Sustainable Entrepreneurship in the Agriculture Sector: The Nexus of the Triple Bottom Line Measurement Approach

Ghulam Raza Sargani, Deyi Zhou, Muhammad Haseeb Raza and Yuzhi Wei

1 College of Economics and Management, Huazhong Agricultural University, No 1 Shizishan Street, Hongshan District, Wuhan 430070, China; zdy@mail.hzau.edu.cn (D.Z.); haseebraza@webmail.hzau.edu.cn (M.H.R.)
2 College of Urban and Environmental Science, Central China Normal University, Wuhan 430079, China; Jade@mails.ccnu.edu.cn

* Correspondence: razasargani@webmail.hzau.edu.cn; Tel.: +86-13125077114

Received: 4 March 2020; Accepted: 7 April 2020; Published: 17 April 2020

Abstract: The field of entrepreneurship is considered essential for the economy, and many researchers around the world have studied it from diverse perspectives. The outcomes of this research are not yet consensual. Today, it is gaining attention and consensus due to the increasing pressure of sustainable development, so there is a need for academic research to examine this field by incorporating sustainability value creation practices and the efforts of current entrepreneurs towards said goal, especially in the case of the agricultural sector. Accordingly, this study aims to address the problem of what drives students to incorporate sustainable agriculture in their entrepreneurial ventures. Moreover, we aim to determine whether the value placed in the triple bottom line affects the intention to establish sustainable businesses. The study is based on five antecedents of the Theory of Planned Behavior (TPB) and was designed to explore the mechanism underlying the intention to promote sustainable entrepreneurship in agriculture. The primary objective was to collect and analyze the data using the partial least square structural equation model (PLS-SEM) to test the determinants. The results revealed that the indicators of a favorable sustainable attitude, supportive subjective norms, control behaviors, adequate opportunity recognitions, and encouraging the triple bottom line had strong influences on the intention of promoting sustainability in entrepreneurship. Besides, the attitudes, subjective norms, opportunity recognition, and sustainability values can also predict students’ significant positive intentions toward sustainable agriculture in entrepreneurship. The research findings contribute to the literature by providing an empirical basis for the formulation of policies to encourage students to start an agribusiness, thereby improving the effectiveness of entrepreneurship education development programs and bridging the gap between sustainable entrepreneurial intentions and actions. Therefore, the insight into the determinants of sustainable entrepreneurship can be an essential step toward designing a practical and durable policy mechanism for the implementation of the triple bottom line when developing entrepreneurial agriculture education programs.

Keywords: agricultural; environmental; economic; social sustainable entrepreneurship; intention; sustainability values; triple bottom line; theory of planned behavior

1. Introduction

Agriculture is one of the largest sectors in the world, employing more than one billion people and accounting for 3% of the global GDP [1]. Although it has both a micro- and macro-level importance in the economy, mainstream entrepreneurship research has ignored the agricultural sector, while graduates...
of entrepreneurship programs in agriculture are seeking to apply their profession to other industrial domains. This is because of the important dynamics and diversity in the scholarly field of the agriculture. The scenario seems to have been drastically transformed in the last few years with the studies on new and diverse phenomena in several countries around the world, due to economic liberalization, reduced protection of agricultural markets, and fast-changing agrarian societies. Moreover, companies have increasingly adapted to the shifting demands of consumer habits, enhanced environmental principles, new requirements for product quality, supply chain management, food safety, sustainability issues, and so on. These changes have paved the way for nascent entrants and entrepreneurs to modernize the portfolio of agricultural entrepreneurship skills and to develop, create, and sustain the response to the changing environments of farms, with an emphasis on doing better things, rather than forming new ideas for a sustainable future [2].

Recently, much research has emerged on sustainable agriculture, and entrepreneurship adds a novel dimension to this promise of sustainable development. Entrepreneurship has been recognized as leading to more than just economic achievement. Entrepreneurs in the field should manage the triple bottom line approach [3] by balancing financial health, social equity, and environmental resilience through their entrepreneurial behavior toward sustainability. As a result, entrepreneurship and the commitment to more traditional entrepreneurial ideas, with additional potential to face environmental, societal, and economic challenges, have increased the pressure toward the sustainable development of enterprises, as evidenced by the recent publication boom in this field, especially in the case of agriculture [4]. Thus, sustainable development and agriculture entrepreneurship are gradually gaining momentum in public discourse and receiving greater attention and consideration in academic research and practice. While there still seems to be a lack of consensus on sustainability, which has led to hampered recognition, this should not impede nor hinder an extensive call for discussion [5]. For the global economy, the economic, sociocultural, political, institutional, and environmental concerns need to be solved; and, simultaneously, entrepreneurship is still believed to be crucial and powerful for the continued development of disruptive innovations and market change through education. A sustainable shift in society’s development is required to guarantee the ability to endure the sustainable development of agriculture. It is essential not only for the environment, but also for the long-term well-being of society and the economy. However, a new breed of agricultural entrepreneurs must now achieve a more significant focus on the research and practice of sustainable agricultural entrepreneurship and development trends [5]. An economy that is responsible regarding the environment and society is imperative, and sustainable development that must constitute the foundation of a new field of sustainable agricultural entrepreneurs. Developing a comprehensive entrepreneurship program that integrates the economic, sociocultural, and environmental sustainability domains of entrepreneurship [5].

There is an increased interest in the proper role of business in society, and a heightened sensitivity to sustainability issues that recognize the impact of climate change and its effects on society. This is why we require more reliable quantitative methods to measure the impact of sustainable start-up intentions among university students which envision promoting the conservation of natural and ecological resources. The triple bottom line approach to sustainable agricultural entrepreneurship pursues economic, social, and ecological progress and motivation in the entrepreneurial culture. The main aim is to create sustainable development through entrepreneurial activities [6], emphasizing that sustainable entrepreneurial activities remain essential to the natural environment, the public setting, and economic development. Moreover, sustainable entrepreneurs expect the situation to change [7] and play a vital role in sustainable economic growth. According to [8], sustainable entrepreneurship controls the triple bottom line (TBL). Therefore, entrepreneurs manage the balance between profit, people, and the planet. This means that educational institutions should be responsible for cultivating sustainable entrepreneurial intentions, knowledge, or attitudes that can help students make their career decisions considering the triple bottom line at every stage of the entrepreneurial process.
In general, entrepreneurs expect to contribute to the economic growth, innovation, and employment needed to promote entrepreneurial behavior [9,10]. Specifically with regard to sustainability issues [11], ambitious entrepreneurs have to assess the triple bottom line gap in every business opportunity, as the sustainability of the economic system is connected to ecological aspects and sustainable development. Therefore, the development of entrepreneurship should recall the extent to which entrepreneurship education introduces sustainability principles to students determining whether the nexus of the triple bottom line affects owners of agricultural business establishments intentions towards sustainable growth in the view of the theory of social learning [12]. One study [13] developed a model of sustainable entrepreneurial intention in which the theory of planned behavior focuses on decision-making based on rational choice and self-interest, assuming that attitudes influence behavior, social norms, and perceived behavior control; this gauges an individual’s behavior based on his or her willingness to sustainably [14]. Extended proxies of the theory of planned behavior (TPB) used by Nuringsih and colleagues [15] analyzed the relationship between an individual’s economic, environmental, and social indicators of personnel attraction and self-efficacy towards sustainable entrepreneurship.

Generally, results are still not consistent for entrepreneurship studies based on diverse approaches; the mechanisms and consequences are related to the environmental challenges that increase pressure towards the sustainable development of enterprises. Therefore, in academic research it is vital to look at entrepreneurial ventures that have not yet incorporated sustainability practices and examine the intent or efforts of current entrepreneurs to apply sustainability goals towards agriculture entrepreneurship. Apart from the disposition in entrepreneurial intentions, there are sparse amounts of adequate evidence about entrepreneurial intentions in agriculture entrepreneurship contexts. Today’s young generation (“Y” millennials”) are considered as far more entrepreneurial, socially aware, environmentally conscious, and economically viable than former generations [16]. Questions often arise to determine the drivers of entrepreneurial intentions, and what significant factors influence them; these questions need to be investigated based on an integrated research method to deeply understand sustainable agricultural entrepreneurship. In response, this study aims to determine what drives agricultural students to use sustainable agriculture entrepreneurship in their entrepreneurial ventures? Since students are often regarded as potential entrepreneurs, the primary purpose of this study is to determine the dominant factors in students’ intentions to start a sustainable business. Therefore, we designed a triple bottom line implementation mechanism that proposes a sustainable entrepreneurial model to distinguish this new innovative spirit towards sustainable agricultural entrepreneurship from formal entrepreneurship practices. Thus, this paper explores sustainable entrepreneurial intentions from the framework of sustainable development, especially among agriculture graduates who play an essential role in society because they can prove to be effective future managers, planners, decision-makers, and educators of the environment and its problems [17,18]. These determinants are the internal activities and psychological factors of students in learning sustainable agriculture entrepreneurship and may therefore, create sustainable development in businesses and allow for the creation of sustainable agri-businesses in the future.

2. Theoretical Reviews

2.1. Sustainability Concerns and Sustainable Entrepreneurship in Agriculture

The definition of sustainability is the general agreement to retain a balance between economic, environmental, and social factors on an equal and harmonious basis to meet current needs without affecting the needs of future generations [19]. According to reports of the World Commission on Environment Development (WCED) (initially in 1934), in 1987 [20,21], Schumpeter elaborated on the innovation process of creative destruction [7,22,23], whether it be climate change, biodiversity, or water shortages, in which entrepreneurs are constantly innovating based on environmental challenges. These degradations have indeed become a fuse for the entrepreneurial creativity of the
future. Subsequently, in the 1970s, Harvard Business Review became a pioneer in the ecological movement [24–26], arguing that innovative businesses were the prospective solutions for the environment [27]. Furthermore, in the 1990s, more research developed on eco-entrepreneurship, green entrepreneurship, and environmentally friendly business models. The entrepreneurial model upgraded to the double bottom line, namely eco-entrepreneurship. Further studies were done [28–30] corresponding to this model, which indicated that maintaining future sustainability requires creativity, commitment to nature conservation, and a socio-economic culture or local awareness of today’s environmental dynamics; in addition, entrepreneurship is improving and progressing gradually towards sustainable entrepreneurial development.

