New CDK8 inhibitors as potential anti-leukemic agents – Design, synthesis and biological evaluation

Eirik Soluma,b,⁎, Trond Vidar Hansenb, Reidun Aesoyc, Lars Herfindalc

a Faculty of Health Sciences, Nord University, 7801 Namsos, Norway
b University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway
c Centre for Pharmacy, Department of Clinical Science, University of Bergen, PO Box 7800, N-5007 Bergen, Norway

ARTICLE INFO

Keywords:
CDK8 inhibition
Anti-leukemia
Steroids

ABSTRACT

Cyclin-dependent kinase 8 (CDK8) plays a vital role in regulating cell transcription either through its association with the mediator complex or by the phosphorylation of transcription factors. CDK8-mediated activation of oncogenes has proved to be important in a variety of cancer types including hematological malignancies. We have designed and synthesized a series of new synthetic steroids. The compounds were evaluated as CDK8 inhibitors in vitro. The three most potent compounds exhibit Kd-values towards CDK8 in the low nanomolar range (3.5–18 nM). Furthermore, the compounds displayed selectivity for CDK8 in a panel of 465 different kinases. The cell studies indicated a selectivity to kill AML-cancer cell lines compared to normal cell lines.

1. Introduction

Cyclin-dependent kinases (CDKs) are a family of serine/threonine protein kinases that control critical regulatory events during cell cycle and transcription.1 Given these fundamental roles, it is unsurprising that deregulation of CDKs is a common feature of many cancers. In particular, Cyclin-dependent kinase 8 (CDK8), a ubiquitously expressed, primarily transcriptional member of the CDK family, has come under focus owing to investigations of its central roles in transcription and oncogenesis.2–4 Several genetic and biochemical studies have established CDK8 as a key oncogenic driver in a variety of different cancer forms like colon cancer5, prostate cancer6 and melanoma7. It is also reported that a striking correlation exists between the expression of CDK8 and the duration of relapse-free survival in patients with breast- and ovarian cancer8. For example, breast cancer patients with below-median expression of CDK8 survive without the disease approximately seven years longer than patients with an above-median expression of CDK8.2 From a biochemical perspective, CDK8 plays an important role in regulating transcription either through its association with the mediator complex or by phosphorylating transcription factors. Specifically, CDK8-mediated activation of oncogenic Wnt-β-catenin signaling, transcription of estrogen-inducible genes and suppression of super enhancer-associated genes contribute to oncogenesis in colorectal-, mammary- and hematological malignancies, respectively. Inhibitors of CDK8 have also been shown to be active in AML cells that have high activation of the signal transducer and activator of transcription 5 (STAT5).10 STAT5 mediates several malignant properties in AML cells. Inhibition of STAT5 phosphorylation, through inhibition of for instance Flt3 or PIM-kinases, has shown therapeutic value.11,12 Another aspect with CDK8 in cancer is that it is involved in tumor surveillance of NK-cells. Inhibition of CDK8 is known to increase NK cell cytotoxicity towards cancer cells.13,14 The use of CDK8 inhibitors can therefore have a double action: First, by acting directly on the cancer cells, and secondly indirectly by activation the NK cells to more efficiently lyse the cancer cells. Hence, an interest to develop compounds inhibiting CDK8 has increased. As of today, based on high throughput screening (HTS) and computational methods towards different kinase panels, a few compounds have appeared as either CDK8 ligands or inhibitors.15–18 (Fig. 1).

