This is the accepted manuscript made available via CHORUS. The article has been published as:

Exact electromagnetic response of Landau level electrons
Dung Xuan Nguyen and Andrey Gromov
Phys. Rev. B 95, 085151 — Published 28 February 2017
DOI: 10.1103/PhysRevB.95.085151
**Exact Electromagnetic Response of Landau Level Electrons**

Dung Xuan Nguyen\(^1\)\(^*\) and Andrey Gromov\(^2,\)\(^†\)

\(^1\)Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
\(^2\)Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA

(Dated: January 26, 2017)

We present a simple method that allows to calculate the electromagnetic response of non-interacting electrons in strong magnetic field to arbitrary order in the gradients of external electric and magnetic fields. We illustrate the method on both non-relativistic and massless Dirac electrons filling \(N\) Landau levels. First, we derive an exact relation between the electromagnetic response of the non-relativistic and Dirac electrons in the lowest Landau level. Next, we obtain a closed form expression for the polarization operator in the large \(N\) (or weak magnetic field) limit. We explicitly show that in the large \(N\) limit the random phase approximation (RPA) computation of the polarization tensor agrees - in leading and sub-leading order in \(N\) - with a Fermi liquid computation to all orders in the gradient expansion and for arbitrary value of the g-factor. Finally, we show that in the large \(N\) limit the non-relativistic polarization tensor agrees with Dirac’s in the leading and sub-leading orders in \(N\), provided that Berry phase of the Dirac cone is taken into account via replacement \(N \to N + \frac{1}{2}\).

PACS numbers:

I. INTRODUCTION

A. Electrons in magnetic field

Two-dimensional non-interacting electrons subject to the strong external magnetic field organize into \(N\) highly degenerate Landau levels. Such many-body states are gapped when the chemical potential lies anywhere between the Landau levels and exhibit the same qualitative behavior when electrons have either Dirac or non-relativistic nature. While qualitative features such as quantized Hall conductance and absence of the ground state degeneracy on a torus are identical, there is a quantitative difference in the local linear response functions. Detailed investigation of these fine distinctions as well as certain universalities in the behavior of both lowest Landau level and large \(N\) limit of the linear response functions is the objective of the present paper. Additionally, our results should be useful in the analysis of interacting FQH states using the composite fermion\(^1\) and boson\(^2\) approaches.

We will study the electromagnetic response of Landau level electrons in great detail. To start we present a straightforward method that allows to calculate linear response functions in the form of the generating functional for both relativistic and non-relativistic electrons filling an arbitrary number of Landau levels. In the non-relativistic case some of the results are available\(^3,4\), however we present a simpler method of derivation as well as provide a number of new results. This method was first used by one of us in Ref.\(^5\), but only a few results were presented. We will explain in detail how to calculate the linear response to arbitrary order in the expansion in momentum and frequency and give a compact expression for the polarization tensor in both non-relativistic and Dirac cases. In addition to the general expressions we present the leading order corrections in momentum and frequency expansion for all linear response functions in explicit form.

With the exact expressions at hand we will investigate the linear response of the lowest Landau level (LLL) in the limit when the mixing between the Landau levels is neglected. It turns out that linear response of the Dirac electrons can be extracted from the linear response of the non-relativistic electrons via simple relation \((110)\), which is valid to all orders in the gradient expansion. We check this relation via an explicit computation as well as using the well-known relation between momentum-dependent Hall conductivity and the static structure factor.

Next, we will meticulously investigate the validity of the semiclassical approximation in the large \(N\) limit. Our results on the large \(N\) limit are summarized in Fig 1. In this limit the electrons form a Fermi sphere and experience a weak magnetic field. The linear response can be calculated either using Landau’s Fermi liquid (FL) theory or by directly taking the large \(N\) limit of the exact expressions. We will explain how to include a finite g-factor \(g\) into the Fermi liquid theory and evaluate the polarization tensor exactly. We will find that in the non-relativistic case the Fermi liquid and direct large \(N\) limit agree in the leading and sub-leading order in \(N\) to all orders in the gradient expansion and for arbitrary value of the g-factor (provided the latter was correctly accounted for in the FL theory, which we explain how to do). The large \(N\) limit of polarization operator of Dirac electrons agrees in leading and sub-leading order in \(N\) with the FL
The correlation functions obtained this way are always time-ordered.

In the present paper we will be interested in the linear response functions, i.e. the two-point functions with perturbations of the external fields turned off. For example, the polarization tensor encodes linear response of electric current to the electric field and is given by

$$\Pi^{\mu\nu}(x_1, x_2) = \left( \frac{\delta}{\delta A_\mu(x_1)} \frac{\delta}{\delta A_\nu(x_2)} W[\delta A_\mu] \right) \bigg|_{\delta A_\mu=0} .$$

Assuming that $S[\psi, \psi^\dagger; A_\mu]$ describes a physical system with a spectral gap and the perturbations $\delta A_\mu$ are weak and slowly varying on the spatial scale of magnetic length $\ell$ and the time scale set by the gap, we can expand the generating functional $W[\delta A_\mu]$ in powers of external fields and in the gradients of external fields $\delta A_\mu$. If we also assume translational invariance then the gradient expansion can be converted into the expansion in momentum $k$ and frequency $\Omega$. To study the linear response functions we need to keep only the terms quadratic in $\delta A_\mu$, but to arbitrary order in momentum and frequency. The most general expansion of this form is

$$W[\delta A_\mu] = \int \frac{d\Omega d^3k}{(2\pi)^3} \left[ \bar{\rho} \delta A_0 + \frac{1}{2} \delta A_\mu(\mathbf{k}, \Omega) \Pi^{\mu\nu}(\mathbf{k}, \Omega) \delta A_\nu(-\mathbf{k}, -\Omega) \right] ,$$

where the matrix $\Pi^{\mu\nu}(\mathbf{k}, \Omega)$ is known as the polarization operator or polarization tensor. Each entry of this $3 \times 3$ matrix is an infinite double expansion in momentum and frequency. We have also implicitly assumed in Eq.(4) that the expectation value of the electric current vanishes in the unperturbed groundstate. Gauge invariance implies a Ward identity

$$\Omega \Pi^{0\mu}(\mathbf{k}, \Omega) + k_i \Pi^{\mu i}(\mathbf{k}, \Omega) = 0 .$$

It is easy to see that conductivity tensor is expressed in terms of the polarization tensor as

$$\sigma^{ij}(\mathbf{k}, \Omega) = \frac{1}{i\Omega} \Pi^{ij}(\mathbf{k}, \Omega) .$$

The plan of the paper is as follows. We will calculate the polarization tensor $\Pi^{\mu\nu}(\mathbf{k}, \Omega)$ for non-relativistic electrons filling $N$ Landau levels in Section II. The main result of the Section II is the exact expression for the polarization tensor (64). In the Section III we will calculate the polarization tensor for massless Dirac electrons filling $N$ Landau levels and compare it with the non-relativistic one in the large $N$ limit. In the Section IV we investigate the electromagnetic response of the lowest Landau level and find an exact relation between the linear response functions for non-relativistic and Dirac electrons. In the Section V we will obtain a closed form expression for the large $N$ polarization tensor for non-relativistic electrons using the exact result (64) and using the FL theory. We
find that both approaches agree exactly and differ from the Dirac electrons by the contribution of the Berry phase of the Dirac cone. For reader’s convenience in every Section we present an explicit form of the polarization tensor in the leading and sub-leading orders in momentum and frequency that can be understood and used without reading the rest of the paper. Various Appendices are devoted to (often tedious) technical details.

II. NON-RELATIVISTIC ELECTRONS

In this Section we will explain the method for calculation of the polarization operator for the non-relativistic electrons filling $N$ Landau levels.

A. Model

Our starting point is the system of two-dimensional non-interacting non-relativistic fermions in external electromagnetic field described by a $U(1)$ vector potential $A_\mu$. The action has a form

$$S_{nr} = \int d^2xdt \left[ i\bar{\psi}D_0\psi - \frac{1}{2m}|D_\mu\psi|^2 \right].$$

We assume that the fermions are spin polarized and, consequently, $\psi(x,t)$ is a complex Grassmann scalar. The covariant derivative

$$D_\mu = \partial_\mu - i(\bar{A}_\mu + \delta A_\mu)$$

includes both background vector potential and a weak perturbation. We will omit the chemical potential from the equations, but it will be implicitly assumed that the first $N$ Landau levels are completely filled in the ground state and the chemical potential lies anywhere in the gap.

B. Computation of the Generating Functional

We will compute the generating functional as a gradient expansions in the external fields. Throughout the computation we will only keep the terms quadratic in the external fields, but to arbitrary order in the gradients. This expansion is well-defined because there is a cyclotron gap in the energy spectrum. The gradient expansion can be viewed as the expansion in the inverse gap and magnetic length $\ell$ which is small compared to any other spatial scale in the problem.

We start with rewriting the action as a differential operator sandwiched between the fermionic fields

$$S_{nr} = \int d^2xdt \, \psi^\dagger G^{-1}\psi,$$

where $G^{-1}$ is the differential operator obtained by integrating by parts the derivatives acting on $\psi$. Since we assume that the perturbations of external fields are small we can write

$$G^{-1} = G_0^{-1} + V,$$

where $G_0^{-1}$ is the “bare” Green’s function given by

$$G_0^{-1} = i\partial_\mu - \frac{1}{2m}|\bar{D}|^2,$$

where $\bar{D}_\mu = \partial_\mu - i\bar{A}_\mu$ and $V$ encodes the terms at least linear in the perturbations of the external fields.

$$V = \delta A_0 + \frac{1}{2m}\{\delta A_i, \partial_j\} - \frac{1}{2m}\delta A_i\delta A_j.$$ 

Since the functional integral is quadratic in the external fields it can be formally written as a determinant of the perturbed (differential) operator $G^{-1}$. The generating functional of (connected) correlation functions is

$$W_{nr}[\delta A_\mu] = \frac{1}{i} \ln \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{iS_{nr}[\psi,\delta A_\mu]} = \frac{1}{i} \ln \det[G^{-1}]$$

$$= -\frac{1}{i} \ln G_0 + \frac{1}{i} \text{Tr}(G_0V) - \frac{1}{2i} \text{Tr}(G_0VG_0V) + \ldots$$

where in the last line we kept only the terms that contribute to the linear response. We can also disregard the (diverging) first term in the last line since it will not contribute to the linear response because it does not depend on the perturbations of the external fields by construction. To summarize, the object we are interested in is given by

$$W_{nr} = W_{nr}^{(1)} + W_{nr}^{(2)} + W_{c,nr}^{(2)} + \ldots,$$

where $W_{nr}^{(1)}$ and $W_{nr}^{(2)}$ are the terms linear and quadratic in external fields correspondingly, while $W_{c,nr}^{(2)}$ contains the so-called contact terms (See Fig. 2).

C. Fock Representation

The Hilbert space of a particle in magnetic field can be mapped to the Hilbert space of two decoupled harmonic
oscillators. To make this manifest we will use Fock representation for the basis states instead of the coordinate representation. The advantage of this approach is that we do not need to fix the gauge, thus our results will be manifestly gauge invariant. We will work in complex coordinates \( z = x + iy \).

Define the creation and annihilation operators

\[
a = \frac{i}{\sqrt{2\ell}} \hat{D}_z = \frac{i}{\sqrt{2\ell}} (\hat{D}_1 + i\hat{D}_2),
\]

\[
a^\dagger = \frac{i}{\sqrt{2\ell}} \hat{D}_z = \frac{i}{\sqrt{2\ell}} (\hat{D}_1 - i\hat{D}_2).
\]

The inverse relations are

\[
\hat{D}_z = -i \frac{1}{\sqrt{2\ell}} a^\dagger, \quad \hat{D}_z = -i \frac{1}{\sqrt{2\ell}} a.
\]

It can be easily verified that

\[
[a, a^\dagger] = 1.
\]

In terms of these operators the inverse Green’s function takes form

\[
G_0^{-1} = i\hbar \partial_\ell - \omega_c \left( a^\dagger a + \frac{1}{2} \right)
\]

\[
= i\hbar \partial_\ell - H_0,
\]

where \( H_0 = \omega_c (a^\dagger a + \frac{1}{2}) \) is the Hamiltonian for the particle in magnetic field.

We also define one more oscillator via

\[
b^\dagger = -a + \frac{i}{\sqrt{2\ell}} \hat{z}, \quad b = -a^\dagger - \frac{i}{\sqrt{2\ell}} \hat{\bar{z}}.
\]

It can be verified that \([b, b^\dagger] = 1\) and all \(a\)'s commute with all \(b\)'s.

