NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901

G. Ponti1, S. Bianchi2, T. Muños-Darias3,4, K. Mori5, K. De6, A. Rau1, B. De Marco7, C. Hailey5, J. Tomsick8, K. K. Madsen9, M. Clavel8, F. Rahoui10,11, D. V. Lal12, S. Roy12 and D. Stern13

1 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748, Garching, Germany
2 Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146, Roma, Italy
3 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
4 Departamento de astrofísica, Univ. de La Laguna, E-38206 La Laguna, Tenerife, Spain
5 Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA
6 California Institute of Technology, 1200, E. California Blvd., Pasadena, CA 91125, USA
7 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warsaw, Poland
8 Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
9 Cahill Centre for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
10 European Southern Observatory, K. Schwarzschild-Str. 2, 85748 Garching bei München, Germany
11 Department of Astronomy, Harvard University, 60 Garden street, Cambridge, MA 02138, USA
12 National Centre for Radio Astrophysics (TIFR), Post Box 3, Ganeshkhind P.O., Pune 411 007, India
13 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

ABSTRACT

AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS) Low Mass X-ray Binary (LMXB) showcasing intense ionised Fe K absorption. We present here the analysis of 11 XMM-Newton and 15 NuSTAR new data-sets (obtained between 2013-2016), therefore tripling the number of observations of AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR spectra, we greatly improve on the fitting of the X-ray continuum. During the soft state the emission can be described by a disk black body ($kT_b \sim 1.1 - 1.2$ keV and inner disc radius $r_{DBB} \sim 14$ km), plus hot ($kT_b \sim 2.2 - 3.0$ keV) black body radiation with a small emitting radius ($r_{BB} \sim 0.5 - 0.8$ km) likely associated with the boundary layer or NS surface, plus a faint Comptonisation component. Imprinted on the spectra are clear absorption features created by both neutral and ionised matter. Additionally, positive residuals suggestive of an emission Fe K disc line and consistent with relativistic ionised reflection are present during the soft state, while such residuals are not significant during the hard state. The hard state spectra are characterised by a hard ($\Gamma \sim 1.9 - 2.1$) power law, showing no evidence for a high energy cut off ($kT_e > 100 - 140$ keV) and implying a small optical depth ($\tau < 1.6$). The new observations confirm the previously witnessed trend of exhibiting strong Fe K absorption in the soft state, that significantly weakens during the hard state. Optical (GROND) and radio (GMRT) observations suggest for AX J1745.6-2901 a standard broad band SED as typically observed in accreting neutron stars.

Key words: Neutron star physics, X-rays: binaries, absorption lines, accretion, accretion discs, methods: observational, techniques: spectroscopic

1 INTRODUCTION

Accreting X-ray binaries are among the brightest objects of the X-ray sky (Voges et al. 1999). The source population is divided into several subclasses. Depending on the nature of the compact object, they are classified as either black holes (BH) or neutron stars (NS) X-ray binaries (Liu et al. 2000; 2001; Tetarenko et al. 2016; Corral-Santana et al. 2016). According to the type of the companion star, they are further separated into either high or low mass X-ray binaries (LMXB). The family of NS LMXB is additionally split into Atoll and Z-sources, specified by the shape of their colour-colour X-ray diagram (Hasinger & van der Klis 1989). The former cover a lower and larger luminosity range ($L \sim 0.001 - 0.5 L_{\text{Edd}}$) and they typically show both a soft and a hard state (Muñoz-Darias et
al. 2014). In contrast, Z-sources radiate at luminosities close to Ed- dington and their spectra are usually soft showing a more complex phenomenology (Barret & Olive 2002; Reig et al. 2004; van der Klis 2006).

Despite the differences (such as a surface and its associated emission that is present in NS while it is absent in BH, consequently this induces a softer and lower temperature Comptonised component; Burke et al. 2017) all LMXB are linked through common features. It was recently shown that NS LMXB display spectral states and a hysteresis pattern similar to that observed in BH binaries, indicating a physical link between these different sources (Muñoz-Darias et al. 2014). Similarly, both classes of sources display alike fast variability properties (Wijnands & van der Klis 1999; Belloni, Psaltis & van der Klis 2002; Belloni et al. 2011; Fender & Muñoz-Darias 2016; Motta et al. 2017). Regardless of these common behaviours, more complex spectral models have been typically applied to NS LMXB, compared to BH systems (see Barret et al. 2001 for a review). Indeed, the bulk of the emission from BH sys- tems can generally be reproduced by a soft disc black body plus a hard Comptonisation component (Done et al. 2007; Dunn et al. 2010; 2011; Plant et al. 2014). While a larger array of models and different approaches have been employed to explain the emission from NS LMXB, partly disguising the similarities (Mitsuda et al. 1984; 1989; White et al. 1988; Church & Balucinska-Church 1995; 2001; 2004; Barret et al. 2000; Gierlinski & Done 2002; Iaria et al. 2005).

Mainly based on the lessons learned from the studies of BH systems, Lin et al. (2007; 2009) proposed a new model for NS com- posed of three main emission components. This model is composed by the same two components required to fit the spectra of BH bi- naries (disc black body plus Comptonisation), with the addition of a black body component to reproduce the radiation from the NS boundary layer. It was successfully applied to observations of sev- eral Atoll and Z-sources (Lin et al. 2007; 2009; Armas Padilla et al. 2017). In particular, the model allows fitting both the soft and hard state observations, obtaining best fit parameters similar to those ob- served in BH systems (besides the boundary layer).

During the soft state, the emission is usually dominated by the thermal components, with characteristic temperatures of \(kT \sim 0.5 - 2.0 \text{ keV} \) (Barret et al. 2000; Oosterbroek et al. 2001; Di Salvo et al. 2000; Iaria et al. 2005; Lin et al. 2007; 2009; Armas Padilla et al. 2017). The Comptonised component is weak with low temperature \(kT_c \sim \text{few tens keV} \) and large optical depth \(\tau \sim 5 - 15 \), for a spherical geometry. In the hard state, the spectra are dominated by a hard Comptonised component with temperatures of a few tens of keV and optical depths \(\tau \sim 2 - 3 \). The thermal components are observed at low temperatures \(kT < 1 \text{ keV} \) and with significantly lower luminosity. Thanks to the combination of increased effective area and en- ergy resolution, a number of additional narrow and broad features were detected in the recent years. Indeed, broad Fe Kα emission lines are often measured (Miller et al. 2006; 2007; Done & Gierlinski 2006; Reis et al. 2008; 2010; Yamada et al. 2009; Tomskick et al. 2009; Done & Diaz-Trigo 2010; Shidatsu et al. 2011; Petrucci et al. 2014; Kolehmainen et al. 2014). The shape of such lines car- ries information about the geometry and the extension of the ac- cretion disc as well as of the extent and location of the primary source (Fabian et al. 1989; Reynolds & Nowak 2003; Fabian & Ross 2010).

Additionally, the past decade has seen a burst of detections of ionised absorption lines and edges in high inclination LMXB (Brandt et al. 2000; Lee et al. 2002; Parmar et al. 2002; Ueda et al. 2004; Miller et al. 2006a,b; Diaz-Trigo et al. 2006). It is now recognised that winds/ionised absorption are an ubiquitous compo- nent of accreting LMXB during the soft state (Ponti et al. 2012; 2016).

The unprecedented focussing capability of the mirrors aboard the NuSTAR telescope provides an improvement of the sensitivity in the 10-79 keV energy range by more than two orders of magni- tudes compared to previous coded mask telescopes (Harrison et al. 2013). This opens a new window for the study of both faint X-ray sources, such as the less luminous Atoll sources, as well as sources in crowded regions, such as the Galactic center (GC; Ponti et al. 2015).

Looking into the NuSTAR and XMM-Newton archives, we noted that AX J1745.6-2901 is one of the transient LMXB with the best NuSTAR+XMM-Newton publicly available monitoring cam- paign.

1.1 AX J1745.6-2901

AX J1745.6-2901 is a high inclination (dipping and eclipsing) accreting NS transient, classified as an Atoll source and showing clear evidence for highly ionised absorption as well as type I bursts (Maeda et al. 1996; Hyodo et al. 2009; Ponti et al. 2015a). AX J1745.6-2901 is located towards the GC region at a projected distance of less than 1.5′ from Sgr A* (Degenaar et al. 2009; Ponti et al. 2015b). The high column density of neutral mate- rial \(N_H \sim 3 \times 10^{23} \text{ cm}^{-2} \) as well as the spatial distribution of the dust scattering halo suggest that AX J1745.6-2901 is either at or behind the GC, therefore at a distance \(d \geq 8 \text{ kpc} \) (Ponti et al. 2017; Jin et al. 2017). The source has an orbital period of 8.35100811 ± 0.00000002 hr decreasing with time at a rate of \(\dot P_{orb} = -4.03 \pm 0.32 \times 10^{-11} \text{ s}^{-1} \), suggesting non-conservative mass transfer (Maeda et al. 1996; Ponti et al. 2016b).

Being located at less than 1.5′ from Sgr A*, AX J1745.6-2901 is one of the best monitored accreting compact objects, having deep and frequent XMM-Newton and NuSTAR observations (see Ponti et al. 2015b,c). AX J1745.6-2901 was discovered by ASCA during the 1993-1994 outburst (Maeda et al. 1996). The source recently showed strong activity with two short (\(\sim 4 - 7 \text{ months} \)) outbursts in 2006 and 2007, as well as two long and luminous out- bursts in 2007-2008 and 2013-2016 (Degenaar et al. 2013; Ponti et al. 2015). The latest ended in June 2016 (Degenaar et al. 2016). The intense activity together with the frequent X-ray monitoring of this field make AX J1745.6-2901 one of the best candidates to investigate the evolution of the X-ray emission and constrain the spectral energy distribution (SED) in this low luminosity GC Atoll source. This will be instrumental to investigate, in a following pa- per (Bianchi et al. 2017), whether the ionised absorption observed towards AX J1745.6-2901 dissolves in the hard state because it be- comes unstable for photo-ionisation.

We report here 11 new XMM-Newton observations (4 and 7 of which are in the soft and hard state, respectively) as well as 15 new NuSTAR observations that caught AX J1745.6-2901 in outburst. In particular we report the results of a set of five strictly simultaneous XMM-Newton+NuSTAR observations, excellent for characterising the X-ray SED above 10 keV within the crowded GC region (Ponti et al. 2015b).
2 OBSERVATIONS AND DATA REDUCTION

All spectral fits were performed using the Xspec software package (version 12.7.0; Arnaud 1996). Uncertainties and upper limits are reported at the 90 per cent confidence level for one interesting parameter, unless otherwise stated. The reported X-ray fluxes are not corrected for Galactic absorption. All luminosities, black body and disc black body radii assume that AX J1745.6-2901 is located at the GC distance, therefore $d_{AVJ} = 8.3$ kpc (Genzel et al. 2010; Bland-Hawthorn et al. 2016; Gillessen et al. 2016). To derive the disc black body inner radius r_{DBB}, we fit the spectrum with the disc black body model (Mitsuda et al. 1984; Makishima et al. 1986) the normalisation of which provides the apparent inner disc radius (R_{DBB}). Following Kubota et al. (1998), we correct the apparent inner disc radius through the equation: $r_{DBB} = \kappa \xi^2 R_{DBB}$ (where $\kappa = 2$ and $\xi = \sqrt{(3/7)} \times (6/7)^3$ in order to estimate the likely inner disc radius r_{DBB}. We also assume an inclination of the accretion disc of 80° (AX J1745.6-2901 is an eclipsing source). We adopt a nominal Eddington limit for AX J1745.6-2901 of $L_{Edd} = 2 \times 10^{38}$ erg s$^{-1}$ (appropriate for a primary mass of $M_{NS} \sim 1.4$ M$_{\odot}$ and cosmic composition; Lewin et al. 1993). To allow the use of χ^2 statistics we group each spectrum to have a minimum of 30 counts in each bin. We fit the interstellar absorption with either the TBABS or the TBVARABS models in Xspec assuming Wilms et al. (2000) abundances and Verner et al. (1996) cross sections.

