ON GEOMETRIC METHODS
IN WORKS BY
V. I. ARNOLD AND V. V. KOZLOV

A. D. Bruno

Keldysh Institute of Applied Mathematics, Moscow, Russia

We give a survey of geometric methods used in papers and books by V. I. Arnold and by V. V. Kozlov. They are methods of different normal forms, of different polyhedra, of small denominators and of asymptotic expansions.

Key words: geometric methods, normal form, asymptotic expansion

Introduction

In paper [1] there was given a short description of main achievements of V. I. Arnold. Below in 1–3 we give some additions to several Sections of this paper. In Sections 4, 5, 7, 8 we discuss two kinds of normal forms in papers by V. I. Arnold and by V. V. Kozlov.

Logarithmic branching of solutions to Painlevé equations are discussed in 6.

1. On the last paragraph of page 381 [1] devoted to small divisors

Arnold’s Theorem on stability of the stationary point in the Hamiltonian system with two degrees of freedom in [2] had wrong formulation (see [3, § 12, Section IVd]). Then V. I. Arnold [4] added one more condition in his Theorem, but its proof was wrong because it used the wrong statement (see [5, 6]). All mathematical world was agreed with my critics except V. I. Arnold. On the other hand, in the first proof of the same Theorem by J. Moser [7] there was a similar mistake (see [3, § 12, Section IVe]). But in [8] J. Moser corrected his proof after my critics, published in [3, § 12, Section IVe].

Concerning the KAM theory. In 1974 I developed its generalization via normal forms [9–11, Part II]. But up-to-day almost nobody understands my generalization.
2. On the last paragraph of page 384 [1] concerning higher-dimensional analogue of continued fraction

The paper [12] “Polyèdre d’Arnol’d et . . .” by G. Lachaud (1993) was presented to C.R. Acad. Sci. Paris by V. I. Arnold. When I saw the article I published the paper [13] “Klein polyhedrals . . .” (1994), because so-called “Arnold polyhedra” were proposed by F. Klein hundred years early. Moreover, they were introduced by B. F. Scubenko in 1988 as well. In 1993–2003 me and V. I. Parusnikov studied Klein polyhedra from algorithmical viewpoint and found that they do not give a basis for algorithm generalizing the continued fraction. So I proposed another approach and another sole polyhedron, which give a basis for the generalization in 3 and any dimension (see [14–18]). Now there are a lot of publications on the Klein polyhedra and their authors following after V. I. Arnold wrongly think that the publications are on generalization of the continued fraction.

3. On the last two paragraphs of page 395 [1] devoted to Newton Polygon

In that text the term “Newton polygon” must be replaced by “Newton polyhedron”. In contemporary terms I. Newton introduced support and one extreme edge of the Newton open polygon for one polynomial of two variables. The full Newton open polygon was proposed by V. Puiseux (1850) and by C. Briot and T. Bouquet (1856) for one ordinary differential equation of the first order. Firstly a polyhedron as the convex hull of the support was introduced in my paper [19] (1962) for an autonomous system of n ODEs. During 1960–1969 V. I. Arnold wrote 3 reviews on my works devoted to polygons and polyhedrons for ODEs with sharp critics “of the geometry of power exponents” (see my book [20, Ch. 8, Section 6]). Later (1974) he introduced the name “Newton polyhedron”, made the view that it is his invention and never gave references on my work. Now I have developed “Universal Nonlinear Analysis” which allows to compute asymptotic expansions of solutions to equations of any kind (algebraic, ordinary differential and partial differential) [21].

4. On non-Hamiltonian normal form

In my candidate thesis “Normal form of differential equations” [22] (1966) I introduced normal forms in the form of power series. It was a new class of them. Known before normal forms (NF) were either linear (Poincare, 1879) [23] or polynomial (Dulac, 1912) [24]. An official opponent was A.N. Kolmogorov. He estimated very high that new class of NF. Arnold put my NF into his book [25, § 23] without reference on my publication and named it as “Poincare-Dulac normal form”. So, readers of his book attributed my NF to Arnold. I saw several articles
where my NF were named as Arnold’s.

5. On canonical normalizing transformation

In [26, Ch. 7, § 3, Subsection 3.1] a proof of Theorem 7 is based on construction of a generating function $F = \langle P, q \rangle + S_l(P, q)$ in mixed coordinates P, q. Transformation from old coordinates P, Q to new coordinates p, q is given by the formulae

$$p = \frac{\partial F}{\partial q}, \quad Q = \frac{\partial F}{\partial P}. \quad (1*)$$

Here $S_l(P, q)$ is a homogeneous polynomial in P and q of order l. According to (1*), the transformation from coordinates P, Q to coordinates p, q is given by infinite series, which are results of the resolution of implicit equations (1*). Thus, the next to the last sentence on page 272 (in Russian edition) “The normalizing transformation is constructed in the form of a polynomial of order $L - 1$ in phase variables” is wrong. Indeed that property has the normalizing transformation computed by the Zhuravlev-Petrov method [27].