Operators \(a^\dagger, b^\dagger\) generate the entire Hilbert space of the single particle problem. From this point of view the coordinates themselves must be understood as operators acting on the Hilbert space according to

\[
z = -\sqrt{2\ell} i (b^\dagger + a), \quad \bar{z} = \sqrt{2\ell} i (a^\dagger + b).
\]

The basis in the Hilbert space is given by

\[
|nm\rangle = |n\rangle \otimes |m\rangle = \frac{(a^\dagger)^m (b^\dagger)^n |0\rangle \otimes |0\rangle}{\sqrt{n!} \sqrt{m!}}.
\]

The \(a\)-operators induce the transitions between the Landau levels, whereas \(b\)-operators generate the states of different angular momentum within each Landau level since

\[
[H_0, b] = [H_0, b^\dagger] = 0.
\]

The bare Green’s function is then given by

\[
G_0 = \int \frac{d\Omega}{2\pi} \sum_{nm} e^{-i\Delta t nm} \frac{|nm\rangle \langle nm|}{\Omega - E_n},
\]

where

\[
E_n = \left(n + \frac{1}{2}\right) \omega_c
\]

is the spectrum of the unperturbed Hamiltonian \( H_0 \).

It is easy to check that

\[
G_0^{-1} G_0 = \left[i\hbar \partial_\ell - H_0\right] G_0 = \delta(t) \cdot \sum_{m,n} |nm\rangle \langle nm| = 1. \tag{26}
\]

The trace of a local operator \( \mathcal{O} \) over the Hilbert space and time is defined as follows

\[
\text{Tr} (\mathcal{O}) = \sum_{n,l} \langle n\ell t|\mathcal{O}|n\ell t\rangle = \int dt \sum_{n,l} \langle n\ell t|\mathcal{O}(t)|n\ell t\rangle. \tag{27}
\]

### D. Setting up the “Feynman rules”

In this Section we will derive the differential operators that will appear in the vertices of the diagrams in Fig. 2.

First, we expand the classical action to the second order in external electromagnetic field

\[
S_{nr} = S_{nr}^{(0)} + S_{nr}^{(1)} + S_{nr}^{(2)}. \tag{28}
\]

The unperturbed action is given by

\[
S_{nr}^{(0)} = \int d^2 x dt \psi^\dagger \left[i\hbar \partial_\ell - \omega_c \left(a^\dagger a + \frac{1}{2}\right)\right] \psi
\]

\[
= \int d^2 x dt \left(\bar{\psi} G_0^{-1} \psi\right).
\]

The part of the action linear in external fields is given by

\[
S_{nr}^{(1)} = \int d^2 x dt \psi^\dagger \left[ -\frac{1}{2\sqrt{2\ell} m} (\{a^\dagger, \delta A_z\} + \{a, \delta A_z\}) \right] \psi
\]

\[
= \int d^2 x dt \psi^\dagger V^{(1)} \psi,
\]

where \(\{a, \delta A_z\}\) is the anticommutator (recall that \(a\) is a differential operator that we understand as acting to the right).

The part of the action quadratic in external fields is given by

\[
S_{nr}^{(2)} = -\int d^2 x dt \psi^\dagger \left[ \frac{1}{2m} |\delta A|^2 \right] \psi
\]

\[
= \int d^2 x dt \psi^\dagger V^{(2)} \psi.
\]

The full “vertex operator” consists of the terms linear and quadratic in external fields

\[
V(x, t) = V^{(1)}(x, t) + V^{(2)}(x, t). \tag{32}
\]

Using (21) we interpret \( V \) as an operator on the Fock space.

We re-write all the vertices in Fourier space and introduce a vector \( V^{(1)}_\mu(k, \Omega) \) according to

\[
V^{(1)}_\mu = V^{(1)}_\mu(k, \Omega) \delta A_\mu(k, \Omega), \tag{33}
\]
which is always possible because \( V^{(1)} \) is linear in the external fields by definition. Consider the terms in \( V \) linear in, say, \( \delta A_z \)

\[
V(x,t)\big|_{\delta A_z} = \frac{1}{2\sqrt{2m\ell}} \{ a^\dagger, \delta A_z \} .
\]

In momentum space this takes form

\[
V(k,\Omega)\big|_{\delta A_z} = e^{-i\Omega t} \frac{1}{2\sqrt{2m\ell}} \{ a^\dagger, e^{i\mathbf{k}\cdot\mathbf{x}} \} \delta A_z(k,\Omega) .
\]

Then, using (21)

\[
e^{i\mathbf{k}\cdot\mathbf{x}} = e^{ikz} e^{-ikz} = e^{-i\mathbf{k}\cdot\mathbf{x}} e^{i\mathbf{k}\cdot\mathbf{x}} = e^{i\mathbf{k}\cdot\mathbf{x}} e^{-i\mathbf{k}\cdot\mathbf{x}} ,
\]

where we introduced the complex momentum \( k = k_1 + ik_2 \). Finally, using that \( a \)'s and \( b \)'s commute with each other we get an expression for

\[
\gamma^{(1)}_z(k,\Omega) = \frac{1}{2\sqrt{2m\ell}} e^{-i\Omega t} e^{-i\mathbf{k}\cdot\mathbf{b}} e^{i\mathbf{k}\cdot\mathbf{a}} \{ a^\dagger, e^{-i\mathbf{k}\cdot\mathbf{x}} e^{i\mathbf{k}\cdot\mathbf{x}} \} .
\]

Expressions for the other vertices can be derived in the same way

\[
\gamma^{(1)}_0 = e^{-i\Omega t} e^{-i\mathbf{k}\cdot\mathbf{b}} e^{i\mathbf{k}\cdot\mathbf{a}} ,
\gamma^{(1)}_\ell = e^{-i\Omega t} e^{-i\mathbf{k}\cdot\mathbf{b}} e^{i\mathbf{k}\cdot\mathbf{a}} \{ a^\dagger, e^{-i\mathbf{k}\cdot\mathbf{x}} e^{i\mathbf{k}\cdot\mathbf{x}} \} .
\]

Notice that part of the vertices that depends on both time and \( b \)'s has completely factorized and is the same for all vertices. We will be able to use this fact to integrate over time and to trace over the Fock space generated by \( b^\dagger \) before tracing over the Fock space generated by \( a^\dagger \). It is the trace over \( a \) where all of the complexity is concentrated. For this reason it will be convenient to introduce a separate notation for the part of the “vertex operators” that acts only in the Fock space generated by \( a^\dagger \). Thus we define

\[
\gamma^{(1)}_\mu = e^{-i\Omega t} e^{-i\mathbf{k}\cdot\mathbf{b}} e^{i\mathbf{k}\cdot\mathbf{a}} \tilde{V}_\mu ,
\]

where

\[
\tilde{V}_0 = e^{-i\mathbf{k}\cdot\mathbf{a}} ,
\tilde{V}_z = -\frac{1}{2\sqrt{2m\ell}} \{ a^\dagger, e^{-i\mathbf{k}\cdot\mathbf{x}} e^{i\mathbf{k}\cdot\mathbf{x}} \} ,
\tilde{V}_\ell = -\frac{1}{2\sqrt{2m\ell}} \{ a, e^{-i\mathbf{k}\cdot\mathbf{x}} e^{i\mathbf{k}\cdot\mathbf{x}} \} .
\]

E. Generating Functional to the Second Order

In this Section we will perform an exact computation of the entire quadratic generating functional to all orders in the gradient expansion. Before diving into details we briefly pause to mention a few relations that will be heavily used in the sequel

\[
[b,f(b^\dagger)] = f'(b^\dagger) ,
\]

\[
e^{Qb} f(b^\dagger) = f(b^\dagger + Q)e^{Qb} .
\]

Using these relations and elementary properties of the oscillator algebra we can evaluate the following expectation values

\[
\langle n| e^{\frac{-i\mathbf{k}\cdot\mathbf{a}}{\sqrt{2}}} e^{\frac{i\mathbf{k}\cdot\mathbf{a}}{\sqrt{2}}} |m\rangle = \sqrt{\frac{n!}{m!}} (\frac{k\ell}{\sqrt{2}})^{m-n} L_{n-m}^m \langle |k\ell|^2 \rangle \]

for \( m \geq n \), and

\[
\langle n| e^{\frac{-i\mathbf{k}\cdot\mathbf{a}}{\sqrt{2}}} e^{\frac{i\mathbf{k}\cdot\mathbf{a}}{\sqrt{2}}} |m\rangle = \sqrt{\frac{n!}{m!}} (\frac{-k\ell}{\sqrt{2}})^{n-m} L_{m-n}^m \langle |k\ell|^2 \rangle \]

for \( m \leq n \). Similar equations can be found in [7].

There will be two major contributions to the generating functional in quadratic order. One contribution comes from the contact terms. These are obtained by plugging \( V^{(2)} \) into

\[
-\frac{i}{2} \text{Tr} G_0 V .
\]

These contributions are always evaluated at zero momentum and zero frequency. In fact, the contact terms can be restored simply via analyzing the Ward identities for electric charge conservation. We will denote the contribution of the contact terms to the polarization operator via \( \Pi^{\mu\nu}_{c,m} \).

The main contribution comes from

\[
\frac{i}{2} \text{Tr} G_0 V^{(1)} G_0 V^{(1)} .
\]

First, we will trace over the Fock space generated by \( b, b^\dagger \), then over frequency and in the end we will be left with an irreducible expression for the trace over the Fock space generated by \( a, a^\dagger \). The details of the steps outlined above can be found in the Appendix B.

We find

\[
\text{Tr} G_0 V^{(1)} G_0 V^{(1)} = \sum_{n,l,t} \langle tnl| G_0 V^{(1)} G_0 V^{(1)} |tnl \rangle
\]

\[
= \frac{m}{4\pi} \int \frac{dk d\Omega}{(2\pi)^3} e^{-i\mathbf{k}\cdot\mathbf{x}} \sum_{n' < N, n \geq N} \frac{\langle n| \tilde{V}^{(1)}_\mu(k)|n'\rangle \langle n'| \tilde{V}^{(1)}_\nu(-k)|n\rangle + \langle n'| \tilde{V}^{(1)}_\nu(k)|n\rangle \langle n| \tilde{V}^{(1)}_\mu(-k)|n'\rangle}{E_n - E_{n'} - \Omega} \delta A_\mu(k) \delta A_\nu(-k) .
\]
In the remainder of the Section we will simplify this expression. We introduce the following notation

$$\Gamma^\mu_{mn}(k,\Omega) = \langle n|\tilde{V}^{(1)}_\mu(k)|n'\rangle,$$

then (using the dimensionless frequency $\omega = \Omega/\omega_c$)

$$\Pi^{\mu\nu}_{nr}(k,\omega) = \frac{i}{(4\pi\ell^2)} e^{-i\frac{|\ell|\omega}{2}} \sum_{n' < N} \frac{\Gamma^\mu_{mn}(k)\Gamma^\nu_{n'n}(k')}{n - n' - \omega} + \Pi^{\mu\nu}_{c,nr}. \quad (52)$$

This is the main result of the Section. In the following we will show that all of the components of the polarization tensor can be reconstructed from a single generating function.

---

**F. The Generating Function**

While (52) is indeed the final expression that cannot be reduced further, it is not convenient to work with since one has to use complicated expressions for $\Gamma^\mu_{nn'}$. We will introduce a trick that will allow to express all of the components of the polarization operator in terms of derivatives of a single function.

We define the generating function $G(k, k'; N)$

$$G(k, k'; N) = \sum_{n \geq N, n' < N} \left( \frac{\Gamma^0_{nn}(k)\Gamma^0_{n'n}(k')}{n - n' - \omega} + \frac{\Gamma^0_{nn'}(k')\Gamma^0_{n'n}(k)}{n - n' + \omega} \right) \quad (53)$$

First, we notice (with the help of (46)) that

$$\Pi^{00}_{nr} = \frac{m}{4\pi} e^{-i\frac{|k|\omega}{2}} G(k, -k; N). \quad (55)$$

other components of $\Pi^{\mu\nu}_{nr}$ can be expressed as derivatives of $G(k, k'; N)$ with respect to momenta. To see this we use the identities

$$e^{-ka^\dagger} \tilde{a}^\dagger = (-\partial_k + \tilde{k}) e^{-ka^\dagger} \tilde{a}^\dagger, \quad (56)$$

$$ae^{-ka^\dagger} \tilde{a}^\dagger = (\partial_k - k) e^{-ka^\dagger} \tilde{a}^\dagger. \quad (57)$$

These identities allow us to re-write the vertex insertions (41)-(43) in terms of derivatives with respect to momentum as follows

$$\tilde{V}_0(k) = e^{-\frac{\tilde{k}}{\sqrt{2}}} e^{\frac{k}{\sqrt{2}}} a, \quad (58)$$

$$\tilde{V}_k(k) = -\frac{1}{2\sqrt{2}\ell m} \left( -\frac{2\sqrt{2}}{\ell} \partial_k + \frac{\ell}{\sqrt{2}} \right) e^{-\frac{\tilde{k}}{\sqrt{2}}} e^{\frac{k}{\sqrt{2}}} a, \quad (59)$$

$$\tilde{V}_\ell(k) = -\frac{1}{2\sqrt{2}\ell m} \left( \frac{2\sqrt{2}}{\ell} \partial_k - \frac{\ell}{\sqrt{2}} \right) e^{-\frac{\tilde{k}}{\sqrt{2}}} e^{\frac{k}{\sqrt{2}}} a. \quad (60)$$

Next we introduce a separate notation for the differential operators acting on $e^{-\frac{\tilde{k}}{\sqrt{2}}} e^{\frac{k}{\sqrt{2}}} a$ in Eqs.(58)-(60) as

$$\hat{P}^0_{nr}(k) = 1, \quad (61)$$

$$\hat{P}^z_{nr}(k) = -\frac{1}{2\sqrt{2}\ell m} \left( -\frac{2\sqrt{2}}{\ell} \partial_k + \frac{\ell}{\sqrt{2}} \right), \quad (62)$$

$$\hat{P}^x_{nr}(k) = -\frac{1}{2\sqrt{2}\ell m} \left( \frac{2\sqrt{2}}{\ell} \partial_k - \frac{\ell}{\sqrt{2}} \right). \quad (63)$$

Then an arbitrary element of the polarization operator is given by

$$\Pi^{\mu\nu}_{nr}(\omega, k) = \frac{m}{4\pi} e^{-i\frac{|k|\omega}{2}} \lim_{k' \to -k} \hat{P}^\mu_{nr}(k) \hat{P}^\nu_{nr}(k') G(k, k'; N) + \Pi^{\mu\nu}_{c,nr}. \quad (64)$$

This expression is the one we will use for practical computations and is the first main result of the present manuscript.

