AN EXTENSION OF HARMONIC FUNCTIONS ALONG FIXED DIRECTION

SEVDIYOR IMOMKULOV, YULDASH SAIDOV

Abstract. Let a function \(u(x, y) \) be harmonic in the domain
\[
D \times V_r = D \times \{ y \in \mathbb{R}^m : |y| < r \} \subset \mathbb{R}^n \times \mathbb{R}^m
\]
and for each fixed point \(x^0 \) from some a set \(E \subset D \), the function \(u(x^0, y) \), as a function of variable \(y \), can be extended to a harmonic function on the whole \(\mathbb{R}^m \). Then \(u(x, y) \) harmonically extends to the domain \(D \times \mathbb{R}^m \) as a function of variables \(x \) and \(y \).

1. Introduction

The well known Hartogs lemma concerns the extension of holomorphic functions along fixed direction (see [1]) and states that if a function \(f(z, w) \) is holomorphic in the domain
\[
D \times \{ w \in \mathbb{C} : |w| < R \} \subset \mathbb{C}^n \times \mathbb{C}
\]
and for each fixed \(z^0 \in D \) the function \(f(z^0, w) \) of variable \(w \) holomorphically extends to the disk \(\{ w \in \mathbb{C} : |w| < R \} \), then \(f(z, w) \) can be holomorphically extended to the domain \(D \times \{ w \in \mathbb{C} : |w| < R \} \) as a function of variables \(z \) and \(w \).

Note that the Hartogs lemma remains to hold also for pluriharmonic and harmonic functions (see [3]) and can be formulated as follows. Let a function \(u(x, y) \) be harmonic in the domain
\[
D \times V_r = D \times \{ y \in \mathbb{R}^m : |y| < r \} \subset \mathbb{R}^n \times \mathbb{R}^m,
\]
and for each fixed \(x^0 \in D \) the function \(u(x^0, y) \) of variable \(y \) harmonically extends to the ball \(V_R = \{ y \in \mathbb{R}^m : |y| < R \} \), \(R > r \). Then \(u(x, y) \) harmonically extends to \(D \times V_R \) as a function of variables \(x \) and \(y \).

One of the main methods used in the investigation of harmonic extensions is to convert this problem to holomorphic extensions. For this purpose, the following lemma is proved in [3].

Lemma 1.1. Consider the space \(\mathbb{R}^n(x) \) embedded into \(\mathbb{C}^n(z) = \mathbb{R}^n(x) + i\mathbb{R}^n(y) \), where \(z = (z_1, z_2, ..., z_n) \), \(z_j = x_j + iy_j \), \(j = 1, 2, ..., n \). Then for each domain \(D \subset \mathbb{R}^n(x) \) there exists some holomorphy domain \(\tilde{D} \subset \mathbb{C}^n(z) \), such that \(D \subset \tilde{D} \) and each harmonic function in \(D \) can be holomorphically extended to the domain \(\tilde{D} \), i.e., there exists a holomorphic function \(f_u(z) \in \tilde{D} \) such that \(f_u|_D = u \).

The main result of our paper reads as follows. The concept of \(N \)-sets of \(Lh_0(D) \) which appears there is defined in the next section.

Theorem 1.2. Let a function \(u(x, y) \) be harmonic in the domain
\[
D \times V_r = D \times \{ y \in \mathbb{R}^m : |y| < r \} \subset \mathbb{R}^n \times \mathbb{R}^m
\]

1991 Mathematics Subject Classification. 32A65, 46J10, 46J15.

Key words and phrases. Harmonic function; harmonic extension; Hartogs theorem; Hartog's series; polar sets; holomorphic function; function class \(Lh_0(D) \).
and for each fixed point \(x^0\) from some set \(E \subset D\), which is not embedded into a countable union of \(N\)-sets of \(Lh_0(D)\), the function \(u(x^0, y)\) of variable \(y\) can be extended to a harmonic function on the whole \(\mathbb{R}^m\). Then \(u(x, y)\) harmonically extends to the domain \(D \times \mathbb{R}^m\) as a function of variables \(x\) and \(y\).

2. The class of functions \(Lh_0(D)\)

Let \(D \subset \mathbb{R}^n\) and \(h(D)\) be the space of harmonic functions in \(D\). By \(Lh_\varepsilon(D)\) we denote the minimal class of functions which contains functions of the form \(\alpha \ln |u(x)|, \ u(x) \in h(D), \ 0 < \alpha < \varepsilon\), and it is closed with respect to the operation of “upper regularization”, i.e., for any set of functions \(u_\lambda(x) \in Lh_\varepsilon(D), \ \lambda \in \Lambda\), where \(\Lambda\) is an index set, the function

\[
\lim_{y \to x} \sup\{u_\lambda(y) : \lambda \in \Lambda\}
\]

also belongs to the class \(Lh_\varepsilon(D)\)([4]).

