Activation of NMDA receptors and the mechanism of inhibition by ifenprodil

Nami Tajima1, Erkan Karakas1, Timothy Grant2, Noriko Simorowski1, Ruben Díaz-Avalos2, Nikolaus Grigorieff2 & Hiro Furukawa1

The physiology of N-methyl-d-aspartate (NMDA) receptors is fundamental to brain development and function. NMDA receptors are ionotropic glutamate receptors that function as heterotetramers composed mainly of GluN1 and GluN2 subunits. Activation of NMDA receptors requires binding of neurotransmitter agonists to a ligand–binding domain (LBD) and structural rearrangement of an amino–terminal domain (ATD). Recent crystal structures of GluN1–GluN2B NMDA receptors bound to agonists and an allosteric inhibitor, ifenprodil, represent the allosterically inhibited state. However, how the ATD and LBD move to activate the NMDA receptor ion channel remains unclear. Here we applied X-ray crystallography, single-particle electron cryomicroscopy and electrophysiology to rat NMDA receptors to show that, in the absence of ifenprodil, the bi-lobed structure of GluN2 ATD adopts an open conformation accompanied by rearrangement of the GluN1–GluN2 ATD heterodimeric interface, altering subunit orientation in the ATD and LBD and forming an active receptor conformation that gates the ion channel.

NMDA receptors are critically involved in brain development and function, including learning and memory formation. NMDA receptors belong to the family of ionotropic glutamate receptors, which are glutamate-gated ion channels comprised of three major families, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) (GluA1–4), kainate (GluK1–5), and NMDA receptors (GluN1, GluN2A–D, and GluN3A, B)1. NMDA receptors are obligatory heterotetramers mainly composed of two copies each of the GluN1 and GluN2 subunits, which bind glycine and L-glutamate, respectively. Under physiological conditions, the opening of the NMDA receptor ion channel requires concurrent binding of glycine and L-glutamate2–4, and relief of magnesium block at the ion channel pore by membrane depolarization5,6. The resulting calcium flux7 triggers a cascade of signal transduction necessary for synaptic plasticity8. Dysfunctional NMDA receptors are implicated in various neurological diseases and disorders such as Alzheimer’s disease, depression, stroke, epilepsy and schizophrenia9,10.

NMDA receptor subunits, like those of other ionotropic glutamate receptor family members, are composed of multiple domains including an ATD, LBD, transmembrane domain (TMD) and carboxy-terminal domain (CTD) (Extended Data Fig. 1). Binding of neurotransmitter agonists to the LBD produces a large conformational change involving closure of the bi-lobed structure that is required for ion channel gating in all ionotropic glutamate receptors10–12, but a distinctive feature of NMDA receptors is that activity is also robustly regulated by the ATD13. For example, the ATD controls the open probability and speed of deactivation14,15, and binds allosteric modulator compounds to regulate ion channel activity16. In contrast to NMDA receptors, there is no apparent role for the ATDs of AMPA and kainate receptors17–20 in regulating the ion channel activities, even though they are essential for subunit assembly21. The recent crystal structures of intact heterotetrameric GluN1–GluN2B NMDA receptors complexed with agonists and allosteric inhibitors, ifenprodil or Ro 25-6981, revealed that the ATD and LBD interact tightly via a large interface area, unlike GluA2 AMPA receptor and GluK2 kainate receptor whose ATDs and LBDs interact minimally17,20,22,23, implying that activation of NMDA receptors requires concerted conformational alterations in the ATD and LBD19,22,23. The structures of the intact GluN1–GluN2B NMDA receptors22,23 and of the isolated ATDs complexed to ifenprodil24 or zinc25 showed a closed conformation of the bi-lobed GluN2 ATD architecture22–25, probably representing the ‘allosterically inhibited’ functional state. In the presence of agonists, NMDA receptors are known to reside in active states that can trigger ion channel opening, as well as desensitized states with a channel that is closed even in the presence of bound agonists26. Despite accumulating structural information on intact NMDA receptors22–23, as well as isolated ATDs24,25,27 and LBDs2,11,28,29, there is a lack of structures representing the active state and the mechanism of activation has remained unclear. In this study, we present structures of the isolated ATD in the apo-state and of the intact receptor in the activated conformation, providing a detailed mechanistic picture of receptor activation.

