Insertion of a Nontrigonal Phosphorus Ligand into a Transition Metal-Hydride: Direct Access to a Metallohydrophosphorane

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Tanushi, Akira and Alexander T. Radojevic. "Insertion of a Nontrigonal Phosphorus Ligand into a Transition Metal-Hydride: Direct Access to a Metallohydrophosphorane." Journal of the American Chemical Society 140, 26 (June 2018): 8114-8118 © 2018 American Chemical Society
As Published	http://dx.doi.org/10.1021/jacs.8b05156
Publisher	American Chemical Society (ACS)
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/123455
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Insertion of a Nontrigonal Phosphorus Ligand into a Transition Metal-Hydride: Direct Access to a Metallohydrophosphorane

Akira Tanushi and Alexander T. Radosevich

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139

Abstract

The synthesis and reactivity of an NPN-chelating ligand containing a nontrigonal phosphorous triamide center (L1 = P(N(α-N(2-pyridyl)C6H4)2) is reported. Metalation of L1 with RuCl2(PPh3)3 gives RuCl2(PPh3)(L1) (2). By contrast, metalation of L1 with RuHCl(CO)(PPh3)3 yields RuCl(CO)(PPh3)(L1H) (3), a chelated 10-P-5 ruthenahydridophosphorane, via net insertion into the Ru–H bond. Hydride abstraction from 3 with Ph3CPF6 gives [RuCl(CO)(PPh3)(L1)]PF6 (4); reaction of 4 with NaBH4 returns 3.

TOC graphic

Tricoordinate phosphorus (8-P-3) compounds 1-2 are essential donor ligands in transition metal chemistry. 3-6 Within typical (pseudo)threefold symmetry, the Lewis basicity and nucleophilicity of trigonal pyramidal 8-P-3 compounds makes the mixture of a transition metal fragment (M–X) and a phosphine (R3P) a robust and reliable route to the formation of R3P–M–X complexes (Figure 1, left). Contrarily, we describe in this Communication a noncanonical ligation event arising from metalation of a nontrigonal 8-P-3 compound. Specifically, we report the insertion of a distorted 8-P-3 phosphorous triamide center into a transition metal-hydride bond to form a 10-P-5 metallophosphorane7-31 (Figure 1, right) in preference to the typical 8-P-4 complex. Through these results, we realize the merger of phosphorus-based biphilic reactivity 32 with transition metal ligancy and thereby provide a

*Corresponding Author: radosevich@mit.edu.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge via the Internet at http://pubs.acs.org.

Experimental procedures, spectral data (1H, 13C, 31P NMR), cartesian coordinates (.pdf)

Crystallographic files (.cif)

The authors declare no competing financial interests.
new entry point for the study of supporting ligands based on higher coordination number phosphorus fragments.

Nontrigonal tricoordinate phosphorus compounds (e.g. molecular symmetries \(C_{2v}\), \(C_s\)) express enhanced biphilic reactivity. For instance, \(C_s\)-symmetric phosphorous triamide 1 inserts into \(E-H\) bonds (\(E = -\text{OR}, -\text{NHR}\)), in some cases reversibly. This and related \(P\)-centered reactivity have been applied to a variety of stoichiometric and catalytic chemical transformations. In pursuit of transition metal complexation, we elected to embed the nontrigonal phosphorous triamide \(\text{PN}_3\) core within a \(\kappa^3\)-chelating framework in order to afford kinetically stable complexes. To this end, ligand \(\text{L1}\) was designed to incorporate two 2-pyridyl moieties flanking the phosphorous triamide \(\text{PN}_3\) core. Its synthesis was accomplished in two steps from bis(2-aminophenyl)amine by twofold electrophilic heteroarylation with 2-chloropyridine, followed by reaction with \(\text{PCl}_3\) in the presence of \(\text{NEt}_3\) (Scheme 1).

In the solution phase, \(^1\text{H}\) NMR spectra of \(\text{L1}\) exhibit a twofold equivalence of resonances (\(\delta\) 8.26–6.92 ppm), indicating a time-averaged \(C_s\) molecular symmetry or higher. A \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum of \(\text{L1}\) displays a singlet at \(\delta 141.7\) ppm (Figure 2a), residing upfield as compared to 1 (\(\delta 159.8\) ppm). Structural analysis suggests the origin of this spectral distinction. X-ray diffraction of a colorless single crystal of the ligand \(\text{L1}\) revealed a solid state structure of approximate \(C_s\) local symmetry (Figure 3a) marked by folding of the phosphorous triamide moiety along the \(P_1-N_1\) axis, in line with previous observations for 1. However, in contrast to 1, the \(\angle N_2-P_1-N_3\) angle for \(\text{L1}\) is decidedly more acute (cf. 108.67(4)° vs. 115.21(7)°) while the bond lengths \(d(P_1-N_{2/3})\) are somewhat longer (Table 1). These structural features can be rationalized qualitatively by reference to Bent’s rule, where the electron-withdrawing 2-pyridyl \(N\)-substituents attract phosphorus \(p\)-character to the \(P_1-N_{2/3}\) bonds, resulting in elongated \(d(P-N_{2/3})\) distances and contracted \(\angle N_2-P_1-N_3\) angles. The complementary accrual of \(s\)-character in the nonbonding \(P\)-based lone pair therefore increases nuclear shielding for \(\text{L1}\) as observed in the \(^{31}\text{P}\{^1\text{H}\}\) NMR chemical shift.