In 2012, the senexin compounds, exemplified by Senexin A (1) Fig. 1, were revealed as a class of selective CDK8 inhibitors. This group of compounds was discovered using HTS with more than 100,000 compounds for the downstream inhibition of p21-activation transcription. An optimization of the compounds led to Senexin A that was characterized as a kinase inhibitor with Kd = 0.83 µM and Kd = 0.31 µM for CDK8 and its structural homolog CDK19, respectively. The kinase activity of CDK8 was inhibited with an IC50 = 0.28 µM. Cortistatin A (2) is a naturally occurring steroidal alkaloid isolated from the marine sponge Corticium simplex.19 It was reported in 2009 that 2 is a high-affinity binder, with Kd = 17 nM,
In this work, we aim to advance their approach further by combining towards CDK8. In addition to its strong binding affinity, the compound showed a high level of selectivity for CDK8. Cortistatin A was tested at 10 µM in a high-throughput binding assay against a panel 359 non-mutant kinases, and the calculated selectivity score at 35% control activity S(35) was 0.045. The authors suggested in a binding model that hydrogen bonding between the nitrogen on the isoquinoline side chain to Ala100 in CDK8 was important. More recently, structural and mechanistic studies have revealed that compound 2 is a highly potent, ATP-competitive, CDK8 inhibitor, and utilizes its isoquinoline moiety to bind to the kinase hinge segment through the nitrogen of the isoquinoline and the N–H of Ala100. The steroidal-like core makes extensive contacts with the ATP-binding cavity. Furthermore, the study investigated the potential of cortistatin A (2) as a treatment for acute myeloid leukemia (AML) and a 71% tumor growth inhibition on day 33, in mice containing SET-2 AML xenograft tumors, was reported. Importantly, cortistatin A had an acceptable pharmacokinetic profile in mice for once-daily intraperitoneal dosing and the reuction in the progression of the disease was reported to be dose-dependent.

The heterocyclic compound CCT251921 (3) was originally identified as a potent inhibitor of the Wnt signaling pathway. A follow-up study using a chemical proteomics-based approach identified CDK8/CDK19 as its primary targets. The compound was claimed to be selective for CDK8/CDK19 in a panel of 279 kinases at 1.0 µM; however CDK8 itself was not included in the panel as a positive control. Preclinical testing of these compounds showed that the compound inhibited Wnt-dependent activity in a number of colorectal cell lines, as well as the phosphorylation of the transcription factor Signal transducer and activator of transcription 1 (STAT1) at Ser727. The binding mode of CCT251921 (3) to CDK8 revealed that its pyridine nitrogen interacted with the kinase hinge segment by a similar interaction to the N–H of Ala100 as that of the isoquinoline nitrogen of cortistatin A (2). From this interaction, the indazole substituent of 3 is orientated towards the ATP-binding cavity in similarity to the steroidal core of cortistatin A. Additionally, the chlorine-atom, attached to the pyridine ring, in a meta-relationship to both the nitrogen atom and the indazole, further increased the affinity of compound 3 by an interaction with Phe97. In connection with our interest and earlier efforts in using steroids as lead compounds for the development of new anti-cancer agents, we choose not to reduce the double bond on the ring of the analogs. Furthermore, the orientation of dimethylamino group of Cortistatin A is maintained in our analogs at the carbon number of the steroid nucleus. By this approach, several analogs have been made (see Scheme 1).

The synthesis of compounds 8–17 commenced with a Mitsunobu-type inversion of the chiral center at C-3 of epiandrosterone (4) to the corresponding androsterone-3-azido 5 using triphenylphosphine, disopropyl azodicarboxylate (DIAD) and diphenylphosphoryl azide (DPPA) in THF, from which androsterone-3-azido 5 was isolated in 73% yield. Then, in a one-pot sequence, a modified Staudinger reaction using trimethylphosphine in THF was employed to afford the intermediate steroidal amine, which was further converted to the dimethyl amine 6, by an Eschweiler-Clarke type reaction. The enol-triflate 7 was made from the ketone 6 in a reaction using N-phenyl-bis(trifluoromethanesulfonimide) in the presence of NaHMDS at –78 °C. The key intermediate 7 was further converted to the desired compounds 8–17 using the Suzuki-Miyaura cross-coupling reaction with different boronic acids as coupling partners. Tetrakis(triphenylphosphine)palladium and caesium carbonate in THF/H2O (1:1) enabled the preparation of compounds 8–17 in 31–42% overall yield (see Fig 2).

