Abstract

Rail and road infrastructure is essential for economic growth and development but can cause a gradual loss in biodiversity and degradation of ecosystem function and services. We assessed influence of underpass dimensions, fencing, proximity to water and roads, Normalized Difference Vegetation Index (NDVI), presence of other species and livestock on underpass use by large and medium-sized mammals. Results revealed hyenas and leopards used the underpasses more than expected whereas giraffes and antelopes used the underpasses less than expected. Generalized linear mixed effects models (GLMMs) revealed that underpass height influenced their use by wildlife, with several species preferring to use taller underpasses. Electric fencing increased underpass use by funneling species towards underpasses, except for elephants and black-backed jackal for which it reduced underpass passage. GLMMs also revealed that the use of underpasses by livestock reduced the probability of their use by nearly 50% of wildlife species. Carnivore species were more likely to cross underpasses used by their prey. Buffalo, livestock, and hyenas used underpasses with higher NDVI and near water sources while baboons, dik-diks and antelopes avoided underpasses with high NDVI. The findings suggest a need for diverse, and comprehensive approach for mitigating the negative impacts of rail on African wildlife.

1. Introduction

Railway and road infrastructure is essential for economic growth and development, but it is also widely regarded as a catalyst for biodiversity loss in natural ecosystems. Generally, railway traffic, like road traffic, may negatively impact wildlife and wildlife habitats through increased wildlife mortality from wildlife-train collisions, loss of population connectivity, habitat fragmentation, pollution (e.g., noise, chemical and light), and habitat loss. Although railways may have similar impacts as roads, little attention has been paid towards mitigation of the effects of railways on wildlife. Perhaps, this is because the impacts of railways are perceived to be negligible due to much lower traffic flow than roads, characterized by long traffic-free intervals. However, with increasing railway traffic volumes and the expansion of high-speed trains, wildlife mortality from railways will likely increase, and this will demand implementation and evaluation of mitigation measures to reduce wildlife mortality. Moreover, an increase in infrastructure is predicted to occur mostly in the tropics where there are high levels of biodiversity and fragile ecosystems.

Wildlife corridors (e.g., underpasses, overpasses, culverts) along highways traversing wildlands are a valuable mitigation tool for enhancing the permeability of transportation infrastructure for wildlife while preventing wildlife mortalities from vehicle collisions. Several research studies, mostly in North America and Europe, have examined the effectiveness of wildlife underpasses along highways, but limited data exists for railways. Moreover, there is a dearth of information on wildlife use of underpasses associated with roads or railways by wildlife in the African continent where these designs and technologies are increasingly being adopted but see examples. The North American and European studies reveal that the effectiveness of underpasses is dependent on design factors such as size dimensions (i.e., height, length, and width) and location. In addition, ecological factors such as the presence of vegetation cover, forage, species involved, species interactions (e.g., predator-prey) and human activities are also important. The optimal characteristics for wildlife underpasses along highways are known to be species-specific, suggesting that it may be difficult to create universally optimal designs in areas with diverse wildlife species. Moreover, this is further compounded by species and individuals differing in their propensity to use underpasses. An understanding of how railway underpass design influences use by African savannah wildlife is lacking. There is an urgent need to understand how modern railway infrastructure is differentially impacting the connectivity and conservation of various African species. This is accomplished specifically by identifying species that are negatively impacted by railway development and may need alternative interventions, especially for species for which wildlife corridors traversing railways appear to have little to no positive influence.

The use of fencing to funnel species towards underpasses, so as to minimize collisions with automobiles on highways, has been demonstrated to be effective in Europe. While fencing is an effective method for funneling species, it might limit the migration of species with routine migratory routes if these are fenced, enhancing genetic isolation. This calls for an urgent need to understand how different African savannah wildlife species use wildlife corridors and the influence of fencing on their effectiveness. Moreover, because railways are frequently co-aligned with roads, this forms infrastructure corridors, and the impact of such parallel road and railways on the effectiveness of wildlife passages and fencing along highways is less known.

Here we examine for the first time in an African savannah ecosystem, the influence of a Standard Gauge Railway’s (SGR hereafter) underpass design (type, height, and width), proximity to roads, fencing, livestock, and associated ecological factors on the likelihood of crossing by large- and medium-sized mammals in the Tsavo Conservation Area (TCA), Kenya. Specifically, we address six key questions: 1) Are some species more likely than others to use underpasses? 2) Is fencing effective in funneling wildlife and livestock species towards underpasses? 3) Do infrastructural factors such as, type of underpass, proximity to a paved road, and the dimensions (i.e., width and length) of the underpass, enhance or inhibit their use by different wildlife species? 4) Do ecological variables such as the proximity of underpass to perennial water sources, NDVI (green biomass index) around the underpass influence their use by different wildlife species? 5) Does the presence of livestock or wildlife predators along underpasses reduce the probability of their use by other non-carnivore wildlife species? 6) Does the presence of prey species influence the probability of carnivores using underpasses? Answers to these questions are key to addressing the knowledge gap that exists regarding impacts of rail on African savannah wildlife.

2. Study Area And Methods

2.1 Study area

The TCA in South-Eastern Kenya covers an area of 42,000 km² and is comprised of three national parks, one game reserve, and several private ranches (Figure 1a). The three national parks include Tsavo West National Park (~7,000 km²), Tsavo East National Park (~14,000 km²), Chyulu Hills National Park (~700 km²), and South Kitui National Reserve (~1,833 km²). The private ranches include Taita, Galana, Kulalu, adjacent private and communal lands. The TCA is...
a tourism flagship of the Kenya Wildlife Service (KWS) and it generates a significant proportion of revenue for KWS which is used to finance other conservation-critical parks and reserves with lower revenue. The conservation area is home to approximately 40% of Kenya’s total elephant (Loxodonta africana) population, as well as 18% of Kenya’s black rhinoceros (Diceros bicornis) population. In addition, it is also the home to the critically endangered Hirola antelope (Beatragus hunteri) and the endangered Grevy’s zebra (Equus grevyi). Other herbivores in the TCA include the greater kudu (Tragelaphus strepsiceros), lesser kudu (Tragelaphus imberbis), Kirk’s dik-dik (Madoqua kirkii), gerenuk (Litocranius walleri), common eland (Taurotragus oryx), giant forest hog (Hylochoerus meinertzhageni), plains zebra (Equus quagga), East African oryx (Oryx beisa), and the Maasai giraffe (Giraffa camelopardalis tippelskirchi). Carnivores in the TCA include cheetah (Acinonyx jubatus), wild dog (Lycaon pictus), lion (Panthera leo), and leopard (Panthera pardus), and spotted hyena (Crocuta crocuta).

