Effect of interfacial Cr on magnetoelectricity of Fe$_2$/CrO$_2$/BaTiO$_3$(001)

M. Hölder, 1 M. Fechner, 2 S. Ostanin, 2 and I. Mertig 2, 1

1Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
2Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany

(Dated: May 19, 2010)

On the basis of first-principles calculations we study the effect of interfacial Cr on the magnetoelectric properties of a composite multiferroic Fe$_L$/BaTiO$_3$(001), with the Fe thickness $L \leq 2$ monolayers. The use of the CrO$_2$-terminated interface instead of TiO$_2$ may significantly enhance magnetoelectricity in the system, showing an unexpected change in magnetization induced by the electric polarization reversal. In the case of $L = 2$, for instance, the magnetic order of the Fe bilayer can be switched from nearly zero ferrimagnetic to ferromagnetic upon polarization reversal.

PACS numbers: 31.15.Ae, 68.47.Gh, 73.20.At, 77.84.Lf, 77.80.Fm

I. INTRODUCTION

The occurrence of ferroelectricity and ferromagnetism in the same phase of a so called multiferroic (MF) material allows both a switchable electric polarization, \mathbf{P}, and a switchable magnetization \mathbf{M}. More precisely, when an applied electric field displaces the magnetic ions of the multiferroic this affects the magnetic exchange coupling or, vice versa, the external magnetic field, \mathbf{H}, induces $P_i \sim \alpha_{ij} H_j$, where α_{ij} is the magnetoelectric (ME) tensor and $(i, j) = x, y, z$. When α is sufficiently strong this phenomenon may allow to store information in nanometer-sized memories with four logic states.

The classification of multiferroics is based on different mechanisms of induced polarity. The type-I class of multiferroics contains numerous perovskitelike materials in which \mathbf{P} appears at higher temperatures than magnetism. In these materials, \mathbf{P} and \mathbf{M} weakly interact with each other and, therefore, α is marginal there. In type-II MF, such as TbMnO$_3$, ferroelectricity is driven by the electronic order degrees related to a spin-orbit mechanism via the Dzyaloshinskii-Moria antisymmetric exchange. The latter creates $\mathbf{P} \sim \mathbf{r}_{ij} \times [\mathbf{S}_i \times \mathbf{S}_j]$, where \mathbf{r}_{ij} is the vector connecting neighboring spins \mathbf{S}_i and \mathbf{S}_j. Some of the type-II MFs may disclose a relatively large ME coupling. However, their ferroelectricity is caused by a particular type of magnetic order, which exists only at low temperature and which is predominantly antiferromagnetic.

Studies based on density functional theory (DFT) have significantly contributed to this rapidly developing field of multiferroics. For instance, calculations from first-principles predict that the ME effect appears when a meV voltage is applied across the interface between the two unlike terminations, such as SrRuO$_3$/SrTiO$_3$. The interface ME effect might be intrinsically enhanced by the use of material with high spin polarization. Indeed, a more robust scenario of magnetoelectricity occurs in epitaxially grown two-phase MF consisting of ferroelectric and ferromagnetic components. Ab initio calculations suggest that chemical bonding at the Fe/BaTiO$_3$(001) interface is the source of strong ME coupling. Moreover, for the two opposite directions of \mathbf{P} (P_\uparrow and P_\downarrow), there are rather noticeable differences of $0.1–0.2 \mu_B$ in the magnetic moments of interacting Fe and Ti. This is a very promising phenomenon, which is entirely confined to the ferroelectric/ferromagnetic interface. The interface ME effect defines the change in \mathbf{M} at the coercive field E_c:

$$\mu_0 \Delta M \approx \alpha E_c.$$ (1)

For Fe/BaTiO$_3$(001), the estimated α of $\sim 2 \times 10^{-10}$ G cm2/V is two orders of magnitude larger than that predicted for SrRuO$_3$/SrTiO$_3$.

