Generalised hyper-Ramsey resonance with spinors*
T. Zanon-Willette, A.V. Taichenachev, V.I. Yudin

Abstract. The generalised hyper-Ramsey resonance formula originally published in Phys. Rev. A, 92, 023416 (2015) is derived using a Cayley–Klein spinor parametrisation. The shape of the interferometric resonance and the associated composite phase shift are reformulated including all individual laser pulse parameters. Potential robustness of signal contrast and phase-shift of the waveform fringe pattern can now be arbitrarily explored tracking any shape distortion due to systematic effects from the probe laser. An exact and simple analytical expression describing Ramsey’s method of separated composite oscillating laser fields with quantum state control allows us to accurately simulate all recent clock interrogation protocols under various pulse defects.

Keywords: Ramsey spectroscopy, optical clock, composite pulses, spinor, phase shift, quantum mechanics, atomic interferometry.

1. Introduction

In 1949, N.F. Ramsey developed a method of separated oscillating fields in magnetic resonance in order to improve the Rabi pulse technique measuring atomic transition frequencies with higher precision [1, 2]. Ramsey’s method was thus intensively applied in time and frequency metrology leading to modern atomic clocks with the highest precision [3]. The method was also extended to matter-wave interferometry using the atomic recoil effect induced by lasers to realise beam splitters and mirrors [4]. Atomic gravito-inertial sensors based on Ramsey–Bordé interferometers have thus rapidly improved the measurement sensitivity to external fields or rotations [5].

The present paper focuses on quantum engineering of a Doppler-recoil-free laser pulsed Ramsey resonance associated with the atomic phase shift driven by a sequence of three composite pulses applied around a single free evolution time [6, 7]. The original scheme called hyper-Ramsey (HR) spectroscopy demonstrates a very strong efficiency to eliminate the sensitivity to residual probe induced light shift in a single 171Yb$^+$ ion clock [8]. A new frequency standard based on the very narrow electric octupole (E3) transition leads to an unprecedented relative accuracy at $\sim 3 \times 10^{-18}$ [9].

Such a remarkable result has thus stimulated intensive research in the field of Ramsey spectroscopy leading to other sequences of composite pulses even more robust to residual light shift [10]. An exact analytical transition probability denoted as the generalised hyper-Ramsey resonance was initially presented in [7]. Such a resonance was an extension of the original hyper-Ramsey scheme taking into account a few modifications of laser parameters during laser probe interrogation. But the exact influence of the laser phase step on each pulse was not clearly provided and the effect of a residual coherence was not taken into account.

We report in this paper, for the first time, a new derivation of the same resonance by the spinor formalism. An exact and simple closed-form solution for both the resonance shape and the central fringe phase shift are established including all laser parameters from each individual tailored pulse. The formalism of spinor matrices would provide an accurate quantum simulation platform testing other sequences of composite pulses within Ramsey spectroscopy dedicated to a next generation of robust atomic clocks and spectrometers against laser probe perturbations [10, 11].

We start the formal derivation of the generalised hyper-Ramsey (GHR) transition probability by introducing Cayley–Klein parametrisation of rotation spinors as following [10, 12, 13]:

$$M(\vec{\delta}) = \begin{pmatrix} \cos \delta_l e^{i\phi_l} & -ie^{-\phi_l} \sin \delta_l \\ -ie^{\phi_l} \sin \delta_l & \cos \delta_l e^{-i\phi_l} \end{pmatrix},$$

where $l = 1', 1, 2$; and

$$\delta_l = \arcsin \left(\frac{Q_l}{|Q_l|} \sin \delta \right),$$

and

*This and subsequent papers were presented at the VIII International Symposium on Modern Problems of Laser Physics (Novosibirsk, 25 August to 1 September 2018).

T. Zanon-Willette Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères, LERMA, F-75005, Paris, France; e-mail: thomas.zanon@sorbonne-universite.fr; A.V. Taichenachev Novosibirsk State University, ul. Pirogova 2, 630090 Novosibirsk, Russia; Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, prosp. Akad. Lavrent’eva 15B, 630090 Novosibirsk, Russia; V.I. Yudin Novosibirsk State University, ul. Pirogova 2, 630090 Novosibirsk, Russia; Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, prosp. Akad. Lavrent’eva 15B, 630090 Novosibirsk, Russia; Novosibirsk State Technical University, prosp. Karla Marks 20, 630073 Novosibirsk, Russia

Received 24 October 2018

Kvantovaya Elektronika 49 (3) 278 – 282 (2019)

Submitted in English
\[\phi_i = \arctan \left(\frac{\delta_i}{\omega_0} \tan \theta_i \right) \]

