More on the skew-spectra of bipartite graphs and Cartesian products of graphs*

Xiaolin Chen, Xueliang Li, Huishu Lian
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, P.R. China
E-mail: chxlnk@163.com; lxl@nankai.edu.cn; lhs6803@126.com

Abstract

Given a graph G, let G^σ be an oriented graph of G with the orientation σ and skew-adjacency matrix $S(G^\sigma)$. Then the spectrum of $S(G^\sigma)$ is called the skew-spectrum of G^σ, denoted by $Sp_S(G^\sigma)$. It is known that a graph G is bipartite if and only if there is an orientation σ of G such that $Sp_S(G^\sigma) = iSp(G)$. In [D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, Electron. J. Combin. 20(2013), #P19], Cui and Hou conjectured that such orientation of a bipartite graph is unique under switching-equivalence. In this paper, we prove that the conjecture is true. Moreover, we give an orientation of the Cartesian product of a bipartite graph and a graph, and then determine the skew-spectrum of the resulting oriented product graph, which generalizes Cui and Hou’s result, and can be used to construct more oriented graphs with maximum skew energy.

Keywords: oriented graph, skew-spectrum, skew energy, bipartite graph, Cartesian product.

AMS Subject Classification 2010: 05C20, 05C50, 05C90

1 Introduction

Let G be a simple undirected graph on order n with vertex set $V(G)$ and edge set $E(G)$. Suppose $V(G) = \{v_1, v_2, \ldots, v_n\}$. Then the adjacency matrix of G is the $n \times n$
symmetric matrix $A(G) = [a_{ij}]$, where $a_{ij} = 1$ if the vertices v_i and v_j are adjacent, and $a_{ij} = 0$ otherwise. The spectrum of G, denoted by $Sp(G)$, is defined as the spectrum of $A(G)$.

Let G^σ be an oriented graph of G with the orientation σ, which assigns to each edge of G a direction so that the induced graph G^σ becomes an oriented graph or a directed graph. Then G is called the underlying graph of G^σ. The skew-adjacency matrix of G^σ is the $n \times n$ matrix $S(G^\sigma) = [s_{ij}]$, where $s_{ij} = 1$ and $s_{ji} = -1$ if (v_i, v_j) is an arc of G^σ, otherwise $s_{ij} = s_{ji} = 0$. Obviously, $S(G^\sigma)$ is a skew-symmetric matrix, and thus all the eigenvalues are purely imaginary numbers or 0, which form the spectrum of $S(G^\sigma)$ and are said to be the skew-spectrum of G^σ. The eigenvalues of $S(G^\sigma)$ are called the skew eigenvalues of G^σ.

The energy $\mathcal{E}(G)$ of an undirected graph is defined as the sum of the absolute values of all the eigenvalues of G, which was introduced by Gutman in [5]. We refer the survey [6] and the book [10] to the reader for details. The skew energy of an oriented graph, as one of various generalizations of the graph energy, was first proposed by Adiga et al. [1]. It is defined as the sum of the absolute values of all the eigenvalues of $S(G^\sigma)$, denoted by $\mathcal{E}_S(G^\sigma)$. Most of the results on the skew energy are collected in our recent survey [9].

In [1], Adiga et al. obtained some properties of the skew energy and proposed some open problems, such as the following two problems.

Problem 1.1 Find new families of oriented graphs G^σ with $\mathcal{E}_S(G^\sigma) = \mathcal{E}(G)$.

Problem 1.2 Which k-regular graphs on n vertices have orientations G^σ with $\mathcal{E}_S(G^\sigma) = n\sqrt{k}$, or equivalently, $S(G^\sigma)^T S(G^\sigma) = kI_n$?

For Problem 1.1, it is clear that if an oriented graph G^σ satisfies $Sp_S(G^\sigma) = iSp(G)$ then $\mathcal{E}_S(G^\sigma) = \mathcal{E}(G)$. In [7][11], they proved that $Sp_S(G^\sigma) = iSp(G)$ for any orientation σ of G if and only if G is a tree, and $Sp_S(G^\sigma) = iSp(G)$ for some orientation σ of G if and only if G is a bipartite graph. They also pointed out that the elementary orientation of a bipartite graph $G = G(X,Y)$, which assigns each edge the direction from X to Y, is such an orientation that $Sp_S(G^\sigma) = iSp(G)$. Are there any other orientations?

