Study of scalar mesons in chiral Lagrangian frameworks

Deirdre Black and Jonathan Gaunt

Department of Physics, Cavendish Laboratory, Cambridge CB3 OHE, UK

Abstract

We review two previous approaches to studying pseudoscalar meson-meson scattering amplitudes to beyond 1 GeV using non-linear and linear chiral Lagrangians. In these approaches we use two different unitarisation techniques - a generalised Breit Wigner prescription and K-matrix unitarization respectively. We also report some preliminary findings on K-matrix unitarisation of the $I=J=0$ $\pi\pi$ scattering in a non-linear chiral Lagrangian approach and make some remarks about the light scalar mesons.

1 Introduction

Pseudoscalar meson-meson scattering up to the 1-2GeV energy range is of interest for several related reasons. On the one hand this region is beyond that where chiral perturbation theory has traditionally been applied and below that
where we can use perturbative QCD, so it is a challenge to develop a framework to calculate these amplitudes from first principles. At the same time there are many resonances in this region, some of which are controversial from the point of view of establishing their properties experimentally and their quark substructure. In particular, the scalar mesons are a long-standing puzzle in meson spectroscopy because, for example, there are too many states to fit into a single SU(3) nonet and the masses and decay patterns of some of the scalar resonances are not what would would expect for quark-antiquark scalar states. This talk is based on approaches developed by the Syracuse group. Many other interesting approaches are given in the proceedings of this conference and also cited in the references given in the bibliography.

2 Non-linear chiral Lagrangian approach to meson-meson scattering

We begin 1), 2) with the conventional chiral Lagrangian, including only pseudoscalars:

\[L_1 = -\frac{F^2}{8} \text{Tr} \left(\partial_\mu U \partial_\mu U^\dagger \right) + \text{Tr} \left[B \left(U + U^\dagger \right) \right], \]

where \(U = e^{2i \frac{\phi}{F_\pi}} \), with \(\phi \) the \(3 \times 3 \) matrix of pseudoscalar fields and \(F_\pi = 132 \text{ MeV} \) the pion decay constant. \(B \) is a diagonal matrix \((B_1, B_2, B_3)\) with \(B_1 = m_\pi^2 F_\pi^2 / 8 = B_2 \) and \(B_3 = F_\pi^2 (m_K^2 - m_\pi^2 / 2) / 4 \).

We add a nonet of scalar mesons, which transform like external fields under chiral transformations. It turns out 3) that the trilinear scalar-pseudoscalar-pseudoscalar interaction that follows from the general chiral invariant extension of \(L_1 \) to include a scalar meson nonet is given by

\[L_{\phi\phi\phi} = A \epsilon^{abc} \epsilon_{def} N_a^d \partial_\mu \phi_e \partial_\mu \phi_f + B \text{Tr} \left(N \right) \text{Tr} \left(\partial_\mu \phi \partial_\mu \phi \right) + C \text{Tr} \left(N \partial_\mu \phi \right) \text{Tr} \left(\partial_\mu \phi \right) + D \text{Tr} \left(N \right) \text{Tr} \left(\partial_\mu \phi \right) \text{Tr} \left(\partial_\mu \phi \right) \]

The first term of (2) may be eliminated in favor of the more standard form \(\text{Tr} \left(N \partial_\mu \phi \partial_\mu \phi \right) \), but is interesting because it is the OZI rule conserving term for a dual diquark-antidiquark type nonet mentioned below.

The scalar particles with non-trivial quantum numbers are given by:

\[N = \begin{bmatrix} N_1^1 & a_0^+ & \kappa^+ \\ a_0^- & N_2^2 & \kappa^0 \\ \kappa^- & \kappa^0 & N_3^3 \end{bmatrix} \]
with $a_0^0 = (N_1^1 - N_2^2)/\sqrt{2}$. There are two iso-singlet states: the combination $(N_1^1 + N_2^2 + N_3^3)/\sqrt{3}$ is an $SU(3)$ singlet while $(N_1^1 + N_2^2 - 2N_3^3)/\sqrt{6}$ belongs to an $SU(3)$ octet. These will in general mix with each other when $SU(3)$ is broken. We can write the general mass term

$$L_{mass} = -a \text{Tr}(NN) - b \text{Tr}(NNM) - c \text{Tr}(NN)\text{Tr}(N) - d \text{Tr}(NN)\text{Tr}(NM),$$

where a, b, c and d are real constants. M is the “spurion matrix” $M = \text{diag}(1, 1, x)$, x being the ratio of strange to non-strange quark masses in the usual interpretation.

We take a convention where the physical particles, σ and f_0, which diagonalize the mass matrix obtained from (4) are related to the basis states N_3^3 and $(N_1^1 + N_2^2)/\sqrt{2}$ by

$$\begin{pmatrix} \sigma \\ f_0 \end{pmatrix} = \begin{pmatrix} \cos \theta_s & -\sin \theta_s \\ \sin \theta_s & \cos \theta_s \end{pmatrix} \begin{pmatrix} N_3^3 \\ \frac{N_1^1 + N_2^2}{\sqrt{2}} \end{pmatrix},$$

For a given set of inputs for the masses of the four scalar mesons σ, $f_0(980)$, $a_0(980)$ and κ the constants a, b, c and d are fixed and there are two possible solutions for the mixing angle θ_s.

