AVIAN DIVERSITY AND DENSITY ESTIMATION OF BIRDS OF THE INDIAN INSTITUTE OF FOREST MANAGEMENT CAMPUS, BHOPAL, INDIA

Anjali Aggarwal ¹, Govind Tiwari ² & Sprih Harsh ³

¹ Consultant, Gujarat Tourism Opportunity Limited, Haveli Arcade, Sector - 11, Gandhinagar, Gujarat 382011, India
Present address: Aasha Villa, Gayatri Park, Kalawad Road, Rajkot, Gujarat 360001, India

² Project Officer, Foundation for Ecological Security, A-1 Madhuram Park, Near Srinathji Society, Ganesh Crossing, Anand, Gujarat 388001, India
Present address: 2548 - ‘Om Bhavan’, 4th Crossing, Chandpole Bazaar, Jaipur, Rajasthan 302001, India

³ Senior Project Officer, WWF-India, House No. 30, Datt Garden View, Near Tilhari Sports Club, Jabalpur, Madhya Pradesh 482021, India
Present address: anjali.aggarwal191989@gmail.com, ² govindtiwari007@yahoo.co.in, ³ sprih.harsh@gmail.com (corresponding author)

Abstract: A study to find out the bird diversity at the Indian Institute of Forest Management (IIFM), Bhopal, was carried out over a period of nine months from July 2012 to March 2013. IIFM is located on a hill facing Bhadbhada barrage in Bhopal. Physiographically the area is classified as Vindhyan Hills. A total of 106 bird species belonging to 52 families were recorded during the study covering an area of about 93 hectares. The study area was divided into three major habitat types: open scrub, dry deciduous, and urbanized. Bird species were classified into eight feeding guilds: carnivore, ground insectivore, sallying insectivore, canopy and bark insectivore, nectar insectivore, general insectivore, frugivore and water birds. Of the total 106 species observed, 27 species were recorded as winter visitors. Density analysis was done using DISTANCE software and density was found out to be 32.7 birds per hectare. Rank abundance curve was used for assessing species composition in different habitats and during different seasons. In terms of both richness and evenness, open scrub scored the highest rank (72 species, and most even distribution of species). Higher species richness with lower species evenness was recorded during winter season for all the habitats.

Keywords: Bhopal, density, avian diversity, evenness, feeding guilds, habitat, richness.

Abbreviations: AIC- Akaike information criterion; C - Carnivore; C&B - Canopy and bark insectivore; F - Frugivore; GI - General insectivore; GrI - Ground insectivore; NI - Nectar insectivore; SE - Standard error; SI - Salling insectivore; WB - water birds.

DOI: http://dx.doi.org/10.11609/JoTT.o3888.6891-902 | ZooBank: urn:lsid:zoobank.org:pub:E4384F6F-84D7-46AB-B1E4-A7B8E93CD9B2

Editor: Rajiv Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India. Date of publication: 26 February 2015 (online & print)

Manuscript details: Ms # o3888 | Received 25 December 2013 | Final received 17 December 2014 | Finally accepted 13 February 2015

Citation: Aggarwal, A., G. Tiwari & S. Harsh (2015). Avian diversity and density estimation of birds of the Indian Institute of Forest Management Campus, Bhopal, India. Journal of Threatened Taxa 7(2): 6891–6902; http://dx.doi.org/10.11609/JoTT.o3888.6891-902

Copyright: © Aggarwal et al. 2015. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.

Funding: None.

Competing Interest: The authors declare no competing interests.

Author Details: Author Details: SPRIHK HARSH is currently working in Satpuda Maikal Landscape, Tiger Conservation Programme (WWF-India). She is looking after conservation of corridors in the landscape for providing a secure dispersal to tiger, co-predators and prey species between different tiger reserves. ANJALI AGGARWAL was worked for Gujarat Tourism Opportunity Liminiove and Nature Conservation Foundation as a research affiliate in Pakke Tiger Reserve, Arunachal Pradesh on a study to understand factors affecting hornbill breeding success during the breeding season. GOVIND TIWARI worked with FES and involved in various development and conservation oriented projects in southern Rajasthan. He has also been involved in a study to understand the ecology of Sloth Bear in southern Rajasthan near Phulwari and Kumbhalgarh Wildlife sanctuaries.

Author Contribution: SH contributed in carrying out the study in the field and in the analysis part and played a major role in documenting and preparing the research paper. AA contributed in analysis part and the field survey. GT played a major role in carrying out this study in the field and assisted in the writing part.

Acknowledgements: We sincerely thank our professor and guide Dr. Advait Edgaonkar, Faculty at Indian Institute of Forest Management, Bhopal for helping throughout during our study, for providing his valuable inputs at all the stages - field survey, data analysis and paper writing.
INTRODUCTION

Birds are some of the most prominent species of the Earth’s biodiversity and being sensitive to environmental changes they act as key indicators for assessing the status of ecosystem health (Taper et al. 1995; Olechnowski 2009). Assessing the bird diversity of a habitat over time and space is one of the key issues for avian community ecologists. Richness, abundance and community composition are often used by ecologists to understand the diversity of species in their natural occurrence (Magurran 2004).