Metalation of \(\text{L1}\) by treatment with \(\text{RuCl}_2(\text{PPh}_3)_3\) was realized in THF at ambient temperature to afford an octahedral complex \(\text{RuCl}_2(\text{PPh}_3)(\text{L1})(\text{2})\). In the resulting \(^{31}\text{P}\{^1\text{H}\}\) NMR spectra, the resonance corresponding to the phosphorus nucleus of \(\text{L1}\) is found downfield (relative to free ligand \(\text{L1}\)) as a doublet at \(\delta 186.8\) ppm with \(J = 49\) Hz; the corresponding coupling partner arising from the phosphorus nucleus of \(\text{PPh}_3\) resonates at \(\delta 42.7\) ppm with complementary \(J = 49\) Hz coupling (Figure 2b). The \(\kappa^3\)-chelating mode is confirmed by X-ray diffraction of a single crystal sample, where the facial coordination of the tridentate \(\text{L1}\) ligand is evident (Figure 3b). The \(\text{Ph}_3\text{P}\) ligand is found \(cis\) with respect to the phosphorus atom in the \(\text{L1}\) fragment, giving a complex of overall \(C_1\) symmetry. The high number of complex overlapping resonances in the aryl region of the solution phase \(^1\text{H}\) NMR spectra for 2 are congruent with the elimination of the symmetry element about the central \(P_1-N_1\) axis of \(\text{L1}\) upon ligation. The \(\angle N_2-P_1-N_3\) angle is broadened (113.94(4)°) as compared to free \(\text{L1}\), braced by the constraint imposed by the chelation of the pyridyl arms to Ru. A distinctive feature of the structure for 2 is the exceptionally short \(d(\text{Ru}_1-P_1)\) bond distance (2.1262(3) Å), which is significantly shorter than the typical range for \(\text{R}_3\text{P–Ru}\).
bonds (2.20 Å < d < 2.45 Å) and only modestly longer than the shortest characterized R₃P–Ru distance (2.0883(6) Å), found for a NPN κ₃-chelate containing a central tricoordinate phosphorus site substituted with electronegative heteroatoms similar to 2. The electronegative substituents probably contribute to the short Ru–P length of 2 by promoting π-backbonding from the metal.46

Metalation of L₁ with RuHCl(CO)(PPh₃)₃ was similarly attempted; however, the expected congener of 2 was not returned. Instead, ³¹P{¹H} NMR spectra (Figure 2c) showed formation of a new complex with a large upfield shift for the phosphorus atom of L₁ at δ ≈ −12.3 ppm and coupling (doublet, J = 29 Hz) to one remaining PPh₃ ligand (δ 54.7 ppm, ²Jₚ₋ₚ = 29 Hz). In the ¹H-coupled ³¹P NMR spectrum, the signal at δ −12.3 ppm is further split into a doublet with a large coupling constant (J = 535 Hz). The magnitude of this coupling constant suggests the formation of a direct P–H bond. Indeed, the corresponding proton coupling partner is found in the ¹H NMR spectrum as a doublet at δ 7.66 ppm (J = 535 Hz), well downfield from the typical range for a Ru(II)–H (i.e. δ < 0 ppm). The formation of P–H bond is also supported by an absorption at 2226 cm⁻¹ in the IR spectrum, which can be assigned to a P–H stretching mode. Together, these spectra suggest that reaction of L₁ with RuHCl(CO)(PPh₃)₃ affords a stable complex in which the hydrido ligand of Ru is transferred to the phosphorus atom, which we formulate as RuCl(CO)(PPh₃)(L₁H) (3, Scheme 1).

