Mechanisms of Signal Transduction: Hsp90-binding Immunophilins Link p53 to Dynein During p53 Transport to the Nucleus

Mario D. Galigniana, Jennifer M. Harrell, Heather M. O’Hagen, Mats Ljungman and William B. Pratt

J. Biol. Chem. 2004, 279:22483-22489.
doi: 10.1074/jbc.M402223200 originally published online March 5, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M402223200

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 52 references, 29 of which can be accessed free at http://www.jbc.org/content/279/21/22483.full.html#ref-list-1
Hsp90-binding Immunophilins Link p53 to Dynein During p53 Transport to the Nucleus*

Mario D. Galigniana‡, Jennifer M. Harrell‡, Heather M. O’Hagen‡, Mats Ljungman¶, and William B. Pratt‡‡

From the Departments of ‡Pharmacology and ‡Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109 and ‡Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Programa de Regulación Hormonal y Metabólica Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires C1428EGA, Argentina

The tumor suppressor protein p53 is known to be transported to the nucleus along microtubular tracks by cytoplasmic dynein. However, the connection between p53 and the dynein motor protein complex has not been established. Here, we show that hsp90-binding immunophilins link p53-hsp90 complexes to dynein and that prevention of that linkage in vivo inhibits the nuclear movement of p53. First, we show that p53-hsp90 heterocomplexes from DLD-1 human colon cancer cells contain an immunophilin (FKBP52, Cyp40, or PP5) as well as dynein. p53-hsp90 immunophilin dynein complexes can be formed by incubating immunopurified p53 with rabbit reticulocyte lysate, and we show by peptide competition that the immunophilins link via their tetratricopeptide repeat domains to p53-bound hsp90 and by means of their PPIase domains to the dynein complex. The linkage of immunophilins to the dynein motor is indirect by means of the dynamitin component of the dynein-associated dynactin complex, and we show that purified FKBP52 binds directly by means of its PPIase domain to purified dynamitin. By using a temperature-sensitive mutant of p53 where cytoplasmic-nuclear movement occurs by shift to permissive temperature, we show that p53 movement is impeded when p53 binding to hsp90 is inhibited by the hsp90 inhibitor radicicol. Also, nuclear movement of p53 is inhibited when immunophilin binding to dynein is competed for by expression of a PPIase domain fragment in the same manner as when dynein linkage to cargo is dissociated by expression of dynamitin. This is the first demonstration of the linkage between an hsp90-chaperoned transcription factor and the system for its retrograde movement to the nucleus both in vitro and in vivo.

The tumor suppressor protein p53 is a transcription factor that can induce cell growth arrest, apoptosis, cell differentiation, and DNA repair in response to DNA strand breakage and other types of cell stress (1–3). p53 mutations occur in more than half of all human tumors (4), and inactivation of p53 is the most common alteration found in human cancer (5, 6). Although most p53 mutations in human tumors are located in the DNA-binding domain and inactivate its transcriptional activity (4), p53 inactivation may occur in other ways (2).

As has been shown for steroid receptors and some other transcription factors, p53 shuttles between the cytoplasm and nucleus (7, 8), and one mechanism of inactivation is exclusion of p53 from the nucleus (9, 10). The cytoplasmic localization of mutant p53 may have multiple mechanisms, such as increased nuclear export (11) and attachment to cytoplasmic anchor proteins (12). Like unliganded steroid receptors (13), some cytoplasmic p53 mutants retained in the cytoplasm were found to be in heterocomplex with the abundant and ubiquitous protein chaperone hsp90 (14, 15). These p53-hsp90 heterocomplexes are formed by the same hsp90/hsp70-based chaperone machinery (16) that assembles steroid receptor heterocomplexes (13).

One effect of heterocomplex assembly between hsp90 and its “client” proteins is to stabilize the client protein to degradation by the ubiquitin-proteasome pathway of proteolysis (17); this has been shown for p53 (18, 19), where its binding to hsp90 inhibits MDM2-dependent ubiquitination (20). The dynamic formation of heterocomplexes with hsp90 and its associated immunophilins is also required for rapid ligand-induced movement of aryl hydrocarbon and glucocorticoid receptors (GR)1 to the nucleus (21, 22). Partial but complementary sets of observations regarding the mechanisms of GR/hsp90 and p53-hsp90 movement have been made that will be connected in this work to form a more complete model of the retrograde movement of p53.

