ИЗВОД: Флористички диверзитет СРП „Делиблатска пешчара“ је значајно угрожен ширењем инвазивних биљака. Поред теренских истраживања која су обухватала сакупљање биљног материјала на подручју СРП „Делиблатска пешчара“, у раду су прикупљени при- мари и секундарни подаци. Примарни подаци за потребе ове студије добијени су при- меном технике упитника са управљачима заштићеног подручја - ЈП „Војводинашуме“ и технике експертског интервјуа са представником Покрајинског завода за заштиту природе. Секундарни подаци су прикупљени у циљу бољег разумевања и ширег сагледавања управљања СРП „Делиблатска пешчара“.

На основу теренских истраживања, анализе примарних и секундарних података, инвазивне биљне врсте су препознате и као кључни угрожавајући фактор. У циљу изналажења најповољнијих препорука за превентивне мере заштите и сузбијање инвазивних биљних врста и унапређење станишта, извршена је анализа флористичке структуре и састава ових биљних врста, њиховог порекла као и начина ширења и размножавања. На подручју СРП „Делиблатска пешчара“ констатовано је 39 инвазивних биљних врста (4,33% од укупне флоре) различите категорије инвазивности, међу којима преовлађују зељасте, једного дишње, северноамеричке врсте из фамилије Compositae. Мере заштите обухватају картирање станишта инвазивних врста, успостављање сарадње са управљачима и научним институцијама, стални мониторинг угрожених станишта и биљних врста као и формирање посебног сектора надлежног за унапређење биодиверзитета.

КЛЮЧНЕ РЕЧИ: СРП „Делиблатска пешчара“, флористички диверзитет, инвазивне биљне врсте, мере заштите.

УВОД

По богатству флоре, Република Србија представља један од глобалних центара биљне разноврсности. На подручју Србије се налази чак 18% укупне васкуларне флоре Европе и 1,7% укупне светске флоре (2011/с). Фактори који угрожавају флористички диверзитет, односе се и на целокупан биодиверзитет. Угрожавајући факторе чине следеће активности: промена намене коришћења земљишта (губитак, фрагментација и деградаци-

ИНВАЗИВНЕ БИЉКЕ КАО ФАКТОР ДЕГРАДАЦИЈЕ ФЛОРИСТИЧКОГ ДИВЕРЗИТЕТА СРП „ДЕЛИБЛАТСКА ПЕШЧАРА“

Ања Калинић, маст. инж. пејзажне архитектуре Шумарски факултет, Универзитет у Београду,
(anjaljubicic29@gmail.com)
Др Ивана Бједов, Шумарски факултет, Универзитет у Београду
Др Драгица Обратов-Петковић, Шумарски факултет, Универзитет у Београду
Др Јелена Томићевић-Дубљевић, Шумарски факултет, Универзитет у Београду
Циљ рада је да се представи тренутно стање флористичког диверзитета СРП „Делиблатска пешчара“, истраже инвазивне биљне врсте као угрожавајући фактор флористичког диверзитета и предложе адекватне мере заштите.

МАТЕРИЈАЛ И МЕТОДЕ РАДА

Теренска истраживања спроведена су током вегетационе сезоне 2016. године у циљу анализе флористичке структуре. Биљни материјал који је том приликом прикупљен је детерминисан и хербаризован. Детерминација је извршена стандардном флористичком методом, коришћењем одговарајуће литературе (Стјепановић-Веселичић, 1953; Јосифовић, 1970-1986; Jávorka и Csapody, 1975; Гајић, 1983; Сарић, 1992).

У оквиру граница СРП „Делиблатска пешчара“ се могу наћи бројне ендемичне, реликтне, ендемо-реликтне врсте, затим заштићене али и угрожене биљне врсте. Значај очувања СРП „Делиблатска пешчара“ препознат је и од стране многих међународних организација, те је ово подручје проглашено за Подручја од међународног значаја за биљке - IPA подручје (енгл. Important Plant Areas – IPAs) и Подручја од међународног значаја за птице - IBA подручје (енгл. Important Bird Area). Експертски интервју је интервју који постају проблем у центар дешавања (енгл. “the problem-centered interviews”). То значи да испитаник не представља себе, већ пружа експертну информацију у контексту његовог институционалног оквира и организационе структуре (Meuser and Nagel, 1991). Циљ овог експертског интервјуа је добијање дубљих, конкретних, квалитативних информација о бољем разумевању заштите флористичког диверзитета и инвазивних биљних врста.

Секундарни подаци су прикупљени из библиографије литературе и информационих извора. Ови подаци обухватају литературе која представља основу истраживачког рада. За потребе комплетне анализе инвазивних биљн...
них врста, њиховог порекла, најзаступљенијих животних форми, начина размножавања, степена инвазивности и др. информација од значаја, коришћена је електронска база података „Листа инвазивних врста на подручју АП „Војводине“ (2016/c), као и публикације које се базе овом темом (Скочајић et al. 2008; Аначков et al., 2013; Николић et al., 2015).

Такође, у раду су сакупљена и анализирана релевантна документа, као што су Закон о заштити природе („Службени гласник РС“ бр. 36/2009, 88/2010, 91/2010 и 14/2016), Стратегија биолошке разноврсности Републике Србије (2011/c), План управљања СРП „Делиблатска пешчара“ (2011/a), Уредба о заштити Специјалног резервата природе „Делиблатска пешчара“ (2008) (и друга документа) као и подаци о ранијим истраживањима у области управљања заштићеним подручјима и заштите флористичког диверзитета.

РЕЗУЛТАТИ

На територији резервата налази се укупно 900 различитих врста биљака (1998). Према бројности, најдоминантнија фамилија је Compositae (42 врсте), затим Poaceae (34), Fabaceae (21), Caryophyllaceae (16), Brassicaceae (14), Ranunculaceae (13), Rosaceae (13), Lamiaceae (11), Apiaceae (10), Plantaginaceae (9) и Boraginaceae (9). Фамилије које чине по неколико врста су: Cyperaceae (7), Asparagaceae (7), Crassulaceae (6), Rubiaceae (6), Salicaceae (6), Amaryllidaceae (5), Campanulaceae (5), Caprifoliaceae (4), Oleaceae (4), Orchidaceae (4), Polygonaceae (4), док су представници престрих фамилија знатно мање заступљени (Гајић, 1983; Стјепановић-Веселичић, 1953; 1998; 2011/b; 2016/c).

