Supplementary Information

Polyphyletic ancestry of expanding Patagonian Chinook salmon populations

Cristian Correa¹,²,*, and Paul Moran³

¹ Facultad de Ciencias Forestales y Recursos Naturales, Instituto de Conservación Biodiversidad y Territorio, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.

² Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.

³ Conservation Biology Division, Northwest Fisheries Science Center, Seattle, Washington, United States of America.

* Author of correspondence, E-mail: cristiancorrea@gmail.com
Table S1: Chinook salmon deliberate and accidental releases in Latin America (modified from Correa and Gross 2008).

Country year(s)	Basin, Latitude	Number of Individuals Released	Ontogenetic Stage	Stock Origin	Adult Returns	Comments
Mexico 1891-1900	?	50,000¹	?	USA², Sacramento River ([?])¹	No^{1,2}	
Mexico 1901-1910	?	50,000¹	?	USA², Sacramento River ([?])¹	No^{1,2}	
Nicaragua 1901-1910	?	20,000¹	?	USA², Sacramento River ([?])¹	No^{1,2}	
Argentina 1906	Santa Cruz, 50°S⁴ Gallegos, 52°S⁴	300,000⁴	?	USA, Sacramento River ([?])⁴	No (?)⁵	
Argentina 1908	Chico, 50°S⁶ Santa Cruz, 50°S⁶	300,000⁶	?	USA, Sacramento River ([?])⁶	No (?)⁵	
Argentina 1909	Chico, 50°S⁶ Santa Cruz, 50°S⁶	200,000⁶	?	USA, Sacramento River ([?])⁶	No (?)⁵	
Argentina 1910	(Rivers of Santa Cruz Province⁶)	200,000⁶	?	USA, Sacramento River ([?])⁶	No (?)⁵	
Argentina 1901-1910¹	?	1,058,000¹	?	USA², Sacramento River ([?])¹	No^{2,5}	

"From [1872-1930] the [US] Bureau of Fisheries, with benevolent intent, supplied over 100 million eggs of Pacific salmon (Chinook) to people in other countries, with the idea of establishing new salmon runs there—a considerable attempt to bring in the New World to right the Rest."³