Understanding sustainable entrepreneurship can be defined as individuals’ recognition, development, and exploitation of opportunities to provide economic, social, and ecological benefits for future goods and services [31]. Meanwhile, sustainable development can be defined as meeting the needs of the future which is supposed to be deprived of yielding the capability of future generation’s needs, combining sustainable development plans with business models, and developing into synergizing continuous entrepreneurship. In 1987, the Brundtland Commission developed the concept of maintaining the progress of economic development without reducing natural resources or damaging the environment [32]. In the years since, numerous sustainability statements were implemented in the field of entrepreneurial development. The simple idea of the model is to consider the triple bottom line approach [26]. With the existence of sustainable entrepreneurship controls, the triple bottom line role of entrepreneurs is to manage the balance between the planet, humans, and profits.

As sustainable entrepreneurship studies have progressed [6,20,23,32–36] and as research continues to deepen, sustainable entrepreneurship has become a synergistic combination of entrepreneurial programs and sustainable development. Consideration of the principles of sustainable development leads to the use of natural resources that reflects the balance between profit, social goals, and ecological goals. The scarcity of natural resources can be endorsed in sustainable development. Singh [36] created a mindset that has changed from a traditional model to a sustainable tomorrow’s market, similar to sustainable entrepreneurship that claims to combine economic, social, and environmental value creation of sustainable agribusiness [7,33,37]. While it was previously thought that entrepreneurs focus primarily on economic value creation, in these new entrepreneurship forms, economic value creation is seen as a means to an end or the blending of different values [7,33,37–39]; implementation of environmental sustainability ideas has led to the sustainable development of enterprises and competitive advantage of each enterprise. In the view of McEwen [38] and Tilley and Young [40], sustainable entrepreneurship is a business model that integrates three domains of sustainable development.

In short, the definition of sustainable entrepreneurship is not only limited to the creation of products and services, but also includes commitment and environmental equality. According to the convergence process model developed by Belz and Binder [36], business positioning is first taken from double bottom line stages and developed to triple bottom lines. Based on a report from Choi and Gray, it is pertinent that sustainable entrepreneurship creates profitable businesses and achieves specific environmental and social goals. Consequently, the incorporation of technical learning areas creates sustainability value for entrepreneurs [40]. In that spirit, sustainable entrepreneurs serve as economic agents to initiate, adapt, and integrate those processes and activities which lead to the development of sustainability-driven and profitable economic opportunities [1].

Therefore, business innovation must ensure the sustainability of benefits without neglecting the needs of future generations. Table 1 demonstrates the extension of the concept of sustainable entrepreneurship which explains the development of college students’ sustainable entrepreneurship intention [15,28,41] to put the sustainable entrepreneurial intention framework into professional practices [9,20,24].
Table 1. The sustainable entrepreneurial intentional studies. (Source: summarized by author, 2020)

Sources	Topic	Respondents	Results	Year
[42]	Socio-cultural factors and intention towards sustainable entrepreneurship	404 Small and Mid-size Enterprises (SMEs) in Malaysia	Factors are significant to an inclination for sustainable entrepreneurship	2014
[24]	Factors associated with propensity for sustainable entrepreneurship	256 SMEs in Malaysia	The four determinants are essential for sustainable entrepreneurial tendencies.	2014
[28]	The impact of environment concern, entrepreneurial education, self-efficacy, the perceived barrier to entry, perceived support, and experience toward eco-entrepreneurial intentions	250 students at the university in Ilorin and Malete, Nigeria	Environmental fear perceived barriers to entry and perceived support has a significant impact on ecological entrepreneurial intentions	2015
[9]	The effect of sustainability attitude, social norms, perceived desirability, and perceived feasibility toward propensity for sustainable entrepreneurship	404 Small and Mid-size Enterprises (SMEs) in Malaysia	The four determining factors are the substantive trends in sustainable entrepreneurship	2016
[20]	The mediation effect among sustainable value, sustainable attitude, social norms, and government legislation to the intention toward sustainable entrepreneurship	404 SMEs in Malaysia	Sustainable values, sustainable beliefs, subjective norms, and administrative regulations are essential for intentions	2017
[15]	The impact of educational support, structural support, formal networking, informal networking, green value, prior experience, and role models to eco-entrepreneurial intention.	400 students at an entrepreneurial university in Jakarta	Structural terms, formal and informal networks, green values, and experience have essential implications for eco-entrepreneurial intentions	2019

2.2. Theory of Planned Behavior and Hypotheses Development

According to Bird [43], generally intention refers to the mental state in which an individual directs attention and action towards a particular goal or objective to achieve a specific aim. In the view of Icek Ajzen [44], intention refers to the plans and amount of effort that people are willing to put into practice to complete an action. Later on, Lee and Wong [45] explained entrepreneurial intentions in business as the long process of entrepreneurship because of the attraction and influence of the psychological state, acting for a precise determination, as an indication of how to endeavor to attain the sustainable goals. Hence, Remeikiene and colleagues [46] argued that the so-called entrepreneurial intention refers to an increasingly conscious psychological state in which an individual wants to start a new business in an existing organization. Therefore, entrepreneurial intentions are to create new core values of ultimate sustainable development or the spirit of entrepreneurs with sustainability issues in a long-term commitment to plan and introduce new businesses. Therefore, this pledge can be achieved through the triple bottom line to develop sustainability, not only for profit purposes, but also entrepreneurs should be concerned with environmental and social issues.

Ajzen stated that intention is the part of the behavior, which is formed by attitudes toward social norms and perceived behavioral control. Other authors [20,42,47,48] have stated that the theory of planned behavior is established on the hypothesis that individuals consistently behave practically, and take account of existing evidence, allowing for both the implicit and explicit significances of their actions. Moreover, Linán and Chen [49–51] recognized three dynamics of intention: (1) attitude refers to whether an individual’s attraction and evaluation as an entrepreneur are positive or negative
determinants. Ajzen [52] and Kolvereid [53] suggested that individuals partake confidence in assessing a person's entrepreneurial abilities positively or negatively. (2) Subjective norms measure perceived social pressure; this determinant becomes a social trigger to do or not to do entrepreneurial activities [14], and (3) perceived behavioral control is defined as self-efficacy of achieving interest to become an entrepreneur [52]. These determinants reflect the level of beliefs of entrepreneurs in their entrepreneurial activities, whether they have a comfortable or difficult level of trust in controlling entrepreneurial personality. The expansion is determined to overcome environmental, socio-economic, and cultural problems. Prior research was examined in Spain [53], Turkey [54], Malaysia [55], Tehran [56], Indonesia [57], Ghana [58], Greece [59], and China and Indonesia [13]. However, previous studies have not been enlightening on sustainability in agriculture. Therefore, the theme of applying the TPB in the current paper is to capture a reasonable way for students to continue to maintain sustainability in the future with the continuous improvement of the sustainable development level of entrepreneurial intention research to develop a new era towards sustainable agriculture entrepreneurship.

Sustainability attitudes (SA): Existing literature confirms that sustainability attitudes are needed to envisage the intention of sustainable entrepreneurship. This study adopted the attitudinal and typical factors from the TPB. According to Spagnoli and co-workers, sustainability attitudes are the personal values and beliefs that affect one's entrepreneurial intention. Similarly, this includes their ability to influence entrepreneurial intentions, as they can be regarded as essential factors that affect an individual's environmental contemplations [34] and implementation in sustainability [60]. According to Ick and Ajzen [44], attitude is a determinant of behavioral intention, and has a positive influence on an individual’s perspective on entrepreneurial intention [61–63]. In addition, it was also found as an influential factor of intention towards pro-environmental behavior and played a vital role in motivating sustainable entrepreneurship [64]. As Chen and Tung [65] pointed out, whether or not people engage in sustainable practices is affected by their positive or negative attitude because this is a driving factor for entrepreneurs to enhance sustainable practices. Therefore, it can be considered in investigating entrepreneurial intentions that beliefs in learning influence their attitude towards sustainability in the development of a sustainable business model based on the above mechanism.

Thus, the hypothesis postulates as:

(H1): Individuals' sustainability attitude (SA) positively influences intention towards sustainable entrepreneurship.

Sustainability norms (SN): In the view of this, Fishbein and Ajzen [66] and Ick and Ajzen [44] agreed on the positive effects of social norms on intentions. According to Nauta and colleagues [67], subjective norms affecting an individual’s academic and professional decisions in life are considered a factor influencing a student’s business directions. According to Bandura’s theory of social learning, the existence of norms has three advantages in that it provides learning, inspiration, and motivation to help individuals define their intentions and attitudes [68]. In previous studies [69] social norms were a part of the process of starting a business, whereas college students need subjective role models such as parents, friends, experts, and public figures that can be a source of inspiration for new entrepreneurs [69]. Stimulatingly, the positive relationships between sustainability norms and sustainable practices were further confirmed by Sullivan and Meek [70]. Pressures or inspirations from society encourage the entrepreneur to stimulate sustainable agricultural business models. As such, the second hypothesis is suggested:

(H2): Individuals' sustainability norms (SN) influence intention towards sustainable entrepreneurship positively.

Sustainability behaviors (SB): In the attitude context, the existence of individual behavioral control and self-efficacy develops an intention [71]. Extrinsic and intrinsic factors alongside prosocial motivations could also affect an individual’s behavioral intentions [39] along with a set of deliberate and practical actions that result in the conservation of natural and social resources that encompass pro-ecological, frugal, altruistic, and equitable behaviors in positive psychological consequences
(satisfaction, self-efficacy, psychological well-being and restoration, happiness, and even pleasure) that may allow the conservation of the natural environment and the protection and integrity of society [72]. Forces or influences from societal values stimulate an entrepreneur’s sustainable behavior. Therefore, sustainable entrepreneurial intentions towards agriculture should in turn be investigated as well as the determination to stimulate the development of a sustainable business model. As such, the third hypothesis was developed:

(H3): Individuals’ sustainability behavior (SB) influences intention towards sustainable entrepreneurship positively.