Важно је истаћи да је на територији СРП „Делиблатска пешчара“ забележен значајан број ендемичких и реликтних врста, а и то: 23 панонска ендемита и субендемита (Paeonia officinalis subsp. banatica, Rindera umbellata, Fritillaria degeneriana, Iris pumila, Viola altayana и др.), 7 реликтних врста (Adonis vernalis, Comandra elegans, Orchis mascula, Prunus tenella и др.), од којих су три једно ендемо-ре-}

ликтне врсте (Adonis vernalis, Paeonia officinalis subsp. banatica, Rindera umbellata) (Пузовић, Пањковић, 2015; 1998; 2011/b).

Резултати анализе примарних и секундарних података

На основу анализе података добијених методом упитника и анализе садржаја експертског интервјуа, када је реч о факторима који угрожавају флору СРП „Делиблатска пешчара“ установљено је да се ради о природним факторима. Један од њих је чести пожари који се дешавају услед климатских услова средине (високе температуре лети) и морфологије биљака које насељавају ово подручје (сува, приземна зељаста вегетација). Још један од природних фактора који угрожава флористички диверзитет Делиблатске пешчаре је и сукцесивна фаза развоја жбунастих форми – Crataegus monogyna. Жбунасте врсте расту и шире се на рачун станишта степских зељастих врста, које су веома важне за флористички диверзитет Делиблатске пешчаре. Овај проблем је настао као последица забране пашарења на појединим локалитетима Делиблатске пешчаре.

Поред природних, антропогени фактори који угрожавају биодиверзитет, самим тим и флористички диверзитет СРП „Делиблатска пешчара“ су: сакупљање лековитих биљака, активности излетника, интродукција алохтоних и инвазивних врста, дивље депоније, нелегална градња (заузимање и нарушење природних станишта), отварање позајмишта песка (уклањање површинских слоја земљишта, нарушавање природних станишта).

Међутим, без обзира на велики број фактора који угрожавају флористички диверзитет овог подручја, утицај инвазивних биљних врста се може јасно издвојити. Нами, управљају СРП су инвазивне биљне врсте препознали као један од водећих угрођавајућих фактора флористичког диверзитета СРП „Делиблатска пешчара“. Тврдње експерата су у складу са резултатима добијеним теренским истраживањима.

Присутност инвазивних биљних врста је најуочљивија уз шумске путеве, као и степска станишта, где су често ове врсте доминантне.

29
Такође, подједнако су заступљене на пешчарским, шумским, али и мочварним стаништима на самом ободу резервата. Локалитети са најбројнијим популацијама ових врста налазе се у подручјима интензивних човекових активности, а затим у контактној зони Резервата и пољоприродних површина. Забрињавајућа чињеница је да локално становништво насеља Шушаре и Делиблата гаји поједине инвазивне врсте као украсне, чиме доприноси њиховом опстанку и ширењу ван граница резервата.

Резултати флористичких истраживања

На основу теренских истраживања и анализа доступне базе података (2016/c), на подручју СРП „Делиблата пешчара“ констатовано је укупно 39 инвазивних врста, од којих су најбројније следеће: *Acer negundo* L., *Ailanthus altissima* (Miller) Swingle, *Amaranthus retroflexus* L., *Ambrosia artemisiifolia* L., *Amorpha fruticosa* L., *Asclepias syriaca* L., *C. regalis* S. F. Gray, *Conyza canadensis* (L.) Cronq., *Cyperus strigosus* L., *Cytisus scoparius* (L.) Link., *Datura stramonium* L., *Echinochloa oryzoides* (Ard.) Fritsch, *Elaeagnus angustifolia* L., *Eriogon annuus* (L.) Pers., *Fraxinus americana* L., *Oenothera biennis* L., *Paspalum paspaloides* (Michx.) Scribner, *Robinia pseudoacacia* L., *Solidago canadensis* L. и *S. gigantean* Aiton.

Инвазивне врсте чине укупно 4,3% биљних врста на подручју СРП „Делиблата пешчара“ (Графикон 1).

Према таксономској припадности, највећи број инвазивних врста припада фамилији *Compositae* (10 врста). Затим, према бројности знатно су заступљене инвазивне врсте из фамилије *Amaranthaceae* (6), *Poaceae* (4) и *Fabaceae* (3). Преосталих 16 инвазивних биљних врста, готово је подједнако распоређено у следећим фамилијама: *Aceraceae* (1), *Apocynaceae* (1), *Brassicaceae* (1), *Chenopodiaceae* (2), *Cyperaceae* (1), *Elaeagnaceae* (1), *Moraceae* (1), *Oleaceae* (2), *Phytolaccaceae* (1), *Ranunculaceae* (2), *Scrophulariaceae* (1), *Simaroubaceae* (1) и *Solanaceae* (1) (Графикон 2).
Инвазивне биљке као фактор деградације флористичког диверзитета...

На Графикону 3, приказане су животне форме инвазивних биљних врста. Најбројније су зељасте једногодишње биљке (21) и зељасте вишегодишње (9), дрвенастих врста је 6, док су жбунасте инвазивне врсте најмање заступљене (3). Према пореклу, од укупно забележених 39 инвазивних биљних врста, 17 потиче из Северне Америке. Укупно 5 инвазивних врста су аутохтоне у Северној и Јужној Америци, док само 2 воде порекло из Јужне Америке, а три су пореклом из Северне Америке, Аустралије и Океаније. Затим, знатан број инвазивних биљних врста потиче из Азије (4), Азије и Северне Америке (1), Азије и Европе (2). Преосталих 5 врста, води порекло са различитих континената и различитих делова Европе (Графикон 4).

На Графикону 5 приказан је начин интродукције инвазивних биљних врста на истраживано подручје. Тако је 16 врста случајно унето, док је 13 врста намерно унето у циљу натурализације врсте. За преосталих 9 инвазивних биљних врста, начин уноса је непознат.