The contact terms are obtained from $\text{Tr} G_0 V^{(2)}$. The only contact term is the well-known diamagnetic term given by

$$W^{(2)}_{c,nr} = -i \text{Tr} G_0 V^{(2)} = N_{\omega_c} \frac{\omega_c}{4\pi} \int d^2k \delta A_\pi(k) \Delta_A(k) \quad (65)$$

This term is evaluated at zero frequency $\omega = 0$. The contribution to momentum space polarization tensor is

$$\Pi^{zz}_{c,nr} = \frac{N_{\omega_c}}{16\pi} \delta_{zz}. \quad (65)$$
It can be checked explicitly that this term restores the Ward identity (5). Direct application of Eqs. (64)-(65) to \(N\) filled Landau levels allows us to write the generating functional in the leading orders in the gradient expansion

\[
W[A_\mu] = \frac{N}{4\pi} \int d^2x dt \left[ A\delta A + \frac{1}{\omega_c} |\delta E|^2 - \frac{N}{m} \delta B^2 - \frac{3N}{2} \ell^2 \delta B(\partial_i \delta E_i) + \ldots \right]
\]  

(67)

where \(\delta E_i\) and \(\delta B\) are made from the perturbations of the electromagnetic field \(A_\mu\). We have also absorbed the linear term \(\rho \delta A_0\) into the Chern-Simons term by including the background \(A_\mu\). Higher order terms can also be easily obtained from (64). Finally, note that \(|\delta E|^2\) and \(B^2\) terms do not combine into \(\delta F^{\mu \nu} \delta F_{\mu \nu}\) due to apparent absence of Lorentz invariance. We have also checked that Ward Identities of the Galilean symmetry studied in Ref. [8] are satisfied.

### G. Including the g-factor

For the future applications we also need to include the effects of finite \(g\)-factor of the electron, \(g\), by adding an extra "Zeeman" term to the matter action

\[
\delta S_{nr}[\psi, \bar{\psi}'] = \frac{g}{4m} \int B \bar{\psi} \psi'.
\]  

(68)

This results in the redefinition of the number current as follows

\[
J^i(g) = J^i(0) + \frac{g}{4m} \epsilon^{ijk} \partial_j \rho
\]  

(69)

as well as the vertices

\[
\hat{P}^\mu_{nr}(k; g) = -\frac{1}{2 \sqrt{2} \ell m} \left( \frac{\sqrt{2} \ell}{\ell} \delta_k + \left( 1 - \frac{g}{2} \right) \frac{\ell}{\sqrt{2}} \right)
\]  

(70)

\[
\hat{P}^\nu_{nr}(k; g) = -\frac{1}{2 \sqrt{2} \ell m} \left( \frac{2 \sqrt{2} \ell}{\ell} \delta_k - \left( 1 - \frac{g}{2} \right) \frac{\ell}{\sqrt{2}} \right)
\]  

(71)

Note that the generating functional for finite \(g\) can be expressed in terms of the generating functional at \(g = 0\) as follows

\[
W_{nr}[\delta A_0, \delta A_i; g] = W_{nr}[\delta A_0 + \frac{g}{4m} \delta B, \delta A_i; g = 0].
\]  

(72)

In particular, Eq.(72) implies the following relations between the components of the polarization tensor

\[
\Pi^{00}_{nr}(k, \Omega; g) = \Pi^{00}_{nr}(k, \Omega; 0)
\]  

(73)

\[
\Pi^{0i}_{nr}(k, \Omega; g) = \Pi^{0i}_{nr} + i \frac{g}{4m} \epsilon^{ij} k_j \Pi^{00}_{nr}(k, \Omega; 0)
\]  

(74)

\[
\Pi^{ij}_{nr}(k, \Omega; g) = \Pi^{ij}_{nr}(k, \Omega; 0) \\
+ \frac{g^2}{16m^2} \left( k_i k_j - \delta^{ij} k^2 \right) \Pi^{00}_{nr}(k, \Omega; 0)
\]  

(75)

The \(g\)-factor will be used in Section IV to take the LLL projection and as an extra control parameter in Section V where we will compare the large \(N\) limit of the non-relativistic polarization operator with a semiclassical computation.

### III. DIRAC ELECTRONS

#### A. Model and the “Feynman rules”

In this Section we will calculate the polarization tensor for Dirac fermions in strong magnetic field, filling \(N\) Landau levels. The action is given by

\[
S_D = \int d^3x \bar{\psi} \mathcal{D} \psi,
\]  

(76)

where \(\Psi\) is a two-component spinor, \(\bar{\Psi} = \Psi^\dagger \gamma^0\) and \(\mathcal{D} = \gamma^0 D_0 + v_F \gamma^i D_i\), where the covariant derivative \(D_\mu\) is given by (8) and includes both constant magnetic field and its perturbations, \(v_F\) is the Fermi velocity. To emphasize Lorentz invariance we will use the notation \(d^3x = dtd^2x\).

The Hamiltonian is

\[
H = -i v_F \gamma^0 \gamma^i D_i - A_0,
\]  

(77)

where \(v_F\) is the Fermi velocity. We choose the \(\gamma\)-matrices as follows

\[
\gamma^0 = \sigma^3, \quad \gamma^1 = i \sigma^2, \quad \gamma^2 = -i \sigma^1,
\]  

(78)

where \(\sigma^i\) are the Pauli’s matrices.

As in the non-relativistic case the Hilbert space maps on two copies of the Fock space generated by \(a^\dagger\) and \(b^\dagger\) defined in (15)-(21). The unperturbed Hamiltonian can be explicitly written as

\[
H_0 = \begin{pmatrix}
-\mu & -v_F \sqrt{2B} a^\dagger \\
-v_F \sqrt{2B} a & -\mu
\end{pmatrix},
\]  

(79)

where \(\mu\) is the chemical potential. There are three types of eigenstates of \(H_0\)

\(\begin{array}{l}
(i) \text{ zero energy, } |\Psi_{0,m}\rangle = \begin{pmatrix} 0, m \end{pmatrix}, E_0^D + \mu = 0, \\
(ii) \text{ positive energy, } |\Psi^+_{m,n}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} |n, m\rangle \\
-|n-1, m\rangle \end{pmatrix}, E_{m,n}^P + \mu = +v_F \sqrt{2B} n, \\
(iii) \text{ negative energy, } |\Psi^-_{m,n}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} |n, m\rangle \\
|n-1, m\rangle \end{pmatrix}, E_{m,n}^D + \mu = -v_F \sqrt{2B} n.
\end{array}\)

We introduce a uniform notation for all of the eigenstates as follows

\[
|\Psi_{n,m}\rangle = \text{norm}(n) \begin{pmatrix} |n, m\rangle \\
-\text{sgn}(n) |n-1, m\rangle \end{pmatrix} = |\Psi_n\rangle \otimes |m\rangle,
\]  

(80)
where it is understood that \(|-1, m\rangle = 0 \) and \(\text{norm}(n) = 1/\sqrt{2}\) for \(|n| > 0\) and \(\text{norm}(0) = 1\). With this notation at hand \(n \in \mathbb{Z}, \ m \in \mathbb{Z}_+\). The unperturbed Green’s function is
\[
G_0(t) = \int \frac{d\Omega}{2\pi} e^{-i\Omega t} \sum_{n,m} \frac{|\Psi_{n,m}\rangle \langle \Psi_{n,m}|}{\Omega - E_n^D + i\varepsilon \text{sgn}(E_n^D)}, \tag{81}
\]

The massless Dirac action is easily decomposed into the terms free of and linear in external electromagnetic field perturbations (about the constant magnetic field and chemical potential),
\[
S_D = S_D^{(0)} + S_D^{(1)}, \tag{82}
\]

where
\[
S_D^{(0)} = \int d^3x \Psi^\dagger \left( \frac{i\partial_0 + \mu}{v_F \sqrt{2Ba}} v_F \sqrt{2Ba} i\partial_0 + \mu \right) \Psi, \tag{83}
\]
and
\[
S_D^{(1)} = \int d^3x \Psi \left( \delta A_0 v_F \delta A_z v_F - \delta A_0 \right) \Psi. \tag{84}
\]

The first term gives the bare propagator,
\[
S_D^{(0)} = \int d^3x \Psi^\dagger G_0^{-1} \Psi, \tag{85}
\]
that satisfies
\[
G_0^{-1} |\Psi_{n,m}\rangle = (\Omega + \mu - E_n^D) |\Psi_{n,m}\rangle, \tag{86}
\]

The second term gives the vertex in position space
\[
V(t, x) = \begin{pmatrix}
\delta A_0(t, x) & v_F \delta A_z(t, x) \\
v_F \delta A_z(t, x) & \delta A_0(t, x)
\end{pmatrix}. \tag{87}
\]

The polarization tensor \(\Pi^{\mu\nu}(\Omega, k)\) is given by
\[
\Pi^{\mu\nu} (\Omega, k) = -\frac{e^{-ikr^2}}{2\pi \ell^2} \sum_{n^\prime \leq N, n > N} \left( \frac{\Gamma_{Dn^\prime}(k) \Gamma_{Dn}(k)}{E_n^D - E_{n^\prime}^D - \Omega} \right), \tag{88}
\]

where
\[
\Gamma_{Dn^\prime}(k) = (\Psi_n | P_{\mu D} e^{-ikr^2} e^{-ikr^2} | \Psi_{n^\prime}), \tag{89}
\]
and
\[
\mathcal{P}_D^1 = 1, \quad \mathcal{P}_D^2 = v_F \sigma^1, \quad \mathcal{P}_D^2 = v_F \sigma^2. \tag{90}
\]

Using (46) we evaluate the vertices \(\Gamma_{Dn^\prime}(k)\). The expressions turn out to be quite complicated and so we list them in the Appendix D.

\section*{B. Dirac Polarization Tensor}

In this Section, we write out explicit expressions for the Landau level polarization tensor for Dirac fermion in the leading order in momentum and frequency. While Eq. (91) looks similar to the corresponding Eq. (52) for the non-relativistic fermions we want to emphasize that there is a difficulty in evaluating the summation, even when we limit ourselves to some finite order in momentum and frequency. The reason is that every component of the polarization tensor, contains the sum over \(n'\) (i.e. the sum over the Dirac sea) from \(-\infty\) to \(N\), where \(N\) is the number of filled Landau levels. We remind the reader that in the non-relativistic case this sum consisted of a finite number of terms (because the parabolic dispersion relation has a bottom, see Fig. 4) in every order in momentum and frequency. In the present case the the sum has infinite number of terms, however, it is convergent and does not need to be regularized. To simplify the expressions we fix a coordinate frame in which \(k = (k_1, 0)\). Leaving the details to the Appendix E we present the leading order terms below.
any need for regularization. The use of Dirac and non-relativistic electrons in the large \( \nu \) the Lorentz invariance is broken by the background magnetic field, which is held at a fixed value.

