Beta-HCG secretion by a pulmonary pleomorphic carcinoma: A case report

Magno Dinis de Sousa a,⁎, Margarida Barata b, Ana Raquel Miranda a, Pedro Sequeira c, Ana Oliveira c, Luísa Xavier a, Hélder Mansinho a

a Hema-Oncology Department, Hospital Garcia de Orta, EFE, Av. Torrado da Silva, 2805-267, Almada, Portugal
b Pulmonology Department, Hospital Garcia de Orta, EFE, Av. Torrado da Silva, 2805-267, Almada, Portugal

ARTICLE INFO

Keywords:
Pleomorphic carcinoma
Sarcomatoid carcinoma
Lung neoplasms
Chorionic gonadotropin
Beta subunit
Paraneoplastic syndromes

ABSTRACT

Ectopic secretion of beta-subunit of human chorionic gonadotropin (β-HCG) in pulmonary pleomorphic carcinoma is remarkably rare. Such unusual ectopic hormone production by lung cancer may be initially misinterpreted as extragonadal choriocarcinoma or germ cell tumor.

We report a 56-year-old postmenopausal female, smoker, who presented a 5-month history of progressive dyspnea, dry paroxysmal cough, and significant weight loss. She was referred by a local hospital with the preliminary diagnosis of gestational trophoblastic neoplasia due to a rapidly growing thoracic tumor with persistently elevated serum β-HCG. Computed tomography of the chest showed a lung mass in the right upper lobe associated with homolateral pleural effusion. Positron emission tomography showed pathological 2-[18F]FDG uptake at the mass lesion. Biopsies were performed. Histological examination described pleomorphic carcinoma with positive immunostaining for β-HCG. The serum levels of β-HCG were also elevated indicating ectopic secretion. The patient had rapid clinical deterioration and deceased before chemotherapy initiation.

Only a few cases of paraneoplastic β-HCG secretion have been reported in the literature. Previous studies suggested that the ability to secrete β-hCG in tumors may correlate to some extent to chemoresistance; thus, it might be useful as a prognosis marker.

1. Introduction

Pulmonary pleomorphic carcinoma (PPC) is a rare tumor comprising 0.14% to 0.3% of all malignant lung tumors [1–3]. It has a more aggressive clinical course and a poorer prognosis compared to other histological types of non-small cell lung carcinoma (NSCLC) [3,4].

Human chorionic gonadotropin (HCG) is a hormone secreted by placental syncytiotrophoblasts. Measurable serum β-human chorionic gonadotropin (β-HCG) is usually consistent with pregnancy or pregnancy-related conditions such as gestational trophoblastic neoplasms. Ectopic secretion of this hormone by other non-trophoblastic malignancies, such as cervical cancer, breast, bladder, ovarian, brain, colorectal, uterine, brain, and lung malignant cell lines, has been described [5]. However, PPC producing β-HCG is very rare [6–8].

We report a case of a 56-year-old female with pleomorphic carcinoma of the lung associated with elevated serum levels of β-HCG.

2. Case report

A 56-year-old Caucasian woman with a five-month history of progressive dyspnea, dry paroxysmal cough, anorexia, and significant weight loss, was found to have a rapidly growing thoracic tumor with persistently elevated serum β-HCG. She was referred to our institution by a local hospital with the preliminary diagnosis of gestational trophoblastic neoplasia, likely choriocarcinoma.

The patient was a heavy smoker, with a history of a total hysterectomy 19 years ago. Her BRCA status was unknown. Regarding the family history of cancer, her father deceased due to a non-specified hepatic malignant neoplasm. The remaining family and social history were unremarkable.

On physical observation, she presented clinical signs of hypoxic respiratory failure, with marked dyspnea, fatigue, and pallor. Pulmonary auscultation revealed diminished vesicular murmur in the right hemithorax, and there was also a moderate tenderness in the right upper abdominal quadrant. There were no infectious contacts reported, and...
Fig. 1. Chest CT showing a lung mass in the right upper lobe associated with large homolateral pleural effusion.

