Fatores Prognósticos de Sobrevida Pós-Reanimação Cardiorrespiratória Cerebral em Hospital Geral

André Mansur de Carvalho Guanaes Gomes, Ari Timerman, Carlos Alfredo Marcilio de Souza, Carlos Maurício Cardeal Mendes, Heitor Portella Póvoas Filho, Adriano Martins de Oliveira, José Antonio de Almeida Souza

Instituto do Coração do Hospital das Clínicas da FMUSP, Instituto Dante Pazzanese de Cardiologia, Hospital da Cidade - São Paulo, SP; Escola Bahiana de Medicina e Saúde Pública, Universidade Federal da Bahia, Instituto Sócrates Guanaes - Salvador, BA

OBJETIVO
Analisar as características clínicas e demográficas dos pacientes que receberam reanimação cardiorrespiratória e detectar fatores prognósticos de sobrevivência a curto e longo prazo.

MÉTODOS
Analisamos, prospectivamente, 452 pacientes que receberam reanimação em hospitais gerais de Salvador. Utilizou-se análise uni, bivariada e estratificada nas associações entre as variáveis e a curva de sobrevida de Kaplan-Meier e a regressão de Cox para análise de nove anos de evolução.

RESULTADOS
A idade variou de 14 a 93 anos, média de 54,11 anos; predominou o sexo masculino; metade dos pacientes tinha ao menos uma doença de base, enfermidade cardiovascular foi etiologia responsável em metade dos casos. Parada cardíaca foi testemunhada em 77% dos casos e em apenas 69% dos pacientes foi iniciada imediatamente a reanimação. O ritmo cardíaco inicial não foi diagnosticado em 59% dos pacientes. Assistolia foi o ritmo mais frequente (42%), seguida de arritmia ventricular (35%). A sobrevida imediata foi de 24% e sobrevida à alta hospitalar de 5%. Foram identificados como fatores prognósticos em curto prazo: etiologia da parada; diagnóstico do ritmo cardíaco inicial; fibrilação ou taquicardia ventricular como mecanismo de parada; tempo estimado pré–reanimação menor ou igual a 5 minutos e, tempo de reanimação menor ou igual a 15 minutos. Os fatores prognósticos de sobrevivência em nove anos de evolução foram: não ter recebido epinefrina; ser reanimado em hospital privado e tempo de reanimação menor ou igual a 5 minutos.

CONCLUSÃO
Os dados observados podem servir de subsídios para os profissionais de saúde decidir quando iniciar ou parar uma reanimação no ambiente hospitalar.

PALAVRAS-CHAVE
ressuscitação cardiopulmonar, parada cardíaca, prognóstico, hospitais gerais

Correspondência: André Guanaes Gomes • Instituto Sócrates Guanaes - Rua Saldanha Marinho, 77-A - 40223-010 • Salvador, BA
E-mail: andreguanaes@hospitaldacidade.com.br
Recebido em 09/01/04 • Aceito em 30/03/05
Apesar dos grandes avanços tecnológicos ocorridos nas ultimas décadas, a morte prematura por enfermidade cardiovascular ainda é um grande desafio para a medicina intensiva, em todo o mundo. Nos EUA, esta tem sido a principal causa de morte desde 1900, à exceção de 1918. No Brasil, ocorrem 820 mortes por dia devido à enfermidade cardiovascular, sendo seis vezes maior que a mortalidade da síndrome da imunodeficiência adquirida. A mortalidade por infarto agudo do miocárdio é de aproximadamente 30%, sendo que a maioria de forma súbita e mais da metade não consegue chegar ao hospital a tempo. Os pacientes que conseguem ter acesso ao tratamento adequado de suporte avançado de vida, têm uma mortalidade reduzida de 30% para 10%.

O prognóstico da reanimação cardiorrespiratória cerebral (RCRC) em hospitais é mais sombrio que o que ocorre fora do ambiente hospitalar. Apesar de nos hospitais se ter acesso a recursos do suporte avançado de vida, os pacientes têm maior co-morbidade e severidade das doenças, comparados àqueles que apresentam uma parada cardíaca em ambiente extra-hospitalar.

A perspectiva de sobrevida imediata a uma reanimação hospitalar é de 30% a 50%4-6, enquanto a sobrevida à alta do hospital varia de 5% a 35%6-7, com media de 11% a 20%4-8,10.

Este estudo foi conduzido com o propósito de analisar as características clínicas e demográficas dos pacientes que receberam RCRC em hospitais gerais, procurando identificar fatores prognósticos de sobrevidência a curto e em longo prazo, de modo a poder fornecer subsídios aos profissionais de saúde para decidirem quando iniciar ou parar uma reanimação.

MÉTODOS

Analisamos prospectivamente 452 pacientes que receberam RCRC entre 1º de julho e 31 de dezembro de 1994, em um dos seis hospitais gerais que completaram o estudo na cidade de Salvador. Para a proposta do estudo excluímos os pacientes com idade inferior a 14 anos ou que tenham sido reanimados antes da admissão no hospital.

Parada cardiorrespiratória cerebral (PCRC) foi considerada como a cessação abrupta das funções circulatória, respiratória e cerebral, comprovadas pela ausência de pulso central (carotídeo e/ou femoral), ausência de movimentos ventilatórios (apnéia) ou respiração agônica e estado de inconsciência.

A RCRC foi considerada toda vez que o paciente recebeu assistência sob a forma de suporte básico ou avançado de vida pelas recomendações vigentes da American Heart Association, com o objetivo de fazer retornar a circulação espontânea.

