Research Article

Transcriptomes of three species of Tipuloidea (Diptera, Tipulomorpha) and implications for phylogeny of Tipulomorpha

Zehui Kang1, Xiao Zhang1, Shuangmei Ding1, Chufei Tang1, Yuyu Wang1, Herman de Jong2, Stephen L. Cameron3, Mengqing Wang1,4*, Ding Yang1*

1 Department of Entomology, China Agricultural University, Beijing, China, 2 Naturalis Biodiversity Center, Darwinweg, CR Leiden, the Netherlands, 3 Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America, 4 Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China

* mengqsw@163.com (MW); dyangcau@126.com (DY)

Abstract

Tipulomorpha has long been a problematic taxon in terms of familial composition, phylogenetic relationships among families and position relative to other ‘lower’ Diptera. Whole-transcriptome shotgun sequencing provides a powerful basis for phylogenetic studies. We performed de novo transcriptome sequencing to produce the first transcriptome datasets representing the families Pediicidae, Limoniidae and Cylindrotomidae using high-throughput sequencing technologies. We assembled cDNA libraries for Pedicia vetusta (Pediciidae), Rhipidia sejuga Zhang, Li and Yang (Limoniidae) and Liogma simplicicornis Alexander (Cylindrotomidae). Using the Illumina RNA-Seq method, we obtained 28,252, 44,152 and 44,281 unigenes, from the three respective species. Based on sequence similarity searches, 12,475 (44.16%), 20,334 (46.05%) and 17,478 (39.47%) genes were identified. Analysis of genes highly conserved at the amino acid sequence level revealed there were 1,709 single-copy orthologs across the analyzed species. Phylogenetic trees constructed using maximum likelihood (ML) based on the 1,709 single-copy orthologs genes indicated that the relationship between the four major infraorders of lower Diptera was: Culicomorpha + (Tipulomorpha + (Psychodomorpha + (Bibionomorpha + Brachycera))). Trichoceridae belongs within Tipulomorpha as the sister-group of Tipuloidea. Highly supported relationships within the Tipuloidea are Pediicidae + (Limoniidae + (Cylindrotomidae + Tipulidae)). Four-cluster likelihood mapping was used to study potential incongruent signals supporting other topologies, however, results were congruent with the ML tree.

Introduction

The infraorder Tipulomorpha is one of the most speciose groups of flies [1–2]. According to Hennig, this infraorder included four families, Trichoceridae, Tipulidae, Cylindrotomidae and Limoniidae, of which Trichoceridae was considered the sister-group of the remaining Tipulomorpha [3–5]. This arrangement of Tipulomorpha, containing both Trichoceridae and Tipuloidea (= Tipulidae sensu lato, or Cylindrotomidae, Limoniidae, Pediicidae, and Tipulidae...
sensu stricto) was accepted by Dahl [6], Griffiths [7], Starý [8], Oosterbroek & Courtney [9] and Bertone et al. [10]. Henning further hypothesized that Tipulomorpha was the sister-group of all remaining Diptera, a classification accepted by Krzeminski [11], Michelsen [12] and Blagoderov et al. [13], and partly accepted by Wood & Borkent [14]. Based on larval characters, Wood & Borkent considered that the concept of Tipulomorpha was restricted to just Tipuloidea, and the infraorder was sister-group to all other Diptera, while Trichoceridae was assigned to the Psychodomorpha [14]. This shift of Trichoceridae from the Tipulomorpha to nested within Psychodomorpha was also suggested by Friedrich & Tautz [15]. Although Oosterbroek & Courtney supported the sister-group relationship between Trichoceridae and Tipuloidea, they considered that Tipulomorpha was the sister-group of the clade Anisopodidae + Brachycera, and as such were a group of 'higher' Nematocera [9], a much more derived position than conceived by Henning and followers [3–5]. More recent molecular and morphological studies have examined the higher classification of Diptera [10,16–18], however, there is still no widely accepted hypothesis of the relationships among lower dipteran families, including the relationship among the four major nematoceran infraorders (Bibionomorpha, Culicomorpha, Psychodomorpha and Tipulomorpha). Tipulomorpha was found as the earliest branching of the four major infraorders of lower Diptera by Wiegmann et al. [16] and Beckenbach [17], while Lambkin et al. suggested Culicomorpha as the earliest branching infraorder [18]. Both the views were supported by Bertone et al. when using different analysis methods [10] (Fig 1).

