Л.Н. Гумилев атында Еуразия ұлттық университетінің

ХАБАРШЫСЫ

BULLETIN
of L.N. Gumilyov Eurasian National University

ВЕСТНИК
Евразийского национального университета имени Л.Н. Гумилева

ТЕХНИКАЛЫҚ ҒЫЛЫМДАР ЖӘНЕ ТЕХНОЛОГИЯЛАР сериясы

TECHNICAL SCIENCES AND TECHNOLOGY Series

Серия ТЕХНИЧЕСКИЕ НАУКИ И ТЕХНОЛОГИИ

№2(127)/2019

1995 жылдан бастап шығады
Founded in 1995
Издается с 1995 года

Жылына 4 рет шығады
Published 4 times a year
Выходит 4 раза в год

Нур-Султан,2019
Nur-Sultan,2019
Нур-Султан,2019
МАЗМУНЫ

МАТЕРИАЛЫ	СТР.
Байхожаева Б. Б., Абенова А. А. Тамдық өнімдердің сапасы мен қауіпсіздігін қамтамасыз ету мақсатында құмыршылық тақырыма	8
Бейсенбі М. А., Ш. С. Мусабаева, Саптасова А. К., Кысяшова Н. М. Қ. көрінетің және өз қызметтері бар құрылымдардың өрнектісі және детерминдеген бейберекетсіз режимінің бақырау	13
Боржекова К. Б. Ең таңбалағы книгаңында құрылысына құрман тәлі проекттің тақырыбында құрман тәлі құмыршылық	21
Батыс Қазақстанда жұқұрғағыңық куралысында кұрыла тәріздемелді құдайларды қолдану үшін көздірісі	31
Батыс Қазақстанда жұқұрғағыңық куралысында құрыла тәріздемелі құдайларды қолдану үшін көздірісі	31
Батыс Қазақстанда жұқұрғағыңық куралысында құрыла тәріздемелі құдайларды қолдану үшін көздірісі	31
Еркемішев Б. Т., Идрисова И. И., Маслов А. А., Сыдыкова А. А. «Қара жағы» қен орын күмір қулпіл электрфизикалық оңдеу	49
Каражыра Қ. Б. Алматы ЖЭО-1 қен электрфизикалық секторында құрылысы құрылысы	70
Касымбек Н. М., Мустафин М. Б., Иманкулов Т. С., Ахмед-Заки Д. Ж. Құрылыс қызметі	40
Касымбек Н. М., Мустафин М. Б., Иманкулов Т. С., Ахмед-Заки Д. Ж. Құрылыс қызметі	40
Калякин В. Н. Анизотроптың топырақтың әурулары: қейір мақсаты және өмірлік қасиетінің көсіп таңым басқару	64
Сансязбай Л. Ж., Оразбеков Б. Б. Үй-жайдың микроклиматы аяқтау үшін моделдерін талдау	70
Сатыбалдина Д. Ж., Исаев А. Н., Таштапов Н. А., Дулатов Н. А. Бөгілілген өрнекті көздірісіна қызыкқыш қалыңды параллель қосықтық жерлерге жиілік құрылысқа және моделгеңдеу	78
Оразбеков Б. Б., Шабгатурова Ж. Е., Оразбекова К. Н., Касенова Л. Г., Жанбурова Г. А., Истакова Н. Құрылға еніріссіз теорияреакторы мен Клаус реагентының математикалық моделдерін гибридтік тәсіл негізінде аяқтау	87
Түлебазова Г. М., Алжырова А. Н. Алматы ЖЭО-1 қауіпсіздік құрылысы арқылы құрылыстан қызметтері	95
Сатыбалдина Д. Ж., Исаев А. Н., Таштапов Н. А., Дулатов Н. А. Бөгілілген өрнекті көздірісіна қызыкқыш қалыңды параллель қосықтық жерлерге жиілік құрылысқа және моделгеңдеу	78
Юсупова М. А. Қараш қоғамындағы "европалық қалашықтарга" колониялық қалакұрылысының ерекшеліктері (ХІХ г. сәуле - ХХ г. басы)	100
Чарсын Қ., Кушламбеков Ж. М., Арынбеков М. И., Сулайменов Т. Б. Қызметтері	107

Қазақстандық Еуропа нысанындагы қоркытшылық актілер

- Қазақстандық Еуропа нысанындагы қоркытшылық актілер
- Қазақстандық Еуропа нысанындагы қоркытшылық актілер
CONTENTS

Author(s)	Title	Page
Bayhozhaeva B.U., Abenova A.A.	Quality assurance and food safety - an important State task	8
Beisenbi M.A, Mussabayeva Sh.S., Satpayeva A.K., Kissikova N.M.	Control of unstable and determined chaotic modes of the object with \(m \) inputs and with \(n \) outputs	13
Borzykova K.	Experience of using precast concrete joint piles in the construction of a Cargo offloading facility in West Kazakhstan	21
Yermagambet B.T., Nurgaliyev N.U., Maslov N.A., Syzdykova A.A.	Electrophysical treatment of coal ash from the Karazhyra deposit	31
Kassymbek N.M., Mustafin M.B., Imankulov T.S., Akhmed-Zaki D.Zh.	Optimization of the program for solving oil displacement problem	40
Kaliakin V.N.	Anisotropic Elasticity for Soils: A Synthesis of Some Key Issues	49
Ramazanova Zh.M., Zamalitdinova M.G., Zhangabyl M.M.	Investigation of the process of modifying titanium and its alloys by plasma-electrolytic oxidation	64
Sansybay L.Zh., Orazbayev B.B.	Analysis of existing models for control microclimate in premises	70
Satybalina D., Issainova A., Tashatov N., Dulaatov N.	Design and simulation of the serial concatenated and parallel concatenated schemes for forward error correction	78
Orazbayev B.B., Shangitova Zh.E., Orazbayeva K.N., Kassenova L.G., Zhanbirova G.A., Istayeva N.	Development of mathematical models of thermoreactor and Claus reactor of sulfur production based on hybrid method	87
Tyutembayeva G.M., Aldiyarova A.N.	Improving the ecology of Almaty when using gas turbine installation at Almaty TPP-1	95
Yusupova M.A.	Characteristics of the colonial town planning in "European cities" of Fergana valley (end of 19th – beginning of 20th centuries)	100
Carsky J., Kuanyshbayev Zh. M., Arpabekov M.I., Suleimenov T.B.	The first knowledge of operation of the turbo-roundabout in the Czech Republic	107
СОДЕРЖАНИЕ

Авторы	Название статьи
Байхожаева Б.У., Абенова А.А.	Обеспечение качества и безопасности продуктов питания – важное государственное по
Бейсенби М.А., Мусабаева Ш.С., Сатпаева А.К., Кисикова Н.М.	Управление неустойчивыми и детерминированными хаотическими режимами объекта с m входами и с n выходами
Боргекова К.Б.	Опыт применения составных железобетонных свай в строительстве сооружения разгрузки грузов в Западном Казахстане
Ермагамбет Б.Т., Нуркалиев Н.У., Маслов Н.А., Сылдыкова А.А.	Электрофизическая обработка золы угля месторождения «Каражыра»
Касымбек Н.М., Мустафин М.Б., Иманкулов Т.С., Ахмед-Заки Д.Ж.	Оптимизация программы для решения задачи вытеснения нефти
Каликов В.Н.	Антизотропная упругость грунтов обобщение некоторых ключевых вопросов
Рамазанова Ж.М., Замалитдинова М.Г., Жангабыл М.М.	Исследование процесса модифицирования титана и его сплавов плазменно-электролитическим оксидированием
Санныбаев Л.Ж., Оразбаев Б.Б.	Анализ существующих моделей управления микроклиматом помещения
Сатыбалдин Д.Ж., Исайнова А.Н., Ташатов Н.Н., Дулатов Н.А.	Проектирование и моделирование последовательных и параллельных каскадных схем помехоустойчивого кодирования
Оразбаев Б.Б., Шамгитова Ж.Е., Оразбаева К.Н., Касенова Л.Г., Жанбарова Г.А., Истаева Н.	Разработка математических моделей термореактора и реактора Клауса производства серы на основе гибридного метода
Тютебаева Г.М., Алимов А.Н.	Улучшение экологии г.Алматы при использовании ГТУ
Юсупова М.А.	Особенности колониального градостроительства в «европейских городах» Ферганской долины
Чарыев, И., Кузьмичева Ж.М., Аришков М.И., Сулеймиков Т.Б.	Первые знания о работе турбонаддува в Чешской Республике
V. N. Kaliakin

University of Delaware, Newark, Delaware, U.S.A.

(E-mail: kaliakin@udel.edu)

Anisotropic Elasticity for Soils: A Synthesis of Some Key Issues

Abstract: Traditionally, the elastic response of soils has been assumed to be isotropic. Natural soils are, however, more likely to exhibit anisotropic response. For example, sedimentary soils, which are typically deposited under gravity, possess different properties in the direction of deposition as opposed to the planes normal to this direction. This paper synthesizes several key issues related to anisotropic elastic material idealizations for soils. Emphasis is placed on transversely isotropic (“cross-anisotropic”) elastic material idealizations.

Keywords: elasticity, isotropy, anisotropy, orthotropic, transversely isotropic.

DOI: https://doi.org/10.32523/2616-7263-2019-127-2-49-63

1. **Introduction.** Traditionally, the elastic response of soils has been assumed to be isotropic. This was primarily done for two reasons. First, was a desire not to overly complicate analytical formulations. Second, was the lack of suitable experimental apparatus to measure the elastic constants necessary to characterize the anisotropic elastic response of soils. Over the last 35 or so years, the latter constraint has been significantly lessened, as substantial progress has been made in the development of experimental apparatus and techniques that facilitate measurement of the aforementioned elastic constants. Such measurements confirm that soils indeed exhibit elastic response, albeit at low strain levels, and that this response is typically anisotropic. Consequently, anisotropic elastic material idealizations for soils have become significantly more tractable.

This paper reviews some key issues related to anisotropic elastic material idealizations for soils. Although some of these issues have been discussed in previous papers, missing from the earlier documents was any attempt to synthesize these issues. Such a synthesis is presented in this paper.

2. **Elastic Deformations in Soils**

In an elastic material, the state of stress is a function only of the current state of deformation; it does not depend on the history of straining or loading. When loaded, an elastic material stores 100% of the energy due to deformation (i.e., strain energy). Upon removal of the applied loading, the material releases 100% of the stored energy and returns to its initial state; no permanent deformation is realized. Finally, the response is rate-independent; i.e., the rate at which the loading is applied has no effect upon the material response.

