Advances in the study of nervous system infections in COVID-19

Chao He1,§, Ling He2,§, Lin Chen3,†(✉), Wei Wang4,†(✉)

1 Department of Neurosurgery, Zhiji Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang, China
2 Darwin Cell Biotechnology Co., Ltd., Beijing 100124, China
3 Department of Neurosurgery, Center for Brain Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
4 Department of Intensive Care Unit, Zhiji Affiliated Hospital of Wenzhou Medical University, Wenzhou 318000, Zhejiang, China
§ These authors contributed equally to this work.
† These authors contributed equally to this work.

ARTICLE INFO
Received: 24 March, 2021
Revised: 16 June, 2021
Accepted: 21 June, 2021

© The authors 2021. This article is published with open access at journals.sagepub.com/home/BSA

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

KEYWORDS
SARS-CoV-2, COVID-19, olfaction, nervous system

ABSTRACT
Shortly after its outbreak, coronavirus disease 2019 (COVID-19) has very rapidly spread to become a global epidemic. Early clinical findings mainly included typical symptoms such as fever and cough with a very high transmission rate. Recent findings have demonstrated neurological manifestations of atypical symptoms, which is associated with poor prognosis. In this paper, we describe the neurological aspects of COVID-19 pneumonia in terms of relevant neurons, virus-associated receptors, and olfactory and neurological clinical manifestations and offer insights on treatment.

1 Introduction
Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been found to attack the lungs, liver, kidneys, nervous system, immune system, excretory system, and reproductive system and in many cases, results in a new type of pneumonia [1]. More than 35 million cases have been confirmed worldwide until October 2020, with the virus spreading much faster than expected. Most clinical reports of COVID-19 describe typical clinical manifestations such as fever, cough, diarrhea, and fatigue. However, a high level of vigilance should be upheld for
atypical symptoms, such as non-respiratory symptoms, as their correct identification can be effective in reducing the rate of disease transmission and accelerating clinical cure. This article therefore addresses the neurological aspects of COVID-19 infection.

2 Neuronal infection by COVID-19

Novel coronaviruses have the potential to be neuroinvasive [2] and cause adverse effects on neurological function, even severe neurological damage, at onset of infection. SARS-CoV-2 invades the central nervous system (CNS) pathologically, similar to SARS and Middle East respiratory syndrome (MERS) viruses. Novel coronaviruses may enter the CNS via hematogenous or retrograde neuronal pathways [3]. SARS and MERS viruses can cause systemic infection or injury in a wide range of animals and can thus rapidly adapt and cross species barriers to spread or cause pandemics in populations. Such infections can lead to severe clinical signs and high mortality. Neurological damage has been confirmed in SARS and MERS infections, and researchers have found the presence of viral nucleic acids in cerebrospinal fluid and brain tissue during autopsies of patients. Severe infection of the brainstem with SARS coronavirus has been reported in the brains of both human patients and experimental animals. In coronavirus infection in humans, the clinical manifestations described in some studies include respiratory symptoms, myalgia, and fatigue [4–6].

Coronaviruses have viral synapses similar to neuronal synapses that contribute to the rapid infection and immune escape of viruses to nerves [7]. COVID-19 has the potential for direct nerve infection, retention, cross-neuronal transmission, and latency. Nerve damage caused by respiratory coronavirus infection has been recently reported [8–10]. Studies have also shown that in mouse CNS, neurons are the primary targets of infection, causing the degeneration of these essential cells and ultimately, some form of programmed cell death following viral infection [11]. After the initial pulmonary infection and the control of the pandemic, approximately 1/3 of post-infection patients have low antibody titers. Even when the host recovers with treatment, the virus may remain in the neurons for a long time (unlike other cells, most neurons do not regenerate during an entire lifetime) and will reignite when conditions become favorable, which can cause an outbreak to seasonally recur. In a previous study, we found that facial viral herpes can occur rapidly in most patients, starting the day after complete and partial severance of the sensory roots of the trigeminal nerve during neurosurgery [12]. This suggests that viruses from previously infected neurons can persist.

