SYNTHESIS, IN VITRO ANTIMICROBIAL ACTIVITY OF SCHIFF’S BASE, AZETIDINONES AND THIAZOLIDINONES

BHAVNABEN D. MISTRY*, KISHOR R. DESAI**, NIGAM J. DESAI**
*Department of Chemistry, B. K. M. Science College, Valsad, **Department of Chemistry, Uka Tarsadia University, Bardoli-Surat

ABSTRACT

Objective: The objective of the present study is to synthesize 3-Chloro-4-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]-1-(substituted) azetidin-2-one [4a-n] and 2-[3-(2,4-Dichloro-5-fluoro phenyl)-1H-pyraol-4-yl]-3-(substituted phenyl)-1,3-thiazolidin-4-one [5a-n]. The structure of all synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral studies.

Methods: The titled compounds 3-Chloro-4-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]-1-(substituted) azetidin-2-one [4a-n] and 2-[3-(2,4-Dichloro-5-fluoro phenyl)-1H-pyraol-4-yl]-3-(substituted phenyl)-1,3-thiazolidin-4-one [5a-n] were synthesized by the reaction of N-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl] methylene substituted anilin [3a-n] with chloro acetyl chloride and thioglycolic acid respectively. Compounds N-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyraol-4-yl] methylene) substituted aniline [3a-n] were synthesized by the reaction of 3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-carbaldehyde [2] with primary aromatic amine in alcohol. All compounds were evaluated for their antimicrobial activity.

Results: Compounds 3a,3b,3d,3j,3l,4a,4b,4d,4e,4j,4m,5e,5g,5h,5n exhibited excellent to good antibacterial activity as compared to reference drugs.

Conclusion: In summary, N-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl] methylene) substituted anilin [3a-n], 3-Chloro-4-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]-1-(substituted) azetidin-2-one [4a-n] and 2-[3-(2,4-Dichloro-5-fluoro phenyl)-1H-pyraol-4-yl]-3-(substituted phenyl)-1,3-thiazolidin-4-one [5a-n] derivatives have been synthesized and characterized. In vitro antimicrobial testing of the compounds was carried out by microdilution Method. Amongst the synthesised compounds, many of them have proven their antimicrobial potency which varies from good to excellent.

Keywords: Schiff’s base, 2-Azetidinone, 4-Thiazolidinone, Antimicrobial activity

INTRODUCTION

Heteroaromatic compounds have attracted considerable attention in the design of biologically active molecules and advanced organic materials. Heterocycles containing nitrogen atoms in the core structure shows a number of pharmacologically and biologically active compounds. Hence, a practical method for the preparation of such compounds is of great interest in synthetic organic chemistry. Structurally, a Schiff’s base (also known as imine or azomethine) is a nitrogen analogue of an aldehyde or ketone in which the carbonyl group has been replaced by an imine or azomethine group. Schiff’s bases of pyrazole aldehydes and aromatic amines exhibit a wide range of biological activities such as antifungal [1], antibacterial [2] and antitubercular [3] etc. The biological significance of this class of compounds impelled us to continue working on the synthesis of new Schiff’s bases of pyrazole derivatives.

β-Lactam containing antibacterial agents has become an integral part of the chemotherapeutic arsenal available to today’s medical practitioners. Although the number of existing agents are quite extensive, but the search for better and more effective drug is still going on. Azetidinones are the very important class of compounds possessing a wide range of biological activities such as antibacterial [4], anti-inflammatory [5], antihyperlipidemic [6], anticancer [7], antimicrobial [8], antitumor [9], antitubercular [10] etc. Furthermore, thiazolidinone derivatives found to possess a wide spectrum of biological activities [11-17].

MATERIALS AND METHODS

Melting points were determined by open capillaries and are uncorrected. The progress of the reaction was checked on aluminium coated TLC plates (E. Merck) using various solvent systems as mobile phase and visualised under iodine vapour. IR-spectra (cm⁻¹) were recorded on a Shimadzu FT-IR spectrophotometer using KBr pellet method. 1H NMR and 13C NMR spectra were recorded on a Bruker DRX-300 NMR instrument, using CDCl₃ as solvent and TMS as an internal reference (chemical shifts in δ, ppm). Mass spectra were obtained on a Agilent 6520 (Q-TOF) Mass spectrometer.