Elastic response is seemingly ambiguous for highly nonlinear materials such as soils [10]. However, under certain conditions, the behavior of soils is very nearly elastic. For example, Hardin and Black [6] found that at very small axial strain levels (i.e., less than 0.01%), dynamic loading tests on normally consolidated clays exhibited only very small hysteretic damping, thus indicating nearly elastic response. Subsequent experimental studies, performed in the 1980’s and 90’s, showed that the small-strain behavior of soils is generally linear elastic and time- and rate-independent [25, 11, 7, 26]. Based on the results of very careful experiments performed on a variety of geomaterials, Tatsuoka et al. [27] subsequently concluded that such materials exhibit “imperfect elasticity,” even at strains less than 0.001%. Consequently geomaterials were considered to exhibit “quasi-elastic” response that was essentially rate-independent and nearly linear. This was consistent with the earlier findings of Hicher [7]. In summary, the exact “threshold” strain value, below which geomaterials behave truly elastically, is still debatable. Nevertheless, elastic material characteristics for such materials are commonly considered to be applicable for strains smaller than 0.001% for uncemented soils [25, 11, 7].

In granular soils elastic deformations are attributed primarily to the distortion of individual particles. This occurs at relatively low levels of loading. At higher load levels the particles will move relative to one another, resulting in a permanent (inelastic) deformation. If the load level is particularly high, the particle may also begin to crush.
In cohesive soils subjected to changes in effective stress conditions, both the shear and normal forces at points of interparticle contact undergo changes in magnitude. These changes produce an elastic bending of particles, as well as a relaxation of previously bent or distorted particles or particle clusters. Both of these phenomena occur without slippage or breakage of interparticle bonds and result in an instantaneous elastic deformation of the macroelement.

3. The Issue of Elastic Isotropy

Limited experimental results on several different sands indicate isotropic behavior upon unloading, even when the strains during loading indicated anisotropic behavior [23]. A similar conclusion was reached by Krizek [12], who presented results of unconfined compression tests on sedimented specimens of kaolin clay with different degrees of inherent anisotropy. Results for sensitive clays studied by Wong and Mitchell [28] also showed nearly isotropic elastic behavior. The associated plastic stress-strain relations were, however, anisotropic. Citing the above results for sands and clays, Lade and Nelson [14] concluded that although microscopic elastic behavior of geomaterials is randomly anisotropic and non-homogeneous, such materials can be considered as macroscopically homogeneous and isotropic. This is particularly true for remolded laboratory soil samples.

For their characterization, isotropic materials require the values of two material constants. Traditionally, the bulk modulus (K) and shear modulus (G), or the elastic (Young’s) modulus (E) and Poisson’s ratio (ν) have been used to characterize isotropic elastic materials. Experimental results for geomaterials indicate that they generally exhibit nonlinear elastic response, with K, G, and E being primarily dependent on the 1) state of stress, 2) density (or void ratio), and 3) stress history [6]. The importance of this nonlinearity has been generally recognized and a variety of models, possessing varying degrees of complexity, have been proposed [9, 10, 14, 7].

4. Anisotropic Elastic Material Idealizations

Natural soils are more likely to exhibit anisotropic response. For example, sedimentary soils, which are typically deposited under gravity, possess different properties in the direction of deposition as opposed to the planes normal to this direction. For a general homogeneous, anisotropic linear elastic (Hookian) material, in the absence of initial strains and stresses, the constitutive relations, in “direct” vector-matrix form, are given by

$$\delta \varepsilon = A \delta \sigma'$$

where A is a symmetric ($N_{rough} \times N_{rough}$) matrix of compliance coefficients characterizing the material, $\delta \varepsilon$ and $\delta \sigma'$ are ($N_{rough} \times 1$) vectors of infinitesimal elastic strain and effective stress increments, respectively, and N_{rough} is the number of stress and strain components (for three-dimensional analyses, $N_{rough} = 6$; for torsionless axisymmetry, $N_{rough} = 4$; for plane strain analyses, $N_{rough} = 3$.).

For three-dimensional analyses,

$$\delta \varepsilon = \begin{bmatrix} \delta \varepsilon_{11} & \delta \varepsilon_{22} & \delta \varepsilon_{33} & \delta \gamma_{12} & \delta \gamma_{13} & \delta \gamma_{23} \end{bmatrix}^T$$

$$\delta \sigma' = \begin{bmatrix} \delta \sigma'_{11} & \delta \sigma'_{22} & \delta \sigma'_{33} & \delta \sigma'_{12} & \delta \sigma'_{13} & \delta \sigma'_{23} \end{bmatrix}^T$$

where γ_{12}, γ_{13}, and γ_{23} are engineering shear strains, and the superscript T denotes the operation of vector transposition.

Written in “inverse” “direct” vector-matrix form, the constitutive relations are are given by generalized Hooke’s law; viz.,

$$\delta \sigma' = D \delta \varepsilon$$

where D, which is the inverse of A, represents the symmetric ($N_{rough} \times N_{rough}$) matrix of elastic moduli.

Due to symmetry, in their most general form, both A and D contain 21 independent coefficients that characterize the elastic material. The prospect of determining values for 21 material coefficients from experimental results is a formidable task. Fortunately, however, most of the important engineering materials possess some internal structure that exhibits certain symmetries that reduce the number of independent elastic coefficients required to characterize the material. For the present development, it is expedient to first consider an orthotropic material idealization.

4.1 Orthotropic Elastic Idealizations

Consider a material through each point of which pass three mutually perpendicular planes of elastic symmetry. If similar planes are parallel at all points in the material, then taking the $(x_1, x_2, x_3) \equiv$
(x, y, z) coordinate axes normal to these planes (i.e., along the principal directions) it follows that there should be no interaction between the various shear components or between the shear and normal components. Consequently, the compliance matrix has the following entries [15]:

\[
A = \begin{bmatrix}
\frac{1}{E_1} & -\nu_{21}/E_2 & -\nu_{31}/E_3 & 0 & 0 & 0 \\
-\nu_{12}/E_1 & \frac{1}{E_2} & -\nu_{32}/E_3 & 0 & 0 & 0 \\
-\nu_{13}/E_1 & -\nu_{23}/E_2 & \frac{1}{E_3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1/G_{12} & 0 & 0 \\
0 & 0 & 0 & 0 & 1/G_{13} & 0 \\
0 & 0 & 0 & 0 & 0 & 1/G_{23}
\end{bmatrix}
\]

(3)

The material constants appearing in equation (3) are defined as follows: \(E_1, E_2,\) and \(E_3\) are elastic moduli associated with tension or compression in the material coordinate direction \(x_1, x_2,\) and \(x_3,\) respectively. These moduli are obtained under drained conditions; they are thus defined in terms of effective stress. The \(G_{ij}\) is the elastic shear modulus that relates the shear stress \(\sigma_{ij}\) to the shear strain \(\gamma_{ij},\) where no summation on repeated indices is implied. Finally, \(\nu_{ij}\) is the Poisson’s ratio that is equal to the ratio of the lateral contraction in the \(x_j\) material coordinate direction resulting from a uniaxial extension in the \(x_i\) coordinate direction [15].

Symmetry of \(A\) implies that \(\nu_{21}/E_2 = \nu_{12}/E_1, \nu_{21}/E_2 = \nu_{12}/E_1,\) and \(\nu_{32}/E_3 = \nu_{23}/E_2.\) Thus, only nine of the twelve elastic constants entering equation (3) are independent; viz,

\[
E_1, E_2, E_3, \nu_{12}, \nu_{13}, \nu_{23}, G_{12}, G_{13}, G_{23}
\]

4.2 Transversely Isotropic Idealizations

Due to the manner in which natural soils are deposited, it is logical to expect them to exhibit approximately transversely isotropic (or “cross-anisotropic”) response. While this realization is not new [3, 22, 2, 5, 24], the lack of suitable experimental apparatus to accurately measure the five elastic constants associated with transverse isotropy has, in the past, precluded the use of such idealizations. More recently [8, 17, 13, 1, 21], substantial progress has been made in experimental techniques that facilitate the measurement of the aforementioned elastic constants.

Through all points of a transversely isotropic material there pass parallel planes of elastic symmetry in which all directions are elastically equivalent (i.e., planes of isotropy). Thus at each point there exists one principal direction and an infinite number of principal directions in a plane normal to the first direction [15]. Assume that the local material axes \((\tilde{x}_1, \tilde{x}_2, \tilde{x}_3) \equiv (\tilde{x}, \tilde{y}, \tilde{z})\) coincide with the global \(x, y\) and \(z\) coordinate axes (Figure 1). Furthermore, assume that the global \(x\)-axis is taken normal to the planes of isotropy, with the global \(y\) and \(z\) axes directed arbitrarily in such planes.

Figure 1 – Schematic illustration of an element of transversely isotropic material.
In light of this definition of a transversely isotropic material, and in relation to the orthotropic elastic constants given in equation (3), the following elastic constants are defined: \(E_1 \equiv E_n \), where \(E_n \) is the elastic modulus for compression or tension in a direction normal to the plane of isotropy, and \(E_2 = E_3 = E_t \), where \(E_t \) is the elastic modulus for compression or tension in the plane of isotropy (i.e., in a direction tangential to the \(x \)-axis). Since the \(y - z \) plane is a plane of isotropy, \(\nu_{21} = \nu_{31} \equiv \nu_{nt} \), where \(\nu_{nt} \) is the Poisson’s ratio characterizing the lateral contraction normal to the plane of isotropy when tension is applied in the plane. The modulus \(G_{12} = G_{13} \equiv G_{nt} \) is associated with shearing involving \(\gamma_{12} \) and \(\gamma_{13} \). Finally, \(G_{23} \equiv G_{tt} \) characterizes shearing in the plane of isotropy. It is given by \(1/G_{tt} = 2(1 + \nu_{tt})/E_t \), from which it is evident that \(G_{tt} \) is thus not an independent material constant.

From equation (3), symmetry of \(A \) requires that \(A_{23} = A_{32} \), giving \(\nu_{32}/E_3 = \nu_{23}/E_2 \). Since \(E_2 = E_3 \), it follows that \(\nu_{32} = \nu_{23} \equiv \nu_{tt} \), where \(\nu_{tt} \) is the Poisson’s ratio characterizing transverse contraction in the plane of isotropy when tension is applied in the same plane.

Symmetry considerations also require that \(A_{12} = A_{21} \) and \(A_{13} = A_{31} \), giving \(\nu_{12}/E_1 = \nu_{21}/E_1 \) and \(\nu_{31}/E_3 = \nu_{31}/E_1 \). Since \(\nu_{31} = \nu_{21} \), it follows that now \(\nu_{13}/E_1 = \nu_{23}/E_1 \), thus giving \(\nu_{12} = \nu_{13} = \nu_{nt} \). Here \(\nu_{nt} \) is the Poisson’s ratio characterizing the lateral contraction in the plane of isotropy when tension is applied normal to the plane.

When the global \(x \)-axis is taken normal to the planes of isotropy, a transversely isotropic material is thus characterized by the values of five material constants, namely:

\[
E_t, E_n, \nu_{nt}, \nu_{tt}, G_{nt}
\]

The compliance matrix given by equation (3) thus becomes

\[
A = \begin{bmatrix}
1/E_n & -\nu_{tn}/E_t & -\nu_{tn}/E_t & 0 & 0 & 0 \\
-\nu_{tn}/E_n & 1/E_t & -\nu_{tt}/E_t & 0 & 0 & 0 \\
-\nu_{nt}/E_n & -\nu_{tt}/E_t & 1/E_t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1/G_{nt} & 0 \\
0 & 0 & 0 & 0 & 0 & 2(1 + \nu_{tt})/E_t \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

where \(\nu_{tn} = \nu_{nt}(E_t/E_n) \).

