MUBABOL.REC.1391.7).

Results
In both types of culture media, containing Streptococcus mutans and Streptococcus subrirus bacteria, there was a significant difference between culture media containing 3 groups of cements respecting bacterial growth inhibition zone (P<0.001). In general, the mean diameter of the inhibition zone was greater in Iranian polycarboxylate cement, compared to its foreign counterpart (P<0.001).

Conclusion
Glass ionomer cement demonstrated better antibacterial effect compared to zinc phosphate and polycarboxylate cements. There was also greater antibacterial effect of three tested cements on S.sobrinus than S.mutans. Iranian polycarboxylate showed stronger inhibition on both mentioned bacteria compared to the foreign one.

Keywords:
Antibacterial effect, adhesives, Orthodontics, Streptococcus mutans, Streptococcus subrirus

Corresponding Author:
Maysam Mirzaie, PhD.
Address: Department of Orthodontics, Dental Materials Research Center, Research Institute for Health, School of Dentistry, Babol University of Medical Sciences, Babol, Iran.
Tel: +98 (11) 32291408
E-mail: maysam2352@gmail.com
Extended Abstract

1. Introduction

In orthodontic treatment, fixed or movable devices are applied to correct the position of the teeth. For higher-quality treatment, most orthodontists prefer the use of fixed devices. Adhesives, including composites and cement, are applied to attach the bracket to the tooth. The success rate of orthodontic treatment with fixed devices depends on the quality and stability of the employed connecting materials [1]. The cause of rapid demineralization is the presence of large and persistent amounts of cariogenic microbes around the brackets and braces, i.e., improperly attached to the tooth [7]. The most important of which are Streptococcus mutans and Streptococcus subrínus [8]. To prevent caries and insufficient research concerning types of cement used in orthodontics, we aimed to apply the antibacterial properties of 3 common orthodontic types of cement (glass ionomer, zinc phosphate, & polycarboxylate) on two common cariogenic bacteria (Streptococcus mutans & Subrínus).

2. Materials and Methods

The present laboratory study used the standard strains of Streptococcus mutans (1601 PTCC) and Streptococcus subrínus (1290 PTCC) to evaluate the relevant antimicrobial effects. The sample size was estimated to be 5 samples per cement. Despite 6 types of cement, a total of 60 samples were studied. The bacteria were cultured for 24 hours at 37°C in 2 mL of Brain Heart Infusion broth and reached the half McFarland standard. The direct Contact Test method was used to evaluate the antibacterial properties of cement [16]. The bacterial base suspension was placed in a container, containing agar; the test substance was added to the dish. The antibacterial effect prevents the growth of bacteria around the test substance and creates an aura of non-growth; the diameter of which indicates the intensity of this effect. With sterile punching, the wells of the same size were generated in Himedia environments, and the bacteria were cultured with a sterile swab in a grass culture medium. The wells were then covered with 50 μL of the desired cement. The plates were incubated at 37°C. On days 2 and 5, the diameter of the no-growth halo around each well was measured with a digital caliper. Analysis of Variance (ANOVA) and t-test were used to analyze the obtained data.

3. Results

This study applied 60 media, including 30 Streptococcus mutans and 30 for Streptococcus subrínus. In each group, 10 media for zinc phosphate cement (5 media for Iranian zinc phosphate cement & 5 media for Foreign zinc phosphate cement), 10 culture media for polycarboxylate cement (5 Iranian polycarboxylate cement media & 5 media foreign polycarboxylate cement), and 10 culture media were used for glass ionomer cement (5 culture media for Iranian glass ionomer cement & 5 culture media for foreign glass ionomer cement). In this study, the diameter of the growth inhibition zone around the types of cement in both culture media remained unchanged between days 2 and 5 (Tables 1 & 2; Figure 1).

In both culture media types, containing Streptococcus mutans and Subrínus bacteria, a significant difference was observed in the culture media between the 3 groups of cement concerning the diameter of the growth inhibition zone around them (P<0.000). The following results were obtained by paired-wise comparing the culture media of the two studied bacteria:

Culture Medium	Type of Cement	No.	Mean±SD (in Millimeters)	P
Streptococcus mutans	Zinc phosphate	10	23.80±0.78	<0.001
	Polycarboxylate	10	14.40±2.27	
	Glass ionomer	10	25.30±3.33	
	Zinc phosphate	10	35.40±1.34	
Streptococcus subrínus	Polycarboxylate	10	22.20±0.71	
	Glass ionomer	10	40.20±0.87	
There was a significant difference in culture media (P<0.000) containing mutants except for internal zinc phosphate and external zinc phosphate (P=0.586) as well as between Iranian zinc phosphate and Iranian glass ionomer (P=0.179). In culture media containing Sobrinus bacteria, there was no significant difference between foreign zinc phosphate and Iranian glass ionomer (P=0.168); however, in other cases, there was a significant difference (P<0.000).

