Aortic Root Calcification Score as an Independent Factor for Predicting Major Adverse Cardiac Events in Familial Hypercholesterolemia

Hirofumi Okada1, Hayato Tada1, Kenshi Hayashi1, Hiroki Kawashima2, Tadanori Takata3, Kenji Sakata1, Atsushi Nohara1, Hiroshi Mabuchi1, Masakazu Yamagishi1 and Masa-aki Kawashiri1

1Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
2Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
3Radiology Division, Kanazawa University Hospital, Kanazawa, Japan

Aim: The aims of this study were: 1) to determine whether the accumulation of aortic root calcification (ARC) assessed using coronary computed tomography angiography (CCTA) can predict future cardiovascular events, and 2) to estimate the onset and progression of ARC in patients with familial hypercholesterolemia (FH).

Methods: One hundred thirteen consecutive Japanese patients with heterozygous FH (male=54, mean age=52.1 ± 15.6 years, mean LDL-C=299.0 ± 94.6 mg/dL), without known coronary artery disease, who underwent 64-detector row CCTA were retrospectively evaluated. ARC was defined as the presence of calcium at the aortic root. The extent of ARC was expressed in Agatston units as the ARC-score. Major adverse cardiac events (MACE) were defined as either cardiac death, ST elevated myocardial infarction (STEMI), non-ST elevated myocardial infarction (NSTEMI), unstable angina pectoris (UAP), planned percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), or stroke. The periods to MACE were estimated using multivariate logistic regression analysis.

Results: During the follow-up period (median 1635 days), 19 instances of MACE occurred. Multivariate logistic regression analysis revealed that ARC was a significant independent predictor of MACE (OR=1.48; 95% CI 1.11–1.87, p<0.001, respectively). The regression equations were Y=0.09X−1.59 (R²=0.34, p<0.001) in males and Y=0.08X−1.60 (R²=0.13, p<0.05) in females.

Conclusions: ARC was significantly associated with future MACE in Japanese patients with heterozygous FH. ARC may start to develop, on average, at 17.4 and 19.7 years of age in males and females, respectively, with heterozygous FH.

Key words: Familial hypercholesterolemia, Coronary computed tomography angiography, Aortic valve calcification

Copyright©2018 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.

Introduction

Familial hypercholesterolemia (FH; OMIM #143890) is characterized by the triad of (1) primary hyper-LDL-cholesterolemia, (2) tendon xanthomas, and (3) premature coronary artery disease (CAD)1,2). Coronary computed tomography angiography (CCTA), a noninvasive imaging modality, is quite useful for the accurate detection and exclusion of CAD in the general population3-5). We demonstrated the prognostic utility of coronary plaque burden assessed by CCTA in patients with FH6). On the other hand, it has been shown that the calcium burden of the aortic valve is larger in patients with FH compared to the general population7). CCTA can assess the degree of the calcium burden in the aortic valve, which could be associated with cardiovascular events8,9). In addition, pati-
for FH by the Japan Atherosclerosis Society11. We excluded patients with a known history of coronary disease. We defined major adverse cardiac events (MACE) as either cardiac death, ST elevated myocardial infarction (STEMI), non-ST elevated myocardial infarction (NSTEMI), unstable angina pectoris (UAP), planned percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), or stroke.

Hypertension was defined as systolic blood pressure of at least 140 mmHg, diastolic blood pressure of at least 90 mmHg, or use of antihypertensive medication. The presence of diabetes was defined as previously described by the Japan Diabetes Society12 or the use of diabetes medication. Body mass index (BMI) was defined as body weight in kilograms divided by the square of height measured in meters. Serum concentrations of total cholesterol, triglyceride, and HDL-C were determined enzymatically while the patients were not given any lipid lowering drugs as their baseline level. The patients who received some type of a lipid lowering drug had the same examination after administration of statin therapy. LDL-C concentrations were calculated using the Friedewald formula. Most of the patients were assessed simultaneously with CCTA.

