RESEARCH ARTICLE

Relationship between levels of the heavy metals lead, cadmium and mercury, and metallothionein in the gills and stomach of Crassostrea iredalei and Crassostrea glomerata [version 1; peer review: 2 approved]

Asus Maizar Suryanto Hertika, Kusriani Kusriani, Erlinda Indrayani, Rahmi Nurdiani, Renanda B. D. S. Putra

Faculties of Fisheries and Marine Science, University of Brawijaya, Malang, Indonesia

Abstract

Background: The objective of this study was to compare the levels of heavy metals (Pb, Hg, and Cd) and metallothionein (MT) in the gills and stomach of two species of mussels (Crassostrea iredalei and Crassostrea glomerata), and to observe the ability of the mussels to absorb the heavy metals Pb, Hg and Cd present in the water.

Methods: The mussels were obtained from Mayangan, Kenjeran and Gresik ports, East Java, Indonesia. MT levels were determined using ELISA. Heavy metal levels of Pb, Hg and Cd were assayed using atomic absorption spectrophotometry.

Results: The levels of Pb and Cd in water were below the maximum permissible levels for local water quality standards. By contrast, the level of Hg in the water was above the maximum permissible levels for water quality standards. At Mayangan Port (Station 1), the level of Pb was higher than Hg and Cd. Levels of MT and heavy metals varied greatly among of C. iredalei and C. glomerata individuals, but were always higher in the gills than in the stomach. The highest MT level (160,250 ng/g) was observed at Kenjeran Port (Station 2). MT levels were shown to be significantly associated with heavy metal level (P<0.0001).

Conclusions: This result indicates that MT may be responsible for the sequestration of these heavy metals, as has already been observed in terrestrial animals.

Keywords

Heavy metal, Biomarker, Metallothionein, Crassostrea iredalei and Crassostrea glomerata
Corresponding author: Asus Maizar Suryanto Hertika (asusmaizar@yahoo.com)

Author roles: Hertika AMS: Conceptualization, Supervision; Kusriani K: Investigation; Indrayani E: Data Curation; Nurdiani R: Writing – Review & Editing; Putra RBDS: Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: Funding for this study was provided by the General Directorate of Research And Development, Ministry of Research and Technology and Higher Education, Research Contract, Number: 063/SP2H/LT/DRPM/IV/2017.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Hertika AMS et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Hertika AMS, Kusriani K, Indrayani E et al. Relationship between levels of the heavy metals lead, cadmium and mercury, and metallothionein in the gills and stomach of Crassostrea iraeaei and Crassostrea glomerata [version 1; peer review: 2 approved] F1000Research 2018, 7:1239 (https://doi.org/10.12688/f1000research.14861.1)

First published: 10 Aug 2018, 7:1239 (https://doi.org/10.12688/f1000research.14861.1)
Introduction
Pollution occurring in coastal environments is mainly caused by human and industrial activity, and has become a matter of concern over the last few decades. Common chemical pollutants, including heavy metals, such as Cd, Hg and Pb, are considered to be toxic and harmful pollutants. Heavy metal pollution may have devastating effects on both the ecological environment and aquatic organisms. The organisms and biomass contaminated with heavy metals could eventually affect human health.

Accumulation of heavy metals in marine organisms can be considered as an important pathway of the transfer of heavy metals. As a marine bivalve, the suspension-feeding activity of mussels represent the main pathway for heavy metal uptake and accumulation. Mussels are suspension feeders, both aqueous and dietary, such as material suspended from sediments consisting of high-molecular-weight substances, microorganisms, fecal pellets and detritus. Mussels are commonly used to assess the eco-toxicological effects of the products released by anthropogenic activities. In a previous study, mussels were used to evaluate in situ metal contamination in wastewater effluence and other aquatic ecosystems. The concentration of metal in the tissue of mussels increased concomitantly with the elevation of metal absorption or uptake, and the various metal bioaccumulation levels were observed in different tissues of mussels.

Metallothionein (MT) plays a prime role as a response to heavy metal that accumulated in mussel. MT is well-known as a biomarker of heavy metal pollution in aquatic organisms. MT is a heavy-metal-binding protein mostly synthesized by bivalves as a response to the presence of heavy metals. It functions to remove divalent bonds formed by heavy metals and metalloids. In another study by Gagnon et al. MT was also found to bind reactive oxygen species such as nitric oxide, therefore released during the process of inflammation. Furthermore, the accumulation of heavy metals may induce oxidative stress which promotes the substantial impairment of lipid function in mussel tissues. Furthermore, the accumulation of heavy metals in mussels can also directly affect the health of the bivalve without elevating heavy metal concentration in bivalve tissues.