2.2. CDK8 profiling

Compounds 8–17 were tested for their ability to inhibit probe binding to protein kinase CDK8 in vitro at 50 nM concentration. In this assay, the ability of a test compound to compete with an immobilized, active site directed ligand is quantitatively measured and reported as percent of DMSO control (POC), with lower numbers indicating higher binding affinity. The results are displayed in Table 1. Except for 16, all compounds displayed inhibitory activity towards CDK8 at 50 nM concentration. For the five most promising compounds, their Kd values were determined. The most potent compound, the 5-isoquinoline analog 12, inhibited CDK8 with a Kd = 3.5 nM, which is 3–4 times lower than the reported Kd-value of our lead compound cortistatin A (2) (17 nM) in a similar assay. Compound 12 has a 5-isoquinoline substituent in the 17-position of the steroid core skeleton. For compound 9, with a 5-chloropyridin-3-yl substituent as in CCT251921 (3), the Kd value was determined to 13 nM in the same range as for cortistatin A (2).

To evaluate the kinase selectivity, we performed a KinomeScan binding analysis against a near comprehensive panel of 468 kinases at a concentration of 50 nM (Fig. 3). This profiling revealed selectivity of compounds 12 and 9 for CDK8, both with selectivity scores, S(10) at 0.01. Furthermore, compound 14 displayed a Kd = 18 nM and a S(10)
score of 0.01. These results are in line with the data presented by Hatcher and coworkers in their report from 2018, in which they measured the IC50 values of 18–24 nM and a S(10) score of around 0.01 for a related compound carrying isoquinolin-7-yl substituents on the steroid skeleton.31

2.3. In vitro studies

In order to assess whether the analogs could be lead compounds in acute myeloid leukemia (AML) therapy, we tested them against three cell lines derived from AML patients. These were cells with different mutation status and cytogenetics. The MOLM-13 and MV4-11 cells are from the monocytic lineage, and display heterozygotic and homozygotic internal tandem duplication (ITD) of Flt3, respectively, which both are associated with high risk. The OCI-AML3 cell line has wild-type Flt3, associated with low risk, but a complex karyotype, which turns this cell line into a high-risk model. In line with this, we have found that the OCI-AML3 are more resistant than MOLM-13 and MV4-11 cells to other kinase inhibitors, which did not correspond to expression of drug transporters.36,37

The CDK8 inhibitors tested had EC50 values between 2.7 µM and 10 µM for the AML cells (Table 1). The analog 13 was the most potent, with values below 4.1 µM for all AML cell lines (Table 1). Interestingly, the analogs did not show significantly different activity towards the three AML cell lines. This suggests that their cell death targets are different from other cytostatics like daunorubicin and kinase inhibitors, which for instance have low activity towards the cytogenetically complex OCI-AML3 cells compared to their activity towards MOLT-13 and MV4-11. The analogs were next tested against the two non-malignant cell lines NRK (rat epithelial kidney cells) and H9c2 (cardio myoblasts) to find if the compounds also could affect normal tissue. In comparison to the malignant cell lines, these cells tolerated two to four times higher concentration of most of the analogs (Table 2).

3. Conclusion

Herein, ten new synthetic compounds have been reported and evaluated for their inhibitory properties towards CDK8. The initial screening of the compounds proved inhibitory effects toward CDK8 at a concentration of 50 nM. For the five most potent compounds, the individual Kd-values toward the same enzyme were determined, which further proved the ability of the compounds to bind to the kinase in vitro. The Kd-values of the three most potent compounds are in line or even lower compared to the previous reported CDK8 inhibitors.9,10,20,24 Additionally, when tested towards a panel of 468 different kinases, the compounds within this study demonstrated a high degree of selective inhibition of CDK8. Compound 14 is a similar analog to what has already been reported by Hatcher and coworkers.31 By further structure activity relationship studies, we have improved both the affinity and selectivity towards CDK8 for this class of compounds.

Interestingly, the cellular studies identified compound 13 to be the most cytotoxic compound. This observation is in line with the observation done by Corey and coworkers, where several isoquinoline steroidal analogs where tested for their antiangiogenic activity.38 However, low selectivity of this compound towards the AML cell lines, compared to the non-malignant cell lines, were observed (Table 2). For the most potent CDK8 inhibitor, compound 12, the EC50 values were slightly higher, i.e. it was less cytotoxic towards the AML cell lines (Fig. 3). However, compound 12 proved more selective in killing AML cell lines, compared to compound 13. The EC50 values are three to four times lower for compound 12 towards the AML cell lines compared to the non-malignant cell lines.

