Systematic Review

The relationship between Apgar score and gender with the incidence of neonatal sepsis: systematic review

Merry Lidya1*, Umi Hanik Fetriyah2, Dini Rahmayani3, Malisa Ariani2

1Bachelor Nursing Program, Faculty of Health, Sari Mulia University, Indonesia
2Nursing Program, Faculty of Health, Sari Mulia University, Indonesia
3Department of Maternity Nursing, Nursing Program, Faculty of Health, Sari Mulia University, Indonesia

Received: 06 September 2021
Accepted: 07 October 2021

*Correspondence:
Merry Lidya,
E-mail: merrylidya28@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial

ABSTRACT

Neonatal sepsis is a cause of morbidity and mortality in newborns that causes long-term complications that can lead to death. One of risk factors for neonatal sepsis in infants is the Apgar score and gender. The aim of the study was to analyze the relationship between Apgar score and gender with the incidence of neonatal sepsis. This study was systematic review, in searching sourced from six databases (EBSCO, Clinicalkey Nursing, PubMed, ProQuest, Science Direct and Springer Link). In searching for studies using the PICOS framework, the selection study used The Joanna Briggs Guideline Critical Appraisal. The literature used was 14 studies. The results of this study were from 14 literatures used, the average total incidence of neonatal sepsis was 0.356 (35.6%). 10 of the 14 literatures stated that the 5th minute Apgar score of less than seven (<7) could be an independent predictor of the risk of neonatal sepsis with a mean risk of 16.9% (p value<0.01) and there were 8 from 14 literatures which states that there is a significant relationship between gender and the incidence of male gender morbidity with a risk of 1.02 (p value=0.00). The results showed that there was a relationship between Apgar scores and gender with the incidence of neonatal sepsis. Therefore, nurses or birth attendants need to be vigilant and take preventive measures if they find babies have Apgar scores and male sex as signs of a possible higher risk of neonatal sepsis in newborns.

Keywords: Apgar score, Gender, Sepsis, Neonatal

INTRODUCTION

Infection is a health problem that often occurs in developed and developing countries. Infection knows no age, race and gender, anyone can experience this health problem even in newborns. Infection in newborns less than 28 days of life is known as neonatal sepsis. Neonatal sepsis is a disease caused by systemic bacterial infection, this infection is a major cause of morbidity and mortality in newborns.

The results of The Global Burden of Disease (2016) study identified neonatal sepsis as a cause of newborn death. the third most common and the 16th largest contributor to death in all age groups and there are 336,300 deaths per year caused by neonatal sepsis. In Indonesia, the incidence of neonatal sepsis is 8.7%-30.29% with a mortality rate of 11.56%-40.9%.

Neonatal sepsis can cause complications of infant growth and development delays, communication delays and developmental delays pervasive developmental disorder not otherwise specified (PDD-NOS), developmental delays caused by sepsis can continue until the child is 5 years old if not treated.

Sepsis is influenced by various factors, namely maternal, environmental and infant factors. One of the risk factors for infants is the Apgar score and gender, but there is a difference of opinion on the Apgar score and gender as factors that influence the incidence of neonatal sepsis, therefore the purpose of this study was to analyze the
relationship between the Apgar score and the type of pregnancy with the incidence of neonatal sepsis.

METHODS

The research method used in this study is a systematic review. Secondary data obtained and used in this study were in the form of international journal articles and books with a predetermined theme, namely the relationship between Apgar score and gender with the incidence of neonatal sepsis. The literature search in this study used 6 databases that had high and medium quality criteria, including the EBSCO database, Clinicalkey Nursing, PubMed, ProQuest, Science Direct and Springer Link, or not) is used to expand or specify in the search, making it easier to determine the journal that will be used as a framework in preparing the review. The keywords in this study are in accordance with Medical Subject Heading (MeSH), namely Apgar score and gender and sepsis neonatorum. The next journal article selection process by reading the entire article and re-selecting articles that do not fit will be discarded and will be recorded using the PRISMA flow chart strategy. Selected journal articles will be extracted independently by three researchers and examined by other researchers. The results of the selection of articles are described in the Flow Diagram (Figure 1).