In a previous study by Raspor et al., Crassostrea iredalei and Crassostrea glomerata were used as biomarkers for monitoring heavy metal pollution based on MT level. MT was synthesized differently among bivalve tissues. The gills and stomach of the bivalve were used to examine the heavy metal pollutant levels. However, the specific relationship between each heavy metal (Pb, Hg, Cd) and MT levels in the gills and stomach is largely unknown. In the present study, we therefore determined the relationship between the accumulation of heavy metals (Pb, Hg Cd) and MT levels in the gill and stomach of Crassostrea iredalei and Crassostrea glomerata obtained from coastal environments in East Java, Indonesia (Mayangan Port, Kenjeran Beach, and Gresik Port). This study can also be used to assess the management policy strategies of East Java coastal in an effort to minimize coastal environment pollution.

Methods

Sampling of mussels
Mussels (C. glomerata and C. iredalei) were collected from the north coast area of East Java such as Mayangan Port (Probolinggo), Kenjeran Beach (Surabaya), and Gresik Port (Gresik). Sub-stations 1, 2 and 3 in Mayangan are located geographically at 7°44'12.70” S, 113°12'41.54” E; 7°43'39.94” S, 113°13'19.87” E; and 7°44’18.08” S, 113°13’40.44” E, respectively. At Kenjeran Beach Surabaya, sub-stations 1, 2 and 3 are located geographically at 7°14’03.67” S, 112°47’44.28” E; 7°13’52.73” S, 112°47’38.72” E; and 7°13’41.38” S, 112°47’31.14” E, respectively. Sub-stations 1, 2 and 3 of Gresik Port are located geographically at 7°13’27.61” S, 112°40’57.90” E; 7°13’28.98” S, 112°41’10.24” E; 7°13’23.13” S, 112°40’21.07” E, respectively. The three samples of gill and stomach tissue of both C. glomerata and C. iredalei were collected from three sub-stations during the lowest low tide at the intertidal area of each sampling station.

Heavy metal examination
Heavy metals (Pb, Cd, and Hg) were examined from samples of seawater and tissues of mussels (gill and stomach) from each sampling station. The seawater was collected and filtered through a 0.45-mm polycarbonate membrane Nucleopore filter (Millipore) into a glass bottle to prevent contamination or metal absorption. Nitric acid was added to the seawater to obtain a pH lower than 2. The tissue samples were prepared according to established method. In order samples can be oxidized completely and to destruct organic substances at low temperatures to avoid evaporating mineral loss, 0.2 g of gill or stomach tissues was added to 2 ml HNO3 (1 M) (Fluka) and incubated for 30 min. Afterward, the tissue samples were centrifuged for 15 min at 12,000 g. The supernatant was collected and the heavy metals content were determined using a Varian A220 Atomic Absorption Spectrophotometer (Varian, Inc.).

MT determination
Briefly, 0.5 g gills and stomach organs of C. iredalei and C. glomerata were washed three times with PBS solution and frozen at −20°C. Frozen tissues were then crushed and mixed with 3 ml homogenization buffer (0.5 M sucrose, 20 mM Tris-HCl buffer, pH 8.6, containing 0.01% β-mercaptoethanol). The homogenate was then centrifuged at 30,000g for 20 min to get supernatant containing MT. A total of 1.05 ml cold ethanol and 80 ml chloroform were then added per 1 ml of supernatant and this was centrifuged at 6000g for 10 min. The pellet produced was washed using ethanol, chloroform and homogenization buffer at ratio of 87:1:12, respectively. The pellet was then dried using nitrogen gas to complete evaporation before it was re-suspended in 300 ml of 5 mM Tris-HCL, 1 mM EDTA, pH 7. The concentration of the MT fraction was reduced to 4.2 ml (0.43 mM) by addition of 5.5 dithiobis(2-nitrobenzoic acid) in 0.2 M phosphate buffer, pH 8. The sulfhydryl concentration was reduced by incubating the mixture for 30 min at room temperature.

