Use of Anti TNF-α Therapy in Systemic Vasculitis

Talal Al-Mteri1, Fatma Al-shaikhi2, Shahid Hafiz1, Rabab Taha3, Omar Fathaddien4 and Hani Almoallim1,5*

1Department of Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
2Department of Medicine, King Fahad General Hospital, Jeddah, Saudi Arabia
3Department of Medicine, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
4Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
5Alzaidi Chair of Research in Rheumatic Diseases, Faculty of Medicine, Umm-Al Qura University, Makkah, Saudi Arabia

*Corresponding author: Hani Almoallim, Alzaidi Chair of Research in Rheumatic Diseases, Faculty of Medicine, Umm-Al Qura University, Makkah, Saudi Arabia. E-mail: hmoallim@uqu.edu.sa

Received date: Nov 08, 2016; Accepted date: Jan 01, 2017; Published date: Feb 15, 2017

Abstract

There are several vasculitic disorders still labeled as difficult-to-treat cases. Effective treatment for those patients is warranted to reduce the mortality and morbidity that resulting from these disorders. An extensive review for the literatures that addressed using of ant TNF-alpha in several vasculitic disorders was conducted. Use of anti TNF-alpha agents is a promising modality in several vasculitic disorders. Despite lacking well-conducted randomized controlled trials, more open-label studies are required to examine in-depth the safety and efficacy of those agents.

Keywords: Vasculitic disorders; Systemic vasculitis; TNF α; Macrophages

Background

There are several vasculitic disorders still labeled as difficult-to-treat conditions due to its rarity and complexity at the time of presentation [1]. The need for effective treatment for vasculitis is demanding since it carries a high incidence of morbidity and mortality either as a long term consequence of the disease itself or from the therapeutic interventions [1]. However, the available studies to provide evidence of therapies to practicing clinicians are mostly based on non-randomized controlled trials. Conducting a well-controlled randomized clinical trial is difficult due to multiple limitations; for example, failure to establish a measurable endpoint in vasculitic disorders leads to different endpoints, making it difficult to obtain evidence from these trials [2,3]. Having a statistical power by large number of patients is another limitation due to its rarity [2,3]. Tumor necrosis factor is a pro-inflammatory cytokine primarily by lipopolysaccharide stimulated macrophages and monocytes [4]. TNF-α plays a crucial role in process of inflammation via several ways which include adhesion molecule expression, pro-inflammatory cytokine release and inhibition of regulatory T cells. TNF-α is increasingly considered as a central player in pathophysiology of systemic vasculitis, a targeting therapy to TNF-α is the current trend to treat systemic vasculitis [5].

Introduction

The available anti TNF-α agents are Infliximab, Adalimumab, Etanercept, Certolizumab pegol and Golimumab. Infliximab is a chimeric monoclonal antibody composed of a murine variable region attached to human Fc (constant) portion of IgGk. Adalimumab is a fully humanized monoclonal antibody, dosed every second week as a subcutaneous injection. While etanercept is a fusion protein produced by recombinant DNA. It fuses the TNF receptor to the constant end of the IgG1 antibody. On the other hand, Certolizumab pegol is a humanized antigen binding fragment (Fab’) of a monoclonal antibody that has been conjugated to polyethylene glycol [6]. Finally, Golimumab is a human immunoglobulin G1 kappa (IgG1) monoclonal antibody specific for human tumor necrosis factor (TNF; TNF α) [7].

Concerns were present toward increased risk for infections, malignancy and cardiovascular disease with the use of anti TNF-α. However, one study demonstrates that among 16,000 patients treated with anti TNF-α for rheumatoid arthritis there was no increase of the serious bacterial infections in comparison to patients treated with methotrexate (MTX) [8]. Overall, the use of anti TNF α is associated with an increased risk of infections. Caution should be addressed while using these drugs in daily clinical practice. Concerning the risk of malignancy; recent analysis from Lombardy Rheumatology Network (LORHEN) registry addressed no increase in the malignancy risk in comparison to the general population, however the risk of hematological malignancy especially lymphoma was significantly increased in people who are older than 65 years [9].

In comparison to conventional DMARDs; anti TNF-α agents do not increase the risk for cardiovascular events [10]. Table 1 summarizes the all available anti TNF-α agents used in treatment of vasculitis.

In this article, we have conducted extensive review of different publications that addressed the use of anti TNF-α agents in vasculitis as shown in (Figure 1). Aiming to deliver a comprehensive overview of the best and the latest evidence in this field.

