Heat shock protein 70 and the acute respiratory distress syndrome

ZOHAR BROMBERG1, CLIFFORD S. DEUTSCHMAN1, and YORAM G. WEISS2

1 Department of Anesthesia, University of Pennsylvania School of Medicine, Dulles 781A/HUP, 3400 Spruce Street, Philadelphia, PA 19104-4283, USA
2 Department of Anesthesia and Critical Care Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel

Key words Sepsis · Lung injury · Acute lung injury · Heat shock response · Stress response · Gene therapy

Introduction

Sepsis and the related systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS) are the leading causes of death in patients in surgical intensive care units [1,2]. The lung is the organ most often affected in MODS, with pulmonary dysfunction taking the form of the acute respiratory distress syndrome (ARDS), an often lethal inflammatory disorder. Recent data indicate that, at best, the mortality rate associated with ARDS is 29% [2–5]. Unfortunately, although some pathophysiologic mechanisms underlying ARDS have been identified, most have defied elucidation and treatment remains largely supportive.

Although the pathophysiology of ARDS remains obscure, the disease is known to involve unchecked inflammation that ultimately damages and perhaps destroys type I and type II alveolar epithelial cells [6]. This has important ramifications. Type I cells are highly differentiated, are flat, appear to be quiescent, and facilitate gas exchange [6]. Recent work demonstrates that these cells can respond to inflammatory stimuli by producing chemoattractant molecules (chemokines) and expressing key adhesion molecules [7–9]. Similarly, metabolically active type II cells produce surfactant and other products essential to pulmonary function [6]. Damage to type I cells stimulates type II cells to undergo mitosis, differentiate into type I cells, and spread [3,6]. Thus, injury to type II cells impairs gas exchange and other essential pulmonary functions by reducing synthesis of surfactant and other key proteins and by limiting regeneration of type I cells [10–12]. It therefore is likely that preservation of functional type II cells is essential for recovery from lung injury.

The heat shock response represents a mechanism of cellular protection [13] that has evolved to protect cells from untoward environmental perturbations. Activation of this pathway by any of a number of noxious stimuli—heat, hypoxia, hypoglycemia, transition metal intoxication, ischemia/reperfusion, endotoxemia, shock—results in the elaboration of a series of heat shock proteins with specific cytoprotective activity [14–18]. Of these, the most widely studied is the 70-kDa heat shock protein 70 molecule (HSP-70). Stress-induced increases in the expression of HSP-70 have been demonstrated in a number of tissues, including lung, kidney, heart, and liver [13–18]. The lung, however, is unique in that there is HSP-70 expression in the absence of insult [13]. Notably, the stress—inducible form of HSP70 (HSP72) has been detected in normal rat colon [19]. This article explores the data on ARDS and the HSP-70 molecule.

Pathways and mechanisms contributing to cell damage in ARDS

Inflammatory pathways in ARDS

Cell loss related to ARDS is complex. The excessive inflammation characteristic of the early phase of the disorder leads to accumulation of neutrophils in the perivascular, interstitial, and alveolar spaces [3]. Neutrophil accumulation is mediated by a number of factors. Two are of key importance: (1) elaboration and release of neutrophil chemokines such as interleukin-8...
(IL-8), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2) and (2) expression, on the surface of pulmonary endothelial and epithelial cells, of adhesion molecules capable of binding neutrophils. Among these is intracellular adhesion molecule-1 (ICAM-1) [7–9]. Neutrophils can cause damage up to and including cellular necrosis. Cell loss in ARDS also proceeds via activation of pathways leading to programmed cell death or apoptosis [20–22]. It is known that the cytokines tumor necrosis factor-α (TNFα) and IL-1β are responsible, in part, for neutrophil-mediated necrosis and apoptosis [20–25]. This reflects TNFα/IL-1β-stimulated expression and release of MCP-1, MIP-2, and ICAM-1. Elements of this enhanced elaboration of key chemoattractant/adhesion molecules is modulated by a cytoplasmic signal transduction that culminates in activation of the nuclear protein transcription factor NF-κB [25–31]. NF-κB also initiates apoptosis via the caspase-8 pathway [23–27]. Therefore, each step in the proinflammatory cascade might modulate cell injury in ARDS.

