Protein, Energy and Micronutrient of Five Different Fishes from Tiga Reservoir, Nigeria

Audu Michael Elaigwu¹*, Ademuyiwa Hafiz Oladele¹ and Joel Umaru¹

¹Department of Fisheries and Aquaculture, Federal University Dutse-Ma, P.M.B. 5001 Dutse-Ma, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author AME designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors AHO and JU managed the analyses of the study. Author AHO managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJFAR/2019/v3i230030

(1) Dr. Viji Krishna Das, Former Professor, Department of Zoology, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur, Uttar Pradesh, India.

(2) Oshim, Ifeanyi Onyema, Nnamdi Azikiwe University, Nigeria.

Reviewers:

(1) K. D. Mini, Mahatma Gandhi University, India.

Complete Peer review History: http://www.sdiarticle3.com/review-history/49064

Original Research Article

Received 02 March 2019
Accepted 10 May 2019
Published 17 May 2019

ABSTRACT

This study evaluated the proximate, mineral elements, and vitamins composition of oven-dried Schilbe mystus, Bagrus bayad, Oreochromis niloticus, Clarias anguillaris and Petrocephalus bane bane from Tiga Reservoir. The fishes were obtained from landing site of Tiga reservoir at Rano, they were beheaded, degutted and cleaned with distilled water and oven-dried to a constant weight at 105°C. Grinded form of samples were used for wet digestion and the contents were analyzed according to standard methods at the Biochemistry laboratory, University of Jos. The proximate content of the fishes varied significantly (p<0.05), with mean values of 4.79 - 9.52 g/100 g moisture content, 42.20 - 57.71 g/100 g crude protein, 0.90 - 12.51 g/100 g ash content, 3.41 - 9.93 g/100 g ether extract, 0.62 - 5.08 g/100 g crude fibre, 12.28 - 42.70 g/100 g nitrogen free extract and 90.48 - 95.21 g/100 g dry matter. Based on the FAO/WHO recommended nutrient intakes (RNIs), calcium, magnesium, iron and zinc were found in appreciable amount. The vitamin content of the fishes were above the WHO recommended limits, peak values of vitamins B1 (33.88 mg/l), B6 (15.83 mg/l), B12 (3.04 mg/l), were observed in P. bane bane alone. Whereas, C. anguillaris, O.
1. INTRODUCTION

In most Nigerian homes fish has become a noticeable meal on daily basis, as it could be eaten fresh or smoked form without any religious, age, educational and social discrimination [1]. The Nigerian fisheries subsector plays a vital role, as it accounts for 50% of total animal protein consumed by larger percentage of the populace [2]. Fishes are highly favoured against other animal protein sources due to its relatively low levels of collagen and cholesterol in the flesh, appealing flesh flavor [3] and better essential nutrient composition [4]. The major constituents of fish carcass include protein, fat, moisture and mineral elements [5]. Parts of proximate analysis from fish flesh comprises of ash, lipids, protein, crude fibre and nitrogen free extract, this assessment is implemented on fishes in order to guarantee their definite and nutrient standards [6]. Fish is similar to other animals as it possess enough quantity of the amino acids, for instance lysine which is limiting in cereals. Therefore, fish could be a better source of protein in order to meet up the requisite protein profile in common staple food of starch source [7]. Africans are identified to have high appetite for tuber and cereal food. Fish has become a dependable source of dietary protein as up to 15 to 20% were used to fill that void of limitations in food protein [8]. In Africa for instance, over 60% of babies less than five years of age died annually of complication from Protein-Energy Malnutrition [9]. Health threatening issues abound in most poor nations of the world and they are related to deficiency of nutrients. Acute nutrient deficiency case in Nigeria was 38% as reported in the Nepal Demographic and Health survey Fact Sheet (NDHS) [10]. It is crucial for studies to come up regularly in order to gain relevant information on the nutrient content levels in fish species commonly eaten by the poor across the nations of Africa and Asia.

