Lead Article

Association between plant-based diets and plasma lipids: a systematic review and meta-analysis

Yoko Yokoyama, Susan M. Levin, and Neal D. Barnard

Context: Although a recent meta-analysis of randomized controlled trials showed that adoption of a vegetarian diet reduces plasma lipids, the association between vegetarian diets and long-term effects on plasma lipids has not been subjected to meta-analysis. Objective: The aim was to conduct a systematic review and meta-analysis of observational studies and clinical trials that have examined associations between plant-based diets and plasma lipids. Data Sources: MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials were searched for articles published in English until June 2015. Study Selection: The literature was searched for controlled trials and observational studies that investigated the effects of at least 4 weeks of a vegetarian diet on plasma lipids. Data Extraction: Two reviewers independently extracted the study methodology and sample size, the baseline characteristics of the study population, and the concentrations and variance measures of plasma lipids. Mean differences in concentrations of plasma lipids between vegetarian and comparison diet groups were calculated. Data were pooled using a random-effects model. Results: Of the 8385 studies identified, 30 observational studies and 19 clinical trials met the inclusion criteria (N = 1484; mean age, 48.6 years). Consumption of vegetarian diets was associated with lower mean concentrations of total cholesterol (−29.2 and −12.5 mg/dL, \(P < 0.001 \)), low-density lipoprotein cholesterol (−22.9 and −12.2 mg/dL, \(P < 0.001 \)), and high-density lipoprotein cholesterol (−3.6 and −3.4 mg/dL, \(P < 0.001 \)), compared with consumption of omnivorous diets in observational studies and clinical trials, respectively. Triglyceride differences were −6.5 (\(P = 0.092 \)) in observational studies and 5.8 mg/dL (\(P = 0.090 \)) in intervention trials. Conclusions: Plant-based diets are associated with decreased total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol, but not with decreased triglycerides. Systematic Review Registration: PROSPERO number CRD42015023783. Available at: https://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015023783.

INTRODUCTION

Elevated blood concentrations of low-density lipoprotein cholesterol (LDL-C) are associated with increased risk of coronary heart disease. Although lowering LDL-C concentrations can reduce cardiovascular morbidity and mortality, hyperlipidemia is underdiagnosed and undertreated. A 10% increase in the prevalence of...
treatment for hyperlipidemia could prevent an estimated 8000 deaths per year. It has been further estimated that even modest steps, such as those proposed by the National Cholesterol Education Program Adult Treatment Panel 3 primary prevention guidelines, could prevent approximately 20,000 heart attacks and 10,000 deaths due to coronary heart disease and save almost $3 billion in heart disease-related medical costs per year. Although LDL-C has been the primary lipoprotein of concern, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triglycerides also play roles in heart disease risk, with TC, LDL-C, and triglycerides positively associated with risk and HDL-C possibly playing a protective role. Here, “plasma lipids” refers to the group of lipids including TC, LDL-C, HDL-C, and triglycerides.

Modifiable factors, including diet, weight, and exercise, may play significant roles in developing hyperlipidemia. Vegetarian diets are defined as diets that exclude meats; some vegetarian diets include dairy products and eggs. Vegetarian diets usually emphasize the consumption of fruits, vegetables, beans, and grains. Previous reviews have suggested that vegetarian diets are associated with lower plasma lipid concentrations. Although a recent meta-analysis of randomized controlled trials showed that adoption of a vegetarian diet reduces plasma lipids, long-term effects of vegetarian diets were not studied. To the best of knowledge, the association between vegetarian diets and long-term effects on plasma lipids has not been subjected to meta-analysis. Therefore, a meta-analysis of studies that have examined vegetarian diets’ relationship on plasma lipid concentrations was performed.

METHODS

Data sources and search strategy

The search strategy is shown in Table S1 in the Supporting Information online. The electronic databases MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials were searched for English-language articles published from 1946 to June 2015, from 1900 to June 2015, and from 1966 to June 2015, respectively, and containing one or more of the keywords for vegetarian diets (“plant-based diet” or “diet, vegetarian” or “vegetarian diet” or “vegetarianism” or “diets vegan” or “vegan diets”) and for plasma lipids (“hyperlipidemia” or “cholesterol” or “low-density lipoprotein” or “high-density lipoprotein” or “triglyceride”). The reference lists of the retrieved articles were then reviewed to identify additional articles. This review was registered with the PROSPERO register of systematic reviews (registration no. CRD42015023783) and was conducted in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.

Study selection

Two reviewers (Y.Y. and S.M.L.) separately searched and retrieved abstracts for articles that met the following inclusion criteria: (1) participants aged over 20 years; (2) an intervention or exposure consisting of a vegetarian diet, defined as a diet that included meat less than once per month; a semivegetarian diet, defined as a diet that included meat more than once per month, but less than once per week; a vegan diet, defined as a diet that excluded all animal products; or a vegetarian diet that included some animal products as defined by the terms “lacto” (dairy products), “ovo” (eggs), or “pesco” (fish); (3) the collection of sufficient data to allow calculation of mean differences in total or LDL-C between participants who consumed a vegetarian diet and those who consumed a control diet; and (4) the use of a controlled trial or observational study design. The following exclusion criteria were applied: (1) article not an original paper; (2) lack of a comparison diet; (3) lack of continuous lipid data; (4) use of a duplicate sample; (5) small sample size (<10); (6) animal studies; (7) trial duration of <4 weeks; (8) article not in English; and (9) for observational studies, failure to adjust for sex and age. The PICOS (Participants, Intervention, Comparators, Outcomes, Study Design) criteria are shown in Table 1.

Data extraction and quality assessment

For each study, the following information was extracted: study methodology and sample size; baseline characteristics of the study population, including mean age, sex (proportion of men), use of antihyperlipidemic drugs, body mass index (BMI); diets examined and duration of their consumption; concentrations and variance measures of plasma lipids, including those measured in response to dietary interventions in clinical trials; adjustment factors for observational studies, and Jadad score for clinical trials.

Data synthesis and analysis

Mean differences in concentrations of plasma lipids (TC, LDL-C, HDL-C, triglycerides) between vegetarian and comparison diet groups were calculated. For intervention trials, the pooled standard error for the net difference in lipid concentrations was used or, when it was not given, estimated using the method of
Table 1 PICOS criteria for inclusion and exclusion of studies

Parameter	Criteria
Population	Adult humans, without regard to sex, race, or ethnicity
Intervention or exposure	Vegetarian or vegan diets
Comparator	Basis for comparison was preintervention total cholesterol, LDL-C, HDL-C, and triglyceride concentrations in the intervention group or the corresponding changes in an untreated comparison group, if available
Outcome	Primary outcomes: changes in LDL-C, secondary outcomes: changes in HDL-C, total cholesterol, triglycerides
Study design	Controlled trial or observational study design

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

Follmann et al, assuming a correlation of 0.50 between the baseline and final plasma lipids values (parallel design) or between the intervention and the control period (crossover design) plasma lipid values. For studies comparing more than one exposure group or treatment arm, data were extracted from groups eating the fewest animal products, as this was deemed the best means of assessing the effects of vegetarian diets.