5. Volumetric Strain

Assuming infinitesimal kinematics, the elastic volumetric strain increment for an anisotropic elastic material described by equation (1) is

\[
\delta \varepsilon_v^e = \delta \varepsilon_{11}^e + \delta \varepsilon_{22}^e + \delta \varepsilon_{33}^e \\
= (A_{11} + A_{21} + A_{31}) \delta \sigma_{11}' + (A_{12} + A_{22} + A_{32}) \delta \sigma_{22}' + (A_{13} + A_{23} + A_{33}) \delta \sigma_{33}'
\]

Substituting the requisite compliance entries from equation (3) into equation (5), the elastic volumetric strain increment for an orthotropic elastic material idealization is

\[
\delta \varepsilon_v^e = \frac{1}{E_1} (1 - \nu_{12} - \nu_{13}) \delta \sigma_{11}' + \frac{1}{E_2} (1 - \nu_{21} - \nu_{23}) \delta \sigma_{22}' + \frac{1}{E_3} (1 - \nu_{31} - \nu_{32}) \delta \sigma_{33}'
\]

For the transversely isotropic elastic material idealization defined by equation (4), equation (6) reduces to

\[
\delta \varepsilon_v^e = \frac{1}{E_n} (1 - 2\nu_{nt}) \delta \sigma_{11}' + \frac{1}{E_t} (1 - \nu_{tn} - \nu_{tt}) \delta \sigma_{22}' + \frac{1}{E_t} (1 - \nu_{tt} - \nu_{tt}) \delta \sigma_{33}'
\]

For the special case of isotropic compression, \(\delta \sigma_{11}' = \delta \sigma_{22}' = \delta \sigma_{33}' \). The elastic volumetric strain increment for an orthotropic elastic material idealization is thus

\[
\delta \varepsilon_v^e = \left[\frac{1}{E_1} (1 - \nu_{12} - \nu_{13}) + \frac{1}{E_2} (1 - \nu_{21} - \nu_{23}) + \frac{1}{E_3} (1 - \nu_{31} - \nu_{32}) \right] \delta \sigma_{11}'
\]
For a transversely isotropic elastic material subjected to a state of isotropic compression, equation (6) reduces to

$$\delta \varepsilon_v^c = \left[\frac{1}{E_n} (1 - 2 \nu_{nt}) + \frac{1}{E_t} (1 - 2 \nu_{tt}) + \frac{1}{E_t} (1 - 2 \nu_{tt}) \right] \delta \sigma'_{11} = \frac{1}{K} \delta \sigma'_{11}$$

(9)

where \(K \) is a generalized bulk modulus.

For completeness, note that for an isotropic elastic material, \(E_1 = E_2 = E_3 = E \), \(\nu_{12} = \nu_{13} = \nu_{23} = \nu_{31} = \nu_{32} = \nu \). Equation (8) thus reduces to

$$\delta \varepsilon_v^c = \frac{1}{E} \left[3(1 - 2\nu) \right] \delta \sigma'_{11} = \frac{1}{K} \delta \sigma'_{11}$$

where \(K \) is now equal to the “drained” elastic bulk modulus \(K' = E/3(1 - 2\nu) \).

6. Undrained Conditions

For a saturated anisotropic elastic soil with incompressible fluid and solid phase, under undrained conditions, equation (5) becomes

$$\delta \varepsilon_v^c = \delta \varepsilon_{11}^c + \delta \varepsilon_{22}^c + \delta \varepsilon_{33}^c = 0$$

(10)

For an orthotropic elastic material idealization, equation (6) gives

$$\frac{1}{E_1} (1 - \nu_{12} - \nu_{13}) \delta \sigma'_{11} + \frac{1}{E_2} (1 - \nu_{21} - \nu_{23}) \delta \sigma'_{22} + \frac{1}{E_3} (1 - \nu_{31} - \nu_{32}) \delta \sigma'_{33} = 0$$

(11)

Since the normal effective stress increments \(\delta \sigma'_{11} \), \(\delta \sigma'_{22} \) and \(\delta \sigma'_{33} \) are, in general, non-zero, and since \(E_1 > 0 \), \(E_2 > 0 \) and \(E_3 > 0 \), the kinematic constraint of zero volume imposes the following constraints on the Poisson’s ratios associated with an orthotropic material idealization:

$$(1 - \nu_{12} - \nu_{13}) = 0 \quad ; \quad (1 - \nu_{21} - \nu_{23}) = 0 \quad ; \quad (1 - \nu_{31} - \nu_{32}) = 0$$

(12)

For a transversely isotropic elastic material idealization, equation (7) gives

$$\frac{1}{E_n} (1 - 2\nu_{nt}) \delta \sigma'_{11} + \frac{1}{E_t} (1 - \nu_{tn} - \nu_{tt}) \delta \sigma'_{22} + \frac{1}{E_t} (1 - \nu_{tn} - \nu_{tt}) \delta \sigma'_{33} = 0$$

(13)

Since the normal effective stress increments \(\delta \sigma'_{11} \), \(\delta \sigma'_{22} \) and \(\delta \sigma'_{33} \) are, in general, non-zero, and since \(E_n > 0 \) and \(E_t > 0 \), the kinematic constraint of zero volume imposes the following constraints on the Poisson’s ratios associated with a transversely isotropic material idealization:

$$\frac{1}{E_n} (1 - 2\nu_{nt}) = 0 \quad ; \quad \frac{1}{E_t} (1 - \nu_{tn} - \nu_{tt}) = 0$$

(14)

Since \(E_n > 0 \), the first of the constraint equations (14) gives \(\nu_{nt} = 1/2 \). Using this value, along with the relation \(\nu_{tn} = E_t \nu_{nt}/E_n \), which is due to the symmetry of \(A \) (recall equation 4), gives

$$\nu_{tn} = \frac{1}{2} \left(\frac{E_t}{E_n} \right)$$

(15)

Substituting equation (15) into the second constraint equation (14), and recalling that \(E_t > 0 \), gives

$$\nu_{tt} = 1 - \frac{1}{2} \left(\frac{E_t}{E_n} \right)$$

(16)

Lempriere [?] showed that \(\nu_{tt} \) must be in the range \(-1 < \nu_{tt} < 1 \). Combining this fact with equation (16), the admissible range for the ratio of these elastic moduli is thus \(0 < (E_t/E_n) < 4 \).

In summary, since \(\nu_{nt} = 1/2 \) and \(\nu_{tt} \) is computed using equation (16), the number of independent material constants associated with a transversely isotropic elastic idealization under undrained conditions thus reduces from five to three; i.e., \(E_n \), \(E_t \) and \(G_{nt} \).

7. Plane Strain Conditions

Consider a transverse isotropic material idealization with the global \(x \)-axis again taken normal to the planes of isotropy. The \(z \)-axis is chosen to coincide with the “long” direction of the material. As such, \(\gamma_{13} = \gamma_{23} = \varepsilon_{33} = 0 \). From the third of equations (4),

$$\varepsilon_{33} = -\frac{\nu_{nt}}{E_n} \sigma'_{11} - \frac{\nu_{tt}}{E_t} \sigma'_{22} + \frac{1}{E_t} \sigma'_{33} = 0 \quad \Rightarrow \quad \sigma'_{33} = E_t \left(\frac{\nu_{nt}}{E_n} \sigma'_{11} + \frac{\nu_{tt}}{E_t} \sigma'_{22} \right)$$

(17)
Substituting equation (17) into the first two of equations (4) gives the following constitutive relations:

\[
\begin{bmatrix}
\delta \varepsilon_{11}^e \\
\delta \varepsilon_{22}^e \\
\delta \gamma_{12}^e
\end{bmatrix} = \frac{1}{E_t} \begin{bmatrix}
n(1 - \nu_n \nu_t) & -\nu_n (1 + \nu_t) & 0 \\
-\nu_n (1 + \nu_t) & 1 - (\nu_t)^2 & 0 \\
0 & 0 & 1/G_{nt}
\end{bmatrix} \begin{bmatrix}
\delta \sigma'_{11} \\
\delta \sigma'_{22} \\
\delta \sigma'_{12}
\end{bmatrix}
\]

(18)

8. Axisymmetric Triaxial Conditions

Under axisymmetric triaxial conditions, only principal stresses are applied to a sample; all shear stresses and shear strains are thus zero. As such, in writing the constitutive relations, only the leading principal 3 by 3 sub-matrix of \(\mathbf{A} \) in equation (4) need be considered; viz.,

\[
\begin{bmatrix}
\delta \varepsilon_{11}^e \\
\delta \varepsilon_{22}^e \\
\delta \varepsilon_{33}^e
\end{bmatrix} = \frac{1}{E_t} \begin{bmatrix}
1/E_n & -\nu_n/E_t & -\nu_n/E_t \\
-\nu_n/E_n & 1/E_t & -\nu_t/E_t \\
-\nu_n/E_n & -\nu_t/E_t & 1/E_t
\end{bmatrix} \begin{bmatrix}
\delta \sigma'_{11} \\
\delta \sigma'_{12} \\
\delta \sigma'_{13}
\end{bmatrix}
\]

(19)

Letting \(n = E_t/E_n \), and recalling that due to the symmetry of \(\mathbf{A} \), \(\nu_{nt}/E_n = \nu_{tn}/E_t \), equation (19) is commonly re-written as

\[
\begin{bmatrix}
\delta \varepsilon_{11}^e \\
\delta \varepsilon_{22}^e \\
\delta \varepsilon_{33}^e
\end{bmatrix} = \frac{1}{E_t} \begin{bmatrix}
n & -\nu_n & -\nu_n \\
-\nu_n & 1 & -\nu_t \\
-\nu_n & -\nu_t & 1
\end{bmatrix} \begin{bmatrix}
\delta \sigma'_{11} \\
\delta \sigma'_{22} \\
\delta \sigma'_{33}
\end{bmatrix}
\]

(20)

Constitutive relations for specific axisymmetric triaxial stress states are next derived. Recalling the definition of the mean normal effective stress \(p' \) and the deviatoric effective stress \(q \); viz.,

\[
\delta p' = \frac{\delta \sigma'_{11} + 2\delta \sigma'_{33}}{3}, \quad q = \delta \sigma'_{11} - \delta \sigma'_{33}
\]

Solving these two equations for \(\delta \sigma'_{11} \) and \(\delta \sigma'_{33} \) gives

\[
\delta \sigma'_{11} = \delta p' + \frac{2}{3}q, \quad \delta \sigma'_{33} = \delta p' - \frac{1}{3}q
\]

(21)

