Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Potential Treatment of COVID-19 with Traditional Chinese Medicine: What Herbs Can Help Win the Battle with SARS-CoV-2?

Lin Lia,b,c,#, Yuzheng Wua,c,d,#, Jiabao Wanga,b,c, Huimin Yana,b,c, Jia Lua,b,c, Yu Wanga,e, Boli Zhanga,b,c, Junhua Zhanga,c,f, Jian Yanga,b,c, Xiaoying Wanga,g, Min Zhanga,b,c, Yue Lia,b,c,*, Lin Miaoa,b,c,*, Zanghan0023@126.com (H. Zhang).

aState Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
bKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
cInstitute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
dInstitute of Pharmacology of TCM Formulae Co-constructed by the Province–Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
eSchool of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
fEvidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
gCollege of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

\begin{abstract}
Traditional Chinese medicine (TCM) has been successfully applied worldwide in the treatment of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the pharmacological mechanisms underlying this success remain unclear. Hence, the aim of this review is to combine pharmacological assays based on the theory of TCM in order to elucidate the potential signaling pathways, targets, active compounds, and formulas of herbs that are involved in the TCM treatment of COVID-19, which exhibits combatting viral infections, immune regulation, and amelioration of lung injury and fibrosis. Extensive reports on target screening are elucidated using virtual prediction via docking analysis or network pharmacology based on existing data. The results of these reports indicate that an intricate regulatory mechanism is involved in the pathogenesis of COVID-19. Therefore, more pharmacological research on the natural herbs used in TCM should be conducted in order to determine the association between TCM and COVID-19 and account for the observed therapeutic effects of TCM against COVID-19.
\end{abstract}

\begin{keywords}
Traditional Chinese medicine
SARS-CoV-2
COVID-19
Antivirus
Anti-inflammation
Immune regulation
\end{keywords}

1. Introduction

As of 25 April 2021, more than 147 million people have been diagnosed with the viral disease [1], which has negatively impacted health, economic development, and social stability [2]. However, effective clinical drugs for coronavirus disease 2019 (COVID-19) are still lacking.

Traditional Chinese medicine (TCM) has shown success in treating viral infectious pneumonia. It has also exhibited therapeutic effects against infectious diseases, such as severe acute respiratory syndrome (SARS) and COVID-19. On 7 February 2020, the National Health Commission of the People’s Republic of China and the National Administration of Traditional Chinese Medicine recommended the Qingfei Paidu decoction (QFDD), the Huashi Baidu formula (HSBD), the Xuande Baidu decoction (XFBD), the Jinhua Qinggan granule, the Lianhua Qingwen capsule/granule (LHQW), and the Xuebijing injection (XBJ) for the treatment of COVID-19\textsuperscript{1}. As these medications were found to have clinical efficacy and were used as the classical prescriptions for the treatment of flu-like symptoms, asthma, inflammation, tonsillitis, and sore throat [3–8]. However, pharmacological evidence is needed to elucidate the anti-SARS coronavirus 2 (anti-SARS-CoV-2) effect of TCM. Here, we briefly discuss the potential therapeutic targets of COVID-19 in clinics, followed by the application of the theory of TCM in the treatment of COVID-19. This information provides the fundamental ideas behind...
the design and experimental assays that have been performed to elucidate the pharmacological mechanisms of the herbs used in the treatment of COVID-19. We screen existing studies and explain the mechanisms of TCM in combatting viral infections, immune modulation, anti-inflammation, and the suppression of lung injury and fibrosis, with the aim of providing a holistic understanding of TCM mechanisms against COVID-19.

2. The pathogenesis of COVID-19

2.1. Replication of and infection with SARS-CoV-2

SARS-CoV-2 is an enveloped single-stranded RNA virus that belongs to the coronavirus family [9]. It consists of four major structural proteins: the membrane protein (M protein), spike protein (S protein), envelope protein (E protein), and nucleocapsid protein (N protein) [10]. The M protein plays a pivotal role in determining the shape of the viral envelope. The S protein is a key mediator in the attachment of the virus to host cells, making it essential for viral entry into the host cell [11]. The E protein is an important M protein involved in the formation of the viral envelope and in viral budding and assembly [12]. The N protein binds to the viral RNA genome. Similar to the E protein, the N protein is also involved in the budding and assembly of the virus [11]. In addition to these structural proteins, the non-structural proteins RNA-dependent RNA polymerase (RdRP) and 3-chymotrypsin-like cysteine protease (3CLpro) play vital roles in the life cycle of SARS-CoV-2. RdRP is the core component of the replication-and-transcription complex of the virus [13], while 3CLpro is responsible for post-translational modifications of the viral polyproteins. Thus, RdRP and 3CLpro are both indispensable for viral replication and infection [14].

In the human body, angiotension-converting enzyme 2 (ACE2) is responsible for the regulation of blood pressure. ACE2 is widely expressed in the nasal mucosa, bronchus, lungs, heart, esophagus, kidneys, stomach, bladder, and ileum, all of these organs are vulnerable to SARS-CoV-2 [15]. In addition, ACE2 has been identified as the receptor of SARS-CoV-2 on the human cell membrane. ACE2 mediates the entry of SARS-CoV-2 into host cells by interacting with the S protein. Hence, ACE2 plays a key role in viral infection [16].

2.2. Pathological damage after SARS-CoV-2 invasion

SARS-CoV-2 is transmitted predominantly via respiratory droplets or direct contact. Primary viral replication is presumed to occur in the mucosal epithelium of the upper respiratory tract, while further multiplication occurs in the lower respiratory tract [17]. The initial clinical manifestations in adults infected with SARS-CoV-2 are fever, cough, shortness of breath, and fatigue. The pathophysiology of COVID-19 involves alveolar damage, infiltration with a high number of macrophages and lymphocytes manifesting as interstitial pneumonia, and pulmonary fibrosis, which emerge as the disease progresses [18]. In severe cases, patients exhibit extremely complicated symptoms including acute respiratory distress syndrome (ARDS), acute liver and heart injury, kidney failure, secondary infections, and septic shock, which imply multiple organ involvement [19].

As a response to SARS-CoV-2 infection, macrophages and dendritic cells trigger an initial immune response that includes lymphocytosis and cytokine release. However, the inflammatory response results in the destruction of lymphocytes that attempt to kill SARS-CoV-2 [20], which then results in lymphopenia. In addition, cytokine production becomes rapidly dysregulated, culminating in a cytokine storm [21]. The damage caused by inflammation results in the disruption of the epithelial barrier in the lungs, which leads to further pulmonary inflammation. This damage can then spread to other organs, including the kidneys, heart, blood vessels, and brain [22] (Fig. 1).

