On the matrices of given rank in a large subspace

Clément de Seguins Pazzis∗†

December 2, 2010

Abstract
Let \(V \) be a linear subspace of \(M_{n,p}(K) \) with codimension lesser than \(n \), where \(K \) is an arbitrary field and \(n \geq p \). In a recent work of the author, it was proven that \(V \) is always spanned by its rank \(p \) matrices unless \(n = p = 2 \) and \(K \cong \mathbb{F}_2 \). Here, we give a sufficient condition on \(\text{codim} \ V \) for \(V \) to be spanned by its rank \(r \) matrices for a given \(r \in [1, p - 1] \). This involves a generalization of the Gerstenhaber theorem on linear subspaces of nilpotent matrices.

AMS Classification: 15A30
Keywords: matrices, rank, linear combinations, dimension, codimension.

1 Introduction
In this paper, \(K \) denotes an arbitrary field, \(n \) a positive integer and \(M_n(K) \) the algebra of square matrices of order \(n \) with entries in \(K \). For \((p, q) \in \mathbb{N}^2 \), we also let \(M_{p,q}(K) \) denote the vector space of matrices with \(p \) rows, \(q \) columns and entries in \(K \). Two linear subspaces \(V \) and \(W \) of \(M_{p,q}(K) \) will be called equivalent when there are non-singular matrices \(P \) and \(Q \) respectively in \(\text{GL}_p(K) \) and \(\text{GL}_q(K) \) such that \(W = PVQ \).

In a recent work of the author [10], the following proposition was a major tool for generalizing a theorem of Atkinson and Lloyd [1] to an arbitrary field:

∗Professor of Mathematics at Lycée Privé Sainte-Geneviève, 2, rue de l’École des Postes, 78029 Versailles Cedex, FRANCE.
†e-mail address: dsp.prof@gmail.com
Proposition 1. Let n and p denote positive integers such that $n \geq p$. Let V be a linear subspace of $M_{n,p}(\mathbb{K})$ such that $\text{codim} V < n$, and assume $(n, p, \# \mathbb{K}) \neq (2, 2, 2)$ or $\text{codim} V < n - 1$. Then V is spanned by its rank p matrices.

The exceptional case of $M_2(\mathbb{F}_2)$ is easily described:

Proposition 2. Let V be a linear hyperplane of $M_2(\mathbb{F}_2)$. Then:

- either V is equivalent to $\mathfrak{sl}_2(\mathbb{F}_2) = \{ M \in M_2(\mathbb{F}_2) : \text{tr} M = 0 \}$ and then V is spanned by its rank 2 matrices;
- or V is equivalent to the subspace $T^+_2(\mathbb{F}_2)$ of upper triangular matrices, and then V is not spanned by its rank 2 matrices.

Proof. Consider the orthogonal V^\perp of V for the non-degenerate symmetric bilinear form $b : (A, B) \mapsto \text{tr}(AB)$. Then V^\perp contains only one non-zero matrix C. Either C has rank 2, and it is equivalent to I_2, hence V is equivalent to $\mathfrak{sl}_2(\mathbb{F}_2)$; or C has rank 1, it is equivalent to $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ hence V is equivalent to $T^+_2(\mathbb{F}_2)$.

In the first case, the three non-singular matrices I_2, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ span $\mathfrak{sl}_2(\mathbb{F}_2)$. In the second one, $T^+_2(\mathbb{F}_2)$ has only two non-singular matrices, which obviously cannot span it.

Here, we wish to give a similar result for the rank r matrices, still assuming that $\text{codim} V < n$. Our main results follow:

Theorem 3. Let $n \geq p$ be integers and V be a linear subspace of $M_{n,p}(\mathbb{K})$ with $\text{codim} V < n$. Let $r \in [1, p]$ and $s \in [0, r]$. Then every rank s matrix of V is a linear combination of rank r matrices of V, unless $n = p = r = \# \mathbb{K} = 2$ and $\text{codim} V = 1$.

This has the following easy corollary (which will be properly proven later on):

Corollary 4. Let $n \geq p$ be integers and V be a linear subspace of $M_{n,p}(\mathbb{K})$ with $\text{codim} V < n$. Then, for every $r \in [1, p]$, the subspace V contains a rank r matrix.

Theorem 5. Let $n \geq p$ be integers and V be a linear subspace of $M_{n,p}(\mathbb{K})$ with $\text{codim} V < n$. Let $r \in [1, p - 1]$. If $\text{codim} V \leq \left(\frac{r^2}{2} \right) - 2$, then V is spanned by its rank r matrices.
Notice that this has the following nice corollary (for which a much more elementary proof exists):

Corollary 6. Let H be a linear hyperplane of $M_n(\mathbb{K})$, with $n \geq 2$. Then H is spanned by its rank r matrices, for every $r \in [1,n]$, unless $(n,r,\#\mathbb{K}) = (2,2,2)$.