Based on the levels required for adequate utilization, inorganic elements are divided into two these include the macro or the micro elements [11]. The macro-elements are required in levels higher than 100 mg/g while micro-elements are required in small amount less than 100 mg/g [12]. Macro-elements are collection of inorganic elements such as: phosphorus, calcium, chloride and sodium etc. Among these elements, calcium is required for penetrability of membrane, effective muscle activity and proper transfer of nerve signals [12]. The significance of minerals in the body metabolism and growth of living organisms cannot be overemphasized as it builds up skeletal and colloidal systems, ensures acid-base equilibrium of the body, and makes up the components of several enzymes and hormones [13]. The roles of minerals in biological and chemical processes of living organisms, fish inclusive, have been documented. To evaluate requisite minerals, based on their minimum requirement in food consumption, information on foods, water and mineral element are paramount [13]. Micro nutrient found in fish include vitamins A, B, and D, together with manganese, calcium, selenium and phosphorus, these support its nutritious value as an excellent source of animal proteins for both human and animal consumption [14]. Data on nutrients levels of fishes especially in freshwater has become expedient to most field of food technology. Maia et al. [15] affirmed that variations exist between freshwater and marine fish species in relation to their mineral composition. Also, such differences extends to individuals that belong to a species, as a result of variation in age, habitat, gender and seasonality. The availability of nutrients in freshwater fishes are grouped on the basis of their distinct geographical areas, climate, species and genders [16] and relationship, could be discovered via the method of fish processing adopted [17]. It is crucial that fish and its products are monitored on regular basis to ensure it met requisite international standard of food analyses and essential nutrients [18], in order to balance up for the deficiency and minimize the death in babies cause by malnutrition in food [19]. This study evaluated the proximate composition, mineral elements and vitamins contents of Schilbe mystus, Bagrus bayad, Oreochromis niloticus, Clarias anguillaris and Petrocephalus bane bane from Tiga Reservoir, in order to ascertain the nutrient potentials of each fish species which could be used as nutrient sources in human and animal foods.
2. MATERIALS AND METHODS

2.1 Sample Collection and Digestion

Samples of five fish species namely Schilbe mystus, Bagan bayad, Oreochromis niloticus, Clarias anguillaris and Petrocephalus bane bane were obtained monthly from Rano landing site of Tiga reservoir from August to October, 2015. Rano settlement is found at longitudes 8° 18' to 8° 35' E and latitudes of 11° 18' to 11° 27' N. Each fish was identified using fish identification keys of Olaosebikan and Aminu [20]. Thereafter, the samples were separately beheaded, degutted and cleaned with distilled water before been oven-dried to a constant weight at 105°C in the laboratory. Scale removal was performed on Oreochromis niloticus before it was beheaded and degutted. Oven-dried samples were grinded to powdery form in preparation for digestion. The powdery form of each sample of the fish species was digested strictly in accordance with the method described by Kumar et al. [21].

2.2 Chemical Analyses

The resulting supernatant solution from the digested samples were used for the proximate analysis. This was carried out in three replicates in accordance with the procedure of AOAC [22]. in the Biochemistry laboratory, University of Jos, Nigeria. Also the digested samples were used to determine the mineral content using atomic absorption spectrophotometer (AAS 50B, Australia). Vitamin contents of the samples were spectrophotometrically determined as follows: vitamin B complex was assessed using the procedure of Brubacher et al. [23]; vitamin A was measured with the method of Rutkowski et al. [24]; vitamin C was determined using the procedure of Rutkowski et al. [25] while vitamin E was measured with the method of Rutkowski et al. [26].

2.3 Calculation and Statistical Analyses

The calorific value of crude protein, crude lipid and nitrogen free extract (NFE) were calculated using the standard conversion factors [27].

\[a - \text{crude protein} = \text{protein} \left(\frac{g}{100g} \right) \times 5.5 \text{ kcal/g} \]

\[b - \text{crude lipid} = \text{amount of lipid} \left(\frac{g}{100g} \right) \times 9.5 \text{ kcal/g} \]

\[c - \text{NFE} = \text{carbohydrate} \left(\frac{g}{100g} \right) \times 4.1 \text{ kcal/g} \]

Total \text{ Calorific Value} = a+b+c.

Statistical Package for Social Science (SPSS) version 20 was used for the statistical analyses. Data for proximate composition, mineral elements and vitamins were subjected to analysis of variance (ANOVA) while Duncan Multiple Range Test (DMRT) was used to separate means at 5% significant level [28].

