Article
Research on the Topology and Control Strategy of a Novel Three-Port Converter

Tao Wang, Xiangqian Chen, Qiang Guo and Shan Li *

School of Electrical and Electronic Engineering, Technology of Chongqing University, Chongqing 400054, China
* Correspondence: lishan@cqut.edu.cn; Tel.: +86-13983022114

Abstract: A novel three-port converter (TPC) is proposed to meet the diversity of demand for electrical equipment in this paper. It interfaces a single input power port and two output ports. The proposed TPC can be viewed as two bidirectional DC-DC converters. With a different operation mode, the proposed TPC can output two DC voltages or a single DC and a single AC voltage. The topology and operation principal of the TPC is analyzed in detail. Moreover, the mathematic model of the TPC is derived. Then, by considering the dynamic response and disturbance suppression, a step by step PI and PR controller design process for TPC is also presented. Both the simulation and the experimental results validate the proposed method.

Keywords: three-port converter; PR controller; sustainable energy; DC-DC converter

1. Introduction
Sustainable energy is attracting more and more attention, due to environmental pollution and the shortage of fossil fuel, [1–3]. With the different demands of electrical equipment, the sustainable energy sources, such as photovoltaics, fuel cells, etc., [4–6], need to be converted to appropriate voltage sources. Hence, several separate DC-DC and DC-AC converters need to be used. However, multiple converters lead to high cost, low efficiency, and difficulty in achieving centralized control [7].

Compared to multiple separate converters, such as DC-DC, AC-DC and DC-AC converters, the three-port converter (TPC) has the advantages of fewer components, higher efficiency, higher power density and a multivoltage level output [8]. It has been widely used in industrial fields, such as aviation power supply [9], DC micro-grid [10] and electric vehicles [11,12]. Currently, a number of topologies and control strategies for TPC have been proposed. In [12], a TPC which consists of three bidirectional DC-DC converters is presented for fuel–cell-powered hybrid vehicles. It deals with the power flow from multisource on-board energy systems. Although the structure of the bidirectional DC-DC converter in [12] is independent, it still needs a lot of switches. In [13], a new DC-DC converter with three ports is proposed. Therein, only three controllable switches are used, which reduces the number of switches. In [14], a new single stage three-input DC-DC boost converter is proposed. It interfaces two unidirectional input ports and a bidirectional port. Although high integration and high efficiency are realized, the number of power devices is high and it needs bulky port filters. In [15], a three-port DC-DC converter is proposed with an integrated magnetic technique, where the port ripple cancellation and high-power density are realized by two magnetic devices. A three-port high-step-up/step-down bidirectional DC/DC converter is proposed in [16]. It combines a high-step-up converter by photovoltaic means and a battery charge/discharge bidirectional converter. In order to improve the efficiency of a two-stage AC-DC power system, a single-phase three-port PFC converter with sigma architecture is proposed in [17]. In addition, a novel three-port three-phase rectifier without isolation transformer is proposed in [18]. The TPC of [17,18] provides a low voltage DC load port, and a high voltage DC port. So far, nearly
all the three-port converters are either dual input port and single DC output port or single input port and dual DC output port. It cannot supply AC and DC loads at the same time.

With the increase in electrical equipment demands, the DC and AC output hybrid system is more and more popular. Therefore, a novel three-port converter is proposed in this paper. The proposed TPC interfaces a single input power port and two output ports. With different operation modes, the proposed TPC can output two DC voltages or a single DC and a single AC voltage. The paper is organized as follows. In Section 2, the topology, operation principle and mode of the proposed TPC are analyzed in detail, and the simulation results of open-loop control are exhibited. In Section 3, the small-signal model and control strategy of the proposed TPC are investigated when it outputs DC voltage. In Section 4, the large signal model and the optimization design method for a PR controller are investigated when it outputs AC voltage. Finally, the simulation and experimental verification are completed in Sections 5 and 6, respectively.