The last Argentinean entry (1901-1910) might include the previous four.
Location	Date	Eggs/SE/Smolts	Hatchery	Returned	Notes	
Brazil, Jaquari	1958	400,000⁷	USA, American River, California⁷	No (?)⁷	Although there were no reports of salmon returning to the Río Jaquari, large fish of a species unknown to local residents were seen leaping falls in the Río Uruguay in 1962⁷.	
Chile, Imperial	1924	200,000⁹,10	USA, Sacramento River; USA, McCloud River Hatchery (?)¹⁰	No (?)⁸,⁸,¹⁰	The U.S. government presented the government of Chile with 200,000⁹,¹⁰ fertilized ChS eggs. The embryos arrived at a recently built hatchery in Rio Blanco (near Santiago) just prior to hatching⁸,⁸. After four months, fingerlings were transported by rail and released⁹.	
Chile 1970, 1971	Bueno	50,000 (1970)¹¹	USA, Green River Hatchery¹¹ (Cowlitz River, lower Columbia River, Washington).	?	Agriculture and Livestock Service of the Government of Chile and the U.S. Peace Corps. First shipment by plane¹¹,¹². Eggs were received at Lautaro Hatchery on December; stockings took place 36 (Sep 1970) or 23 weeks later (May 1971)¹¹.	
Chile, Chiloé Island, Curaco de Vélez	1978	120,000 (late 1978)¹³,¹⁴,¹⁶	USA, Cowlitz River spring-run (lower Columbia River, Washington)¹⁶	Yes¹³,¹⁴,¹⁶	Domsea Pesquera Chile Ltd. (Union Carbide Corporation, USA), began salmon ocean-ranching experimentation¹⁰,¹⁴,¹⁵. In 1979, 334 returning jacks and 2 females were trapped¹³,¹⁴. In the period 1979-1982, 1050 returnees of this release were recorded¹⁶.	
Country, Year	Location	Stock Size (°S)	Stage	Origin	Yes/No	Description
-------------	---------	----------------	-------	--------	-------	-------------
Chile, 1979	Coastal, 42°S	Chiloé Island, Curaco de Vélez	190,000	Smolts (1+)	Yes	Domsea Pesquera Chile Ltd. In the period 1980-1982, 228 returnees of this release were recorded.
Chile, 1980-1981	Same location		90,000 (late 1980, early 1981)	Smolts (1+)	Yes	In the period 1981-1982, 260 returnees of this release were recorded.
Chile, 1982	Same location		3000	Smolts (1+)	?	In 1981, Domsea Pesquera Chile Ltd. was sold to Fundación Chile (private, non-profit), and renamed Salmones Antártica Ltd. Stocking continued at this location at least during the first year of the new administration.
Chile, 1982	Same location	>1,000,000 fish were being raised, but their fate remains unknown to us.	Ova & subyearlings	USA, University of Washington's Hatchery fall-run; Chile, progeny from local returnees	?	Through October 1982, 1538 adults had returned to the hatchery from previous brood years. Returnee's progeny (F2) was being raised at the facility along with fry from two additional importations. However, we found no posterior records of fish release at this location.
Chile, 1982	Coastal, 54°S	Rio Santa María	200,000	Fry	?	Fundación Chile through Salmoines Antárctica Ltd. launched new facility in the Magellan region subsequently destroyed by storm, and abandoned. Jacks seen returning in 1983.
Chile, 1983	Prat, 51°S	Rio Prat	5,000	Smolts (1+)	Yes (~2.3%)	Fundación Chile through Salmoines Antárctica Ltd. launched another facility in the Magellan region with successfully returning spawners.
Location	Year Range	Numbers	Stage	Origin(s)	Return Rate	Notes
-------------------	------------	-----------	-------------	---	-------------	--
Chile, 1987		294,967	Smolts (1+)	USA, seemingly University of Washington's	Yes	Continuation of the above enterprise. In 1998 Fundación Chile and Salmones Antártica created Salmotec S.A.
				(Chilean origin)	(-0.07% until 1989)	
		40,042				
Same location	1987					
Chile, 1989, 1990, 1993		? (1989-1990)	Smolts (0+)	? (1989-1990); Chile, progeny from returning adults (38 females + 12 males)	Yes, at least from 1989-1990 stockings	Universidad de Los Lagos' experimentation at Piscicultura Experimental Lago Ranco.
Bueno 40°S		3347 (Jan 1993)				
Estero Huillín	24					
Chile, 1987-2000	Coast, 39-45°S	100,000	Mostly subadults	USA, Washington Sate, USA, Oregon State, Canada, Vancouver Island, New Zealand, USA, Alaska, Australia	Yes	Chinook stocks were imported primarily to the Lakes District Region for commercial net pen rearing. Last recorded importation in 2000.
Inner seas						
Notes and references: The actual number of individuals released may be less than the figure reported due to mortality during transport and handling; pre-release mortality was accounted for whenever possible. Approximate latitude is given at the river mouth. ? = unreported, likely stock origin, or lack of adults return assessment; 1 Davidson and Hutchinson (1938); 2 Welcomme (1988); 3 Elton (1958); 4 Tulian (1908) in Ciancio et al. (2005); 5 Marini (1936) in Davidson and Hutchinson (1938); 6 Marini and Mastrarrigo (1963) in Ciancio et al. (2005); 7 Joyner (1980); 8 Golusda (1927); 9 Barros (1931); 10 Fundación Chile (1990); 11 Snyder (1971); 12 Ellis and Salo (1969) in Basulto (2003); 13 Lindbergh et al. (1981); 14 Lindbergh (1982); 15 Méndez and Munita (1989); 16 Lindbergh and Brown (1982); 17 Basulto (2003); 18 Donaldson and Joyner (1983); 19 Manuel Barros personal communication (2008) in Aedo (2011). At the time, M. Barros worked for Fundación Chile.; 20 Salmotec Ltd. in Sakai (1989); 21 Cristian Jémez personal communication (2005) in Aedo (2011). C. Jémez worked for Fundación Chile (1982).; 22 Fredy Carrasco personal communication (2005) in Aedo (2011). F. Carrasco worked for Fundación Chile (1982).; 23 United Nations (2006); 24 Del Real (1993). Aedo (2011) mentioned other stocking locations (Río Contaco and Río Maicolpué) by Universidad de Los Lagos, but we found no further records of these releases.; 25 Primarily marine aquaculture concessions in the Lake District region.; 26 Rough estimate of number of sub-adult Chinook salmon escapees (see main text); 27 Mostly 1+ year class and older since most escapes were from marine net-pens (Soto et al. 2001).; 28 Follow fragmentary records of ova imported (OI) by the Chilean aquaculture industry in 1987-2000 (Aedo 2011). Some information of suppliers was available for 60% of the imports; we report specific lineages and origins of livestock whenever possible, and ova suppliers and/or geographic origin of shipments otherwise. Additional potential sources of the unaccounted imports were identified from import permits (OP) issued by the Chilean National Fisheries Service (SERNAPECA), although it remains unclear if these planned importations ever materialized. Sources listed in decreasing order of importance (Aedo 2011); 29 OI: Columbia River. OP: Fish Pro Inc. and University of Washington; 30 OI: Springfield. OP: Aqua Food, Aquafoods, and Aqua Seed Corp.; 31 OI: Koksilah River. OP: Sea Spring Salmon Farms Ltd., Hardy Sea Farms, Hadfield Consultants Inc., Hatfield International SA., Fishpro, and Aqua Seed; 32 OI: Sanford Waitaki Salmon Hatchery (Kaitan Gata). OP: Big Glory Bay Hatchery, and Kaitan Gata Hatchery and Sanford Waitaki Salmon Hatchery (Stewart Island).; 33 OP: Sitka; 34 OP: Tasmania; 35 This study.

