BRIEF COMMUNICATION

The first Australian experience with ward-based continuous positive airway pressure for COVID-19 respiratory failure: a retrospective cohort study

Benjamin Gerhardy 1,2, Monica Comsa,1 Ali Tahir,1 Dalton Lynch,3 Adam Polkinghorne,3,4 Sam Orde,2,3 James Branley3,4,5 and Lucy Morgan1,3

Departments of 1Respiratory Medicine, 2Intensive Care Medicine, 3New South Wales Health Pathology, and 5Infectious Diseases, Nepean Hospital, Kingswood, and 3Nepean Clinical School, University of Sydney, Sydney Medical School, Sydney, New South Wales, Australia

Key words
respiratory failure, COVID-19, CPAP.

Abstract
We present the first Australian cohort of patients with COVID-19 respiratory failure managed with escalating respiratory support including continuous positive airway pressure (CPAP) on a standard medical ward at a tertiary Sydney hospital during the 2021 COVID-19 Delta variant outbreak. We demonstrate an equivalent mortality to CPAP delivered in intensive care unit and outline our ward structure and management during the pandemic.

Despite early success in controlling community transmission of COVID-19, some Australian jurisdictions succumbed to disease spread attributed to quarantine failures and the emergence of highly transmissible variants (e.g. Delta variant).1,2 Unfortunately, peak transmission commenced before vaccine rates were high enough to temper the rates of severe illness.

In Australia, 13% of COVID-19 cases in 2021 required hospitalisation for respiratory illness.3 Approximately 10% of hospitalised COVID-19 patients required intensive care unit (ICU) admission,4 and concern existed regarding Australian hospital capacity under COVID-19 disaster conditions.5 At the beginning, the pandemic modelling indicated the number of available ICU beds would be insufficient to meet demand.5 Although physical resources (e.g. ventilators) were boed, staffed bed capacity was stagnant (due to furloughs and attrition).6 Hence Australian clinicians faced pressure to develop and implement alternative strategies for managing COVID-19 respiratory failure patients when ICU capacity was reached.

The use of continuous positive airway pressure (CPAP) in severe or critical COVID-19 disease is established within European clinical guidelines for the treatment of the associated hypoxic respiratory failure, although the recommendation is conditional, with very low evidence quality.7 The HENIVOT trial demonstrated a reduced need for intubation with helmet bilevel ventilation administered in an ICU compared with high flow nasal cannulae (HFNC),8 and the Recovery Respiratory-Support trial showed a reduction in the need for intubation in patients who received CPAP therapy when compared to high flow conventional oxygen therapy.9 However, CPAP interface and level of ward support (i.e. medical ward, high-dependency unit or ICU) was heterogenous across the study sites.9 Ideally, management of severe respiratory failure typically occurs in a respiratory high-dependency unit or ICU where deterioration can be detected early and additional measures initiated. However, in times of mismatch between supply and demand, such traditions need to be challenged.

In this observational study, we report the first Australian implementation of a ward-based model of care that included CPAP (full face mask interface) for severe COVID-19 respiratory failure. We compare the premorbid characteristics, treatments and proportion of survival to hospital discharge across three retrospectively defined cohorts to assess the safety and efficacy of CPAP therapy in a ward environment. Ethics approval was obtained for this research from the Nepean and Blue Mountains Local Health District Ethics Committee (2021/ETH11687).
All patients admitted through the emergency department (ED) to the COVID-19 medical wards of Nepean Hospital between 1 July and 30 September 2021 with the diagnosis of COVID-19 were included in this retrospective analysis. Patients admitted directly from ED to ICU were excluded.

Patients were divided into three cohorts (Fig. 1). Cohort 1 included those managed on a medical ward for the duration of admission with HFNC or Hudson mask as maximal oxygen support. Cohort 2 were those patients who were managed on a medical ward for the duration of admission and required CPAP for respiratory support, including if patients commenced on and were subsequently intolerant of CPAP therapy.

Cohort 3 included those patients initially admitted to a medical ward but who subsequently required ICU admission due to progressive respiratory failure despite maximal ward therapies (including CPAP). Patients that were transitioned on to extra-corporeal membrane oxygenation (ECMO) (not performed at this hospital) were followed and had their outcomes included within Cohort 3. Patients that were transferred to the ICU and subsequently stabilised without the use of CPAP or invasive ventilation were still included in Cohort 3.

