Topological insulator particles as optically induced oscillators: Towards dynamical force measurements and optical rheology

Warlley Hudson Campos
warlley.campos@ufv.br

Departamento de Física - Universidade Federal de Viçosa
https://sites.google.com/site/grupotcfmc
https://sites.google.com/site/fisbiol

TOPOLOGICAL STATES OF MATTER - IIP/NATAL/BRAZIL

Collaborators:
J.M. Fonseca, J.B.S. Mendes, M.S. Rocha, W.A. Moura-Melo - DPF/UFV
V.E. Carvalho - DPF/UFMG
Topological Insulator particles as optically induced oscillators
Topological Insulators
Optical tweezers
Material
Model and Results
Applications
Conclusions and Prospects

Departamento de Física, Universidade Federal de Viçosa,
36570-900, Viçosa, Minas Gerais, Brazil.

Warlley H. Campos

Topological Insulator particles as optically induced oscillators

03/24/2017 3 / 19
3D Topological Insulators

- Theoretically predicted in 2007

Topological Insulators in Three Dimensions

Liang Fu, C.L. Kane, and E.J. Mele

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 26 July 2006; published 7 March 2007)

A topological Dirac insulator in a quantum spin Hall phase

D. Hsieh¹, D. Qian¹, L. Wray¹, Y. Xia¹, Y.S. Hor², R.J. Cava² & M.Z. Hasan¹,³

Week ending 9 March 2007

PRL 98, 106803 (2007)
Topological insulators properties

- Strong spin-orbit coupling
- Gapped bulk band structure; metallic surface states protected by time reversal symmetry
- Spin-momentum locking
- Dissipationless propagation of electrons

Chen, Y. L., et al. Science 329, 5992, (2010): 659.
Hasan, M. Z. and Kane, C. L. Rev. Mod. Phys. 82, (2010): 3045.
Qi, X.-L. and Zhang, S.-C. Rev. Mod. Phys. 83, (2011): 1057.
Application prospects

- Topological quantum computing
- Electronic devices with low dissipation
- Spintronics

Mellnik, A. R. et al. *Nature* **511**, (2014): 449.
Jamali, M. et al. *Nano Lett.*, **15**, (2015): 7126.
Wang, H. et al. *Phys. Rev. Let.*, **117**, (2016): 076601.
Optical tweezers technique

- $\lambda \sim 1064$ nm ytterbium-doped fiber laser
- Laser power ~ 25 mW
Optical tweezers technique

Ray optics regime \((radius \gg \lambda)\)

- Highly focused Gaussian light beam:
 \[I = I_0 e^{-A r^2} \]
- Conservation of linear momentum
- Snell law: \(n_p \sin \theta_p = n_{med} \sin \theta_{med} \)
 \[n_{particle} > n_{medium} \]
- Refraction in the bulk leads to gradient force:
 \[\vec{F}_g \sim \vec{\nabla} I \]

Rocha, M. S. Am. J. Phys. 77, (2009): 704.
Optical tweezers technique

- Absorption and reflection leads to radiation pressure:
 \[F_{rp} \sim I \]

- Radiation pressure deflects the particle from the focus
- There is also a viscous (Stokes) force exerted by the surrounding medium:
 \[\vec{F}_s \sim -\vec{v} \]

Dielectric particle \rightarrow gradient force dominates \rightarrow stable trap

Metallic particle \rightarrow radiation pressure dominates \rightarrow deflection

Rocha, M. S. Am. J. Phys. 77, (2009): 704.
Some applications of optical tweezers

- Membrane elastic properties

![Image of membrane elastic properties](image)

- DNA studies

![Image of DNA studies](image)

- Micro-rheology

![Diagram of micro-rheology](image)

