On the influence of the spatial distribution of fine content in the hydraulic conductivity of sand-clay mixtures

William Mario Fuentes1*, Carolina Hurtado1, Carlos Lascarro1
1Universidad del Norte, Colombia.
* Corresponding author: fuenteslacouture1@gmail.com

ABSTRACT

Sand-clay mixtures are one of the most usual types of soils in geotechnical engineering. These soils present a hydraulic conductivity which highly depends on the fine content. In this work, it will be shown, that not only the mean fine content of a soil sample affects its hydraulic conductivity, but also its spatial distribution within the sample. For this purpose, a set of hydraulic conductivity tests with remolded samples of sand-clay mixtures have been conducted to adjust a regression for the hydraulic conductivity depending on the fine content. Then, a finite element (FE) model simulating a large scaled hydraulic conductivity test is constructed. In this FE-model, the heterogeneity of the fine content is simulated following a Gaussian distribution. The equivalent hydraulic conductivity resulting of the whole FE-model is then computed and the influence of the spatial distribution of the fine content is evaluated. Variations of the mean fine content and the standard deviation have been considered to analyze the behavior of the equivalent hydraulic conductivity. The results indicate that the equivalent hydraulic conductivity is not only related to the mean fine content, but also on its heterogeneity. At the end, a simulation example of a water flow around a sheet pile, showed also that the flow rate depends on the fine content heterogeneity in a similar fashion.

Sobre la influencia de la distribución espacial del contenido de finos en la conductividad hidráulica de mezclas areno-arcillosas

RESUMEN

Las mezclas areno-arcillosas son uno de los suelos más típicos en la ingeniería geotécnica. Estos suelos presentan una conductividad hidráulica que dependen fuertemente de su contenido de finos. En este trabajo, se demostrará que la conductividad hidráulica no solo depende del contenido promedio de finos sino también de su distribución espacial. Para tal fin, se ejecutó un set experimental de mezclas areno-arcillosas para medir su conductividad hidráulica y correlacionarla con el contenido de finos. Luego, se construyó un modelo numérico de un ensayo de permeabilidad a gran escala. En este modelo se consideró una muestra con variaciones internas del contenido de finos siguiendo una distribución Gaussiana. Se calculó la conductividad hidráulica equivalente para todo el modelo y se analizaron sus resultados. Los resultados indican que la conductividad hidráulica no solo dependen del contenido promedio de finos, sino también de su heterogeneidad.
Introduction

The design of some geotechnical structures requires the estimation of the hydraulic conductivity on soils. Sand-clay mixtures are one of the most common soils involved in these structures, either as the surrounding natural soil, or as fill material. For both cases, the estimation of the hydraulic conductivity allows to quantify infiltration flow rates, infiltration forces, duration of consolidation, among others. The literature shows that for saturated sand-clay mixtures, the hydraulic conductivity depends on the relative proportions between the two materials (Yang & Aplin, 1998; Schneider, Flemings, Day-Stirrat, & Germaine, 2011; Indrajarwan, Rahardjo, & Leong, 2006; Shafiee, 2008; Shakoor & Cook, 1990; Shelley & Daniel, 1993), the overall density or porosity (Alyamani & Şen, 1993; Chapuis, 1990; Hazen, 1911; Kenney, Lau, & Otisegbu, 1984; Loudon, 1952; Odong, 2007), the mineralogy or material type (Deng, Wu, Cui, Liu, & Wang, 2017) and the interconnection between pores (Belkhatir, Schanz, Arab, & Della, 2014).

A vast number of correlations to estimate the hydraulic conductivity has been proposed depending on the mentioned properties. Authors report correlations to estimate the hydraulic conductivity of clean sands (Amer, Asce, Amin, & Awad, 1974; Biernatowski, E. Dembicki, Dzierzawski, & Wolski, 1987; Kollis, 1966; Pazdro, 1983), clean clays (Mesri & Olson, 1971; Al-Tabbaa & Wood, 1987; Nagaraj, Pandian, & Raju, 1994; Samarasinghe, Huang, & Drnevich, 1982; Tavenas, Leblond, Jean, & Leroueil, 1983), kaolin clays (Mesri & Olson, 1971; Hamidon, 1994), and sand-clay mixtures (Chapuis, 1990; Kenney, Van Veen, Swallow, & Sungaila, 1992; Kuman, 1996; Shafiee, 2008; Luijendijk & Gleanos, 2015).