The solid-state structure of 3, determined by X-ray diffraction on a single crystal confirms this assignment (Figure 3c). Indeed, the 10-P-5 nature of the phosphorus environment is evident. The geometry about P is described by a distorted trigonal bipyramid (τ₅ = 0.50) with the H and Ru substituents occupying equatorial positions; by consequence, the phosphorous triamide framework is greatly planarized as compared to 2 with the 2-pyridylamides occupying the trans diapical sites (∠N₂–P₁–N₃ = 170.74(7)°). The resulting trigonal bipyramidal geometry contains two electronegative N atoms in diapical positions and electropositive H and Ru atoms in two equatorial positions, which follows a general trend of phosphoranes.49 The ruthenium-phosphorus bond distance (d(Ru₁–P₁) = 2.2509(4) Å) is ca. 0.12 Å longer than in 2. The origin of this change is given at least in part by the ring constraints imposed by the chelating pyridyl arms, which draw the pentacoordinate phosphorus away from an idealized axial octahedral coordination site about ruthenium (compare ∠P₁–Ru–Cl₁ = 168.85(1)° vs. 160.57(2)° for 2 and 3, respectively).

In view of the apparent transferal of hydride from Ru to P in 3, it is instructive to consider the suite of isomeric canonical structures in Figure 4. Examples of the type A (metal-bound terminal hydride) are legion.50-53 Complexes of the type B (bridging hydride) are less common; Schrock has characterized such complexes of Re54 and Mo55 formed by protonation of the progenitor metal-phosphine.56, 57 By contrast, examples of the type C (phosphorus-bound terminal hydride) do not appear to be known.

Neither the downfield ¹H NMR chemical shift of the hydrido ligand (δ 7.66 ppm) nor the long d(Ru₁–H₁) experimental distances (2.980–2.998 Å) seem to indicate significant Ru–H interaction for 3, disfavoring depictions A and B. As a further point of adjudication, the topological properties of the electron density were analyzed within the QTAIM framework.

J Am Chem Soc. Author manuscript; available in PMC 2018 July 06.
A geometry-optimized DFT model (B3LYP/def2-TZVP) of 3 reproduces the experimental structure with good agreement (see SI), and an all-electron single point calculation (B3PW91/def2-TZVP with zero-order regular approximation (ZORA)\(^ {59,60}\) for relativistic effects) was executed. As depicted in the plot of the electron density in the plane containing the Ru, P, and H nuclei (Figure 5), bond paths defined by (3,−1) critical points are found for Ru–P and P–H, but not for Ru⋯H. Moreover, the atomic basins for Ru and H do not abut. Consequently, complex 3 is well-formulated as ruthenahydrophosphorane with a terminal, nonbridging P-bound hydride (type C). The precise mechanism by which the hydride is transferred from Ru to P is under ongoing investigation.

Whereas decades of research have been devoted to understanding tricoordinate phosphorus compounds as supporting ligands in transition metal chemistry, higher coordination number phosphorus compounds are comparatively poorly-recognized transition metal substituents.\(^ {61-64}\) That said, well-defined and structurally characterized examples of 10-P-5 metallophosphoranes are known, primarily from the work of Riess,\(^ {11-12}\) Nakazawa,\(^ {22,26,64}\) and Lattmann.\(^ {14-20}\) Among these reported metallophosphoranes, complex 3 is the first to contain a terminal P-bound hydride, and the first to be formed directly by net insertion of a trivalent phosphorus center into an existing metal-ligand bond. The interconversion of 8-P-4 and 10-P-5 complexes by intramolecular ligand migration is known,\(^ {65}\) and has been invoked to rationalize metal-phosphine catalyst decomposition pathways.\(^ {66,67}\) In such transformations, there is an apparent connection to be made to migration reactivity to/from lower coordinate phosphorus ligands (i.e. phosphenium,\(^ {68-70}\) phosphide\(^ {71,72}\), phosphinidene\(^ {73-76}\)).

With respect to reactivity, complex 3 exhibits hydridic character; treatment with triphenylcarbenium hexafluorophosphate (Ph\(_3\)CPF\(_6\)) leads to hydride abstraction and conversion to [RuCl(CO)(PPh\(_3\))(L1)]PF\(_6\) (4) (eq. 1). The abstraction of hydride was confirmed by the disappearance of the IR band corresponding to P–H stretching and a hypsochromic shift of the C=O stretching band (\(\nu_{co} = 1957\) cm\(^{-1}\) (3) vs. 2027 cm\(^{-1}\) (4); \(\Delta \nu_{CO} = 70\) cm\(^{-1}\)). Moreover, the \(\text{31P}\) NMR spectra for 4 (6 187.3 ppm (L1); 5 42.5 ppm (PPh\(_3\)); \(^2J_{P-P} = 43\) Hz for the couple) no longer exhibit \(^1J_{P-H}\) coupling. All attempts to deprotonate the P–H in 3 by treatment with base (e.g. KHMDS, KH/18-crown-6) have been unsuccessful to date; the acidity of P–H moiety is apparently quite low. However, the treatment of 4 with an exogenous hydride donor (NaBH\(_4\)) returns 3, indicating the bidirectionality of the phosphorus-centered hydride reactivity and the pronounced electrophilicity of the distorted phosphorous triamide center.