Human coronaviruses are neuroinvasive and neurophilic and have a high affinity for a target molecule that is expressed or abundantly expressed in the posterior horn of the spinal cord in layers I, II, and III, above the brainstem, and up to almost all regions of the brain. This invasion into the nervous system may cause neurological disease. Coronaviruses can be found in the brain or in the cerebrospinal fluid [13]. In severe cases, SARS-CoV-2 may enter the brain through the olfactory nerve in the nasal cavity [14].

A series of studies by showed that PDGF-B (ret/ret) mice underwent increased lung injury after subarachnoid hemorrhage. Given the similar microstructures of the blood–gas and blood–brain barriers and the lung–brain interaction, ependymal cells are possibly involved in neurological and pulmonary
dysfunction caused after subarachnoid hemorrhage. The studies further elaborated on the mechanisms involved in the CyPA signaling pathway [15, 16].

3 Association between novel coronavirus-related receptors and the nervous system

Evidence suggests that coronaviruses are not always restricted to infecting the respiratory system. Some patients with COVID-19 have exhibited neurological symptoms such as headache, nausea, and vomiting. Some coronaviruses have been shown to spread from mechanoreceptors and chemoreceptors in the lungs and lower airways to the cardiopulmonary medulla respiratory center via synaptically linked pathways [17]. Although CNS involvement is not a common clinical feature of novel coronavirus pneumonia, the possibility of SARS-CoV-2 entering the CNS remains reasonable. Many viruses occasionally enter the human CNS, even though the majority of diseases they cause do not involve the CNS [18].

Angiotensin-converting enzyme 2 (ACE2), which is widely expressed in the lung, cardiovascular system, intestine, kidney, CNS, and adipose tissue, has been identified as a functional receptor for novel coronaviruses. The expression and distribution of ACE2 suggest that novel coronaviruses may cause some neurological symptoms through direct or indirect mechanisms. ACE2 is a mediator of COVID-19 transmission and acts as a bridge between immunity, inflammation, and cardiovascular disease. Novel coronaviruses differ in several key amino acid residues on their respective receptor-binding domains but have a strong affinity for the human ACE2 receptor, which may explain the greater pathogenicity of SARS-CoV-2 [19].

ACE2 is a key factor in the pathological pathway of neo-coronaviruses, both as a “gateway” to viral invasion and as a key agent of organ damage [20]. The binding of novel coronaviruses to the ACE2 receptor activates the classical renin-angiotensin system regulatory pathway, acting on the lung and extrapulmonary target organs, thereby causing multiple organ injury. The regulation of ACE2 affects multiple pathways and multiple targets [21]. Even the function of its encoding gene, ACE2, is affected by neurological and humoral factors at the overall level [22]. Transmembrane protease serine 2 (TMPRSS2) is another key protein required for cellular neo-coronavirus invasion whose serine protease mechanism is inextricably linked to ACE2 [23]. TMPRSS2 is required to activate the S protein of SARS-CoV-2, which binds to ACE2 in order to enter the host cell. Neurological damage in the acute phase manifests as confusion, dizziness, impaired consciousness, susceptibility to acute stroke, olfactory deficits, memory loss, ataxia, epilepsy, and neuropathic pain [24]. Multiple non-nerve cell types exist in olfactory epithelial cells expressing two host receptors, ACE2 and TMPRSS2, which promote the binding, replication, and accumulation of SARS-CoV-2 proteins. This may be the potential mechanism of olfactory dysfunction often reported in COVID-19 patients. The nasal olfactory epithelium may be the site where the binding force of novel coronaviruses is enhanced [25] and may be a more suitable tissue for detecting SARS-CoV-2 in the early stage before symptoms, even in asymptomatic populations [26].

4 Neo-coronavirus infection and olfaction

The loss or decline in the senses of taste and smell can have many causes. In humans, the sense of smell severely affects the sense of taste,
and the two conditions are often jointly affected. Disorders of the olfactory and gustatory systems are usually part of the otolaryngology department, but may actually be caused by neurological damage. To determine the prevalence and assess the diagnostic significance of symptoms of olfactory loss and gustatory loss in neo-coronavirus pneumonia [27]. There is data showing that most patients with olfactory deficit or senile dementia recovered within 3 weeks, with an average recovery time of 7 days for both symptoms. Furthermore, the study found that olfactory deficit and aging appear to be important symptoms and clues for the diagnosis of COVID-19, especially in the early stages of the disease. The possibility that olfactory receptor neurons elicit a rapid immune response in the early stages of disease raises the possibility of neurological infection through olfactory neurons [28]. Recently, the U.S. Centers of Disease Control and Prevention has added the sudden loss of smell and taste to the list of suspicious symptoms for neo-coronavirus infection.

