Use of dietary assessment tools in randomized trials evaluating diet-based interventions in pregnancy: a systematic review of literature

Bassel H. Al Wattar, Bronacha Mylrea-Lowndes, Catrin Morgan, Amanda P. Moore, and Shakila Thangaratinam

Purpose of review
Accurate assessment of dietary intake in interventional trials is the key to evaluate changes in dietary behaviour and compliance. We evaluated the use of dietary assessment tools in randomized trials on diet-based interventions in pregnancy by a systematic review.

Recent findings
We updated our previous search (until January 2012) on trials of diet and lifestyle interventions in pregnancy using Medline and EMBASE up to December 2015. Two independent reviewers undertook study selection and data extraction. We assessed the characteristics of dietary assessment tools, the timing and frequency of use and any validation undertaken.

Two-thirds (39/58, 67%) of the included studies used some form of tools to assess dietary intake. Multiple days’ food diaries were the most commonly used (23/39, 59%). Three studies (3/39, 8%) validated the used tools in a pregnant population. Three studies (3/39, 8%) prespecified the criteria for adherence to the intervention. The use of dietary assessment tools was not associated with study quality, year of publication, journal impact factor, type of journal and the study sample size.

Summary
Although self-reporting dietary assessment tools are widely used in interventional dietary trials in pregnancy, the quality and applicability of existing tools are low.

Keywords
assessment, diet, intervention, pregnancy, systematic review

INTRODUCTION
Maternal nutritional status before and during the pregnancy has a significant influence on pregnancy-related outcomes [1]. Diet and lifestyle interventions in pregnancy reduce gestational weight gain and have the potential to improve other outcomes such as gestational diabetes, preeclampsia and preterm delivery [2,3*].

Dietary interventional trials use a variety of tools to evaluate participants’ habitual dietary pattern, the effect of the intervention on dietary intake and participants’ compliance with the intervention. Such tools have to be reliable, accurate and valid to improve the interpretation of the study findings [4]. Clinical trials in nonpregnant population traditionally use dietary histories as a gold standard to capture participants’ dietary intake [4]. This is often time and cost consuming in large trial settings mandating the use of other short-term tools such as short food diaries and food frequency questionnaires (FFQs) [5–7].

Pregnancy poses unique challenges for reliable assessment of dietary intake, due to its physiological changes, pregnancy-related conditions such as excessive vomiting and variation in energy requirement per trimester [8]. These changes can significantly reduce the reliability of dietary assessment in...
pregnancy and increase the risk of bias in the trial’s findings [9]. We undertook a systematic review to assess the characteristics and quality of dietary assessment tools used in randomized trials on pregnant women and the factors associated with their use.

METHODS

Literature search and study identification
We updated our previously published search for randomized studies on diet and lifestyle interventions in pregnancy (January 2012) using Medline and EMBASE until December 2015 to identify any new studies. The search strategy was designed in a multistep process by combining search terms related to pregnancy and diet [2]. There were no language restrictions (Appendix 1, http://links.lww.com/COOG/A33).

Study selection
We included all randomized trials of dietary interventions in a pregnant population. We obtained details of the dietary assessment tool and the outcomes measures. Two independent reviewers (B.H.A.W. and B.M.L.) performed the study selection process in two stages. First, we screened the full titles and abstracts of all identified citations related to pregnancy and diet [2]. There were no language restrictions (Appendix 1, http://links.lww.com/COOG/A33).

Quality assessment of included studies
We assessed the quality of included randomized studies using the Jadad score [10]. One point was awarded for each of the following: study described as randomized, the randomization method was appropriate; the study was described as double blinded, the allocation method was appropriate; withdrawals and dropouts were described. Studies with a score above 3 were considered to be of high quality. A score of 3 was considered to be of moderate quality and studies with a score of 2 or less were considered to be of low quality.

