De Novo intracerebral aneurysm in a child with acquired immunodeficiency syndrome

Mohamad G. Bakhaidar, MBBS, Naushad A. Ahamed, MBBS, DMRD, Mohammed A. Almekhlafi, MSc, FRCPC, Saleh S. Baeesa, MD, FRCSC.

ABSTRACT

HIV infection associated aneurysmal vasculopathy is a rare complication of HIV infection affecting the pediatric and adult population. We present a case of a 7-year-old male child known to have a congenitally acquired HIV infection presenting with a ruptured left distal internal carotid artery fusiform aneurysm that was diagnosed on MRI scans 6 months prior to his presentation. He underwent craniotomy and successful aneurysm reconstruction. He had uncomplicated postoperative course and experienced a good recovery. This case is among the few reported pediatric cases of HIV-associated cerebral arteriopathy to undergo surgery. We also reviewed the relevant literature of this rare condition.

Case Report. A 7-year-old boy who was known to have congenital HIV infection presented with a sudden onset of severe headache and altered level of consciousness. He was found to have a left fusiform carotid bifurcation aneurysm, which was clipped surgically. The patient had an uncomplicated postoperative course and made a good recovery. This case is among the few reported pediatric cases of HIV-associated cerebral arteriopathy to undergo surgery. We also reviewed the relevant literature of this rare condition.

Disclosure. The authors declare no affiliation or financial involvement with organizations or entities with a direct financial interest in the subject matter or materials discussed in the manuscript. No funding was received for this work from any organization.
Intracerebral aneurysm in an AIDS patient … Bakhaidar et al

Two years earlier, he tested positive for HIV infection when he presented with severe dyspnea and cough due to pulmonary tuberculosis. His HIV-1 RNA quantitative polymerase chain reaction (PCR) was carried out and showed 15042 copies/ml. Brain MRI and angiography (MRA) studies during that admission showed no abnormal intracranial or vascular findings (Figure 1). The CSF analysis revealed normal cell count, glucose and protein in a normal range, and negative latex agglutination test and culture. He had a remarkable recovery and was discharged on an 18-month course of antituberculosis therapy and antiretroviral therapy: zidovudine, lamivudine, and lopinavir/ritonavir combination. He presented to the emergency department 18 months after with a new onset of generalized tonic-clonic convulsion. He was not compliant to antiretroviral therapy, and the HIV-1 RNA quantitative PCR showed a higher viral load of 310798 copies/ml. Brain MRI and MRA scans showed a 10 x 8 mm fusiform aneurysm in the left distal internal carotid artery (ICA) (Figure 2). He was managed with antiretroviral therapy and monitoring of the aneurysm with MRI after 3 months. At the current presentation, 6 months after, his general examination revealed low-grade fever (37.8°C), and his Glasgow coma score (GCS) was 14. There was neck stiffness, positive Kerning’s and Brudzinski’s signs but no papilledema or any focal neurological deficit.

Early and confirmed diagnosis. Brain CT scan revealed left Sylvian hyperdensity consistent with subarachnoid hemorrhage (SAH) with associated hydrocephalus (Figure 3A). The MRI scan demonstrated subacute blood products in the left Sylvian fissure with intraventricular extension and hydrocephalus. No basal leptomeningeal enhancement was noted on postcontrast images. Brain MRA scans demonstrated that the previously visualized fusiform aneurysm increased in size and included the proximal segments of the

Figure 1 - Initial presentation study A) post-contrast T1-weighted MRI and B) at the level of the Circle of Willis and maximum-intensity projection reconstruction MRI image C) demonstrating normal flow void and vascular anatomy at the circle of Willis, particularly at the left ICA and MCA. MCA - middle cerebral arteries, ICA - internal carotid artery

