Assessing Framingham cardiovascular risk scores in subjects with diabetes and their correlation with diabetic retinopathy

Sir,
I read the article “Assessing Framingham cardiovascular risk scores in subjects with diabetes and their correlation with diabetic retinopathy” published in your journal in the Jan-Feb 2012 issue with interest and I offer the following comment.

The authors report unique (risk factor) findings of “higher serum total High Density Lipoprotein-cholesterol (HDLC) level”, in diabetic (retinopathy) patients.

Currently, the residual risk of coronary events, despite aggressive LDL lowering therapy, results in renewed interest in serum total HDLC. Serum total HDLC is a complex and heterogeneous in terms of size, shape, electrophoretic mobility, and composition of protein, cholesterol, triglyceride, and phospholipid, where each particle plays different roles such as anti-atherogenic due to reverse cholesterol transport and other roles. Thus not all raised total serum HDLC are equally anti-atherogenic emphasizing HDLC particle composition rather than total HDLC, as an important determinant of its specific functional property (and role) as agreed by the expert clinical lipidologists. Moreover, the inverse correlation between serum HDLC concentration and risk of CHD (Coronary Heart Disease) and decreased CVD risk with increasing HDLC levels have been known for years; particularly, South Asians are not only notorious to have lower HDLC levels but also have a higher concentration of small, less-cardio-protective HDL particles.

Additionally appropriate risk classification of patients based on the established cut points mandates the use of accurate methods for HDLC measurement. The NCEP (National Education Programme) measurement goal is total error (combines imprecision (random error) and inaccuracy or bias (systematic error), represents the maximum tolerable error in measurement of a single specimen) within 13% of the true value. At low HDLC values, this proportional target becomes difficult to achieve. (For example, at 25 mg/dL the proportional goal would be ±1 mg/dL). A recent report on the comparative study on the performance of most of the currently used HDLC assays across the United Kingdom (UK) laboratories reveals clinically unacceptable overestimation (positive bias ranging up to +32%) and this is worse when processing samples with even moderate amounts of triglycerides justifying that many of the currently available (homogeneous) assays cannot be confidently recommended for use in long-term clinical trials and other research applications without thorough validation.

In these contexts, the scientific soundness of the statement “higher serum HDLC levels, a unique (risk factor)” finding requires the evidences of HDLC numbers with its measurement methodology and its validation (including steps to ensure optimal long-term stability of those results), which are missing (in this evidence based era) not only in this paper and in their optimal long-term stability of those results), which are missing (in this evidence based era) not only in this paper and in their methodology published in the Ophthalmic Epidemiology in 2005 as referred by the authors.

S Vivekanandan
Clinical Biochemistry, Dr. Vivek Health Centre, Madipakkam, Chennai, India
Correspondence to: Dr. S. Vivekanandan, Senior Consultant Biochemist and Head, Department of Clinical Biochemistry, Apollo Speciality Hospital, 320 Anna Salai, Nandanam, Chennai - 600035, India.
E-mail: sachidanandamvn@yahoo.co.uk

References
1. Damkondwar DR, Raman R, Suganeswari G, Kulothungan V, Sharma T. Assessing Framingham cardiovascular risk scores in subjects with diabetes and their correlation with diabetes retinopathy. Indian J Ophthalmol 2012;60:45-8.
2. Mackness B, Mackness M. High-density lipoprotein: Why all the fuss? Ann Clin Biochem 2009;46:5-7.
3. Bhalodkar NC, Blum S, Rana T, Bhalodkar A, Enas EA. Comparison of levels of large and small high-density lipoprotein cholesterol in Asian Indian men compared with Caucasian men in the Framingham Offspring Study. Am J Cardiol 2004;94:1561-3.
4. Cramb R, French J, Mackness M, Neely RD, Caslake M, McKenzie F. Lipid external quality assessment: Commutability between external quality assessment and clinical specimens. Ann Clin Biochem 2008;45:260-5.
Dear Editor,

I read with interest the original article, "Assessing Framingham cardiovascular risk scores in subjects with diabetes and their correlation with diabetic retinopathy." I commend the authors on a well-conducted study. I however wish to bring the following errors to your notice.

In the results, it is stated that the risk factors in the high-risk and low-risk groups for diabetic retinopathy and sight-threatening retinopathy were macroalbuminuria, microalbuminuria and anemia. These are features of diabetic kidney disease, and the kidney disease is attributed to diabetes if proteinuria and diabetic retinopathy are present. Diabetic retinopathy precedes diabetic nephropathy so much so that the dictum in medicine is "In diabetics with microalbuminuria and without diabetic retinopathy, look for other causes of kidney disease." Hence, macroalbuminuria, microalbuminuria and anemia cannot be considered as risk factors for, or predictors of, diabetic retinopathy. They are the only associations of diabetic retinopathy seen in those who have diabetic retinopathy and have developed nephropathy. In the study quoted, those subjects who had microalbuminuria, macroalbuminuria and anemia were patients of diabetic kidney disease and, in all probability, had diabetic retinopathy.

This being a prospective cohort study, the conclusions would have been more valid if patients of diabetic nephropathy were excluded from the study.

Therefore, it cannot be concluded that the Framingham risk score, a global risk assessment tool for predicting the 10-year risk of developing cardiovascular risk can also predict the occurrence of diabetic retinopathy.

Cynthia Arunachalam
Department of Ophthalmology, Yenepoya Medical College, Yenepoya University, Deralakatte, Mangalore, India

Correspondence to: Dr. Cynthia Arunachalam, Department of Ophthalmology, Yenepoya Medical College, Yenepoya University, Deralakatte, Mangalore – 575 018, Karnataka, India.

E-mail: cynthiaarunachalam@yahoo.com

References
1. Damkondwar DR, Raman R, Suganeswari G, Kulothungan V, Sharma T. Assessing Framingham cardiovascular risk scores in subjects with diabetes and their correlation with diabetic retinopathy. Indian J Ophthalmol 2012;60:45-8.
2. Powers AC. Diabetes mellitus. In: Longo, Fauci, Kasper, Hauser, Jameson, Loscalzo, editors. Harrison's Principles of Internal Medicine. 18th ed., chap. 344. McGraw Hill Medical Pub; 2012. p. 2982.
3. Bakris GL. Overview of diabetic nephropathy: The relationship between diabetic nephropathy and diabetic retinopathy. In: Glassock RJ, Nathan, editors. UpToDate. Waltham, MA; 2012.