Retraction

Retraction: Productivity enhancement through coating of core box - A Review (IOP Conf. Ser.: Mater. Sci. Eng. 1145 012025)

Published 23 February 2022

This article (and all articles in the proceedings volume relating to the same conference) has been retracted by IOP Publishing following an extensive investigation in line with the COPE guidelines. This investigation has uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.

IOP Publishing respectfully requests that readers consider all work within this volume potentially unreliable, as the volume has not been through a credible peer review process.

IOP Publishing regrets that our usual quality checks did not identify these issues before publication, and have since put additional measures in place to try to prevent these issues from reoccurring. IOP Publishing wishes to credit anonymous whistleblowers and the Problematic Paper Screener [1] for bringing some of the above issues to our attention, prompting us to investigate further.

[1] Cabanac G, Labbé C and Magazinov A 2021 arXiv:2107.06751v1

Retraction published: 23 February 2022
Productivity enhancement through coating of core box - A Review

V Bhuvaneswari1, V Amarnath2, D Balaji3, H Andrew Meshach1, A Aravinth1, S Dineshkumar1 and V S Saravanan3
1Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu 641407, India
2Department of Mechanical Engineering, Ramakrishna College of Engineering, Coimbatore, Tamilnadu 641022, India
3Indo Shell Cast Private Limited, Coimbatore, Tamilnadu 641050, India
balaji.d@kpriet.ac.in

Abstract. Coating of core box is normally done to enhance the surface finish of the cast component. Thermal resistance among the molten metal and mould is balance by means of mould. It is used to decrease the temperature effect through the sand. Increase in temperature effect results the following failures like, formation of pattern lines; penetrate to metal, outer layer formation, corrosion which creates failure to the surface. Major contribution of core box coating is to minimize or eliminate the above-mentioned issues. In order to enhance the coating technology first we need to go through the various types of core, core box and existing coating technology. In this review, the above-mentioned topics are discussed with enough samples for easy understanding.

