Abstract. The pipe installation of offshore EPC project has high risk of cost overruns due to the uncertainty of weather, human errors, pipe fabrication process, etc. All of those risks will cause the project delay. The optimization of risk-based project scheduling can reduce the risks. Risk management can be optimized with combining some methods, such as Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), Critical Path Method (CPM) and Crashing Project method. The combination of these methods are used to do the data analysis in order to reduce the project total duration. Based on analysis using FMEA, FTA, CPM and crashing project method, the total project duration can be reduced from 499 days to 489 days with Rp. 6,822,472,- as the additional cost of workers.
Procurement, dan Construction (EPC) pipes instalation project. This kind of project has high risk of cost overruns due to the uncertainty of weather and the condition of sea stream, the pipe fabrication process and human error [8]. Risk management can be optimized with combining Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), Critical Path Method (CPM) and Crashing Project method. FMEA method focusses in identifying risks, risk factors, risk impacts and risk level in order to get the right decision [9].

2. Research Methodology

Primary data was collected by interviewing the project risk experts. The experts selected the critical path activities’ duration that will be reduced in order to accelerate the total duration of the project. Secondary data was collected from the expert judgement of volume details and the cost of the activity. Data processing was analyzed with FMEA, FTA, CPM and crashing project methods. CPM method was conducted with Primavera P6 program.

Failure Mode and Effect Analysis (FMEA) is a systematic method used to identify a failure of a system with the aim of reducing the risk of failure. These failures are classified based on the impact given on the success of a mission of a system. FMEA calculations use qualitative data that has been collected from a scale of event rates, severity of events and detection scores for each of the existing risks. Risk Priority Number (RPN) is used to rate the risk priority [9].

FTA method identifies the causes of failure. CPM and Crashing project are used to control all the project work items can be finished on time and to optimize the project duration with the lowest price[10]. Primavera P6 software is used to easily simplify the management and controlling process of construction project from the project design, network construction and data management in order to get the more effective design process and project progress monitoring [11].

3. Result and Analysis

3.1. Failure Mode and Effect Analysis (FMEA)

The Risk Priority Number (RPN) and RPN cumulative value with FMEA method can be seen in Table 1.

Code	O	S	D	RPN	RPN Percentage (%)	RPN cumulative percentage (%)
R13 (Long Lead Item/LLI)	9	10	8	720	10.43%	10.43%
R6 (Process Flow Diagram / PFD)	9	9	8	648	9.38%	19.81%
R16 (Fabrication)	8	9	8	576	8.34%	28.16%
R20 (Force Majeure)	7	9	7	441	6.39%	34.54%
R8 (PLEM (Pipe Line End Manifold) Data)	9	9	5	405	5.87%	40.41%
R14 (Shipping)	6	9	7	378	5.47%	45.88%
R3 (Social Issue)	8	9	5	360	5.21%	51.10%
R18 (Soil Data)	8	9	5	360	5.21%	56.31%
R21 (Pressure Test)	8	8	5	320	4.63%	60.94%
R4 (Change in Currency)	6	7	7	294	4.26%	65.20%
R19 (Offshore Pipeline)	7	8	5	280	4.06%	69.26%
R9 (Engineering Document Approval Process)	8	8	4	256	3.71%	72.96%
R2 (Licensing)	9	9	3	243	3.52%	76.48%
R11 (Master list)	5	8	6	240	3.48%	79.96%
The formula of RPN is given in Equation 1:

$$RPN = O \times S \times D$$

(1)

Severity Score (S) is a rating that refers to the impact caused. Occurrence Score (O) is a rating that refers to the probability or frequency of potential failures occurred [11]. Severity and Occurrence Rating Scale can be seen in Table 2.

