Changes in Color and Physiological Components of The Postharvest Mango (Mangifera indica L.) Influenced by Different Levels of GA3

*Md. Khairul Islam, 2A. K. M. Rafiul Islam, 3M. A. R. Sarkar, 4M. Z. H. Khan, and 5Shabiba Yeasmin
1Department of Crop Science and Technology, University of Rajshahi, Bangladesh; 2Department of Botany, University of Rajshahi, Bangladesh; 3Department of Genetic Engineering and Biotechnology, Jessore Science and Technology University, Jessore, Bangladesh; 4Department of Chemical Engineering, Jessore Science and Technology University, Jessore, Bangladesh; 5Department of Geology and Mining, University of Rajshahi, Bangladesh. *Corresponding author: mkihort2013@yahoo.com/ mki_crop@yahoo.com

Received : July 8, 2013
Accepted : July 30, 2013

Abstract - This experiment consisted of two popular mango varieties in Bangladesh (viz., Langra and Khirshapat) and four different levels of Gibberellic acid (GA3) solution, namely control, 100, 200 and 400 ppm. The two factors storage duration.

progressively lost physiological weight as well as extended shelf life and delayed skin color changes than Langra at all the experiments. Khirshapat. On the other hand, the Khirshapat showed better performance in achieving higher quantity of moisture, whereas Langra performed better in accumulating higher quantity of dry matter, ash, vitamin c content in all four experiments over the experiments. Only the single effect of varieties was found to be significant in most of the parameters studied. Variety the biochemical analyses in terms of physicochemical properties and shelf life of postharvest mango, were recorded and statistically analyzed for comparison among the mean values using DMRT and LSD. The results of the experiments exhibited that only the single effect of varieties was found to be significant in most of the parameters studied. Variety the Langra performed better in accumulating higher quantity of dry matter, as, vitamin c content in all four experiments over the experiments. On the other hand, the Khirshapat showed better performance in achieving higher quantity of moisture, progressively lost physiological weight as well as extended shelf life and delayed skin color changes than Langra at all the storage duration.

Keywords: Postharvest mango; Gibberellic acid; physiological components.

Introduction

Mango (Mangifera indica L.) is classified as a climacteric fruit (Wang and Shiesh, 1990) and harvested before the onset of the climacteric (Mitra and Baldwin, 1997). However, when physiologically mature at 105-112 days after fruit set, to get optimum fruit quality, whereas immature fruit do not ripen normally (Jha et al., 2006; Mitra and Baldwin, 1997). Due to the differences among mango types, varieties, production conditions and locations, chemical and physiological variables have been examined to define the optimal stage of maturity for harvest (Mitra and Baldwin, 1997). Malnutrition and under nutrition have now become an alarming problem of the people of the third world countries affecting their economic and physical development. Protein–energy malnutrition, vitamin and mineral deficiencies are the most serious nutritional disorder in low income groups.

Postharvest losses and deterioration of nutritional quality of fresh fruit are the most important problems in tropical and sub- tropical regions of the world. A huge quantity of nutritious fruits is being markedly deteriorated due to the lack of proper knowledge on post harvest management practices. As a result, people do not have sufficient nutrition from fruits according to their requirements. A considerable amount of fresh fruits goes waste every year through postharvest decay. It is the most important fruit of Asia and ranks fifth world-wide in production after bananas, citrus, grapes and apples. Mango is rich source of vitamins A, C and D. Due to its excellent taste, flavour and juice, it is rightly called the king of fruits. Application of different postharvest treatments viz., paraffin coating, perforated polyethylene cover, unperforated polyethylene cover, hot water treatment and low temperature in refrigerator are very much important obstacles to normal respiration of mango fruits. These treatments strongly impede in ethylene synthesis that resulted in low respiration and delay ripening. These materials also reduced the losses and prolonging the shelf life of mango (Tefera et al., 2007; Benitez et al., 2006; Fawaz, 2006; Muy et al., 2004; Fonseca et al., 2004). Gibberellic acid (GA3) 2000 ppm gave a highly effective treatment for retarding rate (Parmar et al., 1989). If mangoes are treated with GA3 150 ppm and Bavistin 1000 ppm, both the treatment slowdown the process of ripening. Significant delay in the ripening of mango fruits was observed with Gibberellic acid (Khadar, 1992). The interaction between post-harvest treatments and storage periods was found to be significant for physical quality parameters and non-significant for chemical quality parameters, whereas storage period significantly affected both type of parameters (Singh et al., 2012). These treatments performed effectively in
reduction of postharvest decay, and extension of shelf life of mango (Ranjan et al., 2005; Dhemre and Waskar, 2004; Gautam et al., 2003; Reddy and Haripriya, 2002; Ahmed and Singh, 2000). Apparently, these treatments deteriorate the qualities of fruits to some extent, but the reduction of losses and extension of postharvest life of mango will help to increase the market price in the off seasons which play a good role in the economic development.