Alteration in gene expression

Alveolar cell damage may be initiated during sepsis/ARDS by an alteration in gene expression. This can take two forms. Expression of some genes, such as those encoding cytokines and cell-surface antigens, is increased [20–23,29–31]. Of equal importance are recent studies indicating inappropriate transcriptional down-regulation of certain genes encoding key cellular proteins. For example, using a model of sepsis that leads to ARDS—cecal ligation and double puncture (2CLP) in rats and mice—we have found impaired hepatic expression of several essential liver-specific genes, including those encoding proteins that catalyze gluconeogenesis, β-oxidation of fatty acids, ureagenesis, and bile acid transport [32–34]. Furthermore, we have demonstrated inappropriate down-regulation of expression of several key genes in the lung following 2CLP, including surfactant proteins (SP)-A and (SP)-B and, most importantly, HSP-70 [35–37]. Using Northern blot hybridization and immunoblotting, we examined the temporal expression of HSP-70 in lungs of animals surviving 2CLP [36]. HSP-70 mRNA increased after a sham operation but failed to increase after 2CLP. Immunoblotting and immunohistochemistry demonstrated that HSP-70 levels were unchanged after either 2CLP or the sham operation. Therefore, HSP-70 mRNA does not increase after 2CLP despite damage to alveolar cells. The failure of 2CLP to increase mRNA levels in the face of the severe damage caused by 2CLP implies profound pulmonary epithelial dysfunction, similar to findings in the liver. Importantly, several recent studies indicate that 2CLP, sepsis, and endotoxemia impair HSP-70 expression [36,38–40]. These experiments led us to investigate in depth the role of HSP-70 in ARDS and inflammation.

Heat shock protein 70

The heat shock response is a phylogenetically conserved endogenous mechanism that has evolved to protect cells from untoward environmental perturbations [13]. The response was first identified in *Drosophila melanogaster*, and the findings were later extended to other eukaryotic tissues. Exposure to heat led to synthesis of a previously unrecognized group of proteins that appeared to mediate a molecular mechanism to protect living cells from the untoward effects of heat. Therefore, the proteins became known as “heat shock proteins” (HSPs) and the response as the “heat shock response.” Additional studies revealed two key facts. First, noxious stimuli other than heat led to elaboration of HSPs. Second, preliminary exposure to heat conveyed tolerance to both subsequent heat shock and to additional noxious stimuli. This “thermotolerance” phenomenon protected cells from hypoxia, ischemia, inflammation, and exposure to heavy toxic metals, endotoxin, and reactive oxygen species [41].

Of the proteins produced during the heat shock response, the most widely studied is the 70-kDa HSP-70. HSP-70 subspecies have been observed in many organs after diverse insults. The genes encoding members of the HSP-70 family are a key evolutionary adaptation. They are conserved across species (from single-cell organisms to humans), are genetically simple (a single exon and no introns, permitting rapid transcription), and have a long protein half-life. A number of noxious stimuli have been shown to induce HSP-70 expression in the lung, kidney, heart, pancreas, and liver in vivo [14–18,38]. Importantly, prior elaboration of HSP-70, like heat pretreatment, protects cells, reduces inflammation, and alters transcriptional activation in vivo and in vitro [42–51]. Thus, altered HSP-70 expression might be of importance in the modulation of ARDS.

Within the cytosol of the eukaryotic cells, members of the 70- to 78-kDa family of HSPs act as molecular chaperons. This involves facilitating folding/refolding of cellular proteins as well as preserving and stabilizing the tertiary structure. The 70- to 78-kDa family of HSPs includes the inducible HSP72, which is highly expressed during stress, and constitutive HSC70 (also called HSP73), which is constantly present at basal levels in the cytosol. All HSP-70 family members with nucleotide sequences of 72, 73, 75, and 78 kDa are highly evolutionarily conserved. Furthermore, there is 60%–70% homology between eukaryotic organisms [52].

