Refers_To.DOI NOT FOUND IN META-DATA.TXT, please check and proceed

Data Article

Dataset on the structure and thermodynamic and dynamic stability of Mo₂ScAlC₂ from experiments and first-principles calculations

Martin Dahlqvist *, Rahele Meshkian, Johanna Rosen

Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83, Sweden

Abstract

The data presented in this paper are related to the research article entitled “Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo₂ScAlC₂, and its two-dimensional derivate Mo₂ScC” (Meshkian et al. 2017) [1]. This paper describes theoretical phase stability calculations of the MAX phase alloy Mo₅Sc₃₋ₓAlₓC₂ (x=0, 1, 2, 3), including chemical disorder and out-of-plane order of Mo and Sc along with related phonon dispersion and Bader charges, as well as Rietveld refinement of Mo₂ScAlC₂. The data is made publicly available to enable critical or extended analyzes.

© Published by Elsevier Inc.
Specifications Table

Subject area	Physics, Materials science
More specific subject area	Phase stability predictions,
Type of data	Tables, Figures, Text file
How data was acquired	Density functional theory calculations using VASP 5.3.3, phonon dispersion using Phonopy 1.9.1, and atom charges using Bader charge analysis version 0.95a. θ-2θ X-ray diffraction (XRD) measurements were performed on the samples using a diffractometer (Rikagu Smartlab, Tokyo, Japan), with Cu-Kα radiation (40 kV and 44 mA). The scans were recorded between 3° and 120° with step size of 0.02° and a dwell time of 7 s.
Data format	Raw, Analyzed
Experimental factors	N/A
Experimental features	For synthesis of Mo2ScAlC2, elemental powders of Mo, Sc, Al and graphite were mixed in an agate mortar, put in an alumina crucible, and placed into a sintering furnace where it was heated up to 1700 °C and kept at that temperature for 30 min. Structural characterization was performed using X-ray diffraction (XRD), and for complementary structural and compositional analysis high-resolution scanning transmission electron microscopy (HRSTEM) measurement were carried out. See Ref. [1] for further information.
Data source location	Linköping, Sweden
Data accessibility	Data are available with this article.

Value of the data

- This data allows other researchers to calculate and predict the phase stability of new compounds within the quaternary Mo-Sc-Al-C system and related subsystem.

Table 1

Calculated lattice parameters, equilibrium total energy E_0 in eV per formula unit, formation enthalpy ΔH_{fp} in meV per atom, and identified equilibrium simplex for Mo2ScAlC2 and Sc2MoAlC2. For comparison the corresponding end members Mo3AlC2 and Sc3AlC2 are also included.

Phase	Order	a (Å)	c (Å)	E_0 (eV/fu)	ΔH_{fp} (meV/atom)	Equilibrium simplex
Mo3AlC2		3.0716	18.541	-5.4830	$+141$	C, Mo3Al
Mo2ScAlC2	A	3.0619	19.072	-5.4231	-24	(Mo2/3Sc1/3)2AlC, MoC, ScC0.875, Mo
	B	3.0774	19.252	-5.9722	$+53$	(Mo2/3Sc1/3)2AlC, MoC, ScC0.875, Mo
	C	3.1622	18.789	-5.6011	$+14$	(Mo2/3Sc1/3)2AlC, MoC, ScC0.875, Mo
	D	3.1771	18.865	-5.505	$+130$	(Mo2/3Sc1/3)2AlC, MoC, ScC0.875, Mo
	E	3.1271	19.054	-5.348	$+157$	(Mo2/3Sc1/3)2AlC, MoC, ScC0.875, Mo
	F	3.1221	19.109	-5.663	$+104$	(Mo2/3Sc1/3)2AlC, MoC, ScC0.875, Mo
Mo2ScAlC2	disorder	3.1252	18.861	-5.767	$+87$	(Mo2/3Sc1/3)2AlC, MoC, ScC0.875, Mo
Sc2MoAlC2	A	3.1798	19.819	-4.826	$+28$	(Mo2/3Sc1/3)2AlC, Sc3AlC, ScC4
	B	3.1808	19.845	-4.8071	$+60$	(Mo2/3Sc1/3)2AlC, Sc3AlC, ScC4
	C	3.1886	19.696	-4.7842	$+98$	(Mo2/3Sc1/3)2AlC, Sc3AlC, ScC4
	D	3.1892	19.770	-4.7864	$+94$	(Mo2/3Sc1/3)2AlC, Sc3AlC, ScC4
	E	3.2279	19.802	-4.7453	$+162$	(Mo2/3Sc1/3)2AlC, Sc3AlC, ScC4
	F	3.1898	19.700	-4.7779	$+108$	(Mo2/3Sc1/3)2AlC, Sc3AlC, ScC4
Sc2MoAlC2	disorder	3.2251	19.335	-4.888	$+57$	(Mo2/3Sc1/3)2AlC, Sc3AlC, ScC4
Sc3AlC2		3.3170	20.885	-4.406	$+155$	Sc3AIc, ScC6, ScAlC3
The data presents refined/calculated structures that can be used as input for further theoretical evaluation of properties.