Takayasu Arteritis

Takayasu arteritis (TA) is an idiopathic panarteritis affects the large and medium vessels especially the aorta and its branches, with onset of age before 30. It is characterized by granulomatous inflammation in the involved site [11]. TNF-α is an important cytokine for granuloma formation. Activated T cells, natural killer cells, γδ cells and macrophages are also important pathophysiologic principles of TAs
development [11]. The mainstay therapy consists of glucocorticoid (GC) and methotrexate (MTX) [12]. Only 40–60% of patients with TA achieve remission on conventional therapy [12]. Thus, the need of new modality of treatment is warranted to achieve remission in the remaining patients. The clinical benefit of anti TNF-α in TA has been demonstrated via several case reports and series. One case series observed 15 patients with resistant TA [13], in all patients who received GC the relapses were observed while the dose was tapered down. In this study, patients were divided into two groups, 7 patients received etanercept, the remaining 8 patients were started on infliximab. Out of these 15 patients, 93% showed significant improvement, while 67% experienced GC-free remission for 3 years after follow-up. Another case series described the effect of anti TNF-α on TA [14]. Five patients with TA failed to achieve remission on conventional therapy. Infliximab was initiated with MTX as a concomitant immunosuppressive agent in 4 cases, one case was on AZA. The follow-up duration was ranging from 3 to 72 months. It showed only one relapsed case. The other four cases showed successful tapering of GC dose with no relapse upon follow-up. Additionally, a literature review of 79 cases with TA showed significant response on infliximab and etanercept [14]. Global improvement was observed in 90%, complete remission in 37% and partial remission in 53%, patients who do not respond to anti TNF-α therapy were only 9%. One study evaluated 8 patients with refractory TA; two of them were refractory to infliximab therapy and 3 patients did not achieve remission on GC and MTX. However, all patients received tocilizumab (interleukin-6 receptor antagonist) therapy and the follow-up showed 7 out of 8 patients achieved remission. This data shows an interesting finding that tocilizumab can be a potential therapy for refractory TA to anti-TNF-α therapy [15]. Case series of 10 patients showed a sustainable remission on tocilizumab therapy in 60%, the other 40% failed to satisfy the criteria of sustainable remission, requiring either clinical or biochemical criteria of remission [16]. Interestingly, out of 6 patients who achieve sustainable remission on tocilizumab underwent follow-up after discontinuation, only 2 patients maintain their complete remission on post-tocilizumab follow-up period (3-14) months [16]. These finding can raise the concerns regarding the effectiveness of tocilizumab as a steroid-sparing agent.

In conclusion, anti TNF-α can be a potential therapy for patients with steroid-resistant TA. However, relapsed cases on anti TNF-α agents were reported as well. Tocilizumab can be a potential option in these cases, although there are reports of relapses after holding the tocilizumab. Overall, further placebo-controlled studies should be conducted to improve the current quality of evidence available for practicing clinicians. Table 1 shows a summary of studies that addressed the use of anti TNF- in patients with TA [17-21].

Table 1: Summary Of Anti-TNF α Agents In Systemic Vasculitis

Agent	Mechanism of action	Side effects	Pregnancy considerations
Infliximab	Binding antibody (chimeric IgG1). Thereby interfering with endogenous TNF-α	Headache (18%), Increased serum ALT, Increased ANA titer and infections.	Category B
Etanercept	Recombinant DNA-derived protein composed of tumor necrosis factor receptor (TNFR) linked to the Fc portion of human IgG1.	Headache (17%), Skin, abdominal pain and infections.	Category B
Adalimumab	Recombinant DNA-derived human immunoglobulin G1 (IgG1) monoclonal antibody specific for human tumor	Hepatitis B infection reactivation, Exacerbation of demyelinating diseases,	Category C

Out of these 15 patients, 93% showed significant improvement, while 67% experienced GC-free remission for 3 years after follow-up. Another case series described the effect of anti TNF-α on TA [14]. Additionally, a literature review of 79 cases with TA showed a significant response to infliximab and etanercept (14). Global improvement was observed in 90%, complete remission in 37% and partial remission in 53%, patients who do not respond to anti TNF-α therapy were only 9%. One study evaluated eight patients with refractory TA; two of them were refractory to infliximab therapy, and three patients did not achieve remission on GC and MTX. However, all patients received tocilizumab (interleukin-6 receptor antagonist) therapy, and the follow-up showed 7 out of 8 patients achieved remission. This data shows an interesting finding that Tocilizumab can be a potential therapy for refractory TA to anti-TNF-α therapy [15]. Case series of 10 patients showed a sustainable remission on tocilizumab therapy in 60%, the other 40% failed to satisfy the criteria of sustainable remission, requiring either clinical or biochemical criterion of remission [16].
follow-up duration was ranging from 3 to 72 months. It showed only receptor antagonist) therapy and the follow-up showed 7 out of 8 patients achieved remission.

A literature review of 79 cases with TA showed that Tocilizumab can be a potential therapy for refractory TA to anti-
maintained their complete remission on post-tocilizumab follow-up period 3-14 months [16]. These finding can raise the concerns regarding the effectiveness of Tocilizumab as a steroid-sparing agent.

Table 1: Summary of different agents under Anti TNF-α class.

