ZrZn₂: geometrical enhancement of the local DOS and quantum design of magnetic instabilities

Ezio Bruno†, Beniamino Ginatempo† and J.B. Staunton‡
†Dipartimento di Fisica and Unità INFM, Università di Messina, Salita Sperone 31, 98166 Messina, Italy
‡Physics Department, University of Warwick, UK

The recent discovery of coexisting ferromagnetism and superconductivity in ZrZn₂, and the fact that they are simultaneously suppressed on applying pressure, suggests the possibility of a pairing mechanism which is mediated by exchange interactions and connected with the proximity to a magnetic quantum critical point. On the basis of first principles, full potential electronic structure calculations, we study the conditions that, for ZrZn₂, determine the proximity to this magnetic instability. More specifically, we discuss the role played by the geometrical arrangement of the lattice, hybridization effects and the presence of disorder, as well as the application of external pressure. These circumstances influence the width of the relevant Zr d bands whose narrowing, due to the reduction of the effective number of neighbours or to an increase of the cell volume, causes an enhancement of the density of states at the Fermi level. Finally, we highlight some general features that may aid the design of other materials close to magnetic instabilities.
PACS:74.25.-q,74.25.Ha,71.20.Be

The very recent discovery of coexistence of ferromagnetism (FM) and superconductivity (SC) in ZrZn₂ and UGe₂ suggests that the current ideas on SC need to be critically reconsidered. Interestingly ZrZn₂ is a relatively ‘simple’ metal, in the sense that there are not complications arising from f electrons or oxide planes. This circumstance implies that its electronic properties can be studied in detail within the density functional theory framework which is expected to be reliable for such systems.

As known for many years, ZrZn₂ is a weak itinerant FM with a Curie temperature $T_{FM} = 28.5\,K$, despite the fact that both pure Zr and Zn are not magnetic. Both pure elements also exhibit superconducting transitions with $T_C = 0.6\,K$ and $T_C = 0.85\,K$, respectively. Many speculations on the properties of this compound have been stimulated by the discovery that, at some critical pressure, $P_C \approx 8\,KBar$, it becomes paramagnetic (PM), suggesting that it is very close to a magnetic quantum critical point (MQCP). Notwithstanding the argument of Berk and Schrieffer about the suppression of the phonon-induced s-wave SC by FM spin fluctuations, many authors argued that, in the vicinity of the MQCP on the PM side (high pressures), p-wave SC could be induced by paramagnons. Later on, Fay and Appel suggested the possibility of having p-wave SC also for $P < P_C$, inside the FM region of the phase diagram. A different scenario, recently proposed by Blagoev et al., predicts s-wave SC for $P < P_C$ and p-wave SC for $P > P_C$.

The recent experiments suggest that the kind of SC observed in ZrZn₂ is related to the presence of FM, since both FM and SC are suppressed simultaneously as the pressure reaches P_C. This new phenomenon could be compatible either with the picture of Ref. or with that of Ref., both assuming a magnetic excitation-mediated coupling in the proximity of the MQCP. In order to decide between alternative explanations it is highly desirable to be able to engineer materials close to a MQCP and to control the vicinity by changing some variable such as the external pressure or the concentration of some impurities. In this letter, on the basis of first-principles, full-potential, electronic structure calculations for both ZrZn₂ and related systems, we highlight a rather general feature which may aid this endeavor.

In particular we examine the ZrZn₂ lattice geometry and follow some important consequences for the physical properties. We find that the density of states (DOS) at Fermi energy, $n(E_F)$ is enhanced, in a sense to be specified below, by the lattice geometry. A high $n(E_F)$ is a crucial attribute for a material to be close to an MQCP as shown, for example, by a simple Stoner factor calculation (a measure of proximity to a ferromagnetic phase transition)

$$S_0 = (1 - I n(E_F))^{-1},$$

where I is the exchange integral. Of course, a large $n(E_F)$ is also important in generating a sizeable electron-phonon coupling,

$$\lambda = \frac{n(E_F) < I^2 >}{M <\omega^2>},$$

where $<I^2>$ is the electronic stiffness parameter of Gaspari and Gyorffy, M the ionic mass and $<\omega^2>$ some mean value of the phonon frequency. In the above equations we have deliberately used definitions from the simplest available electronic theories for magnetism and SC, just to stress the relevant role played in these phenomena by $n(E_F)$.

