3D template-based Fermi-LAT constraints on the diffuse supernova axion-like particle background

Francesca Calore,1,7 Pierluca Carenza,2,3,4,‡‡ Christopher Eckner,1‡,†,‡‡ Tobias Fischer,5‡‡ Maurizio Giannotti,6‡‡ Joerg Jaeckel,7,‡‡ Kei Kotake,8 Takami Kuroda,9 Alessandro Mirizzi,3,4,†,‡‡ and Francesco Sivo3,††

1Univ. Grenoble Alpes, USMB, CNRS, LAPTh, F-74000 Annecy, France
2The Oskar Klein Centre, Department of Physics, Stockholm University, Stockholm 106 91, Sweden
3Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Via Amendola 173, 70126 Bari, Italy.
4Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Via Orabona 4, 70126 Bari, Italy.
5Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Poland
6Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL 33161, USA
7Institut für theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
8Faculty of Science, Department of Applied Physics & Research Institute of Stellar Explosive Phenomena, Fukuoka University, Fukuoka, Jonan 8-19-1, 814-0180, Japan
9Max-Planck-Institut für Gravitationsphysik, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
(Dated: March 8, 2022)

Axion-like particles (ALPs) may be abundantly produced in core-collapse (CC) supernovae (SNe), hence the cumulative signal from all past SN events can create a diffuse flux peaked at energies of about 25 MeV. We improve upon the modeling of the ALPs flux by including a set of CC SN models with different progenitor masses, as well as the effects of failed CC SNe – which yield the formation of black holes instead of explosions. Relying on the coupling strength of ALPs to photons and the related Primakoff process, the diffuse SN ALP flux is converted into gamma rays while traversing the magnetic field of the Milky Way. The spatial morphology of this signal is expected to follow the shape of the Galactic magnetic field lines. We make use of this via a template-based analysis that utilizes 12 years of Fermi-LAT data in the energy range from 50 MeV to 500 GeV. In our benchmark case of the realization of astrophysical and cosmological parameters, we find an upper limit of \(g_{a\gamma} \lesssim 3.76 \times 10^{-11} \text{ GeV}^{-1} \) at 95% confidence level for \(m_a < 10^{-11} \text{ eV} \), while we find that systematic deviations from this benchmark scenario induce an uncertainty as large as about a factor of two. Our result slightly improves the CAST bound, while still being a factor of six (baseline scenario) weaker than the SN1987A gamma-ray burst limit.

I. INTRODUCTION

Observing a supernova (SN) provides unique opportunities for fundamental physics. In particular, they are ideally suited to probe feebly interacting particles (cf. [2] for a recent review) with masses up to the \(\sim 100 \text{ MeV} \) range. Indeed, large numbers of such particles can be emitted in SN events [3]. An important and theoretically interesting instance of this are axions and axion-like particles (ALPs) [4, 5]. Indeed, SN 1987A has significantly strengthened astrophysical axion bounds in a region of the yet-incompletely known ALP parameter space, complementary to the one probed by the Sun and the globular clusters [4, 6, 7]. In the minimal scenario in which ALPs are coupled only with photons, the main channel for their emissivity in the SN core is the Primakoff process, leading to an ALP flux peaked at energies of about 25 MeV. Conversion of these ALPs into gamma rays in the Milky Way magnetic field can lead to an observable gamma-ray burst in coincidence with the SN explosion [6, 7]. At the time of the SN 1987A, the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission (SMM) observed no gamma-ray signal at the time of the SN explosion, this made possible to constrain the photon-ALP coupling early on (see [6, 7] for a detailed discussion). In a more refined, recent analysis, this upper limit is stated as \(g_{a\gamma} \lesssim 5.3 \times 10^{-12} \text{ GeV}^{-1} \) for \(m_a < 4 \times 10^{-10} \text{ eV} \) [10]. X-ray observations of super star clusters in the vicinity of the Milky Way’s Galactic center can further strengthen this bound to \(g_{a\gamma} \lesssim 3.6 \times 10^{-12} \text{ GeV}^{-1} \) for \(m_a < 5 \times 10^{-11} \text{ eV} \) at 95% confidence level (CL) [11]. A future Galactic SN explosion in the field of view of the Large Area Telescope (LAT) aboard the Fermi satellite would allow us to constrain \(g_{a\gamma} \lesssim 2.0 \times 10^{-13} \text{ GeV}^{-1} \) for \(m_a < 10^{-9} \text{ eV} \) [12]. Furthermore, a search for gamma-ray bursts from extragalactic SNe with Fermi-LAT has yielded the limit \(g_{a\gamma} \lesssim 2.6 \times 10^{-11} \text{ GeV}^{-1} \) for \(m_a < 3 \times 10^{-10} \text{ eV} \) [13] (see also [14, 15]).
While a single SN event is rare \[16\] and must fall into the detector field of view to be observed, there exists a guaranteed contribution to the gamma-ray diffuse flux which originates from ALPs emitted by all past SNe in the Universe \[17\]. This Diffuse SN ALP Background (DSNALPB), despite being fainter than the Galactic one, is within the reach of the Fermi-LAT experiment. In Ref. \[18\], henceforth called ‘Paper I’, some of us used published Fermi-LAT observations of the gamma-ray isotropic diffuse background to set a bound \(g_{\gamma \gamma} \lesssim 5.0 \times 10^{-11} \text{GeV}^{-1}\) for \(m_a < 10^{-11} \text{eV}\). However, this analysis does not completely acknowledge some technical issues behind the derivation of the isotropic gamma-ray background, which may impact the reliability of the stated upper bound on \(g_{\gamma \gamma}\). This component of the gamma-ray sky is obtained in connection with a particular model of the diffuse gamma-ray flux from the Milky Way and evaluated in a particular region of interest (ROI). Both the dependence on the diffuse model and the dependence on the selected sky region introduce unknowns in the upper bound estimate that cannot be cast into an uncertainty on the derived value because it is not known if the initial choices made by the Fermi-LAT collaboration create artificially strong or weak limits. Hence, we deem it warranted to put the analysis of the DSNALPB on solid statistical foundations by creating a complete Fermi-LAT data analysis pipeline which takes into account all the experience that has been gained over the long run of the LAT.

In the present work, we improve upon the previous analysis presented in Paper I in two ways. First, we present a more refined model of the SNe ALPs flux. It is indeed well known that the production of ALPs in a SN event depends on the progenitor mass. In Paper I, however, it was assumed that all past SNe are represented by a 18 \(M_\odot\) progenitor model. Here, instead, we consider different CC SN models with masses ranging between 8.8 and 70 \(M_\odot\), accounting also for the contribution due to failed \[19\]-core-collapse (CC) SN explosions. This allows us to determine with better accuracy a possible range of variability of the DSNALPB, and, in turn, of the expected gamma-ray flux. Secondly, we try to exploit the full potential of Fermi-LAT data in searching for this type of signal, by including information on the expected spatial structure of the signal in the gamma-ray data analysis. Paper I indeed sets limits on ALPs solely making use of the spectral energy distribution of the data. On the other hand, template-based analyses – see e.g. \[19\] for an early application in the context of EGRET data or a more recent example of an analysis of Fermi-LAT data \[20\] that led to the discovery of the so-called Fermi Bubbles – exploit both spectral and spatial properties of gamma-ray data to constrain physics models. This gamma-ray fitting technique has proven to be particularly successful in testing the hypothesis of weakly interacting massive particles shining in gamma rays at GeV - TeV energies (see, for instance, \[21\] \[25\]). However, to our knowledge, it was never applied to the search of an ALPs signal, albeit it presents specific spatial features, as we discuss below. We therefore perform a template-based analysis to constrain the ALP parameter space via the spatial structure of the DSNALPB induced diffuse gamma-ray flux using 12 years of Fermi-LAT data in the energy range from 50 MeV to 500 GeV.

The paper is organized as follows. In Sec. \[II\] we illustrate the CC SN models based on state-of-the-art hydrodynamical simulations. In Sec. \[III\] we present our updated calculation of the ALPs production flux in SNe and induced gamma-ray flux from the DSNALPB. In Sec. \[IV\] we sketch the analysis framework: data selection and preparation, and template fitting method of Fermi-LAT data. We discuss our results in Sec. \[V\]. We discuss systematic uncertainties and their impact on the ALPs upper limits in Sec. \[VI\], and conclude in Sec. \[VII\]. Two final appendices are devoted to more technical issues. In Appendix A we characterize some details concerning the calculation of the SN ALP spectrum, namely the effect of the presence of alpha particles in the SN core and the effects of the gravitational energy-redshift due to the strong gravitational field of the proto-neutron star, which were overlooked in previous analyses\[3\]. In Appendix B we present more details on the systematic uncertainty on the DSNALPB upper limits of cosmological and astrophysical origin.

II. CORE-COLLAPSE SUPERNOVA MODELS

In order to provide reliable constraints on the DSNALPB, it is essential to cover a representative, wide range of SN models, which are based on state-of-the-art simulations. The present work discusses SN simulations which are based on general relativistic neutrino radiation hydrodynamics featuring three-flavor neutrino transport, both in spherical symmetry \[24\] \[29\] with accurate Boltzmann neutrino transport, and in axial symmetry with a multi-energy neutrino transport method \[30\]. These simulations implement a complete set of weak interactions \[31\], and a multi-purpose microscopic nuclear matter equation of state (EOS) \[32\] \[36\].

In what follows, we distinguish successful core-collapse SN explosions of different types of progenitors. We consider the low-mass oxygen-neon-magnesium core progenitor with zero-age main sequence (ZAMS) mass of

\[2\] In the supernova models considered here, “failed” supernova is defined by a model with BH formation or without a shock revival during the numerical simulation. We will see the effect this has on the ALP production momentarily.

\[3\] We are grateful to the anonymous referee for bringing the relevance of these effects to our attention.
FIG. 1. PNS evolution during the deleptonization phase for the SN explosion models launched from different progenitors with ZAMS masses of 8.8, 11.2, 18.0 and 25 M_\odot. Left panel: central density, ρ_{centre}. Right panel: central and maximum temperatures, T_{centre} (dashed lines) and T_{Max} (solid lines).

8.8 M_\odot \cite{37}. They belong to the class of electron-capture SN \cite{38}, which yield neutrino-driven SN explosions even in spherical symmetry. The SN simulations discussed here were reported in Ref. \cite{39}, based on the nuclear EOS of Ref. \cite{33}. The simulations include all SN phases, i.e. stellar core collapse, core bounce\footnote{We define the point in time of the core bounce when the maximum central density is reached at the end of the stellar core collapse, which coincides with the time of shock breakout.} with the formation of the bounce shock, the subsequent SN post-bounce mass accretion phase including the explosion onset with the revival of the stalled bounce shock and finally the long-term deleptonization phase of the compact hot and dense central remnant proto-neutron star (PNS). The latter SN phase is of particular importance for the emission of axions. The remnant of this electron-capture SN explosion is a low-mass neutron star with a baryon mass of about 1.37 M_\odot. The corresponding PNS deleptonization features a nearly constant central density of $\rho_{\text{central}} \simeq 3.5 \times 10^{14}$ g cm$^{-3}$ as well as central temperature decreasing from $T_{\text{Max}} \simeq 30$ MeV to 25 MeV during the PNS deleptonization up to about 7.5 s post bounce, as illustrated in Fig. 1. In addition to the decreasing, central temperature, we show the maximum temperature evolution in Fig. 1 which rises moderately from $T_{\text{core}} \simeq 20$ MeV to about 25 MeV.

