Impacts of Marine Invasive Species on Subtidal and Intertidal Food Web Dynamics

Nicole Rohr
University of Rhode Island, nrohr@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Recommended Citation
Rohr, Nicole, "Impacts of Marine Invasive Species on Subtidal and Intertidal Food Web Dynamics" (2012). Open Access Dissertations. Paper 824.
https://digitalcommons.uri.edu/oa_diss/824
IMPACTS OF MARINE INVASIVE SPECIES
ON SUBTIDAL AND INTERTIDAL
FOOD WEB DYNAMICS

BY
NICOLE ELISABETH ROHR

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
BIOLOGICAL SCIENCES

UNIVERSITY OF RHODE ISLAND
2012
DOCTOR OF PHILOSOPHY DISSERTATION

OF

NICOLE ELISABETH ROHR

APPROVED:

Dissertation Committee:

Major Professor Carol S. Thornber

Evan L. Preisser

Graham E. Forrester

Nasser H. Zawia
DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2012
ABSTRACT

Invasive species can have a variety of impacts on food web structure and interspecific interactions. They can impact recruitment rates of associated marine species, influence behavior of potential prey items, and alter predator-prey relationships. This research is designed to assess 1) the relationship between the recruitment of *Lacuna vincta* and two species of algal epiphytes, the native *Ceramium virgatum* and the invasive *Neosiphonia harveyi*, in the shallow subtidal zone; 2) the spatial and temporal distribution of the invasive *Hemigrapsus sanguineus* in the intertidal zone of cobble beaches; and 3) the top-down effects and predator-prey interactions of *H. sanguineus*.

Through manipulative field experiments, we found that the presence of algal epiphytes facilitated the recruitment rate of *Lacuna vincta*, regardless of the epiphyte species composition. We also found a positive relationship between the number of *L. vincta* present and epiphyte recruitment, which is disproportionately driven by higher recruitment of *Neosiphonia harveyi* than *Ceramium virgatum*.

Long-term monitoring can be used to understand population trends of invasive species. Through monthly surveys in Narragansett Bay, Rhode Island, we determined that *Hemigrapsus sanguineus* densities are highest in the early summer and early fall months. Juvenile *H. sanguineus* are most abundant in June and July and gravid females are most prevalent in August and September. *H. sanguineus* exhibited a density gradient with the highest densities in the northern section of Narragansett Bay and declining toward the mouth at the southern end of Narragansett Bay.

Invasive species can outcompete native and established species, thereby altering food web dynamics through changes in top-down and predator-prey interactions.
Through mesocosm studies, we found that while *Hemigrapsus sanguineus* has an impact on *Littorina littorea* behavior, it does not alter the perwinkles’ grazing rates. By contrast, the combined presence of *H. sanguineus* and *L. littorea* results in a greater decrease in algal biomass than only *L. littorea*. In field tethering experiments, we observed that abiotic but not biotic factors were the dominant force in structuring the vertical distribution of *H. sanguineus*. Overall, we found that *H. sanguineus* does not occupy the same ecological niche as *Carcinus maenas*, the previously dominant crab in the intertidal zone of cobble beaches.

This research provides insight into how invasive species shape the sub- and intertidal zones by influencing the recruitment rate and behavior of native and established species. Given that marine invasions are occurring at an increasing rate due to international marine transportation, human-mediated introductions, and global climate change, fully understanding the impacts of these invasive species is critical to mitigating and adapting to changes in species composition and abundance.
ACKNOWLEDGMENTS

First and foremost, I thank my major professor, Carol Thornber. Through her guidance, support, and training, I became a better researcher, vastly improved my writing skills, and discovered an enjoyment of teaching. Perhaps even more importantly than that, she allowed me the leeway to pursue a nontraditional graduate career that took me from Rhode Island to California and Washington DC. These meandering travels eventually led to my current career path. My committee members Evan Preisser, Graham Forrester, Kenny Raposa, and Scott McWilliams provided honest and insightful recommendations on manuscripts, grant proposals, and scientific presentations. Even though they often did not hear from me for long stretches of time as I went on interdisciplinary excursions, they always knew I would finish the graduate journey. A special thanks to Kenny for working side-by-side with me on Prudence Island each month as we braved all weather to collect, count, and measure tens of thousands of crabs.

There are no words to effectively convey my gratitude to IGERT, which was the single most transformative experience of my graduate career. It exposed me to alternatives to a life in academia and provided the skills I needed to enter into a career in environmental policy. Thank you to Pete August, Q Kellogg, and Judith Swift, who saw something in me during my IGERT interview that inspired them to accept me into the Fellowship program; it was at that point my two roads diverged, and I – I took the one less traveled by, and that has made all the difference. My fellow co-07ers, Carrie Byron, Kim Lellis-Dibble, and Nate Vinhaterio stand out among my support system. We haven’t been CIIPers for three years, but I still seek out their advice over beers and gossip.
I was extremely blessed to meet a slew of friends who helped keep me sane during the busy times, prevented me from taking graduate school too seriously, and were always easy to convince to grab a happy hour beer at The Mews – thank you. Josh Atwood, I do not know how we survived the summer of 2007, but I hope when we are old we sit together on a beach in Hawaii and reminisce about the good ole’ days at URI. Laura Ingwell, Pam Reitsma, and I bonded over girl-time and wine on Thursday nights.

My research would not have been completed without the endless efforts of the Thornber Undergraduate Army, a never-ending supply of intelligent students who rarely complained about getting up at 4:00 AM to do manual labor or observe the behavior of snails. Thank you to Emily Jones and Heather Miceli, my first labmates in the dark, dank, and dingy office in BISC. Michele Guidone and Chris Newton were more than just my labmates, they are the friends who are a part of every fun experience and great memory I have from URI. We traveled together, mentored each other, and experienced the roller coaster of graduate school.

I received funding from an NSF Integrated Graduate Education and Research Traineeship (IGERT) Fellowship, a PEO Scholar Award, a NOAA Sea Grant Knauss Legislative Fellowship, Teaching Assistantships, the Quebec-Labrador Foundation Sounds Conservancy Grants, Rhode Island EPSCoR, the URI Coastal Fellows Program, and the Narragansett Bay National Estuarine Research Reserve.

Lastly, but far from least, I thank my family. My Pops, Madre, and Ty were my perpetual cheerleaders who never lost faith that I would complete this journey. I looked forward to trips home to play cards, hang out, and relax. Their love and support are as much responsible for my completion of this degree as my work and research.
PREFACE

This dissertation is presented in manuscript format in accordance with the guidelines set by the Graduate School of the University of Rhode Island. Each of the three chapters are written to stand alone as separate research questions while contributing to the larger body of knowledge regarding the impacts of marine invasive species on sub- and intertidal food web dynamics. Chapter 1 is published in Aquatic Ecology. Chapter 2 is in preparation for Environmental Monitoring and Assessment. Chapter 3 is submitted to Marine Ecology Progress Series.
TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS ... iv

PREFACE ... vi

TABLE OF CONTENTS .. vii

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1: EPiphyte AND HERBIVORE INTERACTIONS IMPACT
 RECRUITMENT IN A MARINE SUBTIDAL SYSTEM .. 1

CHAPTER 2: SPATIAL AND TEMPORAL DISTRIBUTIONS OF THE INVASIVE
 CRAB *HEMIGRAPSUS SANGUINEUS* AND RECOMMENDATIONS FOR LONG-
 TERM SAMPLING METHODS ... 22

CHAPTER 3: IMPACTS OF INVASIVE *HEMIGRAPSUS SANGUINEUS* ON A NEW
 ENGLAND FOOD WEB ... 53
LIST OF TABLES

TABLE | PAGE

Chapter 2

Table 1. ANOVA results for analyses examining the impact of month, site, and sampling method on *Hemigrapsus sanguineus* density and carapace width..........................31
LIST OF FIGURES

FIGURE PAGE

Chapter 1

Figure 1. Effect of epiphytes on recruitment of *L. vincta*. (A) There was no difference in *L. vincta* recruitment among epiphyte composition treatments: *C. virgatum, N. harveyi/C. virgatum, and N. harveyi* (p = 0.1336). (B) There is a significant difference in *L. vincta* recruitment among macroalgal mimics with varying densities (p = 0.0009, post hoc Tukey Kramer tests); significant results are indicated. All data are means ± 1 SE........9

Figure 2. Relationship between *Lacuna vincta* density and epiphyte recruitment. There is a significant positive correlation between the number of *L. vincta* present and (A) the mass of all epiphytes on each macroalgal mimic (r = 0.50, p = 0.0058) as well as (B) the mass of *N. harveyi* (r = 0.46, p = 0.0026) on each macroalgal mimic in closed containers. (C) There is no relationship between the number of *L. vincta* present and the mass of *C. virgatum* on macroalgal mimics in closed containers (r = 0.26, p = 0.1445).........11

Chapter 2

Figure 1. Mean *Hemigrapsus sanguineus* density on cobble intertidal beaches throughout Narragansett Bay, Rhode Island, in August 2008...............................29

Figure 2. Comparison of 2007 tray and quadrat survey sampling methods for *Hemigrapsus sanguineus*: A) density and B) mean carapace width. A * indicates a significant different of p ≤ 0.05 ...32

Figure 3. *Hemigrapsus sanguineus* density from Prudence Island, Rhode Island at four long-term invasive species monitoring sites...33
Figure 4. Mean *Hemigrapsus sanguineus* carapace width, by month, at Bear Point, Prudence Island, Rhode Island.................................34

Figure 5. A latitudinal gradient of *Hemigrapsus sanguineus* mean density in Narragansett Bay, averaged from June through October 2008. ...35

Figure 6. *Hemigrapsus sanguineus* carapace width histograms at two representative sites, Colt State Park and Freebody Street, during June 2008 and September 200836

Figure 7. Mean *Hemigrapsus sanguineus* population demographics of A) adult males and females, B) juveniles and total adults, and C) gravid and not gravid adult females. The numbers on the bars represent the total number of *H. sanguineus*.................38

CHAPTER 3

Figure 1. Effect of *Hemigrapsus sanguineus* presence and chemical cue on the *Littorina littorea* consumption rate of *Ulva rigida*. Letters indicate significant differences. U = *Ulva rigida*, L = *Littorina littorea*, H = *Hemigrapsus sanguineus*, CH = chemical cue of *H. sanguineus*. Treatments with different letters are significantly different.63

Figure 2. Effect of *Hemigrapsus sanguineus* chemical cue and presence, and time of day, on the behavior of *Littorina littorea*. The mean response of *L. littorea* behavior was averaged across A) time of day, and B) treatment...64

Figure 3. Effect of tidal height on the predation rate on *Hemigrapsus sanguineus*. FE = fully enclosed cage, OT = open top cage, C = control...63
CHAPTER 1

EPiphyte and Herbivore Interactions
Impact Recruitment in a Marine Subtidal System

Nicole E. Rohr *,1, Carol S. Thornber1, and Emily Jones1,2

1Dept. of Biological Sciences, University of Rhode Island
120 Flagg Rd, Kingston, RI 02881
2Dept. of Biology, San Diego State University
5500 Campanile Dr, San Diego, CA 92182
(* author for correspondence: email: nrohr@my.uri.edu)
Manuscript published in Aquatic Ecology (2011) 45: 213-219
Abstract

Marine assemblages are influenced by the rate and timing of species settlement and recruitment. Both abiotic factors and biotic interactions can impact recruitment rates of marine species in a variety of systems. However, the impacts of species which recruit at the same time upon each other are less well understood. We investigated the relationship between the recruitment of *Lacuna vincta*, a small (< 6 mm shell diameter) marine snail, and two species of algal epiphytes, the native *Ceramium virgatum* and the invasive *Neosiphonia harveyi*, in the shallow subtidal zone of Narragansett Bay, Rhode Island. All three species exhibit peak recruitment densities during two months in the summer. We found that the presence of algal epiphytes facilitates the recruitment rate of *L. vincta*, regardless of the epiphyte species composition. We also found a positive relationship between the number of *L. vincta* present and epiphyte recruitment, which is disproportionately driven by higher recruitment of *N. harveyi* than *C. virgatum*.

Understanding recruitment dynamics and interactions is vital to effectively mitigate the effects of and adaptations to changes due to the establishment of non-native species.

Introduction

Recruitment is a key process in the population dynamics of many marine species (Bertness et al. 1992, Gaines & Bertness 1992, Miron et al. 1995, White 2007). Abiotic and biotic factors that influence settlement, and subsequent recruitment, have been examined in a variety of marine systems, including coral reefs (Steele et al. 1998, Schmitt & Holbrook 2000, Mumby et al. 2007), intertidal zones (Osman & Whitlatch 1995, Gribben et al. 2009b), and the marine Antarctic (Siegel & Loeb 1995). The presence or
absence of other macrobenthic species on a suitable substratum is one biotic factor that may influence larval settlement dynamics (Rodriguez et al. 1993, Huggett et al. 2005).

One group of macrobenthic species that can influence larval settlement is epiphytic macroalgae (Hall & Bell 1993, Swanson et al. 2006). Epiphytic macroalgae are small, often filamentous species that live attached to larger host macroalgal species. Algal epiphytes can increase the structural complexity of their host algal species, which may, in turn, increase the suitability of the host as habitat for small invertebrates, including herbivores (Martin-Smith 1993). Epiphytes can provide these herbivores protection from predators while also serving as a food source (Pavia et al. 1999). The epiphytes can also buffer the associated herbivores from abiotic stress such as desiccation (Salemaa 1986, Bostrom & Mattila 1999). As a result, these herbivores may benefit the host macroalgae by preventing epibiont overgrowth (Stachowicz & Whitlatch 2005) and/or promoting algal growth via nitrogen excretion (Fong et al. 1997, Bracken et al. 2007).