Several types of cells in the nasal cavity are susceptible to SARS-CoV-2. Viral infection results in congestion and edema in the nasal mucosa, thereby impairing or incapacitating the sense of smell. In the absence of other respiratory diseases, the loss of or diminished senses of smell and taste is indicative of possible neo-coronavirus infection [29]. Nasal olfactory epithelial samples may be more suitable than sputum specimens or nasopharyngeal swabs for detecting neo-coronavirus tissue in the stage before the onset of symptoms or even in asymptomatic people. The destruction of taste and smell nerve cells by neo-coronaviruses, which results in the temporary loss of taste and smell in patients, may be a new way of identifying potential asymptomatic infections [30].

5 Main neurological clinical manifestations of neo-coronavirus pneumonia

During the onset of COVID-19, the patient first develops fever and respiratory symptoms [31, 32], followed by muscle soreness, changes in consciousness, and mental symptoms. Neurological examinations of such patients showed positive signs of SARS-CoV-2 infection. Some COVID-19 cases indicate that SARS-CoV-2 can invade the CNS and cause neurological symptoms and signs [33]. Mao et al. [3] analyzed data from 214 laboratory-confirmed COVID-19 patients and observed characteristic neurological manifestations in 78 of them. A comprehensive analysis of the patients’ records for each phenotype, demographic characteristics, medical history, symptoms, clinical signs, laboratory findings, and CT scan of the chest showed three main neurological manifestations: CNS symptoms (vertigo, headache, impaired consciousness, acute cerebrovascular disease, ataxia, and epilepsy), peripheral nervous system (PNS) symptoms (taste disturbance, manifesting as taste disturbance, olfactory disturbance, visual disturbance, and neuralgia), and musculoskeletal symptoms (skeletal muscle damage). Among the patients with neurological symptoms, 53 cases showed CNS symptoms, 19 cases showed PNS symptoms, and 23 cases showed musculoskeletal symptoms. Neurological involvement was more likely in severely ill patients who were older and more hypertensive but had fewer typical symptoms such as fever and cough. Furthermore, neurological symptoms were significantly more common in severely ill patients, particularly acute cerebrovascular disease, impaired consciousness, and muscle damage. A cohort study conducted by Professor Zhang Dingyu in LANCET showed that middle-aged and elderly patients with hypoalbumi-
nemia and underlying diseases such as hypertension, diabetes, coronary artery disease, and chronic obstructive pulmonary disease were at higher risk for COVID-19. At 6 months after acute infection, the main complaints of COVID-19 survivors were fatigue or muscle weakness, sleep difficulties, and anxiety or depression [34, 35]. Higher D-dimer levels in more severely ill patients compared with those in less severely ill patients may explain why more severely ill patients are more likely to develop cerebrovascular disease. Therefore, neurological manifestations should be monitored for in patients with COVID-19, especially in patients with severe infections and at a high risk of death. These findings offer evidence that neo-coronavirus can infect the nervous, musculoskeletal, and respiratory systems.

In a study by Gutierrez-Ortiz C et al. [36], a 50-year-old male patient who initially presented with cough, headache, low back pain, and fever developed anosmia, right motor nerve palsy, and ataxia five days after the initial visit. Another patient, a 39-year-old male, initially presented with diarrhea and hypothermia and, three days later, presented with dementia and bilateral abducens nerve palsy. The presence of neurological manifestations may be due to an abnormal immune response to COVID-19.

One study showed that 25% of patients with COVID-19 developed CNS manifestations [37]. The neurological manifestations of COVID-19 have not been properly studied; precise, targeted documentation of neurological symptoms in patients, detailed clinical neurological and electrophysiological investigations, attempts to isolate SARS-CoV-2 virus from cerebrospinal fluid, and autopsies of patients may clarify the viral mechanisms involved in these neurological symptoms. Furthermore, the hypercoagulability of COVID-19 patients may lead to a potential high risk of stroke [38]. Patients with pituitary disease who contracted COVID-19 tended to feature hypercortisolism and adrenal depression with Cushing’s disease, adrenal insufficiency with diabetes insipidus and hypothalamic dysfunction, sleep apnea syndrome, and chest wall deformities with acrometropy [39]. The prognosis for neurological involvement is poor. Therefore, in patients with COVID-19, in addition to respiratory symptoms, physicians should pay close attention to neurological manifestations [40–42].