Interfamilial relationships in the Tipuloidea are also unresolved. Tipuloidea was treated as a single family by Alexander [19–20], Savchenko [21–23] and Brodo [24]. The alternative classification as Tipuloidea with four families was used and supported by Henning [4], Oosterbroek & Theowald [25] and Oosterbroek [26]. However, in both classification schemes, Pediidae was recovered as nested within Limoniidae by both sets of studies. Alexander [19–20] and Savchenko [21–23] presented the earliest evolutionary hypotheses of Tipuloidea, which were qualitative and recovered relationships based on unstated criteria. Both of them considered Tipulidae as the sister-group of the remaining Tipuloidea. Starý raised the subfamily Pediidae to full family rank and constructed a phylogenetic tree for Tipulomorpha, finding a monophyletic Limoniidae to be the sister-group to a clade containing Pediidae + (Cylindrotomidae + Tipulidae) [8]. Recent studies revealed new insights into the higher-level classification of Tipuloidea and have suggested that, rather than Limoniidae, Pediidae was the sister-group to the remaining Tipuloidea [27–28].

Whole-transcriptome shotgun sequencing provides a powerful basis for phylogenetic studies, and provides a means to overcome the limitations of multi-locus PCR based molecular phylogenetics [29–30]. In this study, we sequenced the cDNA from three species, P. vetusta, R. sejuga and L. simplicicornis, belonging respectively to the Pediidae, Limoniidae and Cylindrotomidae. Additionally, we analyzed published transcriptome sequence data and annotated gene sets from publically available draft genome sequences. Based on data from representatives of the Trichoceridae, four families of Tipuloidea and the other three infraorders, we constructed a phylogenetic tree using maximum likelihood (ML). In addition, we applied Four-cluster Likelihood Mapping (FcLM) to study potential incongruent signal, which might not be revealed by traditional phylogenetic methods.

Materials and methods

Ethics statement

No specific permits were required for the specimens collected for this study. The specimens were common in China and the field studies did not involve endangered or protected species. The species were not included in the “List of Protected Animals in China”.

Competing interests: The authors have declared that no competing interests exist.
Specimen collection, preservation and RNA extraction

The specimens used for the RNA extraction and sequencing transcriptome were collected from several different regions of China. Specimens were immersed alive in RNAlater and crushed with sterile forceps immediately upon wild collection. Then they were stored at -80°C.
until further processing. The number of specimens, stage, sex details, preserved information and collection data are listed in S1 Table.

For each species, total RNA was extracted using the Trizol reagent according to the manufacturer’s instructions (Invitrogen, CA, USA). RNA contamination and degradation was monitored on 1% agarose gels. Other quality parameters, such as purity, concentration and integrity, were examined using the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA), the Qubit® RNA Assay Kit run on the Qubit® 2.0 Fluorometer (Life Technologies, CA, USA), and the RNA Nano 6000 Assay Kit run on the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA).

Library preparation and transcriptome sequencing

Three cDNA libraries were prepared employing NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA), in each case using 3 μg of total RNA. Messenger RNA was isolated by Poly-T oligo-attached magnetic beads and fragmented in fragmentation buffer under elevated temperature. After the first strand cDNA was synthesized, the second-strand cDNA synthesis was performed using DNA Polymerase I and RNase H. Libraries were then size-selected for cDNA target fragments of 150–200 bp with 3 μl of USER Enzyme (NEB, USA); this was followed by PCR amplification using Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X) Primer. PCR products were purified using the AMPure XP system. The library preparations were sequenced using the Illumina HiSeq™ 2000 system.

Transcriptome assembly

Raw data were filtered to remove low quality reads, and reads containing adapter or Poly-N sequences. Quality parameters of clean data, such as Q20, Q30, GC-content and sequence duplication level, were calculated. Transcriptome assembly was accomplished using Trinity [31] with min_kmer_cov set to 2 and all other parameters set default based on the left.fq and right.fq pooled by the left files (read1 files) and right files (read2 files) for each library. The assembly process implemented in Trinity can be divided into three main steps. Firstly, all reads were broken into defined K-mers. Subsequently, these k-mers were merged to form edges, which were reported as contigs and then the contigs were clustered into components for construction of de Bruijn graphs. Lastly, real reads were used to resolve ties in the de Bruijn graphs and generate transcript sequences.

Published data and orthology assignment

Nucleotide sequence assemblies of published transcriptome data were obtained from the NCBI’s Transcriptome Sequences Database (TSA) and other various web sources (S2 Table). We predicted the CDS and amino acid sequences using TransDecoder v1.0.0 (available on Github https://github.com/TransDecoder/TransDecoder).

The ortholog reference set for orthology assignment was selected on the basis of the database OrthoDB7 (http://cegg.unige.ch/orthodb7 and http://cegg.unige.ch/orthodb/browse). We compiled a set of genes that are single-copy orthologs among Diptera and occur in the genomes of each of the following eight reference species: *Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Lutzomyia longipalpis, Phlebotomus papatasi, Mayetiola destructor, Drosophila melanogaster* and *Drosophila persimilis*. OrthoDB 7 specified 1,709 single-copy protein-coding genes (S3 Table). We downloaded the amino acid sequences that are associated with each of the 1,709 single-copy ortholog groups (OGs) along with their available gene description (S4 Table). We aligned the amino acid sequences for each OG with MAFFT v7.205 [32–33] using the L-INS-i alignment algorithm and then build pHMMs with the program
hmmbuild from the HMMER 3.0 software package [34] on the basis of the resulting multiple amino acid sequence alignments.