All HSP-70 molecules include one major peptide binding site and an enzymatic catalytic binding site. The
peptide-binding carboxyl-terminal domain is less conserved than the amino-terminal 44-kDa catalytic site. This catalytic site has ATPase activity, which is vital for binding and releasing peptides during stress [41,53,54]. The purpose of the intracellular chaperone HSP machinery is to identify nonnative protein aggregates and to participate in de novo protein folding. Chaperones recognize hydrophobic residues and unstructured backbone regions in proteins, and they promote folding through cycles of substrate binding and release. This process is regulated by ATPase activity and is aided by other cofactors [53,55]. Chaperone binding may not only block intermolecular aggregation directly by shielding the interactive surfaces of nonnative polypeptides, it may prevent intramolecular misfolding.

Expression of HSPs is modulated by an intracellular signal transduction pathway that activates heat shock factors (HSFs). When stimulated by an appropriate signal, HSF-1, a 75-kDa cytosolic protein, translocates to the nucleus, binds to the heat shock responsive element (HSRE), and initiates HSP-70 transcription [56]. Although the protective role of HSPs is highly conserved across species, the profile of HSP transcription and the time of appearance can be expressed uniquely in various tissues. The great divergence in HSP expression explains the plasticity with which these proteins function [57,58]. Elevated levels of HSPs following diverse inciting causes have led researchers to conclude that HSPs are involved in cellular protection in normothermic environments as well as in response to heat. For example, Marber et al. demonstrated cardioprotection against ischemic injury using transgenic mice overexpressing HSP-70 [16].

Heat shock response in inflammation and acute lung injury

Data show that HSP-70 can limit inflammation. Heat pretreatment before a variety of insults protects cells, inhibits proinflammatory cytokine release, alters activation of transcriptional pathways, and prevents apoptosis in vivo and in vitro [13–18,41–51]. Indeed, studies have demonstrated that heat treatment significantly improves the outcome from phospholipase A2-mediated acute lung injury or systemically induced ARDS [38–40,42,44]. We hypothesized that restitution of an appropriate HSP-70 response might be protective. To test this hypothesis we used adenovirus-mediated gene enhancement to treat the impaired pulmonary heat shock response following 2CLP in rats. Previous studies had revealed that this insult resulted in an ARDS-like state characterized by neutrophil accumulation and protein-rich interstitial edema formation [36,40,42,59–75]. In our experiments we administered an adenovirus designed to express porcine HSP-70 (AdHSP) into the tracheas of rats subjected to 2CLP in the hope that it would reverse these abnormalities and improve the outcome. Our approach was unique because other studies on sepsis and ARDS activated the entire heat shock response, with its attendant production of a number of peptides. In addition, the other investigations provoked an enhanced response in the entire organism. In contrast, our studies were designed to increase only the expression of HSP-70, a single peptide, in one organ, the lung. Our preliminary studies showed that AdHSP did indeed increase HSP-70 expression in the lung. Virus uptake following 2CLP occurred primarily in pulmonary epithelial cells, especially type II pneumocytes. There was some additional uptake in alveolar macrophages, a finding that could affect neutrophil accumulation by altering chemokine production [40]. Next, we administered AdHSP to a cohort of animals subjected to 2CLP. Unoperated and sham-operated animals served as controls, as did a cohort of rats given a different adenovirus that did not contain the HSP-70 gene. Our studies revealed that treatment with AdHSP attenuated neutrophil accumulation, septal thickening, interstitial fluid accumulation, and alveolar protein exudation—changes characteristic of ARDS 48h after 2CLP. Furthermore, AdHSP administration significantly decreased 48-h mortality [76].

Possible mechanisms to explain the protective effect of HSP-70

There are a number of potential mechanisms to explain the cytoprotective effects of HSP-70. Three have been investigated: preservation of protein structure and configuration [13,77,78]; attenuation of cytokine-induced inflammatory mediator production [49,79]; and blockade of apoptosis [13,50,80]. Each of these processes, which appear to occur as a result of HSP-70 binding to hydrophobic domains of proteins involved in inflammation or apoptosis, may be important in the pathogenesis of ARDS. In a sense, the heat shock response is counterregulatory, protecting cells from excessive inflammation by limiting some of the potentially harmful effects (unlimited tissue damage, necrosis, apoptosis, altered protein expression, impaired or overexuberant regeneration) of an unchecked inflammatory response.