1. Introduction

Investigation in coating materials besides numerous technologies such as appearance, flame retardancy, yield strength, barrier to thermal, cleaning pertain to self, coating is very common in the field of foundry coating materials in latest years. The process of mould making and casting provides numerous opportunities for large complex internal channels to form in castings. For the creation of uniform surfaces to be achieved on such castings, coating of these mould concaves and recesses with a barrier coat of plaster is very important. Although recent advances in binder and sand technology have given the foundries a greater opportunity to choose and control these basic foundries raw materials, it has not led to any specific advancement in foundry selection. Since sand particle grading depends largely on the nature of the particle grade, it might be assumed that a proper choice of a proper degree of sand will be the only parameter to measure the relevant preferred casting surface quality. However, there are many other aspects, which include the possibility to clear the air off the produced and consumed during casting, the financial use of a binder, the inadequate provision of either sand with required marking, or the low output produced by the molten glass, these create the use of coating materials the more suitable method. As a procedure when a metal mould is filled with liquid metal’s surface is subjected to thermal, mechanical and physicochemical actions, the high level of air pollution in Singapore affects the environment in many ways, such as by forming low-melting materials such as [1-3]. The texture of the plastic that is often filled with liquid metal would just be greatly subjected to temperature, mechanical and behavioural changes. The metal is heated and then reacts with the mould
materials (that are formed by the mould) and forms low melting compounds such as precipitates an additional advantage of quartz sand is silicates, which can thicken the grains of quartz sand well. As it raises the numeral of folds on the metal, this would allow the metal penetration into the based on cross spaces and the metal on the metal touch become difficult to get rid of. The patterns of air-entrance holes and internal channels found in volume of sample and roots are highly porous, and thus it is very difficult to make alloys in these materials without picking up air leaks, concavities, rough surfaces, cracks, and other damage. The fundamental criteria for a highly refractory coating are a minimum porosity, a very high refractoriness, or an exceptionally low activation involving a low reaction at either the steel interface (a lubrication, a solution, a penetration) [4-6]. Some of the coatings used in manufacturing are used because they make better casts, they are cheaper, and/or they don't rust as much. Castings sur-face consistency is enhanced although this coating provides snappier rubber gaskets, perhaps by filling the gaps be a sand grains or by offering, to just the metal, a layer thinner than on the substrate itself. The peeler there works as either a scrub and saves the peeler gets stuck and torn open upon exit. One progresses to less wear patterns because of the operation of the cleaner, sand exit at shakeout, sand self-serve, sand present in the peeler when unopened, gain in fines, and the better iron grade at the shakeout [7,8]. Regulating consistency and growing competitiveness are top topics in the foundry industry; one potential way to do this is to use ingredients in more of my products that can be found in the foundry industry. One successful way to combat or tackle the problem of mould/edge humidity in the foundries is to increase efficiency of the foundries. Numerous controls that may involve weak core and core mould density or moisture in both the core and the mould are very difficult challenges to have, but more strides are made that continue to strengthen the quality control of the metastatic resins that help to make the recognition of these issues easier. Wearing a jacket with dew on it or coming into contact with water within a casting may be a source of crumbling or casting shrinkage. If colour shifting systems are used, it will provide independent evidence that the layer is intact. This clarification might even mean that the centre or mould requires more clean-ups. This is because the core/mould may have more stuck-up coating content, and it takes more time to fully dry out. This would increase the risk of mould. Therefore, due to the colour shift that happens immediately after the itemization of the metal, the surface bleeds downwards, gradually exposing even more oxidized steel. It's basically a visual diagnostic that permits the metal to serve not just as a buffer among the copper and the aluminium but rather as a durability indicator until the metal is covered with an ultra-precise, acid resistant ceramic [9-12]. Casting the process which is used in the material science field where a liquid metal is poured into a mould that forms one strong lump of metal. Instead of the underco hypothesys, melt metal / alloy into a prepared mould, and thereafter permitting the metal/alloy to soft and crystallize. The metal melts in a aider and then solidifies in that form. Industry does Casting, as this method has some special significance. It is always nice to provide feedback early on [13-16]. For the betterment of casting method, we need to continue working on improving the efficiency of this method. A core is the general term for the major part of the resources supports a new part of the mould. Due to their power, their condensates can be treated as if they were individual goods. The core is a mould that is filled with molten metal, and when that metal is placed in a certain way, it prevents the molten metal from filling up the space inside of the core. With the support from a mine, an iron mill produces a hollow casting. To make a cast pattern, it is important to first form a heart, which is then covered to be used as the bottom of the patterns. Hard centeis is being used as inserts that are filled with complicated materials to manufacture the very difficult bodied that are otherwise made with simple moulding. [17-20]. In the year of 1924, a year when automotive manufacturing became a leading industry in the U.S., the U.S. car maker, Ford, made 1 million automobiles, consuming 30% of the total U.S.-produced cars. When the automobile industry started growing, it gave requirement of casting its own daughter. With an increasing population of cars and machine building companies in the period of first and second world war there were new advances in the casting process, which then inspired the development of mechanical and automated processes for the casting process. After a comprehensive literature review of earlier design and production of machine tooling by manufacturers, as well as academicians, the authors applied
software engineering concepts to computer control design of a manipulator. So, the golden key to faster casting was really many things. Not one particular thing. An improvement was made in mould making, mould sand preparation, and sand mixing in the core furnace, the core manufacturing processes, and the slow metal melting in the cupola furnace. It was a long-necked container that was able to accommodate a small amount of sand (a sand sling). International Sand in 1912 was the first model of the separation and mixing of sand which used individually sculptured revolving plods [21].

2. Application of various coating technology

Based on the applications, casting technology is categorized in to two groups which are dry and wet.