In the present study it was aimed to investigate the behavioral pattern of physicochemical properties of postharvest mango in the storage conditions. To select the best method for reduction of losses and extension of postharvest life of mango and to assess the shelf life of selected fruits as influenced hormonal treatments under different storage conditions.

Materials and Methods

Experimental materials
Two mango varieties namely, the Langra and the Khirshapath were selected as experimental materials. The mango varieties undertaken for investigation were collected from mango growing areas of Kansart, Shilong Upazila of Chapai Nowabgonj district and Chirghat upazila of Rajshahi district, Bangladesh. Material used as postharvest treatments (viz., GA3) was collected as analytical grade. The experiment consisted of two factors and assigned in Randomized Complete Block Design (RCBD) with three replicates. The Langra (V1) and the Khirshapat (V2) were treated with different levels of gibberellic acid, namely control (G0), 100 ppm (G1), 200 ppm (G2) and 400 ppm (G3). Each block contained 8 treatments.

Preparation of GA solution
The solution of GA3 of 100, 200, and 400 ppm was prepared by dissolving 100, 200, and 400 mg of GA3 in one litre of distilled water. The fruits of both varieties were dipped into the solution for a period of 5 minutes. Care was taken to ensure sufficient absorption of GA3 by the fruits and then they were stored at room temperature on brown paper.

Physiological weight loss of mango fruit
A specific fruit from each treatment combination of each block was taken and individually weighed using electrical balance and sometimes rough balance and then kept for ripening. The process was continued still ripening at three days interval. Percent weight loss was calculated by using the following formula:

\[
\text{Percent weight loss (WL)} = \frac{\text{IW} - \text{FW}}{\text{IW}} \times 100
\]

Where, % WL = Physiological weight loss, IW = Initial fruit weight and FW = Final fruit weight

Percent dry matter content of pulp
Percent dry matter content was calculated by using the data obtained during moisture estimation using the following formula:

\[
\text{Percent dry matter} = 100 - \text{Percent moisture content}
\]

Percent ash content of pulp
The oven-dried sample from 5.2.4 above was ashed in a muffle furnace at 600°C for 6 hours after initial preashing at 200°C and percent ash was calculated as follows

\[
\text{Percent ash} = \frac{A - I}{T} \times 100
\]

Where, A = Weight of ash and I = Initial weight of pulp

Percent moisture content of pulp
Ten g of fruit pulp from each treatment combination of each replication was taken in a porcelain crucible (which was previously cleaned, heated at 100°C, cooled and weighed). The crucible was then placed in an electrical oven at 80°C for 72 hours until the weight became constant. It was then cooled in a desiccator and weighed again.

Calculation % Moisture = IW-FW/IW x 100, Where, IW = Initial weight of pulp, FW = Final weight of oven dried pulp

Estimation of vitamin C content of mango pulp
Vitamin C of mango pulp was estimated by the titrimetric method as stated by Bessey and King (1933). Reagents: The following reagents were used for estimation of vitamin C i) 3% Metaphosphoric acid (HPO3), 3g of metaphosphoric acid was dissolved in 80 ml of acetic acid and made volume up to 100 ml with distilled water. ii) Standard vitamin C solution (0.1 mg/ml), 10mg of pure vitamin C was dissolved in 3% metaphosphoric acid and made volume up to 100 ml with this acid.

Results and Discussion
Changes in skin color
Different doses of Gibberellic acid (GA3) strongly influenced the skin color of both the fruits, namely Langra and Khirshapat (Table 1). Both varieties demonstrated the original green color at the initial day of harvesting. At 3rd day, the Langra developed into a trace in yellow color at control (G0) and light green color at 100 ppm (G1) and 200 ppm (G2) as well as held green color at 400 ppm (G3) treatment. The Khirshapat showed trace in yellow color at control, light green color at G1 and G2 treatment. But, it retained its original green color at G3 treatment. At 6th day, the Langra was noticed yellow at control (G0), yellowish green at 100 ppm (G1) and 200 ppm (G2) while light green was observed from 400 ppm (G3) treatment. On the other hand, the Khirshapat developed yellowish green, trace in yellow and yellowish green color at G0, G1, and G2 treatments, respectively but, it retained its original green color at G3 treatment.
Table 1. Changes in skin color of two mango varieties as influenced by different doses of Gibberellic acid during storage at ambient condition