The bird community structure is affected by changes in vegetation structure either due to natural or any human induced disturbances (Maurer 1981; Wiens 1989; Rahayuningasih et al. 2007). Talking about disturbances when two such disturbances occur simultaneously or in quick succession they might lead to a compound disturbance that by impacting ecological resilience and recovery (Buna & Wessman 2011; Harvey et al. 2014) may result in ecological surprises (Paine et al. 1998). Wild fire and simultaneous outbreak in insects like bark beetle can be categorized as one such disturbance. Contrary to general belief of this disturbance having a negative impact on the abundance of bird species, many studies have found that bird species were more abundant post fire when compared with burn free areas (Hutt 1999; Kotliar et al. 2002). This also leads to a change in composition of bird species by addition of certain sallying, canopy and bark insectivorous species.

The change in vegetation composition could impact the quality and quantity of habitat for birds in terms of food, water and cover which can further affect the diversity, abundance and distribution of birds (Western & Grimsdell 1979).

In order to prioritize the future conservation of species, understanding the effect of habitat on bird community structure is important (Zakaria et al. 2011). In the long run, the relative value of different habitats and conservation importance of sites can be assessed by investigating the diversity of birds present at those sites (Bensizerara et al. 2013).

Many researchers have already documented the response that avian diversity shows to different vegetation composition structure (MacArthur & MacArthur 1961), and have also demonstrated that avian diversity increases with an enhanced level of vegetation (Wiens 1969).

This study aims to investigate the bird community structure, bird diversity and density at the IIFM campus. An effort has also been made to prepare a checklist of its bird species. In this paper the bird community structure and composition in different habitats of the campus has been documented. The study also demonstrates the change in density and composition of bird species after an outbreak of fire. There are areas in the campus where human disturbances like logging, grazing are being practiced. The study will assess the differences in avian community among these areas and how are they being impacted by them.

MATERIALS AND METHODS

Study area

The study was done in the Indian Institute of Forest Management, Bhopal (23.208371° N & 77.384417°E), from July 2012 to March 2013. The location of the campus, built on a hill surrounded by water on three sides, along with a wide range of climatic conditions that it passes through brings in diverse structure of habitats. The major types of vegetation include grasslands, open scrub forest, dry deciduous forest and bamboo groves. The study was conducted in 12 transects covering an area of 93 hectare campus (Image 1).

For our study, transects were divided into three habitats according to general landscape attributes and vegetation present there. The chief habitat types were:

(i) Open scrub comprising mainly grasslands and scarce vegetation of Leucaena leucocephala.
(ii) Dry deciduous comprising grass species, Hardwickia binata, Scrubs, Azadirachta indica.
(iii) Urbanized human inhabited areas like the faculty block, academic block and so on.

The details about transects and habitats into which the campus was divided is given in Table 1. These habitats are also structured by different levels of human disturbance varying from activities like logging, cattle grazing, human settlements and presence of domestic dogs.

Bird survey

The bird population was recorded using the belt transect method (Cunningham et al. 2006). During a transect walk, the observer recorded data on the sightings of bird species, number of individuals sighted and perpendicular distance from the line at which the species was sighted. Only those observations lying within 20m of either side of the transect line were recorded. The survey was conducted either during the morning time zone (between 07:00–09:00 hr) or during the evening time zone (between 16:00–18:00 hr) when...
there is maximum bird activity (Cunningham et al. 2006; Simons et al. 2006).

Feeding guilds

The study of avian feeding guilds is important for understanding the complexity of ecosystem structure and for providing updated information on each type of habitat in the ecosystem (Azman et al. 2011). A feeding guild may be defined as a group of species that have similar feeding or foraging habits (Hutto 1985).

Eight feeding guilds were identified in the study area: carnivore (C), frugivore (F), canopy and bark insectivore (C&B), general insectivore (GI), ground insectivore (Gri), nectar insectivore (NI), sallying insectivore (SI) and water birds (WB).

Density estimation

The Distance sampling method was used to estimate bird density using detection probability as a function of distance (Simons et al. 2006; Somersho et al. 2006;
Broekema & Overdyck 2012). The detection function was fitted for uniform models with cosine and simple polynomial function as well as half-normal models with cosine and hermite polynomial expansion. AIC value was further used to select the best fitting model. DISTANCE 6.0 was used to calculate density estimates. (Norvel et al. 2003).

For this study, the data was segmented on the basis of season - monsoon (from August to September), autumn (from October to November), winter (from December to 2nd week of February) and spring (from 3rd week of February to March) and on the basis of feeding guilds within different habitat types.

Bird species diversity and abundance

To assess the distribution and differences in the abundance of birds between different habitats, the rank abundance curve (Magurran 1988) was plotted to assess the structure of bird communities in different habitats using the percent of total sample for each species as its index of abundance (Simons et al. 2006). Rank abundance curves were generated for avian assemblages at each site. The diversity of site increases as the slope of curve approaches zero. Steepness of the slope defines evenness at a site; if it is less steep it means a more even distribution of species.