Dry application coating
If you're looking for a drier effect, Plumbago might be an option. Still others will use a variety of powders and powders used - such as talc like powder or mica. These materials are extremely fine airborne particles, which are either generated by shaking or knocked-off from cloth bags over open-mesh cloths. Plumbago is a granulated blend of graphite that consists of at least 80% of suspended particulates that will pass through a 200-mesh screen. This concentration of ultrafine particles absorbs the fluorescence of the radiation emitted from the scan that shows the distribution of ultrafine particles in the air (75 micron). Graphite is either amorphous (not having clear crystal structure) or crystalline (having clear crystal structure) (having definite particle shape or flaky). It is highly likely that graphite is one of the most overused prototypical carbon products when moulding industrial machining surfaces. In this process, the bonds between the graphite's atoms are broken by oxidizing hydrogen-air molecules and the surface becomes silicon dioxide (SiO2). The silicon atoms' electrons diffusing from one atom to another are very unlikely to bond with graphite's atoms due to the electrostatic repulsion induced by graphite's electrons. Since porous graphite is convenient to oxidize, it is superior to crystalline graphite. The treatment may be applied to the soil in dry or wet condition [22].

Wet application coating
Wet application is made up of Moulds and core coatings, which have the distinction between carbon-base and carbon-free coatings. Users can purchase them between the form of powders and granules. If the sand is moist, then the applied layer is apt to be fragile, being torn off when the deposited core and mould parts are dry. Carbon-based materials can be used inside e-cigarettes. One of them is made from graphite, coke, anthracite or any of the various variations that can be made from these materials. The material used on the electronic cigarette battery could be silica, mica, or talc. Or it could have one of the other substances that may be part of their makeup. Many raw materials used in coating formulations include both carbonaceous materials and non-carbonaceous materials to take advantage of the synergy that comes from the combination of the information. Foundry coatings come in two distinct types: one is prepared with an organic, colloidal carrier, and the other is prepared with a ceramic carrier [23]. The former must be dried after application and then the second and third examples can be ignited and combined post combustion to produce a self-drying and an applied product. This study is using both carbon fiber and metal as of the reactive surface materials [24]. Figure 1 shows the elements of coating.

Nature of coating materials
- Adhesion
- Permeability
- Refractory
- Rapid drying
- Less core strength minimizes
- Proper coverage
- Improved stability
- Runs tear drops reduction
Refractory materials are compounds or nutrients that have high thermal conductivity yet are difficult to fuse even at extremely high temperatures. The (e-cigarette) is manufactured at high temperatures, and some of them are targeted for high temperatures. Throughout the additive of a substrate, the neoadjuvant ceramic particles are present as small particles and compose the shell of its fiber membrane. They lower the concentrations, moisture content and resistance of its coated substrate and improve this same penetrability of its film [25]. The liquid medium comprises the refill ingredients and, by isolating the refill from the substrate, allows the carrier medium to better distribute the filler particles to the affected region [26-29]. Therefore, the coatings on these products are typically a suspension of more melting point filler materials in a liquid carrier. The liquid carrier (wall conditioner) contains approximately 20 to 40% of the coating. When the coating is applied, you need to let it dry out in order to avoid gas forming once the heated material is placed into the mould. Gases can form deposits on the die, causing casting defects. When the fluid container is withdrawn by condensation or combustion, a special form of material called, a "protective refractory layer" is formed of its mould or core [30-33]. It is not difficult to write a mathematical equation for particles suspended particles because there's no difference in bulk density between the transparent solid or liquid particles. Fused silica (like foundry sand) does not adhere to concrete surfaces. The stabilization of hard particulate is accomplished by applying a separation agent the mix of the liquid. By controlling the dispersion of the dispersed fillers in the water suspension dressing, the dispersion control agents often prevent the molecules from forming a segregated framework of filler agglomerated or separate fillers. It maintains the layer is homogenous, and it does it in a way that requires the least amount of stimulation. As described above, a flowing characteristic of the substrate around the nanoparticle as well as the choice of particle and coating to obtain best results with [34-36]. A binding agent, like large amounts of sand, binds particles of fire-resistant refractories (non-combustible type) together to form a complete sand Crete sculpture. Sun's law, which was used in order to calculate the binder requirement to be consistent with the land area expected for the coating, did not do so well as the moisture content of the adjuvant decreased. The article says that cosmetics can contain up to 1 to 5 percent of the plastic resins. It is critical to decide the minimum amount of the preservative, because if too little is used, the material won't adhere and won't be strong enough. However, it is also vital to make sure engineers use enough binding agent to fool the mould, so too much makes the product very brittle. Lastly, resins and natural binders are known to produce gases on heating.
Forms of coating