6. On branching of solutions of Painlevé equations

In [28, Ch. I, § 4, example 1.4.6] the Painlevé equations are successive considered. In particularly, there was find the expansion

$$x(\tau) = \tau^{-1} \sum_{k=0}^{\infty} x_k \tau^k \quad (2*)$$

of a solution to the fifth Painlevé equation. The series (2*) is considered near the point $\tau = 0$. After the substitution $\tau = \log t$, we obtain the series

$$x(t) = \log^{-1} t \sum_{k=0}^{\infty} x_k \log^k t, \quad (3*)$$

which has a sense near the point $t = 1$, where $\log t = 0$. However, from the last expansion (3*) authors concluded that $t = 0$ is the point of the logarithmic branching the solution $x(t)$. It is wrong, because the expansion (3*) does not work for $t = 0$ as $\log 0 = \infty$ and the expansion (3*) diverges. That mistake is in the first edition of the book [28] (1996) and was pointed out in the paper [29] (2004), but it was not corrected in the second “corrected” edition of the book [28].

A similar mistake is there in consideration of the sixth Painlevé equation. There for a solution to the sixth Painlevé equation, it was obtained the expansion (2*). After the substitution $\tau = \log(t(t - 1))$, it takes the form

$$x(t) = \log^{-1}(t(t - 1)) \sum_{k=0}^{\infty} x_k \log^k(t(t - 1)).$$
As the expansion (2*) has a sense near the point $\tau = 0$, the last expansion has a sense near points $t = (1 \pm \sqrt{5})/2$, because in them $t(t - 1) = 1$ and $\tau = 0$. Thus, the conclusion in the book, that points $t = 0$ and $t = 1$ are the logarithmic branching points of the solution, is non correct. The mistake was pointed out in the paper [30] (2004), but it was repeated in the second edition of the book [28]. Indeed solutions of Painlevé equations have logarithmic branching, see [31, 32].

7. On integrability of the Euler-Poisson equations

In the paper [33] Theorem 1 on nonexistence of an additional analytic integral was applied in § 3 to the problem of motion of a rigid body around a fixed point. The problem was reduced to a Hamiltonian system with two degrees of freedom and with two parameters x, y. The system has a stationary point for all values of parameters. Condition on existence of the resonance $3 : 1$ was written as equation (6) on parameters x, y. Then the second order form of the Hamiltonian function was reduced to the simplest form by a linear canonical transformation

\[(x_1, x_2, y_1, y_2) \rightarrow (q_1, q_2, p_1, p_2). \quad (4*)\]

Condition of vanishing the resonant term of the fourth order in the obtained Hamiltonian function was written as equation (7) on x, y. System of equations (6) and (7) was considered for

\[x > 0 \quad \text{and} \quad y > \frac{x}{x + 1},\]

where the system has two roots

\[x = \frac{4}{3}, \quad y = 1 \quad \text{and} \quad x = 7, \quad y = 2. \quad (5*)\]

They correspond to two integrable cases $y = 1$ and $y = 2$ of the initial problem. It was mentioned in Theorem 3. But in the whole real plane (x, y) the system of equations (6) and (7) has roots (5*) and three additional roots

\[x = -\frac{16}{3}, \quad y = 1; \quad x = -\frac{17}{9}, \quad y = 2; \quad (6*)\]

\[x = 0, \quad y = 9. \quad (7*)\]

Roots (6*) belong to integrable cases $y = 1$ and $y = 2$. But the root (7*) is out of them. Indeed the transformation (4*) is not defined for $x = 0$. If to make an additional analysis for $x = 0$, then for resonance $3 : 1$ one obtains two points: (7*) and

\[x = 0, \quad y = \frac{1}{9}. \quad (8*)\]
In both these points, the resonant term of the fourth order part of the Hamiltonian function vanishes. But points (7*) and (8*) are out of the integrable cases $y = 1$ and $y = 2$; they contradict to statement of Theorem 3 [33]. The paper [33] was repeated in the book [34, Ch. VI, § 3, Section 3]. A non-Hamiltonian study of the problem see in the paper [35, Section 5].