HSP-70 induction inhibits proinflammatory cytokine induction, gene expression, and apoptosis in many cells, including human and murine lung epithelial cells [45,48,49,81,82]. These findings suggest that one mechanism of protection may be the ability of HSP-70 to inhibit proinflammatory and apoptotic responses via modulation of NF-κB activity [49,83]. The actual point of inhibition in the NF-κB pathway has not been completely elucidated. This represents an important gap in our understanding of HSP-70 biology. For NF-κB to
translocate into the nucleus, its inhibitor molecule, IκBα, must undergo phosphorylation, ubiquitination, and proteosomal degradation [84–89]. Yoo et al. indicated that inhibition of IκB phosphorylation by HSP-70 induction is most likely related to inhibition of the IκB kinase (IKK) complex [49]. Others, however, have disputed this [90–92]. Support for this conclusion can be found in the work by Ran et al. [93], who demonstrated that HSP-70 binds to the γ-subunit of the IKK complex, disrupting the IKK heterodimer [93]. Additional investigations involving the effects of HSP-70 on the entire cytokine/NF-κB pathway are of major importance.

HSP-70 may also attenuate ARDS via stabilization and preservation of damaged intracellular proteins [13,77,78]. This may result from the unique ability of HSP-70 to disaggregate and refold denatured proteins [78]. During this process, HSP-70 binds to hydrophobic protein domains of native proteins or peptides whose tertiary structure has been lost [77]. It appears that damaged protein is stabilized in a conformation that facilitates refolding. This allows reconstitution of the tertiary and quaternary structure when normal conditions are restored [13]. Although this property has been well demonstrated in vitro, currently there are no data to support protein stabilization as a direct protective mechanism in the lungs or any other organ of intact animals. This highlights another major gap in our understanding of HSP-70 biology. Because damage to or loss of proteins in pulmonary epithelial cells has been implicated in the pathogenesis of ARDS, an understanding of a mechanism to restore damaged cellular components may contribute to strategies designed to modulate ARDS or any other inflammatory disease [94–101].

Finally, a large body of evidence indicates that expression of HSP-70 contributes to blockade of apoptosis [23,50]. Saleh et al. demonstrated that HSP-70 forms a complex with the preliminary apoptotic factor Apaf-1, attenuating oligimerization and formation of the apoptosome [102]. Because loss of pulmonary epithelial cells is important in the pathogenesis of ARDS, a better understanding of the role played by this aspect of HSP-70 activity is important.

Conclusions

In summary, ARDS is a disorder that involves overwhelming inflammation, alterations in protein expression and function, and cell death by apoptosis and necrosis. Each of these abnormalities can be limited or controlled by an appropriate heat shock response, specifically involving induction of HSP-70. Previous studies have demonstrated failure to increase HSP-70 expression following 2CLP. HSP-70 deficiency contributes to inflammation, altered protein expression, and alveolar cell loss in ARDS. We and others have demonstrated that correcting this deficit may protect alveolar cells, reduce functional and morphologic abnormalities, and improve the outcome in experimental ARDS. Several mechanisms by which HSP-70 may exert its attenuating effects in ARDS have been identified. These findings may have important ramifications with regard to the pathogenesis of ARDS and can help direct further investigation and the development of novel therapeutic approaches.