Synthesis of (1E)-1-(2,4-Dichloro-5-fluorophenyl) ethane hydrazone [1]

A mixture of 2,4-dichloro-5-fluoro acetophenone (0.01 mol) and hydrazine hydrate (0.012 mol) was refluxed in round bottom flask containing absolute alcohol (30 ml) for 2 h in the presence of few drops of acetic acid. The content of the flask was cooled to give a solid product which was filtered, washed with water, dried and recrystallized from ethanol as a yellow crystalline solid.

Synthesis of 3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-carbaldehyde [2]

To a cold solution of (1E)-1-(2,4-Dichloro-5-fluorophenyl)ethanone hydrazone (0.015 mol) in DMF (25 ml) was added POC13 (0.0395 mol) and resulting mixture was stirred at 55-60 °C for 5-6 h [18]. Then the mixture was cooled to room temperature and poured into ice cold water. A saturated solution of bicarbonate was added to neutralise the solution. The precipitate so formed was filtered, washed with water, dried and recrystallized from ethanol as a yellowish white crystalline solid.

General procedure for the synthesis of N-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl] methylene) substituted anilin [3a-n]

A mixture of 3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-carbaldehyde (0.01 mol), various primary aromatic amine (0.01 mol) and few drops of glacial acetic acid was refluxed in methanol for six hours. Then the refluxed content was cooled to room temperature and poured into ice cold water. A precipitate formed, was filtered and washed with water, dried and recrystallized from ethanol as a white crystalline solid.

Received: 01 Oct 2016, Revised and Accepted: 05 Dec 2016

© 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI: http://dx.doi.org/10.22159/ijcpr.2017v9i1.16634

ISSN- 0975-7066

Vol 9, Issue 1, 2017

International Journal of Current Pharmaceutical Research
and the product thus obtained was filtered, washed with water and recrystallized from acetone.

[3d] IR (KBr cm\(^{-1}\)): \(3389.81\) (-NH), \(1567.08\) (C=N), \(807.10\) (C-Cl), \(1023.0\) (-OCH\(_3\)). 1\(3\)C NMR: \(161.38\) (C1), \(120.09\) (C2), \(129.63\) (C3), \(129.08\) (C4), \(139.48\) (C9), \(60.5\) (C10), \(62.0\) (C11), \(162.08\) (C12), \(140.75\) (C13), \(139.58\) (C14), \(125.85\) (C15), \(122.99\) (C16). Mass (m/z): 368.5 (M), \(374.5\) (M+6), \(257\), \(230\), \(205\), \(164\), \(138\).

The resulting solution was then poured into crushed ice mixture was stirred for 2 h. The reaction mixture was then refluxed below 10 °C and then tri ethyl amine (0.02 mol) was added drop wise with constant stirring maintaining the temperature.

Methylene}substituted anilin (0.01 mol) was dissolved in 1,4-dioxan (50 ml). To this solution chloro acetyl chloride (0.012 mol) was added. A mixture of N-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]-1-(substituted) azetidin-2-one [4a-n] was obtained.

General procedure for the synthesis of 3-Chloro-4-[3-(2,4-dichloro-5-fluorophenyl)-1H-pyrazol-4-yl]-1-(substituted phenyl)azetidin-2-one [4a-n]

Compound N-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]methylene}substituted anilin (0.01 mol) was dissolved in 1,4-dioxan (50 ml). To this solution chloro acetyl chloride (0.012 mol) was added. The mixture was stirred for 2 h. The reaction mixture was then refluxed for 9-10 h. The resulting solution was then poured into crushed ice and the product thus obtained was filtered, washed with water and recrystallized from ethanol acetate.

[4a] IR (KBr cm\(^{-1}\)): 1730 (C=O), 1203 (CH=N), 760 (C-Cl), 1062 (C-F). \(\delta\): 4.01 (CH2-S), 7.3 (Ar-H). \(\delta\): 6.927 (-NH pyrazol), 5.961 (-CH pyrazol), 5.871 (CH-N), 3.975 (-CH2-S), 7.323-7.704 (Ar-H). \(\delta\): 6.927 (-NH pyrazol), 5.961 (-CH pyrazol), 5.871 (CH-N), 3.975 (-CH2-S), 7.323-7.704 (Ar-H). \(\delta\): 6.927 (-NH pyrazol), 5.961 (-CH pyrazol), 5.871 (CH-N), 3.975 (-CH2-S), 7.323-7.704 (Ar-H).