Figure 2 - Second presentation MRI study: selected axial A) and coronal B) T2-weighted MRI at the region of circle of Willis showing an aneurysm at the junction between the distal ICA, M1-segment of MCA and the A1-segment of ACA, demonstrated as a flow void. This was well demonstrated with a C) 3D-reconstruction of the MRA. ICA - internal carotid artery, MCA - middle cerebral arteries, ACA - anterior and middle cerebral arteries
Intracerebral aneurysm in an AIDS patient … Bakaidar et al

The chest x-ray and CT scans of the chest and abdomen were within normal limits. He was admitted to the ICU and an external ventricular drain (EVD) was inserted. The CSF analysis showed 31 WBCs, 91% of which were lymphocytes. Otherwise, CSF was unremarkable. He had remarkable improvement of his level of consciousness. Subsequent aneurysm delineation with CT angiography (CTA) was carried out and revealed a large 13 mm x 16 mm fusiform aneurysm at the left ICA bifurcation, which involves the proximal segments of ACA and MCA (Figure 3B). Investigations ruled out concurrent infections such as cytomegalovirus, Epstein-Barr virus, or varicella.

Treatment. He underwent left pterional craniotomy and successful reconstruction of the aneurysm at the ICA/MCA using 2 fenestrated aneurysm clips and sacrificing the proximal part of the ACA. A clip of the anterior and middle cerebral arteries (ACA and MCA). The chest x-ray and CT scans of the chest and abdomen were within normal limits. He was admitted to the ICU and an external ventricular drain (EVD) was inserted. The CSF analysis showed 31 WBCs, 91% of which were lymphocytes. Otherwise, CSF was unremarkable. He had remarkable improvement of his level of consciousness. Subsequent aneurysm delineation with CT angiography (CTA) was carried out and revealed a large 13 mm x 16 mm fusiform aneurysm at the left ICA bifurcation, which involves the proximal segments of ACA and MCA (Figure 3B). Investigations ruled out concurrent infections such as cytomegalovirus, Epstein-Barr virus, or varicella.

Figure 3 - Third presentation CT study selected axial non-contrast enhanced CT of the brain A) showing interval increase in the dimensions of the aneurysm and SAH due rupture of the aneurysm. There was hydrocephalus seen as marked dilatation of the temporal horns of the temporal horns of the lateral ventricles. 3D-reconstruction of a contrast-enhanced CTA B) after insertion of EVD, demonstrating the large fusiform aneurysm at the junction between the distal ICA, M1-segment of MCA and the A1-segment of ACA. The bony landmarks of the cranial fossa and the anterior clinocephalic process are also shown. MCA - middle cerebral artery, ICA - internal carotid artery, EVD - external ventricular drain, ACA - anterior and middle cerebral arteries, CTA - CT angiography, SAH - subarachnoid hemorrhage.

Figure 4 - Intraoperative microscopic photograph through A) left frontotemporal craniotomy and transysylvian approach demonstrating the extent of the aneurysm. B) Repair of the fusiform ICA/MCA aneurysm was reconstructed with 2 fenestrated aneurysm clips. MCA - middle cerebral arteries, ICA - internal carotid artery.

Figure 5 - Selected coronal non-contrast CT image of the brain A) showing the clip applied across the aneurysm. Maximum-intensity projection reconstruction B) and 3D reconstruction of the postoperative contrast-enhanced MRA, demonstrates the reconstruction of the aneurysm and the patent distal circulation.
remaining aneurysmal ACA was applied proximal to the takeoff of Huebner’s artery (Figure 4).

Follow-up. He had an uneventful postoperative period. He could not be weaned of EVD, and required the insertion of a ventriculoperitoneal shunt. His postoperative CTA revealed adequate ICA/MCA reconstruction (Figure 5). He was discharged on a highly active anti-retroviral therapy (HAART) regimen of zidovudine 9 mg/kg by mouth, twice a day (PO BID), lamivudine (3TC) 4mg/kg PO BID, and Kaletra® (lopinavir/ritonavir) 15mg/kg PO BID.