2.1.2 Transport infrastructure

The study area includes a section of the Standard Gauge Railway (SGR) which bisects Tsavo East and Tsavo West National Parks. The SGR runs from the coastal city of Mombasa to the interior cities and towns in Kenya, including Nairobi and Naivasha. There is an old Meter Gauge Railway (MGR) that runs parallel to the (SGR) from Mombasa to the interior cities. Additionally, major roads transverse the protected area including the Mombasa-Nairobi highway, which parallels the SGR and MGR, the Voi-Taveta highway, and the Manyani-Malindi highway (Figure 1b). Of the transportation infrastructure in the TCA, the recently built SGR (construction started March 2015 and operational June 2017) is the primary interest of this study. The SGR, unlike the MGR and adjacent highways, was designed to facilitate wildlife movement, specifically continual migration, and dispersal of wildlife within the TCA landscape. This was achieved initially by mapping traditional paths used by elephants, a flagship species in the TCA, then designing and constructing bridges along six crossing points, namely the Maungu, Bachuma, Ndara, Kenani, Manyani and Kanga wildlife underpass corridors. Also included as a wildlife corridor under the SGR is where the SGR bridges the Tsavo River. These bridges have varied lengths and heights, with some ranging up to 2km in length (Table S1). Further, several culverts were constructed for drainage purposes and to facilitate wildlife crossings. As part of the structural design, the SGR is constructed on raised ground adjacent to bridges and culverts, creating steep embankments on either side of the railway track; there are no wildlife overpasses along the SGR. On either side of the embankment is an electric fence, erected January 2018, to funnel wildlife to the various underpasses to reduce the risk of trains colliding with wildlife and to minimize the risk of injury to wildlife due to falling from the embankments.

2.2. Underpass utilization

From June 2016 to October 2019, data on the utilization of SGR underpasses by medium- to large-sized mammals were collected by direct and indirect observation along two sections of the SGR in the Tsavo National Parks. The first section is Voi to Bachuma (VB) which traverses Tsavo East National Park and the community ranches (Figure S1b.) and Voi to Mitto-Andei (VM) which traverses Tsavo East and West National Parks (Figure S1a.). VB was visited via vehicle 164 times in 4 years, while VM was visited 167 times during the same period (June 2016 - October 2019), approximately 3 - 4 visits per month for both sections. The vehicle was driven the entire length of the SGR and stopped to inspect any direct sightings of wildlife and livestock crossings and indirect signs. Direct sightings included animals being observed using the wildlife corridors or crossing the SGR at any point during the surveys and indirect evidence of underpass use included footprints, feces, pellets, and droppings in or traversing the underpass area.

Mammalian species’ tracks were identified using track keys. All the underpasses had open soil substrate without vegetation, allowing for track identification. Generally, tracks were divided into hoofed and pawed impressions. Pawed animal tracks were identified using the size of the track and presence or absence of claws. For similarly sized animals, the shape of the paws and proportion of the interdigital pad to the paws and other distinguishing characteristics were used to differentiate species. Unclassified paw tracks were pooled as carnivores. Hoofed tracks were classified into species or appropriate taxon based on the presence and absence of cloven hooves, size of the hooves, number of toes, and the shape of the hoofs. Hoofed tracks were recorded as antelope if they could not be identified to species or genus level. If tracks in the underpass were not clearly identifiable, they were followed to where the substrate could allow identification. To avoid double counts on subsequent days, footprints were erased with a feather duster so as to prevent recount. Scats were only recorded if they were fresh. To avoid double counts scats were marked with white chalk.

For this study, underpasses were mapped using center GPS locations (Figure S1) grouped into those located in the section of the railway crossing between the parks and those located in a section of the SGR crossing between the park and community ranches. Wildlife crossings were also classified into three categories: bridges, culverts, and embankments (Figure 2. A, B, & C). Bridges were defined as raised sections of the railway supported by piers and abutments and spanning more than 6 meters in length and more than 6.5 meters high. A culvert was a tunnel structure built to allow water and wildlife to pass and are usually embedded in the soil and are less than 6 meters in length with varying height. Embankments were compacted earth material that raised the grade line of a highway or railway. We monitored wildlife crossings in 14 bridges, 58 culverts and 69 embankments in two sections of the SGR namely, park-ranch interface (VB), and park-park interface (VM) (Figure S1).

2.3. Species or taxon abundance

Data on the abundance of medium-sized to large-sized mammals (species with a mass greater than ca. 2 kg. See:) near TCA roads were collected from monthly road counts taken from July 2008 to July 2015. Vehicle road counts were conducted by driving along road transects at a fixed speed of 20km/hr while recording all wildlife species sighted on either side of the road up to 250m (measured with a Bushnell Scout DX 1000 Laser Rangefinder). The road count was carried out along three, 10 km long transects consisting of the unpaved road network within Tsavo East National Park. Road counts started at 6.00 am and ended when the transect distance was achieved. All mammals, from dik-dik to elephant were recorded during the count, locations were mapped, and behavior was recorded. These data were used to derive the expected frequency of mammal use of the underpasses from the proportion of their proximate abundance estimates along roads.
2.4. Ecological factors

Ecological variables associated with underpasses (i.e., Normalized Difference Vegetation Index (NDVI), and proximity to water sources) were extracted from remotely sensed data and from drainage maps of the Tsavo ecosystem, respectively. NDVI products derived from SPOT VGT were downloaded from ESA (European Space Agency) (https://earth.esa.int/web/guest/data-access/browse-data-products). The NDVI products were downloaded from January 2016 to December 2019 as to obtain one averaged product per month for the study period.

The proximity of SGR underpasses to water sources were obtained from drainage (natural streams and rivers) of the Tsavo East and West digitized from 1:250000 topsheets including Voi SA-37-14, Kilifi SA-37-15, Garsen SA-37-11, and Kibwezi SA-37-10. Additional data on locations of water tanks, boreholes, dams, troughs, and pans for the Tsavo East and Tsavo West National parks were obtained using Garmin GPS (GPSMAP® 64). Straight-line distances between underpasses and the nearest water sources were measured in ArcGIS Toolkit.

2.5. Underpass type, size, and infrastructure

Data on infrastructure variables including underpass dimensions (width, length, and height), proximity of underpass to roads, and presence of a functional electric fence along the embankments adjacent the underpasses were obtained. The length and widths measurements for both culverts and bridges were provided by the China Road and Bridge Company (the company in charge of building the SGR) and this information is labelled on some of the underpasses. The major roads were digitized from 1:250000 topsheets including Voi SA-37-14, Kilifi SA-37-15, Garsen SA-37-11, and Kibwezi SA-37-10. We calculated the distance of each unique underpass point to the nearest highway road. Distances were recorded to the nearest kilometer.

