Photo-illuminated Glutathione Inactivates Alpha-2-macroglobulin: Spectroscopic and Thermodynamic Studies

Syed Saqib Ali¹, Haseeb Ahsan², Sana Ansari¹, Khan M Abdullah¹, Fahim Halim Khan¹

¹Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
²Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India

Background: Glutathione (GSH) is a principle thiol-containing tripeptide (cysteine, glutamic acid and glycine) antioxidant against free radicals and other harmful oxidants in cellular defence. The alpha-2-macroglobulin (α2M) is large tetrameric zinc-binding glycoprotein which inhibits proteinases regardless of their specificity and catalytic mechanism.

Materials and Methods: The interaction of GSH with α2M including the structural and functional alterations were analyzed using various biochemical and biophysical methods. UV-visible and fluorescence spectroscopy were used to study the binding of α2M with GSH and Fourier transform infrared (FT-IR) spectroscopy was explored to study the structural change induced in α2M.

Results: The results suggest that exposure of α2M to GSH decreases the antiproteolytic potential as suggested by the amidase assay. The UV-spectroscopic study showed the formation of α2M-GSH complex and fluorescence analysis showed significant quenching in fluorescence intensity of α2M suggesting GSH binding and structural alteration in the protein. FT-IR spectroscopy was explored to study the structural change induced in α2M which suggest that the secondary structure of α2M changes upon complex formation.

Conclusion: Our studies show that interaction of α2M with photoilluminated GSH results in functional and conformational changes in the protein.

Keywords: glutathione, GSH, alpha-2-macroglobulin, photo-illumination, ITC, FTIR

Introduction

Glutathione (GSH) is a low molecular weight cellular antioxidant and has various enzymatic and nonenzymatic properties.¹ In the human body, GSH is present as ubiquitous molecule i.e., produced in all organs. The main function of the GSH in the human body is to maintain the integrity of red blood cells (RBCs). It is a tripeptide antioxidant mainly found in two forms: reduced GSH and oxidized glutathione (GSSG).² Among the two forms, GSH is mainly found in healthy living cells (90%) while GSSG occurs in minor amount (10%) in cells.³ It is mainly found in millimolar (mM) concentration inside the cells, while the plasma contains lower amount of GSH.⁴,⁵ In cells, GSH may be found...
freely or bound to proteins. As a radical scavenger, GSH plays a major role in the detoxification of reactive oxygen species (ROS) and drug metabolites. When oxidative stress increases, GSH converts into GSSG i.e., it gets oxidized. In this process, two molecules of GSH form a molecule of GSSG with the formation of double-sulfur bond. GSH is converted to GSSG under oxidative stress and can be reverted back to reduced form by the action of the enzyme glutathione reductase (GRx). It is well known that under oxidative stress, GSH can be converted to GSSG, which results in the impairment of radical scavenging activity and hence, loss of antioxidant activity. GSH plays a major role in the protection of organs such as liver, intestine, lungs and kidney when they are exposed to xenobiotics. The level of GSH is decreased in many diseases such as alcoholic liver injury, diabetes mellitus, hemolysis and cancer. It is also used for the treatment of many diseased conditions such as chronic renal failure, diabetes, lung inflammation and malnutrition. It is found in blood plasma, produced mainly in the liver in humans, and its concentration is about 2 mg/mL in plasma.

Sheep alpha-2-macroglobulin (α2M) is a large glycoprotein of 630 kDa found in the plasma and a homologue of human α2M. Like its human counterpart, it is a tetrameric glycoprotein consisting of four identical subunits. The α2M captures a variety of proteinases and is considered as a major proteinase inhibitor in the blood. The α2M plays an important role in innate immunity and is highly conserved throughout evolution. The α2M possesses a unique trapping mechanism and captures a variety of proteinases both in vitro and in vivo and is considered as a major proteinase inhibitor. This protein traps the proteinases released by cells during inflammation and hence regulates the extracellular proteolytic activity resulting from fibrinolysis and clotting. It inhibits the proteinases present in the plasma and also protect cells against pathogens since it can also trap proteinases from non-human origin.

In the present study, we explored the interaction of GSH with α2M in the presence of fluorescent light (as well as dark). In this study, our aim was to study the interaction of GSH with α2M and how it affects the anti-proteinase and conformational status of the protein. The binding interaction was explored by using ultraviolet (UV), and fluorescence spectroscopy and isothermal titration calorimetry (ITC). The changes in the secondary structure were analyzed by Fourier-transform infrared spectroscopy (FT-IR).

