Effect of oral naltrexone on pruritus in cholestatic patients

Fariborz Mansour-Ghanaei, Amir Taheri, Hossein Frountan, Hadi Ghofrani, Mohsen Nasiri-Toosi, Amir-Hossein Bagherzadeh, Mohammad-Jafar Farahvash, Shahram Mirmomen, Naser Ebrahimi-Dariani, Elham Farhangi, Zahra Pourrasouli

AIM: To determine the efficacy and potential complications of oral naltrexone used in the treatment of pruritus in cholestatic patients and to compare them with other studies.

METHODS: Thirty-four enrolled cholestatic patients complaining of pruritus were studied. In the initial phase, pruritus scores during day and night were evaluated. Subsequently, patients were given a placebo for one week followed by naltrexone for one week. In each therapeutic course (placebo or naltrexone) day and night pruritus scores were distinguished by a visual analogue scale (VAS) system and recorded in patients’ questionnaires.

RESULTS: Both naltrexone and placebo decreased VAS scores significantly. Naltrexone was more effective than placebo in decreasing VAS scores. Both day and night scores of pruritus decreased by half of the value prior to therapy in thirteen patients (38%). Daytime pruritus improved completely in two patients (5.9%), but no improvement in the nighttime values was observed in any patient.

Sixteen patients (47%) suffered from naltrexone complications, eleven (32%) of them were related to its withdrawal. Complications were often mild. In the case of withdrawal, the complication was transient (within the first 24-28 h of therapy) and self-limited. We had to cease the drug in two cases (5.9%) because of severe withdrawal symptoms.

CONCLUSION: Naltrexone can be used in the treatment of pruritus in cholestatic patients and is a safe drug showing few, mild and self-limited complications.

Key words: Cholestasis; Pruritus; Naltrexone

INTRODUCTION

Pruritus is one of the most annoying symptoms in cholestatic hepatic diseases[1-3]. Several therapeutic methods with varying degrees of success have been used in its treatment. However, although we can not ignore the positive effects of cholestyramine[4], ursodeoxy colic acid[5-7], rifampin[8-12] and antihistaminic agents on pruritus, many patients do not show unequivocal response to any of these therapeutic options. Even liver transplantation has been indicated in patients with refractory pruritus[13]. The classic explanation for pruritus during cholestasis is the accumulation of bile acids[14]. However, recent studies show that endogenous opioids in the central nervous system have a role in creating the feeling of pruritus in these patients[15]. Plasma levels of endogenous opioids including enkephalin increase in patients with chronic cholestasis[21]. Pruritus can be controlled by opioid antagonists such as naloxone[22, 23] and nalbufina[24]. Injection of cholestatic patient's serum to monkey's me-dulla can cause pruritus that is controlled by naloxone[25]. Several recent studies indicate that opioid antagonists such as naloxone and nalbufina are effective in reducing pruritus in patients with primary biliary cirrhosis[26]. Unfortunately, these drugs have some limitations in use. Naloxone has a short half-life and low bioavailability. Therefore, the only way to use it is by injection[27, 28]. Furthermore, these opioid antagonists frequently cause severe withdrawal reactions in patients[29-31].
Naltrexone is an oral opiate antagonist that is commonly used in reducing alcohol dependence and opioid addiction. It has been used more recently for rapid opiate detoxification. Acute naltrexone withdrawal reactions have also been reported. Its half-life and bioavailability are between naloxone and nalmefene and it has a considerable first pass effect (95%). Naltrexone clearance from serum is mostly in kidneys. We performed this study to evaluate the effects of naltrexone on cholestatic pruritus and its complications.

MATERIALS AND METHODS

Thirty-four patients (age range: 32-72 years; average age: 54 ± 11.34 years) with cholestatic pruritus were selected for study. These patients had different types of cholestatic diseases including primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), cirrhosis (in compensated stage), overlap syndrome, choledocho lithiasis, cholangiocarcinoma, periampullary tumors and pancreatic head carcinoma. The duration of pruritus ranged from eight days to thirteen months. Criteria for exclusion of patients from the study included age less than 15 years, serum creatinine >1.5 mg/dL, pregnancy, use of opioids, and cirrhosis with B or C Child Paugh score. The study was performed between April 2003 and June 2004 in the Imam Hospital in Tehran, Iran. We conducted the study on admitted patients with the approval of the Ethics Committee of Tehran University of Medical Sciences. All enrolled patients gave their informed consent.