The MT content was determined using indirect ELISA. The coating antigen to coating buffer ratio used was 1:40. The solution
was incubated overnight at 4°C. Afterward, the plate was washed six times using 100 μl PBS/0.2% Tween solution. Next, 100 μl primary antibody of IgG1 rabbit anti-MT (1:400) (Santa Cruz Biotechnology, Cat# J0410) was added to assay buffer. ELISA plate was then incubated at room temperature for 2 hours before it was washed six times with 200 μl 0.2% PBS. In total, 100 μl of polyclonal secondary antibody of IgG biotin anti-rabbit (1:800) (Santa Cruz Biotechnology, Cat# L061) was added to assay buffer. The mixture was incubated at room temperature for 1 hour and washed 6 times with 0.2% PBS. Next, 100 μl streptavidin horse-radish peroxidase (1:800) was added to the assay buffer in order to detect the reagent for primary antibodies conjugated to biotin. The solution was incubated at room temperature in shaker incubator and then washed 6 times with 200 μl of 0.2% PBS Tween after 1 hour, 100 μl blue 3,3',5,5'-tetramethylbenzidine, as substrate for horseradish peroxidase, was added to each well and the plate was incubated for 20–30 min in a dark room. A reaction was considered to have occurred if the color of the solution changed to blue, indicating the presence of MT. The reaction was stopped by adding 100 μl 1 M HCl. At this stage, the blue solution becomes yellow. The absorbance was measured using an ELISA reader at 450 nm wavelength. The results were then converted using a standard curve to obtain the MT value.

Water quality examination

Physicochemical analyses were done according to Standard Methods. Dissolved oxygen concentration was determined by using Oxymeter (YSI PRO 20). Furthermore, pH-indicator strips Universal indicator (MERCK, CAT# HC000419) was measured pH in situ at the sampling stations. A Refractometer (RHS-10ATC, SINO TECH) was used to measure salinity. Temperature was determined by using thermometer-Hg.

Data analysis

Data analysis was performed using SPSS version 16. The association between Pb, Cd and Hg contents with MT value was determined using multiple regressions with variable Y was density or intensity, variable X1 was Pb content, X2 was Cd content and X3 was Hg content.

Results and discussion

Heavy metal content in seawater

The heavy metal content (Pb, Cd and Hg) observed at three research stations (Mayangan, Kenjeran, and Gresik port) is shown in Figure 1. The level of heavy metal Pb was higher than Hg and Cd at all three sampling stations. The highest Pb and Cd value were observed at Kenjeran at around 0.036 mg/l and 0.012 mg/l, respectively. According to the Ministerial Decree of Living Environmental No 51 Year 2004 concerning water quality standard to heavy metal content, Hg content for aquatic environments should be no more than 0.003 mg/l, Pb no more than 0.05 mg/l and Cd no more than 0.01 mg/l.

Heavy metal analysis in gill and stomach tissue

Mussels were used as candidate to determine the heavy metal concentration in seawater because mussels are filter feeders and settled/stationary. Many studies have been conducted on the determination of the heavy metal level in mussel tissue as a pollutants monitoring tool. Figure 2 shows that heavy metal levels were higher in the gills than in stomach of the mussels. The highest value of heavy metal in gill tissue of *C. iredalei* was obtained from Mayangan, with a Pb concentration 0.715–1.061 mg/l, followed by Cd at 0.168–0.269 mg/l, and Hg at 0.420–0.731 mg/l. In the stomach, heavy metal Pb was ranged at 0.352–0.600 mg/l, Cd at 0.099–0.149 mg/l, and Hg at 0.171–0.337 mg/l. Similar results were obtained from *C. glomerata* tissue. The highest value of heavy metals in gills was obtained at station 1 with Pb content 0.419–0.649 mg/l, followed by Cd at around 0.101–0.234 mg/l.
and Hg 0.300–0.582 mg/l. The heavy metal levels of Pb, Cd and Hg in the stomach were 0.231–0.326 mg/l, 0.034–0.134 mg/l, and 0.077–0.308 mg/l, respectively.

MT levels in the gills and stomach of *C. glomerata* and *C. iredalei*

Measurement of MT levels was performed using ELISA. *C. iredalei* and *C. glomerata* produced higher MT levels in the gills than in the stomach tissues The highest MT levels, around 160,250 ng/g, were observed from samples obtained from station 2 (Kenjeran). The highest MT level measured in Mayangan was 123.500 ng/g, while at Gresik port it was 111.500 ng/g. According to Ringwood *et al.* 34, there was a positive association between the level of MT and that of heavy metal pollutants. Heavy metal pollutants cause systemic damage in organisms and induce MT production 35. According to Rumahlatu *et al.* 36, MT in mussels binds heavy metals, meaning that MT can be used as an indicator of pollution. Organic materials and heavy metals in seawater can accumulate in bivalves in the gills, kidneys, and stomach. Furthermore, organic materials accumulated in the mussels are secreted through the kidney, while the heavy metals may induce synthesis of MT in gills and stomach 37. According to Suryono 38, bivalves are able to detoxify heavy metals by synthesizing MT. As heavy metal accumulate in the body of the bivalve, MT synthesis reaches its maximum level. This event can be used to monitor environmental contamination by heavy metals 39. Cu, Cd, and Zn in seawater have been reported to promote MT synthesis in different tissues, such as the digestive gland and gills of mussels 40.