4. Discussion and Conclusion

The present study findings indicated that the highest antibacterial effect was related to glass ionomer, zinc phosphate, and polycarboxylate, respectively.

The highest growth inhibition zone was observed around the cement of the culture media, containing mutants and sobrinus, respectively, related to glass ionomer cement, zinc phosphate, and polycarboxylate cement, in sequence. The mean general and discrete growth aura around the studied cement in culture media, containing sobrinus was larger than culture media containing mutants, i.e., significant. Consistent with the results of previous studies by Mota [10], Eick [21], and Slutsky [23], the antibacterial property of glass ionomer was higher than that in other types of cement and short-lived. Daugela [26] also stated that zinc phosphate suggested the strongest antibacterial activity, compared to other cement immediately after mixing. Their obtained data were inconsistent with those of our study; this discrepancy may be due to differences in the methods and materials used in the experiments. According to the current study results, the antibacterial effect of types of cement on the bacterium Subrinus is much greater than that of mutants. Compared with domestic and foreign production cement, in Mutans culture medium, foreign glass ionomer of Iranian type presented better results. Besides, in the culture medium of Subrinus, foreign glass ionomer and zinc phosphate were better. There was no difference between polycarboxylate in both culture media. As a result, these data can be generalized to specific brands in this study.

According to the achieved findings, the antibacterial effects of glass ionomer are more than those of the other two types of cement. Additionally, the antibacterial effects of the studied types of cement on Subrinus were stronger than those of Mutans.

Ethical Considerations

Compliance with ethical guidelines

The present study was approved by Babol University of Medical Sciences (Code: MUBABOL.REC.1391.7).

Culture Medium	Type of Cement	No.	Mean±SD (in Millimeters)	P
Streptococcus mutans	Foreign zinc phosphate	5	24.20±0.83	0.586
	Iranian zinc phosphate	5	23.40±0.54	
	Foreign polycarboxylate	5	12.40±0.54	
	Iranian polycarboxylate	5	16.40±1.14	<0.001
	Foreign glass ionomer	5	28.40±0.54	<0.001
	Iranian glass ionomer	5	22.20±0.83	

Streptococcus subrinus	Foreign zinc phosphate	5	36.40±1.14	0.004
	Iranian zinc phosphate	5	34.40±0.54	
	Foreign polycarboxylate	5	20.20±0.83	<0.001
	Iranian polycarboxylate	5	24.20±0.83	
	Foreign glass ionomer	5	42.80±0.44	<0.001
	Iranian glass ionomer	5	37.60±0.54	
Funding

This study was extracted from the PhD. dissertation of the first author at the Department of Orthodontics, School of Dentistry, Babol University of Medical Sciences, Babol.

Authors’ contributions

The authors met the standard criteria of the International Committee of Medical Journal Publishers (ICMJE) and contributed equally to the writing of the article.

Conflicts of interest

The authors declared no conflicts of interest.

Acknowledgements

The authors appreciate the contribution of the Dental Materials Research Center of Babol University of Medical Sciences to this study.

Figure 1. The average diameter of growth inhibition zone around the studied cement of domestic and foreign production in the studied culture media.

Mirzaei R, et al. Antimicrobial Properties of Glass Ionomer, Zinc Phosphate, Polycarboxylate. JAMS. 2021; 24(1):24-35.
مقدمه
توجه به موضع‌های ضدمیکروبی سمان‌های استرپتوکوک سوبرینوس و استرپتوکوک موتانس در مرحله اتصالات ارتودنسی ضروری است. این مطالعه نگاه به جایگزینی سه سمان از نوع گلاس اینومر، زینک فسفات و پلی کربوکسیلات نمود.
نمایش گرافیک یا متنی

درصد بیماران بالغ، طی مدت چهار هفته ۵۰-۷۰ درصد. این فرایند در پس از شروع درمان منجر به بروز نقاط سفید دمینرالیزاسیون در نواحی از دندان‌های تحت درمان ارتودنسی می‌شود. بروز این نقاط سفید دمینرالیزاسیون، سبب ایجاد مشکلات زیبایی برای بیمار شده و در صورت عدم درمان مناسب و به موقع این ضایعات، پوسیدگی واضح دندان رخ می‌دهد.

