Tunable magnetization steps in mixed valent ferromagnet \(\text{Eu}_2\text{CoMnO}_6 \)

Nara Lee\(^1\), Jong Hyuk Kim\(^1\), Dong Gun Oh\(^1\), Hyun Jun Shin\(^1\), Hwan Young Choi\(^1\), Sungkyun Choi\(^2,3\), Younjung Jo\(^4\) & Young Jai Choi\(^1\)

Magnetic properties can be manipulated to enhance certain functionalities by tuning different material processing parameters. Here, we present the controllable magnetization steps of hysteresis loops in double-perovskite single crystals of \(\text{Eu}_2\text{CoMnO}_6 \). Ferromagnetic order emerges below \(T_C \approx 122 \text{ K} \) along the crystallographic \(c \)-axis. The difficulty in altering \(\text{Co}^{2+} \) and \(\text{Mn}^{4+} \) ions naturally induces additional antiferromagnetic clusters in this system. Annealing the crystals in different gas environments modifies the mixed magnetic state, and results in the retardation (after \(\text{O}_2 \)-annealing) and bifurcation (after \(\text{Ar} \)-annealing) of the magnetization steps of isothermal magnetization. This remarkable variation offers an efficient approach for improving the magnetic properties of double-perovskite oxides.

Magnetic oxides composed of metal cations and oxygen anions are extensively studied due to the abundance of the elements and stability of the compounds. In particular, there have been various attempts to manipulate magnetic characteristics to achieve advantageous properties or to enhance desirable functionalities by tuning parameters such as hydrostatic pressure, chemical doping, and strain\(^1-5\). Double-perovskite oxides, in which transition metal ions are alternatingly located in octahedral oxygen environments, have been broadly investigated because of their fascinating magnetic properties. These properties include exchange bias\(^6-15\), magnetocaloric effect\(^16-21\), and multiferroicity\(^15-17\). The emergent properties arise from the intricate magnetic interactions and antiphase boundaries/antisite disorders between the mixed-valence magnetic ions\(^18,19\). In the case that a magnetic rare-earth ion is included, the additional ordering of the rare-earth magnetic moment at a lower temperature generates a significant modification of the magnetic properties\(^20-22\).

In double-perovskite \(\text{R}_2\text{CoMnO}_6 \) (\(\text{R} = \text{La}, \ldots, \text{Lu} \)) compounds, the majority of alternating \(\text{Co}^{2+} \) and \(\text{Mn}^{4+} \) ions leads to the long-range magnetic order emerging from the ferromagnetic \(\text{Co}^{2+} \) and \(\text{Mn}^{4+} \) superexchange interactions, while the magnetic transition temperature varies from 48 K for \(\text{Lu}_2\text{CoMnO}_6 \)\(^15\) to 204 K for \(\text{La}_2\text{CoMnO}_6 \)\(^23\) depending on the size of the rare-earth ions. However, the incomplete alteration of \(\text{Co}^{2+} \) and \(\text{Mn}^{4+} \) ions naturally results in additional antiferromagnetic clusters which correspond to anti-sites of ionic disorders and/or antiphase boundaries that lead to \(\text{Co}^{2+}-\text{Co}^{2+} \) or \(\text{Mn}^{4+}-\text{Mn}^{4+} \) pairs\(^24,25\). Another type of antiferromagnetic cluster involving the valence state of \(\text{Co}^{3+}-\text{Mn}^{3+} \) can also be formed\(^26\). In \(\text{Lu}_2\text{CoMnO}_6 \), the magnetic frustration associated with the nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic couplings gives rise to the up–up–down–down (↑↑↓↓) spin ordering\(^27\). This spin configuration has been known to produce ferroelectricity perpendicular to the \(c \)-axis\(^28,29\) as a result of the cooperative \(\text{O}^2^- \) displacements through the symmetric exchange striction\(^30-32\). In \(\text{Er}_2\text{CoMnO}_6 \), the activation of the ferrimagnetic order between \(\text{Er}^{3+} \) and ferromagnetic \(\text{Co}^{2+}/\text{Mn}^{4+} \) sublattices exhibits an inversion of the magnetic hysteresis loop\(^31\). Furthermore, the additional small portion of multiferroic phase which may result from the ↑↑↓↓ spin order was observed simultaneously with the ferrimagnetic phase\(^22\). In \(\text{Gd}_2\text{CoMnO}_6 \) and \(\text{Tb}_2\text{CoMnO}_6 \), the orders of large rare-earth magnetic moments of \(\text{Gd}^{3+} \) and \(\text{Tb}^{3+} \) at \(T_{\text{Gd}} = 21 \text{ K} \) and \(T_{\text{Tb}} = 15 \text{ K} \), respectively, reveal the giant anisotropic magnetocaloric effects\(^9,10,32\). It is evident from the previous investigations that a detailed understanding of distinct magnetic phases and interactions is essential for examining functional properties in double perovskites.