Figure 2. Heavy metal (Pb, Cd and Hg) content in the gills and stomach of (a) *Crassostrea iredalei* and (b) *Crassostrea glomerata* at the three stations. Station 1, Mayangan; Station 2, Kenjeran; Station 3, Gresik port.
Figure 3. Metallothionein level (wet mass) in the gills and stomach of *Crassostrea iredalei* collected from the three stations. Station 1, Mayangan; Station 2, Kenjeran; Station 3, Gresik port.

Figure 4. Metallothionein level (wet mass) in the gills and stomach of *Crassostrea glomereta* collected from the three stations. Station 1, Mayangan; Station 2, Kenjeran; Station 3, Gresik port.

Relationship between heavy metal content of (Pb, Cd and Hg) with MT content (quantitative) in gill and stomach of *C. iredalei*

The relationship between the content of heavy metals and MT level was significant (*P*<0.0001). According to Sungkawut, regression analysis basically using two variables such as independent variable noted as X and dependent variable noted as Y. According to Amiard *et al.*, regression analysis can be used to determine the most important parameters affecting MT level among natural factors (salinity, sex, season, total concentration...
protein) or contaminant factors. In the present study, multiple regression analysis of heavy metal concentration in seawater and the level of MT in the gills of C. iredalei resulted the equation as:
\[Y = 52.051.866 - 30.919.060 (X_1) + 139.589.243 (X_2) + 146.797.196 (X_3). \]
The results showed that an increase in Pb (X_1) by 1 ppm decreased MT level by 30,919.060 ng/g. Furthermore, an increase of Cd (X_2) by 1 ppm would increase MT level to around 139,589.243 ng/g. Moreover, an increase in the level of Hg (X_3) by 1 ppm would increase MT level by 146,797.196 ng/g.

In addition, we investigated the relationship between the level of heavy metals in seawater and MT levels in the stomach of C. iredalei was significantly associated (P<0.0001). The following multiple regression equation was produced:
\[Y = 23,320.8 \times 15,279.782 + 268,073 (X_1) + 658,306 (X_2) + 32 \times 144,733.404 (X_3). \]
The results showed the increased of Pb (X_1) by 1 ppm would reduce the MT level to 32 (X_1) + 53,844.1 ng/g. Furthermore, an increase of Cd (X_2) and Hg (X_3) concentration by 1 ppm would elevate the MT level to around 268,073 ng/g and 658,306 ng/g, respectively.

Dissolved oxygen concentration promotes the elevation of toxicity of heavy metals and the level of MT in the gills of C. iredalei and C. glomerata were associated with MT level. The findings suggested that the MT content in the digestive gland of C. glomerata was significantly higher than that in the gills of C. iredalei.

Relationship between heavy metal content (Pb, Cd and Hg) towards MT content (quantitative) in gill and stomach at C. glomerata

We observed the relationship of heavy metal content with MT level in gill and stomach of C. glomerata. The heavy metal level has significant association (P<0.0001) with MT level in gill. Using multiple regression analysis, we obtained the following equation:
\[Y = 48,092.338 - 29,404.578 (X_1) + 223,621.464 (X_2) + 144,733.404 (X_3). \]
The results showed that an increase in Pb (X_1) concentration by 1 ppm decreased the MT level in gills to 29,404.578 ng/g. An increased in the Cd (X_2) and Hg (X_3) concentration of 1 ppm elevated MT level to 223,621.464 ng/g and the increased of Hg (X_3) concentration 1 ppm elevated MT level to 144733.404 ng/g.

Furthermore, the heavy metal level has significant association (p-value, 0.0001< 0.05) with MT level in stomach. On the basis of the results of multiple regression of heavy metal content in stomach of C. glomerata the following equation was obtained:
\[Y = 15,279.782 - 4,991.670 (X_1) + 105,058.703 (X_2) + 225,262.150 (X_3). \]
The results showed the increased of Pb (X_1) concentration by 1 ppm would decrease MT level to 4,991.670 ng/g. Increasing Cd (X_2) and Hg (X_3) concentration by 1 ppm would elevate MT level to 105,058.703 ng/g and 225,262.150 ng/g, respectively.

Table 1. Water quality in each station.