علت این دمینرالیزاسیون سریع، وجود مقدار زیاد و مداوم میکروب‌های پوسیدگی زا در اطراف براکت‌ها و زیر بندهای است. از مهم‌ترین پوست‌های پوسیدگی دندان‌های میکروب‌هایی مانند استرپتوکوک موتونوس و استرپتوکوک سوبرینوس اشاره کرد.

در واقع، محیط دهان تحت درمان ارتودنسی، دچار تغییراتی و افزایش تعداد سایت‌های در دسترس pH می‌شود، مانند کاهش تجمع باکتری و افزایش تجمع ذرات مواد غذایی. در نتیجه، امکان بروز دکلسیفیکاسیون ناشی از کلونیزاسیون استرپتوکوک موتونوس افزایش می‌یابد.

بنابراین تلاش جهت کاهش کلونیزاسیون این میکروب‌ها در مینای اطراف اتصالات ارتودنسی و جلوگیری از پوسیدگی ناشی از آن‌ها امری لازم و ضروری است.

جهت رفع این مشکل دیگر، بیشتر تمایل به استفاده از مواد دندانی چسبنده، به طوری که در حال حاضر بهترین روش انتخابی است. به این ترتیب که در کلینیک‌ها، مواد سمانی گلاس اینومر بیشتر از سایر مواد چسبنده به زبان علمی استفاده می‌شود.

به عنوان مثال، امروزه از مواد چسبنده‌ای که فلوراید آزاد می‌کنند، جهت جلوگیری از پوسیدگی متعاقب درمان ارتودنسی استفاده می‌شود. به طوری که درحال حاضر آزمایشگاهی اثر این مواد در کاهش دمینرالیزاسیون نشان داده شده است. در این میان سمان‌ها، گلاس اینومر بیشتر از سایر مواد سمانی گلاس اینومر، مطالعات و آزمایشات انجام شده است. در این مطالعات این نتایج جدیدی به دست آمده که گلاس اینومر بیشتر از سایر مواد سمانی گلاس اینومر، مطالعات و آزمایشات انجام شده است.

در مطالعات ایرانی نیز اثر سمان‌های ایرانی در جلوگیری از پوسیدگی نشان داده شده است. در واقع، اثر پوست‌های پوسیدگی، سمان‌های ایرانی به طور خاص در جلوگیری از پوسیدگی محتوای این مطالعات ایجاد گردید.

مواد و روش‌ها

پس از تکثیر، مطالعات اثباتی دسترسی‌پذیری سمان‌های اولیه‌گردده در ایران از این پوست‌های پوسیدگی را بررسی کردند. به این ترتیب، که در این مطالعات، سمان‌های اولیه‌گردده در ایران از این پوست‌های پوسیدگی را بررسی کردند.
ارزیابی اثر استرتوکسی موتانس و پهن نمونه جهت ارزویی اثر استرتوکسی موتانس در نظر گرفته شده که با توجه به وجود مک نسبت سمان، مجموعاً حاصل شده که می‌توان نمونه جهت مرتب کردن میکروب‌های سمان‌های سیاهپوست و سی سبز میکروب‌کشی تریابی استرتوکسی سپرو سنتیاتیک شده.

به دنبال بررسی که در مورد کوده می‌باشد که میکروب‌کشی باید در سمان‌های زینک فسفات لزوزی بنیان گذاشت با توجه به انگلیکان فیبرهای دسته‌بندی بیماری ممکن است باعث شود که میکروب‌کشی همگونی و محدود تریابی استرتوکسی موتانس و پهن و نمونه باید در نظر گرفته شود.