The \(\text{Eu}_2\text{CoMnO}_6 \) (ECMO) crystallizes in a monoclinic structure with a \(P2_1/n \) space group, in which \(\text{Co}^{2+} \) and \(\text{Mn}^{4+} \) ions are alternatingly located in corner-shared \(\text{O}^2^- \) octahedral environments. Ferromagnetic order from dominant \(\text{Co}^{2+} \) and \(\text{Mn}^{4+} \) superexchange interactions arises at \(T_C \approx 120 \text{ K} \). Magnetic properties appear to be

\(^{1}\)Department of Physics, Yonsei University, Seoul 03722, Korea. \(^{2}\)Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea. \(^{3}\)Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. \(^{4}\)Department of Physics, Kyungpook National University, Daegu 41566, Korea. *email: phylove@yonsei.ac.kr
susceptible to the growth temperatures and gas annealing conditions after the growth. However, the previous studies were done only on polycrystalline specimens, in which the physical properties are averaged out over all spatial orientations, interrupting detailed characterization of intrinsic and anisotropic properties. To overcome this obstruction, we grew single crystals of ECMO using the flux method. In this work, we have confirmed that the ferromagnetic order in ECMO single crystals appears along the crystallographic c axis at $T_C = 122$ K. Since a small number of antiferromagnetic clusters are naturally involved in the major ferromagnetic phase in a double-perovskite, annealing in different atmospheres results in modification of mixed magnetic states and drastic changes in the magnetic hysteresis loop. Our results establish that the atmospheric environments in post-annealing play an important role in modifying the magnetic properties in mixed-valent double-perovskite magnets.

Results and discussion

The ECMO crystallizes in a monoclinic $P2_1/n$ structure with the lattice parameters, $a = 5.3288(7)$ Å, $b = 5.5824(7)$ Å, $c = 7.5764(10)$ Å, and $\beta = 89.9940(14)^\circ$ (see Supplementary Information S1 for details). The structure of an ECMO crystal is depicted in Fig. 1a and b, viewed from the c- and b-axes, respectively. The O^{2-} octahedral cages are significantly distorted due to the relatively small radius of the Eu$^{3+}$ ion. These series of compounds could be refined within two possible space groups, orthorhombic $Pbnm$ (or $Pnma$) and monoclinic $P2_1/n$. However, the recent neutron diffraction studies on polycrystalline R_2CoMnO_6 ($R = \text{Y, Ho, and Tm}$) clearly demonstrate that the magnetic structure is accompanied by alternating Co^{2+} and Mn^{4+} spins. The refinement result of the same magnetic moments for both Co and Mn ions suggests that valences of the ions are Co^{2+} and Mn^{4+} corresponding to high spin states ($S = 3/2$). The amount of antisite defects incorporated in such a compound was estimated as $\sim 6\%$, which indicates that the physical properties with long-range ferromagnetic order can be interpreted within the frame of double-perovskite structure, i.e., monoclinic $P2_1/n$ space group.

The magnetic properties of the as-grown ECMO crystal were investigated along and perpendicular to the c axis. Figure 1c shows the temperature (T) dependence of magnetic susceptibility described by magnetization divided by a magnetic field, $\chi = M/H$, in log scale, measured upon warming in $H = 0.2$ T after zero-field cooling (ZFC) and upon cooling in the same H (FC). As the T decreases, the χ increases smoothly and the ferromagnetic...
order sets in at $T_C = 122 \text{ K}$. The anomaly in the T dependence of heat capacity divided by $T (C/T)$ in zero H and the trough in the T derivative of the ZFC χ curve for $H||c$ also appear at T_C (Fig. 1d). A tiny magnitude of χ for $H||c$ at 5 K after ZFC was observed due to an almost entirely demagnetized state. χ rises abruptly above ~ 17 K, which indicates thermally activated domain wall motion35,36. The T at which the ZFC and FC χ curves start to split were observed at 112 K for $H||c$, indicative of the onset of magnetic irreversibility. A sharp and positive peak of $d\chi/dT$ was observed at ~ 114 K, which represents an additional domain wall de-pinning process associated with the predominant long-range ferromagnetic order37,38. The χ values for the two different orientations exhibit strong magnetic anisotropy, which suggests that the spins are nearly aligned along the c axis, consistent with the neutron diffraction results that the ferromagnetic moments are aligned close to the c-axis20,21.