8.1 “Vertical” Specimens with \(\delta \sigma'_{11} > \delta \sigma'_{22} = \delta \sigma'_{33} \)

This case is shown in Figure 3. The elastic strain increments are \(\delta \varepsilon_{11}^e = \delta \varepsilon_{22}^e = \delta \varepsilon_{33}^e \), \(\delta \varepsilon_{22}^e = \delta \varepsilon_{33}^e \), with \(\delta \varepsilon_{22}^e = \delta \varepsilon_{33}^e \). The associated effective stress increments are \(\delta \sigma'_{11} = \delta \sigma'_{11}, \delta \sigma'_{22} = \delta \sigma'_{22}, \) and \(\delta \sigma'_{33} = \delta \sigma'_{33}, \) with \(\delta \sigma'_{22} = \delta \sigma'_{33} \).
Substituting equations (21) for $\delta\sigma'_{1}$ and $\delta\sigma'_{3}$ into equations (20) gives, after some manipulation, the elastic strain increments in terms of $\delta p'$ and δq; viz.,

\[
\delta \varepsilon_{11}^e \equiv \delta \varepsilon_{1}^e = \frac{1}{E_t} \left(n \delta \sigma'_{1} - 2\nu_t \nu_n \delta \sigma'_{3} \right) \frac{1}{E_t} \left((n - 2\nu_t) \delta p' + \frac{2}{3} (\nu_t - \nu_n) \delta q \right) \quad (22)
\]

\[
\delta \varepsilon_{22}^e \equiv \delta \varepsilon_{2}^e = \frac{1}{E_t} \left(-\nu_t \delta \sigma'_{1} + (1 - \nu_t) \delta \sigma'_{3} \right) \frac{1}{E_t} \left((1 - \nu_t - \nu_n) \delta p' + \frac{1}{3} (\nu_t - 2\nu_n - 1) \delta q \right) \quad (23)
\]

\[
\delta \varepsilon_{33}^e \equiv \delta \varepsilon_{3}^e = \frac{1}{E_t} \left(-\nu_t \delta \sigma'_{1} + (1 - \nu_t) \delta \sigma'_{3} \right) \frac{1}{E_t} \left((1 - \nu_t - \nu_n) \delta p' + \frac{1}{3} (\nu_t - 2\nu_n - 1) \delta q \right) \quad (24)
\]

where, as expected, $\delta \varepsilon_{2}^e = \delta \varepsilon_{3}^e$.

Recalling equation (5), and using equations (22) to (24), the elastic volumetric strain increment is

\[
\delta \varepsilon_v^e = \delta \varepsilon_{11}^e + \delta \varepsilon_{22}^e + \delta \varepsilon_{33}^e = \delta \varepsilon_{1}^e + 2\delta \varepsilon_{3}^e = \frac{1}{E_t} \left(n - 2\nu_t \nu_n \right) \left((n - 2\nu_t) \delta \sigma'_{1} + 2(1 - \nu_t - \nu_n) \delta \sigma'_{3} \right) \quad (25)
\]

For the special case of isotropic compression, $\delta \sigma'_{1} = \delta \sigma'_{2} = \delta \sigma'_{3}$. equation (25) then becomes

\[
\delta \varepsilon_v^e = \frac{1}{E_t} \left(n + 2(1 - 2\nu_t - \nu_n) \right) \delta p' \quad (25')
\]

The axial distortional strain increment is given by

\[
\delta \varepsilon_s^e = \frac{2}{3} (\delta \varepsilon_{1}^e - \delta \varepsilon_{3}^e) = \frac{2}{3} (\delta \varepsilon_{11}^e - \delta \varepsilon_{33}^e) = \frac{2}{3E_t} \left((n + \nu_t) \delta \sigma'_{1} + (\nu_t - 2\nu_n - 1) \delta \sigma'_{3} \right) \quad (26)
\]

For the special case of isotropic compression, $\delta q = 0$. Equation (26) thus becomes

\[
\delta \varepsilon_s^e = \frac{2}{3E_t} \left(n - \nu_t - \nu_n \right) \delta p' \quad (26')
\]

indicating that, because of anisotropy, $\delta \varepsilon_s^e \neq 0$ even though the effective stress state is isotropic.
Following the example of Graham and Houlsby [5], the elastic stress-strain are written in vector-matrix form, giving

\[
\begin{align*}
\{\delta \varepsilon_v^e\} = \left[\begin{array}{cc}
1/K^* & 1/J^* \\
1/J^* & 1/3G^*
\end{array}\right] \{\delta p'\} \\
\{\delta \varepsilon_s^e\} = \left[\begin{array}{c}
\delta q
\end{array}\right]
\end{align*}
\]

(27)

where, in light of equations (25) and (26),

\[
\begin{align*}
1/K^* = \frac{1}{E_t}\left[n + 2(1 - 2\nu_{tn} - \nu_{tt})\right] \\
1/J^* = \frac{2}{3E_t}\left[1 - \nu_{tn} + \nu_{tt} - 1\right] \\
1/3G^* = \frac{2}{9E_t}\left[2(n + 2\nu_{tn}) - \nu_{tt} + 1\right]
\end{align*}
\]

(28) (29) (30)

As a check, consider an isotropic material idealization. Now \(\nu_{tn} = \nu_{tt} \equiv \nu\), \(E_t \equiv E\) and \(n = 1\). Equations (28) to (30) reduce to

\[
\begin{align*}
1/K^* = \frac{1}{E}\left[1 + 2 - 4\nu - 2\nu\right] = \frac{3}{E}(1 - 2\nu) & \Rightarrow K^* = \frac{E}{3(1 - 2\nu)} \equiv K' \\
1/J = \frac{2}{3E}\left[1 - \nu + \nu - 1\right] = 0 \\
1/3G^* = \frac{2}{9E}\left[2(1 + 2\nu) - \nu + 1\right] = \frac{2(1 + \nu)}{3E} & \Rightarrow G^* = \frac{E}{2(1 + \nu)} \equiv G
\end{align*}
\]

where \(K'\) is the “drained” elastic bulk modulus, and \(G\) is the elastic shear modulus. The “usual” results for isotropic elasticity are thus obtained; viz., \(\delta \varepsilon_v^e = \delta p'/K'\) and \(\delta \varepsilon_s^e = \delta q/(3G)\).

Recalling the definition of the increment in octahedral shear strain, written in terms of principal strains [4]; viz.,

\[
\delta \gamma_{oct}^2 = \frac{1}{9} \left[(\delta \varepsilon_1 - \delta \varepsilon_2)^2 + (\delta \varepsilon_2 - \delta \varepsilon_3)^2 + (\delta \varepsilon_3 - \delta \varepsilon_1)^2\right]
\]

(31)

using equations (22) to (24), it is instructive to compute the following three elastic incremental principal strain differences:

\[
\begin{align*}
\delta \varepsilon_1^e - \delta \varepsilon_2^e &= \delta \varepsilon_{11}^e - \delta \varepsilon_{22}^e = \frac{1}{E_t}\left[(n - \nu_{tn} + \nu_{tt} - 1)\delta p' + \frac{1}{3}(2n + 4\nu_{tn} - \nu_{tt} + 1)\delta q\right] \\
\delta \varepsilon_2^e - \delta \varepsilon_3^e &= \delta \varepsilon_{22}^e - \delta \varepsilon_{33}^e = 0 \\
\delta \varepsilon_3^e - \delta \varepsilon_1^e &= \delta \varepsilon_{33}^e - \delta \varepsilon_{11}^e = -(\delta \varepsilon_1^e - \delta \varepsilon_2^e)
\end{align*}
\]

For the special case of isotropic compression, \(\delta q = 0\). Thus,

\[
\delta \varepsilon_1^e - \delta \varepsilon_2^e = -(\delta \varepsilon_1^e - \delta \varepsilon_2^e) = \frac{1}{E_t}\left[(n - \nu_{tn} + \nu_{tt} - 1)\delta p'\right]
\]

indicating that, because of anisotropy, \(\delta \gamma_{oct}^e \neq 0\) even though the effective stress state is isotropic. Only for the case of material isotropy \((\nu_{tn} = \nu_{tt} \equiv \nu\), \(E_t \equiv E\), \(n = 1\)) will \(\delta \gamma_{oct} = 0\).

8.2 “Horizontal” Specimens with \(\delta \sigma_{33}^e > \delta \sigma_{11}^e = \delta \sigma_{22}^e\)

This case is shown in Figure 4. The elastic strain increments are \(\delta \varepsilon_1^e \equiv \delta \varepsilon_{33}^e\), \(\delta \varepsilon_2^e \equiv \delta \varepsilon_{11}^e\), \(\delta \varepsilon_3^e \equiv \delta \varepsilon_{22}^e\). The associated effective stress increments are \(\delta \sigma_1^e \equiv \delta \sigma_{33}^e\), \(\delta \sigma_2^e \equiv \delta \sigma_{11}^e\), and \(\delta \sigma_3^e \equiv \delta \sigma_{22}^e\), with \(\delta \sigma_2^e = \delta \sigma_3^e\).

Substituting equations (21) for \(\delta \sigma_1^t\) and \(\delta \sigma_3^t\) into equations (20) gives, after some manipulation, the elastic strain increments in terms of \(\delta p'\) and \(\delta q\); viz.,

\[
\begin{align*}
\delta \varepsilon_{11}^e &= \delta \varepsilon_{22}^e = \frac{1}{E_t}\left[-\nu_{tn} \delta \sigma_1^e + (n - \nu_{tn})\delta \sigma_3^e\right] = \frac{1}{E_t}\left[(n - 2\nu_{tn})\delta p' - \frac{1}{3}(n + \nu_{tn})\delta q\right] \\
\delta \varepsilon_{12}^e &= \delta \varepsilon_{21}^e = \frac{1}{E_t}\left[-\nu_{tn} \delta \sigma_2^e + (n - \nu_{tn})\delta \sigma_3^e\right] = \frac{1}{E_t}\left[(n - 2\nu_{tn})\delta p' - \frac{1}{3}(n + \nu_{tn})\delta q\right]
\end{align*}
\]

(32)
\[\delta \sigma_{33} = \delta \sigma_1 \]
\[\delta \sigma_{11} = \delta \sigma_2 \]
\[\delta \sigma_{22} = \delta \sigma_3 \]

Figure 4 – Transversely isotropic material under axisymmetric triaxial conditions: “horizontal” specimen with \(\delta \sigma'_{11} > \delta \sigma'_{22} \).

\[
\delta \varepsilon^e_{22} \equiv \delta \varepsilon_3^e = \frac{1}{E_t} \left(-\nu_{tt} \delta \sigma'_1 + (1 - \nu_{tt}) \delta \sigma'_3 \right) = \frac{1}{E_t} \left[(1 - \nu_{tn} - \nu_{tt}) \delta p' + \frac{1}{3} \left(\nu_{tn} - 2\nu_{tt} - 1 \right) \delta q \right]
\]

\[
\delta \varepsilon^e_{33} \equiv \delta \varepsilon_1^e = \frac{1}{E_t} \left[\delta \sigma'_1 - (\nu_{nn} + \nu_{tt}) \delta \sigma'_3 \right] = \frac{1}{E_t} \left[(1 - \nu_{tn} - \nu_{tt}) \delta p' + \frac{1}{3} \left(\nu_{tn} + \nu_{tt} + 2 \right) \delta q \right]
\]

From equations (32) and (33) it is evident that although \(\delta \sigma'_{11} = \delta \sigma'_{22} \), \(\delta \varepsilon^e_{11} \neq \delta \varepsilon^e_{22} \) due to anisotropy. The condition \(\delta \varepsilon^e_{11} = \delta \varepsilon^e_{22} \) will, however, be realized if the material is isotropic (i.e., for \(n = 1, E_t \equiv E \), and \(\nu_{tn} = \nu_{tt} \equiv \nu \)).

