Some Serum Metabolites and Haematological Parameters of Pullet Chicks Fed Cassava Root Products (CRPs)

Mutiu Ajibike Mosobalaje1, Olumide Odeleeye Tewe2, Akintunde Adedayo Adedoyin3, Babatunde Fola Adebayo4 and Adekoyejo Samuel Oyegunwa5

1. Department of Animal Health and Production, Faculty of Animal and Fisheries Technology, Oyo State College of Agriculture and Technology, 201103 Igboora, Oyo State, Nigeria
2. Department of Animal Science, Faculty of Agriculture, University of Ibadan, 200284 Ibadan, Oyo State, Nigeria
3. Department of Agricultural Education, Animal Nutrition Unit, The College of Education, 201102 Lanlate, Oyo State, Nigeria
4. Nigeria Institute of Animal Science (NIAS), Zonal Office, 200273 Moore Plantation, Apata, Ibadan, Nigeria
5. Department of Agricultural Science, Tai Solarin University of Education, 120253 Ijebu-Ode, Ogun State, Nigeria

Abstract: Blood biochemistry is routinely used in veterinary medicine to evaluate the health status of animals and poultry. The experiment was designed to evaluate serum metabolites and haematological parameters of pullet chicks fed cassava root products (CRPs). Diet 1 contained 100% maize and served as the control diet (CD). Diets 2, 3 and 4 contained 50% unpeeled cassava chip (UCC), unpeeled cassava pellet (UCP) and unpeeled cassava grit (UCG), respectively, while diets 5, 6 and 7 contained 100% of respective cassava products. There were three replicates of 10 birds each in a completely randomized design. At the seventh week, blood samples were carefully collected from three birds from each replicate for haematological indices and serum metabolites. Results on haematological indices showed that values recorded were not adversely ($p < 0.05$) affected by dietary treatments. Birds fed CD had packed cell volume (PCV), haemoglobin (Hb), red blood cell (RBC), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values that were similar ($p > 0.05$) to values recorded by birds fed cassava based diets. The respective values ranged from 18.50% to 24.50%, 11.30 g/dL to 12.75 g/dL, 2.43 × 10^6/mm³ to 3.69 × 10^6/mm³, 32.96 µmg to 50.87 µmg and 44.65% to 63.41%. Serum glucose and thiocyanate were significantly ($p < 0.05$) affected by inclusion of CRPs. Serum thiocyanate of birds fed the CD (0.14 mg/dL) was lower ($p < 0.05$) than values recorded for those fed 50% and 100% UCC, UCP and UCG (2.33 and 2.56, 2.25 and 2.47, 2.19 and 2.38 mg/dL, respectively). Also values of serum glucose of birds fed 100% UCC, UCP and UCG (181.52, 179.64 and 173.24 mg/dL, respectively) were higher ($p < 0.05$) than CD. However, serum protein and its fractions were not affected. Conclusively, haematological indices were not adversely affected by dietary treatment, but serum glucose and thiocyanate were affected.

Key words: Cassava pellet, cassava grit, pullet chicks, serum glucose, thiocyanate.

1. Introduction

The blood contains a myriad of metabolites and other constituents, which provide a valuable medium for clinical investigation and nutritional status for human beings and animals. The haematological indices are index and reflection of the effects of dietary treatments on the animals in term of the type and amount of feed ingested and were available for the animal to meet its physiological, biochemical and metabolical necessities [1]. Avian blood differs in cells’ characteristics from their mammalian counterpart [2]. Several factors including physiological [3], environmental conditions [4], diet contents [5], water and feed restriction [6], fasting [7], age [8], administration of drugs [9],...
Some Serum Metabolites and Haematological Parameters of Pullet Chicks Fed Cassava Root Products (CRPs)

anti-aflatoxin premixes [10] and continuous supplementations of vitamin E [11] affect the blood profiles of healthy birds. It had been reported that biochemical changes as a result of toxins have effects on haematological parameters [12]. The effects of both raw and processed defatted *Terminalia catappa* seed meal based diet on haematological and parameters of albino rats have been reported in literature [13].