RESULTS

We recorded a total of 106 species of birds, in which, 10 carnivore, 21 ground insectivore, 27 general insectivore, one frugivore, four canopy and bark insectivore, three nectar insectivore, 13 sallying insectivore and 27 water birds were recorded.

Density estimate

A half normal key estimator was selected by DISTANCE as detection model. The result was found for the whole campus in terms of density of clusters, individual density and mean cluster size (Table 2).

The population density for cluster was found to be 18.64 (SE=4.49) birds per hectare while individual density was found to be 32.75 (SE=7.92) per hectare. The mean cluster size was 1.84 per hectare. Fig. 1 shows the detection probability distribution for the whole campus.

The population was further estimated on the basis of habitat and seasons (Tables 3, 4). In the dry deciduous habitat, which combined DD1 to DD5 transects, the population density for the cluster was found to be 36.22 (SE 11.67) birds per hectare while individual density was found to be 60.52 (SE 19.55) per hectare. The mean cluster size was 1.64 birds per hectare. In open scrub, which combined OS1 to OS5 transects, the population density for the cluster was found to be 14.52 (SE 3.88) birds per hectare while individual density was found to be 25.79 (SE 6.91) per hectare. The mean cluster size was 1.93 birds per hectare. In the urbanized habitat which combined U1 and U2 transects, the population density for the cluster was found to be 13.82 (SE 2.28) birds per hectare while individual density was found to be 26.81 (SE 4.72) per hectare. The mean cluster size was 2.15 birds per hectare. Detection probability distribution for all three habitats can be found in Appendix 2 which shows that distribution was quite similar in the dry deciduous and the open scrub habitat compared to that of the urbanized habitat.

In the autumn season the density of birds was found to be 12.65 birds per hectare while the mean cluster size was estimated to be 1.93. For the winter season the density of birds was found to be 14.93 birds per hectare with the mean cluster size as 1.82. For the monsoon season the density was estimated to be 2.54 birds per hectare with the mean cluster size of 1.63. In the spring the density was found to be 3.42 birds per hectare and the mean cluster size was found to be 1.92. Appendix 3 shows the detection probability distribution in all the four seasons in campus which indicates that the autumn and the winter have quite similar probability distribution compared to the monsoon and the spring’s distribution.

IIFM (1300)	Estimate	Percent CV	95% Confidence Interval	
D5	18.65	24.12	11.61	
D2	32.76	24.18	15.25	
Mean cluster Size	1.84	2.35	1.76	1.93

Figure 1. Detection probability distribution for IIFM campus
Table 3. Habitat wise population density of IIFM campus

Habitat Type	Estimate	Percent CV	95% confidence interval
Dry deciduous - 550	36.22	32.22	19.42 - 67.57
D	60.52	32.30	32.40 - 113.05
Mean Cluster Size	1.64	2.99	1.55 - 1.75
Open scrub – 596	14.52	26.68	8.68 - 24.31
D	25.79	26.82	15.37 - 43.28
Mean cluster size	1.93	3.71	1.80 - 2.09
Urbanized – 154	13.82	16.49	4.52 - 42.30
D	26.81	17.57	11.46 - 62.74
Mean cluster size	2.149	7.11	1.87 - 2.48

Table 4. Season wise population density of IIFM campus

Season	Estimate	Percent CV	95% Confidence Interval
Monsoon - 243	2.54	42.41	1.13 - 5.69
D	3.75	42.56	1.66 - 8.42
Mean Cluster Size	1.63	5.19	1.47 - 1.81
Autumn - 419	6.90	18.03	4.74 - 10.06
D	12.65	18.30	8.64 - 18.51
Mean Cluster Size	1.93	4.13	1.78 - 2.10
Winter - 450	8.22	25.12	4.78 - 14.14
D	14.93	25.29	8.57 - 25.43
Mean Cluster Size	1.82	3.82	1.69 - 1.96
Spring - 188	3.42	21.88	2.13 - 5.49
D	5.68	22.43	3.52 - 9.17
Mean Cluster Size	1.92	6.86	1.67 - 2.20

Bird species diversity

The rank abundance curve indicates that the species diversity and composition differed in the entire habitat. The open scrub, with the highest number of individuals (596) and the highest number of species (72) ranks as the most diverse habitat as the distribution is also very even (Fig. 2). The number of individuals in the dry deciduous was 550 with 51 species while in the urbanized habitat, the number of individuals was 156 with 35 species (Figs. 3, 4).

Thirty-eight species were common to both the open scrub and the dry deciduous. Open scrub was populated with a higher number of species belonging to the carnivore and the ground insectivore guild while the dry deciduous was populated with more species in the nectar insectivore guild, with the rest remaining almost the same. In the urbanized habitat, there were no species belonging to the canopy and bark insectivore guild and relatively a very low number of individuals in other categories too (Table 5).
Density estimate during an outbreak of fire in the open scrub habitat

Before the fire took place, the density of birds was found to be 1.35 birds per hectare while after this event the density increased to 8.80 birds per hectare (Table 6).

Table 7 shows the density of birds in the fire affected area and in the area unaffected by fire one month after the outbreak of fire. Fire affected area had density of 13.65 birds per hectare while fire unaffected area had density of 6.47 birds per hectare (Table 7).