The results of a literature search found 18 journals which were then assessed using The Joanna Briggs Guideline (JBI) Critical Appraisal by following a checklist according to the research design in the literature, critical appraisal was used to help limit the possibility of post hoc bias in a systematic review so as to get reviews that are in accordance with research purposes. The literature used is literature that has a quality result value of >50% with characteristics that are included according to a predetermined protocol. Researchers conducted an assessment using JBI critical appraisal, there were 14 literatures that did not have the risk of bias and could used, the results of the study assessment using The JBI critical appraisal tools (Table 1).

![Diagram of the study selection process.](image-url)

Figure 1: Relationship between Apgar score and gender with the incidence of neonatal sepsis.
In the research results of Gutbir et al, it is stated that an Apgar score with a low score is at risk of experiencing neonatal sepsis with a relative risk of 1.28, in line with the results of research from 9 literatures discussing Apgar score, the results of the study by Ndombo et al showed that gender was not associated with the occurrence of neonatal sepsis with a p value<0.05, 95% CI: 1.3-7, OR: 3.2). Assessment of the Apgar score can be done at the same time as the examination of sex, gender is one of the risk factors for neonatal sepsis. The gender at risk for infection is higher in the male sex, this is in accordance with the results of the study of Murthy, et al that male infants are 1.3 times higher risk of infection (p value=0.03, 95% CI: 1.02-1.68, OR: 1.3) compared to female infants, this is in line with the results of 5 literature studies which state that male sex is at risk 1.31 (p value=0.003, 95% CI: 1.22-1.41, OR: 1.31) had a higher risk of infection and even death than women.13-15,17,19

Table 3 shows the results of the analysis that 10 of the 14 literatures that discuss the Apgar score, the results of research from 10 literatures that the 5th minute Apgar score value of less than seven is an independent predictor of the risk of neonatal sepsis with a p value<0.01 (95% CI: 8.31-41.45, OR: 18.56) with a mean risk of 16.9%. A low Apgar score at minute 5 has a risk of 3.47 times more likely to be infected (p value=0.000, 95% CI: 2.53-4.41, OR: 3.47) and even cause death, compared to newborns born with Apgar normal scores. The 1st minute Apgar score with a value less than 7 has a 1.5 times greater risk of infection (p value=0.01, 95% CI: 5.7-0.99). There is a difference in risk values between the Apgar score for values less than 7 seen at the 1st minute and seen from the 5th minute, this is because asphyxia causes immunological disorders and requires resuscitation intervention after birth, this tends to give time for bacteria to have the opportunity to explore self in newborns.12 Table 3 shows that there is a significant relationship between gender and the occurrence of morbidity in the male sex with a relative risk of 1.20 (p value=0.01, 95% CI: 1.02-1.40, RR: 1.40), this study is in line with 7 other studies which state that there is a significant relationship between the occurrence of infection and gender but the results of the study by Ndombo et al showed that gender was not associated with the occurrence of neonatal sepsis (p value=0.4621). The male sex that tends to be at risk for becoming a risk factor for neonatal sepsis is the sex born <30 weeks because in infants born <30 weeks, the biological development of the fetus is still immature compared to the female sex.19
Table 2: Characteristics of the included studies.

S. no.	Study	Location	Study period	Setting	Study design	Sample	N	%	No-sepsis	N	%	Risk factor
1.	Ndombo et al, 2017	Cameroon	11 November 2015 to 29 February 2016	Neonatology unit	Cohort study	104	31.3	228	68.6	332 neonates	Apgar score	
2.	Gutbir et al, 2020	Israel	January 1991 to January 2014	Database Soroka University Medical Center (SUMC)	Cohort study	238	1	223,006	99	223,244 neonates	Apgar score	
3.	Schindler et al, 2017	New South Wales dan Australia Capital Territory	1 January 2007 to 31 December 2011	NICUS	Cohort study	1.505	33.7	2.949	66.3	4.454 neonates	Apgar score and baby with male gender	
4.	Garfinkle et al, 2020	Canada	January 2007 to December 2016	NICUS	Cohort study	3.667	21.8	13.144	78.2	16.811 neonates	Baby with male gender	
5.	Voskamp et al, 2020	Saudi Arabia	January 2011 to December 2015	NICU	Cohort study	895.272	51.4	847.559	48.6	1.742.831 neonates	Baby with male gender	
6.	Akalu et al, 2020	Northwest Ethiopia	March 2018 to April 2018	NICU	Case control study	77	33.3	154	66.7	231 neonates	Apgar score	
7.	Boghossian et al, 2018	United States	1 January 2006 to 31 December 2016	NICU	Case control study	38.465	18.7	167.285	81.3	205.750 neonates	baby with male gender	
8.	Gebremedhin et al, 2016	North Ethiopia	December 2014 to June 2015	IMNCI (Intergated Management of neonatal and childhood illness)	Case control study	78	33.3	156	66.7	234 neonates	Apgar score	
9.	Stevic et al, 2018	Belgrade	December 2005 to December 2015	NICU	Case control study	35	47.3	39	52.7	74 neonates	Apgar score and baby with male gender	
10.	Al-Matary et al, 2019	Saudi Arabia	January 2011 to December 2015	NICU	Case control study	245	45.1	298	54.9	245 neonates	Apgar score and baby with male gender	
11.	Bitew et al, 2020	Sub-Saharan Africa	June 2020	Web of Science, PubMed, Elsevier, Scopus, CINAHL, World Cat dan Google scholar	Systematic review and metaanalysis	14.756	3.3	431.143	96.6	445.899 neonates	Apgar score and baby with male gender	