3. RESULTS AND DISCUSSION

The values of the proximate assessment varied significantly (p<0.05) and showed that crude protein of sampled fishes ranged from 30.42±0.57 to 58.89±0.03 g/100 g, and are presented in Table 1. This was a pointer to consumers that the fishes were rich source of protein. The fishes examined were found to possessed high crude protein with a slight differences among them. This could be linked to individual fish innate ability to take in and assimilate nutrients from its feed and immediate locality and subsequently convert such to protein [29]. The crude protein and ash contents values were both highest in P. bane bane 58.89 ± 0.03 g/100g and 12.99 ± 0.04 g/100 g respectively thus, confirmed this fish nutrient endowment as protein and mineral rich source. While the least values of crude protein and ash contents 30.42 ± 0.57 g/100g and 0.47 ± 0.02 g/100g were found in O. niloticus and B. bayad. The crude protein content of Clarias anguillaris (37.01 g/100 g) was a bit lower than the value of (41.28 g/100 g) reported by Muhamad et al. [30]. Similarly, Elagba Mohammed et al. [31], recorded a higher crude protein content of 77.00 g/100 g and 78.00 g/100g for B. bayad and O. niloticus. The protein content of different fishes varies in relation to time of the year, consequent of reproduction, presence of diet and migration [32]. On the basis of biochemical and physiological assessment of organisms, protein has been widely accepted as a crucial instrument for its contribution to body development, function and repairs [33].

The ether extract are recognized for their capacity as high energy sources of nutrients and are found to store as much as double the energy gotten from protein and starch [34]. The highest ether extract content of 10.32 ± 0.02 g/100 g was observed in S. mystus, followed by C. anguillaries (8.11 ± 0.04 g/100 g), P. bane bane (6.72 ± 0.02 g/100 g), B. bayad (3.08 ± 0.03 g/100 g) and O. niloticus (2.90 ± 0.14 g/100 g). The ether extract of the sampled fishes were found to have fell within the group of low fat to high fat fish [29]. The disparity of the ether extract noticed among the sampled fishes could...
be attributed to the deviations in diets, age, water temperature, and species [35]. The gross energy of the sampled fishes were the aggregated amount found in individual fish and are shown as (total calorific value). B. bayad had the highest total calorific value of 496.23 kcal/g. But, P. bane bane had the lowest value of total calorific value of 453.704 kcal/g. The range of energy found in the sampled fishes was an evident that they were all high energy source of nutrient. The high dry matter content observed across the examined fishes could be as a result of the carcass qualities, as exemplified by the high crude protein contents. This is in consonance with the findings of Steffens [36], which submitted that protein forms bulk of the dry matter in fish carcass with low moisture and higher fat level. The ash content level in Clarias anguillaris was relatively higher than what was reported by Effiong and Mohammed [32], which observed a range of 0.41 to 1.35 g/100g for C. anguillaris. This was also affirmed by Adeyeye [37], that the ash content level of a fish sample depicts its nutritional mineral composition.

The concentration of mineral elements of the sampled fishes are presented in Table 2. In all the fish species, the mineral elements concentration differed significantly (p<0.05), with the exception of cadmium and lead which were observed below detectable limits. The values of essential elements in organisms depend on the rate of absorption through the medium homeostatically, especially, during respiration and from food consumed [29,35]. Peak values of iron (1.625 mg/g), potassium (2.638 mg/g), calcium (4.578 mg/g) and phosphate (0.371 mg/g) were observed in P. bane bane. Since calcium was the mineral with the highest concentration across all the fishes, followed by potassium and magnesium, confirmed the richness of the sampled fishes in essential elements. The levels of calcium and potassium minerals in fishes determine its nutritional importance [38]. Effiong and Fakunle [39], reported similar high concentration of potassium (0.76 mg/g), calcium (2.86 mg/g) and magnesium (0.32 mg/g) in O. niloticus. Also, recorded by the same authors were the peak values of potassium (0.63 mg/g), calcium (2.83 mg/g) and magnesium (0.21 mg/g) in B. bayad. Similar trend was found in the works of Effiong and Mohammed [32], wherein 0.75 mg/g potassium, 2.88 mg/g calcium and 0.30 mg/g magnesium were observed in C. anguillaris.

