An assessment on DNA microarray and sequence-based methods for the characterization of methicillin-susceptible Staphylococcus aureus from Nigeria

Adebayo O. Shittu1,2,*, Omotayo Oyedara3, Kenneth Okon4, Adeola Raji5, Georg Peters6, Lutz von Müller2†, Frieder Schaumburg6, Mathias Herrmann2 and Ulla Ruffing2

1 Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria, 2 Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany, 3 Department of Biological Sciences, College of Science, Engineering and Technology, Osun State University, Osogbo, Nigeria, 4 Department of Medical Laboratory Services, Federal Medical Centre, Makurdi, Nigeria, 5 Department of Microbiology and Immunology, Alfaisal University, Riyadh, Saudi Arabia, 6 Institute of Medical Microbiology, University Hospital Münster, Münster, Germany

*Correspondence: Adebayo O. Shittu
bayo_shittu@yahoo.com

†Present Address: Lutz von Müller, Institute of Laboratory Medicine, Microbiology and Hygiene (LMH), Christophorus-Kliniken GmbH, Coesfeld, Germany

Staphylococcus aureus is an important human pathogen causing nosocomial and community-acquired infections worldwide. In the characterization of this opportunistic pathogen, DNA microarray hybridization technique is used as an alternative to sequence based genotyping to obtain a comprehensive assessment on the virulence, resistance determinants, and population structure. The objective of this study was to characterize a defined collection of S. aureus isolates from Nigeria using the microarray technique, and to assess the extent that it correlates with sequence-based genotyping methods. The clonal diversity and genomic content of 52 methicillin-susceptible Staphylococcus aureus (MSSA) were investigated by spa typing, MLST and DNA microarray hybridization. More than half (55.8%) of these isolates were associated with clonal complexes (CCs) typically associated with methicillin-resistant S. aureus (MRSA) clones i.e., CC1, CC5, CC8, CC30, and CC45. Certain genes linked with virulence (hlgA and clfA) and adherence (ebpS, fnbA, sspA, sspB, and sspP) were detected in all isolates. A number of genes or gene clusters were associated with distinct clonal types. The enterotoxin gene cluster (egc) was linked with CC5, CC25, CC30, CC45, and CC121, enterotoxin H gene (seh) with CC1, exfoliative toxin D gene (etd) with CC25 and CC80, and the epidermal cell differentiation inhibitor B gene (edinB) with CC25, CC80, and CC152. The excellent agreement between data from DNA microarray and MLST in the delineation of Nigerian MSSA isolates indicates that the microarray technique is a useful tool to provide information on antibiotic resistance, clonal diversity and virulence factors associated with infection and disease.

Keywords: Staphylococcus aureus, microarray, MLST, genotyping, Nigeria

Abbreviations: Agr, accessory gene regulator; CC, Clonal complex; CLSI, Clinical Laboratory Standards Institute; MSSA, Methicillin susceptible Staphylococcus aureus; MLST, Multilocus sequence typing; PVL, Panton-Valentine Leukocidin; S.aureus, Staphylococcus aureus; SCCmec, Staphylococcal chromosome cassette mec; spa, Staphylococcus aureus protein A; ST, Sequence Type.
INTRODUCTION

Staphylococcus aureus is implicated in a variety of human infections with high rates of morbidity and mortality (Lowy, 1998; Corey, 2009). In infection, *S. aureus* exhibits a coordinated and regulated expression of a wide variety of cell and surface-associated virulence factors (Foster and Höök, 1998; Novick, 2006). These factors mediate adherence to host cells and damaged tissue, facilitate tissue destruction and spreading, promote iron uptake and evasion of host immune system, as well as tissue damage (Skaar and Schneewind, 2004; Grumann et al., 2014). Recent studies in Cameroon (Kihla et al., 2014), Egypt (Ahmed et al., 2014), Gabon (Alabi et al., 2013), Nigeria (Jido and Garba, 2012; Oladeinde et al., 2013), South Africa (Groome et al., 2012; Naaidoo et al., 2013), and Tanzania (Kayange et al., 2010; Mhada et al., 2012) have identified *S. aureus* as the main etiological agent for various infections in Africa. Moreover, this species has been recognized as one main cause of community-acquired neonatal sepsis in Africa (Waters et al., 2011). These studies clearly establish the important role of this major human pathogen in tropical Africa.