Author	Study type	Date	Methodology	Used agent	Outcomes
Vinickia et al.	Retrospective analysis from medical records	2016	Ten patients were identified, who fulfill the ACR diagnostic criteria for GCA, TA	Infliximab, Etanercept and Tocilizumab	Sustained remission was achieved in all cases during follow-up (mean follow-up 59.6 ± 27.2 months) with decrease in Glucocorticoid dose in 70%. One patient discontinued Infliximab due to recurrent infections - One patient with neutropenia
Abisror et al.	Retrospective analysis and review of the literature	2013	Five patients multicentric cases, another 39 cases from review of the literature	Tocilizumab	Remission in 93% of the cases, 78% at 6 months and 75% at the time of last visit (11 months), Mild Nutropenia
Alberto Can’as et al.	Retrospective analysis of 8 patients	2014	Eight patients who treated with tocilizumab for median duration of 18 months were reviewed from the records between 2010 and 2013	Tocilizumab	. All the eight patients showed global improvement. Three patients have needed adding immunosuppressive after TCZ therapy
Nakaoka et al.	Prospective study for four patients	2013	From June 2008 till February 2011. Four patients were identified as Glucocorticoid resistant Takayasu arteritis started on TCZ therapy	Tocilizumab	Significant reduction in the thickening of vessel walls in 2 patients. All the patients attained outstanding reductions in the prednisolone doses
Comarmond [14] Retrospective analysis and review of the literature 2012 84 patients (5 personal cases and 79 patients from the literature) with refractory Takayasu arteritis treated with anti TNF-α
Infliximab, Etanercept Thirty one patients achieved complete remission, 45 patients labeled as partial responders and eight were non-responder.
-8 patients with infections, 4 with hypersensitivity, 1 immune reaction, 1 breast cancer, 1 Nausea and diarrhea, 1 cardiac failure

Goel et al. [16] Retrospective analysis 2013 Medical records for 10 patients Takayasu arteritis who received Tocilizumab therapy were reviewed and analyzed.
TCZ 7 patients reached sustainable remission, 3 relapsed patients.
Remission was not maintained after discontinuation of TCZ.
-One patient with transient skin rash, transient transaminitis,

Nunes et al. [21] Retrospective analysis 2010 Review medical files of 15 patients who attend Rheumatology clinic for Takayasu arteritis between July 2007- July 2008
IFX Out of 15 patients only 3 received TNF blocker agents due to steroid-resistant disease. Shows a complete remission upon follow up - No documented adverse effects

Table 2: Summary of the studies that investigate using of anti TNF-α agents in Takayasu arteritis.

The current therapeutic modalities for BD came from case reports and case series, with few follow-up studies. Currently, for minor disease manifestations; a regimen consists of colchicine initially and GC for patients who do not respond well for colchicine [34,35]. For major disease manifestations; typical regimen is high dose of GC (1 mg/Kg/day) not exceeding 80 mg/day. The effect of anti TNF-α in BD has been investigated thoroughly, the beneficial effect of infliximab, adalimumab, and etanercept was reported [36,37]. In a multicenter observational study including 164 patients with BD with uveitis received infliximab for more than a year, infliximab was found reducing the number of ocular attacks per year [38].

Author	Study Type	Publishing Date	Materials and Methods	Used Agents and Dose	Results
Hoffman et.al. [30]	Randomized controlled trial	2007	44 GCA patients, 28 patients received infliximab and 16 patients received placebo all together with corticosteroid	5 mg/kg of Infliximab	At week 22, relapse rate was 43% in Infliximab group and 50% in Placebo group Tapering steroid without relapse was 61% in Infliximab group compared with 75% in placebo group. Infection incidence in Infliximab group was 71% compared to 56% with placebo group.
Martinez et al. [31]	Randomized controlled trial	2008	17 GCA patients, for 12 months. Eight patients received etanercept and 9 received placebo all in addition to corticosteroids.	25 mg Etanercept, twice/ week	Controlling disease without steroid after 1 year was achieved in 50% of patients on Etanercept and in 22.2% of placebo patients. Significant decrease in steroid dose in Etanercept. Similar reported Side effects in both groups.
Seror et al. [32]	Randomized controlled trial	2013	70 GCA patients. 34 received prednisolone plus adalimumab and 36 received prednisolone plus placebo.	40 mg subcutaneous Adalimumab. For 10 weeks	Remission was achieved at week 26 in 20 patients in Adalimumab group and in 18 in the placebo. After steroid tapering both groups were similar in relapse free patients.
Surprisingly, relapsed uveitis has been reported in 60% of the patients on infliximab therapy especially in the first year, and symptoms were controlled by increasing the topical GC dose and shortening the interval of infliximab therapy. In retrospective analyses of 28 patients with moderate to severe intestinal BD [39], patients were followed and achieved a clinical response reaching 75%. (Median duration of follow-up is 30 months). In a double blind study on BD [40], more patients remained free of oral lesions after etanercept therapy (45% versus 5% in control group), in terms of nodular skin lesion (85% versus 25%) were observed. Benefit of adalimumab has been reported in one case series [41]. However, some patients who failed infliximab therapy might achieve remission on adalimumab, 17 of 69 patients investigated for this purpose [42], out of those 17 patients only 12 achieved improvement on adalimumab therapy. Anti TNF-α can be a valuable modality inducing and maintaining remissions with steroid and immunosuppressive sparing effect for patients with severe BD who failed to achieve remission on conventional therapy. High-quality level of evidence is warranted to assist the practicing rheumatologist in toward difficult-to-treat cases of BD. Table 4 shows a summary of studies that addressed the use of anti TNF- α agents in patients with BD [43].