Oxygen therapy was escalated as per state-wide guidelines. Unless contraindicated, all patients were proned, with HFNC or CPAP continuing while prone. Therapeutics for COVID-19 were administered according to contemporaneously updated national guidelines, including remdesivir, glucocorticoids (predominately dexamethasone), tocilizumab and baricitinib. Referral to ICU occurred in the setting of haemodynamic instability (e.g. persistent hypotension despite appropriate fluid resuscitation) or an inability to maintain adequate oxygenation despite maximal or approaching maximal (with a progressively downward trajectory) ward-based treatment. A trial of ward CPAP was not mandatory prior to ICU referral. Maximum ward oxygen delivery was 15 L wall oxygen flow, as is standard in most non-critical care inpatient wards. Referral to ICU was not made if it contradicted a pre-existing ceiling of care or if it was deemed futile by the treating clinician. No patient had an absolute contraindication to the administration of CPAP.

Statistical analysis was performed with Microsoft Excel and Jamovi V2.0.0.0. Data are presented as median

![Flow diagram of cohort allocation.](image-url)
(interquartile range), while Kruskall–Wallis, Mann–Whitney \(U\) and chi-squared contingency tests (for binomial data) were used for comparative testing. This study was approved by the Nepean and Blue Mountains Local Health District Ethics Committee (2021/ETH11687).

There were 137 relevant admissions during the time period. The baseline, biochemical and therapeutic characteristics are outlined in Table 1.

The three cohorts were similar in age, body mass index (BMI), vaccination status and most comorbidities. Peak median CRP (110.5, 92 and 128 mg/L, \(P = 0.041\) for Cohorts 1–3 respectively) and procalcitonin (0.16, 0.11 and 0.33 ng/mL, \(P = 0.045\), for Cohorts 1–3) were highest in those that went to the ICU.

There was no difference in the proportion of patients that received glucocorticoids or remdesivir. Significantly more patients received tocilizumab in ICU than on the medical wards (one patient in Cohorts 1 and 2, nine patients in Cohort 3, \(P = 0.006\), while the highest proportion of patients who received baricitinib was in Cohort 2 (24, 21 and 30 patients for Cohorts 1–3, \(P = 0.042\)).

Of the patients admitted to ICU, 22 (43%) had CPAP as their maximal required therapy, while 19 (37.3%) required intubation for progressive respiratory failure, of which 17 (89%) had been on CPAP prior to intubation. All patients transitioned to ECMO died (\(n = 7\)).

In-hospital mortality was 7.1%, 13.3% and 39.2% for Cohorts 1–3 respectively. Considering only at those in Cohort 3 who received CPAP without intubation the mortality was 13.6% (three deaths). There was no significant difference in in-hospital mortality between ward CPAP and ICU CPAP (\(P = 0.97\)).

Of the total 28 deaths, 21 were unvaccinated, three had received one vaccination and one had received two vaccinations, with the vaccination status of the remaining three patients unknown. Six of the eight patients across Cohorts 1 and 2 who died had care limitations (including not for referral to the ICU) in place prior to death.

Eleven patients (8% of the study population) were diagnosed with pulmonary emboli during the admission, with no significant between group difference.

Table 1 Baseline physiological, vaccination, biochemical and treatment characteristics of patients grouped by respiratory therapies administered