Opportunity recognition (OR): This refers to the process by which entrepreneurs seek out or create something that provides potential market value and benefits. We measured opportunity recognition, including opportunity discovery and business creation perspectives, as the ability of an individual to identify market opportunities with respect to perceived risks [73,74]. Opportunity discovery is the ability to recognize and identify sustainable new ventures for opportunities in existing markets and environments; opportunity creation involves creating new business opportunities through new ideas and redesigning the market structure. We adopted survey items developed by Majid and Koe [75], and asked participants whether they are likely to identify entrepreneurial opportunities in the existing market or create new opportunities with perceptions of social responsibility and sustainability. We discovered unnoticed entrepreneurial opportunities and, at the same time, determined that knowledge and intention create possibilities of thinking about sustainability and developing self-efficacy in sustainable agricultural entrepreneurship. Therefore, relating to the above mechanism, it is suggested that:

(H4): Individuals’ opportunity recognition (OR) influences intention towards sustainable entrepreneurship positively.

2.3. Triple Bottom Line and sustainable Agriculture Entrepreneurship

The triple bottom line (TBL or 3BL) concept proposed by Richardson [3,8] in 1994 explains the extension of sustainability value in business practices well; the idea is comprehensively explained in his book, Cannibals with Forks: The Triple Bottom Line of business in the 21st Century, that concludes with the three value creation features of sustainable behavior: (i) economic prosperity; (ii) environmental quality; and (iii) social justice. This concept was further developed as “3P” the “formula” to include “people, planets, and profits” [3,8].

Moreover, the TBL sustainable development concept has been prevalently used by several researchers [76] not only to enlighten or designate sustainability development but also to serve as an effective instrument for popular businesses to do so and plays a significant role in demonstrating pledges towards agricultural sustainability [77]. However, the model has been adopted and adjusted by scholars while conducting relevant researches on sustainable entrepreneurship [34,78]. Parrish used the TBL to provide a significant description of sustainable entrepreneurship (SE). Although the term bears the meaning of “sustainable entrepreneurship”, a model was developed based on the trinity of society, environment, and economy to judge whether entrepreneurs are able to balance the three aspects of the TBL to run an economically viable business while retaining their environmental and social values. binder and Belz [31] also debated that to be considered as a sustainable entrepreneur, an individual has to produce social cohesion fulfilling individual and community needs that include the economy, society, and ecology.

The sustainable development literature and the “triple bottom line” approach emphasize economic, social, and environmental gains as significant sustainable development goals [8]. Sustainable development may refer to “development” as shifting the current, unfavorable conditions in society to ensure that future generations can meet their own needs by creating opportunism in the form of motivation and previous knowledge emphasizing an individuals’ attention towards the recognition of sustainable development opportunities which might sustain the agricultural, natural, and societal environment as well as provide development for others. Developmental goals signify economic gain
Sustainability gain (e.g., employment, consumption, economic wealth), environmental gain (e.g., diminished air pollution, increased quality of drinking water), and social gain (e.g., increased child survival, life expectancy, education, equal opportunity) as well as institutional gains [8,79]. Sustainable entrepreneurship is the discovery, creation, and exploitation of opportunities to create future goods and services that may sustain the agricultural, natural, and communal environment and provide development gain for others.

The existing research and anecdotal evidence suggest that many agriculture entrepreneurs hold knowledge about markets and ways to serve them [18]. However, current models of opportunity recognition do not consider a moderating influence of this type of knowledge on other drivers of social entrepreneurial activity [80]. Following our study, agriculture entrepreneurship scholars may develop more sophisticated models of opportunity recognition that take possibilities between sustainability-oriented attitudes, intention knowledge, and motivation variables into account, but both develop a critical understanding concerning sustainable entrepreneurship. Therefore, the contingencies between the triple bottom line and theory of planned behavior variables allow entrepreneurs to accumulate economic, social, and environmental gains when they solve their catastrophe by recognizing dedication to sustainable entrepreneurship.

Economic gain, such as employment distribution, job growth, monetary capital, and investing, advances the socioeconomic living standard and principles of individuals and their psychological [81] and physical fitness [82]. A considerable body of literature discusses how finding entrepreneurial openings harvests economic gain for individuals and well as the community or society in which they live [81]. Therefore, our concept of sustainable development opportunities emphasizes the economic benefits of economic development for people other than entrepreneurs. We do not exclude entrepreneurs from the fruits of their development, but this is not a necessary condition for recognizing opportunities for sustainable development. For example, one might recognize the opportunity for a technology that could be introduced into the market by creating a new organization. If the new organization succeeds, it may benefit the economy of social development in creating jobs and employments, independent of the individual’s role in that organization and his/her economic gain; perhaps he/she may leave the company soon after and not profit from the new technology at all.

Social gain developed in society includes relative poverty, measurements of education, equity and access to social resources, health and well-being, quality of life, social capital fairness, and equivalent opening [77,79,83]; for instance, in low-income countries, one out of every ten children dies before the age of five. Furthermore, some people are exploited such that their “true” value is not recognized or rewarded. For example, stakeholder and enterprise research focuses on the means to ensure that profits from resources are deployed reasonably among firms and other stakeholders. If resource deployment is unfair, then stakeholders are being exploited. Social gains are developed by improving the “well-being, welfare, security of national states, rural regions, institutions and, more recently the valued social ties and rural community organizations” [77,79,83].

Environmental gain is the improvement of conditions of the natural environment and is a significant developmental goal in societies that provoke weak air eminence and drinking water, defiled soil and aquatic surroundings, deteriorating jungles, and other reduced natural resources. As mentioned earlier, the depleted environmental conditions of these resources can lead to psychological and physical health problems for people living in these cultures and societies [84,85]. Entrepreneurs may distinguish opportunities to improve environmental conditions. For example, individuals have discovered opportunities to develop economic, technological processes that convert polluted water, land use agriculture, or drinking water in developing countries [84] and opportunities for ecological fish farming that allows depleted fish stocks in the oceans to recover [84]. In sum, perception of individual sustainability values concerning competence, relatedness, and autonomy determination motivate individuals to gain improved psychological well-being by attending to opportunities that sustain the natural and agricultural environment.

Similarly, Tilley and Young [39] developed a value-based TBL model and claimed that combined efforts of individual values that determine sustainability should be discoursed as sustainable
entrepreneurship on equal footing by using a 3Ps formula, which includes planet, people, and profit; this would have the benefit of having a common unit to create a sustainable agriculture venture [86,87]. An agriculture perspective of the planet emphasizes how management measures and environmental conditions affect yields and how these conditions can be improved based on the effects of plant growth and different conditions such as soil fertility, pests, and climate. It then focuses on maintaining or increasing current levels of biophysical productivity that can be achieved from agriculture sustainability [1,60]. The agriculture perspective of profit focuses on mass production as the main driving force behind the so-called green revolution, also known as industrialization or traditional agricultural model of a farm-level enterprise and an essential economic sector at the local, regional, national, and international levels. The disadvantage of traditional agriculture is that the extensive application of modern agricultural technologies has resulted in many environmental drawbacks, such as land degradation due to poor resource management and the impoverishment of rural sustainable agricultural populations that become increasingly dependent on a small number of transnational agricultural corporations [1,60]. From the agriculture perspective people focus on the ability to meet food and fiber needs. In this regard, sustainable agriculture is linked to prospects for meeting national and global food needs, quality and security of food supplies, working conditions, learning, people’s well-being, and human development. In general, it includes the process of expanding people’s choices in three necessary basic abilities: a healthy and long life, knowledge, and a decent standard of living [1,60]. In other words, individual value strives to attain soil, agricultural, and environmental integrity [88].

In summary, we argue that entrepreneurial activity can only be labeled as sustainable, and therefore satisfies sustainable development if there is an equal blending of the 3Ps within the business initiative. The sustainable entrepreneurship, which derives from sustainable development, intends to approach each ‘3P’ with equal weight and consideration. Therefore, sustainability is at the core of sustainable entrepreneurship. Thus, in the light of the proposed model, a genuinely sustainable entrepreneur is anyone who starts up a business focusing on aspects of the TBL. Therefore, looking at the above mechanisms, the following hypotheses are introduced.

(H5): Triple bottom line (TBL) influences intention towards sustainable entrepreneurship positively.

(H6): Individuals’ sustainability attitudes influence positively towards the triple bottom line.

(H7): Individuals’ sustainability norms influence positively towards the triple bottom line.

(H8): Individuals’ sustainability behaviors influence positively towards the triple bottom line.

(H9): Individuals’ opportunity recognition influences positively towards the triple bottom line.

(H10a): The triple bottom line mediates the relationship between sustainability attitude and intention towards sustainable entrepreneurship.

(H10b): The triple bottom line mediates the relationship between sustainability norms and intention towards sustainable entrepreneurship.

(H10c): The triple bottom line mediates the relationship between sustainability behaviors and intention towards sustainable entrepreneurship.

(H10d): The triple bottom line mediates the relationship between opportunity recognition and intention towards sustainable entrepreneurship.

3. Material and Methods

3.1. Sampling and Data Collection

At present, Chinese universities are focusing on intensive knowledge, entrepreneurial sources, and human resources to support the opportunity to create several university policies and appropriate
environments; thus, communities to evaluate and utilize knowledge can be transformed into new enterprises in agriculture. The economy of the central region of China, especially Hubei, is mainly based on agriculture which brings about a large production scale, excellent product quality, and high commodity rate endowed with favorable light, heat, and water, and abundant agricultural resources, abounding in dominant processing of agriculture. Sideline products with high potential crops also play an essential role in the region. Therefore, it is a significant area of interest to address and learn in this context and has a robust entrepreneurial cultural atmosphere, and many entrepreneurial practices will play a direct or indirect role of subtle influence on college students in this area. It is worth noting that in the central region, agricultural entrepreneurship education courses, practical activities, and student entrepreneurship are relatively higher than in other regions of China. It is an ideal sample area for entrepreneurship sustainability in agricultural education. Therefore, for the study of sustainable entrepreneurship intention we collected data from the Huazhong Agricultural University in Wuhan (China) in December 2019. The random sampling methods were used on 640 students majoring in agriculture disciplines.