Using a random-effects model, which assigns a weight to each study on the basis of the study’s inverse variance, estimates of differences in plasma lipids associated with consumption of vegetarian diets were combined. Using the study as the unit of analysis, estimates were obtained for observational studies and controlled trials separately. Estimates of plasma lipid differences were presented as means and 95% CIs. Statistical significance was set to 2-sided P values < 0.05. Although triglyceride concentrations typically do not follow a normal distribution, inverse variances were calculated from original data because a previous simulation study showed that results were consistent across a range of underlying effect size distributions.

Analyses stratified by type of vegetarian diet, country, sample size, age, sex, BMI, duration of diet, antihyperlipidemic medication use, and baseline lipid status were conducted separately for controlled trials and observational studies. A sensitivity analysis to assess the impact of each study on the combined effect was conducted by performing a 1-study removed analysis. To assess heterogeneity, calculations of I² and meta-regression were done with subgroups, using the study as the unit of analysis.

To identify publication bias, funnel plots were created and examined, and to assess the relationship between sample size and effect size, Egger’s test was performed. The “trim and fill” method, which determines where missing studies are likely to appear, was used to adjust for publication bias. These analyses were done separately for controlled trials and observational studies and were conducted for the main outcomes of TC and LDL-C. All analyses were performed using Comprehensive Meta-Analysis, version 2 software (BioStat, Englewood, NJ, USA).

RESULTS

Search results

The search strategy led to the retrieval of 8385 studies, of which 30 observational studies10–39 and 19 clinical trials40–58 met the inclusion criteria (Figure 1).

Study characteristics and quality

Observational studies. The 30 observational studies (Table 240–58) included 10 143 participants (median sample size, 74.5; range, 13–3424) with a mean age of 40.6 years (range, 23.8–71.8 years). Each of the 30 observational studies used a cross-sectional design. In 23 of these studies, participants had been following vegetarian diets for more than 1 year.10–12,14–19,22–24,26–36,38 Eight studies focused on vegan diets,12,14,16,18,20,22,34,36 and 10 on mixed diet types (vegan, lacto, lacto-ovo, pesco, and/or semivegetarian).10,12–14,16,18,20,22,34,36 The matched or adjusted factors in each study are shown in Table 2.

Clinical trials. Nineteen clinical trials were identified (Table 3). These trials included a total of 1484 participants (median sample size = 58; range, 11–291) with a mean age of 48.6 years (range, 21–65 years). All were open (nonmasked) trials. The mean duration was 25.5 weeks. Eighteen were randomized controlled trials.40–50,52–58 Vegan diets were examined in 9,41,45–47,49,51–54 laco-vegetarian diets in 2,40,48 and laco-ovo-vegetarian diets in 8.42–44,50,55–58 Fourteen studies used a parallel design,41–43,46,48–55,57,58 while 5 used a crossover design.40,44,45,47,56 Baseline plasma lipid concentrations for each trial are shown in Table 3.

Pooled effects of vegetarian diets on plasma lipids. In the observational studies, consumption of vegetarian diets was associated with lower mean concentrations of TC (−29.2 mg/dL; 95% CI, −34.6, −23.8; P < 0.001; I² = 81.4; P for heterogeneity < 0.001); LDL-C (−22.9 mg/dL; 95% CI, −27.9, −17.9; P < 0.001; I² = 83.3; P for heterogeneity < 0.001); HDL-C (−3.6 mg/dL; 95% CI, −4.7, −2.5; P < 0.001; I² = 49.7;
for heterogeneity \(< 0.001\); and triglycerides \(-6.5 \text{mg/dL; 95\%CI,} -14.0, 1.1; P = 0.092; I^2 = 83.0; P\) for heterogeneity \(< 0.001\) compared with consumption of omnivorous diets (Figure 2A–D).

In the clinical trials, consumption of vegetarian diets was associated with a mean reduction in TC \((-12.5 \text{mg/dL; 95\%CI,} -17.8, -7.2; P < 0.001; I^2 = 54.8; P\) for heterogeneity = 0.003); LDL-C \((-12.2 \text{mg/dL; 95\%CI,} -17.7, -6.7; P < 0.001; I^2 = 79.2; P\) for heterogeneity < 0.001); and HDL-C \((-3.4 \text{mg/dL; 95\%CI,} -4.3, -2.5; P < 0.001; I^2 = 8.5; P\) for heterogeneity = 0.354) and a nonsignificant increase in triglyceride concentration \((5.8 \text{mg/dL; 95\%CI,} -0.9, 12.6; P = 0.090; I^2 = 22.5; P\) for heterogeneity = 0.182), compared with consumption of omnivorous diets (Figure 3A–D).

Subgroup analysis and meta-regression. Pooled changes in plasma lipids associated with consumption of vegetarian diets in planned strata for observational studies and clinical trials are summarized in Tables S2 and S3 in the Supporting Information online.

In observational studies, heterogeneity was statistically significant for TC, LDL-C, HDL-C, and triglycerides. Subgroup analysis in observational studies revealed that vegetarian effect size for TC and LDL-C was statistically larger with vegan than with lacto-ovo vegetarian diets; in studies conducted in North or South America; and in younger age groups \((< 50 \text{ vs} > 50 \text{ years})\). Moreover, LDL-C concentrations were lower in studies with smaller sample sizes \((< 100)\). Meta-regression in observational studies also revealed that younger age was associated with lower values for TC \((0.44, P < 0.001)\) and LDL-C \((0.31, P = 0.002)\). In addition, TC and LDL-C in vegetarian groups were lower in studies with smaller sample sizes \((< 1000)\), larger percentages of male participants \((>0.5)\), and lower overall mean plasma lipids for all participants, vegetarian and nonvegetarian \((< 1000)\).

