Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed.
According to the World Alzheimer Report, in 2009 35.6 million people worldwide suffered from dementia. Alzheimer disease (AD) is the major primary cause of dementia and affects 60%-80% of demented people (1). Because of the longer life span and increasing number of elderly people, it is estimated that by 2050 this number will reach 115.4 million (1). In absence of a cure for AD, current medications only alleviate the symptoms and have generally been tested principally only in late-stage AD patients. The pathological process in AD brain starts at least 10-20 years before the occurrence of the first dementia symptoms (2). Therefore, it is crucial to treat asymptomatic individuals, in whom degeneration is not yet severe, with disease-modifying drugs (Figure 1) (3). Reliable biomarkers are essential as they are necessary for early AD detection at preclinical stages. Besides an important role in diagnostics, biomarkers can also provide insight into the AD pathogenesis.

Biomarkers are usually analyzed in bodily fluids such as blood, urine, or the cerebrospinal fluid (CSF), but data collected with brain imaging methods are also considered as biomarkers (4-6). To be accepted as such, a new marker of AD must fulfill two conditions: it must be evaluated in at least two independent peer-reviewed cross-sectional clinical studies and be confirmed neuropathologically at autopsy (7). The key features of an ideal AD biomarker are sensitivity (probability of AD detection) and specificity (differentiation of AD patients from healthy individuals and patients with other primary causes of dementia) above 85%. Additional important characteristics are availability, non-invasiveness, reasonable cost, and potential for repeated measurements (Table 1) (7,8). A strong biomarker also should have high early diagnostic sensitivity and pathological specificity, and correlate with disease progression (Table 2). In general, biomarkers are divided into two groups: biomarkers of exposure and biomarkers of disease. Biomarkers of exposure serve for the estimation of disease risk factors, while biomarkers of disease are used in screening (prognostic markers), diagnostic tests for early disease detection (diagnostic markers), and monitoring disease progression (staging markers). This group of biomarkers is also used in monitoring response to therapy (9,10). As such, reliable biomarkers are extremely important for the selection of patients for clinical trials, and consequently for treatment validation (11).

The existing diagnostic tests of AD are mostly based on neuropsychological assessment (12), which remains inadequate for early detection and differentiation of AD from other types of dementia, such as vascular dementia (VaD), frontotemporal dementia (FTD), or Lewy body disease.
Probable AD is diagnosed after the onset of the first symptoms when degeneration is already substantial (13). Consequently, the European Federation of Neurological Societies recommended additional tests for AD diagnosis, including assessment of brain volumetry using magnetic resonance imaging (MRI) and measurement of tau protein in the CSF (14,15). Furthermore, Dubois et al (16) revised the generally accepted NINCDS-ADRDA (National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer Disease and Related Disorders Association) criteria for AD diagnosis (17). In addition to the core diagnostic criteria, which mostly refer to monitoring of episodic memory impairment using a battery of neuropsychological tests, supportive criteria should be considered, which include abnormal CSF biomarkers, medial temporal lobe atrophy, reduced glucose metabolism in the temporal and parietal regions, or the presence of an ε4 allele in the gene for apolipoprotein E (ApoE) (16). This refines the diagnosis by defining the stages of AD progression: at-risk state for AD (asymptomatic individuals with positive biomarkers), presymptomatic AD (autosomal-dominant mutation carriers), prodromal AD (mild episodic memory loss, positive biomarkers), and AD dementia (severe episodic memory loss, positive biomarkers) (Figure 1) (16). Through the initiation and work of the Biomarker Consortium (18) and the Alzheimer Disease Neuroimaging Initiative (19), scientists and clinicians attempted to emphasize the importance of biomarkers in early AD detection in asymptomatic individuals.

We reviewed the existing biomarkers of AD, with a special focus on the CSF. Also, alterations in novel CSF biomarkers, especially CSF neurotransmitters, during AD, their role in the disease process, and potential diagnostic applications are discussed.

CSF CORE BIOMARKERS

Amyloid β protein

Senile plaques, one of the major neuropathological hallmarks of AD, are formed as a result of excessive amyloid β (Aβ) protein production, aggregation, and deposition in the brain (20). In early-onset familial AD, these pathological processes are caused by mutations in the genes encoding proteins involved in the production of Aβ, whereas in sporadic AD an imbalance in formation and removal of Aβ is observed. While in AD, pathological Aβ1-42 is formed after processing of the amyloid precursor protein (APP) through the amyloidogenic pathway (β-secretase [BACE1] pathway), in healthy individuals prevails the non-amyloidogenic pathway (α-secretase pathway), in which Aβ1-42 is not formed (21).

Due to molecular exchange at the brain/CSF interface, pathological processes in the brain are frequently reflected in the CSF (22). Thus, numerous studies investigated the decrease in Aβ1-42 in the CSF of AD patients by enzyme-linked immunosorbent assay (ELISA) (23-26). A 50% lower

TABLE 1. Characteristics of Alzheimer disease (AD) biomarkers

Biomarkers	Advantages	Disadvantages
Cerebrospinal fluid biomarkers	High sensitivity and specificity; best reflection of pathological processes in the AD brain; diagnostic utility confirmed by many studies	Invasive sample collection by lumbar puncture; expensive ELISA tests; inter- and intra-laboratory variability; follow-up of the patients mostly not possible due to lumbar puncture
Neuroimaging biomarkers	High sensitivity and specificity; noninvasive; diagnostic utility confirmed by many studies	Sophisticated techniques; expensive radiotracers; not widely distributed
Plasma biomarkers	Minimally invasive; possible follow-up of patients; screening of healthy population	Low sensitivity and specificity; conflicting results; still unavailable suitable plasma biomarkers
Genetic biomarkers	Excellent for prediction of familial AD; noninvasive; low-cost genetic tests; screening of healthy population	No available genetic biomarkers for sporadic AD

TABLE 2. Diagnostic usefulness of established Alzheimer disease biomarkers

Biomarkers	Pathological specificity	Early diagnostic sensitivity	Correlation with disease progression
Neuropsychological testing	+	++	++
Amyloid β1-42	++	+	+
t-tau	++	++	+
p-tau	+++	+++	+
Magnetic resonance imaging	+	++	+++
Positron emission tomography	+	+	+++

Minimum (+), moderate (++), maximum (+++).
Aβ1-42 diffusion in the CSF can be explained by its deposition in senile plaques (27). However, because a reduction of CSF Aβ1-40 was noticed in other diseases like Creutzfeldt-Jakob disease (CJD) and multiple system atrophy, in which senile plaques are not formed, it is believed that the reduction of Aβ1-42 levels in the CSF can be also mediated by other mechanisms (28,29). For instance, it can be a result of Aβ1-42 binding either to ApoE, cystatin C, or β-trace protein, accumulation in the form of oligomers, or sequestration in membranes (30).

CSF Aβ1-42 levels show high sensitivity (78%-100%) but insufficient specificity (47%-81%) in differentiating AD patients from healthy controls (31). Although the accuracy of established cut-off levels is still discussed, levels of Aβ1-42 lower than 500 pg/ml are generally considered compatible with AD (32). Levels of Aβ1-42 are not changed with aging and in pathological conditions like Parkinson disease, progressive supranuclear palsy, alcoholic dementia, depression, and stroke (29,33). However, Aβ1-42 decrease is also observed in LBD, FTD, VaD, amyotrophic lateral sclerosis, multiple system atrophy, CJD, and in neuroinflammation, resulting in insufficient Aβ1-42 specificity (28,29,33-35). Yet, Aβ1-42 reduction is observed very early, much before the occurrence of the first AD symptoms (36). Thus, measurement of Aβ1-42 in CSF can facilitate the diagnostics of incipient AD in patients with mild cognitive impairment (MCI; MCI-AD) (37). Recent studies have assessed the diagnostic usefulness of Aβ1-42 and showed that it is very unstable (degrading after 2 freeze-thaw cycles) and forms only 10% of the total amyloid proteins in CSF. A more precise AD biomarker than Aβ1-42 alone is the Aβ1-42/Aβ1-40 ratio, even though Aβ1-42 is slightly increased or unchanged in the CSF of AD patients (38).

Tau protein

Tau protein is the major component of neurofibrillary tangles (NFT), the other key neuropathological hallmark of AD (39). It is located principally in the axons, connects microtubules, and regulates axonal length, stability, and rigidity (40). Hyperphosphorylation of tau proteins leads to detachment of tau from microtubules, degradation of microtubules and consequently axons, and results in neuronal death (41). Abnormally phosphorylated tau proteins further accumulate and form NFT (42-44).

Total tau in the CSF. Axon degradation and neuronal death lead to the release of tau proteins in the CSF. Many studies confirmed an increase in total tau (t-tau) in the CSF of AD patients (25,26,45-47). Levels of t-tau vary from 300 to 900 pg/ml and can be increased by as much as 300% in comparison to healthy controls (48). Because CSF t-tau levels increase with aging, cut-off values are adjusted by age. For patients 51-70 years old, levels higher than 450 pg/ml are considered pathological, while above this age the cut-off value is 600 pg/ml (32). T-tau reached high sensitivity (84%) and specificity (91%) in differentiating AD patients from healthy individuals (48). These numbers should be taken with caution as elevation of CSF t-tau is also detected in VaD, FTD, CJD, stroke, and after traumatic brain injury (45-47,49-51). In all of these pathological conditions, t-tau is moderately elevated, except in CJD, where as a consequence of severe neuronal damage the levels of t-tau can reach 3000 pg/ml (52). Therefore, t-tau is not a reliable biomarker for differentiation of AD from other types of dementia. Its levels are normal in the CSF of geriatric patients with major depression (MD). As early AD symptoms coincide with MD symptoms, measurement of CSF t-tau enables correct differentiation between these two groups and adequate treatment of patients with MD (53). Using t-tau as a biomarker, it is possible to detect incipient AD in the group of MCI patients with high sensitivity and specificity (37). However, as in the case of Aβ1-42, it should be kept in mind that MCI can precede other types of dementia in which t-tau is also elevated (37).

