INVERSE NODAL PROBLEMS FOR DIRAC TYPE INTEGRO DIFFERENTIAL SYSTEM WITH A NONLOCAL BOUNDARY CONDITION

BAKI KESKIN

Abstract. In this work, the Dirac-type integro differential system with one classical boundary condition and another nonlocal integral boundary condition is considered. We obtain the asymptotic formulae for the solutions, eigenvalues and nodal points. We also investigate the inverse nodal problem and prove that given a dense subset of nodal points uniquely determines the boundary condition parameter and the potential function of the considered differential system. We also provide an effective procedure for solving the inverse nodal problem.

1. Introduction

In recent years, boundary value problems with nonlocal conditions are one of the fastest developing current topics in mathematical physics. Nonlocal boundary conditions appear when we cannot measure data directly at the boundary. Problems of this type arise in various fields of mathematical physics, biology, biotechnology, mechanics, geophysics and other branches of natural sciences [2], [3], [4], [5], [6]. Such problems were studied firstly by Samarskii and Bitsadze. They formulated and investigated the non-local boundary problem for an elliptic equation [1].

Inverse spectral problems consist in recovering operators from their spectral characteristics. Results of the inverse problem for various nonlocal operators can be found in [7], [8], [9], [10], [43], [45].

In a classical inverse spectral problem, the potential and the coefficients of the operators are to be determined from spectral data (e.g., two sets of eigenvalues, or one set of eigenvalues and norming constants). This is called the inverse eigenvalue problem. An alternative is to take as data the zeros (nodes) of the eigenfunctions of the considered operators, which are just as experimentally observable as eigenvalues in some situations. This is generally referred to as the "Inverse Nodal Problem".

In 1988, McLaughlin raised and solved the inverse nodal problem for Sturm-Liouville problems for the first time [35]. She showed that knowledge of a dense subset of zeros (nodes) of the eigenfunctions alone can determine the potential function of the Sturm-Liouville problem up to a constant. Hald and McLaughlin [25] provided some numerical schemes for the reconstruction of the potential for more general boundary conditions. In 1997, Yang suggested a constructive procedure...
for reconstructing the potential and the boundary condition of the Sturm-Liouville problem from nodes of its eigenfunctions [41]. Inverse nodal problems have been addressed by various researchers in several papers for different operators with different kinds of boundary conditions ([16], [18], [21], [24], [37], [39], [40], [42], [44] and references therein). The inverse nodal problems for Dirac operators with various boundary conditions have been studied in [23], [38], [46], [47] and [48].

In recent years, integro-differential operators attracted much attention of mathematicians. Such operators have important applications in many fields of science (see monographs [17], [36] and references therein). Therefore, many researchers are currently working on inverse problems for these operators ([11], [12], [13], [14], [15], [19], [20], [22], [26], [27], [28], [30], [34] and [49]). The inverse nodal problem for Dirac type integro-differential operators with Robin boundary conditions was first studied by [29]. This operator with parameter dependent boundary conditions linearly and nonlinearly were studied by [31] and [32], respectively. In their studies, the authors considered \(p(x)\) and \(q(x)\), which are the components of the potential function \(\Omega(x)\), as a special case such that \(p(x) - q(x) = \text{const}\).

In this study, the perturbation of the Dirac differential system on a finite interval with one classical boundary condition and another nonlocal integral boundary condition by a Volterra type operator is considered. We also consider \(p(x)\) and \(q(x)\) as two independent functions and investigate a more general case. In this way, we have the opportunity to determine \(p(x)\) and \(q(x)\) separately. It is shown that the coefficients of the differential part of the operator and the boundary condition parameter can be determined by using a dense subset of the nodes. For this problem, we also give a constructive procedure for determining the coefficients as well as the useful asymptotics regarding the solution, eigenvalues and nodes.