	Cohort 1 \((n = 56)\)	Cohort 2 \((n = 30)\)	Cohort 3 \((n = 51)\)	\(P\)-value
Age (years)	54	55.5	54	0.29
Male	34 (60.7)	18 (60)	31 (60.8)	1.0
BMI	35	31.5	33.5	0.72
BMI ≥30 \((n)\)	34 (60.7)	19 (63.3)	29 (56.9)	
Diabetes	17 (30.3)	10 (33.3)	21 (41.2)	0.49
Chronic cardiac disease†	9 (16.1)	10 (33.3)	14 (27.5)	0.16
Chronic renal disease‡	8 (14.3)	5 (16.7)	3 (5.9)	0.25
Chronic pulmonary disease§	16 (28.6)	11 (36.7)	5 (9.8)	0.011
Vaccination				
0 dose	41 (73.2)	22 (73.3)	39 (76.5)	
1 dose	12 (21.4)	5 (16.7)	7 (13.7)	
2 doses	3 (5.9)	3 (10)	1 (2)	
Unknown	0 (0)	0 (0)	4 (7.8)	
Admission duration (days)	9 (6.5)	10 (6.75)	15 (13)	0.0017
Duration of ward HFNP/Hudson (days)	4 (4)	8.5 (8.3)	4 (5)	0.0051
Duration of ward CPAP (days)	n/a	3 (3.8)	1 (0.8)	0.74
Peak CRP (mg/L)	110.5 (76.8)	92 (88.8)	128 (82)	0.041
Peak ferritin (μg/L)	1212 (1369.3)	1680.5 (1748.5)	1386 (1320.5)	0.67
Peak procalcitonin (ng/mL)	0.16 (0.2)	0.11 (0.36)	0.33 (0.7)	0.045
Glucocorticoid	55 (98.2)	30 (100)	51 (100)	0.48
Remdesivir	49 (87.5)	24 (80)	45 (88.2)	0.54
Baricitinib	24 (42.9)	21 (70)	30 (58.8)	0.042
Tocilizumab	1 (1.7)	1 (3.3)	9 (17.6)	0.006
Sotrovimab	1 (1.7)	4 (13.3)	1 (2)	0.025
Pulmonary embolus	2 (3.6)	2 (6.7)	7 (13.7)	0.14
In hospital death	4 (7.1)	4 (13.3)	20 (39.2)	0.0001

Data presented as number (percentage) or median (interquartile range).
†Chronic cardiac disease includes pre-existing ischaemic, dilated or restrictive cardiomyopathy or known conducting system disease.
‡Chronic renal disease defined as estimated glomerular filtration rate when well of <60 mL/min.
§Chronic pulmonary disease includes pre-existing obstructive or restrictive lung disease.
¶Highest value recorded prior to admission to ICU.
Discussion

We have described the successful implementation of ward CPAP for COVID-19-associated respiratory failure, showing no difference in mortality between ward CPAP delivery and ICU CPAP delivery.

This is the first description of an Australian cohort managed with ward-based CPAP for COVID-19 respiratory failure. Compared to overseas, this cohort had a higher BMI and more diabetes, both risk factors for severe COVID-19 respiratory disease.\(^\text{3,14}\) As expected with the vaccine rollout timeline, most patients were unvaccinated.

Our patients were treated with glucocorticoids, remdesivir and immunomodulatory therapy (predominately baricitinib). The higher use of tocilizumab in the ICU is chronologically concordant with a lower threshold for ICU admission at the start of the Delta outbreak (less resource pressure) and prior to a nationwide tocilizumab shortage.\(^\text{15}\)

The similar mortality rates between ward CPAP and ICU CPAP provide a reassuring signal that this therapy can be delivered safely during a pandemic in a medical ward environment, with a lower mortality than that seen in the HENIVOT trial.\(^\text{8}\) Since CPAP can reduce progression to invasive ventilation,\(^\text{9}\) our data suggest we can take steps on a medical ward to reduce the need for more invasive and resource-hungry therapies.

The implementation of ward-based CPAP in the context of a pandemic required a hospital-wide approach. At peak COVID-19 admissions we allocated four medical wards (each with a maximum capacity of 28 patients) to COVID-positive patients: two wards for higher acuity patients (including those requiring CPAP) which were overseen by respiratory and infectious diseases physicians. A respiratory physician was on call 24 h/day and was consulted regarding each case potentially requiring ward CPAP. Initial pressure was typically 10 ± 2 cm H$_2$O based on expected patient tolerance and overseas experience. Maximum deliverable oxygen was limited by the wall regulators at 15 L/min.

Nursing support was vital: a core group of experienced respiratory nursing staff facilitated upskilling regarding CPAP and respiratory failure to nursing staff on other wards. Ward patients on CPAP were initially cared for in a 1:2 ratio (one nurse per two patients). However, as the number of patients requiring CPAP increased and staff availability declined, this expanded to a 1:4 ratio, including with less experienced (‘new grad’) nurses assisting in CPAP provision. Where possible, CPAP patients were grouped in multi-bed bays to help maintain appropriate supervision.

This study has limitations. It was single-centre (limiting generalisability and giving smaller numbers) and its retrospective nature introduced bias. The escalation of respiratory support therapies generally occurred according to recommended practice,\(^\text{10}\) although clinical gestalt on occasion took precedence, reflecting pragmatic practice in an evolving health crisis. A minority of patients had ceilings of care, which limited the extent to which their care was escalated and potentially reduced the amount of ICU admissions.

