Surgery on Paracompact Manifolds
by
Laurence R. Taylor

This is a \TeX'ed version of the author’s 1971 thesis from the University of California at Berkeley under the supervision of J. B. Wagoner. It has never been published, but over the years I have received a small but steady request for copies. As I am running out of copies and the quality of the remaining ones is not conducive to recopying or scanning I have decided to \TeX the manuscript while I still have some copies in my possession. The result is a hyperlinked and searchable manuscript.

I have resisted the temptation to rewrite the manuscript. It was written in some haste in the summer of 1971 and the haste shows. Forty five years of experience would certainly enable me to produce a better manuscript, but might delay appearance for another forty five years. No effort has been made to reproduce line breaks, kerning, fonts, etc. so \TeXing does produce a different looking manuscript from the original. The original has 231 pages (6 pages of front matter plus 225 pages of text), this version only has 109. (This page and the last two bibliography pages are new.) But, modulo new typing errors and minor corrections, this is a faithful copy. Footnotes are used for added material unless indicated otherwise. The one original footnote is identified as such. In a few places outright errors have been corrected, both mine and others. For historical accuracy, the symbol \textit{iff} is retained for “if and only if”.

The bibliography has been updated with some references to relevant works appearing after 1971. The last bibliography page lists some works citing this thesis.

The references to theorems, lemmas, etc. have been updated. The old scheme was truly terrible (it is explained in the introduction). It was inspired by the scheme in Spanier’s book \cite{35}. This sort of scheme made more sense in the pre–\TeX days when adding a lemma, theorem, etc. to an earlier section of the manuscript would involve locating and changing all references to subsequent lemmas, theorems, etc. With this sort of scheme there was a good chance you could slip in an additional item without having to change any current references. For example, at the end of a section you could record a result for later use. The current scheme just numbers everything consecutively, but the old number is listed in parentheses after the new one and citations include both the number and a page number.

Department of Mathematics
taylor.2@nd.edu
University of Notre Dame
https://www.nd.edu/~taylor
Notre Dame IN 46556, USA

Partially supported by the N.S.F.
Surgery on Paracompact Manifolds

Laurence R. Taylor

ABSTRACT. In this thesis we solve the problem of surgery for an arbitrary, finite dimensional, paracompact manifold. The problem of surgery is to decide whether, given a proper map \(f: M \to X \), a bundle (vector, PL–micro, or TOP–micro), \(\nu \), over \(X \), and a stable bundle map \(F: \nu_M \to \nu \) over \(f \) (\(\nu_M \) is the normal bundle of \(M \), so we must assume \(M \) is respectively a differentiable, a PL, or a topological, finite dimensional, paracompact manifold), we can find a cobordism \(W \) with \(\partial W = M \sqcup N \), a proper map \(g: W \to X \) with \(g|_M = f \), a stable bundle map \(G: \nu_W \to \nu \) with \(G|_{\nu_M} = F \), such that \(g|_N \) is a proper homotopy equivalence.

If this problem can be solved, we show this forces conditions on \(X \), \(\nu \) and \(f \). In particular, \(X \) must be a Poincaré duality space (Chapter 2), \(\nu \) must lift the Spivak normal fibration of \(X \), and \(f \) must be degree 1.

If \(X \), \(\nu \) and \(f \) satisfy these conditions, there is a well–defined obstruction to solving this problem if \(m \), the dimension of \(M \), is at least five (Theorem 3.2.1 p. 105). This obstruction lies in a naturally defined group, \(L_m(X, w) \), and every element of this group can be realized, in a specific fashion, as the obstruction to a surgery problem, provided \(m \geq 6 \) (Theorem 3.2.4 p. 106). \(L_m(X, w) \) depends only on the system of fundamental groups of \(X \) (Theorem 3.2.3 p. 105).

Finally, we have applications for paracompact manifolds along the same lines as the compact case. Perhaps the most interesting of these is the theoretical solution of the related questions of when a Poincaré duality space has the proper homotopy type of a paracompact manifold, and if a proper homotopy equivalence between paracompact manifolds can be properly deformed to a homeomorphism, diffeomorphism, or PL–equivalence (Theorem 3.2.4 p. 106).

1 Of dimension at least 5.
Contents

INTRODUCTION 4

Chapter I. The Proper Homotopy Category and Its Functors 5
1. Introduction, elementary results, and homogamous spaces 5
2. The $\epsilon-\Delta$ construction 13
3. Proper homotopy functors and their relations 21
4. Proper cohomology, coefficients and products 35
5. Chain complexes and simple homotopy type 41
6. The realization of chain complexes 62

Chapter II. Poincaré Duality Spaces 70
1. Introduction, definitions and elementary properties 70
2. The Spivak normal fibration 73
3. The normal form for Poincaré duality spaces 87
Appendix. The cwation of a spherical fibration 90

Chapter III. The Geometric Surgery Groups 98
1. The fundamental theorems of surgery 98
2. Paracompact surgery–patterns of application 104

Bibliography 109
INTRODUCTION

The object of this work is to give an adequate theory of surgery for paracompact manifolds and proper maps. By adequate we mean first that it should contain the theory of surgery for compact manifolds. Secondly, the theory should be general enough to permit extensions of the theoretical results of compact surgery.

These objectives are largely realized. We obtain surgery groups which characterize the problem in dimensions greater than or equal to five. These groups depend only on the proper 2–type of the problem. Using these groups one can classify all paracompact manifolds of a given proper, simple homotopy type (see \[33\] or \[10\] for a definition of simple homotopy type).

The first chapter constitutes the chief technical results of this work. In \[33\], Siebenmann gives a “geometric” characterization of proper homotopy equivalence (Proposition IV). This characterization was also discovered by Farrell–Wagoner \[9\] from whom I learned it.

In section 2 we develop an algebraic process to handle this characterization. In section 3 we apply this process to construct groups which are the analogue of the homotopy and homology groups. Thus we get actual groups measuring by how much a map fails to be a proper homotopy equivalence. These groups also satisfy a version of the Hurewicz and Namioka theorems, so one can often use these homology groups, which satisfy a version of excision, Mayer–Vietoris, etc.

In section 4 we construct a cohomology theory for our theory. We get various products for this theory. Section 5 is devoted to an analysis of simple homotopy type along the lines set out by Milnor in \[23\]. Section 6 is devoted to constructing locally compact CW complexes with a given chain complex (see Wall \[38\] for a treatment of the compact case of this problem).

Chapter 2 is devoted to an analysis of Poincaré duality for paracompact manifolds and its generalization to arbitrary locally compact, finite dimensional CW complexes.

In Chapter 3 the actual surgeries are performed. It has been observed by several people (especially Quinn \[29\] and \[30\]) that all the surgery one needs to be able to do is the surgery for a pair \((X, \partial X)\) for which \(\partial X \subseteq X\) is a proper 1–equivalence (in the compact case this means the inclusion induces isomorphisms on components and on \(\pi_1\)). We do this in the first section. In the second section, we sketch the general set up and applications of the theory of paracompact surgery.

A word or two is in order here about internal referencing. A reference reads from right to left, so that Corollary 3.4.1.5 is the fifth corollary to the first theorem of section 4 in chapter 3. If the reference is made from chapter 3 it would be Corollary 4.1.5, and if from section 4, Corollary 1.5. Theorem (Proposition, Lemma) 3.4.6 is the sixth theorem of section 4 of chapter 3.

Perhaps we should also remark that our use of the term \(n\)–ad agrees with the use of the term \(n\)–ad in Wall \[41\] (see especially Chapter 0). For an \(n\)–ad, \(K, \partial_i K\) denotes the \((n–1)\)–ad whose total space is the \(i\) th face of \(K\) and with the \((n–1)\)–ad structure induced by intersecting the other faces of \(K\). \(\delta_i K\) is the \((n–1)\)–ad obtained by deleting the \(i\) th face. \(s_n K\) denotes the \((n+1)\)–ad obtained by making \(K\) the \((n+1)\) st face (it can also be regarded as the \((n+1)\)–ad \(K \times I\), where \(I\) has the usual pair structure).

Lastly, several acknowledgements are in order. This thesis was written under the direction of J. Wagoner, to whom I am indebted for many suggestions during the preparation of this work. I am greatly indebted to him and to T. Farrell for sharing their results and intuition on proper homotopy with me at the very beginning. Thanks are also due to G. Cooke for many helpful discussions. Many other friends likewise deserve thanks for their help. The National Science Foundation should also be thanked for its support during my graduate career.
CHAPTER I

The Proper Homotopy Category and Its Functors

1. Introduction, elementary results, and homogamous spaces

The purpose of this chapter is to recall for the reader some of the basic results we will need and to describe a “good” category in which to do proper homotopy theory.

The notion of a proper map is clearly essential. We define a map to be proper iff the inverse image of every closed compact set is contained in a closed compact set. We note that this definition is also found in Bredon [2], page 56.

With this definition of a proper map we immediately have the notions of proper homotopy, proper homotopy equivalence, etc., and we can define the category of all topological spaces and proper maps. Classically there are several functors which apply to this situation. As examples we have sheaf cohomology with compact supports and Borel–Moore homology with closed supports (see Bredon [2]).

We prefer to use singular theory whenever possible. Here too we have cohomology with compact supports and homology with locally finite chains. Most of the results concerning such groups are scattered (or non–existent) in the literature. As a partial remedy for this situation we will write out the definitions of these groups and at least indicate the results we need.

Definition. A collection of subsets of X is said to be locally finite if every closed, compact subset of X intersects only finitely many elements of this collection.

Definition. $S_{q}^{\ell.f.}(X; \Gamma)$, where Γ is a local system of R–modules on X (see Spanier [35] pages 58; 281–283), is defined to be the R–module which is the set of all formal sums $\sum \alpha_{\sigma}\sigma$, where σ is a singular q–simplex of X, and $\alpha_{\sigma} \in \Gamma(\sigma(V_{0}))$ is zero except for a set of σ whose images in X are locally finite.

$S_{q}(X; \Gamma)$ is the module of functions φ assigning to every singular q–simplex σ of X an element $\varphi(\sigma) \in \Gamma(\sigma(V_{0}))$.

For a family of supports ψ on X (see Bredon [2] page 15 for a definition) let $S_{q}^{\psi}(X; \Gamma)$ denote the submodule of $S_{q}^{\ell.f.}(X; \Gamma)$ such that the union of all the images of the σ occurring with non–zero coefficient in a chain lies in some element of ψ. $S_{q}^{\psi}(X; \Gamma)$ consists of the submodule of all functions φ for which there exists an element $c \in \phi$ such that if $\text{Image} \, \sigma \cap c = \emptyset$, $\varphi(\sigma) = 0$.

These modules become chain complexes in the usual fashion. Note that for the family of compact supports, c, $S_{q}^{c}(X; \Gamma)$ is just the ordinary singular chains with local coefficients.

For a proper subspace $A \subseteq X$ (inclusion is a proper map) we get relative chain groups $S_{q}^{\psi}(X, A; \Gamma)$ and $S_{q}^{\psi}(X, A; \Gamma)$. Actually proper subspace is sometimes stronger than we need; i.e. $S_{q}(X, A; \Gamma)$ and $S_{q}^{c}(X, A; \Gamma)$ are defined for any $A \subseteq X$. There is a similar definition for the chain groups of a (proper) n–ad.

The homology of $S_{q}^{\psi}(X, A; \Gamma)$ will be denoted $H_{q}^{\psi}(X, A; \Gamma)$ except when $\psi = c$ when we just write $H_{q}(X, A; \Gamma)$. The homology of $S_{q}^{\psi}(X, A; \Gamma)$ will be written $H_{q}^{\psi}(X, A; \Gamma)$. 5
Now $S^q(X, A; \Gamma) \subseteq S^q(X, A; \Gamma)$. The quotient complex will be denoted $S^q_{\text{end}}(X, A; \Gamma)$ and its homology $H^q_{\text{end}}(X, A; \Gamma)$. We have similar definitions for proper n–ads and also for homology.

We will next set out the properties of these groups we will use. Some of the obvious properties such as naturality and long exact sequences will be omitted.

Cup products: There is a natural cup product

$$H^q(\psi : X : A_1, \ldots, A_n; \Gamma_1) \otimes H^k(Y : B_1, \ldots, B_m; \Gamma_2) \longrightarrow \chi \longrightarrow H^{q+k}(X \times Y : A_1 \times B_1, \ldots, A_n \times B_m; \Gamma_1 \otimes \Gamma_2)$$

for a proper $(m + 1)$–ad $(X : A_1, \ldots, A_n)$. It is associative and commutative in the graded sense (i.e. $a \cdot b = (-1)^{\deg a \deg b} b \cdot a$).

Since $S^q \subseteq S^q$, all this follows easily from the properties of the ordinary cup product with local coefficients once one checks that if a cochain was supported in $c \in \psi$, then its product with any other cochain is supported in c if one uses the Alexander–Whitney diagonal approximation (Spanier [35] page 250). [35]

Cross products: There are natural products

$$H^q(A : A_1, \ldots, A_n; \Gamma_1) \otimes H^k(B_1, \ldots, B_m; \Gamma_2) \longrightarrow \times \longrightarrow H^{q+k}(X \times Y : A_1 \times B_1, \ldots, A_n \times B_m; \Gamma_1 \otimes \Gamma_2)$$

and

$$H^q(A : A_1, \ldots, A_n; \Gamma_1) \otimes H^f_{\ell,f}(B_1, \ldots, B_m; \Gamma_2) \longrightarrow \times \longrightarrow H^{q+\ell}(X \times Y : A_1 \times B_1, \ldots, A_n \times B_m; \Gamma_1 \otimes \Gamma_2)$$

where $\pi^{-1}(\psi) = \{K \subseteq X \times Y \mid \pi_1(K) \in \psi\}$ and $\psi \times Y = \{K \times Y \subseteq X \times Y \mid K \in \psi\}$. These satisfy the usual properties of the cross product.

We discuss this case in some detail. Let us first define

$$\tau : S^f_{\ell,f}(X \times Y) \to \sum_{i+j=n} S^f_i(X) \bar{\otimes} S^c_j(Y)$$

where $\bar{\otimes}$ is the completed tensor product, i.e. infinite sums are allowed. If $\sigma : \Delta^a \to X \times Y$, and if π_1 and π_2 are the projections, $\tau(\sigma) = \sum_{i+j=n} \iota(i(\pi_1) \otimes (\pi_2) j)$ where $\iota()$ is the front i–face and $(\cdot)_j$ is the back j–face (see Spanier [35] page 250). This extends over all of $S^f_{\ell,f}$ and is a natural chain map.

The cohomology cross product is then defined on the chain level by $(c \times d)(\sigma) = c(i(\pi_1) \otimes d((\pi_2) j))$, where c is an i–cochain, d a j–cochain, and σ an $(i+j)$–chain. One checks it has the usual properties.

We next define $\lambda : S^f_{\ell,f}(X) \otimes S^f_{\ell,f}(Y) \to S^f_{\ell,f}(X \times Y)$ as follows. Let $h_{i,j} : \Delta^{i+j} \to \Delta^i \times \Delta^j$ be a homeomorphism such that $i(h_{i,j}) : \Delta^i \to \Delta^i \times \Delta^j$ is given by $x \mapsto (x, 0)$ and such that $(h_{i,j}) : \Delta^j \to \Delta^i \times \Delta^j$ is given by $y \mapsto (0, y)$. Define $\lambda(\sigma_X \otimes \sigma_Y) = h_{i,j} \circ (\sigma_X \times \sigma_Y)$ and extend “linearly”; i.e. $\lambda \left(\sum_\alpha \sigma_\alpha \otimes \sum_\beta \beta_\beta \sigma_\beta \right) = \sum_\alpha \beta \cdot \lambda(\sigma_\alpha \otimes \sigma_\beta)$. λ then becomes a chain map, and the homology cross product is then defined on the chain level as above. It has the usual properties.

1. I should have remarked here that the chain homotopies giving the associativity and the graded commutativity are correctly supported.

2. As long as the resulting sum is locally finite.
Slant product: There are natural products
\[
H^q_c(Y: B_1, \cdots, B_m; \Gamma_1) \otimes H^{l+f}_{q+k}(X \times Y: A_1 \times Y, \cdots, A_n \times Y, X \times B_1, \cdots, X \times B_m; \Gamma_2) \xrightarrow{\phi} H^l_{k+f}(X: A_1, \cdots, A_n; \Gamma_1 \otimes \Gamma_2)
\]
and
\[
H^q(Y: B_1, \cdots, B_m; \Gamma_1) \otimes H^{q+k}(X \times Y: A_1 \times Y, \cdots, A_n \times Y, X \times B_1, \cdots, X \times B_m; \Gamma_2) \xrightarrow{\phi} H^k(X: A_1, \cdots, A_n; \Gamma_1 \otimes \Gamma_2)
\].

The product is defined on the chain level by
\[
c|\sigma = c \sum \alpha \sigma_\alpha = \sum_{\alpha} \left(\sum_{i+j=q+k} i(\pi_1 \sigma_\alpha) \otimes \left(c((\pi_2 \sigma)_j) \otimes \alpha \right) \right)
\]
where \(c \) applied to a chain is zero if the dimensions do not agree. The slant product is natural on the chain level and has all the usual properties.

Cap product: There is a natural product
\[
H^q(\psi: X: A_1, \cdots, A_n; \Gamma_1) \otimes H^\phi_{q+k}(X: A_1, \cdots, A_n, B_1, \cdots, B_m; \Gamma_2) \xrightarrow{\cap} H^\psi_{k+\psi}(X: B_1, \cdots, B_m; \Gamma_1 \otimes \Gamma_2)
\].

It is given by \(u \cap z = u|_{d_*v} \), where \(d: X \to X \times X \) is the diagonal map. The cap product has all the usual properties. We get better support conditions for our cap product than we did for an arbitrary slant product because \(d_* \) of a chain in \(X \times X \) is “locally finite” with respect to sets of the form \(c \times X \) and \(X \times c \) for any closed, compact \(c \subseteq X \).

One of the most useful of the usual properties of the cap product is the

Browder Lemma: (3, 4)\[\[3\] Let \((X,A)\) be a proper pair \((A \text{ is a proper subspace})\), and let \(Z \in H^n_\psi(X,A; \Gamma_2)\). Then \(\partial Z \in H^n_{\psi-1}(A; \Gamma_1|_A)\) is defined. The following diagram commutes, where \(\Gamma_3 = \Gamma_1 \otimes \Gamma_2\)
\[
\begin{array}{cccc}
H^\psi_{n-1}(A; \Gamma_1|_A) & \to & H^\psi(X,A; \Gamma_1) & \to & H^\psi(X; \Gamma_1) & \to & H^\psi_\psi(A; \Gamma_1|_A) \\
\cap \cap \cap \cap \cap \cap \cap & \downarrow & \cap \cap \cap \cap \cap \cap \cap \\
H^\psi_{n-1}(A; \Gamma_1|_A) & \to & H^\psi(X; \Gamma_3) & \to & H^\psi(X,A; \Gamma_3) & \to & H^\psi_{n-1}(A; \Gamma_3|_A)
\end{array}
\]

In two cases, we also have a universal coefficient formula relating cohomology and homology. We first have the ordinary universal coefficient formula; namely
\[
0 \to \text{Ext}(H_{+1}(\cdot, \Gamma, \mathbb{Z})) \to H^*(\cdot, \text{Hom}(\Gamma, \mathbb{Z})) \to \text{Hom}(H_*(\cdot, \Gamma, \mathbb{Z})) \to 0
\]
is split exact (see Spanier [35], page 283).

We have a natural chain map
\[
\alpha: S^{l+f}_*(\cdot, \text{Hom}(\Gamma, \mathbb{Z})) \to \text{Hom}(S^*_c(\cdot, \Gamma, \mathbb{Z})
\]
given by \(\alpha(c)(\varphi) = \varphi(c) \). If the space \(X \) is HCL Bredon [2, II.9.23], shows that \(\alpha \) induces a homology isomorphism, so we get
\[
0 \to \text{Ext}(H^{l+1}_c(\cdot, \Gamma, \mathbb{Z})) \to H^{l+f}_c(\cdot, \text{Hom}(\Gamma, \mathbb{Z})) \to \text{Hom}(H^*_c(\cdot, \Gamma, \mathbb{Z})) \to 0
\]
is split exact.

\[\[3\] Best reference is I.1.5 Theorem of [45].
Write \(\overline{\Gamma} \) for \(\text{Hom}(\Gamma, \mathbb{Z}) \). Then if \(c \in H^k(__; \Gamma) \), the following diagram commutes

\[
0 \rightarrow \text{Ext}(H_{*-1}(__; \mathbb{Z}), \mathbb{Z}) \rightarrow H^*(__; \mathbb{Z}) \rightarrow \text{Hom}(H_*(__; \mathbb{Z}), \mathbb{Z}) \rightarrow 0
\]

If \(c \in H^k_\ell_\text{f}(__; \Gamma) \), and if the spaces in question are HCL, the following diagram commutes

\[
0 \rightarrow \text{Ext}(H_{k-*-1}(__; \mathbb{Z}), \mathbb{Z}) \rightarrow H^{k-*}(__; \mathbb{Z}) \rightarrow \text{Hom}(H_{k-*}(__; \mathbb{Z}), \mathbb{Z}) \rightarrow 0
\]

These formulas can actually be seen on the chain level by picking representatives and using the Alexander–Whitney diagonal approximation.

These homology and cohomology groups enjoy other pleasant properties. One which we shall exploit heavily throughout the remainder of this work is the existence of a transfer map for any arbitrary cover. For particulars, let \(\pi: \widetilde{X} \rightarrow X \) be a covering map. Then we have homomorphisms

\[
\text{tr}: H^\ell_\text{f}_*(\widetilde{X}; \Gamma) \rightarrow H^\ell_\text{f}_*(\widetilde{X}; \pi^*\Gamma)
\]

and

\[
\text{tr}: H^*_c(\widetilde{X}; \pi^*\Gamma) \rightarrow H^*_c(X; \Gamma).
\]

The first of these is given by defining \(\text{tr}(\sigma) \) for a simplex \(\sigma \) and extending “linearly.” \(\text{tr}(\sigma) = \sum_{p \in \pi^{-1}(v_0)} \sigma_p \), where \(p \) runs over all the points in \(\pi^{-1}(v_0) \), where \(v_0 \) is a vertex of \(\sigma \), and \(\sigma_p \) is \(\sigma \) lifted so that \(v_0 \) goes to \(p \). It is not hard to check \(\text{tr} \) is a chain map. For the cohomology trace define \(\text{tr}(c) \) as the cochain whose value on the simplex \(\sigma \) in \(X \) is \(c(\text{tr}(\sigma)) \); i.e. \((\text{tr}(c))(\sigma) = c(\text{tr}(\sigma)) \). If \(f: X \rightarrow Y \) is a proper map, and if \(\pi: \widetilde{Y} \rightarrow Y \) is a cover, then, for the cover \(\widetilde{X} \rightarrow X \) which is induced from \(\pi \) by \(f \), \(\tilde{f}_\ast(\text{tr} Z) = \text{tr} \tilde{f}_\ast Z \) and \(\text{tr}(\tilde{f}^*c) = f^*(\text{tr} c) \).

Warning: The trace tends to be highly unnatural except in this one situation.

As an easy exercise, one may check that if \(c \in H^k_\ell(\widetilde{X}; \pi^*\Gamma_1) \) and if \(Z \in H^{k+1}_q(\widetilde{X}; \Gamma_2) \), then, in \(H_q(X; \Gamma_1 \otimes \Gamma_2) \), \(\pi_\ast(c \cap \text{tr} Z) = \text{tr} c \cap Z \).

In the coming pages, we will want to study spherical fibrations and paracompact manifolds. For the former objects we have

Thom Isomorphism Theorem: Let \(\xi \) be a spherical fibration of dimension \((q - 1) \) over \(B \). Let \(S(\xi) \) be its total space, and let \(D(\xi) \) be the total space of the associated disc fibration. Then there is a class \(U_\xi \in H^q(D(\xi), S(\xi); p^*_\xi(\Gamma_\xi)) \) [where \(p: D(\xi) \rightarrow B \) is the projection, and \(\Gamma_\xi \) is the local system on \(B \) given at \(b \in B \) by \(H^q(p^{-1}(b), p^{-1}(b) \cap S(\xi); \mathbb{Z}) \)] such that

\[
\cup U_\xi : H^*_\partial(B; \Gamma) \rightarrow H^{*+q}_\partial(D(\xi), S(\xi); p^*_\partial(\Gamma \otimes \Gamma_\xi))
\]

is an isomorphism. One also has

\[
U_\xi \cap : H_*(D(\xi), S(\xi); p^*(\Gamma)) \rightarrow H_{*-q}(B; \Gamma_\xi \otimes \Gamma)
\]

is an isomorphism.

Note that we have been (and will continue to be) a little sloppy. If \(c \in H^*_\partial(B; \Gamma) \), \(c \cup U_\xi \) should actually be \(p^*(c) \cup U_\xi \). A similar notational amalgamation has occurred when we write \(U_\xi \cap \).
This theorem is proved by a spectral sequence argument (see [26]), so one need only check that we still have a Serre spectral sequence with the appropriate supports.

For a paracompact manifold (i.e. a locally Euclidean, paracompact, Hausdorff space), possibly with boundary, we have

Lefschetz Duality: ([20], [44]). If \((M, \partial M)\) is a paracompact manifold pair of dimension \(n\), there is a class \([M] \in H_{\ell.f.}^n(M, \partial M; \Gamma_M)\) (where \(\Gamma_M\) is the local system for the bundle \(\nu\), the normal bundle of \(M\)) such that the maps

\[
\cap [M] : H^*_{\psi}(M, \partial M; \Gamma) \to H^*_{\psi}(M ; \Gamma \otimes \Gamma_M)
\]

and

\[
\cap [M] : H^*_{\psi}(M; \Gamma) \to H^*_{\psi}(M, \partial M; \Gamma \otimes \Gamma_M)
\]

are isomorphisms.

This completes the first objective of this section, so we turn to the second. The functors above already give us much non–trivial information on the category of all spaces and proper maps, but they are insufficient even to determine if a map is a proper homotopy equivalence on the subcategory of locally compact, finite dimensional CW complexes, a category in which we are surely going to be interested. In fact, the next two sections will be concerned precisely with the problem of constructing functors which will determine whether a map is or is not a proper homotopy equivalence in this category.

If we restrict ourselves to finite complexes, the Whitehead Theorem ([43]) already provides the answer. Notice that to solve the problem, even for finite complexes, we are forced to consider homotopy, which means base points. In order to solve the problem for locally finite complexes, we are going to have to consider lots of base points simultaneously. The category of spaces we are about to define is about the largest in which we can place our points nicely. It is also closed under proper homotopy equivalence.

Definition. A set \(B\) of points of \(X\) is said to be a **set of base points** for \(X\) provided

a) every path component of \(X\) contains a point of \(B\)

b) given any closed, compact set \(c \subseteq X\), there is a closed compact set \(D\) such that there is a point of \(B\) in every path component of \(X - c\) which is not contained in \(D\).

Definition. A set of base points, \(B\), for a path connected space \(X\) is said to be **irreducible** if, for any set of base points \(C\) for \(X\) with \(C \subseteq B\), the cardinality of \(C\) is equal to the cardinality of \(B\).

A set of base points for any space \(X\) is said to be **irreducible** provided it is an irreducible set of base points for each path component of \(X\).

Definition. Two locally finite sets of points are said to be equivalent (\(\sim\)) provided there is a 1–1 correspondence between the two sets which is given by a locally finite set of paths.

Definition. Consider the following two properties of a space \(X\):

1) Every set of base points for \(X\) has an irreducible, locally finite subset.

2) Any two irreducible, locally finite sets of base points for \(X\) are equivalent.

A space \(X\) is said to be **pre–homogamous**\(^1\) provided \(X \times I\) satisfies 1) and 2).

\(^1\)In the original manuscript we started by calling this property homogamous and then redefined the term at the end of this section.
PROPOSITION 1. (Proposition 1.1.1) If X has the proper homotopy type of a pre–homogamous space, then X has properties 1) and 2).

PROOF. We first prove two lemmas.

LEMMA 2. (Lemma 1.1.1) Let \(f : X \to Y \) be a proper map which induces injections of \(H^0(Y) \) into \(H^0(X) \) and of \(H^0_{\text{end}}(Y) \) into \(H^0_{\text{end}}(X) \). Then if \(\{ p \} \) is a set of base points for \(X \), then \(\{ f(p) \} \) is a set of base points for \(Y \).

PROOF. Since \(f \) induces an injection on \(H^0 \), there is an \(f(p) \) in every path component of \(Y \).

Now look at the path components of \(Y - c \), where \(c \) is some closed, compact subset of \(Y \). Let \(\{ W_\alpha \} \) be the set of path components of \(Y - c \) such that \(f^{-1}(W_\alpha) \) contains no point of \(\{ p \} \). Since \(\{ p \} \) is a set of base points for \(X \), \(\cup_\alpha f^{-1}(W_\alpha) \subseteq D \), where \(D \) is some closed, compact subset of \(X \).

Then \(f(X - D) \cap W_\alpha = \emptyset \) for all \(\alpha \).

Define a cochain \(\beta \) by

\[
\beta(q) = \begin{cases} 1 & q \in W_\alpha \\ 0 & q \notin W_\alpha \end{cases}
\]

Then \(\delta \beta(\lambda) = \beta(\lambda(1)) - \beta(\lambda(0)) = 0 \) if \(\lambda \cap c = \emptyset \). Hence \(\delta \beta = 0 \) in \(S^1_{\text{end}}(Y; \mathbb{Z}) \). But since \(f(X - D) \cap W_\alpha = \emptyset \), \(f^* \beta = 0 \) in \(S^0_{\text{end}}(X; \mathbb{Z}) \). Since \(f^* \) is an injection on \(H^0_{\text{end}} \), \(\beta = 0 \) in \(H^0_{\text{end}}(Y; \mathbb{Z}) \).

But this implies \(\cup_\alpha W_\alpha \) is contained in some compact set.

\[\square \]

LEMMA 3. (Lemma 1.1.2) Let \(f \) be a map properly homotopic to the identity. Let \(\{ p \} \) be a locally finite set of base points. Then \(\{ f(p) \} \) is equivalent to a subset of \(\{ p \} \).

PROOF. We have \(F : X \times I \to X \) a proper map. The set \(\{ p \times I \} \) is clearly locally finite. Since \(F \) is proper, \(\{ F(p \times I) \} \) is easily seen to be locally finite. But \(\{ F(p \times I) \} \) provides an equivalence between \(\{ f(p) \} \) and some subset of \(\{ p \} \) [more than one \(p \) may go to a given \(f(p) \)]. \[\square \]

Now let \(X \) have the proper homotopy type of \(Y \), a pre–homogamous space. Hence we have proper maps \(f : X \to Y \) and \(g : Y \to X \) with the usual properties.

Let \(\{ p \} \) be a set of base points for \(X \). Then by Lemma 2 (Lemma 1.1.1 p. 10), \(\{ f(p) \} \) is a set for \(Y \) and \(\{ f(p) \times 0 \} \) is a set for \(Y \times I \). Since \(Y \) is pre–homogamous, there is an irreducible, locally finite subset \(\{ f(p') \times 0 \} \). By Lemma 2 (Lemma 1.1.1 p. 10), \(\{ g \circ f(p') \} \) is a locally finite set of base points for \(X \). But by Lemma 3 (Lemma 1.1.2 p. 10), there is a further refinement, \(\{ p'' \} \), of \(\{ p \} \) such that \(\{ p'' \} \sim \{ g \circ f(p') \} \). But then \(\{ p'' \} \) is easily seen to be a set of base points also. Now \(\{ p'' \} \) is in 1–1 correspondence with \(\{ f(p'') \} \), and \(\{ f(p'') \times 0 \} \) is a set of base points for \(Y \times I \) by Lemma 2 (Lemma 1.1.1 p. 10). \(\{ f(p'') \times 0 \} \) is a subset of \(\{ f(p') \times 0 \} \) and is thus irreducible. Hence \(\{ p'' \} \) is easily seen to be irreducible, and therefore \(X \) satisfies 1).

Let \(\{ p \} \) be an irreducible, locally finite set of base points for \(X \). We claim that there is an irreducible, locally finite set of base points \(\{ q \} \) for \(Y \times I \) such that \(\{ p \} \sim \{ g \circ \pi(q) \} \), where \(\pi : Y \times I \to Y \) is projection.

By the argument in Lemma 3 (Lemma 1.1.2 p. 10), we see that we have a locally finite set of paths \(\{ \lambda_p \} \) from \(\{ p \} \) to \(\{ g \circ f(p) \} \). However, \((g \circ f)^{-1}(g \circ f)(p) \) may contain more points of \(\{ p \} \) than just \(p \). But since \(\{ \lambda_p \} \) is locally finite, there are only finitely many such points, say \(p_1, \ldots, p_n \). Let \(q = f(p) \times 0 \) and define \(q_i = f(p) \times 1/i \) for \(1 \leq i \leq n \). The resulting set of points, \(\{ q \} \) is easily seen to be locally finite, and by several applications of Lemma 2 (Lemma 1.1.1 p. 10), \(\{ q \} \) is an irreducible set of base points for \(Y \times I \).
So suppose given \(\{p\} \) and \(\{q'\} \), irreducible, locally finite sets of base points for \(X \). Pick \(\{q\} \) and \(\{q'\} \) as above to be irreducible, locally finite sets of base points for \(Y \times I \). Since \(Y \) is pre–homogamous, \(\{q\} \sim \{q'\} \), so \(\{g \circ \pi(q)\} \sim \{g \circ \pi(q')\} \). Thus \(\{p\} \sim \{p'\} \), so \(X \) satisfies 2). \(\square \)

Corollary 4. (Corollary 1.1.1.1.1) A space which is the proper homotopy type of a pre–homogamous space is pre–homogamous.

Corollary 5. (Corollary 1.1.1.2) The mapping cylinder of a proper map whose range is pre–homogamous is pre–homogamous.

Proposition 6. (Proposition 1.1.2) Let \(\{O\} \) be a locally finite open cover of \(X \). Further assume that each \(O \) is path connected and that each \(\overline{O} \) is compact. Then \(X \) is pre–homogamous.

Corollary 7. (Corollary 1.1.2.1) A locally compact, locally path connected, paracompact space is pre–homogamous.

Corollary 8. (Corollary 1.1.2.2) A locally compact CW complex is pre–homogamous.

Corollary 9. (Corollary 1.1.2.3) A paracompact topological manifold is pre–homogamous.

Proof. If \(\{O\} \) is the collection for \(X \), \(\{O \times I\} \) is a cover for \(X \times I \) with the same properties, so, if we can show 1) and 2) hold for \(X \), we are done.

Since each \(O \) is path connected, each path component of \(X \) is open. Also the complement of a path component is open, so each path component is both open and closed. Hence \(X \) is pre–homogamous iff each path component is, so we assume \(X \) is path connected.

We claim \(X \) is \(\sigma \)-compact, i.e. the countable union of compact sets. In fact, we will show \(\{O\} \) is at most countable. As a first step, define a metric \(d \) on \(X \) as follows. If \(p \neq q \), look at a path \(\lambda \) from \(p \) to \(q \). \(\lambda \) is compact, so it is contained in a finite union of \(O \)'s. Hence \(\lambda \) is contained in a closed, compact set so \(\lambda \) intersects only finitely many \(O \)'s. Let \(r(\lambda; p, q) = \) the number of \(O \)'s that \(\lambda \) intersects (non–empty). Define \(d(p, q) = \min r(\lambda; p, q) \). This is a natural number, so there is actually some path, \(\lambda \), such that \(d(p, q) = r(\lambda; p, q) \). If \(p = q \), set \(d(p, q) = 0 \). \(d \) is easily seen to be a metric.

Let us fix \(p \in X \). Then to each \(O \) we can associate a number \(m(O, p) = \min_{\lambda} d(p, q) \). We claim that, for any \(n \), \(m(O, p) \leq n \) for only finitely many \(O \). For \(n = 0 \) this is an easy consequence of the fact that \(\{O\} \) is locally finite. Now induct on \(n \). Let \(O_1, \ldots, O_k \) be all the \(O \)'s such that \(m(O, p) \leq n - 1 \). Let \(c = \bigcup_{i=1}^{k} O_i \). \(c \) is compact.

Suppose \(\overline{O} \cap c = \emptyset \). Then we claim \(m(O, p) \geq n + 1 \). To see this, pick \(q \in O \), and any path \(\lambda \) from \(p \) to \(q \). If we can show \(r(\lambda; p, q) \geq n + 1 \), we are done. Let \([0, x] \) be the closed interval which is the first component of \(\lambda^{-1}(c) \), where \(\lambda : I \to X \) is the path. Since \(c \cap O = \emptyset, \lambda^{-1}(\overline{O}) \geq s, \) where \(s > x \). Pick \(x < t < s \). Then \(\lambda(t) \notin c \), so the path from \(p \) to \(\lambda(t) \) already intersects at least \(n \) of the \(O \)'s, so, from \(p \) to \(q \) it must intersect at least \(n + 1 \).
Therefore, if \(m(O, p) \leq n \), \(\overline{O} \cap c \neq \emptyset \). But since \(\{O\} \) is locally finite, there are only finitely many \(O \) for which this is true. This completes the induction.

Hence the cover \(\{O\} \) is at most countable. If \(\{O\} \) is finite, \(X \) is compact and hence easily seen to satisfy 1) and 2). Hence we assume \(\{O\} \) is infinite.

Enumerate \(\{O\} \), and set \(C_k = \bigcup_{i=0}^k \overline{O}_i \). Since \(C_k \) is compact, there are but finitely many \(O \)'s such that \(\overline{O} \cap C_k \neq \emptyset \). Let \(E \) be the union of \(c \) and these \(O \)'s. Then \(E \) is compact, as is \(\partial E \), the frontier of \(E \) in \(X \). Let \(\{W_\alpha\} \) be the path components of \(X - C_k \) not contained entirely in \(E \).

Look at \(W_\alpha \cap \partial E \). It might be empty, in which case \(W_\alpha \) is actually a component of \(X \) since \(\partial E \) separates the interior of \(E \) and \(X - E \). But \(X \) is connected, so \(W_\alpha \cap \partial E \neq \emptyset \). Now if \(p \in \partial E, p \in O \) with \(O \cap C_k = \emptyset \). Now \(O \) is a path connected set missing \(C_k \) with \(O \) not contained entirely in \(E \), so \(O \subseteq W_\alpha \) for some \(\alpha \). Hence the \(W_\alpha \) cover \(\partial E \).

The \(W_\alpha \) are disjoint, so, as \(\partial E \) is compact, there are only finitely many of them. Some \(\bigcup W_\alpha \) may be compact. Set \(D_k = E \cup (\text{compact } \bigcup W_\alpha) \). Then \(D_k \) is compact.

Since the \(C_k \) are cofinal in the collection of all compact subsets of \(X \), we may assume, after refinement, that \(C_0 \subseteq D_0 \subseteq C_1 \subseteq D_1 \subseteq \cdots \)

Now let \(\{p\} \) be a set of base points for \(X \). Let \(\{W_{\alpha,k}\} \) be the set of unbounded path components of \(X - C_k \), which we saw above was finite. Since \(\{p\} \) is a set of base points, in each \(\{W_{\alpha,k}\} \) there are infinitely many \(p \in \{p\} \) for which there exists an \(O \in \{O\} \) such that \(p \in O \subseteq W_{\alpha,k} \). We get a locally finite subset \(\{p'\} \subseteq \{p\} \) by picking one element of \(\{p\} \cap O \) for each such non–empty intersection as \(O \) runs over \(\{O\} \). By the above remarks, this set is a set of base points. It is clearly locally finite so \(X \) satisfies 1).

Now let \(\{p_k\} \) and \(\{q_k\} \) be locally finite irreducible sets of base points (they are of necessity both countable). Look at all the \(p_k \)'s in \(D_0 \). Join them by paths to some \(q_\ell \) not in \(D_0 \). Join the \(q_k \)'s in \(D_0 \) to some \(p_\ell \)'s not in \(D_0 \). Note that the number of paths intersecting \(C_0 \) is (number of \(p_k \) in \(D_0 \)) + (number of \(q_k \) in \(D_0 \)).

For the inductive step, assume we have joined all the \(p_k \)'s in \(D_{n-1} \) to some \(q_k \)'s and vice versa. Suppose moreover that the

\[
\text{number of paths intersecting } C_{n-i} \leq (\text{number of } p_k \text{ in } D_{n-i}) + (\text{number of } q_k \text{ in } D_{n-i})
\]

for \(1 \leq i \leq n \).

Look at the \(p_k \)'s in \(D_n - D_{n-1} \) which have not already been joined to some \(q_\ell \) in \(D_{n-1} \). Each of these lies in some \(W_{\alpha,n-1} \); i.e. in an unbounded component of \(X - C_{n-1} \). Join the \(p_k \) in \(W_{\alpha,n-1} \cap (D_n - D_{n-1}) \) which have not already been fixed up to some \(q_\ell \) in \(W_{\alpha,n-1} - D_n \) by a path in \(W_{\alpha,n-1} \); i.e. outside of \(C_{n-1} \). (Recall there are an infinite number of \(p_k \) [and \(q_k \)] in each \(W_{\alpha,\ell} \), so we can always do this.) Do the same for the \(q_k \) in \(D_n - D_{n-1} \).

Now each of these new paths misses \(C_{n-1} \), so the

\[
\text{number of paths intersecting } C_{n-i} \leq (\text{number of } p_k \text{ in } D_{n-i}) + (\text{number of } q_k \text{ in } D_{n-i})
\]

for \(1 \leq i \leq n \). For \(i = 0 \), the

\[
\text{number of paths intersecting } C_n \leq (\text{number of } p_k \text{ in } D_n) + (\text{number of } q_k \text{ in } D_n)
\]

This completes the induction and shows \(X \) satisfies 2). \(\square \)

Local compactness and \(\sigma \)-compactness are easily seen to be proper homotopy invariants so we define
Definition. A space is said to be homogamous provided it is locally compact, σ-compact and pre-homogamous.

Note now that any irreducible set of base points for an homogamous space is countable.

2. The ϵ-Δ construction

In this section we describe our construction. It will enable us to produce a proper homotopy functor on any homogamous space from an ordinary homotopy functor (a homotopy functor is a functor from the category of based topological spaces and based homotopy classes of maps to some category).

Now our homotopy functor, say H, takes values in some category A. Associated to any homogamous space, X, we have an irreducible set of locally finite base points, I. We also have a diagram scheme, D, consisting of the closed, compact subsets of X (see the definition below for the definition of a diagram scheme). Our basic procedure is to associate an element in A to the collection $H(X - C, p)$, where C is a closed compact subset of X, and $p \in I$. In order to be able to do this, we must impose fairly strenuous conditions on our category A, but we prefer to do this in two stages.

Definition (see [25] page 42). A diagram scheme is a triple $D = (J, M, d)$, where J is a set whose elements are called vertices, M is a set whose elements are called arrows, and $d: M \rightarrow J \times J$ is a map. Given a diagram scheme D and a category A, a diagram over D is a map from J to the objects of A ($j \mapsto A_j$) and a map from M to the morphisms of A such that, if $d(m) = (i, j)$, m goes to an element of $\text{Hom}(A_i, A_j)$.

Notation: $[D, A]$ denotes the category of all diagrams in A over D. (A map between diagrams over D is a collection of morphisms $f_j: A_j \rightarrow B_j$ such that $f_j \circ m = \overline{m} \circ f_i$, where $m \in \text{Hom}(A_i, A_j)$, and $\overline{m} \in \text{Hom}(B_i, B_j)$ correspond to the same element in M). If I is an index set (i.e. a set) A^I denotes the category whose objects are sets of objects in A indexed by I. The morphisms are sets of morphisms in A indexed by I. Finally, if A and B are categories, $\{A, B\}$ is the category of covariant functors from A to B (see [25] page 63).

Definition. A category A is weakly regular with respect to an index set I provided:

1) A has products and zero objects.
2) Let $\mathcal{F}(I) = \{T \mid T \subseteq I \text{ and } T \text{ is finite}\}$. If $\{G_i\}$ is an object in A^I, each $T \in \mathcal{F}(I)$ induces an endomorphism of $\{G_i\}$ by

$$
\begin{cases}
G_i \rightarrow G_i & \text{if the identity if } i \notin T \\
G_i \rightarrow G_i & \text{if the zero map if } i \in T .
\end{cases}
$$

This induces a unique map $X_T: \prod_{i \in I} G_i \rightarrow \prod_{i \in I} G_i$. We require that there exist an object $\mu(\{G_i\})$ and a map $\prod_{i \in I} G_i \rightarrow \mu(\{G_i\})$ which is the coequalizer of the family of morphisms X_T for all $T \in \mathcal{F}(I)$.

We easily check

Lemma 10. (Lemma 1.2.1) $\mu: A^I \rightarrow A$ is a functor when A is a weakly regular category with respect to I. □
Examples. The categories of groups, abelian groups, rings and pointed sets are all weakly regular with respect to any index set \(I \). \(\mu \) is each case is given as follows. We define an equivalence relation \(R \) on \(\prod_{i \in I} G_i \) by \(x R y \) iff (the \(i \)th component of \(x \))=(the \(i \)th component of \(y \)) for all but finitely many \(i \in I \). Then \(\mu \left(G_i \right) = \left(\prod_{i \in I} G_i \right) / R. \)

Lemma 11. (Lemma 1.2.2) If \(D \) is a diagram scheme, and if \(\mathcal{A} \) is a weakly regular category with respect to \(I \), then \([D, \mathcal{A}]\) is also weakly regular with respect to \(I \).

Proof. \([D, \mathcal{A}]\) is easily seen to have a zero object. \([D, \mathcal{A}]\) has products, for to each object in \([D, \mathcal{A}]^I\), \((\{G_{ij}, \{m_i\})\), we associate the diagram \(\left(\prod_{i \in I} G_{ij} \times \prod_{i \in I} m_i \right). \) It is not hard to check that this diagram has the requisite universal properties.

To see condition 2), to \(\{G_{ij}\} \) associate \(\mu \left(G_{ij} \right) \). Then \(\times m_i \) induces \(\mu \left(m_i \right) \), so we do get a diagram.

To show it is a coequalizer, let \(X_j \) be the objects of a diagram. Set \(H_j = \prod_{i \in I} G_{ij} \). We are given \(g_j: H_j \to X_j \) which commute with the diagram maps. If \(T_1, T_2 \in \mathcal{F}(I) \) we also have \(g_j \circ X_{T_1} = g_j \circ X_{T_2} \). Hence by the universality for \(\mu \) for \(\mathcal{A} \), we get unique maps \(f_j: \mu \left(G_{ij} \right) \to X_j \) such that

\[
\begin{array}{ccc}
H_j & \xrightarrow{g_j} & X_j \\
\downarrow & & \downarrow \\
\mu(G_{ij}) & \xrightarrow{f_j} & X_j
\end{array}
\]

commutes. If we have a map in \(D \) from \(j \) to \(k \), we get

\[
\begin{array}{ccc}
H_j & \xrightarrow{g_j} & X_j \\
\downarrow & & \downarrow \\
\mu(G_{ij}) & \xrightarrow{f_j} & X_j
\end{array}
\quad \begin{array}{ccc}
& \xrightarrow{g_k} & \\
\downarrow & & \downarrow \\
& \xrightarrow{f_k} & \\
\mu(G_{ik}) & \xrightarrow{f_k} & X_k
\end{array}
\quad \begin{array}{ccc}
\mu(G_{ij}) & \xrightarrow{f_j} & X_j \\
\downarrow & & \downarrow \\
\mu(G_{ik}) & \xrightarrow{f_k} & X_k
\end{array}
\]

with the front and back squares and both end triangles commutative. By the uniqueness of the map \(\mu \left(G_{ij} \right) \to X_k \), the bottom square also commutes and we are done. \(\square \)

Suppose given a functor \(F \in \{ \mathcal{A}, \mathcal{B} \} \). If \(F \) does not preserve products, it seems unreasonable to expect it to behave well with respect to \(\mu \), so assume \(F \) preserves products. Then we get a natural map \(\mu \circ F^I \to F \circ \mu \) (\(F^I \) is the obvious element in \(\{ \mathcal{A}^I, \mathcal{B}^I \} \)). \(F \) preserves \(\mu \) iff this map is an isomorphism.

Now suppose \(\mathcal{A} \) is complete with respect to a diagram scheme \(D \). Then we have a functor \(\varprojlim_D: [D, \mathcal{A}] \to \mathcal{A} \), the limit functor (see 25, page 44).
Definition. If \mathcal{D} is a diagram scheme, and if \mathcal{A} is a \mathcal{D}–complete, weakly regular category with respect to \mathcal{I}, then we define $\epsilon: [\mathcal{D}, \mathcal{A}]^\mathcal{I} \to \mathcal{A}$ to be the composite $\lim_D \circ \mu$.

Proposition 12. *(Proposition 1.2.1)* Let \mathcal{D} be a diagram scheme, and let \mathcal{A} and \mathcal{B} be two \mathcal{D}–complete, weakly regular categories with respect to \mathcal{I}. Let $F \in \{\mathcal{A}, \mathcal{B}\}$. Then $\epsilon: [\mathcal{D}, \mathcal{A}]^\mathcal{I} \to \mathcal{A}$ is a functor. If F preserves products and \lim_D, there is a natural map $\epsilon \circ F_\# \to F \circ \epsilon$ (where $F_\#: [\mathcal{D}, \mathcal{A}] \to [\mathcal{D}, \mathcal{B}]$ is the induced functor). If F preserves μ, this map is an isomorphism.

Proof. Trivial. \qed

Unfortunately, the limit we are taking is an inverse limit, which is notorious for causing problems. In some cases however (and in all cases in which we shall be interested) it is possible to give a description of ϵ as a direct limit. In fact, we will describe the Δ–construction as a direct limit and then investigate the relationship between the two.

Definition. A lattice scheme \mathcal{D} is a diagram scheme (J,M,d) such that J is a partially ordered set with least upper and greatest lower bounds for any finite subset of J. We also require that $d: M \to J \times J$ be a monomorphism and that $\text{Im} \ d = \{(j,k) \in J \times J \mid j > k\}$. To the lattice scheme \mathcal{D} and the index set \mathcal{I}, we associate a diagram scheme $\mathcal{D}_\mathcal{I}$ as follows ($\mathcal{D}_\mathcal{I}$ is the diagram of “cofinal subsequences of \mathcal{D}”). If $\alpha \in J$, define $J_\alpha = \{j \in J \mid j = p_i(\alpha) \text{ for some } i \in \mathcal{I}\}$. p_i is just the i^{th} projection, so J_α is just the subset of J we used in making up α. Define $\rho_\alpha: \mathcal{I} \to J$ by $\rho_\alpha(i) = p_i(\alpha)$. Set

$$J_\mathcal{I} = \{\alpha \in J \mid J_\alpha \text{ is cofinal in } J \text{ and } \bigcup_{j \leq k} \rho_\alpha^{-1}(j) \text{ is finite for all } k \in J\}.$$

(A subset of J is cofinal iff given any $j \in J$, there is an element k of our subset so that $k \geq j$. $J_\mathcal{I}$ may be thought of as the set of “locally finite, cofinal subsets” of J).

We say $\alpha \geq \beta$ iff $p_i(\alpha) \geq p_i(\beta)$ in J for all $i \in \mathcal{I}$. Set $M_\mathcal{I} = \{(\alpha, \beta) \in J_\mathcal{I} \times J_\mathcal{I} \mid \alpha \geq \beta\}$ and let $d_\mathcal{I}$ be the inclusion. Given $\alpha, \beta \in J_\mathcal{I}$, define $\gamma \in J_\mathcal{I}$ by $p_\mathcal{I}(\gamma) = \text{least upper bound of } p_i(\alpha) \text{ and } p_i(\beta)$. (It is not hard to see $\gamma \in J_\mathcal{I}$.) Greatest lower bounds can be constructed similarly. Hence $\mathcal{D}_\mathcal{I}$ is also a lattice scheme.

Now if J does not have any cofinal subsets of cardinality $\leq \text{card}(\mathcal{I})$, $J_\mathcal{I} = \emptyset$. Since J has upper bounds for finite sets, if J has finite cofinal subsets, then J has cofinal subsets of cardinality $\geq \text{card}(\mathcal{I}) - N$, where N is some natural number, then the condition that $\bigcup_{j \leq k} \rho_\alpha^{-1}(j)$ be finite forces $J_\mathcal{I} = \emptyset$. Empty diagrams are a nuisance, so we define an \mathcal{I}–lattice scheme as a lattice scheme with cofinal subsets of cardinality $= \text{card}(\mathcal{I})$.

We can now define $\delta: [\mathcal{D}, \mathcal{A}]^\mathcal{I} \to [\mathcal{D}_\mathcal{I}, \mathcal{A}]$ as follows. If $\{d_i\} \in [\mathcal{D}, \mathcal{A}]^\mathcal{I}$, $\delta(d)$ has for objects $\delta_\alpha = \times G_{ip_i(\alpha)}$, where G_{i_j} is the j^{th} object in the diagram for d_i ($\alpha \in J_\mathcal{I}, j \in J, i \in \mathcal{I}$). If $\alpha \geq \beta$, we define $\delta_\alpha \to \delta_\beta$ by the maps $G_{ip_\alpha(\alpha)} \to G_{ip_\beta(\beta)}$ which come from the diagram d_i.

We can also define maps $\delta_\alpha \to \mu$ as follows. Map $G_{ip_\alpha(\alpha)} \to G_{ij}$ by the unique map in d_i if $p_i(\alpha) \geq j$, and by the zero map if $j > p_i(\alpha)$. (Notice that there are at most finitely many i such that $p_i(\alpha) < j$ by the second defining condition on $J_\mathcal{I}$.) These maps induce a unique map $\delta_\alpha \to \times_{i \in \mathcal{I}} G_{ij}$. Composing with the projection, we get a unique map $\delta_\alpha \to \times_{i \in \mathcal{I}} (G_{ij}) = \mu$.\]
If $k \geq j$, \(\delta_\alpha \rightarrow \mu_j \) \(\downarrow \) \(\mu_k \) commutes as one easily checks. If $\alpha \geq \beta$, \(\delta_\alpha \downarrow \ alpha \) also commutes.

\begin{center}
\begin{tikzcd}
\delta_\alpha \arrow{rr}{\mu_j} \arrow{d}{\mu_k} & & \\
\delta_\beta \end{tikzcd}
\end{center}

Lemma 13. *(Lemma 1.2.3)* \(\delta : [D, A]^I \rightarrow [D_I, A] \) is a functor.

Proof. The proof is easy and can be safely left to the reader. \(\square \)

Now suppose \(A \) is \(D_I \)-cocomplete. Then we have a colimit functor \(\text{colim}_{D_I} \).

Definition. If \(D \) is an \(I \)-lattice scheme, and if \(A \) is a \(D_I \)-cocomplete, weakly regular category with respect to \(I \), then we define \(\Delta : [D, A]^I \rightarrow A \) to be the composition \(\text{colim}_{D_I} \circ \delta \).