Sobrevida imediata foi considerada ao tempo em que se obtinha o retorno a circulação espontânea, a qual foi considerada, para propósito do estudo, como ritmo cardíaco que mantivesse pulso e/ou pressão sangüínea mensuráveis por palpação e/ou ausculta, ou quando possível monitorar pressão sistólica maior ou igual a 60 mmHg, através de canulação intra-arterial, durante pelo menos uma hora na ausência de massagem cardíaca externa.

Sobrevida tardia foi considerada na alta hospitalar e a sobrevida de longo prazo quando se completou um ano de sobrevida pós PCRC. Os dados foram registrados em fichas-questionário próprias, similares ao estilo Utstein, sendo analisadas as seguintes variáveis: 1) as variáveis do paciente que antecedem a PCRC: a) demográficas: sexo, idade; b) clínicas: doença de base e etiologia. 2) variável da PCRC propriamente dita: se testemunhada ou não, tempo estimado pré-reanimação, tempo de reanimação, acesso a medicamentos, uso e dose de adrenalin, ritmo cardíaco inicial, uso de desfibrilação, suporte ventilatório oferecido, intervenções realizadas. 3) variáveis dos resultados: sobrevida imediata/retorno a circulação espontânea; sobrevida tardia (alta hospitalar) e sobrevida a longo prazo (um ano ou mais).

Os sobreviventes foram acompanhados no hospital pelo médico assistente e pelo grupo da pesquisa, sendo avaliados por meio de entrevistas diretas e/ou com os familiares toda vez que a condição clínica não permitia. Após terem alta hospitalar eram acompanhados através de entrevistas pessoais e diretas, sempre que possível, ou por telefone, cartas, informações do médico assistente ou com familiares.

Por se tratar de um estudo epidemiológico, observacional, sem nenhum tipo de intervenção diagnóstica ou terapêutica, solicitamos a não aplicação do consentimento informado. Os dados foram coletados diretamente pela equipe com perguntas simples e diretas sobre o estado de saúde do paciente e seu bem estar, sem nenhuma evidência de risco ou dano, e/ou constrangimento físico ou psicológico para o paciente ou seus familiares.

Nesse contexto é que o projeto foi submetido e aprovado pela Comissão de Ética para Análise de Projetos de Pesquisa-CAPesq da Diretoria Clínica do Hospital das Clínicas e da Faculdade de Medicina da Universidade de São Paulo, e concedida à não-aplicação do consentimento informado em formulário específico.

Realizamos análise univariada para descrever as características dos pacientes reanimados, utilizando a análise descritiva para médias e proporções, e o cálculo do intervalo de confiança exato, binomial, para estimativa das populações amostrais. Em seguida foi utilizada a análise bivariada, para avaliarmos a associação entre as diversas características dos pacientes e da parada (variáveis independentes) com a sobrevida imediata (retorno a circulação espontânea).

Realizamos análise estratificada para avaliarmos associação entre retorno a circulação espontânea e as duas principais variáveis independentes prognósticas,
apontadas na análise bivariada: tempo estimado pré-reanimação e tempo de reanimação, e controlando-se por uma terceira variável de interesse. Calculados os riscos relativos bruto, combinados e por estrato, e testada a homogeneidade dos riscos relativos entre os estratos por meio da estatística de teste de Mantel-Haenszel.

A regressão multivariada de Cox, “Proportional Hazards Regression”, foi empregada para estimarmos o modelo de riscos proporcionais das variáveis de estudo, conjuntamente, sobre o tempo de sobrevivência e para a escolha das variáveis que foram incluídas na análise de sobrevivência de Kaplan-Meier. Pela técnica de Kaplan-Meier calculamos a densidade de incidência, a razão de densidade de incidência e os respectivos intervalos de confiança para as variáveis pré-selecionadas, assim como construímos as curvas de sobrevivência, a partir das funções de sobrevivência de Kaplan-Meier, para estimarmos a probabilidade de sobrevivida em longo prazo.

Adotamos o nível de significância de 5% (a = 0,05), em todas as etapas do estudo. O banco de dados utilizado foi Epidata versão 2,1 b (Epidata Association, Denmark) e o pacote estatístico empregado foi o STATA versão 7.0 (Stata Corporation, Texas-EUA).

RESULTADOS

Dos 452 pacientes submetidos à RCRC, 345 (76,3%) tiveram morte imediata e 107 (23,7%) tiveram retorno a circulação espontânea. Dos 107 sobreviventes, 31 (6,9%) pacientes faleceu nas primeiras 24 horas pós-reanimação. Dos 76 (16,8%) pacientes que sobreviveram por mais de 24 horas, 51 (11,3%) faleceram no primeiro mês. Apenas 25 (5,5%) pacientes sobreviveram mais de um mês após PCRC e desses, nove (2%) vieram a falecer até um ano após a PCRC. Ao final de um ano apenas 16 (3,5%) pacientes da coorte inicial estavam vivos (fig. 1).

