Chronic bifascicular block in a geriatric patient presenting for elective surgery. How prepared can we be?

Sir,
With increase in the geriatric population, anaesthesiologists face the challenge of anaesthetising older patients with rare conditions.\(^1\) The incidence of bifascicular block is almost 17% in patients of age more than 80 years and is diagnosed by the presence of complete right bundle branch block along with left anterior or posterior hemifascicular block or complete left branch block alone.\(^2\) The risk of progression to complete heart block (CHB) is remote and hence insertion of temporary pacing is not warranted in these asymptomatic patients. However, there is a dilemma whether to initiate temporary pacing in patients who present with syncope. Recently we had an 85-yr-old patient who presented with doubtful history of syncope following, which she sustained right inter-trochantric fracture. Her pre-operative work up revealed a bifascicular block in the electrocardiogram [Figure 1]. Albeit the history of syncope, cardiologists deferred temporary pacing and suggested pharmacologic methods for intraoperative episodes of bradycardia.

She was posted for proximal femoral nailing under spinal anaesthesia with bupivacaine and fentanyl

Chronic bifascicular block in a geriatric patient presenting for elective surgery. How prepared can we be?

Sir,
With increase in the geriatric population, anaesthesiologists face the challenge of anaesthetising older patients with rare conditions.\(^1\) The incidence of bifascicular block is almost 17% in patients of age more than 80 years and is diagnosed by the presence of complete right bundle branch block along with left anterior or posterior hemifascicular block or complete left branch block alone.\(^2\) The risk of progression to complete heart block (CHB) is remote and hence insertion of temporary pacing is not warranted in these asymptomatic patients. However, there is a dilemma whether to initiate temporary pacing in patients who present with syncope. Recently we had an 85-yr-old patient who presented with doubtful history of syncope following, which she sustained right inter-trochantric fracture. Her pre-operative work up revealed a bifascicular block in the electrocardiogram [Figure 1]. Albeit the history of syncope, cardiologists deferred temporary pacing and suggested pharmacologic methods for intraoperative episodes of bradycardia.

She was posted for proximal femoral nailing under spinal anaesthesia with bupivacaine and fentanyl
combination to reduce the level of sympathetic blockade. Bupivacaine itself has arrhythmia inducing potential, predominant changes include prolonged QRS duration and lengthening of PR interval. It is especially significant in patients who have conduction defects.\[3\] In addition to the usual operating room preparation, (which includes preparing the defibrillator), we also placed stick on paddles to facilitate transcutaneous pacing should the need arise. Also other emergency drugs like adrenaline, atropine, isoprenaline, dopamine, dobutamine and milrinone were kept ready. She remained stable through the surgery and post-operative period. By maintaining a sensory level below T10, we ensured that there were minimal haemodynamic disturbances intra-operatively.

Though our patient had an uneventful intra-operative course, there are incidences of progression to complete heart block in these patients with chronic bifascicular block especially those patients who present with syncope. Martí-Almor et al.\[4\] studied 263 patients with chronic bifascicular block. They analysed clinical, electrocardiographic and electrophysiologic variables to identify predictors for progression of bifascicular block to significant atrioventricular block. They identified presence of syncope, structural heart disease and renal disease as predictors of progression to atrioventricular block. Block progression to CHB though rare cannot be totally ruled out. CHB if it does occur could be quite disastrous and initiating temporary venous pacing would be very difficult in the situation. The availability of external non-invasive pacing (transcutaneous and transoesophageal) may preclude the need for transvenous pacing, which itself might have adverse consequences in these elderly patients.\[5\] Transcutaneous pacing is one of the techniques of external non-invasive pacing and is an important alternative when emergency transvenous pacing is immediately not available. We had placed stick on paddles to enable cutaneous pacing had the patient progressed to CHB or severe bradycardia. It should be remembered that patient might need deep sedation and analgesia to tolerate transcutaneous pacing and the necessary drugs and equipments should be available.

To conclude, bifascicular block in elderly patients can be common and the incidence of progression to CHB though rare is not impossible. Meticulous pre-operative work up and intra-operative preparedness to monitor and manage any adverse events will ensure a safe peri-operative period for these patients. More emphasis cannot be made on preparedness and vigilant monitoring.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Savitri Velayudhan, Pratheeba Natrajan, Ravindra Bhat
Department of Anaesthesiology and Critical Care, Indira Gandhi Medical College and Research Institute, Kathirkamam, Puducherry, India

Address for correspondence:
Dr. Savitri Velayudhan, Department of Anaesthesiology and Critical Care, Indira Gandhi Medical College and Research Institute, Kathirkamam, Puducherry - 605 009, India.
E-mail: savitri.velayudhan@gmail.com

Submitted: 02-Feb-2020
Revised: 05-Apr-2020
Accepted: 03-May-2020
Published: 01-Jun-2020

REFERENCES

1. Srilata M, Durga P, Ramachandran G. Influence of changing trends in anaesthetic practice on morbidity and mortality in elderly patients undergoing lower limb surgery. Indian J
Peripheral nerve block for nonoperative room challenges – New solution to an old problem

Sir,

Magnetic resonance imaging (MRI) scan requires the patient not to move during the procedure and usually does not require anaesthesia except for few cases. We present a case of an MRI scan for a painful hip, for which we administered combined lumbar plexus block (LPB) and sacral plexus block (SPB). 52-year-old male suffering from painful right hip metastasis was scheduled for an MRI scan of the hip. Initially, MRI scan without anaesthesia was unsuccessful due to severe pain. Hence, it was rescheduled under nerve stimulator-guided LPB and SPB.

After written informed consent, the patient was shifted to the MRI holding area. The peripheral line was established and standard American Society of Anaesthesiology monitors were attached. With the patient in the left lateral decubitus position, his lower back was cleaned with 0.5% chlorhexidine in 70% alcohol and draped. A point 4 cm lateral to the intersection of a horizontal line at the level of the highest point of the iliac crest and a vertical line along the spine was taken as the needle insertion point for LPB. Then, the block needle was inserted and advanced until it encountered the transverse process. The needle was then walked off the bone caudally and advanced for 1 cm more till the quadriceps muscle twitch was observed at a current of 0.5 mA. After negative aspiration, 25 mL of 0.25% bupivacaine was injected. For SPB, needle insertion point was taken at 6 cm caudal to posterior superior iliac spine. The needle was advanced till the plantar flexion response of the foot was elicited at a current of 0.5 mA. After negative aspiration, 15 mL of 0.25% bupivacaine was injected. The patient had complete pain relief within 15 min, following which the MRI procedure was started which lasted for 45 min. After successfully completing the procedure, the patient was monitored for 30 min. Usually, sedation or general anaesthesia with either supraglottic device (SGD) or endotracheal tube is preferred for procedures outside the operating room.[1] Sedation has risks such as accidental movement, losing the airway and subsequent hypoxia.[2,3] General anaesthesia with SGD or endotracheal tube needs muscle relaxation, has a risk of hypotension with the induction agents, dislodgment of SGD and circuit disconnection as the patient is taken inside the MRI magnet.[4] In our case, the indication for anaesthesia was severe pain. The patient was unable to lie supine for a long period and thus we opted to provide...