Author	Study type	Date	Methodology	Used agent	Outcomes
Takeuchi et al. [38]	Prospective analysis	2014	A total of 164 consecutive patients with BD treated with infliximab for more than 1 year were studied. The mean treatment duration was 32.9±14.4 months.	Infliximab	60% relapse in uveitis cases after first year, Control was made in 90% of the cases later on by increasing topical steroid and infliximab doses.
Lee et al. [39]	retrospective non--controlled review of medical records	2013	28 patients with intestinal BD who received at least 1 dose of Infliximab. Response rates of Infliximab at 2, 4, 30, and 54 weeks for each patient were investigated	Infliximab	The clinical response rates at 2, 4, 30, and 54 weeks were 75%, 64.3%, 50%, and 39.1%, respectively.
Cantini et al. [43]	Prospective analysis	2012	Single center, prospective, 6-year duration, follow-up study on 50 consecutive patients	Infliximab	A complete response was recorded in 34/50 (68%) patients and partial response in 11/50 (22%). Five patients were nonresponders. No serious side effects.
Melikoglu et al. [40]	Double blind, placebo controlled study.	2005	Forty male patients with BD, were randomized (20 patients to each study arm) to receive either Etanercept 25 mg twice a week or placebo for 4 weeks	Etanercept	More patients remained free of oral ulcers (45% versus 5%). More patients remained free of nodular skin lesions (85% versus 25%).
Bawazeer et al. [41]	Retrospective review of records.	2010	Twenty-one eyes of 11 male patients with ocular Behçet disease received Adalimumab therapy.	Adalimumab	Ten out of 11 patients showed complete resolution of inflammation by 4 weeks. The dosage of steroid and immunosuppressive drugs were reduced, then stopped in 3 and 6 patients respectively.
Olivieri et al. [34]	prospective, longitudinal and observational study	2011	Data were collected on every patient with BD beginning anti-TNF therapy in the last 8 years. Patients should be switched to Adalimumab after failing or not tolerating Infliximab.	Adalimumab	Initially 69 treated with Infliximab, lack of response or infusion reaction necessities administration of Adalimumab, out of those 17, nine patients showed sustained remission and 3 patients with good response.

Table 4: Summary of the studies that investigate using of anti TNF-α agents in Behçet's disease.

Cryoglobulinemic Vasculitis

It is a systemic inflammatory condition that involve small to medium sized vessel vasculitis caused by cryoglobulin contained immune complex deposition [44]. Conventional treatment of this vasculitis started by treatment of underlying cause as in hepatitis C virus (HCV)-associated cryoglobulinemic vasculitis [45]. Rituximab (RTX) (Anti-CD20) showed benefit in life threatening conditions [46].
while CYC reserved for refractory cases to antiviral or RTX. Anti-TNF agents have a promising effect. Infliximab showed positive effect in one reported case that failed to achieve remission on conventional therapy [47].

Table 5: Summary of the studies that investigate using of anti TNF-α in cryoglobulinemic vasculitis.

Author	Study Type	Publishing Date	Materials and Methods	Used Agents and Dose	Results
Bartolucci et al. [48]	Prospective study	2002	Ten patients with different vasculitis, one case had cryoglobulinemic vasculitis, with active disease or new flare despite conventional therapy.	Infliximab 5 mg/kg at day1, 14, 42, and Q8 weekly. Evaluated by BVAS score.	Symptomatic improvement. No side effect.
Koukoulaki et al. [49]	Case report	2005	Young women known case of cryoglobulinemic vasculitis on conventional therapy developed intestinal vasculitis and significant GI bleeding.	Single dose of Infliximab 5 mg/kg	Stabilization of patient bleeding and HB level and discharge home.

Kawasaki Disease

Kawasaki disease (KD) is a form of medium sized vasculitis most commonly affects coronary arteries. In children KD is the second most common vasculitis [50]. Marked elevation of serum TNF-α found in sera of KD patients [51].

Acute KD management strategy involves administration of 2 g/kg as a single infused intravenous immunoglobulin (IVIG) with high dose aspirin. Aspirin can be continued as a low dose until echocardiograms is normal [52]. Almost 15-20% of patients failed to respond to initial IVIG [52]. In those refractory KD patients, anti TNF α agents have been investigated [53]. Several retrospective studies, case series, and case reports addressed infliximab effectiveness in refractory KD.