As principais características clínicas e demográficas dos pacientes que receberam RCRC estão demonstradas nas tabelas I e II. Quanto ao local de parada, a emergência foi o local mais frequente com 155 (34,3%) RCRC, seguido de 138 (30,53%) RCRC, na unidade de cuidados intensivos e 97 (21,46%) RCRC na enfermaria. Apesar de se tratar de ambiente hospitalar, 101(23,17%) das PCRC não foram presenciadas. Dos 452, pacientes, apenas 106 (23,3%) receberam desfibrilação e, desses, 60 (67,4%) receberam um total de joules inferior e/ou igual a 750, e 29 (32,6%), com carga total superior a 750 joules. A grande maioria dos pacientes, 311 (71,5%), recebeu prótese ventilatória com oxigênio e ventilação com AMBU (Automatic Móbile Breathing Unit), e 91 (20,9%) foram colocados em ventilação mecânica. A via de acesso para medicamentos foi feita por veia periférica em 223 (57,5%) pacientes, sendo usada a veia central, em 166 (42,8%) e medicação viam tubo oratraqueal em 20 (5,1%) pacientes. A adrenalina foi utilizada na RCRC de 319 (87,2%) pacientes, sendo
FATORES PROGNÓSTICOS DE SOBREVIDA PÓS-REANIMAÇÃO CARDIORRESPIRATÓRIA CEREBRAL EM HOSPITAL GERAL

Tabela I - Características clínicas e demográficas dos pacientes que receberam RCRC

Características	n	%	% acum.
Demográficas			
Sexo			
Masculino	248	54,87	54,87
Feminino	204	45,13	100
Clínicas			
Doença de Base			
Nenhuma	63	15	15
Uma	229	54,52	69,52
Duas	92	21,9	91,43
Três	27	6,43	97,86
Quatro	7	1,67	99,52
Cinco	2	0,48	100
Indeterminada*	32	7,08	
Etiologia			
Cardiovascular	214	49,31	49,31
Trauma	77	17,74	67,05
Pneumopatia	75	17,28	84,33
Outra	34	7,83	92,17
Infecção/sepse	21	4,84	97,01
Neoplasia	11	2,53	99,54
Intoxicação	2	0,46	100
Indeterminada*	18	0,44	
Faixa Etária			
14-19	30	6,9	6,9
20-29	43	9,89	16,79
30-39	43	9,89	26,67
40-49	52	11,95	38,62
50-59	65	14,94	53,57
60-69	85	19,54	73,11
70-79	72	16,55	89,66
>80	45	10,34	100
Indeterminada*	17	3,76	
Total	452		100

Nota: análise descritiva univariada; *percentual em relação ao total de pacientes (n=452); RCRC=Reanimação cardiorespiratória cerebral

que em 196 (70,3%) a dose foi inferior a 5 mg; tendo 65 (22,9%) pacientes recebidos entre 5 e 10 mg e 113 (3,9%), de 11 a 15 mg. Em 8 (2,9%) das RCRC, a dose de adrenalina foi superior a 16 mg.

Os resultados da análise bivariada, para avaliação da associação das variáveis clínicas e demográficas dos pacientes que receberam RCRC e a sobrevida imediata (retorno a circulação espontânea), estão sumarizados na tabela III.

Tabela III - Características da PCRC e das intervenções na RCRC

Variável da PCRC	n	%	% acum.
PCRC Presenciada			
Não	101	23,17	23,17
Sim	335	76,83	100
Indeterminado*	16	3,54	
Tempo estimado pré-reanimação			
0 a 1'	286	62,92	62,92
1'a 5'	82	19,76	82,68
5' a 10'	26	6,27	88,94
10' a 15'	16	3,66	92,60
15' a 30'	5	1,2	93,80
Indeterminado*	37	8,19	
Ritmo Inicial			
Assistolia	78	17,74	17,74
Fibrilação ventricular	65	14,94	14,94
AESP	31	6,95	6,95
Taquicardia ventricular	13	3,06	3,06
Indeterminada*	265	58,83	
Tempo de reanimação			
0 a 1'	9	2,23	2,23
1 a 5'	28	6,27	8,50
5 a 10'	49	11,54	19,68
10 a 15'	79	18,38	38,02
15 a 30'	142	31,54	70,33
30 a 60'	76	17,36	47,69
>60	20	4,96	52,65
Indeterminado*	49	10,98	
Desfibrilação			
Não	297	62,92	62,92
Sim*	106	23,3	
Indeterminado*	49	10,98	
Uso de Adrenalina			
Sim	319	70,76	70,76
Não	47	10,84	
Indeterminado*	86	19,4	
Total	366	100	

Nota: análise bivariada; *percentual em relação ao total de pacientes (n=452); PCRC=Parada cardiorespiratória cerebral; RCRC=Reanimação cardiorespiratória cerebral; AESP= Atividade elétrica sem pulso;

Os resultados mostram que, de todas as variáveis independentes, estudadas na análise multivariada pela regressão proporcional de Cox, demonstrada na tabela VI, as que tiveram valor prognóstico estatisticamente significante para risco de morte foram: ter recebido adrenalina, tempo de reanimação superior a 15 minutos e ser reanimado em hospital público. Observamos que quem usou adrenalina teve 58% a mais de risco de morrer, sendo estatisticamente significante (p=0,02); tempo de reanimação superior a 15 minutos foi prognóstico de maior risco de morte em 37% (risco relativo 1,37; p=0,01); RCRC em hospital público representou risco de morrer aumentado em 37% (p=0,007). Estas três variáveis foram encaminhadas para avaliação da curva de sobrevida. Os 107 pacientes que sobreviveram a RCRC foram acompanhados para se avaliar o tempo de sobrevida, o mesmo ocorrendo com os 22 pacientes que tiveram alta hospitalar. Foram avaliados três períodos de tempo: de zero a 30 dias após PCRC; de um mês a um ano após PCRC e no tempo de zero a nove anos, sobre o qual foram construídas as curvas de sobrevida de acordo com tipo de hospital (fig. 2-A), com uso de adrenalina (fig. 2-B) e com tempo de reanimação (fig. 2-C).
Tabela III - Associação das variáveis clínicas e demográficas e das intervenções nos pacientes que receberam RCRC com sobrevida imediata (Retorno a Circulação Espontânea)