We will also show that there exists a linear subspace of $M_{n,p}(\mathbb{K})$ with codimension $(r+2) - 2$ which is not spanned by its rank r matrices, hence the upper bound $(r+2) - 2$ in the above theorem is tight. The proof of these results will involve an extension of the Flanders theorem to affine subspaces (see Section 3 of [9]) and a slight generalization of the famous Gerstenhaber theorem [4] on linear subspaces of nilpotent matrices.

2 Proving the main theorems

2.1 Proof of Proposition 1

For the sake of completeness, we will recall here the proof of Proposition 1 already featured in [10]. This is based on the following theorem of the author, slightly generalizing earlier works of Dieudonné [3], Flanders [4] and Meshulam [7]:

Theorem 7. Given positive integers $n \geq p$, let V be an affine subspace of $M_{n,p}(\mathbb{K})$ containing no rank p matrix. Then codim $V \geq n$.

If in addition codim $V = n$ and $(n,p,\#\mathbb{K}) \neq (2,2,2)$, then V is a linear subspace of $M_{n,p}(\mathbb{K})$.

Proof of Proposition 1. Assume that V is not spanned by its rank p matrices. Then there would be a linear hyperplane H of V containing every rank p matrix of V. Choosing $M_0 \in V \setminus H$, it would follow that the affine subspace $M_0 + H$, which has codimension in $M_{n,p}(\mathbb{K})$ lesser than or equal to n, contains no rank p matrix. However $M_0 + H$ is not a linear subspace of $M_{n,p}(\mathbb{K})$, which contradicts the above theorem.

2.2 Proof of Theorem 3 and Corollary 4

We discard the case $n = p = r = \#\mathbb{K} = 2$ and codim $V = 1$, which has already been studied in the proof of Proposition 2.
Let us now prove Theorem 3. Let \(A \) be a rank \(s \) matrix of \(V \). Replacing \(V \) with an equivalent subspace, we lose no generality assuming that \(A \) has the form
\[
A = \begin{bmatrix} A_1 & 0 \end{bmatrix} \quad \text{for some} \quad A_1 \in M_{n,r}(\mathbb{K}).
\]
Denote by \(W \) the linear space consisting of those matrices \(M \in M_{n,r}(\mathbb{K}) \) such that \([M \ 0] \in V \). Then the rank theorem shows that \(\text{codim}_{M_{n,r}(\mathbb{K})} W \leq \text{codim}_{M_{n,p}(\mathbb{K})} V < n \). Notice that the situation \(n = r = 2 \) may not arise, hence Proposition 1 shows that \(W \) is spanned by its rank \(r \) matrices. In particular, the matrix \(A_1 \) is a linear combination of rank \(r \) matrices of \(W \), hence \(A \) is a linear combination of rank \(r \) matrices of \(V \). This proves Theorem 3.

Let us now turn to Corollary 4. Denote by \(V' \) the linear subspace of \(V \) consisting of its matrices with all columns zero starting from the second one. Then \(\dim V' \geq n - \text{codim} V > 0 \), hence \(V' \neq \{0\} \), which proves that \(V \) contains a rank 1 matrix \(M \). Then, for every \(r \in [1, p] \), Theorem 3 shows that \(M \) is a linear combination of rank \(r \) matrices of \(V \), hence \(V \) must contain at least one rank \(r \) matrix!

2.3 Proof of Theorem 5

We will start from an observation that is similar to the one that lead to Proposition 1. Let \(V \) be a linear subspace of \(M_{n,p}(\mathbb{K}) \), let \(r \in [1, p-1] \) and assume that \(V \) is not spanned by its rank \(r \) matrices. Then there would be a linear hyperplane \(H \) of \(V \) containing every rank \(r \) matrix of \(V \). By Theorem 3, the subspace \(H \) must also contain every matrix of \(V \) with rank lesser than or equal to \(r \). Choosing arbitrarily \(M_0 \in V \setminus H \), it would follow that the (non-linear) affine subspace \(M_0 + H \) contains only matrices of rank greater than \(r \) and has dimension \(\dim V - 1 \).

Conversely, assume there exists an affine subspace \(\mathcal{H} \) of \(M_{n,p}(\mathbb{K}) \) which contains only matrices of rank greater than \(r \) (notice then that \(0 \notin \mathcal{H} \)), and let \(H \) denote its translation vector space. Then \(H \) must contain every rank \(r \) matrix of the linear space \(V' := \text{span} \mathcal{H} \), therefore \(V' \), which has dimension \(\dim H + 1 \), is not spanned by its rank \(r \) matrices.

