Thermally enhanced polyolefin composites: fundamentals, progress, challenges, and prospects

A.U. Chaudhry, Abdel Nasser Mabrouk, and Ahmed Abdala

ABSTRACT
The low thermal conductivity of polymers is a barrier to their use in applications requiring high thermal conductivity such as electronic packaging, heat exchangers, and thermal management devices. Polyolefins represent about 55% of global thermoplastic production, and therefore improving their thermal conductivity is essential for many applications. This review analyzes the advances in enhancing the thermal conductivity of polyolefin composites. First, the mechanisms of thermal transport in polyolefin composites and the key parameters that govern conductive heat transfer through the interface between the matrix and the filler are discussed. Then, the advantage and limitations of the current methods for measuring thermal conductivity are analyzed. Moreover, the progress in predicting the thermal conductivity of polymer composites using modeling and simulation is discussed. Furthermore, polyolefin composites and nanocomposites with different thermally conductive fillers are reviewed and analyzed. Finally, the key challenges and future directions for developing thermally enhanced polyolefin composites are outlined.

Introduction

Because of their low cost, ease of processing, the various functionalities, excellent corrosion, and chemical resistance, and lightweight, polymers have received considerable attention over the last few decades in emerging technologies (Figure 1) such as heat exchangers, waste energy recovery, heat dissipation applications, electronic packaging, solar satellite devices, aerospace applications, renewable energy system, electronics, and Li–ion batteries [1–9]. However, the relatively low thermal conductivity of polymers (κ_p) poses a challenge and constitutes a bottleneck towards commercial implementation. Therefore, improving the low κ_p (0.1–0.5 W/m-K) is of great importance.

Many approaches are employed to enhance the poor κ of polymers; some of them rely on alignment of the polymer chains using mechanical stretching, electrospinning, and nanoscale templating [10] or fabricating polymer composites (PC) or nanocomposites (PNC) using highly conductive fillers. Polymers containing highly conductive micro/nano-particle fillers are desirable thermally conductive materials and have increased widespread interest. Along with enhanced κ, polymer filled with highly conductive filler also provide other benefits such as improved electrical conductivity (in some systems), magnetic permeability, and mechanical properties [11]. However, enhancement in κ of polymer composites (κ_c) reported in the literature is relatively low compared to the predicted κ_c based on the intrinsic filler conductivity (κ_f) and filler loading. This lower measured κ_c arises from the large interfacial thermal resistance (ITR) between the conductive filler and the surrounding polymer chains leading to phonon scattering and acting as rate-limiting in the thermal conductive pathway [12]. Moreover, κ_c is affected by other multiple factors, including morphological properties of the composite, properties of the polymer, and the microstructure of the composite (Figure 2) that should be considered while designing polymer composite systems as will be discussed in forthcoming sections [9,13].

Among thermoplastics, polyethylene (PE) and polypropylene (PP) account for more than ~50% of the
global polymer production due to their low cost and toxicity, and availability of a wide range of commercial grades in terms of PP forms with different chain structures, crystallinity, and density levels, and stereo configurations of varying densities: isotactic, syndiotactic, and atactic forms of PP. According to a 2020 report, polyolefins are the world’s fastest-growing polymer family with PE and PP accounting to nearly ~30% and ~20%, respectively, of total world polymer demand in 2018 [14]. The production of PE and PE represents a market size of valued 270.7 USD billion and “is forecasted to grow at a compound annual growth rate of 6.2% from 2018 to 2026” [15]. Furthermore, they are the two largest thermoplastics by volume, which are
fabricated into filaments, films, profiles, and moldings [16]. The main advantages of polyolefins, PE and PP in particular, over other polymers include the lightweight, low price, recyclability, easy and low-temperature processability, inertness, hydrophobicity, inertness and non-toxicity, excellent resistance to corrosive solvents, biocompatibility, rigidity, malleability, stiffness, low-temperature impact resistance, and high impermeability. These are the simplest and among the well-studied polymers having a wide range of commodity and engineering applications ranging from plastic bags to medical devices, including orthopedic implants, automobile parts, consumer goods, durable equipment, and industrial machinery [17–20]. Despite many benefits associated with neat polyolefins, polyolefin composites/ nanocomposites emerged to meet the increased applications not satisfied by neat polyolefins. The recent advances in pristine polyolefin, polyolefin composite, and nanocomposite materials were comprehensively reviewed [19,21,22]. However, advances in the application of polymers in heat management areas such as circuit boards, heat exchangers, as replacement of metals or other materials, have also driven several recent studies on κ enhancement in polyolefin as well as other polymer composites. It was reported that κ_p of a single PE nanofiber could reach 100 W/m·K, indicating it can achieve after altering the molecular structure or the morphology [23]. κ enhancement of other polymers filled with fillers having high κ_f has been investigated extensively. For example, the study of κ_c of poly(vinyl butyral), poly(ethylene vinyl alcohol), poly(methyl methacrylate), and polystyrene-based nanocomposites filled with 24 wt.% boron nitride nanotubes exhibited κ_c of 1.80, 2.50, 3.16, and 3.61 W/m·K, respectively [12,24]. Similarly, the addition of 15 and 40 wt.% graphite to thermoplastic polyetherimide improved κ_p from 0.07 to κ_c of 0.87 and 1.73 W/m·K, respectively. Moreover, incorporation of 50 wt.% glass fiber into thermoset polyetherimide increased κ to 0.41 W/m·K. In their reports, κ of increased from κ_p polyethylene terephthalate, i.e., 0.15 W/m·K, increased to κ_c of 0.31, 0.71, and 0.72 W/m·K using 45% glass fiber, 30% graphite fiber, and 40 wt.% PAN carbon fiber, respectively [11].

Polyolefin composites have several advantages over other polymer composites, including the low material costs, ease of fabrication and good manufacturability, excellent chemical and corrosion stability, and the broad range of mechanical properties. Owing to their simple backbone structure, polyolefin chains, especially PE composites, exhibit a large change in κ_c upon alignment. Therefore, using filler with high κ_f combined with the simultaneous alignment of PE chains and the embedded filler, κ_c can be significantly enhanced. For instance, κ_c of PE composite containing 10 wt.% graphene nanoplatelets has reached 5.9 W/m·K after stretching the composite, indicating the great potential to fabricate polyolefin composites with high κ_c [25].

The current interest in thermally enhanced polyolefin to meet the requirements of many emerging applications focuses on an excellent combination of thermal and mechanical properties. Several reviews discuss the progress in improving κ of polymers via controlling/altering the polymer morphology [22] and fabrication of composites and nanocomposites with conductive fillers [10–12,26,27]. However, to the best of our knowledge, no review focuses on enhancing κ of polyolefin via the fabrication of composites with conductive fillers and nanofiller. This comprehensive review is dedicated to the progress in improving κ_c of polyolefin composites. Polyolefin are a unique class of polymers, not only because of their vast production scale and low cost but also because they are the most challenging polymer for the fabrication of composites and nanocomposites due to their nonpolar nature that leads to poor dispersion of the filler and weak interface between the polymer and the filler. This weak interface promotes phonon scattering that limits the enhancement in κ_c. A review dedicated to this class of polymers provides an in-depth analysis of the key aspects that govern the enhancement of κ in terms of processing, filler type, and loading. Moreover, other essential elements such as heat transfer mechanism in polymer composites, modeling, and simulation of thermal conductivity in polymers and polymer composites, and thermal conductivity measurement techniques are also discussed. Therefore, this comprehensive review will contribute to accelerating the development of commercially viable thermally conductive polyolefins.

This review analyzes the advances on enhancing the κ of polyolefin composites. First, the microscopic origin of κ, the mechanisms of thermal transport in polymers and the key parameters that govern conductive heat transfer through polymers and polymer composites are briefly discussed. Next, transient and steady-state techniques for measuring κ are analyzed. Then, the microscopic thermal transport mechanisms in polymer composites (PC) are discussed. Theoretical progress in predicting κ of the polymer composites containing micro- and nano-conducting fillers are presented.

Furthermore, a comprehensive analysis of the enhancement in κ of polyolefins reinforced with carbon-based, ceramic, and metallic micro- and nano-fillers are scrutinized. The impact of processing method and condition, the filler conductivity, size, shape, and aspect ratio, combining hybrid fillers, controlling filler orientation, and controlling the composite microstructure on κ_c of the polyolefin composites...
is discussed. Finally, the current challenges and future research directions are presented.

2. Thermal conductivity

Thermal conductivity, denoted as Greek letter κ or small letter k, is a material-intensive property that measures the material ability to transport heat molecularly (conduction). Macroscopically, κ is the constant of proportionality in Fourier’s Law for isotropic, homogeneous material:

$$J = \kappa \frac{\Delta T}{\Delta x}$$ \hspace{1cm} (1)

where J is the heat flux (W/m2), κ is the thermal conductivity of the material (W/m·K); ΔT is the differential temperature across the sample (°C); Δx is the differential thickness or the conduction path length (m).

Figure 3 presents the variation in κ for common types of materials. κ generally varies from 0.01 W/m·K for gases such as helium, 0.15–0.5 W/m·K for polymers, reaches 400 W/m·K for highly conductive metals such as copper and also graphite, and up to ~5000 W/m·K for single-layer graphene.

From a microscopic viewpoint, κ of solids is attributed to the transport of energy carriers such as phonons, electrons, or photons. Generally, in crystalline solids, atoms continuously experience coupled and coordinated vibrations with high frequency and comparatively small amplitudes (shorter wavelengths), which can be assumed as elastic waves. On the other hand, phonons transport is the predominant mechanism for thermal conduction in polymers and PC, and it can be described as quantized modes of vibration. Phonons are analogs to the photons having wavelike and particle nature as schematically presented in Figure 4a that depicts the evolution of temperature gradient across the material thickness. The heat conduction in solids takes place by high-energy phonons or energy-carrying packets generated by the lattice vibrations. The thermal phonons start their journey from the hot source and gradually lose their energy as moving towards the heat sink, creating a temperature gradient across the conducting medium. Moreover, Figure 4b also indicates the origin of thermal resistance, which arises from different modes of phonon scattering owing to imperfections in the solids [22,27].

2.1 Thermal conductivity measurements

Precise measurements of thermal transport properties of polymers and PC are vital in thermal management applications. Numerous standards, methodologies, and procedures exist to measure the thermal properties of polymers correctly. Recently, Palacios et al. [28] have published a comprehensive review of the measurement methods, equipment, and sample preparation for characterizing thermal energy storage materials. The thermal conductivity of solid materials is greatly affected by the measurement conditions, as well as the technique used. The precision of the measurement techniques has been considered as possible contributor to the discrepancy in the reported values of κ_p and κ_c.

Figure 3. Thermal conductivity of different materials.

Figure 4. Graphical representation of (a) a phonon and change in phonon energy while traveling from the heat source to the sink (larger head represent the higher energy phonons and vice versa) and (b) different modes of phonon scattering (1) phonon-phonon, (2) phonon-boundary, (3) phonon-impurity [22,27].
The methods for measurement of thermal transport properties (diffusivity and conductivity) are classified as either steady-state methods (guarded hot plate and heat flow meter) or transient methods (transient plane source, transient hot wire, laser flash, modulated differential scanning calorimetry (DSC), 3 ω, thermocouple) as schematically depicted in Figure 5 [28]. Steady-state methods directly measure κ and the interfacial thermal conductance after the system has attained stability, i.e., under a steady-state heat flow. On the other hand, transient methods measure thermal diffusivity while heating. The steady-state techniques are suitable for the κ, composite, and anisotropic materials, and required comparatively large samples [29]. These methods have disadvantages as they suffer from parasitic heat losses and contact resistance [28]. Transient methods overcome these drawbacks by applying either periodic or transient heat input and measuring the change in sample temperature versus time. Transient methods determine the thermal diffusivity (α) during the heating process, and κ can be estimated using the relation:

$$\alpha = \rho C_p \kappa$$ \hspace{1cm} (2)

where C_p is the specific heat capacity, and ρ is the mass density. Other advantages of the transient methods are the short measurement time, small sample requirement, measurements over a wide temperature range, and the ability to measure simultaneously α and κ. A summary of different κ measurement methods is presented in Table 1. The selection of the technique to use depends primarily on the measurement temperature range, the material type, the inherited κ, measurement time, accuracy, and sample geometry [30].

Among the steady-state techniques, the guarded hot plate (HGP) method is used for low κ materials in a broad temperature range, i.e., 80–1500 K. It provides high accuracy (<2% error) and it requires long measurement time and large sample size. In HGP method, the sample is placed between a cold plate and a hot plate attached to heaters/cooler and thermally insulated. The heat passes through the specimen, and after the system reaches a steady-state, the temperature of both sides of the specimen is measured. κ is calculated based on the measured, steady-state heat flux, the temperature gradient across the sample, and the thickness and surface area of the specimen [31].

The axial flow method is a longitudinal method that measures a wide range of conductivities at low temperatures by creating temperature difference across a sample placed between two suitable references of known κ attached to a heater and a heat sink [32]. The heat flow meter method is similar to the guarded hot plate method, but the device has a heat flux sensor instead of the main heater. It is simple in construction and operation and able to operate in temperature ranges of −73 – 473 K, 90 – 1300 K, or 298 – 2600 K for normal, axial, and radial heat flow, respectively [33]. The pipe method is another radial heat flow method that operates at a wide range of temperatures.
and \(\kappa \) between 0.02 and 2 W/m·K. It follows the same principle of temperature gradient using a cylindrical sample containing a core heater and surrounded by a heat sink [30, 34].

Among the transient methods, the laser flash method is one of the most common and versatile techniques. It is fast, easy to operate, non-contact, and non-destructive technique that provides very high accuracy. In this method, a pulse supplied by a laser beam source heats the surface of a disk, square, or rectangular sample, and an infrared detector monitors the temperature change on the opposite sides of the sample. The thermal diffusivity is measured as:

\[
\alpha = 0.1388 \frac{d^2}{t_{1/2}}
\]

where \(\alpha \) is the thermal diffusivity (cm\(^2\)/s), \(d \) is the sample thickness (cm), \(t_{1/2} \) is the time (s) at which 50% of the maximum temperature increase is reached [28].