Sobrevida Imediata	RCRC +	RCRC -	Total	Inc.	RR	IC 95%
Sexo	n	n	n			
Masculino	52	195	248	0,2096	0,78	0,56 1,09
Feminino	55	149	204	0,2696		
Faixa etária						
≤ 60 anos	55	177	232	0,237		
> 60 anos*	52	167	219	0,2344	1	0,72 1,40
Doença de base						
Ausente	8	66	74	0,1081		
Presente*	98	263	361	0,2714	0,4	0,20 0,78
Etiologia						
Cardiovascular	64	150	214	0,299		
Trauma *	10	67	77	0,1298	2,3	1,25 4,25
Pneumopatia *	18	57	75	0,24		0,79 1,96
Outros *	14	61	75	0,1866	1,6	0,97 2,71
Uso de adrenalina						
Não	16	31	47	0,3404		
Sim*	80	239	319	0,2507	1,36	0,87 — 2,11
Dose de adrenalina						
≤ 5 mg	66	152	218	0,3027		
> 5 mg*	11	50	61	0,1803	1,68	0,95 — 2,97
Tempo estimado de pré-reanimação						
≤ 5'	99	268	367	0,2697		
> 5’*	5	42	47	0,1063	2,53	1,09 — 5,9
Determinação ritmo inicial						
Sim	65	122	187	0,3475		
Não*	40	213	253	0,1581	2,2	1,56 — 3,10
Ritmo inicial						
TV/FV	31	47	78	0,3974		
AESP/Assistolia*	74	208	374	0,2044	1,94	1,38 — 2,73
Tempo de reanimação						
≤ 15'	64	101	165	0,3878		
> 15’*	38	200	238	0,1596	2,43	1,71 — 3,44

*Risco relativo ajustado/combinado; \(\text{RR} \) associado a circulação espontânea; \(\text{TV} \)=Taquicardia ventricular; \(\text{FV} \)=Fibrilação ventricular; \(\text{AES/P} \)=Atividade elétrica sem pulso

Tabela IV - Associação entre sobrevida imediata (retorno a circulação espontânea) e tempo estimado pré-reanimação, como principal variável, controlada por uma terceira variável de interesse (co-variáveis)

Variáveis	Estrato Referencial Risco Relat. (**)	Estrato Favorável Risco Relativo (**) Combinado	Risco Relativo (****) Associação Bruta (****)	Valor de p p	
Dose adrenalina	> 5mg	≤ 5mg	2,39	2,52	0,1822
	5,96	1,54			
Perfil hospital	Público	Privado	2,04	2,52	0,75
	2,26	1,73			
Tempo de Reanimação	> 15'	≤ 15’	2,71	2,52	0,004
	0,83	10,79			
Determinação do Rítmo	Não	Sim	2,02	2,52	0,1094
	3,68	1,05			
Usou adrenalina	Sim	Não	2,02	2,52	
	3,68	1,05			
	1,35	1,6			
Ritmo inicial	> 2 AESP/ASSIS	≤ 2 FV/TV	2,02	2,52	0,1094
	3,68	1,05			
	2,03	2,95			
Etiologia	Outras	ECV	2,4	2,52	0,6727

Nota: Calculados os riscos relativos brutos e combinados e por estrato através do teste Mantel-Haenszel. () estrato referencial; (**) estrato favorável; (****) ajustado/combinado; (****) associação bruta (bi-variada); AESP=Atividade elétrica sem pulso; ASSIS=Assistolia; FV=Fibrilação ventricular; TV=Taquicardia ventricular; ECV=Enfermidade Cardiovascular
Tabela V - Associação entre sobrevida imediata (retorno a circulação espontânea) e tempo de reanimação, principal variável, controlada por uma terceira variável de interesse (co-variáveis)

Variáveis Independentes	Estrato Referencial	Estrato Favorável	Risco Relativo (**)	Risco Relativo (***)	Risco Relativo Combinado	Associação Bruta (****)	Valor de p
Dose adrenalina	> 5mg	≥ 5mg	2,44	2,43	0,8709		
Hospital	Público	Privado	2,49	2,87	0,4972		
Determinação do ritmo	Não	Sim	2,80	2,43	0,6848		
	3,09	2,65					
Usou adrenalina	Sim	Não	2,92	2,43	0,2993		
	2,67	7,28					
Ritmo inicial	> 2 AESP/ ASSIS	≤ 2 FV/ TV	2,80	2,43	0,6848		
	3,09	2,64					
Etiologia	OUTRAS	ECV	2,50	2,43	0,3999		
	2,10	2,84					

Nota: Calculados os riscos relativos brutos e combinados e por estrato através do teste Mantel-Haenszel. (*) estrato referencial; (**) estrato favorável; (***) ajustado; combinado; (****) associação bruta (bivariada). AESP=Atividade elétrica sem pulso; ASSIS=Assistolia; FV=Fibrilação ventricular; TV=Taquicardia ventricular; ECV=Enfardidade Cardiovascular.