Dietary components have measurable effects on blood components; hence, blood constituents are widely used in nutritional evaluation and survey of animals [14]. Esonu et al. [15] had reported that the physiological response of the animal to its internal and external environment, which includes feed and feeding, is reflected in the haematology. The haematological indices include white blood cell (WBC), haemoglobin (Hb), red blood cell (RBC) and packed cell volume (PCV).

The presence of cyanide in cassava has caused a global scare as to safety of cassava and its products for human and animal consumption [16]. The cyanide ion is rapidly absorbed from the gastrointestinal tract [17]. Ingestion of cassava can trigger several toxic manifestations due to the release of HCN from cassava cyanogenic glycosides. The toxicity of cassava is due to the release of HCN in vivo which is a potent cytotoxin exerting a wide range of biological effects which include inhibition of tissue respiration, terminal oxidase of the mitochondrial respiratory [18]. It also inhibits a number of other enzymes like catalase, superoxide dismutase and nitrate reductase [19].

Acute and sub acute toxic effects of cyanide can vary from events like convulsions, screaming, vomiting, coma and death. However, Balagopalan et al. [19] stated that the incidence of acute poisoning from consumption of cassava is relatively low and that chronic intake of cassava can lead to toxic condition. Sub lethal doses of cyanide cause increase in blood glucose and lactic acid [20]. Haematological indices and blood biochemistry are routinely used in veterinary medicine to evaluate the health status of animals and poultry [21]. Nutrition, especially, dietary protein intake is known to affect the live weight and haematological parameters of animals [22]. The influence of diets on haematological variables was also established by Makinde et al. [23] and Otesile et al. [24].

This study evaluated effects of cassava on haematological parameters and some serum metabolites of fed pullet chicks.

2. Materials and Methods

2.1 Diet Formulation and Management of Birds

Cassava chip, pellets and grit were prepared according to Mososalaje and Tewe [25]. These cassava root products (CRPs) were used to formulate seven experimental diets for pullet chicks. Diet 1 was 100% maize and served as the control diet (CD). Replacement of maize with 50% unpeeled cassava chip (UCC), unpeeled cassava pellet (UCP) and unpeeled cassava grit (UCG) constituted diets 2, 3 and 4, while 100% replacement formed diets 5, 6 and 7, respectively. Diets were formulated to be balanced for all nutrients. Gross composition of the experimental diets is presented in Table 1. Two hundred and ten Bovan brown from a commercial hatchery in Ibadan were used. Thirty birds were randomly allocated to each of the seven experimental diets and there were three replicates of 10 birds per replicate. Birds were provided with experimental feed and water ad libitum.

2.2 Blood Analysis

At eight weeks of age, three birds per replicate were randomly selected and blood was carefully collected through wing vein into labeled ethylene diamine tetra acetic acid (EDTA) bottles for estimation of haematological parameters while blood samples for serum metabolites were collected into a plain bottle and allowed clot and serum decanted after centrifugation.
Some Serum Metabolites and Haematological Parameters of Pullet Chicks Fed Cassava Root Products (CRPs)

Table 1 Gross composition of the experimental chick diets.

Ingredients (%)	100% diet 1	UCC diet 2	50% Substitution	UCP diet 3	UCG diet 4	100% Substitution	UCC diet 5	UCP diet 6	UCG diet 7
Maize	44.50	22.50	22.50	22.50	-	-	-	-	-
Cassava	-	22.50	22.50	22.50	47.00	47.00	47.00	47.00	
Toasted soya	19.00	24.50	24.50	24.50	29.00	29.00	29.00		
Palm kernel cake	7.20	4.7	4.7	4.7	-	-	-		
Wheat offal	11.00	7.50	7.50	7.50	4.70	4.70	4.70		
Groundnut cake	10.00	10.00	10.00	10.00	11.00	11.00	11.00		
Fish meal (72%)	2.50	2.50	2.50	2.50	2.50	2.50	2.50		
Bone meal	3.00	3.00	3.00	3.00	3.00	3.00	3.00		
Oyster shell	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
Premix*	0.25	0.25	0.25	0.25	0.25	0.25	0.25		
Salt	0.25	0.25	0.25	0.25	0.25	0.25	0.25		
DL Methionine	0.20	0.20	0.20	0.20	0.20	0.20	0.20		
L-lysine	0.10	0.10	0.10	0.10	0.10	0.10	0.10		
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
Crude value (kcal/kg ME)	2,875.36	2,875.46	2,875.37	2,875.67	2,875.47	2,875.47	2,875.47		
Calculated protein (%)	20.39	20.13	20.13	20.13	20.55	20.55	20.55		

UCC = unpeeled cassava chip; UCP = unpeeled cassava pellet; UCG = unpeeled cassava grit.