DISCUSSION

The present study produced a reliable estimate of birds through direct observations on line transects that were repeatedly walked for over a considerable period of time (Anderson 1983; Kumara 2012; Laure 2007).

The campus has a rich variety of strata and guilds owing to its topography and different habitats like water bodies, open scrub area, dry deciduous area and areas of human settlement, which enhanced the diversity of birds.

In terms of bird community structure, it was largely similar in the open scrub and the dry deciduous habitats as compared to that of the urbanized habitat. The open scrub and the dry deciduous shared 38 common species. There were more numbers of ground insectivore in the open scrub than in the dry deciduous. This high number of species was attributed to the forest fire (Raphael et al. 1987; Adeney et al. 2006; Martin et. al 2006) that took place in October, 2012 in the open scrub. It also affected the diversity of the grassland in terms of a reduction in sightings of nightjars and the addition of a whole new feeding guild of ground insectivores. This was the direct result of an increase in the number of insects after the fire (Russell et al. 2009) which led to the arrival of birds like larks—Ashy Crowned Sparrow Lark *Eremopterix griseus*, Rufous-tailed Lark *Ammonames phoenicura*, Oriental Sylark *Alauda gulgula*, Skykes’s Lark *Galerida deva*, Indian Bushlark *Mirafra erythroptera* in groups of 10–20, Common Hoopoe *Upupa epops*, and Pipits—Paddyfield Pipit *Anthus rufulus*, Tree Pipit *Anthus trivialis*. The analysis of the data of one month before and one month after the fire showed an increase in density by 6.51 times after the fire took place.

To account for changes in the density due to seasonal variations, the after fire density of two adjacent transects, i.e., one affected by the fire and one not affected by the fire was carried out. Both of these transects were in the grassland area. The data taken into consideration was for the duration of one month after the fire.

The bird density in the fire affected area was 2.11 times greater than the unaffected area for the same duration for the same habitat.

Habitat to a large extent determined the species composition (Fig. 5). Out of the three studied habitats,
the dry deciduous habitat was found to have a maximum density of canopy and bark insectivores. This can be attributed to the presence of suitable tree species in the habitat apart from its close proximity to an agricultural area (Abdar 2014).

The presence of canopy and bark insectivores can also be favored by the presence of appropriate vegetation cover with trees having appropriate dimensions for different activities of these species (Rajpar & Zakaria 2011).

The urbanized habitat showed the highest density of ground insectivores due to the abundant presence of Jungle Babblers Turdoides striata in the academic block and faculty residence transects, which can be attributed to the presence of tree species providing appropriate fruit and seed to the species. Black DrongoDicrurus macrocercus, Ashy Prinia Prinia socialis were seen in all the transects and the habitat types. Red-vented Bulbul Pycnonotus cafer, Jungle Babbler Turdoides striata were seen all over the major habitat types except the grassland area. Their presence all over the campus can be explained on the basis of their generalist nature and good adaptation capability to any environment and even to human settlements (Sharat et al. 2011).

The water birds were mostly recorded from the open scrub habitat due to the presence of the Bhadbhada barrage surrounding the grassland area of IIFM.

The differences in bird community structure among the habitats can also be explained by the different levels of human disturbances experienced by these habitats. Among the three habitats, the urbanized area experienced the highest level of disturbance mostly due to the location of this habitat. Between the open scrub and the dry deciduous, the latter was more disturbed due to the high level of logging and cattle grazing (Gregory et al. 2010). Logging can change forest structure in terms of an increase in gap areas and a decrease in cover (Johns 1985). Birds are generally the first group of vertebrates to respond to any logging (Johns 1988). Many studies have reported changes in species diversity with higher species richness in less disturbed forests as compared to disturbed forests (Johns 1985, 1991; Thiollay 1992; Riffell et al. 1996; Marsden 1997). This also supports the result that we obtained in our study in terms of different bird community structure.

Barring a few exceptions, the maximum feeding guild density was observed in the winter season (Fig. 6). The canopy and bark insectivores were found to be at a maximum in the autumn season.

The frequency at which Rose-ringed Parakeet Psittacula krameri was seen was the greatest in the Monsoon season which gradually reduced towards the winter season. During the winter season species like Common Kestrel Falco tinnunculus and Harrier spp. Eurasian Marsh Harrier Circus aeruginosus, Montagu’s Harrier Circus pygargus, Pallid Harrier Circus macrourus visited the campus, particularly in the open scrub habitat. These birds, apart from being winter visitors (Rieger 2005), were also favored by the outbreak of fire which took place in the open scrub habitat in October owing to the creation of open areas and suitable perching points to capture aerial prey and small mammals in open areas (Wiles et al. 2000; Narwade et al. 2011; Himanshu et al. 2012).
CONCLUSION

In the present study we have showed that seasonality along with change in the habitat structure may influence bird assemblage organization over time. The abundant populations of the Jungle Babbler, the Black Drongo and the Red-vented Bulbul shows an increasing urbanization in the vicinity and even inside the campus. An increase in human settlements will cause more danger to avian species. A more eco-friendly urbanization is essential to curb any more negative human interferences in the areas. Further research on appropriate conservation mechanisms and management techniques with the ultimate conservation goal of changing urban environments into species rich ecosystems are required.