Technique	\(\kappa \) range W/m·K	Working principle	Materials type	Advantages/Disadvantages
Steady-State				
Guarded hot plate	<0.8		Solid, opaque, insulators	high precision/large sample size, limited to low \(\kappa \) materials
Axial flow	0.2–200		Metals	Wide temperature range/prolonged measurement time
Heat flow meter	<10		Polymers, ceramics, some metals	Simple setup and operation/High uncertainty
Pipe	0.02–200		Ceramics	Wide temperature range/prolonged measurement time
Transient				
Laser flash	>0.01		Solids and liquids, metals, not for insulating materials	Wide temperature range, small sample, very fast, high precision, high temperature/high cost
Transient hot wire	<25		Liquids, low \(\kappa \) materials	Wide temperature range, quick, precise/low \(\kappa \) materials
Transient plan source	0.005 – 1800		liquids, aerogels and solids	Solid, liquid and powder state/less accurate, large sample size
3 omega (3 \(\omega \))	0.20–20		Thin films (> 100 nm) and nanowires liquids, other non-electrically conductive, porous materials	Simple sample preparation, short measuring time, small sample/complex evaluation
Modulated DSC	0.10 – 1.0		Solid materials, thin samples, polymers, glass,ceramic,	Wide temperature range, very small sample/complex evaluation

Table 1. Thermal conductivity measurement techniques. Reproduced from Ref [44]. Copyrights 2016 Yuksel, Licensee IntechOpen. Copyright (2017), and Ref [28] with permission from Elsevier®.
The transient plane source method, also known as the hot disk method, is similar to the pipe method. It uses a hot wire embedded in the test sample and functions as a temperature sensor. A known small and constant electrical current pulse heats the sample using a heating element placed between two specimens of the test material. The temperature change is recorded as a function of time, and κ is calculated as follows [35–39]:

$$\kappa = \frac{P_0}{r\Delta T(\tau)\pi^2}D_s(\tau)$$

(4)

where P_0 is the power input to the sensor; r is the outer ring heater radius; τ is non-dimensional time; $\Delta T(\tau)$ is the temperature rise on the sample surface; $D_s(\tau)$ is the shape function of τ [40].

The transient hot-wire method is commonly used for measuring κ of liquids. In this method, a heated wire acts as a heat source, output heater, and a temperature detector. The heat spreads out-radial into the sample, and the slope of the temperature rise is proportional to the time-lapse. According to the transient hot-wire method, κ is calculated using the following equation:

$$\kappa = \frac{q}{\Delta T4\pi \ln \frac{t_2}{t_1}}$$

(5)

where q is heating power per unit length (W/m), and T is wire temperature at time t (s) [41,42].

The conventional DSC method is commonly used to determine the thermal properties of materials. Modified DSC or Temperature modulated DSC method can also be used to determine κ of insulating materials using linear heating and a superimposed oscillatory temperature program to create cyclic heating of the sample. The modulated DSC method uses the same setup and sample size as conventional DSC. For low κ and cylindrical samples, κ can be calculated using Equation 6:

$$\kappa = \frac{8LC^2}{C_p\pi a^3 d^2}$$

(6)

where C is the apparent heat capacity (mJ/K); L is sample thickness (nm); m is sample mass (mg); d is sample diameter (nm); P is the modulation period (s) [28,43].

3ω is another transient technique similar to the hot wire method, but it works in a specific frequency domain. 3ω method is used to measure κ of liquids, thin films (>100 nm), and nanowires. During the measurement of κ, an AC current with frequency ω is passed through the wire, which acts as a heater and thermometer, and the response is measured as temperature oscillation indirect determined from the 3ω voltage. Because the current is driven at frequency ω and the resistance changes at frequency 2ω, a voltage results at 3ω. Compared to other methods, 3ω requires shorter equilibration times and minimizes radiation losses [44].

3. Theoretical aspects of thermal conductivity in polymer composites

3.1 Mechanism of thermal transport through polymer composites

A common approach to enhance κ_p is through the fabrication of a composite with thermally conductive fillers that have much higher κ compared to the polymer matrix. The most critical factors that dictate κ are the intrinsic polymer conductivity (κ_p), the filler conductivity (κ_f), the filler volume fraction (ϕ_f), the filler size and shape, the distribution and dispersion of the filler into the matrix, and the strength of the filler-matrix interface. Composites containing fillers with a high aspect ratio (a) generally have low percolation threshold and therefore yield higher κ_c compared to fillers with lower a at the same ϕ [13,45]. Traditionally, higher filler loading (>30 vol.%) is necessary to obtain high κ_c. Moreover, fillers with platelet shape are more effective than spherical or cylindrical fillers as the plate-like structure reduces the thermal contact resistance by overlapping large contact area and permitting much closer contact between adjacent platelets. The interfacial thermal contact resistance can also be reduced by decreasing the interface (edge) and increasing the size of the conductive particles or the number of clusters [46]. In addition to the intrinsic filler properties, κ_c also depends on other factors such as the filler loading, shape and size, and the filler-matrix interfacial adhesion. In General, κ_c has a nonlinear dependence on the filler loading and higher filler loading is required to achieve filler-to-filler connections necessary to improve κ_c [47]. Moreover, the filler shape also has a substantial effect on κ_c as fillers with low a yield lower κ_c compared to fillers with high a (fibers, tubes) at the same loading.

Based on their dimensionality, the thermally conductive fillers can be categorized into 0D, 1D, 2D, and 3D fillers. Generally, 0D fillers are considered as point-like particles including sphere or cluster-like structure, (2) 1D fillers include nanofibers, rods, wires, etc. (3) 2D fillers are sheets or layer type structures, and (4) 3D fillers include 3D network-like fillers (Figure 6) [48,49]. For each filler type, the primary mechanism of κ_c is related to the formation of a conductive network in the PNC and the reduction of the filler-filler ITR. In general, 0D fillers require higher loading to obtain high κ_c compared to 1D and 2D fillers. Higher loadings do not only increase the composite cost but also increase the composite melt viscosity making the composite processability poor.

On the other hand, 1D and 2D fillers with high a can significantly improve κ_c as they generate
prolonged heat conductive pathways. Moreover, \(\kappa_c \) of composites with aligned 1D and 2D fillers is anisotropic with high value along the filler alignment direction. Examples of thermally conductive 1D fillers are carbon nanotubes, carbon fibers, Si₃N₄ nanowires, boron nitride nanotubes, silver nanowires, and copper nanowires [50–52]. 2D conductive fillers with high \(a \) such as thin platelets perform well when incorporated in the polymer matrix. Examples of conductive fillers with plate-like morphology are boron nitride, graphene, Al₂O₃, TiB₂, and SiC [53].

Composites made with 3D-layered fillers such as hBN and graphite exhibits anisotropic \(\kappa_c \) with high value in the in-plane direction compared to the orthogonal direction. 3D network-like fillers can overcome the drawbacks of filler agglomeration and reduces ITR of the matrix-filler and filler-filler and thus provide a more stable 3D thermal transport network that significantly enhances \(\kappa_c \) [10]. The spatial confining forced network assembly (SCFNA) technique was adopted to composites containing 3D network structure that high \(\kappa_c \) as shown in Figure 7 [54–56].

Furthermore, the filler size greatly influences \(\kappa_c \) as small size fillers result in larger interfacial area and more pronounced phonon scattering. In contrast, large fillers are more effective in creating a percolated network, which reduces the thermal interfacial resistance. Nonetheless, some reports claim \(\kappa_c \) is independent of the particle size as nano-size fillers resulted in similar \(\kappa_c \) enhancement as microsize fillers [58]. Also, the dependence of \(\kappa_c \) on network formation by conductive fillers is well established regardless of the filler size and thermal resistance between the filler and the matrix [39,58–60]. Furthermore, \(\kappa_c \) can also be improved by other techniques such as using hybrid fillers with different sizes, shapes, and types as well as surface treatment of the filler [61–63]. Moreover, the composite microstructure that develops during processing as dictated by the processing conditions and the ability/tendency of the filler to orientate, agglomerate, and form network also affects \(\kappa_c \). During processing, the filler particles can be oriented using externally applied fields and shear or extensional flow. Similarly, the formation of a filler network can be achieved by self-assembly of the filler particles in the polymer matrix, molding of the mixture of the filler and polymer powders, in situ polymerization or double percolation. Agglomeration of the filler is sometimes necessary to achieve high and isotropic \(\kappa_c \) [64–70]. Filler dispersion in the host matrix is significantly impacted by the processing method. \(\kappa_c \) for composites with the same filler loading can vary considerably based on the processing method following the order [71,72]:

![Figure 6](image_url) Figure 6. Modes of thermal transport in polymer composites systems incorporated with different filler dimensions (a) 0D fillers, (b) 1D fillers, (c) 2D fillers, (d) 3D fillers [54].

![Figure 7](image_url) Figure 7. Schematics of self-assembled and forced assembled thermal conductive networks prepared by traditional compounding and spatial confining forced network assembly methods. ‘Reprinted from Ref [57]. Copyright (2018), with permission from Elsevier’.
3.2 Modeling of thermal conductivity of polymer composites

Modeling provides a powerful tool to predict the effect of different factors on \(\kappa_c \). Therefore, both theoretical modeling and molecular simulations can be used to guide the design of composite materials. Theoretical modeling, both classical and novel model for composite materials, describes the heat transfer mechanism in composites. Molecular simulations methods describe the characteristics of the microstructure at different length scales and provide information on the interface resistance and \(\kappa_c \) of bulk composites at different length scales. Modeling of pure polymers is relatively straightforward compared to modeling composite systems due to the evolution of complex morphology during the composite processing, i.e., poor dispersion of fillers, network formation, and interfacial resistance. Numerical models used to predict \(\kappa_c \) are qualitative or semi-quantitative. In the next section, we briefly discuss this theoretical modeling of \(\kappa_c \), and we refer the reader to general review on modeling \(\kappa_c \) of PCs [8].

3.2.1 Theoretical and numerical modeling

As mentioned earlier, theoretical models that predict \(\kappa_c \) are either based on classical theoretical models that lead to the effective medium approximation (EMA) or micromechanics (MM) method. Before discussing EMA, two main simple approaches are adopted as a first approximation to predict \(\kappa_c \), i.e., upper bound (parallel model, linear mixing rule) and the lower bound (series model, inverse mixing rule). In the basic parallel model, the overall conductivity is independent of each phase, i.e., the filler and matrix, and the heat flux is the weighted sum of the heat flux through the domain of each phase while the temperature gradient is uniform. The parallel model also assumes the particles are in complete contact, forming a percolating network. According to the parallel model, \(\kappa_c \) is a function of \(\kappa_p, \kappa_f, \phi_p, \) and \(\phi_f \) as follows:

\[
\kappa_c = \kappa_p \phi_p + \kappa_m \phi_m
\]

(7)

where the subscripts c, p, and m refer to the composite, the polymer, and the filler, respectively. On the contrary, the basic series model assumes that the temperature gradient is the weighted sum of the temperature gradient through the domain of each phase, and the heat flux is uniform across all phases. It also assumes the filler particles are entirely out of contact with each other, and it is not possible to reach percolation. According to the series model, \(\kappa_c \) is calculated as follows [13,73]:

\[
\kappa_c = \frac{1}{(\kappa_p + \Phi_p) + (\kappa_m + \Phi_m)}
\]

(8)

Between these two models, the inverse mixing rule (series model) is more common, and its prediction provides a better description of the experimental data. The series model has also served as the basis of many models built on complex weighted averages of \(\kappa_{c}, \kappa_{p}, \phi_{p}, \) and \(\phi_{m} \). These complex models frequently consider semi-theoretical fitting parameters and depend on EMA or effective medium theories (EMT). Based on the EMA approach, many standard models were proposed, such as the Maxwell model, Maxwell–Grant model, Bruggeman–Hanai model, Bruggeman–Landauer model, Hasselman–Johnson model, Rayleigh models, Frick’s model, Nan’s model, Lewis–Nielsen model, Percolation model, and Every model [74,75]. Maxwell model considers spherical non-interacting particles embedded in a continuous matrix where effective \(\kappa \) of the composite \(\kappa_{eff} \) is given by:

\[
\kappa_{eff} = \kappa_m \left[1 + \frac{3\Phi_f}{\frac{\kappa_f + 2\kappa_m}{\kappa_f - \kappa_m} - \Phi_f} \right]
\]

(9)

The validity of Maxwell’s model was limited to filler volume fraction \(< 25 \% \) which has led the development of other modifications for particle shape and different phases of filler particles [76,77]. Similarly, Rayleigh introduced another model based on the consideration of thermal interaction between particles. This model considers the fillers as cubically arranged spherical shape inclusions in the matrix and can be used for higher volume fractions of filler. According to the Rayleigh model, \(\kappa_{eff} \) can be calculated as [78]:

\[
\kappa_{eff} = \kappa_m \left[1 + \frac{3\Phi_f}{\frac{\kappa_f + 2\kappa_m}{\kappa_f - \kappa_m} - \Phi_f} + 1.569 \frac{\kappa_f}{\kappa_m} \Phi_f^2 + \ldots \right]
\]

(10)

Using Maxwell and Rayleigh models, the Hasselman–Johnson novelty model considered the fillers volume fraction, interfacial gaps/thermal resistance, and particle size to develop the \(\kappa_{eff} \) formula. According to
Hasselman–Johnson model equation of κ_{eff} for spherical, cylindrical, and flat plate geometry are given as:

\[
\kappa_{\text{eff}} = \kappa_m \left(\frac{2 \left(\frac{\nu_j}{\kappa_m} - \frac{\nu_j}{nh_m} \right) \Phi_f + \left(\frac{\nu_j}{\kappa_m} + \frac{2 \nu_j}{nh_m} \right)}{\left(1 - \frac{\nu_j}{\kappa_m} - \frac{\nu_j}{nh_m} \right) \Phi_f + \left(\frac{\nu_j}{\kappa_m} + \frac{2 \nu_j}{nh_m} \right)} \right)
\]