Continued.
S. no.	Study	Location	Study period	Setting	Study design	Sample size (N)	Risk factor	
12.	Murthy et al, 2019	India	March 2000 to March 2018	PubMed, CINAHL, Scopus, Web of Science, Popline, Indmed, Indian Science Abstract dan Google scholar	Systematic review and meta-analysis	4.850	53.124 neonates	Baby with male gender
13.	Hospital et al, 2020	Pakistan	October 2015 to December 2016	NICU	Cross sectional studies	21	81 neonates	Apgar score and baby with male gender
14.	Ibishi et al, 2018	Kosovo	September 2013 to July 2015	Obstetri Clinic dan Ginekologi Tersier	Cross sectional studies	26	200 neonates	Apgar score

Results

S. no.	Study	Hypothesis test results	95% CI	OR/RR	
1.	Ndombo et al, 2017	Apgar score	<0.01	8.31-41.45	RR:18.56
		Male gender	0.4621	0.69-2.28	RR:1.25
2.	Gutbir et al, 2020	Apgar score	0.04	1.01	RR:1.28
		Male gender	0.003	1.08-1.48	RR:1.27
3.	Schindler et al, 2017	Apgar score	0.000	1.34-2.13	RR:1.69
		Male gender	0.000	4.56-7.18	RR:5.73
4.	Garfinkle et al, 2020	Male gender	0.01	0.96-1.09	RR:1.02
		Apgar score	-	-	-
5.	Voskamp et al, 2020	Male gender	0.0001	1.02-1.40	RR:1.20

Table 3: Relationship between Apgar score and gender with the incidence of neonatal sepsis.
	Study	Outcome	p-Value	CI	OR
6.	Akalu et al, 2020	Apgar score	<0.05	1.3-7.7	OR:3.2
	Male gender				
7.	Boghossian et al, 2018	Male gender	<0.001	1.06-1.10	OR: 1.08
	Apgar score				
8.	Gebremedhin et al, 2016	Apgar score	<0.001	3.63-13.08	OR:68.9
	Male gender				
9.	Stevic et al, 2018	Apgar score	0.04	5.71-2.09	OR: 5.46
	Male gender				
10.	Al-Matary et al, 2019	Apgar score	0.02	48.5-58.5	OR:48.5
	Male gender				
11.	Bitew et al, 2020	Apgar score	0.000	2.53-4.41	OR: 3.47
	Male gender				
12.	Murthy et al, 2019	Male gender	0.03	1.02-1.68	OR:1.3
	Apgar score				
13.	Hospital et al, 2020	Apgar score	<0.001	-	-
	Male gender				
14.	Ibishi et al, 2018	Apgar score	0.01	5.7-0.99	-
DISCUSSION

Neonatal sepsis is an infectious process experienced by infants aged less than 28 days of life with signs of systemic infection syndrome, circulatory shock and multisystem organ failure. The incidence of neonatal sepsis continues to increase every year, seen from the incidence of neonatal sepsis from 2016-2020 when added up to 939,768 cases of sepsis in the last 5 years.1,8,15,18,20

The incidence of neonatal sepsis is more vulnerable in premature infants because it is seen from the immature body immunity so that this also affects the occurrence of infection.