3.2. Structural Model Analysis

The study primarily examined if collinearity is present among the constructs (predictors) of sustainability attitude (SA), subjective norm (SN), sustainability behaviors (SB), opportunity recognition (OR), triple bottom line (TBL), and intention towards sustainable entrepreneurship (SEI) to determine the structural relationship among the study constructs. It is important to test the path coefficient for the structural model which is based on ordinary least squares (OLS) regression [89] by using the variance inflation factor (VIF) and a collinearity test was conducted. Since the VIF value was between 1.21 and 2.56, well below the maximum threshold of 10, the results of the test do not arouse general concern about collinearity. The low VIF value indicates that the results of the structural model analysis are not negatively affected by collinearity problems. We ran the bootstrapping algorithm of partial least square structural equation modeling (PLS-SEM) to examine the proposed hypotheses. With the confirmation of the reliability and validity of the constructs, the authors conducted pre-survey tests on 30 respondents; some problems were determined and changes were made to simplify the investigation [90]. Astuti and Martdianty [57] concluded that the TPB and TBL formed the vigorous model of sustainable entrepreneurial intentions for agriculture students, of which 53.6% were male and 46.4% were female. The age composition of respondents was as follows: <20 years (8%), 21–25 (50%); 26–30 (32%), 31–35 (10%). Regarding year of study, 275 students (53%) were obtaining their bachelors, 155 (30%) their masters, and 78 (15%) were doctoral students.

3.3. Measurement Items

All the measurement constructs used in this study established scales that are measured correctly when trying to capture the defined method developed. The original text is in English and then translated into Chinese by bilingual experts aiming to achieve the goal of reciprocity and consistency in the Chinese version vs. original English [91]. Five-point Likert scale was developed (1 = strongly disagree, 5 = strongly agree). The entrepreneurial intention questionnaire measures intention towards sustainable entrepreneurship (SEI-3) items: my professional goal is to become a sustainable entrepreneur in the agriculture sector [42,92].

Sustainability attitudes (SA-3 items): “I have a promising attitude toward sustainable entrepreneurship in the agriculture sector” (see [4,93]).

Subjective norms (SN-3 items): “I have a parental inspiration for starting my agri-business at some future time” (see [69,94]). Sustainability behavior (SB-3 items) is measured as self-employed in the agriculture sector and “I have complete control over the situation” (see [72,95]).

Opportunity Recognition (OR-3 elements) sample was adopted from elsewhere (see [73,75]), “I discover previously unnoticed entrepreneurial opportunities” and “I am excited by the knowledge
that there are many unexploited entrepreneurial opportunities in the agriculture sector, to discover for my new agribusiness”.

Triple bottom line (TBL-3 items) includes economic, social, and environment measured as “I have much knowledge to seek to manage and balance between economic health (profit), social equity (people), and environmental resilience (planet) through my entrepreneurial skills and experiences in the agriculture sector (self-administered)” (see Figure 1).

Figure 1. The map of the study area.

4. Results

4.1. Assessment of Structural Model

In PLS-SEM, a structural model was used to determine the relationships between the hypothetical constructs. Several results were used to confirm or reject assumptions about a relationship, most commonly the size and importance of path coefficients, and determine coefficient (R^2), predictive correlation (Q^2), and effect size (f^2). The structural model is shown in Figure 2. Both the size and significance of the model in the PLS-SEM were assessed by bootstrapping methods that generated empirical t-values for each indicator in the significance testing results of the structural model path coefficients. The PLS-SEM path coefficients can be interpreted as hypothesized relationships between the constructs and must be construed relatively to one another. In this study, six of the connections are significant at a level of 1% that evaluates the predicting significance in the PLS-SEM; the standard procedure is blindfolded. A value greater than 0 indicates that the model has a predictive correlation with specific endogenous structures. Determining the coefficient R^2 (the most common measurement method for evaluating structural models) is also a measurement of the predictive accuracy of a model.
The R² value ranges from 0 to 1, and it has substantial, moderate, and weak values of 0.75, 0.50, and 0.25, respectively [89]. Effect size helps to analyze the correlation of the structure to explain the contribution of the predictive structure to the R² value of the target structure in the structural model. Results ranging from 0.02, 0.15, and 0.35 can be interpreted as small, medium, and large effect sizes, respectively [89].

![Figure 2](image-url)

Figure 2. The result of the measurement model factor loading and coefficient values. (Source: output created by the authors).

In the PLS model, Figure 2 shows that most of the discriminant validity values are above the threshold level. The most substantial validity of intention is towards sustainable entrepreneurship (SEI). The result demonstrates that all the indicators are valid to measure the five constructs. In the results of this exploratory study, the estimated value of Normed Fit Index (NFI) was 0.742 with a Chi-squared value of 1061.432 and Standardized Root Mean Square Residual (SRMR) of 0.097. Furthermore, testing identified the value of R² as 0.277, which indicates that the determinants could contribute to explain sustainable entrepreneurship moderately, and as much as 27.7% of the total variance was explained by SA, SN, SB, and OR variables; the model triggered more interest in sustainable agriculture entrepreneurship.

4.2. Assessment of Measurement Model

The accuracy of instruments refers to the value of cross loading, Cronbach’s alpha, and composite reliability [96]. The composite reliabilities (ρc) measured from 0 to 1, and higher values are equal to higher levels of accuracy. As a rule of thumb, the minimum criteria value of composite reliability is 0.60 for exploratory research [97], while 0.90 for a confirmatory study is considered satisfactory indicator of reliability [98,99]. Its outer loading measures indicator reliability and the expected measure, and Cronbach’s alpha values are between 0.60 and 0.70, and average variance extraction (AVE) standard measures of convergent validity above 0.50 are acceptable [89].

The valuation of a measurement model implies the definition of relationships between the indicators (observed variables) and the construct (the latent variable). Evaluation of a dimensional model measures the criteria of reliability and validity that must be estimated. A complete assessment of the measurement model includes composite reliability for evaluating internal consistency, single-indicator reliability, and average variance extraction (AVE) for inspection of convergence effectiveness, Fornell–Larcker guidelines, and cross loads of each factor at 5% significance and an average value within 0.70 to assess discriminant validity [99].

Table 2 indicates that the construct reliability and validity values between each variable are relatively meeting the threshold levels. Therefore, it can be concluded that the data do not contain
any multicollinearity problems in the model. The highest Cronbach’s alpha value was in TBL (0.887), followed by SEI (0.823), SN (0.820), SA (0.816), and SB (0.685) and lowest was recorded in OR (0.619). For the reliability testing, the results show the composite reliability values of SEI (0.896), OR (0.796), SA (0.886), SN (0.892), SB (0.821), and TBL (0.929), which indicate that the data used in this research model are a good representation and the indicators are valid and reliable measurements.

Table 2. Construct reliability and validity. (Source: output created by the authors).

Variables	Cronbach’s Alpha	Rho-A	Composite Reliability	Average Variance Extracted
OR	0.619	0.634	0.796	0.566
SA	0.816	0.851	0.889	0.727
SB	0.685	0.716	0.821	0.605
SEI	0.823	0.84	0.896	0.742
SN	0.82	0.902	0.892	0.735
TBL	0.887	0.909	0.929	0.815

Note: OR: opportunity recognition; SA: sustainability attitudes; SB: sustainability behaviors; SEI: sustainable entrepreneurship; SN: sustainability norms; TBL: triple bottom line.

One of the highest correlation values was 0.752 between OR and SEI, while the path value was 0.383 (Figure 3) which show that the contribution of OR was 0.168 to SEI. It means if OR increases 1%, it makes sustainable entrepreneurship intention increase to 0.168. While comparing the correlation between SB and SEI, the contribution of SB is 0.052, which indicates the smaller value of role models than entrepreneurial education to the intentions of sustainable entrepreneurship. Similarly, the SEI correlation was 0.148, but its path value was higher compared to other constructs. Therefore, the consideration that sustainability attitudes contribute the most to the R^2 is used to calculate the value of different coefficients of the intended determinant. Based on this evidence, the findings are related to previous behavioral acquisition studies (e.g., [100–102]).

Table 3. Correlation and discriminant validity matrix by Fornell–Larcker criterion. (Source: output created by the authors).

Variables	OR	SA	SB	SEI	SN	TBL
OR	0.752					
SA	0.11	0.853				
SB	0.103	0.386	0.778			
SEI	0.148	0.129	0.052	0.861		
SN	−0.049	0.047	−0.006	0.357	0.857	
TBL	0.135	0.141	0.119	0.624	0.061	0.903

The results of PLS path modeling and hypothesis testing are presented in Figure 3, and Table 4 shows that most of the determinants revealed a significant positive influence on sustainable entrepreneurial intention. In other words, direct effects significantly show a path coefficient of OR and SEI 0.114 ($p < 0.01$); SN and SEI; 0.339 ($p < 0.01$); TBL and SEI; 0.344 ($p < 0.01$); OR and TBL;
0.12 ($p < 0.01$); SA and TBL 0.098 ($p < 0.01$); consistent with prior research [11], our results showed that the constructs significantly stimulated students’ intentions, except for SB, with no significant negative relation on SEI. Therefore, university students have a high level of SEI among the five predictors of the proposed model concerning the mediator of the proposed model, and they have a higher level of TBL implementation as well. It means most of the agriculture students meet the insight of the proposed model.

Table 4. Direct hypothesis constructs summary.