Methods

The institutional review board approved the study protocol. All patients gave written informed consent.

A total of 134 consecutive patients with FH without known CAD who underwent 64-detector row CCTA between May 2007 and May 2017 due to any clinical indications, including chest symptoms, signs of cardiac diseases, peripheral artery disease, cerebrovascular disease, or multiple coronary risk factors were retrospectively analyzed. We used the diagnostic criteria for FH by the Japan Atherosclerosis Society11. We excluded patients with a known history of coronary disease. We defined major adverse cardiac events (MACE) as either cardiac death, ST elevated myocardial infarction (STEMI), non-ST elevated myocardial infarction (NSTEMI), unstable angina pectoris (UAP), planned percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG), or stroke.

Hypertension was defined as systolic blood pressure of at least 140 mmHg, diastolic blood pressure of at least 90 mmHg, or use of antihypertensive medication. The presence of diabetes was defined as previously described by the Japan Diabetes Society12 or the use of diabetes medication. Body mass index (BMI) was defined as body weight in kilograms divided by the square of height measured in meters. Serum concentrations of total cholesterol, triglyceride, and HDL-C were determined enzymatically while the patients were not given any lipid lowering drugs as their baseline level. The patients who received some type of a lipid lowering drug had the same examination after administration of statin therapy. LDL-C concentrations were calculated using the Friedewald formula. Most of the patients were assessed simultaneously with CCTA.
univariate analysis. Intraobserver/interobserver variability between readers was assessed using the Bland-Altman method and the coefficient of variation (CV) for 30 randomly selected patients. Most statistical analyses were conducted using JMP® 13 (SAS Institute Inc., Cary, NC, USA) except for receiver-operating characteristic (ROC) curve analysis, which was performed using R version 3.4.1 (R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/); p values < 0.05 were considered statistically significant.

Results

Intra- and interobserver reproducibility for measurements of the ARC score are shown in Fig. 2. Bland-Altman analysis demonstrated good agreement, with an intra-observer CV of 13.2% (Fig. 2a) and inter-observer CV of 19.9% (Fig. 2b).

One hundred and thirteen patients with heterozygous FH, whose ages ranged from 13 to 84 years, were included in this analysis (male=54, mean age=52.1±15.6 years, mean LDL-C=299.0±94.6 mg/dL). The median follow-up period was 1635 days. The clinical characteristics of patients with or without subsequent MACE are shown in Table 1. The frequencies of the traditional coronary risk factors, such as age, hypertension, and diabetes mellitus were significantly higher, while HDL-C and post-treatment LDL-C were significantly lower, in patients with FH that developed...
Univariable logistic regression analysis showed that age, hypertension, diabetes mellitus, post-treatment LDL-C, and ARC score were significantly associated with MACE (Table 3). In the multivariable logistic regression analysis, the ARC score remained significantly associated with MACE.

We investigated whether the addition of the ARC score increased the accuracy of risk discrimination beyond established traditional risk factors, including age, sex, BMI, hypertension, diabetes, smoking, and post-treatment LDL-C. The C-statistic increased by adding the ARC score to the traditional risk factors from 0.811 to 0.852, although it did not reach statistical significance (Fig. 3, \(p = \text{n.s.} \)). Kaplan-Meier curves