General procedure for the synthesis of 2-[3-(2,4-Dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]-3-(substituted phenyl)-1,3-thiazolidin-4-one [5a-n]

A mixture of N-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]methylene}substituted anilin (0.01 mol), thio glycolic acid (0.01 mol), and anhydrous zinc chloride (0.01 mol) in DMF was refluxed for 11-12 h. The resulting solution was then poured into crushed ice and the product thus obtained was filtered, washed with cold water and recrystallized from methanol.

[5a] IR (KBr cm\(^{-1}\)): 1720.20 (-NH), 1260.70 (CH=N), 760.26 (C-Cl), 1066.12 (-C=O). \(\delta\): 1712 (C=O), 1205 (CH-N), 758 (C-Cl), 1070 (C-F), 2919 (-C=H). \(\delta\): 161.59 (C1), 130.69 (C3), 129.5 (C4), 129.08 (C5), 117.18 (C6), 144.65 (C7), 108.74 (C8), 135.82 (C9), 66.16 (C10), 141.75 (C11), 126.4 (C12), 131.82 (C13), 129.82 (C14), 131.91 (C15), 119.76 (C16), 126.4 (C17), 126.4 (C18).

Mass (m/z): 4245 (M), 4305 (M+4), 3335, 307, 259, 196, 164.

Temperature and solid separated was filtered, washed with cold water and recrystallized from methanol.

[5b] IR (KBr cm\(^{-1}\)): 6927 (-NH pyrazol), 5959 (-CH pyrazol), 5871 (CH=N), 401 (CH=S), 7324-7704 (Ar-H). \(\delta\): 6.927 (-NH pyrazol), 5.961 (-CH pyrazol), 5.871 (CH-N), 3.975 (-CH2-S), 7.323-7.704 (Ar-H). \(\delta\): 6.927 (-NH pyrazol), 5.961 (-CH pyrazol), 5.871 (CH-N), 3.975 (-CH2-S), 7.323-7.704 (Ar-H).

IR (KBr cm\(^{-1}\)): 1733.35 (-CO), 1256.46 (CH=N), 766.17 (-C=O), 1063.31 (-F). \(\delta\): 1712 (C=O), 1205 (CH-N), 758 (C-Cl), 1070 (C-F), 2919 (-C=H). \(\delta\): 161.59 (C1), 130.69 (C3), 129.5 (C4), 129.08 (C5), 117.18 (C6), 144.65 (C7), 108.74 (C8), 135.82 (C9), 66.16 (C10), 141.75 (C11), 126.4 (C12), 131.82 (C13), 129.82 (C14), 131.91 (C15), 119.76 (C16), 126.4 (C17), 126.4 (C18).

Mass (m/z): 453 (M), 457 (M+4), 421, 331, 289, 230, 212, 164, 122.
Table 1: Physical characterization data of compound (3a-n), (4a-n) and (5a-n)