- Combing and swabbing
- Spraying
- Immerse coating
- Flow coating

Gently brushing the sand with a brush and rinsing with a swab can help to break up the particles on the surface so that they can easily be absorbed by the sand. The swipe is the most effective method in searching for hard-to-reach parts of the body and to prevent throat cancer. The two methods of casting both give a different size and shape and do so through pressure-controlled brushes. They also improve the productivity of the person using them. When wet ingredients are mixed, users can accidentally stick switches, which result in metal lumps and particles entering the steam [37,38].

Spraying is a much faster form of application that is in very common in foundries of all sorts. It is responsible to obtain greater attention to the formulation that is used in giving the coating because less mechanical work is available to push the particles into the space between the sand particles. Compilation of the solid matrix and the aggregate viscosity of the coating and swabbing brushes are more important than the brushing and swabbing brushes. The spraying method of using a specially crafted gun to atomize the protective layer into a fine mist. This brushing technique along with the dental floss will not be able to penetrate deep recesses of the gum tissues. Since the back pressure of air eliminates refractory deposition, one explanation is that the cavity remains largely undisturbed. Airless spraying systems address this limitation by distributing aerosols in high and fine amounts. The Airless Spray appears to have faster switching efficiency and lower risk of blowback. Without being too technical, it is possible to spray the paint onto flat surface. This allows for even application of the paint patterns [39-41].

The substrate which is being coated is submerged in the coating substance (liquid), and then is removed at a controlled speed below room temperature with the remaining coating substance (liquid), and then the substrate is dried, and afterwards is processed to finished product. With a more rapid reduction level, the coating becomes thicker. It is dependent on the amount of deposited thickness that is determined by the equilibrium between the pulling and pushing forces on the coating suspension surface.

This process, flow coating, involves filling either castings or cores of the mould coated with thick flow coat with a thin layer of molten material and then pressing the castings back into the molten material. To make a flow coating, a compacted material like a mould cavity or core is appropriately navigated so that the material is firmly at an angle next to the operator, and the material is sprayed by fluid from pressures which increase in a lateral direction as the fluid flows down from the top toward the bottom [42].

Removal of water and coating of binders

- Removal of water particles by using organic solvent-based coatings
- Removal of water particles by using water-based coatings

For the old days, foundries have been using carrier-based materials even if they are dry to themselves and do not need any additional heating after they are mixed (air drying). These coatings are often defined as a self-coating. That takes hard work to finish. These cores become burnt because the metallurgists preferred to use classical flame ware to dry (etching) the Oil-based coatings materials, because of their superior adhesion, chemical-free properties, and low cost, remain common choices for applications in the manufacturing, automotive, construction, furniture, and other highly durable consumer goods industries, especially in areas of application where conventional heat coatings are impractical. [43].

