LOCAL DERIVATIONS OF FINITARY INCIDENCE ALGEBRAS

MYKOLA KHRYPCHENKO

Departamento de Matemática, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, Florianópolis, SC, CEP: 88040–900, Brazil

Abstract. Let P be a partially ordered set, R a commutative ring with identity and $FI(P, R)$ the finitary incidence algebra of P over R. In this note we prove that each R-linear local derivation of $FI(P, R)$ is a derivation, which partially generalizes Theorem 3 of [21].

Introduction

Local derivations appeared in the early 90’s in the works by Kadison [13] and Larson-Sourour [18]. Kadison proved in [13, Theorem A] that each local derivation of a von Neumann algebra with values in its dual bimodule is a derivation. Brešar showed in [6] that Theorem A by Kadison remains valid for any normed bimodule. The main result of Larson and Sourour [18] says that the algebra of all bounded operators on a complex infinite-dimensional Banach space has no proper local derivations. An alternative proof of this fact (which also works in the real case) was given in [7]. In the case of 2-local derivations one can even drop the linearity and continuity as was shown by Šemrl in [23].

The incidence algebra $I(P, R)$ of a locally finite preordered set P over a commutative ring R is a classical object in the area of derivations and their generalizations. When $|P| = n < \infty$, the algebra $I(P, R)$ can be seen as a subalgebra of the full matrix algebra $M_n(R)$, and by this reason $I(P, R)$ is sometimes called a structural matrix algebra. We would like to note that $M_n(R)$, as well as its subalgebra $T_n(R)$ of upper triangular matrices over R, are particular cases of $I(P, R)$. On the other hand, if P is finite and connected with $|P| \geq 2$, then $I(P, R)$ is a triangular algebra [25] (when P is finite, but not necessarily connected, one has $I(P, R) = \bigoplus_{j=1}^k I(P_j, R)$, where P_1, \ldots, P_k are the connected components of P, so if each P_j has at least 2 elements, then $I(P, R)$ is a direct sum of triangular algebras). The case of finite P is easier to deal with, since $I(P, R)$ possesses the natural basis formed by matrix units, and it only suffices to study the behavior of a derivation on the elements of the basis (see [19, 20, 9, 12, 21, 4, 5, 11, 8, 27, 1]). In the infinite case the latter does not work (unless one imposes some extra restrictions as in [24]), and some other technique is needed (see [3, 22, 17, 14, 16, 26]).
2 LOCAL DERIVATIONS OF FINITARY INCIDENCE ALGEBRAS

Based on an earlier work by Nowicki [19], Nowicki and Nowosad proved in [21, Theorem 3] that each \(R \)-linear local derivation of \(I(P, R) \) is a derivation, provided that \(P \) is a finite preordered set and \(R \) is a commutative ring. Alizadeh and Bitarafan improved a particular case of [21, Theorem 3] by showing in [1, Theorem 3.7] that \(M_n(R) \) has no proper (additive, but not necessarily \(R \)-linear) local derivations with values in \(M_n(M) \), where \(M \) is 2-torsion free central \(R \)-bimodule and \(n \geq 3 \). Applying arguments similar to those used by Nowicki and Nowosad [21], Zhao, Yao and Wang proved in [27, Theorem 2.1] that each local Jordan derivation of \(T_n(R) \) is a derivation.

In this short note, which was inspired by the recent preprint [10] by Courtemanche, Dugas and Herden, we adapt the ideas from [21] to the infinite case using the technique elaborated in [14, 16]. More precisely, we show that each \(R \)-linear local derivation of the finitary incidence algebra \(FI(P, R) \) of an arbitrary poset \(P \) over a commutative unital ring \(R \) is a derivation, giving thus another partial generalization of [21, Theorem 3].

1. Preliminaries

Let \(R \) be a ring. An additive map \(d : R \rightarrow R \) is called a derivation of \(R \), if it satisfies

\[
d(rs) = d(r)s + rd(s)
\]

for all \(r, s \in R \). Each \(a \in R \) defines the derivation \(\text{ad}_a \), given by \(\text{ad}_a(r) = ar - ra \).

