GEOMETRIC PROPERTIES OF SOME BANACH ALGEBRAS RELATED TO THE FOURIER ALGEBRA ON LOCALLY COMPACT GROUPS.

EDMOND E. GRANIRER

ABSTRACT. Let $A_p(G)$ denote the Figa-Talamanca-Herz Banach Algebra of the locally compact group G, thus $A_2(G)$ is the Fourier Algebra of G. If G is commutative then $A_2(G) = L^1(\mathcal{G})^\wedge$. Let $A_p^r(G) = A_p \cap L^r(G)$ with norm $\|u\|_{A_p^r} = \|u\|_{A_p} + \|u\|_{L^r}$.

We investigate for which p, r, G do the Banach algebras $A_p^r(G)$ have the Banach space geometric properties: The Radon-Nikodym Property (RNP), the Schur Property (SP) or the Dunford-Pettis Property (DPP).

The results are new even if $G = \mathbb{R}$ (the real line) or $G = \mathbb{Z}$ (the additive integers).

INTRODUCTION. Let G be a locally compact group and let $A_p(G)$ denote the Figa-Talamanca-Herz Banach algebra of G, as defined in [Hz1], thus generated by $L^p(\mathcal{G})$ for $1 < p < \infty$, and $1/p + 1/p' = 1$, see sequel. Hence $A_2(G)$ is the Fourier algebra of G as defined and studied by Eymard in [Ey1]. If G is abelian then $A_2(G) = L^1(\mathcal{G})^\wedge$.

Denote $A_p^r(G) = A_p \cap L^r(G)$, for $1 \leq r \leq \infty$, equipped with the norm $\|u\|_{A_p^r} = \|u\|_{A_p} + \|u\|_{L^r}$. If $r = \infty$ let $A_p^\infty(G) = A_p(G)$.

If G is abelian then, $A_p^r(G) = L^1(\mathcal{G})^\wedge \cap L^r(G)$ with the norm $\|u\| = \|f\|_{L^1(\mathcal{G})} + \|\hat{f}\|_{L^r(G)}$ if $u = \hat{f}$.

The study of these Banach Algebras started in a beautiful paper of Larsen Liu and Wang [LLW] in the abelian case, and continued in [La1], [La2], [Gr1]-[Gr5] ...

etc.

Let X be a Banach space. Then

X has the Schur Property (SP) if weak convergent sequences are norm convergent.

X has the Dunford-Pettis Property (DPP) if whenever $(x_n), (x'_n)$ are weakly null sequences in X and X^* respectively, then, $\lim(x_n, x'_n) = 0$.

Clearly the SP implies the DPP, [Di].

The Banach space ℓ^{1} is a dual Banach space which has the SP, hence the DPP. But for any measure space, $L^{1}(\mu)$, has the DPP, [Di] p.19, yet it does not have the SP if μ is non atomic.

X has the Krein-Milman (KMP) property if any closed convex bounded subset B is the norm closed convex hull of its extreme points (ext B)

X has the Radon Nikodym property (RNP) if every such B is the norm closed convex hull of its strongly exposed points (strexp B), see sequel or [DU1] p.190 and p.218.

2010 Mathematics Subject classification. Primary 43A15, 46J10, 43A25, 46B22. Secondary 46J20, 43A30, 43A80, 22A30. Key words and phrases: Fourier Algebra, Radon-Nikodym property, weakly amenable, locally compact groups.
Points in $\text{stexp}(B)$ are points of $\text{ext}(B)$ that have beautiful smoothness properties. In particular they are weak to norm continuity points of B and are peak points of B, see sequel.

Quoting Jerry Uhl: “A Banach space has the RNP if it’s unit ball “wants to be weakly compact, but just cannot make it”.

Denote by $PM_p(G) = A_p(G)^*$, and by $PF_p(G)$, the norm closure in $PM_p(G)$ of $L^1(G)$, (as a space of left convolutors on $L_p(G)$). Let $W_p(G) = PF_p(G)^*$

Then $W_p(G)$ is a Banach algebra of bounded continuous functions on G containing the ideal $A_p(G)$, see Cowling [Co1].

Let $W^r_p(G) = W_p \cap L^r(G)$, with the sum norm.

If G is abelian and $p = 2$ then $W^2_2(G) = M(\hat{G})^\wedge$, where $M(G)$ is the space of bounded Borel measures on G.

Our Main Result on the SP and the DPP, is the

THEOREM A: Let G be a noncompact locally compact group.

1. $\forall 1 < r \leq \infty$, $A^r_p(G)$ does not have the SP.
 Yet $A^1_p(G)$ has the SP and the RNP, if G is discrete.