Today, several products are being made using "water-based" coating, instead of oil-based. Although, unlike traditional sealants, they need a lengthy dust emission including vacuum drying and conventional ovens compared to organic solvent-based coatings. The curing of this film needs to be
performed at temperature above the melting point of the binder (250°C), but must not get going over the melting point of the binder itself (100°C). Various drying technologies, such as strong light, stovetop driers, drying pipes and multispectral ovens, can still be employed with the goal of drying the cannabis to the best extent possible. Perhaps the most important issue in the research projects was the uniformity and the thickness of the coating during the drying process because if the coating was not allowed to dry uniformly, it would have been very hard to maintain any water barrier properties. The drying process of the sand caused the sand to break apart due to the fact the anti-temperature penetrated them deep down. These ovens decide that you can cook the wrapped outer ingredients, as well as the outer core of the item that they are forming. With a technique known as “infrared heating”, the heating time for interior moulds and core cups can be decreased by 85%. The microwave oven operates on a similar principle, but with a greater energy absorption by the material being heated that gives the microwave power higher efficiency than an electric heating element. The warm air is less influenced and cooled down. The infrared radiation elements throughout the heat towards the moulds, removing vital soft spots on the mould and enabling the glass to dry deeper within the cavity and on mould pockets. It is not essential to the layer of the membrane. This function is particularly useful in terms of space. Rather than consuming the entire space of the oven, the primary power system that uses infrared radiation consumes only around 25 percent of the space of the oven. A recent advancement of water-based paint is the manner in which the paint changes from a liquid state to a solid state. It may change the colour and when the layer dries it transforms from dark blue to an even lighter shade of blue. The white section of the tablet now has a white hue, to show it is dry. Also, this demonstrates that I'm not drying out any of the excess content at once. Since the drying process could take matter how much time, it could indicate also that moisture composition is too high and needs to be tuned down. The whole feature makes it less difficult for the users and pop out dishes.

Factors influenced by Foundry Coatings
- Specific Gravity
- Viscosity
- Baume’ Parameter
- Solid content
- Colloidal Stability
- Coating Thickness
- Coating Penetration Depth
- Coating Permeability
- Core Degradation
- Wettability and Surface Tension

3. Conclusion
In this review, I am solely examining foundry coating technology. It consists of, but isn't limited to, the coating materials, the coating processes, and the coating characterization parameters. The company is on the currently in the midst of new level of progress with their foundry coating technology. The efficiency of the chemical is being further studied and improved. Following the ongoing debate about the foundry coating process, this analysis has shed more light on the technology. By learning about the porous materials that are used in casting and how they affect the cast surface finish, foundries will be able to produce castings with the required surface finish. While this study indicates that the manufacturing of foundry coating can be improved, this can also be said for the improvement of foundry coating manufacturing companies.

References
[1] T. A. Burns, The Foseco Foundryman's Hanbook, Per-gamon Press, Staffordshire, 1986.
[2] AFS, *Moulding Methods and Materials*, 1st Edition, The Ameriacan Foundrymen’s Society, Illinois, 1962.

[3] S. D. Chastain, *A Sand-Casting Manual for the Small Foundry*, Jacksonville Publishers, Florida, *I*, 2004.

[4] L. Horvath, *Coatings Go Beyond Appearance to Provide Quality Control*, 2010. http://www.Foundrymag.com/Classes/Article/articleedraw.aspx.

[5] El Moumen, Ahmed, Mostapha Tarfaoui, Khalid Laﬁdi 2019 Additive manufacturing of polymer composites Processing and modeling approaches *Composites Part B Engineering* 171 166-182.

[6] M Ramesh, C Deepa, M Tamil Selvan, L Rajeshkumar, D Balaji, V Bhuvaneswari 2020 Mechanical and water absorption properties of Calotropis gigantea plant fibers reinforced polymer composites, *Materials Today Proceedings* https://doi.org/10.1016/j.matpr.2020.11.480.

[7] Rajesh kumar L, Saravanakumar A, Bhuvaneswari V, Jithin Karunan M P, Karthick raja N, Karthi P 2020 Tribological Behaviour of AA2249/MoS2 Metal Matrix Composites under Lubrication *AIP Conference Proceedings* 2207 020005.

[8] Haldorai, A. Ramu, and S. Murugan, Social Aware Cognitive Radio Networks, Social Network Analytics for Contemporary Business Organizations, pp. 188–202. doi:10.4018/978-1-5225-5097-6.ch010.

[9] R. Arulmurugan and H. Anandakumar, Region-based seed point cell segmentation and detection for biomedical image analysis, International Journal of Biomedical Engineering and Technology, vol. 27, no. 4, p. 273, 2018F, W. Pursall. *Coatings for Moulds and Cores*, K. Straus, Ed., Applied Science in the Casting of Metals, Pergamon Press, Oxford, 1970.