*Premix content per kg: vitamin A 12,500,000.00 I.U., vitamin D₃ 2,500,000.00 I.U., vitamin E 40,000.00 mg, vitamin K₁ 2,000.00 mg, vitamin B₁ 3,000.00 mg, vitamin B₂ 5,500.00 mg, niacin 55,000.00 mg, calcium pantothenate 11,500.00 mg, vitamin B₆ 25.00 mg, folic acid 1,000.00 mg, biotin 80.00 mg, choline chloride 500,000.00 mg, manganese 120,000.00 mg, iron 100,000.00 mg, zinc 80,000.00 mg, copper 8,500.00 mg, iodine 1,500.00 mg, cobalt 300.00 mg, selenium 120.00 mg, anti-oxidant 120,000.00 mg.

The following parameters were assayed for haematological indices: PCV, Hb, RBC, WBC, mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC). Serum glucose, serum thiocyanate, total proteins (albumin and globulins) were determined for serum metabolites. PCV, Hb concentration, RBC, total protein, MCV, MCH and MCHC were assayed using the procedure of Schalm [26]. Serum total proteins (albumin and globulins) were determined using the method of Bonder and Mead [27]. Aspartate amino transferase (AST) and alanines amino transferase (ALT) were analyzed using a method described by Ackers [28]. Serum thiocyanate was determined according to Tewe [29].

2.3 Statistical Analysis

All the data obtained in the study were analyzed according to the procedure of the Statistical Analysis System [30]. Differences noticed in the means were separated using Duncan’s multiple range test [31].

3. Results and Discussion

Results on haematological indices and serum metabolites are shown in Tables 2 and 3, respectively. All haematological parameters investigated were not adversely ($p < 0.05$) affected by dietary treatments. Birds fed CD had numeric higher values for PCV, Hb and RBC and lower values for MCH and MCHC but WBC did not follow any trend. The respective values ranged from 18.50%, to 24.50%, 11.30 g/dL to 12.75 g/dL, 2.43 × 10⁶/mm³ to 3.69 × 10⁶/mm³, 32.96 μg/mL to 50.87 μg/mL, 44.65% to 63.41% and 3.70 × 10⁶/mm³ to 8.10 × 10⁶/mm³, while MCV ranged between 81.41 μm³ and 108.30 μm³.

Serum thiocyanate of birds fed CRP based diets was significantly ($p < 0.05$) higher than the CDs (0.14
Table 2 Haematological indices of chicks on experimental diets.

Components (%)	100% Maize diet 1	50% Substitution UCC diet 2	UCP diet 3	UCG diet 4	100% Substitution UCC diet 5	UCP diet 6	UCG diet 7 ± SEM	
PCV (%)	24.50	18.50	19.50	20.50	20.50	18.50	21.50	1.31
Hb (g/dL)	12.15	11.45	11.30	12.65	12.80	11.65	11.95	0.40
RBC (× 10⁶/mm³)	3.69	2.57	3.93	3.50	2.93	2.43	2.84	0.34
MCH (µmg)	32.96	40.83	34.25	36.97	44.94	48.14	50.87	7.34
MCHC (%)	49.65	61.91	57.96	61.81	55.83	63.41	60.52	3.50
WBC (× 10⁶/mm³)	6.40	7.65	8.10	5.70	4.75	3.70	6.50	1.02
MCV (µm³)	99.95	90.18	81.41	89.26	90.61	96.17	108.30	5.92

UCC = unpeeled cassava chip; UCP = unpeeled cassava pellet; UCG = unpeeled cassava grit; PCV = packed cell volume; Hb = haemoglobin; RBC = red blood cell; MCH = mean corpuscular haemoglobin; MCHC = mean corpuscular haemoglobin concentration; WBC = white blood cell; MCV = mean corpuscular volume.

Table 3 Serum metabolites of pullet chicks on experimental diets.