The union of function classes \(Lh_0(D) = \bigcup_{\varepsilon > 0} Lh_\varepsilon(D)\) we call the set of \(Lh_0-\)functions.

Now, we will define \(N\)-set of the class \(Lh_0(D)\). Let \(\vartheta_k(x) \in Lh_0(D)\) be a monotonically increasing sequence of locally uniformly from above bounded functions. We denote

\[
\vartheta(x) = \lim_{y \to x} \lim_{k \to \infty} \vartheta_k(y) = x \in D.
\]

Then everywhere in \(D\) holds the inequality

\[
\lim_{k \to \infty} \vartheta_k(y) \leq \vartheta(x).
\]

Definition 2.1. The subsets of the set

\[
\{x \in D : \lim_{k \to \infty} \vartheta_k(y) < \vartheta(x)\}
\]

are called \(N\)-sets of the class \(Lh_0(D)\).

Note that if \(\vartheta_k(x) \in Lh_0(D)\) is a sequence of locally uniformly from above bounded functions and

\[
\lim_{y \to x} \lim_{k \to \infty} \vartheta_k(y) = \vartheta(x), \ x \in D,
\]

then the set

\[
E = \{x \in D : \lim_{k \to \infty} \vartheta_k(y) < \vartheta(x)\}
\]

consists of countable union of \(N\)-sets of the class \(Lh_0(D)\). Indeed, consider the sequence of functions

\[
w_{l,j}(x) = \max_{l \leq k \leq j} \vartheta_k(x).
\]

Clearly

\[
\lim_{k \to \infty} \vartheta_k(y) = \lim_{l \to \infty} \lim_{j \to \infty} w_{l,j}(x).
\]

Since the sequence is increasing in \(j\), we have

\[
\lim_{j \to \infty} w_{l,j}(x) \leq \lim_{l \to \infty} \lim_{j \to \infty} w_{l,j}(y), \ x \in D,
\]

and the sets

\[
E_l = \{x \in D : \lim_{j \to \infty} w_{l,j}(x) < \lim_{l \to \infty} \lim_{j \to \infty} w_{l,j}(y)\}, \ l = 1, 2, \ldots,
\]
are N-set of class the $Lh_0(D)$. On the other hand, the sequences $\lim_{j \to \infty} w_{1,j}(x)$ and $\overline{\lim}_{l \to \infty} \lim_{j \to \infty} w_{1,j}(y)$, $j = 1, 2, \ldots$, are monotonically decreasing, and

\[
\overline{\lim}_{k \to \infty} \vartheta_k(x) = \lim_{l \to \infty} \lim_{j \to \infty} w_{1,j}(x) = \vartheta(x) = \lim_{l \to \infty} \lim_{y \to x} \lim_{j \to \infty} w_{1,j}(y), \quad x \in D \setminus \bigcup_{l=1}^{\infty} E_l.
\]

It follows that $E \subset \bigcup_{l=1}^{\infty} E_l$, i.e. $E = \bigcup_{l=1}^{\infty} (E_l \cap E)$.

Definition 2.2. The set $E \subset D$ is called Lh_0-polar with respect to D, if there exists a function $\vartheta(x) \in Lh_0(D)$ such that $\vartheta(x) \not\equiv -\infty$ and $\vartheta(x)|_E = -\infty$.

Note that if $u(x) \in h(D)$, $u(x) \not\equiv 0$ and $E \subset \{u(x) = 0\}$, then E is Lh_0-polar with respect to D.

Proposition 2.3. Each Lh_0-polar set with respect to D is contained in a countable union of N-sets of the class $Lh_0(D)$.

Indeed, let E be a Lh_0-polar set with respect to D. Then by Definition 2.2 there exists a function $\vartheta(x) \in Lh_0(D)$ such that $\vartheta(x) \not\equiv -\infty$ and $\vartheta(x)|_E = -\infty$. Consider the sequence of functions $\vartheta_k(x) = \frac{1}{k} \vartheta(x)$. Obviously, $\vartheta_k(x) \in Lh_0(D)$ and $\vartheta_k(x) \not\equiv -\infty$ and $\vartheta_k(x)|_E = -\infty$. Moreover, $\lim_{k \to \infty} \vartheta_k(x) = 0$ for almost all $x \in D$ and $\lim_{k \to \infty} \vartheta_k(x) = -\infty$ for all $x \in E$. It follows that

\[
E \subset \left\{ x \in D : \lim_{k \to \infty} \vartheta_k(x) < \overline{\lim}_{y \to x} \lim_{k \to \infty} \vartheta_k(x) \right\}.
\]

On the other hand, as we have showed above, the set

\[
\left\{ x \in D : \lim_{k \to \infty} \vartheta_k(x) < \overline{\lim}_{y \to x} \lim_{k \to \infty} \vartheta_k(x) \right\}
\]

consists of a countable union of N-sets of the class $Lh_0(D)$.