GR-hsp90 heterocomplexes immunoabsorbed from cell lysates contain cytoplasmic dynein (23, 24), a molecular motor that processes along microtubular tracks toward the nucleus (25). These heterocomplexes also contain one of several immunophilins with tetratricopeptide repeat (TPR) domains that interact with a TPR acceptor site on hsp90 (13). The immunophilins are widely expressed proteins with peptidylprolyl isomerase (PPIase) domains that bind immunosuppressant drugs of the FK506 and cyclosporine A class. GR-hsp90 heterocomplexes contain one of four TPR domain immunophilins: FKBP52, FKBP51, CyP40, or PP5, the latter being a protein phosphatase that also contains TPR and PPIase homology domains (1). The abbreviations used are: GR, glucocorticoid receptor; TPR, tetratricopeptide repeat; PPIase, peptidylprolyl isomerase; TES buffer, 2-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino]ethanesulfonic acid; CyP40, cyclophilin 40; PP5, protein phosphatase 5; FKBP, FK506 binding protein; TPR, tetratricopeptide repeat; DIC, dynein intermediate chain.

Received for publication, February 27, 2004
Published, JBC Papers in Press, March 5, 2004, DOI 10.1074/jbc.M402223200
Immunophilins Link p53 to Dynein

Although the linkage to the dynein motor has been in large part worked out for the GR, it has not been demonstrated that receptor movement is dynein-dependent. In contrast, p53 movement to the nucleus has been shown to be dynein-dependent, and it is immunoadsorbed in complexes that contain tubulin and cytoplasmic dynein (30); however, the linkage of p53 to dynein has not been defined. Here, we define that p53-hsp90 and GR-hsp90 heterocomplexes from DLD-1 human colon cancer cells exist in identical heterocomplexes containing cytoplasmic dynein and one of three immunophilins, FKBP52, CyP-40, or PP5. Competition with peptides in vitro shows that the PPias domain of the immunophilin is required for dynein presence in the p53-hsp90 heterocomplexes. The immunophilin linkage to dynein is indirect by means of the dynamitin component of the dynein-associated dynactin complex, and we show that purified FKBP52 binds directly via its PPias domain to immunopurified dynamitin.

EXPERIMENTAL PROCEDURES

Materials—DLD-1 human colorectal adenocarcinoma cells were purchased from the American Type Culture Collection (Manassas, VA). HT29-tsp53 (formerly referred to as ts29-G cells) human colorectal cancer cell line overexpressing a mouse p53 temperature-sensitive mutant was described in previous works (31, 32). The Ab421 pan-specific mouse monoclonal antibody against p53 was kindly provided by Dr. Michael F. Clarke (University of Michigan Medical School). The Ab-4 mouse monoclonal IgG against mouse p53 and Ab-7 sheep antisera against p53 were purchased from Calbiochem (La Jolla, CA). The A-14 rabbit polyclonal IgG and the 9E10 mouse monoclonal IgG against c-myc oligopeptide were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The MAB1618 mouse monoclonal IgG against the 74-kDa intermediate chain subunit of cytoplasmic dynein was purchased from Chemicon International (Temecula, CA). The JJ3 monoclonal IgG against p23 was provided by Dr. David Toft (The Mayo Clinic). The UPJ56 rabbit antisera against the dynein light chain was a kind gift from Dr. Karen Leach (Amersham Biosciences). The FiGR mouse monoclonal IgG used to immunoadsorb the GR was kindly provided by Dr. Jack Bodwell (Dartmouth Medical School, Lebanon, NH). The BuGR2 mouse monoclonal IgG used to immunoblot the GR and the rabbit polyclonal antibody against CyP-40 were from Affinity BioReagents (Golden, CO). The AC88 mouse monoclonal IgG against hsp90 and the N27FS-3 mouse monoclonal IgG against hsp70/hsc70 were from StressGen BioReagents (Victoria, BC, Canada). 125I-Conjugated goat anti-mouse and anti-rabbit IgGs were from PerkinElmer Life Sciences. Horseradish peroxidase-conjugated goat anti-rabbit IgG was from Pierce. Horseradish peroxidase-conjugated goat anti-rabbit IgG, donkey anti-sheep antibodies, radiodil, and gold labeling were obtained from Sigma. Rhodamine-conjugated goat anti-mouse IgG and FITC-conjugated donkey anti-rabbit IgG were obtained from Jackson ImmunoResearch (West Grove, PA). The baculovirus for the FLAG-tagged TPR domain of rat PP5 (33) and the rabbit antisera against PP5 were kindly provided by Dr. Michael Chinkers (University of South Alabama, Mobile, AL). The pGEX1T plasmid encoding the GST-rabbit FKBP52 GY32-Lys128 expression vector that comprises the PPias core domain I (provided by Drs. Michel Renoir and Christine Radany, UMR8612 CNRS, Paris, France) and the purification of the PPias core domain I protein were described previously (23, 34). The mammalian expression plasmid pSG5L-PPias core domain I was described in a previous report (12). The pEGFP-C3 vector containing the eGFP under the control of the cauliflower mosaic virus 35S promoter was a kind gift from Dr. Richard B. Valee (University of Massachusetts Medical School, Worcester, MA). Opti-MEM-I transfection medium was purchased from Invitrogen; Trans-Fast transfection reagent was from Promega (Madison, WI); rabbit reticulocyte lysate was from Greiner HaeNeurs (Oregon, WI); and Complete-Mini protease inhibitor mixture tablets were purchased from Roche Diagnostics (Mannheim, Germany).