In many health care institutions in sub-Saharan Africa, the lack of skilled laboratory manpower and resources is a major constraint in the identification of bacterial pathogens from clinical samples. If such analysis can be provided at all, identification of *S. aureus* typically relies on phenotypic methods precluding in-depth strain characterization. Molecular analysis of clonal attribution and presence of single genes contained in *S. aureus* isolates have emerged in pilot studies from select African centers, areas and populations (Ateba Ngoa et al., 2012; Shittu et al., 2012; Seni et al., 2013; Aiken et al., 2014; Eggyir et al., 2014; Oosthuysen et al., 2014; Conceição et al., 2015; De Boeck et al., 2015; Kraef et al., 2015; Schaumburg et al., 2015). Nevertheless, in view of the impact of *S. aureus* disease in sub-Saharan Africa, the clonal characterization in concert with a comprehensive analysis of the hitherto ill-described virulence factor armamentarium of *S. aureus* isolates from this region is urgently warranted. Such analyses should target a broad spectrum of variable staphylococcal factors such as genes or gene clusters conferring antibiotic resistance, toxins, virulence, adhesion or immune evasion factors. These analyses have not been performed on a collection of *S. aureus* isolates in Nigeria, and reports from African countries are limited and only addressed a limited and select analytical spectrum (Raji et al., 2013; Aiken et al., 2014; Rovira et al., 2015).

The DNA microarray used for this analysis is a unique and comprehensive genotyping technique based on the analysis of 334 target sequences corresponding to approximately 170 distinct genes and their allelic variants. It enables the simultaneous identification of various gene classes including species markers, genes encoding resistance and virulence properties, exotoxin and adhesion factors, accessory gene regulator (*agr*), capsule, and SCCmec types (Monecke et al., 2011). Based on the observation of a high level of genetic diversity from previous investigations on methicillin-susceptible *S. aureus* (MSSA) in Nigeria (Shittu et al., 2011, 2012; Kolawole et al., 2013), we studied MSSA isolates obtained from various clinical sources in Nigeria using this comprehensive, array-based approach to provide an insight on the major factors associated with infection and disease.

MATERIALS AND METHODS

Identification and Antibiotic Susceptibility Testing of *S. aureus* Isolates

The isolates (*n* = 52) were obtained from samples processed as part of surveillance activities in the microbiology laboratories of six health care institutions located in Ado-Ekiti, Ille-Ife, Osogbo, Lagos, and Ibadan in South-West Nigeria, and Maiduguri in North-East Nigeria. The duration of collection of isolates was from March 2009 to April, 2010. Only the isolates were analyzed in this study. Preliminary verification as *S. aureus* was based on colony characteristics on blood agar, positive results for catalase, coagulase and DNase tests. Twelve isolates from a previous study (Shittu et al., 2011) were also included in this investigation. Identification was confirmed by Matrix-Assisted Laser Desorption/Ionization-Time Of Flight analysis (MALDI-TOF). Susceptibility testing to penicillin (10 units), cefoxitin bromide (30 µg), doxycycline (30 µg), erythromycin (15 µg), clindamycin (2 µg), gentamicin (10 µg), chloramphenicol (30 µg), and trimethoprim-sulfamethoxazole (1.25/23.75 µg) were determined using the disk diffusion method according to the Clinical Laboratory Standards Institute guidelines (Clinical and Laboratory Standards Institute (CLSI), 2009).

DNA Extraction

S. aureus genomic DNA was extracted from an 18–24 h old culture on sheep blood agar using lysis buffer and lysis enhancer (StaphyType Kit, Alere Technologies GmbH, Jena, Germany) and processed using a DNeasy tissue kit (Qiagen, Hilden, Germany).

Molecular Typing of the Isolates

Typing of *S. aureus* was based on sequencing of the hypervariable region of the protein A gene (*spa*). The *spa* types were determined using the Ridiom StaphType software (Ridom GmbH, Würzburg, Germany, version 2.1.1) (Harmsen et al., 2003). Multilocus sequence typing (MLST) was performed for one isolate of each *spa* type (Enright et al., 2000), as a *spa* type usually belongs to one sequence type (ST) with few exceptions due to homoplasies (Basset et al., 2009, 2012). The allelic profiles and STs were also included in this investigation. Identification was confirmed by Matrix-Assisted Laser Desorption/Ionization-Time Of Flight analysis (MALDI-TOF). Susceptibility testing to penicillin (10 units), cefoxitin bromide (30 µg), doxycycline (30 µg), erythromycin (15 µg), clindamycin (2 µg), gentamicin (10 µg), chloramphenicol (30 µg), and trimethoprim-sulfamethoxazole (1.25/23.75 µg) were determined using the disk diffusion method according to the Clinical Laboratory Standards Institute guidelines (Clinical and Laboratory Standards Institute (CLSI), 2009).

DNA Microarray Hybridization

The DNA microarray of the StaphyType™ kit (Alere Technologies GmbH, Jena, Germany) was used in this study according to previously established protocols (Monecke et al., 2008). The isolates were grouped with various clonal complexes (CCs) by the imaging software Iconoclust based on comparison of hybridization profiles to a collection of reference strains previously characterized by MLST.
Splits Tree Analysis

The analysis identified four main clusters (CC5/CC25; CC8/CC97; CC1/CC7/CC80, and CC30/CC45) indicating the phylogenetic relationship between the isolates (Figure 2).
TABLE 1 | Characterization of the methicillin-susceptible S. aureus (MSSA) from Nigeria based on antibiotyping, microarray analysis, spa typing, and MLST.