Proposition 14. *(Proposition 1.2.2)* Let \(D \) be a diagram scheme and let \(A \) and \(B \) be two \(D_I \)-cocomplete, weakly regular categories with respect to \(I \). Let \(F \in \{A, B\} \). Then \(\Delta : [D, A]^I \rightarrow A \) is a functor. There is always a natural map \(\Delta \circ F^\# \rightarrow F \circ \Delta \). If \(F \) preserves products and colim \(\text{colim}_{D_I} \), this map is an isomorphism.

Proof. Trivial. \(\square \)

The maps we constructed from \(\delta_\alpha \rightarrow \mu \) combine to give us a natural transformation from \(\Delta \) to \(\epsilon \) whenever both are defined. We would like to study this natural transformation in order to get information about both \(\Delta \) and \(\epsilon \). A \((D, I) \)-regular category is about the most general category in which we can do this successfully, and it includes all the examples we have in mind.

Definition. A category \(A \) is said to be \((D, I) \)-regular provided

1) \(A \) is weakly regular with respect to \(I \)
2) \(A \) has images and inverse images
3) There is a covariant functor \(F \) from \(A \) to the category of pointed sets and maps such that
 a) \(F \) preserves kernels, images, products, limits over \(D \), increasing unions, and \(\mu \)
 b) \(F \) reflects kernels, images, and isomorphisms
4) \(A \) is \(D \)-complete and \(D_I \)-cocomplete
5) \(I \) is countable

Examples. The categories of groups, abelian groups, rings and pointed sets are all \((D, I) \)-regular for any \(I \)-lattice scheme\(^1\). The functor \(F \) is just the forgetful functor.

\(^1\)For which \(I \) is countable.
LEMMA 15. (Lemma 1.2.4) Let \mathcal{A} be a $(\mathcal{D}, \mathcal{I})$–regular category. Then $\times_{i \in I}$ and μ preserve kernels and images.

PROOF. $\times_{i \in I}$ is known to preserve kernels (Mitchell [25], page 67, Corollary 12.3).

Since F preserves images, if $\text{Im}(f)$ is the image of $A \xrightarrow{f} B$, then $F(A)$ is onto $F(\text{Im}(f))$ and $F(\text{Im}(f))$ injects into $F(B)$. Let K_i be the image of $A_i \xrightarrow{f_i} B_i$. Then, since F preserves products, $\times_{i \in I} K_i \to \times_{i \in I} B_i$ is a monomorphism since \times is a monofunctor. Since F preserves monomorphisms, $\times_{i \in I} F(K_i) \to \times_{i \in I} F(B_i)$ is seen to be a monomorphism as F also preserves products. Since F reflects images, $\times_{i \in I} K_i$ is the image of $\times_{i \in I} A_i \to \times_{i \in I} B_i$.

Let $K_i \to A_i \to B_i$ be kernels. Then

$$
\begin{align*}
\times K_i & \xrightarrow{h} \times A_i \xrightarrow{g} \times B_i \\
\mu(K_i) & \xrightarrow{\mu(h)} \mu(A_i) \xrightarrow{\mu(g)} \mu(B_i)
\end{align*}
$$

commutes. Since F reflects kernels, we need only show that $F(\mu(K_i))$ injects into $F(\mu(A_i))$ and is onto $F(f^{-1}(0))$. Since F preserves μ, we may equally consider $\mu(F(K_i))$, etc. Since F preserves products, we may as well assume the diagram (\ast) is in the category of pointed sets.

We show $\mu(K_i)$ is onto $f^{-1}(0)$. Let $x \in f^{-1}(0) \subseteq \mu(A_i)$. Lift x to $y \in \times A_i$, which we may do since \times is onto μ in the category of pointed sets. Now $g(y) \in \times B_i$ can have only finitely many non–zero components since it goes to 0 in $\mu(B_i)$.

Define \tilde{y} by

$$
p_i(\tilde{y}) = \begin{cases}
p_i(y) & \text{if } p_i(g(y)) = 0 \\
0 & \text{if } p_i(g(y)) \neq 0
\end{cases}.
$$

Then \tilde{y} also lifts x and $g(\tilde{y}) = 0$. There is a $z \in \times K_i$ such that $h(z) = \tilde{y}$, so $\mu(K_i)$ maps onto $f^{-1}(0)$. A similar argument shows $\mu(K_i)$ injects into $\mu(A_i)$. Hence μ preserves kernels.

Now let K_i be the image of $A_i \to B_i$. Then

$$
\begin{align*}
\times A_i & \xrightarrow{h} \times K_i \xrightarrow{g} \times B_i \\
\mu(A_i) & \xrightarrow{\mu(h)} \mu(K_i) \xrightarrow{\mu(g)} \mu(B_i)
\end{align*}
$$

commutes. By general nonsense, it suffices to prove the result assuming we are working in the category of pointed sets.

Since \times preserves images, $\times A_i \to \times K_i$ is onto, so $\mu(A_i) \to \mu(K_i)$ is easily seen to be onto. Since μ preserves kernels, $\mu(K_i)$ injects into $\mu(B_i)$, so $\mu(K_i)$ is the image of $\mu(A_i) \to \mu(B_i)$. □

THEOREM 16. (Theorem 1.2.1) Let \mathcal{A} be a $(\mathcal{D}, \mathcal{I})$–regular category. Then ϵ preserves kernels and images.

PROOF. By Mitchell [25] (page 67, Corollary 12.2) $\lim_{\mathcal{D}}$ preserves kernels so $\epsilon = \lim_{\mathcal{D}} \circ \mu$ also does using Lemma 15 [Lemma 1.2.4 p. 17] and general nonsense.
Now let K_{ij} be the image of $A_{ij} \to B_{ij}$. We claim that, if $x \in \epsilon(K_{ij})$, then there exists $\alpha \in J_T$ such that x is in the image of $\delta_{\alpha}(K_{ij})$. Assuming this for now we proceed as follows.

Since $\delta_{\alpha}(K_{ij}) = \times_{i \in I} K_{i p_i(\alpha)}$, δ_{α} preserves kernels and images by Lemma \ref{Lemma 1.2.4 p. 17}. Hence

$$
\delta_{\alpha}(A_{ij}) \quad \longrightarrow \quad \delta_{\alpha}(K_{ij}) \quad \longrightarrow \quad \delta_{\alpha}(B_{ij})
$$

$$
\epsilon(A_{ij}) \quad \longrightarrow \quad \epsilon(K_{ij}) \quad \longrightarrow \quad \epsilon(B_{ij})
$$

commutes and $\delta_{\alpha}(K_{ij})$ is the image of $\delta_{\alpha}(A_{ij}) \to \delta_{\alpha}(B_{ij})$. By the usual abstract nonsense, we may as well assume we are in the category of pointed sets (note F preserves ϵ by Proposition \ref{Proposition 1.2.1 p. 15}).

Now using our claim we can easily get $\epsilon(A_{ij}) \to \epsilon(K_{ij})$ is onto. $\epsilon(K_{ij}) \to \epsilon(B_{ij})$ injects since ϵ preserves kernels. Hence $\epsilon(K_{ij})$ is the image of $\epsilon(A_{ij}) \to \epsilon(B_{ij})$.

We prove a stronger version of our claim than we have yet used.

Lemma 17. (Lemma 1.2.5) Let A be the category of pointed sets. Let $\{G_{ij}\}$ be an object in $[\mathcal{D}, A]^I$. Then if $x \in \epsilon(G_{ij})$, there is an $\alpha \in J_T$ such that $\delta_{\alpha}(G_{ij})$ contains x in its image. If $y, z \in \delta_{\alpha}(G_{ij})$ both hit x, then there is a $\beta \leq \alpha$ such that, in $\delta_{\beta}(G_{ij})$, the images of y and z differ in only finitely many coordinates. In fact, if there is a $j \in J$ such that $j \leq p_i(\alpha)$ for all $i \in I$ and such that y and z agree in $\times_{i \in I} G_{ij}$, then β can be chosen so that $y = z$ in $\delta_{\beta}(G_{ij})$.

Proof. If $x \in \epsilon(G_{ij})$, there exist unique $a_j \in \mu_{i \in I} G_{ij}$ such that x hits a_j. Since \times is onto $\mu_{i \in I} G_{ij}$, we may lift a_j to $b_j \in \times_{i \in I} G_{ij}$. Since J has countable cofinal subsets, let the natural numbers $j = 1, 2, \ldots$ be one such. Since I is countable (and infinite or our result is easy) we also assume it to be the natural numbers.

Now look at b_2 and b_1. Since they agree in $\mu_{i \in I} G_{ij}$, b_2 projected into $\times_{i \in I} G_{ij}$ differs from b_1 in only finitely many coordinates. Let $\mathcal{I}_1 \subseteq \mathcal{I}$ be the finite subset which indexes these unequal coordinates, together with the element 1 in \mathcal{I}.

Next look at the pairs (b_3, b_2) and (b_3, b_1). As before, projected into $\times_{i \in I} G_{ij}$, b_3 and b_2 agree in all but finitely many coordinates. In $\times_{i \in I} G_{ij}$, b_3 and b_1 differ in only finitely many coordinates. Set $\mathcal{I}_2 \subseteq \mathcal{I}$ to be the finite subset of \mathcal{I} which indexes the unequal coordinates of (b_3, b_2) or (b_3, b_1) which lie in $\mathcal{I} - \mathcal{I}_1$, together with the smallest integer in $\mathcal{I} - \mathcal{I}_1$.

Define \mathcal{I}_k to be the finite subset of \mathcal{I} which indexes the unequal coordinates of $(b_k, b_{k-1}), \ldots, (b_k, b_3), (b_k, b_1)$ which lie in $\mathcal{I} - (\mathcal{I}_{k-1} \cup \cdots \cup \mathcal{I}_2 \cup \mathcal{I}_1)$, together with the smallest integer in $\mathcal{I} - (\mathcal{I}_{k-1} \cup \cdots \cup \mathcal{I}_2 \cup \mathcal{I}_1)$.

Then $\mathcal{I} = \bigcup_{k=1}^{\infty} \mathcal{I}_k$ as a disjoint union. Define α by $p_i(\alpha) = k$, where $i \in \mathcal{I}_k$. Since \mathcal{I} is countable, but not finite, and since each \mathcal{I}_k is finite, $\alpha \in J_T$. Define $y \in \delta_{\alpha}(G_{ij})$ by $p_i(y) = p_i(b_{p_i(\alpha)})$. A chase through the definitions shows y hits each a_j through the map $\delta_{\alpha}(G_{ij}) \to \mu_{i \in I} G_{ij}$. Thus y hits x in $\epsilon(G_{ij})$.

Now suppose $y, z \in \delta_{\alpha}(G_{ij})$ both map to x. Then they map to the same element in each $\mu_{i \in I} G_{ij}$. Let a_j be the image of y in $\times_{i \in I} G_{ij}$ under the map $\delta_{\alpha}(G_{ij}) \to \times_{i \in I} G_{ij}$ which we defined just before...
Lemma 13 (Lemma 1.2.3 p. 16.) Set b_j to be the image of z in $\prod_{i \in I} G_{ij}$. Then a_j and b_j differ in only finitely many coordinates.

Let I_1 be the finite subset of I which indexes the unequal coordinates of a_1 and b_1. If there is a $j \leq p_i(\alpha)$ for all $i \in I$ such that y and z agree in $\prod_{i \in I} G_{ij}$, we may assume $j = 1$, so $a_1 = b_1$, and $I_1 = \emptyset$.

Define I_k as the finite subset of I which indexes the unequal coordinates of (a_k, b_k) which lie in $I - (I_{k-1} \cup \cdots \cup I_2 \cup I_1)$. Define β by

$$p_i(\beta) = \begin{cases} k - 1 & \text{if } i \in I_k \text{ for some } k \geq 2 \\ p_i(\alpha) & \text{if } i \notin I_k \text{ for any } k \geq 2 \end{cases}.$$

Note $p_i(\beta) \leq p_i(\alpha)$, since $i \in I_k$, this says $p_i(a_k) \neq p_i(b_k)$. But if $k > p_i(\alpha)$, $p_i(a_k) = 0 = p_i(b_k)$ by the definition of our map from δ_α to \times. Hence $k \leq p_i(\alpha)$, so $p_i(\beta) \leq p_i(\alpha)$.

Let \bar{y} be the projection of y into $\delta_\beta(G_{ij})$, and let \bar{z} be the projection of z into $\delta_\beta(G_{ij})$. $p_i(\bar{y}) = p_i(a_{p_i(\beta)})$ and $p_i(\bar{z}) = p_i(b_{p_i(\beta)})$. If $p_i(a_{p_i(\beta)}) \neq p_i(b_{p_i(\beta)})$, then $i \notin I_k$ for any $k \geq 2$, since $i \in I_k$ for $k \geq 2$ says that $p_i(a_k) \neq p_i(b_k)$ but $p_i(a_{k-1}) = p_i(b_{k-1})$. If $i \notin I_k$ for any k, it says that $p_i(y) = p_i(z)$. Thus $p_i(\bar{y}) = p_i(\bar{z})$ if $i \notin I_k$. Hence they agree for all but finitely many $i \in I$. In fact, if $I_k = \emptyset$, $\bar{y} = \bar{z}$.

We can now describe $\epsilon(G_{ij})$ as a colimit (direct limit). Let $\mu(G_{ij})$ be the μ functor applied to $\{G_{i, p_i(\alpha)}\}$. Then the map $\delta_\alpha(G_{ij}) \to \epsilon(G_{ij})$ factors through $\mu_\alpha(G_{ij})$.

Theorem 18. (Theorem 1.2.2) Let A be a (\mathcal{D}, I)–regular category. Then the natural map

$$\colim_{\mathcal{D}x} \mu_\alpha \to \epsilon$$

is an isomorphism. Hence ϵ is a cokernel, kernel preserving functor.

Proof. Let us first show F preserves colim; i.e. we must show that the natural map

$$\colim_{\mathcal{D}x} F(A_\alpha) \xrightarrow{f} F(\colim_{\mathcal{D}x} A_\alpha)$$

is an isomorphism. To do this, we first compute $\text{Im}(f)$. If $\text{Im}(f_\alpha)$ is the image of $F(A_\alpha) \to \colim_{\mathcal{D}x} F(A_\alpha)$, then by Mitchell [25] (Proposition 2.8, page 46), $\text{Im}(f) = \bigcup \text{Im}(f_\alpha)$. Let $\text{Im}(g_\alpha)$ be the image of $A_\alpha \to \colim_{\mathcal{D}x} A_\alpha$. Then, since F preserves images, $F(\text{Im}(g_\alpha)) = \text{Im}(f_\alpha)$, so $\bigcup \text{Im}(f_\alpha) = \bigcup F(\text{Im}(g_\alpha))$.

Now $\{\alpha\}$ has a cofinal subsequence (which is countable and, if I is finite, it is also finite) $\{\alpha_i\}$ such that $\alpha_i < \alpha_1 < \cdots < \alpha_n < \cdots$. Therefore $\bigcup F(\text{Im}(g_{\alpha_i})) = \bigcup F(\text{Im}(g_{\alpha_i}))$ since $\{\alpha_i\}$ is cofinal.

Again by Mitchell [25] (Proposition 2.8, page 46), $\colim_{\mathcal{D}x} A_\alpha = \bigcup_{\alpha} \text{Im}(g_\alpha) = \bigcup_{\alpha} F(\text{Im}(g_\alpha))$. Thus $F(\colim_{\mathcal{D}x} A_\alpha) = F\left(\bigcup_{i=0}^{\infty} \text{Im}(g_{\alpha_i})\right)$. Since A is a (\mathcal{D}, I)–regular category, the natural map

$$\bigcup_{i=0}^{\infty} F(\text{Im}(g_{\alpha_i})) \subseteq F\left(\bigcup_{i=0}^{\infty} \text{Im}(g_{\alpha_i})\right)$$

is an isomorphism. Thus the map $\bigcup \text{Im}(f_\alpha) \subseteq F(\bigcup \text{Im}(g_\alpha))$ is an isomorphism. But this map is just the natural map $\colim_{\mathcal{D}x} F(A_\alpha) \to F(\colim_{\mathcal{D}x} A_\alpha)$.

The natural map \(\text{colim} \mu_\alpha \to \epsilon \) is the map which comes from the maps \(\mu_\alpha \to \epsilon \). To show it is an isomorphism, it is enough to show it is for pointed sets by the result above and the fact that \(F \) reflects isomorphisms. But this is exactly what Lemma \[17\] (Lemma 1.2.5 p. 18) says.

Now \(\epsilon \) preserves kernels by Theorem \[16\] (Theorem 1.2.1 p. 17), and it preserves cokernels since colimits preserve cokernels by Mitchell \[25\] (page 67, Corollary 12.2 dualized).

\[Q.E.D.\]

Corollary 19. (Corollary 1.2.2.1) Let \(\{G^n_{ij}\} \in [\mathcal{D}, \mathcal{A}]^\mathcal{I} \) be a collection of exact sequences in a \((\mathcal{D}, \mathcal{I})\)–regular category \(\mathcal{A} \) (i.e. there are maps \(f^n_{ij} : G^n_{ij} \to G^{n-1}_{ij} \) which are maps of diagrams such that \(\text{Im}(f^n_{ij}) = \ker(f^{n-1}_{ij}) \)). Then the sequence

\[
\cdots \to \epsilon(G^n_{ij}) \xrightarrow{\epsilon(f^n_{ij})} \epsilon(G^{n-1}_{ij}) \to \cdots
\]

is also exact.

Corollary 20. (Corollary 1.2.2.2) Let \(\mathcal{A} \) be a \((\mathcal{D}, \mathcal{I})\)–regular abelian category. Let \(\{G^*_n, f^*_n\} \) be a collection of chain complexes in \([\mathcal{D}, \mathcal{I}]^\mathcal{I}\). Then \(\{\epsilon(G^*_n), \epsilon(f^*_n)\} \) is a chain complex, and \(H_\ast(\epsilon(G^*_n)) = \epsilon(H_\ast(G^*_n)) \), where \(H_\ast \) is the homology functor (see Mitchell \[25\], page 152).

Proofs. The first corollary is easily seen to be true. (It is, in fact, a corollary of Theorem \[16\] (Theorem 1.2.1 p. 17).)

The second corollary is almost as easy. If \(\{Z^n_{ij}\} \) are the \(n \)–cycles, and if \(\{B^{n+1}_{ij}\} \) are the \((n+1)\)–boundaries, \(0 \to B^n_{ij} \to Z^n_{ij} \to H_n(G^*_n) \to 0 \) is exact. Applying \(\epsilon \), we get \(0 \to \epsilon(B^{n+1}_{ij}) \to \epsilon(Z^n_{ij}) \to \epsilon(H_n(G^*_n)) \to 0 \) is exact. But as \(\epsilon \) preserves kernels and images, \(\epsilon(Z^n_{ij}) \) is the collection of \(n \)–cycles for \(\epsilon(G^*_n) \) and \(\epsilon(B^{n+1}_{ij}) \) is the collection of \((n+1)\)–boundaries. Hence \(H_\ast(\epsilon(G^*_n)) \to \epsilon(H_n(G^*_n)) \) is an isomorphism. \[Q.E.D.\]

Now suppose \(J \) has a unique minimal element \(j_0 \). Then we get a square

\[
\begin{array}{ccc}
\Delta(G_{ij}) & \xrightarrow{\epsilon(G_{ij})} & \times_{i \in \mathcal{I}} G_{ij_0} \\
\mu_{i \in \mathcal{I}} (G_{ij_0}) \downarrow & & \downarrow \times_{i \in \mathcal{I}} G_{ij_0} \\
\end{array}
\]

Theorem 21. (Theorem 1.2.3) In a \((\mathcal{D}, \mathcal{I})\)–regular category, the above diagram is a pullback in the category of pointed sets, so if \(F \) reflects pullbacks the above square is a pullback.

Proof. As we showed in the proof of Theorem \[18\] (Theorem 1.2.2 p. 19), that \(F \) and \(\text{colim} \) commute, we have \(F(\Delta(G_{ij})) = \Delta(F(G_{ij})) \), so we may work in the category of pointed sets.

The omnipresent Lemma \[17\] (Lemma 1.2.5 p. 13) can be used to show the above square is a pullback. The pullback is the subset of \(\epsilon(G_{ij}) \times (\times_{i \in \mathcal{I}} G_{ij_0}) \) consisting of pairs which project to the same element in \(\mu_{i \in \mathcal{I}} (G_{ij_0}) \).

Given any element, \(x \), in \(\epsilon(G_{ij}) \) we can find \(\alpha \in J_{\mathcal{I}} \) such that the element is in the image of \(\delta_\alpha(G_{ij}) \). Lift the image of \(x \) in \(\mu_{i \in \mathcal{I}} (G_{ij_0}) \) to \(y \in \times_{i \in \mathcal{I}} G_{ij_0} \). Let \(z \in \delta_\alpha(G_{ij_0}) \) be an element which hits \(x \). Then \(y \) pushed into \(\times G_{ij_0} \) and \(z \) agree, except in finitely many places. It is then easy to find
\(\beta \in J_I \) with \(\beta \leq \alpha \) and an element \(q \in \delta_\beta(G_{ij}) \) such that \(q \) hits \(x \) and \(y \). This says precisely that our square is a pullback. \(\square \)

Remarks. In all our examples, \(F \) reflects pullbacks. The analogues of Corollaries 19 (Corollary 1.2.2.1 p. 20) and 20 (Corollary 1.2.2.2 p. 20) may be stated and proved by the reader for the \(\Delta \) functor.

Theorem 22. (Theorem 1.2.4) In a \((D,I)\)-regular category, \(\epsilon(G_{ij}) = 0 \) iff given any \(j \in J \) there exists a \(k \geq j \) such that \(G_{ik} \to G_{ij} \) is the zero map for all but finitely many \(i \).

Proof. Suppose given \(j \) we can find such a \(k \). The we can produce a cofinal set of \(j \)'s, \(j_0 \leq j_1 \leq \cdots \), such that the map \(\mu(G_{ijk}) \to \mu(G_{ijk-1}) \) is the zero map. Hence \(\epsilon = 0 \).

Conversely, suppose for some \(j_0 \) that no such \(k \) exists. This means that for every \(k \geq j_0 \) there are infinitely many \(i \) for which \(G_{ik} \to G_{ij_0} \) is not the zero map.

As usual, it suffices to prove the result for pointed sets, so assume we have \(Z_{ik} \in G_{ik} \) which goes non–zero into \(G_{ij_0} \). Pick \(j_0 \leq j_1 \leq j_2 \leq \cdots \) a countable cofinal subsequence of \(J \). We define an element \(\alpha \) of \(D_I \) as follows. Well order \(I \). Then \(\alpha(i) = j_0 \) until we hit the first element of \(I \) for which a \(Z_{ijk} \) is defined. Set \(\alpha(i) = j_k \) for this \(i \) and continue defining \(\alpha(i) = j_k \) until we hit the next element of \(I \) for which a \(Z_{ijk} \) is defined with \(k_1 \geq k \). Set \(\alpha(i) = j_{k_1} \) until we hit the next \(Z_{ijk_2} \) with \(k_2 \geq k_1 \). Continuing in this fashion is seen to give an element of \(D_I \). Define \(Z_{\alpha} \) by \(Z_{i,\alpha(i)} = 0 \) unless \(i \) is one of the distinguished elements of \(I \), in which case set \(Z_{i,\alpha(i)} = Z_{ijk} \), where \(j_k = \alpha(i) \).

Then \(Z_\alpha \in \Delta_\alpha(G_{ij}) \). It is non–zero in \(\mu_\alpha(G_{ij_0}) \) by construction, so \(\epsilon(G_{ij}) \neq 0 \). \(\square \)

3. **Proper homotopy functors and their relations**

We begin by clarifying the concept of an ordinary homotopy functor. A homotopy functor is a functor, \(h \), from the category of pointed topological spaces to some category, \(A \). Given a space \(X \) and two base points \(p_1 \) and \(p_2 \), and a path \(\lambda \) from \(p_1 \) to \(p_2 \), there is a natural transformation \(\alpha_\lambda : h(X,p_1) \to h(X,p_2) \) which is an isomorphism and depends only on the homotopy class of \(\lambda \) rel end points. Furthermore, \(h(X,p) \to h(X \times I,p \times t) \) given by \(x \mapsto (x,t) \) is an isomorphism for \(t = 0 \) and \(1 \).

For any homotopy functor we are going to associate a proper homotopy functor defined on the category of homogamous spaces and countable sets of locally finite irreducible base points.

To be able to do this in the generality we need, we shall have to digress momentarily to discuss the concept of a covering functor.

Let \(X \) be a homogamous space, and let \(\{x_i\} \) be a countable, locally finite, irreducible set of base points for \(X \). (From now on we write just “set of base points” for “countable, locally finite, irreducible set of base points.”) Let \(D_X \) be some naturally defined collection of subsets of \(X \) (by naturally defined we mean that if \(f : X \to Y \) is a proper map, \(f^{-1}D_Y \subseteq D_X \)). \(D_X \) is a diagram with arrows being inclusion maps. Assume \(D_X \) is an \(\{x_i\} \)-lattice, and assume \(\emptyset \in D_X \).

Definition. A **covering functor** for \(D_X \) is a functor, \(S \), which assigns to each \(\pi_1(X - C, x_i) \) a subgroup \(S\pi_1(X - C, x_i) \) subject to

\[
\begin{align*}
S\pi_1(X - C, x_i) \subseteq \pi_1(X - C, x_i) \\
S\pi_1(X - D, x_i) \subseteq \pi_1(X - D, x_i)
\end{align*}
\]
commutes whenever \(D \subseteq C \), \(x_i \notin C \), and where the vertical maps are induced by inclusion (\(C \) and \(D \) are any elements of \(\mathcal{D}_X \)).

Remarks. We have two examples for \(\mathcal{D}_X \) in mind. In this section we can use the set of all closed, compact subsets of \(X \) for \(\mathcal{D}_X \). For cohomology however, we will have to use the set of open subsets of \(X \) with compact closure for \(\mathcal{D}_X \).

Examples. There are three useful examples we shall define.

1) no covering functor (the subgroup is the whole group)
2) the universal covering functor (the subgroup is the zero group)
3) the universal cover of \(X \) but no more covering functor (the subgroup is the kernel of \(\pi_1(X - C, x_i) \rightarrow \pi_1(X, x_i) \)).

Definition. A compatible covering functor for \(\mathcal{D}_X \) is a covering functor \(S \) such that, for any \(C \in \mathcal{D}_X \), the cover of the component of \(X - C \) containing \(x_i \) corresponding to \(S\pi_1(X - C, x_i) \) exists.

We write \((X, \sim)\) for a compatible covering functor for \(\mathcal{D}_X \) (which is inferred from context) to denote a collection of pointed spaces \((\xymatrix{((X - C)^i, \hat{x}_i)}, \xymatrix{((X - C)^i, \hat{x}_i)})\), where \((X - C)^i\) is the covering space of the component of \(X - C \) containing \(x_i \), and \(\hat{x}_i \) is a lift of \(x_i \) to this cover such that \(\pi_1(\xymatrix{(X - C)^i, \hat{x}_i}) = S\pi_1(X - C, x_i) \). Notice this notation is mildly ambiguous since if we change the \(\hat{x}_i \) we get a different object. As the two objects are homeomorphic this tends to cause no problems so we use the more compact notation.

We say \((X, \sim) \leq (X, -)\) provided the subgroup of \(\pi_1(X - C, x_i) \) corresponding to \(-\) contains the one corresponding to \(\sim \). Hence any \((X, \sim) \leq (X, \text{no cover})\), and if the universal covering functor is compatible with \(\mathcal{D}_X \), \((X, \text{universal cover}) \leq (X, \sim)\).

Now the no covering functor is compatible with any \(\mathcal{D}_X \). If \(X \) is semi–locally 1–connected, the universal cover of \(X \) but no more is compatible with any \(\mathcal{D}_X \). If \(\mathcal{D}_X \) is the collection of closed, compact subsets of \(X \), and if \(X \) is locally 1–connected, the universal covering functor is compatible with \(\mathcal{D}_X \), as is any other covering functor. Hence a CW complex is compatible with any covering functor (see Lundell and Weingram \[21\] page 67, Theorem 6.6) for \(\mathcal{D}_X \).

We can now describe our construction. Let \((X, \sim)\) be a covering functor for \(X \). Assume from now on that our homotopy functor takes values in a \((\mathcal{D}_X, \{x_i\})\)–regular category for all homogamous \(X \) with base points \(\{x_i\} \). We apply the \(\epsilon \) and \(\Delta \) constructions to the collection

\[
G_{iC} = \begin{cases}
\epsilon((X - C)^i, \hat{x}_i) & \text{if } x_i \in X - C \\
0 & \text{if } x_i \notin X - C
\end{cases}
\]

If \(D \subseteq C \) there is a unique map \((((X - D)^i, \hat{x}_i) \rightarrow ((X - C)^i, \hat{x}_i))\) if \(x_i \in X - D \) by taking the lift of the inclusion which takes \(\hat{x}_i \) in \((X - D)^i\) to \(\hat{x}_i \) in \((X - C)^i\). Hence we get a map \(G_{ID} \rightarrow G_{iC} \). We denote these groups by \(\epsilon(X : h, \{\hat{x}_i\}, \sim) \) and \(\Delta(X : h, \{\hat{x}_i\}, \sim) \).

Theorem 23. (Theorem 1.3.1) Let \(\{x_i\} \) and \(\{y_i\} \) be two sets of base points for \(X \), \(X \) homogamous with countable base points. Let \(\Lambda \) be a locally finite collection of paths giving an equivalence between \(\{x_i\} \) and \(\{y_i\} \). Then there are natural transformations \(\alpha_\Lambda : \epsilon(X : h, \{\hat{x}_i\}, \sim) \rightarrow \epsilon(X : h, \{\hat{y}_i\}, \sim) \) and \(\alpha_\Lambda : \Delta(X : h, \{\hat{x}_i\}, \sim) \rightarrow \Delta(X : h, \{\hat{y}_i\}, \sim) \) which are isomorphisms and depend only on the proper homotopy class of \(\Lambda \) rel end points. (\(\sim \) is the covering functor induced by the set of paths \(\Lambda \).)
Proof. Define \(\alpha_A \) as follows. By relabeling if necessary we may assume \(x_i \) goes to \(y_i \) by a path in \(\Lambda \). Map \(h((X - C)^i, \hat{x}_i) \) to \(h((X - C)^i, \hat{y}_i) \) by the zero map if the path from \(x_i \) to \(y_i \) hits \(C \). If the path misses \(C \), map \(h((X - C)^i, \hat{x}_i) \) to \(h((X - C)^i, \hat{y}_i) \) by lifting the path from \(x_i \) to \(y_i \) into \((X - C)^i \) beginning at \(\hat{x}_i \), say it now ends at \(z \), and then map \(((X - C)^i, z) \) to \(((X - C)^i, \hat{y}_i) \) by the unique homeomorphism covering the identity which takes \(z \) to \(\hat{y}_i \). This defines a homomorphism \(\alpha_A \) on \(\epsilon \) and \(\Delta \).

If by \(\Lambda^{-1} \) we mean the collection of paths from \(y_i \) to \(x_i \) given by the inverse of the path from \(x_i \) to \(y_i \), we can also define \(\alpha_{A^{-1}} \).

\(\alpha_A \circ \alpha_{A^{-1}} \) takes \(h((X - C)^i, \hat{y}_i) \) to itself by the zero map if the path hits \(C \) and by the identity otherwise. Since all but finitely many paths miss \(C \), this induces the identity on \(\epsilon \). Since the empty set is the minimal element of \(D_X \), \(\alpha_A \circ \alpha_{A^{-1}} \) is the identity on \(\times h(X, y_i) \) and \(\mu(h(X, \hat{y}_i)) \).

Hence it is also the identity on \(\Delta \). A similar argument shows \(\alpha_{A^{-1}} \circ \alpha_A \) is the identity, so they are both isomorphisms.

The same sort of argument shows \(\alpha_A \) depends only on the proper homotopy type of \(\Lambda \). It can be safely left to the reader. \(\square \)

If \(h \) is actually a homotopy functor on the category of pairs (or \(n \)-ads) we can define \(\gamma(X, A; h, \{\hat{x}_i\}, ~) \) for the pair \((X, A) \) (where \(\gamma \) denotes \(\epsilon \) or \(\Delta \)) using \(G_{iC} = h((X - C)^i, (\hat{A} \cap (X - C)^i) \cup \{\hat{x}_i\}, \hat{x}_i) \) where \(\hat{A} \cap (X - C)^i = \pi^{-1}(A \cap (X - C)^i), \pi : (X - C)^i \to (X - C)^i \), if \(x_i \notin C \) and is 0 otherwise (for \(n \)-ads use \(h((X - C)^i, (\hat{A}_1 \cap (X - C)^i) \cup \{\hat{x}_i\}, \cdots, (\hat{A}_{n-1} \cap (X - C)^i) \cup \{\hat{x}_i\}, \hat{x}_i) \) or 0).

Now suppose we have a connected sequence of homotopy functors \(h_* \); i.e. each \(h_n \) is a homotopy functor on some category of pairs and we get long exact sequences. By applying our construction to \((X, A) \), one would hope to get a similar long exact sequence for the \(\epsilon \) or \(\Delta \) theories.

Several problems arise with this naive expectation. To begin, we can certainly define groups which fit into a long exact sequence. Define \(\gamma(A; X; h_*, \{\hat{x}_i\}, ~) \) where \(\gamma = \epsilon \) or \(\Delta \) from \(G_{iC} = h_*(\hat{A} \cap (X - C)^i) \cup \{\hat{x}_i\}, \hat{x}_i) \) if \(x_i \notin C \) and 0 if \(x_i \in C \). Then Corollary 1.2.2.1 {Corollary 1.2.2.1 p. 20}, or its unstated analogue for Theorem 21 {Theorem 1.2.3 p. 20}, shows we get a long exact sequence

\[
\cdots \to \gamma(A; X; h_n, \{\hat{x}_i\}, ~) \to \gamma(X; h_n, \{\hat{x}_i\}, ~) \to \gamma(X, A; h_n, \{\hat{x}_i\}, ~) \to \gamma(A; X; h_{n-1}, \{\hat{x}_i\}, ~) \to \cdots
\]

The problem of course is to describe \(\gamma(A; X; \text{etc.}) \) in terms of \(A \).

We clearly have little hope unless \(A \) is homogamous, and for convenience we insist \(A \subseteq X \) be a proper map. Such a pair is said to be homogamous, and for such a pair we begin to describe \(\gamma(A; X; \text{etc.}) \).

Pick a set of base points for \(A \), and then add enough new points to get a set of base points for \(X \). Such a collection is a set of base points for \((X, A) \). Two such are equivalent provided the points in \(X - A \) can be made to correspond via a locally finite collection of paths in \(X \) all of which lie in \(X - A \). A set of base points for \((X, A) \) is irreducible provided any subset which is also a set of base points for \((X, A) \) has the same cardinality. \(^1\) (Note an irreducible set of base points for \((X, A) \) is not always an irreducible set of base points for \(X \). \(^2\)) We can

\(^1\)And two sets of base points for \(A \) are equivalent.

\(^2\)And the set of base points for \(A \) is irreducible.
construct ϵ and Δ groups for X based on an irreducible set of base points for (X, A), and whenever we have a pair, we assume the base points are an irreducible set of base points for the pair. If X has no compact component, then any irreducible set of base points for (X, A) is one for X. Over the compact components of X, the Δ group is just the direct product of $h(X, p)$ for one p in each component of A. As in the absolute case, we drop irreducible and write “set of base points” for “irreducible set of base points”.

With a set of base points for (X, A), there is a natural map

$$\gamma(A; h, \{\hat{x}_i\}, \sim_F) \rightarrow \gamma(A; X : h, \{\hat{x}_i\}, \sim),$$

where \sim_F is the covering functor over A induced as follows. Let $D(X)$ denote the following category. The objects are closed compact subsets $C \subseteq X$. The morphisms are the inclusions. Given $A \subseteq X$ a closed subset, there is a natural map $D(X) \rightarrow D(A)$ given by $C \mapsto C \cap A$. A lift functor $F : D(A) \rightarrow D(X)$ is a functor such that $D(A) \xrightarrow{F} D(X) \rightarrow D(A)$ is the identity and such that the image of F is cofinal in $D(X)$. \sim_F is the covering functor whose subgroups are the pullbacks of

$$S\pi_1((X - F(C))^i, x_i)$$

for $x_i \in A - C$, $C \in D(A)$. The existence of our natural map $\gamma(A : \cdots \sim_F) \rightarrow \gamma(A : \cdots \sim)$ presupposes \sim_F is compatible of A, but this is always the case since the appropriate cover of $(A - C)^i$ is sitting in $((X - \hat{F}(C))^i)$. We denote this natural map by $\tau(A, X)$.

Notice first that $\tau(A, X)$ is a monomorphism since each map is. Moreover, $\tau(A, X)$ is naturally split. The splitting map is induced as follows. We need only define it on some cofinal subset of $D(X)$, so we define it on $\{F(C) \mid C \in D(A)\}$. $h_*(\hat{A} \cap (X - \hat{F}(C))^i) \cup \{\hat{x}_i\}, \hat{x}_i)$ goes to 0 if $x_i \notin A$, and it goes to to $h_*(\{A - C)^i, \hat{x}_i\}$ if $x_i \in A$, where \sim in this last case is the cover given by the covering functor \sim_F. $\hat{A} \cap (X - \hat{F}(C))^i$ is just several disjoint copies of $(A - C)^i$ union covers of other components of $A - C$. The map collapses each of these covers of other components of $A - C$ to \hat{x}_i and on the copies of $(A - C)^i$ it is just the covering projection. At this point, this is all we can say about $\tau(A, X)$. This map however has many more properties and we shall return to it again.

Now let $f : X \rightarrow Y$ be a proper map between homogamous spaces. We have the mapping cylinder M_f. (M_f, X) is an homogamous pair (Corollary 5{Corollary 1.1.1.2 p. 11}). Let $\{x_i\}$ be a set of base points for (M_f, X). We also have the homogamous pair (M_f, Y). By Lemma 3{Lemma 1.1.2 p. 10} a set of base points for Y is also a set of base points for (M_f, Y). If $\{y_i\}$ is such a set, $\tau(Y, M_f)$ is an isomorphism. This is seen by showing the splitting map is a monomorphism. But if we use the lift functor $F(C) = I \times f^{-1}(C) \cup C \subseteq M_f$ this is not hard to see.

Given a covering functor on M_f, it induces covering functors on X and Y, and these are the covering functors we shall use. Given a covering functor on Y, we can get a covering functor on M_f as follows. The subgroups to assign to $\pi_1(M_f - f^{-1}(C) \times I \cup C)$ are the subgroups for $\pi_1(Y - C)$. One can then assign subgroups to all other required sets in such a way as to get a covering functor. If we use the obvious lift functor for Y, the induced cover is the original.
By taking the cofinal collection $F(C)$, it is also not hard to see $\gamma(M_f,Y:h_n,\{\hat{y}_i\}, \sim) = 0$. We define $f: \gamma(X:h_n,\{\hat{x}_i\}, \sim) \rightarrow \gamma(Y:h_n,\{\hat{x}_i\}, \sim)$ if no component of Y is compact by

$$
\gamma(X: \text{etc.}) \xrightarrow{\tau(X,M_f)} \gamma(X;M_f: \text{etc.}) \rightarrow \gamma(M_f:h_n,\{\hat{x}_i\}, \sim) \xrightarrow{\alpha_\Lambda} \gamma(M_f:h_n,\{\hat{y}_i\}, \sim) \xrightarrow{\cong} \gamma(Y: \text{etc.})
$$

Notice that this map may depend on the paths used to join $\{\hat{x}_i\}$ to $\{\hat{y}_i\}$. If f is properly 1/2–connected, (i.e. f induces isomorphisms on H^0 and H^0_{end}: compare this definition and the one in [11] there is a natural choice of paths.

This choice is obtained as follows. Take a set of base points $\{x_i\}$ for X. By Lemma 2 {Lemma 1.1.1 p. 10}, $\{f(x_i)\}$ is a set of base points for Y. Let $\{x'_i\} \subseteq \{x_i\}$ be any subset obtained by picking precisely one element of $\{x_i\}$ in each $f^{-1}f(x_i)$. By Lemma 24 {Lemma 1.3.1 p. 25} below, $\{x'_i\}$ is a set of base points for X. Thus we can always find a set of base points for X on which f is 1–1 and whose image under f is a set of base points for Y. Take such a set of points as a set of base points for (M_f,Y). Take their image in Y as a set of base points for (M_f,Y). The paths joining these two sets are just the paths

$$
\lambda_{x_i}(t) = \begin{cases}
 x_i \times t & 0 \leq t \leq 1 \\
 f(x_i) & t = 1.
\end{cases}
$$

Given a properly 1/2–connected map f, we can get another definition of the induced map. Pick a set of base points $\{x_i\}$ as in the last paragraph. Then we have

$$
f_*: \gamma(X:h,\{\hat{x}_i\}, \sim) \rightarrow \gamma(Y:h,\{\hat{f(x_i)}\}, \sim)
$$

defined by taking $h((X-C)^i,\hat{x}_i) \rightarrow h((Y-F(C))^i,\hat{f(x_i)})$ by f, where F is a lift functor which splits $D(Y) \rightarrow D(X)$ and F is the lift functor used to get the covering functor for X from the one for Y. One sees easily the two definitions of f_* agree.

Now suppose we consider $i: A \subseteq X$ for an homogamous pair. Then we can define i_* as above. It is not hard to see

$$
\gamma(A;X: \text{etc.}) \xrightarrow{\tau(A,X)} \gamma(A: \text{etc.})
$$

commutes, where the paths we use in defining i_* are $\lambda_{x_i}(t) = x_i \times t$ in $A \times I \cup X \times 1 = M_i$.

Lemma 24. (Lemma 1.3.1) *If $f: X \rightarrow Y$ is a proper map which induces epimorphisms on H^0 and H^0_{end}, then, if $\{f(p)\}$ is a set of base points for Y, $\{p\}$ is a set of base points for X.***

Proof. Since f is an epimorphism on H^0, each path component of X has a point of $\{p\}$ in it.

Now define a cochain in $S^0(X)$ for some closed compact set $D \subseteq X$, φ_D as follows. $\varphi_D(q) = 1$ if q is in a path component of $X - D$ with no point of $\{p\}$ in it and is 0 otherwise. $\delta \varphi_D = 0$ in S^1_{end}.

Since f is an epimorphism on H^0_{end}, there must be a chain in $S^0(Y)$, ψ, such that $f^*\psi = \varphi$ in $S^0_{\text{end}}(X)$. But this means there is some closed compact set $C \subseteq X$ such that $f^*\psi$ and φ agree for any point in $X - C$. Hence there is a closed, compact set $E \subseteq Y$ such that $f^{-1}(E) \supseteq C \cup D$. There is also a closed, compact $F \subseteq Y$ such that there is an $f(p)$ in each path component of $Y - E$ which is not contained in F. ψ restricted to $Y - E$ must be 0 since some component of $X - D$
which is not contained in $f^{-1}(E)$ has a point of $\{p\}$ in it. Hence φ restricted to $X - f^{-1}(E)$ is 0, so we are done.

Definition. An homomalous pair (X, A) is properly 0–connected if the inclusion induces monomorphisms on H^0 and H^0_{end}. We have already defined properly 1/2–connected. If (X, A) is properly 0–connected we can choose a set of base points for the pair to be a set of base points for A. We say (X, A) is properly n–connected, $n \geq 1$ provided it is properly 1/2–connected, and, with base points chosen as above, $\Delta(X, A : \pi_k, \{x_i\}, \text{no cover }) = 0, 1 \leq k \leq n$. It is said to be properly n–connected at ∞ provided it is properly 1/2–connected and $\epsilon(X, A : \pi_k, \{x_i\}, \text{no cover }) = 0, 1 \leq k \leq n$.

Proposition 25. *(Proposition 1.3.1)* If (X, A) is properly 1/2–connected, and if

$$i_\ast : \Delta(A : \pi_1, \{x_i\}, \text{no cover }) \to \Delta(X : \pi_1, \{x_i\}, \text{no cover })$$

is onto, (X, A) is properly 1–connected and conversely.

Proof. If (X, A) is properly 1/2–connected,

$$\Delta(A : \pi_0, \{x_i\}, \text{no cover }) \to \Delta(X : \pi_0, \{x_i\}, \text{no cover })$$

is seen to be an isomorphism by applying Theorem 22 (Theorem 1.2.4 p. 21) to the kernel and cokernel of this map, together with the definition of a set of base points.

Hence $\Delta(A ; X : \pi_1) \to \Delta(X : \pi_1) \to \Delta(X, A ; \pi_1) \to 0$ is exact.

$$\Delta(A ; X : \pi_1) \xrightarrow{\tau(X, A)} \Delta(X : \pi_1) \xrightarrow{i_\ast} \Delta(A : \pi_1)$$

commutes, and i_\ast is an epimorphism. Hence $\Delta(X, A : \pi_1) = 0$, so (X, A) is properly 1–connected. The converse follows trivially from Proposition 26 (Proposition 1.3.2 p. 26) below and the definitions.

Proposition 26. *(Proposition 1.3.2)* Let (X, A) be a properly 1–connected pair. Then $\tau(A, X)$ is an isomorphism if the base points for the pair are a set of base points for A. We may use any lift functor to induce the covering functor.

Proof. If τ is an isomorphism on the ϵ objects, we need only show $h(\tilde{A}, \hat{x}_i) = h(\tilde{A} \cap \tilde{X}, \hat{x}_i)$. But $\tilde{A} = \tilde{A} \cap \tilde{X}$ if $\pi_1(A) \to \pi_1(X)$ is onto, so if we can show the result for the ϵ objects we are done.

We need only show τ is onto. By Theorem 22 (Theorem 1.2.4 p. 21) applied to the cokernels of the maps inducing τ, we need only show that for each $C \in D(X)$, there is a $D \supset C$ in $D(X)$ such that

$$h((A - D)^i, \hat{x}_i) \xrightarrow{i_\ast} h((A - F(D))^i \cup \{\hat{x}_i\}, \hat{x}_i) \xrightarrow{i_\ast} h((A - C)^i, \hat{x}_i) \xrightarrow{\tau_\ast} h((A - F(C))^i \cup \{\hat{x}_i\}, \hat{x}_i)$$

satisfies $\text{Im } i_\ast \subseteq \text{Im } \tau_\ast$ for all $x_i \notin D$.

\[\square\]
We saw $\tilde{A} \cap (X - \widetilde{F}(C))^i$ was just some copies of $(A - C)^i$, together with covers of components of $A - C \subseteq (X - F(C))^i$. Since (X, A) is properly 1/2-connected, we can find D so that $\text{Im } i_* \subseteq h(\text{copies of } (A - C)^i)$; i.e., we can find D so that $(X - F(D))^i \cap (A - C) = (X - F(D))^i \cap (A - C)^i$. Since (X, A) is properly 1-connected, we can find $D_1 \supseteq D$ so that

$$\pi_1(X - F(D_1), A - D_1, x_i) \rightarrow \pi_1(X - F(C), A - C, x_i)$$

is zero for all $x_i \notin D_1$. But this says all the copies of $(A - D_1)^i$ in $\tilde{A} \cap (X - \widetilde{F(D_1)})^i$ go to the same copy of $(A - C)^i$ in $\tilde{A} \cap (X - \widetilde{F(C)})^i$, namely the one containing \hat{x}_i. \hfill \Box

Theorem 22 (Theorem 1.2.4 p. 21) can also be used to get The subspace principle. Let (X, A) be an arbitrary homogamous pair. Then $\gamma(A; X : h, \{\hat{x}_i\}, ~ \sim) = 0$ iff $\gamma(A; h, \{\hat{x}_i\}, ~ \sim) = 0$ provided, for the if part,

1) if A_α is a collection of disjoint subsets of A, $h(\bigcup \alpha A_\alpha \cup p, p) \cong \oplus h(\tilde{A}_\alpha \cup p, p)$.

2) if $E \subseteq B$ are subsets of A, and if there is a $q \in \tilde{E}$ such that $h(\tilde{E}, q) \rightarrow h(\tilde{B}, q)$ is the zero map, then $h(\tilde{E} \cup p, p) \rightarrow h(\tilde{B} \cup p, p)$ is the zero map for any p. h need only be natural on subsets of A.

Proof. Only if is clear as $\tau(A, X)$ is naturally split, so we concentrate on the if part.

$\gamma(A; h, \{\hat{x}_i\}, ~ \sim) = 0$ implies by Theorem 22 (Theorem 1.2.4 p. 21) that we can find a cofinal sequence $C_0 \subseteq C_1 \subseteq \cdots$ of closed, compact subsets of A such that $h((A - C_j)^i, \hat{x}_i) \rightarrow h((A - \tilde{C}_{j-1})^i, \hat{x}_i)$ is the zero map for all $x_i \notin C_j$. If $\gamma = \Delta$, $h(A)$ is also zero.

We then claim $h(\tilde{A} \cap ((X - \widetilde{F(C_j)})^i \cup \{\hat{x}_i\}, \hat{x}_i) \rightarrow h(\tilde{A} \cap ((X - \widetilde{F(C_{j-1})})^i \cup \{\hat{x}_i\}, \hat{x}_i)$ is the zero map, and, if $\gamma = \Delta$, $h(\tilde{A} \cap \tilde{X}, \hat{x}_i) = 0$.

This last is easy since $\tilde{A} \cap \tilde{X}$ is the disjoint union of copies of \tilde{A}. Now $\tilde{A} \cap (X - \widetilde{F(C_j)})^i = \bigcup_{\beta} \bigcup_{\alpha} Z_{\alpha \beta}$ where β runs over the path components of $A - C_j$ in $(X - F(C_j))^i$, and α_{β} runs over the path components of $\pi^{-1}((A - C_j)^\beta)$ where

$$\pi: (X - \widetilde{F(C_j)})^i \rightarrow (X - F(C_j))^i$$

is the covering projection and $(A - C_j)^\beta$ is the component of $A - C_j$ corresponding to β. $Z_{\alpha \beta}$ is the α_{β}th component of $\pi^{-1}((A - C_j)^i)$.

Similarly $\tilde{A} \cap (X - \widetilde{F(C_{j-1})})^i = \bigcup_{\alpha} \bigcup_{\beta} Z_{\alpha \beta}$. The map we are looking at is just the map induced on the direct sum by the maps $h(Z_{\alpha \beta} \cup \{\hat{x}_i\}, \hat{x}_i) \rightarrow h(Z_{\alpha \beta} \cup \{\hat{x}_i\}, \hat{x}_i)$ for the unique α_{β} such that $Z_{\alpha \beta}$ is mapped into by $Z_{\alpha \beta}$. $Z_{\alpha \beta} = (A - C_j)^\beta$, so if $\hat{x}_i \in Z_{\alpha \beta}$, the map is the zero map since it is then a map of the form $h((A - C_j)^i, \hat{x}_i) \rightarrow h((A - \tilde{C}_{j-1})^i, \hat{x}_i)$ which we know to be zero.

If $\hat{x}_i \notin Z_{\alpha \beta}$, the map is now a map of the form

$h((A - C_j)^\beta \cup \{\hat{x}_i\}, \hat{x}_i) \rightarrow h((A - \tilde{C}_{j-1})^\beta \cup \{\hat{x}_i\}, \hat{x}_i)$, which is still zero by the properties of h. \hfill \Box

We now investigate the invariance of our construction.
Theorem 27. (Theorem 1.3.2) Let \(f, g : X \to Y \) be properly homotopic maps between homogamous spaces. Then there is a set of paths \(\Lambda \) such that

\[
\gamma(X : h, \{ \hat{x}_1 \}, \sim) \xrightarrow{f_*} \gamma(Y : h, \{ \hat{y}_1 \}, \sim) \xrightarrow{g_*} \gamma(Y : h, \{ \hat{y}_1 \}, \sim)
\]

commutes.

Proof. Let \(F : X \times I \to Y \) be the homotopy, and let \(M_F \) be its mapping cylinder. Then it is possible to pick paths so that

\[
\gamma(M_F : h, \{ \hat{x}_1 \} \times 0, \sim) \quad \xrightarrow{\alpha} \quad \gamma(M_F : h, \{ \hat{y}_1 \}, \sim)
\]

commutes, where the horizontal maps are the maps induced by the paths joining \(\{ \hat{x}_1 \} \times t \) to \(\{ \hat{y}_1 \} \) \((t = 0, 1)\) and the left hand vertical map is induced by the canonical path \(\hat{x}_1 \times 0 \) to \(\hat{x}_1 \times 1 \) in \(X \times I \to M_F \).

It is now a chase of the definitions to show the desired diagram commutes. \(\square \)

Corollary 28. (Corollary 1.3.2.1) Let \(f : X \to Y \) be a proper homotopy equivalence between two homogamous spaces. Then \(f_* \) is an isomorphism.

Proof. There is a standard derivation of the corollary from the theorem. \(\square \)

Corollary 29. (Corollary 1.3.2.2) A proper homotopy equivalence between homogamous spaces is properly \(n \)-connected for all \(n \) (i.e. its mapping cylinder modulo its domain is a properly \(n \)-connected pair).

Proof. \((M_f, X) \) is clearly properly \(1/2 \)-connected. \(i_* : \Delta(X : \pi_1) \to \Delta(Y : \pi_1) \) is onto, so it is easy to show \((M_f, X) \) is properly \(1 \)-connected. Then \(\gamma(X : M_f : \pi_k) \cong \gamma(X : \pi_k) \cong \gamma(M_f : \pi_k) \), so \(\gamma(M_f, X : \pi_k) = 0 \).

Corollary 30. (Corollary 1.3.2.3) If \(f : X \to Y \) is a proper homotopy equivalence,

\[
\gamma(M_f, X : h, \{ \hat{x}_1 \}, \sim) = 0.
\]

Proof. Since \(f \) is properly \(1 \)-connected, \(\gamma(X : M_f : h, \text{etc.}) \cong \gamma(X : h, \text{etc.}) \) by Proposition 26 (Proposition 1.3.2 p. 26). \(\gamma(X : h, \text{etc.}) \cong \gamma(M_f : h, \text{etc.}) \) by Corollary 28 (Corollary 1.3.2.1 p. 28). Hence \(\gamma(M_f, X : h, \text{etc.}) = 0 \).

In the other direction we have

Theorem 31. (Theorem 1.3.3) (Proper Whitehead) Let \(f : X \to Y \) be properly \(n \)-connected. Then for a locally finite CW complex, \(K \), of dimension \(\leq n \), \(f_* : [K, X] \to [K, Y] \) is an epimorphism. If \(f \) is properly \((n + 1) \)-connected, \(f_* \) is a bijection.

Remarks. \([K, X]\) denotes the proper homotopy classes of proper maps of \(K \) to \(X \). For a proof of this result, see [11] Theorem 3.4 and note the proof is valid for \(X \) and \(Y \) homogamous.

Definition. An homogamous space \(Z \) is said to satisfy \(D_n \) provided the statement of Theorem 31 (Theorem 1.3.3 p. 28) holds for \(Z \) in place of \(K \) and for each properly \(n \)-connected map \(f \) between homogamous spaces.
PROPOSITION 32. (Proposition 1.3.3) Let Z be properly dominated by a space satisfying D_n. Then Z satisfies D_n.

PROOF. We leave it to the reader to modify the proof of Proposition \square (Proposition 1.1.1 p. 10) to show Z is homogamous iff it is properly dominated by an homogamous space. Let K be a space satisfying D_n and properly dominating Z. Then $[Z, X]$ is a natural summand of $[K, X]$ for any homogamous X and the result follows. \square

We finish this section by proving a proper Hurewicz and a proper Namioka theorem.