2.3. Pathobiology of SARS-CoV-2 in comparison with other viruses

As a member of the coronavirus family, SARS-CoV-2 shares approximately 80.0% and 50.0% genetic similarity with SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively [23]. SARS-CoV-2 also shares similar epidemiological and biological characteristics with the two aforementioned viruses. These coronaviruses cause severe respiratory tract infection with cytokine storm that can lead to viral pneumonia and ARDS [24]. However, there are differences among the three viruses, especially in their various affinities toward the host receptors and in their pathogeneses. The entry of a coronavirus into host cells involves the binding of its S proteins with the host receptors, followed by proteolytic cleavage of the S protein to expose the S2 fusion domain and subsequent membrane fusion [25,26]. Dipeptidyl peptidase 4, the receptor of MERS-CoV, is a multifunctional cell-surface protein that is widely expressed not only in the kidneys, small intestine, liver, prostate epithelial cells, and activated white blood cells, but also in the epithelium of the upper respiratory tract in humans [27,28]. ACE2, which acts as the receptor of SARS-CoV, is widely expressed in the alveolar epithelial cells, trachea, bronchi, bronchial serous glands, alveolar monococytes, and macrophages in the respiratory tract [29]. Similar to SARS-CoV, SARS-CoV-2 has ACE2 as its receptor, which facilitates the entry of the virus into the host cells. However, SARS-CoV-2 has a higher binding affinity with the ACE2 of host cells than SARS-CoV [30], which may explain the higher transmission rate of SARS-CoV-2 in comparison with SARS-CoV. Moreover, the monoclonal antibodies (mAbs) that are raised against the SARS-CoV receptor-binding domain (RBD) do not effectively bind with the S protein RBD of SARS-CoV-2 [30], which indicates that mAbs raised against SARS-CoV have a limited cross-reactivity with SARS-CoV-2.

There are differences in the tissue expression of the viral receptors and the activating proteases of SARS-CoV-2 and SARS-CoV, which may contribute to their unique pathophysiologies. Aside from respiratory symptoms, MERS-CoV-infected patients may present with muscle soreness and gastrointestinal manifestations. The main clinical complications include renal failure and severe respiratory distress syndrome with shock [31]. In terms of lung pathophysiological changes, the pulmonary fibrosis and consolidation of SARS-CoV-2 are not as serious as those caused by SARS-CoV, but the exudative reaction of SARS-CoV-2 is much more apparent than that of SARS-CoV [32]. In particular, SARS-CoV-2 mainly damages the small airways and alveoli, which results in a large amount of sticky mucus and sputum plugs that block the airways, thereby resulting in secondary infections, ARDS, and respiratory failure [9,33].

3. TCM for COVID-19 treatment

According to historical records, China has experienced more than 500 plagues in the past 3000 years [34]. Thus, the people of China have rich experience in the prevention and treatment of diseases that cause epidemics. Based on this experience, a TCM theory for treating plagues has been developed. Based on this theory, SARS-CoV-2 belongs to the category of “plague” [1]. Most COVID-19 patients present with low-grade fever, cough, fatigue, inappetence, and a thick and greasy tongue at the onset of the disease [19]. The characteristics of dampness pathogenicity affect the function of both the lungs and the gastrointestinal tract [35]. In addition, SARS-CoV-2 possesses the classic characteristic of producing dampness toxins that often cause prolonged disease duration and...
the functional impairment of multiple organs. Such toxins are refractory to treatment due to the viscous characteristic of the dampness, which can impede the Qi circulation. Moreover, as the disease progresses, the syndrome elements of SARS-CoV-2 transform into different subtypes, including dryness, heat, cold, or deficiency syndrome. According to the pathogenic environment and variations in the clinical manifestations of COVID-19 patients, COVID-19, as a typical “dampness-toxicity plague,” has the pathogenetic characteristics described as “dampness, heat, toxin, stasis, deficiency, and closure” [36]. Therefore, based on the theory of TCM, the treatment for COVID-19 patients should involve prescriptions of herbals that can relieve the dampness-toxicity pathogenesis. In general, such treatment strategies involve the resolution of diaphoresis to relieve heat during clinical observation, stimulation of ventilation, clearance of phlegm in the early stages of treatment, opening blocked airways in the later stages of treatment, and detoxification. These processes reverse the pathological effects of the virus in severe cases, replenish the Qi circulation, and facilitate the development of the Yin during convalescence. However, the mechanism underlying these processes remains unclear.

4. The scientific foundations of TCM as a treatment for COVID-19

As there are still no effective drugs for the treatment of COVID-19 as of the date of writing this review, the search for potential anti-coronavirus agents that can be applied to human cells is paramount [37]. Considering the pathophysiology of COVID-19, therapeutic strategies should include combatting viral infections, immune regulation, inhibition of inflammation, and prevention of lung fibrosis and injury. To investigate the multi-constituent, multi-target mechanism of TCM in the treatment of COVID-19, a network pharmacological approach has been widely applied to predict and explore the main ingredients and effective targets of various TCMs, as well as to analyze the correlation between TCM targets and COVID-19 [38–44]. Typically, the compounds of herbs have been comprehensively collected from databases (e.g., the Encyclopedia of Traditional Chinese Medicine (ETCM) and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP)) based on their absorption, distribution, metabolism, and excretion (ADME) parameters. The compound targets of anti-COVID-19 TCM and disease targets were obtained from databases (e.g., GeneCards and Online Mendelian Inheritance in Man (OMIM) database) by adopting the keyword “new coronavirus.” Next, the genes of the compound targets from the anti-COVID-19 TCM were overlapped with those of the COVID-19 targets, and a target network model and major modules were established. The main biological targets and pathways regulated by TCM were then evaluated by Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology (GO), and protein–protein interaction (PPI) analysis. In most reports, the findings showed a multi-herb, multi-constituent, multi-target pattern involving...
interference with viral infection, energy metabolism, immunity and inflammation, parasites, and bacterial infection. However, more experiments are needed to confirm the network pharmacology prediction. Here, the scientific foundations for the use of TCM in COVID-19 treatment are summarized according to the three main processes in COVID-19 treatment—namely, combatting viral infections, immune modulation and anti-inflammation, and the suppression of lung injury and fibrosis—by screening and identifying effective TCM formulas, herbs, and their active compounds.

4.1. Combatting viral infections

ACE2 interaction with the S protein of SARS-CoV-2, RdRP, and 3CLpro are the three main targets [45]. Blockage of the binding of cell-surface receptors with SARS-CoV-2 or inhibition of the enzyme activities of RdRP and 3CLpro are therefore potential mechanisms of TCM candidates (Fig. 2).