Table 1. Baseline characteristics

	All Subjects (n = 113)	MACE (+) (n = 19)	MACE (−) (n = 94)	\(p \) value
Male	54 (47.8%)	7 (36.8%)	47 (50.0%)	n.s.
Age, yrs	52.1 ± 15.6	61.2 ± 14.2	50.3 ± 15.2	<0.05
Body mass index, kg/m\(^2\)	23.6 ± 3.2	24.1 ± 3.8	23.5 ± 3.1	n.s.
Smoking (Current/former)	32 (30.5%)	8 (42.1%)	24 (27.9%)	n.s.
Hypertension	49 (43.4%)	13 (68.4%)	36 (38.3%)	<0.05
Diabetes mellitus	26 (23.2%)	9 (47.4%)	17 (18.3%)	<0.05
HbA1c, %	5.9 ± 1.0	6.7 ± 1.8	5.8 ± 0.7	<0.001
Defined mutation	78 (69.0%)	15 (78.9%)	63 (67.0%)	n.s.
Lipids				
Total cholesterol, mg/dl	385.2 ± 99.1	389.9 ± 104.2	384.2 ± 98.7	n.s.
LDL-C, mg/dl	299.0 ± 94.6	309.7 ± 113.4	296.7 ± 90.9	n.s.
HDL-C, mg/dl	54.2 ± 13.6	49.0 ± 12.8	55.3 ± 13.6	n.s.
Triglyceride, mg/dl	147.5 ± 93.0	169.3 ± 85.9	142.9 ± 94.4	n.s.
Lp(a), mg/dl	34.9 ± 36.0	34.0 ± 20.2	35.1 ± 38.5	n.s.
Post-treatment LDL-C, mg/dl	140.7 ± 46.4	109.2 ± 28.5	148.2 ± 46.8	<0.05
Percent reduction of LDL-C, %	52.3 ± 14.6	61.5 ± 16.3	50.1 ± 13.3	<0.05
Statin use	107 (94.7%)	18 (94.7%)	89 (94.7%)	n.s.
Ezetimibe use	51 (45.1%)	13 (68.4%)	38 (40.4%)	n.s.
Cholestimide use	19 (16.8%)	5 (26.3%)	14 (14.9%)	n.s.
ARC positive	67 (59.3%)	16 (84.2%)	51 (54.3%)	<0.05
ARC score log	2.9 ± 2.7	5.0 ± 2.4	2.4 ± 2.6	<0.001

MACE: major adverse cardiac events, ARC: aortic root calcification

Table 2. Factors associated with major adverse cardiac events

patient(s)
Cardiac death
ST elevated myocardial infarction
Non-ST elevated myocardial infarction/unstable angina pectoris
Planned percutaneous coronary intervention/coronary artery bypass grafting
Congestive heart failure
Stroke

Univariable logistic regression analysis showed that age, hypertension, diabetes mellitus, post-treatment LDL-C, and ARC score were significantly associated with MACE (Table 3). In the multivariable logistic regression analysis, the ARC score remained significantly associated with MACE.

We investigated whether the addition of the ARC score increased the accuracy of risk discrimination beyond established traditional risk factors, including age, sex, BMI, hypertension, diabetes, smoking, and post-treatment LDL-C. The C-statistic increased by adding the ARC score to the traditional risk factors from 0.811 to 0.852, although it did not reach statistical significance (Fig. 3, \(p = \text{n.s.} \)). Kaplan-Meier curves
Table 3. Major adverse cardiac events during follow-up period

	univariable							
	odds ratio	95% CI	p value	odds ratio	95% CI	p value		
Male	1.714	0.633-4.964	0.292	1.018	0.958-1.082	0.557		
Age	1.053	1.016-1.096	0.004					
BMI	1.054	0.902-1.227	0.502					
Smoking	1.879	0.656-5.225	0.234					
Hypertension	3.491	1.261-10.702	0.016	1.325	0.288-6.433	0.717		
Diabetes mellitus	4.024	1.405-11.559	0.010	1.727	0.450-6.369	0.418		
Total cholesterol	1.001	0.995-1.006	0.836					
LDL-C	1.001	0.997-1.008	0.389					
Post-treatment LDL-C	0.965	0.942-0.984	<0.001	0.969	0.943-0.990	0.003		
ARC score	1.500	1.210-1.944	<0.001	1.408	1.110-1.869	0.029		

ARC: aortic root calcification

Fig. 3. Receiver-operating characteristic (ROC) curves of established risk factors and ARC score in predicting MACE.
The black line indicates traditional risk factors, including age, sex, BMI, hypertension, diabetes, posttreatment levels of LDL-C, and smoking.
The red line indicates traditional risk factors and ARC score.

revealed that patients with any ARC had a significantly higher event rate than those without ARC (Fig. 4).

