Improving the Optical Properties of PVA/PEG Blend Doped with BaTiO$_3$ NPs

Batool Mohammed1, Hind Ahmed2 and Ahmed Hashim3

University of Babylon, College of Education for Pure Sciences, Department of Physics, Iraq.

1E-mail: batoolmalkhafaji@gmail.com
2E-mail: pure.hind.ahmed@uobabylon.edu.iq
3E-mail: pure.ahmed.hashim@uobabylon.edu.iq, ahmed_taay@yahoo.com

Abstract
In this paper, synthesis in PVA/PEG/BaTiO$_3$ new nanocomposites was investigated to use in various optoelectronics fields. The PVA/PEG/BaTiO$_3$ nanostructures prepared from PVA/PEG blend with various ratios of BaTiO$_3$ NPs. The optical characteristics of synthesized PVA/PEG/BaTiO$_3$ nanostructures have studied. Results indicated that the optical characteristics of PVA/PEG improved as BaTiO$_3$ NPs ratio increase, this behavior makes it may be used in different electronics and photonics fields.

Keywords: nanostructures, BaTiO$_3$, photonics fields, PEG, optical characteristics.

Introduction
In the last few years, examinations of polymer optical properties and electrical have gotten a lot of interest in terms of their applications in electronics (optical, electronic). Optical qualities are intended to be anti-reflective, obtaining polarization characters and better reflection, while the electrical characteristics are intended at knowing transportation of the fee prevalent existence in these compounds. The dopant addition will tailor electrical and the optical properties the polymers based reactivity with the polymer matrix. Furthermore, the benefits polymer fabrics, such as nice moldability, high power, and durability, can be mixed with the outstanding properties inorganic compounds, such as thermal resistance, heat strength, and high strength, during the production of composite materials, high strength and chemical resistance are needed. Nanofillers can be used in a wide variety of applications, including tissue manufacturing, filters, catalysis, scaffolds, wound dressing and sensors, and their electrical, magnetic, mechanical, optical, and thermal properties can be improved by integrating organic and inorganic materials into their structures [1]. In the type of novel materials, polymeric
nanocomposites include grabbed huge attention relate to their improved optical, electrical and magnetic characteristics. These materials enjoy rise modulus and flame resistance and are as well capable to prevent agglomeration and oxidation. These improvement in characteristics are relate to interaction between polymer and nanoparticles. The nanoparticles addition in polymer enhances of nanoparticles life time, modifies the nanoparticles surface by passivation defect levels, give low cost, device fabrication easily and tunable electronic and optical characteristics [2]. The nanocomposites of organic and inorganic are very promising for fields in smart microelectronic, photodiodes, light-emitting diodes, gas sensors, photovoltaic cells. etc. [3].

PVA is a polymer with a hydroxyl groups and the backbone of the carbon chain connecting it. The OH groups can act as a hydrogen bonding source, assisting in the forming of polymer blends. The PVA is nontoxic, which is generally used in the polymeric blends related to its excellent chemical and physical characteristics, good forming of film properties, noncarcinogenic, emulsifying capability, biocompatible and biodegradable characters. These exceptional properties allow it for its in pharmaceutical applications applicability, drug coating agents, cosmetic and industries of surgical structures. Polymeric blend may be more positive because of its easier fabrication technique and its ease to manage the polymer electrolytes characteristics by varying the blended polymer composition [4]. The present work aims to prepare the PVA/PEG/BaTiO$_3$ nanostructures and testing their optical characteristics.

Materials and Methods

The below are the components that were used in this project polymers (polyvinyl alcohol and polyethylene glycol) with ratio 87 wt. % PVA: PEG 13 wt. %. The sample of PVA/PEG was prepare by dissolving (1gm) dissolved in pure water (30 ml). The BaTiO$_3$ NPs have been added to polymeric solution based on proportions (0, 1.4, 2.8, 4.2 and 5.6) wt. %. The casting method has been employed to prepare PVA/PEG/BaTiO$_3$ nanostructures.

Absorption coefficient α was calculated by [5,6]:

$$\alpha = 2.303 \frac{A}{t}$$ \hspace{1cm} (1)

A: absorbance and t: sample thickness.

