Title
Noncubic symmetry in Ca$_{1-x}$Eu$_x$B$_6$ (0.15 less than or similar to x \leq 1.00): An electron-spin-resonance study

Permalink
https://escholarship.org/uc/item/2kq8b237

Journal
JOURNAL OF APPLIED PHYSICS, 99(8)

ISSN
0021-8979

Authors
Urbano, RR
Pagliuso, PG
Rettori, C
et al.

Publication Date
2006-04-15

DOI
10.1063/1.2164427

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
Noncubic symmetry in Ca$_{1-x}$Eu$_x$B$_6$ ($0.15 \leq x \leq 1.00$): An electron-spin-resonance study

R. R. Urbano, P. G. Pagliuso, and C. Rettorì$^{(a)}$
Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-970 Campinas, Sao Paulo, Brazil

P. Schlottmann
Department of Physics, Florida State University, Tallahassee, Florida 32306
and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306

Z. Fisk
Department of Physics, University of California at Davis, Davis, California 95616

S. B. Oseroff
San Diego State University, San Diego, California 92182

(Presented on 2 November 2005; published online 18 April 2006)

The Eu$^{2+}$ ($4f^7$, $S=7/2$) g value in Ca$_{1-x}$Eu$_x$B$_6$ ($0.15 \leq x \leq 1.00$) was measured by means of electron spin resonance at two frequencies (fields), 9.4 (\approx3.4 kOe) and 34.4 GHz (\approx12.1 kOe). The g value was found to be anisotropic and magnetic-field dependent. The amplitude of the anisotropy increases at low temperatures. The observed angular and temperature dependences of the g value suggest tetragonal symmetry caused, presumably, by a distortion along a direction perpendicular to the largest crystal face, the [001] direction. Due to the platelet shape of the samples, part of the anisotropy of the g value can also be attributed to demagnetization effects. The g values decrease at higher fields, which is interpreted in terms of a two-band model involving an exchange interaction between the localized Eu$^{2+}$ $4f^7$ electrons with conduction Eu$^{2+}$ $5d$-like electrons and B$_6^{2-}$ $2p$-like holes. © 2006 American Institute of Physics. [DOI: 10.1063/1.2164427]

Over the past decades the cubic hexaboride compounds RB_6 (R=rare/alkaline earths, space group 221, $Pm3m$) have been the subject of intensive studies, both experimental and theoretical, due to their variety of exotic effects and interesting physical properties such as ferromagnetism, weak ferromagnetism, metal-insulator transition, large negative magnetoresistance, quadrupolar ordering, Jahn-Teller effect, superconductivity, heavy fermion, fluctuating valence, and Kondo lattice behaviors. Among them the semimetal EuB$_6$ is particularly interesting because of the formation of magnetic polarons, changing the magnetic and transport properties, and the two transitions observed at $T_{c1}=15.3$ K and $T_{c2}=12.7$ K. The one at T_{c1} is believed to correspond to the percolation transition of the polarons and is accompanied by a semimetal to metal transition, while below T_{c2} all Eu$^{2+}$ spins participate in the ferromagnetic (FM) long-range order.

In previous reports we have studied the evolution from insulator ($x=0$) to semimetal ($x=1.00$) in Ca$_{1-x}$Eu$_x$B$_6$ by measuring the Eu$^{2+}$ ($4f^7$, $S=7/2$) electron-spin-resonance (ESR) linewidth (ΔH). Due to the broken translational invariance in an alloy, each Eu$^{2+}$ ion introduces a bound state in the gap of the insulator CaB$_6$. Our results indicate that at $x \approx 0.15$ the bound states percolate leading to a metallic environment with a spin-flip relaxation process involving magnetic polarons and the symmetry of the Fermi surface. $x = 0.15$ corresponds to the site percolation of random nearest- and next-to-nearest-neighbor bonds. Note that the next-to-nearest-neighbor bonds ([111] direction) are blocked for the propagation of the wave functions by the large B$_6$ anions.

In the present work we report on the field dependence of the Eu$^{2+}$ ($4f^7$, $S=7/2$) ESR g shift and its angular dependence. We explain the field dependence of the g shift in terms of the exchange interaction between the localized Eu$^{2+}$ $4f^7$ electrons with the conduction Eu$^{2+}$ $5d$-like electrons and B$_6^{2-}$ $2p$-like holes. We attribute the angular dependence of the g value and its T dependence to a tetragonal distortion along the directions perpendicular to the (001) natural growth faces of the crystal. The distortion is believed to arise from the surface of the crystal and propagates deep into the crystal. This effect, which is present only in the metallic phase, is enhanced by the crystalline field splitting of the $5d$ electrons at low temperatures. Due to the platelet shape of the samples, part of the anisotropy of the g value can also be attributed to demagnetization effects.

