Differences in the time course of learning for hard compared to easy training

Adrian Garcia, Shu-Guang Kuai and Zoe Kourtzi

INTRODUCTION

Practice is known to improve a wide range of visual perceptual skills from low-level feature discrimination (e.g., orientation) to high-level shape processing and object recognition (Alais and Burr, 2004; Shiu and Pashler, 1992; Fahle and Edelman, 1998; Aberg and Herzog, 2012). However, little is known about the processes that underlie learning based on hard vs. easy training. Here we investigate the time course of learning when observers were asked to discriminate similar global form patterns after hard vs. easy training. Hard training required observers to discriminate highly similar global forms, while easy training to judge clearly discriminable patterns. Our results demonstrate differences in learning and transfer performance for hard compared to easy training. Hard training resulted in stronger behavioral improvement than easy training. Further, for hard training, performance improved during single sessions, while for easy training performance improved across but not within sessions. These findings suggest that training with difficult stimuli may result in online learning of specific stimulus features that are similar between the training and test stimuli, while training with easy stimuli involves transfer of learning from highly to less discriminable stimuli that may require longer periods of consolidation.

Keywords: perceptual learning, form perception, psychophysics, Glass patterns
the discrimination of specific features that are similar between training and test (i.e., observers are asked to discriminate highly similar stimuli in both the training and test). However, training on an easy task requires transfer of learning, as stimulus features differ between the stimuli used for training (i.e., highly discriminable) and test (i.e., highly similar). As a result, behavioral improvement is lower following easy than hard training and may require consolidation across sessions.

MATERIALS AND METHODS

PARTICIPANTS

Thirty-six observers (16 male, 20 female, mean age 24 ± 6) participated in the four experiments. None of the participants had prior experience with the stimuli or the study protocol. All participants had normal or corrected-to-normal vision, gave written informed consent and were paid for their participation. The study was approved by the University of Birmingham ethics committee.

STIMULI

Glass pattern stimuli (Glass, 1969) were used, as previously described (Li et al., 2009). In particular, stimuli comprised of white dot pairs (i.e., dipoles) displayed within a square aperture (7.7′ × 7.7′) on a black background (100% contrast). Each dipole comprised two (2.3 × 2.3 arc min²) dots with 16.2 arc minutes separation between them. These parameters were chosen based on pilot psychophysical studies and in accordance with previous work (Wilson and Wilkinson, 1998) showing that coherent form patterns are reliably perceived for these parameters.

We generated concentric and radial Glass patterns by placing dipoles tangentially (concentric stimuli) or orthogonally (radial stimuli) to the circumference of a circle centered on the fixation dot (Figure 1). Further, we generated intermediate patterns between these two Glass pattern types by parametrically varying the spiral angle of the pattern from 0˚ (radial pattern) to 90˚ (concentric pattern). For each dot dipole, the spiral angle was defined as the angle between the dot dipole orientation and the radius from the center of the dipole to the center of the stimulus aperture. To ensure that participants learnt to discriminate global shapes rather than local features, we jittered randomly the spiral angle (±2.5˚) of each presented stimulus. In addition, we generated a new pattern for each stimulus presented in a trial, resulting in stimuli that were locally jittered in their position. All stimuli were generated using Psychtoolbox 3 software in conjunction with Matlab and were presented on a 21" CRT monitor (1280 × 1024, 85 Hz frame rate). Experiments were conducted in a dark room and the viewing distance was kept constant at 47 cm.

PROCEDURE

Four experiments were conducted. In Experiment 1, 16 participants were randomly assigned to an easy or a hard training group. In the hard training group, observers were trained to discriminate Glass patterns with spiral angles of 35˚ (radial) and 55˚ (concentric). In the easy training group, observers were trained to discriminate Glass patterns with spiral angles of 10˚ and 80˚. Participants in both the hard and easy training groups were tested with spiral angles of 35˚ and 55˚. Observers participated in three sessions conducted on consecutive days. Each session comprised four test blocks without feedback and three training blocks with auditory error feedback. The test and training blocks were interleaved during the session; the session started and ended with a test block. This design allowed us to characterize the time course of learning during each session rather than measuring performance only before and after training. Each block consisted of 200 trials. In each trial, a stimulus image was presented for 200 ms and participants were asked to judge whether the stimulus was radial (left mouse click) or concentric (right mouse click). To avoid participant fatigue, participants took breaks of a minimum of 60 s after each 100 trials with a longer break of 180 s half way through the session.