Correlations for the estimation of hydraulic conductivity are mostly calibrated on experimental results using homogeneous soil samples (Al-Tabbaa & Wood, 1987; Amer, Asce, Amin, & Awad, 1974; Biernatowski, E. Dembicki, Dzierzawski, & Wolski, 1987; Chapuis, 1990; Kollis, 1966; Kuman, 1996; Mesri & Olson, 1971; Nagaraj, Pandian, & Raju, 1994; Pazdro, 1983; Samarasinghe, Huang, & Drnevich, 1982). To achieve homogeneity, for example in sand-clay mixtures, researchers often mix the two different materials by hand, until a homogeneous soil mass is obtained (Koltermann & Goerlick, 1995; Revil & Catchles, 1999). Disappointingly, the reality shows something different: the experience tells us that samples obtained in a single layer of a sand-clay soil, present similar (but not equal) fine content with a certain dispersion (Gomez-Hernandez & Gorelick, 1995), the overall density or porosity (Alyamani & Şen, 1993; Chapuis, 1990; Hazen, 1911; Kenney, Lau, & Otisegbu, 1984; Loudon, 1952; Odong, 2007), the mineralogy or material type (Deng, Wu, Cui, Liu, & Wang, 2017) and the interconnection between pores (Belkhatir, Schanz, Arab, & Della, 2014).

Material characterization

In this section, the testing soils are characterized. A set of experiments including sieve analysis, hydrometer analysis, specific gravity and Atterberg limits have been conducted on these materials. The testing clay corresponds to a Kaolin clay from the northern region of Colombia. Similarly, the testing sand corresponds to the Santo Tomás sand, very often used for construction purposes in Colombia. Characterization tests have been conducted on the Kaolin clay with the following results. It presents a specific gravity of $G = 2.66$, a fine content (percent passing sieve #200) of 95%, a liquid limit $LL = 27\%$, a plastic limit $PL = 17\%$ and plasticity index of $PI = 10\%$. According to the Unified Soil Classification System USCS, the Kaolin clay is classified as a low plasticity clay CL. Results are summarized in Table 1.

Parameter	Value
G	2.66
Fine content (%)	95
LL (%)	27
PL (%)	17
PI (%)	10
USCS classification	CL

The Santo Tomás sand is a uniform sand with a fine content of 1.21%, uniformity coefficient of $C_u = 4.08$, curvature coefficient of $C_c = 0.98$, effective diameter of $D_{10} = 0.16$ mm, specific gravity of $G = 2.65$, maximum void ratio $e_{max} = 0.91$ and minimum void ratio $e_{min} = 0.54$. The latter values are related to maximum and minimum dry densities of $\rho_{dry} = 1.72$ g/cm3 and $\rho_{min} = 1.39$ g/cm3 respectively. According to the Unified Soil Classification System USCS, the Santo Tomás sand is classified as a poorly graded sand SP. The results are shown in Table 2. The grain size distributions for the Santo Tomás sand and the Kaolin clay, obtained by sieve analysis and hydrometer analysis respectively, are shown in Figure 1.

Parameter	Value
G	2.65
Fine content (%)	1.21
D_{10} (mm)	0.16
C_u (-)	4.08
C_c (-)	0.98
e_{max}	0.91
e_{min}	0.54
USCS classification	SP

Results of hydraulic conductivity tests of the sand-clay mixtures

A number of permeability tests were conducted on the different testing materials, namely the Santo Tomás sand, the Kaolin clay, and the sand-clay mixtures with different proportions. Constant head permeability tests were conducted on all samples (INVIAS, 2013), except for the one of the Kaolin clay, in which considering its low hydraulic conductivity, a variable
head permeability test was performed. Samples were prepared with initially oven dried Santo Tomas sand and dried Kaolin clay powder. A small amount of water was mixed thoroughly until reaching a homogeneous soil mass with a water content of approximately \(w \approx 10\% \). The process of homogenization was performed by hand on an external recipient. The wet tamping method, with three layers of approximately 2.0 cm, was used to produce samples within the permeameter. The followed procedure was as follows: for the first layer, the permeameter cell was filled with 2 centimeters of water. Then, the soil was gently poured till reaching approximately half centimeter above the water surface. A special cylindrical tamper with diameter of 5 cm was used to compact the first layer, by providing 25 blows on the surface. The procedure was repeated for the second and third layer. Special care was taken by controlling the blow intensity and by keeping the number of blows constant, in order to produce samples with similar (but not equal) void ratios. The void ratio for the clean sand sample was \(e = 0.72 \) which corresponds to a relative density of \(D_r = 51.3\% \) (medium dense sand) and a dry density of \(\rho_d = 1540 \text{ kg/m}^3 \). For the case of mixed sand-clay samples, void ratios within the range of \(e = [0.65 - 0.72] \) were always obtained, corresponding to dry densities of \(\rho_d = [1610 - 1540] \text{ kg/m}^3 \). The void ratios were always checked at the end of the preparation process, and in case that the resulting one was not within the expected range, the procedure was then repeated. Top and bottom porous stones, covered by filter papers were included in the assembly. A standard spring for permeameters was fixed on the top porous stone to provide a small vertical stress to all samples (Bardet, 1997). Then, the sample was continuously flooded with distilled water during two days to guarantee its complete saturation (degree of saturation equal to one). Detailed description of the followed test procedure can be found in the literature (Bardet, 1997; INVIAS, 2013).