2. Topology and Operation Mode of Proposed TPC

The topology of the proposed TPC is shown in Figure 1. The DC-link capacitor is \(C_{dc} \). \(u_{dc} \) is the input voltage. \(S_1 \)–\(S_4 \) are four switch pairs which consist of an IGBT with anti-parallel diode. \(L_a \) and \(L_b \) are output filter inductors. \(C_a \) and \(C_b \) are output filter capacitors. There are two operation modes for the proposed TPC, namely dual DC output and single DC and single AC output. These are analyzed in the next subsection.

![Figure 1. Topology of the proposed DC/DC and DC/AC hybrid TPC.](image)

2.1. Dual DC Output Mode

In the dual-DC-output mode, Port 13 and Port 23 are two independent DC output ports. As each leg is combined with a set of LC filters, the proposed TPC can be viewed as two bidirectional DC-DC converters. Taking branch a as an example, the equivalent circuit under different switching states is shown in Figure 2. When \(S_1 \) is ON and \(S_4 \) is OFF, the DC load is supplied by the DC voltage source. Here, \(u_a \) equals \(u_{dc} \). When \(S_1 \) is OFF and \(S_4 \) is ON, the DC load is supplied by inductor \(L_a \) and capacitor \(C_a \), and \(u_a \) equals zero. Then, the \(u_a \) is a PWM voltage and its average value equals the out port voltage \(u_{13} \).

![Figure 2. Equivalent circuits under different switching states of leg-a: (a) \(S_1 \) is ON and \(S_4 \) is OFF; (b) \(S_4 \) is ON and \(S_1 \) is OFF.](image)
Therefore, the output voltage of TPC in dual DC output mode is

\[\begin{align*}
 u_{13} &= u_{dc}d_a \\
 u_{23} &= u_{dc}d_b
\end{align*} \]

where \(d_a \) and \(d_b \) represent the duty cycle of \(S_1 \) and \(S_2 \), respectively. Then Port 12 is also a DC voltage, and equals:

\[u_{12} = u_{dc}(d_a - d_b) \]

where \(u_{12} \), \(u_{13} \) and \(u_{23} \) are the voltage of the Port 12, Port 13 and Port 23, respectively. The two independent voltages can be obtained by controlling the duty cycles \(d_a \) and \(d_b \).

2.2. Single DC and Single AC Output Mode

In single DC and single AC output mode, Port 23 and Port 12 are DC and AC output ports, respectively. As Port 23 is a DC port, then the duty cycle of \(S_3 \) needs to be controlled as a constant. Since the voltage of Port 12 is the voltage difference between Port 13 and Port 23, the duty cycle \(d_a \) should be controlled as follows:

\[d_a = D + m \cos(\theta) \]

where \(D \) is a constant and equals \(d_b \). \(m \cos(\theta) \) is the reference signal of Port 12. The range of \(m \) is:

\[m \in (0, \min(D, 1 - D)) \]

Therefore, if the \(d_b \) is controlled as a constant and \(d_a \) is controlled as in (3), Port 23 and Port 12 can output a DC voltage and AC voltage, respectively.

2.3. Open Loop Simulation Results of TPC

In order to verify the voltage output capability of the TPC, the open loop simulation was carried out. The simulation parameters are shown in Table 1.

Parameter	Value
Filter inductor \(L_a \) and \(L_b \) (mH)	2
Filter capacitor \(C_1 \) and \(C_2 \) (µF)	15
Voltage of DC-bus \(u_{dc} \) (V)	100
Switching frequency \(f_{sw} \) (kHz)	10
Load of Port 12 \(R_{12} \) (Ω)	10
Load of Port 13 \(R_{13} \) (Ω)	20
Load of Port 23 \(R_{23} \) (Ω)	50

Firstly, in dual DC output mode, the duty cycles \(d_a \) and \(d_b \) are 0.7 and 0.4, respectively. The simulation results of output port voltages are shown in Figure 3. It is clear that each output port voltage is consistent with the results of (1) in steady state.