Од свих инвазивних биљака забележених на истраживаном подручју укупно 14 врста се

Графикон 3: Животне форме инвазивних биљних врста; Извор: оригинал

Графикон 4: Порекло инвазивних биљних врста; Извор: оригинал
ширин „природно“, тј. разношењем семена, ризомима, столонама, коренским издацима. 12 врста се проширило трговином семенске робе биљних култура („ширење транспортом”). 7 инвазивних врста су унете као културне, како би се гајиле у прехрамбене, фармацевтске и друге сврхе („побегле врсте”). 2 инвазивне биљне врсте су се гајиле у баштама и вртовима, одакле су се прошириле и на друга станишта („ослобођене врсте”). За 7 врста начин ширења је непознат (Графикон 6).

На Графикону 7 приказан је степен инвазивности ових врста. Од укупно 39 врста, само 20 врста је класификовано по интензитету инвазивности, док за преосталих 19 врста нема информација.

Када је реч о јако инвазивним врстама, врсте *Acer negundo*, *Ailanthus altissima*, *Amorpha fruticosa* су имале широку примену у пејзажној архитектури. Користиле су се у парковима, дрворедима, приватним вртовима. Врста *Erigeron annuus* је гајена као декоративна вишегодишња. Забележена је на степским, пешчар-
инвазивне биљке као фактор деградације флористичког диверзитета

ским стаништима, као и уз путеве. *Ambrosia artemisiifolia* и *Asclepias syriaca* су веома честе инвазивне врсте на подручју СРП „Делиблатска пешчара“. Запослени у ЈП „Бојводинашуме“ су врсту *Asclepias syriaca* означили као веома агресивну. Некада је гајена за потребе пчеларства, а њен механизам ширења (пуцање плодова по сушењу) је омогућио да постане веома инвазивна биљна врста. „Јако инвазивна врста“, коришћена скоро два века за везивање песка, тј. у борби против еолске ерозије је *Robinia pseudoacacia*. Џаке изданичке способности које поседује ова врста онемогућавају њено уклањање са подручја СРП „Делиблатска пешчара“. Од „Спорадично инвазивних врста“ *Oenothera biennis* и *Solidago canadensis* интродуковане су као декоративне врсте. Упркос чињеници да је реч о инвазивним биљкама, ове две врсте се и данас гаје у баштама као декоративне на подручју Делиблатске пешчаре. Међу врстама које су сврстане у групу „Потенцијално инвазивних врста“ је и врста *Elaeagnus angustifolia* која је интродукована и гајена као декоративна и медоносна. Ова врста према наводима упраљача угрожава приземну, зељасту, али и жбунасту аутохтону вегетацију. Као декоративна врста на широм подручју Делиблатске пешчаре гаји се и инвазивна врста *Datura stramonium*

која има способност брзог и успешног ширења. Поменута врста има важну примену у фармацевтској индустрији.

Механизми ширења инвазивних биљних врста

Инвазивне биљне врсте се веома брзо адаптирају на нове услове средине, формирају стабилне популације угрожавајући аутохтоне врсте и њихова станишта. Њихова агресивност се огледа у механизму ширења, који зависи од адаптивних морфолошких карактеристика врсте. Анализом добијених података, најчешћи механизми опстанка и ширења инвазивних биљних врста на подручју СРП „Делиблатска пешчара“ су следећи: начин опрашивања, про dukција велике количине семена, вегетативно размножавање и ширење кореновог систем.

Развијен механизам самоопрашивања (аутогамија) имају следеће врсте: *Ailanthus altissima*, *Datura stramonium* и *Solidago canadensis*. Од прве опрашивање помоћу инсеката или ентомофилс. Опрашивање помоћу инсеката или ентомофилија је најчешћи вид опрашивања инвазивних биљних врста. Укупно 28 инвазивних врста се опрашује инсектима. Други најчешћи вид опрашивања биљака је ветром (анемофили

Графикон 7: Степен инвазивности врста; Извор: оригинал
ја). На подручју СРП „Делиблатска пешчара“ расте укупно 18 инвазивних биљних врста које се опрашују на овај начин, од којих су најзначајније: Acer negundo, Ambrosia artemisiifolia и Amorpha fruticosa.

Расејавање семена и разношење плодова представља један од механизмовима ширења. На подручју СРП „Делиблатске пешчаре“ 3 инвазивне врсте имају развијен механизам само-расејавања (аутохорија): Consolida orientalis, C. regalis и Cytisus scoparius. Од укупно 39 инвазивних биљних врста, семена 24 врсте се ра-сејавају активностим животиња (зоохорија), семе 21 врсте се расејава ветром (анемохорија), док расејавање семена 12 инвазивних биљних врста зависи од активности човека (антропохорија). Такође, неке инвазивне биљне врсте користе истовремено 3 или 2 механизам разношења плодова, што сведочи о њиховој агресивности.

Један од механизама који омогућује брзо ширење је и продукција велике количине семена по биљци. Тако на пример: Ailanthus altissima продукује око 325.000 семена, Amaranthus retroflexus око 500.000 семена и Conyza canadensis до 200.000 семена (2016/c).

Вегетативно размножавање коренским изданцима користи укупно 5 инвазивних биљних врста истраживаног подручја. Укупно 4 врсте размножавају се ризомима. С обзиром да, као што је наведено, инвазивне биљке представљају велику претњу аутохтоном диверзитету биљака, потребно је спроводити одговарајуће мере заштите.

Већина инвазивних биљних врста на простору Војводине припада фамилији Compositae (Аначков et al., 2013; 2016/c), што је случај и на истраживаном подручју СРП „Делиблатска пешчара“. Ове врсте познате као космополитске, распрострањене су у готово свим климатским зонама што указује на њихову велику адаптивну способност. Управо из тог разлога врсте фамилије Compositae на територији резервата доб로 успевају на свим типовима станишта. Инвазивне врсте које припадају овој фамилији забележене на територији СРП плодоносе готово током целог вегетативног периода, од маја до октобра, што је још једна од важних стратегија за њихово ширење. Код неких врста, као што је амброзија, клијавост семена се задржава и на ниским температурама, али и након уве-нуђа биљке (2016/c). Као што је већ наведено велики број врста фамилије Compositae гаје се као декоративне што такође доприноси њиховој ширењу.