Lacuna vincta (Montagu) is a small (<6 mm shell diameter), ubiquitous, herbivorous snail that feeds and lives on algae within rocky intertidal and subtidal zones of the Northwest Atlantic (Martel & Chia 1991). While *L. vincta* are occasionally found on larger host algae, it has been suggested that the small epiphytes are more accessible and palatable to the herbivores, particularly the newly recruited juveniles (Steneck & Watling 1982, Chavanich & Harris 2002). Adult *L. vincta* tend to move from algal epiphytes to the host macroalga itself.

Lacuna vincta is commonly found in shallow rocky subtidal habitats in New England from late spring to early fall (Jones & Thornber 2010). They are found in high densities during juvenile recruitment (>1200 juveniles on algae per cm² of rocky
substrate; Jones 2007). In these shallow subtidal habitats, *L. vincta* often co-occurs with two species of epiphytic filamentous red algae, the native *Ceramium virgatum* (Roth) and the invasive *Neosiphonia harveyi* (J. Bailey). *N. harveyi* has been present in New England for over 120 years (Farlow 1881) and has invaded areas in which *C. virgatum* frequently occurs (Pederson et al. 2003, Mathieson et al. 2008); both are commonly found in Narragansett Bay (Jones & Thornber 2010).

Ceramium virgatum and *Neosiphonia harveyi* individuals are present year-round but their peak recruitment period overlaps substantially (early- to mid-summer; Jones & Thornber 2010). They can account for 50-80% of algal epiphytic biomass during the summer months, a period that coincides with peak *Lacuna vincta* recruitment. The remaining biomass was composed of a variety of epiphyte species with no single species accounting for more than of 15% of the algal epiphyte biomass, on average (Jones 2007). This synchronization of recruitment events may be beneficial to *L. vincta* and host macroalgae (including the native species *Chondrus crispus* and *Fucus vesiculosus* and the invasive species *Grateloupia turuturu* and *Codium fragile ssp. tomentosoides*) and detrimental to the epiphytes; at present, however, the relationship between these epiphytes and *L. vincta* recruitment is not well described.

In this study, we investigated interactions between *Lacuna vincta* and the two epiphytes *Ceramium virgatum*, and *Neosiphonia harveyi*. Through a series of field-based manipulations conducted in Narragansett Bay, Rhode Island, we investigated three possible relationships: (1) if the presence of species specific epiphytes influences *L. vincta* recruitment and, alternatively (2) if the presence of *L. vincta* influences species specific epiphytes in terms of their recruitment and/or biomass.
Materials and Methods

Study location

We conducted our experiments in the shallow (<1m below MLLW) rocky subtidal at the University of Rhode Island’s Graduate School of Oceanography during the summer of 2008. This zone is characterized by dense stands of macroalgae, primarily Chondrus crispsus, Polysiphonia spp., and Codium fragile. We wanted to assess new epiphyte and Lacuna vincta recruitment to macroalgae; thus, we used green, nylon rope 0.5 cm in diameter and 13 cm in length (total surface area of 42.4 cm²) to mimic natural macroalgae; this rope has been shown to work well for settlement and colonization by algal epiphytes and invertebrates in this system (Jones & Thornber 2010).

We previously conducted a pilot experiment during the summer of 2007; these results indicated that there was no significant caging effect of containers (open or closed) on the recruitment of epiphytes to macroalgal mimics ($F_{2, 29} = 0.78$, $p = 0.47$, n=10).

Impacts of epiphytes on Lacuna vincta recruitment

During May of 2008, before recruitment of Ceramium virgatum and Neosiphonia harveyi occurred, we secured 60 macroalgal mimics by zip-tie to PVC rings that had been attached to the shallow subtidal with marine epoxy (A-788 Splash Zone Compound). We left the mimics in the field for one month to allow for epiphyte recruitment. One month later, when the first L. vincta appeared as recruits in the field, we removed the mimics from the intertidal and brought them to the lab in order to manipulate the epiphyte abundance and composition prior to L. vincta recruitment. We divided the 60 mimics evenly into six groups of ten each. Three groups were used for epiphyte abundance
experiments and three for epiphyte composition experiments. Mimics were removed from the field for a maximum of twelve hours and were stored in ambient temperature, flow-through seawater systems at the URI Graduate School of Oceanography when not being processed.

Within the epiphyte abundance experiments, ten mimics retained a high epiphyte density (75% - 100% of mimic surface area covered with epiphytes), ten were pruned to have a low epiphyte density (25% - 50% of mimic surface area covered with epiphytes), and ten were pruned to remove all visible epiphytes. Within the epiphyte composition experiments, we selectively pruned the mimics such that ten mimics contained only *Ceramium virgatum* epiphytes, ten had only *Neosiphonia harveyi* epiphytes, and ten had a mixture of half *C. virgatum* and half *N. harveyi* epiphytes.

We photographed each mimic and measured its wet mass after blotting off excess moisture. We then reattached the mimics in the shallow subtidal to allow for natural *Lacuna vincta* recruitment. After two weeks, we removed the mimics and brought them to the lab for analysis. We photographed each mimic, measured the total wet mass (after blotting the mimics), removed and identified all of the epiphytes, and measured the mass of each epiphyte species. We also removed and counted the *L. vincta* found on each of the mimics. Data were log transformed and analyzed for differences in *L. vincta* recruitment among epiphyte abundance and composition with one-way ANOVAs and post-hoc Tukey tests (JMP v. 7; www.sas.com).
Impacts of *Lacuna vineta* on epiphyte recruitment

During May of 2008, before yearly *Lacuna vineta* recruitment occurred, we placed one macroalgal mimic in each of 30 one-liter semi-transparent plastic containers with one-mm mesh sides and lids. These containers were then secured directly to the rocky subtidal, using the same method as described above. In the same manner, we also attached mimics in ten open containers, and ten mimics without containers, to additional PVC rings, as controls. Following the recruitment of *L. vineta* in mid June 2008, we placed 200 *L. vineta* individuals in each of ten closed containers (‘high’ treatment), 40 *L. vineta* individuals in each of ten closed containers (‘low’ treatment), and no *L. vineta* in each of ten closed containers (‘none’ treatment). These treatments were based on *L. vineta* recruitment densities measured during the summer of 2006 (Jones & Thornber 2010). *L. vineta* had free access to the mimics in the open containers and the mimics with no containers.

After *L. vineta* were added, we left the containers and mimics in the field for two weeks (this duration was based on pilot data collected in the summer of 2007) to allow for epiphyte recruitment. After these two weeks, we removed the mimics and containers, placed them in individual plastic bags to retain all *L. vineta*, and brought them to the lab. We photographed each mimic, measured its wet mass (mimics were first blotted to remove excess moisture), removed and indentified all of the epiphytes, and measured the mass of each epiphyte species. We also removed and counted the *Lacuna vineta* in the closed containers, on the mimics in the open containers, and on mimics with no
containers. Data were analyzed for a relationship between *Lacuna* density and epiphyte biomass using correlation techniques (JMP v. 7; www.sas.com).

Results and Discussion

Across all of our treatments, we found a significant positive correlation between the proportion of *Neosiphonia harveyi* (0.02 ± 0.006 grams per cm2 of macroalgal mimic) and the total epiphyte mass ($r = 0.92$, $p > 0.0001$). *Ceramium virgatum* densities were never greater than 0.005 grams per cm2 of macroalgal mimic regardless of total epiphyte mass, indicating that recruitment densities of *C. virgatum* were low, or that the *C. virgatum* that did recruit to the mimics was rapidly consumed by *L. vincta*.

There was no significant effect of epiphyte composition (*Ceramium virgatum, Neosiphonia harveyi/C. virgatum, N. harveyi*) on *Lacuna vincta* recruitment (Figure 1A, $F_{2,17} = 2.24$, $p = 0.14$); *L. vincta* recruited to all three epiphyte composition types at similar rates (mean *L. vincta* density = 0.47 ± 0.08 per cm2 of macroalgal mimic). However, there was an effect of epiphyte presence (high density, low density, and no epiphyte treatments) on *L. vincta* recruitment (Figure 1B, $F_{2,23} = 9.58$, $p = 0.0009$).

Macroalgal mimics containing high or low epiphyte densities had significantly more *L. vincta* (4.10 ± 1.16 per cm2 macroalgal mimic and 3.86 ± 0.88 per cm2 macroalgal mimic respectively) than mimics with no epiphytes present (0.67 ± 0.30 *L. vincta* per cm2 macroalgal mimic; post hoc Tukey Kramer test), and there was no significant difference between the high and low epiphyte densities. Data are means ± 1 SE.
Figure 1. Effect of epiphytes on recruitment of *L. vincta*. (A) There was no difference in *L. vincta* recruitment among epiphyte composition treatments: *C. virgatum, N. harveyi/C. virgatum*, and *N. harveyi* (p = 0.1336). (B) There is a significant difference in *L. vincta* recruitment among macroalgal mimics with varying densities (p = 0.0009, post hoc Tukey Kramer tests); significant results are indicated. All data are means ± 1 SE.

Overall, we found a significant positive correlation between the number of *Lacuna vincta* present and the total mass of epiphytes (the most abundant species being *Neosiphonia harveyi* and a mix of juvenile and cryptic *Polysiphonia* spp. that could not be identified to the species level) that recruited to macroalgal mimics in all treatments (Figure 2A, r = 0.5, p = 0.0058). Unknowingly, some extremely small planktonic *L. vincta* larvae were able to pass through the mesh covering of the containers: recruitment
by these ‘accidental’ individuals produced a range of *L. vincta* densities in our closed buckets that reached 5x’s the level of our stocking density. Due to this, we examined the relationship between the number of *L. vincta* and epiphyte density in all of the treatments. When *N. harveyi* and *Ceramium virgatum* were analyzed individually, we found a weak but significant, positive relationship between the number of *L. vincta* and *N. harveyi* recruitment (Figure 2B, $r = 0.46, p = 0.0026$) but no significant relationship between *L. vincta* and *C. virgatum* (Figure 2C, $r = 0.26, p = 0.14$).

Our results support the hypothesis that *Lacuna vincta* recruitment is influenced by the presence of epiphytes, and lend support to the growing body of evidence on the importance of biotic interactions in recruitment dynamics. This relationship may be explained, in part, by protection from predators provided by the epiphytes’ three-dimensional structure (Williams et al. 2002, Henninger et al. 2009). There may be additional interactions taking place on a shorter time frame than our two-week experiments, but we are primarily concerned with longer-scale, community-wide impacts that persist and ultimately shape the intertidal algal community.

Alternatively, epiphytes may provide a source of food for *L. vincta*. Prior feeding studies in our study location have shown that *L. vincta* preferentially consume native *Ceramium virgatum* over invasive *Neosiphonia harveyi* (Jones & Thornber 2010), even though we found that *L. vincta* recruit to both at the same rates. Chemical defenses in algae can also play a role in herbivore food preferences and selection (Hay & Fenical 1988, Erickson et al. 2006, Lyons et al. 2007); whether defense compounds are present in *Ceramium virgatum* and *Neosiphonia harveyi* is, however, currently unknown. Our data
show correlative support that there is no reciprocal effect of *L. vineta* on epiphyte recruitment, but further research is needed in this area.

Figure 2 Relationship between *Lacuna vineta* density and epiphyte recruitment. There is a significant positive correlation between the number of *L. vineta* present and (A) the mass of all epiphytes on each macroalgal mimic (*r* = 0.50, *p* = 0.0058) as well as (B) the mass of *N. harveyi* (*r* = 0.46, *p* = 0.0026) on each macroalgal mimic in closed containers.
Grazers play an important role in controlling epiphyte densities in many marine habitats, including subtidal rocky reefs (Heck Jr. & Valentine 2006, Jaschinski & Sommer 2008). On rocky shores, grazers are also important in controlling algal growth, and elevated levels of herbivory can increase species diversity (Benedetti-Cecchi 2000, Noel et al. 2008). In coastal areas with subtidal seagrass beds, epiphytes settling on seagrass blades can outcompete the seagrass for resources and eventually cause a decline of seagrass beds (Valiela et al. 1997, Drake et al. 2003, Hauxwell et al. 2003, Brush & Nixon 2004, Hays 2005). As non-native species continue to become established in coastal marine communities at unprecedented rates (Cohen & Carlton 1998, Grosholz et al. 2000, Grosholz 2002), it is important to understand how these new species could influence recruitment and survival rates of native and other non-native species (Bownes & McQuaid 2009, Gribben et al. 2009b).