Data extraction and analysis
Two independent reviewers extracted data using predesigned data extraction forms (C.M. and B.M.L.). We collected data on details such as the study design, country of study, journal impact factor, study population characteristics, type of dietary intervention evaluated and the outcomes. We recorded the type of dietary assessment tools used, time and frequency of use in pregnancy, and whether the authors evaluated the validity and reliability of the tool in the study population. Journals with an impact factor of more than 10 were considered to be of high impact.

We used logistic regression modelling to assess the effect of study quality, year of publication, journal impact factor, journal type (general vs. specialist) and study sample size on the probability of using dietary assessment tools in clinical trials. Statistical analysis was conducted using IBM SPSS Statistics for Windows, Version 20.0 (IBM Corp, Armonk, New York, USA) and Microsoft Excel (Office 2010; Microsoft, Chicago, Illinois, USA).

RESULTS

From 19,563 potentially relevant citations, 58 randomized trials assessed dietary intervention. Of these, only 39 studies used a dietary assessment tool and were included in our review. Figure 1 shows the details of the study selection process.

Characteristics of the studies using dietary assessment tools
Overall, 9,728 pregnant women were included in 39 studies. Five studies targeted pregnant women with a BMI at least 30 (5/39, 13%), and 21 included pregnant women with any BMI (21/39, 54%). Three studies recruited women at high risk for gestational diabetes (3/39, 8%), and 10 evaluated the effect of diet on women with gestational diabetes (10/39,
The intervention consisted solely of dietary counselling in 30/39 (77%) studies and a combination of dietary and physical activity advice in 9/39 (23%) studies. The majority of studies introduced the dietary intervention by the end of the second trimester (35/39, 90%).

Most studies were conducted in the United States of America (10/39, 27%), followed by Australia (6/39, 15%). Five studies (5/39, 13%) were published in general medical journals and the rest in specialist journals. Only two were published in high impact factor journals (impact factor >10). Table 1 provides a brief summary of the characteristics of the included studies.

Characteristics of dietary assessment tools

Short-term food diaries were most commonly used to assess dietary intake in trials (23/39, 59%), followed by FFQs (12/39, 31%) and 24-h recalls (8/39, 20%). Four studies used two assessment tools jointly [11–14]. The types of food diaries varied in duration: 3-day (13/23, 57%), 4-day (1/23, 4%), 5-day (1/23, 4%) and 7-day diaries (8/23, 35%). Only two studies used weighted food diaries [11,15]. FFQs varied in the number of items included from 13 to 181.

Three studies validated the dietary assessment tools used in the study population [13,23,24]. Of these, two (2/39, 5%) developed and validated the FFQ in the study population using nonweighted 5-day food diaries [24] and 24-h recall [13]. One study validated the content of the 24-h recall via a panel of experts [23]. Four trials (4/39, 10%) defined criteria for adherence to the dietary intervention [24,25,26,27]. Three studies used biomarkers to assess the effectiveness of the intervention [11,15,19], and one used biomarkers to assess adherence to the intervention and change in dietary intake [22] (Table 1).

Quality assessment of studies using dietary assessment tools

The use of dietary assessment tools in trials was not associated with study quality ($P = 0.10$), year of publication (before or after 2005) ($P = 0.88$), journal impact factor ($P = 0.48$), type of journal (general vs. specialist) ($P = 0.33$) or the study sample size ($P = 0.19$).

DISCUSSION

Our review summarizes the use and quality of dietary assessment tools in randomized trials on dietary interventions in a pregnant population. Less than two-thirds of interventional studies included such an assessment tool. This practice did not seem to correlate with the study quality, publication journal or study sample. Self-reporting tools (SRTs) were the most commonly used, consistent with interventional dietary studies outside pregnancy [28].