As an example of a low-mass iron-core progenitor we consider the example with ZAMS mass of 11.2 M_\odot from the stellar evolution series of Ref. \cite{40}. In contrast to electron-capture SN, which are characterized by a short post-bounce mass accretion period on the order of only few tenths of a second before the onset of the explosion, more massive iron-core progenitors suffer from extended post-bounce mass accretion periods, which fail to yield neutrino-driven explosions in self-consistent spherically symmetric simulations. Nevertheless, in order to obtain explosions, the neutrino heating and cooling rates have been enhanced artificially in Ref. \cite{39}, which lead to the successful revival of the stalled bounce shock. It results in the SN explosion onset\footnote{In all these SN simulations, the onset of the explosions is defined when the expanding shock wave reaches a radius of about 1000 km.} about 300 ms after core bounce, for this progenitor star of 11.2 M_\odot. The subsequent evolution of the central density of $\rho_{\text{centre}} \simeq 4 \times 10^{14}$ g cm$^{-3}$ as well as the central and maximum temperatures is illustrated in Fig. 1. The latter differ only marginally from those of the 8.8 M_\odot model.

Two more massive iron-core progenitors are included here, with ZAMS masses of 18.0 M_\odot and 25 M_\odot, which are evolved in a similar fashion as the 11.2 M_\odot model leading to neutrino-driven SN explosions on the order of several hundreds of milliseconds after core bounce. However, the remnant PNSs are more massive and hence feature a higher central density as well as higher central and maximum temperatures than the 8.8 and 11.2 M_\odot models (see Fig. 1). In particular the 25 M_\odot simulation reaches maximum temperatures at the PNS interior which reach as high as 50 MeV during the PNS deleptonization phase. This aspect is important for the axion emission since the axion emissivity has a strong temperature dependence.

In addition to the successful CC SN explosion models, we consider two examples with ZAMS masses of 40 and 70 M_\odot belonging to the failed CC SN branch which yield the formation of black holes instead \cite{11, 43}. In such case the mass accretion onto the bounce shock, in combination with the failed shock revival, leads to the continuous growth of the enclosed mass of the PNS until it exceeds the maximum mass given by the nuclear EOS, on a timescale of several hundreds of milliseconds up to one second post bounce. If no phase transition is considered \cite{15, 40}, the PNS collapses eventually and a black hole forms. The data for the SN simulation of the
40 \text{M}_\odot$ progenitor discussed in the following are taken from Ref. [13], based on the nuclear EOS of Ref. [32]. It results in black hole formation at about 450 ms post bounce with an enclosed PNS mass of about 2.5 \text{M}_\odot. The most massive progenitor model considered of 70 \text{M}_\odot, belongs to the class of zero-metallicity stars [17] for which a black hole forms within a few hundred milliseconds after core bounce [30] [48] [49]. This model has been evolved in axially symmetric simulations. Although the original SN simulation [30] takes into account the effect of strong phase transition from nuclear matter to the quark-gluon plasma at high baryon density, the central quark core immediately collapses into a BH within ~ 1 ms after its formation. Therefore its influence on ALP emission is expected to be minor. Furthermore, as the central high temperature region is swallowed by the BH, most of the ALP emission is expected to cease abruptly once the BH formation occurs, as indicated by ending the lines in Fig. [1]. The corresponding baryonic PNS mass at the onset of the PNS collapse is estimated to be ~ 2.6 \text{M}_\odot. In comparison to the other SN explosion models, with ZAMS masses of $8.8 - 25$ \text{M}_\odot, the failed SN branch yields significantly higher central densities as well as core temperatures. The latter reaches shortly before black hole formation up to $\rho_{\text{centre}} \geq 10^{15}$ g cm$^{-3}$ and $T_{\text{Max}} \geq 100$ MeV.

Having a set of characteristic supernovae, we will then do a simple interpolation between them, as will be described below.

III. DSNALPB AND GAMMA-RAY FLUX

A. ALPs emission from SNe

We consider a minimal scenario in which ALPs have only a two-photon coupling, characterized by the Lagrangian [50]

$$
\mathcal{L}_{\alpha\gamma} = -\frac{1}{4} g_{\alpha\gamma} F_{\mu\nu} F^{\mu\nu} a = g_{\alpha\gamma} \mathbf{E} \cdot \mathbf{B} a .
$$

Through this interactions ALPs may be produced in stellar plasma primarily via the Primakoff process [51]. In such a process thermal photons are converted into ALPs in the electrostatic field of ions, electrons and protons. We calculate the ALP production rate (per volume) in a SN core via Primakoff process closely following [10], which finds

$$
\frac{dN_{\alpha}}{dE} = C \left(\frac{g_{\alpha\gamma}}{10^{-11} \text{GeV}^{-1}} \right)^2 \left(\frac{E}{E_0} \right)^\beta \exp \left(-\frac{(\beta + 1)E}{E_0} \right),
$$

where the values of the parameters C, E_0, and β for the SN models with different progenitors are given in Table I. The spectrum described in Eq. (3) is a typical quasi-thermal spectrum, with mean energy E_0 and index β (in particular, $\beta = 2$ corresponds to a perfectly thermal spectrum of ultrarelativistic particles).

In Fig. 2 we represent the SN ALP spectra from different progenitors. We realize that for the successful CC SN explosions the average energy E_0 increases monotonically with the progenitor mass, as well as the peak of the spectrum. For the failed CC SN explosions, since the emitted flux is integrated over a shorter time window, the flux is suppressed with respect to the previous models.

For further purposes related to the calculation of the DSNALPB it is useful to determine the variation of the spectral coefficients C, E_0, and β as a function of the SN progenitor mass. Given the sparseness of the data we assume a linear behaviour in the range $[8; 30]\text{M}_\odot$, as shown in Fig. 3. The functional expressions are the fol-

SN progenitor	$C \times 10^{50}$ MeV$^{-1}$	E_0 [MeV]	β
8.8 \text{M}_\odot	3.76	76.44	2.59
11.2 \text{M}_\odot	7.00	75.70	2.80
18 \text{M}_\odot	23.0	91.61	2.43
25 \text{M}_\odot	28.1	105.5	2.30
40 \text{M}_\odot	2.48	112.7	1.92
70 \text{M}_\odot	0.391	30.44	0.785
FIG. 2. Produced SN ALP number as a function of energy for different SN progenitor mass. We assume $g_{a\gamma} = 10^{-11} \text{GeV}^{-1}$.

lowing ones

$$\frac{C(M)}{10^{50} \text{ MeV}^{-1}} = (1.73 \pm 0.172) \frac{M}{M_\odot} - 9.74 \pm 2.92,$$

$$\frac{E_0(M)}{\text{MeV}} = (1.77 \pm 0.156) \frac{M}{M_\odot} + 59.3 \pm 2.65,$$

$$\beta(M) = (-0.0254 \pm 0.00587) \frac{M}{M_\odot} + 2.94 \pm 0.0997,$$

(4)

where the quoted errors represent the standard mean-square uncertainties associated with the linear regression, and are taken into account into the final evaluation of the uncertainty on the bound.

For failed CC SN explosions, we only have two models from different groups, and therefore we do not attempt any interpolation.

B. Diffuse SN ALP background

From the SN ALP flux described in the previous section, one can calculate the DSNALPB from all past CC SNe in the Universe, as in Paper I (see also [17] and in particular Sec. VI of Ref. [53] for a detailed derivation of this equation),

$$\frac{d\phi_a(E_a)}{dE_a} = \int_0^\infty \left[(1 + z) \frac{dN_a^{CC}(E_a(1 + z))}{dE_a} \right] \times \left[R_{CC}(z) \right] \left[\frac{dt}{dz} \right] dz.$$

(5)

The first term in large brackets is the emission spectrum dN_a^{CC}/dE_a, where an ALP received at energy E_a was emitted at a higher energy $E_a(1 + z)$; the prefactor of $(1 + z)$ on the spectrum accounts for the compression of the energy scale, due to the redshift z. The second term is the supernova rate density $R_{CC}(z)$. The third term is the differential distance where $|dt/dz|^{-1} = H_0(1 + z)[\Omega_\Lambda + \Omega_M(1+z)^3]^{1/2}$ with the cosmological parameters $H_0 = 67 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_M = 0.3$, $\Omega_\Lambda = 0.7$.

ALP spectrum from past core-collapse SNe. In order to calculate the ALP spectrum of past CC SN events dN_a^{CC}/dE_a, one has to weight the flux from a given CC SN over the initial mass function (IMF) which provides the number of stars formed per unit of mass as function of the progenitor mass M.

Following Ref. [24], we show the results for three
IMFs: a traditional Salpeter IMF \cite{55}, an intermediate Kroupa IMF \cite{56}, and a shallower Baldry-Glazebrook (BG) IMF \cite{57}. The different IMF are characterized by the parameter ζ, defined in the expression below

$$
\phi(M) \propto M^{-\zeta}.
$$

(6)

For $M \gtrsim 0.5M_{\odot}$, we find $\zeta = 2.35$ for the Salpeter IMF, $\zeta = 2.3$ for the Kroupa case and $\zeta = 2.15$ for the BG IMF.

It is expected that the IMF of stars may depend systematically on the environment. In this context, in Ref. \cite{59} it was suggested to empirically investigate the effect of metallicity changing the exponent ζ in a range $[0.34 : 3.44]$. We find that the effect can produce a factor ~ 2 change in the DNSALPB flux.