In clinical trials, the reductions of TC and LDL-C were greater in the BMI subgroup 18.5 to 25 kg/m² than in other subgroups. Meta-regression also revealed that smaller BMI was associated with larger TC \((0.49, P < 0.001)\) or LDL-C \((0.40, P < 0.001)\) reductions with vegetarian diets. Participants who did not use

Figure 1 Flow diagram of the literature search process. Abbreviations: LDL-C, low-density lipoprotein cholesterol; Obs, observational study.
Table 2 Study design and population characteristics of observational studies of plant-based diets and plasma lipids

Reference, country	Study design	Matched factors	N	Mean age (y)	Percent male	Mean BMI (kg/m²) or mean weight (kg)	Mean baseline plasma lipids (mg/dL)	Percent using medication	Duration of vegetarian diets	Exposure	Control	Comorbidities	
Sacks et al (1975), USA	CS	Age, sex	230	44.0	62.9	65.5 kg	155.0 95.5 46.0 72.5	Strongly discouraged using medication	38 mo	Pesco	Omnivorous		
Burslem et al (1978), USA	CS	Age, sex	134	27.3	37.0	NR	161.6 103.3 45.9 85.4	0	5.2 y	Vegan	Omnivorous	No metabolic diseases	
Male, 20–30 y	CS	Age, sex	45	20–30	100	NR	161.7 103.3 43.8 90.1	0	5.2 y	Vegan	Omnivorous	No metabolic diseases	
Female, 20–30 y	CS	Age, sex	56	20–30	0.0	NR	156.4 99.9 47.0 81.4	0	5.2 y	Vegan	Omnivorous	No metabolic diseases	
Male, 30–40 y	CS	Age, sex	15	30–40	100	NR	164.5 102.3 43.3 94.3	0	5.2 y	Vegan	Omnivorous	No metabolic diseases	
Female, 30–40 y	CS	Age, sex	18	30–40	0.0	NR	175.1 114.8 50.1 78.3	0	5.2 y	Vegan	Omnivorous	No metabolic diseases	
Huijbregts et al (1980), the Netherlands	CS	Age, sex, weight	14	18–26	100	69.9 kg	176.9 106.5 55.3 100.1	NR	NR	Lacto-ovo	Omnivorous	Healthy	
Nestel et al (1981), Australia	CS	Age, sex, weight	13	28.5	100	63.9 kg	163.1 103.6 41.8 100.4	NR	NR	Lacto-ovo	Omnivorous	NR	
Knuiman & West (1982), the Netherlands	CS	Age, sex	27	33.8	100	23.0	172.3 98.1 42.9	NR	NR	4 y	Vegan	Omnivorous	NR
Liebman & Bazarré (1983), USA	CS	Age, sex, height, weight, exercise level, alcohol consumption, smoking	54	30.7	100	23.3	187.0 120.0 43.7 85.3	0	> 6 mo	Lacto-ovo	Omnivorous	No hyperlipidemia, CHD, angina, hypertension, or diabetes	
Roshanai & Sanders (1984), UK	CS	Age, sex	47	NR	48.9	22.0	151.6 87.1 52.9 58.3	NR	NR	Vegan	Omnivorous	NR	
Male	CS	Age, sex	23	NR	100	23.0	159.2 96.1 51.2 60.1	NR	NR	Vegan	Omnivorous	NR	
Female	CS	Age, sex	24	NR	0.0	21.0	144.2 78.5 54.5 56.7	NR	NR	Vegan	Omnivorous	NR	
Fisher et al (1986), USA	CS	Age, sex	50	20–47	44.0	NR	156.5 103.3 45.5 96.0	NR	Vegan/lacto-ovo	7.7 y	Lacto-ovo	Omnivorous	NR
Nieman et al (1989), USA	CS	Age, sex, religion	37	71.8	0.0	23.3	229.1 139.5 64.6 123.5	0	Vegan/lacto-ovo	Low fat	Omnivorous	No stroke, hypertension, diabetes, cancer, or CHD	
Sanders & Roshanai (1992), UK	CS	Age, sex	40	32.3	50.0	21.9	157.0 90.4 54.4 61.3	0	12 y	Vegan	Omnivorous	Healthy (not receiving any treatment)	
Male	CS	Age, sex	20	32.5	100	22.7	160.3 96.5 51.2 62.4	0	Male	2.4 y	Lacto-ovo/lacto	Omnivorous	Healthy
Female	CS	Age, sex, geographical region	20	32.0	0.0	21.2	153.7 84.3 57.6 60.2	0	Females 2.8 y	Lacto-ovo/lacto	Omnivorous	Healthy	

(continued)
Table 2 Continued

Reference, country	Study design	Matched factors	N	Mean age (y)	Percent male	Mean BMI (kg/m²) or mean weight (kg)	Mean baseline plasma lipids (mg/dL)	Percent using medication	Duration of vegetarian diets	Exposure	Control	Comorbidities			
Harman & Parnell (1998), New Zealand	CS	Age, sex	47	42.8	48.9	24.9	196.1	127.4	49.4	99.5	NR	NR	Lacto/vegan Omnivorous NR		
Li et al (1999), Australia	CS	Sex	74	25.3	0.0	22.5	166.0	91.9	59.9	84.0	NR	> 6 mo	Lacto-ovo Omnivorous Healthy		
Richter et al (1999), Germany	CS	Age, sex	95	36.4	37.5	NR	200.5	124.9	51.8	109.9	NR	> 2 y	Lacto-ovo Omnivorous No diabetes, gout, hyperthyroes, or disease of liver and kidney		
	Male														
Lee et al (2000), Hong Kong	CS	Age, sex, BMI	193	40.0	36.8	23.7	183.2	113.6	49.6	95.2	NR	> 1 y	Lacto-ovo Omnivorous Healthy		
Lu et al (2000), Taiwan	CS	Age, sex	109	38.6	48.6	21.5	171.9	109.4	50.7	83.6	NR	> 2 y	Vegan/lacto Omnivorous No liver disease, diabetes, or hypertension		
	Male														
Lin et al (2001), Taiwan	CS	Age, sex	40	57.5	50.0	24.0	164.0	118.0	47.0	NR	> 1 y	Lacto-ovo Omnivorous No hypertension, diabetes, hyperlipoproteinemia, or overt vascular disease			
Goff et al (2005), UK	CS	Age, sex, BMI	46	35.5	46.9	23.1	153.7	88.1	49.3	79.4	0	> 3 y	Vegan Omnivorous No diabetes, CHD, or metabolic disorder		
Fu et al (2008), Taiwan	CS	Age, sex	70	55.1	0.0	23.3	188.8	123.8	49.9	78.1	0	> 2 y (mean, 7.9 y)	Lacto-ovo Omnivorous Healthy		
Teixeira et al (2007), Brazil	CS	Age, sex, ethnicity, socioeconomic class	201	47.0	47.8	25.3	207.7	136.0	45.5	141.7	NR	> 5 y (mean, 19 y)	Lacto-ovo/vegan/pescoid/lacto	Omnivorous Healthy	
Karabudak et al (2008), Turkey	CS	Age, sex, BMI	52	28.2	0.0	21.7	164.3	88.9	54.1	86.8	0	> 2 y	Semili/lacto/ovo	Omnivorous Healthy	
Chen et al (2011), Taiwan	CS	Sex	363	51.9	0.0	23.1	187.0	122.5	59.0	90.5	0	> 1 y	Lacto-ovo Omnivorous No diabetes, dyslipidemia, hypotension, cerebrovascular disease, chronic gingivitis, connective tissue disease, coronary artery disease, or fever		
Fernandes Dourado et al (2011), Brazil	CS	Age, sex	87	40.0	58.6	24.3	191.4	125.0	41.6	127.3	0	> 1 y (mean, 16 y)	Lacto-ovo Omnivorous No temporary or permanent physical impairments or chronic disease in those who took medications that might influence the lipid profile		
Reference, country	Study design	Matched factors	N	Mean age (y)	Percent male	Mean BMI (kg/m²) or mean weight (kg)	Mean baseline plasma lipids (mg/dL)	Percent using medication	Duration of vegetarian diets	Exposure	Control	Comorbidities			
-------------------	--------------	-----------------	-------	--------------	--------------	--------------------------------------	------------------------------------	--------------------------	--------------------------------	----------	---------	---------------			
Yang et al (2011),19	CS	Age, sex	300	33.3	100	23.9	177.2	108.8	45.1	109.6	NR	> 1 y (mean, 10.4 y)	Lacto-ovo	Omnivorous	No renal disease, cancer, diabetes, heart disease, or hypertension
Kim et al (2012),18	Korea CS	Age, sex	75	49.2	50.7	22.6	181.5	109.1	48.7	123.8	0	> 15 y (mean, 24.6 y)	Vegan/lacto-ovo	Omnivorous	Healthy
Gojda et al (2013),38	Czech Republic CS	Age, sex, BMI, ethnicity, physical activity, energy intake	21	28.4	57.1	22.7	147.8	77.5	58.5	60.5	0	> 3 y (mean, 8.05 y)	Vegan	Omnivorous	Healthy
Jung et al (2013),20	Korea CS	Age, sex	296	52.9	53.4	24.1	207.0	131.7	55.2	141.6	NR	NR	Vegan/lacto-ovo	Omnivorous	Metabolic syndrome (vegetarian, 30.4%, control, 17.6%)
Chiang et al (2013),22	Taiwan CS	Age, sex	706	56.4	0.0	23.3	189.9	123.7	57.2	107.2	0.4	> 1 y	Lacto-ovo/vegan	Omnivorous	No systemic diseases such as cancer, heart failure, uremia, and liver cirrhosis or acute illness such as acute myocardial infarction
Huang et al (2014),32	Taiwan CS	Sex, pre- or post-menopausal	3424	43.2	0.0	NR	184.5	114.6	59.2	111.9	0	> 1 y	Vegan	Omnivorous	NR
Jian et al (2015),33	Taiwan CS	Sex	3189	43.4	100	NR	181.5	116.2	51.5	141.8	0	> 1 y	Vegan	Omnivorous	NR