Spherical \hspace{1cm} (11)

\[
\kappa_{\text{eff}} = \kappa_m \left[1 - \frac{k_f}{\left(1 - \frac{\nu_j}{\kappa_m} + \frac{2 \nu_j}{nh_m} \right) \Phi_f + \left(\frac{\nu_j}{\kappa_m} + \frac{2 \nu_j}{nh_m} \right)} \right]
\]

Cylindrical \hspace{1cm} (12)

\[
\kappa_{\text{eff}} = \frac{k_f}{\left(1 - \frac{\nu_j}{\kappa_m} + \frac{2 \nu_j}{nh_m} \right) \Phi_f + \left(\frac{\nu_j}{\kappa_m} + \frac{2 \nu_j}{nh_m} \right)}
\]

Flat plate \hspace{1cm} (13)

where a and h_c represent the particle radius and the boundary conductivity, respectively [79,80]. Furthermore, Bruggeman used differential equations to calculate infinitesimal changes in the incrementally constructed composite system. This approach is usually called differential effective medium theory/scheme (DEM) and can be used for different systems and high filler volume fractions, Φ_f. Using Bruggeman approach, many researchers obtained κ_{eff} for different systems given as:

\[
(1 - \Phi_f)^3 = \left(\frac{\kappa_m}{\kappa_{\text{eff}}} \right)^{\frac{1}{1 - \alpha}} \left[\frac{\kappa_{\text{eff}} - \kappa_f (1 - \alpha)}{\kappa_m - \kappa_f (1 - \alpha)} \right] \quad \text{Particulate} \hspace{1cm} (14)
\]

\[
\kappa_f = \frac{1}{(1 - \Phi)^{(1 - \alpha)/(1 + 2 \alpha)}}
\]

ZnS – Diamond \hspace{1cm} (15)

\[
(1 - \Phi_f) = \left(\frac{\kappa_m}{\kappa_{\text{eff}}} \right)^{\frac{1}{2}} \frac{\kappa_{\text{eff}} R_{\text{eff}, \text{int}}}{\kappa_m R_{\text{int}}} \quad \text{Composite} \hspace{1cm} (16)
\]

where α is a dimensionless parameter depends on ITR (R_{int}) between filler and matrix and $\alpha = a_k/a_p$, where a is particle size, a_k is Kapitza radius, $a_p = R_{\text{int}}k_m$ [81,82]. Lewis–Nielsen model was another simple and popular model reported in the literature for moderate Φ_f (<40%). The benefits of this model were its applicability for a broad range of particle shapes and arrangements. The κ_{eff} of a composite according to this model is given as

\[
\kappa_{\text{eff}} = \frac{1 + AB\Phi_f}{1 - B\psi\Phi_f}
\]

(17)

\[
B = \left(\frac{\nu_j}{\kappa_m} - 1 \right) \left(\frac{\nu_j}{\kappa_m} + A \right)
\]

(18)

where ψ is the maximum filler volume fraction and shape coefficient for the filler particles, respectively [39,75,83,84].

Micromechanics models are useful for the rapid evaluation of κ_{eff} based on the composition and properties of the filler and the polymer. Still, their applicability is often limited to specific composite systems like homogenous matrices with monodisperse spherical or perfectly aligned ellipsoidal fillers. The primary micromechanics methods use variational principle (VP) and the mean-field approximation (MFA) to calculate κ_{eff}. The VP includes Hashin–Shtrikman bounding while MFA includes Mori–Tanaka model and Benveniste’s model. Hashin–Shtrikman bounds provide the tightest possible range of variation for the property under study, knowing only volume fraction and macroscopic anisotropy. Hashin–Shtrikman bounds have been improved and modified by many authors [85,86]. The Mori–Tanaka model evaluates the κ_{eff} in an isotropic matrix containing inhomogeneities distributive in the matrix under the condition that the temperature gradient and heat flux are uniform on the boundary [87,88]. Using MM analysis, Benveniste obtained expressions for composites with ITR, which evaluates the κ_{eff} for multiphase systems by determining the average flux in each constituent [75,89].

The classical theoretical models were modified to develop novel models to analyze further the factors affecting κ_{eff}. For instance, to consider particles of complex shape, Shahil and Balandin [90] modified Nan’s model by treating the layer as a multilayer graphene of different thicknesses. Accordingly, κ_{eff} is given by:

\[
\kappa_{\text{eff}} = \frac{3\kappa_m - 2f (\kappa_p - \kappa_m)}{(3 - f)\kappa_p + \kappa_m f + \frac{\kappa_p \kappa_m f}{nh_m}}
\]

(20)

where n is the number of layers in the multilayer graphene. Similarly, to consider the folded and wrinkled nature of particles, Chu et al. [91] introduced the flatness ratio (F) for such particles. The κ_{eff} of the composites on account of Nan’s model is given by:

\[
\frac{3 + \frac{2Fr^2}{\kappa_m}}{(3 - Fr)} \quad \text{Yu et al.} \hspace{1cm} (21)
\]

\[
\kappa_{\text{eff}} = \frac{S}{(1 - f)^{\frac{1 - 2n^2}{\gamma_r} + 13.4k/h}}
\]

(22)

κ_{eff} of composites based on Every’s model is given by:

\[
\frac{\kappa_{\text{eff}}}{\kappa_m} = \frac{S}{(1 - f)^{\frac{1 - 2n^2}{\gamma_r} + 13.4k/h}}
\]
Xu et al. [93] accounted for the effect of microstructures on \(\kappa_{eff} \) by modifying the Maxwell–Garnett model using a linear combination of the mesoscale control volume. They considered the particle connection mechanism by adding the resistance between the continuous phase of particles (Figure 8) [8,93]. Based on the modified Maxwell–Garnett model, \(\kappa_{eff} \) can be calculated from the relation

\[
\frac{\kappa_{eff} - \kappa_m}{2\kappa_{eff}} + \frac{\kappa_{eff} - \kappa_{p,c}}{2\kappa_{eff} + \kappa_{p,c}} = 0
\]

(23)

To study the effect of volume fraction on \(\kappa_{eff} \), the percolation model was modified to include the impact of the percolation phenomenon [94]. Therefore, \(\kappa_{eff} \) of the composite is given by:

\[
\frac{\kappa_{eff}}{\kappa_m} = \frac{2}{3}[f - f_c(p)]^a + 1
\]

(24)

where \(f_c(p) \) is approximately equal to \(1/p \) and \(a \) is a fitting parameter.

All the theoretical models investigated above are appropriate for composite containing single filler only. However, incorporation of second or third filler usually gives a synergistic effect on the \(\kappa_c \). Hence, Agrawal and Satapathy [95] modeled the heat transfer mechanism in polymer composites containing multi-filler and the correlation calculating \(\kappa_{eff} \) in terms of the volume fractions of individual filler \(\phi_i \) and their respective \(\kappa_i \) as well as \(\kappa_p \) given by equation [95]:

\[
\frac{2}{\kappa_{eff}} = \sum_i \left(\frac{1}{\kappa_p} - \frac{1}{\kappa_{p,c}} \frac{(12\phi_i)}{\pi} + \frac{2}{\kappa_p (\frac{2\pi}{\phi})} \frac{(\phi_i)\kappa_i}{\pi (\kappa_i - \kappa_p)} \right)
\]

(25)

Zhou et al. [96] modified the basic and straightforward model given in Equation 7 and calculated the \(\kappa_{eff} \) of composites incorporated with high loadings, which is calculated using:

\[
\kappa_{eff} = \frac{\rho_s}{\kappa_s} + \kappa_p \frac{\rho(1-f)}{\rho_f}
\]

(26)

where \(\rho \) is the composite density, \(\rho_o \) is the density of oriented filler, and \(\rho_f \) is the density of random filler, which could be measured from completely random samples and \(f \) the Lotgering factors (orientation factor) which was calculated from x-ray diffraction analysis [96].

3.2.2 Simulation of thermal conductivity in polymer composites

Predicting the composite conductivity using molecular simulation is attractive because of many reasons, such as these methods deeply analyze the \(\kappa \) and its correlations by considering realistic composite morphology and possible interfacial resistance. However, these methods are time and power-consuming and are frequently used as complementary tools to verify and test predictions and results of constitutive models [13,75]. Simulations methods are used to develop the model for interface resistance and bulk composites at different length scales, as shown in Figure 9.

Thermal conductivities of bulk composites were also simulated at different length scales. Table 2 summarizes the simulation models based on their length scale.

From the microscopic point of view, Tian et al. [97] used the non-equilibrium molecular dynamics (NEMD) simulation method. They described the impacts of different factors, such as particle orientation and arrangement, interface mismatch, interface density, and particle polydispersity. At the mesoscale level, the Lattice Boltzmann method was used by Zhou and Cheng to calculate \(\kappa_c \) in two stages; the composite microstructure is first constructed using MC simulation followed by simulating the heat transport through the microstructure using LBM simulation [98]. Aligned fillers embedded in the polymer matrix found to be an effective way to improve \(\kappa_c \) significantly. Using MD approach, Liu et al. studied the \(\kappa \) and the impacts of filler volume fraction for aligned CNT-PE-PNC.

Furthermore, using EMA model, ITR was also calculated under the different conditions of the volume fraction of CNTs and interface defects. The results showed that \(\kappa_c \) was better along the direction of CNTs; with increased volume fractions, \(\kappa_c \) reduced with increased ITR as about −1 the power index [99]. In another work, the morphological and phonon characteristics of weaved PE and PNC of weaved PE-carbon nanotubes junctions (CNTJ) were analyzed using MD simulation. The Maxwell–Eucken model was also employed to predict the variation in the \(\kappa_c \).

![Figure 8](image_url) The schematic illustration of the connection mechanism of particles; the real particle contact on the left and the equivalent particles contact on the right. ‘Reprinted from Ref [8]. Copyright (2018), with permission from Elsevier’.
with filler content. The MD results confirmed that the \(\kappa_c \) is 5.3-fold that of woven PE, the while Maxwell–Eucken model showed that the intrinsic \(\kappa_p \) plays a pivotal role in the \(\kappa_c \) under low filler loadings [100].

Moreover, \(\kappa \) of PNC composed of cross-linked PE chains and functionalized single and double wall CNTs was calculated using reverse NEMD simulations. The simulations showed that with an increased weight percentage of the functional groups on CNTs walls, \(\kappa_c \) of PNC was found to decrease. It was also observed that \(\kappa_c \) was comparatively less sensitive to the increasing number of nanotube walls than the weight percentage of functional groups [101].

The ITR between polymer and filler can be treated as the temperature gap, and it dramatically influences the composite overall \(\kappa \) [102]. At the mesoscale level, using MD simulation, Bui et al. determined the ITR through phonon transmission probability using off-lattice Monte Carlo (MC) simulation and acoustic mismatch model. Similarly, Mortazavi and co-workers calculated the ITR of composites with different particles of different shapes using the macro-three-dimensional finite element method, and their results revealed that the ITR for nonspherical particles is less than that of spherical particles [103,104]. To discover the impact of orientation and dispersion evolution of CNTs \(\kappa_c \), Wang et al. [105] used dissipative particle dynamics (DPD) simulations under extensional shear coupled flow conditions. Furthermore, Sun et al. [106] studied the impact of the orientation of 2D filler such as h-BN on \(\kappa_{C2D} \) of the polymer composites using FM modeling. The effect of \(\kappa_{C2D} \) on \(\kappa_c \), the filler size, aspect ratio, and orientation, and the ITR on \(\kappa_c \) was also studied. It was found that with increased filler loading, \(\kappa_c \) increased as a power function; \(\kappa_c \) increased almost proportionally with increasing \(\kappa_{ITR} \); \(\kappa_c \) decreased with ITR in a negative power function form. \(\kappa_c \) did not exhibit any change with \(\kappa_{ITR} \) when the in-plane \(\kappa_{ITR} \) was higher than 100 W/m-K and out-of-plane \(\kappa_{ITR} \) was higher than 2 W/m-K and did not change with filler size with the same aspect ratio. However, with increased filler aspect ratio, in-plane \(\kappa_c \) was increased, while out-of-plane \(\kappa_c \) was found to be decreased.

Among the macroscale models, Li et al. [107] developed a 3D computational model using a FE method to simulate the thermal behavior of randomly distributed single-walled carbon nanotube (SWCNT)/epoxy and SWCNT/polyolefin composites. They separately treated the phonons into three categories, i.e., phonons in SWCNT, matrix, and interface. They also treated the contact resistance between SWCNT as a thin matrix layer, as can be seen in Figure 10. They concluded that SWCNTs with larger diameter leads to higher \(\kappa_c \).

Multiscale models use different time and length scales via a combination of various methods to predict the \(\kappa_c \). In one of the reports, the authors calculated the ITR using a microscale model and predicted \(\kappa_c \) was using a mesoscale model. Moreover, the multiscale model predicted that graphene is more efficient in enhancing \(\kappa_c \) compared to CNT because of the smaller Kapitza resistance and geometry of graphene [108]. In another simulation study, a multiscale method comprised of NEMD, pump-probe technique (PPT), and finite element (FE) method was used to study the impact of different 2D nano-sized fillers (graphene, C\(_3\)N, and C\(_6\)N) on \(\kappa_c \) of PE-based PNC. In this method, first, NEMD simulations were used to evaluate the \(\kappa \) of amorphous PE at the atomic scale, followed by the use of PPT to determine

Figure 9. Time scale versus length scale of different simulation methods. ‘Reprinted from Ref [8]. Copyright (2018), with permission from Elsevier’.

Table 2. Simulation models of thermal conductivity in bulk composites [8].