2. If G is weakly amenable then $\forall 1 < r \leq p'$, $A^r_p(G)$ does not have even the DPP yet it has the RNP.

The above result is of interest even if $G = R$ or $G = Z$.

CONJECTURE: If G is a connected semisimple Lie group with finite center then $A^2_2(G)$ has the DPP for any $r > 2$.

QUESTION: Does this hold if $G = Z$ or $G = R$?

It has been proved by W. Braun, in an unpublished preprint [Br], that if G is amenable, then $A^1_p(G)$ is a dual Banach space with the RNP.

This is improved in our Main Result on the RNP in the:

THEOREM B: Let G be a weakly amenable (see sequel) locally compact group. Then

1. $\forall 1 \leq r \leq p'$, $A^r_p(G) = W^r_p(G)$ and

 $A^r_p(G)$ is a dual Banach algebra with the RNP.

 If G is unimodular, this is the case $\forall 1 \leq r \leq \max(p, p')$.

2. If G is a noncompact connected semisimple Lie group with finite center then $\forall r > 2$, $A^r_2(G)$, does not have the RNP and is not a dual Banach space.

The above is new and of interest even if $G = R$ or $G = Z$.

QUESTION: Does (2) hold true if $G = Z$, or $G = R$?

THEOREM C: Assume that G is second countable and weakly amenable, and $1 < p < \infty$.

If for some $t \leq \infty$, $A^t_p(G)$ has the RNP, then so does $A^r_p(G), \forall 1 \leq r \leq t$

Fell groups, see sequel or [B], are non compact groups for which $A^2_2(G)$ has the RNP. Hence $A^t_p(G)$ has the RNP for all $1 \leq t \leq \infty$, for such G.

This paper was inspired by the important paper of F. Lust-Piquard [L], where the RNP and SP were investigated for $PM_p(E)$ for nowhere dense compact sets E, for abelian G. See also T. Miao and P.F. Mah [MM].
NOTATIONS AND DEFINITIONS: Denote as in [Hz1]

(3) \(A_p(G) = \left\{ u = \sum u_n * v_n'; u_n \in L^{p'}, v_n \in L^p, \Sigma \| u_n\|_{L^{p'}} \| v_n\|_{L^p} < \infty \right\} \)

where the norm of \(u \in A_p \) is the infimum of the last sum over all the representations of \(u \) as above.

Let \(C_0(G)|C_c(G) \) denote the continuous functions which tend to \(0 \) at \(\infty \), with compact support, with norm \(\| u \|_\infty = \sup \{ |u(x)| : x \in G \} \).

The group \(G \) is weakly amenable if \(A_2(G) \) has an approximate identity \(\{ v_\alpha \} \) bounded in the norm of \(B_2(G) \), the space of Herz-Schur multipliers, see, [Ey2] (or [DCH], [Gr3]).

Any closed subgroup \(G \) of any finite extension of the general Lorenz group \(SO_0(n,1) \), for \(n > 1 \), hence the free group on \(n > 1 \) generators is weakly amenable but not amenable. For this and much more see [DCH].

Definition: Let \(B \) be a bounded subset of the Banach space \(X \) and \(b \in B \). \(b \) is a strongly exposed point of \(B \) (and \(\text{streq}(B) \) denotes the set of all such), if \(\exists b^* \in X^* \) such that:

\[
\Re b^*(x) < \Re b^*(b), \forall x \in B \text{ and } x \neq b, \text{ and}
\]

(4) \(\Re b^*(x_n) \rightarrow \Re b^*(b) \) for \(x_n \in B \) implies \(\| x_n - b \| \rightarrow 0 \). (see [DU1] p.158)

Hence in order to Test an Algorithm for some \(b \) in \(\text{streq}(B) \) it is Enough to Test it on One Particular Element of \(X^* \).

2. MAIN RESULTS

(1) THE RNP CASE.

We first improve results in [Gr3], [Gr4], by removing the unimodularity of the group in the next

PROPOSITION 1: Let \(G \) be a locally compact group. If \(p = 2 \), or if \(G \) is weakly amenable and \(1 < p < \infty \), then

(1) \((\ast) W_p \cap L^r(G) = A_p \cap L^r(G) \), \(\forall 1 \leq r \leq p' \).

and \(A^*_p(G) \) is a dual Banach space.

If \(G \) is unimodular then this holds for \(\forall 1 \leq r \leq \max(p,p') \).

(2) If \(G = SL(2,R) \) and \(p = 2 \) then \((\ast) \) does not hold for any \(r > 2 \), and \(A^*_2(G) \) is not a dual space for \(r > 2 \), (see Prop.3).

REMARK: The interval \([1,p']\) is the best one can do even for \(G=Z \) and \(p=2 \) as proved in [HZ], (see [Gr4] p.4379, or [LiR]).