References

Aedo, E. 2011. Información sobre siembras de salmónidos en el ambiente natural e incidencia de escapes desde centros de cultivo en la Región de Aysén, referenciada geográficamente. In Evaluación cuantitativa del estado trofico de salmonidos de vida libre en el fiordeo Aysén, XI región. Informe final proyecto FIP200830. Edited by E. Niklitschek and P. Toledo. Universidad Austral de Chile - Subsecretaría de Pesca, Puerto Montt. pp. 120–135.

Barros, R. 1931. Introducción de un nuevo salmón en Chile. Revista Chilena de Historia Natural 35: 57–62.

Basulto, S. 2003. El largo viaje de los salmones. Una crónica olvidada. Propagación y cultivo de especies acuáticas en Chile. Maval Ltda., Santiago.

Ciancio, J.E., Pascual, M.A., Lancelotti, J., Rossi, C.M.R., and Botto, F. 2005. Natural colonization and establishment of a chinook salmon, Oncorhynchus tshawytscha, population in the Santa Cruz River, an Atlantic basin of Patagonia. Environmental Biology of Fishes 74: 219–227.

Correa, C., and Gross, M.R. 2008. Chinook salmon invade southern South America. Biological Invasions 10: 615–639. doi: 10.1007/s10530-007-9157-2.

Davidson, F.A., and Hutchinson, S.J. 1938. The geographic distribution and environmental limitations of the Pacific salmon (genus Onchorhynchus). Bulletin of the Bureau of Fisheries 48: 667–692.

Donaldson, L.R., and Joyner, T. 1983. The salmonid fishes as a natural livestock. Scientific American 249: 50–58.