We note that there are different possibilities, in addition to quark-antiquark configurations, for the underlying quark substructure of N which all give rise to the same $SU(3)$ transformation properties. For example, forming diquark objects

$$T_a = \epsilon_{abc} q_b \bar{q}_c, \quad \bar{T}^a = \epsilon^{abc} q_b \bar{q}_c,$$

where the antisymmeterisation of the quark fields is implicit, we can form a pure tetraquark scalar nonet as follows:

$$N_a^b \sim T_a \bar{T}^b \sim \begin{bmatrix} \bar{s}d\bar{s}d & \bar{s}dus & \bar{s}dud \\ \bar{s}uds & \bar{s}u\bar{s}u & \bar{s}u\bar{s}u \\ \bar{u}d\bar{u}d & \bar{u}d\bar{u}d & \bar{u}d\bar{u}d \end{bmatrix}$$

or construct linear combinations of $q\bar{q}$ and $qq\bar{q}\bar{q}$ nonets. We studied s-wave pseudoscalar meson scattering in a framework beginning with Eqs. (1) and (2). If we begin with the tree-level scattering amplitudes, which due to chiral symmetry give good agreement with experiment close to the scattering threshold, we find that they soon deviate from the experimental data. They also violate unitarity. The approach that we took was to add an imaginary piece by hand.
to the tree-level propagator of the s-channel resonance. For πK scattering we called the lightest strange scalar resonance κ and made the substitution:

$$m_{\kappa}^2 - s \rightarrow m_{\kappa}^2 - s - im_\kappa G'_{\kappa}$$ (8)

in the denominator of the s-channel s-wave amplitude. In order to fit to experiment the quantity G'_{κ} was left as a free parameter, not necessarily equal to the perturbative width, G_{κ} say. Our fit [2], shown in Fig. 1 gave $\frac{G_{\kappa}}{G'_{\kappa}} = 0.13$ showing a substantial deviation from a Breit-Wigner resonance for which this ratio would be exactly equal to 1. Good agreement with experiment was also found [1] with this generalised Breit-Wigner prescription for the case of $\pi \pi$ scattering. The other fitting parameters are the scalar-pseudoscalar-pseudoscalar coupling constants, which can all be written in terms of the four coefficients in the interaction terms in Eq. (2), the scalar meson masses and mixing angle.

We note also that, in addition to neatly explaining the mass ordering and general pattern of decays of the scalar states below 1 GeV, a multiquark interpretation for these states is also suggested by the value of the scalar meson octet-singlet mixing angle θ_s defined in Eq. (5), which was a parameter fixed by our fits. Our best fit was about -20° which, in our mixing convention, would be close to ideal mixing for a “dual” diquark-antidiquark nonet.

3 Pseudoscalar meson-meson scattering in Linear Sigma Models

In the three flavor linear sigma model the pseudoscalar and scalar mesons appear together since the model is constructed from the 3×3 matrix field

$$M = S + i\phi,$$ (9)

where $S = S^\dagger$ represents a scalar nonet and $\phi = \phi^\dagger$ a pseudoscalar nonet. Under a chiral transformation $q_L \rightarrow U_L q_L$, $q_R \rightarrow U_R q_R$ of the fundamental left and right handed light quark fields, M is defined to transform as

$$M \rightarrow U_L M U_R^\dagger.$$ (10)

We considered a general non-renormalizable Lagrangian [1] of the form

$$\mathcal{L} = -\frac{1}{2} \text{Tr} (\partial_\mu \phi \partial_\mu \phi) - \frac{1}{2} \text{Tr} (\partial_\mu S \partial_\mu S) - V_0 - V_{SB},$$ (11)

\footnote{See [4] and references therein for more detail}
where V_0 is an arbitrary function of the independent $SU(3)_L \times SU(3)_R \times U(1)_Y$

invariants $\text{Tr} \left(M M^\dagger \right)$, $\text{Tr} \left(M M^\dagger M M^\dagger \right)$, $\text{Tr} \left((M M^\dagger)^3 \right)$ $6 \left(\text{det}M + \text{det}M^\dagger \right)$. Of these, only I_4 is not invariant under $U(1)_A$. The symmetry breaker V_{SB} has the minimal form

$$V_{SB} = -2 \left(A_1 S_1 + A_2 S_2^2 + A_3 S_3^3 \right), \quad (12)$$

where the A_a are real numbers which turn out to be proportional to the three light ("current" type) quark masses. In this model there are many constraints among the parameters. For example, many of the trilinear scalar-pseudoscalar-pseudoscalar coupling constants are predicted in terms of the pseudoscalar and scalar meson masses. Another difference is that [compare with Eq. (2)] this trilinear interaction does not involve derivatives. Both models give the "current algebra" results in the limit where the scalar mesons are integrated out.