DEFINITION. A (as opposed to the) universal covering functor for X is a covering functor \sim such that $\epsilon(X: \pi_1, \sim) = \Delta(X: \pi_1, \sim) = 0$. Note that if the universal covering functor is compatible with X, then it is a universal covering functor for X. There are other examples however.

We start towards a proof of the Hurewicz theorem. The proof mimics Spanier \square pages 391–393. We first prove

LEMMA 33. (Lemma 1.3.2) Suppose $\mathcal{G} = \{G_{ij}\}$ is a system of singular chain complexes on spaces X_{ij}. Suppose the projection maps $G_{ij} \to G_{ij-1}$ are induced by continuous maps of the spaces $X_{ij} \to X_{i,j-1}$. Assume $i \geq 0$, $j \geq 0$.

Assume we are given a system $C = \{C_{ij}\}$, where each C_{ij} is a subcomplex of G_{ij} which is generated by the singular simplices of G_{ij} which occur in C_{ij}. Also assume that the projection $G_{ij} \to G_{i,j-1}$ takes $C_{ij} \to C_{i,j-1}$.

Lastly assume that to every singular simplex $\sigma: \Delta^g \to X_{ij}$ for $j \geq n$ (n is given at the start and held fixed throughout) there is assigned a map $P_{ij}(\sigma): \Delta^g \times I \to X_{ij-n}$ which satisfies

- a) $P_{ij}(\sigma)(z, 0) = \sigma(x)$, where $\sigma: \Delta^g \to X_{ij}$.
- b) Define $\sigma_1: \Delta^g \to X_{i,j-n}$ by $\sigma_1(z) = P_{ij}(\sigma)(z, 1)$. Then we require that $\sigma_1 \in C_{i,j-n}$, and, if $\sigma \in C_{ij}$, then $\sigma_1 = \sigma$.
- c) If $e^k_i: \Delta^g \to \Delta^g$ omits the k^{th} vertex, then $P_{ij}(\sigma) \circ (e^k_i \times 1) = P_{ij}(\sigma^{(k)})$.

Then $\epsilon(C) \subseteq \epsilon(\mathcal{G})$ is an homology equivalence. (Compare Spanier \square, page 392, Lemma 7).

PROOF. Let $\alpha(i,k): C_{ik} \subseteq G_{ik}$ be the inclusion, and let $\tau(i,k): G_{ik} \to C_{i,k-n}$ be defined by $\tau(i,k)(\sigma) = \overline{\sigma}$ and extend linearly. (Here we must assume $k \geq n$). Define $\rho_r: G_{ik} \to G_{i,k-r}$ to be the projection.

One easily checks that condition c) makes $\tau(i,k)$ into a chain map. $\tau(i,k) \circ \alpha(i,k): C_{ik} \to C_{i,k-n}$ is just the map induced on the C_{ik} by ρ_n on the G_{ik}. This follows from condition b).

We claim $\alpha(i,k-n) \circ \tau(i,k): G_{ik} \to G_{i,k-n}$ is chain homotopic to ρ_n. To show this, let $D_q: S(\Delta^g) \to S(\Delta^g \times I)$ be a natural chain homotopy between $\Delta(h_1)$ and $\Delta(h_0)$, where $h_0, h_1: \Delta^g \to \Delta^g \times I$ are the obvious maps (S is the singular chain functor).

Define a chain homotopy $D_{ik}: S(X_{ik}) \to S(X_{i,k-n})$ by $D_{ik}(\sigma) = S(P_{ik}(\sigma))(D_q(\xi_q))$ (where $\xi_q: \Delta^g \subset \Delta^g$ is the identity) where σ is a q–simplex. One checks, using c) and the naturality of D_q that $\partial D_{ik} + D_{ik} \partial = \rho_n - \alpha(i,k-n) \circ \tau(i,k)$.

By definition, $\epsilon(\mathcal{G}) = \lim_k \mu(G_{ik})$ and $\epsilon(C) = \lim_k \mu(C_{ik})$.

Since

\[
\begin{array}{ccc}
C_{ik} & \xrightarrow{\alpha(i,k)} & G_{ik} \\
\downarrow & & \downarrow \\
C_{i,k-1} & \xrightarrow{\alpha(i,k-1)} & G_{i,k-1}
\end{array}
\]
commutes, we get a chain map $\alpha: \epsilon(C) \to \epsilon(G)$, which is just the inclusion.

Since $\tau(i, k) \circ \alpha(i, k) = \rho_n$,

\[
\begin{array}{c c c c}
C_{ik} & \xrightarrow{\alpha(i,k)} & G_{ik} & \xrightarrow{\tau(i,k)} & C_{i,k-n} \\
\rho_1 \downarrow & & \rho_1 \downarrow & & \rho_1 \downarrow \\
C_{i,k-1} & \xrightarrow{\alpha(i,k-1)} & G_{i,k-1} & \xrightarrow{\tau(i,k-1)} & C_{i,k-1-n}
\end{array}
\]

commutes along the outside square. Unfortunately the right-hand square may not commute as we have made no stipulation as to the behavior of P_{ij} with respect to ρ_1. Similarly

\[
\begin{array}{c c c c}
G_{ik} & \xrightarrow{\tau(i,k)} & C_{i,k-n} & \xrightarrow{\alpha(i,k-n)} & G_{i,k-n} \\
\rho_1 \downarrow & & \rho_1 \downarrow & & \rho_1 \downarrow \\
G_{i,k-1} & \xrightarrow{\tau(i,k-1)} & C_{i,k-1-n} & \xrightarrow{\alpha(i,k-1-n)} & G_{i,k-1-n}
\end{array}
\]

may not commute. However, since $\alpha(i, k - n) \circ \tau(i, k)$ is chain homotopic to ρ_n,

\[
\begin{array}{c c c c}
H_*(G_{ik}) & \xrightarrow{H_*(\tau(i,k))} & H_*(C_{i,k-n}) & \xrightarrow{H_*(\alpha(i,k-n))} & H_*(G_{i,k-n}) \\
H_*(\rho_1) \downarrow & & H_*(\rho_1) \downarrow & & H_*(\rho_1) \downarrow \\
H_*(G_{i,k-1}) & \xrightarrow{H_*(\tau(i,k-1))} & H_*(C_{i,k-1-n}) & \xrightarrow{H_*(\alpha(i,k-1-n))} & H_*(G_{i,k-1-n})
\end{array}
\]

does commute.

Define $\beta(i, k): G_{ik} \to C_{i,k-2n}$ for $k \geq 2n$ by $\beta(i, k) = \tau(i, k - n) \circ \alpha(i, k - n) \circ \tau(i, k)$. We claim

\[
\begin{array}{c c c c}
H_*(G_{ik}) & \xrightarrow{H_*(\beta(i,k))} & H_*(C_{i,k-2n}) \\
H_*(\rho_1) \downarrow & & H_*(\rho_1) \downarrow \\
H_*(G_{i,k-1}) & \xrightarrow{H_*(\beta(i,k-1))} & H_*(C_{i,k-1-2n})
\end{array}
\]

commutes. To see this, look at

\[
\begin{array}{c c c c c c c}
H_*(G_{ik}) & \xrightarrow{H_*(\tau)} & H_*(C_{i,k-n}) & \xrightarrow{H_*(\alpha)} & H_*(G_{i,k-n}) & \xrightarrow{H_*(\tau)} & H_*(G_{i,k-2n}) \\
H_*(\rho_1) \downarrow & & H_*(\rho_1) \downarrow & & H_*(\rho_1) \downarrow & & H_*(\rho_1) \downarrow \\
H_*(G_{i,k-1}) & \xrightarrow{H_*(\tau)} & H_*(C_{i,k-1-n}) & \xrightarrow{H_*(\alpha)} & H_*(G_{i,k-1-n}) & \xrightarrow{H_*(\tau)} & H_*(G_{i,k-1-2n})
\end{array}
\]

The square II commutes since it already does on the chain level. Similarly, the square II+III commutes. The square I+II commutes on the homology level. The desired commutativity is now a diagram chase.

Now define $\tau: \epsilon(H_*(G)) \to \epsilon(H_*(C))$ using the $H_*(\beta)$’s. We also have $H_*(\alpha): H_*(\epsilon(C)) \to H_*(\epsilon(G))$. By Corollary 8 [Corollary 1.1.2.2 p. 11] we have $H_*(\alpha): \epsilon(H_*(C)) \to \epsilon(H_*(G))$. $\tau \circ H_*(\alpha)$ and $H_*(\alpha) \circ \tau$ are both induced from the maps $H_*(\rho_{2n})$, and hence are the identities on the inverse limits.
Lemma 34. (Lemma 1.3.3) Let \(X \) be an homogamous space. Then we can find a countable, cofinal collection of closed, compact sets \(C_i \subseteq X \) with \(C_i \subseteq C_{i+1} \). Let \(G_{ij} = S((X - C_j)^i, \hat{x}_i) \), the singular chain groups on \((X - C_j)^i \). Let \(C_{ij} = S((X - C_j)^i, \tilde{A} \cap (X - C_j)^i, \hat{x}_i)^n \). (see Spanier page 391 for a definition).

Suppose \((X, A)\) is properly \(1\)-connected and properly \(n\)-connected at \(\infty\) for \(n \geq 0 \). Then the inclusion map \(e(C) \subseteq e(G) \) is an homology equivalence. (Notice that if we pick a set of base points \(x_i \) for \(A \), they are a set for the pair, and \(e(G) = e(X: H_\ast, \{x_i\}, \sim) \).

Proof. Let \(r = \min(q, n) \). Then we produce for every \(\sigma \in G_{ij} \) a map

\[
P_{ij}(\sigma) : \Delta^q \times I \to ((X - C_{j-r})^i, \hat{x}_i)
\]

which satisfies

a) \(P_{ij}(\sigma)(z, 0) = \sigma : \Delta^q \to ((X - C_j)^i) \) by projection \(((X - C_{j-r})^i) \).

b) If \(\sigma_1(z) = P_{ij}(\sigma)(z, 1), \sigma_1 \in C_{ij-1}, \) and if \(\sigma \in C_{ij} \), then

\[
P_{ij}(\sigma) : \Delta^q \times I \to (P_{ij}(\sigma)^{k(q)}) \quad q \leq n
\]

\[
P_{ij}(\sigma)^{k(q)} \quad q > n
\]

From such a \(P \) it is easy to see how to get a \(P \) as required by our first lemma. We remark that \(C_{ij} \) and \(G_{ij} \) satisfy all the other requirements to apply the lemma. Hence Lemma 33 (Lemma 1.3.2 p. 29) will then give us the desired conclusion.

We define \(P_{ij} \) by induction on \(q \). Let \(q = 0 \). Then \(\sigma \in G_{ij} \) is a map \(\sigma : \Delta^0 \to ((X - C_j)^i) \). Since the point \(\sigma(\Delta^0) \) lies in the same path component of \((X - C_j)^i \) as \(\hat{x}_i \), there is a path joining them. Let \(P_{ij}(\sigma) \) be such a path. If \(\sigma(\Delta^0) = \hat{x}_i \), \(P_{ij}(\sigma) \) should be the constant path. This defines \(P_{ij} \) for \(q = 0 \), and \(P \) is easily seen to satisfy a)–c).

Now suppose \(P_{ij} \) is defined for all \(\sigma \) of degree \(\leq q < q \leq n \) so that it has properties a)–c).

If \(\sigma \in C_{ij} \), b) defines \(P(\sigma) \), and \(P \) then satisfies a) and c). So suppose \(\sigma \notin C_{ij} \). a) and c) define \(P_{ij} \) on \(\Delta^q \times 0 \cup \hat{\Delta}^q \times I \); i.e. we get a map \(f : \Delta^q \times 0 \cup \hat{\Delta}^q \times I \to (X - C_{j-1})^i \). There is a homeomorphism \(h : E^q \times I \approx \Delta^q \times I \) such that \(h(E^q \times 0) = \Delta^q \times 0 \cup \hat{\Delta}^q \times I \); \(h(S^{q-1} \times 0) = \Delta^q \times 1 \); and \(h(S^{q-1} \times I \cup E^q \times 1) = \Delta^q \times 1 \). Let \(g : (E^q, S^{q-1}) \to ((X - C_{j-1})^i, \tilde{A} \cup (X - C_{j-1})^i) \) be defined by \(g = f \circ h \).

Because \(q \leq n \) and \((X, A) \) is properly \(n \)-connected at \(\infty \), we could have chosen (and did) the \(C_j \) so that

\[
\pi_q(X - C_k, A \cap (X - C_k), *) \to \pi_q(X - C_{k-1}, A \cap (X - C_{k-1}), *)
\]

is the zero map for \(q \leq n \). Thus we get a homotopy

\[
H : (E^q, S^{q-1}) \times I \to ((X - C_{j-1})^i, \tilde{A} \cap (X - C_{j-1})^i)
\]

between \(\rho_1 \circ g \) and an element of \(C_{ij-1} \).

Define \(P_{ij}(\sigma) \) to be the composite \(\Delta^q \times I \to (X - C_{j-1})^i \). \(P_{ij} \) clearly satisfies a) and b). Since \(h \) was chosen carefully c) is also satisfied.

In this way \(P \) is defined for all simplices of degree \(\leq n \). Note that a singular simplex of degree \(> n \) is in \(C_{ij} \) iff every proper face is in \(C_{ij} \).

Suppose that \(P \) has been defined for all degrees \(\leq q \), where \(q > n \). If \(\sigma \in C_{ij} \), we define \(P_{ij}(\sigma) \) by b) as usual. It satisfies a) and c). So suppose \(\sigma \notin C_{ij} \). Then a) and c) define a map...
f: Δ^n × 0 ∪ Δ^n × I → (X − C_{j−n})^i. By the homotopy extension property we can extend f to some map P(σ): Δ^n × I → (X − C_{j−n})^i. It clearly satisfies a) and c). It also satisfies b) since every proper face of σ1 is in C_{i,j−n}. Hence we have defined our P.

Now define ϵ^{(n)}(X, A: H_q, ~) to be
\[ϵ\left(H_q\left(S\left((X − C_j)^i, \tilde{A} \cap (X − C_j)^i, \tilde{x}_i\right)^n / S\left((X − C_j)^i, \tilde{A} \cap (X − C_j)^i, \tilde{x}_i\right)^n \cap S\left(\tilde{A} \cap (X − C_j)^i, \tilde{x}_i\right)\right]\].

Then there are natural maps
\[ϵ^{(n)}(X, A: H_q, ~) → ϵ^{(n−1)}(X, A: H_q, ~) → \cdots → ϵ(X, A: H_q, \{\tilde{x}_i\}, ~) .\]

Lemma 35. (Lemma 1.3.4) Assume (X, A) is a properly 1–connected pair which is properly n–connected at ∞ for some n ≥ 0. Then the natural map ϵ^{(n)}(X, A: H_q, ~) → ϵ(X, A: H_q, \{\tilde{x}_i\}, ~) is an isomorphism for all q.

Proof. We have the following commutative diagram
\[
\begin{array}{ccc}
0 & \to & S((X − C_j)^i, \text{etc.})^n \cap S(\tilde{A} \cap (X − C_j)^i) \\
\downarrow{α} & & \downarrow{β} \\
0 & \to & S(\tilde{A} \cap (X − C_j)^i) \to S((X − C_j)^i)
\end{array}
\]

(\text{the quotient complex}) → 0
\[
\downarrow{γ} \quad \to \quad S((X − C_j)^i, \tilde{A} \cap (X − C_j)^i) → 0
\]

where (the quotient complex) was used in defining ϵ^{(n)}(X, A: H_q, ~).

Now, since (X, A) is properly 1–connected, the subspace groups ϵ^{(n)}(A; X: H_q, ~) and ϵ(A; X: H_q, ~) are the absolute groups. Since (X, A) is properly 1–connected and properly n–connected at infinity for all n, Lemma 34 (Lemma 1.3.3 p. 31) says ϵ(α) is an isomorphism on homology. Similarly, Lemma 34 (Lemma 1.3.3 p. 31) says ϵ(β) is an isomorphism on homology. Thus ϵ(γ) is an isomorphism on homology as asserted.

Theorem 36. (Theorem 1.3.4) Suppose (X, A) is properly 1–connected and properly (n − 1)–connected at ∞ for some n ≥ 2. Then the Hurewicz map
\[ϵ(X, A: \pi'_n, \{\tilde{x}_i\}, ~) → ϵ(X, A: H_n, \{\tilde{x}_i\}, ~) \]
is an isomorphism, where \(\pi'_n((X − C_j)^i, \tilde{A} \cap (X − C_j)^i \cup \tilde{x}_i, \hat{x}_i)\) is π_n quotiented out by the action of \(\pi_1(\tilde{A} \cap (X − C_j)^i \cup \tilde{x}_i, \hat{x}_i)\).
Lemma 35. \(\epsilon \) is an isomorphism. Thus \(\epsilon \) induced by the lift functor from a cover \(\tilde{A} \) is also true for the absolute groups.

Moreover, \(\epsilon \) commutes. The first two maps are clearly isomorphisms for \(k \). \(\square \)

Theorem 37. (Theorem 1.3.5) Suppose that \(\epsilon(A; \pi_1, \{\hat{x}_i\}, \sim) = 0 \) where \(\sim \) is the cover over \(A \) induced by the lift functor from a cover \(\sim \) over \(X \). Then the natural surjection \(\epsilon(X; A; \pi_n, \{\hat{x}_i\}, \sim) \rightarrow \epsilon(X; A; \pi_n', \{\hat{x}_i\}, \sim) \) is an isomorphism.

Proof. Set \(G_{ij} = \pi_n((X-C_j)^i, \tilde{A} \cap (X-C_j)^i \cup \{\hat{x}_i\}, \hat{x}_i) \) and \(H_{ij} = \pi_n'((X-C_j)^i, \tilde{A} \cap (X-C_j)^i \cup \{\hat{x}_i\}, \hat{x}_i) \). Define \(K_{ij} \) to be the kernel of \(G_{ij} \rightarrow H_{ij} \rightarrow 0 \). \(K_{ij} \) is generated by elements of the form \(x - \alpha \cdot x \) where \(x \in \pi_n((X-C_j)^i, \tilde{A} \cap (X-C_j)^i \cup \{\hat{x}_i\}, \hat{x}_i) \) and \(\alpha \in \pi_1(\tilde{A} \cap (X-C_j)^i \cup \{\hat{x}_i\}, \hat{x}_i) \).

Since \(\epsilon(A; \pi_1, \{\hat{x}_i\}, \sim) = 0 \), the subspace principle says that we can assume the map \(\pi_1(\tilde{A} \cap (X-C_j)^i \cup \{\hat{x}_i\}, \hat{x}_i) \rightarrow \pi_1(\tilde{A} \cap (X-C_{j-1})^i \cup \{\hat{x}_i\}, \hat{x}_i) \) is the zero map. Then \(K_{ij} \rightarrow K_{ij-1} \) takes \(x - \alpha \cdot x \) to \(i_*(x) - i_*(\alpha \cdot x) = i_*(x) - i_*(\alpha) \cdot i_*(x) = i_*(x) - i_*(x) = 0 \), so this map is the zero map. \(\square \)

Theorem 38. (Theorem 1.3.6) Let \((X, A) \) be a properly 1-connected pair. Then, for any covering functor \(\sim \) on \(X \), the natural map \(\epsilon(X; A; \pi_n, \{\hat{x}_i\}, \sim) \rightarrow \epsilon(X; A; \pi_n, \{\hat{x}_i\}, \text{no cover}) \) is an isomorphism.\(^1\)

Proof. We have
\[
\cdots \rightarrow \epsilon(A; \pi_k, \{\hat{x}_i\}, \sim) \rightarrow \epsilon(X; \pi_k, \{\hat{x}_i\}, \sim) \rightarrow \epsilon(X; A; \pi_k, \{\hat{x}_i\}, \sim) \rightarrow \cdots
\]
commutes. The first two maps are clearly isomorphisms for \(k \geq 2 \), so the third is for \(k \geq 3 \). Moreover
\[
\cdots \rightarrow \epsilon(A; \text{ditto, no cover}) \rightarrow \epsilon(X; \text{ditto, no cover}) \rightarrow \epsilon(X; A; \text{ditto, no cover}) \rightarrow \cdots
\]
is a pullback since it is obtained as the \(\epsilon \) construction applied to pullbacks. Hence the theorem remains true for \(k = 2 \). \(\square \)

Corollary 39. (Corollary 1.3.6.1) Suppose \((X, A) \) is a properly 1-connected pair which is \((n-1) \)-connected at \(\infty \) for some \(n \geq 2 \). If \(n = 2 \) assume \(\epsilon(A; \pi_1, \{\hat{x}_i\}, \text{no cover}) \rightarrow \epsilon(X; \pi_1, \{\hat{x}_i\}, \text{no cover}) \) is an isomorphism. Then the Hurewicz map
\[
\epsilon(X; A; \pi_n, \{\hat{x}_i\}, \text{no cover}) \rightarrow \epsilon(X; A; H_n, \{\hat{x}_i\}, \sim)
\]
is an isomorphism where \(\sim \) is any universal covering functor for \(X \).

Theorem 40. (Theorem 1.3.7) Theorems \(\text{[36]} \) (Theorem 1.3.4 p. \(\text{[32]} \)), \(\text{[37]} \) (Theorem 1.3.5 p. \(\text{[33]} \)) and \(\text{[38]} \) (Theorem 1.3.6 p. \(\text{[33]} \)) are true (after appropriate changes) with \(\Delta \) instead of \(\epsilon \). They are also true for the absolute groups.

\(^1\) For \(n \geq 2 \).
Proof. Easy. □

Now suppose \((X, A)\) is a locally compact CW pair. Then we might hope to improve our Hurewicz theorems by getting information about the second non–zero map (see [42]). We do this following Hilton [13].

Definition. Two proper maps \(f, g: X \to Y\) are said to be properly \(n\)--homotopic if for every proper map \(\phi: K \to X\), where \(K\) is a locally compact CW complex of dimension \(\leq n\), \(f \circ \phi\) is properly homotopic to \(g \circ \phi\). \(X\) and \(Y\) are of the same proper \(n\)--homotopy type provided there exist proper maps \(f: X \to Y\) and \(g: Y \to X\) such that \(f \circ g\) and \(g \circ f\) are properly \(n\)--homotopic to the identity. Two locally compact CW complexes, \(K\) and \(L\), are said to be of the same proper \(n\)--type iff \(K^n\) and \(L^n\) have the same proper \((n–1)\)--type. A proper cellular map \(f: K \to L\) is said to be a proper \(n\)--equivalence provided there is a proper map \(g: L^{n+1} \to K^{n+1}\) with \(g|_{K^n+1} = f\) and \(g \circ f|_{K^{n+1}}\) properly \(n\)--homotopic to the identity.

A proper \(J_m\)--pair, \((X, A)\), is a properly 1–connected, locally compact CW pair such that the maps \(\Delta(X^{n-1} \cup A, \pi_n, \{\hat{x}_i\}, \text{no cover}) \to \Delta(X^n \cup A, \pi_n, \{\hat{x}_i\}, \text{no cover})\) are zero for \(2 \leq n \leq m\). A proper \(J_m\)--pair at \(\infty\) is the obvious thing.

Lemma 41. (Lemma 1.3.5) The property of being a proper \(J_m\)--pair is an invariant of proper \(m\)--type.

Proof. See Hilton [13]. □

Theorem 42. (Theorem 1.3.8) Let \((X, A)\) be a proper \(J_m\)--pair at \(\infty\). Then the Hurewicz map \(h_n: e(X, A; \pi_n, \{\hat{x}_i\}, \text{no cover}) \to e(X, A; H_n, \{\hat{x}_i\}, \sim)\), where \(\sim\) is a universal covering functor for \(X\), satisfies \(h_n\) is an isomorphism for \(n \leq m\) and \(h_{m+1}\) is an epimorphism.

Proof. See Hilton [13]. □

Corollary 43. (Corollary 1.3.8.1) The same conclusions hold for a proper \(J_m\)--pair with the \(\Delta\) groups.

Corollary 44. (Corollary 1.3.8.2) Let \((X, A)\) be a proper \((n–1)\)--connected, locally compact CW pair, for \(n \geq 2\). If \(n = 2\) let \(\Delta(A: \pi_1, \{\hat{x}_i\}, \text{no cover}) \to \Delta(X: \pi_1, \{\hat{x}_i\}, \text{no cover})\) be an isomorphism. Then the Hurewicz map \(h_n: \Delta(X, A; \pi_n, \{\hat{x}_i\}, \text{no cover}) \to \Delta(X, A; H_n, \{\hat{x}_i\}, \sim)\), is an isomorphism, where \(\sim\) is a universal covering functor for \(X\). \(h_{n+1}\) is an epimorphism.

Proof. In section 5 we will see there is a locally finite 1–complex \(T \subseteq A\) such that \((A, T)\) is a proper 1/2–equivalence and \(\Delta(T: \pi_k, \{\hat{x}_i\}, \text{no cover}) = 0\) for \(k \geq 1\). Then \((T, T)\) is certainly a proper \(J_n\)--complex. \((T, T) \subseteq (X, A)\) is a proper \((n–1)\)--equivalence, so \((X, A)\) is a \(J_n\)--complex by Lemma [41] (Lemma 1.3.5 p. [34]). □

Theorem 45. (Theorem 1.3.9) (Namioka [28]) Let \(\phi: (X, A) \to (Y, B)\) be a map of pairs of locally compact CW complexes. Let \(\phi|_X\) and \(\phi|_A\) be properly \(n\)--connected, \(n \geq 1\). \((\phi|_X\) and \(\phi|_A\) should induce isomorphisms on \(\Delta(\ : \pi_1, \{\hat{x}_i\}, \text{no cover})\) if \(n = 1\). Then the Hurewicz map \(h_{n+1}: \Delta((M_\phi: M_{\phi|_A}; X; \pi_{n+1}, \{\hat{x}_i\}, \text{no cover}) \to \Delta((M_\phi: M_{\phi|_A}; X; H_{n+1}, \{\hat{x}_i\}, \sim)\), where \(\sim\) is a universal covering functor of \(M_\phi\), is an epimorphism.

Proof. \((M_\phi: M_{\phi|_A}; X)\) is a triad and the groups in question are the proper triad groups. The reader should have no trouble defining these groups. We can pick a set of base points for \((X, A)\) and it will also be a set for our triad.
The triad groups fit into a long exact sequence
\[\cdots \to \Delta((M_{\phi|A}); M_{\phi}) \to \Delta((M_{\phi}), X) \to \Delta((M_{\phi}: M_{\phi|A}, X)) \to \cdots, \]
where again we get the subspace groups. Since \(\phi|A \) and \(\phi|X \) are properly \(n \)-connected, \(h_m \) for \((M_{\phi}, A)\) is an isomorphism for \(m \leq n \) and an epimorphism for \(m = n + 1 \). By the subspace principle, \(h_m \) for \((M_{\phi|A}, A); M_{\phi})\) is an isomorphism for \(m \leq n \) and an epimorphism for \(m = n + 1 \). The strong version of the 5–lemma now shows the triad \(h_n \) an isomorphism and the triad \(h_{n+1} \) an epimorphism.

Notation: \(\Delta_*(X, A; \sim) \) will hereafter denote \(\Delta(X, A; H_*, \{\hat{x}_i\}, \sim) \) for some set of base points for the pair \((X, A)\). Similar notation will be employed for homology \(n \)--ad groups, subspace groups, etc. We conclude this section with some definitions and computations.

Definition. An homogamous space \(X \) is said to have **monomorphic ends**, provided \(\Delta(X: \pi_1, \{x_i\}, \text{no cover}) \to \times_{i \in I} \pi_1(X, x_i) \) is a monomorphism (equivalently \(\epsilon \to \mu \) is a monomorphism). A space has **epimorphic ends** provided the above map is onto, and **isomorphic ends** if the map is an isomorphism.

As examples, if \(X \) is an homogamous space which is not compact, \(X \times \mathbb{R} \) has one, isolated end (see \([32]\)) which is epimorphic. \(X \times \mathbb{R}^2 \) has isomorphic ends. These results use Mayer–Vietoris to compute the number of ends of \(X \times \mathbb{R} \) and van–Kampen to yield the \(\pi_1 \) information, using the following pushout
\[(X - C) \times Y - D) \to X \times (Y - D) \]
\[(X - \bar{C}) \times Y \to X \times Y \to C \times D \]

In fact, this diagram shows that if \(X \) and \(Y \) are not compact (but are path connected), \(X \times Y \) has one end, which is seen to be epimorphic since \(\pi_1(X \times Y - C \times D) \to \pi_1(X \times Y) \) is easily seen to be onto. If \(X \) has epimorphic ends, \(\pi_1(X - C, p) \to \pi_1(X, p) \) must always be onto, so if \(X \) and \(Y \) have epimorphic ends, \(X \times Y \) has one isomorphic end.

Monomorphic ends are nice for then the third example of covering functor that we gave (the universal cover of \(X \) bit no more) becomes a universal covering functor. Farrell and Wagoner \([9]\) or \([11]\) then showed that a proper map \(f: X \to Y \), \(X, Y \) locally compact CW, with \(X \) having monomorphic ends is a proper homotopy equivalence provided it is a properly 1–connected map; a homotopy equivalence; and \(f^*: H^*_c(\bar{Y}) \to H^*_c(\bar{X}) \) is an isomorphism where \(\sim \) denotes the universal cover (coefficients are the integers).

4. Proper cohomology, coefficients and products

In attempting to understand ordinary homotopy theory, cohomology theory is an indispensable tool. In ordinary compact surgery, the relationship between homology and cohomology in Poincaré duality spaces forms the basis of many of the results. To extend surgery to paracompact objects, we are going to need a cohomology theory.

If one grants that the homology theory that we constructed in section 3 is the right one, then the correct cohomology theory is not hard to intuit. To be loose momentarily, in homology we associate to each compact set \(C \) the group \(H_*(X - C) \). If \(M - C \) is a manifold with boundary, Lefschetz duality tells us this is dual to \(H^c_*(\bar{X} - \bar{C}, \partial C) \), where \(\bar{M} - \bar{C} \) is the closure of \(M - C \). If \(C \subseteq D \), we
have a map $H_\ast(M\sim-D) \to H_\ast(M\sim-C)$, so we need a map $H_\ast^\prime(M\sim-D,\partial D) \to H_\ast^\prime(M\sim-C,\partial C')$. A candidate for this map is

$$H_\ast^\prime(M\sim-D,\partial D) \xrightarrow{\tr} H_\ast^\prime(M\sim-C,\partial D) \xrightarrow{\ex} H_\ast^\prime(M\sim-C,D\sim-C) \xrightarrow{\inc} H_\ast^\prime(M\sim-C,\partial C')$$

where $M\sim-D = \pi^{-1}(M-D)$ $(\pi: M\sim-C \to M-C)$, inc is the map induced by inclusion, tr is the trace and ex is an excision map.

The first problem that arises is that ex need not be an isomorphism. This problem is easily overcome. We define $O(X)$ to be the category whose objects are open subsets of X whose closure (in X) is compact. If $U, V \in O(X)$, there is a morphism $U \to V$ iff $\overline{U} \subseteq V$ or $U = V$. $O(X)$ will be our diagram scheme. Note we have a functor $O(X) \to D(X)$ which sends $U \mapsto \overline{U}$. Since X is locally compact, this functor has a cofinal image (X is homogamous, hence locally compact).

The second problem which arises concerns covering functors. Since $X-U, U \in O(X)$ is closed, it is hard to get conditions on X so that $X-U$ has arbitrary covers. There are two solutions to this problem. We can restrict $O(X)$ (e.g. if X is an homogamous CW complex, and if we pick sets U so that $X-U$ is a subcomplex, then we always have covers), or we can ignore the problem. We choose the latter alternative, and when we write \sim is a covering functor for X, we mean \sim is compatible with $X-U$ for each $U \in O(X)$. It is not hard to see that if X is locally 1-connected, then universal covering functors exist despite the fact that the universal covering functor need not.

Now we could have defined homology and homotopy groups using $O(X)$ instead of $D(X)$. Given a covering functor for $O(X)$ there is an obvious one for $D(X)$. It is not hard to show that the homology and homotopy groups for X are the same whether one uses $O(X)$ or $D(X)$.

Definition. $\Delta_\ast(X; A_1, \cdots, A_n: \sim, \Gamma)$, where Γ is a local coefficient system on X, denotes the Δ–construction applied to $G_{i\mathcal{U}} = H_\ast^\prime((X\sim-U)^i; A_1 \cap (X\sim-U)^i, \cdots, A_n \cap (X\sim-U)^i; i^\ast \Gamma)$, where the homology group is the ordinary (singular) n–ad homology group with coefficients $i^\ast \Gamma$, where $i^\ast \Gamma$ is the local system induced from Γ by the composite $(X\sim-U)^i \xrightarrow{\pi} X-U \subseteq X$.

Definition. $\Delta^\ast(X: \sim, \Gamma)$ is the Δ–construction applied to

$$G_{i\mathcal{U}} = H_c^\ast((X\sim-U)^i, \partial U \cap (X\sim-U)^i; i^\ast \Gamma)$$

($\partial U =$ frontier of U in X).

$\Delta^\ast(X, A: \sim, \Gamma)$ is the Δ–construction applied to

$$G_{i\mathcal{U}} = H_c^\ast((X\sim-U)^i; \widetilde{\partial U} \cap (X\sim-U)^i, \widetilde{A} \cap (X\sim-U)^i; i^\ast \Gamma) \ .$$

Caution: (X, A) must be a proper pair (i.e. $A \subseteq X$ is proper) before $H_c^\ast(X, A)$ makes sense.

A similar remark applies to n–ads.

$\Delta^\ast(X; A_1, \cdots, A_n: \sim, \Gamma)$ is defined similarly.

In our definition we have not defined our maps $G_{i\mathcal{V}} \to G_{i\mathcal{U}}$ if $\overline{U} \subseteq V$. If $X\sim-V = \pi^{-1}(X-V)$, where $\pi: (X-U)^i \to X-U$, then the map is the composite

$$H_c^\ast((X\sim-V)^i, \partial V \cap (X\sim-V)^i; i^\ast \Gamma) \xrightarrow{\tr} H_c^\ast(X-V, \partial V; \Gamma_1) \xrightarrow{\ex} H_c^\ast((X\sim-U)^i, \partial U \cap (X\sim-U)^i; \Gamma_2) \xrightarrow{\inc} H_c^\ast((X\sim-U)^i, \partial U \cap (X\sim-U)^i; i^\ast \Gamma)$$

where Γ_1 and Γ_2 are the obvious local systems. A similar definition gives the map in the pair and n–ad cases.
Once again we get long exact sequences modulo the usual subspace difficulties. We let $\Delta^*(A; X : \sim, \Gamma)$ denote the subspace group with a similar notation for the sub-n-ad groups. Again we get a subspace principle. Lastly, the cohomology groups are “independent” of base points (compare Theorem 27 (Theorem 1.3.2 p. 28)) and are invariant under proper homotopy equivalence. The proofs of these results should be easy after section 3, and hence they are omitted.

One reason for the great power of cohomology is that we have various products. The first product we investigate is the cup product.

Theorem 46. (Theorem 1.4.1) There is a natural bilinear pairing, the cup product

$$H^m(X, A; \Gamma_1) \times \Delta^n(X, B; \sim, \Gamma_2) \rightarrow \Delta^{m+n}(X; A; \sim, \Gamma_1 \otimes \Gamma_2).$$

If $\{A, B\}$ is a properly excisive pair, the natural map

$$\Delta^n(X, A \cup B; \sim, \Gamma_1 \otimes \Gamma_2) \rightarrow \Delta^n(X; A, B; \sim, \Gamma_1 \otimes \Gamma_2)$$

is an isomorphism, so we get the “usual” cup product.

Proof. Given $\varphi \in H^m(X, A; \Gamma_1)$, define, for any $U \in \mathcal{O}(X)$, $\varphi_U \in H^m((X-U)^i, \tilde{A} \cap (\widetilde{X-U})^i, i^* \Gamma_1)$ as the image of φ under the composite

$$H^m(X, A; \Gamma_1) \rightarrow H^m((X-U), (A-U); \Gamma_1) \rightarrow H^m((\widetilde{X-U})^i, \tilde{A} \cap (\widetilde{X-U})^i, i^* \Gamma_1).$$

One then checks that if $G_{U} = H^m((X-U)^i, \tilde{B} \cap (\widetilde{X-U})^i, \partial U \cap (\widetilde{X-U})^i, i^* \Gamma_2)$ and if $H_{U} = \tilde{G}_{U}$ the corresponding group for $\Delta^{m+n}(X; A, B; \sim, \Gamma_1 \otimes \Gamma_2)$, then

$$G_{U} \xrightarrow{\cup \varphi_U} H_{U} \xrightarrow{\cup \varphi_{U}} H_{U}$$

commutes. Hence the maps $\cup \varphi_U$ give us a map $\Delta^n(X, B; \sim, \Gamma_2) \rightarrow \Delta^{m+n}(X; A, B; \sim, \Gamma_1 \otimes \Gamma_2)$. One easily checks this map gives us a natural bilinear pairing.

Now we have a natural map $\Delta^*(X, A \cup B) \rightarrow \Delta^*(X; A, B)$. We get a commutative diagram

$$
\begin{array}{cccccccc}
\cdots & \rightarrow & \Delta^*(X, A \cup B) & \rightarrow & \Delta^*(X, A) & \rightarrow & \Delta^*(A \cup B, A; X) & \rightarrow & \cdots \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
\cdots & \rightarrow & \Delta^*(X; A, B) & \rightarrow & \Delta^*(X, A) & \rightarrow & \Delta^*(B, A \cap B; X) & \rightarrow & \cdots
\end{array}
$$

where the rows are exact. $\{A, B\}$ a properly excisive pair implies $\Delta^*(A \cup B, A) \rightarrow \Delta^*(B, A \cap B)$ is an isomorphism for a set of base points in $A \cap B$ which is a set for A, B, and $A \cup B$. The subspace principle now shows the right hand map is an isomorphism. The middle map is the identity, so the left hand map is an isomorphism. This establishes the last part of our claim.

For completeness we give the definition of a properly excisive pair.

Definition. A pair $\{A, B\}$ of homogamous spaces is said to be properly excisive with respect to some covering functor \sim, provided

$$\Delta^*(A \cup B; A, B; \sim, \Gamma) = \Delta^*(A \cup B; A, B; \sim, \Gamma) = H^0_{\text{end}}(A \widetilde{\cup} B; \tilde{A}, \tilde{B}; \Gamma) = 0$$

for any local system Γ. The pair is properly excisive if it is properly excisive with respect to all covering functors compatible with $A \cup B$.

The other product of great importance is the cap product. We get two versions of this (Theorems 47 (Theorem 1.4.2 p. 38) and 48 (Theorem 1.4.3 p. 38)).

Theorem 47. (Theorem 1.4.2) There is a natural bilinear pairing, the cap product
\[\Delta^m(X, A; \sim, \Gamma_1) \times H_{n+m}^{\ell.f.}(X; A, B; \Gamma_2) \to \Delta_n(X, B; \sim, \Gamma_1 \otimes \Gamma_2) \]
If \(\{A, B\} \) is a properly excisive pair, we can define the “usual” cap product.

Proof. Let \(C \in H_{n+m}^{\ell.f.}(X; A, B; \Gamma_2) \). Define
\[\Delta_{m}((X - U)^{i}; \tilde{A} \cap (X - U)^{i}, \tilde{B} \cap (X - U)^{i}, \tilde{U} \cap (X - U)^{i}; i^{*}\Gamma_2) \]
as the image of \(C \) under the composite
\[H_{n+m}^{\ell.f.}(X; A, B; \Gamma_2) \]
\[\downarrow \]
\[H_{n+m}^{\ell.f.}(X; A, B, U; \Gamma_2) \]
\[\xleftarrow{\text{ex}} \]
\[H_{n+m}^{\ell.f.}(X - U; A - U, B - U, \partial U; \Gamma_2) \]
\[\downarrow \text{tr} \]
\[H_{n+m}^{\ell.f.}((X - U)^{i}; \tilde{A} \cap (X - U)^{i}, \tilde{B} \cap (X - U)^{i}, \tilde{U} \cap (X - U)^{i}; i^{*}\Gamma_2) \].

One can check that \(\cap C_U \) satisfies the necessary commutativity relations to define a map
\[\Delta^m(X, A; \sim, \Gamma_1) \to \Delta_n(X, B; \sim, \Gamma_1 \otimes \Gamma_2) \].

If \(\{A, B\} \) is properly excisive, \(H_{*}^{\ell.f.}(A \cup B; A, B) = 0 \) follows from \(\Delta^{*} = 0 \). Universal coefficients shows \(H_{*}^{\ell.f.}(A \cup B; A, B) = 0 \), so the standard exact sequence argument shows \(H_{*}^{\ell.f.}(X; A, B; \Gamma_2) \cong H_{*}^{\ell.f.}(X; A \cup B; \Gamma_2) \). \(\square \)

Theorem 48. (Theorem 1.4.3) There is a natural bilinear pairing, the cap product
\[H^m(X, A; \Gamma_1) \times \Delta_{n+m}(X; A, B; \sim, \Gamma_2) \to \Delta_n(X, B; \sim, \Gamma_1 \otimes \Gamma_2) \].

If \(\{A, B\} \) is a properly excisive pair, we can define the “usual” cap product.

Proof. Given \(\varphi \in H^m(X, A; \Gamma_1) \), define, for any \(U \in O(X) \), \(\varphi_U \in H^m((X - U)^{i}, \tilde{A} \cap (X - U)^{i}, \tilde{B} \cap (X - U)^{i}, \tilde{U} \cap (X - U)^{i}; i^{*}\Gamma_1) \) as the image of \(\varphi \) under the composite
\[H^m(X, A; \Gamma_1) \to H^m((X - U), (A - U); \Gamma_1) \xrightarrow{\pi*} H^m((X - U)^{i}, \tilde{A} \cap (X - U)^{i}, \tilde{B} \cap (X - U)^{i}, \tilde{U} \cap (X - U)^{i}; i^{*}\Gamma_1) \].

One checks again that the necessary diagrams commute. The statement about \(\{A, B\} \) follows from the 5–lemma and the subspace principle. \(\square \)

We will also need a version of the slant product for our theory. To get this we need to define a group for the product of two “ads”. As usual we apply the \(\Delta \)–construction to a particular situation. Pick a set of base points \(X \) and a set for \(Y \). Our indexing set is the Cartesian product of these two sets. Our diagram is \(O(X) \times O(Y) = \{U \times V \subseteq X \times Y \mid U \in O(X), \ V \in O(Y)\} \).

\[
G_{U \times V}^{i \times j} = H_{*}(X - U)^{i} \times (Y - V)^{j}; (\tilde{A}_1 \cap (X - U)^{i}) \times (Y - V)^{j}, \cdots ,
(\tilde{A}_n \cap (X - U)^{i}) \times (Y - V)^{j}, (X - U)^{i} \times (B_1 \cap Y - V)^{j}, \cdots ,
(X - U)^{i} \times (\tilde{B}_m \cap Y - V)^{j}; i^{*}\Gamma) .
\]
The resulting groups will be denoted $\Delta_*(\{(X; A_1, \cdots, A_n) \times (Y; B_1, \cdots, B_m) : \sim, \sim, \Gamma\} \ (\Gamma \text{ is some local system on } X \times Y)$.

Theorem 49. (Theorem 1.4.4) There is a natural bilinear pairing, the slant product

$$/ : H^n(\overline{Y} ; \overline{B}_1, \cdots, \overline{B}_m; \Gamma_1) \times \Delta_{n+m}\big((X; A_1, \cdots, A_n) \times (Y; B_1, \cdots, B_m) : \sim, \sim, \Gamma_2\big) \downarrow \Delta_n(X; A_1, \cdots, A_n, \sim, \Gamma_1 \otimes \Gamma_2)$$

Proof. For $\varphi \in H^n(\overline{Y} ; \overline{B}_1, \cdots, \overline{B}_m; \Gamma_1)$, define φ_V by analogy with the definition in Theorem 1.4.1 p. 37. These give us the necessary maps. \hfill \Box

Corollary 50. (Corollary 1.4.4.1) If $d : X \to X \times X$ is the diagonal, and if $C \in \Delta_{n+m}(X; A, B : \sim, \Gamma_1)$, and if $\varphi \in H^m(X; A; \Gamma_2)$, then

$$\varphi \cap C = \varphi/d_n C \ . \ \Box$$

Using our slant product, we can define the cap product of Theorem 1.4.3 p. 38 on the chain level. There are two basic chain groups we would like to use. For an homogamous CW complex we would like to use the cellular chains, and when X is a paracompact manifold with a locally finite handlebody decomposition, we want to use the chains based on the handles. We do the former case and leave the reader to check the theory still holds in the latter.

If X is an homogamous CW complex, we define

$$P_*(X; A, B : \sim, \Gamma) = \Delta_*(X^*; X^{*-1}, A^*, B^* : \sim, \Gamma)$$

(where $A^* = A \cap X^*$, etc.) for $* \geq 2$. If $* = 0$ or 1, we must use subspace groups

$$\Delta_*(\{X^*; X^{*-1}, A^*, B^*\}; X : \sim, \Gamma) .$$

A and B are subcomplexes. Similarly define

$$P^*(A; A, B : \sim, \Gamma) = \Delta^*(X^*; X^{*-1}, A^*, B^* : \sim, \Gamma)$$

$$C_{*}^{d,f}(X : A, B) = H_{*}^{d,f}(X^*; X^{*-1}, A^*, B^*)$$

$$C^*(X : A, B) = H^*(X^*; X^{*-1}, A^*, B^*) .$$

The triple (X^*, X^{*-1}, X^{*-2}) gives us a boundary map $P_* \to P_{*-1}, P_* \to P_{*-1},$ etc. This boundary map makes the above objects into chain complexes ($\partial \partial = 0$), and by Corollary 1.2.2.2 p. 20, the homology of these complexes is just what one expects.

A diagonal approximation

$$h_* : P_*(X; A, B : \sim, \Gamma) \to \Delta_*\big((X, A) \times (X, B) : \sim, \Gamma\big)$$

is a cellular approximation to $d : X \to X \times X$ with a homotopy between d and the cellular map, $H : X \times I \to X \times X$, such that $\pi_1 \circ H$ and $\pi_2 \circ H$ are proper. $(X, A) \times (X, B)$ is just $\bigcup_k (X, A)^k \times (X, B)^{*-k}$. Any two such diagonal approximations are cellulary homotopic so that the homotopy composed with the projections is proper.

Theorem 51. (Theorem 1.4.5) Given any diagonal approximation h, there is a bilinear pairing

$$B_h : C^m(X, A; \Gamma_1) \times P_{n+m}(X; A, B : \sim, \Gamma_2) \to P_n(X, B : \sim, \Gamma_1 \otimes \Gamma_2) .$$

If $f \in C^m(X, A; \Gamma_1)$ and $c \in P_{n+m}(X; A, B : \sim, \Gamma_2)$, then

$$\partial B_h(f, c) = (-1)^n B_h(\delta f, c) + B_h(f, \partial c) .$$
Hence we get an induced pairing on the homology level. Any two $B_h(f, c)$ are chain homotopic, so the pairing on homology does not depend on the diagonal approximation. This pairing on homology is the cap product of Theorem 48 (Theorem 1.4.3 p. 38).

Proof. Consider the element $h_*(c) \in \Delta_{n+m}\left(\left((X, A) \times (X, B)\right)_{n+m}, \text{etc.}\right)$. The group

$$\Delta_{n+m}\left(\left((X^n, X^{n-1}, A^n) \times (X^m, X^{m-1}, B^m); \cap \right), \Gamma_2\right)$$

lies as a natural summand of this first group. Let p^n_m be this projection. Then $B_h(f, c) = f|_{p^n_m(h_*(c))}$. The rest of the proof involves checking this definition has all the asserted properties. \(\square\)

We also want to define the cap product of Theorem 47 (Theorem 1.4.2 p. 38) on the chain level. Unfortunately, there is no slant product of the needed type, so we must use brute force.

Theorem 52. (Theorem 1.4.6) Given any diagonal approximation h, there is a bilinear pairing $B_h: P^m(X, A; \cap, \Gamma_1) \times C^{e.f.}_{n+m}(X; A, B; \Gamma_2) \to P_n(X, B; \cap, \Gamma_1 \otimes \Gamma_2)$.

If $f \in P^m(X, A; \cap, \Gamma_1)$ and $c \in C^{e.f.}_{n+m}(X; A, B; \Gamma_2)$, then

$$\partial B_h(f, c) = (-1)^n B_h(\delta f, c) + B_h(f, \partial c)$$

Hence we get an induced pairing (independent of h) on the homology level. This pairing is the cap product of Theorem 47 (Theorem 1.4.2 p. 38).

Proof. Let $c \in C^{e.f.}_{n+m}(X; A, B; \Gamma_2)$. Define

$$c_U \in C^{e.f.}_{n+m}(\overline{(X-U)}^i; \overline{\partial \overline{U}} \cap \overline{(X-U)}^i; \overline{\partial \overline{U}} \cap \overline{(X-U)}^i; \Gamma_2)$$

by excision and trace as in the proof of Theorem 47 (Theorem 1.4.3 p. 38). We define $B_h(\cdot, c)$ from the maps

$$H^m_c(\overline{(X-U)}^i \cap X^m; \overline{(X-U)}^i \cap X^{m-1}, \text{etc.}) \xrightarrow{/b_U} H_n((X-U)^i \cap X^n; (X-U)^i \cap X^{n-1}, \text{etc.})$$

where $/$ is the slant product and b_U is the homology class which is the image of c_U under the following composite.

$$H^{e.f.}_{n+m}(\overline{(X-U)}^i \cap X^m; \text{etc.}) \xrightarrow{h_*} H^{e.f.}_{n+m}(\overline{(X-U)}^i \times \overline{(X-U)}^i \cap (X \times X)^{n+m}; \text{etc.})$$

$$\xrightarrow{p^n_m} H^{e.f.}_{n+m}(\overline{(X-U)}^i \cap X^m \times (X-U)^i \cap X^n; \text{etc.})$$

(superscript i denotes a component containing \hat{x}_i, and superscripts n, m, and $n+m$ denote skeletons.)

Note in passing that $h_*(\text{tr } b_U) \neq \text{tr}(h_* b_U)$, which is why we are unable to define a general slant product like Theorem 49 (Theorem 1.4.4 p. 39) to cover this case.

The rest of the proof involves verifying diagrams commute and verifying our equation. \(\square\)

Lastly we prove the Browder lemma, which will be essential in our study of Poincaré duality.
Theorem 53. (Theorem 1.4.7) Let \((X, A)\) be a proper pair, and let \(c \in H_n^{\ell,f}(X, A; \Gamma_2)\). Then

\[
\Delta^{-1}(A; X: \sim, \Gamma_1) \rightarrow \Delta^*(X, A: \sim, \Gamma_1) \rightarrow
\]

\[
\Delta^{-1}(A; X: \sim, \Gamma_1) \rightarrow \Delta^*(X, A: \sim, \Gamma_1) \rightarrow
\]

\[
\Delta_n^{-1}(A; X: \sim, \Gamma_1 \otimes \Gamma_2) \rightarrow \Delta_n^*(X: \sim, \Gamma_1 \otimes \Gamma_2) \rightarrow
\]

\[
\Delta_n^{-1}(X, A: \sim, \Gamma_1 \otimes \Gamma_2) \rightarrow \Delta_n^{-1}(A; X: \sim, \Gamma_1 \otimes \Gamma_2)
\]

commutes.

Proof. The usual Browder lemma (see section 1) says that the corresponding diagram commutes for ordinary homology and cohomology with compact supports. Commutativity is then trivial for the above diagram. (While we have not defined a cap product for subspace groups, the reader should have no difficulty writing down the necessary maps.) □

5. **Chain complexes and simple homotopy type**

In our \(\Delta\)-construction as applied to the homology or homotopy functors, we still have some structure that we have not utilized.

As an example of this extra structure, let us consider \(\epsilon(X; \pi_1)\). This is an inverse limit \(\lim_{\rightarrow} \mu(\pi_1(X - C, x_i))\). Now many of the \(\pi_1(X - C, x_i)\) are isomorphic. (Unfortunately this isomorphism are not unique but depends on paths joining \(x_i\) to \(x_j\).) Our \(\epsilon\)-construction makes no use of this fact. In order to be able to make effective use of this extra structure, we need a way to choose the above isomorphisms.

We will do this through the concept of a tree. A tree for an homogamous space \(X\) will be a 1–dimensional, locally finite, simplicial complex, \(T\), such that

1) \(\Delta(T; \pi_k) = 0\) for \(k > 0\)

2) If \(T' \subseteq T\) is a subcomplex of \(T\), \(T'\) has the proper homotopy type of \(T\) iff \(T = T'\).

(This last condition is to insure that \(\circ \quad \circ \quad \circ\) is not a tree for \(R^2\) but rather \(\circ \quad \circ \quad \circ\) ... \(\circ \quad \circ \quad \circ\) ... is.) We also require a map \(f: T \rightarrow X\) which is properly 1/2–connected.

Two trees \((T, f)\) and \((S, g)\) are equivalent provided there is a proper homotopy equivalence \(h: T \rightarrow S\) with \(g \circ h\) properly homotopic to \(f\).

A space \(X\) is said to have a tree provided \(X\) is homogamous and there is a tree for \(X\). Any locally path connected homogamous space has a tree. To see this, let \(\{p\}\) be a set of base points for our space \(X\). Let \(\{C_i\}\) be a cofinal collection of compact subsets of \(X\). We can assume \(X\) is path connected since we can do each path component separately. We may assume \(\{p\} \cap C_0 \neq \emptyset\). Pick a point \(p_0 \in \{p\} \cap C_0\). Look at the components of \(X - C_0\) with a point of \(\{p\}\) in them. As we showed in the proof of Proposition 6 (Proposition 1.1.2 p. i), there are only finitely many such components of \(X - C_0\). The components whose closure is not compact are called essential components. We may assume \(\{p\} \cap (\text{each essential component of } X - C) \cap C_1 \neq C_1 \neq \emptyset\) since this is true for some compact set. Let \(p_1^{\alpha_1}, p_1^{\alpha_2}, \ldots, p_1^{\alpha_n}\) be a subset of \(\{p\} \cap C_1\), one for each
essential component of \(X - C_0 \). Join \(p_i^{α_i} \) to \(p_0 \) by a path \(λ_{1,i} \). Now look at the essential components of \(X - C_1 \). Pick \(p_2^{α_1}, \ldots, p_2^{α_n} \) (which we may assume are in \(C_2 \)) one for each essential component of \(X - C_1 \). Each \(p_2^{α_i} \) lies in an essential component of \(X - C_0 \), so pick paths \(λ_{2,i} \) which join \(p_2^{α_i} \) to the appropriate element in \(\{p_1^0\} \). These paths should lie in \(X - C_0 \). (Since \(X \) is locally path connected, the components of \(X - C_0 \) are path connected.) Continue in this fashion to get \(\{p_j^0\} \), one for each essential component of \(X - C_{j-1} \). \(\{p_j^0\} \) may be assumed to lie in \(X - C_j \). We can also get paths \(λ_{j,α_i} \) which join \(p_j^{α_i} \) to the appropriate \(p_j^{α_i}\) and which lie in \(X - C_{j-1} \).