References

1. Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273:306–309
2. Baue AE, Durham R, Faist E (1998) Systemic inflammatory response syndrome (MODS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock 10:79–89
3. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349
4. The Acute Respiratory Distress Syndrome Network Investigators (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1310
5. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Anzueto A, Schoenfeld D, Thompson BT (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336
6. Simon RH, Pain R III (1995) Participation of pulmonary alveolar epithelial cells in lung inflammation. J Lab Clin Med 126:108–118
7. Smart SJ, Casale TB (1994) Pulmonary epithelial cells facilitate TNF-induced neutrophil chemotaxis: a role for cytokine networking. J Immunol 152:4087–4094
8. Tosi MF, Stark JM, Hamedani A, Smith CW, Gruenert DC, Huang Y-T (1992) Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am J Respir Cell Mol Biol 7:214–221
9. Lilly CM, Nakamura H, Kesselman H, Nagler-Anderson C, Asano K, Garcia-Zepeda EA, Rothenberg ME, Drazen JM, Luster AD (1997) Expression of eotaxin by human lung epithelial cells: induction by cytokines and inhibition by glucocorticoids. J Clin Invest 99:1767–1773
10. Lewis JF, Jobe AH (1993) State of the art: surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis 147:218–233
11. Baker CS, Evans TW, Randle BJ, Haslam PL (1999) Damage to surfactant-specific proteins in acute respiratory distress syndrome. Lancet 353:1232–1237
12. Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB, Hall W, Whitsett JA, Akino T, Kuroki Y, Nagae H, Hudson LD, Martin TR (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 160:1843–1850
13. De Maio A (1999) Heat shock proteins: facts, thoughts and dreams. Shock 11:1–12
14. Bellmann K, Wenz A, Radons J, Burkert V, Kleemann R, Kolb H (1995) Heat shock induces resistance in rat pancreatic islet...
cells against nitric oxide, oxygen radicals and septic disease.

15. Klosterhalfen B, Hauptmann S, Tietze L, Tons C, Winkeltau G, Kupper W, Kirkpatrick CJ (1997) The influence of heat shock protein 70 induction on hemodynamic variables in a porcine model of recurrent endotoxemia. Shock 7:358–363

16. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kd stress protein in a transgenic mouse increase the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456

17. Tacchini L, Schiafoniati L, Pappalardo C, Gatti S, Bernelli-Zazzera A (1993) Expression of HSP 70, immediate-early response and heme oxygenase genes in ischemic-reperfusion rat liver. Lab Invest 68:465–471

18. Wong HR, Wispe JR (1997) The stress response and the lung. Am J Physiol 171:L1–L9

19. Beck SC, Paidas CN, Mooney ML, Deitch EA, De Maio A (1995) Presence of the stress-inducible form of hsp-70 (hsp-72) in normal rat colon. Shock 3:398–402

20. Kitamura Y, Hashimoto S, Mizuta N, Kobayashi A, Kooguchi K, Fujiwara I, Nakajima H (2001) Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am J Respir Crit Care Med 163:762–769

21. Serrao KL, Fortenberry JD, Owens ML, Harris FL, Brown LA (2001) Neutrophils induce apoptosis of lung epithelial cells via release of soluble Fas ligand. Am J Physiol Lung Cell Mol Physiol 280:L298–L305

22. Matute-Bello G, Liles WC, Steinberg KP, Kiener PA, Mongovin J, Schears G, Zheng J, Deutschman C (1999) Decreased transcription of surfactant proteins in an animal model of the adult respiratory distress syndrome (ARDS). Shock 9(Suppl):21

23. Weiss YG, Bouwman A, Gehan B, Raj N, Deutschman CS (2000) Cecal ligation and double puncture impairs heat shock protein 70 (hsp-70) expression in the lungs of rats. Shock 13:19–23

24. Malloy J, McCaig L, Veldhuizen R, Yao LJ, Joseph M, Whitsett J, Lewis J (1997) Alterations of the endogenous surfactant system in septic adult rats. Am J Respir Crit Care Med 156:617–623

25. Schroeder S, Lindemann C, Heeft, A, Putensen C, Decker D, von Rueckert AA, Stuber F (1999) Impaired inducibility of heat shock protein 70 in peripheral blood lymphocytes of patients with severe sepsis. Crit Care Med 27:1080–1084

26. Ofenstein JP, Heidemann S, Juett A, Sarina A (1998) Endotoxin inhibits heat induced HSP-70 in rats. Crit Care Med 26(Suppl 1):A 138

27. Weiss YG, Tazelaar J, Gehan B, Bouwman A, Christofidou-Solomidou M, Yu Q-C, Raj N, Deutschman CS (2001) Adenoviral vector transfection into the pulmonary epithelium after cecal ligation and puncture (CLP) in rats. Anesthesiology 95:974–982

28. Snoeckx LHEH, Cornelussen RN, Van nieuwenhoven FA, Nemen RS, Van der vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

29. Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS (1994) Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med 22:914–922

30. Jaatela M, Wissing D, Bauer PA, Li GC (1992) Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11:3507–3512

31. Wong HR, Wispe JR (1997) Heat shock protein induction protects human respiratory epithelium against nitric oxide-mediated cytotoxicity. Shock 8:213–218

32. Wong HR, Menendez IY, Denenberg AG, Wispe JR (1998) Increased expression of heat shock protein-70 protects AS49 cells against hyperoxia. Am J Physiol 275:L836–L841

33. Mestril R, Giordano FJ, Conde AG, Dillmann WH (1996) Adenovirus-mediated gene transfer of a heat shock protein 70 (hsp 70i) protects against simulated ischemia. J Mol Cell Cardiol 28:2351–2358.

34. Suzuki K, Saya Y, Kaneda Y, Ichikawa H, Shirakura R, Matsuda H (1997) In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J Clin Invest 99:1645–1650

35. Schroeder S, Linder DB, Hoell A, Putensen C, Decker D, von Rueckert AA, Stuber F (1999) Impaired inducibility of heat shock protein 70 in peripheral blood lymphocytes of patients with severe sepsis. Crit Care Med 27:1080–1084

36. Ofenstein JP, Heidemann S, Juett A, Sarina A (1998) Endotoxin inhibits heat induced HSP-70 in rats. Crit Care Med 26(Suppl 1):A 138

37. Weiss YG, Tazelaar J, Gehan B, Bouwman A, Christofidou-Solomidou M, Yu Q-C, Raj N, Deutschman CS (2001) Adenoviral vector transfection into the pulmonary epithelium after cecal ligation and puncture (CLP) in rats. Anesthesiology 95:974–982

38. Snoeckx LHEH, Cornelussen RN, Van nieuwenhoven FA, Nemen RS, Van der vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

39. Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS (1994) Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med 22:914–922

40. Jaatela M, Wissing D, Bauer PA, Li GC (1992) Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11:3507–3512

41. Wong HR, Wispe JR (1997) Heat shock protein induction protects human respiratory epithelium against nitric oxide-mediated cytotoxicity. Shock 8:213–218

42. Wong HR, Menendez IY, Denenberg AG, Wispe JR (1998) Increased expression of heat shock protein-70 protects AS49 cells against hyperoxia. Am J Physiol 275:L836–L841

43. Mestril R, Giordano FJ, Conde AG, Dillmann WH (1996) Adenovirus-mediated gene transfer of a heat shock protein 70 (hsp 70i) protects against simulated ischemia. J Mol Cell Cardiol 28:2351–2358.

44. Suzuki K, Saya Y, Kaneda Y, Ichikawa H, Shirakura R, Matsuda H (1997) In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J Clin Invest 99:1645–1650

45. Hirasu M, Moro BN, Yano M, Mohanakumar T, Patterson JA (1999) Gene transfer of heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11:3507–3512

46. Wong HR, Menendez IY, Denenberg AG, Wispe JR (1998) Increased expression of heat shock protein-70 protects AS49 cells against hyperoxia. Am J Physiol 275:L836–L841

47. Mestril R, Giordano FJ, Conde AG, Dillmann WH (1996) Adenovirus-mediated gene transfer of a heat shock protein 70 (hsp 70i) protects against simulated ischemia. J Mol Cell Cardiol 28:2351–2358.
55. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

56. Ianaro A, Ialenti A, Maffia P, Pisano B, Rosa MD (2001) HSF1/ hsp72 pathway as an endogenous anti-inflammatory system. FEMS Lett 499:239–244

57. Kluck CJ, Patzelt H, Genevays P, Brehmer D, Rist E, Schneider D (2002) Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialised Hsp70 chaperones. J Biol Chem 277:41060–41069

58. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

59. Rosenfeld MA, Yoshimura K, Trapnell BC, Yoneyama K, Rosenbach AL, Stroud RM, Dunbrack RL Jr (2001) HSF1/HSF2 interaction: insight into regulatory mechanisms and functional significance. EMBO J 20:1963–1972