\[
\begin{align*}
\text{3} & \quad \text{Ph}_3\text{CPF}_6 \quad \text{CH}_2\text{Cl}_2, \text{rt} \\
\text{3} & \quad \text{NaBH}_4 \\
\text{3} & \quad \text{THF}, \Delta \\
\text{4} & \quad \text{NaBH}_4
\end{align*}
\]
Taken together, these results demonstrate that geometrically deformed tricoordinate phosphorus ligands may exhibit properties that diverge from the traditional view of phosphines as spectator ligands. The observation of robust chelation during the course of ligand-based abstraction/addition reactivity manifests the colocalized donor and acceptor behavior that is expressed by the descriptor ‘biphilic’. Moreover, the flexibility of the phosphorus center in nontrigonal phosphorous triamide L1 to adopt various geometries and coordination numbers calls to mind a connection to the functional participation of ligands as found in metal-ligand cooperative chemistry. In this vein, the relative ease with which metallophosphorane 3 is accessed motivates us therefore to pursue additional study on higher coordination number phosphorus-based chelating ligands, and these investigations are an ongoing matter.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENT

We gratefully acknowledge funding from MIT. Additional support was provided by NIH (GM114547) for the synthesis of L1 and NSF (CHE-1724505) for structural and computational studies. A.T. recognizes fellowship support from the Funai Foundation for Information Technology. We thank Drs. Charlene Tsay and Peter Mueller (MIT) for assistance with crystallographic data collection.

REFERENCES

1. For N-X-L nomenclature, see: Perkins CW, Martin JC, Arduengo AJ, Lau W, Alegria A, Kochi JK. An Electrically Neutral a-Sulfuranyl Radical from the Homolysis of a Perester with Neighboring Sulenyl Sulfur: 9-S-3 species. J. Am. Chem. Soc. 1980; 102:7753–7759.
2. We adopt the naming convention, consistent with IUPAC recommendations, whereby “phosphorus” refers to the element name and “phosphorous” denotes the P(III) oxidation state (i.e. derivatives of phosphorous acid (HO)3P). See: Hartshorn RM, Hellwich K-H, Yerin A, Damhus T, Hutton AT. Brief Guide to the Nomenclature of Inorganic Chemistry. Pure Appl. Chem. 2015; 87:1039–1049. and references therein.
3. Kamer, PCJ., Leeuwen, P. W. N. M. van, Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis. 1st Ed., Wiley; Hoboken, N.J: 2012.
4. Tolman CA. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 1977; 77(3):313–348.
5. Crabtree, RH., The Organometallic Chemistry of the Transition Metals. John Wiley & Sons, Inc.; Hoboken, N.J: 2005. Carbyons, Phoshine Complexes, and Ligand Substitution Reactions; p. 87-124.
6. Grabulosa, A., P-Stereogenic Ligands in Enantioselective Catalysis. Royal Society of Chemistry; Cambridge: 2011. RSC catalysis series
7. Goodman J, Macgregor SA. Metallophosphoranes: The Hidden Face of Transition Metal-phosphine Complexes. Coord. Chem. Rev. 2010; 254:1295–1306.
8. Montgomery CD. Structures and Structural Distortions of Metalated Phosphoranes. Phosphorus. Sulfur. Silicon Relat. Elem. 1991; 84:23–34.
9. Dillon KB. Phosphoranides. Chem. Rev. 1994; 94(5):1441–1456.
10. Wachter J, Mentzen BF, Riess JG. Synthesis and Crystal Structure of a (H5-C5H5)(CO)z-Molybdenum Bicyclopophoramide: The First Transition Metal Complex with a “R4P−”-Ligand. Angew. Chem. Int. Ed. 1981; 20(3):284–285.
11. Jeanneaux F, Riess JG, Grand A. Synthesis and Molecular Structure of an Aminophosphoranide Transition-Metal Adduct. First Transition-Metal Derivative Having a Cyclic N-P-M Arrangement. J. Am. Chem. Soc. 1981; 103(14):4272–4273.

12. Dupart J-M, Grand A, Pace S, Riess JG. Synthesis and Molecular Structure of a Transition-Metal Cyclamphosphoranide. A Pentacyclic Structure with the Metal Bridging a P-N Bond. J. Am. Chem. Soc. 1982; 104:2316–2318.

13. Lattman M, Morse SA, Cowley AH, Lasch JG, Norman NC. Synthesis, Spectral Properties, and Geometry of a Metallaphosphorane. Inorg. Chem. 1985; 24(9):1364–1366.

14. Chopra SK, Chu SSC, De Meester P, Geyer DE, Lattman M, Morse SA. Metallophosphoranes: Carbonyl Substitution Reactions and the X-Ray Crystal Structure of Cis-Cal2PMe3(CO)(OPh)3(Cat = Benzodioxyl). J. Organomet. Chem. 1985; 294:347–355.