4.1.1. Compounds

The results of molecular docking analysis demonstrated that several compounds with relatively low binding energies and inhibition constants can bind to the target receptors and can therefore have potential inhibitory effects on SARS-CoV-2 [2,46]. Tahir ul Qamar et al. [14] analyzed the sequence of 3CLpro, constructed its three-dimensional (3D) homology model, and screened it against a medicinal plant library containing 32,297 potential antiviral phytochemicals and TCM compounds. The study revealed that the top nine hits, including 5,7,3'-4'-tetrahydroxy-2'-3,3-dimethyldiallylisoflavone, myricitrin, methyl rosmarinate, 3,5,7,3',4'-hexahydroxy flavanone-3-O-β-D-glucopyranoside, (2S)-eriodictyol 7-O-(6'-O-galloyl)-β-D-glucopyranoside, calceolarioside B, myricetin 3-O-β-D-glucopyranoside, licoleafol, and amaranthin are potential lead molecules that could be developed into drugs to combat SARS-CoV-2 [14]. The compounds andrographolide, curcumin, and epigallocatechin-3-gallate were predicted to be potential inhibitors of levels of main protease (Mpro)/3CLpro of SARS-CoV-2. In silico studies should include molecular docking, target analysis, toxicity prediction, and prediction of TCM absorption, distribution, metabolism, and excretion [47–49] to further explore the potential effects of TCM against SARS-CoV-2. Luteolin, the main flavonoid in honeysuckle, was also predicted to bind with the main protease of SARS-CoV-2 and thereby prevent the entry of the virus into host cells [50]. Three natural-origin components—namely, crocin, digitoxigenin, and β-eudesmol—have been predicted to be inhibitors of S protein binding of SARS-CoV-2. This conclusion is based on an energy analysis from molecular docking experiments [51]. In addition, digitoxin is predicted to bind with the S protein of SARS-CoV-2 to inhibit interaction between the virus and human cells [52]. Flavaglines are widely used TCMs for the treatment of cough, diarrhea, fever, and inflammation. A recent study has reported that flavaglines can suppress SARS-CoV-2 infection by inhibiting the levels of the eukaryotic initiation factor 4A (eIF4A) and prohibitins-1/2 (PHB1/2), which are the key proteins used by SARS-CoV-2 to infect the human body [53].

Based on the premise that the responses against SARS-CoV-2 are similar to those of the other coronaviruses, several active compounds of TCM have exhibited antiviral activity, and may be therapeutic options for COVID-19 [20]. Curcumin is a well-known natural compound with antiviral effects. It blocks the entry of viruses to cells by targeting critical steps in the viral replication cycle [48], including alteration of the structures of surface proteins in viruses, competitive inhibition of viruses by binding with cell receptors, and inhibition of the expression of ACE2 receptor [54,55]. Moreover, the S protein level of SARS-CoV-2 [55] and the
plaque numbers of the coronavirus porcine epidemic diarrhea virus (PEDV) in infected cultured cells were quantified [54]. The results of these quantification assays showed that curcumin inhibited viral replication. In addition, the anti-coronaviral activity of saikosapignos (A, B2, C, and D) has been demonstrated. In particular, saikosapignos inhibited human coronavirus 229E infection at concentrations of 0.25–25 mmol·L⁻¹, with saikosapigno B2 exhibiting the strongest activity after its addition at various times including at pre-infection (−4 to −1 h), co-infection (0 h), and post-infection (1–4 h) [56]. Furthermore, the results of the in silico analysis revealed that saikosapignos effectively bound with critical inflammation-related targets, including the interleukin-6 receptor (IL-6R), Janus kinase-3 (JAK3), and nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase 5 (NOX5) [57]. Furthermore, emodin, an anthraquinone compound derived from Rheum and Polygonum, significantly blocked S protein and ACE2 receptor interaction and reduced the pathogenicity of S protein-pseudotyped retrovirus in Vero E6 cells in a dose-dependent manner [58].

4.1.2. Herbs

Many herbs have exhibited therapeutic potential against viral diseases. For example, peel extracts of Citrus sinensis significantly reduced the viral load in HeLa-CEACAM1a cells inoculated with mouse hepatitis virus (MHV)-A59 [59]. Moreover, Cimicifuga foetida L. (Sheng Ma), Melia azederach L. (Ku Lian Pi), Coptis chinensis Franch. (Huang Lian), Phellodendron chinense Schneid. (Huang Bai), and Sophora flavescens Ait. (Ku Shen) decreased the replication and suppressed the expression of intracellular RNA and proteins of MHV, vesicular stomatitis virus (VSV), and PEDV at a half maximal effective concentration (EC₅₀) of 2.0–7.5 μg·mL⁻¹ [60]. Furthermore, Rheum officinale Bail. (Da Huang), Polygonum multiflorum Thunb. (He Shou Wu), and Caulis Polygoni multiflori (Shou Wu Teng) potentially inhibited the interaction between SARS-CoV-2 and ACE2 at a half maximal inhibitory concentration (IC₅₀) of 1–10 μg·mL⁻¹ [58]. Moreover, TCM herbs such as Sambucus williamsii Hance (jie Gu Mu), Urtica fissa E. Pritz. (Xun Ma), and Andrographis paniculata (Burm. f.) Nees (Chuan Xin Lian) can potentially block the entry of the virus to human cells by downregulating the expression of angiotensin II receptor type 2 (AGTR2), which is a lung-specific protein with a high affinity for the S protein of SARS-CoV-2 [61]. The results of a network pharmacology analysis revealed that Ephedra sinica Stapf. (Ma Huang), Prunus armeniaca L. (Ku Xing Ren), Caulis Andrographis paniculata (Shou Wu Teng) potentially inhibited the interaction between SARS-CoV-2 and ACE2 at a half maximal inhibitory concentration (IC₅₀) of 1–10 μg·mL⁻¹ [58]. Moreover, TCM herbs such as Sambucus williamssii Hance (jie Gu Mu), Urtica fissa E. Pritz. (Xun Ma), and Andrographis paniculata (Burm. f.) Nees (Chuan Xin Lian) can potentially block the entry of the virus to human cells by downregulating the expression of angiotensin II receptor type 2 (AGTR2), which is a lung-specific protein with a high affinity for the S protein of SARS-CoV-2 [61]. The results of a network pharmacology analysis revealed that Ephedra sinica Stapf. (Ma Huang), Prunus armeniaca L. (Ku Xing Ren), Caulis Andrographis paniculata (Shou Wu Teng) potentially inhibited the interaction between SARS-CoV-2 and ACE2 at a half maximal inhibitory concentration (IC₅₀) of 1–10 μg·mL⁻¹ [58]. Furthermore, the Shenfu decoction was used in the treatment of COVID-19 [70]. Molecular docking data showed that the compounds in QFPD exerted antiviral effects by directly binding with the key proteins of SARS-CoV-2 and host proteins [69]. Thus, QFPD may effectively inhibit infection with and replication of SARS-CoV-2. Moreover, a study revealed that early treatment with QFPD was associated with viral shedding, rapid recovery, and a reduced hospital stay [70]. Similarly, the lung-toxin-dispelling formula No. 1, also referred to as the respiratory detox shot, has been used in the prevention and treatment of COVID-19 [71]. Molecular docking data showed that 118 constituents from 1071 known chemical constituents in the formula exhibited a high binding affinity to 3CLpro in SARS-CoV-2. In addition, 22 more chemical constituents were further validated by performing an in vitro study [71].

Maxing Shigan decoction (MXSGD) is a classic prescription for lung diseases that is composed of Ephedra sinica Stapf. (Ma Huang), Prunus armeniaca L. (Ku Xing Ren), Gypsum fibrosum (Shi Gao), and Glycyrrhiza uralensis Fisch. (Gan Cao). A total of 97 components were identified from MXSGD via liquid chromatography–electro spray ionization–tandem mass spectrometry (LC–ESI–MS/MS) [72]. The results of the KEGG analysis revealed that the potential signaling pathways targeted in COVID-19 treatment with MXSGD were mainly enriched in the immune system and viral infection. An in vitro study also found that MXSGD effectively inhibited IL-6-stimulated JAK–STAT activation and inhibited lung epithelial damage by increasing B-cell lymphoma-2 (Bcl-2) expression in rat lung epithelial type II cells (RLE-6TN) [73].