Strengths and limitations

We performed a comprehensive review of the methods used to assess dietary changes in pregnancy. The trials were identified by a systematic review using a sound methodology, with no search
Author and year	Country of study	Journal	Characteristics of intervention	GA at intervention	Dietary intervention	Diet assessment tool	
Asemi et al. (2014)	Iran	European Journal of Clinical Nutrition	Primigravida, age 18–40, diagnosed with GDM at 24–28 week gestation	Any 24–28 weeks	DASH diet was rich in fruits, vegetables, low-fat dairy products, low in saturated fats and cholesterol, refined grains and sweets	Weekly 2-day dietary recall and one weekend day	
Bechtel-Blackwell et al. (2002)	USA	Clinical Nursing Research	African American primagravidas, age 13–18	Any First trimester to early second trimester	Nutritional education	CAPI (24 h dietary recall + general nutrition questions)	
Bo et al. (2014)	Italy	Diabetes, Obesity and Metabolism	Age 18–50; GDM diagnosis, singleton pregnancy	<40 24–26 weeks	Individually prescribed diet + physical activity	FFQ	
Bosaeus et al. (2015)	Sweden	Nutritional Journal	Age 20–45, European descent, nondiabetic, no neuroleptic drugs, and vegetarianism or veganism	18.5–24.9 12–18 weeks	Individualized dietary counselling	FFQ	
Briley et al. (2002)	USA	Journal of The American Dietetic Association	African American with no preexisting health conditions or diet	Any <24 weeks	In-home, prenatal nutritional advice	24 h recalls	
Ferrara et al. (2011)	USA	Diabetes Care	Singleton pregnancy with gestational diabetes, age >18, English speaking	Any After diagnosis of GDM	DEBI for women with gestational diabetes	7 days dietary diaries	
Grant et al. (2011)	Canada	Diabetes Research and Clinical Practice	Age 18–45, diagnosed with GDM or IGT, no chronic illness affecting carbohydrate metabolism; No type 1 or type 2 diabetes; not using insulin before providing consent	Any <34 weeks	Dietary counselling on nonstarchy food	7 days dietary diary	
Grant et al. (2011)	Canada	Diabetes Research and Clinical Practice	Singleton pregnancy, age 18–45, diagnosed with GDM	Any 28 weeks	Patients introduced to diabetes food guide and current Canadian dietary recommendations	3 days diary + FFQ	
Guelinckx et al. (2010)	Belgium	The American Journal of Clinical Nutrition	Obese white primigravidas <15	Any >29	Nutritional advice from a brochure/lifestyle education by a nutritionist	7 days dietary diary	
Hawkins et al. (2015)	USA	Diabetic Medicine	Hispanic women age 18–40, no history of type 2 diabetes, hypertension, heart disease or chronic renal disease; no current medications adversely influence glucose metabolism	Any <18 weeks	In-person behavioural counselling from trained research assistants	2 h recalls	
Hui et al. (2011)	Canada	British Journal of Obstetrics and Gynaecology	Nondiabetic urban-living pregnant women <26 weeks gestation	Any 26 weeks	Community-based group exercise sessions, home exercise and dietary counselling	3 days dietary diary	
Author and year	Country of study	Journal	Characteristics of intervention population	BMI	GA at intervention	Dietary intervention	Diet assessment tool
-----------------------------	------------------	-------------------------------	---	-----	---------------------	---	-----------------------------------
Ilmonen et al. (2011)	Finland	Clinical Nutrition	Pregnant women less than 17 weeks gestation and no metabolic diseases	Any	<17 weeks	Dietary counselling with probiotics or placebo	3 days food diary
Jackson et al. (2010)	USA	Patient Education and Counselling	English speaking, ≥18 years, <26 weeks gestation	Any	26 weeks	Teaching and counselling session about nutrition, exercise and weight gain using the [Video Doctor](#)	FFQ (18 items)
Jeffries et al. (2009)	Australia	Medical Journal of Australia	English speaking, ≤14 weeks gestation, age 18-45 years	Any	14 weeks	Nutritional advice	Eating habit questionnaire (used to distract from aim of project)
Jelsma et al. (2013)	Netherlands	BMC Pregnancy & Childbirth	Pregnant women at risk of GDM < 19 + 6 weeks. Singleton pregnancy, age <18 years	>29	<19 weeks + 6 days	Five individual sessions and 4 optional telephone calls with lifestyle coach. Daily intake of vitamin D	3 days food diary + FFQ (12 items)
Khoury et al. (2005)	Norway	American Journal of Obstetrics and Gynecology	Singleton pregnancy, nonsmoking, white ethnicity, age 21–38	Any	19–32	Nutritional advice, low cholesterol diet and supplement intake in pregnancy	7 days weighed dietary diary
Kiefferv et al. (2014)	USA	American Journal of Public Health	Hispanic pregnant women, age <18 years, resident in southwest Detroit, <20 weeks gestation	Any	<20 weeks	Healthy Mothers on the Move dietary program implemented in 2 home visits and 9 group meetings over 11 weeks	FFQ
Korpi-Hyovalti et al. (2012)	Finland	The British Journal of Nutrition	Pregnant women at high risk of gestational diabetes	Any	12 weeks	Dietary and lifestyle advice	4 days food diary