Elton, C.S. 1958. The ecology of invasions by animals and plants. University of Chicago Press.
Fundación Chile. 1990. El libro del salmon. Fundación Chile, Santiago.
Golusda, P. 1927. Acclimatación y cultivo de especies salmonídeas en Chile. Boletín de la Sociedad de Biología de Concepción 1(1 y 2): 80–100.
Joyner, T. 1980. Salmon ranching in South America. In Salmon ranching. Edited by T. John E. Academic Press Inc., London, England.
Lindbergh, J., Noble, R., and Blackburn, K. 1981. First returns of Pacific salmon to Chile. C.M. 1981/F:27 International Council for The Exploration of the Sea.
Lindbergh, J.M. 1982. A successful transplant of Pacific salmon to Chile. Proceedings of the Gulf and Caribbean Fisheries Institute 34: 81–87.
Lindbergh, J.M., and Brown, P. 1982. Continuing experiments on salmon ocean ranching in southern Chile. C.M. 1982/M:21 International Council for The Exploration of the Sea. Available from http://www.ices.dk/sites/pub/CM%20Doccuments/1982/M/1982_M21.pdf [accessed 28 June 2016].
Méndez, R., and Munita, C. 1989. La salmonicultura en Chile. In Primera edición. Fundación Chile, Santiago.
Del Real, A. 1993. Antecedentes sobre el cultivo de salmón Chinook (Oncorhynchus tshawystcha W.) en la fase de agua dulce proveniente de reproductores retornantes en la piscicultura experimental Lago Rupanco. Seminario (Ingeniería de Ejecución en Acuicultura), Universidad de Los Lagos, Departamento de Acuicultura y Recursos Acuaticos, Osorno, Chile.
Sakai, M. 1989. Final report of aquaculture project in Chile. Japan International Cooperation Agency (JICA).
Snyder, B.P. 1971. Supplemental report on inland fresh water resources of central Chile.
Soto, D., Jara, F., and Moreno, C. 2001. Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecological Applications 11: 1750–1762.
United Nations. 2006. Transfer of technology for successful integration into the global economy; A case study of the salmon industry in Chile. In United Nations conference on trade and development. United Nations.
Welcomme, R.L. 1988. International introductions of inland aquatic species. FAO Fisheries Technical Paper 294.
Table S2: Genetic diversity in Patagonian populations, putative North American founding populations, and overall North American baseline populations.