Orthology assignment of the transcriptomes was assessed by HaMStR v13.2.4 [35]. We ran HaMStR with the following settings: (i) the E-value cut-off for the pHMM search was 1e-5, (ii) the reciprocity criterion was considered fulfilled if the candidate OG was found as best hit in at least one of the 8 reference species during the reciprocal best hit search (RBH) (relaxed option), (iii) in case of multiple transcripts being assigned to a given OG, the best set of non-overlapping transcripts was chosen while non-overlapping transcripts are automatically concatenated (representative option). We searched and removed all multiple-assigned transcripts since it was possible that a given transcript was assigned to more than one OG.

Phylogenetic and FcLM analysis

Phylogenetic analysis was conducted on the alignments obtained using MAFFT v7.205 [32–33]. Spurious sequences or poorly aligned regions were removed from the multiple sequence alignment using trimAl v1.2 (automated1 option). ML analyses were constructed using PhyML v 3.0 with the default choice JTT [36]. The tree searching algorithm used the SPR options provided by PhyML. In order to analyze single phylogenetic splits, FcLM analyses were completed using the program TreePuzzle v5.3 [37–38]. We selected the following two phylogenetic hypotheses concerning the Tipulomorpha for FcLM testing: 1) which infraorder is the sister-group of the remaining Diptera, Culicomorpha or Tipulomorpha; 2) is Trichoceridae part of Tipulomorpha, or Psychodomorpha as suggested by Wood & Borkent [14]. For each hypothesis, all species in the decisive dataset were grouped into four clusters representing alternative resolutions of the phylogenetic question of interest.

Data deposition

The transcriptome sequencing data have been deposited in the NCBI Sequence Read Archive (SRA) database under the following accession numbers: SRR3452301 (P. vetusta), SRR3452300 (R. sejuga) and SRR3441821 (L. simplicicornis). The assembled transcriptomes have been deposited in the NCBI Transcriptome Shotgun Assembly (TSA) database under the accession numbers GEMI0000000, GEMJ0000000 and GEMK0000000 respectively.

Results

Transcriptome sequencing and assembly

In this study, the transcriptomes were sequenced using the Illumina sequencing method. In total, 23,026,828 (Q30 96.69%), 24,843,179 (Q30 96.66%) and 28,349,912 (Q30 93.10%) clean reads were generated for P. vetusta, R. sejuga and L. simplicicornis respectively. We obtained 1,003,377, 2,110,937 and 2,964,958 contigs from the three species. A total of 41,870, 60,530 and 71,569 transcripts were confirmed. In P. vetusta, 28,252 unigenes were detected with a total length of 23,378,916 bp. The N50 and average length was 1,458 bp and 828 bp, respectively. In R. sejuga, 44,152 unigenes were obtained with an average length of 770 bp and a N50 length of 1,403 bp. Those unigenes comprised 34,004,882 bp totally. In L. simplicicornis, we found 44,281 unigenes. Those unigenes comprised 33,946,199 bp totally, with an average length of 767 bp and a N50 length of 1602 bp (Table 1). The sequence length distributions of unigenes for the three species are indicated in Fig 2.
Functional annotation

The unigenes of the three species were annotated by searching against the NR [39], GO [40], COG [41], KOG, KEGG [42], Pfam [43], and Swiss-Prot databases (Table 2).

Of the *P. vetusta* unigenes, 12,475 (44.16%) were found in at least one of the seven public databases, 11,989 (42.44%) had significant matches in the NR database, 7,900 (27.96%) in GO, 3,398 (12.03%) in COG, 8,993 (31.83%) in KOG, 6,091 (21.56%) in KEGG, 9,094 (32.19%) in Pfam and 7,396 (26.18%) in Swiss-Prot.

There were 20,334 unigenes (46.05%) from *R. sejuga* found in at least one database, 19,345 (43.81%) in NR, 11,005 (24.93%) in GO, 7,170 (16.24%) in COG, 13,754 (31.15%) in KOG, 9,419 (21.33%) in KEGG, 14,762 (33.43%) in Pfam and 11,501 (26.05%) in Swiss-Prot.

For *L. simplicicornis* 17,478 unigenes (39.47%) were found in at least one database, 16,928 (38.23%) in NR, 9,415 (21.26%) in GO, 4,978 (11.24%) in COG, 10,973 (24.78%) in KOG, 5,999 (13.55%) in KEGG, 11,441 (25.84%) in Pfam and 9,369 (21.16%) in Swiss-Prot.

After searching against the NR database, we obtained the sequence-homology distributions for each species (Fig 3). The majority of matches were with known genes from *Aedes aegypti*, followed by *Culex quinquefasciatus*, *Anopheles gambiae*, *Anopheles sinensis* and *Anopheles darlingi*.

Table 1. Length distribution of the contigs, transcripts and unigenes clustered from the De novo assembly.