Materials and methods

Isolation of α2M
Fresh sheep blood was collected from the slaughter house (within minutes of slaughter of animal) for the isolation of α2M from plasma. Sheep α2M was purified by simple two step procedure i.e., ammonium sulphate fractionation and Sephaeryl 300HR (Sigma-Aldrich, St. Louis, MO, USA) gel filtration chromatography as reported previously.

Antiproteinase Activity Assay of α2M
Activity assay of α2M was performed in order to determine the change in the function of native and treated protein as reported previously. α2M was incubated with varying concentrations of GSH (20-100 μM) in the presence and absence of light. A final mixture of 1 mL was prepared with 50 mM sodium phosphate buffer (pH 7.4) at 22±1°C. After 1 hr of incubation at room temperature, 100 μL of trypsin was added in the reaction mixture for 15 min at 37°C. Following incubation, 100 μL of soybean trypsin inhibitor (STI) was added for 15 min at 37°C. Finally, 2 mL of N-Benzoyl-DL-arginine-p-nitroanilide (BAPNA) was added for 30 min and absorbance was recorded at 410 nm. GSH, trypsin, STI and BAPNA were obtained from Sigma-Aldrich.

UV-visible Absorption Spectroscopy
To analyze the changes in the native conformation of protein, the UV absorbance spectra were recorded. Ten μM of α2M was incubated with varying concentration of glutathione (20-100 μM) in absence and presence of light. The absorption spectrum was recorded in the range of 250-350 nm on a Shimadzu UV mini visible spectrophotometer UV-1700.

Fluorescence Spectroscopy
Intrinsic fluorescence was performed to analyze the change in the structure of α2M after its interaction with glutathione. α2M was incubated with increasing concentrations of glutathione (20-100 μM) in dark as well as in the presence of light and were recorded on a Shimadzu RF-5301 spectrofluorophotometer (Shimadzu, Tokyo, Japan) in the range of 300-400 nm in a quartz cell of path length 10 nm. The final concentration of protein was 10 μM.

FT-IR Spectroscopy
Another technique which was used to study the secondary structural changes in the native structure of protein was FT-IR. FT-IR spectra were recorded in the range of 1600-1700 cm⁻¹ at room temperature (22±1°C) sodium
phosphate buffer (pH 7.4). Ten μM of α2M was incubated with increasing concentrations of glutathione (50-100 μM) and were recorded on a Perkin Elmer FT-IR Spectrum 100 (Perkin Elmer, Waltham, MA, USA).

Isothermal Titration Calorimetry (ITC)

To study the thermodynamics signatures for binding of GSH with the protein, isothermal titration calorimetry (ITC) was performed. Enthalpy, entropy, binding sites and Gibbs free energy of α2M-glutathione interaction were determined on a VP-ITC titration microcalorimetry system (MicroCal, Northampton, MA, USA) as reported previously. Previous studies have shown that the change in enthalpy and entropy for protein-ligand interaction may reveal the binding forces involved in the interaction. If the value of ΔS and ΔH are negative, then Van der Walls and hydrogen bond formation are involved in the interaction and if both are found to be positive, it suggests hydrophobic interaction. The concentration of the α2M in the sample cell was 10 μM, and the syringe was loaded with 20 μM GSH, while the reference cell was filled with 50 mM sodium phosphate buffer (pH 7.4). The sample was continuously stirred at 307 rpm and reference power was kept at 16 μcal sec⁻¹. The heat of dilution was determined by control experiments and subtracted from the integrated data before curve fitting. The ORIGIN® software (OriginLab Corporation, Northampton, MA, USA) was used to analyze the titration curves.

Results

The Antiproteinase Activity of α2M

Activity assay was performed to study the functional change in the native protein. Figure 1A showed the activity profile of treated α2M in dark and Figure 1B depicts antiproteinase activity in the presence of light. Loss in antiproteinase activity at 100 μM GSH was 18% under dark and 38% when it was photoilluminated either due to change in the conformational status of the protein or oxidative damage to the bait region amino acids.