The importance of mineral elements in animals has been reported in several studies. In most animals especially fishes, calcium is required for growth and repairs of teeth, bones, muscles, nails and/or scales [40], adequate calcium concentration in the body cells is crucial for the production of cellular cement substances and clotting of blood. The consumption of potassium at every stage of life in man could ensure proper control of blood pressure, heart ailment like stroke, amount of blood fat and kidney function [41]. In addition, it maintain proper activities of the muscle and nervous system, as well as the body sugar level, body fluid pH and brain supply of oxygen [29] Magnesium is required in the body for bone formation, regeneration of cells, maintenance of protein and fatty acid, increase activity of vitamin B, muscle flexibility, enhanced blood clotting and production of energy [29]. The peak value of magnesium (1.160 mg/g) was found in S. mystus. Generally, nutrients of animal origin are known to be poor means of magnesium. The order of occurrence of the macro-elements (calcium > potassium > magnesium > phosphorus) observed in this study was similar to the one found by Effiong and Fakunle [39] in B. bayad and O. niloticus. The micro-elements includes those nutrients found in small amount in the body of organism and are require for its proper function.

Proximate analysis (g/100g) Dry Matter	Schilbe mystus	Bagrus bayad	Oreochromis niloticus	Clarias anguillaris	Petrocephalus bane bane
Moisture content	4.47±0.03^a	8.06±0.04^b	10.12±0.08^c	8.02±0.04^d	5.09±0.04^e
Crude protein	53.85±0.04^d	52.70±0.03^c	30.42±0.57^a	37.01±0.04^d	58.89±0.03^e
Ash content	11.99±0.02^b	0.47±0.02^e	0.52±0.27^b	4.00±0.04^b	12.99±0.04^e
Ether extract	10.32±0.02^b	3.08±0.03^e	2.90±0.14^e	8.11±0.04^c	6.72±0.02^c
Crude fibre	3.35±0.02^e	0.55±0.04^b	1.51±0.04^c	0.19±0.03^e	5.31±0.05^b
Dry matter	95.51±0.03^c	91.94±0.04^b	89.88±0.08^b	91.98±0.04^c	94.91±0.04^c
Nitrogen free extract	20.50±0.08^b	43.20±0.01^d	64.64±0.20^c	50.68±0.01^c	16.09±0.09^b
Total calorific value (kcal/g)	478.265	496.23	459.884	486.388	453.704

Means ± S.D within a row followed by different superscripts are significantly different (p<0.05)
Table 2. Concentration of mineral elements in the sampled fish species

Element (mg/g)	Schilbe mystus	Bagrus Bayad	Oreochromis niloticus	Clarias anguillaris	Petrocephalus bane bane	FAO/WHO RNIs (mg/day)
Chromium	0.005±0.0002± 0.012±0.0002± 0.014±0.0002± 0.014±0.0002± 0.010±0.0004±					3.9 - 20.7
Iron	0.502±0.0003± 0.261±0.0004± 0.115±0.0003± 0.611±0.0003± 1.625±0.0003±	0.261±0.0004± 0.115±0.0003± 0.611±0.0003± 1.625±0.0003±	1.104±0.0004±	26 - 260		
Magnesium	1.160±0.0002± 0.521±0.0003± 0.312±0.0003± 0.603±0.0003±	0.521±0.0003±	0.312±0.0003± 0.603±0.0003±	4.578±0.0004±	300 - 1300	
Potassium	2.296±0.0003± 0.916±0.0004± 1.461±0.0003± 1.907±0.0002± 2.638±0.0003±	0.916±0.0004± 1.461±0.0003± 1.907±0.0002± 2.638±0.0003±	3.9 - 6.0			
Calcium	4.511±0.0003± 2.852±0.0004± 2.417±0.0004± 3.521±0.0004± 4.578±0.0004±	2.852±0.0004± 2.417±0.0004± 3.521±0.0004± 4.578±0.0004±	3.9 - 6.0			
Zinc	0.064±0.0002± 0.095±0.0003± 0.082±0.0005± 0.079±0.0002± 0.090±0.0003±	0.095±0.0003± 0.082±0.0005± 0.079±0.0002± 0.090±0.0003±	300 - 1300			
Manganese	0.025±0.0003± 0.040±0.0003± 0.073±0.0002± 0.091±0.0002± 0.036±0.0004±	0.040±0.0003± 0.073±0.0002± 0.091±0.0002± 0.036±0.0004±	300 - 1300			
Copper	0.034±0.0001± 0.049±0.0004± 0.042±0.0003± 0.027±0.0001± 0.031±0.0002±	0.049±0.0004± 0.042±0.0003± 0.027±0.0001± 0.031±0.0002±	300 - 1300			
Cadmium	ND ND ND ND	ND	ND ND	300 - 1300		
Lead	ND ND ND ND	ND	ND ND	300 - 1300		