Cell Culture—DLD-1 cells were grown at 37 °C in T-162 culture flasks containing 30 ml of Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum, 2 mM l-glutamine, 1.5 g/liter NaHCO3, 4.5 g/liter glucose, and 1 mM pyruvate. HT29-tsp53 were grown at 39 °C (non-permissive temperature) on 22 × 22 cm coverslips placed on 35-mm plates in 2 ml of Dulbecco’s modified Eagle’s medium containing 10% bovine calf serum and 2 mM l-glutamine. 293-T human fibroblasts were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% bovine calf serum and antibiotics. All cultures were maintained under a 5% CO2 atmosphere.

Immunoadsorptions—Confluent DLD-1 cells were harvested by scraping into ice-cold Earle’s balanced saline, washed twice, and ruptured by Dounce homogenization in one volume of HE buffer (10 mM Hepes, 1 mM EDTA, pH 7.4) supplemented with 20 mM Na2MoO4 and one tablet of protease inhibitor mix per 3 ml of buffer. Homogenates were centrifuged at 3 °C for 30 min at 100,000 X g, the resultant supernatant being referred to as cytosol. For immunoadsorptions p53 or the GR, 250 μl of DLD-1 cytosol was incubated for 3 h at 4 °C with either 10 μl of Ab421 antibody or 7 μl of FIGR antibody and 16 μl of protein-A Sepharose. The pellets were washed four times with 1 ml of TEG buffer (10 mM TES, pH 7.6, 50 mM NaCl, 4 mM EDTA, 10% (v/v) glycerol, and protease inhibitors) containing 20 mM Na2MoO4. Immune pellets were resolved on SDS-12% polyacrylamide gels and transferred to Immobilon-P membranes. The membranes were probed with 0.1% Ab421 for p53, 0.25 μg/ml BuGR2 for GR, 1 μg/ml AC88 for hsp90, 1 μg/ml N27FS-3 for hsp70, 0.1% MAB1618 for dynein, 0.1% UPJ56 for FKBP52, 0.1% anti-CyP-40, 0.1% anti-PP5, 0.1% JJ3 mouse ascites for p23, or 0.1% A-14 for dyn-myc. The immunoblots were then incubated a second time with the appropriate 125I-conjugated or horse-radish peroxidase-conjugated counter-antibody to visualize immunoreactive bands. p53 was revealed by enhanced chemiluminescence. Because PP5, FKBP52, p53, and dynamitin migrate in the same region on gel electrophoresis, as do hsp70 and the dynein intermediate chain, we immunoblotted several replicate immunoassays. To screen the immune pellets and probe replicative immunoblots with antibody specific for each protein, thus, the Western blots of Figs. 1, 2, and 3 are necessarily composites prepared from two or more replicate immunoblots.

