Representations of the Lie algebra of vector fields on a sphere

Yuly Billig and Jonathan Nilsson

Abstract

For an affine algebraic variety \(X \) we study a category of modules that admit compatible actions of both the algebra of functions on \(X \) and the Lie algebra of vector fields on \(X \). In particular, for the case when \(X \) is the sphere \(S^2 \), we construct a set of simple modules that are finitely generated over \(A \). In addition, we prove that the monoidal category that these modules generate is equivalent to the category of finite-dimensional rational \(GL_2 \)-modules.

1 Introduction

In 1986 David Jordan proved simplicity of Lie algebras of polynomial vector fields on smooth irreducible affine algebraic varieties (\cite{8}, see also \cite{9} and \cite{4}). Yet, representation theory for this important class of Lie algebras remains largely undeveloped. The goal of the present paper is to investigate as a test case, representation theory of the Lie algebra of polynomial vector fields on a sphere \(S^2 \). Previously, representation theory was developed only for the classical Lie algebras of Cartan type – polynomial vector fields on an affine space and on a torus. Representations of the Lie algebras of vector fields on an affine space were studied by Rudakov in 1974 \cite{15}.

An important classification result on representations of the Lie algebra of vector fields on a circle was established by Mathieu \cite{12}. The case of an \(N \)-dimensional torus was studied by Larsson \cite{11}, Eswara Rao \cite{6}, \cite{7}, Billig \cite{1}, Mazorchuk-Zhao \cite{13} and Billig-Futorny \cite{2}. The culmination of this work was the proof in \cite{3} of Rao’s conjecture on classification of irreducible weight modules for the Lie algebra of vector fields on a torus with finite-dimensional weight spaces. According to this classification, every such module is either of the highest weight type, or a quotient of a tensor module.

When we move from the torus to general affine algebraic varieties, the first difficulty that arises is the absence of a Cartan subalgebra. It was shown in \cite{1} that even in the case of an affine elliptic curve, the Lie algebra of vector fields does not contain non-zero semisimple or nilpotent elements. This demonstrates that the theory of this class of simple Lie algebras is very different from the classical theory of simple finite-dimensional Lie algebras,
where roots and weights play a fundamental role. When studying representation theory of a simple Lie algebra, one has to impose some reasonable restrictions on the class of modules, since the description of simple modules in full generality is only known for \mathfrak{sl}_2.

In case of vector fields on a torus, a natural restriction is the existence of a weight decomposition with finite-dimensional weight spaces. A theorem proved in [3] states that a simple weight module M for the Lie algebra of vector fields on a torus admits a cover $\hat{M} \to M$, where \hat{M} is a module for both the Lie algebra of vector fields and the commutative algebra of functions on a torus. This suggests that a reasonable category of modules for the Lie algebra \mathcal{V} of vector fields on an affine variety X will be those that admit a compatible action of the algebra A of polynomial functions on X. We refer to such modules as AV-modules. A finiteness condition will be a requirement that the module is finitely generated over A.

We begin by discussing the general theory of AV-modules, defining dual modules and tensor product in this category. Then the focus of the paper shifts to the study of the case of a sphere S^2. A new feature here compared to the torus and circle is that Lie algebra of vector fields on S^2, as well as its AV-modules, are not free as modules over A. We construct a class of tensor modules (geometrically these are modules of tensor fields on a sphere), and prove their simplicity in the category of AV-modules. We also show that the monoidal category generated by simple tensor modules on S^2 is semisimple and is equivalent to the category of finite-dimensional rational GL_2-modules.

The methods that we employ are a combination of Lie theory and commutative algebra. Hilbert’s Nullstellensatz is an essential ingredient in the proof of simplicity of tensor modules.

2 Generalities

Let $X \subset \mathbb{A}^n$ be an algebraic variety over an algebraically closed field k of characteristic zero. Write A_X for the algebra of polynomial functions on X, and let $\mathcal{V}_X = \text{Der}_k(A_X)$ be the Lie algebra of polynomial vector fields on X. When the variety X is understood by the context we shall drop it as a subscript. Note that \mathcal{V} is an A-module and that A is a \mathcal{V}-module. For $a \in A$ and $\eta \in \mathcal{V}$ we shall write the latter action as $\eta(a)$.

Consider a vector space M equipped with a module structure for both the associative commutative unital algebra A and for the Lie algebra \mathcal{V}, such that the two structures are compatible in the following sense: For every $a \in A$, $\eta \in \mathcal{V}$, and $m \in M$ we have

$$\eta \cdot (a \cdot m) = \eta(a) \cdot m + a \cdot (\eta \cdot m).$$

This is equivalent to saying that M is a module over the smash product algebra $A\#U(\mathcal{V})$, see [14] for details. For simplicity we shall write just $A\mathcal{V}$.
for $A\#U(\mathcal{V})$. A morphism of $A\mathcal{V}$-modules is a map that preserves both the A- and the \mathcal{V}-structures. The category of $A\mathcal{V}$-modules is clearly abelian since A-Mod and \mathcal{V}-Mod are.

For two $A\mathcal{V}$-modules M and N we may form the tensor product $M \otimes_A N$ which makes sense since A is commutative. This is equipped with the natural A-module structure

$$a \cdot (m \otimes n) = (a \cdot m) \otimes n,$$

where the right side also equals $m \otimes (a \cdot n)$.

The Lie algebra of vector fields acts on the tensor product by

$$\eta(m \otimes n) = (\eta \cdot m) \otimes n + m \otimes (\eta \cdot n),$$

as usual. We verify that these two structures are compatible in the above sense. We have

$$\eta \cdot (a \cdot (m \otimes n)) = \eta \cdot ((a \cdot m) \otimes n) = (\eta \cdot (a \cdot m)) \otimes n + (a \cdot m) \otimes (\eta \cdot n)$$

$$= (\eta(a) \cdot m) \otimes n + (a \cdot (\eta \cdot m)) \otimes n + a \cdot (m \otimes (\eta \cdot n))$$

$$= \eta(a) \cdot (m \otimes n) + a \cdot (\eta \cdot (m \otimes n)).$$

This shows that $M \otimes_A N$ is an $A\mathcal{V}$-module, and that $A\mathcal{V}$-Mod is a monoidal category.