Opening of the GluN2B ATD and subunit rearrangement

The only available structures for the heterodimeric NMDA receptor ATDs to date are those bound to allosteric inhibitors ifenprodil and Ro 25-6981, representing the allosterically inhibited state22–25. We reasoned that by conducting structural studies without allosteric inhibitors, we could capture the ATD conformation that can activate the NMDA receptor ion channel. Thus, we determined the crystal structure of GluN1–GluN2B ATDs in the absence of an allosteric inhibitor (apo-GluN1b–GluN2B ATD) at 2.9 Å resolution (Extended Data Table 1). We crystallized the purified GluN1b–GluN2B ATD proteins complexed to a Fab fragment derived from mouse monoclonal IgG to improve the quality of the crystals (Extended Data Fig. 2). The crystallographic analysis shows heterodimeric GluN1–GluN2B ATDs that have a bi-lobed architecture composed of the regions previously called R1 and R2 in the structure of GluN1b–GluN2B ATD bound to the allosteric inhibitor ifenprodil24 (Fig. 1). There are a number of differences between the structures of the apo-GluN1b–GluN2B ATD and the ifenprodil-bound GluN1b–GluN2B ATD24. The most apparent difference is the separation of GluN1b R1 and GluN2B R2 in the apo-GluN1b–GluN2B ATD, owing to the ~20° rigid-body opening of the GluN2B ATD bi-lobed structure in the apo-GluN1b–GluN2B ATD compared to that in the ifenprodil–GluN1b–GluN2B ATD (Fig. 1d). This observation is
Figure 1 | Structures of GluN1b–GluN2B ATD heterodimers. a, b, Crystal structure of the GluN1b–GluN2B ATD heterodimer in the apo state solved at 2.9 Å (a) in comparison with the ifenprodil-bound structure (PDB ID, 3QEL) (b). The R1 and R2 lobes are coloured magenta and light pink for GluN1b ATD, and cyan and yellow for GluN2B ATD. Ifenprodil is represented by green spheres. c, d, Superimposition of the R1 lobes of GluN1b (c) and GluN2B (d) in the apo and ifenprodil-bound (grey) forms illustrates the relative ‘opening’ between R1 and R2 lobes. e, Superimposing the GluN2B R2 lobes of apo and ifenprodil-bound forms reveals an ~15° rotation of GluN1b ATD relative to GluN2B ATD along the axis of rotation (black rod). The distance of the R2 lobes in the GluN1b–GluN2B heterodimers is measured between GluN1b Lys178 and GluN2B Asn184 (green spheres). CT, C terminal; NT, N terminal.

consistent with previous work suggesting that GluN2B ATD has open-cleft and closed-cleft conformations in the absence and presence of ifenprodil, respectively, on the basis of luminescence resonance energy transfer studies. Another major difference is the rearrangement of the GluN1b and GluN2B subunits involving an ~15° rotation relative to one another (Fig. 1e). This rearrangement brings the lower lobes (R2) of GluN1–GluN2B considerably closer together in the apo-GluN1b–GluN2B ATD compared with the ifenprodil–GluN1b–GluN2B ATD (Fig. 1e, Extended Data Fig. 2c). For example, the distance between the Cα atoms of GluN1b Lys178 and GluN2B Asn184 in apo-GluN1b–GluN2B ATD is 4.4 Å closer than in the ifenprodil–GluN1b–GluN2B ATD (Fig. 1e).

As the subunit arrangement in the apo-GluN1b–GluN2B ATD in our crystal structure is different from that previously observed in the ifenprodil–GluN1b–GluN2B ATD, we sought to validate its physiological relevance. Towards this end, we tested whether an inter-subunit disulfide bond can form at the subunit interface observed in the apo-GluN1b–GluN2B ATD, but not in the ifenprodil–GluN1b–GluN2B ATD in the context of the intact GluN1–GluN2B NMDA receptor by mutating GluN1 and GluN2B residues that are proximal to each other. We expected a spontaneous disulfide bond to form between the mutated cysteines in the intact GluN1–GluN2B NMDA receptor if the subunit interface observed in the crystal structure is physiological. We engineered cysteine residues at GluN1b Phe113 and GluN2B Ala107, and at GluN1b Gly331 and GluN2B Glu75, expressed and purified the mutant GluN1b–GluN2B NMDA receptor in the context of the intact ion channel, and conducted western blot analysis under non-reducing conditions to detect band shifts (Extended Data Fig. 3a). In the two selected positions, the disulfide bonds are formed only when the cysteine mutant (Extended Data Fig. 3) of GluN1 and that of GluN2B are co-expressed and detected by an anti-GluN1 and anti-GluN2B western blot in the absence of β-mercaptoethanol. When the cysteine mutants of one subunit are co-expressed with the wild type of the other subunit, no disulfide bonds are formed, indicating that they are specifically formed by the engineered cysteines. Taken together, the above experiments show that the GluN1–GluN2B subunit arrangement observed in the apo-GluN1b–GluN2B ATD crystal structure exists in the context of the intact GluN1b–GluN2B NMDA receptor.

