Article

Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of *Protium amazonicum* from Ecuador

Prabodh Satyal 1,2, Chelsea N. Powers 1, Rafael Parducci V. 3, Robert L. McFeeters 1 and William N. Setzer 1,2,*

1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; prabodhsatyal@gmail.com (P.S.); crnp0007@uah.edu (C.N.P.); robert.mcfeeters@uah.edu (R.L.M.)
2 Aromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA
3 Saintoil S.A., Magnolias 57, Quito 17-22-20108, Pinchachas, Ecuador; Saintoil@aol.com
* Correspondence: wsetzer@chemistry.uah.edu; Tel.: +1-256-824-6519

Academic Editor: Helen D. Skaltsa
Received: 5 August 2017; Accepted: 21 September 2017; Published: 23 September 2017

Abstract: Background: *Protium* species (Burseraceae) have been used in the treatment of various diseases and conditions such as ulcers and wounds. Methods: The essential oil from the oleoresin of *Protium amazonicum* was obtained by hydrodistillation and analyzed by GC-MS, GC-FID, and chiral GC-MS. *P. amazonicum* oleoresin oil was screened for antifungal activity against *Candida albicans*, *Aspergillus niger*, and *Cryptococcus neoformans*. Results: A total of 54 components representing 99.6% of the composition were identified in the oil. The essential oil was dominated by δ-3-carene (47.9%) with lesser quantities of other monoterpenoids α-pinene (4.0%), *p*-cymene (4.1%), limonene (5.1%), α-terpineol (5.5%) and *p*-cymen-8-ol (4.8%). Chiral GC-MS revealed most of the monoterpenoids to have a majority of *levo* enantiomers present with the exceptions of limonene and α-terpineol, which showed a *dextro* majority. *P. amazonicum* oleoresin oil showed promising activity against *Cryptococcus neoformans*, with MIC = 156 µg/mL. Conclusions: This account is the first reporting of both the chemical composition and enantiomeric distribution of the oleoresin essential oil of *P. amazonicum* from Ecuador. The oil was dominated by (−)-δ-3-carene, and this compound, along with other monoterpenoids, likely accounts for the observed antifungal activity of the oil.

Keywords: essential oil composition; *Protium amazonicum*; Burseraceae; copal; breu; δ-3-carene; chiral gas chromatography; antifungal activity

1. Introduction

Protium amazonicum (Cuatrec.) Daly belongs to the Burseraceae, which is comprised of 640 species representing 18 genera throughout the world, mainly distributed in the Neotropics and North Africa [1]. The main characteristic of the Burseraceae is the exuding aromatic resin [2,3], which is known as “copal” in Spanish [4] and “breu” in Portuguese [5]. *Protium* spp. have been used in the treatment of various diseases and conditions such as ulcers and wounds, to treat headaches, toothaches, and rheumatism [2], because of their anti-inflammatory [6,7], antinociceptive [8,9], antineoplastic [10], and gastroprotective [11,12] properties. The Yanomami people of Brazil use the resin of *P. fimbriatum* to treat respiratory infections [13]. *Protium* oleoresins have been characterized in terms of color, age, odor, as well as volatile and non-volatile chemical characteristics (Table 1) [5,14]. Because of the importance of *Protium* oleoresins in traditional medicine and because no previous work had been carried out on *P. amazonicum*, we wished to chemically characterize the oleoresin essential oil of *P. amazonicum*; this information should add to our understanding of *Protium* oleoresin chemistry.
Table 1. A brief review of *Protium* oleoresin traditional medicinal uses, biological properties, and essential oil compositions. *a*