Phosphorylated tau in the CSF. Out of the 85 (Dr Luc Buée, personal communication) possible phosphorylation sites (mainly on serines and threonines), tau protein is phosphorylated on approximately 71 sites in physiological or pathological conditions (54). Phosphorylation is regulated by numerous kinases, leading to different phosphorylation of tau at different stages of the disease (55). It has been reported that in AD there is an increase in phosphorylated tau (p-tau) to approximately 250% of control levels (24,45-48). Different p-tau epitopes have been measured in the CSF using ELISA method: threonine 231 (p-tau231), threonine 181 (p-tau181), serine 394 (p-tau394), serine 199 (p-tau199), threonine 181 (p-tau181), serine 235, and serine 369/404 (31,47,56-58). As p-tau reflects pathology in AD brain better than t-tau, very high specificity (92%) and sensitivity (80%) was reported in differentiating AD patients from healthy controls (31). Unlike t-tau, a general indicator of degeneration and neuronal death, p-tau reflects the phosphorylation state of tau protein and the formation of NFTs in AD brain (59). However, it is still unknown what the main source of p-tau in the CSF is and whether neurons affected by tau pathology excrete p-tau in the extraneuronal space and by which mechanism. These gaps in knowledge question the assumption that p-tau accurately...
reflected NFTs in AD brain (60). Nevertheless, p-tau has more than 80% specificity in differentiating AD from other primary causes of dementia (61). Additionally, normal p-tau levels were found in pathological states like VaD, FTD, LBD, during depression, and after stroke, while fetal tau isoform is normally hyperphosphorylated during development (49,52,62,63). However, a moderate increase in p-tau was observed in CJD (52), as well as a decrease in both t-tau and p-tau in Parkinson disease (64). In a recent study, p-tau has been used as a biomarker for detection of MCI-AD patients (38).

The most studied p-tau biomarkers are p-tau_{181}, p-tau_{199}, and A\beta_1-42. In most clinical studies, t-tau, p-tau_{181}, and A\beta_1-42 are measured in the CSF as part of routine analyses, with a cut-off level for p-tau being 60 pg/ml (32,56,57). p-tau_{181} was confirmed as a good biomarker in differentiating AD from LBD and idiopathic normal pressure hydrocephalus (57,65). Additionally, Hansson et al (38) detected MCI-AD patients with 95% sensitivity and 83%-87% specificity by combining t-tau, A\beta_{1-42}, and A\beta_{1-42}/p-tau_{181} ratio. Regarding p-tau_{181} epitope, Itoh et al (66) detected AD using this biomarker with very high sensitivity and specificity (above 85%). Moreover, Boban et al (47) differentiated patients with FTD and AD with 88% accuracy by combining t-tau and p-tau_{181}. However, p-tau_{181} and p-tau_{181} showed better results in early detection of AD (67). Elevation of p-tau_{181} levels and correlation with cognitive decline was reported in the group of MCI-AD patients (58,67). Additionally, a multicenter study by Hampel et al (61) showed that CSF p-tau_{181} was a stable biomarker of MCI conversion to AD. p-tau_{181} was also considered as a potential biomarker for differentiation of AD from VaD, LBD, and FTD (23). In conclusion, if CSF concentrations of all three p-tau biomarkers are elevated, clinicians can be 90% confident that a patient is suffering from AD (68).

Longitudinal changes of CSF biomarkers

Most studies on CSF biomarkers have had cross-sectional rather than longitudinal design. However, data from longitudinal studies could be very useful in monitoring the response to therapy. Recent studies have shown CSF biomarkers (A\beta_{1-42}, t-tau, p-tau) to be stable from 6 months up to 2 years of disease progression and suitable for monitoring the CSF changes induced by therapy (69-71). On the other hand, Bouwman et al (72) reported an increase in A\beta_{1-42} and t-tau (but not p-tau) during AD progression, while two other studies indicated a decrease in A\beta_{1-42} in AD patients and in p-tau in the late stages of the disease (73,74). In addition, Toledo et al (75) described two distinct groups of participants with normal baseline CSF values: patients with stable and patients with abnormal longitudinal CSF biomarkers (decreasing A\beta_{1-42} and increasing p-tau). They also reported that A\beta_{1-42} decrease precedes an increase in p-tau_{181}, further supporting the notion that CSF A\beta_{1-42} changes appear before tau changes (75,76). The model of dynamic biomarkers proposed by Jack et al sheds light on these issues, confirming that CSF A\beta_{1-42} pathology precedes CSF tau pathology (Figure 1) (77,78). This model also suggests a sigmoid curve of abnormality of biomarkers during disease progression. According to this model, when dementia starts, most of the biomarkers have already reached the plateau phase (especially A\beta_{1-42}) and do not change as much as in preclinical stages of disease (78). However, although A\beta_{1-42} CSF changes occur before tau changes, Braak et al confirmed the well-known finding that tau aggregation preceded plaque formation in AD brain (60).

NOVEL CSF BIOMARKERS

Besides core CSF biomarkers, other biomarkers could reflect AD pathological processes and improve the diagnostics of AD (25). These novel biomarkers are mostly related to A\beta metabolism, degeneration, inflammation, or lipid metabolism. The most useful novel biomarkers related to A\beta metabolism are CSF BACE1 activity, levels of APP isoforms (sAPPα and sAPPβ), A\beta oligomers, and C-terminal truncated A\beta isoforms (A\beta_{13-37}, A\beta_{13-29}, A\beta_{10-37}, A\beta_{10-35}, A\beta_{10-34}) (79-83). In the CSF of AD patients there are also altered levels of neprilysin and cystatin C proteins involved in A\beta metabolism (84,85). Also, an increase in CSF neuromodulin (GAP43), neurofilament proteins, and visinin-like protein 1 (VILIP-1) reflects degeneration that occurs in the AD brain (86,87). Other potential biomarkers of degeneration are α-dystroglycan, precursor of neural cell adhesion molecule 1 (NCAM-120), neuronal pentraxin receptor (NPR), cocaine- and amphetamine-regulated transcript (CART), giall cell-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) (88-90). Disease progression results in the alteration of many inflammatory factors in the CSF, like interleukin 1 (IL-1), IL-6, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), S100 calcium-binding protein A7 (S100A7), complement C1q, interferon-γ, and markers of microglial activation: chemokine (C-C motif) ligand 2 (CCL2), triggering receptor expressed on myeloid cells 2 (TREM2), and chitotriosidase (5,83,91-94). None of these proteins has been sufficient to make an AD diagnosis due to high
variability among studies. However, chitininase-3-like protein 1 (YKL-40), a novel potential inflammatory biomarker, has been found to be elevated in very mild AD (94-96). In AD, there are also alterations in lipid metabolism. In spite of technically demanding detection approaches, biomarkers like F2-isoprostanes, 27-hydroxycholesterol (27OHC), ApoE, ApoJ, ApoA-I, and sphingolipids could serve as reliable biomarkers of AD (97-100).

Simultaneous measurement of many AD biomarkers and the search for novel biomarkers could be facilitated by protein profiling of the CSF. Nowadays, this has been enabled by advanced proteomics techniques like 2D gel electrophoresis, protein microarrays, immunoprecipitation, various types of mass spectrometry (surface-enhanced laser desorption/ionization-time of flight mass spectrometry [SELDI-TOF MS], matrix-assisted laser desorption/ionization-time of flight mass spectrometry [MALDI-TOF MS], liquid chromatography-mass spectrometry [LC-MS]), and stable isotope labeling kinetics (SILK) (95,101-105). In fact, using 2D-DIGE (2D-difference gel electrophoresis) and LC-MS/MS techniques, Perrin et al (96) detected 47 new potential AD biomarkers in the CSF, 4 of which were additionally confirmed by ELISA. Using LC-MS, Ringman et al (106) detected 56 proteins with altered expression in the CSF of AD patients (46 increased and 10 decreased). In addition, Simonsen et al (107) using MS detected a panel of 17 proteins and peptides for differentiation between patients with stable MCI and MCI-AD.

CSF neurotransmitters in AD

Various studies have demonstrated the presence of perturbed neurotransmitter pathways in AD (108,109). As progressive failure of neuronal networks and neurotransmitter systems is one of the prominent features of AD, it is not surprising that in the CSF of AD patients abnormal concentrations of neurotransmitters and their metabolites have been found. Hence, many studies tried to assess the diagnostic potential of CSF neurotransmitters (110,111). However, the results on CSF monoamine metabolites in AD patients are conflicting (112,113). Moreover, despite the decreased brain noradrenaline content and loss of noradrenergic neurons in the locus coeruleus detected in AD, CSF markers of noradrenergic metabolism have not been proven diagnostically useful (111,114). Conflicting results have also been obtained on CSF γ-aminobutyric acid (GABA), glutamate, and neuropeptides (110,115,116).

