The Interaction Between Viruses and Intestinal Microbiota: A Review

Zhiming Lv1 · Dongwei Xiong1 · Jichao Shi2 · Miao Long1 · Zeliang Chen1

Received: 29 January 2021 / Accepted: 28 July 2021 / Published online: 4 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
As the main pathogen threatening human and animal health, viruses can affect the immunity and metabolism of bodies. There are innate microbial barriers in the digestive tract of the body to preserve the homeostasis of the animal body, which directly or indirectly influences the host defence against viral infection. Understanding the interaction between viruses and intestinal microbiota or probiotics is helpful to study the pathogenesis of diseases. Here, we review recent studies on the interaction mechanism between intestinal microbiota and viruses. The interaction can be divided into two aspects: inhibition of viral infection by microbiota and promotion of viral infection by microbiota. The treatment of viral infection by probiotics is summarized.

Introduction
Recently, intestinal microorganisms are attracting more attention. Many studies indicate that these microorganisms are correlated with various functions of human body. Intestinal microorganisms are composed of prokaryotic bacteria, archaea, eukaryotic fungi, viruses, and other microorganisms [1]. The study of intestinal microorganisms mainly focuses on intestinal bacteria.

Intestinal microbiota form bacterial communities that mutually benefit humans and are divided into probiotics, opportunistic pathogens, and neutral bacteria. There are about 35,000 types of bacteria in the human intestine [2]. Most of these bacteria are anaerobes, whilst the number of aerobic and facultative anaerobes are much smaller than that of anaerobes [3]. There is a fine-tuned, elastic balance between the microbiota and the host. This relative stability is preserved by a high-level microbial diversity, the geographical distribution of microorganisms, and complex intermolecular communication between multiple parts of the whole organism [4]. The intestinal microbiota is closely related to various diseases of human body, including digestive diseases, respiratory diseases, immune diseases, and metabolic diseases. Hence, the intestinal microbiota plays an important role in treating many human diseases.

Viruses, as pathogens with no cellular structure, pose a serious threat to human health in the way that they parasitize and self-replicate within cells. We should understand the diversities and ecology of viruses as well as the reasons for their emergence. Therefore, multinational experts launched the Global Virome Project (GVP) in 2018 to identify major viral threats to prevent viral pandemics [5]. Many viruses (including enteroviruses, parvovirus, HIV (human immunodeficiency virus), avian influenza virus) affect the intestinal microbiota after they invade the human body, and they also affect the abundance and diversity of the microbiota. Therefore, research into the relationship between viruses and intestinal microbiota will help us to treat some diseases and lay a foundation for clinical diagnosis and treatment.
Physiological Role of Intestinal Microbiota

The intestinal microbiota plays many physiological roles, which can induce normal intestinal function and produce nutrients such as vitamin K, vitamin B12, short-chain fatty acids, and essential amino acids needed by the human body. It can also resist pathogens (the physiological function of intestinal microbiota is illustrated in Fig. 1). Sun et al. found that the bacterial microbiota produces sodium deoxycholate (DCA, a secondary bile acid) and can reduce campylobacter (C) jejuni-induced colitis [6]. Intestinal microbiota-derived metabolites or direct regulation of host immunity and metabolism were reported to profoundly affect tumourigenesis [7]. NOD2 that is a member of the NLR family can alleviate intestinal inflammation by regulating intestinal microbiota [8] and enhancing neutrophil infiltration and alveolar macrophage response to *Escherichia coli* pneumonia through the TLR4 pathway killing activity [9]. Clinical experiments indicate that hepatic damage in viral hepatitis can be enhanced by improving the intestinal microbiota [10]. In addition, intestinal microbiota can regulate the storage of host fat [11] and facilitate the digestion of dietary fibre to acquire more energy [12]. Bacterial dysbiosis is also associated with a variety of diseases. Intestinal microbiota interactions affect immune development, abnormal intestinal microbiota in preterm infants, or increase the risk of necrotizing enterocolitis (NEC) [13], and intestinal microbiota also increases the rate of thrombosis and atherosclerosis formation through the trimethylamine N-oxide (TMAO) [14, 15], which affects cardiovascular and cerebrovascular diseases. Bian et al. found that the addition of saccharin to drinking water for a period of 6 months led to the aggravation of liver inflammation in mice, which may be owing to saccharin-induced intestinal microbiome damage inducing changes in host inflammation-related bacterial pathways and metabolites [16]. A further study implies that the intestinal microbiota also affects allergic diseases and asthma [17].