A derivation of such a form is called inner. A local derivation [13, 18] of \(R \) is an additive map \(d : R \rightarrow R \), such that for any \(r \in R \) there is a derivation \(d_r \) of \(R \) with \(d(r) = d_r(r) \). Obviously, each derivation of \(R \) is a local derivation of \(R \). Observe also that for any local derivation \(d \) of \(R \) and any idempotent \(e \) of \(R \) one has

\[
d(e) = d_e(e) = d_e(e)e + ed_e(e) = d(e)e + ed(e).
\]

Let \((P, \leq)\) be a partially ordered set and \(R \) a commutative ring with identity. With any pair of \(x \leq y \) from \(P \) associate a symbol \(e_{xy} \) and denote by \(I(P, R) \) the \(R \)-module of formal sums

\[
\alpha = \sum_{x \leq y} \alpha(x, y) e_{xy},
\]

where \(\alpha(x, y) \in R \). If \(x \) and \(y \) run through a subset \(X \) of the ordered pairs \(x \leq y \) in the sum \((2) \), then it is meant that \(\alpha(x, y) = 0 \) for any pair \(x \leq y \) which does not belong to \(X \).

The sum \((2) \) is called a finitary series [15], whenever for any pair of \(x, y \in P \) with \(x < y \) there exists only a finite number of \(u, v \in P \), such that \(x \leq u < v \leq y \) and \(\alpha(u, v) \neq 0 \). The set of finitary series, denoted by \(FI(P, R) \), is an \(R \)-submodule of \(I(P, R) \) which is closed under the convolution of the series:

\[
\alpha \beta = \sum_{x \leq y} \left(\sum_{x \leq z \leq y} \alpha(x, z) \beta(z, y) \right) e_{xy}
\]

for \(\alpha, \beta \in FI(P, R) \). Thus, \(FI(P, R) \) is an \(R \)-algebra, called the finitary incidence algebra of \(P \) over \(R \). Moreover, \(I(P, R) \) is a bimodule over \(FI(P, R) \) under \((3) \).
2. LOCAL DERIVATIONS OF $FI(P, R)$

Given $x \leq y$, we identify e_{xy} with the series $1_R e_{xy} \in FI(P, R)$. Note that
\[e_{xy} e_{uv} = \delta_{yu} e_{xv}, \]
where δ is the Kronecker delta. In particular, the elements $e_x := e_{xx}$ are orthogonal idempotents of $FI(P, R)$, and for any $\alpha \in FI(P, R)$ one has
\[e_x \alpha e_y = \begin{cases} \alpha(x, y) e_{xy}, & x \leq y, \\ 0, & x \not\leq y. \end{cases} \]
We shall also consider the idempotents $e_X := \sum_{x \in X} 1_R e_{xx} \in FI(P, R)$, where $X \subseteq P$.

For any $\alpha \in FI(P, R)$ and $x \leq y$ we define
\[\alpha^p|_x = \alpha(x, y) e_{xy} + \sum_{x \leq v < y} \alpha(x, v) e_{xv} + \sum_{x < u \leq y} \alpha(u, y) e_{uy}. \]

Observe that the sums in (6) are finite, so $\alpha \mapsto \alpha^p|_x$ is a well-defined map $FI(P, R) \rightarrow FI(P, R)$. Moreover, it is R-linear and satisfies
\[\begin{align*}
(\alpha^p|_x)^p|_x &= \alpha^p|_x, \\
(e_X)^p|_x &= e_X \cap \{x, y\}.
\end{align*} \]

The next result is a partial generalization of [14] Lemma 8].

Lemma 2.1. For each R-linear local derivation d of $FI(P, R)$ and $x \leq y$ one has
\[d(\alpha)(x, y) = d(\alpha^p|_x)(x, y). \]

Proof. We first assume that d is an R-linear derivation of $FI(P, R)$. By (5)
\[d(\alpha(x, y)e_{xy}) = d(e_x \alpha e_y) = d(e_x) \alpha e_y + e_x d(\alpha) e_y + e_x d(e_y), \]
whence
\[d(\alpha)(x, y) = d(\alpha(x, y)e_{xy})(x, y) - (d(e_x) \alpha)(x, y) - (d(e_y))(x, y). \]

In view of (3) and (9) the right-hand side of (10) is
\[d((\alpha|_x^p)(x, y)e_{xy})(x, y) - (d(e_x) \alpha|_x^p)(x, y) - (d(\alpha|_x^p)(x, y))(x, y), \]
which is $d(\alpha|_x^p)(x, y)$ by the same (11), whence (9).