Let W be a vertex subset of an oriented graph G^σ and $\overline{W} = V(G^\sigma) \setminus W$. Another oriented graph G^σ' of G, obtained from G^σ by reversing the orientations of all arcs between W and \overline{W}, is said to be obtained from G^σ by switching with respect to W. Two oriented graphs G^σ and G^σ' are said to be switching-equivalent if G^σ' can be obtained from G^σ by a sequence of switchings. Note that if G^σ and G^σ' are switching-equivalent, then
Conjecture 1.3 Let $G = G(X, Y)$ be a bipartite graph and σ be an orientation of G. Then $Sp_S(G^\sigma) = iSp(G)$ if and only if σ is switching-equivalent to the elementary orientation of G.

In Section 2, we prove that the Conjecture 1.3 is true. We also obtain some other results of the skew-spectrum of an oriented bipartite graph.

For Problem 1.2, it is known that $E_S(G^\sigma) \leq n\sqrt{\Delta}$ and equality holds if and only if $S(G^\sigma)^T S(G^\sigma) = \Delta I_n$, which implies that G is regular. Some families of oriented graphs with maximum skew energy were characterized in [1,4,12]. Moreover, in [3] Cui and Hou constructed a new family of oriented graphs with maximum skew energy by considering the skew-spectrum of Cartesian product $P_2 \square G$. In Section 3 we extend their result of the product graph $P_2 \square G$ to that of the product graph $H \square G$, where H is a bipartite graph. Using it, we obtain a larger new family of oriented graphs with maximum skew energy.

2 Oriented bipartite graphs with $Sp_S(G^\sigma) = iSp(G)$

In this section, we consider bipartite graphs and their orientations. We prove that Conjecture 1.3 is true and also obtain the characterizations of orientations of a bipartite graph G with $Sp_S(G^\sigma) = iSp(G)$.

First, let’s recall some definitions. Let G^σ be an oriented graph and $C_{2\ell}$ be an undirected even cycle of G. Then $C_{2\ell}$ is said to be even oriented relative to G^σ if it has an even number of edges oriented in clockwise direction (and now it also has an even number of edges oriented in anticlockwise direction, since $C_{2\ell}$ is an even cycle); otherwise $C_{2\ell}$ is called odd oriented. The even cycle $C_{2\ell}$ is said to be oriented uniformly if $C_{2\ell}$ is oddly (resp., evenly) oriented relative to G^σ when ℓ is odd (resp., even). It should be noted that if an even cycle $C_{2\ell}$ is oriented uniformly in G^σ, then after switching operations on G^σ, $C_{2\ell}$ is also oriented uniformly. The following lemma was obtained in [3].

Lemma 2.1 [3] Let G be a bipartite graph and σ be an orientation of G. Then $Sp_S(G^\sigma) = iSp(G)$ if and only if every even cycle is oriented uniformly in G^σ.

Now we prove the following result which implies that Conjecture 1.3 is true.

Theorem 2.2 Let $G = G(X, Y)$ be a bipartite graph and σ be an orientation of G. Then
\[\text{Sp}_S(G^\sigma) = i\text{Sp}(G) \] if and only if \(\sigma \) is switching-equivalent to the elementary orientation of \(G \).

Proof. By Lemma 2.1, we can easily get the sufficiency of the theorem. We prove the necessity by induction on the number \(m \) of edges in \(G \).

When \(m = 1 \), the case is trivial. Assume that the result holds for \(m - 1 \). Let \(G = G(X, Y) \) be a bipartite graph with \(m \) edges and \(\sigma \) be an orientation of \(G \) such that \(\text{Sp}_S(G^\sigma) = i\text{Sp}(G) \). Then by Lemma 2.1, every even cycle of \(G^\sigma \) is oriented uniformly. Suppose that \(e = xy \) is an edge of \(G \) with \(x \in X \), \(y \in Y \) and \(\hat{e} \) is the corresponding arc of \(G^\sigma \). Consider the oriented bipartite graph \(G^\sigma - \hat{e} \). Note that every even cycle of \(G^\sigma - \hat{e} \) is also oriented uniformly, and thus \(\text{Sp}_S(G^\sigma - \hat{e}) = i\text{Sp}(G - e) \). By induction, we obtain that the orientation of \(G^\sigma - \hat{e} \) is switching-equivalent to the elementary orientation of \(G - e \). That is, there exists a sequence of switchings which transform the orientation of \(G^\sigma - \hat{e} \) to the elementary orientation of \(G - e \). Applying the same switching operations on \(G^\sigma \), we obtain an oriented graph \(G^\sigma' \), whose arcs except the arc corresponding to \(e \) have directions from \(X \) to \(Y \).