Discussion. Cerebral vasculopathy has been described as an unusual manifestation of AIDS in several case reports and case series in pediatric and adult medical literature. Kure et al in 1989, reported the first case of HIV-associated cerebral aneurysmal arteriopathy in a pediatric patient. Since then, at least 23 reports (44 cases) of pediatric patients with HIV-associated cerebral aneurysmal arteriopathy have been published. These are summarized in Table 1.

The HIV-positive pediatric patients have an increased incidence of cerebral aneurysms. Aneurysms associated with HIV infection are typically fusiform in shape. However, saccular aneurysms secondary to HIV infection have been reported in the literature. As in our case of a large fusiform aneurysm of ICA bifurcation with involvement of the proximal MCA and ACA, most of the cerebral aneurysms associated with HIV infection are located in the arteries of the circle of Willis. The HIV-associated cerebral vasculopathy usually presents with cognitive changes and motor deficits secondary to infarction or hemorrhage. Most patients with cerebral aneurysms secondary to HIV in the reported cases presented with seizures, headache, localized neurological deficits, and fatal subarachnoid hemorrhage. Cerebral aneurysms were reported as an incidental finding in asymptomatic patients with HIV-infection.

The classical microscopic findings of autopsy examination of patients diagnosed with HIV-associated vasculopathy include medial fibrosis with the loss of the muscularis, destruction of the internal elastic lamina, and intimal hyperplasia. Many mechanisms were proposed in the literature to explain how HIV infection results in CNS arterial damage. The exact mechanism is still undefined. Whether cerebral vasculitis is directed primarily to HIV infection or secondary to associated infections such as varicella zoster virus, cytomegalovirus, or other opportunistic infections is still a matter of debate. Direct HIV invasion of the endothelium of cerebral arteries is one of the mechanisms that may explain the vasculopathy. The transmigration of certain HIV-infected monocytes through the blood-brain barrier during the phase of neural tissue invasion and the release of local and systemic toxins are among the proposed mechanisms. With the known tropism of those monocytes to the brain tissue, this might also explain the isolated cerebral vasculopathy in the absence of systemic vascular involvement.

Petropoulou et al, reported the development of the cerebral aneurysm during a period with high circulating viral load. In the current case, we demonstrated the same observation as our patient was discovered to have the aneurysm at the time with his higher reported viral load (310798 copies/ml) and while he was not adhering to his antiretroviral medications. The high viral load is associated with the viral activity and could lead us to support the theory of a direct relation of the virus activity to the formation of these aneurysms. Husson et al reported a case with a formation of cerebral arteriopathy during a period of high p24 antigen levels signifying high viral replication. Kure et al has positively stained the cells of the wall of the affected arteries with antibodies against HIV transmembrane glycoprotein (gp-41) thorough immunohistochemistry. Dubrovsky et al and Mahadevan et al used PCR to amplify HIV-1 DNA from the dilated arteries of their reported cases. These observations support the direct contribution of the virus to the pathogenesis of the arteriopathy. Bonkowsky et al, in 2002, reported a case that presented during the immune reconstitution status. The CNS event occurred 5 months after the initiation of HARRT. Demopoulos et al, in 2009, reported another 3 cases that presented after an average of 6 months of initiation of HAART. Both reports reported the clinical manifestations while the number of CD4 lymphocytes was increasing, and the HIV viral load was decreasing. The immune reconstitution inflammatory syndrome could be implicated in the pathogenesis of HIV-associated arteriopathy.

The occurrence of aneurysmal vasculopathy during periods of higher viral load and profound immunosuppression has led investigators to consider the possibility of the presence of infective etiology acting in synergy with HIV. Associations between infections with varicella zoster virus, cytomegalovirus, and herpes simplex virus encephalitis with the development of the aneurysmal vasculopathy were reported in the literature. Our patient tested negative for active varicella zoster virus and cytomegalovirus infections through serum immunoglobulin.