PROOF: By weak amenability, for all \(1 < p < \infty \), the \(W_p \) norm restricted to \(A_p \) is equivalent to the \(A_p \) norm, (Gr4 Corollary 3.7.). If \(p = 2 \) then Kaplansky’s density theorem will yield the same result.

Now with the notations of [Gr4] Thm. 2.1. p.4379, if \(e_\alpha \in C_c(G) \) is an approximate identity for \(L_1(G) \), such that each \(e_\alpha \) is the “square of a special operator”, a la Fendler [Fe] p.129, we have, by the Lemma, loc. cit. that

(5) \(\| e_\alpha * w - w \|_{W_{p'}} \rightarrow 0 \) \(\forall w \in W_{p'} \) a fortiori \(\forall w \in W_{p'} \cap L^{p'\vee} \).

But, since \(e_\alpha \in C_c(G) \), we have for such \(w \), that

(6) \(e_\alpha * w \in L^p \cap L^{p\vee} \subset A_{p'} \), thus \(e_\alpha * w \) is a Cauchy sequence in \(A_{p'} \).

Hence \(w \in A_{p'} \). It follows that \(W_{p'} \cap L^{p\vee} = A_{p'} \cap L^{p\vee} \).
However by [CoI] p.91, \(W_p = W_{p^\vee} \), \(A_p = A_{p^\vee} \). Hence

\[
(7) \quad W_p \cap L^{p'} = A_p \cap L^{p'}, \quad \forall 1 < p < \infty.
\]

But \(W_p \) contains only bounded functions, hence

\[
(8) \quad \forall r \leq p', W_p \cap L^r = W_p \cap L^{p'} \cap L^r = A_p \cap L^{p'} \cap L^r = A_p \cap L^r. \quad \text{Thus}
\]

\[
(9) \quad (i) \quad W_p \cap L^r = A_p \cap L^r, \quad \forall r \leq p'.
\]

If \(G \) is unimodular then, since \((W_p \cap L^r)^\vee = (A_p \cap L^r)^\vee\), it follows that \(W_p' \cap L^r = A_p' \cap L^r, \forall r \leq p', \) which holds for all \(1 < p' < \infty \).

Replace now \(p' \) by \(p \), then \(W_p \cap L^r = A_p \cap L^r, \forall r \leq p \).

The above implies the unimodular case.

By Theorem 2.2 of [Gr5] \(W_p(G) \cap L^r(G) \) is a dual Banach space for all \(1 < p < \infty \) and \(1 < r \leq \infty \), and all locally compact groups \(G \). This proves (*) The proof of (ii) and Theorem B requires the next results. \(\square \)

LEMMA 2: Let \(G \) be a locally compact group. Assume that \(A_p(G) \) has an approximate identity \(u_\alpha \) such that \(\sup \| u_\alpha \|_\infty \leq B < \infty \). Then

1. \(A_p \cap C_c \) is norm dense in \(A_p' \) and
2. If \(G \) is second countable then \(A_p' \) is norm separable.

PROOF:

(1) Let \(e_\alpha \in A_p \cap C_c \) satisfy \(\| e_\alpha - u_\alpha \|_{A_p} \to 0 \) and

\[
(10) \quad \| e_\alpha - u_\alpha \|_{A_p} \leq 1, \forall \alpha. \quad \text{Then} \quad \| e_\alpha \|_\infty \leq \| e_\alpha - u_\alpha \|_\infty + \| u_\alpha \|_\infty \leq \| u_\alpha \|_\infty \leq 1 + B. \quad \text{Hence}
\]

\[
(11) \quad \| e_\alpha v - v \|_{A_p} \leq \| (e_\alpha - u_\alpha) v \|_{A_p} + \| u_\alpha v - v \|_{A_p} \to 0, \forall v \in A_p. \quad \text{But if} \quad w \in A_p^r \quad \text{and} \quad K \subset G \quad \text{is compact such that} \quad \int_{G \sim K} |w|^r \, dx < \epsilon \quad \text{then}
\]

\[
(12) \quad \int_{G \sim K} |(e_\alpha - 1)w|^r \leq \int_{G \sim K} (2 + B)|w|^r \leq (2 + B)\epsilon. \quad \text{But} \quad \int_K |(e_\alpha - 1)w|^r \to \infty.
\]

It thus follows that \(\| e_\alpha w - w \|_{A_p^r} \to 0. \quad \text{But} \quad e_\alpha w \in A_p \cap C_c. \)

(2) \(A_p(G) \) is norm separable, hence so is \(A_p[K] = \{ u \in A_p(G); \text{spt } u \subset K \} \), where \(K \subset G \). Let \(A_p^r[K] = \{ u \in A_p^r(G); \text{spt } u \subset K \} \). If \(K \) is compact then the identity \(I : A_p^r[K] \to A_p[K] \) is 1-1, onto and continuous, hence it is bicontinuous. Hence \(A_p^r[K] \) is separable. Let now \(K_n \subset \text{int } K_{n+1} \subset G \), be compact (int denotes interior), such that \(\cup K_n = G \). It is hence enough to show that \(\cup A_p^r[K_n] \) is norm dense in \(A_p^r(G) \).