Active conformation of the ATD To understand the functional state that the crystal structure of the apo-GluN1b–GluN2B ATD may represent, we next attempted to stabilize the conformation observed in the crystal structure and assessed the ion channel activity. We engineered cysteines at the positions in the lower lobes (R2) of the GluN1b–GluN2B ATDs (GluN1b(Lys178Cys)/GluN2B(Gln180Cys) in green spheres and GluN1b(Lys178Cys)/GluN2B(Asn184Cys) in blue spheres). Application of 200 μM M4M in the presence or absence of 100 μM agonists (glycine and glutamate (gly/glut)) potentiates the macroscopic current measured at the holding potential of ~60 mV by two-electrode voltage clamp. No potentiation was observed when M4M was applied in the presence of ifenprodil (ifen.). Shown here are the representative recording profiles for the GluN1b–GluN2B (ifen)–GluN1b–GluN2BATD pair. c, d, Fold of potentiation is presented as Ioffset/Io (I, current amplitude) as measured in b for bifunctional MTS with different linker lengths (c) and M4M applied in different functional states (d). Error bars represent ±s.d. for data obtained from at least five different oocytes per experiment.
The crystal structure of GluN1b–GluN2B NMDA receptor in complex with glycine, L-glutamate and ifenprodil (PDB ID, 4PES). b–d, Cryo-EM structures of glycine- and L-glutamate-bound GluN1b–GluN2B NMDA receptors classified to reveal different conformations representing the ‘non-active’ (b, c) and ‘active’ (d) states. Subunits: red, GluN1 (α); orange, GluN1 (β); blue, GluN2B (α); cyan, GluN2B (β). The two ‘non-active’ 3D classes (non-active 1 and 2) have different distances between the two GluN1–GluN2B ATD heterodimers represented as the distance between the Cα atoms of Glu320 (299 in GluN1a) of GluN1b (α) and GluN1b (β) (double-sided arrows). The amino and carboxyl termini and approximate domain boundaries are indicated. e–g, The cryo-EM maps for the ‘non-active 1’ (e), ‘non-active 2’ (f) and ‘active’ (g) states.
though we tentatively call these two conformations ‘non-active’, it
of the GluN1b–GluN2B ATD heterodimer (Fig. 3) to the ifenprodil-bound ‘inhibited’
conformation (PDB ID, 4PE5) (grey) (a–c) or to the ‘active’ conformation
Consequently, the ion channel pores at the TMD remain closed, confirming that both cryo-EM classes probably represent non-gating or ‘non-active’ conformations. The difference in non-active 1 and non-active 2 is the extent of bi-lobe opening in the GluN2B ATD, where non-active 2 has an ~14° more open conformation resulting in ~13 Å larger separation between the GluN1 ATDs (Fig. 3). Even though we tentatively call these two conformations ‘non-active’, it remains uncertain whether they represent functional states equivalent to the ‘pre-open’ state observed in non-NMDA receptors\(^\text{17,31}\) or a ‘desensitized’ state.

Active conformation

One of the cryo-EM classes, ‘active’ (Fig. 3), shows the cleft of the bi-lobed GluN2B ATD architecture opened by ~22° and a GluN1b–GluN2B heterodimeric subunit rotated by ~12°, compared to the ifenprodil-bound intact NMDA receptors, which is notably similar to the apo-GluN1b–GluN2B ATD crystal structure representing the active ATD conformation (Figs 1 and 4e and Extended Data Fig. 7). In the heterotetrameric NMDA receptor, the GluN1b–GluN2B heterodimer pairs rotate by ~12° in opposite directions (Fig. 4f). Importantly, this 3D structure of the active conformation of the ATD also shows large differences in the subunit arrangement of LBDs compared to the other 3D classes representing ‘non-active’ ATDs, and is also different from the recent crystal structures of the glycine, L-glutamate and ifenprodil complexes\(^\text{22,23}\). Specifically, when transitioning from the non-active 2 to active conformation, the two pairs of GluN1b–GluN2B LBD heterodimers rotate by ~13.5° (Fig. 5b, d, f). These subunit movements in the LBD cause movement of the residues at the LBD–TMD linkers (Fig. 5). For example, when focusing on the residues located right above the pore formed by the M3 TMD helices (Fig. 6a), the consorted movement between the ATD and LBD going from non-active 2 to active described above causes a vertical movement of GluN1b Arg684 and the lateral separation of GluN2B Glu658 by 7 Å and 11 Å, respectively, to dilate the gating ring, a movement that is likely to lead to ion channel gating\(^\text{32}\) (Figs 5d, f and 6, Supplementary Videos 1 and 2). Thus, this cryo-EM class is structurally and functionally consistent with an ‘active’ conformation for GluN1–GluN2B NMDA receptors. Although there is clear density for most of the domains in the active conformation of the receptor, the density for the TMD is not resolved in sufficient detail to directly observe opening of the ion channel, as is the case
Figure 5 | Conformational changes at the LBD during ifenprodil inhibition and receptor activation. a–f. The same superimposition as in Fig. 4c, f showing the LBD tetramers in the ‘non-active 2’ (same colour code as in Fig. 3), the ‘inhibited’ (grey) (a, c, e) and the ‘active’ (yellow) states (b, d, f) viewed from the ATD (a, b), side (c, d) and TMD (e, f). The LBD heterodimers rotates (around black rods) during transition from non-active 2 to active, whereas little or no change occurs between non-active 2 and inhibited. Cα atoms of the residues at the ATD–LBD linker (GluN1b His405 and GluN2B Ser416) and the LBD–TMD linker (GluN1b Arg 684 and GluN2B Glu 658) are shown as spheres. Glycine and l-glutamate at the cleft of the LBD bi-lobes are shown as green spheres. Schematic diagrams are shown to the right of each panel.