Abbreviations: BMI, body mass index; CHD, coronary heart disease; CS, cross-sectional; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NR, not reported; TC, total cholesterol; TG, triglycerides.
Reference, country	Study design and duration	Jadad score	N	Mean age (y)	Percent male	Mean BMI (kg/m²)	Mean baseline plasma lipids (mg/dL)	Medication use	Intervention diet	Control diet	Comorbidities
Kestin et al (1989)	RCT (CO), 6 wk	2	26	44.0	100	25.5	234.7 157.8 56.5 113.4	None	Lacto-ovo	Omnivorous	Not on hyperlipo-proteinemia or hypertension medication
Ling et al (1992)	RCT (PL), 4 wk	2	18	42.8	22.2	26.6	213.3 141.5 50.1 102.3	NR	Vegan	Omnivorous	2 coronary heart disease, 1 obesity, 1 hypertension
Omish et al (1998)	RCT (PL), 48 wk	3	35	59.3	91.4	27.1	234.9 153.5 45.3 225.9	None	Omish (low-fat lacto-ovo)	Omnivorous	Coronary heart disease
Nicholson et al (1999)	RCT (PL), 12 wk	2	11	54.3	54.5	NR	207.6 NR 44.0 193.2 36.4 %	VG	Low-fat vegan	Omnivorous	Non–insulin-dependent diabes mellitus
Barnard et al (2000)	RCT (CO), 8 wk	3	35	36.1	0	25.5	163.0 97.0 49.0 81.0	None	Low-fat vegan	Omnivorous	Healthy premenopausal women
Agren et al (2001)	RCT (PL), 12 wk	2	29	50.8	3.4	24.3	190.3 126.8 45.5 89.7	None	Vegan	Omnivorous	Rheumatoid arthritis
Dansinger et al (2005)	RCT (PL), 48 wk	3	80	49.0	50.0	35.0	217.5 139.0 46.0 164.0	None	Omish (low-fat lacto-ovo)	Calorie restriction	Presence of at least 1 of the metabolic cardiac risk factors
Gardner et al (2005)	RCT (PL), 4 wk	3	120	48.5	50.0	26.5	224.3 148.9 48.3 128.5	None	Lacto-ovo	Omnivorous (low-fat)	No heart disease or diabetes T2D
de Mello et al (2006)	RCT (CO), 4 wk	2	17	59.0	82.4	26.2	206.5 132.3 45.2 139.1	None	Lacto (low-protein)	Omnivorous	Coronary heart disease
Aldana et al (2007)	RCT (PL), 48 wk	2	93	61.6	56.3	31.0	170.2 95.4 43.4 157.1	Yes, unknown percentage	Lacto (low-fat lacto-ovo)	Omnivorous (calorie- and fat-restricted)	Overweight and obese
Burke et al (2007)	RCT (PL), 72 wk	2	176	44.0	13.1	34.0	204.0 NR NR 134.0	None	No	Omnivorous	Overweight in premenopause
Gardner et al (2007)	RCT (PL), 48 wk	2	155	41.0	0.0	31.5	NR 107.4 50.5 118.5	None	Omish (low-fat lacto-ovo)	ADA diet	Rheumatoid arthritis
Elkan et al (2008)	RCT (PL), 12 wk	2	58	50.3	10.3	24.0	191.7 118.1 52.3 97.4	None	Vegan	Omnivorous	
Barnard et al (2009)	RCT (PL), 74 wk	3	99	55.6	39.4	34.9	193.0 111.1 51.0 153.2 54.5 %	Low-fat vegan	ADA diet	T2D	(continued)
lipid-lowering medication showed larger reductions in TC and LDL-C than participants who used them. Vegan diets were associated with larger LDL-C reductions than lacto-ovo vegetarian diets. Smaller sample size was associated with greater LDL-C reductions in the subgroup analysis and greater reductions of both TC and LDL-C in meta-regression analysis (slope 0.03, \(P = 0.050 \); and slope 0.03, \(P = 0.015 \), respectively).

Sensitivity analysis. In the 1-study removed analysis, results were largely unchanged, with plasma lipid differences between vegetarian and comparison groups ranging from \(-30.0 \) to \(-28.0\) mg/dL for TC and from \(-23.74 \) to \(-21.96\) mg/dL for LDL-C in observational studies (\(P < 0.001 \) in all cases) and from \(-13.5 \) to \(-10.4\) mg/dL for TC and from \(-13.2 \) to \(-9.2\) mg/dL for LDL-C in clinical trials (all results were \(P < 0.001 \)).