6 Neurological imaging for neo-coronavirus pneumonia

Fernandez et al. proposed acute inflammatory demyelinating polyneuropathy (AIDP) as a common subtype of Guillain–Barre syndrome in patients with COVID-19 [43]. Clinical features of AIDP include numbness and a tingling sensation in the hands and feet, followed by progressive weakness. In general, the prognosis for AIDP is good. Imaging is characterized by high intensity, enlargement, and mild to moderate contrast enhancement of the signal in the cauda equina, nerve roots/plexus, and peripheral nerves. Cauda equina contrast enhancement is the typical MR presentation of Guillain–Barre syndrome. Isolated albumin cells have been observed in the cerebrospinal fluid of most patients with Guillain–Barre syndrome. Immunotherapy (steroids, plasma exchange, or intravenous gamma globulins) may accelerate recovery. Significant residual functional deficits are observed in approximately 15% of patients with Guillain–Barre syndrome [44]. Corrêa et al. reported six confirmed cases of COVID-19 with abnormal cranial nerve lesions on magnetic resonance imaging (MRI)[44]. One patient had bilateral olfactory bulb gadolinium enhancement associated with olfactory loss; one had left optic neuritis; one presented with a right
understanding Barre consistent had neurological imaging The abducens nucleus lesion; two had facial palsy, one unilateral and the other bilateral; and one had bilateral lateral nerve palsy with Guillain–Barre syndrome. The brain MRI of one patient with COVID-19 showed signal changes consistent with viral brain invasion in the cortical region associated with olfaction, the posterior rectus gyrus [45]. The most typical imaging features of acute necrotizing encephalopathy in patients with severe COVID-19 are symmetric, multifocal lesions and invariable thalamic involvement. Other commonly involved sites include the brain stem, white matter, and cerebellum. Computed tomography images showed low attenuation, and MRI T2-weighted fluid-attenuated inversion recovery showed a high signal with internal bleeding. Furthermore, enhanced images can display a contrast enhancement ring [46]. When patients develop transient cerebellar ataxia or disorientation, a reversible splenial lesion (MERS) can be considered as a differential diagnosis for neurological symptoms of COVID-19 [47].

7 Summary

The nervous system is the dominant regulatory and controlling system in the body. Neuronal pathways are monitored and defended quickly and precisely, and the consequences of their disruption, damage, or collapse are insidious and severe. The pathobiological mechanisms of neuroinvasive viruses are still incompletely understood and need to be further investigated. Particularly, the full clinical range of neurological symptoms in COVID-19 patients remains to be discovered and summarized. Thus, understanding the neurological mechanisms of neo-coronavirus pneumonia will vastly improve clinical treatment and help curtail the spread of the disease. Therefore, it is important to explore the neurological impacts of neo-coronavirus infections.

Conflict of interests

Ling He is a staff in Darwin Cell Biotechnology Co. Ltd. We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Funding

This work is supported by Beijing Darwin Emergency Fund for Basic Research (No. 2020-B-01), Zhejiang Science and Technology Development Foundation [2017] No. 185 (GF18H09008), Zhejiang Health Development Foundation [2018] No. 52 (2019ZD058), Shao City Science and Education Office [2015] No. 15 (2016KYB315), Zhejiang Science and Education Office [2015] No. 24 (2015ZA209).