Остале инвазивне биљне врсте се могу наћи на свим стаништима у оквиру СРП „Делиблатска пешчара“, али највише на подручјима интензивног антропогеног утицаја. Забележене су у зе-нским температурама, на прелазима између степских и шумских станишта, у контактној зони резервата и пољопривредних површина, али и у близини водених токова.

Према наводима управљача и према документу „План управљања СРП „Делиблатска пешчара“ за период од 2011. до 2020.“ (2011/a), мониторинг резервата врши се једном недељно. Управљачки планови, који се односе на истраживане подручје, спроводе се у складу са законом, али и у складу са природним, еколо-ским, социјалним и економским околностима. Формирање сектора за сузбијање инвазивних врста је једно од могућих решења заштите флористичког диверзитета. Међутим, проблем
исутица од 35,829 ha веома тешко
контролисати. Поред наведеног, проблем у
спровођењу управљачких планова могу бити и
непланиране активности, тј катастрофе или не-
прилике као што су пожари или поплаве. У том
случају примењује се прилагодљиво управља-
ње у складу са тренутном ситуацијом.

Иако Закон о заштити природе ("Службени
гласник РС" бр. 36/2009, 88/2010, 91/2010 и
14/2016) јасно изриče забрану уношења алох-
тонских врста у заштићена подручја, ранијих го-
редина управо су се оне користиле за потребе
пошумљавања. Један од највећих проблема
контролисања ширења инвазивних биљака
је што локално становништво поједине врсте
гаји као декоративне, па је утицај управљача
немогућ. Ова проблематика је размотрена у
истраживању Скочајић et al. (2008), где се на-
води да је знатан број биљака унет за потребе
хорткултуре, које су потом показале своје ин-
vазивне карактеристике. Осим декоративних,
vrste као што су: *Amorpha fruticosa*, *Asclepias
syriaca*, *Erigeron canadensis*, *Robinia pseudacacia*
и *Solidago canadensis* су медоносне врсте
(Николић et al., 2015) и веома су заступљене
на подручју резервата и у насељима дуж истра-
живаног подручја.

Управо из наведених разлога, неопходна је
едукација локалног становништва, али и кон-
трола и мониторинг оближњих расадника који
производе ове врсте. Како би начин информи-
сања био релевантан, потребно је извршити
картирање биотопа угрожених инвазивним
биљним врстама и формирање електронске
базе података која ће бити доступна широј јави
и отварање позајмишта песка.

ЗАКЉУЧАК

На основу извршених истраживања и до-
бијених резултата, могу се поставити следећи
закључци:

• СРП „Делиблатска пешчара“ одликује висок
степен флористичког диверзитета.

• Фактори који угрожавају флористички ди-
верзитет су: сакупљање лековитих биљака,
активности излетника, интродукција инва-
звивних врста, дивље депоније, нелегална
градња и отварање позајмишта песка.

• На подручју СРП „Делиблатска пешчара“, на
свим типови станишта (степска, пешчарска,
шумска и мочварна) забележено је 39 инва-
звивних биљних врста, што чини 4,33% укуп
не флоре Делиблатске пешчаре.

• Како би се ублажио утицај инвазивних биљ
них врста на биодиверзитет СРП „Делиблат-
ска пешчара“ су инвазивне биљке.

• На подручју СРП „Делиблатска пешчара“, на
свим типови станишта (степска, пешчарска,
шумска и мочварна) забележено је 39 инва-
звивних биљних врста, што чини 4,33% укуп
не флоре Делиблатске пешчаре.

• Најчешћи механизми опстанка и ширења
инвазивних биљних врста на подручју СРП
„Делиблатска пешчара“ су: начин опраши-
вања, расејавање семена и разношење пло-
дова, вегетативно размножавање и ширење
кореновог система.

• Како би се ублажио утицај инвазивних биљ
них врста на биодиверзитет СРП „Делиблат-
INVASIVE PLANTS AS A FACTOR OF FLORISTIC DIVERSITY DEGRADATION IN DELIBLATO SANDS SNR

Anja Kalinić, MSc of landscape architecture, Faculty of Forestry, University of Belgrade, (anjaljubicic29@gmail.com)

Ivana Bјedov, PhD, associate professor, Faculty of Forestry, University of Belgrade

Dragica O布拉тов-Петковић, PhD, Full professor, Faculty of Forestry, University of Belgrade

Jelena Томићевић-Дубљевић, PhD, Full professor, Faculty of Forestry, University of Belgrade

Abstract: The floristic diversity of Deliblato sands SNR is significantly endangered by the spread of invasive plants. In addition to field research, which included the collection of plant material in the area of Deliblato sands SNR, primary and secondary data was collected in this paper. The primary data for the purposes of this study was obtained by applying a questionnaire technique to the management of the protected area - PE “Vojvodinašume” and an expert interview technique to a representative of the Provincial Institute for Nature Conservation. The secondary data was collected to gain a better and broader understanding of the management of Deliblato sands SNR.

Based on the field investigations, the analysis of primary and secondary data on invasive plant species was also recognized as a key threatening factor.

An analysis of the floristic structure and composition of these plant species, their origin, as well as the manner of their propagation and reproduction was carried out, in order to make a recommendation on the preventive measures for the protection and suppression of invasive plant species and to improve the habitat.

In the area of Deliblato sands SNR, 39 invasive plant species (4,33% of the total flora) were found with different invasiveness categories, among which herbaceous, annual, North American species from the Compositae family prevail. Protection measures include the mapping of habitats of invasive species, establishing cooperation with managers and scientific institutions, constant monitoring of endangered habitats and plant species, as well as the creation of a special sector responsible for enhancing biodiversity.

Keywords: Deliblato sands Special Nature Reserve, floristic diversity, invasive alien plants, protection measures.
INTRODUCTION

The Republic of Serbia is one of the global centres of plant diversity. An 18% share of the total vascular flora of Europe, and 1.7% of the total world vascular flora is recorded in the territory of Serbia (2011/c).

The factors that threaten floristic diversity are related to the overall biodiversity. The threatening factors comprise the following activities: the change of land use purpose (habitat loss, fragmentation and habitat degradation), plantation cultivation of monocultural plant species, expansion of agricultural land, settlements and industrial areas, the over-exploitation of biological resources, the introduction of allochthonous species and genetically modified organisms, the pollution of air, water and soil, climate change and the changes of natural water levels (Mijović, 2012).