2.1 XMM-Newton

We followed the same data reduction steps (e.g., filtering out bursts and dipping periods) employed by Ponti et al. (2015a). We reanalysed all the data-sets considered in that work, with the latest version (15.0.0) of the XMM-Newton (Jansen et al. 2001; Strüder et al. 2001; Turner et al. 2001) Science Analysis System SAS, applying the most recent (as of 2016 September 2) calibrations (see Tab. 1 of Ponti et al. 2015). We also report the analysis of 11 new XMM-Newton observations of AX J1745.6-2901 in outburst (the study of other sources within the field of view of the same observations are included in Ponti et al. 2015b,c; 2016a,b,c). Tab. A1 shows the details of all the new XMM-Newton observations considered in this work (see Tab. 1 of Ponti et al. 2015 for the old observations). All the new observations have been accumulated in Full Frame mode with the medium filter applied. Pile-up distorts the source spectra in the soft state. We therefore adopt an annular extraction region, while a circular one is considered in the hard state (see Ponti et al. 2015). We corrected the spectra of AX J1745.6-2901 for the effects of the dust scattering halo (see Jin et al. 2017a,b). During obid 0790180401 the spectrum of AX J1745.6-2901 is affected by the emission from Swift J174540.7-290015, characterised by a very soft spectrum (see Ponti et al. 2016). To avoid possible biases, we decided to disregard this data set from further analysis.

2.2 NuSTAR

We analysed all NuSTAR (Harrison et al. 2013) public (as of 2016 September 2) observations that caught AX J1745.6-2901 in outburst, resulting in 15 separate data-sets (see Tab. A2). We reduced and cleaned the data with the latest version of the NuSTAR CALDB (20161021). We used the NuSTARDAS sub-package v1.6.0 that is part of the HEASOFT v6.19 (see Wik et al. 2014; Madsen et al. 2015 for more information about the calibration of the NuSTAR observatory). The NuSTAR data were reduced with the standard nupipeline scripts v. 0.4.5 (released on 2016-03-30) and the high level products produced with the nuproducts tool. The source photons were extracted from a circular region of 70" radius, centred on the source (Fig. A1). Response matrices appropriate for each data-set were generated using the standard software. We did not combine modules.

Bursts have been removed by generating a light curve with 3 s time binning in the 5-10 keV energy band and cutting all intervals with a count rate higher than the threshold reported in Tab. A2. We also filtered out eclipses and dips by producing a light curve in the same energy band (with 60 s and 180 s time bins for the soft and hard state observations, respectively) and dismissing all periods with count rate lower than the threshold reported in Tab. A2. In appendix §A3 we report more details on the treatment of the bright point sources contaminating the spectrum of AX J1745.6-2901 (A1), on the treatment of the background emission (A2), as well as the potential mismatch at low energy between the spectrum measured by NuSTAR and by XMM-Newton (A3). As detailed in §A3, we limit the NuSTAR spectral analysis to the 5.5 − 40 and 3−70 keV energy range during the soft and hard state, respectively.

2.3 Swift

Following the same procedure described in Ponti et al. (2015), we have extracted a Swift-XRT light curve of AX J1745.6-2901 from all ‘photon counting’ mode observations available as of 2016 September 2.

2.4 GROND

On 2015 April 29th AX J1745.6-2901 was observed during the soft X-ray spectral state with the Gamma-Ray burst Optical Near-infrared Detector GROND (Greiner et al. 2008) at the MPG 2.2m telescope in La Silla, Chile. GROND provides simultaneous imaging in four optical (g', r', i', z') and three near-infrared (J, H, Ks) channels. Owing to the extreme Galactic foreground reddening towards the target ($E_{B-V} \sim 80$ mag; Schlafly & Finkbeiner 2011) only the analysis of the near-IR bands is discussed here.

The data were reduced with the standard tools and methods described in Krühler et al. (2008). To search for a near-IR counterpart to AX J1745.6-2901 we combined the best seeing images taken during the night, providing total integration times of 94, 72, and 96 min in J, H, and Ks, respectively. The resulting median full width at half maximum (FWHM) of the point spread function was 1.1", 1.6", and 1.2" in the three bands, respectively. The astrometric solution, with an accuracy of 0.01" in both coordinates, was obtained using selected 2MASS field stars (Skrutskie et al. 2006). The photometry was measured from apertures with sizes corresponding to the image FWHM and calibrated against 2MASS field stars. This resulted in σ systematic uncertainties of 0.10 mag (J), 0.09 mag (H), and 0.17 mag (Ks).

Figure H(left) shows the J-band image of the region around AX J1745.6-2901 indicating the extreme crowding characteristic of the GC region. Figure H(right) provides a zoom-in of the Ks-band image. We detect emission consistent with the 3σ uncertainty of the Chandra position (see Jin et al. 2017a), but the available angular resolution does not allow us to distinguish between either emission from a single source or from the superposition of multiple objects. Therefore, we consider the photometry measurements of $J > 19$, $H > 15.5$ and $Ks > 14.5$ (all in the Vega system), obtained with an aperture centred at the Chandra position, as upper limits on the...
observed magnitude of any counterpart to AX J1745.6-2901. These magnitude upper limits correspond to flux densities of $J < 4 \times 10^{-5}$ Jy, $H < 7 \times 10^{-4}$ Jy and $K < 1 \times 10^{-3}$ Jy.

Constraints on the donor star can be derived with an assumption on the distance to the source (≈ 8.3 kpc) and a good approximation of the Galactic foreground reddening. Using $A_J \approx 7.4$ mag, $A_H \approx 4.2$ mag, and $A_K \approx 2.4$ mag (Fritz et al. 2011) the limits on the absolute magnitude of the companion star are estimated to be $M_J > -3.0$ mag, $M_H > -3.3$ mag, and $M_K > -2.5$ mag. This is in agreement with the classification of AX J1745.6-2901 as an LMXB and suggests the donor to belong to the stellar luminosity class III (giants) or fainter.

2.5 GMRT

The Giant Metrewave Radio Telescope (GMRT) is a multi-element aperture synthesis telescope consisting of 30 antennas, each with a diameter of 45 m, separated by a maximum baseline of 25 km (Swarup et al. 1997). We observed the GC region (centred at Sgr A*) at 1390 MHz on 2015 Aug 13.6 (UT) for 8 hours (DDTB178). Thanks to a simultaneous Chandra HETG observation, we can establish that AX J1745.6-2901 was in the soft state during the GMRT monitoring. The primary beam FWHM of the GMRT is 24′ at 1.4 GHz, and hence AX J1745.6-2901 was well within the field of view of the observation. A total of 33.33 MHz bandwidth divided into 256 frequency channels was used with an integration time of 16.1 s. 3C 48 was used as the flux density calibrator, while the sources 1822-096 and 1751-253 were used as phase calibrators.

The data were analysed using the Astronomical Image Processing System (AIPS). After flagging the original data set for non-working antennas and Radio Frequency Interference (RFI), data from a single frequency channel of the flux and phase calibrators were used to construct time-based amplitude and phase calibrations, while bandpass calibration was done with the flux calibrator. The bandwidth was divided into 32 channels of 1 MHz each before imaging, in order to minimize the effects of bandwidth smearing. A high resolution map of the region (imaged with baselines $1.5 \lambda < b < 120 \lambda$) was first constructed to resolve the diffuse emission in the region, followed by self-calibration. The clean components from this image (containing the resolved diffuse emission) were then subtracted from the original (u, v) data, which was used to construct a low resolution map of the region (baselines $0 \lambda < b < 5 \lambda$). In order to remove the confusing diffuse emission from the original map, the clean components from this low resolution image were then subtracted from the original (u, v) data. The final (u, v) data set was then used to construct a high resolution map (baselines $3 \lambda < b < 120 \lambda$) of the region with 3D-imaging over 31 facets, which was subsequently self-calibrated.

The high crowding and diffuse emission around the region limited the map RMS to ≈ 0.8 mJy/beam. No radio source was identified at the position of AX J1745.6-2901 with a 3 σ upper limit of 2.4 mJy. The corresponding radio luminosity upper limit for the source is 2.7×10^{29} ergs/s at 1.4 GHz.

3 ACCRETION STATES AND X-RAY LIGHT CURVE

The dots in Fig. 2 display the evolution of the 3-10 keV emission of AX J1745.6-2901 during its last outburst, as observed by Swift-XRT (see Degenaar et al. 2014 and Ponti et al. 2015 for an historical light curve). The colour code of the circles provides an estimate of the source state (e.g., grey, black, and red points correspond to the quiescence, hard and soft states, respectively). Although the determination of the spectral state based uniquely on Swift data is fairly uncertain (because of the large uncertainties associated with the X-ray colour within the short Swift-XRT exposures) we note that they, in all cases, agree with the states deduced from the higher quality XMM-Newton and NuSTAR data (Fig. 2 and 3).

1 We determine the state of AX J1745.6-2901 based on X-ray colours. However, we point out that the presence of eclipses and dips, that significantly modify the observed X-ray colours, make the determination of the source state very challenging within the short (typically 0.5-1 ks) Swift exposures. We tentatively associate with a soft state the Swift observations with an average 3-10 keV flux in excess of 5×10^{-10} erg cm$^{-2}$ s$^{-1}$ and hardness lower than 1.4 (e.g., see Fig. 3). However, to reduce the effect of dips and eclipses, the average is computed over 5 consecutive Swift observations.
Figure 3. Hardness intensity diagram (HID) of AX J1745.6-2901 derived from each XMM-Newton and NuSTAR observation (they are represented with circles and triangles, respectively). Red and black symbols indicate soft and hard states, respectively. The two states are clearly separated.

The light curve of AX J1745.6-2901 exhibits many interesting behaviours. During the latest outburst, AX J1745.6-2901 went at least four times through the entire hysteresis loop (from a hard to soft and back to the hard state), before going back to quiescence. This behaviour is observed in several other NS LMXB and it appears starkly different from outbursts of BH LMXB, which typically perform the hysteresis loop only once (Muñoz-Darias et al. 2014; Ponti et al. 2014).

Similar to Ponti et al. (2015), we determine the state of the source on the basis of the X-ray colour. Figure 3 shows the hardness intensity diagram (HID), which is often used to determine the source state (Fender et al. 2004; Belloni et al. 2011; Muñoz-Darias et al. 2014). The hardness is defined here as the ratio between the observed fluxes in the 6-10 and 3-6 keV bands. As it is rather widespread in Atoll sources, we note that during all XMM-Newton and NuSTAR observations (which allow us to securely pin down the state of the source) the flux of AX J1745.6-2901 during the hard state is in all cases significantly lower than in the soft state (see Fig. 2 and 3).