2.6. Statistical analyses

To answer the question of whether some species are more likely than others to use the underpass, we employed a chi-square analysis using observed data on the frequency of underpass use by the top 20 most sighted species (Table S2). We calculated the expected frequency of crossing using wildlife abundance data along roads using R software for statistical computing

To determine whether fencing, underpass type and dimensions, NDVI, proximity to rivers and other water sources, and roads affected crossing by different species or taxa we modelled covariate effects with a generalized linear mixed effect model (GLMM) framework using a logit link function and binomial error structure. Underpass ID was employed as random effect. As independent variables, we used species or taxonomic groups which had 20 or more sightings. These species include, savannah elephant, African buffalo, plain's zebra, yellow baboon, Kirk's dik-dik, lion, leopard, spotted hyena, African civet, impala, waterbuck, and lesser kudu. We also grouped species into the following categories: antelope, carnivore, or mongoose and livestock or wildlife and used these as dependent variables as well.

To address the question of whether livestock presence hindered or enhanced the use of underpasses by wildlife, livestock was used as an explanatory variable and all other species and groups were used as dependent variables. In addition, when lion was used as dependent variable, plains zebra, African buffalo and livestock were included as independent variables because these are preferred prey species. When leopard, and spotted hyena were employed as dependent variables, antelope, zebra, and livestock were included as independent variables, as these are some of their preferred prey species.

For all carnivore species (classified and unclassified), we used antelopes as an independent variable. GLMMs were performed using the glmmTMB package. We used AIC model selection to distinguish among a set of possible models describing the relationship between infrastructure design and ecological factors and mammalian use of SGR underpasses in the TCA. Conditional effects of covariates were visualized using the software package ggeffects. For each model we included a comprehensive list of all independent variables the best set of covariate influencing the likelihood of using the underpass was evaluated using AIC in the MuMIn package. All the software packages are part of the R software for statistical computing.

3. Results

3.1. Differential utilization of the SGR underpass by various wildlife species

Thirty-three species of medium- to large-sized mammals were observed using the SGR underpasses, including unidentified species grouped in general categories of carnivore, mongoose, and antelope. Livestock (e.g., cattle, goats, sheep, donkeys, and camels) were also frequently observed to use the SGR underpasses (Table S2, Table 1). The top 5 wildlife species that utilized the underpass bridges (percent of observations) were elephants (30%), plains zebra (20%), baboons (12%), buffaloes (8%), and dik-diks (8%) (Table S2). Similarly, the top species using culverts were elephant (4%) and baboon (3%). Livestock used the culverts more than any wildlife species (11%). Hyena was the top identified carnivore utilizing the underpasses, but the top five carnivores using the underpasses frequently, includes leopard, lion, black-backed Jackal, and civet (Table 1).
Table 1
The frequency and percentage use of underpass by medium- to large-sized mammals in the Tsavo Conservation Area.

Species/Taxon	Scientific name	Bridge	Observed count	Percent of total count	Culvert	Observed count	Percent of total count
Savannah elephant	Loxodonta africana	708	30.48		348	3.63	
Plain's zebra	Equus quagga	470	20.23		97	1.01	
Yellow baboon	Papio cynocephalus	287	12.35		263	2.74	
African buffalo	Syncerus caffer	176	7.58		135	1.41	
Kirk's dik-dik	Madoqua kirkii	179	7.71		103	1.07	
Spotted hyena	Crocuta crocuta	129	5.55		117	1.22	
Impala	Aepyceros melampus	57	2.45		8	0.08	
Leopard	Panthera pardus	19	0.82		40	0.42	
African civet	Civettictis civetta	36	1.55		2	0.02	
Waterbuck	Kobus ellipsiprymnus	17	0.73		5	0.05	
Lesser kudu	Tragelaphus imberbis	20	0.86		14	0.15	
Lion	Panthera leo	13	0.56		9	0.09	
Black-backed jackal	Canis mesomelas	8	0.34		13	0.14	
Vervet monkey	Chlorocebus pygerythus	21	0.90		0	0.00	
Common warthog	Phacochoerus africanus	5	0.22		11	0.11	
Grant's gazelle	Nanger granti	8	0.34		4	0.04	
Livestock		389	16.75		1070	11.16	
Mongoose		76	3.27		164	1.71	
Carnivore		50	2.15		67	0.70	
Antelope		55	2.37		46	0.48	

The most abundant wildlife species sighted from monthly road counts over a seven-year period were elephants, Grant’s gazelle, Kirk’s dik-dik, plains zebra and impala. Black-backed jackal and lion were the most sighted carnivores, but species such as hyena and leopard were less sighted during road counts (Table S3, Table 2). Some species frequently sighted among the top 20 during road counts were also observed to be among the most frequent users of the SGR underpasses. These include the savannah elephant, African buffalo, Kirk’s dik-dik, impala and yellow baboon. However, there were also some species observed frequently during road counts that were observed infrequently using the SGR underpasses. These infrequent underpasses users were Maasai giraffe, Coke’s hartebeest, common eland, common hippopotamus, and Grant’s gazelle (Table S2, Table S3). Generally, the frequency of underpass use by different species was not dependent on their corresponding monthly road count frequencies ($\chi^2 = 45698$, P < 0.0001; Fig. 3a). This was also the case when we separately tested whether underpass use by carnivores and herbivore species was expected based on their abundance from road sighting (herbivores: $\chi^2 = 7265.7$, P < 0.0001, Fig. 3b; carnivores: $\chi^2 = 3429.4$, P < 0.0001, Fig. 3c).