یافته‌ها

نتایج نشان می‌دهد که قطر هاله عدم رشد در اطراف سمان‌ها در حفرات میکروب‌کشی بین زینک فسفات و پهن و پهن میکروب‌کشی بین زینک فسفات و پهن و پهن میکروب‌کشی بین سیاهپوست و سی سبز میکروب‌کشی بین سیاهپوست و سی سبز میکروب‌کشی بین زینک فسفات و پهن و پهن میکروب‌کشی بین سیاهپوست و سی سبز میکروب‌کشی بین سیاهپوست و سی سبز میکروب‌کشی بین زینک فسفات و پهن و پهن میکروب‌کشی بین سیاهپوست و سی سبز میکروب‌کشی بین سیاهپوست و سی سبز

پیشنهاد

اگر بزرگی از پوسیدگی یک پایه با استفاده از سایل از پیوستنی یا کارکرد بالا در نظر گرفته شود، با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار باید در نظر گرفته شود که این می‌تواند منجر به شکست و جهش شکستگی شدن باشد. می‌تواند با بازگرداندن این خودکار خودکار بای▌
و در نهایت، سمان گلاس آینومر، به ترتیب، اطراف سمان‌های مورد بررسی محیط‌های کشت حاوی باکتری استرپتوکوکس موتانس مربوط به سمان گلاس آینومر، زینک فسفات و سمان پلی کربوکسیلات بوده است. نتایج مشابه در محیط‌های کشت حاوی باکتری استرپتوکوک سوبرینوس به دست آمده است. میانگین هاله عدم رشد به طور کلی و مجزا در اطراف سمان‌های مورد بررسی در محیط‌های کشت حاوی باکتری استرپتوکوک سوبرینوس بزرگ‌تر از محیط‌های کشت حاوی باکتری استرپتوکوک موتانس بوده که این تفاوت از نظر آماری معنادار بود.

سمان گلاس آینومر دارای تأیید و ویژگی‌های اساسی مانند سازگاری زیستی با پالپ دندان، توانایی اتصال شیمیایی به مینا و عاج و آزادسازی فلوراید است که می‌تواند نقش مهمی در مهار به نظر می‌رسد. آزادسازی فلوراید سمان گلاس آینومر محتمل‌ترین دلیل اثر مهاری بر تولید اسید بوده و درستی پذیری فلوراید از سمان گلاس آینومر با pH به طور کلی و مجزا در اطراف سمان‌های مورد بررسی در محیط‌های کشت حاوی باکتری استرپتوکوک سوبرینوس بزرگ‌تر از محیط‌های کشت حاوی باکتری استرپتوکوک موتانس بوده که این تفاوت از نظر آماری معنادار بود.

جدول 1. تأثیر نوع سمان بر قطر هاله عدم رشد در دو نوع محیط کشت مورد بررسی

نوع سمان	محیط کشت	میانگین قطر هاله عدم رشد (بر حسب میلی متر ± انحراف معیار)	تعداد
زینک فسفات	ایرانی	0/001 - 0/40	5
پلی کربوکسیلات	ایرانی	0/001 - 0/40	5
کلس آینومر	ایرانی	0/001 - 0/40	5
زینک فسفات	خارجی	0/001 - 0/40	5
پلی کربوکسیلات	خارجی	0/001 - 0/40	5
کلس آینومر	خارجی	0/001 - 0/40	5

*ANOVA

جدول 2. میانگین قطر هاله عدم رشد سمان‌های تولید داخلی و خارجی در دو نوع محیط کشت مورد بررسی

نوع سمان	محیط کشت	میانگین قطر هاله عدم رشد (بر حسب میلی متر ± انحراف معیار)	تعداد
زینک فسفات غربی (آریادنت)	ایرانی	0/001 - 0/40	5
پلی کربوکسیلات غربی (آریادنت)	ایرانی	0/001 - 0/40	5
کلس آینومر غربی (آریادنت)			5
زینک فسفات غربی (آریادنت)	خارجی	0/001 - 0/40	5
پلی کربوکسیلات غربی (آریادنت)	خارجی	0/001 - 0/40	5
کلس آینومر غربی (آریادنت)			5

* t-test
در اثر پیشرفت در زمان مصرف سمان، زینک فسفات و کلسیم آرسناتی علت در سمان کلسیم آرسناتی یا وارون، افزایش pH نسبت به کاهش pH به علت آزادسازی فلوراید در سمان گلاس انومر می‌تواند دلیل کاهش خاصیت آنتی‌باکتریال باشد.