Tabela VI - Estimativa do risco proporcional das variáveis independentes (prognósticas) em estudo conjuntamente sobre o tempo de sobrevivência pela regressão proporcional de Cox

Variável Estudo	Hazard ratio	IC 95 %	Erro padrão	Valor de p
Adrenalina	1,58	1,08 – 1,75	0,31	0,02
(usou) Tempo de reanimação >15'	1,37	1,08 – 2,31	0,17	0,01
Categoría hospital (público)	1,37	1,09 – 1,72	0,16	0,0007

Nota: utilizado o gráfico Log-Log para atender os pressupostos da regressão de Cox.

Fig. 2 - Curvas de sobrevivência de acordo com tipo de hospital (A), uso de adrenalina (B) e tempo de reanimação (C) nos primeiros 30 dias, no período de 1 mês a 1 ano e no período de 0 a 9 anos (utilizada a técnica Kaplan-Meier)
DISCUSSÃO

A despeito dos avanços tecnológicos da RCRC, o retorno à circulação espontânea e de sobreviventes à alta hospitalar ainda continua desolador, não tendo sofrido mudanças significativas nos últimos 30 anos. A RCRC intra-hospitalar carece de estudos para melhor entender as suas características, resultados e peculiaridades ao contrário das RCRC extra-hospitalares, que já se encontram melhor estudadas.

Em nosso meio, a situação ainda é mais preocupante, visto que existem pouquíssimos trabalhos publicados sobre o assunto e apenas dois relatos na literatura nacional a respeito dos resultados e prognóstico dos pacientes reanimados nos hospitais.

Este estudo avaliou, prospectivamente, as variáveis mais importantes apontadas na literatura e que têm sido comumente analisadas por diversos autores, no sentido de estudar o seu valor prognóstico. Não há outro estudo, entre aqueles mais citados, que tenha, ao mesmo tempo, avaliado tantas características dos pacientes vítimas de paradas cardíacas intra-hospitalar e, destes, apenas dois são prospectivos. Esta amostragem constitui-se no oitavo maior número de pacientes estudados, vítimas de PCRC, que receberam reanimação, quando comparado aos 33 estudos de RCRC intra-hospitalar de maior citação.

A nossa amostra apresentou uma população que variou de 14 a 93 anos, com média de idade de 54 anos, com desvio padrão de 21,5%. Não existem evidências de que idade, isoladamente, seja fator prognóstico importante na sobrevida pós-reanimação extra-hospitalar, não sendo critério isolado para contraindicar reanimação nos pacientes idosos que apresentem parada cardíaca extra-hospitalar. Iidade já foi atribuída como prognóstico de sobrevida isoladamente. Atualmente, a grande maioria dos estudos conclui que a idade não interfere diretamente na sobrevida.

Atualmente, a grande maioria dos estudos conclui que a idade não interfere diretamente na sobrevida. O que vários autores defendem é que a doença de base pode atuar como fator de confusão, parcialmente, por algumas razões, que têm chamado atenção de alguns pesquisadores: a grande complexidade de avaliação da reanimação; a diversidade das populações estudadas; as variadas etiologias com os diferentes graus de severidade e as diversas causas de internamento no hospital, muitas vezes subestimadas e não notificadas.

A doença de base (subjacente), é tida na literatura como a variável que isoladamente tem a maior força prognóstica na sobrevida dos pacientes. Estudos têm demonstrado uma melhor sobrevivência naqueles que não tinham doença de base associada, clinicamente diagnosticada, quando comparados aos pacientes que tinham. Alguns autores observaram que o percentual de sobrevida decresce de acordo com o número de doenças associadas. Nos estudos de Hershey e Fisher, observou-se que quase 50% dos sobreviventes não tinham nenhuma doença de base associada, contra 6,5% de sobreviventes daqueles que tinham três doenças subjacentes. O mesmo foi descrito por Timerman e cols., doença de base foi também a variável de maior poder prognóstico na determinação de sobrevida. Em nosso estudo, no entanto, não observamos esta tendência reportada na literatura. A incidência de sobrevida imediata nos pacientes sem doença de base aparente foi de 10%, contra uma incidência de 27% naqueles que apresentavam ao menos uma doença de base (risco relativo: 0,40; 0,20 a 0,78; intervalo de confiança 95%), sendo estatisticamente significante. Esta discordância dos resultados com os da literatura pode ser explicada, parcialmente, por algumas razões, que têm chamado atenção de alguns pesquisadores: a grande complexidade de avaliação da reanimação; a diversidade das populações estudadas; as variadas etiologias com os diferentes graus de severidade e as diversas causas de internamento no hospital, muitas vezes subestimadas e não notificadas.

A avaliação do tipo de suporte ventilatório aos pacientes reanimados, observamos que a abordagem inicial mais frequente foi a intubação orotraqueal (71,5%), e apenas 26,4% tiveram como primeira abordagem, o uso de suporte ventilatório com bolsa reservatório-máscara, o que pode ser uma deturpação de prioridades, de acordo com os protocolos de atendimento de emergência. Neste estudo, aproximadamente 21% dos pacientes que receberam reanimação foram intubados e colocados em ventilação mecânica. Isto pode representar uma maior gravidade destes pacientes diante das manobras ressuscitatórias, visto que, no estudo de Bedell
e cols.⁶, a mortalidade dos pacientes que necessitaram ser intubados foi cinco vezes maior quando comparada aos que não necessitaram ser intubados. Resultados similares foram também observados por Robson e Hess⁷.