8. On normal forms of families of linear Hamiltonian systems

Real normal forms of families of linear Hamiltonian systems were given in [36, § 2], where formula (16) wrongly indicated the normal form corresponding to the elementary divisor λ^2: the third sum in the formula (16) has to be omitted.

The indicated mistake was reproduced in the first three editions of the book [37, Appendix 6] by Arnold. Discussions of that see in the paper [38] and in the book [39, Ch. I, Section 6, Notes to Section 1.3].

9. Conclusions

1–3 were sent to Notices of the AMS for publication as a Letter to the Editor. But Editor S. G. Krantz rejected it. I consider that as one more case of the scientific censorship in the AMS.

References

[1] B. Khesin and S. Tabachnikov, Tribute to Vladimir Arnold, Notices to the AMS, 59:3 (2012) 378–399.

[2] V. I. Arnold, Small denominators and problem of stability of motion in classical and celestial mechanics, Uspekhi Mat. Nauk 18 (1963), No. 6, 91–192 (Russian) = Russian Math. Surveys 18 (1963), No. 6, 85–191 (English).

[3] A. D. Bruno, Analytical form of differential equations (II), Trudy Moskov. Mat. Obsc. 25 (1972), 199–239 (Russian) = Trans. Moscow Math. Soc. 26 (1972), 199–239 (English).

[4] V. I. Arnold, Letter to the Editor, Uspekhi Mat. Nauk 23 (1968), No. 6, 216 (Russian); MR 38 # 3021.

[5] A. D. Bruno, On stability in a Hamiltonian system. Inst. Appl. Math., Preprint No. 7, Moscow, 1985. 12 p. (Russian).

[6] A. D. Bruno, Stability in a Hamiltonian system, Mat. Zametki 40:3 (1986), 385–392 (Russian) = Math. Notes 40:3 (1986), 726–730 (English).

[7] J. Moser, Lectures on Hamiltonian Systems, Memoires of AMS, 81 (1968).
[8] C. L. Siegel, J. K. Moser, Lectures on Celestial Mechanics, Springer–Verlag, Berlin, Heidelberg, N. Y., 1971.

[9] A. D. Bruno, The sets of analyticity of a normalizing transformation, I, II, Inst. Appl. Math., Preprints No. 97, 98, Moscow, 1974 (Russian).

[10] A. D. Bruno, Formal and analytical integral sets. Proc. Intern. Congress of Mathem. (O. Lehto, ed.). Ac. Sci. Fennica: Helsinki, 1980, v. 2, p. 807–810.

[11] A. D. Bruno, Local Methods in Nonlinear Differential Equations. Springer–Verlag: Berlin–Heidelberg–New York–London–Paris–Tokyo, 1989, 350 p. (English).

[12] G. Lauchand, Polyèdre d’Arnol’d et voile d’in cône simplicial : analogues du théóremle de Lagrange, C. R. Acad. Sci. Ser. 1, 317 (1993), 711-716.

[13] A. D. Bruno and V. I. Parusnikov, Klein polyhedrals for two cubic Davenport forms, Mat. Zametki 56:4 (1994) 9–27 (Russian) = Math. Notes 56:3–4 (1994) 994–1007 (English).

[14] A. D. Bruno, Structure of best Diophantine approximations, Doklady Akademii Nauk 402:4 (2005) 439–444 (Russian) = Doklady Mathematics 71:3 (2005) 396–400 (English).

[15] A. D. Bruno, Generalized continued fraction algorithm, Doklady Akademii Nauk 402:6 (2005) 732–736 (Russian) = Doklady Mathematics 71:3 (2005) 446–450 (English).

[16] A. D. Bruno and V. I. Parusnikov, Two-way generalization of the continued fraction, Doklady Akademii Nauk 429:6 (2009) 727–730 (Russian) = Doklady Mathematics 80:3 (2009) 887–890 (English).

[17] A. D. Bruno, The structure of multidimensional Diophantine approximations, Doklady Akademii Nauk 433:5 (2010) 587–589 (Russian) = Doklady Mathematics 82:1 (2010) (English).

[18] A. D. Bruno, New generalizations of continued fraction, I, Functiones et Approximatio 43:1 (2010) 55–104.

[19] A. D. Bruno, The asymptotic behavior of solutions of nonlinear systems of differential equations, Dokl. Akad. Nauk SSSR 143:4 (1962) 763–766 (Russian) = Soviet Math. Dokl. 3 (1962) 464–467 (English).