If we calculate the tree level s-wave amplitudes they deviate from experiment and also violate unitarity as we go beyond the threshold region. We used the well-known K-matrix procedure to unitarise the linear sigma model amplitudes and then checked if the resulting unitary amplitudes can give a good fit to data. In the standard parameterization of a given partial wave S-matrix:

$$S = \frac{1 + iK}{1 - iK} = 1 + 2iT, \quad (13)$$

we identify

$$K = T_{\text{tree}}. \quad (14)$$

T_{tree} is the given partial wave T-matrix computed at tree level in the Linear Sigma Model and is purely real. This scheme gives exact unitarity for T but violates the crossing symmetry which T_{tree} itself obeys. In Fig. 2 we show our best fit to the $I=J=0$ $\pi\pi$ scattering data. The parameters in this fit are the "bare" masses of the two $I=0$ scalar mesons in M and their mixing angle. Using these parameters we can solve for the poles in the unitarised amplitude in the complex s plane. Labelling these poles z_σ and z_σ', we can identify the physical masses and widths as usual from the Real and Imaginary parts, for example $z_\sigma = m_\sigma^2 - im_\sigma \Gamma_\sigma$.

4 Summary and comparison between models

We have found good agreement with scattering data in the approaches based on the non-linear chiral Lagrangians outlined in Sections 2 and 3. We are
Figure 1: Best fit to the experimental data\cite{2} for the Real part of the $I=\frac{1}{2}, J=0, \pi-K$ scattering amplitude in our non-linear chiral Lagrangian model\cite{2} with generalised Breit-Wigner prescription.

Figure 2: Best fit to the experimental data\cite{4} for the Real part of the $I=J=0 \pi\pi$ scattering amplitude in a linear sigma model with K-matrix unitarisation\cite{4}.
Table 1: Results for physical I=0 scalar meson parameters from fits to ππ scattering. Comparison between linear and non-linear chiral Lagrangian models using K-matrix and Generalised Breit-Wigner approaches to unitarisation.

Scalar parameters (MeV)	Non-linear chiral approach	SU(3) Linear	Non-linear chiral approach
	K-matrix	Sigma Model	Generalised B-W
	(preliminary)	K-matrix	without/with ρ meson
m_σ	444	457	378/559
Γ_σ	604	632	836/370
m_f	986	993	987
Γ_f	52	51	65

Currently studying scattering using the non-linear chiral Lagrangian approach outlined in Section 2, but employing the K-matrix unitarisation as described in Section 3. This may make it easier to compare the linear and non-linear chiral Lagrangian models more directly and to understand the effects of the unitarisation prescriptions in themselves. This was partly motivated by our work on extending the non-linear chiral Lagrangian approach to include vector mesons. This enabled us to study the interesting rare radiative decay processes φ → ππγ and φ → πηγ. We found that the shape of the partial branching fraction depends quite sensitively on whether we use derivative or non-derivative scalar-pseudoscalar-pseudoscalar coupling as in Section 2 or 3 respectively.

A summary of our results is shown in Table 1 for the case of ππ scattering. In the third and fourth columns we show the results of the analyses described in sections 3 and 2 respectively. In the fourth column we give the results with and without the inclusion of the ρ vector meson. In column 2 we show the results of our current analysis, which are preliminary. However we can see some trends, namely that the f_0(980) parameters are quite stable, whereas the σ parameters seem to depend more on the model and, even more, on the unitarisation procedure. These results are preliminary because we have only done a fit of ππ scattering data over a limited energy range. Also we have not included the inelastic channel and so the important KK threshold region. These and a similar study of related scattering channels are interesting directions for future work.
5 Acknowledgements

DB would like to thank the conference organisers for a friendly and stimulating meeting. The work in much of this presentation is part of an ongoing collaboration with Abdou Abdel-Rehim, Amir Fariborz, Masayasu Harada and Joseph Schechter. DB is supported by the Royal Society and JG was supported by a Summer Research Studentship from Trinity College, Cambridge.

References

1. a) M. Harada, F. Sannino and J. Schechter, Phys. Rev. D. 52 1991 (1996),
b) M. Harada, F. Sannino and J. Schechter, Phys. Rev. Lett. 78, 1603 (1997)
2. D. Black, A.H. Fariborz, F. Sannino and J. Schechter, Phys. Rev. D 58 054012 (1998)
3. D. Black, A.H. Fariborz, F. Sannino and J. Schechter, Phys. Rev. D 59, 074026 (1999)
4. D. Black et al, Phys. Rev. D 64 014031 (2001).
5. D. Aston et al, Nucl. Phys. B296, 493 (1988).
6. S.U. Chung et al, Ann PPhys.4 404 (1995).
7. E.A. Alekseeva et al, Sov. Phys. JETP 55, 591 (1982), G. Grayer et al, Nucle Physc. B75, 189 (1974).
8. D. Black, M. Harada and J. Schechter, Phys. Rev. Lett. 88 181603 (2002),
 D. Black, M. Harada and J. Schechter, Phys. Rev. D 73 054017 (2006).