References

[1] Toljan K. Letter to the editor regarding the viewpoint “Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanism”. ACS Chem Neurosci 2020, 11(8): 1192–1194.
[2] Li YC, Bai WZ, Hashikawa T. Response to Commentary on “The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients”. J Med Virol 2020, 92(7): 707–709.
[3] Mao L, Jin HJ, Wang MD, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020, 77(6): 683–690.
[4] Baig AM. Neurological manifestations in COVID-19.
caused by SARS-CoV-2. CNS Neurosci Ther 2020, 26(5): 499–501.
[5] Bertran Recasens B, Martinez-Llorens JM, Rodriguez-Sevilla JJ, et al. Lack of dyspnea in patients with COVID-19: another neurological conundrum? Eur J Neurol 2020, 27(9): e40.
[6] Du YZ, Tu L, Zha PJ, et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan: A retrospective observational study. Am J Respir Crit Care Med 2020, 211(11): 1372–1379.
[7] Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 2019, 12(1): E14.
[8] Bhatnagar T, Murhekar MV, Soneja M, et al. Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: Protocol for restricted public health emergency use. Indian J Med Res 2020, 151(2 & 3): 184–189.
[9] Wang Q, Qiu Y, Li JY, et al. A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol Sin 2020, 35(5): 337–339.
[10] Butow R, Bilinska M, et al. Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. J Neuroinflammation 2020, 17(1): 16.
[11] Pan PY, Qu J, Li Q, et al. Aggravated pulmonary injury after subarachnoid hemorrhage in PDGF-B knockout mice. Chin Neurosurg J 2020; 6: 13.
[12] Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020, 92(6): 552–555.
[13] Wang Q, Qiu Y, Li JY, et al. Aggravated pulmonary injury after infection with COVID-19 and central nervous system complications: what neurologist need to know. J Microbiol Immunol Infect 2020, 53(3): 377–380.
[14] Kissler SM, Tedijanto C, Goldstein E, et al. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368(6493): 860–868.
[15] Pan PY, Zhao HL, Zhang X, et al. Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. J Neuroinflammation 2020, 17(1): 16.
[16] Pan PY, Qu J, Li Q, et al. Aggravated pulmonary injury after subarachnoid hemorrhage in PDGF-B knockout mice. Chin Neurosurg J 2020; 6: 13.
[17] Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020, 92(6): 552–555.
[18] Turtle L. Respiratory failure alone does not suggest central nervous system invasion by SARS-CoV-2. J Med Virol 2020, 92(7): 705–706.
[19] Ghebaw M, Wang K, Viveiros A, et al. Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res 2020, 126(10):1456–1474.
[20] Hanf TC, Harhay MO, Brown TS, et al. Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clin Infect Dis 2020, 71(15): 870–874.
[21] Ortega JT, Serrano ML, Pujol FH, et al. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis. EXCLI J 2020, 19: 410–417.
[22] Yan FY, Schwartz J, Chen SY, et al. Interrupting COVID-19 transmission by implementing enhanced traffic control bundling: Implications for global prevention and control efforts. J Microbiol Immunol Infect 2020, 53(3): 377–380.
[23] Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS is primarily expressed in bronchial transient secretory cells. EMBO J 2020, 39(10): e105114.
[24] Shaihki AG, Mithna H, Manto M. Cerebellar scholars’ challenging time in COVID-19 pandemic. Cerebellum 2020, 19(3): 343–344.
[25] Paybast S, Emami A, Koosha M, et al. Novel coronavirus disease (COVID-19) and central nervous system complications: what neurologist need to know. Acta Neurol Taiwan 2020, 29(1): 24–31.
[26] Wang HY, Li XL, Yan ZR, et al. Potential neurological symptoms of COVID-19. Ther Adv Neurol Disord 2020, 13: 175628642091783.
[27] Lee Y, Min P, Lee S, et al. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J Korean Med Sci 2020, 35(18): e174.
[28] Zhao Y, Zhao ZX, Wang YJ, et al. Single-cell RNA
expression profiling of ACE2, the putative receptor of Wuhan 2019-nCoV. bioRxiv 2020, DOI: 10.1101/2020.01.26.919985.

[29] Hjelmesæth J, Skaare D. Loss of smell or taste as the only symptom of COVID-19. Tidsskr Nor Laegeforen 2020, 140(7), DOI: 10.4045/tidsskr.20.0287.

[30] Hopkins C, Surda P, Whitehead E, et al. Early recovery following new onset anosmia during the COVID-19 pandemic - an observational cohort study. J Otolaryngol Head Neck Surg 2020, 49(1): 26.

[31] Nahama A, Ramachandran R, Cisternas AF, et al. The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis: A review. Med Drug Discov 2020, 5: 100033.