Publication bias. Funnel plot outcomes revealed that larger trials reporting large reductions in TC were possibly overrepresented in observational studies. A few studies showing a smaller effect size were absent in the middle right side (see Figure S1A in the Supporting Information online). Egger's test could not confirm this impression (\(P = 0.133 \)). Trim-and-fill method outcomes suggested that 7 studies were missing, and their addition would have changed the overall effect on TC to \(-23.8\) mg/dL (95%CI, \(-29.6 \), \(-18.0\)). Funnel plot outcomes for the clinical trials suggested that smaller trials that reported large reductions in TC were overrepresented (see Figure S1B in the Supporting Information online). If publication bias did not exist, study results would be symmetrically displayed about the mean effect size; studies showing smaller lipid reductions were missing in the bottom right side. Egger's test could not confirm this impression (\(P = 0.069 \)). Trim-and-fill method outcomes suggested that 4 trials might have been missing, and their addition would have changed the overall effect on TC from \(-12.5\) mg/dL to \(-8.57\) mg/dL (95%CI, \(-14.79 \), \(-2.35\)).

DISCUSSION

This meta-analysis of 30 observational studies and 19 controlled trials shows that, compared with consumption of omnivorous diets, consumption of vegetarian diets is associated with lower TC, LDL-C, and HDL-C concentrations but not with differences in triglyceride concentrations. The meta-analysis shows overall differences in TC of \(-29.2\) mg/dL in observational studies and \(-12.5\) mg/dL in clinical trials and differences in LDL-C of \(-22.9\) mg/dL in observational studies and \(-12.2\) mg/dL in clinical trials. High-density lipoprotein
Meta Analysis

Study name

Study name	Subgroup within study	Comparison	Outcome	Statistics for each study	Difference in means and 95% CI
			Difference in means	Lower	Upper
			Lower	Upper	

Difference in means

Study name	Subgroup within study	Comparison	Outcome	Statistics for each study	Difference in means and 95% CI
			Difference in means	Lower	Upper
			Lower	Upper	

Figure 2

Pooled plasma lipid responses to vegetarian diets in observational studies. Effects on (A) TC (total cholesterol), (B) LDL-C (low-density lipoprotein cholesterol),
Meta Analysis

Study Name

Study name	Subgroup within study	Comparison	Outcome	Statistics for each study	Difference in means	Difference in means and 95% CI
Buxton et al., 1978 (11), 20-30 yr male	Vegan	Omnivorous	TG	-11.000	-16.117	-5.883
Goda et al., 2013 (39)	Vegan	Omnivorous	HDL	-10.628	-25.361	14.090
Buxton et al., 1978 (11), 30-40 yr female	Vegan	Omnivorous	TG	-10.900	-10.450	-0.541
June et al., 2013 (20)	Vegan/Lacto/Ovo/Lacto-ovo	Omnivorous	TG	-8.300	-12.151	-5.459
Fisher et al., 1986 (13)	Vegan/Lacto-ovo	Omnivorous	TG	-8.680	-15.169	-0.332
Kershaw et al., 2008 (36)	Semi Lacto-ovo Lacto	Omnivorous	TG	-7.734	-15.747	0.279
Buxton et al., 1978 (11), 20-30 yr female	Vegan	Omnivorous	TG	-7.000	-12.500	-10.000
Judkins et al., 1985 (39)	Lacto-ovo	Omnivorous	HDL	-6.961	-13.071	0.119
Lu et al., 2000 (16), female	Vegan/Lacto-ovo	Omnivorous	TG	-6.850	-9.701	-1.799
Chen et al., 2011 (31)	Lacto-ovo	Omnivorous	HDL	-6.500	-9.374	-2.872
Huang et al., 2014 (21)	Semi Lacto-ovo Lacto	Omnivorous	TG	-6.250	-10.542	0.199
Seck et al., 1975 (10)	Vegan	Omnivorous	HDL	-6.000	-8.375	0.037
Jien et al., 2015 (23)	Vegan	Omnivorous	HDL	-5.850	-9.509	1.283
Neman et al., 1986 (30)	Semi Lacto-ovo Lacto	Omnivorous	HDL	-5.414	-14.084	3.256
Buxton et al., 1978 (11), 30-40 yr male	Vegan	Omnivorous	TG	-5.500	-12.056	0.955
Li et al., 1999 (23)	Lacto-ovo	Omnivorous	HDL	-4.840	-11.506	1.826
Lee et al., 2000 (35)	Vegan/Lacto-ovo	Omnivorous	TG	-4.980	-12.180	2.220
Yang et al., 2011 (19)	Semi Lacto-ovo Lacto	Omnivorous	HDL	-4.254	-6.205	1.967
Nelder et al., 2011 (25)	Lacto-ovo	Omnivorous	HDL	-4.000	-10.534	2.534
Chang et al., 2013 (22)	Lacto-ovo/Lacto/Vegetarian	Omnivorous	HDL	-3.967	-5.561	1.787
Goiff et al., 2005 (20)	Vegan	Omnivorous	HDL	-3.967	-7.162	3.295
Sanders & Roshanai, 1992 (29), female	Vegan	Omnivorous	HDL	-3.094	-11.668	5.481
Kershaw et al., 2008 (36)	Semi Lacto-ovo Lacto	Omnivorous	HDL	-3.879	-5.565	1.687
Sanders et al., 1994 (24), female	Vegan	Omnivorous	HDL	-1.160	-5.148	2.828
Kershaw et al., 1994 (34), male	Lacto-ovo/Lacto	Omnivorous	HDL	-1.160	-5.148	2.828
Teixeira et al., 2007 (14)	Lacto-ovo/Vegan	Omnivorous	HDL	-0.500	-3.836	2.836
Harman & Parnell, 1990 (13), male	Lacto/Vegan	Omnivorous	HDL	-0.000	-0.491	0.491
Roshanai & Sanders, 1994 (24), male	Lacto-ovo/Lacto	Omnivorous	HDL	-0.387	-5.575	5.575
Piu et al., 2009 (17)	Vegan	Omnivorous	TG	0.000	-14.355	14.355
Liu et al., 2001 (40)	Lacto-ovo	Omnivorous	HDL	0.000	-1.160	1.160
Lin et al., 2011 (22)	Lacto-ovo	Omnivorous	HDL	2.000	-6.234	10.234
Richter et al., 1995 (28), female	Vegan	Omnivorous	HDL	3.904	-2.422	8.248
Kruimer & Velek, 1985 (23)	Vegan	Omnivorous	HDL	3.967	-4.329	11.763
Harman & Parnell, 1998 (13), female	Vegan	Omnivorous	HDL	3.904	-2.422	8.248
Fernando et al., 2011 (26)	Lacto-ovo	Omnivorous	HDL	4.500	0.329	8.713
Burslem et al., 1978 (11), 20-30 yr female	Vegan	Omnivorous	HDL	3.500	-4.728	12.756