Species	Traditional Medicinal Uses and/or Biological Activities	Major Components	Ref.
P. altsonii (sucuruba)		*p*-cymene (16.3%), γ-cadinene (9.5%), γ-gurjunene (5.2%)	[15]
P. bahianum	Treatment of wounds, ulcers, inflammation, and as an insect repellent	Fresh resin: *p*-cymene (18.3%), α-phellandrene (14.0%), tricyclene (11.4%), β-phellandrene (9.1%), β-pinene (6.6%)	[16]
P. bahianum	Acaricidal activity (*Tetranychus urticae*)	Aged resin: (E)-β-santalol acetate (83.1%)	[16]
P. decandrum (black breu)	Antimicrobial (*Candida albicans*, MIC = 1.25 μg/mL; *Staphylococcus aureus*, MIC = 2.5 μg/mL)	α-pinene (10.5%), α-phellandrene (16.7%), *p*-cymene (6.0%), limonene (16.9%), terpinolene (28.5%)	[18]
P. decandrum (white breu)	Antinociceptive (mouse model)	1,8-cineole (58.7%), α-terpinene (13.7%), α-phellandrene (10.4%), γ-terpinol (7.7%)	[9]
P. heptaphyllum	Anti-inflammatory (rat model)	limonene (50.0%), (E)-β-ocimine (11.8%), 1,8-cineole (10.9%), α-phellandrene (10.8%)	[7]
P. heptaphyllum	Anti-genotoxic activity	terpinolene (32.7–37.8%), *p*-cymene (7.9–38.1%), limonene (0–2%), δ-3-carene (0–15.0%), α-thujene (0–1.1%), *p*-cymen-8-ol (2.5–10.1%)	[19]
P. heptaphyllum		Fresh resin: terpinolene (28.2–69.7%), *p*-cymene (4.3–23.3%), α-pinene (3.6–14.6%), α-terpinene (3.1–10.4%), limonene (6.4–10.1%), *p*-cymen-8-ol (2.7–9.8%)	[20]
P. heptaphyllum		Aged resin: *p*-cymene (18.7–43.0%), terpinolene (8.8–21.6%), α-pinene (3.5–17.8%), α-limonene (5.8–1.6%), *p*-cymen-8-ol (8.2–31.8%)	[20]
P. heptaphyllum		Fresh resin: myrcene (35.0%), α-pinene (27.0%), sabinen (11.0%), β-caryophyllene (7.2%)	[10]
P. heptaphyllum	Cytotoxic on SP2/0 (murine plasmocytoma) and J774 (murine monocytic macrophage) cell lines	Freshly tapped resin: terpinolene (28.0%), *p*-cymene (16.0%), α-pinene (8.7%), α-terpinene (6.6%), limonene (5.5%), *p*-cymen-8-ol (5.6%)	[10]
P. heptaphyllum	Antibacterial (*Streptococcus mutans*, MIC 0.13 μg/mL)	tricyclene (11.1%), *p*-cymene (26.7%), terpinolene (35.8%), *p*-cymen-8-ol (10.1%)	[21]
P. heptaphyllum	Vasorelaxant (rat upper mesenteric artery ring, *IC*₅₀ 316 μg/mL)	δ-3-carene (5.1%), *p*-cymene (17.0%), limonene (34.5%), 1,8-cineole (20.6%), α-terpinol (9.8%)	[22]
P. heptaphyllum		α-phellandrene (7.0%), *p*-cymene (26.9%), limonene (28.9%), α-terpinol (18.4%)	[22]
P. heptaphyllum		Fresh resin: α-terpinene (18.0%), *p*-cymene (36.0%), γ-terpinene (12.0%)	[25]
P. heptaphyllum	Aged resin: *p*-cymene (11.0%), terpinolene (15.0%), *p*-cymene (5.3%), *p*-cymen-8-ol (11.0%), dillapiole (16.0%)		[23]
P. heptaphyllum		Fresh resin: α-pinene (10.5%), α-phellandrene (16.7%), *p*-cymene (6.0%), limonene (16.9%), terpinolene (28.5%)	[24]
P. heptaphyllum (black breu)	Treatment of headaches (inhalation); treat pain and inflammation (plasters)		[25]
P. heptaphyllum (black breu)		δ-3-carene + iso-sylvestrene (79.5%)	[15]
P. heptaphyllum (black breu)		δ-3-carene + iso-sylvestrene (56.4%), *p*-cymene (14.0%), limonene + β-phellandrene (6.8%)	[15]
P. heptaphyllum (black breu)		*p*-cymene (33.0%), δ-3-carene + iso-sylvestrene (14.7%)	[15]
Table 1. Cont.

Species	Traditional Medicinal Uses and/or Biological Activities	Major Components	Ref.
P. heptaphyllum	Traditional remedy for inflammations, as an inhalant to clear respiratory and bronchial passages, wound healing. Antibacterial, disk diffusion assay (Bacillus subtilis, Staphylococcus aureus)	Terpinolene (42.3%), p-cymen-8-ol (13.6%), limonene (11.9%)	[26]
P. heptaphyllum subsp.		P-cymene (39.9%), n-tetradecane (13.4%), dihydro-4-carene (11.7%), α-phellandrene (7.4%)	[26]
P. heptaphyllum subsp.		P-cymene (6.4%), limonene + β-phellandrene (5.7%)	[15]
P. heptaphyllum subsp.		P-cymene (20–40%), limonene (5.8–8.0%), α-terpinolene (5.8–31%), p-cymen-8-ol (10–26%)	[27]
P. icicariba		α-pinene (5.6–7.7%), p-cymene (5.6–7.7%), limonene (5.8–8.0%), α-terpinolene (5.8–31%), p-cymen-8-ol (10–26%)	[27]
P. neglectum		Traditional remedy for inflammations, as an inhalant to clear respiratory and bronchial passages, wound healing. Antibacterial, disk diffusion assay (Bacillus subtilis, Staphylococcus aureus)	[28]
P. occultum (white breu)	Burning and inhaling smoke to treat headache	Fresh resin: p-cymene (5.2%), durenol (15.6%), α-terpinol (6.9%), pipertinone (25.4%), thymol (17.5%), methyl eugenol (9.2%)	[15]
P. cf. opicum (surucuba)	Traditional remedy for inflammations, as an inhalant to clear respiratory and bronchial passages, wound healing. Antibacterial, disk diffusion assay (Bacillus subtilis, Staphylococcus aureus)	α-pinene (6.6%), α-neo-cloveene (5.3%), α-neo-callitropsene (7.3%), γ-cadinene (14.4%)	[15]
P. strumosum (white breu)	Burning and inhaling smoke to treat headache	α-pinene (57.7%), β-pinene (9.3%), p-cymene (9.2%), limonene + β-phellandrene (10.8%)	[15]

* Rüdiger and co-authors have reviewed the chemistry and pharmacology of Protium in 2007 [2]. This table includes analyses reported since 2007.