If the direction of the arc corresponding to \(e \) in \(G^\sigma' \) is from \(x \) to \(y \), it follows that \(\sigma \) is switching-equivalent to the elementary orientation of \(G \).

If the direction of the arc corresponding to \(e \) in \(G^\sigma' \) is from \(y \) to \(x \). We claim that \(e \) is a cut edge of \(G \). Otherwise, there exists a cycle containing \(e \), say \(C_{2k} = x_0y_0x_1y_1 \cdots x_{k-1}y_{k-1}x_0 \) in clockwise direction. We find that \(C_{2k} \) contains precisely \(k - 1 \) arcs in clockwise direction, which contradicts that \(C_{2k} \) is oriented uniformly. Hence \(e \) is a cut edge of \(G \). Then \(V(G) \) can be partitioned into two parts \(W_1 \) and \(W_2 \) such that \(e \) is the only edge between them. By switching with respect to \(W_1 \) in \(G^\sigma' \), the direction of the arc corresponding to \(e \) is reversed and the directions of other arcs keep unchanged. Then we conclude that \(\sigma \) is switching-equivalent to the elementary orientation of \(G \). The proof is thus complete.

Lemma 2.1 provides a good characterization of the oriented bipartite graphs \(G^\sigma \) with \(\text{Sp}_S(G^\sigma) = i\text{Sp}(G) \). But it requires one to check that every even cycle is oriented uniformly. A natural question is how to simplify the checking task, such as only to check all chordless cycles. Based on this, we get the following result.

Theorem 2.3 Let \(G \) be a bipartite graph and \(\sigma \) be an orientation of \(G \). If every chordless cycle of \(G^\sigma \) is oriented uniformly, then \(\text{Sp}_S(G^\sigma) = i\text{Sp}(G) \).

Proof. We prove the theorem by contradiction. Let \(G \) be a bipartite graph and \(\sigma \) be an orientation of \(G \) such that every chordless cycle is oriented uniformly. But \(\text{Sp}_S(G^\sigma) \neq i\text{Sp}(G) \).
As an application of this orientation, we construct a larger new family of oriented graphs with maximum skew energy, which generalizes the construction in [3].

We can prove that for an oriented bipartite graph $G_{bipartite}$, by extending the orientation of P_r is called a C_3 The skew-spectrum of H of cycles C_3 (cycles of a graph is a generating set of the set of all cycles of G is oriented uniformly, a contradiction. The proof is now complete. □

Combining with Lemma 2.1, we immediately obtain the following corollary.

Corollary 2.4 Let G be a bipartite graph and σ be an orientation of G. Then $Sp_S(G^\sigma) = iSp(G)$ if and only if all chordless cycles are oriented uniformly in G^σ.

Remark 2.5 Let \mathcal{C} denote the set of all cycles of a bipartite graph G. A subset \mathcal{S} of \mathcal{C} is called a generating set of \mathcal{C} if for any cycle C of \mathcal{C}, $C \in \mathcal{S}$ or there is a sequence of cycles C_1, C_2, \ldots, C_k in \mathcal{S} such that $C = ((C_1 \Delta C_2) \Delta C_3) \cdots \Delta C_k$ and $C_1 \Delta C_2, (C_1 \Delta C_2) \Delta C_3, \ldots, ((C_1 \Delta C_2) \Delta C_3) \cdots \Delta C_{k-1}$ all are cycles. With this notation, one can prove that for an oriented bipartite graph G^σ, $Sp_S(G^\sigma) = iSp(G)$ if and only if every cycle in a generating set \mathcal{S} of \mathcal{C} is oriented uniformly in G^σ. Actually, the set of chordless cycles of a graph is a generating set of the set of all cycles of G.