| Days after storage | Varieties | Treatments | Initial | 3 | 6 | 9 | 12 | 15 |
|-------------------|-----------|------------|---------|---|---|---|----|----|
|                   | V1        | G0        | Green   | Trace in yellow | Yellow | Deep yellow | Blackish yellow | _ |
|                   | G1        | G0        | Green   | Light green | Yellowish green | Greenish yellow | Yellow | _ |
|                   | G2        | G0        | Green   | Light green | Yellowish green | Greenish yellow | Yellowish green | Yellow |
|                   | G3        | G0        | Green   | Green | Light green | Trace in yellow | Yellowish green | Greenish yellow |
|                   | G1        | G0        | Green   | Light green | Trace in yellow | Greenish yellow | Yellow | _ |
|                   | G2        | G0        | Green   | Light green | Yellowish green | Trace in yellow | Yellowish green | Yellow |
|                   | G3        | G0        | Green   | Green | Green | Trace in yellow | Yellowish green | Greenish yellow |

Table indicates: V1 = Langra, V2 = Khirshapat, G0 =Control, G1=100 ppm of GA3, G2=200 ppm of GA3, G3=400 ppm of GA3.

At 9th day, the Langra gave deep yellow color at control, greenish yellow at G1 and G2 as well as trace in yellow color at G3 treatments. Khirshapat showed yellow color at control, greenish yellow and trace in yellow at G1 and G2 treatments. But, it also retained its original green color at G3 treatment. After 12th day of storage, the Langra was found blackish yellow at control and yellow at G1 and G2 treatments. On the other hand, Khirshapat was also found blackish yellow color at G0, yellowish green and trace in yellow at G1, G2 and G3 treatments, respectively. After 15 days of storage, Langra showed no existence at control and G1 treatment yellow and yellowish green at G2 and G3 treatments, respectively. The Khirshapat completely denoted as putrefied condition at G0, and G1 treatment and yellow and yellowish green was noticed from G2 and G3 treatments, respectively.

Physiological weight loss

Varieties had highly significant variation in relation to PWL at different days after storage (Table 2). At each day, the Khirshapat (V2) gradually showed more PWL as compared to the Langra with the increase of storage duration (Table 2). The highest (10.62%) and lowest (9.72%) of PWL were recorded from the Khirshapat and the Langra at 12th day, respectively. The results explored that total PWL progressively augmented with the advancement of storage duration. The findings also elucidated that the Langra showed better performance in respect of PWL as compared to the Khirshapat. Water loss through lenticels seems to be the probable cause of physiological weight loss in the fruits during storage. Lower lenticel density in the Langra facilitated lesser water loss leading to minimum total weight loss (Azad, 2001). Singh et al. (2000) also reported more or less the same findings.

Table 2. Changes of physiological weight loss and moisture content in mango varieties during storage at ambient condition. In a column values having the same letter(s) do not differ significantly as per DMRT at 5% level; * indicates at 5% level; ** indicate at 1 % level; *** indicate at 0.1% level; NS means non –significant.

| Treatments | Physiological weight loss (%) at different days | Moisture content (%) at different days |
|------------|-----------------------------------------------|--------------------------------------|
| Variety (V)| 3  | 6  | 9  | 12 | Initial | 3  | 6  | 9  | 12 |
| V1         | 5.15 b | 6.65 b | 8.13 b | 9.72 b | 82.43 b | 83.53 b | 84.53 b | 85.36 b | 85.80 b |
| V2         | 6.05 a | 7.78 a | 9.02 a | 10.62 a | 84.36 a | 85.62 a | 86.68 a | 87.40 a | 87.85 a |
| Level of significance | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Analysis of variance of mango in terms of PWL as influenced by different doses of Gibberellic acid (GA3) showed highly significant variation at different days after storage (Figure 1). At different days, it explored that control treatment was very faster in PWL compared to G1, G2 and G3 treatments. At 12th day, the maximum PWL (11.64%) was noticed at G0 and minimum (9.09%) at G3 treatment (Figure 1). These phenomena happened might be possibly due to 400 ppm of GA3 solution reduced the metabolic activities of mango resulting in lower PWL. These results are in partial coincided with the findings of Reddy and Haripriya (2002). The combined effect of varieties and different doses of GA3 solution demonstrated significant variation in PWL at different days after storage. At different days, it denoted that various treatments combination affected in PWL gradually with the advancement of storage duration. At 12th day, there showed the maximum PWL (11.97%) at V2G0 and the minimum (8.65%) at V1G3. It also indicated that the langra lost the minimum amount of water along with G3 treatment followed by the other treatment combinations.