For any $A\mathcal{V}$-module M we define

$$M^\circ := \text{Hom}_A(M, A).$$

The algebra A acts naturally on M° by $(a \cdot \varphi)(m) = a \varphi(m)$, and we define an action of \mathcal{V} on M° by

$$(\eta \cdot \varphi)(m) = -\varphi(\eta \cdot m) + \eta(\varphi(m))$$

for all $\eta \in \mathcal{V}$, $\varphi \in M^\circ$, and $m \in M$. These two actions are compatible in the sense defined above, so M° is indeed an $A\mathcal{V}$-module. The contravariant functor $M \mapsto M^\circ$ provides a duality on $A\mathcal{V}$-Mod.

Chart Parameters

Let $h \in A$ be a function and consider the corresponding chart for X consisting of points where h does not vanish: $N(h) = \{p \in X|h(p) \neq 0\}$.

Definition 1. We shall say that $t_1, \ldots, t_s \in A$ are **chart parameters** in the chart $N(h)$ provided that the following conditions are satisfied:

1. t_1, \ldots, t_s are algebraically independent over k, so $k[t_1, \ldots, t_s] \subset A$.
2. Each element of A is algebraic over $k[t_1, \ldots, t_s]$.

3. For each index p, the derivation $\frac{\partial}{\partial p} \in \text{Der}(k[t_1, \ldots, t_s])$ extends to a derivation of the localized algebra $A(h)$.

Note that part 2 also implies that each element of $A(h)$ is algebraic over $k[t_1, \ldots, t_s]$ since algebraic elements are closed under taking inverses. Some further consequences of the definition are given below.

Lemma 2. Let $t_1, \ldots, t_s \in A$ be chart parameters in the chart $N(h)$. Then

1. The extension of the derivation $\frac{\partial}{\partial p} \in \text{Der}(k[t_1, \ldots, t_s])$ to the localized algebra $A(h)$ is unique.
2. $\text{Der}(A(h)) = \bigoplus_{p=1}^{s} A(h) \frac{\partial}{\partial p}.

Proof. The uniqueness in the first claim follows from part 2 of Definition [1]. Indeed let f be a non-zero element of $A(h)$ and let $p_nT^n + \cdots + p_1T + p_0$ be its minimal polynomial with $p_i \in k[t_1, \ldots, t_s]$. Let $\mu \in \text{Der}(A(h))$. Then

$$\mu(f) = -\frac{\mu(p_n)f^n + \cdots + \mu(p_1)f + \mu(p_0)}{np_n f^{n-1} + \cdots + p_1},$$

hence every derivation of $A(h)$ is uniquely determined by its values on $k[t_1, \ldots, t_s]$.

The second claim follows from part 3 of Definition [1]. For any $d \in \text{Der}(A(h))$, let $d' = \sum_{i=1}^{s} d(t_i) \frac{\partial}{\partial t_i}$. Then d and d' are both derivations of $A(h)$ which are equal on $k[t_1, \ldots, t_s] \subset A(h)$, hence $d = d'$. Moreover, the expression of a derivation as an $A(h)$-combination of $\{ \frac{\partial}{\partial t_1}, \ldots, \frac{\partial}{\partial t_s} \}$ is unique: this is seen when applying such a combination to t_1, \ldots, t_s. \qed

Our prototypical example is the following. Let $X = S^2$ and let $h = z$. Then x, y are chart parameters outside the equator $z = 0$: First $k[x, y] \subset A$. Next we have $q(z) = 0$ for $q(T) = T^2 + (x^2 + y^2 - 1)$ so z is algebraic over $k[x, y]$. Since x, y, z generate the ring A, every element of A is algebraic over $k[x, y]$. For the third part we note that $0 = \frac{\partial}{\partial x}(x^2 + y^2 + z^2 - 1) = 2x + 2z \frac{\partial z}{\partial x}$, so for the extension of $\frac{\partial}{\partial x}$ to $A(z)$ we have $\frac{\partial z}{\partial x} = -\frac{z}{x}$ which uniquely determines the derivation $\frac{\partial}{\partial x}$ on $A(z)$.

An Atlas for X

Let X be the zero locus of polynomials $g_1, \ldots, g_n \in k[x_1, \ldots, x_m]$ such that $A = k[x_1, \ldots, x_m]/\langle g_1, \ldots, g_n \rangle$, and define

$$J = \left(\frac{\partial g_i}{\partial x_j} \right) \in \text{Mat}_{n \times m}(A).$$

Let F be the field of fractions of A and define $r := \text{rank}_F J$. This means that there exists some $r \times r$-minor which is a nonzero element of A. By
the Nullstellensatz we have \(\text{rank}_F J = \max_{P \in X} \text{rank}_k J(P) \), and when \(X \) is smooth, \(\text{rank}_k J(P) \) is independent of the point \(P \) (see [16] Section 2.1.4).

We now consider \(r \times r \)-minors of \(J \). For \(\alpha \subset \{1, \ldots, n\} \) and \(\beta \subset \{1, \ldots, m\} \) we write \(J^{\alpha,\beta} \) for the corresponding \(r \times r \)-minor of \(J \). For \(h \in A \), let \(N(h) = \{ P \in X \mid h(P) \neq 0 \} \).

Lemma 3. Let \(X \) be smooth and let \(r = \text{rank}_F J \). Then the following set of charts forms an atlas for \(X \):

\[\{ N(\det J^{\alpha,\beta}) \mid |\alpha| = |\beta| = r, \det(J^{\alpha,\beta}) \neq 0 \}. \]

Proof. Let \(P \in X \). Since \(X \) is smooth, \(\text{rank}_k J(P) = \text{rank}_F J = r \). Thus there exists a nonzero minor in \(J(P) \): \(\det(J^{\alpha,\beta}(P)) \neq 0 \) for some \(\alpha \) and \(\beta \) of order \(r \), so \(P \in N(\det J^{\alpha,\beta}) \). Thus the above atlas covers \(X \). \(\square \)

From here on we shall fix this atlas for the variety \(X \).

