Fabrication and characterization of thermally drawn fiber capacitors

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Lestoquoy, Guillaume, Noe#mie Chocat, Zheng Wang, John D. Joannopoulos, and Yoel Fink. “Fabrication and characterization of thermally drawn fiber capacitors.” Applied Physics Letters 102, no. 15 (2013): 152908. © 2013 AIP Publishing LLC
As Published	http://dx.doi.org/10.1063/1.4802783
Publisher	American Institute of Physics (AIP)
Version	Final published version
Citable link	http://hdl.handle.net/1721.1/79812
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Fabrication and characterization of thermally drawn fiber capacitors

Guillaume Lestoquoy, Noémie Chocat, Zheng Wang, John D. Joannopoulos, and Yoel Fink

Poly(vinylidene fluoride) (PVDF) is a synthetic polymer used in a wide variety of applications, ranging from ultrasound transducers to lithium ion batteries, thermal sensors, outdoor paints, and western blots. In particular, it is an attractive dielectric material for polymer film capacitors because of its relatively high dielectric constant and strength as well as its potential as matrix for high-permittivity nanocomposite polymers. Such capacitors can achieve high energy densities as well as high strain sensitivity, and the mechanical flexibility of PVDF in these devices presents a great potential for mobile, wearable sensors as well as electrolyte-free energy storage solutions. Yet, although these applications ideally span large areas, the flexibility of PVDF has thus far been exploited in small devices only. The preform-to-fiber thermal-drawing process offers a scalable path to the generation of very large area devices, and recent developments in multi-material fiber fabrication have led to the inclusion of PVDF-based copolymers in piezoelectric fibers for acoustic transduction and optical modulation. This opens the way to thermal-drawing of high-permittivity polymer fiber capacitors that are flexible and light-weight. Previous results on polymer fiber capacitors have been reported, but the low permittivity of the polyethylene used limits the capacitance per unit volume of dielectric and the fibers lack a well-integrated metallization scheme. Here, we demonstrate the thermal drawing of a fully functional fiber design containing the dielectric layer as well as both metallic and viscous electrodes. We characterize the frequency response of the impedance and account for the observed capacitive behavior and its high-frequency limitations in a materials-based model. A multilayered design comprising a wider, folded PVDF film is then demonstrated and is shown to greatly enhance the capacitance, which scales linearly with the fiber length and is unaffected by fiber dimension fluctuations. © 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4802783]
Indeed, while most polymers routinely used in fiber drawing have high glass-transition temperature and a viscosity that continuously decreases with increased temperature,12 PVDF, a semi-crystalline polymer, melts at a temperature between 158 °C and 197 °C.17 Such a material is traditionally challenging to draw as a thin layer within a fiber, since large-aspect-ratio, low-viscosity elements are subject to capillary instabilities due to surface tension and can ultimately break-up into smaller elements.18 Drawing of a thin layer of PVDF thus necessitates its confinement within boundaries that remain viscous enough during the draw process. In a capacitor, these boundaries are the electrodes, which must, therefore, be both viscous and conductive. Commonly employed crystalline metals are thus unsuitable, and we instead use a composite polymer loaded with carbon particles, Conductive Polyethylene (CPE). Its viscosity enables the drawing of large aspect ratio electrodes that can confine the liquefied PVDF.13 Figs. 1(a)–1(d) depict the process of fabrication of a flat capacitor fiber by scaling down of a macroscopic preform using thermal drawing. Initially, a 5 mm-thick bar of polycarbonate (McMaster) is milled to the proper shape and a strip of Bi\textsubscript{58}Sn\textsubscript{42} (eutectic alloy, Indium Corporation) is inserted in it. A 400 μm-thick CPE sheet (Measurement Specialities) is then wrapped around the rounded edge of the bar and the whole operation is repeated a second time. These two identically prepared elements are then stacked around a 300 μm-thick PVDF layer (AJEDIUM Film Group, Solef 10.0) and the structure is consolidated under vacuum at ~185 °C. The obtained preform (38 mm wide, 11 mm thick, and 200 mm long) is then thermally drawn at ~230 °C into tens of meters of flexible fiber. The optical micrograph in Fig. 1(e) depicts the key elements of the fiber cross-section: the flat central capacitor structure, the wrapped CPE layers allowing easy electrical connection from the outside and the integrated metallic bus, added to ensure good electrical conduction along potentially extended fiber lengths. Indeed, the conductivity of CPE (1–10 S m-1),14 while well-suited for conduction within the millimetric fiber cross-section, is not sufficient to ensure a uniform electric potential along meters of fiber.19 While this effect can be exploited in some cases,19,20 here it would preclude long fibers from behaving as capacitors (see supplementary Fig. 1).27