Heterocomplex Reconstitution—DLD-1 cytosol was prepared in HE buffer without molybdate. After immunoadsorbing p53, coadsorbed proteins were dissociated from the immune pellet by incubating for 2 h with TEG buffer supplemented with 500 mM NaCl. The pellet was washed twice with TEG buffer and twice with 10 mM Hepes buffer at pH 7.4. p53-hsp90 heterocomplexes were then assembled by incubating the stripped immune pellets with 50 μl of rabbit reticulocyte lysate and 5 μl of an ATP-regenerating system (50 mM ATP, 250 mM creatine phosphate, 2 mM MgCl2, and 10 mM dithiothreitol). The assembly mixtures were incubated for 30 min at 30 °C, with suspension of the pellets by shaking the tubes every 2–3 min. The pellets were then washed four times with 1 ml of ice-cold TEG buffer supplemented with 20 mM Na2MoO4 and boiled in SDS-sample buffer. In peptide competition experiments, the reticulocyte lysate was preincubated for 30 min at 30 °C with either 10 μl of lyase (8 mg of protein/ml) of S9 cells expressing the TPR domain fragment of rat PP5 or with 30 μg of purified PPias domain fragment of rabbit FKBP52 (29).

Cell Transfection—When HT29-tsp53 cells were ~50% confluent, the culture medium was replaced by Opti-MEM transfection medium containing 0.5% bovine calf serum, and the incubation continued for 1 h as described above. The medium was aspirated and replaced by a transfection mixture (at a 3 μl liposome/1 μg of DNA ratio) preincubated for 15 min at room temperature in Opti-MEM, which contained either 0.4 μg of pCMVH50m or 1.0 μg pEGFP-C3 and 4.0 μg of pSG5L-PPias cell domain I. Controls were transfected with pCMV or pEGFP-C3 and S9 cell lysate. After 1.5 h of transfection, the cells were washed by regular medium and the cells were incubated for an additional 24 h at the non-permissive temperature of 39 °C. The expression of dynamitin was evidenced by indirect immunofluorescence with an anti-myc antibody, and the co-expression of EGFP and the PPias domain I due to the green fluorescence exhibited by transfected cells. When myc-dynamitin was overexpressed in 293T human fibroblasts, 8 μg of pCMVH50m plasmid was used. After 48 h, the cells were ruptured by Dounce homogenization in one volume of HE buffer supplemented with 20 mM Na2MoO4. Indirect immunofluorescence—Nuclear translocation of p53 was trig-
Immunophilins Link p53 to Dynein

Immunoldson of p53 and GR heterocomplexes. DLD-1 cell cytosol was incubated with non-immune mouse IgG (NI) or with antibody (I) against p53 or the GR. The immunopellets were washed, and proteins were resolved by SDS-polyacrylamide gel electrophoresis and immunoblotting for the indicated proteins.

![Image](image.png)

Fig. 1. Immunoadsorption of p53 and GR heterocomplexes. DLD-1 cell cytosol was incubated with non-immune mouse IgG (NI) or with antibody (I) against p53 or the GR. The immunopellets were washed, and proteins were resolved by SDS-polyacrylamide gel electrophoresis and immunoblotting for the indicated proteins.

Immunophilins Link p53 to Dynein—To examine the composition of native p53-hsp90 heterocomplexes, we selected the DLD-1 human colorectal cancer cell line, which possesses a point mutation that converts Ser-241 of p53 to Phe (36). This mutant p53 is localized in the cytoplasm and exists in cytosolic heterocomplexes with hsp90 (20). In Fig. 1, mutant p53 and the GR were immunoadsorbed from DLD-1 cytosol, and proteins were resolved by immunoblotting. Hsp90 was coadsorbed with both proteins, as was some hsp70, which is an essential component of the multiprotein chaperone machinery that forms “client protein” heterocomplexes with hsp90 (13). Also present in both heterocomplexes was p23, a ubiquitous 23-kDa acidic protein that binds to the ATP-dependent conformation of hsp90 when the client protein-hsp90 complex has been assembled (13). It has been shown that p23 binds dynamically and stabilizes the GR-hsp90 heterocomplex (37).

The TPR domain immunophilins FKBP52 and CyP-40 are coimmunoadsorbed with both p53 and the GR, as is PP5 (Fig. 1). Both of these immunophilins and the immunophilin homolog PPS have been shown to exist in cytosols in complexes that contain cytoplasmic dynein (29). Here, we use an antibody against the dynein intermediate chain (DIC) to show that dynein is coimmunoadsorbed with both the GR and p53, as previously reported (23, 24, 30). FKBP51 is another immunophilin that has been found in steroid receptor-hsp90 heterocomplexes, where it seems to counter the increase in steroid-binding affinity of the hsp90-bound GR caused by FKBP52 (38). Because we do not have an antibody to determine whether FKBP51 is in complexes that contain dynein, we have not assayed it here. Nevertheless, it seems clear from Fig. 1 that the same complex of proteins is coimmunoadsorbed with p53 as with the GR. The bands in Fig. 1 are clearly specific for the GR and p53, with non-immune pellets prepared from the same cytosol showing the background. However, the GR and p53 heterocomplexes may not be identical in that they may differ somewhat in the relative amounts of the immunophilins that are present. The specificity of the procedure is underlined by two considerations: the GR is not present in p53 immune pellets, and p53 is not present in GR immune pellets prepared from the same sample of cytosol.

