Isopropyl 4-aminobenzoate

Prabhakar Priyanka,a Bidur K. Jayanna,a Haruwegowda Kiran Kumar,b Hemmige S. Yathirajan,b* Thayamma R. Divakara,c Sabine Forod and Ray J. Butcher

*Department of Chemistry, B. N. M. Institute of Technology, Bengaluru 560 070, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, *T. John Institute of Technology, Bengaluru 560 083, India, aInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and eDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA.

The title compound, C_{10}H_{13}NO_2, crystallizes with two molecules (A and B) in the asymmetric unit. For A, the dihedral angle between the plane of the phenyl ring and the i-propyl substituent is 65.4 (3)° while for B this angle is 67.8 (3)°. In the crystal, the molecules are linked by N—H⋯O and N—H⋯N hydrogen bonds to generate double chains propagating in the [100] direction.

Structure description

Isopropyl 4-aminobenzoate, C_{10}H_{13}NO_2, serves as a model drug in correlation studies between HPLC retention parameters and percutaneous absorption (Fu & Liang, 1994). It functions as an inhibitor or an alternative acceptor substrate in the enzymatic acetylation of p-nitroaniline (Hanna et al., 1990). The related compound risocaine (propyl 4-aminobenzoate) is a local anesthetic (Imai et al., 2006), whereas benzocaine (ethyl 4-aminobenzoate) is utilized as a topical pain reliever (Fischer & Ganellin, 2006).

Some related crystal structures viz., the monoclinic form of ethyl 4-aminobenzoate (Lynch & McColloaghan, 2002), form (II) of benzocaine (Chan et al., 2009; Chan & Wellberry, 2010), 4-methylbenzyl 4-aminobenzoate (Haider et al., 2010), 2-(dimethyl- amino)ethyl 4-aminobenzoate (Li et al., 2019) and a new high-pressure benzocaine polymorph (Patyk-Kaźmierczak & Kaźmierczak, 2020) have been reported.

The present paper reports the synthesis and crystal structure of the title compound, (I). Compound I crystallizes with two molecules in the asymmetric unit (Fig. 1). There are slight differences in the conformations of each molecule: for A, the dihedral angle between the planes of the phenyl ring and its i-propyl substituent is 65.4 (3)° while for B
this angle is 67.8 (3)°. For both molecules, the H atoms of the amino substituents are not coplanar with their attached phenyl ring. This is indicated by the dihedral angles between this group and its phenyl ring [11.5 (3) and 24.2 (5)° for A and B, respectively] and the sum of the angles subtended at the N (358 and 352° for A and B, respectively), which shows that N2 is slightly more pyramidal than N1. These differences in the conformations of A and B are most clearly shown in an overlay of both molecules centered on the phenyl ring of both (Fig. 2).

In the extended structure of I, the molecules are linked by N—H···O and N—H···N hydrogen bonds (Table 1) to generate double chains propagating in the [100] direction (Fig. 2). The chains consist of A···A···A and B···B···B molecules linked by N1—H11N···O2 and N2—H21N···O4 hydrogen bonds, respectively, which both generate C(8) chains, with the N1—H12N···O2 and N2—H22N···O hydrogen bonds cross-linking the chains (Fig. 3).

Synthesis and crystallization
4-Aminobenzoic acid (1.0 g), purchased from Sigma–Aldrich, was taken in a 100 ml round-bottomed flask. Then, 20 ml of 2-propanol and a catalytic amount of conc. H2SO4 was added and the reaction mixture was refluxed for 4 h. The reaction was confirmed to be complete using thin-layer chromatography and the mixture was then quenched with water, the precipitate formed was collected by filtration and dried. Pink needles suitable for single-crystal X-ray diffraction were grown by slow evaporation, at room temperature of a solution in ethyl acetate. Yield (79%), m. p. 355–357 K. The reaction scheme is shown in Fig. 4.

Refinement
Crystal data, data collection and structure refinement details for I are summarized in Table 2.