Currently, ab initio calculations which explore the trends and basic physics of magnetoelectrics, go ahead of experiment. For a single Fe monolayer (ML) on BaTiO$_3$(001), DFT predicts that perpendicular anisotropy is favored in-plane anisotropy by 0.7 meV (0.5 meV) per Fe atom for P_\uparrow (P_\downarrow). Although the spin reorientation transition under switching of \mathbf{P} is not found from first principles, the ME coupling alters the magnetocrystalline anisotropy energy by $\sim 50\%$. The magnetic order of Fe/BaTiO$_3$ can be tuned by the Fe layer thickness to almost zero-M ferrimagnetic upon deposition of a second Fe ML. Ferromagnetic order is restored for the Fe films thicker than 3 ML where the shape anisotropy energy favors in-plane alignment of \mathbf{M}. Epi-

tactical growth of the two-phase MF thin films of high quality continues to be very challenging. A 30-nm thick Fe(001) film has been grown recently on a ferroelectric BaTiO$_3$(001) substrate. For this composite MF, the trends of magnetic anisotropy are in good agreement with the corresponding ab initio calculations. Until recently, the DFT studies of the interface ME coupling were focused on chemically perfect films and superlattices with no impurities. Modeling the two different Fe$_2$O$_4$/TiO$_2$/BaTiO$_3$(001) interfaces, within the DFT, Niranjan et al. have found that ME coupling is stronger for the O-deficient type of the Fe$_3$O$_4$ interface. Therefore, the presence of extra oxygen or oxygen vacancies at the biferroic interface plays an important role. The effect of iron oxidation on the ME coupling of Fe/ATiO$_3$(001) ($A=$Ba, Pb) was simulated from first principles for oxygen coverages ranged between 0.5 and...
2.0 adsorbed O atom per Fe atom. The calculations suggest that the magnetic properties of the Fe monolayer are gradually degraded with increasing O coverage. However, the change in magnetization which is induced by the P reversal remains robust. Thus, the surface oxidation of composite MFs cannot destroy their potentially switchable magnetoelectricity.

It is well known that both the magnetic order of Fe films and the related magnetic anisotropy are very sensitive to the presence of some other 3d elements. The alloying effect may result in important changes in magnetoelectricity and therefore, the DFT based modelling of chemical order in composite multiferroics would be useful. The effect of Fe-Co alloying on magnetoelectricity of thin-film Fe/BaTiO$_3$(001) has been studied recently from first principles using the coherent-potential approximation to DFT. It was found that the presence of $>0.25 \text{Co at.}\%$ per Fe atom stabilizes the ferromagnetic order in the two-ML thick and magnetically soft Fe-films. In this work, we investigate the ME coupling in the 1-ML and 2-ML thick and magnetically soft Fe-films. In this DFT based study we used the Vienna Ab initio Simulation Package (VASP) within the local spin-density approximation. The electron-ion interactions were described by projector-augmented wave (PAW) pseudopotentials, and the electronic wave functions were represented by plane waves with a cutoff energy of 650 eV. For ionic relaxation the 8 k-point mesh was used. The ionic relaxation was performed until the forces were less than 1 eV/Å. To calculate the electronic density of states (DOS) we used the 30 × 30 × 15 k-point mesh. For each completely relaxed atomic configuration we performed the spin-polarized calculations starting form the ferromagnetic (FM) or, alternatively, from the antiferromagnetic (AFM) configuration in the Fe layers. The induced magnetization of the XO$_2$ interface was as well investigated.

 equalized Ce. To calculate the electronic density of states (DOS) within the local spin-density approximation. The electron-ion interactions were described by projector-augmented wave (PAW) pseudopotentials, and the electronic wave functions were represented by plane waves with a cutoff energy of 650 eV. For ionic relaxation the 8 k-point mesh was used. The ionic relaxation was performed until the forces were less than 1 eV/Å. To calculate the electronic density of states (DOS) we used the 30 × 30 × 15 k-point mesh. For each completely relaxed atomic configuration we performed the spin-polarized calculations starting form the ferromagnetic (FM) or, alternatively, from the antiferromagnetic (AFM) configuration in the Fe layers. The induced magnetization of the XO$_2$ interface was as well investigated.