The Interaction Between Virus Infection and Intestinal Microbiota

The Effect of Virus Infection on Intestinal Microbiota

Many bacteria are present in the intestinal tracts of animals and they play an essential role in health and disease; bacteria that play a positive role in the health of the body are called beneficial bacteria. When subject to viral infection, the number of beneficial bacteria is reduced and the number of harmful bacteria is increased in the intestine [18]. When the microbiota is out of balance, both exogenous and symbiotic microorganisms may invade the organism. For example, amongst the HIV-related microbiota, the phylum Firmicutes...
exhibits the highest transcription activity. The expression of anti-inflammatory pathway, including short-chain fatty acid biosynthesis and indole production, is decreased. These microbiota maintain an inflammatory environment [19]. Wang et al. found that, after respiratory influenza viral infection, intestinal microbiota disorders occur. The proportion of enterobacteria will increase significantly, whilst the proportion of segmented filamentous bacteria and lactic acid bacteria will decrease significantly, which is mediated by IFN-γ produced by lung-derived CCR9 + CD4 + T cells collected in the small intestine by ccl25 and ccl9. [20]. Segmented filamentous bacteria are an important probiotic in intestinal microbiota, which cannot be cultured in vitro. Studies have shown that it can drive autoimmune arthritis by regulating T-helper 17 cells [21]. Transmissible gastroenteritis virus (TGEV) is an important pathogen that causes transmissible gastroenteritis in pigs. It belongs to the family of coronaviruses and can cause severe diarrhoea, vomiting, and dehydration in pigs. The mortality rate amongst piglets less than 2 weeks old is 100% [22]. A study on TGEV through real-time quantitative PCR for quantitatively detecting bacteria in pigs with transmissible gastroenteritis found that TGEV caused the number of Lactobacillus to decrease and the increased number of Enterobacteriaceae may cause secondary infection [23]. Akin to TGEV, rotavirus is also a virus that causes enteritis, it has been demonstrated that rotavirus infection causes a decrease in Lactobacillus and an increase in Escherichia and Streptococcus in calves [24]. H9N2 avian influenza virus is one of the subtypes of the avian influenza virus. Although its pathogenicity is not as strong as other subtypes, a recent study indicates that it will affect the intestinal microbiota in the ileum of chickens and cause a significant increase in the content of E. coli in the ileum, which caused high mortality amongst infected chickens [25].

In another study, the faeces of 20 hospitalized children with severe or complex acute viral gastroenteritis (AGE) and 20 healthy children were sequenced with 16S rRNA. It was found that complicated AGE patients contained more Campylobacteriaceae, Neisseria family, Methylbacteriaceae, Sphingomonas family, and Enterobacteriaceae than the normal control group [26]. Campylobacter is one of the main sources of bacterial diarrhoea. Neisseria meningitidis and Neisseria gonorrhoeae in Neisseria family are important pathogens of epidemic meningitis and gonorrhoea, which cannot be ignored.

Apart from directly causing intestinal microbiota disorder, viruses can also produce intestinal microbiota disorder through other organs, of which brain-gut axis is the most well-known. Evidence has proved that microbiota plays a key role in brain function regulation [27]. Regulating intestinal microbiota by taking probiotic Lactobacillus rhamnosus IMC 501 can affect zebra fish behaviour and brain-derived neurotrophic factor and 5-hydroxytryptamine metabolism levels [28]. A study showed that, when Theiler’s murine encephalomyelitis virus was inoculated intracranially in mice, the numbers of Alloprevotella (Bacteroidetes), Akkermansia (Verrucomicrobia), and Anaerotruncus (Firmicutes) decreased at 14 dpi, whilst Clostridium XIVa (Firmicutes) increased at 28 dpi [29]. This result not only indicates that the brain affected by viruses will lead to bacterial imbalance but also reflects the fact that the intestinal microbiota varies constantly in each phase of the disease.

Effect of Intestinal Microbiota on Viruses

Intestinal Microbiota Resists Viral Infection

In a study by Andrew Gewirtz’ s team at Georgia State University, segmented filamentous bacteria (SFB) in microbiota can resist the rotavirus (RV). Its resistance does not rely on immune factors, such as natural lymphocytes, interferons, IL-17, and IL-22. Instead, it resists RV infection by promoting the proliferation, migration, and shedding of intestinal epithelial cells [30]. Respiratory syncytial virus (RSV) is an RNA virus that can cause viral pneumonia in children. A study has shown that a high-fibre diet can create acetic acid in intestinal microbiota of mice. Acetic acid can directly inhibit the virus, induce IFN-β production in lungs, and activate the type 1 IFN signalling pathway. IFN-1 receptor (IFNAR) mediates the resistance of acetic acid to RSV infection [31]. Norovirus can cause diarrhoea. Studies by Lee et al. found that the administration of Vitamin A to mice inoculated with norovirus caused an increase of intestinal lactobacilli. Additionally, in the RAW264.7 cell line, lactobacilli played an antiviral role by up-regulating IFN-β [32].

Although intestinal microbiota can resist viral invasion in many ways, if the intestinal microbiota is destroyed by external forces during treatment, it will result in severe consequences. Some studies have shown that if antibiotics are only used to treat viral diseases and the intestinal microbiota is out of control, the symptoms of viral diseases may be aggravated [33]. Even maternal antibiotic treatment during pregnancy has an impact on intestinal microbiota colonization in infants and young children, with reduced resistance to certain viruses. The establishment of intestinal microbiota is relevant to the transmission of maternal and infant microbiota. Studies have shown that maternal and infant microbiota transmission can promote the establishment and development of infant intestinal microbiota. Maternal strains are more adaptable in the infant intestine than other strains [34], and the intestinal microbiota is also associated with the immune response in the body. Mouse models are used to assess the effect of gastrointestinal microbiota disorder on CD8 + T cell-mediated antiviral immunity. Maternal antibiotic treatment (MAT) administered to pregnant and lactating...
mice induced changes to the intestinal microbiota in females and pups. Mortality of MAT pups increased after injecting vaccinia virus. In addition, CD8+ T cells of uninfected MAT pups decreased the ability to produce IFN-γ after in vitro activation [35], that is, CD8+ T cell-mediated immunity was associated with intestinal microbiota. The intestinal epithelium in neonatal mice expresses Fc receptor (FcRn), which transports IgG in breast milk from intestinal lumen to blood via FcRn [36], thus producing immune effects: the results show that intestinal microbiota disorder can weaken the antiviral capacity. Another similar study showed that if antivirals, probiotics, and antibiotics were combined to treat H7N9 virus, the microbial diversity and abundance of beneficial bacteria in the intestine of H7N9 patients could be improved [37].