S. No.	R	Mol. formula	Mol. Wt. gm/mol	M. P. °C	Yield %
3a	H	C₆H₄NO₂Cl₂F	334		120
3b	2-Cl	C₆H₄NO₂Cl₂F	368.5		140
3c	3-Cl	C₆H₄NO₂Cl₂F	368.5		120
3d	4-Cl	C₆H₄NO₂Cl₂F	368.5		156
3e	2-NO₂	C₆H₄NO₃Cl₂F	379		
3f	3-NO₂	C₆H₄NO₃Cl₂F	379		156
3g	4-NO₂	C₆H₄NO₃Cl₂F	379		148
3h	2-CH₂	C₆H₄NO₂Cl₂F	348		180
3i	3-CH₃	C₆H₄NO₂Cl₂F	348		182
3j	4-CH₃	C₆H₄NO₂Cl₂F	348		180
3k	2-OCH₃	C₆H₄NO₂Cl₂F	364		210
3l	3-OCH₃	C₆H₄NO₂Cl₂F	364		190
3m	4-OCH₃	C₆H₄NO₂Cl₂F	364		204
3n	C₆H₄H₂	C₆H₄NO₂Cl₂F	384		180
3o	H	C₆H₄NO₂Cl₂F	410.5		130
3p	2-Cl	C₆H₄NO₂Cl₂F	445		170
3q	3-Cl	C₆H₄NO₂Cl₂F	445		186
3r	4-Cl	C₆H₄NO₂Cl₂F	445		200
3s	2-NO₂	C₆H₄NO₃Cl₂F	455.5		160
3t	3-NO₂	C₆H₄NO₃Cl₂F	455.5		120
3u	4-NO₂	C₆H₄NO₃Cl₂F	455.5		166
3v	2-CH₂	C₆H₄NO₂Cl₂F	424.5		196
3w	3-CH₃	C₆H₄NO₂Cl₂F	424.5		132
3x	4-CH₃	C₆H₄NO₂Cl₂F	424.5		100
3y	2-OCH₃	C₆H₄NO₂Cl₂F	440.5		220
3z	3-OCH₃	C₆H₄NO₂Cl₂F	440.5		202
3aa	4-OCH₃	C₆H₄NO₂Cl₂F	440.5		176
3ab	C₆H₄H₂	C₆H₄NO₂Cl₂F	460.5		190
3ac	H	C₆H₄NO₂Cl₂F	408		127
3ad	2-Cl	C₆H₄NO₂Cl₂F	442.5		152
3ae	3-Cl	C₆H₄NO₂Cl₂F	442.5		173
3af	4-Cl	C₆H₄NO₂Cl₂F	442.5		200
3ag	2-NO₂	C₆H₄NO₃Cl₂F	453		160
3ah	3-NO₂	C₆H₄NO₃Cl₂F	453		120
3ai	4-NO₂	C₆H₄NO₃Cl₂F	453		186
3aj	2-CH₂	C₆H₄NO₂Cl₂F	422		120
3ak	3-CH₃	C₆H₄NO₂Cl₂F	422		142
3al	4-CH₃	C₆H₄NO₂Cl₂F	422		168
3am	2-OCH₃	C₆H₄NO₂Cl₂F	438		260
3an	3-OCH₃	C₆H₄NO₂Cl₂F	438		210
3ao	4-OCH₃	C₆H₄NO₂Cl₂F	438		224
3ap	C₆H₄H₂	C₆H₄NO₂Cl₂F	458		230

Antimicrobial activity

Following common standard strains were used for screening of antibacterial and antifungal activities: E. Coli (MTCC 442), P. Aeruginosa (MTCC 441), S. Aureus (MTCC 96), S. Pyogenus (MTCC 443), C. Albicans (MTCC 227), A. Nigera (MTCC 282), A. Clavatus (MTCC 1323). The strains were procured from Institute of Microbial Technology, Chandigarh. DMSO was used as a diluents/vehicle to get desired concentration of drugs to test upon standard bacterial strains. Each synthesised drug was diluted for obtaining 2000 microgram/ml concentration, as a stock solution. In primary screening 1000 microgram/ml, 500 microgram/ml, and 250 microgram/ml concentrations of the synthesised drugs were taken. The actively synthesised drugs found in this primary screening were further tested in the second set of dilution against all microorganisms. The drugs found active in primary screening were similarly diluted to obtain 200 microgram/ml 100 microgram/ml, 50 microgram/ml, 25 microgram/ml, 12.5 microgram/ml and 6.25 microgram/ml concentrations. The highest dilution showing at least 99% inhibition zone is taken as MIC. The result of this is much affected by the size of the inoculums. Gentamycin, Ampicillin, Chloramphenicol, Ciprofloxacin, Norfloxacin, Nystatin and Griseofulvin were used as a standard. The Comparative activities of the newly synthesised compounds and the control antibiotics on bacterial and fungal strains respectively were summarised in table 2 and table 3.

