Phenolic Substances and Biological Activities of *Verbana officinalis* L.: A Mini-Review

Hajer Riguene¹, Ghayth Rigane¹,²* and Ridha Ben Salem¹

¹Organic Chemistry Laboratory LR17ES08, Sciences of Sfax Faculty, Chemistry Department, University of Sfax, Tunisia

²Faculty of Sciences and Technology of Sidi Bouzid, Department of Physics & Chemistry, University of Kairouan, Sidi Bouzid, Tunisia

Submission: January 15, 2019; **Published**: February 05, 2020

Corresponding author: Ghayth Rigane, Organic Chemistry Laboratory LR17ES08, Sciences Faculty of Sfax, University of Sfax, Tunisia.

Abstract

The published data related to the identification of the major phenolic compounds as well as its biological activities present in *Verbana officinalis* L. This plant has received a great interest in the worldwide for its diuretic, expectorant and anti-rheumatic, anti-inflammatory, antifungal, antibacterial, analgesic and antioxidant activities.

Keywords: *Verbana officinalis* L; Phenolic substances; Biological activities

Introduction

Verbena officinalis or commonly referred as vervain belongs to the verbenaceae family (Table 1) which can be found in West Asia, North Africa and throughout Europe [1]. It is listed in the Chinese Pharmacopoeia and the British Herbal Pharmacopoeia [2]. Verbana is a medicinally used herb, where most people still depend on the folk medicine, despite the great progress in all opathic medicines, particularly to all eviateanxiety, insomnia, depression [3]. *Verbena officinalis* has been widely used for amenorrhea, insufficient lactation (lactogogue plant), assisting contractions during labor, promoting wound healing and for disorders of menstruation [4].

Table 1: Taxonomical Classification.

Kingdom	Plantae
Subkingdom	Tracheobionta – Vascular plants
Super division	Spermatophyta – Seed plants
Division	Magnoliophyta – Flowering plants
Class	Magnoliopsida – Dicotyledons
Sub class	Asteridae
Order	Lamiales
Family	Verbenaceae – Verbena family
Genus	Verbena L. – vervain
Species	*Verbana officinalis* L.

Botanical Characteristics

Verbena officinalis is a perennial herb. It is erect, 25–100 cm tall and branched above. Its leaves are 3.5–8 cm long and 1.5–3.5 cm broad. It has pale pink or purplish color flowers about 4 mm across [5] (Figures 1 & 2).
The Chemical Composition of *Verbana officinalis*

Table 2: Phenolic compounds analysis techniques of *Verbana officinalis* L.

Phenolic Compounds Analysis Techniques of *Verbana officinalis*	Conditions	Major component	References
LC-MS	Gas temperature of 350°C, nitrogen flow rate of 10 L min⁻¹, nebulizer pressure 30 psi, Quadrupole temperature 30°C, Capillary voltage 3500 V. The applied fragmentors were in the range 80–180 V.	Verbenalin	[6]
	The compounds were detected either at 205 or 235 nm. Calibration data confirmed linearity of the detector response within the concentration range injected (R² from 0.997 to 0.999), and revealed detection limits ranging from 5.0 µg mL⁻¹ (verbascoside) to 13.6 µg mL⁻¹ (hastatoside). The five markers were readily	Verbascoside, Hastatoside, Eukovoside or isomer	[10]
A micellar electrokinetic capillary chromatography: MECC	UPLC separation was achieved using a Waters Acquity BHE C18 Column (150 3.9 mm i.d. 1.7 mm particle size maintained at 25°C), with a mobile phase flow rate of 0.4 mL/min. The mobile phase contained acetonitrile-ammonium acetate 5 mmol/L (A) and water-ammonium acetate (B) in different proportions. The elution system was: 0-5 min, 93-90% of B; 5-8 min, 90-80% of B; 8-13 min, 80% of B; 13-30 min, 80-40% of B and 30-40 min, 40% of B.	Luteolin-7-O-β-D-diglucuronic acid, Apigenin-7-O-β-D-diglucuronide	[8]
LC-MS/MS	Capillary energy, 3500 V; nebulizer gas, 34.8 psi; dry gas, 10.0 L/min at a temperature of 280°C; scan range, m/z 100–1000 with a scan rate of 2 Hz; quadrupole, ion energy 5 eV; low mass m/z 300.00; collision cell, collision energy 10 eV; transfer time, 60 µs; collision RF, 266.7 Vpp; prepulsetorage, 10 µs; transfer, funnel 1 RF 250.0 Vpp, funnel 2 RF 300.0 Vpp, hexapole RF 454.8 Vpp.	Luteolin 7-O-diglucuronide, Verbascoside	[9]
UHPLC-DAD	Capillary energy, 3500 V; nebulizer gas, 34.8 psi; dry gas, 10.0 L/min at a temperature of 280°C; scan range, m/z 100–1000 with a scan rate of 2 Hz; quadrupole, ion energy 5 eV; low mass m/z 300.00; collision cell, collision energy 10 eV; transfer time, 60 µs; collision RF, 266.7 Vpp; prepulsetorage, 10 µs; transfer, funnel 1 RF 250.0 Vpp, funnel 2 RF 300.0 Vpp, hexapole RF 454.8 Vpp.	Luteolin 7-O-diglucuronide, Apigenin 7-O-diglucuronide	[9]