Isolate Number	Location	Sample/Clinical diagnosis	Antibiogram	Score (%) (Alere)	agr/Clonal complex (Alere)	spa type	MLST
11486_24	Ile-Ife	Wound Infection	PEN	93.8	agr_III/CC1	t127	ST1
AB5_28	Osogbo	UTI	PEN, ERY(i)	92.8	agr_III/CC1	t1127	ST1
Are_29	Osogbo	Semen	PEN	94.3	agr_III/CC1	t1127	ST1
MD16_4	Not available	Not available	PEN	94.3	agr_III/CC1	t1127	ST1
MD20_8*	Maiduguri	Wound infection	PEN, ERY(i), CC(i)	93.5	agr_III/CC1	t521	ST1
6056_34	Osogbo	Urine	PEN	93.9	agr_III/CC1	t110433	ST1
5675_6	Ile-Ife	Abcess	PEN	91.8	agr_II/CC5	t131	ST5
5221_7	Ile-Ife	Urine	PEN, ERY(i), SXT(i)	93.8	agr_II/CC5	t131	ST5
D23_15	Ile-Ife	Pneumonia	PEN	92.8	agr_II/CC5	t131	ST5
D42_17	Ile-Ife	Adenocarcinoma	PEN, ERY(i)	92.4	agr_II/CC5	t131	ST5
D46_18	Ile-Ife	Wound Infection	PEN, ERY(i)	92.2	agr_II/CC5	t131	ST5
1423_36	Osogbo	Urine	PEN, ERY(i)	93.8	agr_II/CC5	t142	ST5
D19_14	Ile-Ife	Not available	PEN	93.5	agr_II/CC5	t168	ST5
Asu29_27	Osogbo	Otitis media	PEN, DO, ERY(i)	91.9	agr_II/CC5	t1127	ST5
3211_30	Osogbo	Wound Infection	PEN	92.9	agr_II/CC5	t15235	ST5
6773_11	Ile-Ife	Wound Infection	PEN	93.6	agr_II/CC7	t1091	ST789
N37_19	Ile-Ife	Erythematous lesion	PEN, SXT	90	agr_II/CC8	t1564	ST2427
UC45_37	Ibadan	Eye swab	PEN, GM, CHL, SXT	91.3	agr_II/CC8	t12668	ST2427
55_40	Ado-Ekiti	Wound Infection	PEN, DO(ii), GM, CHL, SXT	90.3	agr_II/CC8	t12668	ST2427
O539_13*	Lagos	Semen/Infertility	PEN, DO(ii), SXT	91.7	agr_II/CC8	t155	ST8
11450_23	Ile-Ife	Sputum	PEN	92.9	agr_II/CC15	t104	ST15
5169_1	Ile-Ife	Advanced Cancer	PEN	94	agr_II/CC15	t104	ST15
189_2	Ile-Ife	Blood	PEN, DO(ii), ERY(i)	93.9	agr_II/CC15	t104	ST15
4013_14*	Ile-Ife	Wound infection	PEN	94.9	agr_II/CC15	t104	ST15
5828_5	Ile-Ife	Abscess	susceptible to all antibiotics tested	94.4	agr_II/CC15	t12216	ST15
MD7_3*	Maiduguri	Semen/Infertility	PEN, ERY(i)	94.6	agr_II/CC15	t12216	ST15
MD19_11*	Maiduguri	Wound infection	PEN	94.4	agr_II/CC15	t12216	ST15
S13_6*	Lagos	Urinary Tract Infection	PEN, ERY(i), SXT	93.1	agr_II/CC25	t13772	ST25
3925_32	Osogbo	Wound Infection	PEN, ERY(i), SXT	91.4	agr_II/CC25	t110183	ST25
6073_3	Not available	Not available	PEN, DO	91.7	agr_III/CC30	t107	ST30
D30_16	Ile-Ife	Cholecystitis	PEN	94.7	agr_III/CC30	t138	ST30
6506_2	Osogbo	Wound Infection	PEN, ERY(i), CC(i)	91.4	agr_III/CC30	t138	ST30
NS7708_22	Ile-Ife	Nasal swab/screening	PEN, ERY(i)	94.7	agr_III/CC30	t138	ST30
54_39	Ado-Ekiti	Wound Infection	PEN	94.4	agr_III/CC30	t138	ST30
S12_7*	Lagos	Wound infection	PEN, ERY(i)	93.8	agr_III/CC30	t138	ST30
OS41_10*	Lagos	Wound infection	PEN	93.1	agr_III/CC30	t138	ST30
6330_4	Ile-Ife	Osteomyelitis	PEN	94.3	agr_III/CC30	t138	ST30
NS2907_21	Ile-Ife	Nasal swab/screening	PEN, ERY(i), CC(i)	91.8	agr_III/CC45	t109	ST508
3950_33	Osogbo	Urine	PEN	91.5	agr_III/CC45	t110434	ST508
GDC_35	Osogbo	Semen	PEN	94.9	agr_III/CC80	t1934	ST80
MD14_2*	Maiduguri	Wound infection	PEN, DO(ii)	92.9	agr_II/CC97	t1458	ST97
ZU_26	Ile-Ife	Unavailable	PEN, ERY(i)	89.3	agr_II/CC11	t1159	ST121
UC47_38	Ibadan	Eye swab	PEN, DO, ERY(i), CC(i)	92.1	agr_II/CC11	t1159	ST121
W10_5*	Ile-Ife	Wound infection	PEN, ERY(i)	91.8	agr_II/CC11	t1314	ST121
MD_9*	Maiduguri	Wound infection	PEN, ERY(i), CC(i)	92.1	agr_II/CC11	t1314	ST121
6376_3	Ile-Ife	Abscess	PEN, DO(ii)	93.1	agr_II/CC11	t12304	ST121
6540_10	Ile-Ife	Bone Marrow Infection	PEN	93.5	agr_II/CC11	t12304	ST121
NS2986_20	Ile-Ife	Nasal swab/screening	PEN, DO, ERY(i), CC(i), SXT(i)	92.8	agr_II/CC11	t12304	ST121
3920_31	Osogbo	Aspirate	PEN	92.8	agr_II/CC11	t12304	ST121
D3_12	Ile-Ife	Cervical cancer	PEN, ERY(i)	94.6	agr_II/ST152	t1355	ST152