Finally, we evaluated the correlation coefficient between age and ARC score for each sex (Fig. 5), because a previous study demonstrated that the onset of coronary disease was significantly earlier in males with FH than in females. The regression equations were $Y = 0.09X - 1.59$ ($R^2 = 0.34$, $p < 0.001$) in males and $Y = 0.08X - 1.60$ ($R^2 = 0.13$, $p < 0.05$) in females with heterozygous FH. These results suggest that ARC may
including unknown ones.

In our previous report, we found that the coronary plaque burden might start to develop at 23 and 34 years of age in male and female patients with heterozygous FH. In this study, we could estimate the onset and progression of ARC in patients with FH assuming a linear model of plaque progression. The regression lines from age and ARC suggested that ARC might start to develop in the teenage years in both genders, even under statin therapy. In addition, we showed that ARC might start to develop much earlier than coronary plaques in this high-risk population. ARC can be assessed less invasively without using any contrast agents, compared to coronary plaque burden. Accordingly, we suggest the assessment of ARC prior to coronary plaque burden at this younger age.

The pathologic mechanism of aortic calcification is not understood completely in heterozygous FH. In addition, mechanistic insight into the development of aortic calcification, which is earlier than that of coronary plaque formation is still unclear in this study. Aortic calcifications are thought to be due to a complex interplay between inflammation, vascular injury, and osteogenesis. On the other hand, there are some reports that statins might lead to an increase in coronary calcium score and contribute to vascular calcifications, although this remains controversial. In this

![Kaplan-Meier event curves for MACE.](image)

The red line indicates patients whose ARC score = 0. The blue line indicates patients whose ARC score > 0.

Discussion

In this study, we evaluated ARC assessed with CCTA among patients with FH and found that the extent of ARC was associated with future coronary or cardiovascular events beyond established risk factors, and that we can estimate the onset and progression of ARC in patients with FH, assuming a linear model of progression.

The patients with FH developed premature coronary atherosclerosis due to extremely high LDL-C levels, thus their risk of future coronary events needs to be assessed, since their lifetime risk is still diverse. In the current study, ARC assessed with CCTA successfully estimated future MACE in this high-risk population. There are several reports investigating the significance of aortic calcification in patients with FH, however, few studies exist concerning the association between aortic calcification and cardiovascular events in patients with FH. Our study adds evidence that the extent of ARC is significantly associated with cardiovascular events in patients with FH. We speculate the cause of the strong association between ARC and MACE is the fact that ARC can reflect different risk factors, starting to develop, on average, at 17.4 and 19.7 years of age in male and female patients with heterozygous FH.

![Kaplan-Meier event curves for MACE.](image)

The red line indicates patients whose ARC score = 0. The blue line indicates patients whose ARC score > 0.
Funding Sources
This work has been partially supported by a scientific research grant from the Ministry of Education, Science, and Culture of Japan (No. 16K19394).

Conflicts of Interest
Hayato Tada has received research grants from Takeda Science Foundation, Mochida Memorial Foundation, Japan Research Promotion Society for Cardiovascular Diseases, Sanofi K.K, and Astellas Foundation for Research on Metabolic Disorders. Kenshi Hayashi has received research grants from Takeda Science Foundation and Mitsubishi Tanabe Pharma. Atsushi Nohara and Hiroshi Mabuchi have received research grants from MSD K.K., Sanofi K.K., Shionogi & Co., Ltd., Kowa Co., Ltd., Astellas Pharma Inc., AstraZeneca K.K., Keiai-Kai Medical Corp., and Biopharm of Japan Co. Masakazu Yamagishi has received lecture fees from Astellas Pharma Inc., Daiichi-Sankyo Co., Ltd., Shionogi & Co., Ltd., and Kowa Co., Ltd. Masaaki Kawashiri has received lecture fees from Amgen Astellas Biopharma K.K., Astellas Pharma Inc., and Sanofi K.K.

study, multivariate analysis suggested that the post-treatment levels of LDL-C were inversely correlated with MACE. Accordingly, lowering LDL-C aggressively could be an effective way to manage such high-risk patients. Further studies, investigating the effects of lipid-lowering agents on the development of calcification as well as plaque formation in patients with/without FH will give us insights into those points.