Rating	Description	Severity Rating Scale	Occurrence Rating Scale
10	Certain probability	Risk could cause loss of client	Risk occurs at least once a day or risk occurs almost every time
9	Risk is almost inevitable	Risk could cause major or permanent delay	Risk occurs at least once a day or risk occurs almost every time
8	Very high probability	Risk causes minor to moderate delay with a high degree of client dissatisfaction	Risk occurs frequently; or risk occurs about once per week
7	Moderately high probability	Risk causes minor delay with some client dissatisfaction	Risk occurs about once per month
6	Moderately high probability	Risk causes very minor or no delay but annoys client	Risk occurs about once every three months
5	Low probability	Risk causes no delay and client is unaware	Risk occurs about once per year
4	Remote probability	Risk causes no delay and has no impact on system	Risk almost never occur, even everyone cannot remember, when was the last time risk occur

(Kabeer & Palaniappan, 2014)

Detection score refers to the possibility of a detected failure probability before the impact and its effects are realized [11]. The scale of rating can be seen in Table 3.
Tabel 3. Detection Rating Scale

Rating	Description	Definition
10	No chance of detection	There is no known mechanism for detecting the risk
9	Very Remote/Unreliable	The risk can be detected only with thorough inspection and this is not feasible or cannot be readily done
8	Remote	The risk can be detected with manual inspection but no process is in place so that detection is left to chance
7	Remote	There is a process for double-checks or inspection but it is not automated and/or is applied only to a sample and/or relies on vigilance
6	Moderate chance of detection	There is 100% inspection or review of the process but it is not automated
5	High	There is 100% inspection of the process and it is automated
4	Very High	There are automatic “shut-offs” or constraints that prevent risk

The highest risks based on RPN value are the delayed of Long Lead Item (LL1) procurement process, the delayed of Process Flow Diagram (PFD) design process, the delayed of subsea valve fabrication, tidal wave and Pipe Line End Manifold (PLEM) data was not matching with work item details. The RPN Pareto Diagram can be seen in Figure 1.

Figure 1. RPN Pareto Diagram

3.2. Fault Tree Analysis (FTA)
There were 5 potential risk failures or 20% out of 100% risks based on RPN value. The potential risk failure factors were described with code R13, RR6, R20 and R8 as follow:
3.2.1. The delayed of Long Lead Item (LLI) procurement process

The fault tree of the delayed of Long Lead Item (LLI) procurement process can be seen in Figure 2 and the explanation can be seen in Table 4.

![Fault tree image](image)

Figure 2. The fault tree of the delayed of Long Lead Item (LLI) procurement process

Event or Gate	Note
T	The delayed of Long Lead Item (LLI) procurement process
G1	Data sheet was not available
G2	Needed materials were not available
G3	Inquiry plan was not available
G4	Change Order (CO) from owner
G5	Owner's vendor couldn't provide materials needed
G6	The shipping delay
G7	Bill of Quantity was late provided by engineering team
G8	Technical Bid Evaluation (TBE) was late provided by engineering team
G9	Transportation was temporary stopped
P1	Actual needs were different from needs in the contract
P2	Owner hadn't approved the engineering data
P3	Bad weather
S1	Vendors were not capable enough to provide the special item
S2	The delayed of giving offering data from vendor
S3	The productions by vendor were not finished on time

Table 4. The explanation of the fault tree of LLI procurement process

The top event of potential failure risk in this process was the delayed of LLI procurement process for subsea valve. These are the basic events or undeveloped events caused the potential failure risks:
actual needs were different from needs in the contract, owner hadn't approved the engineering data, bad weather, vendors were not capable enough to provide the special item, the delayed of giving offering data from vendor and the productions by vendor were not finished on time.

3.2.2. The delayed of Process Flow Diagram (PFD) design process

The fault tree of the delayed of Process Flow Diagram (PFD) design process can be seen in Figure 3 and the explanation can be seen in Table 5.

![Fault Tree](image)

Figure 3. The fault tree of the delayed of Process Flow Diagram (PFD) design process

Event or Gate	Note
T	The delayed of Process Flow Diagram (PFD) design process
G1	Owner's approval process needs a quite long time
G2	Low level of work productivity
G3	Late review from owner
G4	A lot of revisions from owner
G5	Workers were doing some projects at some time
G6	Different perceptions between owner and contractor
P1	Design changing
P2	Limited number of workers
P3	Lack of coordination between contractor and owner
S1	Low level of workers performance
S2	Busy owner

Table 5. The explanation of the fault tree of Process Flow Diagram (PFD) design process

The top event of potential failure risk in this process was the delayed of Process Flow Diagram (PFD) design process. Based on the minimal cut set determination, the basic event or undeveloped events
caused the potential risks were design changing, limited number of workers, lack of coordination between contractor and owner, low level of workers performance and busy owner.