**Moisture content**

The analysis of variance of imposed varieties exhibited highly significant variation in moisture content at different days after storage except initial day (Table 2). At different days, it interpreted that moisture content augmented with the passing of storage duration. The increasing trend was more or less the similar from initial to 9th day and thereafter, it reduced the increasing trend due to decay. It also illustrated that each day of storage, the Khirshapat gave more moisture comparing to the Langra. The highest (87.85%) and the lowest (85.85%) were recorded from V2 and V1 at 12th day, respectively (Table 3). These results are in agreement with the findings of Azad (2001). This variation might be possible due to genetical, location, weather effect and soil quality or maturity of the fruit.

Variation among the means of different doses of GA3 solution in relation to moisture content was noticed to be significant at different days after storage except initial day (Figure 2). At different days of storage, moisture content increased in a continuous stream with the increase of storage duration. The last increased point was observed from control and G1 treatment at 6 and 9th day (Figure 2) whereas; G2 and G3 treatments produced increasingly onward. Untreated fruit gave the highest moisture content (87.40%) at 9th day and the lowest (85.30%) was recorded from G3 treatment. The increasing trend of moisture content from initial to 6th day might be possibly due to metabolic activities and osmotic pressure inside the mango fruit as well as its decreased might be due to suppression of metabolic activities resulting in decaying and drying.

The combined effect of varieties and different doses of GA3 solution in respect of moisture content showed non significant variation at different days after storage. At different days of storage, moisture content was added in mango with the increase of storage period. The treatment combinations of V2G0, V3G1 and V3G2 provided the maximum moisture content (88.40%, 88.40% and 88.80%) at 6, 9 and 12th days, respectively (Table 3). In this storage period, the lowest values (83.50%, 84.30% and 85.10%) were added from the treatment combination of V1G3. The increase of moisture content from initial to consequent day might be possible due to metabolic activities and osmotic principles and decreasing in a certain day might be due to suppression metabolic activities resulting in drying, transpiration and evaporation.

**Dry matter content**

The variation in varieties means in relation to dry matter content showed highly significant at different days after storage (Table 3). At each day, dry matter decreased successively with the passing of storage duration. It indicated that the Langra provided comparatively more dry matter comparing to Khirshapat. At initial day, the Langra produced higher (17.65%) amount of dry matter whereas the Khirshapat gave lower (15.64%) and at 12th day, the Langra received the maximum (14.20%) whereas Khirshapat received 12.15% (Table 3). These results are in partially supported by the findings of Hassain (1991). The variation in varieties means in relation to dry matter content showed highly significant at different days after storage (Table 3). At each day, dry matter decreased successively with the passing of storage duration. It indicated that the Langra provided comparatively more dry matter comparing to Khirshapat. At initial day, the Langra produced higher (17.65%) amount of dry matter whereas the Khirshapat gave lower (15.64%) and at 12th day, the Langra received the maximum (14.20%) whereas Khirshapat received 12.15% (Table 3). These results are in partially supported by the findings of Hassain (1991). The variation in varieties means in relation to dry matter content showed highly significant at different days after storage (Table 3). At each day, dry matter decreased successively with the passing of storage duration. It indicated that the Langra provided comparatively more dry matter comparing to Khirshapat. At initial day, the Langra produced higher (17.65%) amount of dry matter whereas the Khirshapat gave lower (15.64%) and at 12th day, the Langra received the maximum (14.20%) whereas Khirshapat received 12.15% (Table 3). These results are in partially supported by the findings of Hassain (1991).
The combined effect of varieties and different doses of GA3 solution on dry matter content of mango pulp exhibited non significant variation at different days after storage. At initial day, the highest dry matter content (17.80%) was obtained from the treatment combination of V1G3 which was statistically similar with the treatment combination of V1G0, V1G1 and V1G2 whereas; the lowest (15.40%) was obtained from the treatment combination of V2G0 which was also statistical similar with the combinations of V2G1 and V2G2. At 12th day, the highest value (14.90%) was noticed from the treatment combination of V1G3 and V1G0 and the lowest value (11.20%) was noticed from V2G2. The successively decrease in dry matter content with the advancement of storage period might be possibly due to breaking down the complex carbohydrates into simple molecules and H2O as well as adding water through osmotic process and metabolic activities. The decreasing of dry matter content of mango pulp was not supported by the findings of Hossain (1999).

