This is the accepted manuscript made available via CHORUS. The article has been published as:

Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50

P. Agnes et al. (DarkSide Collaboration)

Phys. Rev. D 104, 082005 — Published 8 October 2021

DOI: 10.1103/PhysRevD.104.082005
Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50

P. Agnes, 1 I.F.M. Albuquerque, 2 T. Alexander, 3 A.K. Alton, 4 M. Ave, 2 H.O. Back, 3 G. Batignani, 5, 6 K. Biery, 7 V. Bocci, 8 W.M. Bonivento, 9 B. Bottino, 10, 11 S. Bussino, 12, 13 M. Cadeddu, 13 M. Cadoni, 14, 9 F. Calaprice, 15 A. Caminata, 11 N. Canci, 16 M. Caravati, 9 M. Cariolo, 11 M. Carlini, 16, 17 M. Carpinelli, 18, 19 S. Catalanotti, 20, 21 V. Cataudella, 20, 21 P. Cavalcante, 22, 16 S. Cavuoti, 20, 21 A. Chepurnov, 20, 21 C. Cicalò, 9 A.G. Cocco, 21 G. Covone, 20, 21 D. D’Angelo, 24, 25 S. Davini, 11 A. De Candia, 20, 21 S. De Cecco, 8, 26 G. De Filippis, 20, 21 G. De Rosa, 20, 21 A.V. Derbin, 27 A. Devoto, 14, 9 M. D’Incecco, 16 C. Dionisi, 8, 26 F. Dordei, 9 M. Downing, 28 D. D’Urso, 18, 19 G. Fiorillo, 20, 21 D. Franco, 29 F. Gabriele, 9 C. Galbiati, 15, 17, 16 C. Ghiano, 16 C. Giganti, 30 G.K. Giovannetti, 15 O. Gorchakov, 31, 45 A.M. Goretti, 16 A. Grobov, 32, 33 M. Gromov, 23, 31 M. Guan, 34 Y. Guardincerri, 45 M. Gulino, 15, 19 B.R. Hackett, 9 K. Herner, 7 B. Hosseini, 9 F. Hubaut, 36 E.V. Hungerford, 1 A. Ianni, 15, 16 V. Ippolito, 8 K. Keeter, 37 C.L. Kendziora, 7 I. Kochanek, 16 D. Korabiev, 31 G. Korga, 1, 16 A. Kubankin, 38 M. Kuss, 5 M. La Commana, 20, 21 M. Lai, 14, 9 X. Li, 15 M. Lissia, 9 G. Longo, 20, 21 I.N. Machulin, 32, 33 L.P. Mapelli, 39 S.M. Mari, 12, 13 J. Maricic, 40 C.J. Martoff, 41 A. Messina, 8, 26 P.D. Meyers, 15 R. Milincic, 40 M. Morrocchi, 5, 6 X. Mougeot, 42 V.N. Muratova, 27 P. Musico, 11 A. Navrer Agasson, 30 A.O. Nozdrina, 32, 33 A. Oleinik, 38 F. Ortica, 43, 44 L. Pagani, 45 M. Pallaviccini, 10, 11 L. Pandola, 19 E. Pantic, 45 E. Pelcza, 5, 16, 46 N. Pellicer, 43, 44 E. Picciau, 14, 45 A. Pocar, 28 S. Pordes, 7 S.S. Poudel, 5 P. Pralavorio, 36 F. Raguso, 24, 25 M. Razeto, 9 A. Razeto, 16 A.L. Renshaw, 1 M. Rescigno, 8 J. Rode, 30, 29 A. Romani, 53, 44 D. Sablone, 15, 16 O. Samoylov, 31 W. Sands, 15 S. Sanfilippo, 13, 12 C. Savarese, 17, 16, 13 B. Schlitzer, 45 D.A. Semenov, 27 A. Shchagin, 38 A. Sheshukov, 31 M.D. Skorokhvatov, 32, 33 O. Smirnov, 31 A. Sotnikov, 31 S. Stracka, 5 Y. Suvorov, 20, 21, 32 R. Tartaglia, 16 G. Testera, 11 A. Tonazzo, 11 E.V. Unzhakov, 27 A. Vishneva, 31 R.B. Vogelaar, 22 M. Wada, 15, 47 H. Wang, 39 Y. Wang, 39, 34 S. Westerdale, 15, 9 M.M. Wojcik, 46 X. Xiao, 39 C. Yang, 34 and G. Zuzel 46

