Thirteen-level UXE-type inverter with 12-band hysteresis current control employing PSO based PI controller

Deepak Upadhyay¹, Mohammad Ali¹, (Member, IEEE), Mohd Tariq¹, (Senior Member, IEEE), Shahbaz Ahmad Khan¹, Basem Alamri², (Member, IEEE) and Ahmad Alahmadi², (Senior Member, IEEE)

¹Department of Electrical Engineering, ZHCET, Aligarh Muslim University, Aligarh, 202002, India
²Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia

Corresponding authors: Mohd Tariq (tariq.ee@zhcet.ac.in) and Mohammad Ali (mohad.ali92@yahoo.com)

ABSTRACT This work presents hysteresis control applied to UXE-type inverter topology with a PI (Proportional Integral) controller, where the gains are derived by Particle Swarm Optimization (PSO). The investigated UXE inverter can generate a thirteen level output voltage waveform, which results in lower switching losses. It can boost the output voltage to 1.5 times the applied input DC source voltage. Satisfactory inverter operation is ensured by employing twelve-band hysteresis current control. The tuning of the PI controller required for the closed-loop hysteresis current control is achieved by nature-inspired PSO algorithm. A comparative analysis is also performed after obtaining the results applying nature-inspired PSO and conventional Ziegler Nichols (ZN) methods. The effectiveness of the control strategy is verified in the MATLAB Simulink and further validated in experiment using TMS320F28379D and also with Typhoon Hardware in Loop Technology.

INDEX TERMS WE-topology, Hysteresis control, Particle Swarm Optimization, Ziegler Nichols method, Multilevel inverter.

I. INTRODUCTION

Medium voltage multilevel inverters (MLI) have gained popularity in recent years. These are widely used for renewable energy integration because of their better performance. Now their applications has included electric vehicles and power conditioning units [1]-[2]. In the MLIs, the switches voltage stress reduces to a considerable level, and the output voltage waveform with reduced THD is achieved [3]. Various popular and established multilevel inverters are NPC (neutral point clamped) [4], CHB (cascaded H bridge) [5] and FC (flying capacitor) multilevel inverter. In CHB-MLI, as the number of voltage levels increase, the number of isolated DC sources increases considerably. Besides, the clamping diodes in NPC-MLI and the flying capacitors in FC-MLI increase with the increase in the number of voltage levels. Furthermore, to get medium to large voltages, transformers at the load end, or, DC-DC boost converters at the front end are required, which add to the bulk and cost of the system. To overcome this shortcoming of the traditional topologies, multilevel inverters with inherent boosting capabilities are explored. Additionally, these topologies a reduced number of components are required to realize these circuits [6]-[12]. This paper presents hysteresis control of a thirteen-level switched capacitor inverter where the PI controller parameter tuning is performed using metaheuristic particle swarm optimization (PSO). The correct switching pattern is selected with suitable charging and discharging paths to balance the capacitor voltages.
The inverters are controlled by pulse width modulation, hysteresis control, space vector control, model predictive control and sliding mode control. Hysteresis current control technique for multilevel inverter is presented in [13] and [14]. There are mainly two types, one with a constant switching frequency [15] and another one with a variable switching frequency [16]. The main principle of hysteresis current control is to limit the reference and load current error by logically creating bands around the reference current. There are two techniques to limit the error: time-locked control and multiband control [17]. These methods apply to multilevel inverters exhibiting inherent capacitor voltage balancing [18] [19]. Topologies that do not have inherent balancing of switched capacitors require balancing of the capacitors before implementing the hysteresis bands control. Thus an additional Proportional controller with integrating factor is required to generate the exact reference current [20]. The PI control balances the capacitor voltages and generates the load reference current.

Conventionally, Zeigler Nichols technique is utilized to tune the gains of the PI controller, but it is a time-consuming process. Further, the time delays, nonlinearities, and the higher-order system makes the process less precise[21]. To overcome these drawbacks, heuristic techniques are used to find the PI gains. These techniques also improve the response of steady-state and the dynamic response of the system [22]. Different optimization techniques like genetic algorithm [23], Particle swarm optimization (PSO) [24], Bee algorithm [25], BAT algorithm[26] and Differential evolution [27] are being employed in obtaining near-to-exact solutions. These techniques give a fast dynamic response within a few iterations and control the inverter more effectively. In this work, the values of the proportional and integral constants (K_p and K_i) for the closed-loop operation are found by employing the PSO technique. Analysis shows that the PSO converges faster for the problem statement of this work in comparison to GA, Bee and Bat algorithms. The performance of the technique is then compared with the Zeigler-Nichols method.