Luoto et al. (2011)	Finland	PLOS Medicine	Pregnant euglycaemic women, 8–12 weeks gestation, at least one risk factor for GDM	Any	8–12 weeks	Individual intensified counselling on physical activity, diet and weight gain	FFQ (181 items)
Man Shek et al. (2014)	China	Arch Gynecol Obstet	Chinese, residents in Hong Kong, age ≥18, diagnosed with IGT but otherwise in general good health, understand Chinese language	Any	28–30 weeks	Dietary advice, individual optimal caloric intake measured, individual counselling by a registered dietician	5 days food diary
Moreno-Castilla et al. (2013)	Spain	Diabetes Care	Age 18–45, singleton pregnancy, diagnosis of GDM <35 weeks	Any	<35 weeks	Individualized dietary advice	3 days food diary
Moses et al. (2009)	Australia	Diabetes Care	Age 18–45, singleton pregnancy, no previous GDM, nonsmoker, diagnosis of GDM	Any	28–32 weeks	Individualized dietary advice	3 days food diary
Moses et al. (2009)	Australia	American Journal of Nutrition	≤20 weeks gestation, singleton pregnancy, age >18, ability to read and understand English	Any	20 weeks	Detailed dietary education tailored for the assigned diet	3 days food diary
Moses et al. (2014)	Australia	The American Journal of Clinical Nutrition	≤20 weeks gestation, singleton pregnancy, 18 years or older, read and understand English	Any	<20 weeks	Detailed dietary education tailored for assigned diet and individual requirements for pregnancy	3 days food diary
Petrella et al. (2013)	Italy	Journal of Maternal-Fetal & Neonatal Medicine	Age ≥18 years, singleton pregnancy	≥25	12 weeks	TLC Program	FFQ (158 items)
Author and year	Country of study	Journal	Characteristics of intervention population	BMI	GA at intervention	Dietary intervention	Diet assessment tool
-----------------	------------------	---------	---	-----	---------------------	---------------------	---------------------
Polley et al. (2002)	USA	International Journal of Obesity	Age >18 years, singleton pregnancy, gestation <20 weeks	≥19.8	20 weeks	Education about weight gain, healthy eating, and exercise	Short FFQ (13 items)
Poston et al. (2013)	UK	BMC Pregnancy & Childbirth	Obese, singleton pregnancy, gestation 15–18 weeks	≥30	15–18 weeks	One-to-one and group sessions with health trainer providing dietary and physical activity advice	24 h recalls + short FFQ
Quinlivan et al. (2011)	Australia	Australian and New Zealand Journal of Obstetrics and Gynaecology	Singleton pregnancies, obese or overweight, English speaking	≥25	Not reported	Dietary advice and clinical psychology	24 h itemized food consumption recalls
Rae et al. (2000)	Australia	Australian and New Zealand Journal of Obstetrics and Gynaecology	Pregnant women with GDM	>110% of ideal body weight	<28 +1 weeks	Nutritional advice on a moderately energy restricted diabetic diet	3 days food diary
Rauh et al. (2013)	Germany	BMC Pregnancy & Childbirth	Age >18 years, singleton pregnancy, <18 weeks gestation with sufficient German language skills	≥18.5	18 weeks	Advice on healthy lifestyle, diet and physical activity with individualized goals	7 days dietary diary
Rhodes et al. (2010)	USA	American Journal of Nutrition	BMI 25–45, age ≥25, singleton pregnancy.	25–45	13–28 weeks	Nutritional education, dietary counselling and food provision	24 h recalls
Rönnö et al. (2014)	Finland	BMC Pregnancy & Childbirth	History of GDM/BMI ≥30, <20 weeks	≥30	20 weeks	Lifestyle counselling encouraging healthy diet and physical activity	3 day food diary
Sagedal et al. (2013)	Norway	BMC Public Health	Singleton pregnancy, >18 years old, ≥20 weeks gestation, fluent in Norwegian or English	>19	<20 weeks	Dietary counselling + pamphlets containing 10 dietary recommendations + hands-on cooking class + access to interactive website with information on nutrition during pregnancy	82 items FFQ + 24 h recalls
Thornton et al. (2009)	USA	Journal of the National Medical Association	Obese pregnant women with singleton pregnancy	≥30	12–18 weeks	Advised on a balanced nutritional regimen.	Daily food diary throughout pregnancy
Vesco et al. (2013)	USA	Obesity	Age >18, >8 weeks gestation (at first antenatal booking)	≥30	7–21 weeks	Combination of diet and exercise recommendation + behavioural self-management.	7 days food diary
Walsh et al. (2012)	Ireland	British Medical Journal	Secundigravid, singleton pregnancies, previous macrosomia of >4kg, aged <18	Any	<18 weeks	Nutritional advice following a low glycaemic index diet	3 days food diary
Wang et al. (2015)	China	Asia Pac J Clin Nutr	Diagnosed with GDM, age 22–38, no pregnancy-related complications, no history of diabetes, hypertension or GDM	Any	24–28 weeks	Individualized dietary guidance	24 h recalls
Wolff et al. (2008)	Denmark	International Journal of Obesity	Nondiabetic, nonsmoking, white, aged 18–45	≥30	15 weeks	Nutritional advice and provision of supplements	7 days weighed food diary