Experiment 2 tested whether lower performance after easy compared to hard training was due to the limited number of training sessions. Eight participants were trained for six to eight consecutive sessions. The same protocol and stimulus parameters were followed as in Experiment 1. For each individual participant, training stopped after performance had saturated.

Experiment 3 (n = 5) controlled for the possibility that performance differences between the hard and easy training groups in Experiment 1 were due to the fact that participants in the hard training group were trained and tested with stimuli presented at the same spiral angle (35˚ vs. 55˚). Participants were trained with stimuli presented at spiral angles of 40˚ vs. 50˚ and tested with stimuli presented at spiral angles 35˚ vs. 55˚. That is, the training stimuli were more difficult to discriminate than the test stimuli.
Experiment 4 \((n = 7)\), controlled for the possibility that improved performance could result from learning during the test blocks rather than from supervised training. Participants were tested on stimuli presented at spiral angle of 35˚ vs. 55˚ (four test blocks as in Experiment 1) but were not trained with feedback on any additional blocks.

RESULTS

EXPERIMENTS 1 AND 2: BEHAVIORAL IMPROVEMENT FOLLOWING HARD VS. EASY TRAINING

In Experiment 1, we compared learning between hard training (i.e., training to discriminate patterns at spiral angles of 35˚ vs. 55˚) and easy training (i.e., training to discriminate patterns at spiral angles of 10˚ vs. 80˚). Analysis of the training blocks (Figure 2A) showed that performance for the hard task improved significantly across training sessions \(F(1,28,8.1) = 23.8, p < 0.01\), Greenhouse–Geisser corrected, while performance for the easy task was at ceiling already for the first session and did not improve significantly across sessions \(F(1,17,7.5) = 3.6, p = 0.09\), Greenhouse–Geisser corrected. These results confirmed that discriminating patterns at spiral angles of 10˚ vs. 80˚ constitutes an easy task, while discriminating patterns at spiral angles of 35˚ vs. 55˚ constitutes a hard task that requires additional training. Further, analysis of the test blocks (Figure 2B) showed that for both groups (easy vs. hard training group), participants improved significantly in discriminating between similar Glass patterns presented at spiral angles of 35˚ vs. 55˚ (test blocks) after three sessions of training. In particular, a repeated-measures ANOVA showed a significant main effect of Session [Pre- vs. Post-training session, \(F(1,14) = 76.2, p < 0.01\)]. However, behavioral improvement was stronger following hard than easy training as shown by a significant interaction \(F(1,14) = 9.8, p < 0.01\) between-session (Pre- vs. Post-training) and Training task (Easy vs. Hard). No significant differences \(|t(14)| < 1, p = 0.8\) in performance were observed before training (i.e., first test block), suggesting that differences in post-training performance between easy and hard training could not be due to differences in baseline performance. These findings suggest that for the same amount of training, on a hard discrimination results in better performance than training on an easy discrimination.

To test whether the lower improvement for easy compared to hard training was due to the limited amount of training (three sessions), we trained participants \((n = 8)\) on the easy training task for six to eight sessions (Experiment 2). Participants improved across sessions \(F(2,18,4) = 16.2, p < 0.01\), Greenhouse–Geisser corrected] but performance saturated on average after the fifth session (Figure 2C). Comparing post-training performance for shorter (Experiment 1) and longer (Experiment 2) easy training protocols did not show any significant differences \(|t(14)| = 1.11, p = 0.28\). Further, performance after longer easy training was significantly weaker than performance for hard training \(|t(14)| = 2.8, p = 0.02\), suggesting possible limits in behavioral improvement for easy training.

LEARNING TIME COURSE FOR HARD VS. EASY TRAINING

We investigated the time course of learning for hard vs. easy training by plotting the participants’ performance across test blocks in Experiment 1 (Figures 3A,C). We observed different time courses for the two training procedures. For hard training, discrimination performance increased within each of the first two sessions before reaching a plateau during the last session. In contrast, for the easy-training condition, there was no significant improvement within a session. However, performance increased between training sessions.