Water quality parameter	Sub station	Mayangan	Kenjeran	Gresik Port
Temperature, °C	1	2	3	1
	29	31	31	29
	23.4	23.3	30	
pH	1	2	3	1
	9	9	9	9
	9	9	9	9
Dissolved O_2, mg/l	1	2	3	1
	5.38	4.19	8.17	5.38
	3.38	5.2	5.1	8.9
		8	5	
Salinity, ppt	1	2	3	1
	32	33	33	32
	32	17	23	29
	21	16		

The differences in tissue distribution may be due to the changes in metabolism of protein or to protein levels in the digestive gland of mussels. MT concentrations increased in the clam Ruditapes philippinarum and green mussel Perna viridis tissues after they were exposed to increasing concentrations of Cd in the laboratory.

Water quality parameters

The water quality of seawater (temperature, acidity level (pH), dissolved oxygen (DO) and salinity at each station is shown in Table 1.

The present study showed that the temperature of seawater ranged between 23.4–31°C. MT accumulation in the mussel body increases significantly during the dry season. Temperature has a notable influence on heavy metal solubility. Increasing water temperature leads to the increased solubility of heavy metal solubility, which is toxic. According to the Water Quality Standard of Ministerial Decree of Living Environment No.51 year 2004, normal temperature for the marine biota environment ranges between 28 and 30°C. In the present study, the pH value obtained was around 9. The pH was not suitable for bivalves because while the waters pH is high, the heavy metal in seawaters will be settled at the bottom and will absorbed by bivalves, leading to death of the bivalve. The salinity result obtained ranged between 17 and 33 parts per thousand (ppt). According to KMNHL No. 51 Year 2004, the standard quality of seawater salinity is around 27–33 ppt. Distribution and concentration of heavy metal in waters environment will increase along with salinity value increase.

The dissolved oxygen concentration observed in the present study ranged from 3.85 to 8.9 mg/l. The dissolved oxygen also influences to heavy metal toxicity, as lower dissolved oxygen concentration promotes the elevation of toxicity of heavy metals in the water.
Conclusion
On the basis of the results of this study, we conclude that there is significant relationship between heavy metal concentration in the seawater and MT levels in the gills and stomach of C. glomerata and C.iredalei (p-value, 0.0001 < 0.05).

Data availability
Dataset 1. Raw data for heavy metal levels contained in mussels taken from each location

http://dx.doi.org/10.5256/f1000research.14861.d213155

Data are organized by the Figure in which they appear.

Grant information
Funding for this study was provided by the General Directorate of Research and Development, Ministry of Research and Technology and Higher Education, Research Contract, Number: 063/SP2H/LT/DRPM/IV/2017.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We hereby wish to acknowledge the following individuals for their contribution to this work: The Head of the Laboratory of Physiology, Department of Medicine, University of Brawijaya, for granting us permission to carry out this work in their Molecular and Biotechnology unit.