(Continued)
TABLE 1 | Continued

Isolate Number	Location	Sample/Clinical diagnosis	Antibiogram	Score (%) (Alere)	agr/Clonal complex (Alere)	spa type	MLST
D12_13	Ile-Ife	Ocular infection	PEN	94.6	agr_I/ST152	t365	ST152
W7.2_4*	Ile-Ife	Wound infection	PEN	96.3	agr_I/ST152	t365	ST152

* S. aureus analyzed in a previous study; §: intermediate susceptibility; agr: accessory gene regulator; PEN: Penicillin; DO: Doxycycline; ERY: Erythromycin; CJ: Clindamycin; GEN: Gentamicin; CHL: Chloramphenicol; SXT: trimethoprim/sulfamethoxazole; CC: Clonal Complex; ST: Sequence type.

1 Spa types selected for Multilocus sequence typing (MLST); Sequence types (STs) of the remaining isolates were inferred from the derived MLST data.

DISCUSSION

We observed a complete agreement between DNA microarray analysis and MLST in the delineation of the isolates (Table 1), showing that the hybridization profile could be used to predict the lineages. Furthermore, the heterogeneous and divergent nature of the isolates observed in this study provided evidence on the overall higher diversity of MSSA compared with MRSA (Deurenberg and Stobberingh, 2008; Goering et al., 2008; Ghasemzadeh-Moghaddam et al., 2011; Ruffing et al., 2012; Blomfeldt et al., 2013; Rasmussen et al., 2013, 2014). In Nigeria, many diagnostic microbiology laboratories rely on the disc diffusion technique for antibiotic susceptibility testing, but this protocol does not provide information on the nature of resistance genes. The antibiotic susceptibility results observed in this study were in accordance with the corresponding resistance gene profiles by DNA microarray. MSSA isolates that exhibited full resistance to trimethoprim-sulfamethoxazole clustered with CC8 and CC25, but were dfrS1 negative indicating that a different mechanism could be attributed to resistance. A recent study (Nurjadi et al., 2014) has provided strong evidence that the dfrG gene is the predominant trimethoprim resistance determinant on S. aureus in Africa. Overall, resistant determinants for antibiotics, heavy metal and quaternary ammonium compounds were observed more often in CC8 than other CCs (Supplementary Materials 1, 3).

The accessory gene regulator (agr) and capsule typing methods are useful front-line tools for the characterization of S. aureus (Goerke et al., 2005). Hybridization signals for agr type I and IV were observed for one, three, and four isolates grouped with CC25, CC152, and CC121, respectively (Supplementary Materials 1, 2). This could be attributed to possible cross-hybridization as the alleles for the two agr types are closely related (Monecke et al., 2010). Our observations on CCs and agr groups were similar to previous reports on MSSA in five major African towns (Breurec et al., 2010), Gabon (Ateba Ngoa et al., 2012), and Nigeria (Ghebremedhin et al., 2009; Kolawole et al., 2013). In addition, our study also support the view (Wright et al., 2005; Holtfreter et al., 2007; Rasmussen et al., 2014) that an agr type may be detected in isolates which are assigned to genetically diverse CCs, whereas, it is also associated with specific CCs. The dominance of capsule type 8 in MSSA is consistent with data from Gabon (Schaumburg et al., 2011), Norway (Blomfeldt et al., 2013), and Sweden (Rasmussen et al., 2013, 2014).