Species	Length Range	Contig	Transcript	Unigene
P. vetusta	200–300	982,473 (97.92%)	9,711 (23.19%)	8,736 (30.92%)
	300–500	7,594 (0.76%)	8,607 (20.56%)	7,014 (24.83%)
	500–1,000	6,009 (0.60%)	8,213 (19.62%)	5,608 (19.85%)
	1,000–2,000	4,517 (0.45%)	7,888 (18.84%)	4,240 (15.01%)
	2,000 +	2,784 (0.28%)	7,451 (17.80%)	2,654 (9.39%)
Total Number		1,003,377	41,870	28,252
Total Length		65,247,903	50,313,936	23,378,916
N50 Length		78	2,234	1,458
Average Length		65	1,202	828
R. sejuga	200–300	2,081,076 (98.59%)	18,266 (30.18%)	15,925 (36.07%)
	300–500	11,758 (0.56%)	13,463 (22.24%)	10,771 (24.40%)
	500–1,000	8,412 (0.40%)	11,348 (18.75%)	7,933 (17.97%)
	1,000–2,000	5,912 (0.28%)	9,744 (16.10%)	5,721 (12.96%)
	2,000 +	3,779 (0.18%)	7,709 (12.74%)	3,802 (8.61%)
Total Number		2,110,937	50,530	44,152
Total Length		127,371,529	59,895,908	34,004,882
N50 Length		52	1,876	1,403
Average Length		50	990	770
L. simplicicornis	200–300	2,937,000 (99.06%)	23,604 (32.98%)	19,399 (43.81%)
	300–500	11,153 (0.38%)	13,655 (19.08%)	9,448 (21.34%)
	500–1,000	7,417 (0.25%)	11,909 (16.64%)	6,468 (14.61%)
	1,000–2,000	5,132 (0.17%)	10,694 (14.94%)	4,858 (10.97%)
	2,000 +	4,256 (0.14%)	11,707 (16.36%)	4,108 (9.28%)
Total Number		2,964,958	71,569	44,281
Total Length		161,642,392	78,482,160	33,946,199
N50 Length		49	2,290	1,602
Average Length		55	1,097	767

doi:10.1371/journal.pone.0173207.t001
Classification of unigenes

For GO analysis, unigenes of each species were divided into three categories: cellular component (CC), molecular functions (MF) and biological processes (BP) [44] (Fig 4). In the CC category, the most abundant terms annotated to the unigenes in both *P. vetusta* and *R. sejuga* were ‘cell part’ (3,786 and 4,515), ‘macromolecular complex’ (1,692 and 2,125) and ‘organelle’ (1,641 and 1,936), whereas in *L. simplicornis*, the most abundant terms were ‘cell’ (3,778), ‘cell part’ (3,778) and ‘organelle’ (2,680). The MF category mainly comprised proteins involved in ‘binding’ (4,037, 5,410 and 4,886), ‘catalytic activity’ (3,396, 5,571 and 4,431) and ‘transporter activity’ (709, 841 and 833) for all three species. For the BP category, the mostly highly represented terms in all three species were ‘cellular process’ (4,555, 5,699 and 5,474), ‘single-organism process’ (4,286, 4,942 and 5,005) and ‘metabolic process’ (3,132, 4,472 and 5,630). A summary of GO term assignment is presented in S5 Table.

Unigenes of each species were assigned to COG (Fig 5) and KOG (Fig 6) classification and divided into 25 specific categories. For COG analysis, the largest two groups were the ‘general functional prediction only’ (1,166, 1,972 and 1,618) and ‘replication, recombination and repair’ (409, 949 and 721). The next largest groups in *P. vetusta* were ‘transcription’ (381), ‘signal transduction mechanisms’ (325), ‘posttranslational modification, protein turnover and chaperones’ (321) and ‘translation, ribosomal structure and biogenesis’ (313), whereas in *R. sejuga*, these groups were also the next most common groups but in a different order: ‘translation, ribosomal structure and biogenesis’ (847), ‘transcription’ (831), ‘posttranslational modification, protein turnover and chaperones’ (689) and ‘signal transduction mechanisms’ (580). Differing from the two species, the third through sixth most abundant groups in *L. simplicornis* were ‘amino acid transport and metabolism’ (442), ‘carbohydrate transport and metabolism’ (429), ‘translation, ribosomal structure and biogenesis’ (428) and ‘transcription’ (395). For KOG analysis, the largest two groups were the ‘general functional prediction only’ (1,712, 2,656 and 3,266) and ‘signal transduction mechanisms’ (1,533, 1,790 and 1,401). However, the middle frequency functional groups were quite different between the three species. For both COG and KOG analysis, only a few unigenes in each species were assigned to ‘cell motility’ and ‘nuclear structure’. A summary of COG and KOG functional classifications is presented in S6 and S7 Tables.

