SIMULATIONS OF ALFVÉN AND KINK WAVE DRIVING OF THE SOLAR CHROMOSPHERE: EFFICIENT HEATING AND SPICULE LAUNCHING

C. S. BRADY AND T. D. ARBER

Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK; c.s.brady@warwick.ac.uk

Received 2016 March 31; revised 2016 July 13; accepted 2016 July 13; published 2016 September 23

ABSTRACT

Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of \(\sim 0.1 \text{ erg cm}^{-3} \text{s}^{-1} \) in the lower chromosphere and drops to \(\sim 10^{-3} \text{ erg cm}^{-3} \text{s}^{-1} \) in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of \(\sim 10-20 \text{ km s}^{-1} \), for so-called Type I spicules, which reach heights of \(\sim 3000-5000 \text{ km} \) above the photosphere. A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.

Key words: shock waves – stars: chromospheres – Sun: chromosphere – Sun: oscillations

1. INTRODUCTION

The mechanisms by which the solar chromosphere are heated are still the subject of active debate. Alfvén waves have been proposed as a possible heating mechanism (Osterbrock 1961; van Ballegooijen et al. 2011) and observations show that there is enough Alfvén wave energy generated in the convection zone (De Pontieu et al. 2007) to heat the chromosphere. Previous work has examined this problem numerically. The coupling of circularly polarized Alfvén waves to magneto-acoustic modes and shocks has been studied since the 1970s by Hollweg (Hollweg 1978, 1981; Hollweg et al. 1982), and was later extended to include white noise drivers in 1.5D (Kudoh & Shibata 1999) or 2.5D (Matsumoto & Suzuki 2012, 2014). While these simulations do address chromospheric heating, they were mainly concerned with the upper atmosphere and solar wind and therefore they generally do not present detailed results for chromospheric heating. Arber et al. (2016) showed from one-dimensional (1D) MHD simulations that chromospheric heating from Alfvén waves is primarily due to shock heating from slow mode shocks generated by ponderomotive coupling. The ponderomotive force here is defined as the nonlinear force generated by the gradient in the magnetic component of MHD wave energy. Here the ponderomotive force density \(F_{\text{pm}} \) is defined by

\[
F_{\text{pm}} = -\nabla(B_0^2)/\mu_0,
\]

where \(B_0 \) is the perturbation to the background magnetic field perpendicular to the equilibrium field (Verwichte et al. 1999).

There is a comparable history of numerical work on the possible ways in which spicules can be launched. Haerendel (1992) posited that spicules could be launched by ion–neutral collision effects, although the work of James & Erdelyi (2002) showed through 1D MHD simulations that this is unlikely. De Pontieu et al. (2004) simulated the launching of spicules from the nonlinear interactions of acoustic waves with a 2D solar atmosphere using a reduced model, and found that it is possible to explain spicule launching by this mechanism. Murawski & Zaqarashvili (2010) and Murawski et al. (2011) found from full 2D simulations that impulsive acoustic driving can lead to the formation of spicules. Cranmer & Woolsey (2015) studied 1D simulations of spicule launching due to ponderomotive steepening of Alfvén waves, also using a reduced model, and found that this mechanism can also produce realistic spicules.

Full 3D radiation-hydrodynamic simulations of the chromosphere, such as those using the BiFROST code (Carlsson et al. 2016), have shown the presence of shocks in the chromospheric cavity. Also, recent simulations of the whole chromosphere, transition region, corona, and solar wind (Matsumoto & Suzuki 2012) demonstrate the importance of shocks below the transition region. However, the complexity of these simulations has thus far prevented a clear understanding of the underlying process as to how these shocks are formed and their precise role in matching the chromospheric heating requirements as a function of height. In this paper we present high-resolution simulations demonstrating that, for a range of physically plausible parameters, one can simultaneously produce chromospheric heating profiles and launch Type I spicules with the correct length-scales, rise velocities, and transverse oscillations. For each of these (heating, spicule formation, and oscillation) we compare the results with observations demonstrating that MHD wave driving of the solar chromosphere can self-consistently and accurately match these observations.