Length scale	Simulation method
Microscopic	Equilibrium molecular dynamics
	Non-equilibrium molecular dynamics
	Reverse nonequilibrium molecular dynamics
Mesoscale	Dissipative particle dynamics
	Lattice Boltzmann method
	Off-lattice Monte Carlo (MC)
Macroscopic	Finite element method
	Finite difference method
	Free Galerkin method
Multiscale	Combination of methods
the interfacial thermal conductance (ITC) between filler and PE. Finally, using the results from MD simulations, FE-based 3D models of PNC were constructed to evaluate the κ_{eff} at the microscale. The modeling results revealed that intrinsic κ_f was the dominant factor in defining the κ_{eff} of PNC, where the PNC containing graphene exhibited comparatively highest κ_{eff} in comparison with other fillers. However, ITC between all 2D fillers and PE plays a relatively less significant part in the heat transfer in PNC.

Furthermore, κ_{eff} of PNC was found to decline with decreasing the aspect ratio of fillers at constant volume fractions (1.0%) [109]. Similarly, the effect of CNT functionalization on κ_{c} of PE-based PNC was studied using a multiscale approach composed of large-scale MD, FEM simulations, and effective media modeling. By considering all the studies, the functionalization of CNTs causes a negative effect on the thermal transport in PNC containing randomly distributed CNTs due to the overwhelming effect of loss of intrinsic κ_f and size of the thermal coupling zone [110].

4. Thermal conductivity of polyolefin composites

4.1 Carbon-based thermally enhanced polymer composites

Graphite-based materials belong to that class of conductive material, which have very high intrinsic κ with a relatively lightweight. Materials like graphite, exfoliated graphite, graphite nanoplatelets, carbon nanotubes, carbon fiber, conductive carbon black, and graphene have been extensively studied as conductive fillers to improve κ_c [111]. Graphite and graphite-based fillers feature exceptional excellent properties such as extremely high strength and stiffness, high κ and abundant availability, and low cost (in some cases). These fillers have been incorporated into different polyolefin polymer to enhance their κ. Herein, we analyze the processing of polyolefin/graphite and graphite-based composites and their κ_c.

4.1.1 Graphite

Graphite is a naturally abundant layered carbon material. It consists of layers of carbons atoms hexagonally bound to each other by covalent bonds with an interatomic separation of 0.142 nm and an interlayer separation of 0.335 nm [112]. Graphite can be converted into different forms, such as expanded graphite (EG), graphite nanoparticle/exfoliated graphite (GNP), and graphite flakes (GF) to facilitate dispersion into the polymer matrix. EG is commonly synthesized using graphite intercalated compounds (GICs) exposed to sudden temperature increase for a short period. The sudden thermal shock of GICs results in light and worm-like structure whose thickness may vary from 100 to 400 nm. To produce GNP, EG can be further exfoliated using ultrasonication. GNP consists of small
stacks of graphite layers that are 1 to 15 nanometers thick, with diameters ranging from sub-micron to 100 μm [99]. However, the production of GNP is a costly, time-consuming, and not environmentally friendly process.

A very high \(\kappa_c \) of 12.4 W/m·K was reported for melt blended PP/EG composite containing 80 wt. % EG [113]. Wu et al. fabricated low-temperature expandable graphite (LTEG)/low-density polyethylene (LDPE) composites with high \(\kappa_c \) via in situ expansion melt blending process followed by solid-state shear milling (S3M) for 20 cycles to produce GNP/LDPE composites (Figure 11) [114]. It can be seen in Figure 11 that milled composites exhibited lower \(\kappa_c \) (5.1 W/m·K) compared to unmilled composite (7.02 W/m·K) at all filler loadings. This behavior was attributed to the difference in the formation mechanism of thermal conducting paths related to graphite filler having different morphologies and internal. Compared to GNP, the macro-sized graphite formed a network throughout the polymer matrix due to partial aggregates of expanded graphite which lacking in case of treated samples [114]. In a similar report, LDPE/LTEG composite with high \(\kappa_c \) of 11.28 W/m·K at 60 wt.% was processed by in situ expansion melt blending process. The very high \(\kappa_c \) is attributed to the aggregation of graphite particles within the matrix and facilitates the improvement of \(\kappa_c \) [115].

The development of an efficient connection between the particles of highly conductive fillers to reduce filler-filler thermal resistance plays a vital role in designing an efficient composite system. Gu et al. used ball milling to fabricate GNP/UHMWPE PNC followed by hot-pressing. The PNC exhibited segregated structures with GNP concentrated at the interface with UHMWPE after hot pressing, as shown in Figure 12. The fabricated PNC exhibited a high \(\kappa_c \) of 4.6 W/m·K at 40 wt.% owing to the formation of multidimensional thermally conductive networks between GNP [116].

Using GNP of different \(a \), i.e., <100 and 1500 and different diameters (<1 μm and 15 μm), Kalaitzidou et al. [46] prepared PP composites using melt blending. At 10 vol.% GNP loading, \(\kappa_c \) was higher using high \(a \), indicating reduction in the thermal contact resistance because of the large lateral dimension. Kim et al. [117]...
studied the use of silica-coated graphite and silica-graphite hybrid fillers to improve κ_c of HDPE composite. They proposed a scheme of phonon conduction paths and filler-filler interfacial resistance embedded in the polymer matrix, as shown in Figure 13. An optimal filler size is essential for improving κ_c. Large particle size provides longer paths for the phonon conduction, but less coverage compared to a smaller size, whereas small size fillers have large interfacial area causing phonon scattering. Furthermore, composites using coated fillers were found to have superior κ_c compared to composites using uncoated graphite particle fillers. Table 3 summarizes the enhancement of κ of PE and PP using graphite-based materials.

4.1.2 Carbon nanotube

Carbon nanotubes (CNTs) are long cylindrical molecules consisting of hexagonal arrangement of sp2 hybridized carbon atoms, analogous to rolling up single or multiple sheets of graphene, i.e., single-walled carbon nanotubes (SWCNTs) or multiwalled carbon nanotubes (MWCNTs). The reported κ of about 3000 W/m·K and above 2000 W/m·K for MWCNTs and SWCNTs, respectively. The high κ and a of carbon nanotube (CNT) make it a good filler for the fabrication of thermally conductive PNC. Similar to other conductive fillers, the thermal conduction in CNTs also takes place via phonon conduction mechanism. κ of CNTs depends on several factors such as atomic arrangement (chirality), the tube diameter and length, the number of structural defects, as well as on the presence of impurities [12].

Molecular dynamics study on aligned PNC of CNT/PE indicated a very high κ_c could be achieved [119]. In another study, PNC of SWCNT with LDPE and HDPE was prepared by optimizing the crystallinity of polyethylene, crystalline alignment in the matrix, and aligned SWNT to improve κ_c. The PNC prepared from isotropic PE with \sim78% crystalline phase showed higher κ_c of \sim3.5 W/m·K at φ \sim0.2 twice than that of PE with \sim33% crystalline phase. This behavior can be attributed to reduced ITR resulted due to the large number of crystalline bridges between the nanotubes and the crystalline phase. Similarly, fibers were also produced from these PNC with low loadings, which resulted in materials with higher κ along the alignment direction [120]. The a, i.e., length to diameter ratio, is an important parameter that directly affects κ_c. Evgin et al. investigated HDPE/CNTs nanocomposite using different a in the range of 200 to 3000. Compared to HDPE, at 10 vol.%, κ_c enhancement reached 63% (0.63 W/m·K) and 97% (0.76 W/m·K) for the nanocomposite with low and high a of CNT, respectively. This more significant enhancement for the high a CNT was attributed to the creation of a percolated network and enabling the travel of phonons over a longer distance without transitions from particle to particle [121]. Table 4 summarizes the enhancement κ in of PE and PP using CNTs-based material.

4.1.3 Graphene

Graphene sheets are one-atom-thick 2D layers of hexagonally ordered of sp2-bonded carbon. It exhibits

![Figure 13. Electron-blocking effect and interfacial thermal resistance (ITR) in the composites in terms of filler types: (a) raw, (b) hybrid, and coated fillers with size of (c) 12, (d) 23, (e) 100 µm. ‘Reprinted from Ref [117]. Copyright (2018), with permission from Elsevier.’](image-url)
Table 3. Thermal conductivities of polyolefin/graphite-based composites. AR stands for aspect ratio.

No	Matrix	Filler	Loading (%)	\(\kappa_c\) max (W/m·K)	Max. \(\kappa_c\) enhancement (%)	Processing technique	Year [Ref.]
1	PP	Exfoliated graphite nanoflakes (AR <100 and ~1500)	3–25 vol.	1.2	~413 (AR<100)	Melt blending	2007 [46]
2	LDPE	Low-temperature expandable graphite (LTEG)	5.0–50 wt.	7.02	~1400	Melt blending followed by Solid-state shear milling	2013 [114]
3	LDPE	Low-temperature expandable graphite (LTEG)	5.0–60 wt.	11.28	~2400	Melt blending	2013 [115]
4	UHMWPE	GNP	0–21.4 vol.	4.62	900	Powdered ball milling	2015 [116]
5	Recycled HDPE	Graphite flakes	1–20 wt.	1.31	~250	Rotor milling	2016 [118]
6	HDPE	silica-coated graphite	0–30 vol.	1.5	~440	Chemical modification and melt blending	2018 [117]
7	PP	EG	10–80 wt.	12.4	~5400	Melt blending	2019 [113]

Table 4. Thermal conductivities of polyolefin/CNTs nanocomposites.

No	Matrix	Filler	Loading (%)	\(\kappa_c\) max (W/m·K)	Max. \(\kappa_c\) enhancement (%)	Processing technique	Year [Ref.]
1	LDPE	SWCNT	30 wt.	1.8	~700	hot-coagulation and fiber spinning	2007 [120]
2	HDPE	SWCNT	30 wt.	3.5	~700	hot-coagulation and fiber spinning	2007 [120]
3	PP	SWCNT	16 wt.	0.55	300	Melt blending	2014 [122]
4	HDPE	MWCNT	10 vol.	0.75	~200	Melt blending	2016 [121]
5	PP	Functionalized MWCNT	5 vol.	0.20	200	Melt blending	2016 [123]

a very high \(\kappa_c\) of up to ~5000 W/m·K due to the covalent sp² bonding between the carbon atoms. The Discovery of graphene has opened the gateway for novel functional polymer PNC with many superior properties compared to property increments usually achieved from other conventional fillers [124]. Graphene has a higher surface-to-volume ratio compared to carbon nanotubes (CNTs) as the inner surface of the nanotubes is not accessible to the polymer chains and lower cost making graphene more favorable than CNTs [125]. However, graphene exhibits anisotropic \(\kappa_c\) and shows extremely low through-plane \(\kappa_c\) due to weak van der Waals coupling [126]. Using molecular modeling Xie et al. confirmed that graphene nanosheets are more effective in \(\kappa_c\) enhancement of PNC than CNTs [127]. Recent studies showed that small interfacial thermal conductance (ITC) could play a crucial role in phonon transport across the filler and the matrix phases. It was reported that exceptionally low ITC ~12 MW/m²·K and 30 MW/m²·K in another case restricts the heat transport to a great extent in composite incorporated with highly conductive fillers [128,129]. Chemical functionalization of graphene is an effective route to decrease the interfacial resistance. However, other studies demonstrated that a lower grafting density could lead to a decrease in \(\kappa_c\). In contrast, with increasing grafting density, \(\kappa_c\) reduction becomes slower and levels out at 80% enhancement. This behavior originates from the softening of high- and weaken the in-plane energy transfer. Wang et al. simulation study indicated that functionalization lowers \(\kappa_c\). However, a critical filler length was found, beyond which functionalization fails to enhance the overall \(\kappa_c\) [130]. Khanam et al. studied the effect of GNP diameter on \(\kappa_c\) and attributed the higher \(\kappa_c\) at larger GNP diameter to agglomeration; it contributed to the formation of conductive pathways, while lower surface area reduced the scattering of phonons at interfacial defects [131]. Saeidjavash et al. [25] reported an increase of 60% in \(\kappa_c\) of the aligned PE-GNP composite using 10 wt.% GNP relative to oriented pure PE using mechanical strain. Table 5 summarizes the enhancement of \(\kappa_c\) in PE and PP using graphene-based materials.

4.2 Metallic fillers

The incorporation of metallic particles into the polymer matrix improves both \(\kappa_c\) and the composite electrical conductivity and reduces the dielectric breakdown voltage but increases the density significantly due to higher metal loadings. Micro- and nano-size particles of aluminum, silver, copper, zinc, bronze, and nickel used for \(\kappa_c\) improvement and the improvement of \(\kappa_c\) depends on the \(\kappa\) of the metallic fillers, the particle shape and size, the volume fraction, and spatial arrangement in the network.

Table 5. Thermal conductivities of polyolefin/graphene-based nanocomposites.

No	Matrix	Filler type	Filler loading (%)	\(\kappa_c\) max (W/m·K)	Max. \(\kappa_c\) enhancement (%)	Processing technique	Year [Ref.]
1	PE	Functionalized Graphene	10 vol.	2.75 with 5 μm filler	6700	Simulation	2014 [130]
2	LLDPE	GNP	10 wt.	0.5	~140	Melt blending	2016 [125]
3	LLDPE	GNP	10 wt.	0.7	~200	Melt blending	2016 [131]
4	PE	GNP	10 wt.	5.9	~1600	Melt blending and alignment	2017 [25]
polymer matrix [12,13]. Table 6 summarizes the enhancement of κ_c for PE and PP composites with metallic particles.

Neagu et al. studied the κ_c of HDPE composites containing powder of copper, iron, bronze, or zinc and prepared by roll milling. At filler concentrations above 16%, κ_c increased with the increase in the metal content due to the formation of agglomerates and conductive chains [132]. Molefi et al. compared the effect of particle size on κ_c of the micro- and nano-sized HDPE/Cu composites but found no difference κ_c for composites containing 5 vol. % nano- or micro-size copper. However, at 25 vol. % only micro-composite were prepared, which exhibited a κ of 1.7 W/m·K [133].