REFERENCES

Abdar, M.R. (2014). Seasonal Diversity of Birds and Ecosystem Services in Agricultural Area of Western Ghats, Maharashtra State, India. Journal of Environmental Science, Toxicology And Food Technology 8(1): 100–105.

Adeney, J.M., J.R. Ginsberg, G.J. Russell & M.F. Kinnaird (2006). Effects of an ENSO-related fire on birds of a lowland tropical forest in Sumatra. Animal Conservation 9(3): 292–301.

Azman, M.N., N.S. Latip, M.S. Sah & N.J. Shafie (2011). Avian Diversity and Feeding Guilds in a Secondary Forest, an Oil Palm Plantation and a Paddy Field in Riparian Areas of the Kerian River Basin, Perak, Malaysia. School of Biological Sciences. Universiti Sains Malaysia, 22(2):45–64.

Bensizerara, D., H. Chenchouni, A.S. Bachir & M. Houhamdi (2013). Ecological status interactions for assessing bird diversity in relation to a heterogeneous landscape structure. Avian Biology Research 6(1): 67–77.

Broekema, I. & O. Overdyck (2012). Distance sampling to estimate densities of four native forest bird species during multi species surveys. New Zealand Journal of ecology 36(3): 353–364.

Buma, R. & C.A. Weessman (2011). Disturbance interactions can impact resilience mechanisms of forests. Ecosphere 2:1–13.

Cunningham, M.A., D.H. Johnson & D.N. Svingen (2006). Estimates of Breeding Bird Populations in the Sheyenne National Grassland, North Dakota. The Prairie Naturalist 38(1): 50–67.

David, R. & K.P. Anderson (1983). Density estimation of small mammal populations using a trapping web and distance sampling methods. The Ecological Society of America 64(4): 674–680.

Gregory, N.C., R.L. Sensenig & D.S. Wilcove (2001). Effects of controlled fire and livestock grazing on bird communities in East African savannas. Conservation Biology 24: 1606–1616.

Harvey, B.J., D.C. Donato, W.H. Romme & M.G. Turner (2014). Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. Ecological Applications 24: 1608–1625; http://dx.doi.org/10.1890/13-1851.1

Himanshu, S.P., P.M. Pratuysh & K.S. Hemanta (2012). Birds of Hadagarh Wildlife Sanctuary, Odisha, Eastern India. World Journal of Zoology 7(3): 221–225.

Hutto, R.L. (1985). Habitat Selection in Birds. Academic Press. Inc., Montana, 455.

Hutto, R.L. (1995). Composition of bird communities following stand-replacement fires in northern rocky mountain (USA) conifer forests. Conservation Biology 9: 1041–1058.

Johns, A.D. (1985). Selective logging and wildlife conservation in tropical rain forest: Problems and recommendations. Biological Conservation 31: 355–375.

Johns, A.D. (1988). Effects of selective timber extraction on rainforest structure and composition and some consequences for frugivores and folivores. Biotropica 20(1): 31–37.

Kotliar, N.B., S.J. Hejl, R.L. Hutto, V.A. Saab, C.P. Melcher & M.E. McFadden (2002). Effects of fire and post fire salvage logging on avian communities in conifer dominated forests of the western United States. Studies in Avian Biology 25: 49–64.

Kumara, S.R. (2012). Estimating Asian Elephant Elephas maximus, density through distance sampling in the tropical forests of Biligiri Rangaswamy Temple Tiger Reserve, India. Tropical Conservation Science 5(2): 163–172.

MacArthur, R.H. & J.W. MacArthur (1961). On bird species diversity. Ecology 42: 594–598.

Magurran, A.E. (1988). Ecological Diversity and its Measurement. Princeton University Press, Princeton, NJ, 192pp.

Marsden, S.J. (1997). Changes in bird abundance following selective logging on Seram, Indonesia. Conservation Biology 12(3): 605–611.

Martin, K., A. Norris & M. Drever (2006).Effects of bark beetle outbreaks on avian biodiversity in the British Columbia interior: Implications for critical habitat management. BC Journal of Ecosystems and Management 7(3):10–24.

Maurer, B.A., L.B. McArthur & R.C. Whitmore (1981). Effect of logging on guild structure of a forest bird community in West Virginia. Ecology 35: 11–13.

Michelle, A.L., C.R. Nielsen & M.D. Grund (2007). Using Distance Sampling to Estimate Densities of White-Tailed Deer in South-Central Minnesota. The Prairie Naturalist 39(2): 57–68.

Narwade, S. & M.M. Fortade (2011). Birds of Osmanabad District of Maharashtra, India. Journal of Threatened Taxa 3(2): 1567–1576; http://dx.doi.org/10.11690/jott.c2062.1567-76

Norvel, R.E., F.P. Howe & R. Jimmie (2003). A seven-year comparison of relative-abundance and distance-sampling methods. The Auk 120(4):1013–1028.