The study was carried out using a single blind, self-controlled trial method. After the day and night pruritus scores were obtained, patients were given a placebo for one week and then the scores were recorded. Subsequently, a naltrexone therapy (50 mg daily) for one week, was begun. Pruritus scores were characterized by a VAS system between 0 and 10. Daytime pruritus was considered as pruritus occurring before sleep and nighttime implied pruritus after waking from nocturnal sleep. A score of zero signified no pruritus while 10 meant sleep or work-disturbing pruritus or of such severity that skin damage occurred.

Scoring was performed in the middle and at the end of the therapeutic course of treatment (placebo or naltrexone) and the mean of the scores was used. Laboratory tests including total and direct bilirubin, alkaline phosphatase (ALP), aminotransferases (AST, ALT) and creatinine were performed for all patients before therapy and recorded in the questionnaires. The mean scores of day and night pruritus were compared before therapy and after placebo and naltrexone courses by Wilcoxon rank test with SPSS10.0.5 software.

RESULTS

The numbers of patients with PBC, PSC, cirrhosis, overlap syndrome, choledocho lithiasis, cholangiocarcinoma, periampullary tumors and pancreatic head carcinoma were 4, 6, 11, 7, 1, 2, 2, and 1, respectively.

Naltrexone effect on pruritus

The characteristics of patients before therapy are summarized in Table 1. In both cases of therapy with placebo or naltrexone, the mean scores of daytime and nighttime pruritus decreased significantly (Table 2). Naltrexone significantly decreased the pruritus score compared to the placebo (Table 2).

In this investigation, two of the thirty-four patients were forced to withdraw from the study because of drug complications. Thirteen patients (38%) showed at least 50% decrease in their pruritus scores and two (5.9%) became completely free of pruritus. Three (8.8%) showed no change in their scores during the therapy and the score even increased in one case.

The onset of naltrexone therapeutic effects was within the first 48 h of therapy. The decrease in pruritus gradually slowed down and returned to some extent in three patients. There was no obvious change in biochemical parameters after therapy. The bilirubin and ALP levels did not significantly differ before or after therapy (without considering the result of therapy).

Complications

Sixteen patients (47%) suffered from naltrexone complications which were generally mild and improved without additional treatment in the first 2-3 d of therapy. The most common complication was a withdrawal reaction in eleven patients (32.4%). The general and gastrointestinal complications (including dizziness, nausea, vomiting, headache, abdominal cramps, lethargy, weakness, irritability, dry oral mucous membrane and insomnia) were seen in other patients and one patient had also dermatologic complications. Two patients did not finish their therapeutic course because of severe withdrawal reactions. However, pruritus decreased relatively to its initial condition in one of the two patients. Except for the withdrawal reactions, other complications were not sufficiently severe to cause drug cessation.

DISCUSSION

The results of this study indicate that oral naltrexone, an opioid antagonist, can reduce or improve cholestatic pruritus. The results agree with the other reports. Some researchers believe that the VAS system for evaluating pruritus severity is not reliable and prefer to use a mechanical instrument attached to fingers to show and record patients’ pruritus. Although such instruments may be helpful...
in evaluating pruritus objectively, their use has some difficulties. On the other hand, the VAS system can control pruritus quite well[8, 12, 42]. It was reported that the pruritus index is significantly correlated with the pruritus score obtained by the VAS system[25, 26]. It has been shown that decreased pruritus index and its perception are similar[43].

In three patients of the present study, the rate of pruritus score decrease was lower after a few days of therapy. The reason is unclear though it may be due to secondary adaptation to opioid or drug resistance (tachyphylaxis). This effect has already been reported in earlier studies on nalmeFenc[27, 38, 39, 44].