Now let d be an R-linear local derivation of $FI(P, R)$. Then using the result of the previous case and (7)
\[d(\alpha)(x, y) = d(\alpha - \alpha|_x^p)(x, y) + d(\alpha|_x^p)(x, y) \\
= d_{\alpha - \alpha|_x^p}((\alpha - \alpha|_x^p)|_x^p)(x, y) + d(\alpha|_x^p)(x, y) \\
= d_{\alpha - \alpha|_x^p}(\alpha|_x^p - (\alpha|_x^p)|_x^p)(x, y) + d(\alpha|_x^p)(x, y) \\
= d(\alpha|_x^p)(x, y), \]
which proves (9). \qed

We shall also need the following lemma which partially generalizes Lemma 1 from [14].
Lemma 2.2. Let \(d \) be an \(R \)-linear local derivation of \(FI(P, R) \) and \(X \subseteq P \). Then for all \(u \leq v \) one has

\[
d(e_X)(u, v) = \begin{cases}
 d(e_u)(u, v), & \text{if } u \in X \text{ and } v \notin X, \\
 d(e_v)(u, v), & \text{if } u \notin X \text{ and } v \in X, \\
 0, & \text{otherwise.}
\end{cases}
\]

(11)

Proof. The first two cases of (11), as well as the case \(u, v \notin X \), are immediate consequences of [3] and Lemma 2.4. Now let \(u, v \in X \). Then \(d(e_X)(u, v) = d_{e_X}(e_X)(u, v), \) the latter being zero by [14, Lemma 1]. \(\square \)

Corollary 2.3. Let \(d \) be an \(R \)-linear local derivation of \(FI(P, R) \) and \(x \leq y \). Then

\[
d(e_x)(x, y) = -d(e_y)(x, y).
\]

(12)

Indeed, if \(x = y \), then \(d(e_x)(x, x) = 0 \) thanks to Lemma 2.2 and if \(x < y \), then \(d(e_x + e_y)(x, y) = d(e_{\{x,y\}})(x, y) = 0 \) by the same reason.

The following fact is a partial generalization of [14, Lemma 2].

Lemma 2.4. Let \(d \) be an \(R \)-linear local derivation of \(FI(P, R) \). Then there exists \(\alpha \in FI(P, R) \) such that \(d(e_x) = ad_{\alpha}(e_x) \) for all \(x \in P \).

Proof. Define

\[
\alpha = \sum_{x \leq y} d(e_y)(x, y)e_{xy} \in I(P, R).
\]

Then \(\alpha e_x = d(e_x)e_x \), and since by (12)

\[
\alpha = -\sum_{x \leq y} d(e_x)(x, y)e_{xy},
\]

one similarly has \(e_x\alpha = -e_xd(e_x) \). So, by (11)

\[
d(e_x) = d(e_x)e_x + e_xd(e_x) = \alpha e_x - e_x\alpha = ad_{\alpha}(e_x).
\]

It remains to prove that \(\alpha \in FI(P, R) \). Suppose that there is an infinite set \(S \) of pairs \((x_i, y_i)\), such that \(x \leq x_i < y_i \leq y \) and \(\alpha(x_i, y_i) \neq 0 \). For each fixed \(u \) there is only a finite number of \(i \) such that \(x_i = u \), as \(d(e_u)(u, y_i) = -\alpha(x_i, y_i) \neq 0 \) for such \(u \) and \(d(e_u) \) is a finitary series. Similarly for each \(v \) there is only a finite number of \(j \) such that \(y_j = v \). Using this observation, similarly to what was done in the proof of [14, Lemma 2], we may construct an infinite \(S' \subseteq S \), such that for any two pairs \((x_i, y_i)\) and \((x_j, y_j)\) from \(S' \) one has \(x_i \neq y_j \). Let \(X = \{x_i \mid (x_i, y_i) \in S'\} \). Note that \(y_i \notin X \) for any \((x_i, y_i) \in S' \). So, using Lemma 2.2, we have for all \((x_i, y_i) \in S' \)

\[
d(e_X)(x_i, y_i) = d(e_{X \setminus \{x_i\}} + e_{x_i})(x_i, y_i)
\]

\[
= d(e_{X \setminus \{x_i\}})(x_i, y_i) + d(e_{x_i})(x_i, y_i)
\]

\[
= d(e_{x_i})(x_i, y_i) = -\alpha(x_i, y_i) \neq 0.
\]

This contradicts the fact that \(d(e_X) \in FI(P, R) \). \(\square \)

It follows from Lemma 2.4 that it suffices to describe the local derivations of \(FI(P, R) \) which satisfy

\[
d(e_x) = 0 \tag{13}
\]

for all \(x \in P \).
Lemma 2.5. Let \(d \) be an \(R \)-linear local derivation of \(FI(P,R) \) satisfying (13) for all \(x \in P \). Then there exists \(\sigma \in I(P,R) \), such that
\[
d(\alpha)(x,y) = \sigma(x,y)\alpha(x,y)
\] (14)
for all \(\alpha \in FI(P,R) \) and \(x \leq y \).