(2b)

are the phase angles. Here, \(\theta_i = \theta_i / 2 \); \(\omega_0 = \omega_{0i} \) is the effective pulse area; and \(\omega_{0i} = (\delta_i^2 + \Omega_i^2)^{1/2} \) is the generalised Rabi frequency. Such a parametrisation is very convenient to simulate any composite three-pulse configuration shown in Fig. 1. Applying spinors to the Schrödinger equation with \(c_g(0), c_e(0) \) as initial conditions, a closed-form solution is derived for the complex amplitude:

\[
\begin{pmatrix}
 c_g \\
 c_e
\end{pmatrix}
= M(\delta) M(\tilde{\delta})
\begin{pmatrix}
 \exp(i \delta T/2) & 0 \\
 0 & \exp(-i \delta T/2)
\end{pmatrix}
\begin{pmatrix}
 c_g(0) \\
 c_e(0)
\end{pmatrix}.
\]

(3)

\[\begin{align*}
P_\phi &= |\alpha|^2 |1 - |\beta| \exp[-i(\delta T + \Phi)]|^2, \\
\Phi &= \phi_1 - \phi_1 + \phi \\
\end{align*} \]

(4a)

including a composite phase shift accumulated over the entire sequence of laser pulses given by:

\[\Phi = \phi_1 - \phi_1 + \phi \]

(4b)

with an additional complex phase-shift contribution:

\[\phi = \phi_1 + \phi_1 - \arg \beta. \]

(4c)

Parameters \(\alpha \) and \(\beta \) driving the overall envelop and composite phase shift can be separated in two contributions from the left pulse driven by a pulse area \(\tilde{\delta}_1 \) and two right pulses driven by \(\tilde{\delta}_1, \tilde{\delta}_2 \) around the free evolution time matrix (Fig. 1). We introduced then the reduced notations:

\[\begin{align*}
\alpha &= \alpha(\tilde{\delta}_1) \alpha(\tilde{\delta}_2), \\
\beta &= \beta(\tilde{\delta}_1) \beta(\tilde{\delta}_2), \end{align*} \]

(5a)

\[\begin{align*}
\alpha(\tilde{\delta}_1) &= \cos \tilde{\delta}_1; \\
\alpha(\tilde{\delta}_2) &= \cos \tilde{\delta}_1 \cos \tilde{\delta}_2 [1 - \exp(-i \Xi_{12}) \tan \tilde{\delta}_1 \tan \tilde{\delta}_2]; \\
\beta(\tilde{\delta}_1) &= \tan \tilde{\delta}_1; \\
\beta(\tilde{\delta}_2) &= \tan \tilde{\delta}_1 + \exp(-i \Xi_{12}) \tan \tilde{\delta}_1 \tan \tilde{\delta}_2 \\
\end{align*} \]

(6a)

(6b)

(6c)

(6d)

with \(\Xi_{12} = \delta_2 - \phi_1 + \phi_1 + \phi_2 \).

From Eqn (4c), few composite phase-shift formulae can be straightforwardly recovered: identical two pulse Ramsey phase shift,

\[\phi = 2\phi_1; \]

(7a)

different two pulse Ramsey phase shift,

\[\phi = \phi_1 + \phi_1; \]

(7b)

and generalised hyper-Ramsey phase shift,

\[\phi = \phi_1 + \phi_1 - \arg[\beta(\tilde{\delta}_2)]. \]

(7c)

These analytical expressions extend previous perturbative or exact solutions related to Ramsey and hyper-Ramsey line-shapes from Refs [2,7,11]. The dependence of \(P_\phi(\delta) \) related to the original HR scheme [Eqns (4)–(6)] on the clock detuning is shown in Fig. 2a.

Note that in order to lock the laser frequency to the atomic transition, a phase-step modulation with opposite sign \(\phi_i \) can also be applied to the ground or excited-state transition probabilities [14] generating a dispersive error signal given by:

\[\Delta E = P_\phi(\phi_1) - P_\phi(\phi_1). \]

(8)

The clock transition can be detected by measuring the atomic population fraction in the ground state, \(P_g = |c_g|^2 \), or in the excited state, \(P_e = |c_e|^2 = 1 - P_g \).

2. Exact generalised hyper-Ramsey resonance formula

The corresponding transition probability of the ground state for initial population initialisation given by \(c_g(0) = 1, c_e(0) = 0 \) can be recast in the canonical form:

\[\begin{align*}
P_\phi &= |\alpha|^2 |1 - |\beta| \exp[-i(\delta T + \Phi)]|^2, \\
\end{align*} \]

including a composite phase shift accumulated over the entire sequence of laser pulses given by:

\[\Phi = \phi_1 - \phi_1 + \phi \]

with an additional complex phase-shift contribution:

\[\phi = \phi_1 + \phi_1 - \arg \beta. \]