The prepared sand-clay mixtures include fine contents of \{0%, 4%, 8%, 12%, 16%, 20%, 100\%\}. The case of 0% corresponds to clean Santo Tomas sand (without fines), and 100% to clean Kaolin clay. The results of the hydraulic conductivity tests are compiled in Table 3, including a correction due to temperature according to the method by (INVIAS, 2013).

A suitable exponential interpolation function depending on the fine content \(FC \) is employed to adjust the results, which considers the hydraulic conductivity of clay, denoted by \(k_{100} \), and the hydraulic conductivity of clean sand, denoted with \(k_0 \) and reads:

\[
k = k_0 + (1 - \exp(-c \times FC)) \times (k_{100} - k_0)
\]

Where \(c \) is a material constant to be calibrated. Notice that for \(FC = 0 \), the proposed relation renders \(k = k_0 \), while for \(FC = 100 \), a value of \(k = k_{100} \) is obtained. For the reported results, a value of \(c = 0.28 \) has been found to reproduce well the observed behavior. Figure 2 includes the experimental results in conjunction with the proposed relation, and an accurate estimation.

Figure 3 plots once more the obtained results of the permeability tests, and compares it with the adjusted regression and other correlations reported in the literature for sand-clay mixtures. It includes the relation by (Warren & Price, 1961), (Cardwell & Parsons, 1945), and others as the arithmetic mean and harmonic mean as a function of the fine content \(FC \). A brief summary of these relations is given in Appendix B, while their analysis may be found in other works, e.g. (Luijendijk & Gleeson, 2015). Notice that the relation by (Cardwell & Parsons, 1945) includes parameter \(p \), which must be adjusted. The cases \(p = 1 \) and \(p = -1 \) correspond to the arithmetic and harmonic means respectively. For the particular correlation by (Cardwell & Parsons, 1945), it has been found that a value of \(p = -0.4 \) matches well the obtained results. The fact that parameter \(p \) is lower than zero, indicates that the hydraulic conductivity is mostly dominated by the clay portion (Luijendijk & Gleeson, 2015).

Table 3. Results of hydraulic conductivity test of the sand-clay mixtures.

Kaolin content (%)	Hydraulic conductivity \((\text{cm/s}) \)	Hydraulic conductivity \((20*^\circ \text{C} \text{cm/s}) \)
0	1.08E-02	1.04E-02
4	2.57E-03	2.48E-03
8	9.34E-04	9.01E-04
12	3.18E-04	3.07E-04
16	1.64E-04	1.59E-04
20	4.19E-05	4.19E-05
100	1.90E-06	1.90E-06

Figure 1. Grain size distribution for Santo Tomás sand and the Kaolin clay. Test method: sieve analysis for Santo Tomas sand, hydrometer analysis for Kaolin clay.

Figure 2. Results and adjusted regression of hydraulic conductivity test for different fine contents (T=20ºC)

\[
k = k_0 + (1 - \exp(-c \times FC)) \times (k_{100} - k_0)
\]
k_{eq} is the one resulting from the homogenization of a representative volume. With simpler words, if we perform a constant head hydraulic conductivity test, the equivalent hydraulic conductivity k_{eq} is the one resulting from the test, independently of the sample inner heterogeneities. In this section, the influence of the fine content heterogeneity is evaluated through numerical simulations. For that end, Boundary Value Problems BVPs with finite elements are constructed. The BVPs simulate sand-clay mixtures subjected to a steady state water flow. The simulations account for spatial distributions of the fine content with a certain statistical distribution. Details of the creation of this heterogeneity will be explained later on. With this procedure, different points within the problem may have different fine contents and therefore different hydraulic conductivities. The hydraulic conductivity has been correlated to the fine content following the aforementioned Gaussian distribution. The equivalent hydraulic conductivity resulting from the test, independently of the sample inner heterogeneities. Therefore, we have used this user subroutine to write a FORTRAN code able to produce a random value for the fine content following the aforementioned Gaussian distribution. The code is given in Appendix A. The subroutine inputs correspond to the mean value and standard deviation σ, which are controlled for each simulation.