Fig. 2. PET/CT scan showing high FDG uptake at a lesion in the upper lobe of the right lung and a smaller lesion in the lower lobe of the left lung.
the remainder of the physical examination showed no obvious abnormalities.

Chest radiography revealed complete opacification of the right hemithorax. Chest computed tomography (CT) showed a lung mass in the right upper lobe associated with large homolateral pleural effusion (Fig. 1). Whole-body positron emission tomography (PET/CT) scan detected a high 18F-FDG uptake lesion in the upper lobe of the right lung ($\text{SUVmax} = 51.0$) and a small lesion ($\text{SUVmax} = 2.7$) in the lower lobe of the left lung (Fig. 2).

Although we do not routinely examine β-HCG at the initial assessment of patients with suspected lung cancer, we proceeded with a serum reevaluation as an elevated β-HCG was reported in the referral information. Accordingly, of the serum tumor markers, her initial β-HCG at admission was 1 702.00 UI/l, increasing to 5 511.00 UI/l within a few days. Alpha-fetoprotein (AFP) levels were within the normal range.

The patient underwent thoracocenteses and percutaneous pleural biopsies. The microbiological study of pleural fluid and pleural biopsies were negative, to malignant cells. Bronchofibroscopy showed right upper segmental bronchi extrinsic compressions signs. Both bronchial aspirate and bronchoalveolar lavage fluid were negative for bacteriology and mycobacteriology testing, as well as for neoplastic cells.

Transthoracic needle biopsy (TTNB) of the right lung lesion was performed. Histopathological examination was consistent with pleomorphic carcinoma comprising an undifferentiated non-small cell carcinoma component, with large pleomorphic cells and rare giant multinucleated cells admixed with a fusocellular component (Fig. 3).

Immunohistochemically (IHC), both components displayed immunopositivity for cytokeratin (CK) AE1/AE3 (CKAE1/AE3), vimentin, and β-HCG. The epithelial cell component showed focal expression for CK7 and did not express TTF-1 or P40 (Fig. 4). Ki-67 was 50%. Additionally, tumor cells were also positive for programmed death-ligand 1 (PD-L1 IHC clone 22C3; 10%) and negative for anaplastic lymphoma kinase (ALK IHC clone D5F3), desmin, actin, S100 protein, P63, CK5/6 neural cell adhesion molecule (NCAM/CD56), napsin-A, cyclin-D1, AFP, and placental alkaline phosphatase (PLAP).

Initiation of chemotherapy was withheld due to rapid clinical deterioration and radiological progression. Best supportive care was the alternative option.

3. Discussion

Pulmonary pleomorphic carcinoma (PPC) is a rare aggressive tumor accounting for <1.0% of all malignant tumors. A retrospective analysis of 718 lung malignancies showed that PPC comprised 0.14% of all lung malignancies [2]. This entity has a male preponderance and a median age at diagnosis of 65 years. It is strongly associated with tobacco smoking. Studies also describe a predilection for peripheral locations, favoring upper lobes [1,3].

On histopathology and according to the WHO classification, PPC is a poorly differentiated non-small cell lung carcinoma containing at least 10% spindle and/or giant cells, or a carcinoma consisting only of spindle and giant cells [9]. Occasionally, PPC may include pleomorphic multinucleated giant cells, resembling syncytiotrophoblastic and cytotrophoblastic cells of choriocarcinoma. Those cells display immunopositivity for HCG, challenging the distinction between primary
Respiratory Medicine Case Reports 34 (2021) 101528

d accountable for the study design, data collection and analysis, writing the manuscript, and approving the final version. Magno Dinis de Sousa and Ana Raquel Miranda contributed equally to this article as co-first authors.

Pedro Sequeira and Ana Oliveira contributed also to this article with pathology information on the case and related images.