Although previous studies demonstrated inconsistent findings, the implementation of new methods for determination of different neurotransmitters and their metabolites in the CSF, such as LC-MS, showed some promising results (107,110,111). Namely, using this sensitive method, significant changes in the CSF levels of two important neurotransmitters/metabolites, adrenaline and 5-hydroxy-indoleacetic acid (5-HIAA), which correlated with degeneration progression, were detected in a rat model for human tauopathy (117). Our study stressed the importance of early noncognitive, behavioral, and psychological symptoms of dementia that are caused by perturbed function of the brainstem (118). More precisely, it is considered that many behavioral and psychological symptoms of dementia (confusion, depression, agitation, disturbances in mood, appetite, emotion, and wake-sleep cycle) are caused by early degeneration of serotonergic raphe nuclei (118).

As selective loss or impairment of cholinergic neurons represents an important aspect of AD, the CSF markers of cholinergic activity have been extensively investigated. Even though previous studies on CSF cholinergic markers obtained conflicting data (119,120), recent reports have demonstrated alterations in the molecular forms and glycosylation patterns of acetylcholinesterase (AChE) in the CSF of AD patients, which reflect changes in the brain and might be useful as a marker of AD progression (121). It has been hypothesized that different AChE species and variants differ in their responses to disease and their interactions with Aβ and abnormally hyperphosphorylated tau. Namely, accumulating evidence suggests that both Aβ and p-tau can trigger an AChE increase in the regions around amyloid plaques and NFTs, which can in turn influence presenilin 1 (PSEN1) and thereby modulate Aβ production (122). Moreover, according to some authors, low butyrylcholinesterase (BuChE) levels found in AD patient's CSF are inversely related to BuChE in cortical amyloid plaques and could possibly predict extensive incorporation in neuritic plaques, increased neurotoxicity, and greater central degeneration (123). High ApoE and low BuChE levels in CSF strongly correlate with decreased cerebral metabolic rate of glucose consumption (CMRGlc), high cerebral Aβ load, and CSF p-tau of patients with probable AD. These findings indicate that abnormally high levels of ApoE might play a causative role in the pathological events of AD, particularly those involving the early cholinergic deficit in the AD brain, through modulation of cholinestrases activities, hence disturbing the acetylcholine-dependent activity of neurons and glial cells (124).

Because of the methodological limitations and differences between studies, CSF neurotransmitters did not have high
enough specificity and sensitivity to be considered as favorable biomarkers for AD. The observed discrepancy between the results obtained in various studies on CSF neurotransmitters and their metabolites or enzymes involved in synthesis or degradation in AD could partially be explained by the impact of the post-mortem changes, the origin of the CSF samples (ventricular vs lumbar post-mortem CSF), or the different determination methods used. Although no individual CSF neurotransmitter changes were found to be specific for AD, it may be possible to develop a profile of several neurochemical parameters (111) with enhanced sensitivity and specificity, which could improve AD diagnosis with currently established biomarkers. Broader biomarker investigations should lead to a better understanding of early disease mechanisms and the diagnosis of AD in the preclinical stages (125,126). Additionally, it should not be ignored that distribution of various substances along the CSF spaces depends on the rate of their removal into microvessels: faster removal means more limited distribution (127). Several studies demonstrated that organic acids pass freely between central nervous system (CNS) and CSF and vice versa and that active transport across capillary walls acts as a “sink” in their elimination from CNS and CSF. Thus, organic acids (for example 5-HIAA) pass from cisternal CSF into the CNS parenchyma, where they are being eliminated into capillaries by means of a powerful active transport, resulting in a swift decrease of their concentration inside the cisternal CSF, so they cannot be significantly distributed to remote CSF compartments (lumbar subarachnoid space) (128-131). This observation suggests that lumbar CSF concentration of neurotransmitter’s metabolites better reflects local changes inside the spinal cord tissue than metabolic activity of upper CNS compartments.

OTHER BIOMARKERS OF AD

Neuroimaging biomarkers

In addition to CSF biomarkers, the most promising biomarkers of AD proved to be neuroimaging biomarkers (14,132). Magnetic resonance imaging (MRI) is a structural imaging technique that reveals abnormalities in the brain structure in high resolution. The earliest change in AD brain that can be detected using MRI is atrophy of the hippocampus and entorhinal cortex. But since these changes have also been detected in FTD and VaD, only MRI is not sufficient for the diagnosis of AD (133-135). Functional MRI (fMRI) used for the measuring alterations in the brain blood flow occurring due to neuronal activity has been recently considered as a method in diagnostics of dementia. AD patients had decreased neuronal activity in the hippocampus and parietal lobe, while neuronal activity in the primary (idiotypic) cortex, unaffected in AD, was increased (136). Although fMRI detected alterations in functional connectivity of the fusiform gyrus to the areas within the ventral and dorsal visual pathways in MCI patients, this method is still not applicable in diagnostics of dementia due to high inter- and intra-individual variability (137). Our recent study (138) has stressed the importance of fMRI in default mode network (DMN) imaging as a possible early new biomarker of AD. DMN, a major resting-state network in our brain is innervated by long projection fibers of noradrenergic, serotonergic, and cholinergic neurons from the brain stem that can release high amounts of Aβ in DMN hub regions. Additionally, due to their constant activity, neurons from DMN regions produce and release more Aβ than they do elsewhere in the cortex. This Aβ overload can lead to a functional impairment of DMN, which can be detected by fMRI very early, before the first dementia symptoms occur (138).

Of all neuroimaging techniques, the most promising is positron emission tomography (PET), which measures alterations in brain metabolism. Using this technique hypometabolism was reported, namely reduced cortical FDG (18F-fluorodeoxyglucose) uptake in the parietal, temporal, and posterior cingulate cortex of AD patients (139). Also, this method reached specificity and sensitivity of 93% and 84%, respectively, in differentiating AD from healthy control patients (140). Using other PET radiotracers – PiB (Pittsburgh Compound-B) and [18F]FDDNP (2-(1-{6-[(2-[18F]fluoroethyl)(methyl)-2-naphthyl]ethylenedioxy}

www.cmj.hr
correlation of brain tau load with cognitive function, monitoring disease progression and evaluation of therapeutic efficacy of newly developed drugs aimed at modulating tau pathology (146).

Although neuroimaging methods reported excellent results in early detection and differentiation of AD, they are unfortunately still unavailable as a diagnostic tool in many clinical centers and hospitals due to the high costs of the technology itself and of the radiotracers. A significantly cheaper, but useful neuroimaging method – SPECT (single photon emission computerized tomography), commonly used for blood flow measurement, reliably revealed hypometabolism of the temporo-parietal and prefrontal cortices in AD patients in comparison to healthy elderly controls (147). Unfortunately, in spite of its wide availability, SPECT is still underused in the assessment of AD and related dementias.

Plasma biomarkers

Numerous studies searched for reliable AD biomarkers in blood (plasma rather than serum), because lumbar puncture is still considered a relatively invasive method. Unfortunately, none of the potential plasma biomarkers is prognostically or diagnostically adequate due to their bioavailability. Those biomarkers that finally enter the plasma are highly diluted and adhere to various proteins (148). Aβ is the most studied plasma biomarker of AD. However, different studies yielded conflicting results, to the extent that some studies observed an increase in plasma Aβ_{1-42} and Aβ_{1-40}, increase in Aβ_{1-42} (but not Aβ_{1-40}), increase in Aβ_{1-40} (but not Aβ_{1-42}), or unaltered levels of both proteins (148,149). Decreased $\text{Aβ}_{1-42}/\text{Aβ}_{1-40}$ ratio was also reported as a risk factor for MCI conversion to AD (150). In fact it remains unclear whether plasma Aβ truly reflects the situation in the brain because Aβ is also produced elsewhere in the body (151).

Plasma levels of a2-macroglobulin, complement factor H, homocysteine, cholesterol, F2-isoprostanones, Aβ autoantibodies, and ApoA1 have also been measured (148,152-155). None of these potential biomarkers reached satisfying sensitivity and specificity. However, Manzine et al (156) observed reduced expression of platelet ADAM10 (A Disintegrin And Metalloproteinase), stressing the possibility of its use as an early biomarker of AD. It is believed that a combination of plasma biomarkers could result in diagnostically useful screening tests. Thus, only patients with suspected dementia would be subjected to determination of highly specific and sensitive neuroimaging and CSF biomarkers (157).

Genetic biomarkers

Familial AD (prevalence around 0.1%) is related to mutations in the genes for APP, PSEN1, and presenilin 2 (PSEN2) (158). However, the genetic causes of sporadic AD are not yet understood (159). The only well-known risk factor for AD is the ε4 allele of APOE gene. One ε4 allele triples the risk of AD, while two ε4 alleles increase the risk 15 times (160). Using genome-wide association studies (GWAS), scientists have attempted to detect new gene variants involved in the emergence of sporadic AD (161,162). In fact, a recent study detected 120 gene loci associated with AD (163). Cruchaga et al (164) reported that the presence of a rare variant Val232-Met in PLD3 (phospholipase D3) doubles the risk for sporadic AD. As PLD3 influences APP processing, any impairment of PLD3 function leads to the aberrant APP processing.

The other approach is comparison of gene expression between AD patients and healthy controls. Gene expression profiling can be done by using the RNA extracted from the cells precipitated in the pellets of CSF samples or peripheral blood. As a large number of studies reported altered gene expression in AD, this approach is also considered for AD diagnosis (165,166).