It is generally assumed that invasive algae have negative effects on native communities and biodiversity, which is true in many cases (Williams & Smith 2007), but there are instances where invasive algae have either had positive or no effects on native organisms (Gribben & Wright 2006, Gribben et al. 2009a, Jones & Thornber 2010). We found that Lacuna vincta recruit in higher densities to macroalgal mimics where epiphytes are present. We also found a positive correlation between the abundance of L. vincta and the density of the invasive Neosiphonia harveyi, but no correlation between abundance of L. vincta and the density of the native Ceramium virgatum. When L. vincta were present, we found low densities of C. virgatum and evidence of severe grazer damage; this is likely because L. vincta preferentially consume C. virgatum (Jones & Thornber 2010). Thus, our data indicate that N. harveyi may facilitate L. vincta
populations by providing a more complex habitat structure; this may then have a
negative, indirect impact on *C. virgatum* density. Determining specific interactions for
individual species and communities can be critical to properly mitigating the effects of
these species and adapting to the constantly changing marine environment.
Acknowledgements

We thank C. Donahue, E. Blair, E. Field, J. Burkhardt, A. Viveros, and M. Guidone for their assistance in the lab and field; and E. Preisser, L. Ingwell, and three anonymous reviewers for valuable comments on a previous version of this manuscript. This research was funded by the University of Rhode Island; an NSF IGERT (grant number 0504103 to the University of Rhode Island Coastal Institute) and a Sounds Conservancy Grant (Quebec-Labrador Foundation) to N. Rohr; C. Thornber received funding from Rhode Island Sea Grant, NOAA (BayWindow), the URI Coastal Fellows Program, and RI EPSCoR.
Literature Cited

Benedetti-Cecchi L (2000) Predicting direct and indirect interactions during succession in a mid-littoral rock shore assemblage. Ecological Monographs 70:45-72

Bertness MD, Gaines SD, Stephens EG, Yund PO (1992) Components of recruitment in populations of the acorn barnacle Semibalanus balanoides (Linnaeus). Journal of Experimental Marine Biology and Ecology 156:199-215

Bostrom C, Mattila J (1999) The relative importance of food and shelter for seagrass-associated invertebrates: a latitudinal comparison of habitat choice by isopod grazers. Oecologia 120: 162-170.

Bownes SJ, McQuaid CD (2009) Mechanisms of habitat segregation between an invasive and an indigenous mussel: settlement, post-settlement mortality and recruitment. Marine Biology 156:991-1006

Bracken ME, Gonzalez-Dorantes CA, Stachowicz JJ (2007) Whole-community mutualism: associated invertebrates facilitate a dominant habitat-forming seaweed. Ecology 88:2211-2219

Brush MJ, Nixon SW (2004) Direct measurements of light attenuation by epiphytes on eelgrass Zostera marina. Marine Ecology Progress Series 238:73-79

Chavanich S, Harris LG (2002) The influence of macroalgae on seasonal abundance and feeding preferences of a subtidal snail, Lacuna vincta (Montagu) (Littorinidae) in the Gulf of Maine. Journal of Molluscan Studies 68:73-78

Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555-558
Drake LA, Dobbs FC, Zimmerman RC (2003) Effects of epiphyte load on optical properties and photosynthetic potential of the seagrasses *Thalassia testudinum* Banks ex Konig and *Zostera marina* (L.). Limnology and Oceanography 48:456-463

Erickson AA, Paul VI, Van Alstyne KL, Kwiatkowski LM (2006) Palatability of macroalgae that use different types of chemical defenses. Journal of Chemical Ecology 32:1883-1895

Fong P, Desmond JS, Zedler JB (1997) The effect of a horn snail on *Ulva expansa* (Chlorophyta): consumer or facilitation of growth? Journal of Phycology 33:353-359

Fretter V, Manly R (1977) Algal associations of *Tricola pullus*, *Lacuna vincta* and *Cerithiopsis tubercularis* (Gastropoda) with special reference to the settlement of their larvae. Journal of the Marine Biological Association of the United Kingdom 57:999-1017

Gaines SD, Bertness MD (1992) Dispersal of juveniles and variable recruitment in sessile marine species. Nature 360:579-580

Gribben PE, Byers JE, Clements M, McKenzie LA, Steinberg PD, Wright JT (2009a) Behavioural interactions between ecosystem engineers control community species richness. Ecology Letters 12:1127-1136

Gribben PE, Wright JT (2006) Invasive seaweed enhances recruitment of a native bivalve: roles of refuge from predation and the habitat choice of recruits. Marine Ecology Progress Series 318:177-185
Gribben PE, Wright JT, O'Connor WA, Doblin MA, Eyre B, Steinberg PD (2009b) Reduced performance of native infauna following recruitment to a habitat-forming invasive marine alga. Oecologia 158:733-745

Grosholz ED (2002) Ecological and evolutionary consequences of coastal invasions. Trends in Ecology and Evolution 17:22-27

Grosholz ED, Ruiz GM, Dean CA, Shirley KA, Maron JL, Connors PG (2000) The impacts of a nonindigenous marine predator in a California bay. Ecology 81:1206-1224

Hall MO, Bell SS (1993) Meiofauna on the seagrass Thalassia testudinum: population characteristics of harpacticoid copepods and associations with algal epiphytes. Marine Biology 116:137-146

Hauxwell J, Cebrian J, Valiela I (2003) Eelgrass Zostera marina loss in temperate estuaries: relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series 247:59-73

Hay ME, Fenical W (1988) Marine plant-herbivore interactions: the ecology of chemical defense. Annual Review of Ecology and Systematics 19:111-145

Hays CG (2005) Effect of nutrient availability, grazer assemblage and seagrass source population on the interaction between Thalassia testudinum (turtle grass) and its algal epiphytes. Journal of Experimental Marine Biology and Ecology 314:53-68

Heck Jr. KL, Valentine JF (2006) Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology 330:420-436
Henninger TO, Froneman PW, Richoux NB, Hodgson AN (2009) The role of macrophytes as a refuge and food source for the estuarine isopod _Exosphaeroma hylocoetes_ (Barnard, 1940). Estuarine, Coastal and Shelf Science 82:285-293

Huggett MJ, Nys Rd, Williamson JE, Heasman M, Steinberg PD (2005) Settlement of larval blacklip abalone, _Haliotis rubra_, in response to green and red macroalgae. Marine Biology 147:1155-1163

Jaschinski S, Sommer U (2008) Functional diversity of mesograzers in an eelgrass-epiphyte system. Marine Biology 154:475-482

Jones E (2007) Impacts of habitat-modifying invasive macroalgae on epiphytic algal communities. University of Rhode Island

Jones E, Thornber CS (2010) Effects of habitat-modifying invasive macroalgae on epiphytic algal communities. Marine Ecology Progress Series 400:87-100

Lyons DA, Van Alstyne KL, Scheibling RE (2007) Anti-grazing activity and seasonal variation of dimethylsulfiniopropionate-associated compounds in the invasive alga _Codium fragile_ spp. _tomentosoides_. Marine Biology 153:179-188

Martel A, Chia F-S (1991) Drifting and dispersal of small bivalves and gastropods with direct development. Journal of Experimental Marine Biology and Ecology 150:131-147

Martin-Smith KM (1993) Abundance of mobile epifauna: the role of habitat complexity and predation by fishes. Journal of Experimental Marine Biology and Ecology 174:243-260

Mathieson AC, Pederson J, Dawes CJ (2008) Rapid assessment surveys of fouling and introduced seaweeds in the Northwest Atlantic. Rhodora 110:406-478
Miron G, Boudreau B, Bourget E (1995) Use of larval supply in benthic ecology: testing correlations between larval supply and larval settlement. Marine Ecology Progress Series 124:301-305

Mumby PJ, Harborne AR, Williams J, Kappel CK, Brumbaugh DR, Micheli F, Holmes KE, Dahlgren CP, Paris CB, Blackwell PG (2007) Trophic cascade facilitates coral recruitment in a marine reserve. Proceedings of the National Academy of Science USA 104:8362-8367

Noel LM-LJ, Hawkins SJ, Jenkins SR, Thompson RC (2008) Grazing dynamics in intertidal rockpools: connectivity of microhabitats. Journal of Experimental Marine Biology and Ecology 370:9-17

Osman RW, Whitlatch RB (1995) Predation on early ontogenetic life stages and its effect on recruitment into a marine epifaunal community. Marine Ecology Progress Series 117:111-126

Pavia H, Carr H, Aberg P (1999) Habitat and feeding preferences of crustacean mesoherbivores inhabiting the brown seaweed Ascophyllum nodosum (L.) Le Jol. and its epiphytic macroalgae. Journal of Experimental Marine Biology and Ecology 236:15-32

Pederson J, Bullock R, Carlton J, Dijkstra J, Dobroski N, Dyrnyda P, Fisher R, Harris L, Hobbs N, Lambert G, Lazo-Wasem E, Mathieson A, Miglietta M-P, Smith J, III JS, Tyrrell M (2003) Marine Invaders in the Northeast: Rapid assessment survey of non-native and native marine species of floating dock communities, August 2003, Massachusetts Institute of Technology
Rodriguez SR, Ojeda FP, Inestrosa NC (1993) Settlement of benthic marine invertebrates. Marine Ecology Progress Series 97:193-207

Salemaa H (1986) Breeding biology and microhabitat utilization of the intertidal isopod *Idotea granulosa* Rathke, in the Irish Sea. Estuarine, Coastal and Shelf Science 22: 335-355.

Schmitt RJ, Holbrook SJ (2000) Habitat-limited recruitment of coral reef damselfish. Ecology 81:3479-3494

Siegel V, Loeb V (1995) Recruitment of Antarctic krill *Euphausia superba* and possible causes for its variability. Marine Ecology Progress Series 123:45-56

Stachowicz JJ, Whitlatch RB (2005) Multiple mutualists provide complementary benefits to their seaweed host. Ecology 86:2418-2427

Steele MA, Forrester GE, Almany GR (1998) Influences of predators and conspecifics on recruitment of a tropical and temperate reef fish. Marine Ecology Progress Series 172:115-125

Steneck RS, Watling L (1982) Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Marine Biology 68:299-319

Swanson RL, Nys Rd, Huggett MJ, Green JK, Steinberg PD (2006) *In situ* quantification of a natural settlement cue and recruitment of the Australian sea urchin *Holopneustes purpurascens*. Marine Ecology Progress Series 314:1-14

Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42:1105-1118
White JW (2007) Spatially correlated recruitment of a marine predator and its prey shapes the large-scale pattern of density-dependent prey mortality. Ecology Letters 10:1054-1065

Williams BS, Hughes JE, Hunter-Thomson K (2002) Influence of epiphytic algal coverage on fish predation rates in simulated eelgrass habitats. Biological Bulletin 203:248-249

Williams SL, Smith JE (2007) A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology, Evolution, and Systematics 38:327-359
CHAPTER 2

SPATIAL AND TEMPORAL DISTRIBUTIONS OF THE INVASIVE CRAB
HEMIGRAPSUS SANGUINEUS AND RECOMMENDATIONS FOR LONG-TERM
SAMPLING METHODS

Nicole E. Rohr1, Kenneth B. Raposa2, and Carol S. Thornber1*

1Dept. of Biological Sciences, University of Rhode Island
120 Flagg Rd, Kingston, RI 02881

2Narragansett Bay National Estuarine Research Reserve
55 South Reserve Drive, Prudence Island, RI 02872

(* author for correspondence: email: thornber@uri.edu)

Manuscript in preparation for publication in Environmental Monitoring and Assessment
Abstract

Invasive species are becoming established in coastal estuaries at high rates and can create severe consequences for their associated abiotic and biotic environments, as well as the coastal communities that depend on them. Long-term monitoring can be used to search for introduced and invasive species and, if containment is not possible, to understand the invasive population's trends, including their interaction with other organisms. As an example, *Hemigrapsus sanguineus* is a highly invasive crab that is abundant on intertidal cobble beaches from North Carolina to Maine. We used a series of monthly surveys in Narragansett Bay, RI, to determine that using quadrats to sample intertidal crabs is more accurate and efficient than using semi-permanent trays buried in the substrate. We found peak densities of *H. sanguineus* in the early summer and early fall months, with the summer peak driven by small, juvenile crabs. Densities also tended to be highest in the northern section of Narragansett Bay and declined toward the mouth of this estuary. These surveys provide a solid foundation for long-term monitoring of this invasive species and can provide valuable context for future scientific experiments.

Introduction

Marine invasive species commonly occur in coastal waters, where they can have serious ecological and economic impacts (Carlton 1992, Carlton & Geller 1993, Cohen & Carlton 1998, Carlton & Cohen 2003, Molnar et al. 2008). Invasive species may experience lower rates of predation than native species, be superior competitors, and may cause declines in native biodiversity (Mack et al. 2000, Keane & Crawley 2002, Callaway & Ridenour 2004, Vermeij et al. 2009). Invasive species can also facilitate the
recruitment and survival of native species, but the long-term benefits of these facilitative interactions are unclear (Gribben & Wright 2006, Rodriguez 2006). The most effective manner to avoid the negative impacts of invasive species is to prevent their introduction and spread. This can be accomplished through regulation of the procurement, maintenance, and disposal of nonnative organisms that are intentionally brought into new areas for accepted uses (such as the aquarium trade; Cohen & Carlton 1997, Padilla & Williams 2004, Weigle et al. 2005), and treatment of known vectors such as open ocean ballast water for ships. However, even a combination of these prevention measures is not 100% effective, and the next line of defense against the establishment and spread of invasive species is monitoring and early detection (Simberloff et al. 2005).