Now \(T \) has \(\{p_j^0\} \) for vertices and \(\{p_j^{α_i}, p_k^{α_i}\} \) is a 1–simplex iff \(k = j - 1 \) and \(λ_{j,α_i} \) joins \(p_j^{α_i} \) to \(p_k^{α_i} \). The map \(f: T \rightarrow X \) is the obvious one.

We claim \(H_1(T;Z) = 0 \), and in fact, if \(H_1 \) is computed from the simplicial chains then there are no 1–cycles. This is fairly clear, so it will be left to the reader. Now any locally finite 1–complex with \(H_1(T;Z) = 0 \) satisfies \(∆(T: π_k) = 0 \) for \(k > 0 \). One shows \(f \) is properly 1/2–connected by showing that \(Z^0_{\text{end}}(X) \rightarrow Z^0_{\text{end}}(T) \) is an isomorphism (\(Z^0_{\text{end}} \) are the 0–cycles in \(S^0_{\text{end}} \)). But this follows from our construction. Lastly suppose \(T' \subseteq T \) is a connected subcomplex, and suppose \(p \in T - T' \). Now by definition \(p \) is in an essential component of \(X - C_i \) for all \(i \leq n \) for some \(n \). Since each essential component of \(X - C_i \) has infinitely many base points in it, let \(\{q\} \) be the set of base points in the component of \(X - C_n \) containing \(p \). Then \(\{q\} \subseteq T - T' \), as is easily seen. Hence \(H^0_{\text{end}}(T) \rightarrow H^0_{\text{end}}(T') \) has a kernel, and so \(T' \subseteq T \) is not a proper homotopy equivalence. Hence \(X \) has a tree.

From now on in this section we restrict ourselves to the category of homogamous CW complexes. We will use hCW complex to denote objects in this category.

Given \(X \), an hCW complex, we have the category \(\mathcal{C}(X) \) whose objects are all sets \(A \subseteq X \) such that

1) \(A \) is a subcomplex
2) \(A \) is connected
3) There exists an element of \(\mathcal{O}(X), U \), such that \(A \) is an essential component of \(X - U \).

The morphisms are inclusions.

Now given a tree \((T, f)\) for \(X \), we get a functor \(\mathcal{C}(X) \xrightarrow{\mathcal{C}(f)} \mathcal{C}(T) \) (\(f \) is always assumed to be cellular).

Definition. A lift of \(\mathcal{C}(f) \) is a covariant functor \(F: \mathcal{C}(T) \rightarrow \mathcal{C}(X) \) such that \(\mathcal{C}(f) \circ F \) is the identity and such that the image of \(F \) is cofinal. The set of all such lifts is a diagram scheme by defining \(F \leq G \) iff \(F(A) \subseteq G(A) \) for all \(A \in \mathcal{C}(T) \). We denote this diagram scheme by \(\mathcal{L}(f) \).

Definition. A tree of rings is a covariant functor \(R: \mathcal{C}(T) \rightarrow \mathcal{R} \), where \(\mathcal{R} \) is the category of all rings (rings have units and all ring homomorphisms preserve units). A tree of modules over \(R \) is a collection of modules \(M_A \), \(A \in \mathcal{C}(T) \), where \(M_A \) is a unitary \(R_A \)–module. A tree of right (left) \(R \)–modules requires each \(M_A \) to be a right (left) \(R_A \)–module. If \(A \subseteq B \) in \(\mathcal{C}(T) \), there is a unique map \(p_{AB}: M_A \rightarrow M_B \), which is an \(R(A \subseteq B) \)–linear map; i.e. if \(f: R_A \rightarrow R_B \) is the ring homomorphism associated to \(A \subseteq B \) by \(R \),

\[
p_{AB}(a \cdot α + b \cdot β) = p_{AB}(a) \cdot f(α) + p_{AB}(b) \cdot f(β)
\]

for \(α, β \in R_A; a, b \in M_A \).

An \(R \)–module homomorphism \(f: M \rightarrow M' \) is a set of maps \(f_A: M_A \rightarrow M'_A \) for each \(A \in \mathcal{C}(T) \) such that

1) \(f_A \) is an \(R_A \)–module homomorphism
2) For \(A \subseteq B \),
\[
\begin{array}{ccl}
M_A & \xrightarrow{f_A} & M'_A \\
\downarrow p_{AB} & & \downarrow p'_{AB}
\end{array}
\]
commutes, where the vertical maps come from the \(\Delta(\cdot) \) for some \(\Delta \) such that
\[
\begin{array}{ccl}
M_B & \xrightarrow{f_B} & M'_B \\
\downarrow & & \downarrow
\end{array}
\]
tree structures on \(M \) and \(M' \).

Example. Given an hCW complex \(X \) with a tree \((T, f)\) and given \(F \in \mathcal{L}(f) \), we get a tree of rings from
\[
R_A = \mathbb{Z}[\pi_1(F(A), f(p))] \]
where if \(A \neq T \), \(p \) is the vertex of \(\partial A \), the set theoretic frontier of \(A \). If \(A = T \) pick a vertex for a base point and use it. This will be the tree of rings we will consider for our geometry, and we will denote it by \(\mathbb{Z} \pi_1 \).

The tree of \(\mathbb{Z} \pi_1 \)-modules we will consider will be various chain modules. The basic idea is given by
\[
M_A = H_i(F(A)^i, F(A)^{i-1}, f(p)), \quad \sim \text{ denotes the universal cover of } F(A), \quad F(A)^i \text{ is } \pi^{-1} \text{ of the } i \text{-skeleton of } F(A) \text{ in } F\tilde{A}. \quad (\pi: F\tilde{A} \to F(A)).
\]

Now given an \(R \)-module \(M \), we can form \(\Delta(M) \) by applying the \(\Delta \)-construction with index set the vertices of \(T \), and with diagram scheme \(\mathcal{O}(X) \). Given \(U \in \mathcal{O}(X) \), there are finitely many \(A \in \mathcal{C}(T) \) for which \(A \cap \overline{U} = \text{a vertex} \). Set
\[
G_{pU} = \begin{cases}
M_A & \text{if } p \in A \\
0 & \text{otherwise}
\end{cases}
\]
for some \(A \) such that \(A \cap \overline{U} = \text{a vertex} \). An \(R \)-module homomorphism \(f: M \to M' \) clearly induces a map \(\Delta(f): \Delta(M) \to \Delta(M') \). An \(R \)-module homomorphism, \(f \), which induces an isomorphism \(\Delta(f) \) is said to be a **strong equivalence** and the two modules are said to be **strongly equivalent**. Note that this relation on \(R \)-modules seems not to be symmetric. Nevertheless we can define two \(R \)-modules to be **equivalent** iff there is a (finite) sequence of \(R \)-modules \(M = M_0, M_1, \ldots, M_n = M' \) such that either \(M_i \) is strongly equivalent to \(M_{i+1} \) or \(M_{i+1} \) is strongly equivalent to \(M_i \).

We tend only to be really interested in the equivalence class of \(M \) (indeed, we are often interested merely in \(\Delta(M) \)). The relation of equivalence is not however very nice. We would like \(M \) to be equivalent to \(M' \) iff there were “maps” \(f: M \to M' \) and \(g: M' \to M \) whose composites were the identity. To do this properly we need a short digression.

Definition. A functor \(F \) which assigns to each \(A \in \mathcal{C}(T) \) a cofinal subcomplex of \(A, F(A) \), such that \(F(A) \subseteq F(B) \) whenever \(A \subseteq B \) and such that \(F(T) = T \) will be called a **shift functor**. \(\mathcal{S}(T) \) will denote the set of all shift functors on \(T \). \(\mathcal{S}(T) \) is partially ordered via \(F \geq G \) iff \(F(A) \subseteq G(A) \) for all \(A \in \mathcal{C}(T) \). Define \((F \cap G)(A) = F(A) \cap G(A)\), and one checks it is a shift functor. \(F \cap G \geq F \) and \(F \cap G \geq G \).

Given a tree of \(R \)-modules and a shift functor \(F \), we get a tree of \(R \)-modules, \(M_F \), in a natural way; i.e. \(F \) is going to induce a functor from the category of \(R \)-modules to itself. \(M_F \) is defined as follows. Let \(A \in \mathcal{C}(T) \). Then \(F(A) = \bigcup_{i=1}^{n} A_i \), with \(A_i \in \mathcal{C}(T) \). \((M_F)A = \bigoplus_{i=1}^{n} M_{A_i} \otimes R_A \), where the tensor product is formed using the homomorphisms \(R_{A_i} \to R_A \). Note that there is an \(R_A \)-module map \((M_F)_A \to M_A\). \((p_F)_{AB} : \bigoplus_{i=1}^{n} M_{A_i} \otimes R_A \to \bigoplus_{i=1}^{n} M_{B_i} \otimes R_B \) is defined as follows. Since \(A \subseteq B \), \(F(A) \subseteq F(B) \), so each \(A_i \) is contained in a unique \(B_j \). Let \(p_{ij} \) be \(p_{A_i, B_j} \) if \(A_i \subseteq B_j \) and 0 otherwise. \(f_{ij} \) is the map \(R_{A_i} \to R_{B_j} \) if \(A_i \subseteq B_j \) and 0 otherwise. \(g \) is the map \(R_A \to R_B \). Then
is a map, $(f_F)_A = \bigoplus_{i=1}^{n} f_{A_i} \otimes g_{A_i}$, where $g_{A_i}: R_{A_i} \to R_A$, defines a map $f_F: M_F \to M'_F$ so that $M_F \xrightarrow{f_F} M'_F$ commutes. For the natural map of M_F into M we write $M_F \subseteq M$. If $G \geq F$ there is a natural map $M_G \to M_F$ induced by the inclusion of each component of $G(A)$ in $F(A)$.

Lemma 54. (Lemma 1.5.1) $M_F \subseteq M$ is a strong equivalence.

Proof. We must show $\Delta(M_F) \to \Delta(M)$ is an isomorphism. Suppose $B \in C(T)$ and $B \subseteq F(A)$. Then $(M_F)_B \to M_B$ commutes and there is a map $h: M_B \to (M_F)_A$ so that the resulting triangles commute. But then clearly $\Delta(M_F) \cong \Delta(M)$. \hfill \square

As motivation for our next definition we prove

Lemma 55. (Lemma 1.5.2) Let $f: M \to N$ be a strong equivalence. Then there is a shift functor F and a map $N_F \to M$ such that $M \to N$ commutes.

Proof. By Theorem 22 (Theorem 1.2.4 p. 21) applied to kernel and cokernel, f is a strong equivalence iff for any $A \in C(T)$ there is a $U \in O(T)$ such that for any $B \in C(T)$ with $B \subseteq A - U$

$$
\begin{array}{ccc}
M_B & \xrightarrow{f_B} & N_B \\
\downarrow & & \downarrow \\
M_A & \xrightarrow{f_A} & N_A
\end{array}
$$

satisfies

1) $\ker f_B \subseteq \ker p_{AB}^M$ and
2) $\text{Im} p_{AB}^N \subseteq \text{Im} f_A$.

For each $A \in C(T)$, pick such an element in $O(T)$, U_A. Now let $F(A) = A - \bigcup_{A \leq D} U_D$. F is easily seen to be a shift functor, and for any $B \in C(T)$ with $B \subseteq F(A)$, 1) and 2) hold.

Now look at

$$
\begin{array}{ccc}
M_{A_2} & \xrightarrow{f_{A_2}} & N_{A_2} \\
\downarrow & & \downarrow \\
M_{A_1} & \xrightarrow{f_{A_1}} & N_{A_1} \\
\downarrow & & \downarrow \\
M_A & \xrightarrow{f_A} & N_A
\end{array}
$$

where $A_1 \subset F(A)$, $A_2 \subset F(A_1)$. Then there exists a map $h: N_{A_2} \to M_A$ defined by $h(x) = q(f_{A_1})^{-1}p(x)$ for all $x \in N_{A_2}$. By properties 1) and 2), h is
well-defined, and if \(g: R_{A_2} \to R_A \) is the homomorphism given by the tree, \(h \) is easily seen to be \(g \)-linear.

Define a shift functor \(F \circ G \) by \(F \circ G(A) = \bigcup_{i=1}^n F(A_i) \), where \(G(A) = \bigcup_{i=1}^n A_i \). Then one checks that the \(h \) defined above yields a map \(N_{F \circ G} \to M \).

Definition. A \(T \)-map \(f: M \to N \) is a map \(M_F \to N \), where \(F \in \mathcal{S}(T) \). \(M_F \to N \) induces a natural map \(M_G \to N \) for all \(G \geq F \). We say \(f \) is defined on \(M_G \) for all \(G \geq F \). Two \(T \)-maps \(f, g: M \to N \) are equal provided that, for some \(F \in \mathcal{S}(T) \) such that \(f \) and \(g \) are defined on \(M_F \), the two maps \(M_F \to N \) are equal.

Remarks. If \(f \) is defined on \(M_F \), and if \(g \) is defined on \(M_G \), \(f \) and \(g \) are both defined on \(M_{F \cap G} \). With this remark it is easy to see equality of \(T \)-maps is an equivalence relation. It is also easy to see how to add or subtract two \(T \)-maps, and it is easy to check that if \(f_1 = f_2 \) and \(g_1 = g_2 \), then \(f_1 \pm g_1 = f_2 \pm g_2 \).

Hence, if \(\text{Hom}_T(M, N) \) is the set of equivalence classes of \(T \)-maps from \(M \) to \(N \), \(\text{Hom}_T(M, N) \) has the structure of an abelian group. An equivalence class of \(T \)-maps is called a map–germ.

We can compose two \(T \)-maps \(f: M \to N \) and \(g: N \to P \) as follows. \(g \) is defined on \(N_G \) and \(f \) is defined on \(M_F \). Hence \(f: N_F \to P \) is an actual map, and we define the \(T \)-map \(g \circ f \) to be the map \(g \circ f_G: (M_F)_G \to N_G \to P \). Note \((M_F)_G = M_{F \circ G} \). One can check that the map–germ \(g \circ f \) is well-defined.

Hence Lemma\(^{\text{55}}\) (Lemma 1.5.2 p. 44) becomes

Lemma 56. (Lemma 1.5.3) \(M \) and \(N \) are equivalent iff they are \(T \)-equivalent.

Proof. If \(M \) and \(N \) are equivalent, Lemma\(^{\text{55}}\) (Lemma 1.5.2 p. 44) shows how to get \(T \)-maps \(M \to N \) and \(N \to M \) using the sequence of strong equivalences.

If \(M \) and \(N \) are \(T \)-equivalent, we have map \(T \)-maps \(f: M \to N \) and \(g: N \to M \) such that \(f \circ g = \text{id}_N \) and \(g \circ f = \text{id}_M \). Now a \(T \)-map \(f: M \to N \) induces a unique map \(\Delta(f): \Delta(M) \to \Delta(N) \) via \(\Delta(f) = \Delta(f) \circ \Delta(\text{inc})^{-1} \) where \(f \) is defined on \(M_F \) and \(\text{inc}: M_F \subseteq M \). It is clear that \(\Delta(f) \) depends only on the map–germ of \(f \). Hence in our case, \(g \) induces an equivalence of \(M \) and \(N \) by \(N \supseteq N_G \xrightarrow{g} M \).

Also useful is

Lemma 57. (Lemma 1.5.4) Let \(f \) and \(g \) be \(T \)-maps. Then \(f = g \) iff \(\Delta(f) = \Delta(g) \).

Proof. \(f = g \) iff \(f - g = 0 \). \(\Delta(f - g) = \Delta(f) - \Delta(g) \) Thus we need only show \(h = 0 \) iff \(\Delta(h) = 0 \). Since \(\Delta(h) \) depends only on the map–germ, and since \(\Delta(0) = 0 \), one way is easy.

So assume we are given a \(T \)-map \(h: M \to N \) with \(\Delta(h) = 0 \). We may as well assume that \(h \) is an actual map, since otherwise set \(M = M_H \) and proceed. We have a submodule \(\ker h \subseteq M \) defined in the obvious way. Since \(\ker h \subseteq M \) is a strong equivalence, Lemma\(^{\text{55}}\) (Lemma 1.5.2 p. 44) says we can find \(F \) such that \(M_F \to \ker h \subseteq M \). But then \(M_F \to N \) is the zero map.

Definition. If \(R \) is a tree of rings, let \(\mathcal{M}_R \) be the category of trees of \(R \)-modules and germs of maps. Let \(\mathcal{M}_{\Delta(R)} \) be the category of \(\Delta(R) \)-modules.
Proposition 58. (Proposition 1.5.1) \mathcal{M}_R is an abelian category. The natural functor

$$\Delta: \mathcal{M}_R \to \mathcal{M}_{\Delta(R)}$$

is an exact, additive, faithful functor.

Proof. The functor just takes M to $\Delta(M)$ and $[f]$ to $\Delta(f)$ ($[f]$ denotes the map–germ of f). Δ is additive more or less by definition, and faithful by Lemma 1.5.4 (Lemma 1.5.4 p. 45).

Δ preserves kernels: Let $M \xrightarrow{g} N$ be a map–germ in \mathcal{M}_R. We can find G such that $M_g \xrightarrow{g} N$ is a representative. Clearly any kernel for $[g]$ is equivalent to $\ker g \subseteq M_G$, where $\ker g$ is the obvious submodule. But $\Delta(\ker g)$ is clearly a kernel for $\Delta(g)$.

An entirely similar argument shows Δ preserves cokernels, so Δ is exact.

To see \mathcal{M}_R is normal and conormal, take representatives for the germs and construct the quotient or the kernel module.

\mathcal{M}_R has pullback and pushouts, again by finding representatives for the germs and constructing the desired modules. Now by 25, Theorem 20.1 (c), page 33, \mathcal{M}_R is abelian. □

We want to do stable algebra, and for this we need an analogue of finitely–generated projective. Projective is easy, we just insist that a projective R–module is projective in the category \mathcal{M}_R (see 25, pages 69–71 for definitions and elementary properties).

For the analogue of finitely–generated, we first produce the analogue of a finitely–generated, free module.

Definition. Let T be a tree and let S be a set. A partition of S is a functor $\pi: \mathcal{C}(T) \to 2^S$ (where 2^S is the category of subsets of S and inclusion maps) satisfying

1) $\pi(T) = S$.
2) If $A \cap B = \emptyset$, $\pi(A) \cap \pi(B) = \emptyset$ (A, $B \in \mathcal{C}(T)$).

(1) 3)] Let $A_i \in \mathcal{C}(T)$, $i = 1, \ldots, n$. If $T - \bigcup_{i=1}^n A_i$ is compact, $\pi(T) - \bigcup_{i=1}^n \pi(A_i)$ is finite.

4) Let $s \in S$. Then there exist $A_i \in \mathcal{C}(T)$, $i = 1, \ldots, n$ such that $T - \bigcup_{i=1}^n A_i$ is compact and $s \notin \pi(A_i)$ for any $i = 1, \ldots, n$.

Definition. Let R be a tree of rings over T. Let π be a partition of S. The free R–module based on π, F_π, is the tree of R–modules defined by $(F_\pi)_A$ is the free R_A–module based on $\pi(A)$, and if $A \subseteq B$, $p_{AB}: (F_\pi)_A \to (F_\pi)_B$ is induced by the inclusion $\pi(A) \subseteq \pi(B)$.

Definition. A tree of R–modules, M, is said to be locally–finitely generated iff there is a set of generators, S, and a partition π, of S, such that there is an epimorphism $F_\pi \twoheadrightarrow M$.

Let us briefly discuss partitions. If π and ρ are two partitions of a set S, we say $\pi \subseteq \rho$ iff $\pi(A) \subseteq \rho(A)$ for all $A \in \mathcal{C}(T)$. (Hence we could talk about the category of partitions, but we shall largely refrain.) Two partitions are equivalent iff there exist a finite sequence $\pi = \pi_0, \pi_1, \ldots, \pi_n = \rho$ of partitions with $\pi_i \subseteq \pi_{i+1}$, or $\pi_{i+1} \subseteq \pi_i$. (This is clearly an equivalence relation.) Given two sets X and Y, and partitions π and ρ, $\pi \cup \rho$ is the partition $X \cup Y$ given by $(\pi \cup \rho)(A) = \pi(A) \cup \rho(A)$.

Lemma 59. (Lemma 1.5.5) Let R be a tree of rings over T, and let X and Y be sets. Then if π and π' are equivalent partitions of X, F_π is isomorphic to $F_{\pi'}$ in \mathcal{M}_R. If ρ is a partition of Y, $F_{\pi \cup \rho} = F_\pi \oplus F_\rho$ (X and Y disjoint).
Proof. To show the first statement we need only show it for \(\pi \subseteq \pi' \). In this case there is a natural map \(f: F_\pi \to F_{\pi'} \). For each \(A \in C(T) \), \((F_\pi)_A \to (F_{\pi'})_A \) is injective, so \(f \) is a monomorphism. If \(\pi \subseteq \pi' \), then \(\pi'(A) - \pi(A) \) has only finitely many elements. To see this, observe we can find \(A_i \in C(T), i = 1, \ldots, n \) such that \(A \cap A_i = \emptyset \), and \(T - \bigcup_{i=1}^n A_i - A \) is compact. Then by 2) \(\pi'(A) \subseteq \pi'(T) - \bigcup_{i=1}^n \pi'(A_i) \), so \(\pi'(A) - \pi(A) \subseteq \pi'(T) - \bigcup_{i=1}^n \pi'(A_i) - \pi(A) \subseteq \pi(T) - \bigcup_{i=1}^n \pi(A_i) - \pi(A) \), which is finite. Since \(\pi'(A) - \pi(A) \) is finite, \(f_A: (F_\pi)_A \to (F_{\pi'})_A \) has finitely generated cokernel, so when the \(\Delta \)-construction is applied to it, 4) guarantees that \(\Delta(f) \) is onto, so \(f \) is an equivalence. The second statement is the definition of \(\pi \cup \rho \) and \(F_\pi \oplus F_\rho \). \(\square \)

It is not hard to see that if we have a partition of \(S \) for the tree \(T \), then \(S \) has at most countably many elements if \(T \) is infinite, and at most finitely many if \(T \) is a point. In the case \(S \) is infinite, we have a very handy countable infinite set lying around, namely the vertices of \(T \). There is an obvious partition, \(\pi \), where \(\pi(A) = \{ p \mid p \text{ is a vertex of } A \} \). Denote \(F_\pi \) by \(F^{(1)} \). If \(T \) is a point, let \(F^{(1)} \) denote the free module on one generator; i.e. still \(F_\pi \) for the above partition \(\pi \). \(F^{(n)} = F^{(n-1)} \oplus F^{(1)} \) for \(n \geq 2 \).

Lemma 60. (Lemma 1.5.6) Let \(\pi \) be any partition of a set \(S \) for the tree \(T \), and let \(R \) be a tree of rings. Then \(F_\pi \oplus F^{(1)} \) is equivalent to \(F^{(n)} \) for some \(n \geq 1 \). If \(T \) is infinite, \(n \) can be chosen to be 1.

Proof. If \(T \) is a point, this is obvious, so assume \(T \) is infinite. \(F_\pi \oplus F^{(1)} \) is just \(F_{\pi \cup \rho} \), where \(\rho \) is the standard partition on \(V \), the vertices of \(T \). Since \(V \cup S \) is infinite (and countable), there is a 1–1 correspondence \(\alpha: V \cup S \to V \). Any such \(\alpha \) induces an equivalence of categories \(\alpha: 2^{V \cup S} \to 2^V \). We show that we can pick \(\alpha \) so that \(\alpha \circ (\pi \cup \rho) \) is equivalent to \(\rho \). (We will show in Lemma 61 {Lemma 1.5.7 p. 48} that \(\alpha \circ (\pi \cup \rho) \) is a partition for any \(\alpha \).) Our \(\alpha \) is defined by picking a strictly increasing sequence of finite subcomplexes, \(C_0 \subseteq C_1 \subseteq \cdots \), so that \(\bigcup_{i=0}^\infty C_i = T \). Let \(A_k(i) \) be the essential components of \(T - C_i \). Set \(A_1(-1) = T \), and let \(K_k = (\pi \cup \rho)(A_k(i)) - \bigcup_{\ell} (\pi \cup \rho)(A_\ell(i+1)) \). Note \(K_k \cap K_k^{i+1} = \emptyset \) and \(K_k \cap K_k^{i+1} = \emptyset \) by 2), so \(K_k \cap K_k^{i+1} = \emptyset \) by 2).

Now \(K_k \) is finite. We define \(\alpha \) on \(K_k \) by induction on \(i \). Let \(L_k = \rho(A_k(i)) - \bigcup_{\ell} \rho(A_\ell(i+1)) \), and note that the cardinality of \(K_k \) is greater than or equal to the cardinality of \(L_k \). Define \(\alpha \) on \(K_k \) by mapping some subset of it to \(L_k \) and mapping any left over elements to any elements of \(V \) (\(\alpha \) should be injective).

Suppose \(\alpha \) is defined on \(k_{k-1} \) so that \(\alpha(K_{kj}) \subseteq \rho(A_k(j)) \) for \(j \leq i - 1 \). We need only define \(\alpha \) on \(K_k \) so that \(\alpha(K_k) \subseteq \rho(A_k(i)) \) to be done. Look at \(M = L_k - \bigcup_k \im \alpha(K_{kj}) \). Map some subset of \(K_k \) to \(M \). Map the rest of \(K_k \) to any elements of \(\rho(A_k(i)) \) at all.

By 4), \(V \cup S = \bigcup_k K_k \) and \(S = \bigcup_k L_k \) (as disjoint unions as we saw). Since \(\alpha \) is onto each \(L_k \), and since it injects when restricted to each \(K_k \), \(\alpha \) is 1–1. Furthermore, \(\tau = \alpha \circ (\pi \cup \rho) \) satisfies \(\tau(A_k(i)) \subseteq \rho(A_k(i)) \) by construction.

Set \(\lambda(A) = \tau(A) \cap \rho(A) \). We claim \(\lambda \) is a partition. Clearly \(\lambda \) is a functor \(C(T) \to 2^V \). 1) and 2) are trivial and 4) is not much harder (1), 2) and 4) hold for the intersection of any two partitions, it is only 3) which might fail). To show 3), note \(\lambda(A_k(i)) = \tau(A_k(i)) \). If \(T - \bigcup_{j=1}^n B_j \) is compact, there is a minimal \(i \) such that \(B_j \) contains \(A_k(i) \) for some \(k \) (perhaps several, say \(k = 1 \),
\[
\lambda(A_k(i)) \subseteq \lambda(B_j), \quad \lambda(T) - \bigcup_{j=1}^n \lambda(B_j) \subseteq \lambda(T) - \bigcup \lambda(A_k(i)) = \tau(T) - \bigcup \tau(A_k(i)).
\]
The last two unions are over all the \(A_k(i) \subseteq B_j\) for \(j = 1, \ldots, n\). This last set is finite, so 3) holds. Hence \(\lambda\) is a partition and thus \(\tau\) is equivalent to \(\rho\).

The map from \(F_{\pi \cup \rho} \to F_{\tau}\) induced by \(\alpha\) is the obvious map: \((F_{\pi \cup \rho})_A \to (F_{\tau})_A\) is the isomorphism induced by the equivalence of bases \(\alpha: (\pi \cup \rho)(A) \leftrightarrow \tau(A)\). Lemma 59 (Lemma 1.5.5 p. 46) completes the proof modulo the proof of Lemma 61 (Lemma 1.5.7 p. 48).

Lemma 61. (Lemma 1.5.7) Let \(X\) and \(Y\) be two (disjoint) sets, and let \(\pi\) be a partition of \(X\) for the tree \(T\). Any \(1 \leftrightarrow 1\) correspondence \(\alpha: X \to Y\) induces a partition \(\alpha \circ \pi\) of \(Y\) for the tree \(T\).

Proof. The easy proof is omitted.

Lemma 62. (Lemma 1.5.8) \(F_{\pi}\) is projective.

Proof. By Lemma 60 (Lemma 1.5.6 p. 47) and standard nonsense, it is enough to prove the result for \((F^{(1)})\). By Mitchell Proposition 14.2, page 70, we need only show \(M \xrightarrow{[f]} F^{(1)}\) splits whenever \([f]\) is an epimorphism (note \(\mathcal{M}_R\) is abelian by Proposition 58 (Proposition 1.5.1 p. 46) so we may apply Mitchell).

By taking a representative for \([f]\), we may as well assume that we have a map \(f: M \to F = F^{(1)}\) which is an epimorphism. Now there is a partition \(\pi\) with \(\pi \subseteq \rho\) (\(\rho\) the standard partition for \(F^{(1)}\)), such that the inclusion of \((F_{\pi})_A\) in \(F_A\) lies in the image of \(M_A\) under \(f_A\); i.e. define \(\pi(A) = \{x \in \rho(A) \mid x \in \operatorname{Im} f_A\}\). Since \(f\) is an epimorphism, one can easily check \(\rho(A) - \pi(A)\) is finite, and from this result one easily deduces \(\pi\) is a partition.

Now pick a base point \(* \in T\). This choice immediately partially orders all the vertices of \(T\) by saying \(p \geq q\) provided the minimal path from \(p\) to \(*\) hits \(q\). \(A_p \in \mathcal{C}(T)\) for each \(p\) a vertex of \(T\), \(p \neq *\), is defined as the unique \(A \in \mathcal{C}(T)\) such that \(q \in A_p\) implies \(q \geq p\).

Given a partition \(\pi\), define a new partition \(\tau\) by \(\tau(A) = \bigcup_{A_p \subseteq A} \pi(A_p)\) (again \(\pi(A) - \tau(A)\) is finite, \(\tau(A) \subseteq \pi(A)\), so one can check \(\tau\) is a partition). Since \(\tau \subseteq \pi\), \((F_{\tau})_A \subseteq F_A\) lies in \(\operatorname{Im} (f_A)\).

Now given any vertex \(v\) of \(T\), there is a unique \(p\) such that \(v \in \tau(A_p)\) and \(v \in \tau(A)\) iff \(A_p \subseteq A\), unless \(v \notin \tau(A_p)\) for any \(A_p\) (there are only finitely many of the latter). To see this, set \(A = \bigcap_{v \in \tau(A_p)} A_p\). Now \(A_p \cap A_q \neq \emptyset\) implies \(A_p \subseteq A_q\) (or \(A_q \subseteq A_p\)). By 4) the intersection runs over finitely many objects, so \(A = A_p\) for some \(p\). This \(A_p\) has the properties we claimed.

Define \(x_v \in M_{A_p}\) to be any element such that \(f_{A_p}(x_v)\) hits the image of the generator in \((F_{\pi})_{A_p}\) corresponding to \(v\). Define \(h: F_{\tau} \to M\) by \(h_A: (F_{\tau})_A \to M_A\) takes the generator corresponding
to \(v \) to \(p_{A_p A}(x_v) \). We extend linearly. Notice that if the generator corresponding to \(v \) lies in \((F_\tau)_A\), \(A_p \subseteq A \), so \(p_{A_p A} \) makes sense.

It is not hard to check that the \(h_A \) induce a map \(h: F_\tau \to M \), and \(f \circ h: F_\tau \to F \) is just the inclusion.

If \(P_R \) is the category of locally–finitely generated trees of projective \(R \)–modules, we have

Lemma 63. (Lemma 1.5.9) Let \(0 \to M \to N \to Q \to 0 \) be a short exact sequence of \(R \)–modules. Then, if \(N, Q \in P_R, M \in P_R \). If \(M, Q \in P_R, N \in P_R \). Lastly, any \(P \in P_R \) is a summand of a locally–finitely generated free module.

Proof. The proof is easy. □

Remarks. \(P_R \) is a suitable category in which to do stable algebra (see Bass [1]). \(P_R \) has a product, the direct sum. \(P_R \) is also a full subcategory of \(M_R \), which is abelian by Proposition 58–groups. Hence we may use either of Bass’s definitions of the \(K \)–groups. Note \(P_R \) is semi–simple (Bass [1]) so the two definitions agree.

Notation: \(K_0(R) = K_0(P_R) \) and \(K_1(R) = K_1(P_R) \) for \(R \) a tree of rings. Given a map of trees of rings \(R \to S \) (\(R_A \to S_A \) takes units to units) we can define \(M \otimes_R S \) for \(M \) a right \(R \)–module by taking \((M \otimes_R S)_A = M_A \otimes_{R_A} S_A \). \(\otimes \) induces a functor \(M_R \to M_S \). The only non–trivial part of this is to show \(\otimes \) is well–defined on map–germs. But since

\[
\begin{array}{ccc}
\mathcal{M}_R & \xrightarrow{\otimes_R S} & \mathcal{M}_S \\
\downarrow & & \downarrow \\
\mathcal{M}_{\Delta(R)} & \xrightarrow{\otimes_{\Delta(R)} \Delta(S)} & \mathcal{M}_{\Delta(S)}
\end{array}
\]

commutes, this is easy. \(\otimes \) is, as usual, an additive, right exact functor.

Now given a partition \(\pi \), \(F_\pi^R \otimes_R S = F_\pi^S \), where \(F_\pi^R \) is the free \(R \)–module based on \(\pi \) (\(F_\pi^S \) similarly). Hence it is easy to see that \(\otimes \) takes \(P_R \) to \(P_S \). \(\otimes \) is cofinal in the sense of Bass [1], so we get a relative group \(K_0(f) \), where \(f: R \to S \) is the map of trees of rings. There is an exact sequence

\[
K_1(R) \to K_1(S) \to K_0(f) \to K_0(R) \to K_0(S)
\]

We denote by \(K_i(T), i = 0, 1 \), the result of applying the \(K \)–groups to \(P_T \), where \(P_T \) is the category of locally–finitely generated projective modules over the tree of rings \("T" \), where \(("T")_A = \mathbb{Z} \) for all \(A \) and \(p_{AB} \equiv \text{id} \). There is always a functor \(P_T \to P_R \) induced by the unit map \("T" \to R \). The relative \(K_0 \) of this map will be called the reduced \(K_1 \) of \(R \), written \(\tilde{K}(R) \).

Remarks. If the tree of rings is a point the functor \(\mathcal{M}_R \to \Delta(M_R) \) induces a functor \(P_R \to P_{\Delta(R)} \), where \(P_{\Delta(R)} \) is the category of finitely–generated projective \(\Delta(R) \)–modules. This functor induces an isomorphism on \(K_0 \) and \(K_1 \). For the compact case \((T = \text{pt.}) \), torsions lie in quotients of \(K_1(P_{\Delta(R)}) \). This, together with Proposition 64 [Proposition 1.5.2 p. 50] below is supposed to motivate our choice of \(P_R \) as the category in which to do stable algebra.
Definition. Let \(W \) be an hCW complex of finite dimension. Let \(X \) and \(Y \) be subcomplexes. Let \((T, f)\) be a tree for \(W \). Lastly let \(F \in \mathcal{L}(f) \). Then \(\mathbb{Z}_\pi_1(W, F, f) \) is the tree of rings we had earlier as an example. Pick a locally–finite set of paths, \(\Lambda \), from the cells of \(W \) to the vertices of \(f(T) \) (the paths all begin at the barycenter of each cell).

\[
\mathcal{C}_*(W; X, Y : \Lambda, F) \text{ is the tree of } \mathbb{Z}_\pi_1(W, F, f) \text{–modules given at } A \text{ by } \]

\[
H_* \left(\widetilde{F(A)}^*; \widetilde{F(A)}^{*-1}, \widetilde{F(A)^* \cap X}, \widetilde{F(A)^* \cap Y} \right) \]

where \(\widetilde{\quad} \) is the universal cover of \(F(A) \), so, for example, \(\widetilde{F(A)^* \cap Y} \) is the part of the universal cover of \(F(A) \) lying over \(Y \cap \) (the \(* \)-skeleton of \(F(A) \)). In each \(\tilde{F(A)} \) pick a base point covering the vertex \(\partial A \). These choices give us maps \(\tilde{F(A)} \to \tilde{F(B)} \) whenever \(A \subseteq B \). \(\mathcal{C}_*(W; X, Y : \Lambda, F) \) is defined from the cohomology groups

\[
H^*_c \left(\tilde{F(A)}^*; \tilde{F(A)}^{*-1}, \partial \tilde{F(A)}^*, \tilde{F(A)^* \cap X}, \tilde{F(A)^* \cap Y} \right) ,
\]

The maps are the ones we defined in section 4.

Proposition 64. (Proposition 1.5.2) \(\mathcal{C}_*(W; X, Y : \Lambda, F) \) \((\mathcal{C}_*(W; X, Y : \Lambda, F)\)) is a locally–finitely generated, free, right (left) \(\mathbb{Z}_\pi_1(W, F, f) \)–module. If \(G \in \mathcal{L}(f) \) satisfies \(G \geq F \), there is an induced map \(\mathbb{Z}_\pi_1(W, F, f) \to \mathbb{Z}_\pi_1(W, G, f) \). \(\mathcal{C}_*(W; X, Y : \Lambda, F) \otimes_{\mathbb{Z}_\pi_1(W, F, f)} \mathbb{Z}_\pi_1(W, G, f) \) is equivalent to \(\mathcal{C}_*(W; X, Y : \Lambda, G) \). \(\mathbb{Z}_\pi_1(W, G, f) \otimes_{\mathbb{Z}_\pi_1(W, F, f)} \mathcal{C}_*(W; X, Y : \Lambda, F) \) is equivalent to \(\mathcal{C}_*(W; X, Y : \Lambda, G) \). The \(\Delta \)-functor applied to \(\mathcal{C}_*(W; X, Y : \Lambda, F) \) is \(P_*(W; X, Y : \quad) ; \Delta(\mathcal{C}_*(W; X, Y : \Lambda, F)) = P_*(W; X, Y : \quad) \) (the \(P \) were defined in section 4).

Proof. The assertions are all fairly obvious. Note in passing that the set \(S \) for \(\mathcal{C}_*(\mathcal{C}_*) \) is the set of all \(* \)-cells in \(W - (X \cup Y) \).

Proposition 65. (Proposition 1.5.3) The choice of paths \(\Lambda \) determines a basis for \(\mathcal{C}_*(\mathcal{C}_*) \).

Proof. Let \(S \) be the set of all \(* \)-cells in \(W - (X \cup Y) \). Partition \(S \) by \(\pi(A) \) = the set of all \(* \)-cells in \(W - (X \cup Y) \) such that the cell and its associated path both lie in \(F(A) \). \(\pi \) is seen to be a partition, and \(F_\pi \) is equivalent to \(\mathcal{C}_* \). The path also determines a lift of the cell into \(\tilde{F(A)} \), so each \((F\pi)_A \) is based.

Apparently our tree of rings and modules is going to depend on the lift functor we choose. This is not the case and we proceed to prove this. Given a shift functor \(F \) and a tree of rings \(R, R_F \) is the tree of rings given by \((R_F)_A = \bigoplus_{i=1}^{n} R_{A_i} \) where the \(A_i \) are the essential components of \(F(A) \). \(p_{AB} \) is just \(\oplus p_{ij} \), where \(p_{ij} \) is the projection \(p_{A_iB_j} \) where \(A_i \subseteq B_j \).

We now redefine \(M_F \). \(M_F \) is going to be an \(R_F \)–module. \((M_F)_A = \bigoplus_{i=1}^{n} M_{A_i} \) with the obvious \(R_F \)–module structure. Note \(M_F \otimes_{R_F} R \) is just our old \(M_F \).

Now a \(T \)–map of rings is just a map \(R_F \to S \). As in the case of modules, we can define a map–germ between two rings.
LEMMA 66. (Lemma 1.5.10) The maps $K_i(R_F) \to K_i(R)$, $i = 0, 1$, are isomorphisms.

PROOF. $M \mapsto M_F$, $f \mapsto f_F$ defines a functor $\mathcal{P}_R \to \mathcal{P}_{RF}$. Using this functor, one checks $\mathcal{P}_{RF} \to \mathcal{P}_R$ is an equivalence of categories. The result is now easy. \qed

Hence given a map–germ $f: R \to S$, we get well–defined induced maps $K_i(R) \to K_i(S)$, $i = 0, 1$, and $\overline{K}_1(R) \to \overline{K}_1(S)$.

LEMMA 67. (Lemma 1.5.11) Let $f: R \to S$ be a map such that $\Delta(f)$ is an isomorphism. Then there is a shift functor F and a map $g: S_F \to R$ such that

\[
g \uparrow \downarrow f
S_F \to S
\]

commutes.

PROOF. The proof is just like that of Lemma \[55\] (Lemma 1.5.2 p. \[44\]). \qed

LEMMA 68. (Lemma 1.5.12) Let $[f]: R \to S$ be a map–germ such that $\Delta(f)$ is an isomorphism. Then the maps $K_0(R) \to K_0(S)$; $K_1(R) \to K_1(S)$; and $\overline{K}_1(R) \to \overline{K}_1(S)$ are isomorphisms.

PROOF. This proof is easy and will be left to the reader. \qed

REMARKS. By Lemma \[68\] (Lemma 1.5.12 p. \[51\]), the K–groups we get will not depend on which lift functor we use. Let $K_i(X: f) = \lim_{\longrightarrow} K_i(\mathbb{Z}\pi_1(X, F, f))$. Since all the maps in our direct limit are isomorphisms, $K_i(X: f)$ is computable in terms of $K_i(\mathbb{Z}\pi_1(X, F, f))$ for any F. $\overline{K}_1(X: f)$ is defined similarly.

DEFINITION. A stably free (s–free) tree of R–modules is an element, P, of \mathcal{P}_R such that $[P]$ is in the image of $K_0(T)$. Let P be an s–free R–module. An s–basis for P is an element $F \in \mathcal{R}_T$ and an isomorphism $b: F \otimes_T R \to P \oplus F_1 \otimes_T R$, where $F_1 \in \mathcal{P}_T$.

Two s–bases $b: F \otimes_T R \to P \oplus F_1 \otimes_T R$ and $c: F_2 \otimes_T R \to P \oplus F_3 \otimes_T R$ are equivalent ($B \sim c$) iff $0 = (F \oplus F_3, (b \oplus \text{id}_{F_1})) \circ \tau \circ ((c \oplus \text{id}_{F_1})^{-1}, F_2 \oplus F_1)$ in $\overline{K}_1(R)$, where $\tau: (P \oplus F_1 \otimes_T R) \oplus F_3 \otimes_T R \to (P \oplus F_3 \otimes_T R) \oplus F_1 \otimes_T R$ is the obvious map.

We can now give an exposition of torsion following Milnor \[23\]. Given a short exact sequence $0 \to E \xrightarrow{i} F \xrightarrow{p} G \to 0$ and s–bases b for E and c for G, define an s–basis bc for F by picking a splitting $r: G \to F$ for p and then taking the composition $F_1 \oplus F_2 \xrightarrow{(b, c)} (E \oplus F_3) \oplus (G \oplus F_4) \xrightarrow{h} F \oplus (F_3 \oplus F_4)$, where $h(e, x, g, z)$ goes to $(i(e) + r(g), x, z)$. It is not hard to check that this s–basis does not depend on the choice of splitting map.

We use Milnor’s formulation. Let $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k$ and suppose each F_i/F_{i-1} has an s–basis b_i. Then $b_1b_2 \cdots b_k$ is seen to be well–defined; i.e. our construction is associative.

Let E and F be submodules of G. Then $E + F$ is the submodule of G generated by E and F. $E \cap F$ is the pullback of $E \downarrow F \to G$.
Lemma 69. (Lemma 1.5.13) (Noether) The natural map \(E/(E \cap F) \rightarrow (E + F)/F \) is an isomorphism.

Proof. Apply the ordinary Noether isomorphism to each term. \(\square \)

Now let \(E/(E \cap F) \) have an \(s \)-basis \(b \) and let \(F/(E \cap F) \) have an \(s \)-basis \(c \). Base \((E + F)/F \) by \(b \) composed with the Noether map (we will continue to denote it by \(b \)). Similarly base \((E + F)/E \) by \(c \). Then \(bc \sim cb \) as \(s \)-bases for \((E + F)/(E \cap F) \).

Definition. Let \(b \) and \(c \) be two \(s \)-bases for \(P \). Then \([b/c] \in K_1(R) \) is defined as follows: if \(F \xrightarrow{b} P \oplus F_1; G \xrightarrow{c} P \oplus F_2 \), then \([b/c] = (F \oplus F_2, h_1, G \oplus F_1) \) where \(h: F \oplus F_2 \xrightarrow{b \oplus \text{id}} (P \oplus F_1) \oplus F_2 \rightarrow (P \oplus F_2) \oplus F_1 \xrightarrow{c^{-1} \oplus \text{id}} G \oplus F_1 \). Two \(s \)-bases are equivalent iff \([b/c] = 0 \). The formulas \([b/c] + [c/d] = [b/d] \) and \([b/c] + [d/e] = [bd/ce] \) are easy to derive from the relations in the relevant \(K_1 \).

We next define a torsion for chain complexes. A free chain complex is a set of \(s \)-free modules, \(P_n \), together with map-germs \(\partial_n: P_n \rightarrow P_{n-1} \) such that \(\partial_n \circ \partial_{n-1} = [0] \). A finite free chain complex is one with only finitely many non-zero \(P_n \). A positive free chain complex has \(P_n = 0 \) for \(n < 0 \).

Definition. Let \(\{P_n, \partial_n\} \) be a finite free chain complex. Let \(P_n \) be \(s \)-based by \(c_n \), and suppose each homology group \(H_i \) is \(s \)-free and \(s \)-based by \(h_i \).

The sequences \(0 \rightarrow B_{n+1} \rightarrow Z_n \rightarrow H_n \rightarrow 0 \) and \(0 \rightarrow Z_n \rightarrow P_n \rightarrow B_n \rightarrow 0 \), where \(B_n = \text{Im} \ (P_n \rightarrow P_{n-1}) \) and \(Z_n = \ker(\partial_n) \), are short exact. Let \(b_n \) be an \(s \)-basis for \(B_n \), which exists by an inductive argument.

\[
\tau(P_n) = \sum_{n} (-1)^n [b_n h_n b_{n-1}/c_n] \in K_1(R).
\]

It is easy to show \(\tau(P_n) \) does not depend on the choice of \(b_n \). Let \(0 \rightarrow P_n' \rightarrow P_n \rightarrow P_n'' \rightarrow 0 \) be a short exact sequence of finite free chain complexes. There is a long exact sequence

\[
\begin{array}{ccc}
H_n(P') & \longrightarrow & H_n(P) \\
\partial & \iff & H_n(P'') \end{array}
\]

Suppose each homology group is \(s \)-based. Then we have a torsion associated to \(\mathcal{H} \), where

\[
\mathcal{H}_{3n} = H_n(P'), \quad \mathcal{H}_{3n-1} = H_n(P), \quad \mathcal{H}_{3n-2} = H_n(P''),
\]

since \(\mathcal{H} \) is acyclic.

Theorem 70. (Theorem 1.5.1) \(\tau(P_n) = \tau(P_n') + \tau(P_n'') + \tau(\mathcal{H}) \).

Proof. See Milnor [23], Theorems 3.1 and 3.2. \(\square \)

\(^1\)Probably should have been called \(s \)-free.
We next describe the algebraic Subdivision Theorem of Milnor \cite{milnor67} (Theorem 5.2). Given a chain complex C_*, suppose it is filtered by $C_*^{(0)} \subseteq C_*^{(1)} \subseteq \cdots \subseteq C_*^{(n)} = C_*$ such that the homology groups $H_i(C^{(\lambda)}/C^{(\lambda-1)}) = 0$ for $i \neq \lambda$. $(C_*^{(-1)} = 0)$.

Then we have a chain complex $(\overline{C}_*, \bar{\partial})$ given by $\overline{C}_\lambda = H_\lambda(C^{(\lambda)}/C^{(\lambda-1)})$ and $\bar{\partial}$ is given by the boundary in the homology exact sequence of the triple $(C^{(\lambda)}, C^{(\lambda-1)}, C^{(\lambda-2)})$. There is a well–known canonical isomorphism $H_i(\overline{C}) \cong H_i(C)$ (see Milnor, Lemma 5.1).

Now suppose each $C^{(\lambda)}/C^{(\lambda-1)}_i$ has an s–basis c_i^λ: each \overline{C}_λ has an s–basis τ_λ: each $H_i(\overline{C})$ has an s–basis h_i. Assume C_* is a finite complex. Then so is \overline{C}_*.

Each $C^{(\lambda)}/C^{(\lambda-1)}_i$ has a torsion. If C_i^λ is s–based by $c^\lambda_1, c^\lambda_2, \ldots, c^\lambda_n$, and $H_i(\overline{C})$ is based by h_i composed with the canonical isomorphism, then the torsion of C is defined. Lastly, the torsion of \overline{C} is also defined.

Theorem 71. (Theorem 1.5.2) (Algebraic Subdivision Theorem)

$$\tau(C) = \tau(\overline{C}) + \sum_{\lambda=0}^{n} \tau\left(\frac{C^{(\lambda)}}{C^{(\lambda-1)}}\right).$$

Proof. The proof is the same as Milnor’s \cite{milnor67}, Theorem 5.2. One does the same induction, but one just shows $\tau(C^{(k)}) = \tau(\overline{C}^{(k)}) + \sum_{\lambda=0}^{k} \tau\left(\frac{C^{(\lambda)}}{C^{(\lambda-1)}}\right)$ (notation is the same as Milnor’s). \hfill \square

Now let (K, L) be a pair of finite dimensional hCW complexes with L a proper deformation retract of K. We have the modules $C_*(K, L; \Lambda, F)$. The exact sequence of a triple makes C_* into a chain complex, whose homology is zero since L is a proper deformation retract of K. The paths Λ give us a basis for C_* up to sign; i.e. we must orient each cell, which we can do arbitrarily. $\tau(K, L; \Lambda, f) \in \overline{K}_1(\mathbb{Z}_1(K, F, f))$ is the torsion of this complex with the basis given by Λ. We proceed to show that it does not depend on the choice of signs.

Let τ' be the torsion with a different choice of signs. Then, by Lemma \cite{milnor67} (Lemma 1.5.14 p. 53) below, $\tau' - \tau = \sum_{*}(-1)^* [c_* / c'_*]$ where c_* and c'_* are maps $F_\pi \to C_*$, one with the signs for τ and the other with the signs for τ'. But $c_*^{-1} \circ c'_* : F_\pi \to F_\pi$ lies in the image of $\mathcal{P}_T \to \mathcal{P}_R$, and so $[c_* / c'_*] = 0$ in $\overline{K}_1(R)$.

Lemma 72. (Lemma 1.5.14) Let C_* be a finite chain complex. Let c_* and $c'_*: F_\pi \to C_*$ be two free bases for C_*. Suppose $H_*(C)$ is s–based. Let τ and τ' be the torsions from the bases c_* and c'_* respectively. Then $\tau - \tau' = \sum_{*}(-1)^* [c_* / c'_*]$.

Proof. This is a fairly dull computation. \hfill \square

Now suppose G is a different lift functor with $F \leq G$. Then by Proposition \cite{milnor67} (Proposition 1.5.2 p. 50), the basis $c_* : F_\pi \to C_*(F)$ goes to $c_* : F_\pi \to C_*(G)$ under $\otimes_{\mathbb{Z}_1(F)}(\mathbb{Z}_1(G))$. Let $c'_*: F_\rho \to C_*(G)$ be the usual basis. Then $\pi \subseteq \rho$, and $F_\pi \to F_\rho \to C_*(G)$ is just c_*. The inclusion $F_\pi \to F_\rho$ lies in the image of \mathcal{P}_T in \mathcal{P}_R, so $[c_* / c'_*] = 0 \in \overline{K}_1(\mathbb{Z}_1(K, G, f))$. Hence
\[i_*\tau(K, L: F, \Lambda) - \tau(K, L: G, \Lambda) = 0 \text{ where } i_*: \overline{K}_1(\mathbb{Z}\pi_1(K, F)) \to \overline{K}_1(\mathbb{Z}\pi_1(K, G, f)) \]. Therefore we can define \(\tau(K, L: \Lambda) \in \overline{K}_1(K: f) \).

\(\tau(K, L: \Lambda) \) depends strongly on \(\Lambda \). We would like this not to be the case, so we pass to a quotient of \(\overline{K}_1 \).

Definition. Let \(G \) be a tree of groups with associated tree of rings \(\mathbb{Z}G \). The Whitehead group of \(G \), \(\text{Wh}(G) = \overline{K}_1(\mathbb{Z}G)/(\Delta(G)) \), where \((\Delta(G)) \) is the subgroup generated by all objects of the form \((F^{(1)}, [g], F^{(1)}) \) where \([g]\) is the map-germ of \(F^{(1)} \) to itself induced by any element \(g \in \Delta(G) \) as follows: \(g \) can be represented by a collection \(\{g_p\} \), where \(g_p \in G_{A(p)} \), with \(p \in A(p) \) and \(\{A(p)\} \) cofinal and locally finite. Define a partition, \(\pi \), of the vertices of \(T \) by \(\pi(A) = \{ p \in T \mid A(p) \subseteq A \} \). \(\pi \) is seen to be a partition and \(\pi \subseteq \rho \), the standard partition. Define a map \(g: F_\pi \to F_\pi \) by \(g_A: (F_\pi)_A \to (F_\pi)_A \) takes \(e_p \) to \(e_p \cdot f_{A_p}A(g_p) \) where \(f_{AB} \): \((\mathbb{Z}G)_A \to (\mathbb{Z}G)_B \). It is not hard to show this is a well-defined map-germ. What we have actually done is to construct a homomorphism \(\Delta(G) \to \overline{K}_1(\mathbb{Z}G) \) defined by \(g \mapsto (F^{(1)}, [g], F^{(1)}) \). Be definition \(\Delta(G) \to \overline{K}_1(\mathbb{Z}G) \to \text{Wh}(G) \to 0 \) is exact.

Given a homomorphism \(f: G \to H \) between two trees of groups, we clearly get a commutative square

\[
\begin{array}{ccc}
\Delta(G) & \to & \overline{K}_1(\mathbb{Z}G) \\
\downarrow & & \downarrow \\
\Delta(H) & \to & \overline{K}_1(\mathbb{Z}H)
\end{array}
\]

so we get a homomorphism \(\text{Wh}(G) \to \text{Wh}(H) \).

Lemma 73. (Lemma 1.5.15) Let \(f: G \to H \) be a map between two trees of groups for which \(\Delta(f) \) is an isomorphism. Then \(\text{Wh}(G) \to \text{Wh}(H) \) is an isomorphism.

Proof. \(\Delta(f): \Delta(G) \to \Delta(H) \) is also an isomorphism, so apply Lemma 68 {Lemma 1.5.12 p. 51} and the 5-lemma. \(\square \)

We can now define \(\text{Wh}(X: f) \) as \(\varinjlim_{F \in \mathcal{C}(f)} \text{Wh}(\mathbb{Z}\pi_1(X, F, f)) \).

Proposition 74. (Proposition 1.5.4) Let \((K, L) \) be a pair of finite dimensional hCW complexes with \(L \) a proper deformation retract of \(K \). Then, if \(\Lambda \) and \(\Lambda' \) are two choices of paths, \(\tau(K, L: \Lambda) = \tau(K, L: \Lambda') \) in \(\text{Wh}(X: f) \), hence we can then define \(\tau(K, L) \in \text{Wh}(X: f) \).