COMBINATION OF BIOMARKERS

While measurement of single biomarkers (especially p-tau) resulted in very high sensitivity and specificity, combining more CSF biomarkers can improve diagnostic accuracy (Table 3) (8,23,38,95,141,167-173). Shaw et al (171) combined Aβ_{1-42}, t-tau, and p-tau181 with the purpose of establishing a “signature of AD,” resulting in mixed data. The Luminex xMAP technology (Luminex, Austin, TX, USA) used in the measurement of Aβ_{1-42}, t-tau, and p-tau181 in increasing more studies proved as accurate as standard ELISA methods. The additional and preferable characteristic of this technology is that it measures all CSF biomarkers in the same CSF aliquot (174). Spies et al (175) developed a very accurate prediction model for determination of AD probability among individuals suspected of dementia. This model, based on logistic regression analysis, calculates the probability of AD from the levels of CSF biomarkers (Aβ_{1-42} and p-tau181), and the patients’ gender. Variability in the values of CSF biomarkers due to differences in pre-analytical and analytical procedures or differences in ELISA kits from various manufacturers still represents a major problem.
TABLE 3. Characteristics of biomarker combinations used for diagnosing Alzheimer disease

Combination of biomarkers	Observations	References	
CSF	Aβ_{1-42}, t-tau	Sensitivity 85%-94%, specificity 83%-100% in differentiating AD from HC	(8)
	t-tau/Aβ_{1-42} ratio	1. Sensitivity 89% in detection of MCI-AD patients	1 (171).
		2. More accurate prediction of conversion from normal or MCI to AD	2 (95,141,169).
	p-tau_{181}/Aβ_{1-42}	1. Differentiation of AD from HC – sensitivity 86%, specificity 97%;	2 (168).
		Differentiation of AD from other dementias – sensitivity 80%, specificity 73%	2 (141).
		2. Better prediction of MCI conversion to AD	
	Aβ_{1-42}, t-tau, p-tau_{181}	1. Sensitivity 95%, specificity 83% in detection of MCI-AD patients	1 (38).
		2. Sensitivity 83%, specificity 72% for differentiation of MCI-AD patients from stable MCI	2 (170).
		3. Luminox xMAP technology for simultaneous measurement of all 3 core CSF biomarkers	3 (174,184).
	p-tau_{181}, Aβ_{1-42}/Aβ_{1-42} ratio	Sensitivity 94%, 85% specificity in differentiating AD from other primary causes of dementia	(172)
	Aβ_{1-42}, t-tau, F2-isoprostanes	Sensitivity 84%, specificity of 89% in differentiating AD from HC and other dementias	(167)
	Aβ_{1-42}, PIB-PET	Decreased CSF Aβ_{1-42} and increased PiB binding in the brain of AD patients	(27,142,185)
CSF + neuroimaging	t-tau/Aβ_{1-42}, p-tau/Aβ_{1-42}	Better correlation of these ratios than Aβ_{1-42} alone with PiB binding in the brain of AD patients	(143,186)
	Aβ_{1-42}, t-tau, p-tau_{181}, MRI	Association of: 1. WBA with decrease of Aβ_{1-42} in preclinical AD plus correlation of t-tau and p-tau_{181} with further atrophy caused by disease progression 2. Hippocampal volume with CSF t-tau and p-tau	1 (24)
		Results of longitudinal study indicated that higher normal WBA slows the occurrence of dementia symptoms in individuals with pathological values of CSF biomarkers	2 (187)
	t-tau/p-tau_{181}, Aβ_{1-42}, MRI	MCI patients with reduced regional cerebral blood flow in the parietal cortex and pathological levels of CSF biomarkers had higher risk of AD	(189)
	t-tau, p-tau_{181}, isoprostanes, Aβ_{1-42}/Aβ_{1-40}, rCBF	More accurate detection of MCI-AD patients by combination of CSF biomarkers and measurement of medial temporal lobe atrophy using MRI. 74%-84% accuracy of MCI-AD detection after combination of p-tau_{181} and MRI.	(190)
	VILIP-1, t-tau, p-tau_{181}, Aβ_{1-42}, MRI, PIB-PET	CSF VILIP-1 positively correlated with tau, p-tau_{181} and PiB binding and negatively with WBA. VILIP-1/Aβ_{1-42} predicted cognitive impairment as well as p-tau_{181}/Aβ_{1-42} and tau/Aβ_{1-42}	(173)
CSF + neuroimaging + genetic testing	APOE ε4 allele carriers had elevated PiB binding in the brain and decreased CSF Aβ_{1-40} while APOE ε2 allele had protective effect	(191)	
	PIB-PET, APOE genotype	Increased PiB binding in the brain of APOE ε4 allele carriers	(192,193)
	BACE1 activity, APOE genotype	Increased BACE1 activity at APOE ε4 allele carriers	(194)
	Aβ_{1-42}, p-tau_{181}, BIN1, CLU, CR1, PICALM genotypes	Variants of BIN1, CLU, CR1 and PICALM genes associated with susceptibility for AD do not affect CSF Aβ_{1-42} and p-tau_{181}	(195)
	p-tau_{181}, PPP3R1 genotype	Rs1868402 variant of PPP3R1 gene associated with higher levels of p-tau_{181} and faster progression of AD	(196)

Abbreviations: CSF – cerebrospinal fluid; Aβ – amyloid β; AD – Alzheimer disease; HC – healthy controls; MCI – mild cognitive impairment; PiB – Pittsburgh Compound-B; WBA – whole brain atrophy.
While analytical factors refer to laboratory procedures in different laboratories (176), pre-analytical variability is related to the selection of participants and treatment of CSF samples after lumbar puncture (eg, the tube type, storage temperature, and the number of freeze/thaw cycles before analysis) (50,177,178). It is difficult to influence the variability caused by differences among ELISA kits of various manufacturers (179). Our recent study indicates that there are differences between t-tau and Aβ1_42 ELISA kits from different vendors, making it impossible to use them interchangeably (26). Fagan et al (143) also reported differences in the absolute values of CSF Aβ1_42, t-tau, and p-tau181, after measurement by the two most frequently used methods (INNOTEST ELISA and INNO-BIA AlzBio3 assay on Luminex xMAP technology [Luminex]). The Alzheimer Association in 2009 initiated an international quality control program for CSF biomarkers. The results for 2010-2012 showed that coefficients of variation among laboratories are still very high, ranging from 20% to 30% (180). Thus, the debate is still on if the established cut-off levels for Aβ1_42, t-tau, and p-tau181 should be widely used (32) or every laboratory should define internally qualified cut-off levels (180).

Detection of AD in asymptomatic individuals is still very difficult, even in specialized centers. With the emergence of new drugs for AD, it is likely that the diagnosis will be based on combinations of different biomarkers (36). Dubois et al (16) suggested that for diagnosing AD, APOE genotype and neuroimaging biomarkers should be determined besides CSF biomarkers. Therefore, recent efforts on AD biomarkers have focused on improving AD diagnosis by a combination of different biomarkers (CSF, neuroimaging, and genetic biomarkers) (Table 3).

A recent MEDLINE search for the most common biomarkers of AD (Aβ, tau, MRI, PIB-PET, FDG-PET) performed by Noel-Storr et al (181) resulted in 19104 published references, 1032 of which were cross-sectional studies, 500 longitudinal studies, while the rest of the publications was not relevant. Because of the number of studies performed on AD biomarkers, scientists also use meta-analysis as a tool for the assessment of biomarker variability or validity and to stress the need for methodology standardization among investigations, with an ultimate goal to facilitate the difficult process of biomarker validation (37,181,182).

CONCLUSIONS

Determination of different biomarkers for AD is expensive and unfortunately still untenable in many institutions. Due to a non-invasive method of sample collection, the best choice are considered to be biomarkers measured in blood (plasma or serum) or urine. Unfortunately, these biomarkers showed little accuracy in diagnostics of AD (183). The second choice are CSF biomarkers because lumbar puncture is still considered as an invasive procedure. Neuroimaging biomarkers are the last choice due to the usage of expensive radiotracers and sophisticated techniques that are still not widely available. For comparison, MRI and PIB-PET are 3 to 25 times more expensive, respectively, than measurements of Aβ1_42, t-tau, and p-tau181 concentration in the CSF (Table 1). However, the diagnostic potential of these well-established core CSF biomarkers should be further improved by novel CSF biomarkers, warranting further studies on their detection and evaluation. This should decrease the age limit of AD detection, enable disease detection in preclinical stage (Figure 1), and consequently facilitate the administration of potential therapeutics to AD patients before irreversible degeneration occurs.
4 Aluise CD, Sowell RA, Butterfield DA. Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochim Biophys Acta. 2008;1782:549-58. Medline:18760351 doi:10.1016/j.bbapap.2008.07.008

5 Craig-Schapiro R, Fagan AM, Holtzman DM. Biomarkers of Alzheimer’s disease. Neurobiol Dis. 2009;35:128-40. Medline:19010417 doi:10.1016/j.nbd.2008.10.003

6 Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature. 2009;461:1916-22. Medline:19829371 doi:10.1038/nature08538

7 Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010;9:560-74. Medline:20592748 doi:10.1038/nrd3115

8 The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Consensus report of the Working Group on “Molecular and Biochemical Markers of Alzheimer’s Disease. Neurobiol Aging. 1998;19:109-16. Medline:9558143