We also mapped the unigenes from each species onto the KEGG database to identify biochemical pathways [45]. In total, for *P. vetusta*, *R. sejuga* and *L. simplicornis* respectively 6,091, 9,419 and 5,999 unigenes were assigned to 258, 261 and 208 KEGG pathways. A summary of the KEGG pathways annotated is presented in S8–S10 Tables. The largest categories of biochemical-related unigenes in *P. vetusta* were those associated with purine metabolism (151; 2.48%), followed by unigenes that were involved in the PI3K-Akt signaling pathway (137; 2.25%), rap1 signaling pathway (135; 2.22%), focal adhesion (135; 2.22%), MAPK signaling pathway (131; 2.15%), and protein processing in endoplasmic reticulum (131; 2.15%), whereas in *R. sejuga*, the largest categories were those associated with ribosome (308; 3.27%), followed by unigenes that were involved in purine metabolism (295; 3.13%), spliceosome (292; 3.10%), RNA transport (262; 2.78%), protein processing in endoplasmic reticulum (247; 2.62%), and pyrimidine metabolism (199; 2.11%) and for *L. simplicornis*, the largest categories were those associated with ribosome (188; 3.13%), followed by unigenes that were involved in protein processing in endoplasmic reticulum (139; 2.32%), purine metabolism (133; 2.22%), RNA transport (126; 2.10%), carbon metabolism (124; 2.07%), and spliceosome (108; 1.80%).

Phylogenetic analysis

A phylogenetic tree, which included representatives of all tipulomorph families plus representatives of other lower dipteran families, was constructed based on the 1,709 single-copy
Transcriptomes of Tipuloidea and transcriptome-based phylogeny of the Tipulomorpha

P. vetusta

R. sejuga

L. simplicicornis
orthologs genes using the ML method (Fig 7). In addition, according to the annotations of these single-copy orthologous genes, the following four groups of genes were also selected to construct ML trees (Fig 8) to make comparisons and provide insights into the phylogenetic importance of the groups of genes: 73 genes involved in ATP binding, 13 genes with receptor activity, 43 genes from the ‘biological process associated with wing’ group and 7 genes from the ‘biological process associated with olfaction’ group (S11 Table). In the tree based on all 1709 single-copy genes (Fig 7), the monophyly of each infraorder was strongly supported. This result was also strongly supported in three of the four analyses based on GO term group; the exception was the ‘receptor activity’ analyses in which Psychodomorpha is the only monophyletic infraorder (Fig 8B). ‘Nematocera’, or the ‘lower’ Diptera, was, as expected, paraphyletic. Relationships among the four major infraorders of lower Diptera in the 1709-gene analysis was Culicomorpha + (Tipulomorpha + (Psychodomorpha + (Bibionomorpha + Brachycera))). Of the GO group trees, the ‘biological process associated with wing’ analysis (Fig 8C) had the same infraorder topology as the 1709-gene tree, ‘ATP binding’ analysis (Fig 8A) supported a sister group relationship between Tipulomorpha and Psychodomorpha, and the ‘biological process associated with olfaction’ analysis (Fig 8D) supported nematoceran monophyly, with Tipulomorpha as sister to Bibionomorpha. Infraclass relationships could not be inferred from the ‘receptor activity’ analysis, as the monophyly of 3 of the 4 infraorders was not supported. The 1709-gene analysis (Fig 7) and one of the four GO-group (Fig 8D) supported the traditional concept of Tipulomorpha as containing Trichoceridae separate from Tipuloidea; in two of the other GO-group analyses Trichoceridae was nested within Tipuloidea (Fig 8A and 8C). As to the interfamilial relationships in Tipuloidea, Pediidiidae was sister-group to a clade containing Limoniidae + (Cylindrotomidae + Tipulidae) in both the 1709-gene analysis and one of the GO-group analyses, whereas Pediidiidae + Trichoceridae was sister to the remaining tipuloid families in the other two GO-group analyses (Fig 8A and 8C). Nodal support was uniformly strong across the analyses.

FcLM analysis

To evaluate signal for alternative resolutions of the Diptera tree we used Four Cluster Likelihood Mapping (FcLM) [37] to compare support for two major questions: (1) which infraorder is placed basally as sister to all remaining Diptera in our study? And (2) does our data support Trichoceridae placed in the Tipulomorpha (Table 3)? FcLM analysis favored Culicomorpha

Table 2. The numbers and distribution rate of unigenes in the databases of NR, GO, COG, KOG, KEGG, Pfam and Swiss-Prot.