Immunophilins Link the p53-hsp90 Complex to Dynein—Reticuloctye lystate contains the multiprotein hsp90/hsp70-based chaperone machinery that assembles client protein-hsp90 heterocomplexes (13), and GR-hsp90 heterocomplexes assembled in reticulocyte lysate contain both immunophilins and cytoplasmic dynein (23). Fig. 2 shows the reconstitution of p53-hsp90 immunophilin-dynein complexes by rabbit reticulocyte lysate. The native heterocomplex of mutant p53 with human chaperones and dynein is shown in lane 2. The immunoadsorbed p53 was then stripped of its associated proteins (lane 4) and incubated with reticulocyte lysate to reconstitute the heterocomplex with rabbit proteins (lane 5). In lane 6, p53 was...
Immunophilins Link p53 to Dynein

incubated with reticulocyte lysate that was treated with geldanamycin, an ansamycin antibiotic that binds to the unique N-terminal ATP site of hsp90 and inhibits its function (39). When hsp90 binding is blocked, there are no immunophilins or dynein associated with p53. Also, when the TPR domain fragment of PP5 is present to compete for immunophilin binding to p53-bound hsp90, p53-hsp90 complexes are formed that lack immunophilins and dynein (lane 7). When the PPIase domain fragment of FKBP52 is present (lane 8), p53-hsp90 immunophilin complexes are formed that lack dynein. Thus, in vitro, the immunophilins link the p53-hsp90 complex to dynein.

Radicicol Inhibits p53 Transport to the Nucleus—To examine the movement of p53 from the cytoplasm to the nucleus, we chose HT29-tsp53 cells, a stable human colon carcinoma cell line expressing a temperature-sensitive allele of murine p53 (31). This temperature-sensitive mutant of p53 is fully active in a line expressing a temperature-sensitive allele of murine p53 (30). p53 movement was examined in cells treated with 5 μM radicicol (Fig. 5). From the time course of the radicicol effect shown in Fig. 3, it is clear that movement is inhibited. However, the movement is not blocked, and by 90 min, most of the p53 has translocated to the nucleus in cells treated with 5 μM radicicol. In some other intact cell systems, 20 μM radicicol has been required for substantial inhibition of hsp90 (43). Unfortunately, at concentrations of 10 μM radicicol and above, the HT29-tsp53 cells detach from the plastic, and we have not been able to determine whether higher concentrations of drug produce a greater inhibition of nuclear transport.

Inhibition of p53 Transport by Expression of a PPIase Domain Fragment—To show that the overexpressed, temperature-sensitive, mutant mouse p53 in HT29-tsp53 cells undergoes dynein-dependent movement to the nucleus as reported for wild-type human p53 (30), p53 movement was examined in HT29-tsp53 cells expressing myc-dynamitin. Dynamitin is a 50-kDa subunit of the dynein-associated dynactin complex, and its overexpression blocks dynein function by dissociating the motor from its cargoes (35, 46). In HT29-tsp53 cells overexpressing dynamitin (Fig. 4A, green), there was very little movement of p53 (Fig. 4A, red) compared with surrounding non-transfected cells where p53 accumulated in the nucleus after the switch to permissive temperature. Overexpression of the PPIase domain fragment of FKBP52 also inhibited p53 movement (Fig. 5A). The extent of inhibition of p53 movement by the PPIase domain fragment (Fig. 5B) was similar to the inhibition produced by overexpression of dynamitin (Fig. 4B).

