PSEUDO KNOTS AND AN OBSTRUCTION TO COSMETIC CROSSINGS

HEATHER A. DYE

Abstract. Pseudo links have two crossing types: classical crossings and indeterminate crossings. They were first introduced by Ryo Hanaki as a possible tool for analyzing images produced by electron microscopy of DNA. A normalized bracket polynomial is defined for pseudo links and then used to construct an obstruction to cosmetic crossings in classical links.

1. Introduction

The set of pseudo knots and links was first introduced by Hanaki Ryo [2], to study the type of diagrams produced electron microscopy of DNA. In these images, the over-under crossing information is often blurred; this results in a diagram with classical crossings and crossings where the under-over crossing information is unknown. Based on this physical interpretation, Ryo developed a set of Reidemeister-like moves that are not dependent on crossing type. Subsequent work by Allison Henrich explored several invariants of pseudo knots [4], [3], [5].

In this paper, we recall the definition of pseudo knots and links. Then, a modification of the bracket polynomial is defined for pseudo links. Finally, the pseudo bracket is applied to produce an obstruction to cosmetic crossings. A classical crossing x in a knot diagram D is said to be cosmetic if D is equivalent to the knot diagram D' where D' is obtained by switching the crossing x from a positively signed crossing to a negatively signed crossing (or vice versa). X. S. Lin conjectured that cosmetic crossings do not exist (with limited exceptions such as Reidemeister I twists and nugatory crossings). This is problem 1.58 on Kirby’s problem list [7].

A pseudo link diagram D is a decorated immersion of n oriented copies of S^1 with two types of crossings. A crossing is either a classical crossing with over-under markings or a pseudo-crossing that is marked by a solid square as shown in Figure 1.

\begin{figure}[h]
\centering
\includegraphics[width=0.6\textwidth]{crossing_types.png}
\caption{Crossing types}
\end{figure}
Classical crossings follow the usual sign conventions. For a positive crossing c, $\text{sgn}(c) = +1$ and for a negative crossing c, $\text{sgn}(c) = -1$.

Two pseudo link diagrams are equivalent if they are related by a sequence of Reidemeister moves (Figure 2) and Pseudo moves (Figure 3). A pseudo link is an equivalence class of pseudo link diagrams.

Figure 2. Reidemeister moves

(A) Reidemeister I
(B) Reidemeister II
(C) Reidemeister III

Figure 3. Pseudo moves

(A) Pseudo I
(B) Pseudo II
(C) Pseudo III

2. The pseudo bracket polynomial

Let D be an oriented pseudo link. The pseudo bracket polynomial is defined by a skein relation, building on the definition of the Kauffman bracket polynomial [6]. We expand a
positive crossing as:

\[\langle \overline{\overline{\downarrow \uparrow}} \rangle = A \langle \overline{\overline{\uparrow \downarrow}} \rangle + A^{-1} \langle \overline{\overline{\leftrightarrow}} \rangle. \]

A negative crossing is expanded as:

\[\langle \overline{\overline{\overline{\downarrow \uparrow}}} \rangle = A \langle \overline{\overline{\overline{\uparrow \downarrow}}} \rangle + A^{-1} \langle \overline{\overline{\overline{\leftrightarrow}}} \rangle. \]

Pseudo crossings are expanded as

\[\langle \overline{\overline{\overline{\downarrow \uparrow}}} \rangle = V \langle \overline{\overline{\overline{\uparrow \downarrow}}} \rangle + H \langle \overline{\overline{\overline{\leftrightarrow}}} \rangle \]

where \(H = 1 - Vd \).

Let \(U \) denote the unknot and let \(d = -A^2 - A^{-2} \). Expanding all crossings in a pseudo diagram results in a collection of simple closed curves. We evaluate a bracket containing an unlinked, simple closed curve using the simplifications:

\[\langle U \rangle = 1 \quad \text{and} \quad \langle U \cup K \rangle = d \langle K \rangle. \]

The set of classical crossings in a link \(K \) is denoted as \(C(K) \). The writhe of \(K \) is defined as

\[w(K) = \sum_{c \in C(K)} sgn(c). \]

Then, the normalized pseudo bracket of a pseudo link \(K \) is

\[P_K(A, V) = (-A^{-3})^w(K) \langle K \rangle. \]

Theorem 1. For all pseudo links \(K \), the pseudo bracket is invariant under Reidemeister moves II and III and the pseudo moves.

Proof. Invariance under the Reidemeister moves is immediate. The skein relation on a classical link diagram gives the Kauffman bracket polynomial \([6]\). For a classical link \(K \), \(P_K(A, V) = f_K(A) \).