For the sphere \(X = S^2 \), we shall sometimes write \((x, y, z)\) for \((x_1, x_2, x_3)\). We have \(A = k[x, y, z]/(g) \) with \(g = x^2 + y^2 + z^2 - 1 \), so \(J = (2x, 2y, 2z) \). Here \(\text{rank}_F J = 1 \) and there are three nonzero minors: \(2x, 2y, \) and \(2z \). So in this case our charts are \(N(x), N(y), \) and \(N(z) \) - each obtained by removing a great circle from the sphere.

As described in [4], the matrix \(J \) also grants an explicit description of the vector fields on \(X \): for \(f_i \in A \), the combination \(\sum_{i=1}^m f_i \frac{\partial}{\partial x_i} \) is a vector field on \(X \) if and only if the vector \((f_1, \ldots, f_m)\) belongs to the kernel of \(J \).

Lemma 4. Let \(r = \text{rank}_F J \) and let \(J^{\alpha,\beta} \) be a minor of size \(r \) with \(h = \det J^{\alpha,\beta} \neq 0 \). Then \(\{ x_i \mid i \not\in \beta \} \) are chart parameters in the chart \(N(h) \).

Proof. Consider \(\text{Der}_k F \). It is easy to see that for any \(s \in F \) and \(\eta \in \text{Der}(A) \) we have \(s \eta \in \text{Der}_k F \) and conversely, for any \(\mu \in \text{Der}_k F \) there exists \(q \in A \) such that \(q \mu \in \text{Der}(A) \). Then derivations of \(F \) can be written as \(\sum_{i=1}^m f_i \frac{\partial}{\partial x_i} \) where \((f_1, \ldots, f_m)\) are solutions over \(F \) of a system of linear homogeneous equations with matrix \(J \). Since \(\text{rank}_F J = r \), we can keep only the rows \(\alpha \) and choose variables \(\{ f_i \mid i \in \beta \} \) as leading, and \(\{ f_i \mid i \not\in \beta \} \) as free. Writing down the fundamental solutions, we get derivations \(\tau_j = \frac{\partial}{\partial x_j} + \sum_{i \in \beta} f_{i,j} \frac{\partial}{\partial x_i} \in \text{Der}_k F \) for each \(j \not\in \beta \). Note that only \(h \) may appear in the denominators of \(f_{i,j} \), hence \(h \tau_j \in \text{Der}(A) \) for all \(j \not\in \beta \). This implies that \(\{ x_i \mid i \not\in \beta \} \) are algebraically independent. Indeed if \(p \) is a polynomial in \(\{ x_i \mid i \not\in \beta \} \) which vanishes in \(F \), we can apply a sequence of derivations \(\tau_j \) which brings \(p \) to 1 and obtain a contradiction \(1 = 0 \). If all free variables have zero values, the solution of a homogeneous system is trivial. This implies that every derivation of \(F \) which is zero on \(k[x_i \mid i \not\in \beta] \), is zero on \(F \). By [10] Chapter VIII, Prop. 5.2, \(F \) is algebraic over \(k(x_i \mid i \not\in \beta) \). \(\square \)

Remark 5. In the above lemma, we may assume without loss of generality that \(\{ i \mid i \not\in \beta \} = \{1, \ldots, s\} \) and \(\{ i \mid i \in \beta \} = \{s + 1, \ldots, n\} \).
If we treat the chart parameters \(t_i = x_1, \ldots, t_s = x_s \) as independent variables and \(x_{s+1}, \ldots, x_n \) as dependent we can write a derivation

\[
\sum_{i \not\in \beta} f_i \frac{\partial}{\partial x_i} + \sum_{j \in \beta} f_j \frac{\partial}{\partial x_j}
\]
simply as \(\sum_{i=1}^s f_i \frac{\partial}{\partial t_i} \), with understanding that for \(j \in \beta \) we have

\[
\sum_{i=1}^s f_i \frac{\partial x_j}{\partial t_i} = \sum_{i=1}^s f_i \tau_i(x_j).
\]

Embedding of Vector Fields

The embedding \(A \subset A(h) \) gives a corresponding embedding of polynomial vector fields:

\[
\text{Vect}(X) \simeq \text{Der}(A) \subset \text{Der}(A(h)) = \bigoplus_{p=1}^n A(h) \frac{\partial}{\partial t_p}.
\]

In other words, a polynomial vector field on \(X \) can be written as \(\sum_{i=1}^n f_i \frac{\partial}{\partial t_i} \in \text{Der}(A(h)) \) for some unique \(f_i \in A(h) \).

Valuation

For each point \(P \in N(h) \), define \(\nu_P : A(h) \setminus \{0\} \to \mathbb{N} \) by

\[
\nu_P(f) = \min \left\{ \sum_{i=s}^n \alpha_i \left| \prod_{i=1}^s \left(\frac{\partial}{\partial t_i} \right)^{\alpha_i} f \right| (P) \neq 0 \right\}.
\]

Then \(\nu_P \) is well-defined by the following lemma.

Lemma 6. We have \(\nu_P(f) < \infty \) for each nonzero \(f \in A(h) \).

Proof. First of all, \(\nu_P \) is finite on \(k[t_1, \ldots, t_s] \subset A(h) \) as it is bounded by the degree function. Now any \(f \in A(h) \) is by definition algebraic over \(k[t_1, \ldots, t_s] \) so we can consider its minimal polynomial \(m(X) = \sum_{i=0}^N a_i X^i \), where \(a_i \in k[t_1, \ldots, t_s] \) and \(m(f) = 0 \) and \(a_0 \neq 0 \). We claim that \(\nu_P(f) \leq \nu_P(a_0) \). To prove this, suppose for contradiction that \(\prod_{i=1}^s \left(\frac{\partial}{\partial t_i} \right)^{\alpha_i} f \) \((P) = 0 \) for all \(\alpha_1 + \cdots + \alpha_s \leq \nu_P(a_0) \). Pick \(\alpha_i \)'s such that \(\prod_{i=1}^s \left(\frac{\partial}{\partial t_i} \right)^{\alpha_i} a_0 \) \((P) \neq 0 \). Then for any derivation \(d = \frac{\partial}{\partial t_p} \) we have

\[
d(a_0) = -\left(\sum_{i=1}^N d(a_i) f^i + a_i f^{i-1} d(f) \right).
\]

But by assumption, both \(f(P) = 0 \) and \(d(f)(P) = 0 \) so the right hand side is zero at \(P \), hence also \(d(a_0)(P) = 0 \). Iterating this \(\nu_P(a_0) \) times we get \(\prod_{i=1}^s \left(\frac{\partial}{\partial t_i} \right)^{\alpha_i} a_0 \) \((P) = 0 \), a contradiction. \(\Box \)
Note that the above proof uses our assumption that \(\text{char } k = 0 \).