2. Main Results

Consider the nonlocal boundary value problem of the Dirac type integro-differential system

\[
BY' + \Omega(x)Y + \int_0^x M(x, t)Y dt = \lambda Y, \quad x \in (0, \pi),
\]

with one classical boundary condition

\[
y_1(0) \sin \theta + y_2(0) \cos \theta = 0
\]

and nonlocal integral boundary condition

\[
y_1(\pi) = \int_0^\pi y_1(x) \omega(x) dx
\]

where, \(0 < \theta < \pi\) are real numbers, \(\lambda\) is the spectral parameter,

\[
B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \Omega(x) = \begin{pmatrix} p(x) & 0 \\ 0 & r(x) \end{pmatrix}, \quad M(x, t) = \begin{pmatrix} M_{11}(x, t) & M_{12}(x, t) \\ M_{21}(x, t) & M_{22}(x, t) \end{pmatrix},
\]

\[
Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad p(x), r(x), \omega(x) \text{ and } M_{ij}(x, t), (i, j = 1, 2) \text{ are real-valued and differentiable functions on segment } [0, \pi] \}
\]
Let \(\varphi(x, \lambda) = (\varphi_1(x, \lambda), \varphi_2(x, \lambda))^T \) be the solution of (1) satisfying the initial condition \(\varphi(0, \lambda) = (\cos \theta, -\sin \theta)^T \).

It is clear that \(\varphi(x, \lambda) \) is an entire function of \(\lambda \) satisfies the following Volterra integral equations:

\[
\begin{align*}
\varphi_1(x, \lambda) &= \cos \theta \cos \lambda x + \sin \theta \sin \lambda x \\
&+ \int_0^x \sin \lambda(x - t)p(t)\varphi_1(t, \lambda)dt + \int_0^x \cos \lambda(x - t)r(t)\varphi_2(t, \lambda)dt \\
&+ \int_0^x \int_0^t \sin \lambda(x - \xi) \{M_{11}(t, \xi)\varphi_1(\lambda, \xi) + M_{12}(t, \xi)\varphi_2(\lambda, \xi)\} d\xi dt \\
&+ \int_0^x \int_0^t \cos \lambda(x - \xi) \{M_{21}(t, \xi)\varphi_1(\lambda, \xi) + M_{22}(t, \xi)\varphi_2(\lambda, \xi)\} d\xi dt
\end{align*}
\]

\[
\begin{align*}
\varphi_2(x, \lambda) &= \cos \theta \sin \lambda x - \sin \theta \cos \lambda x \\
&- \int_0^x \cos \lambda(x - t)p(t)\varphi_1(t, \lambda)dt + \int_0^x \sin \lambda(x - t)r(t)\varphi_2(t, \lambda)dt \\
&- \int_0^x \int_0^t \cos \lambda(x - \xi) \{M_{11}(t, \xi)\varphi_1(\lambda, \xi) + M_{12}(t, \xi)\varphi_2(\lambda, \xi)\} d\xi dt \\
&+ \int_0^x \int_0^t \sin \lambda(x - \xi) \{M_{21}(t, \xi)\varphi_1(\lambda, \xi) + M_{22}(t, \xi)\varphi_2(\lambda, \xi)\} d\xi dt
\end{align*}
\]

Theorem 1. ([28], the case: \(\alpha = 1 \)) For \(|\lambda| \to \infty \), the following asymptotic formulae are valid:

\[
\begin{align*}
\varphi_1(x, \lambda) &= \cos(\lambda x - \mu(x) - \theta) + \frac{1}{2\lambda} v(x) \cos(\lambda x - \mu(x) - \theta) \\
&- \frac{1}{2\lambda} v(0) \cos(\lambda x - \mu(x) + \theta) + \frac{1}{2\lambda} \sin(\lambda x - \mu(x) - \theta) \int_0^x v^2(t)dt \\
&- \frac{1}{2\lambda} K(x) \cos(\lambda x - \mu(x) - \theta) - \frac{1}{2\lambda} L(x) \sin(\lambda x - \mu(x) - \theta) \\
&+ o\left(\frac{1}{\lambda} \exp(|\tau| x)\right)
\end{align*}
\]

\[
\begin{align*}
\varphi_2(x, \lambda) &= \sin(\lambda x - \mu(x) - \theta) - \frac{1}{2\lambda} v(x) \sin(\lambda x - \mu(x) - \theta) \\
&- \frac{1}{2\lambda} v(0) \sin(\lambda x - \mu(x) + \theta) - \frac{1}{2\lambda} \cos(\lambda x - \mu(x) - \theta) \int_0^x v^2(t)dt \\
&- \frac{1}{2\lambda} K(x) \sin(\lambda x - \mu(x) - \theta) + \frac{1}{2\lambda} L(x) \cos(\lambda x - \mu(x) - \theta) \\
&+ o\left(\frac{1}{\lambda} \exp(|\tau| x)\right)
\end{align*}
\]

uniformly in \(x \in [0, \pi] \), where, \(\mu(x) = \frac{1}{2} \int_0^x (p(t) + r(t))dt \), \(v(x) = \frac{1}{2} (p(x) - r(x)) \),

\(K(x) = \int_0^x (M_{11}(t, t) - M_{22}(t, t))dt \), \(L(x) = \int_0^x (M_{12}(t, t) - M_{21}(t, t))dt \)

and \(\tau = \text{Im} \lambda \).