Invasive species surveillance typically occurs in areas where species are most likely to become established (Buchan & Padilla 2000), but this method is only effective when there is sufficient knowledge of environmental factors that can impact invasive species and may overlook additional locations that introduced species can inhabit. Long-term environmental monitoring can provide information on the biotic and abiotic characteristics of potential invasion sites. Researchers consistently conducting surveys are more likely to notice changes to the biotic community and identify nonnative species before they become established, making control and/or eradication viable options (Mehta et al. 2007). However, the impacts of eradication should be carefully assessed in order to avoid unintended consequences (Bergstrom et al. 2009). Even if eradication does not occur, continuation of long-term monitoring can provide critical information on how the invasive species interacts with and impacts the native community, and changes can be
better anticipated and/or mitigated (Lovett et al. 2007, Henry et al. 2008, Lindenmayer & Likens 2010).

Long-term environmental monitoring can provide extremely useful information but is often quite costly (Caughlan & Oakley 2001) and difficult to fund (Lodge et al. 2006, Lovett et al. 2007). Even so, federal agency mandates prioritize long-term data collection, and state and local agencies frequently incorporate long-term monitoring into their environmental management plans. For example, the Aquatic Nuisance Species Task Force was formed in Rhode Island by the Department of Environmental Management in response to the Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990 (P.L. 101-646). The Task Force developed the Rhode Island Aquatic Invasive Species Management Plan. Monitoring is one of the seven strategies of this plan, and RIDEM partners with other agencies, including the Narragansett Bay National Estuarine Research Reserve (NBNERR), and non-governmental organizations to carry out the plan (Rhode Island Aquatic Invasive Species Management Plan, 2007).

The Asian shore crab, *Hemigrapsus sanguineus*, is a highly invasive marine species that is too abundant to control or eradicate in its invaded range. *H. sanguineus* was first discovered off the coast of New Jersey in 1988 (McDermott 1991) and has since become common along the east coast of the United States from North Carolina to Maine (Stephenson et al. 2009). *H. sanguineus* overlaps with the invasive European green crab, *Carcinus maenas*, on cobble beaches. *C. maenas* has been present on U.S. Atlantic shorelines for approximately 200 years and has become an important predator (Carlton & Cohen 2003). *C. maenas* has been a key species in New England intertidal and shallow subtidal communities and has both lethal and non-lethal impacts on *Littorina littorea*, an
abundant herbivore (Menge 1976, Lubchenco & Menge 1978, Trussell et al. 2003, Bertness et al. 2004, Trussell et al. 2006).

Hemigrapsus sanguineus frequently outcompetes *Carcinus maenas* for both available habitat and preferred prey (Jensen et al. 2002, Griffen 2007, 2011), and it may have a lower mortality rate due to predators a lack of predators and/or the substrate complexity of cobble beaches, which provides refuge from predators (Kim & O'Connell 2007, Brousseau et al. 2008, Heinonen & Auster 2012). Within the past decade, *H. sanguineus* has replaced *C. maenas* as the most abundant crab in coastal New England, including Narragansett Bay, RI (Lohrer & Whitlatch 2002, N. Rohr unpubl. data).

In order to better understand the population dynamics of *Hemigrapsus sanguineus*, we conducted monthly crab surveys in the intertidal zone of cobble beaches at numerous sites in Narragansett Bay, Rhode Island. We investigated: 1) two sampling methods (trays and quadrats) to determine which was more reliable, unbiased, and cost-effective; 2) the patterns of the abundance and size distribution of *H. sanguineus* in NBNERR on Prudence Island, RI; and 3) the patterns of the abundance and size distribution of *H. sanguineus* throughout Narragansett Bay. Our findings clarify spatial and temporal patterns of *H. sanguineus* in Narragansett Bay, help develop effective monitoring strategies, and serve as a baseline for continued long-term monitoring efforts. Detailed demographic profiles such as these can also provide context for manipulative experiments by scientific researchers, and inform decisions by local resource managers who strive to protect native species while containing invasives.
Material and Methods

General survey methods

We conducted all surveys on intertidal cobble and small boulder beaches (diameter 20-60 cm; hereafter referred to as ‘cobble’) in Narragansett Bay, RI (see subsequent sections for particular survey descriptions). All sites were readily accessible from the landward side and were open to the general public. Surveys were conducted monthly during spring low tides ± two hours along a transect parallel to, and just above, the low water line, and sample areas (see subsequent sections) were randomly selected along a 30m transect using a random number generator. We collected all crabs ≥ 4mm carapace width from each sample area. We identified each crab to the species level, measured its carapace width (mm), recorded its sex, and, if the crab was female, recorded whether or not it was gravid. For *Hemigrapsus sanguineus*, all crabs 4mm to 9mm carapace width were recorded as juveniles (for this size range, sex was not able to be determined visually), while crabs ≥ 10 mm carapace width were recorded as adult and either male or female based on sexual dimorphism in the abdomen. Over 99% of the crabs collected from each site were *H. sanguineus* (N. Rohr, unpubl. data); therefore, we only analyzed data on this species.

Survey methods comparison

In conjunction with NBNERR’s ongoing long-term biological monitoring program (Raposa & Durant 2011), we established long-term monitoring sites in May 2007 at four intertidal cobble beaches on Prudence Island in Narragansett Bay, RI: Bear Point, Nag Creek, Stone Wharf, and T-Wharf (Figure 1). At each site, we randomly
selected three sample areas along a 30m transect at the spring low tide line, parallel to the shore. We buried one plastic bread tray (65cm x 55cm, 0.36m²) lined with 3mm mesh at each of the sample areas. To bury the trays, we removed all of the cobble from the area, dug 10cm deep into the underlying sand/silt substrate, placed the tray in the hole so that the end edges of the tray were visible, and then replaced the displaced sediment and cobble in the tray (Riggs 2003). We visited each site monthly from June 2007 through June 2008. Each month, after the crabs were collected from the trays, we returned the cobbles to the tray and released the crabs back onto the beach.

We conducted a concurrent survey using quadrat sampling in June and July 2007 at the same four sites. This was to determine any potential sampling bias due to monthly cobble removal and re-addition. Each month, we sampled three 1m² quadrats per site randomly placed along a 30m transect parallel to the water line during spring low tides. We removed all of the crabs from the sampling area by removing all cobble from the quadrat until the underlying coarse sand substrate was completely revealed. After we removed the cobble and captured and measured the crabs (see General Survey Methods), we replaced the cobbles and released the crabs in the same location.

The number of *Hemigrapsus sanguineus* collected from each tray was standardized to crabs m⁻². *H. sanguineus* density data was square root transformed. Data were analyzed for differences in density and mean carapace width between method types (tray and quadrat), among sites, and among months using three-way fixed factor ANOVAs (JMP v.9, www.sas.com). Significant differences were analyzed using a Student’s *t* or Tukey post-hoc analysis, as appropriate.
Figure 1 Mean *Hemigrapsus sanguineus* density on cobble intertidal beaches throughout Narragansett Bay, Rhode Island, in August 2008

Prudence Island surveys

To quantify the variability of the density and body size of *Hemigrapsus sanguineus*, we conducted quadrat surveys (described above) at our four Prudence Island sites from June through October 2008 and June through November 2009. We selected
these months based on our observed crab density patterns from June 2007 through June 2008; we included months that typically had the greatest densities of *H. sanguineus*. Data were analyzed for differences in density and mean carapace width among months and sites using two-way fixed factor ANOVAs. Significant differences were analyzed using Tukey post-hoc analyses.

Narragansett Bay surveys

In May 2008, we established 12 survey sites throughout Narragansett Bay, including our prior four Prudence Island sites: Bear Point, Colt State Park, Freebody Street, Fort Wetherill, Low Lane, Mackerel Cove, Nag Creek, Potter Cove, Roger Williams University, Sabin Point, and Save The Bay (Figure 1). These sites were randomly selected from known, publically accessible, cobble intertidal sites. We conducted monthly quadrat surveys (described above) at each site during spring low tides, through October 2008. Data were analyzed for differences in density and mean carapace width among months and sites using two-way fixed factor ANOVAs. Significant differences were analyzed using Tukey post-hoc analyses.

Population demographics

We analyzed the data from our ‘‘Narragansett Bay Surveys’’ for differences between numbers of males and females, adults and juveniles, and gravid and not gravid females to better understand intrapopulation patterns. Data were analyzed using contingency analyses among months and sites with correspondence analyses to evaluate groupings. Results are expressed as percentages to more clearly show comparisons.
Results

Survey methods comparison

The density of *H. sanguineus* was significantly higher when sampled with the tray method than the quadrat method (52 ± 7 vs. 23 ± 3 crabs m\(^{-2}\); Figure 2, Table 1). We found higher densities of *H. sanguineus* in June 2007 than July 2007, which is consistent with temporal patterns seen across additional sites and years (described below). When combined across survey methods, we also significantly fewer *H. sanguineus* at T-Wharf (16 ± 4 crabs m\(^{-2}\)) than at Nag Creek or Stone Wharf (41 ± 6 crabs m\(^{-2}\) and 55 ± 10 crabs m\(^{-2}\), respectively).

Table 1 ANOVA results for analyses examining the impact of month, site, and sampling method on *Hemigrapsus sanguineus* density and carapace width.

Treatment Effect	df	SS	F-value	P-value
Density				
Month	1	2365.39	5.94	0.0208
Site	2	9247.54	11.60	0.0002
Method	1	8743.85	21.95	< 0.0001
Month*Site	2	112.65	0.14	0.8687
Month*Method	1	2795.38	7.02	0.0126
Site*Method	2	2421.89	3.04	0.0623
Month*Site*Method	2	190.73	0.2394	0.7886
Error	31	12351.60		

Carapace With				
Month	1	2.05	0.42	0.5234
Site	2	37.27	3.78	0.0339
Method	1	53.77	10.91	0.0024
Month*Site	2	19.14	1.94	0.1605
Month*Method	1	9.51	1.93	0.1746
Site*Method	2	9.45	0.96	0.3943
Month*Site*Method	2	19.57	1.99	0.1544
Error	31	152.75		

Hemigrapsus sanguineus in trays had a significantly larger mean carapace width (15.64 ± 0.23 mm) than from quadrats (14.13 ± 0.21 mm; Figure 2, Table 1). The mean
carapace width did not differ between months, and there were no significant interaction effects. We found smaller *H. sanguineus* at Stone Wharf (13.93 ± 0.24 mm) than at either Nag Creek (15.23 ± 0.21 mm) or T-Wharf (16.05 ± 0.56 mm).

![Graph showing comparison of tray and quadrat survey sampling methods for *Hemigrapsus sanguineus*](image)

Figure 2 Comparison of 2007 tray and quadrat survey sampling methods for *Hemigrapsus sanguineus*: A) density and B) mean carapace width. A * indicates a significant difference of $p < 0.05$.

Prudence Island surveys

Mean *Hemigrapsus sanguineus* density peaked during June and September 2008 (50 ± 8 crabs/m2 and 54 ± 8 crabs/m2, respectively), and June and August 2009 (26 ± 6 crabs/m2 and 46 ± 11 crabs/m2, respectively) before declining during October/November of each year (Figure 3). There were significant differences in mean *H. sanguineus* densities among months and sites ($F_{9,80} = 5.25$, $p < 0.0001$ and $F_{3,80} = 4.09$, $p = 0.0094$, respectively) with a significant interaction ($F_{27,80} = 2.16$, $p = 0.0043$).
November 2009 had the lowest density (9 ± 3 crabs m⁻²). When averaged across months, Bear Point had the highest mean density of *H. sanguineus* (45 ± 6 crabs m⁻²) and Potter’s Cove had the lowest density (28 ± 6 crabs m⁻²), with Nag Creek and T-Wharf not significantly different from any of the sites (41 ± 4 crabs m⁻² and 31 ± 4 crabs m⁻², respectively).

Figure 3 *Hemigrapsus sanguineus* density from Prudence Island, Rhode Island at four long-term invasive species monitoring sites

Due to crab growth, mean carapace width of *Hemigrapsus sanguineus* varied significantly among months (*F₉,₈₀ = 30.72, p < 0.0001*) and sites (*F₃,₈₀ = 51.32, p < 0.0001*), with a significant interaction (*F₂₇,₈₀ = 8.09, p < 0.0001*). The mean carapace width in June and July was greatly influenced by a large number of juvenile crabs (4 mm to 9 mm carapace width); this frequency distribution transitioned to more mid-sized crabs in August and September (Figure 4). The largest *H. sanguineus* were found at Potter’s Cove and T-Wharf (13.72 ± 0.14 and 13.44 ± 0.17 mm carapace width), while crabs at
Bear Point and Nag Creek were smaller (10.97 ± 0.11 and 10.51 ± 0.10 mm carapace width, respectively).

![Bar chart showing carapace width distribution for June, July, August, and September 2008](chart.png)

Figure 4 Mean *Hemigrapsus sanguineus* carapace width, by month, at Bear Point, Prudence Island, Rhode Island.

Narragansett Bay surveys

We found similar monthly trends in *Hemigrapsus sanguineus* density across the broad spatial scale of Narragansett Bay. We found significant differences in crab density among months and sites ($F_{4,120} = 13.13$, $p < 0.0001$ and $F_{11,120} = 8.47$, $p < 0.0001$, respectively) with a significant interaction ($F_{44,120} = 3.99$, $p < 0.0001$; Figure 1).

Densities of *H. sanguineus* were highest in June 2008 (59 ± 9 crabs m\(^{-2}\)) and slightly lower during July, August, and September (31 ± 4, 39 ± 4 and 39 ± 6 crabs m\(^{-2}\), respectively). We found the lowest density of *H. sanguineus* in October 2008 at all sites.
(mean 22.80 ± 3.93 crabs m$^{-2}$). When Sabin Point is excluded, which is located in the Providence River at the northern end of the Bay (Figure 1), $H. sanguineus$ densities generally decreased from north to south ($R^2 = 0.5603$, $p = 0.0125$; Figure 5).

