A recent study \cite{Ref1} introduces the parameterization NL-RA1 of the relativistic mean-field model (RMF). It is left open which data NL-RA1 is fitted to, which prevents to relate its properties to the fitting strategy. NL-RA1 is compared with early parameterizations as NL1 or NL-SH, more recent ones as NL3 or NL-Z2 are not considered. Extrapolation of NL-RA1 to superheavy nuclei contradicts earlier studies. As will be shown here, conclusions drawn in \cite{Ref1} may be doubtful as the pairing model used is unrealistic, and nuclei known to be deformed are calculated assuming spherical shapes.

Ref. \cite{Ref1} employs two parameterizations of the constant-gap model, one of which (ΔI) has been used in many early applications of the RMF. The pairing matrix elements are independent on the single-particle levels which is unrealistic for loosely-bound systems \cite{Ref2} as those discussed in \cite{Ref1}. The pairing gap, related to the odd-even mass staggering, has to be parameterized as a function of N and Z \cite{Ref3}. Model ΔI describes the average behaviour of the pairing gap. Introducing about 30 parameters N_{c1} and N_{c2}, model ΔII attempts to incorporate the reduction of the pairing gap around known magic numbers, but remains arbitrary for exotic systems where shells might be quenched or new shells occur. Model ΔII misses the overall reduction of the pairing gap with A, see Fig. 1. For transactinides, gaps are overestimated by a factor of 3. (There is currently much discussion about blocking and mean-field contributions to calculated pairing gaps that are neglected here, see \cite{Ref4,Ref5} and references therein. Those corrections cannot be easily incorporated into the simplistic constant gap model. Their contribution is usually smaller than 20\% and decreases with A.) There is no justification for model ΔII as it fails by construction to describe the size of the pairing gap, which is the key observable for pairing correlations. As the pairing gap determines the occupation of the single-particle states around the Fermi surface, most results presented in \cite{Ref1} are affected in one way or the other.

In \cite{Ref1}, the predictive power of NL-RA1 for superheavy nuclei is tested for the heaviest known even-even nuclei as earlier done in \cite{Ref6}. Results in \cite{Ref1} differ significantly from \cite{Ref6}. One reason are different pairing models, but there is a second one. In \cite{Ref1} it is not mentioned which shape degrees of freedom are accounted for. Repeating the calculations indicates that all results in \cite{Ref1} are obtained assuming spherical shapes. This is consistent with experiment for Sn and Pb isotopes, but there is agreement among all successful mean-field models that the known superheavy nuclei are deformed. This is confirmed by experiment for selected isotopes up to 254No \cite{Ref7}. In \cite{Ref1} the missing deformation energy (which is on the order of
FIG. 3. Single-particle spectrum of the protons, pairing gap Δ_p in model ΔII, difference ΔE between the binding energy obtained with model ΔI and ΔII, and two-proton gap δ_{2p} (all in MeV) for $N = 184$ isotones. The uppermost panel also displays the occupation probability ν^2_k for the protons in $^{298}114$ calculated with model ΔI. The arrows denote the pairing gap Δ_p, ϵ_p the Fermi energy. Results for $^{298}114$ depend sensitively on the value of Δ_p. Filled (open) markers denote calculations where Δ_p for $^{298}114$ is calculated using the prescription for nuclei with N smaller (larger) than $Z = 114$. (Ref. [1] leaves it open which one to use. Results presented there correspond to filled markers).

10 MeV or 0.5% is replaced by the artificially increased pairing correlation energy from model ΔII. Using a more realistic state-dependent delta pairing force with parameters adjusted along the strategy of [4] and allowing for deformation change significantly the systematics of δE for transactinide nuclei, see Fig. 2. Comparing with Fig. 17 in [1], all forces perform better. Similar changes can be expected for the values given in Fig. 18 of [1] (see [8] for complications when calculating odd- A nuclei which are neglected in [1]). The change in δE when comparing NL1 with NL-Z and NL-Z2 reflects an improved center-of-mass correction [9] and the inclusion of data on exotic nuclei into an otherwise identical fit. NL-RA1 and NL-Z2, however, have the same good quality for binding energies of transactinide nuclei in spite their very different nuclear matter properties.