The spectra of the boundary value problem (1)-(3) are the zero-sequences \(\{\lambda_n\}_{n \in \mathbb{Z}} \) of the entire function

\[
\Lambda(\lambda) := \varphi_1(\pi, \lambda) - \int_0^\pi \varphi_1(x, \lambda)\omega(x)dx = 0
\]
and the function $\Lambda(\lambda)$ satisfies
\[
\Lambda(\lambda) = \cos (\lambda \pi - \mu(\pi) - \theta) + \frac{1}{2\lambda} v(\pi) \cos (\lambda \pi - \mu(\pi) - \theta) - \frac{1}{2\lambda} v(0) \cos (\lambda \pi - \mu(\pi) + \theta) + \frac{1}{2\lambda} \sin (\lambda \pi - \mu(\pi) - \theta) \int_0^\pi v^2(t)dt
\]
\[+ \frac{1}{2\lambda} K(\pi) \cos (\lambda \pi - \mu(\pi) - \theta) - \frac{1}{2\lambda} L(\pi) \sin (\lambda \pi - \mu(\pi) - \theta) - \frac{1}{\lambda} \sin (\lambda \pi - \mu(\pi) - \theta) \omega(\pi) + o \left(\frac{1}{\lambda} \exp(|\lambda|) \right),
\]
for sufficiently large $|\lambda|$. Since the eigenvalues of the problem (1)-(3) are the roots of $\Lambda(\lambda_n) = 0$, we can write the following equation for them:
\[
\left(1 + \frac{1}{2\lambda_n} v(\pi) - \frac{1}{2\lambda_n} v(0) \cos 2\theta - \frac{1}{2\lambda_n} K(\pi) \right) \tan(\lambda_n \pi - \mu(\pi) - \frac{\pi}{2} - \theta) = \frac{1}{2\lambda_n} v(0) \sin 2\theta + \frac{1}{2\lambda_n} \int_0^\pi v^2(t)dt - \frac{1}{2\lambda_n} L(\pi) - \frac{1}{\lambda_n} \omega(\pi) + o \left(\frac{1}{\lambda_n} \right)
\]
from this expression, for sufficiently large $|n|$, we can write the following equation for them:
\[
\lambda_n = \left(n + \frac{1}{2} \right) + \frac{\theta + \mu(\pi)}{\pi} + \frac{1}{2n\pi} \left(v(0) \sin 2\theta + \int_0^\pi v^2(t)dt - L(\pi) - 2\omega(\pi) \right) + o \left(\frac{1}{n} \right), \quad n \geq 1,
\]
and similarly
\[
\lambda_n = \left(n - \frac{1}{2} \right) + \frac{\theta + \mu(\pi)}{\pi} - \frac{1}{2n\pi} \left(v(0) \sin 2\theta + \int_0^\pi v^2(t)dt - L(\pi) - 2\omega(\pi) \right) + o \left(\frac{1}{n} \right), \quad n \leq -1.
\]

Lemma 1. For sufficiently large n, $\varphi_1(x, \lambda_n)$ has exactly n nodes $\{x^j_n : j = 0, 1, \ldots, n-1\}$ in the interval $(0, \pi)$: $0 < x^0_n < x^1_n < \ldots < x^{n-1}_n < \pi$. Moreover,
\[
x^j_n = \frac{(j + 1/2) \pi}{n} + \frac{\mu(x^j_n) + \theta}{n} + \frac{(j + 1/2)(\pi + 2\theta + 2\mu(\pi))}{2n^2\pi} - \frac{(j + 1/2)(\pi + 2\theta + 2\mu(\pi))}{2n^2\pi}
\]
\[+ \frac{(j + 1/2)(\pi + 2\theta + 2\mu(\pi))^2}{4n^3\pi^2} + \frac{1}{2n^2} \left(v(0) \sin 2\theta + \int_0^\pi v^2(t)dt - L(\pi) - 2\omega(\pi) \right) - \frac{\mu(x^j_n) + \theta}{2n^2\pi} \left(v(0) \sin 2\theta + \int_0^\pi v^2(t)dt - L(\pi) - 2\omega(\pi) \right) - \frac{(\mu(x^j_n) + \theta)(\pi + 2\theta + 2\mu(\pi))^2}{4n^3\pi^2} + O \left(\frac{1}{n^4} \right),
\]
uniformly with respect to $j \in \mathbb{Z}^+$.
Proof: The first component \(\varphi_1(x, \lambda_n) \) of the eigenfunction \(\varphi(x, \lambda_n) \) has the following asymptotic formula:

