A RECTANGULAR INTERVAL OF A RECTANGULAR LATTICE
IS A RECTANGULAR LATTICE

G. GRÄTZER

Abstract. Let L be a slim, planar, semimodular lattice (slim means that it does not contain M_3-sublattices). We call the interval $I = [o, i]$ of L rectangular, if there are $u_l, u_r \in [o, i] - \{o, i\}$ such that $o = u_l \land u_r$ and $i = u_l \lor u_r$, where u_l is to the left of u_r.

We prove that a rectangular interval of a rectangular lattice is a rectangular lattice.

As an application, we get a recent result of G. Czédli.

1. Introduction

We started studying planar, semimodular lattices in my papers with E. Knapp [4]–[8]. More than four dozen publications have been devoted to this topic since; see G. Czédli’s list http://www.math.u-szeged.hu/~czedli/m/listak/publ-psml.pdf

An SPS lattice L is a planar semimodular lattice that is also slim, that is, it does not contain M_3-sublattices.

Following my paper with E. Knapp [7], a planar semimodular lattice L is rectangular, if its left boundary chain has exactly one doubly-irreducible element (the left corner) and its right boundary chain has exactly one doubly-irreducible element (the right corner).

Rectangular lattices are easier to work with than planar semimodular lattices, because they have much more structure. Moreover, a planar semimodular lattice has a (congruence-preserving) extension to a rectangular lattice, so we can prove many result for planar semimodular lattices by verifying them for rectangular lattices (G. Grätzer and E. Knapp [7]).

There are many interesting and useful facts about SPS lattices. In this paper, we present a new one, closely related to the main result in G. Czédli [1]. Before we state it, we need a definition. Let L be a planar lattice. We call the interval $I = [o, i]$ of L rectangular, if there are $u_l, u_r \in [o, i] - \{o, i\}$ such that $o = u_l \land u_r$ and $i = u_l \lor u_r$, where u_l is to the left of u_r.

Theorem 1. Let L be an SPS lattice and let I be a rectangular interval of L. Then the lattice I is slim and rectangular.

We will apply this theorem to get a recent result of G. Czédli [1].

2020 Mathematics Subject Classification. 06C10.

Key words and phrases. Slim lattice, planar lattice, semimodular lattice, rectangular lattice, rectangular interval.
Basic concepts and notation. We assume that the reader is familiar with the basic concepts as in CFL2 (cite [3]). You can find the complete Part I. A Brief Introduction to Lattices and Glossary of Notation of [3] at tinyurl.com/lattices101

2. Preliminaries

We discuss in Section 4.3 of CFL2 a result of G. Czédli and E. T. Schmidt [2]: for an SPS lattice \(L \) and covering square \(C \) in \(L \), we can insert a fork at \(C \) to obtain the lattice extension \(L[C] \), which is also an SPS lattice.

Sometimes, we can delete a fork, see G. Czédli and E. T. Schmidt [2].

Lemma 2. Let \(L \) be an SPS lattice and let \(S \) be a covering \(N_7 \) in \(L \), with middle element \(m \), left corner \(b_l \) and right corner \(b_r \). Let us assume that the top element \(t \) of \(S \) is minimal, that is, there is no \(S' \) a covering \(N_7 \) with top element \(t' \) satisfying that \(t' < t \). Then \(L \) has a sublattice \(L^- \) with 4-cell \(C = S - \{ m, b_l, b_r \} \) such that \(L = L^-[C] \).

![Figure 1. Deleting a fork.](image)

The structure of slim rectangular lattices is described as follows.

Theorem 3 (G. Czédli and E. T. Schmidt [2]). \(L \) is a slim rectangular lattice iff it can be obtained from a grid by inserting forks.

There is a slightly stronger version of this result, implicit in G. Czédli and E. T. Schmidt [2]. We present it with a short proof.

Theorem 4. For every slim rectangular lattice \(K \), there is a grid \(G \) and sequences \(G = K_1, K_2, \ldots, K_n = K \) of slim rectangular lattices and

\[
C_1 = \{ o_1, c_1, d_1, i_1 \}, C_2 = \{ o_2, c_2, d_2, i_2 \}, \ldots, C_{n-1} = \{ o_{n-1}, c_{n-1}, d_{n-1}, i_{n-1} \}
\]

of 4-cells in the appropriate lattices such that

\[
G = K_1, K_1[C_1] = K_2, \ldots, K_{n-1}[C_{n-1}] = K_n = K.
\]

Moreover, the principal ideals \(\downarrow c_{n-1} \) and \(\downarrow d_{n-1} \) are distributive.
Proof. We prove this result by induction on the number \(n \) of covering \(N_7 \)-s in \(K \). If \(n = 0 \), then \(K \) is distributive by G. Grätzer and E. Knapp [7], so the statement is trivial. Now let us assume that the statement holds for \(n-1 \). Let \(K \) be a slim rectangular lattice with \(n \) covering \(N_7 \)-s. As in Lemma \(2 \) we take \(S \), a minimal covering \(N_7 \) in \(K \). Then we form the sublattice \(K^- \) by deleting the fork at \(S \). So we get a 4-cell \(C = C_{n-1} = \{ o_{n-1}, c_{n-1}, d_{n-1}, i_{n-1} \} \) of \(K^- \) such that \(K = K^-[C] \). Since \(K^- \) has \(n-1 \) covering \(N_7 \)-s, we get the sequence

\[
G = K_1, K_1[C_1] = K_2, \ldots, K_{n-2}[C_{n-2}] = K_{n-1} = K^-,
\]

which, along with \(K = K^-[C] \), prove the statement for \(K \).