Figure 5 A latitudinal gradient of *Hemigrapsus sanguineus* mean density in Narragansett Bay, averaged from June through October 2008.

We found significant differences in mean carapace width among months ($F_{4,118} = 18.40$, $p < 0.0001$) and sites ($F_{11,118} = 3.27$, $p = 0.0006$) with an interaction ($F_{44,118} = 2.20$, $p = 0.0004$). The mean carapace width of *H. sanguineus* was lowest in June and July ($9.32 ± 0.07, 9.27 ± 0.10$ mm, respectively) and increased monthly thereafter; mean width in October 2008 was $12.59 ± 0.14$ mm (Figure 6).
Figure 6 *Hemigrapsus sanguineus* carapace width histograms at two representative sites, Colt State Park and Freebody Street, during June 2008 and September 2008.

Population demographics

We found more male than female *Hemigrapsus sanguineus* during all months across all sites. Males comprised no less than 56% of the population and peaked at 77%
We found significant differences in the ratio of males to females among sites ($\chi^2 = 48.21$, $p < 0.0001$) and months ($\chi^2 = 22.97$, $p = 0.0001$). We found a higher ratio of males to females in June, July, and September 2008 than in August and October. Freebody Street had an average of 77% adult male *H. sanguineus* over all months, which was 10% higher than any other site.

There were significantly more juvenile (60%) *Hemigrapsus sanguineus* than adults (40%) in June and July 2008 ($\chi^2 = 691.02$, $p < 0.0001$, Figure 7B). During the later months, juveniles accounted for 20-30% of the population. We also found significant differences in the ratio of juvenile to total adult *H. sanguineus* among sites ($\chi^2 = 313.33$, $p < 0.0001$). When averaged across months, the percentage of juveniles in the *H. sanguineus* population ranged from 24% at Potter’s Cove to 62% at Freebody Street.

The percentage of gravid female *H. sanguineus* was significantly different among months ($\chi^2 = 207.27$, $p < 0.0001$), with 28% of the female population gravid in August 2008 (Figure 7C). The other four months each had less than 10% gravid females. The percentage of gravid female *H. sanguineus* was also significantly different among sites when averaged across months ($\chi^2 = 150.58$, $p < 0.001$). Colt State Park had 29% gravid females and Save the Bay had 19%. The other sites ranged from zero gravid females at Fort Wetherill to 13% at T-Wharf.
Figure 7 Mean *Hemigrapsus sanguineus* population demographics of A) adult males and females, B) juveniles and total adults, and C) gravid and not gravid adult females. The numbers on the bars represent the total number of *H. sanguineus*
Discussion

Quadrat sampling is widely accepted among scientists for conducting long-term surveys of mobile organisms such as crabs that live on the benthos, (for review, see McIntyre & Eleftherou (eds) 2005). Previous sampling of these species using the quadrat method resulted in a 90-100% sampling efficiency (Lohrer and Whitlatch 2002). While the tray sampling method described here has been used for sampling crabs in other habitat types (Riggs 2003), we do not recommend it for sampling Hemigrapsus sanguineus on cobble intertidal beaches. The tray sampling method inflated crab densities over the quadrat sampling method, and was biased toward larger H. sanguineus, possibly by providing a degree of habitat complexity that protects larger crabs from predators (Lohrer et al. 2000a, Hovel & Lipcius 2001, Lohrer & Whitlatch 2002, Ochwada et al. 2009). Inclement weather also occasionally dislodged trays, and there was evidence of human removal as well. Since uneven sample sizes can inhibit data analysis (Underwood, 2004), it is preferable to utilize a reliable sampling method, such as quadrats, for long-term monitoring. However, if managers are monitoring for H. sanguineus in a previously non-invaded area, a tray may be a better option to attract crabs from a broader area and thereby more likely to detect crabs at a low density.

Along New England shorelines, Hemigrapsus sanguineus have been shown to outcompete the European green crab, Carcinus maenas, which previously was the primary competitor for food resources and space in the rocky intertidal zone (Lohrer et al. 2000b, Jensen et al. 2002, Lohrer & Whitlatch 2002, DeGraaf & Tyrrell 2004, Griffen 2007). While smaller than C. maenas, H. sanguineus can be found at densities up to 30 times higher than C. maenas (Griffen & Delaney 2007) and thus could have a greater
impact on other species. We found that densities of *H. sanguineus* peaked due to an influx of small, juvenile crabs in the early summer. This influx also resulted in a smaller mean carapace width than in later months. In the Middle Atlantic Bight, newly metamorphosed juveniles have a growth rate of approximately 0.06 mm day^{-1} (Epifanio et al. 1998). This growth rate could explain the peak in 4-9 mm carapace width juveniles, followed approximately 100 days later by a peak in 10-14 mm carapace width crabs.

Gravid females were found in Narragansett Bay, R.I. from June through September, which is consistent with *Hemigrapsus sanguineus* populations found further south (Epifanio et al. 1998, McDermott 1998). We found ovigerous females as small as 10 mm carapace width, but it was not possible to determine if these eggs were viable or successfully metamorphosed. Even though females were gravid in the summer months, we did not see the recruitment of juveniles until the following June. This is due to the cessation of growth during the coldest winter months, and sexual maturity is expected one year after metamorphosis (Epifanio et al. 1998). We found the most gravid females at two of our northern-most sites: Colt State Park and Save the Bay.

Within Narragansett Bay, we found a general increase in *Hemigrapsus sanguineus* densities as we moved north. However, this did not hold true at one location, Sabin Point, which is located in the Providence River. This could be due to a number of environmental factors including salinity, cobble size, and wave exposure. The Providence River is more heavily influenced by freshwater input from rivers and precipitation runoff from the surrounding urban areas during storm events; salinities as low as 13 psu have been reported in this area (University of Rhode Island 2001). While *H. sanguineus* can survive in salinities consistently as low as 25 psu, salinities less than 15 psu can be
physiological stressful to these crabs (Ledesma & O'Connor 2001). By contrast, typical salinity ranges in the southern portion of the Bay are 24-32 psu, and match adjacent oceanic salinity regimes (University of Rhode Island 2001). In these locations, *H. sanguineus* may be restricted by higher wave exposure than in the upper bay, either directly by preventing them from inhabiting the area or indirectly by limiting the settlement and growth of prey items (Silva et al. 2010). Sabin Point was also characterized by the smallest cobble, and there may be a positive correlation between cobble diameter and *H. sanguineus* density (K. Raposa, unpubl. data).

Biological factors also may influence the population dynamics of *Hemigrapsus sanguineus*. Settlement of *H. sanguineus* megalopae is facilitated by the presence of adult conspecifics, and developing crabs are attracted by chemical cues from adults as well as from bio-films in rocky intertidal habitats (Kopin et al. 2001, Anderson & Epifaunio 2009). Once a rocky habitat is inhabited by adult *H. sanguineus*, the settlement rate of megalopae can be exponential. Revisiting sites on a regular basis could allow managers to determine if *H. sanguineus* will eventually colonize cobble beaches that currently have low densities of crabs as more adult crabs move onto the beach. If not, then these sites may have restricted recruitment due to ecological and/or physical factors.

Our results provide a solid overview of the temporal and spatial variability in *Hemigrapsus sanguineus* population density and demographics. Because invasive species are contributing to the rapid alteration of coastal ecosystems, expanded monitoring efforts should be implemented in thoughtful and efficient manners in order to capture this change. In addition, targeted experimental research spurred by the survey patterns would also help to determine the finer intricacies of reproduction and recruitment. If the data
collected are managed, analyzed, and reported in a consistent manner, then the return on the effort and investment can be extremely high (Lindenmayer & Likens 2010).

Conclusions

Long-term environmental monitoring serves a critical role in understanding ecosystem trends that occur on yearly or decadal timescales. Our data quantify the temporal and spatial variability, distribution, and life-cycle characteristics of an invasive crab species in a highly impacted estuary. Ongoing monitoring of these sites by NBNERR will increase the knowledge base of this crab's population dynamics, community impacts, and potential for continued spread. There are many cost-effective options to conducting ongoing monitoring studies (Hauser & McCarthy 2009), including recent utilization of citizen science (Delaney et al. 2008, Conrad & Hilchey 2011) and partnering with regional researchers, local agencies, or nongovernmental organizations. This study utilized academic researchers and a local government agency to maximize time, funds, and effort.

The utility of having long-term, robust data sets has been illustrated repeatedly in ecosystems impacted by natural or anthropogenic disasters, such as the Exxon Valdez spill in 1989 or the BP Deepwater Horizon spill in 2010. A major spill occurred at the entrance of Narragansett Bay in 1989, releasing almost 300,000 gallons of home heating oil and costing $567,000 in damage to the natural environment (NOAA 2009). In these instances, long-term data served as a baseline from which to assess the damages in natural resources. In addition, long-term data sets can influence global policy, such as the now-famous ‘Keeling Curve’ that illustrates increasing carbon dioxide concentrations in
the atmosphere and its connection to global climate change (Sundquist & Keeling 2009). While no one could have predicted the significance of – or need for – these data, the commitment of researchers to long-term monitoring proved invaluable.

Invasive species have the ability to reshape intertidal marine food webs (Byrnes et al. 2007, Eastwood et al. 2007, Griffen & Delaney 2007). Prevention of the introduction of novel species is the first line of defense for protecting our coastal and estuarine ecosystems (Simberloff et al. 2005). However, once an introduction occurs, it becomes important to identify new species while there is still the opportunity to prevent their spread, understand the long-term effects of specific invasive species, and prepare for potential impacts (de Rivera et al. 2011, Grosholz et al. 2011).
Acknowledgements

We thank C. Donahue, E. Blair, C. Blewett, J. Burkhart, A. Viveros, R. Hudson, E. Field, M. Guidone, C. Newton, J. Atwood, F. Olmeta-Schult, C. Comeau, R. Dapp, K. Van Wagner, K. Morito, K. McKeton, and D. Durant for their assistance in the field. E. Preisser, G. Forrester, and S. McWilliams provided valuable edits on previous versions of this manuscript. The Narragansett Bay National Estuarine Research Reserve provided vital technical support. This research was funded by the University of Rhode Island, Rhode Island Sea Grant, an NSF IGERT (grant number 0504103 to the University of Rhode Island Coastal Institute), and a P.E.O. Scholar Award to N. Rohr. K. Raposa received funding from National Oceanic and Atmospheric Administration Operations Grant #NA06NOS4200125 (2007) and #NA07NOS4200103 (2008). This research was based upon work supported in part by the National Science Foundation EPSCoR Cooperative Agreement #EPS-1004057 and the State of Rhode Island.
References

Anderson JA, Epifaunio CE (2009) Induction of metamorphosis in the Asian shore crab *Hemigrapsus sanguineus*: characterization of the cue associated with biofilm from adult habitat. J Exp Mar Biol Ecol 382:34-39

Bergstrom DM, Lucieer A, Kiefer K, Wasley J, Belbin L, Pederson TK, Chown SL (2009) Indirect effects of invasive species removal devastate World Heritage Island. J Appl Ecol 46:73-81

Bertness MD, Trussell GC, Ewanchuk PJ, Silliman BR, Crain CM (2004) Consumer-controlled community states on Gulf of Maine rocky shores. Ecology 85:1321-1331

Brousseau DJ, Murphy AE, Enriquez NP, Gibbons K (2008) Foraging by two estuarine fishes, *Fundulus heteroclitus* and *Fundulus majalis*, on juvenile Asian shore crabs (*Hemigrapsus sanguineus*) in Western Long Island Sound. Estuaries and Coasts 31:144-151

Buchan LAJ, Padilla DK (2000) Predicting the likelihood of Eurasian watermilfoil presence in lakes, a macrophyte monitoring tool. Ecol Appl 10:1442-1455

Byrnes JE, Reynolds PL, Stachowicz JJ (2007) Invasions and extinctions reshape coastal marine food webs. PLoS ONE 2:e295

Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436-443

Carlton JT (1992) Introduced marine and esuarine mollusks of North America: an end-of-the-20th-century perspective. J Shellfish Res 11:489-505
Carlton JT, Cohen AN (2003) Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs *Carcinus maenas* and *C. aestivalis*. J Biogeogr 30:1809-1820

Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78-82

Caughlan L, Oakley KL (2001) Cost considerations for long-term ecological monitoring. Ecol Indicators 1:123-134

Cohen AN, Carlton JT (1997) Transoceanic transport mechanisms: introduction of the Chinese mitten crab, *Eriocheir sinensis*, to California. Pac Sci 51:1-11

Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555-558

Conrad CC, Hilchey KG (2011) A review of citizen science and community-based environmental monitoring: issues and opportunities. Environ Monit Assess 176:273-291

de Rivera CE, Grosholz ED, Ruiz GM (2011) Multiple and long-term effects of an introduced predatory crab. Mar Ecol Prog Ser 429:145-155

DeGraaf JD, Tyrrell MC (2004) Comparison of the feeding rates of two introduced crab species, *Carcinus maenas* and *Hemigrapsus sanguineus*, on the blue mussel, *Mytilus edulis*. Northeast Nat 11:163-167

Delaney DG, Sperling C, D., Adams CS, Leung B (2008) Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol Invasions 10:117-128
Eastwood MM, Donahue MJ, Fowler AE (2007) Reconstructing past biological invasions: niche shifts in response to invasive predators and competitors. Biol Invasions 9:397-407