CAPI, computer-assisted personal interviewing; DASH, Dietary Approaches to Stop Hypertension; DEBI, diet, exercise and breastfeeding intervention; FFQ, food frequency questionnaire; GA, gestational age; GDM, gestational diabetes mellitus; IGT, intolerance glucose test; TIC, therapeutic lifestyle changes.
limitations. We assessed the risk of bias and methodological quality of all included studies. We assessed the type of dietary tools, their validity and identified factors associated with their use in a pregnant population. We were not able to provide details on the rationale for choosing various dietary tools in pregnancy and the methodology used due to the paucity of published information. Very few studies conducted validation studies, and the numbers were insufficient to generate any meaningful conclusions on validating SRTs in a pregnant population.

Dietary tools in pregnancy

Food diaries were used in about two-thirds of included studies; traditionally diaries were the most commonly used tool to report dietary intake in epidemiological studies [29]. They, however, still suffer from a number of limitations, which may lead to misreporting or under-reporting of intake data. Food diaries are more likely to under-report certain nutrients in women and obese participants [30]. They can also vary largely in the accuracy of details provided particularly when portion sizes and meals’ weight are not recorded [31]. Introducing food diaries over a long time (more than 3 days) is likely to lead to higher dropout rate, thus increasing the risk of bias [32]. In addition, participants are more likely to change their dietary habits when completing diaries for a long period reducing the diaries’ ability to capture habitual intake [33]. Three-day food diary was the most commonly used method, and only two studies used weighed diaries [11,15]. However, we record no clear explanation for such practice.