The optimal management of patients with cerebral...
Table 1 - Summary of all reported pediatric cases of HIV-related aneurysmal vasculopathy.

Year /No. of cases	Age at aneurysm diagnosis (years)/gender/HIV source	Presentation	Radiological modality/ Radiological findings/vessels involved	Management	Outcome
Kure et al, 1989¹⁴	6 yrs / male / congenital	Aphasia and quadriplegia	Fusiform dilatation of circle of Willis	NS	Death after 25 days in the hospital
Lang et al, 1991²⁹	8 yrs / male / congenital	NS	Fusiform dilatations of left ICA, MCA, and ACA	AZT 5 years before CNS event	Died after one month secondary to cardiomyopathy
Husson et al, 1992³³	11 yrs / male / blood transfusion	Asymptomatic	Multiple saccular aneurysms of right MCA and fusiform aneurysm of left ACA and MCA	DDI one year prior to the presentation changed to AZT after aneurysm diagnosis	CNS symptoms after 16 months
	12 yrs / male / blood transfusion	Asymptomatic	multiple aneurysmal dilatations of the right MCA and ACA	DDI was continued after the diagnosis	Remained asymptomatic
	12 yrs / female / congenital	Fever, lethargy, seizure and upper limbs weakness	Multiple fusiform ICA, ACA, MCA and right PCA aneurysms	NS	Death within 2 months of presentation
Dubrovsky et al, 1998³⁵	13 yrs / male / uncertain	Acute right hemiparesis	Fusiform dilatations of left supracholinoid ICA and proximal ACA and MCA	AZT 18 months prior to the presentation, continued after diagnosis of the aneurysm	Death after 3 months secondary to cerebral infarction
	11 yrs / female / congenital	Acute change in mental status	Fusiform aneurysms of left ICA and proximal MCA and bilateral PCA	AZT started one year prior to the presentation	Death after 6 months secondary to infection
	6 yrs / female / Congenital	Seizure	Multiple fusiform aneurysms of the right ICA and proximal right MCA	AZT since 2-year-old. Radiotherapy for brain lymphoma	Neurological status worsened gradually. Died later secondary to HIV-enteropathy
	12 yrs / male / blood transfusion	Headache and left-sided weakness	Fusiform aneurysms of left ICA, MCA, and ACA	ART (DDI 2 years before the presentation	Multiple opportunistic infections after the presentation died after 36 months
	10 yrs / male / perinatal	Collapsed at school	Not carried out	DDI started 2 years prior to the presentation	Death at presentation
Fulmer et al, 1998²⁷	11 yrs / female / congenital	Asymptomatic	Multiple ICA, MCA, and ACA fusiform aneurysms	Observation	Death after 3 years was secondary to other AIDs complications
Mazzoni et al, 2000³⁷	8 yrs/ female/ congenital	Sudden loss of consciousness followed by seizure and mild hemiparesis	multiple saccular and fusiform aneurysms in the proximal arteries, predominantly, in the left MCA	AZT was replaced with DDI at the age of 3 years. HAART (AZT, 3TC, RTV) was initiated after aneurysm diagnosis	Patient recovered after one month. After 4 months, repeated MRA showed no changes in the aneurysms
Carvalho neto et al, 2001³⁴	6 yrs/ male/ congenital	Seizure	Aneurysmal dilatation of circle of Willis, more in the right.	AZT and DDI were started at the age of 2 years. Supportive management for the CNS event	The seizures stopped, and the patient was discharged with follow up in the clinic
Nunes et al, 2001³⁴	2 months old/ female/ congenitally-acquired	Right hemiparesis and coma	Saccular aneurysm of left basilar artery.	IV AZT at birth. She was on AZT and DDI at presentation. Conservative management for SAH	Death after 12 days of SAH
Intracerebral aneurysm in an AIDS patient … Bakhaidar et al

Table 1 - Summary of all reported pediatric cases of HIV-related aneurysmal vasculopathy continued.