To quantify these observations, we defined within- and between-session learning indices. The within-session learning index was calculated by subtracting mean performance in the first test block from mean performance in the last test block in each session. The between-session learning index was defined as the mean performance difference between the last block in the preceding session and first block in the subsequent session. We calculated the within- and between-session learning indices for the first two sessions, as there was no subsequent session to calculate this index for the third session (Figures 3B,D). A repeated-measures ANOVA showed a significant interaction \(F(1,14) = 10, p < 0.01\) between learning index (Within vs. Between) and training task (Easy vs. Hard), consistent with stronger within-session learning for hard training \(F(1,14) = 10.7, p < 0.01\), while stronger between-session learning for easy training \(F(1,14) = 7.7, p = 0.02\).

EXPERIMENT 3: HARD TRAINING WITH DIFFERENT STIMULI THAN TESTING

In Experiment 3, we trained and tested participants in a hard discrimination but with stimuli presented at different spiral angles. The aim of this experiment was to control for the possibility that performance differences between hard and easy training (Experiment 1) were due to the fact that participants in the hard training group were trained and tested with stimuli presented at the same spiral angle (35˚ vs. 55˚) while participants in the easy training group trained and tested with stimuli presented at different spiral angles. In particular, we tested participants with stimuli presented at spiral angles of 40˚ vs. 50˚ and tested with stimuli presented at spiral angles of 35˚ vs. 55˚. We observed a similar pattern of results (Figure 4) as for hard training in Experiment 1 (Figure 3); that is, behavioral performance improved within each session (mainly sessions 1 and 2, but had saturated by session 3). In particular, a repeated-measures ANOVA showed no significant interaction \(F(1,11) = 2.6, p = 0.14\) between Learning Index (Within- vs. Between-session) and Experiment (Experiment 1 vs. 3). These results suggest that differences in the time course of learning for easy vs. hard training are due to differences in the difficulty of the training rather than simply the stimuli used for these two training protocols.

EXPERIMENT 4: LEARNING WITHOUT FEEDBACK

To control for the possibility that improved performance could result from exposure to the test stimuli rather than training with feedback, we tested participants on the same number of test blocks \((n = 4)\) as in Experiment 1 (i.e., participants were presented with stimuli at spiral angle of 35˚ vs. 55˚ without feedback) but did not expose them to any training blocks with feedback (Figure 5). Our results showed that observers’ performance did not improve significantly across sessions \(F(4,24) = 1.8, p = 0.17\) and post-training
FIGURE 2 | Experiments 1 and 2: mean behavioral performance across participants for (A) training blocks in Experiment 1, (B) test blocks in Experiment 1, (C) test blocks in Experiment 2. Pre-training performance is defined as the mean performance during the first block of testing (before any training with feedback) in the first session. Post-training performance is defined as the mean performance of the last test block in the last session. Mean performance for sessions 1, 2, and 3 excludes the first block in the first session and last block in the third session. Error bars indicate the standard error of the mean across participants.
FIGURE 3 | Experiment 1: time course of learning. Mean behavioral performance across participants per block for (A) hard and (C) easy training. We calculated within- and between-session learning indices (B) hard and (D) easy training. The within session index was calculated by subtracting the mean performance in the first test block from the last test block in a session. The between-session index was calculated as the mean performance difference between the last test block in the preceding session and first test block in the subsequent session. Error bars indicate the standard error of the mean across participants.

FIGURE 4 | Experiment 3. Mean performance across participants per (A) session and (B) block when participants were trained with stimuli at spiral angles of 40˚ vs. 50˚ that differed from the test stimuli (35˚ vs. 55˚). Error bars indicate the standard error of the mean across participants.
performance was significantly lower without (Experiment 4) than with (Experiment 1) training \(t(13) = 5.2, p < 0.01\). These results suggest that training with feedback rather than mere exposure to the stimuli is required for improvement in the discrimination of similar global form patterns.

DISCUSSION

Our results demonstrate differences in visual shape learning and transfer performance depending on the difficulty of the training task. Training on a difficult task supports continuous and strong improvement in discriminating specific stimulus features that are similar between training and test. However, in the case of easy training, visual features differ between the stimuli used for training (i.e., highly discriminable) and test (i.e., highly similar) resulting in lower behavioral improvement that may require consolidation across sessions.