Staphylococcal enterotoxins are typically encoded by genes located on mobile genetic elements (Baba et al., 2002). The egc cluster (seg+sei+sem+seo+seu) is located on the genomic island vSAβ and reported to be associated with specific clonal types regardless of the geographical strain distribution (Lindsay and Holden, 2006). In this investigation, the egc-enterotoxin gene cluster was a unique feature for CC5, CC25, CC30, CC45, and CC121. Previous studies have indicated that the cluster is predominately present in MSSA assigned with CC5, CC25, CC30, and CC45 (Van Trijp et al., 2010; Rasmussen et al., 2013). The seh gene is linked to the staphylococcal cassette chromosome mec (SCCmec) elements and reported to be restricted to the CC1 genomic background (Baba et al., 2002). Moreover, the seh gene has also been reported mainly in MSSA-CC30 (Blomfeldt et al., 2013). Nevertheless, our observation on seh-positive MSSA-CC1 is in agreement with previous reports (Chen et al., 2013; Rasmussen et al., 2013).

The genes associated with staphylococcal complement inhibitor (scn) and staphylokinase (sak) were also widely distributed across the CCs but CC15 isolates were sak gene negative. Virulence associated with the exfoliative toxins has been identified to cause epidermal cleavage in staphylococcal scalded skin syndrome (SSSS) and bullous impetigo (Ladhani et al., 1999). The exfoliative toxin D (ETD) is a 27-kDa protein which causes epidermal blisters in newborn mice (Yamasaki et al., 2006). The epidermal cell differentiation factors (EDIN) target and inhibit the small host protein RhoA, a master regulator of the host cell actin cytoskeleton (Inoue et al., 1991; Jaffe and Hall, 2005; Aktories, 2011). Furthermore, the edin-isofrom (edinB) and etd genes are located in tandem in a S. aureus etd pathogenicity island in a chromosome of etd-positive S. aureus strains (Yamaguchi et al., 2002). A strong association of the etd gene with invasive CC25 S. aureus isolates has also been
reported. In this study, all the isolates assigned with CC25 and CC80 were etd-positive, which is in agreement with a previous study in Nigeria (Shittu et al., 2011). Moreover, MSSA grouped with CC25, CC80, and CC152 were edinB positive but CC152 isolates were etd negative. Our observations were similar to a study on the distribution of the edin gene in S. aureus from diabetic foot ulcers (Messad et al., 2013). A study in MSSA bacteremia isolates in Sweden showed that the collagen binding protein (Cna) was detected in CC1, CC30, and CC45. Our report identified the gene in isolates assigned with CC1, CC30, CC45, CC121, and CC152.

Our study has a number of limitations. Although all isolates were of human origin, and the large majority was obtained from clinical samples, a clear distinction between commensal and clinical strains could not be made based on the available information. An association of isolates within the context of endemcity i.e., nosocomial vs. community associated infections, is also not clear. Furthermore, whereas the microarray analytical database is exhaustive, well-characterized, and validated with isolates from all continents, the attribution of CCs is based on the hybridization reactions and resulting microarray profile rather than gene sequencing, and a positive signal does not necessarily imply the presence of gene product (e.g., protein). In addition, the microarray method was unable to separate ST8 from ST2427.

This might be due to the close phylogenetic relation of both STs as they are single locus variants (ST8: 3–3–1–1–4–4–3 and ST2427: 3–3–297–1–4–4–3). Finally, with a collection of 52 isolates studied, and a large number of genes and genetic profile ascertained by microarray, the potential for individual statistical comparisons is limited. Yet, with this comprehensive genetic-analytical approach performed on a clinical isolate collection obtained from patients of various medical institutions in a sub-Saharan African country, Nigeria, a number of important observations could be made which clearly characterize and demarcate the clonal distribution as well as the virulence gene equipment.

