Electronic structure and magnetism of a ferromagnetic insulator C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4}: explanation for a lilac colour and a prediction for the anisotropic \(g \) factor

R. J. Radwanski

Center of Solid State Physics, S41Filip 5, 31-150 Krakow, Poland.

Institute of Physics, Pedagogical University, 30-084 Krakow, Poland

Z. Ropka

Center of Solid State Physics, S41Filip 5, 31-150 Krakow, Poland

Magnetic properties of stoechiometric C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4} have been calculated within a very strong correlation limit taking into account a low-symmetry crystal field and the intra-atomic spin-orbit coupling of the Ag2+ ion. We consistently explain the insulating ground state and the magnetic state revealing the spin gap of 2.6 meV below \(T\textsubscript{c} \) of 14.9 K. A \(d-d \) excitation of 2.0-2.3 eV related to the \(t_{2g-e_g} \) promotion energy (\(=10|Dq| \)) is a reason for the lilac colour of C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4}. Our approach can be experimentally verified by the measurement of the \(g \) factor (\(g\textsubscript{z}=2.12 \) and \(g\textsubscript{y}=2.52 \)) and the absorption energy at 2.0-2.3 eV.

PACS numbers: 75.10.-b, 71.10.-w, 75.10.Dg

Keywords: 4d magnetism, Crystal Field, electronic structure, 4d fluorides, C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4}, Ag2+

I. INTRODUCTION

C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4} is a unique 4d ferromagnet2-9 - the most of fluorides and oxides are antiferromagnetic. Despite that C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4} has already been synthesized 30 years ago2 recently it draws attention2,3,5-8 being regarded as an analog of La\textsubscript{2}CuO\textsubscript{4}, a maternal high-temperature superconductor. Thus it seems to be a very good exemplary system for studying basic interactions in \(d \) fluorides and oxides.

C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4}, when stoichiometric, is a good insulator. It is ferromagnetic below \(T\textsubscript{c} \) of 14.9 K2 or 13.95 K3. The macroscopic magnetisation, if recalculated per the formula unit, points to a moment of about 0.8 \(\mu\textsubscript{B} \). The paramagnetic susceptibility has been found to follow the Curie-Weiss law. Already above 50 K there is a straight \(\chi^{-1} \) vs \(T \) line with \(\theta\textsubscript{CW}=+30 \) K.

The origin of the ferromagnetic state and the insulating state is recently of a large theoretical discussion in Phys. Rev. journals3,4,5,6,7,8. As far as the ferromagnetic state is discussed another fluoride ferromagnetic compound K\textsubscript{2}CuF\textsubscript{4} has been recalled. They both have similar structure based on the K\textsubscript{2}NiF\textsubscript{4} structure. Kasinathan et al.3 have explained, within density-functional theory (DFT), the ferromagnetic structure as originating from the substantial Ag-F covalency. But this covalency causes simultaneously the incorrect itinerant, not insulating, ground state and a substantial magnetic moment on the fluorine ions. Dai et al.3 suggested that the ferromagnetism originates from the spin polarization induced by the \(d_{x^2-r^2}-p_{z} \) orbital interaction through the Ag-F-Ag bridges. In Refs.4,5,6,7,8 authors dealt with the tetragonal structure and obtained a half-metallic solution in the ferromagnetic state - this half-metallic solution, being essential for their explanation of the ferromagnetism in C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4}, disagrees with the insulating ground state observed experimentally. In following studies Kan et al.6,7,8, performing pseudopotential DFT calculations for the orthorhombic lattice, have obtained an orbitally ordered solution but with unphysically large in-plane and out-of-plane magnetic coupling strengths. More recently, Hao et al.8 and Wu and Khomskii8, using DFT total-energy calculations, have found that the orthorhombic lattice is more energetically stable than the undistorted tetragonal lattice. Moreover they theoretically found that this inherent lattice distortion is accompanied by the Ag \(4d \)-orbital ordering and this orbital ordering accounts for the observed ferromagnetism of C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4} similarly like for an isostructural and iso-electronic compound, K\textsubscript{2}CuF\textsubscript{4}. Wu and Khomskii found, within the GGA+U calculations with \(U=3 \) eV, that "C\textsubscript{s}\textsubscript{2}AgF\textsubscript{4} is stabilized in an insulating orthorhombic phase rather than in a metallic tetragonal phase" and that "the ground state is orbitally ordered ferromagnetic state". This orbitally ordered ferromagnetic ground state is realized by the alternative hole occupation in the \(x^2-z^2 \) and \(y^2-z^2 \) orbitals.