In our study, we consider masses from 8 up to 125 M_{\odot}. However, due to the steep decline of Eq. (4), the high-mass end is suppressed and thus of minor relevance for the DNSALPB. The IMF-weighted ALP spectrum dN_a^{CC}/dE_a of all CC SN events can then be calculated as \cite{59}

$$
\frac{dN_a^{CC}}{dE_a} = \frac{\int_{A_{\text{expl-CC}}} dM\phi(M) \frac{dN_a}{dE} (M)}{\int_{8M_{\odot}}^{125M_{\odot}} dM\phi(M)},
$$

(7)

where $A_{\text{expl-CC}}$ and $A_{\text{fail-CC}}$ represent the domains in the progenitor mass range where one expects to have a successful and a failed CC SN explosion progenitor, respectively. In particular, the domain of failed CC SN explosions is defined following \cite{60}:

$$
\int_{A_{\text{fail-CC}}} = \frac{\int_{8M_{\odot}}^{125M_{\odot}} dM\phi(M)}{\int_{8M_{\odot}}^{125M_{\odot}} dM\phi(M)},
$$

(8)

and implemented here as a hard cut $M_{\text{min fail-CC}}$, which represents the lower mass bound of the failed CC SN explosions domain. From here, it also follows that $A_{\text{expl-CC}} = 1 - \int_{A_{\text{fail-CC}}}$. In order to study the DNSALPB sensitivity to $\int_{A_{\text{fail-CC}}}$ we consider four different scenarios, as in \cite{60}. Each scenario is characterized by a different $M_{\text{min fail-CC}}$. We consider that all stars with $M > M_{\text{min fail-CC}}$ collapse (or, shortly, Supernova Rate, SNR). The SNR, the DSNALPB depend on the cosmological rate of core collapse (or, shortly, Supernova Rate, SNR). The SNR, differential in the progenitor mass M, is proportional to the star formation rate (SFR), $R_{\text{SF}}(z)$ (defined as the mass that forms stars per unit comoving volume per unit time, at redshift z) \cite{60 62},

$$
R_{\text{CC}}(z, M) = R_{\text{SF}}(z) \frac{\int_{8M_{\odot}}^{125M_{\odot}} dM\phi(M)}{\int_{60M_{\odot}}^{125M_{\odot}} dM\phi(M)}. \quad (9)
$$

The SFR is well described by the functional fit \cite{69}

$$
R_{\text{SF}}(z) = R_{\text{SF}}(0) \left[(1+z)^{\alpha\eta} + \left(\frac{1+z}{B} \right)^{\beta\eta} + \left(\frac{1+z}{D} \right)^{\gamma\eta} \right]^{1/\eta}, \quad (10)
$$

where $R_{\text{SF}}(0)$ is the normalization (in units of M_{\odot} yr$^{-1}$ Mpc$^{-3}$), B and D encode the redshift breaks, the transitions are smoothed by the choice $\eta \approx -10$, and α, β and γ are the logarithmic slopes of the low, intermediate, and high redshift regimes, respectively. The constants B and D are defined as

$$
B = (1 + z_1)^{1 - \alpha/\beta}, \quad D = (1 + z_1)^{(\beta - \alpha)/\gamma} (1 + z_2)^{-\beta/\gamma}, \quad (11)
$$

where z_1 and z_2 are the redshift breaks. All the parameters of the model are collected in Tab. \cite{60} based on \cite{54}. In principle, it has been recently shown that the appearance of exotic phases of hot and dense matter, associated with a sufficiently strong phase transition from nuclear matter to the quark-gluon plasma at high baryon density, can trigger supernova explosions of massive stars in the range 35 – 50 M_{\odot}. However, from nucleosynthesis studies it results that the contribution of these exotic SNe might be at most 1 % of the total ones \cite{67}. Therefore, their contribution to the DNSALPB is negligible and we will neglect it hereafter.
TABLE II. Model parameters for the SFR, Eq. (10), values taken from [54].

Analytic fits	$R_{\text{SF}}(0)$	α	β	γ	z_1	z_2
Upper	0.0213	3.6	-0.1	-2.5	1	4
Fiducial	0.0178	3.4	-0.3	-3.5	1	4
Lower	0.0142	3.2	-0.5	-4.5	1	4

FIG. 4. DSNALPB fluxes with $g_{\gamma\gamma} = 10^{-11}$ GeV$^{-1}$ for different fractions of failed SNe $f_{\text{fail--CC}}$, assuming the fiducial model for R_{SF}.

In Fig. 4, we show the DSNALPB fluxes for a photon coupling $g_{\gamma\gamma} = 10^{-11}$ GeV$^{-1}$ and $m_a \ll 10^{-11}$ eV for the different fractions of failed SNe $f_{\text{fail--CC}}$, assuming the fiducial model of Table II for the R_{SF}. As expected, the larger $f_{\text{fail--CC}}$ the more suppressed is the flux. The flux uncertainty related to the unknown fraction of failed SNe is a factor ~ 3.

In Fig. 5, we show the impact of the changes of parameters in the R_{SF} of Table III. We fix $f_{\text{fail--CC}} = 10\%$ and Salpeter IMF. The continuous curve refers to the fiducial model for R_{SF}, while upper and lower curves refer to upper and lower models, respectively. The uncertainty on R_{SF} leads to a factor ~ 3 of variation in the DSNALPB flux. Instead, the variation associated with a different choice of IMF is subleading.

Finally, we include all the different uncertainties related to the fraction of failed SNe, to the SNR and IMF in order to get a range of variability for the DSNALPB, as shown in the gray band in Fig. 6, where the lower dashed line corresponds to $f_{\text{fail--CC}} = 40\%$, BG IMF and lower model parameters for R_{SF} in Table III, while the upper dashed curve corresponds to $f_{\text{fail--CC}} = 10\%$, Salpeter IMF and upper model parameters for R_{SF}.

DSNALPB flux. We are now ready to discuss how the different uncertainties in the calculation discussed above impact the DSNALPB flux. In Fig. 4 we show the DSNALPB fluxes for a photon coupling $g_{\gamma\gamma} = 10^{-11}$ GeV$^{-1}$ and $m_a \ll 10^{-11}$ eV for the different fractions of failed SNe $f_{\text{fail--CC}}$, assuming the fiducial model of Table II for the R_{SF}. As expected, the larger $f_{\text{fail--CC}}$ the more suppressed is the flux. The flux uncertainty related to the unknown fraction of failed SNe is a factor ~ 3.

In Fig. 5, we show the impact of the changes of parameters in the R_{SF} of Table III. We fix $f_{\text{fail--CC}} = 10\%$ and Salpeter IMF. The continuous curve refers to the fiducial model for R_{SF}, while upper and lower curves refer to upper and lower models, respectively. The uncertainty on R_{SF} leads to a factor ~ 3 of variation in the DSNALPB flux. Instead, the variation associated with a different choice of IMF is subleading.

Finally, we include all the different uncertainties related to the fraction of failed SNe, to the SNR and IMF in order to get a range of variability for the DSNALPB, as shown in the gray band in Fig. 6, where the lower dashed line corresponds to $f_{\text{fail--CC}} = 40\%$, BG IMF and lower model parameters for R_{SF} in Table III, while the upper dashed curve corresponds to $f_{\text{fail--CC}} = 10\%$, Salpeter IMF and upper model parameters for R_{SF}.

DSNALPB conversions into gamma rays. ALPs produced in a SN propagate until they reach the Milky Way, where they can convert into photons in the Galactic
magnetic field (GMF). To calculate the conversion probability we follow the same procedure used in Paper I and Refs. [71].

As it is well known (see [50] for the seminal paper discussing this in detail), in a homogeneous magnetic field, ALPs can convert into photons with a polarization parallel to the magnetic field. For massless ALPs, in vacuum ALPs can convert into photons with a polarization parallel to the magnetic field. To calculate the conversion probability we follow the same procedure used in Paper I and Refs. [71].

However, there are additional effects that have to be taken into account to achieve a realistic description inside the Galaxy. In the Galaxy neither the strength nor the direction of the magnetic field is constant. Therefore, one has to integrate the build up of the photon amplitude for both possible polarization directions along the line of propagation through the Galaxy. We solve the relevant equations numerically. To do so we need the Galactic magnetic field model as an input. As our baseline model we take the Jansson-Farrar model ([73]) with the updated parameters given in Tab. C.2 of [74] (“Jansson12c” ordered fields).

To quantify the uncertainty due to the magnetic field, we also compare to the Pshirkov model [76]. This second model features a larger magnetic field in the Galactic plane and a weaker off-plane component, and, to the best of our knowledge, it is not excluded yet by Faraday rotation data.

The propagation is further complicated by changes in the wavelength of the photon and the ALP. These arise from the mass of the ALP, the plasma mass of the photon arising from the non-vanishing electron density, as well as, indeed, the coupling between the ALP and the photon inside the magnetic field. The ALP mass and the photon coupling are explicit parameters of the ALP model, i.e., the parameters we want to constrain. The plasma mass is directly related to the electron density which we take as an astrophysical input. For the electron density, we use the model described in [77] (for both magnetic field configurations). In general the effect of the photon and plasma mass on the probability is energy dependent and fully included in our analysis. We note however, that for $m_a \lesssim 10^{-11}$ eV and $g_{a\gamma} \lesssim 10^{-11}$ GeV and energies $E \gtrsim 50$ MeV the mass effects become negligible and the probability is energy independent.

In Fig. 7 we show an example of the all-sky DSNALP gamma-ray flux, resulting from the numerical implementation of the procedure outlined above. For the $a \rightarrow \gamma$ conversion probability in the Milky Way, we started from a pure ALPs beam at the outside boundary of the Galaxy, for the Jansson and Farrar magnetic field model derived in [73] and with parameters updated according to [74]. Besides giving an idea of the magnitude of fluxes at play from ALPs, this map represents the spatial distribution of the signal as it is used, for the first time in this work.

TABLE III. Fitting parameters for DSNALPB fluxes for $g_{a\gamma} = 10^{-11}$ GeV$^{-1}$ and $m_a \ll 10^{-11}$ eV for different fractions of failed SNe $f_{\text{fail-CC}}$, taking a Salpeter IMF and and a fiducial model for the R_{SF} parameters in Table III.

$f_{\text{fail-CC}}$	$C \times 10^{-7}$ MeV$^{-1}$ cm$^{-2}$ s$^{-1}$	E_0 [MeV]	β
10% max flux	144	43.8	1.50
10%	88.9	43.5	1.41
20%	62.9	39.9	1.49
30%	46.5	39.3	1.47
40%	35.8	40.2	1.41
40% min flux	15.7	42.3	1.32

6 We comment that as pointed out in Ref. [74] the Jansson and Farrar model exhibits regions in which the magnetic divergence constraint is violated. Prescriptions have been proposed to mitigate this problem in [75]. This issue would deserve a dedicated investigation in relation to ALP-photon conversions.

7 Due to the energy independence of the conversion in the energy
as input for the Fermi-LAT analysis.

IV. FERMI-LAT ANALYSIS FRAMEWORK

A. Data selection

We use 12 years of Fermi-LAT Pass8 data. The signal is peaked at about 25 MeV. Therefore, we use two separate data sets with different selection criteria to specifically improve the analysis of LAT data below 200 MeV. The applied criteria are summarized in Tab. IV.

While the $E < 200 \text{ MeV}$ data is the main driver of the constraint, let us nevertheless start by describing our procedure for the more standard $E \geq 200 \text{ MeV}$ data set. This gives the picture of the main ingredients in our analysis. We will later comment on the adaptations for the $E < 200 \text{ MeV}$ region.