\[
\varphi_1(x, \lambda_n) = \cos (\lambda_n x - \mu(x) - \theta) + \frac{1}{2\lambda_n} v(x) \cos (\lambda_n x - \mu(x) - \theta)
\]

\[
(12) \quad - \frac{1}{2\lambda_n} v(0) \cos (\lambda_n x - \mu(x) + \theta) + \frac{1}{2\lambda_n} \sin (\lambda_n x - \mu(x) - \theta) \int_0^x v^2(t) dt
\]

\[
- \frac{1}{2\lambda_n} K(x) \cos (\lambda x - \mu(x) - \theta) - \frac{1}{2\lambda_n} L(x) \sin (\lambda_n x - \mu(x) - \theta)
\]

\[
+ o \left(\frac{1}{\lambda_n} \exp(|\tau| x) \right),
\]

for \(n \to \infty \) uniformly in \(x \). Then for the nodal point \(x_n^j \) of \(\varphi_1(x, \lambda_n) \), from \(\varphi_1(x_n^j, \lambda_n) = 0 \), we obtain

\[
\left(1 + \frac{1}{2\lambda_n} v(x_n^j) - \frac{1}{2\lambda_n} v(0) \cos 2\theta - \frac{1}{2\lambda_n} K(x_n^j)\right) \tan (\lambda_n x - \mu(x_n^j) - \theta - \frac{\pi}{2}) = \frac{1}{2\lambda_n} v(0) \sin 2\theta + \frac{1}{2\lambda_n} \int_0^{x_n^j} v^2(t) dt - \frac{1}{2\lambda_n} L(x_n^j) + o \left(\frac{1}{\lambda_n} \right),
\]

Taking into account Taylor’s expansions, we get

\[
\lambda_n x_n^j - \mu(x_n^j) - \theta - \frac{\pi}{2} = j\pi + \frac{1}{2\lambda_n} \left(v(0) \sin 2\theta + \int_0^{x_n^j} v^2(t) dt - L(x_n^j) \right) + o \left(\frac{1}{\lambda_n} \right).
\]

It follows from the last equality

\[
x_n^j = \left(j + \frac{1}{2} \right) \pi + \mu(x_n^j) + \theta + \frac{1}{2\lambda_n} \left(v(0) \sin 2\theta + \int_0^{x_n^j} v^2(t) dt - L(x_n^j) \right) + o \left(\frac{1}{\lambda_n^2} \right).
\]

The relation (13) is proven by using the asymptotic formula

\[
\lambda_n^{-1} = \frac{1}{n} \left(1 - \frac{\pi + 2\theta + 2\mu(\pi)}{2n\pi} - \frac{(v(0) \sin 2\theta + \int_0^{\pi} v^2(t) dt - L(\pi) - 2\omega(\pi))}{2n^2\pi} \right)
\]

\[
\left(\frac{\pi + 2\theta + 2\mu(\pi)}{2n\pi} \right)^2 + o \left(\frac{1}{n^2} \right)
\]

as \(n \to \infty \) uniformly in \(j \in \mathbb{Z}^+ \).

\[\Box\]

Theorem 2. Let \(X \) be the set of nodal points. Fix \(x \in (0, \pi) \). Let a sequence \(\{ x_n^j \} \subset X \) be chosen such that \(x_n^j \) converges to \(x \) as \(n \to \infty \). Then the following limits are exist and finite and corresponding equalities hold:

\[
\lim_{|n| \to \infty} \left(x_n^j - \frac{(j + 1/2) \pi}{n} \right) = \mu(x) + \theta - x \frac{\pi + 2\theta + 2\mu(\pi)}{2\pi} \triangleq f(x),
\]