This study has several limitations. First, this study was conducted retrospectively from a single center using a relatively small sample size. Second, selection bias exists regarding the indication of CCTA, leading to an attenuation of the estimated age of the development of atherosclerosis. Third, our assumption concerning the development of ARC in FH is based on a linear model that may not be applicable to younger patients with FH. The significance of ARC assessed with CCTA may be high, although future prospective, multi-center studies are necessary to confirm the present results.

Acknowledgements
We express our special thanks to Kazuko Honda and Sachio Yamamoto (staff of Kanazawa University) for their outstanding technical assistance.

Fig. 5. Plots of the correlation between age (X) and aortic root calcification score (Y) in male (a) and female (b) patients with FH. The regression equations are $Y = 0.09X - 1.59$ ($R^2 = 0.343$, $p < 0.001$) in males and $Y = 0.08X - 1.60$ ($R^2 = 0.133$, $p < 0.05$) in females with heterozygote FH. The solid lines indicate the regression lines. The dotted lines indicate the 95% confidence interval.

To quantify the ARC, as well as the coronary calcium score, CCTA without contrast was performed. Calcification was attributed to the aortic root if it was clearly part of the sinuses of the valsalva, valve cusps, aortic annulus, and the sinotubular junction. Calcifications above the sinotubular junction and calcifications of coronary arteries other than the ostia were removed by manual segmentation.
References

1) Goldstein JL, Hobbs HH, Brown MS: Familial hypercholesterolemia. In: Scrivner CR, Beaudet AL, Sly WS, and Valle D, eds. The metabolic and molecular bases of inherited disease, ed 8, vol 2. New York: McGraw-Hill; 2001: 2863-2913

2) Mabuchi H: Half a century tales of familial hypercholesterolemia (FH) in Japan. J Atheroscler Thromb 2017; 24: 189-207

3) Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niihara H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Ho J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA: Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008; 359: 2324-2336

4) Meijboom WB1, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, Nieman K, van Werkhoven JM, Puntziute G, Weustink AC, de Feyter PJ: Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 2008; 52: 2135-2144

5) Zeb I, Abbas N, Nasir K, Budoff MJ: Coronary computed tomography as a cost-effective test strategy for coronary artery disease assessment - A systematic review. Atherosclerosis 2014; 234: 426-435

6) Tada H, Kawashiri MA, Okada H, Teramoto R, Konno T, Yoshimuta T, Sakata K, Nohara A, Inazu A, Kobayashi J, Mabuchi H, Yamagishi M, Hayashi K: Assessment of coronary atherosclerosis in patients with familial hypercholesterolemia by coronary computed tomography angiography. Am J Cardiol 2015; 115: 724-729

7) ten Kate GJ, Bos S, Dedik A, Neefjes LA, Kurata A, Lamingdonk JG, Liem A, Moelker A, Krestin GP, de Feyter PJ, Roeters van Lennep JE, Nieman K, Sijbrands EJ: Increased aortic valve calcification in familial hypercholesterolemia: Prevalence, extent, and associated risk factors. J Am Coll Cardiol 2015; 66: 2687-2695

8) Alqahtani AM, Boczar KE, Kansal V, Chan K, Dwivedi G, Chow BJ: Quantifying aortic valve calcification using coronary computed tomography angiography. J Cardiovasc Comput Tomogr 2017; 11: 99-104

9) Pradelli D, Faden G, Mureddu G, Rossi A, Cioffi G, Gaibazzi N, Soranna D, Corrao G, Faggiano P: Impact of aortic or mitral valve sclerosis and calcification on cardiovascular events and mortality: A meta-analysis. Int J Cardiol 2013; 170: e51-e55