Analyzing this recent theoretical work of Wu and Khomskii we would like to put attention to the following outcomes:

1) the orthorhombic distortion is necessary to get insulating ground state - within the GGA approach with \(U=0 \) there is a small gap of 0.2 eV only; this gap increases to 1 eV for an expected \(U \) value of 3 eV;
2) the insulating gap of 0.2 eV, as well as 1 eV, is formed within the spin-polarized \(x^2-z^2 \) state (Fig. 45);
3) a size of the spin splitting is very large - in case of the \(x^2-z^2 \) state the spin splitting amounts to 0.75 eV (\(U=0 \), see Fig. 1) and it increases to 1.5 eV for the final calculations with \(U=3 \) eV (Fig. 45);
4) there is a relatively strong spin polarization of the F atoms - the local spin moment of each apical F (F\textsubscript{1}) amounts to 0.099 \(\mu\textsubscript{B} \) and of each planar F (F\textsubscript{2}) amounts to 0.097 \(\mu\textsubscript{B} \). Thus all fluorine atoms contribute by 0.392 \(\mu\textsubscript{B} \) per formula unit to the resultant magnetisation. It is 40 % of the calculated total magnetisation, of 0.992
II. THEORETICAL OUTLINE

The very strong-correlation limit has a lot in common with the ionic model and the many-electron crystal-field model which we consider to be to a large extent relevant to the reality of oxides and fluorides. We would like to note that we employ the many-electron version of the crystal-field theory instead of the one-electron version mentioned in Ref. 4,5,6,7,8. Our electronic structure is different from those obtained in Refs. 4,5,6,7,8 despite that energies of e_g and t_{2g} states are discussed. According to us, and in contrary to the above-mentioned papers, strong correlations are realized i) by the relevant charge transfer during the formation of the compound which leads to the charge distribution Cs$_2$AgF$_4$ and ii) by strong correlations among nine d electrons of the Ag$_{2+}$ ion. These strong intra-atomic correlations among nine d electrons assure that they should be considered as the whole 4d system being described by quantum numbers $L=2$ and $S=1/2$ (term 2D). In Cs$_2$AgF$_4$ the octahedral fluorine surroundings splits 10 states for the lowest four 2E_g and higher six states $^2T_{2g}$ (Fig. 1b). The compressed tetragonal distortion occurring in Cs$_2$AgF$_4$ causes a splitting of the lowest quartet for two Kramers doublets (Fig. 1d). The longest bond along y-axis occurring in Cs$_2$AgF$_4$ enlarges only this splitting (Fig. 1e) as the Kramers doublet cannot be split by any lattice distortion. The Kramers doublet is only split by a magnetic field, external or internal. We have calculated that the Ag$_{2+}$ moment experiences internal molecular field of 17.4 T (at T = 0 K).

III. RESULTS AND DISCUSSION

We accept experimental lattice parameters at T = 293 K, according to Ref. 4, cited by 5, $a_0 = 643.5$ pm, $b_0 = 643.9$ pm and $c_0 = 14.150$ pm and the respective Ag-F lengths: in-plane 216.8 pm (Ag-F$_2$(a)), 238.3 pm (Ag-F$_2$(b)) and the apical bond 217.2 pm (Ag-F$_1$(c)).