Lorentz invariance of the action (76) the generating functional is not Lorentz invariant. This happens because the Eq. (98) is valid in arbitrary coordinate frame. Eq. (98) the main result of the present Section. Note that despite the corrections to the Hall conductivity via according to the Ref. 9 there is a relations between \( \Omega \) Hall conductivity given by

\[
\zeta(s, n) \text{ is the Hurwitz } \zeta\text{-function. We stress that each component of the polarization tensor is finite without any need for regularization. The use of } \zeta\text{-function is a convenient choice that allows to evaluate the sums analytically.}
\]

In the coordinate space the generating functional is given by

\[
W_D = \int d^3x \left[ \frac{N + \frac{1}{4}}{4\pi} A dA - \frac{3\ell}{4\sqrt{2\pi} v_F} \zeta \left( -\frac{1}{2}, N + 1 \right) |\delta E|^2 + \frac{3\ell v_F}{8\sqrt{2\pi}} \zeta \left( -\frac{1}{2}, N + 1 \right) \delta B^2 - c^2 \frac{6(N + \frac{1}{2})^2 - \frac{1}{2}}{8\pi} \delta B(\partial_i \delta E_i) + \ldots \right].
\]

Eq. (98) is valid in arbitrary coordinate frame. Eq. (98) the main result of the present Section. Note that despite the Lorentz invariance of the action (76) the generating functional is not Lorentz invariant. This happens because the the Lorentz invariance is broken by the background magnetic field, which is held at a fixed value.

We can subject the above results to several checks. First, we extract the Hall conductivity via

\[
\sigma^H(\Omega, \k) = \frac{\delta}{\delta E_2(\k, \Omega)} \left\langle J_1(\k, \Omega) \right\rangle
\]

Second, define the finite frequency and momentum corrections to the Hall conductivity via

\[
\sigma^H(\Omega, \k) = \sigma^H(0) + \sigma^H_{k^2 |\ell|^2} + \sigma^H_{\Omega^2} + \ldots
\]

According to the Ref. 9 there is a relations between \( \Omega^2 \) and \( |k\ell|^2 \) coefficients of finite frequency and momentum Hall conductivity given by

\[
2\sigma^H_{k^2} + v_F^2 \sigma^H_{\Omega^2} = \frac{S|\ell|^2}{4\pi},
\]

where \( S = N(N + 1) \) is the relativistic version of the Shift^10 of the integer quantum Hall state of Dirac electrons at filling fraction \( \nu = N \). We have checked explicitly that Eq. (101) holds.

Next, we compare the polarization tensors for the Dirac and non-relativistic electrons in the large \( N \) limit. Using the results of Section II we have in the non-relativistic case

\[
\Pi^{12}_{\nu}(\Omega, \k) = i\Omega^N_2 - i\Omega k^2_1 |\ell|^2 \frac{3N^2}{8\pi} + i\Omega^3 |\ell|^2 \frac{N^2}{\pi v_F^2} + \ldots,
\]

\[
\Pi^{00}_{\nu}(\Omega, \k) = k^2_1 |\ell|^2 \frac{N^{3/2}}{v_F \sqrt{2\pi}} + \ldots,
\]

\[
\Pi^{11}_{\nu}(\Omega, \k) = \Omega^2 \frac{N^{3/2}}{v_F \sqrt{2\pi}} + \ldots,
\]

\[
\Pi^{22}_{\nu}(\Omega, \k) = \Omega^2 \frac{N^{3/2}}{v_F \sqrt{2\pi}} + k^2_1 \frac{\ell v_F N^{3/2}}{2\sqrt{2\pi}} + \ldots,
\]

where \( \omega_c \) can be written in terms of Fermi velocity \( v_F \) and Fermi momentum \( k_F \) as follows

\[
\omega_c = \frac{\bar{B} v_F}{k_F} = \frac{v_F \sqrt{B}}{\sqrt{2N}},
\]

where we used the relation between filling fraction and Fermi momentum

\[
\frac{\bar{\rho}}{B/2\pi} = k_F^2
\]

where \( \bar{\rho} \) is the non-relativistic electron density.

Using the asymptotic formula for the \( \zeta \)-function at large \( N \)

\[
\zeta \left( -\frac{1}{2}, N + 1 \right) \approx -\frac{2}{3} \left( N + \frac{1}{2} \right)^{3/2}
\]

we find that the non-relativistic and Dirac polarization tensors agree in leading and sub-leading order in \( N \), provided we replace \( N \rightarrow N + \frac{1}{2} \). The latter replacement comes up due to the contribution of the Berry phase in the Dirac’s case. We stress that the equivalence holds when the g-factor of the non-relativistic electrons vanishes and does not equal to 2 as one may naively expect.

The terms that are sub-sub-leading order in \( N \) do not agree, which can be shown by an explicit calculation. The agreement of the leading and sub-leading orders is not surprising, since in large \( N \) limit, which is the case of high density and small applied magnetic field, the semi-classical approximation applies equally well to both systems, however Dirac theory has an extra Berry phase contribution. We will study the large \( N \) limit in more detail in the Section V.
FIG. 3: The linear response of the LLL is universal. The generating functionals of non-relativistic and Dirac (upon discarding divergent terms) electrons differ from each other by a factor of $\frac{1}{2}$ to all orders in the gradient expansion.

IV. UNIVERSALITY OF THE PROJECTED LOWEST LANDAU LEVEL

In this Section we will show that the exact electromagnetic linear response functions of the lowest Landau level of non-relativistic and Dirac electrons agree to all orders in the gradient expansion, in the limit, where the transitions to higher Landau levels are neglected. In the non-relativistic case this limit is accomplished by taking $m \to 0$, keeping magnetic field fixed. Generally, this limit is not well-defined since the exact degeneracy of the LLL is split in inhomogeneous magnetic field, however when $g = 2$ the LLL is exactly degenerate for any smooth, inhomogeneous background of magnetic field. In the relativistic case this limit is taken via sending $v_F \to \infty$. Both limits send the spectral gap to infinity supressing the contributions of the higher Landau levels. Note that LLL means $N = 1$ for the non-relativistic case and $N = 0$ for Dirac.

It was demonstrated in Ref.[11] that the non-relativistic action (7) reduces to (76) in the limit $m \to 0$, $g = 2$ and provided that transitions across the gap are neglected. This argument was used to deduce the following relationship between the generating functionals

$$W_D[\delta A_\mu] = W_{nr}[\delta A_\mu] - \frac{1}{2} \frac{1}{2\pi} \int AdA. \tag{109}$$

This relation holds only in the leading order in the gradient expansion. We will show that there is an exact version of this relation which reads

$$W_D[\delta A_\mu] = W_{nr}[\delta A_\mu] - \frac{1}{2} W_{nr}[\delta A_\mu] = \frac{1}{2} W_{nr}[\delta A_\mu]. \tag{110}$$

Eq. (110) can be understood as follows. Completely filled 0-th Landau level contributes $W_{nr}[\delta A_\mu]$ to the linear response, however the filled negative energy bands contribute total of $-\frac{1}{2} W_{nr}[\delta A_\mu]$, which leads to exact relation (115). To prove (110) we first turn to the non-relativistic generating functional. In the leading order we have

$$W_{nr}[\delta A_\mu] = \frac{1}{4\pi} \int d^2 x dt \left[ AdA \right.$$

$$\left. + \frac{1}{\omega_c} \delta E^2 - \frac{2 - g}{2m} \delta B^2 - \frac{3 - g}{2} \ell^2 \delta B(\partial, \delta E_i) + \ldots \right]. \tag{111}$$

In the limit $m \to 0$, $g = 2$ we find

$$W_{nr}^{m \to 0}[\delta A_\mu] = \frac{1}{4\pi} \int AdA - \frac{1}{2} \ell^2 \delta B(\partial, \delta E_i) + \ldots. \tag{112}$$

In fact, by dimensional analysis and the regularity of the massless limit only the terms linear in the electric field survive\textsuperscript{12}. These terms contribute to the (momentum dependent) Hall conductivity, which can be calculated exactly at zero frequency\textsuperscript{12}

$$\sigma_{H}^{m=0}(k) = \frac{1}{2\pi} \frac{1}{|k|^2} s(k), \tag{113}$$

where $s(k) = 1 - e^{-\frac{\omega^2}{\omega_c^2}}$ is the static structure factor\textsuperscript{13}. Eq.(113) agrees with the results produced from (64) upon setting the frequency $\omega = 0$.

The Dirac electrons are more tricky since in addition to the contribution of the LLL there are also, in principle, contributions from the transitions across the Dirac sea as illustrated on Fig. 4. We have checked that these transitions sum up to zero in $|k\ell'|^1, |k\ell'|^2, |k\ell'|^4$ and $|k\ell'|^6$ orders of the momentum expansion. If we assume that these transitions do not contribute to all orders in the gradient expansion then the Hall conductivity is given by (using (91)-(92))

$$\sigma_{H}^{D}(k) = \frac{e}{2\pi} \sum_{n=1}^{\infty} \frac{2^{2n-1}}{n!} |k\ell|^2 n^2 = \frac{4(1 - e^{-\frac{\omega^2}{\omega_c^2}})}{4\pi|k|^2} \tag{114}$$

which leads to the exact relationship

$$\sigma_{H}^{D}(k) = \frac{1}{2} \sigma_{H}^{m=0}(k), \tag{115}$$

which is equivalent to (110), provided we neglect the LL mixing (that is take $g = 2, m \to 0$ in the r.h.s. and $v_F \to \infty$ in the l.h.s.).

There is, however, a subtlety as we have not explained how to take the infinite gap limit of the Dirac generating functional (98). Since the energy levels are given by $E_n = \pm v_F \sqrt{2Bn}$ we should take the limit $v_F \to \infty$ which removes all of the energy levels except $E_0$. In this limit the term quadratic in the electric field indeed vanishes, however the term quadratic in magnetic field diverges linearly with $v_F$. In the non-relativistic case this term was removed by an appropriate choice of the g-factor $g = 2$, but in the Dirac case there is no such mechanism. Thus, in order to ensure the regularity of the $v_F \to \infty$ limit we must subtract this term “by hand”. The regular part of the generating functional for Dirac electrons then satisfies (110).

V. UNIVERSALITY OF THE LARGE $N$ LIMIT

In this Section, we calculate the polarization tensor in the large $N$ limit and then re-derive it using the semiclassical approximation. The result of the semiclassical calculation agrees with previous work\textsuperscript{14}, but we will present a simpler method of calculation. Furthermore, we show that in the large $N$ limit, the result of the RPA calculation agrees with the Fermi liquid theory\textsuperscript{15–17}. 

\begin{tikzpicture}
  \node[draw,rectangle] (L) {Dirac \hspace{0.5cm} $m \to 0, g = 2$ \hspace{0.5cm} LLL \hspace{0.5cm} $1/2$ \hspace{0.5cm} Non-relativistic};
  \node[left=of L,draw,rectangle] (N0) {$N = 0$};
  \node[right=of L,draw,rectangle] (N1) {$N = 1$};
  \draw[->] (N0) to node {$m \to 0, g = 2$} (L);
  \draw[->] (L) to node {$1/2$} (N1);\end{tikzpicture}
A. Large $N$ Limit of RPA

Working at large filling factors $N$ means that we consider a regime in which the density of electrons is much bigger than the external magnetic field

$$N = \frac{\bar{\rho}}{B/2\pi} \gg 1.$$  \hfill (116)

Non-interacting electrons in a weak magnetic field form a Fermi sphere. Furthermore, large filling also implies $k_F \ell \gg 1$. Therefore the gradient expansion in $k$ is valid in the range of momenta that satisfy $k \ell \sqrt{N} \sim 1$, which is the right regime for Landau’s Fermi liquid theory.

First, we will explicitly take the large $N$ limit of the RPA result (64). We will use the asymptotic form of the generating function $G(k,k',N)$ in the large $N$ limit takes form

$$G^{as}(k,k',N) = \sum_{n=1}^{\infty} n (-1)^n \frac{e^{\frac{q^2(k\ell)^2+|k\ell|^2}{4}}}{n!} \frac{(kk')^n}{n!} \frac{J_n\left(2\sqrt{Nk\ell^2}\right)}{n!}$$ \hfill (119)

where $\omega$ is the dimensionless frequency.

The asymptotic form of generating function $G^{as}(k,k',N)$ agrees with the exact generating function $G(k,k',N)$ up to sub-leading order in $N$, which can be checked order by order in the momentum expansion. We choose a frame where $k = (k_1,0)$, in this case $k = k = k_1$. It will be convenient to use the rescaled momentum $q = k_1 \ell \sqrt{2N} = k_1 k_F \ell^2$.