3 The skew-spectrum of $H \Box G$ with H bipartite

In this section, we give an orientation of the Cartesian product $H \Box G$, where H is bipartite, by extending the orientation of $P_m \Box G$ in [3], and we calculate its skew-spectrum. As an application of this orientation, we construct a larger new family of oriented graphs with maximum skew energy, which generalizes the construction in [3].

Let H and G be graphs with m and n vertices, respectively. The Cartesian product $H \Box G$ of H and G is a graph with vertex set $V(H) \times V(G)$ and there exists an edge between (u_1, v_1) and (u_2, v_2) if and only if $u_1 = u_2$ and v_1v_2 is an edge of G, or $v_1 = v_2$ and u_1u_2
is an edge of \(H \). Assume that \(H^r \) is any orientation of \(H \) and \(G^\sigma \) is any orientation of \(G \). There is a natural way to give an orientation \(H^r \square G^\sigma \) of \(H^r \) and \(G^\sigma \). There is an arc from \((u_1, v_1)\) to \((u_2, v_2)\) if and only if \(u_1 = u_2 \) and \((v_1, v_2)\) is an arc of \(G^\sigma \), or \(v_1 = v_2 \) and \((u_1, u_2)\) is an arc of \(H^r \).

When \(H \) is a bipartite graph with bipartition \(X \) and \(Y \), we modify the above orientation of \(H^r \square G^\sigma \) with the following method. If there is an arc from \((u, v_1)\) to \((u, v_2)\) in \(H^r \square G^\sigma \) and \(u \in Y \), then we reverse the direction of the arc. The other arcs keep unchanged. This new orientation of \(H \square G \) is denoted by \((H^r \square G^\sigma)^o\).

Theorem 3.1 Let \(H^r \) be an oriented bipartite graph of order \(m \) and let the skew eigenvalues of \(H^r \) be the non-zero values \(\pm \mu_1 i, \pm \mu_2 i, \ldots, \pm \mu_i i \) and \(m - 2t \) 0’s. Let \(G^\sigma \) be an oriented graph of order \(n \) and let the skew eigenvalues of \(G^\sigma \) be the non-zero values \(\pm \lambda_1 i, \pm \lambda_2 i, \ldots, \pm \lambda_r i \) and \(n - 2r \) 0’s. Then the skew eigenvalues of the oriented graph \((H^r \square G^\sigma)^o\) are \(\pm i \sqrt{\mu_j^2 + \lambda_k^2} \) with multiplicities 2, \(j = 1, \ldots, t \), \(k = 1, \ldots, r \), \(\pm \mu_i i \) with multiplicities \(n - 2r \), \(j = 1, \ldots, t \), \(\pm \lambda_k i \) with multiplicities \(m - 2t \), \(k = 1, \ldots, r \), and 0 with multiplicities \((m - 2t)(n - 2r)\).

Proof. Let \(H = H(X, Y) \) be a bipartite graph with \(|X| = m_1\) and \(|Y| = m_2\). With suitable labeling of the vertices of \(H \square G \), the skew-adjacency matrix \(S = S((H^r \square G^\sigma)^o) \) can be formulated as follows:

\[
S = I'_{m_1+m_2} \otimes S(G^\sigma) + S(H^r) \otimes I_n,
\]

where \(I'_{m_1+m_2} = (a_{ij}) \), \(a_{ii} = 1 \) if \(1 \leq i \leq m_1 \), \(a_{ii} = -1 \) if \(m_1 + 1 \leq i \leq m \), and \(a_{ij} = 0 \) for \(i \neq j \); \(S(H^r) \) is the partition matrix \(
\begin{pmatrix}
0 & B \\
-B^T & 0
\end{pmatrix}
\) and \(B \) is an \(m_1 \times m_2 \) matrix.