3.2.3. The delayed process of subsea valve fabrication

The fault tree of the delayed process of subsea valve fabrication can be seen in Figure 4 and the explanation can be seen in Table 6.

![Fault Tree](image)

Figure 4. The fault tree of the delayed process of subsea valve fabrication

Table 6. The explanation of the fault tree of the delayed process of subsea valve fabrication

Event or Gate	Note
T	The delayed of subsea valve fabrication process
G1	Approval drawing process required a quite long time
G2	Lack of workers productivity in fabrication process
G3	Raw materials needed were not available
G4	A lot of revisions by owner to engineering team
G5	Different perceptions between owner and contractor
P1	Lack of meeting intensity between owner and engineering team
P2	Materials delivery process needed a quite long time
P3	Design changing
P4	Lack of coordination between contractor and owner
S1	The low level of workers' performance
S2	Vendor Purchase Order (PO) was delayed
S3	The low level of vendors' performance

The top event of potential failure risk in this process was process of subsea valve fabrication.
Based on the minimal cut set determination, the basic event or undeveloped events caused the potential risks were: lack of meeting intensity between owner and engineering team, materials delivery process needed a quite long time, design changing, lack of coordination between contractor and owner, the low level of workers' performance, vendor Purchase Order (PO) was delayed and the low level of vendors' performance.

3.2.4. Tidal wave
The fault tree of the delayed process because of tidal wave can be seen in Figure 5 and the explanation can be seen in Table 7.

![Fault Tree of Tidal Wave]

Figure 5. The fault tree of the delayed process because of tidal wave

Event or Gate	Note
T	Tidal wave
G1	Monsoon period
G2	The high level of rainfall intensity
P1	The extreme changes in air pressure
P2	The changes in wind direction in a certain period

The top event of potential failure risk in this process was tidal wave. Based on the minimal cut set determination, the basic event or undeveloped events caused the potential risks were the extreme changes in air pressure and the changes in wind direction in a certain period.

3.2.5. The delayed process because of PipeLine End Manifold (PLEM)
The fault tree of the delayed process because of PipeLine End Manifold (PLEM) can be seen in Figure 6 and the explanation can be seen in Table 8.

![Fault Tree of PipeLine End Manifold]

Figure 6. The fault tree of the delayed process because of Pipe Line End Manifold (PLEM)
Table 8. The explanation of the fault tree of the delayed process because of Pipe Line End Manifold (PLEM)

Event or Gate	Note
T	PLEM data was not matched with work item details
G1	There were PLEM design differences between owner and engineering company
P1	Miscalculation in designing PLEM by engineering company
S1	Lack of coordination in designing PLEM between owner and engineering company
S2	Engineering company didn’t pay attention to the contract content properly

The top event of potential failure risk in this process was because of PLEM data was not matched with work item details. Based on the minimal cut set determination, the basic event or undeveloped events caused the potential risks were miscalculation in designing PLEM by engineering company, lack of coordination in designing PLEM between owner and engineering company and engineering company didn’t pay attention to the contract content properly. After making a Fault Tree Analysis (FTA) chart on the five potential failures or risks that have been determined, the next step was to conduct a quantitative analysis.

The probability value of each potential failure or risk can be calculated using the probability number for each component that has been set. The value of basic event (P) is 0.01, the value of conditioning event (C) is 0.5 and the value of undeveloped event (S) is 0.001. These are the probability value of each potential failure risks:

1. The delayed process because of Long Lead Item (LLI)
 \[
 T = P1 + P2 + P3 + S1 + S2 + S3 \\
 = 0.01 + 0.01 + 0.01 + 0.001 + 0.001 + 0.001 \\
 = 0.033
 \]

2. The delayed process because of design Process Flow Diagram (PFD)
 \[
 T = P1 + P2 + P3 + S1 + S2 \\
 = 0.01 + 0.01 + 0.01 + 0.001 + 0.001 \\
 = 0.032
 \]

3. The delayed process because of Subsea Valve fabrication
 \[
 T = P1 + P2 + P3 + S1 + S2 + S3 \\
 = 0.01 + 0.01 + 0.01 + 0.001 + 0.001 + 0.001 \\
 = 0.033
 \]

4. The delayed process because of tidal wave
 \[
 T = P1 + P2 \\
 = 0.01 + 0.01 \\
 = 0.02
 \]

5. The delayed process because of PLEM data
 \[
 T = P1 + S1 + S2 \\
 = 0.01 + 0.01 + 0.001 \\
 = 0.021
 \]

The probability of top events were low because the probability value was almost zero.