The structure of the paper is as follows. The thirteen level UXE structure and its states are discussed in the subsequent section. The implementation of twelve band hysteresis control on UXE inverter with PI-controller tuned with PSO and conventional ZN technique is discussed in section III. Simulation results with several tuning methods, hysteresis bands and different load conditions and are shown and analyzed in section IV. In section V, experimental results are presented, and section VI concludes and summarizes the paper.

II. THE UXE-13 TOPOLOGY

A. UXE-13 STRUCTURE AND SWITCHING

![Circuit schematic of UXE topology](image)

Fig. 1 shows the circuitschematic of the 13-level UXE-type inverter. The arrangement comprises of a single DC source, two capacitors, six IGBTs with anti-parallel and four IGBTs without anti-parallel diodes, a DC source that and an AC-switch comprising two antiparallel IGBTs. The switches S_1 and S_1' form a U, S_2, S_2', S_3, S_3', S_4 and S_4' form an X, and S_5, S_6 and S_7 forms alphabet ‘E’, and hence the name UXE-type inverter. The circuit is capable of producing a 1.5 times boosted output voltage.
Fig. 2 shows the 13 possible levels of the converter during one cycle of operation. This figure is more explainable in conjunction with Table 1. The condition of charging and discharging depends on the direction of current flowing through the capacitors. If the current is entering the capacitor, it will charge, otherwise it will discharge. With no current flowing into the capacitor, the capacitor voltage will remain unaltered. The condition of $0.5 V_{dc}$ has a redundant state. There are two circuit configurations available which are shown by conditions 5A-5D (for both current directions) in Table 1, and configurations in Fig. 2 (n) and (o). Besides, the states of $\pm 0.75 V_{dc}$ can be understood by 9A-9D from Table 1 and configurations Fig. 2 (n) and (o). Besides, the states of $\pm 1.5 V_{dc}$ will also include both capacitors, but will be either in charging or discharging state depending on the direction of current.

For states $\pm 0.75 V_{dc}$, different configurations through S_3 and S_3' and S_1 as shown in Fig. 2 (d), (e), (p) and (q), are chosen. During these conditions only one capacitor is affected. The rest of the states have single switch configuration and can be seen in Table 1 and in Fig. 2. Fig. 3 shows the standing voltages of the switches in each state. The maximum standing voltage across the switches is not more than $1.5 V_{dc}$ and the total standing voltage is approximately $6 V_{dc}$.

B. COMPARISON WITH RECENT 13-LEVEL TOPOLOGIES

A lesser number of components with single source is employed in this topology to achieve a boosting of 1.5 times the DC source. The redundant states are employed to balance the voltage across the DC-link. The structure requires a single source, 12 IGBTs, seven driver circuits, and two capacitors -- making it 22 components in all. The cost factor (CF) is lowest at 1.615. The CF is calculated as given in [28]. The comparative assessment of UXE inverter topology with other recently proposed thirteen level inverter topologies is shown in Table 2. The driver circuits are Skyper-based circuits that can drive two complementary switches through a single board. A topology with 24 component shown in [29] which requires 2 sources and 2 capacitors. As the two sources are in a ratio of 1:3, the boosting results in 0.75, and a highest CF of 3.385. A three-times boosting single-source
TABLE 2 Comparison with recent 13-level topologies

Topology	N_s	N_sw	N_dr	N_d	N_C	N_total	CF	BC	Balancing
[29]	2	10	10	0	2	24	3.385	0.750	Self
[30]	1	16	16	0	3	36	2.692	3	Self
[31]	1	14	11	1	3	30	2.23	6.667	Self
[32]	1	14	8	0	4	27	2	1.5	Self

UXE-13: 1 | 12 | 7 | 0 | 2 | 22 | 1615 | 1.5 | Redundant states

N_s-number of sources, N_sw-number of switches, N_dr-number of driver circuits, N_d-number of diodes, N_C-number of capacitors, N_total-total components, CF-cost factor, BC-boosting

inverter is presented in [30] that employs 16 switches and 3 capacitors making it the largest component topology of 36 and a CF of 2.692. A 13-level topology with 6 times boosting is presented in [31] that requires 30 components including 3 capacitors and has a cost factor of 2.23. A single-source topology is introduced in [32] that employs 14 switches driven by eight driver circuits. A total of 27 components are required to generate a 13-levels with 1.5 boosting.