The H dependence of M at different temperatures for the as-grown crystal was examined. $M(H)$ curves were obtained by sweeping H at 5, 60, 90, and 115 K after cooling the sample in $H = 7 \text{ T}$. The highly anisotropic $M(H)$ curves at 5 K are shown in Fig. 3a. The M in $H||c$ at 7 T is found to be ~ 5.4 μ_B/f.u., smaller than the fully saturated value of 6.0 μ_B/f.u., with the summation of $\text{Co}^{2+} (S = 3/2)$ and $\text{Mn}^{4+} (S = 3/2)$ states in a formula unit. This lack of magnetic saturation suggests the formation of anti-site disorders and antiphase boundaries, leading to antiferromagnetic Co^{2+}–Co^{2+} or Mn^{4+}–Mn^{4+} pairs37,38,40. The slight deviation of the ferromagnetic moment from the c axis would be another reason. In the case that misplaced magnetic ions are frustrated, the portion of anti-sites may increase further. Thus, the observed magnetic moments are compatible with the amount of antisite defects estimated as 6–8% from the neutron diffraction experiments on the isostructural compounds20,21. To verify the oxygen content of the as-grown crystal, we used a thermogravimetric and differential thermal analysis under 5% H_2/Ar atmosphere. The oxygen content was found to be 6.01 ± 0.019. In a recent X-ray photoemission spectroscopy experiment on a polycrystalline ECMO, the partial formation of Eu^{2+} moments (~ 5%) was observed36. The
Eu$^{2+}$ moments would be ordered antiferromagnetically to the Co$^{2+}$/Mn$^{4+}$ moments as observed in other members of the series21,22, which may act as one of the reasons for the reduced saturation M. The remnant M is attained as $\sim 4.0 \, \mu_B/f.u.$, which demonstrates a squareness ratio of 0.74. The abrupt jumps of M in $H||c$ occur at $H = \pm 0.85 \, T$, whereas the M in $H \perp c$ increases linearly with a small magnitude. The change in magnitude of M from 3.27 to 0.17 $\mu_B/f.u.$ at $-0.85 \, T$ is caused by the alteration from the magnetic state with dominant up-spin domains to the almost demagnetized state. The knee-like feature of M above the large step in $H||c$ would be influenced partly by the magnetic re-ordering or spin-flops of antiferromagnetic clusters. Upon increasing T, the magnetic hysteresis narrows and another M step near-zero H occurs as the remnant M value drops significantly (Fig. 3b,c). At 115 K, just below T_C, the ferromagnetic behavior remains but the hysteresis and M steps vanish (Fig. 3d).

The different gas annealing conditions led to substantial modifications in the H dependence of M. In Fig. 4, the isothermal magnetizations along the c axis, taken at 5 K and 60 K, and the H-derivatives of magnetizations, are displayed for the O$_2$-annealed crystal at 5 K (Fig. 4a,b, respectively), Ar-annealed crystal at 5 K (Fig. 4c,d, respectively) and quenched crystal at 60 K (Fig. 4e,f, respectively). After O$_2$ gas annealing, the oxygen content of the O$_2$-annealed crystal was estimated as 6.07 \pm 0.008. The content of Eu$^{3+}$ ions was also estimated to be 1.963 \pm 0.008 from the EPMA measurement, which may result from the partial replacements of Bi$^{3+}$ ions inherent from Bi$_2$O$_3$ flux during the growth33,34. The M in $H||c$ at 7 T is $\sim 5.8 \, \mu_B/f.u.$ which is close to the saturated magnetic moment (Fig. 4a). In comparison with the as-grown crystal, the step of M at 5 K is slightly retarded, occurring at $\pm 0.91 \, T$, which is manifestly displayed as a sharp peak in the derivative of M (Fig. 4b). The remnant M becomes larger, estimated as 4.87 $\mu_B/f.u.$, and the squareness ratio is enhanced to 0.84. Additional small steps are found at $\pm 1.93 \, T$, shown as broad bumps in the derivative of M. The M steps still remain at 60 K. The slow cooling procedure for the O$_2$-annealed crystal improves the order of Co-Mn ion configuration. However, the excessive oxidation induces cationic vacancies that effectively pin the ferromagnetic domains41 despite the formation of a lower amount of anti-site defects. This conceivably explains the enhanced value and retarded step of M.

For the Ar-annealed crystal, isothermal M and its derivative at 5 K demonstrate two sharpened transitions occurring at 0.6 and 1.4 T with intermediate plateaus, as shown in Fig. 4c and d. The abrupt variations indicate the H-driven reversal from one saturated magnetic state to the other-direction saturated state through two-step M changes of magnetic domain walls. The M at 7 T and the remnant M are found to be 5.2 $\mu_B/f.u.$ and 4.4 $\mu_B/f.u.$, respectively, which determines a high squareness ratio of 0.85. More reduction of M at 7 T and oxygen content estimated as 5.87 \pm 0.007 indicate that the oxygen-deficient atmosphere during Ar-annealing generates an additional portion of antiferromagnetic clusters. In more detail, the oxygen vacancies induce a reduced valence state such as the change from Mn$^{2+}$ to Mn$^{3+}$ to preserve the electroneutrality. This may lead to antiferromagnetic

