Thermocatalytic cracking of fat from fat boxes with activated red mud

Rachamento termocatalítico de gordura de caixas de gordura com lama vermelha ativa

DOI:10.34117/bjdv6n4-237

Recebimento dos originais: 16/03/2020
Aceitação para publicação: 16/04/2020

Romero Moreira de Oliveira
Doutor em Engenharia de Recursos Naturais da Amazônia - PRODERNA
Instituição: Universidade Federal do Pará - UFPA
Endereço: 66075-110, Belém, PA, Brasil.
E-mail: romeroengquimico@gmail.com

Emerson Cardoso Rodrigues
Doutor em Engenharia de Recursos Naturais da Amazônia - PRODERNA
Instituição: Universidade da Amazônia - UNAMA
Endereço: 66060-000, Belém, PA, Brasil.
E-mail: mersone7@yahoo.com.br

Dilson Nazareno Pereira Cardoso
Doutor em Engenharia de Recursos Naturais da Amazônia - PRODERNA
Instituição: Universidade Federal do Pará - UFPA
Endereço: 66075-110, Belém, PA, Brasil.
E-mail: dnpcardoso@gmail.com

Wenderson Gomes dos Santos
Doutor em Engenharia de Recursos Naturais da Amazônia - PRODERNA
Instituição: Universidade Federal do Amazonas - UFAM
Endereço: 69077-000, Manaus, PA, Brasil.
E-mail: wenderson@ufam.edu.br

Nélio Teixeira Machado
Pós-Doutor em Engenharia de Bioenergia Leibniz Institute of Agricultural Engineering and Bio-economy e.V. (ATB)
Instituição: Universidade Federal do Pará - UFPA
Endereço: 66075-110, Belém, PA, Brasil.
E-mail: machado@ufpa.br
ABSTRACT
In this study, the residual fat from fat boxes from the university restaurant at the Federal University of Pará was used as biomass to produce biofuels by thermocatalytic cracking, using as catalyst the red mud chemically activated with hydrochloric acid solution and thermally at 1000°C. The cracking process of the residual fat with the activated red mud was carried out at a mass ratio of 10% w/w at a fixed temperature of 550°C and the product generated was collected in a fractionated way by the reaction time at 20, 40, 60 and 80 minutes after the cracking reaction starts. Subsequently, the products were subjected to fractional distillation in a 12-stage vigreux column and the condensed fractions were collected according to the gasoline distillation temperature range (45°C-175°C), kerosene (175°C-235°C), light diesel (235°C-305°C) and heavy diesel (305°C-370°C). Considering the effects of temperature, catalyst ratio and acid solution concentration in the chemical treatment of red mud, the characteristics and compositions of the biofuels produced were systematically investigated by physical-chemical and compositional analyzes. The highest yield obtained was 97.46% at point 4 of the collection, also showing the lowest acid index of gasoline at point 4 with 9.4 mgKOH/g.

Keywords: Cracking, Fat boxes, Biomass, Red mud, Fractional distillation.

INTRODUCTION
With the advent of the industrial revolution that started in the United Kingdom in the middle of the 18th century, the global energy demand has also grown exponentially, with the main source of energy being fuels derived from oil, in addition to mineral coal and natural gas.
For decades, oil products were the main sources of energy used in industries and in people's daily lives, however, this resource in the long run is limited in addition to being a potential cause of the greenhouse effect, due to the emission of gases harmful to the environment such as carbon monoxides and sulfur compounds [1].

In order to alleviate or even exhaust these problems, scientific communities in partnership with private and state companies have been investing new technologies in order to obtain renewable sources of fuels, which do not harm the environment and with the lowest economic cost, thus generating a search for innovations and ratification of methodologies for the synthesis of biofuels through technological routes, among which transesterification, esterification, fermentation and thermal transformations such as cracking are being intensively studied [2].

The cracking process of renewable raw materials, which can be a thermal or catalytic process, has as main objective to break the triglyceride molecules found in animal and vegetable oils and fats, at high temperatures, forming compounds with low hydrocarbon chains molecular weight, similar to petroleum derivatives (gasoline, kerosene and diesel), in addition to oxygenated compounds such as carboxylic acids, ketones, aldehydes, monoxide and carbon dioxide. Although the first studies on the cracking process of vegetable oils date from approximately 1890, effective and systematic studies on the subject intensified in the period between the first war and the second world war, in which it was used as a source of obtaining alternative fuels to oil, due to the scarcity of this in the international market [2, 3, 4].