The energy gap was calculated by [7,8]:

$$\alpha h\nu = D(h\nu - E_g)^r$$ \hspace{1cm} (2)

Where, D: constant, $h\nu$: photon energy, E_g: energy gap, $r = 3$ (forbidden indirect transition) and $r = 2$ (allowed indirect transition).

The optical conductivity (σ_{op}) can be determined by [9]:

$$\sigma_{op} = \frac{\alpha n e}{4\pi}$$ \hspace{1cm} (3)
Results and Discussion

The absorbance and transmittance behavior of PVA/PEG/BaTiO$_3$ nanostructures with wavelength are given in Fig.1 and Fig.2. The absorbance of PVA/PEG blend increases while the transmittance reduces with the rise in BaTiO$_3$ NPs ratios, which have risen as a result of the increase in the number of charges carries in nanocomposites [10-15]. The coefficient of absorption variation the photon's energy is shown in Fig.3. Absorption coefficient of PVA/PEG rises with rising of the BaTiO$_3$ NPs ratios. The α demonstrates the existence of the energy difference. From the α The energy difference is indirect at these values, as seen in Figs. 4 and 5 to allowed and forbidden transitions. The energy gap for transitions (allowed and forbidden) reduces with the rise in BaTiO$_3$ NPs ratios which related to create a levels in the optical band gap that are localized [16-18]. Fig.6 represents the optical conductivity variation of PVA/PEG/BaTiO$_3$ nanostructures with wavelength. As shown in this figure, the optical conductivity of PVA/PEG rises in tandem with the increase in BaTiO$_3$ ratios of NPs that related to ascend in the α values and reduce in energy gap [19-21].

![Absorbance behavior of PVA/PEG/BaTiO$_3$ nanostructures with wavelength.](image)
Fig. 2. Transmittance behavior of PVA/PEG/BaTiO$_3$ nanostructures with wavelength.

Fig. 3. Absorption coefficient variation with energy of photon.
Fig. 4. Energy gap of allowed transition.

Fig. 5. Energy gap of forbidden transition.
Fig.6. Optical conductivity variation of PVA/PEG/BaTiO₃ nanostructures with wavelength.

Conclusions

The optical characteristics and parameters of PVA/PEG blend boosted by the increase in BaTiO₃ ratios of NPs. The high absorption of PVA/PEG/BaTiO₃ nanostructures showed in UV spectra which makes it suitable for different photonic and optic devices.

References

[1] Gamal M. Nasr, Ashraf S. Abd El -Haleem, Anke Klingner, Adel M. Alnozahy, M.Hussein Mourad, The DC Electrical Properties of Polyvinyl Alcohol/ Multi-Walled Carbon Nanotube Composites, Journal of Multidisciplinary Engineering Science and Technology, Vol. 2, Issue 5, (2015).
[2] Chetna Tyagi and Ambika Sharma, Linear and Nonlinear optical study of pure PVA and CdSe doped PVA nanocomposite, AIP Conference Proceedings, Vol.1728, No.020151, (2016).
[3] E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El Mansy, Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells, Optik, Vol.123, Issue 13, (2012).
[4] Tella Meek Laka Siddaiah, Pravakar Ojha, Neeruganti Obularajugari Gopal Velikanti Ramesh Kumar, Chekuri Ramu, Structural, Optical and Thermal Characterizations of PVA/MAA:EA Polyblend Films, Materials Research, Vol.21, No.5,(2018).
[5] Shaymaa Hadi, Ahmed Hashim and Alaa Jewad, Optical properties of (PVA-LiF) composites, Australian Journal of Basic and Applied Sciences, Vol.5, No.9, pp. 2192-2195, (2011).
[6] Ibrahim R. Agool, Firas S. Mohammed, Ahmed Hashim, The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend, Advances in Environmental Biology, Vol.9, No.11, (2015).

[7] Ahmed Hashim and Majeed Ali Habeeb, Synthesis and Characterization of Polymer Blend-CoFe2O4 Nanoparticles as a Humidity Sensors For Different Temperatures, Transactions on Electrical and Electronic Materials, Vol.20, No.2, DOI: 10.1007/s42341-018-0081-1, (2019).

[8] A. Hashim, M. A. Habeeb, A. Khalaf, and A. Hadi, Fabrication of (PVA-PAA) Blend-Extracts of Plants Bio-Composites and Studying Their Structural, Electrical and Optical Properties for Humidity Sensors Applications, Sensor Letters, Vol.15, PP. 589–596, doi:10.1166/sl.2017.3856, (2017).