We show that the bracket is invariant under the Pseudo moves. We begin with the Pseudo III move.

\[\langle \overline{\overline{\overline{\downarrow \uparrow}}} \rangle = V \langle \overline{\overline{\overline{\uparrow \downarrow}}} \rangle + H \langle \overline{\overline{\overline{\leftrightarrow}}} \rangle
\]

\[= V \langle \overline{\overline{\overline{\uparrow \downarrow}}} \rangle + H \langle \overline{\overline{\overline{\leftrightarrow}}} \rangle
\]

\[= \langle \overline{\overline{\overline{\downarrow \uparrow}}} \rangle. \]
Next, the Pseudo II move.

\[
\langle \begin{array}{c}
\includegraphics{pseudoIIa.png}
\end{array} \rangle = V \langle \begin{array}{c}
\includegraphics{pseudoIIb.png}
\end{array} \rangle + H \langle \begin{array}{c}
\includegraphics{pseudoIIc.png}
\end{array} \rangle
\]

\[
= V \langle \begin{array}{c}
\includegraphics{pseudoIIb.png}
\end{array} \rangle + H \langle \begin{array}{c}
\includegraphics{pseudoIIc.png}
\end{array} \rangle
\]

\[
= \langle \begin{array}{c}
\includegraphics{pseudoIIa.png}
\end{array} \rangle.
\]

In the Pseudo I move,

\[
\langle \begin{array}{c}
\includegraphics{pseudoI.png}
\end{array} \rangle = V \langle \begin{array}{c}
\includegraphics{pseudoIcirc.png}
\end{array} \rangle + H \langle \begin{array}{c}
\includegraphics{pseudoI.png}
\end{array} \rangle
\]

\[
= (Vd + H) \langle \begin{array}{c}
\includegraphics{pseudoI.png}
\end{array} \rangle.
\]

Then \(1 = Vd + H\) or \(H = 1 - Vd\). \(\square\)

Corollary 2. For all pseudo links \(K\), \(P_K(A, V)\) is invariant under the Pseudo moves and the Reidemeister moves.

Example 2.1. The pseudo bracket is applied to a trefoil with one pseudo crossing. This pseudo diagram is denoted as \(PT\).

\[
\langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle = A^2 \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle + 2 \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle + A^{-2} \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle
\]

\[
= A^2 \left(V \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle + H \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle \right) + 2V \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle
\]

\[
+ 2H \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle + A^{-2} \left(V \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle + H \langle \begin{array}{c}
\includegraphics{trefoil.png}
\end{array} \rangle \right)
\]

\[
= -A^{-8}V + A^{-6} - A^4V
\]

Then, \(P_{PT}(A, V) = A^{-12} + VA^{-14} - VA^{-2}\).
3. An obstruction

Let \(D_+ \) be a classical knot diagram with a selected positive crossing. The classical knot diagram \(D_- \) is obtained from \(D_+ \) by changing the selected crossing to a negative crossing. The pseudo diagram \(D_{\Box} \) is obtained from \(D_+ \) by changing the selected crossing to a pseudo crossing. Suppose that the selected crossing is cosmetic and \(D_+ \sim D_- \). Then we obtain the following theorem.

Theorem 3. For all knot diagrams \(D_+ \) with a cosmetic crossing \(c \), \(\langle D_{\Box} \rangle \) divides \(\langle D_+ \rangle \) and \(\langle D_- \rangle \).

Proof. Suppose \(D_+ \sim D_- \) and that \(D_+ \) and \(D_- \) are related by a single crossing change. Let \(w(D_+) = w + 1 \) then \(w - 1 = w(D_-) \). Let \(K \) be a diagram equivalent to \(D_+ \) with writhe \(w \).

We use \(G \) to denote \(\langle K \rangle \). The normalized \(f \)-polynomials of \(K, D_+, \) and \(D_- \) are equivalent:

\[
G(-A^{-3})^w = \langle D_+ \rangle (-A^{-3})^{w+1} \quad G(-A^{-3})^w = \langle D_- \rangle (-A^{-3})^{w-1}.
\]

Reducing Equation \(7 \)

\[G = \langle D_+ \rangle (-A^{-3}) \quad G = \langle D_- \rangle (-A^{-3}). \]

We conclude that

\[
\langle D_+ \rangle = G(-A^3) \quad \langle D_- \rangle = G(-A^{-3}).
\]

Partially expand the diagrams \(D_+ \) and \(D_- \) at the selected crossing.

\[
\langle D_+ \rangle = A\langle K_v \rangle + A^{-1}\langle K_H \rangle,
\]

\[
\langle D_- \rangle = A^{-1}\langle K_v \rangle + A\langle K_H \rangle.
\]