In this context, with several study possibilities, which expand the applicability of several raw materials and catalysts with defined potentials for each region of the country, the present work investigated the feasibility and improvement of the production of biofuels similar to gasoline, kerosene and diesel, via thermocatalytic cracking of the residual fat from the fat boxes of the UFPA university restaurant, using in the process the proportion 10% (w/w) of the catalyst produced from a by-product of the Bayer process, the red mud, treated with a solution of HCl a 1 molar.

2 MATERIALS AND METHODS

2.1 METHODOLOGY

The first stage of the pilot scale process consisted of weighing 20 kg of the residual material on a BALMAK model BK50 scale, then the material was introduced into the cracking reactor (R-01) made of stainless steel and 125 L operating capacity, together with 10% w/w of
catalyst produced from red mud. Subsequently, the cooling water pumping system was activated and the operational process parameters were established on the central panel.

With the stirrer on, the heating process started with the activation of the LPG gas burner, carried out on the control panel, the heating of the reactor (R-01) was pre-established up to a temperature of 550°C and, during the process, the cracked product was collected fractionally for reaction time after the beginning of the condensation of organic liquid products at 20, 40, 60 and 80 minutes in a 30 L stainless steel collection vessel, in which a cogeneration of non-condensable gases as shown in figure 1.

After the collections, the distillation step took place in the form of batch separation operations, in which, initially weighed on an analytical balance, on average 400 grams of the produced PLOs, then the product was packaged in a volumetric flask consisting of borosilicate with a capacity of 1 liter, which was positioned in a thermal forest with 380W of power, in this a Vigreux distillation column consisting of six stages was connected, which was connected to a hull-type condenser and everything, aiming to condense the desired fractions. The liquid fractions were stipulated at temperatures of (45°C-175°C) for gasoline, (175°C-235°C) for kerosene and (235°C-305°C) for light oil and above 305°C for heavy oil. The fractions were collected, weighed, stored and cataloged according to the temperature ranges, for later physical-chemical and compositional analyzes to be carried out.

Figure 01 - Illustration of the Pilot Cracking Unit
3 RESULTS AND DISCUSSION

Analyzing the results after applying the principle of conservation of matter, for the material currents entering and leaving the catalytic cracking process, one can calculate the yields through Equation 1, as shown in Table 1, one can also observe that there was success in the experimental procedure since the input raw materials were converted into PLO, this fact is confirmed by observing the results of the physical-chemical analyzes (Table 2) performed on the post-cracking product.

\[n = \left(\frac{MPLOs}{MOe} \right) \times 100 \]

(1)

Where, MPLOs is the mass of organic liquid product that leaves the system, MOe is the mass of crude palm oil that enters the Cracking reaction.

PARAMETERS	RED MUD 10% WITH 1 MOLAR
Cracking temperature	550
Fat mass (Kg)	20
Catalyst mass (Kg)	2
Cracking time (min)	120
Starting Cracking temperature (°C)	406
Cracking start time. (min)	40
First collection (°C)	454
Second collection (°C)	529
Third collection (°C)	538
Fourth collection (°C)	490
Total OLP mass (Kg)	13.15
Residues (Kg)	2.3
Mass of gas generated (Kg)	4.55
Residual water mass (Kg)	0
OLP yield (%)	65.5
Total yield (%)	88.5

Source: Authors

Analyzing the table, it is noted that the experiment carried out with the catalyst showed a OLP yield of 65.5% and an initial cracking temperature of 406°C. Table 2 below shows the results obtained from the physical-chemical analyzes carried out on the organic liquid products after the cracking reaction.
Table 02. Result of physical-chemical analyzes carried out on liquid organic products (OLP).

PARAMETERS	COLLECTION POINTS			
	20 min	40 min	60 min	80 min
Density g/cm³	0.8201	0.8129	0.7819	0.7798
Viscosity cSt	15.989	14.712	9.997	6.644
Acidity index mgKOH/g	149.25	118.21	25.85	19.34

Source: Authors

When analyzing the results in table 2, it is noted that the acidity index parameter significantly reduced from 149.25 mgKOH/g to 19.34 mgKOH/g with the course of the cracking process, as the catalyst provided a lower reaction rate formation of oxygenated compounds in the second half of the cracking process. The gradual reduction can also be observed in the viscosity parameter from 15.989 at point 1 at 20 minutes to 6.644 cSt at point 4 at 80 minutes after the start of the reaction. Table 3 below shows the operational parameters used in the fractional distillation experiments.

