How much is enough? Finding the minimum annual surgical volume threshold for total knee replacement

Per-Henrik Randsborg 1,2, Amanda C Chen 3

There is compelling evidence that the outcome of total knee replacement (TKR) depends on the annual caseload of the surgeon and the institution.1-3 The fact that high-volume centres have better outcomes is so well known that patients themselves increasingly seek treatment at high-volume institutions.4

But how do we determine the surgical volume threshold that constitutes an acceptable risk?

In the recent article by Okoro et al, data from nearly 170,000 TKR recipient in Ontario, Canada, were analysed using a state of the art restricted cubic spline (RCS) analysis.5 The authors identified an inflection point for increased probability for early revision or infection at 70 annual cases, after which the risk of complications plateaued. However, risk reduction continued even beyond an annual caseload of 70, highlighting the value of treatment by high-volume surgeons.

This method of identifying the surgical volume threshold differs from previous studies conducted in the last 10 years (table 1). While some papers fail to mention their methods for defining the volume groups, others have largely split the data by quartiles. This results in more or less arbitrary thresholds that are more dependent on local healthcare structure and population size than providing clinical meaningful volume categories. Due to varying methods for defining the volume groups, the lowest volume category in one study6 would have been defined as the highest volume category in another.7 Clearly, if the goal is to identify the annual caseload that reduces complications and produce meaningful thresholds that surgeons and institutions can aim to achieve, the volume categories should not be defined a priori. This methodological flaw is corrected by the RCS analysis, which uses the dataset to identify the actual caseload threshold where the risk of complications is reduced.

However, it is unlikely that the threshold of 70 annual cases to reduce risk of complications is universal. Like any surgery, TKR surgery is composed of teamwork and environmental factors, such as healthcare structure and population demographics, which influence the outcome. Okoro et al suggest that all communities with available real-world data perform similar RCS analysis to identify the caseload threshold relevant to their population. It should therefore be mentioned that Yu et al published a similar RCS analysis from Taiwan in 2019.8 They found the inflection point to be somewhat lower in their population, at 50 cases per year, proving the point that the caseload threshold varies between populations. Differences in specialty training practices and best practices across nations affect volume threshold estimates. We predict that future research will produce new and different surgical volume thresholds to reduce complications, and it is unlikely that a definite answer will be possible to find. It is more likely that the true annual caseload threshold varies over time, as surgical training, implant design and population characteristics change.

Another challenge in determining acceptable caseload thresholds is that different complications will have different volume thresholds. Existing literature on the effect of surgical volume has used a spectrum of different outcomes, including 30-day readmission, revision rate, radiological implant alignment,9 surgical site infection and length of hospital stay (table 1). Different complications will have different etiologies, not all related to the experience of the surgeon. Hospital environment, population characteristics, postoperative care and rehabilitation facilities all play a part in securing a good outcome after arthroplasty surgery. For example, length of stay is dependent on...
Table 1 A literature review of publications in English from 2011 to 2021, with a minimum of 20 000 patients included, evaluating the effect of surgeon and/or hospital volume on total knee replacement outcome

Surgeon–volume relationship

Study	N	Setting	Volume thresholds	Definition of threshold	Outcome	Result	OR (95% CI)	P value
Namba et al. (2013a)	64017	Total Joint Replacement Registry, USA	1–9, 10–49, ≥50	Not explained	Aseptic revision	No difference	1.11 (0.66 to 1.23)	0.690
Namba (2013b)	56216	Total Joint Replacement Registry, USA	<20, 20–49, ≥50	Not explained	Surgical site infection	No difference	1.30 (0.90 to 1.98)	0.160
Wilson et al. (2016)	28976	Statewide Planning and Research Cooperative System (SPARCS), New York, USA	0–12, 13–59, 60–145, ≥146	SSLR	CR and revision	Higher risk for low volume	1.85 (1.75 to 1.97)	NR
Yu et al. (2019)	30828	Taiwan National Health Insurance Research Database, Taiwan	1–49, ≥50	RCSR	Readmission	Higher risk for low volume	1.44 (1.22 to 1.69)	<0.001
de la Torre et al. (2019)	36316	Catalan Arthroplasty Registry, Spain	<125, >125	Previous studies	Revision	Higher risk for low volume	1.29 (1.16 to 1.44)	NR
Badawy et al. (2013)	26698	Norwegian Arthroplasty Register, Norway	<25, 25–49, 50–99, 100–149, ≥150	Previous studies	Revision	No difference	0.81† (0.68)	
D’apuzzo et al. (2017)	377705	Statewide Planning and Research Cooperative System (SPARCS), New York, USA	1–89, 90–235, 236–644, ≥645	SSLR	Readmission	Higher risk for low volume	1.32 (1.16 to 1.51)	<0.001
Kurtz (2016)	952593	Medicare 100% claims, USA	150–299, 300–499, 450–599, ≥600	Not explained	Readmission	Higher readmissions for low volume	51.2%†	
Meyer et al. (2011)	43180	Krankenhaus-Infektions-Surveillance System, Germany	1–50, 51–99, >100	Previous studies	Surgical site infection	Higher risk for low volume	2.04	
Namba et al. (2013a)	64017	Total Joint Replacement Registry, USA	<100, 100–199, ≥200	Not explained	Aseptic revision	No difference	0.93 (0.59 to 1.44)	0.769
Namba (2013b)	56216	Total Joint Replacement Registry, USA	<100, 100–199, ≥200	Not explained	Surgical site infection	Lower risk for low volume	0.33 (0.12 to 0.90)	0.030
Pamilo et al. (2015)	59696	Perfect Knee Replacement database, Finland	1–99, 100–249, 250–449, ≥450	chosen arbitrarily	LOS, Readmission, MUA, revision	Higher readmission risk for low volume, no difference for revision	Readmission: 1.11 (1.03 to 1.19)	NR