References
1. Doney SC: The growing human footprint on coastal and open-ocean biogeochemistry. Science. 2010; 328(5965): 1512–1516. PubMed Abstract | Publisher Full Text
2. Valdés J: Heavy metal distribution and enrichment in sediments of Mejillones Bay (23° S), Chile: a spatial and temporal approach. Environ Monit Assess. 2012; 184(9): 5283–5294. PubMed Abstract | Publisher Full Text
3. Vélez D, Montoro R: Arsenic speciation in manufactured seafood products. J Food Prot. 1998; 61(9): 1240–1245. PubMed Abstract | Publisher Full Text
4. Farombi EO, Adelowo OA, Ajimoko YR: Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. Int J Environ Res Public Health. 2007; 4(2): 158–165. PubMed Abstract | Publisher Full Text
5. Järup L: Hazards of heavy metal contamination. Br Med Bull. 2003; 68(1): 167–182. PubMed Abstract | Publisher Full Text
6. Caussy D, Godfroid M, Gurzau E, et al.: Lessons from case studies of metals: investigating exposure, bioavailability, and risk. Ecotoxicol Environ Saf. 2003; 56(1): 45–51. PubMed Abstract | Publisher Full Text
7. Soto-Jiménez MF, Añorlano-Flores C, Rocha-Velarde R, et al.: Trophic transfer of lead through a model marine four-level food chain: Tetraselmis suecica, Artemia franciscana, Litopenaeus vannamei, and Haemulon sciudertii. Arch Environ Contam Toxicol. 2011; 61(2): 280–291. PubMed Abstract | Publisher Full Text
8. Pan K, Wang WK: Validation of biokinetic model of metals in the scallop Chlamys nobilis in complex field environments. Environ Sci Technol. 2008; 42(16): 6285–6290. PubMed Abstract | Publisher Full Text
9. Meilan M, Warnau M, Teyssié JL, et al.: Characterization of 152Am and 137Cs bioaccumulation in the king scallop Pecten maximus: investigation via three exposure pathways. J Environ Radiat. 2011; 106(2): 543–550. PubMed Abstract | Publisher Full Text
10. Galimany E, Ramón M, Delgado M: First evidence of fiberglass ingestion by a marine invertebrate (Mytilus galloprovincialis L.) in a N.W. Mediterranean estuary. Mar Pollut Bull. 2009; 58(9): 1334–1338. PubMed Abstract | Publisher Full Text
11. Hull MS, Vikesland PJ, Schulz IR: Uptake and retention of metallic nanoparticles in the Mediterranean mussel (Mytilus galloprovincialis). Aquat Toxicol. 2013; 140–141: 89–97. PubMed Abstract | Publisher Full Text
12. Bocchetti R, Lamberti CV, Pisaneli B, et al.: Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic sea. Mar Environ Res. 2008; 66(1): 24–26. PubMed Abstract | Publisher Full Text
13. Guidi P, Frenzilli G, Benedetti M, et al.: Antioxidant, genotoxic and lysosomal biomarkers in the freshwater bivalve (Unio pictorum) transplanted in a metal polluted river basin. Aquat Toxicol. 2010; 100(1): 75–83. PubMed Abstract | Publisher Full Text
14. Benedetti M, Gorbi S, Fattorini D, et al.: Environmental hazards from natural hydrocarbons seepage: integrated classification of risk from sediment chemistry, bioavailability and biomarkers responses in sentinel species. Environ Pollut. 2014; 185: 116–126. PubMed Abstract | Publisher Full Text
15. Gagnon C, Gagné F, Turcotte P, et al.: Exposure of caged mussels to metals in a primary-treated municipal wastewater plume. Chemosphere. 2006; 62(6): 998–1010. PubMed Abstract | Publisher Full Text
16. Gillis PL, Gagné F, McNir P, et al.: The impact of municipal wastewater effluent on field-deployed freshwater mussels in the Grand River (Ontario, Canada). Environ Toxicol Chem. 2014; 33(1): 134–143. PubMed Abstract | Publisher Full Text
17. Armstead M, Yaeger JL: In Situ Toxicity Testing of Unionsids. Freshwater Bivalve Ecotoxicology. 2006: 135. PubMed Abstract | Publisher Full Text
18. Jebali J, Choubou L, Banni M, et al.: Comparative study of the bioaccumulation and elimination of trace metals (Cd, Pb, Zn, Mn and Fe) in the digestive gland, gills and muscle of bivalve Pinna nobilis during a field transplant experiment. J Trace Elem Med Biol. 2014; 28(2): 212–217. PubMed Abstract | Publisher Full Text
19. Dalinger R: Invertebrate organisms as biological indicators of heavy metal pollution, Appl Biochem Biotechnol. 1994; 48(1): 27–31. PubMed Abstract | Publisher Full Text
20. Amiard JC, Amiard-Triquet C, Barka S, et al.: Methylthiolethines in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol. 2006; 76(2): 160–202. PubMed Abstract | Publisher Full Text
21. Simonetti P, Filosa S, Riggio M, et al.: Responses to cadmium intoxication in the liver of the wall lizzard Podarcis sicula. Comp Biochem Physiol C Toxicol Pharmacol. 2010; 151(2): 194–203. PubMed Abstract | Publisher Full Text
22. Prozialeck WC, Edwards JR: Early biomarkers of cadmium exposure and nephrotoxicity. Biometals. 2010; 23(5): 793–809. PubMed Abstract | Publisher Full Text
23. Faflushynska HI, Gnatyshyna LL, Stoliar OB: Effect of in situ exposure history on the molecular responses of freshwater bivalve Anodonta anatina (Unionidae) to trace metals. Ecotoxicol Environ Saf. 2013; 89: 73–83. PubMed Abstract | Publisher Full Text
24. Gagnon C, Turcotte P, Trépanier S, et al.: Impacts of municipal wastewater oxidative treatments: Changes in metal physical speciation and bioavailability. Chemosphere. 2014; 97: 86–91. PubMed Abstract | Publisher Full Text
25. Otter RR, McKinney D, Brown B, et al.: Bioaccumulation of metals in three freshwater mussel species exposed in situ during and after dredging at a coal ash spill site (Tennessee Valley Authority Kingston Fossil Plant), Environ Monit.
26. Raspor B, Pavićić J, Branić M: Cadmium-induced proteins from mytilus galloprovincialis-polarographic characterization and study of their interaction with cadmium. Mar. Chem. 1989; 28(1–3): 199–214.
Publisher Full Text

27. Trinchella F, Esposito MG, Simonelli P, et al.: Cadmium, lead and metallothionein contents in cultivated mussels (Mytilus galloprovincialis) from the Gulf of Naples (Southern Italy). Aquaculture Res. 2013; 44(7): 1076–1084.
Publisher Full Text

28. APHA: Standard methods for the examination of water and wastewater. New York: American Public Health Association. 2005.