The risk factors for neonatal sepsis are divided into three parts, one of which is the baby factor, namely the Apgar score and gender. Six studies said that a 5th minute Apgar score of less than 7 had a significant relationship with the risk of neonatal sepsis, neonates with an Apgar score of less than 7 were 3 times more likely to suffer from neonatal sepsis than those with an Apgar score of 1-5 minutes more than 7 with a p value of 0.000 (95% CI: 2.53-4.4, OR: 3.47) this is in line with Karen's theory that an Apgar score of less than 7 at minute 1 to minute 5 has a risk of infection 17.9%.21

A low Apgar score of less than 7 may reflect that the neonate has immunological disorders such as respiratory, cardiovascular and neurological disorders, therefore a low Apgar score is a signal that the neonate is at high risk of developing neonatal sepsis (95% CI: 1.01 OR: 1.28).8,9,11 The results of this study are in line with Razaaaz’s theory that the Apgar score assessment is very important to determine whether the neonate suffers from asphyxia or not which is assessed for heart rate, respiratory effort, muscle tone, skin color (Skin Color) and reactions to stimuli (Response to Stimuli).22 Gender is also one of the risk factors for neonatal sepsis. The sex most at risk for neonatal sepsis is male because men have 46XX chromosomes, this causes the X and X chromosomes to epimutate and causes the formation of Angiotensin Converting Enzyme 2 (ACE2) which more than women cause vasodilating effects because they are located on cell surface receptors such as in the lungs, arteries, heart, kidneys and intestines.23

ACE2 is a viral reservoir, this causes open access for viruses and bacteria in the baby's body, resulting in the baby being more susceptible to infection or experiencing neonatal sepsis.23 This is in line with five studies that say that the male sex is more susceptible to infection with a risk of 1.31 times (p value=0.003, 95% CI 2.53-4.41 OR: 1.31) This shows that gender has a value that needs to be considered in providing health action. A low Apgar score of <7 at the 1st and 5th minutes can be a signal for health workers, especially doctors, midwives and nurses that newborns can be expected to be at higher risk of developing neonatal sepsis, as well as gender, the baby's gender. The male sex who is more at risk of infection can be a consideration for health workers to be more-wary of the occurrence of neonatal sepsis in infants. Assessment of the Apgar score and gender can also be carried out simultaneously so that it can make it easier for health workers to assess these risk factors when dealing with newborns.

CONCLUSION

Apgar score and gender are risk factors for infants that can cause neonatal sepsis. Although the Apgar score assessment is still often doubted as a risk factor for neonatal sepsis because the Apgar score assessment is subjective and prone to misjudgment, the low Apgar score and male gender both contribute to the risk of neonatal sepsis. Therefore, these two risk factors need to be considered in newborns as a benchmark or signal that newborns may be at higher risk of developing neonatal sepsis, these two risk factors, Apgar score and gender can be assessed at the same time this can facilitate health workers to be able to assess quickly and accurately.

ACKNOWLEDGEMENTS

We would like to thank Sari Mulia University in Banjarmasin who was contributed to doing this research.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