2. Materials and Methods

2.1. Essential Oil

The oleoresin (relatively fresh, yellow, with a terpenic odor) of P. amazonicum was collected from Quito, Ecuador (0°14′0″ S, 78°31′0″ W, 3000 m above sea level). The tree was identified by Rafael Parducci, and a voucher specimen has been deposited in Saintoil S.A. The essential oil was obtained by hydrodistillation using a Clevenger apparatus as previously described [29] to give the essential oil.

2.2. Gas Chromatography-Mass Spectrometry (GC-MS)

The oleoresin essential oil of P. amazonicum was analyzed by GC-MS using a Shimadzu GC-MS-QP2010 Ultra (Shimadzu Corp., Columbia, MD, USA) operated in the electron impact (EI) mode (electron energy = 70 eV), with a scan range of 40–400 atomic mass units (amu), a scan rate of 3.0 scans/s, and the GC-MS Solution Software (Shimadzu GC-MS-QP2010 Ultra, Columbia, MD, USA). The GC column was ZB-5MS fused silica capillary column (Phenomenex Inc., Torrance, CA, USA) (30 mL × 0.25 mm ID) with a (5% phenyl)-polydimethylsiloxane stationary phase with a film thickness of 0.25 μm. The carrier gas was helium with a column head pressure of 551.6 kPa and flow rate of 1.37 mL/min. The injector temperature was 250 °C, and the ion source temperature was 200 °C. The GC oven temperature program was programmed for 50 °C initial temperature, the temperature increased at a rate of 2 °C/min to 260 °C. A 5% w/v solution of the sample in CH₂Cl₂ was prepared and 0.1 μL was injected with a splitting mode (30:1). Identification of the oil components was based on their retention indices determined by reference to a homologous series of n-alkanes, and by comparison of their mass spectral fragmentation patterns with those reported in the literature [30], and stored in the MS library.

2.3. Gas Chromatography—Flame Ionization Detection

The gas chromatograph was a Shimadzu GC 2010 (Shimadzu Corp., Columbia, MD, USA) equipped with a flame ionization detector, a split/splitless injector, and autosampler AOC-20i.
The clear pale yellow oleoresin essential oil from *P. amazonicum* was obtained in 0.3% yield and analyzed by GC-MS and GC-FID. From a total of 56 peaks, 99.6% of the compounds were identified in the oil (Table 2). The major components of the resin oil were identified as δ-3-carene (47.9%), α-pinene (4.0%), *p*-cymene (4.1%), limonene (5.1%), α-terpineol (5.5%) and *p*-cymen-8-ol (4.8%) (see Figure 1). δ-3-Carene has been reported as a major component in several Protium spp. oleoresin essential oils, including *P. decandrum* and *P. heptaphyllum* [15]; however, in most oleoresin essential oils from Protium, δ-3-carene is a minor component or unobserved (see Table 1). *Protium* oleoresin
oils show wide variation in chemical composition, depending on species as well as age and color of the resin (Table 1). The age of an oleoresin has a distinct effect on the chemical composition. Some monoterpenes have been found to undergo oxidation upon exposure to atmospheric oxygen [33–35], including oleoresin monoterpenoids [20]. In addition, fresh oleoresin from the same species shows wide variation in chemical composition. Thus, for example, the essential oil from fresh oleoresin of *P. heptaphyllum* collected from the Restinga of Carapebus, Rio de Janeiro state, Brazil, had myrcene (35.0%) and α-pinene (27.0%) as the major components [10]; the fresh resin oil from Reserva da Campina, Amazonas, Brazil, was rich in *p*-cymene (36.0%), α-terpinene (18.0%), and γ-terpinene (12.0%) [23]; and the fresh resin oil from Crato, Ceara, Brazil was dominated by terpinolene (28.5%), α-phellandrene (16.7%), and limonene (16.9%) [24]. The oleoresin in this present work is a relatively fresh resin, reflected in the high concentration of δ-3-carene.

Table 2. Chemical composition of the oleoresin essential oil of *Protium amazonicum* from Ecuador.