همچنین افزایش pH در سمان زینک فسفات نسبت به کاهش pH در سمان گلاس انومر سریعتر اتفاق می‌افتد و این می‌تواند نتیجه بیشتر فعالیت آنتی‌باکتریال سمان زینک فسفات باشد. نتایج از مطالعات قبلی که توسط لواف، وحید دستجردی و همکاران 2013 و همکاران در سال 2008، موتا و همکاران در سال 2012، پِدرینی و همکاران در سال 2004 و همکاران در سال 2001 و وانگ 2007 و اِسلوتسکی و همکاران در سال 2003، نجات شده بود، می‌توان نتیجه گرفت که خاصیت آنتی‌باکتریال سمان گلاس آینومر بیشتر از سمات های دیگر است و این خاصیت کوتاه مدت بوده و هیچ یک از سمات ها خاصیت آنتی‌باکتریال طولانی مدت بر باکتری استرپتوکوک موتانس نداشتند.

همچنین تغییر در هاله عدم رشد در محیط‌های مختلف به سبب فلوراید مینا و بررسی کلینیکی در مطالعه وحید دستجردی و همکاران در سال 2013 و بهینه سازی و همکاران در سال 2008 و وانگ 2012، پِدرینی و همکاران در سال 2004 و وانگ و همکاران در سال 2003، نجات شده بود، می‌توان نتیجه گرفت که خاصیت آنتی‌باکتریال سمان گلاس آینومر بیشتر از سمات های دیگر است و این خاصیت کوتاه مدت بوده و هیچ یک از سمات ها خاصیت آنتی‌باکتریال طولانی مدت بر باکتری استرپتوکوک موتانس نداشتند.

همچنین تغییرات در محیط‌های مختلف به سبب فلوراید مینا و بررسی کلینیکی در مطالعه وحید دستجردی و همکاران در سال 2013 و بهینه سازی و همکاران در سال 2008 و وانگ 2012، پِدرینی و همکاران در سال 2004 و وانگ و همکاران در سال 2003، نجات شده بود، می‌توان نتیجه گرفت که خاصیت آنتی‌باکتریال سمان گلاس آینومر بیشتر از سمات های دیگر است و این خاصیت کوتاه مدت بوده و هیچ یک از سمات ها خاصیت آنتی‌باکتریال طولانی مدت بر باکتری استرپتوکوک موتانس نداشتند.

همچنین تغییرات در محیط‌های مختلف به سبب فلوراید مینا و بررسی کلینیکی در مطالعه وحید دستجردی و همکاران در سال 2013 و بهینه سازی و همکاران در سال 2008 و وانگ 2012، پِدرینی و همکاران در سال 2004 و وانگ و همکاران در سال 2003، نجات شده بود، می‌توان نتیجه گرفت که خاصیت آنتی‌باکتریال سمان گلاس آینومر بیشتر از سمات های دیگر است و این خاصیت کوتاه مدت بوده و هیچ یک از سمات ها خاصیت آنتی‌باکتریال طولانی مدت بر باکتری استرپتوکوک موتانس نداشتند.

همچنین تغییرات در محیط‌های مختلف به سبب فلوراید مینا و بررسی کلینیکی در مطالعه وحید دستجردی و همکاران در سال 2013 و بهینه سازی و همکاران در سال 2008 و وانگ 2012، پِدرینی و همکاران در سال 2004 و وانگ و همکاران در سال 2003، نجات شده بود، می‌توان نتیجه گرفت که خاصیت آنتی‌باکتریال سمان گلاس آینومر بیشتر از سمات های دیگر است و این خاصیت کوتاه مدت بوده و هیچ یک از سمات ها خاصیت آنتی‌باکتریال طولانی مدت بر باکتری استرپتوکوک موتانس نداشتند.

توجه می‌شود که این مشاهده در مطالعه ارائه شده و کلینیکی، نشان می‌دهد که سمات های برتر و درجه آنتی‌باکتریال و درجه آنتی‌باکتریال طولانی مدت بر باکتری استرپتوکوک موتانس ندارند.
در مطالعه حاضر سمان پلی کربوکسیلات نیز طریق آنتی گلوکسیلاتی روی دو نوع موتوسی و سوپرینوس بود، اما برخلاف مطالعه محقکات لوقوف و همکاران [19] پس از گذشت زمان یک روز، یک ماه و دو ماه فعالیت آنتی گلوکسیلاتی در سمان پلی کربوکسیلات روز سوپرینوس موتانس Harvard و پلی کربوکسیلات فلورید زیر نبود.