Figure 6 | Consorted movement of the ATD and LBD opens the gate. a. Structural comparison of NMDA receptors in the ‘non-active 2’ (same colour code as in Fig. 3) and the ‘active’ (yellow) conformations, as in Figs 4 and 5. The M1 and M4 helices of the TMD are omitted for clarity. The arrowed arcs indicate rotation from non-active 2 to active. The first ordered residues on the linker between the M3 helices on the TMD and LBD in the active structure (GluN1b Arg684 and GluN2B Glu658) are shown as spheres. b, c. Schematic diagram viewed from the side of the tetramer (b) and top of the ATD (c). GluN1b Arg684 and GluN2B Glu658 are shown as green spheres and the residues at the ATD–LBD linker (GluN1b Ser416 and GluN2B His405) are shown as yellow spheres.
for the AMPA receptors. This may indicate that the TMD domain is structurally more variable in activated receptors compared to non-active receptors. Finally, the comparison of the cryo-EM classes with GluA2 AMPA receptor in the pre-open state, which represents a closed channel shows that there is a greater difference between the active and pre-open states than between the non-active 2 and pre-open states (Extended Data Fig. 8), consistent with our observation that the TMD ion channel in the non-active structures are also closed.

Conclusion

We report conformational changes in multiple domains that are experimentally linked to activation of mammalian GluN1b–GluN2B NMDA receptors. The activation requires opening of the bi-lobed architecture of the GluN2B ATD and reorientation of the heterodimERIC arrangement in the GluN1b–GluN2B ATD, as captured at high-resolution by the crystal structure presented here. These changes lead to rotated GluN1b–GluN2B heterodimeric pairs in both the ATD and LBD, causing dilation of the gating ring. The mechanistic understanding gained in the current study represents an important first step in understanding the sophisticated activation schemes that are essential for mammalian NMDA receptor function.

Online Content

Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 14 December 2015; accepted 18 March 2016.

Published online 2 May 2016.

1. Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).
2. Berveniste, M. & Mayer, M. L. Structure-activity analysis of binding kinetics for NMDA receptor competitive antagonists: the influence of conformational restriction. Br. J. Pharmacol. 104, 207–221 (1991).
3. Cements, J. D. & Westbrook, G. L. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7, 605–613 (1991).
4. Johnson, J. W. & Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531 (1987).
5. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984).
6. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).
7. Mayer, M. L., MacDermott, A. B., Westbrook, G. L., Smith, S. J. & Barker, J. L. Agonist- and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III. J. Neurosci. 7, 3230–3244 (1987).
8. Granger, A. J. & Nicoll, R. A. Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on. Phil. Trans. R. Soc. Lond. B. 369, 20130136 (2014).
9. Paolelli, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nature Rev. Neurosci. 14, 383–400 (2013).
10. Armstrong, N., Sun, Y., Chen, G. Q. & Gouaux, E. Structure of a glutamate receptor ligand-binding core in complex with kainate. Nature 395, 913–917 (1998).
11. Furukawa, H., Singh, S. K., Mancusso, R. & Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature 438, 185–192 (2005).
12. Mayer, M. L. Crystal structures of the GluR5 and GluR6 ligand binding cores. J. Gen. Physiol. 146, 173–181 (2015).
13. Dürr, K. L. et al. Structure and Dynamics of AMPA Receptor GluA2 in Resting, Pre-Open, and Desensitized States. Cell 158, 778–792 (2014).
14. Karakas, E., Regan, M. C. & Furukawa, H. Structural insights into the competitive antagonism in NMDA receptors. Neuron 81, 366–378 (2014).
15. Lee, C. H. Emerging structural insights into the mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).
16. Meyerson, J. R. et al. Structural mechanism of glutamate receptor activation and desensitization. Nature 514, 328–334 (2014).
17. Karakas, E., Regan, M. C. & Furukawa, H. Emerging structural insights into the function of ionotropic glutamate receptors. Trends Biochem. Sci. 40, 328–337 (2015).
18. Regan, M. C., Romero-Hernandez, A. & Furukawa, H. A structural biology perspective on NMDA receptor pharmacology and function. Curr. Opin. Struct. Biol. 33, 68–75 (2015).
19. Sobolevsky, A. L., Rosconi, M. P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).
20. Kumar, J., Schuck, P. & Mayer, M. L. Structure and assembly mechanism for heteromeric kainate receptors. Neuron 71, 291–311 (2011).
21. Karakas, E. & Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014).
22. Lee, C. H. et al. NMDA receptor structures reveal subunit arrangement and architecture. Nature 511, 191–197 (2014).
23. Banke, T. G. & Traynelis, S. F. Activation of NR1/NR2B NMDA receptors. Nature Neurosci. 6, 144–152 (2003).
24. Farina, A. N. et al. Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J. Neurosci. 31, 3565–3579 (2011).
25. Granger, A. J., Tajima, N., Fernandez-Cuenca, G., Garnier-Amblard, E. C. & Furukawa, H. Structural insights into competitive antagonism in NMDA receptors. Neuron 81, 366–378 (2014).
26. Karakas, E., Simorowski, N. & Furukawa, H. Structural insights into competitive antagonism in NMDA receptors. Neuron 51, 191–197 (2014).
27. Vance, K. M., Simorowski, N., Traynelis, S. F. & Furukawa, H. Ligand-specific desensitization time course of GluN1/GluN2D NMDA receptors. Nature Commun. 2, 294 (2011).
28. Burroughs, M. P. & Traynelis, S. F. Emerging structural insights into the mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).
29. Popescu, G., Auerbach, A. The NMDA receptor gating machine: lessons from single channels. Neuroscientist 10, 192–198 (2004).
30. Popescu, G., Roberts, A. S., Howes, S. J. & Auerbach, A. Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430, 790–793 (2004).