D—H···A	D—H	H···A	D···A	D—H···A
N1—H11N···O2i	0.87 (2)	2.23 (2)	3.060 (4)	158 (3)
N1—H12N···N2ii	0.88 (2)	2.39 (2)	3.269 (5)	176 (4)
N2—H21N···O4i	0.87 (2)	2.07 (2)	2.930 (4)	168 (4)
N2—H22N···O2ii	0.87 (2)	2.36 (2)	3.224 (5)	172 (4)

Symmetry codes: (i) x − 1, y, z; (ii) −x, −y, −z + 1.
Acknowledgements

PP is grateful to the B. N. M. Institute of Technology for research facilities and HSY thanks UGC for a BSR Faculty Fellowship for three years.

References

Chan, E. J., Rae, A. D. & Welberry, T. R. (2009). Acta Cryst. B65, 509–515.
Chan, E. J. & Welberry, T. R. (2010). Acta Cryst. B66, 260–270.
Fischer, J. & Ganellin, C. R. (2006). Analogue-based Drug Discovery, p. 475. Chichester: John Wiley & Sons.
Fu, X. C. & Liang, W. Q. (1994). Yao Xue Xue Bao 29, 74–77.
Haider, A., Akhter, Z., Khan, M., Bolte, M. & Siddiqi, H. M. (2010). Acta Cryst. E66, o736.
Hanna, P. E., El-ghandour, A. M. & McCormack, M. E. (1990). Xenobiotica, 20, 739–751.
Imai, T., Taketani, M., Shii, M., Hosokawa, M. & Chiba, K. (2006). Drug Metab. Dispos. 34, 1734–1741.
Li, L., Liu, H., Wu, Z., Miao, J. & Zhang, S. (2019). Z. Kristallogr. New Cryst. Struct. 234, 245–246.
Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o708–o709.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.

Table 2
Experimental details.

Crystal data	C10H13NO2	
Chemical formula	179.21	
Mr	179.21	
Crystal system, space group	Triclinic, P	
Temperature (K)	296	
a, b, c (Å)	8.405 (1), 11.029 (2), 11.520 (3)	
α, β, γ (°)	89.10 (2), 77.06 (2), 87.17 (2)	
V (Å³)	1039.5 (4)	
Z	4	
Radiation type	Mo Kα	
µ (mm⁻¹)	0.08	
Crystal size (mm)	0.48 × 0.10 × 0.06	

Data collection

Diffractometer
Oxford Diffraction Xcalibur CCD

Absorption correction
Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)

Tmin, Tmax
0.461, 1.000

No. of measured, independent and observed [I > 2σ(I)] reflections
6595, 3730, 1275

Rint 0.062

(α/λ)max (Å⁻¹)
0.600

Refinement

R[F² > 2σ(F²)], wR(F²), S
0.083, 0.135, 0.98

No. of reflections
3730

No. of parameters
251

No. of restraints
4

H-atom treatment
H atoms treated by a mixture of independent and constrained refinement

Δρmax, Δρmin (e Å⁻³)
0.11, −0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014/6 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

Patyk-Każmierczak, E. & Kaźmierczak, M. (2020). Acta Cryst. B76, 56–64.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
full crystallographic data

IUCrData (2022). 7, x220904 [https://doi.org/10.1107/S241431462200904X]

Isopropyl 4-aminobenzoate

Prabhakar Priyanka, Bidurur K. Jayanna, Haruvegowda Kiran Kumar, Hemmige S. Yathirajan, Thayamma R. Divakara, Sabine Foro and Ray J. Butcher

Isopropyl 4-aminobenzoate

Crystal data

\[\text{C}_{10}\text{H}_{13}\text{NO}_{2} \]
Mr = 179.21
Triclinic, *P*
a = 8.405 (1) Å
b = 11.029 (2) Å
c = 11.520 (3) Å
α = 89.10 (2)°
β = 77.06 (2)°
γ = 87.17 (2)°
V = 1039.5 (4) Å³
Z = 4
F(000) = 384
*D*_a = 1.145 Mg m⁻³
Mo *Kα* radiation, *λ* = 0.71073 Å
Cell parameters from 837 reflections
θ = 2.6–28.0°
μ = 0.08 mm⁻¹
T = 296 K
Needle, pink
0.48 × 0.10 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur CCD diffractometer
Radiation source: Enhance (Mo) X-ray Source
ω scans
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
*T*_min = 0.461, *T*_max = 1.000
6595 measured reflections