UV-visible Absorption Spectroscopy Results

UV-visible spectra were analyzed in order to check the possible change in the conformational status of protein as well possible complex formation between protein and ligand. α2M showed a peak at around 278 nm which was due to the presence of three aromatic amino acid residues (tryptophan, tyrosine and phenylalanine). Figure 2A showed the UV visible spectra of α2M with increasing concentration of GSH in dark. Increasing the concentration of GSH leads to an increase in UV absorbance which suggests the possibility of complex formation between GSH and α2M. The interaction of α2M was also analyzed with GSH in the presence of white flourescent light. As shown in Figure 2B, GSH causes a dose dependent decrease in absorbance and the peak shifts to higher wavelength in presence of light. At the highest GSH concentration (100 μM), there was a hyperchromic shift (about 2%) in dark and a hypochromic shift (about 2%) in the presence of light suggesting a change in the polarity around tryptophan residues and hydrophobicity thereby inferring that GSH induces a conformational change in the native protein. Figure 2C showed the comparative UV absorption spectra of α2M alone and with GSH in the presence of white light and dark at 100 μM.
Intrinsic Fluorescence Measurements
Intrinsic fluorescence was a useful technique utilized to identify the conformational changes in the native structure of proteins. Intrinsic fluorescence of the protein was mainly depend upon the aromatic amino acid residues i.e., tyrosine, phenylalanine and tryptophan but in α2M, tryptophan played a major role. Upon increasing the concentration of ligand, fluorescence of native protein gradually decreased. Figure 3A showed the intrinsic fluorescence pattern of α2M with varying concentration of GSH (20-100 µM) in dark. Native α2M showed a peak at 329 nm and the intensity decreases upon increasing the dose of GSH. At 100 µM, there was maximum fluorescence quenching with a shift of peak (1 nm) suggesting a possible change in the microenvironment around the chromophore of α2M. Similar results were obtained when photo-illuminated GSH was incubated with α2M, although there was a minor increase in quenching in the presence of light (Figure 3B and Figure 3C).

FT-IR Spectroscopy Results
FT-IR spectroscopy was employed to study the change in the secondary structure of protein. Amide I band was analysed as it was the most important band in protein used for the analysis of the possible structural change. Amide I band displayed in the wave number range 1600-1700 cm\(^{-1}\) which was governed by the stretching of the C=O (70-85%) and minor contribution of C-N groups (10-20%). Amide I band for native α2M was centered at around 1635 cm\(^{-1}\) which was characteristic of β-sheet structure. FT-IR spectroscopy was
utilized to study the structural changes in the protein after its interaction with GSH interaction in dark and light. FT-IR spectra for native α2M and co-incubation with varying concentration of GSH (50-100 μM) were recorded in the range of 1600-1700 cm⁻¹. Figure 4A showed FT-IR spectra of native α2M, the amide I band was located at 1635 cm⁻¹ which confirmed the presence of predominant β-sheet structure in α2M. At 50 μM GSH, there was a slight decrease in intensity which was more pronounced at 100 μM GSH concentration suggesting loss in the β-sheet content of the protein. Figure 4B depicted the α2M-glutahione interaction curve in the presence of visible fluorescent light. At 50 μM of GSH, a band observed at 1635 cm⁻¹ confirmed the decrease in the β-sheet content of α2M as in the previous case. At 100 μM GSH, there was a shift of peak and new band was observed at 1640 cm⁻¹ which suggests subtle perturbation in the secondary structure of the protein upon its exposure to photo-illuminated GSH, not observed in dark.

ITC Results

To understand the α2M-glutathione interaction, its thermodynamics parameters were determined by ITC. ITC was used to determine the change in entropy (ΔS), enthalpy (ΔH), stoichiometry of binding, and Gibbs free energy (ΔG). Figure 5 showed the titration profile of α2M-glutathione binding which suggests the binding was exothermic in nature. The data obtained through ITC showed the change in enthalpy and entropy and was found
to be negative and was shown in Table 1. VPC-ITC Micro Cal was used to determine the binding energetic such as entropy (S), enthalpy (H), Gibbs free energy change (G), stoichiometry of binding sites (N) and binding affinity (Kb) of α2M-GSH interaction. The negative values of ΔH (-1.594 x 10^4 joulemol^-1) and ΔS (-5.34 x 10^4 joulemol^-1) indicated that the interaction process was exothermic and possibly involved hydrogen bonds. Moreover, the negative value of ΔG (-2.68 kjoulemol^-1) signified the reaction to be spontaneous and thermodynamically favourable. The stoichiometry of binding/number of binding sites (N) was found to be around 1.38. The change in enthalpy and entropy for protein-ligand interaction may reveal the binding forces involved in the interaction. If the value of ΔS and ΔH are negative, then Van der Walls and hydrogen bond formation were involved in the interaction and if both were positive, then it suggested hydrophobic interaction. The negative value for ΔS and ΔH observed in α2M-GSH interaction suggests it was enthalpy driven and involves hydrogen bonding and Van der Walls forces.