Figure 2 (Continued) (C) HDL-C (high-density lipoprotein cholesterol), and (D) triglycerides are depicted as squares; error bars indicate 95% CIs. Meta-analysis yielded pooled estimates of TC (−29.2 mg/dL; 95% CI, −34.6, −23.8; P < 0.001); LDL (−22.9 mg/dL; 95% CI, −27.9, −17.9; P < 0.001); HDL-C (−3.6 mg/dL; 95% CI, −4.7, −2.5; P < 0.001); and triglycerides (−6.5 mg/dL; 95% CI, −14.0, 1.1; P = 0.092), which are depicted as black diamonds. Vegan diets were defined as those that omitted all animal products; vegetarian diets may include some animal products, as indicated by the terms lacto (dairy products), ovo (eggs), and pesco (fish). Reference numbers of studies are shown in parentheses.
cholesterol was also lower in vegetarian groups than in omnivorous groups, although the degree of difference was relatively modest (−3.6 mg/dL in observational studies and −3.4 mg/dL in clinical trials). Subgroup analysis indicated that younger age (<50 years), male sex, lower baseline plasma lipids, and lower BMI were associated with greater reductions in TC and LDL-C.

The findings of the current study are consistent with those of previous reviews, and the present analysis extends these findings to include a meta-analysis of observational study data. While observational studies present a higher risk of bias compared with clinical trials, they also reflect long-term effects of vegetarian diets on plasma lipids that are not apparent in most clinical trials. Those who have followed vegetarian dietary patterns for longer periods may have healthier body compositions as well as better adherence to a vegetarian diet, both of which may have an effect on blood lipids. In addition, this study presents the raw mean difference for each endpoint, which is useful when the measure is meaningful either inherently or because of widespread use.

For context, a previous meta-analysis showed that, on average, statin use reduced LDL-C concentrations...
by 70 mg/dL (1.8 mmol), with considerable variation depending on statin type.60 The results of the present analysis showed that diet alone reduced LDL-C by 22.9 mg/dL in observational studies and by 12.2 mg/dL in clinical trials. While dietary changes may not be as powerful as statins in reducing plasma lipids, dietary and pharmacologic interventions are not mutually exclusive. They can work together, and, in some cases, dietary practices can obviate the need for medications. Because side effects may interfere with medication compliance and may preclude statin use for certain patients, dietary options have some intrinsic advantages.

Vegetarian diets are typically lower in saturated fatty acids and cholesterol, compared with omnivorous diets. In 3 large cohort studies that included large numbers of vegetarian participants (Adventist Health Study 2 cohort, European Prospective Investigation into Cancer and Nutrition (EPIC)-Oxford study, and UK Women’s Study), intakes of saturated fatty acids and

Study name	Subgroup within study	Comparison	Outcome	Difference in means	Lower limit	Upper limit
Barnard et al., 2000 (45)	Vegan	Omnivorous	HDL	-11.000	-17.000	-5.000
Miller et al., 2009 (56)	Lacto-ovo	Mediterranean	HDL	-9.800	-17.007	-2.593
Nicholson et al., 1999 (53)	Vegan	Omnivorous	HDL	-6.961	-19.568	5.647
Agren et al., 2001 (46)	Vegan	Omnivorous	HDL	-6.187	-11.409	-0.965
Bunner et al., 2014 (47)	Vegan	Omnivorous	HDL	-4.600	-10.346	1.146
Ferdowsian et al., 2010 (51)	Vegan	Omnivorous	HDL	-4.100	-6.571	-1.629
Dansinger et al., 2005 (59)	Lacto-ovo	Carole restricted	HDL	-3.900	-7.570	-0.230
Elkan et al., 2008 (41)	Vegan	Omnivorous	HDL	-3.867	-9.014	1.280
Kestin et al., 1989 (44)	Lacto-ovo	Omnivorous	HDL	-3.480	-10.099	3.138
Ling et al., 1992 (54)	Vegan	Omnivorous	HDL	-3.480	-13.636	6.676

Meta Analysis

C HDL-C (high-density lipoprotein cholesterol), and (D) triglycerides are depicted as squares; error bars indicate 95% CIs. Meta-analysis yielded pooled estimates of TC (−12.5 mg/dL; 95% CI, −17.8, −7.2; P < 0.001); LDL-C (−12.2 mg/dL; 95% CI, −17.7, −6.7; P < 0.001); HDL-C (−3.4 mg/dL; 95% CI, −4.3, −2.5; P < 0.001); and triglycerides (5.8 mg/dL; 95% CI, −0.9, 12.6; P = 0.090), which are depicted as black diamonds. Vegan diets were defined as those that omitted all animal products; vegetarian diets may include some animal products, as indicated by the terms lacto (dairy products) and ovo (eggs). Reference numbers of studies are shown in parentheses.

![Figure 3 (Continued)](image-url)

D

![Figure 3 (Continued)](image-url)
cholesterol were lower in vegetarians than in omnivo-
rous participants, with strict vegetarians having the low-
est intakes of both. The subgroup analysis in the
present study showed that a vegan diet had larger effects
on plasma lipids than a lacto-ovo vegetarian diet. The
observed effects of plant-based diets on plasma lipids
are likely to be, in large part, the result of differences in
saturated fatty acid intake and, to a lesser extent, choles-
terol intake. The role of saturated fat intake in cardio-
vacular outcomes has been questioned recently, in
part due to heterogeneity in meta-analyses. This issue
is beyond the scope of the present article, which is lim-
ited to the effect of diet on blood lipid concentrations.

The effects of changes in dietary cholesterol on se-
rum cholesterol decline as baseline dietary cholesterol
increases. Hopkins’s analysis indicated that hepatic
cholesterol overload may be the primary basis for the
observed weak response to increasing dietary choles-
terol in the context of a high baseline concentration.
However, according to the subgroup analysis in the pre-
sent study, a lower baseline plasma lipid concentration
was related to a greater reduction of TC and LDL-C in
plasma by vegetarian diets in clinical trials.

This meta-regression and subgroup analysis showed
that the duration of adherence to a vegetarian
diet did not modulate the observed effects of the diet.
However, younger age was associated with lower TC
and LDL-C, suggesting that an effect of diet duration
may play a role. Additionally, the present analysis
could not adjust for dietary compliance. Further
studies are needed to clarify the relation between
the duration of vegetarian diets and its effect on
plasma lipids.

In this study, HDL-C concentrations were also sig-
nificantly lower in the context of vegetarian diets than
in omnivorous diets. Although some studies have sug-
gested that HDL-C concentrations are inversely associ-
ated with coronary heart disease, recent studies have
shown that interventions that increase HDL-C do not
reduce the risk of coronary heart disease and that gen-
etic variants that raise HDL-C do not necessarily re-
duce the risk of coronary heart disease.