Table 03. Operational parameters of bench-scale distillation processes.

PARAMETERS	COLLECTION POINTS			
	20 min	40 min	60 min	80 min
Collect point	401.8	404.0	402.4	401.8
Sample mass (g)	33	33	32	33
Initial temperature (°C)	69	45	40	50
Drip (°C)	300	302	307	328
Final temperature (°C)	59.91	29.34	75.52	85.70
Mass (45°C - 175°C) (g)	35.65	28.97	62.33	68.55
Mass (235°C - 305°C) (g)	65.16	100.80	147.08	158.49
Mass (> 305°C) (g)	0.00	0.00	0.00	44.12
Body of water (g)	163.00	0.00	0.00	0.00
Background material (g)	218.68	217.82	97.06	22.24
Mass of gas (g)	22.41	27.08	20.43	22.69
Yield fractions (%)	40.00	39.38	70.80	88.81
Yield (%)	45.58	46.09	75.88	94.46

Source: Authors
Analyzing the data presented in table 3, the behavior of the samples is observed with respect to the initial drip temperatures, relatively low, ranging from the minimum of 40°C to the maximum of 69°C, a behavior that may be related to the presence odd number of short-chain hydrocarbons C5Hn to C9Hn. Another important characteristic that can be highlighted by observing the table is in terms of the mass of gas generated in the distillations, achieving mass values of up to 27.08 grams corroborating the effectiveness of the catalyst with regard to the generation of short chain compounds of non-condensable gases, as well as in the generation of fuels in the temperature range of gasoline, kerosene and diesel, with a fraction yield of up to 88.81% for point 4 (80 minutes after the start of the reaction). Table 4 below shows the physical-chemical characteristics of the distilled fractions of the products obtained from cracking residual fat.

Table 4. Physico-chemical properties of fuels obtained from the distillation of OLP (red mud 10% at 1 molar).

COLLECTION POINT	FRACTIONS	PARAMETERS				
		Density (g/cm³)	Viscosity (cSt)	Acidity (mgKOH/g)	Index	Refraction Index
1	(45°C - 175°C)	0.7554	0.7346	106.1076	1.4	
	(175°C - 235°C)	0.861	2.322	209.5973	1.422	
	(235°C - 305°C)	0.8441	3.69	146.8342	1.433	
2	(45°C - 175°C)	0.7562	0.7835	271.3491	1.409	
	(175°C - 235°C)	0.8428	2.875	160.7319	1.424	
	(235°C - 305°C)	0.8397	4.1281	140.2817	1.443	
3	(45°C - 175°C)	0.7506	0.8012	17.8849	1.416	
	(175°C - 235°C)	0.7917	1.5184	16.3385	1.432	
	(235°C - 305°C)	0.8034	2.3505	15.613	1.44	
4	(45°C - 175°C)	0.7137	0.7986	20.4917	1.418	
	(175°C - 235°C)	0.8017	1.351	13.619	1.437	
	(235°C - 305°C)	0.8242	2.4372	11.6054	1.449	

Source: Authors

When analyzing table 4, it can be seen that the acidity index parameter of biofuels showed a marked decrease from the distillation of point 3, which represents the material collected over 40 minutes from the beginning of the cracking reaction, and accentuating the reduction in point 4, where the value of 11.60 mgKOH/g oil was obtained, for light diesel.
It should be noted that the acidity rates of the experiment are high, but tangent, when compared with the values presented by Almeida [1] who cracked the residual fat from fat boxes using red mud 10% w/w as a catalyst, and presented results in the acidity indexes of fuels 70.203 mgKOH/g oil, for light diesel.

Table 5 below shows the results of the chemical composition of the gasoline (45°C - 175°C) obtained, it is noted that the material, presents in its composition a large amount of hydrocarbons with carbons in the range of C8-C15, in the form of paraffins, olefins, naphthenics and aromatics, which are the main components present in the fractions derived from petroleum.