Intestinal Microbiota Promotes Viral Infection

In fact, the relationship between the intestinal microbiota and viral infections has always been a focus amongst researchers. In various discoveries, the presence of intestinal microbiota is a boost to a virus trying to invade the body. Uchiyama et al. found that intestinal microbiota can promote rotavirus infection, which can be alleviated by antibiotic treatment [38]. Jones et al. firstly found that commensal bacteria were responsible for enhancing acute norovirus infection [39]. Wilen et al. further elaborated the principle that both the immune and the intestinal microbiota can promote norovirus infection, and it spreads through cluster cells. Type 2 immune response cytokines represented by the immune factor IL-4 can lead to the proliferation of cluster cells and increase the probability of norovirus infection [40]. Previous research has established that bile acids (BAs) are essential for GII.3 human norovirus replication and are associated with BA hydrophobicity [41]. Studies found that the rate of curing of patients was improved when the mice were given antibiotics to reduce the number of intestinal microbiota before being vaccinated with polio virus. This result indicated that pre-use of antibiotics to reduce intestinal bacteria reduced the rate of infection in mice receiving oral reovirus [42]. In another related study, bacteria isolated from the caecal contents of mice were cultured and combined with poliovirus: a variety of bacteria can be combined, amongst them, Lactobacillus johnsonii has the highest degree of binding. Bacteria can also mediate the recombination of two or more viruses and improve their defects to promote the infection of the body [43] (the interaction between intestinal microbiota and virus is shown in Fig. 2 and Table 1); however, studies have also shown that LPS on the surface of bacteria, when combined with poliovirus, will increase the stability of the virus [44]. Coincidentally, LPS can also enhance the heat stability of a reovirus and increase its ability to infect defence against virus. The antagonistic mechanisms include: 1. bacteria and their metabolites directly fight viruses; 2. bacteria and their metabolites eliminate viruses by mobilizing the body’s immune system.

![Fig. 2 The interaction between virus and intestinal microbiota. The promoting mechanisms include: 1. enhance the infectivity of virus (stabilize the structure of virus and increase the differentiation of target cells); 2. destroy the immune system of the body and weaken the defence against virus. The antagonistic mechanisms include: 1. bacteria and their metabolites directly fight viruses; 2. bacteria and their metabolites eliminate viruses by mobilizing the body’s immune system.](image-url)
cells [45] (LPS enhancement of virus infectivity is shown in Fig. 3).

Dengue virus is a virus transmitted by Aedes aegypti. The symbiotic microorganism in the mosquito gut is closely related to the replication of dengue virus. Some experiments have shown that Serratia marcescens, one of the symbiotic bacteria in mosquitoes, promotes the infection of arbovirus through a secretory protein called SmEnhancin, which can digest the membrane-binding mucin on mosquito intestinal epithelial cells, thus enhancing the transmission ability of the virus and making mosquitoes more susceptible to dengue virus infection [46].

Antiviral Effects of Probiotics

At present, the research on the antiviral effect of probiotics is still in the developmental stage, and most of the antiviral effects of probiotics are lactobacilli and bifidobacterial related [56]. Wang et al. found that B. subtilis OKB105 and its surfactin can inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2) [57]. Similarly, the exopolysaccharide of Lactobacillus delbrueckii OLL1073R-1 (LDR-1) can regulate the innate antiviral immune response of pig intestinal epithelial cells [58]. Other studies have shown that, in addition to the antiviral activities of probiotics, some foods that enhance the energy sources of probiotics can be used in combination with probiotics, and the combined antiviral effect will be better. For example, by feeding rice bran + probiotics to germ-free swine, a variety of metabolites of the two can improve intestinal barrier function, regulate the immune response, and prevent diarrhoea caused by rotavirus [59].

The combination of drugs exerts a synergistic effect, and the combination of the two probiotics will have a similar effect. In a clinical trial, 57 children with rotavirus diarrhoea were selected and given oral probiotic Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 or placebo + standard diarrhoea treatment. The results showed that the duration of illness in children in the probiotic group was significantly shorter than that in the control group. It indicates that the two probiotics exert a certain inhibitory effect on rotavirus [60].

In addition, probiotics were cultured in cell-free spent medium (CFSM), and different species of lactobacilli had different inhibitory effects on viruses. If exposed to CFSM of Bifidobacterium bifidum JCM 1254, Lactobacillus plantarum 6 ATCC 14917, and Lactobacillus rhamnosus DSM...
20021, the percentages of viral titre reduction were 98.3, 98.5, and 97.6%, respectively, and *B. longum* 20219 resulted in a 96.3% reduction in Newcastle disease virus (NDV) titre. Compared with chicken infectious bursal disease virus (IBDV), probiotic strains have much higher inhibitory effect on NDV [56].

Other research showed that the previously mentioned *Enterococcus faecium* also plays a protective role against transmissible gastroenteritis virus (TGEV) in pigs. When probiotics are added to cells along with the virus during infection, at the highest concentration of *E. faecium*, protective effect can reach 100% (competition assay) [61]. In other words, although bacteria are harmful to the organism under conditions of intestinal disorder, they will compete with exotic pathogens if pathogens are emerging; therefore, it is critical to maintain the stability of intestinal microbiota in organisms for the control of certain diseases.

Current Treatment of Viral Infection from the Perspective of Bacteria (Probiotics)

Many studies have shown that probiotics and their metabolites can reduce the risk of viral infection and bacteria also antagonize viruses to interfere with homeostasis in the host.

At present, there are several ways in which bacteria fight viral infections:

1. Bacteria (probiotics) directly antagonize viruses through evolutionary mechanisms [62–67]; after long evolution, bacteria also produce the immune mechanism CRISPR/Cas system for viruses [68], and CRISPR is essentially a protective mechanism for bacteria. The CRISPR/Cas system is an acquired immune system found in most bacteria and most archaea.