Database	P. vetusta	R. sejuga	L. simplicicornis
NR	11,989 (42.44%)	19,345 (43.81%)	16,928 (38.23%)
GO	7,900 (27.96%)	11,005 (24.93%)	9,415 (21.26%)
COG	3,398 (12.03%)	7,170 (16.24%)	4,978 (11.24%)
KOG	8,993 (31.83%)	13,754 (31.15%)	10,973 (24.78%)
KEGG	6,091 (21.58%)	9,419 (21.33%)	5,999 (13.55%)
Pfam	9,094 (32.19%)	14,762 (33.43%)	11,441 (25.84%)
Swiss-Prot	7,396 (26.18%)	11,501 (26.05%)	9,369 (21.16%)
All	12,475 (44.16%)	20,334 (46.05%)	17,478 (39.47%)

doi:10.1371/journal.pone.0173207.t002
Fig 3. Results summary for sequence-homology search against NCBI NR database.

doi:10.1371/journal.pone.0173207.g003
(51.4%) over either Tipulomorpha (32.0%) or a clade comprising of Culicomorpha + Tipulomorpha (16.6%) (Fig 9A). Quartet mapping also showed strong support for Trichoceridae +
Tipuloidea (Tipulomorpha monophyly) (87.5%) over either a sister grouping between Trichoceridae and Psychodidae (12.5%) or Trichoceridae outside of Tipuloidea + Psychodidae (0.0%) (Fig 9B). Both the results are compatible with the results of the ML tree based on all 1709 single-copy genes.
Recent studies have demonstrated that whole transcriptomes can accurately resolve the phylogenetic relationships at various levels within insects [29–30]. A robust phylogeny of Tipulomorpha was obtained using three newly sequenced tipuloidean transcriptomes as well as some published transcriptome data. Strong support values were recovered for both traditionally recognized dipteran phylogenetic relationships as well as some recent novel findings (Fig 7). Several long standing issues in tipulomorph phylogeny are resolved, especially regarding its monophyly and placement with respect to other lower dipteran groups. As for the four major infraorders of lower Diptera, Culicomorpha was the basal branch in our analysis, which was consistent with former molecular [10] and morphological analysis [18]. The placement of tipulomorph towards the middle of the nematoceran grade was recovered, with Culicomorpha + (Tipulomorpha + (Psychodomorpha + (Bibionomorpha + Brachycera))). This is consistent with the result using Bayesian analysis from Bertone et al. [10].

The superfamily Tipuloidea, which has a large number of species, are difficult to identify and really know. Therefore, the choice of taxa could influence the tree due to unpredictable rate dynamics (causing homoplasy or phylogenetic error). However, the family Tipulidae was
the sole representative of Tipuloidea included in some previous studies (e.g. [17–18]) potentially biasing those phylogenetic findings. Limited taxon sampling could explain the conflicting results found in most previous studies for the placement and composition of Tipulomorpha. Our use of a very large gene sample may overcome the unpredictable rate effects that can come from insufficient taxon coverage, but additional studies with much broader taxon coverage would be required to fully explore this issue.

Regarding interfamilial relationships in Tipuloidea, our results corroborated Pediciidae as the sister-group to the remaining Tipuloidea, which was consistent with the results proposed by Ribeiro based on an analysis of 88 morphological characters [27] and Petersen et al. based on both morphological characters (adult, larvae and pupae) and nuclear sequence data (28S rDNA and CAD) [28]. Petersen et al. also showed a sister-grouping of Cylindrotomidae and Tipulidae, however, their placement within the Tipuloidea was less certain as there was no support for the monophyly of Limoniidae [28]. Although Limoniidae was found to be the sister-group of Cylindrotomidae + Tipulidae in the present study, due to the limited number of exemplars sequenced (one per family) we can’t rule out the possibility of a paraphyletic Limoniidae as found by Petersen et al. [28] with only some members of the family making up the sister-group of Cylindrotomidae + Tipulidae. More research into the higher-level classification of the Limoniidae based on a larger range of representative taxa should be used for phylogenetic analysis in the future.

Analysis of smaller numbers of genes corresponding to specific functional classes were less effective at resolving expected relationships among Tipulomorphan clades. GO classes are broadly defined and specific aspects of molecular evolutionary rate and both identification or identity as an ortholog would affect both the use of the gene as phylogenetic marker and its ability to resolve a specific question. In general, it seems that larger gene samples that include multiple classes of genes and genes of differing phylogenetic utility are preferable for resolving relationships among the oldest and most diverse fly groups.

Table 3. The three datasets designed to address three phylogenetic questions.

Phylogenetic question	Groups	Included insect families (if more than one)	Number of species
1. Which infraorder is the sister-group of the remaining Diptera?	G1: Outgroup	Boreidae, Ceratophyllumidae	2
	G2: Culicomorpha	Culicidae, Chironomidae, Ceratopogonidae, Corethrella	7
	G3: Tipulomorpha	Trichoceridae, Pediciidae, Limoniidae, Cylindrotominae, Tipulidae	5
	G4: remaining lower dipterans	Psychodidae, Bibionidae, Cecidomyiidae	5
2. Is Trichoceridae part of Tipulomorpha?	G1: Trichoceridae	1	
	G2: Tipuloida	Pediciidae, Limoniidae, Cylindrotominae, Tipulidae	4
	G3: Psychodidae	2	
	G4: Outgroup	Boreidae, Ceratophyllumidae	2

doi:10.1371/journal.pone.0173207.t003
Supporting information

S1 Table. Species for which new transcriptome data were generated, with collecting and preservation information.
(XLSX)