Furthermore, Krupa et al. [138] reported a κ_c of 1.99 W/m·K for melt mixed HDPE and nickel micropowder composites, achieved at a very high loading of 30 vol.% filler. The electrical conductivity percolation concentration of the filler was 8 vol.%. On the contrary, using silver-rich copper-silver alloy nanoparticles at a very low loading of 5 wt. %, a κ_c of 1.28 W/m·K was achieved for melt mixed isotactic PP-based PNC. These results also indicate that it is not so simple to predict why one filler gives better κ_c than the other because many factors such as the filler shape, size, intrinsic κ_b affinity to the host matrix, dispersion, orientation, etc., must be taken into account while selecting filler to improve the κ_p [139].

4.3 Ceramics filler

Ceramic-reinforced polymers have gained more attention in recent years due to their high κ and electrically insulating nature. Due to the lack of free electrons required for heat conduction in ceramic materials, the heat transfer predominantly occurs through phonons. In some cases, the strong interatomic bonding and crystal structure of some of the ceramic fillers such as BN, SiC also reduce the phonon scattering. However, some fillers, such as AlN particles, easily hydrolyze. Generally, κ_c achieved using ceramic fillers depends on the filler packing density, particle size and size distribution, and surface treatment.

4.3.1 Boron nitride-based composites

Boron nitride (BN) is a compound of boron and nitrogen with good lubricant and abrasive properties, high κ, and electrically insulating nature. Different arrangements of boron and nitrogen atoms give rise to other structures, including i) amorphous BN (a-BN), which is similar to amorphous carbon and lacks a long-distance arrangement of the atoms; ii) hexagonal BN (h-BN), which is a layered structure analogous to graphite; iii) cubic BN (c-BN), which is similar to diamond; and iv) wurtzite BN (w-BN), which is analogous to lonsdaleite. The rings between ‘layers’ form a boat configuration, as can be seen in Figure 14. Among different forms of BN, h-BN has recently attracted substantial attention due to its good heat dissipation ability.

The rare combination of its electrically insulating nature and high κ_f makes h-BN a promising candidate to fabricate PNC as thermal management material compared to its graphite/graphene counterparts. The in-plane and through-plane thermal conductivities of h-BN are up to 400 W/m·K and approximately 3 W/m·K, respectively.

Table 6. Thermal conductivities of polyolefin/metal composites.

No	Matrix	Filler type	Loading (%)	κ_c max (W/m·K)	Max. κ_c increase (%)	Processing technique	Year [Ref.]
1.	HDPE	bronze	24 vol.	1.85	~370	Roll Milling	2001 [132]
2.	HDPE	aluminum	35 vol.	3.6	~670	Powder Mixing + compression	2003 [134]
3.	PP	Cu (different size)	42 vol.	2.34	~940	Melt Mixing	2005 [135]
4.	LDPE, LLDPE	Cu	24 vol.	0.76 (LLDPE)	~220		2006 [136]
5.	LMDPE	Al	40 wt.	1.04	~260		2009 [137]
6.	HDPE	Cu	25 vol.	1.7	~380		2009 [133]
7.	LLDPE	Cu	25 vol.	1.6	~358		2009 [133]
8.	LDPE	Cu	25 vol.	1.5	~335		2009 [133]
9.	HDPE	Nano-Cu	5 vol.	0.56	~125		2009 [133]
10.	LLDPE	Nano-Cu	5 vol.	0.53	~118		2009 [133]
11.	LDPE	Nano-Cu	5 vol.	0.52	~116		2009 [133]
12.	HDPE	Ni	30 vol.	1.99	~425		2013 [138]
13.	PP	CuAg alloy	5 wt.	1.28	~600		2020 [139]

Figure 14. Different structures of boron nitride. Reprinted from Refs [140,144].
Like graphene, exfoliation of h-BN also produces two-dimensional (2D) material comprising single-layer or few-layers stacked together through weak van der Waals force. h-BN can be exfoliated using chemical, thermal, micromechanical cleavage, and sonication assisted processes producing the 2D h-BN nanosheets (hBNNs) [143].

4.3.1.1 Hexagonal boron nitride. Recently, BN-based fillers, specifically h-BN, have been reported to enhance κ_c of PCs. To improve κ_c of h-BN-based PCs, different approaches have been adopting, such as the use of large filler concentration, coupling agents, filler functionalization, and force field and processing to improve the dispersion. Unfortunately, the required large filler concentration deteriorates the composite mechanical properties and processability. Furthermore, filler compatibilization via functionalization and use of coupling agents are time, energy, and solvent consuming, and often reduces the high filler κ_f leading to formation of inefficient composites [145]. Among the processing methods, melt processing is well developed, economical, and most widely applied method for thermoplastic polymers and their composites. However, in terms of quality of the filler dispersion, melt mixing ranks the lowest among other dispersion methods. Zhang et al. [146] introduced a novel technique based on melt processing called laminating-multiplying elements (LME) to improve the dispersion state of filler. As shown in Figure 15, melted polymers are divided and recombined using multistage stretching extrusion. In contrast, the flow behavior of the melt can be divided into three processes: dividing, stretching, and multiplying. κ_c of PE/h-BN with 30 wt.% filler was increased from 0.99 to 1.21 W/m·K after 8 LME cycles indicating the improved dispersion state of the filler.

Similarly, Yang et al. [147] reported a new method to fabricate thermally conductive composites at low filler concentration by creating a multilayer structure. The composite was fabricated by alternating HDPE/h-BN and LDPE layers, followed by an annealing procedure (Figure 16). The annealing method was used to promote the percolation and orientation of fillers the composite layer via unidirectional interdiffusion of polymer molecules across the interface. This diffusion phenomenon can be attributed to the diffusion of HDPE chains from the composite layer to the neat LDPE driven by a compositional gradient. The through-plane κ of the composite was found to be increased from 0.49 W/m·K to 1.37 W/m·K (C4III) at 5.97 vol.% with the optimum initial layer thickness (10 µm), filler loading (5.97 vol.%), and annealing time (2 h) [147]. The influence of h-BN particle size and polymer melt viscosity on κ was also studied. Large h-BN size is more effective in increasing κ_c of PP/h-BN composite due to the formation of a network structure of large h-BN at a lower loading than small h-BN. Furthermore, κ_c of PP/h-BN composite with high PP melt flow index (MFI) was slightly higher than that of PP with low MFI [142].

4.3.1.2 Hexagonal boron nitride nanosheets. High κ_c usually requires high filler concentration, which could result in the deterioration of other polymer properties.

![Figure 15. Schematics of (left) laminating-multiplying elements and (right) multistage stretching extrusion experimental system: 1-single screw extruder; 2-connector; 3-laminating-multiplying; 4-water cooling block; 5-sample. ‘Reprinted from Ref [146]. Copyright (2013), with permission from Elsevier’.](image)

![Figure 16. (a) Schematic representation of the processing procedure, (b) Thermal conductivity of annealed at 200°C, and unannealed samples for different thicknesses. ‘Reprinted from Ref [147]. Copyright (2018), with permission from Elsevier’.](image)
Therefore, improvement of \(\kappa_c \) at lower filler contents is always desired not only to avoid the negative impact of the high filler loading on other polymer properties but also to reduce the cost of the nanocomposite. Li et al. [148] fabricated nanocomposite of LDPE with hexagonal boron nitride nanosheets BNNs (<5 wt.%) and measured their \(\kappa_c \) as a function of temperature (20–80°C). \(\kappa_c \) of the composite containing 5 wt.% BNNs was increased by 22% at room temperature and 48% at 80°C relative to \(\kappa \) of LDPE. Figure 17 shows \(\kappa_c \) reduction versus temperature (20°C to 80°C) of PE-based composites highly filled with comparatively large-size filler. Compared to BNNS nanocomposite, a high rate of \(\kappa_c \) reduction was observed in composites containing large-size filler. The improved \(\kappa_c \) of LDPE/BNNs nanocomposite at high temperature was mainly attributed to the bridging effect between BNNs and LDPE spherulites. In situ SAXS studies revealed that at high-temperature, BNNs were preventing the LDPE lamellae structure from thermally expanding and maintaining lamellae number to a higher level in the composites resulting in more phonon pathways [148]. Also, compared to micro h-BN particles, nanopowder resulted in good mechanical properties along with \(\kappa_c \) values significantly lower than for micro-sized fillers [145]. Table 7 summarizes the reported enhancement in \(\kappa_c \) of polyolefin composites with hBN filler systems.

4.3.2 Other ceramic fillers

Other ceramic fillers based on metal oxides and metal carbides were also used to fabricate thermally enhanced polyolefin composites. Chi et al. [150] used external electric and magnetic fields to improve the distribution of Fe\(_3\)O\(_4\) in LDPE composites prepared and coated by solvothermal reaction (Figure 18). Compared with the Fe\(_3\)O\(_4\)/LDPE composites, the magnetically aligned Fe\(_3\)O\(_4\)/LDPE composites exhibited higher \(\kappa_c \) at 7.0 vol.% Fe\(_3\)O\(_4\) loading. SEM of the composites revealed that the Fe\(_3\)O\(_4\) nanoparticles were distributed in the LDPE matrix without agglomeration and any evidence of defects and voids in the composite.

Figure 17. (a) Reduction in thermal conductivities of polyethylene-based composites at different temperatures, (b) the schematic of the bridging effect between BNNS and spherulites. ‘Reprinted from Ref [148]. Copyright (2019), with permission from Elsevier’.

Figure 18. Schematic illustration of the preparation of the Fe\(_3\)O\(_4\)/LDPE and M-Fe\(_3\)O\(_4\)/LDPE composites ‘Reproduced from Ref [150]. Copyright (2019), with permission from Springer Nature’.
due to the solvothermal reaction process reducing the probability of Fe$_3$O$_4$ nanoparticles agglomeration. Morphology of the nanocomposite also showed that some Fe$_3$O$_4$ particles came in contact with each other and became short chains under the action of the magnetic field, resulting in the formation of efficient thermal pathways. It was found that the thermal enhancement of the magnetically aligned Fe$_3$O$_4$ /LDPE composites reaching 46.27% at 7.0 vol.% compared to unaligned Fe$_3$O$_4$/LDPE composites, which showed κ improvement of 21.9% [150].

The high filler loading (>40 wt.%) usually causes severe problems, such as low fluidity and poor processability of the composites. Many studies focused on improving the rheological properties of the composites by introducing selective localization of the fillers in continuous regions using immiscible polymer within the host matrix. Rheological analysis of HDPE composites prepared using alumina whisker with different ratios of HDPE/PA6 immiscible blends showed at a ratio of 40/60 HDPE/PA6, liquid to solid behavior change was not observed with filler loading up to 40 wt.%. SEM images of the composites revealed sea-island morphology for 60/40 and 50/50 HDPE/PA6 ratios. The highest κ was observed in the case of 50/50 HDPE/PA6 composites at 50 wt.% of filler because the higher effective filler concentration present in the PE phase compared to the other composites at the same filler concentration [151].

A similar approach to localization of nanocomposites at the interface was adopted using blends of PP/polyolefin elastomer and their composite with Al$_2$O$_3$. Zhang et al. [152] investigated the effect of the selective localization at the interface and the phase domain size on κ the PNC. The Al$_2$O$_3$ nanoparticles and PP nanocomposite were first prepared using a reactor granule technique followed by melt mixing with polyolefin elastomer (POE). The Al$_2$O$_3$ nanoparticles thermodynamically preferred the localization at the interface between PP and POE (Figure 19). However, their study also showed that direct melt mixing of nanoparticles with blend generated severe agglomeration, which hindered the migration to the interface. The selective localization of Al$_2$O$_3$ nanoparticles at the interface was creating thermal conductive networks along with the co-continuous structure and eventually giving high κ [152].

Surface modification of fillers can improve their dispersion in the host matrix resulting in improved κ. HDPE composites prepared using silicon carbide whiskers, unmodified or modified with cross-linked poly (vinyl alcohol), exhibited an increase in κ of 250% and 300% at 40 wt.% filler content, respectively. The higher κ enhancement is due to the formation of interconnection between the modified filler in the HDPE matrix (Figure 20) [153]. Table 8 summarizes the reported enhancement in κ of polyolefin composites with ceramic (others) filler systems.

4.4 Hybrid fillers

Hybrid fillers include a combination of fillers having a different shape, size, aspect ratio, and type to provide a synergistic effect and a balance in final composite properties. Hybrid systems usually provide a better thermally conductive network by forming bridges between fillers. A hybrid-filler system may also reduce the overall filler loading resulting in reduced composite viscosity. Fiber-reinforced PC exhibit excellent specific strength properties, e.g., strength/weight and/or stiffness/weight ratios. However, the anisotropic dependence of κ in fiber-reinforced plastic can cause difficult to dissipate heat. Using a hybrid of sisal/glass fiber, κ of the LDPE-hybrid fiber composites was higher than the individual sisal fiber-reinforced composite due to the isotropic nature of the glass fiber [158].

Similarly, a combination of BN particles with short alumina fibers also exhibited a higher κ of HDPE composites compared to when only BN particles were used. Zhou et al. [71] prepared composites of

![Figure 19. Schematic illustration of the morphology of PP/POE/Al$_2$O$_3$-RGT nanocomposites. The blue domains represent the PP phase, the yellow domains the POE phase, and the black circles Al$_2$O$_3$ nanoparticles. ‘Reprinted from Ref [152]. Copyright (2019), with permission from Elsevier’](image-url)
HDPE with a hybrid of BN/Al₂O₃ short fiber (15 mm diameter and 1–2 mm length) using powder mixing. The combination of BN particles and short alumina fibers at a mass ratio of 5:1 resulted in higher κ compared to using BN particles alone, as shown in Figure 21. The higher κ achieved with the hybrid filler is due to the efficient phonon transfer through the formation of random conductive leading to the abundance of conductive paths.