Some researchers believe that cessation of drug therapy for two days during a week (“drug holidays”) can reduce drug adaptation effects in such patients[39]. However, others consider that this method is ineffective[40]. Increasing the naltrexone dose to 100 mg/day may be effective in such circumstances. Although side effects were relatively common (47%), most of them were mild, self-limited and transient, requiring no additional therapy in our study. On the other hand, in the placebo group 26% of patients had drug complications. Two patients had to stop the therapy because of severe opioid withdrawal effects. Both of them had a positive opioid addiction history but they were not addicted to it at the time of the study. In comparison with nalmeFenc, naltrexone leads to fewer and milder complications[18-27].

To decrease naltrexone complications, synchronous prescription of clonidine[38] or naltrexone at a low dose, at least for the first few days of therapy[27], is recommended. Also we can divide the total dose into 25 mg BD instead of decreasing it during the first few days of therapy[38, 39]. Examples of naltrexone hepatotoxicity have been reported[48], but there is no report on the hepatotoxicity at the low dose of naltrexone in normal people or patients with hepatic diseases[38, 39, 46].

Endogenous opioids play a role in producing cholestasic pruritus, but opioid antagonists cannot improve pruritus completely[27, 38, 39, 47, 48]. Studies indicate that naltrexone is a drug that can be well tolerated by patients and its complications are often mild and transient not requiring additional therapy[40, 45, 50]. Naltrexone can also be used in treatment of severe and intractable pruritus of varying origins[41].

In conclusion, naltrexone can be used in the treatment of pruritus in cholestatic patients.

ACKNOWLEDGMENTS

The authors thank Reyhaneh Jafarshad, medical student of GUMS and member of GLDRC for her help in the preparation of this manuscript.

REFERENCES

1. Bergasa NV, Jones EA. The pruritus of cholestasis. Semin Liver Dis 1993; 13: 319-327
2. Heathcote EJ. Management of primary biliary cirrhosis. The American Association for the Study of Liver Diseases practice guidelines. Hepatology 2000; 31: 1005-1013
3. Khandelwal M, Malet PF. Pruritus associated with cholestasis. A review of pathogenesis and management. Dig Dis Sci 1994; 39: 1-8
4. Datta DV, Sherlock S. Cholestyramine for long term relief of the pruritus complicating intrahepatic cholestasis. Gastroenterology 1966; 50: 323-332
5. Heuman DM. Hepatoprotective properties of ursodeoxycholic acid. Gastroenterology 1993; 104: 1865-1870
6. Poupon RE, Poupin R, Balkau B. Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med 1994; 330: 1342-1347
7. Combes B, Carithers RL, Maddrey WC, Lin D, McDonald MF, Wheeler DE, Eigenbrodt EH, Muñoz SJ, Rubin R, García-Tsao G. A randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid in primary biliary cirrhosis. Hepatology 1995; 22: 759-766
8. Ghent CN, Carruthers SG. Treatment of pruritus in primary biliary cirrhosis with rifampin. Results of a double-blind, crossover, randomized trial. Gastroenterology 1988; 94: 488-493
9. Bachis L, Parés A, Elena M, Piera C, Rodes J. Comparison of rifampicin with phenobarbitaline for treatment of pruritus in biliary cirrhosis. Lancet 1989; 1: 574-576
10. Cynamon HA, Andres JM, Iafrate RF. Rifampin relieves pruritus in children with cholestatic liver disease. Gastroenterology 1990; 98: 1013-1016
11. Podesta A, Lopez P, Teng R, Villamil F, Flores D, Mastai R, Udaondo CB, Compan JC. Treatment of pruritus of primary biliary cirrhosis with rifampin. Dig Dis Sci 1991; 36: 216-220
12. Bachis L, Parés A, Elena M, Piera C, Rodes J. Effects of long-term rifampicin administration in primary biliary cirrhosis. Gastroenterology 1992; 102: 2077-2080
13. Cohen LB, Ambinder EP, Wolke AM, Field SP, Schaffner F. Role of plasmapheresis in primary biliary cirrhosis. Gut 1985; 26: 291-294
14. Markus BH, Dickson ER, Grambusch PM, Fleming TR, Mazzaferro V, Klintmalm GB, Wiesner RH, Van Thiel DH, Starzl TE. Efficiency of liver transplantation in patients with primary biliary cirrhosis. N Engl J Med 1989; 320: 1709-1713
15. Wiesner RH, Porayko MK, Dickson ER, Gores GJ, LaRusso NF, Hay JE, Wahlstrom HE, Krom RA. Selection and timing of liver transplantation in primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 1992; 16: 1290-1299
16. Murphy GM, Ross A, Billing BH. Serum bile acids in primary biliary cirrhosis. Gut 1972; 13: 201-206
17. Ghent CN, Bloomer JR, Klatkin G. Elevations in skin tissue levels of bile acids in human cholestasis: relation to serum levels and topruritus. Gastroenterology 1977; 73: 1125-1130
18. Thornton JR, Losowsky MS. Opioid peptides and primary biliary cirrhosis. BMJ 1988; 297: 1501-1504
19. Jones EA, Bergasa NV. The pruritus of cholestasis and the opioid system. JAMA 1992; 268: 3359-3362
20. Jones EA, Bergasa NV. The pruritus of cholestasis. Hepatology 1999; 29: 1003-1006
21. Thornton JR, Losowsky MS. Plasma leucine enkephalin is in-