By (a) we know that \(A_p \cap C_c \) is norm dense in \(A_p^r(G) \). But if \(v \in A_p^r(G) \) has compact support \(S \) then \(S \subset K_j \) for some \(j \), hence \(v \in A_p^r[K_j] \). Thus \(\cup A_p^r[K_n] \) is norm dense in \(A_p^r(G) \). \(\square \)

REMARK: We do not know if, \(A_p \cap C_c(G) \) is norm dense in \(A_p^r(G) \) even for \(G = SL(2, R) \triangle R^2 \), if \(p = 2 \) and any \(r \). As shown in [Do], \(A_2(G) \) does not have an approximate identity, bounded in the multiplier norm.

COROLLARY 3: Let \(G \) be a second countable locally compact group. If \(G \) is weakly amenable then \(\forall 1 \leq r \leq p' \), \(A_p'(G) \) is a separable dual Banach algebra and thus has the RNP.

If \(G \) is unimodular, this is the case for \(1 \leq r \leq \max(p, p') \).
REMARK: Weak amenability, namely the existence in A_2 of an approximate identity norm bounded in B_2 depends only on $p = 2$, yet the result holds for all p. Since by Furutaâ€™s Thm. 2.4 in [Fu], $B_2 \subset B_p$ contractively, see also [Gr] p.23. The B_p norm dominates the multiplier norm by [Fu].

PROOF: $A_p^r(G)$ is a dual Banach space $\forall 1 \leq r \leq p'$. But since G is weakly amenable $\forall 1 < p < \infty$, $A_p(G)$, has a multiplier norm, bounded approximate identity, by the Remark above. It thus follows by the Lemma above, that $A_p^r(G)$ is norm separable. But separable dual Banach spaces have the RNP by [DU] p.218. □

The second countability of G is removed in the main result of this section, namely

THEOREM B: Let G be a weakly amenable locally compact group and $1 < p < \infty$. Then

1) $\forall 1 \leq r \leq p'$, $A_p^r(G) = W_p^r(G)$ and $A_p^r(G)$ is a dual Banach algebra with the RNP.
 If G is unimodular, this is the case $\forall 1 \leq r \leq \max(p, p')$.
2) If G is a noncompact connected semisimple Lie group with finite center then $\forall r > 2$, $A_p^2(G)$ does not have the RNP and is not a dual Banach algebra.

PROOF: (1) By [DU] it is enough to prove that every separable subspace of $A_p^r(G)$ has the RNP. Based on the above Corollary follow the proof of Theorem 3.1 on p.22-24 of [Gr] and [Gr] p.4381.

 (2) By a deep result of Cowling [Co], $A_2^r(G) = A_2(G)$ if $r > 2$. Assume that $A_2(G)$ has the RNP. Then the regular representation is the direct sum of irreducible unitary representations, by K. Taylorâ€™s Thm. 4.1. Denote by \hat{G}, the set of all such. Then by [Dix] 14.1.2, 14.3.2, \hat{G} contains only square integrable representations. Now, by Lipsman, [Li] p.412–413, \hat{G} induces the discrete topology on \hat{G} (this being the set of all square integrable representations). But by the Corollary on p.228 of [Fell], the topology of \hat{G} is second countable, since G is such. Hence so is that of \hat{G}, which is in addition discrete and thus is countable. But by Baggettâ€™s [B] Prop. 2.2, a connected semisimple Lie group whose reduced dual is countable is compact.

 $A_2(G)$ is separable. If it was a dual space it would have the RNP, see [DU].

 We note that (2) has been proved for $SL(2, R)$ in [Gr], by using the support of its Plancherell measure. □

REMARK: Any closed subgroup of any finite extension of the general Lorenz group $SO_0(n, 1)$ for $n > 1$, hence the free group of $n > 1$ generators (a nonamenable group), is a weakly amenable group.

This group is a noncompact connected simple Lie group, see [DCH] p.474 for this and much more.

(II) INTERVALS WITH THE RNP.

We will show that if G is second countable and weakly amenable then $\forall 1 < p < \infty$, $A_p^r(G)$ having the RNP for $t = s$ implies that it has for all $1 \leq t \leq s$, where $s = \infty$ is allowed.