Three different Boundary Value Problems BVPs were constructed: the first simulates a constant head hydraulic conductivity test with a large soil sample, with dimensions of 1 m times 1 m. This BVP allows to compute an equivalent hydraulic conductivity for a given heterogeneous field of fine content. The second corresponds to the same problem under the three-dimensional (3D) case. The last problem simulates a bidimensional flow around a sheet pile.

For a non-homogenous soil sample, i.e. a sample presenting spatial variations of the fine content and/or other variables, the equivalent hydraulic conductivity k_{eq} is the one resulting from the homogenization of a representative volume. With simpler words, if we perform a constant head hydraulic conductivity test, the equivalent hydraulic conductivity k_{eq} is the one resulting from the test, independently of the sample inner heterogeneities. In this section, the influence of the fine content heterogeneity is evaluated through numerical simulations. For that end, Boundary Value Problems BVPs with finite elements are constructed. The BVPs simulate sand-clay mixtures subjected to a steady state water flow. The simulations account for spatial distributions of the fine content with a certain statistical distribution. Details of the creation of this heterogeneity will be explained later on. With this procedure, different points within the problem may have different fine contents and therefore different hydraulic conductivities. The hydraulic conductivity has been correlated to the fine content following the aforementioned Gaussian distribution. The equivalent hydraulic conductivity resulting from the test, independently of the sample inner heterogeneities. Therefore, we have used this user subroutine to write a FORTRAN code able to produce a random value for the fine content following the aforementioned Gaussian distribution. The code is given in Appendix A. The subroutine inputs correspond to the mean value and standard deviation σ, which are controlled for each simulation.

Three different Boundary Value Problems BVPs were constructed: the first simulates a constant head hydraulic conductivity test with a large soil sample, with dimensions of 1 m times 1 m. This BVP allows to compute an equivalent hydraulic conductivity for a given heterogeneous field of fine content. The second corresponds to the same problem under the three-dimensional (3D) case. The last problem simulates a bidimensional flow around a sheet pile. In the following lines, a brief description of the problems is given and their results are carefully analyzed.

Simulation of a constant head hydraulic conductivity test with heterogeneous soil

The simulation considers a squared domain of a large soil sample, with dimensions of 1 m wide times 1 m high. The aim is to simulate the test depicted in Figure 4, wherein a vertical upward flow is experienced by the soil due to an imposed hydraulic gradient. Small sized finite elements were used (of 0.01 m x 0.01 m) for the BVP. At the top boundary, a pore water pressure equal to $p_w = 0$ kPa is fixed as boundary condition to allow its drainage. At the bottom, a water pressure of $p_w = 50.0$ kPa is given to produce the pressure differential. The geometry, mesh and boundary conditions are depicted in Figure 5.

$$k_{eq} = \frac{k}{\mu}$$

where μ is the dynamic viscosity of the fluid. Notice that we have considered isotropic hydraulic conductivity. Steady state analysis of groundwater flow does not depend on the material’s mechanical behavior, and therefore no constitutive model for the soil is in the present analysis required.

Different spatial distributions of fine content are considered for the analysis. Specifically, random values of fine content saved at each element Gauss point are simulated. These values follow a Gaussian distribution with mean value $\bar{\mu}$ and standard deviation σ. Variation of these variables $\{\bar{\mu}, \sigma\}$ were considered for the analysis, including the fine content mean values of $\{\mu = 2.0\%, 5\% y 10\%\}$ and standard deviations computed as a fraction of the mean value, i.e. $\sigma = F \bar{\mu}$, where F takes different values between 0 and 1.

The non-homogenous fields of fine content were simulated through a special FORTRAN subroutine (INTEL(R), 2007) compatible with ABAQUS. The software provides the user subroutine VOIDS which enables to create an initial field, usually the void ratio, and permits to establish a direct relation between this variable and the hydraulic conductivity. Hence, we have used this user subroutine to write a FORTRAN code able to produce a random value for the fine content following the aforementioned Gaussian distribution. The code is given in Appendix A. The subroutine inputs correspond to the mean value and standard deviation σ, which are controlled for each simulation.