10) Galaska R, Kulwiajak-Galaska D, Wegrzyn A, Wasag B, Chmara M, Borowiec J, Studniarek M, Fijalkowski M, Rynkiewicz A, Gruchala M: Assessment of subclinical atherosclerosis using computed tomography calcium scores in patients with familial and nonfamilial hypercholesterolemia. J Atheroscler Thromb 2016; 23: 588-595

11) Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Dohi S, Egusa G, Hiro T, Hirobe K, Iida M, Kihara S, Kinoshi T, Maruyama C, Ohta T, Okamura T, Yamashita S, Yokode M, Yokote K, Harada-Shiba M, Araki H, Bujo H, Nohara A, Ohta T, Oikawa S, Okada T, Wakatsuki A: Familial hypercholesterolemia. J Atheroscler Thromb 2014; 21: 6-10

12) Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus, Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, Ito C, Inagaki N, Iwamoto Y, Kasuga M, Hanafusa T, Haneda M, Ueki K: Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Invest 2010; 1: 212-228

13) Charitos EI, Sievers HH. Anatomy of the aortic root: implications for valve-sparing surgery. Ann Cardiothorac Surg. 2013; 2: 53-56

14) Tada H, Kawashiri MA, Nohara A, Inazu A, Mabuchi H, Yamagishi M: Impact of clinical signs and genetic diagnosis of familial hypercholesterolaemia on the prevalence of coronary artery disease in patients with severe hypercholesterolaemia. Eur Heart J 2017; 38: 1573-1579

15) Summers RM, Andrasko-Bourgeois J, Feuerstein IM, Hill SC, Jones EC, Busse MK, Wise B, Bove KE, Rishforth BA, Tucker E, Spray TL, Hoeg JM: Evaluation of the aortic root by MRI: insights from patients with homozygous familial hypercholesterolemia. Circulation 1998; 98: 509-518

16) Al rasadi K, Alwaili K, Awan Z, Valenti D, Couture P, Genest J: Aortic calcifications in familial hypercholesterolemia: Potential role of the low-density lipoprotein receptor gene. Am Heart J 2009; 157: 170-176

17) Al Kindi M, Bélanger AM, Sayegh K, Senouci S, Aljenedil S, Sivakumar L, Ruel I, Al Rasadi K, Al Waili K, Awan Z, Valenti D, Genest J: Aortic calcification progression in heterozygote familial hypercholesterolemia. Can J Cardiol 2017; 33: 658-665

18) Shao JS, Cheng SL, Sadhu J, Towler DA. Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension. 2010; 55: 579-592

19) Puri R, Nicholls SJ, Shao M, Katoaka Y, Uno K, Kapadia SR, Tuzcu EM, Nissen SE. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015; 65: 1273-1282

20) Shin S, Park HB, Chang HJ, Arsanjani R, Min JK, Kim YJ, Lee BK, Choi JH, Hong GR, Chung N. Impact of Intensive LDL Cholesterol Lowering on Coronary Atery Atherosclerosis Progression: A Serial CT Angiography Study. JACC Cardiovasc Imaging. 2017; 10: 437-446

21) Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, Menendez T, Maeffert R, Kusus M, Regenfus M, Bickel A, Haberl R, Steinbeck G, Moshage W, Daniel WG. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation. 2002; 106: 1077-1082
Supplementary Table 1. Characteristics divided by ARCS positive or negative