Finally, using Eq. (119) together with (64), we obtain the polarization tensor for any g-factor

$$\Pi^{11}(q,\omega) = -\frac{\bar{\rho}}{m} + \sum_{n=1}^{\infty} \frac{n^3 \omega_c |J_n(q)|^2}{2 \pi N (\omega^2 - n^2)}$$ \hfill (120)

$$\Pi^{22}(q,\omega) = -\frac{\bar{\rho}}{m} + \sum_{n=1}^{\infty} \frac{N n^2 \omega_c (J_{n-1}(q) - J_{n+1}(q))^2}{2 \pi (\omega^2 - n^2)}$$

\[ -g \sum_{n=1}^{\infty} \frac{n^2 \omega_c [J_{n-1}(q) - J_{n+1}(q)] J_n(q)}{4 \pi (\omega^2 - n^2)} \]

\[ -g^2 \sum_{n=1}^{\infty} \frac{q^2 n^2 \omega_c [J_n(q)]^2}{32 N \pi (\omega^2 - n^2)} \]

$$\Pi^{12}(q,\omega) = -\sum_{n=1}^{\infty} \frac{i N n^2 \omega_c J_n(q) [J_{n-1}(q) - J_{n+1}(q)]}{\pi (\omega^2 - n^2)}$$
Note that using Eqs.(73)-(75) one can restore all of the components of the polarization tensor at vanishing g-factor. Remarkably, the infinite sums for each component of the non-relativistic polarization tensor can be evaluated in a closed form. The details of the calculation are presented in the Appendix F. The results are written for the conductivity tensor (6)

\[
\sigma^{11}(q, \omega) = \frac{iN}{\pi} \left( -\frac{\omega}{q^2} + \frac{\pi\omega^2 J_0(q) J(\omega)}{q^2 \sin(\pi\omega)} \right), \tag{123}
\]

\[
\sigma^{22}(q, \omega) = \frac{iN}{\pi} \left( -\frac{\omega}{q^2} + \frac{\pi\omega^2 J_0(q) J(\omega)}{q^2 \sin(\pi\omega)} \right) + \frac{\pi J_1(\omega) J_1(\omega)}{\sin(\pi\omega)} + \frac{igq}{8\sin(\pi\omega)} \frac{\partial}{\partial q} \left[ J_\omega(q) J]\right] - \frac{igq^2 q^2}{64\pi N\omega} \left( 1 - \frac{\pi\omega}{\sin(\pi\omega)} \right) \tag{124}
\]

\[
\sigma^{12}(q, \omega) = -\frac{N\omega}{2q} \frac{\partial}{\partial q} \left( J_\omega(q) J\right) - \frac{g}{8\pi} \left( 1 - \frac{\pi\omega}{\sin(\pi\omega)} \right) \tag{125}
\]

Eqs.(123) - (125) are the main result of this Section. Next we will compare these results to a semiclassical computation.

B. Semiclassical Computation

1. Review of the Fermi liquid theory with a g-factor

In this Section, we review the derivation of Boltzmann’s equation mostly to fix the notation. The derivation follows closely to the bosonization of Fermi-mann’s equation mostly to fix the notation. The conductivity tensor (6)

\[
\sigma^{11}(q, \omega) = \frac{iN}{\pi} \left( -\frac{\omega}{q^2} + \frac{\pi\omega^2 J_0(q) J(\omega)}{q^2 \sin(\pi\omega)} \right), \tag{123}
\]

\[
\sigma^{22}(q, \omega) = \frac{iN}{\pi} \left( -\frac{\omega}{q^2} + \frac{\pi\omega^2 J_0(q) J(\omega)}{q^2 \sin(\pi\omega)} \right) + \frac{\pi J_1(\omega) J_1(\omega)}{\sin(\pi\omega)} + \frac{igq}{8\sin(\pi\omega)} \frac{\partial}{\partial q} \left[ J_\omega(q) J\right] - \frac{igq^2 q^2}{64\pi N\omega} \left( 1 - \frac{\pi\omega}{\sin(\pi\omega)} \right) \tag{124}
\]

\[
\sigma^{12}(q, \omega) = -\frac{N\omega}{2q} \frac{\partial}{\partial q} \left( J_\omega(q) J\right) - \frac{g}{8\pi} \left( 1 - \frac{\pi\omega}{\sin(\pi\omega)} \right) \tag{125}
\]

Eqs.(123) - (125) are the main result of this Section. Next we will compare these results to a semiclassical computation.

Remarkably, the infinite sums for each component of the distribution function occur only close the the Fermi surface.

The perturbations of the distribution function caused by weak fields are also assumed to be weak. The unperturbed distribution function is

\[
f^0(K, x, t) = \Theta(k_F - |K|), \tag{127}
\]

where \(\Theta(x)\) is the step function. Employing the collisionless limit of the Boltzmann equation\textsuperscript{22–24}, we obtain the time evolution equation for the distribution function \(f(K, x, t)\).

\[
\partial_t f(K, x, t) + v(K) \cdot \nabla_x f(K, x, t) + \left( \vec{E} + \frac{g}{4m} \vec{\nabla}_x B(x, t) + \vec{v}(K) \times \vec{B}(x, t) \right) \cdot \vec{\nabla}_K f(K, x, t) = 0,
\]

where \(v(K) = \vec{v}_K \epsilon_K\) is the group velocity and \(\epsilon_K\) is the non-relativistic dispersion relation. We also introduce a vector, normal to the Fermi surface via \(\bar{v}(K) = v_F \bar{n}_\theta\). Note that we included the term \(\frac{g}{4m} \vec{\nabla}_x B(x, t) \vec{\nabla}_K f(K, x, t)\) which is necessary to account for the finite g-factor.

In the low energy limit we take the momentum to be \(|K| = k_F + u(x, \theta, t)\) (see Fig. 5). Then the perturbations of the distribution function occur only close the the Fermi surface

\[
\delta f(K, x, t) = u(\theta, x, t) \delta(k_F - |K|), \tag{128}
\]

where \(\theta\) is the direction of \(K\) on the Fermi surface.

Then Boltzmann equation takes form\textsuperscript{6,25}

\[
\partial_t u(\theta, x, t) + v_F \bar{n}_\theta \cdot \nabla_x u(\theta, x, t) - \omega_c \theta u(\theta, x, t)
\]

\[
- \bar{n}_\theta \cdot \left( \vec{E}(x, t) + \frac{\mathbf{g}}{4m} \vec{\nabla}_x B(x, t) \right) = 0, \tag{129}
\]

where \(v_F = \frac{k_F}{m}\) is the Fermi velocity, and \(\bar{n}_\theta\) is the normal vector to the Fermi surface. We ignore terms that are second order in \(\vec{E}(x, t), \bar{b}(x, t)\) and \(\delta f(K, x, t)\). The charge density of the electrons can be written in terms of \(u(\theta, x, t)\) as follows

\[
\rho(x, t) = \int \frac{d^2K}{(2\pi)^2} f(K, x, t) = \bar{\rho} + \int d\theta \frac{k_F}{(2\pi)^2} u(\theta, x, t), \tag{130}
\]

where the background charge density is given by

\[
\bar{\rho} = \int \frac{d^2k}{(2\pi)^2} f^0(K) = \frac{k_F^2}{4\pi}. \tag{131}
\]

At nonzero g-factor the current density is defined as (cf. Eq. (69))

\[
J^\ell(x, t) = \int \frac{d^2K}{(2\pi)^2} f(K, x, t) v^\ell(K) + \frac{g}{4m} \epsilon^{ij} \partial_j \rho. \tag{132}
\]
Which in terms of $u(\theta, \mathbf{x}, t)$ is given by
\[ J^i(\mathbf{x}, t) = \frac{k_F v_F}{2\pi} \int \frac{d\theta}{2\pi} n^i_\theta u(\theta, \mathbf{x}, t) \]
\[ + \frac{g}{4m} k_F \epsilon^{ij} \partial_j \int \frac{d\theta}{2\pi} u(\theta, \mathbf{x}, t). \] (132)

The equation (129), (130) and (132) are the key ingredients for the semiclassical calculations.

2. Semiclassical calculation for the non-relativistic polarization tensor

We will work in the temporal gauge $A_0 = 0$. In this gauge the electric field is given by $E_i(q, \omega) = i\omega A_i(q, \omega)$. We decompose $u(\theta, \mathbf{x}, t)$ into Fourier modes
\[ u(\theta, \mathbf{x}, t) = \int \frac{d\Omega d^3 k}{(2\pi)^3} \sum_{n=-\infty}^{\infty} u_n(k, \Omega) e^{in\theta} e^{i\mathbf{k} \cdot \mathbf{x}} e^{-i\Omega t}. \] (133)

Next, we will fix the frame where $k = (k_1, 0)$ and introduce the notation
\[ q = k_1 \ell \sqrt{2N} = k_1 k_F \ell^2. \] (134)

Then Boltzmann equation (129) takes form
\[ (\omega + n) u_n(q, \omega) - \frac{q}{2} (u_{n+1}(q, \omega) + u_{n-1}(q, \omega)) + \omega \left[ \delta_{n,1} \left( A_z + g \frac{q^2}{32N\omega}(A_z - A_{\ell}) \right) + \delta_{n,-1} \left( A_z + g \frac{q^2}{32N\omega}(A_z - A_{\ell}) \right) \right] = 0. \] (135)

The solution of the above equation of motion for $u_n(q, \omega)$ with $n > 0$ and $n < 0$ is
\[ u_n(q, \omega) = F(q, \omega) J_{n+\omega}(q) \quad (n > 0) \] (136)
\[ u_n(q, \omega) = (-1)^n G(q, \omega) J_{n-\omega}(q) \quad (n < 0) \] (137)
where $J_{\nu}(x)$ is the Bessel function of the first kind. The functions $F(q, \omega)$ and $G(q, \omega)$ depend on the external field and are not fixed by the equations for $|n| > 1$. We will fix these functions using the equations of motion for $u_{-1}, u_0, u_1$.

The equation of motion for $u_0(q, \omega)$ gives us
\[ \omega u_0(q, \omega) = \frac{q}{2} (F(q, \omega) J_{1+\omega}(q) - G(q, \omega) J_{1-\omega}(q)) . \] (138)

Using (136), (137) and (138) in the equation of motion for $u_1(q, \omega)$ and $u_{-1}(q, \omega)$ we find
\[ F(q, \omega) = \frac{\pi \omega}{\sin(\pi \omega)} \left( J_{1-\omega}(q) \left( A_z + g \frac{q^2}{32N\omega}(A_z - A_{\ell}) \right) + J_{1-\omega}(q) \left( A_z + g \frac{q^2}{32N\omega}(A_z - A_{\ell}) \right) \right), \] (139)
\[ G(q, \omega) = -\frac{\pi \omega}{\sin(\pi \omega)} \left( J_{1+\omega}(q) \left( A_z + g \frac{q^2}{32N\omega}(A_z - A_{\ell}) \right) + J_{1+\omega}(q) \left( A_z + g \frac{q^2}{32N\omega}(A_z - A_{\ell}) \right) \right), \] (140)
where we used the following Bessel function identity
\[ J_{1-\omega}(q) J_{1+\omega}(q) - J_{-1-\omega}(q) J_{-1+\omega}(q) = \frac{4\omega \sin(\pi \omega)}{\pi q^2}. \] (141)

Functions $u_1(q, \omega)$ and $u_{-1}(q, \omega)$ are then given by
\[ u_1(q, \omega) = F(q, \omega) J_{1+\omega}(q), \quad u_{-1}(q, \omega) = -G(q, \omega) J_{1-\omega}(q). \] (142)

To calculate the response functions in terms of the applied electric field, we write equation (132) in terms of the Fourier modes
\[ J^1 = \frac{N \omega_c}{2\pi} (u_1 + u_{-1}), \quad J^2 = \frac{iN \omega_c}{2\pi} (u_1 - u_{-1}) - \frac{i g \omega_c}{8\pi} u_0, \] (143)
where $N = \frac{1}{2} k_F^2 \ell^2$ is the number of filled Landau levels.

Using Eqs. (142) we can derive the current density in terms of vector potential in the usual form
\[ J^i(q, \omega) = \Pi^{ij}(q, \omega) A_j(q, \omega), \] (144)

from where we can extract the polarization tensor which is again given exactly by (123)-(124) combined with Eqs. (73)-(75). Reducing Eq.(144) to the form of Eqs. (123)-(124) involves non-trivial manipulations with the Bessel functions. We leave these details to the Appendix F. We conclude that the RPA approximation in the large $N$ limit is equivalent to the semiclassical approximation for any value of the g-factor.

VI. CONCLUSION

We have calculated the electromagnetic response of the IQH states of non-relativistic and massless Dirac electrons to all orders in the gradient expansion. In the non-relativistic case we obtained a simple closed form expression (64) which agrees with the one loop calculation from the previous work\(^1\) for non-relativistic electrons as well as general (non-linear) structure of the generating functional\(^{26,27}\). The method we used is extended naturally to the massless Dirac theory in magnetic field. We explicitly check that the polarization tensors of non-relativistic and Dirac electrons match in the large $N$ limit up to substitution $N \to N + 1/2$. The extra 1/2 is due to the Berry phase of the Dirac cone. Furthermore, in the Dirac case, we checked that the $\Omega^2$ and $k^2$ corrections to the Hall conductivity satisfy the relation (101) imposed by the Lorentz invariance\(^9\).

We have used the semiclassical approximation to calculate the electromagnetic response function of the Fermi liquid in weak constant background magnetic field, the polarization tensor can be written in a closed form, given in terms of Bessel's functions, and agrees with the previous work\(^14\), however we have used a simpler method of calculation. Our computation can be easily modified to include the effect of short range interactions via introducing the Landau parameters\(^25\). The results, which include short range interaction, can still be derived in a closed
form. Next, we showed explicitly, that the large \( N \) limit of RPA calculation in the non-relativistic case matches the semi-classical approximation at the leading and sub-leading order in \( N \), without including the short range interactions. The agreement implies the equivalence of Fermi liquid theory in a weak background magnetic field and large \( N \) limit of RPA calculation. Finally, in view of the previous result we see that the Fermi liquid theory must be modified by the Berry phase effects in order to work for the Dirac fermions. This effect can be easily incorporated via the substitution \( N \to N + 1/2 \).