We have described the first successful implementation of advanced ward-based respiratory support therapy for COVID-19-associated respiratory failure in an Australian cohort. The data presented demonstrate a safety and efficacy signal for the management of severe COVID-19 respiratory failure in a medical ward, which can assist clinicians in geographically isolated areas with limited access to ICU support such as Central, Northern and Western Australia.

References

1 Grout L, Katar A, Ait Ouakrim D, Summers JA, Kvalsvig A, Baker MG et al. Failures of quarantine systems for preventing COVID-19 outbreaks in Australia and New Zealand. Med J Aust 2021; 215: 320–4.
2 Teyssou E, Delagrange H, Vissieux B, Lambert-Nicot S, Brichler S, Ferre V et al. The Delta SARS-CoV-2 variant has a higher viral load than the Beta and the historical variants in nasopharyngeal samples from newly diagnosed COVID-19 patients. J Infect 2021; 83: e1–3.
3 Department of Health. Coronavirus (COVID-19) Case Numbers and Statistics [online]. Canberra: Australian Government; 2021. Available from URL: https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/coronavirus-covid-19-case-numbers-and-statistics
4 Australian Institute of Health and Welfare. The First Year of COVID-19 in Australia: Direct and Indirect Health Effects. Canberra: AIHW, Cat. no. PHE 287; 2021. Available from URL: https://www.aihw.gov.au/reports/burden-of-disease/the-first-year-of-covid-19-in-australia/summary
5 Litton E, Bucci T, Chavan S, Ho YY, Holley A, Howard G et al. Surge capacity of intensive care units in case of acute increase in demand caused by COVID-19 in Australia. Med J Aust 2020; 212: 463–7.
6 Litton E, Hudson S, Chavan S, Bucci T, Holley A, Everest E et al. Increasing ICU capacity to accommodate higher demand during the COVID-19 pandemic. Med J Aust 2021; 215: 513–17.
7 Chalmers JD, Crichton ML, Goemminne PC, Cao B, Humbert M, Shiteinberg M et al. Management of hospitalised adults with coronavirus disease-19 (COVID-19): a European Respiratory Society living guideline. Eur Respir J 2021; 57: 2100048.
8 Grieco DL, Menga LS, Cesarano M, Rosi T, Spadaro S, Bitondo MM et al. Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure. JAMA 2021; 325: 1731–43.
9 Perkins GD, Ji C, Connolly BA, Couper K, Lall R, Baillie JK et al. Effect...
of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19. *JAMA* 2022; 327: 546–58.

10 Agency for Clinical Innovation, New South Wales Health. Clinical practice guide for respiratory support in adults with COVID-19 [online]. 2021. Available from URL: https://aci.health.nsw.gov.au/__data/assets/pdf_file/0010/685099/ACI-CPG-for-respiratory-support-in-adult-patients-with-COVID-19.pdf

11 Agency for Clinical Innovation, New South Wales Health. Care of adult patients with COVID-19 in acute inpatient wards [online]. 2021. Available from URL: https://aci.health.nsw.gov.au/__data/assets/pdf_file/0003/674526/ACI-Care-of-adult-patients-with-COVID-19-in-acute-inpatient-wards.pdf

12 The Jamovi Project. Jamovi. (Version 2.0.0.0) [computer software]. Available from URL: https://www.jamovi.org

13 Gao M, Piernsa C, Astbury NM, Hippisley-Cox J, O’Rahilly S, Aveyard P et al. Associations between body-mass index and COVID-19 severity in 6.9 million people in England: a prospective, community-based cohort study. *Lancet Diabetes Endocrinol* 2021; 9: 350–9.

14 McGurnaghan SJ, Weir A, Bishop J, Kennedy S, Blackbourn LAK, McAllister DA et al. Risks of and risk factors for COVID-19 disease in people with diabetes: a cohort study of the total population of Scotland. *Lancet Diabetes Endocrinol* 2021; 9: 82–93.

15 Therapeutic Goods Administration. *Shortage of Tocilizumab (Actemra)* Medicines [online]. Canberra: Australian Government, Department of Health; 2021. Available from URL: https://www.tga.gov.au/alert/shortages-tocilizumab-actemra-medicines