The fiber capacitive behavior can be demonstrated from the variations of the fiber complex impedance Z with f, the ac frequency of the applied voltage. Using a Hioki 3532-50 LCR HiTester impedance analyzer directly connected to the fiber sides, we record these variations over the [42 Hz; 5 MHz] range. Fig. 2(a) depicts both the measured modulus $|Z|$ and phase φ of Z as f varies. For an ideal capacitor, $|Z|$ would be inversely proportional to f, and φ, the phase shift between voltage and current, equal to -90° at all frequencies. In practice, however, capacitors depart from this ideal behavior

![FIG. 1. Fiber fabrication. (a)–(d) Fabrication process flow. (e) Optical micrograph of the fiber cross-section: The central PVDF layer is flanked by two layers of CPE (dark gray), wrapped around the surrounding PC (light gray) bars to cover the fiber sides (top and bottom). The Bi\textsubscript{58}Sn\textsubscript{42} wire is shown in white. Scale bar in (e) is 200 μm.](http://example.com/fig1)

![FIG. 2. Fiber frequency response and materials-based model. (a) Frequency response of the impedance of a 2.4 cm flat capacitor fiber sample. Black squares represent the measured complex impedance modulus (left axis) and blue triangles its phase (right axis). Black and blue lines are resp. the modeled behavior of $|Z|$ and φ using the model shown in (b) and the polynomial functions obtained from (c). (b) Schematic model of a fiber connected to an impedance analyzer. (c) Frequency dependence of $\varepsilon'_{\text{poly}}$ of a 300 μm-thick film before thermal draw. Black squares represent the measured real part (left axis) and blue triangles the measured imaginary part (right axis). Solid black and blue lines are 4th order polynomial approximations of these data.](http://example.com/fig2)
because of their internal series resistance, which prevents |Z| from dropping indefinitely with f and reduces φ, and because of current leakage through the dielectric material, which also impacts φ. The quality of the capacitor can be estimated by the dissipation factor DF, defined as

$$DF = \tan(\phi + 90^\circ).$$ \hspace{1cm} (2)

We see in Fig. 2(a) that DF reaches 10% (for φ = 84°) at 20 kHz and 50% (for φ = 63°) around 100 kHz, beyond which |Z| plateaus and φ drops significantly, setting the upper limit on the frequency of operation of the fiber as a capacitor.

In order to properly identify the origin of these limitations of the capacitor performances, we construct a model for Z that takes the different materials' behaviors into account. Thanks to the conductive Bi_{58}Sn_{42} elements, the fiber behaves like a simple series circuit as depicted schematically in Fig. 2(b), in which Z is modeled as the sum of the impedances of the different parts of the system: Z_{CPE} for the polymer electrodes, Z_{PVDF} for the PVDF film, and a purely resistive term R_{contact} to take into account losses at the connection with the setup. It has been reported that because of its composite nature, the resistivity of CPE is stable at low frequency but decreases above a critical frequency f_0, whose value highly depends on the polymer treatment. We take this into account by modeling the Z_{CPE}(f) in the following way:

$$Z_{CPE}(f) = \frac{R_{CPE}}{1 + j\frac{f}{f_0}},$$ \hspace{1cm} (3)

where R_{CPE} is the low frequency resistance of the electrode. We have repeatedly witnessed this effect in fibers containing CPE and, because the thermal-drawing process itself can greatly impact the value of f_0, we take it as a parameter in this model. The impedance of the PVDF layer is calculated using Eq. (1)

$$Z_{PVDF}(f) = \frac{1}{j\frac{\varepsilon_{pvdf}}{2\pi f}}.$$ \hspace{1cm} (4)

where A, t, and ε_{pvdf} are, respectively, the surface area, thickness, and dielectric permittivity of the PVDF film inside the fiber. The overall impedance of the system is obtained by summing its constituent parts

$$Z(f) = 2R_{contact} + 2Z_{CPE}(f) + Z_{PVDF}(f).$$ \hspace{1cm} (5)

As seen in Eq. (4), ε_{pvdf} is central in setting the capacitance of the fiber device and its variations with the frequency f are expected to impact the fiber response. We measure these variations by gold-coating both sides of a 1 cm² portion of a 300 µm-thick film of PVDF such as the one placed in the preform, and using the same impedance analyzer as previously. From the measured data and Eq. (4), we retrieve the variations of ε_{pvdf} with f and show the obtained results in Fig. 2(c) for ε′ and ε″, respectively, the real and imaginary parts of ε_{pvdf}, which are consistent with similar reported measurements. Using MATLAB, the discrete data points obtained are modeled by two fourth-order polynomial functions, shown in solid lines on this same plot. Although these functions capture accurately the variations of ε′ and ε″ over the range of frequencies of interest for the PVDF film used in the preform, the drawing process is likely to alter ε_{pvdf} as PVDF melts and recrystallizes. In our model, we include this effect by keeping ε′ (1 kHz) and ε″ (1 kHz) as parameters, and variations of ε_{pvdf} with f are assumed to follow the polynomial functions obtained earlier, but scaled proportionally to the change of PVDF permittivity at 1 kHz from the preform to the fiber. The result of fitting (5) to the measured impedance of the fiber sample is displayed in Fig. 2(a). The quality of the fit is excellent for [R_{contact} = 2.8 kΩ, R_{CPE} = 3.0 kΩ, f_0 = 10.5 MHz, ε′ (1 kHz) = 12.7ε_0, and ε″ (1 kHz) = 0.14ε_0], a set of values consistent with previously reported results, which indicates a slight increase of the permittivity of PVDF induced by the draw process itself. This model shows that the plateau in |Z| at high frequencies can be lowered by arranging the geometry of the fiber in order to reduce R_{CPE}, so that the ultimate limitation in this fiber is the increased dielectric loss ε″ in PVDF above 100 kHz.

To increase the fiber capacitance, the dielectric constant of the dielectric layer could be modified. Indeed, nanocomposite materials using PVDF or its co- or ter-polymers as matrix, filled with various ceramic, metallic, or organic particles are the center of an active area of research, and dielectric constants in the hundreds have already been achieved. However, the fillers in such composites do not only impact the permittivity but also the dielectric strength and, importantly, the mechanical properties of the polymer. Identifying nanocomposite polymers with high permittivity and dielectric strength that remain compatible with the thermal-drawing process calls for a wide-scale study that is beyond the scope of this paper. Nonetheless, other strategies can be developed to enhance the fiber capacitance without replacing the dielectric material. A thinner layer of PVDF can be used, although its low viscosity during the draw makes thinning it down below a few microns challenging. A more efficient strategy consists in increasing the electrodes’ surface area per unit length of fiber, by expanding the fraction of fiber volume taken by the capacitive structure. In Fig. 3, we show an evolved fiber design, in which the internal architecture of the fiber is made of interdigitated CPE electrodes, separated by a folded PVDF film. This structure is inspired from multilayered ceramic capacitors, as it yields large effective electrode area per unit volume and can easily be reproduced with polymer films. As shown in Fig. 3(a), the fabrication process differs from the one shown in Fig. 1 only in the fact that a multilayered structure is now placed between the prepared PC bars instead of a single layer of PVDF. The rest of the fiber fabrication process is identical, and a typical cross-section of the obtained fiber is shown in Fig. 3(b) for a structure where the PVDF layer is folded 6 times. Fig. 3(c) shows the tip of the CPE “fingers” and demonstrates that PVDF maintains its structural integrity during the draw. With this approach, fiber capacitors with much greater internal surface area of electrode can be produced, and the active volume inside the fiber is increased as well. To demonstrate the efficiency of this strategy in enhancing the fiber capacitance, three preforms with different architectures were fabricated...
In Fig. 4, we display the measured capacitance of fiber samples as a function of the fiber length for three different designs: single-layer (black squares), twice-folded (red circles) and six-times-folded (blue triangles) PVDF thin-film. The straight lines are linear fits to the data, with slopes of 6 nF m$^{-1}$, 32 nF m$^{-1}$, and 49 nF m$^{-1}$, respectively.