Supplementary Information

is available in the online version of the paper.

Acknowledgements

We thank staff at the 23-ID beamlines at the Advanced Photon System in the Argonne National Laboratory. We are grateful to Z. Yu, C. Hong and R. Huang at the Janelia Research Center/HHMI EM facility for their support. This work was supported by the National Institutes of Health (MH085926 and GM105730), the Stanley Institute of Cognitive Genomics, Burroughs Wellcome Fund Collaborative Research Travel Grant, the Robertson Research Fund of Cold Spring Harbor Laboratory (all to H.F.), Japan Society for the Promotion of Science (to N.T.) and the Visiting Scientist program of the Janelia Research Center to allow H.F. to conduct cryo-EM work.

Author Contributions

The authors jointly contributed to project design. N.T. and H.F. performed X-ray crystallography and electrophysiology, N.S. purified and characterized antibodies critical for the x-ray crystallographic study. T.G., R.D.A., N.G. and H.F. were involved in structural analysis by cryo-EM, E.K. expressed and purified proteins for the cryo-EM analysis and conducted model building and refinement of the cryo-EM structures. N.T., E.K., T.G., N.G. and H.F. were involved in manuscript preparation.

Author Information

Atomic coordinates and structure factor for the apo-GluN1b/GluN2B ATD is deposited in the Protein Data Bank under accession code 5B3J; the cryo-EM coordinates are deposited under the accession codes 5FXG, 5FXH, 5FXI and 5FKX. The cryo-EM maps are deposited in EMD under accession codes EMD-3352, EMD-3353, EMD-3354, EMD-3355 and EMD-3356. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to H.F. (furukawa@chsl.edu) or N.G. (ggrigorieff@janelia.hhmi.org).
METHODS

Data reporting. No statistical methods were used to predetermine sample size. The experiments were not randomized and the investigators were not blinded to outcome assessment.

Production of GluN1b/GluN2B ATD, GluN1b/GluN2B NMDA receptors and Fab fragment. The constructs of GluN1b and GluN2B ATDs are identical to those used in our previous study. The purified protein was deglycosylated by endoglycosidase F1. Monoclonal antibodies (mouse IgG) that bind rat GluN2B ATD were obtained by immunizing mice with the purified intact GluN1–GluN2B NMDA receptors using the standard protocol. IgGs were purified from hybridoma cell culture supernatant by Protein-A Sepharose (GE healthcare). Fab fragments of the antibody were obtained by papain proteolysis followed by re-chromatographing onto Protein-A Sepharose to remove the Fc region. The purified GluN1b–GluN2B ATD and Fab were mixed, and the ATD–Fab complex was isolated by Superdex200 (10/300; GE Healthcare). The intact tetrmeric GluN1b–GluN2B NMDA receptors were expressed and purified as previously described.

Cryoelectron microscopy (cryo-EM). The GluN1–GluN2B NMDA receptors at 2 mg ml$^{-1}$ were cryo-EM specimen preparation and image acquisition. The crystals were grown at 18°C by the hanging-drop vapour diffusion method. GluN1b–GluN2B ATD–Fab complex was mixed with a variable volume of reservoir solution (3–5 μl total drop size), which contained 0.1 M sodium acetate (pH 4.5), 27% PEG3350, 2.2 M sodium formate, and 0.05 M calcium chloride. Cryo-protection was achieved by supplying 8% glycerol to the cryo-fertilization condition. Crystals were flash-frozen in liquid nitrogen. Data sets were collected at the wavelength of 1.0 Å and at the 23ID-D beamline in the Advanced Photon System in the Argonne National Laboratory and processed using HKL2000 (ref. 35) (Extended Data Table 1). The crystal structure of GluN1b–GluN2B ATD–Fabi7 complex was solved by molecular replacement using the coordinate of a prostate specific membrane antigen model. The resulting models were manually modified to fit into the threedimensional Fourier map. The resulting resolutions as determined by the 0.143 cut-off were 5.0–6.7 Å (Extended Data Fig. 6). Maps were rendered using UCSF Chimera, applying a b-factor of ~600 Å2.