In the framework of mean-field models, a magic number is associated with a large gap in the single-particle spectrum which causes a discontinuity in the systematics of binding energies. Those (and other) discontinuities are filtered from data with the two-proton gap $\delta_{2p}(N,Z) = E(N,Z-2) - 2E(N,Z) + E(N,Z+2)$ and the similar quantity for neutrons. δ_{2p} has to be taken with care, as it assumes the structure of the considered nuclei does not change, which is not necessarily fulfilled for heavy nuclei [10]. Ground-state deformation of some of the nuclei might quench δ_{2p} and has to be considered as soon as one wants to predict future data on these nuclei. To demonstrate the non-existence of the spherical $Z = 114$ shell, however, spherical calculations are sufficient and enforce the validity of δ_{2p} as a signature for magicity. Figure 3 displays the key quantities that reveal the origin of the large δ_{2p} for $^{298}114$ found in [1]. Let us look at filled markers first. Single-particle energies in $^{298}114$ do not change significantly when varying the pairing strength. The pairing gap for $^{298}114$ from model ΔII ($\Delta_p = 1.7$ MeV) is of the same order as the $Z = 114$ gap in the single-particle spectrum (1.4 MeV). About 3 protons occupy levels above the $Z = 114$ gap, inconsistent with the assumption of a major shell closure. By construction, Δ_p drops by a factor 2 at $Z = 114$. This causes a discontinuity in the pairing correlation energy which is clearly visible when comparing binding energies obtained with models ΔI and ΔII.

The discontinuity in the pairing correlation energy built into model ΔII causes the large value for $\delta_{2p}(^{298}114)$ found in [1], not the underlying shell structure. This is confirmed when moving the discontinuity of Δ_p to the non-magic proton number $Z = 112$, see the open markers in Fig. 3. δ_{2p} is now peaked at $^{296}112$, which has no closed spherical proton shell. δ_{2p} cannot be used as a signature for shell closures when as the pairing gap and its fluctuations are of similar size as the spacing of single-particle energies. However, the size of the pairing gap in model ΔII is unrealistic anyway. Calculations with more realistic pairing models do not show any significance for a major shell closure at $Z = 114$, consistent with [11].

The $Z = 120$ shell is not considered in the choice of N_{c1} and N_{c2} in pairing model ΔII, the pairing gap has huge mid-shell values there. This smears out the $Z = 120$ shell effect found in [11] in terms of δ_{2p} (c.f. Fig. 21 in [1]) but again does not affect the single-particle spectra.

[1] M. Rashdan, Phys. Rev. C 63, 044303 (2001).
[2] J. Dobaczewski et al., Nucl. Phys. A422, 103 (1984).
[3] P. Möller, J. R. Nix, Nucl. Phys. A536, 20 (1992).
[4] M. Bender et al., Eur. Phys. J. A8, 59 (2000).
[5] T. Duguet et al., Phys. Rev. C 65, 014311 (2002)
[6] T. Bürvenich et al., Eur. Phys. J. A3, 139 (1998).
[7] P. Reiter et al., Phys. Rev. Lett. 82, 509 (1999);
M. Leino et al., Eur. Phys. J. A6, 63 (1999).
[8] S. Ćwiok et al., Phys. Rev. Lett. 83, 1108 (1999);
M. Bender, Phys. Rev. C 61, 031302(R) (2000).
[9] M. Bender et al., Eur. Phys. J. A7, 467 (2000).
[10] M. Bender et al., Eur. Phys. J. A14, 23 (2002).
[11] K. Rutz et al., Phys. Rev. C 56, 238 (1997);
A. T. Kruppa et al., Phys. Rev. C 61, 034313 (2000);
M. Bender et al., Phys. Rev. C 60, 034304 (1999).