![Figure 3. Isothermal magnetization for the as-grown crystal. Isothermal magnetization (a) along and perpendicular to the c axis measured at 5 K after cooling in $H=7 \, T$ and at (b) 60, (c) 90, and (d) 115 K, along the c axis measured after magnetic-field cooling in 7 T.](image-url)
Co$^{2+}$–Mn$^{3+}$ pairs, giving an explanation for the reduced saturation value of M. Furthermore, the additional portion of antiferromagnetic pairs may break the coherence of ferromagnetic domains and lessen the magnetic inhomogeneity, which would present the two-step change of M. If the antisites of Mn$^{3+}$–Mn$^{4+}$ pairs are formed in the oxygen deficient condition, the double-exchange interactions between Mn$^{3+}$ and Mn$^{4+}$ moments are expected. However, these series of compounds are insulators, suggesting that the possible formation of Mn$^{3+}$–Mn$^{4+}$ pairs would be ruled out or the amount of Mn$^{3+}$–Mn$^{4+}$ pairs would be tiny and thus non-percolative in electrical conduction.23 Furthermore, oxygen vacancies can contribute to the ionic disorders via the trapping of two Mn$^{3+}$ ions. As a result, the traps in the vacant sites generate antiferromagnetic Mn$^{3+}$–Mn$^{3+}$ pairs.23 A partial deficiency of Eu$^{3+}$ ions was observed in N$_2$ annealed polycrystalline ECMO.33,34 In our single crystalline ECMO, the content of Eu$^{3+}$ ions for the Ar annealed crystals was estimated as 1.931 ± 0.025 via the EPMA method. The presence of deficient Eu$^{3+}$ ions may arise from the partial replacements of Bi$^{3+}$ ions as well as oxygen deficient condition. The substantial alterations of shapes and steps in isothermal M curves suggest that Ar-annealing procedure engenders the reconstruction of antiferromagnetic clusters and modify the distribution of magnetic domain pinnings.42,43 Unlike the O$_2$-annealed case, these two sharp M steps completely disappear at 60 K, where only smooth ferromagnetic behavior is displayed. Both $M(H)$ curves at 5 K for O$_2$ and Ar-annealed crystals exhibit slight linear slopes at the high H regime, resulting from the reorientation of a small portion of antiferromagnetic spins in antisites and/or antiphase boundaries.44

For the quenched crystal, the magnetic hysteresis loop at 5 K becomes narrow with the disappearance of sharp steps and includes the linear component in a broad H range (Fig. 4e). The hysteresis loop appears to be asymmetric with a noticeable shift, which is ascribed to the minor hysteresis loop effect.45,46 On the other hand, the M at 60 K reveals multiple steps at ± 0.6 and ± 2.75 T as shown in Fig. 4f. The quenching procedure may engender critical deterioration on crystal quality, and it thus destroys the square-shape response of M. The overall value of M is largely reduced and the M value at 7 T is found to be ~ 2.9 μ_B/f.u., only about 50% of the fully saturated value, 6 μ_B/f.u. The results suggest the prevailing formation of disorders and defects in which a considerable portion may contain additional antiferromagnetic clusters from antisites and/or antiphase boundaries. A close looking at the M process suggests the formation of mixed hard and soft ferromagnetic phases. As described for the isothermal M of ε-Fe$_2$O$_3,$47,48 the inhomogeneous concentration of defects resulting in different pinned magnetic domains plays a crucial role in magnetically hysteretic behavior. High-defect regions would lead to a hard ferromagnetic behavior due to strongly pinned domains while few-defect regions would be relevant to a soft ferromagnetic behavior. Similar hysteretic behavior with a possible combination of hard and soft ferromagnetic phases was observed in the previous work on a polycrystalline Y$_3$CoMnO$_8.$30

The T dependence of χ is also influenced by the post-annealing atmosphere. The T dependence of ZFC and FC χ curves are displayed in linear scale for the as-grown, O$_2$-annealed, Ar-annealed, and quenched crystals in Fig. 5. In O$_2$-annealed and Ar-annealed crystals, T_c does not change, which implies that the gas-annealing procedure affects strongly on the M steps but not on the long-range ferromagnetic order.41 For the O$_2$-annealed crystal, a tiny negative magnitude of χ was observed after ZFC, at 5 K, due to a typical remanent H that remained negative upon cooling, as shown in Fig. 5b. As T is increased, the χ rises broadly with a shoulder-like feature, followed...
by a peak at ~115 K. The overall magnitude of \(\chi \) after Ar-annealing increases, but the peak corresponding to the domain wall depinning process is found to be at the lower \(T \approx 109 \) K. In the quenched crystal, the decrease of ferromagnetic transition temperature by 10 K (to \(T_C = 112 \) K) and the significant suppression of \(\chi \) are observed due to the formation of additional defects and disorders. The weak glassy behavior in polycrystalline specimens indicates the more considerable formation of antiferromagnetic clusters. However, the averaging effect in physical properties of polycrystalline samples would disturb the observation of intrinsic and anisotropic properties. For example, magnetization steps in some of the polycrystalline ECMO appear to be less sharp than those of single crystals\(^{24,33,34}\) or to be completely vanished\(^{24,33,34}\). This suggests the importance of investigating single crystals in which intriguing physical properties based on strong magnetic anisotropy are made apparent.