Parameters \(\alpha \) and \(\beta \) driving the overall envelop and composite phase shift can be separated in two contributions from the left pulse driven by a pulse area \(\tilde{\delta}_1 \) and two right pulses driven by \(\tilde{\delta}_1, \tilde{\delta}_2 \) around the free evolution time matrix (Fig. 1). We introduced then the reduced notations:

\[\begin{align*}
\alpha &= \alpha(\tilde{\delta}_1) \alpha(\tilde{\delta}_2), \\
\beta &= \beta(\tilde{\delta}_1) \beta(\tilde{\delta}_2), \end{align*} \]

\[\begin{align*}
\alpha(\tilde{\delta}_1) &= \cos \tilde{\delta}_1; \\
\alpha(\tilde{\delta}_2) &= \cos \tilde{\delta}_1 \cos \tilde{\delta}_2 [1 - \exp(-i \Xi_{12}) \tan \tilde{\delta}_1 \tan \tilde{\delta}_2]; \\
\beta(\tilde{\delta}_1) &= \tan \tilde{\delta}_1; \\
\beta(\tilde{\delta}_2) &= \tan \tilde{\delta}_1 + \exp(-i \Xi_{12}) \tan \tilde{\delta}_1 \tan \tilde{\delta}_2 \\
\end{align*} \]

with \(\Xi_{12} = \delta_2 - \phi_1 + \phi_1 + \phi_2 \).

From Eqn (4c), few composite phase-shift formulae can be straightforwardly recovered: identical two pulse Ramsey phase shift,

\[\phi = 2\phi_1; \]

different two pulse Ramsey phase shift,

\[\phi = \phi_1 + \phi_1; \]

and generalised hyper-Ramsey phase shift,

\[\phi = \phi_1 + \phi_1 - \arg[\beta(\tilde{\delta}_2)]. \]

These analytical expressions extend previous perturbative or exact solutions related to Ramsey and hyper-Ramsey line-shapes from Refs [2,7,11]. The dependence of \(P_\phi(\delta) \) related to the original HR scheme [Eqns (4)–(6)] on the clock detuning is shown in Fig. 2a.

Note that in order to lock the laser frequency to the atomic transition, a phase-step modulation with opposite sign \(\phi_i \) can also be applied to the ground or excited-state transition probabilities [14] generating a dispersive error signal given by:

\[\Delta E = P_\phi(\phi_1) - P_\phi(\phi_1). \]
and 01 during the last pulse [15]. Another protocol is the driving the first laser pulse excitation are now given by:

\[
\alpha(\delta t) = \cos \delta t \left(|c_1(0) + i c_2(0)\exp[i(\varphi_1 - \varphi_2)]\tan \delta t \right), \quad (9a)
\]

\[
\beta(\delta t) = \frac{c_2(0)\tan \delta t - ic_1(0)\exp[i(\varphi_1 - \varphi_2)]}{c_2(0) + ic_1(0)\exp[i(\varphi_1 - \varphi_2)]\tan \delta t}, \quad (9b)
\]

The envelop and phase shift driving the entire GHR transition probability are replaced by complex trigonometric functions including imperfect initialisation of quantum states. The generalised composite phase-shift expression becomes:

\[
\phi = \phi_1 + \phi_2 - \{\arg[\beta(\delta t)] + \arg[\beta(\delta t_3)]\}, \quad (10)
\]

where \(\beta(\delta t_3)\) and \(\beta(\delta t)\) are respectively given by Eqns (6d) and (9b). The clock frequency shift associated to this phase shift is given by the relation:

\[
\delta \nu = - \frac{\phi \pm k \pi}{2 \pi T}, \quad (11)
\]

where \(k\) is an integer selected to ensure the expression continuity by correcting quadrant jumps.

Figure 2b shows the HR clock frequency shift [Eqn (11)] associated to the resonance minimum versus residual uncompensated probe-induced shifts and pulse area. This is the original signature feature of the ideal HR scheme already reported in [17] with a density matrix formalism. The distortion of the HR clock frequency shift displayed in Figs 3a and 3b are produced when state initialisation is incorrect. Laser phase steps are fixed to be \(\varphi_1 = 0, \varphi_2 = \pi\) for a simplified simulation. A modification of the relative phase shift between composite pulses is due to a residual coherence between atomic states \(c_2(0)\), \(c_1(0)\) \(\neq 0\) in a quantum mechanical approach. This new result might emphasise that a weak distortion of the lineshape may coexist with an additional phase-shift contribution related to a lack of appropriate quantum state engineering between multiple sequences of two-level system probe interrogation [18]. Finally, Fig. 3c demonstrates the effect of a systematic small error in the phase-step inversion \(\varphi_2 = 0.99\pi\) realised during the middle pulse of the HR scheme. The clock frequency shift experiences a small offset against residual probe-induced shifts if phase steps or state initialisation are not well controlled as shown in Fig. 4. The clock frequency shift is assumed to be a \(\Delta \theta = \pm 10\%\) pulse variation during the probe interrogation.