Definition: Let X, Y be Banach spaces and $T : X \rightarrow Y$ be a bounded linear operator. T is a semi-embedding if it is one to one and it maps the closed unit ball in X into a closed set in Y. If such T exists we say that X semi embeds in Y.
THEOREM (H.P. Rosenthal): A separable Banach space has the RNP if it semi-embeds in a Banach space with the RNP. See [DU2] p.160 or [Rö], [LPP]. We will use of the above Theorem, to prove the main Theorem C. We need the following:

LEMMA 4: If \(r < s \) then the identity \(I : A_p^r(G) \to A_p^s(G) \) is a semi-embedding, for any \(s \leq \infty \) (If \(s = \infty \), \(A_p^\infty(G) = A_p(G) \)).

PROOF: Denote by \(B_r \) the closed unit ball of \(A_p^r(G) \). Let \(v_n \in B_r \) satisfy that
\[
\|v_n - w\|_{A_p^r} = \|v_n - w\|_{A_p} + \|v_n - w\|_{L^r} \to 0, \quad \text{for some } w \in A_p^s(G).
\]
If \(s = \infty \) only \(\|v_n - w\|_{A_p} \) appears). Clearly \(|v_n(x)| \to |w(x)| \), \(\forall x \in G \). And by Fatou’s Lemma we have \(\int |w|^r \, dx \leq \liminf \int |v_n|^r \, dx \leq 1 \). Thus \(w \in A_p^r \). But
\[
1 \geq \limsup \left(\|v_n\|_{A_p} + \|v_n\|_{L^r} \right) \geq \lim \|v_n\|_{A_p} + \liminf \|v_n\|_{L^r} \geq \|w\|_{A_p} + \|w\|_{L^r}.
\]
Thus \(w \in B_r \). \(\square \)

THEOREM C: Assume that \(G \) is second countable and weakly amenable. If for some \(t \leq \infty \), \(A_p^{∞}(G) \) has the RNP, then so does \(A_p^r(G) \), \(\forall 1 \leq r \leq t \). In particular, if \(A_p(G) \) has the RNP then \(A_p^r(G) \) has the RNP for all \(1 \leq r < \infty \).

PROOF: Apply Rosenthal’s Theorem and the above Lemma 4, and note that by Lemma 1, \(A_p^r(G) \) is norm separable, since \(\|u\|_{\infty} \leq \|u\|_{B_r} \leq \|u\|_{B_2} \). \(\square \)

REMARKS: (1) A group \(G \) with completely reducible regular representation is called in [T] an [AR] group. \(G \) is such iff \(A_2(G) \) has the RNP, as proved by Keith Taylor [T]. A noncompact [AR] group is called a Fell group in [B]. Larry Baggett and Keith Taylor construct in [BT] p.596 (iii) an example of a connected nonunimodular Lie group \(G = G_3 \) such that \(A_2(G) \neq W_2 \cap C_0(G) \) and such that \(G \) is a Fell group. The above implies that \(A_2^r(G) \) has the RNP, for all \(1 \leq r \leq \infty \) for the above and any Fell group. [BT] includes examples of Fell groups which are connected Lie groups and which are (i) solvable, (ii) amenable nonsolvable, (iii) nonamenable, (iv) non-TypeI. All of which are not unimodular. See also [MP].

(2) Assume that for arbitrary \(G \), \(A_2^r(G) \) having the RNP for some \(s > 2 \) implies the equality \(W_2^s(G) = A_2^s(G) \). It would then follow for \(G = Z \), that \(A_2^s(Z) \) does not have the RNP for this \(s \). This is implied by the fact that \(A_2^s(Z) \neq W_2^r(Z) \), \(\forall s > 2 \) as proved in [HZ]. Hence there would be no need to take \(G = SL(2, R) \) in the remark above, and \(Z \) would suffice.

QUESTION: If \(G \) is noncompact abelian then \(A_2(G) \) does not have the RNP, since its closed unit ball has no extreme points see [DU1] p.219. Yet, \(A_2^r(G) \), \(\forall 1 \leq r \leq 2 \) does have the RNP, by Theorem B.

For such \(G \) (or even for \(G = Z \) and \(p = 2 \)), does \(A_2^r(G) \) fail to have the RNP for \(r > 2 \)?

(III) THE SCHUR AND THE DUNFORD-PETTIS PROPERTY.

The following result clarifies the DPP case, for discrete \(G \) and \(1 \leq r \leq \max\{p, p'\} \).

PROPOSITION 5: Let \(G \) be any discrete group. Then

(1) For any \(1 < r \leq \max\{p, p'\} \), \(A_p^r(G) \) fails the DPP and a fortiori fails the SP, yet has the RNP.