4 NEW XMM-Newton OBSERVATIONS

4.1 XMM-Newton soft state

The top panel of Fig. 4 shows the combined spectrum of the three new XMM-Newton soft state observations (Tab. A1). We simultaneously fit the three spectra with the same model, however allowing the parameters to be different between the three spectra as detailed below, and plot the combined data and residuals. Consistent with what was observed in archival observations (Ponti et al. 2015), the X-ray emission is absorbed by a large column density of neutral (lowly ionised) equivalent hydrogen also during the new XMM-Newton observations (Fig. 4).

We start by simultaneously fitting these three new soft state XMM-Newton spectra with a disc black body model, absorbed by neutral material and modified by dust scattering effects (TBABS*AXJDUST*DISKBB in Xspec; see Jin et al. 2017a,b for a full description of the AXJDUST component). The free parameters in the fit of each spectrum are: the column density of neutral hydro-
gen absorption (N_H), the disk black body temperature (kT_{BB}) and disc normalisation (N_{BB}). The fit leaves highly significant residuals between $~6-8$ keV, clear signatures of the presence of an additional ionised absorption component (see panel C of Fig. 4). $\chi^2_{DBB} = 2162.5$ for 2037 degree of freedom; dof.

Before investigating further the nature of the residuals in the $~6-8$ keV band, we tested the shape of the broad band spectrum. We first substituted the thermal disc black body component with a power law (TRABS*AXIDUST*POWERLAW) with N_H, power-law photon index Γ and normalisation N_{pl} as free parameters. We observed a significantly worse fit compared to the thermal disc black body model (see panel B of Fig. 4). $\chi^2_{PL} = 2525.5$ for 2037 dof). Therefore, we can exclude that the continuum during these soft state spectra can be reproduced by a power law. Finally, we exchanged the disk black body component with a black body one (TRABS*AXIDUST*BBODY) with N_H, black body temperature kT_{BB} and black body radius r_{BB} as free parameters. In this case, the fit is acceptable and comparable to the one employing the disc black body continuum ($\chi^2 = 2135.8$ for 2037 dof). We concluded that, consistently with the results obtained from archival data (Ponti et al. 2015), the new soft state observations are consistent with an absorbed thermal continuum model, while a power law is excluded. We also noted that the two thermal continuum models appear degenerate within the limited XMM-Newton energy band. We, therefore, report in the rest of this section only the results obtained by fitting the spectra with the disc black body model. We also noted that the inferred best fit inner disc radius results to be $r_{DBB} \sim 3.5$ km smaller than the NS radius. This suggests that the underlying continuum is more complex than statistically required by the XMM-Newton data alone. Indeed, multiple emission components considering either and both black body and disc black body components will be explored whenever simultaneous NuSTAR data will be available; Tab. 2 and 3).

To reduce the residuals observed in the $~6-8$ keV energy band, we added a self consistent ionised absorption component (IA), accurate for the soft state SED of AX J1745.6-2901 (see Ponti et al. 2015 for details). We leave as free parameters for each spectrum the plasma ionisation parameter ($\log(\xi_{IA})$) and column density ($\log(N_{H_{IA}})$). We leave the absorber outflow velocity (v_{out}) free to vary, however we force it to be the same for all spectra. The addition of such component provides a highly significant improvement of the fit (see panel D of Fig. 4). $\Delta\chi^2 = 163.6$ as well as a satisfactory description of the data ($\chi^2 = 1998.9$ for 2030 dof).

By heavily rebinning the data (see red points in panel D of Fig. 4), we noted some remaining broad residuals in the $~6-7.5$ keV band. This excess emission (panel D of Fig. 4) is observed to be placed red-ward of the absorption features and it appears to be reminiscent of P-Cygni profiles observed in some BH systems and due to the combination of emission and absorption from an outflowing plasma (King et al. 2015; Miller et al. 2015; Munoz-Darias et al. 2016; 2017). Therefore, we model this emission component with the addition of a Gaussian line (TRABS*1A*XIDUST*(DISKB+GAUSSIAN)). The line energy and width are free to vary, but tied between the three spectra. The addition of the Gaussian line provides a significant improvement of the fit ($\Delta\chi^2 = 79.0$ for 6 more free parameters; $\chi^2 = 1919.9$ for 2024 dof; F-test probability $<10^{-6}$). The best-fit line energy, width and equivalent width of the line are: $E = 6.43 \pm 0.25$ keV, $\sigma = 0.85^{+0.23}_{-0.17}$ keV and $EW \sim 140-200$ eV. The line is too broad to be the redshifted emitted component of the same outflowing plasma producing the absorption features. Indeed, the observed line broadening ($\sigma \sim 0.7-1.0$ keV) would require bulk outflows of $v_{out} \sim 0.1$ c. We can rule out that the ionised absorbing plasma is outflowing at such a large speed (e.g., $v_{out} < 2000$ km s$^{-1}$).

Instead, such residual emission might be due to a broad emission line, reflected off the accretion disc. Indeed, in such a scenario, the disc line would be expected to appear highly broadened as a consequence of the high disc inclination. We, therefore, added a diskline component to the fit (TRABS*1A*XIDUST*(DISKB+DISKLINE)), assuming the line energy, inner and outer disc radii to have the values: $E = 6.4$ keV, $r_{in} = 6$ and $r_{out} = 10^2 r_g$ ($r_g = GM/c^2$, where G is the gravitational constant, M is the mass of the compact object and c the speed of light). We also assumed the same emissivity profile and disc inclination, for all spectra. We observed a highly significant improvement of the fit (compared to the same model without the disk line) adding such a disk line component to the model (see panel E of Fig. 4). $\Delta\chi^2 = 78.1$ for 6 more free parameters; $\chi^2 = 1920.8$ for 2024 dof). The best-fit disc inclination is $i = 70^{+17}_{-16}$ (on the lower range expected for eclipsing systems, however consistent with the eclipsing nature of the source) and the emissivity index is scaling with disc radius as $r^{-2.4 \pm 0.1}$. The line is observed to have an equivalent width in the range $EW \sim 120-200$ eV, therefore consistent with reflection off a standard accretion disc (Matt et al. 1993). This fit provides an acceptable description of the data (Tab. 4 and Fig. 4).

Alternatively, the residuals observed in the Fe K band might be associated with an improper characterisation of the Fe K edge imprinted by the neutral absorption (e.g., due to abundances different from Solar or due to depletion; Ponti et al. 2016). To test this latter possibility, we fitted the data without a broad iron line component, but leaving the iron abundance of the neutral absorber free to vary. We observed only a marginal improvement of the fit ($\Delta\chi^2 = 4.9$ for 1 more dof), with a best-fit iron abundance of $Fe = 1.13^{+0.15}_{-0.09}$ Solar. Therefore, we do not consider this alternative possibility any further.

We observed that all parameters of both the highly and minimally ionised absorption components are consistent with being constant among the new observations as well as consistent with previous observations (see Tab. 4 and Ponti et al. 2015). We, therefore, fit all the new soft state spectra forcing the absorption to remain constant over time. As a result the best fit parameters are: $N_H = 29.0 \pm 0.4 \times 10^{22}$ cm$^{-2}$, $\log(\xi_{IA}) = 3.92 \pm 0.16$, $\log(N_{H_{IA}}) = 23.3 \pm 0.3$ and $v_{out} = 700$ km s$^{-1}$ and no significant variation of the fit is observed (see panel F of Fig. 4).

The self consistent ionised absorption component has been created through the photo-ionisation code Cloudy C13.00 (Feiland et al. 2013). The model ingredients are: (1) the soft and hard spectral energy distributions as determined in Ponti et al. 2015; (2) constant electron density $n_e = 10^{2-3}$ cm$^{-3}$; (3) ionisation parameter in the range $\log(\xi/1 \text{ erg cm s}^{-1}) = 23 : 24.5$; (4) intervening column density in the range $\log(N_{H}/1 \text{ cm}^{-2}) = 23.0 : 24.5$; (5) turbulent velocity $v_{turb} = 500 : 1000$ km s$^{-1}$; (6) chemical abundances as in table 7.1 of Cloudy documentation.

2 Dips have been filtered out in the analysis presented in this paper (see Fig. 2).

3 The apparently different best fit column density of neutral absorption obtained fitting the new data, compared to archival observations, is due to the different absorption models (e.g., here the TRABS instead than the PHABS model is used), to the assumed abundances and cross sections as well as an improved treatment of the effects of dust scattering (see Ponti et al. 2017 for a more detailed description).
chi^2 = 1926.0 for 2030 dof, Delta chi^2 = -5.2 for the elimination of 6 dof; Tab. 1.

Hereinafter we will refer to the combination of absorption and scattering effects tauabs^1_axjdust observed during the soft state as SOFTABS.

4.2 XMM-Newton hard state

We performed a simultaneous fit of the seven new hard state XMM-Newton spectra. The absorbed power-law model provides a superior fit (chi^2_L = 4155.7 for 4046 dof), compared to either an absorbed black body (chi^2_BB = 4541.7 for 4046 dof) or an absorbed disk black body (chi^2_DB = 4259.9 for 4046 dof).

Despite no clear residuals are observed in the Fe K band (see Fig 5), we add the same ionised absorption component, with the best fit parameters observed during the soft state. This results in a significant worsening of the fit (Delta chi^2 = -17.6 for the same dof). We further check for the presence of ionised Fe K lines. No narrow absorption lines are detected at more than ~ 95% significance (a narrow Fe XXV absorption line is detected at ~ 93% and ~ 90% significance, during observation 0743630201 and during 0723410401, with an equivalent width EW: ~-16 and EW: ~-13 eV, respectively, while we note that in the soft state such lines are typically observed with an equivalent width of EW: ~-25 eV, EW: ~-30 eV).

From the spectra of the new hard state observations we can derive upper limits to the presence of narrow Fe XXV and Fe XXVI Kao absorption lines between EW_Fe_xxve > -15 and EW_Fe_xxvi > -30 eV and EW_Fe_xxve > -15 and EW_Fe_xxvi > -35 eV, respectively. This rules out the presence of the same ionised absorption component in the hard state, ubiquitously observed during the soft state. However, because of the shorter exposure, we note that these upper limits are less stringent than those obtained from the longer exposure of the 2014-04-03 observation (see Ponti et al. 2015). Therefore we can not exclude the presence of absorption lines with EW of ~3-15 eV in these new observations.

We also tested that the addition of either an Fe Kao disk-line or Gaussian emission line does not improve significantly the fit (chi^2 = 4153.9 for 4038 dof), with upper limits to its equivalent width (assuming sigma = 0.1 keV) of the order of EW < 30 eV.

As observed in previous hard state observations, the neutral absorption column density is consistent with being constant between the various hard state observations (Tab. 1; Delta chi^2 = -8.9 for the elimination of 6 dof). We also note that the best fit equivalent neutral hydrogen column density is N_H = (28.9 ± 0.5) x 10^22 cm^-2, consistent with the value observed during the soft state, when fitted with the disk black body component (see Tab. 1 and Ponti et al. 2015).

Hereinafter we will refer to the absorption and scattering components tauabs^1_axjdust observed during the hard state as HARDABS.

5 SIMULTANEOUS XMM-Newton AND NuSTAR OBSERVATIONS

Seven XMM-Newton observations are simultaneous to five NuSTAR ones (see Tab. A1 and A2). To achieve the best possible constraints on the evolution of the X-ray SED, we performed a combined fit of these simultaneous XMM-Newton and NuSTAR data. The joint XMM-Newton and NuSTAR fit revealed a discrepancy at low energy. Full details and discussion about this discrepancy are provided in appendix A.