Immunophilin Interaction with Dynamitin—The observations that the PPIase domain fragment competed for the binding of p53-hsp90 immunophilin complexes to dynein (Fig. 2) and that overexpression of the PPIase domain fragment inhibited p53 translocation to the nucleus (Fig. 5) are consistent with a model in which the immunophilin PPIase domain links the p53-hsp90 immunophilin complex to the protein motor for retrograde movement. However, it is not yet clear what part of the dynein/dynactin complex interacts directly with the PPIase domain. We have demonstrated previously a very weak interaction between the PPIase domain fragment of FKBP52 and the purified expressed intermediate chain of mouse cytoplasmic dynein (29). However, PPIase domains engage in weak interactions with peptidyl prolines (47), and this binding could be nonspecific in this way. Cytoplasmic dynein is thought to link vesicles and organelles indirectly through dynactin (46), and it is possible that overexpression of dynamitin inhibits p53 nuclear translocation (Fig. 4), because it is dynamitin itself that is the component of the dynactin complex that interacts directly with the immunophilin PPIase domain.

If dynamitin binds directly to the immunophilin PPIase domain, then it should be present in immunoadsorbed p53 heterocrosses. Because we do not have an antibody directed against dynamitin, we transfected DLD-1 cells with myc-dynamitin, immunoadsorbed p53 complexes, and probed Western blots of the immunoadsorbate with anti-myc antibody to detect the presence of dynamitin. As shown in Fig. 6A, dynamitin coimmunoadsorbed with p53 (lane 2), and its presence was eliminated by competition with the PPIase domain fragment of FKBP52 (lanes 3 and 4). To determine whether dynamitin binds TPR domain immunophilins, myc-dynamitin was immunoadsorbed to protein-A Sepharose, stripped of associated proteins by incubation with salt, and the immunopellet was incubated with reticulocyte lysate in the presence or absence of the PPIase domain fragment. It can be seen in Fig. 6B that the
stripped dynamitin (lane 1) bound to the three hsp90-binding immunophilins, PP5, FKBP52 and Cyp-40 (lane 2), and the immunophilins were not bound if the PPIase domain fragment was present to compete for their binding (lane 3). To determine whether the immunophilin is directly interacting with dynamitin, we incubated immunoadsorbed, stripped myc-dynamitin with purified FKBP52. As shown in Fig. 6C, stripped dynamitin (lane 3) binds FKBP52 (lane 4). This binding is competed by the purified FKBP52 PPIase domain fragment (lanes 5 and 6), suggesting a direct interaction between the PPIase domain of the immunophilin and the dynamitin component of the dynactin complex.

DISCUSSION

We show here that the immunophilins link the p53-hsp90 complex to cytoplasmic dynein in vitro (Fig. 2) and that preventing that interaction by overexpression of the PPIase domain fragment inhibits p53 movement to the nucleus in vivo (Fig. 5). As illustrated in the cartoon in Fig. 7, the key linkages involve immunophilin binding to hsp90 by means of the TPR domain and binding to the dynamitin component of the dynein-associated dynactin complex by means of the PPIase domain (Fig. 6). Neither binding of the immunophilins to dynein (26) nor the rate of transport of the GR (23) or p53 (data not shown) to the nucleus is affected by FK506. Thus, although the PPIase domain interacts with the dynein/dynactin complex, PPIase activity is not required for the interaction.

TPR domain immunophilins are distributed widely among animal and plant cells, and both the TPR domain binding to hsp90 and PPIase domain linkage to the dynein motor complex are conserved interactions (28, 48). This suggests that the TPR domain immunophilins perform a rather fundamental function or functions, and that there may be considerable redundancy in their action. The hsp90 binding TPR domain immunophilins were discovered as components of the steroid receptor/hsp90 heterocomplexes (13), and their functions have not been broadly studied for other transcription factors. Their presence as components that link p53 to the motor protein responsible for its retrograde movement is consistent with a broad role for these immunophilins in protein trafficking to the nucleus. The only other clear demonstration of a TPR domain immunophilin effect is that the binding of FKBP52 to the GR/hsp90 heterocomplex increases the affinity of steroid binding in a manner that requires the immunophilin PPIase activity (38). However, this effect seems to be specific to FKBP52, and it is clearly limited to the GR as opposed to other steroid receptors.

The immunophilins bind after the client protein/hsp90 heterocomplex has been assembled, and by cross-linking steroid receptor complexes, Gehring and his colleagues determined a heterotetrameric structure of 1 receptor:2 hsp90:1 immunophilin (reviewed in Ref. 49). This is the stoichiometry we suggest for the p53/hsp90-immunophilin complex in Fig. 7.
from the cytoplasm into the nucleus is required for the biological response. The demonstration by Giannakakou et al. (30) that p53 is transported to the nucleus by dynein provided an important advance in understanding the mechanism of nuclear translocation. Here, we have used p53 mutants that localize to the cytoplasm to show the similarity between p53 heterocomplexes and those of the glucocorticoid receptor, another hsp90-regulated transcription factor. This has allowed us to identify the hsp90-binding immunophilins as the linkers between p53-hsp90 and the dynein motor complex. The observations of Fig. 6 suggest that the hsp90-binding immunophilins link directly via their PPIase domains to dynein, which in turn connects the complex to the dynein motor. This movement model should provide an important advance in understanding how a variety of proteins that act in the nucleus are transported to that organelle.