The main class of compounds of these plants were phenylpropanoids, being verbascoside the most abundant in all the preparations up to 97% of the total phenylpropanoids. In addition, iridoids, has hastatoside and verbenalin together with flavonoids, mono- and di-glucuronidic derivatives of luteolin and apigenin were found [6] (Table 2).
Several analytical techniques were used in order to identify and quantify the phenolic composition of Verbena officinalis, these techniques included high-performance liquid chromatography-mass spectrometry (LC-MS) [6,7], high-performance liquid chromatography-mass spectrometry/mass spectrometry LC-MS/MS [8], ultra-high performance liquid chromatography diode array detector UHPLC-DAD [9], Micellar electro kinetic chromatography MECC [10] and High-performance liquid chromatography with diode-array detection HPLC-DAD [7] (Table 3).

S.No	Name of compounds	Types	Article
1	Hastatoside	Iridoid glucoside	[9]
2	Verbenalin	Iridoid glucoside	[9]
3	Luteolin 7-O-diglucuronide	Flavonoid	[9]
4	Pedalitin 6-O-(2-O-feruloyl)-diglucuronide	Flavonoid	[7]
5	Scutellarein 7-O-(2-O-feruloyl)-diglucuronide	Flavonoid	[7]
6	Pedalitin 6-O-diglucuronide	Flavonoid	[7]
7	Apigenin 7-O-diglucuronide	Flavonoid	[7]
8	Aucubin	Iridoid	[7]
9	Scutellarein 7-O-diglucuronide	Flavonoid	[7]
10	1,5-O-dicaffeoylquinic acid	Phenolic acid	[7]
11	4,5-O-dicaffeoylquinic acid	Phenolic acid	[7]
12	Luteolin 7-O-gluconuride	Flavonoid	[7]
13	Scutellarein 7-O-gluconuride	Flavonoid	[7]
14	Luteolin 7-O-glucoside	Flavonoid	[7]
15	Pedalitin 6-O-galactoside	Flavonoid	[7]
16	Pedalitin 6-O-glucoside	Flavonoid	[7]
17	Apigenin 7-O-galactoside	Flavonoid	[7]
18	Apigenin 7-O-glucoside	Flavonoid	[7]
19	Scutellarein 7-O-glucoside	Flavonoid	[7]
20	Verbascoside	Phenolic acid	[9]
21	Isoverbascoside	Phenolic acid	[8]
22	Apigenin	Flavonoid	[7]
23	Campneoside II	Phenylethanoid	[8]
24	Isnocampenoide II	Phenylethanoid	[8]
25	4‴-acetyl-O-isoverbascoside	Phenylethanoid	[8]
26	2″,4″-diacetyl-O-verbascoside	Phenylethanoid	[8]
27	3‴,4‴-diacetyl-O-isoverbascoside	Phenylethanoid	[8]
28	4″,6″-diacetyl-O-betonyoside A	Phenylethanoid	[8]
29	3‴,4‴-diacetyl-O-betonyoside A	Phenylethanoid	[8]
30	Betonyoside A	Phenylethanoid	[8]
31	6‴-acetyl-O-isoverbascoside	Phenylethanoid	[8]
32	4‴-acetyl-O-isoverbascoside	Phenylethanoid	[8]

The Biological Activities of Verbana officinalis

The famous properties of vervain herb are sedative, antispasmodic and diaphoretic [11]. Verbena officinalis L. has been traditionally used as nerve tonic, antidepressant, and anticonvulsant; prescribed in liver and gall bladder complaints (spasm of the bladder and strangury), nervous and menstrual disorders; also, for bronchitis, asthma and febrile affections [12].

In addition to that, Verbana officinalis can be utilized to treat enteritis, acute dysentery, depression and amenorrhea [13]. The scavenging activity against DPPH (1,1-diphenil-2-picrylhydrazyl) radical and the antifungal effect against chloroform, ethylacetate and 50% methanolic extracts of Verbena officinalis leaves were investigated. The activity of different fractions of 50% methanolic extract and some isolated compounds were also investigated. The
results suggest that 50% methanolic extract and caffeoyl derivatives could potentially be considered as excellent and readily available sources of natural antifungal and antioxidant compounds [2].

The antimicrobial potential of verbana herb leaves, and roots was evaluated against 24 strains of Gram-positive and Gram-negative bacteria by Dildar [5]. Ethanolic extracts of stems, leaves, and roots of Verbena officinalis and their fractions in various solvents were assessed. The stems proved to be most potent against all the strains. Its activity against Staphylococcus aureus and Pseudomonas aeruginosa was higher than the antibiotic Amoxicillin.