29. Raspor B, Pavićić J, Branić M, Krajnović-Čorić M, et al.: Metallothionein content in the amphipod Pontogammarus maeoticus (Crustacea, Gammaridea) from the Severn Estuary and Bristol Channel. J. Exp. Mar. Biol. Ecol. 2005; 306(1–2): 151–155.
PubMed Abstract | Publisher Full Text

30. Ghasemian S, Karimzadeh K, Zahmatkesh A: Hepatic metallothionein as a biomarker for metal contamination: age effects and seasonal variation in European flounders (Pleuronectes flesus) from the Severn Estuary and Bristol Channel. Mar. Environ. Res. 2001; 52(2): 151–171.
PubMed Abstract | Publisher Full Text

31. Male YT, Ch A, Nanich, et al.: Preliminary analysis of mercury content (Hg) at several shells types. Ind. J Chem Res. 2014; 136–142.

32. Hiputalung HP: Heavy metal in marine Environment. Pewarta Oceana. 1984; 9(1): 12–19.

33. Shaari H, Raven B, Sultan K, Lim CK: Heavy metals and polycyclic aromatic hydrocarbons in sediments of the Mediterreanean sea. Mar Environ. Res. 2012; 53(3): 219–226.
PubMed Abstract | Publisher Full Text

34. Ringwood AH, Huguet J, Keppeler C, et al.: Linkages between cellular biomarker responses and reproductive success in oysters—Crassostrea virginica. Mar. Environ. Res. 2004; 58(2-5): 151–155.
Reference Source

35. Rumahlatu D, Corebima AD, Amin M, et al.: Kadmium dan Efeknya terhadap Ekspresi Protein Metallothionein pada Hewan laut setosum (Echinodermata: Echinodermata), Jurnal Penelitian Perikanan. 2012; 1(1): 26–35.
Reference Source

36. Gosling E: Bivalve molluscs: biology, ecology and culture. John Wiley & Sons. 2008.

37. Suryono CA: Biokumulasi logam berat melalui sistem jaringan makanan dan lingkungan pada kerang bulu Anadara inflata. ILMU KELAUTAN: Indonesian Journal of Marine Sciences. 2006; 11(1): 19–22.
Reference Source

38. Acker LA, McMahan JR, Gawel JE: The effect of heavy metal pollution in aquatic environments on metallothionein production in Mytilus sp. In Proceedings of the 2005 Puget Sound Georgia Basin Research Conference. 2005.
Reference Source

39. Prusa R, Svoboda M, Blažík O, et al.: Increase in content of metallothionein as marker of resistance to cisplatin treatment. Clin. Chem. 2006; 52: A174–A175.

40. Gerel F, Cosson RP: Induction of specific isofoms of metallothionein in mussel tissues after exposure to cadmium or mercury. Arch Environ Contam Toxicol. 2002; 42(1): 36–42.
Publisher Full Text

41. Suryono CA: Penerapan Analisis Regresi dan Korelasi dalam Menentukan Arah Hubungan Antara Dua Faktor Kualitatif pada Tabel Kontingensi. Jurnal Mat. Stat. 2013; 13(1): 33–41.
Reference Source

42. Rotchell JM, Clarke KR, Newton LC, et al.: Hepatic metallothionein as a biomarker for metal contamination: age effects and seasonal variation in European flounders (Pleuronectes flesus) from the Severn Estuary and Bristol Channel. J. Exp. Mar. Biol. Ecol. 2005; 306(1–2): 259–279.
PubMed Abstract | Publisher Full Text

43. Senafk MN: Variation of metallothionein and metal concentrations in the digestive gland of the clam Rudilapes decussatus: sex and seasonal effects. Environ Toxicol. Chem. 2001; 20(3): 544–542.
PubMed Abstract | Publisher Full Text

44. Petrović S, Ozretić B, Krajnović-Čorić M, et al.: Lysosomal membrane stability and metallothionein in digestive gland of Mussels (Mytilus galloprovincialis Lam.) as biomarkers in a field study. J. Exp. Mar. Biol. Ecol. 2001; 246(3): 173–178.
PubMed Abstract | Publisher Full Text