5.1 NuSTAR+XMM-Newton soft state: longest observation on 2015-02-26

We started by fitting the longest simultaneous XMM-Newton plus NuSTAR observation that caught AX J1745.6-2901 in the soft state, fitting the low energy excess with the modified absorption model (AXDUST). We initially employed the single emission component model used for the XMM-Newton data (4.1). Therefore, we fitted the spectra with an absorbed disk black body plus disk line model (SOFTABS^1_DISKBB+DISKLINE). This fit left large residuals (see panel "single" of Fig. 3) at high energies, producing an unacceptable fit (chi^2 = 2225.6 for 1362 dof). These residuals demonstrated the need for a second broad band spectral emission component.

5.1.1 Two thermal emission components plus disk-line

We then added to the model an extra black body component (SOFTABS^1_DISKBB+BBODY+DISKLINE), dubbed DBB-BB-DL, producing a significant improvement of the fit (Delta chi^2 = 881.7 for 2 new free parameters; chi^2 = 1343.9 for 1360 dof). With this model, the spectra are best fit by a prominent and hot (kTBB ~ 1.19 ± 0.03 keV) black body component produced from a surface with a reasonable (however small) radius of r_BB = 3.0 ± 0.2 km. However, the high energy emission is produced by a very hot disc black body emission (kTDBB = 3.4 ± 0.1 keV) with an inner radius of the accretion disc (r_DB ~ 1 km) significantly smaller than the NS radius. For this reason, this result is unphysical and it will not be discussed any longer.

We then fitted the spectrum with the same model, but imposing the temperature of the disk black body emission to be smaller than the one of the black body (Fig. 5 Tab. 2). With this set-up, the spectra were fit by a warm (kTDBB = 1.77 ± 0.05 keV) disc
Table 2. Best fit parameters of the new XMM-Newton soft and hard state spectra, once fitted with single components absorbed models. The soft state spectra are best fit with absorbed thermal models with the additional absorption by ionised material, while the hard state spectra are best fit by absorbed power law emission. The best fit emissivity profile of the disk is $r^{-2.4+0.1}$ reflected off a disc with an inclination of $i = 70^{+5}_{-7}$. During the soft state, the neutral and ionised absorption are consistent with being constant over time. However, the ionised absorption component disappears during the hard state. This is consistent with the results from archival observations. † in units of 10^{-4} photons cm$^{-2}$ s$^{-1}$; ‡ in units of 10^{-2} ph keV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 keV; ‡ normalisation $N_{DBB} = R_{DBB}^2 D_{10}^2 \cos(\theta)$, where R_{DBB} is the apparent inner disc radius in km, D_{10} is the distance to the source in units of 10 kpc and θ the angle of the disc ($\theta = 0$ is face on).

Simultaneous XMM-Newton+NuSTAR soft state (2015-02-25 and -26)

Model	DBB-BB-DL	SIMPDBB-DL	DBB-NTH-DL	BB-NTH-DL	DBB-BB-RR	DBB-NTH-RR	BB-NTH-RR	DBB-BB-NTH-RR
N_H	30.9 ± 0.6	30.2 ± 0.6	31.1 ± 0.6	28.2 ± 0.8	31.6 ± 0.6	31.4 ± 0.9	27.9 ± 0.5	32.2 ± 0.9
$\log(\xi_A)$	4.0 ± 0.2	4.2 ± 0.2	4.0 ± 0.2	4.0 ± 0.2	4.1 ± 0.2	4.1 ± 0.2	4.2 ± 0.2	4.1 ± 0.2
$\log(N_{H/A})$	23.5 ± 0.3	23.8 ± 0.3	23.5 ± 0.2	23.5 ± 0.3	23.7 ± 0.2	23.6 ± 0.2	23.6 ± 0.2	23.5 ± 0.2
kT_{DBB}	1.77 ± 0.05	1.70 ± 0.09	1.63 ± 0.09	1.55 ± 0.11	1.1 ± 0.1	1.1 ± 0.1	1.1 ± 0.1	1.1 ± 0.1
N_{DBB}	3.0 ± 0.4	3.3 ± 0.6	2.8 ± 0.9	5.1 ± 1.7	7.0 ± 4.2	17 ± 6		
kT_{BB}	3.0 ± 0.1	1.06 ± 0.08	3.1 ± 0.2	1.01 ± 0.09	2.3 ± 0.2	2.3 ± 0.2	2.3 ± 0.2	2.3 ± 0.2
N_{BB}	0.12 ± 0.03	0.015 ± 0.011	0.08 ± 0.04	7 ± 3	0.5 ± 0.2	0.5 ± 0.2	0.5 ± 0.2	0.5 ± 0.2
f_B	0.63 ± 0.02	0.63 ± 0.03	0.63 ± 0.03	0.63 ± 0.03	0.63 ± 0.03	0.63 ± 0.03	0.63 ± 0.03	0.63 ± 0.03
Γ	4.6 ± 0.03	2.2 ± 0.4	2.6 ± 0.6	2.1 ± 0.3	2.1 ± 0.2	1.1 $^{+1.1}_{-1}$	1.1 $^{+1.1}_{-1}$	1.1 $^{+1.1}_{-1}$
kT_e	3.6 $^{+1.2}_{-0.4}$	3.8 $^{+0.2}_{-0.6}$	3.3 ± 0.3	3.3 ± 0.3	4.6 $^{+0.3}_{-0.4}$	4.6 $^{+0.3}_{-0.4}$	4.6 $^{+0.3}_{-0.4}$	4.6 $^{+0.3}_{-0.4}$
N_{nth}	2.1 $^{+3.8}_{-2.0}$	2.0 $^{+3.8}_{-2.0}$	2.0 $^{+3.8}_{-2.0}$	2.0 $^{+3.8}_{-2.0}$	2.0 $^{+3.8}_{-2.0}$	2.0 $^{+3.8}_{-2.0}$	2.0 $^{+3.8}_{-2.0}$	2.0 $^{+3.8}_{-2.0}$
N_{dd}	8.3 ± 1.4	7.4 ± 1.3	8.7 ± 1.2	7.9 ± 1.5	36 ± 9	55 ± 11	57 ± 8	82 ± 16
N_{ref}	1.08 ± 0.02	1.08 ± 0.02	1.08 ± 0.01	1.08 ± 0.01	1.08 ± 0.01	1.08 ± 0.01	1.08 ± 0.01	1.08 ± 0.01
χ^2/dof	1348.5/1360	1397.2/1360	1346.9/1359	1344.1/1359	1318.3/1360	1306.9/1359	1328.2/1359	1288.5/1357

Table 2. Best fit model of the longest simultaneous soft state XMM-Newton and NuSTAR observations of AX J1745.6-2901 (2015-02-25 and 26). The different lines in the Table report: the model name, the equivalent hydrogen column density of neutral absorption (in units of 1022 atoms cm$^{-2}$), the logarithm of the ionisation parameter $(\log(\xi_A))$ and column density $(\log(N_{H/A}))$ of the ionised absorber, the temperature $(kT_{DBB}, \text{in keV})$ and normalisation (N_{DBB}) of the disk black body and black body components $(kT_{DBB} \text{in keV and } N_{BB})$ (the disc black body normalisation is: $N_{DBB} = R_{DBB}^2 D_{10}^2 \cos(\theta)$, where R_{DBB} is the apparent inner disc radius in km, D_{10} is the distance to the source in units of 10 kpc and θ the angle of the disc; the black body normalisation is: $N_{BB} = R_{BB}^2 D_{10}^2$, where R_{BB} is the black body radius in km and D_{10} is the distance to the source in units of 10 kpc), the fraction of the Comptonised component (f_{BB}), the asymptotic photon index of the power law (Γ), electron temperature $(kT_e, \text{in keV})$ and normalisation of the Comptonised component $(N_{nth}$ in 10$^{-2}$ units), the normalisation of the disc-line component (N_{dd}) in units of 10$^{-4}$ photons cm$^{-2}$ s$^{-1}$), the normalisation of the ionised-relativistic reflection component (N_{ref}) in units of 10$^{-26}$ photons cm$^{-2}$ s$^{-1}$), the cross-normalisation constants $(c_{N_{ref}}$ and $c_{N_{BB}}$ for NuSTAR module A and B, respectively) and statistic (χ^2/dof).
5.1.2 Thermal plus Comptonisation and disk-line components

Alternatively, the high energy part of the emission of AX J1745.6-2901 could be produced by Comptonisation.

High energy cut off in the X-ray band (SIMPL)

To start, we parametrised the Comptonisation component by substituting the hot black body emission with a Comptonised radiation model which assumes that the high energy cut off is at very high energy (the SIMPL convolution model; Steiner et al. 2009). Therefore, we fitted the data with the model SIMPDBB-DL: SOFTABS*(SIMPL(DISKBB)+DISKLINELINE). This model provided a significantly worse fit compared to the previous models ($\chi^2 = 1397.2$ for 1360 dof; Tab. 2).

We note that the photon index of the Comptonised component yields an excessively steep value of $\Gamma = 4.6 \pm 0.1$. Such steep spectra are typically signalling that either the Comptonised component has a thermal origin, or it indicates the presence of a high energy cut off in the power law shape. To test this latter possibility, we re-fitted the spectrum assuming a photon index of $\Gamma = 2$ for the Comptonised component and we added to the model an exponential cut off ($\text{HIGHECUT in Xspec;}$ SOFTABS*SIMPL(DISKBB+DISKLINELINE)HIGHECUT). We obtained a comparable fit ($\Delta \chi^2 = 5.3$ for the same dof) for a cut off energy of $E_c = 6.7 \pm 0.1$ keV. This indicates that if the high energy emission is due to a Comptonisation component, then the Comptonising electrons must have a temperature of a few keV, therefore about two orders of magnitude lower than what is observed in BH binaries and NS during the hard state (see §5.3).

Comptonisation with high energy cut off (NTHCOMP)

We then applied a more sophisticated Comptonisation model that self consistently reproduces both the power law shape and the high energy cut off (NTHCOMP; Zdziarski et al. 1996; Zycki et al. 1999). Therefore, we applied the model SOFTABS*(DISKBB+NTHCOMP+DISKLINELINE), that we call DBB-NTH-DL. We assumed the temperature of the seed Comptonised photons to be equal to the temperature of the disk black body component.

This provides a good fit ($\chi^2 = 1346.9$ for 1359 dof; see Tab. 2), slightly better than the double thermal emission model. In particular, we now observe that the asymptotic power law photon index is steep ($\Gamma \sim 2.2$), however physically acceptable and within the range of values observed during the soft state in other NS and BH systems. Moreover, the temperature of the Comptonising electron is constrained to be: $kT_e \sim 3 - 5$ keV, therefore producing a high energy cut off in the X-ray band, as also suggested by the fit with the SIMPL component. On the other hand, we note that the derived inner disc radius appears to be too small ($r_{DBB} = 5.5 \pm 0.8$ km), even considering the large uncertainties associated with the derivation of this parameter, unless AX J1745.6-2901 is beyond 16 kpc from us.

We also consider the alternative scenario where the thermal emission is produced by black body emission and not by the disk black body. We call this model BB-NTH-DL, SOFTABS*(BBODY+NTHCOMP+DISKLINELINE). We note that this model can also reproduce the data ($\chi^2 = 1344.1$ for 1359 dof; Tab. 2).

5.1.3 Two thermal components plus relativistic ionised reflection

The simultaneous XMM-Newton+NuSTAR spectra are consistent with the presence of a broad Fe Kα emission line during this soft state observation. The Fe Kα line is often the most prominent feature of a reflection component (Fabian et al. 2000; 2009; Nandra et al. 2007; Ponti et al. 2006; 2010; Plant et al. 2014). We, therefore, we assumed the folded energy to be equal to the cut off energy.