Em estudo de campo realizado em Seattle, no ano de 1976, envolvendo 927 pacientes, 123 (22%) dos 569 pacientes com PCRC testemunhada sobreviveram, contra apenas 14 (4%) dos 358 com PCRC não testemunhada²⁸. Quando a PCRC é iniciada na rua, no local da PCRC, por alguém que presencia e presta socorro à vítima, as taxas de sobrevida são superiores quando comparadas às que não o foram. Portanto, a PCRC tem um papel crucial no aumento da sobrevida e em salvar vidas.

Resultados de um estudo conduzido por Robson e cols.⁸, mostram que a mortalidade dos pacientes que necessitaram ser intubados foi cinco vezes maior quando comparada aos que não necessitaram ser intubados. Resultados similares foram também observados por Robson e Hess⁷.

Em um estudo BRESUS⁹, foram avaliadas 2.838 PCRC; pacientes com PCRC non testemunhada apresentavam melhoras taxas de retorno à circulação espontânea e alta hospitalar que aqueles com PCRC não testemunhada⁶,¹³,²⁰,²⁸,³¹.

Vários estudos têm demonstrado que quanto menor forem os tempos, maior as chances de sobrevida da vítima. Quando o suporte básico de vida é oferecido com menos de 4 minutos e o suporte avançado de vida com menos de 8 minutos, a sobrevida à alta hospitalar pode variar de 36% a 70%²⁰,²⁹,³²,³³.

A variável tempo, sabidamente de grande importância para os estudos de PCRC extra-hospitalar, vem sendo, atualmente, cada vez mais valorizada na avaliação dos resultados das RCRC intra-hospitalar. Vários estudos têm demonstrado que nas PCRC testemunhadas, em que o tempo estimado de pré-reanimação é menor que o de sobrevida, é maior em relação às não testemunhadas. No estudo BRESUS⁹, foram avaliadas 2.838 PCRC: pacientes com PCRC que tiveram sua parada testemunhada tiveram 48% de retorno à circulação espontânea, versus 32% dos que já foram encontrados em PCRC.

Em nosso estudo, incluímos na avaliação uma variável comumente utilizada nos estudos extra-hospitalares e que não se avalia nos hospitais, que é o tempo de reanimação. Este tempo pode ser real, quando passível de mensuração, ou ser estimado, como habitualmente ocorre devido à complexidade, imprevisibilidade e o estresse determinado pela situação da PCRC. Em nosso estudo, das 452 paradas cardíacas, 335 (76,83%) foram presenciadas, no entanto, apenas em 286 (68,92%) foram iniciadas de imediato a reanimação, ou seja, tempo estimado de pré-reanimação menor que 1 minuto. Observamos, claramente, que houve um lapso de tempo entre o reconhecimento da parada e a tentativa de reanimação, o que pode ser um fator deletério à reversibilidade da PCRC.

Em nosso estudo, 269 (79,9%) pacientes tiveram seu ritmo determinado. O ritmo da parada cardíaca mais frequentemente observado foi a fibrilação ventricular e, portanto, passível de serem desfibrilados, o que evidencia que houve uma superestimação de desfibrilações, que pode ter sido um fator deletério à reversibilidade do miocárdio, devido à hipoxemia e à acidemia.

Vários estudos têm demonstrado que quanto menor o tempo de pré-reanimação, melhor o retorno à circulação espontânea, sendo a chance de sobrevida 2,43 vezes maior que o estrato com tempo superior, sendo de grande significância estatística e clínica. Essas variáveis mantiveram seu valor de prognóstico, quando avaliadas no modelo multivariado estratificado, analisando-se conjuntamente com outras co-variáveis de interesse. Quanto ao ritmo do mecanismo de parada sabemos que a fibrilação ventricular é o ritmo mais frequente de PCRC observado na maioria dos estudos e, também, o que melhor responde à terapêutica, tendo as melhores taxas de sobrevida⁶,¹³,³⁴-³⁶. Quanto mais precocemente abordado for o paciente que apresente PCRC em fibrilação ventricular, melhores as chances de sobrevida, visto que, com o passar do tempo, a reversibilidade do miocárdio diminui, devido à hipoxemia e à acidemia.

Neste estudo, quase 60% dos pacientes não tiveram o ritmo da parada cardíaca determinada e, dos pacientes em que se pôde determinar o ritmo, o mais frequente foi a fibrilação ventricular.

Em nosso estudo, incluímos na avaliação uma variável comumente utilizada nos estudos extra-hospitalares e que não se avalia nos hospitais, que é o tempo de reanimação. Este tempo pode ser real, quando passível de mensuração, ou ser estimado, como habitualmente ocorre devido à complexidade, imprevisibilidade e o estresse determinado pela situação da PCRC. Em nosso estudo, das 452 paradas cardíacas, 335 (76,83%) foram presenciadas, no entanto, apenas em 286 (68,92%) foram iniciadas de imediato a reanimação, ou seja, tempo estimado de pré-reanimação menor que 1 minuto. Observamos, claramente, que houve um lapso de tempo entre o reconhecimento da parada e a tentativa de reanimação, o que pode ser um fator deletério à reversibilidade da PCRC.
Assistolia foi o ritmo inicial mais frequentemente observado em nosso estudo e isso, talvez, seja reflexo da demora no atendimento inicial que observamos. Esta observação pode ter feito cair o número de fibrilação ventricular constatada, diante da demora no início do atendimento, que evoluiu para assistolia, que é, sabidamente, o ritmo mais desfavorável à reversão.