2. Bacteria (probiotics) and their metabolites antagonize viruses by immune means. Other studies have claimed that the new peptide P18 produced by Bacillus subtilis has anti-influenza virus effect both in vitro and in vivo. The protective effect of P18 on mice was observed at concentrations ranging from 12.5 to 100 ug/ml, which is comparable to that of Oseltamivir phosphate (Tamiflu) [69].

The methods of treating viral diseases from the perspective of bacteria (probiotics) are summarized as follows:

1. Faecal bacteria transplantation, as a newly emerging treatment method, also has a certain effect on viral diseases. Studies have shown that antiviral protection can be transmitted to immunodeficient mice by faecal bacterial
transplantation [70]. Besides, clinical trials show that faecal bacterial transplantation for dogs infected with Canine parvovirus (CPV) can shorten the course of disease with no adverse effects detected [71].

2. Taking probiotics such as L. gasseri SBT2055 is efficacious in protecting mice infected with influenza A/PR8 virus [72]. In a study by Inatomi on epidemic diarrhoea in pigs, researchers divided sows from farms where PEDV was present in the environment into two groups, one group taking probiotic preparations and the other group taking control. Both groups were accompanied by vaccine injection. The results showed that the contents of IgA, IgG, and PED-specific antibodies in the colostrum of sows taking probiotics were significantly increased, that is to say, new-born piglets could acquire more maternal antibodies from the colostrum, which had stronger effect on the disease [73].

3. The intestinal microbiota, as the symbiotic microbiota of the body, is also closely related to the body’s daily diet, and different diets will also have different effects on the intestinal microbiota. Fermentable carbohydrates in a high-fibre diet have a positive effect on the intestinal barrier, whereas Western-style diets have a negative impact on the intestinal barrier [74]. The intestinal barrier is also an important line of defence for the body to resist pathogens and an important part of the intestinal barrier. Hence, it is believed that a normal and active diet will help to avoid viral infection by way of the intestinal microbiota.

Gene Engineering Technology

Some studies have shown that transforming plasmids that contain specific genes into the intestinal symbiont Snodgrasella alvi of bees can regulate the expression of certain genes in the host. As a result, intestinal symbionts with specific targeting plasmids can reduce the infection of residual wing virus [75].

Probiotics have been included in several controlled clinical trials in patients with infectious diseases for prevention of viral diarrhoea (Table 2).

Effect of Intestinal Microbiota Composition on Immunogenicity of Rotavirus Vaccine

The relationship between the intestinal microbiota and the immunogenicity of rotavirus vaccines has also been analysed [90, 91]. Michael et al. found that after inoculating attenuated human rotavirus vaccine, the number of total IgM immunoglobulin-secreting cells in intestinal tissues and the total IgG immunoglobulin-secreting cells in blood was significantly higher in germ-free pigs transplanted with human infant faecal microbiota [92]. Twitchell et al. found that the levels of rotavirus-specific immunoglobulins such as IgG and IgA in small intestinal contents and IgA in large intestinal contents were higher in the intestine of Gn pigs colonized with healthy human intestinal microbiota [93]. A study in Pakistan showed that the immunogenic strength of rotavirus vaccine was positively correlated with the ratio of Gram-negative to Gram-positive bacteria in the intestinal microbiota of the subjects, particularly the abundance of Serratia and E. coli [94]. However, the relationship amongst intestinal flora, rotavirus, and host genetic background is not clear and needs further study.

Summary

As an important member of the intestinal barrier of the organism, the complexity and diversity of the intestinal microbiota are different from other organs. Its essential particularity as an important component of the organs also causes it to become a hub associated with other systemic organ diseases. Similar situations may occur in the environment that is similar to the intestine in the body, such as the oral cavity and respiratory tract. The study thereof may help us to deepen our understanding of symbiotic microorganisms and understand the relationship between the intestinal microbiota and viruses in the body. It may provide a powerful tool for the treatment of viral infections in the future. The intestinal microbiome also contains Archaea and Virome: we are far from reaching a perfect understanding of the intestinal microbiota. At present, the research into intestinal microbiota in faecal bacteria transplantation and the brain-gut axis is flourishing, and the relationship between tumours and feed toxins has gradually attracted attention amongst researchers. In clinical aspects, scholars around the world have also linked the intestinal microbiota to a variety of diseases, but some studies exaggerate the role of probiotics. In response to the related hyperbole, we need to pay attention to the fact that the relationship between viruses and intestinal microbiota remains in its exploratory stage. In particular, in 2020–2021, the Covid-19 epidemic has received worldwide attention, and we need to continue studying the relationship between the good microbiota, probiotics, and viruses. In recent years, there has been more research into the antiviral effect of probiotics and the interaction of probiotics; however, the specific immune mechanism remains to be clarified, and the study thereof could offer a theoretical basis for clinical trials, which is of potential medical value.
Table 2 Clinical efficacy of probiotics on infectious diseases