2. METHOD

The aim of this paper is to evaluate the heating rate of the solar chromosphere combined with the properties of any spicules launched into the corona associated with the heating. This is achieved by simulating the interaction of a spectrum of
MHD waves propagating up into a 2.5D solar atmosphere model, which includes partial ionization, stratification, and flux tube expansion. The code used is

$Lare2d$ (Arber et al. 2001). A fluid equilibrium is constructed by setting up Avrett and Loeser C7 temperature profile (Avrett & Loeser 2008) and then integrating the density from the bottom boundary so that the atmosphere is in hydrostatic equilibrium. The domain extends 9 Mm above the photosphere with a transverse width of 1.8 Mm and the results presented in this paper use a resolution of 4096 cells in the vertical (y) direction and 2048 horizontally (the x direction). The position of the center of the flux patch is at $x = 0$ and $y = 0$; the base of the model photosphere is 500 km below the temperature minimum. Throughout this paper “height above the photosphere” refers to the height above $y = 0$. Convergence is tested by repeating a sample of simulations with double the resolution showing that results presented here are accurate to within 1% on doubling the resolution. The simulation is run for a time of 1000 s, approximately 15 Alfvén transit times across the chromosphere, at which point it was found that the heating rate is converged.

The ionization state is calculated from a two-level Athay potential model (Thomas & Athay 1961; Leake et al. 2005) with the ionization state and density being iterated until the atmosphere is in hydrostatic equilibrium. A potential magnetic field is constructed numerically by solving Laplace’s equation ($\nabla^2 \phi = 0$) for ϕ, the magnetic scalar potential, which is subject to boundary conditions of transverse periodicity and a 10 km flux patch on the photosphere resulting from setting $\phi = \phi_0 \exp(-x^2/\sigma^2)$ on the lower boundary with $\sigma = 10$ km (see Figure 1). The magnetic field is then normalized to give a 1 kG peak field at the photosphere. The resulting coronal field is then 10 G. Two polarizations of driver are used. In the first, Alfvén waves are introduced by driving the bottom boundary out of the plane of the simulation and will be called an Alfvénic driver. In the second, a driver velocity component in the plane of the simulation is added that drives kink waves and thus both Alfvén waves and kink waves are present—this is called the mixed mode driver. Three options for the spectrum of both drivers have been tested. The first consists of a low-frequency region where the power increases with k and a Kolmogorov region where power drops as $k^{-5/3}$ as in Equation (1).

$$v_{c,i} = A \left(\sum_{i=0}^{N_1} \omega_i \sin(\omega_i t + \phi_i) + \sum_{i=N_1}^{N} \omega_i^{-2} \sin(\omega_i t + \phi_i) \right).$$ \hspace{1cm} (1)

The velocity component out of the plane of the simulation, v_c, is associated with Alfvénic perturbations. v_c is the velocity component in the plane of the simulation and is only present in mixed type driving. N is the total number of frequencies combined to produce the driver spectrum, and N_1 is the number of frequencies before the maximum in the spectrum. N is a large enough number to ensure that the spectrum is reproduced smoothly and that further increase in N does not lead to changes in the heating rate of greater than 1%. N_1 is typically set to 5000 in these simulations. ω_i is the frequency of spectral component i and is logarithmically spaced in the range 0.01–1 Hz. $N_1 = 0.1$ Hz for all simulations. ϕ_i is the phase for spectral component i and is selected randomly for the v_c component. For v_c, when present, its phase is the v_c phase rotated by 90°. The amplitude A is selected for most simulations to give a Poynting flux averaged across the whole bottom boundary of 2×10^7 erg cm$^{-2}$ s$^{-1}$. A similar driver has previously been used in Tu & Song (2013). For the mixed driver, the use of a single amplitude A ensures equal power input to both the Alfvénic and the kink wave components. Other simulations are run with driver Poynting fluxes of 1×10^8 and 4×10^8 erg cm$^{-2}$ s$^{-1}$ to evaluate the effect of the driver amplitude on the heating rate. To assess the robustness of the results in correlation to the choice of driver, some simulations were repeated with a flat driving spectrum up to N_1 followed by a Kolmogorov power law, as in Equation (1), for higher frequencies. Also tested was a flat spectrum with no power-law dependence (see Figure 2). In results where the different drivers are compared, the amplitudes are always

![Figure 1. Magnetic field configuration and strength in the initial conditions (colored field lines). Also shown is initial density (orange-colored plot). The direction of the two drivers used in the simulations is highlighted on the bottom boundary.](image-url)

![Figure 2. Power spectral density of the lower boundary driver used for the simulations. The orange dashed line is from Equation (1), the blue line is Equation (1) above N_1 but flat for low frequencies, and the solid purple line is a flat spectrum with no power-law dependence. All are normalized to give the same total Poynting flux on the lower boundary.](image-url)
adjusted so that the total driver Poynting fluxes through the lower boundary are equal.