Scheme 1. Synthesis of compounds 8–17. Reagents and conditions: i) PPh3, DIAD, diphenyl phosphoryl azide, THF, rt, 10 h, 73%; ii) P(CH3)3, 1 M NaOH, THF, rt., 2 h; iii) AcOH, CH3O, NaCNBH3, MeOH, rt. 1 h, 73%; iv) NaHMDS, PhN(SO2CF3)2, THF, −78 °C, 4 h, 85%; v) ArB(OH)2, Cs2CO3, Pd(Ph3P)4, THF:H2O (1:1) 60 °C, 5 h, 64–85%.
4. Experimental

4.1. General methods – Chemistry

All reagents and solvents were used as purchased without further purification unless stated otherwise. Melting points are uncorrected. Analytical TLC was performed using silica gel 60 F254 aluminum plates (Merck). Flash column chromatography was performed on silica gel 60.
Coupling constants (J) are reported in hertz, and chemical shifts are reported in parts per million relative to CDCl_3 (7.26 ppm for 1H and 77.0 ppm for 13C). Mass spectra were recorded at 70 eV with Fison's VG Prospec mass spectrometer. High-resolution mass spectra were performed with a Micromass Q-TOF-2 mass spectrometer.

4.2. (3R,5S,8R,9S,10S,13S,14S)-3-azido-10,13-dimethylhexadecahydro-17H-cyclopenta[α]phenanthren-17-one (5)

To a solution of Ph_3P (4.33 g, 16.5 mmol, 1 equiv.) in THF (90 mL) was added diethyl azodicarboxylate (3.54 mL, 18.0 mmol, 1.2 equiv.) at 0 °C and the solution was stirred for 10 min. To this solution epianilide (1.59 mmol) was added, followed by diethyl azodicarboxylate (3.54 mL, 18.0 mmol, 1.2 equiv) at −78 °C. To this solution was added dropwise at −78 °C and the resulting mixture was allowed to warm to room temperature after 10 h, 0.1 M NaOH was added and the resulting mixture was extracted with 5 × 50 mL DCM. The combined organic layers were dried over Na_2SO_4, evaporated and purified by flash chromatography (SiO_2, 3% EtOAc in hexane) to afford the pure products. The compound was isolated as colorless solid (63 mg, 83%).

4.3. (3R,5S,8R,9S,10S,13S,14S)-3-(dimethylamino)-10,13-dimethylhexadecahydro-17H-cyclopenta[α]phenanthren-17-one (6)

A solution of azido steroid (5) (2.16 g, 6 mmol, 1 equiv.) in a mixture of THF (6 mL) and aqueous NaOH (1.0 M, 3 mL) was degassed by purging for 20 min with a slow stream of argon gas through a 20-gauge stainless steel needle. To the degassed solution was added a solution of trimethylsilylphenylphosphoramine (1.59 mmol) and then acetic acid (6.86 mL, 120 mmol, 20 equiv.) to the resulting solution were added sequentially formalin (37%wt, 11.05 mL, 300 mmol, 50 equiv) and a solution of sodium cyanoborohydride (3.77 g, 60 mmol, 10 equiv) in MeOH (1 mL). After 1 h, the reaction mixture was concentrated to remove the bulk of the solvent. The concentrate was partitioned between aqueous NaOH (1.0 M, 20 mL) and DCM (40 mL). The layers were separated. The aqueous layer was extracted with DCM (4 × 20 mL). The organic layers were combined and washed with saturated aqueous sodium chloride solution (30 mL). The combined organic layers were dried over sodium sulfate, evaporated and purified by flash chromatography (SiO_2, 10% MeOH in DCM; SiO_2 was pretreated with 1% Et_3N in CHCl_3). The compound was prepared following the general procedure described.

4.4. (3R,5S,8R,9S,10S,13S,14S)-3-(dimethylamino)-10,13-dimethyl-2,3,4,5,6,7,8,9,10,11,12,13,14,15-tetradecahydro-1H-cyclopenta[α]phenanthren-17-yl trifluoromethanesulfonate (7)

Dimethylamino steroid (6) (2.22 g, 7.0 mmol) and N-phenylbis(trifluoromethanesulfonylimide) (3.75 g, 10.5 mmol) were dissolved in dry THF (70 mL) and cooled to −70 °C. NaHMDMS (14 mL, 1 M in THF, 14 mmol), was added dropwise at −70 °C and the resulting mixture was allowed to warm at −70 °C for 10 h. Then the reaction was brought to room temperature and quenched by addition of saturated aqueous NH_4Cl (20 mL). The mixture was extracted with CH_2Cl_2 (4 × 30 mL); the combined organic extracts were washed with water and brine, dried (MgSO_4) and concentrated in vacuo. The residue was purified by flash chromatography (SiO_2, 3% MeOH in DCM; SiO_2 was pretreated with 1% Et_3N in CHCl_3) to afford the product in 75% yield.