One of the measures of biodiversity protection for an area is to declare that area protected. This limits the use of natural resources as well as activities that threaten biodiversity.

In this paper an investigation of invasive plants of Deliblato sands Special Nature Reserve is presented. Deliblato sands Special Nature Reserve (SNR) is located in the Autonomous province of Vojvodina, in the southeastern part of the Pannonian Plain in south Banat. Its total area is 34.829,32 ha (Stjepanović – Veseličić, 1953; Gajić, 1983; 2008). Deliblato sands is characterized by a relief, composed of sand dunes and depressions between dunes. These results in a huge difference in altitude, from 2 to 30m. Chernozem on carbonate aeolian sand (Košanin, 2002), as well as the disposition and type of vegetation, makes microclimate and environmental conditions unique in Europe (Gajić, 1983; 2016/b). For these reasons, in 1977, this area was designated as a Special Nature Reserve (Kuzmanović, 1994; Medarević et al., 2004).

Inside the boundaries of Deliblato sands SNR there are numerous endemic, relict, endemico-relict species, as well as protected and endangered plant species. The importance of conservation of the Deliblato sands SNR has been recognized by many international organizations, and this area has been designated as one of the Important Plant Areas (IPAs) as well as an Important Bird area (IBA). In addition, inside the boundaries of Deliblato sands SNR, the Ramsar site “Labudovo okno” is situated. Deliblato sands SNR was also proposed for the UNESCO’s Man and the biosphere programme (MAB) in 1997. (Puzović, Panjković, 2015).

The aim of this paper is to present the current state of floristic diversity of the Deliblato sands SNR, to investigate invasive plant species as a threatening factor of floristic diversity and to propose adequate protection measures.

MATERIALS AND METHODS

To analyse the floristic structure, field investigations were conducted during the vegetation season in 2016. The collected plant material was determined and herbarized. The analysis was performed by the standard floristic method, using relevant literature (Stjepanović – Veseličić, 1953; Josifović, 1970-1986; Jávorka i Csapody, 1975; Gajić, 1983; Sarić, 1992).

In this paper, primary and secondary data was collected in addition to the field investigation. The primary data for the purpose of this study was obtained by applying the questionnaire technique, in cooperation with the management of PE “Vojvodinašume” and by conducting an expert interview with a representative from the Provincial Institute for Nature Conservation. The questionnaire was completed and it is composed of three groups of questions. The first group was related to the protection of floristic diversity, the second group to the cooperation of management and local business of Deliblato sands SNR and the third set of questions was related to the threatening factors of Deliblato sands SNR.

The expert interview is an interview that focuses on the problem (“the problem-centred interview”). Using this technique, the researcher does not represent himself but provides expertise in the context of its institutional framework and organizational structure (Meuser and Nagel, 1991). This expert interview aims to obtain deeper, concrete and qualitative information about a better understanding of protection of the floristic diversity and the invasive alien plants.
The purpose of secondary data is to have a better understanding and a broader view of the processed topic. This data includes the literature that presents the basis of research. For the purpose of a complete analysis of invasive plant species, their origin, the most represented life form, the way of reproduction, the degree of invasiveness and the other relevant information, the database “List of invasive species in AP Vojvodina” was used, as well as publications that deal with this topic (Skočajić et al. 2008; Anačkov et al., 2013; Nikolić et al., 2015).

The following documents and articles of the Law were analysed and researched to support the findings in this paper; the Law on Nature Conservation (“Official Gazette of the RS” No. 36/2009, 88/2010, 91/2010 and 14/2016), the Strategy of biodiversity of the Republic of Serbia (2011/c), “The Management Plan of Deliblato sands SNR (2011/a), The Decree on the protection of Deliblato sands Special Nature Reserve (2008) (etc. documents) as well as data on earlier researches in the field of management of protected areas and floristic diversity protection.

THE RESULTS

There are a total of 900 different plant species within the area of SNR (1998). In terms of abundance, the most dominant family is the Compositae (42 species), then Poaceae (34), Fabaceae (21), Caryophyllaceae (16), Brassicaceae (14), Charyophyllaceae (16), Ranunculaceae (13), Rosaceae (13), Lamiaceae (11), Apiaceae (10), Plantaginaceae (9) and Boraginaceae (9). The families consisting of several species: Cyperaceae (7), Asparagaceae (7), Crassulaceae (6), Rubiaceae (6), Salicaceae (6), Amaryllidaceae (5), Campanulaceae (5), Caprifoliaceae (4), Oleaceae (4), Orchidaceae (4), Polygonaceae (4), while the presence of representatives of other families is significantly lower (Gajić, 1983; Stjepanović - Veseličić, 1953; 1998; 2011/b; 2016/c).

It is important to emphasize that many endemic and relict species are recorded in the territory of the Deliblato sands SNR, of which 23 are Pannonian endemics and subendemics (Paeonia officinalis subsp. banatica, Rindera umbellata, Fritillaria degeniana, Iris pumila, Viola altayana, etc.), 7 relict species (Adonis vernalis, Comandra elegans, Orchis mascula, Prunus tenella, etc.), and three of them are also endemic-relict species (Adonis vernalis, Paeonia officinalis subsp. banatica, Rindera umbellata) (Puzović, Panjković, 2015; 1998; 2011/b).

The results of analysis of primary and secondary data

Based on the analysis of the data obtained by the questionnaire and the content of the expert interview, results indicate that natural factors threaten the flora of Deliblato sands SNR. One of them is frequent fires that occur due to the climatic conditions of the environment (high temperature during the summer) and the morphology of plants which inhabit this area (dried, base herbaceous vegetation). Then, the successive growth phase of shrub forms - Crataegus monogyna is also a threat to the biodiversity of Deliblato sands. Namely, the shrub species are growing and expanding at the expense of the habitat of steppe herbaceous species, which is very important for floristic diversity of Deliblato sands. This problem incurred the prohibition of grazing in certain areas of Deliblato sands.

In addition to natural factors, the anthropogenic factors which threaten the biodiversity and floristic diversity of the Deliblato sands SNR are: collecting herbs, tourist activities, the introduction of allochthonous species and invasive species, illegal landfill, illegal construction (capture and disruption of natural habitats), sand opening (removal of the soil surface layer, the disturbance of natural habitats).