Population	Reporting group (North America)	N	\(H_S\)	\(AR\)	\(F_{IS}\)	
Patagonian populations						
Baker		24	0.851	9.683	0.039	
Aysén		24	0.826	9.450	0.011	
Petrohué		24	0.854	10.410	-0.008	
Toltén		15	0.804	7.128	0.009	
Mean		21.75	0.834	9.168	0.012	
SD		4.500	0.024	1.420	0.013	
Putative source populations						
Skagit River upper	Whidbey Basin	55	0.869	10.700	-0.031	
Cascade River upper	Whidbey Basin	47	0.877	10.674	0.007	
NF Stillaguamish Hatchery	Whidbey Basin	350	0.876	10.927	0.006	
Suiattle River	Whidbey Basin	154	0.872	10.791	0.008	
Sauk River	Whidbey Basin	115	0.871	11.037	0.003	
UW Hatchery su/fa	S Puget Sound fa	140	0.811	9.316	-0.001	
Soos Hatchery	S Puget Sound fa	184	0.815	9.988	-0.006	
S Prairie Creek	S Puget Sound fa	104	0.805	10.006	0.014	
Voights Hatchery	S Puget Sound fa	95	0.814	10.318	0.007	
Clear Creek Hatchery	S Puget Sound fa	141	0.809	10.018	0.001	
Methow River	Interior Columbia Basin su/fa	143	0.868	11.399	-0.009	
Wells Hatchery	Interior Columbia Basin su/fa	144	0.869	11.259	-0.029	
Wenatchee River su/fa	Interior Columbia Basin su/fa	135	0.863	11.190	0.009	
Hanford Reach	Interior Columbia Basin su/fa	273	0.886	11.974	0.008	
Lyons Ferry Hatchery	Interior Columbia Basin su/fa	186	0.870	11.160	0.017	
Deschutes River lower	Interior Columbia Basin su/fa	143	0.872	11.345	0.020	
Deschutes River upper	Interior Columbia Basin su/fa	144	0.861	10.648	0.005	
Location	Region	Species	Value 1	Value 2	Value 3	Value 4
-------------------------------	-----------------	--------------------	---------	---------	---------	---------
N_Santiam Hatchery	Willamette R sp	143	0.814	9.732	-0.005	
McKenzie Hatchery	Willamette R sp	142	0.817	9.589	-0.001	
Lewis River fa	W Cascade fa	93	0.882	11.360	0.006	
Sandy River	W Cascade fa	123	0.895	11.839	-0.006	
Cowlitz Hatchery fa	W Cascade fa	138	0.873	11.187	0.000	
Green River fa	W Cascade fa	55	0.880	11.418	0.031	
Cowlitz Hatchery sp	W Cascade sp	139	0.854	10.679	0.003	
Kalama Hatchery sp	W Cascade sp	143	0.863	10.844	0.016	
Lewis Hatchery sp	W Cascade sp	143	0.868	10.934	-0.015	
Necanicum Hatchery	N Oregon Coast	77	0.846	9.639	0.041	
Nehalem River	N Oregon Coast	150	0.811	8.803	0.014	
Wilson River	N Oregon Coast	137	0.866	10.375	0.003	
Kilchis River	N Oregon Coast	58	0.866	10.262	0.015	
Trask River	N Oregon Coast	160	0.873	10.524	0.011	
Nestucca Hatchery	N Oregon Coast	130	0.858	9.935	0.023	
Salmon River fa	N Oregon Coast	102	0.878	10.535	0.021	
Siletz River	N Oregon Coast	163	0.882	10.702	0.010	
Yaquina River	N Oregon Coast	136	0.868	10.294	0.029	
Alsea River	N Oregon Coast	161	0.865	10.246	0.026	
Siuslaw River	N Oregon Coast	152	0.887	11.233	0.043	
Mean		137.784	0.858	10.618	0.008	
SD		55.123	0.026	0.703	0.004	

All North American baseline populations

| **Mean** | | 133.733 | 0.833 | 9.810 | 0.008 |
| **SD** | | 46.405 | 0.038 | 1.131 | 0.002 |
Table S3: Genetic ancestral contribution of North American lineages to Patagonian Chinook salmon based on population-level CML mixture analysis.