PEAK	TIME	COMPOUND	FORMULA	AREA(%)
1	6.192	1-Octene	CH3(CH2)4CH=CH2	0.99
2	6.430	Octane	CH3(CH2)6CH3	1.92
3	9.280	1-Nonene	CH3(CH2)6CH=CH2	4.34
4	9.488	4-Nonene	CH3(CH2)4CH=CHCH2CH2CH3	0.52
5	9.574	Nonane	CH3(CH2)4CH3	9.57
6	9.755	2-Nonene	CH3(CH2)4CH=CHCH3	1.71
7	10.012	cis-2-Nonene	CH3(CH2)4CH=CHCH3	0.72
8	11.151	Cyclopentene. 1-butyl	C6H16	0.20
9	11.546	1-Pentadecyne	HC≡C(CH2)12CH3	0.60
10	12.296	Spiro[4.4]non-1-ene	C9H14	0.62
11	12.673	1-Decene	CH3(CH2)6CH=CH2	5.14
12	12.973	Decane	CH3(CH2)4CH3	5.30
13	13.153	4-Decene	CH3(CH2)4CH=CHCH2CH2CH3	1.89
14	13.426	cis-3-Decene	CH3(CH2)4CH=CHCH2CH3	0.81
15	13.504	5-Norbornane-2-carboxaldehyde	C9H16O	0.69
16	13.786	4.6-Decadiene	CH2=CH(CH2)9CH=CHCH2CH2CH3	1.15
17	14.902	Butylibenzene	C6H5(CH2)4CH3	0.71
18	16.059	1-Undecene	CH3(CH2)10CH=CH2	8.79
19	16.339	Undecane	CH3(CH2)10CH3	4.71
20	16.511	5-Undecene	CH3(CH2)10CH=CHCH2CH2CH2CH3	16.15
21	16.784	3-Undecene. (Z)	CH3(CH2)10CH=CHCH2CH3	8.00
22	17.227	1-Pentylcyclopentene	C10H18	2.63
23	18.120	3-Pentyl-1-cyclohexene	C11H20	0.76
24	18.242	Pentylibenzene	C6H5(CH2)4CH3	0.81
25	19.286	1-Dodecene	CH3(CH2)12CH=CH2	3.03
Brazilian Journal of Development

26 19.550 Dodecane \(\text{CH}_3(\text{CH}_2)_{10}\text{CH}_3 \) 2.89
27 19.702 4-Dodecene \(\text{CH}_3(\text{CH}_2)_3\text{CH}＝\text{CHCH}_2\text{CH}_3\text{CH}_3 \) 0.62
28 22.344 1-Tridecene \(\text{CH}_3(\text{CH}_2)_{10}\text{CH}＝\text{CH}_2 \) 1.75
29 22.590 Tridecane \(\text{CH}_3(\text{CH}_2)_{11}\text{CH}_3 \) 4.55
30 23.279 1-Ethyl-5-methylcyclopentene \(\text{C}_9\text{H}_{14} \) 1.81
31 25.234 1-Tetradecene \(\text{CH}_3(\text{CH}_2)_{11}\text{CH}＝\text{CH}_2 \) 1.12
32 25.455 Tetradecane \(\text{CH}_3(\text{CH}_2)_{12}\text{CH}_3 \) 0.98
33 26.235 Cyclohexene.1-(2-propenyl) \(\text{C}_9\text{H}_{14} \) 0.90
34 28.161 Pentadecane \(\text{CH}_3(\text{CH}_2)_{13}\text{CH}_3 \) 3.59

Source: Authors

Figure 2 below shows the gasoline chromatogram obtained in the distillation process at collection point 1 (20 minutes).

Figure 02. Chromatogram of gasoline at the collection point 1.

Looking at the graph, it is noted the presence of several peaks indicative of a high amount of substances present in the analyzed sample, totaling 34 significant peaks and that the highest concentration of peaks with retention time varies between 10 and 20 minutes.
4 CONCLUSIONS

Based on the development of this work and considering the analyzes contained in this study, it is possible to conclude that it is possible to use an environmental liability without added value, the residual fat from retention boxes, as a source of raw material in the thermocatalytic cracking reaction with 10% w/w of catalyst produced from red mud, confirmed by obtaining a good yield in PLO, reaching 65.5%. It is also necessary to ratify the potential of the catalyst in terms of providing the generation of hydrocarbon molecules of short and medium chains proven by the good yield in fuel fractions with up to 88.81% of products obtained in fractional distillation.