Acknowledgments—We thank Jack Bodwell, Michael Chinkers, Michael Clarke, Karen Leach, Christine Radanyi, Michel Renou, David Toft, and Richard Vallee for providing plasmids and antibodies used in this work.

REFERENCES

1. Ljungman, M. (2000) Neoglossa 2, 208–225
2. Vogelstein, B., Lane, D., and Levine, A. J. (2000) Nature 408, 307–310
3. Sharpless, N. E., and DePinho, R. A. (2002) Cell 110, 9–12
4. Hollstein, M., Hergenhahn, M., Yang, Q., Bartsch, H., Wang, Z. Q., and Harris, C. C. (1991) Mutat. Res. 241, 199–214
5. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991) Science 253, 49–53
6. Levine, A. J., Momand, J., and Finlay, C. A. (1991) Nature 351, 433–435
7. David-Pleutet, T., Chakrani, F., Orry, K., and Noovrandougieh, Y. (1996) Cell Growth Differ. 7, 1211–1225
8. Komarova, S. A., Zelink, C. R., Chinn, D., Zeremecki, M., Gleiberman, A. S., Baccus, S. S., and Goldfarb, A. V. (1997) Cancer Res. 57, 6217–6220
9. Moll, U. M., Riou, G., and Levine, A. J. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 7262–7266
10. Schlichl, C. L., Poulsen, G. L., Nork, T. M., and Nickel, R. W. (1997) J. Natl. Cancer Inst. 89, 1530–1536
11. Stemmel, J. M., Marchenko, N. D., Jimenez, G. S., Moll, U. M., Hope, T. J., and Wahl, G. M. (1999) EMBO J. 18, 1660–1672
12. Nikolaev, A. Y., Li, M., Puskas, N., Qin, J., and Gu, W. (2003) Cell 112, 29–40
13. Pratt, W. B., and Toft, D. O. (2003) Exp. Biol. Med. 228, 111–133
14. Sepehrnia, B., Pas, E. I., Dasgupta, G., and Momand, J. (1996) J. Biol. Chem. 271, 15084–15090
15. Blagosklonny, M. V., Toretsky, J., Bohen, S., and Neckers, L. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 8375–8378
16. King, F. W., Wawrynnow, A., Hufeld, J., and Zylke, M. (2001) EMBO J. 20, 6279–6305
17. Neckers, L., Schlamp, C. L., Poulsen, G. L., and Neckers, L. (1997) Oncogene 14, 2809–2816
18. Whitesell, L., Sutphin, P. D., Schulte, T., Blagosklonny, M. V., and Neckers, L. (1997) Oncogene 18, 2570–2579
19. Whitesell, L., Sutphin, P. D., Polenci, E. J., Martinez, J. D., and Cook, P. H. (1998) Mol. Cell Biol. 18, 1517–1524
20. Peng, Y., Chen, L., Li, C., Lu, W., and Chen, J. (2001) J. Biol. Chem. 276, 4583–4590
21. Galgiani, M. D., Bruschi, L. R., Mora, G. J., Jore, J. M., and Pratt, W. B. (1998) Mol. Endocrinol. 12, 1903–1913
22. Kazlauskas, A., Sundstrom, S., Poellinger, L., and Pongratz, L. (2001) Mol. Cell Biol. 21, 2551–2560
23. Galgiani, M. D., Radanyi, C., Renou, J. M., Housley, P. R., and Pratt, W. B. (2001) J. Biol. Chem. 276, 14884–14889
24. Davis, D. T., Nim, Y. M., and Sanchez, E. R. (2002) J. Biol. Chem. 277, 4597–4600
25. Russell, B. R., and Gee, M. A. (1998) Trends Cell Biol. 8, 490–494
26. Schifferstein, A. M., Galgiania, M. D., Chen, M. S., Overson-Grills, J. K., Chinkers, M., and Pratt, W. B. (1997) J. Biol. Chem. 272, 16224–16230
27. Silverstein, A. M., Galgiania, M. D., Kanelakis, K. C., Radanyi, C., Renou, J. M., and Pratt, W. B. (1999) J. Biol. Chem. 274, 36980–36986
28. Harrell, J. M., Kurek, I., Breiman, A., Radanyi, C., Renou, J. M., Pratt, W. B., and Galgiania, M. D. (2002) Biochemistry 41, 5581–5587
29. Galgiania, M. D., Harrell, J. M., Murphy, P. J. M., Chinkers, M., Radanyi, C., Renou, J. M., Zhang, M., and Pratt, W. B. (2002) Biochemistry 41, 13692–13610
30. Giannakakou, P., Sackett, D. L., Ward, Y., Webster, K. R., Blagosklonny, M. V., and Poon, T. (2000) Nat. Cell Biol. 2, 907–917
31. Merchant, A. K., Loney, T. L., and Maybaum, J. (1996) Oncogene 13, 2631–2637
32. McKay, B. C., Chen, F., Perumalawami, C. R., Zhang, F., and Jujang, M. (2000) Mol. Cell Biol. 21, 2541–2551
33. Chen, M. S., Silverstein, A. M., Pratt, W. B., and Chinkers, M. (1998) J. Biol. Chem. 273, 32115–32119
34. Le Bihan, S., Renou, J. M., Radanyi, C., Chambraud, B., Joulin, V., Catelli, M. G., and Baulieu, E. E. (1993) Biochim. Biophys. Acta 1195, 600–607
Immunophilins Link p53 to Dynine