II. METHOD

To model the FeL/BaTiO$_3$(001) bilayer system within a slab geometry we used a 5-unit-cell (\sim2-nm) thick BTO supercell covered by an Fe monolayer or Fe bilayer ($L=1.2$). A 2-nm-vacuum layer separates the slabs along [001]. For tetragonal BTO the equilibrium lattice parameters $a=3.943$ Å and $c/a=1.013$ were used. The Fe positions and atomic positions of the two top BTO unit cells were relaxed. In ferroelectric BTO, the cations and O of the alternating BaO and TiO$_2$ layers are displaced against each other in the [001] direction. This leads to spontaneous polarization along [001]. Here we model a dually polar ferroelectric. If the BTO cations are placed above O in the supercell then the negative intralayer displacements $\delta = (z_O - z_{cation}) < 0$ form the P state pointing parallel to the surface normal (P_\parallel) and, vice versa, the state P_\perp means that the $\delta > 0$. Before relaxation, the δ values of 0.082 Å and 0.086 Å were chosen in the TiO$_2$ and BaO layers, respectively. The TiO$_2$-terminated type of the BTO interface was energetically preferred. In this work, we substitute an interfacial Ti by Cr and added one or two ML of iron on the CrO$_2$-terminated BTO(001). The Fe adatoms of the first ML relax atop oxygen, while the Fe atoms of the second ML find their relaxed positions above the Ba and X=Cr sites. In Figure 1 we plot the side- and top view of relaxed FeL/CrO$_2$/BaTiO$_3$(001) for the case of $L=2$. The positions of Fe above O, Ba and X are indicated by the corresponding labels in the panel (b).

In this DFT based study we used the Vienna Ab initio Simulation Package (VASP) within the local spin-density approximation. The electron-ion interactions were described by projector-augmented wave (PAW) pseudopotentials, and the electronic wave functions were represented by plane waves with a cutoff energy of 650 eV. For ionic relaxation the 8 × 8 × 4 k-point Monkhorst-Pack mesh was used. The ionic relaxation was performed until the forces were less than 1 × 10$^{-3}$ eV/Å. To calculate the electronic density of states (DOS) we used the 30 × 30 × 15 k-point mesh. For each completely relaxed atomic configuration we performed the spin-polarized calculations starting form the ferromagnetic (FM) or, alternatively, from the antiferromagnetic (AFM) configuration in the Fe layers. The induced magnetization of the XO$_2$ interface was as well investigated.

III. RESULTS AND DISCUSSION

Much effort has been recently put to show that the electric field-induced reversal of P is able to vary the easy direction of magnetization in magnetically soft Co$_{0.9}$Fe$_{0.1}$ and Ni$_{0.75}$Fe$_{0.22}$ permalloys attached to thin film of multiferroic BiFeO$_3$ (BFO) or, alternatively, to a single crystal of BiFeO$_3$. There is a problem, how-
ever, to form a ferroelectric single domain in the (001) plane of BFO. As a result, the magnetization of perma-

noloy could not be completely switched. We suggest that BTO is a more promising material for switching M by an electric field in the FM layer. In our study of the 1-

ML-thick Fe-electrode material deposited on BTO(001) we find that the two systems: $\text{Fe}_{L=1}/\text{TiO}_2/BTO$ and $\text{Fe}_{L=1}/\text{CrO}_2/BTO$ are both ferromagnetically ordered, while the ME coupling coefficient increases from $\alpha = 2.1 \times 10^{-10}$ G cm2/V in $\text{Fe}_{L=1}/\text{TiO}_2/BTO$ to the value of 7.2×10^{-10} G cm2/V at the CrO$_2$ interface. Eq.(1) was used to estimate α. In the case of Fe bilayer, the magnetic order changes dramatically. The $\text{Fe}_{L=2}/\text{TiO}_2/BTO$ system is almost zero-M ferrimagnetic for the both P states. Contrarily, $\text{Fe}_{L=2}/\text{CrO}_2/BTO$ changes its magnetic order from AFM to FM when the substrate polarization is switched from P_\parallel to P_\perp, resulting in a ME coupling coefficient of $\alpha = 6 \times 10^{-8}$ G cm2/V. Below we concentrate mainly on the case of $L = 2$.

A. Structural relaxation

Figure 2 shows the perovskite intralayer displacement between oxygen and cations along [001], $\delta = z_O - z_{\text{cation}}$, obtained after relaxation of $\text{Fe}_L/\text{XO}_2/\text{BaTiO}_3(001)$ ($L = 1, 2, X=\text{Ti, Cr}$ and $P = P_\parallel, P_\perp$). The interfacial layer and layers beneath are denoted by I, I-1, I-2, etc. The asymmetry of δ seen between P_\parallel and P_\perp for the layers I, I-1 and I-2 as well as the magnitude of δ, which gradually decreases towards the interface, both mimic the effect of the depolarizing field and its screening. It should be noted that the state P_\parallel is energetically preferred compared to P_\perp. For that reason the depolarization effect is rather strong for P_\parallel as shown in Fig. 2. For P_\perp, the value of δ is stable beneath the interface, namely, between the layers I-1 and I-3 and, therefore, the reduction of δ becomes crucial at the interface only. It turns out that interfacial CrO$_2$ obeys marginal δ, which value decreases when the second Fe ML is added. For P_\perp, the effect of X=Cr on δ is more pronounced. For instance, when $L = 2$ and $P = P_\parallel$ the presence of Cr changes the sign of δ in layer I.