[10] M. Suganya and H. Anandakumar, Handover-based spectrum allocation in cognitive radio networks, 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCCE) Dec. 2013 doi:10.1109/icgcce.2013.6823431. doi:10.4018/978-1-5225-5246-8.ch012.

[11] Haldorai and A. Ramu, An Intelligent-Based Wavelet Classiﬁer for Accurate Prediction of Breast Cancer, Intelligent Multidimensional Data and Image Processing, pp. 306–319J. Hlavac, *Melting Temperatures of Refractory Oxides*, Pure and Applied Chemistry, *54*(3), 1982, pp. 681-688. doi:10.1351/pac198254030681.

[12] C. E. Houssa, *Minerals in Plastics*, Bulletin de la Societe Royale des sciences de liege, *72*, 2003, pp 71-80.

[13] J. R. Brown, *The Foseco Foundryman’s Handbook*, Pergamon Press, Oxford, 2000.

[14] S. Derbyshire, *Coating Composition*, US patent, 4279, 946, 1981. http://www.freepatentsonline.com/4279946

[15] D Balaji, M Ramesh, T Kannan et al 2020, Experimental investigation on mechanical properties of banana/snake grass fiber reinforced hybrid composites *Materials Today Proceedings* https://doi.org/10.1016/j.matpr.2020.09.548

[16] Ramesh M., Kumar L., Bhuvaneswari V. 2021 Bamboo Fiber Reinforced Composites *Bamboo Fiber Composites: Composites Science and Technology* ed Jawaid M., Mavinkere Rangappa S. et al (Singapore: Springer) chapter 1 pp 1-13.

[17] J. J. Horak, *Core and Mould Wash*, US patent 075, 1990. http://www.freepatentsonline.com/1990075

[18] G. D. Ulrich and D. W. Molesky, *Silica Fillers from Silicon Powder*, US Patent 4, 755, 368, 1988. http://www.osti.gov/energycitations/product.biblio

[19] N. A. Waterman, R. Trubshaw and A. M. Pye, *Filled thermoplastic Materials Part 1: Fillers and Compounds*, International journal of Materials in Engineering Appli-cations, *1*(2), 1978, p. 74-79. doi:10.1016/S0141-5530(78)90036-5
[20] K. W. Jang, W. S. Kwon, M. J. Yim and K. Paik, Effects of Silica Filler and Diluent on Materials Properties of Non-Conductive Paste and thermal Cycling reliability of Flip Chip Assembly, Microelectronics and packaging Society, 10, 2003, pp 1-9.

[21] P. L. Jain, Principle of Foundry Technology, 4th Edition, McGraw-Hill, New Delhi, 2006.

[22] F.O. Traenkner, Surface Treatments of Moulds, US Patent 2,618,032, 1952. http://www.freepatentsonline.com/2618032

[23] J. W. G. Wells, Olivine Uses and Beneficiation Methods, NCSU Minerals Laboratory Bull, Vol. 2, 1959. http://www.p2pays.org/ref/49/48621

[24] M. Ramesh, L. Rajeshkumar 2018, Wood flour filled thermoset composites Thermoset composites: preparation, properties and applications (vol 4) ed Anish Khan, Showkat Ahmad Bhawani et al (USA: Materials Research Foundations) pp 33–65

[25] M. Ramesh, L.R. Kumar, A. Khan, A.M. Asiri 2020 Self-healing polymer composites and its chemistry, Self-Healing Compos. Mater. ed Anish Khan, Mohammad Jawaid et al (Amsterdam: Elsevier) pp 415–427

[26] M. Yekeler, U. Ulusoy and C. Hicyilmaz, Effect of Particle Shape and Roughness of Talc Mineral Around by Different Mills on the Wettability and Floatability, Powder Technology, 140(12), 2004, pp 68-78. doi:10.1016/j.powtec.2003.12.012

[27] Z. S. Aćimović-Pavlović, A. K. Prstić and L. D. Andrić, The Characterization of Tale-Based Coating for Application for Al-Si Alloy Casting, Chemical Industry and Chemical Engineering Quarterly, 13(1), 2007, pp 38-40.