9 Mayeux R. Biomarkers: Potential uses and limitations. NeuroRx. 2010;7:363-8. Medline:21526197 doi:10.1038/neurorx.2010.002

10 Blennow k, Hampel H, Meyer HE, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6:131-44. Medline:20157306 doi:10.1038/nrneurol.2010.4

11 Mayeux R, Biomarkers: Potential uses and limitations. NeuroRx. 2004;1:182-8. Medline:15717018 doi:10.1602/neurorx.1.2.182

12 Boban M, Malojčić B, Mimica N, vuković S, Zrilić i, Hof PR, et al. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol. 2009;65:176-83. Medline:20260077 doi:10.1002/ana.21559

13 Cummings JL, Dubois B, Molinuevo JL, Scheltens P. International Working Group criteria for the diagnosis of Alzheimer disease. Med Clin North Am. 2013;97:439-57. Medline:23642580 doi:10.1016/j.mcna.2013.01.002

14 Hort J, O’Brien JT, Gainott G, Pirrtilla T, Popescu BO, Rektorova I, et al. EFNS guidelines for the diagnosis and management of Alzheimer’s disease. Eur J Neurol. 2010;17:1236-48. Medline:20831773 doi:10.1111/j.1468-1331.2010.03040.x

15 Simić G, Kostović I, Winblad B, Bogdanovic N. Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer disease. J Comp Neurol. 1997;379:482-94. Medline:9067838 doi:10.1002/(Si2)1096-9861(19970323)379:4<482::AID-CNE2>3.0.CO;2-Z

16 Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol. 2010;9:1118-27. Medline:20934914 doi:10.1016/S1474-4422(10)70233-4

17 McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939-44. Medline:6610841 doi:10.1212/WNL.34.7.939

18 Wagner JA, Prince M, Wright EC, Ennis MM, Kochan J, Nunez DJ, et al. The biomarkers consortium: practice and pitfalls of open-source precompetitive collaboration. Clin Pharmacol Ther. 2010;87:539-42. Medline:20407460 doi:10.1038/clpt.2009.227

19 Asen PS, Petersen RC, Donohue MC, Gamst A, Raman R, Thomas RG, et al. Alzheimer’s Disease Neuroimaging Initiative. Clinical core of the Alzheimer’s disease Neuroimaging Initiative: progress and plans. Alzheimers Dement. 2010;6:239-46. Medline:20451872 doi:10.1016/j.jalz.2010.03.006

20 Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer’s disease and Down syndrome. Proc Natl Acad Sci U S A. 1985;82:4245-9. Medline:3159021 doi:10.1073/pnas.82.12.4245

21 Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353-6. Medline:12130773 doi:10.1126/science.1072994

22 Raedler TJ, Wiedemann K. CSF studies in neuropsychiatric disorders. Neuroendocrinol Lett. 2006;27:297-305. Medline:16807525

23 Blennow K, Vanmechelen E, Hampel H. CSF total tau, Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol Neurobiol. 2001;24:87-97. Medline:11831556 doi:10.1080/ MN241-3.087

24 Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, et al. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol. 2009;65:176-83. Medline:2010-23304527 10.1002/ana.21559

25 Craig-Schapiro R, Kuhn M, Xiong C, Pickering TP, et al. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS ONE. 2011;6:e18850. Medline:21526197 doi:10.1371/journal.pone.0018850

26 Babić M, Vogrinc Ž, Diana A, Klepac N, Borovečki F, Hof PR, et al. Comparison of two commercial enzyme-linked immunosorbent assays for cerebrospinal fluid measurement of amyloid ß1-42 and total tau. Transl Neurosci. 2013;4:234-40. Medline:24376914 doi:10.2478/s13380-013-0123-4

27 Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Kluwe WE, Mathis CA, et al. Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry. 2009;65:927-34. Medline:19268916 doi:10.1016/j.biopsych.2009.01.027

28 Otto M, Esselmann H, Schulz-Shaeffer W, Neumann M, Schroter A, Ratza P, et al. Decreased beta-amyloid-42 in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurology. 2000;54:1099-102. Medline:10720281 doi:10.1212/WNL.54.5.1099
Cerebrospinal fluid physiology and movement

www.cmj.hr

Croat Med J. 2014;55:347-65

34. Sjögren M, Davidsson P, Wallin A, Granérus Ak, Grundström P, Hampel H, Rosengren L. Cerebrospinal fluid Abeta42 is reduced in multiple system atrophy but normal in Parkinson's disease and progressive supranuclear palsy. Mov Disord. 2003;18:186-90. Medline:12539213 doi:10.1002/mds.10321

35. Holmberg B, Johnels B, Blennow K, Rosengren L. Cerebrospinal fluid Abeta42 is reduced in multiple system atrophy but normal in Parkinson's disease and progressive supranuclear palsy. Mov Disord. 2003;18:186-90. Medline:12539213 doi:10.1002/mds.10321

36. Fagan AM, Holtzman DM. Cerebrospinal fluid biomarkers for Alzheimer's disease. Exp Neurol. 2010;223:334-46. Medline:19815015 doi:10.1016/j.expeu.2009.09.024

37. Diniz BS, Pinto Júnior JA, Forlenza OV. Do CSF total tau, beta42 and normal tau levels in dementia with Lewy bodies. J Alzheimers Dis. 1999;1:307-28. Medline:12214128

38. Hansson o, Zetterberg H, Buchhave P, Londos E, Blennow K, et al. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease. Exp Neurol. 2010;223:334-46. Medline:19815015 doi:10.1016/j.expeu.2009.09.024

39. Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, et al. Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer's disease. Arch Neurol. 1995;52:81-8. Medline:7826280 doi:10.1001/archneur.1995.05040250089017

40. Johnson GV, Jenkins SM. Tau protein in normal and Alzheimer's disease brain. J Alzheimers Dis. 1999;1:307-28. Medline:12214128

41. Mandelkow EM, Mandelkow E. Tau in Alzheimer's disease. Trends Cell Biol. 1998;8:425-7. Medline:9854307 doi:10.1016/S0962-8924(98)01368-3

42. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83:4913-7. Medline:3088567 doi:10.1073/pnas.83.13.4913

43. Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci. 2004;117:5721-9. Medline:15537830 doi:10.1242/jcs.01558

44. Šimić G, Gnjidić M, Kostović i. Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer's disease. Period Biol. 1998;100:165-73.

45. Šimić G, Boban M, Šarac H, Grbić K, Hof PR, Hamann C, et al. CSF tau proteins in evaluation of patients with suspected dementia. Neurodegener Dis. 2007;4:135-6.

46. Boban M, Grbić K, Mladinov M, Hof PR, Süssmair C, Ackl N, et al. Cerebrospinal fluid markers in differential diagnosis of Alzheimer's disease and vascular dementia. Coll Antropol. 2008;32:31-6. Medline:18405055

47. Boban M, Šarac H, Mimica N, Mladinov M, Süssmair C, Ackl N, et al. CSF tau proteins in differential diagnosis of dementia. Transl Neurosci. 2010;1:43-8. doi:10.2478/v10134-010-0013-z

48. Blennow K. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx. 2004;1:213-25. Medline:15717022 doi:10.1202/neurorx.1.2.213

49. Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E, et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett. 2001;297:187-90. Medline:11137759 doi:10.1016/S0304-3908(01)00969-7

50. Šimić G, Boban M, Hof PR. Cerebrospinal fluid phosphorylated tau proteins as predictors of Alzheimer's disease in subjects with mild cognitive impairment. Period Biol. 2008;10:120-2. doi:10.1038/sj.mp.4001220

51. Sarac H, Hajnsek S, Basić S, Henigsberg N, Rados M, Šimić G. Magnetic resonance spectroscopy and measurement of tau epitopes of autopsy proven sporadic Creutzfeldt-Jakob disease in a patient with non-specific initial EEG, MRI and negative 14-3-3 immunoblot. Coll Antropol. 2008;32 Suppl 1:199-204. Medline:18405083

52. Riemschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wittfang J, Kretzschmar H, et al. Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias. Mol Psychiatry. 2003;8:343-7. Medline:12660807 doi:10.1038/sj.mp.4001220

53. Buerger née Buch K, Padberg F, Nolde T, Teipel SJ, Stübben S, Haslinger A, et al. Cerebrospinal fluid tau protein shows a better discrimination in young old (~70 years) than in old old patients with Alzheimer's disease compared with controls. Neurosci Lett. 1999;277:21-4. Medline:10643888 doi:10.1016/S0304-3908(99)00890-7
Zhang J, Mattison HA, Liu C, Ginghina C, Auinger P, McDermott J, Jovanov-Milošević N, Petrović D, Sedmak G, vukšić M, Hof PR, Simić Buerger K, Zinkowski R, Teipel SJ, Arai H, DeBernardis J, Kerkman D, Hampel H, Buerger K, Zinkowski R, Teipel SJ, Goernitz A, Andreasen e wers M, Buerger K, Teipel SJ, Scheltens P, Schröder J, Zinkowski Buée L, Troquier L, Burnouf S, Belbari K, Van der Jeugd A, Ahmed T, et al. From phosphorylation to tau aggregation: what about neuronal death? Biochem Soc Trans. 2010;38:967-72. Medline:20658986 doi:10.1042/BST0380967

Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad e, Gong CX, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta. 2005;1739:198-210. Medline:15615638 doi:10.1016/j.jbba.2004.09.008