The leaves also showed considerable activity against Pseudomonas aeruginosa, Citrobacter freundii, and Staphylococcus aureus. The roots turned out to be highly effective against Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. The study confirmed the efficacy of Verbena officinalis against infections diseases. While all the three parts of the plant were active against the test micro-organisms, stems were most powerful. The plant has great potential to provide exploitable leads for new antimicrobial drugs [5].

Conclusion

The biological activities of Verbana officinalis L., including antioxidant, anti-microbial, anti-inflammatory and anti-cancer, were due to the presence of bio-active compounds in the leaves such as: Verbenalin, Hastatoside, Verbascoside, Luteolin-7-O-β-D-diglucuronide, Apigenin-7-O-β-D-diglucuronide. The leaves also showed considerable activity against Pseudomonas aeruginosa, Citrobacter freundii, and Staphylococcus aureus. The roots turned out to be highly effective against Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. The study confirmed the efficacy of Verbena officinalis against infections diseases. While all the three parts of the plant were active against the test micro-organisms, stems were most powerful. The plant has great potential to provide exploitable leads for new antimicrobial drugs [5].

References

1. Abebe M, Abebe A, Mekonnen A (2017) Assessment of antioxidant and antibacterial activities of crude extracts of verbena officinalis Linn root or Atuch (Amharic). Chem Int 3: 172-184.s
2. Casanova E, García Mina JM, Calvo MI (2008) Antioxidant and Antifungal Activity of Verbena officinalis L. Leaves. Plant Foods Hum Nutr 63: 93–97.
3. Abdulmannan HF, Zahurin M, Zamri C, Abdulasmad A, Siti RMZ, et al. (2019) Prenatal developmental toxicity evaluation of Verbena officinalis during gestation period in female Sprague-Dawley rats. Chem Biol Interact 304:28-42.
4. Abdulmannan HF, Zahurin M, Zamri C, Abdulasmad A, Siti RMZ, et al. (2019) Mutagenicity and genotoxicity effects of Verbena officinalis leaves extract in Sprague-Dawley Rats. J Ethnopharmacol 235: 88-99.
5. Dildar A, Kamal AQ, Chaudhary MA, Husnul M (2017) Verbena officinalis a herb with promising broad spectrum antimicrobial potential. J Med Chem 3(1).
6. Bilia AR, Giomi M, Innocenti M, Gallori S, Vincieri FF (2008) HPLC-DAD-ESI-MS analysis of the constituents of aqueous preparations of verbena and lemon verbena and evaluation of the antioxidant activity. J Pharm Biomed Anal 46: 463-470.
7. Recheo S, Hidalgo O, Cirano MGI, Navarro L, et al. (2011) Chemical composition, mineral content and antioxidant activity of Verbena officinalis L. LWT - Food Sci Technol 44: 875-882.
8. Encalada MA, Recheo S, Ansorena D, Astiazaran L, Cavero RY, et al. (2015) Antiproliferative effect of phenylethanoid glycosides from Verbena officinalis L. on Colon Cancer Cell Lines. LWT - Food Sci Technol 63: 1016-1022.
9. Eisath NG, Eichermerger B, Gruber R, Suturn S, Suppner H (2018) Development and validation of a rapid ultra-high-performance liquid chromatography diode array detector method for Verbena officinalis L. J Pharm Biomed Anal.
10. Müller A, Ganzer M, Suppner H (2004) Analysis of the aerial parts of verbana officinalis L. by micellar electrokinetic capillary chromatography. Chromatographia 60: 193–197.
11. Kubica P, Szopa A, Ekiert H (2017) Production of verbascoside and phenolic acids in biomass of Verbena officinalis L. (vervain) cultured under different in vitro conditions. Nat Prod Res 31(14):1663-1668.
12. Kumar P, Madaan R, Sidhu S (2017) Antimyctet Activity of Fractions and Isolated Compounds of Verbena officinalis Aerial Parts. Int j pharm sci drug res 9: 79-82.
13. Sumaira, Afridi MS, Hashmi SS, Ali GS, Zia M, et al. (2018) Comparative antileishmanial efficacy of the biosynthesised ZnO NPs from genus Verbena. IET Nanobiotechnol 12(8): 1067-1073.

Your next submission with Juniper Publishers will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats

(Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission

https://juniperpublishers.com/online-submission.php

How to cite this article: Hajer R, Gayth R, Ridha B S. Phenolic Substances and Biological Activities of Verbana Officinalis L.: A Mini-Review. Organic & Medicinal Chem IJ. 2020, 9(2): 555758. DOI: 10.19080/OMCIJ.2020.09.555758

This work is licensed under Creative Commons Attribution 4.0 License. DOI: 10.19080/OMCIJ.2020.09.555758