4.5. General procedure for the Suzuki cross-coupling (8–17)

The dimethylamino steroid triflate (0.2 mmol, 1 equiv.) and cesium carbonate (2 equiv.) and the boronic acid (1.05 equiv.) were placed in a 50 mL round-bottomed flask under an argon atmosphere and dissolved in a 1:1 mixture of water and THF. Pd(PPh_3)_4 (5 mol%) was added and the reaction mixture was stirred at room temperature (18–22 h.) Upon completion the reaction mixture was poured into brine (15 mL) and extracted with ethyl acetate (4 × 5 mL). The combined organic extracts were dried (MgSO_4) and the solvent evaporated in vacuo. The residue was purified by flash chromatography (silica gel, 10% MeOH in DCM; SiO_2 was pretreated with 1% Et_3N in CHCl_3) to give the pure products.

4.6. (3R,5S,8R,9S,10S,13S,14S)-N,N,10,13-tetramethyl-17-(pyridin-3-yl)-2,3,4,5,6,7,8,9,10,11,12,13,14,15-tetradecahydro-1H-cyclopenta[α]phenanthren-3-amine (8)

The compound was prepared following the general procedure described. The product was isolated as colorless solid (63 mg, 83%).

4.7. (3R,5S,8R,9S,10S,13S,14S)-17-(5-chloropyridin-3-yl)-N,N,10,13-tetramethyl-2,3,4,5,6,7,8,9,10,11,12,13,14,15-tetradecahydro-1H-cyclopenta[α]phenanthren-3-amine (9)

The compound was prepared following the general procedure described. The product was isolated as colorless solid (57 mg, 69%).
The compound was prepared following the general procedure described. The product was isolated as colorless solid (68 mg, 79%).

The compound was prepared following the general procedure described. The product was isolated as colorless solid (62 mg, 72%).

The compound was prepared following the general procedure described. The product was isolated as colorless solid (60 mg, 70%).

The compound was prepared following the general procedure described. The product was isolated as colorless solid (62 mg, 72%).

The compound was prepared following the general procedure described. The product was isolated as colorless solid (65 mg, 76%).
Y min max min
NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.43–7.36 (m, 1H), 7.22–7.09 (m, 2H), 6.63–6.36 (m, 1H), 5.87 (dd, J = 3.2, 1.7 Hz, 1H), 2.31 (s, 6H), 2.24–2.17 (m, 1H), 2.16–2.13 (m, 1H), 2.12–2.07 (m, 1H), 2.04–1.93 (m, 1H), 1.90–1.81 (m, 1H), 1.77–1.70 (m, 1H), 1.68–1.50 (m, 6H), 1.48–1.33 (m, 5H), 1.29–1.21 (m, 2H), 1.17–1.08 (m, 1H), 1.05 (s, 3H), 1.02–0.95 (m, 1H), 0.88 (s, 3H). 13C NMR (101 MHz, CDCl₃) δ 155.77, 153.97, 135.17, 126.73, 125.94, 124.30, 120.06, 119.62, 108.99, 102.41, 62.04, 57.65, 54.39, 47.62, 43.74, 39.75, 36.35, 35.77, 34.16, 32.82, 31.73, 31.55, 31.49, 28.72, 24.66, 20.91, 16.91, 12.11. HRMS (EI): Exact mass calculated for C₂₈H₄₀N₂ [M+H]+: 417.3225, found 417.3264.