III. HYSTERESIS CONTROL FOR UXE-TOPOLOGY

One of the current control technique that has proven to be helpful for the high-performance requirement at the expense of switching frequency variation is Hysteresis bases current control. This paper uses twelve band hysteretic control technique to create the 13 level inverter voltage output. The control principle limits the current error (i_e) within the 12 bands created by the mathematical logic. This technique is advantageous over the others as it exhibits good dynamics and a stable operation. The current error is controlled logically within the fixed band of magnitude ‘h’ and its multiples from h to 6h.

The optimal PI constants K_p and K_i are needed to be found for proper balancing of capacitor voltages and maintaining the desired dynamic response of the system. Tuning this PI controller is a cumbersome task, and if the topology has more than one capacitor, the task becomes more challenging and time-consuming. To overcome these difficulties, attention has been given to metaheuristic approaches to determine the values of K_p and K_i according to the system’s dynamic response. In this paper, a competent approach is taken to tune the PI controller automatically, and the controller is capable of controlling and updating the PI values according to load changes.

A. 12-BAND HYSTERESIS CONTROL AND ITS IMPLEMENTATION

Hysteresis current control technique generates the output voltage levels by quantizing the error between and the reference current the load current into multiple bands. The number of bands required for the n level inverter is (n-1). These bands are created on the sinusoidal varying magnitude of the current error. These bands are created using two control parameters: voltage levels as multiple DC source voltages and the change in current error (∆i). These bands are symmetrical to the y-axis, six bands are

FIGURE 3. Standing voltages of the UXE inverter in each state.

FIGURE 4. Hysteresis band control implementation with PSO based tuning.
in the positive axis, and six in the negative axis are called upper and lower bands, respectively. In Fig.4 complete control strategy block diagram is shown. To accommodate the voltage balancing of the capacitor additional PI control loop is used. The number of capacitors is two (C1 and C2). Therefore two separate PI controllers are required to balance the voltages (Vc1 and Vc2) to (1/4)E source voltage. Initially, the voltage references are generated by taking the load voltages across the capacitors. The error generated by voltages across the capacitors and fed to the PI controllers and the constants (Kp1,Kp2,Ki1,Ki2) are generated by the metaheuristic based PI tuner, which generates the four PI constant values. The control algorithm used to find the optimal values of constants is PSO which has a high convergence rate. The yield of the two PI controllers is added and then multiplied by a sinusoid of unity magnitudeand a frequency of 50Hz. The signal generated after multiplication is the reference current for generating the current error. The current error is fed to the logical block to quantify the signal to 12 bands in the next stage. Each band corresponds to the different voltage levels. When the slope in error is varied, switching between two adjacent levels leads to an inter-level switching. As the current error increases between the bands, the voltage levels are generated to keep the current error within limits. Twelve bands of hysteresis bandwidth ‘h’ are created, and switching is decided accordingly. These bands are (0→-h), (-h→-2h), (-2h→-3h), (-3h→-4h), (-4h→-5h), (-5h→-6h) and (0→-h), (h→2h) (2h→3h), (3h→4h), (4h→5h), (5h→6h). The width of the hysteresis band is approximately equal to 2-5% of the current error value. Further, the switching is done per the state selected by the hysteresis block, and the input signal is given to the switching function block. In this way, the 13-level is generated in the load voltage.

B. INTRODUCTION TO HEURISTIC-BASED PI CONTROL

The current error needed in the hysteresis band control is generated after processing through the PI control. The primary issue arises in tuning the PI controller to decide the values of Kp and Ki (proportional and integral gain constants). This paper finds the gain constants’ values by using the nature-inspired particle swarm optimization (PSO) technique. The performance is compared with the conventional Ziegler-Nichols method. The PSO is also most suited over the GA, Bee and BAT algorithm in terms of convergence to the optimum solution. The metaheuristic-based nature-inspired optimization techniques can fine-tune the gains of the PI controllers by obtaining optimum solutions.

C. TUNING OF CONTROLLER

Controller tuning is defined as the selection procedure of the controller parameters to fulfill the desired performance as demanded, attain fast response, and improve stability. ZN method involves tuning of the PID control gains. The other techniques developed after this uses trial and error process As the parameters in this method are tuned multiple times and requires special attention during the application making it herculean task. After large number of iterations there is no guarantee of the optimum solutions.