Components (%)	100% Maize diet 1	50% Substitution UCC diet 2	UCP diet 3	UCG diet 4	100% Substitution UCC diet 5	UCP diet 6	UCG diet 7 ± SEM	
Glucose (mg/dL)	125.44	164.24	153.32	163.81	181.52	179.64	173.24	8.33
Total protein (g/dL)	10.10	9.80	9.35	9.25	9.60	9.60	8.20	0.54
Albumin (%)	2.85	2.45	2.95	2.65	3.05	2.55	2.90	0.25
Globulin (%)	7.25	7.05	6.90	6.60	6.55	7.05	6.30	0.23
Albumin:globulin ratio	0.39	0.35	0.39	0.4	0.47	0.36	0.45	0.03
Thiocyanate (mg/dL)	0.14	2.33	2.25	2.19	2.56	2.47	2.38	0.24

UCC = unpeeled cassava chip; UCP = unpeeled cassava pellet; UCG = unpeeled cassava grit.

abc in the same row with the same superscript are not significantly different (p > 0.05).

mg/dL). Birds fed 50% (2.33, 2.25 and 2.19 mg/dL) and 100% (2.56, 2.47 and 2.38 mg/dL) chip, pellet and grit, respectively, had similar values. Blood glucose values of birds fed 100% cassava chip, pellet and grit based diets (181.52, 179.64 and 173.24 mg/dL, respectively) were higher (p < 0.05) than the CDs (125.44 mg/dL). However, birds fed 50% cassava based diets were similar (p < 0.05) to those on 100% CRP based diets and CD. Total protein, albumin, globulin and albumin:globulin were not significantly (p > 0.05) affected by cassava inclusion in the diets. Haematological indices were not adversely affected by dietary treatments. Feed intake of chicks reduced and hence dietary intake of cyanide from cassava was very small to cause any adverse effect in the pullet chicks. Olajide [32] reported that haematological parameters of broiler fed soaked cocoyam were not significantly affected. However, values obtained for Hb, WBC, MCV and globulins were higher than values reported by Aderemi [33]. WBC values were lower than values reported by Mitruska and Rawnsley [34] for adult chicken. This might probably account for susceptibility of chicks to diseases compared to adult birds.

Higher blood glucose reported in the study was due to effects of cyanide on glucose metabolism. Isom et al. [20] studied effect of sub lethal doses of cyanide on the metabolism of glucose in mice. He found that cyanide caused an increase in blood glucose and lactic acid levels and decrease in the adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio indicating a shift from aerobic to anaerobic metabolism. EFSA [35] also stated that cyanides apparently activate glycogenolysis and shunts glucose to the pentose phosphate pathway decreasing the rate of glycolysis and inhibiting the tricarboxylic acid cycle. Blood thiocyanate increased with increase in cassava inclusion level in the diet due to conversion of
cyanide to thiocyanate in vivo. The principal pathway of cyanide metabolism is the conversion to thiocyanate, catalyzed by either rhodanase (thiosulfate sulphur transferase) or by β mercaptopyrurate sulphur transferase [18]. Detoxification of hydrogen cyanide to thiocyanate reduces toxicity in 200 folds [19].

4. Conclusions

The followings are the conclusions drawn from the study:

1. Haematology indices were not adversely affected by experimental treatments;
2. Serum glucose of birds fed cassava based diets was higher (p < 0.05) than the CD;
3. Dietary treatment significantly affected serum thiocyanate as it increased with increase in cassava inclusion in the diet;
4. Total protein and its fraction (globulin and albumin) were not affected by dietary treatments.