4.16. Protein kinase assay

For the CDK8 and CDK11 profiling we used a kinase selectivity and profiling assay (DiscoveRx). The assay uses kinase-tagged T7 phage strains which were grown in parallel in 24-well blocks in an E. coli host derived from the BL21 strain. E. coli were grown to log-phase and infected with T7 phage from a frozen stock (multiplicity of infection = 0.4) and incubated with shaking at 32 °C until lysis (90–150 min). The lysates were centrifuged (6000g) and filtered (0.2 μm) to remove cell debris. Streptavidin-coated magnetic beads were treated with biotinylated small molecule ligands for 30 min at room temperature to generate affinity resins for kinase assays. The liganded beads were blocked with excess biotin and washed with blocking buffer (SeaBlock, 1% BSA, 0.05% Tween 20, 1 mM DTT) to remove unbound ligand and to reduce non-specific phage binding. Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1x binding buffer (20% SeaBlock, 0.17x PBS, 0.05% Tween 20, 6 mM DTT). Test compounds were prepared as 40x stocks in 100% DMSO and directly diluted into the assay. All reactions were performed in polypropylene 384-well plates in a final volume of 20 μL. The assay plates were incubated at room temperature with shaking for 1 h and the affinity beads were washed with wash buffer (1x PBS, 0.05% Tween 20, 0.5 μM non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 min. The kinase concentration in the eluates was measured by qPCR. The test compounds were screened at 50 nM, and results for primary screen binding interactions are reported as POC (percent of control). The negative control consists of adding an equal DMSO volume without a test compound and the positive control consist of a control compound. From this POC is calculated: [(test compound signal − positive control signal)/(negative control signal − positive control signal)] × 100%. Negative control = DMSO (100% Ctrl); Positive control = control compound (0% Ctrl), where lower numbers indicate stronger hits in the matrix.

For the binding constant (K_a) determination an 11-point 3-fold serial dilution of each test compound was prepared in 100% DMSO at 100x final test concentration and subsequently diluted to 1x in the assay (final DMSO concentration = 1%). Most K_a values were determined using a compound top concentration = 30,000 nM. The K_a values were calculated with a standard dose-response curve using the Hill equation and are expressed as an average of two determinations.

4.17. Cell growth inhibition (cytotoxicity)

All cell culturing media and serum were from Sigma-Aldrich (St. Louis, MO, USA). The human acute myeloid leukemia (AML) cell lines MOLM-13 (ACC: 554,28) and OCI-AML3 (ATCC, ACC-528) were cultured in RPMI medium (R5886) enriched with 10% fetal bovine serum (F7524) and 2 mM l-glutamine (G7513). The human AML cell line MV4-11 (ATCC, CRL-9591) was cultured in Iscove medium (I3390) enriched with 10% fetal bovine serum (F7524) and 8 mM l-glutamine (G7513). The normal rat kidney epithelial (NRK, ATCC, CRL-6509) and the rat cardiomyoblast (H9c2, ATCC, CRL-1446) cells were cultured in DMEM medium (D6429) enriched with 10% fetal bovine serum (F7524). All cell lines were additionally supplemented with 100 IU/mL penicillin and 100 μg/mL streptomycin (P0781). The cells were cultured in a humidified atmosphere under 20% O₂ at 37 °C.

All analogs were dissolved in DMSO (D5879, Sigma-Aldrich) to a stock concentration of 25 mM before testing, and stored at −80 °C. For cytotoxic testing, the three AML cell lines were seeded at 10,000 cells/well, while NRK cells were seeded as 2000 cells/well and H9c2 as 2500 cells/well in 96-well Microplates (#167008, Thermo Scientific™ Nunc™ MicroWell™) with 0.1 mL medium/well. The cells were exposed to various concentrations of CDK8 inhibitors for 48 h before the cell proliferation reagent WST-1 (11644807001, Roche Diagnostics, Sigma-Aldrich) was used to assess the viability, in accordance with the manufacturer’s instructions. The cells were next fixed in 2% buffered formaldehyde (pH 7.4) with the DNA-specific dye Hoechst 33,342 (Poly sciences Inc.) and assessed for cell death by UV-microscopy based on nuclear morphology. Viability assessment with these two methods is shown to correlate well with cells exposed to kinase inhibitors.