An isotropic 2D Kolmogorov spectrum will have \(E(k)dk \sim v_\perp^3 k dk \) in the inertial range. For the purely Alfvén wave driver, the \(k \)-vector is field aligned. For the simulated flux tube, this is vertical and thus the spectrum \(E(k)dk = v_\perp^3 k dk \) is used as it would be in 1.5D. For the mixed mode driver, there is a component of the driven wave spectrum \(k \)-vector perpendicular to the field at the boundary. However, the wavelength of this component is of the order of the width of the tube, i.e., 20 km, and this is therefore not in the inertial range for the driver. Despite being a 2.5D simulation, all results use the 1.5D \(v(k) \sim k^{-5/6} \) driven spectrum, which will give an injected energy spectrum of \(E(k) \sim k^{-5/3} \).

The highest frequencies driven into the domain are when the spectra is cut off at 1 Hz. This upper cutoff frequency was chosen based on earlier 1D work (Arber et al. 2016) where it was shown to provide a converged answer. For the atmospheric and magnetic field model used, there are a minimum of three grid points along a 1 Hz Alfvén wave at the base of the domain where the wavelength is shortest. The wavelength, and thus the number of grid points per wavelength, increases with height. Note also that there is relatively little power in these high-frequency modes, which are down by two orders of magnitude on the main low-frequency components. Testing with a higher upper cutoff frequency and doubled resolution does not show change in heating rate or profile. The transverse structure of the driver is a Gaussian centered on the bottom boundary flux patch. It is given a 10 km width, which is the same as the flux patch.

The upper boundary of the domain is open. This is implemented using a Riemann characteristic method combined with a damping region. The damping scales all components of velocity so that on each time step, the velocity calculated by the core solver, \(\mathbf{v} \), is replaced by \(\mathbf{v} \exp(-(y - l_y - l_{\text{damp}})/(2l_{\text{damp}})) \), where \(l_y \) is the height of the simulation box and the damping is only applied above \(l_y - l_{\text{damp}} \). \(l_{\text{damp}} \) was set to 500 km in the production simulations and was tested for values between 250 and 1000 km. Varying \(l_{\text{damp}} \) over this range made a <0.1% difference to the heating rate at any height. Testing this boundary with discrete pulses shows that less than 0.1% of the energy incident on the upper boundary returns to the domain. The results presented here are for periodic transverse boundary conditions.

For this initial atmospheric model, magnetic field and boundary driving, we solve the compressible, resistive-MHD equations in 2.5D. The resistive terms include both contributions from electron–ion plus electron–neutral collisions and the Pedersen resistivity. The Pedersen resistivity only acts on currents perpendicular to the magnetic field and results from ion–neutral collisions in the partially ionized chromospheric atmosphere. Neutrals are also required to get the correct pressure scale height from the C7 model temperature. To correctly handle shocks in these simulations, a compatible shock viscosity (Caramana et al. 1998) is used to ensure the correct jump conditions. This also allows measurement of the shock heating, which in these simulations is entirely due to this viscosity. The heating from this shock viscosity is essential to get the entropy jump across the shock, therefore this heating is included in the simulation. The model does not include thermal conduction or radiative losses and thus throughout the simulation, the atmosphere begins to heat up because we have the heating sources but not the losses. Further simulations are therefore run where either the shock heating is simply not included, or a cooling term is included that subtracts a running average over \(\tau = 160 \) s of the shock heating from the system. Thus the energy equation used in the simulations is

\[
\frac{D\epsilon}{Dt} = -\frac{P}{\rho} \nabla \cdot \mathbf{v} + \frac{H_{\text{visc}}}{\rho} - \frac{H_{\text{cooling}}}{\rho},
\]

where \(\rho \) is the mass density, \(P \) is the gas pressure, \(\mathbf{v} \) is the fluid velocity, \(\epsilon \) is the specific internal energy density, \(H_{\text{visc}} \) is the viscous (shock) heating, and \(H_{\text{cooling}} \) is a cooling term given by

\[
H_{\text{cooling}}(r, t) = \frac{1}{\tau} \int_{t-\tau}^{t} H_{\text{visc}}(r, t') \, dt'.
\]

This cooling term will tend, on average, to maintain the atmosphere close to its initial profile irrespective of the magnitude of the heating term. For all simulations \(H_{\text{Ohmic}} \), total resistive heating, including both electron collisional and Pedersen resistivities, is calculated for diagnostic purposes but is not added to the energy equation. Throughout this paper, the only heating term included in the energy equation is the viscous shock heating.