From 2004-2006 [54], 24 patients with refractory KD received either infliximab or a second dose of IVIG. Each group contained 12 patients. Symptoms subsided in 11 patients on infliximab group versus in 8 who were on IVIG. Two out of 4 who did not respond were in IVIG group, had responded to infliximab later on. Another 2 studies addressed the effect of adding infliximab to the standard therapy. In 2014 [55] a phase 3, randomised, double-blind, placebo-controlled trial was conducted on 196 patients to assess the benefit adding of infliximab to the conventional therapy. The results came to show infliximab didn’t reduce the disease resistance rate.

Etanercept is an under-studied anti TNF- α agent for refractory KD. A prospective open label trial of 17 patients with KD [56], all enrolled patients received IVIG plus aspirin, etanercept was administrated immediately after IVIG infusion. No complications or side effects have occurred in all 15 patients. Table 6 shows a summary of studies that addressed the use of anti TNF- α agents in patients with Kawasaki disease [57-63].

Table 6: Summary of the studies that investigate using of anti TNF-α in Kawasaki Disease.

Author	Study type	Date	Materials and Methods	Used Agent and dose	Results
Burns et al. [74]	Retrospective	2005	16 US patients resisted initial IVIG	Infliximab 5 mg/kg	81.25% of patients (13) responded well to single infusion of Infliximab. No reported side effects. CRP declined in 10 patients after 48 hours on infliximab infusion.
Burns et al. [58]	A multi centers	2005	24 refractory KD cases failed 1st IVIG. Either Infliximab or a 2nd dose of IVIG was given. Each group contained 12 patients.	Infliximab 5 mg/kg	Symptoms subsided in 11 Patients on Infliximab and 8 on IVIG. Two out of 4 who did not respond to IVIG had responded to infliximab. Side effects related to disease course developed in 18 patients. Transient hepatomegaly with spontaneous resolution reported in 10 patients (couldn’t be ruled out before treatment) No significant differences between the 2 drugs.
Song et al. [59]	Retrospective	2004-2008	16 KD patients in Korea	5-6.6 mg/kg of Infliximab	13 cases resolve completely. 2 cases achieved permanent resolution of arthritis.
At least 2 doses of IVIG were given with or without steroid

\[\text{Table 6: Summary of the studies that investigate using of anti TNF-α agents in Kawasaki disease.} \]

Polyarteritis Nodosa

Polyarteritis nodosa (PAN) is a systemic necrotizing vasculitis that typically affects small and medium-sized arteries [64]. The treatment and the prognosis are highly variable depending on the extent of the disease if it is systematic or localized to the skin. Despite aggressive medical management with GC and CYC, many patients develop aggressive disease refractory to all available modalities with high incidence of mortality reaching up 22.4% within five years from the disease onset [65]. Several reported cases showed remission after failing of conventional therapy [65-67]. The selected cases cover a broad spectrum of clinical presentation representing different age groups. In each case, patients were treated with one or a combination of GC and immunosuppressant with little or no response to treatment.

![Table 6](image.png)
controlled trials in several vasculitic disorders, anti TNF-α agents showed no serious side effects. Although we found no prospective studies or large trials addresses the role of anti-TNF in inducing or maintaining remission in patients with PAN, there are several case reports that suggest the benefits of anti-TNF-alpha in severe and refractory cases. More studies are required to determine the safety and efficacy of anti-TNF treatment in PAN. Table 7 shows a summary of studies that addressed the use of anti TNF-α agents in patients with PAN.

Table 7: Summary of the studies that investigate using of anti TNF-α agents in Polyarteritis nodosa.

Jeffrey et al.	Case report	2005	Young male with refractory systemic PAN for 9 years despite treatment with corticosteroid, and CYC.	Etanercept 50 mg/SC weekly	Complete remission after 2 years
Al-Bishri et al.	Case report	2005	Young female diagnosed as a severe (PAN) with visceral involvement. She received high doses of corticosteroid and CYC with no response.	Infliximab 3mg/kg at 0.2, and 6 weeks then every 8 weeks	Remission
Takeshi et al.	Case report	2012	Sixty years old female with PAN with hep B Received intensive treatment of Prednisolone, CYC, AZA , Tacrolimus IVIG & plasma exchange	Etanercept 25 mg/kg sc weekly lamivudine 100 mg/day	Remission With no reactivation of hepatitis B
Watanabe et al.	Case report	2016	3-year-old male, PAN with vertebral artery vasculitis, treated with methylprednisolone and CYC.	Tocilizumab 4 mg/kg q4week	Remission achieved within 7 month.
Seri et al.	Case report	2015	59 male patients with PAN treatment failed on steroid and CYC	RTX 375 mg/m2 IV infusion Weekly	Remissions
Almoallim et al.	Case report	2009	18 years old male with PAN and gangrenous fingers, was in refractory to different treatment with prednisolone, MTX., MMF and CYC.	Adalimumab 40 mg subcutaneously every two weeks. Maintenance on MMF	Remission after the fourth injection.