35. Burkhardt, J. K., Echeverri, C. J., Nilsson, T., and Vallee, R. B. (1997) J. Cell Biol. 139, 469–484
36. Rodrigues, N. R., Rowen, A., Smith, M. E. F., Kerr, I. B., Bodmen, W. F., Gannon, J. V., and Lane, D. P. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7555–7559
37. Dittmar, K. D., Demady, D. R., Stancato, L. F., Krishna, P., and Pratt, W. B. (1997) J. Biol. Chem. 272, 21213–21220
38. Riggs, D. L., Roberts, P. J., Chinillo, S. C., Cheung-Flynn, J., Prapapamich, V., Ratajczak, T., Gaber, R., Picard, D., and Smith, D. F. (2003) EMBO J. 22, 1158–1167
39. Roe, S. M., Predromou, C., O’Brien, R., Ladbury, J. E., Piper, B. W., and Pearl, L. H. (1999) J. Med. Chem. 42, 260–266
40. Gannon, J., and Lane, D. (1991) Nature 349, 802–806
41. Martinez, J., Georgoff, I., Martinez, J., and Levine, A. (1991) Genes Dev. 5, 151–159
42. Ginsberg, D., Michael-Michalovitz, D., Ginsberg, D., and Oren, M. (1991) Mol. Cell Biol. 11, 582–585
43. Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J. M., Lowe, E. R., Kamada, Y., Pratt, W. B., and Osaawa, Y. (2002) J. Biol. Chem. 277, 20504–20509
44. Uberti, D., Yavin, E., Gil, S., Ayasola, K. R., Goldfinger, N., and Rotter, V. (1999) Mol. Brain Res. 65, 167–175
45. Schulte, T. W., Akinaga, S., Murakata, T., Agatauma, T., Sugimoto, S., Nakano, H., Lee, Y. S., Simen, B. B., Argen, Y., Felt, S., Toft, D. O., Neckers, L. M., and Sharma, S. (1999) Mol. Endocrinol. 13, 1435–1448
46. Hirokawa, N. (1998) Science 279, 519–526
47. Galat, A. (2003) Curr. Top. Med. Chem. 3, 1315–1347
48. Owens-Grillo, J. K., Stancato, L. F., Hoffman, K., Pratt, W. B., and Krishna, P. (1996) Biochemistry 35, 15249–15255
49. Pratt, W. B., and Toft, D. O. (1997) Endocr. Rev. 18, 306–360
50. Young, J. C., Obermann, M. J., and Hartl, F. U. (1998) J. Biol. Chem. 273, 18007–18010
51. Predromou, C., Sihgardi, G., O’Brien, R., Woolfson, D. N., Regan, L., Ladbury, J. E., Piper, P. W., and Pearl, L. H. (1999) EMBO J. 18, 754–762
52. Pirkl, F., and Buchner, J. (2001) J. Mol. Biol. 308, 795–806