Three different Boundary Value Problems BVPs were constructed: the first simulates a constant head hydraulic conductivity test with a large soil sample, with dimensions of 1 m times 1 m. This BVP allows to compute an equivalent hydraulic conductivity for a given heterogeneous field of fine content. The second corresponds to the same problem under the three-dimensional (3D) case. The last problem simulates a bidimensional flow around a sheet pile. In the following lines, a brief description of the problems is given and their results are carefully analyzed.

Numerical simulations to evaluate the effect of the spatial distribution of the fine content on the equivalent hydraulic conductivity

The non-homogenous fields of fine content were simulated through a special FORTRAN subroutine (INTEL(R), 2007) compatible with ABAQUS. The software provides the user subroutine VOIDS which enables to create an initial field, usually the void ratio, and permits to establish a direct relation between this variable and the hydraulic conductivity. Hence, we have used this user subroutine to write a FORTRAN code able to produce a random value for the fine content following the aforementioned Gaussian distribution. The code is given in Appendix A. The subroutine inputs correspond to the mean value and standard deviation σ, which are controlled for each simulation.

Three different Boundary Value Problems BVPs were constructed: the first simulates a constant head hydraulic conductivity test with a large soil sample, with dimensions of 1 m times 1 m. This BVP allows to compute an equivalent hydraulic conductivity for a given heterogeneous field of fine content. The second corresponds to the same problem under the three-dimensional (3D) case. The last problem simulates a bidimensional flow around a sheet pile. In the following lines, a brief description of the problems is given and their results are carefully analyzed.

Simulation of a constant head hydraulic conductivity test with heterogeneous soil

The simulation considers a squared domain of a large soil sample, with dimensions of 1 m wide times 1 m high. The aim is to simulate the test depicted in Figure 4, wherein a vertical upward flow is experienced by the soil due to an imposed hydraulic gradient. Small sized finite elements were used (of 0.01 m x 0.01 m) for the BVP. At the top boundary, a pore water pressure equal to $p_w = 0$ kPa is fixed as boundary condition to allow its drainage. At the bottom, a water pressure of $p_w = 50.0$ kPa is given to produce the pressure differential. The geometry, mesh and boundary conditions are depicted in Figure 5.

Numerical simulations to evaluate the effect of the spatial distribution of the fine content on the equivalent hydraulic conductivity

For a non-homogenous soil sample, i.e. a sample presenting spatial variations of the fine content and/or other variables, the equivalent hydraulic conductivity k_{eq} is the one resulting from the homogenization of a representative volume. With simpler words, if we perform a constant head hydraulic conductivity test, the equivalent hydraulic conductivity k_{eq} is the one resulting from the test, independently of the sample inner heterogeneities. In this section, the influence of the fine content heterogeneity is evaluated through numerical simulations. For that end, Boundary Value Problems BVPs with finite elements are constructed. The BVPs simulate sand-clay mixtures subjected to a steady state water flow. The simulations account for spatial distributions of the fine content with a certain statistical distribution. Details of the creation of this heterogeneity will be explained later on. With this procedure, different points within the problem may have different fine contents and therefore different hydraulic conductivities. The hydraulic conductivity has been correlated to the fine content following the aforementioned Gaussian distribution. The equivalent hydraulic conductivity resulting from the test, independently of the sample inner heterogeneities. Therefore, we have used this user subroutine to write a FORTRAN code able to produce a random value for the fine content following the aforementioned Gaussian distribution. The code is given in Appendix A. The subroutine inputs correspond to the mean value and standard deviation σ, which are controlled for each simulation.

Three different Boundary Value Problems BVPs were constructed: the first simulates a constant head hydraulic conductivity test with a large soil sample, with dimensions of 1 m times 1 m. This BVP allows to compute an equivalent hydraulic conductivity for a given heterogeneous field of fine content. The second corresponds to the same problem under the three-dimensional (3D) case. The last problem simulates a bidimensional flow around a sheet pile. In the following lines, a brief description of the problems is given and their results are carefully analyzed.