Year /No. of cases	Age at aneurysm diagnosis(years)/ gender/ HIV source	Presentation	Radiological modality/ Radiological findings/vessels involved	Management	Outcome	
Parasides et al, 200210	7 cases, (7yrs – 15 yrs), 5 males and 2 females, 4 perinatal and 3 through blood transfusion	NS	Aneurysms involved ICA, MCA, ACA, PCA, basilar and vertebral arteries	All were taking ART before the diagnosis of aneurysmal arteriopathy	2 cases were alive through out the observation period; 4 cases died secondary to other AIDS-related complications and a single case died secondary to CNS complications	
Petropolis et al, 200311	12 yrs/ male /NS	Asymptomatic	Multiple saccular aneurysms of proximal right ICA and proximal basilar artery	Continued the earlier started HAART (AZT, 3TC, NVP) with follow-up of the aneurysms	After 2 years follow-up, no new CNS symptoms, and MRI showed no changes	
Martinez-Longoria et al, 200412	12 yrs /female/ congenital	Headache, transient left hemiparesis, blurred vision	Left ICA obstruction, stenosis in infracranial right ICA and fusiform dilatations of the right ICA bifurcation extends to right MCA and ACA	Initially on AZT, SQV and 3TC were started 3 month before CNS event. HAART regime (Kaletra® (LPV/RTV), 3TC and D4T) and aspirin was started after the CNS event	MRI after 15 months showed complete resolution of the aneurysm. No neurological event was occurred over 2 years follow-up	
Mahadevan et al, 200713	16 yrs /male / not known	Headache, vomiting, slurred speech and weakness	Fusiform dilatations of bilateral vertebral, basilar artery, right ICA, and MCA	A twist drill and ventricular tap did reduce the intracranial pressure	Death within hours of presentation	
Thakker and Bhatia 200914	12 yrs /male/ congenital	Headache and right hemiparesis	Fusiform aneurysms of the left supraclinoid ICA	ART 4 months prior to the presentation. Conservative management of the aneurysm	No reported the death or other CNS manifestations	
Demopolous et al, 200915	1	12 yrs/ male/ NS	Right hemiparesis	Fusiform right ICA aneurysm	ART for 5 years prior to the presentation	Complete neurological recovery
	2	6 yrs/ female/ NS	Left hemiparesis	Fusiform dilatations of right ICA, right vertebral, and basilar artery	ART for 6 months prior to the presentation	The residual weakness with neurocognitive impairment
	3	7 yrs/ Male / NS	Right hemiparesis	Multiple aneurysms of vessels of the circle of Willis	Did not receive ART	Death
Savitri sastri et al, 201116	13 yrs / Male /NS	Aphasia and right hemiplegia	Fusiform dilatations of bilateral supraclinoid ICAs	External ventricular drain inserted	Death within hours of presentation	
Schieffelin et al, 201317	1	7 HIV-infected pediatric cases were reported to have cerebral aneurysm with no specific demographic	CNS symptoms	Aneurysmal dilatation of arteries in the circle of Willis	DDI at the time of CNS event	Alive
	2	blurred vision	Multiple aneurysms, multiple infarcts	HAART at the time of CNS event	Died	
	3	seizures, right hemiparesis	Internal carotid artery aneurysm	HAART at the time of CNS event	Died	
	4	CNS symptoms	Aneurysm of left ACA and narrowing of right MCA	HAART at the time of CNS event	Alive	
	5	Hemiplegia	Fusiform CNS aneurysm	HAART at the time of CNS event	Alive	
	6	CNS symptoms	Multiple CNS aneurysms	HAART at the time of CNS event	Alive	
	7	CNS symptoms	Diffuse CNS aneurysms with ectasia	D4T, NVP at the time of CNS event	Died	
Current Case	7 yrs/ Male/ Congenital	Headache and altered level of consciousness	Fusiform aneurysm at left ICA bifurcation, and proximal ACA and MCA	Clipping of the aneurysm. Started on HAART before discharge	Discharged in a stable neurological condition to be followed up in the clinic	