FIG. 4. Measured capacitance of fiber samples as a function of the fiber length for 3 different designs: single-layer (black squares), twice-folded (red circles) and six-times-folded (blue triangles) PVDF thin-film. The straight lines are linear fits to the data, with slopes of 6 nF m$^{-1}$, 32 nF m$^{-1}$, and 49 nF m$^{-1}$, respectively.

In summary, we have demonstrated an all-in-fiber capacitor using PVDF as dielectric material. The low-loss capacitive behavior up to 20 kHz of the device is established and the high-frequency behavior is accounted for by the materials’ properties. Using CPE, a viscous conductive material for the electrodes, multilayered structures comprised high aspect ratio films are drawn and it yields high capacitance that scales linearly with the fiber length.

This work was supported in part by the Materials Research Science and Engineering Program of the U.S. National Science Foundation under Award No. DMR-0819762 and also in part by the U.S. Army Research Office through the Institute for Soldier Nanotechnologies under Contract No. W911NF-07-D-0004.
15 J. F. Gu, S. Gorgutsa, and M. Skorobogatiy, Appl. Phys. Lett. 97, 133305 (2010); Smart Mater. Struct. 19, 115006 (2010).
16 R. Gregorio and E. Ueno, J. Mater. Sci. 34, 4489 (1999).
17 Modern Fluoropolymers, edited by D. A. Seiler and J. Scheirs (Wiley, New York, 1997), pp. 487–506.
18 D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, Nano Lett. 8, 4265 (2008).
19 F. Sorin, G. Lestoquoy, S. Danto, J. D. Joannopoulos, and Y. Fink, Opt. Express 18, 24264 (2010).
20 A. M. Stolyarov, L. Wei, F. Sorin, G. Lestoquoy, J. D. Joannopoulos, and Y. Fink, Appl. Phys. Lett. 101, 011108 (2012).
21 R. Kotz and M. Carlen, Electrochim. Acta 45, 2483 (2000).
22 Carbon Black–Polymer Composites: The Physics of Electrically Conducting Composites, edited by H. Kawamoto and E. K. Sichel (Marcel Dekker, New York, 1982), pp. 135–162.
23 Z.-M. Dang, Y.-H. Lin, and C.-W. Nan, Adv. Mater. 15, 1625 (2003).
24 M. Arbatti, X. Shan, and Z.-Y. Cheng, Adv. Mater. 19, 1369 (2007).
25 Q. Zhang, H. Li, M. Poh, F. Xia, Z. Cheng, H. Xu, and C. Huang, Nature 419, 284 (2002).
26 H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys., Part 1 42, 1 (2003).
27 See supplementary material at http://dx.doi.org/10.1063/1.4802783 for evidence of the need for metallic current buses along the fiber length and for details on the behavior of longer fiber samples with frequency.