Paths and stability number in digraphs

Jacob Fox* Benny Sudakov†

Abstract

The Gallai-Milgram theorem says that the vertex set of any digraph with stability number \(k \) can be partitioned into \(k \) directed paths. In 1990, Hahn and Jackson conjectured that this theorem is best possible in the following strong sense. For each positive integer \(k \), there is a digraph \(D \) with stability number \(k \) such that deleting the vertices of any \(k - 1 \) directed paths in \(D \) leaves a digraph with stability number \(k \). In this note, we prove this conjecture.

1 Introduction

The Gallai-Milgram theorem [7] states that the vertex set of any digraph with stability number \(k \) can be partitioned into \(k \) directed paths. It generalizes Dilworth’s theorem [4] that the size of a maximum antichain in a partially ordered set is equal to the minimum number of chains needed to cover it. In 1990, Hahn and Jackson [8] conjectured that this theorem is best possible in the following strong sense. For each positive integer \(k \), there is a digraph \(D \) with stability number \(k \) such that deleting the vertices of any \(k - 1 \) directed paths in \(D \) leaves a digraph with stability number \(k \). Hahn and Jackson used known bounds on Ramsey numbers to verify their conjecture for \(k \leq 3 \). Recently, Bondy, Buchwalder, and Mercier [3] used lexicographic products of graphs to show that the conjecture holds if \(k = 2^a 3^b \) with \(a \) and \(b \) nonnegative integers. In this short note we prove the conjecture of Hahn and Jackson for all \(k \).

Theorem 1 For each positive integer \(k \), there is a digraph \(D \) with stability number \(k \) such that deleting the vertices of any \(k - 1 \) directed paths leaves a digraph with stability number \(k \).

To prove this theorem we will need some properties of random graphs. As usual, the random graph \(G(n, p) \) is a graph on \(n \) labeled vertices in which each pair of vertices forms an edge randomly and independently with probability \(p = p(n) \).

Lemma 1 For \(k \geq 3 \), the random graph \(G = G(n, p) \) with \(p = 20n^{-2/k} \) and \(n \geq 2^{15k^2} \) a multiple of \(2k \) has the following properties.

(a) The expected number of cliques of size \(k + 1 \) in \(G \) is at most \(20^{k+1} \).

(b) With probability more than \(2/3 \), every induced subgraph of \(G \) with \(n^{2k} \) vertices has a clique of size \(k \).

Proof: (a) Each subset of \(k + 1 \) vertices has probability \(p^{(k+1)/2} \) of being a clique. By linearity of expectation, the expected number of cliques of size \(k + 1 \) is

\[
\binom{n}{k+1} p^{(k+1)/2} = \binom{n}{k+1} 20^{(k+1)/2} n^{-k-1} \leq 20^{(k+1)/2}.
\]

*Department of Mathematics, Princeton, Princeton, NJ. Email: jacobfox@math.princeton.edu. Research supported by an NSF Graduate Research Fellowship and a Princeton Centennial Fellowship.

†Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: bsudakov@math.ucla.edu. Research supported in part by NSF CAREER award DMS-0812005 and by USA-Israeli BSF grant.
(b) Let U be a set of $\frac{n^2}{2k}$ vertices of G. We first give an upper bound on the probability that U has no clique of size k. For each subset $S \subset U$ with $|S| = k$, let B_S be the event that S forms a clique, and X_S be the indicator random variable for B_S. Since $k \geq 3$, by linearity of expectation, the expected number μ of cliques in U of size k is

$$
\mu = \mathbb{E}\left[\sum_{S} X_S\right] = \binom{n}{k} p^{(k)} \geq \frac{n^k}{2^{(2k)k!}} 20^{(k)} n^{1-k} \geq 2n.
$$

Let $\Delta = \sum \Pr[B_S \cap B_T]$, where the sum is over all ordered pairs S, T with $|S \cap T| \geq 2$. We have

$$
\Delta = \sum_{i=2}^{k-1} \sum_{|S \cap T|=i} \Pr[B_S \cap B_T] = \sum_{i=2}^{k-1} \sum_{|S \cap T|=i} p^{2i}(\frac{i}{k}) \geq \sum_{i=2}^{k-1} \binom{n}{i} \left(\frac{n-i}{k-1}\right) \left(\frac{n-k}{k-i}\right) p^{2i}(\frac{i}{k}) \leq 20^{k^2} \sum_{i=2}^{k-1} n^{2i-1} / (k-1) \leq k 20^{k^2} n^{2/k}.
$$

Here we used the fact that $i(i-1)/k - i$ for $2 \leq i \leq k-1$ clearly achieves its maximum when $i = 2$ or $i = k-1$.

Using that $k \geq 3$ and $n \geq 2^{15k^2}$, it is easy to check that $\Delta \leq n$. Hence, by Janson’s inequality (see, e.g., Theorem 8.11 of [2]) we can bound the probability that U does not contain a clique of size k by $\Pr[\land_S B_S] \leq e^{-\mu + \Delta/2} \leq e^{-n}$. By the union bound, the probability that there is a set of $\frac{n}{2k}$ vertices of $G(n, p)$ which does not contain a clique of size k is at most $\left(\frac{n}{2k}\right) e^{-n} \leq 2^n e^{-n} < 1/3$. □

The proof of Theorem 1 combines the idea of Hahn and Jackson of partitioning a graph into maximum stable sets and orienting the graph accordingly with Lemma 1 on properties of random graphs.