Zhu et al. prepared LDPE composite with hollow glass microspheres (HGM), BN, AlN particles for electronic packaging, and the optimal volume ratio of nitride particles to HGMs was 1:1. Figure 22 depicts the evolution of the microstructure of the composite incorporated with different amounts of hybrid fillers.

It can be seen that at a low volume ratio of nitride particles to HGMs, the conductive network of nitride particles could not form effectively. At a higher volume ratio, the filler cannot fully interface with the LDPE matrix; thus, the thermally conductive network also could not form effectively form. However, when both the total volume fraction and ratio were high enough, most of the adjacent nitride particles were in contact and developed thermally conductive pathways. The heat flow can bypass the HGMs, which have low κ, and composites showed high κ [159].

The ITR of the PC can also be improved by constructing micro-nano-architectonics of the interface. The micro-nano-architectonic of filler-polymer and filler–interface main depends upon many conditions.

Table 7. Thermal conductivities of polyolefin/hBN composites and nanocomposites.

No.	Matrix	Filler loading (%)	Filler type	κₑ max (W/m·K)	Max. κₑ enhancement (%)	Processing technique	Year of Ref.
1.	HDPE	30 wt.	h-BN	1.21	~300	Multistage stretching melt Blending	2013 [146]
2.	High & Low MFI-PP	30 vol.	h-BN (different particle size)	~1000	Melt Blending	2013 [142]	
3.	PP	33.7 wt.	Silane modified-BN	0.469	~240	Melt Blending	2015 [149]
4.	HDPE	5.97 vol.	h-BN sheets	1.37	~390	Melt blending and layer by layer assembly	2018 [147]
5.	HDPE	50 wt.	modified h-BN (nano, micro)	2.08 (micro h-BN)	~590	Roll milling	2017 [145]
6.	LDPE	5 wt.	BNNS	0.33	~123	LDPE Pulverizing & Melt mixing	2019 [148]

Table 8. Thermal conductivities of polyolefin/ceramic or (others) filler-based composites. PVA stands for poly (vinyl alcohol).

No.	Matrix	Filler loading (%)	Filler type	κₑ max (W/m·K)	κₑ Increase (%)	Processing technique	Year of Ref.
1.	HDPE	30 vol.	Al₂O₃	0.56	~230	Roll Milling	2011 [154]
2.	LLDPE	20 vol.	ZnO	1.56	~380	Melt Mixing	2013 [155]
3.	PP	20 vol.	Hollow glass beads	0.16	~80	Melt mixing	2014 [156]
4.	LDPE	1.7 vol.	Fe₃O₄	0.384	~118	Solvothermal reaction	2017 [150]
5.	HDPE/PA6	50 wt.	Al₂O₃ whisker	0.96	~266	Melt mixing	2018 [151]
6.	HDPE	40 wt.	SiC/PVA	1.69	~410	Melt mixing	2018 [153]
7.	PP	20 wt.	Al₂O₃	0.74	~350	Melt mixing	2018 [157]
8.	PP/POE	11.1 wt.	Al₂O₃	0.44	~214	Reactor granule technology & Melt mixing	2019 [152]
factors such as dispersion and alignment of fillers, morphology, and contact area of filler/filler or filler/polymer interface and manufacturing/process [54]. The structure and shape of composites can be constructed during the manufacturing process. Ren et al. studied the influence of compression molding conditions on κ of UHMWPE-BN and UHMWPE-(BN + MWCNT) hybrid composites. The physical mixing of polymer and fillers was done using a high-speed mixer followed by compressing to prepare four different samples controlled by the preparation conditions. The first two samples were obtained by cold-pressing at room temperature under 200 MPa and 400 MPa followed by sintering at 190°C under 0.1 MPa for 5 min, designated as RT/200 and RT/400, respectively. The third and fourth samples were obtained by hot-pressing at 190°C under 10 MPa and 400 MPa for 5 min, designated as T190/10 and T190/400, respectively. The resulted composite morphology exhibited a segregated structure. The study showed that the compression molding technique has a significant influence on κ, as indicated by high κ observed for all composites treated with the cold-pressing sintering process (Figure 23). This effect of the compression molding on κ is due to the formation of an integrated filler network/segregated structure at RT molding, which was destroyed at high temperatures. However, the dispersion of fillers in the polymer matrix was also improved under high pressure and high temperature owing to the improvement in the polymer fluidity [160]. Others used combinations of micro-fillers and nano-fillers to create 3D thermally conductive network within the polymer matrix such that the nano-fillers bridges the micro-filler particles to create a 3D network. For example, using GNP with composites of isotactic polypropylene and h-BN, a 3D network was formed via the bridging effect of GNP between the h-BN particles. Similarly, a thermally conductive network was created in PP/CF composites by adding CNTs via coagulation precipitation technique. In these composites, CNTs acted as a bridge among oriented CFs [54,161,162].

Figure 21. Thermal conductivity of HDPE composite containing hBN or hybrid of BN particles and short alumina fibers. ‘Reprinted from Ref [71]. Copyright (2007), with permission from Elsevier’.

Figure 22. Schematic microstructure of composites prepared with different parameters: (a) volume ratio of nitride particles to HGMs is lower; (b) total filler volume fraction of filler is lower; (c) both volume ratio of nitride particle to HGM and total filler volume fraction of filler are high enough. ‘Reprinted from Ref [159]. Copyright (2014), with permission from Elsevier’.
The constructal-theory network was used to design conducting paths to cool a heat-generating volume, inspired by the fractal root system of tree-shaped flows. The constructal-theory deals with designing conducting pathways with improved access (minimum flow resistance) (Figure 24a). In this theory, the modes of thermal transport with the highest and lower resistivity are placed at the small and large construct, respectively [163]. Liu et al. [164] adopted the same strategy and fabricated HDPE composites containing graphite-based fillers of different particle sizes. In these composites, large fillers were acting like backbones, whereas the smaller fillers represented the branches (Figure 24(b-c)). The highest κ about 2.51 W/m-K was found by incorporating a combination of 15 wt. % 500 μm, 10 wt. % 200 μm, 10 wt. % 20 μm, 4 wt. %, and 1.0 wt.% graphene (total filler 40 wt. %).

Kucukdogan et al. used red mud, which is an industrial waste, as thermally conductive filler for PP. Red mud mainly consists of a mixture of oxide of different metals such as iron, aluminum, silicon, titanium, and calcium with κ_f of 11.7 W/(m·K). The composites with 50% volume fraction exhibited κ_c of 1.4 W/(m·K), which was almost 5 times higher than pure PP, showing potential reuse of waste in suitable applications [165]. Table 9 summarizes the reported enhancement in κ of polyolefin using hybrid fillers.

Figure 23. Thermal conductivities of UHMWPE and hybrid (BNs+CNTs) composites under various conditions. ‘Reprinted from Ref [160]. Copyright (2016), with permission from Elsevier’.

Figure 24. (a) A fractal root system of the tree; (b) a classical constructal network; and (c) diagram of several-sized fillers filling in the matrix, and c) thermal conductivities of HDPE with 40 wt.% various filling particles (the size unit is μm). Reproduced from Ref [164].

5. Challenges and prospective directions

Although much progress is made during the past two decades in developing thermally conductive polyolefin composites, there are still several challenges to be addressed that require research efforts in the following aspects:
Table 9. Thermal conductivities of polyolefin and hybrid-filler-based composites.

No	Matrix	Filler	Loading (%)	κ_{max} (W/m·K)	κ_{inc} increase (%)	Processing technique	Year [Ref.]
1	LDPE	sial, glass, Hybrid	20 vol.	0.49 Glass fiber (II@86°C)	~180	Solution mixing	2000 [158]
2	HDPE	hBN-Al$_2$O$_3$ Short fiber	40 vol.	1.4 (Al$_2$O$_3$: BN = 1.5)	~500	Powder and melt mixing	2007 [71]
3	PP	h-BN, AIN, MWCNT	70 wt.	1.2	~530	Melt blending	2014 [166]
4	LDPE	hybrid hollow glass	50 vol.	2.25 (AlN+HGM)	~720	Powder mixing and hot press	2015 [159]
5	PP	Carbon fiber, CNT	40 wt.	1.23 (Axial)	~550	Coagulation precipitation technique	2015 [162]
6	UHMWPE	h-BN particles, h-BN sheet + MWCNT	50 wt.	1.794 (49 wt.% + 1 wt.% , RT/400 MPa)	~390	Powder and melt mixing	2016 [160]
7	PP	h-BN, GNP	30 wt.-5 wt. GNP	0.73	~330	Melt mixing	2016 [161]
8	PP	Al$_2$O$_3$ + CNT-carbon black	15 wt.	0.68	~340	Melt blending	2016 [167]
9	PE	CNT/Graphene, 0.5 Gra-4.5 CNT vol.	1.3	~370	Melt blending	2017 [168]	
10	LDPE	epoxy & HGM, BN, Hollow glass	50 vol.	0.7 (30 vol.% BN and HGM, LDPE/Epoxy = 3:7)	~370	Physical Mixing	2017 [169]
11	HDPE	BN-CNT	30 wt.	2.671 (25BN,3CNT)	~600	Melt blending	2018 [170]
12	HDPE	Graphite, graphene, CNT	40 wt.	2.51	~730	Powder Mixing and Melt-Extruding	2018 [164]
13	PP	Red mud	50 vol.	1.4	~470	Melt mixing	2018 [165]
14	LDPE	MWCNT/GNP	CNT/GNP = 5 wt.	0.42	~120	Melt blending	2018 [171]

(1) κ_c is strongly dependent on the interfacial resistance between the polyolefin matrix and the filler. Therefore, a holistic strategy to improve such interface during the composite processing should be developed to enhance κ_c significantly.

(2) The adverse impact of the high filler loading required to reach high κ_c on the composite processability can be mitigated by, for example, the use of plasticizers. However, the impact of plasticizers or other means of mitigation on the composite conductivity and mechanical properties should be examined.

(3) Using nano/exfoliated fillers may also reduce the required filler loading. However, due to their large surface area, nanofillers introduce a vast number of interfaces and may not improve κ_c significantly.

(4) The filler functionalization can improve the dispersion and interfacial resistance between polyolefin and the filler. However, functionalization of the fillers may contribute to phonon scattering resulting in lower κ_c.

(5) High κ_c can be achieved at lower filler loading by considering and optimizing key factors such as filler dispersion, optimized filler size, filler hybridization, the shape of the filler, optimized number of present interfaces between filler and polymer, filler alignment and orientation, processing technique, polyolefin type, grade, etc.

(6) Combining modeling with experimental inputs can play a key role in reducing the number of experiments. Furthermore, it can also provide insights on the dependence of κ_c on κ of the matrix and the filler, the filler volume fraction, and the filler shape and morphology.

(7) An improved κ of PE can be obtained by using a combination of conductive fillers and controlling PE microstructure via post-processing techniques such as drawing to orient the PE chains in the heat transfer direction. For instance, at relatively low fillers loadings, simultaneous alignment of PE lamellae and incorporated anisotropic fillers lead to substantial enhancement in κ_c of PE composites [22].

(8) Finally, the cost of thermally conductive composites and nanocomposites should be considered when a high loading of costly fillers are used. The development of such composites may eradicate the low-price advantage of polyolefin.

6. Conclusions

This review article reports the research progress on thermally conductive polyolefin composites and nanocomposites. The thermal conductivity of polyolefins can be enhanced by the incorporation of fillers with high intrinsic thermal conductivity. Although filled polyolefin composites exhibit improved thermal conductivity, high filler concentration also affects the polymer melt viscosity and hence affects the processability, mechanical stability, and product performance. Furthermore, the thermal conductivity of composites also depends on many factors such as the filler size, shape, a, loading level, dispersion, morphology, functionalization/interfacial compatibility, filler/polymer and filler/particle interfaces were also discussed in the review. The presence of functional groups on the surface of inorganic fillers improves the dispersion/distribution of the fillers and phonon transport across the interface; however, beyond a certain functionalization level, the surface functionalization could increase phonon scattering. The orientation of fillers with anisotropic κ plays a major role in determining κ_c. The shape and size of filler are also crucial for κ_c because large fillers and longer dimensions can have less filler to polymer interface, and consequently lower thermal
interfacial resistance and vice versa for nanofillers. However, the optimized filler size would require obtaining an optimized number of polymer/filler interfaces to obtain suitable κ_c. The use of hybridization fillers that combines fillers of a different type, shape, or size also help to obtain high κ_c at lower loading. The use of hybrid filler can also be used to control the arrangement of the fillers. Furthermore, the blending of polyolefin with different polymers can generate a phase-separated polymer blend with an island-sea morphology containing double percolated regions, and consequently leading to higher κ_c at low filler loading.

Incorporating highly conductive fillers into polyolefin matrices remains the most promising approach to develop thermally enhanced polyolefin materials. However, significant advances are still required to obtain efficient thermally conductive composites in terms of high composite thermal conductivity at reasonable filler loading while maintaining or improving the mechanical properties and the processability necessary to meet the requirements of commercial applications.

Acknowledgements

Open Access funding provided by the Qatar National Library.

Disclosure statement

All authors declare non-competing interest.

Funding

This research was supported by [NPRP grant #10-0205-170349] from the Qatar National Research Fund (a constituent member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

ORCID

A.U. Chaudhry [http://orcid.org/0000-0002-6191-3247]
Abdel Nasser Mabrouk [http://orcid.org/0000-0001-9521-4113]
Ahmed Abdala [http://orcid.org/0000-0002-7398-9118]

References

[1] Chen X, Su Y, Reay D, et al. Recent research developments in polymer heat exchangers – A review. Renew Sust Energ Rev. 2016;60:1367–1386.

[2] Deisenroth DC, Arie MA, Dessiatoun S, et al. Review of most recent progress on development of polymer heat exchangers for thermal management applications. Proceedings of the International Electronic Packaging Technical Conference and Exhibition, San Francisco, CA. Vol. 56901, p. V003T03A003.

[3] Vadivelu MA, Kumar CR, Joshi GM. Polymer composites for thermal management: a review. Compos Interfaces. 2016;23:847–872.