Platelet ($\approx 1.2 \times 0.9 \times 0.2$ mm3) single crystals of Ca$_{1-x}$Eu$_x$B$_6$ ($0.003 \leq x \leq 1.00$) were grown, as described in Ref. 2. The structure and phase purity were checked by x-ray powder diffraction and the crystal orientation determined by Laue x-ray diffraction. The faces of natural growth of the crystals are called (001) planes and are relevant to the g value anisotropy investigation. The ESR experiments were performed in a Bruker spectrometer using an X-band (9.48 GHz) TE$_{102}$ room-T cavity and a Q-band (34.48 GHz) cool split-ring cavity, both coupled to a T controller using a helium gas flux system for $4.2 \leq T \leq 300$ K. The ESR spectra were analyzed in terms of Dyson’s theory for the resonance...
line shape. In the pertinent range of T, the resistivity of our crystals changes from ~ 0.5 to ~ 5 mΩ cm, which corresponds to microwave (X and Q bands) penetration skin depths of about $5-25$ μm. $M(T, H)$ measurements for $2 \leq T \leq 300$ K were taken in a Quantum Design superconducting quantum interference device-reciprocating sample option (SQUID-RSO) dc magnetometer. The Eu$^{2+}$ concentration in our crystals was determined from Curie-Weiss fits to the susceptibility data. The experimental data presented in this work were obtained on the same samples used in our previous work. The high quality of the crystals was determined by magnetoresistance and heat-capacity measurements.

Figures 1 and 2 present the angular dependence of the g value for the plateletlike crystals measured at the X and Q bands in the (110), (100), and (001) planes at ≈ 297 and ~ 55 K for $x=0.30$ and $x=1.00$, respectively. Similar results were obtained for the $x=0.60$ crystal (not shown here). The (001) plane coincides with the largest crystal face. The data show the following features: (i) The angular dependence of the g value displays a surprising tetragonal symmetry with the twofold axis being perpendicular to the largest crystal face, in spite of the overall cubic symmetry found for the anisotropy of the linewidth (see Figs. 6 and 7 in Ref. 16); (ii) the amplitude of the g value anisotropy, $g_{\perp}-g_{||}$, is nearly H and x independent; (iii) this amplitude increases at low T; and (iv) the g value decreases with H.

The reduction in the positive g shift ($\Delta g = g - 1.988$) at high fields (see Q-band data in Figs. 1 and 2) may be understood in terms of a two-band model involving the exchange interaction between the localized Eu$^{2+}$ $4f^7$ electrons with (i) the conduction Eu$^{2+}$ $5d$-like electrons and (ii) the B $2p$-like holes. The exchange interaction with the $5d$-like electrons is assumed to be of atomic type, $J_{\text{atomic}}^e > 0$, and that with the B $2p$-like holes of covalent origin, $J_{\text{covalent}}^h < 0$. The magnitudes of the exchange constants have been estimated in Ref. 21 to be $|J_{\text{atomic}}^e| \approx 100$ meV and $|J_{\text{covalent}}^h| \approx 5$ meV. The latter is expected to be small because of the almost ionic bond nature of the crystal. Thus, the g shift can be written as

$$
\Delta g_{\text{total}} = \Delta g_{\text{atomic}} + \Delta g_{\text{covalent}} = \frac{F_{\text{atomic}}^e(0)\langle \Delta s'^2 \rangle + F_{\text{covalent}}^h(0)\langle \Delta s'^2 \rangle}{\mu g H},
$$

where $F_{\text{atomic}}^e(0)$ and $F_{\text{covalent}}^h(0)$ are the $q=0$ component (zero-momentum transfer between electrons), and $\langle \Delta s'^2 \rangle$ and $\langle \Delta s'^2 \rangle$ are the spin polarizations of the electrons and holes, respectively. The semimetal is not compensated, since it contains more electrons in the conduction band than holes in the valence band (B_6 deficiency). Since $|F_{\text{atomic}}^e| > |F_{\text{covalent}}^h|$, the g shift is dominated by the electrons and necessarily positive. For low fields the g shift is then given by $\Delta g = g = F_{\text{atomic}}^e(0)\eta^e_{\text{atomic}} + F_{\text{covalent}}^h(0)\eta^h_{\text{covalent}}$, where η^e_{atomic} and η^h_{covalent} are the carrier densities of electrons and holes at the Fermi level, respectively. As the field increases, the atomiclike $5d$-electrons spin polarize and $\Delta g = F_{\text{atomic}}^e(0)\eta^e_{\text{atomic}} / (\mu g H)$ decreases with H, as observed in Figs. 1 and 2.

The unexpected tetragonal symmetry revealed by the angular dependence of the g value, shown in Figs. 1 and 2 for $x \approx 0.30$, is H and x independent in the accuracy of our experiments. The data were also taken at $T \approx T_c$, i.e., at temperatures where the magnetic short-range order is small. Since the ESR signal in plateletlike crystals mainly arises...
from the Eu$^{2+}$ ions within the microwave skin depth of the two largest crystal faces, the g value anisotropy must be caused by a tetragonal distortion within the microwave skin depth of the crystal with the fourfold symmetry axis along the [001] direction (see Figs. 1 and 2). A strong demagnetization due to the platelet shape of the sample would give rise to a similar effect.