Simulation of a constant head hydraulic conductivity test with heterogeneous soil

The simulation considers a squared domain of a large soil sample, with dimensions of 1 m wide times 1 m high. The aim is to simulate the test depicted in Figure 4, wherein a vertical upward flow is experienced by the soil due to an imposed hydraulic gradient. Small sized finite elements were used (of 0.01 m x 0.01 m) for the BVP. At the top boundary, a pore water pressure equal to $p_w = 0$ kPa is fixed as boundary condition to allow its drainage. At the bottom, a water pressure of $p_w = 50.0$ kPa is given to produce the pressure differential. The geometry, mesh and boundary conditions are depicted in Figure 5.
On the influence of the spatial distribution of fine content in the hydraulic conductivity of sand-clay mixtures

The developed FORTRAN subroutine, described in the previous section, was used to generate the random field of fine content following a Gaussian distribution. As an example, Figure 6 presents the fine content contours for a mean value of $\mu = 5\%$ and standard deviation of σ. The computation of the equivalent hydraulic conductivity is as follows. According to the Darcy’s law (Darcy, 1856), the water outflow Q obtained at the top boundary is computed with:

$$Q = k_{eq} i A$$

(4)

where k_{eq} is the equivalent hydraulic conductivity, $i = \Delta h / H$ is the hydraulic gradient, Δh is the water head differential, H is the height of the sample and A is the transversal section area of the sample. For the given geometry, $\Delta h = 50 \text{kPa} / \gamma_w = 5 \text{m}$, $H = 1 \text{m}$ and $A = 1 \text{m} \times 1 \text{m}$. Substitution of these values yields to the following simplified relation:

$$Q = k_{eq} \times (5 \text{m}^2)$$

(5)

On the other hand, the flowrate is computed with:

$$Q = \pi A$$

(6)

where π is the mean velocity of the water outflow. The latter is simply computed by averaging this variable at the top boundary nodes. Substitution of Equation 6 in Equation 5 yields to the following relation for the equivalent hydraulic conductivity:

$$k_{eq} = \frac{\pi}{\Delta h}$$

(7)

Results of simulations for mean fine contents of $\mu = \{5\%, 10\%\}$ with different values of the standard deviation σ are plotted from Figure 7 to Figure 12. Figure 7 presents the resulting outflow velocity v for each node located at the top boundary for $\mu = 5\%$. As expected, scattered values of the outflow velocity v are obtained due to the fine content heterogeneity. Notice that the dispersion increases for higher values of F, where F is the factor controlling the standard deviation $\sigma = F \mu$, see Figure 7. The resulting mean outflow velocity, denoted by μ, is plotted in Figure 8. It is reminded that the mean outflow velocity results from averaging the outflow velocities v. The results clearly indicate an increasing behavior of the mean outflow velocity μ for increasing values of F. The resulting equivalent hydraulic conductivity k_{eq}, computed with Equation 7, is plotted in Figure 9 and presents the same trend. Hence, one may conclude that the equivalent hydraulic conductivity k_{eq} depends on the spatial distribution of the fine content. Similar results were obtained for a mean fine content of $\mu = 10\%$ as shown in Figure 10, 11 and 12.

We are now interested to extend the analysis for the three dimensional (3D) case. For this purpose, a 3D FE-model has been constructed. The geometry consists of a cube of $1 \text{m} \times 1 \text{m} \times 1 \text{m}$. While displacements are in all directions restricted, a pore pressure gradient is similarly produced by imposing a value of 50 kPa at the bottom, and 0 kPa at the top. The random field of fine content is generated in the same way as in the 2D model. Figure 13 shows an example of the fine content FC heterogeneity...
for the mean value of $\mu = 10\%$ and standard deviation of $\mu = 4\%$. Figure 14 shows the results for the equivalent hydraulic conductivity k_{eq} of the 2D and 3D models, whereby very small discrepancies are observed. Hence, one may expect very similar conclusions on the 3D case.

Simulation of a flow around a sheet pile wall with heterogeneous soil

The influence of the fine content heterogeneity is now analyzed in a simulation of a water flow around a sheet pile. Similar to the previous simulations, a distribution of the fine content is given following a Gaussian distribution. The sheet pile wall is submerged in the soil with a depth of $3\ m$ and a thickness of $0.2\ m$, as depicted in Figure 15. The problem is $20\ m$ wide and $6\ m$ high. Lateral and bottom boundaries are considered as impervious. The sheet pile itself is considered as impervious as well. In order to generate a water flow around the sheet pile, a water pressure of $p_{w} = 0\ kPa$ is fixed on the left top boundary, while a water pressure of $p_{w} = 100\ kPa$ is set on the right top boundary. The geometry, mesh and boundary conditions are depicted in Figure 15.
On the influence of the spatial distribution of fine content in the hydraulic conductivity of sand-clay mixtures