This situation in Cs$_2$AgF$_4$ we account for by crystal-field parameters (z along the c axis) of Cs$_2$AgF$_4$: $B_{1g} = -18$ meV (octupolar charge interactions predominantly due to the octahedron of fluorines, minus sign is related to the negative charge at the F ions), $B_{2g}^0 = +2$ meV (quadrupolar (axial term) charge interactions, positive sign corresponds to the compression along z-axis); $B_{2g}^0 = -7$ meV (quadrupolar (planar term) charge interactions, negative sign corresponds to the elongation along y-axis).

We take also into account the intra-atomic spin-orbit coupling λ_{s-o} of -150 meV - its effect is not visible in the splitting of the 2E_g subterm (Fig. 1c) but the spin-orbit coupling affects the eigenfunctions of the 2E_g subterm and its magnetic characteristics. As a consequence the moment of the ground-state doublet is not any more the integer 1 μ_B but $\pm 1.26 \mu_B$ for the present calculations (Fig. 1e). The detailed eigenfunctions, the energy states, and the magnetic moment can be calculated like we have demonstrated for many compounds (Fe$_{2+}$ion in FeBr$_2$ and FeO$^{2-}$, Co$_{3+}$ in LaCoO$_3$, Ti$_{3+}$ in YTiO$_3$, Co$^{2+}$ in CoO or Ni$^{2+}$ in NiO$^{2-}$) both in the paramagnetic state and in the magnetically-ordered state.

The respective Hamiltonian is considered in the LS space that is the 10 dimensional spin-orbital space $[LSL_zS_z]$. Despite of the relative weakness of the $s-o$ interactions: a) the 10-fold degenerated 2D term realized in the absence of the CEF and the s-o interactions; b) the splitting of the 2D term by the octahedral CEF surrounding $B_{1g} = -18$ meV ($\lambda_{s-o} = 0$) yielding the 2E_g cubic subterm as the ground state and 10$D_q = 2.16$ eV; c) the effect of the spin-orbit ($\lambda_{s-o} = -150$ meV) for the octahedral CEF states causing a splitting of the higher 2T_{2g} cubic subterm; the degeneracy and the associated magnetic moments are shown; d) the splitting due to the compressed tetragonal off-octahedral distortion of $B_{1g} = +2$ meV ($c/a < 1$ apical fluorines become closer); e) the splitting due to the in-plane off-tetragonal distortion (elongation along y-axis) of $B_{2g}^0 = -7$ meV); f) the splitting in the magnetic state.

FIG. 1: The calculated fine electronic structure of the 4d^9 electronic system (Ag$_{2+}$, Cu$_{2+}$ (3d^9) ions) in the paramagnetic state under the action of the crystal field and spin-orbit interactions: a) the 10-fold degenerated 2D term realized in the absence of the CEF and the s-o interactions; b) the splitting of the 2D term by the octahedral CEF surrounding $B_{1g} = -18$ meV ($\lambda_{s-o} = 0$) yielding the 2E_g cubic subterm as the ground state and 10$D_q = 2.16$ eV; c) the effect of the spin-orbit ($\lambda_{s-o} = -150$ meV) for the octahedral CEF states causing a splitting of the higher 2T_{2g} cubic subterm; the degeneracy and the associated magnetic moments are shown; d) the splitting due to the compressed tetragonal off-octahedral distortion of $B_{1g} = +2$ meV ($c/a < 1$ apical fluorines become closer); e) the splitting due to the in-plane off-tetragonal distortion (elongation along y-axis) of $B_{2g}^0 = -7$ meV); f) the splitting in the magnetic state. Figs c, d, e and f are not to the left hand energy scale.

μ_B/f.u.

5) there is a relatively small magnetic moment of Ag, of 0.600 μ_B only; thanks the large F-atom contribution the resultant magnetisation, being 0.992 μ_B, becomes close to the integer 1 μ_B, expected for a $S = 1/2$ spin.

The aim of this paper is to present results of calculations of properties of Cs$_2$AgF$_4$ within the very strong-correlation limit.
functions are not any more the pure cubic same footing. Due to the spin-orbit coupling the involved calculations treating all terms in the Hamiltonian on the of the crystal-field interactions we have performed direct

coupling for the \(d \) ions in comparison to the strength of the crystal-field interactions we have performed direct calculations treating all terms in the Hamiltonian on the same footing. Due to the spin-orbit coupling the involved functions are not any more the pure cubic \(e_g \) \((x^2-y^2\) or \(3z^2-r^2\)) and \(t_{2g} \) states.