Olechnowski, B.F. (2009). An examination of songbird avian diversity, abundance trends, and community composition in two endangered temperate ecosystems: riparian willow habitat of the Greater Yellowstone Ecosystem and a restored tallgrass prairie ecosystem, Neal Smith National Wildlife Refuge. Iowa State University.

Paine, R., M. Tegner & E. Johnsrud (1999). Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545.

Rahayuninagsih, M., A. Mardiastuti, L. Prasetyo & Y. Mulyani (2007). Bird community in Burungisland, Karimunjawa National Park, Central Java. Biodiversity 8: 183–187.

Rajpar, M.N. & M. Zakaria (2011). Bird species abundance and their correlation with microclimate and habitat variables at Natural Wetland Reserve, Peninsular Malaysia. International Journal of Zoology 2011: 17pages; http://dx.doi.org/10.1155/2011/758573

Raphael, M.G., M.L. Morrison & M.P. Yoder-Williams (1987). Breeding bird populations during twenty-five years of postfire succession in the Sierra Nevada. The Condor 89: 614–626.

Riegert, J. (2005).Ecology of urban Common Kestrels Falco tinnunculus. PhD Thesis. University of South Bohemia, ČeskéBudějovice.

Riffell, S.K., K. Gutzwiller, A. Jhons & H. Stanley (1996). Does repeated human intrusion cause cumulative declines in avian richness and abundance? Ecological Applications 6(2): 492–505.

Russell, R.E., A. Royle, V. Saab, J. Lehmkuhl, W. Block & J. Sauer (2009). Modeling the effects of environmental disturbance on wildlife communities: avian responses to prescribed fire. Ecological Applications 19: 1253–1263.

Sharat, K.P., V.P. Aditya & D. Uppenader (2011). Habitat enrichment and its impact on avian diversity: a study at GBPHEED, Kosi-Katarmal, Uttarakhand, India. Current Science 100: 11–14.

Simons, T.R., S.A. Shriner & G.L. Farnsworth (2006). Comparison of breeding bird and vegetation communities in primary and secondary forests of Great Smoky Mountains National Park. Biological Conservation 129: 302–311.
Appendix 1. Complete checklist of the birds