(2) \(A_p^r(G) \) has the SP and the RNP.

PROOF: (1) By Theorem 7 of [GR3] \(A_p^r(G) = \ell^r(G) \), if \(1 \leq r \leq \max\{p, p'\} \).
Assume in addition that $r > 1$. Then, ℓ^r, ℓ^r', considered over the positive integers, are isometric to subspaces of $\ell^r(G), \ell^r'(G)$, respectively. Let $x_n = (0, 0, \ldots, 1, 0, 0, \ldots)$, where 1 appears in the n-th place, considered as an element of ℓ^r, and let x_n^* be defined exactly as x_n, but considered as an element of ℓ^r'. Then x_n, x_n^* are weakly null sequences in ℓ^r, ℓ^r', respectively, yet $(x_n, x_n^*) = 1$. It follows that $A_{p}^r(G) = \ell^r(G)$, if $1 < r \leq \max\{p, p'\}$, fails the DPP, a fortiori the SP. These have the RNP, since they are reflexive Banach spaces.

(2) If $r = 1$ then $\ell^1(G)$ has the SP and the RNP.

QUESTION: It is not clear to us if $A_{p}^r(G)$ has the DPP if $r > \max\{p, p'\}$ in case G is discrete, or even if $G = Z$ and $p = 2$.

If G is abelian *non compact* then $A_2(G)$ does not have the SP, since \hat{G} is non discrete. This is substantially improved in the main result, namely

THEOREM A: Let G be a noncompact locally compact group.

1. $\forall 1 < r \leq \infty, A_{p}^r(G)$ does not have the SP
 Yet $A_{p}^1(G)$ has the SP if G is discrete.
2. If G is weakly amenable then $\forall 1 < r \leq p', A_{p}^r(G)$ does not have the DPP
 yet it has the RNP.

CONJECTURE: If G is a connected semisimple Lie group with finite center then $A_{p}^2(G)$ has the DPP for any $r > 2$.

For a proof, we need the following results.

LEMMA 6: Let G be a locally compact group, and $1 < p < \infty$.

If $u_n \in L^p$ and $u_n \to 0$ weakly in L^p, then

$$\forall v \in L^p, u_n * v^\vee \to 0 \text{ weakly } = \sigma(A_p, PM_p) \text{ in } A_p.$$

PROOF: It is enough to prove that

$$\forall \Phi \in PM_p, u \in L^{p'}, v \in L^p \quad (\Phi, u * v^\vee) = (\Phi * v, u).$$

Since then $(\Phi, u_n * v^\vee) = (\Phi * v, u_n) \to 0$, since $\Phi * v \in L^p, \forall v \in L^p$. Now (i) is an old result of Eymard [Ey3], a paper, not easily available. Here is a proof based on [Hz1].

Any $\Phi \in PM_p$ is in the ultrastrong closure of PF_p in PM_p. Let $\Phi \in PM_p$ and $u \in L^{p'}, v \in L^p$. Let $w_\alpha \in L^1, w_\alpha \to \Phi$, ultrastrongly. Thus $\|w_\alpha * h - \Phi * h\| \to 0, \forall h \in L^p$. But then $(w_\alpha, s) \to (\Phi, s), \forall s \in A_p$, since $w_\alpha \to \Phi$, ultraweakly $= \sigma(PM_p, A_p)$.

Hence

$$\Phi, u * v^\vee) = (w_\alpha, u * v^\vee) = (w_\alpha, v, u) \to (\Phi * v, u). \quad \Box$$

Recall that $\ell_\xi u(x) = u(\alpha x)$ if u is a function on G.

LEMMA 7: (i) Let G be σ compact and $V = V^{-1}$ be a neighborhood of ϵ such that V is compact. Let $g_1 \to \infty$ and $u_i = \ell_{g_i}(1_V * 1_V)$. Then $\forall 1 < r \leq \infty$, $\{u_i\}$ is weakly convergent, but not norm convergent in $A_p^r(G)$.

(ii) If G is any noncompact group, then $A_p^r(G)$ does not have the SP $\forall 1 < r \leq \infty$.

PROOF: Let $u_i = \ell_{g_i}(1_V * 1_V)$. Then $\ell_{g_i}1_V \to 0$ weakly in $L^{p'}$. Since, if $f \in L^{p'}$ and $\epsilon > 0$, let $K \subset G$ be compact such that $\left(\int_{K} ||f||^{p'}\right)^{1/p'} < \epsilon$ where $F = G \sim K$.