We first determine the singular values of \(S \). Note that \(S \), \(S(H^r) \) and \(S(G^\sigma) \) are all skew symmetric. By calculation, we have

\[
SS^T = (I'_{m_1+m_2} \otimes S(G^\sigma) + S(H^r) \otimes I_n) (I'_{m_1+m_2} \otimes (-S(G^\sigma)) + (-S(H^r)) \otimes I_n)
\]

\[
= - \left[(I_{m_1+m_2} \otimes S^2(G^\sigma) + S^2(H^r) \otimes I_n) + (I'_{m_1+m_2} \otimes S(G^\sigma))(S(H^r) \otimes I_n)
\right]
\]

\[
+ (S(H^r) \otimes I_n)(I'_{m_1+m_2} \otimes S(G^\sigma))].
\]

Define \(\sigma_i = 1 \) for \(i = 1, 2, \ldots, m_1 \) and \(\sigma_i = -1 \) for \(i = m_1 + 1, m_1 + 2, \ldots, m \). Denote \(M^1 = [M^1_{ij}] = (I'_{m_1+m_2} \otimes S(G^\sigma))(S(H^r) \otimes I_n) \) and \(M^2 = [M^2_{ij}] = (S(H^r) \otimes I_n)(I'_{m_1+m_2} \otimes S(G^\sigma)) \). Note that \(M^1 \) and \(M^2 \) are both \(m \times m \) partition matrix in which every entry is an \(n \times n \)
submatrix. Direct computing gives
\[M^1_{ij} + M^2_{ij} = S(H^\tau)_{ij}S(G^\sigma)((-1)^{\sigma_i} + (-1)^{\sigma_j}). \]

For any \(1 \leq i, j \leq m\), if \(S(H^\tau)_{ij} = 0\), then \(M^1_{ij} + M^2_{ij} = 0\). Otherwise the vertices corresponding to \(i\) and \(j\) in \(H^\tau\) are in different parts of the bipartition. That is, \(1 \leq i \leq m_1, m_1 + 1 \leq j \leq m\) or \(1 \leq j \leq m_1, m_1 + 1 \leq i \leq m\). Then \((-1)^{\sigma_i} + (-1)^{\sigma_j} = 0\), an thus \(M^1_{ij} + M^2_{ij} = 0\). It follows that \(M^1 + M^2 = 0\). Hence,
\[
SS^T = - \left(I_{m_1+m_2} \otimes S^2(G^\sigma) + S^2(H^\tau) \otimes I_n \right).
\]

Therefore, the eigenvalues of \(SS^T\) are \(\mu(H^\tau)^2 + \lambda(G^\sigma)^2\), where \(\mu(H^\tau)i \in Sp_S(H^\tau)\) and \(\lambda(G^\sigma)i \in Sp_S(G^\sigma)\). Then the skew-spectrum of \((H^\tau \square G^\sigma)^o\) follows. The proof is thus complete.

As an application of Theorem 3.1, we can now construct a new family of oriented graphs with maximum skew energy.

Theorem 3.2 Let \(H^\tau\) be an oriented \(\ell\)-regular bipartite graph on \(m\) vertices with maximum skew energy \(E_S(H^\tau) = m\sqrt{\ell}\) and \(G^\sigma\) be an oriented \(k\)-regular graph on \(n\) vertices with maximum skew energy \(E_S(G^\sigma) = n\sqrt{k}\). Then the oriented graph \((H^\tau \square G^\sigma)^o\) of \(H \square G\) has the maximum skew energy \(E_S((H^\tau \square G^\sigma)^o) = mn\sqrt{\ell + k}\).

Proof. Since \(H^\tau\) and \(G^\sigma\) have maximum skew energy, \(S(H^\tau)S(H^\tau)^T = \ell I_m\) and \(S(G^\sigma)S(G^\sigma)^T = k I_n\). Then the skew eigenvalues of \(H^\tau\) are all \(\pm i\sqrt{\ell}\) and the skew eigenvalues of \(G^\sigma\) are all \(\pm i\sqrt{k}\). By Theorem 3.1, \((H^\tau \square G^\sigma)^o\) have all skew eigenvalues \(\pm imn\sqrt{\ell + k}\).

The following result was obtained in [3], which can be viewed as an immediate corollary of Theorem 3.2.