Table 2 Comparison of pruritus scores in patients before and after placebo and naltrexone therapy (mean±SD)

Patients (n = 34)	1 Before therapy	2 After placebo	3 After therapy	1 and 2 Significance	1 and 3 Significance	2 and 3 Significance
Pruritus in day	8.30 ± 1.07	7.54 ± 1.38	4.91 ± 2.56	< 0.001	< 0.001	P < 0.001
Pruritus in night	9.13 ± 0.78	8.29 ± 1.02	5.54 ± 2.51	< 0.001	< 0.001	P < 0.001

www.wignet.com
creased in liver disease. Gut 1989; 30: 1392-1395

22 Jones EA, Bergasa NV. The pruritus of cholestasis: from bile acids to opioid agonists. Hepatology 1990; 11: 884-887

23 Bergasa NV, Jones EA. Management of the pruritus of cholestasis: potential role of opioid antagonists. Am J Gastroenterol 1991; 86: 1401-1412

24 Bergasa NV, Thomas DA, Vergalla J, Turner ML, Jones EA. Plasma from patients with the pruritus of cholestasis induces opioid receptor-mediated scratching in monkeys. Life Sci 1993; 53: 1253-1257

25 Bergasa NV, Talbot TL, Alling DW, Schmitt JM, Walker EC, Baker BL, Korenman JC, Park Y, Hoofnagle JH, Jones EA. A controlled trial of naloxone infusions for the pruritus of chronic cholestasis. Gastroenterology 1992; 102: 544-549

26 Bergasa NV, Alling DW, Talbot TL, Swain MG, Yurdaydin C, Turner ML, Schmitt JM, Walker EC, Jones EA. Effects of naloxone infusions in patients with the pruritus of cholestasis. A double-blind, randomized, controlled trial. Ann Intern Med 1995; 123: 161-167

27 Bergasa NV, Schmitt JM, Talbot TL, Alling DW, Swain MG, Turner ML, Jenkins JB, Jones EA. Open-label trial of oral naldfene therapy for the pruritus of cholestasis. Hepatology 1998; 27: 679-684

28 Jaffe H, Martin D. Opioid analgesics and antagonists. In: Gilman A, Goodman L, Rall T, Marad F, Editors. The pharmacologic basis of therapeutics 7th edition, MacMillan, New York 1989; 491-531

29 Jones EA, Dekker LR. Flurid opioid withdrawal-like reaction precipitated by naltrexone in a patient with chronic cholestasis. Gastroenterology 2000; 118: 431-432

30 Shawcross DI, Jalan R. Delayed opioid withdrawal-like reaction in primary biliary cirrhosis following naloxone therapy. Gastroenterology 2001; 121: 743-744