Strain	Target Disease (Virus)	Individuality	Result	Refs
Enterococcus faecalis strain FK-23	HCV	Anti-HCV-positive adults	AST and ALT were detected	[76]
Lactobacillus plantarum 299v	HIV	HIV-infected child	Enhance immune response	[77]
Lactobacillus casei Shirotia	Cytomegalovirus Epstein–Barr	Healthy athletes	Reduced plasma CMV and EBV antibody titres	[78]
	HIV	HIV-infected child	CD4+T cells increase; induced decreases in plasma HIV load and CD8+T-cells activation	[79]
Lactobacillus rhamnosus GG	Norovirus	Elderly people	No significant difference in infection rate	[80]
	Rhinovirus	Preterm infant	Reduce the risk of rhinovirus infections	[81]
	Rotavirus and Cryptosporidium	6 M-5Y children with rotavirus and cryptosporidial gastroenteritis	Decrease repeated episodes of rotavirus diarrhea; improvement in intestinal function in children with rotavirus and cryptosporidial gastroenteritis	[82]
Enterococcus faecium SF68	Cats latent feline herpesvirus 1	FHV1-infected cats	Reduce incidence rate	[83]
Lactobacillus paracasei Strain ST11	Non-rotavirus	Infant with diarrhea	Ineffective in those with rotavirus diarrhea	[84]
Lactobacillus pentosus strain b240	Common cold	Elderly adults	Reduced the incidence rate of the common cold	[85]
Clostridium butyricum and B. infantis	Minimal hepatic encephalopathy (MHE) in patients with hepatitis B virus (HBV)-induced liver cirrhosis	HBV-induced liver cirrhosis patients	Reduction in venous ammonia; the parameters of the intestinal mucosal barrier were obviously improved	[86]
Bifidobacterium Lactis Bb12	Rotavirus and poliovirus	Six-week-old healthy, full-term infants	Anti-rotavirus– and anti-poliovirus–specific IgA increased	[87]
Bifidobacterium	Acute viral diarrhoea (rotavirus)	Children(3 months and 3 years)	Reduce diarrhoea and promote viral shedding	[88]
Saccharomyces boulardii	Acute rotavirus diarrhoea	Children (3 months–5 years)	The duration of diarrhoea was significantly shorter	[89]

HCV hepatitis C virus, AST aspartate aminotransferase, ALT alanine aminotransferase, HIV human immunodeficiency virus, CMV cytomegalovirus, EBV Epstein–Barr virus, FHV1 feline herpesvirus 1, MHE minimal hepatic encephalopathy, HBV hepatitis B virus

References

1. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. https://doi.org/10.1152/physrev.00045.2009
2. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785. https://doi.org/10.1073/pnas.0706625104
3. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270. https://doi.org/10.1016/j.cell.2012.01.035
4. Pitlik SD, Koren O (2017) How holobionts get sick-toward a unifying scheme of disease. Microbiome 5(1):64. https://doi.org/10.1186/s40168-017-0281-7
5. Carroll D, Daszak P, Wolfe ND, Gao GF, Morel CM, Morzaria S, Pablos-Mendez A, Tomori O, Mazet JAK (2018) The global virome project. Science 359(6378):872–874. https://doi.org/10.1126/science.aap7463
6. Sun X, Winglee K, Gharaibeb RZ, Gauthier J, He Z, Tripathi P, Avram D, Bruner S, Fodor A, John C (2018) Microbiota-derived
metabolic factors reduce campylobacteriosis in mice. Gastroenterology 154(6):1751-1763 e1752. https://doi.org/10.1053/j.gastro.2018.01.042
7. Zhang Z, Tang H, Chen P, Xie H, Tao Y (2019) Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 4:41. https://doi.org/10.1038/s41392-019-0074-5
8. Biswas A, Petnicki-Ocwieja T, Kobayashi KS (2012) Nod2: a key regulator linking microbiota to intestinal mucosal immune. J Mol Med (Berl) 90(1):15–24. https://doi.org/10.1007/s00109-011-0802-y
9. Tsai F, Coyle WJ (2009) The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep 11(4):307–313. https://doi.org/10.1007/s10620-009-0045-z
10. Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6(3):209–240. https://doi.org/10.1007/s10096-011-0229-7
11. Tsai F, Coyle WJ (2009) The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep 11(4):307–313. https://doi.org/10.1007/s10620-009-0045-z
12. Dessi A, Pintus R, Marras S, Cesare Marincola F, De Magistris L, Tsai F, Chen PH, Hsu CM, Chen LW (2011) Gut flora enhance bacterial clearance in lung through toll-like receptors 4. J Biomed Sci 18:68. https://doi.org/10.1186/1423-0127-18-68
13. Xia L, Yang Y, Wang J, Jing Y, Yang Q (2018) Impact of TGEV infection on the pig small intestine. Virol J 15(1):102. https://doi.org/10.1186/s12985-018-1012-9
14. Jang JY, Kim S, Kwon MS, Lee J, Yu DH, Song RH, Choi HJ, Park J (2019) Rotavirus-mediated alteration of gut microbiota and its correlation with physiological characteristics in neonatal calves. J Microbiol 57(2):113–121. https://doi.org/10.1007/s12775-019-8549-1
15. Li H, Liu X, Chen F, Zuo K, Wu C, Yan Y, Chen W, Lin W, Xie Q (2018) Avian influenza virus subtype H9N2 affects intestinal microbiota, barrier structure injury, and inflammatory intestinal disease in the chicken ileum. Viruses. https://doi.org/10.3390/v10050270
16. Chen SY, Tsai CN, Lee YS, Lin CY, Huang KY, Chao HC, Lai MW, Chiu CH (2017) Intestinal microbiome in children with severe and complicated acute viral gastroenteritis. Sci Rep 7:46130. https://doi.org/10.1038/srep46130
17. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF (2017) Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 179:223–244. https://doi.org/10.1016/j.trsl.2016.10.002
18. Borrelli L, Aceto S, Agnisola C, De Paolillo R, DiPietro L, Stillings RM, Dinan TG, Cryan JF, Menna LF, Fioretti A (2016) Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep 6:30046. https://doi.org/10.1038/srep30046
19. Carrillo-Salinas FJ, Mestre L, Mecha M, Felius A, Del Campo R, Villarrubia N, Espejo C, Montalban X, Alvarez-Cermo NC, Villar LM, Guaza C (2017) Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus. Sci Rep 7:44377. https://doi.org/10.1038/srep44377
20. Shi Z, Zhou J, Zhang Z, Zhao X, Noriega J, Zhang B, Zhao C, Ingle H, Bittinger K, Mattei L, Pruissjers AJ, Plemer RK, Nice TJ, Baldrige MT, Dermody TS, Chassaigne B, Gewirtz AT (2019) Segmented filamentous bacteria prevent and cure rotavirus infection. Cell 179(3):644-658 e613. https://doi.org/10.1016/j.cell.2019.09.028
21. Antunes KH, Fachi JL, de Paula R, da Silva E, Peral LP, Dos Santos AA, Dias GMB, Vargas JE, Puga B, Mayer FQ, Marzec J, Liang J, Wang X, Bell D, Polack FP, Kleeberger SR, Stein RT, Vinolo MAR, de Souza APD (2019) Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat Commun 10(1):3273. https://doi.org/10.1038/s41467-019-11152-6
22. Lee H, Ko G (2016) Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome. Sci Rep 6:25835. https://doi.org/10.1038/srep25835
23. Thackray LB, Lindley SA, Gorman MJ, Poddar S, Bagadia P, Briseno CG, Thiesen DJ, Tan Q, Hynes BL Jr, Lin H, Lucas TM, Desai C, Gordon JJ, Murphy KM, Virgin HW, Diamond MS (2018) Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Rep 22(13):3440-3453 e3446. https://doi.org/10.1016/j.celrep.2018.03.001
24. York A (2018) Delivery of the gut microbiome. Nat Rev Microbiol 16(9):520–521. https://doi.org/10.1038/s41579-018-0059-3
25. Gonzalez-Perez G, Hicks AL, Tekieli TM, Radens CM, Williams BL, Lamouse-Smith ES (2016) Maternal antibiotic treatment
impacts development of the neonatal intestinal microbiome and antiviral immunity. J Immunol 196(9):3768–3779. https://doi.org/10.4049/jimmunol.1502322