These demerits encourage trying other developed techniques to get optimum values. One of the most conventional methods used for the tuning of PI controllers is the Ziegler Nichols method.

D. ZIEGLER NICHOLS METHOD

The Ziegler Nichols method is most popular method used for setting PID controller gains. In this method the process starts with making the integral and differential gains to zero and then increasing the proportional value until the system under control becomes stable. Major disadvantage of employing this method is its applicability to closed loop systems only. The absolute gain is calculated by determining the value of the proportional gain that causes the loop to oscillate indefinitely in the steady-state. The other parameter is the ultimate period. In steady state, this parameter is defined as the time taken in one oscillation. These parameters are utilized to calculate the PI controller’s gains [21].

E. APPLICATION OF PARTICLE SWARM OPTIMIZATION (PSO)

PSO algorithm replicates the movement of a group of animals. Single individual in set is defined as the particle which is same as fish in a school or a bird in a flock. Each element in the group known as particle are distributed in such a way that the intelligence of single particle and group are considered separate. As the particle gets the food, the whole particle tries to reach to that particle independent of their location.Swarm based optimization techniques are behaviorally inspired rather than GA and DE that are evolutionary based techniques[33]. In the PSO methodology, initially the particles are considered to be randomly dispersed in the domain[34]. Each elemental particle has two properties – its velocity and position. Every particle have the memory of best enquired position. The velocity and movement is controlled by considering the previous best position and best in all the individual particles [35],[36]. The main features of PSO are:

• The particle sum up to the velocity vector of other random particles.
• Algorithms that replicate the social relation of the animals have a better rate of convergence compared to evolutionary based algorithms. However, sometimes, an algorithm based on social behavior overcomes the range of algorithm due to fast convergence.
An extra parameter is added in the analysis to consider the effect of overshoot called θ.

1) SIZE OF SWARM
The selection of number of particle is a tradeoff between the complexity and number of iterations. If the number of particles is greater, the computational burden is increased to many folds per iterations. Also, if the number of particles chosen are less, than the required iterations to converge the solution much more. So the best choice for most of the problems is to consider 20-30 particles.

2) SELECTION OF POSITION
Initially, the particles are randomly scattered (similar to chromosomes in GA). These positions update iteration by iteration according to the particle velocity particle:

\[
X_j(i) = X_j(1-i) + V_j(i); \quad i = 1,2,3,\ldots n \tag{1}
\]

where, j represents particle number and i represents iteration number.

3) VELOCITY

The rate of varying position of particle in an iteration is denoted by velocity. The velocity parameter is rapidly changing with each iteration. Velocity vector in a particular iteration is calculated by:

\[
V_j(i) = V_j(1-i) + C_1 r_1 (P_{best,j} - X_j(i-1)) + C_1 r_1 (G_{best} - X_j(i-1)) \tag{2}
\]

\[
J = 1,2,3,\ldots n
\]

Here, \(C_1\) and \(C_2\) are the cognitive (individual) and social (group) learning rates, respectively, and \(r_1\) and \(r_2\) are uniformly distributed random numbers in the range 0 and 1. \(C_1\) and \(C_2\) signify the relative importance of the memory (position) of the particle itself to the memory (position) of the swarm.

Shi and Eberhart originally introduced the inertia weight \(\theta\) in 1999 [37] to dampen the velocities over time (or iterations), enabling the swarm to converge more efficiently compared to the original PSO algorithm. Usually, the inertia weight is opted between 0.4 to 0.9, but it is subjective to the problem at hand.

\[
V_j(i) = \theta V_j(1-i) + C_1 r_1 [P_{best,j} - X_j(i-1)] + C_1 r_1 [G_{best} - X_j(i-1)]; \quad j = 1,2,3,\ldots n \tag{3}
\]

For more insights of particle swarm optimization flowchart illustrating all significant steps is shown in Fig.5. Computational steps are discussed below:
1. Choosing the particle swarm ten times of the design variable in domain of randomly scattered particles.
2. \(P_{best}\) and \(G_{best}\) is calculated in each iteration.
3. Velocity and position vector of all the particles is updated.
4. Stop when convergence criteria meets. Otherwise, repeat from step 2.