S2 Table. All species included in this study, including previously published data.
(XLSX)

S3 Table. List of 1,709 ortholog groups included in the ortholog reference set.
(XLSX)

S4 Table. Reference species used in the orthology reference set.
(XLSX)
S5 Table. Summary of GO term assignment for unigenes of *P. vetusta, R. sejuga* and *L. simplicicornis*.
(XLSX)

S6 Table. Summary of COG functional classification for unigenes of *P. vetusta, R. sejuga* and *L. simplicicornis*.
(XLSX)

S7 Table. Summary of KOG functional classification for unigenes of *P. vetusta, R. sejuga* and *L. simplicicornis*.
(XLSX)

S8 Table. Summary of the KEGG pathways for unigenes of *P. vetusta*.
(XLSX)

S9 Table. Summary of the KEGG pathways for unigenes of *R. sejuga*.
(XLSX)

S10 Table. Summary of the KEGG pathways for unigenes of *L. simplicicornis*.
(XLSX)

S11 Table. List of the four groups of genes selected to construct ML trees.
(XLSX)

Acknowledgments

We express our sincere thanks to Dr. Jianyun Wang (Beijing), Ms. Jinying Yang (Beijing), Ms. Lihua Wang (Beijing) and Ms. Lan Ye (Hangzhou) for providing help in collecting the specimens, and Ms. Lu Yue (Beijing), Dr. Feng Zhou (Beijing) and Dr. Fan Song (Beijing) for providing useful suggestions about the phylogenetic analysis.

Author Contributions

Conceptualization: ZK XZ DY.

Data curation: ZK XZ.

Formal analysis: ZK XZ.

Funding acquisition: DY.

Investigation: ZK XZ.

Methodology: ZK XZ.

Project administration: DY.

Resources: XZ.

Software: ZK XZ YW.

Supervision: SD CT YW HJ SLC MW.

Validation: YW SLC.

Visualization: ZK XZ.

Writing – original draft: ZK XZ.

Writing – review & editing: SD CT YW HJ SLC.
References

1. Yeates DK, Wiegmann BM. (eds.) The Evolutionary Biology of Flies. Columbia University Press, New York; 2005.
2. Jong HD, Oosterbroek P, Gelhaus J, Reusch H, Chen Y. Global diversity of craneflies (insecta, diptera: tipulidea or tipulidae sensu lato) in freshwater. Hydrobiologia. 2007; 595(1): 457–467.
3. Hennig W. Flügelgeäder und system der Dipteren. Beitr Entomol. 1954; 4: 245–388.
4. Hennig W. Diptera (Zwießügler). Handbuch der Zoologie (Berlin). 1973; 4:1–200.
5. Hennig W. Insect phylogeny. New York: J. Wiley & Sons; 1981.
6. Dahl C. Comparison of postembryonic organization of the genital segments Trichoceridae, Tipulidae, and Anisopodidae (Diptera, Nematocera). Zoologica Scripta. 1980; 9: 165–185.
7. Griffiths GCD. Book review: Manual of Nearctic Diptera Volume 3. Quaestiones Entomologicae. 1990; 26: 117–130.
8. Starý J. Phylogeny and classification of Tipulomorpha, with special emphasis on the family Limoniidae. Acta Zoologica Cracoviensia. 1992; 35: 11–36.
9. Oosterbroek P, Courtney GW. Phylogeny of the Nematocerous families of Diptera (Insecta). Zoological Journal of the Linnean Society. 1995; 11: 267–311.
10. Bertone MA, Courtney GW, Wiegmann BM. Phylogenetics and temporal diversification of the earliest true flies (Insecta: Diptera) based on multiple nuclear genes. Systematic Entomology. 2008; 33: 668–687.
11. Krzeminski W. Triassic and Lower Jurassic stage of Diptera evolution. Mitteilungen der schweizerischen entomologischen Gesellschaft. 1992; 65: 39–59.
12. Michelsen V. Neodiptera: New insights into the adult morphology and higher level phylogeny of Diptera (Insecta). Zoological Journal of the Linnean Society. 1996; 117: 71–102.
13. Blagodurov V, Grimaldi DA, Fraser NC. How time flies for flies, Diverse Diptera from the triassic of Virginia and Early Radiation of the Order. American Museum Novitates 3572; 2007. 39 pp.
14. Wood DM, Borkent A. Phylogeny and classification of the Nematocera. In McAlpine J.F. and Wood D. M., eds., Manual of Nearctic Diptera Volume 3. Ottawa: Research Branch Agriculture Canada; 1989. pp. 1333–1370.
15. Friedrich M. Tautz D. An episodic change of rDNA nucleotide substitution rate has occurred during the emergence of the insect order Diptera. Molecular Biology and Evolution. 1997; 14: 644–653. PMID: 9190066
16. Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, et al. Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(14): 5690–5. doi: 10.1073/pnas.1012675108 PMID: 21402926
17. Beekenbach AT. Mitochondrial genome sequences of Nematocera (Lower Diptera): evidence of rearrangement following a complete genome duplication in a winter crane fly genome. Genome Biology & Evolution. 2012; 4(2): 89–101.
18. Lambkin CL, Sinclair BJ, Pape T, Courtney GW, Skevington JH, Meier R, et al. The phylogenetic relationships among infraorders and superfamilies of diptera based on morphological evidence. Systematic Entomology. 2013; 38(1), 164–179.
19. Alexander CP. The crane-flies of New York. Part I. Distribution and taxonomy of the adult flies. Memoirs, Cornell University Agricultural Experiment Station. 1919; 25: 767–993.
20. Alexander CP. The crane-flies of New York. Part II. Biology and phylogeny. Memoirs, Cornell University Agricultural Experiment Station. 1920; 38: 691–1133.
21. Savchenko EN. Tipulidae. Fauna Ukrainy. 1966; 14: 1–551.
22. Savchenko EN. Phylogenie und Systematik der Tipulidae. Translated and revised by Br. Theowald and G. Theischinger. Tidsschrift für Entomologie, 1979; 122: 91–126.
23. Savchenko EN. Crane-flies (Fam. Tipulidae), Introduction, Subfamily Dolichopezinae. Tipulinae. Fauna USSR, Diptera. 1985; 127: 1–585.
24. Brodo, F. A revision of the genus Phronocera and the phylogeny of the family Tipulidae (Diptera). PhD Dissertation, Carleton University, Ottawa, Ontario. 1984.
25. Oosterbroek P, Theowald B. Phylogeny of the Tipuloidae based on characters of larvae and pupae (Diptera, Nematocera) with an index to the literature except Tipulidae. Tidsschrift voor Entomologie. 1991; 134: 211–267.
26. Oosterbroek, P. Catalogue of the Craneflies of the World. Available: http://ccw.naturalis.nl/. Accessed 11 March 2016.
27. Ribeiro GC. Phylogeny of the Limnophila (Limoniidae) and early evolution of the Tipulomorpha (Diptera). Invertebrate Systematics. 2008; 22: 627–694.