3 A class of \(\mathcal{A} \mathcal{V} \)-modules

Let \(s := \dim X \). Let \(\{t_1, \ldots, t_s\} \) be chart parameters in a chart \(N(h) \) and let \(A_{(h)} \) be the localization of the algebra \(A \) at \(h \). For any \(\mathfrak{gl}_s \)-module \(U \) we consider the space \(A_{(h)} \otimes_k U \). The algebra \(A \) acts on this space by multiplication on the left factor.

The proof of the following lemma is straightforward and we leave it to the reader.

Lemma 7. Let \(U \) be a finite-dimensional \(\mathfrak{gl}_s \)-module. Consider the vector fields \(\mathcal{V} \) as embedded in \(\text{Der}(A_{(h)}) = \bigoplus_{i=1}^s A_{(h)} \frac{\partial}{\partial t_i} \). Define an action of \(\mathcal{V} \) on \(A_{(h)} \otimes U \) by

\[
\left(\sum_{i=1}^s f_i \frac{\partial}{\partial t_i} \right) \cdot (g \otimes u) := \sum_{i=1}^s f_i \frac{\partial g}{\partial t_i} \otimes u + \sum_{p=1}^s \sum_{i=1}^s g \frac{\partial f_i}{\partial t_p} \otimes (E_{p,i} \cdot u).
\]

Here \(E_{p,i} \) is a standard basis element of \(\mathfrak{gl}_s \), \(g \in A_{(h)} \), and \(u \in U \). This equips \(A_{(h)} \otimes U \) with the structure of an \(\mathcal{A} \mathcal{V} \)-module.

The algebra \(A_{(h)} \) has a natural doubly infinite filtration with respect to powers of \(h \):

\[
\cdots \subset h^{k+1}A \subset h^kA \subset h^{k-1}A \subset \cdots .
\]

For each \(a \in A_{(h)} \) we define its **degree** by

\[
\deg a := \max\{k \in \mathbb{Z} \mid a \in h^kA\}.
\]

We extend our notion of degree to elements of \(A_{(h)} \otimes U \) in the natural way: for nonzero \(m \in A_{(h)} \otimes U \) we define

\[
\deg m := \max\{k \in \mathbb{Z} \mid m \in h^kA \otimes U\}.
\]

If \(M \subset A_{(h)} \otimes U \) is a nonzero submodule, we define

\[
\deg(M) := \inf\{\deg m \mid m \in M, \ m \neq 0\}.
\]

Let \(M \subset A_{(h)} \otimes U \) be a submodule. We shall call \(M \) **bounded** if \(\deg(M) \) is finite. It is easy to see that if \(M \) is finitely generated over \(A \) then it is bounded. Conversely, every bounded submodule in \(A_{(h)} \otimes U \) is finitely generated over \(A \). Indeed, as an \(A \)-module \(h^kA \otimes U \) is isomorphic to \(A \otimes U \) and since \(A \) is noetherian, every submodule in a finitely generated \(A \)-module is finitely generated.

On the other hand, we shall call \(M \) **dense** if \(M \supset h^kA \otimes U \) for some \(k \). Note that \(M \) is both dense and bounded when there exist two integers \(K \geq k \) such that

\[
h^KA \otimes U \subset M \subset h^kA \otimes U.
\]
4 The Sphere

From here on we shall focus on the case when X is the sphere S^2. Some results still hold in a more general setting.

Let $X = S^2 \subset \mathbb{A}^3$. With notation as above we have $A = \mathbb{k}[x_1, x_2, x_3]/(x_1^2 + x_2^2 + x_3^2 - 1)$. However, we shall sometimes write x, y, z for x_1, x_2, x_3. Let $\Delta_{ij} = x_j \frac{\partial}{\partial x_i} - x_i \frac{\partial}{\partial x_j}$. Then it is easy to check that V is generated by $\Delta_{12}, \Delta_{23}, \text{and } \Delta_{31}$ as an A-module, and that these generators satisfy

$$[\Delta_{12}, \Delta_{23}] = \Delta_{31}, \quad [\Delta_{23}, \Delta_{31}] = \Delta_{12}, \quad [\Delta_{31}, \Delta_{12}] = \Delta_{23}.$$

However, V is not a free A-module since we have the relation $x_1 \Delta_{23} + x_2 \Delta_{31} + x_3 \Delta_{12} = 0$.

In the chart $N(z)$ with chart parameters $\{x, y\}$ these generating vector fields are expressed as

$$\Delta_{12} = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}, \quad \Delta_{23} = z \frac{\partial}{\partial y}, \quad \Delta_{31} = -z \frac{\partial}{\partial x}.$$

5 Explicit construction of modules

The Lie algebra \mathfrak{sl}_2 acts naturally on $\mathbb{k}[X, Y]$ by

$$E_{1,2} \cdot f = X \frac{\partial f}{\partial Y}, \quad E_{2,1} \cdot f = Y \frac{\partial f}{\partial X}, \quad (E_{1,1} - E_{2,2}) \cdot f = X \frac{\partial f}{\partial X} - Y \frac{\partial f}{\partial Y}.$$

For any $\alpha \in \mathbb{k}$ we may extend this to a \mathfrak{gl}_2-module $\mathbb{k}[X, Y]$ by requiring $(E_{1,1} + E_{2,2}) \cdot f = \alpha f$.