The data set of events $E \geq 200 \text{ MeV}$ includes both front- and back-converted events to increase the statistical sample, whereas the data set with $E < 200 \text{ MeV}$ is restricted to photons of the PSF3 event type. This decision has been made to benefit from the slightly better angular reconstruction efficiency of this event type compared to the generally poor angular resolution of the LAT at the lower end of its sensitivity range. For both data sets the ULTRACLEANVETO event class has been chosen as it minimizes the contamination by misclassified cosmic-ray events, which is essential for studies of large-scale diffuse sources like the extragalactic ALP flux from SNe. The choice of this event class requires us to select the Fermi-LAT Instrument Response Functions (IRFs) P8R3_ULTRACLEANVETO_V3 with which we will convolve the physical gamma-ray emission models to generate from them the expected number of photon events. The LAT data as well as the model data to be generated are stored as all-sky maps and binned according to the HEALPix pixelization scheme [78] with $N_{\text{side}} = 64$. The mean distance between the centers of two such HEALPix pixels amounts to about 0.9°. All data manipulations involving either the LAT data or the application of LAT IRFs is done via the Fermi Science Tools and its dedicated routines; in particular, the routine gtmodel to derive photon count templates, i.e., templates convolved with the LAT’s PSF [80] and multiplied by the exposure depending on the data set (see Tab. IV) to obtain the “infinite statistics” or Asimov dataset [79]. We incorporate in the analysis:

- Interstellar emission (IE) – the combined gamma-ray flux due to high-energy charged cosmic rays interacting with gas, photon radiation fields and dust in the Milky Way – which is represented by five distinct models to examine the robustness of the analysis with respect to variations of this particular component. From the wide range of different attempts to quantify the intensity, spatial and spectral structure of the Galactic IE, we choose as the benchmark in our analysis one particular model instance that has been created to examine the systematic uncertainty inherent to the “1st Fermi LAT Supernova Remnant Catalog” [80]. In what follows, we will refer to this model by “Lorimer I”. While the documentation of the exact details of this model can be found in the referenced publication [81], we stress here the basic assumptions underlying its construction: The sources of primary cosmic rays are assumed to follow the distribution of pulsars in the Milky Way as reported in [81]. The typical height of the cosmic-ray propagation halo is set to $z = 10 \text{ kpc}$, while the spin temperature of the interstellar medium is 8

B. Methodology

The ALP-induced gamma-ray flux manifests itself as a large-scale contribution to the overall gamma-ray sky at low Galactic latitudes around the Galactic disc as well as at high Galactic latitudes. To do justice to this fact, we develop a template-based analysis that utilizes all-sky maps of the expected photon counts for various background components and the ALP signal template. The selection of astrophysical gamma-ray emission backgrounds comprises Galactic and extragalactic contributions that are commonly considered in studies of the LAT data. To give a rough outline of the analysis strategy, we first single out the region of the sky that yields the best agreement between a model built from the astrophysical emission components. In a second step, this ROI is used to constrain the strength of the ALP-induced gamma-ray flux.

Astrophysical background model selection. The model for the gamma-ray sky is created from a selection of the “guaranteed” emission components on which we comment in the following. We process these models with the Fermi Science Tools and its dedicated routines; in particular, the routine gtmodel to derive photon count templates, i.e., templates convolved with the LAT’s PSF [80] and multiplied by the exposure depending on the data set (see Tab. IV) to obtain the “infinite statistics” or Asimov dataset [79]. We incorporate in the analysis:

- Interstellar emission (IE) – the combined gamma-ray flux due to high-energy charged cosmic rays interacting with gas, photon radiation fields and dust in the Milky Way – which is represented by five distinct models to examine the robustness of the analysis with respect to variations of this particular component. From the wide range of different attempts to quantify the intensity, spatial and spectral structure of the Galactic IE, we choose as the benchmark in our analysis one particular model instance that has been created to examine the systematic uncertainty inherent to the “1st Fermi LAT Supernova Remnant Catalog” [80]. In what follows, we will refer to this model by “Lorimer I”. While the documentation of the exact details of this model can be found in the referenced publication [81], we stress here the basic assumptions underlying its construction: The sources of primary cosmic rays are assumed to follow the distribution of pulsars in the Milky Way as reported in [81]. The typical height of the cosmic-ray propagation halo is set to $z = 10 \text{ kpc}$, while the spin temperature of the interstellar medium

8. [Fermi-LAT key performance figures](https://fermi.gsfc.nasa.gov/ssc/data/access/lat/lat_Performance.htm)
9. The model files have been made public by the Fermi-LAT collaboration: https://fermi.gsfc.nasa.gov/ssc/data/access/lat/ist_SNR_catalog/
10. We note that these files have been initially generated to be compatible with Pass7 LAT data. However, they may be manually converted to comply with the Pass8 standard by using the same factor that distinguishes the official Fermi-LAT diffuse background models `gll_iem_v05` and `gll_iem_v06`
TABLE IV. Data selection and preparation specifications.

Data Set	$E < 200 \text{ MeV}$	$E \geq 200 \text{ MeV}$	
Reconstruction algorithm	Pass 8		
Event class	ULTRACLEANVETO		
Event type	PSF3	FRONT+BACK	
Energy range	50 MeV - 200 MeV	200 MeV - 500 GeV	
Time interval	12 years (4th August 2008 - 3rd September 2020)		
ROI	all sky		
Zenith angle (applied to gtltcube)	$< 90^\circ$		
Time cuts filter	DATA.QUAL==1 && LAT_CONFIG==1		
HEALPix resolution	$N_{\text{side}} = 64$	30 logarithmically-spaced bins	
energy binning			

is taken to be $T = 150$ K. These model parameters and assumptions are not largely different from similar models that have in the past and recently been applied to study the characteristics of the gamma-ray emission in the Galactic center region [22, 25]. Another advantage of this model is its decomposition into an inverse Compton map and gas maps (notably atomic H as well as CO as a proxy for the distribution of H$_2$), which themselves split into Galactocentric annuli of various extension (0-4 kpc: “ring 1”, 4-8 kpc: “ring 2”, 8-10 kpc: “ring 3” and 10-30 kpc: “ring 4”). This subdivision into annuli allows us to perform an optimization of the individual model components via an all-sky baseline fit which we describe later. We complement this benchmark choice with four additional interstellar emission models (IEMs): “Lorimer II” – another model instance from [80] with the only difference from Lorimer I being an extreme choice for the spin temperature which is taken to be $T = 1 \times 10^5$ K as well as the “Foreground Models” A, B and C from the in-depth Fermi-LAT study of the diffuse extragalactic gamma-ray background [82]. The IEMs of the latter publication possess the advantageous feature of having been created with the idea in mind that they will eventually be used to study high-latitude LAT data: a task that we are likewise aiming at.

- **Isotropic diffuse background (IGRB)** – The spatial morphology of this component follows the exposure of the LAT while its spectrum is determined in connection with a particular IEM. For our analysis, we adopt the IGRB component shipped with the Fermi Science Tools and respecting the choice of event class and type in the context of the two data sets in Tab. IV. Note that – due to reasons that will become clear later while describing the analysis routine – the adopted spectrum of the IGRB does not play a crucial role in our study.

- **Detected point-like and extended gamma-ray sources (PS)** – A Fermi-LAT analysis of 10 years of data has revealed more than 5700 individual gamma-ray sources inside and outside of the Milky Way [83, 84]. We include this latest iteration of a high-energy gamma-ray source catalog, the 4FGL-DR2, in our analysis. Depending on the analyzed data set, the treatment and handling of these detected sources may differ and the explicit description of our approach follows later in the text.

- **Fermi Bubbles (FBs)** – As a large-scale diffuse component that extends to high-latitudes in the northern and southern hemisphere of the projected gamma-ray sky, we incorporate the FBs as a template according to their spatial characterization provided in [22]. We adopt as their fiducial spectrum a log-parabola $\frac{dN}{dE} = F_0 \left(\frac{E}{E_0} \right)^{\alpha - \beta \ln(E/E_0)}$ with parameters $F_0 = 5 \times 10^{-10}$ ph cm$^{-2}$ s$^{-1}$ MeV$^{-1}$, $\alpha = 1.6$, $\beta = 0.09$ and $E_0 = 1$ GeV taken from [85].

- **LoopI** – Another large-scale diffuse emission component, which is most prominently present in the northern hemisphere above the Galactic disc. We adopt the geometrical spatial structure (and spectral) as considered in the 1st Fermi-LAT SNR catalog analysis [80] that is based on a study in [86].

12 The relevant model files can be retrieved from the Fermi-LAT collaboration’s public data archive: https://www-glast.stanford.edu/pub_data/865/

13 The relevant spectrum files are also provided at https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
- Gamma-ray emission from the Sun and the Moon (SUN) – Both the Sun and the Moon can contribute a sizeable gamma-ray background when they pass through the ROI of a particular analysis. Since we are aiming to conduct an all-sky study, their emission must be taken into consideration. The Fermi Science Tools offer routines\footnote{The Pass 8 reconstruction standard has revealed that energy dispersion effects are a crucial ingredient to realistically simulate LAT observations. More information on this subject are provided at this website: \url{https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass8_edisp_usage.html}} to calculate a LAT data-based Sun and Moon gamma-ray template via the techniques presented in \cite{16}.

Statistical inference procedure.

The grand scheme of this analysis is an all-sky template-based fit. To this end, we construct a fitting routine that utilizes the Poisson likelihood function subdivided into energy bins i and spatial pixels p

$$L(\mu|n) = \prod_{i,p} \frac{(\mu_{ip})^{n_{ip}}}{n_{ip}!} e^{-\mu_{ip}}$$

(13)

for binned model data μ and experimental data n. The model data are a linear combination of the templates X introduced above

$$\mu = G_a X^{\text{ALP}} + \sum X A_X X_i,$$

(14)

where $X \in \{\text{IE, IGRB, PS, FB, LoopI, SUN}\}$. This construction introduces two kinds of normalization parameters. The first are a set of normalization parameters, A_X, for each energy bin of each astrophysical background component. These parameters can be varied independently of each other during a fitting step. The advantage of such an approach is that spectral imperfections of the original astrophysical emission models are less impactful as they are re-adjusted in a fit. Thus, a greater emphasis is given to the spatial morphology of the background components. This technique has been successfully applied in previous studies, e.g.\footnote{An explanation is provided under \url{https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/solar_template.html}}. Second, the signal component, i.e. the ALP-induced gamma-ray flux, is modelled with a single, global normalization parameter G_a since we aim to exploit both the spatial and spectral shape of this component. To re-iterate the discussion of the ALP signal in Sec.\footnote{The Pass 8 reconstruction standard has revealed that energy dispersion effects are a crucial ingredient to realistically simulate LAT observations. More information on this subject are provided at this website: \url{https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass8_edisp_usage.html}} its spectral shape is dictated by the physics of core-collapse SNe while the spatial morphology is a direct consequence of the shape of the GMF of the Milky Way. Note that while the importance of the spectral shape of each background component is reduced, a similar statement about the ALP signal’s spectrum is not correct. Therefore, we need to include energy dispersion\footnote{Another source that explains this weighted likelihood approach is found at: \url{https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/weighted_like.pdf}} during the generation of the signal template with

the Fermi Science Tools. The impact of energy dispersion is growing with decreasing photon energy and highly recommended at energies below 100 MeV. Therefore, we use `edisp_bins=-2` (two additional energy bins are added below and above the nominal energy range of the data set to compute spectral distortions due to energy dispersion effects) for the data set of $E < 200$ MeV and `edisp_bins=1` for the data set of $E \geq 200$ MeV with `apply_edisp=true` in the spectrum part of the input to the Fermi Science Tools.

We infer the best-fit parameters of the model with respect to one of the LAT data sets via the maximum likelihood method for which we invoke the weighted logarithmic Poisson likelihood \cite{83}.

$$\ln L_w(\mu|n) = \sum_{i,p} w_{ip} (n_{ip} \ln \mu_{ip} - \mu_{ip}).$$

(15)

This weighted log-likelihood function has been introduced by the Fermi-LAT collaboration in connection with the generation of the 4FGL catalog as to incorporate the impact of systematic uncertainties on the analysis results. The basic idea is to assign to each pixel (per energy bin) a weight – a quantity that is essentially obtained via integration in space and energy of the provided model or LAT data – in order to suppress the statistical impact of certain parts of the target region where the emission is dominated by systematic uncertainties. An exhaustive discussion of the calculation and properties of these weights can be found in Appendix B of \cite{83}. The numerical routines (\texttt{gteffbkg, gtalphpbk, gtwtsmap}) to compute the weights for a particular setup are part of the Fermi Science Tools.