Our findings are consistent with previous work showing that introducing easy trials at the beginning of training facilitates subsequent training at more difficult conditions (Rubin et al., 1997; Liu, 1999; Liu and Weinshall, 2000). Training on an easy discrimination provides information about the global stimulus structure that may facilitate perceptual judgments by optimizing decision templates; that is, enhancing the behavioral relevance of features that are critical for the discrimination of global forms (Ahissar and Hochstein, 2004; Ahissar et al., 2009). Interestingly, easy training has been suggested to generalize more than hard training to untrained stimulus features (e.g., orientation) or visual field locations (Ahissar and Hochstein, 1996). These learning transfer effects suggest that easy training may alter higher-level processes related to the extraction and optimization of decision templates or rule-based learning (Zhang et al., 2010) for efficient perceptual judgments.

Computational models of perceptual learning offer interesting suggestions regarding the implementation of hard vs. easy training in the human brain. Perceptual learning is thought to occur by reweighting decision networks (Dosher and Lu, 1998, 1999; Adini and Sagi, 2001). It is possible that the optimal weights for the hard training and the hard test (i.e., discrimination of highly similar shapes) are more similar than the weights for the easy training and the hard transfer test. As a result, learning and transfer of different weight structures could have different time courses for easy vs. hard training. In particular, for hard training, local network weights could be adjusted through feedback based on specific parameters that match between training and test trials, as the stimulus features are similar between training and test stimuli. This weight adjustment may occur in real-time and affect local neural network outputs across trials, resulting in continuous performance improvement within single sessions (Petrov et al., 2005). In contrast, for easy training, stimulus features differ between training and test. As a result, real-time reweighting of local neural networks may not be possible due to the different optimal weight structures between the easy training task and the hard transfer test. However, as the majority of trials during easy training are judged correctly, the decision network can be optimized through Hebbian learning (i.e., stimulus-response associations). The optimization process is not limited to local neural networks based on trained stimulus parameters and may require a longer time period resulting in performance improvement across rather than within sessions.

It is also possible that sleep contributes to the consolidation of decision templates resulting in enhanced performance across sessions. Consolidation during sleep has been shown to enhance perceptual learning (Karni et al., 1994; Mednick et al., 2003). In particular, sleep has been suggested to be important for storing new information into long-term memory and strengthening of synaptic connections (Mednick et al., 2002), modulating learning specificity (Yotsumoto et al., 2009), and preventing disruption from training on other stimulus parameters (Seitz et al., 2005). Although in our study we did not manipulate or monitor the participants’ sleep patterns, it is possible that consolidation during sleep is more important for easy training that involves Hebbian
learning of decision templates at larger scale networks than online reweighting of representations within session based on the trained stimulus features.

In sum, our results demonstrate differences in the time course of visual shape learning based on hard vs. easy training. Hard training may rely on online reweighting of shape representations based on trained features, while easy training entails transfer of learning from dissimilar to similar features and may require the optimization of decision templates or rule-based learning (Zhang et al., 2010). Understanding how the difficulty of the training task affects learning is of critical importance for the design of effective training programs that can be used in patient rehabilitation (e.g., Levi and Li, 2009). Our results show that easy training results in lower performance improvement compared to hard training. Even when participants were trained for at least double the number of trials, performance improvement was lower for easy than hard training. However, recent work suggests that mixing training trials from easy and hard conditions enhances learning without feedback, while feedback is required when participants are trained only with hard conditions (Liu et al., 2012). Thus, it is possible that interactions between hard and easy training may support more effective learning with potential applications in clinical practice.

ACKNOWLEDGMENTS

This work was supported by grants to Zoe Kourtzi from the Biotechnology and Biological Sciences Research Council (D25199X, E027436), the European Community’s Seventh Framework Programme (FP7/2007–2013) under agreements 255577 and 214728, and the EPSRC funded PSIBS Doctoral Training Program.
visual perceptual learning and its specificity and transfer. *J. Neurosci.* 30, 12323–12328.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 02 November 2012; accepted: 17 February 2013; published online: 07 March 2013.

Citation: Garcia A, Kuai S-G and Kourtzi Z (2013) Differences in the time course of learning for hard compared to easy training. Front. Psychol. 4:110. doi:10.3389/fpsyg.2013.00110

This article was submitted to Frontiers in Perception Science, a specialty of Frontiers in Psychology.

Copyright © 2013 Garcia, Kuai and Kourtzi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.