![Figure 3. Simulation waveform under open-loop control when the TPC operates dual DC output mode.](image-url)
Next, in single DC and single AC output mode, the duty cycles d_a and d_b are:

$$\begin{align*}
 d_a &= 0.5 + 0.3 \cos(100\pi t) \\
 d_b &= 0.5
\end{align*}$$

(5)

The load of DC Port 23 R_{23} is 20 Ω. The load of AC Port 12 R_{12} is set as 1 Ω, 5 Ω and 10 Ω, respectively. Then the simulation results of u_{23} and u_{12} are shown in Figure 4. With the increase in AC load, a larger and larger AC component is superimposed on the DC output voltage u_{23}. Moreover, the amplitude and phase of the AC output voltage u_{12} is affected by the change of AC load. Therefore, the controller should be carefully designed to eliminate the coupling between DC and AC output port. This is investigated in the next section.

![Figure 4. Simulation waveform under open-loop control when the TPC operates single DC and single AC output mode: (a) u_{12}, the voltage of AC-output port; (b) u_{23}, the voltage of DC-output port.](image)

3. Mathematical Modeling and Control Strategy of DC Output Port

As analyzed in Section 2, the DC output port of the TPC is actually the output of a bidirectional DC-DC converter whether in dual DC output mode or in single DC single AC mode. Taking DC Port 23 as an example, the corresponding circuit is the combination of branch b and the LC filter. When S_3 is turned on, the state equation of i_b, u_{23} and the input current i_{dc} is as follows:

$$\begin{align*}
 L \frac{di_b(t)}{dt} &= u_{dc}(t) - u_{23}(t) \\
 C \frac{di_{23}(t)}{dt} &= i_b(t) - \frac{u_{23}(t)}{R} \\
 i_{dc}(t) &= i_b(t)
\end{align*}$$

(6)

where L, C, R represent the value of inductor, capacitor, and load of output port, respectively. When S_2 is turned on, the state equation is as follows:

$$\begin{align*}
 L \frac{di_b(t)}{dt} &= -u_{23}(t) \\
 C \frac{di_{23}(t)}{dt} &= i_b(t) - \frac{u_{23}(t)}{R} \\
 i_{dc}(t) &= 0
\end{align*}$$

(7)

During a switching period, the average state equation is as follows:

$$\begin{align*}
 L \frac{di_b(t)}{dt} &= d_b(t) u_{dc}(t) - u_{23}(t) \\
 C \frac{di_{23}(t)}{dt} &= i_b(t) - \frac{u_{23}(t)}{R} \\
 i_{dc}(t) &= d_b(t) i_b(t)
\end{align*}$$

(8)
The average model in Formula (8) is equivalent to the superposition of the steady-state operating point and disturbed small signal, which includes the following forms:

\[
\begin{align*}
 \dot{i}_b(t) &= I_b + \dot{I}_b \\
 \dot{d}_b(t) &= D_b + \dot{D}_b \\
 u_{dc}(t) &= U_{dc} + \dot{U}_{dc} \\
 u_{23}(t) &= U_{23} + \dot{U}_{23} \\
 i_{dc}(t) &= I_{dc} + \dot{I}_{dc}
\end{align*}
\]

(9)

A small-signal state equation is constructed by substituting Equation (9) into Equation(7), which is shown as follows:

\[
\begin{align*}
 L \frac{d\dot{d}_b}{dt} &= D_b \dot{U}_{dc} + U_{dc} \dot{d}_b - \dot{U}_{23} \\
 C \frac{d\dot{U}_{23}}{dt} &= \dot{i}_b - \frac{\dot{U}_{23}}{R} \\
 i_{dc} &= D_b \dot{I}_b + I_{dc} \dot{d}_b
\end{align*}
\]

(10)

The small-signal equivalent circuit model of Formula (10) is shown in Figure 5.

![Figure 5. The small-signal equivalent circuit model of the TPC.](image)

From Figure 5, the expressions of duty ratio–output voltage transfer function \(G_{d2u}(s) \), input voltage output voltage transfer function \(G_{u2u}(s) \) and output impedance transfer function \(Z_{out}(s) \) are derived as follows:

\[
\begin{align*}
 G_{d2u}(s) &= \frac{U_{23}R}{D_b(LC_R^2 + Ls + R)} \\
 G_{u2u}(s) &= \frac{D_bR}{Ls + R}{\frac{L}{LC_R^2 + Ls + R}} \\
 Z_{out}(s) &= \frac{Ls + R}{LC_R^2 + Ls + R}
\end{align*}
\]

(11)

Then, a PI controller is used to regulate the voltage of Port 23; the control block diagram is shown in Figure 6.