Proof. We can pick any lift functor we like, say \(F \). \(C_s(K, L: \Lambda, F) = C_s(K, L: \Lambda', F) \), and each is naturally based. Let \(\pi_s \) be the partition associated to \(\Lambda \) (see Proposition 65 {Proposition 1.5.3 p. 50}) and let \(\pi'_s \) be the partition associated to \(\Lambda' \). Let \(\rho_s \) be the partition \(\rho_s(\Lambda) = \{ e \mid e \text{ is a } * \text{-cell in } F(\Lambda) \} \) and the path for \(e \) in \(\Lambda \) lies in \(F(\Lambda) \) and the path for \(e \) in \(\Lambda' \) also lies in \(F(\Lambda) \} \).

\(\rho_s = \pi_s \cap \pi_s' \).

The basis \(F_{\rho_s} \to C_s' \) is equivalent to the basis \(F_{\pi_s} \to C_s \). Similarly \(F_{\rho_s} \to C_s' \) is equivalent to the basis \(F_{\pi_s} \to C_s' \). \((C_s = C_s(\cdots, \Lambda); C_s' = C_s(\cdots, \Lambda')) \).

\(\tau' - \tau = \tau(K, L: \Lambda') - \tau(K, L: \Lambda) = \sum_{i} (-1)^i[\pi_s/\pi_s'] \), by Lemma 72 {Lemma 1.5.14 p. 53}. If we can show \([\pi_s/\pi_s'] \) is in the image of \(\Delta(\pi_1) \) we are done. But this is not hard to see (\(\text{Wh}(\cdot) \) was defined by factoring out such things). \(\square \)
Having defined a torsion, we prove it invariant under subdivision. We follow Milnor [23].

Theorem 75. (Theorem 1.5.3) The torsion (K, L) is invariant under subdivision of the pair (K, L); (K, L) a finite dimensional hCW pair.

Proof. Following Milnor [23] we prove two lemmas.

Lemma 76. (Lemma 1.5.16) Suppose that each component of $K - L$ has compact closure and is simply connected. If L is a proper deformation retract of K, then $\tau(K, L) = 0$.

Proof. (Compare Milnor [23] Lemma 7.2). Let $f : T \to K$ be a tree. We wish to find a set of paths Λ so that the boundary maps in $C_\ast(K, L : F, \Lambda)$ come from P_T. Let $\{M_i\}$ be the components of $K - L$. Pick a point $q \in M_i$ and join $\{q_i\}$ to T by a locally finite set of paths λ_i. Now join each cell in M_i to q_i by a path lying in M_i. Let Λ be the set of paths gotten by following the path from the cell to a q_i and then following the path λ_i. Clearly Λ is a locally finite set of paths joining the cells of $K - L$ to T.

Let e be a cell of $K - L$. Then if f is a cell of ∂e, to compute the coefficient of f in ∂e we join the barycenter of f to the barycenter of e by a path in e and look at the resulting loop. The path from e and the path from f hit the same q_i, and since $\pi_1(M_i, q_i) = 0$, the coefficient is ± 1, so the boundary maps come from P_T. \qed

Lemma 77. (Lemma 1.5.17) Suppose that $H_\ast(C_\ast(K, L : \Lambda))$ is not 0, but is a free $\mathbb{Z}\pi_1(K)$-module with a preferred basis. Suppose each basis element can be represented by a cycle lying over a single component of $K - L$. Assume as before that each component of $K - L$ is compact and simply connected. Then $\tau(K, L) = 0$.

Proof. Pick a set of paths as in Lemma 76 (Lemma 1.5.16 p. 55) so that the boundary maps come from P_T. Look at a cycle z, representing a basis element of H_\ast. What this means is the following. Let $C_0 \subseteq C_1 \subseteq \ldots$ be an increasing sequence of compact subcomplexes with $\bigcup C_i = K$ and $M_i \subseteq C_i$. Then $z \in H_\ast(K - C_i, L - C_i)$ for a maximal C_i. Then z is represented by a cycle lying in some component of $\pi^{-1}(M_{i+1})$, where $\pi : K - C_i \to K - C_i$. All the lifted cells of M_{i+1} lie in a single component of $\pi^{-1}(M_{i+1})$, so let $g \in \pi_1(K - C_i)$ be such that gz also lies in this distinguished component.

Then the torsion computed with this altered basis is zero since it again comes from $\text{Wh}(T) = 0$. But the new basis for H_\ast is clearly equivalent to the old one in $\text{Wh}(K)$. \qed

The proof of Theorem 75 (Theorem 1.5.3 p. 55) now follows Milnor’s proof of Theorem 7.1 word for word except for a renaming of the requisite lemmas. \qed

Lemma 78. (Lemma 1.5.18) If $M \subseteq L \subseteq K$, where both L and M are proper deformation retracts of K, then $\tau(K, L) = \tau(K, M) + \iota_\ast \tau(L, M)$, where $\iota_\ast : \text{Wh}(L : f) \to \text{Wh}(K : i \circ f)$ is the map induced by $i : L \subseteq K$. (Note the tree must be in L.)

Proof. This is a simple application of Theorem 70 (Theorem 1.5.1 p. 52). \qed

Let $f : X \to Y$ be a proper, cellular map between two finite dimensional hCW complexes. Let M_f be the mapping cylinder. Y is a proper deformation retract of M_f and we have
LEMMA 79. (Lemma 1.5.19) $\tau(M_f, Y) = 0$ in $Wh(M_f, t)$ where $t: T \to Y$ is a tree for $Y \subseteq M_f$.

PROOF. Word for word Milnor [23] Lemma 7.5. □

DEFINITION. For any cellular proper homotopy equivalence $f: X \to Y$, X and Y as above, there is a torsion, $\tau(f)$, defined as follows. Let $t: T \to Y$ be a tree for Y. Then, as in Lemma 79 (Lemma 1.5.19 p. 56), t is also a tree for M_f under $T \to Y \subseteq M_f$. $\tau(f) = r_\ast \tau(M_f, X) \in Wh(Y: t)$ where $r_\ast: Wh(M_f: t) \to Wh(Y: t)$, where r is the retraction.

Just as in Milnor we have

LEMMA 80. (Lemma 1.5.20) If $i: L \to K$ is an inclusion map $\tau(i) = \tau(K, L)$ if either is defined.

LEMMA 81. (Lemma 1.5.21) If f_0 and f_1 are properly homotopic, $\tau(f_0) = \tau(f_1)$.

LEMMA 82. (Lemma 1.5.22) If $f: X \to Y$ and $g: Y \to Z$ are cellular proper homotopy equivalences, then

$$\tau(g \circ f) = \tau(g) + g_\ast \tau(f),$$

where $t: T \to Y$ is a tree for Y and $g_\ast: Wh(Y: t) \to Wh(Z: g \circ t)$.

REMARKS. It follows from Lemma 81 (Lemma 1.5.21 p. 56) that we may define the torsion of any proper homotopy equivalence between finite dimensional hCW complexes, since we have a proper cellular approximation theorem 11.

Now in 33, Siebenmann defined the notion of simple homotopy type geometrically. In particular, he got groups $\zeta(X)$ associated to any locally compact CW complex. If X is finite dimensional, we can define a map $\tau: \zeta(X) \to Wh(X: f)$ by choosing a tree $f: T \to X$. If $g: X \to Y$ is an element of $\zeta(X)$, g goes to $\tau(M_{g^{-1}}, Y)$ where $g^{-1}: Y \to X$ is a proper homotopy inverse for g.

τ is additive by Lemma 82 (Lemma 1.5.22 p. 56) and depends only on the proper homotopy class of g by Lemma 81 (Lemma 1.5.21 p. 56). That τ is well-defined reduces therefore to showing that g a simple homotopy equivalence implies $\tau(g) = 0$. We defer for the proof to Farrell–Wagoner 10, where it is also proved τ is an isomorphism. The inverse for τ is easy to describe. Let $\alpha \in Wh(X: f)$ be an automorphism of $F^{(n)}$ for some n. Wedge n 2–spheres to each vertex of the tree. Attach 3–cells by α to get an hCW complex Y with $Y – X$ 3–dimensional. Then $i: X \subseteq Y$ is an element of $\zeta(X)$ and $\tau(i) = \alpha$. Again we defer to 10 for the proof that this map is well-defined.

In 33 Siebenmann also constructs an exact sequence

$$0 \to Wh'\pi_1(X) \to \zeta(X) \to K_0\pi_1E(X) \to K_0\pi_1(X).$$

We have

$$0 \to Wh'\pi_1(X) \xrightarrow{\alpha} \zeta(X) \xrightarrow{\tau^{-1}} K_0\pi_1E(X) \xrightarrow{\beta} K_0\pi_1(X).$$
commutes. Farrell and Wagoner describe α and β and prove this diagram commutes. They show that the bottom row is exact, so τ^{-1} is an isomorphism.

Note now that if $g: T \to X$ is another tree for X, we have natural maps

\[\text{Wh}(X : f) \cong \text{Wh}(X : g) \]

which take $\tau(X,Y)$ computed with f to $\tau(X,Y)$ computed with g and vice-versa. This shows $\text{Wh}(X : f)$ does not really depend on the choice of tree. We content ourselves with remarking that the map $\text{Wh}(X : f) \to \text{Wh}(X : g)$ is not easy to describe algebraically.

In \[33\] Siebenmann derives some useful formulas which we name

1) Sum formula
2) Product formula
3) Transfer formula

Note if $\pi: \tilde{Y} \to Y$ is a cover, π induces $\pi^*: \zeta(Y) \to \zeta(\tilde{Y})$. We are unable to say much about this map algebraically. The product formula is algebraically describable however.

Lemma 83. (Lemma 1.5.23) Let C_* be an s–based, finite chain complex over the tree of rings R. Let D_* be an s–based, finite chain complex on the ring S (the tree of rings over a point). Then $(C \otimes D)_*$ is defined. If C_* is acyclic with torsion τ, $(C \otimes D)_*$ is acyclic with torsion $\chi(D) \cdot i, \tau(C) \in \text{Wh}(R \times S)$ where $(R \times S)_A = R_A \times S$, and $i_*: \text{Wh}(R) \to \text{Wh}(R \times S)$ is the obvious split monomorphism. If D_* is acyclic, then so is $(C \otimes D)_*$, and if $\tau(D) = 0$, then $\tau(C \otimes D) = 0$.

Proof. The first formula is Siebenmann’s product formula and is proved by induction on the number of cells in D_*. The second formula is new, but it is fairly easy. It basically requires the analysis of maps $\text{Wh}(S) \to \text{Wh}(R \times S)$ of the form $D_* \to P \otimes D_*$ for P and s–based R–module. These maps are homomorphisms, and so, if $\tau(D_*) = 0, \tau(P \otimes D_*) = 0$. But $\tau((C \otimes D)_*) = \sum_k (-1)^k \tau(C_k \otimes D_*)$. (There is evidence for conjecturing that the map $\text{Wh}(S) \to \text{Wh}(R \times S)$ is always \[3\])

We conclude this section by discussing the notion of duality. In particularly, we would like a functor $\ast : \mathcal{M}_R \to \mathcal{M}^l_R$ which generalizes the usual duality $P \to \text{Hom}(P, R)$ in the compact case. Up until now, \mathcal{M}_R has denoted without prejudice either the category of right or left R–modules. We now fix it to be the category of right R–modules. \mathcal{M}^l_R then denotes the category of left R–modules.

Actually, we are really only interested in $\ast : \mathcal{P}_R \to \mathcal{P}^l_R$. Hence we begin by discussing a functor $\ast : \mathcal{F}_R \to \mathcal{F}^l_R$, where \mathcal{F}_R is the category of locally-finitely generated free right R–modules. \ast will satisfy

1) \ast is a contravariant, additive, full faithful functor
2) $\ast\ast$ is naturally equivalent to the identity.

By this last statement we mean the following. Given $\ast : \mathcal{F}_R \to \mathcal{F}^l_R$ there will be another obvious duality $\ast : \mathcal{F}^l_R \to \mathcal{F}_R$. The composition of these two is naturally equivalent to the identity.

We proceed to define \ast. If F_A is a free right R_A–module based on the set A, there is also a free left R_A–module based on the same set, F^*_A. F^*_A can be described as $\text{Hom}^c_{R_A}(F_A, R_A)$, where $\text{Hom}^c_{R_A}$ is the set of all R_A–linear homomorphisms which vanish on all but finitely many generators. $\text{Hom}^c_{R_A}(F_A, R_A)$, is easily seen to have the structure of a left R_A–module.

\[1\]If the tree is infinite.
Let $A \subseteq B$, and let $f: R \to S$ be a ring homomorphism. Then we have
\[
\Hom_{R_A}^c(F_A, R_A) \to \Hom_{R_B}^c(F_A \otimes R_B, R_B) \quad \leftarrow \quad \text{ex} \\
\Hom_{R_B}^c(F_B/F_{B-A}, R_B) \to \Hom_{R_B}^c(F_B, R_B)
\]

The map ex is an isomorphism since $0 \to F_A \otimes R_B \to F_B \to F_{B-A} \to 0$ is split exact. Thus we get a well-defined homomorphism
\[
\Hom_{R_A}^c(F_A, R_A) \to \Hom_{R_B}^c(F_B, R_B).
\]

Now given F_π, let F_π^* be the tree of left modules over the tree of rings R defined by $(F_\pi)_A = \Hom_{R_A}^c(F_\pi(A), R_A)$, and use the map discussed above to define p_{AB}.

Given a map $f: F_\pi \to F_\rho$, define $f^*: F_\pi^* \to F_\rho^*$ by
\[
(f^*)_A = \Hom(f_A): \Hom_{R_A}^c(F_\rho(A), R_A) \to \Hom_{R_A}^c(F_\pi(A), R_A)
\]

We must check that $(f^*)_A$ is defined and that the requisite diagrams commute. This last is trivial, so we concentrate on the first objective. To this end, let $\alpha \in \Hom_{R_A}^c(F_\rho(A), R_A)$. We must show $\Hom(f_A)(\alpha)$ lies in $\Hom_{R_A}^c(F_\pi(A), R_A) \subseteq \Hom_{R_A}^c(F_\rho(A), R_A)$. Since α has compact support, α vanishes on the generators corresponding to a subset $S \subseteq \rho(A)$ with $\rho(A) - S$ finite. Hence there is a $B \in \mathcal{C}(T)$ so that $\rho(B) \subseteq S$; i.e. α vanishes on generators corresponding to $\rho(B)$. Let $\overline{F}_\pi(B) = F_\pi(B) \otimes R_B R_A$; let $\overline{F}_\rho(B) = F_\rho(B) \otimes R_B R_A$; and let $\overline{j}_B = f_b \otimes \text{id}$. Then

\[
\begin{array}{ccc}
\Hom(F_\rho(A), R_A) & \xrightarrow{\Hom(f_A)} & \Hom(F_\pi(A), R_A) \\
\downarrow i & & \downarrow j \\
\Hom(\overline{F}_\rho(B), R_A) & \xrightarrow{\Hom(\overline{j}_B)} & \Hom(\overline{F}_\pi(B), R_A)
\end{array}
\]

commutes. α is in the kernel of i, so $\Hom(f_A)(\alpha) \in \ker j$. But this means $\Hom(f_A)(\alpha)$ has compact support.

There is a natural map $F \to F^{**}$ induced by the natural inclusion of a module into its double dual. This map is an isomorphism\footnote{Since F is finitely-generated and free.} and

\[
F \quad \longrightarrow \quad F^{**} \\
\downarrow f \quad \quad \quad \quad \quad \downarrow f^{**} \\
G \quad \longrightarrow \quad G^{**}
\]

commutes.

* is clearly contravariant and a functor. If $\pi \subseteq \rho$, one sees $F_\rho^* \to F_\pi^*$ is an equivalence. Hence we can define $*$ for map–germs. $(f + g)^* = f^* + g^*$ is easy to see, so $*$ is additive. Since $**$ is naturally isomorphic to the identity, $*$ must be both faithful and full, so 1) is satisfied.

We next define the subcategory on which we wish to define $*$. Let $\overline{\mathcal{M}}_R$ be the full subcategory of \mathcal{M}_R such that $M \in \overline{\mathcal{M}}_R$ iff there exists $f: F_\rho \to F_\pi$ with $\text{coker} f \cong M$. Note $\mathcal{P}_R \subseteq \overline{\mathcal{M}}_R$. We define $*: \overline{\mathcal{M}}_R \to \mathcal{M}_R$ by $M^* = \ker(f^*)$.

Given $M, N \in \overline{\mathcal{M}}_R$, a map $g: M \to N$, and resolutions $F_\rho \to F_\pi \to M \to 0$ and $F_\alpha \to F_\beta \to M \to 0$, note that we can compare resolutions. That is, we can find h and f so
that
\[
\begin{array}{ccc}
F_\rho & \xrightarrow{f} & F_\alpha \\
\downarrow & & \downarrow \\
A) F_\pi & \xrightarrow{h} & F_\beta \\
\downarrow & & \downarrow \\
M & \xrightarrow{g} & N \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}
\]
commutes.
Define \(g^*: N^* \to M^* \) by
\[
\begin{array}{ccc}
0 & 0 \\
\downarrow & \downarrow \\
N^* & \xrightarrow{g^*} & M^* \\
\downarrow & \downarrow \\
B) F_\beta^* & \xrightarrow{h^*} & F_\pi^* \\
\downarrow & \downarrow \\
F_\alpha^* & \xrightarrow{f^*} & F_\rho^*.
\end{array}
\]

We first note that the definition of \(g^* \) does not depend on \(h \) and \(f \), for if we pick \(h_1 \) and \(f_1 \) such that A) commutes, there is a commutative triangle
\[
\begin{array}{ccc}
F_\alpha & \xrightarrow{p} & F_\rho \\
\downarrow & & \downarrow \\
F_\pi & \xrightarrow{h-h_1} & F_\beta
\end{array}
\]
Dualizing, we get
\[
\begin{array}{ccc}
F_\beta^* & \xrightarrow{h^*-h_1^*} & F_\pi^* \\
\downarrow & \uparrow & \downarrow \\
F_\alpha^* & \xrightarrow{f^*} & F_\rho^*.
\end{array}
\]
Now this triangle shows that the map we get from \(f_1 \) and \(h_1 \) is the same as we got from \(f, h \).

To show \(M^* \) does not depend on the resolution is now done by comparing two resolutions and noting \((\text{id})^* = \text{id}\).

Unfortunately, \((M^*)^* \) may not even be defined, so we have little hope of proving a result like 2). One useful result that we can get however is

Lemma 84. (Lemma 1.5.24) Let \(f: P \to M \) be an epimorphism with \(M \in \overline{M}_R \) and \(P \in \mathcal{P}_R \). Then \(f^*: M^* \to P^* \) is a monomorphism.

Proof. The proof is easy. \(\square\)

If we restrict ourselves to \(\mathcal{P}_R \), we can get 1) and 2) to hold. It is easy to see \(P^* \in \mathcal{P}^R_\ell \) for \(P \in \mathcal{P}_R \). Now the equation \((P \oplus Q)^* = P^* \oplus Q^* \) is easily seen since direct sum preserves kernels. Thus \((P \oplus Q)^{**} = P^{**} \oplus Q^{**} \), so it is not hard to see \(P \to P^{**} \) must be an isomorphism since if
P is free the result is known. Lastly, * is natural, i.e. if \(f: R \to S \) is a map, then \(\overline{M}_R \to \overline{M}_S \) commutes. That \(\overline{M}_R \) hits \(\overline{M}_S \) follows since \(\otimes \) is right exact.

Definition. Let \(\{M_i, \partial_i\} \) be a chain complex with \(M_i \in \mathcal{M}_R \). Then \(\{M^*_i, \partial^*_i\} \) is also a chain complex. The cohomology of \(\{M_i, \partial_i\} \) is defined as the homology of \(\{M^*_i, \partial^*_i\} \).

Proposition 85. (Proposition 1.5.5) Let \((X,Y)\) be an hCW pair; let \(F \) be a lift functor; and let \(\Lambda \) be a set of paths. Then \(\{C^*(X,Y; F, \Lambda), \partial^*_\} \) is a chain complex as we saw. Its dual is \(\{C^*(X,Y; F, \Lambda), \delta^*_\} \). Hence the cohomology of a pair is the same as the cohomology of its chain complex.

Proof. Easy. \(\square \)

Notice that our geometric chain complexes lie in \(\mathcal{P}_R \). For such complexes we can prove

Theorem 86. (Theorem 1.5.4) Let \(\{P_r, \partial_r\} \) be a finite chain complex in \(\mathcal{P}_R \). \(H_k(P) = 0 \) for \(k \leq n \) iff there exist maps \(D_r: P_r \to P_{r+1} \) for \(r \leq n \) with \(\partial_{r-1}D_r + \partial_{r+1}D_r = id_{P_r} \).

Proof. Standard. \(\square \)

Corollary 87. (Corollary 1.5.4.1) (Universal Coefficients). With \(\{P_r, \partial_r\} \) as above, \(H_k(P) = 0 \) for \(k \leq n \) implies \(H^k(P) = 0 \) for \(k \leq n \). \(H^k(P) = 0 \) for \(k \geq n \) implies \(H_k(P) = 0 \) for \(k \geq n \).

Proof. Standard. \(\square \)

Now suppose \(\{P_r, \partial_r\} \) is a chain complex in \(\mathcal{P}_R \). Then \(\ker \partial_{r+1} \in \overline{M}_R \). By Lemma 84, \(\ker \delta^r = \ker \partial_{r+1}^* \). Now

\[
\begin{array}{c}
P_{r-1} \\
\partial_r \downarrow \\
P_r \to \ker \partial_{r+1} \\
\uparrow \\
H_r(P) \\
\uparrow \\
0
\end{array}
\]

commutes and is exact. If \(H_r(P) \in \overline{M}_R \), applying duality to this diagram yields

\[
P^*_r \xrightarrow{\alpha} \ker(\delta^r) \xrightarrow{\beta} \left(H_r(P)\right)^* \quad \text{By definition, } \ker \alpha = H^r(P). \beta \circ \alpha = 0, \text{ so there is a unique, natural map } H^r(P) \to \left(H_r(P)\right)^*.
\]

Corollary 88. (Corollary 1.5.4.2) With \(\{P_r, \partial_r\} \) as above, if \(H_k(P) = 0 \) for \(k < n \), \(H_n(P) \in \overline{M}_R \). If \(H_n(P) \in \mathcal{P}_R \), the natural map \(H^n(P) \to \left(H_n(P)\right)^* \) is an isomorphism.
Proof. By induction, one shows \(Z_n \in \mathcal{P}_R \), and since \(P_{n+1} \xrightarrow{\partial_{n+1}} Z_n \rightarrow H_n(P) \rightarrow 0 \) is exact, it is not hard to see \(H_n(P) \in \overline{\mathcal{M}}_R \). If \(H_n(P) \in \mathcal{P}_R \), 0 \rightarrow \left(H_n(P) \right)^* \rightarrow Z_n^* \rightarrow P_{n+1}^* \) is exact, so \(H^n(P) \cong \left(H_n(P) \right)^* \).

Theorem 89. (Theorem 1.5.5) With \(\{ P_r, \partial_r \} \) as above, suppose \(H_k(P) = 0 \) for \(k < n \) and \(H_k(P) = 0 \) for \(k > n \). Then \(H_n(P) \in \mathcal{P}_R \) and the natural map \(H^n(P) \rightarrow \left(H_n(P) \right)^* \) is an isomorphism. In \(K_0(R) \), \(\left[H_n(P) \right] = (-1)^n \chi(P) \), where \(\chi(P) \in K_0(R) \) is \(\sum_r (-1)^r [P_r] \).

Proof. Since \(H_k(P) = 0 \) for \(k < n \), the sequence \(\cdots \rightarrow P_{n+1} \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \) splits up as

\[
\cdots \rightarrow P_{n+1} \rightarrow Z_n \rightarrow 0 \rightarrow Z_n \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots
\]

The second sequence is exact, and \(\cdots \rightarrow P_{n+1} \leftarrow Z_n^* \leftarrow (H_n)^* \leftarrow 0 \) is exact by Corollary 87 \{Corollary 1.5.4.1 p. 60\}. By Corollary 88 \{Corollary 1.5.4.2 p. 60\}, \(H_n \in \overline{\mathcal{M}}_R \). Dualizing, we get \(\cdots \rightarrow P_{n+1}^* \leftarrow Z_n^* \leftarrow (H_n)^* \leftarrow 0 \) is exact by Corollary 87 \{Corollary 1.5.4.1 p. 60\} and Lemma 84 \{Lemma 1.5.24 p. 59\}. As in the proof of Theorem 86 \{Theorem 1.5.4 p. 60\}, we get a chain retraction up to \(D : P_{n+1} \rightarrow Z_n^* \). This shows \((H_n)^* \in \mathcal{P}_R \). But

\[
\cdots \leftarrow P_{n+1}^* \leftarrow Z_n^* \leftarrow (H_n)^* \leftarrow 0 \leftarrow Z_n^* \leftarrow P_n^* \leftarrow P_{n-1}^* \leftarrow \cdots
\]

splice together to give the cochain complex. \(H^n \rightarrow (H_n)^* \) is now easily seen to be an isomorphism.

Now \(\sum_{r \geq n+1} (-1)^r [P_r] + (-1)^n[Z_n] + (-1)^{n-1}[H_n] = 0 \) and \(\sum_{r \leq n} (-1)^r [P_r] + (-1)^{n+1}[Z_n] = 0 \) in \(K_0(R) \) by Bass [1], Proposition 4.1, Chapter VIII. Summing these two equations shows \(\chi(P) + (-1)^{n-1}[H_n] = 0 \).

Now let us return and discuss the products we defined in section 4. We defined two versions of the cap product on the chain level (see Theorems 51 \{Theorem 1.4.5 p. 39\} and 52 \{Theorem 1.4.6 p. 40\}). Notice that the maps we defined on \(P_*(X; A, B) \) and \(P_*(X; A, B) \) actually come from maps on the tree modules \(C_*(X; A, B : \Lambda, F) \) and \(C_*(X; A, B : \Lambda, F) \). Thus if \(f \) is a cocycle in \(C_m(X; A; \Gamma) \), and if \(h \) is a diagonal approximation, Theorem 51 \{Theorem 1.4.5 p. 39\} yields a chain map \(C_{*+m}(X; A, B : \Lambda, F) \xrightarrow{\cap_h f} C_*(X, B : \Lambda, F) \). Note that in order for this to land in the asserted place, \(\Gamma \) pulled up to the universal cover of \(X \) must just be ordinary integer coefficients.

\(\cap_h f \) dualizes to \(f \cup_h : C_*(X; A, B : \Lambda, F) \rightarrow C_{m+n}(X; A, B : \Lambda, F) \). Since we did not define cup products on the chain level, we may take this as a definition. Nevertheless we assert that on homology \(f \cup_h \) induces the cup product of Theorem 46 \{Theorem 1.4.1 p. 37\}. This follows from the duality relations we wrote down between ordinary cohomology and homology (see the discussion around the universal coefficient theorems in section 1).\(^1\)

Now one easily sees \(* \) induces a map \(Wh(*) : Wh(R) \rightarrow Wh^f(R) \), where \(Wh^f(R) \) is the group formed from left modules. If \(\cap f \) (or \(f \cup \)) is a chain equivalence, we can compare \(\tau(f \cup) \) and \(\tau(\cap f) \). We get \(Wh(*) \left(\tau(\cap f) = (-1)^m \tau(f \cup) \right) \) by definition.

\(^1\)See page 7
Next we study the cap product of Theorem 52 (Theorem 1.4.6 p. 40). A cycle \(c \in C^\ell_m(\Gamma) \) yields maps \(C^\ell_m(X; A, B; \Gamma) \to C_{m-\ell}(X; B; \Lambda, F) \). \(C^\ell_m \) is a left module while \(C_\ast \) is a right module, so \(\cap_h \) is not a map of tree modules. If \(\Gamma \) has all its groups isomorphic to \(\mathbb{Z} \), which it must to yield the asserted product, we get a homomorphism \(w : \Gamma(X) \to \mathbb{Z}/2\mathbb{Z} = \text{Aut}(\mathbb{Z}) \) given by the local system. We can make \(C_{\ast} \) into a right module (or \(C_{\ast} \) into a left module) by defining \(m_A \cdot a = \overline{a} \cdot m_A \), where \(m_A \in (C_{\ast})_A \), \(a \in (\mathbb{Z}\pi_1)_A \) and \(\overline{m} \) is the involution on \((\mathbb{Z}\pi_1)_A \) induced by \(g \in (\pi_1)_A \) goes to \(w(g) \cdot g^{-1} \), where \(w(g) \in \mathbb{Z}/2\mathbb{Z} = \{1, -1\} \) is the image of \(g \) under the composition \((\pi_1)_A \to \pi_1(X) \xrightarrow{w} \mathbb{Z}/2\mathbb{Z} \). With this right module structure, \(\cap_h \) is a right module map. It is not however the case that \(\cap_h \) is a chain map. The requisite diagrams commute up to sign, but they only commute in half the dimensions. To overcome this annoyance, alter the boundary maps in \(C^\ast(X, \Lambda ; F) \) to be \(\delta_{(m)}^* = (-1)^{\ast+m}\delta^* \) where \(\delta^* \) are the duals of the \(\delta \) boundary maps. Let \(C^\ast_{w,m} \) be \(C^\ast \) with our right module structure and boundary maps \(\delta_{(m)}^* \).

Given any finite, projective chain or cochain complex, \(\{P, \partial_\ast\} \) (or \(\{P^\ast, \partial^\ast\} \)), we can get a new complex \(\{P, (-1)^{\ast+m}\partial_\ast\} \). There are evident chain isomorphisms among the three complexes and these isomorphisms are simple (even measured in \(K_1 \)). Given a complex, its \((w, m)\)-dual is formed by taking the dual modules, converting them to modules of the same sidedness as the original using \(w \) and altering the boundary maps using \((w, m) \)-dual maps \((\partial^\ast, \partial_\ast) \). The \((w, m)\)-dual of a complex is chain isomorphic to the original complex. The map on a particular module is just the isomorphism \(P \to P^{**} \).

Now \(\cap_h : C^\ast_{w,m}(X, A) \to C_{m-\ast}(X, B) \) is a chain map. If we \((w, m)\)-dualize, we get a map \((\cap_h)^* : C^{m-\ast}_{w,m}(X, B) \to (C^\ast_{w,m}(X, A))^{(w, m)}\)–dualized. \(C^\ast_{w,m} \) \((w, m)\)–dualized is just \(C_{\ast} \), and \((\cap_h)^* = \cap_h \).

The involution is seen to induce an isomorphism \(\text{Wh}^\ell(G) \to \text{Wh}(G) \), and the composition \(\text{Wh}(G) \xrightarrow{\text{Wh}^\ell} \text{Wh}^\ell(G) \to \text{Wh}(G) \) is the map induced by \(\mathbb{Z}G \to \mathbb{Z}G \) via \(- \) (it is not hard to see that this map induces a map on the Whitehead group level). We will denote the map on \(\text{Wh}(G) \) also by \(- \).

If \(\cap_h \) is a chain isomorphism, either from \(C^\ast_{w,m}(X, A) \to C_{m-\ast}(X, B) \) or from \(C^\ast_{w,m}(X, B) \to C_{\ast}(X, A) \), we can compare the two torsions. We get the confusing equation \(\tau(\cap_h) = (-1)^{m}\tau(\cap_h) \) where despite their similar appearance, the two \(\cap_h \)'s are not the same (which is which is irrelevant).

We conclude by recording a notational convention. We will sometimes have a map on homology such as \(\cap : \Delta^\ast(M) \to \Delta_\ast(M) \). If this map is an homology isomorphism we will often speak of the torsion of \(\cap \) (or \(f \cup \), etc.). By this we mean that there is a chain map, possibly after twisting the cochain complex, (the chain map and twists will be clear from context) and these maps on the chain level are equivalences. Note that by the usual nonsense, the torsions of these product maps do not depend on a choice of cycle (or cocycle) within the homology (cohomology) class. Nor do they depend on lift functor or choice of paths. They are dependent on the tree at this stage of our discussion, but this too is largely fictitious. A better proof of independence is given at the end of section 6. Especially relevant for this last discussion are Theorem 97 (Theorem 2.1.2 p. 70) and the discussion of the Thom isomorphism theorem in the appendix to Chapter 2.

6. The realization of chain complexes

In [37] and [38], Wall discussed the problem of constructing a CW complex whose chain complex corresponds to a given chain complex. We discuss this same problem for locally compact CW...
complexes. Throughout this section, complex will mean a finite dimensional, locally compact CW complex.

If we have a chain complex A_\ast, there are many conditions it must satisfy if it is to be the chain complex of a complex. Like Wall \[38\] we are unable to find an algebraic description of these conditions in low dimensions. We escape the dilemma in much the same way.

Definition. A geometric chain complex is a positive, finite, chain complex A_\ast together with a 2–complex K, a tree $f: T \to K$, and a lift functor $F \in \mathcal{L}(f)$ such that

1) each A_k is a locally–finitely generated free $\mathbb{Z}\pi_1(K,F,f)$–module
2) each $\partial_k: A_k \to A_{k-1}$ is a map (not a map–germ)
3) in dimensions ≤ 2, $C_\ast(K,F,f) = A_\ast$.

For 3) to make sense, we must define equality for two free tree modules. If A is free and based on (S,π) and if B is free and based on (R,ρ), $A = B$ iff there exists a 1–1 map $\alpha: S \leftrightarrow R$ such that $\alpha \circ \pi$ is equivalent to ρ. One easily checks that this is an equivalence relation.

Notice that if A_\ast is going to be the chain complex of some complex, then all the above conditions are necessary.

Given two geometric chain complexes A_\ast and B_\ast, a map $f_\ast: A_\ast \to B_\ast$ is a map (not a germ) on each A_k and $\partial_k f_k = f_{k-1} \partial_k$ as maps.

Definition. A map $f_\ast: A_\ast \to B_\ast$ between two geometric chain complexes is admissible provided

1) if L is the 2–complex for B_\ast, $L = K$ wedged with some 2–spheres in a locally finite fashion
2) f_0 and f_1 are the identity
3) f_2 is the identity on the 2–cells of K and takes any 2–sphere to its wedge point. (The tree for L is just the tree for K. The lift functor for L is just $g^{-1}(\text{lift functor for } K)$, where $g: K \to L$ is the collapse map.)

Remarks. It seems unlikely that we really need such strong conditions on a map before we could handle it, but in our own constructions we usually get this, and these assumptions save us much trouble.

The chief geometric construction is the following.

Theorem 90. *(Theorem 1.6.1)* Let X be a connected complex. Let A_\ast be a geometric chain complex with an admissible map $f_\ast: A_\ast \to C_\ast(X)$ which is an equivalence. Then we can construct a complex Z and a proper, cellular map $g: Z \to X$ so that $C_\ast(Z) = A_\ast$ and

$$
\begin{array}{ccc}
A_\ast & \xrightarrow{f_\ast} & C_\ast(X) \\
& \downarrow & \downarrow g_\ast \\
& & C_\ast(Z)
\end{array}
$$

commutes. g is a proper homotopy equivalence.

Proof. We construct Z skeleton by skeleton. Since f_\ast is admissible, $Z^2 = X^2$ wedge 2–spheres. $g_2: Z^2 \to X$ is just the collapse map onto X^2. To induct, assume we have an r–dimensional complex Z^r and $g_r: Z^r \to X$ so that $C_\ast(Z^r) = A_\ast$ in dimensions $\leq r$ and $(g_r)_\ast = f_\ast$ in these dimensions. If we can show how to get Z^{r+1} and g_{r+1} we are done since A_\ast is finite.
Now A_{r+1} is free, so pick generators $\{e_i\}$. We have a map $\partial: A_{r+1} \to A_r$ and $C_r(Z^r) = A_r$.

Hence each ∂e_i is an r–chain in Z^r. We will show that these r–chains are locally finite and spherical (i.e. there is a locally finite collection of r–spheres, and, after subdivision, cellular maps $\cup S^r_i \to Z^r$ such that ∂e_i is homologous to S^r_i, and, if h_i is an $(r+1)$–chain giving the homology, the $\{h_i\}$ may be picked to be locally finite.) We will then attach cells by these spheres and extend the map.

Let us now proceed more carefully. For each i, $\partial e_i \in A_r$ and $\partial e_i \in (A_r)_W$ for some $W_i \in C(T)$ with $\{W_i\}$ cofinal in the subcategory of $C(T)$ consisting of all A such that $\partial e_i \in (A_r)_A$. Since $C_r(Z^r) = A_r$, $\partial e_i = e_i \in (C_r(Z^r))_B$ for some $B_i \in C(T)$ with $B_i \subseteq W_i$ (we write $B_i \subseteq W_i$ provided $B_i \subseteq W_i$ and $\{B_i\}$ is cofinal in the subcategory of all $A \in C(T)$ for which $e_i \in (A_r)_A$. e_i is now a real geometric chain. $\partial c_i = 0$ since ∂ is actually a map. Let $[c_i]$ be the homology class of c_i in $H_r(F_r(B_i))$, where F_r is the lift functor for Z^r. Now $g_r[c_i] = 0$ in $H_r(F(U_i))$, where F is the lift functor for X and $U_i \subseteq B_i$.

Hence there is an $f_i \in H_{r+1}(\tilde{g}_r: F_r(U_i) \to \tilde{F}(U_i))$ with $f_i \mapsto [c_i]$. But $g_r: Z^r \to X$ is properly r–connected (it induces an isomorphism of $\Delta(\cdot : \pi_1')$’s and $H^{0,\text{end}}$’s by assumption, so it is always 1-2–connected.) Hence the universal covering functor for X is a universal covering functor for Z^r, so $\Delta(M_{g_r}, X: H_k, \sim) = 0$ for $k \leq r$ by the Hurewicz theorem. But $\Delta(M_{g_r}, X: H_k, \sim) = 0$ for $k \leq r$ and an epimorphism for $k = r$, which it is.) Hence the Hurewicz theorem gives us elements $s_i \in \pi_{r+1}(g_r: F_r(V_i) \to F(V_i))$ where $V_i \subseteq U_i$ and s_i hits the image of f_i in $H_{r+1}(\tilde{g}_r: F_r(V_i) \to \tilde{F}(V_i))$ under the Hurewicz map.

Let $Z^{r+1} = Z^r \cup \{a_i\}$ a collection of $(r+1)$–cells, $\{e_i\}$ attached by s_i. $g_{r+1}: Z^{r+1} \to X$ is g_r on Z^r. Since $g_r \circ s_i: S^r \to Z^r \to X$ are properly null homotopic, choose a locally finite collection $\{Q_i\}$ of null homotopies of $g_r \circ s_i$ to zero in $F(V_i)$. $g_{r+1}: Z^{r+1} \to X$ is then properly homotopic for $r+1$ provided Q_i on each e_i. g_{r+1} is obviously still proper. $C_*(Z^r) \to C_*(Z^{r+1})$ induces an isomorphism for $* \leq r$. $C_{r+1}(Z^{r+1}) = A_{r+1}$ by the same argument as for the generator e_i. $F_{r+1}(B) = F_r(B) \cup \{\text{all cells } e_i \text{ for which the generator } e_i \text{ lies in } B \text{ less those for which } g_{r+1}(e_i) \not\subseteq F(B)\}$.

Then $g_{r+1}^{-1}(F(B)) \supseteq F_{r+1}(B)$. Notice that if a cell e does not attach totally in $F_r(B)$, $g_{r+1}(e) \not\subseteq F(B)$, so $F_{r+1}(B)$ is a proper map.

Look at the chain map $(g_{r+1})_*: C_{r+1}(Z^{r+1}) \to C_{r+1}(X)$. e_i as a cell goes under $(g_{r+1})_*$ to the same element in $(C_{r+1}(X))_B$ as the generator e_i does under f_* for all $B \in C(T)$ such that e_i is a cell in $F_{r+1}(B)$.

$$\begin{array}{c}
A_{r+1} \xrightarrow{f_{r+1}} C_{r+1}(X) \\
\| \xrightarrow{g_{r+1}} C_{r+1}(Z^{r+1})
\end{array}$$

Definition. A relative geometric chain complex is a triple (A_*, K, L) consisting of a finite, positive chain complex A_* and a pair of complexes (K, L). Understood is a tree and a lift functor. Then each A_k is a locally–finitely generated free $\mathbb{Z}\pi_1(K)$ module; each ∂_k is a map; and in dimensions ≤ 2, $A_* = C_*(K, L)$.

An admissible map f_* from (A_*, K, L) to (B_*, K', L') is a map, not a germ, $f_*: A_* \to B_*$ and $K = K'$ wedge a locally finite collection of 2–spheres. f_0 and f_1 are the identity, and f_2 is the map induced by the collapse $K \to K'$.

Corollary 91. (Corollary 1.6.1.1) Let (X, Y) be a pair of complexes, X connected. Let A_* be a relative geometric chain complex with an admissible map $f_*: A_* \to C_*(X, Y)$ which is an equivalence. Then we can construct a complex Z with Y as a subcomplex and a proper cellular
map \(g: Z \to X \) which is the identity on \(Y \) such that \(C_*(Z,Y) = A_* \) and
\[
A_* \xrightarrow{f_*} C_*(X,Y) \\
\| \xrightarrow{g_*} C_*(Z,Y)
\]
commutes. \(g \) is a proper homotopy equivalence of pairs.

Proof. The proof parallels the proof of Theorem \([90](\text{Theorem 1.6.1 p. 63})\), except that we must now use Namioka to show our elements are spherical. \(\square \)

Now let \(f_*: A_* \to C_*(X) \) be an arbitrary chain equivalence. As in Wall \([38]\), we would like to replace \(A_* \) by an admissible complex with \(f_* \) admissible while changing \(A_* \) as little as possible. Look at
\[
\cdots \to A_3 \xrightarrow{\delta} A_2 \to A_1 \to A_0 \to A_{-1} \to \cdots \to 0
\]
\[
\xrightarrow{f_3} \downarrow \quad \xrightarrow{f_2} \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow
\]
\[
\cdots \to C_3 \to C_2 \to C_1 \to A_0 \to 0
\]
One might like to try the complex
\[
\cdots \to A_3 \xrightarrow{f_2 \circ \delta} C_2 \to C_1 \to C_0 \to 0
\]
\[
\xrightarrow{f_3} \downarrow \quad \xrightarrow{id} \downarrow \quad \xrightarrow{id} \downarrow \quad \xrightarrow{id} \downarrow
\]
\[
\cdots \to C'_3 \to C'_2 \to C'_1 \to C_0 \to 0
\]
The top complex is clearly admissible, but unfortunately the map is no longer an equivalence. The cycles in \(A_3 \) are now bigger with no new boundaries, and the boundaries in \(C_2 \) are smaller with no fewer cycles.

Note first that \(X \) is not of great importance. If we replace \(X \) by something in its proper homotopy class, we will not be greatly concerned. Let \(X' \) be \(X \) with 2-spheres wedged on to give a basis for \(A_2 \) and 3-cells attached to kill them. Then \(X' \) has the same simple homotopy type as \(X \), \(C_k(X') = C_k(X) \) except for \(k = 2, 3 \), and \(C_k(X') = C_k(X) \oplus A_2 \) for \(k = 2, 3 \). Let \(f'_k = f_k, k \neq 2, 3 \), and let \(f'_3 = (f_3, \delta) \) and \(f'_2 = (f_2, \text{id}) \). Then \(A_* \xrightarrow{f'_*} C_*(X') \) is still an equivalence and now \(f'_2 \) is a monomorphism. Let \(A'_* \) be the complex
\[
\cdots \to A_3 \xrightarrow{f'_2 \circ \delta} C'_2 = C_2(X') \to C'_1 \to C'_0 \to 0
\]
Then \(h_*: A_* \to C'_* \) has homology in only one dimension: \(0 \to H_2(h) \to H_2(A'_*) \to H_2(C'_*) \to 0 \). Since \(A_* \to A'_* \) and since the composition \(A_* \to A'_* \to C'_* \) is an equivalence, \(H_2(A'_*) = H_2(h) \oplus H_2(C'_*) \).

Now by Theorem \([89](\text{Theorem 1.5.5 p. 61})\), \(h_2(h) \) is s-free, provided we can show \(H^k(h) = 0 \) for \(k \geq 3 \). But since we have a chain equivalence \(A_* \to C'_* \) we have a chain homotopy inverse in each dimension. We then clearly get a chain homotopy inverse for \(A'_k \to C'_k, k \geq 4 \), and \(h_3 \circ g'_3 \) chain homotopic to \(\text{id}_{C'_3} \). But this implies \(H^k(h) = 0, k \geq 3 \).

Since \(H_2(h) \) is projective, we get a map \(\rho = \partial \circ \rho' \), where \(\rho': H_2(h) \to C'_3 \) is given as follows. Both \(A_3 \) and \(C'_3 \) map into \(C_2 = C'_2 \), and \(0 \to \text{Im} A_3 \to \text{Im} C_3 \to H_2(h) \to 0 \) is exact. Split this map by \(\sigma: H_2(h) \to \text{Im} C'_3 \) and note \(\text{Im} A_3 \cap \text{Im} \sigma = \{1\} \). Now \(C'_3 \to \text{Im} C'_3 \to 0 \) is exact, so we can lift \(\sigma \) to \(\rho': H_2(h) \to C'_3 \). Since \(\sigma \) is a monomorphism, note \(\text{Im} \rho' \cap \text{Im} f_3 = \{1\} \).
Form A''_s and h'_s by

$$
\cdots \to A_4 \to A_3 \oplus H_2(h) \xrightarrow{\partial + \rho} C'_2 \to C'_1 \to C'_0 \to 0
$$

where α is inclusion on the first factor, commutes. These maps must define a chain equivalence, so the dual situation is also an equivalence.

Note $\ker(\partial + \rho) = (\ker \partial, 0)$ since ρ is a monomorphism and if $\rho(x) \in \Im \partial$, $\rho(x) = \{1\}$ as $\Im A_3 \cap \Im \sigma = \{1\}$. Likewise note $\Im(\partial + \rho) = \Im C'_3$ since $\Im A_3 \oplus \Im \rho = \Im C'_3$. Hence h'_s is an equivalence.

Note $\rho: H_2(h) \to C'_2$ is a direct summand. We split ρ as follows.

$$
\cdots \to A_4 \to A_3 \oplus H_2(h) \xrightarrow{\partial + \rho} C'_2 \to \cdots
$$

$$
\uparrow \text{id} \quad \quad \quad \quad \quad \uparrow \alpha \quad \quad \quad \quad \quad \uparrow f_2
$$

$$
\cdots \to A_4 \to A_3 \xrightarrow{\delta^3} A^*_3 \xrightarrow{\delta^3_A} \cdots
$$

$\ker \delta^3 = \ker (\delta^3)_A \oplus (H_2(h))^*$, and $\Im(\partial^* + \rho^*) = \Im \partial^* \oplus \Im \rho^*$.

$H_3(\text{Top complex}) = \ker \delta^3 / \Im(\partial^* + \rho^*)$

$$= \left(\ker (\delta^3)_A / \Im \partial^* \right) \oplus \left((H_2(h))^* / \Im \rho^* \right)$$

$H_3(\text{Bottom complex}) = \ker (\delta^3_A) / \Im (\delta^3_A)$

$H_3(\alpha): H_3(\text{Top complex}) \to H_3(\text{Bottom complex})$ is

$$
\ker (\delta^3_A) / \Im \partial^* \quad \ker (\delta^3_A) / \Im (\delta^3_A)
$$

$$\oplus \quad \oplus
$$

$$(H_2(h))^*/ \Im \rho^* \quad 0$$

Hence, since $H_3(\alpha)$ is an isomorphism, $\Im \partial^* = \Im (\delta^3_A)$, and $\rho^*: (C'_2)^* \to (H_2(h))^*$ is onto. $(H_2(h))^*$ is projective so split ρ^*. Dualizing splits $\rho: H_2(h) \to C'_2$.

$H_2(h)$ may not be free (it is only s-free). $A_3 \oplus H_2(h)$ is often free, but we prefer to keep A_3.

Hence form A''_s and f''_s by

$$
\cdots \to A_4 \to A_3 \oplus (H_2(h)_S \oplus F^{(n)}) \xrightarrow{\partial + \rho_S + 0} C'_2 \oplus F^{(n)} \to \cdots
$$

$$
\uparrow f_4 \quad \uparrow \text{id} + 0
$$

$$
\cdots \to C'_4 \to C'_3 \to C'_2 \to \cdots
$$
where S is a shift functor so that the map germs ρ and ρ' are actual maps.

By wedging on n 2–spheres at each vertex of the tree, we see A_{*}^{s} and f_{*}^{s} are admissible. Notice that exactly the same procedure makes a map $f^{*} : A_{*} \rightarrow C_{*}(X,Y)$ admissible.

In section 3, Proposition [32] (Proposition 1.3.3 p. [29]) we defined what it meant by X satisfies Dn. We briefly digress to prove

Theorem 92. (Theorem 1.6.2) The following are equivalent for $n \geq 2$, X a complex

1) X satisfies Dn

2) X is properly dominated by an n–complex

3) $\Delta^{k}(X : \text{universal covering functor}) = 0$ for $k > n$.

Proof. 1) implies 2) as $X^{n} \subseteq X$ is properly n–connected and hence dominates X if X satisfies Dn. 2) implies 3) by computing Δ^{k} from the cellular chain complex of the dominating complex.

3) implies 2): Since Δ^{k} implies 2): Since Δ^{k} satisfies 3, the complex and the map are clearly admissible, so by Theorem 90 (Theorem 1.6.1 p. 63) we get chain retracts

$$0 \rightarrow C_{r} \xleftarrow{\partial} C_{r-1} \xleftarrow{\partial} \cdots \cdots \xleftarrow{\partial} C_{n+1} \xleftarrow{\partial} C_{n} \xleftarrow{\partial} \cdots$$

where $r = \dim X < \infty$. By an induction argument, $\text{Im} \partial_{n+1}$ is s–free, and $\partial_{n} = \text{Im} \partial_{n+1} \oplus A_{n}$ (dualize everything to get these results in the cochain complex and then dualize back). A_{n} is s–free and

$$0 \rightarrow A_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{0} \rightarrow 0$$

$$\cdots \rightarrow C_{n+1} \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{0} \rightarrow 0$$

gives us an n–dimensional chain complex and a chain equivalence. A_{n} is only s–free, so form

$$0 \rightarrow A_{n} \oplus F^{(n)} \rightarrow C_{n-1} \oplus F^{(n)} \rightarrow \cdots$$

which is now a free complex. If $n \geq 3$, the complex and the map are clearly admissible, so by Theorem 90 (Theorem 1.6.1 p. 63) we get an n–complex Y and a proper homotopy equivalence $g : Y \rightarrow X$, so X satisfies 2).

If $n = 2$, X has the proper homotopy type of a 3–complex by the above, so we assume X is a 3–complex. Its chain complex is then $0 \rightarrow C_{3} \rightarrow C_{2} \rightarrow C_{1} \rightarrow C_{0} \rightarrow 0$ with $H^{3}(C) = 0$. Wedge 2–spheres to X at the vertices of the tree to get a chain complex $0 \rightarrow C_{3} \rightarrow C_{2} \oplus C_{3} \rightarrow C_{1} \rightarrow C_{0} \rightarrow 0$. Since $H^{3}(C) = 0$, $C_{2} = C_{3} \oplus M$. Let $j : C_{3} \rightarrow C_{2}$ be the inclusion. Then we have

A: $$0 \rightarrow C_{3} \xrightarrow{j} C_{2} \oplus C_{3} \rightarrow C_{1} \rightarrow C_{0} \rightarrow 0$$

$$\quad \downarrow \quad \quad \quad \quad \quad \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \quad \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \quad \quad \quad \quad \quad \downarrow$$

B: $$0 \rightarrow C_{2} \quad \rightarrow \quad C_{1} \quad \rightarrow \quad C_{0} \rightarrow 0$$

where $r : (C_{2} \oplus M) \rightarrow (C_{3} \oplus M) \oplus C_{3}$ is given by $r(x,y) = (0,y,x)$. This is a chain equivalence between B and A.

Both A and B are the chain complexes for a space (A for $X \vee S^{2}$'s and B for the 2–skeleton of X). The chain map is easily realized on the 1–skeleton as a map, and we show we can find a map $g : X^{2} \rightarrow X \vee S^{2}_{j}$ realizing the whole chain map.

Let $\{e_{i}\}$ be the two cells of X^{2}. Their attaching maps determine an element in $\Delta(X^{1} : \pi_{1}, \sim)$, where this group denotes the Δ–construction applied to the groups $\pi_{1}(p^{-1}(X^{1} - C), \hat{x}_{i})$, where $p : \tilde{X} \rightarrow X$ is the projection for the universal cover of X. (i.e. \sim denotes the covering functor over X^{1} induced in the above manner form the universal covering functor on X.) Let $g_{1} : X^{1} \rightarrow X \vee S^{2}_{j}$ be the natural inclusion. As in the proof of Theorem 90 (Theorem 1.6.1 p. 63), the $\{e_{i}\}$ determine
an element of $\Delta(g_1 : H_2, \sim)$. Our two elements agree in $\Delta(X^1 : H_1, \sim)$. The following diagram commutes and the rows are exact

$$
\Delta(X^2 : \pi_2, \sim) \to \Delta(g_1 : \pi_2, \sim) \to \Delta(X^1 : \pi_1, \sim) \to \Delta(x_1 : \pi_1, \sim) = 0
$$

$0 = \Delta(x^1 : H_2, \sim) \to \Delta(X^2 : H_2, \sim) \to \Delta(g_1 : H_2, \sim) \to \Delta(X^1 : H_1, \sim)

where $\Delta(X^1 : H_1, \sim)$ and $\Delta(X^1 : H_2, \sim)$ are defined similarly to $\Delta(X^1 : \pi_1, \sim)$. $X^1 \subseteq X^2$ is properly 1-connected, so the subspace groups are the groups asserted. h is an isomorphism by the Hurewicz theorem, so a diagram chase yields a unique element in $\Delta(g_1 : \pi_2, \sim)$ which hits our elements in both $\Delta(X^1 : \pi_1, \sim)$ and $\Delta(g_1 : H_2, \sim)$. Use this element to extend the map to $g_2 : X^2 \to X \cup_j S^2_0$. By our choices, g_2 induces an isomorphism of $\Delta(\pi_1)$'s. Hence g_2 is a proper homotopy equivalence. This 3) implies 2) for $n \geq 2$.

2) implies 1) is trivial. □

Corollary 93. (Corollary 1.6.2.1) If X satisfies Dn for $n \geq 3$, X has the proper homotopy type of an n-complex. □

Combining our admissibility construction with Theorem 90 (Theorem 1.6.1 p. 63) gives

Theorem 94. (Theorem 1.6.3) Let $f_* : A_* \to C_*(X)$ be a chain equivalence for a complex X (A_* free, finite and positive). Then there exists a complex Y_0 satisfying D_2; a complex $Y \supseteq Y_0$ such that $C_*(Y, Y_0) = A_*$ in dimensions greater than or equal to 3; and a proper, cellular homotopy equivalence $g : Y \to X$ such that $g_* = f_*$ in dimensions greater than or equal to 4. The torsion of g may have any preassigned value.