References

[1] Ewuola, E. O., Folayan, O. A., Gbore, F. A., Adegunmi, A. L., Akanji, R. A., Ogunlade, J. T., and Adeneye, J. A. 2004. “Physiology of Growing West Africa Dwarf Goats Fed Groundnut Shell-Based Diets as the Concentrate Supplement.” BOWEN J. Agric. 1 (1): 61-9.
[2] Smith, M. A., Rottkamp, C. A., Numanura, A., Raina, A. K., and Perry, G. 2000. “Oxidative Stress in Alzheimer’s Disease.” Biochim. Biophys. Acta 1502: 139-44.
[3] Alodan, M. A., and Marshall, M. M. 1999. “Effect of Induced Molting in Laying Hens on Production and Immune Parameters.” Poult. Sci. 78: 171-7.
[4] Graczyk, S., Pliszczak-Król, A., Kotsionski, B., Wilczek, J., and Chmielak, Z. 2003. “Examination of Haematological and Metabolic Changes Mechanisms of Acute Stress in Turkeys.” Journal of Polish Agricultural Universities Vet. Med. 6: 1-10.
[5] Kurtoglu, F., Kurtoglu, V., Celik, I., Kececi, T., and Nizamlioglu, M. 2005. “Effects of Dietary Boron Supplementation on Some Biochemical Parameters, Peripheral Blood Lymphocytes, Splenic Plasma Cells and Bone Characteristics of Broiler Chicks Given Diets with Adequate or Inadequate Cholecalciferol (Vitamin D3) Content.” British Poultry Science 46 (1): 87-96.
[6] Ikeukwumere, F. C., and Herbert, U. 2002. “Physiological Responses of Broiler Chicks to Quantitative Water Restrictions: Haematology and Serum Biochemistry.” International Journal of Poultry Science 2 (2): 117-9.
[7] Lamošová, D., Májálová, M., and Zeman, M. 2004. “Effects of Short Term Fasting on Selected Physiological Functions in Adult Male and Female Japanese Quail.” Acta Veterinaria Brno 73 (1): 9-16.
[8] Seiser, P. E., Duffy, L. K., David, M. A., Roby, D. D., Golet, G. H., and Litzow, M. A. 2000. “Comparison of Pigeon Guillemot, Cepphus columba, Blood Parameters from Oiled and Unsoiled Areas of Alaska Eight Years after the Exxon Valdez Oil Spill.” Marine Pollution Bulletin 40 (2): 152-64.
[9] Zaman, Q., Khan, M. Z., Islam, N., and Muhammad, G. 1995. “Experimental Furazolidone Toxicosis in Broiler Chicks: Effects of Dosage, Duration and Age upon Clinical Signs and Some Blood Parameters.” Acta. Vet. Hungaria 43: 359-67.
[10] Oguz, H., Kececi, T., Birdane, Y. O., Önder, F., and Kurtoglu, V. 2000. “Effect of Clinoptilolite on Serum Biochemical and Haematological Characters of Broiler Chickens during Aflatoxicosis.” Research in Veterinary Science 69 (1): 89-93.
[11] Tras, B., Inal, F., Bas, A. L., Ahunok, V., Elmaz, M., and Yazar, E. 2000. “Effects of Continuous Supplementations of Ascorbic Acid, Aspirin, Vitamin E and Selenium on Some Haematological Parameters and Serum Super-Oxide Dismutase Level in Broiler Chickens.” Br. Poult. Sci. 41: 664-6.
[12] Karmish, A. R. 2003. Immune Regulation in Health and Disease. San Diego: Academic Press, 121-7.
[13] Muhammad, N. O., Oloyede, B., Owoyele, B. V., and Olujide, J. E. 2004. “Deleterious Effect of Defatted Terminalia Catappa Seed Meal Based Diet on Haematological and Urinary Parameters of Albino Rats.” NISEB J. 4 (2): 51-7.
[14] Olorode, B. R., Ajagbonna, O. P., and Babatunde, G. M. 1995. “Comparison of Air Dried Poultry Droppings in Broiler Rations. Effects on Performance, Organ Weight and Haematological Parameters.” Int. J. Anim. Sci. 10: 289-93.
[15] Esonu, B. O., Opara, M. N., Okoli, I. C., Obikaonu, H. O., Udedibie, C., and Ihesiuhor, O. O. M. 2006. “Physiological Responses of Laying Birds to Neem (Azadirachta indica) Leaf Meal Based Diets, Body Weight, Organ Characteristics and Haematology.” Journal of Health and Allied Science 5 (2): 4. http://cogprints.org/5168/1/2006-2-4.pdf.
[16] Tewe, O. O. 2004. “Cassava for Livestock Feed in Sub-Sahara Africa.” A commissioned paper for Food and Agriculture Organization (FAO), Rome, Italy, 75.
[17] Streja, V. G., Nagahara, N., Li, Q., and Minami, M. 2003. “New Aspects in Pathogenesis of Konso: Neural Cell Danama Directly Caused by Linamarin Contained in
Cassava (Manihot esculenta Crantz).” British Journal of Nutrition 90: 467-72.