An analysis of the effect of the sign of the tetragonal off-octahedral distortion leads to a conclusion that for the elongation along \(z\)-axis (\(c/a>1 \)) the magnetic moments order along the tetragonal axis. In case of the compression (\(c/a<1 \)) the moments are confined to the tetragonal plane. But then an in-plane distortion has to occur in order to remove the in-plane frustration - thanks this distortion a specific direction in the plane can be selected. Again the moment is directed along the most elongated bond - exactly as it is in case of \(\text{Cs}_2\text{AgF}_4 \), where the ordered moment lies along the \(y \) direction having the biggest length. The \(B^2_2 \) parameter is related to the bond difference in the \(a-b \) plane.

The calculated charge-formed ground-state has \(\langle S_z \rangle = \pm1.00 \), \(\langle L_z \rangle = \pm 0.26 \) and the quadrupolar moment \(Q = \pm 5.97 \). The moments \(m_y = \pm 1.26 \mu_B \) cancel each other in the paramagnetic state, Fig. 2a. They reveal themselves in the magnetic state when the Kramers-doubled ground-state function becomes polarized because a molecular field is self-consistently settled down.

Below \(T_c \) there opens, as is seen in Fig. 2a, a spin-like gap that amounts at \(T = 0 \) K to 2.6 meV. The spin-like gap is associated with the splitting of the Kramers doublet ground state in the ferromagnetic state. The magnetic ground state \(\psi_{GS+} \) has \(\langle S_z \rangle = 1.00 \), \(\langle L_z \rangle = +0.26 \) and the resultant moment of 1.26 \(\mu_B \). The appearance of the magnetic state is calculated self-consistently. It appears at the instability temperature \((T_c) \) in the temperature dependence of the CEF paramagnetic susceptibility when

\[
\chi_{CF}^{-1}(T) = n_{d-d}
\]

where \(n_{d-d} \) is the molecular-field coefficient accounting spin-dependent interactions. The ordering temperature of 14.9 K yields \(n_{d-d} = 13.8 \mu_B/(K/\mu_B) \) for all magnetic interactions of the given Ag-moment with its magnetic neighbours. The Ag moment experiences at \(T = 0 \) K a field of 17.4 T.

From the calculated free energy \(F(T) \) we calculate all thermodynamics like temperature dependence of the magnetic moment, of the additional heat capacity \(c_d \), of the paramagnetic susceptibility \(\chi_d \), of the 4d-shell quadrupolar moment and many other properties similarly to those performed for \(\text{FeBr}_2 \), \(\text{CoO}_3 \) and \(\text{YTiO}_3 \).

Comparing our results with those of the Wu-Khomski’s approach 1) we claim that the distortion is not necessary for \(\text{Cs}_2\text{AgF}_4 \) to be insulator - it is unphysical to think that so small effect can produce so drastic change of electrical properties, 2) we question an understanding that the insulating gap occurs within the spin-polarized \(x^2-z^2 \) state - it would mean that \(\text{Cs}_2\text{AgF}_4 \) would be insulating only in the magnetically-ordered state - although we do not have experimental results at hands we believe that \(\text{Cs}_2\text{AgF}_4 \) is insulating both in the ferromagnetic state as well in the paramagnetic state above 14.9 K, 3) the spin splitting of 2.6 meV is more physically realistic for a compound with \(T_c \) of 14.9 K than 1.5 eV29 corresponding to the thermal energy of 17400 K.
IV. CONCLUSIONS