E. APPLICATION OF PSO

![Flowchart of PSO implementation](image-url)

TABLE 3. Simulation parameters for GA and PSO

GA & PSO Parameters	Values
Population Size	100
Crossover rate	0.9
Mute rate	25%
No. of Iterations	500

FIGURE 6. Variation of minimum THD value with iterations.
Output voltage waveform THD depends on fundamental component and the harmonics as:

\[
THD = \frac{\sqrt{\sum V^2}}{V_t}
\]

Now,

\[
THD = (\text{THD})_{\text{min}}
\]

This equation define the objective function of the problem for PSO. The below mentioned equation generates the AC load voltage reference:

\[
V_{\text{an}} = K_{\text{pl}}i_t + K_{l} \int i_t \, dt
\]

Where \(i_t\) is the reference load current.

The output voltage levels are dependent of the voltage developed across the capacitors, which is required to be maintained at one fourth of DC source voltage. Further, the output current is dependent on gain constants. The PI controller is used to control the voltage across the capacitors by maintaining the relation:

\[
i_2^* = f(K_{p2}, K_{i2}, K_{p3}, K_{i3})
\]

\[
i_1^* = (K_{p2}V_2^* + K_{i2} \int V_2 \, dt) + (K_{p3}V_3^* + K_{i3} \int V_3 \, dt)
\]

\[
V_2 = V_{c1}^* - V_{c1} = V_{c2}^* - V_{c2}, V_{c3}^* \quad \text{and} \quad V_{c1}^*
\]

are capacitor voltage references.

Limiting condition for capacitor voltage involved (when 100V DC source voltage is applied):

\[
48 \leq V_t - V_2(e) \leq 50
\]

The fitness function is defined by equation (4). The PI controller optimization begins with random selection of values from the initial population. The gain constants are calculated at every moment by PSO to balance the voltages across the capacitors, ultimately influencing the THD of the output voltage.

The convergence curve for the PSO, GA, BEE and Bat algorithms have been shown in Fig.6. PSO shows the fastest convergence, and the number of iterations is also less. This makes PSO suitable for applying in the PI tuning controller. The parameters taken for running the PSO and GA is shown in Table 3.

IV. SIMULATION RESULTS AND ANALYSIS

Simulation of the proposed control technique is performed on MATLAB 2016a Simulink environment. The source voltage is 100 volts, and the parameters taken for simulation are shown in Table 4. Various dynamic responses were simulated, including topology operation with variable loads and variable DC source voltage. In Fig.7(a), the voltage and current of the thirteen-level UXE inverter are exhibited. It is noticed that the power is approximately unity as the output voltage follow current waveform. The dynamic loading for both linear R-L load and Non-linear R-L load is shown in Fig. 7(b) and 7(c), respectively. It is observed that the number of voltage levels is maintained with the change in load. The switching frequency is constant in the case of linear loads, but a varying switching pattern is seen in the case of non-linear loads. Automatic voltage balancing by PSO based PI controller is depicted in Fig. 6(b) and 6(c). Additionally, the effect of DC source voltage variation on the operation of the converter is seen in Fig. 7(d). The controller is working according to the source voltage variations and has maintained desired voltage of 25 volts across the capacitors. Fig.8 shows the harmonic spectrums for load voltages. It can be easily observed that only higher order harmonics are present and can be filtered out using small sized filters.

The THD in the output current and voltage at h=0.35 are 0.80 and 5.49 respectively. Considering the Fig.9, for low values of h (0.01), the response with ZN is sluggish and oscillatory compared with PSO. For h=0.02 and h=0.033, the voltage across the DC link voltage remains approximately unity as the output voltage follow current waveform.