[28] Saravana Kumar A, P Maivizhi Selvi, L Rajeshkumar 2017 Delamination in Drilling of Sisal/Banana Reinforced Composites Produced by Hand Lay-Up Process Applied Mechanics and Materials 867 29-33.

[29] Rajeshkumar, L R K 2018 Dry sliding wear behavior of AA2219 reinforced with magnesium oxide and graphite hybrid metal matrix composites Int J Eng Res Technol 6 3-8.

[30] N Anbuchezhian, M Priyadharshini, Balaji Devarajan, A K Priya, L Rajeshkumar 2020, Machine Learning Frameworks for Additive Manufacturing – A Review, Solid State Technology, 63 (6), pp 12310-12319.

[31] V Bhuvaneswari, L Rajeshkumar, D Balaji, R Saravanakumar 2020, Study of Mechanical and Tribological Properties of Bio-Ceramics Reinforced Aluminium Alloy Composites, Solid State Technology, 63 (5), pp 4552-4560.

[32] L Rajeshkumar, R Suriyanarayanan, K Shree Hari, S Venkatesh Babu, V Bhuvaneswari, M P Jithin Karunan 2020, Influence of Boron Carbide Addition on Particle Size of Copper Zinc Alloys Synthesized by Powder Metallurgy, IOP Conf. Ser.: Mater. Sci. Eng. 954 012008.

[33] L Rajeshkumar, V Bhuvaneswari, B Pradeepraj, M Praveen pauldurai, C Palanivel, S Sandeep kumar 2020, Design and Optimization of Static Characteristics for a Steering System in an ATV, IOP Conf. Ser.: Mater. Sci. Eng., 954 012009.

[34] Rajesh Kumar, L Saravanakumar, A Bhuvaneswari, V Gokul G, Dinesh Kumar D, Jithin Karunan, M P 2020 Optimization of wear behaviour for AA2219-MoS2 metal matrix composites in dry and lubricated condition Mater. Today: Proc. 27(3), pp 2645–2649

[35] Rajesh Kumar L, Amirthagadeswaran, K S 2020 Corrosion and wear behaviour of nano Al2O3 reinforced copper metal matrix composites synthesized by high energy ball milling Part Sci. Technol. 38(2), pp 228–235

[36] Rajesh kumar L, S Sivalingam, K Prashanth, K Rajkumar 2020, Design, Analysis and Optimization of Steering Knuckle for All Terrain Vehicles, AIP Conference Proceedings, 2207, pp 020003.

[37] Saravanakumar A, Rajeshkumar L, Balaji D et al 2020 Prediction of Wear Characteristics of AA2219-Gr Matrix Composites Using GRNN and Taguchi-Based Approach. Arab J Sci Eng 45, pp 9549–9557

[38] A Saravanakumar, S Sivalingam, L Rajesh kumar 2016 Dry sliding wear behaviour of AA2219/Gr metal matrix composites, Mater. Today: Proc. 5, pp 8321–8327.
[39] L Rajeshkumar, K S Amirthagadeswaran 2019 Variations in the properties of copper-alumina nanocomposites synthesized by mechanical alloying, *Mater. Technol.*, **59** (1), pp 57–63.

[40] L Rajesh kumar, A Saravanakumar, R Saravanakumar, S Sivalingam, V Bhuuvaneswari 2018 Prediction capabilities of mathematical models for wear behaviour of AA2129/MgO/Gr hybrid metal matrix composites *International Journal of Mechanical and Production Engineering Research and Development*, **8**, pp 393-399.

[41] D. Gan, S. Lu, C. Song and Z. Wang, *Physical Properties of Poly(Ether Ketone Ketone)/Mica Composites: Effect of Filler Content*, Materials Letters, **48**(5), 2001, pp 299-302. doi:10.1016/S0167-577X(00)00318-9