[18] Solomonson, L. P. 1981. “Cyanide as Metabolic Inhibition.” In Cyanide in Biology, edited by Vennesland, B., Conn, E. E., Knowles, C. I., Westley, J., and Wissing, F. New York: Academic Press, 11.

[19] Balagopalan, C., Padamaja, I. G., Nanda, S. K., and Moorthy, S. N. 1988. Cassava in Food, Feed and Industry. Boca Raton, Florida: C. R. C. Press, Inc., 205.

[20] Isom, G. E., Liu, D. A. W., and Way, J. I. 1975. “Effects of Sublethal Doses of Cyanide on Glucose Metabolism.” Biochemistry Pharmacology 24: 81.

[21] Obun, C. O., Ukim, C. I., Olatunji, E. A., and Kehinde, A. S. 2013. “Health and Carcass Implications of Dietary Inclusion of Graded Level of Sun-Cured Neem (Azadirachta indica, A. Juss) Leaf Meal for Broilers.” Greener Journal of Agricultural Sciences 3 (1): 48-54.

[22] Mafuvadze, B., and Erlwanger, K. H. 2007. “The Effect of EDTA, Heparin and Storage on the Erythrocyte Osmotic Fragility, Plasma Osmolality and Haematocrit of Adult Ostriches (Struthio camelus).” Veterinarski Archiv 77: 427-34.

[23] Makinde, M. O., Otesile, E. B., and Fagbemi, B. O. 1991. “Studies on the Relation between Energy Levels and the Severity of Trypanosoma brucei Infection: The Effect of Diet and Infection on Blood Plasma Volumes and Erythrocytes Osmotic Fragility on Growing Pigs.” Bull. Anim. Health. Prod. Africa 31: 161-6.

[24] Otesile, E. B., Fagbemi, B. O., and Adeyemo, O. 1991. “The Effect of Trypanosoma brucei Infection on Serum Biochemical Parameters in Boars on Different Planes of Dietary Energy.” Vet. Parasitol. 40: 207-16.

[25] Mosobalaje, M. A., and Tewe, O. O. 2009. “Studies on Nutritive Value of Cassava Root Products as Energy Sources in Poultry Production.” Journal of Applied Agricultural Research 1: 47-52.

[26] Schalm, O. W. 1971. Veterinary Haematology, 2nd ed. Philadelphia: Lea and Febiger.

[27] Bonder, R. J. L., and Mead, D. C. 1974. “Evaluation of Glucose 6 Phosphate Dehydrogenase from Leuconostoc Mebtertndies in the Hexokinase Method for Determining Glucose in Serum.” Clinical Chemistry 20 (5): 568-80.

[28] Ackers, G. K. 1970. “Analytical Gel Chromatography of Protein.” Advanced Protein Chemistry 24: 324-43.

[29] Tewe, O. O. 1975. “Implications of the Cyanogenic Glycoside Fraction of Cassava in the Growth and Reproduction of Rats and Pigs.” Ph.D. thesis, University of Ibadan.

[30] SAS Institute. 2002. SAS®/STAT Software, Release 9.2. SAS Institute, Inc., Cary, NC.

[31] Duncan, G. B. 1955. “Duncan’s Multiple Range Test.” Biometric 11: 1-42.

[32] Olajide, R. 2012. “Growth Performance, Carcass, Haematology and Serum Metabolites of Broilers as Affected by Content of Anti-nutritional Factors of Soaked Wild Cocoyam (Colocacia esculenta (L.) Schott) Corm Based.” Asian Journal of Animal Science 6 (1): 23-32.

[33] Aderemi, F. A. 2000. “Enzymic Supplementation of Cassava Root Sieviate and Its Utilization by Layer.” Ph.D. thesis, University of Ibadan.

[34] Mitruska, B. M., and Rawnsley, H. M. 1977. Clinical, Biochemical and Haematological Reference Value in Normal Experimental Animal. New York: Masson Publishing.

[35] EFSA. 2007. “Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on Hydrocyanide Acid in Flavourings and Other Food Ingredients with Flavoring Properties.” The EFSA Journal 105: 1-28.