Tunable \(M \) steps are achieved by reconstructing mixed magnetic states by annealing the crystals in different atmospheres. The step effect of the magnetic hysteresis loop has been theoretically investigated in intermixed ferromagnetic and antiferromagnetic states\(^{49,50}\). The mixture of ferromagnetic and antiferromagnetic interactions, combined with magnetic anisotropy and/or weak dipolar interaction, generates various shapes and steps in magnetic hysteresis loops depending on the relative ratio of two magnetic types. We do not yet have a microscopic understanding of the influence of annealing environments on the intriguing magnetic behaviors of ECMO. Thus, to reveal the mechanism for controllable \(M \) steps and to identify the wide spectrum of valences and exchange interactions of magnetic ions, further investigations of extensive magnetic properties for similar double-perovskite compounds are required.

Conclusion

In summary, we have explored the magnetic properties of single-crystalline double-perovskite \(\text{Eu}_2\text{CoMnO}_6 \) prepared in different atmospheric annealing conditions. In the as-grown crystal, the magnetic susceptibility reveals ferromagnetic order along the \(c \) axis at \(T_C = 122 \) K, below which isothermal magnetization exhibits a step effect. The ferromagnetic and additional antiferromagnetic clusters are modified after annealing in different gas environments such that the temperature and magnetic-field dependencies of the magnetic properties vary markedly. We achieve the tuning of the magnetization steps in the as-grown crystal as retardation after \(\text{O}_2 \)-annealing and bifurcation after Ar-annealing. Our findings provide crucial clues for understanding the precise mechanism for alteration of mixed magnetic states and an efficient means to adjust the magnetic properties of double-perovskite compounds.

Figure 5. Magnetic susceptibility for the annealed crystals. Temperature dependence of ZFC and FC \(\chi \) values displayed in linear scale along the \(c \) axis in \(H = 0.2 \) T//\(c \) for (a) the as-grown, (b) \(\text{O}_2 \)-annealed, (c) Ar-annealed, and (d) quenched crystals. The \(\chi \) values are plotted after magnification by three times in scale for the quenched crystal.
Methods

We have synthesized rod-like single crystals of ECMO utilizing the conventional flux method with Bi₂O₃ flux in air[10,11]. The crystallographic structure of the EFO crystals was confirmed using an X-ray diffractometer (D/Max 2500, Rigaku Corp.). ECMO specimens in different atmospheric environments were prepared after the growth. The atmospheric environments were: an O₂-annealing process (heated up to 1150 °C, held for 5 h, and cooled at the rate of 50 °C/h in O₂ gas), Ar-annealed (heated up to 1150 °C, held for 5 h, and cooled at the rate of 50 °C/h in Ar gas), and quenched (heated for up to 1200 °C in air, held for 5 h, and quickly quenched down to room temperature). The oxygen contents were measured by a thermogravimetric and differential thermal analysis (TG–DTA; SDT Q600, TA instruments). Under 5% H₂/Ar atmosphere, each sample was heated to 1000 °C with the rate of 5 °C/min. The Eu deficiency was measured using a Wavelength Dispersive X-ray Spectrometer in an PPMS.