RI^ccalc	RI^{lit}	Compound	%
779	780	Toluene	0.2
925	930	α-Thujene	0.7
932	939	α-Pinene	4.0
947	952	α-Fenchene	0.2
949	954	Camphene	0.1
970	972	3,7,7-Trimethyl-1,3,5-cycloheptatriene	1.4
972	975	Sabinene	1.0
977	979	β-Pinene	1.0
1000	1002	δ-2-Carene	0.1
1007	1002	α-Phellandrene	0.5
1010	1011	δ-3-Carene	47.9
1017	1017	α-Terpinene	0.4
1019	1026	o-Cymene	0.3
1024	1024	*p*-Cymene	4.1
1029	1029	Limonene	5.1
1030	1029	β-Phellandrene	0.4
1032	1031	1,8-Cineole	0.7
1057	1059	γ-Terpinene	0.5
1072	1072	Pinol	0.2
1080	1085	*m*-Cymene	1.8
1085	1088	Terpinolene	0.7
1090	1091	*p*-Cymene	3.2
1095	1099	α-Pinene oxide	0.1
1141	1139	*trans*-Pinocarveol	0.1
1142	—	2-Isobutyl-norbornane	0.7
1147	1146	Camphor	0.3
1149	1147	*trans*-Dihydro-α-terpineol	0.5
1153	1150	Eucarvone	0.3
1162	1170	α-Phellandren-8-ol	1.9
1170	1160	*iso*-Borneol	0.3
1171	—	β-Phellandren-8-ol	0.9
1174	1169	Borneol	0.6
1180	1179	*m*-Cymen-8-ol	4.8
1183	—	*p*-Isobutyltoluene	0.3
1184	1182	*p*-Methylacetophenone	0.1
1186	1182	*p*-Cymen-8-ol	1.7
1188	—	(*Z*)-β-Ocemienol	0.2
1195	1188	α-Terpinol	5.5
1207	1205	Verbenone	0.2
1210	1217	4-Methyleneisophorone	3.0
1220	—	2-Carone	0.9
1240	1238	(E)-Ocimenone	0.2
1242	1241	Cuminal	0.1
The (+)-enantiomer of limonene is the more common, especially in *Citrus P. amazonicum* present in *Pinus sylvestris* detected in the other hand, were dominant. The hexane root extract of *Angelica archangelica* and sabinene predominated over the (+)-isomers. The (+)-enantiomers of limonene and α-pinene, β-pinene, thujene, and α-cymene showed predominantly (+)-3-carene, but the (−)-enantioomer of δ-3-carene was not determined [45]. In *Boswellia carterii* (Burseraceae) from Ethiopia was composed of (+)-limonene, (+)-α-pinene, and (−)-limonene, but the enantiomeric distribution of δ-3-carene was not determined [46]. In *Laurus nobilis* (Lauraceae) essential oil (see Table 3 and Figure 2). The levorotatory (−)-enantiomer was detected [36]. Only the (+)-enantiomer of δ-3-carene was detected in *Pinus sylvestris* (Pinaceae) essential oils, while (−)-limonene predominated [37]. The (+)-enantioomer of limonene is the more common, especially in *Citrus* (Rutaceae) essential oils [38–42].

Table 2. Cont.

Retention Index (RI)	Compound	%
1243 1243	Carvone	0.2
1246 1248	Car-3-en-2-one	0.4
1248 1247	Carvotanacetone	0.2
1253 1252	Piperitone	0.1
1264 1268	3,5-Dimethoxytoluene	0.2
1277 1275	Phellandranal	0.3
1290 1290	Thymol	0.2
1296 1299	Carvacrol	0.3
1419 1419	β-Caryophyllene	0.1
1433 1434	α-trans-Bergamotene	0.9
1581 1583	Caryophyllene oxide	0.2
	Total identified	99.6%

RI\(^{calc}\) = Retention indices calculated in reference to a homologous series of n-alanes on a ZB-5MS column. RI\(^{lit}\) = Retention indices from the literature [30].

![Gas chromatogram of the oleoresin essential oil of Protium amazonicum from Ecuador.](image)

Figure 1. Gas chromatogram of the oleoresin essential oil of *Protium amazonicum* from Ecuador. 1, α-thujene; 2, α-pinene; 3, 3,7,7-trimethyl-1,3,5-cycloheptatriene; 4, β-pinene; 5, δ-3-carene; 6, p-cymene; 7, limonene; 8, m-cymenene; 9, p-cymenene; 10, α-phellandren-8-ol; 11, m-cymen-8-ol; 12, p-cymen-8-ol; 13, α-terpineol; 14, 4-methyleneisophorone; 15, α-trans-bergamotene; 16, caryophyllene oxide.

3.2. Enantiomeric Distribution

Chiral GC-MS analysis was performed to evaluate the enantiomeric distribution of the monoterpenes present in *P. amazonicum* essential oil (see Table 3 and Figure 2). The levorotatory (−)-enantioomer of δ-3-carene was found to be the exclusive stereoisomer while the (−)-enantioomers of α-pinene, β-pinene, and sabinene predominated over the (+)-isomers. The (+)-enantioomers of limonene and α-terpineol, on the other hand, were dominant. The hexane root extract of *Angelica archangelica* showed predominantly (+)-δ-3-carene, but the (−)-enantioomer was detected [36]. Only the (+)-enantioomer of δ-3-carene was detected in *Pinus sylvestris* (Pinaceae) essential oils, while (−)-limonene predominated [37]. The (+)-enantioomer of limonene is the more common, especially in *Citrus* (Rutaceae) essential oils [38–42].
Micromeria fruticosa (Lamiaceae) essential oil showed exclusively (+)-α-terpineol while (−)-α-terpineol was found in Laurus nobilis (Lauraceae) essential oil [43]. Analysis of the essential oil from the unripe fruits of Pistacia vera showed a predominance of (+)-α-pinene, (+)-limonene, (+)-β-pinene, and exclusively (−)-α-terpineol [44]. Although δ-3-carene was relatively abundant in this oil (2.7%), the enantiomeric distribution was unfortunately not reported. The oleoresin of Boswellia carterii (Burseraceae) from Ethiopia was composed of (+)-α-thujene, (−)-α-pinene, and (−)-limonene, but the enantiomeric distribution of δ-3-carene was not determined [45]. In contrast, B. carterii resin oil from Somalia showed (−)-α-thujene, (−)-α-pinene, and (−)-limonene predominating, while B. sacra resin oil from Oman had (+)-α-thujene, (+)-α-pinene, (+)-β-pinene, and (−)-limonene predominating [46].