15. Burns EG, Chu SSC, De Meester P, Lattman M. Three-Fragment Oxidative Addition of Dichloromethane to a Mononuclear Rhodium(I) Complex with Concomitant Formation of a Metal-Phosphoranide Bond. Organometallics. 1986; 5:2383–2384.

16. Lattman M, Burns EG, Chopra SK, Cowley AH, Arif AM. Reaction of “Cyclenphosphorane” with cis-Dichlorobis(Triphenylphosphine)Platinum(II). Formation of Bidentate and Monodentate Phosphoranide Adducts and x-Ray Crystal Structure of (H2-CyclenP)PtClPPh3. Inorg. Chem. 1987; 26(12):1926–1929.

17. Meester P De, Lattman M, Chu SSC. Triearbonyl(H2-Cyclenphosphoranido)Cobalt(I). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1987; C43:162–164.

18. Siriwardane U, Khasnis DV, Lattman M. Bromo(H2-Cyclenphosphoranido)(Triphenylphosphino)Platinum(II). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989; 45(10):1628–1630.

19. Khasnis DV, Lattman M, Siriwardane U. Reactions of a Phosphoranoid Platinum(II) Complex with Nucleophilic and Electrophilic Reagents and the x-Ray Crystal Structures of (H2-CyclenP)Pt(CO)(CO)3PPh3 and (H2-CyclenP)Pt(I)PPh3. Inorg. Chem. 1989; 28(13):2594–2600.

20. Khasnis DV, Lattman M, Siriwardane U. Phosphoranide Ligands with Variable Coordination Modes. Synthesis, Properties, and X-Ray Crystal Structures of [(H2-CyclenP)Pt(Cl)PPh3]BF4 and [(H2CyclenP)PtCl2PPh3]Cl. Inorg. Chem. 1989; 28(4):681–686.

21. Arduengo AJ, Dias HVR, Calabrese JC. A 3-Coordinate 4-Electron Phosphorus Donor. Inorg. Chem. 1991; 30(26):4880–4882.

22. Kubo K, Nakazawa H, Mizuta T, Miyoshi K. Novel synthesis, X-Ray Crystal Structures, and Spectroscopic Properties of Metalled Hypervalent Phosphorus Compounds, Cp(CO)2Fe{P(OC6H4Y)(OC6H4Z)}(L)CO, P(OPh)3, P(OEt)3, PMe3; Y, Z) NH, NMe, O). Organometallics. 1998; 17(16):3522–3531.

23. Toyota K, Yamamoto Y, Akiba KY. Synthesis and Crystal Structure of a Rhodium(III) Complex Bearing a Hypervalent Phosphorus(V) Ligand as a Bidentate Ligand and Equilibrium between Bidentate and Monodentate Structures in Solution. J. Organomet. Chem. 1999; 586:171–175.

24. Toyota K, Yamamoto Y, Akiba K. A Hypervalent Phosphorane ^ Palladium Cation Complex Bearing Benzaldehyde Y. J. Chem. Res. 1999:386–387.

25. Kajiyama K, Hirai Y, Otsuka T, Yuge H, Miyamoto TK. First Isolations and Structures of the Cis-Bis(Phosphoranido) Palladium(II) and Platinum(II) Complexes. Chem. Lett. 2000; (II):784–785.

26. Nakazawa H, Kawamura K, Ogawa T, Miyoshi K. Syntheses, Structure, and Berry Pseudorotation of Ruthenium-, Iron-, and Cobalt-Phosphorane Complexes. J. Organomet. Chem. 2002; 646:204–211.

27. Mikhel IS, Bondarev OG, Tsarev VN, Grintselev-Knyazev GV, Lyssenko KA, Davankov VA, Gavrilov KN. The First Example of Coordination of a Tricyclic Hydrophosphorane to Platinum(II). X-Ray Crystal Structure of an Unusual Platinated Phosphorane. Organometallics. 2003; 22(5):925–930.

28. Kajiyama K, Miyamoto TK, Sawano K. Novel Phosphorano Complex of Rhodium(III) Tetraphenylporphyrin. Synthesis and Characterization. Inorg. Chem. 2006; 45(2):502–504. [PubMed: 16411682]

29. Kajiyama K, Sato I, Yamashita S, Miyamoto TK. Syntheses and Characterization of Novel Bis(Phosphoranido)Platinum(II) Complexes: Reactions of Lithium Bis(Naphth-1,8-Diyl)-8-
30. Ito T, Takaya J, Iwasawa N. Highly Selective Markovnikov Addition of Hypervalent H-Spirophosphoranes to Alkynes Mediated by Palladium Acetate: Generality and Mechanism. Bull. Chem. Soc. Jpn. 2010; 83(9):1086–1099.