Recalling equation (5), and using equations (32) to (34), the elastic volumetric strain increment is

\[
\delta \varepsilon^e_v = \delta \varepsilon^e_{11} + \delta \varepsilon^e_{22} + \delta \varepsilon^e_{33} = \delta \varepsilon^e_1 + \delta \varepsilon^e_2 + \delta \varepsilon^e_3 = \frac{1}{E_t} \left[(1 - \nu_{tn} - \nu_{tt}) \delta \sigma'_1 + (n - 3\nu_{tn} - \nu_{tt} + 1) \delta \sigma'_3 \right]
\]

\[
= \frac{1}{E_t} \left\{ n + 2 \left(1 - 2\nu_{tn} - \nu_{tt} \right) \delta p' + \frac{1}{3} \left(1 + \nu_{nn} - \nu_{tt} - n \right) \delta q \right\}
\]

(35)

For the special case of isotropic compression, \(\delta q = 0 \). Equation (35) then becomes

\[
\delta \varepsilon^e_v = \frac{1}{E_t} \left[n + 2 \left(1 - 2\nu_{tn} - \nu_{tt} \right) \right] \delta p'
\]

The axial distorsional strain increment is given by

\[
\delta \varepsilon^e_s = \frac{2(1 + \nu_{tt})}{3E_t} \left[\delta \sigma'_1 - \delta \sigma'_3 \right] = \frac{2(1 + \nu_{tt})}{3E_t} \delta q
\]

(36)

For the special case of isotropic compression, \(\delta q = 0 \Rightarrow \delta \varepsilon^e_s = 0 \).

The elastic stress-strain are next written in vector-matrix form, giving

\[
\begin{bmatrix} \delta \varepsilon^e_v \\ \delta \varepsilon^e_s \end{bmatrix} = \begin{bmatrix} 1/K^* & 1/J_1^* \\ 1/J_2^* & 1/3G^* \end{bmatrix} \begin{bmatrix} \delta p' \\ \delta q \end{bmatrix}
\]

(37)

where, in light of equations (35) and (36),

\[
\frac{1}{K^*} = \frac{1}{E_t} \left[n + 2 \left(1 - 2\nu_{tn} - \nu_{tt} \right) \right]
\]

(38)

\[
\frac{1}{J_1^*} = \frac{1}{3E_t} \left[(1 + \nu_{nn} - \nu_{tt} - n) \right] \quad \frac{1}{J_2^*} = 0
\]

(39)

\[
\frac{1}{3G^*} = \frac{2(1 + \nu_{tt})}{3E_t}
\]

(40)
For an isotropic material idealization, equations (38) to (40) reduce to

\[\frac{1}{K^*} = \frac{1}{E} \left[1 + 2(1 - 2\nu - \nu) \right] = \frac{3}{E} (1 - 2\nu) \Rightarrow K^* = \frac{E}{3(1 - 2\nu)} = K' \]

\[\frac{1}{J'_t} = \frac{1}{3E_t} \left[(1 + \nu - \nu - 1) \right] = 0 \]

\[\frac{1}{3G^*} = \frac{2(1 + \nu)}{3E} \Rightarrow 3G^* = \frac{3E}{2(1 + \nu)} = 3G \]

where \(K' \) and \(G \) are again the “drained” elastic bulk and shear modulus, respectively.

Using equations (32) to (34), it is instructive to compute the three elastic incremental principal strain differences entering equation (31) for the increment in octahedral shear strain; viz.,

\[\delta\varepsilon' - \delta\varepsilon'_2 = \delta\varepsilon'_{33} - \delta\varepsilon'_{11} = \frac{1}{E_t} \left[(1 + \nu_{tn} - \nu_{tt} - n)\delta\sigma' + \frac{1}{3}(2 + 2\nu_{tn} + \nu_{tt} + n)\delta q \right] \]

\[\delta\varepsilon'_2 - \delta\varepsilon'_3 = \delta\varepsilon'_{11} - \delta\varepsilon'_{22} = \frac{1}{E_t} \left[(\nu_{tt} - \nu_{tn} + n - 1)\delta\sigma' + \frac{1}{3}(1 - 2\nu_{tn} + 2\nu_{tt} - n)\delta q \right] \]

\[\delta\varepsilon'_3 - \delta\varepsilon'_1 = \delta\varepsilon'_{22} - \delta\varepsilon'_{33} = \frac{1}{E_t} \left[-(1 + \nu_{tt})\delta q \right] \]

For the special case of isotropic compression, \(\delta q = 0 \). Thus,

\[\delta\varepsilon'_1 - \delta\varepsilon'_2 = -(\delta\varepsilon'_2 - \delta\varepsilon'_3) = \frac{1}{E_t} \left[(1 + \nu_{tn} - \nu_{tt} - n)\delta\sigma' \right] \]

indicating that, because of anisotropy, \(\delta\gamma_{oct} \neq 0 \) even though the effective stress state is isotropic. Only for the case of material isotropy (\(\nu_{tn} = \nu_{tt} = \nu \), \(E_t = E \), \(n = 1 \)) will \(\delta\gamma_{oct} = 0 \).

8.3 “Horizontal” Specimens with \(\delta\sigma'_{22} > \delta\sigma'_{33} = \delta\sigma'_{11} \)

This case is shown in Figure 5. The elastic strain increments are \(\delta\varepsilon'_1 \equiv \delta\varepsilon'_{33} \), \(\delta\varepsilon'_2 \equiv \delta\varepsilon'_{11} \), \(\delta\varepsilon'_3 \equiv \delta\varepsilon'_{22} \). The associated effective stress increments are \(\delta\sigma'_1 \equiv \delta\sigma'_{33} \), \(\delta\sigma'_2 \equiv \delta\sigma'_{11} \), and \(\delta\sigma'_3 \equiv \delta\sigma'_{22} \), with \(\delta\sigma'_2 = \delta\sigma'_3 \).

\[\delta\sigma'_{22} = \delta\sigma_1 \]

\[\delta\sigma'_{33} = \delta\sigma_2 \]

\[\delta\sigma'_{11} = \delta\sigma_3 \]

Figure 5 – Transversely isotropic material under axisymmetric triaxial conditions: “horizontal” specimen with \(\delta\sigma'_{22} > \delta\sigma'_{33} = \delta\sigma'_{11} \).

Substituting equations (21) for \(\delta\sigma'_1 \) and \(\delta\sigma'_3 \) into equations (20) gives, after some manipulation, the elastic strain increments in terms of \(\delta\sigma' \) and \(\delta q \); viz.,

\[\delta\varepsilon'_{11} = \delta\varepsilon'_3 = \frac{1}{E_t} \left[-\nu_{tn}\delta\sigma'_1 + (n - \nu_{tn})\delta\sigma'_3 \right] = \frac{1}{E_t} \left[(n - 2\nu_{tn})\delta p' - \frac{1}{3}(n + \nu_{tn})\delta q \right] \]

(41)

\[\delta\varepsilon'_{22} = \delta\varepsilon'_1 = \frac{1}{E_t} \left(\delta\sigma'_1 - (\nu_{tn} + \nu_{tt})\delta\sigma'_3 \right) = \frac{1}{E_t} \left[(1 - \nu_{tn} - \nu_{tt})\delta p' + \frac{1}{3}(\nu_{tn} - 2\nu_{tt} + 2)\delta q \right] \]

(42)
For the special case of isotropic compression, equation (45) becomes
\[\delta \varepsilon_{33} = \frac{1}{E_t} \left[-\nu_t \delta \sigma_1 + (1 - \nu_t n) \delta \sigma_3 \right] = \frac{1}{E_t} \left[(1 - \nu_t n - \nu_t) \delta p' - \frac{1}{3} (1 - \nu_t n + 2 \nu_t) \delta q \right] \] (43)

From equations (41) and (43) it is evident that although \(\delta \sigma_{11} = \delta \sigma_{33} \), \(\delta \varepsilon_{11} \neq \delta \varepsilon_{33} \) due to anisotropy. The condition \(\delta \varepsilon_{11}^* = \delta \varepsilon_{33}^* \) will, however, be realized if the material is isotropic (i.e., for \(n = 1 \), \(E_t = E \), and \(\nu_t = \nu_t = \nu \)).

The elastic volumetric strain increment is
\[\delta \varepsilon_v = \delta \varepsilon_{11} + \delta \varepsilon_{22} + \delta \varepsilon_{33} = \delta \varepsilon_1 + \delta \varepsilon_2 + \delta \varepsilon_3 = \frac{1}{E_t} \left[(1 - \nu_t n - \nu_t) \delta \sigma_1 + (n - 3 \nu_t n - \nu_t + 1) \delta \sigma_3 \right] \]
\[= \frac{1}{E_t} \left[\left(n + 2(1 - 2 \nu_t n - \nu_t) \right) \delta p' + \frac{1}{3} (1 + \nu_t n - \nu_t - n) \delta q \right] \] (44)

For the special case of isotropic compression, \(\delta q = 0 \). Equation (44) then becomes
\[\delta \varepsilon_v = \frac{1}{E_t} \left[n + 2(1 - 2 \nu_t n - \nu_t) \right] \delta p' \]

The axial distortion strain increment is given by
\[\delta \varepsilon_s = \frac{2}{3 E_t} \left[(1 + \nu_t n) \delta \sigma_1 - (n + \nu_t) \delta \sigma_3 \right] = \frac{2}{3 E_t} \left[(1 + \nu_t n - \nu_t - n) \delta p' + \frac{1}{3} (2 + 2 \nu_t n + \nu_t + n) \delta q \right] \] (45)

For the special case of isotropic compression, equation (45) becomes
\[\delta \varepsilon_s = \frac{2}{3 E_t} \left[(1 + \nu_t n - \nu_t - n) \delta p' \right] \]

The elastic stress-strain are next written in vector-matrix form, giving
\[\begin{pmatrix} \delta \varepsilon_1 \\ \delta \varepsilon_2 \\ \delta \varepsilon_3 \end{pmatrix} = \begin{pmatrix} 1/K^* & 1/J_1^* \\ 1/J_1^* & 1/3 G^* \end{pmatrix} \begin{pmatrix} \delta p' \\ \delta q \end{pmatrix} \] (46)

where, in light of equations (44) and (45),
\[\frac{1}{K^*} = \frac{1}{E_t} \left[n + 2(1 - 2 \nu_t n - \nu_t) \right] \] (47)
\[\frac{1}{J_1^*} = \frac{1}{3 E_t} (1 + \nu_t n - \nu_t - n) \] (48)
\[\frac{1}{J_2^*} = \frac{2}{3 E_t} (1 + \nu_t n - \nu_t - n) = \frac{2}{J_1^*} \] (49)
\[\frac{1}{3 G^*} = \frac{2}{9 E_t} (2 + 2 \nu_t n + \nu_t + n) \] (50)

The expression for \(1/K^* \) given by equation (47) is identical to that for the other two configurations considered in Sections 8.1 and 8.2 (recall equations (28) and (38)).