Conclusion

Use of anti TNF-α agents is a promising modality in the field of vasculitis management. Despite lacking of well-conducted randomized controlled trials in several vasculitic disorders, anti TNF-α agents remain an optional therapy for difficult-to-treat cases. It has to be noted that anti-TNF alpha agents showed no beneficial effects in ANCA-associated vasculitis (AAV) [72]. In fact, these agents can induce autoimmune syndromes like vasculitis e.g. Henoch-schönlein purpura [73]. Collectively, we encourage clinicians, in the field of taking care of vasculitis patients, to raise their collaboration level; with the aim to reach a better evidence-based clinical practice.

References

1. Roane DW, Griger DR (1999) An approach to diagnosis and initial management of systemic vasculitis. Am Fam Physician 60: 1421-1430.

2. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, et al. (2010) Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363: 221-232.

3. Jones RB, Cohen Tervaert JW, Hauser T, Luqmani R, Morgan MD, et al. (2010) Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med 363: 211-20.

4. Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10: 411-452.

5. Aries PM, Lamprecht P, Gross WL (2007) Biological therapies: new treatment options for ANCA-associated vasculitis? Expert Opin Biol Ther 7: 521-33.

6. Goel N, Stephens S (2010) Certolizumab pegol. mAbs 2: 137-47.

7. Smolen JS, Kay J, Doyle MK, Landewe R, Matteson EL, et al. (2009) Golimumab in patients with active rheumatoid arthritis after treatment with tumour necrosis factor alpha inhibitors (GO-AFTER study): a multicentre, randomised, double-blind, placebo-controlled, phase III trial. Arthritis Res Ther 17:14.

8. Schneeweiss S, Setoguchi S, Weinblatt ME, Katz JN, Avorn J, et al. (2007) Anti-tumor necrosis factor alpha therapy and the risk of serious bacterial infections in elderly patients with rheumatoid arthritis. Arthritis Rheum 56: 1754-64.

9. Pallavini FB, Caporali R, Sarzi-Puttini P, Atzeni F, Bazzani C, et al. (2010) Tumour necrosis factor antagonist therapy and cancer development: analysis of the LORHEN registry. Autoimmun Rev 9: 175-80.

10. Zink A, Asking J, Dixon WG, Klareskog L, Silman AJ, et al. (2009) European biologicals registers: methodology, selected results and perspectives. Annals of the rheumatic diseases.

11. Dabague J, Reyes PA (1996) Takayasu arteritis in Mexico: a 38-year clinical perspective through literature review. Int J Cardiol 54: S87-593.

12. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, et al. (1994) Takayasu arteritis. Ann Intern Med 120: 919-929.
13. Hoffman GS, Merkel PA, Brasington RD, Lenschow DJ, Liang P (2004) Anti–tumor necrosis factor therapy in patients with difficult to treat Takayasu arteritis. Arthritis Rheum 50: 2296-304.

14. Comarmond C, Plaisier E, Dahlan K, Miraunt T, Emmerich J, et al. (2012) Anti-TNFα in refractory Takayasu’s arteritis: cases series and review of the literature. Autoimmun Rev 11: 678-684.

15. Cañas CA, Cañas F, Izquierdo JH, Echeverri A-F, Mejía M, et al. (2014) Erfolge und Effizienz von Anti–Interleukin 6 Receptor Monoclonal Antibody (Tocilizumab) in Kolombian Patien ten With Takayasu Arteritis. JCR: J Clin Rheumatol: 20: 125-9.

16. Goel R, Danda D, Kumar S, Joseph G (2013) Rapid control of disease activity by tocilizumab in 10 ‘difficult-to-treat’ cases of Takayasu arteritis. Int J Rheumatic Dis 16: 754-61.

17. Vinicki JP, García-Vicuña R, Arredondo M, López-Bote JP, García-Vadillo A (2013) Evaluation of the long-term efficacy and safety of infliximab treatment for uveitis in Behçet’s disease: a multicenter study. Ophthal molology 121: 1877-1884.

18. Abisror N, Mekinian A, Lavigne C, Vandenhende M-A, Soussan M, et al. (2012) Anti TNF-α in refractory Takayasu’s arteritis: cases series and review of the literature. Autoimmun Rev 11: 678-684.

19. Cañas CA, Cañas F, Izquierdo JH, Echeverri A-F, Mejía M, et al. (2014) Erfolge und Effizienz von Anti–Interleukin 6 Receptor Monoclonal Antibody (Tocilizumab) in Kolombian Patien ten With Takayasu Arteritis. JCR: J Clin Rheumatol: 20: 125-9.

20. Vanic d J, García-Vicuña R, Arredondo M, López-Bote JP, García-Vadillo A (2013) Evaluation of the long-term efficacy and safety of infliximab treatment for uveitis in Behçet’s disease: a multicenter study. Ophthalmology 121: 1877-1884.