EC₅₀ values were determined based on data from WST-1 assay in combination with microscopic evaluation of cell death, using four-parameter regression analysis function in the SigmaPlot software (Systat Software inc. San Jose, CA):

\[
Y = \min + \left(\frac{\max - \min}{1 + \left(\frac{X}{EC_{50}}\right)^h}\right)
\]

where Y is the response (WST-1 signal or percent apoptosis), min and max are minimum and maximum response, X is concentration of analog, EC₅₀ equals the point of inflection, i.e. the point that gives half of maximum response, and h is the Hill’s slope of the curve.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Faculty of Health sciences, Nord University are gratefully acknowledged for financial support of the project. Reidun Aesoy and Lars Herfindal received financial support from NordForsk (NCoE Programme “NordAqua” (project #82845)), Western Norway Health Authorities, and the Norwegian Society for Children’s Cancer.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bmc.2020.115461.

References

1. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15:122.
2. Tassan JP, Jaquenoud M, Léopold P, Schutz SA, Nigg EA. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc Natl Acad Sci. 1995;92:8871.
3. Posp ZC, Ebenezer CC, Taatjes DJ. The mediator complex and transcription regulation. Crit Rev Biochem Mol Biol. 2013;48:575–608.
4. Donner AJ, Szotek S, Hoover JM, Episimova JN. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol Cell. 2007;27:121–133.
5. Firestein R, Bani AJ, Kim SY, et al. CDK8 is a colorectal cancer oncogene that regulates [bgr]-catenin activity. Nature. 2008;455:547–551.
6. Grasso CS, Wu Y-M, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2010;468:1105–1109.
7. Kapoor A, Goldberg MS, Cumberland LR, et al. The histone variant macroH2A2 suppresses melanoma progression through regulation of CDK8. Nature. 2015;468:1105–1109.
8. Eirew P, Steif A, Khattra J, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518:422–426.
9. Porter DC, Farmaki E, Alitalo S, et al. Cyclin-dependent kinase 8 mediates

E. Solium, et al. Bioorganic & Medicinal Chemistry 28 (2020) 115461
chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci. 2012;109:13799–13804.

10. Rzymski T, Mikula M, Żylikiewicz E, et al. SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transcriptional domains. Oncotarget. 2017;8:33779–33795.

11. Wingelhofer B, Maurer B, Heyes EC, et al. Pharmacologic inhibition of STAT5 in chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci. 2012;109:13799–13804.

12. Konig H, Levis M. Targeting FLT3 to treat leukemia. Expert Opin Therapeutic Targets. 2015;19:37-54.

13. Putz EM, Gotthardt D, Hoermann G, et al. CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep. 2013;4:437–444.

14. Witalisz-Siepracka A, Gotthardt D, Prchal-Murphy M, et al. Sexl, NK Cell-Specific Transactivation Domains. J Am Chem Soc. 2015;137:16878–16887.

15. Shallal HM, Russu WA. Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives. Eur J Med Chem. 2011;46:2043–2057.

16. Palmer WS, Alam M, Arzeno HB, et al. Development of amino-pyrimidine inhibitors of c-Jun N-terminal kinase (JNK): Kinase profiling guided optimization of a 1,2,3-benzotriazole lead. Bioorg Med Chem Lett. 2013;23:1486–1492.

17. Getlik M, Grutter C, Simard JR, et al. Hybrid compound design to overcome the gatekeeper T338M mutation in cSrc#. J Med Chem. 2009;52:3915–3926.

18. Saurat T, Buron F, Rodrigues N, et al. Design, synthesis, and biological activity of pyridopyrimidine scaffolds as novel PI3K/ mTOR dual inhibitors. J Med Chem. 2014;57:613–631.

19. Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M. Cortistatin A, B, C, and D, anti-angiogenic steroidal alkaloids, from the marine sponge corticism simplex. J Am Chem Soc. 2006;128:3148–3149.

20. Cee VJ, Chen DYK, Lee MR, et al. Recyclable catalysts. Angew Chem Int Ed. 2009;48:4328–4331.

21. Hatcher JM, Wang ES, Johannesen L, Kwiatkowski N, Sim T, Gray NS. Development of Highly Potent and Selective Steroidal Inhibitors and Degraders of CDK8. ACS Med Chem Lett. 2018;9:540–545.