Excellent to good activity was observed in compounds 4d (against E. Coli, P. Aeruginosa, S. Aureus, S. Pyogenus), compounds 3g, 4e, 5g, 5n (against E. Coli, S. Aureus, S. Pyogenus), compounds 3a, 3b, 3j, 3l, 4j, 4l, 4m, 5e, 5n (against E. Coli, S. Aureus) as well as compounds 3a, 3c, 3f, 3g, 3h, 3j, 3l, 3k, 3l, 4e, 4f, 4g, 4h, 4k, 4l, 4m, 5b, 5e, 5f, 5g, 5i, 5j, 5l, 5m (against C. Albicans). The remaining compounds were found effective at a much higher concentration as compared to the standard drugs.

Table 2: Antibacterial activity of compounds 3a-n, 4a-n and 5a-n

Code	E. Coli	P. Aeruginosa	S. Aureus	S. Pyogenus
No.	MTCC 442	MTCC 441	MTCC 96	MTCC 443
3a	100	200	250	125
3b	62.5	100	125	200
3c	200	125	250	62.5
3d	250	200	200	200

Mistry et al.
Int J Curr Pharm Res, Vol 9, Issue 1, 126-131
Table 3: Antifungal activity of compounds 3a-n, 4a-n and 5a-n

Code	C. albicans	A. niger	A. clavatus
	MTCC 227	MTCC 282	MTCC 1323
3a	500	250	250
3b	1000	1000	>1000
3c	250	1000	1000
3d	>1000	1000	1000
3e	>1000	1000	1000
3f	500	500	500
3g	500	500	500
3h	250	500	500
3i	>1000	1000	>1000
3j	1000	>1000	>1000
3k	500	1000	1000
3l	500	>1000	>1000
3m	1000	500	500
3n	>1000	500	500
3o	>1000	500	500
3p	>1000	500	500
3q	>1000	500	500
3r	>1000	500	500
3s	>1000	500	500
3t	>1000	500	500
3u	>1000	500	500
3v	>1000	500	500
3w	>1000	500	500
3x	>1000	500	500
3y	>1000	500	500
3z	>1000	500	500
4a	>1000	500	>1000
4b	>1000	500	>1000
4c	500	1000	1000
4d	1000	1000	500
4e	500	>1000	>1000
4f	500	200	500
4g	250	1000	1000
4h	500	1000	1000
4i	1000	500	500
4j	1000	1000	1000
4k	250	1000	>1000
4l	500	500	1000
RESULTS AND DISCUSSION

The compounds were synthesised as per scheme

4m	500	250	500
4n	1000	>1000	>1000
5a	1000	500	500
5b	500	500	500
5c	1000	1000	1000
5d	>1000	>1000	>1000
5e	500	500	500
5f	250	500	500
5g	500	>1000	>1000
5h	1000	500	>1000
5i	250	>1000	>1000
5j	250	>1000	>1000
5k	1000	>1000	>1000
5l	500	500	500
5m	200	500	500
5n	>1000	500	500
Nystatin	100	100	100
Greseofulvin	100	100	100

CONCLUSION

In summary, N-[[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]-1H-pyrazol-4-yl] methylene substituted anilin [3a-n] were synthesized from 3-[2,4-dichloro-5-fluoro phenyl]-1H-pyrazol-4-carbaldehyde 2 and aromatic amine, which upon cyclization with chloro acetyl chloride and thiglycolic acid yields 3-Chloro-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]-1(1substituted) azetidin-2-one [4a-n] and 2-[3-(2,4-dichloro-5-fluoro phenyl)-1H-pyrazol-4-yl]-3(3substituted phenyl)-1,3-thiazolidin-4-one [5a-n] respectively. The proposed structures of all the synthesized compounds were well supported by IR, 1H NMR, 13C NMR and mass spectral data. The formation of compounds 3a-n was confirmed by the appearance of singlet signal at δ 9.747-9.750 for CH=N ring system. The 1H NMR spectrum also displayed signals at 8 5.103-5.105 for CH=N of azetidine ring and at δ 4.01-3.975 for CH2 of thiazolidinone ring system respectively. Aromatic protons were observed in the usual region as multiplet between δ 7.328-7.535, δ 7.305-7.323 for aromatic protons of compounds 4a-n and at δ 7.535 for aromatic protons of compounds 5a-n.