A third of included trials used an FFQ to assess dietary intake. The decision to use these FFQs seemed arbitrary. FFQs’ sensitivity to capture dietary changes in trial settings is generally trivial [34] and can be affected by a number of factors such as the sample size, population literacy, number of items in the FFQ, combination of food groups and the type of the dietary intervention introduced [9]. FFQs’ reliability in pregnancy is further undermined because of the instability of dietary intake. Differences in dietary requirement per trimester and common eating disorders such as hyperemesis all increase the intrarater variability in a pregnant population [35]. Some observational studies have confirmed the relative ability of an FFQ to rank individuals according to their dietary intake in a pregnant population [36–38]. However, the generalizability of this to interventional trials is still arguable.

The majority of included studies in our review adopted an FFQ that was validated in a similar population, and only two validated their questionnaires in the study population against other SRTs [13,24]. Although this is a common practice in most dietary studies [39], the increased inter-rater variability in pregnancy is likely to result in a higher random error when SRTs are used in validation studies. Consequently, it might undermine the validation process requiring a larger study sample or more diaries collected [30]. Objective biomarkers could also be used in validation studies [40];
CONCLUSION
Although self-reporting dietary assessment tools are widely used in interventional dietary trials in pregnancy, the quality and applicability of existing tools are low with little consideration to the particularity of a pregnant population.

Acknowledgements
None.

Financial support and sponsorship
None.

Conflicts of interest
There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Gluckman PD, Hanson MA, Pinal C. The developmental origins of adult disease. Matern Child Nutr 2005; 1:130–141.
2. Thangaratnam S, Rogozinska E, Jolly K, et al. Effects of interventions in pregnancy on maternal weight and obstetric outcomes: meta-analysis of randomised evidence. BMJ 2012; 344:e2088–e2088.
3. Allen R, Rogozinska E, Sivarajasingam P, et al. Effect of diet- and lifestyle-based metabolic risk-modifying interventions on preeclampsia: a meta-analysis. Acta Obstet Gynecol Scand 2014; 93:973–985.

An important systematic review highlighting the role of lifestyle interventions to reduce the risk of preeclampsia.

4. Thompson FE, Byers T. Dietary assessment resource manual. J Nutr 1994; 124 (11 Suppl):2245S–2317S.

A randomised controlled trial. BMC Pregnancy Childbirth 2013; 13:148.

5. Baranowski T, Dworin R, Henske JC, et al. The accuracy of children’s self-reports of diet: Family Health Project. J Am Diet Assoc 1986; 86:1381–1385.

6. Dole, S, Baranowski T, Leonard S, et al. Accuracy of fourth- and fifth-grade students’ food records compared with school-lunch observations. Am J Clin Nutr 1994; 59:218S–220S.

7. Lytle LA, Nickman MZ, Obaraanek E, et al. Validation of 24-h recalls assisted by food records in third-grade children. J Am Diet Assoc 1993; 93:1431–1436.

8. Melitzer HM, Brantsaeter AL, Nilsen RM, et al. Effect of dietary factors in pregnancy on risk of pregnancy complications: results from the Norwegian mother and child cohort study. Am J Clin Nutr 2011; 94:1970S–1974S.

9. Melitzer HM, Brantsaeter AL, Ydersbond TA, et al. Methodological challenges when monitoring the diet of pregnant women in a large study: experiences from the Norwegian Mother and Child Cohort Study (MoBa). Matern Child Nutr 2008; 4:14–27.

10. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17:1–12.

11. Wolff S, Legarth J, Van Der Hoek K, et al. A randomized trial of the effects of dietary counseling on gestational weight gain and glucose metabolism in obese pregnant women. Int J Obes (Lond) 2008; 32:495–501.

12. Sagasedal LR, Øverby NC, Löhne-Seiler H, et al. Study protocol: fit for delivery – can a lifestyle intervention in pregnancy result in measurable health benefits for mothers and newborns? A randomized controlled trial. BMC Public Health 2013; 13:152.