Then substitute Equation \(8 \) into Equations \(9 \) and \(10 \)

\[
G(-A^3) = A\langle K_v \rangle + A^{-1}\langle K_H \rangle,
\]

\[
G(-A^{-3}) = A^{-1}\langle K_v \rangle + A\langle K_H \rangle.
\]

Multiplying through Equations \(11 \) and \(12 \)

\[
G(-A^2) = \langle K_v \rangle + A^{-2}\langle K_H \rangle,
\]

\[
G(-A^{-2}) = \langle K_v \rangle + A^2\langle K_H \rangle.
\]

Eliminate \(K_V \) from the system of equations:

\[
G(-A^2 + A^{-2}) = (A^{-2} - A^2)\langle K_H \rangle.
\]

Reducing Equation \(13 \) we obtain

\[
G = \langle K_H \rangle.
\]
Using the fact that $\langle D_+ \rangle = G(-A^3)$ and Equation 14

$$G(-A^3) = A\langle KV \rangle + A^{-1}\langle KH \rangle$$

$$G(-A^3) = A\langle KV \rangle + A^{-1}G$$

$$G(-A^3 - A^{-1}) = A\langle KV \rangle$$

$$Gd = \langle KV \rangle.$$

As a result,

$$\langle KV \rangle = dG$$ and $\langle KH \rangle = G.$

Apply the result to the expansion of $D:\$

$$\langle D \rangle = V\langle KV \rangle + (1 - Vd)\langle KH \rangle$$

$$= VdG + (1 - Vd)G$$

$$= G.$$

Then $\langle D \rangle$ divides $\langle D_+ \rangle$ and $\langle D_- \rangle$. □

We obtain the following corollary.

Corollary 4. For all knot diagrams D with a cosmetic crossing c, $\langle D \rangle$ has no summands with a power of V.

Example 3.1. The obstruction is demonstrated using the trefoil knot. By symmetry, none of the crossings are cosmetic.

$$\langle \begin{array}{c} \includegraphics[scale=0.5]{trefoil_crossing} \end{array} \rangle = -A^{-8} V + A^{-6} - A^4 V.$$

$$\langle \begin{array}{c} \includegraphics[scale=0.5]{trefoil_crossing} \end{array} \rangle = A^{-7} - A^{-3} - A^5.$$

Example 3.2. We consider the first non-alternating classical knot, K_{11n1} [1], shown in Figure 4a. In Figure 4b, we select a crossing to construct $K_{11n1\blacksquare}$.
\[(K_{11n1}) = \frac{- (1 + 2A^8 - A^{12} + A^{28} - A^{32} + A^{36} - A^{40})}{A^{17}(1 + A^4)} \]

\[(K_{11n1\Box}) = A^{-24}(A^2 - 3A^6 + 5A^{10} - 7A^{14} + 9A^{18} - 9A^{22} + 8A^{26} - 6A^{30}
+ 4A^{34} - 2A^{38} + A^{42} + 3A^{4V} + 4A^{8V} - 6A^{12V}
+ 6A^{16V} - 5A^{20V} + 4A^{24V} - 2A^{28V} + A^{36V} - A^{40V} + A^{44V})\]

This calculation determines that the selected crossing in \(K_{11n1}\) is not cosmetic.

4. Conclusion

The pseudo bracket polynomial is not only an invariant of pseudo knots, but also provides a computable obstruction to cosmetic crossings.

References

[1] Charles Cha, J. C.; Livingston. KnotInfo: Table of Knot Invariants.
[2] Ryo Hanaki. Pseudo diagrams of knots, links and spatial graphs. Osaka J. Math., 47(3):863–883, 2010.
[3] A. Henrich, N. Macnaughton, S. Narayan, O. Pechenik, J. Townsend, Mikami Hirasawa, Naoko Kamada, and Seiichi Kamada. Classical and virtual pseudodiagram theory and new bounds on unknotting numbers and genus. J. Knot Theory Ramifications, 20(4):625–650, apr 2011.
[4] Allison Henrich and Slavik Jablan. On the coloring of pseudoknots. J. Knot Theory Ramifications, 23(12):22,1450061, 2014.
[5] Allison Henrich, Lee Johnson, Rebecca Hoberg, Elizabeth Minten, Slavik Jablan, and Ljiljana Radović. The theory of pseudoknots. J. Knot Theory Ramifications, 22(7):21,1350032, 2013.
[6] LH Kauffman. New invariants in the theory of knots. Amer. Math. Monthly, 95(3):195–242, 1988.
[7] Rob Kirby. Problems in Low-Dimensional Topology.