**Ash content**

Variation in varieties means in respect of ash content of mango pulp exhibited significant variation at different days after storage except 3rd day (Table 3). At different days of storage, values of ash content decreased continuously with the passing of storage duration. It was noticed that the langra produced comparatively more ash than the Khirshapat at all days of storage. Higher (1.01%) ash content was recorded from the Langra at initial day whereas the Khirshapat gave (0.90%) and again, higher (0.81%) was gathered from the Langra and lesser achievement (0.70%) was gathered from the Khirshapat. Different doses of GA3 solution were identified as non significant variation in respect of ash content of mango pulp at different days after storage. It indicated that ash content influenced by different doses of GA3 decreased slightly from G3 treatment and markedly from control (Figure 4).

**Table 3. Dry matter and ash content of mango pulp changes in varieties during storage at ambient condition**

| Variety (V) | Initial | 3 | 6 | 9 | 12 | Initial | 3 | 6 | 9 | 12 |
|-------------|---------|---|---|---|---|---------|---|---|---|---|
| V1          | 17.65 a | 16.48 a | 15.48 a | 14.65 a | 14.20 a | 1.01 a | 0.96 | 0.90 a | 0.85 a | 0.81 a |
| V2          | 15.64 b | 14.46 b | 13.38 b | 12.61 b | 12.15 b | 0.90 b | 0.86 | 0.79 b | 0.74 b | 0.70 b |

The combined effect of varieties and different doses of GA3 solution were recorded to be non-significant variation in terms of ash content of mango at various days after storage. There was no available research finding regarding ash content of mango. It also exposted that ash content was intimately associated with dry matter content. The results of the present study elucidated that ash content decreased in relation to dry matter content.

**Vitamin C content**

Differences between two varieties in relation to vitamin C content of mango pulp were highly significant at different days after storage. At various days of storage, it expounded that Langra showed better performance in synthesis of vitamin C as compared to Khirshapat (Table 4). It also narrated that quantity of vitamin C diminished with the advancement of storage period. At the initial day, the Langra accumulated the highest (131.65 mg/100 g) quantity of vitamin C whereas; the Khirshapat gave the lowest (45.99 mg/100 g). At 12th day, the Langra again, was notified the
highest (17.18 mg/100 g) producer of vitamin C and the Khirshapat was the lowest (9.25 mg/100 g) producer (Table 4).

These results annotated that vitamin C content successively came down with the augmentation of storage duration in both the varieties. It might be probably due to rising of ethylene synthesis resulting in oxidation of ascorbic acid. The results of the present study are in agreement with the findings of Azad (2001) and Absar et al. (1993).

Table 4. Changes of vitamin C content of mango pulp in varieties during storage at ambient condition

| Variety (V) | Initial | 3   | 6   | 9   | 12  |
|-------------|---------|-----|-----|-----|-----|
| V<sub>1</sub> | 131.65 a | 111.48 a | 64.40 a | 35.23 a | 17.18 a |
| V<sub>2</sub> | 45.99 b | 34.38 b | 19.49 b | 11.90 b | 9.25 b |

The combined effect of varieties and different doses of GA3 solution showed significant variation in respect of vitamin C content at different days after storage and ash content of mango at various days after storage. The reduction of vitamin C content in both treated and untreated mangoes at different storage period might be possible due to oxidation of ascorbic acid and GA3 dose was possibly causing delay ripening which resulted in lower oxidation of vitamin C. These results are in supported by the findings of Hossain (1999). Jain and Mukherjee (2001) also reported the similar results.

Conclusions

The increase of moisture content from initial to consequent day might be possible due to metabolic activities and osmotic principles and decreasing in a certain day might be due to suppression metabolic activities resulting in drying, transpiration and evaporation. The successively decrease in dry matter content with the advancement of storage period might be possibly due to breaking down the complex carbohydrates into simple molecules and H<sub>2</sub>O as well as adding water through osmotic process and metabolic activities. The combined effect of variety and different doses of GA3 solution were recorded to be non-significant variation in terms of ash content of mango at various days after storage. The reduction of vitamin C content in both treated and untreated mangoes at different storage period might be possible due to oxidation of ascorbic acid and GA3 dose was possibly causing delay ripening which resulted in lower oxidation of vitamin C. In future it is important to elucidate the reaction mechanism of using different growth regulators in fruits, which is also in our consideration.
References

Absar, N., Karim, M.R. and Al-amin, M. (1993). A comparative study on the changes in the physicochemical composition of ten varieties of mango in Bangladesh at different stages of maturity. Bangladesh Journal of Agricultural Research, 18: 201-208.