The structural information can also be used for interpretation and phase identification of, e.g., attained experimental XRD, (S)TEM, and electron diffraction data.

Table 2

Structural information and calculated total energy for competing phases considered within the quaternary Mo-Sc-Al-C system.

Phase	Prototype structure	Pearson symbol	Space group	\(V \) (\(\text{Å}^3/\text{uc} \))	\(a \) (Å)	\(b \) (Å)	\(c \) (Å)	\(E_0 \) (eV/fu)
Mo	W	c2i	Im-3m (229)	15.92	3.169			-10.850
Mo	Cu	cF4	Fm-3m (225)	16.15	4.012			-10.431
Mo	Mg	hP2	P6_3mmc (194)	32.57	2.774			-10.349
Sc	Mg	hP2	P6_3mmc (194)	49.25	3.321			-6.333
Sc	Sc	hP6	P6_22 (178)	148.75	3.242			-6.301
Sc	Np	iP4	P4/nmm (129)	100.35	5.367			-6.223
Al	Cu	cF4	Fm-3m (225)	66.00	4.041			-3.745
Al	Mg	hP2	P6_3mmc (194)	33.28	2.856			-3.712
Al	W	c2i	Im-3m (229)	16.93	3.235			-3.649
C	C (graphite)	hP4	P6_3mmc (194)	38.14	2.464			-9.225
Al_C_2	Al_C_2	hR21	R-3m h (166)	245.00	3.355			-43.340
Mo_Al_2	WAl_2	cT26	Im-3 (204)	436.23	7.584			-57.303
Mo_Al	MoAl	hR36	R-3c h (167)	558.49	4.952			-26.296
Mo_Al_17	Mo_Al_17	mS84	C121 (5)	1305.85	9.187			-112.563
Mo_Al_8	Mo_Al_8	mS22	C12/m1 (12)	334.46	9.235			-66.170
Mo_Al	Cr_Si	cP8	Pn-3n (223)	123.48	4.980			-37.228
Sc_C_2	Ni_In	hP6	P6_3mmc (194)	128.50	4.902			-17.458
Sc_Al	CsCl	cP2	Pm-3m (221)	38.75	3.384			-10.973
Sc_Al	Cr_B	cC8	Cmcm (63)	81.00	3.338		11.101	-4.371
Sc_Al_2	MgCu_2	cP24	Fd-3m (227)	109.50	3.797			-15.277
Sc_Al_3	AuCu_3	cP4	Pm-3n (221)	69.25	4.107			-19.383
Mo_C	TiP	hP8	P6_3mmc (194)	84.84	3.016			-19.821
Mo_C	NaCl	cP8	Pm-3m (225)	21.06	4.383			-19.640
Mo_C	h_Mo_C	hP12	P6_3mmc (194)	126.16	3.074			-19.747
Mo_C	WC	hP2	P-6m2 (187)	21.00	2.928			-20.241
Mo_C_2	Cr_C_2	eP20	Pmna (62)	228.19	6.064	2.974		-50.938
Mo_C_4	Fe_C	eP16	Pmna (62)	215.87	5.540	7.559	5.159	-40.423
Sc_C_2	Ti_C	cF48	Fd-3m (227)	852.33	9.481			-23.266
Sc_C_4	P_T_H	c2A	I-43d (220)	188.75	7.227			-56.419
Sc_C_0.875	Na_Cl	cF8	Fm-3m (225)	208.70	4.708			-14.923
Sc_C_0.875	Na_Cl	cF8	Fm-3m (225)	25.70	4.685			-15.840
Sc_C_4	Sc_C_4	dT70	P4/mmc (128)	851.50	7.515			-58.764
Mo_Al_2_C	Ca_Ti_O_3	cP5	Pm-3m (221)	71.70	4.154			-45.341
Mo_Al_2_C	Mo_Al_2_C	cP24	P4_32 (213)	327.20	6.891			-50.299
Mo_Al_2_C	Mo_Al_2_C	cP24	P4_32 (213)	1303.30	6.881			-49.691
Mo_Al_2_C	Mo_Al_2_C	cP24	P4_32 (213)	648.29	6.869			-49.078
Mo_Al_2_C	Mo_Al_2_C	cP24	P4_32 (213)	1296.87	6.870			-49.069
Mo_Al_2_C	Mo_Al_2_C	cP24	P4_32 (213)	321.10	6.848			-47.844
Mo_Al_2_C	Mo_Al_2_C	cP24	P4_32 (213)	114.75	3.296			-50.292
Mo_Al_2_C	Mo_Al_2_C	cP24	P4_32 (213)	199.00	3.317			-43.406
Mo_Al_2_C	Mo_Al_2_C	cP24	P4_32 (213)	248.50	3.296			-59.294
1. Data