Homogeneous components are preserved by this action, and $\mathbb{k}_\alpha[X, Y] = \bigoplus_{m \geq 0} U^\alpha_m$ where U^α_m is the homogeneous component of degree m. Explicitly, for $m \in \mathbb{N}$ and for $0 \leq i \leq m$, we define $v^m_i := \binom{m}{i} X^i Y^{m-i}$ (we shall drop the upper m when it is understood by the context). Then $U^\alpha_m = \text{span}\{v^m_0, \ldots, v^m_m\}$ is the homogeneous component of degree m, and the action on these basis elements is given by

$$E_{1,1} \cdot v_i = \frac{1}{2}(\alpha + m - 2i)v_i, \quad E_{1,2} \cdot v_i = (m - i + 1)v_{i-1},$$

$$E_{2,1} \cdot v_i = (i + 1)v_{i+1}, \quad E_{2,2} \cdot v_i = \frac{1}{2}(\alpha - m + 2i)v_i.$$

In particular this implies that

$$(E_{1,1} - E_{2,2}) \cdot v_i = (m - 2i)v_i, \quad (E_{1,1} + E_{2,2}) \cdot v_i = \alpha v_i.$$

Here v_{i-1} and v_{m+1} are 0 by definition. When restricted to \mathfrak{sl}_2, U^α_m is the unique simple module of dimension $m + 1$. In particular, any finite-dimensional simple \mathfrak{gl}_2-module is isomorphic to U^α_m for a unique α and m.

8
Modules of rank 1

We first consider the case \(m = 0 \). Here \(U_0^\alpha \) is one dimensional and the identity acts by \(\alpha \). We consider the chart \(N(z) \) on \(S^2 \) with chart parameters \(\{x, y\} \).

Proposition 8. The module \(A(z) \otimes U_0^\alpha \) contains a bounded AV-submodule if and only if \(\alpha \in 2\mathbb{Z} \).

Proof. Let \(M \) be a bounded submodule of \(A(z) \otimes U_0^\alpha \). Let \(w \) be a non-zero element of \(M \) of lowest possible degree \(k \). Then \(w \) can be expressed as

\[
w = \sum_{i \geq k} z^i a_i \otimes v_0 \text{ where } a_k \neq 0.
\]

We compute

\[
\Delta_{2,3}(z^k a_k \otimes v_0) = z \frac{\partial}{\partial y}(z^k a_k) \otimes v_0 + z^k a_k \frac{\partial z}{\partial y} \otimes E_{2,2} v_0
\]

\[
= z \left(-z^k \frac{\partial a_k}{\partial y} - ka_k \frac{z^{k-1} y}{z} \right) \otimes v_0 - z^k a_k \frac{y}{z} \otimes \frac{\alpha}{2} v_0,
\]

which modulo the space \(z^k A \otimes U_0^\alpha \) equals

\[
-(k + \frac{\alpha}{2}) a_k y z^{k-1} \otimes v_0.
\]

So by the minimality of \(k \) we must have \(\alpha = -2k \). On the other hand it is easy to check that for \(\alpha = 2k \) the space \(A^\alpha = z^k \otimes U_0^\alpha \) is an AV-submodule in \(A(z) \otimes U_0^\alpha \). \qed

Higher rank

Module of 1-forms on \(X \)

In this section we consider for a moment an arbitrary \(s \)-dimensional variety \(X \). The space of 1-forms \(\Omega \) is an AV-module where \(A \) acts by left multiplication and vector fields act as follows:

\[
\left(\sum_{i=1}^s f_i \frac{\partial}{\partial t_i} \right) \cdot \left(\sum_{j=1}^s g_j dt_j \right) = \sum_{i,j=1}^s f_i \frac{\partial g_j}{\partial t_i} dt_j + g_j d \left(f_i \frac{\partial}{\partial t_i} t_j \right)
\]

\[
= \sum_{i,j=1}^s f_i \frac{\partial g_j}{\partial t_i} dt_j + \delta_{ij} g_j d(f_i) = f_i \frac{\partial g_j}{\partial t_i} dt_j + \delta_{ij} g_j \sum_{p=1}^n \frac{\partial f_i}{\partial t_p} dt_p.
\]

By identifying \(e_i \leftrightarrow dt_i \) we see that \(\Omega \subset A_{(h)} \otimes V \), where the action on \(V \) now is \(E_{p,i} e_j = \delta_{i,j} e_p \) which shows that \(V \) is the natural \(gl_s \)-module.

For \(X = S^2 \) this means that \(\Omega \subset A(z) \otimes U_1^1 \). In this case, the submodule \(\Omega \) is generated by \(dz = -z^{-1} x dx - z^{-1} y dy \).
Module of vector fields on X

Similarly, the Lie algebra \mathcal{V} of vector fields themselves forms an $A\mathcal{V}$-module in a natural way: A acts by left multiplication, and \mathcal{V} acts adjointly. We may rewrite this \mathcal{V}-action in the following way:

\[
\left(\sum_{i=1}^{s} f_i \frac{\partial}{\partial t_i} \right) \cdot \left(\sum_{j=1}^{s} g_j \frac{\partial}{\partial t_j} \right) = \sum_{i,j=1}^{s} f_i g_j \left(\frac{\partial}{\partial t_i} \right) \cdot \left(\frac{\partial}{\partial t_j} \right) - g_j \frac{\partial f_i}{\partial t_i} \cdot \frac{\partial}{\partial t_j}.
\]

Comparing with the definition (1), we see that \mathcal{V} is isomorphic to a submodule of $A(h) \otimes U$ with $v_i \leftrightarrow \frac{\partial}{\partial t_i}$.

Proposition 9. Let M be an $A\mathcal{V}_{S^2}$-submodule of $A(z) \otimes U$, where U is a finite-dimensional \mathfrak{gl}_2-module. Then for $\sum_k g_k \otimes u_k \in M$ we also have $\sum_k (z g_k \otimes E_{i,j} \cdot u_k) \in M$ for all $1 \leq i, j \leq 2$. In other words, M is closed under the operators $z \otimes E_{i,j}$.