[32] Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of 2019 COVID-19 infection in China. medRxiv 2020, DOI: 10.1101/2020.02.06.20020974.

[33] Yin R, Feng W, Wang T, et al. Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019. J Med Virol 2020, 92(10): 1782–1784.

[34] Cheng KB, Wei M, Shen H, et al. Clinical characteristics of 463 patients with common and severe type coronavirus disease (in Chinese). Shanghai Med J 2020, 43(4): 224–232.

[35] Huang CL, Huang LX, Wang YM, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021, 397(10270): 220–232.

[36] Gutiérrez-Ortiz C, Méndez-Guerrero A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020, 95(5): e601-e605.

[37] Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: a systematic review. J Neurol Sci 2020, 413: 116832.

[38] Qiu F, Wu Y, Zhang AQ, et al. Changes of coagulation function and risk of stroke in patients with COVID-19. Brain Behav 2021, 11(6): e02185.

[39] Yuen KCJ, Blevins LS Jr, Findling JW. Important management considerations in patients with psychiatric disorders during the time of the covid-19 pandemic. Endocr Pract 2020, 26(8): 915–922.

[40] Radmanesh F, Rodriguez-Pla A, Pincus MD, et al. Severe cerebral involvement in adult-onset hemophagocytic lymphohistiocytosis. J Clin Neurosci 2020, 76: 236–237.

[41] Kim SW, Su KP. Using psychoneuroimmunity against COVID-19. Brain Behav Immun 2020, 87: 4–5.

[42] Ahmed W, Khan A, Sundar WH, et al. Neurological diseases caused by coronavirus infection of the respiratory airways. Brain Sci Adv 2020, 6(4): 324–343.

[43] Fernandez CE, Franz CK, Ko JH, et al. Imaging review of peripheral nerve injuries in patients with COVID-19. Radiology 2021, 299(3): E117–E130.

[44] Corrêa DG, Hygino da Cruz LC Jr, Lopes FCR, et al. Magnetic resonance imaging features of COVID-19-related cranial nerve lesions. J Neurol Neurosurg Psychiatry 2021, 92(1): 171–177.

[45] Politi LS, Salsano E, Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol 2020, 77(8): 1028–1029.

[46] Poyiadji N, Shahin G, Nsoujaim D, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 2020, 296(2): E119–E120.

[47] Hayashi M, Sahashi Y, Baba Y, et al. COVID-19-associated mild encephalitis/encephalopathy with a reversible splenial lesion. J Neurol Sci 2020, 415: 116941.
Chao He graduated from the Department of Clinical Medicine of Wenzhou Medical University, China, in July 2004. Now he is a neurosurgeon in Zhuji Affiliated Hospital of Wenzhou Medical University. In 2017, he was selected as the rookie of the medical field in Zhejiang Province. He has published many high-quality papers in Chinese and international journals, and has a number of patented technologies. He is a member of IANR. His research focuses on moyamoya disease, cerebral hemorrhage, and traumatic brain injuries. E-mail: zj.hechao@163.com

Ling He received her Master's degree in traditional Chinese medicine from Harbin University of Commerce, China, in 2011. Now she works in Beijing Darwin Cell Biotechnology Co., Ltd. She has published a number of papers in Chinese core journals and participated in the research of national projects and emergency research projects. At present, she is mainly engaged in the clinical translational research of stem cell related products. E-mail: he86ling@163.com

Lin Chen received his Doctor's degree in surgery from the School of Medicine of Tsinghua University in 2014. He served as an Editorial Director of Brain Science Advances, Associate Chief Physician of Neurosurgery Center of Tsinghua University Yuquan Hospital. Now he is the Director of Neurosurgery Department, Dongzhimen Hospital, Beijing University of Chinese Medicine. He has published many high-quality papers in Chinese and international journals, and has a number of patented technologies. His current researches focus on facial spasm, trigeminal neuralgia, Parkinson’s disease, cerebral infarction and other nervous system diseases. E-mail: chenlin_china@163.com

Wei Wang received her B.S. degree from the Wenzhou Medical College in July 2004. Now she is a clinician of intensive care unit in Zhuji People’s Hospital, Zhejiang, China. Her research focuses on emergency aid and treatment. E-mail: constance5@126.com