The dataset of this paper provides information for calculated phases within the quaternary Mo-Sc-Al-C system and data obtained from refinement of the XRD pattern. Table 1 provides calculated lattice parameters, formation enthalpy, and equilibrium simplex for the chemically ordered nanolaminates $\text{Mo}_2\text{ScAlC}_2$ and $\text{Sc}_2\text{MoAlC}_2$ with different atomic stacking sequences (described in detail in Fig. 7(a) in Ref. [2]). Table 2 provides information for all considered competing phases within the quaternary system. Fig. 1 show calculated phonon spectra for $\text{Mo}_2\text{ScAlC}_2$ of order A and its corresponding end members Sc_3AlC_2 and Mo_3AlC_2. Fig. 2 depicts calculated Bader charges of atoms in $\text{Mo}_x\text{Sc}_{3-x}\text{AlC}_2$ ($x=0, 2, 3$). Table 3 shows the data obtained from refinement of the XRD pattern, see Ref. [1]: Lattice vectors a, b and c for the majority phase $\text{Mo}_2\text{ScAlC}_2$ are 3.033, 3.033 and 18.775 Å, respectively.

![Fig. 1. Calculated phonon dispersion for (a) $\text{Mo}_2\text{ScAlC}_2$, (b) Sc_3AlC_2, and (c) Mo_3AlC_2.](image-url)
2. Experimental design, materials and methods

First-principles calculations were performed by means of density functional theory (DFT) and the projector augmented wave method [3,4] as implemented within the Vienna ab-initio simulation package (VASP) 5.3.3 [5–7]. We adopted the non-spin polarized generalized gradient approximation (GGA) as parameterized by Perdew–Burke–Ernzerhof (PBE) [8] for treating electron exchange and correlation effects. A plane-wave energy cut-off of 400 eV was used and for sampling of the Brillouin zone we used the Monkhorst–Pack scheme [9]. The calculated total energy of all phases is converged to within 0.5 meV/atom with respect to k-point sampling and structurally optimized in terms of unit-cell volumes, c/a ratios (when necessary), and internal parameters to minimize the total energy.

Chemically disordered of Sc and Mo in Mo$_x$Sc$_{3-x}$AlC$_2$ have been modelled using the special quasi-random structure (SQS) method [10,11] on supercells of $4 \times 4 \times 1$ M_2AX_2 unit cells, with a total of 96 M-sites, respectively. Convergence tests with respect to total energy show that these sizes are appropriate to use, based on an energy of the $4 \times 4 \times 1$ unit cells being within 2 meV/atom compared to larger supercells.

![Fig. 2. Calculated charge for atoms in Sc$_3$AlC$_2$, Mo$_2$ScAlC$_2$, and Mo$_3$AlC$_2$ using Bader analysis.](image_url)

Table 3

Space group	$P6_3/mmc$ ($\#194$)
a (Å)	3.0334(8)
b (Å)	3.0334(8)
c (Å)	18.7750(0)
a	90.000
b	90.000
γ	120.000
Mo	4f (0.3333(3) 0.6666(7) 0.1363(2))
	Occupancy of Mo=4.00(0) and Sc=0.00(0)
Sc	2a (0.0000 0.0000 0.0000)
	Occupancy of Sc=1.83(4) and Mo=0.16(6)
Al	2b (0.0000 0.0000 0.2500)
	Occupancy of Al=2.00
C	4f (0.6666(7) 0.3333(3) 0.06825(5))
	Occupancy of C=4.00

2. Experimental design, materials and methods

First-principles calculations were performed by means of density functional theory (DFT) and the projector augmented wave method [3,4] as implemented within the Vienna ab-initio simulation package (VASP) 5.3.3 [5–7]. We adopted the non-spin polarized generalized gradient approximation (GGA) as parameterized by Perdew–Burke–Ernzerhof (PBE) [8] for treating electron exchange and correlation effects. A plane-wave energy cut-off of 400 eV was used and for sampling of the Brillouin zone we used the Monkhorst–Pack scheme [9]. The calculated total energy of all phases is converged to within 0.5 meV/atom with respect to k-point sampling and structurally optimized in terms of unit-cell volumes, c/a ratios (when necessary), and internal parameters to minimize the total energy.