More than one half (55.8%; n = 29) of these MSSA isolates were associated with a genetic background which is attributable to classic methicillin-resistant S. aureus (MRSA) clones. PVL-positive isolates were identified in seven of the 12 CCs. Moreover, toxin genes were observed to be distributed mainly with certain clonal types, and in agreement with previous investigations (Holtfreter et al., 2007; Monecke et al., 2008). Antibiotic resistance gene profiles of the isolates by the DNA microarray demonstrated concordant results with data on antibiotic susceptibility testing. The array-based, comprehensive approach has been shown to yield such diverse CC and gene specific results on an isolate collection from sub-Saharan Africa.
Overall, microarray analysis proved to be a useful tool to provide useful information on antibiotic resistance, population structure and various virulence factor profiles associated with infection and disease. It is assumed that these findings might be useful for a better understanding of clinical staphylococcal disease presentation, patient care and for assistance in outbreak investigation in health care institutions in a country such as Nigeria. Moreover, our study also underlines the need for further trials employing well-controlled, prospectively collected clinical isolates to delineate the genetic pathogen profile in conjunction with the clinical disease presentation in sub-Saharan Africa.

AUTHOR CONTRIBUTIONS

AS, UR, GP, FS, LM, and MH conceived the study, OO, KO, AR conducted the sample collection and preliminary identification of the isolates. AS performed the microarray technique, AS and UR analyzed the microarray data, and AS wrote the manuscript (with input from all authors). All authors read and approved the final version of the manuscript.

FUNDING

The stay of AS at the Institute of Medical Microbiology and Hygiene, Institute of Medical Microbiology, Saarland University Medical Centre, Homburg/Saar and the University Hospital Münster, Münster, Germany was supported by the Third World Academy of Science and Deutsche Forschungsgemeinschaft (TWS-DFG award) and the Deutsche Forschungsgemeinschaft (PAK296, Ei 247/8, He 1850/11-1).

REFERENCES

Ahmed, E. F., Gad, G. F., Abdalla, A. M., Hasaneen, A. M., and Abdelwahab, S. F. (2014). Prevalence of methicillin-resistant Staphylococcus aureus among Egyptian patients after surgical interventions. Surg. Infect. (Larchmt). 15, 404–411. doi: 10.1089/sur.2013.212

Aiken, A. M., Mutuku, I. M., Sabat, A. J., Akkerboom, V., Mwangi, J., Scott, J. A., et al. (2014). Carriage of Staphylococcus aureus in Thika Level 5 Hospital, Kenya: a cross-sectional study. Antimicrob. Resist. Infect. Control 3:22. doi: 10.1186/2047-2994-3-22

Aktories, K. (2011). Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Microbiol. 9, 487–498. doi: 10.1038/nrmicro2592

Alabi, A. S., Frielingshaus, L., Kaba, H., Kösters, K., Huson, M. A., Kahl, B. C., et al. (2013). Retrospective analysis of antimicrobial resistance and bacterial spectrum of infection in Gabon, Central Africa. BMC Infect. Dis. 13:455. doi: 10.1186/1471-2334-13-455

Ateba Ngoa, U., Schaumburg, F., Adegniwa, A. A., Kosters, K., Moller, T., Fernandes, J. F., et al. (2012). Epidemiology and population structure of Staphylococcus aureus in various population groups from a rural and semi urban area in Gabon, Central Africa. Acta Trop. 124, 42–47. doi: 10.1016/j.actatropica.2012.06.005

Baba, T., Takeuchi, F., Kuroda, M., Yuzawa, H., Aoki, K., Oguchi, A., et al. (2002). Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359, 1819–1827. doi: 10.1016/S0140-6736(02)08713-5

Basset, P., Hammer, N. B., Kuhn, G., Vogel, V., Sawkinsa, O., and Blanc, D. S. (2009). Staphylococcus aureus clB and spa alleles of the repeat regions are segregated into major phylogenetic lineages. Infect. Genet. Evol. 9, 941–947. doi: 10.1016/j.meegid.2009.06.015

Basset, P., Nübel, U., Witte, W., and Blanc, D. S. (2012). Evaluation of adding a second marker to overcome Staphylococcus aureus spa typing homoplasies. J. Clin. Microbiol. 50, 1475–1477. doi: 10.1128/JCM.00664-11

Blomfeldt, A., Aamot, H. V., Eksesen, A. N., Müller, F., and Monecke, S. (2013). Molecular characterization of methicillin-sensitive Staphylococcus aureus isolates from bacteremic patients in a Norwegian University Hospital. J. Clin. Microbiol. 51, 345–347. doi: 10.1128/JCM.02571-12

Breurec, S., Fall, C., Poullot, R., Boisier, P., Brisse, S., Diene-Saré, F., et al. (2010). Epidemiology of methicillin-susceptible Staphylococcus aureus lineages in five major African towns: high prevalence of Panton-Valentine leukocidin genes. Clin. Microbiol. Infect. 16, 633–639. doi: 10.1111/j.1469-0691.2010.03320.x

Chen, X., Wang, W.-K., Han, L.-Z., Liu, Y., Zhang, H., Tang, J., et al. (2013). Epidemiological and genetic diversity of Staphylococcus aureus causing bloodstream infection in Shanghai, 2009-2011. PLoS ONE 8:e72811. doi: 10.1371/journal.pone.0072811

Clinical and Laboratory Standards Institute (CLSI). (2009). Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard, 10th Edn. Wayne, Penn.