REFERENCES

[1] H. S. Almeida; Produção de biocombustíveis via craqueamento termocatalítico de resíduos sólidos de caixas de gordura com carbonato de sódio e lama vermelha ativada termicamente. 2015. Prodera (Programa de Pós-Graduação em engenharia Química) – Universidade do Pará. Belém-PA 2015.

[2] S. A. P. Mota.; Craqueamento Termocatalítico de Óleos Vegetais em Diferentes Escalas de Produção. 2013. Prodera (Programa de Pós-Graduação em engenharia Química)-Universidade do Pará. Belém-PA 2013

[3] H. S. Almeida; O. A. Corrêa; J. G. Eid; H. J. Ribeiro; D. A. R. de Castro; M. S. Pereira; L. M. Pereira; A. A. Mâncio; M. C. Santos; S. A. P. da Mota; J. A. da Silva Souza; L. E. P. Borges; N. M. Mendonça; N. T. Machado. Performance of thermochemical conversion of fat, oils, and grease into kerosene-like hydrocarbons in different production scales. Journal of Analytical and Applied Pyrolysis v. 120, July 2016, p. 126-143.

[4] A. R. R. Coppos; S. Kahn; L. E. P. Borges. Biofuels production by thermal cracking of soap from brown grease. Industrial Crops and Products v. 112, February 2018, p. 561-568.

[5] P. Suchamalawong; S. Pengnarapat; P. Reubroycharoen; T. Vitidsant. Biofuel preparation from waste chicken fat using coal fly ash as a catalyst: Optimization and kinetics study in a batch reactor. Journal of Environmental Chemical Engineering v. 7, Issue 3, June 2019, p. 103-155.

[6] H. S. Almeida; O. A. Corrêa; J. G. Eid; H. J. Ribeiro; D. A. R. de Castro; M. S. Pereira; L. M. Pereira; A. A. Mâncio; M. C. Santos; S. A. P. da Mota; J. A. da Silva Souza; L. E. P. Borges; N. M. Mendonça; N. T. Machado. Production of biofuels by thermal catalytic cracking of scum from grease traps in pilot scale. Journal of Analytical and Applied Pyrolysis v. 118, March 2016, p. 20-33.

[7] A. A. Mancio; K. M. B. da Costa; C. C. Ferreira; M. C. Santos; D. E. L. Lhamas; S. A. P. da Mota; R. A. C. Leão; R. O. M. A. de Souza; M. E. Araújo; L. E. P. Borges; N. T. Machado.
Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels. Industrial Crops and Products v. 91, November 2016, p. 32-43.

[8] F. Yu; L. Gao; W. Wang; G. Zhang; J. Ji. Bio-fuel production from the catalytic pyrolysis of soybean oil over Me-Al-MCM-41 (Me = La, Ni or Fe) mesoporous materials. Journal of Analytical and Applied Pyrolysis v. 104, November 2013, p.325-329.

[10] H. S. Almeida; O. A. Corrêa; C. C. Ferreira; H. J. Ribeiroa; D. A. R. de Castro; M. S. Pereira; A. A. Mâncio; M. C. Santos; S. A. P. da Mota; J. A. da Silva Souza; L. E. P. Borges; N. M. Mendonça; N. T. Machado. Diesel-like hydrocarbon fuels by catalytic cracking of fat, oils, and grease (FOG) from grease traps. Journal of the Energy Institute v. 90, Issue 3, June 2017, p. 337-354.

[11] C. M. R Prado; N. R. A. Filho. Production and characterization of the biofuels obtained by thermal cracking and thermal catalytic cracking of vegetable oils. J. Analytical and Applied Pyrolysis, Vol. 86, Nº 2, 2009, 338–347

[12] H. Kahn, Microscopia eletrônica de varredura e microanálise química. São Paulo: PMI / EPUSP, 2004. Notas de aula da disciplina PMI 2201.

[13] A. C. Neyva, Caracterização de Materiais por Espectroscopia, Difração. São Paulo: PQI / EPUSP, 2004. Apostila da disciplina de pós-graduação do Departamento de Engenharia Química PQI - 5841.

[14] G. Ratti, Curso de Fluorescência de Raios X, 13. São Paulo: EPUSP/LCT, 2008.

[15] A. Agrawal, K. K. Sahu, B. D. Pandey, Solid waste management in nonferrous industries in indian. Resources, Conservation & Recycling, n. 42, pp. 99-120, 2004. J.