![Figure 6. The control block diagram when the TPC outputs DC voltage.](image)

The average model in Formula (8) is equivalent to the superposition of the steady-state operating point and disturbed small signal, which includes the following forms:

\[
\begin{align*}
 \dot{i}_b(t) &= I_b + \dot{I}_b \\
 \dot{d}_b(t) &= D_b + \dot{D}_b \\
 u_{dc}(t) &= U_{dc} + \dot{U}_{dc} \\
 u_{23}(t) &= U_{23} + \dot{U}_{23} \\
 i_{dc}(t) &= I_{dc} + \dot{I}_{dc}
\end{align*}
\]

(9)

A small-signal state equation is constructed by substituting Equation (9) into Equation(7), which is shown as follows:

\[
\begin{align*}
 L \frac{d\dot{d}_b}{dt} &= D_b \dot{U}_{dc} + U_{dc} \dot{d}_b - \dot{U}_{23} \\
 C \frac{d\dot{U}_{23}}{dt} &= \dot{i}_b - \frac{\dot{U}_{23}}{R} \\
 i_{dc} &= D_b \dot{I}_b + I_{dc} \dot{d}_b
\end{align*}
\]

(10)

The small-signal equivalent circuit model of Formula (10) is shown in Figure 5.

![Figure 5. The small-signal equivalent circuit model of the TPC.](image)

From Figure 5, the expressions of duty ratio–output voltage transfer function \(G_{d2u}(s) \), input voltage output voltage transfer function \(G_{u2u}(s) \) and output impedance transfer function \(Z_{out}(s) \) are derived as follows:

\[
\begin{align*}
 G_{d2u}(s) &= \frac{U_{23}R}{D_b(LC_R^2 + Ls + R)} \\
 G_{u2u}(s) &= \frac{D_bR}{Ls + R}{\frac{L}{LC_R^2 + Ls + R}} \\
 Z_{out}(s) &= \frac{Ls + R}{LC_R^2 + Ls + R}
\end{align*}
\]

(11)

Then, a PI controller is used to regulate the voltage of Port 23; the control block diagram is shown in Figure 6.

![Figure 6. The control block diagram when the TPC outputs DC voltage.](image)

The open loop transfer function \(H(s) \) can be derived as:

\[
H(s) = \frac{U_{23}(k_1s + k_1)}{D_bU_{dc}L(CR^2 + Ls + R)}
\]

(12)
where k_{p1} and k_{i1} are the proportional and integral coefficients of PI controller, \hat{u}_{23} can be expressed as:

$$\hat{u}_{23}(s) = \frac{H(s)\hat{u}_{23}^* (s)}{1 + H(s)} + \frac{G_{u2u}(s)\hat{u}_{dc}^* (s)}{1 + H(s)} - \frac{Z_{out}(s)\hat{I}_{23}^* (s)}{1 + H(s)}$$ (13)

A series of steady-state operating points “$U_{dc} = 100$ V, $D_b = 0.5$, $U_{23} = 50$ V, and $R = 10 \Omega$”, and substituted into (12) and (13). Then, with the sisotool box of MATLAB, the PI controller parameters of TPC are determined by the following principles.

1) The cutoff frequency of $H(s)$ is near one-tenth of the switching frequency. Then, the balance between steady-state performance and dynamic performance can be realized;
2) In the low frequency band, the amplitude of $Z_{out}(s)/(1 + H(s))$ should be below 0 dB;
3) In the low frequency band, the amplitude of $G_{u2u}(s)/(1 + H(s))$ should also be below 0 dB.