As an example, the spatial distribution of the fine content for a mean value of $\mu = 5\%$ and a factor of $F = 0.9$ is plotted in Figure 16. The figure shows the initial heterogeneity of the fine content. The contours of the pore water pressure are shown in Figure 17 and the excess of pore water pressure, computed as $\Delta p_{pw} = p_{w} - p_{w0}$, where p_{w0} is the initial pore water pressure, is plotted in Figure 18. In general, these plots show the typical flow net of a water flow around a sheet pile wall. Once more, the nodal outflow velocities, from the left top boundary, are plotted in Figure 19. The results show that for nodes closer to the sheet pile, the outflow velocity increases. Dispersion is again obtained in these results due to the heterogeneity of the fine content. Their mean values are plotted in Figure 20 and similar to the hydraulic conductivity test simulation, it shows an increasing behavior for increasing standard deviation. For comparison purposes, we have now plotted in Figure 21 the response of the normalized velocity $\frac{v}{v_0}$, where v_0 is the velocity for the homogeneous case $\sigma = 0$, for a mean fine content of $\mu = 5\%$. Surprisingly, both results show a similar response despite they were computed on very different Boundary Value Problems.

Final remarks

In the present work, the influence of the fine content heterogeneity on the hydraulic conductivity was evaluated. For this purpose, a set of FE simulations of a large scaled permeability test with constant head was performed. The simulations considered the behavior of the hydraulic conductivity of the Santo Tomas sand, mixed on different proportions with a Kaolin clay, according to some experiments. The results showed a clear dependence of the resulting equivalent hydraulic conductivity with the spatial distribution of the fine content. Specifically, it was shown, that for a given mean fine content, increasing standard deviations σ are related to higher equivalent hydraulic conductivity values k_{eq}. This trend is at least true for mean values of fine contents of $\mu = \{5\%, 10\%\}$ for the FE models.
Figure 17. Contours of pore water pressure p_w. Mean fine content of $\mu = 5\%$ and $F = 0.9$. The standard deviation is computed as $\sigma = F \times \mu$. BVP of flow around sheet pile wall.

Figure 18. Contours of excess of pore water pressure $\Delta p_w = p_w - p_{w0}$, where p_{w0} is the initial pore water pressure. Mean fine content of $\mu = 5\%$ and $F = 0.9$. The standard deviation is computed as $\sigma = F \times \mu$. BVP of flow around sheet pile wall.

Figure 19. Outflow velocity at the top left boundary nodes. Mean fine content of $\mu = 5\%$. BVP of flow around sheet pile wall.

Figure 20. Mean outflow velocity vs. factor F. Mean fine content of $\mu = 5\%$. The standard deviation is computed as $\sigma = F \times \mu$. BVP of flow around sheet pile wall.
tested in the present work. Of course, additional simulations are required to analyze the resulting trend on a larger range of mean fine content. The results suggested that spatial variability of the fine content should be considered in Boundary Value Problems for a more realistic response. The last fact was demonstrated with the simulation of a water flow around a sheet pile which showed a similar pattern in the results. Currently, more investigation is made to validate the numerical results with experiments on large scaled samples considering their heterogeneity.

References
Al-Karni, A., & Al-Shamrani, M. (2000). Study of the effect of soil anisotropy on slope stability using method of slices. *Computers and Geotechnics*, 26, 83-103.
Al-Tabbaa, A., & Wood, D. (1988). Some measurements of the permeability of kaolin. *Géotechnique*, 38(3), 453-454.
Al-Tabbaa, A., & Wood, D. M. (1987). Some measurements of the hydraulic conductivity of kaolin. *Géotechnique*, 37(4), 499-503.
Alyamani, M. S., & Şen, Z. (1993). Determination of Hydraulic conductivity from Complete Grain Size Distribution Curves. *Groundwater*, 31(4), 551-555.
Amer, M., Asce, M., Amin, & Awad, A. (1974). Hydraulic conductivity of cohesionless soils. *Journal of the Geotechnical Engineering Division, 100*(12), 1039-1316.
Bardet, J. P. (1997). *Experimental Soil Mechanics*. Pearson.
Basak, P. (1972). Soil structure and its Effects on Hydraulic Conductivity. *Soil Science*, 114(6), 417-422.
Belkhatir, M., Schanz, T., Arab, A., & Della, N. (2014). Experimental Study on the Pore Water Pressure Generation Characteristics of Saturated Silty Sands. *Arabian Journal for Science and Engineering*. 39(8), 6055-6067.
Biernatowski, K., E. Dembicki, W., Dzierzawski, K., & Wolski, W. (1987). *Foundation engineering. Design and execution*. Warszawa: Arkady.
Bjerrum, L. (1973). Problems of soil mechanics and construction on soft clays and structurally unstable soils (collapsible, expansive and others). *Proc. of the 8th International Conference on Soil Mechanics and Foundation Engineering*, 111(190).
Brosse, A. M. (2012). *Study of the anisotropy of three British mudrocks using a Hollow Cylinder Apparatus*. London : Imperial College London, Ph.D Thesis.