© 0000 RAS, MNRAS 000 1-??
tested for the presence of such a reflection component by substituting the DISKLINE with a BBREFL model. The BBREFL model produces a self-consistent ionised reflection spectrum obtained by illuminating a constant density slab with a black body spectrum (Ballantyne 2004). We convolved the BBREFL ionised reflection component with the KDBLUR kernel, that is mimicking the relativistic effects on the shape of the reflection component off an accretion disc around a compact source (Laor 1991). We assumed a disc inclination, inner and outer radii of 80°, 6r_g and 400r_g, respectively. We also fixed the value of the emissivity index to α = 2.4, such as derived by the fit with the disk line component, the Iron abundance to Solar and ionisation parameter to log(ξ) = 1.

We fitted the double thermal plus relativistic ionised reflection model to the data: SOFT-ABSB*(DISKBB+BBODY+KDBLUR(BBREFL)). We call this model, DBB-BB-RR. Because the disc black body component is dominating the source emission up to ~ 15 keV, we imposed that the temperature of the illuminating black body emission is equal to the temperature of the disk black body component. This model provided a significant improvement of the fit, compared to any previously considered model (χ^2 = 1318.3 for 1360 dof; see Fig. 7 and Tab. 2). The introduction of the ionised disc reflection component (green dotted line in Fig. 7) allowed us to reproduce the broad excess in the Fe K band well. Additionally, we note that the spectrum can be fitted with a cooler disc black body (kT_{DBB} = 1.55 ± 0.11 keV), with a slightly larger inner disc radius of r_{DBB} = 7.5 ± 1.1 km. Moreover, because of the Compton reflection hump, the reflection component has a harder spectrum in the 10-40 keV band compared to the illuminating source. This allowed us to reproduce part of the high energy emission in excess above the extrapolation of the disc black body component (see Fig. 7). However, by fixing the temperature of the illuminating black body to the temperature of the disc black body, the ionised reflection could not reproduce all of the high energy emission, therefore it was still requiring the presence of a hot (kT_{BB} = 3.1 ± 0.2 keV) black body emission from small patches on the NS surface (r_{BB} ~ 0.2 – 0.3 km).

We noted that the hot black body component could also contribute to the disc irradiation. If so, the effective temperature of the thermal emission irradiating the disc and producing the reflection spectrum could be higher than kT_{DBB} (as assumed before). We therefore re-fitted the spectra with the same model, but assuming that the reflection is produced by a black body irradiation with temperature kT_R = k(2 × T_{DBB} + T_{BB})/3, intermediate between the temperature of the warm disc black body and hot black body one. The model, with these assumptions provided a significant worsening of the fit (Δχ^2 = -30.2 for the same dof). The central panel of Fig. 7 shows that, as expected, the reflection spectrum (green dotted line) is indeed harder than before. In particular, the spectral shape of the reflection component is similar to the one of the hot black body component (blue dash-dotted line). Such a hard reflection spectrum can therefore reproduce the majority of the hard X-ray emission, therefore it appears to be several times brighter than the hot black body emission. This seems physically unlikely. For this reason, we disregard this model and hereinafter we will assume kT_R = kT_{DBB} (or kT_R = kT_{BB}).

5.1.4 Thermal plus Comptonisation and relativistic reflection

We then employed the same model, explored in section 5.1.2 but we exchanged the DISKLINE component with a relativistic ionised reflection one, i.e., SOFT-ABSB*(DISKBB+NTHCOMP+KDBLUR(BBREFL)) and SOFT-ABSB*(BBODY+NTHCOMP+KDBLUR(BBREFL)) and we called these DBB-NTH-RR and BB-NTH-RR, respectively (Tab. 2 and Fig. 8). We note that in all cases, the models involving the relativistic ionised reflection component provided a significantly better description of the data, compared to the ones employing a disk-line (Tab. 2). Moreover, model DBB-NTH-RR appears preferred over the BB-NTH-RR one (Δχ^2 = 21.3 for the same dof).

The model DBB-NTH-RR provided a good description of the data with reasonable best fit parameters. In particular, we note that the temperature of the disk black body component is significantly lower (kT_{DBB} = 1.1 ± 0.1 keV) and the inner disc radius (r_{DBB} ~ 9 ± 3 km) larger than with the other models considered. Indeed, the hard X-ray flux is now reproduced by the combination of the harder reflection and Comptonization components (see Fig.
body emission in the 1-500 keV band is a component. We observed that the un-absorbed flux of the disk black body emission in the 1-500 keV band is \(F_{1-500} \sim 1.8 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \) about half the flux of the Comptonisation component \(F_{1-500} \sim 3.7 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \), while the flux of the ionised reflection component is rather high being \(F_{1-500} \sim 1.5 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \), \(\sim 27 \% \) of the total illuminating flux.

5.1.5 Three components model

We finally fit the spectrum with the three components model (DBB-BB-NTHCOMP-RR), composed by the double thermal plus Comptonisation and relativistic ionised reflection (SOFT-ABS*(DISKB+BBDISK+DNEL)(BBREFL))). This model provides a significant improvement of the fit compared to previously tested ones (\(\Delta \chi^2 = 18.5 \) for the addition of 2 parameters, F-test probability \(\sim 8 \times 10^{-5} \)).

With this model the soft X-ray emission is dominated by a warm \(kT_{D,BB} = 1.1 \pm 0.1 \text{ keV} \) disc black body component with a reasonable inner disc radius of \(r_{D,BB} = 14 \pm 2 \text{ km} \), corresponding to \(\sim 7 r_g \), therefore larger than the NS radius. A hotter black body component \(kT_{B,B} = 2.3 \pm 0.2 \text{ keV} \) emitted from a small area with a radius \(r_{B,B} = 0.6 \pm 0.2 \text{ km} \) that dominates the \(\sim 8-20 \text{ keV} \) band, while a faint and hard (\(\Gamma \sim 1-2.2 \)) Comptonisation component (with high energy cut off at \(kT_e \sim 5 \text{ keV} \)) becomes important above \(\sim 20 \text{ keV} \) (see Fig. 9).

We observed that the un-absorbed flux of the disk black body emission in the 1-500 keV band is \(F_{1-500} \sim 3.9 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \). A smaller, however comparable flux is observed to be produced by black body radiation \(F_{1-500} \sim 2.0 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \), while the Comptonisation component carries only a small fraction of the energy \(F_{1-500} \sim 0.9 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \). We note that the flux of the ionised reflection component is high requiring no strong contribution from the soft disk black body component. We observed that the un-absorbed flux of the disk black body emission in the 1-500 keV band is \(F_{1-500} \sim 2.3 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \), corresponding to \(\sim 30 \% \) of the total.

5.2 NuSTAR+XMM-Newton soft state: on 2015-04-01 and 2015-04-02

We then applied the same models best fitting the longest simultaneous XMM-Newton+NuSTAR observation (DBB-BB-DL, DBB-NTHRR, BB-NTHRR and DBB-BB-NTHRR) to the other two soft state simultaneous XMM-Newton plus NuSTAR observations. The statistics of these spectra is slightly lower. For this reason, the parameters (e.g., photon index and electron energy) of the weak Comptonised component can not be well constrained. Therefore we fitted these data assuming the best fit values observed during the 2015-02-25 observation (\(\Gamma = 1.1 \) and \(kT_e = 4.6 \text{ keV} \)).

The fit of these additional two XMM-Newton+NuSTAR spectra produced results similar to what was observed during the longer observation on 2015-02-26. Indeed, the spectra were best reproduced by the three component model (DBB-BB-NTHRR). We also observed that the best fit parameters were consistent with the ones obtained during the 2015-02-25 observation (Tab. 3).

The best fit un-absorbed flux of the disk black body, black body and Comptonisation emission during the observation accumulated on 2015-04-02 were: \(F_{1-200} \sim 4.4 \times 10^{-10} \), \(\sim 1.9 \times 10^{-10} \) and \(\sim 0.1 \times 10^{-10} \) erg cm\(^{-2}\) s\(^{-1}\), respectively. The flux of the ionised reflection component was \(\sim 25 \% \) of the total. Instead, on 2015-04-02 they were: \(F_{1-200} \sim 3.2 \times 10^{-10} \), \(\sim 2.7 \times 10^{-10} \) and \(\sim 0.7 \times 10^{-10} \) erg cm\(^{-2}\) s\(^{-1}\), respectively. The flux of the ionised reflection component was \(\sim 33 \% \) of the total.
5.3 NuSTAR+XMM-Newton hard state

We then fitted the two hard state contemporaneous XMM-Newton
plus NuSTAR spectra (Tab. 6). Each of the two long NuSTAR ex-
posures (which started on 2014-08-30 and on 2014-09-27) was par-
tially covered by two shorter XMM-Newton observations (Tab. 4).
For this reason, we fitted the four spectra (2 XMM-Newton plus
NuSTAR FPMA and FPMB) together. We observed no major spec-
tral variation between the XMM-Newton and NuSTAR observations,
therefore we employed the same model, with the same parameters,
to fit the four spectra. We only allowed a normalisation constant
to be different between the various spectra (in order to reproduce
small normalisation differences, associated with minor source flux
variations; see Tab. 6).

We started by fitting the XMM-Newton plus NuSTAR spectra
with the absorbed power-law model best fitting the XMM-Newton
spectra (6.2). This simple model very well reproduces the X-ray
emission of AX J1745.6-2901, during the hard state. The observed
power law photon index (Γ = 1.86 – 1.88) is, in all cases, within
the range of values typically observed during the hard state. The
inter-normalisation constants are within ~ 10% of the expected
value, indicating a minor flux variation of the source between the
different spectra.

As typically observed in accreting BH and NS, the disc black
body emission is far less prominent during the hard state than in
the soft (Done et al. 2007; Dunn et al. 2010). In fact, during hard
states, the thermal emission is commonly weaker and far colder
than during the soft state, with observed temperatures in the range:
kT ~ 0.2 – 0.7 keV (Dunn et al. 2010). Being AX J1745.6–
2901 highly absorbed, we cannot detect any X-ray photon below
~ 3 keV, preventing us from placing strong constraints on the
temperature of such thermal component during the hard state.
On the other hand, to reconstruct fiducial source SED it is essen-
tial to constrain the position and intensity of the disc emission.
Therefore, to restrain this, we fitted the spectra with an array of
models containing a soft thermal component, in addition to the
Comptonisation one, producing the power law emission. In par-
cular, we employed the models SIMPDBB and SIMPPBB that are
reminiscent of the same models that we used for the soft state,
once removing the disk-line and ionised absorption components
(resulting in the models: HARDABS*(SIMPL*DISKBB)) and HARD-
ABS*(SIMPL*BODY), respectively). For each of these models we
explored an array of possible parameters, such as disk black body
temperatures and/or Comptonisation fraction^6 (Tab. 5).

We observed that any disk black body component with tem-
perature in the range kT ~ 2–0.7 keV and Comptonisation
fractions within f_{sc} ~ 3–1.0 are consistent with the data, while
hotter kT ~ 1.0 keV (or kT ~ 0.7 keV) thermal emission produces
a significantly worse fit (Tab. 5).