Means ±s.d within a row following by different alphabets are significantly different (p<0.05), nd (not detected). mnis: recommended nutrient intakes

Table 3. Vitamin content of the sampled fish species and WHO vitamins reference values

Vitamin (mg/l)	Schilbe mystus	Bagrus Bayad	Oreochromis niloticus	Clarias anguillaris	Petrocephalus bane bane	WHO Ref. Value
Vit. A	1.257±0.155± 8.083±0.204± 4.817±0.290± 15.873±0.181±	15.873±0.181±	2.500±0.193±	0.80		
Vit. C	0.413±0.112± 0.750±0.210± 1.223±0.448± 0.610±0.090±	0.610±0.090±	0.547±0.335±	60.00		
Vit. E	4.220±0.135± 2.477±0.251± 3.407±0.237± 2.633±0.505±	2.633±0.505±	3.657±0.181±	-		
Vit. B1	20.280±0.217± 14.170±0.159± 13.247±0.165± 26.157±0.265±	26.157±0.265±	33.880±0.229±	1.40		
Vit. B2	8.940±0.079± 10.440±0.071± 5.973±0.163± 4.847±0.290±	4.847±0.290±	5.553±0.434±	1.60		
Vit. B3	0.967±0.045± 2.077±0.031± 0.667±0.142± 1.307±0.139±	1.307±0.139±	0.987±0.135±	18.00		
Vit. B6	9.327±0.137± 12.533±0.215± 15.297±0.132± 12.450±0.347±	12.450±0.347±	15.830±0.246±	2.00		
Vit. B12	0.853±0.078± 0.653±0.065± 1.333±0.133± 2.153±0.080±	2.153±0.080±	3.043±0.212±	1.00		

Means ±S.D within a row following by different alphabets are significantly different (p<0.05)
But, they may become harmful to organism when their presence in the body are beyond its needs. *B. bayad* contained the highest values of minerals such as zinc (0.095 mg/g) and copper (0.049 mg/g) respectively. Both *O. niloticus* and *C. anguillaris* had the highest chromium content (0.014 mg/g). The trend of micro-elements was (iron>manganese> copper>chromium) and was supported by the works of Ako and Salihu [42]. The same similarity was established in the findings of Nurulla et al. [43] and Ghosh et al. [44], wherein a decreasing order: iron > zinc > manganese > cobalt > copper was observed.锌 is essential for the control of diabetic case identified with ineffectiveness of insulin [45]. Whereas, Iron has been very significant as a major component of haemoglobin [46].

The results of the vitamin content of the sampled fishes are presented in Table 3. *P. bane bane* had the highest levels of vitamins B1 (33.880 ± 0.229 mg/l), B6 (15.830 ± 0.246 mg/l) and B12 (3.043 ± 0.212 mg/l). Followed by *B. bayad* which contained the highest values of vitamins B2 (10.440 ± 0.071 mg/l) and B3 (2.077 ± 0.031 mg/l). Other fishes such as *C. anguillaris*, *O. niloticus* and *S. mystus* contained the highest levels of vitamins A (15.873 ± 0.181 mg/l), C (1.223 ± 0.448 mg/l) and E (4.220 ± 0.135 mg/l) respectively. In comparison with WHO reference values [47], all the fishes contained vitamins above the reference values for vitamins, except for vitamins C and B3 which had values below their WHO reference values. Differences in the vitamin content of the examined fishes was expected considering their innate characteristics. This was in addition to variations in habitat, geographical location, seasonality and physiological status [48]. Two fat soluble vitamins, vitamins A and E, found in high amounts in *C. anguillaris* corroborates the submission of Ersoy and Ozeren [49], which reported high concentrations of both vitamins in *C. gariepinus*. Also, water soluble vitamins, vitamins B1, B2, B3, B6, B12 and C, were reported by the same author, although different from the findings of this study where *P. bane bane* had the highest level of vitamin B1, B6 and B12, while the highest concentrations of vitamins B2 and B3 were observed in *B. bayad*.