Proof. It suffices to prove the statement for a single term $g \otimes u$. For each vector field $\mu \in \mathcal{V}$ and for each function $f \in A$ we have

\[
(f \mu) \cdot (g \otimes u) - f(\mu \cdot (g \otimes u)) \in M.
\]

Taking $\mu = \Delta_{2,3}$ we obtain the following element in M:

\[
f_z \frac{\partial g}{\partial y} \otimes u + f \frac{\partial z}{\partial x} \otimes E_{1,2}u + zg \frac{\partial f}{\partial x} \otimes E_{1,2}u + fg \frac{\partial z}{\partial y} \otimes E_{2,2}u + zg \frac{\partial f}{\partial y} \otimes E_{2,2}u - zf \frac{\partial g}{\partial y} \otimes u - fg \frac{\partial z}{\partial x} \otimes E_{1,2}u = zg \frac{\partial f}{\partial x} \otimes E_{1,2}u + zg \frac{\partial f}{\partial y} \otimes E_{2,2}u.
\]

Taking $f = x$ we obtain $zg \otimes E_{1,2}u \in M$. If we instead take $f = y$ we obtain $zg \otimes E_{2,2}u$. Analogously, by taking $\mu = \Delta_{3,1}$ and $f = x, y$ we obtain $zg \otimes E_{1,1}u \in M$ and $zg \otimes E_{2,1}u \in M$.

In what follows we shall use the following version of Hilbert’s Nullstellensatz, see [15, Section 1.2.2].
Lemma 10. Let $I \triangleleft A$ be an ideal. Suppose that $g \in A$ satisfies $g(P) = 0$ at all points $P \in X$ for which $f(P) = 0$ for all $f \in I$. Then $g^k \in I$.

Proposition 11. Let U be a finite-dimensional irreducible \mathfrak{gl}_2-module. Then every nonzero $A\mathcal{V}_{S^2}$-submodule of $A(z) \otimes U$ is dense.

Proof. Since U is simple and finite-dimensional it has form U_n^m as above. Let $M \subset A(z) \otimes U$ be a submodule and define

$$I = \{ f \in A | f(A \otimes U) \subset M \}.$$

Then I is an ideal of A. To show that M is dense we need to show that $z^N \in I$ for some N.

Let $v \in M$ and express this element in the form $v = \sum_{i=0}^m f_i \otimes v_i$, with $f_i \in A(z)$. In fact we may assume that $f_i \in A$ (otherwise just multiply by a power of z). By Lemma 9, M is closed under the operator $z \otimes E_{1,2}$, so we obtain $z^k f_0 \otimes v_0 \in M$ for some k and for some nonzero f_0. Acting by $z \otimes E_{2,1}$ repeatedly on this element we get $z^{k+i} f_0 \otimes v_i$, so in particular we have $z^N f_0 \otimes U \subset M$, which shows that $z^N f_0 \in I$ so I is non-zero.

We now aim to apply Hilbert’s Nullstellensatz to the function $g = z$. Fix $P \in S^2$ with nonzero z-coordinate. We need to show that there exists $f \in I$ with $f(P) \neq 0$. We had already found $z^N f_0 \in I$ so if $f_0(P) \neq 0$ we are done. Otherwise, consider the element $z \frac{\partial}{\partial z}(z^{N+1} f_0 \otimes v_0) \in M$. This expands as

$$z^{N+2} \frac{\partial f_0}{\partial x} \otimes v_0 - z^N f_0 ((N+1)x \otimes v_0 + x \otimes E_{1,1} v_0 - y \otimes E_{2,1} v_0),$$

and since the second term lies in $z^N f_0(A \otimes U) \subset M$, we also get $z^{N+2} \frac{\partial f_0}{\partial x} \otimes v_0 \in M$. This shows that $z^{N'} \frac{\partial f_0}{x} \in I$ for some N', and by symmetry we also get $z^{N'} \frac{\partial f_0}{y} \in I$. Since $\nu_P(f_0)$ is finite there is some product d of derivations with $d(f_0)(P) \neq 0$. So acting repeatedly with elements as above we eventually obtain $z^K d(f_0) \in M$ and $z^K d(f_0)$ is nonzero at P. By the Nullstellensatetz this means that $z^K \in I$ for some K, which in turn means that M is dense. \hfill \Box

Corollary 12. When U is an irreducible \mathfrak{gl}_s-module there exists at most one simple $A\mathcal{V}_{S^2}$-submodule of $A(z) \otimes U$.

Proof. Let M and M' be simple submodules in $A(z) \otimes U$. By Proposition 11 both modules are dense, so they both contain $z^N A \otimes U$ for large enough N. Thus $M \cap M'$ is a nonzero submodule of both M and M' so by simplicity we must have $M = M'$. \hfill \Box

6 Tensor modules

Consider two charts $N(h)$ and $N(\tilde{h})$ in our atlas for X. Let t_1, \ldots, t_s be chart parameters for $N(h)$ and let $\tilde{t}_1, \ldots, \tilde{t}_s$ be chart parameters for $N(\tilde{h})$. **11**
Let V be the natural \mathfrak{gl}_s-module with basis $\{e_1, \ldots, e_s\}$. Define an $A_{(\hat{h})}$-linear map $C : A_{(h, \hat{h})} \otimes V \to A_{(h, \hat{h})} \otimes V$ by

$$Ce_i = \sum_{j=1}^{s} \frac{\partial t_i}{\partial \hat{t}_j} e_j.$$

Note that C is invertible.

From now on we shall understand all GL_s-modules (resp. \mathfrak{gl}_s-modules) as $\mathrm{GL}(V)$-modules (resp. $\mathfrak{gl}(V)$-modules).

For a finite-dimensional rational GL_s-module U, write $\rho : \mathrm{GL}_s \to \mathrm{GL}(U, k)$ for the corresponding representation. Then we may consider $\rho(C)$ as an element of $\mathrm{GL}(U, A_{(h)})$. We can also consider it as a map $A_{(h, \hat{h})} \otimes U \to A_{(h, \hat{h})} \otimes U$.

Denote by \mathcal{T} the full subcategory of $A V \text{-Mod}$ consisting of those objects M that satisfy

- M is finitely generated as an A-module,
- For each chart $N(h)$ in our fixed atlas there exists an injective $A V$-module homomorphisms $\varphi_h : M \to A_{(h)} \otimes U$,
- The following diagram commutes for each pair of charts $(N(h), N(\hat{h}))$:

$$\begin{array}{ccc}
M & \xrightarrow{\varphi_h} & A_{(h)} \otimes U \\
\downarrow \varphi_h & & \downarrow \rho(C) \\
A_{(h)} \otimes U & \xrightarrow{\varphi_h} & A_{(h, \hat{h})} \otimes U
\end{array}$$

The objects of the category \mathcal{T} will be called tensor modules.