TABLE 4. Simulation parameters

S. No.	Parameter	Simulation Value	Quantity
1.	DC Source Voltage	100V	1
2.	Peak to Peak Voltage	150V	-
3.	Frequency	50Hz	-
4.	Frequency	5000Hz	-
5.	Capacitors	4700μF, 50V	2
6.	Resistive Load	60Ω, 80Ω, 150Ω	2
7.	Inductive Load	40mH	1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
stabilizes early with K_p and K_i values calculated by PSO. So, it can be observed that the PSO based control results in much precise and exact K_p and K_i such that the DC link voltage stabilizes much earlier compared to the values generated with ZN method. The main issue faced with hysteresis control is the irregularity of the switching frequency. With increase in the hysteresis bandwidth (h), the switching frequency becomes irregular, which affects the performance of the converter. Therefore, it is important to have a control strategy that can handle such situations effectively.
this can be limited with a compromise in current THD. The DC bus formed by capacitors are regulated at $V_{dc}/2$. K_p and K_i obtained by applying PSO are found to as 0.035 and 0.045, respectively. The hysteresis band is restricted to a small value and simultaneous reduction of the switching frequency and the THD of the load current is not possible as shown in Fig.10. The average switching frequency variation and the variation in the load current THD with the hysteresis band control is shown in Fig.10. In Fig.11, the percentage THD in the load voltage and current with different AC loads have been depicted in Fig.12 at hysteresis bandwidth of 0.02. The THD of both load voltage and load current decreases as the load impedance decreases and increases for low values for load impedance. In Fig.13, percentage ripple in the DC-link voltage is minimum at $h=0.04$. For medium load impedance (50Ω, 40 mH), the ripple reduces particularly at $h=0.04$. At higher values of load impedance (100Ω, 40 mH), the ripple reduces and is minimum at $h=0.04$.

FIGURE 14. Hardware setup for experimental validation.

FIGURE 15. Output voltage, current waveforms and voltage across the capacitors C_1 and C_2 during constant load.

FIGURE 16. Harmonic spectrum for (a) Voltage and (b) Current at $h=0.02$.
The output load voltage is maintained the same, and the load current is increased by two times, confirming the satisfactory operation of UXE-type inverter and PSO based 12-band hysteresis control. Variation of DC source voltage is shown in Fig. 19. The DC source voltage is varied from 70V to 100V, and the voltage across the capacitor is also changed and operated satisfactorily. Power loss breakup has been shown in Fig. 20. The analysis has been done by the PLECS simulation tool. The total switching loss calculated using PLECS is 10W, and the loss on actual hardware is 12W. The efficiency curve for varying loads is shown in Fig. 21. The maximum efficiency is achieved at 90W that is approximately 98.2%, and then starts decreasing with load increment.

IV. CONCLUSION

The twelve-band hysteresis control technique was validated on a thirteen level UXE-type inverter. The voltage across the DC link was successfully maintained at half of the input side DC source voltage using nature-inspired particle swarm optimization (PSO) based PI control. The fast convergence of PSO for finding the most appropriate values for gain constants enables the faster controller’s tuning compared to the conventional Ziegler-Nichols method.
Nichols (ZN) method. The K_p and K_v calculated using PSO resulted in the early settling of DC link voltage. However, this control is affected by the noise in the error signal, thus leads to undesirable voltage levels. The results were compared, analyzed and verified in simulation, on hardware prototype driven by DSP TMS320F28379D and on real-time Typhoon Hardware in Loop emulator.

ACKNOWLEDGEMENT:

This research was funded in part by Taif University Researchers Supporting Project Number (TURSP-2020/278), Taif University, Taif, Saudi Arabia and, in part, by the collaborative research grant scheme (CRGS) project. Hardware-In-the-Loop (HIL) Lab, Department of Electrical Engineering, Aligarh Muslim University, India, with project numbers CRGS/MOHD TARIQ/01 and CRGS/MOHD TARIQ/02.

REFERENCES

[1] J. Chavarria, D. Biel, F. Guinjoan, C. Meza, and J. J. Negroni, “Energy balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs,” IEEE Trans. Ind. Electron. vol. 60, no. 1, pp. 98–111, Jan. 2013.

[2] G. Buticchi, E. Lorenzani, and G. Franceschini, “A five-level single-phase grid-connected converter for renewable distributed systems,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 906–918, Mar. 2013.

[3] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Trans. Industrial Electronic Magazine, vol. 2, no. 2, pp. 28–39, Jun. 2008.

[4] H. Peng et al., “Improved space vector modulation for neutral-point balancing control in hybrid-switch-based T-type neutral-point-clamped inverters with loss and common-mode voltage reduction,” in CPSS Transactions on Power Electronics and Applications, vol. 4, no. 4, pp. 328–338, Dec. 2019, doi: 10.2495/CPSTPESA.2019.00031.

[5] S. Shuvo, E. Hossain, T. Islam, A. Akib, S. Padmanaban and M. Z. R. Khan, “Design and Hardware Implementation Considerations of Modified Multilevel Cascaded H-Bridge Inverter for Photovoltaic System,” in IEEE Access, vol. 7, pp. 16504-16524, 2019, doi: 10.1109/ACCESS.2019.2894757.