Hampel H, Goernitz A, Buerger K. Advances in the development of biomarkers for Alzheimer’s disease: from CSF total tau and Abeta1–42 proteins to phosphorylated tau protein. Brain Res Bull. 2003;61:243-53. Medline:12909294 doi:10.1016/S0361-9230(03)00087-X

57 Hampel H, Mitchell A, Blennow K, Frank RA, Brettschneider S, Weller L, et al. Core biological marker candidates of AD - perspectives for diagnosis, prediction of outcome and reflection of biological activity. J Neural Transm. 2004;111:247-72. Medline:14991453 doi:10.1007/s00702-003-0065-z

58 Ewers M, Buerger K, Teipel SJ, Scheltems P, Schröder J, Zinkowski RP, et al. Multicentre assessment of CSF-phosphorylated tau for the prediction of conversion of MCI. Neurology. 2007;69:2205-12. Medline:18071141 doi:10.1212/01.wnl.0000286944.22262.ff

59 Buerger K, Ewers M, Pirtila T, Zinkowski R, Alafuzoff I, Teipel SJ, et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain. 2006;129:3035-41. Medline:17012293 doi:10.1093/brain/awl269

60 Braak H, Zetterberg H, Del Tredici K, Blennow K. Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-beta changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol. 2013;126:631-41. Medline:23756600 doi:10.1007/s00401-013-1139-0

61 Hampel H, Buerger K, Zinkowski R, Teipel SJ, Goernitz A, Andreasen N, et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry. 2004;61:95-102. Medline:14706948 doi:10.1001/archpsyc.61.1.95

62 Buerger K, Zinkowski R, Teipel SJ, Ariai H, DeBernardis J, Kerkman D, et al. Differentiation of geriatric major depression from Alzheimer’s disease treatment. Int J Biochem Cell Biol. 2012;44:1290-4. Medline:22595282 doi:10.1016/j.biocell.2012.05.001

63 Jovanov-Milošević N, Petrović D, Sedmak G, Vukčić M, Hof PR, Simić G. Human fetal tau protein isoform: possibilities for Alzheimer’s disease treatment. Int J Biochem Cell Biol. 2012;44:1290-4. Medline:22595282 doi:10.1016/j.biocell.2012.05.001

64 Zhang J, Mattison HA, Liu C, Ginghina C, Auinger P, McDermott MP, et al. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathol. 2013;126:671-82. Medline:23644819 doi:10.1007/s00401-013-1121-x

65 Kapaki EN, Paraskevas GP, Tzerakis NG, Sfagos C, Seretis A, Kararizou E, et al. Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer’s disease. Eur J Neurol. 2007;14:168-73. Medline:17250725 doi:10.1111/j.1468-1331.2006.01593.x

66 Itoh N, Ariai H, Urakami K, Ishiguro K, Ohno H, Hampel H, et al. Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer’s disease. Ann Neurol. 2001;50:150-6. Medline:11506396 doi:10.1002/ana.1054

67 Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Ariai H, Blennow K, et al. Differential diagnosis of Alzheimer’s disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol. 2002;59:1267-72. Medline:12164722 doi:10.1001/archneur.59.8.1267

68 Mitchell A, Brindle N. CSF phosphorylated tau: does it constitute an accurate biological test for Alzheimer’s disease? Int J Geriatr Psychiatry. 2003;18:407-11. Medline:12766916 doi:10.1002/gps.845

69 Blennow K, Zetterberg H, Minthon L, Lannfelt L, Strid S, Annas P, et al. Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett. 2007;419:18-22. Medline:17482358 doi:10.1016/j.neulet.2007.03.064

70 Mattsson N, Portelius E, Rolstad S, Gustavsson M, Andreasson U, Stridsberg M, et al. Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. J Alzheimers Dis. 2012;30:767-78. Medline:22475796

71 Le Bastard N, Aerts L, Sleevers K, Martin JJ, Van Broeckhoven C, De Deyn PP, et al. Longitudinal stability of cerebrospinal fluid biomarker levels: fulfilled requirement for pharmacodynamic markers in Alzheimer’s disease. J Alzheimers Dis. 2013;33:807-22. Medline:23034521

72 Bouwman FH, van der Flier WM, Schoonenboom NS, van Elk EJ, Kok A, Rijmen F, et al. Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology. 2007;69:1006-11. Medline:17785669 doi:10.1212/01.wnl.0000271375.37131.04

73 Mollenhauer B, Bibl M, Trenkwalder C, Stiens G, Cepek L, Steinacker C, et al. Differential diagnosis of Alzheimer’s disease with cerebrospinal fluid tau protein phosphorylated at threonine 231. Am J Psychiatry. 2003;160:376-9. Medline:12562590 doi:10.1176/appi.ajp.160.2.376

74 Jovanov-Milošević N, Petrović D, Sedmak G, Vukčić M, Hof PR, Simić G. Human fetal tau protein isoform: possibilities for Alzheimer’s disease treatment. Int J Biochem Cell Biol. 2012;44:1290-4. Medline:22595282 doi:10.1016/j.biocell.2012.05.001

75 Zhang J, Mattison HA, Liu C, Ginghina C, Auinger P, McDermott MP, et al. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathol. 2013;126:671-82. Medline:23644819 doi:10.1007/s00401-013-1121-x

76 Buchhuve P, Minthon L, Zetterberg H, Wallin AK, Blennow K,
CEREBROSPINAL FLUID PHYSIOLOGY AND MOVEMENT

Hansson O. Cerebrospinal fluid levels of β-Amyloid 1-42, but not of tau, are fully increased already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry. 2012;69:98. Medline:22137927 doi:10.1001/archgenpsychiatry.2011.155

77 Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119-28. Medline:20083042 doi:10.1016/S1474-4422(09)70299-6

78 Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207-16. Medline:23332364 doi:10.1016/S1474-4422(12)70291-0

79 Wilfong J, Esselman H, Bilb M, Smirnov A, Otto M, Paul S, et al. Highly conserved and disease-specific patterns of carboxyterminally truncated Abeta peptides 1-37/38/39 in addition to 1-40/42 in Alzheimer’s disease and in patients with chronic neuroinflammation. J Neurochem. 2002;81:481-96. Medline:12065657 doi:10.1046/j.1471-4159.2002.00818.x

80 Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci. 2005;8:79-84. Medline:15608634 doi:10.1038/nn1372

81 Andreasson U, Portelius E, Andersson ME, Blennow K, Zetterberg H. Aspects of β-amyloid as a biomarker for Alzheimer’s disease. Biomark Med. 2007;1:59-78. Medline:20477461 doi:10.2217/bmm.34.453

82 Portelius E, Price E, Brinkmalm G, Persson M, Olsson M, Persson R, et al. A novel pathway for amyloid precursor protein processing. Neurobiol Aging. 2011;32:1090-8. Medline:19060603 doi:10.1016/j.neurobiolaging.2009.06.002

83 Fagan AM, Perrin RJ. Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med. 2012;6:455-76. Medline:22917147 doi:10.2217/bmm.12.124

84 Maruyama M, Higuchi M, Takaki Y, Matsuba Y, Tanji H, Nemoto M, et al. Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer’s disease. Ann Neurol. 2005;57:832-42. Medline:15929037 doi:10.1002/ana.20494

85 Sundelof J, Aarnio J, Ingelsson E, Sundström J, Basu S, Zethelius B, et al. Serum cystatin C and the risk of Alzheimer disease in elderly men. Neurology. 2008;71:1072-9. Medline:18824671 doi:10.1212/01.wnl.0000326894.40353.93

86 de Jong D, Jansen RW, Pijnenburg YA, van Geel WJ, Born GF, Kremer HP, et al. CSF neurofilament proteins in the differential diagnosis of dementia. J Neurol Neurosurg Psychiatry. 2007;78:936-8. Medline:17314187 doi:10.1136/jnnp.2006.107326

87 Tarawneh R, Lee JM, Ladenson JH, Morris JC, Holtzman DM, CSF. Vilip-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology. 2012;78:709-19. Medline:22357717 doi:10.1212/WNL.0b013e318248e568

88 Yin GN, Lee HW, Cho JY, Suk K. Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res. 2009;1265:158-70. Medline:19368810 doi:10.1016/j.brainres.2009.01.058

89 Forlenza OV, Diniz BS, Teixeira AL, Ojopi EB, Talib LL, Mendonça VA, et al. Effect of brain-derived neurotrophic factor Val66Met polymorphism and serum levels on the progression of mild cognitive impairment. World J Biol Psychiatry. 2010;11:774-80. Medline:20491609 doi:10.3109/15629710903797241

90 Mao P. Recent progress and concerns in dementia: Distinguishing Alzheimer’s disease and dementia with Lewy bodies via biochemical markers in the cerebrospinal fluid. Adv Biol Chem. 2012;176:90-6. doi:10.4236/abc.2012.20222

91 Brown GM, Wyss-Coray T. Systemic and acquired immune responses in Alzheimer’s disease. Int Rev Neurobiol. 2007;82:205-33. Medline:17678963 doi:10.1016/S0070-7742(07)82011-3

92 Qin W, Ho L, Wang J, Peskind E, Passinetti GM. S100A7, a novel Alzheimer’s disease biomarker with non-amyloidogenic alpha-secretase activity acts via selective promotion of ADAM-10. PLoS ONE. 2009;4:e4183. Medline:19159013 doi:10.1371/journal.pone.0004183