	All Subjects (n = 113)	ARCS positive (n = 67)	ARCS negative (n = 46)	p value
Male	54 (47.8%)	33 (49.3%)	21 (45.7%)	n.s.
Age, yrs	52.1 ± 15.6	57.3 ± 13.1	44.5 ± 15.8	< 0.001
Body mass index, kg/m²	23.6 ± 3.2	24.2 ± 3.5	22.7 ± 2.5	< 0.05
Smoking (Current/former)	32 (30.5%)	23 (34.3%)	9 (19.6%)	n.s.
Hypertension	49 (43.4%)	35 (52.2%)	14 (30.4%)	< 0.05
Diabetes mellitus	26 (23.2%)	20 (29.9%)	6 (13.0%)	< 0.05
HbA1c, %	5.9 ± 1.0	6.1 ± 1.2	5.7 ± 0.7	< 0.05
Defined mutation	78 (69.0%)	51 (76.1%)	27 (58.7%)	< 0.05
Lipids				
Total cholesterol, mg/dl	385.2 ± 99.1	405.2 ± 112.9	358.4 ± 66.3	< 0.05
LDL-C, mg/dl	299.0 ± 94.6	320.6 ± 105.2	270.9 ± 68.8	< 0.05
HDL-C, mg/dl	54.2 ± 13.6	51.6 ± 14.8	57.4 ± 11.4	< 0.05
TG, mg/dl	147.5 ± 93.0	144.4 ± 95.8	150.4 ± 90.1	n.s.
Lp(a), mg/dl	34.9 ± 36.0	36.9 ± 30.0	32.5 ± 42.6	n.s.
Post-treatment levels of LDL-C, mg/dl	140.7 ± 46.4	136.0 ± 42.9	149.1 ± 51.9	n.s.
Mean percent reduction of LDL-C, %	52.3 ± 14.6	55.6 ± 13.8	46.4 ± 14.1	< 0.05
Statin use	107 (94.7%)	66 (98.5%)	41 (89.1%)	n.s.
Ezetimibe use	51 (45.1%)	39 (58.2%)	12 (26.1%)	n.s.
Cholestimide use	19 (16.8%)	14 (20.1%)	5 (10.9%)	n.s.

ARCS: aortic root calcification score

Supplementary Table 2. Characteristics divided by ARCS high or low

	All Subjects (n = 113)	ARCS ≥ 4.74 (n = 41)	ARCS < 4.74 (n = 72)	p value
Male	54 (47.8%)	18 (43.93%)	36 (50.0%)	n.s.
Age, yrs	52.1 ± 15.6	60.5 ± 11.8	47.3 ± 15.5	< 0.001
Body mass index, kg/m²	23.6 ± 3.2	24.1 ± 3.3	23.3 ± 3.2	n.s.
Smoking (Current/former)	32 (30.5%)	13 (31.7%)	19 (26.4%)	n.s.
Hypertension	49 (43.4%)	23 (56.1%)	26 (36.1%)	< 0.05
Diabetes mellitus	26 (23.2%)	13 (31.7%)	13 (18.3%)	n.s.
HbA1c, %	5.9 ± 1.0	6.1 ± 1.4	5.8 ± 0.8	n.s.
Defined mutation	78 (69.0%)	32 (78.0%)	46 (63.9%)	n.s.
Lipids				
Total cholesterol, mg/dl	385.2 ± 99.1	403.4 ± 113.3	374.5 ± 87.4	n.s.
LDL-C, mg/dl	299.0 ± 94.6	323.9 ± 118.1	284.3 ± 74.0	n.s.
HDL-C, mg/dl	54.2 ± 13.6	50.7 ± 16.6	56.2 ± 11.4	n.s.
TG, mg/dl	147.5 ± 93.0	143.3 ± 80.4	149.3 ± 100.1	n.s.
Lp(a), mg/dl	34.9 ± 36.0	41.4 ± 33.2	31.2 ± 37.3	n.s.
Post-treatment levels of LDL-C, mg/dl	140.7 ± 46.4	135.7 ± 45.7	143.9 ± 47.0	n.s.
Mean percent reduction of LDL-C, %	52.3 ± 14.6	55.3 ± 15.3	50.2 ± 13.8	n.s.
Statin use	107 (94.7%)	40 (97.6%)	67 (93.1%)	n.s.
Ezetimibe use	51 (45.1%)	23 (56.1%)	28 (38.9%)	< 0.05
Cholestimide use	19 (16.8%)	10 (24.4%)	9 (12.5%)	n.s.

ARCS: aortic root calcification score
ARCS = 4.74 was determined by ROC analysis predicting MACE