We expect that our computations will find many applications to quantum Hall physics. The explicit expression for the polarization tensor is necessary in composite fermion\(^1\) and boson\(^2\) approaches to fractional quantum Hall (FQH) states. These results can also serve as a starting point to accounting for lattice, quenched disorder and weak interactions corrections to the linear response theory. Moreover, some of the gradient corrections to the weak interactions corrections to the linear response theories carry universal information about the quantum Hall transport coefficients, under certain symmetry assumptions. The agreement implies the equivalence of Fermi liquid theory in a weak background magnetic field and large \( N \) limit of RPA calculation. Finally, in view of the previous result we see that the Fermi liquid theory must be modified by the Berry phase effects in order to work for the Dirac fermions. This effect can be easily incorporated via the substitution \( N \to N + 1/2 \).

Acknowledgments. It is a pleasure to thank Alexander G. Abanov and Dam T. Son for stimulating discussions and useful suggestions.

A.G. was supported by the Kadanoff Fellowship. D.X.N. is supported by the Chicago MRSEC, which is funded by NSF through grant DMR-1420709.

Appendix A: Generating functional summary

For the reader’s convenience we list together all of the final expressions derived in the Section II in terms of dimensionless momentum \( q = \frac{k}{\sqrt{2}} \) and for arbitrary \( g \)-factor.

\[
\delta S_b = \frac{g}{4m} \int dt d^2 x B \psi^\dagger \psi. \tag{A1}
\]

The generating function is given by

\[
\mathcal{G}(q, q'; N) = \sum_{n \geq N, n' < N} (-1)^{n-n'} \frac{n!n'^!}{n'!} \left( \frac{1}{n-n'+\omega} \right) L_{n-n'}^{n-n'} \left( \frac{|q|^2}{2} \right) L_{n-n'}^{n-n'} \left( \frac{|q'|^2}{2} \right), \tag{A2}
\]

The vertices are given by the following relations

\[
\tilde{\mathcal{P}}^0_{m}(q) = 1, \tag{A3}
\]

\[
\tilde{\mathcal{P}}^2_{m}(q) = -\frac{1}{2\sqrt{2m\ell}} \left( 2\delta_q - \left( 1 - \frac{g}{2} \right) q \right), \tag{A4}
\]

where we have also added the dependence on the \( g \)-factor that describes the non-minimal coupling of the electrons to the magnetic field due to the intrinsic magnetic moment. The polarization operator is given by

\[
\Pi^{\mu\nu} = \frac{m}{4\pi} e^{-|q|^2} \lim_{q \to -q} \tilde{\mathcal{P}}_{\mu}(q) \tilde{\mathcal{P}}_{\nu}(q') \mathcal{G}(q, q'; N) + \Pi^{\mu\nu}_{\text{c}} \tag{A6}
\]

and

\[
W_c^{(2)} = \frac{N\omega_c}{4\pi} \int \frac{d^2 q}{(2\pi)^2} |\delta A(q, 0)|^2 \tag{A7}
\]

Appendix B: Derivation of (50)

a. Summation over \( b \) subspace

The first step in evaluation of (50) is to perform the summation over the Fock space generated by \( b, b^\dagger \) operators. This can be done easily because the \( b, b^\dagger \) operators completely factorize from the expression for the vertices (38)-(37), because the perturbed action does not depend on \( b \) and \( (a, a^\dagger) \) commute with \( (b, b^\dagger) \). We compute the trace over the Fock spaces (suppressing the frequency integration)
\[ \text{Tr}_{a,b} G_0 V^{(1)} G_0 V^{(1)} = \sum_{n,n',m,m'} \langle nm|G_0|nm\rangle \langle nm|V^{(1)}|n'm\rangle \langle n'm'|G_0|n'm\rangle \langle n'm'|V^{(1)}|nm\rangle \]

\[ = \sum_{n,n',m,m'} \frac{1}{\omega - E_n} \frac{1}{\omega' - E_{n'}} \langle nm|V^{(1)}|n'm\rangle \langle n'm'|V^{(1)}|nm\rangle \]  

(B1)

The matrix elements \( \langle n'm'|V^{(1)}|nm\rangle \) factorize as

\[ \langle n'm'|V^{(1)}|nm\rangle = \langle m'| e^{-\frac{i\bf{q}.\bf{k}}{2\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} |m\rangle \langle n'|V^{(1)}|n\rangle \delta A_\mu \]  

(B2)

because \( a \) commutes with \( b \). In Eq. (B2) \( \langle m|X|m'\rangle |_b \) means that the average value of operator \( X \) is computed in the Fock space generated by \( b \). Then

\[ T\text{r}_{a,b} G_0 V^{(1)} G_0 V^{(1)} = \sum_{n,n',m,m',k,q} \frac{1}{\omega - E_n} \frac{1}{\omega' - E_{n'}} \langle m|e^{-\frac{i\bf{q}.\bf{k}}{2\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} |m'\rangle |_b \]

\[ \times \langle m'|e^{-\frac{i\bf{q}.\bf{k}}{2\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} |m\rangle |_b \langle n'|V^{(1)}|n\rangle \langle n'|V^{(1)}|n\rangle \delta A_\mu(k) \delta A_\nu(q) \]

\[ = \sum_{n,n',m,k,q} \frac{1}{\omega - E_n} \frac{1}{\omega' - E_{n'}} \langle m|e^{-\frac{i\bf{q}.\bf{k}}{2\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} e^{-\frac{i\bf{q}.\bf{b}}{\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} |m\rangle |_b \]

\[ \times \langle n'|V^{(1)}|n\rangle \langle n'|V^{(1)}|n\rangle \delta A_\mu(k) \delta A_\nu(q) \]  

(B3)

where in the last line we have used that \( |m\rangle \) form a complete basis in the Fock space generated by \( b \).

\[ \sum_{m'} |m'|\langle m'| = 1_b , \]  

(B4)

where \( 1_b \) is an identity operator in the Fock space spanned by \( b \) operators. We have, thus, established that in all of the components of the generalized polarization operator the summation over \( m \) can be done explicitly and amounts to the computation of the sum

\[ \sum_{m} \langle m|e^{-\frac{i\bf{q}.\bf{k}}{2\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} e^{-\frac{i\bf{q}.\bf{b}}{\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} |m\rangle = \frac{1}{\pi} \int d\alpha e^{\alpha^2} \langle 0|e^{\alpha b} e^{-\frac{i\bf{q}.\bf{k}}{2\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} e^{-\frac{i\bf{q}.\bf{b}}{\hbar}} e^{\frac{i\bf{q}.\bf{b}}{\hbar}} |0\rangle \]

(B5)

\[ = \frac{2\pi}{\ell^2} e^{-\frac{i\bf{q}.\bf{k}}{2\hbar}} \delta^{(2)}(k + q) . \]

(B6)

In the first line we replaced the summation in \( m \) with integration over the coherent states (we explain how to do it in the Appendix C). In resume: for any component of the polarization tensor summation over \( m \) can be replaced by \( \frac{2\pi}{\ell^2} e^{-\frac{i\bf{q}.\bf{k}}{2\hbar}} \delta^{(2)}(k + q) \). This delta function is the manifestation of the momentum conservation - after \( b \)-summation the fully filled Landau level looks translationally invariant.
Next we perform the trace over time and frequency
\[ \text{Tr}_t G_0 V(1)G_0 V(1) = \sum_t \langle t|G_0 V(1)G_0 V(1)|t \rangle \]
\[ = \sum_{t,\omega} \sum_{t',\omega'} e^{it(\omega'-\omega)} e^{-it'\omega} \frac{1}{\omega - E_n} V^{(1)}_{nn'}(t) \frac{1}{\omega' - E_n'} V^{(1)}_{n'n}(t') \]
\[ = \sum_{n,n'} \sum_{\omega,\omega'} e^{i\omega(\omega'-\Omega)} e^{-i\omega'(\omega-\Omega')} \frac{1}{\omega - E_n} V^{(1)}_{nn}(\Omega) \frac{1}{\omega' - E_n'} V^{(1)}_{n'n}(\Omega') \]
\[ = \sum_{n,n'} \sum_{\omega,\omega'} \delta(\omega - \omega - \Omega) \delta(\omega' - \Omega') \frac{1}{\omega - E_n} V^{(1)}_{nn}(\Omega) \frac{1}{\omega' - E_n'} V^{(1)}_{n'n}(\Omega') \]
\[ = \sum_{n,n'} \int d\Omega d\omega \frac{1}{2\pi} \frac{1}{(\omega + \Omega) - E_n} \frac{1}{\omega - E_n'} V^{(1)}_{nn}(\Omega) V^{(1)}_{n'n}(\Omega) \]
where we have introduced a shorthand \( V_{nn'} \) for matrix elements \( \langle n|V|n' \rangle \). To perform the frequency integration we rewrite the fraction as a sum
\[ \frac{1}{(\omega + \Omega) - E_n} \frac{1}{\omega - E_n'} = \left( \frac{1}{(\omega + \Omega) - E_n} - \frac{1}{\omega - E_n'} \right) \frac{-1}{\Omega - (E_n - E_n')} \]
and take only first \( N \) poles in the integral over \( \omega \). This integration will project onto Hilbert space of the first \( N \) Landau levels. When this is done we have
\[ \text{Tr}_t G_0 V(1)G_0 V(1) = \int \frac{d\Omega}{2\pi} \sum_{n,n'} \frac{\theta(N-n) V^{(1)}_{nn}(\Omega) V^{(1)}_{n'n}(\Omega)}{E_n - E_n'} - \frac{\theta(N-n') V^{(1)}_{n'n}(\Omega) V^{(1)}_{nn}(\Omega)}{E_{n'} - E_n} \]
\[ = \int \frac{d\Omega}{2\pi} \sum_{n \leq N, n' > N} \left( \frac{V^{(1)}_{nn}(\Omega) V^{(1)}_{n'n}(\Omega)}{E_n - E_n - \Omega} + \frac{V^{(1)}_{n'n}(\Omega) V^{(1)}_{nn}(\Omega)}{E_{n'} - E_n + \Omega} \right) . \]
This is the final outcome of the computation (we have suppressed the dependence on the momentum). This computation yields (50).

**Appendix C: Coherent states**

In this Appendix we will describe the coherent states that will be useful for multiple calculations. Here we follow Perelomov\(^7\), but customize the notations to agree with the main text.

1. **Heisenberg-Weyl group**

We define Heisenberg-Weyl algebra via relations
\[ [a, a^\dagger] = 1, \quad [a, 1] = [a^\dagger, 1] = 0, \quad (C1) \]
an arbitrary element of the algebra is given by a linear combination
\[ W = is \cdot 1 + qa^\dagger - \bar{q}a, \quad (C2) \]
where \( s \) is real and \( q \) is complex.

We want to exponentiate the algebra into the group. Arbitrary Heisenberg-Weyl group element is given by
\[ e^W = e^{is \cdot a} e^{qa^\dagger - \bar{q}a} = e^{is \cdot a} e^{qa^\dagger - \bar{q}a} = e^{is \cdot a} e^{-\frac{1}{2} [qa^\dagger, -\bar{q}a]} \]
\[ = e^{is \cdot a} e^{-\frac{1}{2} \|a\|^2} e^{-\bar{q}a} = e^{-\frac{1}{2} \|a\|^2} e^{-\bar{q}a}, \quad (C3) \]
where we have used \( e^{A+B} = e^{\frac{1}{2}[A,B]} e^A e^B \), which is true for linear combinations of creation/annihilation operators. We also denote
\[ D(q) = e^{qa^\dagger - \bar{q}a}. \quad (C4) \]
These operators form a representation of the Heisenberg-Weyl group. Representations for different values of \( s \) are inequivalent. For fixed value of \( s \) all representations are unitary equivalent. So from now on we fix \( s \) and drop \( e^{is} \) factor.