4. CONCLUSION

There are variations in the proximate composition, minerals and vitamins contents of the five freshwater fish species examined. Differences in their innate body features and food types among other factors may have accounted for the variations in these parameters. High dry matter coupled with low moisture, high crude protein, fat and mineral contents in the fish species lend credence to their importance as animal protein sources. Macro- and micro-nutrients found in the fish species primes them as sources of essential and trace minerals. The nutritional importance of the minerals present in the fish species confers additional quality on them. Vitamin constituents in quantities above the recommended limits also add more values to the fish species. Although there exist variations in all the parameters, nevertheless, all the fish species contained adequate levels of proximate and mineral nutrients as well as vitamins. Hence, they can all be utilized as nutrient base for human and animal consumption. Further studies on the nutrient composition of other freshwater fish species is recommended in order to reveal differences in the species and aquatic habitats.

ETHICAL APPROVAL

This study was considered and approved by the Senate of University of Agriculture Makurdi at its 270th meeting held on Thursday, 5th November, 2015. The approval number was: Ref: D/PGS/UAM/ADM/037. All authors hereby declare that "Principles of laboratory animal care" (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws where applicable. All experiments have been examined and approved by the appropriate ethics committee".

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Adebayo-Tayo BC, Onilude AA, Patrick UG. Mycofloral of smoke-dried fishes sold in Uyo, Eastern Nigeria. World Journal of Agricultural Science. 2008;4(3):346-350.
2. FDF. Nigeria National Aquaculture Strategy. Assisted by FAO. Formally Approved by Government. 2009;18.
3. Eyo AA. Fish Processing Technology in the Tropics National Institute for Freshwater Fisheries Research. University of Ilorin Press. 2001;66-70.
4. Germano PML, Germano MIS. Hygiene and sanitary surveillance of food quality of raw materials. Diseases Transmitted by
Food: Training of Human Resources. 2nd. São Paulo: Varella. 2003:655.
5. Holland B, Brown J, Buss DH. Fish and fish products; the third supplement to McCance & Widdowson’s. “The composition of foods” 5th Edition, HMSO, London. 1993:34.
6. Watchman JJ. Composition and quality of fish. Edinburgh, Torry Research Station; 2000.
7. FAO. United Nations Food & Agriculture Organization, Nutritional elements of fish. FAO, Rome. 2005;23.
8. Fagbenro OA, Akinbulumo MO, Adeparusi OE, Raji AA. Flesh yield, waste yield, proximate and mineral composition of four commercial West African freshwater food fishes. Journal of Animal Veterinary Advances. 2005;4(10):488-851.
9. Bene C, Heck S. Fish and food security in Africa. NAGA World Fish Centre Quarterly. 2005;28(3):8-13.
10. NPC, ICF Macro National Population Commission, Nigeria. Nigerian Demographic and Health Survey, 2008, Abuja, Nigeria. National Population Commission, Federal Republic of Nigeria, Abuja, Nigeria. Available:pdf.usaid.gov/pdfs/docs/PNADQ923.pdf (Retrieved 27.11.2009)
11. Eruvbetine D. Canine nutrition and health. A Paper Presented at the Seminar Organized by Kensington Pharmaceuticals Nigerian Ltd. Lagos on August 21; 2003.
12. Murray RK, Granner DK, Meyes PA, Rodwell VW. Harpers Biochemistry 25th Edition McGraw-Hill Health Profession Division, USA. 2000;173.