Paths	β Values	M (SD)	T Stat(s)	p-Values	Decision	
OR -> SEI	0.114	0.116	0.037	3.121	0.002	Supported
OR -> TBL	0.12	0.124	0.042	2.833	0.005	Supported
SA -> SEI	0.061	0.061	0.04	1.515	0.13	Not Supported
SA -> TBL	0.098	0.099	0.045	2.193	0.028	Supported
SB -> SEI	~0.022	~0.02	0.038	0.586	0.558	Not Supported
SB -> TBL	0.07	0.077	0.043	1.611	0.107	Not Supported
SN -> SEI	0.339	0.34	0.041	8.281	0.000	Supported
SN -> TBL	0.063	0.065	0.045	1.385	0.166	Not Supported
TBL -> SEI	0.344	0.343	0.043	8.081	0.000	Supported

Constructs: OR: opportunity recognition; SA: sustainability attitudes; SB: sustainability behaviors; SEI: sustainable entrepreneurship; SN: sustainability norms; TBL: triple bottom line.

Finally, the mediation effects of TBL were measured by comparing the β-values of SA, SN, SB, and EE, as shown in Table 5. The decreased β-values of OR (0.041), SA (0.034), SN (0.022), and SB (0.024) indicated that TBL recorded full mediating effects in the relationships between the above factors and SEI. The hypothesis relationship of OR -> TBL -> SEI and SA -> TBL -> SEI is positively significant, whereas SB -> TBL -> SEI and SN -> TBL -> SEI show positive association with no effects on SEI [103]. In addition, the results of Table 5 denote that the mediation effects of TBL were significant ($p < 0.05$). The results determined that H2, H4, H5, H6, H9, and both H10a and H10d are accepted, whereas H1, H3, H7, and H8 demonstrate an insignificant relationship to the intentions in the whole model. Therefore, hypotheses H10a and H10b fully support, whereas H10c and H10d moderately support the model. Study results depict that the TPB antecedents of individual sustainability (attitudes, subjective norms, control behaviors, and opportunity recognition), the nexus of triple bottom line (TBL) indicators (economic, environmental and social), tend to trigger entrepreneurship, which in general lead to sustainable agricultural entrepreneurship.
5. Discussion

Today significant determinants of every business are achieving sustainable growth in terms of using triple bottom line practices; therefore, the goal of this paper was to document the development of emerging entrepreneurship in a sustainable agricultural context. The literature determines the factors that influence entrepreneurial attitudes and intentions to develop a business on sustainable entrepreneurship. Moreover, to enhance the primarily conceptual research on sustainable development with initial empirical and theoretical reasoning, the results of this study indicate that individual sustainability value creation could indeed explain entrepreneurial intention to some extent. As shown in the literature, although there are many cognitive perspectives, to understand the formation of new business firms and underlying sustainability issues [104,105] intentional research has developed in many fields of the TPB related to human behavior. This allows to analyze the relationship between factors that influence sustainable entrepreneurship intentions when it comes to understanding the challenges new enterprises face in the perception of agricultural sustainability domains while implementing and developing, especially the triple boom line (TBL), sustainable business models. The study analyzes intention from the sustainability perspective of the individual. Based on the results we can estimate that the proposed relations (direct and indirect) among constructs affect the intentions to start a new sustainable business through the entrepreneur’s sense of the triple bottom line approach.

Findings of this study are generally encouraging. Opportunity recognition of individual can directly influence the entrepreneurial intention on model paths and OR -> SEI has a significant positive effect on entrepreneurship opportunities among students. The results show that OR plays a leading
role in cultivating and creating, in fostering the performance of individuals with strong essence, and constructing an atmosphere that stimulates students’ entrepreneurial attention and enthusiasm which affect their entrepreneurial planned behavior to inspire their future entrepreneurial actions. Therefore, the relationship between opportunity recognition and sustainable entrepreneurship is effective [13]. Two different business risk mechanisms influence sustainability issues as a traditional business (emphasis on profit maximization incentives rather than a triple bottom line) and business experience (when graduate students graduate) also seems to have a significant impact on graduation and plays a significant role. At this level, educational interventions can effectively mitigate the effects of initial business experience, to some extent, and support individuals to continue to start their businesses in a sustainable development direction [11]. However, institutions must promote sustainable business models. In line with other authors [13,104], knowledge in entrepreneurship skills can be divided as personal and social skills development, and skills required for entrepreneurship and financial management. When enlightening education programs, each must be synchronized with the sustainability plan’s responsibility to improve students’ awareness, knowledge, skills, and values [10,37]. The sustainability-based curriculum supports sustainable entrepreneurship.

The results revealed a positive effect between sustainability attitudes (SA) and intention towards sustainable entrepreneurship in agriculture, with path SA -> SEI confirming that sustainability-oriented attitudes could effectively stimulate the entrepreneurial intention among students. It reflects individuals’ levels, efforts willing and tries to achieve a sustainable business model. The TPB explains that their intentions cause performance, and it is an accurate predictor of human behavior. In the theory, the purpose of sustainable entrepreneurship determines the sustainable practices of students in agriculture. Similarly, the sustainability of subjective norms (SN) is found significant, with the path SN -> SEI indicating that most of students are sure whether to cooperate with partners or are inspired by friends to implement sustainable agriculture entrepreneurship in the future. In the TPB, perceptions are similar, namely family support. [58], social valuation, and perceived support [28]. While in the context of a general entrepreneurship approach to sustainable agriculture entrepreneurship, it is equivalent to previous research [15,28] results that have shown that SN could be considered as the main factor which influences intention towards the sustainability business with both the tendency of becoming an entrepreneur and the likelihood to be a successful entrepreneur.

Correspondingly, the findings of this study show that the influence of the perceived sustainability behaviors control on the entrepreneurs is not significant, path SB -> SEI, indicates that the entrepreneur’s entrepreneurial intention is not directly influenced through the TBL approach. The results may explain that behavior can be negative experiences or signals to respondents, such as long-term business experience, fear of failure, and parents and relatives with unsuccessful entrepreneurial experiences. According to a study [71], entrepreneurial behavior has a weaker ability to predict future sustainable entrepreneurial disposition and is not considered to be a factor that influences the direction of university students. In other words, the existence of a behavioral control does not form the attitude and self-efficacy of entrepreneurial students, and there is no interest in becoming followers of attitude situations. Furthermore, sustainable entrepreneurship is a new entrepreneurial model in which students do not find the motivation to become sustainable entrepreneurs in the entrepreneurial process. However, in the concept of the triple bottom line, this intentional model cultivated students [54] for entrepreneurial situations; the model mainly considers the influence of situational factors on entrepreneurial dispositions.

5.1. Theoretical Implementation

One approach to introduce sustainable entrepreneurship is through the convergent process model [106]. Developing a triple bottom line solution involves forming a sustainable enterprise and entering a practicable market. The main objective of sustainable entrepreneurship is to combine its three dimensions into value creation practices; entrepreneurs’ aspirations will formulate to develop the three pillars of sustainable entrepreneurship from an agriculture perspective. These stages will
adapt to the preparation and capabilities of entrepreneurs to learn about how to create the value of sustainability businesses in the agriculture sector. According to Evans et al. [40], the importance of sustainable agriculture is formed by three aspects of sustainable development: (1) environmental value creation (renewable resource, low emission, low waste, biodiversity, pollution prevention in the air, water, and land); (2) social value creation (equality and diversity, well-being, community development, secure livelihood, labor standard, health, and safety); (3) economic value creation (profit, return on investment, financial resilience, long-term viability, business stability). With this knowledge, students need to understand the process of creating value, and one day they will be eager to drive their business through sustainability values in the agriculture sector.

5.2. Academic Implementation and Policy Implications

The study aims to design the triple bottom line implementation for the development of sustainable entrepreneurship in agriculture. The study mechanism in the universities and institutions is to examine and introduce the extent of entrepreneurship and the principles of sustainability to show when to start incubating new businesses in sustainable entrepreneurship practices in agriculture [6,33,107]. Similar content in the process of identifying, evaluating, and developing economic opportunities leads to the development of a sustainable business model. It requires assessing and expanding economic opportunities, and students or new entrepreneurs need support from the organization.

In addition to the insights and implications that this study offers the policymakers of agricultural universities and institutes on introducing an educational model towards entrepreneurial sustainable agriculture (ESA), it also helps producers to understand and practice sustainable agriculture production methods from a business approach. To teach and facilitate an integrated approach to sustainable agriculture requires an interdisciplinary approach from different disciplines, including entrepreneurship, management, business, economy, sociology, agroecology, agroforestry, animal science, and rural community development. However, it primarily supports agroecology as the discipline leading to sustainable agriculture systems to enhance agriculture entrepreneurs, farmers’ profitability, community social impact and the sustainability of natural resources. It should be specified that agricultural entrepreneurship creates positive externalities designed to improve market opportunities and make a significant contribution to agriculture and rural development.

Conferring to the theory of planned behavior, if educational institutions become seriously dedicated to sustainable development, the learning model will push sustainable knowledge. It affects the individual’s evaluation of sustainability, social pressure on sustainability, and self-efficacy. In general, it supports the actual implementation of a sustainable entrepreneurship support model in agriculture. Participants’ involvement has the potential to encourage students to engage in sustainable development. Therefore, there is an urgent need for the educational system to contribute to sustainable development assistance; this be in the form of knowledge, training, information, coaching, or financial support so that students can manage and engage their ideas in a triple bottom line mechanism. Cooperative alumni overcome financial problems through viable crowdfunding, challenges, and seize opportunities for nascent enterprises in synergies between internal regulation and sustainable development, especially around sustainable agricultural enterprise development objectives between entrepreneurial research centers, roadmaps, and educational system strategic planning. To achieve the goals of integrity and professionalism, manage sustainability innovations, reflect students’ desires, protect the environment and social culture, and critically promote environmental protection, it is vital to create and instill insights and willpower in agriculture students.