ZrZn₂ crystallizes into a cubic C15 superlattice. In this structure, Zr atoms occupy the positions of a di-
among lattice while the Zn atoms form a network of interconnected tetrahedra. Since the major contributions to \(n(E_F) \), as we shall see, come from Zr, the local environment of Zr atoms (Fig. 3) is particularly important for our concerns. Each Zr is surrounded by 12 Zn neighbours and 4 Zr neighbours, at distances that in terms of the lattice constant, \(a \), are, respectively, \(d_{ZrZn} = \sqrt{11}a \) and \(d_{ZrZr} = \sqrt{7}a \). In other words, the distance between two Zr atoms is only 4 per cent larger than the nearest neighbours (NN) distance \(d_{ZrZn} \). This circumstance leads to an appreciable overlap of the wave-functions of two neighbouring Zr atoms.

We have calculated the band structure of \(ZrZn_2 \) in the PM state using the full potential linearised augmented plane waves method (FLAPW) within the local density approximation (LDA). The calculated equilibrium lattice constant (13.58 a.u.) is about 3 per cent smaller than the experimental one (13.98 a.u. \([1]\)). Importantly, our full potential results provide a reference for more approximate, existing band structure calculations (\([4,6]\)), all based on the linearized muffin-tin orbital (LMTO) method and the atomic sphere approximation (ASA). These simpler band structure calculations form the starting point for studies of electron-phonon coupling and spin fluctuations in this material.

The DOS (Fig. 3) classifies this compound as a split band system: the electronic states are distributed into largely separate energy regions. The Zr d resonances are close to \(E_F \), while those of Zn occur well below. The band structure, plotted in Fig. 4, reveals very narrow d bands and suggests that these would be appreciably broadened out by a reduction of the interatomic distances. A similar broadening could also be caused by decrease of the quasiparticle lifetimes due to impurities or defects. This view is supported by Fig. 4, where we see how the increase of the bandwidth for smaller values of \(n \) results in a dramatic drop of the DOS peaks heights. For the system at hand, the drop of \(n(E_F) \) is also affected by electronic topological transitions (ETT) occurring when the Fermi level crosses the various DOS peaks, as shown in Fig. 4.

The variation vs. \(a \) of the local DOS in Zr muffin-tin spheres at the Fermi level, \(n_{Zr}(E_F) \), is displayed in Fig. 4. These trends can be easily fitted using a simple tight-binding (TB) model (\([5]\)), \(n_{Zr}(E_F) \) is inversely proportional to the bandwidth which is proportional to the hopping parameters. These scale exponentially with the relevant distances, say as \(e^{-Br} \) with \(B > 0 \). Accordingly with Eq. 1, the behaviour of \(n_{Zr}(E_F) \) is consistent with the experimental findings (\([6]\)) that a compression can suppress the magnetic ordering by crossing, at \(P = P_C \), the MQCP (\(S_0^{-1} = 0 \)). On the other hand, consistently with Ref. (\([7]\)), the MQCP could be reached at lower pressures in impure samples, due to the lifetimes effects mentioned above.