13. Poston L, Briley AL, Barr S, et al. Developing a complex intervention for diet and activity behaviour change in obese pregnant women (the UPBEAT trial); assessment of behavioural change and process evaluation in a pilot randomised controlled trial. BMC Pregnancy Childbirth 2013; 13:148.

14. Jelsma GM, Van NM, Galiarda S, et al. DALI: vitamin D and lifestyle intervention for gestational diabetes mellitus (GDM) prevention: an European multicentre, randomised trial – study protocol. BMC Pregnancy and Childbirth 2013; 13:16.

15. Khoury J, Henniksen T, Christopherson B, Tostad S. Effect of a cholesterol lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: a randomized clinical trial. Am J Obstet Gynecol 2005; 193:1292–1301.

Implication for future research
The increased systematic and random reporting errors from the use of dietary tools in pregnancy need to be minimized. The use of combined dietary assessment tools should be evaluated to reduce the under-reporting bias [42]. Regression models could also be used to correct measurement errors in dietary assessment studies [43]. Such tools take into consideration the presumed systematic and within-person random variations to allow for a more accurate estimate of effect [43]. The applicability of these tools in dietary studies in pregnancy is still limited, and more work is needed in this field.

The majority of available biomarkers assess specific nutrient intake rather than consumption of food items [41]. The applicability of biomarkers is still limited by the gap of knowledge on their validity, reliability and reproducibility [44]. In our review, biomarkers were used in four studies, but only one study used specific serum biomarkers to assess the dietary intake of particular nutrients [22*]. Cost implications and invasiveness are other important factors to consider in trial settings [30].