Received: 1 August 2020; Accepted: 5 April 2021
Published online: 30 April 2021

References

1. Gama, S. et al. Pressure-induced colossal magnetocaloric effect in MnAs. Phys. Rev. Lett. 93, 237202. https://doi.org/10.1103/PhysRevLett.93.237202 (2004).
2. Lyubina, J., Nenkov, K., Schultz, L. & Gutfleisch, O. Multiple metamagnetic transitions in the magnetic refrigerant La(Fe, S)₃Sₓ, Phys. Rev. Lett. 117, 177203. https://doi.org/10.1103/PhysRevLett.117.177203 (2008).
3. Srivastava, M. K., Kaur, A., Maurya, K. K., Awana, V. P. S. & Singh, H. K. Impact of strain on metamagnetic transitions in Sm₁₋ₓSnₓMnO₃ thin films. Appl. Phys. Lett. 102, 032402. https://doi.org/10.1063/1.4788745 (2013).
4. Stauton, J. B., dos Santos Dias, M., Peace, J., Gercsi, Z. & Sandeman, K. G. Tuning the magnetism of an antiferromagnetic metal. Phys. Rev. B 87, 060404. https://doi.org/10.1103/PhysRevB.87.060404 (2013).
5. Gercsi, Z., Hono, K. & Sandeman, K. G. Designed magnetism in CoMnO₃₋ᵯ, Phys. Rev. B 83, 174403. https://doi.org/10.1103/PhysRevB.83.174403 (2011).
6. Pradheesh, R., Nair, H. S., Sankaranarayanan, V. & Sethupathi, K. Exchange bias and memory effect in double perovskite Sr₂FeCoO₆. Appl. Phys. Lett. 102, 142401. https://doi.org/10.1063/1.4756792 (2012).
7. Liu, W. et al. Griffiths phase, spin-phonon coupling, and exchange bias effect in double perovskite Pr₂CoMnO₆. J. Appl. Phys. 116, 193901. https://doi.org/10.1063/1.4920978 (2014).
8. Murthy, J. K. & Venimadhav, A. 4f–3d exchange coupling induced exchange bias and field induced Hopkinson peak effects in Gd₂CoMnO₆. J. Alloys Compd. 719, 341–346. https://doi.org/10.1016/j.jallcom.2017.05.203 (2017).
9. Moon, Y. J., Kim, M. K., Choi, Y. J. & Lee, N. Giant anisotropic magnetocaloric effect in double perovskite Gd₂CoMnO₆ single crystals. Sci. Rep. 7, 16099. https://doi.org/10.1038/s41598-017-16416-z (2017).
10. Moon, Y. J. et al. Anisotropic magnetic properties and giant rotating magnetocaloric effect in double-perovskite Tb₂CoMnO₆. Phys. Rev. B 98, 174424. https://doi.org/10.1103/PhysRevB.98.174424 (2018).
11. Ganeshraj, C., Pradheesh, R. & Santhosh, P. N. Structural, magnetic, transport and magnetocaloric properties of magnetomagnetic DyMnₓCo₁₋ₓO₃₋ᵯ, J. Appl. Phys. 111, 07A914. https://doi.org/10.1063/1.3672067 (2012).
12. Balli, M., Fournier, P., Jandl, S., Truong, K. D. & Gospodinov, M. M. Analysis of the phase transition and magneto-thermal properties in La₂CoMnO₆ single crystals. J. Appl. Phys. 116, 073907. https://doi.org/10.1063/1.4893721 (2014).
13. Chikara, S. et al. Electric polarization observed in single crystals of multiferroic Lu₂MnCoO₆. Phys. Rev. B 93, 180405. https://doi.org/10.1103/PhysRevB.93.180405 (2016).
14. Terada, N. et al. Ferroelectricity induced by ferriaxial crystal rotation and spin helicity in a B-site-ordered double-perovskite multiferroic In₃NiMnO₆. Phys. Rev. B 91, 104413. https://doi.org/10.1103/PhysRevB.91.104413 (2015).
15. Lee, N. et al. Strong ferromagnetic-dielectric coupling in multiferroic Lu₂CoMnO₆ single crystals. Appl. Phys. Lett. 104, 112907. https://doi.org/10.1063/1.4869479 (2014).
16. Choi, H. Y., Moon, J. Y., Kim, J. H., Choi, Y. J. & Lee, N. Single crystal growth of multiferroic double perovskites: Yb₂CoMnO₆ and Lu₂CoMnO₆. Curr. Comput.-Aided Drug Des. 7, 67. https://doi.org/10.3390/cryst7030067 (2017).
17. Sharma, G., Saha, J., Kaushik, S. D., Siruguri, V. & Patnaik, S. Magnetism driven ferroelectricity above liquid nitrogen temperature in Y₂CoMnO₆. Appl. Phys. Lett. 103, 012903. https://doi.org/10.1063/1.4812728 (2013).
18. Nair, H. S., Chatterjee, T. & Strydom, A. M. Antisite disorder-induced exchange bias effect in multiferroic Y₂CoMnO₆. Appl. Phys. Lett. 106, 022407. https://doi.org/10.1063/1.4906204 (2015).
19. Sahoo, R. C. et al. Antisite-disorder induced large exchange bias effect in phase separated La₀.₉Ca₀.₁CoMnO₆ double perovskite. J. Magn. Magn. Mater. 428, 86–91. https://doi.org/10.1016/j.jmmm.2016.12.018 (2017).
20. Blasco, J. et al. Magnetoelectric and structural properties of Y₂CoMnO₆, the role of antisite defects. Phys. Rev. B 93, 214401. https://doi.org/10.1103/PhysRevB.93.214401 (2016).
21. Blasco, J. et al. Magnetic order and magnetoelectric properties of R₂CoMnO₆ perovskites (R=Ho, Tb, Yb, and Lu). Phys. Rev. B 96, 024409. https://doi.org/10.1103/PhysRevB.96.024409 (2017).
22. Kim, K. M. et al. Strong magnetoelectric coupling in mixed ferrimagnetic-multiferroic phases of a double perovskite. Sci. Rep. 9, 5456. https://doi.org/10.1038/s41598-019-41990-9 (2019).
23. Dass, R. I. & Goodenough, J. B. Multiple magnetic phases of La₂CoMnO₆₋ᵯ (0<ᵯ<0.05). Phys. Rev. B 67, 014401. https://doi.org/10.1103/PhysRevB.67.014401 (2003).
24. Khomchenko, V. A. et al. Metamagnetic behaviour in TbCo₂Mn₆O₁₆ perovskite, J. Phys. Condens. Matter 18, 9541–9548. https://doi.org/10.1088/0953-8984/18/42/001 (2006).
25. Balli, M., Fournier, P., Jandl, S., Truong, K. D., Gospodinov, M. M. Analysis of the phase transition and magneto-thermal properties in La₂CoMnO₆ single crystals. J. Appl. Phys. 116, 073907. https://doi.org/10.1063/1.4893721 (2014).
26. Madhgora, R. P. et al. Evidence of long-range ferromagnetic order and spin frustration effects in the double perovskite La₂CoMnO₆. Phys. Rev. B 99, 104436. https://doi.org/10.1103/PhysRevB.99.104436 (2019).
27. Yañez-Vilar, S. et al. Multiferroic behavior in the double-perovskite Lu₂MnCoO₆, Phys. Rev. B 84, 134427. https://doi.org/10.1103/PhysRevB.84.134427 (2011).
42. Zapperi, S., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and inverse exchange bias phenomenon in the ferromagnetic polycrystalline compound Eu$_3$Co$_{10}$O$_{17}$. Phys. Rev. B 98, 104414. https://doi.org/10.1103/PhysRevB.98.104414 (2018).