Proof. Make A_*, f_* admissible. The new complex is $\cdots \to A_4 \to A_3 \oplus (?) \to C_2 \oplus (?) \to X_1 \to \cdots$. Construct a Y from this complex as in Theorem 90 (Theorem 1.6.1 p. 63). When we pick a basis for $A_3 \oplus (?)$, pick a basis for A_3 and one for (?) and use their union. Then there is a subcomplex $Y_0 \subseteq Y$ whose chain complex is $0 \to (?) \to C_2 \oplus (?) \to C_1 \to C_0 \to 0$ The first (?) is $H_2(h) \oplus F^{(m)}$. It is not hard to show $\Delta^2(Y_0: \sim) = 0$, so Y_0 satisfies D_2. The remainder of the theorem is trivial except for the remark about torsion. But for some $m \geq 0$, we can realize a given torsion by an automorphism $\alpha : F^{(m)} \to F^{(m)}$. Hence by altering the basis in $F^{(m)}$ we can cause our map to have any desired torsion (we may have to take m bigger, although in the infinite case $m = 1$ will realize all torsions). □

Theorem 95. (Theorem 1.6.4) Let $f_* : A_* \to C_*(X, Z)$ be a chain map for a pair (X, Z) (A_* free, finite and positive). Then there exist complexes Y_0 and Y such that $Y \supseteq Y_0 \supseteq Z$; $C_*(Y, Y_0) = A_*$ in dimensions greater than or equal to 3; a proper cellular homotopy equivalence $g : Y \to X$ which is the identity on Z such that $g_* = f_*$ in dimensions greater than or equal to 4. The torsion of g may have any preassigned value.

Proof. Use Corollary 91 (Corollary 1.6.1.1 p. 64). □
I.6 The realization of chain complexes

We conclude this chapter by returning briefly to the question of the invariance of torsion for chain maps under change of trees. The natural map $\text{Wh}(X : f) \to \text{Wh}(X : g)$ is a homomorphism, so the property of being a simple chain equivalence is independent of the tree. But now use Theorem 94 (Theorem 1.6.3 p. 68) to get a proper homotopy equivalence $X \to X_{\tau}$ with torsion τ. Suppose given a chain map, say for example, $\cap c: \Delta^*(X) \to \Delta_{m-*}(X)$ with torsion $-\tau$. Then the composition $\Delta^*(X) \xrightarrow{\cap c} \Delta_{m-*}(X) \to \Delta_{m-*}(X_{\tau})$ is simple, so a change of trees leaves it simple. But the second map is a proper homotopy equivalence of spaces, and so is preserved by our change of tree map. Hence so must be the torsion of $\cap c$. (Note we are using our convention of writing chain equivalences on the homology level.)
CHAPTER II

Poincaré Duality Spaces

1. Introduction, definitions and elementary properties

In this chapter we discuss the analogue of manifold in the proper homotopy category. We seek objects, to be called Poincaré duality spaces, which have the proper homotopy attributes of paracompact manifolds. To this end, we begin by discussing these attributes.

There is a well known Lefschetz duality between H_\ast and H_\ast^c or between H_\ast and $H_{\ell.f.}^\ast$ which is valid for any paracompact manifold with boundary (see for instance Wilder [44]). This duality is given via the cap product with a generator of $H_{\ell.f.}^\ast(N)$, perhaps with twisted coefficients. This generator is called the fundamental class.

Given any paracompact handlebody M, M can be covered by an increasing sequence of compact submanifolds with boundary. Let $\{C_i\}$ be such a collection. If $[M] \in H_{\ell.f.}^{\dim M}(M; \mathbb{Z}_t)$ is the fundamental class, its image in $H_{\ell.f.}^{\dim M}(M - C_i, \partial C_i; \mathbb{Z}_t)$ via the inclusion and excision is the fundamental class for the pair $\langle M - C_i, \partial C_i \rangle$. A word about notation: \mathbb{Z}_t occurring as a coefficient group will always denote coefficients twisted by the first Stiefel–Whitney class of the manifold.

Theorem 96. (Theorem 2.1.1) The fundamental class $[M]$ in $H_{\ell.f.}^{\dim M}(M; \mathbb{Z}_t)$ induces via the cap product an isomorphism

$$\cap [M] : \Delta^{N-\ast}(M : \sim) \to \Delta_{\ast}(M : \sim)$$

where \sim is any covering functor.

If M has a boundary, we get a fundamental class $[M] \in H_{\ell.f.}^{\dim M}(M, \partial M; \mathbb{Z}_t)$ and isomorphisms

$$\cap [M] : \Delta^{N-\ast}(M, \partial M : \sim) \to \Delta_{\ast}(M : \sim)$$

$$\cap [M] : \Delta^{N-\ast}(M : \sim) \to \Delta_{\ast}(M, \partial M : \sim)$$

A similar result holds for a manifold n–ad.

Proof. The proof is easy. On the cofinal subset of compact submanifolds with boundary of M, $[M]$ induces, via inclusion and excision, the fundamental class for the pair $(\langle n + 1 \rangle$–ad in general) $(M - C_i, \partial C_i)$, where C_i is a compact submanifold with boundary of M, and $(M - C_i)$ is the closure in $M - C_i$ in M. ∂C_i is equally the boundary of C_i as a manifold or the frontier of C_i as a set. By the definition of $\cap [M]$, it induces an isomorphism for each base point and set C_i. Hence it must on the inverse limit.

If one computes the homology and cohomology from chain complexes based on a PL triangulation, on a handlebody decomposition, or on a triangulation of the normal disc bundle, $\cap [M]$ induces a chain isomorphism. We can ask for the torsion of this map. We have

Theorem 97. (Theorem 2.1.2) If $(M, \partial M)$ is a manifold with (possibly empty) boundary, and if $[M] \in H_{\ell.f.}^{\dim M}(M, \partial M; \mathbb{Z}_t)$ is the fundamental class, $\cap [M] : \Delta^{N-\ast}(M, \partial M : \sim) \to \Delta_{\ast}(M : \sim)$
and \(\cap[M] : \Delta^{N-*}(M : \sim) \rightarrow \Delta_*(M, \partial M : \sim) \) are simple equivalences, where \(\sim \) is the universal covering functor.

Proof. Given a handlebody decomposition, the proof is easy. The cap product with the fundamental class takes the cocycle which is 1 on a given handle and zero on all the other handles to the dual of the given handle. Hence \(\cap[M] \) takes generators in cohomology to generators in homology (up to translation by the fundamental group). The fact that the simple homotopy type as defined by a PL triangulation or by a triangulation of the normal disc bundle is the same as that defined by a handlebody has been shown by Siebenmann \[34\]. □

We are still left with manifolds which have no handlebody decomposition. Let \(N = CP^4 \neq S^3 \times S^5 \neq S^3 \times S^5 \). Then \(\chi(N) = 1 \). \(N \times M \) has \([N] \times [M]\) as a fundamental class. For \(M \) we use the simple homotopy type defined by a triangulation of the normal disc bundle. Then \(\cap[N] \times [M] \) is a simple homotopy equivalence iff \(\cap[M] \) is by Lemma \[83\] \{Lemma 1.5.23 p. \[57\] \}, since \(\cap[N] \) is known to induce a simple equivalence. But \(\cap[N] \times [M] \) is a simple equivalence since \(N \times M \) has a handlebody structure (Kirby–Siebenmann \[18\]). Note Theorems \[96\] \{Theorem 2.1.1 p. \[70\] \} and \[97\] \{Theorem 2.1.2 p. \[70\] \} now hold for arbitrary paracompact manifolds.

With these two theorems in mind, we make the following definition.

Definition. A locally finite, finite dimensional CW pair \((X, \partial X)\) with orientation class \(w_1 \in H^1(X; Z/2Z)\) is said to satisfy Poincaré duality with respect to \([X]\) and the covering functor \(\sim \) provided there is a class \([X] \in H^{t,f}_N(X, \partial X; Z^{w_1})\) such that the maps
\[
\cap[X] : \Delta^{N-*}(X : \sim) \rightarrow \Delta_*(X, \partial X : \sim)
\]
\[
\cap[X] : \Delta^{N-*}(X, \partial X : \sim) \rightarrow \Delta_*(X : \sim)
\]
are isomorphisms. \(Z^{w_1} \) denotes integer coefficients twisted by the class \(w_1 \).

If \(X \) is an \(n \)--ad we require that all the duality maps be isomorphisms.

Remarks. The two maps above are dual to one another, so if one is an isomorphism the other is also.

Suppose \(\sim \) is a regular covering functor for \(X \), and suppose \(\sim \) is another regular covering functor with \(\sim > \sim \). Then the chain and cochain groups have the structure of \(Z\pi_1'(X : F, f : \sim) \) modules, when \(f : T \rightarrow X \) is a tree and \(F \in \mathcal{L}(f) \). The tree of groups \(\pi_1'(X : F, f : \sim) \) is the tree given by \((\pi_1')_A = \pi_1(F(A), p)/\pi_1(\widetilde{F(A)}, p) \) where \(p \) is the minimal vertex for \(A \). There is a map of rings \(Z\pi_1'(X : F, f : \sim) \rightarrow Z\pi_1'(X : F, f : \sim) \), and the tensor product takes \(\Delta(X : \sim) \) to \(\Delta(X : \sim) \). Since \(\cap[X] \) is an isomorphism for \(\sim \), we can get chain homotopy inverses, so under tensor product, \(\cap[X] \) still induces isomorphisms for \(\sim \). As we have the Browder Lemma \{Theorem 53 \{Theorem 1.4.7 p. \[41\] \}, with patience we can prove a variety of cutting and gluing theorems. The following are typical.

Theorem 98. \{Theorem 2.1.3\} Let \((X : \partial_0X, \partial_1X)\) be a triad. Then the following are equivalent.

1) \((X : \partial_0X, \partial_1X)\) satisfies Poincaré duality with respect to \(V \in H^{t,f}_N(X : \partial_0X, \partial_1X; Z^{w_1}) \) and \(\sim \).
2) $(\partial_0 X, \partial_{[0,1]} X)$ satisfies Poincaré duality with respect to
$\partial V \in H^{\bullet,\bullet}_{N-1}(\partial_0 X; \partial_{[0,1]} X; \mathbb{Z}^{w_1})$ and \sim where \sim is induced from \sim over X
and w_1 is the orientation class induced from w_1 over X. Moreover, one of the maps
\[
\cap V: \Delta^*(X, \partial_1 X: \sim) \rightarrow \Delta_{N-\bullet}(X, \partial X_0: \sim)
\]
\[
\cap V: \Delta^*(X, \partial_0 X: \sim) \rightarrow \Delta_{N-\bullet}(X, \partial X_1: \sim)
\]
is an isomorphism. (Hence they are both isomorphisms.)

3) The same conditions as 2) but considering $(\partial_1 X, \partial_{[0,1]} X)$.

Proof. The proof is fairly standard. We look at one of the sequences associated to a triple, say
\[
\Delta^*(X: \partial_0 X, \partial_1 X: \sim) \rightarrow \Delta^*(X, \partial_1 X: \sim) \rightarrow \Delta^*(\partial_0 X: \partial_{[0,1]} X: X: \sim)
\]
\[
\cap \downarrow \quad \cap \downarrow \quad \cap \downarrow
\]
\[
\Delta_{N-\bullet}(X: \sim) \rightarrow \Delta_{N-\bullet}(X, \partial_0 X: \sim) \rightarrow \Delta_{N-\bullet-\bullet}(\partial_0 X: X: \sim)
\]
1) implies both $\cap V$’s are isomorphisms, so the 5-lemma shows $\cap V$ is an isomorphism. 2) implies
one of the $\cap V$’s is an isomorphism and that
\[
\cap \partial V: \Delta^*(\partial_0 X, \partial_{[0,1]} X: \sim) \rightarrow \Delta_{N-\bullet-\bullet}(\partial_0 X: X: \sim)
\]
is an isomorphism. Hence we must investigate how the subspace groups depend on the absolute
groups. Make sure that the set of base points for X contains a set for $\partial_0 X$. Then we have a diagram
\[
\Delta^*(\partial_0 X, \partial_{[0,1]} X: \sim) \rightarrow \Delta^*(\partial_0 X, \partial_{[0,1]} X: X: \sim)
\]
\[
\cap \downarrow \quad \cap \downarrow
\]
\[
\Delta_{N-\bullet-\bullet}(\partial_0 X: X: \sim) \rightarrow \Delta_{N-\bullet-\bullet}(\partial_0 X: X: \sim)
\]
which commutes. The horizontal maps are naturally split, so if $\cap \partial V$ on the subspace groups is an
isomorphism, then it is also an isomorphism on the absolute groups. Hence 1) implies 2) and 3).

Now if $\cap \partial V$ on the absolute groups is an isomorphism, then it is also an isomorphism on the
subspace groups by Theorem 98 (Theorem 2.1.4 p. 71). Hence 2) or 3) implies 1). □

Theorem 99. (Theorem 2.1.4) Let $Z = Y \cup Y'$ and set $X = Y \cap Y'$. Then any two of the
following imply the third.

1) Z satisfies Poincaré duality with respect to $[Z]$ and \sim.
2) (Y, X) satisfies Poincaré duality with respect to $\partial[Z]$ and \sim.
3) (Y', X) satisfies Poincaré duality with respect to $\partial[Z]$ and \sim.

where \sim is a covering functor over Z, which then induces \sim over Y and Y'. An orientation
class over Z which induces one over Y and Y' has been assumed in our statements.

Proof. The reader should have no trouble proving this. □

A map $\varphi: M \rightarrow X$, where M and X are locally compact CW n-ads which satisfy Poincaré
duality with respect to $[M]$ and \sim, and $[X]$ and \sim^* respectively, is said to be degree 1 provided it
is a map of n-ads and

1) $\varphi^*(\sim) = \sim$; where $\varphi^*(\sim)$ is the covering functor over M induced by φ from \sim over X.
2) If $w_1 \in H^1(X; \mathbb{Z}/2\mathbb{Z})$ is the orientation class for X, φ^*w_1 is the orientation class for M.
3) $\varphi_*[M] = [X]$.
Theorem 100. (Theorem 2.1.5) Let \(\varphi: M \to X \) be a map of degree 1 of Poincaré duality spaces. Then the diagram
\[
\begin{array}{ccc}
\Delta^r(M:\sim) & \xleftarrow{\varphi^*} & \Delta^r(X:\sim) \\
\cap[M] & \downarrow & \cap[X] \\
\Delta_{n-r}(M:\sim) & \xrightarrow{\varphi^*} & \Delta_{n-r}(X:\sim)
\end{array}
\]
commutes. (\(\sim \) over \(M \) is the covering functor induced from \(\sim \) over \(X \).) Hence \(\cap[M] \) induces an isomorphism on the cokernel of \(\varphi^* \), \(K^*(M:\sim) \) onto the kernel of \(\varphi_* \), \(K_{n-r}(M:\sim) \). Thus if \(\varphi \) is \(k \)-connected, \(\varphi_* \) and \(\varphi^* \) are isomorphism for \(r < k \) and \(r > n - k \).

Similarly let \(\varphi: (N,M) \to (Y,X) \) be a degree 1 map of pairs. Then \(\varphi_* \) gives split surjections of homology groups with kernels \(K_* \), and split injections of cohomology with cokernels \(K^* \). The duality map \(\cap[N] \) induces isomorphisms \(K^*(N:^\sim) \to K_{n-\sim}(N,M:^\sim) \) and \(K^*(N,M:^\sim) \to K_{n-\sim}(N:^\sim) \).

Analogous results hold for \(n \)-ads.

Proof. The results follow easily from definitions and the naturality of the cap product.

\[\square \]

2. The Spivak normal fibration

One important attribute of paracompact manifolds is the existence of normal bundles. In [36] Spivak constructed an analogue for these bundles in the homotopy category. Although he was interested in compact spaces, he was often forced to consider paracompact ones. It is then not too surprising that his definition is perfectly adequate for our problem. This is an example of a general principle in the theory of paracompact surgery, namely that all bundle problems encountered are exactly the same as in the compact case. One does not need a “proper” normal bundle or a “proper” Spivak fibration.

Definition. Let \((X, \partial X)\) be a locally compact, finite dimensional CW pair. Embed \((X, \partial X)\) in \((\mathbb{H}^n, \mathbb{R}^{n-1})\), where \(\mathbb{H}^n\) is the upper half plane and \(\mathbb{R}^{n-1} = \partial \mathbb{H}^n\). Let \((N; N_1, N_2)\) be a regular neighborhood of \(X\) as a subcomplex of \(\mathbb{H}^n\); i.e. \(X \subseteq N, \partial X \subseteq N_2\) and \(N\) (resp. \(N_2\)) collapses to \(X\) (resp. \(\partial X\)). Let \(\mathcal{P}(N_1, N, X)\) be the space of paths starting in \(N_1\), lying in \(N\), and ending in \(X\) endowed with the compact-open topology. (If \(A, B, C\) are spaces with \(A, C \subseteq B\), a similar definition holds for \(\mathcal{P}(A, B, C)\).) There is the endpoint map \(w: \mathcal{P}(N_1, N, X) \to X\). \(w\) is a fibration and is called the Spivak normal fibration. Its fibre is called the Spivak normal fibre.

Spivak showed that a necessary and sufficient condition for a finite complex to satisfy Poincaré duality with respect to the universal covering functor was that the Spivak normal fibre of the complex should have the homotopy type of a sphere. He also showed that if one started with a compact manifold, then the normal sphere bundle had the same homotopy type as the Spivak normal fibration, at least stably. Before we can do this for paracompact manifolds, we will need to do some work.

In practice, the fact that the Spivak normal fibration is constructed from a regular neighborhood is inconvenient. More convenient for our purposes is a semi-regular neighborhood.
Definition. Let \((X, \partial X)\) be a pair of finite dimensional, locally compact CW complexes. A semi–regular neighborhood (s-r neighborhood) is a manifold triad \((M : M_1, M_2)\) and proper maps \(i: X \to M\) and \(j: \partial X \to M_2\) such that \(X \cup i \cup \partial X \to M\) commutes, and such that \(i\) and \(j\) are simple homotopy equivalences. Lastly we require that \(j\) be parallelizable (equivalent to being stably parallelizable). The definition for an \(n\)-ad is similar: we have a manifold \((n + 1)\)-ad \((M : M_1, \cdots M_n)\) with a simple homotopy equivalence of \(n\)-ads \(i: X \to \delta_1 M\).

Theorem 101. (Theorem 2.2.1) The fibration \(w: \mathcal{P}(M_1, M, X) \to X\) is stably fibre homotopy equivalent to the Spivak normal fibration.

Proof. The proof needs

Lemma 102. (Lemma 2.2.1) If \(((M : M_1, M_2), i, j)\) is an s-r neighborhood of \(X\), then so is

\[
((M : M_1, M_2) \times (D^n, S^{m-1}), i \times c, j_1)
\]

where \(c\) denotes the constant map. The \((n+1)\) structure on the product is \((M \times D^n : M_1 \times D^n \cup M \times S^{m-1}, M_2 \times D^n, \cdots)\). Let \(\xi\) be \(\mathcal{P}(M_1, M, X) \to X\) and let \(\eta\) be \(\mathcal{P}(M_1 \times D^n \cup M \times S_{m-1}, M \times D^n) \to X\). Then \(\xi \ast (m)\) is fibre homotopy equivalent to \(\eta\), where \((m)\) is the trivial spherical fibration of dimension \(m - 1\) and \(\ast\) denotes the fibre join.

Proof. The first statement is trivial and the second is Spivak [36], Lemma 4.3.

Now if \((M : M_1, M_2)\) is an s-r neighborhood of \(X\), then for some \(n, (M : M_1, M_2) \times (D^n, S^{n-1})\) is homeomorphic to a regular neighborhood of \(X\) in \(\mathbb{R}^{n+m}\), where \(m = \dim M\). If we can show this then the lemma easily implies that \(\xi\) is stably equivalent to the Spivak normal fibration formed from this regular neighborhood.

By crossing with \(D^n\) if necessary, we may assume \(\dim M \geq 2 \dim X + 1\), so we may assume \(i\) and \(j\) are embeddings. Since \(M\) is parallelizable, \((M, \partial M)\) immerses in \((\mathbb{H}^m, \mathbb{R}^{m-1})\). Since \(m \geq 2 \dim X + 1\) we can subject \(i\) and \(j\) to a proper homotopy so that \(i: X \to M \subset \mathbb{H}^m\) and \(j: \partial X \to M_2 \subset \mathbb{R}^{m-1}\) become embeddings on open neighborhoods \(U\) and \(U_2\), where \(U\) is a neighborhood of \(X\) in \(M\) and \(U_2 = M_2 \cap U\) is a neighborhood of \(\partial X\). In \(U\) sits a regular neighborhood of \(X\), \((N : N_1, N_2)\). Hence \((N : N_1, N_2) \subset (M : M_1, M_2)\) and excision gives a simple homotopy equivalence \(\partial N \subset \overline{M - N}\) and \(\partial N_2 \subset M_2 - N_2\) (this uses the fact that \(i\) and \(j\) are simple homotopy equivalences). By the \(s\)-cobordism theorem (see [33] or [10]) these are products (assume \(m \geq 6\)) so \((M : M_1, M_2)\) is homeomorphic to a regular neighborhood of \(X\) in \(\mathbb{R}^m\).

Corollary 103. (Corollary 2.2.1.1) The Spivak normal fibration is stably well defined.

Remarks. By definition we have a Spivak normal fibration for any regular neighborhood, so we can not properly speak of “the” Spivak normal fibration. By the corollary however they are all stably equivalent, so we will continue to speak of the Spivak normal fibration when we really mean any fibration in this stable class. This includes fibrations formed from s-r neighborhoods.
Now, for finite complexes we know the complex satisfies Poincaré duality iff the Spivak normal fibre has the homology of a sphere. Unfortunately, this is not true for our case. In fact, Spivak has already shown what is need to get the normal fibre a sphere. This information is contained in Theorems [104] (Theorem 2.2.2 p. 75) and [106] (Theorem 2.2.3 p. 76).

Definition. A locally compact, finite dimensional CW complex is a Spivak space provided the fibre of any Spivak normal fibration has the homology of a sphere. A Spivak pair is a pair, \((X, \partial X)\), of locally compact, finite dimensional CW complexes such that the fibre of any Spivak normal fibration has the homology of a sphere, and such that the Spivak normal fibration for \(X\) restricted to \(\partial X\) is the Spivak normal fibration for \(\partial X\). To be slightly more precise, given an s-r neighborhood for the pair \((X, \partial X)\), there is a natural fibre map from the Spivak normal fibration for \(\partial X\) to the Spivak normal fibration for \(X\) restricted to \(\partial X\): it is this map we are requiring to be an equivalence. A Spivak \(n\)-ad is defined analogously. Any Spivak space (pair, \(n\)-ad) has a first Stiefel–Whitney class and a fundamental class. The first Stiefel–Whitney class of the Spivak space, \(w_1\), is the first Stiefel–Whitney class of the Spivak normal spherical fibration. There is a Thom isomorphism \(H^{\ell.f.}_{m+k}(M, \partial M; \mathbb{Z}) \to H^{\ell.f.}_m(M, M_2; \mathbb{Z}^{w_1})\). Since a parallelizable manifold is oriented, we get a fundamental class \([M] \in H^{\ell.f.}_{m+k}(M, \partial M; \mathbb{Z})\) and the fundamental class of the Spivak space is the image of this class in \(H^{\ell.f.}_m(X, \partial X; \mathbb{Z}^{w_1}) \cong H^{\ell.f.}_m(M, M_2; \mathbb{Z}^{w_1})\). We denote it by \([X]\) and note that it is defined up to sign. A choice of sign will be called an orientation.

Theorem 104. (Theorem 2.2.2) The following are equivalent

1) \(X\) is a Spivak space
2) \(\cap[X]: H^*_{\ell.f.}(\tilde{X}) \to H^{N-\ast}_{\ell.f.}(\tilde{X})\) is an isomorphism
3) \(\cap[X]: H^*(\tilde{X}) \to H^*_{N-\ast}(\tilde{X})\) is an isomorphism

Proof. 2) implies 3) thanks to the following commutative diagram.

\[
\begin{array}{cccc}
0 & \to & \text{Ext}(H^{\ast+1}_c(\tilde{X}; \mathbb{Z}), \mathbb{Z}) & \to & H^{\ell.f.}_c(\tilde{X}; \mathbb{Z}) & \to & \text{Hom}(H^*_c(\tilde{X}; \mathbb{Z}), \mathbb{Z}) & \to & 0 \\
\uparrow \text{Ext}(\cap[X]) & & \uparrow \cap[X] & & \uparrow \text{Hom}(\cap[X]) & & \\
0 & \to & \text{Ext}(H^{N-\ast}_{N-\ast}(\tilde{X}; \mathbb{Z}), \mathbb{Z}) & \to & H^{N-\ast}(\tilde{X}; \mathbb{Z}) & \to & \text{Hom}(H^{N-\ast}(\tilde{X}; \mathbb{Z}), \mathbb{Z}) & \to & 0
\end{array}
\]

3) implies 1) thanks to Spivak, Proposition 4.4, and the observation that the Spivak normal fibration for \(X\) pulled back over \(\tilde{X}\) is the Spivak normal fibration for \(\tilde{X}\). This observation is an easy consequence of Theorem 101 (Theorem 2.2.1 p. 74), the definition of an s-r neighborhood, and the fact that the transfer map \(\zeta(X) \to \zeta(\tilde{X})\) is a homomorphism.

1) implies 2) as follows. Look at

\[
\begin{array}{cccc}
H^{N-\ast}(D(\tilde{X}); \mathbb{Z}) & \longrightarrow & H^{N-\ast}(\tilde{X}; \mathbb{Z}) \\
\uparrow \cap[U] & & & \\
H^{N+k-\ast}(D(\tilde{X}), S(\tilde{X}); \mathbb{Z}) & \leftarrow & H^{N+k-\ast}(\tilde{N}, \partial N; \mathbb{Z}) & \uparrow \cap[N] \\
H^*_c(\tilde{X}; \mathbb{Z}) & & & H^*_c(N)
\end{array}
\]

\(^{1}\text{Expanded.}\)
where U is the Thom class for the normal disc fibration $D(\tilde{X})$ with spherical fibration $S(\tilde{X})$. $(N, \partial N)$ is an s-r neighborhood for \tilde{X}. The horizontal maps are induced by the inclusion $\tilde{X} \subseteq N$ and the proper homotopy equivalence $(N, \partial N) \to (D(\tilde{X}), S(\tilde{X}))$. All horizontal maps are isomorphisms. The composite map $H^*_0(\tilde{X})$ to $H_{N-s}(\tilde{X})$ is essentially the cap product with $U \cap [N]$, where $U \cap [N]$ should be actually be written $i_*(U \cap j_*[N])$, where $i_* : H^{\ell,f}_*(D(\tilde{X})) \to H^{\ell,f}_*(\tilde{X})$ and $j_* : H^{\ell,f}_*(N, \partial N) \to H^{\ell,f}_*(D(\tilde{X}), S(\tilde{X}))$. $H^{\ell,f}_*(D(\tilde{X}))$ is the homology group of the infinite singular chains on $D(\tilde{X})$ which project to give locally finite chains on \tilde{X}. $(H^{\ell,f}_*(D(\tilde{X}), S(\tilde{X}))$ is similar.) Now $[X] = U \cap [N]$ shows 2) is satisfied. [1) was used to get the Thom class U.]

Corollary 105. (Corollary 2.2.2.1)\footnote{New Corollary.} For a Spivak space X, $\cap [X] : H_0^*(\tilde{X}, \Gamma) \to H_{N-s}(\tilde{X}, \Gamma)$ and $\cap [X] : H^*(\tilde{X}, \Gamma) \to H^*_{N-s}(\tilde{X}, \Gamma)$ are isomorphisms for any local coefficients Γ.

Proof. The results follows from the universal coefficient formulas. \hfill \Box

Theorem 106. (Theorem 2.2.3)\footnote{Restated Theorem and reworked proof.} Fix an $[X] \in H^{\ell,f}_N(X, \partial X; \mathbb{Z}^{w_1})$ and consider the following four families of maps

\begin{align*}
A) & \cap [X] : H^*_N(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \to H_{N-s}(\tilde{X}; \mathbb{Z}) \\
B) & \cap [X] : H^*(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \to H^*_{N-s}(\tilde{X}; \mathbb{Z}) \\
C) & \cap [X] : H^*_0(\tilde{X}; \mathbb{Z}) \longrightarrow H_{N-s}(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \\
D) & \cap [X] : H^*(\tilde{X}; \mathbb{Z}) \longrightarrow H^*_{N-s}(\tilde{X}, \partial \tilde{X}; \mathbb{Z})
\end{align*}

Suppose ∂X is a Spivak space with fundamental class $\partial [X]$. Then the following are equivalent.

1) $(X, \partial X)$ is a Spivak pair with fundamental class $[X]$
2) any one of the above four maps is an isomorphism

Proof. 1) implies by definition that all four maps are isomorphisms.

By a diagram similar to the one in the proof of Theorem 104 (Theorem 2.2.2 p. 75), A) implies D) and C) implies B). Similar diagrams show D) implies A) and B) implies C). In fact, 2) implies all four maps are isomorphisms. If A) is an isomorphism, then the Browder lemma shows C) is too. Conversely, if C) is an isomorphism the Browder lemma shows A) is. This shows the claim.

D) implies that the Spivak normal fibre is a sphere by Spivak, Proposition 4.4.

Either 1) or 2) implies that the Spivak normal fibration has a spherical fibre, S^{k-1}, so we have a Thom isomorphism
\[
H^{\ell,f}_{N+k}(M, \partial M; \mathbb{Z}) \xrightarrow{\cap U} H^{\ell,f}_N(X, \partial X; \mathbb{Z}^{w_1})
\]
and that we can pick a fundamental class $[M] \in H^{\ell,f}_{N+k}(M, \partial M; \mathbb{Z})$ with $[X] = [M] \cap U$.

This shows 1) implies 2) and the only remaining point in 2) implies 1) is to check that the Spivak normal fibration for X restricted to ∂X, $\mathcal{P}(M_1, M, \partial X)$, is the Spivak normal fibration for ∂X, $\mathcal{P}(M_1 \cap M_2, M_2, \partial X)$. There is an evident inclusion
\[
\mathcal{P}(M_1 \cap M_2, M_2, \partial X) \subseteq \mathcal{P}(M_1, M, \partial X)
\]

(*)
II.2 The Spivak normal fibration

where both fibrations are spherical with fibre S^{k-1}. Let w_1 and U be the orientation class and the Thom class for $P(M_1, M, \partial X)$. The following diagram of restrictions and Thom isomorphisms commutes

$$\begin{array}{cc}
H^{\ell.f.}_{N+k}(M, \partial M; \mathbb{Z}) & \xrightarrow{\cap U} & H^{\ell.f.}_{N}(X, \partial X; \mathbb{Z}^{w_1}) \\
\downarrow & & \downarrow \\
H^{\ell.f.}_{N-1+k}(M_2, \partial M_2; \mathbb{Z}) & \xrightarrow{\cap U} & H^{\ell.f.}_{N-1}(\partial X; \mathbb{Z}^{w_1})
\end{array}$$

where the vertical maps are Poincaré isomorphisms and the top map is a Thom isomorphism. It follows that the bottom map is an isomorphism, so the Thom class of one of our fibrations restricts to be the Thom class of the other, which shows (*) is a fibre homotopy equivalence. \hfill \Box

Corollary 107. (Corollary 2.2.3.1)¹ For a Spivak pair $(X, \partial X)$, the analogues of all four maps are isomorphisms with any local coefficients Γ.

Proof. The results follows from the universal coefficient formulas. \hfill \Box

Now suppose ξ is an arbitrary spherical fibration over a locally compact, finite dimensional CW complex X. The total space in general is not such a complex. Our techniques apply best to such spaces however, and we want to study these total spaces. Hence we wish to replace any such space by a space with the proper homotopy type of a locally compact, finite dimensional CW complex.

Definition. Let $S(\xi)$ be the total space of a spherical fibration ξ over a locally compact, finite dimensional n–ad X. A *cwation* of ξ is an n–ad Y and a proper map $Y \rightarrow X$ such that the following conditions are satisfied. Y has the proper homotopy type of a locally finite, finite dimensional n–ad. There are maps $S(\xi) \xleftarrow{\ g } h Y$ such that $h \circ g$ is a fibre map, fibre homotopic to the identity and such that $g \circ h$ is properly homotopic to the identity. Lastly $S(\xi) \xleftarrow{\ g } h Y$ should commute. The pair (M_f, Y) is seen to satisfy the Thom isomorphism for Δ^* and Δ_* theories. (See the appendix page 90 for a discussion of the Thom isomorphism in these theories.) The simple homotopy type of Y is defined by any locally compact, finite dimensional CW complex having the same proper homotopy type as Y and for which the Thom isomorphisms are simple homotopy equivalences. For a fibration ξ, $(D(\xi), C(\xi))$ will denote the pair (M_f, Y) with this simple homotopy type. Such a pair is said to be a *simple cwation*. It has a *Thom class* $U_\xi \in H^k(D(\xi), C(\xi); \mathbb{Z}^{w_1(\xi)})$, where $w_1(\xi)$ is the first Stiefel–Whitney class of the spherical fibration ξ. There is a Thom isomorphism with twisted coefficients.

Remarks. Any spherical fibration of dimension two or more has a simple cwation. The proof of this fact is long and is the appendix page 90 to this chapter.

¹New Corollary.
THEOREM 108. (Theorem 2.2.4) Let ξ be any spherical fibration of dimension > 1 over a Spivak space X. Then $(D(\xi), C(\xi))$ is a Spivak pair with fundamental class $[\xi] \in H^*_{N+k}(D(\xi), C(\xi); \mathbb{Z}^\omega)$, where $\omega(g) = w_1(g) \cdot (w_1(\xi))(g)$, where w_1 is the first Stiefel–Whitney class for X. If U_ξ is a Thom class for ξ, $U_\xi \cap [\xi] = [X]$, a fundamental class for X.

If $(X, \partial X)$ is a Spivak triad, then $(D(\xi) : D(\xi|_{\partial X}), C(\xi))$ is a Spivak pair with fundamental class $[\xi]$. In general, a cation of a Spivak n–ad has an $(n+1)$–ad structure with fundamental class $[\xi]$. Fundamental classes and Thom classes are related as in the absolute case.

PROOF. [1] To show $(D(\xi), C(\xi) \cup D(\xi|_{\partial X}))$ is a Spivak pair, look at

$$
\begin{array}{c}
H^*(D(\xi)) \xrightarrow{\psi} H^*_{N+k-1}(D(\xi), C(\xi) \cup D(\xi|_{\partial X})) \\
\cong \downarrow \cap [X] \\
H_{N-k}^*(X, \partial X) \xrightarrow{\cap [X]} H_{N-k}^*(D(\xi), D(\xi|_{\partial X}))
\end{array}
$$

The bottom horizontal map is an isomorphism, hence so is ψ. We claim $\psi(x) = x \cap \psi(1)$, where $1 \in H^0(D(\xi))$ is a choice of generator which we pick so $U_\xi \cap \psi(1) = [X]$. But from the diagram, $U_\xi \cap \psi(x) = x \cap [X] = x \cup U_\xi \cap \psi(1) = U_\xi \cap (x \cap \psi(1))$ which proves the result.

Suppose we can show there is a class $[\xi] \in H^*_{N+k}(D(\xi), C(\xi) \cup D(\xi|_{\partial X}); \mathbb{Z}^\omega)$ with $tr([\xi]) = \psi(1)$. Note

$$
\begin{array}{c}
H^*(D(\xi)) \xrightarrow{\cap [X]} H_{N+k-1}(D(\xi), C(\xi) \cup D(\xi|_{\partial X})) \\
\cong \downarrow U_\xi \cap \\
H_{N-k}(X, \partial X) \xrightarrow{\cap [X]} H_{N-k}(D(\xi), D(\xi|_{\partial X}))
\end{array}
$$

commutes and since three of the maps are isomorphisms, so is $\cap [\xi]$.

Since ξ has dimension > 1, $D(\xi|_{\partial X}) \cup C(\xi)$ is simply connected. By the Browder lemma,

$$
\cap \partial[\xi] : H^*(D(\xi|_{\partial X}) \cup C(\xi) ; \mathbb{Z}) \longrightarrow H_{N+k-1}(D(\xi|_{\partial X}) \cup C(\xi) ; \mathbb{Z})
$$

is an isomorphism, so by Theorem 104{Theorem 2.2.2 p. 75}, $D(\xi|_{\partial X}) \cup C(\xi)$ is a Spivak space with fundamental class $\partial[\xi]$. It follows from Theorem 106{Theorem 2.2.3 p. 76} that $(D(\xi), D(\xi|_{\partial X}) \cup C(\xi))$ is a Spivak pair with fundamental class $[\xi]$.

Hence we are done if we can construct the class $[\xi]$ with the right trace. To do this, look at the Thom isomorphism

$$
H^*_{N+k-1}(D(\xi), C(\xi) \cup D(\xi|_{\partial X}); \mathbb{Z}^\omega) \xrightarrow{U_\xi \cap} H^*_{N+k-1}(D(\xi), D(\xi|_{\partial X}); \mathbb{Z}^\omega)
$$

\(^1\text{New proof.}\)
There is a unique element $[\xi] \in H^f_{N+k}(D(\xi), C(\xi) \cup D(\xi|_{\partial X}); \mathbb{Z}^\omega)$ such that $U_\xi \cap [\xi] = [X]$. Since cap product commutes with trace,

$$
\begin{align*}
H^f_{N+k-\ast}(D(\xi), C(\xi) \cup D(\xi|_{\partial X}); \mathbb{Z}^\omega) & \xrightarrow{U_\xi \cap} H^f_{N-\ast}(D(\xi), D(\xi|_{\partial X}); \mathbb{Z}^{w_1}) \\
\downarrow \text{tr} & \quad \downarrow \text{tr} \\
H^f_{N+k-\ast}(\widetilde{D}(\xi), C(\xi) \cup D(\xi|_{\partial X}); \mathbb{Z}) & \xrightarrow{U_\xi \cap} H^f_{N-\ast}(\widetilde{D}(\xi), \widetilde{D}(\xi|_{\partial X}); \mathbb{Z})
\end{align*}
$$

commutes and it is easy to see $\text{tr}(\xi) = \psi(1)$ since

$$
H^f_{N}(D(\xi), D(\xi|_{\partial X}); \mathbb{Z}^{w_1}) \cong H^f_{N-\ast}(X, \partial X); \mathbb{Z}^{w_1}) \cong \mathbb{Z}
$$

and tr is an isomorphism by Theorem \ref{thm:iso} \{Theorem 2.2.5 p. \pageref*{thm:iso}\} below. \hfill \Box

Corollary 109. (Corollary 2.2.4.1) Let X be a locally compact, finite dimensional CW n–ad. Let ξ be a spherical fibration of dimension ≥ 2 over X. Then if $D(\xi)$ is a Spivak $(n+1)$–ad, X is a Spivak n–ad.

Proof. Let $[X] = U_\xi \cap [\xi]$. Then $\cap [X]$ induces isomorphisms

$$
H^\ast_c(\widetilde{D}(\xi); \mathbb{Z}) \rightarrow H_{N-\ast}(\widetilde{D}(\xi), D(\xi|_{\partial X}); \mathbb{Z}),
$$

or equivalently $H^\ast_c(\widetilde{X}; \mathbb{Z}) \rightarrow H_{N-\ast}(\widetilde{X}, \widehat{\partial X}; \mathbb{Z})$. Inducting over the n–ad structure of X and applying Theorems \ref{thm:ind} \{Theorem 2.2.2 p. \pageref*{thm:ind}\} and \ref{thm:ind2} \{Theorem 2.2.3 p. \pageref*{thm:ind2}\}, we get X is a Spivak n–ad. \hfill \Box

Theorem 110. (Theorem 2.2.5\footnote{Expanded statement of theorem and added to proof.}) X is a Spivak n–ad iff \widetilde{X} is for any cover of X: moreover $\text{tr}([X]) = [\widetilde{X}]$. If X is an n–ad and Y is an m–ad, $X \times Y$ is a Spivak $(n+m-1)$–ad iff X is a Spivak n–ad and Y is a Spivak m–ad: $[X \times Y] = [X] \times [Y]$.

Proof. Our first statement if immediate from Theorem \ref{thm:ind3} \{Theorem 2.2.1 p. \pageref*{thm:ind3}\}, since if N is an s-r neighborhood for X, \widetilde{N} is one for \widetilde{X}. Since tr preserves the fundamental class of manifolds and since $[X] = U_\xi \cap [N], [\widetilde{X}] = U_\xi \cap [\widetilde{N}]$, we see $\text{tr}([X]) = [\widetilde{X}]$.

The “adic” part of the product result is easy once we see $(X \times Y, \partial X \times Y \cup X \times \partial Y) = (X, \partial X) \times (Y, \partial Y)$ is a Spivak pair. To see this we first need

Lemma 111. (Lemma 2.2.2) If ν_Z is the Spivak normal fibration for an finite dimensional n–ad Z, and if X and Y are such complexes, $\nu_X \ast \nu_Y = \nu_{X \times Y}$. \hfill \footnote{Expanded statement of theorem and added to proof.}
Proof. Let D_Z be the “disc” fibration of ν_Z. Then $\nu_X \ast \nu_Y = \nu_X \times D_Y \cup D_X \times \nu_Y \subseteq D_X \times D_Y$ denotes the fibrewise join. Let $(N : N_1, N_2)$ be the s-r neighborhood from which ν_X was formed. $(M : M_1, M_2)$ is the corresponding object for ν_Y. Then $\nu_{X \times Y}$ has $P(N \times M_1 \cup N_1 \times N, N \times M, X \times Y)$ for total space. $\nu_X \times D_Y$ consists of triples $e \in \nu_X, f \in \nu_Y$ and $t \in [0,1]$ with $f(1) = g(1) \in Y$ (D_Y is the fibrewise cone on ν_Y). There is a similar map for $D_X \times \nu_Y$ which agrees with the first on $\nu_X \times \nu_Y$. Hence we get a fibre map $\nu_X \ast \nu_Y \rightarrow \nu_{X \times Y}$. Now ν_X restricts from a fibration ν'_{X} over all of N. ν'_{Y} and $\nu'_{X \times Y}$ are defined similarly, we have a fibre map $\nu'_{X} \ast \nu'_{Y} \rightarrow \nu'_{X \times Y}$, and a homotopy equivalence $\nu_{X} \subseteq \nu'_{X \times Y}$. There is an initial point map $\nu'_{X \times Y} \rightarrow N \times M_1 \cup N_1 \times M, \nu' \ast \nu' \rightarrow \nu_{X \times Y}$, and this is a homotopy equivalence. $\nu'_{X} \ast \nu'_{Y} \rightarrow N \times M_1 \cup N_1 \times M$, $\nu'_{X} \ast \nu'_{Y}$ via the composition is likewise a homotopy equivalence. Hence by Dold [7], $\nu'_{X} \ast \nu'_{Y} \rightarrow \nu'_{X \times Y}$ is a fibre homotopy equivalence. Hence so is $\nu \ast \nu_Y \rightarrow \nu_{X \times Y}$.

Now $X \times Y$ is a Spivak ad iff the fibre of $\nu_{X \times Y}$ has the homology of a sphere, and, if $Z \subseteq X \times Y$ is a piece of the “adic” structure, $\nu_{X \times Y}|Z \cong \nu_Z$. Since the fibre of the fibrewise join is the join of the fibres, the fibre of $\nu_{X \times Y}$ has the homology of a sphere iff the fibres of ν_X and ν_Y do. The equation $[X \times Y] = [X] \times [Y]$ also follows. If $\partial X = \partial Y = \emptyset$, we are done.

For any “adic” piece $Z \subseteq X \times Y$, there is a fibre map $\nu_Z \subseteq \nu_{X \times Y}|Z$. Next suppose $\partial Y = \emptyset$ and X and Y are Spivak. It follows easily from the lemma that $\partial X \times Y$ is a Spivak space. Hence so is $\nu_X \ast \nu_Y \rightarrow \nu_{X \times Y}$.

Lemma 112. [2] If (Y, X) and (Y', X) are Spivak pairs, $Y \cup_X Y'$ is a Spivak space.

Proof. We choose our neighborhoods with care. Embed X in \mathbb{R}^{K-1} for K much bigger than the dimension of X. Then we can extend this embedding to embeddings Y in \mathbb{H}^K and Y' in \mathbb{H}^K. Let $(M : M_1, M_2)$ be a regular neighborhood for (Y, X) and let $(M' : M'_1, M'_2)$ be a regular neighborhood for (Y', X). Write $Z = Y \cup Y'$ and note $M \cup M' \subseteq \mathbb{R}^K$ is a regular neighborhood for Z. Let $\nu_X = P(M_1 \cup M_2, M_2, X); \nu'_X = P(M'_1 \cup M'_2, M'_2, X); \nu_Y = P(M_1, M, Y); \nu_Y' = P(M'_1, M', Y'); \nu_Z = P(M_1 \cup_h M_1 \cap M_2, M \cup_h M', Z). h$ gives a fibre equivalence between ν_X and ν'_X and the natural maps $\nu_X \subseteq \nu_Y|X, \nu'_X \subseteq \nu_Y'|X$ are fibre homotopy equivalences. Let ν'_Z be the pushout $\nu'_X \rightarrow \nu_Y$ and note we have a projection $\nu'_Z \rightarrow Z$ and a fibre map $\nu'_Z \subseteq \nu_Z$. $\nu'_Z \rightarrow Z$ is a Dold ↓ ↓ ν_Y, ν_Y' $\rightarrow \nu'_Z$ fibration [7] and the map $\nu'_Z \subseteq \nu_Z$ is a homotopy equivalence, both being homotopy equivalent to Z. Hence the map is a fibre homotopy equivalence and the fibres of ν_Z have the homology of spheres.

Now assume X and Y are pairs. Then $\partial X \times (Y, \partial Y)$ and $(X, \partial X) \times \partial Y$ are Spivak pairs. Then $\partial (X \times Y)$ is a Spivak space by the last lemma. Since the fibre of $\nu_{X \times Y}$ has the homology of a sphere, $(X \times Y, \partial (X \times Y))$ is a Spivak pair, and so $X \times Y$ is a Spivak triad.

Conversely, if $X \times Y$ is a Spivak triad, $\partial X \times \partial Y$ is a Spivak space, so ∂X and ∂Y are. $X \times \partial Y$ and $\partial X \times Y$ are Spivak pairs, so X and Y must be Spivak pairs as well.

The general case follows by induction.

[2] This was a remark tossed off in the original which now seems a bit harder.
Theorem 113. (Theorem 2.2.6) Let X be a Spivak n–ad, and let N be a regular neighborhood for X. If $(D(X), S(X))$ is a simple cation for this normal fibration, there is a proper map of $(n + 1)$–ads $g : N \to D(X)$ such that the composition $N \to D(X) \to N$ is a proper homotopy inverse for $X \to N$. If $[N]$ and $[D(X)]$ are the fundamental classes for N and $D(X)$ respectively, $g_*[N] = [D(X)]$.

g is a homotopy equivalence of $(n + 1)$–ads (not necessarily a proper homotopy equivalence) g is however properly $(\dim N - \dim X - 1)$ connected.

Remarks. If $[X]$ lives in k–dimensional homology, then the normal fibration has a simple cation if $\dim N - k \geq 3$.

Proof. To be momentarily sloppy, let $D(X)$ denote the total space of the normal disc fibration for X. Since $X \to N$ is a proper homotopy equivalence, pick an inverse $N \to X$. Pull $D(X)$ back over N. It is also a disc fibration and so has a section (see Dold [7] Corollary 6.2). Map $N \to D(X)$ by the section followed by the map into $D(X)$. Under the composition $N \to D(X) \to X$, we just get our original map. But now we can take the map from the total space of the fibration to the cation. Letting $D(X)$ be the disc cation again, we get a map $N \to D(X)$ so that the map $N \to D(X) \to X$ is a proper homotopy inverse to our original map $X \to N$. The map $N \to D(X)$ is easily seen to be proper and is g.

g is a homotopy equivalence of $(n + 1)$–ads by construction. $g_0 : N \to D(X)$ is also a proper homotopy equivalence ($g : N \to D(X)$ is not necessarily a proper homotopy equivalence of n–ads). The following diagram commutes

$$
\begin{array}{ccc}
H^*(N, \partial N) & \xleftarrow{g^*} & H^*(D(X), C(X)) \\
\downarrow \cap[N] & & \downarrow g_* \cap[N] \\
H^{\ell, f}_N(N) & \xrightarrow{(g_0)_*} & H^{\ell, f}_N(D(X))
\end{array}
$$

$\cap[N]$, g^* and $(g_0)_*$ are all isomorphisms, so $g_*[N]$ is also an isomorphism. Therefore $g_*[N] = \pm [D(X)]$ and we may orient N so that $g_*[N] = [D(X)]$.

The map $C(X) \to X$ is properly q–connected, where the normal spherical fibration has fibre S^q. This is seen from the fibration sequence $S^q \to S(\xi) \to X$, where $S(\xi)$ is the total space of the normal spherical fibration, by noticing that

$$
\Delta(S(\xi) : \pi_k) \quad \to \quad \Delta(C(X) : \pi_x)
$$

commutes, where $\Delta(S(\xi) : \pi_k)$ is formed from the groups $\pi_k(S(\xi)|_{X - C}, \hat{p})$, where $\hat{p} \in S(\xi)$ covers $p \in X$ (i.e. just pick one \hat{p} for each base point in X). The horizontal map is an isomorphism since $C(X)$ is a cation. The first vertical map is an isomorphism for $k < q$ and an epimorphism for $k = q$, so we are done.

The map $N_1 \subseteq N \to X$ is properly r–connected, where $r = (\dim N - \dim X - 1)$. This is seen by showing that the map $N_1 \subseteq N$ is properly r–connected. But this is easy. If K is a locally compact complex with $\dim K \leq r$, any map of $K \to N$ deforms properly by general position to a map whose image lies in $N - X$, and so can be properly deformed into N_1. Hence $\Delta(N_1 : \pi_k) \to \Delta(N : \pi_k)$ is onto for $k \leq r$ and 1–1 for $k \leq r - 1$.

Now \(g_0 : N \to D(X) \) is a proper equivalence so the map is properly \(r \)-connected. Since \(r \leq q \), \(g : N_1 \to C(X) \) is properly \(r \)-connected. If \(X \) is a space, we are done. If \((X, \partial X) \) is a pair, the regular neighborhood is \((N : N_1, N_2) \) and the cation is \((D(X) : C(X), D(\partial X)) \). \(C(X) \cap D(\partial X) = C(\partial X) \). \(g : N_1 \cap N_2 \to C(\partial X) \) is properly \(r \)-connected as it is an example of the absolute case. \(N_2 \to D(\partial X) \) is a proper homotopy equivalence, hence properly \(r \)-connected. \(g : N_1 \to C(X) \) and \(g : N \to D(X) \) we saw were properly \(r \)-connected, so the case for pairs is done. For the \(n \)-ad case, just induct.

We are now ready to define Poincaré duality spaces.

Definition. A Spivak \(n \)-ad is a Poincaré duality \(n \)-ad iff the \(g \) of Theorem 113 (Theorem 2.2.6 p. 81) is a proper homotopy equivalence of \((n + 1) \)-ads for some regular neighborhood.

Remarks. A priori our definition depends on which regular neighborhood we have used in Theorem 113 (Theorem 2.2.6 p. 81). In fact this is not the case as our next theorem demonstrates.

Theorem 114. (Theorem 2.2.7) Let \(X \) be a locally finite, finite dimensional CW \(n \)-ad. Then \(X \) is a Poincaré space iff \(X \) satisfies Poincaré duality with respect to \([\tilde{X}] \in H^\ast_{N,f}(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \) and with respect to a universal covering functor.

A pair \((X, \partial X)\) is a Poincaré pair iff \(\partial X \) is a Poincaré space and \(X \) satisfies Poincaré duality with respect to a universal covering functor and a class \([\tilde{X}] \in H^\ast_{N,f}(\tilde{X}, \partial \tilde{X}; \mathbb{Z}) \) such that \(\partial [\tilde{X}] = [\partial \tilde{X}] \).

A similar result holds for \(n \)-ads.

Proof. Since \(\cap [\tilde{X}] : \Delta^\ast(X : \sim) \to \Delta_{N-\ast}(X : \sim) \) an isomorphism implies \(\cap [\tilde{X}] : H^\ast_{\Delta}(\tilde{X}) \to H^\ast_{\Delta}(\tilde{X}) \) is an isomorphism, if \(X \) satisfies Poincaré duality then, by Theorem 104 (Theorem 2.2.2 p. 75), \(X \) is a Spivak space. Similarly, by Theorem 106 (Theorem 2.2.3 p. 76), we may show \((X, \partial X)\) is a Spivak space if \(\partial X \) is a Poincaré and if \((X, \partial X)\) satisfies Poincaré duality. In both cases, the fundamental class \([X] \), transfers up to give \(\pm [\tilde{X}] \). Now look at

\[
\begin{align*}
\Delta^\ast(X, \partial X : \sim) & \xrightarrow{r^\ast} \Delta^\ast(N, N_2 : \sim) \\
& \downarrow \cap [N] \\
\Delta_{n+k-\ast}(N, N_1 : \sim) & \xrightarrow{g^\ast} \Delta_{n+k-\ast}(D(X), C(X) : \sim) \\
& \downarrow U_r \cap \\
\Delta_{n-\ast}(X : \sim)
\end{align*}
\]

where \(r : (N, N_2) \to (X, \partial X) \) is a proper homotopy inverse for \((X, \partial X) \subseteq (N, N_2)\), and \(U_r \) is the Thom class for the normal fibration \(\nu \). By Theorem 108 (Theorem 2.2.4 p. 78), the composition is just \(\cap [X] \), and \(r^\ast, \cap [N] \), and \(U_r \cap \) are all isomorphisms. Hence \((X, \partial X)\) satisfies Poincaré duality iff \(g^\ast \) is an isomorphism.

If \(g \) is a proper homotopy equivalence, \(g^\ast \) is clearly an isomorphism.

If \((X, \partial X)\) satisfies Poincaré duality, and if \(\dim N - \dim X \geq 3 \), \(g \) is a proper homotopy equivalence by the Whitehead theorem. To see this, first note \(\sim \) is a universal covering functor for both \(N \) and \(D(X) \). Since \(\dim N - \dim X \geq 3 \), \(N_1 \subseteq N \) and \(C(X) \subseteq D(X) \) are at least properly 2-connected. Since \(\partial X \) is by hypothesis a Poincaré duality space, \(g^\ast : \Delta^\ast(N_1 : \sim) \to \Delta^\ast(C(X) : \sim) \) is an isomorphism.

By the connectivity of \(N_1 \subseteq N \) and \(C(X) \subseteq D(X) \), these groups are already the subspace
groups for a wise choice of base points. By the Browder lemma \(g_\ast \Delta(N : \sim) \to \Delta_\ast(D(X) : \sim) \) is an isomorphism, and \(g \) is at least properly 2–connected, so the Whitehead theorem applies to show that \(g \) is a proper homotopy equivalence.

\[\square \]

Remarks. Note that the proof shows that if \(X \) is Poincaré, \(g \) must be a proper homotopy equivalence whenever \(\dim N - \dim X \geq 3 \).