93 Corrêa JD, Starling D, Teixeira AL, Caramelli P, Silva TA. Chemokines in CSF of Alzheimer’s disease patients. Arg Neuropsiquiatr. 2011;69:455-9. Medline:21755121 doi:10.1590/0100-4009-2011000400009

94 Lista S, Zetterberg H, Dubois B, Blennow K, Hampel H. Cerebrospinal fluid analysis in Alzheimer’s disease: technical issues and future developments. J Neurol. 2014;261:1234-43. Medline:24807087

95 Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, et al. Ykl-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry. 2010;68:903-12. Medline:21035623 doi:10.1016/j.biopsych.2010.08.025

96 Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, et al. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS One. 2011;6:e16032. Medline:21264269 doi:10.1371/journal.pone.0016032

97 de Leon MJ, DeSanti S, Zinkowski R, Mehta PD, Pratico D, Segal S, et al. YKL-40: a novel prognostic fluid biomarker for neocortical Alzheimer’s pathology. Neurobiol Aging. 2006;27:394-401. Medline:16125823 doi:10.1016/j.neurobiolaging.2005.07.003

98 Leoni V, Shaafati M, Salomon A, Kivipelto M, Bjorkhem I, Wahlund LO. Are the CSF levels of 24S-hydroxycholesterol a sensitive biomarker for mild cognitive impairment? Neurosci Lett. 2009;461:83-7. Medline:19520363 doi:10.1016/j.neulet.2009.01.058

99 Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull. 2011;34:453-61. Medline:21467629 doi:10.1248/bpb.34.453

100 Kosicek M, Zetterberg H, Andreasen N, Peter-Katalinic J, Hecimovic S. Elevated cerebrospinal fluid sphingomyelin levels
in prodromal Alzheimer's disease. Neurosci Lett. 2012;516:302-5. Medline:22521584 doi:10.1016/j.neulet.2012.04.019

101 Hu Y, Malone JP, Fagan AM, Townsend RR, Holtzman DM. Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid. Mol Cell Proteomics. 2005;4:2000-9. Medline:16199891 doi:10.1074/mcp.M500207-MCP200

102 Hu Y, Hosseini A, Kauwe JS, Gross J, Cairns NJ, Goate AM, et al. Identification and validation of novel CSF biomarkers for early stages of Alzheimer's disease. Proteomics Clin Appl. 2007;1:1373-84. Medline:21136637 doi:10.1002/prca.20060999

103 Kroksveen AC, Opsahl JA, Aye TT, Ulvik RJ, Berven FS. Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteomics. 2011;74:371-88. Medline:21111852 doi:10.1016/j.jprot.2010.11.010

104 Blennow K, Zetterberg H, Fagan AM. Fluid biomarkers in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2:a006221. Medline:22951438 doi:10.1101/cshperspect.a006221

105 Perrin RJ, Payton JE, Malone JP, Gilmore F, Davis AE, Xiong C, et al. Quantitative label-free proteomics for discovery of biomarkers in cerebrospinal fluid: assessment of technical and interindividual variation. PLoS One. 2013;8:e64314. Medline:23700471 doi:10.1371/journal.pone.0064314

106 Ringman JM, Schulman H, Becker C, Jones T, Bai Y, Immermann F, et al. Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. Arch Neurol. 2012;69:96-104. Medline:22232349 doi:10.1001/archneur.2011.642

107 Simonsen AH, McGuire J, Hansson O, Zetterberg H, Podust VN, Davies HA, et al. Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol. 2007;64:366-70. Medline:17353378 doi:10.1001/archneur.64.3.366

108 Francis PT, Ramirez MJ, Lai MK. Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology. 2010;59:221-9. Medline:20156462 doi:10.1016/j.neuropharm.2010.02.010

109 Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, et al. Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Prog Neurobiol. 2012;97:1-13. Medline:22387368 doi:10.1016/j.pneurobio.2012.02.002

110 Kaiser E, Schoenknecht P, Kassner S, Hildebrandt W, Kinscherf R, Schroeder J. Cerebrospinal fluid concentrations of functionally important amino acids and metabolic compounds in patients with mild cognitive impairment and Alzheimer's disease. Neurodegener Dis. 2010;7:251-9. Medline:20551690

111 Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS One. 2012;7:e31501. Medline:22359596 doi:10.1371/journal.pone.0031501

112 Stuereenberg HJ, Ganzer S, Müller-Thomsen T. 5-Hydroxyindolacetic acid and homovanillic acid concentrations in cerebrospinal fluid in patients with Alzheimer's disease, depression and mild cognitive impairment. Neuroendocrinol Lett. 2004;25:435-7. Medline:15665806

113 van der Cammen TJ, Tiemeier H, Engelhart MJ, Fekkes D. Abnormal neurotransmitter metabolite levels in Alzheimer patients with a delirium. Int J Geriatr Psychiatry. 2006;21:838-43. Medline:16955437 doi:10.1002/jgs.1569

114 Mustapic M, Presecki P, Pivac N, Mimica N, Hof PR, Simic G, et al. Genotype-independent decrease in plasma dopamine beta-hydroxylase activity in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:94-9. Medline:23416088 doi:10.1016/j.pnpbp.2013.02.002

115 Nilsson CL, Brinkmalm A, Minthon L, Blennow K, Ekman R. Processing of neuropeptide Y, galanin, and somatostatin in the cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Peptides. 2001;22:2105-12. Medline:11786197 doi:10.1016/S0196-9781(01)00571-X

116 Samakshvili S, Ibañez C, Simó C, Gil-Bea FJ, Winblad B, Cedazo-Minguez A, et al. Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis. 2011;32:2757-64. Medline:21983823 doi:10.1002/elps.201100139

117 Kovac A, Somikova Z, Zilka N, Novak M. Liquid chromatography-tandem mass spectrometry method for determination of panel of neurotransmitters in cerebrospinal fluid from the rat model for tauopathy. Talanta. 2014;119:284-90. Medline:24401416 doi:10.1016/j.talanta.2013.10.027

118 Simic G, Stanic G, Mladinov M, Jovanov-Milosevic N, Kostovic I, Hof PR. Does Alzheimer’s disease begin in the brainstem? Neuropsychol Appl Neurobiol. 2009;35:532-54. Medline:19682326 doi:10.10111/j.1365-2990.2009.01038.x

119 Darreh-Shori T, Kadir A, Almkvist O, Grut M, Wall A, Blomquist G, et al. Inhibition of acetylcholinesterase in CSF versus brain assessed by 11C-PMP PeT in AD patients treated with galantamine. Neurobiol Aging. 2008;29:168-84. Medline:17196712 doi:10.1016/j.neurobiolaging.2006.09.020

120 Marksteiner J, Pirchl M, Ullrich C, Oberbauer H, Blasko I, Lederer W, et al. Analysis of cerebrospinal fluid of Alzheimer patients. Biomarkers and toxic properties. Pharmacology. 2008;82:214-20. Medline:18810245 doi:10.1159/000156487

121 Sáez-Valero J, Pedrosa LR, Sjögren M, Anderssen N, Amici S, Gallai V, et al. Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer’s disease. J Neurosci Res. 2003;72:520-6. Medline:12704813 doi:10.1002/jnr.10599

122 García-Ayllón MS, Small DH, Avila J, Sáez-Valero J. Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-
362

CEREBROSPINAL FLUID PHYSIOLOGY AND MOVEMENT

www.cmj.hr

talk with p-tau and β-amyloid. Front Mol Neurosci. 2011;4:22.
Medline:21949503 doi:10.3389/fnmol.2011.00022

123 Darreh-Shori T, Brimijoin S, Kadir A, Almkvist O, Nordberg A. Differential CSF butyrylcholinesterase levels in Alzheimer’s disease patients with the ApoE epsilon 4 allele, in relation to cognitive function and cerebral glucose metabolism. Neurobiol Dis. 2006;24:326-33. Medline:16973370 doi:10.1016/j.nbd.2006.07.013

124 Darreh-Shori T, Forsberg A, Modini N, Andresen N, Blennow K, Kaml C, et al. Differential levels of apolipoprotein E and butyrylcholinesterase show strong association with pathological signs of Alzheimer’s disease in the brain in vivo. Neurobiol Aging. 2011;32:e15-32. Medline:20538374 doi:10.1016/j.neurobiolaging.2010.04.028

125 Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov. 2007;6:295-303. Medline:17347655 doi:10.1038/nrd2176

126 Darreh-Shori T, Brimijoin S, Kadir A, Almkvist O, Nordberg A. Differential CSF butyrylcholinesterase levels in Alzheimer’s disease patients with the ApoE epsilon 4 allele, in relation to cognitive function and cerebral glucose metabolism. Neurobiol Dis. 2006;24:326-33. Medline:16973370 doi:10.1016/j.nbd.2006.07.013

127 Bulat M, klarica M. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011;65:99-112. Medline:20817024 doi:10.1016/j.brainresrev.2010.08.002

128 Bulat M, Živković B. Origin of 5-hydroxyindoleacetic acid in the spinal fluid. Science. 1971;173:738-40. Medline:5109594 doi:10.1126/science.173.3998.738

129 Zmajević M, klarica M, varda R, kudelić N, Bulat M. elimination of phenolsulfonphthalein from the cerebrospinal fluid via capillaries in central nervous system in cats by active transport. Neurosci Lett. 2002;321:123-5. Medline:11872271 doi:10.1016/S0304-3940(01)02526-5