ID	Reporting Group	NA Population	Patagonian watershed				
			Toltén	Petrohué	Aysén	Baker	Pooled
1	Central Valley fa	Stanislaus R	4.1 (1)			1.2 (1)	
1	Central Valley fa	Tuolumne R	4.1 (1)			1.2 (1)	
5	Klamath R	Klamath R fa	6.9 (1)			1.3 (1)	
6	Chetco R	Chetco R	7.3 (1)			1.3 (1)	
9	Willamette R sp	N Santiam H	4 (1)	3.3 (1)		1.9 (2)	
9	Willamette R sp	McKenzie H	1.3 (0)	15.0 (4)		4.6 (4)	
13	N Oregon Coast	Salmon R f	0.6 (0)	4.1 (1)		1.3 (1)	
13	N Oregon Coast	Siuslaw R	2.9 (0)	4.2 (1)	0.5 (0)	1.9 (1)	
13	N Oregon Coast	Trask R	5.9 (1)	0.1 (0)		1.1 (1)	
15	W Cascade fa	Cowitz H fa	8.9 (2)	3.2 (1)	16.8 (3)	5.4 (1)	8.2 (7)
15	W Cascade fa	Sandy R	0.6 (0)	0.6 (0)	0.5 (0)	5.5 (2)	2.0 (2)
16	W Cascade sp	Kalama H sp	3.0 (0)	15.2 (4)	26.9 (7)	28.7 (7)	19.7 (18)
16	W Cascade sp	Cowitz H sp	4.3 (1)	6.4 (1)	44.4 (8)	35.8 (8)	23.7 (18)
17	Interior Columbia Basin su/fa	Wenatchee R s/f	6.8 (1)	0.4 (0)		1.4 (1)	
17	Interior Columbia Basin su/fa	Hanford Reach	6.2 (1)	8.5 (2)	4.4 (1)	5.5 (1)	6.2 (5)
17	Interior Columbia Basin su/fa	Lyons Ferry H	6.0 (1)	0.1 (0)		0.1 (0)	1.1 (1)
19	S Puget Sound fa	Clear Cr H	0.1 (0)	2.1 (0)	1.3 (0)	0.9 (0)	
19	S Puget Sound fa	Soos H	16.9 (5)		0.1 (0)	4.9 (5)	
19	S Puget Sound fa	S Prairie Cr	0.1 (0)	1.0 (0)		0.3 (0)	
22	Washington Coast	Sol Duc H	4.0 (1)	0.1 (0)		1.2 (1)	
22	Washington Coast	Forks Cr H	6.5 (1)	4.0 (1)	0.1 (0)	2.4 (2)	
23	Straits of Juan de Fuca	Elwha R	0.2 (0)	5.7 (1)		1.7 (1)	
24	Whidbey Basin	Suiattle R	4.2 (1)			1.2 (1)	
24	Whidbey Basin	Cascade R U	20.1 (3)	0.3 (0)	0.2 (0)	3.8 (3)	
26	E Vancouver Is	Big Qual H	6.3 (1)	2.2 (1)		1.8 (2)	
31	S Thompson R	L Adams H	6.4 (1)	0.1 (0)		1.2 (1)	
38	SSE Alaska	Clear Cr	0.6 (0)	4.4 (1)		1.4 (1)	
39	Nass R	Kincolith R	3.9 (1)			1.1 (1)	

No. Individuals in mixture (15) (24) (20) (24) (83)
Notes: Values represent average percent genetic contribution; in brackets, frequency of individual assignments to baseline populations, as inferred from individual's highest assignment probability. Identifiers (ID) correspond to those in Figure 1 (main article).
Figure S1: Confusion matrix of leave-one-out, self assignment test of individual genotypes after conditional maximum likelihood (CML) mixture analysis of North American samples. Values, and colour saturation, correspond to proportion of assignments. Samples (11800 fish genotypes, from 146 populations) were pooled by lineage (45 reporting groups), and sorted by decreasing latitude for display. Note how samples assign to their lineages with high accuracy and rarely to unrelated (distant) lineages, as observed in some simulated, admixed individuals (main article).
Figure S2: Frequency distribution of individual maximum assignment probabilities from population and reporting group-level CML mixture analysis of Patagonian samples.
Figure S3: Conditional maximum likelihood (CML) mixture analysis of the simulated mixed-origin Chinook salmon population derived from Cowlitz River Hatchery spring run in the West Cascade spring-run reporting group and Soos Creek Hatchery fall run in the South Puget Sound fall-run reporting group. Distribution of maximum assignment probabilities (a), average percent genetic contribution of reporting groups to the simulated population (b), and individual alternative assignments based on best and second-best assignment probabilities (c). Equivocal assignments [i.e., low assignment probability, symbolized with darker lines in (c)] typically split probabilities between founder lineages, or between founder lineages and genetically similar reporting groups. A small fraction of simulated individuals assigned to unrelated lineages, even with high assignment probabilities in some cases. Reporting groups with no assignments were omitted. Reporting groups were ordered by decreasing order of estimated contribution (b) or increasing latitude (c).
Figure S4: Delta-K plot to determine appropriate number of groups in model-based clustering present in 8,228 fish from 31 populations distributed among seven North American lineages that potentially contributed founders of Patagonian populations.
Figure S5: Individual stacked bar plot (STRUCTURE plot) of (a) North American baseline data-set of 8,228 fish from 31 populations distributed among seven North American lineages, and (b) Patagonian samples treated as having unknown origin in the analysis, and plotted by watershed ($n = 81$). The number of groups was set to $K = 5$, and estimated individual group membership probabilities is shown in colours.