Theorem 5 will thus come from the following result (applied to \(k = r + 1 \)), which generalizes a theorem of Meshulam to an arbitrary field and rectangular matrices (Meshulam tackled the case of an algebraically closed field and the one of \(\mathbb{R} \), and he restricted his study to square matrices).

Theorem 8. Let \(n \geq p \geq k \) be positive integers. Denote by \(h(n, p, k) \) the largest
dimension for an affine subspace \(V \) of \(M_{n,p}(\mathbb{K}) \) satisfying

\[
\forall M \in V, \quad \text{rk} \, M \geq k.
\]

Then

\[
h(n,p,k) = np - \left(\frac{k+1}{2} \right).
\]

Inequality \(h(n,p,k) \geq np - \left(\frac{k+1}{2} \right) \) is obtained as in [8] by considering the affine subspace \(H \) consisting of all \(n \times p \) matrices of the form

\[
\begin{bmatrix}
I_r + T & \? \\
? & ?
\end{bmatrix}
\]

with \(T \in T_k^{++}(\mathbb{K}) \),

where \(T_k^{++}(\mathbb{K}) \) denotes the set of strictly upper triangular matrices of \(M_k(\mathbb{K}) \).

Obviously \(\text{codim}_{M_{n,p}(\mathbb{K})} H = \text{codim}_{M_k(\mathbb{K})} T_k^{++}(\mathbb{K}) = \left(\frac{k+1}{2} \right) \), whilst, judging from its left upper block, every matrix of \(H \) has a rank greater than or equal to \(k \).

In order to prove that \(h(n,p,k) \leq np - \left(\frac{k+1}{2} \right) \), we let \(V \) be an arbitrary affine subspace of \(M_{n,p}(\mathbb{K}) \) such that \(\forall M \in V \), \(\text{rk} \, M \geq k \), and we prove that \(\dim V \leq np - \left(\frac{k+1}{2} \right) \). Proceeding by downward induction on \(k \), we may assume furthermore that \(V \) contains a rank \(k \) matrix. We then lose no generality assuming that \(V \) contains the matrix \(J_k := \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} \). Denote by \(V \) the translation vector space of \(V \) and consider the linear subspace \(W \) of \(M_k(\mathbb{K}) \) consisting of those matrices \(A \) for which \(\begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \) belongs to \(V \). Then the rank theorem shows \(\text{codim}_{M_{n,p}(\mathbb{K})} V \geq \text{codim}_{M_k(\mathbb{K})} W \). The assumptions on \(V \) show that \(I_k + W \) contains only nonsingular matrices. Since \(W \) is a linear subspace, this shows that for any \(M \in W \), the only possible eigenvalue of \(M \) in the field \(\mathbb{K} \) is 0. The proof will thus be finished should we establish the next theorem:

For \(M \in M_n(\mathbb{K}) \), we let \(\text{Sp}(M) \) denote the set of its eigenvalues in the field \(\mathbb{K} \).

Theorem 9 (Generalized Gerstenhaber theorem). Let \(V \) be a linear subspace of \(M_n(\mathbb{K}) \) such that \(\text{Sp}(M) \subseteq \{0\} \) for every \(M \in V \). Then \(\dim V \leq \left(\frac{n}{2} \right) \).

Note that this implies the Gerstenhaber theorem on linear subspaces of nilpotent matrices [2] [5] [6], and that this is equivalent to it when \(\mathbb{K} \) is algebraically closed. Moreover, for \(\mathbb{K} = \mathbb{R} \), the proof is easy by intersecting \(V \) with the space of symmetric matrices of \(M_n(\mathbb{K}) \) (see [8]). Our proof for an arbitrary field will
use a brand new method. For \(i \in [1, n] \) and \(M \in M_n(\mathbb{K}) \), we let \(L_i(M) \) denote the \(i \)-th row of \(M \). We set
\[
R_i(V) := \{ M \in V : \forall j \in [1, n] \setminus \{ i \}, L_j(M) = 0 \}.
\]

Proposition 10. Let \(V \) be a linear subspace of \(M_n(\mathbb{K}) \) such that \(\text{Sp}(M) \subset \{0\} \) for every \(M \in V \). Then \(R_i(V) = \{0\} \) for some \(i \in [1, n] \).