[9] A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of Novel (Biopolymer Blend-Lead Oxide Nanoparticles) Nanocomposites: Structural and Optical Properties for Low Cost Nuclear Radiation Shielding, Ukr. J. Phys., Vol. 64, No. 2, (2019), https://doi.org/10.15407/uipje64.2.157.

[10] Farhan Lafta Rashid, Aseel Hadi, Naheda Humood Al-Garah, Ahmed Hashim, Novel Phase Change Materials, MgO Nanoparticles, and Water Based Nanofluids for Thermal Energy Storage and Biomedical Applications, International Journal of Pharmaceutical and Phytopharmacological Research, Vol.8, Issue 1, (2018).

[11] Ahmed Hashim and Zinah Sattar Hamad, Fabrication and Characterization of Polymer Blend Doped with Metal Carbide Nanoparticles for Humidity Sensors, J. Nanostruct., Vol.9, No.2, pp.340-348, DOI: 10.22052/JNS.2019.02.016, (2019).

[12] Falah Ali Jasim, Ahmed. Hashim, Angham. G. Hadi, Farhan Lafta, Saba R. Salman and Hind Ahmed, Preparation of (pomegranate peel-polystyrene) composites and study their optical properties, Research Journal of Applied Sciences, Vol.8, Issue. 9, PP. 439-441, (2013).

[13] Farhan Lafta Rashid, Ahmed Hashim, Majeed Ali Habeeb, Saba R. Salman, Hind Ahmed, Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties, Journal of Engineering and Applied Sciences, Vol.8, No.5, PP. 137-139, (2013).

[14] Ahmed Hashim, Yahya Al-Khafaji, Aseel Hadi, Synthesis and Characterization of Flexible Resistive Humidity Sensors Based on PVA/PEO/CuO Nanocomposites, Transactions on Electrical and Electronic Materials, Vol.20, (2019), DOI: https://doi.org/10.1007/s42341-019-00145-3.

[15] Ahmed Hashim and Ali Jasim, Novel of (PVA-ST-PbO2) Bio Nanocomposites: Preparation and Properties for Humidity Sensors and Radiation Shielding Applications, Sensor Letters, Vol. 15, No.12, doi:10.1166/sl.2018.3915, (2017).

[16] Khalid H. H. Al-Attiyah, Ahmed Hashim, Sroor Fadhil Obaid, Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone-polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications, International Journal of Plastics Technology, Vol.23, No.1, (2019), https://doi.org/10.1007/s12588-019-09228-5.

[17] Ahmed Hashim, Enhanced Structural, Optical, and Electronic Properties of In2O3 and Cr2O3 Nanoparticles Doped Polymer Blend for Flexible Electronics and Potential Applications, Journal of Inorganic and Organometallic Polymers and Materials, Vol.30, https://doi.org/10.1007/s10904-020-01528-3, (2020).
[18] Qayssar M. Jebur, Ahmed Hashim, Majeed A. Habeeb, Structural, Electrical and Optical Properties for (Polyvinyl Alcohol–Polyethylene Oxide–Magnesium Oxide) Nanocomposites for Optoelectronics Applications, Transactions on Electrical and Electronic Materials, https://doi.org/10.1007/s42341-019-00121-x, Vol.20, (2019).

[19] Hind Ahmed, Hayder M. Abduljalil, Ahmed Hashim, Structural, Optical and Electronic Properties of Novel (PVA–MgO)/SiC Nanocomposites Films for Humidity Sensors, Transactions on Electrical and Electronic Materials, Vol.20, https://doi.org/10.1007/s42341-019-00111-z, (2019).

[20] Ahmed Hashim, Zinah S. Hamad, Lower Cost and Higher UV-Absorption of Polyvinyl Alcohol/ Silica Nanocomposites For Potential Applications, Egypt. J. Chem., Vol. 63, No.2, DOI: 10.21608/EJCHEM.2019.7264.1593, (2020).

[21] Aseel Hadi, Ahmed Hashim, Yahya Al-Khafaji, Structural, Optical and Electrical Properties of PVA/PEO/SnO2 New Nanocomposites for Flexible Devices, Transactions on Electrical and Electronic Materials, Vol. 21, (2020), https://doi.org/10.1007/s42341-020-00189-w.