22. Shi J, Shigehsia H, Guerrero CA, Shenvi RA, Li C-C, Baran PS. Stereodivergent Synthesis of 17α- and 17β-Aryl Steroids: Application and Biological Evaluation of D-Ring Cortistatin Analogues. Angew Chem Int Ed. 2009;48:4328–4331.

23. Blasi E, Sauter T, Wobbe P, et al. A small molecule–kinase interaction map showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9) (q23;p22p23). Cancer Res. 1997;57:4571–4576.

24. Dale T, Clarke PA, Esdar C, et al. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat Chem Biol. 2015;11:973.

25. Solum EJ, Cheng J-J, Sylte J, Vik A, Hansen TV. Synthesis and biological evaluations of new analogs of 2-methoxyestradiol: Inhibitors of tubulin and angiogenesis. Eur J Med Chem. 2014;85:391–398.

26. Solum EJ, Vik A, Hansen TV. Synthesis, cytotoxic effects and tubulin polymerization inhibition of 1,4-disubstituted 1,2,3-triazole analogs of 2-methoxyestradiol. Steroids. 2014;87:46–53.

27. Solum EJ, Cheng J-J, Sylte J, Vik A, Hansen TV. Synthesis, biological evaluation and molecular modeling of new analogs of the anti-cancer agent 2-methoxyestradiol: potent inhibitors of angiogenesis. RSC Adv. 2015;5:32497–32504.

28. Al-Kazaleh N, Tran PT, Haasari F, et al. Synthesis, molecular modeling and biological evaluation of potent analogs of 2-methoxyestradiol. Steroids. 2018;136:47–55.

29. Sørvik IB, Solum EJ, Labba NA, Hansen TV, Paulsen RE. Differential effects of some novel synthetic oestrogen analogs on oxidative PC12 cell death caused by serum deprivation. Free Radical Res. 2018;52:273–287.

30. Mohamed YMA, El Nazar HA, Solum EJ. Practical synthesis of silyl-protected and functionalized propargylamines using nanostructured Ag/TiO2 and Pt/TiO2 as active recyclable catalysts. Chem Pap. 2019;73:435–445.

31. Hatcher JM, Wang ES, Johannesen L, Kwiatkowski N, Sim T, Gray NS. Development of Highly Potent and Selective Steroidal Inhibitors and Degraders of CDK8. ACS Med Chem Lett. 2018;9:540–545.

32. Shi J, Shigehsia H, Guerrero CA, Shenvi RA, Li C-C, Baran PS. Stereodivergent Synthesis of 17α- and 17β-Aryl Steroids: Application and Biological Evaluation of D-Ring Cortistatin Analogues. Angew Chem Int Ed. 2009;48:4328–4331.

33. Bjørnstad R, Aesoy R, Bruserud Ø, et al. A kinase inhibitor with anti-Pim kinase activity is a potent and selective cytotoxic agent towards acute myeloid leukemia. Mol Cancer Ther. 2019;18:1159–1164.

34. Solum EJ, Mohamed YMA. Convenient stereoselective synthesis of some 3-aminosteroid scaffolds. Synth Commun. 2019;49:1159–1164.

35. Hatcher JM, Wang ES, Johannesen L, Kwiatkowski N, Sim T, Gray NS. Development of Highly Potent and Selective Steroidal Inhibitors and Degraders of CDK8. ACS Med Chem Lett. 2018;9:540–545.

36. Macias RR, Sanchez-Martin A, Rodriguez-Macias G, et al. Role of drug transporters in the sensitivity of acute myeloid leukemia to sorafenib. Oncotarget. 2018;9:28474–28485.

37. Björnstad R, Aesoy R, Bruserud Ø, et al. A kinase inhibitor with anti-Pim kinase activity is a potent and selective cytotoxic agent towards acute myeloid leukemia. Mol Cancer Ther. 2019;18:1234–1243.

38. Capsi B, Kürti L, Mammoto A, Ingber DE, Corey EJ. Discovery of potent and selective antiangiogenic agents inspired by cortistatin A. Biochim Biophys Acta. 2014;1843:613–631.

39. Fabian MA, Biggs III WH, Treiber DK, et al. A small molecule–kinase interaction map showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9) (q23;p22p23). Leukemia. 1997;11:1469–1477.