Table 3. Enantiomeric excess (ee) and distribution (ed) of monoterpenoids in the resin oil of Protium amazonicum.

Compounds	Relative %	ee (%)	ed [(+) to (−)] (%)
α-Thujene	0.7	45.6	27.2 to 72.8
α-Pinene	4.0	41.8	29.1 to 70.9
β-Pinene	1.0	45.6	27.2 to 72.8
δ-3-Carene	47.9	100	0 to 100
Limonene	5.1	68.0	84.0 to 16.0
α-Terpineol	5.5	79.6	89.8 to 10.2

Figure 2. Chiral gas chromatogram of the oleoresin essential oil of Protium amazonicum. 1, (+)-α-thujene; 2, (−)-α-thujene; 3, (+)-α-pinene; 4, (−)-α-pinene; 5, (+)-β-pinene; 6, (−)-β-pinene; 7, 3,7,7-trimethyl-1,3,5-cycloheptatriene; 8, 1,8-cineole; 9, (−)-δ-3-carene; 10, (−)-limonene; 11, (+)-limonene; 12, p-cymene; 13, α-terpinolene; 14, γ-terpinene; 15, m-cymenene; 16, p-cymene; 17, camphor; 18, α-phellandren-8-ol; 19, (−)-α-terpineol; 20, eucarvone; 21, (+)-α-terpineol; 22, m-cymen-8-ol; 23, p-cymen-8-ol; 24, α-trans-bergamotene.

3.3. Antifungal Activity

The oleoresin essential oil of P. amazonicum demonstrated antifungal activity against C. albicans, C. neoformans, and A. niger. C. neoformans was most potently inhibited with a promising MIC of 156 μg/mL. Inhibition of C. albicans (MIC = 313 μg/mL) was also rather promising whereas inhibition of A. niger was relatively weak (MIC = 1250 μg/mL). The major component in P. amazonicum oil,
δ-3-carene, has shown antifungal activity against several fungi, including C. albicans [47]. In addition, minor monoterpenoid components in the oil, α-pinene [48], limonene [49], and α-terpineol [50], have also shown antifungal activities.

The antifungal mechanisms of activity of monoterpenoids are poorly understood. It has been suggested that these hydrophobic compounds disrupt the cytoplasmic membranes or membrane proteins of fungal cells, leading to cytoplasmic leakage, cell lysis, and death [51]. Chirality of monoterpenoids, therefore, may not play a critical role in antimicrobial activity. Nevertheless, Kusumoto and co-workers have shown that (+)-α-pinene showed significantly better antifungal activity against Heterobasidion parviporum than (−)-α-pinene [52]. Likewise, Filipowicz et al. showed (−)-β-pinene to be slightly more active than (+)-β-pinene against Candida albicans [53], and Omran and co-workers found that (−)-limonene had better antifungal activity than (+)-limonene [54].

(+)δ-3-Carene has shown antifungal activity against several fungal strains [47], but there are apparently no reports on antifungal activity of (−)δ-3-carene, which is not commercially available. Overall, these findings indicate that P. amazonicum resin oil has promising potential for further antifungal consideration, in particular against C. neoformans and potentially other yeast-like fungi.

4. Conclusions

This is the first reported chemical analysis of the oleoresin essential oil of Protium amazonicum. The P. amazonicum resin oil collected in Ecuador was dominated by (−)-δ-3-carene and is therefore, an excellent source of this enantiomer. The abundance of this compound, along with other monoterpenoids, likely account for the observed antifungal activity of the oil. The activity against Cryptococcus neoformans and Candida albicans indicates promise against these opportunistic fungal pathogens. Additional research into this tree species and other Protium species, their chemistry and their biological activities, is needed.

Acknowledgments: The authors thank Erin McClelland of Middle Tennessee State University for the providing C. neoformans cells.