36. Zheng W, Zhao W, Wu M, Song X, Caro F, Sun X, Gazzaniga F, Stefanetti G, Oh S, Mekalanos JJ, Kasper DL (2020) Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577(7791):543–548. https://doi.org/10.1038/s41586-019-1898-4

37. Qin N, Zheng B, Yao J, Guo L, Zuo J, Wu L, Zhou J, Liu L, Guo J, Ni S, Li A, Zhu Y, Liang W, Xiao Y, Ehrlich SD, Li L (2015) Influence of H7N9 virus infection and associated treatment on human gut microbiota. Sci Rep 5:14771. https://doi.org/10.1038/srep14771

38. Uchiyama R, Chassaing B, Zhang B, Gewirtz AT (2014) Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity. J Infect Dis 210(2):171–182. https://doi.org/10.1093/infdis/jiu037

39. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, Gonzalez-Hernandez MB, Ivory NM, Wobus CE, Vinje J, Tibbetts SA, Wallet SM, Karst SM (2014) Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346(6210):755–759. https://doi.org/10.1126/science.1257147

40. Wilen CB, Lee S, Hsieh LL, Orchard RC, Desai C, Hykes BL Jr, McMallaster MR, Balce DR, Feehley T, Brestoff JR, Hickey CA, Yokoyama CC, Wang YT, MacDuff DA, Kreamalmayer D, Howitt MR, Neil JA, Cadwell K, Allen PM, Handley SA, van Lookeren CM, Baldrige MT, Virgin HW (2018) Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360(6385):204–208. https://doi.org/10.1126/science.aar3799

41. Murakami K, Tenge VR, Karandikar UC, Lin SC, Ramani S, Ettayebi K, Crawford SE, Zeng XL, Neill FH, Ayyar BV, Katayama K, Graham DY, Bieberich E, Atmar RL, Estes MK (2020) Probiotic treatment in infants with rotavirus infection enhances enterotoxigenic Escherichia coli K88 adhesion by promoting epithelial-mesenchymal transition in intestinal epithelial cells. J Virol. https://doi.org/10.1128/JVI.01256-17

42. Grau KR, Zhu S, Peterson ST, Helm EW, Philip D, Phillips M, Hernandez A, Turula H, Frasse P, Graziano VR, Wilen CB, Baldrige MT, Karst SM (2020) The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nat Microbiol 5(1):84–92. https://doi.org/10.1038/s41564-019-0602-7

43. Engevik MA, Banks LD, Engevik KA, Chang-Graham AL, Perry JL, Hutchinson DS, Ajami NJ, Petroсинeo JF, Hyser JM (2020) Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes 11(5):1324–1347. https://doi.org/10.1080/19499760.2020.1754714

44. Lu J, Ma SS, Zhang WY, Duan JP (2019) Changes in peripheral blood inflammatory factors (TNF-alpha and IL-6) and intestinal flora in AIDS and HIV-positive individuals. J Zhejiang Univ Sci B 20(10):793–802. https://doi.org/10.1631/jzus.B1900075

45. Qin N, Zheng B, Yao J, Guo L, Zuo J, Guo K, Harper MS, Frank DN, McCarter MD, Santiago ML, Wilson CC (2016) Enhancement of HIV-1 infection and intestinal CD4+ T cell depletion ex vivo by gut microbes altered during chronic HIV-1 infection. Retrovirology 13:5. https://doi.org/10.1186/s12977-016-0237-1