5.3. Recommendation and Limitations

Our results should be explained by some of the limitations that naturally arise in the design of a study sample consisting mainly of students that may be considered problematic to some extent. However, even if respondents showed strong and encouraging intentions towards sustainable agriculture entrepreneurship and the future (sustainability), entrepreneurs are likely to be drawn from
this group of people. Therefore, we believe that students are significant learning groups because having university degrees prove entrepreneurial activities and intentions \cite{108,109} with a large proportion of entrepreneurially active individuals who aim to understand the perceptions of the agricultural context. The determinant includes five variables that only focus on the intentionality that may not turn into actual behaviors. So even if a respondent in the survey indicated a high willingness to start a business, he or she might choose a completely different career path in the future. Currently, there is no other accurate way to measure the inclination for entrepreneurship. As a result, respondents’ statements about their entrepreneurial intentions considering reliable sources of information might be more valuable to measure various items to reduce measurement errors in upcoming studies. The collected data are mainly based on students’ perceptions and might possibly differ between reality and perceptions. Noticeably, if there is no economic gain, the attitudes of students in the external world might be dissimilar. The research aimed at demonstrating this reality may suggest, for example, that universities stimulating entrepreneurship or financial systems successfully supporting entrepreneurs’ investigations are highly valuable to take sustainable agricultural entrepreneurship potential entrepreneurs to perceive these given conditions even if they have limited knowledge of the outer world.

As a recommendation, agricultural universities must value sustainable entrepreneurship. Educational institutions can contribute to government and world program sustainability goals (ecological, social, and economic). They understand the stage in the design of the triple bottom line mechanism at the higher education level, especially in the development of sustainability entrepreneurship education. Therefore, the purpose of the current research is to present and validate a framework for measuring sustainability performance from an agricultural learning perspective in the so-called triple bottom line approaches.

5.4. Future Researches

This research has given various essential and valuable insights into the development of sustainable entrepreneurship. In theory, besides identifying challenges, entrepreneurs can contemplate on an effective practice that helps sustainable entrepreneurs who are considering making significant contributions towards a sustainable venture in the future. Regardless, there are substantial research topics that need to be addressed in future research. Firstly, future research could dive into the blending and balancing of the TBL by sustainable entrepreneurs with the integration of theories. After the challenges are studied and identified, it would be beneficial to increase individual intention. As there is abundant information on sustainable entrepreneurship, continuing to learn is a step towards our increased understanding of this important topic and awareness in the marketplace towards sustainable alternatives. We propose that there is a significant role for academia, governmental bodies, and legislation in this challenge, not only by subsidies but also by educating and informing the satisfactory marketplace. The recognition of entrepreneurship can play a vital role in providing mechanisms to contribute to the achievement of sustainable development goals. Sustainable entrepreneurs recognize new opportunities to sustain nature and agricultural environments and develop economic, environmental, and social gain for agriculture and rural societies. Continuing this notion, we propose that triple helix formations, universities, industry, and government, could enhance sustainable entrepreneurship. Future research could investigate how this is possible and how educational business studies, by taking an individual-level agricultural perspective, can suggest which individuals are more likely to discover an opportunity to overcome and work together, thus addressing and solving sustainability-related market failures. Another possible limitation concerns the sample selection, comprising students from the agriculture aspect. Interesting findings may arise from using the same model in another domain. The study considered only psychological antecedents to the TPB and three dimensions of the TBL; however, future studies could consider the role of other personality characters. Contextual factors, familial role models, prior entrepreneurial exposure, entrepreneurship education, knowledge, and cultural differences affect SEI and could contribute to
the differences in entrepreneurship. To further explore and strengthen the theoretical basis of SEIs, both comparative and longitudinal studies could be performed. In recognizing new opportunities to sustain the end, the literature on sustainable development has developed a classification of sustainable development goals that illustrate what must be sustained, (i.e., nature, agriculture, life money, support, and communities) and what has to be developed (e.g., people, economy, and society) so that present and future generations can meet their own needs. Finally, we recommend that opportunities for sustainability-oriented attitudes and sustainable development be recognized.

6. Conclusions

The main aim of the study was to examine the drivers of sustainability-oriented attitudes and intention of individuals towards agricultural entrepreneurship with the primary aim to scrutinize the application of the theory of planned behavior (TPB) nexus with the triple bottom line (TBL) approach, influence the entrepreneurs’ intention towards agriculture entrepreneurship, and provide unique insights to plan a sustainable entrepreneurial environment in agriculture perspectives. The sustainability-oriented attitudes or knowledge of the agriculture sustainability environment and entrepreneurial knowledge explains, to some extent, why some individuals are more likely to recognize and exploit sustainable opportunities towards sustainable agriculture development. In a developing country context, the study sheds light on the need to turn sustainability values into the agricultural domain and improve attitudes towards sustainable entrepreneurship to better nurture the youth with sustainability-driven business intentions.

Based on the reflective results, and in line with other theories, the entrepreneurial agricultural students revealed encouraging and significantly positive levels of intention towards sustainable agriculture entrepreneurship. In other words, individuals favor sustainability issues and show quite positive perceptions about the viability of their business activities. This can be seen as an encouraging result, as it can support our development plan in building sustainable societies based on theory integration since TPB and TBL knowledge and experience of starting new agribusiness opportunities are motivated solely by an economic gain for the entrepreneur. To grab opportunities, most students portrayed the idea of using a sustainability entrepreneur foundation with strong influences including a promising sustainable attitude, assisting in subjective sustainability norms, stimulating self-efficacy and control behaviors, appropriate opportunity recognitions, and TBL indicators on intention towards sustainable agriculture entrepreneurship. Significantly we hope to attract awareness towards sustainable entrepreneurship knowledge about how to create innovative and risk-taking sustainable agribusinesses in future operations in the aspects of sustainable value creation (i.e., profit, people, planet, and purpose). This can be achieved through appropriate motivation and educational institutions that should be dedicated to sustainability issues. They will develop attitude towards sustainability, pressure on social sustainability, and entrepreneurship and control the practice to attract students to sustainable entrepreneurship needed for synergizing the entrepreneurial education system with environmental, societal, and institutional development. In short, our theoretical reasoning and subsequent empirical results show that specific sustainability directions explain entrepreneurial intent to some extent; can also be used to develop further sustainable entrepreneurship, an essential sub-field of agriculture entrepreneurship. This includes empowering students to become more proactive and to trigger their knowledge-seeking opportunities, since this can enhance the impact of all other motivation/knowledge variables. There is much to learn about sustainable entrepreneurship. This study is a step towards our increased understanding of this vital topic for business opportunities and raises awareness (and educates) about the importance of sustainability domains related to micro- and macro-level businesses. The study highlights the need to turn work values into the sustainability domain and improve attitudes towards sustainable entrepreneurship in order to nurture the youth with sustainability-driven business intentions. It also triggers nascent entrepreneurs’ intrinsic motivations to improve, learn, and gain more knowledge, leading eventually to TBLs that are more sustainable and better integrated into the agribusiness system. It will promote the growth of young people’s awareness.
and interest in the sustainable development of future generations, specifically in creating sustainability circles in agricultural entrepreneurship.

Author Contributions: Conceptualization, G.R.S. and D.Z.; data curation, G.R.S., M.H.R., and Y.W.; formal analysis, G.R.S., M.H.R., and Y.W.; funding acquisition, D.Z.; investigation, G.R.S., D.Z., and Y.W.; methodology, G.R.S., M.H.R., and Y.W.; project administration, D.Z.; resources, D.Z.; software, G.R.S.; supervision, D.Z.; validation, D.Z.; visualization, D.Z.; writing—original draft, G.R.S.; writing—review and editing, G.R.S. and Y.W. All authors have read and agreed to the published version of the manuscript.

Funding: The Fundamental Research Funds for the Central Universities research, funded. Grant number 2662017PY071 and APC Deyi Zhou.

Acknowledgments: We want to thank the Huazhong Agricultural University that supports the program. Lastly, we appreciate the friends who assisted and were involved in the research collaboration.

Conflicts of Interest: Authors declare no conflicts of interest.

References

1. Mupfasoni, B.; Kessler, A.; Lans, T. Sustainable agricultural entrepreneurship in Burundi: Drivers and outcomes. *J. Small Bus. Enterp. Dev.* 2018, 25, 64–80. [CrossRef]
2. Lans, T.; Seuneke, P.; Wageningen, A.H.; Klerkx, L. Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship. In *Encyclopedia of Technology and Innovation Management*; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
3. Richardson, J. The triple bottom line: Does it all add up?: Assessing the sustainability of business and CSR. In *The Triple Bottom Line: Does It All Add Up*; Routledge: Abington, UK, 2013; pp. 1–186. ISBN 9781849773348.
4. Shepherd, D.A.; Krueger, N.F. An Intentions-Based Model of Entrepreneurial Teams’ Social Cognition. *Entrep. Theory Pract.* 2002, 27, 167–185. [CrossRef]
5. Bell, J.; Stellingwerf, J.J. Sustainable entrepreneurship: The motivations and challenges of sustainable entrepreneurs in the renewable energy industry. *Amana-Key* 2012, 265–268. [CrossRef]
6. Patzelt, H.; Shepherd, D.A. Recognizing opportunities for sustainable development. *Entrep. Theory Pract.* 2011, 35, 631–652. [CrossRef]
7. Schaltegger, S.; Wagner, M. Sustainable entrepreneurship and sustainability innovation: Categories and interactions. *Bus. Strateg. Environ.* 2011, 20, 222–237. [CrossRef]
8. Elkington, J.; Rowlands, I.H. Cannibals with forks: The triple bottom line of 21st century business. *Choice Rev. Online* 1999, 36, 36–3997.
9. Koe, W.-L. The relationship between Individual Entrepreneurial Orientation (IEO) and entrepreneurial intention. *J. Glob. Entrep. Res.* 2016, 6, 13. [CrossRef]
10. Sargani, G.R.; Zhou, D.; Mangan, T.; Raiser, H. Determinants of Personality Traits Influence on Entrepreneurial Intentions Among Agricultural Students Evidence from Two Different Economies. *Eur. J. Bus. Manag. Res.* 2019, 4, 1–10. [CrossRef]
11. Kuckertz, A.; Wagner, M. The influence of sustainability orientation on entrepreneurial intentions—Investigating the role of business experience. *J. Bus. Ventur.* 2010, 25, 524–539. [CrossRef]
12. Bandura, A. Social Learning Theory of Aggression. *J. Commun.* 1978, 28, 12–29. [CrossRef]
13. Kaijun, Y.; Ichwatus Sholihah, P. A comparative study of the Indonesia and Chinese educative systems concerning the dominant incentives to entrepreneurial spirit (desire for a new venturing) of business school students. *J. Innov. Entrep.* 2015, 4, 1. [CrossRef]
14. Ajzen, I. Nature and Operation of Attitudes. *Annu. Rev. Psychol.* 2001, 52, 27–58. [CrossRef][PubMed]
15. Nuringsih, K.; Nuryasman, M.N.; IwanPrasodjo, R.A. Sustainable Entrepreneurial Intention: The Perceived of Triple Bottom Line among Female Students. *J. Manaj.* 2019, 23, 168–190.
16. Hollos, D.; Blome, C.; Foerstl, K. Does sustainable supplier co-operation affect performance? Examining implications for the triple bottom line. *Int. J. Prod. Res.* 2012, 50, 2968–2986. [CrossRef]
17. Spennassato, D.; Trierweiller, A.C.; Bornia, A.C.; De Azevedo, B.M.; Erdmann, R.H.; Campos, L.M.S.S. Development of a sustainable behavior measurement scale of undergraduate students. *Espacios* 2015, 36, 19.
18. Zahra, S.A.; Sexton, D.L.; Landstrom, H. *Handbook of Entrepreneurship*; Blackwell Publishers Ltd: Cheltenham, UK, 2001; Volume 46, ISBN 9781849808231.
19. Strange, T.; Bayley, A. *Sustainable Development-Linking Economy, Society, Environment*; Organization for Economic Co-Operation and Development: Paris, France, 2008.