Let k satisfy that if $i > k$ then $g_i^{-1}K \subset F$. Then

\begin{equation}
\int f_\ell_g,1_V \leq \epsilon \lambda(V)^{1/p} \text{ if } i > k.
\end{equation}

By the above Lemmas $u_i \to 0$ weakly in A_p, and clearly weakly in $L^r, \forall 1 < r < \infty$. (If $r = \infty$, $A_p^\prime = A_p^\prime$). Thus $u_i \to 0$, weakly in A_p^\prime, $\forall 1 < r < \infty$, by Cor. 6 in \cite{Gr3}. But $1_V * 1_V(x) = \lambda (xV \cap V) = \lambda(V)$, if $x = 1$. Hence

\begin{equation}
\|u_i\|_{A^\prime_p} \geq \|u_i\|_\infty = \lambda(V) > 0.
\end{equation}

Thus $\{u_i\}$ is not norm convergent in $A_p^\prime(G)$. If G is not σ compact, let H be a σ compact open subgroup. Consider the two Banach algebras $A = A_p^\prime(H)$ and $B = \{1_H u ; u \in A_p^\prime(G)\}$ as a closed subalgebra of $A_p^\prime(G)$. Both these are semisimple, since $A_p(H)$ and $A_p(G)$ are such, see \cite{H1} Proposition 5. Define $T : B \to A$, by $T(1_H u) = v$. Then T is a 1-1 onto algebraic isomorphism. By \cite{Ru} Thm. 11.10, both T^{-1} and T are continuous. Since H is σ compact let $\{u_i\} \subset A$ be a sequence which converges weakly, but not in norm, in A. Then $\{T^{-1} u_i\}$, satisfies the same in B hence in $A_p^\prime(G)$. \hfill \Box

PROOF OF THEOREM A: (i) is proved in the above Lemma.

(ii) If $1 \leq r \leq p^\prime$ and G is weakly amenable then $A_p^\prime(G)$ is a dual Banach space with the RNP. Thus $A_p^\prime(G) = B^*$ for some Banach space B, and B does not contain ℓ^1 by \cite{Ha}. If $A_p^\prime(G)$ has the DPP then so does B, by \cite{Dil} Cor. 2. But then B^* has the SP by \cite{Dil} Thm. 3, p.23, which contradicts (i), if $r > 1$.

CONJECTURE: If G is a connected semisimple real Lie group then $A_p^\prime(G)$ for $r > 2$, has the DPP.

References

[B] L. Baggett, A separable group having discrete dual is compact. J. Functional Anal. 10 (1972), 131–148.

[BT] Larry Baggett and Keith Taylor, Groups with Completely Reducible Regular Representation. Proc. Amer. Math. Soc. 72 (1978), 593–600.

[Br] W. Braun, Einige Bemerkungen Zu $S_0(G)$ und $A^\prime(G)$ int $L^1(G)$. Preprint.

[BrF] W. Braun and Hans G. Feichtinger, Banach Spaces of Distributions Having Two Module Structures. J. Funct. Analysis. 51 (1983), 174–212.

[CI] Cho-Ho Chu and Bruno Iochum, The Dunford-Pettis property in C^* algebras. Studia Mathematica 97 (1) (1990), 59–64.

[Co1] Michael Cowling, An Application of Littlewood-Paley Theory in Harmonic Analysis. Math. Ann. 241 (1979), 83–96.

[Co2] Michael Cowling, The Kunze-Stein phenomenon. Ann. of Math. 106 (1978), 209–234.

[CoHa] Michael Cowling and Uffe Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math. 96 (1989), 507–549.

[DCH] J. deCanniere and U. Haagerup, Multipliers of the Fourier algebra of some simple Lie groups and their discrete subgroups. Amer. J. Math. 107 (1985), 455–500.

[DU1] J. Diestel and J.J. Uhl, Jr. Vector Measures. Math. Surveys. Amer. Math. Soc. 1977.
[DU2] J. Diestel and J.J. Uhl, Jr. Progress in Vector measures – 1977-83. Measure Theory and Applications. LNM. 1033. Springer. 1983.

[Di] Joe Diestel, A Survey of Results Related to the Dunford-Pettis Property. Contemporary Mathematics Vol. 2, 1980. Amer. Math. Soc.

[Dix] Jaques Dixmier, Les C*-algèbres et leurs représentations. Paris. Gautiers-Villars. 1969.

[Do] B. Dorofaeff, The Fourier Algebra of $SL(2, R) \wedge R_n, n > 1$ has no multiplier bounded approximate unit. Math. Ann. 297 (1993), 707–724.

[Ey1] P. Eymard, L’algebre de Fourier d’un groupe localement compacte. Bull. Soc. Math. France. 92 (1964), 181–236.

[Ey2] P. Eymard, Algebre A_p et convoluteurs de L_p. Lecture Notes in Math. No. 180 Springer (1971), 364–381.

[Ey3] P. Eymard, Publ. Inst. Elie. Cartan. (1968-1969).