Epifanio CE, Dittel AI, Park S, Schwalm S, Fouts A (1998) Early life history of *Hemigrapsus sanguineus*, a non-indigenous crab in the Middle Atlantic Bight (USA) Mar Ecol Prog Ser 170:231-238

Gribben PE, Wright JT (2006) Invasive seaweed enhances recruitment of a native bivalve: roles of refuge from predation and the habitat choice of recruits. Mar Ecol Prog Ser 318:177-185

Griffen BD (2007) Interactions between two invasive crab predators, *Carcinus maenas* and *Hemigrapsus sanguineus*, and consequences for the native community. Doctoral Thesis

Griffen BD (2011) Ecological impacts of replacing one invasive species with another in rocky intertidal areas. In: Galil BS, Clark PF, Carlton JT (eds) In the Wrong Place - Alien Marine Crustaceans: Distribution, Biology and Impacts. Springer

Griffen BD, Delaney DG (2007) Species invasion shifts the importance of predator dependence. Ecology 88:3012-3021

Grosholz ED, Lovell S, Besedin E, Katz M (2011) Modeling the impacts of the European green crab on commercial fisheries. Ecol Appl 21:915-924

Hauser CE, McCarthy MA (2009) Streamlining 'search and destroy': cost-effective surveillance for invasive species management. Ecol Lett 12:683-692
Heinonen KB, Auster PJ (2012) Prey selection in crustacean-eating fishes following the invasion of the Asian shore crab *Hemigrapsus sanguineus* in a marine temperate community. J Exp Mar Biol Ecol 413:177-183

Henry P-Y, Lengyel S, Nowicki P, Juliard R, Clobert J, Celik T, Gruber B, Schmeller DS, Babij V, Henle K (2008) Integrating ongoing biodiversity monitoring: potential benefits and methods. Biodivers Conserv 17:3357-3382

Hovel KA, Lipcius RN (2001) Habitat fragmentation in a seagrass landscape: patch size and complexity control blue crab survival. Ecology 82:1814-1829

Jensen GC, McDonald PS, Armstrong DA (2002) East meets west: competitive interactions between green crab *Carcinus maenas*, and native and introduced shore crab *Hemigrapsus* spp. Mar Ecol Prog Ser 225:251-262

Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164-170

Kim AKA, O'Connor NJ (2007) Early stages of the Asian shore crab *Hemigrapsus sanguineus* as potential prey for the striped killifish *Fundulus majalis*. J Exp Mar Biol Ecol 346:28-35

Kopin CY, Epifanio CE, Nelson S, Stratton M (2001) Effects of chemical cues on metamorphosis of the Asian shore crab *Hemigrapsus sanguineus*, an invasive species on the Atlantic Coast of North America. J Exp Mar Biol Ecol 265:141-151

Ledesma ME, O'Connor NJ (2001) Habitat and diet of the non-native crab *Hemigrapsus sanguineus* in southeastern New England. Northeast Nat 8:63-78
Lindenmayer DB, Likens GE (2010) The science and application of ecological monitoring. Biol Conserv 143:1317-1328

Lodge DM, Williams SL, MacIsaas HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for U.S. policy and management. Ecol Appl 16:2035-2054

Lohrer AM, Fukui Y, Wada K, Whitlatch RB (2000a) Structural complexity and vertical zonation of intertidal crabs, with focus on habitat requirements of the invasive Asian shore crab, Hemigrapsus sanguineus (de Haan). J Exp Mar Biol Ecol 244:203-217

Lohrer AM, Whitlatch RB, Wada K, Fukui Y (2000b) Home and away: comparisons of resource utilization by a marine species in native and invaded habitats. Biol Invasions 2:41-57

Lohrer AM, Whitlatch RB (2002) Interactions among aliens: apparent replacement of one exotic species by another. Ecology 83:719-732

Lovett GM, Burns DA, Driscoll CT, Jenkens JC, Mitchell MJ, Rustad L, Shanley JB, Likens GE, Haeuber R (2007) Who needs environmental monitoring? Front Ecol Environ 5:253-260

Lubchenco J, Menge BA (1978) Community development and persistence in a low rocky intertidal zone. Ecol Monogr 59:67-94

Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences and control. Ecol Appl 10:689-710
McDermott JJ (1991) A breeding population of the Western Pacific crab *Hemigrapsus sanguineus* (Crustacea: Decapoda: Grapsidae) established on the Atlantic coast of North America. Biol Bull Mar Biol Lab Woods Hole 181:195-198

McDermott JJ (1998) The western Pacific brachyuran (*Hemigrapsus sanguineus*: Grapsidae), in its new habitat along the Atlantic coast of the United States: geographic distribution and ecology. ICES J Mar Sci 55:289-298

McIntyre AD, Eleftherou (eds) A (2005) Methods for the study of marine benthos, Vol. Blackwell Science Ltd, Oxford, UK

Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC (2007) Optimal detection and control strategies for invasive species management. Ecol Econ 61:237-245

Menge BA (1976) Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol Monogr 46:355-393

Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485-492

NOAA (2009) Damage Assessment, Remediation, and Restoration Program. Accessed 4 March 2012. www.darrp.noaa.gov/northeast/world/index.html.

Ochwada F, Lonegran NR, Gray CA, Suthers IM, Taylor MD (2009) Complexity affects habitat preference and predation mortality in postlarval *Penaeus plebejus*: implications for stock assessment. Mar Ecol Prog Ser 380:161-171

Padilla DK, Williams SL (2004) Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front Ecol Environ 2:131-138
Raposa KB, Durant D (2011) Long-term monitoring program: Narragansett Bay National Estuarine Research Reserve.

Riggs SR (2003) Monitoring for invasive crabs in seagrass habitat in the Padilla Bay National Estuarine Research Reserve, Skagit County, Washington.

Rodriguez LF (2006) Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol Invasions 8:927-939

Silva ACF, Hawkins SJ, Boaventura DM, Brewster E, Thompson RC (2010) Use of the intertidal zone by mobile predators: influence of wave exposure, tidal phase and elevation on abundance and diet. Mar Ecol Prog Ser 406:197-210

Simberloff D, Parker IM, Windle PN (2005) Introduced species policy, management, and future research needs. Front Ecol Environ 3:12-20

Stephenson EH, Steneck RS, Seeley RH (2009) Possible temperature limits to range expansion of non-native Asian shore crabs in Maine. J Exp Mar Biol Ecol 375:21-31

Sundquist ET, Keeling RF (2009) The Mauna Loa carbon dioxide record: lessons for long-term earth observations. In: McPherson BJ, Sundquist ET (eds) Carbon Sequestration and Its Role in the Global Carbon Cycle, Book 183. AGU Ecological Monograph

Trussell GC, Ewanchuk PJ, Bertness MD (2003) Trait-mediated effects in rocky intertidal food chains: predator risk cues alter prey feeding rates. Ecology 84:629-640

Trussell GC, Ewanchuk PJ, Matassa CM (2006) The fear of being eaten reduces energy transfer in a simple food chain. Ecology 87:2979-2984
Vermeij MJA, Smith TB, Dailer ML, Smith CM (2009) Release from native herbivores facilitates the persistence of invasive marine algae: a biogeographical comparison of the relative contribution of nutrients and herbivory to invasion success. Biol Invasions 11:1463-1474

Weigle SM, Smith D, Carlton JT, Pedersons J (2005) Assessing the risk of introducing exotic species via the live marine species trade. Conserv Biol 19:213-223
CHAPTER 3

IMPACTS OF INVASIVE *HEMIGRAPSUS SANGUINEUS*

ON A NEW ENGLAND FOOD WEB

Nicole E. Rohr and Carol S. Thornber*

Dept. of Biological Sciences, University of Rhode Island

120 Flagg Rd, Kingston, RI 02881

(* author for correspondence: email: thornber@uri.edu)

Manuscript submitted to *Marine Ecology Progress Series*
ABSTRACT

Invasive species can have a variety of impacts on food web structure and interspecific interactions. On New England rocky shores, the established invasive crab *Carcinus maenas* can exhibit strong lethal and nonlethal effects on the common periwinkle *Littorina littorea*, thereby impacting the abundance and composition of marine algae, which are the lowest trophic level in this system. A more recent invasive crab, *Hemigrapsus sanguineus*, has outcompeted *C. maenas* on cobble beach habitats, but the implications of this replacement on food web dynamics are unknown. Through mesocosm studies, we found that while *H. sanguineus* has an impact on *L. littorea* behavior, it does not alter the periwinkles’ grazing rates. By contrast, the combined presence of *H. sanguineus* and *L. littorea* results in a greater decrease in algal biomass than only *L. littorea*. In field tethering experiments, we observed that abiotic but not biotic factors were the dominant force in structuring the vertical distribution of *H. sanguineus*. Overall, our data support the hypothesis that *H. sanguineus* does not occupy the same ecological niche as *C. maenas*. Thus, the functional replacement of one invasive species by another may have a broad range of impacts on trophic interactions.

INTRODUCTION

Current views on trophic level interactions have been greatly shaped by the concept of trophic cascades (Paine 1966, Carpenter et al. 1987, Kimbro et al. 2009, Newcombe & Taylor 2010, Sieben et al. 2011). Predators can impact community structure either via direct predation, chemical cues that influence the behavior of co-occurring species, and/or the alteration of the physical environment (Paine 1966, Estes et
The disruption of this dynamic through species extirpations or introductions can result in severe consequences that have repercussions for the abiotic (i.e. bioturbidation) and biotic (i.e. loss of predators) environments, as well as the coastal communities that depend on them (Levin et al. 2002, Molnar et al. 2008, Williams & Grosholz 2008, McGeoch et al. 2010, Griffen et al. 2011).

The susceptibility of trophic cascades to disruption is at least partially influenced by biodiversity (Finke & Denno 2004, Duffy et al. 2007, Altieri et al. 2010). A high level of biodiversity increases ecosystem resilience by creating redundant functional roles that promote community renewal following a disturbance (Peterson et al. 1998, Stachowicz et al. 2007). For this reason, biodiversity is an important indicator of healthy and resilient marine ecosystems, and the maintenance of this ecological health indicator has been highlighted as a management goal for ecosystems around the world (Crowder & Norse 2008, Williams & Grosholz 2008, Palumbi et al. 2009). Biodiversity is naturally dynamic but can have enhanced fluctuations due to human-caused extinctions and species introductions (Byrnes et al. 2007).

Introductions of exotic species throughout the world’s coastal and marine ecosystems are widely recognized as serious biological threats with major ecological and anthropological consequences (Carlton & Geller 1993, Cohen & Carlton 1998). For example, San Francisco Bay, CA, is widely recognized as the most invaded estuarine habitat in the world (Cohen & Carlton 1998). Particularly aggressive species such as the Asian clam, *Potamocorbula amurensis*, and shipworms, *Teredo navalis*, cause hundreds of millions of dollars worth of damage a year (Pimentel et al. 2005). In contrast, estuaries
on the northeast coast of the United States do not yet have as high a richness of invasive species, but they are still significantly impacted by nonnative species introductions (see review by Lockwood et al. 2007).

Carcinus maenas (Linnaeus), the European green crab, was introduced to the Atlantic shoreline of the United States approximately 200 years ago (Carlton & Cohen 2003) and became an important predator along shorelines in New England, USA. _C. maenas_ is a key species in structuring intertidal communities of New England through consumptive and non-consumptive impacts on several species, including _Littorina littorea_ (Linnaeus), the marsh periwinkle (Lubchenco & Menge 1978, Trussell et al. 2003, Bertness et al. 2004, Trussell et al. 2006). _L. littorea_ is one of the dominant intertidal invertebrates on northwest Atlantic shorelines (Lubchenco 1978). It preferentially consumes ephemeral green algae such as _Ulva_ (Lubchenco 1978); when the green algae are removed, the algal community shifts towards perennial species such as _Chondrus crispus_. Since its introduction, _C. maenas_ has contributed to the alteration of intertidal algal abundance and composition by changing _L. littorea_ densities and feeding behaviors via both lethal (direct predation) and non-lethal (release of chemical cues) effects (Trussell 1996, Trussell et al. 2002, 2003, Trussell et al. 2006).

More than 150 years after the invasion of _Carcinus maenas_, another introduced crab has become established in this same region. _Hemigrapsus sanguineus_ (De Haan), the Asian shore crab, was first observed on the coast of New Jersey in 1988 (McDermott 1991) and has since expanded its range from South Carolina through the coast of Maine. _H. sanguineus_ frequently outcompetes _C. maenas_ for both habitat and preferred prey (Jensen et al. 2002), leading to the displacement of _C. maenas_ from the intertidal zone of
cobble beaches (N. Rohr pers. obs., Lohrer & Whitlatch 2002a). The replacement of *C. maenas* by *H. sanguineus* could have significant impacts on the already altered native marine flora and fauna in the coastal northwestern Atlantic (e.g. DeGraaf & Tyrrell 2004, Freeman & Byers 2006, Eastwood et al. 2007, Griffen & Byers 2009).