3. RESULTS

The temperature and density at the start and the end of the simulations, for a variety of combinations of heating terms in Equation (2), are shown in Figure 3 along with a time–distance plot of the density. The uplifting of denser material leads to an increase in the average density for heights 1.2 Mm above the lower boundary. This change is insensitive to the inclusion or absence of shock heating or the cooling term in Equation (2). The temperature profile does change depending on the terms included in Equation (2) and so the simulations below are repeated for all three cases, i.e., no heating, shock heating, and shock heating plus cooling. The primary difference between these is that the simulations which include shock heating, but not the cooling term, lead to a less steep temperature profile through the transition region as the atmosphere continues to heat and rise. In this case the majority of the additional heating goes into an increase in the gravitational potential energy.

Figure 3(b) shows that the force balance in the upper chromosphere and transition region is changed by the action of the waves. Temperature and pressure profiles change differently: if only gravity and static pressure forces are considered, then there is a net downwards force. Despite this, Figure 3(a) shows that the atmosphere is still in a dynamic equilibrium state and is oscillating vertically but not systematically moving up or down. The additional upwards pressure force is provided by the shock ram pressure 0.5 \(\rho v^2 \), which in the upper chromosphere is 2.5 times the static pressure and is consistent with the observed shock Mach numbers.

The viscous heating rate averaged across the flux structure is shown in Figure 4(a) as a black line for a mixed mode driver and as a blue dotted line for the Alfvénic driver. The orange dashed line shows the effect of including the cooling term in the mixed driver simulation. Simulations for the mixed driver without either the cooling term or viscous heating included in the energy equation produce a heating profile indistinguishable from the orange dashed line in Figure 4(a) and is therefore not shown. Compared with observed heating rates from Avrett
The origin of the heating is from shock dissipation of acoustic modes propagating along field lines. This is shown in Figure 7 by the presence of the \(-2\) power law, which is a characteristic of shock-dominated time series. Note that while the shortest wavelength which can be resolved at \(y = 0\) restricts the driver to frequencies below 1 Hz, the wavelength expansion with height means that the spectrum in Figure 7 extends beyond 1 Hz. The heating rates recorded in these simulations are purely those due to shock viscosity and resistivity. Heating due to resistivity is shown to be small and can be ignored. Shock viscosity goes to zero in smooth regions of the solution, and the convergence of the numerical results gives confidence that the heating is due to discontinuities, i.e., shocks. It is possible that phase mixing, which cascades down to arbitrarily small scales in the absence of bulk viscosity, may contribute to some of the heating. However, the fact that the evolved velocity spectrum is that of a shock-dominated time series strongly suggests that the heating is dominated by shocks. In addition, the heating is strong in the center of the flux tube where phase mixing would be absent. There is no acoustic component in the driver and therefore these waves are generated from the boundary driven MHD waves. Figure 8 shows both the specific ponderomotive force and parallel compressive component of \(\nabla \cdot v\) for the mixed mode driver averaged across the simulation domain and the longest period in the driver. The specific ponderomotive force is defined as \((-1/\mu_0\rho)\nabla B_z^2\), where \(B_z\) is the magnetic field perturbation perpendicular to the background magnetic field.

The formation of shocks causes a lifting of dense material from the lower atmosphere (Figure 9), and for the mixed mode drivers, internal reflections in the flux tube cause transverse structuring of this dense material. If a purely Alfvénic driver is used, then the transverse structuring in the shock driven and uplifted material is reduced. Taking the relative density change of the plasma in the simulation and overplotting it on an example observational picture of spicules produces a strong visual similarity, and then these density structures can be preliminarily described as spicules. These spicules are carried up to a height of \(\sim2500-4000\) km above the photosphere. The rise speed of spicules is not the same as the local fluid speed as