(13)
\[
\lim_{|n| \to \infty} 2n^2 \pi \left(x_n^j \frac{(j+1/2) \pi}{n} + \frac{\mu(x_n^j) + \theta}{n} + \frac{(j+1/2) \pi (\pi + 2\theta + 2\mu(\pi))}{2n\pi} \right)
\]
\[
= - (\mu(x) + \theta) (\pi + 2\theta + 2\mu(\pi)) - x \left(v(0) \sin 2\theta + \int_0^\pi v^2(t) dt - L(\pi) - 2\omega(\pi) \right) + x \frac{(\pi + 2\theta + 2\mu(\pi))^2}{2\pi} + \pi \left(v(0) \sin 2\theta + \int_0^\pi v^2(t) dt - L(x) \right) \triangleq g(x),
\]

and
\[
\lim_{|n| \to \infty} 2n^3 \pi \left(x_n^j \frac{(j+1/2) \pi}{n} + \frac{\mu(x_n^j) + \theta}{n} + \frac{(j+1/2) \pi (\pi + 2\theta + 2\mu(\pi))}{2n \pi} + \frac{1}{2n^2 \pi} \left(v(0) \sin 2\theta + \int_0^\pi v^2(t) dt - L(\pi) - 2\omega(\pi) \right) \right)
\]
\[
= -(j+1/2) \pi \left(\frac{\mu(x_n^j) + \theta}{n} + \frac{(\mu(x_n^j) + \theta) (\pi + 2\theta + 2\mu(\pi))}{2n^2 \pi} - \frac{1}{2n^2 \pi} \left(v(0) \sin 2\theta + \int_0^\pi v^2(t) dt - L(x) \right) \right) + \frac{1}{2n^2 \pi} \left(v(0) \sin 2\theta + \int_0^\pi v^2(t) dt - L(x) \right) - 2\omega(\pi) + \frac{(\mu(x) + \theta) (\pi + 2\theta + 2\mu(\pi))^2}{2\pi} \triangleq h(x),
\]

Therefore, proof of the following theorem is clear.

Theorem 3. Let \(\mu(\pi) = 0 \). The given dense subset of nodal points \(X \) uniquely determines the coefficients \(\theta \) and \(\omega(\pi) \) of the boundary conditions and if \(L(x) \) is known, \(X \) also uniquely determines the potential \(\Omega(x) \) a.e. on \((0, \pi)\). Moreover, \(\Omega(x), \omega(\pi) \) and \(\theta \) can be via the following algorithm:

1. For each \(x \in (0, \pi) \) and \(\alpha \in (0, 1] \), choose a sequence \(\{x_n^j\} \subset X \) such that \(\lim_{|n| \to \infty} x_n^j = x; \)
2. Find the function \(f(x) \) from (13) and calculate
 \[
 \theta = f(0), \quad 2\mu'(x) = p(x) + r(x) = 2f'(x) + 2f(0) + \pi
 \]
3. Find the function \(g(x) \) from (14) and calculate
 \[
 v(0) = \frac{g(0) - \theta \pi - 2\theta^2}{\pi \sin 2\theta}, \quad \omega(\pi) = \frac{g(\pi) - 3\theta \pi - 4\theta^2 - \pi^2/2}{2\pi} \]
If $L(x)$ is known then from (14) and (15) calculate

$$
p(x) = f'(x) + f(0) + \pi/2 + \rho(x)
$$

$$
r(x) = f'(x) + f(0) + \pi/2 - \rho(x)
$$

where

$$
\rho^2(x) = \frac{1}{\pi} \left(g'(x) + \left(f'(x) + f(0) + \frac{\pi}{2} \right) (\pi + 2\theta) + \frac{h(0)}{\theta} + L'(x) \right)
$$

Thus, we have shown that we can reconstruct the potential function and obtain the coefficients of the boundary conditions using only dense subset of a nodal points. Our reconstruction formulae are also directly implies the uniqueness of this inverse problem.

Conclusion: In this work, we study inverse nodal problems for Dirac-type integro-differential systems with one classical boundary condition and another nonlocal integral boundary condition. We get useful asymptotics regarding the solution, eigenvalues, and nodes. And we present a constructive procedure to solve the inverse nodal problems. It makes sense for the theoretical integrity of the inverse nodal problem with nonlocal integral conditions.