3.2. Effect of fencing on underpass and embankment utilization by wildlife and livestock

Many species used embankments to cross the SGR, but most of them stopped using embankments following the installation of an electric fence (median of times crossed before = 4 and median of times crossed after = 0, V = 91, P = 0.0016, Wilcoxon test for matched pairs), reducing the risk of wildlife mortalities from train-wildlife collisions. The exceptions were elephants, and leopards, but even for these, electric fencing dramatically reduced their use of embankments. Electric fencing increased underpass use by most species, except for elephant, black-backed jackal, caracal, and waterbuck (Table 2, Table S4) where fencing reduced the rate of underpass usage (Table 3) and leopards and civets, for which fencing exhibited no discernable effect.
Table 2

Taxon or Species identity	Scientific name	Underpass	Embankment
Species/taxon common name		Unfenced	Fenced
Savannah Elephant	*Loxodonta africana*	10.28	7.30
Yellow baboon	*Papio cynocephalus*	2.42	0.00
Plains zebra	*Equus quagga*	3.69	5.94
African Buffalo	*Syncerus caffer*	1.60	0.72
Kirk’s Dik-dik	*Madoqua kirkii*	1.22	0.00
Spotted hyena	*Crocuta crocuta*	1.14	0.05
Impala	*Aepyceros melampus*	0.30	0.81
Leopard	*Panthera pardus*	0.53	0.46
Lesser kudu	*Tragelaphus imberbis*	0.21	0.37
Vervet monkey	*Chlorocebus pygerythus*	0.03	0.34
African civet	*Civettictis civetta*	0.32	0.32
Lions	*Panthera leo*	0.10	0.28
Common warthog	*Phacochoerus africanus*	0.08	0.19
Cape hare	*Lepus capensis*	0.02	0.14
Crested porcupine	*Hystrix cristata*	0.00	0.11
Waterbuck	*Kobus ellipsiprymnus*	0.27	0.09
Black-backed jackal	*Canis Mesomelas*	0.27	0.07
Caracal	*Caracal caracal*	0.13	0.05
Livestock		8.06	16.88
Antelopes		0.22	1.54
Carnivore		0.67	1.33
Mongoose		0.27	3.94

3.3. Effect of infrastructure, underpass type and dimensions on wildlife and livestock utilization of underpasses.

Among the underpass design factors, height was a more important factor than either type (bridge or culvert) or width because it was selected in nearly all the models whereas bridge type or width were selected in 5 and 3 models respectively (Table 3). Specifically, there was a positive relationship between underpass height and the probability of underpass use by mammals (see coefficients in Table 3). Underpass type was important for some mammalian species, but its effect was weak. Generally, culverts were used to a lesser extent relative to bridges and this effect was stronger for elephants (Table 3).

The distance of the underpass to the Nairobi Mombasa highway had varied effects on different species. Baboons and livestock preferred to use underpasses closer to the highway whereas buffalo and antelopes preferred to use underpasses farthest from highways. Proximity of the underpass to the highway did not influence their crossing by most carnivores considered in the analyses (Table 3).

3.4. Effects of ecological factors on wildlife and livestock utilization of underpasses

Underpasses located in areas with higher NDVI were more likely to be used by buffalo, livestock and hyenas and these species were also more likely to use underpasses in proximity to water sources. In contrast, baboons, dik-diks and antelope avoided to utilize underpasses with high NDVI (Table 3). However, the plains zebra preferred underpasses farthest from perennial water sources (Table 3).

Livestock presence or use of underpasses reduce the likelihood of underpass use by most wildlife species except baboons and most carnivore species (Table 3). The utilization of underpasses by lions, leopards, hyenas, and unclassified carnivore species was influenced by presence of their prey species. Lions were more likely to use underpasses where zebras buffaloes and livestock (i.e., their key prey species) were present. Leopards, hyenas, and other carnivores used underpasses where their prey species, antelopes, were also present (Table 3).
main predators, leopards, and hyenas, used the underpass more than expected even when potential bias is adjusted by considering cryptic carnivore alone. Warthogs, impalas, grant gazelles, dik-diks, elands, waterbucks, and lesser kudu, which all used underpass less than expected. While at the same time their echo regarding the use of underpasses by brown bandicoots and their fox predators.

Interactions were important factors in underpass use by the major carnivores in the TCA. These findings are similar to those found for coyotes, Canis latrans in California, where coyotes favored underpasses with high presence of their main prey items, rodents and lagomorphs. 29 Generally, Mata et al. 5 concludes that wildlife crossing structures will be less effective for prey if their use is adversely influenced by predator-prey interactions. A similar finding has been echoed regarding the use of underpasses by brown bandicoots and their fox predators. 38 Such may have been the case for species such as common warthogs, impalas, grant gazelles, dik-diks, elands, waterbucks, and lesser kudu, which all used underpass less than expected. While at the same time their main predators, leopards, and hyenas, used the underpass more than expected even when potential bias is adjusted by considering cryptic carnivore alone.

Table 3

Coefficients from best models (based on AIC) for each mammalian species or group showing the influence of infrastructure design and ecological factors on Railway underpasses use in Tsavo Conservation Area.

Dependent variables	Independent variables	Intercept	Livestock	Distance to Road	Electric fencing	Underpass height	NDVI	Underpass (culvert vs bridge)	Distance to water-source	Underpass width	Antelope present	Zebra present
Savannah elephant		-4.033***	NA	NA	-0.459***	0.512***	NA	-1.261**	-0.059+	NA	NA	NA
African buffalo		-9.025***	-2.075***	1.29**	1.172***	0.643***	1.156***	NA	-0.224***	0.0018***	NA	NA
Plain's zebra		-9.425***	-0.899**	-5.711+	1.322***	0.682*	NA	-2.058	0.283+	NA	NA	NA
Yellow baboon		-7.116***	-0.256	-2.899**	1.464***	0.755**	-3.139***	NA	NA	NA	NA	NA
Kirk's dik-dik		-13.493***	NA	NA	1.757***	1.342***	-7.173***	NA	NA	NA	NA	NA
African civet		-13.64***	NA	NA	1.241***	0.930***	NA	NA	NA	NA	NA	NA
Impala		-5.808***	NA	NA	1.241***	NA	-2.316	-4.013***	NA	NA	NA	NA
Lesser Kudu		-14.542***	NA	NA	0.938*	1.164**	-9.165**	NA	NA	NA	NA	NA
Black-backed Jackal		-8.609***	-18.357	NA	-1.234*	0.373*	NA	NA	NA	NA	NA	NA
Lion		-9.235***	1.085+	NA	0.826+	0.307*	NA	NA	NA	NA	NA	1.334*
Spotted hyena		-10.777***	NA	NA	1.012***	0.88***	2.316***	NA	-0.0015	0.805***	NA	NA
Leopard		-15.546***	-17.256	NA	1.343***	NA	1.86	0.172	-0.0075	1.537*	NA	NA
Mongoose		-8.122***	-0.544*	-2.356+	3.124***	0.685***	-4.580***	NA	-0.163*	NA	NA	NA
Antelope		-9.418***	-1.179**	NA	1.501***	0.943***	-1.730***	NA	NA	NA	NA	NA
Carnivores		-9.508***	NA	NA	0.51*	0.614***	NA	NA	NA	NA	NA	1.314***
Livestock		1.804	-14.658**	1.145***	NA	1.656***	NA	-1.189***	NA	NA	NA	NA
Wildlife		-4.905***	-0.366***	NA	0.779***	0.723***	-0.518+	-0.975+	NA	NA	NA	NA

Probability values indicated by asterisk (*** < 0.001, ** < 0.01, * < 0.05, + < 0.1), NA indicates independent variable dropped during model selection. For full list of all models and their AIC, see supplementary model selection excel workbook.