Author Contributions: P.S. conceived and designed the experiments; R.P.V. identified the plant and collected the oleoresin; P.S. and C.N.P. carried out the experiments; P.S., R.L.M., and W.N.S. analyzed the data; P.S. and R.L.M. contributed reagents/materials/analysis tools; P.S. and W.N.S. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mabberley, D.J. Mabberley’s Plant-Book, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008.
2. Rüdiger, A.L.; Siani, A.C.; Junior, V.F.V. The chemistry and pharmacology of the South America genus Protium Burm. f. (Burseraceae). Pharmacogn. Rev. 2007, 1, 93–104.
3. Murthy, K.S.R.; Reddy, M.C.; Rani, S.S.; Pullaiath, T. Bioactive principles and biological properties of essential oils of Burseraceae: A review. J. Pharmacogn. Phytochem. 2016, 5, 247–258.
4. Stacey, R.J.; Cartwright, C.R.; McEwan, C. Chemical characterization of ancient Mesoamerican “copal” resins: Preliminary results. Archaeometry 2006, 48, 323–340. [CrossRef]
5. Siani, A.C.; Moraes, R.; Junior, V.F.V. Toward establishing the productive chain for triterpene-based Amazonian oleoresins as valuable non-timber forest products. Open J. For. 2017, 7, 188–208. [CrossRef]
6. Siani, A.C.; Ramos, M.F.S.; Menezes-de-Lima, O.; Ribeiro-dos-Santos, R.; Fernandez-Ferreira, E.; Soares, R.O.A.; Rosas, E.C.; Susunaga, G.S.; Guimaraes, A.C.; Zoghbi, M.G.B.; et al. Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. J. Ethnopharmacol. 1999, 66, 57–69. [CrossRef]
7. Amaral, M.P.M.; Braga, F.A.V.; Passos, F.F.B.; Almeida, F.R.C.; Oliveira, R.C.M.; Carvalho, A.A.; Chaves, M.H.; Oliveira, F.A. Additional evidence for the anti-inflammatory properties of the essential oil of Protium heptaphyllum resin in mice and rat. Latin Am. J. Pharm. 2009, 28, 775–782.
8. Lima, F.V.; Malheiros, A.; Otuki, M.F.; Calixto, J.B.; Yunes, R.A.; Filho, V.C.; Monache, F.D. Three new triterpenes from the resinous bark of *Protium kleinii* and their antinociceptive activity. *J. Braz. Chem. Soc.* 2005, 16, 578–582. [CrossRef]

9. Rao, V.S.; Maia, J.L.; Oliveira, F.A.; Lemos, T.L.G.; Chaves, M.H.; Santos, F.A. Composition and antinociceptive activity of the essential oil from *Protium heptaphyllum* resin. *Nat. Prod. Commun.* 2007, 2, 1199–1202.

10. Siani, A.C.; Ramos, M.F.S.; da Monteiro, S.S.; Ribeiro-dos-Santos, R.; Soares, R.O.A. Essential oils of the oleoresins from *Protium heptaphyllum* growing in the Brazilian southeastern and their cytotoxicity to neoplastic cell lines. *J. Essent. Oil Bear. Plants* 2011, 14, 373–378. [CrossRef]

11. Oliveira, F.A.; Vieira-Júnior, G.M.; Chaves, M.H.; Almeida, F.R.C.; Florêncio, M.G.; Lima, R.C.P.; Silva, R.M.; Santos, F.A.; Rao, V.S.N. Gastroprotective and anti-inflammatory effects of resin from *Protium heptaphyllum* in mice and rats. *Pharmacol. Res.* 2004, 49, 105–111. [CrossRef] [PubMed]

12. Araujo, D.A.O.V.; Takayama, C.; De-Faria, F.M.; Dunder, R.J.; Manzo, L.P.; Luiz-Ferreira, A.; Souza-Brito, A.R.M. Gastroprotective properties of essential oil from *Protium heptaphyllum* on experimental gastric ulcer models in rats. *Braz. J. Pharmacogn.* 2011, 21, 721–729. [CrossRef]

13. Milliken, W.; Albert, B. The use of medicinal plants by the Yanomami Indians of Brazil, Part II. *Econ. Bot.* 1997, 51, 264–278. [CrossRef]

14. Siani, A.C.; Nakamura, M.J.; Tappin, M.R.R.; Monteiro, S.S.; Guimarães, A.C.; Ramos, M.F.S. Chemical composition of South American Burseraceae non-volatile oleoresins and preliminary solubility assessment of their commercial blend. *Phytochem. Anal.* 2012, 23, 529–539. [CrossRef] [PubMed]

15. Da Silva, E.R.; de Oliveira, D.R.; de Melo, M.F.F.; Bizzo, H.R.; Leitão, S.G. Report on the Malungo expedition to the Erepécu river, Oriximiná, Brazil. Part I: Is there a difference between black and white breu? *Rev. Bras. Farmacogn.* 2016, 26, 647–656. [CrossRef]

16. Pontes, W.J.T.; de Oliveira, J.C.S.; da Camara, C.A.G.; Lopes, A.C.H.R.; Júnior, M.G.C.G.; de Oliveira, J.V.; Schwartz, M.O.E. Composition and acaricidal activity of the resin’s essential oil of *Protium bahiamum* Daly against two spotted spider mite (*Tetranychus urticae*). *J. Essent. Oil Res.* 2007, 19, 379–383. [CrossRef]

17. De Carvalho, L.E.; da Pinto, D.S.; Magalhães, L.A.M.; da Lima, M.P.; Marques, M.O.M.; Facanali, R. Chemical constituents of essential oil of *Protium decandrum* (Burseraceae) from western Amazon. *J. Essent. Oil Bear. Plants* 2010, 13, 181–184. [CrossRef]

18. Bandeira, P.N.; Fonseca, A.M.; Costa, S.M.O.; Lins, M.U.D.S.; Pessoa, O.D.L.; Monte, F.J.Q.; Nogueira, N.A.P.; Lemos, T.L.G. Antimicrobial and antioxidant activities of the essential oil of resin of *Protium heptaphyllum*. *Nat. Prod. Commun.* 2006, 1, 117–120.