28. Petersen MJ, Bertone MA, Wiegmann BM, Courtney GW. Phylogenetic synthesis of morphological and molecular data reveals new insights into the higher-level classification of Tipulidae (Diptera). Systematic Entomology. 2010; 35(3): 526–545.

29. Peters RS, Karen M, Malte P, Christoph M, Jeanne W, Tanja Z, et al. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. Bmc Evolutionary Biology. 2014; 14(1): 380–393.

30. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014; 346(6210): 763–767. doi: 10.1126/science.1257570 PMID: 25378627

31. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from rna-seq data without a reference genome. Nature Biotechnology. 2011; 29(7): 644–652. doi: 10.1038/nbt.1883 PMID: 21572440

32. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 2002; 30: 3059–3066. PMID: 12136088

33. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. Bmc Bioinformatics. 2008; 9: 212. doi: 10.1186/1471-2105-9-212 PMID: 18439255

34. Eddy SR. Accelerated profile HMM searches. Plos Computational Biology. 2011; 7: e1002195. doi: 10.1371/journal.pcbi.1002195 PMID: 22039361

35. Ebersberger I, Strauss S, Von HA. HaMStR: profile hidden Markov model based search for orthologs in ESTs. Bmc Evolutionary Biology. 2009; 9: 157. doi: 10.1186/1471-2148-9-157 PMID: 19586527

36. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences Cabios. 1992; 8: 275–282 PMID: 1633570

37. Strimmer K, Von HA. Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 6815–6819. PMID: 9192648

38. Schmidt HA, Strimmer K, Vingron M, Von HA. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002; 18: 502–504. PMID: 11934758

39. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research. 2007; 35: 61–65.

40. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nature Genetics. 2000; 25(1): 25–29. doi: 10.1038/75556 PMID: 10802651

41. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The cog database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research. 2000; 28(1): 33–36. PMID: 10592175

42. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M., et al. Kegg for linking genomes to life and the environment. Nucleic Acids Research. 2008; 36(Database issue): 480–484.

43. Finn RD, Tate J, Mistry J, Coggill P, Sammut SJ, Hotz HR, et al. The Pfam protein families database. Nucleic Acids Research. 2008; 36: D281–D288. doi: 10.1093/nar/gkn960 PMID: 18039703

44. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for rna-seq: accounting for selection bias. Genome Biology. 2010; 11(2): R14. doi: 10.1186/gb-2010-11-2-r14 PMID: 20132535

45. Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the kegg orthology (ko) as a controlled vocabulary. Bioinformatics. 2005; 21(19): 3787–3793. doi: 10.1093/bioinformatics/bti430 PMID: 15817693