To constrain the presence of a high energy cut off, we also
employed the model DBB-NTH (implemented in Xspec as HARD-
ABS*(DISKBB+NTHCOMP)). For both series of data-sets, we ob-
served either better or comparable results whenever the disk black
body temperature is assumed to be in the range kT ~ 0.2–
0.7 keV (Tab. 4). For disk temperatures significantly higher than
kT ~ 0.7 keV, the inner disc radius results to be smaller than
the NS radius, therefore we can rule this out as unphys-
ical. On the other hand, smaller disk temperatures are possible
and they imply only upper limits to the inner disc radius (e.g., for
kT ~ 0.2 keV, r_{TDBB} < 10^3 km; Tab. 4). No high energy
cut off is detected within the observed X-ray band. Indeed,
only lower limits to the temperature of the Comptonising electrons
is observed (kT_e > 70 – 100 keV; Tab. 6). This appears very dif-
terent to what is observed during the soft state, when the cut off is
at kT_e ~ 3 – 5 keV (5.1). We conclude by observing that this
simplified model can reproduce the observed X-ray spectra during
the hard state of AX J1745.6-2901.

6 FIT OF THE REMAINING NuSTAR OBSERVATIONS

We then fitted all soft state NuSTAR observations with the best
fit three component model DBB-BB-NTH-RR. Because of the lower
statistics (compared to the simultaneous XMM-Newton+NuSTAR
fits), we fixed the equivalent hydrogen column density, the column
density and ionisation parameter of the ionised absorber as well

Table 6. Best fit parameters for the two soft state simultaneous XMM-Newton+NuSTAR observations accumulated on 2015-04-02 and 2015-04-1. See the caption of Tab. 5 for a description of the parameters.

Model	DBB-BB-RR	DBB-NTH-RR	BB-NTH-RR	DBB-BB-NTH-RR	DBB-BB-RR	DBB-NTH-RR	BB-NTH-RR	DBB-BB-NTH-RR
N_H	31.5 ± 0.6	31.3 ± 0.9	27.0 ± 0.6	31.5 ± 0.9	32.8 ± 1.0	31.1 ± 1.3	28.4 ± 1.2	31.5 ± 1.2
log(G)	4.1 ± 0.2	4.1 ± 0.2	4.1 ± 0.2	4.1 ± 0.2	3.9 ± 0.3	3.9 ± 0.3	4.3 ± 0.4	3.9 ± 0.4
log(N_H)	23.6 ± 0.3	23.7 ± 0.3	23.6 ± 0.3	23.6 ± 0.3	23.3 ± 0.4	23.3 ± 0.3	23.6 ± 0.5	23.2 ± 0.5
kT_{DBB}	1.3 ± 0.1	1.2 ± 0.1	1.2 ± 0.2	1.4 ± 0.3	1.05 ± 0.4	1.02 ± 0.15		
N_{DBB}	8.8 ± 2.4	8.8 ± 2.1	12 ± 3	9 ± 4	7 ± 5	16 ± 3		
kT_{BB}	2.8 ± 0.2	1.08 ± 0.07	2.6 ± 0.2	2.7 ± 0.3	1.0 ± 0.3	2.2 ± 0.1	6 ± 5	0.9 ± 0.3
N_{BB}	0.2 ± 0.1	11 ± 5	0.4 ± 0.2	0.3 ± 0.2	1.7 ± 0.1	1.7 ± 0.2	1.1	
kT_e	1.4 ± 0.4	1.4 ± 0.5	1.1†	2.9 ± 0.1	2.9 ± 0.2	3.4†		
N_{nth}	0.7±0.3	0.3±0.2	0.003±0.002	3.2±1.3	0.3±0.01	0.01±0.01		
N_{ref}	76 ± 14	76 ± 13	73 ± 16	85 ± 15	63 ± 30	83 ± 22	75 ± 15	100 ± 28
e_{N_{A}}	1.09 ± 0.02	1.09 ± 0.01	1.09 ± 0.02	1.09 ± 0.02	1.11 ± 0.02	1.11 ± 0.02	1.11 ± 0.02	1.11 ± 0.02
e_{N_{B}}	1.09 ± 0.02	1.09 ± 0.01	1.09 ± 0.02	1.09 ± 0.02	1.09 ± 0.02	1.09 ± 0.02	1.09 ± 0.02	1.09 ± 0.02
\chi^2/\text{dof}	1284.8/1271	1283.6/1270	1304.4/1270	1280.6/1270	1257.5/1306	1245.6/1305	1249.8/1305	1241.6/1305

© 0000 RAS, MNRAS 000 1-17?
Table 4. Best fit parameters for the two hard state simultaneous XMM-Newton+NuSTAR observations accumulated on 2014-09-28 and 2014-08-31. $c_{\text{xmmn}2}$ shows the normalisation constant of the second XMM-Newton spectrum. See as caption of Tab.2 for a description of the other parameters. * Indicated the parameter is fixed to the given value. For model SIMPDBB, we report the variation of the best fit parameters to the assumed parameters. For the observation accumulated on 2014-09-28. For example, assuming $F_{sc} = 1$ and $kT_{DBB} = 0.4, 0.7$ and 1.0 keV, we obtained $N_{DBB} = 46 \pm 2, 51 \pm 1$ and 1.27 ± 0.03, with χ^2/dof $= 2363.5/2220$, 2363.2/2220 and 2365.9/2220, respectively (all other parameters of the model do not vary significantly), while assuming $kT_{DBB} = 0.4$ keV and $F_{sc} = 0.0$ and 0.3, we obtained $N_{DBB} = 78 \pm 3$ and 160 ± 5, with χ^2/dof $= 2362.5/2220$ and 2366.2/2220. We then performed the same exercise for model SIMPBB. For $kT_{DBB} = 0.7$ and $F_{sc} = 1.0$, we obtain $N_{DBB} = 10.9 \pm 0.2$ and χ^2/dof $= 2383.4/2220$, while for $kT_{DBB} = 0.4$ and $F_{sc} = 0.3$, we obtain $N_{DBB} = 302 \pm 8$ and χ^2/dof $= 2381.0/2220$. For the observation accumulated on 2014-08-31. For example, assuming $F_{sc} = 1$ and $kT_{DBB} = 0.4, 0.7$ and 1.0 keV, we obtained $N_{DBB} = 44 \pm 2, 4.8 \pm 1$ and 1.19 ± 0.03, with χ^2/dof $= 2186.6/2130, 2188.1/2130$ and 2214.0/2130, respectively (all other parameters of the model do not vary significantly), while assuming $kT_{DBB} = 0.4$ keV and $F_{sc} = 0.0$ and 0.3, we obtained $N_{DBB} = 74 \pm 3$ and 150 ± 6, with χ^2/dof $= 2188.8/2130$ and 2194.9/2130. We then performed the same exercise for model SIMPBB. For $kT_{BB} = 0.7$ and $F_{sc} = 1.0$, we obtain $N_{BB} = 10.0 \pm 0.2$ and χ^2/dof $= 2209.7/2130$, while for $kT_{BB} = 0.4$ and $F_{sc} = 0.3$, we obtain $N_{BB} = 340 \pm 9$ and χ^2/dof $= 2210.6/2130$.

7 DISCUSSION

We analysed the persistent emission from AX J1745.6-2901. Thanks to simultaneous NuSTAR + XMM-Newton observations we could detail the emission mechanisms and obtain accurate X-ray SEDs for both the soft and hard state. We note that, previous spectral fitting works on AX J1745.6-2901 were restricted to the limited energy band provided by XMM-Newton (Ponti et al. 2015), therefore impeding detailed fits of the X-ray continuum with models more complex than a simple power law or (disk)blackbody emission for the hard and soft states, respectively. Thanks to the addition of the NuSTAR data we demonstrated the richness of information of the X-ray emission from AX J1745.6-2901.

Strong spectral and flux variability is observed between the
two states, on the other hand only moderate variations are observed between different observations within the same state.

All observations show clear evidence for a high column density of neutral absorption \(N_H \sim 3.0 \times 10^{22} \) cm\(^{-2}\). While it is well known that in dipping sources (during dips) the neutral absorption is highly variable (Frank et al. 1987; Díaz-Trigo et al. 2006; Ponti et al. 2016), we observed that all soft and hard state spectra are roughly consistent with the same column density of absorbing material, once they are fitted with the same model (e.g., model DBB-BB-NTH-RR and SIMPBB). This is consistent with the idea that a significant fraction of the neutral absorption (during persistent emission) is produced by the interstellar medium (see Jin et al. 2017a,b; Ponti et al. 2017).

7.1 Soft state observations

All soft state observations of AX J1745.6-2901 show clear signs of ionised absorption lines in the \(\text{XMM-Newton} \) and \(\text{NuSTAR} \) spectra, signatures of a highly ionised \(\log \left(\xi_{IA} \right) \sim 4.1 \) and high column density \(\log \left(N_{H_{\text{IA}}} \right) \sim 23.5 - 24 \) plasma. We note that these values are within the range of typical ionisation states and column densities observed in NS and BH LMXB (King et al. 2013; Ponti et al. 2016; Díaz-Trigo et al. 2016). Because of the limited energy resolution, we can only place weak constraints on the bulk outflow velocity of this plasma \(\left(v_{\text{out}} < 2000 \text{ km s}^{-1} \right) \). The ionised plasma is consistent with being constant within all soft state observations.

During the soft state, once the neutral and ionised absorptions are reproduced, broad positive residuals appear in the \(5 - 7 \) keV band. We explored whether such excess could be the manifestation of the emission component of a P-Cygni profile. Nevertheless, the broadness of this feature is inconsistent with the outflow velocities typically observed in winds in NS and constrained in AX J1745.6-2901. Alternatively, we explored whether such feature might be reproduced by a broad Fe K\(\alpha \) emission line, reflected off the accretion disc. The introduction of a disk-line profile provides an acceptable fit, with a line equivalent width \(EW \sim 120 - 200 \) eV, consistent with disc reflection (Matt et al. 1993). The result for the best fit disc inclination is high, roughly consistent with the eclipsing behaviour of the source, and the disc emissivity index is scaling with radius as \(\tau = 1.4 \pm 0.1 \), a value consistent with illumination of a flared disc by a central source. We note that for all combinations of continuum emission models the substitution of the disk-line component with a self consistent ionised reflection spectrum provides a significant improvement of the fit. Although we cannot rule out alternative hypotheses (e.g., more complex absorption, etc.), this strengthens the suggestion that the positive excess in the \(5 - 7 \) keV band has an origin as reprocessing from the accretion disc.