Family	Name	Latin Name	Conservation status	Distribution	Frequency/abundance	Feeding guilds
1 Accipitridae	Black-winged Kite	Elanus caeruleus	LC	WR	FC	Ca
2 Accipitridae	Black Kite	Milvus migrans	LC	WR	C	Ca
3 Pandionidae	Osprey	Pandion haliaetus	LC	WWV	Ir	Ca
4 Falconidae	Common Kestrel	Falco tinnunculus	LC	WWV	FC	Ca
5 Accipitridae	Shikra	Accipiter badius	LC	WR	C	Ca
6 Accipitridae	Eurasian Marsh Harrier	Circus aeruginosus	LC	WWV	Ir	Ca
7 Accipitridae	Montagu’s Harrier	Circus pygargus	LC	WWV	Ir	Ca
8 Accipitridae	Indian Spotted Eagle	Aquila hastata	V	R	Ir	Ca
9 Accipitridae	Egyptian Vulture	Neophron percnopterus	E	R	U	Ca
10 Strigidae	Spotted Owlet	Athene brama	LC	WR	FC	Ca
11 Monarchidae	Asian Paradise Flycatcher	Terpsiphone paradisi	LC	WR	U	Sl
12 Muscicapidae	Verditer Flycatcher	Eumyias thalassinus	LC	WWV	U	Sl
13 Muscicapidae	Tickell’s Blue Flycatcher	Cyanis tickelliae	LC	R	U	Sl
14 Muscicapidae	Red-breasted Flycatcher	Ficedula parva	LC	WWV	Ra	Sl
15 Muscicapidae	Bluethroat	Luscinia svecica	LC	WWV	Ra	Gl
16 Nectariniidae	Purple Sunbird	Cinnyris asiaticus	LC	WR	C	Ni
17 Passeridae	Chestnut-shouldered Petronia	Gymnoris xantocollis	LC	R	Ra	GrI
18 Zosteropidae	Oriental White Eye	Zosterops palpebratus	LC	WR	FC	Ni
19 Phylloscopidae	Common Chiffchaff	Phylloscopus collybita	LC	WWV	FC	Gi
20 Phylloscopidae	Greenish Warbler	Phylloscopus trochiloides	LC	WWV	FC	Gi
21 Alaudidae	Ashy-crowned Sparrow Lark	Eremopterix griseus	LC	WR	FC	GrI
22 Alaudidae	Rufous-tailed Lark	Ammomanes phoenicurus	LC	R	FC	GrI
23 Alaudidae	Syke’s Lark	Galerida dea	LC	R	FC	GrI
24 Upupidae	Common Hoopoe	Upupa epops	LC	WWV	FC	GrI
25 Motacillidae	Paddyfield Pipit	Anthus rufulus	LC	WR	FC	GrI
26 Motacillidae	Tree Pipit	Anthus trivialis	LC	R and WWV	Ra	GrI
27 Caprimulgida	Savanna Nightjar	Caprimulgus affinis	LC	WR	FC	Sl
28 Muscicapidae	Common Stonechat	Saxicola torquatus	LC	WWV	C	Gi
29 Tephrodornithidae	Common Woodshrike	Tephrodornis pondicerianus	LC	WR	U	Gi
30 Laniidae	Bay-backed Shrike	Lanius vitatus	LC	WR	FC	Sl
31 Laniidae	Brown Shrike	Lanius cristatus	LC	WWV	Ra	Sl
32 Ploceidae	Baya Weaver	Ploceus philippinus	LC	WR	U	GrI
33 Cisticolidae	Common Tailorbird	Orthotomus sutorius	LC	WR	U	Ni
34 Cisticolidae	Ashy Prinia	Prinia socialis	LC	WR	C	Gi
35 Cisticolidae	Jungle Prinia	Prinia sylvatica	LC	WR	FC	Gi
36 Cisticolidae	Plain Prinia	Prinia inornata	LC	WR	U	Gi
37 Cisticolidae	Grey-breasted Prinia	Prinia hodgsonii	LC	WR	U	Gi
38 Estrildidae	Scaly-breasted Munia	Lonchura punctulata	LC	WR	Ra	GrI
39 Estrildidae	Indian Silverbill	Euodice malabarica	LC	WR	C	GrI
40 Estrildidae	Red Avadavat	Amandava amandava	LC	WR	Ir	GrI
41 Coraciidae	Indian Roller	Coracias benghalensis	LC	WR	U	Gi
Family	Name	Latin Name	Conservation status	Distribution	Frequency/abundance	Feeding guilds
-----------------	--------------------------	------------------------	---------------------	--------------	---------------------	----------------
Anatidae	Northern Pintail	Anas acuta	LC	WWV	Ir	WB
Anatidae	Ruddy Shelduck	Tadorna ferruginea	LC	WWV	C	WB
Anatidae	Indian Spot-billed Duck	Anas poecilorhyncha	LC	WR	FC	WB
Podicipedidae	Little Grebe	Tachybaptus ruficolis	LC	WR	Ra	WB
Ciconidae	Painted Stork	Myiaster leucocephala	NT	WR	FC	WB
Ciconidae	Wooly-necked Stork	Ciconia episcopus	LC	WR	U	WB
Cerylidae	Pie Kingfisher	Ceryle rudis	LC	WR	Ra	WB
Alcedinidae	Common Kingfisher	Alcedo atthis	LC	WR	Ra	WB
Halcyonidae	White-throated Kingfisher	Halcyon smyrnensis	LC	WR	FC	WB
Halcyonidae	Stork-billed Kingfisher	Pelargopsis capensis	LC	WR	Ra	WB
Charadriidae	Red-wattled Lapwing	Vanellus indicus	LC	WR	FC	WB
Charadriidae	Yellow-wattled Lapwing	Vanellus malabaricus	LC	WR	Ir	WB
Recurvirostrida	Black-winged Stilt	Himantopus himantopus	LC	WWV	FC	WB
Jacanidae	Bronze-winged Jacana	Metopidius indicus	LC	WR	U	WB
Motacillidae	White-browed Wagtail	Motacilla maleropatensis	LC	WR	FC	GrI
Motacillidae	Grey Wagtail	Motacilla cinerea	LC	WWV	FC	GrI
Motacillidae	White Wagtail	Motacilla alba	LC	WWV	U	GrI
Motacillidae	Yellow Wagtail	Motacilla flava	NR	WWV	U	GrI
Phalacrocoracida	Little Cormorant	Phalacrocorax niger	LC	WR	C	WB
Phalacrocoracida	Great Cormorant	Phalacrocorax carbo	LC	WR	FC	WB
Ciconiformes	Intermediate Egret	Mesophoyx intermedia	LC	WR	FC	WB
Ciconiformes	Little Egret	Egretta garzetta	LC	WR	U	WB
Ciconiformes	Grey Heron	Ardea cinerea	LC	WWV	FC	WB
Ciconiformes	Indian Pond Heron	Ardea grayii	LC	WR	FC	WB
Scolopacidae	Common Sandpiper	Actitis hypoleucus	LC	WWV	FC	WB
Scolopacidae	Wood Sandpiper	Tringa glareola	LC	WWV	U	WB
Sternidae	Whiskered Tern	Chlidonias hybridia	LC	WWV	Ra	WB
Sternae	River Tern	Sterna aurantia	NT	WR	FC	WB
Rallidae	White-breasted Waterhen	Amauranis phoenicurus	LC	WR	Ra	WB
Rallidae	Common Moorhen	Gallinula chloropus	LC	WWV and WR	U	WB
Muscicapidae	Oriental Magpie Robin	Copyschis saularis	LC	WR	C	GI
Muscicapidae	Indian Robin	Saxicola guttiferus	LC	WR	C	GI
Corvidae	Rufous Treepie	Dendrocitta vagabunda	LC	WR	C	GI
Oriolidae	Indian Golden Oriole	Oriolus (oriolus) kundoo	LC	R	FC	CBI
Meropidae	Green Bee-eater	Merops orientalis	LC	WR and WWV	C	SI
Cuculidae	Greater Coucal	Centropus sinensis	LC	R	C	GI
Megalaimidae	Coppersmith Barbet	Megalaima haemacephala	LC	R	C	GI
Phasianidae	Rose-ringed Parakeet	Psitacula krameri	LC	WR	FC	F
Bucerotidae	Indian Grey Hornbill	Ocyxera birostris	LC	WR	FC	GI
Phasianidae	Indian Peafowl	Pavo cristatus	LC	R	C	GI
Columbidae	Laughing Dove	Stigmatopelia senegalensis	LC	WR	C	GI
Columbidae	Spotted Dove	Stigmatopelia chinensis	LC	WR	U	GI
Birds of IIFM Campus, Bhopal

Aggarwal et al.