Another TCM formula, LHQW, a commercial drug that is widely used to treat influenza, exhibits a broad-spectrum antiviral effect against influenza viruses [74]. The results of a network pharmacology analysis suggested that LHQW regulated ACE2 expression [75]. Furthermore, pharmacokinetic data showed that its active compounds, such as rhein, forsythoside A, forsythoside I, and neochlorogenic acid, suppressed the activity of ACE2 [76]. In addition, the antiviral activity of LHQW against the novel SARS-CoV-2 virus was observed in Vero E6 cells via cecal ligation and puncture (CLP) and a plaque reduction assay [77]. Similarly, the Liu Shen capsule (LS) significantly inhibited SARS-CoV-2 replication and thus reduced the number of viral particles in Vero E6 cells [78]. Moreover, the Shenfu decoction was used in the treatment of patients with severe COVID-19 [79]. Data from in silico analysis was used to screen 43 active components of the Shenfu decoction, which predicted that their antiviral effect involved the suppression of SARS-CoV-2 replication, mainly through the inhibition of levels of viral Mpro, RdRp, and the S protein [80]. In addition, Pudilian
Xiaoyan oral liquid (PDL) was reported to clear the heat and detoxify, which explained its antiviral and antibacterial effects. Recently, it was found that PDL effectively suppressed viral replication in Vero E6 cells inoculated with SARS-CoV-2. In addition, PDL significantly reduced the number of viral RNA copies in the lungs of SARS-CoV-2-infected human angiotensin-converting enzyme 2 (hACE2) transgenic mice [81].

Another Chinese patent medicine, the XBJ, was approved for the treatment of sepsis, systemic inflammatory response syndrome, multiple organ failure, and severe and critical SARS-CoV-2 [77]. The results of a network pharmacology analysis demonstrated that 22 components from XBJ acted via 54 SARS-CoV-2 infection-related targets, including IL-6, tumor necrosis factor (TNF), mitogen-activated protein kinase 1 (MAPK1), glyceraldehyde-3-phosphate dehydrogenase, and tumor protein p53 which are mainly expressed in the heart, lungs, liver, intestine, trachea, pancreas, and kidneys. The multicellular biological processes of the critical targets included antioxidant and anti-inflammatory activities. Moreover, results of a molecular docking analysis revealed that the components of XBJ had a high affinity with the 3CLpro hydrolase of SARS-CoV-2 and the ACE2 receptors of the host cells. These results indicate that one of the mechanisms of XBJ in the treatment of pneumonia associated with SARS-CoV-2 infection includes the essential protein of the virus and its human ACE2 receptor, producing an antiviral effect [82].

4.2. Immune modulation and anti-inflammation

Viral pathogens cause malignant diseases in humans and animals, resulting in considerable mortality, morbidity, and economic losses worldwide [83,84]. Although great progress has been made in the treatment of infectious viral diseases, there are still no specific drugs for several mutant viral strains [85]. Thus, new treatment strategies are urgently needed.

Strengthening the immune system helps to build resistance against viral infections and to control the response of the immune system after significant viral replication. Several agents enhance the immune system, including the natural herbs of TCM. In addition, the treatment principle of TCM focuses on the whole body of the patient rather than only on the eradication of the pathogen. Therefore, natural herbs and TCM are considered to be effective pretreatment therapies for the prevention of diseases and the alleviation of mild symptoms (Fig. 3).

One of the key processes that reduces the fatality of SARS-CoV-2 may be the activation of the innate immune responses that trigger interferon (IFN) production at the onset of the disease. This can be achieved through the administration of agents that can increase the synthesis of IFNs [86,87]. There is growing evidence that curcumin can induce the production of IFNs in different viral diseases [88–90]. This finding was supported by a study that showed that cationic carbon dots of curcumin resulted in the suppression of coronavirus replication by stimulating the expression of interferon-stimulating genes and by decreasing IL-6 and IL-8 cytokine levels in Vero cells when the innate immunity of the host was triggered [66].

TCM formulas exhibit advantages in the modulation of the immune system. Several classical formulas aim to remove dampness, heat, toxins, deficiency, and closure, and are therefore strongly recommended for the treatment of COVID-19. MXSGD is recommended as a basic prescription and is already widely applied in the clinical treatment of COVID-19. Using network pharmacology results, a total of 97 active ingredients of MXSGD were screened, and 169 targets were predicted. The results revealed that the altered biological processes that occurred after taking MXSGD were closely related to the acute inflammatory response, chemokine production, vascular permeability, response to oxygen radicals, oxidative stress-induced apoptosis, T cell differentiation, immune globulin secretion, and extracellular matrix disassembly [91]. Experimental data confirmed that MXSGD exerted its anti-inflammatory effect via the suppression of levels of Toll-like receptors (TLRs) in macrophages and rats with pneumonia induced with lipopolysaccharide (LPS) [79].

Fig. 3. TCM immune modulation and anti-inflammation. TCM treats SARS-CoV-2 infection by modulating the host immune system, which includes increasing the production of interferons (IFNs) at the onset of the disease, inhibiting Toll-like receptor (TLR)-mediated inflammatory response, suppressing the production of proinflammatory cytokines, and inducing the differentiation of T and B cells into effector immune cells. The representative TCMs acting on each pathway are listed in the green boxes. CD: cluster of differentiation; ISG: interferon-stimulated gene; AT: alveolar type; YLD: Yidu-toxicity blocking lung decoction.
The TCM formula LHQW was reported to markedly reduce the production of proinflammatory cytokines such as TNF-α, IL-6, C-C motif ligand 2 (CCL-2)/monocyte chemotactic protein 1 (MCP-1), and chemokine C–C motif ligand 10 (CXCL-10)/interferon-inducible protein 10 (IP-10) [77]. The LS also exhibited an antiviral effect against SARS-CoV-2 in regulating the host immune response. The LS significantly inhibited the production of proinflammatory cytokines such as TNF-α, IL-6, IL-1β, IL-8, CCL-2/MCP-1, and CXCL-10/IP-10 via modulation of the NF-κB/MAPK signaling pathways [78]. Another TCM formula, the PDL, alleviated SARS-CoV-2-induced pneumonia in hACE2 mice. Mice treated with PDL exhibited reduced numbers of infiltrated inflammatory cells in lung tissues. Furthermore, the results of bioinformatics and network pharmacology analyses indicated that PDL reduced the expression levels of proinflammatory cytokines such as IL-10 and TNF-α [81]. Another TCM that is widely used to treat COVID-19 patients is QFPD. This formula was developed based on the classic formula of MSXGD. A target network analysis isolated the active compounds of QFPD and predicted their targets. According to the data, the TLR signaling pathway was found to be an important pathway regulated by QFPD. In addition, the XFBD is a formula that was developed based on the interpretation of COVID-19 in Chinese medicine theory. Clinical trials on XFBD showed that, when used in combination with conventional medicines, XFBD significantly suppressed the expression of inflammatory factors and provided symptomatic relief [4]. Another TCM prescription, the Yidu-toxicity blocking lung decoction (YLD), was created especially for the treatment of COVID-19. It was reported that YLD showed an anti-inflammatory effect in COVID-19 patients. Moreover, the expression levels of IL-6 and TNF-α were found to be significantly reduced in patients treated with YLD in combination with western medicine [92].