In Figure 2 we plot the relaxed distances between interfacial Fe and O atoms of XO$_2$ ($X = \text{Ti, Cr}$). It has been previously found from first principles that the TiO$_2$ termination of BTO(001) is energetically preferred[16]. When the first Fe ML is deposited on TiO$_2/BTO(001)$ the Fe atoms find their relaxed positions above O$_{\text{BaTiO}}$, at the distance $d_{1+1,I} \approx 1.78$ Å as shown in the left panel of Fig. 3. Thus, Fe and O form a strong and relatively short chemical bond at the interface. Our calculations demonstrate that $d_{1+1,I}$ may increase by $\sim 5 \%$ when the second Fe ML is added. The polarization reversal shows no effect on $d_{1+1,I}$. For $L = 1$ and the CrO$_2$-interface, we find that the corresponding $d_{1+1,I} \approx 1.7$ Å is significantly reduced compared to the Fe/TiO$_2/BTO$ systems. When the Fe-(I+2) layer is added for X=Cr and P_\perp, the separation between Fe and O is increased to the corresponding X=Ti value. For the opposite polarization P_\parallel and $L = 2$, a $\sim 5 \%$-increase of $d_{1+1,I}$ was obtained. The latter result suggests a very promising scenario of magnetoelectricity in the Fe$_L$/CrO$_2$/BTO system with $L = 2$. Since the Fe-(I+2) atoms of the second layer are inevitably placed above the perovskite cations, the corresponding Fe$_X$ and Fe$_{Ba}$ sites are nonequivalent as shown in Fig. 1. In Fig. 3(b) we plot the relaxed interlayer separation $d_{1+2,I+1}$ between the Fe layers I+2 and I+1 for the case of $L = 2$. In general, the presence of Cr at the interface makes $d_{1+2,I+1}$ larger compared to the reference Fe$_L$/TiO$_2$/BTO system but, most importantly, $d_{1+2,I+1}$ is not changed upon P reversal, except for a 3%-increase at the Fe$_{P\parallel}$ site.
B. Electronic and magnetic properties

Fig. 4 shows the site-projected DOS of paraelectric cubic BaTiO$_3$ together with the DOS of hypothetic cubic BaCrO$_3$. The two perovskites were calculated using the same lattice parameter $a = 3.943$ Å. For BTO we obtained an insulating band gap of ~ 2 eV, which is typically underestimated within the local density approximation. The conduction band of BTO is formed mainly by the Ti 3d states whereas the upper valence band is largely composed by the O 2p states. In BaCrO$_3$, the DOS is typically metallic while the 3d states of Cr dominate near the Fermi level, E_F. There is a marginal pseudogap seen at -1.5 eV below E_F. Therefore, one can expect relatively strong metallization at the Fe/CrO$_2$ interface compared to Fe/TiO$_2$.

In Fe$_{L=1}$/TiO$_2$/BTO the FM order is energetically favorable against the AFM solution by 0.7 eV/cell (0.75 eV/cell) for P_1 (P_2). Here, the Fe and O magnetic moments are aligned parallelly whereas the Ti magnetic moment, originating from hybridization of the Ti 3d and Fe 3d minority states, is antiparallelly aligned. All magnetic moments of the system are collected in Table I. The polarization reversal from P_1 to P_2 yields the magnetization change $|\Delta M| = 0.028 \mu_B$/cell which formally results in the ME coupling of 2.1×10^{-10} G cm2/V. When Cr substitutes Ti at the interface, the lowest-energy configuration remains ferromagnetic. However, the negative magnetic moment of $\sim 2 \mu_B$, induced on Cr, is much larger than m_{P_1}. For interfacial oxygen the calculated magnetic moment is about 0.1 μ_B. This value as well as m_{Cr} are in a good agreement with the experimental data of bulk CrO$_2$. Due to the large and negative Cr magnetic moment, the total magnetization of the system Fe$_{L=1}$/Cr$_{L=2}$/BTO is reduced by $\sim 2 \mu_B$ in comparison to that of Fe$_{L=1}$/TiO$_2$/BTO. Although m_{Cr} is moderately changed by P reversal the corresponding $|\Delta M|$ results in $\alpha = 7.2 \times 10^{-10}$ G cm2/V, which is three times larger than the ME effect of Fe$_{L=1}$/TiO$_2$/BTO.