Hospital–volume relationship

Study	N	Setting	Volume thresholds	Definition of threshold	Outcome	Result	OR (95% CI)	P value
Namba et al. (2013a)	64017	Total Joint Replacement Registry, USA	<100, 100–199, ≥200	Not explained	Aseptic revision	No difference	1.11 (0.66 to 1.22)	0.690
Namba et al. (2013b)	56216	Total Joint Replacement Registry, USA	<100, 100–199, ≥200	Not explained	Surgical site infection	No difference	1.30 (0.90 to 1.98)	0.160
Wilson et al. (2016)	28976	Statewide Planning and Research Cooperative System (SPARCS), New York, USA	0–12, 13–59, 60–145, ≥146	SSLR	CR and revision	Higher risk for low volume	1.85 (1.75 to 1.97)	NR
Yu et al. (2019)	30828	Taiwan National Health Insurance Research Database, Taiwan	1–49, ≥50	RCSR	Readmission	Higher risk for low volume	1.44 (1.22 to 1.69)	<0.001
de la Torre et al. (2019)	36316	Catalan Arthroplasty Registry, Spain	<125, >125	Previous studies	Revision	Higher risk for low volume	1.29 (1.16 to 1.44)	NR
Badawy et al. (2013)	26698	Norwegian Arthroplasty Register, Norway	<25, 25–49, 50–99, 100–149, ≥150	Previous studies	Revision	No difference	0.81† (0.68)	
D’apuzzo et al. (2017)	377705	Statewide Planning and Research Cooperative System (SPARCS), New York, USA	1–89, 90–235, 236–644, ≥645	SSLR	Readmission	Higher risk for low volume	1.32 (1.16 to 1.51)	<0.001
Kurtz (2016)	952593	Medicare 100% claims, USA	150–299, 300–499, 450–599, ≥600	Not explained	Readmission	Higher readmissions for low volume	51.2%†	
Meyer et al. (2011)	43180	Krankenhaus-Infektions-Surveillance System, Germany	1–50, 51–99, >100	Previous studies	Surgical site infection	Higher risk for low volume	2.04	
Namba et al. (2013a)	64017	Total Joint Replacement Registry, USA	<100, 100–199, ≥200	Not explained	Aseptic revision	No difference	0.93 (0.59 to 1.48)	0.769
Namba et al. (2013b)	56216	Total Joint Replacement Registry, USA	<100, 100–199, ≥200	Not explained	Surgical site infection	Lower risk for low volume	0.33 (0.12 to 0.90)	0.030
Pamilo et al. (2015)	59696	Perfect Knee Replacement database, Finland	1–99, 100–249, 250–449, ≥450	chosen arbitrarily	LOS, Readmission, MUA, revision	Higher readmission risk for low volume, no difference for revision	Readmission: 1.11 (1.03 to 1.19)	NR

Continued
Study	N	Setting	Volume thresholds	Definition of threshold	Outcome	Result	OR (95% CI)	P value	
Author year									
Singh et al	2011	Pennsylvania Healthcare Cost	1–25	Low	Not explained	CR and MR	Higher risk for	1.1	
		Containment Council database,	26–100	Medium low			low volume	(0.8 to 1.6)	
		USA	101–200	Medium high			NR		
Wilson	2016	Statewide Planning and Research	0–89	Low	SSLR CR and	Higher risk for	1.37	1.32	
		Cooperative System (SPARCS), New	90–235	Medium low	revision	low volume	(1.32 to 1.42)	NR	
		York, USA	236–644	Medium high					
			>645	Very High			NR		
Yu	2019	Taiwan National Health Insurance	1–74	Low	RCSR Readmission	No association	1.07	0.90	
		Research Data base, Taiwan	>75	Medium high			(1.28 to 1.45)	0.435	

Search performed in Medline 9 April 2021 yielded 72 papers for screening.