There is evidence in laboratory settings that *H. sanguineus* consume *L. littorea* up to 13 mm in length (Gerard et al. 1999), but the predation pressure of *H. sanguineus* in the field is unknown. Chemical cues from *H. sanguineus* elicit a shell-thickening response in *Mytilus edulis* in areas of New England where they co-occur, but *M. edulis* outside of the invaded range of *H. sanguineus* fail to express this induced trait (Freeman & Byers 2006). By contrast, the non-lethal effects of *H. sanguineus* on *L. littorea* are unknown. *H. sanguineus* does not consume prey as efficiently as *C. maenas*, but they occur at much higher densities (Lohrer & Whitlatch 2002b, DeGraaf & Tyrrell 2004). If *H. sanguineus* impacts *L. littorea* populations differently than *C. maenas*, this could shift intertidal algal abundance and species composition.

Invasive species can also alter predator-prey interactions. Crabs and other crustaceans are consumed by predators such as fish (Clark et al. 2006, Kim & O'Connor 2007) and seabirds (Ellis et al. 2005). Juvenile *H. sanguineus* are consumed by *Fundulus heteroclitus* and *Fundulus majalis* (Kim & O'Connor 2007, Brousseau et al. 2008). By contrast, field manipulations of *Cancer* spp. and *C. maenas* in New England indicate that gull predation on *H. sanguineus* is unlikely given their small size (J. Ellis pers. comm., Ellis et al. 2007), but they may be potential prey for crows, shorebirds, and/or terrestrial mammals (Carlton & Hodder 2003, Placyk Jr. & Harrington 2004). Currently, there is little known about the predatory pressures on *H. sanguineus* on cobble beaches.
In order to better understand how *Hemigrapsus sanguineus* impacts intertidal and subtidal ecosystems we used a combination of laboratory mesocosm and field experiments to assess: 1) *H. sanguineus* impacts on *Littorina littorea* (via lethal or nonlethal effects) and macroalgae, and 2) predation pressure on *H. sanguineus* from intertidal predators. Our findings yield insight into how invasive species may alter trophic cascades, and how the replacement of one invader by another may further change these dynamics.

MATERIALS AND METHODS

L. littorea algal consumption rates

To investigate the lethal and nonlethal effects of *Hemigrapsus sanguineus* on the algal consumption rate of *Littorina littorea*, we conducted outdoor mesocosm experiments from June through October 2010 at the University of Rhode Island’s Narragansett Bay Campus in Narragansett, Rhode Island. Mesocosm tanks were supplied with ambient temperature, free flowing filtered seawater from Narragansett Bay. We collected *L. littorea* (> 4mm shell height), *H. sanguineus* (> 10mm carapace width), and *Ulva rigida* (C. Agardh) in Narragansett Bay; the identity of *U. rigida* was confirmed via microscopic analysis in the laboratory with molecular voucher specimens (Hofmann et al. 2010, M. Guidone et al. unpubl. data). *Ulva lactuca* is the algal species typically included in the New England food web based on morphological characteristics (Lubchenco 1978), but recent molecular assessments have determined that *U. rigida* is the most common *Ulva* species from our field sites (Hofmann et al. 2010, M. Guidone et al. unpubl. data).
We used mesh cages (30cm x 30cm x 28cm, mesh size 4mm) placed singly inside mesocosm tanks (60cm in diameter). We installed a 10cm tall (2cm diameter) standpipe in the center of each tank and covered all standpipes with 1mm window screening to prevent the escape of mobile organisms. We placed eight textured PVC tiles (10cm x 10cm) at the bottom of each cage and randomly designated four to have one 2.0-3.0g piece of *Ulva rigida* attached to its center, to simulate algae attached to a hard substrate in the intertidal zone. The remaining four tiles had no algae attached. We then randomly assigned each cage (tank) to one of five treatments: 1) No invertebrates, as a control, 2) 25 *Littorina littorea*, to investigate the algal consumption rate of *L. littorea* in the absence of predators, 3) three *Hemigrapsus sanguineus*, to investigate the impacts of *H. sanguineus* on algal blades, 4) 25 *L. littorea* and three *H. sanguineus*, to determine the effect of *H. sanguineus* on the algal consumption rate of *L. littorea*, and 5) 25 *L. littorea* and three caged *H. sanguineus*, to determine the effect of *H. sanguineus* chemical cue on the algal consumption rate of *L. littorea*. Crab and snail densities were selected based on observed densities at adjacent field sites during the summer months (N. Rohr, unpubl. data).

For each tank, we recorded the initial wet mass (g) of each *Ulva rigida* piece. All algae were spun 20 times in a salad spinner to remove excess water prior to weighing. Each trial ran for four days. Because we only had 10 tanks, we ran six trials during the summer, with two tanks per treatment per trial, using new organisms each time. Trials were ran in sets of two and, after confirming there was no difference between sets, were combined into one treatment with n = 4. The treatments were randomized among tanks over time, and the tanks were scrubbed and allowed to air dry for at least 48 hours.
between trials. At the end of each trial, we measured the final mass (g) of each algal piece; all algae were again spun prior to weighing. We analyzed the change in mass of *U. rigida* with a two-way ANOVA and a post-hoc Tukey analysis (JMP v7.0, www.sas.com) to assess differences in change of algal mass among treatments and time. Data met assumptions for normality and homogeneity of variances.

L. littorea feeding behavior

In the same cages as above and concurrent with the previous study, we monitored the behavior of *Littorina littorea* every six hours, beginning at 12:00 AM, for the first 24 hours of each trial. We recorded the number of *L. littorea* that were: 1) on the *Ulva rigida*, consuming it; 2) on the bottom of the tank, neither feeding nor fleeing; and 3) on the sides of the mesh cage, exhibiting a fleeing response by vertically moving out of the reach of the *Hemigrapsus sanguineus*. We analyzed our results using contingency analyses (JMP v7.0, www.sas.com) to assess differences in snail behavior among treatments and across time of day. Results are expressed as percentages to more clearly show comparisons.

Predation rates on *H. sanguineus*

To determine the predation pressure on *Hemigrapsus sanguineus*, we conducted a randomized tethering experiment at Bear Point, Prudence Island, in the Narragansett Bay National Estuarine Research Reserve (NBNERR; 41° 39′.631″ N 71° 20′.527″ W). Bear Point has an intertidal zone with a tidal amplitude of approximately 1.2 m, has low wave disturbance, and the substrate is dominated by cobbles less than 50 cm in diameter.
We constructed predator exclusion cages (25cm x 25cm x 18cm) from 1.3 cm PVC pipe covered with 4mm mesh. Full exclusion cages were covered with mesh on all sides except the bottom; benthic predator exclusion cages were open on the bottom and top, to allow access by pelagic predators; control cages had no mesh covering over the PVC frame to allow access by both benthic and pelagic predators. We conducted experimental trials at three tidal heights: high intertidal, low intertidal, and shallow subtidal, with approximately five meters between tidal heights. However, due to unavoidable complications in the shallow subtidal (i.e. sharp rocks and barnacles that compromised crab tethers), data from this tidal height were excluded from our analyses.

At each tidal height, we secured nine tethered *Hemigrapsus sanguineus* to the cobble substrate. We randomly assigned each crab to one of three treatments: full exclusion cages, benthic predator exclusion cages, and control ‘cages’ (one crab per cage). Each cage was approximately 1m from the next. This was repeated six times during the summer of 2010.

Tethers consisted of a 6lb monofilament harness tied around each *Hemigrapsus sanguineus* between the claws and first walking appendages and secured to the carapace with marine epoxy (Eclectic Products, Marine Goop Adhesive). Each tether was 25cm in length and attached to one side of a 4lb stainless steel double swivel; the other side of the swivel was placed over an 18cm metal stake buried a minimum of 10cm in the substrate. *H. sanguineus* were able to move freely throughout the radius of their tether and were able to conceal themselves beneath cobble. Once crabs were tethered, cages were placed on top of them; the bottom edges of all exclusion cages were then buried in the cobble to prevent organisms from burrowing underneath the mesh and/or frame. After three days,
we removed the cages and recorded all crabs as present, absent, or desiccated (deceased). Results were analyzed contingency analyses (JMP v7.0, www.sas.com) to assess differences among cage types, tidal heights, and time. Results are expressed as percentages to more clearly show comparisons.

RESULTS

L. littorea algal feeding rates

Littorina littorea grazing rates were not reduced by the presence of, or chemical cues from, *Hemigrapsus sanguineus*. *Ulva rigida* in the presence of only *L. littorea*, or with both *L. littorea* and *H. sanguineus'* chemical cue, exhibited a four-fold decrease in algal growth compared to the control ($F_{4,90} = 40.41$, $p < 0.0001$; Figure 1). The greatest decrease in algal mass was observed when both consumers were present, with over a six-fold decrease in algal mass versus the control. However, *H. sanguineus* alone also had a negative impact on *U. rigida* biomass (Figure 1). There was also a significant difference in the change in algal mass among trials ($F_{7,90} = 19.63$, $p < 0.0001$) with a significant interaction term ($F_{28,90} = 2.02$, $p = 0.0069$). During the entire experiment, less than 2% of *L. littorea* were unaccounted, with no evidence of snail consumption by a predator (i.e. broken shells).
Figure 1 Effect of Hemigrapsus sanguineus presence and chemical cue on the Littorina littorea consumption rate of Ulva rigida. Letters indicate significant differences. U = Ulva rigida, L = Littorina littorea, H = Hemigrapsus sanguineus, CH = chemical cue of H. sanguineus. Treatments with different letters are significantly different.

L. littorea feeding behavior

The behavior of Littorina littorea in the mesocosm tanks varied significantly among Hemigrapsus sanguineus treatments (presence, absence, or chemical cue; $\chi^2_4 = 13.51, p = 0.0090$) and across daily cycles ($\chi^2_6 = 60.87, p < 0.0001$; Figure 2). L. littorea were found on Ulva rigida most often when no H. sanguineus were present, had the highest fleeing rate in the presence of H. sanguineus chemical cues, and were most often resting on the bottom of the tank when H. sanguineus were present. The presence of crabs decreased the amount of time L. littorea were found on U. rigida by roughly 5% relative to the control. Resting and fleeing were 3.5% and 1% more prevalent, respectively. H. sanguineus chemical cues elicited 4% higher snail fleeing rates than in
control tanks. *L. littorea* activity was also impacted by the time of day, with more periwinkle activity (e.g. presence on algae or fleeing) at midnight, and resting at noon. *L. littorea* behaviors at 6:00 A.M. and 6:00 P.M. were very similar to each other. The number of *L. littorea* observed at 6:00 PM was lower than at the other times of day due to environmental conditions that prevented us from sampling.

![Figure 2](image)

Figure 2 Effect of *Hemigrapsus sanguineus* chemical cue and presence, and time of day, on the behavior of *Littorina littorea*. The mean response of *L. littorea* behavior was averaged across A) time of day, and B) treatment. The numbers on the bars represent the total number of *L. littorea*.

Predation rates on *H. sanguineus*

There was a significant difference in the distribution of alive, removed, and desiccated *Hemigrapsus sanguineus* between tidal heights ($\chi^2 = 14.47, p = 0.0007$) but not among cage types ($\chi^2 = 8.75, p = 0.0676$), with no interaction effect ($\chi^2 = 0.39, p = 0.9836$; Figure 3).
When combined across cage types, *Hemigrapsus sanguineus* were more often found alive in the low intertidal than the high intertidal (59% and 41%, respectively). *H. sanguineus* were only found desiccated in the high intertidal zone (28% of crabs desiccated at this tidal height). *H. sanguineus* were removed at the same rate from the low and high intertidal.

When combined across tidal heights, *Hemigrapsus sanguineus* had the highest survival rate in the fully enclosed cages (82% alive), followed by the open top cages (50% alive), and finally the control (45% alive). *H. sanguineus* were most often removed from the control group (44%), while the highest rate of desiccation occurred in the open top cages (23%).

![Figure 3](image-url)

Figure 3 Effect of tidal height on the predation rate on *Hemigrapsus sanguineus*. FE = fully enclosed cage, OT = open top cage, C = control. The numbers on the bars represent the total number of *H. sanguineus*.

65
DISCUSSION

Our results indicate that *Hemigrapsus sanguineus* and *Carcinus maenas* have different impacts on lower trophic levels. Previous studies indicate that *C. maenas* drastically reduce the feeding rate of *Littorina littorea*. *C. maenas* remove snails via direct consumption (Lubchenco 1978, Hadlock 1980, Trussell et al. 2002, 2003, Eastwood et al. 2007), and their chemical cues cause *L. littorea* to sharply reduce their algal consumption rates (Trussell et al. 2003, Griffen & Byers 2009). Thus, *C. maenas* has an indirect top-down positive effect on algal communities by altering snail density and behavior; *Ulva* growth rates when both *L. littorea* and *C. maenas* are present are similar to when these two species are excluded (Lubchenco 1978, Trussell et al. 2002, 2003, Trussell et al. 2004, Trussell et al. 2006). By contrast, our experiments showed that *H. sanguineus* did not elicit a similar response from *L. littorea*, and their physical presence and/or chemical cue did not significantly reduce the periwinkles' consumption of algae. While *L. littorea* has a negative impact on *Ulva rigida* biomass, this effect is not modified by the presence of *H. sanguineus* chemical cues. The fact that less than 2% of *L. littorea* were unaccounted for during the experiment, and that there was never evidence of consumption by a predator, strongly suggests that *H. sanguineus* did not consume *L. littorea*. *L. littorea* thus appear to not perceive *H. sanguineus* as a predatory threat and continue feeding in their presence.