CT - Computed tomography, MRI - Magnetic resonance imaging, MRA - Magnetic resonance angiography, CTA - Computed tomography angiography.
ICA - Internal carotid artery, ACA - Anterior carotid artery, MCA - Middle cerebral artery, PCOM - Posterior communicating artery, ACOM - Anterior communicating artery, SCA - Superior cerebellar artery, AICA - Anterior inferior cerebellar artery, CNS - Central nervous system, IEL - Internal elastic lamina, ART - Antiretroviral treatment, HAART - Highly active antiretroviral treatment, AZT - Azidothymidine/Zidovudine, DDI - Didanosine, 3TC - Lamivudine, RTV - Ritonavir, D4T - Stavudine, ABC - Abacavir, EFV - Efavirenz, NVP - Nevirapine, NFV - Nelfinavir, SQV - Saquinavir, LPV - Lopinavir, IDV - Indinavir, APV - Amprenavir, TDF - Tenofovir, DRV - Darunavir, RAL - Ralegravir
aneurysmal arteriopathy is still not well established. Older case reports, before the initiation of the highly active anti-retroviral therapy (HAART), have showed fatal outcomes in most patients either due to stroke or severe intracranial hemorrhage. While some reports have demonstrated ongoing progression of the disease despite the initiation of HAART, others have shown a stop of the disease progression and even resolution of the arteriopathy after the initiation of HAART. These reports of improvement of arteriopathy after the initiation of HAART can also support the hypothesis of the direct role of HIV infection to the causation of this condition. Surgical intervention is rarely reported in pediatric patients with HIV-associated cerebral aneurysmal arteriopathy. The diffuse distribution and fusiform architecture of most of the aneurysms reported have hindered neurosurgical or endovascular treatment.

In conclusion, HIV-associated vasculopathy is a rare complication of HIV affecting pediatrics and adults. Cerebral aneurysms secondary to HIV-associated arteriopathy have been reported as an incidental radiological finding while most patients reported symptoms ranging from mild headache to sudden death secondary to subarachnoid hemorrhage. The early initiation of HAART seems to decrease the incidence of aneurysms and other cerebrovascular complications of HIV infection. Secondary etiologies, most importantly VZV vasculopathy, should be considered in the differential diagnosis of stroke and other cerebrovascular abnormalities in patients with HIV-infection. Appropriate investigations with early treatment for secondary etiologies should be pursued to decrease the complications of vasculopathy. Surgical and endovascular management are appropriate options when indicated, for both adults and pediatric patients with HIV-associated aneurysmal arteriopathy.