4. Discussion

In this study we determined that many wildlife species utilize the SGR underpasses, but species such as the Maasai giraffe, common warthog, impala, Coke's hartebeest, common eland, and Grant's gazelle had a lower propensity to use underpasses, whereas most carnivores and baboons had a higher propensity to use underpasses. The rarity of underpass use by giraffes, and the strong positive correlation between underpass use by most wildlife species and underpass height observed, highlights the limitation giraffes face in using underpasses. Giraffes with their long neck and legs, have an extended viewing horizon to maintain vigilance.

Most culverts are inaccessible to giraffes due to their low heights (3-4 m). The average height of giraffe is about 5.5 m for males and 4.3 m for females and the modal height of bridges in this study is 6 m (see discussion on the influence of underpass height below). Most culverts are inaccessible to giraffes due to their low heights (3-4 m).

For other species, predator-prey interactions may explain their less than expected use of the underpasses. Indeed, the use of underpasses by lions, leopards, and hyenas, was positively influenced by presence of buffalo, zebra, and antelope, which are their key prey species. 46,49,51 This suggests that predator-prey interactions were important factors in underpass use by the major carnivores in the TCA. These findings are similar to those found for coyotes, Canis latrans in California, where coyotes favored underpasses with high presence of their main prey items, rodents and lagomorphs. 29 Generally, Mata et al. 57 concludes that wildlife crossing structures will be less effective for prey if their use is adversely influenced by predator-prey interactions. A similar finding has been echoed regarding the use of underpasses by brown bandicoots and their fox predators. 38 Such may have been the case for species such as common warthogs, impalas, grant gazelles, dik-diks, elands, waterbucks, and lesser kudu, which all used underpass less than expected. While at the same time their main predators, leopards, and hyenas, used the underpass more than expected even when potential bias is adjusted by considering cryptic carnivore alone.
On the other hand, some wildlife species have behavioral adaptability for thriving in human-dominated landscapes. Such species include non-human primates, like baboons and macaques 59–61, and opportunistic carnivore species, such as hyenas 62,63, leopards 54–67, lions 68 and coyotes 69,70. Not surprisingly then, yellow baboons, spotted hyenas, leopards and to a lesser extent lion, used the underpass more than expected.

Generally, electric fencing reduced the rate of SGR crossing by wildlife at the embankments while increasing the use of underpasses. The exception being elephants, where the use of underpasses with electric fences was reduced. This suggests that while fencing can help reduce wildlife mortalities from train-wildlife collisions by helping to funnel wildlife through underpasses, electric fencing may also reduce elephant connectivity. Other studies have found that fencing has a funnelling effect that directs larger animals toward culverts 35. Underpasses when combined with fencing have been shown to reduce large mammal–vehicle collisions by 86% on Highway 93 in Montana, United States, while also maintaining wildlife connectivity across roads 71. The effectiveness of crossing structures is significantly enhanced when combined with fences, and both measures are usually best implemented together 17.

However, fencing although effective, may reduce overall permeability of landscapes traversed by roads. For example, we observed a reduction in underpass use by elephant and black-backed jackal following the erection of electric fencing along the SGR. Other species that reduced underpass use include the caracal, leopard, and waterbuck. These findings suggest that species with traditional migratory routes or those that defend territories may be adversely affected by electric fencing. For example, elephant families have traditional movement routes 52,72,73 and if underpass structures do not take this into consideration many elephants may fail to cross the SGR. Its therefore important that the underpass structures take into consideration of the traditional elephant routes to ensure. It has been observed, for example, that underpasses placed at identified panther (Felis concolor cory) crossing points, using prior knowledge of panther movements, were more likely to be used by panthers 74. Similarly, deer underpasses placed without regard to traditional paths failed, irrespective of addition of fences, to direct deer to those crossings 74,75. Fencing has been shown to reduce underpass vehicle moose collisions, but also to reduce the use of underpasses 76. These findings underscore the need for extensive wildlife pathway monitoring prior to road construction, so that underpasses can be located along natural wildlife trails.

Black-backed jackals, leopards, caracals and waterbucks are all territorial species 77,78 that had reduced underpass use following fencing. Our results suggest that fencing along the SGR, like along highways, may impose artificial home range boundaries on some territorial species. See. 79. This suggest a need to examine more explicitly the impact of road and rail infrastructures on home range displacement and abandonment using modelling tools detailed by Sells and Mitchell 80. This study also revealed that livestock presence reduces the likelihood of underpass use by most wildlife species except baboons and most carnivore species. Several studies report spatial segregation between cattle and wildlife 81–83. For example, Hibert et al. 82 found spatial avoidance between cattle and wildlife grazers including elephants. Another study found that elk (Cervus elaphus nelson), mule deer (Odocoileus hemionus hemionus), and cattle which frequently co-occur in the northwestern United States 83 were spatially segregated and avoided each other. The occurrence of livestock also suggests the presence of humans and many studies have shown wildlife avoidance of human presence (sources).

Among the underpass design factors, this study shows that height is more important than either type of underpass (bridge or culvert) or width in affecting use by wildlife and livestock. This result agrees with several findings in the literature. For example, Donaldson 84 found that in Virginia, USA underpasses with a minimum height of 4m were successful in facilitating the passage of white-tailed deer and other wildlife species. Our result also concurs with a study in Banff National Park, Alberta where crossing structures that are high, wide, and short in length strongly influence grizzly bear (Ursus arctos horribilis) passage 24. Structural designs are the main determinant in species' use of wildlife passages along roads and highways. It is thought that animals using an underpass require an unobstructed view of the habitat or horizon on the far side of the underpass to ensure safety 74. Moreover, some studies (sources) have used the openness index ratio, a measure of an animal's ability to see into the other side of the underpass. It has been suggested that this feature is probably more important than the exact width and height of the underpass as it integrates both height width and length 85. Wildlife overpasses which offer a better view of where animals are moving to were utilized more than underpasses by mule deer 20. In studies examining the use of underpasses and overpasses by wildlife it was found that large mammals exclusively use overpasses while small mammals used underpasses 86. For livestock being herded into the park, it is not surprising that height or width were not statistically significant variables influencing their use of the underpasses because they are not making decisions on crossing based on predation risk.