[16] D. G. Lima, Soares, V. C. D.; Ribeiro, E. B.; Carvalho, D. A.; Cardoso, E. C. V.; Rassi, F. C.; Mundim, K. C.; Rubim, J. C.; Suarez. Diesel-like fuel obtained by pyrolysis of vegetable oils. Journal of Analytical and Applied Pyrolysis. v. 71, Issue 2, June 2004, p. 987-996.

[17] P. Castaldi, M. Silvetti, L. Santone, S. Enzo, P. Melis, XRD, FTIR, and thermal analysis of bauxite ore-processing waste, Clays and Clay Mineral, v. 56, n 4, pp. 461-469, 2008.

[18] Clayden, et al. Organic Chemistry. Oxford University, 2001.

[19] A. A. Mancio; Produção, fracionamento e desacidificação de biocombustíveis obtidos via craqueamento térmico catalítico de óleos vegetais. Proderma (Programa de Pós-Graduação em engenharia Química)-Universidade do Pará. Belém-PA 2013.

[20] E. C. Resende, Aplicação da lama vermelha como catalisador em processos oxidativos/reduutivos. Tese apresentada à Universidade Federal de Lavras, Minas Gerais, 146f, 2012.
[21] C. Acikgoz, O. Onay, O. M. Kockar, Fast pyrolysis of linseed: product yields and compositions. Journal of Analytical and Applied Pyrolysis, v. 71, p. 417–429, 2004.

[22] D. E. L. Lhamas, Investigação do processo de purificação do biodiesel do óleo de palma (elaeis guineensis). 2009. 113 f. (Pós Graduação em Engenharia Química) – Universidade Federal do Pará. Belém-PA. 2009.

[23] Ullmann's, Encyclopedia of Industrial Chemistry, Seventh Edition, 2012.

[24] S. A. P. Mota, A. A. Mancio, D. E. L. Lhamas, D. H. de Abreu, M. S. da Silva, W. G. dos Santos, D. A. R. de Castro, R. M. de Oliveira, M. E. Araujo, L. E. P. Borges, N. T. Machado, Production of green diesel by thermal catalytic cracking of crude 968 palm oil (Elaeis guineensis Jacq) in a pilot plant. Journal of Analytical and Applied Pyrolysis v. 110 (2014) p. 1–11.

[25] M. C. Santos, R. M. Lourenço, D. H. de Abreu, A. M. Pereira, D. A. R. de Castro, M. S. Pereira, H. S. Almeida, A. A. Mâncio, D. E. L. Lhamas, S. A. P. da Mota, J. A. da Silva Souza, S. D. Júnior, M. E. Araújo, L. E. P. Borges, N. T. Machado. Gasoline-like hydrocarbons by catalytic cracking of soap phase residue of neutralization process of palm oil (Elaeis guineensis Jacq). Journal of the Taiwan Institute of Chemical Engineers 71 (2017) p. 106-119

[26] C. C. Ferreira, E. C. Costa, D. A. R. de Castro, M. S. Pereira, A. A. Mâncio, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, A. C. Leão, S. Duvoisin Jr., M. E. Araújo, Luiz E. P. Borges, N. T. Machado. Deacidification of organic liquid products by fractional distillation in laboratory and pilot scales. Journal of Analytical and Applied Pyrolysis v. 127 (2017) p. 468-489

[27] A. Alp, M. S. Goral. The influence of soda additive on the thermal properties of red mud”, Journal of Thermal Analysis and Calorimetry, v. 73, p. 201-207.

[28] H. Lappi, R. Alén. Pyrolysis of vegetable oil soaps-Palm, olive, rapeseed and castor oils. Journal of Analytical and Applied Pyrolysis. v. 91, (2011), pp. 154-158.

[29] H. Tian, C. Li, Y. H. Shan. Alternative Processing Technology for Converting Vegetable Oils and Animal Fats to Clean Fuels and Light Olefins. Chinese Journal of Chemical Engineering, v. 16, Issue 3, June 2008, p. 394-400.

[30] A. F. Twaiq, N. A. M. Zabidi, S. Bhatia. Catalytic Conversion of Palm Oil to Hydrocarbons: Performance of Various Zeolite Catalysts. Ind. Eng. Chem. Res., 1999, 38 (9), p. 3230–3237.