31. Jelier BJ, Montgomery CD, Parlane FGL. Deprotonation of a Hydrophosphorane and Synthesis of the Ni(II) Metallophosphorane [NiCl{P(OC6H4N(CH3)2)}2(P(CH3)3)2]. Inorganica Chim. Acta. 2014; 413(2014):121–127.

32. Kirby, AJ., Warren, SG., The Organic Chemistry of Phosphorus. Elsevier; Amsterdam: 1967. p. 20

33. Dunn NL, Ha M, Radosevich AT. Main Group Redox Catalysis: Reversible PIII/PV Redox Cycling at a Phosphorus Platform. J. Am. Chem. Soc. 2012; 134(28):11330–11333. [PubMed: 22746974]

34. McCarthy SM, Lin YC, Devarajan D, Chang JW, Yennawar HP, Ess DH, Radosevich AT. Intermolecular N-H Oxidative Addition of Ammonia, Alkylamines, and Aromatics to a Planar σ3-Phosphorus Compound via an Entropy-Controlled Electrophilic Mechanism. J. Am. Chem. Soc. 2014; 136(12):4640–4650. [PubMed: 24597970]

35. Culley SA, Arduengo AJ. Synthesis and Structure of the First 10-P-3 Species. J. Am. Chem. Soc. 1984; 106(4):1164–1165.

36. Arduengo AJ, Stewart CA. Low-Coordinate Hypervalent Phosphorus. Chem. Rev. 1994; 94(5):1215–1237.

37. Robinson TP, De Rosa D, Aldridge S, Goicoechea JM. On the Redox Reactivity of a Geometrically Constrained Phosphorus(III) Compound. - A Eur. J. 2017; 23(61):15455–15465.

38. Zhao W, McCarthy SM, Lai TY, Yennawar HP, Radosevich AT. Reversible Intermolecular E-H Oxidative Addition to a Geometrically Deformed and Structurally Dynamic Phosphorus Triamide. J. Am. Chem. Soc. 2014; 136(50):17634–17644. [PubMed: 25401723]

39. Lin YC, Gilhula JC, Radosevich AT. Nontrigonal Constraint Enhances 1,2-Addition Reactivity of Phosphazenes. Chem. Sci. 2018; 9:4338–4347. [PubMed: 29780566]

40. Lin YC, Hatzakis E, McCarthy SM, Reichl KD, Lai TY, Yennawar HP, Radosevich AT. P-N Cooperative Borane Activation and Catalytic Hydroboration by a Distorted Phosphorus Triamide Platform. J. Am. Chem. Soc. 2017; 139(16):6008–6016. [PubMed: 28398782]

41. Peris E, Crabtree RH. Key factors in pincer ligand design. Chem. Soc. Rev. 2018; 47:1959–1968. [PubMed: 29431828]

42. Ren P, Vechorkin O, Von Allmen K, Scopelliti R, Hu X. A Structure-Activity Study of Ni-Catalyzed Alkyl-Alkyl Kumada Coupling. Improved Catalysts for Coupling of Secondary Alkyl Halides. J. Am. Chem. Soc. 2011; 133(18):7084–7095. [PubMed: 28398782]

43. Bent HA. An Appraisal of Valence-bond Structures and Hybridization in Compounds of the First-row elements. Chem. Rev. 1961; 61:275–311.

44. Hallman PS, Stephenson TA, Wilkinson G. Tetrakis-(Triphenylphosphine)Dichloro-Ruthenium(II) and Tris-(Triphenylphosphine)-Dichlororuthenium(II). Inorg. Synth. 2007; 12:237–240.

45. Braunstein P, Naud F, Pfaltz A, Rettig SJ. Ruthenium Complexes with Novel Tridentate N,P,N Ligands Containing a Phosphonite Bridge between Two Chiral Oxazolines. Catalytic Activity in Cyclopropanation of Olefins and Transfer Hydrogenation of Acetophenone. Organometallics. 2000; 19(14):2676–2683.

46. Leyssens T, Peeters D, Orpen AG, Harvey JN. How Important Is Metal - Ligand Back-Bonding toward YX₃ Ligands (Y = N, P, C, Si)? An NBO Analysis. Organometallics. 2007; 26(10):2637–2645.

47. Ahmad N, Levison JJ, Robinson SD, Uttley MF, Wonchoba ER, Parshall GW. Complexes of Ruthenium, Osmium, Rhodium, and Iridium Containing Hydride Carbonyl, or Nitrosyl Ligands. Inorg. Synth. 2007; 15:45–64.

48. Trans D, Addison AW, Rao TN. Synthesis, Structure, and Spectroscopic Properties of Copper(11) Compounds Containing Nitrogen-Sulphur Donor Ligands; the Crystal and Molecule Structure of Agua[1,7-Bis(N-Methylbenzimidazol-2'-Y1)-2,6-Dithiaheptane]Copper(II) Perchlorate. J. Chem. Soc. Dalton. Trans. 1984:1349.