References

1. Martínez-Longoria CA, Morales-Aguirre JJ, Villalobos-Acosta CP, Gómez-Barreto D, Cashat-Cruz M. Occurrence of intracerebral aneurysm in an HIV-infected child: a case report. *Pediatr Neurol* 2004; 31: 130-132.
2. Dubrovsky T, Curless R, Scott G, Chanelle M, Post MJ, Altman N, et al. Cerebral aneurysmal arteriopathy in childhood AIDS. *Neurology* 1998; 51: 560-565.
3. Nunes ML, Pinho AP, Sfoggia A. Cerebral aneurysmal dilatation in an infant with perinatally acquired HIV infection and HSV encephalitis. *Arq Neuropsiquiatr* 2001; 59: 116-118.
4. Schieffelin JS, Williams PL, Djokic D, Anderson JP, Nachman S, Oleske JM, et al. Central nervous system vasculopathy in HIV-infected children enrolled in the Pediatric AIDS Clinical Trials Group 219/219C study. *Journal of the Pediatric Infectious Diseases Society* 2013; 2: 50-56.
5. Fulmer BB, Dillard SC, Musulman EM, Palmer CA, Oakes J. Two cases of cerebral aneurysms in HIV+ children. *Pediatr Neurosurg* 1998; 28: 31-34.
6. Carvalho Neto Ad, Bruck I, Coelho LOdM, Cruz CR, Liu CB, Gomes AF, et al. Cerebral arterial aneurysm in a child with acquired immunodeficiency syndrome: case report. *Arq Neuropsiquiatr* 2001; 59: 444-448. Portuguese
7. Fernandes AR, Favoreto A, Cruz A, Aloe M, Penna C. [Cerebral aneurysm related to pediatric AIDS. Case report]. *Rev Neurol* 2005; 41: 722-724. Spanish
8. Savitri Sastri BV, Devi BI, Gangadharan J, Shukla D. Cerebral aneurysmal childhood arteriopathy. *Pediatr Neurosurg* 2011; 47: 233-234.
9. Lang C, Jacobi G, Kreuz W, Hacker H, Herrmann G, Keul HG, et al. Rapid development of giant aneurysm at the base of the brain in an 8-year-old boy with perinatal HIV infection. *Acta Histochem Suppl* 1992; 42: 83-90.
10. Thakker A, Bhatia S. Cerebral aneurysmal childhood arteriopathy: a rare complication of pediatric HIV. *Indian Pediatr* 2009; 46: 914-915.
11. Bonkowsky JL, Christenson JC, Nixon GW, Pavia AT. Cerebral aneurysms in a child with acquired immune deficiency syndrome during rapid immune reconstitution. *J Child Neurol* 2002; 17: 457-460.
12. Mazzoni P, Chiriboga CA, Millar WS, Rogers A. Intracerebral aneurysms in human immunodeficiency virus infection: case report and literature review. *Pediatr Neurol* 2000; 23: 252-255.
13. Husson RN, Saini R, Lewis LL, Butler KM, Patronas N, Pizzo PA. Cerebral artery aneurysms in children infected with human immunodeficiency virus. *J Pediatr* 1992; 121: 927-930.
14. Kure K, Park YD, Kim TS, Lyman WD, Lantos G, Lee S, et al. Immunohistochemical localization of an HIV epitope in cerebral aneurysmal arteriopathy in pediatric acquired immunodeficiency syndrome (AIDS). *Pediatr Pathol* 1989; 9: 655-667.
15. Mazzoni P, Chiriboga CA, Millar WS, Rogers A. Intracerebral aneurysms in human immunodeficiency virus infection: case report and literature review. *Pediatric neurology* 2000; 23: 252-255.
16. Mahadevan A, Tagore R, Siddappa NB, Santos V, Yasha TC, Ranga U, et al. Giant serpentine aneurysm of vertebrobasilar artery mimicking dolichoectasia—an unusual complication of pediatric AIDS. Report of a case with review of the literature. *Clin Neuropathol* 2008; 27: 37-52.
17. Petropoulou F, Mostrou G, Papaevangelou V, Theodoridou M. Central nervous system aneurysms in childhood AIDS. *AIDS* 2003; 17: 273-275.
18. Demopoulos D, Henderson W, Technau K, Cilliers AM. Vasculopathy in HIV-infected children—a case series: case report. *South African Journal of Child Health* 2009; 3: 27-30.
19. Lang C, Jacobi G, Kreuz W, Hacker H, Herrmann G, Keul HG, et al. Rapid development of giant aneurysm at the base of the brain in an 8-year-old boy with perinatal HIV infection. *Acta Histochem Suppl* 1992; 42: 83-90.
20. Pasalides AD, Wood LV, Atac GK, Sandifer E, Butman JA, Patronas NJ. Cerebrovascular disease in HIV-infected pediatric patients: neuroimaging findings. *AJR Am J Roentgenol* 2002; 179: 999-1003.