However, regardless of the many factors that threaten the floristic diversity of the area, the impact of invasive plant species can be clearly distinguished. The manager of Deliblato sands SNR recognized invasive alien plants as the leading threatening factor of floristic diversity of this area. The claims of experts were confirmed in the field research.

The presence of invasive alien plants is noticed by forest roads, as well as at steppe habitats, where these species are the most dominant.
Invasive alien plants are equally common on sand, forest and as well on wetland habitats which are on the border of the natural reserve. The localities with the most numerous populations of invasive plant species are situated in the areas of intensive human activity, then, in the contact zone of the natural reserve area and agricultural areas. The worrying fact is that locals from the settlements of Šušare and Deliblato grow some of the invasive species as ornamentals, and it contributes to their existence and spread outside the boundaries of the reserve.

The results of floristic research

By field investigation and analysis of the existing data base of invasive plants (2016/c), 39 invasive plant species are recorded in the area of Deliblato sands Special Nature Reserve. The most numerous are: Acer negundo L., Ailanthus altissima (Miller) Swingle, Amaranthus retroflexus L., Ambrosia artemisiifolia L., Amorpha fruticosa L., Asclepias syriaca L., Consolida orientalis (S. GayinDesm.) Schröd., C. regalis S. F. Gray, Conyza canadensis (L.) Cronq., Cyperus strigosusL., Cytisus scoparius (L.) Link., Datura stramonium L., Echinochloa oryzoides (Ard.) Fritsch, Elaeagnus angustifolia L., Erigeron annuus (L.) Pers., Fraxinus americana L., Oenothera biennis L., Paspalum paspaloides (Michx.) Scribner, Robinia pseudoacacia L., Solidago canadensis L. and S. gigantean Aiton.

Invasive species make up 4.3% of the total plant species in the area of Deliblato sands SNR (Graph 1).

According to taxonomic affiliation, the most invasive plants belong to the family Compositae (10 species). Then, according to the abundance the Amaranthaceae family (6) is significantly the most common, afterwards: Poaceae (4) and Fabaceae (3). The remaining 16 invasive plant species are almost equally distributed in the following families: Aceraceae (1), Apocynaceae (1), Brassicaceae (1), Chenopodiaceae (2), Cyperaceae (1), Elaeagnaceae (1), Moraceae (1), Oleaceae (2), Phytolaccaceae (1), Ranunculaceae (2), Scrophulariaceae (1), Simaroubaceae (1) and Solanaceae (1) (Graph 2).
Graph 3, presents the life forms of invasive plant species, showing that the most numerous species are actually herbaceous, annual plants (21), then herbaceous perennials (9), within which there are also biennial, herbaceous plants. When woody life forms are concerned, 6 invasive species are present, while the total of shrub woody life forms is 3.

According to origin, 17 species out of the total of 39 invasive plant species are from North America. 5 invasive species are native to North and South America, while only 2 are native to South America and 3 are native to North America, Australia and Oceania. Further, a considerable number of invasive plant species originate from Asia (4), Asia and North America (1), Asia and Europe (2). The other 5 species originate from different continents and different parts of Europe (Graph 4).

Graph 5 shows the way of introducing invasive alien plants to the investigation area. A total of 16 species were accidentally introduced, while 13 species were intentionally introduced in order to naturalize the species. For the remaining 9 invasive plant species, the way of introduction is unknown.

Graph 3: The life forms of invasive plant species; Source: original

Graph 4: The origin of invasive plant species; Source: original
Of all the invasive plants recorded in the study area, a total of 14 species spread “naturally” - spreading by seeds, rhizomes, stolons and root shoots. Twelve species are expanded through seed trade by plants culture 12 species expanded through trade in seed crops (“transport spread”). Seven invasive species were introduced as cultivated to be cultivated for food, pharmaceutical and other purposes (“runaway species”). Two invasive plant species were cultivated in gardens, from which they spread to other habitats (“exempt species”). For 7 species the mode of propagation is unknown (Graph 6).

The degree of invasiveness of analysed plants is presented in Graph 7. Out of the total of 39 species, the degree of invasiveness is determined for only 20 species.

Highly invasive species recorded during field research are: *Acer negundo*, *Ailanthus altissima* and *Amorpha fruticosa*. These plants had wide use in landscape architecture. They are used in parks, alleys and private gardens. Species *Erigeron annu-

Graph 7: The degree of invasiveness; **Source:** original

us is cultivated as an ornamental perennial plant. It has been recorded on steppe and sandstone habitats, and along forest paths. *Ambrosia artemisiifolia* and *Asclepias syriaca* are very frequent invasive plants in the territory of Deliblato sands SNR. The employees from PE “Vojvodinašume” describe *Asclepias syriaca* as a very aggressive plant. In the past, it was cultivated for beekeeping purposes (honey plant), and its mechanism of propagation (fruit cracking upon drying) has made it a highly invasive plant species. *Robinia pseudacacia* belongs to the group of “highly invasive species”. It has been used for sand bonding in the fight against aeolian erosion for almost two centuries. Strong offspring ability prevents the management from removing this species from the area of Deliblato sands SNR. The “Sporadically Invasive Species” *Oenothera biennis* and *Solidago canadensis* were introduced because of their decorative characteristics. Despite the fact that they are invasive plants, these two species are still cultivated in the gardens as decorative in the area of Deliblato Sands. One of the “Potentially Invasive Species” is *Elaeagnus angustifolia* which was introduced and cultivated as a decorative species and honey plant. According to the manager of the SNR, this species has a negative impact on herbaceous and shrubby autochthonous vegetation. An invasive species of *Datura stramonium*, which can spread rapidly and successfully, is cultivated as a decorative species in the wider area of Deliblato Sands. In addition, this species has important applications in the pharmaceutical industry.