21. Lee KM, Jeen YT, Cho JY, Lee CK, Koo JS, et al. (2013) Efficacy, safety, and predictors of response to infliximab therapy for ulcerative colitis: a Korean multicenter retrospective study. J Gastroenterol Hepatol 28: 1829-33.

22. Bartolucci P, Kezuka T, Sugita S, Keino H, Namba K, et al. (2014) Evaluation of the long-term efficacy and safety of infliximab treatment for uveitis in Behçet’s disease: a multicenter study. Ophthalmology 121: 1877-1884.

23. Faliza K, Freso I, Mat C, Ozyazgan Y, Gogus E, et al. (2005) Short-term trial of etanercept in Behçet’s disease: a double blind, placebo controlled study. J Rheumatol 32: 98-105.

24. Bawazeer A, Raffa LH, Nizamuddin SH (2010) Clinical experience with adalimumab in the treatment of ocular Behçet disease. Ocul Immunol Inflamm 18: 226-232.

25. Olivier i, Lecese P, D’angelo S, Paulia A, Nigro A, et al. (2010) Efficacy of adalimumab in patients with Behçet’s disease unsuccessfully treated with infliximab. Clin Exp Rheumatol 29: 54-57.

26. Cantine F, Niccoli L, Nannini C, Kaloudi O, Cassarà E, et al. (2012) Efficacy of infliximab in refractory Behçet’s disease-associated and idiopathic posterior segment uveitis: a prospective, follow-up study of 50 patients. Biologics 6: 5-12.

27. Cacoub P, Costedoat-Chalumeau N, Lidove O, Alric L (2002) Cryoglobulinemia vasculitis. Curr Opin Rheumatol 14: 29-35.

28. De V ita S, Quartuccio L, Isola M, Mazzaro C, Scaini P, et al. (2012) A short–term trial of rituximab in Behçet’s disease: an open pilot study on 10 patients. Rheumatology 41: 1126-1132.

29. Osman M, Pagnoux C, Dryden DM, Storie D, Yacyshyn E (2014) Efficacy of anti-TNF-α therapy in refractory Takayasu’s arteritis: cases series and review of the literature. Autoimmun Rev 11: 678-684.

30. Takeuchi M, Kezuka T, Sugita S, Keino H, Namba K, et al. (2014) Evaluation of the long-term efficacy and safety of infliximab treatment for uveitis in Behçet’s disease: a multicenter study. Ophthal molology 121: 1877-1884.

31. Lee KM, Jeen YT, Cho JY, Lee CK, Koo JS, et al. (2013) Efficacy, safety, and predictors of response to infliximab therapy for ulcerative colitis: a Korean multicenter retrospective study. J Gastroenterol Hepatol 28: 1829-33.

32. Melikoglu M, Freso I, Mat C, Ozyazgan Y, Gogus E, et al. (2005) Short-term trial of etanercept in Behçet’s disease: a double blind, placebo controlled study. J Rheumatol 32: 98-105.

33. Bawazeer A, Raffa LH, Nizamuddin SH (2010) Clinical experience with adalimumab in the treatment of ocular Behçet disease. Ocul Immunol Inflamm 18: 226-232.

34. Olivier I, Lecese P, D’angelo S, Paulia A, Nigro A, et al. (2010) Efficacy of adalimumab in patients with Behçet’s disease unsuccessfully treated with infliximab. Clin Exp Rheumatol 29: 54-57.

35. Cantine F, Niccoli L, Nannini C, Kaloudi O, Cassarà E, et al. (2012) Efficacy of infliximab in refractory Behçet’s disease-associated and idiopathic posterior segment uveitis: a prospective, follow-up study of 50 patients. Biologics 6: 5-12.

36. Cacoub P, Costedoat-Chalumeau N, Lidove O, Alric L (2002) Cryoglobulinemia vasculitis. Curr Opin Rheumatol 14: 29-35.

37. Goglin S, Chung SA (2016) Current Treatment of Cryoglobulinemic Vasculitis. Curr Treat Options Rheumatol 2: 213-224.

38. De Vita S, Quartuccio L, Isola M, Mazzaro C, Scaini P, et al. (2012) A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum 64: 843-853.

39. Koukoulaki M, Abeygunasekara SC, Smith KG, Jayne DR (2005) Remission of refractory hepatitis C-negative cryoglobulinemic vasculitis after rituximab and infliximab. Nephrol Dial Transplant 20: 213-216.

40. Bartolucci P, Ramanolo dina J, Cohen P, Mahr A, Godmer P, et al. (2002) Efficacy of the anti-TNF-α antibody infliximab against refractory systemic vasculitides: an open pilot study on 10 patients. Rheumatology 41:1126-1132.

41. Bowley AH, Shulman ST (2010) Pathogenesis and management of Kawasaki disease. Expert Rev Anti Infect Ther 8: 197-203.