Figure 21. σ / σ_0 vs. factor F. σ_0 is the mean velocity for the homogenous case $\sigma = 0$. Mean fine content of $\varphi = 5\%$. The standard deviation is computed as $\sigma = F \times \sigma$ where F is a factor. BVP of flow around sheet pile wall...
Appendix:

Appendix A

It is desired to simulate the dependency of the hydraulic conductivity K with the fine content FC. In addition, a spatial heterogeneous field of the fine content FC is required. Abaqus allows to provide an equation between the hydraulic conductivity and a field variable, which is internally called as VOIDRI. For our convenience, we assume that the variable VOIDRI corresponds to the fine content FC, i.e. VOIDRI=FC. The equation relating the hydraulic conductivity and VOIDRI is provided through a tabular method, i.e. a set of solution points of at different FC. The spatial distribution of the fine content FC is provided through the User Subroutine VOIDRI, fully compatible with Abaqus. The subroutine must be written in Fortran code, and according to our work, follows from a Gaussian distribution with mean value of $FC = \mu$ and a standard deviation of $\sigma = F \times \mu$, where F is a factor. In the following lines, the programming lines of the subroutine VOIDRI are briefly described.

Steps of the subroutine VOIDRI

1. Define factors F and μ as input variables.
2. Compute the standard deviation $\sigma = F \times \mu$
3. Generate a random value FC, between 0 to 1, with the Fortran Subroutine RGAUSS
4. Compute the fine content random value $FC = \mu + FC$
5. In case of a negative value $FC < 0$ correct to $FC = 0$.

In the following lines, the programming lines of the user subroutines VOIDRI and RGAUSS are given.

```
SUBROUTINE VOIDRI(ereo,coords,noel)
   USE IFPORT
   INCLUDE 'aba_param.inc'
   integer noel
   real*8 ezero, aux1, aux2, dif, factor
   real*8 coords(3)
   average=2.0d0    ! (INPUT, defined by the user for each analysis)
   factor=0.5           ! (INPUT, defined by the user for each analysis)
   sigmad=average*factor
   call rgauss(sigma, aux1,aux2)
   ezero= average +aux1
   dif= average
   if (ezero.le.( average -dif)) then
      ezero= average -dif+0.01
   endif
   if (ezero.ge.( average +dif)) then
      ezero= average +dif-0.01
   endif
   END SUBROUTINE
```

```
SUBROUTINE RGAUSS(sigma, y1,y2)
   USE ifport
   real*8 x1, x2, w, y1, y2, sigma
   do while ( (w .ge. 1.0d0).or.(w.eq.0.0d0) )
      x1 = 2.0d0 * rand(0) - 1.0d0
      x2 = 2.0d0 * rand(0) - 1.0d0
      w = x1 * x1 + x2 * x2
   end do
   w = sigma*sqrt( (-2.0d0 * log( w ) ) / w )
   y1 = x1 * w
   y2 = x2 * w
   END SUBROUTINE
```

Appendix B

The following correlations for the hydraulic permeability of sand-clay mixtures have been employed. The correlation proposed by (Warren & Price, 1961) reads:

$$\log k = FC \log (k_{100}) + (1 - FC) \log (k_0)$$

Equation 8

Where k is the hydraulic conductivity, FC is the fine content, k_{100} is the hydraulic conductivity of the clay and k_0 is the hydraulic conductivity of the sand.

The correlation proposed by (Cardwell & Parsons, 1945) is:

$$k = (FC^{p} k_{100} + (1 - FC) k_0)^{\frac{1}{p}}$$

Equation 9

Where p is an exponent which should be adjusted. For the present case, a value of $p = -0.4$ has been found to match well the experiments. The last equation yields to the arithmetic mean by setting $p = 1$, and reads:

$$k = FC k_{100} + (1 - FC) k_0$$

Equation 10

The particular case of the harmonic mean can be also obtained by setting $p = 1$, and reads:

$$\frac{1}{k} = \frac{FC}{k_{100}} + \frac{(1 - FC)}{k_0}$$

Equation 11