4.3. Suppression of lung injury and fibrosis

Acute lung injury (ALI) is one of the manifestations of COVID-19, and is described as increased capillary permeability and acute inflammatory disorder caused by endotoxemia [93]. One of the most serious forms of ALI is ARDS, which leads to high mortality due to over-activation of the immune system, which results in the production of a cascade of proinflammatory mediators [94,95]. Although considerable progress has been made in understanding the pathogenesis of ARDS, little progress has been made in the development of specific therapies to combat injury and inflammation. Recently, several natural products were studied in experimental models and were shown to inhibit multiple inflammatory pathways associated with ALI and ARDS at a molecular level (Fig. 4).

Honokiol, which is derived from Magnolia, alleviates sepsis-associated ALI via the inhibition of oxidative stress in mice [96]. Several natural compounds, including isoforskolin, ruscogenin, and caffeic acid phenethyl ester, exhibited inhibitory effects against lung injury, as demonstrated in mice and rats with ALI induced by LPS [97–101]. It was reported that a variety of TCM herbs and their active compounds contribute to the suppression of ALI. Arenaria kansuensis Maxim. (Xue Ling Zhi) was reported to play a protective role in pulmonary fibrosis through activation of the nuclear factor E2-related factor 2 (Nrf2) pathway and inhibition of the NF-κB/transforming growth factor (TGF)-β1/Sma- and Mad-related protein 2/3 (Smad2/3) axis [102]. Licorice, the root of Glycyrrhiza uralensis Fisch. (Gan Cao), has been widely used in China as an anti-inflammatory and antitussive herb. It was found that its main flavonoid, liquiritin, which was isolated from Glycyrrhiza uralensis Fisch. (Gan Cao), prevented lung damage and suppressed inflammation by inhibiting the NF-κB, transient

Fig. 4. Suppression of lung injury and fibrosis by TCM. TCM reduces lung injury and pulmonary fibrosis by inhibiting inflammation-related and oxidation-related pathways, such as by downregulating the expression of cytokines, inflammasomes, and reactive oxygen species (ROS); suppressing alveolar neutrophil infiltration; inhibiting NF-κB, nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), and TLR-mediated pathways; and reducing oxidative stress. The representative TCMs acting through each pathway are listed in the green boxes. NLRP: nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor; MMP: matrix metalloproteinase.
5. Discussion

As a newly emerging and severe acute respiratory infectious disease, COVID-19 has caused great losses in global health, economy, and social stability. Thus far, few effective drugs have been used specifically for the treatment of COVID-19. Based on experience from treating SARS and MERS, several well-known antiviral agents have been considered as potential candidates for the treatment of patients infected with SARS-CoV-2. The first category of these antiviral medications function by inhibiting the level of RdRP of the virus. This mechanism is exhibited by remdesivir [116], ribavirin [117], and favipiravir [118]. All these drugs have shown potential therapeutic effects in treating COVID-19 patients [119]. Antiviral medications in another category function by inhibiting the levels of viral replication-related key proteases and by arresting replication of the virus [120]. This is the mechanism of lopinavir/ritonavir, which has been shown to improve the condition of COVID-19 patients. Thus, these medications have been recommended by the National Health Commission of the People’s Republic of China and the Infectious Diseases Society of America for the treatment of COVID-19 patients [12]. Aside from these viral targets, the inflammatory cytokines produced by critically ill COVID-19 patients have also been suggested as a therapeutic target, as these cytokines can trigger a serious inflammatory response [25]. Based on this consideration, some mAbs (e.g., Tocilizumab, which suppresses IL-6-mediated inflammatory response by blocking its receptor [121]) are also used to treat COVID-19 patients. However, a particular medicine that can address all the symptoms of COVID-19 is still not available at the moment. Because TCM has shown excellent clinical effects in treating infectious diseases, an exploration of effective intervention strategies from TCM for the prevention and treatment of COVID-19 is warranted.

TCM has a history of more than 2000 years in the prevention and treatment of epidemics and plagues, with remarkable clinical therapeutic efficacy. In the last few decades, several new viruses have emerged, including SARS-CoV, MERS-CoV and, most recently, SARS-CoV-2. These viruses have caused epidemics and pandemics, and the pathogens associated with these diseases are all coronaviruses. TCM does not only focus on the eradication of the etiologic viral agent; it also considers the overall state and internal environment of the body by promoting vital Qi and by enhancing the body’s resistance to viruses. This treatment strategy is guided by the holistic concept and syndrome differentiation of TCM theory, which may be one of the reasons explaining the therapeutic efficacy of TCM against various viral diseases that have caused epidemics. Although SARS-CoV-2 is not exactly the same as SARS-CoV and MERS-CoV, these three coronaviruses have partially similar pathological and clinical manifestations. Therefore, in the process of clarifying the therapeutic strategies of TCM for SARS-CoV-2 treatment, the effects of TCM on other coronaviruses have provided important and meaningful references.

The strengths and weaknesses of Chinese medicines in the treatment of COVID-19 are an important and broad issue, which many TCM doctors and pharmacologists are continually attempting to figure out. At present, in order to fight against COVID-19 in an efficient way, various drug–drug or drug–herb combinations have been recommended for treating COVID-19 in clinical settings. The tireless efforts of the scientific community have led to an increased accumulation of knowledge and data about the disease and relevant TCM formulas. Clinical data show that the integrative combination of TCM and western medicine provides comprehensive therapy for effective substances for the prevention and treatment of pulmonary fibrosis in COVID-19 patients.
COVID-19 \[122\]. In brief, TCM mainly focuses on the patients, with the aim of enhancing the natural activity of the human body in a dialectical way. In comparison, western medicine focuses on the symptoms of disease. The advantages of TCM lie in its individualized and comprehensive consideration of treatment. However, TCM prescriptions are generally complicated and contain several ingredients. The weakness of TCM may be the difficulty in target identification; furthermore, the mechanism involved may not be easily and completely elucidated, even though efforts to uncover the pharmacological mechanisms of TCM are ongoing. Increasing amounts of data have shown that the effectiveness of TCM in the treatment of COVID-19 is due to the multiple targets and signaling pathways mentioned above. Published results are providing a new research basis for a better understanding of the mechanisms of TCM treatment of COVID-19. Recently, the three Chinese patent medicines and three TCM prescriptions that have been recommended by National Administration of Traditional Chinese Medicine for the COVID-19 treatment have been systematically investigated to uncover their potential mechanisms using modern pharmacological technologies \[69,123–125\]. The pharmacokinetics of TCM in COVID-19 treatment have also been extensively studied to illustrate the pharmacodynamic material basis \[67,126,127\]. However, some active components of TCM are difficult to detect in serum, which indicates that they may exert efficacy in other ways, such as via modulation of the gut microbiota and metabolomics.