42. Jamieson N, Singh-Grewal D (2013) Kawasaki Disease: A Clinician’s Update. Int J Pediatr 7.

43. Eleftheriou D, Levin M, Shingadia D, Tuollo R, Klein NJ, et al. (2014) Management of Kawasaki disease. Arch Dis Child:99: 74-83.

44. Burns JC, Best BM, Mejias A, Mahony L, Fildes DE, et al. (2008) Infliximab treatment of intravenous immunoglobulin-resistant Kawasaki disease. J Pediatr 153: 833-838.
54. Brogan RJ, Eleftheriou D, Gnanapragasam J, Klein NJ, Brogan PA (2009) Infliximab for the treatment of intravenous immunoglobulin resistant Kawasaki disease complicated by coronary artery aneurysms: a case report. Pediatr Rheumatol Online J 7: 3.

55. Tremoulet AH, Jain S, Jaggi P, Jimenez-Fernandez S, Pancheri JM, et al. (2014) Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet. 17: 383

56. Choueiter NF, Olson AK, Shen DD, Portman MA (2010) Prospective open-label trial of etanercept as adjunctive therapy for Kawasaki disease. J Pediatr 157: 960-966.

57. Mori M, Imagawa T, Hara R, Kikuchi M, Hara T, et al. (2012) Efficacy and limitation of infliximab treatment for children with Kawasaki disease intractable to intravenous immunoglobulin therapy: report of an open-label case series. J Rheumat 39: 864-867.

58. Weiss JE, Eberhard BA, Chowdhury D, Gottlieb BS (2004) Infliximab as a novel therapy for refractory Kawasaki disease. J Rheumatol 31: 808-810.

59. Song MS, Lee SB, Sohn S, Oh JH, Yoon KL, et al. (2010) Infliximab treatment for refractory Kawasaki disease in Korean children. Korean Circ J 40: 334-338.

60. Son MB, Gauvreau K, Burns JC, Corinaldesi E, Tremoulet AH, Watson VE, et al. (2011) Infliximab for intravenous immunoglobulin resistance in Kawasaki disease: a retrospective study. J Pediatr 158: 644-649.

61. Burns J, Song Y, Bujold M, Shimizu C, Kanegaye J, et al. (2013) Immune-monitoring in Kawasaki disease patients treated with infliximab and intravenous immunoglobulin. Clin Exp Immunol 174: 337-344.

62. Tremoulet AH, Jain S, Jaggi P, Jimenez-Fernandez S, Pancheri JM, et al. (2014) Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet 383: 1731-1738.

63. Youn Y, Kim J, Hong YM, Sohn S (2016) Infliximab as the first retreatment in patients with Kawasaki disease resistant to initial intravenous immunoglobulin. Pediatr Infect Dis J 35: 457-459.

64. Kussmaul A, Maier R (1866) Ueber eine bisher nicht beschriebene eigenthümliche Arterienerkrankung (Periarteritis nodosa), die mit Morbus Brightii und rapid fortschreitender allgemeiner Muskellähmung einhergeht. Dtsch Arch Klin Med 1: 484-518.

65. Feinstein J, Arroyo R (2005) Successful treatment of childhood onset refractory polyarteritis nodosa with tumor necrosis factor alpha blockade. J Clin Rheumatol 11: 219-222.

66. Capuozzo M, Ottaiano A, Nava E, Cascone S, Fico R, et al. (2014) Etanercept induces remission of polyarteritis nodosa: a case report. Front Pharmacol 5: 122.

67. Zoshima T, Matsumura M, Suzuki Y, Kakuchi Y, Mizushima I, et al. (2013) A case of refractory cutaneous polyarteritis nodosa in a patient with hepatitis B carrier status successfully treated with tumor necrosis factor alpha blockade. Mod Rheumatol 23: 1029-1033.

68. Al-Bishri J, le Riche N, Pope JE (2005) Refractory polyarteritis nodosa successfully treated with infliximab. J Rheumatol 32: 1371-1373.

69. Watanabe K, Rajderkar DA, Modica RF (2016) A Case of Polyarteritis Nodosa Associated with Vertebro-Arterial Vasculitis Treated Successfully with Tocilizumab and Cyclophosphamide. Case Rep Pediatr 7987081.

70. Eleftheriou D, Melo M, Marks S, Tullus K, Sills J, et al. (2009) Biologic therapy in primary systemic vasculitis of the young. Rheumatology 48: 978-986.

71. Seri Y, Shoda H, Hanata N, Nagafuchi Y, Sumitomo S, et al. (2015) A case of refractory polyarteritis nodosa successfully treated with rituximab. Mod Rheumatol 12: 1-3.

72. Morgan MD, Drayson MT, Savage COS, Harper L (2011) Addition of Infliximab to Standard Therapy for ANCA-Associated Vasculitis. Nephron Clin Pract 117: c89-c97.

73. Lee A, Kasama R, Evangelisto A, Elfenbein B, Falasca G (2006) Henoch-Schonlein purpura after etanercept therapy for psoriasis. J Clin Rheumat 12: 249-251.