Pure Zr forms a hcp crystal structure. Although very well known, the standard explanation as to why it is not ferromagnetic contains some valuable pointers. \(n_{Zr}(E_F) = 4.11 \) is about 4 times smaller than in \(ZrZn_2 \). Such a large factor cannot be simply attributed to the atomic distances involved (see Fig. 3). For pure (hcp) Zr we find \(d_{ZrZr} = 5.900 \) a.u., very close to both \(d_{ZrZr} \) and \(d_{ZrZn} \) in \(ZrZn_2 \). Neither can this factor be caused entirely by ETT’s. Such a decrease can be explained only by assuming that, as a consequence of the very weak hybridization with Zn, Zr atoms ‘see’ only their 4 Zr neighbours, while in pure Zr the number of NN’s, \(f \), is 12. This could account for the reduction of the local DOS by factor 3. Using the above TB model, we can draw up a relationship

\[
n_{Zr}(E_F) \sim Ae^{Bd_{ZrZr}/f_{eff}},
\]

where \(f_{eff} \) is some effective number of NN’s. Of course, Eq. 3 should not be taken too literally since ETT’s and differences between the shapes of the DOS’s in different lattices (e.g. the pseudogap between bonding and antibonding states in hcp lattices) have also some influence.

In order to add substance to our picture of \(ZrZn_2 \) in which the Zn atoms play essentially the role of empty spheres planted between Zr atoms to reduce \(f_{eff} \), we have calculated the bandstructure of Zr in the hypothetical diamond lattice phase that would result by the substitution of the Zn atoms in the \(ZrZn_2 \) lattice with empty spaces. The comparison of the corresponding DOS (Fig. 7) shows up some minor differences mostly due to the weak hybridisation with Zn and with the charge transfer to Zn atoms in the \(ZrZn_2 \) system.

In summary: we have pointed out how the addition of Zn to an ideal Zr diamond lattice changes the local DOS on Zr atoms very little. We surmise that this is an example of a rather common occurrence. One can consider a hypothetical geometrical lattice structure formed by adding empty spaces in some metal. The narrowed relevant bands could give rise to exotic, magnetic or superconducting, properties (as shown here for Zr in the diamond lattice, that, of course, cannot be realized in practice). Those same properties could then be obtained by filling the empty spaces with atoms which give rise to little (or zero) DOS at the Fermi level (as Zn) and which have little hybridization with the metal we want to modify. Contrary to the fashion prevalent in much scientific literature, we close this Letter by saying that the observations we are making from our calculations are not particularly new. The focus, however, on the geometrical guideline we have extracted is, A list of existing systems whose properties seem to be consistent with this guideline can be easily constructed. For example, there are thin 4d and 5d metal films (\([15]\)), where the reduction of \(f_{eff} \) at the surface allows magnetically ordered states to be stable. Another example might be the alkal fullerenes (\([16]\), where \(C_{60} \) molecules could provide the ‘vacuum’ making alkal metals superconducting. Other possible examples are \(MgB_2 \) (\([17]\), \(UGe_2 \) (\([18]\), \(MnSi \) (\([19]\, 20\)), the layered cuprate (\([21]\) and ruthenate superconductors (\([22]\) and A15 compounds (\([23]\).
Acknowledgements: We are grateful to E.S. Giuliano, B.L. Gyorffy and G. Santi for helpful discussions.

* E-mail: bruno@dsme01.unime.it

[1] C. Pfleiderer, M. Uhlarz, S.M. Hayden, R. Vollmer, H.v. Lohnysen, N.R. Bernhoeft and C.G. Lonzarich, Nature 412, 58 (2001).

[2] S.S. Saxena et al, Nature, 406, 587 (2000).

[3] A.B. Shick, W.E. Pickett, Phys. Rev. Lett. 86, 300, (2001).

[4] P.Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W.Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

[5] B.T. Matthias and R.M. Bozorth, Phys. Rev. 109, 604 (1958).

[6] R.C. Weast and M.J. Astle, CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton: 1979)

[7] T. F. Smith, J. A. Mydosh, and E. P. Wohlfarth, Phys. Rev. Lett. 27, 1732 (1971).

[8] N.F. Berk and J.R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).