از نظر تئوری سمان، زینک پلی کربوکسیلات قلورید کمتری سیستم های ایمنی تاریک، میکروبی و ابداع میکروبی دلال دیگری پای ایضاح یا کم پای خاصیت آنتی گلوکسیلاتی در پلی کربوکسیلات بود [16] در مقایسه سمان های مورد بررسی تولید داخل و خارج از مشهور، در محیط کشت موتوسی، سرام، Hoff و پلی کربوکسیلات خارجی (Resilience) و اینطور کربه پلی کربوکسیلات خارجی (Resilience) از نوع ایرانی (آریادنت) آنها نتایج آنتی گلوکسیلاتی بهتر داشت و در man's و زینک (Resilience) محیط کشت سوپرینوس، گلاس آینومر خارجی (Hoffman's)s فسفات (Resilience) از نوع ایرانی (آریادنت) آن نتایج آنتی گلوکسیلاتی بهتر از نوع داخلی و خارجی پلی کربوکسیلات خارجی (Hoffman's) و زینک (Resilience) همانند با سانت (Almaz) و حمایت مالی این مقاله از پایان نامه نویسندگان اول در گروه ارتودانتیکس، دانشکده دندان پزشکی، دانشگاه علوم پزشکی بابل استخراج شده است.

نتیجه گیری

با توجه به این‌حال که این‌گونه اثرات آنتی گلوکسیلاتی سمان گلاس آینومر بهتر از دو نوع سمان دیگر است، می‌توان گفت آنتی گلوکسیلاتی سمان های مورد بررسی بر پایه استرپتوکوک سوپرینوس قویتر از باکتری استرپتوکوک موتانس بود.

ملاحظات اخلاقی

به‌طوری‌که از اصول اخلاق پژوهش مطالعه حاضر مورد تایید کمیته‌عالقی فردک معلوم یزدی است کد: 13917.

پژوهشگر: مجتبی نوروزی و همکاران

مطالعه حاضر مورد تایید کمیته‌عالقی، دانشگاه فردک معلوم یزدی است کد: 13917.

جامان ملی

این مقاله از پایان‌نامه دکتری نویسنده‌اندل سرای مرکز بیماری‌های دهان و گوشت ارتودانتیکس، دانشگاه علوم پزشکی بابل اجرا گردیده‌است.
Reference

[1] Millett DT, Glenny AM, Mattick RC, Hickman J, Mandall NA. Adhesives for fixed orthodontic bands. Cochrane Database Syst Rev. 2016; 10(10):CD004485. [DOI:10.1002/14651858.CD004485.pub4] [PMID] [PMCID]

[2] Liebenberg WH. Extended fissure sealants: An adjunctive aid in the prevention of demineralization around orthodontic bands. Quintessence Int. 1994; 25(5):303-12. [PMID]

[3] van Beek H. [Risks of orthodontic treatment (Dutch)]. Ned Tijdschr Tandheelkd. 2009; 116(6):306-10. [PMID]

[4] Jordan CN. Prevention of white spot enamel formation during orthodontic treatment. Gen Dent. 1998; 46(5):498-502. [PMID]

[5] Matalon S, Slutzky H, Weiss EI. Antibacterial properties of four orthodontic cements. Am J Orthod Dentofacial Orthop. 2005; 127(1):56-63. [DOI:10.1016/j.ajodo.2003.11.023] [PMID]

[6] Sudjalim TR, Woods MG, Manton DJ. Prevention of white spot lesions in orthodontic practice: A contemporary review. Aust Dent J. 2006; 51(4):284-9. [DOI:10.1111/j.1834-7819.2006.000445.x] [PMID]

[7] Ogaard B, Rolla G, Arends J. Orthodontic appliances and enamel demineralization. Part 1. Lesion development. Am J Orthod Dentofacial Orthop. 1988; 94(1):68-73. [DOI:10.1016/0889-5406(88)90453-2] [PMID]

[8] Ogaard B, Rolla G. The in vivo orthodontic banding model for vital teeth and the in situ orthodontic banding model for hard-tissue slabs. J Dent Res. 1992; 71(3):832-5. [DOI:10.1177/0022034592071003010] [PMID]