Given the complexity of the compositions of TCM prescriptions and the pathogenesis of COVID-19, the advantages of TCM may lie not only in its regulation of immunity, but also in its holistic regulation of metabolism and the intestinal environment \[126\]. Furthermore, establishing an in vivo model that combines TCM theory with the SARS-CoV-2 virus infection may help in improving the reliability of nonclinical models in better simulating clinical complexities. However, the number of existing P3-grade labs cannot meet the research requirements. Moreover, in order to align a model with the features of TCM, it is necessary to superimpose the infection onto an ideal syndrome model, which presents another challenge for TCM researchers.

In this review, we summarized the potential targets of the natural compounds, herbs, and formulas from TCM that address SARS-CoV-2 infection, based on reported network pharmacology and molecular docking results. The experimental antivirus effects are mainly characterized by the direct inhibition of virus replication. In regard to the immune system destruction, inflammatory cytokine storm, and lung damage caused by COVID-19, some classic TCM formulas and proprietary Chinese medicines may regulate the immune system, reduce inflammatory responses, and suppress lung fibrosis and injury (Table 1 \[4,47,51,54–56,58,60,69,71,74,76–78,80,81,96,98–100,102–113,124,127–134\]).

However, there are some limitations in the research progress on TCM for COVID-19 treatment. First, most of the published data

Table 1

Categories of TCM effect	Natural compound/herbal formula	Targets/pathway	Cell/animal model	Function	References
Diaphoretic drug					
Saikosaponins (Bupleurum chinense DC.) (Chai Hu)	MXSGD	TLR signaling pathway	MRC-5 cells	Inhibits absorption and penetration of viral HCoV-229E	[56]
Heat-clearing drug					
Andrographolide (Andrographis paniculata (Burm. f.) Nees) (Chuan Xin Lian)					
Baicalein (Scutellaria baicalensis Georgi) (Huang Qin)					
Cimicifuga foetida L. (Sheng Ma), Melia azedarach L. (Ku Lian Pi), Coptis chinensis Franch. (Huang Lian), Phellodendron chinense Schnid. (Huang Bai), and Sophora flavescens Ait. (Ku Shen)					
Indigo Naturalis (Polygonum tinctorium Ait.) (Qing Dai)					
β-sitosterol (Taraxacum mongolicum Hand.-Mazz., Chrysanthemum morifolium Ranat., Forsythia suspensa (Thunb.) Vahl) (Pu Gong Ying, Ju Hua, Lian Qiao)					
LHQW					

(continued on next page)
Categories of TCM effect	Natural compound/herbal medicine/formula	Targets/pathway	Cell/animal model	Function	References
LHQW	— — Rhein, forsythoside A, forsythoside I, neochlorogenic acid, and its isomers exhibited high inhibitory effect on ACE2	MDCK cells, BALB/c mice	Inhibits propagation of influenza viruses and decreases expression of proinflammatory cytokines by suppressing NF-κB activation	[74]	
— — Six active compounds of LHQW can enter the active pocket of Akt1 exerting potential therapeutic effects in COVID-19	— —	— —	Suppresses inflammatory response by inhibiting the production of proinflammatory cytokines (TNF-α, IL-6, IL-1β, IL-8, CCL-2/MCP-1, and CXCL-10/IP-10)	[131]	
LF	— Vero E6 cells	Inhibits SARS-CoV-2 replication in Vero E6 cells and reduces the number of virus particles	Inhibits SARS-CoV-2 replication in Vero E6 cells and reduces the number of virus particles	[78]	
— — One hundred and eighteen constituents of respiratory detox shot (RDS) showed a high binding affinity with 3CLpro of SARS-CoV-2	— —	— —	Suppresses replication of SARS-CoV-2 in Vero E6 cells	[71]	
PDL	— Vero E6 cells	Suppresses replication of SARS-CoV-2 in Vero E6 cells	Suppresses replication of SARS-CoV-2 in hACE2 transgenic mice; suppresses inflammatory response by inhibiting expression of IL-10 and TNF-α	[81]	
QFPD	NF-κB/MAPK Huh-7 cells	Suppresses inflammatory response by inhibiting the production of proinflammatory cytokines	Inhibits the expression of ACE2 and viral replication	[4]	
Production of cytokines and chemokines	RAW264.7 cells	Suppresses production of proinflammatory cytokines and chemokines, such as IL-6, CCL-2, and TNF-α, and induces the expression of IL-10		[69]	
Blood-activating and stasis-dissolving drug	Curcumin (Curcuma Longa L., Curcuma phaeocaulis Val.) (Jiang Huang, E Zhu)	SARS-CoV-2 protease, spike glycoprotein-RBD, and PD-ACE2	Inhibits the expression of ACE2 and viral replication	[54,55,128]	
— — Inhibits the expression of ACE2 and viral replication	— —	— —			
Emodin (Rheum officinale Baill.) (Da Huang)	Vero cells	Suppresses viral replication and changes the structure of the surface protein in viruses, thereby inhibiting viral entry	Suppresses viral replication and changes the structure of the surface protein in viruses, thereby inhibiting viral entry	[54]	
Differential differentiation of Treg cells	CLP-induced acute lung injury in mouse	Controls inflammation in CLP-induced acute lung injury		[108]	
Isoforskolin (Sparganium stoloniferum Buch.-Ham.) (San Leng)	— LPS-induced acute lung injury in mice and rats	Suppresses LPS-induced acute lung injury and decreases the expression of TNF-α, IL-6, IL-8 and IL-1β		[99]	
Tanshinone IIA (Salvia miltiorrhiza Bge.) (Dan Shen)	MIF and NF-κB LPS-induced lung injury in mice	Protects against LPS-induced lung injury in mice		[112]	
— —	— —	The active ingredients of XBJ regulate different genes, act on different pathways, and synergistically produce anti-inflammatory and immune regulatory effects		[132]	
Crocin (Crocus sativus L.) (Zang Hong Hua), Digoxigenin (Nerium oleander L.) (Jia Zhu Tao), and β-eudesmol (Laurus nobilis, Commiphora myrrha Engl.) (Yue Gui, Mo Yao)	— —	Suppresses the replication of SARS-CoV-2 by inhibiting the main protease of SARS-CoV-2		[51]	
Purging drug	Emodin (Rheum officinale Baill.) (Da Huang)	SARS-CoV-2 S protein Vero E6 cells infected with protein-pseudotyped retrovirus	Blocks the S protein and ACE2 interaction and the infectivity of S-protein-pseudotyped retrovirus to Vero E6 cells in a dose-dependent manner		[58]
Emodin (Rheum officinale Baill., Polygonum cuspidatum Sieb. et Zucc.) (Da Huang, Hu Zhang)	mTOR/HIF-1α/VEGF Nrf2/HO-1 p38 MAPK	LPS-induced acute lung injury in rat Rat with acute pancreatitis Rat with sepsis	Improves the pathological conditions and decreases the number of infiltrated inflammatory cells in LPS-induced ALI Protects rats against acute pancreatitis-associated lung injury by inhibiting NLRP3 inflammasome activation Protects lung injury in septic rats by suppressing inflammatory response	[104]	
(continued on next page)					
were from virtual screening or network pharmacological prediction. It is thus urgent and necessary to provide direct experimental evidence of the targets or mechanisms of TCM in treating COVID-19. Second, although some experimental evidence was found showing that TCM affects immune system modification and the anti-inflammatory response and inhibits lung injury, the experimental models in vivo and in vitro were insufficient based on SARS-CoV-2 infection. Although diseases may share similar pathological stages or processes with COVID-19, more experiments directly related to COVID-19 infection are strongly warranted.