20. Majid, I.A.; Latif, A.; Koe, W.L. SMEs’ Intention towards Sustainable Entrepreneurship. *Eur. J. Multidiscip. Stud.* 2017, 4, 24–32. [CrossRef]

21. Alhaddi, H. Triple Bottom Line and Sustainability: A Literature Review. *Bus. Manag. Stud.* 2015, 1, 6–10. [CrossRef]

22. Fong, N.; Wolfram, R.; Shepherd, D. Ecopreneurs as change agents; opportunities, innovations and motivations. *Q. J. Econ.* 2014, 84, 488–500.

23. Hare, R.D.; Quinn, M.J. Psychopathy and autonomic conditioning. *J. Abnorm. Psychol.* 1971, 77, 223–235. [CrossRef]

24. Elkington, J.; Burke, T. *The Green Capitalism: How Industry Can Make Money-and Protect the Environment*; Victor Gollancz: London, UK, 1989.

25. Schaper, M. The essence of ecopreneurship. *Greener Manag. Int.* 2002, 38, 26–30. [CrossRef]

26. Abina, M.; Oyeniran, I.; Onikosi-Alliyu, S. Determinants of eco entrepreneurial intention among students: A case study of University students in Ilorin and Malete. *Ethiop. J. Environ. Stud. Manag.* 2015, 8, 107–112. [CrossRef]

27. Kotchen, M.J. Some microeconomics of eco-entrepreneurship. In *Advances in the Study of Entrepreneurship, Innovation, and Economic Growth*; Emerald Group Publishing Limited: Bingley, UK, 2009; Volume 20, pp. 25–37. ISBN 1048-4736.

28. Taylor, D.W.; Walley, E.E. The green entrepreneur: Opportunist, Maverick or Visionary? *Int. J. Entrep. Small Bus.* 2004, 1, 56–69. [CrossRef]

29. Binder, J.K.; Belz, F.M. Sustainable entrepreneurship: What it is. *Handb. Entrep. Sustain. Dev. Res.* 2015, 1, 30–71.

30. Valentin, A.; Spangenberg, J.H. A guide to community sustainability indicators. *Environ. Impact Assess. Rev.* 2000, 20, 381–392. [CrossRef]

31. Cohen, B.; Winn, M.I. Market imperfections, opportunity and sustainable entrepreneurship. *J. Bus. Ventur.* 2007, 22, 29–49. [CrossRef]

32. Schlange, L.E. Stakeholder Perception in Sustainable Entrepreneurship: The Role of Managerial and Organizational Cognition. In Proceedings of the Corporate Responsibility Research Conference, First Word Symposium on Sustainable Entrepreneurship, University of Leeds, Leeds, UK, 15–17 July 2007.

33. Weidinger, C.; Fischler, F.; Schmidpeter, R. *Sustainable Entrepreneurship: Business Success Through Sustainability*; Springer: Berlin/Heidelberg, Germany, 2014; pp. 235–247.

34. Koe, W.L.; Omar, R.; Majid, I.A. Factors Associated with Propensity for Sustainable Entrepreneurship. *Procedia-Soc. Behav. Sci.* 2014, 130, 65–74. [CrossRef]

35. Belz, F.M.; Binder, J.K. Sustainable Entrepreneurship: A Convergent Process Model. *Bus. Strateg. Environ.* 2017, 26, 1–17. [CrossRef]

36. Singh, M. Greening Tomorrow’s Markets: An Advantage or a Way to Hijack the Sustainability Agenda. In Proceedings of the Curtin International Business Conference-Category-Business Sustainability (paper # 4), Sarawak, Malaysia, 10–12 December 2009; pp. 1–8.

37. McEwen, T. Ecopreneurship as a Solution to Environmental Problems: Implications for College Level Entrepreneurship Education. *Int. J. Acad. Res. Bus. Soc. Sci.* 2013, 3, 264–288.

38. Fayolle, A.; Liñán, F. The future of research on entrepreneurial intentions. *J. Bus. Res.* 2014, 67, 663–666. [CrossRef]

39. Tilley, F.; Young, W. Sustainability Entrepreneurs. *Greener Manag. Int.* 2009, 2006, 79–93. [CrossRef]

40. Choi, D.Y.; Gray, E.R. The venture development processes of “sustainable” entrepreneurs. *Manag. Res. News* 2008, 31, 558–569. [CrossRef]

41. Evans, S.; Vladimirrova, D.; Holgado, M.; Van Fossen, K.; Yang, M.; Silva, E.A.; Barlow, C.Y. Business Model Innovation for Sustainability: Towards a Unified Perspective for Creation of Sustainable Business Models. *Bus. Strateg. Environ.* 2017, 26, 597–608. [CrossRef]

42. Nuringsih, K.; Puspitowati, I. Determinants of eco entrepreneurial intention among students: Study in the entrepreneurial education practices. *Adv. Sci. Lett.* 2017, 23, 7281–7284. [CrossRef]

43. Koe, W.L.; Majid, I.A. Socio-Cultural Factors and Intention towards Sustainable Entrepreneurship. *Eurasian J. Bus. Econ.* 2014, 7, 145–156.
Bird, B. Implementing Entrepreneurial Ideas: The Case for Intention. *Acad. Manag. Rev.* 1988, 13, 442–453. [CrossRef]

Icek, A.; Ajzen, I. The theory of planned behavior. *Handb. Theor. Soc. Psychol. Vol. 1* 1991, 50, 179–211.

Lee, S.H.; Wong, P.K. An exploratory study of technopreneurial intentions: A career anchor perspective. *J. Bus. Ventur.* 2004, 19, 7–28. [CrossRef]

Remeikiene, R.; Startiene, G.; Dumciuviene, D. Explaining Entrepreneurial Intention of University Students: The Role of Entrepreneurial Education. In Proceedings of the Management, Knowledge and Learning International Conference, Zadar, Croatia, 19–21 June 2013; pp. 299–307.

Maresch, D.; Harms, R.; Kailer, N.; Wimmer-Wurm, B. The impact of entrepreneurship education on the entrepreneurial intention of students in science and engineering versus business studies university programs. *Technol. Forecast. Soc. Chang.* 2016, 104, 172–179. [CrossRef]

Martin, R.J.; Usdan, S.; Nelson, S.; Umstattd, M.R.; LaPlante, D.; Perko, M.; Shaffer, H. Using the theory of planned behavior to predict gambling behavior. *Psychol. Addict. Behav.* 2010, 24, 89–97. [CrossRef]

Liñán, F.; Chen, Y. Testing the Entrepreneurial Intention Model on a two-country Sample. *Doc. Treb.* 2006, 67, 1–37.

Ajzen, I. Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. *J. Appl. Soc. Psychol.* 2002, 32, 665–683. [CrossRef]

Kolvereid, L. Organizational Employment versus Self-Employment: Reasons for Career Choice Intentions. *Entrep. Theory Pract.* 2017, 20, 23–31. [CrossRef]

Bandura, A. Self-referent mechanisms in social learning theory. *Am. Psychol.* 1979, 34, 439–441. [CrossRef]

Liñán, F. Skill and value perceptions: How do they affect entrepreneurial intentions? *Int. Entrep. Manag. J.* 2008, 4, 257–272.

Turker, D.; Selcuk, S.S. Which factors affect entrepreneurial intention of university students? *J. Eur. Ind. Train.* 2009, 33, 142–159. [CrossRef]

Ismail, M.; Khalid, S.A.; Othman, M.; Jusoff, H.K.; Rahman, N.A.; Kassim, K.M.; Zain, R.S. Entrepreneurial Intention among Malaysian Undergraduates. *Int. J. Bus. Manag.* 2009, 4, 54–60. [CrossRef]

Gelard, P.; Saleh, K.E. Impact of some contextual factors on entrepreneurial intention of university students. *Afr. J. Bus. Manag.* 2011, 5, 10707–10717.

Astuti, R.D.; Martdianty, F. Students’ Entrepreneurial Intentions by Using Theory of Planned Behavior: The Case in Indonesia. *South East Asian J. Manag.* 2012, 6. [CrossRef]

Denanyoh, R.; Adjei, K.; Nyemekye, G.E. Factors That Impact on Entrepreneurial Intention of Tertiary Students in Ghana. *Int. J. Bus. Soc. Res.* 2015, 5, 19–29.