ACKNOWLEDGEMENT

The services of SAIF, CDRI, Lucknow and Micro care Lab Surat is acknowledged for spectral analysis and antimicrobial testing respectively.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Akhaja T, 1,3-dihydro-2H-indol-2-ones derivatives: Design, Synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur J Med Chem 2011;46:5573-9.
2. Pandey V, Chawla V, Saraf S. Comparative study of the conventional and microwave-assisted synthesis of some Schiff bases and their potential as antimicrobial agents. Med Chem Res 2011;21:4500-12.
3. Masunari A, A new class of nifuroxazide analogues: synthesis of 5-nitrophenone derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus. Bioorg Med Chem 2007;15:4229-36.
4. Chavan AA, Pal NR. Synthesis and biological activity of N-Substituted 3-chloro-2-azetidinones. Molecules 2007;12:2467-77.
5. Kumar A, Rajput CS. Synthesis and anti-inflammatory activity of newer quinazolin-4-one derivatives. Eur J Med Chem 2009;44:83-90.
6. Leach CA, Deirdre MB. Lipoprotein-associated PLA2 inhibition: a novel, non-lipid lowering strategy for atherosclerosis therapy. Il Farmaco 2001;56:435-50.
7. Banik BK, Banik I, Becker FF. Stereoregulated synthesis of anticancer β-lactams via the Staudinger reaction. Bioorg Med Chem 2005;13:3611-22.
8. Patel KH, Mehta AG. Synthesis and antifungal activity of azetidinones and thiazolidinones derivatives of 2-amino-6-[2-naphthalenyl] thiazolo [3, 2-d] thiadiazole. E J Chem 2006;3:267-73.
9. Veinberg G, Shestakova I, Vorona M, Kanepe I, Lukevics E. Synthesis of antitumor 6-alkylidenepenicillanate sulfones and related 3-alkylidene-2-azetidinones. Bioorg Med Chem Lett 2004;14:147-50.
10. Narute AS, Khelekhar PB, Bhusari KP. QSAR studies on 4thiazolidinones and 2-azetidinones bearing benzothiophene nucleus as potential anti-tubercular agents. Indian J Chem 2008;47B:586-91.
11. Datta NJ, Khunt RC, Parikh AR. Synthesis of some new 4thiazolidinones as biologically potent agents. Indian J Chem 2002;41B:433-5.
12. Patel KD, Mistry BD, Desai KR. Synthesis and biological screening of 2-thiazolidinones and 4-thiazolidinones. J Indian Chem Soc 2004;81:783-5.
13. Yadav R, Srivastava SD, Srivastava SK. Synthesis, antimicrobial and anti-inflammatory activities of 4-oxothiazolidinones and their 5-arylidines. Indian J Chem 2005;44B:1262-6.
14. Mistry K, Desai KR. Microwave assisted rapid and efficient synthesis of nitrogen and sulphur containing heterocyclic compounds and their pharmacological evaluation. Indian J Chem 2006;45B:1762-6.
15. Gurupadya BM, Gopal M, Padmasahi B, Manohara YN. Synthesis and pharmacological evaluation of azetidin-2-ones and thiazolidin-4-ones encompassing benzothiazole. Indian J Pharm Sci 2008;70:572-7.
16. Milan C, Maja M, Nela D. Design and synthesis of some thiazolidin-4-ones based on (7-Hydroxy-2-oxo-2H-chromen-4yl) acetic acid. Molecule 2009;14:2501-13.
17. Omar K, Geronikaki A, Zoumpoulakis P, Camoutsis C, Sokovic M, Ciric A, et al. Novel 4-azetidinone derivatives as potential
antifungal and antibacterial drugs. Bioorg Med Chem 2010;18:426-32.

18. Goel N, Drabu S, Bawa S. Antimicrobial screening and one-pot synthesis of 4-(substituted-aminomethyl)-3-(2-naphthyl)-1-phenyl-1H-pyrazole derivatives. J Pharm Bioallied Sci 2014;6:253-9.

How to cite this article

- Bhavnaben D Mistry, Kishor R Desai, Nigam J Desai. Synthesis, in vitro antimicrobial activity of schiff’s base, azetidinones and thiazolidinones. Int J Curr Pharm Res 2017;9(1):126-131.