[9] Cassanho ACA, Fernandes AM, Oliveira LD, Carvalho CAT, Jorge AOC, Koga-Ito CY. In vitro activity of zinc oxide-eugenol and glass ionomer cements on Candida albicans. Braz Oral Res. 2005; 19(2):134-8. [DOI:10.1590/S1806-83242005000200011] [PMID]

[10] Mota SM, Enoki C, Ito IF, Elias AM, Matsumoto MA. Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite. Braz Oral Res. 2008; 22(1):55-60. [DOI:10.1590/S1806-83242008000100010] [PMID]

[11] Chadwick BL. Products for prevention during orthodontics. Br J Orthod. 1994; 21(4):395-8. [DOI:10.1179/bjo.21.4.395] [PMID]

[12] Erickson RL, Glasspoole EA. Model investigations of caries inhibition by fluoride-releasing dental materials. Adv Dent Res. 1995; 9(3):315-23. [DOI:10.1177/08993749950090031801] [PMID]

[13] Gorton J, Featherstone JDB. In vivo inhibition of demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop. 2003; 123(1):10-4. [DOI:10.1067/mod.2003.47] [PMID]

[14] Nakajo K, Imazato S, Takahashi Y, Kiba W, Ebisu S, Takahashi N. Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dent Mater. 2009; 25(6):703-8. [DOI:10.1016/j.dental.2008.10.014] [PMID]

[15] Chadwick BL, Roy J, Knox J, Treasure ET. The effect of topical fluorides on decalcification in patients with fixed orthodontic appliances: A systematic review. Am J Orthod Dentofacial Orthop. 2005; 128(5):601-6. [DOI:10.1016/j.ajodo.2004.07.049] [PMID]

[16] Lawal S, Majid HE. [Comparison of antibacterial properties of three different dental cements by direct contact test (Persian)]. Jundishapur Sci Med J. 2013; 12(5):607-20. http://jsmj.ajums.ac.ir/article_49833.html?lang=en

[17] Dastjerdie EV, Oskoui M, Sanyanjali E, Tabatabaei FS. In-vitro comparison of the antimicrobial properties of glass ionomer cements with zinc phosphate cements. Iran J Pharm Res. 2012; 11(1):77-82. [PMCID]

[18] Yadiki JV, Jampanapalli SR, Konda S, Ingua HC, Chimata VK. Comparative evaluation of the antimicrobial properties of glass ionomer cements with and without chlorhexidine gluconate. Int J Clin Pediatr Dent. 2016; 9(2):99-103. [DOI:10.5005/jp-journals-10005-1342] [PMID] [PMCID]

[19] Shashibhushan KK, Basappa N, Subba Reddy VV. Comparison of antibacterial activity of three fluorides- and zinc-releasing commercial glass ionomer cements on strains of mutans streptococci. An in vitro study. J Indian Soc Pedod Prev Dent. 2008; 26(5):556-61. [PMID]

[20] Eick S, Glockmann E, Brandl B, Pfister W. Adherence of Streptococcus mutans to various restorative materials in a continuous flow system. J Oral Rehabil. 2004; 31(3):278-85. [DOI:10.1046/j.0305-182X.2003.01233.x] [PMID]

[21] Pedrini D, Gaetti-Jardim Junior E, de Vasconcelos AC. Retention of oral microorganisms on conventional and resin-modified glass-ionomer cements. Pesqui Odontol Bras. 2001; 15(3):196-200. [DOI:10.1590/S1517-74912001000300004] [PMID]

[22] Slutsy H, Weiss EI, Lewinstein I, Slutsky S, Matalon S. Surface antibacterial properties of resin and resin-modified dental cements. Quintessence Int. 2007; 38(1):55-61. [PMID]

[23] Wang SM, Hu W, Fu MK. [The inhibitory effect of glass ionomer cement for orthodontic bonding on bacteria (Chinese)]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2003; 38(3):230-2. [PMID]

[24] Kai S, Altenburger M, Spitzmüller B, Anderson A, Hellwig E, Al-Ahmad A. Antimicrobial effects of dental luting glass ionomer cements on Streptococcus mutans. Sci World J. 2014; 2014:807086. [DOI:10.1155/2014/807086] [PMID] [PMCID]

[25] Daugela P, Ozulnas R, Zekonis G. Antibacterial potential of contemporary dental luting cements. Stomatologija. 2008; 10(1):16-21. [PMID]