[20] A. D. Bruno, Power Geometry in Algebraic and Differential Equations. Elsevier Science (North-Holland), Amsterdam, 2000. 385 p.
[21] A. D. Bruno, Asymptotic Solving Nonlinear Equations and Idempotent Mathematics, Preprint No 56 of KIAM, Moscow, 2013. 31 p, http://www.keldysh.ru/papers/2013/prep2013_56_eng.pdf.

[22] A. D. Bruno, Normal form of differential equations. Dokl. Akad. Nauk SSSR 157:6 (1964) 1276–1279 (Russian) = Soviet Math. Dokl. 5 (1964) 1105–1108 (English).

[23] H. Poincaré, Sur les propriétés des fonctions définies par les équations aux différentielles partielles, Thèse, Paris, 1879.

[24] H. Dulac, Solutions d’une système d’équations différentielles dans le voisinage des valeurs singulières. Bull. Soc. Math. France 40 (1912) 324–383.

[25] V. I. Arnold, Additional Chapters of Theory of Ordinary Differential Equations, Moscow, Nauka, Fizmatlit, 1978, 304 p. (Russian) = Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag (1998). (English)

[26] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Moscow, VINITI, 1985, 304 p. (Russian) = Dynamical Systems III, Springer-Verlag, Berlin etc., 1988. (English)

[27] A. D. Bruno and A. G. Petrov, On computation of the Hamiltonian normal form, Doklady Akademii Nauk 410:4 (2006) 474–478 (Russian) = Doklady Physics 51:10 (2006) 555–559 (English)

[28] V. V. Kozlov, S. D. Furta, Asymptotics of Solutions of Strongly Nonlinear Systems of Differential Equations. Moscow, MGU, 1996. 244 p. (1st edition); Moscow and Izhevsk, Regular and Chaotic Dynamics, 2009. 312 p. (2nd edition) (Russian) = Springer, 2013, 262 p. (English)

[29] A. D. Bruno and E. S. Karulina, Expansions of solutions to the fifth Painlevé equation, Doklady Akademii Nauk 395:4 (2004) 439–444 (Russian) = Doklady Mathematics 69:2 (2004) 214–220 (English)

[30] A. D. Bruno and I. V. Goryuchkina, Expansions of solutions to the sixth Painlevé equation, Ibid. 395:6 (2004) 733–737 (Russian) = Ibid. 69:2 (2004) 268–272 (English)

[31] A. D. Bruno and A. V. Parusnikova, Local expansions of solutions to the fifth Painlevé equation, Doklady Akademii Nauk 438:4 (2011) 439–443 (Russian) = Doklady Mathematics 83:3 (2011) 348–352. (English)
[32] A. D. Bruno and I. V. Goruchkina, Asymptotic expansions of solutions of the sixth Painlevé equation, *Trudy Mosk. Mat. Obs.* 71 (2010) 6–118 (Russian) = *Transactions of Moscow Math. Soc.* 71 (2010) 1–104 (English).

[33] V. V. Kozlov, Non-existence of analytic integrals near equilibrium positions of Hamiltonian systems, *Vestnik of Moscow University*, No 1 (1976) 110–115 (Russian).

[34] V. V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, Izhevsk, Udmurtskii State University, 1995. 432 p. (Russian) = Symmetries, Topology and Resonances in Hamiltonian Mechanics, Springer-Verlag, Berlin Heidelberg, 1996. (English)

[35] A. D. Bruno, Analysis of the Euler-Poisson equations by methods of Power Geometry and Normal Form, *Prikladnaja Matem. Mekhan.* 71:2 (2007) 192–227 (Russian) = *J. Appl. Math. Mech.* 71:2 (2007) 168–199. (English)

[36] D. M. Galin, Versal deformations of linear Hamiltonian systems. *Trudy Semin. Petrovskogo* 1 (1975) 63–74 (Russian) = Sixteen Papers on Differential Equations, *Amer. Math. Soc. Transl.* Ser. 2, 118 (1982) 1–12 (English).

[37] V. I. Arnold, Mathematical Methods in Classical Mechanics, 1st edition (1974), 2nd edition (1979), 3rd edition (1989). Nauka, Moscow (Russian) = Springer-Verlag, New York, 1978. (English)

[38] A. D. Bruno, The normal form of a Hamiltonian system. *Uspehi Mat. Nauk* 43:1 (1988) 23–56 (Russian) = *Russian Math. Surveys* 43:1 (1988) 25–66 (English).

[39] A. D. Bruno, The Restricted Three-Body Problem: Plane Periodic Orbits. Nauka, Moscow, 1990. 296 p. (Russian) = The Restricted 3-Body Problem: Plane Periodic Orbits. Walter de Gruyter, Berlin-New York, 1994. 362 p. (English)