4. Conclusions

We have derived the generalised hyper-Ramsey resonance with spinors. The exact lineshape and the central fringe phase...
Generalised hyper-Ramsey resonance with spinors

Shift have been rewritten in a compact form allowing any distortion from pulse defects to be tracked. For the first time, a composite phase shift includes an arbitrary initial amplitude of quantum states. We have employed spinors to establish an exact and tractable model of the GHR resonance which might be very helpful when intensity fluctuations are taken into account [19]. Merging the original method of Ramsey spectroscopy [2] with more complex sequences of composite laser pulses [20, 21] would allow optimal control of laser parameters in the field of clock interferometry and precision spectroscopy for tests of fundamental physics with ultracold quantum particles.

Acknowledgements. A.V. Taichenachev and V.I. Yudin acknowledge financial support from the Russian Science Foundation (Grant No. 16-12-10147), the Ministry of Education and Science of the Russian Federation (Grant No. 3.1326.2017/4.6), and the Russian Foundation for Basic Research (Grant Nos 17-02-00570 and 18-02-00822).

References
1. Ramsey N.F. Phys. Rev., 76, 996 (1949).
2. Ramsey N.F. Phys. Rev., 78, 695 (1950).
3. Ramsey N.F. Rev. Mod. Phys., 62, 541 (1990).
4. Bordé C.J. Phys. Lett. A, 140, 10 (1989).
5. Bordé C.J. Métrologia, 39, 435 (2002).
6. Yudin V.I., Taichenachev A.V., Oates C.W., Barber Z.W., Lemke N.D., Ludlow A.D., Sterr U., Lisdat Ch., Riehle F. Phys. Rev. A, 82, 011804(R) (2010).
7. Zanon-Willette T., Yudin V.I., Taichenachev A.V. Phys. Rev. A, 92, 023416 (2015).
8. Huntemann N., Lipphardt B., Okhapkin M., Tamm Ch., Peik E., Taichenachev A.V., Yudin V.I. Phys. Rev. Lett., 109, 213002 (2012).
9. Huntemann N., Sanner C., Lipphardt B., Tamm Ch., Peik E. Phys. Rev. Lett., 116, 063001 (2016).
10. Zanon-Willette T. et al. Rep. Prog. Phys., 81, 094401 (2018).
11. Zanon-Willette T., Minissale M., Yudin V.I., Taichenachev A.V. J. Phys.: Conf. Ser., 723, 012057 (2016).
12. Pauli W. Z. Phys., 43, 601 (1927).
13. Bloch F., Rabi I.I. Rev. Mod. Phys., 17, 0237 (1945).
14. Ramsey N.F., Silsbee H.B. Phys. Rev., 84, 506 (1951).

Figure 3. Distortion of the 2D map representation of the HR clock frequency shift $\delta \nu$ due to imperfect (a, b) state initialisation or (c) phase-step error: the frequency shift related to Eqn (11) is plotted vs. residual uncompensated probe-induced light shift $\Delta 2\pi$ and pulse area in units of $\pi \hbar$ at (a) $\gamma(0) = \sqrt{0.999}$, $\gamma(0) = \sqrt{0.001}$, (b) $\gamma(0) = \sqrt{0.03}$, $\gamma(0) = \sqrt{0.01}$ and (c) phase-step error $\phi_1 = 0.99\pi$ during the middle pulse. Others parameters and coloured contour plots are the same as in Fig. 2.

Figure 4. HR clock frequency shift $\delta \nu$ of the population fraction P_e vs. residual uncompensated probe-induced light shift $\Delta 2\pi$ with a small offset due to imperfect state initialisation and phase-step error. Different curves of the same type are produced by a pulse area variation of $\Delta N = \pm 10\%$. Others parameters are the same as in Fig. 2.
15. Hobson R., Bowden W., King S.A., Baird P.E.G., Hill I.R., Gill P.
 Phys. Rev. A, 93, 010501(R) (2016).
16. Zanon-Willette T., de Clercq E., Arimondo E. Phys. Rev. A, 93,
 042506 (2016).
17. Zanon-Willette T., Lefevre R., Taichenachev A.V., Yudin V.I.
 Phys. Rev. A, 96, 023408 (2017).
18. Prestage J.D., Chung S.K. Proc. 2010 IEEE Int. Frequency
 Control Symp. (Newport Beach, CA, USA, 2010) p. 220.
19. Beloy K. Phys. Rev. A, 96, 031406(R) (2018).
20. Levitt M.H. Prog. Nucl. Magn. Reson. Spectrosc., 18, 61 (1986).
21. Vandersypen L.M.K., Chuang I.L. Rev. Mod. Phys., 76, 1037
 (2005).