As concerns this analysis, we choose to incorporate “data-driven” weights in our analysis pipeline. These weights are directly computed from the selected LAT data. Hence, they yield a means to penalize pixels that suffer from systematic effects like misclassified charged cosmic-ray events, PSF calibration, IE spectral modeling uncertainties in bright regions of the sky or sky parts hosting particularly bright point-like sources that overshadow their surroundings. We fix the level of the assumed systematic uncertainties to 3% (for all energy bins), which is the fiducial value utilized and tested for the creation of the 4FGL source catalog \cite{83}. The likelihood maximization step is performed with the \textsc{iminuit} python package \cite{89} and the migrad minimization algorithm it provides.
To discriminate between different hypotheses – quantifying a possible preference for the model in Eq. 14 with

\[TS(G_a) = \begin{cases} -2 \min_{\{A^X\}} \left(\ln \left(\frac{L_0(\mu(A^X))}{L_0(\mu(n))} \right) \right) & G_a \geq \hat{G}_a \\ 0 & G_a < \hat{G}_a \end{cases} \] (16)

by adopting the construction discussed in [79]. In our case at hand, the astrophysical background normalization parameters are treated as nuisance parameters and \(\hat{G} \) denotes the best-fit values of signal and background normalization parameters. In the case of no significant ALP signal, this test statistic allows us to set upper limits on the ALP normalization parameter. As Eq. (16) only depends on one parameter and values of \(G_a \) smaller than the best-fit value are discarded, its distribution follows a half-\(\chi^2 \)-distribution with one degree of freedom (see Sec. 3.6 of [79]). Consequently (still following the calculations in the mentioned reference), an 95\% CL upper limit on \(G_a \) can be set where the test statistic attains a value of 2.71.

Fitting procedure. To derive an upper limit on the strength of the ALP-induced gamma-ray flux, we have to face and solve two main challenges:

1. What is the part of the sky that yields the best agreement between a model consisting of the six emission components introduced in the previous section and the measured LAT data? Only such an ROI can be exploited in order to constrain the ALP signal strength in a statistically sound approach. The manner in which this optimization process is performed was inspired by the approach presented in [90], where the authors aim to constrain weakly interacting massive particles via a gamma-ray signal from the Milky Way’s outer dark matter halo.

2. How do we have to adapt our fitting procedure to the particular case of the two data sets above and below 200 MeV? The main concern of the data set below 200 MeV is the large PSF size of the instrument, which heavily impacts the manner to incorporate the population of detected gamma-ray sources from the 4FGL catalog.

The subsequent paragraphs are presenting the reasoning that applies to the LAT data set above 200 MeV. After this general outline of our approach, we comment on the parts that need to be altered when handling the data set below 200 MeV.

To answer the first point raised, we adopt and adapt the iterative all-sky fitting strategy that has been proposed and applied by the Fermi-LAT collaboration to derive the current iteration of their Galactic diffuse back-

...ground mode\(^\text{17}\). In the companion publication\(^\text{18}\) that describes the details of the collaboration’s analysis, an outline of the general procedure is given in Sec. 4: The main idea is to perform a maximum likelihood fit utilizing Eq. 15 (and fixed \(G_a = 0 \)) by selecting characteristic sky regions where only a few components would dominate while the sub-dominant components remain fixed to initial normalization values or the results of previous iteration rounds. In what follows, we list the definitions of the different sky regions that we consider in our work and those templates – with respect to our benchmark IEM “Lorimer I” – that are left free therein (masks corresponding to the chosen regions are shown in Fig. 8):

1. **High-latitude:** \(|b| > 30^\circ \) and without the “patch”-region, which we define as \(-105^\circ \leq \ell \leq 60^\circ \). The patch region is the part of the sky where LoopI and the FBs are brightest. Here, we leave free the following templates: HI ring 3, IC, 4FGL, IGRB and Sun.

2. **Outer galaxy:** \(|b| \leq 30^\circ, |\ell| > 90^\circ \). This concerns the following templates: 4FGL, HI ring 4, CO ring 4 and IC.

3. **Inner galaxy:** \(|b| \leq 30^\circ, |\ell| \leq 90^\circ \). This concerns the following templates: 4FGL, HI ring 1, HI ring 2, CO ring 1, CO ring 2, CO ring 3 and IC.

4. **Patch region/all-sky:** To adjust the normalization parameters of the LoopI and FB templates, we fit them on the full sky while all other templates are fixed.

After iterating this procedure 100 times, we have obtained a baseline fit to the LAT data with which we perform the tests of statistical robustness of certain ROIs in the following. Moreover, this routine provides us with a data-optimized IEM that we create by summing the gas and IC components with their respective best-fit normalization factors. To avoid fitting all gas rings every

17 The model file can be downloaded from this website: https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

18 The model file can be downloaded from this website: https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/aux/4fgl/Galactic_Diffuse_Emission_Model_for_the_4FGL_Catalog_Analysis.pdf
time, we use this optimized IEM as a single template in what follows. Note that only the IEMs “Lorimer I” and “Lorimer II” enable a fit with split gas rings whereas foreground models A, B and C are treated differently. To conduct the baseline fit in their case, we split the single IE template into three independent parts coinciding with the definitions of the sky patches of the iterative fit. The same reasoning is also applied to the IC template for all five IEMs.

Region of interest optimization. Consequently, we systematically search for an ROI that provides statistically reliable upper limits on the ALP signal’s strength. To this end, we exclusively resort to the southern hemisphere as to avoid possible contamination by the gamma-ray emission of the rather poorly constrained Loop I structure. In addition – to reduce the human bias on the optimization process of the ROI – we exchange the physical gamma-ray spectrum of the diffuse ALP background with a simple power law of spectral index -2.

We fix its reference flux normalization A_{ALP} so that the resulting flux is one order of magnitude lower than the DSNALPB at a reference energy of 100 MeV and ALP-photon coupling of $g_{\gamma} = 5.3 \times 10^{-11}$ GeV$^{-1}$ corresponding to the limit derived in Paper I. Consequently, the maximal photon counts per pixel are of order unity at this reference energy. By invoking Eq. (16) (replacing $G_{\gamma} \rightarrow A_{\text{ALP}}$) and including the ALP template with a non-zero normalization, we derive the associated TS-distribution in a particular region of the sky, which we systematically shrink from $\ell \in [-180^\circ, 180^\circ]$ to $\ell \in [-90, 90^\circ]$ with $b \in [-90^\circ, -30^\circ]$. The cut in Galactic latitude is applied to reduce the impact of the IE along the Galactic disc. For all tested sky regions, we compare the resulting TS-distributions for input data n that are either a particular LAT data set or the baseline fit data with respect to the IEM Lorimer I. The latter data set has the advantage of allowing us to draw Poisson realizations that eventually show the scatter of the expected upper limits on A_{ALP}. This optimization procedure leads us to the choice of the ROI for the analysis, presented in Sec. [V]. We stress that A_{ALP} is an auxiliary parameter whose baseline value is connected to the ALPs expected gamma-ray brightness, and used to tune the analysis pipeline.

Treatment of detected sources in the 4FGL catalog. Besides the (ℓ, b)-mask to inspect the admissibility of a particular ROI in the southern hemisphere, we are also masking the positions of all detected gamma-ray sources that are listed in the 4FGL catalog. Each source is masked in a circular region centered on its nominal position in 4FGL with a radius that corresponds to the 95% containment radius of the LAT’s PSF at a given energy. The source mask radius is extended by the reported extension of a source when applicable. However, this reasoning would lead to masking the entire sky at energies $E \lesssim 500$ MeV. Hence, we only use the 68% containment radius for the respective energy bins. We have checked that increasing the mask radii at these energies does not impact the final results.

Adjustments for the data set $E \leq 200$ MeV. While the overall rationale of the fitting procedure remains the same, there are a number of necessary changes to be made in order to optimize the analysis pipeline at the lowest energies accessible to the Fermi LAT. The LAT’s PSF size rapidly deteriorates at these energies to values larger than one degree. On the one hand, while bright gamma-ray sources can still be identified as individual sources, the vast majority of sources listed in 4FGL will create a sea of photons that rather seems to be of a diffuse origin and, thus, increasing the degeneracy with genuinely diffuse signals like the ALP-induced gamma-ray flux. On the other hand, the ALP signal’s spectrum attains its maximal values around 50 to 100 MeV so that this energy range is expected to yield the strongest constraints.

To account for these obstacles, we first modify the baseline fit routine: Instead of using a single 4FGL template that encompasses all detected sources, we split the full template into eight individual templates defined by the number of expected photons per source N_{γ} within the energy range of the LAT data set, i.e. $E \in [50, 200]$ MeV. The estimate of N_{γ} per source follows from the best-fit spectrum as reported in the catalog and the LAT exposure. The defining lower and upper boundaries of each template are:

\[\begin{align*}
N_{\gamma, \text{lower}} & = 50 \times 10^{-11} \text{ cm}^{-2} \text{s}^{-1} \text{MeV}^{-1} \text{sr}^{-1} \\
N_{\gamma, \text{upper}} & = 200 \times 10^{-11} \text{ cm}^{-2} \text{s}^{-1} \text{MeV}^{-1} \text{sr}^{-1}
\end{align*}\]
• $N_\gamma < 1$,
• $1 \leq N_\gamma < 10$,
• $10 \leq N_\gamma < 50$,
• $50 \leq N_\gamma < 100$,
• $100 \leq N_\gamma < 200$,
• $200 \leq N_\gamma < 500$,
• $N_\gamma \geq 500$ without the ten brightest sources,
• extended sources,
• each of the ten brightest sources is fit individually.

Since the brightest sources in the gamma-ray sky may substantially impact the quality of the fit, we single out the ten brightest sources below 200 MeV and fit them individually with the rest of the aforementioned 4FGL templates – leaving their normalization free only in those regions of the iterative fit where they are present. After the baseline fit has converged these ten sources are added to the template with $N_\gamma \geq 500$. The resulting all-sky baseline fit and IEM data is henceforth utilized in the same way as it was done in the case of the first LAT data set.

A second adjustment concerns the systematic search for a suitable ROI: This data set consists of 30 energy bins – mainly to guarantee the existence of a sufficient sampling of the LAT IRFs and energy dispersion. While the baseline fit has been conducted with the full number of energy bins, we rebin this data set to larger macro bins in all later stages of the analysis. The number of macro bins is a hyperparameter that needs to be optimized, too. Moreover, only a small fraction of the detected sources can be masked. The idea is to define a threshold for each energy bin in terms of number of expected emitted photons $N_{\text{thr},i}$. If a source exceeds this number, it has to be masked with a circular mask at 95% containment radius of the LAT’s PSF20. This will have an impact on the compatibility of LAT data and the baseline fit data. Hence, we scan over different high-latitude ROI masks as well as different values for $N_{\text{thr},i}$ and assess the deviation of LAT data’s and baseline fit data’s TS-distributions energy bin by energy bin. Eventually, we select those ROI masks and threshold values that produce the statistically most sound masks.