Proof. We prove this by induction on \(n \). Assume the claim holds for any subspace of \((n - 1) \times (n - 1) \) matrices satisfying the assumptions, and that it fails for \(V \). Denote by \(W \) the linear subspace of \(V \) consisting of its matrices with a zero last row. We decompose every \(M \in W \) as \(M = \begin{bmatrix} K(M) & ? \\ 0 & 0 \end{bmatrix} \). Notice that \(K(W) \) is a linear subspace of \(M_{n-1}(\mathbb{K}) \) satisfying the assumptions of Proposition 10. By the induction hypothesis, there is an integer \(i \in [1, n - 1] \) such that \(R_i(K(W)) = \{0\} \). However, \(R_i(V) \neq \{0\} \), hence \(V \) contains the elementary matrix \(E_{i,n} \) (i.e. the one with entry 1 at the spot \((i,n)\), and for which all the other entries are zero). Conjugating \(V \) with a permutation matrix, this generalizes as follows: for every \(k \in [1, n] \), there is an integer \(f(k) \in [1, n] \) such that \(E_{f(k),k} \in V \). We may then find an \(f \)-cycle, i.e. a list \((i_1, \ldots, i_p)\) of pairwise distinct integers such that \(f(i_1) = i_2, f(i_2) = i_3, \ldots, f(i_{p-1}) = i_p \) and \(f(i_p) = i_1 \). Hence \(V \) contains the matrix \(M := E_{i_1,i_p} + \sum_{k=1}^{p-1} E_{i_{k+1},i_k} \). However \(1 \in \text{Sp}(M) \) (consider the vector with entry 1 in every \(i_k \) row, and zero elsewhere), contradicting our assumptions.

Proof of Theorem 9. Again, we use an induction process. The result is trivial when \(n = 0 \) or \(n = 1 \). Assume \(n \geq 2 \) and the results holds for subspaces of \(M_{n-1}(\mathbb{K}) \). Let \(V \subset M_n(\mathbb{K}) \) be as in Theorem 9. Using Proposition 10, we lose no generality assuming that \(R_n(V) = \{0\} \) (we may reduce the situation to this one by conjugating \(V \) with a permutation matrix). Consider the linear subspace \(W \) of \(V \) consisting of its matrices which have the form
\[
M = \begin{bmatrix} A(M) & 0 \\ L(M) & \alpha(M) \end{bmatrix}
\]
where \(A(M) \in M_{n-1}(\mathbb{K}), \ L(M) \in M_{1,n-1}(\mathbb{K}) \) and \(\alpha(M) \in \mathbb{K} \). Then the rank theorem shows that \(\dim V \leq (n - 1) + \dim W \). For every \(M \in W \), one has \(\text{Sp}(M) \subset \{0\} \) hence \(\alpha(M) = 0 \) and \(\text{Sp} A(M) \subset \),
\{0\}. Since \(R_n(V) = \{0\} \), this yields \(\dim A(W) = \dim W \), whilst the induction hypothesis shows that \(\dim A(W) \leq \binom{n-1}{2} \). We conclude that

\[
\dim V \leq (n - 1) + \binom{n - 1}{2} = \binom{n}{2}.
\]

\[\square \]

Remark 1. Proceeding by induction and using Proposition 10, it can even be proven that under the assumptions of Theorem 9, there is a permutation matrix \(P \in \text{GL}_n(\mathbb{K}) \) such that \((P V P^{-1}) \cap T_n^{-}(\mathbb{K}) = \{0\} \), where \(T_n^{-}(\mathbb{K}) \) denotes the space of lower triangular matrices in \(M_n(\mathbb{K}) \). This would immediately yield Theorem 9.

This completes the proof of Theorem 5.

References

[1] M.D. Atkinson, S. Lloyd, Large spaces of matrices of bounded rank, *Quart. J. Math. Oxford (2)*, 31 (1980), 253-262.

[2] R. Brualdi, K. Chavey, Linear spaces of Toeplitz and nilpotent matrices, *J. Combin. Theory Ser A*, 63 (1993), 65-78.

[3] J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, *Arch. Math.*, 1 (1949), 282-287.

[4] H. Flanders, On spaces of linear transformations with bounded rank, *J. Lond. Math. Soc.*, 37 (1962), 10-16.

[5] M. Gerstenhaber, On Nilalgebras and Linear Varieties of Nilpotent Matrices (I), *Amer. J. Math.*, 80 (1958), 614-622.

[6] B. Mathes, M. Omladič, H. Radjavi, Linear spaces of nilpotent matrices, *Linear Algebra Appl.*, 149 (1991), 215-225.

[7] R. Meshulam, On the maximal rank in a subspace of matrices, *Q. J. Math.*, *Oxf. II*, 36 (1985), 225-229.

[8] R. Meshulam, On two extremal matrix problems, *Linear Algebra Appl.*, 114/115 (1989), 261-271.
[9] C. de Seguins Pazzis, The affine preservers of non-singular matrices, *Arch. Math.*, 95 (2010) 333-342.

[10] C. de Seguins Pazzis, The classification of large spaces of matrices of bounded rank, *ArXiv preprint* http://arxiv.org/abs/1004.0298