Refinement

Refinement on *F*²
Least-squares matrix: full
R(*F*² > 2σ(*F*²)) = 0.083
wR(*F*²) = 0.135
S = 0.98
3730 reflections
251 parameters
4 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ*²(*F*²) + (0.0372*P)²]
where *P* = (*F*² + 2*F*²)/3
(Δ/σ)max < 0.001
Δρ_max = 0.11 e Å⁻³
Δρ_min = −0.14 e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All hydrogen atoms were placed geometrically and refined as riding atoms with their U_{iso} values 1.2 times (1.5 times for CH$_3$) that of their attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)
x
O1 0.8880 (3)
O2 0.9815 (3)
N1 0.2362 (5)
H11N 0.160 (4)
H12N 0.207 (4)
C1 0.7041 (4)
C2 0.6632 (5)
H2 0.742114
C3 0.5097 (5)
H3 0.486052
C4 0.3891 (5)
C5 0.4306 (5)
H5 0.352592
C6 0.5839 (5)
H6 0.607661
C7 0.8696 (5)
C8 1.0471 (5)
H8 1.133590
C9 1.0485 (5)
H9A 1.153638
H9B 0.965887
H9C 1.026744
C10 1.0704 (5)
H10A 1.176583
H10B 1.061486
H10C 0.988098
O3 0.3779 (3)
O4 0.5570 (3)
N2 -0.1326 (5)
H21N -0.223 (3)
H22N -0.113 (5)
C11 0.2710 (5)
C12 0.2909 (5)
H12 0.395305
C13 0.1594 (5)
H13 0.175830
C14 0.0023 (6)
C15 -0.0176 (5)
H15 -0.121799
C16 0.1145 (5)
H16 0.098348
C17 0.4164 (6)
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.062 (2)	0.0778 (19)	0.079 (2)	−0.0114 (15)	−0.0180 (16)	0.0140 (16)
O2	0.063 (2)	0.102 (2)	0.100 (2)	−0.0073 (16)	−0.0353 (18)	0.0239 (17)
N1	0.062 (3)	0.079 (3)	0.110 (3)	−0.014 (2)	−0.025 (3)	0.015 (2)
C1	0.050 (3)	0.047 (2)	0.063 (3)	−0.001 (2)	−0.021 (2)	0.002 (2)
C2	0.065 (3)	0.070 (3)	0.074 (3)	−0.004 (2)	−0.029 (3)	0.012 (3)
C3	0.068 (3)	0.063 (3)	0.075 (3)	−0.003 (2)	−0.023 (3)	0.014 (2)
C4	0.055 (3)	0.046 (3)	0.082 (3)	−0.001 (2)	−0.018 (3)	−0.007 (2)
C5	0.065 (3)	0.068 (3)	0.072 (3)	−0.001 (2)	−0.027 (3)	−0.001 (2)
C6	0.066 (3)	0.059 (3)	0.060 (3)	−0.004 (2)	−0.019 (3)	0.004 (2)
C7	0.064 (3)	0.060 (3)	0.065 (3)	0.003 (2)	−0.017 (3)	−0.001 (2)
C8	0.062 (3)	0.083 (3)	0.095 (4)	−0.011 (3)	−0.016 (3)	0.019 (3)
C9	0.105 (4)	0.140 (4)	0.091 (4)	−0.021 (3)	−0.009 (3)	0.040 (3)
C10	0.130 (5)	0.132 (4)	0.125 (4)	−0.066 (3)	−0.033 (4)	0.004 (4)
O3	0.0559 (19)	0.081 (2)	0.078 (2)	−0.0044 (15)	−0.0158 (17)	−0.0163 (17)
O4	0.0491 (18)	0.088 (2)	0.092 (2)	0.0018 (16)	−0.0030 (17)	−0.0148 (16)
N2	0.063 (3)	0.112 (4)	0.091 (3)	0.005 (2)	−0.019 (3)	−0.032 (2)
C11	0.050 (3)	0.055 (3)	0.055 (3)	0.001 (2)	−0.008 (2)	0.004 (2)
C12	0.050 (3)	0.075 (3)	0.068 (3)	0.007 (2)	−0.007 (2)	−0.003 (2)
C13	0.061 (3)	0.080 (3)	0.079 (3)	0.008 (3)	−0.020 (3)	−0.020 (2)
C14	0.055 (3)	0.068 (3)	0.065 (3)	−0.004 (3)	−0.014 (3)	−0.001 (2)
C15	0.046 (3)	0.078 (3)	0.069 (3)	0.007 (2)	0.005 (2)	−0.009 (3)
C16	0.064 (3)	0.060 (3)	0.064 (3)	0.003 (3)	−0.009 (3)	−0.006 (2)
C17	0.066 (3)	0.048 (3)	0.065 (3)	−0.001 (3)	−0.009 (3)	0.006 (2)
C18	0.062 (3)	0.084 (3)	0.089 (3)	−0.010 (3)	−0.020 (3)	−0.013 (3)
C19	0.104 (4)	0.125 (4)	0.109 (4)	0.001 (3)	−0.048 (3)	−0.003 (3)
C20	0.107 (4)	0.108 (4)	0.142 (5)	0.005 (3)	−0.035 (3)	−0.052 (4)