Combining the constraints from both data sets. Despite the fact that the fitting procedures are adapted individually for each data set, we can nonetheless derive a combined constraint on the ALPs’ signal strength via a joint-likelihood approach. Eq. [16] is valid in both cases and the signal templates are generated from the same input model. Thus, the normalization parameter A^{ALP} has the same meaning for both data sets. The joint-likelihood that we utilize within our framework is hence the sum of both weighted likelihood functions.

V. RESULTS

A. Suitable regions of interest

Following the recipes outlined in Sec. [V.B] to single out a suitable analysis region for both LAT data sets, we present here the final results of this search. We stress again that in the context of this optimization step the IE is represented by the Lorimer I model.

In Fig. [9] we display the comparison of the TS-distributions obtained from the LAT data set under study (red) and the baseline fit model (black). The scatter of the TS-distribution is shown as 1σ and 2σ containment bands. The left panel of this figure refers to the data set with $E \geq 200$ MeV, for which we find the best agreement between real data and model for an ROI with $-90^\circ < b < -30^\circ, |\ell| \leq 150^\circ$. The right panel of the same figure shows the situation for the data set below 200 MeV using six macro energy bins. The minimal deviation of LAT data and baseline fit model TS-distribution is ensured by using the 4FGL source mask threshold values $N_{\text{thr}} = (150, 110, 80, 110, 60, 40)$ with $\ell_{\text{max}} = 180^\circ$ for all but the first energy bin where $\ell_{\text{max}} = 90^\circ$ optimizes the agreement. Again, the Galactic latitude is set to $-90^\circ < b < -30^\circ$ to reduce the impact of the IE.

B. Upper limits on the ALP parameter space

After having determined in Sec. [VA] the ROI that yields the most statistically sound upper limits on the ALP signal, we are able to set upper limits on the normalization parameter G_a of the signal template. Before that, we have checked that the selected parts of the sky do not contain a significant fraction of the ALP signal that would warrant a detection. We “unblind” our previous fitting routine by inserting the true signal template with the gamma-ray flux spectrum induced by ALPs from core-collapse SNe, Sec. [II.B] hence, the re-introduction of the normalization parameter G_a.

In what follows, we consider and utilize a benchmark case of the DSNALPB gamma-ray spectrum to illustrate the upper limits on such a large-scale gamma-ray emission component. This benchmark model is defined by the following properties:

1. $f_{\text{fail--cc}} = 20\%$,
2. Salpeter IMF,
3. fiducial SNR description (see Tab. [I]).

The uncertainty on the reported DSNALPB upper limits arising from varying these benchmark choices is discussed.

20 The PSF size in each macro bin is evaluated at the lowest energy among the micro bins that are contained in it.
in Sec. VI. Therein, we also report the impact of altering the astrophysical surroundings of the Milky Way, that is, the employed IEM and GMF model.

We consider ALPs coupled only to photons. In this case, the upper limit on G_a translates into an upper limit on the photon-ALP coupling strength via $g_{a\gamma} = \sqrt{\frac{G_a}{\rho_{\text{ref}}}}$, where $g_{a\gamma}^{\text{ref}} = 5 \times 10^{-12} \text{ GeV}^{-1}$ refers to the reference value of the coupling at which spectrum and ALP-photon conversion probability in the Milky Way have been calculated to obtained the ALP template.

In Fig. 10 we show the observed 95% CL upper limits (solid red line) on our benchmark DSNALPB scenario together with the expected statistical scatter (68% containment; green; 95% containment; yellow) of the upper limits according to 250 Poisson realizations of the baseline gamma-ray sky model (cf. Sec. VB for its derivation) whereas the solid black line denotes the median upper limit with respect to this baseline data set. The basis for the baseline sky model and all derived upper limits presented here are the ALP signal morphology due to the Jansson model [91] of the Milky Way’s GMF and the iteratively optimized IEM Lorimer I. We also confront the upper limits obtained in this analysis with existing limits on the ALP parameter space.

In this particular setting, we find an improvement of the upper limit on $g_{a\gamma}$ regarding our previous analysis in Paper I that was solely based on the spectral shape of the ALP-induced gamma-ray flux (and neglecting the effect of gravitational energy-redshift as well as the formation of alpha particles during a CC SN). Specifically, we obtain $g_{a\gamma} \lesssim 3.76 \times 10^{-11} \text{ GeV}^{-1}$ for ALP masses $m_a \ll 10^{-11} \text{ eV}$ at 95% CL.

VI. DISCUSSION

This section is dedicated to a discussion of the sources of systematic uncertainties on the DSNALPB upper limits reported in Sec. V. These uncertainties arise by varying the benchmark scenario decisions as well as the description of the astrophysical surroundings in the Milky Way.

While a number of dedicated explorations of particular sources of uncertainty regarding their impact on the ALP-photon coupling upper limits are given in App. B we provide below in Tab. V a summary of the induced systematic uncertainty for the “massless” ALP case $m_a \ll 10^{-11} \text{ eV}$ while always referring to the benchmark DSNALPB scenario as reference point.

source of uncertainty	absolute $[10^{-11} \text{ GeV}^{-1}]$	relative [%]
$f_{\text{gal-CC}}$	2.81, 4.73	51.1
IMF	3.76, 4.03	7.2
SNR	3.59, 3.98	10.4
IEM	3.24, 3.76	13.8
GMF model	3.76, 5.22	38.8
total	2.38, 7.04	124

TABLE V. Induced uncertainty on the ALP-photon coupling constant $g_{a\gamma}$ with respect to varying the conditions and properties assumed in the benchmark DSNALPB scenario and $m_a \ll 10^{-11} \text{ eV}$. The last row indicates the total systematic uncertainty range when all sources of uncertainty are combined to form a most optimistic and most pessimistic scenario.

For each source of uncertainty – listed in the first column – we report in the second column the associated absolute uncertainty range of the derived 95% CL upper
FIG. 10. 95% CL upper limits (solid red) on the ALP-photon coupling constant $g_{a\gamma}$ assuming the benchmark DSNALPB scenario and an ALP coupling exclusively to photons as well as the ‘Jansson12c’ model of the Milky Way’s GMF. The filled red region illustrates the ALP parameter space excluded by this upper limit. The displayed green (yellow) band reflects the expected 1σ (2σ) statistical scatter of the upper limits based on 250 Poisson realizations of the “mock data” obtained via the baseline fit of the gamma-ray sky. The solid black line represents the median upper limit obtained from these fits to mock data. To highlight the improvement on the upper limits set with the analysis in Paper I, which is solely based on the expected spectral shape of the DSNALPB gamma-ray flux, we show this result as a dashed, light-red line. Our results are complemented by independent astrophysical and helioscope bounds on the ALP-photon coupling strength from CAST [93], Chandra observations of NGC 1275 [94] as well as the non-observation of a gamma-ray burst following SN 1987A [10].

The stated absolute range quantifies the minimal and maximal constraint that we find by varying the respective quantity within its uncertainty range, while keeping all other quantities fixed to their values attained in the benchmark case. These boundaries do not need to be symmetric around the benchmark upper limit depending on the source of uncertainty. For example, we only consider one alternative GMF model so that the reported interval refers to the numbers obtained with respect to either the Jansson & Farrar model or the Pshirkov model. The third column of Tab. [V] contains the relative uncertainty taken with respect to the nominal value of the upper limit for the benchmark case. This means, we take the difference between the lower and upper boundary in the first column and divide it by the benchmark upper limit.

To be more explicit regarding the origin the table’s content, the $f_{\text{fail-CC}}$ uncertainty range reflects the grey band in Fig. [6] the IMF uncertainty arises from the two alternative initial mass functions Kroupa and BG (see Sec. [III B]); the SNR uncertainty uses the remaining parametrizations in Tab. [IV] the IEM uncertainty range uses the five different models introduced in Sec. [IV B] and the GMF model uncertainty reflects the change from the Jansson & Farrar prescription to the Pshirkov model. This assessment of the systematic uncertainties of our upper bounds singles out the unknown fraction of failed CC SNe, as well as the strength and structure of the Milky Way’s GMF as the most significant drivers of uncertainty, contributing an error of about 51% and 39% respectively.

On the other hand, the uncertainty related to the IMF, SNR parametrization, and IEM account for a $\sim 10\%$ relative error.

The values in the first lines of Tab. [V] provide an estimate of the uncertainty due to individual inputs since have been derived by varying only a single source of uncertainty at a time. To get an impression of the overall uncertainty we consider most optimistic and pessimistic scenarios that lead to the best or worst possible upper limits on the DSNALPB. The resulting systematic uncertainty band is displayed in Fig. [11] With respect to these most optimistic and pessimistic scenarios, the systematic uncertainties may allow the 95% CL upper limit on the DSNALPB to be placed between $g_{a\gamma} \lesssim [2.38, 7.04] \times 10^{-11}$ GeV$^{-1}$ in the case of massless ALPs.

Further details on the uncertainties can be found in App. [B].
VII. CONCLUSIONS

In this work, we carried out a comprehensive analysis of the gamma-ray diffuse signal induced by axion-like particles (ALPs) produced by all past cosmic core-collaps supernovae (CC SNe) and converted into high-energy photons when experiencing the magnetic field of the Galaxy.

We presented a refined calculation of the ALPs flux from extragalactic SNe: we go beyond the simple approximation that the ALPs flux is independent on the SN mass progenitor by modeling the ALPs signal from different state-of-the-art SN models with progenitor masses between 8.8 and 70 M_\odot. Moreover, we accounted for the possibility that not all CC SNe lead to successful explosions, by quantifying the fraction of failed CC SN explosions and building the corresponding model for the ALPs signal upon two simulations of failed CC SN explosions.

We explored four different scenarios, each of them characterized by a different fraction of failed CC SN explosions, allowing us to quantify the uncertainty due to failed CC SN explosions. The calculation of the ALPs flux from all past cosmic SNe accounts also for uncertainties related to the cosmic SN rate.

Using this new model for the diffuse supernova ALP background (DSNALPB) gamma-ray flux, we run a systematic analysis of 12 years of data collected by Fermi-LAT with the aim of setting robust upper limits on the ALPs parameter space. For the first time in the context of ALPs searches, we performed a template-based gamma-ray analysis to fully exploit the spatial features of the ALPs signal. The flux from the DSNALPB being peaked at about 25 MeV, we exploited the full LAT data sets by developing an optimized low-energy ($E \lesssim 200$ MeV) analysis. Besides, we optimized the IEMs in a data-driven way and limit the impact of the IE mis-modeling on the final limits – which, indeed, are only mildly affected by changing the IEM. We also selected the ROI in order to be able to set statistically sound upper limit on the signal model.