We have calculated consistently a value of the magnetic moment of 1.26 \(\mu_B \) in Cs\(_2\)AgF\(_4\) and its direction, along the \(y \) axis in the orthorhombic structure originating from the tetragonal K\(_2\)NiF\(_4\)-type structure. We have derived the spin and orbital moment and found that the orbital magnetic moment cannot be ignored in any discussion of magnetic and electronic properties of any \(d \)-containing compound. It confirms the importance of the spin-orbit coupling which entangles the spin and orbital degree of freedom. We have derived the electronic structure both in the paramagnetic and ferromagnetic state showing that this structure is only slightly modified by the formation of the magnetic state. The respective spin-polarization energy is only 1.3 meV/f.u. - it is almost 1000 times less than regarded in the recent theoretical papers. We derive the strength of the octupolar charge interactions at the Ag site to be 2.16 eV - it determines the \(t_{2g}^1e_g \) promotion energy (=10\(D_q \)). This \(d - d \) excitation is a reason for the lilac colour of Cs\(_2\)AgF\(_4\). In our understanding the insulating gap is much larger than 2.16 eV, say 4-5 eV, and Cs\(_2\)AgF\(_4\) is insulating both in the tetragonal and the orthorhombic phase. Our results are important because the \(t_{2g}^1e_g \) and spin-polarization energy are the basic ingredient for any theory dealing with \(d \) electron systems. These studies prove that magnetic properties of Cs\(_2\)AgF\(_4\) are predominantly determined by the atomic-scale lattice distortions, crystal-field and the spin-orbit coupling of the Ag\(^{2+}\) ions whereas charge fluctuations are of the minor importance. An interplay of the spin-orbit coupling, lattice distortions and the magnetic order is very subtle and involves rather small energies, smaller than 5 meV making theoretical studies difficult. We point out that all discussed by us parameters are physical measurable parameters. Our approach can be experimentally verified by the measurement of the \(g \) factor and the energy absorption at 2.0-2.3 eV.

URL: http://www.css-physics.pl
Electronic address: sfradwan@cyf-kr.edu.pl

1. S. E. McLain, D. A. Tennant, J. F. C. Turner, T. Barnes, M. R. Dolgos, Th. Proffen, B. C. Sales, and R. I. Bewley, Nature Mater. 5, 561 (2006); [arXiv:cond-mat/0509194](http://arxiv.org/abs/cond-mat/0509194).
2. R.-H. Odenthal, D. Praus, and R. Hoppe, Z. Anorg. Allg. Chem. 407, 144 (1974).
3. T. Lancaster, S. J. Blundell, P. J. Baker, W. Hayes, S. R. Giblin, S. E. McLain, F. L. Pratt, Z. Salman, E. A. Jacobs, J. F. C. Turner, and T. Barnes, Phys. Rev. B 75, 220408(R) (2007).
4. D. Kasinathan, A. B. Kyker, and D. J. Singh, Phys. Rev. B 73, 214420 (2006).
5. D. Dai, M.-H. Whangbo, J. Kohler, C. Hoch, and A. Ville-suzanne, Chem. Mater. 18, 3281 (2006).
6. Er-Jun Kan, Lan-Feng Yuan, Jinlong Yang, and J. G. Hou, Phys. Rev. B 76, 024417 (2007).
7. Xianfeng Hao, Yuanhui Xu, Zhijian Wu, Defeng Zhou, Xiaojuan Liu, and Jian Meng, Phys. Rev. B 76, 054426 (2007).
8. Hua Wu and D. I. Khomskii, Phys. Rev. B 76, 155115 (2007).
9. Z. Ropka, R. Michalski, and R. J. Radwanski, Phys. Rev. B 63, 172404 (2001).
10. R. J. Radwanski and Z. Ropka, Acta Physica 4, 1 (2007), www.actaphysica.eu.
11. Z. Ropka and R. J. Radwanski, Phys. Rev. B 67, 172401 (2003).
12. R. J. Radwanski and Z. Ropka, Acta Physica 5, 5 (2007), www.actaphysica.eu; [arXiv:cond-mat/0601005](http://arxiv.org/abs/cond-mat/0601005).
13. R. J. Radwanski and Z. Ropka, Acta Physica 1, 26 (2006), www.actaphysica.eu; [arXiv:cond-mat/0606604](http://arxiv.org/abs/cond-mat/0606604).