However, *Hemigrapsus sanguineus* is omnivorous and will consume algae when other prey are not as accessible (Ledesma & O'Connor 2001, Bourdeau & O'Connor 2003). In our mesocosms, *H. sanguineus* had a negative impact on algal biomass, but it was not as strong as the impact from *Littorina littorea* (Figure 1). *H. sanguineus* tore
small pieces from the algal blades; these small pieces then frequently disappeared down
the drainpipe and were lost from the experiment. Because of this shredding behavior, the
ecosystem consequence of *H. sanguineus* on algae is not that of a typical consumer.

Ulva rigida biomass decreased the most when both *Littorina littorea* and
Hemigrapsus sanguineus were present, and this decrease was greater than would be
expected simply through the combined effects of snails and crabs. This could indicate a
potentially synergistic impact of *L. littorea* and *H. sanguineus*, which further
distinguishes the effects of *H. sanguineus* from those of *Carcinus maenas*.

Unfortunately, *Carcinus maenas* are now extremely rare in the rocky and cobble-
based intertidal habitats in Narragansett Bay and we could not collect sufficient numbers
of *C. maenas* to perform mesocosm experiments using both crab species and snails from
the same environments (N. Rohr, unpubl. survey data). This observation provides support
for the hypothesis that *H. sanguineus* have effectively excluded *C. maenas* from these
intertidal zones.

Littorina littorea behavior in the presence of *Hemigrapsus sanguineus* also
differed from previously documented behaviors in the presence of *Carcinus maenas*, as
the snails did not reduce their feeding rate in the presence of *H. sanguineus*. Despite this
response, *L. littorea* still consumed at least as much algae in the presence of *H.
sanguineus* chemical cues as with no crabs present, implying that the periwinkles may
have been influenced by *H. sanguineus* without perceiving them as a potential threat.
Given the mobility and high activity of *H. sanguineus* (Brousseau et al. 2002), it may
disrupt the feeding behavior of *L. littorea* by physically interacting with them.
In the field, the vertical distribution of *Hemigrapsus sanguineus* was influenced by physical factors in the upper-range and biological factors in its lower range, which is the traditional model of species' distributional limits in intertidal habitats (Connell 1961). The lack of significant differences among tethering treatments may have been influenced by similar predation rates on *H. sanguineus* in the open top and control cages in the high intertidal; this similarity could reflect limited removal of *H. sanguineus* by benthic predators (e.g. larger crustaceans).

Replacements of one invasive species by another have the ability to reshape intertidal marine food webs (Byrnes et al. 2007, Griffen & Byers 2009), which can have biological implications through changes to predator-prey interactions, behavior modification of conspecifics, and temporary release from consumption by novel predators (Eastwood et al. 2007, Griffen & Delaney 2007, Griffen et al. 2011, Steinberg & Epifaunio 2011). As globalization increases and maritime transportation becomes more efficient, species are being introduced to new environments at an increasing rate (Ruiz et al. 1997) and, once they are introduced, their establishment and spread is facilitated by the ever-increasing threat of global climate change (Harley et al. 2006, Hellmann et al. 2008, Walther et al. 2009). While prevention of the introduction of novel species is important to protecting the ecologic and economic viability of our coastal and estuarine ecosystems, it is also important to identify the introduction of new species while there is still the opportunity to prevent their spread, understand the long-term effects of specific invasive species, and prepare for the potential economic impact (de Rivera et al. 2011, Grosholz et al. 2011).
AKNOWLEDGEMENTS

We thank C. Blewett, N. Millette, E. Field, M. Guidone, and C. Newton for their assistance in the lab and field. G. Forrester, E. Preisser, and K. Raposa provided valuable comments on previous versions of this manuscript. K. Raposa and the Narragansett Bay National Estuarine Research Reserve provided vital technical support. This research was funded by the University of Rhode Island; an NSF IGERT (grant number 0504103 to the University of Rhode Island Coastal Institute), a Sounds Conservancy Grant (Quebec-Labrador Foundation), and a P.E.O. Scholar Award to N. Rohr. C. Thornber received funding from Rhode Island Sea Grant, NOAA (BayWindow), and the URI Coastal Fellows Program. This research was based upon work supported in part by the National Science Foundation EPSCoR Cooperative Agreement #EPS-1004057 and the State of Rhode Island.
LITERATURE CITED

Altieri AH, van Wesenbeeck BK, Bertness MD, Silliman BR (2010) Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology 91:1269-1275

Bertness MD, Trussell GC, Ewanchuk PJ, Silliman BR, Crain CM (2004) Consumer-controlled community states on Gulf of Maine rocky shores. Ecology 85:1321-1331

Bourdeau PE, O'Connor NJ (2003) Predation by the nonindigenous Asian shore crab Hemigrapsus sanguineus on macroalgae and molluscs. Northeast Nat 10:319-334

Brousseau DJ, Baglivo JA, Filipowicz A, Sego L, Alt C (2002) An experimental field study of site fidelity and mobility in the Asian shore crab, Hemigrapsus sanguineus. Northeast Nat 9:381-390

Brousseau DJ, Murphy AE, Enriquez NP, Gibbons K (2008) Foraging by two estuarine fishes, Fundulus heteroclitus and Fundulus majalis, on juvenile Asian shore crabs (Hemigrapsus sanguineus) in Western Long Island Sound. Estuaries and Coasts 31:144-151

Byrnes JE, Reynolds PL, Stachowicz JJ (2007) Invasions and extinctions reshape coastal marine food webs. PLoS ONE 2:e295

Carlton JT, Cohen AN (2003) Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs Carcinus maenas and C. aesturii. J Biogeogr 30:1809-1820

Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78-82
Carlton JT, Hodder J (2003) Maritime mammals: terrestrial mammals as consumers in marine interdial communities. Mar Ecol Prog Ser 256:271-286

Carpenter SR, Kitchell JF, Hodgson JR, Cochran PA, Elser JJ, Elser MM, Lodge DM, Kretchmer D, He X, von Ende CN (1987) Regulation of lake primary productivity by food web structure. Ecology 68:1863-1876

Clark PE, Pereira JJ, Auker LA, Parkins CJ, Vinokur LM (2006) Size-related variation in the diet of juvenile tautogs from Long Island Sound. Trans Am Fish Soc 135:1361-1370

Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555-558

Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthalamus stellatus. Ecology 42:710-723

Crowder L, Norse E (2008) Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar Policy 32:772-778

de Rivera CE, Grosholz ED, Ruiz GM (2011) Multiple and long-term effects of an introduced predatory crab. Mar Ecol Prog Ser 429:145-155

DeGraaf JD, Tyrrell MC (2004) Comparison of the feeding rates of two introduced crab species, Carcinus maenas and Hemigrapsus sanguineus, on the blue mussel, Mytilus edulis. Northeast Nat 11:163-167

Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thebault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522-538
Eastwood MM, Donahue MJ, Fowler AE (2007) Reconstructing past biological invasions: niche shifts in response to invasive predators and competitors. Biol Invasions 9:397-407

Ellis JC, Chen W, O'Keefe B, Shulman MJ, Witman JD (2005) Predation by gulls on crabs in rocky intertidal and shallow subtidal zones of the Gulf of Maine. J Exp Mar Biol Ecol 324:31-43

Ellis JC, Shulman MJ, Wood M, Witman JD, Lozyniak S (2007) Regulation of intertidal food webs by avian predators on New England rocky shores. Ecology 88:853-863

Estes JA, Tinker MT, Williams TM, Doak DF (1998) Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282:473-476

Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407-410

Freeman AS, Byers JE (2006) Divergent induced responses to an invasive predator in marine mussel populations. Science 313:831-833

Gerard VA, Cerrato RM, Larson AA (1999) Potential impacts of a western Pacific grapsid crab on intertidal communities of the northwestern Atlantic Ocean. Biol Invasions 1:353-361

Griffen BD, Altman I, Hurley J, Mosblack H (2011) Reduced fecundity by one invader in the presence of another: A potential mechanisms leading to species replacement. J Exp Mar Biol Ecol 406:6-13

Griffen BD, Byers JE (2009) Community impacts of two invasive crabs: the interactive roles of density, prey recruitment, and indirect effects. Biol Invasions 11:927-940
Griffen BD, Delaney DG (2007) Species invasion shifts the importance of predator
dependence. Ecology 88:3012-3021
Grosholz ED, Lovell S, Besedin E, Katz M (2011) Modeling the impacts of the European
green crab on commercial fisheries. Ecol Appl 21:915-924
Hadlock RP (1980) Alarm response of the intertidal snail Littorina littorea (L.) to
predation by the crab Carcinus maenas (L.). Biol Bull Mar Biol Lab Woods Hole
159:269-279
Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez
LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal
marine systems. Ecol Lett 9:228-241
Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of
climate change for invasive species. Conserv Biol 22:534-543
Hofmann LC, Nettleton JC, Neefus CD, Mathieson AC (2010) Cryptic diversity of Ulva
(Ulvales, Chlorophyta) in the Great Estuarine System (Atlantic USA): introduced
and indigenous distromatic species. Eur J Phycol 45:230-239
Jensen GC, McDonald PS, Armstrong DA (2002) East meets west: competitive
interactions between green crab Carcinus maenas, and native and introduced shore
crab Hemigrapsus spp. Mar Ecol Prog Ser 225:251-262
Kim AKA, O'Connor NJ (2007) Early stages of the Asian shore crab Hemigrapsus
sanguineus as potential prey for the striped killifish Fundulus majalis. J Exp Mar
Biol Ecol 346:28-35
Kimbro DL, Grosholz ED, Baukus AJ, Mesbitt NJ, Travis NM, Attoe S, Coleman-Hulbert C (2009) Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades. Oecologia 160:563-575

Ledesma ME, O’Connor NJ (2001) Habitat and diet of the non-native crab *Hemigrapsus sanguineus* in southeastern New England. Northeast Nat 8:63-78

Levin PS, Coyer JA, Petrik R, Good TP (2002) Community-wide effects on noningigenous species on temperate rocky reefs. Ecology 83:3182-3193

Lockwood J, Hoopes M, Marchetti Me (2007) Invasion Ecology, Vol. Blackwell Publishing Ltd., Malden, Massachusetts, USA

Lohrer AM, Whitlatch RB (2002a) Interactions among aliens: apparent replacement of one exotic species by another. Ecology 83:719-732

Lohrer AM, Whitlatch RB (2002b) Relative impacts of two exotic brachyuran species on blue mussel populations in Long Island Sound. Mar Ecol Prog Ser 227:135-144

Lubchenco J (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am Nat 112:23-39

Lubchenco J, Menge BA (1978) Community development and persistence in a low rocky intertidal zone. Ecol Monogr 59:67-94

McDermott JJ (1991) A breeding population of the Western Pacific crab *Hemigrapsus sanguineus* (Crustacea: Decapoda: Grapsidae) established on the Atlantic coast of North America. Biol Bull Mar Biol Lab Woods Hole 181:195-198

McGeoch MA, Butchart SHM, Spear D, Marais E, Kleynhans EJ, Symes A, Chanson J, Hoffman M (2010) Global indicators of biological invasions: species numbers, biodiversity impact and policy responses. Divers Distrib 16:95-108
Menge BA (2000) Top-down and bottom-up community regulation in marine rocky intertidal habitats. J Exp Mar Biol Ecol 250:257-289

Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485-492

Newcombe EM, Taylor RB (2010) Trophic cascade in a seaweed-epifauna-fish food chain. Mar Ecol Prog Ser 408:161-167

Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65-75

Palumbi SR, Sandifer PA, Allan JD, Beck MW, Faautin DG, Fogarty MJ, Halpern BS, Incze LS, Leong J-A, Norse E, Stachowicz JJ, Wall DH (2009) Managing for ocean biodiversity to sustain marine ecosystem services. Front Ecol Environ 7:204-211

Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6-18

Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the Unites States. Ecol Econ 52:271-288

Placyk Jr. JS, Harrington BA (2004) Prey abundance and habitat use by migratory shorebirds at coastal stopover sites in Connecticut. J Field Ornithol 75:223-231

Robinson EM, Smee DL, Trussell GC (2011) Greeen crab (Carcinus masenas) foraging efficiency reduced by fast flows. PLoS ONE 6:1-8

Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621-632
Sieben K, Rippen AD, Eriksson BK (2011) Cascading effects from predator removal depend on resource availability in a benthic food web. Mar Biol 158:391-400

Stachowicz JJ, Bruno JF, Duffy JE (2007) Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol, Evol Syst 38:739-766

Steinberg MK, Epifaunio CE (2011) Three's a crowd: Space competition among three species of intertidal shore crabs in the genus Hemigrapsus. J Exp Mar Biol Ecol 404:57-62

Trussell GC (1996) Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution 50:448-454

Trussell GC, Ewanchuk PJ, Bertness MD (2002) Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecol Lett 5:241-245

Trussell GC, Ewanchuk PJ, Bertness MD (2003) Trait-mediated effects in rocky intertidal food chains: predator risk cues alter prey feeding rates. Ecology 84:629-640

Trussell GC, Ewanchuk PJ, Bertness MD, Silliman BR (2004) Trophic cascades in rocky shore tide pools: distinguishing lethal and nonlethal effects. Oecologia 139:427-432

Trussell GC, Ewanchuk PJ, Matassa CM (2006) The fear of being eaten reduces energy transfer in a simple food chain. Ecology 87:2979-2984

Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarosík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B,
Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686-693

Williams SL, Grosholz ED (2008) The invasive species challenge in estuarine and coastal environment: Marrying management and science. Estuaries and Coasts 31:3-20