Our final limits slightly improve the CAST bound (in the low mass region). However, they are still about a factor of six (regarding our baseline scenario) above the SN1987A gamma-ray burst limit. It is nevertheless a valuable confirmation, as they do not depend on a single event. More importantly, we quantified for the first time the width of the uncertainty band of the DSNALPB limit, which turns out to be less than a factor of three and dominated by the uncertainty on the fraction of failed CC SN explosions. A significant improvement on our bound would be therefore reached exploiting the synergies with the detection of the future diffuse supernova neutrino background (DSNB). Indeed, as pointed out in Ref. [60], a combined detection of the DSNB in the next-generation neutrino detectors will be sensitive to the local supernova rate at a $\sim 33\%$ level, and will give an uncertainty on the fraction of supernovae that form black holes that will be at most ~ 0.4. Consequently, the un-
certainty on the DSNALPB flux would be significantly reduced.

Uncertainties on the IEM are sub-dominant, while those on the GMF remain an important source of systematic uncertainties for ALPs searches. In this respect, we stress that only the transversal component to the ALPs’ propagation is relevant for the conversion. Diffuse synchrotron in radio- and microwaves and thermal dust emission are crucial for constraining GMF models perpendicular to the line-of-sight, and complement each other. Improvements on our description of the GMF are expected by new radio- and microwave surveys (e.g. SKA, QUIJOTE), as well as from the synergy between GAIA and Planck through a detailed mapping of the dust distribution via extinction. SKA will also allow the scientific community to make a leap forward in the number of pulsars known in the Galaxy (and therefore in Faraday rotation data), and to refine our model for electron density and the parallel magnetic field component. A better comprehension of the Galactic cosmic-ray population from AMS-02 future measurements and gamma-ray telescopes, joint with synchrotron maps, will also help us constraining the GMF ordering. We refer the reader to [72] for a more detailed discussion and overview.

To conclude, we have presented here a first, systematic, analysis of the ALPs diffuse background from CC SNe with gamma-ray data, leveraging on the unique sensitivity of the Fermi-LAT.

ACKNOWLEDGMENTS

We warmly thank Giuseppe Lucente for useful discussions during the development of this project. We would like to acknowledge the anonymous referee of this manuscript for the helpful comments which contributed improving the quality of the scientific output. The work of P.C. is partially supported by the European Research Council under Grant No. 742104 and by the Swedish Research Council (VR) under grants 2018-03641 and 2019-02337. The work of P.C. and A.M. is partially supported by the Italian Istituto Nazionale di Fisica Nucleare (INFN) through the “Theoretical Astroparticle Physics” project and by the research grant number 2017W4HA7S “NAT-NET: Neutrino and Astroparticle Theory Network” under the program PRIN 2017 funded by the Italian Ministero dell’Università e della Ricerca (MUR). The work of C.E. is supported by the “Agence Nationale de la Recherche”, grant n. ANR-19-CE31-0005-01 (PI: F. Calore). T.F. acknowledges support from the Polish National Science Center (NCN) under Grant No. 2020/37/B/ST9/00691. K.K. acknowledges support from Research Institute of Stellar Explosive Phenomena (REISEP) at Fukuoka University and also from the Ministry of Education, Science and Culture of Japan (MEXT, No.JP17H06357) and JICFuS as “Program for Promoting researches on the Supercomputer Fugaku” (Toward a unified view of the universe: from large scale structures to planets, JPMXP1020200109). Numerical computations of T.K. were carried out on Cray XC50 at CfCA, NAOJ and on Sakura and Raven at Max Planck Computing and Data Facility. The work of M.G. is partially supported by a grant provided by the Fulbright U.S. Scholar Program and by a grant from the Fundación Bancaria Ibercaja y Fundación CAI. M.G. thanks the Departamento de Física Teórica and the Centro de Astropartículas y Física de Altas Energías (CAPA) of the Universidad de Zaragoza for hospitality during the completion of this work.

Appendix A: Details on the calculation of the ALP spectrum

1. Impact of the alpha particles

Usually the ALP Primakoff production in SN has been characterized including only the contributions from protons. However, as recently pointed out in [53] the contribution of alpha particles in the SN core might be non negligible. Indeed, we confirm that also for the SN models we use, there is a sizable gap between the proton abundance Y_p and $1 - Y_n$, as shown in Fig. [12] that we can assume to be filled by alpha particles. In order to evaluate the effect of these particles on the ALP production, a reasonable choice according to [53] is to correct the inverse Debye screening length κ described by

$$\kappa^2 = \frac{4\pi nB}{T}, \quad (A1)$$

where $\hat{n} = \sum_j Z_j^2 n_j = \hat{Y} n_B$, where \hat{Y} is the effective charge per nucleon. If all nuclei heavier than protons were realized as α particles, we would have $X_\alpha + X_n = X_p = 1$, where X_j represents the mass fraction for the particle j. In this framework $\hat{Y} = Y_\alpha + 4X_{\alpha}/4 = Y_p + X_n$. The difference in the SN energy spectrum can be observed for the $25M_\odot$ SN progenitor is shown in Fig. [13].

We find that the inclusion of alpha particles produces an enhancement of $\sim 15\%$ of the ALP flux.

2. Gravitational energy-redshift

The ALPs emission is affected by the gravitational field of the neutron star in particular time dilation, trajectory bending and the red-shifting of the energy. In this

21 Once more we would like to thank the anonymous referee for raising our awareness of these effects.

22 During the final stages of completion of the improved version of this manuscript a new paper appeared which also discusses this effect.
We are very grateful to Giuseppe Lucente for sharing his thoughts and his notes on the subject.

appendix we discuss the implementation of these gravitational effects in our analysis.23

Let us start with a couple of general comments. We are calculating the time integrated production in the local reference frame. As we are not interested in the time dependence of the signal, particle number conservation ensures that we have the correct number of ALPs also outside the supernova. As we are considering an isotropic flux, trajectory bending can be ignored. The most important effect for us is the red-shift of the energy, because it directly affects the spectrum which in turn determines the sensitivity of Fermi-LAT.

All SN simulations discussed in the present manuscript are based on general relativistic neutrino radiation hydrodynamics27,30,48, i.e. the metric functions are obtained through direct numerical integration of the Einstein field equations for a given line element, \(ds^2 = g_{\alpha\beta}dx^\alpha dx^\beta \). The zeroth component, known as the lapse function, \(g_{00} = -\exp(2\Phi) \), determines the gravitational red(blue) shifting of the axion energy as follows,

\[E = E^*(x) \exp(\Phi(x)), \quad (A2) \]

with the lapse function being evaluated locally at the PNS interior, depending on the choice of the coordinate system \(\{x^\alpha\} \), relating the ALP energy \(E \) measured by an observer at infinity with the local ALP energy \(E^*(x) \). Similarly, for a local observer, time dilation must be taken into account as follows

\[dt = dt^*(x) \exp(\Phi(x)), \quad (A3) \]

where the \(dt^*(x) \) refers to the local observer time at \(x \), while \(dt \) refers to the simulation time corresponding to that of a distant observer.

In Figure14, we show the time evolution of the lapse function \(e^\Phi \) for the different SN progenitors at a distance from the center of \(r = 5 \) km. We note that for exploding SNe this factor decreases monotonically in time, the effect being larger for higher progenitor masses, and ranging between 0.7–0.8. For failed SN collapsing to black-holes, the gravitational effect is larger, i.e. the lapse function is dropping to \(\sim 0.5 \) for the 70 \(M_\odot \) progenitor already shortly after core bounce and below 0.01 when the apparent horizon appears at \(t_{ph} \sim 0.155 \) s 30.

The ALP Primakoff production rate of Eq. (2) in terms of the local quantities reads

\[\frac{dn_\alpha}{dE^*dt^*} = \frac{g_{\alpha\gamma}^2\xi^2T_3(E^*)^3}{8\pi^3(e^{E^*T/T_1}-1)} \left[\frac{\xi^2T^2}{(E^*)^2} \right] \ln \left(1 + \frac{(E^*)^2}{\xi^2T^2} \right). \quad (A4) \]

Since \(dE^*dt^* = dE \ dt \), the redshifted time-integrated ALP spectrum at infinity is given by

\[\frac{dN_\alpha}{dE} = \int d^3r dt^* \frac{dn_\alpha}{dE^*dt^*} \exp(-\Phi(r)). \quad (A5) \]
TABLE VI. Fitting parameters for the SN ALP spectrum, Eq. (A6), from the Primakoff process for different SN progenitors estimated for \(g_{a\gamma} = 10^{-11} \text{GeV}^{-1} \) and \(m_a \ll 10^{-11} \text{eV} \), assuming no gravitational energy-redshift/accounting for the gravitational redshift. \(\alpha \) particle contribution to the Primakoff production is included.

SN progenitor	\(C \times 10^{50} \text{MeV}^{-1} \)	\(E_0 \text{[MeV]} \)	\(\beta \)
8.8 \(M_\odot \)	4.18/4.81	90.62/78.15	2.56/2.60
11.2 \(M_\odot \)	6.25/8.11	91.81/76.04	2.74/2.80
18 \(M_\odot \)	18.4/26.1	119.4/89.32	2.40/2.45
25 \(M_\odot \)	21.0/31.1	145.4/104.9	2.25/2.30
40 \(M_\odot \)	1.56/2.98	168.9/110.6	1.77/1.94
70 \(M_\odot \)	0.131/0.213	127.5/94.36	1.13/1.76

As shown in Sec. III, the ALP spectrum can be fitted by the following functional form

\[
\frac{dN_a}{dE} = C \left(\frac{g_{a\gamma}}{10^{-11} \text{GeV}^{-1}} \right)^2 \left(\frac{E}{E_0} \right)^\beta \exp \left(-\frac{(\beta + 1)E}{E_0} \right).
\]

In Table VI we compare the fitting parameters of Eq. (A6) without and with gravitational energy-redshift, respectively for different progenitor masses. We see that the effect of gravitational energy-redshift is to reduce the average energy of the spectrum \(E_0 \) and increase the normalization parameter \(C \) to compensate the drop in \(E_0 \). The effect of drop of the energy increases monotonically in function of the SN progenitor mass, ranging from \(\sim 20\% \) for 8.8 \(M_\odot \) progenitor to 360\% for 70 \(M_\odot \). Indeed, increasing the progenitor mass we increase the gravitational potential, especially for the high-mass progenitor cases ending into a black-hole. The effect on the \(C \) parameter is milder, the increase being at most \(\sim 30\% \). The factor \(\beta \) being given by

\[
\frac{\langle E^2 \rangle - \langle E \rangle^2}{\langle E \rangle^2} = \frac{1}{1 + \beta},
\]

is rather insensitive to the effect of the redshift.

In order to quantify the impact of the gravitational energy-redshift on the DSNALPB spectrum, we show the variation of the fitting parameters of Eq. (A6) in Table VII neglecting and including the gravitational energy-redshift effect, respectively. We realize that the effect of gravitational energy-redshift is the same observed on the spectrum of a single SN, i.e. increase of the normalization factor \(C \) and decrease in the average energy \(E_0 \). The effect of the corrections on both parameters ranges between \(\sim 25 - 35\% \). We remark that the effect of the gravitational redshift is more sizable for failed SNe, which are never dominant in the DSNALPB flux, contributing at most at 40\% of the SN progenitors. This would somehow dilute the final impact of the gravitational energy-redshift on the DSNALPB spectrum.