By the minimality of \(S \), the principal ideals \(\downarrow c_{n-1} \) and \(\downarrow d_{n-1} \) are distributive. \(\square \)

3. Proving Theorem \(1 \)

Theorem \(1 \) obviously holds for grids.

Otherwise, we are given the slim rectangular lattice \(K \), the slim rectangular lattice \(K^- \) as defined in the proof of Theorem \(3 \) and the covering square

\[
C_{n-1} = \{ o_{n-1}, c_{n-1}, d_{n-1}, i_{n-1} \}
\]

in \(K^- \), so that we obtain \(K \) from \(K^- \) by inserting a fork in \(C_{n-1} \), adding the elements \(m \) in the middle of \(C_{n-1} \), adding the sequences of elements \(x_1, \ldots \) on the left going down and \(y_1, \ldots \) on the right going down.

Let \(I = [o, i]_K \) be a rectangular interval in \(K \) with bounds \(o, i \) and corners \(u_l, u_r \).

We want to prove that \(I \) is a slim rectangular lattice. Of course, the lattice \(I \) is slim.

We induct on \(n \), the number of fork extension to get from \(G \) to \(K \), in equation \(1 \).

There are three types of subcases.

Case 1. \(I \) has no element internal to \(\downarrow i_{n-1} \). For instance, \(I \cap \downarrow i_{n-1} = \emptyset \). Then \([o, i]_{K^-} = I \). By induction, \([o, i]_{K^-} \) is rectangular, therefore, so is \(I \).

Case 2. \(m \) is an internal element of \(I \). For instance, \(u_l \) is \(c_{n-1} \) or it is to the left of \(c_{n-1} \) and symmetrically. In this case, \(C \) is a covering square in \([o, i]_{K^-} \) and we obtain \([o, i]_K \) by adding a fork to \(C \) in \([o, i]_{K^-} \). A fork extension of a slim rectangular lattice is also slim rectangular, so \(I \) is slim rectangular.

Case 3. \(m \) is not an internal element of \(I \) but some \(x_j \) (or \(y_j \)) is. For instance, \(x_2 \) is an internal element of \(I \). Then we obtain \(I \) from \([o, i]_{K^-} \) by replacing a cover preserving \(C_m \times C_2 \) by \(C_m \times C_3 \), and so it is rectangular.

4. Applications

Corollary 5. Let \(L \) be an SPS lattice and let \(I \) be a rectangular interval of \(L \). Let \((P) \) be any property of slim rectangular lattices. Then \((P) \) holds for the lattice \(I \).

For instance, let \((P) \) be the property: the intervals \([o, u_l] \) and \([o, u_r] \) are chains and all elements of the lower boundary of \(I \) except for \(u_l, u_r \) are meet-reducible. Then we get the main result of G. Czédli [11]:

Corollary 6. Let \(L \) be an SPS lattice and let \(I \) be a rectangular interval of \(L \). then \([o, u_l] \) and \([o, u_r] \) are chains and all elements of the lower boundary of \(I \) except for \(u_l, u_r \) are meet-reducible.

Another nice application is the following.
Corollary 7. Let L be an SPS lattice and let I be a rectangular interval of L with corners u_l, u_r. Then for any $x \in I$, the following equation holds:

$$x = (x \land u_l) \lor (x \land u_r).$$

References

[1] G. Czédli, A property of meets in slim semimodular lattices and its application to retracts. arXiv:2112.07594

[2] G. Czédli and E.T. Schmidt, Slim semimodular lattices. I. A visual approach. Order 29 (2012), 481–497.

[3] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach. 2nd ed. Birkhäuser, Basel, 2016.

[4] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. I. Construction, Acta Sci. Math.(Szeged) 73 (2007), 445–462.

[5] G. Grätzer and E. Knapp, A note on planar semimodular lattices, Algebra Universalis 58 (2008), 497–499.

[6] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. II. Congruences, Acta Sci. Math.(Szeged) 74 (2008), 37–47.

[7] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. III. Congruences of rectangular lattices, Acta Sci. Math.(Szeged) 75 (2009), 29–48.

[8] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices, Acta Sci. Math.(Szeged) 76 (2010), 3–26.

Email address: gratzer@mac.com

URL: http://server.maths.umanitoba.ca/homepages/gratzer/