Chemically disordered of Sc and Mo in Mo$_x$Sc$_{3-x}$AlC$_2$ have been modelled using the special quasi-random structure (SQS) method [10,11] on supercells of $4 \times 4 \times 1$ M_2AX_2 unit cells, with a total of 96 M-sites, respectively. Convergence tests with respect to total energy show that these sizes are appropriate to use, based on an energy of the $4 \times 4 \times 1$ unit cells being within 2 meV/atom compared to larger supercells.
Evaluation of phase stability was performed by identifying the set of most competing phases at a given composition, i.e. equilibrium simplex, using a linear optimization procedure [11,12] including all competing phases in the system. A phase is considered thermodynamically stable when its energy is lower than the set of most competing phases, and when there is no imaginary frequencies in phonon spectra, i.e. an indicated dynamic stability. The approach has been proven successful to confirm already experimentally known MAX phases as well as to predict the existence of new ones [2,13,14].

Dynamical stability of the chemically ordered Mo$_{x}$Sc$_{3-x}$AlC$_{2}$ ($x=0, 2, 3$) structures was evaluated by phonon calculations of $4 \times 4 \times 1$ supercells using density functional perturbation theory and as implemented in the PHONOPY code, version 1.9.1 [15,16]. Calculated charges were obtained using Bader charge analysis, version 0.95a [17].

The synthesis of Mo$_{2}$ScAlC$_{2}$ were carried out by mixing elemental powders of Mo, Sc, Al and graphite in an agate mortar, put in an alumina crucible, and placed into a sintering furnace where it was heated up to 1700 °C and kept at that temperature for 30 min.

0-20 X-ray diffraction (XRD) measurements were performed on the samples using a diffractometer (Rikagu Smartlab, Tokyo, Japan), with Cu-K$_{\alpha}$ radiation (40 kV and 44 mA). The scans were recorded between 3° and 120° with step size of 0.02° and a dwell time of 7 s. XRD pattern was analyzed by Rietveld refinement using FULLPROF code [18], where 5 backgrounds parameters, scale factors, X and Y profile parameters, lattice parameters, atomic positions, the overall B-factor and the occupancies for the main as well as the impurity phases were fitted.

Funding sources

J. R. acknowledges funding from the Swedish Research Council (VR) under Grant no. 621-2012-4425 and 642-2013-8020, from the Knut and Alice Wallenberg (KAW) Foundation, and from the Swedish Foundation for Strategic Research (SSF) through the synergy grant FUNCASE. All calculations were carried out using supercomputer resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre (NSC), the High Performance Computing Center North (HPC2N), and the PDC Center for High Performance Computing.

Transparency document. Supplementary material

Transparency document associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.12.046.

Appendix A. Supplementary material

Supplementary material associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.12.046.

References

[1] R. Meshkian, Q. Tao, M. Dahlqvist, J. Lu, L. Hultman, J. Rosen, Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo$_{x}$ScAlC$_{2}$, and its two-dimensional derivate Mo$_{x}$ScC$_{2}$ MXene, Acta Mater. (2016).

[2] B. Anasori, M. Dahlqvist, J. Halim, E.J. Moon, J. Lu, B.C. Hosler, E.N. Caspi, S.J. May, L. Hultman, P. Eklund, J. Rosén, M. W. Barsoum, Experimental and theoretical characterization of ordered MAX phases Mo$_{2}$TiAlC$_{2}$ and Mo$_{2}$Ti$_{2}$AlC$_{3}$, J. Appl. Phys. 118 (2015) 094304.

[3] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953–17979.

[4] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758–1775.

[5] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.
[6] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.
[7] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186.
[8] P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
[9] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188–5192.
[10] A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Special quasirandom structures, Phys. Rev. Lett. 65 (1990) 353–356.
[11] M. Dahlqvist, B. Alling, I.A. Abrikosov, J. Rosén, Phase stability of Ti2AlC upon oxygen incorporation: a first-principles investigation, Phys. Rev. B 81 (2010) 024111–024118.
[12] M. Dahlqvist, B. Alling, J. Rosén, Stability trends of MAX phases from first principles, Phys. Rev. B 81 (2010) 220102.
[13] P. Eklund, M. Dahlqvist, O. Tengstrand, L. Hultman, J. Lu, N. Nedfors, U. Jansson, J. Rosén, Discovery of the ternary nanolaminated compound Nb2GeC by a systematic theoretical-experimental approach, Phys. Rev. Lett. 109 (2012) 035502.
[14] A.S. Ingason, A. Mockute, M. Dahlqvist, F. Magnus, S. Olafsson, U.B. Arnaldis, B. Alling, I.A. Abrikosov, B. Hjörvarsson, P.O. Persson, J. Rosen, Magnetic self-organized atomic laminate from first principles and thin film synthesis, Phys. Rev. Lett. 110 (2013) 195502.
[15] A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78 (2008) 134106.
[16] A. Togo, I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108 (2015) 1–5.
[17] G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36 (2006) 354–360.
[18] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (1969) 65–71.