[6] N. Panda, B. Das, A. Chakrabarti, P. R. Kasari, A. Bhattacharya and D. Chatterjee, “A New Grid Interactive 11-Level Hybrid Inverter Topology for Medium-Voltage Application,” in IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 869-881, Jan.-Feb. 2021, doi: 10.1109/TIA.2020.3040204.

[7] O. Lopez-Santos, C. A. Jacanamejoy-Jamioy, D. F. Salazar-D’Antonio, J. R. Corredor-Ramírez, G. García and L. Martínez-Salameron, “A Single-Phase Transformer-Based Cascaded Asymmetric Multilevel Inverter With Balanced Power Distribution,” in IEEE Access, vol. 7, pp. 98182-98196, 2019, doi: 10.1109/ACCESS.2019.2930230.

[8] S. A. Khan et al., “M-Type and CD-Type Carrier Based PWM Methods and Bat Algorithm-Based SHE and SHM for Compact Nine-Level Switched Capacitor Inverter,” in IEEE Access, vol. 9, pp. 87731-87748, 2021, doi: 10.1109/ACCESS.2021.3087825.

[9] A. Taghvaie, J. Adabi and M. Rezanejad, “A Self-Balanced Step-Up Multilevel Inverter Based on Switched-Capacitor Structure,” in IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 199-209, Jan. 2018.

[10] Taghvaie, M. E. Haque, S. Saha and M. A. Mahmud, “A New Step-Up Switched-Capacitor Voltage Balancing Converter for NPC Multilevel Inverter-Based Solar PV System,” in IEEE Access, vol. 8, pp. 83940-83952, 2020, doi: 10.1109/ACCESS.2020.2992093.

[11] J. Liu, J. Wu and J. Zeng, “Symmetric/Asymmetric Hybrid Multilevel Inverters Integrating Switched-Capacitor Techniques,” in IEEE Journal of Emerging and Selected Topics in Power Electronics. doi: 10.1109/JESTPE.2018.2848675.

[12] S. Lee, “Single-Stage Switched-Capacitor Module (SCM) Topology for Cascaded Multilevel Inverter,” in IEEE Transactions on Power Electronics. doi: 10.1109/TPEL.2018.2805685.

[13] D. Upadhyay, S. A. Khan, M. Ali, M. Tariq, A. Sarwar, R. K. Chakraborty, and M. J. Ryan, “Experimental Validation of Metaheuristic and Conventional Modulation, and Hysteresis Control of the Dual Boost Nine-Level Inverter,” Electronics, vol. 10, no. 2, p. 207, Jan. 2021.

[14] H. Komurcugil, S. Bayhan and H. Abu-Rub, “Variable-and Fixed-Switching-Frequency-Based HCC Methods for Grid-Connected VSI With Active Damping and Zero Steady-State Error,” in IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7009-7018, Sept. 2017, doi: 10.1109/TIE.2017.2686531.

[15] M. Hofmann, M. Schaefer, D. Montesinos i Miracle and A. Ackva, “Improved Direct Current Control for Grid Connected Multilevel Inverters,” in IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2020.3018055.

[16] Y. Ounejarj and K. Al-Haddad, “A novel six-band hysteresis control of the packed U cells seven-level converter,” 2010 IEEE International Symposium on Industrial Electronics, Bari, 2010, pp. 3199-3204, doi: 10.1109/ISIE.2010.5637579.

[17] A. Shukla, A. Ghosh and A. Joshi, “Hysteresis Modulation of Multilevel Inverters,” in IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1396-1409, May 2011, doi: 10.1109/TPEL.2010.2082001.

[18] L. Zhang, B. Gu, J. Dominic, B. Chen, C. Zheng and J. Lai, “A Dead-Time Compensation Method for Parabolic Current Control With Improved Current Tracking and Enhanced Stability Range,” in IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3892-3902, July 2015, doi: 10.1109/TPEL.2014.2339302.

[19] S. S. Rao, “Engineering optimization theory and practice”, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009

[20] Kian Heong Ang, G. Chong and Yun Li, "PID control system analysis, design, and technology," in IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559-576, July 2005.