A epinefrina foi, por muito tempo, a mais importante droga na abordagem da PCRC, no entanto, vêm sendo questionada ultimamente quanto aos seus efeitos b-adrenérgicos deletérios na RCRC. Já se reconhece a importância de se procurar alternativa mais eficaz e segura que a epinefrina na dosagem clássica de 0,1 mg/kg, recomendada nos protocolos da American Heart Association. Essa tendência se concretizou recentemente, quando das últimas recomendações da American Heart Association: a epinefrina saiu da sua confortável posição de classe I para a classe indeterminada, apontando para a necessidade de ensaios clínicos melhor controlados, para determinar o real papel desta droga, chegando próximo de 70% de sobrevida dos que foram reanimados na enfermaria, observada em alguns estudos, com objetivo de tentar esclarecer valor pronóstico de novos estudos, com objetivo de tentar esclarecer valor, eficiente que subsidie os profissionais de saúde. Todos esses aspectos realçam a relevância da necessidade de novos estudos, com objetivo de tentar esclarecer valor prognóstico das principais variáveis da RCRC e suas consequências nos resultados imediatos e em longo prazo.

Acompanhamos, prospectivamente, esta coorte ao longo de 22 novos anos. Na evolução, não tivemos nenhuma perda de seguimento (nenhuma observação censurada) entre os 22 pacientes reanimados que tiveram alta hospitalar, o que faz aumentar em muito o poder de análise. Achamos relevante destacar este fato, porquanto, na literatura, raros são os estudos de RCRC intra-hospitalar prospectivos. Assim sendo, a partir da análise de regressão multivariada de Cox, foram selecionadas as variáveis com maior poder de análise de sobrevida, que foram: tempo de reanimação, tipo de hospital e o uso ou não de epinefrina, avaliados em curto prazo, médio (um mês à um ano) e em longo prazo (nove anos).

Analizando a sobrevida dos pacientes em curto e longo prazo, observamos: 1) a taxa de mortalidade no hospital privado (0,5%) foi 15 vezes menor, comparada com hospital público (7,5%) para período total de nove anos, sendo estatisticamente significante (p=0,0000). Houve também diferença estatisticamente significante favorável para menor mortalidade em aproximadamente, 20% no hospital privado nos primeiros 30 dias; 2) quem não usou epinefrina teve 12,5 vezes mais chance de sobreviver, comparando-se com quem a usou (p=0,0000), estatisticamente significante; 3) a avaliação de nove anos para quem teve tempo de reanimação menor ou igual a 15 minutos mostrou que 20 vezes mais chance de sobrevivência.

Algumas pesquisadores demonstraram que certas características clínicas e demográficas dos pacientes, que apresentam parada cardíaca e são reanimados, estão associadas a maior chance de sobrevida. No entanto, até o momento, não existe nenhum modelo prognóstico eficiente que subsídies os profissionais de saúde. Todos esses aspectos realçam a relevância da necessidade de novos estudos, com objetivo de tentar esclarecer valor prognóstico das principais variáveis da RCRC e suas consequências nos resultados imediatos e em longo prazo, da reanimação.

Os dados apresentados podem oferecer subsídios úteis aos profissionais de saúde, que estão envolvidos na linha de frente com pacientes potencialmente graves e/ou de risco para morte súbita, envolvidas, portanto com possibilidade de ter que reanimar, de poderem decidir quando iniciar e quando abandonar os esforços ressuscitatórios, diante de uma parada cardíaca.

REFERÊNCIAS

1. Zheng JJ, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in the United States, 1989 to 1998. Circulation 2001; 104: 2158-63.
2. Lown B, Wolf M. Approaches to sudden death from coronary heart disease. Circulation 1971; 44: 130-142.
3. Chamberlain D, Cummins RO. Recommended guidelines for uniform reporting of data from out-hospital cardiac arrest: the “Utstein Style”. The European Resuscitation Council. American Heart Association, Heart and Stroke Foundation of Canada and Australian Resuscitation Council. Eur.J. Anesthesiol., v.9.p.245-56,1992
4. Kyff J, Puri VK, Raheta R, Ireland T. Cardiopulmonary resuscitation in hospitalized patients: continuing problems of decision-making. Crit Care Med 1987; 15: 41-3.8
5. Robinson Gr, Hess D. Postdischarge Survival And Functional Status Following In-Hospital Cardiopulmonary Resuscitation. Chest 1994; 105: 991-996.
6. Tunstall-Pedoe H, Bailey L, Chamberlain DA, Marsden AK, Ward ME, Zideman DA. Survey of 3,765 cardiopulmonary resuscitations in British Hospitals (The Bresus Study): Methods and overall results. Br Med J 1992; 304: 1347-51.
7. Hershey CO, Fisher L. Why Outcome of cardiopulmonary resuscitation in general wards is poor. Lancet 1982; 1: 31-4.
8. Bedell SE, Delbanco TL, Cook EF, Epstein FH. Survival after cardiopulmonary resuscitation in the hospital. N Engl J Med 1983; 309: 569-76.

Arquivos Brasileiros de Cardiologia - Volume 85, Nº 4, Outubro 2005
9. Castagna J, Weil MH, Shubin H. Factors determining survival in patients with cardiac arrest. Chest 1974; 65: 527-9.

10. Lemire JG, Johnson AL. Is cardiac resuscitation worthwhile? A decade of experience. N Engl J Med 1972; 286: 970-2.

11. Guidelines For Cardiopulmonary Resuscitation And Emergency Cardiac Care. JAMA 1992; 268: 2199-2241.

12. Stiell IG, Hebert PC, Weitzman BN et al. High-dose epinephrine in adult cardiac arrest. N Engl J Med 1992; 327: 1045-50.