45. Simbel L: Analisis Logam Berat Pb, Cd dan Cr Berdasarkan Tingkat Salinitas di Estuari Sungai Belau Teluk Lampung. Prosiding PERMAMA. 2011; 85–92.
Reference Source

46. Legras S, Mouneyrac C, Amianti JC, et al.: Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a metal-rich estuary. J. Exp. Mar. Biol. Ecol. 2000; 246(2): 259–279.
PubMed Abstract | Publisher Full Text

47. Shi D, Wang W: Uptake of aqueous and dietary metals by mussel Perna viridis with different Cd exposure histories. Environ. Sci. Technol. 2005; 39(23): 9363–9369.
PubMed Abstract | Publisher Full Text

48. Ghasemian S, Kamarazadeh K, Zamin V: Metallothionein levels and heavy metals in Caspian Sea gammarids, Pontogammarus maeticus (Crustacea, Amphipoda, Pontogammaridae). Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL Bioflux). 2016; 9(1).
Reference Source

49. Dhahiyat Y: Distribusi kandungan logam berat Pb dan Cd pada kolom air dan sedimen daerah aliran Sungai Citarum Hulu. Jurnal Penelitian Keuatan. 2012; 3(3).
Reference Source

50. El Badzi Z, Lazuardi T, Roehmania S, et al.: Adsorpsi Logam Berat Pb Dalam Larutan Menggunakan Senyawa Xanthate Jerami Padi. Prosiding SNST Fakultas Teknik. 2013; 1(1).
Reference Source

51. Kavun VY, Shukin VM, Kirkololovo NK: Metal accumulation in mussels of the Kuril Islands, north-west Pacific Ocean. Mar. Environ. Res. 2002; 53(3): 219–226.
PubMed Abstract | Publisher Full Text

52. Suwarno FAR, Rahayu E, Nanik S, et al.: ELISA Teori dan Protokol. Universitas Airlangga: Surabaya. 2010.

53. Hertika A, Kustiani K, Indrayani E, et al.: Dataset 1 in: Relationship between levels of the heavy metals lead, cadmium and mercury, and metallothionein in the gills and stomach of Crassostrea iedaei and Crassostrea glomerata. F1000Research. 2018.
http://www.doi.org/10.5256/f1000research.14861.d213155
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 1

Reviewer Report 31 August 2018

https://doi.org/10.5256/f1000research.16176.r37088

© 2018 Mukti A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Akhmad Taufiq Mukti

Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Airlangga University (UNAIR), Surabaya, Indonesia

Approved with notes:
1. In the ‘Introduction, the final sentence of paragraph 1 is not related to the previous sentence. I suggest that the authors need a statement about the direct and indirect influences of heavy metals on ecological environment and aquatic organisms.
2. In ‘Methods’, I suggest that the authors describe the reasons for selecting a sampling location.
3. In ‘Methods’, I suggest that the authors describe the reasons for selecting gills and stomach as a sample organs.
4. In ‘Results and discussion’, the authors have not described a discussion based on results in “Heavy metal content in seawater” and in “Heavy metal analysis in gill and stomach.
5. The authors used heavy metals of Pb, Hg and Cd, why use these three heavy metals as indicators, not other heavy metals, maybe the authors could be explain the reason?

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
Yes
Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Aquaculture Biotechnology, especially Fish Genetics and Reproduction

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Ima Yudha Perwira
Water Resource Management, Faculty Of Marine And Fisheries, Udayana University, Jimbaran, Indonesia

Summary
This study is studying about comparison of heavy metal level (Pb, Hg, and Cd) in the gills and stomach of two different mussel species: *Crassostrea iredalei* and *Crassostrea glomerata*. This study also explains about the absorbance capacity of those mussels to Pb, Hg, and Cd. The result showed that MT level in the gills in both mussels are higher than that in the stomach, which is correspond to the higher heavy metal content in the gill than that in the stomach. This result indicate the relation between the MT production and heavy metal level in mussel.

Question 1: This study is clear and accurate. The literature used by the author are also correspond to the article.

Question 2: This study showed appropriate design. The selection of study site in several place (Probolinggo, Surabaya, and Gresik) is suitable, since the high population of heavy metal industries in those area.

Question 3: The methods and analysis used by the author is proper to be use by another author. The using of ELISA technique is common to be used to analyze MT level in marine bivalves.

Question 4: The statistical analysis and its interpretation are also correct. Therefore, there is no doubt in it.

Question 5: The source data underlying the results available to ensure full reproducibility.

Question 6: The author have concluded the results in very simple and easy to be understand sentence.

Is the work clearly and accurately presented and does it cite the current literature?
Yes
Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com