Discussion

This is the first study to explore the interaction of GSH with α2M, a plasma antiproteinase and major zinc binding protein. The primary aim of this study is to explore the possible interaction between GSH and α2M. Fluorescence transform infra-red spectroscopy technique was employed to study the secondary structural changes in the native form of protein.18,19 FT-IR spectroscopy was utilized to study the
structural changes in the protein after its interaction with GSH in dark and light. The FT-IR spectra of native α2M confirms the presence of predominant β-sheet structure in α2M. At 50 μM GSH, there was a slight decrease in intensity which was more pronounced at 100 μM GSH concentration suggesting loss in the β-sheet content of the protein. At 50 μM GSH, a band observed at 1635 cm⁻¹ confirms the decrease in the β-sheet content of α2M as in the previous case. At 100 μM GSH, there is a shift of peak and new band was observed at 1640 cm⁻¹ which suggests subtle perturbations in the secondary structure of the protein due to photo-illumination of GSH, which was not observed in dark. Previous studies have shown that the changes in enthalpy and entropy for protein-ligand interaction may reveal the binding forces involved in the interaction.20-22 If the value of ΔS and ΔH are negative, then Van der Walls and hydrogen bond formation are involved in the interaction and if both are found to be positive, it suggests hydrophobic interaction.22 The negative values for ΔS and ΔH observed in α2M-GSH interaction suggests it was enthalpy driven and involves hydrogen bonding and Van der Walls forces.22,23

GSH, a principle thiol-containing tripeptide, is an intracellular antioxidant which plays a major role as an antioxidant in cellular defence against free radicals and other harmful oxidants. It is a ubiquitous molecule and provides defence against free radicals, hydroperoxides and other harmful oxidants. However, its production declines with age, and is often given orally or administered intravenously24-26, which causes its increased plasma concentration. Our studies show that incubation of α2M with GSH (20-100 μM) results in loss of functional status of this antiproteinase. This loss in activity is more pronounced when GSH (20-100 μM) is photoilluminated, resulting in secondary structural changes in the protein. This change in conformation of protein might occur due to either perturbation or disturbance induced in the protein by GSH binding or oxidation of some essential amino acids.27 This study assumes importance as long term administration of GSH leads to zinc deficiency since α2M is a major zinc binding protein in the plasma.16,27

Conclusion

Our studies show that incubation of α2M with GSH results in loss of functional status of the antiproteinase and is more pronounced when GSH is photoilluminated resulting in secondary structural changes in the protein. This change in conformation of α2M may be due to either perturbation or damage induced in the protein by GSH binding or oxidation of some essential amino acids.

Table 1. Binding and thermodynamic parameters for the interaction of bilirubin with α2M obtained by ITC experiment at 37 °C.

Thermodynamic Parameters	Values
N	1.38
\(K_b (M^{-1})\)	\(1.42 \times 10^4\)
\(\Delta H \text{ (joule mol}^{-1}\)	\(-1.594 \times 10^7\)
\(T\Delta S \text{ (joule mol}^{-1}\)	\(-5.34 \times 10^4\)
\(\Delta G \text{ (kJoule mol}^{-1}\)	\(-2.68\)

Note: N is the stoichiometry of binding, \(K_b\) is the binding constant, \(\Delta H\) is the change in enthalpy, \(\Delta S\) is the change in entropy, and \(\Delta G\) is the change in Gibbs free energy.
Acknowledgements

The authors are grateful to the Department of Biochemistry, Aligarh Muslim University, Aligarh for the facilities provided. The University Grants Commission (UGC), New Delhi is also acknowledged for financial support. The authors wish to thank the reviewer(s) for their perception, suggestions and recommendations.