49. Hoffmann R, Howell JM, Muetterties EL. Molecular Orbital Theory of Pentacoordinate Phosphorus. J. Am. Chem. Soc. 1972; 94:3047–3058.
50. Kaesz HD, Saillant RB. Hydride Complexes of the Transition Metals. Chem. Rev. 1972; 72:231–281.
51. McCue JP. Transition Metal Hydrides. Coord. Chem. Rev. 1973; 10:265–333.
52. Moore DS, Robinson SD. Hydrido Complexes of the Transition-Metals. Chem. Soc. Rev. 1983; 12:415–452.
53. McGrady GS, Guilera G. The Multifarious World of Transition Metal Hydrides. Chem. Soc. Rev. 2003; 32:383–392. [PubMed: 14671793]
54. Reid SM, Neuner B, Schrock RR, Davis WM. Synthesis of Rhenium Complexes That Contain the \([(C\text{C}_{6}F_{5})\text{NCH}_{2}\text{CH}_{2}]_{3}\text{N}\)–Ligand. Organometallics. 1998; 17:4077–4089.
55. Hebden TJ, Schrock RR, Takase MK, Müller P. Cleavage of Dinitrogen to Yield a (t-BuPOCOP)Molybdenum(IV) Nitride. Chem. Commun. 2012; 48(13):1851.
56. Albinati A, Lianza F, Pasquali M, Sommovigo M, Leoni P, Pregosin PS, Rüegger H. Pd-H-P Bridging in a Palladium(I) Dimer. Inorg. Chem. 1991; 30(25):4690–4692.
57. Leoni P, Pasquali M, Sommovigo M, Laschi F, Zanello P, Albinati A, Lianza F, Pregosin PS, Rüegger H. Chemistry of Phosphido-Bridged Palladium(I) Dimers. H2Pd-H-P Interactions: A New Bonding Mode for Secondary Phosphines. Organometallics. 1993; 12(5):1702–1713.
58. Bader, RFW., Atoms in Molecules: A Quantum Theory. Oxford University Press; Oxford: 1990.
59. van Lenthe E, Baerends EJ, Snijders JG. Relativistic Regular Two Component Hamiltonians. J. Chem. Phys. 1993; 99(6):4597–4610.
60. Pantazis DA, Chen X-Y, Landis CR, Neese F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008; 4(6):908–919. [PubMed: 26621232]
61. For 6-coordinate phosphorus, see: Gericke R, Wagler J. Phosphorus as Lone Pair Donor and Ligand Acceptor: A Paddlewheel with Ru–P Axis. Eur. J. Inorg. Chem. 2018; (1):86–90.
62. Jones JS, Wade CR, Gabbai FP. Redox and Anion Exchange Chemistry of a Stibine-Nickel Complex: Writing the L, X, Z Ligand Alphabet with a Single Element. Angew. Chem. Int. Ed. 2014; 53(34):8876–8879.
63. Sen S, Ke IS, Gabbai FP. Anion-Controlled Positional Switching of a Phenyl Group about the Dinuclear Core of a AuSb Complex. Inorg. Chem. 2016; 55(18):9162–9172. [PubMed: 27583565]
64. Nakazawa H, Kubo K, Miyoshi K. Metallaphosphorane Chemistry: Preparations, Structures, and Reactivities. Bull. Chem. Soc. Jpn. 2001; 74(12):2255–2267.
65. Kajiyama K, Nakamoto A, Miyazawa S, Miyamoto TK. Diastereoselective Formation of Metallaphosphacyclo Iridium (III) Complexes from Phosphorano Iridium (III) Complex. Chem. Lett. 2003; 32(4):332–333.
66. Green MLH, Smith MJ, Felkin H, Swierczewski G. Substitution at Phosphorus in the Reaction between Dichlorobis(Triphenylphosphine)Nickel and Methylmagnesium Bromide. J. Chem. Soc. D. 1971; 0(3):158b–159.
67. Macgregor SA. Transition Metal-Mediated P–C/X Exchange at Bound Phosphine Ligands (X = Aryl, Alkyl, NR2, OR and F): Scope and Mechanisms. Chem. Soc. Rev. 2006; 36(1):67–76. [PubMed: 17173146]
68. Nakazawa H, Yamaguchi Y, Mizuta T, Ichimura S, Miyoshi K. Migratory Insertion of a Phosphorus Ligand into a Transition Metal-Alkyl Bond. Organometallics. 1995; 14(10):4635–4643.
69. Kawamura K, Nakazawa H, Miyoshi K. Reaction of Ruthenium Complexes Having Both a Phosphite and a Group 14 Element Ligand with a Lewis Acid. Organometallics. 1999; 18(23): 4785–4794.
70. Poitras AM, Knight SE, Bezpalco MW, Foxman BM, Thomas CM. Addition of H2 Across a Cobalt-Phosphorus Bond. Angew. Chemie Int. Ed. 2018; 57:1497–1500.
71. Hickey AK, Munoz SB, Lutz SA, Pink M, Chen C-H, Smith JM. Arrested α-Hydride Migration Activates a Phosphido Ligand for C–H Insertion. Chem. Commun. 2017; 53(2):412–415.
72. Kim YE, Oh S, Kim S, Kim O, Kim J, Han SW, Lee Y. Phosphinite-Ni(o) Mediated Formation of a Phosphide-Ni(II)-OCOOME Species via Uncommon Metal-Ligand Cooperation. J. Am. Chem. Soc. 2015; 137(13):4280–4283. [PubMed: 25798737]