The soft X-ray spectrum (within the \(\text{XMM-Newton} \) band) of AX J1745.6-2901 is dominated by a prominent thermal component. The three emission component (DBB-BB-NTH-RR) model provides a superior fit and an excellent description of all soft state spectra. In this model, the continuum is produced by a prominent disk black body component with a temperature \(kT_{\text{DBB}} = 1.0 - 1.2 \) keV, dominating the emission below ~ 5 keV. Such a range of temperatures is theoretically expected and typically observed in BH and NS in the soft state. Assuming that AX J1745.6-2901 is located at the GC and that its disc is highly inclined \((i \sim 80^\circ) \), indeed it shows eclipses and some correction factors (see Kubota et al. 1998), the best fit inner disc radius results to be \(r_{\text{DBB}} \sim 12 - 16 \text{ km} \) (\(\sim 7 r_g \)). As expected, this value is comparable (however larger) than the typical NS radius. In the best fit model (DBB-BB-NTH-RR), the second emission component, required to reproduce the hard X-ray emission measured by \(\text{NuSTAR} \), is associated with black body emission, possibly connected to the boundary layer at the NS surface. This component dominates the source emission in the ~ 8 – 20 keV band. Its temperature ranges within \(kT_{\text{DBB}} \sim 2.2 - 3.0 \) keV with an associated very small emitting radius of \(r_{\text{BB}} \sim 0.5 - 0.8 \text{ km} \). In theory, this radiation might be associated with emission from small and hot patches or an equatorial bundle on the NS surface (e.g., where the accretion column impacts the NS surface). The emission above ~ 20 keV can be fit by the addition of a faint Comptonisation component. In this three component model, the Comptonisation emission is very weak, preventing a detailed characterisation of its parameters. The best fit asymptotic photon index and electron temperature are \(\Gamma = 1.14 \pm 0.1 \) and \(kT_e = 4.6 \pm 0.3 \) keV, respectively. These values carry large uncertainties, however they indicate a significant optical thickness of this medium with a scattering optical depth \(\tau \) of \(\tau \geq 3 \) (assuming the relation \(\Gamma = 9/4 + 1/(kT_e/c) \left(\frac{1}{1 + \tau^3/3} \right) \geq 1/2 \) for a thin, Sunyaev & Titarchuk 1980). Finally, the addition of a relativistic ionised reflection model also improves the fit. We observed that in all cases, the combination of disk black body plus black body emission carry most
(≈ 70−75 %) of the flux within the 1-200 keV band and the ratio of black body to disk black body radiation is ≈ 0.4−0.8. On the other hand the Comptonisation component carries only ≈ 10 % of the 1-200 keV emission, while a significant contribution (≈ 20−30 %) is provided by the relativistic ionised reflection.

We note, that in the three component model, the bulk of the ≈ 8−20 keV emission is produced by the black body radiation and the Comptonised component is very faint, and relegated to higher energies. Both the spectral parameters and the relative contributions of the emission components are consistent with those observed in a very similar system, 4U 1608-52, during the soft state and using the same modelling (Armas Padilla et al. 2017). This system is seen through an N_H ≈ 20–30 times lower than that of AX J1745.6-2901, which enables to study the softest spectral region (<3 keV). We also note that the low comptonization fractions inferred from the three component model are systematically seen in BH soft states (e.g. Dunn et al. 2011, Muñoz-Darias et al. 2013). This behaviour seems reasonable given that both BH and NS systems reach similarly low fast variability levels during the soft state, which is likely to be produced in the comptonization component (e.g. Muñoz-Darias et al. 2014; see also Lin et al. 2007, 2009).

Alternatively, the soft state spectra are reasonably well reproduced by a two component model (e.g. disk black body emission plus comptonisation). In this case, the comptonised component would be more prominent, producing most of the emission above 8 keV. If so, a high energy cut off must occur within the X-ray band, implying that the comptonised emission is produced by a population of low temperature electrons \((kT_e ≈ 3−4 \text{ keV})\).

We stress, that this electron temperature is one to two orders of magnitude smaller than what is typically observed in BH binaries (both soft and hard states) and in NS during the hard state. In this scenario, the best fit photon index is \(\Gamma ≈ 1.7−2.2\), therefore consistent with the values typically observed in accreting BH and NS. The observed photon index and electron temperature imply a very high optical depth of this plasma (\(\tau ≈ 8−12\)). This means that, even when the high energy radiation is fitted with a (non-thermal) comptonisation model, the comptonised radiation goes into the limit of becoming nearly-thick black body radiation, right where the comptonisation radiation and black body blur.

7.2 Hard state observations

During the hard state, AX J1745.6-2901’s X-ray emission is dominated by a power law with photon index \(\Gamma ≈ 1.8−2.0\), showing no evidence for a high energy cut off \((kT_e > 70−100 \text{ keV})\). This implies a small optical depth of the comptonising plasma (\(\tau < 1.6\)). Would the high energy cut off be located at \(kT_e ≈ 300\) or \(kT_e ≈ 800\) keV, then the comptonising photon optical depth would be \(\tau ≈ 0.4−0.15\), resulting into a very optically thin layer. The large lower limit to the energy of the cut off appears rather high compared to what is typically observed in accreting NS (Burke et al. 2017) and this might be related to inclination effects (Makishima et al. 2008; Zhang et al. 2014).

We also confirm previous results observing the disappearance of the ionised absorption plasma in the hard state. As already discussed in previous works, it is excluded that the absorption disappears because of over-ionisation, during the hard state (Ponti et al. 2015). To understand the origin of this variation, we constructed here detailed and accurate SED to use as input for investigating the photoionisation stability of the absorbing plasma. We will show in a companion paper that, whenever the ionised plasma observed during the soft state is illuminated by a hard state SED, it becomes unstable. Therefore, it has to change its physical conditions (Bianchi et al. 2017).

Tight upper limits are observed also on the presence of broad emission lines (\(EW < 30 \text{ eV}\)), during the hard state. This could be the consequence of a major variation in the accretion flow, with the optically thick layer accretion disc that is ubiquitous during the soft state becoming optically thin (therefore producing no reflection component) inside a (rather large) truncation radius, during the hard state (Done et al. 2007; Plant et al. 2014; 2015; De Marco et al. 2015a,b; 2016).

8 CONCLUSIONS

We presented 11 new \textit{XMM-Newton} observations as well as 15 new \textit{NuSTAR} data-sets, that caught AX J1745.6-2901 in outburst, therefore building a large database (of almost 40 observations) of good resolution X-ray spectra of a high inclination NS X-ray binary accreting at intermediate rates (i.e. atoll regime).

- We built accurate X-ray SEDs, representative of each state, starting from the best fit models best reproducing the \textit{XMM-Newton} and \textit{NuSTAR} spectra. We also reported radio (GMRT) and optical (GROND) upper limits that are consistent with the known radio and optical to X-ray relations.
- All soft state observations are well described by a three component model. The best fit is provided by a disc black body component with \(kT_{BB} ≈ 1.1−1.2 \text{ keV}\) an inner disc radius \(r_{BB} ≈ 12−16 \text{ km} ≈ 7 r_g\), plus a hot \(kT_{BB} ≈ 2.2−3.0 \text{ keV}\) black body component with a small emitting radius \(r_{BB} ≈ 0.5−0.8 \text{ km}\), possibly produced by the boundary layer at the NS surface, plus a faint compstonisation. Additionally, neutral plus ionised absorption and relativistic ionised reflection components are required by the data.
- All hard state observations are dominated by hard X-ray radiation, well reproduced by a rather flat power law emission (\(\Gamma ≈ 1.8−2.0\)). No significant curvature is detected in the \textit{XMM-Newton+NuSTAR} band, indicating no requirement for a high energy cut off up to \(70−140 \text{ keV}\). This implies a small optical depth of the comptonising plasma (\(\tau < 1.6\)).
- We confirm, tripling the number of X-ray observations, the ubiquitous presence of Fe K absorption lines during the soft state \(log(\xi_{Fe}) ≈ 3.7−4.3\), \(log(N_{H,Fe}) ≈ 23.4−23.5\), \(v_{out} < 2000 \text{ km s}^{-1}\) and \(v_{urb} ≈ 500−700 \text{ km s}^{-1}\). The plasma physical parameters remain roughly constant during all the soft state observations, while the ionised absorption features are significantly weakening during the hard state, as observed in archival data (Ponti et al. 2015). We will investigate the dependence of the plasma properties on the source SED (therefore on its photo-ionisation stability) in a companion paper (Bianchi et al. 2017).
- During all soft state observations positive residuals remain in the \(6−8 \text{ keV}\) band. Such emission can be well reproduced by a reflection component with an Fe Kα line with \(EW ≈ 120−200 \text{ eV}\). The best fit parameters of the broad emission line indicate a rather standard disc emissivity (\(r^{-2.45±0.1}\)) from a highly inclined accretion disc (\(\alpha ≈ 70^\circ−80^\circ\)).

The disc line is not observed during the hard state, in line with the idea that the disc might be truncated, during the hard state (e.g. Plant et al. 2014; 2015; De Marco et al. 2015; 2016).

- Although the ionised absorption is highly variable between observations in the soft and in the hard state, a constant column density of neutral absorption can fit all \textit{XMM-Newton} spectra and all \textit{NuSTAR} spectra of the persistent (out of dip) emission of AX J1745.6-2901. This would be expected if the majority of the
neutral absorption is due to material in the interstellar medium (Jin et al. 2017a,b).

ACKNOWLEDGMENTS

The authors wish to thank Jan-Uwe Ness, Karl Foster, Ignacio de la Calle and the rest of the XMM-Newton and NuSTAR scheduling teams for the support that made the coordinated observations possible. We would like to thank the referee for the helpful comments and careful reading of the paper. The GM C XMM-Newton monitoring project is supported by the Bundesministerium für Wirtschaft und Technologie/Deutsches Zentrum für Luft- und Raumfahrt (BMWi/DLR, FKZ 50 OR 1408 and FKZ 50 OR 1408) and the Max Planck Society. SB acknowledges financial support from the Italian Space Agency under grant ASI-INAF I/037/12/0. TMD acknowledges support via a Ramón y Cajal Fellowship (RYC-2015-18148). BDM acknowledges support from the European Unions Horizon 2020 research and innovation programme and the Polish National Science Centre grant Polonez 2016/P/ST9/04025. These results are based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Centre (ASDC, Italy) and the California Institute of Technology (USA). We thank the staff of the GMRT who have made these observations possible. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. Part of the funding for GROND (both hardware as well as personnel) was generously granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1).

APPENDIX A: FURTHER DETAILS ON NuSTAR DATA REDUCTION

A1 Bright transients

The immense improvement in the NuSTAR point spread function (PSF), compared to previous hard X-ray telescopes, allows us to accurately study the hard X-ray emission from relatively faint sources like AX J1745.6-2901 in extremely crowded fields such as the GC (Mori et al. 2015; Hong et al. 2015).

The four panels in Fig. A1 show the NuSTAR RGB image of the regions around AX J1745.6-2901. The top left panel shows the X-ray emission on 2012-07-20, when no bright X-ray transient was observed. Bright and diffuse X-ray emission is permeating the GC regions, producing a highly spatially variable background (see also Wang et al. 2002; Ponti et al. 2015; Mori et al. 2015; Fig. A1). The right panel shows the X-ray emission on 2013-04-27, just after the start of the long outburst of SGR J1745-2900, the magnetar that is located at ~1.45′ from AX J1745.6-2901 and only ~2.4′′ from Sgr A* (Rea et al. 2013; Mori et al. 2013; Kaspi et al. 2014). We note that despite SGR J1745-2900 is lying outside of the extraction circle of AX J1745.6-2901, a fraction of SGR J1745-2900’s photons enter into AX J1745.6-2901’s extraction region, polluting the spectra of AX J1745.6-2901. SGR J1745-2900’s spectrum is very soft, it is best fit with $kT \sim 0.7 - 0.9$ keV, an absorbed 1-10 keV flux of $F_{1-10} \sim (2-20) \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$, absorbed by a column density of neutral material of $N_H \sim 1.5 \times 10^{23}$ cm$^{-2}$, exponentially decreasing over the period 2013-2014 (Mori et al. 2013; Rea et al. 2013; Kaspi et al. 2015; Coti-Zelati et al. 2015). The bottom panels of Fig. A1 show that the emission of AX J1745.6-2901 dominates over that of SGR J1745-2900 when it was in outburst (see the bottom left and right panels of Fig. A1).