Pontes, B. et al. *PLoS One* **8.7**, (2013): e67708.
Murugesapillai, D. et al. *Biophys. Rev.* **9**, (2016): 17.
Ayala, Y. A. et al. *BMC biophysics* **9.1**, (2016): 5.
Alemany, A. et al. *Biophys. J.* **110.1**, (2016): 63.
Naufer, M. et al. *Protein Science*, (2017): Early View.
Topological insulator bead in optical tweezers

- **Dielectric particle**
 - Gradient force dominates "particle trapping"

- **Metallic particle**
 - Radiation pressure dominates "particle deflection"

- **TI particle**
 - Gradient force and radiation pressure compete "oscillatory motion"
Syntesis of TI-particles

- ARPES measurements for Bi$_2$Te$_3$:

- Laser ablation technique in liquid solution:

Michiardi, M. et al. *Phys. Rev. B* **90** (2014): 075105

Amendola, V. and Meneghetti, M. *Phys. Chem. Chem. Phys.* **15** (2013): 3027.
Oscillatory motion

- Particles diameter between \(\sim 3\mu m \) and \(7\mu m \)
- Oscillation parallel to the focal plane

For a particle with diameter \(\sim 4.2\mu m \):
- Amplitudes vary between \(\sim 7\mu m - 9\mu m \)
- Closest approximation \(\sim 3.2\mu m \)
- Well-defined period: \(T = (3.52 \pm 0.32)s \)
Theoretical model

\[I_N = \exp \left(\frac{-2r^2}{\omega(z)^2} \right) \]

\[\omega(z) = \omega_0 \sqrt{1 + \left(\frac{z}{z_R} \right)^2} \]

\[z_R = \frac{\pi \omega_0^2}{\lambda} \]

\[F_{rp} = F_{rp} \exp \left(\frac{-2r^2}{\omega(z)^2} \right) \]

\[F_g = -\frac{2rF_g \exp(1/2)}{\omega(z)} \exp \left(\frac{-2r^2}{\omega(z)^2} \right) \]

\[F = \left(F_{rp} - \frac{2rF_g \exp(1/2)}{\omega(z)} \right) \exp \left(\frac{-2r^2}{\omega(z)^2} \right) \]
Physical parameters:

- $\omega(z) = (5.55 \pm 0.15) \mu m$
- $F_{rp} = (4.1 \pm 0.6) pN$
- $F_g = (2.1 \pm 0.2) pN$
- $\langle \omega(z) \rangle_{cicles} = (5.7 \pm 0.3) \mu m$
- $\omega_{0\ exp} = (0.45 \pm 0.02) \mu m$
- $\omega_{0\ pred} = \frac{2\lambda}{\pi N.A.} \sim 0.36 \mu m$
Averages: Dependence with diameter

In the range analysed (diameter $\sim 3.5 - 6.5\,\mu m$):

- Optical forces increase with the particle size
- Frequency increases with particle size
- $F_g \sim Aa^3$
 $F_{rp} \sim Ba^2$
- $F_S \sim Ca$

Harmonic description:

- $T = 2\pi \sqrt{\frac{m}{k}} \sim \sqrt{\frac{a^3}{Aa^3 + Ba^2 + Ca}}$
- $A \sim 1.81 s^{-2}$
 $B \sim 3.89 \mu ms^{-2}$
- $C \sim -46.50 \mu m^2 s^{-2}$
Some potential applications

- **Dynamic force measurements**

 Wang, M.D. et al. *Biophys. Journal* **72**, (1997): 1335-1346

- **Microrheology**

 Preece, D. et. al. *J. Opt.*** **13**, (2011): 044022
Conclusions and Prospects

- Microsized TI Bi$_2$Te$_3$ particles oscillate perpendicularly to the optical axis when subject to a highly focused light beam.
- Frequency remains practically constant during a number of cycles.
- For practical purposes, frequency can be controlled by changing the power of the light beam and diameter of the particles.
- Regular spherical shape is crucial for highly precise applications.
- Other TI composites may have more intense manifestation of these properties.
- Functionalize the TI particles.
- Work available in arXiv:1703.04556.
Acknowledgements

Thank you!