In this paper, k_{p1} and k_{i1} are 1.5 and 20, respectively. At same time, the bode plot of $H(s)$ is shown as Figure 7. The cutoff frequency is 1.05 kHz, which satisfies the above principles. The phase margin is 35°. Then, the superior stability and disturbance rejection capability are realized.

![Figure 7](image_url)

Figure 7. The bode plot of $H(s)$ after PI compensation.

The bode plots of $Z_{out}(s)/(1 + H(s))$ and $G_{u2u}(s)/(1 + H(s))$ are shown as Figures 8 and 9, respectively. In the low frequency band, their amplitudes are all below the 0 dB, which satisfies the principle of design for PI controller parameters.

![Figure 8](image_url)

Figure 8. The bode plot of $Z_{out}(s)/(1 + H(s))$ after PI compensation.
4. Control Strategy of AC Output Port

For the AC output port, the corresponding output voltage u_{12} is affected by the AC load R_{12}. To solve this problem, the transfer function of AC output circuit is established in this section. Moreover, a proportional resonant (PR) controller is designed to regulate u_{12}. As analyzed in Section 2.2, the average value of PWM voltage u_{ab} equals the output voltage u_{12} as in (2). Then, the output voltage can be controlled by adjusting the duty cycles d_a and d_b. Since the d_b has already been controlled by a PI controller, only d_a needs to be controlled for the AC port. Figure 10 shows the control block of the AC port.

![Control Block Diagram of the AC Port](image)

Figure 10. The control block diagram of the AC port circuit.

The expression of the transform function of PR controller is shown as follows:

$$G_{PR}(s) = k_p + \frac{2k_c\zeta\omega_0 s}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$ \hspace{1cm} (14)

where ω_0 is the resonant frequency, and set to 100 π rad/s, ζ is the damping ratio and set as 0.5, k_p and k_c are proportional coefficients and resonance coefficients, respectively. From Figure 10, the $u_{12}(s)$ can be expressed as:

$$u_{12}(s) = u'_{12}(s)G_{close}(s) + i_{12}(s)G_{12u}(s)$$ \hspace{1cm} (15)

where $G_{close}(s)$ represents the closed-loop transfer function of the system, and $G_{12u}(s)$ represents the transfer function from load current to load voltage. The open loop transfer function $G_{open}(s)$ can be derived as:

$$G_{open}(s) = \frac{k_p\omega_0^2 + 2\zeta\omega_0(k_p + k_c)s + k_p\omega_0^2}{(La^2 + 1)(s^2 + 2\zeta\omega_0 s + \omega_0^2)(1 + 1.5Ts)}$$ \hspace{1cm} (16)

The $G_{close}(s)$ and $G_{12u}(s)$ can be rewritten as:

$$\begin{align*}
G_{close}(s) &= \frac{G_{open}(s)}{1 + G_{open}(s)} \\
G_{12u}(s) &= \frac{Ls}{1 + G_{open}(s)(La^2 + 1)}
\end{align*}$$ \hspace{1cm} (17)

The order of the transfer function is too high to directly obtain the coefficients in the PR controller. Therefore, to optimize the coefficients k_p and k_c, the amplitude–frequency characteristic curves of $G_{close}(s)$ and $G_{12u}(s)$ under different values of k_p and k_c are plotted.

![Frequency Response](image)
by MATLAB. Firstly, let $k_p = 1$ and k_c gradually increases from 1 to 30, and the amplitude–frequency characteristic curves of $G_{close}(s)$ and $G_{i2u}(s)$ are shown in Figure 11. With the increase in k_c, the amplitude of $G_{close}(s)$ in the low frequency band gradually increases and approaches the 0 dB line. In the high frequency band, k_c has little influence on the amplitude of $G_{close}(s)$. Meanwhile, the gain of $G_{i2u}(s)$ at 50 Hz decreases with the increasing of k_c, which indicates that the increasing of k_c has a more obvious inhibition effect on the inhibition of port current.

![Figure 11](image1.png)

Figure 11. The Bode plot under different k_c: (a) $G_{close}(s)$; (b) $G_{i2u}(s)$.