For an isotropic material idealization, equations (47) to (50) reduce to
\[\frac{1}{K^*} = \frac{1}{E} \left[1 + 2(1 - 2 \nu - \nu) \right] = \frac{3}{E} (1 - 2 \nu) \quad \Rightarrow \quad K^* = \frac{E}{3(1 - 2 \nu)} = K' \]
\[\frac{1}{J_1^*} = \frac{1}{J_2^*} = 0 \]
\[\frac{1}{3 G^*} = \frac{2}{9 E} (2 + 2 \nu + \nu + 1) = \frac{2(1 + \nu)}{3 E} = \frac{1}{3 G} \]

where \(K' \) and \(G \) are again the “drained” elastic bulk and shear modulus, respectively.
Using equations (41) to (43), it is instructive to compute the three elastic incremental principal strain differences entering equation (31) for the increment in octahedral shear strain; viz.,
\[
\delta \varepsilon_1^e - \delta \varepsilon_2^e = \delta \varepsilon_{22}^e - \delta \varepsilon_{33}^e = \frac{1}{E_t} (1 + \nu_{tt}) \delta q
\]
\[
\delta \varepsilon_2^e - \delta \varepsilon_3^e = \delta \varepsilon_{33}^e - \delta \varepsilon_{11}^e = \frac{1}{E_t} \left[(\nu_{tt} - \nu_{tt} - n + 1) \delta p' + \frac{1}{3} (2\nu_{tt} - 2\nu_{tt} + n - 1) \delta q \right]
\]
\[
\delta \varepsilon_3^e - \delta \varepsilon_1^e = \delta \varepsilon_{11}^e - \delta \varepsilon_{22}^e = \frac{1}{E_t} \left[(-\nu_{tt} + \nu_{tt} + n - 1) \delta p' - \frac{1}{3} (2\nu_{tt} + \nu_{tt} + n + 2) \delta q \right]
\]
For the special case of isotropic compression, \(\delta q = 0 \). Thus,
\[
\delta \varepsilon_2^e - \delta \varepsilon_3^e = -(\delta \varepsilon_3^e - \delta \varepsilon_1^e) = \frac{1}{E_t} \left[(\nu_{tt} - \nu_{tt} - n + 1) \delta p' \right]
\]
indicating that, because of anisotropy, \(\delta \gamma_{oct} \neq 0 \) even though the effective stress state is isotropic. Only for the case of material isotropy \(\nu_{tt} = \nu_{tt} \equiv \nu, E_t \equiv E, n = 1 \) will \(\delta \gamma_{oct} = 0 \).

9. Conclusions
Some key issues associated with anisotropic elastic material idealizations of soils have been presented in this paper. Although the discussion began with the orthotropic elastic idealizations, emphasis was placed on transversely isotropic (or “cross-anisotropic”) idealizations. The issues discussed for such idealizations facilitate the use of available closed-form solutions for homogeneous, transversely isotropic elastic geotechnical engineering problems [3, 18, 19, 20].

The inclusion of such idealizations into existing and new elastoplastic and/or elastoviscoplastic constitutive models for soils requires a specific analytical form for the anisotropic idealization, as well as suitable empirical expressions for the associated elastic material constants. These two topics are, however, beyond the scope of this paper, as they depend on the specific constitutive model being used.

References
1 Arroyo M. and Muir Wood, D. and Greening, P. D. Source Near-Field Effects and Pulse Tests in Soil Samples//Géotechnique. -2003. -Vol. 53. - № 3. - P. 337-345.
2 Atkinson, J. H. Anisotropic Elastic Deformations in Laboratory Tests on Undisturbed London Clay// Géotechnique. -1975. -Vol. 25. - № 2. - P. 357-374.
3 Barden, L. Stresses and Displacements in a Cross-Anisotropic Soil// Géotechnique. -1963. -Vol. 13. - № 3. - P. 198–210.
4 Desai, C. S. and Siriwardane, H. J. Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials. - Englewood Cliffs, NJ: Prentice Hall, 1984.
5 Graham, J. and Houlsby, T. Anisotropic Elasticity of a Natural Clay// Géotechnique. -1983. -Vol. 33. - № 2. - P. 165-180.
6 Hardin, B. O. and Black, W. L. Closure to “Vibration Modulus of Normally Consolidated Clay”// Journal of the Soil Mechanics and Foundations Division, ASCE. -1969. -Vol. 95. - № SM11. - P. 1531–1537.
7 Hicher, P. -Y. Elastic Properties of Soils// Journal of Geotechnical Engineering, ASCE. -1996. -Vol. 122. - № 8. - P. 641-648.
8 Hoque, E. and Tatsuoka, F. Anisotropy in the Elastic Deformation of Materials//Soils and Foundations. -1998. -Vol. 38. - № 1. - P. 163-179.
9 Houlsby, G. T. The Use of a Variable Shear Modulus in Elastic-Plastic Models for Clays//Computers and Geotechnics. -1985. -Vol. 1. - № 1. - P. 3-13.
10 Houlsby, G. T. and Wroth, C. P. The Variation of Shear Modulus of a Clay with Pressure and Overconsolidation Ratio//Soils and Foundations. -1991. -Vol. 31. - № 3. - P. 138-143.
11 Some observations on the kinematic nature of soil stiffness//Soils and Foundations. -1992. -Vol. 32. - № 2. - P. 111-124.
12 Krizek, R. J. Fabric Effects on Strength and Deformation of Kaolin Clay//Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. 1977. Tokyo, Japan. - Vol. 1. - № 1. - P. 169-176.
13 Kuwano, R. and Jardine, R. J. On the Applicability of Cross-Anisotropic Elasticity to Granular Materials at Very Small Strains//Géotechnique. -2002. -Vol. 52. - № 10. - P. 727-749.
14 Lade, P. V. and Nelson, R. B. Modelling the Elastic Behaviour of Granular Materials//International Journal for Numerical and Analytical Methods in Geomechanics. -1987. -Vol. 11. - P. 521-542.
15 Lekhnitskii, S. G. Theory of Elasticity of an Anisotropic Body. -Moscow: Mir Publishers, 1981.
Анизотропное упругое деформирование грунтов обобщение некоторых ключевых вопросов

Аннотация: Традиционно эластичная реакция грунтов предполагалась быть изотропной. Природные грунты, однако, с большей вероятностью проявляют анизотропную реакцию. Например осадочные грунты, которые обычно осаждаются под действием силы тяжести, обладают различными свойствами в направлении осаждения в отличие от плоскостей, перпендикулярных этому направлению. В этой статье обобщается несколько ключевых вопросов, связанных с идеализацией анизотропных упругих материалов для грунтов. Акцент делается на поперечно-изотропных "поперечно-анизотропных" идеализациях упругого материала.

Ключевые слова: эластичность, изотропия, анизотропия, ортотропность, поперечно-анизотропность.
References

1. Arroyo M. and Muir Wood, D. and Greening, P. D. Source Near-Field Effects and Pulse Tests in Soil Samples, Géotechnique, 53(3), 337–345(2003).
2. Atkinson, J. H. Anisotropic Elastic Deformations in Laboratory Tests on Undisturbed London Clay, Géotechnique, 25(2), 357–374(1975).
3. Barden, L. Stresses and Displacements in a Cross-Anisotropic Soil, Géotechnique, 13(3), 198–210(1963).
4. Desai, C. S. and Siriwardane, H. J. Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials (Prentice Hall, Englewood Cliffs, NJ, 1984).
5. Graham, J. and Houlsby, T. Anisotropic Elasticity of a Natural Clay, Géotechnique, 33(2), 165-180(1983).
6. Hardin, B. O. and Black, W. L. Closure to “Vibration Modulus of Normally Consolidated Clay”, Journal of the Soil Mechanics and Foundations Division, ASCE, 95(SM11), 1531–1537(1969).
7. Hicher, P. -Y. Elastic Properties of Soils, Journal of Geotechnical Engineering, ASCE, 122(8), 641-648(1996).
8. Hoque, E. and Tatsuoka, F. Anisotropy in the Elastic Deformation of Materials, Soils and Foundations, 38(1), 163-179(1998).
9. Houlbry, G. T. The Use of a Variable Shear Modulus in Elastic-Plastic Models for Clays, Computers and Geotechnics, 1(1), 3-13(1985).
10. Houlbry, G. T. and Wroth, C. P. The Variation of Shear Modulus of a Clay with Pressure and Overconsolidation Ratio, Soils and Foundations, 31(3), 138-143(1991).
11. Some observations on the kinematic nature of soil stiffness, Soils and Foundations, 32(2), 111-124(1992).
12. Krizek, R. J. Fabric Effects on Strength and Deformation of Kaolin Clay, Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. 1977. Tokyo, Japan. Vol. 1. № 1. P. 169-176.
13. Kuwano, R. and Jardine, R. J. On the Applicability of Cross-Anisotropic Elasticity to Granular Materials at Very Small Strains, Géotechnique, 52(10), 727-749(2002).
14. Lade, P. V. and Nelson, R. B. Modelling the Elastic Behaviour of Granular Materials, International Journal for Numerical and Analytical Methods in Geomechanics, 11, 521-542(1987).
15. Lekhnitskii, S. G. Theory of Elasticity of an Anisotropic Body (Mir Publishers, Moscow, 1981).
16. Poisson’s ratio in orthotropic materials, American Institute of Aeronautics and Astronautics Journal, 6(11), 2226-2227(1968).
17. Lings, M. L. and Pennington, D. S. and Nash, D. F. T. Anisotropic Stiffness Parameters and their Measurement in a Stiff Natural Clay, Géotechnique, 50(2), 109-125(2000).
18. Milovic, D. M. and Touzot, G. Bi-Dimensional Stress Distribution in an Anisotropic Layer of Finite Thickness, Géotechnique, 20(2), 198-203(1970).
19. Milovic, D. M. Stresses and Displacements in an Anisotropic Layer due to a Rigid Circular Foundation, Géotechnique, 22(1), 169-174(1972).
20. Nayak, M. Elastic Settlement of a Cross Anisotropic Medium under Axi-Symmetric Loading, Soil and Foundations, 13(2), 83-90(1973).
21. Nishimura, S. Assessment of anisotropic elastic parameters of saturated clay measured in triaxial apparatus: Appraisal of techniques and derivation procedures, Soil and Foundations, 54(3), 364-376(2014).
22. Pickering, D. J. Anisotropic Elastic Parameters for Soil, Géotechnique, 20(3), 271-276(1970).
23. Rowe, P. W. Theoretical Meaning and Observed Values of Deformation Parameters for Soil, Proceedings of the Roscoe Memorial Symposium on Stress-Strain Behavior of Soils. Henley-on-Thames, UK: G.T. Foulis, 1971. Vol. 1. № 1. P. 143-194.
24. Sivakumar, V. and Doran, I. G. and Graham, J. and Johnson, A. The Effect of Anisotropic Elasticity on the Yielding Characteristics of Overconsolidated Natural Clay, Canadian Geotechnical Journal. 2001. Vol. 38. № 1. P. 125-137.
25. Tatsuoka, F. and Shibuya, S. Deformation characteristics of soil and rocks from field and laboratory tests, Proceedings of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering. -Bangkok, Thailand: International Society of Soil Mechanics and Foundation Engineering. Editor Balasubramaniam, A. S., et al. 1991. Vol. 1. № 1. P. 101–177.
26. Tatsuoka, F. and Jardine, R. J. and Lo Presti, D. and Di Benedetto, H. and Kodaka, T. Characterizing the pre-failure deformation properties of geomaterials, Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering. -Hamburg, Germany. 1997. Vol. 1. № 1. P. 2129-2164.
27 Tatsuoka, F. and Uchimura, T. and Hayano, K. and Di Benedetto, H. and Koseki, J. and Siddique, M. S. A. Time-Dependent Deformation Characteristics of Stiff Geomaterials in Engineering Practice, Proceedings of the Second International Conference on Pre-Failure Deformation Characteristics of Geomaterials. Torino, Italy: Balkema, 2001. Vol. 2. № 2. Р. 1161–1262.