Due to their range of health benefits, vegetarian
diets are specifically mentioned in the 2015–2020
Dietary Guidelines for Americans as 1 of 3 noteworthy
healthful diet patterns. As demonstrated in this study,
improved lipid profiles are among these benefits.
Moreover, the range of plant-derived foods is enor-
mous, including simple fruits, vegetables, beans, and
whole grains as well as products that are processed and
prepared with a variety of additional ingredients. The
lipid-lowering effect of a plant-based diet can be maxi-
mized by selection of specific foods. In a randomized
trial of a so-called portfolio diet that included foods rich
in soluble fiber, soy protein, plant sterols, and almonds,
an LDL-C reduction of 28.6% was observed in 4
weeks. The strengths of the present meta-analysis in-
clude a substantial sample size that lends confidence to
these findings and allowed subgroup analyses in specific
population groups. In addition, the focus of the meta-
alyses on food consumption as opposed to supple-
ments or other artificial interventions makes the
findings applicable to the public.

An important limitation is heterogeneity. Meta-
regression and subgroup analyses showed that sex,
age, baseline plasma lipids, type of vegetarian diets,
sample size, and BMI may be key reasons for this het-
erogeneity. Still, lower TC and LDL-C concentrations
were seen in all subgroups. In addition, all observa-
tional studies used cross-sectional rather than pro-
spective designs, a limitation that is somewhat
alleviated by the inclusion of randomized clinical tri-
als. Lastly, although all observational studies included
in this study adjusted for age and sex, some did not
adjust for other possible confounders such as BMI or
dependent activity level. Further studies are needed to
explore more mechanisms by which vegetarian
diets influence plasma lipids. The results of this meta-
alyses suggest a strong association between con-
sumption of vegetarian diets and lower plasma lipid
concentrations.

CONCLUSION

Consumption of vegetarian diets, particularly vegan
diets, is associated with lower levels of plasma lipids,
which could offer individuals and healthcare profes-
sionals an effective option for reducing the risk of heart
disease or other chronic conditions. Although not all
clinicians have the training or time to confidently guide
patients toward healthful vegetarian diets, registered
dietitians can provide the services necessary to assist
patients in making this transition.

Acknowledgments

Funding/support. No external funding supported this
work.

Declaration of interest. The authors have no relevant
interests to declare.

Supporting Information

The following Supporting Information is available
through the online version of this article available at the
publisher’s website.

Table S1 Search strategy
Table S2 Subgroup analysis on plasma total cholesterol and low-density lipoprotein cholesterol for clinical trials

Table S3 Subgroup analysis on plasma high-density lipoprotein cholesterol and triglyceride for clinical trials

Figure S1 Funnel plot of comparison of weight and differences in mean total cholesterol associated with consumption of vegetarian diets. Funnel plot of study weights against change in TC in (A) observational studies and (B) clinical trials. TC results in individual studies are depicted as circles scattered around the pooled TC estimate. The trim-and-fill method indicates that 7 observational studies and 4 trials might have been missing owing to publication bias. After adjustment for putative missing data, the overall differences for TC changed to -23.8 mg/dL (95%CI, -29.6 to -18.0) in observational studies and -8.57 mg/dL (95%CI, -14.79 to -2.35) in clinical trials.