Conceição, T., Coelho, C., Santos Silva, I., de Lencastre, H., and Aires-de-Sousa, M. (2015). Staphylococcus aureus in former Portuguese colonies from Africa and the far east: missing data to help fill the world map. Clin. Microbiol. Infect. 21, 842.e1–842.e10. doi: 10.1016/j.cmi.2015.05.010

Corey, G. R. (2009). Staphylococcus aureus bloodstream infections: definitions and treatment. Clin. Infect. Dis. 48, S254–S259. doi: 10.1086/598186

De Boeck, H., Vandenbroucke-Schreder, S., Hallin, M., Batoke, B., Alworonga, J. P., Mapendo, B., et al. (2015). Staphylococcus aureus nasal carriage among health care workers in Kisangani, the democratic republic of Congo. Eur. J. Clin. Microbiol. Infect. Dis. 34, 1567–1572. doi: 10.1007/s10096-015-2387-9

Deurenberg, R. H., and Stobberingh, E. E. (2008). The evolution of Staphylococcus aureus. Infect. Genet. Evol. 8, 747–763. doi: 10.1016/j.meegid.2008.07.007

Egyir, B., Guardabassi, L., Sorum, M., Nielsen, S. S., Kolekang, A., Frimpong, E., et al. (2014). Molecular epidemiology and antimicrobial susceptibility of clinical Staphylococcus aureus from healthcare institutions in Ghana. PLoS ONE 9:e89716. doi: 10.1371/journal.pone.0089716

Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., and Spratt, B. G. (2000). Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb.2015.01160

Frontiers in Microbiology | www.frontiersin.org 7 October 2015 | Volume 6 | Article 1160
Foster, T. J., and Höök, M. (1998). Molecular profiling of Nigerian MSSA isolates from clinical and community sources are genetically diverse. Int. J. Med. Microbiol. 281, 347–353. doi: 10.1016/S0340-6245(98)00141-3

Groome, M. J., Albrich, W. C., Wadula, J., Khoosal, M., and Madhi, S. A. (2013). 5-year surveillance of wound infections in a tertiary care hospital in South Africa. Clin. Microbiol. Infect. 19, 237–251. doi: 10.1111/1469-0691.12452

Lowry, F. D. (1998). Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532. doi: 10.1056/NEJM19980820390806

Messe, N., Landraud, L., Canivet, B., Lina, G., Richard, J.-L., and Sotto, A. (2013). Distribution of skin in Staphylococcus aureus isolated from diabetic foot ulcers. Clin. Microbiol. Infect. 19, 880–888. doi: 10.1111/1469-0691.12084

Mhida, T. V., Fredrick, F., Matee, M. M., and Massawe, A. (2012). Neonatal sepsis at Muhimbili National Hospital. Dar es Salaam, Tanzania: aetiology, antimicrobial sensitivity pattern and clinical outcome. BMC Public Health 12:904. doi: 10.1186/1471-2458-12-904

Monecke, S., Coombs, G., Shore, A. C., Coleman, D. C., Akpaka, P., Borg, M., et al. (2011). A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE 6:e17936. doi: 10.1371/journal.pone.0017936

Novick, R. P. (2006). "Staphylococcal pathogenesis and pathogenicity factors: genetics and regulation," in Gram-Positive Pathogens, eds V. Fischetti, R. Novick, J. Ferrerri, D. Portnoy, and J. Rood (Washington, DC: ASM Press), 496–516.

Nurjadi, D., Olealekan, A. O., Layer, F., Shittu, A. O., Alabi, A., Ghebremedhin, B., et al. (2014). Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. J. Antimicrob. Chemother. 69, 2361–2368. doi: 10.1093/jac/dku174

Olahide, B. H., Omorogie, R., Olley, M., Annibue, J. A., and Onifade, A. A. (2013). A 5-year surveillance of wound infections at a rural tertiary hospital in Nigeria. Afr. Health Sci. 13, 351–356. doi: 10.4314/ahs.v13i2.22

Oosthuysen, W. F., Orth, H., Lombard, C. J., Sinha, B., and Wasserma, E. (2014). Population structure analyses of Staphylococcus aureus at Tygerberg Hospital, South Africa, reveals a diverse population, high prevalence of Panton-Valentine leukocidin genes and unique local MRSA clones. Clin. Microbiol. Infect. 20, 652–659. doi: 10.1111/1469-0691.121452