*Relative risk.
†Percentage difference.

CR, complication rate; LOS, length of stay; MR, mortality rate; MUA, manipulation under anaesthesia; NR, not reported; RCSR, Restricted Cubic Spline Regression; SSLR, Stratum-specific likelihood ratio.

SURGEON–VOLUME RELATIONSHIP

Definition of

Table 1 Continued

Surgeon–volume relationship

Study	N	Setting	Volume thresholds	Definition of threshold	Outcome	Result	OR (95% CI)	P value
Author year								

Search performed in Medline 9 April 2021 yielded 72 papers for screening.

*Relative risk.
†Percentage difference.

CR, complication rate; LOS, length of stay; MR, mortality rate; MUA, manipulation under anaesthesia; NR, not reported; RCSR, Restricted Cubic Spline Regression; SSLR, Stratum-specific likelihood ratio.
REFERENCES

1. Critchley RJ, Baker PN, Deehan DJ. Does surgical volume affect outcome after primary and revision knee arthroplasty? A systematic review of the literature. *Knee* 2012;19:513–8.

2. Wilson S, Marx RG, Pan T-J, et al. Meaningful thresholds for the volume-outcome relationship in total knee arthroplasty. *J Bone Joint Surg Am* 2016;98:1683–90.

3. Reames BN, Ghaferi AA, Birkmeyer JD, et al. Hospital volume and operative mortality in the modern era. *Ann Surg* 2014;260:244–51.

4. Laucis NC, Chowdhury M, Dasgupta A, et al. Trend toward high-volume hospitals and the influence on complications in knee and hip arthroplasty. *J Bone Joint Surg Am* 2016;98:707–12.

5. Okoro T, Tomescu S, Paterson JM. Analysis of the relationship between surgeon procedure volume and complications after total knee arthroplasty using a propensity matched cohort study. *BMJ Surg Interv Health Technologies* 2021.

6. Kurtz SM, Lau EC, Ong KL, et al. Which hospital and clinical factors drive 30- and 90-day readmission after TKA? *J Arthroplasty* 2016;31:2099–107.

7. Badawy M, Espehaug B, Indrekvam K, et al. Influence of hospital volume on revision rate after total knee arthroplasty with cement. *J Bone Joint Surg Am* 2013;95:e131.

8. Yu T-H, Chou Y-Y, Tung Y-C. Should we pay attention to surgeon or hospital volume in total knee arthroplasty? Evidence from a nationwide population-based study. *PLoS One* 2019;14:e0216667.

9. Kazarian GS, Lawrie CM, Barrack TN, et al. The impact of surgeon volume and training status on implant alignment in total knee arthroplasty. *J Bone Joint Surg Am* 2019;101:1713–23.

10. Baker P, Jameson S, Critchley R, et al. Center and surgeon volume influence the revision rate following unicompartmental knee replacement: an analysis of 23,400 medial cemented unicompartmental knee replacements. *J Bone Joint Surg Am* 2013;95:702–9.

11. Anis HK, Arnold NR, Ramanathan D, et al. Are we treating similar patients? hospital volume and the difference in patient populations for total knee arthroplasty. *J Arthroplasty* 2020;35:S97–100.

12. Namba RS, Cafri G, Khatod M, et al. Risk factors for total knee arthroplasty aseptic revision. *J Arthroplasty* 2013;28:122–7.

13. Namba RS, Inacio MCS, Paxton EW. Risk factors associated with deep surgical site infections after primary total knee arthroplasty: an analysis of 56,216 knees. *J Bone Joint Surg Am* 2013;95:775–82.

14. Arias-de la Torre J, Valderas JM, Evans JP. Catalan arthroplasty register Steering Committee (RACat). Differences in risk of revision and mortality between total and Unicompartmental knee arthroplasty. The influence of hospital volume. *J Arthroplasty* 2019;34:865–71.

15. D’Apuzzo M, Westrich G, Hidaka C, et al. All-Cause versus Complication-Specific readmission following total knee arthroplasty. *J Bone Joint Surg Am* 2017;99:1093–103.

16. Meyer E, Weitzel-Kage D, Sohr D, et al. Impact of department volume on surgical site infections following arthroscopy, knee replacement or hip replacement. *BMJ Qual Saf* 2011;20:1069–74.

17. Pamilo KJ, Peltola M, Paloneva J, et al. Hospital volume affects outcome after total knee arthroplasty. *Acta Orthop* 2015;86:41–7.

18. Singh JA, Kwoh CK, Boudreau RM, et al. Hospital volume and surgical outcomes after elective hip/knee arthroplasty: a risk-adjusted analysis of a large regional database. *Arthritis Rheum* 2011;63:2531–9.