Next, let $k_c = 5$ and k_p gradually increases from 1 to 30. The amplitude–frequency characteristic curves of $G_{close}(s)$ and $G_{i2u}(s)$ are shown in Figure 12. The following performance at low frequency improves with the increase in k_p, but the steady-state errors cannot be eliminated. Meanwhile, the cutoff frequency of $G_{close}(s)$ increases as k_p increases. The amplitude of $G_{i2u}(s)$ decreases as k_p increases.

![Figure 12](image2.png)

Figure 12. The Bode plot under different k_p: (a) $G_{close}(s)$; (b) $G_{i2u}(s)$.

Based on the independent analysis of k_p and k_c, the optimal parameters of the PR controller were obtained ($k_p = 8$ and $k_c = 21$) by using sisotool toolbox of MATLAB, and the Bode diagram of $G_{close}(s)$ is shown in the Figure 13. It shows a good steady-state characteristic in the low frequency band, and the cutoff frequency is 1.2 kHz, which is near one-tenth of the switching frequency, a fast dynamic response can also be obtained.
Next, let $k_c = 5$ and k_p gradually increases from 1 to 30. The amplitude and frequency of i_{23} were 40, 90 and 50 V respectively. The simulation results of i_{12}, i_{13} and i_{23} are shown in Figure 14a. It is clear that the actual output voltage could accurately track the reference voltage without steady-state error, and the ripple of the voltage of all ports was within the range of $[-1\%, 1\%]$.

![Figure 13](image_url) The Bode plot of $G_{clo}(s)$, where $k_p = 8$ and $k_c = 21$.

5. Simulation Results

To verify the effectiveness of the proposed TPC and control strategy, simulations were carried out.

5.1. Simulation Results of Dual DC Output Mode

In dual DC output mode, the reference of u_{12}, u_{13} and u_{23} were 40, 90 and 50 V respectively. The simulation results of u_{12}, u_{13} and u_{23} are shown in Figure 14a. It is clear that the actual output voltage could accurately track the reference voltage without steady-state error, and the ripple of the voltage of all ports was within the range of $[-1\%, 1\%]$.

![Figure 14](image_url) The simulation waveforms under close-loop control when the TPC operates dual DC output mode: (a) steady-state; (b) u_{dc} step from 100 V to 120 V at the time of 10 ms.

Figure 14b shows the voltage of each output port when the input voltage u_{dc} step from 100 V to 120 V at the time of 10 ms. The results shown in Figure 14 demonstrate the effectiveness of the proposed controller.

5.2. Simulation Results of Single DC and Single AC Output Mode

In single DC and AC output mode, the reference of u_{23} was 50 V, and the reference of amplitude and frequency of u_{12} set as 25 V and 50 Hz, respectively. The corresponding results are shown in Figure 15 when the AC load was 5 Ω. Compared to the open loop results shown in Figure 4b, the amplitude of the 50 Hz AC component in u_{23} reduced from 3.05 V to 0.03 V.
Figure 15. The steady-state simulation waveforms under closed loop control when the TPC operates single DC and single AC output mode.

Figure 16 shows the simulation results of u_{12} and i_a when AC load changed from 20 Ω to 5 Ω at the time of 0.03 s. It is obvious that a load step perturbation had no effect on u_{12}. When the reference of frequency dropped from 50 Hz to 25 Hz, the simulation result of u_{12} is shown in Figure 17. From Figures 15–17, it is clear that the coupling phenomenon between AC port and DC port was suppressed significantly with the proposed PR controller.

Figure 16. The dynamic simulation waveform under closed loop control when R_{12} changes from 20 Ω to 5 Ω.

Figure 17. The dynamic simulation waveforms under closed loop control when frequency drops from 50 Hz to 25 Hz.

6. Experimental Results

The experiment was also carried out to validate the proposed TPC and its control strategy. The TPC prototype is shown in Figure 18 and its parameters are listed in Table 2. The controller is TMS320F28335.
Table 2. Models and parameters of component and module.