Figure 3. Change in equilibrium profiles during the simulations. (a) Time–distance plot of log(density) for densities greater than \(2 \times 10^{-12}\) kg m\(^{-3}\) along the line \(x = 0\). Regions of density below \(2 \times 10^{-12}\) kg m\(^{-3}\) are shown as white to emphasize the motion of the transition region. (b) Density (solid lines) and temperature (dashed lines) for different simulations averaged over the last 100 s of the simulation. Black is initial values, blue is the simulation including the viscous heating, red is the simulation with the cooling term and green is with no viscous heating in the simulation. All results are for the mixed driver with spectrum specified by Equation (1).
these are propagating shocks. The rise speed is therefore calculated by tracking the location of the reference transition region mass density $\rho = 10^{-11}$ kg m$^{-3}$ for rising spicules. The mean rise speed across all spicules was ~ 12 km s$^{-1}$. A representative spicule is shown in Figure 10(a), for which the peak rise speed is 30 km s$^{-1}$ and the average rise speed is 15 km s$^{-1}$. The range of maximum rise speeds across all spicules is 24–32 km s$^{-1}$ and the range of average rise speeds is 10–15 km s$^{-1}$. Both the height and the rise speed are comparable with observations (1000–10000 km above the photosphere and 15–65 km s$^{-1}$ including both Type I and Type II spicules. These results best match Type I spicules.) (Beckers 1968; Pasachoff et al. 2009; Pereira et al. 2012). Recording the out-of-plane velocity at the transition region (Figure 10(b)), transverse oscillations are measured with an rms speed of ~ 9 km s$^{-1}$ for the mixed driver, which is again consistent with observations (De Pontieu et al. 2007; Zhang et al. 2012).

The results are qualitatively in agreement with the results of Matsumoto & Suzuki (2014), who briefly discuss heating of the chromosphere in their Section 6.1. They find that heating below the transition region is dominated by shock heating and they identify both fast and slow shocks as being important. The overall heating rates in Matsumoto & Suzuki (2014) are comparable to those presented here, but due to the low resolution in the chromosphere used in those simulations, Matsumoto & Suzuki (2014) point out that their code produces strong numerical heating. The results presented in this manuscript are fully converged.

4. CONCLUSIONS

This paper presents the results from 2.5D simulations of MHD wave driven heating of the chromosphere that also show spicule launching. They show that by choosing plausible values for the driver amplitude and spectrum, magnetic field and atmosphere model robust heating rates are obtained which are comparable to observations. Self-consistent with this, spicule-like blobs of enhanced density are launched into the corona with average rise speeds of ~ 12 km s$^{-1}$ and peak rise speeds in the range of 24–32 km s$^{-1}$. These spicules have transverse oscillations with rms velocities of ~ 9 km s$^{-1}$. All of these numbers are consistent with observations. If a mixed kink- and Alfvén-type driver is specified, then realistic transverse structuring of the driven spicules is also observed. From the simulations presented here we conclude.

1. For drivers that are either Alfvén waves or mixed Alfvén and kink waves, provided the Poynting flux is kept near $\sim 2 \times 10^7$ erg cm$^{-2}$ s$^{-1}$, these waves can heat the upper chromosphere.
2. This heating is from shock dissipation of slow modes generated by the ponderomotive force.
3. The heating is insensitive to the upper cutoff in driver spectrum or profile across the three spectra tested.
4. Compressibility is essential for modeling the chromosphere and an Alfvén wave driver does not lead a turbulent cascade to dissipation scales but instead loses energy by coupling to slow modes.
5. If a mixed mode driver is specified, internal reflection within the flux tube generates transverse structure higher up similar to that observed in spicules.
6. The rise of dense material has a velocity consistent with Type I spicules.
7. The transverse oscillations have peak and rms velocities comparable to observations.

Figure 6. Panel (a) shows the time history of the instantaneous heating rate at a point 100 km below the initial height of the transition region at the center of the flux structure for a simulation of a mixed mode driver with included cooling term. The red dashed line is the average heating rate for that height as shown on Figure 4. Panel (b) shows the transverse structure of the heating at the same height averaged over the time shown in the gray box in panel (a). The red dashed line is, again, the average heating rate.

Figure 7. Power spectral density measured at a point 100 km below the original location of the transition region. The red dashed line is a power law with a power of -2.

Figure 8. The specific ponderomotive force (black line) and parallel compressive component of $\nabla \cdot v$ normalized to the local sound speed (orange line) for the mixed mode driver. Both are averaged across the flux tube at fixed height and over the longest period of the boundary driver. The vertical line is the location of the $\beta = 1$ surface.