19. De Lima, E.M.; Cazelli, D.S.P.; Pinto, F.E.; Mazuco, R.A.; Kalil, I.C.; Lenz, D.; Scherer, R.; de Andrade, T.U.; Endringer, D.C. Essential oil from the resin of *Protium heptaphyllum*: Chemical composition, cytotoxicity, antimicrobial activity, and antinociceptive activity. *Pharmacogn. Mag.* 2016, 12, S42–S46. [PubMed]

20. Albino, R.C.; Oliveira, P.C.; Prosdociemi, F.; da Silva, O.F.; Bizzo, H.R.; Gama, P.E.; Sakuragui, M.; Furtado, C.; de Oliveira, D.R. Oxidation of monoterpenes in *Protium heptaphyllum* oleoresins. *Phytochemistry* 2017, 136, 141–146. [CrossRef] [PubMed]

21. Pinto, F.E.; Heringer, O.A.; Silva, M.A.; Uggere, T.; Ribeiro, J.S.; Lenz, D.; Campos, F.; Lessa, R.; Endringer, D.C. Stability and disinfecting proprieties of the toothbrush rinse of the essential oil of *Protium heptaphyllum*. *Afr. J. Pharm. Pharmacol.* 2015, 9, 173–181.

22. Mobin, M.; de Lima, S.G.; Almeida, L.T.G.; Silva Filho, J.C.; Rocha, M.S.; Oliveira, A.P.; Mendes, M.B.; Carvalho, F.A.A.; Melhem, M.S.C.; Costa, J.G.M. Gas chromatography-triple quadrupole mass spectrometry analysis and vasorelaxant effect of essential oil from *Protium heptaphyllum* (Aubl.) March. *BioMed Res. Int.* 2017, 2017, 1928171. [CrossRef]

23. Siani, A.C.; Ramos, M.F.S.; Guimarães, A.C.; Susunaga, G.S.; Zoghbi, M.G.B. Volatile constituents from oleoresin of *Protium heptaphyllum* (Aubl.) March. *J. Essent. Oil Res.* 1999, 11, 72–74. [CrossRef]

24. Bandeira, P.N.; Machado, M.I.L.; Cavalcanti, F.S.; Lemos, T.L.G. Essential oil composition of leaves, fruits and resin of *Protium heptaphyllum* (Aubl.) March. *J. Essent. Oil Res.* 2001, 13, 33–34. [CrossRef]