Acknowledgments

This work was supported by the National Key Research and Development Project of China (2020YFA0708004 and 2020YFA0708000); the Tianjin Natural Science Fund for Distinguished Young Scholars (20JCQJCC0007); and the International Cooperation Study on the Mechanism of Xuanfei Baidu Decoction Against COVID-19 Pneumonia (2021YFE0200300).

Compliance with ethics guidelines

Lin Li, Yuzheng Wu, Jiabao Wang, Huimin Yan, Jia Lu, Yu Wang, Boli Zhang, Junhua Zhang, Jian Yang, Xiaoying Wang, Min Zhang, Yue Li, Lin Miao, and Han Zhang declare that they have no conflict of interest or financial conflicts to disclose.

References

[1] Wei PF. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7). Chin Med J 2020;133(9):1087–95.
[2] Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Edwards KM, et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19. Clin Infect Dis 2020;ciaa478.
[3] Zhou L, Wang XN, Liu XH, Fei X, Liu L, Liu ZL, et al. Case report of Xuanfei Baidu decoction for curing severe cases of COVID-2019. Tianjin J Tradit Chin Med 2021;81:153367.
[4] Wang Y, Lu C, Li H, Qi W, Ruan L, Bian Y, et al. Efficacy and safety assessment of severe COVID-19 patients with Chinese medicine: a retrospective case series study at early stage of the COVID-19 epidemic in Wuhan. China. J Ethnopharmacol 2021;277:113888.
[5] Ma Q, Qiu M, Zhou H, Chen J, Yang X, Deng Z, et al. The study on the treatment of Xuebijing injection (XBJ) in adults with severe or critical coronavirus disease 2019 and the inhibitory effect of XBJ against SARS-CoV-2. Pharmacol Res 2020;160:105073.
Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, et al. Dipeptidyl
Reinke LM, Spiegel M, Plegge T, Hartleib A, Nehlmeier I, Gierer S, et al.
Pan HD, Yao XJ, Wang WY, Lau HY, Liu L. Network pharmacological approach
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients
Li Y, Zhou W, Yang Li, You R. Physiological and pathological regulation of
Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, et al. Cytokine
Ho T, Wu S, Chen J, Li C, Hsiang C. Emodin blocks the SARS coronavirus spike
Wei TZ, Wang H, Wu XQ, Lu Y, Guan SH, Dong FQ, et al.
Gong S. Changes of the temporal-spatial distribution of epidemic disasters in
Zhu YW, Yan XF, Ye TJ, Hu J, Wang XL, Qiu FJ, et al. Analyzing the potential
Tao Q, Du J, Li X, Zeng J, Tan B, Xu J, et al. Network pharmacology and
molecular docking analysis on molecular targets and mechanisms of Huashi
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on
the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020;14(2):185–92.
Li Y, Zhou W, Yang Li, You R. Physiological and pathological regulation of
ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020;157:104833.
jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020;12(4):372.
Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al.
Rodríguez-Morales AJ, MacGregor K, Kanagarajah S, Patel D, Schlagenhauf P.
Nebigil CG, Moog C, Vagner S, Benkirane-Jessel N, Smith DR, Désaubry L.
Ren Y, Yin ZH, Dai JX, Yang Z, Ye BB, Ma YS, et al. Evidence-based
complementary and alternative medicine exploring active components and
mechanism of Jinhua Qinggan granules in treatment of COVID-19 based on virus–host interaction. Nat Prod Commun 2020;15(9):1934578X2094721.
Zhang Y, Yao Y, Yang Y, Wu H. Investigation of anti-SARS, MERS, and COVID-19
effect of Jinhua Qinggan granules based on a network pharmacology and
molecular docking approach. Nat Prod Commun 2021;15(5):1934578X2110206.
Drexler JF, Grolo-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al.
Genomic characterization of severe acute respiratory syndrome-related coronavirus in Europe: genetic classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 2010;84(21):11336–49.
Khaerunnisa S, Amininah NS, Kristianti AN, Kuswiringi S, Wungka CDK, Soejipjoyo S, et al. Human Isolation and identification of a flavonoid compound and in vivo lipoprotein lowering properties of Imperata cylindrica. Biomed Rep 2020;13(5):38.
Emmözki SK, Rajà K, Sebastian I, Joseph J. Androgreniphile as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn 2021;39(9):99502.
Chen S, Zhou Z. On the strategy and therapy of TCM diagnosis and treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Mol Divers 2021;25(3):1889–904.
Tian S, Xiong Y, Liu H, Niu Li, Guo J, Liao M, et al. Pathological study of the
COVID-19 clinical case of a 92-year-old Chinese woman. J Clin Mater Med 2020;45(10):2249–56. Chinese.
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of
natural killer cells in COVID-19 patients with respiratory failure. J Immunol Res 2020;2020:9725863.
Mohd HA, Memish ZA, Alfaraj SH, McClish D, Altuwaijri T, Alanazi MS, et al.
Drexler JF, Grolo-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al.
Genomic characterization of severe acute respiratory syndrome-related coronavirus in Europe: genetic classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 2010;84(21):11336–49.
Khaerunnisa S, Amininah NS, Kristianti AN, Kuswiringi S, Wungka CDK, Soejipjoyo S, et al. Human Isolation and identification of a flavonoid compound and in vivo lipoprotein lowering properties of Imperata cylindrica. Biomed Rep 2020;13(5):38.
Emmözki SK, Rajà K, Sebastian I, Joseph J. Androgreniphile as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn 2021;39(9):99502.
Chen S, Zhou Z. On the strategy and therapy of TCM diagnosis and treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Mol Divers 2021;25(3):1889–904.
Tian S, Xiong Y, Liu H, Niu Li, Guo J, Liao M, et al. Pathological study of the
COVID-19 clinical case of a 92-year-old Chinese woman. J Clin Mater Med 2020;45(10):2249–56. Chinese.
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of
natural killer cells in COVID-19 patients with respiratory failure. J Immunol Res 2020;2020:9725863.
Mohd HA, Memish ZA, Alfaraj SH, McClish D, Altuwaijri T, Alanazi MS, et al.
Drexler JF, Grolo-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al.
Genomic characterization of severe acute respiratory syndrome-related coronavirus in Europe: genetic classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 2010;84(21):11336–49.
Khaerunnisa S, Amininah NS, Kristianti AN, Kuswiringi S, Wungka CDK, Soejipjoyo S, et al. Human Isolation and identification of a flavonoid compound and in vivo lipoprotein lowering properties of Imperata cylindrica. Biomed Rep 2020;13(5):38.
Emmözki SK, Rajà K, Sebastian I, Joseph J. Androgreniphile as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn 2021;39(9):99502.
Chen S, Zhou Z. On the strategy and therapy of TCM diagnosis and treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Mol Divers 2021;25(3):1889–904.
Tian S, Xiong Y, Liu H, Niu Li, Guo J, Liao M, et al. Pathological study of the
COVID-19 clinical case of a 92-year-old Chinese woman. J Clin Mater Med 2020;45(10):2249–56. Chinese.
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of
natural killer cells in COVID-19 patients with respiratory failure. J Immunol Res 2020;2020:9725863.
Mohd HA, Memish ZA, Alfaraj SH, McClish D, Altuwaijri T, Alanazi MS, et al.
Drexler JF, Grolo-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al.
Genomic characterization of severe acute respiratory syndrome-related coronavirus in Europe: genetic classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 2010;84(21):11336–49.
Khaerunnisa S, Amininah NS, Kristianti AN, Kuswiringi S, Wungka CDK, Soejipjoyo S, et al. Human Isolation and identification of a flavonoid compound and in vivo lipoprotein lowering properties of Imperata cylindrica. Biomed Rep 2020;13(5):38.
Emmözki SK, Rajà K, Sebastian I, Joseph J. Androgreniphile as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn 2021;39(9):99502.
Chen S, Zhou Z. On the strategy and therapy of TCM diagnosis and treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Mol Divers 2021;25(3):1889–904.
Tian S, Xiong Y, Liu H, Niu Li, Guo J, Liao M, et al. Pathological study of the
COVID-19 clinical case of a 92-year-old Chinese woman. J Clin Mater Med 2020;45(10):2249–56. Chinese.
Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of
natural killer cells in COVID-19 patients with respiratory failure. J Immunol Res 2020;2020:9725863.
Mohd HA, Memish ZA, Alfaraj SH, McClish D, Altuwaijri T, Alanazi MS, et al.
Drexler JF, Grolo-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al.
Genomic characterization of severe acute respiratory syndrome-related coronavirus in Europe: genetic classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 2010;84(21):11336–49.
Khaerunnisa S, Amininah NS, Kristianti AN, Kuswiringi S, Wungka CDK, Soejipjoyo S, et al. Human Isolation and identification of a flavonoid compound and in vivo lipoprotein lowering properties of Imperata cylindrica. Biomed Rep 2020;13(5):38.
Emmözki SK, Rajà K, Sebastian I, Joseph J. Androgreniphile as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn 2021;39(9):99502.
Liu Q, Ci X, Wen Z, Peng L. Diosmetin alleviates lipopolysaccharide-induced COVID-19 through activating the Nrf2 pathway and inhibiting the inhibition of NF-κB. Eur Rev Med Pharmacol Sci 2020;43(5):1913–24