Proof. We first show that
\[
d(e_{xy})(u,v) = 0 \text{ for } (u,v) \neq (x,y).
\] (15)
In view of (13), equality (15) is trivial, when \(x = y \). For \(x < y \) observe by Lemma 2.4 that
\[
d(e_{xy})(u,v) = d((e_{xy})^u)(u,v).
\] (16)
The latter may be non-zero in the following two cases:

(i) \(u = x < y \leq v \);
(ii) \(u \leq x < y = v \).

(i) Let \(u = x < y < v \). Notice from (1) that \(e_y + e_{xy} \) is an idempotent of \(FI(P,R) \), so by (1), (13) and (16)
\[
d(e_y + e_{xy})(u,v) = (d(e_y + e_{xy})(e_y + e_{xy}) + (e_y + e_{xy})d(e_y + e_{xy}))(x,v)
\]
\[
= d(e_y + e_{xy})(y,v) = d(e_{xy})(y,v) = 0.
\]

(ii) Let \(u < x < y = v \). Considering the idempotent \(e_x + e_{xy} \in FI(P,R) \), as above we get
\[
d(e_x + e_{xy})(u,v) = (d(e_x + e_{xy})(e_x + e_{xy}) + (e_x + e_{xy})d(e_x + e_{xy}))(u,y)
\]
\[
= d(e_x + e_{xy})(u,x) = d(e_{xy})(u,x) = 0,
\]
completing the proof of (15).

Define
\[
\sigma = \sum_{x \leq y} d(e_{xy})(x,y)e_{xy} \in I(P,R).
\] (17)
Using Lemma 2.4 and (15) and linearity of \(d \) we conclude that
\[
d(\alpha)(x,y) = d(\alpha^u)(x,y) = \alpha(x,y)d(e_{xy})(x,y) = \sigma(x,y)\alpha(x,y).
\]

Lemma 2.6. Let \(d \) be as in Lemma 2.5. Then the corresponding element \(\sigma \in I(P,R) \) given by (17) satisfies
\[
\sigma(x,y) + \sigma(y,z) = \sigma(x,z)
\] (18)
for all \(x \leq y \leq z \).

Proof. Clearly, (18) holds, when \(x = y \) or \(y = z \), thanks to (13) and (17). Suppose that \(x < y < z \) and take
\[
\alpha = e_{xy} + e_{yz} - e_{xz} - e_y.
\] (19)
Then by (19) and (18) and Lemma 2.4 we have
\[
\sigma(x,y) = d(\alpha)(x,y) = d_\alpha(\alpha)(x,y) = d_\alpha(\alpha^u)(x,y) = d_\alpha(e_{xy} - e_y)(x,y),
\]
\[
\sigma(y,z) = d(\alpha)(y,z) = d_\alpha(\alpha)(y,z) = d_\alpha(\alpha^z)(y,z) = d_\alpha(e_{yz} - e_y)(y,z),
\]
\[
-\sigma(x,z) = d(\alpha)(x,z) = d_\alpha(\alpha)(x,z) = d_\alpha(\alpha^z)(x,z) = d_\alpha(e_{xy} + e_{yz} - e_{xz})(x,z).
\]
Adding these equalities, we get
\[
\sigma(x, y) + \sigma(y, z) - \sigma(x, z) = \Delta_\alpha(e_{xy})(x, y) + \Delta_\alpha(e_{yz})(y, z) - \Delta_\alpha(e_{xz})(x, z)
\] (20)
\[
- \Delta_\alpha(e_y)(x, y) + \Delta_\alpha(e_{yz})(x, z)
\] (21)
\[
- \Delta_\alpha(e_y)(y, z) + \Delta_\alpha(e_{xy})(x, z).
\] (22)

Observe that the right-hand side of (20) is zero by [16, Lemma 4]. To show that (21) and (22) are also zero, write
\[
\Delta_\alpha(e_{yz})(x, z) = \Delta_\alpha(e_y e_{yz})(x, z) = (\Delta_\alpha(e_y)e_{yz} + e_y \Delta_\alpha(e_{yz}))(x, z) = \Delta_\alpha(e_y)(x, y),
\]
\[
\Delta_\alpha(e_{xy})(x, z) = \Delta_\alpha(e_{xy}e_y)(x, z) = (\Delta_\alpha(e_{xy})e_y + e_{xy} \Delta_\alpha(e_y))(x, z) = \Delta_\alpha(e_y)(y, z).
\]

\[\square\]

Theorem 2.7. Each R-linear local derivation of $FI(P, R)$ is a derivation.