25. Da Silva, E.R.; Oliveira, D.R.; Leitão, S.G.; Assis, I.M.; Veiga-Junior, V.F.; Lourenço, M.C.; Alviano, D.S.; Alviano, C.S.; Bizzo, H.R. Essential oils of *Protium* spp. samples from Amazonian popular markets: Chemical composition, physicochemical parameters and antimicrobial activity. *J. Essent. Oil Res.* 2013, 25, 171–178. [CrossRef]
26. Marques, D.D.; Sartori, R.A.; Lemos, T.L.G.; Machado, L.L.; de Souza, J.S.N.; Monte, F.J.Q. Chemical composition of the essential oils from two subspecies of Protium heptaphyllum. Acta Amazon. 2010, 40, 227–230. [CrossRef]
27. Siani, A.C.; Garrido, I.S.; Monteiro, S.S.; Carvalho, E.S.; Ramos, M.F.S. Protium icicariba as a source of volatile essences. Biochem. Syst. Ecol. 2004, 32, 477–489. [CrossRef]
28. Suárez, A.I.; Campagnone, R.S.; Acosta, D.; Vásquez, L.; Díaz, B.; Canelón, D.J. Chemical composition and antimicrobial activity of the essential oil from oleoresin of Protium neglectum S. J. Essent. Oil Bear. Plants 2007, 10, 70–75. [CrossRef]
29. Satyal, P.; Setzer, W.N. Chemical composition of Cryptocarya japonica leaf oil from Nepal. Am. J. Essent. Oils Nat. Prod. 2015, 3, 7–10.
30. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007.
31. Surapuram, V.; Setzer, W.N.; McFeeters, R.L.; McFeeters, H. Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer. Nat. Prod. Commun. 2014, 9, 1603–1605. [PubMed]
32. Satyal, P.; Murray, B.L.; McFeeters, R.L.; Setzer, W.N. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods 2016, 5, 70. [CrossRef] [PubMed]
33. Hausen, B.M.; Reichling, J.; Harkenthal, M. Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Am. J. Contact Dermat. 1999, 10, 68–77. [CrossRef]
34. Sawamura, M.; Son, U.-S.; Choi, H.-S.; Kim, M.-S.L.; Phi, N.T.L.; Fears, M.; Kumagai, C. Compositional changes in commercial lemon essential oil for aromatherapy. Int. J. Aromather. 2004, 14, 27–63. [CrossRef]
35. Turek, C.; Stintzing, F.C. Impact of different storage conditions on the quality of selected essential oils. Food Res. Int. 2012, 46, 341–353. [CrossRef]
36. Holm, Y.; Vuorela, P.; Hiltunen, R. Enantiomeric composition of monoterpenic hydrocarbons in n-hexane extracts of Angelica archangelica L. roots and seeds. Flavour Fragr. J. 1997, 12, 397–400. [CrossRef]
37. Sjödin, K.; Persson, M.; Borg-Karlson, A.-K.; Norin, T. Enantiomeric compositions of monoterpenic hydrocarbons in different tissues of four individuals of Pinus sylvestris. Phytochemistry 1996, 41, 439–445. [CrossRef]
38. Mosandl, A.; Hener, U.; Kreis, P.; Schmarr, H.-G. Enantiomeric distribution of α-pinene, β-pinene and limonene in essential oils and extracts. Part I. Rutaceae and Gramineae. Flavour Fragr. J. 1990, 5, 193–199. [CrossRef]
39. Dugo, G.; d’Alcontres, I.S.; Donato, M.G.; Dugo, P. On the genuineness of citrus essential oils. Part XXXVI. Detection of added reconstituted lemon oil in genuine cold-pressed lemon essential oil by high resolution gas chromatography with chiral capillary columns. J. Essent. Oil Res. 1993, 5, 21–26. [CrossRef]
40. Eleni, M.; Antonios, M.; George, K.; Alexios-Leandros, S.; Prokopios, M. High quality bergamot oil from Greece: Chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector. Molecules 2009, 14, 839–849. [CrossRef] [PubMed]
41. Sciarrone, D.; Schipilliti, L.; Ragonese, C.; Tranchida, P.Q.; Dugo, P.; Dugo, G.; Mondello, L. Thorough evaluation of the validity of conventional enantio-gas chromatography in the analysis of volatile chiral compounds in mandarin essential oil: A comparative investigation with multidimensional gas chromatography. J. Chromatogr. A. 2010, 1217, 1101–1105. [CrossRef] [PubMed]
42. Delort, E.; Jaquier, A.; Decorzant, E.; Chapuis, C.; Casilli, A.; Frérot, E. Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry 2015, 109, 111–124. [CrossRef] [PubMed]
43. Ravid, U.; Putievsky, E.; Katzir, I. Determination of the enantiomeric composition of α-terpineol in essential oils. Flavour Fragr. J. 1995, 10, 281–284. [CrossRef]
44. Tsokou, A.; Georgopoulou, K.; Melliou, E.; Magiatis, P.; Tsitsa, E. Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of Pistacia vera from Greece. Molecules 2007, 12, 1233–1239. [CrossRef] [PubMed]
45. Basar, S.; Koch, A.; König, W.A. A verticillane-type diterpene from Boswellia carteri essential oil. Flavour Fragr. J. 2001, 16, 315–318. [CrossRef]
46. Woolley, C.L.; Suhail, M.M.; Smith, B.L.; Boren, K.E.; Taylor, L.C.; Schreuder, M.F.; Chai, J.K.; Casabianca, H.; Haq, S.; Lin, H.K.; et al. Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography-mass spectrometry. J. Chromatogr. A 2012, 1261, 158–163. [CrossRef] [PubMed]

47. Cavaleiro, C.; Pinto, E.; Gonçalves, M.J.; Salgueiro, L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J. Appl. Microbiol. 2006, 100, 1333–1338. [CrossRef] [PubMed]

48. Schmidt, J.M.; Noletto, J.A.; Vogl, B.; Setzer, W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants 2006, 12, 43–65. [CrossRef]

49. Marei, G.I.K.; Rasoul, M.A.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic. Biochem. Physiol. 2012, 103, 56–61. [CrossRef]

50. Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [CrossRef] [PubMed]

51. Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sunmer, L.W.; Zhou, Z. Antifungal activity of Citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [CrossRef] [PubMed]

52. Kusumoto, N.; Zhao, T.; Swedjemark, G.; Ashitani, T.; Takahashi, K.; Borg-Karlson, A.-K. Antifungal properties of terpenoids in Picea abies against Heterobasidion parviporum. For. Pathol. 2014, 44, 353–361. [CrossRef]

53. Filipowicz, N.; Kaminski, M.; Kurlenda, J.; Asztemborska, M.; Ochocka, J.R. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytother. Res. 2003, 17, 227–231. [CrossRef] [PubMed]

54. Omran, S.M.; Moodi, M.A.; Amiri, S.M.B.N.A.; Mosavi, S.J.; Saeed, S.A.M.G.M.; Shiade, S.M.J.; Kheradi, E.; Salehi, M. The effects of limonene and orange peel extracts on some spoilage fungi. Int. J. Mol. Clin. Microbiol. 2011, 1, 82–86.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).