We have seen that manifolds satisfy Poincaré duality with respect to any covering functor. The Thom isomorphism theorem also holds for any covering functor. Hence it is easy to see

Corollary 115. (Corollary 2.2.7.1) A Poincaré duality \(n \)-ad satisfies Poincaré duality with respect to any covering functor.

Definition. The torsion of the equivalence \(\cap[X] : \Delta_\ast(X, \partial X : \sim) \to \Delta_{N-\ast}(X : \sim) \) is defined to be the torsion of the Poincaré duality space \(X \) (\(\sim \) is the universal covering functor). Since \((D(X), C(X)) \) is a simple cwwation, and since \(\cap[N] \) is a simple equivalence (Theorem 97 (Theorem 2.1.2 p. 70)), \(\tau(X) = (-1)^{N+k} \tau(g) \), where \(\tau(X) \) is the torsion of \(X \) and everything else comes from the diagram in the proof of Theorem 114 (Theorem 2.2.7 p. 82). A simple Poincaré \(n \)-ad is one for which all the duality maps are simple.

Examples. By Theorems 96 (Theorem 2.1.1 p. 70) and 97 (Theorem 2.1.2 p. 70), any paracompact manifold \(n \)-ad is a simple Poincaré \(n \)-ad. There are also examples of Spivak spaces which are not Poincaré duality spaces. One such is the following. Let \(X \) be a finite complex whose reduced homology with integer coefficients is zero, but which is not contractible. (The dodecahedral manifold minus an open disc is such an example.) Look at \(\check{C}(X \vee S^2) \), the open cone on \(X \vee S^2 \). The obvious map \(\mathbb{R}^3 = \check{C}(S^2) \to \check{C}(X \vee S^2) \) is seen to induce isomorphisms on \(\pi_1, H_\ast \) and \(H^\ast_c \). Since \(\mathbb{R}^3 \) is a Spivak space, so is \(\check{C}(X \vee S^2) \). \(\check{C}(X \vee S^2) \) is not a Poincaré duality space as \(X \vee S^2 \) is not a Poincaré duality space.

In the other direction, we have as an application of a theorem of Farrell–Wagoner 9

Theorem 116. (Theorem 2.2.8) Let \(X \) be a locally compact complex with monomorphic ends. Then \(X \) is a Poincaré duality space iff \(X \) is a Spivak space.

An analogous result is true for \(n \)-ads.

Corollary 117. (Corollary 2.2.8.1) Let \(X \) be a Spivak \(n \)-ad. Then \(X \times \mathbb{R}^2 \) is a Poincaré duality \(n \)-ad.
To show the corollary, observe that if X is not compact, $\times \mathbb{R}^2$ has monomorphic ends. It is a Spivak space by Theorem 110 (Theorem 2.2.5 p. 79), so, in this case, we are done. If X is compact, X is already a Poincaré duality space, so the result will follow from the next theorem. □

Theorem 118. (Theorem 2.2.9) Let X be a Poincaré duality n–ad, and let Y be a Poincaré duality m–ad. Then $X \times Y$ is a Poincaré duality $(n+m-1)$–ad. If X or Y is compact, the converse is true.

Proof. From Lemma 111 (Lemma 2.2.2 p. 79) we have $C(X \times Y) = D(X) \times C(Y) \cup C(X) \times D(Y) \subseteq D(X) \times D(Y) = D(X \times Y)$. If N is an s-r neighborhood for X and if M is one for Y, $N \times Y$ is one for $X \times Y$. Hence we have $g \times f : N \times M \to D(X) \times D(Y)$ is a map of $(n+m+1)$–ads. It is a proper homotopy equivalence if f and g are.

Now suppose X is compact. By Theorem 110 (Theorem 2.2.5 p. 79), X is a Spivak n–ad, and hence a Poincaré n–ad. Since $g \times f$ is a proper homotopy equivalence, it induces isomorphisms on the proper homotopy groups. We claim $\Delta(N \times M : \pi_k) = \pi_k(N) \oplus \Delta(M : \pi_k)$ for N compact. This is easily seen by using the cofinal collection of compact subsets of $N \times M$ of the form $N \times C, C \subseteq M$ compact. A similar result computes $\Delta(D(X \times Y) : \pi_k)$. Since $g \times f$ and g induce isomorphisms, $f_* \Delta(M : \pi_k) \to \Delta(D(Y) : \pi_k)$ is an isomorphism. By inducting this argument over the various subspaces of $D(Y)$, f is seen to be a proper homotopy equivalence of $(m+1)$–ads. Hence Y is a Poincaré duality m–ad.

□

Theorem 119. (Theorem 2.2.10) X a Poincaré duality n–ad implies \widetilde{X} is a Poincaré duality n–ad for any cover of X. If X is compact or if \widetilde{X} is a finite sheeted cover, then the converse is true.

Proof. Let N be an s-r neighborhood for X. Then \widetilde{N} is an s-r neighborhood for \widetilde{X}, so $D(\widetilde{X}) = D(\widetilde{N})$. X a Poincaré duality n–ad implies $N \to D(X)$ is a proper homotopy equivalence of n–ads. But then so is $\widetilde{N} \to D(\widetilde{X})$, so \widetilde{X} is a Poincaré duality n–ad.

If \widetilde{X} is a Poincaré duality n–ad, X is a Spivak n–ad by Theorem 110 (Theorem 2.2.5 p. 79). Hence if X is compact, it is a Poincaré duality n–ad. Now if $\widetilde{X} \to X$ is finite sheeted and we know $\widetilde{N} \to D(\widetilde{X})$ is a proper homotopy equivalence of $(n+1)$–ads, we must show $N \to D(X)$ is a proper homotopy equivalence of $(n+1)$–ads. But if $\dim N - \dim X \geq 3$ (which we may freely assume), this map is properly 2–connected. Since $\Delta(\widetilde{N} : \pi_k) \to \Delta(N : \pi_k)$ is an isomorphism for $k \geq 2$ when \widetilde{N} is a finite sheeted cover, $N \to D(X)$ is seen to be a proper homotopy equivalence. To proceed correctly, we repair the error in this last sentence. The problem begins with the trees: the tree for \widetilde{N} is a cover of the tree for N and so may have a different end structure. The groups at corresponding vertices are isomorphic but there tend to be several vertices in \widetilde{N} for each one in N. What we do see is that the proper map $\widetilde{N} \to N$ induces epimorphisms $\Delta(\widetilde{N} : \pi_k) \to \Delta(N : \pi_k)$, $k \geq 2$. Now apply this remark to the relative homotopy groups. The map is still epic and the domain is 0, hence so is the range. This argument can be applied to any piece of the $(n+1)$–ad structure, so X is a Poincaré duality n–ad. □

\footnote{It is easy to be too naive about covers verses covering functors: indeed this last sentence is not right.}
II.2 The Spivak normal fibration

Remarks. The full converse to Theorems 118 (Theorem 2.2.9 p. 84) and 119 (Theorem 2.2.10 p. 84) are false. Let \(X \) be any Spivak space which is not a Poincaré duality space. Then \(X \times \mathbb{R}^2 \) is a counterexample to the converse of 118 as it is a Poincaré duality space by 117 \(X \times T^2 \) is a counterexample to 119 since \(X \times T^2 \) is not a Poincaré duality space by 118 but its cover \(X \times \mathbb{R}^2 \) is.

Theorem 120. (Theorem 2.2.11) Let \(\xi \) be any spherical fibration of dimension \(\geq 2 \) over a locally compact, finite dimensional CW \(n \)-ad \(X \). Then \(X \) is a Poincaré duality \(n \)-ad iff \(D(\xi) \) is a Poincaré duality \((n+1)\)-ad.

Proof. By Theorem 108 (Theorem 2.2.4 p. 78) or Corollary 109 (Corollary 2.2.4.1 p. 79), we may assume \(X \) and \(D(\xi) \) are Spivak ads, and we have the formula \(U_\xi \cap [\xi] = [X] \). Since the Thom isomorphism is valid for the \(\Delta \) theory (see the appendix page 90), \(\cap [X] \) is an isomorphism iff \(\cap [\xi] \) is an isomorphism. Since \(\dim \xi \geq 2 \), a universal covering functor for \(X \) induces one for \(D(\xi) \).

Theorem 114 (Theorem 2.2.7 p. 84) now gives the desired conclusions. \(\square \)

Remarks. The torsions of the Poincaré spaces occurring in Theorems 118 (Theorem 2.2.9 p. 84), 119 (Theorem 2.2.10 p. 84) and 120 (Theorem 2.2.11 p. 85) can be “computed”. In particular, \(\tau(X \times Y) = A(\tau(X), \tau(Y)) \) where \(A \) is the pairing \(\zeta(X) \times \zeta(Y) \rightarrow \zeta(X \times Y) \) (see Lemma 1.5.23 p. 57, and the preceding discussion). \(\tau(\tilde{X}) = \text{tr} \tau(X) \), where \(\text{tr} : \zeta(X) \rightarrow \zeta(X) \). \(\tau(D(\xi)) = (-1)^n \tau(D(\xi))^t \), where \(n \) is the dimension of the fundamental class of \(X \), and \(t \) is the transpose operation on \(\zeta(D(\xi)) \). These formulas are not very hard to deduce and will be left to the reader.

We conclude this section by investigating the “uniqueness” of the Spivak normal fibration. We first prove

Lemma 121. (Lemma 2.2.3) Let \(D(\xi) \) be a cation for some spherical fibration \(\xi \) over a Poincaré duality \(n \)-ad. If there is a stably parallelizable manifold \((n+1)\)-ad \(N \) and a proper, degree one, homotopy equivalence \(N \rightarrow D(\xi) \), then \(\xi \) is stably equivalent to the Spivak normal fibration.

Remarks. Given all spherical fibrations over a Poincaré duality \(n \)-ad \(X \), we wish to determine which of these could be the normal fibration of some complex having the same proper homotopy type as \(X \). In the compact case, Spivak showed that there was only one, the one with the reducible Thom space. Lemma 122 (Lemma 2.2.3 p. 85) shows that if \(D(\xi) \) has the degree one proper homotopy type of a stably parallelizable manifold, then \(\xi \) is the Spivak normal fibration for \(X \). If \(\xi \) is the normal fibration for some complex \(Y \), \(D(\xi) \) has the degree one proper homotopy type of a parallelizable manifold, so in the non-compact case there is one and only one Spivak normal fibration.

Proof. If the equivalence were simple, \(N \) would be an \(s-r \) neighborhood and this would follow from Theorem 101 (Theorem 2.2.1 p. 74). Now by Siebenmann 33, \(N \times S^1 \rightarrow D(\xi) \times S^1 \) is a simple equivalence. \(D(\xi) \times S^1 \) is a simple cation for \(\xi \times S^1 \) over \(X \times S^1 \). \(\tau(X) \times S^1 \) is an \(s-r \) neighborhood for \(X \times S^1 \). \(\mathcal{P}(N_1, N, N) \times S^1 \rightarrow N \times S^1 \) makes the map \(N_1 \times S^1 \subseteq N \times S^1 \) into a fibration, so \(\nu_X \times S^1 \) is fibre homotopy equivalent to \(\nu \mid_{X \times S^1} \). But \(\xi \times S^1 \) is stably fibre homotopy equivalent to \(\nu \mid_{X \times S^1} \) by Theorem 101 (Theorem 2.2.1 p. 74). Hence \(\nu_X \) is stably \(\xi \). \(\square \)
Theorem 122. *(Theorem 2.2.12)* If \(f : X \to Y \) is a proper homotopy equivalence between Poincaré duality \(n \)-ads, then \(f^* \nu_Y \cong \nu_X \).

Proof. Let \(\xi = f^*(\nu_Y) \). Then
\[
\begin{array}{c}
D(\xi) \rightarrow \xi \rightarrow \nu_Y \rightarrow D(\nu_Y) \\
\downarrow \quad \downarrow \quad \quad \downarrow \\
X \rightarrow Y
\end{array}
\]
commutes. The top horizontal row is a proper homotopy equivalence, as one easily checks by applying \(\Delta(\pi_k) \) to everything. Since \(D(\nu_Y) \) has the degree one proper homotopy type of a parallelizable manifold, so does \(D(\xi) \). Hence by Lemma 121 *(Lemma 2.2.3 p. 85)*, \(\xi \cong \nu_x \). \(\square \)

Spivak’s identification of the normal fibration actually proves a stronger theorem. We can prove this result as

Theorem 123. *(Theorem 2.2.13)* Let \(f : X \to Y \) be a degree one map of Poincaré duality \(n \)-ads. If there is a spherical fibration \(\xi \) over \(Y \) such that \(f^*(\xi) \cong \nu_X \), then \(\xi \cong \nu_Y \).

Proof.
\[
\begin{array}{c}
D(\nu_X) \rightarrow \nu_X \rightarrow \xi \rightarrow D(\xi) \\
\downarrow \quad \downarrow \quad \quad \downarrow \\
X \rightarrow Y
\end{array}
\]
commutes, so it is not hard to show that the top row is a degree one map. \(U_{\nu_X} \cap [D(\nu_X)] = [X] \); \(U_{\xi} \cap [D(\xi)] = [Y] \); and \(f_*[X] = [Y] \). Hence the top row must take \([D(\nu_X)] \) to \([D(\xi)] \). \(D(\nu_X) \) has the proper homotopy type of a parallelizable \((n+1)\)-ad, \(N \) so there is a degree 1 map \(g : N \rightarrow D(\xi) \).

Since \(N \) is parallelizable, there is a topological microbundle over \(D(\xi) \) which pulls back to the normal bundle of \(N \) (namely the trivial bundle). If \(\dim \xi \geq 2 \) (which we may always assume) then the pair \(\left(D(\xi(Z)), C(\xi(Z))\right) \), for \(Z \subseteq Y \) as part of the \(n \)-ad structure on \(Y \), is properly 2-connected. Hence by the remarks following Theorem 136 *(Theorem 3.1.2 p. 100)*, we can find a parallelizable manifold \(M \) and a degree one proper homotopy equivalence \(M \rightarrow D(\xi) \). By Lemma 121 *(Lemma 2.2.3 p. 85)*, \(\xi \cong \nu_Y \). \(\square \)

Remarks. Logically Theorem 123 *(Theorem 2.2.13 p. 86)* should follow Theorem 136 *(Theorem 3.1.2 p. 100)* in chapter 3. We do not use the result until we are past that point so it does no harm to include it here.

The chief purpose of Theorem 123 *(Theorem 2.2.13 p. 86)* is to severely limit the bundles which can occur in a surgery problem.
3. The normal form for Poincaré duality spaces

In order to get a good theory of surgery, one needs to be able to do surgery on Poincaré duality spaces; at least one must be able to modify fundamental groups. The results of this section show that Poincaré duality spaces look like manifolds through codimension 1. These results are a direct generalization of Wall [40] Section 2, especially pages 220–221.

Definition. Let X be a Poincaré duality n–ad. Then if $[X] \in H_n^{i,j}$, X is said to have formal dimension n. (X is often said to have dimension n.)

Theorem 124. (Theorem 2.3.1) Let X be a Poincaré space of dimension $n \geq 2$. The X satisfies Dn. If X is a connected Poincaré duality m–ad $m \geq 2$, of dimension $n \geq 3$, then X satisfies $D(n - 1)$.

Proof. This follows from definitions and Theorem 92 (Theorem 1.6.2 p. 67).

Theorem 125. (Theorem 2.3.2) Let X be a Poincaré duality space of dimension $n, \geq 4$. Then X has the proper homotopy type of Y, where Y is a Poincaré duality space which is the union of two Poincaré duality pairs $(Z, \partial H)$ and $(H, \partial H)$ where H is a smooth manifold of dimension n formed from a regular manifold in \mathbb{R}^n of a given tree for Y by adding 1 handles along the boundary, and where Z is a subcomplex satisfying $D(n - 2)$. The torsion of this equivalence may have any preassigned value. The map induced by inclusion $\Delta(H: \pi_1) \to \Delta(Y: \pi_1)$ is surjective.

Proof. Let \hat{C}_* be the dual chain complex for X, reindexed so that there is a chain map $\cap[X]: \hat{C}_* \to C_*(X)$. By Theorem 94 (Theorem 1.6.3 p. 68), we can find a chain complex Y with $C_*(Y) = \hat{C}_*$ in dimensions greater than 3. $C_3(Y) = C_3 \oplus junk$, and the complex $Y^2 \cup junk$ satisfies $D2$.

Now we could have arranged things so that the only vertices of X were the vertices of the tree. This is seen as follows. First we claim we can find a subcomplex $V \subseteq X$ which contains all the vertices and such that $T \subseteq V$ is a proper deformation retract. We do this as follows: Choose an increasing sequence of compact subcomplexes of the 1-skeleton, $X^1, K_0 \subseteq K_1 \subseteq \cdots$, whose union is X^1. Let V be a subcomplex of X^1 with $T \subseteq V$. Let $\{v_0, \cdots\}$ denote the vertices of $X^1 - V$. By the definition of a tree, there is a locally finite set of paths $\{\lambda_i\}$, with λ_i joining v_i to some vertex of V. It is no problem to assume the λ_i are cellular.

Construct a sequence of increasing subcomplexes, V_r, of X^1, two sets of points ($\{x_i^{(r)}\}$ the vertices in $X^1 - V_r$ and $\{y_i^{(r)}\}$ the vertices of V_r) and two sets of locally finite cellular paths $\lambda_i^{(r)} \subset X^1$ (beginning at $x_i^{(r)}$ and ending at a vertex of V_r) and $\Lambda_i^{(r)} \subset V_r$ (beginning at $y_i^{(r)}$ and ending at a vertex of T) inductively as follows. $V_0 = T$, $\lambda^{(0)} = \lambda_i$, $\Lambda^{(0)}$ the constant path at the relevant vertex.

V_r is obtained from V_{r-1} in two steps. First adjoin all vertices $x_i^{(r-1)}$ of X^1 for which there exists a j such that the path $\lambda_j^{(r-1)}$ has its next to the last vertex $x_i^{(r-1)}$. Next add some 1–cells. First, for a fixed $x_i^{(r-1)}$, there may be several j satisfying our condition: pick one, say i_j. Then add the

\footnote{The original argument here was wrong.}
1–cell from $x_i^{(r-1)}$ to V_{r-1} given by the last 1–cell in $\lambda_i^{(r-1)}$. We need only define $\lambda_i^{(r)}$ for the $x_i^{(r)}$: just define it to be the sub–path of $\lambda_i^{(r-1)}$ which starts at $x_i^{(r)}$ and continues until it encounters a vertex in V_r. This path is definitely properly contained in $\lambda_i^{(r-1)}$ since the next to the last vertex in $\lambda_i^{(r-1)}$ is certainly in V_r. (Of course $\lambda_i^{(r)}$ may be shorter than this.) The $\lambda_i^{(r)}$ are a locally finite collection since they form a subcomplex of such a collection. Define $\Lambda(i)^{(r)}$ as follows. If the vertex in question lies in V_{r-1}, use $\Lambda(i)^{(r-1)}$. Otherwise, look at the 1–cell out of $y_i^{(r)}$. Its other end lies in V_{r-1} by definition so is $y_j^{(r-1)}$ for some j. $\Lambda(i)^{(r)}$ is the path which follows the 1–cell and then $\Lambda(j)^{(r-1)}$.

Check that the collection $\Lambda(i)^{(r)}$ is a locally finite collection.

Let $V_\infty = \bigcup V_r$. Consider any vertex $x_i^{(0)}$ and its path $\lambda_i^{(0)}$. The distance from this vertex to the tree along this path is finite, say R. Then $x_i^{(0)} \in V_R$ (it may of course land in a smaller V_{r}).

This is easy to check by induction on R. It follows that V_∞ contains all the vertices of X^1 and we let $y_i^{(\infty)}$ be an enumeration of them. Define $\Lambda(i)^{(\infty)} \subset V_\infty$ as follows. $y_i^{(\infty)}$ lies in some V_r so define $\Lambda(i)^{r} = \Lambda(i)^{(r)}$ and note that $\Lambda(i)^{(r+1)}$ is the same path so this is well–defined.

There is a deformation retraction $d: V_r \times [0, 1] \to V_r$ of V_r to V_{r-1} obtained by collapsing the new 1–cells to the end attached to V_{r-1}, so V_∞ is a 1–complex with $H_1(V_\infty) = 0$. The paths $\Lambda(i)^{(\infty)}$ show the inclusion $T \subseteq X_\infty$ is a proper 0–equivalence. It follows that $T \subseteq V_\infty$ is a proper homotopy equivalence as desired.

Set $K = \sqrt{V - T}$ and look at X/K. The collapse map $X \to X/K$ is a proper homotopy equivalence. For a proof, see [6] Proposition 2.11, page 220. Note that all the maps there may be taken to be proper. X/K has only the vertices of the tree for 0–cells.

Now, to return to our proof, we may assume $\tilde{C}_n = C_0(X)$ has a generator for each vertex of our tree. \tilde{C}_{n-1} has a generator for each 1–cell of X. As in Wall [40] Corollary 2.3.2, each $(n-1)$–cell is incident to either two n–cells, or to the same n–cell twice. Look at an attaching map $S^{n-1} \to X^{n-1}$ for an n–cell. This can be normalized to a finite, disjoint, collection of discs onto the $(n-1)$–cells homeomorphically and to take the rest of S^{n-1} into the $(n-2)$–skeleton. Each $(n-1)$–cell eventually gets just two such discs mapped into it. The n–discs together with the $(n-1)$–cells corresponding to the 1–cells of the tree are seen to form a regular neighborhood in \mathbb{R}^n of the tree, and H is obtained from this by attaching 1–handles.

If Z is the part of Y in dimensions $\leq n - 2$ (or is $Y^2 \cup \text{junk}$ if $n = 4$), $Y = Z \cup \partial H$ H where H is formed from n–discs corresponding to the n–cells by attaching 1–cells as indicated by the $(n-1)$–cells. Actually, we want to form the mapping cylinder of $\partial H \to Z$ and then take the union along ∂H. Since H is a manifold, the result is clearly homeomorphic to Y. We denote the mapping cylinder by Z so $Y = Z \cup \partial H$ H, and ∂H is a subcomplex of Z and hence Y. Note that Z still satisfies $D(n-2)$.

Now $Z \subseteq Y$ is at least properly 2–connected, for Z always contains the 2–skeleton of Y. Since $(H, \partial H)$ is a Poincaré duality space, Theorem [99] (Theorem 2.1.4 p. [72]) says $(Z, \partial H)$ satisfies Poincaré duality with respect to the covering functor induced from the universal covering functor for Y. But this is just the universal covering functor for Z as $Z \subseteq Y$ is properly 2–connected. ∂H is a Poincaré duality space, so Theorem [114] (Theorem 2.2.7 p. [82]) says $(Z, \partial H)$ is a Poincaré duality pair. The statement about the torsion is contained in Theorem [94] (Theorem 1.6.3 p. [68]), so we finish by showing $\Delta(H : \pi_1) \to \Delta(Y : \pi_1)$ is onto. Our proof is basically Wall [40] Addendum 2.3.3, but is more complicated. We too will use the construction of Z and H via the dual cell decomposition. In our original complex, there were 0–cells, e^0_p, one for each p a vertex of T. There were 1–cells e^1_p satisfying $\partial e^1_p = g_0 e^0_p - e^0_q$ where g_i is a loop at p. The g_i which occur generate $\Delta(Y : \pi_1)$. In the dual
complex we have n–cells, e^n_γ and $(n - 1)$–cells e^{n-1}_i with $e^n_\gamma = \sum_i (\pm g_i e^{n-1}_i) - \sum_j e^{n-1}_j$, where the sign is given by the local coefficients on Y, and where the sum runs over all $(n - 1)$–cells incident to e^n_γ. The core 1–disc of the handle corresponding to e^{n-1}_i followed by the unique minimal path in T from the endpoint of the 1–disc to its initial point point has homotopy class g_i. Hence $\Delta(H : \pi_1)$ is onto $\Delta(Y : \pi_1)$. □

Corollary 126. (Corollary 2.3.2.1) Let X be a Poincaré duality space of dimension 3. Then X has the proper homotopy type of Y, where Y is the union of two Poincaré duality pairs $(Z, \partial H)$ and $(H, \partial H)$, where H is a regular neighborhood in \mathbb{R}^3 of a given tree for X, and Z is a subcomplex of Y satisfying $D2$. The torsion of this equivalence can be arbitrary.

Proof. Using the dual cell decomposition as before, let Z be the subcomplex of Y such that $\hat{C}_3 = C_3(Y, Z)$ and such that Z satisfies $D2$. \hat{C}_3 has one 3–cell for each vertex of the tree. Now there is a locally finite collection of paths from each n–cell to the vertex of the tree it represents.

Given H, a regular neighborhood of the tree in \mathbb{R}^3, we describe a map $\partial H \to Z$ which extends to a map $H \to Y$ such that the induced map $C_3(H, \partial H) \to C_3(Y, Z)$ is an isomorphism. Hence $Z \cup_{\partial H} H$ has the proper homotopy type of Y and we will be done. The map is the following. H can be viewed as the connected sum of a collection of n–discs, one for each vertex of the tree, by tubes corresponding to the 1–cells of the tree. H can then be properly deformed to the subcomplex consisting of n–discs joined by the cores of the connecting tubes. ∂H under this deformation goes to a collection of $(n - 1)$–spheres joined by arcs. Map the $(n - 1)$–sphere to Z by the attaching map of the corresponding n–cell in Y. Map an arc between two such spheres to the paths to the tree, and then along the unique path in the tree between the two vertices. This map clearly has the necessary properties. □

Theorem 127. (Theorem 2.3.3) Let $(X, \partial X)$ be a Poincaré duality pair of dimension n, $n \geq 4$. Then $(X, \partial X)$ has the proper homotopy type of a Poincaré duality pair $(Y, \partial Y)$ which is the union of a Poincaré duality pair $(Z, \partial H \cup \partial Y)$ and a Poincaré duality pair $(H, \partial H)$, where H is a regular neighborhood in \mathbb{R}^n of any given tree for Y with 1–handles added along the boundary, and Z is a subcomplex of Y satisfying $D(n - 1)$. The torsion of this equivalence may be given any preassigned value. $\Delta(H : \pi_1) \to \Delta(Y : \pi_1)$ is onto.

Proof. By Theorem 125 {Theorem 2.3.2 p. 87} or Corollary 126 {Corollary 2.3.2.1 p. 89}, we may assume ∂X already looks like $K \cup M$, where M is a regular neighborhood for a tree of ∂X in \mathbb{R}^{n-1}, and K satisfies $D(n - 2)$.

Let \hat{C}_* be the dual complex for $C_{n-*}(X)$. Then there is a chain map $\cap [X] : \hat{C}_* \to C_*(X, \partial X)$. We apply Theorem 125 {Theorem 1.6.4 p. 68} to find a complex Y with $C_*(Y) = C_*$ in dimensions greater than 3 and with $\partial X \subseteq Y$, $C_3(Y) = C_3 \cup \text{junk}$. Set L to be $Y^{(n-1)}$. Then $M \subseteq L$. Normalize the attaching maps for the n–cells as before. If $Z = Y^{(n-2)} \cup M$ (if $n = 4$), then $Y = Z \cup H$ where H has the advertised description. Notice $\partial H \cap \partial X$ can be M if one likes. As before, $(H, \partial H)$ is a Poincaré duality pair. $\partial H \cap \partial X = M$, so $\partial H = (\partial H - M, \partial M) \cup (M, \partial M)$ and $\partial X = (K, \partial M) \cup (M, \partial M)$. The rest of the proof proceeds as in the proof of Theorem 125 {Theorem 2.3.2 p. 87}. □
Appendix. The cation of a spherical fibration

We recall the definition. Let \(\xi \) be a spherical fibration over a finite dimensional, locally finite CW \(n \)-ad. Assume \(\xi \geq 2 \). Let \(S(\xi) \) be the total space. We seek an \(n \)-ad \(Y \), a proper map \(f: Y \rightarrow X \), and maps \(S(\xi) \xrightarrow{\rho} Y \) which commute with the two projections. We also require that \(Y \) have the proper homotopy type of a locally compact, finite dimensional CW \(n \)-ad. \(g \circ h \) must be properly homotopic to the identity, and \(h \circ g \) must be fibre homotopic to the identity. We give \(Y \) a simple homotopy type by finding an equivalent CW complex for which the Thom isomorphism is simple.

We digress briefly to include a discussion of the Thom isomorphism. If \(D(\xi) \) is the total space of the disc fibration associated to \(\xi \), we define \(\Delta(D(\xi): h, \sim) \) and \(\Delta(D(\xi), S(\xi): h, \sim) \) to be the groups one gets by applying the \(\Delta \) construction to the groups \(h(\pi^{-1}(X - C, \hat{p})) \) for \(D(\xi) \) and \(h(\pi^{-1}(X - C, \rho^{-1}(X - C, \hat{p})) \) for \((D(\xi), S(\xi)) \), where \(p \) is a vertex of \(X \), \(\hat{p} \) is a lift of \(p \) into \(D(\xi) \), and \(\pi: D(\xi) \rightarrow X - C \) and \(\rho: S(\xi) \rightarrow X - C \) are the projections for the fibrations over \(X - C \) by restriction and pullback from \(D(\xi) \) and \(S(\xi) \) respectively.

Now the Thom class for \(\xi, U_\xi \) goes under \(X - C \rightarrow X - C \rightarrow X \) to the Thom class for \(S(\xi) \). If \(h \) is cohomology we modify the \(\Delta \) groups above in the obvious manner. We will denote by \(\Delta(\xi, \xi') \) by restriction and pullback from \(D \). Equivalence. The torsion of \(\{ \tau \} \) properly homotocommes. We get a proper homotopy equivalence of pairs \(F: (M_{f \circ \rho}, C) \rightarrow (M_{f \circ \lambda}, K) \) such that \(F|_C = a \circ \rho \), and \(M_{f \circ \rho} \xrightarrow{F} M_{f \circ \lambda} \) commutes. By \(\tau \) is the proper homotopy type of the cation.

Lemma {Lemma 1.5.19 p. 56}, \(M_{f \circ \rho} \rightarrow X \) and \(M_{f \circ \lambda} \rightarrow X \) are simple, so \(F \) is a simple equivalence. The torsion of \(F \) from \((M_{f \circ \rho}, C) \) to \((M_{f \circ \lambda}, K) \) is \(\tau_\rho - \tau_\lambda = 0 \), so by Theorem {Theorem 70}
II. Appendix. The cwaion of a spherical fibration

{Theorem 1.5.1 p. 52}, the torsion of \(a \circ \rho\) on the subspace groups is zero. But as \(\dim \xi \geq 2\), \(f \circ \rho\) and \(f \circ \lambda\) are at least properly 2–connected. Hence the subspace groups with the induced covering functor are the absolute groups with the universal covering functor. Hence \(a \circ \rho\) is a simple homotopy equivalence, so the simple homotopy type of a cwaion is unique.

We now construct the promised \(Y\). Notice first that we can replace \(X\) by any locally compact, finite dimensional CW \(n\text{-ad}\) of the same proper homotopy type. Hence we may as well assume \(X\) is a locally finite simplicial \(n\text{-ad}\) of finite dimension. This is seen as follows. By [11] Theorem 4.1 and Lemma 5.1, \(X\) is the union of \(A\) and \(B\) where \(A\) and \(B\) are the disjoint union of finite complexes. Each finite complex has the homotopy type of a finite simplicial complex, and if a subcomplex is already simplicial, we need not disturb it. Hence we get a locally finite simplicial complex \(Y\) and a map \(f: X \to Y\) by making subcomplexes of the form \(C \cap D\) with \(C \subset A\) and \(D \subset B\) simplicial and then making \(C\) and \(D\) simplicial. Then \(Y = A' \cup B'\) where \(f: A \to A'\) and \(f: B \to B'\) are proper homotopy equivalences. Also \(f: E \to E'\) is a proper homotopy equivalence where \(E = \{C \cap D | C \subset A, D \subset B\}\). The proper Whitehead Theorem shows \(f\) is a proper homotopy equivalence. \(X\) being what it is, we can find open sets \(C_i\) such that \(X - C_i\) and \(\overline{C}_i\) are subcomplexes, each \(\overline{C}_i\) is compact, and \(\xi|\overline{C}_i\) is trivial. Furthermore, \(\bigcup C_i = X\), the \(C_i\) are locally finite, and the \(C_i\) are indexed by the positive integers. We set \(V_i = \bigcup_{j \leq i} C_j\). We can also find an increasing collection of open sets \(U_i\) such that \(U_i \subseteq V_i - C_i\), \(\overline{U}_i\) is compact, and \(\bigcup U_i = X\).

We first construct spaces \(Y_i\) and maps \(g_i\) and \(f_i\) inductively so that

\[
\begin{align*}
\xi|\overline{V}_i & \xrightarrow{g_i} Y_i \\
\pi|\overline{V}_i & \xrightarrow{f_i} \overline{V}_i
\end{align*}
\]

commutes.

Let \(Y_1 = \overline{V}_1 \times S^k\), \(k = \dim \xi \geq 2\). \(g_1\) and \(f_1\) exist since \(\xi|\overline{V}_1\) is trivial. \(f_1\) is just projection. We now induct; i.e., we have

1) A space \(Y_i\) and maps \(g_i\) and \(f_i\) such that A) commutes.
2) \(g_i\) is a homotopy equivalence.
3) \(Y_i = Y_{i-1} \cup \rho \overline{C}_i \times S^k\) via some homotopy equivalence \(\rho: Y_{i-1} \cap f_{i-1}^{-1}(\overline{V}_{i-1} \cap \overline{C}_i) \to (\overline{V}_{i-1} \cap \overline{C}_i) \times S^k\).
4) \(g_{i-1}|f_{i-1}^{-1}(U_{i-1}) = g_i|f_{i-1}^{-1}(U_{i-1})\) and \(f_{i-1}|Y_{i-1} = f_i|Y_{i-1}\).
5) Let \(S_r = \{\overline{C}_{i_1} \cap \overline{C}_{i_2} \cap \cdots \overline{C}_{i_r} | i_1 < i_2 < \cdots < i_r\}\).

If \(C \in S_r\), \(g_i\) restricted to \(f_i^{-1}(C \cap \overline{V}_i)\) is a homotopy equivalence.

Notice that \(Y_1\), \(g_1\) and \(f_1\) satisfy 1)–5). (Let \(Y_0 = \emptyset\).)

If we can verify 1)–5), we can construct \(Y\) as the increasing union of \(Y_i\) with identifications. \(g\) and \(f\) can be defined from \(g_i\) and \(f_i\) respectively by 4).

Inductively, \(Y\) has the proper homotopy type of a locally compact, finite dimensional complex, since it is covered by finite complexes, \(\overline{C}_i \times S^k\), of bounded dimension in a locally finite fashion. For a better proof, see Proposition [131] {Proposition 2.4.1 p. 95} below.

Now given \(Y_{i-1}\), \(f_{i-1}\), and \(g_{i-1}\), we construct \(Y_i\), \(f_i\) and \(g_i\).

By Dold [8], \(\xi|\overline{V}_i\) can be gotten from \(\xi|\overline{V}_{i-1}\) and \(\xi|\overline{C}_i\) as follows. Over \(\overline{C}_i \cap \overline{V}_{i-1}\), we have an equivalence \(\varphi: (\xi|\overline{V}_{i-1})|\overline{C}_i \cap \overline{V}_{i-1} \to (\overline{C}_i \cap \overline{V}_{i-1}) \times S^k\). Let \(H_1 = \xi|\overline{V}_{i-1}\), \(H_2 = \overline{C}_i \times S^k\), and let
\[H_3 = \{ (x,w) \mid x \in H_1|_{C_i \cap V_{i-1}}, \ w \in ((C_i \cap V_{i-1}))^I, \ \pi(x) = \pi(w(t)) \text{ for all } t \in I, \ \varphi(x) = w(1) \} . \]

Then \(\xi|_{V_i} \cong H_1 \cup H_2 \cup H_3 \), where \(H_1|_{C_i \cap V_{i-1}} \) is embedded in \(H_3 \) via \(x \mapsto (x, \text{constant path at } \varphi(x)) \). The embedding of \(H_2|_{C_i \cap V_{i-1}} \) is harder to describe. Let \(\varphi' \) be the inverse to \(\varphi \). The \(\varphi \circ \varphi' \) is fibre homotopic to the identity. Let \(\psi \) be a fibre homotopy between these two maps, with \(\psi(1,0) = \text{id} \). Then \(H_2|_{C_i \cap V_{i-1}} \) is embedded in \(H_3 \) via \(x \mapsto (\varphi'(x), \psi(x,t)) \).

We would like to fill in the dotted arrow with \(\rho \) so that the diagram actually commutes. To do this, we may have to alter \(\varphi \) within its fibre homotopy class, but this will not change our bundle.

Since \(g_{i-1} \) is a homotopy equivalence, it has an inverse, \(h \). \(h \) may be assumed to be a fibre map, so \(h \circ g_{i-1} \) is a fibre homotopy equivalence. Let \(G \) be its fibre homotopy inverse. The \(G \circ h \circ g_{i-1} \) is fibre homotopic to the identity. \(g_{i-1} \circ (G \circ h) \) is homotopic to the identity.

Set \(\rho = (\text{id}) \circ \varphi \circ (G \circ h) \). Then \(\rho \) is a fibre map so the bottom square commutes. Set \(\varphi_1 = (\text{id})^{-1} \circ \rho \circ g_{i-1} \). Then \(\varphi_1 \) is fibre homotopic to \(\varphi \), and B) commutes with \(\varphi_1 \) in place of \(\varphi \). \(\rho \) is a homotopy equivalence, so 3) is satisfied.

From now on, we assume \(\varphi \) chosen so that B) commutes with the \(\rho \) along the dotted arrow. Set \(Y_i = Y_{i-1} \cup_\rho \bar{C}_i \times S^k \). \(f_i \) is defined by \(f_i|_{Y_{i-1}} = f_i-1 \) and \(f_i|_{\bar{C}_i \times S^k} = \text{proj} \). B) insures that this is well-defined on the intersection.

\(g_i \) is unfortunately harder to define. \(\xi|_{V_i} \cong H_1 \cup H_2 \cup H_3 \), so let \(\alpha : \xi|_{V_i} \to H_1 \cup H_2 \cup H_3 \) be an equivalence. \(\alpha \) may be chosen to be the identity on \(\xi|_{V_{i-1}} \). We define a map \(h : H_1 \cup H_2 \cup H_3 \to Y_i \) as follows. \(g|_{H_1} = g_{i-1} \). To define \(g_i \) on the other two pieces, look at \(\psi \), the fibre homotopy between \(\varphi \circ \varphi' \) and \(\text{id} \). This can be extended to a fibre map of \((\bar{C}_i \times S^k) \times I \to (\bar{C}_i \times S^k)\) since \(\text{id} : (\bar{C}_i \cap V_{i-1}) \times S^k \to (\bar{C}_i \cap V_{i-1}) \times S^k \) can clearly be extended.

Now define \((g|_{H_2})(x,w) = g_{i-1}(x) \). Note our two definitions agree on \(H_1 \cap H_3 \). We could have defined \((g|_{H_2})(x,w) = w(1) \) equally well. We define \((g|_{H_2})(x) = F(x) \). If \(x \in H_2 \cap H_3 \), then \((g|_{H_2})(x) = (g|_{H_2})(\varphi'(x), \psi(x,t)) = \psi(x,1) = \varphi \circ \varphi'(x), (g \circ h)(x) = F(x) = \varphi \circ \varphi'(x) \) by the definition of \(F \). Hence \(g \) is well-defined and we set \(g_i = g \circ \alpha \).

Now 4) clearly holds since \(\alpha|_{f_i-1(V_{i-1})} \) is the identity. 1) holds as \(g : H_1 \cup H_2 \cup H_3 \to Y_i \) preserves fibres by construction. Hence we are left with showing 2) and 5).

For \(r \) sufficiently large, \(C \in S_r \) implies \(C \cap \bar{V}_i = \emptyset \), since the collection \(\{C_i\} \) is locally finite. We show 5) by downward induction on \(r \), since if \(C \cap V_i = \emptyset, 5) \) is obvious. Assume we have established the result for \(r = k+1 \). Let \(C \in S_k \). If \(C \cap \bar{C}_i = \emptyset \), then \(C \cap \bar{V}_{i-1} = C \cap \bar{V}_i \) and we are done since 5) holds for \(g_{i-1} \) and \(\alpha \) is a fibre homotopy equivalence. If \(C \cap \bar{V}_i = \bar{C}_i \cap \bar{V}_i \), we are done since \(F \) is a fibre map. So let \(L = C \cap \bar{V}_{i-1} \), and let \(K = C \cap \bar{V}_i \) with both \(K \) and \(L \) non-empty.

\(^1 \) \(S_r \) is defined in 5), page 96
$g_i|_{f_i^{-1}(L)}$ is a homotopy equivalence, again since α is a fibre homotopy equivalence and $g_{i-1}|_{f_{i-1}(K)}$ is also a homotopy equivalence. $K \cap L \subseteq V_{i-1}$, and $K \cap L \in S_{k+1}$. Hence $g_i|_{f_i^{-1}(K \cap L)}$ is a homotopy equivalence. Therefore $g_i|_{f_i^{-1}(C)}$ is a homotopy equivalence and we are done with 5).

Therefore we have a space Y and maps $S(\xi) \xrightarrow{g} Y$. We claim g is a homotopy equivalence.

Since by Milnor [22], $S(\xi)$ has the homotopy type of a CW complex, this is equivalent to showing g induces isomorphisms in homotopy. But $\pi_k(g) = \lim_{i} \pi_k(g_i)$, and since $\pi_k(g_i) = 0$, $\pi_k(g) = 0$.

Let $h: Y \to S(\xi)$ be a homotopy inverse for g. By an easy argument like the one after diagram B), we may assume h preserves fibres and the $h \circ g$ is fibre homotopic to the identity. Notice that by construction $f^{-1}(x)$ is homeomorphic to a sphere of dimension $\dim \xi$. $\pi^{-1}(x)$ has the homotopy type of such a sphere. Since $h \circ g$ is fibre homotopic to the identity, $g_x: \pi^{-1}(x) \to f^{-1}(x)$ has a left inverse. As both spaces are spheres of dimension 2 or more, g_x is a homotopy equivalence.

Now in the terminology of Bredon [2], f is ψ–closed, and $f^{-1}(x)$ is ψ–taut, where ψ is the family of compact supports. (Note Y is locally compact, so ψ is paracompacting, and then apply (d) on page 52 to show $f^{-1}(x)$ is ψ–taut. f is ψ–closed easily from the definition, which is on page 53, since X is Hausdorff.) Hence we have a Leray spectral sequence for the map $f: X \to Y$. We have the Serre spectral sequence for $\pi: S(\xi) \to X$, and g induces a map between these two. g induces an isomorphism on the E_2 terms since it is a homotopy equivalence on each fibre. Hence $g: H^*_c(Y) \to H^*_\varphi(S(\xi))$ is an isomorphism, where φ is the set of supports whose image in X is compact.

As $\dim \xi \geq 2$, $\pi^*: H^*_c(X) \to H^*_\varphi(S(\xi))$ is an isomorphism for $\ast < 2$. Hence $f^*: H^*_c(X) \to H^*_c(Y)$ is an isomorphism for $\ast < 2$, so $f^*: H^0_{\text{end}}(X) \to H^0_{\text{end}}(Y)$ is an isomorphism, so f is a proper 0–equivalence.

We claim f is a proper 1–equivalence. To see this, note $f|_C$ is a 1–equivalence for $C \in \mathcal{C}_r$ all $r \geq 1$. Now an easy van–Kampen induction shows f is a 1–equivalence when restricted to any union of \overline{C}_i's. Hence f is a proper 1–equivalence.

Thus $g_\#: \Delta(S(\xi): \pi_1) \to \Delta(Y: \pi_1)$ is an isomorphism as both groups are isomorphic, via $\pi_\#$ and $f_\#$, to $\Delta(X: \pi_1)$.

Now we still have maps
\[
\begin{array}{ccc}
Y - f^{-1}(K_i) & \xrightarrow{g} & S(\xi|_{X - K_i}) \\
\downarrow f & & \downarrow \pi \\
X - K_i & \xrightarrow{\text{h}} & X - K_i
\end{array}
\]
where \(K_i = X - \bigcup_{j \geq i} \mathcal{C}_j \). \(g \) restricted to each fibre is still a homotopy equivalence with inverse induced from \(h \). For any cover \(\sim \), of \(X - K_i \), we get

\[
\begin{array}{ccc}
Y - f^{-1}(K_i) & \xrightarrow{\sim} & S(\xi|_{X-K_i}) \\
\xrightarrow{\tilde{f}} & & \xleftarrow{\tilde{g}} \\
\xrightarrow{\pi} & & \sqrt{\pi}
\end{array}
\]

where the covers on the top row are induced covers from \(\sim \) over \(X - K_i \). \(S(\xi|_{X-K_i}) \) is the same as \(S(\xi|_{X-K_i}) \), the spherical fibration induced from \(\xi|_{X-K_i} \) over \(\overline{X - K_i} \). \(\tilde{g} \) likewise induces a homotopy equivalence of fibres, so as before we get

\[
h^*: H^c_c\left(S(\xi|_{X-K_i}), S(\xi|_{\partial(X-K_i)})\right) \to H^c_c\left(Y - f^{-1}(K_i), \partial(Y - f^{-1}(K_i))\right)
\]

is an isomorphism. A word about the existence of these covers is in order. Since \(X - K_i \) is a CW complex, its cover exists. The cover for \(S(\xi|_{X-K_i}) \) then also clearly exists. We claim \(Y - f^{-1}(K_i) \) is semi–locally 1–connected, from which it follows that its cover also exists. To see our claim, observe \(f: Y - f^{-1}(K_i) \to X - K_i \) is a 1–equivalence. Given any point \(y \in Y - f^{-1}(K_i) \), let \(N \subseteq X - K_i \) be a neighborhood of \(f(y) \) such that \(\pi_1(N) \to \pi_1(X - K_i) \) is the zero map. Since \(X - K_i \) is semi–locally 1–connected, such an \(N \) exists. Now \(f^{-1}(N) \) is a neighborhood for \(y \), and \(\pi_1(f^{-1}(N)) \to \pi_1(Y - f^{-1}(K_i)) \) is also zero. Hence \(Y - f^{-1}(K_i) \) is semi–locally 1–connected. A similar argument shows \(Y - f^{-1}(K_i) \) is locally path connected.

Therefore, \(h^*: \Delta(S(\xi): \sim) \to \Delta(Y: \sim) \) is an isomorphism for any covering functor induced from one over \(X \). Since \(f \) is a proper 1–equivalence, if we take a universal covering functor for \(X \), we get one for \(Y \). (The actual covering functor on \(Y \) is the following. Any \(A \in \mathcal{C}(Y) \) is contained in a unique minimal \(f^{-1}(X - K_i) \) so let the cover over \(A \) be induced from the cover over this space.)

\[
g^*: \Delta(Y: \sim) \to \Delta(S(\xi): \sim) \text{ is defined where } \sim \text{ is the covering functor induced by } g \text{ from } \sim \text{ over } Y. \quad g^* \circ h^* = (h \circ g)^*: \Delta^*(S(\xi): \sim) \to \Delta^*(S(\xi): \sim) \text{ is an isomorphism as } \sim \text{ and } \sim \text{ are equivalent covering functors. Hence } h^* \circ g^* = (g \circ h)^*: \Delta^*(Y: \sim) \to \Delta^*(Y: \sim) \text{ is an isomorphism, so } h \circ g \text{ is a proper homotopy equivalence. } \quad g \circ h \text{ is already a fibre homotopy equivalence, and it is not hard to change } h \text{ until } h \circ g \text{ is properly homotopic to the identity and } g \circ h \text{ is fibre homotopic to the identity.}
\]

To finish, we need only show Proposition 131 (Proposition 2.4.1 p. 95) below. We first need

Theorem 128. (Theorem 2.4.1) Let \(Y \) be a locally compact, separable ANR. Then \(Y \) is properly dominated by a locally–finite simplicial complex.

Proof. Let \(\alpha \) be an open covering of \(Y \) by sets whose closure is compact. Since \(Y \) is metrizable, \(Y \) is paracompact, so we can assume \(\alpha \) is locally finite.

We now apply Hu [15], Theorem 6.1, page 138, to get a locally finite simplicial complex \(X \) and maps \(\varphi: X \to Y \) and \(\psi: Y \to X \) with \(\varphi \circ \psi \sim \alpha \)-homotopic to the identity, i.e. if \(H \) is the homotopy, for each \(y \in Y \), there exists \(U \in \alpha \) such that \(H(y,t) \in U \) for all \(t \in [0, 1] \). By our choice of \(\alpha, \varphi \circ \psi \) is properly homotopic to the identity.

Now \(X \) is actually the nerve of some cover \(\delta \) in the proof of Hu, Theorem 6.1. In the proof, we may take \(\delta \) to be star–finite and locally finite. Then the nerve \(X \) is a locally finite simplicial
complex, and the map $\varphi: X \to Y$ is proper. To see this last statement, it is enough to show $\varphi^{-1}(U)$ is contained in a compact subset of X for any $U \in \alpha$. Recall φ is defined by picking a point in each $V \in \delta$ and sending vertex of the nerve which corresponds to V to our chosen point and then extending. Our extension satisfies the property that any simplex lies entirely in some element of α. So let U_1 be the union of all elements of α intersecting U. U_1 is compact as α is locally finite, so let U_2 be the union of all elements of α intersecting U_1. U_2 is again compact, so there are only finitely many elements of δ which intersect U_2. Let $K \subseteq X$ be the subcomplex generated by these elements of δ. K is finite, hence compact, and $\varphi^{-1}(U) \subseteq K$.

\textbf{Corollary 129. (Corollary 2.4.1.1)} Let Y be a locally compact, separable ANR, and suppose the covering dimension of Y, $\dim Y$, is finite (see Hurewicz and Wallman \cite{16} for a definition). Then Y is properly dominated by a locally finite simplicial complex of dimension $\dim Y$.

\textbf{Proof.} Make the same changes in Hu \cite{15} Theorem 6.1, page 164 that we made to the proof of Theorem 6.1, page 138. We get a simplicial complex P and a proper map $\varphi: P \to Y$ such that for any map $f: X \to Y$ with X a metric space of dimension $\leq \dim Y$, there exists a map $\psi: X \to P$ with $\varphi \circ \psi \alpha$-homotopic to f. Moreover, P has no simplices of dimension $> \dim Y$. Apply this for $X = Y$, $f = \text{id}$.

\textbf{Corollary 130. (Corollary 2.4.1.2)} A locally compact, separable ANR of dimension $\leq n$ satisfies Dn.

\textbf{Proof.} By Corollary \cite{129} (Corollary 2.4.1.1 p. 95) and nonsense, it remains to show Y is homogamous. But an ANR is locally contractible (Hu \cite{15}, Theorem 7.1, page 96), and any metric space is paracompact so Corollary \cite{7} (Corollary 1.1.2.1 p. 11) applies.

\textbf{Proposition 131. (Proposition 2.4.1)} The space Y which we constructed has the proper homotopy type of a locally compact, finite dimensional CW complex.

\textbf{Proof.} We first show Y is a finite dimensional, locally compact, separable ANR. We then find a finite dimensional simplicial complex Z and a proper map $h: Z \to Y$ which is properly n–connected for any finite n. Since both Y and Z satisfy Dn for some finite n, h is a proper homotopy equivalence.

\textbf{Step 1:} Y is a finite dimensional, locally compact, separable ANR. By Hu \cite{15} Lemma 1.1, page 177, Theorem 1.2, page 178, and induction, each Y_i is an ANR. The induction is complicated by the necessity of showing $Y_{i-1} \cap f_{i-1}^{-1}(V_{i-1} \cap C_i)$ is an ANR. Hence our induction hypothesis must be

\begin{enumerate}
 \item Y_k is an ANR
 \item $Y_k \cap f_k^{-1}(V_k \cap C)$ is an ANR for all $C \in S_r$.
\end{enumerate}
One then shows that for some finite \(r, \) b)\(k,r \) holds vacuously. b)\(k,s, \) \(s > r, \) and b)\(k-1,r \) imply b)\(k,r, \) so we get b)\(k,r \) for all \(r. \) b)\(k,1 \) and a)\(k-1 \) imply a)\(k, \) so we are done.

Since each \(Y_i \) is an ANR, each \(Y_i \) is a local ANR (Hu, Proposition 7.9, page 97). If \(Y \) is metrizable, \(Y \) is an ANR by Hu, Theorem 8.1, page 98. Now \(Y \) is \(T_1 \) and regular. To see this observe each \(Y_i \) is \(T_1 \) and regular since it is metrizable. Now if \(U \subseteq Y \) is any compact set, there is a \(Y_i \) with \(V \subseteq Y_i \) and \(V \) homeomorphic to \(U. \) With this result and the observation that \(Y \) is locally compact, it is easy to show \(Y \) is \(T_1 \) and regular. \(Y \) is locally compact because it has a proper map to a locally compact space \(X. \) \(Y \) is \(\sigma \)-compact since \(X \) is, so \(Y \) is second countable. Hence \(Y \) is metrizable (see Kelly \[17\] page 125) and separable.

We are left with showing \(Y \) has finite covering dimension. By Nagami \[27\] (36-15 Corollary, page 206), we need only show the small cohomological dimension with respect to the integers (Nagami, page 199) is finite (\(Y \) is paracompact since it is \(\sigma \)-compact and regular (see Kelly \[17\], page 172, exercise \(Y \) a) and b))).

To compute \(d(Y; \mathbb{Z}) \), look at the map \(f: Y \to X. \) \(f \) is a closed, onto map. \(f \) is onto by construction, and \(f \) is closed since \(Y \) is the increasing union of compact sets \(\{D_i\}, \) so \(F \subseteq Y \) is closed iff \(F \cap D_i \) is closed for all \(i, \) and \(f(F \cap D_i) \) is closed since \(F \cap D_i \) is compact and \(X \) is Hausdorff. We can find an increasing sequence of compact sets \(\nu_i \) such that \(E \subseteq X \) is closed iff \(E \cap \nu_i \) is closed. Since \(f \) is proper, \(D_i = f^{-1}(\nu_i) \) has the expected properties. But \(f(F \cap D_i) = f(F) \cap \nu_i \) if \(D_i = f^{-1}(\nu_i), \) so \(f \) is closed. Hence by Nagami \[27\] (38-4 Theorem, page 216), \(d(Y; \mathbb{Z}) \leq \dim X + k \) where \(k \) is the dimension of the fibration \(\xi. \) To see this, note \(f^{-1}(x) \) is homeomorphic to \(S^k \) for all \(x \in X, \) so \(d(F^{-1}(x); \mathbb{Z}) = k. \) Since \(X \) is paracompact and metrizable, \(\text{Ind} X = \dim X = d(X; \mathbb{Z}) = \dim X \) as a CW complex (see Nagami 8-2 Theorem for the first equality; Nagami 36-15 Corollary shows the second; Nagami 37-12 Theorem and subdivision show the third [this uses the fact that \(X \) is a regular complex]).