[4] Lu X, Xu G. Thermally conductive polymer composites for electronic packaging. J Appl Polym Sci. 1997;65:2733–2738.

[5] Morak M, Marx P, Gschwandt M, et al. Heat dissipation in epoxy/amine-based gradient composites with alumina particles: a critical evaluation of thermal conductivity measurements. Polymers. 2018;10:1131.

[6] Ebadi-Dehaghani H, Nazempour M. Thermal Conductivity of Nanoparticles Filled Polymers, Smart Nanoparticles Technology. Rijeka: IntechOpen; 2012. p. 519-540.

[7] Lee B, Liu J, Sun B, et al. Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell. Express Polym Lett. 2008;2:357–363.

[8] Zhai S, Zhang P, Xian Y, et al. Effective thermal conductivity of polymer composites: theoretical models and simulation models. Int J Heat Mass Transfer. 2018;117:358–374.

[9] Ling Z, Zhang Z, Shi G, et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sust Energ Rev. 2014;31:427–438.

[10] Huang C, Qian X, Yang R. Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Rep. 2018;132:1–22.

[11] Ngo I-L, Jeon S, Byon C. Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. Int J Heat Mass Transfer. 2016;98:219–226.

[12] Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci. 2011;36:914–944.

[13] Chen H, Ginzburg VV, Yang J, et al. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci. 2016;59:41–85.

[14] Jubinville D, Esmizadeh E, Saikrishnan S, et al. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustainable Mater Technol. 2020;25:e00188.

[15] Polyolefins Market Share, Size, Trends, Industry Analysis Report By Feedstock (Polyethylene, Polypropylene, Ethylene Vinyl Acetate, Thermoplastic Olefins, Others), By Application (Film & Sheet, Injection Molding, Blow Molding, Extrusion Coating, Fiber, Others), By Regions, Segments & Forecast, 2019-2026. 2019, p. 120.

[16] Choi D, White J. Polyolefins: processing, structure development, and properties. Munich: Hanser Gardner Publications; 2005.

[17] Chaudhry A, Mittal V, Hashmi M. A quick review for rheological properties of polyolefin composites. Sindh Uni Res J SURJ (Science Series). 2012;44:75–84.

[18] Hussain ARJ, Alahyari AA, Eastman SA, et al. Review of polymers for heat exchanger applications: factors concerning thermal conductivity. Appl Therm Eng. 2017;113:1118–1127.

[19] Tripathi SN, Rao GSS, Mathur AB, et al. Polyolefin/graphene nanocomposites: a review. RSC Adv. 2017;7:23615–23632.

[20] Mittal V, Chaudhry AU. Effect of amphiphilic compatibilizers on the filler dispersion and properties of
polyethylene—thermally reduced graphene nanocomposites. J Appl Polym Sci. 2015;132. DOI:10.1002/app.42484

[21] Spiridon II. Natural fiber-polyolefin composites. Mini-review. Cellul Chem Technol. 2014;48:599–611.

[22] Chaudhry AU, Mabrouk A, Abdala A. Thermally enhanced pristine polyolefins: fundamentals, progress and prospective. J Mater Res Technol. 2020;9:10796–10806.

[23] Shen S, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol. 2010;5:251–255.

[24] Zhi C, Bando Y, Terao T, et al. Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv Funct Mater. 2009;19:1857–1862.

[25] Saeidjavash M, Garg J, Grady B, et al. High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nanoscale. 2017;9:12867–12873.

[26] Yang X, Liang C, Ma T, et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater. 2018;1:207–230.

[27] Mehra N, Mu L, Ji T, et al. Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today. 2018;12:92–130.

[28] Palacios A, Cong L, Navarro ME, et al. Thermal conductivity measurement techniques for characterizing thermal energy storage materials - A review. Renew Sust Energ Rev. 2019;108:32–52.

[29] Mahan G, Tritt T. Thermal conductivity of superlattices, in thermal conductivity: theory, properties, and applications (Physics of solids and liquids). Berlin, Heidelberg: Springer Science & Business Media; 2004.

[30] Yüksel N. The review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials. London, UK: IntechOpen; 2016.

[31] Tong XC. Characterization methodologies of thermal management materials. advanced materials for thermal management of electronic packaging. New York, NY: Springer New York; 2011. p. 59–129.

[32] Corsan JM. Axial heat flow methods of thermal conductivity measurement for good conducting materials. In: Maglić KD, Cezairliyan A, Peletsky VE, editors. Compendium of thermophysical property measurement methods: volume 2 recommended measurement techniques and practices. Boston, MA: Springer US; 1992. p. 3–31.

[33] Czchos H, Saito T, Smith L. Springer handbook of materials measurement methods. Berlin, Heidelberg: Springer; 2006.

[34] Yesilata B, Turgut P. A simple dynamic measurement technique for comparing thermal insulation performances of anisotropic building materials. Energy Build. 2007;39:1027–1034.

[35] Vozár L. A computer-controlled apparatus for thermal conductivity measurement by the transient hot wire method. J Therm Anal Calorim. 1996;46:495–505.

[36] Kwon SY, Lee S. Precise measurement of thermal conductivity of liquid over a wide temperature range using a transient hot-wire technique by uncertainty analysis. Thermochim acta. 2012;542:18–23.

[37] Solórzano E, Rodriguez-Perez MA, de Saja JA. Thermal conductivity of cellular metals measured by the transient plane sour method. Adv Eng Mater. 2008;10:371–377.

[38] Min S, Blum J, Lindemann A. A new laser flash system for measurement of the thermophysical properties. Thermochim acta. 2007;455:46–49.

[39] Chaudhry AU, Mittal V Thermally conducting polymer nanocomposites: synthesis, properties and applications. Polymers in Oil and Gas Industry. Orange, Australia: Central West Publishing (CWP); 2018. p. 311–342.

[40] Krupa P, Maliniaric S. Using the transient plane source method for measuring thermal parameters of electroceramics. Int J Math, Comput, Statistical, Natural Phys Eng. 2014;8:733–738.

[41] Hwang YJ, Ahn YC, Shin HS, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys. 2006;6:1068–1071.

[42] Merckx B, Dudoignon P, Garnier JP, et al. Simplified transient hot-wire method for effective thermal conductivity measurement in geo materials: microstructure and saturation effect. Adv Civ Eng. 2012;2012:625395.

[43] Foreman J, Marcus S, Blaine R. Thermal conductivity of polymers, glasses & ceramics by modulated DSC. Brookfield, CT,(USA): Soc of Plastics Engineers; 1994.

[44] Yüksel N. The review of some commonly used methods and techniques to measure the thermal conductivity of insulation materials. London, UK: Insulation Materials in Context of Sustainability: IntechOpen; 2016.

[45] He X, Huang Y, Wan C, et al. Enhancing thermal conductivity of polydimethylsiloxane composites through spatially confined network of hybrid fillers. Compos Sci Technol. 2019;172:163–171.

[46] Kalaitzidou K, Fukushima H, Drzal LT. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon. 2007;45:1446–1452.

[47] Bhattacharya SK, Chaklader AC. Review on Metal-Plastic composites. Part 2. Polym Plast Technol Eng. 1983;20(1):35–59. doi:10.1080/03602558308067736

[48] Ngó C, Van de Voorde MH. Nanomaterials: doing more with less. Nanotechnology in a nutshell: from simple to complex systems. Paris: Atlantis Press; 2014. p. 55–70.

[49] Pradhan S, Lach R, Le HH, et al. Effect of filler dimensionality on mechanical properties of nanofiller reinforced polyolefin elastomers. ISRN Polym Sci. 2013:2013:9.

[50] Tavman IH, Akinci H. Transverse thermal conductivity of fiber reinforced polymer composites. Int J Heat Mass Transf. 2000;27:253–261.

[51] Kusunose T, Yagi T, Firoz SH, et al. Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity.] Mater Chem A. 2013:1:3440–3445.

[52] Yu J, Chen Y, Wuhrer R, et al. In situ formation of BN nanotubes during nitriding reactions. Chem Mater. 2005;17:5172–5176.

[53] Hill RF, Supancic PH. Thermal conductivity of platelet-filled polymer composites. J Am Ceram Soc. 2002;85:851–857.

[54] Xu C, Miao M, Jiang X, et al. Thermal conductive composites reinforced via advanced boron nitride nanomaterials. Compos Commun. 2018;10:103–109.
[55] Si W, Sun J, He X, et al. Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites. J Mater Chem C. 2020;8:3463–3475.

[56] Sun J, Zhuang J, Shi J, et al. Highly elastic and ultra-thin nanopaper-based nanocomposites with superior electric and thermal characteristics. J Mater Sci. 2019;54:8436–8449.

[57] Wang S, Liu Y, Guo Y, et al. Optimal analysis for thermal conductivity variation of EVA/SCF composites prepared by spatial confining forced network assembly. Mater Today Commun. 2020;25:101206.

[58] Li T-L, Hsu S-L-C. Enhanced thermal conductivity of polymeide films via a hybrid of micro- and nano-sized boron nitride. J Phys Chem A. 2010;114:6825–6829.

[59] Pashayi K, Fard HR, Lai F, et al. High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J Appl Phys. 2012;111:104310.

[60] Zhou W, Qi S, Tu C, et al. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J Appl Polym Sci. 2007;104:1312–1318.

[61] Leung SN, Khan MO, Chan E, et al. Synergistic effects of hybrid fillers on the development of thermally conductive polyphenylene sulfide composites. J Appl Polym Sci. 2013;127:3293–3301.

[62] Pak SY, Kim HM, Kim SY, et al. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon. 2012;50:4830–4838.

[63] Zhu BL, Zheng H, Wang J, et al. Tailoring of thermal and dielectric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler. Compos Part B Eng. 2014;58:91–102.

[64] Raman C Boron nitride in thermoplastics: effect of loading, particle morphology and processing conditions. Proceedings of the NATAS Annual Conference on Thermal Analysis and Applications, Atlanta, Georgia. Vol. 362008.

[65] Choy CL, Leung WP, Kowk KW, et al. Elastic modulus and thermal conductivity of injection-molded short-fiber–reinforced thermoplastics. Polym Composites. 1992;13:69–80.

[66] Choy CL, Wong YW, Yang GW, et al. Elastic modulus and thermal conductivity of ultradrawn polyethylene. J Polym Sci B Polym Phys. 1999;37:3359.

[67] Choy CL, Luk WH, Chen FC. Thermal conductivity of highly oriented polyethylene. Polymer. 1978;19:155.

[68] Han S, Lin JT, Yamada Y, et al. Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer–matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black. Carbon. 2008;46:1060–1071.

[69] Solis KJ, Martin JE. Field-structured magnetic platelets as a route to improved thermal interface materials. J Appl Phys. 2012;111:073507.

[70] Cho H-B, Konno A, Fujihara T, et al. Self-assemblies of linearly aligned diamond fillers in polysiloxane/diamond composite films with enhanced thermal conductivity. Compos Sci Technol. 2011;72:112–118.

[71] Zhou W, Qi S, An Q, et al. Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull. 2007;42:1863–1873.

[72] Agari Y, Ueda A, Nagai S. Thermal conductivities of composites in several types of dispersion systems. J Appl Polym Sci. 1991;42:1665–1669.

[73] Ebadi-Dehaghi H, Nazempour M. Thermal conductivity of nanoparticles filled polymers. London, UK: INTECH Open Access Publisher; 2012.

[74] Mukesh Kumar P, Kumar J, Tamlilarsan R, et al. Review on nanofluids theoretical thermal conductivity models. Eng. J. 2015;19:17.

[75] Pietrak K, Wisniewski TS. A review of models for effective thermal conductivity of composite materials. J Power Technol. 2015;95:14.

[76] Burger H. Das lertvermogen verdunneter mischstallfreier lonsungen. Phys Z. 1915;20:73–76.

[77] Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Indus Eng Chem Fundamental. 1962;1:187–191.

[78] Rayleigh LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philosophical Magazine Series 5. 1892;34:481–502.

[79] Swartz ET, Pohl RO. Thermal boundary resistance. Rev Mod Phys. 1989;61:605–668.

[80] Powell BR, Youngblood GE, Hasselman DPH, et al. Effect of thermal expansion mismatch on the thermal diffusivity of glass-Ni composites. J Am Ceram Soc. 1980;63:581–586.

[81] Benveniste Y, BD J. Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. J Appl Phys. 1987;61:2840–2843.

[82] Landauer RKL. The electrical resistance of binary metallic mixtures. J Appl Phys. 1952;23:779–784.

[83] Conway JH, Sloane NJA, Bannai E, et al. Sphere packings, lattices and groups. New York: Springer; 2013.

[84] Devpura A, Phelan PE, Prasher RS Percolation theory applied to the analysis of thermal interface materials in flip-chip technology. IITHERM 2000 The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat No00CH37069), Istanbul, Turkey. Vol. 12000. p. 1–28.

[85] Calvo-Jurado C, Parnell WJ. Hashin–Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material. J Math Chem. 2015;53:828–843.

[86] Ngo I-L, Prabhakar Vattikuti SV, Byron C. A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers. Int J Heat Mass Transfer. 2017;114:727–734.

[87] Ochsner A, Tane M, Nakajima H. Prediction of the thermal properties of lotus-type and quasi-isotropic porous metals: numerical and analytical methods. Mater Lett. 2006;60:2690–2694.

[88] Gruescu C, Giraud A, Homand F, et al. Effective thermal conductivity of partially saturated porous rocks. Int J Solids Struct. 2007;44:811–833.

[89] Khan KA, Khan SZ, Khan MA. Effective thermal conductivity of two-phase composites containing highly conductive inclusions. J Reinf Plast Compos. 2016;35:1586–1599.

[90] Shahid KMF, Balandin AA. Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 2012;152:1331–1340.
[91] Chu K, Li W-S, Tang F-L. Flatness-dependent thermal conductivity of graphene-based composites. Phys Lett A. 2013;377:910–914.