The second Fe ML deposited on the TiO$_2$-terminated BTO(001) interface causes a specific case. There are two inequivalent I+2 sites situated atop Ba and Ti, respectively, which are labelled by Fe$_{Ba}$ and Fe$_{Ti}$ in Fig. 1. The different magnetic moments reflect the neighbourhood of these atoms such as their atomic volumes and hybridization of the electronic states. Let us consider, first, the case of X=Ti. The value of m_{Fe} in the layer I+1 is almost quenched while the two sizable moments in the surface layer I+2 are antiparallelly aligned. This results in $M \rightarrow 0$ for Fe$_{L=2}$/TiO$_2$/BTO(001). In the case of the Fe bilayer on the CrO$_2$-terminated BTO, the lowest-energy configuration is antiferromagnetic for P_1 and becomes ferromagnetic for P_2. For this polarization the Fe magnetic moments in the layer I+1 are far below their bulk value but the two Fe-(I+2) magnetic moments, which are ferromagnetically aligned to each other, contribute significantly to the total M. We estimate that the total magnetic moment of the system changes from $M < 0.3 \mu_B$ to $> 8 \mu_B$ per unit cell area upon polarization reversal. Thus, the polarization reversal produces for X=Cr the effect of switchable magnetization. In Fig. 5 the difference in energy, $\Delta E = E_{AFM} - E_{FM}$, calculated between the AFM and FM configurations and normalized per Fe atom, is plotted. For X=Cr the 2-ML-thick Fe film represents a specific case of a magnetically soft system at fixed P. Nevertheless, any magnetic switch upon P reversal requires an energy which exceeds the coercive field value of BTO.

To illustrate the interface ME coupling mechanism, we plot in Fig. 5 and Fig. 7 the spin density imbalance, $(n^+(r) - n^-(r))$, obtained under P-reversal near the interface of Fe$_{L=2}$/TiO$_2$/BTO and Fe$_{L=2}$/CrO$_2$/BTO, respectively. The (100) plane cutting through the X and O interfacial sites shows where the largest changes of the spin density occur and, hence, from where the

![FIG. 4: The total and site-projected DOS of cubic BaTiO$_3$ and hypothetic BaCrO$_3$ calculated using the same lattice parameter $a = 3.943$ Å.](image)

![FIG. 5: Energy difference $\Delta E = E_{AFM} - E_{FM}$ between the AFM and FM configurations of Fe$_{L=1}$/XO$_2$/BTO (X=Cr,Ti and $L = 1, 2$) is normalized per Fe atom.](image)
ME effect arises. Each of the four panels of Fig. 6 shows the local magnetization density calculated at fixed $P = (P_\uparrow, P_\downarrow)$. These are shown for the two possible magnetic configurations which are either FM or AFM. For X=Ti, both the P_\uparrow and P_\downarrow-poled states are antiferromagnetically ordered, as shown in the panels (b) and (d) of Fig. 6. The two results are similar to each other. The largest negatively charged areas are seen around Fe$_X$(I+1) while the n^+-charged areas around the second Fe site of this layer are not shown in Fig. 6. All other sites of Fe$_{L=2}$/TiO$_2$/BTO including Fe-(I+1) indicate very small magnetic moments. Inspecting the spin density imbalance seen in Fig. 6(a) and Fig. 6(d) for the two energetically preferred but oppositely poled configurations of X=Cr, we find many differences in the magnetic structure. The panel (a) shows the ferromagnetically ordered state P_f where the Fe and Cr atoms form rather spacious regions of positive spin density n^+ while n^- can be spotted around O, in the Fe interstitials and regions towards the surface. In the case of P_f, the energetically favorable AFM configuration, shown in the panel (d), is similar to that of Fe$_{L=2}$/TiO$_2$/BTO. Here, the large areas around Fe$_X$(I+2) and also around interfacial Cr are negatively charged. Besides, the p$_{{\alpha}}$-orbitals of interfacial O show their negative spin population resulting from hybridization with the 3d states of Fe-(I+1) whereas the O p$_{\sigma}$ and p$_{\pi}$ orbitals, which form the bonds with the Cr 3d states, contribute to n^+. Regarding the Fe-(I+1) atoms of Fe$_{L=2}$/CrO$_2$/BTO, Fig. 6(d) shows that they contribute to n^+ contrarily to the case of X=Ti.