3. **Proof of the theorem**

Suppose that the number r is sufficiently large such that $\hat{V} \subset \mathbb{C}^m$ contains the closure of the unit polydisc

\[
U = \left\{ w = (w_1, w_2, \ldots, w_m) \in \mathbb{C}^m : |w_1| < 1, |w_2| < 1, \ldots, |w_m| < 1 \right\},
\]

since the general case easily may be reduced to this case by linear changing of y.

By the lemma of [3], for each fixed $x \in D$ the function $u(x, y)$ of variable y can be extended holomorphically to $\hat{V}_r \subset \mathbb{C}^m$ and can be expanded into a Hartogs’ series

\[
u(x, w) = \sum_{|k|=0}^{\infty} c_k(x) w^k,
\]

where $k = (k_1, k_2, \ldots, k_m)$ is a multiindex. Clearly, the function $u(x, y)$ is harmonic in each variable and coefficients $c_k \in h(D)$. Also, according to the Cauchy’s inequalities (see [1], [2]), for each set $D_0 : E \subset D_0 \subset \subset D$ the following estimation holds

\[
|c_k(x)| \leq M, \quad \forall k, \quad \forall x \in D_0,
\]

where $M = \sup\{|u(x, w)| : (x, w) \in \overline{D_0 \times U}\}$, i.e., the sequence of functions $c_k(x)$ is locally uniformly bounded in the domain D. On the other hand, by the same lemma
from $[3]$, for each fixed $x \in E$ the function $u(x, w)$ of the variable w is holomorphic everywhere in \mathbb{C}^m, which means that for all $x \in E$
\[\lim_{|k| \to \infty} \frac{|k|}{|k|} \sqrt{|c_k(x)|} = 0. \]
It follows that the sequence $\frac{1}{|k|} \ln |c_k(x)|$ is locally uniformly bounded from above and
\[\lim_{|k| \to \infty} \frac{1}{|k|} \ln |c_k(x)| = -\infty, \ \forall x \in E. \]
Put $\lim_{y \to x} \lim_{|k| \to \infty} \frac{1}{|k|} \ln |c_k(y)| = \vartheta(x)$. Since the set
\[F = \left\{ x \in D : \lim_{|k| \to \infty} \frac{1}{|k|} \ln |c_k(x)| < \vartheta(x) \right\} \]
consists of the countable union of the N-sets of $Lh_0(D)$ and E is not contained in a countable union of the N-sets of $Lh_0(D)$, the set $E \setminus F = \{ x \in E : \vartheta(x) = -\infty \}$ is not contained in a countable association of the N-sets of $Lh_0(D)$ as well. By Proposition 2.3 the set $E \setminus F$ is not Lh_0-polar with respect to D. Consequently, $\vartheta(x) \equiv -\infty$, i.e.,
\[\lim_{|k| \to \infty} \frac{1}{|k|} \ln |c_k(x)| = -\infty, \ \forall x \in D. \]
Thus, we get
\[\lim_{|k| \to \infty} \frac{|k|}{|k|} \sqrt{|c_k(x)|} = 0, \ \forall x \in D. \]
Therefore, for all $x \in D$, the function $u(x, y)$ of variable y extends to a harmonic function on the whole \mathbb{R}^m. Hence, $u(x, y)$ harmonically extends in $D \times \mathbb{R}^m$. The theorem is proved.

References

[1] B.W. Shabat: Introduction to complex analysis. Part II. Nauka, Moskva, 1985. (In Russian)
[2] V.S. Vladimirov: Methods of theory functions several complex variables. Moskva, Nauka 1964, p. 411. (In Russian)
[3] A.S. Sadullaev, S.A. Imomkulov: Extension of holomorphic and pluriharmonic functions with thin singularities on paralleled sections. Proceedings of the Steklov Institute of Mathematics, Moskva, (253), 2006, pp.158-174.
[4] V.P. Zahariuta: Space of harmonic functions. In: Functional analysis, Lecture Notes in Pure and Applied Math., Dekker New York-Basel-Hong Kong, 1993, pp.497-522.

Authors’ addresses: S.A. Imomkulov, Y.R. Saidov, Urganch State University, Urganch city, Khamid Alimjan -14, 740000, Usbekistan.
e-mail: (S.A. Imomkulov), sevdi@rambler.ru, (Y.R. Saidov) ysaidov@rambler.ru