Proof. By Lemmas 2.4–2.6 each R-linear local derivation of $FI(P, R)$ is a sum of an inner derivation and a map of the form (14) with σ satisfying (18). It is readily checked by a direct application of (3) that such a map (14) is a derivation (see also [14, Lemma 3] for a similar construction).

\[\square\]

References

[1] Alizadeh, R., and Bitarafan, M. J. Local derivations of full matrix rings. *Acta Math. Hungar.* 145, 2 (2015), 433–439.
[2] Anderson, D., and Winders, M. Idealization of a module. *J. Commut. Algebra* 1, 1 (2009), 3–56.
[3] Baclawski, K. Automorphisms and derivations of incidence algebras. *Proc. Amer. Math. Soc.* 36, 2 (1972), 351–356.
[4] Benkovič, D. Jordan derivations and antiderivations on triangular matrices. *Linear Algebra Appl.* 397 (2005), 235–244.
[5] Benkovič, D. Lie derivations on triangular matrices. *Linear Multilinear Algebra* 55, 6 (2007), 619–626.
[6] Brešar, M. Characterizations of derivations on some normed algebras with involution. *J. Algebra* 152, 2 (1992), 454–462.
[7] Brešar, M., and Šemrl, P. Mappings which preserve idempotents, local automorphisms, and local derivations. *Canad. J. Math.* 45, 3 (1993), 483–496.
[8] Chen, L., and Zhang, J. Nonlinear Lie derivations on upper triangular matrices. *Linear Multilinear Algebra* 56, 6 (2008), 725–730.
[9] Cuelho, S. P., and Polcino Milies, C. Derivations of upper triangular matrix rings. *Linear Algebra Appl.* 187 (1993), 263–267.
[10] Courtemanche, J., Dugas, M., and Herden, D. Local automorphisms of finitary incidence algebras. *Preprint* (arXiv:1704.08365) (2017).
[11] Ghosseiri, N. M. Jordan derivations of some classes of matrix rings. *Taiwanese J. Math.* 11, 1 (2007), 51–62.
[12] Jøndrup, S. Automorphisms and derivations of upper triangular matrix rings. *Linear Algebra Appl.* 221 (1995), 205–218.
[13] Kadison, R. Local derivations. *J. Algebra* 130 (1990), 494–509.
[14] Khripchenko, N. S. Derivations of finitary incidence rings. *Comm. Algebra* 40, 7 (2012), 2503–2522.
[15] Khripchenko, N. S., and Novikov, B. V. Finitary incidence algebras. *Comm. Algebra* 37, 5 (2009), 1670–1676.
[16] Khripchenko, M. Jordan derivations of finitary incidence rings. *Linear Multilinear Algebra* 64, 10 (2016), 2104–2118.
[17] Köpfen, M. Automorphisms and Higher Derivations of Incidence Algebras. *J. Algebra* 174 (1995), 698–723.
[18] Larson, D. R., and Sourour, A. R. Local derivations and local automorphisms of $B(X)$. In *Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988)*, vol. 51 of *Proc. Sympos. Pure Math.* Amer. Math. Soc., Providence, RI, 1990, pp. 187–194.

[19] Nowicki, A. Derivations of special subrings of matrix rings and regular graphs. *Tsukuba J. Math.* 7, 2 (1983), 281–297.

[20] Nowicki, A. Higher R-derivations of special subrings of matrix rings. *Tsukuba J. Math.* 8, 2 (1984), 227–253.

[21] Nowicki, A., and Nowosad, I. Local derivations of subrings of matrix rings. *Acta Math. Hungar.* 105, 1–2 (2004), 145–150.

[22] Scharlau, W. Automorphisms and involutions of incidence algebras. In *Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974)*, Paper No. 24. Carleton Univ., Ottawa, Ont., 1974, pp. 11 pp. Carleton Math. Lecture Notes, No. 9.

[23] Šemrl, P. Local automorphisms and derivations on $B(H)$. *Proc. Amer. Math. Soc.* 125, 9 (1997), 2677–2680.

[24] Xiao, Z. Jordan derivations of incidence algebras. *Rocky Mountain J. Math.* 45, 4 (2015), 1357–1368.

[25] Zhang, J.-H., and Yu, W.-Y. Jordan derivations of triangular algebras. *Linear Algebra Appl.* 419 (2006), 251–255.

[26] Zhang, X., and Kiryuchko, M. Lie derivations of incidence algebras. *Linear Algebra Appl.* 513 (2017), 69–83.

[27] Zhao, Y. X., Yao, R. P., and Wang, D. Y. Local Jordan derivations and local Jordan automorphisms of upper triangular matrix algebras. *J. Math. Res. Exposition* 30, 3 (2010), 465–474.