13. Simsek A, Aykut O. Evaluation of the microelement profile of Turkish hazelnut (Corylus avellana L) varieties for human nutrition and health. International Journal of Food Science and Nutrition. 2007;58: 677-688.
14. Stevanato FB, Almeida VV, Matsushita M, Oliveira CC, Souza NE, Visentainer JV. Fatty acids and nutrients in the flour made from tilapia (Oreochromis niloticus) heads. Ciência e Tecnologia Alimentação. Campinas. 2008;28(2):440-443.
15. Maia EL, Oliveira CCS, Santiago AP. Composição química e classes de lipídios em peixe de doce curimatá comum, Prochilodus cearensis. Ciência e Tecnologia dos Alimentos. 1999;19(3):433-437.
16. Zenebe T, Ahigren G, Gustafsson B, Boberg M. Fatty acid and lipid content of Oreochromis niloticus L. in Ethiopian lakes. Dietary effects of phytoplankton. Ecogical and Freshwater Fish. 1998;7:146-158.
17. Clement S, Lovell RT. Comparison of processing yield and nutrient composition of Nile tilapia and catfish. Aquaculture. 1994;119:299-310.
18. Oladipo IC, Bankole SO. Nutritional and microbial quality of fresh and dried Clarias gariepinus and Oreochromis niloticus. International Journal of Applied Microbiology and Biotechnology. 2013;1:1-6.
19. Fawole OO, Ogundiran MA, Ayandiran TA, Olagunju OF. Proximate and mineral composition in some selected fresh water fishes in Nigeria. Internet Journal of Food Safety. 2007;9:52-55.
20. Olaosebikan BD, Aminu Raji. Field guide to Nigerian freshwater fishes. Remis Thomas. New Bussa. 2013;136.
21. Kumar B, Senthilkumar K, Priya M, Mukhopadhyaya DP, Saha R. Distribution, partitioning, bioaccumulation of trace elements in water, sediment and fish from sewage fed fish ponds in eastern Kolkata, India. Toxicology and Environmental Chemistry. 2010;92(2):243-260.
22. AOAC. Official Method of Analysis of the Association of Official Analytical Chemist (W. Horwitz Editor) Eighteen Edition, Washington; D. C., AOAC. 2006;150.
23. Brubacher G, Muller-Mulot W, Southgate DAT, (Eds). Vitamin B6 in foodstuffs. In Methods for the Determination of Vitamins in Food. Elsevier Appl. Sci., London & New York. 1985;12940. Drisk
24. Rutkowski M, Grzegorzck K, Gendek E, Kedziora J. Laboratory convenient modification of Bessey method for vitamin A determination in blood plasma. Journal of Physiology and Pharmacy. 2006;57(Suppl. 2):221.
25. Rutkowski M, Grzegorzck K. Kolorymetryczne oznaczanie stezenia witaminy Cw osoczu krwi przy uzyciu odczynnika fosforowolframianowego-modifikacja metody kyawa (Colorimetric determination of vitamin C concentration in blood plasma with phosphotungstate reagent-a modification of kyaw method). Diagnosis. Laboratory. 1998;34:243. (In Polish)
26. Rutkowski M, Grzegorzck K, Paradowski MT. Kolorymetryczna metoda oznaczania całkowitej witaminy Ew osoczu krwi-modyfikacja wazna metody tsena
(Colometric method of blood plasma total vitamin E determination-The own modification of Tseu method). Diagnosis Laboratory. 2005;41:375 (In Polish)

27. Winberg GG. Symbols, units and conversion factors. In: Studies of Freshwater Productivity. B.P. Section PFB Central Office, London. 1971:148.

28. Duncan, DB. Multiple range and multiple F-test. Biometrics. 1955;11:1-42.

29. Shantosh M, Sarojinali Ch. Nutritional quality of three cobitid fishes of Manipur, India: With reference to essential mineral elements. Int. J. Sci. Res. In Biological Sciences. 2018;5(2):24–33.

30. Muhammad A, Asmar Z, Abdul R, Shahid M, Naureen Q. Nutritional values of wild and cultivated silver carp (Hypophthalmichthys molitrix) and Grass Carp (Ctenopharyngodon idella). International Journal of Agriculture and Biology. 2011;13:210-214.