Model building. The GluN1b–GluN2B NMDA crystal structure (PDB ID, 4PE5) was docked into the cryo-EM maps followed by rigid-body fitting of the individual ATD R1 and R2 lobes and LBDs of both GluN1 and GluN2 into the cryo-EM maps using Coot (ref. 44). Both the rat GluN1a–GluN2B crystal structure (PDB ID, 4PE5) and Xenopus GluN1–GluN2B NMDA receptor (PDB ID, 4TLM) were used to model the TMD. The resulting models were manually modified to fit into the cryo-EM maps using Phenix real space refinement (ref. 44). Refinement statistics are shown in Extended Data Table 2. Class X and class Y are similar to ‘non-active 2’.

Electrophysiology. GluN1b–4b/GluN2B NMDA receptors were expressed by injecting cRNAs at a 1:2 ratio (GluN1/GluN2, w/w) into defolliculated Xenopus laevis oocytes (0.05–0.15 ng total per oocyte). After 24–48 h incubation at 18°C, currents were measured by two-electrode voltage clamp in a solution containing 5 mM HEPES, 100 mM NaCl, 0.3 mM BaCl$_2$ and 10 mM Tricine at pH 6.5 (adjusted with KOH) using agarose-tipped microelectrode (0.4–1.0 MΩ) at the holding potential of ~60 mV. Currents were evoked by application of 100 μM l-glutamate and 1-μM L-glutamate. For MTS experiments, fresh stock of MTS reagents were made and added to the recording buffers at the final concentration of 200 μM. The data were analysed using the program Pulse (HEKA) and the graphs were generated by using the program Kaleidagraph (Synergy).

Cysteine crosslinking and western blot. Recombinant wild-type and mutant GluN1b–4b/GluN2B NMDA receptors (GluN2B CTD truncated as in Extended Data Fig. 1), were expressed in the Spodoptera frugiperda (Sf9) baculovirus system (ref. 23) and expressed in the presence and absence of 100 mM sodium acetate (pH 8.0) and 50 mM NaCl. The crystals were grown at 18°C by the hanging-drop vapour diffusion method. GluN1b–GluN2B ATD–Fab complex was mixed with a variable volume of reservoir solution (3–5 μl total drop size), which contained 0.1 M sodium acetate (pH 4.5), 27% PEG3350, 2.2 M sodium formate, and 0.05 M calcium chloride. Cryo-protection was achieved by supplying 8% glycerol to the cryo-fertilization condition. Crystals were flash-frozen in liquid nitrogen. Data sets were collected at the wavelength of 1.0 Å and at the 23ID-D beamline in the Advanced Photon System in the Argonne National Laboratory and processed using HKL2000 (ref. 35) (Extended Data Table 1). The crystal structure of GluN1b–GluN2B ATD–Fabi7 complex was solved by molecular replacement using the coordinate of a prostate specific membrane antigen model. The resulting models were manually modified to fit into the threedimensional Fourier map. The resulting resolutions as determined by the 0.143 cut-off were 5.0–6.7 Å (Extended Data Fig. 6). Maps were rendered using UCSF Chimera, applying a b-factor of ~600 Å2.

Model building. The GluN1a–GluN2B NMDA crystal structure (PDB ID, 4PE5) was docked into the cryo-EM maps followed by rigid-body fitting of the individual ATD R1 and R2 lobes and LBDs of both GluN1 and GluN2 into the cryo-EM maps using Coot (ref. 44). Both the rat GluN1a–GluN2B crystal structure (PDB ID, 4PE5) and Xenopus GluN1–GluN2B NMDA receptor (PDB ID, 4TLM) were used to model the TMD. The resulting models were manually modified to fit into the cryo-EM maps using Phenix real space refinement (ref. 44). Refinement statistics are shown in Extended Data Table 2. Class X and class Y are similar to ‘non-active 2’.

35. Otwinski, Z., & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 (1997).

36. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

37. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002).

38. Grant, T. & Grigorieff, N. Automatic estimation and correction of anisotropic magnification distortion in electron microscopes. J. Struct. Biol. 192, 204–208 (2015).

39. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

40. Rohlou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

41. Luykx, D., Britol, A. F., Theobald, D. L. & Grigorieff, N. Likelihood-based classification of cryo-EM images using FREELIGN. J. Struct. Biol. 183, 377–388 (2013).

42. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

43. Petersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

45. Amonine, P. V., Headd, J. J., Terwilliger, T. C. & Adams, P. D. New tool: pha죄n.real_space_refine. Computational Crystallography Newsletter 4, 43–44 (2013).
Extended Data Figure 1 | Domain organization and constructs.

a, The construct design for GluN1b and GluN2B ATD used in this study. GluN1b from *Xenopus laevis* is combined with GluN2B from rat, as in the previous study on the ATD24. b, The construct design for the intact GluN1b/GluN2B NMDA receptors from rat. A similar construct was used in previous studies and shown to be fully functional25.
Extended Data Figure 2 | Structure of the apo-GluN1b–GluN2B ATD.

a, Representative 2Fo−Fc electron density map contoured at 1.2σ showing continuous density throughout GluN1b, GluN2B and Fab. The quality of the electron density map is at a sufficient level to model amino acid side chains (see lower panel).

b, Crystal packing of GluN1b–GluN2B ATD–Fab showing that the packing is mediated robustly by Fab molecules (green).

c, Comparison of the apo-GluN1b–GluN2B ATD and ifenprodil–GluN1b–GluN2B ATD (grey) by stereo presentation. Colour coding for the apo-GluN1b–GluN2B ATD is the same as in Fig. 1. Here the two structures are superimposed at GluN2B R1.
Extended Data Figure 3 | Validation of the crystal structure by disulfide cross-linking. a, Crystal structure of the apo-GluN1b–GluN2B ATD showing locations of the mutated residues, GluN1b Phe113, GluN1b Gly331, GluN2B Ala107 and GluN2B Glu75 in spheres. b, Western blots using anti-GluN1 (left) and anti-GluN2B (right) antibodies on purified intact GluN1b/GluN2B NMDA receptor that lacks the CTD. Upper and lower panels are blots run in the absence and presence of β-mercaptoethanol (βME), respectively. Bands highlighted by arrow 1 are consistent with the molecular weight of GluN1–GluN2B heterodimers, whereas those highlighted by arrows 2 and 3 are consistent with the molecular weights of monomers of GluN1–4b and GluN2B.
Extended Data Figure 4 | Conformational trap shows the apo-GluN1b–GluN2B ATD structure to represent ‘active’ form-II. a, Location of engineered cysteines in the crystal structure of the apo-GluN1b–GluN2B ATD. The cysteine mutant pairs, GluN1–4b(A175Cys)/GluN2B(Gln180Cys) (green spheres) and GluN1–4b(Lys178Cys)/GluN2B(Asn184Cys) (blue spheres) are co-expressed in *Xenopus* oocytes and cross-linked by bifunctional MTS with different linker lengths (M2M, M4M and M8M).

b, Application of 200 μM M4M in the presence or absence of 100 μM agonists (glycine (gly)/glutamate (glut)) potentiates the macroscopic current measured at the holding potential of −60 mV by two-electrode voltage clamp. No potentiation was observed when M4M was applied in the presence of ifenprodil (ifen). Shown here are the representative recording profiles for the GluN1–4b(Lys178Cys)/GluN2B(Asn184Cys) pair.
Extended Data Figure 5 | Effect of bi-MTAs on cysteine mutants.

a, b, M4M specifically traps the active conformation at the engineered cysteines. Representative electrophysiological traces for the mutant pairs, GluN1–4b(Ala175Cys)/GluN2B(Gln180Cys) (green spheres) and GluN1–4b(Lys178Cys)/GluN2B(Asn184Cys) as well as mutant and wild-type pairs. The experiments were conducted by two-electrode voltage clamp as in Fig. 2. The potentiation by M4M (represented by I_{MTS}/I_0) is only observed when both GluN1 and GluN2B cysteine mutants are co-expressed. No potentiation was observed when the cysteine mutant of one subunit is combined with the wild type of the other, indicating that the effect of M4M modification is specific and validating the relevance of the experiments. c, d, Bar graphs presenting the degree of potentiation from the recordings in a and b. Error bars represent ±s.d. for data obtained from five different oocytes per mutant combination. e–g, M2M but not M8M potentiates the mutant GluN1b–GluN2B NMDA receptor. The same experiment as above or in Fig. 2 was conducted using M2M or M8M on GluN1–4b(Ala175Cys)/GluN2B(Gln180Cys) (e) GluN1–4b(Lys178Cys)/GluN2B(Asn184Cys) (f), and wild-type GluN1–4b/GluN2B (g). Shown are representative electrophysiological recordings used to estimate the degree of bi-MTS potentiation presented in Fig. 2c.