[9] A. J. Leggett, J. Phys. (Paris) 39, C6-1264 (1978); C. P. Enz and B. T. Matthias, Z. Phys. B 33, 129 (1979); D. Fay and J. Appel, Phys. Rev. B 20, 3705 (1979); J. Appel and D. Fay, Solid State Commun. 28, 157 (1978).

[10] D. Fay and J. Appel, Phys. Rev. B 22, 3173 (1980).

[11] K. B. Blagoev, J. R. Engelbrecht, and K. S. Bedell, Phys. Rev. Lett. 82, 133 (1999).

[12] G.D. Gaspari and B.L. Gyorffy, Phys. Rev. Lett. 28, 801 (1972).

[13] A detailed description of the lattice is available at the internet address http://cst-www.nrl.navy.mil/lattice/.

[14] T. Jarlborg and A.J. Freeman, Phys. Rev. B 22, 2332 (1980).

[15] P. Blaha, K. Schwarz and J. Luitz, WIEN97, Vienna University of Technology, 1997. Improved and updated version of the original copyrighted WIEN code, which was published by P. Blaha, K. Schwarz, P. Sorantin and S.B. Trickley, Comput. Phys. Comm. 59, 399 (1996).

[16] H. Morozumi, K. Terao and H. Yamada, J. Phys.: Condens. Mat. 12, 5871 (2000).

[17] I.M. Lifshitz, Zh. Eksp. Teor. Fiz. 33, 1569 (1960); E. Bruno, B. Ginatempo, E.S. Giuliano, A.V. Ruban and Yu.Kh. Vekilov, Phys. Rep. 249, 353 (1994).

[18] M.J. Mehl and D.A. Papaconstantopoulos, Phys. Rev. B 54, 4519 (1996); http://cst-www.nrl.navy.mil/bind/.

[19] R. Pfandzelter, G. Steierl and C. Rau, Phys. Rev. Lett. 74, 3467 (1995); H. Dreyssé and C. Demangeat, Surf. Sci. Rep. 28, 67 (1997).

[20] R.M. Fleming, A.P. Ramirez, M.J. Rosseinsky, D.W. Murphy, R.C. Haddon, S.M. Zahrak and A.V. Makhija, Nature 352, 787 (1991); O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).

[21] J. Nagamatsu, N. Nagakawa, T. Muronaka, Y. Zenitani and J. Akimitsu, Nature 410, 63 (2001).

[22] C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich Phys. Rev. B 55, 8330 (1997).

[23] J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).

[24] Y. Maeno, H. Hashimoto H, K. Yoshida, S. Nishizuki, T. Fujita, J.G. Bednorz, F. Lichtenberg, Nature 372, 532 (1994)

[25] L. R. Testardi, Rev. Mod. Phys. 47, 637 (1975).
FIG. 2. DOS of PM ZrZn$_2$ (top panel) at the relaxed lattice constant, $a=13.58$ a.u.. The labels Zn and Zr refer to the corresponding muffin-tin spheres. The lower panel shows the interstitial DOS divided by the number of atoms in the unit cell.

FIG. 3. Band structure of PM ZrZn$_2$ along relevant symmetry directions.

FIG. 4. DOS of PM ZrZn$_2$ for the values of a indicated by the labels

FIG. 5. DOS of PM ZrZn$_2$ about E_F for the values of a indicated by the labels.

FIG. 6. $n(E_F)$ vs. d_{ZrZr} in ZrZn$_2$. The circles correspond to the calculated values, the line is an exponential fit. We find $B=1.2$ (see the text), in good agreement with the values reported in Ref.[18].

FIG. 7. The density of states of pure Zr in the diamond lattice (dots) compared with the density of states of ZrZn$_2$ (plain line), at the relaxed lattice constant of ZrZn$_2$. All the DOS refer to Zr muffin tin spheres only. The arrow indicates the direction in which the Fermi level is expected to move due to charge transfer from Zr to Zn. The dashed line marks an upper bound estimate of the above Fermi level shift.