Proof of Theorem 1. Let $k \geq 3$ and $n \geq 2^{15k^2}$. By Markov’s inequality and Lemma 1(a), the probability that $G(n, p)$ with $p = 20n^{-2/k}$ has at most $2 \cdot 20^{(k+1)}$ cliques of size $k+1$ is at least $1/2$. Also, by Lemma 1(b), we have that with probability at least $2/3$ every set of $\frac{n^2}{2k}$ vertices of this random graph contains a clique of size k. Hence, with positive probability (at least $1/6$) the random graph $G(n, p)$ has both properties. This implies that there is a graph G on n vertices which contains at most $2 \cdot 20^{(k+1)}$ cliques of size $k+1$ and every set of $\frac{n^2}{2k}$ vertices of G contains a clique of size k. Delete one vertex from each clique of size $k+1$ in G. The resulting graph G' has at least $n - 2 \cdot 20^{(k+1)} \geq 3n/4$ vertices and no cliques of size $k+1$. Next pull out vertex disjoint cliques of size k from G' until the remaining subgraph has no clique of size k, and let V_1, \ldots, V_t be the vertex sets of these disjoint cliques of size k. Since every induced subgraph of G of size at least $\frac{n^2}{2k}$ contains a clique of size k, then $|V_1 \cup \ldots \cup V_t| \geq \frac{3n}{4} - \frac{n}{2k} \geq \frac{n}{2}$. Define the digraph D on the vertex set $V_1 \cup \ldots \cup V_t$ as follows. The edges of D are the nonedges of G. In particular, all sets V_i are stable sets in D. Moreover, all edges of D between V_i and V_j with $i < j$ are oriented from V_i to V_j. By construction, the stability number of D is equal to the clique number of G', namely k. Also any set of $\frac{n}{2k}$ vertices of D contains a stable set of size k. Note that every directed path in D has at most one vertex in each V_i. Hence, deleting any $k-1$ directed paths in D leaves at least $|D|/k \geq \frac{n}{2k}$ remaining vertices. These remaining vertices contain a stable set of size k, completing the proof. □

Remark. Note that in order to prove Theorem 1 we only needed to find a graph G on n vertices with no clique of size $k+1$ such that every set of $\frac{n^2}{2k}$ vertices of G contains a clique of size k. The existence of such graphs were first proved by Erdős and Rogers [6], who more generally asked to estimate the minimum t for which there is a graph G on n vertices with no clique of size s such that every set of
t vertices of G contains a clique of size r. Since then a lot of work has been done on this question, see, e.g., [9] [1] [10] [5]. Although most result for this problem used probabilistic arguments, Alon and Krivelevich [1] give an explicit construction of an n-vertex graph G with no clique of size $k + 1$, such that every subset of G of size $n^{1-\epsilon}$ contains a k-clique. Since we only need a much weaker result to prove the conjecture of Hahn and Jackson, we decided to include its very short and simple proof to keep this note self-contained.

Acknowledgments. We would like to thank Adrian Bondy for stimulating discussions and generously sharing his presentation slides. We also are grateful to Noga Alon for drawing our attention to the paper [1]. Finally, we want to thank the referee for helpful comments.

References

[1] N. Alon and M. Krivelevich, Constructive bounds for a Ramsey-type problem, *Graphs Combin.* 13 (1997), 217–225.

[2] N. Alon and J. H. Spencer, *The Probabilistic Method*, 3rd ed., Wiley, 2008.

[3] J. A. Bondy, X. Buchwalder, and F. Mercier, Lexicographic products and a conjecture of Hahn and Jackson, *SIAM J. Discrete Math.* 23 (2009), 882–887.

[4] R. P. Dilworth, A decomposition theorem for partially ordered sets, *Ann. of Math.* 51 (1950), 161–166.

[5] A. Dudek and V. Rödl, On K_s-free subgraphs in K_{s+k}-free graphs and vertex Folkman numbers, submitted.

[6] P. Erdős and C. A. Rogers, The construction of certain graphs, *Can. J. Math.* 14 (1962), 702–707.

[7] T. Gallai and A. N. Milgram, Verallgemeinerung eines graphentheoretischen Satzes von Rédei, *Acta. Sci. Math.* 21 (1960) 181–186.

[8] G. Hahn and B. Jackson, A note concerning paths and independence number in digraphs, *Discrete Math.* 82 (1990), 327–329.

[9] M. Krivelevich, Bounding Ramsey numbers through large deviation inequalities, *Random Structures Algorithms* 7 (1995), 145–155.

[10] B. Sudakov, Large K_r-free subgraphs in $K - s$-free graphs and some other Ramsey-type problems, *Random Structures Algorithms* 26 (2005), 253–265.