Rasmussen, G., Monecke, S., Brus, O., Ehrich, R., and Soderquist, B. (2014). Long term molecular epidemiology of methicillin-susceptible Staphylococcus aureus bacteremia isolates in Sweden. PLoS ONE 9:e114276. doi: 10.1371/journal.pone.0114276

Rasmussen, G., Monecke, S., Ehrich, R., and Soderquist, B. (2013). Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden. PLoS ONE 8:e77477. doi: 10.1371/journal.pone.0077477

Rovira, G., Cooke, E. F., Macavele, H., Sitoie, A., Madrid, L., Nhampossa, T., et al. (2015). The challenge of diagnosing and treating Staphylococcus aureus invasive infections in a resource-limited sub-Saharan Africa setting: a case report. Trop. Med. Int. Health. 20, 397–402. doi: 10.1111/tmi.12560

Ruffing, U., Akuilu, R., Bishoff, M., Helms, V., Herrmann, M., and von Müller, L. (2012). Matched-Cohort DNA microarray analysis of methicillin sensitive and methicillin-resistant Staphylococcus aureus isolates from hospital admission patients. PLoS ONE 7:e32487. doi: 10.1371/journal.pone.0032487

Schaumburg, F., Ngoa, U. A., Kösters, K., Köck, R., Adegunla, A. A., Kremsner, P. G., et al. (2011). Virulence factors and genotypes of Staphylococcus aureus from infection and carriage in Gabon. Clin. Microbiol. Infect. 17, 1507–1513. doi: 10.1111/j.1469-0691.2011.03534.x

Schaumburg, F., Pauly, M., Anoh, E., Mossouan, A., Wiersma, L., Schubert, G., et al. (2015). Staphylococcus aureus complex from animals and humans.
in three remote African regions. *Clin. Microbiol. Infect.* 21, e1–e8. doi: 10.1016/j.cmi.2014.12.001

Seni, J., Bwanga, F., Najjuka, C. F., Makobore, P., Okee, M., and Mshana, S. E. (2013). Molecular characterization of *Staphylococcus aureus* from patients with surgical site infections at Mulago Hospital in Kampala, Uganda. *PLoS ONE* 8:e66153. doi: 10.1371/journal.pone.0066153

Shittu, A. O., Okon, K., Adesida, S., Oyedara, O., Witte, W., Strommenger, B., et al. (2011). Antibiotic resistance and molecular epidemiology of *Staphylococcus aureus* in Nigeria. *BMC Microbiol.* 11:92. doi: 10.1186/1471-2180-11-92

Shittu, A., Oyedara, O., Abegunrin, F., Okon, K., Raji, A., Taiwo, S., et al. (2012). Characterization of methicillin-susceptible and -resistant staphylococci in the clinical setting: a multicentre study in Nigeria. *BMC Infect. Dis.* 12:286. doi: 10.1186/1471-2334-12-286

Skaar, E. P., and Schneewind, O. (2004). Iron-regulated surface determinants (Iscd) of *Staphylococcus aureus*: stealing iron from heme. *Microbes Infect.* 6, 390–397. doi: 10.1016/j.micinf.2003.12.008

Van Trijp, M. J. C. A., Melles, D. C., Snijders, S. V., Wertheim, H. F. L., Verbrugh, H. A., van Belkum, A., et al. (2010). Genotypes, superantigen gene profiles, and presence of exfoliative toxin genes in clinical methicillin-susceptible *Staphylococcus aureus* isolates. *Diagn. Microbiol. Infect. Dis.* 66, 222–224. doi: 10.1016/j.diagmicrobio.2009.08.021

Waters, D., Jawad, I., Ahmad, A., Luksic, I., Nair, H., Zgaga, L., et al. (2011). Aetiology of community-acquired neonatal sepsis in low- and middle-income countries. *J. Glob. Health* 1, 154–170.

Wright, J. S., Traber, K. E., Corrigan, R., Benson, S. A., Musser, J. M., and Novick, R. P. (2005). The agr radiation: an early event in the evolution of staphylococci. *J. Bacteriol.* 187, 5585–5594. doi: 10.1128/JB.187.16.5585-5594.2005

Yamaguchi, T., Nishifuji, K., Sasaki, M., Fudaba, Y., Aepfelbacher, M., and Takata, T. (2002). Identification of the *Staphylococcus aureus* etd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. *Infect. Immun.* 70, 5835–5845. doi: 10.1128/IAI.70.10.5835-5845.2002

Yamasaki, O., Tristan, A., Yamaguchi, T., Sugai, M., Lina, G., Bes, M., et al. (2006). Distribution of the exfoliative toxin D gene in clinical *Staphylococcus aureus* isolates in France. *Clin. Microbiol. Infect.* 12, 585–588. doi: 10.1111/j.1469-0691.2006.01410.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Shittu, Oyedara, Okon, Raji, Peters, von Müller, Schaumburg, Herrmann and Ruffing. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.