28 Wong, P. K. K. and Mitchell, R. J. Yielding and Plastic Flow of Sensitive Cemented Clays, Géotechnique, 25(4), 763-782 (1975).

Сведения об авторах
Калякин В.Н. – Делавэр штатыны/uni04A3 университетi, Ньюарк, Делавэр, А/uni049AШ
Kaliakin V.N. – University of Delaware, Newark, Delaware, U.S.A.

Поступила в редакцию 30.04.2019
1) РГП ПХБ "Евразийский национальный университет имени Л.Н. Гумилева МОН РК "Bank RBK"
Бик банка: Банк РК

«Л.Н. Гумилев атындағы Еуразия үлгілі ұлттық университетінің Хабары». Техникалық ғылыми дәрежелер және технологиялық сериясы» журналында мақала жарыялау ережелері

1. Жurnal мәсілетті. Техника және технологиялық барлық бағыттары (есептегі техникалық, курылыс, саулет, геотехника, геосинтетика, қоқыр, машиналық арқылы, энергетика, сертификаттау және стандарттау) салаларының теориялық және эксперименталды зерттелуін әмір әрекет ету үшін ықпалы құдылығы бар мақалалар жарыялау.

2. Жurnalда мақала жарыялаушы автор мақаланың қоқыр қоялығын бір дана қағаз қусқасы ықпалы басылысқа болып (рекомендация, құжаттандырылып жатыстық) үшін ықпалы құдылығы бар мақалалар жарыялау.

3. Автордың қолжетімді реакция және жаңа мақаланың ұсынысы қазақ тілінде (плагиатты құзды құрылған) салынады. (ад. құрылған ұсынысын жазу құжатына құдайлдық беретін салаларды өткенден) құрылған мақаланың қағаз қусқасы және электрондық қоғамдағы нусқалары қазақ тілінде (құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде) бірдей болуы қажет.

4. Автордің мақаланың ұсынысын және тілдік мақаланың ұсынысын жазу құжатына құдайлдық беретін салаларды өткенден) құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде (құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде) бірдей болуы қажет.

5. Автордан қандай жаңа мағына ерекшелік дайындау қажет болса, олардың мақалалары ұсынысын жазу құжатына құдайлдық беретін салаларды өткенден) құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде (құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде) бірдей болуы қажет.

6. Автордың қандай жаңа мағына ерекшелік дайындау қажет болса, олардың мақалалары ұсынысын жазу құжатына құдайлдық беретін салаларды өткенден) құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде (құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде) бірдей болуы қажет.

7. Автордан қандай жаңа мағына ерекшелік дайындау қажет болса, олардың мақалалары ұсынысын жазу құжатына құдайлдық беретін салаларды өткенден) құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде (құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде) бірдей болуы қажет.

8. Автордан қандай жаңа мағына ерекшелік дайындау қажет болса, олардың мақалалары ұсынысын жазу құжатына құдайлдық беретін салаларды өткенден) құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде (құрылған мақаланың қағаз қусқасы және электрондық нусқалары қазақ тілінде) бірдей болуы қажет.
Provision on articles submitted to the journal "Bulletin of L.N. Gumilyov Eurasian National University. Technical Science and Technology series"

1. Purpose of the journal. Publication of carefully selected original scientific works devoted to scientific issues in all areas of engineering and technology: construction, architecture, geotechnics, geosynthesis, transport, engineering, energy, certification and standardization, computer technology.

2. An author who wishes to publish an article in a journal must submit the article in hard copy (printed version) in one copy, signed by the author to the scientific publication office (at the address: 010008, Republic of Kazakhstan, Astana, Satpayev St., L.N. Gumilyov Eurasian National University, Main Building, room 408) and by e-mail vest_techsci@enu.kz in Word, PDF and Tex format. At the same time, the correspondence between Tex-version, Word-version, PDF-version and the hard copy must be strictly maintained. And authors also need to provide the cover letter of the author(s).

Language of publications: Kazakh, Russian, English.

3. Submission of articles to the scientific publication office means the authors’ consent to the right of the Publisher, L.N. Gumilyov Eurasian National University, to publish articles in the journal and the re-publication of it in any foreign language. Submitting the text of the work for publication in the journal, the author guarantees the correctness of all information about himself, the lack of plagiarism and other forms of improper borrowing in the article, the proper formulation of all borrowings of text, tables, diagrams, illustrations.

4. The volume of the article should not exceed 18 pages (from 6 pages).

5. Structure of the article

 Initials and Surname of the author(s)

 Full name of the organization, city, country (if the authors work in different organizations, you need to put the same icon next to the name of the author and the corresponding organization)

 Author’s e-mail(s)

 Article title

 Abstract (100-200 words, it should not contain a formula, the article title should not repeat in the content, it should not contain bibliographic references, it should reflect the summary of the article, preserving the structure of the article - introduction/problem statement/goals/history, research methods, results/discussion, conclusion).

 Key words (6-8 words/word combination. Keywords should reflect the main content of the article, use terms from the article, as well as terms that define the subject area and include other important concepts that make it easier and more convenient to find the article using the information retrieval system).

 The main text of the article should contain an introduction/problem statement/goals/history, research methods, results/discussion, conclusion. Figures, tables, tables should be placed after the mention. Each illustration should be followed by an inscription. Figures should be clear, clean, not scanned.

 Information on the financial support of the article is indicated on the first page in the form of a footnote.

 References

 In the text references are indicated in square brackets. References should be numbered strictly in the order of the mention in the text. The first reference in the text to the literature should have the number [1], the second - [2], etc. The reference to the book in the main text of the article should be accompanied by an indication of the pages used (for example, [1, 45 p.]). References to unpublished works are not allowed.

 Unreasonable references to unreviewed publications (examples of the description of the list of literature, descriptions of the list of literature in English, see below in the sample of article design).

 At the end of the article, after the list of references, it is necessary to indicate bibliographic data in Russian and English (if the article is in Kazakh), in Kazakh and English (if the article is in Russian) and in Russian and Kazakh languages (if the article is English language).

 Information about authors: surname, name, patronymic, scientific degree, position, place of work, full work address, telephone, e-mail - in Kazakh, Russian and English.

6. The article must be carefully verified. Articles that do not meet technical requirements will be returned for revision. Returning for revision does not mean that the article has been accepted for publication.

7. Work with electronic proofreading. Articles received by the Department of Scientific Publications (editorial office) are sent to anonymous review. All reviews of the article are sent to the author. The authors must send the proof of the article within three days.

 Articles that receive a negative review for a second review are not accepted. Corrected versions of articles and the author’s response to the reviewer are sent to the editorial office. Articles that have positive reviews are submitted to the editorial boards of the journal for discussion and approval for publication.

 Periodicity of the journal: 4 times a year.

8. Payment. Authors who have received a positive conclusion for publication should make payment on the following requisites (for ENU employees - 4,500 tenge, for outside organizations - 5,500 tenge):

 Реквизиты:
 1) РГП ПХВ "Евразийский национальный университет имени Л.Н. Гумилева МОН РК "Банк Центр Кредит"
 АО "Банк Центр Кредит"
 ВИК банка: КСЖКЗКХР
 ИИК: КЗ978562203105747338
 Кс 16
 Кап 859- за статью
 2) РГП ПХВ "Евразийский национальный университет имени Л.Н. Гумилева МОН РК АО "Bank RBK"
Положение о рукописях, представляемых в журнал «Вестник Евразийского национального университета имени Л.Н. Гумилева. Серия Технические науки и технологии»

1. Цель журнала. Публикация тщательно отобранных оригинальных научных работ в области техники и технологий: строительство, архитектура, геотехника, геосинтетика, транспорт, машиностроение, энергетика, сертификация и стандартизация, вычислительная техника.

2. Автору, желающему опубликовать статью в журнале необходимо представить рукопись в твердой копии (распечатанном варианте) в одном экземпляре, подписанном автором или уполномоченным лицом, в Отдел научных изданий (по адресу: 010008, Казахстан, г. Астана, ул. Сатпаева, 2, Евразийский национальный университет им. Л.Н.Гумилева, Учебно-административный корпус, каб. 408) и по e-mail: vest_techsci@enu.kz в формате Tex, PDF и Word. При этом должно быть строго выдержано соответствие между Tex-файлом, Word-файлом, PDF-файлом и твердой копией. Также автору (ам) необходимо предоставить сопроводительное письмо в редакцию журнала.

3. Йзьк публикаций: казахский, русский, английский.

4. Отправление статей в редакцию означает согласие авторов на право Издателя, Евразийского национального университета имени Л.Н. Гумилева, издания статей в журнале и переиздания их на любом иностранном языке. Предоставляя текст работы для публикации в журнале, автор гарантировает правильность всех сведений о себе, отсутствие плагиата и других форм неправомерного заимствования в рукописи, надлежащее оформление всех заимствований текста, таблиц, схем, иллюстраций.

5. Схема построения статьи

6. Объем статьи не должен превышать 18 страниц (от 6 страниц)

7. Язык публикаций: казахский, русский, английский.