130 Strikić N, klarica M, Vladić A, Strikić N, Jurčić D, Zmajević M, klarica M, Bulat M. Early failure of the default mode network and the pathogenesis of Alzheimer’s disease. CNS Neurosci Ther. 2014;20:692-8. Medline:24712393 doi:10.1111/cnns.12260

131 Van de Pol LA, Hensel A, van der Flier WM, visser PJ, Pijnenburg YA, Hänninen T, et al. Discriminating accuracy of medial temporal lobe volumetry and fMRI in mild cognitive impairment. Hippocampus. 2009;19:166-75. Medline:18777563 doi:10.1002/hipo.20494

132 Simic G, Babic M, Borovecki F, Hof PR. Early failure of the default mode network and the pathogenesis of Alzheimer’s disease. CNS Neurosci Ther. 2014;20:692-8. Medline:24712393 doi:10.1111/cnns.12260

133 Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol. 2007;64:343-9. Medline:17218081 doi:10.1001/archneur.64.3.noc60123

134 Tolboom N, van der Flier WM, Yaqub M, Boellaard R, verwey NA, Blankenstein MA, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17:302-16. Medline:12482085 doi:10.1006/nimg.2002.1208

135 Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17:302-16. Medline:12482085 doi:10.1006/nimg.2002.1208

136 Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol. 2007;64:343-9. Medline:17218081 doi:10.1001/archneur.64.3.noc60123

137 Bokde AL, Lopez-Bayo P, Meindl T, Pechler S, Born C, Faltraco F, et al. Functional connectivity of the fusiform gyrus during a face matching task in subjects with mild cognitive impairment. Brain. 2006;129:1113-24. Medline:16520329 doi:10.1093/brain/awl051

138 Teipel SJ, Schapiro MB, Alexander GE, Krisakolius JS, Honzwitz B, Hoeheh C, et al. Relation of corpus callosum and hippocampal size to age in nondemented adults with Down’s syndrome. Am J Psychiatry. 2003;160:1870-8. Medline:14514503 doi:10.1176/appi.ajp.160.10.1870

139 Teipel SJ, Schapiro MB, Alexander GE, Krisakolius JS, Honzwitz B, Hoeheh C, et al. Relation of corpus callosum and hippocampal size to age in nondemented adults with Down’s syndrome. Am J Psychiatry. 2003;160:1870-8. Medline:14514503 doi:10.1176/appi.ajp.160.10.1870

140 Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frölich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17:302-16. Medline:12482085 doi:10.1006/nimg.2002.1208

141 Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol. 2007;64:343-9. Medline:17218081 doi:10.1001/archneur.64.3.noc60123

142 Tolboom N, van der Flier WM, Yaqub M, Boellaard R, verwey NA, Blankenstein MA, et al. Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J Nucl Med. 2009;50:1464-70. Medline:19690025 doi:10.2967/jnumed.109.064360

143 Fagan AM, Shaw LM, Xiong C, Mintun MA. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov. 2007;6:295-303. Medline:17347655 doi:10.1038/nrd2176

144 Jack CR Jr, Barrio JR, kepe v. Cerebral amyloid PeT imaging in Alzheimer’s disease. Acta Neuropathol. 2013;126:36-42. Medline:23555603 doi:10.1007/s00404-013-1185-7

145 Leuzy A, Zimmer ER, Gauthier S, Rosa-Neto P. Amyloid imaging in
Alzheimer’s disease: a potential new era of personalized medicine? Transl Neurosci. 2014;5:51-6. doi:10.2478/13380-014-0205-y

146 Wischik CM, Harrington CR, Storey JM. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol. 2014;88:529-39. Medline:24361915 doi:10.1016/j.bcp.2013.12.008

147 Trollor JN, Sachdev PS, Haindl W, Brodaty H, Wen W, Walker BM. Regional cerebral blood flow deficits in mild Alzheimer’s disease using high resolution single photon emission computerized tomography. Psychiatry Clin Neurosci. 2005;59:280-90. Medline:15896221 doi:10.1111/j.1440-1819.2005.01372.x

148 Irizarry MC. Biomarkers of Alzheimer Disease in Plasma. NeuroRx. 2007;4:280-9. doi:10.1016/S1474-4422(06)70501-4

149 van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM. I rizarry MC. Biomarkers of Alzheimer Disease in Plasma. NeuroRx. 2007;4:280-9. doi:10.1016/S1474-4422(06)70501-4

150 Graff-Radford NR, Crook Je, Lucas J, Boeve BF, Knopman DS, Ivnik RJ, Irizarry MC. Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol. 2006;5:655-60. Medline:16857570 doi:10.1016/S1474-4422(06)70501-4

151 Freeman SH, Raju S, Hyman BT, Frosch MP, Irizarry MC. Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol. 2006;5:655-60. Medline:16857570 doi:10.1016/S1474-4422(06)70501-4

152 Merched A, Xia Y, Visvikis S, Serot JM, Siest G. Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer’s disease. Neurobiol Aging. 2000;21:27-30. Medline:10794845 doi:10.1016/S0197-4580(99)00103-7

153 Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers RL, et al. Proteome based plasma biomarkers for Alzheimer’s disease. Brain. 2006;129:3042-50. Medline:17071923 doi:10.1093/brain/awl279

154 Seshadri S. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimers Dis. 2006;9:393-8. Medline:16917147

155 Manzine PR, de França Bram JM, Barham EF, Dc Vale Fde A, Selistre-de-Araujo HS, Cominetti MR, et al. ADAM10 as a biomarker for Alzheimer’s disease: a study with Brazilian elderly. Dement Geriatr Cogn Disord. 2013;35:58-66. Medline:23306532 doi:10.1159/000345983

156 Harvey RJ, Skelton-Robinson M, Rossor MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003;74:1206-9. Medline:12933919 doi:10.1136/jnnp.74.9.1206

157 Harlow JS, Crook JE, Lucas J, Boeve BF, Knopman DS, Ivnik RJ, Theus J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33:1340-4. Medline:22581678 doi:10.1002/humu.22117

158 Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2014;505:550-4. Medline:24336208 doi:10.1038/nature12825

159 Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:1977-81. Medline:8446617 doi:10.1073/pnas.90.5.1977

160 Sherva R, Tripodis Y, Bennett DA, Chibnik LB, Crane PK, de Jager PL, et al. Genome-wide association study of the rate of cognitive decline in Alzheimer’s disease. Alzheimers Dement. 2014;10:45-52. Medline:23355033 doi:10.1016/j.jalz.2013.01.008

161 Kälmán J, Kitajka K, Pákáski M, Zvara A, Juhász A, Vincze G, et al. Proteomics of Alzheimer’s disease: a potential new era of personalized medicine? Transl Neurosci. 2014;5:51-6. doi:10.2478/13380-014-0205-y

162 Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39:17-23. Medline:17192785 doi:10.1038/ng1934

163 Madhalena A, Papassotropoulos A, Müller-Tillmanns B, Jung HH, Hegi T, Nitsch RM, et al. Biochemical diagnosis of Alzheimer disease: a potential new era of personalized medicine? Transl Neurosci. 2014;5:51-6. doi:10.2478/13380-014-0205-y

164 Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2014;505:550-4. Medline:24336208 doi:10.1038/nature12825

165 Kälmán J, Kitajka K, Pákáski M, Zvara A, Juhász A, Vincze G, et al. Gene expression profile analysis of lymphocytes from Alzheimer’s patients. Psychiatr Genet. 2005;15:1-6. Medline:15722950 doi:10.1097/00044444-200503000-00001

166 Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging. 2007;28:1795-809. Medline:16979800 doi:10.1016/j.neurobiolaging.2006.08.004

167 Montine TJ, Kaye JA, Montine KS, McFarland L, Morrow JD, Quinn JF. Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age matched controls. Arch Pathol Lab Med. 2001;125:510-2. Medline:11260625

168 Maddalena A, Papassotropoulos A, Müller-Tillmanns B, Jung HH, Hegi T, Nitsch RM, et al. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to beta-amyloid peptide 42. Arch Neurol. 2003;60:1202-6. Medline:12975284 doi:10.1001/archneur.60.9.1202

169 Li G, Sokal I, Quinn JF, Levernuz JB, Brody M, Schellenberg GD, et al. CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology. 2007;69:631-9. Medline:17698783 doi:10.1212/01.wnl.0000267428.62582.aa

170 Mattsson N, Zetterberg H, Hansson O, Andreasson N, Parnetti L,
193 Villedmagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357-67. Medline:23477989 doi:10.1016/S1474-4422(13)70044-9

194 Ewers M, Zhong Z, Bürger K, Wallin A, Blennow K, Teipel SJ, et al. Increased CSF-BACE1 activity is associated with APOE-e4 genotype in subjects with mild cognitive impairment and Alzheimer’s disease. Brain. 2008;131:1252-8. Medline:18334538 doi:10.1093/brain/awn034

195 Kauwe JS, Cruchaga C, Karch CM, Sadler B, Lee M, Mayo K, et al. Fine mapping of genetic variants in BIN1, CLU, CR1 and PICALM for association with cerebrospinal fluid biomarkers for Alzheimer’s disease. PLoS One. 2011;6:e15918. Medline:21347408 doi:10.1371/journal.pone.0015918

196 Cruchaga C, Kauwe JS, Mayo K, Spiegel N, Bertelsen S, Nowotny P, et al. SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer’s disease. PLoS Genet. 2010;6:e1001101. Medline:20862329 doi:10.1371/journal.pgen.1001101