[92] Yu W, Xie H, Yin L, et al. Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int J Ther Sci. 2015;91:76–82.

[93] Xu JZ, Gao BZ, Kang FY. A re-construction of Maxwell model for effective thermal conductivity of composite materials. Appl Therm Eng. 2016;102:972–979.

[94] Chu K, Jia -C-C, Li W-S. Effective thermal conductivity of graphene-based composites. Appl Phys Lett. 2012;101:121916.

[95] Agrawal A, Satapathy A. Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. Int J Ther Sci. 2015;89:203–209.

[96] Zhou S, Chiang S, Xu J, et al. Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon. 2012;50:5052–5061.

[97] Tian Z, Hu H, Sun Y. A molecular dynamics study of effective thermal conductivity in nanocomposites. Int J Heat Mass Transfer. 2013;61:577–582.

[98] Zhou F, Cheng G. Lattice Boltzmann model for predicting effective thermal conductivity of composite with randomly distributed particles: considering effect of interactions between particles and matrix. Comput Mater Sci. 2014;92:157–165.

[99] Liu W, Do I-H, Fukushima H, et al. Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanofillers-polyamide nanocomposites. Carbon. 2010;48:279–284.

[100] Zhang B, Li J, Gao S, et al. Comparison of thermomechanical properties for woven polyethylene and its nanocomposite based on the CNT junction by molecular dynamics simulation. J Phys Chem C. 2019;123:19412–19420.

[101] Boroushak SH, Ansari R, Ajori S. Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains. Diam Relat Mater. 2018;86:173–178.

[102] Hu L, Desai T, Keblinski P. Determination of interfacial thermal resistance at the nanoscale. Phys Rev B. 2011;83:195423.

[103] Bui K, Grady BP, Papavassiliou DV. Heat transfer in high volume fraction CNT nanocomposites: effects of inter-nanotube thermal resistance. Chem Phys Lett. 2011;508:248–251.

[104] Mortazavi B, Bardon J, Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput Mater Sci. 2013;69:100–106.

[105] Wang J, Cao C, Chen X, et al. Orientation and dispersion evolution of carbon nanotubes in ultra high molecular weight polyethylene composites under extensional-shear coupled flow: A dissipative particle dynamics study. Polymers. 2019;11:154.

[106] Sun Y, Zhou L, Han Y, et al. A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis. Int J Heat Mass Transfer. 2020;160:121577.

[107] Li X, Fan X, Zhu Y, et al. Computational modeling and evaluation of the thermal behavior of randomly distributed single-walled carbon nanotube/polymer composites. Comput Mater Sci. 2012;63:207–213.

[108] Bui K, Duong HM, Striolo A, et al. Effective heat transfer properties of graphene sheet nanocomposites and comparison to carbon nanotube nanocomposites. J Phys Chem C. 2011;115:3872–3880.

[109] Razzaghi L, Khalkhali M, Rajapour A, et al. Impact of nano sized fillers on the thermal transport properties of polyethylene nanocomposites: a comparative multiscale investigation. arXiv Preprint arXiv: 200205127. 2020:1–17.

[110] Kuang Y, Huang B. Effects of covalent functionalization on the thermal transport in carbon nanotube/polymer composites: a multi-scale investigation. Polymer. 2015;56:563–571.

[111] Shahil KMF, Balandin AA. Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012;12:861–867.

[112] Mokhena TC, Mochane MJ, Sefadi JS, et al. Thermal conductivity of graphite-based polymer composites. London, UK: Impact of Thermal Conductivity on Energy Technologies: IntechOpen; 2018.

[113] Rzeczowski P, Krause B, Pötschke P. Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications. Polymers. 2019;11:462.

[114] Wu H, Sun X, Zhang W, et al. Effect of solid-state shear milling on the physicochemical properties of thermally conductive low-temperature expandable graphite/low-density polyethylene composites. Compos Part A Appl Sci Manuf. 2013;55:27–34.

[115] Wu H, Lu C, Zhang W, et al. Preparation of low-density polyethylene/low-temperature expandable graphite composites with high thermal conductivity by an in situ expansion melt blending process. Mater Des. 2013;52:621–629.

[116] Gu J, Li N, Tian L, et al. High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv. 2015;5:36334–36339.

[117] Kim Y, Kim M, Seong H-G, et al. Roles of silica-coated layer on graphite for thermal conductivity, heat dissipation, thermal stability, and electrical resistivity of polymer composites. Polymer. 2018;148:295–302.

[118] Yang C, Navarro ME, Zhao B, et al. Thermal conductivity enhancement of recycled high density polyethylene as a storage media for latent heat thermal energy storage. Sol Energy Mater Sol Cells. 2016;152:103–110.

[119] Liao Q, Liu Z, Liu W, et al. Extremely high thermal conductivity of aligned carbon nanotube-polyethylene composites. Sci Rep. 2015;5:16543.

[120] Haggemueller R, Guthy C, Lukes JR, et al. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules. 2007;40:2417–2421.

[121] Evgin T, Koca HD, Horný N, et al. Effect of aspect ratio on thermal conductivity of high density polyethylene/ multi-walled carbon nanotubes nanocomposites. Compos Part A Appl Sci Manuf. 2016;82:208–213.

[122] Mazov IN, Ilinykh IA, Kuznetsov VL, et al. Thermal conductivity of polypropylene-based composites with multiwall carbon nanotubes with different diameter and morphology. J Alloys Compd. 2014;586:5440–542.

[123] Patti A, Russo P, Acierino D, et al. The effect of filler functionalization on dispersion and thermal conductivity of polypropylene/multi wall carbon nanotubes composites. Compos Part B Eng. 2016;94:350–359.

[124] Mittal V, Chaudhry AU. Polyethylene-thermally reduced graphene nanocomposites: comparison of
masterbatch and direct melt mixing approaches on mechanical, thermal, rheological, and morphological properties. Colloid Polym Sci. 2016;294:1659–1670.

[125] Noorunnisa Khanam P, AlMaadeed MA, Ouederni M, et al. Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites. Vacuum. 2016;130:63–71.

[126] Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012;37:1273–1281.

[127] Xie SH, Liu YY, Li JY. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett. 2008;92:243121.

[128] Huxtable ST, Cahill DG, Shenogin S, et al. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2:731–734.

[129] Hu L, Desai T, Keblinski P. Thermal transport in graphene-based nanocomposite. J Appl Phys. 2011;110:033517.

[130] Wang M, Galpaya D, Lai ZB, et al. Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites. Int J Smart Nano Mater. 2014;5:123–132.

[131] Noorunnisa Khanam P, AlMaadeed MA, Ouederni M, et al. Effect of two types of graphene nanoplatelets on the physico–mechanical properties of linear low–density polyethylene composites. Adv Manuf Polym Compos Sci. 2016;2:67–73.

[132] Sofian NM, Rusu M, Neagu R, et al. Metal Powder–Filled Polyethylene Composites. V. Thermal Properties. J Thermoplast Compos Mater. 2001;14:20–33.

[133] Molefi J, Luyt A, Krupa I. Comparison of the influence of Cu micro–and nanoparticles on the thermal properties of polyethylene/Cu composites. Express Polym Lett. 2009;3:639–649.

[134] Kumluata D, Tayman IH, Turhan Cohan M. Thermal conductivity of particle filled polyethylene composite materials. Compos Sci Technol. 2003;63:113–117.

[135] Boudenne A, Ibos L, Fois M, et al. Electrical and thermal behavior of polypropylene filled with copper particles. Compos Part A Appl Sci Manuf. 2005;36:1545–1554.

[136] Luyt AS, Molefi JA, Krumh H. Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polym Degrad Stab. 2006;91:1629–1636.

[137] Carson JK, Noureldin M. Measurements of the thermal diffusivity of linear-medium-density-polyethylene/aluminum composites using a transient comparative method. Int J Heat Mass Tranf. 2009;36:458–461.

[138] Krupa I, Cecen V, Boudenne A, et al. The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater Des. 2013;51:620–628.

[139] Medellín-Banda DJ, Navarro-Rodríguez D, Fernández-Tavízon S, et al. Enhancement of the thermal conductivity of polypropylene with low loadings of CuAg alloy nanoparticles and graphene nanoplatelets. Mater Today Commun. 2019;21:100695.

[140] [accessed 2020 Sep 29]. https://en.wikipedia.org/wiki/Boron_nitride.

[141] Alabdollah FT. Exfoliated hexagonal boron nitride based anti-corrosion polymer nano-composite coatings for carbon steel in a saline environment: Colorado school of mines. Golden, Colorado: Arthur Lakes Library; 2018.

[142] Cheewawuttipong W, Fuoka D, Tanoue S, et al. Thermal and mechanical properties of polypropylene/boron nitride composites. Energy Procedia. 2013;34:808–817.

[143] Song L, Ci L, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010;10:3209–3215.

[144] [accessed 2020 June 29]. https://commons.wikimedia.org/wiki/File:Amorphous_Carbon.png.

[145] Muratov DS, Stepashkin AA, Anshin SM, et al. Controlling thermal conductivity of high density polyethylene filled with modified hexagonal boron nitride (hBN). J Alloys Compd. 2018;735:1200–1205.

[146] Zhang X, Shen L, Wu H, et al. Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion. Compos Sci Technol. 2013;89:24–28.

[147] Yang S-Y, Huang Y-F, Lei J, et al. Enhanced thermal conductivity of polyethylene/boron nitride multilayer sheets through annealing. Compos Part A Appl Sci Manuf. 2018;107:135–143.

[148] Li J-L, Yin J-H, Ji T, et al. Microstructure evolution effect on high-temperature thermal conductivity of LDPE/BNNS investigated in situ SAXS. Mater Lett. 2019;234:74–78.

[149] Muratov DS, Kuznetsov DV, I’llinykh IA, et al. Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Compos Sci Technol. 2015;111:40–43.

[150] Chi Q, Ma T, Dong J, et al. Enhanced thermal conductivity and dielectric properties of iron oxide/polyethylene nanocomposites induced by a magnetic field. Sci Rep. 2017;7:3072.

[151] García-Fonte X, Ares-Pernas A, Cerecedo C, et al. Influence of phase morphology on the rheology and thermal conductivity of HDPE/PA6 immiscible blends with alumina whiskers. Polym Test. 2018;71:56–64.

[152] Zhang X, Maira B, Hashimoto Y, et al. Selective localization of aluminum oxide at interface and its effect on thermal conductivity in polypropylene/polyolefin elastomer blends. Compos Part B Eng. 2019;162:662–670.

[153] Fan J, Xu S. Thermal conductivity and mechanical properties of high density polyethylene composites filled with silicon carbide whiskers modified by cross-linked poly (vinyl alcohol). J Mater Sci Technol. 2018;34:2407–2414.

[154] Zhang S, Cao X, Ma Y, et al. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym Lett. 2011;5:581–590.

[155] Özmühacı FO, Balköse D. Effects of particle size and electrical resistivity of filler on mechanical, electrical, and thermal properties of linear low density polyethylene–zinc oxide composites. J Appl Polym Sci. 2013;130:2734–2743.

[156] Liang J-Z. Estimation of thermal conductivity for polypropylene/hollow glass bead composites. Compos Part B Eng. 2014;56:431–434.

[157] Maira B, Takeuchi K, Chamingkwan P, et al. Thermal conductivity of polypropylene/aluminum oxide
nanocomposites prepared based on reactor granule technology. Compos Sci Technol. 2018;165:259–265.

[158] Kalaprasad G, Pradeep P, Mathew G, et al. Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres. Compos Sci Technol. 2000;60:2967–2977.

[159] Zhu BL, Wang J, Zheng H, et al. Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles. Compos Part B Eng. 2015;69:496–506.

[160] Ren P-G, Hou S-Y, Ren F, et al. The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN+MWCNT) hybrid composites with segregated structure. Compos Part A Appl Sci Manuf. 2016;90:13–21.

[161] Zhong S-L, Zhou Z-Y, Zhang K, et al. Formation of thermally conductive networks in isotactic polypropylene/hexagonal boron nitride composites via “Bridge Effect” of multi-wall carbon nanotubes and graphene nanoplatelets. RSC Adv. 2016;6:98571–98580.

[162] Mazov I, Burmistrov I, Il’inykh I, et al. Anisotropic thermal conductivity of polypropylene composites filled with carbon fibers and multiwall carbon nanotubes. Polym Composites. 2015;36:1951–1957.

[163] Bejan A. Constructal theory of organization in nature: dendritic flows, allometric laws and flight. WIT Trans Ecol Environ. 2002;57:57–66.

[164] He Y, Chen Q, Yang S, et al. Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application. Compos Part A Appl Sci Manuf. 2018;108:12–22.

[165] Kucukdogan N, Aydin L, Sutcu M. Theoretical and empirical thermal conductivity models of red mud filled polymer composites. Thermochim acta. 2018;665:76–84.

[166] Muratov DS, Kuznetso DV, Il’inykh IA, et al. Thermal conductivity of polypropylene filled with inorganic particles. J Alloys Compd. 2014;586:5451–5454.

[167] Xu R, Chen M, Zhang F, et al. High thermal conductivity and low electrical conductivity tailored in carbon nanotube (carbon black)/polypropylene (alumina) composites. Compos Sci Technol. 2016;133:111–118.

[168] Zabihi Z, Araghi H. Effective thermal conductivity of carbon nanostructure based polyethylene nanocomposite: influence of defected, doped, and hybrid filler. Int J Ther Sci. 2017;120:185–189.

[169] Zhu BL, Wang J, Zheng H, et al. Thermal conductivity and dielectric properties of immiscible LDPE/epoxy blend filled with hybrid filler consisting of HGM and nitride particle. J Alloys Compd. 2017;701:499–507.

[170] Che J, Jing M, Liu D, et al. Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos Part A Appl Sci Manuf. 2018;112:32–39.

[171] Paszkiewicz S, Szymczyk A, Pawlikowska D, et al. Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/graphene nanoplatelets with improved thermo-oxidative stability. Nanomaterials. 2018;8:264.