31. Elagba Mohammed HA, Rabie Al-Maqbaly, Mohamed Mansour H. Proximate composition, amino acid and mineral contents of five commercially Nile fishes in Sudan. African Journal of Food Sci. 2010;4(10):650–654.

32. Effiong BN, Mohammed I. Effect of seasonal variation on the nutritional composition in selected fish species in Lake Kainji, Nigeria. Natural and Science. 2008;6(2):1-5.

33. Banu SS, Hareesh K, Reddy MS. Evaluation of nutritional status of Penaeid Prawns through proximate composition studies. International Journal of Fisheries and Aquatic Studies. 2016;4(1):13-19.

34. Okazumi M, Fujii T. Nutritional and functional properties of squid and cuttle fish. 35th Anniversary Commemorative Publication. 2000;223.

35. Ahmed EO, Ahmed AM, Ebrahim SJ, Adm HH. Proximate and mineral composition of some commercially important fishes in Jebl Awlia reservoir, Sudan. The Journal of Middle East and North Africa Sciences. 2016;2(12):8-12. (P-ISSN 2412-9763)

36. Steffens W. Freshwater fish-wholesome foodstuffs. Bulg. J. Agric Sci. 2006;12:320-328.

37. Adeyeye EI. Water quality criteria and the relationship between the distribution and construction of some mineral elements in soil sediments, ambient water and the body parts of Clarias gariepinus fish in the fresh water, pond, Ghana, Journal of Chemistry. 1997;3(2):42-50.

38. Izquierdo P, Torres G, Allara M, Márquez E, Barboza Y, Sánchez E. Proximal analysis, content of essential amino acids and calcium / phosphorus ratio in some fish species. Scientific Journal of the Faculty of Veterinary Sciences. 2001;11(2):95.

39. Effiong BN, Fakunle JO. Proximate and mineral composition of some commercially important fishes in Lake Kainji, Nigeria. Journal of Basic Applied Science Research. 2011;1(12):2497-2500.

40. Turan M, Kordali S, Zengin H, Dursun A, Sezen Y. Macro and micromineral content of some wild edible leaves consumed in Eastern Anatolia. Acta Agric Scand Sect Plant Soil Sci. 2003;53:129-137.

41. WHO. Guideline of potassium intake for adult and children. WHO. 2012;10.

42. Ako PA, Salihu SO. Studies on some major and trace metals in smoked and over-dried fish. Journal of Applied Sciences and Environmental Management. 2004;8(2):5-9.

43. Nurullah M, Kamal M, Wahab MA, Islam MN, Ahsan CT, Thilsted SH. Nutritional quality of some small indigenous fish species of Bangladesh. In: Wahab MA, Thilsted SH, Haq ME, Ed. Small Indigenous Species of Fish in Bangladesh, Technical Proc. of BAU-ENRCA/DANIDA Workshop on Potential of Small Indigenous Species of Fish(SIS) in Aquaculture and Ricefield Stocking for Improved Food and Nutrition Security in Bangladesh. Bangladesh Agriculture University, Mymensingh. 2002;151-158.

44. Ghosh D, Chakrabaty R, Dey R. Nutritive value of some fishes available in the markets of a northeast Indian city, Shillong, with reference to certain essential elements. Journal of Inland Fishery Society. 2004;10:36-40.

45. Okaka JC, Okaka ANO. Food composition, spoilage and shelf life extension. Ojcarco Academic Publishers, Enugu, Nig. 2001:54-56.

46. Onwordi CT, Ogunbade AM, Wusu AD. The proximate and mineral composition of three leafy vegetables commonly consumed in Lagos Nigeria. Afr. J. Pure Appl. Chem. 2009;3:102–107.

47. WHO/FAO Guidelines on Food Fortification with Micronutrients. With
Library Cataloguing-In-publication Data.
World Health Organisation 20 Avenue Appia, Geneva 27, Switzerland; 49. Ersoy B, Özeren A. The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chemistry. 2009;115(2):419-422.

48. Greenfield H, Southgate DA. Food composition data: Production, management and use. Second Edition. FAO, Rome. 2003;289.

© 2019 Elaigwu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/49064