Family	Name	Latin Name	Conservation status	Distribution	Frequency/abundance	Feeding guilds
84 Columbidae	Common Pigeon	Columba livia	LC	WR	C	GrI
85 Muscicapidae	Brown Rock Chat	Cercomela fusca	LC	R	C	GI
86 Sturnidae	Asian Pied Starling	Gnoropica contra	LC	R	U	GI
87 Cuculidae	Asian Koel	Eudynamys scolopaceus	LC	WR	FC	GI
88 Dicuridae	Black Drongo	Dicurus macrocercus	LC	WR	C	SI
89 Timaliidae	Jungle Babbler	Turdoides striata	LC	WR	C	GrI
90 Timaliidae	Large Grey Babbler	Turdoides malcolmi	LC	R	U	GrI
91 Sylviidae	Yellow-eyed Babbler	Chrysomma sinense	LC	WR	Ir	GrI
92 Campephagidae	Small Minivet	Pericrocatus cinnamomus	LC	WR	FC	CBI
93 Phasianidae	Grey Francolin	Fracolinus pondicerianus	LC	WR	FC	GrI
94 Aegithinidae	Common Lora	Aegithina titia	LC	WR	U	CBI
95 Picidae	Lesser Goldenback	Dinopium benghalense	LC	WR	U	CBI
96 Charadriidae	Little-ring Plover	Charadrius dubius	LC	WR and WWV	Ir	WB
97 Rhipiduridae	White-browed Fantail	Rhipidura aureola	LC	WR	Ra	SI
98 Sylviidae	Lesser Whitethroat	Sylvia curruca	LC	WWV	Ir	GI
99 Hirundinidae	Wine-tailed Swallow	Hirundo smithii	LC	WR	U	SI
100 Hirundinidae	Streak-throated Swallow	Petrochelidon fluvicola	LC	R	Ir	SI
101 Muscicapidae	Black Redstart	Phoenicurus ochrurus	LC	WWV	U	SI
102 Muscicapidae	Pied Bushchat	Saxicola caprata	LC	WR	U	GI
103 Passeridae	House Sparrow	Passer domesticus	NT	WR	Ra	GrI
104 Corvida	House Crow	Corvus splendens	LC	WR	Ra	GI
105 Sturnidae	Common Myna	Acridotheres tristis	LC	WR	Ra	GI
106 Pycnonotidae	Red-vented Bulbul	Pycnonotus cafer	LC	WR	C	GI

Note: LC - Least concern; V - Vulnerable; E - Endangered; NT - Not Threatened; NR - Not Recognized; WR - Widespread Resident; R - Resident; WWV - Widespread Winter Visitor; WSV - Widespread summer visitor; FC - Fairly Common; C - Common; Ra - Rare; Ir - Irregular; U - Uncommon; CBI - Canopy and Bark Insectivore; GI - General Insectivore; GrI - Ground Insectivore; WB - Water Birds; SI - Sallying Insectivore; Ca - Carnivore; F - Frugivore; NI - Nectar Insectivore

Somersho, S.G., D.J. Twedt & R. Bruce (2006). Combining breeding bird survey and distance sampling to estimate density of migrant and breeding birds. *The Condor* 108: 691–699.

Taper, M.L., K. Bohning-Gaese & J.H. Brown (1995). Individualistic responses of bird species to environmental change. *Oecologia* 101: 478–486.

Thiollay, J.M. (1995). The role of traditional agroforests in the conservation of rain forest birds diversity in Sumatra. *Conservation Biology* 9(2): 335–353.

Western, D. & J.J.R. Grimsdell (1979). Measuring the distribution of animals in relation to the environment. Handbook No. 2, African Wildlife Leadership Foundation, Nairobi.

Wiens, J.A. (1969). An approach to the study of ecological relationships among grassland birds. *Ornithological Monographs* 8: 1–93.

Wiens, J.A. (1989). The Ecology of Bird Communities: Process and Variation - Vol. 2. Cambridge University Press, 316pp.

Wiles, G.J., D.J. Worthington, R.E. Beck, H.D. Pratt, C.F. Aguon & R.L. Pyle (2000). Noteworthy bird records for Micronesia, with a summary of raptor sightings in the Mariana Islands, 1988–1999. *Micronesica* 32(2): 257–284.
Appendix 2. Detection probability distribution of three habitats

Appendix 3. Detection probability distribution of species in four different seasons