1. Akalu TY, Gebremichael B, Desta KW, Aynalem YA, Shiferaw WS, Alamneh YM. Predictors of neonatal sepsis in public referral hospitals, Northwest Ethiopia: A case control study. PLoS One. 2020;15(6):234472.
2. Ershad M, Mostafa A, Dela CM, Vearrier D. Neonatal Sepsis. Curr Emerg Hosp Med Rep. 2019;7(3):83-90.
3. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459-544.
4. Yuliana F, Mahpolah M, Nopariyanti E. Maternal Risk Factors in Increasing the Incidence of Neonatal Sepsis in RSUD Dr. H. Moch. Ansari Saleh Banjarmasin. Midwifery Natl Semin. 2019;1:73-83.
5. Savioli K, Rouse C, Susi A, Gorman G, Gorman E. Suspected or known neonatal sepsis and neurodevelopmental delay by 5 years. J Perinatol. 2018;38(11):1573-80.
6. Giannoni E, Agyeman PKA, Stocker M, Posfay BKM, Heininger U, Spycher BD, et al. Neonatal Sepsis of Early Onset, and Hospital-Acquired and Community-Acquired Late Onset: A Prospective
Population-Based Cohort Study. J Pediatr. 2018;201:106-14.
7. Nursalam M. Guidelines for Writing Literature Review Thesis and Systematic Review Thesis. 1st ed. Surabaya: Faculty of Nursing Universitas Airlangga Surabaya; 2020.
8. CM Hospital. Effects of antenatal complications, Apgar score and birth. 2020. Available at: https://cmhospital.in/. Accessed on 24 August 2021.
9. Gutbir Y, Wainstock T, Sheiner E, Segal I, Sergienko R, Landau D, et al. Low Apgar score in term newborns and long-term infectious morbidity: a population-based cohort study with up to 18 years of follow-up. Eur J Pediatr. 2018;201:106-14.
10. Ndombo PK, Ekei QM, Tochio JN, Temgoua MN, Angong FTE, Ntock FN, et al. A cohort analysis of neonatal hospital mortality rate and predictors of neonatal mortality in a sub-urban hospital of Cameroon. Ital J Pediatr. 2017;43(1):52.
11. Schindler T, Smith L, Lui K, Bajuk B, Bolisetty S, New South Wales and Australian Capital Territory Neonatal Intensive Care Units’ Data Collection. Causes of death in very preterm infants cared for in neonatal intensive care units: a population-based retrospective cohort study. BMC Pediatr. 2017;17(1):59.
12. Gebremedhin D, Berhe H, Gebrekirstos K. Risk Factors for Neonatal Sepsis in Public Hospitals of Mekelle City, North Ethiopia, 2015: Unmatched Case Control Study. PLoS One. 2016;11(5):154798.
13. Stevic M, Simic D, Ristic N, Budic I, Marjanovic V, Srceva M, et al. Evaluation of factors for poor outcome in preterm newborns with posthemorrhagic hydrocephalus associated with late-onset neonatal sepsis. Ther Clin Risk Manag. 2018;14:1965-73.
14. Matary A, Heena H, Sarheed AS, Ouda W, Shahran DA, Wani TA, et al. Characteristics of neonatal Sepsis at a tertiary care hospital in Saudi Arabia. J Infect Public Health. 2019;12(5):666-72.
15. Bitew ZW, Alemu A, Ayele EG, Jember DA, Haile MT, Worku T. Incidence Density Rate of Neonatal Mortality and Predictors in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. Int J Pediatr. 2020;2020:3894026.
16. Ibishi VA, Isjanovska R, Malin AE. Early-onset neonatal infection in pregnancies with prelabor rupture of membranes in Kosovo: A major challenge. Turk J Obstet Gynecol. 2018;15(3):171-6.
17. Murthy S, Godinho MA, Guddattu V, Lewis LES, Nair NS. Risk factors of neonatal sepsis in India: A systematic review and meta-analysis. PLoS One. 2019;14(4):215683.
18. Voskamp BJ, Peelen MJCS, Ravelli ACJ, Lee R, Mol BWJ, Pajkri E, et al. Association between fetal sex, birthweight percentile and adverse pregnancy outcome. Acta Obstet Gynecol Scand. 2020;99(1):48-58.
19. Boghossian NS, Geraci M, Edwards EM, Horbar JD. Sex Differences in Mortality and Morbidity of Infants Born at Less Than 30 Weeks’ Gestation. Pediatrics. 2018;142(6):20182352.
20. Garfinkle J, Yoon EW, Alvaro R, Nwaesei C, Claveau M, Lee SK, et al. Trends in sex-specific differences in outcomes in extreme preterms: progress or natural barriers? Arch Dis Child Fetal Neonatal Ed. 2020;105(2):158-63.
21. Puopolo KM, Mukhopadhyay S, Hansen NI, Cotten CM, Stoll BJ, Sanchez PJ, et al. Identification of Extremely Premature Infants at Low Risk for Early-Onset Sepsis. Pediatrics. 2017;140(5):20170925.
22. Razaz N, Cnattingius S, Joseph KS. Association between Apgar scores of 7 to 9 and neonatal mortality and morbidity: population based cohort study of term infants in Sweden. BMJ. 2019;365:l1656.
23. Frapie K. Special feature No. 2 consecutive special feature! Can be done from the first grade! National examination measures situation setting problem. Clin Stud. 2020;41(2):18-32.

Cite this article as: Lidya M, Fetriyah UH, Rahmayani D, Ariani M. The relationship between Apgar score and gender with the incidence of neonatal sepsis: systematic review. Int J Community Med Public Health 2021;8:5473-80.