Pregnancy imposes a number of specific challenges on dietary assessment in interventional studies. Establishing a link between diet and the condition of interest requires long-term follow-up before, during and after the pregnancy. Assessing dietary intake frequently might reduce patients’ motivation in pregnancy settings particularly for multiparous women who have less free time to engage in laborious methods such as weighed diaries. Assessment tools need to address the objective of the trial and capture the effect of diet on both the mother and the fetus.
16. Jackson RA, Stotland NE, Caughey AB, Gerbert B. Improving diet and exercise in pregnancy with video doctor counseling: a randomized trial. Patient Educ Couns 2011; 83:203–209.
17. Petrella E, Malavolti M, Bertannini V, et al. Gestational weight gain in overweight and obese women enrolled in a healthy lifestyle and eating habits program. J Matern Neonatal Med 2014; 27:1348–1352.
18. An interesting study highlighting the role of diet to reduce gestational weight gain and associated adverse pregnancy outcomes.
19. Polley BA, Wing RR, Sims CJ. Randomized controlled trial to prevent excessive weight gain in pregnant women. Int J Obes Relat Metab Disord 2002; 26:1484–1490.
20. Kieffer EC, Welmken DB, Sinco BR, et al. Dietary outcomes in a Spanish language randomized controlled diabetes prevention trial with pregnant Latinas. Am J Public Health 2014; 104:526–533.
21. Hui A, Back L, Ludwig S, et al. Lifestyle intervention on diet and exercise reduced excessive gestational weight gain in pregnant women under a randomised controlled trial. BJOG 2012; 119:70–77.
22. Borsaeus M, Hussain A, Karlsson T, et al. A randomized longitudinal dietary intervention study during pregnancy: effects on fish intake, phospholipids, and body composition. Nutr J 2015; 14:1.
23. An interesting randomized trial on the effect of dietary advice in pregnancy to help pregnant women increase their fish intake.
24. Bechtel-Blackwell DA. Computer-assisted self-interview and nutrition education in pregnant teens. Clin Nurs Res 2002; 11:450–462.
25. Luoto R, Kinnunen TI, Aittasalo M, et al. Primary prevention of gestational diabetes mellitus and large-for-gestational-age newborns by lifestyle counseling: a cluster-randomized controlled trial. PLoS Med 2011; 8: e1000106.
26. Thornton YS, Smarker K, Kopacz SM, Ishoof SB. Perinatal outcomes in nutritionally monitored obese pregnant women: a randomized clinical trial. J Natl Med Assoc 2009; 101:569–577.
27. Walsh JM, McGowan CA, Mahony R, et al. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. World Rev Nutr Diet 2014; 109:101–102.
28. A large randomized trial on the role of diet to reduce fetal macrosomia and gestational weight gain in women with diabetes.
29. Hauner H, Much D, Volhard C, et al. Effect of reducing the n26:n23 long-chain PUFA ratio during pregnancy and lactation on infant adipose tissue growth within the first year of life: an open-label randomized controlled trial. Am J Clin Nutr 2012; 95:383–394.
30. Vitolins MZ, Rand CS, Rapp SR, et al. Measuring adherence to behavioral and medical interventions. Control Clin Trials 2000; 21:S188–S194.
31. Mahaloko JR, Johnson LK, Gallagher SK, Milne DB. Comparison of dietary histories and seven-day food records in a nutritional assessment of older adults. Am J Clin Nutr 1985; 42:542–553.
32. Thompson FE, Subar AF, Loria CM, et al. Need for technology innovation in dietary assessment. J Am Diet Assoc 2011; 110:48–51.
33. Fridenstiel JL. A review of study designs and methods of dietary assessment in nutritional epidemiology of chronic disease. J Nutr 1999; 129 (2 Suppl): 401–405.
34. Genovsztiv C, Maddon JP, Smiciklas-Wright H. Validity of the 24-hr dietary recall and seven-day record for group comparisons. J Am Diet Assoc 1978; 73:48–55.
35. Rebrom SM, Patterson RE, Kristal AR, Cheney CL. The effect of keeping food records on eating patterns. J Am Diet Assoc 1998; 98:1163–1165.
36. Kristal AR, Peters U, Poter JD. Is it time to abandon the food frequency questionnaire? Cancer Epidemiol biomarkers Prev 2005; 14:2826–2828.
37. Fawzi WW, Rifas-Shiman SL, Rich-Edwards JW, et al. Calibration of a semi-quantitative food frequency questionnaire in early pregnancy. Ann Epidemiol 2004; 14:754–762.
38. Subar AF, Thompson FE, Kipnis V, et al. Comparative validation of the Block, Willett, and National Cancer Institute: the eating at America’s Table Study. Am J Epidemiol 2001; 154:1089–1099.
39. Brantsaeter AL, Haugen M, Alexander J, Meltzer HM. Validity of a new food frequency questionnaire for pregnant women in the Norwegian Mother and Child Cohort Study (MoBa). Matern Child Nutr 2008; 4:38–43.
40. Erkkola M, Karpipinen M, Javanainen J, et al. Validity and reproducibility of a food frequency questionnaire for pregnant Finish women. Am J Epidemiol 2001; 154:466–476.
41. Cade J, Thompson R, Burley V, Warm D. Development, validation and utilisation of food-frequency questionnaires – a review. Public Heal Nutr 2002; 5:567–587.
42. Ocke C, Kaaks R. Biochemical markers as additional measurements in dietary validity studies: application of the method of triads with examples from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 1997; 65:1240–1245.
43. Hidrick VE, Dietrich AM, Estabrooks PA, et al. Dietary biomarkers: advances, limitations and future directions. Nutr J 2012; 11:109.
44. Probst Y, Tapsell L. Over- and underreporting of energy intake by patients with metabolic syndrome using an automated dietary assessment website. Nutr Diet 2007; 64:280–284.
45. Hosner B, Willett WC, Spiegelman D. Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat Med 1990; 8:1051–1069.
46. Synthesis PC on DRIR. Dietary reference intakes research synthesis workshop summary. Washington, D.C.: National Academies Press; 2006.