This study also revealed that parallel infrastructure had a varied influence on underpass use by wildlife and livestock. Most railways and roads are usually co-aligned in the same corridor 10. This creates a challenge for wildlife as they must cross multiple infrastructure impediments when moving from one side to another. Indeed, we observed in this study that buffalo and unclassified antelope preferred underpasses that were farthest from the highway. On the contrary, baboons and livestock used underpasses that were near roads. This was not surprising for baboons as they often scavenge on human food leftovers 87. Along the infrastructure corridor which includes the SGR, food leftovers are often thrown out of cars, particularly in areas close to human habitation. This likely to attract baboons towards roads and their greater use of wildlife corridors near roads. Moreover, baboons' proclivity for using wildlife corridors near roads can be further explained by their use of roads as an efficient method of travel, where groups of baboons can move faster and in a more directed manner 24. For livestock being herded into the park, it is not surprising that height or width were not statistically significant variables influencing their use of the underpasses because they are not making decisions on crossing based on predation risk.

Several mammalian species are known to track seasonal changes in primary productivity, measured as changes in NDVI, and water availability to occupy areas that have lush vegetation or regular access to drinking water 89–94. In this study, we observed that underpasses located in areas with higher NDVI and near water sources were more likely to be used by African buffalo, livestock, and spotted hyenas. On the contrary yellow baboons, Kirk's dik-dik, lesser kudu, mongoose and antelope preferentially utilized underpasses with low NDVI. Predation or anthropogenic disturbances have been linked to avoidance of optimal habitats and locations with drinking water sources by wildlife 95. The preferential use of underpasses that are not near greener areas (i.e., lower NDVI) and far
from water sources, might suggest this as a strategy to minimize predation. Some ungulate species use open areas, which are less green, and avoid bushy areas, which have higher greenness 96. These species are selecting to use these underpasses as passages routes, rather than ones close to foraging areas, because they afford greater safety from predators.

This study demonstrates that to ensure the effectiveness of underpasses it is critical to consider species’ predator-prey interactions, behaviors, and foraging needs in relation to underpass design and location. With sound wildlife corridor placement and design in areas where railways traverse habitats with diverse wildlife, underpass use by all species should increase. This will become increasingly important in mitigating against habitat fragmentation and guaranteeing safe wildlife passage as transportation infrastructure continues to expand and support greater volumes of traffic.

Conclusion

Rail and road infrastructure is essential for economic growth and development but can cause a gradual loss in biodiversity and degradation of ecosystem function and services. We assessed influence of underpass dimensions, fencing, proximity to water and roads, Normalized Difference Vegetation Index (NDVI), presence of other species and livestock on underpass use by large and medium-sized mammals. Results revealed hyenas and leopards used the underpasses more than expected whereas giraffes and antelopes used the underpasses less than expected. Generalized linear mixed effects models (GLMMs) revealed that underpass height influenced their use by wildlife, with several species preferring to use taller underpasses. Electric fencing increased underpass use by funneling species towards underpasses, except for elephants and black-backed jackal for which it reduced underpass passage. GLMMs also revealed that the use of underpasses by livestock reduced the probability of their use by nearly 50% of wildlife species. Carnivore species were more likely to cross underpasses used by their prey. Buffalo, livestock, and hyenas used underpasses with higher NDVI and near water sources while baboons, dik-diks and antelope avoided underpasses with high NDVI. The findings suggest a need for diverse, and comprehensive approach for mitigating the negative impacts of rail on African wildlife.

Declarations

Acknowledgements

We thank Wildlife research and Training staff from Tsavo East and Tsavo West National Park for assisting in data collection. We would especially like to thank Mathew Russell, Alex Mwazo, Dennis Kibara, David Kimutai, Geraldine Mjomba, Fridah Mwikamba, Lillian Apolo and Grace Waiguchu. Fieldwork data collection was supported by Save The Elephants. JKB was supported by grants from the United States National Science Foundation (NSF ID#1545611, NSF ID#1556676).

References

1. Polyzos, S. & Tsiotas, D. The contribution of transport infrastructures to the economic and regional development: A review of the conceptual framework. *Theoretical and Empirical Researches in Urban Management* **15**, 5-23 (2020).

2. Ledec, G. & Posas, P. J. Biodiversity conservation in road projects: Lessons from World Bank experience in Latin America. *Transportation research record* **1819**, 198-202 (2003).

3. Hughes, A. C. Understanding and minimizing environmental impacts of the Belt and Road Initiative. *Conservation Biology* **33**, 883-894 (2019).

4. Selle, A. in *COST 341 - Habitat Fragmentation due to transportation infrastructure: The European Review* (eds M.; Trocmé et al.) 31-50 (Office for Official Publications of the European Communities, 2002).

5. Marcantonio, M., Rocchini, D., Geri, F., Bacaro, G. & Amici, V. Biodiversity, roads, & landscape fragmentation: Two Mediterranean cases. *Applied Geography* **42**, 63-72, doi:10.1016/j.apgeog.2013.05.001 (2013).

6. Plămădeal, V. & Slobodeanuic, S. Negative impact of railway transport on the ambient environment. *Journal of Engineering Science* **XXVI**, doi:10.5281/zenodo.2640044 (2019).

7. Laša, F. *et al.* Wildlife roadkill in the Tsavo Ecosystem, Kenya: identifying hotspots, potential drivers, and affected species. *Heliyon* **7**, e06364 (2021).

8. Clair, C. C. S., Whittington, J., Forshner, A., Gangadharan, A. & Laskin, D. N. Railway mortality for several mammal species increases with train speed, proximity to water, and track curvature. *Sci Rep* **10**, 20476, doi:10.1038/s41598-020-77321-6 (2020).

9. Kušta, T., Ježek, M. & Keken, Z. Mortality of large mammals on railway tracks. *Scientia Agriculturae Bohemica* **42**, 12–18 (2011).

10. Dorsey, B. & Olsson, M. in *Handbook of Road Ecology*, (eds Rodney van der Ree, Daniel J. Smith, & Clara Grilo.) (John Wiley & Sons, Ltd., 2015).