Geometric parameters (Å, °)

	O1—C7	O3—C17	O3—C18	O4—C17	
O1—C7	1.340 (4)				
O1—C8	1.465 (4)				
O2—C7	1.218 (4)				
N1—C4	1.373 (5)				
N1—H11N	0.870 (18)				
Bond	Distance (Å)	Bond	Distance (Å)	Bond	Distance (Å)
--------------	--------------	--------------	--------------	--------------	--------------
N1—H12N	0.876 (18)	N2—H22N	0.866 (18)		
C1—C2	1.384 (4)	C11—C12	1.377 (4)		
C1—C6	1.389 (4)	C11—C16	1.386 (4)		
C1—C7	1.461 (5)	C11—C17	1.472 (5)		
C2—C3	1.373 (4)	C12—C13	1.372 (4)		
C2—H2	0.9300	C12—H12	0.9300		
C3—C4	1.396 (4)	C13—C14	1.386 (5)		
C3—H3	0.9300	C13—H13	0.9300		
C4—C5	1.386 (5)	C14—C15	1.383 (4)		
C5—C6	1.371 (4)	C15—C16	1.378 (4)		
C5—H5	0.9300	C15—H15	0.9300		
C6—H6	0.9300	C16—H16	0.9300		
C8—C10	1.493 (5)	C18—C20	1.510 (4)		
C8—C9	1.497 (5)	C18—C19	1.518 (4)		
C8—H8	0.9800	C18—H18	0.9800		
C9—H9A	0.9600	C19—H19A	0.9600		
C9—H9B	0.9600	C19—H19B	0.9600		
C9—H9C	0.9600	C19—H19C	0.9600		
C10—H10A	0.9600	C20—H20A	0.9600		
C10—H10B	0.9600	C20—H20B	0.9600		
C10—H10C	0.9600	C20—H20C	0.9600		
C7—O1—C8	119.2 (3)	C17—O3—C18	117.3 (3)		
C4—N1—H11N	119 (3)	C14—N2—H21N	115 (3)		
C4—N1—H12N	121 (3)	C14—N2—H22N	116 (3)		
H11N—N1—H12N	118 (4)	H21N—N2—H22N	121 (4)		
C2—C1—C6	117.5 (4)	C12—C11—C16	118.2 (4)		
C2—C1—C7	119.4 (3)	C12—C11—C17	118.8 (4)		
C6—C1—C7	123.1 (4)	C16—C11—C17	123.1 (4)		
C3—C2—C1	122.1 (3)	C13—C12—C11	121.2 (4)		
C3—C2—H2	118.9	C13—C12—H12	119.4		
C1—C2—H2	118.9	C11—C12—H12	119.4		
C2—C3—C4	120.1 (4)	C12—C13—C14	121.0 (4)		
C2—C3—H3	119.9	C12—C13—H13	119.5		
C4—C3—H3	119.9	C14—C13—H13	119.5		
N1—C4—C5	121.4 (4)	C15—C14—N2	120.3 (4)		
N1—C4—C3	120.9 (4)	C15—C14—C13	117.9 (4)		
C5—C4—C3	117.8 (4)	N2—C14—C13	121.7 (4)		
C6—C5—C4	121.6 (4)	C16—C15—C14	121.1 (4)		
C6—C5—H5	119.2	C16—C15—H15	119.5		
C4—C5—H5	119.2	C14—C15—H15	119.5		
C5—C6—C1	120.9 (4)	C15—C16—C11	120.7 (4)		
C5—C6—H6	119.6	C15—C16—H16	119.7		
C1—C6—H6	119.6	C11—C16—H16	119.7		
O2—C7—O1	121.8 (4)	O4—C17—O3	122.4 (4)		