J Am Chem Soc. Author manuscript; available in PMC 2018 July 06.
73. Svara J, Mathey F. Electrophilic Insertion of Terminal Phosphinidene Complexes into the C-H Bonds of Ferrocene. Organometallics. 1986; 5(6):1159–1161.

74. Ng YX, Mathey F. Mechanism of Phosphinidene Complex Arylation by Arylboronic Acids. Organometallics. 2014; 33(5):1322–1324.

75. Özbolat A, Khan AA, Von Frantzius G, Neger M, Streubel R. Dehydroiodination of Iodo- and Diiodomethane by a Transient Phosphinidene Complex. Angew. Chem. Int. Ed. 2007; 46(12): 2104–2107.

76. Schulten C, von Frantzius G, Schnakenburg G, Espinosa A, Streubel R. Deoxygenation of Carbon Dioxide by Electrophilic Terminal Phosphinidene Complexes. Chem. Sci. 2012; 3(12):3526.

77. Pearson RG, Gray HB, Basolo F. Mechanism of Substitution Reactions of Complex Ions. XVI. Exchange Reactions of Platinum(II) Complexes in Various Solvents. J. Am. Chem. Soc. 1960; 82:787–792.

78. Khusnutdinova JR, Milstein D. Metal-Ligand Cooperation. Angew. Chem. Int. Ed. 2015; 54(42): 12236–12273.

79. Bouhadir G, Bourissou D. Complexes of Ambiphilic Ligands: Reactivity and Catalytic Applications. Chem. Soc. Rev. 2016; 45(4):1065–1079. [PubMed: 26567634]
Figure 1.
Divergent metalation of trigonal and nontrigonal 8-P-3 compounds.
Figure 2.
31P NMR spectra of (a) L1, (b) 2 and (c) 3 in CDCl$_3$. Units are ppm relative to 85% H$_3$PO$_4$.
Figure 3.
Thermal ellipsoid plots rendered at the 50% probability level for (a) L1, (b) 2·CH$_2$Cl$_2$ and (c) 3. Hydrogen atoms except H(1) of 3 are omitted for clarity. Solvent molecules of crystallization (2) and phenyl rings of PPh$_3$ ligands (2 and 3) are also omitted. For 3, only one of the three independent molecules contained in the unit cell is shown; see SI for full details.
Figure 4.
Canonical structures corresponding to hydride transfer from M→P.
Figure 5.
Calculated electron density for 3 in the plane defined by Ru–P–H coordinates. Electron density contours (—), gradient vector field (—), bond paths (—), bond critical points (.), and atomic basins (----) are depicted. Units are Å.
Scheme 1.
Synthesis of Chelating Ligand L1 and Related Ru Complexes 2 and 3.
Table 1
Selected Bond Distances (Å) and Angles (°) for 1, L1, 2, and 3.

Metric	1a	L1	2	3
d(Ru1–P1)	2.126(3)	2.2509(4)		
d(Ru1–P2)	2.3329(3)	2.3359(4)		
d(Ru1–Cl1)	2.4836(3)	2.4749(4)		
d(P1–N1)	1.7610(12)	1.7485(8)	1.7085(9)	1.7178(14)
d(P1–N2)	1.7190(13)	1.7341(8)	1.7280(9)	1.8362(14)
d(P1–N3)	1.7014(14)	1.7786(8)	1.7135(9)	1.8193(15)
θ(Ru1–P1–N1)	147.62(3)	140.14(6)		
θ(P1–Ru1–Cl1)	168.851(10)	160.569(16)		
θ(N2–P1–N3)	115.21(7)	108.67(4)	113.94(4)	170.74(7)
θ(N1–P1–N2)	90.08(6)	90.56(4)	91.40(4)	86.59(7)
θ(N3–P1–N3)	90.51(6)	89.45(4)	92.04(4)	87.25(7)

Data from Ref. 38.