We can freely switch between \( D(q) \) and \( e^{qa^\dagger}e^{-\bar{q}a} \) at the cost of an exponent, that is

\[
D(q) = e^{\frac{im^2}{4}}e^{qa^\dagger}e^{-\bar{q}a}.
\] (C5)

Operators \( D(q) \) have the following multiplication rule

\[
D(q)D(k) = e^{i\text{Im}(qk)}D(k + q).
\] (C6)

This can be checked using the following simple identities

\[
e^{ca} f(a^\dagger) = f(a^\dagger + c)e^{ca},
\] (C7)

\[
e^{ca^\dagger} f(a) = f(a - c)e^{ca^\dagger}.
\] (C8)

These relations can be used to prove the multiplication law. The latter can be obviously generalized as follows

\[
\prod_{i=1}^{i=M} D(q_i) = e^{i\sum_{i<j} \text{Im}(q_iq_j)} D\left(\sum_{i=1}^{M} q_i\right).
\] (C9)

The multiplication law implies the permutation relation

\[
D(q)D(k) = e^{2i\text{Im}(qk)}D(k)D(q).
\] (C10)

2. Generalized coherent states

Operators \( a, a^\dagger \) naturally generate a Fock space \( \mathcal{H} \) with an orthonormal basis

\[
|n\rangle = \frac{a^\dagger}{\sqrt{n!}}|0\rangle,
\] (C11)

where \( |0\rangle \) is defined via \( a|0\rangle = 0 \). Consider an arbitrary state \( |\Psi_0\rangle \in \mathcal{H} \). States of the form

\[
D(q)|\Psi_0\rangle = |q\rangle
\] (C12)

are generalized coherent states. One gets usual coherent states choosing \( |\Psi_0\rangle = |0\rangle \). Most of relations for coherent states hold for any \( |\Psi_0\rangle \). The overlap of the coherent states is

\[
\langle k|q\rangle = e^{i\text{Im}(k\bar{q})}|\Psi_0|D(k - q)|\Psi_0\rangle \implies \rho(k - q) = \frac{\langle k|q\rangle \langle q|k\rangle}{\langle |k\rangle |k\rangle}
\] (C13)

Also we have

\[
D(k)|q\rangle = e^{i\text{Im}(k\bar{q})}|k + q\rangle.
\] (C14)

Since the Fock space \( \mathcal{H} \) is projected \( D(k) \) acts on the \( q \)-plane by translations. Therefore an invariant (under the action of Heisenberg-Weyl group) measure is

\[
d\mu(k) = Cdk_1dk_2, \quad \text{with} \quad k = k_1 + ik_2,
\] (C15)

where \( C \) is arbitrary constant to be fixed momentarily. Consider an operator

\[
A = \int d\mu(k)|k\rangle \langle k|.
\] (C16)

We find that for any \( k \) we have \( [D(k), A] = 0 \), thus \( A = \lambda \hat{1} \) due to Schur’s lemma. We also can always choose \( C \) to set \( \lambda = 1 \). We take \( C = \frac{1}{\pi} \) then resolution of identity takes form (this particular value of \( C \) will be explained shortly)

\[
\int \frac{dk_1dk_2}{\pi}|k\rangle \langle k| = \hat{1}.
\] (C17)

We now present some relations that are valid only for \( |\Psi_0\rangle = |0\rangle \).

\[
D(q)aD(q) = a + q.
\] (C18)

and

\[
a|k\rangle = k|k\rangle.
\] (C19)

Similarly we have

\[
|k\rangle = D(k)|0\rangle = e^{-\frac{|k|^2}{2}}e^{k a^\dagger}|0\rangle = \sum_{n=0}^{\infty} \frac{k^n}{\sqrt{n!}}|n\rangle
\] (C20)

Using the last relation we find

\[
|\langle 0|k\rangle|^2 = \rho(k) = e^{-|k|^2} \quad |\langle q|k\rangle|^2 = \rho(q - k) = e^{-|k-q|^2}
\] (C21)

Noticing that (C17) is equivalent to \( \int d\mu(k)\rho(k) = 1 \) we find that \( C = \frac{1}{\pi} \) as advertised.

We want to be able to evaluate traces in \( \mathcal{H} \). In the Fock basis we have

\[
\text{Tr} O = \sum_{n} \langle n|O|n\rangle = \sum_{n} \int d\mu(k)d\mu(q)\langle q|n\rangle\langle n|k\rangle\langle k|O|q\rangle = \int d\mu(k)d\mu(q)\langle q|k\rangle\langle k|O|q\rangle
\] (C22)

Using resolution of identity

\[
\text{Tr} O = \int d\mu(q)\langle q|O|q\rangle = \int d\mu(q)e^{-|q|^2}\langle 0|e^{q a^\dagger}Oe^{qa}|0\rangle
\] (C23)

So we have derived

\[
\text{Tr}_a \tilde{O} = \frac{1}{\pi} \int dq_1dq_2 \left(e^{-|q|^2}\langle 0|e^{q a^\dagger}Oe^{qa}|0\rangle\right)
\] (C24)

Consider a matrix element of \( D(k) \)

\[
G(k, q; p) \equiv e^{\frac{i}{2}((|k|^2+|q|^2))\langle k|D(p)|q\rangle} = e^{\frac{im^2}{4}}e^{k a^\dagger-k p -\bar{q}p}
\] (C25)

Inserting resolution of unity in terms \( |n\rangle \) we find

\[
G(k, q; p) = \sum_{m,n} \bar{u}_m(k)u_n(q)D_{mn}(p),
\] (C26)
where
\[ u_n(k) \equiv \langle n|k \rangle = \frac{k^n}{\sqrt{m!}} \]  
(C27)

\( G \) is a generating function of the matrix elements of \( D_{mn}(p) \). The latter are obtain expanding (C25) in series in \( k \) and \( q \).

\[ D_{nm}(p) = \sqrt{\frac{n!}{m!}} e^{-\frac{\|q\|^2}{2}} p^{m-n} L_{m-n}(|p|^2), \quad m \geq n \]  
(C28)

\[ D_{mn}(p) = \sqrt{\frac{m!}{n!}} e^{-\frac{\|q\|^2}{2}} (-\bar{p})^{n-m} L_{m-n}(|p|^2) n \geq m \]  
(C29)

We also find simple relations for the traces
\[ \text{Tr} D(p) = \pi \delta^{(2)}(p) \]  
(C30)

\[ \text{Tr} \left[ D(p)D^{-1}(q) \right] = \pi \delta^{(2)}(p-q) \]  
(C31)

3. Application: Trace over \( b \)-subspace

We want to evaluate trace of a product of local operators
\[ \text{Tr} \left[ \prod_{i=1}^{M} \mathcal{O}_i(x_i) \right] = \int [dk] \prod_{i=1}^{M} \text{Tr} \left[ e^{i \sum_{i} k_i \cdot x_i} \mathcal{O}_i(k_i) \right] \]  
where we have introduce a shorthand notation \([dk] = \prod_{i=1}^{M} \frac{d^k}{(2\pi)^m}\) and \(\mathcal{O}_i(k_i)\) is understood as a Fourier transform of \(\mathcal{O}_i(x_i)\). Now we re-write the exponent in terms of \(a\) and \(b\).

\[ e^{i k \cdot x} = e^{\frac{i a \cdot q}{\sqrt{2}}} e^{-\frac{\|q\|^2}{2}} e^{-\frac{i b \cdot q}{\sqrt{2}}} e^{\frac{i q \cdot b}{\sqrt{2}}} \]  
where we introduced \(q = \frac{k}{\sqrt{2}}\) so that \([dk] = \left(\frac{2}{\pi}\right)^M [dq]\).

We have for the exponent
\[ e^{i k \cdot x} = D_a(-q) e^{-\frac{\|q\|^2}{2}} e^{-\bar{q} \cdot b} e^{q \cdot b} \]  
(C34)

Now, we plug this back into the trace
\[ \left(\frac{2}{\pi}\right)^M \prod_{i=1}^{M} \int [dq] D_a(-q_i) \left[ \text{Tr} \left[ e^{-\frac{\|q\|^2}{2}} e^{-\bar{q} \cdot b} e^{q \cdot b} \mathcal{O}_i(q_i) \right] \right] \]  
(C35)

To proceed we use (C24)
\[ \text{Tr} \left[ \prod_{i=1}^{M} e^{-\frac{\|q\|^2}{2}} e^{-\bar{q} \cdot b} e^{q \cdot b} \right] = \frac{1}{\pi} e^{-\|q\|^2} \int d^2 \bar{p} \left[ e^{-\|p\|^2} (0)e^{\bar{p} \cdot b} e^{p \cdot b} \right] \]  
We want to normal order the product. In order to do this we use permutation relations
\[ e^{\bar{p} \cdot b} \prod_{i=1}^{M} e^{-\bar{q}_i b_i} e^{q_i b_i}, e^{p \cdot b} \]  
\[ = e^{\bar{p} \cdot b} \bar{q}_i b_i e^{q_i b_i} e^{p \cdot b} \]  
\[ : e^{\bar{p} \cdot b} \prod_{i=1}^{M} e^{-\bar{q}_i b_i} e^{q_i b_i} e^{p \cdot b} : e^{p \cdot b} \Sigma_i q_i e^{\bar{p} \cdot q_i} e^{\bar{p} \cdot q_i} q_i \]  
Denoting \(\Sigma_i q_i = Q\) and using
\[ \langle 0 | : e^{\bar{p} \cdot b} \prod_{i=1}^{M} e^{-\bar{q}_i b_i} e^{q_i b_i} e^{p \cdot b} : |0 \rangle = 1 \]  
(C36)

we have
\[ \text{Tr} \left[ \prod_{i=1}^{M} e^{-\frac{\|q\|^2}{2}} e^{-\bar{q} \cdot b} e^{q \cdot b} \right] = \frac{1}{\pi} e^{-\|q\|^2} \int d^2 \bar{p} e^{-\bar{p} \cdot Q} e^{\bar{p} \cdot Q} \]  
(C37)

The latter integral is a \(\delta\)-function
\[ \frac{1}{\pi} \int dp_1 dp_2 e^{-\bar{p} \cdot Q} e^{\bar{p} \cdot Q} = \pi \delta^{(2)}(Q) = \pi \int \frac{d^2 \lambda}{(2\pi)^2} e^{i \lambda \cdot Q} \]  
We also use \(\bar{q}_i q_j = q_i \cdot q_j + i q_i \wedge q_j\), where \(a \wedge b = a_1 b_2 - a_2 b_1\). As well as
\[ \frac{1}{2} \sum_i |q_i|^2 + \sum_{i<j} q_i \cdot q_j = \frac{1}{2} Q^2 \]  
(C39)

then
\[ \text{Tr} \left[ \prod_{i=1}^{M} e^{-\frac{\|q\|^2}{2}} e^{-\bar{q} \cdot b} e^{q \cdot b} \right] = \pi e^{-i \sum_{i<j} q_i \wedge q_j} \int \frac{d^2 \lambda}{(2\pi)^2} e^{i \lambda \cdot Q} \]  
(C40)

We have proven that
\[ D_a(-q_1) \cdots D_a(-q_M) = e^{i \sum_{i<j} q_i \wedge q_j} D_a(-q_1 - \cdots - q_M) = e^{i \sum_{i<j} q_i \wedge q_j} D_a(-Q) \]  
(C42)
we arrive at the trace formula
\[ \text{Tr}_b \left[ \prod_{i=1}^{M} O_i(x_i) \right] = \pi \left( \frac{2}{l^2} \right)^M \int \frac{d^2 \lambda}{(2\pi)^2} \prod_{i=1}^{M} \int [dq] \left[ e^{i\lambda \cdot q_i} \tilde{O}_i(q_i) \right]. \] (C43)

This is the generalization of the \( b \)-summation formula that was used in Appendix B to arbitrary number of external legs. This formula is useful if one is aiming to evaluate the generating functional to arbitrary order in external fields.

### Appendix D: Vertices for the Dirac polarization tensor

In this Appendix we explicitly write out the vertices for the Dirac polarization tensor. These are obtained by straightforwardly combining (80) with (92) and using (46), for \( |n'| \geq |n| > 0 \)

\[ \Gamma^0_{\text{D}nn'}(\vec{k}) = \frac{1}{2} \left( \sqrt{\left| \frac{n!}{n'}! \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right) \right)^{|n'|-|n|} L_{|n|}^{|n'|-|n|} \left( |k\ell|^2 \right)^{\frac{|n'|-|n|}{2}} + \text{sgn}(n) \text{sgn}(n') \sqrt{\left| \frac{(|n|)!}{(|n'|)!} \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right)^{|n'|-|n|} L_{|n'|}^{|n'|-|n|} \left( |k\ell|^2 \right)^{\frac{|n'|-|n|}{2}} \right) \] (D1)

\[ \Gamma^1_{\text{D}nn'}(\vec{k}) = \frac{v_F}{2} \left( \text{sgn}(n') \sqrt{\left| \frac{n!}{n'}! \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right) \right)^{|n'|-|n|} \left( |k\ell| \right)^{|n'|-|n|} L_{|n|}^{|n'|-|n|} \left( |k\ell|^2 \right)^{\frac{|n'|-|n|}{2}} - \text{sgn}(n) \sqrt{\left| \frac{(|n|)!}{(|n'|)!} \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right)^{|n'|-|n|} L_{|n'|}^{|n'|-|n|} \left( |k\ell|^2 \right)^{\frac{|n'|-|n|}{2}} \right) \] (D2)

For the case \( |n| \geq |n'| > 0 \), the expressions for the vertices are obtained by using (47) instead of (46).