39. García, L. M., Bartolomé, J., Lázaro, F. J., de Francisco, C. & Muñoz, J. M. Magnetic disaccommodation phenomena in rare-earth intermetallic compounds. J. Magn. Magn. Mater. 500, 166387. https://doi.org/10.1016/j.jmmm.2019.166387 (2020).

28. Xin, C. et al. Spin rotation driven ferroelectric polarization with a 180° flop in double-perovskite Lu$_2$CoMnO$_6$. RSC Adv. 5, 433–4339. https://doi.org/10.1039/C5RA07277A (2015).

30. Zhang, J. T., Lu, X. M., Yang, X. Q., Wang, J. L. & Zhu, J. S. Origins of ↑↓↑↑↓↓ magnetism driven ferroelectricity in multiferroic Lu$_2$CoMnO$_6$. Phys. Rev. B 93, 075140. https://doi.org/10.1103/PhysRevB.93.075140 (2016).

29. Zhang, J. T., Lu, X. M., Yang, X. Q., Wang, J. L. & Zhu, J. S. Origins of ↑↓↑↑↓↓↑↑↓↓ magnetism driven ferroelectricity in multiferroic Lu$_2$CoMnO$_6$. Phys. Rev. B 93, 075140. https://doi.org/10.1103/PhysRevB.93.075140 (2016).

31. Banerjee, A., Sanmigrahi, J., Giri, S. & Majumdar, S. Magnetization reversal and inverse exchange bias phenomenon in the ferromagnetic polycrystalline compound Er$_3$Co$_{10}$O$_{17}$. Phys. Rev. B 98, 104414. https://doi.org/10.1103/PhysRevB.98.104414 (2018).

25. Katari, V. et al. Effect of annealing environment on low-temperature magnetic and dielectric properties of EuCo$_3$Mn$_2$O$_7$. J. Phys. Chem. C 118, 17900–17913. https://doi.org/10.1021/jp51654c (2014).

26. Troyanchuk, I. O., Bushinsky, M. V., Tereshko, N. V. & Vasilev, A. N. Causes of the metamagnetism in a disordered EuMn$_2$Co$_3$O$_7$ perovskite. J. Exp. Theor. Phys. 126, 811–815. https://doi.org/10.1134/S1063776118050072 (2018).

24. Atkinson, D. et al. Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nat. Mater. 2, 85–87. https://doi.org/10.1038/nmat803 (2003).

23. Stacey, F. D. Thermally activated ferromagnetic domain wall motion. Aust. J. Chem. 13, 599 (1960).

22. Alam, M., Pal, A., Anand, K., Singh, P. & Chatterjee, S. Observation of sharp metamagnetic transition, Griffiths like phase and glassy nature in double perovskite Eu$_3$Co$_{10}$O$_{17}$, arXiv preprint https://arxiv.org/abs/1909.12599 (2019).