The site-projected and spin-resolved DOS calculated for Fe$_{L=2}$/XO$_2$/BTO are plotted in the two panels of Fig. 5. For each system, the solid (shaded) lines represent the DOS curves in the P_f (P_q) state. The energetically preferable magnetic configurations are shown only in Fig. 5 for each direction of P. In general, the DOS of the interfacial XO$_2$ layer is metallic for both systems. For $L = 2$ and X=Cr, however, the Cr 3d–DOS indicates relatively strong spin polarization at the Fermi level. This is not surprising since the DOS of hypothetical BaCrO$_3$ shows similar behavior, as shown in Fig. 4. When X=Ti, there is some insignificant presence of the Ti 3d states in the BTO band gap below E_F, which entirely results from the hybridization with the Fe 3d states of the layer I+1. Another major difference in the DOS seen in Fig. 5 for $L = 2$ comes from the magnetic ordering of Fe$_X$. For X=Ti the two Fe atoms in the topmost layer I+2

TABLE I: Local magnetic moments (in μ_B) calculated for the two Fe adlayers labeled by I+1 and I+2 and interfacial X (X = Cr, Ti) and O of Fe$_L$/XO$_2$/BaTiO$_3$(001) ($L = 1, 2$). In the topmost Fe layer I+2, there are two nonequivalent sites denoted as Fe$_{Ba}$ and Fe$_X$. The total magnetization M_{tot} includes the contributions from the interstitials. The energy difference between the AFM and FM configurations calculated for each system at $P = (P_\uparrow, P_\downarrow)$ is shown in eV per cell.

Site	Layer	($P_{\uparrow,\downarrow}$)CrO$_2$/BTO	($P_{\uparrow,\downarrow}$)Fe$_{L=2}$/CrO$_2$/BTO	($P_{\uparrow,\downarrow}$)Fe$_{L=1}$/TiO$_2$/BTO	($P_{\uparrow,\downarrow}$)Fe$_{L=2}$/TiO$_2$/BTO
Fe$_{Ba}$	I+2	P_f	P_f	P_f	P_f
Fe$_X$	I+2	P_f	P_f	P_f	P_f
Fe$_O$	I+1	P_f	P_f	P_f	P_f
X (I)		P_f	P_f	P_f	P_f
O (I)		P_f	P_f	P_f	P_f
$E_{AFM} - E_{FM}$ (eV)	+0.65	+0.01	+0.01	+0.01	+0.01
M_{tot} (μ_B)	+3.86	+8.28	+8.28	+5.87	+5.87
α (G cm2/V)	7.20×10^{-10}	5.99×10^{-8}	2.08×10^{-10}	3.05×10^{-10}	3.05×10^{-10}
FIG. 7: Spin density imbalance (in e/Å⁻³) within the (100) plane cutting through the Cr atoms of Fe₃₋₂/CrO₂/BaTiO₃(001). The two top (bottom) panels show the $P_↑$ ($P_↓$) states while the left (right) panels illustrate the FM (AFM) ordering. For $P_↑$ ($P_↓$), the lowest energy solution is the FM (AFM) configuration shown in ‘a’ (‘d’).

are coupled antiferromagnetically while the corresponding DOS curves show minor changes upon P reversal. When X=Cr the polarization reversal from $P_↑$ to the state $P_↓$ supports (i) the ferromagnetic order in the layer I+2, (ii) the relatively large magnetic moment $m(FeO) \sim 0.9 \mu_B$ in the layer I+1 and (iii) the $\sim 2-\mu_B$ change of m_{Cr} which is aligned parallely to the Fe magnetic moments.