Step 2: There is a locally compact, finite dimensional CW complex \(Z \) and a proper map \(h: Z \to Y \) which is properly \(n \)-connected for all \(n. \) We define \(Z \) and \(h \) by induction; i.e. we have

1) a finite CW complex \(Z_i \) and a map \(h_i: Z_i \to Y_i \)
2) \(h_i \) is a homotopy equivalence
3) \(h_i \) restricted to \((f_i \circ h_i)^{-1}(C \cap \nu_i) \) is a homotopy equivalence for all \(C \in \mathcal{S}_r, \ r \geq 1 \)
4) \(h_i|_{(h_{i-1} \circ f_{i-1})^{-1}(U_{i-1})} = h_{i-1}|_{(h_{i-1} \circ f_{i-1})^{-1}(U_{i-1})} \)
5) \(Z_i = Z_{i-1} \cup \nu_i \mathcal{C}_i \times S^k \) where \(\lambda: Z_{i-1} \cap (h_{i-1} \circ f_{i-1})^{-1}(\nu_i \cap \mathcal{C}_i) \to (\nu_i \cap \mathcal{C}_i) \times S^k \)

is a cellular homotopy equivalence.

If we can find such \(Z_i \) and \(h_i, \) we can find \(Z \) and \(h: Z \to Y. \) \(h \) is clearly proper. \(h|_{(f \circ h)^{-1}(C)}: (f \circ h)^{-1}(C) \to f^{-1}(C) \) is a homotopy equivalence by 3) for all \(C \in \mathcal{S}_r, \ r \geq 1, \) so \(h|_{(f \circ h)^{-1}(D_i)} \) is a homotopy equivalence where \(D_i = \cup \mathcal{C}_i. \) Thus \(h \) induces isomorphisms on \(H^0 \) and \(H^0_{\text{end}}, \) and \(\Delta(h: \pi_s) = 0 \) for \(s \geq 1. \) Hence we are done if we can produce \(Z_i \) and \(h_i. \)

We proceed by induction on \(i. \) \(Z_1 = \mathcal{V}_1 \times S^k \) and \(h_1 = \text{id}. \) 1)–5) are trivial, so suppose we have \(Z_{i-1} \) and \(h_{i-1}. \) We have

\[
Z_{i-1} \cap (f_{i-1} \circ h_{i-1})^{-1}(\mathcal{V}_{i-1} \cap \mathcal{C}_i) \longrightarrow Y_{i-1} \cap f_{i-1}^{-1}(\mathcal{V}_{i-1} \cap \mathcal{C}_i) \longrightarrow (\mathcal{V}_{i-1} \cap \mathcal{C}_i) \times S^k
\]

Let \(\rho' \) be this composition. Deform \(\rho' \) to a cellular map as follows. For some \(r \geq 1, \ C \in \mathcal{S}_r \) implies \(C \cap \mathcal{C}_i = \emptyset. \) Now deform \(\rho' \) to a cellular map over each \(C \cap \mathcal{C}_i \cap \mathcal{V}_{i-1} \) for \(C \in \mathcal{S}_r, \) all \(r \geq 1 \) and finally to a cellular map over \(\mathcal{C}_i \cap \mathcal{V}_{i-1}. \) Denote this map by \(\lambda. \)
Let $Z_i = Z_{i-1} \cup_{\lambda} (\overline{C}_i \times S^k)$. We extend h_{i-1} to a homotopy equivalence $h_i: Z_i \to Y_i$ which leaves h_{i-1} fixed on $(f_{i-1} \circ h_{i-1})^{-1}(U_{i-1})$. h_i in fact can be chosen to be a homotopy equivalence on each $(f_i \circ h_i)^{-1}(C \cap V_i)$ be extending inductively over the various $C \in S_r$. 1)--5) hold and we are done. \[\Box\]
CHAPTER III

The Geometric Surgery Groups

1. The fundamental theorems of surgery

In this section we will prove three results which may be called the fundamental theorems of surgery. They constitute all the geometry needed to define surgery groups and to prove these groups depend only on the proper 1–type of the spaces in question. These results together with the s–cobordism theorem constitute the geometry necessary to give a classification of paracompact manifolds in a given proper homotopy class à la Wall [41], Chapter 10.

Let C denote either TOP, PL or DIFF. If X is a locally finite, finite dimensional CW n–ad, and if ν is a C bundle over X, then $\Omega_{\ast}(X,\nu)$ is the space of cobordism classes of the following triples: a C manifold n–ad M, dim $M = m$; a proper map of n–ads $f: M \to X$; a stable bundle map $F: \nu_M \to \nu$, where ν_M is the normal bundle of M and F covers f. Such a triple is called a normal map, and the cobordisms are called normal cobordisms.

Theorem 1.1. (Theorem 3.1.1) Given $\alpha \in \Omega_{m}(X,\nu)$, there is a representative (M,f,F) of α with f properly $\lceil \frac{m}{2} \rceil$–connected if X is a space. ($\lceil \cdot \rceil$ = greatest integer.)

For a pair $(X, \partial X)$, we have a representative $((M,\partial M), f, F)$ with $f: M \to X$ properly $\lceil \frac{m}{2} \rceil$–connected; $f: \partial M \to \partial X$ properly $\lceil \frac{m-1}{2} \rceil$–connected; and the pair map $f: (M,\partial M) \to (X,\partial X)$ properly $\lceil \frac{m}{2} \rceil$–connected. If $\partial X \subseteq X$ is properly 0–connected, then the map of pairs may be made properly homologically $\lceil \frac{m+1}{2} \rceil$–connected provided $m \geq 3$.

Proof. The proof follows Wall [39], Theorem 1.4. (See the remark following his proof.) We first remark that his Lemma 1.1 is equally valid in our case.

Lemma 1.1. (Lemma 3.1.1) Suppose M and X locally compact, finite dimensional CW complexes, $\psi: M \to X$ a map. Then we can attach cells of dimension $\leq k$ to M so that the resulting complex is locally finite and so that the map is properly k–connected.

Proof. We may assume ψ cellular by the cellular approximation theorem. Then the mapping cylinder of ψ is a locally compact, finite dimensional complex, and (M,ψ, M) is a CW pair. Set $M' = M_{\psi}^k \cup M$. Note then that M'is obtained from M by adding cells of dimension $\leq k$ and that $M' \to M_{\psi}$ is properly k–connected.

Now given a representative (N, g, G) for α, attach handles of dimension $\leq k$ to N to get $\psi: W \to X$ with $\partial W = N \cup M$, $\psi|_N = g$, and with ψ covered by a bundle map which is G over N, and ψ is properly k–connected. The argument that we can do this is the same as for the compact case. Wall [41] Theorem 1.1 generalizes immediately to

98
Lemma 134. (Lemma 3.1.2) Given $\alpha \in \Omega_m(X, \nu)$ with any representative (M, f, F), any element of $\Delta(f : \pi_k)$ determines proper regular homotopy class of immersions of a disjoint collection of $S^k \times D^{m-k}$’s into M for $k \leq m - 2 = \dim M - 2$.

Proof. Precisely as in Wall, [41] Theorem 1.1, we get a stable trivialization of the tangent bundle of M over each sphere S^k in our collection. Given any sphere S^k, we see in fact that there is an open submanifold $U \subseteq M$ such that we get a trivialization of the tangent bundle of U restricted to S^k which agrees with the one for τ_M. In fact $U = f^{-1}(a$ small neighborhood of the disc bounding $f(S^k))$ will do (we have momentarily confused S^k with its image in M). Notice that we can pick such a collection of U’s to be locally finite. Now apply Hirsch [14], Haefliger [12], or Lees [19] to immerse each S^k in its U with trivial normal bundle. This is a proper homotopy, so each α determines a proper map which immerses each sphere.

It is not hard to show any two such immersions which are properly homopic are regularly properly homopic.

If there is an embedding in the proper regular homotopy class of α, we can attach a collection of handles by α and extend our map and bundle map over the resulting trace of the surgeries. Notice that in an embedding, all the spheres have disjoint images, so we can certainly do the surgery. The map can be extended properly by construction, and one shows the bundle map extends precisely as in the compact case (Wall [41] Theorem 1.1).

Lemma 135. (Lemma 3.1.3) Given $\alpha \in \Omega_m(X, \nu)$ with any representative (M, f, F), we can do surgery on any element $\beta \in \Delta(f : \pi_k)$ for $m > 2k$.

Proof. General position supplies us with an embedding.

We now return to the proof of Theorem [132] (Theorem 3.1.1 p. 98). By our lemmas, we see that if $m > 2k$, we can get W as advertised. Now W is obtained from M by adding handles of dimension $\geq (m + 1) - k > k + 1$, so $M \subseteq W$ is properly k–connected.

In the pairs case, given a representative, we first fix up the boundary as above. Then we can attach handles away from the boundary to get the absolute map fixed up. The long exact homotopy sequence shows that the pair map is properly $\left\lceil \frac{m}{2} \right\rceil$–connected. If m is even, we are done. The case for $m = 2k + 1$ follows Wall [41] Theorem 1.4.

We may assume that we have $f : (M, \partial M) \rightarrow (X, \partial X)$ properly connected up to the middle dimension on each piece. Let E be the disjoint union of the $(k + 1)$–cells of $M_f - M$. Then we have a proper map $\partial E \rightarrow M_f$. Since ∂E is k–dimensional, and since (M_f, M) is properly k–connected, there is a proper homotopy of the attaching maps into M. $\partial E = \bigsqcup_p S^k_p$, so embed these spheres in M with trivial normal bundle by Lemmas [133] (Lemma 3.1.1 p. 98) and [134] (Lemma 3.1.2 p. 99). Join each sphere to ∂M by a locally finite collection of tubes, one for each sphere. (Since $H^0_{\text{end}}(X, \partial X) = 0$ by hypothesis, and since $M \rightarrow X$ is properly 1–connected (at least), and since $\partial M \rightarrow \partial X$ is properly 0–connected, $H^0_{\text{end}}(M, \partial M) = 0$ so we can do this.) Note in fact that we need only disturb ∂M in a (pre–assigned) neighborhood of a set of base points.) By general position we may assume all these tubes disjoint ($m \geq 3$). Hence we get framed embeddings of a collection of disjoint D^k’s. We may assume (by adding trivial discs if necessary) that the centers of our discs form a set of base points for M.

III.1 The fundamental theorems of surgery 99
We claim that if we do these relative surgeries we will have killed $K_k(M, \partial M)$ without affecting our other conditions. Our proof of this claim is the same as Wall’s. Let H denote the union of the handles, N_0 the constructed manifold, $f_0 : (N_0, \partial N_0) \to (X, \partial X)$ the resulting map. Note that $(N_0, \partial N_0) \to (M, H \cup \partial N_0)$ is a proper excision map. We can pick a set of base points for ∂M away from $\partial M \cap H$. As usual we can pick them so that they are a set of base points for $f : \partial M \to \partial X$. They are then also seen to be a set of base points for $f : \partial M \to \partial X$.\寝

The proof of the theorem divides into two cases.

\textbf{Case 1:} $\dim(X) = 2k$. By Theorem 132 (Theorem 3.1.1 p. 98), we can do surgery on f to make the map $f : M \to X$ k–connected, and to make the map $\partial f : \partial M \to \partial X$ $(k - 1)$–connected (properly connected actually, but we shall be slopp)\寝 Since $k \geq 3$, f, ∂f and $\partial M \subseteq M$ are all (proper) 1–equivalences.

Now subdivide $(M, \partial M)$ until the chain map $C_\ast(M, \partial M) \to C_\ast(X, \partial X)$ is onto. $C_\ast(X, \partial X)$ is $C_\ast(X, \partial X : \Lambda, F)$ for a collection of paths Λ and a lift functor F. The tree for X should come from a tree for ∂M, which we can clearly assume. $C_\ast(M, \partial M)$ is defined in the same way only with lift functor $f^{-1} F$. Let $D_\ast(f)$ be the kernel complex.

\textbf{Theorem 136.} (Theorem 3.1.2) Let $f : (M, \partial M) \to (X, \partial X)$ be a degree one normal map; i.e. a bundle over X and a bundle map over f are understood. Let $(X, \partial X)$ be a Poincaré duality pair of formal dimension at least 6. Suppose $\partial X \subseteq X$ is a proper 1–equivalence. Then f is normally cobordant to $g : (N, \partial N) \to (X, \partial X)$ with g a proper homotopy equivalence of pairs. The torsion of g may have any pre–assigned value. The torsions of $g : \partial N \to \partial X$ and of g as a map of pairs is then determined.

\textbf{Proof.} The proof of the theorem divides into two cases.

\textbf{Case 1:} $\dim(X) = 2k$. By Theorem 132 (Theorem 3.1.1 p. 98), we can do surgery on f to make the map $f : M \to X$ k–connected, and to make the map $\partial f : \partial M \to \partial X$ $(k - 1)$–connected (properly connected actually, but we shall be sloppy). Since $k \geq 3$, f, ∂f and $\partial M \subseteq M$ are all (proper) 1–equivalences.

Now subdivide $(M, \partial M)$ until the chain map $C_\ast(M, \partial M) \to C_\ast(X, \partial X)$ is onto. $C_\ast(X, \partial X)$ is $C_\ast(X, \partial X : \Lambda, F)$ for a collection of paths Λ and a lift functor F. The tree for X should come from a tree for ∂M, which we can clearly assume. $C_\ast(M, \partial M)$ is defined in the same way only with lift functor $f^{-1} F$. Let $D_\ast(f)$ be the kernel complex.
Then \(H_r(D_*(f)) = 0 \) for \(r < k \) and \(H^r(D_*(f)) = 0 \) for \(r > k \). Now Theorem \[89\] (Theorem 1.5.5 p. 61) shows \(H_k(D_*(f)) \) is an s-free tree module. Doing surgery on trivial \((k - 1)\)-spheres in \(\partial M \) replaces \(M \) by its boundary connected sum with a collection of \((S^k \times D^k)\)'s. Hence we may as well assume \(H_k(D_*(f)) \) is free and based. Let \(\{e_i\} \) be a preferred basis for this module.

By the Namioka Theorem, \(\Delta(f : \pi_{k+1}) \rightarrow H_k(D_*(f)) \) is an isomorphism. Thus the \(e_i \) determine classes in \(\Delta(f : \pi_{k+1}) \). These in turn determine a proper regular homotopy class of immersions \(e_i : (D^k \times D^k, \partial D^k \times D^k) \rightarrow (M, \partial M) \). We claim the \(e_i \) are properly regularly homotopic to disjoint embeddings. It is clearly enough to show this for the restricted immersions \(\tilde{e}_i : (D^k, \partial D^k) \rightarrow (M, \partial M) \), for then we just use small neighborhoods of the \(\tilde{e}_i \) to get the \(e_i \).

The proof for the \(\tilde{e}_i \) proceeds as follows. Let \(C_j \) be an increasing sequence of compact subsets of \(M \) with \(\cap C_j = M \). Let \(C_j \) be such that any element of \(\pi_1(M - C_j) \), when pushed into \(\pi_1(M - C_{j-1}) \), lies in the image of \(\pi_1(\partial M \cap (M - C_{j-1})) \) (compatible base points are understood). We can do this as \(\partial M \subseteq M \) is a proper 1-equivalence.

We now proceed. Only a finite number of the \(\tilde{e}_i \) do not lie in \(M - C_2 \). Embed these disjointly by the standard piping argument.

Again only finitely many \(\tilde{e}_i \) which do lie in \(M - C_2 \) do not lie in \(M - C_3 \). Put these in general position. The intersections and self-intersections can be piped into \(\partial M \cap (M - C_1) \) without disturbing the \(\tilde{e}_i \) we embedded in the previous step. This follows from Milnor [24], Theorem 6.6, where we see that, to do the Whitney trick, we need only move one of the protagonists. Hence we can always leave the \(\tilde{e}_i \) from the previous steps fixed.

Continuing in this fashion, we can always embed an \(\tilde{e}_i \) which lies in \(M - C_j \) but not in \(M - C_{j+1} \), in \(M - C_{j-1} \). This gives us a proper regular homotopy and establishes our claim.

We next perform handle subtraction. Let \(N \) be obtained from \(M \) by deleting the interiors of the images of the \(e_i \). Let \(U \) be the union of the images of the \(e_i \). Let \(\partial N = N \cap \partial M \).

By our construction, there is a chain map \(C_* : U \cup \partial M, \partial M \rightarrow D_*(f) \) such that

\[
0 \rightarrow C_*(U \cup \partial M, \partial M) \rightarrow C_*(M, \partial M) \rightarrow C_*(M, U \cup \partial M) \rightarrow 0
\]

\[
0 \rightarrow D_*(f) \rightarrow C_*(M, \partial M) \rightarrow C_*(X, \partial X) \rightarrow 0
\]

chain homotopy commutes. \(C_*(U \cup \partial M, \partial M) \) has homology only in dimension \(k \) where it is \(H_k(D_*(f)) \). The map \(C_*(U \cup \partial M, \partial M) \rightarrow D_*(f) \) gives this isomorphism in homology by construction.

Hence \(C_*(M, U \cup \partial M) \rightarrow C_*(X, \partial X) \) is a chain equivalence. Now \((N, \partial N) \subseteq (M, U \cup \partial M)\) is a proper excision map, so \(g : (N, \partial N) \rightarrow (X, \partial X) \) is a proper homotopy equivalence from \(n \) to \(X \). It induces proper homology isomorphisms on \(\partial N \rightarrow \partial X \) and is thus a proper homotopy equivalence there since \(\partial X \subseteq X \) is 1-connected. Hence \(g \) is a proper homotopy equivalence of pairs. By adding an \(h \)-cobordism to \(\partial N \), we can achieve any torsion we like for the map \(g : N \rightarrow X \).

Notice we have not assumed \(X \) is a simple Poincaré duality \(n \)-ad, but even so, the torsion of \(g \) determines the torsions of the remaining maps. We leave it to the reader to derive the standard formulas and remark that if \(g \) is simple and if \(X \) is simple, then \(g \) is a simple proper homotopy equivalence of \(n \)-ads.\[1\]

Case2: \(\dim X = 2k + 1 \). This time, Theorem \[132\] (Theorem 3.1.1 p. 98) permits us to suppose that \(f \) induces \(k \)-connected maps \(M \rightarrow X \) and \(\partial M \rightarrow \partial X \), and moreover we may assume \(K_k(M, \partial M) = 0 \). Hence we get a short exact sequence of modules \(0 \rightarrow K_{k+1}(M, \partial M) \rightarrow \)

\[1\]This bit replaces the original discussion which had assumed \(X \) was simple.
III.1 The fundamental theorems of surgery

$K_k(\partial M) \to K_k(M) \to 0$. ($K_*(M)$ is the tree of modules which is the kernel of the map $H_*(C(M : \Lambda, f^{-1}F)) \to H_*(C(X : N', F))$. The other K–groups are defined similarly.) Theorem [89] (Theorem 1.5.5 p. 61) now tells us that each of these modules is s–free. As before we can perform surgery on trivial $(k + 1)$–spheres in ∂M to convert all of the above modules to free modules. Again we get a locally finite collection of immersions $\tilde{e}_i : (D^{k+1}, \partial D^{k+1}) \to (M, \partial M)$ representing a basis of $K_{k+1}(M, \partial M)$.

We can no longer modify the \tilde{e}_i by a proper regular homotopy to get disjoint embeddings (we could do this if $\partial M \subseteq M$ were properly 2–connected) but by the same sort of argument as in the first part, we can modify the \tilde{e}_i until $\tilde{e}_i|_{\partial D^{k+1}}$ is a collection of disjoint embeddings.

The rest of the proof is the same as Wall’s. We have represented a basis of $K_k(\partial M)$ by framed, disjoint embeddings $S^k \to \partial M$. Attach corresponding $k + 1$–handles to M, thus performing surgery. Let U be the union of the added handles, and let $(N, \partial N)$ be the new pair. Since our spheres are null homotopic in M, M is just replaced (up to proper homotopy type) by M with $(k + 1)$–spheres wedged on in a locally finite fashion. Hence $K_k(N)$ is free, with a basis given by these spheres.

Dually, the exact sequence of the triple $\partial N \subseteq \partial N \cup U \subseteq N$, reduces, using excision, to

$$0 \to K_{k+1}(N, \partial N) \to K_{k+1}(M, \partial M) \to K_k(U, U \cap \partial N : M) \to K_k(N, \partial N) \to 0.$$

The map $K_{k+1}(M, \partial M) \to K_k(U, U \cap \partial N : M)$ is seen to be zero since it factors as $K_{k+1}(M, \partial M) \to K_k(\partial M) \to K_k(U : M) \to K_k(U, U \cap \partial N : M)$ and $K_k(\partial M)$ is zero. (Note that in this composition, $K_k(\partial M)$ should be a subspace group, but such a group is isomorphic to the absolute group in our case.) Since $K_k(U, U \cap \partial N : M)$ is free, so is $K_k(N, \partial N)$ and $K_{k+1}(N, \partial N) \cong K_{k+1}(M, \partial M)$.

The attached handles correspond to a basis of $K_{k+1}(M, \partial M)$, so the map $K_{k+1}(N) \to K_{k+1}(M, \partial M)$ is an epimorphism, since $K_{k+1}(N)$ is free and based on a set of generators for $K_{k+1}(M, \partial M)$ and the map takes each basis element to the corresponding generator. But $K_{k+1}(M, \partial M)$ is free on these generators, so this map is an isomorphism. Hence $K_{k+1}(N) \to K_{k+1}(N, \partial N)$ is an isomorphism.

Now, by Poincaré duality, $K^k(N, \partial N) \to K^k(N)$ is an isomorphism. The natural maps $K^k(N, \partial N) \to (K_k(N, \partial N))^*$ and $K^k(N) \to (K_k(N))^*$ are isomorphisms by Corollary [88] (Corollary 1.5.4.2 p. 60) since all the modules are free. Hence the map $K_k(N) \to K_k(N, \partial N)$ is an isomorphism. Thus $K_k(\partial N) = 0$, so f restricted to ∂N is a proper homotopy equivalence.

Next choose a basis for $K_k(N)$ and perform surgery on it. Write P for the cobordism so obtained of N to N' say. Consider the induced map degree 1 and Poincaré triads $(P : N \cup (\partial N \times I), N') \to (X \times I : X \times 0 \cup \partial X \times I, X \times 1)$. We will identify $N \cup (\partial N \times I)$ with N. In the exact sequence

$$0 \to K_{k+1}(N) \to K_{k+1}(P) \to K_{k+1}(P, N) \xrightarrow{d} K_k(N) \to K_k(P) \to 0$$

the map d is by construction an isomorphism. Hence $K_k(P) = 0$ and $K_{k+1}(N) \to K_{k+1}(P)$ is an isomorphism.

The dual of d is $K_{k+1}(N, \partial N) \to K_{k+1}(P, N')$, so it is an isomorphism (the map is the map induced by the inclusion). Now, since f on ∂N is a proper homotopy equivalence, $K_{k+1}(N) \to K_{k+1}(N, \partial N)$ is an isomorphism. $K_{k+1}(N) \to K_{k+1}(P)$ is an isomorphism, so $K_{k+1}(P) \to K_{k+1}(P, N')$ is an isomorphism.

Thus in the sequence

$$0 \to K_{k+1}(N') \to K_{k+1}(P) \to K_{k+1}(P, N') \to K_k(N') \to 0$$
we have $K_{k+1}(N') = K_k(N') = 0$, so $N' \to X$ is a proper homotopy equivalence. $\partial N' \to \partial X$ is the same as $\partial N \to \partial X$ (i.e. we did nothing to ∂N as all our additions were in the interior of N) and therefore is a proper homotopy equivalence. Hence we have an equivalence of pairs. The statement about torsions is proved the same way as for Case 1. □

Remarks. Note that our proof is still valid in the case $\partial X = \partial_1 X \cup \partial_2 X$ provided $\partial_1 M \to \partial_1 X$ is a proper homotopy equivalence (of pairs if $\partial_1 X \cap \partial_2 X \neq \emptyset$) and $\partial_2 X \subseteq X$ is a proper 1–equivalence ($(X : \partial_1 X, \partial_2 X)$ should be a Poincaré triad). The proof is word for word the same after we note that $K_i(\partial_2 N) \to K_i(\partial M)$ is always an isomorphism and that we may attach all our handles away from $\partial_1 M$. By induction we can prove a similar theorem for n–ads, which is the result we needed to prove Theorem 123 (Theorem 2.2.13 p. 86).

Our approach to surgery is to consider the surgery groups as bordism groups of surgery maps. To make this approach work well, one needs a theorem like Theorem 137 (Theorem 3.1.3 p. 103) below.

Definition. Given a Poincaré duality n–ad, a surgery map is a map $f: M \to X$ where M is a C–manifold n–ad, f is a degree 1 map of n–ads, and there is a C–bundle ν over X and a bundle map $F: \nu_M \to \nu$ which covers f.

Given a locally finite CW n–ad K with a class $w_1 \in H^1(K; \mathbb{Z}/2\mathbb{Z})$, we say $M \xrightarrow{f} X \xrightarrow{g} K$ is a surgery map over (K, w_1) provided g is a map of n–ads with g^*w_1 equal to the first Stiefel–Whitney class of X, and provided f is a surgery map.

Two surgery maps over (K, w_1) are said to be bordant (over (K, w_1)) if there is a surgery $(n+1)$–ad $W \xrightarrow{F} Y \xrightarrow{G} (K \times I, w_1)$ which is one of the surgery maps on $K \times 0$ and the other on $K \times 1$.

Theorem 137. (Theorem 3.1.3) Let $M \xrightarrow{f} X \xrightarrow{g} K$ be a surgery map over (K, w_1), a 3–ad. Suppose the formal dimension of X is at least 6. Then, if $f|_{\partial_1 M}$ is a proper homotopy equivalence, and if $\partial_2 K \subseteq K$ is a proper 1–equivalence, we can find another surgery map $N \xrightarrow{h} Z \xrightarrow{i} K$ over (K, w_1) with h a proper homotopy equivalence of 3–ads, and with i bordant over (K, w_1) to g so that over $\partial_1 K \times I$ the bordism map is $\partial_1 M \to \partial_1 X$ crossed with I.

Proof. If $\partial_2 X \subseteq X$ were a proper 1–equivalence we could finish easily using Theorem 136 (Theorem 3.1.2 p. 100). The proof then consists of modifying X and $\partial_2 X$ to get this condition. The idea is to do surgery, first on $\partial_2 X$ (and then on X) to get $\partial_2 X \to \partial_2 K$ a proper 1–equivalence (similarly for $X \to K$) and then show that we can cover these surgeries on $\partial_2 M$ and M.

Look at the map $g: \partial_2 X \to \partial_2 K$. By Theorem 125 (Theorem 2.3.2 p. 87), $\partial_2 X$ can be replaced by $L \cup H$, where H is a manifold and L satisfies $D(n-3)$, where n is the formal dimension of X. This replacement does not alter the bordism class in which we are working. Let w_1 also denote the restriction of $w_1 \in H^1(K; \mathbb{Z}/2\mathbb{Z})$ to $\partial_2 K$. Let ν be the line bundle over $\partial_2 K$ classified by w_1. Let $g: H \to \partial_2 K$ denote the induced map.
III.2 Paracompact surgery—patterns of application

Then $\tau_H \oplus g^*\nu$ is trivial, for H has the homotopy type of a 1–complex so the bundle is trivial iff its first Stiefel–Whitney class vanishes (and $w_1(\tau_H \oplus g^*\nu) = 0$ by construction). Hence we can find a bundle map $F: \nu_H \to \nu$.

By Theorem 132 (Theorem 3.1.1 p. 98) we can add 1 and 2 handles to to H to get W with $\partial W = H \cup H' \cup \partial H \times I$ and a map $G: W \to \partial_2 K$ with $G|_H = h$ and $G|_{H'}$ a proper 1–equivalence. Let $Y = L \times I \cup W$ by gluing $\partial H \times I$ to $L \times I$ via the map $\partial H \to L$ crossed with I. $(Y : L \cup_{\partial H} H \cup L \cup_{\partial H} H' \cup L \times I)$ is a Poincaré duality triad. This follows since $(L, \partial H)$ is a Poincaré duality pair and Y is $(L, \partial H) \times I$ glued to the manifold triad $(W : H, \partial H \times I, H')$ along $\partial H \times I$. $(L, \partial H) \times I$ is a Poincaré triad by Theorem 118 (Theorem 2.2.9 p. 84), and we can glue by Theorem 98 (Theorem 2.1.3 p. 71) and Theorem 114 (Theorem 2.2.7 p. 82).

Let $Z = L \cup_{\partial H} H'$. We have a map of $Y \to K \times I$ given by $L \to K$ crossed with I on $L \times I$ and by $W \to K \times I$ on W. We claim the restriction $Z \to \partial_2 K \times 1$ is a proper 1–equivalence.

To see this, note first that $\partial H \subseteq H'$ is a pushout. $\partial H \subseteq L$ is properly 1–connected by construction (see Theorem 125 (Theorem 2.3.2 p. 87)). It follows from a Mayer–Vietoris argument that $H' \subseteq Z$ induces isomorphisms on H^0 and H^0. Since $\Delta(\partial H : \pi_1) \to \Delta(L : \pi_1)$ is onto, it follows from a van–Kampen argument that $\Delta(H' : \pi_1) \to \Delta(Z : \pi_1)$ is onto.

Now consider $H' \subseteq Z \to \partial_1 K$. The composite is a proper 1–equivalence by construction. The first map is properly 1–connected, as we saw in the last paragraph. It then follows that $Z \to \partial_2 K$ is a proper 1–equivalence.

It is easy to extend our bundle ν over all of Y. Wall 41 pages 89–90 shows how to cover our surgeries back in $\partial_2 M$. One changes $f: \partial_2 M \to \partial_2 X$ through a proper homotopy until it is transverse regular to all our core spheres in $H \subseteq \partial_2 X$. The inverse image of a core sphere back in $\partial_2 M$ will be a collection of disjoint spheres, and Wall shows that, if we do our surgery correctly on these spheres, then we can extend all our maps and bundles. Hence we get $F: P \to Y$ and a bundle map $\nu_P \to \nu$, where ν is the extended ν over Y.

Thus our original problem $M \to X \to K$ is normally cobordant over (K, w_1) to a problem for which $\partial_2 X \to \partial_2 K$ is a proper 1–equivalence. We have not touched $\partial_1 M \to \partial_1 X$ so we still have that this map is a proper homotopy equivalence. In fact, the part of ∂P over $\partial_1 M$ is just a product.

Now use Theorem 127 (Theorem 2.3.3 p. 89) on X and proceed as above to get a problem for which $X \to K$ is a proper 1–equivalence. Note that we need never touch ∂X so $\partial_1 M \to \partial_1 X$ is still a proper homotopy equivalence and $\partial_2 X \to \partial_2 K$ is still a proper 1–equivalence. \Box

2. Paracompact surgery—patterns of application

It has been noted by several people (see especially Quinn 29 or 30) that the theorems in section 1, the s–cobordism theorem, and transverse regularity are all the geometry one needs to develop a great deal of the theory of surgery.

We define surgery groups as in Wall 41 Chapter 91. Let K be a locally compact CW n–ad, and let $w \in H^1(K; \mathbb{Z}/2\mathbb{Z})$ be an orientation. An object of type n over (K, w_1) is a surgery map f

1As pointed out by Farrell and Hsiang, 47 (pages 102-103) there is a problem with Wall’s definition of geometric surgery groups which will affect us as well. Many people have used variants of this definition. Ranicki’s annotation of Wall’s book 57, page 92, mentions the problem. In 56 I show that Wall’s original definition is almost right. Wall’s problem is a cavalier treatment of local coefficients and the treatment presented in 56 works here as well.
(see section 1) over \(s_n K\) for which, if \(M \to X \to s_n K\) is the surgery map, \(\varphi: \partial_n M \to \partial_n X\) is a proper homotopy equivalence of \(n\)-ads.

We write \((\varphi, f) \sim 0\) to denote the existence of a surgery map over \((s_n K, w_1)\) such that \(\partial_{n+1}\) is \((\varphi, f)\); i.e. if \(W \to Z \to s_{n+1} s_n K\) is the surgery map, \(\partial_{n+1} W \to \partial_{n+1} Z \to s_n K\) is our original surgery problem; and such that \(\partial_n\) is a proper homotopy equivalence of \((n+1)\)-ads. \((\varphi, f) \sim (\varphi_1, f_1)\) provided \((\varphi, f) + - (\varphi_1, f_1) \sim 0\), where + denotes disjoint union and \(- (\varphi, f)\) denotes the same object but with the reverse orientation. Write \(L^h_m(K, w_1)\) for the group of objects of type \(n\) and dimension \(m\) (i.e. \(m\) is the dimension of \(M\)) modulo the relation \(\sim\). One checks that \(\sim\) is an equivalence relation and that disjoint union makes these sets into abelian groups.

If we require all the torsions of all the proper homotopy equivalences in the above definitions to be 0 (including the torsions for the Poincaré duality \(n\)-ads), we get groups \(L^s_m(K, w_1)\). If \(c \subseteq \zeta(K)\) is a subgroup closed under the involution induced by the orientation \(w_1\), then we get groups \(L^s_m(K, w_1)\) by requiring all the torsions (including those for the Poincaré duality \(n\)-ads) to lie in \(c\). (\(\zeta(K)\) is Siebenmann’s group of proper simple homotopy types; see Chapter 1, section 5, or [33]).

Theorem 138. (Theorem 3.2.1) Let \(\alpha \in L^s_m(K, w_1)\), \(n + m \geq 6\). Then if \(M \xrightarrow{\varphi} X \xrightarrow{f} K\) is a representative of \(\alpha\) with \(f\) a proper 1-equivalence, \(\alpha = 0\) iff there is a normal cobordism \(W \to X \times I\) with \(\partial W \to X \times 0\) our original map \(\varphi\), and \(\partial W \to X \times 1\) a proper homotopy equivalence of \(n\)-ads with torsions lying in \(c\).

Proof. Standard from Theorem [136](#136) {Theorem 3.1.2 p. 100}, by doing surgery on the boundary object.

Theorem 139. (Theorem 3.2.2)

\[
\cdots \to L^c_m(\partial_n K, w_1) \to L^c_m(\delta_n K, w_1) \to L^c_m(K, w_1) \to L^c_{m-1}(\partial_n K, w_1) \to \cdots
\]

is exact.

Proof. A standard argument.

Theorem 140. (Theorem 3.2.3) If \(f: K_1 \to K_2\) is a proper map of \(n\)-ads, we get an induced map \(L^c_m(K_1, f^* w_1) \to L^c_m(K_2, w_1)\) where \(f_#(c) \subseteq c'\), \(f_#: \zeta(K_1) \to \zeta(K_2)\) If \(f\) is a proper 1-equivalence, the induced map is an isomorphism for \(c = f^{-1}_#(c')\).

Proof. The induced map is easily defined by \(M \to X \to K_1\) goes to \(M \to X \to K_1 \xrightarrow{f} K_2\). For the last statement, if \(m \geq 5\) this is just Theorem [137](#137) {Theorem 3.1.3 p. 103}, if \(K_1\) and \(K_2\) are 1-ads. If \(K_1\) and \(K_2\) are \(n\)-ads, an induction argument shows the result for \(n + m \geq 6\). The result is actually true in all dimensions and a proof can be given following Quinn’s proof in the compact case (see [29] or [30]). We will not carry it out here.
THEOREM 141. (Theorem 3.2.4) Let K be a 1–ad, and let $M^m \xrightarrow{\varphi} X \xrightarrow{f} K$ be a surgery map over (K,w_1) with φ a proper homotopy equivalence and with f a proper 1–equivalence. Suppose given $\alpha \in L_{m+1}^s(K,w_1)$, $m \geq 5$, and suppose all the torsions for φ lie in c. Then there is an object of type 1, $W \to X \times I \to K$, over (K,w_1) with $\partial W = M \cup N$, $N \to X \times 1$ a proper homotopy equivalence whose torsion also lies in c, and such that the surgery obstruction for this problem is α.

Proof. The proof is basically Quinn’s (see 29). Given α, there is always an object of type 1, $P \to Z \to K$, whose obstruction is $-\alpha$. (We may always assume ∂P and ∂Z are non–empty by removing a disc from Z and its inverse image in P, which we can modify to be a disc.) $M \times I \to X \times I \to K$ is also an object of type 1 over K.

Take the boundary connected sum of Z and $X \times I$ by extending $\partial Z \# X \times 0$ (we may always assume X and Z are in normal form so we may take this sum in their discs). Similarly we may extend $\partial P \# M \times 0$. We get a new object of type 1, $P \#_{M \times 0} M \times I \to Z \#_{X \times 0} X \times I \to K$.

By the proof of Theorem 137 (Theorem 3.1.2 p. 100, we may do surgery on $Z \#_{X \times 0} X \times I$ until the map of it to K is a proper 1–equivalence, and we may cover this by a normal cobordism of $P \#_{M \times 0} M \times I$. In doing this, we need never touch $M \times 1$ or $X \times 1$. Let $P' \to Z' \to K$ denote this new object of type 1. Note that it still has surgery obstruction $-\alpha$.

Now using Theorem 136 (Theorem 3.1.2 p. 100, we can do surgery on $\varphi : P' \to Z'$ where Z' is considered to be the triad $(Z' : X \times 1$, any other boundary components). φ restricted to the other boundary components is a proper homotopy equivalence, so we may do surgery leaving them fixed ($X \times 1 \subseteq Z'$ is a proper 1–equivalence). Let W be the normal cobordism obtained over $M \times 1$. Then $W \to X \times 1 \times I$ is a surgery map, $\partial W \to X \times 1 \times 0$ is our old map, and $\partial_{\alpha} W \to X \times 1 \times 1$ is a proper homotopy equivalence. We can make all our torsions lie in c, and then the surgery obstruction for $W \to X \times I \to K$ must be α. □

DEFINITION. Let $\mathcal{S}_C(X)$, for X a Poincaré duality space of dimension n, be the set of all simple, degree 1, homotopy equivalences $\varphi : N^n \to X$ (N a C–manifold) modulo the relation $\varphi \sim \psi$ iff there is a C–homeomorphism h such that $N \xrightarrow{\varphi} X$ properly homotopy commutes.

\[
\begin{array}{ccc}
\downarrow h & & \downarrow \varphi \\
M & \xrightarrow{} & X \\
\psi & & \\
\end{array}
\]

A similar definition holds for X a Poincaré n–ad.

THEOREM 142. (Theorem 3.2.5) There is an exact structure sequence

\[
\cdots \to [\Sigma X,F/C] \to L_{m+1}^s(X,w_1) \to \mathcal{S}_C(X) \to [X,F/C] \xrightarrow{\theta} L_m^s(X,w_1)
\]

where w_1 is the first Stiefel–Whitney class of the Poincaré duality space X with dimension of X being $m \geq 5$. We also insist that the Spivak normal fibration of X lift to a C–bundle. By exactness we mean the following. First of all $\mathcal{S}_C(X)$ may be empty, but in any case, $\theta^{-1}(0)$ is the image of $\mathcal{S}_C(X)$. If $\mathcal{S}_C(X)$ is not empty, then $L_{m+1}^s(X,w_1)$ acts on it, and two elements of $\mathcal{S}_C(X)$ which agree in $[X,F/C]$ differ by an element of this action. The sequence continues infinitely to the left. (ΣX is the ordinary suspension of X.)

The open surgery obstruction in odd dimensions

MAURICE H. WALL

III.2 Paracompact surgery—patterns of application

107

Proof. See Wall [41], Chapter 10.

Theorem 143. (Theorem 3.2.6) Let \(\hat{\cdot} \) be the involution defined on \(\zeta(K) \) in Chapter 1, section 5. Define \(A_m(K, w_1) = H^m(\mathbb{Z}/2\mathbb{Z}, \zeta(K)) \) where \(\zeta(K) \) is made into a \(\mathbb{Z}/2\mathbb{Z} \)–module by the involution \(\hat{\cdot} \) (which depends on \(w_1 \)). If \(K \) is an \(n\)–ad, then

\[
\cdots \to A_{m+1}(K, w_1) \to L^s_m(K, w_1) \to L^h_m(K, w_1) \to A_m(K, w_1) \to \cdots
\]
is exact for \(m + n \geq 6 \).

Proof. The map \(L^s \to L^h \) is just the forgetful map. The map \(L^h \to A \) just takes the torsion of the part of the boundary that was a proper homotopy equivalence and maps it into \(A \) (if the proper homotopy equivalence is over more than one component, sum the torsions). The map \(A \to L^s \) takes a proper homotopy equivalence \(M^m \to X \) whose torsion hits an element in \(A_{m+1} \), and maps it to the obstruction to surgering the map to a simple homotopy equivalence. See Shaneson [31] for the details of proving these maps well–defined and the sequence exact.

Corollary 144. (Corollary 3.2.6.1) If \(A^c_m(K, w) = H^m(\mathbb{Z}/2\mathbb{Z}, c) \),

\[
\cdots \to A^c_{m+1}(K, w_1) \to L^s_m(K, w_1) \to L^c_m(K, w_1) \to A^c_m(K, w_1) \to \cdots
\]
is exact for \(m + n \geq 6 \).

We now produce our major computation.

Theorem 145. (Theorem 3.2.7) Let \((L, \partial L) \) be a finite CW pair. Form a new CW \(n\)–ad \(K \) by \(K = L \cup \partial L \times [0, \infty) \). Suppose \(\partial L \) is the disjoint union of subcomplexes \(\partial_i L, i = 1, \ldots, n \). Let \(L^c_m(L, w_1) \) denote the Wall group for \(L \) for homotopy equivalences which are simple over \(L \) and which, over \(\partial_i L \), have torsions in \(c_i \), where \(c_i = \ker \left(\text{Wh}(\pi_1(\partial_i L)) \to \text{Wh}(\pi_1(L)) \right) \). Then there is an isomorphism \(L^c_m(L, w_1) \to L^c_m(K, w_1) \). Combining this with Wall’s long exact sequence we see

\[
\cdots \to \bigoplus_{i=1}^n L^c_m(\pi_1(\partial_i L), w_1) \to L^s_m(\pi_1(L), w_1) \to L^c_m(K, w_1) \to \bigoplus_{i=1}^n L^c_m(\pi_1(\partial_i L), w_1) \to \cdots
\]
for \(m \geq 7 \).

Proof. The map \(L^s_m(\pi_1(L), w_1) \to L^c_m(K, w_1) \) is given by \(M \to X \to L \) goes to \(M \cup \partial M \times [0, \infty) \to X \cup \partial X \times [0, \infty) \to L \cup \partial L \times [0, \infty) \).

Siebenmann’s thesis [32] shows this map is a monomorphism. To show that the map is onto we can assume \(W \xrightarrow{\varphi} Z \to K \) is a surgery map and that \(Z \) is a manifold using Theorem 141 (Theorem 3.2.4 p. 106) (this representation theorem is also needed to show injectivity). By Siebenmann [32], we can assume \(Z \) is collared; i.e. \(Z = N \cup \left(\bigcup_{i=1}^n \partial_i N \times [0, \infty) \right) \). By making \(\varphi \) transverse regular to the \(\partial_i N \), we get a problem over \(L \), say \(V \to N \to L \). We claim \(V \cup \left(\bigcup_{i=1}^n \partial_i V \times [0, \infty) \right) \to N \cup \left(\bigcup_{i=1}^n \partial_i N \times [0, \infty) \right) \) has the same surgery obstruction as \(W \to Z \).

1 Note added in proof 2: Compare Maumary, The open surgery obstruction in odd dimensions. Notices Amer. Math. Soc. 17 (number 5) p.848.
2Footnote 1 is an original footnote. A better reference is Maumary [52].
But this is seen by actually constructing the normal cobordism using Siebenmann’s concept of a 1–neighborhood and some compact surgery.

\[\square \]

Corollary 146. (Corollary 3.2.7.1) We can improve \(m \geq 7 \) to \(m \geq 6 \).

Proof. Using recent work of Cappell–Shaneson [5], one can get a modified version of Siebenmann’s main theorem. One can not collar a 5–manifold, but one can at least get an increasing sequence of cobordisms whose ends are \(\partial_iN \# S^2 \times S^2 \# \cdots \# S^2 \times S^2 \). This is sufficient. \(\square \)

Actually, one would hope that these surgery groups would be periodic, just as the compact ones are. This is actually the case, but the only proof I know involves describing surgery in terms of algebra. This can be done, but the result is long and will be omitted.

We briefly consider splitting theorems. The two–sided codimension 1 splitting theorem holds; i.e. if \(W \) has the simple homotopy type of \(Z = (X, \partial X) \cup (Y, \partial X) \) with \(\partial X \subseteq X \) a proper 1–equivalence, then the map \(W \rightarrow Z \) can be split. The proof is the same as for the compact case. Hence we also get codimension greater than or equal to 3 splitting theorems for proper submanifolds. In fact, most of Wall [41] Chapter 11 goes over with minor modifications.

We are unable to obtain a one–sided splitting theorem in general, due to the lack of a Farrell fibering theorem in the non–compact case.

We also note in passing that one could define surgery spaces as in [29] and [30]. We than get the same basic geometric constructions; e.g. assembly maps and pullback maps. We have nothing new to add to the theory, so we leave the reader the exercise of restating [29] so that it is valid for paracompact surgery spaces.

\[^1 \text{We presumably could define proper algebraic bordism groups following Ranicki. See for example [53].} \]
Bibliography

[1] Hyman Bass, *Algebraic K-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR0249491
[2] Glen E. Bredon, *Sheaf theory*, McGraw-Hill Book Co., New York-Toronto, Out.-London, 1967. MR0221500
[3] W. Browder, *Cap products and Poincaré duality*, 1964. Cambridge University notes (for a better reference see 45.)
[4] , *Surgery on simply-connected manifolds*, 1969. Princeton University notes (for a better reference see 45.)
[5] S. Cappell and J. Shaneson, *On four dimensional surgery and applications*, preprint (for a better reference see 46.)
[6] George E. Cooke and Ross L. Finney, *Homology of cell complexes*, Based on lectures by Norman E. Steenrod, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1967. MR0219059
[7] Albrecht Dold, *Partitions of unity in the theory of fibrations*, Ann. of Math. (2) 78 (1963), 223–255. MR0155330
[8] , *Halbeakte Homotopiefunktoren*, Lecture Notes in Mathematics, vol. 12, Springer-Verlag, Berlin-New York, 1966 (German). MR0198464
[9] T. Farrell and J. Wagoner, *A torsion invariant for proper h-cobordisms/ an algebraic criterion for a map to be a proper homotopy equivalence*, Notices Amer. Math. Soc. 16 (1969), 988 and 1090. (for a better reference see 50.)
[10] , *Infinite matrices in algebraic K-theory and topology*, To appear: (for a better reference see 50.)
[11] T. Farrell, L. Taylor, and J. Wagoner, *The Whitehead theorem in the proper category*, To appear: (for a better reference see 49.)
[12] André Haefliger, *Lissage des immersions. I.*, Topology 6 (1967), 221–239 (French). MR0208607
[13] P. J. Hilton, *An introduction to homotopy theory*, Cambridge Tracts in Mathematics and Mathematical Physics, no. 43, Cambridge, at the University Press, 1953. MR0056289
[14] Morris W. Hirsch, *Immersions of manifolds*, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR0119214
[15] Szeto Hu, *Theory of retracts*, Wayne State University Press, Detroit, 1965. MR0181977
[16] Witold Hurewicz and Henry Wallman, *Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR0006493
[17] John L. Kelley, *General topology*, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. MR0070144
[18] R. Kirby and L. Siebenmann, *Foundations of topology*, Notices Amer. Math. Soc. 16 (1969). (for a better reference see 51.)
[19] J. Alexander Lees, *Immersions and surgeries of topological manifolds*, Bull. Amer. Math. Soc. 75 (1969), 529–534. MR0239602
[20] Solomon Lefschetz, *Introduction to Topology*, Princeton Mathematical Series, vol. 11, Princeton University Press, Princeton, N. J., 1949. MR0031708
[21] A. Lundell and S. Weingram, *The topology of CW complexes*, Van Nostrand Reinhold Co., New York, 1969.
[22] John Milnor, *On spaces having the homotopy type of a CW-complex*, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR0100267
[23] J. Milnor, *Whitehead torsion*, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR0196736
[24] John Milnor, *Lectures on the h-cobordism theorem*, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. MR0190942
[25] Barry Mitchell, *Theory of categories*, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR0202787
[26] John C. Moore, *Some applications of homology theory to homotopy problems*, Ann. of Math. (2) 58 (1953), 325–350. MR0059549
[27] Keiichi Nagami, *Dimension theory*, With an appendix by Yukihiro Kodama. Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970. MR0271918
Additional References

[45] William Browder, *Surgery on simply-connected manifolds*, Springer-Verlag, New York, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65. MR0358813 (50 #11272)

[46] Sylvain E. Cappell and Julius L. Shaneson, *On four dimensional surgery and applications*, Comment. Math. Helv. 46 (1971), 500–528. MR0301750 (46 #905)

[47] F. T. Farrell and W. C. Hsiang, *Rational L-groups of Bieberbach groups*, Comment. Math. Helv. 52 (1977), no. 1, 89–109. MR0448372

[48] F. T. Farrell, L. R. Taylor, and J. B. Wagoner, *The Whitehead theorem in the proper category*, Compositio Math. 27 (1973), 1–23. MR0334226 (48 #12545)

[49] F. T. Farrell and J. B. Wagoner, *Infinite matrices in algebraic K-theory and topology*, Comment. Math. Helv. 47 (1972), 474–501. MR0319185 (47 #7731a)

[50] ———, *Algebraic torsion for infinite simple homotopy types*, Comment. Math. Helv. 47 (1972), 502–513. MR0319185 (47 #7731b)

[51] Robion C. Kirby and Laurence C. Siebenmann, *Foundational essays on topological manifolds, smoothings, and triangulations*, Princeton University Press, Princeton, N.J., 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. MR0645390 (58 #31082)

[52] Serge Maumary, *Proper surgery groups and Wall-Novikov groups*, Algebraic K-theory, III: Hermitian K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 526–539. Lecture Notes in Math., Vol. 343. MR0377938

[53] Andrew Ranicki, *Algebraic Poincaré cobordism*, Topology, geometry, and algebra: interactions and new directions (Stanford, CA, 1999), Contemp. Math., vol. 279, Amer. Math. Soc., Providence, RI, 2001, pp. 213–255, DOI 10.1090/conm/279/04563, (to appear in print). MR1850750

[54] L. C. Siebenmann, *Topological manifolds*, Actes du Congrès International des Mathématiciens (Nice, 1970), Gauthier-Villars, Paris, 1971, pp. 133–163. MR0423356 (54 #11335)

[55] L. R. Taylor, *Surgery groups and inner automorphisms*, Algebraic K-theory III: Hermitian K-theory and Geometric Applications (proc. conf., Battelle Memorial Inst., Seattle, Wash., 1972), 1973, pp. 471–477.

[56] Laurence R. Taylor, *Unoriented geometric functors*, Forum Math. 20 (2008), no. 3, 457–467, DOI 10.1515/FO-RUM.2008.023, available at [arXiv:math/0606651v1](http://arXiv.org). MR2418201

[57] C. T. C. Wall, *Surgery on compact manifolds*, 2nd ed., Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by A. A. Ranicki. MR1687388
Some Papers Citing This Work

[58] R. Ayala, M. Cárdenas, F. Muro, and A. Quintero, An elementary approach to the projective dimension in proper homotopy theory, Comm. Algebra 31 (2003), no. 12, 5995–6017, DOI 10.1081/AGB-120024863. MR2014912

[59] Hans-Joachim Baues and Antonio Quintero, Infinite homotopy theory, K-Monographs in Mathematics, vol. 6, Kluwer Academic Publishers, Dordrecht, 2001. MR1848146

[60] Jonathan Block and Shmuel Weinberger, Arithmetic manifolds of positive scalar curvature, J. Differential Geom. 52 (1999), no. 2, 375–406. MR1758300

[61] F. T. Farrell and W. C. Hsiang, The stable topological-hyperbolic space form problem for complete manifolds of finite volume, Invent. Math. 69 (1982), no. 1, 155–170, DOI 10.1007/BF01389189. MR671656

[62] F. T. Farrell and L. E. Jones, A topological analogue of Mostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989), no. 2, 257–370, DOI 10.2307/1990978. MR973309

[63] Steven C. Ferry and Erik K. Pedersen, Epsilon surgery theory, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, Cambridge, 1995, pp. 167–226, DOI 10.1017/CBO9780511629365.007, (to appear in print). MR1388311

[64] Michael H. Freedman, A surgery sequence in dimension four: the relations with knot concordance, Invent. Math. 68 (1982), no. 2, 195–226, DOI 10.1007/BF01394055. MR666159

[65] _____, A geometric reformulation of 4-dimensional surgery, Topology Appl. 24 (1986), no. 1-3, 133–141, DOI 10.1016/0166-8641(86)90054-4. Special volume in honor of R. H. Bing (1914–1986). MR872483

[66] Ian Hambleton, Projective surgery obstructions on closed manifolds, Algebraic K-theory, Part II (Oberwolfach, 1980), Lecture Notes in Math., vol. 967, Springer, Berlin-New York, 1982, pp. 101–131. MR699390

[67] Ian Hambleton and Ib Madsen, On the computation of the projective surgery obstruction groups, K-Theory 7 (1993), no. 6, 537–574, DOI 10.1007/BF00961217. MR1268592

[68] Bjørn Jahren and Sławomir Kwasik, Manifolds homotopy equivalent to \(\mathbb{R}P^4 \# \mathbb{R}P^4 \), Math. Proc. Cambridge Philos. Soc. 140 (2006), no. 2, 245–252, DOI 10.1017/S0305004105008893. MR2212277

[69] Lowell Jones, The nonsimply connected characteristic variety theorem, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 131–140. MR520500

[70] Sławomir Kwasik, On periodicity in topological surgery, Canad. J. Math. 38 (1986), no. 5, 1053–1064, DOI 10.4153/CJM-1986-051-6. MR869712

[71] Sławomir Kwasik and Reinhard Schultz, Vanishing of Whitehead torsion in dimension four, Topology 31 (1992), no. 4, 735–756, DOI 10.1016/0040-9383(92)90005-3. MR1191376

[72] _____, Inductive detection for homotopy equivalences of manifolds, K-Theory 11 (1997), no. 3, 287–306, DOI 10.1023/A:1007702426750. MR1451758

[73] _____, Tangential thickness of manifolds, Proc. Lond. Math. Soc. (3) 110 (2015), no. 5, 1281–1313, DOI 10.1112/plms/pdv009. MR3349703

[74] Erik Kjær Pedersen and Andrew Ranicki, Projective surgery theory, Topology 19 (1980), no. 3, 239–254, DOI 10.1016/0040-9383(80)90010-5. MR607084

[75] Erik Kjær Pedersen, Continuously controlled surgery theory, Surveys on surgery theory, Vol. 1, Ann. of Math. Stud., vol. 145, Princeton Univ. Press, Princeton, NJ, 2000, pp. 307–321. MR1747539

[76] _____, Controlled methods in equivariant topology, a survey, Current trends in transformation groups, K-Monogr. Math., vol. 7, Kluwer Acad. Publ., Dordrecht, 2002, pp. 231–245, DOI 10.1007/978-94-009-0003-5-15, (to appear in print). MR1944688

[77] Michael Weiss and Bruce Williams, Automorphisms of manifolds, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 165–220. MR1818774