3.3. Critical Path Method (CPM)

Based on CPM analysis with Primavera P6 software, the critical path activities in the project can be seen. There were 25 activities in the critical path. The details of critical path activities can be found in Table 9.
Activity Name	Original Duration	Early Start	Early Finish	Late Start	Late Finish	Total Float
Project	499					
Operational Acceptance	0	-	28-Jun-19	-	28-Jun-19	0
Contract Award	0	15-Feb-18	-	15-Feb-18	-	0
Process Flow Diagram SPM 3 to DPPU Facility	49	15-Feb-18	4-Apr-18	15-Feb-18	4-Apr-18	0
Data Sheet for Subsea Check Valve	14	5-Apr-18	18-Apr-18	5-Apr-18	18-Apr-18	0
Data Sheet for Subsea Ball Valve	14	5-Apr-18	18-Apr-18	5-Apr-18	18-Apr-18	0
Requisition for Subsea Valve	7	19-Apr-18	25-Apr-18	19-Apr-18	25-Apr-18	0
RFQ - PO for Subsea Valve	45	26-Apr-18	9-Jun-18	26-Apr-18	9-Jun-18	0
Process Welding for Subsea Valve	20	16-Jan-19	4-Feb-19	16-Jan-19	4-Feb-19	0
Process Assembly for Subsea Valve	30	17-Dec-18	15-Jan-19	17-Dec-18	15-Jan-19	0
Ordering Raw Material Subsea Valve (By Vendor)	145	25-Jul-18	16-Dec-18	25-Jul-18	16-Dec-18	0
Delivery for Subsea Valve	45	5-Feb-19	21-Mar-19	5-Feb-19	21-Mar-19	0
Approval Vendor Document for Subsea Valve	45	10-Jun-18	24-Jul-18	10-Jun-18	24-Jul-18	0
Testing for PLEM	3	29-Mar-19	31-Mar-19	29-Mar-19	31-Mar-19	0
PLEM Assembly	7	22-Mar-19	28-Mar-19	22-Mar-19	28-Mar-19	0
Load Out PLEM & Transportation	5	1-Apr-19	5-Apr-19	1-Apr-19	5-Apr-19	0
PLEM Installation	25	9-Apr-19	3-May-19	9-Apr-19	3-May-19	0
Crane Barge Rig Up	3	6-Apr-19	8-Apr-19	6-Apr-19	8-Apr-19	0
Spool Installation	7	5-May-19	11-May-19	5-May-19	11-May-19	0
Diver Metrology	1	4-May-19	4-May-19	4-May-19	4-May-19	0
SPM Installation	28	15-May-19	11-Jun-19	15-May-19	11-Jun-19	0
SPM hook Up	3	12-May-19	14-May-19	12-May-19	14-May-19	0
Precommissioning Offshore	3	12-Jun-19	14-Jun-19	12-Jun-19	14-Jun-19	0
Mechanical Completion	0	-	14-Jun-19	-	14-Jun-19	0
Filling Jet A1	7	15-Jun-19	21-Jun-19	15-Jun-19	21-Jun-19	0
Soak Test	7	22-Jun-19	28-Jun-19	22-Jun-19	28-Jun-19	0
The value of Total Float was obtained from the reduction between Late Start (LS) with Early Start (ES) or Late Finish (LF) with Early Finish (EF). Total float value in Table 7 was obtained with analyzing data using Primavera P6 software where the date values of each ES and EF were all same. All those activities were categorized as critical path activities because its total float values were all zero. The total duration of critical path was 499 days. The critical path activities should be finished on time otherwise the project will be delayed.