We note that during the observation performed on 2016 February 18th (obsid: 90101022002), Swift J174540.7-290015, the accreting binary located at only ~1.5′ from AX J1745.6-2901, was in outburst and brighter than AX J1745.6-2901, therefore hampering a proper study of the spectrum of AX J1745.6-2901 (Degenaar et al. 2016; Ponti et al. 2016). For this reason, we excluded this observation from further analysis.

A2 Background

To evaluate the importance on our results of the bright and highly spatially variable background emission, we extracted the background photons from several regions. We initially selected the background during the longest NuS TAR exposure (accumulated in 2012-07-20; ~156.8 ks), when AX J1745.6-2901 was in quiescence and no bright transient within a few arcmin from Sgr A* was active (see Fig. A1). We extracted the background from the same region used for AX J1745.6-2901’s

Figure A1. NuSTAR exposure corrected RGB images of AX J1745.6-2901 (red, green and blue show the 3-6, 6-10 and 10-60 keV band, respectively). The white dashed circle shows the region used to extract the spectrum of AX J1745.6-2901. The white and red crosses show the position of Sgr A* and SGR J1745-2900, respectively. The top left panel shows the GC on 2012-07-20, when no bright X-ray transient was observed and AX J1745.6-2901 was in quiescence. The scale is in Galactic coordinates. The top right shows the GC X-ray emission on 2013-04-27, just before the outburst of AX J1745.6-2901 and around the peak of the outburst of SGR J1745-2900. The bottom left and right panels show the X-ray emission on 2015-02-25 and 2014-09-27, while AX J1745.6-2901 was in the soft and hard state respectively. The magenta dashed circle shows the region used to extract the local background. The same logarithmic colour scale has been applied to all maps.

© 0000 RAS, MNRAS 000, H-77
Figure A2. NuSTAR spectra of AX J1745.6-2901 and of the background. The red dots and black squares show the spectra of AX J1745.6-2901 during the soft (2015-02-25) and hard state (2014-09-27), respectively. The blue asterisks show the background spectrum, from the same region used to extract the photons of AX J1745.6-2901, when the source was quiescent and no X-ray transient was detected (2012-07-20). The green asterisks show the background spectrum (green asterisks in Fig. A2) as the peak of the X-ray outburst (Fig. A1). We will refer to this background as BackQuie. To estimate the maximum contamination of SGR J1745-2900 to the spectrum of AX J1745.6-2901, we extracted a background spectrum from the same region used to extract AX J1745.6-2901's photons, from an observation obtained on 2013-04-27, when SGR J1745-2900 was in outburst. The comparison between the local and quiescent (BackQuie) backgrounds indicates that the latter are dominated by the diffuse GC emission, with only a small contribution from detector and particle background up to ∼ 30 – 40 keV (see Mori et al. 2015 for more details). To correctly subtract the GC diffuse emission, we therefore chose to use BackQuie as background for the spectral analysis.

A3 NuSTAR vs. XMM-Newton low energy small mismatch

A3.1 Soft state

The black, red and green data in Fig. A3 show the XMM-Newton, NuSTAR FPMA and FPMB spectra, respectively, obtained during the soft state observation with the longest simultaneous exposure (Tab. A1 and A2). We fit the XMM-Newton and NuSTAR spectra with model DBB-BB-DL (see §5.1.1). The XMM-Newton spectrum is corrected for the effects of dust scattering (see Jin et al. 2017). We fit the XMM-Newton data within the 3-10 keV band and the NuSTAR ones in the 5-40 keV band. This model provides a reasonable fit of the data over the considered energy ranges (χ² = 1454.9 for 1386 dof).

Figure A3 shows that, the NuSTAR data over the 3 – 5 keV band sit systematically above the extrapolation of the previously obtained best fit model. We correct XMM-Newton for dust scattering effects using SOFTABS, but it is beyond the scope of the paper to do the same for NuSTAR, therefore we ignore NuSTAR below 5.5 keV, where dust scattering effects are prominent.

A3.2 Hard state

The black and red spectra in Fig. A4 show the hard state XMM-Newton spectra obtained on 2014-09-28 and -29, respectively, during the longest simultaneous NuSTAR exposure (Tab. A1 and A2).
Figure A4. (Top panel:) The black, red, green and blue data shows the two XMM-Newton, NuSTAR FPMA and FPMB spectra obtained during the hard state simultaneous observation with the longest exposure (Tab. A1 and A2). The XMM-Newton and NuSTAR spectra are fitted over the 3-10 keV and 5-40 energy band. No residuals are observed at low energy when such model (best fitting the XMM-Newton data) is extrapolated in the 3-5 keV range. (Bottom panel:) Residuals after fitting the spectra with model DBB-NTHRR.

The green and blue spectra show the simultaneous FPMA and FPMB spectra. Because during the hard state there is no evidence for ionised absorption or a reflection component, we fit these hard state spectra with a simple power law component absorbed by neutral material. The photon index observed by NuSTAR and within the two XMM-Newton spectra are all consistent with each other (although the one measured by NuSTAR is slightly flatter), therefore we required the photon index to be the same for all spectra. We obtained a reasonable fit of the data ($\chi^2 = 2255.1$ for 2118 dof). Fig. A4 shows that this model reproduces not only the XMM-Newton, but also the NuSTAR data even in the soft X-ray band, leaving no visible residuals.

The small low energy mismatch detectable during the high flux soft state observations is not visible during the hard state observations, indicating that both XMM-Newton and NuSTAR are very well cross-calibrated.

REFERENCES

Armas Padilla, M., Ueda, Y., Hori, T., Shidatsu, M., & Muñoz-Darias, T. 2017, MNRAS, 467, 290
Arnaud, K. A. 1996, Astronomical Data Analysis Software and Systems V, 101, 17
Barret, D., Olive, J. F., Boirin, L., et al. 2000, ApJ, 533, 329
Barret, D. 2001, Advances in Space Research, 28, 307
Barret, D., & Olive, J.-F. 2002, ApJ, 576, 391
Belloni, T., Psaltis, D., & van der Klis, M. 2002, ApJ, 572, 392
Belloni, T. M., Motta, S. E., & Muñoz-Darias, T. 2011, Bulletin of the Astronomical Society of India, 39, 409
Belloni, T., Psaltis, D., & van der Klis, M. 2002, ApJ, 572, 392
Bianchi, S., Ponti, G., Muñoz-Darias, T., & Petrucci, P.-O. 2017, arXiv:1709.00860
Bland-Hawthorn, J., & Gerhard, O. 2016, ARA&A, 54, 529
Brandt, W. N., & Schulz, N. S. 2000, ApJ, 544, L123
Burke, M. J., Gilfanov, M., & Sunyaev, R. 2017, MNRAS, 466, 194
Church, M. J., & Balucinska-Church, M. 1995, A&A, 300, 441
Church, M. J., & Balucinska-Church, M. 2001, A&A, 369, 915
Church, M. J., & Balucinska-Church, M. 2004, MNRAS, 348, 955
Coti Zelati, F., Rea, N., Papitto, A., et al. 2015, MNRAS, 449, 2685
Coriat, M., Corbel, S., Buxton, M. M., et al. 2009, MNRAS, 400, 123
Corral-Santana, J. M., Casares, J., Muñoz-Darias, T., et al. 2016, A&A, 587, A61
Degenaar, N., & Wijnands, R. 2009, A&A, 495, 547
Degenaar, N., Wijnands, R., Corral-Santana, J. M., Casares, J., & Muñoz-Darias, T. 2016, The Astronomer’s Telegram, 9196,
Degenaar, N., Wijnands, R., Reynolds, M. T., et al. 2016, MNRAS, 467, 290
De Marco, B., Ponti, G., Muñoz-Darias, T., & Nandra, K. 2015, ApJ, 814, 50
De Marco, B., & Ponti, G. 2016, ApJ, 826, 70
Díaz Trigo, M., Parmar, A. N., Boirin, L., Méndez, M., & Kaastra, J. S. 2006, A&A, 445, 179
Díaz Trigo, M., & Boirin, L. 2016, Astronomische Nachrichten, 337, 368
Di Salvo, T., Stella, L., Robba, N. R., et al. 2000, ApJ, 544, L119
Done, C., & Gierliński, M. 2006, MNRAS, 367, 659
Done, C., Gierliński, M., & Kubota, A. 2007, A&A, 472, 1
Done, C., & Diaz Trigo, M. 2010, MNRAS, 407, 2287
Dunn, R. J. H., Fender, R. P., Körding, E. G., Belloni, T., & Cabanac, C. 2010, MNRAS, 403, 61
Dunn, R. J. H., Fender, R. P., Körding, E. G., Belloni, T., & Merloni, A. 2011, MNRAS, 411, 337
Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, MNRAS, 238, 729
Fabian, A. C., Iwasawa, K., Reynolds, C. S., & Young, A. J. 2000, PASP, 112, 1145
Fabian, A. C., & Ross, R. R. 2010, SSRv, 157, 167
Falcke, H., Körding, E., & Markoff, S. 2004, A&A, 414, 895
Fender, R., Corbel, S., Tzioumis, T., et al. 1999, ApJ, 519, L165
Fender, R. P., & Hendry, M. A. 2000, MNRAS, 317, 1
Fender, R. P. 2001, MNRAS, 322, 31
Fender, R. P., & Kuulkers, E. 2001, MNRAS, 324, 923
Fender, R. P., Belloni, T. M., & Gallo, E. 2004, MNRAS, 355, 1105
Fender, R. P., Homans, J., & Belloni, T. M. 2009, MNRAS, 396, 1370
Fender, R., & Muñoz-Darias, T. 2016, Lecture Notes in Physics, Berlin Springer Verlag, 905, 65
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, RMxAA, 49, 137
Frank, J., King, A. R., & Lasota, J.-P. 1987, A&A, 178, 137
Gandhi, P., Blain, A. W., Russell, D. M., et al. 2011, ApJ, 740, 194
Genzel, R., Tacconi, L. J., Gracia-Carpio, J., et al. 2010, MNRAS, 407, 2091
Gierliński, M., & Done, C. 2002, MNRAS, 337, 1373

© 0000 RAS, MNRAS 000 1–??
Table A1. A list of all the new XMM-Newton observations considered in this work. The columns of the table report the XMM-Newton OBSID, the XMM-Newton revolution, the observation start date and time, the observation duration and the EPIC-pn exposure time after cleaning, the source state (H=hard state; S=soft state). The following columns give the $3 - 6 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$. The last column shows, in order, the count-rate thresholds applied to select bursting, eclipsing and intense dipping periods, the hard and soft count rates and the thresholds to select out intense particle activity periods. A more exhaustive description of the data reduction and cleaning is provided in Section 2.1. With bold characters are ones. Italic characters indicate observations corrupted by very bright X-ray transients.

Table A2. A list of all NuSTAR observations considered in this work. The columns of the table report the OBSID, the observation start date, the observation duration and cleaned exposure, the source state (H=hard state; S=soft state). The following columns give the $3 - 6 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$. The last column shows the count-rate thresholds applied to remove bursts, eclipses and dips. With bold characters are the NuSTAR observations simultaneous with the NuSTAR ones. Italic characters indicate NuSTAR observations corrupted by very bright X-ray transients.
Yamada, S., Makishima, K., Uehara, Y., et al. 2009, ApJ, 707, L109
Zhang, S., Hailey, C. J., Mori, K., et al. 2015, ApJ, 815, 132
Zdziarski, A. A., Johnson, W. N., & Magdziarz, P. 1996, MNRAS, 283, 193
˙Zycki, P. T., Done, C., & Smith, D. A. 1999, MNRAS, 309, 561