Category	Part Number	Parameters
Filter inductor L_{a}, L_{b}	Custom-made	2 mH
Filter capacitor C_{a}, C_{b}	MKP1847610354P4	15 μF
DC-link capacitor C_{dc}	B435045477M000	720 μF
DC-link power supply	ITECH programmable power	100 V
Load	ITECH programmable load	Adjustable
IGBT modules	SKiip39AC066V4	600 V/150 A

6.1. Experimental Results under Dual DC Output Mode

Figure 19a shows the steady experimental results of u_{12}, u_{13} and u_{23} when their reference signals were 40, 90 and 50 V, respectively. When a step disturbance occurred in input voltage u_{dc}, the experimental results of u_{23} are shown in Figure 19b. It is clear that the output of TPC in dual DC output mode had good steady and transient responses with the proposed controller from Figure 19.

6.2. Experimental Results under Single DC and Single AC Output Mode

Figure 20a shows the experimental results under single DC and single AC output mode. Therein, the reference signal of u_{23} was 50 V, and the reference of amplitude and frequency of u_{12} were 25 V and 50 Hz, respectively. The FFT results of u_{12} are shown in Figure 20b. With the proposed PR controller, the THD of u_{12} was only 2.86%. From Figure 20a, the DC output voltage u_{23} did not contain the AC component. From Figure 20b, the low order harmonic component in AC output voltage u_{12} was well suppressed with...
proposed PR controller. Figure 21 shows the experimental waveforms of u_{12} and u_{23} when the AC load R_{12} changed from 20 Ω to 5 Ω. The results shown in Figures 20 and 21 demonstrate that the output of TPC in single DC and single AC output mode had good steady and transient responses with the proposed controller.

![Figure 20](image01.png)

Figure 20. The steady-state experimental waveforms under close-loop control when the TPC operates single DC and single AC output mode: (a) u_{12} and u_{23}; (b) FFT results of u_{12}.

![Figure 21](image02.png)

Figure 21. The dynamic experimental waveforms under close-loop control when R_{12} changes from 20 Ω to 5 Ω.

7. Conclusions

The simulation and experimental results proved the feasibility and correctness of the topology and control strategy of the proposed TPC in this paper. Several conclusions are summarized as follows.

1. A novel and simple three-port converter is proposed. It interfaces a single input power port and two output ports.
2. The proposed TPC has two operation modes. It can output two DC voltages with different levels or output a single AC voltage and a single DC voltage at the same time.
3. With the proposed control scheme, the coupling between the DC and AC output ports in TPC could be suppressed, significantly.
4. In the single DC and single AC output mode, the maximum of AC output voltage is half of the input voltage.