46. Tuddenham SA, Koay WLA, Zhao N, White JR, Ghanem KG, Sears CL, Consortium HIVMR-a (2020) The impact of human immunodeficiency virus infection on gut microbiota alpha-diversity: an individual-level meta-analysis. Clin Infect Dis 70(4):615–627. https://doi.org/10.1093/cid/ciz258

47. Mudd JC, Brenchley JM (2016) Gut mucosal barrier dysfunction, microbial dysbiosis, and their role in HIV-1 disease progression. J Infect Dis 214(Suppl 2):S58-66. https://doi.org/10.1093/infdis/jiw258

48. Harding JN, Sieffker D, Vu L, You D, DeVincenzo J, Pierre JF, Cormier SA (2020) Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity. BMC Microbiol 20(1):140. https://doi.org/10.1186/s12866-020-01816-5

49. Abdelhamid AG, El-Masry SS, El-Dougdoug NK (2019) Probiotic lactobacillus and bifidobacteria strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J 10(4):337–350. https://doi.org/10.1186/s13167-019-00184-z

50. Wang X, Hu W, Zhu L, Yang Q (2017) Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells. Biosci Rep. https://doi.org/10.1042/BSR20170082

51. Kannmani P, Albarracin L, Kobayashi H, Iida H, Komatsu R, Humayun Kober AKM, Ikeda-Ohtsubo W, Suda Y, Aso H, Makino S, Kano H, Saito T, Villena J, Kitazawa H (2018) Exopolysaccharides from lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Mol Immunol 93:253–265. https://doi.org/10.1016/j.molimm.2017.07.009

52. Nealon NJ, Yuan L, Yang X, Ryan EP (2017) Rice bran and prebiotics alter the porcine large intestine and serum metabolomes from lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Mol Immunol 93:253–265. https://doi.org/10.1016/j.molimm.2017.07.009

53. Park MS, Kwon B, Ku S, Ji GE (2017) The efficacy of Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 probiotic treatment in infants with rotavirus infection. Nutrients. https://doi.org/10.3390/nu9080887

54. Chai W, Burwinkel M, Wang Z, Palissa C, Esch B, Twardziok S, Rieger J, Wrede P, Schmidt MF (2013) Antiviral effects of a
probiotic Enterococcus faecium strain against transmissible gas-

toenteritis coronavirus. Arch Virol 158(4):799–807. https://doi.
.org/10.1007/s00705-012-1543-0

62. Kumar R, Seo BJ, Mun MR, Kim CJ, Lee I, Kim H, Park YH

(2010) Putative probiotic Lactobacillus spp. from porcine gas-
toenteritis tract inhibit transmissible gastroenteritis coron-
avirus and enteric bacterial pathogens. Trop Anim Health Prod
42(8):1855–1860. https://doi.org/10.1111/j.1225-010-9648-5

63. Alqazlan N, Alizadeh M, Boodho N, Taha-Abdelaziz K, Nagy
E, Bridle B, Sharif S (2020) Probiotic lactobacilli limit avian
influenza virus subtype H9N2 replication in chicken cecal tonsil
mononuclear cells. Vaccines (Basel). https://doi.org/10.3390/vacci
nes8040605

64. Ermolенко EI, Desheva YA, Kolobov AA, Kotyleva MP, Sychev
E, Ermolenko EI, Desheva YA, Kolobov AA, Kotyleva MP, Sychev

IA, Suvorov AN (2019) Anti-influenza activity of enterocin B
in vitro and protective effect of bacteriocinogenic enterococcal
probiotic strain on influenza infection in mouse model. Probiot-
ics Antimicrob Proteins 11(2):705–712. https://doi.org/10.1007/
s12602-018-9457-0

65. Eguchi K, Fujitani N, Nakagawa H, Miyazaki T (2019) Prevention
of respiratory syncytial virus infection with probiotic lactic acid
bacterium Lactobacillus gallusgerti SBT2055. Sci Rep 9(1):4812.
https://doi.org/10.1038/s41598-019-39602-7

66. Waiyamitra P, Zoral MA, Saengtienchai A, Luengnaruemitchai
W, Alqazlan N, Alizadeh M, Boodho N, Taha-Abdelaziz K, Nagy
E, Bridle B, Sharif S (2020) Probiotic lactobacilli limit avian
influenza virus subtype H9N2 replication in chicken cecal tonsil
mononuclear cells. Vaccines (Basel). https://doi.org/10.3390/vacci
nes8040605

67. Cantu-Bernal S, Dominguez-Gomez M, Medina-Peraza I, Aros-
Uzarra E, Oniveros N, Flores-Mendoza L, Gomez-Flores R,
Tamez-Guerra P, Gonzalez-Ochoa G (2020) Enhanced viability
and anti-rotavirus effect of Bifidobacterium longum and Lacto-
 bacillus plantarum in combination with Chlorella sorokiniana in
a dairy product. Front Microbiol 11:875. https://doi.org/10.3389/fmicb.
2020.00875

68. Barrangou R, Horvath P (2017) A decade of discovery: CRISPR
functions and applications. Nat Microbiol 2:17092. https://doi.
.org/10.1038/nmicrobiol.2017.92

69. Ishizaki A, Bi X, Nguyen LV, Matsuda K, Pham HV, Phan CTT,
Khu DTK, Ichimura H (2017) Effects of short-term probiotic
injection on immune profiles and microbial translocation among
HIV-1-infected Vietnamese children. Int J Mol Sci. https://doi.
.org/10.3390/ijms18102185