Moreover, since the g value anisotropy is almost the same for X and Q bands, the distortion should be nearly uniform over a distance of the order of the skin depth of the corresponding microwaves. Thus, the distortion, presumably arising at the surface, must penetrate deeply into the crystal. The amplitude of the g value angular dependence also increases at lower T, which is consistent with an increasing distortion as T is lowered.

A possible explanation of this symmetry reducing distortion of the lattice is the following. The binding energy of the crystal is predominantly ionic and given by the Madelung sum of the Coulomb interaction between all the ions. For the crystal is predominantly ionic and given by the Madelung sum over shells of equidistant (measured from the origin) ions. These shells have alternating charges, thus leading to a similar effect. The support of this work by FAPESP, CNPq, National Science Foundation, and U.S. Department of Energy is acknowledged.

The support of this work by FAPESP, CNPq, National Science Foundation, and U.S. Department of Energy is acknowledged.

1. J. Etoorneu and P. Hagenmuller, Philos. Mag. B 52, 589 (1985).
2. D. P. Young et al., Nature (London) 397, 412 (1999).
3. M. E. Zhitomirsky, T. M. Rice, and V. I. Anisimov, Nature (London) 402, 251 (1999).
4. L. Degiorgi, E. Felder, H. R. Ott, J. L. Sarrao, and Z. Fisk, Phys. Rev. Lett. 79, 5134 (1997).
5. S. Massidda, A. Continenza, T. M. de Pascale, and R. Monnier, Z. Phys. B: Condens. Matter 102, 83 (1997).
6. S. Süßow et al., Phys. Rev. B 57, 5860 (1998).
7. C. H. Booth, J. L. Sarrao, M. F. Hundley, A. L. Cornelius, G. H. Kwei, A. Bianchi, Z. Fisk, and J. M. Lawrence, Phys. Rev. B 63, 224302 (2001).
8. P. M. Bisch, A. Troper, and A. A. Gomes, Phys. Rev. B 61, 4174 (2000).
9. G. A. Wigger, Ch. Walti, H. R. Ott, A. D. Bianchi, and Z. Fisk, Phys. Rev. B 66, 212410 (2002).
10. G. A. Wigger, C. Beeli, E. Felder, H. R. Ott, A. D. Bianchi, and Z. Fisk, Phys. Rev. Lett. 93, 147203 (2004).
11. G. Uimin, Phys. Rev. B 55, 8267 (1997).
12. H. Sturm, B. Elschnier, and K-H. Hock, Phys. Rev. Lett. 54, 1291 (1985).
13. T. S. Altschuler and M. S. Bresler, J. Exp. Theor. Phys. 88, 1019 (1999).
14. S. Süßow, I. Prasad, M. C. Aronson, S. Bogdanovich, J. L. Sarrao, and Z. Fisk, Phys. Rev. B 62, 11626 (2000).
15. R. R. Urbano, P. G. Pagliuso, C. Rettori, S. B. Oseroff, J. L. Sarrao, P. Schlottmann, and Z. Fisk, Phys. Rev. B 70, 140401 (2004).
16. R. R. Urbano et al., Phys. Rev. B 71, 184422 (2005).
17. G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1955); P. F. Dyson, ibid. 98, 349 (1955); G. E. Pake and E. M. Purcell, ibid. 74, 1184 (1948).
18. A. Abramag and B. Bleaney, EPR of Transition Ions (Clarendon, Oxford, 1970).
19. S. Kunii, T. Uemura, Y. Chiba, T. Kasuya, and M. Date, J. Magn. Magn. Mater. 52, 271 (1985); S. Kunii, J. Phys. Soc. Jpn. 69, 3789 (2000).
20. P. M. Bisch, A. Troper, and A. A. Gomes, Phys. Rev. B 13, 3902 (1976); A. Troper, O. L. T. de Menezes, P. Lederer, and A. A. Gomes, ibid. 18, 3709 (1978); G. E. Barberis, D. Davidov, J. P. Donoso, C. Rettori, J. F. Suassuna and H. D. Dokter, Phys. Rev. B 19, 5495 (1979); P. G. Pagliuso, C. Rettori, J. L. Sarrao, A. Cornelius, M. F. Hundley, Z. Fisk, and S. B. Oseroff, ibid. 60, 13515 (1999).
21. M. J. Calderón, L. G. L. Wegener, and P. B. Littlewood, Phys. Rev. B 70, 091404 (2004).
22. D. Davidov, K. Kaci, R. Orbach, C. Rettori, and E. P. Chock, Solid State Commun. 12, 621 (1973).