11. Barrientos, R. & Borda-de-Água, L. in *Railway Ecology* Ch. Chapter 4, 43-64 (2017).

12. Lucas, P. S., de Carvalho, R. G. & Grilo, C. in *Railway Ecology* Ch. Chapter 6, 81-99 (2017).

13. Barrientos, R., Ascensão, F., Beja, P., Pereira, H. M. & Borda-de-Água, L. Railway ecology vs. road ecology: similarities and differences. *European Journal of Wildlife Research* **65**, doi:10.1007/s10344-018-1248-0 (2019).
37 Wilson, R. E., Farley, S. D., McDonough, T. J., Talbot, S. L. & Barboza, P. S. A genetic discontinuity in moose (Alces alces) in Alaska corresponds with fenced transportation infrastructure. Conservation Genetics 16, 791-800, doi:10.1007/s10592-015-0700-x (2015).

38 Jaeger, J. A. G. & Fahrig, L. Effects of Road Fencing on Population Persistence. Conservation Biology 18, 1651–1657 (2004).

39 Ngene, S. et al. Aerial total count of elephants, buffalo and giraffe in the tsavo-mkomazi ecosystem (February 2017). Kenya Wildlife Service (KWS) and Tanzania Wildlife Research Institute (TAWIRI), Arusha (2017).

40 Stuart, C. Field Guide to Tracks & Signs of Southern, Central & East African Wildlife. (Penguin Random House South Africa, 2013).

41 Murie, O. J. & Elbroch, M. A field guide to animal tracks. Vol. 3 (Houghton Mifflin Harcourt, 2005).

42 Kerley, G. I. H., Pressey, R. L., Cowling, R. M., Boshoff, A. F. & Sims-Castley, R. Options for the conservation of large and medium-sized mammals in the Cape Floristic Region hotspot, South Africa. Biological Conservation 112, 169-190, doi:https://doi.org/10.1016/S0006-3207(02)00426-3 (2003).

43 R: A language and environment for statistical computing. R Foundation for Statistical Computing (https://www.R-project.org/). Vienna, Austria, 2021.

44 Hayward, M. W., Hayward, G. J., Tambling, C. J. & Kerley, G. I. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging? Plos One 6, e23607 (2011).

45 De Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. Journal of Mammalogy 91, 1280-1286 (2010).

46 Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). Journal of Zoology 267, 309-322, doi:10.1017/S0952836905007508 (2005).

47 Davidson, Z. et al. Seasonal Diet and Prey Preference of the African Lion in a Waterhole-Driven Semi-Arid Savanna. Plos One 8, e55182, doi:10.1371/journal.pone.0055182 (2013).

48 Patterson, B. D., Kasiki, S. M., Selempo, E. & Kays, R. W. Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National Park S, Kenya. Biological Conservation 119, 507-516, doi:https://doi.org/10.1016/j.biocon.2004.01.013 (2004).

49 Hayward, M. W. et al. Prey preferences of the leopard (Panthera pardus). Journal of Zoology 270, 298-313, doi:https://doi.org/10.1111/j.1469-7998.2006.00139.x (2006).

50 Ogara, W. O. et al. Determination of carnivores prey base by scat analysis in Samburu community group ranches in Kenya. African Journal of Environmental Science and Technology 4, 540-546 (2010).

51 Hayward, M. W. et al. Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). Journal of Zoology 270, 606-614, doi:https://doi.org/10.1111/j.1469-7998.2006.00183.x (2006).

52 Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9, 378-400 (2017).

53 Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software 3, 772 (2018).

54 Barton, K. & Barton, M. K. Package 'MuMIn'. Version 1, 18 (2015).

55 Williams, E. M. Giraffe stature and neck elongation: Vigilance as an evolutionary mechanism. Biology 5, 35 (2016).

56 Shorocks, B. The Giraffe: Biology, ecology, evolution and behaviour. (John Wiley & Sons, Ltd., 2016).

57 Mata, C., Bencini, R., Chambers, B. K. & Malo, J. E. in Handbook of Road Ecology (ed Daniel J. Smith and Clara Grilo Rodney van der Ree) (John Wiley & Sons, 2015).

58 Harris, I. M., Mills, H. R. & Bencini, R. Multiple individual southern brown bandicoots (Isoodon obesulus fusciventer) and foxes (Vulpes vulpes) use underpasses installed at a new highway in Perth, Western Australia. Wildlife Research 37, 127–133 (2010).

59 Fehlmann, G. et al. Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments. Scientific Reports 7, 1-8 (2017).

60 McLennan, M. R., Spagnoloetti, N. & Hockings, K. J. The Implications of Primate Behavioral Flexibility for Sustainable Human–Primate Coexistence in Anthropogenic Habitats. International Journal of Primatology 38, 105-121, doi:10.1007/s10764-017-9962-0 (2017).

61 Riley, E. P. Flexibility in Diet and Activity Patterns of Macaca tonkeana in Response to Anthropogenic Habitat Alteration. International Journal of Primatology 28, 107-133, doi:10.1007/s10764-006-9104-6 (2007).

62 Johnson-Ulrich, L., Yirga, G., Strong, R. L. & Holekamp, K. E. The effect of urbanization on innovation in spotted hyenas. Animal Cognition, doi:10.1007/s10071-021-01494-4 (2021).
63 Holekamp, K. E. & Dloniak, S. M. Intraspecific variation in the behavioral ecology of a tropical carnivore, the spotted hyena. *Advances in the Study of Behavior* **42**, 189-229 (2010).

64 Devens, C. H. *et al.* Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa. *Oryx* **55**, 34-45, doi:10.1017/S0030605318001473 (2021).

65 Van Cleave, E. K. *et al.* Diel patterns of movement activity and habitat use by leopards (*Panthera pardus pardus*) living in a human-dominated landscape in central Kenya. *Biological Conservation* **226**, 224-237, doi:https://doi.org/10.1016/j.biorcon.2018.08.003 (2018).

66 Odden, M., Athreya, V., Rattan, S. & Linnell, J. D. C. Adaptable Neighbours: Movement Patterns of GPS-Collared Leopards in Human Dominated Landscapes in India. *Plos One* **9**, e112044, doi:10.1371/journal.pone.0112044 (2014).

67 Athreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J. & Karanth, K. U. A cat among the dogs: leopard *Panthera pardus* diet in a human-dominated landscape in western Maharashtra, India. *Oryx* **50**, 156-162, doi:10.1017/S0030605314000106 (2016).

68 Suraci, J. P. *et al.* Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. *Ecology* **100**, e02644, doi:https://doi.org/10.1002/ecs2.644 (2019).

69 Daniels, S. E., Fanelli, R. E., Gilbert, A. & Benson-Amram, S. Behavioral flexibility of a generalist carnivore. *Animal cognition* **22**, 387-396 (2019).