8. Оплата. Персона, опубликованная в журнале получает за публикацию оплату в размере, установленном редакцией журнала. Оплата осуществляется почтовым переводом, электронным переводом на банковский счет. В таблице приведены реквизиты банка.

Реквизиты:
1) РПП ПХВ "Евразийский национальный университет имени Л.Н. Гумилева МОН РК
АО "Банк ЦентрКредит"
БИК банка: КСВБККХ
ИИК: КЗ987562030105747338
Кс 16
Кп 859- за статью
2) РПП ПХВ "Евразийский национальный университет имени Л.Н. Гумилева МОН РК АО "Банк RBK"

121
Бик банка: KINCKZKA
ИИК: KZ498210439858161073
Кбе 16
Кпн 859 - за статью
3) РГП ПХВ "Евразийский национальный университет имени Л.Н. Гумилева МОН РК АО "ForteBank"
БИК Банка: IRTYKZKA
ИИК: KZ5996500000040502847
Кбе 16
Кпн 859 - за статью
4) РГП ПХВ *Евразийский национальный университет имени Л.Н. Гумилева МОН РК АО "Народный Банк Казахстан"
БИК Банка: HSBKKZX
ИИК: KZ946010111000382181
Кбе 16
Кпн 859.
"За публикацию в Вестнике ЕНУ ФИО автора"
Мақаланы рәсімдеу ұлғісі

А.Ж. Жубанышева¹, Н. Темиргалиев², А.Б. Утесов³

¹ Институт теоретической математики и научных вычислений Евразийского национального университета имени Л.Н.Гумилева, Астана, Казахстан
² Актюбинский региональный государственный университет имени К. Жубанова, Актобе, Казахстан
(Email:axaulezh@mail.ru, ntmath10@mail.ru, adilzhan_71@mail.ru)

численное дифференцирование функций в контексте Компьютерного (вычислительного) поперечника

Аннотация: В рамках компьютерного (вычислительного) поперечника полностью решена задача приближенного дифференцирования функций, принадлежащих классам Соболева по неточной информации, полученной от произвольного конечного множества тригонометрических коэффициентов Фурье-Лебега дифференцируемой функции... [100-200 слов].

Ключевые слова приближенное дифференцирование, восстановление по неточной информации, предельная погрешность, компьютерный (вычислительный) поперечник. [6-8 слов/словосочетаний].

Введение

Текст введения...

Авторам не следует использовать нестандартные пакеты LaTeX (используйте их лишь в случае крайней необходимости)

Заголовок секции

1.1 Заголовок подсекции

Окружения.

Теорема 1. ...

Лемма 1. ...

Предложение 1. ...

Определение 1. ...

Следствие 1. ...

Замечание 1. ...

Теорема 2 (Темиргалиев Н. [2]). Текст теоремы.

Доказательство. Текст доказательства.

2. Формулы, таблицы, рисунки

\[\delta_N(\varepsilon; D_N) Y \equiv \delta_N(\varepsilon; T; F; D_N) Y \equiv \inf_{(l^{(N)}, \varphi_N) \in D_N} \delta_N \left(\varepsilon; \left(l^{(N)}; \varphi_N \right) \right) Y, \quad (1) \]

где \(\delta_N \left(\varepsilon; \left(l^{(N)}, \varphi_N \right) \right) Y \equiv \delta_N(\varepsilon; T; F; \left(l^{(N)}, \varphi_N \right)) Y \equiv \sup_{f \in F} \left\| T f (\cdot) - \varphi_N \left(l^{(1)} f + \gamma^{(1)} N \varepsilon^{(1)} N, \ldots, l^{(N)} f + \gamma^{(N)} N \varepsilon^{(N)} N; \right) \right\| Y. \]

Таблицы, рисунки необходимо располагать после упоминания. С каждой иллюстрацией должна следовать надпись.

3. Ссылки и библиография
Table 3 – Название таблицы

Простые	Не простые
2, 3, 5, 7, 11, 13, 17, 19, 23, 29	4, 6, 8, 9, 10, 12, 14

Рисунок 22 – Название рисунка

Для ссылок на утверждения, формулы и т. п. можно использовать метки. Например, теорема 2,
Формула (1)
Для руководства по LATEX и в качестве примера оформления ссылок, см., например, Львовский С.М.
Набор и верстка в пакете LATEX. Москва: Космосинформ, 1994.
Список литературы оформляется следующим образом.

Список литературы

1 Локушенский О.М., Гавриков М.Б. Начала численного анализа. –М.: ТОО "Янус", 1995. –581 с. - книга
2 Темиргалиев Н. Компьютерный (вычислительный) поперечник как синтез известного и нового в численном
анализе // Вестник Евразийского национального университета имени Л.Н. Гумилева –2014. –Т.4. №101. –С. 16-33. doi: ... (при наличии) - статья
3 Жубанышева А.Ж., Абикенова Ш. О нормах производных функций с нулевыми значениями заданного набора
линейных функционалов и их применения к поперечниковым задачам // Функциональные пространства и теория приближения функций: Тезисы докладов Международной конференции, посвященной 110-летию со дня рождения академика С.М.Никольского, Москва, Россия, 2015. – Москва, 2015. –С.141-142. - труды конференций
4 Курмуков А.А. Антипротекторная и гиполипидемическая активность леукомизина. –Алматы: Бастау, 2007. –С. 3-5 - газетные статьи
5 Кыров В.А., Михайличенко Г.Г. Аналитический метод вложения симплектической геометрии // Сибирские
электронные математические известия –2017. –Т.14. –С.657-672. doi: 10.17377/semi.2017.14.057. – URL: http://semr.math.nsc.ru/v14/p657-672.pdf. (дата обращения: 08.01.2017). - электронный журнал

А.Ж. Жубанышева 1 , Н. Темиргалиев 1 , А.Б. Утесов 2

1 Л.Н.Гумилев атында/uni0493ы Еуразия /uni04B1лтты/uni049B университетiнi/uni04A3 теориялы/uni049B математика және /uni0493ылыми есептеулер
институты, Астана, /uni049Aаза/uni049Bстан
2 К.Жубанов атында/uni0493ы А/uni049Bт/uni04E9бе /uni04E9/uni04A3ирлiк мемлекеттiк университетi, Актобе, /uni049Aаза/uni049Bстан

Компьютерлiк (есептеуiш) диаметр мәнмәтiнiнде функцияларды санды дифференциалдау

Аннотация: Компьютерлiк (есептеуiш) диаметр мәнмәтiнiнде Соболев класында жататын функцияларды олардың
тригонометриялык Фурье-Лебег коэффициенттерiнi алынdan дәл емес а/uni049Bпарат бойынша жуы/uni049Bтау
есебi толы/uni0493ымен шешiлдi [100-200 c/uni04E9здер]

Т/uni04AFйiн с/uni04E9здер: жуы/uni049Bтап дифференциалдау, дәл емес а/uni049Bпарат бойынша жуы/uni049Bтау, шектiк /uni049Bателiк, Компьютерлiк
(есептеуiш) диаметр [6-8 c/uni04E9з/с/uni04E9з тiркестерi]

A.Zh.Zhubanysheva 1 , N. Temirgaliyev 1 , A.B. Utesov 2

1 Institute of theoretical mathematics and scientific computations of L.N. Gumilyov Eurasian National University,
Aстанa, Kazakhstan
2 K.Zhubanov Aktobe Regional State University, Aktobe, Kazakhstan

Numerical differentiation of functions in the context of Computational (numerical) diameter

Abstract: The computational (numerical) diameter is used to completely solve the problem of approximate differentiation
of a function given inexact information in the form of an arbitrary finite set of trigonometric Fourier coefficients. [100-200 words]

Keywords: approximate differentiation, recovery from inexact information, limiting error, computational (numerical) di-
ameter, massive limiting error. [6-8 words/word combinations]
References

1. Lokucievskij O.M., Gavrikov M.B. Nachala chislennogo analiza [Elements of numerical analysis] (Yanus, Moscow, 1995). [in Russian]

2. Temirgaliyev N. Komp'juternyj (vychislitel'nyj) poperechnik kak sintez izvestnogo i novogo v chislennom analize [Computational (numerical) diameter as a synthesis of the known and the new in numerical analysis], Vestnik Evrazijskogo nacional'noy universiteta imeni L.N. Gumileva [Bulletin of L.N. Gumilyov Eurasian National University], 4 (101), 16-33 (2014). [in Russian]

3. Zhubanysheva A.Zh., Abikenova Sh.K. O normah proizvodnyh funkcij s nulevyimi znachenijami zadannogo nabora lineyjnych funkcionalov i ih primenenija k poperechnikovym zadacham [About the norms of the derivatives of functions with zero values of a given set of linear functionals and their application to the width problems]. Tezisy dokladov Mezdunarodnoy konferencii, posvyashhennaja 110-letiju so dnya rozhdenija akademika S.M. Nikol'skogo *Funkcional'nye prostranstva i teorija približenija funkcij* [International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii]. Moscow, 2015, pp. 141-142. [in Russian]

4. Kurmukov A. A. Angioprotektornaja i gipolipidemicheskaja aktivnost' leukomizina [angioprotective and lipid-lowering activity of leukomycin] (Bastau, Almaty, 2007, P. 3-5). [in Russian]

5. Kyrov V.A., Mihajlichenko G.G. Analiticheskij metod vlozhenija simplekticheskoj geometrii [The analytic method of embedding symplectic geometry], Cibirskie jelektronnye matematicheskie izvestija [Siberian Electronic Mathematical Reports], 14, 657-672 (2017). doi: 10.17377/semi.2017.14.057. Available at: http://semr.math.nsc.ru/v14/p657-672.pdf. [in Russian]. (accessed 08.01.2017).

Сведения об авторах:

Жубанышева А.Ж. - старший научный сотрудник Института теоретической математики и научных вычислений, Евразийский национальный университет имени Л.Н.Гумилева, ул. Сатпаева, 2, Астана, Казахстан.

Темиргалиев Н. - директор Института теоретической математики и научных вычислений, Евразийский национальный университет имени Л.Н.Гумилева, ул. Сатпаева, 2, Астана, Казахстан.

Утесов А.Б. - кандидат физико-математических наук, доцент кафедры математики, Актюбинский региональный государственный университет имени К. Жубанова, пр. А.Молдагуловой, 34, Актобе, Казахстан.

Zhubanysheva A.Zh. - Senior researcher of the Institute of theoretical mathematics and scientific computations, L.N. Gumilyov Eurasian National University, Satpayev str., Astana, Kazakhstan.

Temirgaliyev N. - Head of the Institute of theoretical mathematics and scientific computations, L.N. Gumilyov Eurasian National University, Satpayev str., Astana, Kazakhstan.

Utesov A.B. - candidate of physical and mathematical sciences, Associate Professor of the Department of Mathematics, K.Zhubanov Aktobe Regional State University, A.Moldagulova Prospect, 34, Aktobe, Kazakhstan.

Поступила в редакцию 15.05.2017