70. Lappin MR, Veir JK, Satyaraj E, Czarnecki-Maulden G (2009)
Lactobacillus paracasei strain SBT2055. Sci Rep 9(1):4812.
https://doi.org/10.1038/s41598-019-39602-7

71. Ngata S, Asahara T, Ohta T, Yamada T, Kondo S, Bian L,
Wang C, Yamashiro Y, Nomoto K (2011) Effect of the continu-
ous intake of probiotic-fermented milk containing Lactobacillus
casei strain Shirato on fever in a mass outbreak of norovirus
gastroenteritis and the faecal microflora in a health service facil-
ity for the aged. Br J Nutr 106(4):549–556. https://doi.org/10.
1017/S000711451100064X

72. Luoto R, Ruuskanen O, Waris M, Kalliomaki M, Salminen S,
Isolauri E (2014) Prebiotic and probiotic supplementation
prevents rhinovirus infections in preterm infants: a randomized,
placebo-controlled trial. J Allergy Clin Immunol 133(2):405–413.
https://doi.org/10.1016/j.jaci.2013.08.020

73. Sinhdu KN, Somuyanarayanan TV, Paul A, Babji S, Ajampur
SS, Priyadarshini S, Sarkar R, Balasubramanian KA, Wanke
CA, Ward HD, Kang G (2014) Immune response and intestinal
permeability in children with acute gastroenteritis treated with
Lactobacillus rhamnosus GG: a randomized, double-blind, pla-
cebo-controlled trial. Clin Infect Dis 58(8):1107–1117. https://
doi.org/10.1093/cid/ciu065

74. Lappin MR, Veir JK, Satyaraj E, Czarnecki-Maulden G (2009)
Pilot study to evaluate the effect of oral supplementation of
Enterococcus faecium SF68 on cats with latent feline herpes-
virus 1. J Feline Med Surg 11(8):650–654. https://doi.org/10.
1016/j.jfms.2008.12.006

75. Sarcker SA, Sultana S, Fuchs GJ, Alam NH, Azim T, Brus-
now H, Hammarsstrom L (2005) Lactobacillus paracasei strain
ST11 has no effect on rotavirus but ameliorates the outcome of
nonrotavirus diarrhea in children from Bangladesh. Pediatrics
116(6):e221-228. https://doi.org/10.1542/peds.2004-2334

76. Shinkai S, Toba M, Saito T, Sato I, Tsubouchi M, Kohda N, Kohno
S (2013) Immunoprotective effects of oral intake of heat-
killed Lactobacillus pentosus strain b240 in elderly adults: a
randomised, double-blind, placebo-controlled trial. Br J Nutr
109(10):1856–1865. https://doi.org/10.1017/S00071145120037
53

77. Xia X, Chen J, Xia J, Wang B, Liu H, Yang L, Wang Y, Ling
Z (2018) Role of probiotics in the treatment of minimal hepatic
encephalopathy in patients with HBV-induced liver cirrhosis. J Int
87. Holscher HD, Czerkies LA, Cekola P, Litov R, Benbow M, Santema S, Alexander DD, Perez V, Sun S, Saavedra JM, Tappenden KA (2012) Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula-fed infants: a randomized, double-blind, controlled trial. J Parenter Enteral Nutr 36(1 Suppl):106S-117S. https://doi.org/10.1177/0148607111430817

88. Narayanappa D (2008) Randomized double blinded controlled trial to evaluate the efficacy and safety of bifilac in patients with acute viral diarrhea. Indian J Pediatr 75(7):709–713. https://doi.org/10.1007/s12098-008-0134-2

89. Das S, Gupta PK, Das RR (2016) Efficacy and safety of Saccharomyces boulardii in acute rotavirus diarrhea: double blind randomized controlled trial from a developing country. J Trop Pediatr 62(6):464–470. https://doi.org/10.1093/tropej/fmw032

90. Magwira CA, Taylor MB (2018) Composition of gut microbiota and its influence on the immunogenicity of oral rotavirus vaccines. Vaccine 36(24):3427–3433. https://doi.org/10.1016/j.vaccine.2018.04.091

91. Harris VC, Armah G, Fuentes S, Korpela KE, Parashar U, Victor JC, Tate J, de Weerth C, Giaquinto C, Wiersinga WJ, Lewis KD, de Vos WM (2017) Significant correlation between the infant gut microbiome and rotavirus vaccine response in Rural Ghana. J Infect Dis 215(1):34–41. https://doi.org/10.1093/infdis/jiw518 (Epub 2016 Oct 31)

92. Michael H, Langel SN, Miyazaki A, Paim FC, Chepngenjo J, Alhamo MA, Fischer DD, Srivastava V, Kathayat D, Deblais L, Rajashekar G, Saiij LJ, Vlasova AN (2020) Malnutrition decreases antibody secreting cell numbers induced by an oral attenuated human rotavirus vaccine in a human infant fecal microbiota transplanted gnotobiotic pig model. Front Immunol 11:196. https://doi.org/10.3389/fimmu.2020.00196

93. Twitchell EL, Tin C, Wen K, Zhang H, Becker-Dreps S, Azcarate-Peril MA, Vilchez S, Li G, Ramesh A, Weiss M, Lei S, Bui T, Yang X, Schultz-Cherry S, Yuan L (2016) Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigs. Gut Pathog 8:51. https://doi.org/10.1186/s13099-016-0136-y

94. Harris V, Ali A, Fuentes S, Korpela K, Kazi M, Tate J, Parashar U, Wiersinga WJ, Giaquinto C, de Weerth C, de Vos WM (2018) Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbes 9(2):93–101. https://doi.org/10.1080/19490976.2017.1376162

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.