Author Contributions: Conceptualization, T.W.; methodology, T.W.; software, X.C.; validation, Q.G. and S.L.; formal analysis, X.C.; investigation, T.W.; resources, S.L.; data curation, Q.G.; writing—original draft preparation, T.W.; writing—review and editing, T.W.; visualization, X.C.; supervision,
S.L.; project administration, S.L.; funding acquisition, S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Chongqing, China, grant number cstc2021jcyj-msxmX0161, the Science and Technology Research Program of Chongqing Municipal Education Commission, China, grant numbers KJQN202001149, KJZD-K201901102 and Scientific Research Foundation of Chongqing University of Technology, China, grant number 2019ZD101.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. You, J.; Liu, H.; Xiong, X. H∞ Mixed Sensitivity Control for a Three-Port Converter. *Energies* 2019, 12, 2231. [CrossRef]
2. Chen, Y.-M.; Huang, A.Q.; Yu, X. A High Step-Up Three-Port DC–DC Converter for Stand-Alone PV/Battery Power Systems. *IEEE Trans. Power Electron.* 2013, 28, 5049–5062. [CrossRef]
3. Wang, Z.; Li, H. An integrated three-port bidirectional DC–DC converter for PV application on a DC distribution system. *IEEE Trans. Power Electron.* 2013, 28, 4612–4624. [CrossRef]
4. Zhang, H.; Dong, D.; Jing, M.; Liu, W.; Zheng, F. Topology Derivation of Multiple-Port DC–DC Converters Based on Voltage-Type Ports. *IEEE Trans. Ind. Electron.* 2022, 69, 4742–4753. [CrossRef]
5. Li, W.; Xu, C.; Luo, H.; Hu, Y.; He, X.; Xia, C. Decoupling-controlled triport composited DC/DC converter for multiple energy interface. *IEEE Trans. Ind. Electron.* 2015, 62, 4504–4513. [CrossRef]
6. Tian, Q.; Zhou, G.; Liu, R.; Zhang, X.; Leng, M. Topology Synthesis of a Family of Integrated Three-Port Converters for Renewable Energy System Applications. *IEEE Trans. Ind. Electron.* 2021, 68, 5833–5846. [CrossRef]
7. Kim, S.-H.; Byun, H.-J.; Yi, J.; Won, C.-Y. A Bi-Directional Dual-Input Dual-Output Converter for Voltage Balancer in Bipolar DC Microgrid. *Energies* 2022, 15, 5043. [CrossRef]
8. Yang, P.; Shang, Z.; Liu, C.; Peng, Y.; Zhu, Z.; Chen, Z. A three-state dual-inductance bi-directional converter and its control in pulse-loaded three-port converters. *CSEE J. Power Energy Syst.* 2020, 6, 291–297.
9. Zhang, J.; Wu, H.; Xing, Y.; Hu, H.; Cao, F. Power management of a modular three-port converter-based spacecraft power system. *IEEE Trans. Aerosp. Electron. Syst.* 2016, 52, 486–492. [CrossRef]
10. Moradisizkoohi, H.; Elsayad, N.; Mohammed, O.A. A Family of Three-Port Three-Level Converter Based on Asymmetrical Bidirectional Half-Bridge Topology for Fuel Cell Electric Vehicle Applications. *IEEE Trans. Power Electron.* 2019, 34, 11706–11724. [CrossRef]
11. Nahavandi, A.; Hagb, M.T.; Sharifian, M.B.B. A Non-isolated Multi-input Multi-output DC-DC Boost Converter for Electric Vehicle Applications. *IEEE Trans. Ind. Electron.* 2015, 30, 1818–1835. [CrossRef]
12. Di Napoli, A.; Crescimbini, F.; Rodo, S.; Solero, L. Multiple input DC-DC power converter for fuel-cell powered hybrid vehicles. In Proceedings of the 33rd Annual IEEE Power Electronics Specialists Conference, Cairns, QLD, Australia, 23–27 June 2002; Volume 4, pp. 1685–1690.
13. Marchesoni, M.; Vacca, C. New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles. *IEEE Trans. Power Electron.* 2007, 22, 301–308. [CrossRef]
14. Nejabatkhah, F.; Danyali, S.; Hossein, S.H.; Niapour, S.M. Modeling and control of a new three-input dc-dc boost converter for hybrid PV/FC/battery power system. *IEEE Trans. Power Electron.* 2012, 27, 2309–2324. [CrossRef]
15. Zhu, H.; Zhang, D.; Liu, Q.; Zhou, Z. Three-Port DC/DC Converter with All Ports Current Ripple Cancellation Using Integrated Magnetic Technique. *IEEE Trans. Power Electron.* 2016, 31, 2174–2186. [CrossRef]
16. Wu, Y.-E. Novel High-Step-Up/Step-Down Three-Port Bidirectional DC/DC Converter for Photovoltaic Systems. *Energies* 2022, 15, 5257. [CrossRef]
17. Yang, Y.; Qin, Y.; Tan, S.-C.; Hui, S.Y.R. Efficient improvement of photovoltaic-battery systems in standalone dc microgrids using a local hierarchical control for the battery system. *IEEE Trans. Power Electron.* 2019, 34, 10796–10807. [CrossRef]
18. Wu, H.; Wang, J.; Liu, T.; Yang, T.; Xing, Y. Modified SVPWM-Controlled Three-Port Three-Phase AC–DC Converters with Reduced Power Conversion Stages for Wide Voltage Range Applications. *IEEE Trans. Power Electron.* 2018, 33, 6672–6686. [CrossRef]