Sahinidis, A.; Giovannis, A.; Sdrolias, L. The Role of Gender on Entrepreneurial Intention Among Students: An Empirical Test of the Theory of Planned Behavior in a Greek University. *Int. J. Integr. Inf. Manag.* 2014, 1, 61–79. [CrossRef]

Spagnoli, P.; Caetano, A.; Santos, S.C. Entrepreneurial self-efficacy in Italy: An empirical study from a gender perspective. *TPM—Testing Psychom. Methodol. Appl. Psychol.* 2015, 22, 485–506.

Spence, M.; Ben Boubaker Gherib, J.; Biwolé, V.O. Sustainable Entrepreneurship: Is Entrepreneurial will Enough? A North-South Comparison; Springer: Berlin/Heidelberg, Germany, 2011; Volume 99, ISBN 0021698443566.

Levenburg, N.M.; Schwarz, T.V. Entrepreneurial Orientation among the Youth of India. *J. Entrep.* 2008, 17, 15–35. [CrossRef]

Do Paço, A.; Ferreira, J.; Raposo, M.; Rodrigues, R.G.; Dinis, A. Entrepreneurial intention among secondary students: Findings from Portugal. *Int. J. Entrep. Small Bus.* 2011, 13, 92–106. [CrossRef]

Fayolle, A.; Liñán, F.; Moriano, J.A. Beyond entrepreneurial intentions: Values and motivations in entrepreneurship. *Int. Entrep. Manag. J.* 2014, 10, 679–689. [CrossRef]

Cordano, M.; Welcomer, S.; Scherer, R.F.; Pradenas, L.; Parada, V. A cross-cultural assessment of three theories of pro-environmental behavior: A comparison between business students of chile and the united states. *Environ. Behav.* 2011, 43, 634–657. [CrossRef]

Chen, M.F.; Tung, P.J. Developing an extended Theory of Planned Behavior model to predict consumers’ intention to visit green hotels. *Int. J. Hosp. Manag.* 2014, 36, 221–230. [CrossRef]

Fishbein, M.; Ajzen, I. *Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research*; Addison-Wesley: Reading, MA, USA, 1981.
69. Nauta, M.M.; Saucier, A.M.; Woodard, L.E. Interpersonal influences on students’ academic and career decisions: The impact of sexual orientation. *Career Dev. Q.* 2001, 49, 352–362. [CrossRef]

70. Karimi, S.; Biemans, H.J.A.; Lans, T.; Chizari, M.; Mulder, M. Effects of role models and gender on students’ entrepreneurial intentions. *Eur. J. Train. Dev.* 2014, 38, 694–727. [CrossRef]

71. Van Auken, H.; Fry, F.L.; Stephens, P. The Influence of Role Models on Entrepreneurial Intentions. *J. Dev. Entrep.* 2006, 11, 157–167. [CrossRef]

72. Sullivan, D.M.; Meek, W.R. Gender and entrepreneurship: A review and process model. *J. Manag. Psychol.* 2012, 27, 428–458. [CrossRef]

73. Krueger, N.F.; Reilly, M.D.; Carsrud, A.L.; Krueger, N.F., Jr; Reilly, M.D.; Carsrud, A.L.; Reilly, M.D.; Carsrud, A.L. Competing models of entrepreneurial intentions. *J. Bus. Ventur.* 2000, 15, 411–432. [CrossRef]

74. Tapia-Fonllem, C.; Corral-Verdugo, V.; Fraijo-Sing, B. Sustainable behavior and quality of life. In *Handbook of Environmental Psychology and Quality of Life Research*; Springer: Cham, Switzerland, 2016; pp. 241–273.

75. Zhao, X.; Lynch, J.G.; Chen, Q. Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis. *J. Consum. Res.* 2010, 37, 197–206. [CrossRef]

76. Peterman, N.E.; Kennedy, J. Enterprise education: Perceptions of entrepreneurship. *Entrep. Theory Pract.* 2003, 28, 129–144. [CrossRef]

77. Majid, I.A.; Koe, W.L. Sustainable Entrepreneurship (SE): A Revised Model Based on Triple Bottom Line (TBL). *Int. J. Acad. Res. Bus. Soc. Sci.* 2012, 2, 293–310.

78. Mark-Herbert, C.; Rotter, J.; Pakseresht, A. A triple bottom line to ensure Corporate Responsibility. In *Timeless Cityland: An Interdisciplinary Approach to Building the Sustainable Human Habitat*; Public Eye: Zürich, Switzerland, 2010; pp. 1–7.

79. Hockerts, K.; Wustenhagen, R.; Wüstenhagen, R. Greening Goliaths versus emerging Davids—Theorizing about the role of incumbents and new entrants in sustainable entrepreneurship. *J. Bus. Ventur.* 2010, 25, 481–492. [CrossRef]

80. Dixon, S.E.A.; Clifford, A. Ecopreneurship—A new approach to managing the triple bottom line. *J. Organ. Chang. Manag.* 2007, 20, 326–345. [CrossRef]

81. Parrish, B.D. Sustainability-driven entrepreneurship: Principles of organization design. *J. Bus. Ventur.* 2010, 25, 510–523. [CrossRef]

82. Robinson, P.; Haynes, M. Entrepreneurship Education in America’s Major Universities. *Entrep. Theory Pract.* 1991, 15, 41–52. [CrossRef]

83. Muñoz, P. The Distinctive Importance of Sustainable Entrepreneurship. *Curr. Opin. Creat. Innov. Entrep.* 2013, 2, 1–6.

84. Ayob, N.; Yap, C.S.; Amat Sapuan, D.; Abdul Rashid, M.Z. Social entrepreneurial intention among business undergraduates: An emerging economy perspective. *Gadjah Mada Int. J. Bus.* 2013, 15, 249–267. [CrossRef]

85. Bocken, N.M.P. Sustainable venture capital—Catalyst for sustainable start-up success? *J. Clean. Prod.* 2015, 108, 647–658. [CrossRef]

86. Hammer, J.; Pivo, G. The Triple Bottom Line and Sustainable Economic Development Theory and Practice. *Econ. Dev. Q.* 2017, 31, 25–36. [CrossRef]

87. Thompson, N.; Kiefer, K.; York, J.G. Distinctions not Dichotomies: Exploring Social, Sustainable, and Environmental Entrepreneurship. *Adv. Entrep. Firm Emerg. Growth* 2011, 13, 201–229. [CrossRef]

88. Laurell, H.; Karlsson, N.P.E.E.; Lindgren, J.; Andersson, S.; Svensson, G. Re-testing and validating a triple bottom line dominant logic for business sustainability. *Manag. Environ. Qual. Int. J.* 2019, 30, 518–537. [CrossRef]
93. Sesen, H. Personality or environment? A comprehensive study on the entrepreneurial intentions of university students. *Educ. + Train.* 2013, 55, 624–640. [CrossRef]
94. Liñán, F.; Chen, Y. Development and cross-cultural application of a specific instrument to measure entrepreneurial intentions. *Entrep. Theory Pract.* 2009, 33, 593–617.
95. Paul, J.; Shrivatava, A. Do young managers in a developing country have stronger entrepreneurial intentions? Theory and debate. *Int. Bus. Rev.* 2016, 25, 1197–1210. [CrossRef]
96. Obschonka, M.; Stuetzer, M. Integrating psychological approaches to entrepreneurship: The Entrepreneurial Personality System (EPS). *Small Bus. Econ.* 2017, 49, 203–231. [CrossRef]
97. Kautonen, T.; van Gelderen, M.; Fink, M. Robustness of the theory of planned behavior in predicting entrepreneurial intentions and actions. *Entrep. Theory Pract.* 2015, 39, 655–674. [CrossRef]
98. Craig, J.B.L.; Johnson, D. Establishing individual differences related to opportunity alertness and innovation dependent on academic-career training. *J. Manag. Dev.* 2006, 25, 28–39. [CrossRef]
99. Zikmund, W.; Babin, B. *Exploring Marketing Research* William Cengage Learning: Boston, MA, USA, 2006; ISBN 1305831241.
100. Höck, M.; Ringle, C.M.; Hock, M.; Ringle, C.M.; Höck, M.; Ringle, C.M. Local strategic networks in the software industry: An empirical analysis of the value continuum. *Int. J. Knowl. Manag. Stud.* 2010, 4, 132–151. [CrossRef]
101. Hair, J.F.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. *International J. Multivar. Data Anal.* 2017, 1, 107–123. [CrossRef]
102. Henseler, J.; Ringle, C.M.; Sarstedt, M. Using partial least squares path modeling in advertising research: Basic concepts and recent issues. *Handb. Res. Int. Advert.* 2012, 252, 252–276.
103. Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P.; Hair, J.F., Jr.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. *Advanced Issues in Partial Least Squares Structural Equation Modeling*; Sage Publications: Thousand Oaks, CA, USA, 2017, ISBN 1483377385.
104. Chen, Y.S.; Chang, C.H. Enhance green purchase intentions: The roles of green perceived value, green perceived risk, and green trust. *Manag. Decis.* 2012, 50, 502–520. [CrossRef]
105. Rahardjo, F.A. The roles of green perceived value, green perceived risk, and green trust towards green purchase intention of inverter air conditioner in Surabaya. *Ibuss Manag.* 2015, 3, 252–260.
106. Zhao, H.; Hills, G.E.; Seibert, S.E. The mediating role of self-efficacy in the development of entrepreneurial intentions. *J. Appl. Psychol.* 2005, 90, 1265–1272. [CrossRef]
107. Nabi, G.; Liñán, F. Considering business start-up in recession time: The role of risk perception and economic context in shaping the entrepreneurial intent. *Int. J. Entrep. Behav. Res.* 2013, 19, 633–655. [CrossRef]
108. Dean, T.J.; McMullen, J.S. Toward a theory of sustainable entrepreneurship: Reducing environmental degradation through entrepreneurial action. *J. Bus. Ventur.* 2007, 22, 50–76. [CrossRef]
109. Hisrich, R.; Langan-Fox, J.; Grant, S. *Entrepreneurship Research and Practice: A Call to Action for Psychology.* *Am. Psychol.* 2007, 62, 575–589. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).