Mechanisms of invasive plants spread

Invasive plants are species that adapt rapidly to new environmental conditions, forming stable populations, threatening native species and their habitats. Their aggressiveness is reflected in the spread mechanism, which depends on the adaptive morphological characteristics of the species. The analysis of the obtained data, the most common mechanism of the survival and spread of invasive plant species are a way of pollination, a large number of seeds production, vegetative propagation and intensive root spread. *Ailanthus altissima, Datura stramonium* and *Solidago canadensis* have been developed by the self-pollination (autogamy) mechanism. The insect pollination or entomophily is the most common type of pollination of invasive plant species. A total of 28 invasive species are pollinated by insects. The second most common type of plant pollination is by wind (anemophily). 18 invasive alien plants
that grow in the area of Deliblato sands SNR are anemophilous, such as Acer negundo, Ambrosia artemisiifolia and Amorpha fruticosa.

Seed dispersal and fruit scattering are some of the mechanisms of spread. A total of 3 invasive species have developed a mechanism of self-dispersal by seed (autochory): Consolida orientalis, C. regalis and Cytisus scoparius. Out of the total of 39 invasive plant species, the seeds of 24 species are scattered by animals (zoochory), seeds of 21 are scattered by wind (anemochory), seeds of 8 species are scattered by water (hydrochory), while seed despersal of 12 invasive plant species depends on human activity (anthropochory). In addition, invasive plant species use 3 or 2 seed dispersal and fruit scattering mechanisms at the same time, which contributes to their aggressiveness.

The production of a large number of seeds per individual is one of the mechanisms that provide rapid species spread. For example, Ailanthus altissima produces about 325,000 seeds per individual, Amaranthus retroflexus produces about 500,000 seeds per individual and Conyza canadensis produces up to 200,000 seeds per individual (2016/c).

Five invasive plant species within the investigated area propagate vegetatively by root shoots. Four species reproduce by rhizomes.

Given that, as noted, invasive plants present a major threat to the autochthonous plant diversity, appropriate conservation measures need to be implemented. The implementation of laws and regulations, strategies and management plans for the protected area play a very important role in the protection of biodiversity. The problem of invasive species is primarily recognized by the national Law on Nature Protection (“Official bulletin RS” 36/2009, 88/2010, 91/2010 and 14/2016). Within this Law, according to Article 82, the introduction of allochthonous species into natural areas is prohibited. The Biodiversity Strategy of the Republic of Serbia for the period 2011 to 2018 (2011/c) prescribes biodiversity protection measures concerning invasive species. For the investigated area of Deliblato sands SNR, an important document in the fight against invasive plant species is the “Management Plan for Deliblato sands SNR for the period 2011 to 2020” (2011/a). Within this plan, PE “Vojvodinašume” as the manager envisages measures of fight and suppression of invasive plant species. All three documents can be actively applied.

DISCUSSION

In the territory of Vojvodina, most of the invasive plant species belong to the Compositae family (Anačkov et al., 2013; 2016/c), which is also the case in the area surveyed of Deliblato sands SNR. These species, known as cosmopolitan, are widespread in almost all climate zones, indicating their great adaptive capacity. This is the reason why species from Compositae family grow on all habitat types. In addition, these species produce fruits over the whole vegetative period, from May to October, which is another important strategy for their spread. In some species, such as ragweed, seed germination is maintained at low temperatures as well as after plant fading (2016/c). As mentioned above, many species of the Compositae family are cultivated as decorative, which also contributes to their spread.

Other invasive plant species can be found in all habitats of Deliblato sands SNR, but mostly in the areas of intensive anthropogenic influence. They are recorded along forest roads, at crossings between steppe and forest habitats, in the contact zone of the reserve and agricultural land, but also near watercourses. According to the manager and to the document “Management Plan of Deliblato sands SNR for the period from 2011 to 2020” (2011/a), the monitoring of the reserve is carried out once a week. Management plans, related to the investigated area are implemented in accordance with the law, but also in accordance with the natural, environmental, social and economic circumstances. The formatting of a sector for the suppression of invasive species is one of the possible solutions for the protection of floristic diversity. However, the problem is the lack of staff, because they control the area of 35,829 ha. In addition to that, issues and/or unforeseen circumstances may occur during the implementation of the management plans such as catastrophes or disasters such as fires or floods. In this case, adaptive management is applied according to the current situation.
Although the Law on Nature Conservation ("Official Gazette of the RS" No. 36/2009, 88/2010, 91/2010 and 14/2016) clearly prohibits the introduction of allochthonous species into protected areas, in the earlier years they were used for afforestation purposes. One of the biggest problems with controlling the spread of invasive plants is that the locals cultivate some invasive plants as ornamentals, and the steering influence is impossible in those cases. This issue was considered in a study Skočajić et al. (2008), where a considerable number of plants reported to have been introduced for horticulture purposes subsequently showed their invasive characteristics. In addition to decorative species, such as: Amorpha fruticosa, Asclepias syriaca, Erigeron canadensis, Robinia pseudacacia and Solidago Canadensis are honey species (Nikolić et al., 2015) and they are highly represented in the reserve area and in settlements of the study area.

For these reasons, it is necessary to educate the local population, but also to control and monitor nearby nurseries that produce these species. To raise awareness and provide relevant information, it is necessary to map endangered biotopes and create an electronic database with easy access to the general public. After the mapping of endangered biotopes, it is also possible to isolate the endangered localities or certain smaller areas, in the form of experimental fields, where adequate suppression measures would be applied depending on the population of the invasive species, life forms and the degree of invasiveness.

The revitalization of certain habitats is one of the conservation measures implemented in the territory of the investigated area. This measure is implemented by PE “Vojvodinašume” and the Provincial Institute for Nature Conservation. Steppe habitats, or more specifically the habitats of Paeonia officinalis subsp. banatica, are highly endangered due to the spread of invasive shrub species. Active conservation measures have proven to be a very successful way to combat invasive plants, but also a way to preserve and restore the native flora of the sands. However, such actions depend on the available financial resources, which is why they are not frequent.

In addition to that, the “Vojvodinašume”PE performs revitalization of pastures by establishing sustainable livestock farming that presents one of the active ways of habitat protection. In this case, the best solution is to control grazing in late spring or summer, after most of the endangered, rare, relict and endemic species complete their flowering and fruiting phases.