3.4. **Crashing Project**

Crashing project method was conducted to accelerate some project activities duration in order to reduce the total project duration. Acceleration was conducted on critical path activities. Not all of the activities can be accelerated, so the expert judgement was needed to determine which activities that will be accelerated. Activities that were accelerated can be found at Table 10.

Activity Code	Activity ID	Activity Name	Original Duration (days)	Crash Time (days)	Normal Cost (Rp)	Crash Cost (Rp)	Cost Slope (Rp)	Crash By	Crashing Cost (Rp)
A	PRC-PFD-1010	Process Flow Diagram SPM 3 to DPPU Facility	49.00	44.00	39.200.000	41.842.697	533.333	5	2.642.697
B	PROC-OFF-1604	Process Assembly for Subsea Valve	30.00	27.00	32.000.000	34.157.303	719.101	3	2.157.303
C	PROC-OFF-1605	Process Welding for Subsea Valve	20.00	18.00	30.000.000	32.022.072	1.000.000	2	2.022.472

Based on the analysis using Critical Path Method, the duration needed to finish the project was 499 days. The duration can be accelerated using crashing project method in order to get project finished in 489 days with the additional cost of manpower Rp. 6.822.472,-

4. **Conclusion**

Based on FMEA and FTA, the highest risks on offshore EPC project based on RPN value are the delayed of Long Lead Item (LL1) procurement process, the delayed of Process Flow Diagram (PFD) design process, the delayed of subsea valve fabrication, tidal wave and Pipe Line End Manifold (PLEM) data was not matching with work item details. Based on CPM Method, there were 25 activities in the critical path with the total duration was 499 days. Based on Crashing Method, the total of project duration can be reduced 10 days with additional cost Rp. 6.822.472,-

Reference

[1] Kerzner H 2009 Project Management: A System Approach to Planning, Scheduling, and Control (New Jersey: John Willey & Sons, Inc.)

[2] Kabirifar K and Mojtahedi M 2019 The Impact of Engineering, Procurement, and Construction (EPC) Phases on Project Performance: A Case of Large-scale Residential Construction Project *Journal of Buildings* 9 (15) 2-15

[3] Steinberg H M 2017 Understanding and Negotiating EPC Contracts Volume 1: The Project Sponsor's Perspective (New York: Routledge)

[4] Sholeh M N, Fauziyah S, Wibowo M and Kristiani F 2014 Analisis Proses Pengadaan Material Proyek Konvensional dan Proyek Engineering Procurement Construction (EPC) *Jurnal Karya Ilmiah Teknik Sipil* 3(4) 1149-60
[5] Yasin I 2014 Kontrak Konstruksi di Indonesia (Jakarta: Gramedia Pustaka Utama)
[6] Project Management Institute 2013 A Guide to the Project Management Body of Knowledge (PMBOK® Guide)—Fifth Edition (Pennsylvania: Project Management Institute)
[7] Jaringan Dokumentasi dan Informasi Hukum Lembaga Kebijakan Pengadaan Barang/Jasa Pemerintah. (2019, Agustus 20). JDH LKP . Retrieved Agustus 20, 2019, from https://jdih.lkpp.go.id/regulation/peraturan-presiden/peraturan-presiden-nomor-16-tahun-2018: https://jdih.lkpp.go.id/regulation/peraturan-presiden/peraturan-presiden-nomor-16-tahun-2018
[8] Maddeppungeng A, Mina E and Dewi I P2017 Pengembangan dan Uji Model Sumber Daya Proyek Konstruksi Terhadap K3 dan Kinerja Perusahaan (Studi Kasus: Proyek Pembangunan Konstruksi Offshore Provinsi Banten) Jurnal Fondasi 6(2) 46-55
[9] Wessiani N A and Yoshio F 2017 Failure Mode Effect Analysis and Fault Tree Analysis as a Combined Methodology in Risk Management. IOP Conference Series: Materials Science and Engineering 337(1) p. 012033
[10] Aven T 2008 Risk Analysis Assessing Uncertainties beyond Expected Values and Probabilities (Chichester, UK: Willey)
[11] Palaniappan P K 2014 Risk assessment and management in supply chain Global Journal of Research In Engineering 14(2) 18-33
[12] Williams DL 2012 Oracle Primavera P6 Version 8: Project and Portofolio Management (UK: Packt Publishing, Ltd.)