We point out that the modules Ω and V are in fact tensor modules. For Ω, the natural \mathfrak{gl}_s-module appearing in its construction is identified with V via $e_i \leftrightarrow dt_i$. Then the transformation C corresponds to the usual change of variables formula for the differentials. Clearly all compatibility conditions are satisfied and Ω is a tensor module.

The \mathfrak{gl}_s-module corresponding to V is the dual of the natural module (V^*, ρ^*). It can easily be checked that $\rho^*(C)$ corresponds to the change of variables formula for partial derivatives.

The category of tensor modules is also closed under taking tensor products and duals, in particular we have $\Omega \simeq V^\otimes$.

Finally, for the sphere the rank 1 modules A^α (for $\alpha \in 2\mathbb{Z}$) are also tensor modules with $\rho(C) = \det(C)^\frac{\alpha}{2}$.

12
Theorem 13. Let $M \in \mathcal{S}$ be a tensor module on S^2 corresponding to a simple rational GL_2-module U. Then M is a simple AV-module.

Proof. Let M' be a nonzero submodule of M and define

$$I = \{ f \in A | fM \subset M' \}.$$

Then I is an ideal and it does not depend on the chart we use. Since M is bounded, Proposition 11 implies that $z^N \in I$. By symmetry we also have $x^N \in I$ and $y^N \in I$ for some large enough N. But then the set of common zeros $V(I) \subset X$ is empty, and Hilbert’s weak Nullstellensatz gives $1 \in I$. In view of the definition of I this says that $M = M'$.

Theorem 14. When $\frac{m-\alpha}{2} \in \mathbb{Z}$ the vector

$$w_m := \sum_{i=0}^{m} z^{-\frac{\alpha+m}{2}} x^{m-i} y^i \otimes v_i$$

generates a bounded AV-submodule inside $A(z) \otimes U_m^\alpha$. On the other hand, when $\frac{m-\alpha}{2} \notin \mathbb{Z}$, the module $A(z) \otimes U_m^\alpha$ contains no bounded submodules.

Proof. We first prove the second part. Let M be a nonzero bounded submodule of $A(z) \otimes U_m^\alpha$. Since M is dense, it contains a vector of form $z^N \otimes v_0$ for large enough N. We may pick such a vector with minimal N.

We now compute

$$\Delta_{2,3}(z^N \otimes v_0) = -z^{N-1} y \left(N + \frac{1}{2}(\alpha - m) \right) \otimes v_0.$$

By the minimality of N we must have $N + \frac{1}{2}(\alpha - m) = 0$ which since N is an integer means that $\frac{m-\alpha}{2} \notin \mathbb{Z}$.

To prove the first statement, assume that $\frac{m-\alpha}{2} \in \mathbb{Z}$. First note that w_m gives a correct generator for the cases discussed above: vector fields V, 1-forms Ω, and all rank 1-modules A^α. We now proceed by induction on m.

Dropping the tensor signs we may write w_m as

$$w_m = z^{-\frac{\alpha+m}{2}} \sum_{i=0}^{m} \binom{m}{i} x^{m-i} y^i X^{-i} = z^{-\frac{\alpha+m}{2}} (xY + yX)^m.$$

Consider three \mathfrak{sl}_2-submodules U_m, U_n, and U_{m+n} of $k[X,Y]$. The map $\varphi : U_m \otimes U_n \to U_{m+n}$ given by multiplication in $k[X,Y]$, $(f \otimes g \mapsto fg)$, is a surjective homomorphism of \mathfrak{sl}_2-modules. Introducing an action of the identity gives a corresponding surjective homomorphism of \mathfrak{gl}_2-modules: $U_m^\alpha \otimes U_n^\beta \to U_{m+n}^{\alpha+\beta}$. This morphism can now be further extended to a surjective homomorphism of AV-modules:

$$\varphi : (A(z) \otimes U_m^\alpha) \otimes (A(z) \otimes U_n^\beta) \to A(z) \otimes U_{m+n}^{\alpha+\beta}. $$
By the inductive assumption, \(w_m \) and \(w_n \) generate bounded submodules in \(A(z) \otimes U^\alpha_m \) and \(A(z) \otimes U^\beta_n \) respectively, so \(w_m \otimes w_n \) generates a bounded submodule in \((A(z) \otimes U^\alpha_m) \otimes (A(z) \otimes U^\beta_n) \).

Applying our multiplication map we conclude that \(\varphi(w_m \otimes w_n) \) generates a bounded submodule in \(A(z) \otimes U^{\alpha+\beta}_{m+n} \). But

\[
\varphi(w_m \otimes w_n) = \varphi \left(z^{-\frac{\alpha+m}{2}} (xY + yX)^m \otimes z^{-\frac{\beta+n}{2}} (xY + yX)^n \right) = z^{-\frac{(\alpha+\beta)+m+n}{2}} (xY + yX)^{m+n} = w_{m+n}.
\]

This concludes the proof. \(\square \)

7 Tensor product decomposition

Note in \(A(h) \otimes_A A(h) \) we have

\[
h^{-1} \otimes 1 = h^{-1} \otimes hh^{-1} = h^{-1} h \otimes h^{-1} = 1 \otimes h^{-1}.
\]

This shows that \(A(h) \otimes_A A(h) \simeq A(h) \). Therefore, from the classical decomposition of \(\mathfrak{gl}_2 \)-modules it follows that

\[
(A(h) \otimes U^\alpha_m) \otimes_A (A(h) \otimes U^\beta_n) = A(h) \otimes (U^\alpha_m \otimes U^\beta_n) = \bigoplus_{i=0}^n A(h) \otimes U^{\alpha+\beta}_{m+n-2i}.
\]

We shall show that our AV-modules which appear as submodules in \(A(h) \otimes U \) respect this decomposition.