In Fig. 8 we plot the relative (in %) and absolute contributions (in μ_B) to $\Delta M = M(P_↓)-M(P_↑)$ coming from each magnetic species of Fe₃₋₂/XO₂/BTO. For the two biferroic interfaces studied here, the largest P-induced change of M comes from the Fe-(I+2) atoms. For X=Cr, however, the absolute value of ΔM approaches $\sim 7 \mu_B$ per unit cell. As result, the corresponding ME coupling coefficient increases significantly compared to that of X=Ti. We demonstrate that the case of $L=2$ and X=Cr stabilizes the FM ordering in the system with P pointing upwards. Surprisingly, this is completely due to rather modest 5 % decrease of $d_{I+1,I}$ under P reversal, as shown in Fig. 3. With decreasing $d_{I+1,I}$ above CrO₂, the FM order is developing in the system. More precisely, when the Fe-(I+1) magnetic moment becomes larger ferromagnetism is stabilized in layer (I+2). In the case of X=Ti, the interlayer separations $d_{I+2,I+1}$ and $d_{I+1,I}$ are almost the same upon the P reversal that prevents any crucial spin reorientation in the topmost Fe ML.

IV. CONCLUSIONS

In summary, we present an ab initio study of the effect of interfacial Cr on the strength of magneto-electric coupling seen at the interface of multiferroic Fe₃₋₂/CrO₂/BaTiO₃(001), with the Fe thickness $L \leq 2$ monolayers. We predict that a CrO₂-terminated interface instead of TiO₂ may significantly enhance magnetoelectricity in the system. The most attractive scenario is, however, obtained for the Fe bilayer where the magnetic order changes from nearly zero-M ferrimagnetic to ferromagnetic upon polarization reversal in ferroelectric BaTiO₃(001).
FIG. 9: Relative contributions (in %) of each magnetic species of Fe_{L-2}/XO_2/BTO (X = Ti, Cr) to the magnetization change, ∆M, induced by polarization reversal. The contributions from the two Fe-(I+2) and two Fe-(I+1) atoms, one interfacial X and two O atoms were considered. The absolute values of ∆M are given (in μB) above each bar.

V. ACKNOWLEDGMENTS

This work was supported by the Collaborative Research Network SFB 762, ‘Functionality of Oxidic Interfaces’. M. Fechner is a member of the International Max Planck Research School for Science and Technology of Nanostructures.

1. K. F. Wang, J.-M. Liu, and Z. F. Ren, Advances in Phys. 58, 321 (2009).
2. W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Nature Mater. 6, 348 (2007).
3. S.-W. Cheong, Nature Mater. 6, 927 (2007).
4. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M. P. Cruz, P.-L. Yang, D. Hao, and R. Ramesh, Nano Lett. 7, 1586 (2007).
5. D. Khomskii, Phys. 2, 20 (2009).
6. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
7. S. Picozzi and C. Ederer, J. Phys.: Condens. Matter. 21, 303201 (2009).
8. J. M. Rondinelli, M. Stengel, N. A. Spaldin, Nat. Nanotechnol. 3, 46 (2008).
9. C.-G. Duan, S. S. Jaswal, E. Y. Tsymbal, Phys. Rev. Lett., 97, 047201 (2006).
10. M. Fechner, I. V. Maznichenko, S. Ostanin, A. Ernst, J. Henk, P. Bruno, I. Mertig, Phys. Rev. B 78, 214206 (2008).
11. C.-G. Duan, J. P. Velev, R. F. Sabirianov, W. N. Mei, S. S. Jaswal, E. Y. Tsymbal, Appl. Phys. Lett. 92, 122905 (2008).
12. C. Yu, M. Pechan, S. Srivastava, C. J. Palmstrom, M. Biegalski, C. Brooks, D. Schlom, J. Appl. Phys. 103, 07B108 (2008).
13. M. K. Niranjan, J. P. Velev, C.-G. Duan, S. S. Jaswal, E. Y. Tsymbal, Phys. Rev. B 78, 104405 (2008).
14. M. Fechner, S. Ostanin and I. Mertig, Phys. Rev. B 80, 094405 (2009).
15. I.V. Maznichenko, M. Fechner, S. Ostanin, A. Ernst, J. Henk, I. Mertig, J.B. Staunton, unpublished.
16. M. Fechner, S. Ostanin, I. Mertig, Phys. Rev. B 77, 094112 (2008).
17. G. Kresse and H. Jaffner, Phys. Rev. B 49, 14251 (1994).