60. Dong JY, Wang D, Van Ginkel FW, Pascaud DW, Frizzell RA (1996) Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector. Hum Gene Ther 7:319–331

61. Raafat AM, Franko AP, Zafar R, Dulchavsky SA, Diebel LN, Ksenzenko S (1997) Effect of thyroid hormone (T3)-responsive changes in surfactant apoproteins on surfactant function during sepsis. J Trauma 42:803–808

62. Whitsett JA, Clark JC, Wispe JR, Pryhuber GS (1992) Effects of TNF and phorbol ester on human surfactant protein and MnsOD gene transcription in vitro. Am J Physiol Lung Cell Mol Physiol 262:L688–L693

63. Salome RG, McCoy DM, Ryan AJ, Mallampalli RK (2000) Effects of intratracheal instillation of TNF on surfactant metabolism. J Appl Physiol 88:10–16

64. Lanza JS, Lansey SC, Cleary MP, Rosato FE (1982) Alterations in lipogenic enzymes and lipoprotein lipase activity during gram-negative sepsis in the rat. Arch Surg 117:144–147

65. Yei S, Bachurski CJ, Weaver TE, Wert SE, Trapnell BC, Whitsett JA (1994) Adenoviral-mediated gene transfer of human surfactant protein B to respiratory epithelial cells. Am J Respir Cell Mol Biol 11:329–336

66. McCluskie MJ, Chu Y, Xia JL, Jessee J, Gebyehu G, Davis HL (1996) Effects of intratracheal instillation of TNF on surfactant metabolism. J Appl Physiol 88:10–16

67. Clement JM, Kent C (1999) CTP:phosphocholine cytidylyltransferase: insight into regulatory mechanisms and novel functions. Biochem Biophys Res Commun 275:643–650

68. Wipf P, Wieder T, Paul C, Geilen CC, Orfano CE (1996) Evidence for phosphorylation of CTP:phosphocholine cytidylyltransferase by multiple proline-directed protein kinases. J Biol Chem 271:9955–9961

69. Mallampalli RK, Ryan AJ, Salome RG, Jackowski S (2000) Tumor necrosis factor-alpha inhibits expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem 275:9699–9708

70. Gonzalez LW, Ballard PL, Gonzales J (1994) Glucocorticoid and cAMP increase fatty acid synthetase mRNA in human fetal lung explants. Biochim Biophys Acta 1215:49–58

71. Mallampalli RK, Mathur SN, Warnock LJ, Salome RG, Hunninghake GW, Field FJ (1996) Betamethasone modulation of sphingomyelin hydrolysis up-regulates CTP:cholinephosphotransferase activity in adult rat lung. Biochem J 318:333–341

72. Zagarisa Y, Bhat R, Uhal B, Navale S, Freidin M, Vidyasagar D (2000) Cell death and lung cell histology in meconium aspirated newborn rabbit lung. Eur J Pediatr 159:819–826

73. Touqui L, Arbige L (1999) A role for phospholipase A2 in ARDS pathogenesis. Mol Med Today 5:244–249

74. Weiss YG, Bellin L, Kim PK, Andrejko KM, Haaxma CA, Raj N, Furth EE, Deuchman CS (2001) Compensatory hepatic regeneration after mild, but not fulminant, intraperitoneal sepsis. Am J Physiol 280:G968–G973

75. Artigas A, Bernard GR, Carlet J, Dreyfuss G, Gattinoni L, Hudson L, Lamy M, Marinii JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM (1998) The American-European Consensus Conference on ARDS. Part 2. Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling: acute respiratory distress syndrome. Am J Respir Crit Care Med 157:1332–1347

76. Weiss YG, Malloyan A, Tazelaar J, Raj N, Deuchman CS (2002) Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest 110:801–806

77. Lauten T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, Bukan B (1999) Mechanisms of regulation of HSP-70 chaperones by DnaJ chaperones. Proc Natl Acad Sci USA 96:5452

78. Diament S, Peres Ben-Zvi A, Bukau B, Goloubinoff P (2000) Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 275:21107–21113

79. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY (1997) HSP 70 prevents activation of stress kinases: a novel pathway of cellular thermotolerance. J Biol Chem 272:18033–18037

80. Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

81. Jaattela M (1995) Overexpression of hsp 70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60:689–693

82. Helmcrecht K, Zeise E, Rensing L (2000) Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 33:341–365

83. Fujihara S, Nadler S (1999) Intranuclear targeted delivery of functional NF-xB by 70kD heat shock protein. EMBO J 18:411–419

84. Karin M, Ben-Neriah Y (2001) Phosphorylation meets ubiquitination: the control of NF-kappaB activity. Annu Rev Immunol 18:621–663

85. Maca S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, Yamaji Y, Akanuma M, Shiratori Y, Omata M (2000) H. pylori activates NFxB through a signaling pathway involving IxB kinases, NF-kB inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology 119:97–108

86. Ling L, Cao Z, Goeddel DV (1998) NF-kappaB-inducing kinase activates NFxB through phosphorylation of IxB and IxB in IkappaB kinases. Nature 390:419

87. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann N, Manning A, Rao A (1997) IKK1 and IKK2: cytochrome-mediated IxB kinases essential for NF-kappaB activation. Science 278:860–866

88. Ciechanover A, Laszlo A, Ciechanover A, Ben-Neriah Y, Arias J (1995) The ubiquitin-mediated proteolytic system: involvement of molecular chaperones, degradation of oncproteins, and activation of transcriptional regulators. Cold Spring Harbor Quant Biol 491–501

89. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci USA 94:3792–3797

90. Volloch VZ, Sherman MY (1999) Oncogenic potential of NF-kappaB. Oncogene 18:621–663

91. Sekido Y, Ishii M, Hasegawa M, Kodama H, Tanaka K, Ohsaki T, Fujio Y, Moriyama Y, Shirotani Y, Fujisawa T, Yamamoto K, Arakawa K, Yang X, Koya-Nakamura K, Yamada H, Irie T, Uno R, Suter PM (1998) The American-European Consensus Conference on ARDS. Part 1. Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling: acute respiratory distress syndrome. J Clin Invest 110:801–806

92. Ferlito M, De Maio A (2001) Effect of recovery time after heat shock on LPS stimulation. Shock 15(Suppl):89
93. Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, Feng Y, Han C, Zhou G, Rigby AC, Sharp FR (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev. 18:1466–1481
94. Jyonouchi H, Sun S, Abiru T, Chareancholvanich S, Ingbar DH (1998) The effects of hyperoxic injury and antioxidant vitamins on death and proliferation of human small airway epithelial cells. Am J Respir Mol Biol 19:426–436
95. Mercer-Jones MA, Shrotri MS, Peyton JC, Remick DG, Cheadle WG (1999) Neutrophil sequestration in liver and lung is differentially regulated by C-X-C chemokines during experimental peritonitis. Inflammation 23:305–319
96. Waters CM, Ridge KM, Sunio G, Venetsanou K, Sznajder JI (1999) Mechanical stretching of alveolar epithelial cells increases Na(+)K(+)-ATPase activity. J Appl Physiol 87:715–721
97. Zhao MQ, Stoler MH, Liu AN, Wei B, Soguero C, Hahn YS, Enelow RI (2000) Alveolar epithelial cell chemokine expression triggered by antigen-specific cytolytic CD8+ T cell recognition. J Clin Invest 106:R49–R58
98. Deutschman CS, Haber BA, Andrejko K, Cressman DE, Harrison R, Elenko E, Taub R (1996) Increased expression of cytokine-induced neutrophil chemoattractant in septic rat liver. Am J Physiol 271:R593–R600
99. Chen J, Raj N, Kim P, Andrejko KM, Deutschman CS (2001) Intrahepatic nuclear factor xB activity and alpha 1-acid glycoprotein transcription do not predict outcome after cecal ligation and puncture in the rat. Crit Care Med 29:589–596
100. Melcher A, Murphy S, Vile R (1999) Heat shock protein expression in target cells infected with low levels of replication-competent virus contributes to the immunogenicity of adenoviral vectors. Hum Gene Ther 10:1431–1442
101. Wajant H, Henkler F, Scheurich P (2001) The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 13:389–400
102. Saleh A, Srinivasula, SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483