Zheng S, Baak JP, Li S, Xiao W, Ren H, Yang H, et al. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lianhuaqingwen capsule exerts anti-inflammation activity through the inhibition of viral propagation and impacts immune function. BMC Complement Altern Med 2017;17(1):130.

Zheng Y, Liang L, Ren C, Zhou B, Chen Q, et al. The Chinese prescription Lianhuaquangwen capsule exerts anti-inflammation activity against novel coronavirus (SARS-CoV-2). Pharm Res 2020;156:104761.

Ma X, Pan W, Li J, Xie Y, et al. Lien Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. Pharm Res 2020;156:104850.

Pang WT, Jin XY, Pang B, Yang FW, Liu H, Li CQ, et al. Analysis on pattern integration network pharmacological approaches to investigate the potential mechanism of Respiratory Detox Shot, a traditional Chinese medicine, in treating COVID-19. Eur Rev Med Pharmacol Sci 2020;24(11):3035–44.

Liu W, Ge GB, Wang YL, Huang K, Chen JM, Wang CH, et al. Chemical constituent and docking study of Qingfu Paidu decoction in mice using UHPLC-Q-Orbitrap-MS technology. China J Clin Mater 2020;45(10):3305–44.

Liu J, Tian S, Lu D, Yang J, Zeng H, Zhang F, et al. Systems pharmacological study illustrates the immune regulation, anti-infection, and anti-inflammatory activity and metabolic programming. Biomakher Pharmother 2020;129:110281.

Zhao J, Tian S, Lu D, Yang J, Zeng H, et al. Systems pharmacological study illustrates the immune regulation, anti-infection, and anti-inflammatory activity and metabolic programming. Biomakher Pharmother 2020;129:110281.

Zhao J, Tian S, Lu D, Yang J, Zeng H, et al. Systems pharmacological study illustrates the immune regulation, anti-infection, and anti-inflammatory activity and metabolic programming. Biomakher Pharmother 2020;129:110281.

Zhao J, Su CF, Liu DD, Chen HI. Endotoxin-induced acute lung injury and organ dysfunction are attenuated by pentobarbital anaesthesia. Clin Exp Pharmacol Physiol 2007;34(5–6):480–7.

Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 2010;23(4):243–52.

Standford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Trans Respir Med 2016;17(1):183–91.

Yang W, Wu HY, Kuo CW, Liu SH. Nokiolin rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammatory responses. Int J Mol Sci 2020;21:10271.

Shin NR, Shin IS, Song HH, Hong JM, Kwon OK, Jeon CM, et al. Callicarpa japonica Thunb. reduces inflammatory responses: a mouse model of lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 2017;51:1174–80.

Koksel O, Ozdulger A, Tamer L, Cinel L, Ercil M, Degirmenci U, et al. Effects of Lonicera japonica Thunb. on the hemodynamic system and the liver and kidney functions in rats. J Clin Exp Med 2017;17(1):130.

Ou Y, Lin Y, Li J, Li J, et al. L. L. Huang, X. Q. Wang, and J. Li. Biomed Pharmacother 2020;129:110281.

Liu J, Su CF, Liu DD, Chen HI. Endotoxin-induced acute lung injury and organ dysfunction are attenuated by pentobarbital anaesthesia. Clin Exp Pharmacol Physiol 2007;34(5–6):480–7.

Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 2010;23(4):243–52.

Standford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Trans Respir Med 2016;17(1):183–91.

Yang W, Wu HY, Kuo CW, Liu SH. Nokiolin rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammatory responses. Int J Mol Sci 2020;21:10271.

Shin NR, Shin IS, Song HH, Hong JM, Kwon OK, Jeon CM, et al. Callicarpa japonica Thunb. reduces inflammatory responses: a mouse model of lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 2017;51:1174–80.
Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol 2020;164:331–43.

Chen RR, Li YJ, Chen JJ, Lu CL. A review for natural polysaccharides with anti-pulmonary fibrosis properties, which may benefit to patients infected by 2019-nCoV. Carbohydr Polym 2020;247:116740.

Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018;9(2):e00221-e18.

Elibyk AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 2020;248:117477.

Wang Y, Fan G, Salam A, Horby P, Hayden FG, Chen C, et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically Ill patients with influenza virus infection. J Infect Dis 2020;221(10):1688–98.

Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect 2020;53(3):436–43.

Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 2020;55(5):105954.

Jin X, Pang B, Zhang J, Liu Q, Yang Z, Feng J, et al. Core outcome set for clinical trials on coronavirus disease 2019 (COS-COVID). Engineering 2020;6(10):1147–52.

Zhang F, Huang J, Liu W, Wang CR, Liu YF, Tu DZ, et al. Inhibition of drug-metabolizing enzymes by Qingfei Paidu decoction: implication of herb-drug interactions in COVID-19 pharmacotherapy. Food Chem Toxicol 2021;149:111998.

Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytotherapy Research 2021;85:153364.