Figure 9. Comparison of observed and simulated spicules. The observation is from an Hinode SOT Ca II H image showing spicules which was taken on April 29th at 0224UT by Tsiropoula et al. (2012). The insert plots are the relative change in density from the initial conditions of the coronal part of a simulation at the same height and scale. The red colored insert (b) is for the mixed mode driver and the blue insert (c) for the purely Alfvénic driver.
These simulations are limited to 2.5D. The fastest Alfvén wave cascade in Alfvénic turbulence requires wave–vector matching in 3D. It is therefore possible that in 3D, a turbulent cascade terminated by resistive damping will be a more efficient heating mechanism. However, given that shock heating is orders of magnitude more important than resistive in 2D, and 3D effects will not turn off shock heating, shock heating is still likely to remain an important heating mechanism in 3D.

The model used in this paper does not attempt to accurately describe the non-local transport of energy through radiation or non-LTE physics. These are surely important for predicting observational signatures of chromospheric spectral lines. Despite this, the heating rates and spicule properties converge before the simulation ends and the coupling of MHD waves to slow modes via the ponderomotive force depends only on the magnetic field and local mass density. This mechanism is robust in that the ponderomotive force depends on only the gradient of the MHD wave magnetic field energy, which in turn acts on the local chromospheric mass density. This occurs low in the atmosphere where the ion–neutral coupling is strong, and hence all that matters is the MHD wave energy, its spectrum, and the local mass density. Once these waves are generated, they will shock because of density stratification in the upper atmosphere—thereby heating the chromosphere. As such, it seems likely that the results presented here would be reproduced in a full radiation-hydrodynamic, non-LTE simulation of the same shock resolution. These results show that both the qualitative and quantitative properties of chromospheric heating and Type I spicules can be produced from the same underlying physical process: the ponderomotive formation of shocks from transverse photospheric motion.

This work used the Darwin Data Analytic system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by a BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/K00087X/1, DiRAC Operations grant ST/K003267/1, and Durham University. DiRAC is part of the National E-Infrastructure.

REFERENCES

Arber, T. D., Brady, C. S., & Shelyag, S. 2016, ApJ, 817, 94
Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne, A. M. 2001, ICoPh, 171, 151
Avrett, E. H. 1981, in Solar Phenomena in Stars and Stellar Systems (Dordrecht: D. Reidel), 173
Avrett, E. H., & Loeser, R. 2008, ApJS, 175, 229
Beckers, J. M. 1968, SoPh, 3, 367
Caramana, E. I., Shashkov, M. J., & Whalen, P. P. 1998, ICoPh, 144, 79
Carlsson, M., Hansteen, V. H., Gudiksen, B. V., Leenaarts, J., & Pontieu, B. D. 2016, A&A, 585, A4
Cranmer, S., & Woolsey, L. 2015, ApJ, 812, 71
De Pontieu, B., Erdelyi, R., & James, S. 2004, Natur, 430, 536
De Pontieu, B., McIntosh, S. W., Carlsson, M., et al. 2007, Sci, 318, 1574
De Pontieu, B., & James, S. 2002, A&A, 393, L11
De Pontieu, B., & James, S. 2012, ApJ, 817, 94
Kudoh, T., & Shibata, K. 1999, ApJ, 512, 493
Leake, J. E., Arber, T. D., & Khodachenko, M. L. 2005, A&A, 442, 1091
Matsumoto, T., & Suzuki, T. K. 2012, ApJ, 749, 8
Matsumoto, T., & Suzuki, T. K. 2014, MNRAS, 440, 971
Murawski, K., & Sukharev, V. T. 2011, A&A, 535, A58
Murawski, K., & Sukharev, V. T. 2010, A&A, 519, A8
Osterbrock, D. E. 1961, ApJ, 134, 347
Pasachoff, J. M., Jacobson, W. A., & Sterling, A. C. 2009, SoPh, 260, 59
Pereira, T. M. D., De Pontieu, B., & Carlsson, M. 2012, ApJ, 759, 18
Thomas, & Athay 1961, Physics of the Solar Chromosphere (3rd ed.; Oxford: Oxford Univ Press)
Tsiropoulou, G., Tsioitsiou, K., Kontogiannis, I., et al. 2012, SSRv, 169, 181
Tu, J., & Song, P. 2013, ApJ, 777, 53
van Ballegooijen, A. A., Asgari-Targhi, M., Cranmer, S. R., & DeLuca, E. E. 2011, ApJ, 736, 3
Verwichte, E., Nakariakov, V. M., & Longbottom, A. W. 1999, JPPh, 62, 219
Zhang, Y. Z., Shibata, K., Wang, J. X., et al. 2012, ApJ, 750, 16