REFERENCES

1. Kulkina EV, Yoon PW, Keenan NL. Trends in high levels of low-density lipoprotein cholesterol in the United States, 1999–2006. JAMA. 2009;302:2104–2110.
2. Farley TA, Dalal MA, Mostashari F, et al. Deaths preventable in the U.S. by improvements in use of clinical preventive services. Am J Prev Med. 2010;38:600–609.
3. Pletcher MJ, Lazar L, Bibbins-Domingo K, et al. Comparing impact and cost-effectiveness of primary prevention strategies for lipid-lowering. Ann Intern Med. 2005;143:243–254.
4. Lemieux I, Lamarche B, Couillard C, et al. Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med. 2001;161:2685–2692.
5. Stone NJ, Robinson JJ, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 pt B):2939–2985.
6. Fordeswain HR, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol. 2009;104:947–956.
7. Wang F, Zheng J, Yang B, et al. Effects of vegetarian diets on blood lipids: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4:e002408. doi:10.1161/JAHA.115.002408.
8. Follmann D, Elliott P, Suh I, et al. Variance imputation for overviews of clinical trials. JAMA. 2009;22:823–831.
9. Kontopantelis E, Reeves D. Performance of statistical methods for meta-analysis of continuous outcomes. JAMA. 2009;15:69. doi:10.1186/1129-2377-15-69.
10. Yang S-Y, Zhang H-J, Sun S-Y, et al. Relationship of carotid intima-media thickness and duration of vegetarian diet in Chinese male vegetarians. Nutr Metab (London). 2011;8:63. doi:10.1186/1743-7075-8-63.
11. Jung JG, Kang HW, Hahn SJ, et al. Vegetarianism as a protective factor for reflux esophagitis: a retrospective, cross-sectional study between Buddhist priests and general population. Dig Dis Sci. 2013;58:2244–2252.
12. Liebman M, Bazarre TL. Plasma lipids of vegan and nonvegetarian males: effects of egg consumption. Am J Clin Nutr. 1983;38:612–619.
13. Chiang J-K, Lin Y-L, Chen C-L, et al. Reduced risk for metabolic syndrome and insulin resistance associated with ovo-lacto-vegetarian behavior in female Buddhists: a case-control study. PLoS One. 2013;8. doi:10.1371/journal.pone.007179.
14. Knuijman JT, West CE. W. The concentration of cholesterol in serum and in various serum lipoproteins in macrobiotic, vegetarian and non-vegetarian men and boys. Atherosclerosis. 1982;43:71–82.
15. Roshani F, Sanders TA. Assessment of fatty acid intakes in vegans and omnivores. Hum Nutr Appl Nutr. 1984;38:345–354.
16. Li D, Ball M, Bartlett M. Lipoprotein(a), essential fatty acid status and lipoprotein lipids in female Australian vegetarians. Clin Sci (London). 1999;97:175–181.
17. Fernandes Dourado K, de Arruda Camara e Siqueira Campos F, Sakagava Shinhara NK. Relation between dietary and circulating lipids in latio-ovo-vegetarians. Nutr Hosp. 2011;26:959–964.
18. Lin CL, Fang TC, Gueng MK. Vascular dilatory functions of ovo-lacto-vegetarians compared with omnivores. Atherosclerosis. 2001;158:247–251.
19. Richter V, Purschwitz K, Bohus H, et al. Lipoproteins and other clinical chemistry parameters under the conditions of lacto-ovo-vegetarian nutrition. Nutr Res. 1999;19:545–554.
20. Sanders TA, Roshani F. Platelet phospholipid fatty-acid composition and function in vegans compared with age-matched and sex-matched omnivore controls. Eur J Clin Nutr. 1992;46:823–831.
21. Nemr DM, Underwood BC, Sherman KM, et al. Dietary status of Seventh-Day Adventist vegetarian and non-vegetarian elderly women. J Am Diet Assoc. 1989;89:1763–1769.
22. Chen CW, Lin C-T, Lin Y-L, et al. Taiwanese female vegetarians have lower lipoprotein-associated phospholipase A2 compared with omnivores. Yonsei Med J. 2011;52:13–19.
23. Huang Y-W, Jian Z-H, Chang H-C, et al. Vegan diet and blood lipid profiles: a cross-sectional study of pre and postmenopausal women. BMC Womens Health. 2014;14. doi:10.1186/1472-6874-14-55.
24. Jian Z-H, Chiang Y-C, Lung C-C, et al. Vegetarian diet and cholesterol and TAG levels by gender. Public Health Nutr. 2015;18:721–726.
25. Krajcovicova-Kudlackova M, Simoncic R, Bedorova A, et al. Selected parameters of lipid-metabolism in young vegetarians. Ann Nutr Metabol. 1994;38:331–335.
26. Goff LM, Bell JD, So PW, et al. Veganism and its relationship with insulin resistance and intramyocellular lipid. Eur J Clin Nutr. 2005;59:291–296.
27. Karabudak E, Kiziltan G, Cigerim N. A comparison of some of the cardiovascular risk factors in vegetarian and omnivorous Turkish females. J Human Nutr Diet. 2008;21:13–22.
28. Pestle PJ, Billington T, Smith B. Low density and high density lipoprotein kinetics and sterol balance in vegetarians. Metabolism. 1981;30:941–945.
29. Bogla J, Patkova J, Jacek M, et al. Higher insulin sensitivity in vegans is not associated with higher mitochondrial density. Eur J Clin Nutr. 2013;67:1310–1315.
30. Huijbregts AW, Van Schaik A, Van Berge-Henegouwen GP, et al. Serum lipids, biliary lipid composition, and bile acid metabolism in vegetarians as compared to normal controls. Eur J Clin Invest. 1980;10:443–449.
31. Vanello VDF, Zelmatovitz T, Perassolo MS, et al. Withdrawal of red meat from the usual diet reduces albuminuria and improves serum fatty acid profile in type 2 diabetes patients with macroalbuminuria. Am J Clin Nutr. 2006;83:1032–1038.
32. Elkan AC, Sjöberg B, Kolsrud B, et al. Gluten-free vegan diet induces decreased LDL and oxidized LDL levels and raised atheroprotective natural antibodies against phosphorylcholine in patients with rheumatoid arthritis: a randomized study. Arthritis Res Ther. 2008;10:R34. doi:10.1186/ar2388.
33. Omish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998;280:201–2007.
34. Gardner CD, Coulston A, Chatterjee L, et al. The effect of a plant-based diet on plasma lipids in hypercholesterolemic adults—a randomized trial. Ann Intern Med. 2005;142:725–733.
35. Kestin M, Rouse IL, Correll RA, et al. Cardiovascular disease risk factors in free-living men: comparison of two prudent diets, one based on lacto-ovo-vegetarian and the other allowing lean meat. Am J Clin Nutr. 1989;89:1763–1769.
36. Bunner AE, Agarwal U, Gonzales JF, et al. Nutrition intervention for migraine: a randomized crossover trial. J Headache Pain. 2014;15:69. doi:10.1186/1129-2377-15-69.
48. Kahleova H, Matoulek M, Bratova M, et al. Vegetarian diet-induced increase in linoleic acid in serum phospholipids is associated with improved insulin sensitivity in subjects with type 2 diabetes. Nutr Diabetes. 2013;3:e75. doi:10.1038/nutd.2013.12
49. Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr. 2009;89:1588–1596.
50. Burke LE, Hudson AG, Warziski MT, et al. Effects of a vegetarian diet and treatment preference on biochemical and dietary variables in overweight and obese adults: a randomized clinical trial. Am J Clin Nutr. 2007;86:588–596.
51. Ferdowsian HR, Barnard ND, Hoover VJ, et al. A multicomponent intervention reduces body weight and cardiovascular risk at a GEICO corporate site. Am J Health Promot. 2010;24:384–387.
52. Mishra S, Xu J, Agarwal U, et al. A multcenter randomized controlled trial of a plant-based nutrition program to reduce body weight and cardiovascular risk in the corporate setting: the GEICO study. Eur J Clin Nutr. 2013;67:718–724.
53. Nicholson AS, Sklar M, Barnard ND, et al. Toward improved management of NIDDM: a randomized, controlled, pilot intervention using a lowfat, vegetarian diet. Prev Med. 1999;29:87–91.
54. Ling WH, Laitinen M, Hanninen O. Shifting from conventional diet to an uncooked vegan diet reversibly alters serum lipid and apolipoprotein levels. Nutr Res. 1992;12:1431–1440.
55. Aldana SG, Greenlaw R, Salberg A, et al. The effects of an intensive lifestyle modification program on carotid artery intima-media thickness: a randomized trial. Am J Health Promot. 2007;21:510–516.
56. Miller M, Beach V, Sorkin JD, et al. Comparative effects of three popular diets on lipids, endothelial function, and C-reactive protein during weight maintenance. J Am Diet Assoc. 2009;109:713–717.
57. Gardiner CD, Kiazand A, Alhassan S, et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women. JAMA. 2007;297:969–977.
58. Dansinger ML, Gleason JA, Griffith JL, et al. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction. JAMA. 2005;293:43–53.
59. Michael B, Larry VH, Julian PT. Introduction to Meta-analysis. Chichester, UK: John Wiley & Sons Ltd; 2009.
60. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 2003;326:1423. doi:10.1136/bmj.326.7404.1423
61. Appleby PN, Key TJ. The long-term health of vegetarians and vegans. Proc Nutr Soc. 2016;75:287–293.
62. Keys A, Anderson JT, Grande F. Serum cholesterol response to changes in the diet: IV. Particular saturated fatty acids in the diet. Metabolism. 1965;14:776–787.
63. Hegsted DM. Serum-cholesterol response to dietary cholesterol: a re-evaluation. Am J Clin Nutr. 1986;44:299–305.
64. de Souza RJ, Mente A, Maroleanu A, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351:h3978. doi:https://doi.org/10.1136/bmj.h3978
65. Hopkins PN. Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr. 1992;55:1060–1070.
66. Emerging Risk Factors Collaboration, Di Angelantonio E, Sanwar N, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.
67. Keene D, Price C, Shun-Shin MJ, et al. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ. 2014;349:g4379. doi:10.1136/bmj.g4379
68. Frikke-Schmidt R, Nordestgaard BG, Stene MC, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299:2524–2532.
69. US Department of Health and Human Services and US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th ed. http://health.gov/dietaryguidelines/2015/guidelines/. Published 2015. Accessed February 16, 2017.
70. Jenkins DJ, Kendall CW, Marchie A, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA. 2003;290:502–510.