O2—C7—C1	125.3 (4)	O4—C17—C11	125.0 (4)		
O1—C7—C1	112.9 (4)	O3—C17—C11	112.6 (4)		
O1—C8—C10	110.1 (4)	O3—C18—C20	105.2 (3)		
O1—C8—C9 106.2 (3) O3—C18—C19 108.4 (3)
C10—C8—C9 113.1 (4) C20—C18—C19 112.8 (4)
O1—C8—H8 109.1 O3—C18—H18 110.1
C10—C8—H8 109.1 C20—C18—H18 110.1
C8—C9—H9A 109.5 C18—C19—H19A 109.5
C8—C9—H9B 109.5 C18—C19—H19B 109.5
C9—C8—H8 109.1 C19—C18—H18 110.1
C10—C8—H8 109.1 C19—C18—H18 110.1
C8—C9—H9C 109.5 C18—C19—H19C 109.5
C8—C9—H9A 109.5 C18—C19—H19A 109.5
H9A—C9—H9B 109.5 C18—C19—H19B 109.5
C10—C8—H8 109.1 H19A—C19—H19B 109.5
C10—C8—H8 109.1 H19A—C19—H19C 109.5
C10—C8—C9 113.1 (4) C18—C19—H19C 109.5
C8—C10—C11 122.9 (4) C18—C19—H19C 109.5
C8—C10—H10A 109.5 C18—C19—H19C 109.5
C8—C10—H10B 109.5 C18—C19—H19C 109.5
H10A—C10—H10B 109.5 C18—C19—H19C 109.5
C8—C10—H10A 109.5 H20A—C20—H20B 109.5
C8—C10—H10B 109.5 H20A—C20—H20B 109.5
C10—C11—C12 122.9 (4) C18—C20—C21 109.5
C10—C11—H11 109.5 C18—C20—C21 109.5
C11—C12—C13 123.0 (4) C18—C20—C21 109.5
C11—C12—H12 109.5 C18—C20—C21 109.5
C12—C13—C14 122.9 (4) C18—C20—C21 109.5
C12—C13—H13 109.5 C18—C20—C21 109.5
C13—C14—C15 123.0 (4) C18—C20—C21 109.5
C13—C14—H14 109.5 C18—C20—C21 109.5
C14—C15—C16 122.9 (4) C18—C20—C21 109.5
C14—C15—H15 109.5 C18—C20—C21 109.5
C15—C16—C17 123.0 (4) C18—C20—C21 109.5
C15—C16—H16 109.5 C18—C20—C21 109.5
C16—C17—C18 122.9 (4) C18—C20—C21 109.5
C16—C17—H17 109.5 C18—C20—C21 109.5
C17—C18—C19 123.0 (4) C18—C20—C21 109.5
C17—C18—H18 109.5 C18—C20—C21 109.5
C18—C19—C19 122.9 (4) C18—C20—C21 109.5
C18—C19—H19A 109.5 C18—C20—C21 109.5
C19—C18—H18 109.5 C18—C20—C21 109.5
C19—C18—H19A 109.5 C18—C20—C21 109.5
Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H11N···O2	0.87 (2)	2.23 (2)	3.060 (4)	158 (3)
N1—H12N···N2	0.88 (2)	2.39 (2)	3.269 (5)	176 (4)
N2—H21N···O4	0.87 (2)	2.07 (2)	2.930 (4)	168 (4)
N2—H22N···O2	0.87 (2)	2.36 (2)	3.224 (5)	172 (4)

Symmetry codes: (i) x−1, y, z; (ii) −x, −y, −z+1.