[21] R. Aisuwarya and Y. Hidayati, “Implementation of Phase-Shifted PWMs, A five-level single phase grid-connected converter for renewable distributed systems,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 906–918, Mar. 2013.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3146355, IEEE Access
[22] F. Chishti, S. Murshid and B. Singh, “Natural genetics adapted control for an autonomous wind-battery based microgrid,” in Proc. IEEE India Inter.Conf. Power Elect. (ICPE), JAIPUR, India, pp. 1-6, 2018

[23] M. N. Uddin, M. A. Abido and M. A. Rahman, "Real-time performance evaluation of a genetic-algorithm-based fuzzy logic controller for IPM motor drives," in IEEE Transactions on Industry Applications, vol. 41, no. 1, pp. 246-252, Jan.-Feb. 2005, doi: 10.1109/TIA.2004.840995.

[24] L. Lin, A. Li, C. Xu and Y. Wang, "Multi-Objective Genetic Algorithm Based Coordinated Second- and Third-Order Harmonic Voltage Injection in Modular Multilevel Converter," in IEEE Access, vol. 8, pp. 94318-94329, 2020, doi: 10.1109/ACCESS.2020.2995293.

[25] A. Routray, R. Kumar Singh and R. Mahanty, "Harmonic Minimization in Three-Phase Hybrid Cascaded Multilevel Inverter Using Modified Particle Swarm Optimization," in IEEE Transactions on Industrial Informatics, vol. 15, no. 8, pp. 4407-4417, Aug. 2019, doi: 10.1109/TII.2018.2883050.

[26] A. F. Minai, T. Usmani, A. Iqbal and M. A. Mallick, "Artificial Bee Colony Based Solar PV System with Z-Source Multilevel Inverter," 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), Dehradun, India, 2020, pp. 187-193, doi: 10.1109/ICACCM50413.2020.9213060.

[27] S. Chen, B. Yang, T. Pu, C. Chang and R. Lin, "Active Current Sharing of a Parallel DC-DC Converters System Using Bat Algorithm Optimized Two-DOF PID Control," in IEEE Access, vol. 7, pp. 84757-84769, 2019, doi: 10.1109/ACCESS.2019.2925064.

[28] Ali M, Tariq M, Chakrabortty RK, Ryan MJ, Alamri B, Bou-Rabee MA. 11-Level Operation with Voltage-Balance Control of WE-Type Inverter Using Conventional and DE-SHE Techniques. IEEE Access. 2021;9:64317-64330.

[29] Chappa A, Gupta S, Sahu LK, Gautam SP, Gupta KK. Symmetrical and Asymmetrical Reduced Device Multilevel Inverter Topology. IEEE J Emerg Sel Top Power Electron. 2021;9(1):885-896.

[30] Routray A, Shiluveru K, Singh A, Singh RK, Mahanty R. Reduced voltage stress thirteen-level extendable switched capacitor multilevel inverter. In: ECCE 2019. Baltimore: IEEE; 2019:6224-6230.

[31] Naik BS, Suresh Y, Venkataramanaiah J. A Single Stage Switched-Capacitor Hexad Boost Multilevel Inverter Featuring Boost Ability. In: PESGRE 2020. Cochin; 2020:1-6.

[32] Zeng J, Lin W, Cen D, Junfeng L. Novel K-Type Multilevel Inverter with Reduced Components and Self-Balance. IEEE J Emerg Sel Top Power Electron. 2020;8(4):4343-4354.

[33] T. A. A. Victoire and A. E. Jeyakumar, "Discussion of "Particle swarm optimization to solving the economic dispatch considering the generator constraints",” in IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 2121-2122, Nov. 2004, doi: 10.1109/TPWRS.2004.831709.

[34] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients," IEEE Trans. Evol.Comput., vol. 8, no. 3, pp. 240–255, 2004.

[35] A. M. Dos Santos Alonso, B. R. Pereira Junior, D. I. Brandao and F. P. Marafa, "Optimized Exploitation of Ancillary Services: Compensation of Reactive, Unbalance and Harmonic Currents Based on Particle Swarm Optimization," in IEEE Latin America Transactions, vol. 19, no. 02, pp. 314-325, February 2021, doi: 10.1109/TLA.2021.9443074.

[36] S. Singh and B. Singh, "Optimized Passive Filter Design Using Modified Particle Swarm Optimization Algorithm for a 12-Pulse Converter-Fed LCI–Synchronous Motor Drive," in IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2681-2689, July-Aug. 2014, doi: 10.1109/TIA.2013.2292991.

[37] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” Proc. 1999 Congr.Evol.Comput.CEC 1999, vol. 3, pp. 1945–1950, 1999.