Theorem 15. *In the category of tensor modules on the sphere, tensor products of simple modules decompose as a direct sums of simple tensor modules.*

Proof. Let \(M \) and \(N \) be simple tensor modules embedded as \(M \subset A(z) \otimes U^\alpha_m \) and \(N \subset A(z) \otimes U^\beta_n \) with \(m \geq n \). Then

\[
M \otimes_A N \subset (A(z) \otimes U^\alpha_m) \otimes_A (A(z) \otimes U^\beta_n) = A(z) \otimes (U^\alpha_m \otimes U^\beta_n) = \bigoplus_{i=0}^n A(z) \otimes U^{\alpha+\beta}_{m+n-2i}.
\]

Write \(\pi_k \) for the projection onto the \(k \)-th direct summand:

\[
\pi_k : A(z) \otimes (U^\alpha_m \otimes U^\beta_n) \to A(z) \otimes U^{\alpha+\beta}_{m+n-2k}.
\]

Then \(\text{id}_{A(z) \otimes (U^\alpha_m \otimes U^\beta_n)} = \bigoplus_{k=0}^n \pi_k \). We shall show that this decomposition still holds when restricted to the subspace \(M \otimes_A N \). For this it suffices to check that \(\pi_k(M \otimes N) \subset M \otimes N \). Let \(v \in M \otimes_A N \). By the density of \(M \) and \(N \), we see that \(M \otimes N \) is dense in \(\bigoplus_{i=0}^n A(z) \otimes U^{\alpha+\beta}_{m+n-2i} \) as well. This implies that \(\pi_k(M \otimes N) \) is nonzero for each \(k \), so \(\pi_k(M \otimes N) \) is a nonzero
bounded submodule of $A(z) \otimes U_{m+n-2k}^\alpha$, and by previous results $\pi_k(M \otimes N)$ is dense and simple.

Now for arbitrary $j \geq 0$ we have $z^j v = \sum_k \pi_k(z^j v)$, and for j large enough we get $\pi_k(z^j v) \in M \otimes N$ by the density of $M \otimes N$.

Next, by the simplicity of $\pi_k(M \otimes N)$, we have

$$\pi_k(v) \in A^\# U(V) \cdot \pi_k(z^j v) \subset M \otimes N.$$

Thus we have shown that $id_{M \otimes N} = \bigoplus \pi_k|_{M \otimes N}$ and hence

$$M \otimes N = \bigoplus \pi_k(M \otimes N).$$

\[\square \]

Corollary 16. The category of finite-dimensional rational GL_2-modules is equivalent to a full subcategory of the category \mathfrak{T} of tensor modules on the sphere. Moreover, this subcategory is generated by A^{-2} and Ω as a monoidal abelian category.

Proof. The equivalence is provided by the functor $F : U \mapsto \text{soc}(A(z) \otimes U)$. This is a bijection between simple finite-dimensional rational GL_2-modules and simple tensor modules.

For the second statement we note that the tensor products of $A\mathcal{V}$-modules of rank 1 is given by

$$A^\alpha \otimes A^\beta \simeq A^{\alpha+\beta}.$$

In particular, we get $A^{2k} = (A^2)^\otimes k$ and $A^{-2k} = (A^{-2})^\otimes k$ for any $k \in \mathbb{N}$. We also have $\mathcal{V} \otimes_A A^2 \simeq \Omega$ and $\Omega \otimes_A A^{-2} \simeq \mathcal{V}$.

Let M be a bounded submodule of $A(z) \otimes U_m^\alpha$. Then $\frac{m-a}{2}$ is an integer by Lemma [1]. Now let $V = U^1$ be the natural \mathfrak{gl}_2-module. It is well known that $U_m \subset V^\otimes m$ as \mathfrak{sl}_2-modules, so we get $U_m^\alpha \subset A^{a-m} \otimes V^\otimes n$. This in turn implies that $M \subset A^{a-m} \otimes_A \Omega^\otimes m$.

Thus the category \mathfrak{T} is generated by A^2, A^{-2}, and Ω as a monoidal abelian category. However, A^2 is a direct summand of $\Omega \otimes \Omega$ so it may be dropped as a generator. \[\square \]

References

[1] Y. Billig, *Jet modules*, Canad. J. Math, 59 (2007), 712-729.

[2] Y. Billig, V. Futorny; *Representations of Lie algebra of vector fields on a torus and chiral de Rham complex*. Transactions of the American Mathematical Society, 366 (2014), 4697–4731.
[3] Y. Billig, V. Futorny, *Classification of irreducible representations of Lie algebra of vector fields on a torus*, J. Reine Angew. Math., to appear.

[4] Y. Billig, V. Futorny; *Lie algebras of vector fields on smooth affine varieties*, arXiv:1705.05900 [math.RT].

[5] R. E. Block, *The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra*, Adv. Math., 39 (1981), 69-110.

[6] S. Eswara Rao, *Irreducible representations of the Lie-algebra of the diffeomorphisms of a d-dimensional torus*, J. Algebra 182 (1996), 401-421.

[7] S. Eswara Rao, *Partial classification of modules for Lie algebra of diffeomorphisms of d-dimensional torus*, J. Math. Phys. 45 (2004), no. 8, 3322-3333.

[8] D. Jordan, *On the ideals of a Lie algebra of derivations*, J. London Math. Soc., 33 (1986), 33-39.

[9] D. Jordan, *On the simplicity of Lie algebras of derivations of commutative algebras*, J. Algebra, 228 (2000), 580-585.

[10] S. Lang, *Algebra*. Revised third edition, Springer, New York, (2002).

[11] T. A. Larsson, *Conformal fields: A class of representations of Vect (N)*. Int. J. Mod. Phys. A 7 (1992): 6493–6508.

[12] O. Mathieu, *Classification of Harish-Chandra modules over the Virasoro algebra*, Invent. Math. 107 (1992), 225-234.

[13] V. Mazorchuk, K. Zhao, *Supports of weight modules over Witt algebras*, Proc. Royal Soc. Edinburgh: Section A, 141 (2011), 155-170.

[14] S. Montgomery, *Hopf algebras and their actions on rings*, CBMS Regional Conference Series in Mathematics 82, AMS 1993. Transactions of the American Mathematical Society, 366 (2014), 4697-4731.

[15] A. N. Rudakov (1974), Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Math. USSR Izvestija, 8, 836-866.

[16] I.R. Shafarevich; *Basic algebraic geometry 1*, Varieties in projective space. Third Edition, Springer, (2013).