Conflict of Interest: The author declares that there are no conflicts of interest regarding the publication of this paper

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated or analysed during the current study

References

[1] A.V. Bitsadze and A.A. Samarskii, Some elementary generalizations of linear elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 185 (1969), 739-740.
[2] W.A. Day, Extensions of a property of the heat equation to linear thermoelasticity and order theories, Quart. Appl. Math. 40 (1982), 319–330.
[3] N. Gordeziani, On some nonlocal problems of the theory of elasticity, Bull. TICMI 4 (2000), 43–46.
[4] Y.F. Yin, On nonlinear parabolic equations with nonlocal boundary conditions, J. Math. Anal. Appl. 185 (1994), 161–174.
[5] A.M. Nakhushov, Equations of Mathematical Biology, Vysshaya Shkola, Moscow, 1995 (in Russian).
[6] K. Schuegerl, Bioreaction Engineering. Reactions Involving Microorganisms and Cells, vol. 1, John Wiley and Sons, 1987.
[7] S. Albeverio, R. Hryniv, L.P. Nizhnik, Inverse spectral problems for nonlocal Sturm–Liouville operators, Inverse Probl. 23 (2007), 523–535.
[8] G. Freiling, V.A. Yurko, Inverse problems for differential operators with a constant delay, Appl. Math. Lett. 25 (2012) 1999–2004.
[9] K.V. Kravchenko, On differential operators with nonlocal boundary conditions, Differ. Uravn. 36 (2000) 464–469; English transl. in Differ. Equ. 36 (2000), 517–523.
[10] L.P. Nizhnik, Inverse nonlocal Sturm–Liouville problem, Inverse Probl. 26 (2010), 125006.
[11] N.P. Bondarenko, An inverse problem for an integro-differential operator on a star-shaped graph, Math. Meth. Appl. Sci. 41 (4) (2018), 1697–1702.
[12] N.P. Bondarenko, An inverse problem for the integro-differential Dirac system with partial information given on the convolution kernel, J. Inverse Ill-Posed Probl., 27 (2) (2019), 151–157.
[13] N.P. Bondarenko, An inverse problem for an integro-differential pencil with polynomial eigenparameter-dependence in the boundary condition, Anal. Math. Phys., 9 (4) (2019), 2227–2236.
[14] N.P. Bondarenko, An Inverse problem for an integro-differential equation with a convolution kernel dependent on the spectral parameter, Results Math., 74,148 (2019).
15. N. Bondarenko, S. Buterin, An inverse spectral problem for integro-differential Dirac operators with general convolution kernels, Appl. Anal., 99 (2020), 700–716.
16. P.J. Browne, B.D. Sleeman, Inverse nodal problem for Sturm–Liouville equation with eigenparameter depend boundary conditions, Inverse Problems, 12 (1996) 377–381.
17. Z.P. Bažant, M. Jirásek, Nonlocal integral formulation of plasticity and damage: survey of progress, American Society of Civil Engineers, J. Eng. Mech., (2002), 1119-1149.
18. S.A. Buterin, C.T. Shieh, Inverse nodal problem for differential pencils, Appl. Math. Lett., 22 (2009), 1240–1247.
19. S.A. Buterin, On an Inverse Spectral Problem for a Convolution Integro-Differential Operator, Results in Mathematics, 50 (2007), 173-181.
20. S. Buterin, V. Yurko, Inverse problems for second order integral and integro-differential operators, Anal. Math. Phys., 4 (2018), 1-10
21. Y.H. Cheng, C-K. Law and J. Tsay, Remarks on a new inverse nodal problem, J. Math. Anal. Appl., 248 (2000), 145-155.
22. G. Freiling, V.A. Yurko, Inverse Sturm–Liouville Problems and their Applications, Nova Science, New York, 2001.
23. Y. Guo, Y. Wei, Inverse Nodal Problem for Dirac Equations with Boundary Conditions Polynomially Dependent on the Spectral Parameter, Results. Math., 67 (2015), 95–110.
24. Y. Guo, Y. Wei, R Yao, Uniqueness theorems for the Dirac operator with eigenparameter boundary conditions and transmission conditions, Applicable Analysis, 99(9) (2020), 1564-1578.