TABLE VII. Fitting parameters for DSNALPB fluxes for \(g_{a\gamma} = 10^{-11} \text{GeV}^{-1} \) and \(m_a \ll 10^{-11} \text{eV} \) for different fractions of failed SNe \(f_{\text{fail-CC}} \), without gravitational energy-redshift/accounting for the gravitational redshift. \(\alpha \) particle contribution to the Primakoff production is included.

\(f_{\text{fail-CC}} \)	\(C \times 10^{-7} \text{MeV}^{-1} \text{cm}^{-2} \text{s}^{-1} \)	\(E_0 \) [MeV]	\(\beta \)
10\% max flux	96.2/144	58.5/43.8	1.39/1.50
10\%	58.0/88.9	59.3/43.5	1.32/1.42
20\%	42.9/62.9	52.0/39.9	1.41/1.49
30\%	31.0/46.5	50.8/39.3	1.37/1.47
40\%	22.4/35.8	52.7/40.2	1.28/1.41
40\% min flux	9.33/15.7	57.6/42.3	1.17/1.32
Appendix B: Systematic uncertainty on the DSNALPB upper limits of cosmological and astrophysical origin

The following subsections contain a more detailed discussion of some of the sources of uncertainty regarding their impact on the ALP-photon coupling upper limits for the entirety of the relevant ALP mass range complementing the content of Tab. V.

1. Impact of the fraction of failed CC SNe

As can be seen from the last column of Tab. V, the uncertainty of the fraction of failed CC SNe in the progenitor mass range chosen to compute the DSNALPB is the most important source of systematic uncertainty for this type of ALP-induced gamma-ray signal.

In Fig. 15 we show the uncertainty band due to this source of systematic error in the full parameter space of ALPs.

2. Impact of the Galactic magnetic field model

To assess the robustness of the upper limits presented in Sec. V against different assumptions and models of the Milky Way’s magnetic field, we create a sample of alternative signal templates which have been taken from a recent study of the PLANCK collaboration [92] (Tab. 3.1 therein) and [96].

A comparison of the upper limits obtained from these models is displayed in Fig. 16. In general, different GMF models induce a variation in the derived upper limits on $g_{a\gamma}$ of $O(1)$ whose relative impact on the final upper limit is comparable to the one of the $f_{\text{fail-CC}}$ parameter according to Tab. V.

3. Impact of the Galactic diffuse foreground model

Although the ROI optimising has been conducted in the high-latitude gamma-ray sky to minimize the contamination by the Milky Way’s diffuse foreground emission, we investigate the robustness of the upper limits shown in Sec. V against variations of the Galactic foreground. To this end, we re-run the analysis pipeline with respect to the alternative IEMs introduced in Sec. IV B.

The results of this cross-check are presented in Fig. 17. Variations of the IE have a smaller impact than model uncertainties in the magnetic field of the Milky Way. On one side, this implies that our analysis pipeline is robust against such alterations while, on the other side, it is essential to improve the existing models of the GMF, in particular, at high-latitudes.
FIG. 15. 95% CL upper limits (red band) on the ALP-photon coupling constant $g_{a\gamma}$ assuming a coupling exclusively to photons and the ‘Jansson12c’ [92] model of the Milky Way’s GMF. The displayed band reflects the uncertainty on the DSNALPB gamma-ray spectrum caused by the unknown ratio of failed to successful CCSNe within the mass range of SN progenitors considered in this analysis (see Sec. III B) while keeping all other properties as in the benchmark scenario. Our results are complemented by independent astrophysical and helioscope bounds on the ALP-photon coupling strength from CAST [93], Chandra observations of NGC 1275 [94] as well as the non-observation of a gamma-ray burst following SN 1987A [10].

FIG. 16. As in Fig. 15. However, here we focus on the variation with respect to the magnetic field model. We confront the upper limits derived with different characterisations of the Milky Way’s magnetic field; ‘Jansson12c’ [92] (green) and ‘Pshirkov’ [96] (purple). For comparison, the theoretical uncertainty due to the fraction of failed and successful CC SNe is shown as a light red band.
FIG. 17. As in Fig. 15 but here we focus on the dependence with respect to the background model. We compare the upper limits derived with our benchmark choice of IEM ‘Lorimer I’ (green) with four alternative IEMs (c.f. Sec. IV B). Again, for comparison, the theoretical uncertainty due to the fraction of failed and successful CC SNe is shown as a light red band.
[1] C. Eckner, F. Calore, P. Carena, et al., “Constraining the diffuse supernova axion-like-particle background with high-latitude Fermi-LAT data,” in Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021) Vol. 395 (2021) p. 543.

[2] P. Agrawal et al., “Feebly-Interacting Particles:FIPs 2020 Workshop Report,” (2021), arXiv:2102.12143 [hep-ph].

[3] G. G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles (1996).

[4] G. G. Raffelt, “Astrophysical axion bounds,” Lect. Notes Phys. 741, 51 (2008), arXiv:hep-ph/0611350.

[5] T. Fischer, S. Chakraborty, M. Giannotti, et al., “Probing axions with the neutrino signal from the next galactic supernova,” Phys. Rev. D 94, 085012 (2016), arXiv:1605.08780 [astro-ph.HE].

[6] J. W. Brockway, E. D. Carlson, and G. G. Raffelt, “SN1987A gamma-ray limits on the conversion of pseudoscalars,” Phys. Lett. B 383, 439 (1996), arXiv:astro-ph/9605197.

[7] J. A. Grifols, E. Masso, and R. Toldra, “Gamma-rays from SN1987A due to pseudoscalar conversion,” Phys. Rev. Lett. 77, 2372 (1996) arXiv:astro-ph/9606028.

[8] P. Carena, T. Fischer, M. Giannotti, et al., “Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung,” JCAP 10, 016 (2019) [Erratum: JCAP 05, E01 (2020)], arXiv:1906.11844 [hep-ph].

[9] G. Lucente, P. Carena, T. Fischer, et al., “Heavy axion-like particles and core-collapse supernovae: constraints and impact on the explosion mechanism,” JCAP 12, 008 (2020) arXiv:2008.04918 [hep-ph].

[10] A. Payez, C. Evoli, T. Fischer, et al., “Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles,” JCAP 02, 006 (2015) arXiv:1410.3747 [astro-ph.HE].

[11] C. Dessert, J. W. Foster, and B. R. Safdi, “X-ray Searches for Axions from Super Star Clusters,” Phys. Rev. Lett. 125, 261102 (2020) arXiv:2008.03305 [hep-ph].

[12] M. Meyer, M. Giannotti, A. Mirizzi, et al., “Fermi Large Area Telescope as a Galactic Supernovae Axionscope,” Phys. Rev. Lett. 118, 011103 (2017) arXiv:1609.02350 [astro-ph.HE].

[13] M. Meyer and T. Petrushevskaya, “Search for Axionlike-Particle-Induced Prompt γ-Ray Emission from Extragalactic Core-Collapse Supernovae with the Fermi Large Area Telescope,” Phys. Rev. Lett. 124, 231101 (2020) [Erratum: Phys.Rev.Lett. 125, 119901 (2020)], arXiv:2006.06722 [astro-ph.HE].

[14] M. Meyer and T. Petrushevskaya (Fermi-LAT), “Extending the sample of core-collapse supernovae for searches of axion-like-particle induced gamma-ray bursts with the Fermi LAT,” PoS ICRC2021, 510 (2021) arXiv:2108.02069 [astro-ph.HE].

[15] M. Crnogorčević, R. Caputo, M. Meyer, et al., “Searching for Axion-Like Particles from Core-Collapse Supernovae with Fermi LAT’S Low Energy Technique,” (2021), arXiv:2109.05790 [astro-ph.HE].

[16] R. Diehl, H. Halloin, K. Kretschmer, et al., “Radioactive 26Al from massive stars in the Galaxy,” Nature (London) 439, 45 (2006) arXiv:astro-ph/0601015 [astro-ph].

[17] G. G. Raffelt, J. Redondo, and N. Viaux Maira, “The meV mass frontier of axion physics,” Phys. Rev. D 84, 103008 (2011) arXiv:1110.6397 [hep-ph].

[18] F. Calore, P. Carena, M. Giannotti, et al., “Bounds on axionlike particles from the diffuse supernova flux,” Phys. Rev. D 102, 123005 (2020) arXiv:2008.11741 [hep-ph].

[19] J. K. Mattox et al., “The Likelihood Analysis of EGRET Data,” Astrophys. J. 461, 396 (1996).

[20] M. Su, T. R. Slatyer, and D. P. Finkbeiner, “Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind?” Astrophys. J. 724, 1044 (2010) arXiv:1005.5480 [astro-ph.HE].

[21] M. Ackermann et al., “Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements,” Astrophys. J. 761, 91 (2012) arXiv:1205.6474 [astro-ph.CO].

[22] M. Ackermann et al. (Fermi-LAT), “The Fermi Galactic Center GeV Excess and Implications for Dark Matter,” Astrophys. J. 840, 45 (2017) arXiv:1704.03910 [astro-ph.HE].

[23] E. Storm, C. Weniger, and F. Calore, “SkyFACT: High-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods,” JCAP 08, 022 (2017) arXiv:1705.04065 [astro-ph.HE].

[24] M. Di Mauro, X. Hou, C. Eckner, et al., “Search for γ-ray emission from dark matter particle interactions from Andromeda and Triangulum Galaxies with the Fermi Large Area Telescope,” Phys. Rev. D 99, 123027 (2019) arXiv:1904.10977 [astro-ph.HE].

[25] M. Di, “Characteristics of the Galactic Center excess measured with 11 years of Fermi-LAT data,” Phys. Rev. D 103, 063029 (2021) arXiv:2101.04694 [astro-ph.HE].

[26] A. Mezzacappa and S. Bruenn, “A numerical method for solving the neutrino Boltzmann equation coupled to spherically symmetric stellar core collapse,” Astrophys. J. 405, 669 (1993).

[27] M. Liebendörfer, O. Messer, A. Mezzacappa, et al., “A Finite difference representation of neutrino radiation hydrodynamics for spherically symmetric general relativistic supernova simulations,” Astrophys. J. Suppl. 150, 263 (2004).

[28] T. Fischer, “The role of medium modifications for neutrino-pair processes from nucleon-nucleon bremsstrahlung. Impact on the protonate star deleptonization,” Astron. Astrophys. 593, A103 (2016).

[29] T. Fischer, G. Guo, A. A. Dzhioev, et al., “Neutrino signal from proto-neutron star evolution: Effects of opacities from charged-current-neutrino interactions and inverse neutrino decay,” Phys. Rev. C 101, 025804 (2020).

[30] T. Kuroda, T. Fischer, T. Takiwaki, and K. Kotake, “Core-collapse supernova simulations and the formation of neutron stars, hybrid stars, and black holes,” arXiv e-prints, arXiv:2109.01508 (2021), arXiv:2109.01508 [astro-ph.HE].

[31] K. Kotake, T. Takiwaki, T. Fischer, et al., “Impact of Neutrino Opacities on Core-collapse Supernova Simulations,” Astrophys. J. 853, 170 (2018).

[32] J. M. Lattimer and F. Swesty, “A Generalized equation of state for hot, dense matter,” Nucl.Phys. A535, 331 (1991).

[33] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, “Relativistic equation of state of nuclear matter for supernova