CONCLUSION

In accordance with the conducted research and the results obtained, the following conclusions can be drawn:

• Deliblato sands SNR is characterized by a high degree of floristic diversity.
• The factors that threaten the floristic diversity are a collection of medicinal plants, excursion activities, the introduction of invasive species, wild landfills, illegal construction and the opening of sand lakes.
• According to the field observations, interviews with experts and managers, invasive plants present the dominant factor threatening to the floristic diversity of Deliblato sands SNR. In the area of Deliblato sands SNR, a total of 39 invasive plant species were recorded in all habitat types (steppe, sandstone, forest and wetland), which makes 4.33% of the total flora of Deliblato sands.
• The largest number of invasive species recorded in the territory of the “Deliblato sands” SNR belongs to the Compositae family.
• The most common mechanisms of the survival and spread of invasive plant species in the area of the “Deliblato sands” SNR are: pollination, seed and fruit dispersal, vegetative propagation, and intensive root system spread.
• In order to mitigate the impact of invasive plant species on the biodiversity of the Deliblato sands SNR, the implementation of the existing laws and regulations is necessary, the establishment of cooperation among the manager of the SNR, professional and scientific institutions, and the local population, as well as the creation of a separate sector whose task would be to improve biodiversity.
Furthermore, it is important to educate and inform the public about all the negative effects that invasive plants can have. In addition, it is important to map endangered biotopes and create an electronic databases of the invasive plants that would be easily accessible to the general public.

- When it comes to invasive plant species, direct control, the monitoring of endangered habitats, the protection of “cleared” habitats and potentially endangered habitats and the revitalization of indigenous species are crucial.

REFERENCES

Anačkov T., Rat M., Radak B., Igić R., Vukov D., Ručando M., Krstivojević M., Radulović S., Cvijanović D., Milić D., Panjković B., Szabados K., Perić R., Kiš A., Stojšić V., Pal B. (2013): Alien invasive neophytes of the Southeastern part of the Pannonian Plain, Central European Journal of Biology (10): (1032-1047)

Gajić M. (1983): Flora Deliblatske peščare, Prirodno-matematički fakultet OOUR Institut za biologiju, Novi Sad, Šumsko-industrijski kombinat „Pančevo“ OOUR Specijalni Prirodni rezervat „Deliblatski pesak“, Pančevo: (5-442)

Javorka S., Csapody V. (1975): Iconographia floriae partis Austro-orientalis Europae centralis, Budapest: Akadémiai Kiadó

Josifović M. (1970-1986): Flora SR Srbije, Srpska akademija nauka i umetnosti / SANU - Odeljenje prirodno-matematičkih nauka, Beograd

Košanin O., Knežević M. (2002): Karakteristike organske materije zemljišta A-C stadije u zajednicama na Deliblatskoj peščari, 7th Symposium on Flora of South eastern Serbia and Neighbouring Regions: (53 – 59)

Kuzmanović J. (1994): Projekcija zaštite i korišćenja prirodnih vrednosti Deliblatske peščare, Zbornik radova VI – Deliblatski pesak: (85-96)

Medarević M., Bajić V., Tomović Z. (2004): Stanje i upravljanje šumskih ekosistema Deliblatske peščare, Zbornik radova VII – Deliblatski pesak, JP „Vojvodina šume“ Novi Sad, Šumsko gazdinstvo „Banat“ Pančevo, Pančevo: (15-30)

Meuser, M. & Nagel U. (1991) ExpertInneninterviews - vielfach erprobt, wenig bedacht. In: GARZ, D. & KRAIMER, K.(eds.) Qualitativ-empirishe Socialforschung: Konzepte, Methoden, Analysen. Westdeutscher Verlag, Opladen: (441-471)

Mijović A. (2012): Biodiverzitet Srbije – stanje i perspektive, monografija, Beograd: (28-32)

Nikolić Lj., Anačkov G., Plavša N. (2015): Invazivne medonosne biljke u flori Srbije, Letopis naučnih radova 1, Novi Sad: (7-14)

(2011/a): Plan upravljanja SRP „Deliblatska peščara“ za period od 2011 do 2020. JP „Vojvodina šume“, Petrovaradin: (1-10)

Puzović S., Panjković B. (2015): Upravljanje prirodnom baštinom u Vojvodini, Pokrajinjski sekretariat za urbanizam, graditeljstvo i zaštitu životne sredine i Pokrajinjski zavod za zaštitu prirode, Novi Sad: (20-32)

(1998): Predlog za zaštitu prirodnog dobra „Deliblatska peščara“ kao specijalnog rezervata prirode, Zavod za zaštitu prirode, Srbija, Novi Sad: (102-111)

(2011/b): Retke, ranjive i ugrožene biljne i životinjske vrste na području JP „Vojvodinašume“, „Vojvodinašume“, Petrovaradin: (38-54)

Sarić M.R. (1992): Flora Srbije, Srpska akademija nauka i umetnosti / SANU - Odeljenje prirodno-matematičkih nauka, Beograd

Skočajić D., Grbić M., Tomićević J., Đunisavljević-Bojović D., Đukić M. (2008): Elaeagnus umbellata Thunb. kao potencijalno invazivne vrste na području Beograda, Glasnik Šumarskog fakulteta 98, Beograd: (177-188)

Stjepanović-Veselić L. (1953): Vegetacija Deliblatske peščare, Institut za ekologiju i biogeografiju, Beograd: (1-103)

(2011/c): Strategija biološke raznovrsnosti Republike Srbije za period od 2011. do 2018. godine, Republika Srbija, Ministarstvo za zaštitu životne sredine i prostornog planiranja, Beograd: (3-95)

(2008): Uredba o zaštiti Specijalnog rezervata prirode „Deliblatska peščara“, „Službeni glasnik RS“ br. 3/2002 i 81/2008, Vlada Republike Srbije, http://www.pravno-informacioni-sistem.rs/SGlasnikPortal/eli//rep/sgs/vlada/uredba/2002/3/1/reg (accessed / pristupljeno 13. VII 2019).
(2016/a): Zakon o zaštiti prirode, “Službeni glasnik RS” br. 36/2009, 88/2010, 91/2010, 14/2016 Vlada Republike Srbije, Beograd
www.deliblatskapescara.rs (accessed / pristupljeno 2. V 2016/b).
http://iasv.dbe.pmf.uns.ac.rs/index.php?strana=ba-za „Листа инвазивних врста на подручју АП „ Војводине“(accessed / pristupljeno 22. V 2016/c).