Ahmed, M.S. and Singh, S. (2000). Studies on extension of storage life of Amrapali mango. Orissa Journal of Horticulture, 28: 73-76.

Azad, M.I. (2001). Reduction of postharvest losses and extension of shelf life of mango. Ph.D Thesis, Department of Horticulture, Bangladesh Agricultural University, Mymensingh.

Benitez, M.M., Acedo, A.L., Jitareerat, P. and Kanlavanarat, V. (2006). Mango fruit softening response to postharvest treatments. Acta-Hort, 712: 811-816.

Dhemre, J.K. and Waskar, D.P. (2004). Effect of postharvest treatments on shelf life and quality of Kesar mango fruits during storage. Journal of Maharashtra Agricultural University, 29: 159-163.

Fawaz, S.A. (2006). Effect of postharvest treatments on physicochemical characters of mango fruits (cv. Bullock’s heart) during storage. Annual Agricultural Science Moshtohor, 44: 705-716.

Fonseca, M.J.O., Cecon, P.R., Salomao, L.C.C. and Pushmann, R. (2004). Fungicides and wax in postharvest preservation of mango haden. Acta Horticulturae, 645: 557-563.

Gautam, B., Sarkar, S.K. and Reddy, Y.N. (2003). Effect of postharvest treatments on shelf life and quality of Banganpalli mango. Indian Journal of Horticulture, 60: 135-139.

Hossain, M.M. (1999). A study of the physicochemical changes during storage and shelf life of mango. MS Thesis, Department of Horticulture, Bangladesh Agricultural University, Mymensingh.

Jain, S. K. and Mukherjee, S. (2001). Postharvest application of GA3 to delay ripening in mango (Mangifera indica L.) cv. Langra. Journal of Eco-physiology, 4: 27-30.

Jha, S.N., Kingsly, A.R.P., and Chopra, S. (2006). Physical and mechanical properties of mango during growth and storage for determination of maturity. Journal of Food Engineering, 72: 73-76.

Khader, S.E.S.A. (1992). Effect of Gibberellic acid and vapor guard on ripening, amylase and peroxidase activities and quality of mango fruits during storage. The Journal of Horticultural Science and Biotechnology, 67(6): 855-860.

Mitra, S.K. and Baldwin, E.A. (1997). Postharvest physiology and storage of tropical and subtropical fruits Mango, In: S.K. Mitra (ed.). CAB International, Wallingford, UK. p. 85-122.

Muy, R.D., Siller, J.C., Diaz, J.P. and Valdez, B.T. (2004). Storage condition and waxing affect water status and quality of mango. Revista Fitotecnia-Mexicana, 27: 201-209.

Parmar, P. B. and Chundawat, B.S. (1989). Effect of various post-harvest treatments on the physiology of Kesar Mango. Acta Horticulturae, 231: 679-684.

Ranjan, A., Raj, R.N. and Prasad, K.K. (2005). Effect of postharvest application of calcium salts and GA3 on storage life of mango (Mangifera indica L.) cv. Langra. Journal of Applied Biology, 15: 69-73.

Reddy, N.S. and Haripriya, K., (2002). Extension of storage life of mango cvs. Bangalore and Neelum. South-Indian-Horticulture, 50: 7-18.

Singh, J.N., Pinaki, A. and Singh, B.B. (2000). Effect of GA3 and plant extracts on storage behavior of mango (Mangifera indica L.) cv. Langra. Haryana Journal of Horticulture Science, 29:199-200.

Singh, A.K., Singh, C.P., Kushwaha, P.S. and Chakraborty, B. (2012). Efficacy of post-harvest treatments on fruit marketability and physico-chemical characteristics of dashehari mango. Progressive Horticulture, 44: 215-219.

Tefera, A., Seyoum, T. and Worldletsadik, K. (2007). Effect of disinfection, packaging and storage environment on the shelf life of mango. Biosystem Engineering, Oxford, UK: Elsevier, 96: 201-212.

Wang, T. and Shiesh, C. (1990). Fruit growth, development and maturity of ‘Irwin’ mango in Taiwan. Acta Horticultarae, 269: 189-196.