31 McRae CA, Prince MI, Hudson M, Day CP, James OF, Jones DE. Pain as a complication of use of opiate antagonists for symptom control in cholestasis. Gastroenterology 2003; 125: 591-596

32 Kranzler HR, Wesson DR, Billiot L. Naltrexone depot for treatment of alcohol dependence: a multicenter, randomized, placebo-controlled clinical trial. Alcohol Clin Exp Res 2004; 28: 1051-1059

33 Moak DH. Assessing the efficacy of medical treatments for alcohol use disorders. Expert Opin Pharmacother 2004; 5: 2075-2089

34 van Brussel GH. [Limited role of naltrexone in the treatment of opiate addiction]. Ned Tijdschr Geneeskd 2001; 145: 1452-1456

35 Yeo M, Campbell V, Bonomo Y, Sawyer SM. Acute opioid withdrawal on incidental injection of naltrexone. J Paediatr Child Health 2003; 39: 315-317

36 Gonzalez JP, Brogden RN. Naltrexone. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of opioid dependence. Drugs 1988; 35: 192-213

37 Bertolotti M, Ferrari A, Vitale G, Stefani M, Trenti T, Loria P, Carubbi F, Carulli N, Sternieri E. Effect of liver cirrhosis on the systemic availability of naltrexone in humans. J Hepatol 1997; 27: 505-511

38 Carson KL, Tran TT, Cotton P, Sharara AI, Hunt CM. Pilot study of the use of naltrexone to treat the severe pruritus of cholestatic liver disease. Am J Gastroenterol 1996; 91: 1022-1023

39 Wolfhagen FH, Sternieri E, Hop WC, Vitale G, Bertolotti M, Van Buuren HR. Oral naltrexone treatment for cholestatic pruritus: a double-blind, placebo-controlled study. Gastroenterology 1997; 113: 1264-1269

40 Terg R, Coronel E, Sordà J, Muñoz AE, Findor J. Efficacy and safety of oral naltrexone treatment for pruritus of cholestasis, a crossover, double blind, placebo-controlled study. J Hepatol 2002; 37: 717-722

41 Brune A, Metze D, Lugger TA, Ständer S. [Antipruritic therapy with the oral opioid receptor antagonist naltrexone. Open, non-placebo controlled administration in 135 patients]. Hautarzt 2004; 55: 1130-1136

42 McCormack HM, Horne DJ, Sheather S. Clinical applications of visual analogue scales: a critical review. Psychol Med 1988; 18: 1007-1019

43 O’Donohue JW, Pereira SP, Ashdown AC, Haigh CG, Wilkinson JR, Williams R. A controlled trial of ondansetron in the pruritus of cholestasis. Aliment Pharmacol Ther 2005; 21: 1041-1045

44 Pauli-Magnus C, Mikus G, Alscher DM, Kirschner T, Nagel W, Gugeler N, Riser T, Berger ED, Kuhlmann U, Mettang T. Naltrexone does not relieve uremic pruritus: results of a randomized, double-blind, placebo-controlled crossover study. J Am Soc Nephrol 2000; 11: 514-519

45 Mitchell JE. Naltrexone and hepatotoxicity. Lancet 1986; 1: 1215

46 Sax DS, Kornetsky C, Kim A. Lack of hepatotoxicity with naltrexone treatment. J Clin Pharmacol 1994; 34: 898-901

47 Jones EA, Bergasa NV. The pathogenesis and treatment of pruritus and fatigue in patients with PBC. Eur J Gastroenterol Hepatol 1999; 11: 623-631

48 Terra SG, Tsunoda SM. Opioid antagonists in the treatment of pruritus from cholestatic liver disease. Ann Pharmacother 1998; 32: 1228-1230

49 Schmitz JM, Stotts AL, Rhodeas HM, Grabowski J. Naltrexone and relapse prevention treatment for cocaine-dependent patients. Addict Behav 2001; 26: 167-180

50 Bouza C, Angeles M, Muñoz A, Amate JM. Efficacy and safety of naltrexone and acamprosate in the treatment of alcohol dependence: a systematic review. Addiction 2004; 99: 811-828

S- Editor Guo SY L- Editor Wang XL E- Editor Cao L