Corollary 3.3 [3] Let \(G^\sigma\) be an oriented \(k\)-regular graph on \(n\) vertices with maximum skew energy \(E_S(G^\sigma) = n\sqrt{k}\). Then the oriented graph \((P_2 \square G^\sigma)^o\) of \(P_2 \square G\) has maximum skew energy \(E_S((P_2 \square G^\sigma)^o) = 2n\sqrt{k + 1}\).

Adiga et al. [1] showed that a 1-regular connected graph that has an orientation with maximum skew energy is \(K_2\); while a 2-regular connected graph has an orientation with maximum skew energy if and only if it is \(C_4\) with oddly orientation. Tian [12] proved that there exists a \(k\)-regular graph with \(n = 2^k\) vertices having an orientation \(\sigma\) with maximum skew energy. Cui and Hou [3] constructed a \(k\)-regular graph of order \(n = 2^{k-1}\) having an
orientation σ with maximum skew energy. The following examples provide new families of oriented graphs with maximum skew energy that have much less vertices.

Example 3.4 Let $G_1 = K_{4,4}$, $G_2 = K_{4,4} \Box G_1, \ldots, G_r = K_{4,4} \Box G_{r-1}$. Because there is an orientation of $K_{4,4}$ with maximum skew energy 16; see [2]. Thus, we can get an orientation of G_r with maximum energy $2^{3r} \sqrt{4r}$. This provides a family of $4r$-regular graphs of order $n = 2^{3r}$ having an orientation with skew energy $2^{3r} \sqrt{4r}$ for $r \geq 1$.

Example 3.5 Let $G_1 = K_4$, $G_2 = K_{4,4} \Box G_1, \ldots, G_r = K_{4,4} \Box G_{r-1}$. It is known that K_4 has an orientation with maximum skew energy; see [3]. Thus we can get an orientation of G_r with maximum energy $2^{3r-1} \sqrt{4r-1}$. This provides a family of $4r-1$-regular graphs of order $n = 2^{3r-1}$ having an orientation with skew energy $2^{3r-1} \sqrt{4r-1}$ for $r \geq 1$.

Example 3.6 Let $G_1 = C_4$, $G_2 = K_{4,4} \Box G_1, \ldots, G_r = K_{4,4} \Box G_{r-1}$. Thus, we can get an orientation of G_r with maximum energy $2^{3r-1} \sqrt{4r-2}$. This provides a family of $4r-2$-regular graphs of order $n = 2^{3r-1}$ having an orientation with skew energy $2^{3r-1} \sqrt{4r-2}$ for $r \geq 1$.

Example 3.7 Let $G_1 = P_2$, $G_2 = K_{4,4} \Box G_1, \ldots, G_r = K_{4,4} \Box G_{r-1}$. Thus, we can get an orientation of G_r with maximum energy $2^{3r-2} \sqrt{4r-3}$. This provides a family of $4r-3$-regular graphs of order $n = 2^{3r-2}$ having an orientation with skew energy $2^{3r-2} \sqrt{4r-3}$ for $r \geq 1$.

References

[1] C. Adiga, R. Balakrishnan, W. So, The skew energy of a digraph, Linear Algebra Appl. 432(2010), 1825–1835.

[2] X. Chen, X. Li, H. Lian, 4-Regular oriented graphs with optimum skew energy, Available at http://arxiv.org/abs/1304.0847.

[3] D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, Electron. J. Combin. 20(2013), #P19.

[4] S. Gong, G. Xu, 3-Regular digraphs with optimum skew energy, Linear Algebra Appl. 436(2012), 465–471.

[5] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz, 103(1978), 1–22.
[6] I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Network: From Biology to Linguistics, Wiley-VCH Verlag, Weinheim, 2009, 145–174.

[7] Y. Hou, T. Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, Electron. J. Combin. 18(2011), 156–167.

[8] Y. Hou, X. Shen, C. Zhang, Oriented unicyclic graphs with extremal skew energy, Available at http://arxiv.org/abs/1108.6229.

[9] X. Li, H. Lian, A survey on the skew energy of oriented graphs, Available at http://arxiv.org/abs/1304.5707.

[10] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

[11] B. Shader, W. So, Skew spectra of oriented graphs, Electron. J. Combin. 16(2009), #N32.

[12] G. Tian, On the skew energy of orientations of hypercubes, Linear Algebra Appl. 435(2011), 2140–2149.