21. Krishnamurthy, J. & Venimadav, A. Magnetic field-induced metamagnet, magnetic and pyrocurrent behaviors of Eu$_2$CoMnO$_6$. J. Magn. Magn. Mater. 500, 166387. https://doi.org/10.1016/j.jmmm.2019.166387 (2020).

19. Garcia, L. M., Bartolome, J., Lazaro, F.J., de Francisco, C. & Munoz, J. M. Magnetic disaccommodation phenomena in rare-earth intermetallic compounds. Phys. Rev. B 54, 15238–15250. https://doi.org/10.1103/PhysRevB.54.15238 (1996).

18. Asaka, T. et al. Strong pinning effect and magnetic nanodomain formation by coupling between magnetic and crystallographic domains in the ordered double perovskite Ba$_2$FeMoO$_6$. Phys. Rev. B 75, 184440. https://doi.org/10.1103/PhysRevB.75.184440 (2007).

17. Pralong, V. et al. Oxygen excess in the “114” cobaltite hexagonal structure: the ferrimagnet CaBaCo$_4$O$_{11-x}$. J. Solid State Chem. 184, 2588–2594. https://doi.org/10.1016/j.jssc.2011.07.039 (2011).

16. Zapperi, S., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect. Phys. Rev. B 58, 6353–6366. https://doi.org/10.1103/PhysRevB.58.6353 (1998).

15. Nguyen, V. D. et al. Elementary depinning processes of magnetic domain walls under fields and currents. Sci. Rep. 4, 6509. https://doi.org/10.1038/srep06509 (2014).

14. Dass, R. I. & Goodenough, J. B. Itinerant to localized electronic transition in Sr$_2$FeMo$_{1-x}$W$_x$O$_6$. J. Magn. Magn. Mater. 500, 166387. https://doi.org/10.1016/j.jmmm.2019.166387 (2020).

13. O’Grady, K. & Greaves, S. J. Minor hysteresis loop effects in magnetic materials. J. Magn. Magn. Mater. 138, L233–L236. https://doi.org/10.1016/S0304-8853(94)90043-4 (1994).

12. Dobrynin, A. N., Gao, T. R., Dempsey, N. M. & Givord, D. Experimental determination of the magnetization dependent part of the demagnetizing field in hard magnetic materials. Appl. Phys. Lett. 97, 192506. https://doi.org/10.1063/1.3514554 (2010).

11. Ukleev, V. et al. Stabilization of e-Fe$_2$O$_3$ epitaxial layer on MgO(111)/GaN via an intermediate γ-phase. Phys. Rev. Mater. 3, 094401. https://doi.org/10.1103/PhysRevMaterials.3.094401 (2019).

10. Saturin, S. M. et al. Correlation between crystal structure and magnetism in PLD grown epitaxial films of e-Fe$_2$O$_3$ on GaN. Sci. Technol. Adv. Mater. 22, 85–99. https://doi.org/10.1080/14686996.2020.1870870 (2021).

9. Salas-Solís, M. C., Aguilera-Granja, F., Cartes, J., Contreras, S. & Vogel, E. E. Axial anisotropic effects in hysteresis of ±J Ising lattices. Phys. Rev. B 70, 064404. https://doi.org/10.1103/PhysRevB.70.064404 (2004).

8. Wang, J., Liu, Y., Xie, Z. & Ma, Q. In Journal of Physics: Conference Series 65 (IOP Publishing).

Acknowledgements

The work at Yonsei University was supported by the National Research Foundation of Korea (NRF) [grant numbers NRF-2017R1A5A1014862 (SRC program: vdWMRC center), NRF-2019R1A2C2002601, and NRF-2021R1C1C1006375]. HYC was partially supported by the Graduate School of Yonsei University Research Scholarship Grant in 2017. The work at Kyungpook National University was supported by an NRF grant [grant number NRF-2018K2A9A1A06069211, NRF-2019R1A2C1089017]. The work at Sungkyunkwan University was supported by the Institute for Basic Science (IBS-R011-Y3-2021). AC magnetic susceptibility was measured at the Korea Basic Science Institute, Korea. We would like to thank Editage (www.editage.co.kr) for English language editing.

Author contributions

N.L. and Y.J.C. designed the experiments. H.Y.C. and N.L. synthesized the single crystals. J.H.K. and S.C. performed X-ray diffraction and refined data. N.L., J.H.K., D.G.O., H.J.S., H.Y.C., and Y.J. carried out measurements of physical properties. N.L. and Y.J.C. analyzed the data and prepared the manuscript. All the authors have read and approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-88950-w.

Correspondence and requests for materials should be addressed to Y.J.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