All authors contributed to drafting the article and revising it critically for important intellectual content.

All authors have read the final manuscript and agree to the content.

Declaration of competing interest

The authors declare that they have no conflict of interest.

References

[1] N.F. Fishback, W.D. Travis, C.A. Moran, D.G. Guinee Jr., W.F. McCarthy, M. N. Koss, Pleomorphic (spindle/giant cell) carcinoma of the lung: A clinicopathologic correlation of 78 cases, Cancer 73 (12) (1994) 2936–2945.

[2] T. Terada, Pleomorphic carcinoma of the lung: a case report with immunohistochemical studies, Respir. Med. CME 3 (4) (2010) 252–256.

[3] Y.L. Chang, Y.C. Lee, J.Y. Shih, C.T. Wu, Pulmonary pleomorphic (spindle cell) carcinoma: peculiar clinicopathologic manifestations different from ordinary non-small cell carcinoma, Lung Cancer 34 (1) (2001) 91–97.

[4] T. Mochizuki, G. Ishii, K. Nagai, J. Yoshida, M. Nishiura, T. Mizuno, T. Yokose, K. Suzuki, A. Ochiai, Pleomorphic carcinoma of the lung: clinicopathologic characteristics of 70 cases, Am. J. Surg. Pathol. 32 (11) (2008) 1727–1735.

[5] L.A. Cole, New discoveries on the biology and detection of human chorionic gonadotropin, Reprod. Biol. Endocrinol. : RBE (Rev. Bras. Endocrinol.) 7 (2009) 8.

[6] P. Sagaster, N. Zojer, M. Bozkurt, G. Dekan, H. Ludwig, A paraneoplastic syndrome mimicking extrauterine pregnancy, Ann. Oncol.: Off. J. Eur. Soc. Med. Oncol. 13 (1) (2002) 170–172.

[7] H. Hirano, T. Yoshida, T. Sakamoto, H. Yoshimura, M. Fukusaku, S. Tachibana, H. Saito, E. Okuharo, K. Nakasho, T. Nishigami, Pulmonary pleomorphic carcinoma producing hCG, Pathol. Int. 57 (10) (2007) 698–702.

[8] K. Okatani, B. Hashim, K. Aydin, M. Boukht, E. Namal, M. Oz, K. Kaynak, G. Demir, Pulmonary pleomorphic carcinoma of the lung with high serum beta-human chorionic gonadotropin level and gynecostasia, J. Kor. Med. Sci. 25 (12) (2010) 1805–1808.

[9] K.M. Kerr, G. Pelosi, J.H.M. Austin, E. Brambilla, K. Geisinger, N.A. Jambhekar, J. Jett, M.N. Koss, A.G. Nicholson, C.A. Powell, G. Riely, G. Roni, W.D. Travis, K. Tsuta, P. van Schil, P. Yang, Pleomorphic, spindle cell, and giant cell carcinoma, in: W.D. Travis, E. Brambilla, A. Marx, A.G. Nicholson (Eds.), WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart, fourth ed., International Agency for Research on Cancer, Lyon, France, 2015, pp. 88–90.

[10] P.-S. Wu, Primary choriocarcinoma of the lung: a case report and literature review, Int. J. Clin. Exp. Pathol. 13 (9) (2020) 2352–2355.

[11] M. Saturmowicz, J. Slodkowska, J. Zych, P. Rudzinski, A. Savolovics, E. Bowienko-Zakrzewska, Frequency and clinical significance of β-subunit human chorionic gonadotropin expression in non-small cell lung cancer patients, Tumor Biol. 20 (2) (1999) 99–104.

[12] S. Lee, J.Y. Jeong, J. Han, C.O. Sung, Y.S. Choi, Pulmonary carcinoma with β-human choric gonadotropin expression: further understanding and suggestions for this entity from six cases experience in a single institution, J. Label. Compd. 10 (1) (2011) 44–48.