© 2016 Macmillan Publishers Limited. All rights reserved
Extended Data Figure 6 | Cryo-EM analysis on GluN1b/GluN2B NMDA receptors. a, Representative motion-corrected image collected at 22,500 magnification. b, Two-dimensional class averages. c, d, Fourier shell correlation curves for unmasked data (c) and model versus electron microscopy map (d). Class X and Y are similar to ‘non-active 2’ and were not further analysed. e, Orientation plots for each class, plotting the distribution of Euler angles assigned to all particles contributing to that class with an occupancy of at least 80%. For each class, the number of particles which have that class as their highest occupancy value is also shown.
Extended Data Figure 7 | Representative cryo-EM density, model fit and structural comparison of the ATD in inhibited and active conformations of cryo-EM structures. a–e, Here, the cryo-EM maps for non-active 2 and active 3D classes are shown along with the refined models. Densities are shown at the ATD and LBD (a–d) for both of the 3D classes and at the TMD (e) for non-active 2. f, g, Superimposition of R1 lobes of GluN1b (f) and GluN2B (g) illustrates the relative ‘opening’ between R1 and R2 lobes in the inhibited and active forms of intact NMDA receptors. The extent of GluN2B ATD opening is similar to that observed between the crystal structures of the ifenprodil–GluN1b–GluN2B ATD and the apo-GluN1b–GluN2B ATD as in Fig. 1. GluN1b and GluN2B ATDs are shown in grey and yellow for the inhibited and active states, respectively. h, Comparison of the GluN1b–GluN2B ATD heterodimers between ifenprodil inhibited and active cryo-EM structures. Superimposition of the GluN2B R1 lobes reveals an ~12° rotation of the GluN1b ATD relative to the GluN2B ATD in the similar manner to the crystal structure of the apo-GluN1b–GluN2B ATD as in Fig. 1. The black rods indicate the axis of rotation between the two cryo-EM structures. The distance of the R2 lobes in the GluN1b–GluN2B heterodimers is measured between Cα atoms of GluN1b(Lys178) and GluN2B(Asn184) (green spheres).
Extended Data Figure 8 | Structural comparison of the GluN1–GluN2B LBD in non-active and active conformations to the GluA2 LBD in pre-open state. a–d, The crystal structure of GluA2 AMPA receptor in the pre-open state (PDB ID, 4U1W; shown in green) aligned with the structures of GluN1–GluN2B in the non-active 2 (blue) (a, b) and active conformation (yellow) (c, d) by superimposing the LBDs of GluN2B onto GluA2. e–h, The equivalent superimposition with the cryo-EM structure of GluA2 AMPA receptor in the pre-open state (PDB ID, 4UQ6; shown in green). The overlaid structures are viewed through the LBD heterodimer interface (a, c or e, g) and the dimer of heterodimer interface (b, d or f, h). Here, the GluN2B LBD of the GluN1b–GluN2B NMDA receptor is superimposed onto the LBD of the GluA2 AMPA receptor and the shift of the GluN1 LBD is measured with respect to the other GluA2 LBD. The homodimeric arrangement of GluA2 AMPA receptor in the pre-open state is similar to the heterodimeric arrangements of GluN1b–GluN2B NMDA receptors in both non-active 2 and active states (a, c or e, g). However, when the dimer of homodimer arrangement of GluA2 AMPA receptor is compared to the dimer of heterodimers arrangement of the GluN1b–GluN2B NMDA receptor, a greater difference is observed for the active NMDA receptor (d, h) than for the non-active 2 NMDA receptor (b, f). Here, the non-active 2 NMDA receptor as in Fig. 3 is subjected to superimposition. The non-active 1 and non-active 2 NMDA receptors have similar subunit arrangements in the LBD. The numbers in each panel represent degrees of rotations and translations.
Extended Data Table 1 | Data collection and refinement statistics for X-ray crystallography

	Apo-GluN1b/GluN2B	ATD – Fab17
Data collection		
Space group	C2	
Cell dimensions		
a, b, c (Å)	247.4, 80.0, 181.4	
α, β, γ (°)	90.0, 127.2, 90.0	
Resolution (Å)	50-2.90(2.93-2.90) *	
R_{merge}	0.099 (0.602)	
$I/\sigma I$	8.5 (1.84)	
Completeness (%)	91.4 (93.0)	
Redundancy	4.0 (3.5)	
Refinement		
Resolution (Å)	30-2.9	
No. reflections	52,910	
R_{work}/ R_{free}	0.273/0.302	
No. atoms		
Protein	15,899	
Ion (Na)	1	
Water	112	
B-factors		
Protein	46.3	
Ligand/ion	52.1	
Water	37.9	
R.m.s deviations		
Bond lengths (Å)	0.008	
Bond angles (°)	1.068	

*Highest resolution shell is shown in parentheses.
Extended Data Table 2 | Refinement statistics for the cryo-EM structures

PDB ID	EMDB ID	Active	Non-Active 1	Non-Active 2	Class X	Class Y
5FXG	EMD-3352	6.8	6.1	6.4	6.5	6.4
5FXH	EMD-3353	0.77	0.79	0.80	0.78	0.80
5FXI	EMD-3354	12,693	15,578	15,381	15,475	15,598
5FXJ	EMD-3355	0.003	0.006	0.003	0.004	0.005
5FXK	EMD-3356	0.55	0.55	0.60	0.58	0.55

Resolution (Å)
Map to Model CC

R.m.s deviations
Bond lengths (Å)
Bond angles (°)

Ramachandran
Favored (%)
Allowed (%)
Disallowed (%)