[Fell] J.M.J. Fell, C^* Algebras with Smooth Dual. Ill. J. Math. 4 (1960), 221–230.

[Fe] Gero Fendler, An L_p version of a theorem of D.A. Raikov. Ann. Inst. Fourier, Grenoble. 35 (1985), 125–135.

[Fu] Koji Furuta, Algebras A_p and B_p and amenability of locally compact groups. Hokkaido Math. J. 20 (1991), 579–591.

[Gr1] Edmond E. Granirer, An Application of the Radon Nikodym Property in Harmonic Analysis. Bull. U.M.I. (5) 18-B (1981), 663–671.

[Gr2] —— Amenability and semisimplicity for second duals of quotients of the Fourier Algebra $A(G)$. J. Austral. Math. Soc. (Series A) 63 (1997), 289–296.

[Gr3] —— The Figa-Talamanca-Herz-Lebesgue Banach Algebras $A^r_p(G) = A_p \cap L^r(G)$. Math. Proc. Camb. Phil. Soc. 140 (2006), 401–416.

[Gr4] —— The Radon-Nikodym Property for some Banach Algebras related to the Fourier Algebras. Proc. Amer. Math. Soc. 139 (2011), 4377–4384.

[Gr5] —— Weakly Amenable Groups and the RNP for some Banach Algebras related to the Fourier Algebras. Coll. Math. 130 (2013), 19–26.

[Ha] Richard Haydon, Some more characterisations of Banach spaces containing ℓ^1. Math. Proc. Camb. Phil. Soc. 80 (1976), 269–276.

[HZ] Edwin Hewitt and Herbert Zuckerman, Singular measures with absolutely continuous convolution squares. Proc. Camb. Phil. Soc. 62 (1966), 399–420.

[Hz1] C. Herz, Harmonic Synthesis for Subgroups. Ann. Inst. Fourier, Grenoble. 23 (1973), 91–123.

[Hz2] C. Herz, The theory of p spaces with an application to convolution operators. Trans. Amer. Math. Soc. 154 (1971), 69–82.

[LLW] Ron Larsen, Ten-sun Liu, Ju-kwei Wang, On functions with Fourier Transforms in L_p. Mich. Math. J. 11 (1964), 369–378.

[La1] Hang-Chin Lai, On some properties of $A^p(G)$ algebras. Proc. Japan Acad. 45 (1969), 572–576.

[La2] Hang-Chin Lai, A remark on $A^p(G)$ algebras. Proc. Japan Acad. 46 (1970), 58–63.

[Li] Ronald L. Lipsman, The Dual Topology for the Principal and Discrete Series of Semisimple Groups. Trans. Amer. Math. Soc. 152 (1970), 399–417.

[LPP] H.P. Lotz, N.T. Peck, and H. Porta, Semi-embeddings of Banach Spaces. Proc. Edinburgh Math. Soc. 22 (1979), 233–240.

[LiR] Teng-sun Liu and Arnoud van Rooij, Sums and Intersections of Normed Linear Spaces. Math. Nachrichten. 42 (1969), 29–42.
[Ped] G.K. Pedersen, C^* Algebras and their automorphism groups. Academic Press. (1979).

[Lu] Francoise Lust-Piquard, Means on $CV_p(G)$-Subspaces of $CV_p(G)$ with RNP and Schur Property. Ann. Inst. Fourier, Grenoble. 39, 4 (1989), 969–1006.

[MM] Peter F. Mah and Tianxuan Miao, Extreme Points of the Unit Ball of the Fourier-Stiltjes Algebra. Proc. Amer. Math. Soc. 128 (1999), 1097–1103.

[MP] G. Mauceri and M.A. Picardello, Noncompact unimodular groups with purely atomic Plancherel measures. Proc. Amer. Math. Soc. 78 (1980), 77–84.

[Ri] N.W. Rickert, Convolutions of L_p functions. Proc. Amer. Math. Soc. 18 (1967), 762–763. MR0216301 (35:7136).

[Ro] H.P. Rosenthal, Convolution by a Biased Coin. The Altgelt Book 1975/76. University of Illinois Functional Analysis Seminar.

[Ru] Walter Rudin, Functional Analysis. McGraw-Hill Book Company. 1973.

[Sa] Sadahiro Saeki, The L_p conjecture and Young’s Inequality. Ill. J. Math. 34 (1990), 614–627.

[T] Keith Taylor, Geometry of the Fourier Algebras and Locally Compact Groups with Atomic Unitary Representations. Math. Ann. 262 (1983), 183–190.

Department of Mathematics, University of British Columbia
Vancouver B.C. V6T 1Z4, Canada
E-mail address: granirer@math.ubc.ca