13. Cummins RO, Chamberlain DA, Abramson NS et al. Recommended Guidelines For Reviewing, Reporting, and Conducting Research on In-Hospital Resuscitation: The In-Hospital 'Utstein Style'. Resuscitation 1997; 34: 151-83.

14. Cummins RO, Chamberlain DA, Abramson NS et al. Recommended Guidelines for Uniform Reporting of Data from out-of-Hospital Cardiac Arrest: The Utstein Style. A Statement for Health Professionals from a Task Force of The American Heart Association, The European Resuscitation Council, The Heart and Stroke Foundation of Canada, and The Australian Resuscitation Council. Circulation 1991; 84: 960-75.

15. Becker L, Eisenberg M, Fahrenbruch C, Cobb L. Public locations of cardiac arrest. Implications for public access defibrillation. Circulation 1998; 97: 2106-10.

16. Kudenchuk PJ, Cobb LA, Copass MK et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med 1999; 341: 871-8.

17. Stults KR, Brown DD, Schug VL, Bean JA. Prehospital defibrillation performed by emergency medical technicians in rural communities. N Engl J Med 1984; 310: 219-223.

18. Tweed WA, Bristow G, Donen N. Resuscitation from cardiac arrest: assessment of a system providing only basic life support outside of hospital. Can Med Assoc J 1980; 122: 297-300.

19. Valenzuela TD, Roe DJ, Nichol G, Clark LJ, Spalte DW, Hardman RG. Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med 2000; 343: 1206-09.

20. Weaver WD, Copass MK, Burli D, Ray R, Hallstrom AP, Cobb LA. Improved neurologic recovery and survival after early defibrillation. Circulation 1984; 69: 946-50.

21. Weaver WD. Resuscitation outside the hospital-what’s lacking? N Engl J Med 1991; 325: 1437-9.

22. White RD, Hankins DG, Buglosi TF. Seven years’ experience with early defibrillation by police and paramedics in an emergency medical services system. Resuscitation 1998; 39: 145-51.

23. Timmerman A, Piegas LS, Sousa JE. Results of cardiopulmonary resuscitation in a cardiology hospital. Resuscitation 1989; 18: 75-84.

24. Timmerman A, Sauer A, Piegas LS et al. Prognostic factors of the results of cardiopulmonary resuscitation in a cardiology hospital. Arq Bras Cardiol 2001; 77:152-60

25. Goldberg RJ, Gore JM, Halfajee CI, Alpert JS, Dahlen JE. Outcome after cardiac arrest during acute myocardial infarction. Am J Cardiol 1987; 59: 251-6.

26. Tortolani AJ, Risucci DA, Powell SR, Dixon R. In-hospital cardiopulmonary resuscitation during asystole. Therapeutic factors associated with 24-hour survival. Chest 1989; 96: 622-6.

27. Burns R, Graney MJ, Nichols LO. Prediction of in-hospital cardiopulmonary arrest outcome. Arch Intern Med 1989; 149: 1318-21.

28. Eisenberg MS, Berger L, Hallstrom A. Cardiac resuscitation in the community. Importance of rapid provision and implications for program planning. JAMA 1979; 241: 1905-07.

29. Cummins RO, Eisenberg M, Berger L, Murray JA. Sensitivity, accuracy, and safety of an automatic external defibrillator. Lancet 1984; 2: 318-20.

30. Cummins RO, Eisenberg MS. Prehospital cardiopulmonary resuscitation. Is it effective? JAMA 1985; 253: 2408-12.

31. Eisenberg MS, Copass MK, Hallstrom AP et al. Treatment of out-of-hospital cardiac arrests with rapid defibrillation by emergency medical technicians. N Engl J Med 1980; 302: 1379-83.

32. Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2000; 102: 186-9.

33. Lund I, Skullberg A. Cardiopulmonary resuscitation by lay people. Lancet 1976; 2: 702-04.

34. Landry FJ, Parker JM, Phillips YY. Outcome of cardiopulmonary resuscitation in the intensive care setting. Arch Intern Med 1992; 152: 2305-08.

35. Murphy DJ, Murray AM, Robinson BE, Campion EW. Outcomes of cardiopulmonary resuscitation in the elderly. Ann Intern Med 1989; 111: 199-205.

36. Peatfield RC, Sillett RW, Taylor D, McNicol MW. Survival After Cardiac Arrest In Hospital. Lancet 1977; 1: 1223-5.

37. Hollingsworth JH. The Results Of Cardiopulmonary Resuscitation. A 3-year University Hospital Experience. Ann Intern Med 1969; 71: 459-66.

38. Barton C, Callaham M. High-dose epinephrine improves the return of spontaneous circulation rates in human victims of cardiac arrest. Ann Emerg Med 1991; 20: 722-5.

39. Safar P. History of cardiopulmonary resuscitation. Acute Care 1986; 12: 61-2.

40. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 1995; 92: 3089-93.

41. Standards and Guidelines for Cardiopulmonary Resuscitation (Cpr) and Emergency Cardiac Care (Ecc). JAMA 1980; 244: 453-509.

42. Standards and Guidelines for Cardiopulmonary Resuscitation (Cpr) and Emergency Cardiac Care (Ecc). JAMA 1986; 255: 2989-2905.

43. O’keeffe S, Ebell MH. Prediction of failure to survive following in-hospital cardiopulmonary resuscitation: comparison of two predictive instruments. Resuscitation 1994; 28: 21-5.