25. O.H. Hald, J.R. McLaughlin, Solutions of inverse nodal problems, Inverse Problems, 5 (1989) 307–347.
26. Y.T. Hu, N.P. Bondarenko, C.T. Shieh, C.F. Yang, Traces and inverse nodal problems for Dirac-type integro-differential operators on a graph, Appl. Math. Comput., 363 (2019), 124606.
27. M. Ignatyev, On an inverse spectral problem for the convolution integro-differential operator of fractional order, Results Math., 73 (2018), p. 34
28. B. Keskin, Inverse problems for one dimensionaliable fractional Dirac type integro differential system. Inverse Problems, 363:065001 (2020).
29. B. Keskin, A. S. Ozkan, Inverse nodal problems for Dirac-type integro-differential operators, J. Differential Equations 263(2017), 8838–8847.
30. B. Keskin, Reconstruction of the Volterra-type integro-differential operator from nodal points, Boundary Value Problems, 2018–47 (2018), 1–8.
31. B. Keskin, H. Dilara Tel, Reconstruction of the Dirac-type integro-differential operator from nodal data, Numer. Funct. Anal. Optim., 39 (2018), 1208-1220.
32. B. Keskin, H.D. Tel, Inverse nodal problems for Dirac-type integro-differential system with boundary conditions polynomially dependent on the spectral parameter, Cumhuriyet Sci J, 40 (4) (2019), 875-885.
33. Y.V. Kuruschova, C.T. Shieh, An Inverse Nodal Problem for Integro-Differential Operators, Journal of Inverse and Ill-posed Problems, 18 (2010), 357–369.
34. Y.V. Kuruschova, Inverse Spectral Problem for Integro-Differential Operators, Mathematical Notes, 81(6) (2007), 767-777.
35. J.R. McLaughlin, Inverse spectral theory using nodal points as data – a uniqueness result, J. Diff. Eq., 73 (1988), 354-362.
36. V. Lakshmikantham, M. Rama Mohana Rao, Theory of integro-differential equations Stability and Control: Theory, Methods and Applications, v.1, Gordon and Breach Science Publishers, Singapore (1995)
37. C.K. Law, C.L. Shen and C.F. Yang, The Inverse Nodal Problem on the Smoothness of the Potential Function, Inverse Problems, 15(1) (1999), 253-263 (Erratum, Inverse Problems, 17 (2001) 361-363.
38. X. Qin, Y.Gao, C. Yang, Inverse nodal problems for the Sturm-Liouville Operator with some nonlocal integral conditions, Journal of Applied Mathematics and Physics, 7 (2019), 111-122.
39. V.A. Yurko, An inverse problem for integro-differential operators, Mat. Zametki 50 (1991) 134–146 (in Russian); English transl. in Math. Notes 50 (1991), 1188–1197.
40. C-T Shieh, V.A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl., 347 (2008), 266-272.
41. X-F Yang, A solution of the nodal problem, Inverse Problems, 13, (1997), 203-213.
[42] C.F. Yang, Inverse nodal problem for a class of nonlocal Sturm-Liouville operator, Mathematical Modelling and Analysis, 15(3) (2010), 383-392.
[43] C.F. Yang, Trace and inverse problem of a discontinuous Sturm–Liouville operator with retarded argument, J. Math. Anal. Appl. 395 (2012), 30–41.
[44] C. F.Yang, Inverse problems for Dirac equations polynomially depending on the spectral parameter, Applicable Analysis, 95(6) (2016), 1280-1306.
[45] C.F.Yang, V.Yurko, Recovering Dirac operator with nonlocal boundary conditions, J. Math. Anal. Appl., 440 (2016), 155–166.
[46] C-F Yang, Z-Y.Huang, Reconstruction of the Dirac operator from nodal data, Integr. Equ. Oper. Theory, 66 (2010), 539–551.
[47] C-F Yang, V.N. Pivovarchik, Inverse nodal problem for Dirac system with spectral parameter in boundary conditions, Complex Anal. Oper. Theory, 7 (2013), 1211–1230.
[48] E. Yilmaz, H Koyunbakan, On the Lipschitz stability of inverse nodal problem for Dirac system, Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.,70(1) (2021), 341-356.
[49] E.Yilmaz, Inverse Nodal Problem for an Integro-Differential Operator, Cankaya University Journal of Science and Engineeringi 12(1)(2015), 014–019.