References

1. Wang Q, Guan Y, Yang M. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione. J Magnet Magnetic Material. 2012; 324(20): 3300-5.
2. Meister A, Anderson ME. Glutathione. Ann Rev Biochem. 1983; 52: 711-60.
3. Noctor G, Gomez L, Vanacker H, Foyer CH. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot. 2002; 53(372): 1283-304.
4. Noh HB, Chandra P, Moon JO, Shin YB. In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials. 2012; 33(9): 2600-7.
5. Chen J, He Z, Liu H, Cha C. Electrochemical determination of reduced glutathione (GSH) by applying the powder microelectrode technique. J Electroanal Chem. 2006; 588(2): 324-30.
6. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta. 2003; 333(1): 19-39.
7. DeLeve LD, Kaplowitz N. Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther. 1991; 52(3): 287-305.
8. Flagg EW, Coates RJ, Jones DP, Byers TE, Greenberg RS, Gridley G, et al. Dietary glutathione intake and the risk of oral and pharyngeal cancer. Am J Epidemiol. 1994; 139(5): 453-65.
9. Lu SC. Regulation of glutathione synthesis. Mol Asp Med. 2009; 30(1-2): 42-59.
10. Gate L, Vauthier C, Couvreur P, Tew KD, Tapiero H. Glutathione-loaded poly (isobutylcyanoacrylate) nanoparticles and liposomes: Comparative effects in murine erythroleukemia and macrophage-like cells. STP Pharma Sci. 2001; 11(5): 355-61.
11. Camera E, Picardo M. Analytical methods to investigate glutathione and related compounds in biological and pathological processes. J Chromatography B. 2002; 781(1-2): 181-206.
12. Ganrot PO. The combining ratio between trypsin and serum alpha-2-macroglobulin. Acta Chem Scand. 1966; 20(8): 2299-300.
13. Barrett AJ, Starkey PM. The interaction of α2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973; 133(4): 709-24.
14. Wyatt AR, Kumita JR, Farrowell NE, Dobson CM, Wilson MR. Alpha-2-macroglobulin is acutely sensitive to freezing and lyophilization: Implications for structural and functional studies. PLoS One. 2015; 10(6): e0130036. doi: 10.1371/journal.pone.0130036.
15. Rehman AA, Ahsan H, Khan FH. Alpha-2-macroglobulin: a physiological guardian. J Cell Physiol. 2013; 228(8): 1665-75.
16. Khan FH, Mirza M, Saleemuddin M. Caprine alpha-2-macroglobulin contains thiolesters of unequal reactivity. J Biochem Mol Biol Biophy. 1999; 3: 109-16.
17. Ali SS, Zia MK, Siddiqui T, Khan FH. Binding interaction of sheep alpha-2-macroglobulin and tannic acid: A spectroscopic and thermodynamic study. Spectrochim Acta Part A: Mol Biomol Spect. 2018; 204: 748-53.
18. Siddiqui T, Zia MK, Ali SS, Ahsan H, Khan FH. Inactivation of alpha-2-macroglobulin by photo-illuminated gallic acid. J Fluores. 2019; 29(4): 969-79.
19. Hu YJ, Liu Y, Wang JB, Xiao XD, Qu SS. Study of the interaction between monoammonium glycyrhizinate and bovine serum albumin. J Pharma Biomed Anal. 2004; 36(4): 915-19.
20. Rehman AA, Sarwar T, Arif H, Ali SS, Ahsan H, Tabish M, et al. Spectroscopic and thermodynamic studies on ferulic acid–alpha-2-macroglobulin interaction. J Mol Struct. 2017; 1144: 254-9.
21. Tao WS, Li W, Jiang YM. Protein Molecular Basic. Beijing: The People’s Education Press; 1981.
22. Cui FL, Fan J, Li JP, Hu ZD. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg Med Chem. 2004; 12(1): 151-7.
23. Zia MK, Siddiqui T, Ali SS, Ahsan H, Khan FH. Understanding the binding interaction between methotrexate and human alpha-2-macroglobulin: Multi-spectroscopic and computational investigation. Arch Biochem Biophys. 2019; 675: 108118. doi: 10.1016/j.abb.2019.108118.
24. Dröge W, Breitkreutz R. Glutathione and immune function. Proc Nutr Soc. 2000; 59(4): 595-600.
25. Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson's disease. Free Rad Biol Med. 2013; 62: 13-25.
26. Schmitt B, Vicenzi M, Garrel C, Denis FM. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol. 2015; 6: 198-205.
27. Skene K, Walsh SK, Okafor O, Godsmn N, Barrows C, Meier P, et al. Acute dietary zinc deficiency in rats exacerbates myocardial ischaemia–reperfusion injury through depletion of glutathione. Brit J Nutr. 2019; 121(9): 961-73.