For the case \( n = 0, |n'| > 0 \)

\[ \Gamma^0_{\text{D}0n'}(\vec{k}) = \frac{1}{\sqrt{2}} \left( \sqrt{\left| \frac{1}{n'}! \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right) \right)^{|n'|} L_{0}^{|n'|} \left( |k\ell|^2 \right)^{\frac{|n'|}{2}} \] (D4)

\[ \Gamma^1_{\text{D}0n'}(\vec{k}) = \frac{v_F}{\sqrt{2}} \left( \text{sgn}(n') \sqrt{\left| \frac{1}{(|n'|)!} \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right) \right)^{|n'|} \left( |k\ell| \right)^{|n'|} L_{0}^{|n'|} \left( |k\ell|^2 \right)^{\frac{|n'|}{2}} \] (D5)

For the case \( |n| > 0, n' = 0 \)

\[ \Gamma^0_{\text{D}n0}(\vec{k}) = \frac{1}{\sqrt{2}} \left( \sqrt{\left| \frac{1}{|n|} \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right) \right)^{|n|} L_{0}^{|n|} \left( |k\ell|^2 \right)^{\frac{|n|}{2}} \] (D7)

\[ \Gamma^1_{\text{D}n0}(\vec{k}) = \frac{v_F}{\sqrt{2}} \left( \text{sgn}(n) \sqrt{\left| \frac{1}{(|n|)!} \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right) \right)^{|n|} \left( -|k\ell| \right)^{|n|} L_{0}^{|n|} \left( |k\ell|^2 \right)^{\frac{|n|}{2}} \] (D8)

\[ \Gamma^2_{\text{D}n0}(\vec{k}) = -\frac{i v_F}{\sqrt{2}} \left( \text{sgn}(n') \sqrt{\left| \frac{1}{(|n'|)!} \right|} \left( \frac{\sqrt{\sqrt{2}}}{\sqrt{\sqrt{2}}} \right) \right)^{|n'|} \left( |k\ell| \right)^{|n'|} L_{0}^{|n'|} \left( |k\ell|^2 \right)^{\frac{|n'|}{2}} \] (D9)
we can write down the explicit form of equation (91) as the summation of product of Laguerre polynomials for each pair of indices $\mu$ and $\nu$.

**Appendix E: Evaluation of the infinite sums**

In this Appendix, we again use $\vec{k} = (k_1, 0)$ . The components of polarization tensors can be obtained from equation (91) and the explicit form of vertex operator $\Gamma_{Dnn}^\nu(\vec{k})$

$$\Pi_{D}^{12}(\Omega, \vec{k}) = i\Omega \Pi_{1}^{12} + i\Omega k_1^2 \Pi_{2}^{12} + i\Omega^3 \Pi_{3}^{12} + \cdots, \quad (E1)$$

there is no $k \nu \cdot \nu$ term in $\Pi^{11}(\Omega, \vec{k})$ and no $\Omega^2$ term in $\Pi^{00}(\Omega, \vec{k})$, we can calculate the coefficients

$$\Pi_{2}^{12} = \frac{i\ell^2}{64\pi} \left( \sum_{n=N+1}^{\infty} \frac{[4(2n+1)(\sqrt{n+1}-\sqrt{n})^2 - 4(2n-1)(\sqrt{n}-\sqrt{n-1})^2}{\sqrt{n} + \sqrt{n+1}} + (\sqrt{n} + \sqrt{n+1})^4 \right). \quad (E3)$$

The summation is convergent and is given by

$$\sum_{n=N+1}^{\infty} \left[ (\sqrt{n} - \sqrt{n-1})^4 - (\sqrt{n+1} - \sqrt{n})^4 \right] = 0. \quad (E4)$$

The first two terms come from the summation with $n' < 0$ and $n > 0$, the last term is from $n, n' > 0$. Similarly,

$$\Pi_{3}^{12} = \frac{i\ell^2}{16\pi v_F} \left( \sum_{n=N+1}^{\infty} \frac{[4(2n+1)(\sqrt{n+1}-\sqrt{n})^4 - 4(2n-1)(\sqrt{n}-\sqrt{n-1})^4}{\sqrt{n} + \sqrt{n+1}} + (\sqrt{n} + \sqrt{n+1})^4 \right). \quad (E4)$$

The coefficient $\Pi_{22}^{22}$ can be also calculated similarly

$$\Pi_{22}^{22} = \frac{3\ell v_F}{4\sqrt{2}\pi} \zeta(-\frac{1}{2}, N + 1). \quad (E13)$$

We summarize these results in the Section III.
\[ \omega J_{\omega}(q) = \frac{q}{2}(J_{1+\omega}(q) + J_{-1+\omega}(q)) \]  
\[ \omega J_{-\omega}(q) = -\frac{q}{2}(J_{1-\omega}(q) + J_{-1-\omega}(q)) \]  

The summations (120), (121) and (122) can be recast as

\[ \Pi^{11}(q, \omega) = -\frac{N\omega_c}{2\pi} + \sum_{n=1}^{\infty} -\frac{2Nn^4\omega_c [J_n(q)]^2}{\pi q^2 (\omega^2 - n^2)} \]  

\[ \Pi^{22}(q, \omega) = -\frac{N\omega_c}{2\pi} + \sum_{n=1}^{\infty} -\frac{Nn^2\omega_c [J_{n-1}(q) - J_{n+1}(q)]^2}{2\pi (\omega^2 - n^2)} \]

where we used

\[ \frac{\partial}{\partial x} J_n(x) = \frac{1}{2}(J_{n-1}(x) - J_{n+1}(x)) \]

Using the identity

\[ \sum_{n=1}^{\infty} n^2 [J_n(q)]^2 = \frac{\pi^2}{4} \]

we can rewrite \( \Pi^{11}(q, \omega) \) as

\[ \Pi^{11}(q, \omega) = -\frac{2N\omega_c^2}{\pi q^2} \sum_{n=1}^{\infty} n^2 [J_n(q)]^2 / (\omega^2 - n^2) \]

Next we need to evaluate

\[ \sum_{n=1}^{\infty} \frac{n^2 [J_n(q)]^2}{(\omega^2 - n^2)} = \omega^2 \sum_{n=1}^{\infty} \frac{[J_n(q)]^2}{(\omega^2 - n^2)} - \sum_{n=1}^{\infty} [J_n(q)]^2 \]

\[ \sum_{n=1}^{\infty} \frac{n^2 [J_{n-1}(q)J_{n+1}(q)]}{(\omega^2 - n^2)} = \omega^2 \sum_{n=1}^{\infty} \frac{J_{n-1}(q)J_{n+1}(q)}{(\omega^2 - n^2)} - \sum_{n=1}^{\infty} J_{n-1}(q)J_{n+1}(q) \]

to derive the closed form of \( \Pi^{ij}(p, \omega) \). Both of the above summations can be evaluated using the tricks in reference, which gives us

\[ \sum_{n=1}^{\infty} \frac{n^2 [J_n(q)]^2}{(\omega^2 - n^2)} = -\frac{1}{2} + \frac{\pi \omega}{2 \sin(\pi \omega)} J_{\omega}(q) J_{-\omega}(q) \]

\[ \sum_{n=1}^{\infty} \frac{n^2 J_{n-1}(q)J_{n+1}(q)}{(\omega^2 - n^2)} = -\frac{\pi \omega}{2 \sin(\pi \omega)} J_{-\omega}(q) J_{1+\omega}(q) \]
We therefore can derive the closed form of polarization tensor

\[
\Pi^{11}(q, \omega) = \frac{N\omega^2 q^2}{\pi q^2} \left( 1 - \frac{\pi \omega}{\sin(\pi \omega)} J_\omega(q) J_{-\omega}(q) \right),
\]  
\[
\Pi^{12}(q, \omega) = -\frac{iN\omega q}{2\pi q} \frac{\pi \omega}{\sin(\pi \omega)} \frac{\partial}{\partial q} [J_\omega(q) J_{-\omega}(q)]
\]
\[
+ i\frac{q\omega}{8\pi} \left( 1 - \frac{\pi \omega}{\sin(\pi \omega)} J_\omega(q) J_{-\omega}(q) \right),
\]
\[
\Pi^{22}(q, \omega) = \frac{N\omega^2 q^2}{\pi q^2} \left( 1 - \frac{\pi \omega}{\sin(\pi \omega)} J_\omega(q) J_{-\omega}(q) \right).
\]

Since the closed form of polarization tensor is obtained, we can derive the large \(N\) approximation of conductivity and compare with Fermi liquid calculation.

---

* Electronic address: nx dung86@uchicago.edu
† Electronic address: gromovand@uchicago.edu

1. A. Lopez and E. Fradkin, Physical Review B 44, 5246 (1991).
2. S. C. Zhang, T. H. Hansson, and S. Kivelson, Physical review letters 62, 82 (1989).
3. Y.-H. Chen, F. Wilczek, E. Witten, and B. I. Halperin, International Journal of Modern Physics B 3, 1001 (1989).
4. S. Randjbar-Daemi, A. Salam, and J. Strathdee, Nuclear Physics B 340, 403 (1990).
5. A. G. Abanov and A. Gromov, Physical Review B 90, 014435 (2014).
6. S. Golkar, D. X. Nguyen, M. M. Roberts, and D. T. Son (2016), cond-mat/1602.08499v1.
7. A. Perelomov, *Generalized coherent states and their applications* (Springer Science & Business Media, 2012).
8. C. Hoyos and D. T. Son, Physical review letters 108, 066805 (2012).
9. S. Golkar, M. M. Roberts, and D. T. Son, JHEP 2015, 1 (2015).
10. X. Wen and A. Zee, Physical review letters 69, 953 (1992).
11. D. T. Son, Phys. Rev. X 5, 031027 (2015).
12. T. Can, M. Laskin, and P. Wiegmann, Physical review letters 113, 046803 (2014).
13. S. Girvin, A. MacDonald, and P. Platzman, Physical Review B 33, 2481 (1986).
14. S. H. Simon and B. I. Halperin, Phys. Rev. B 48, 17368 (1993).
15. D. Pines and P. Noi`eres, *Theory of Quantum Liquids* (Benjamin, New York, 1966).
16. P. Noi`eres, *Theory of Interacting Fermi Systems* (Benjamin, New York, 1964).
17. L. D. Landau and E. M. Lifshits, *Statistical Physics* (Pergamon, Oxford, 1964).
18. A. H. Castro Neto and E. Fradkin, Phys. Rev. B 49, 10877 (1994).
19. F. D. M. Haldane, in *Perspectives in Many-Particle Physics*, edited by R. A. Broglia, J. R. Schrieffer, and P. F. Bortignon (North-Holland, Amsterdam, 1994), pp. 5–30.
20. J. Polchinski, in *Theoretical Advanced Study Institute (TASI 92): From Black Holes and Strings to Particles Boulder, Colorado, June 3–28, 1992* (1992), hep-th/9210046.
21. R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
22. S. C. Ying and J. J. Quinn, Phys. Rev. 173, 473 (1968).
23. P. M. Platzman and W. M. Walsh, Rev. Mod. Phys. 19, 514 (1967).
24. Y. B. Kim, P. A. Lee, and X.-G. Wen, Phys. Rev. B 52, 17275 (1995).
25. S. Golkar, D. X. Nguyen, M. M. Roberts, and D. T. Son, to appear (2016).
26. S. Kleptsov, Nuclear Physics B-Proceedings Supplements 192, 154 (2009).
27. S. Kleptsov, X. Ma, G. Marinescu, and P. Wiegmann, arXiv preprint arXiv:1510.06720 (2015).
28. B. Bradlyn, M. Goldstein, and N. Read, Physical Review B 86, 245309 (2012).
29. S. Golkar, M. M. Roberts, and D. T. Son, arXiv preprint arXiv:1403.4279 (2014).
30. A. Gromov and A. G. Abanov, Physical review letters 113, 266802 (2014).
31. M. A. Metlitski and A. Vishwanath, arXiv preprint arXiv:1505.05142 (2015).
32. N. Seiberg, T. Senthil, C. Wang, and E. Witten, arXiv preprint arXiv:1606.01989 (2016).
33. A. Karch and D. Tong, arXiv preprint arXiv:1606.01893 (2016).
34. A. Gromov, G. Y. Cho, Y. You, A. G. Abanov, and
E. Fradkin, Physical review letters 114, 016805 (2015).
35 N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, Nature (2016).
36 D. T. Son, arXiv preprint arXiv:1306.0638 (2013).
37 A. Gromov and A. G. Abanov, Physical review letters 114, 016802 (2015).
38 B. Bradlyn and N. Read, Physical Review B 91, 125303 (2015).
39 The Dirac nature of the fermions does not have to come from spacetime symmetries. It can be also internal $SU(2)$ symmetry as it happens in graphene.
40 See the appendix E for more detail
41 We choose to define the Hall conductivity $\sigma^H(k,\Omega)$ as the variation of the current over the electric field, because the naively defined off-diagonal component of the conductivity tensor, $\sigma^{12}(k,\Omega) = \frac{d^{12}(k,\Omega)}{d\Omega}$, is divergent in the zero-frequency limit.
42 This also can be seen, with some work, from the Eq.(64)