70 Murray, M. H. & St. Clair, C. C. Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. *Behavioral Ecology* **26**, 1520-1527, doi:10.1093/beheco/arv102 (2015).

71 Huijser, M. P. *et al.* Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. *Biological Conservation* **197**, 61-68, doi:10.1016/j.biorcon.2016.02.002 (2016).

72 Galanti, V., Preatoni, D., Martinoli, A., Wauter, L. A. & Tosi, G. Space and habitat use of the African elephant in the Tarangire-Manyara ecosystem, Tanzania: Implications for conservation. *Mammalian Biology* **71**, 99-114, doi:10.1016/j.mambio.2005.10.001 (2006).

73 Douglas-Hamilton, I., Krink, T. & Vollrath, F. Movements and corridors of African elephants in relation to protected areas. *Naturwissenschaften* **92**, 158-163, doi:10.1007/s00114-004-0606-9 (2005).

74 Foster, M. L. & Humphrey, S. R. Use of Highway Underpasses by Florida Panthers and Other Wildlife. *Wildlife Society Bulletin (1973-2006)* **23**, 95-100 (1995).

75 Coe, P. K. *et al.* Identifying migration corridors of mule deer threatened by highway development. *Wildlife Society Bulletin* **39**, 256-267, doi:https://doi.org/10.1002/wsb.544 (2015).

76 Olsson, M. P. O. & Widen, P. Effects of highway fencing and wildlife crossings on moose *Alces alces* movements and space use in southwestern Sweden. *Wildlife Biology* **14**, 111-117 (2008).

77 Spinage, C. A. Territoriality and social organization of the Uganda defassa waterbuck Kobus defassa ugandae. *J. Zool., Lond.* **159**, 329-361 (1969).

78 Mizutani, F. & Jewell, P. A. Home-range and movements of leopards (*Panthera pardus*) on a livestock ranch in Kenya. *J. Zool., Lond.* **244**, 269-286 (1998).

79 Riley, S. P. *et al.* A southern California freeway is a physical and social barrier to gene flow in carnivores. *Mol Ecol* **15**, 1733-1741, doi:10.1111/j.1365-294X.2006.02907.x (2006).

80 Sells, S. N. & Mitchell, M. S. The economics of territory selection. *Ecological Modelling* **438**, 109329, doi:https://doi.org/10.1016/j.ecolmodel.2020.109329 (2020).

81 Valls-Fox, H. *et al.* Water and cattie shape habitat selection by wild herbivores at the edge of a protected area. *Animal Conservation* **21**, 365-375, doi:https://doi.org/10.1111/acv.12403 (2018).

82 Hibert, F. *et al.* Spatial avoidance of invading pastoral cattle by wild ungulates: insights from using point process statistics. *Biodiversity and conservation* **19**, 2003-2024 (2010).

83 Stewart, K. M., Bowyer, R. T., Kie, J. G., Cimon, N. J. & Johnson, B. K. Temporospatial Distributions of Elk, Mule Deer, and Cattle: Resource Partitioning and Competitive Displacement. *Journal of Mammalogy* **83**, 229-244, doi:10.1644/1545-1542(2002)083<0229:Todre>2.0.Co;2 (2002).

84 Donaldson, B. Use of Highway Underpasses by Large Mammals and Other Wildlife in Virginia: Factors Influencing Their Effectiveness. *Transportation Research Record* **2011**, 157-164, doi:10.3141/2011-17 (2007).

85 Gordon, K. M. & Anderson, S. H. https://escholarship.org/uc/item/2wv1v6dz (UC Davis: Road Ecology Center, 2003).

86 Bond, A. R. & Jones, D. N. Temporal trends in use of fauna-friendly underpasses and overpasses. *Wildlife Research* **35**, 103-112, doi:https://doi.org/10.1071/WR07027 (2008).
87 Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P. & Sapolsky, R. M. Body size and fatness of free-living baboons reflect food availability and activity levels. *American Journal of Primatology* **30**, 149-161, doi:https://doi.org/10.1002/ajp.1350300207 (1993).

88 Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C. & Couzin, I. D. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. *eLife* **6**, e19505, doi:10.7554/eLife.19505 (2017).

89 Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation driven vegetation dynamics in a Kenyan forest-savanna landscape *Movement Ecology* **2**, 2 (2014).

90 Merkle, J. A. *et al.* Large herbivores surf waves of green-up during spring. *Proc Biol Sci* **283**, doi:10.1098/rspb.2016.0456 (2016).

91 Middleton, A. D. *et al.* Green-wave surfing increases fat gain in a migratory ungulate. *Oikos* **127**, 1060-1068, doi:10.1111/oik.05227 (2018).

92 Bartlam-Brooks, H. L. A., Beck, P. S. A., Bohrer, G. & Harris, S. In search of greener pastures: Using satellite images to predict the effects of environmental change on zebra migration. *Journal of Geophysical Research: Biogeosciences* **118**, 1427-1437, doi:10.1002/jgrg.20096 (2013).

93 Bischof, R. *et al.* A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? *Am Nat* **180**, 407-424, doi:10.1086/667590 (2012).

94 Aikens, E. O. *et al.* The greenscape shapes surfing of resource waves in a large migratory herbivore. *Ecol Lett* **20**, 741-750, doi:10.1111/ele.12772 (2017).

95 Leeuw, J. d. *et al.* Distribution and diversity of wildlife in northern Kenya in relation to livestock and permanent water points. *Biological Conservation* **100**, 297-306 (2001).

96 Mandinyenya, B., Monks, N., Mundy, P. J., Sebata, A. & Chirima, A. Habitat choices of African buffalo (Syncerus caffer) and plains zebra (Equus quagga) in a heterogeneous protected area. *Wildlife Research* **47**, 106-113, doi:https://doi.org/10.1071/WR18201 (2020).

Figures
Figure 1

The Tsavo Conservation Area (TCA) in south-eastern Kenya (inset). The bold dashed black line indicates the Mombasa-Nairobi highway infrastructure corridor (MNHIC) adjacent to Tsavo National Parks (A) and the transport infrastructures that cuts through the Tsavo Conservation Area in southeastern Kenya (B).

Figure 2

Wildlife crossings were classified as bridges (A), culverts (B), and embankments (C) along the standard gauge railway in Tsavo National Parks, Kenya.

Figure 3

The percent deviation of SGR underpass utilization by medium- to large-sized mammals when herbivores and carnivores are simultaneously considered (A) and when herbivores (B) and carnivores (C) are independently considered. The expected frequency was calculated based on the frequency of their sighting on TCA roads.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementary.docx
- SupplementaryModelselection.xlsx