(The DarkSide Collaboration)

1 Department of Physics, University of Houston, Houston, TX 77204, USA
2 Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, Brazil
3 Pacific Northwest National Laboratory, Richland, WA 99352, USA
4 Physics Department, Augustana University, Sioux Falls, SD 57197, USA
5 INFN Pisa, Pisa 56127, Italy
6 Physics Department, Università degli Studi di Pisa, Pisa 56127, Italy
7 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
8 INFN Sezione di Roma, Roma 00185, Italy
9 INFN Cagliari, Cagliari 09042, Italy
10 Physics Department, Università degli Studi di Genova, Genova 16146, Italy
11 INFN Genova, Genova 16146, Italy
12 INFN Roma Tre, Roma 00146, Italy
13 Mathematics and Physics Department, Università degli Studi Roma Tre, Roma 00146, Italy
14 Physics Department, Università degli Studi di Cagliari, Cagliari 09042, Italy
15 Physics Department, Princeton University, Princeton, NJ 08544, USA
16 INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) 67100, Italy
17 Gran Sasso Science Institute, L’Aquila 67100, Italy
18 Chemistry and Pharmacy Department, Università degli Studi di Sassari, Sassari 07100, Italy
19 INFN Laboratori Nazionali del Sud, Catania 95123, Italy
20 Physics Department, Università degli Studi “Federico II” di Napoli, Napoli 80126, Italy
21 INFN Napoli, Napoli 80126, Italy
22 Virginia Tech, Blacksburg, VA 24061, USA
23 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119234, Russia
24 APC, Université de Paris, CNRS, Astroparticule et Cosmologie, Paris F-75013, France
25 LPNHE, CNRS/IN2P3, Sorbonne Université, Université Paris Diderot, Paris 75252, France
26 Physics Department, Sapienza Università di Roma, Roma 00185, Italy
27 Saint Petersburg Nuclear Physics Institute, Gatchina 188350, Russia
28 Amherst Center for Fundamental Interactions and Physics
Department, University of Massachusetts, Amherst, MA 01003, USA
29 APC, Université de Paris, CNRS, Astroparticule et Cosmologie, Paris F-75013, France
30 INFN Milano, Milano 20133, Italy
31 Physics Department, Sapienza Università di Roma, Roma 00185, Italy
32 National Research Centre Kurchatov Institute, Moscow 123182, Russia
33 National Research Nuclear University MEPhI, Moscow 115409, Russia
34 Institute of High Energy Physics, Beijing 100049, China
35 Engineering and Architecture Faculty, Università di Enna Kore, Enna 94100, Italy
I. INTRODUCTION

Dual-phase noble liquid time projection chambers (TPCs) have yielded, for more than a decade, ever increasing world leading sensitivity for the search for Weakly Interacting Massive Particles (WIMPs) with mass greater than 10 GeV/c2. In recent years, the dual-phase technology has been extended to search for “light” dark matter candidates using the ionization component only, which allows to explore recoil energies down to the sub-keV range. Experiments like XENON1T with a liquid xenon target and DarkSide-50 with liquid argon (LAr) have set the best limits on WIMP-nucleus interactions for $M_{\chi} > 0.1$ GeV/c2. WIMP-electron scattering for $M_{\chi} > 30$ MeV/c2, and absorption of dark photons and axion-like particles for $M_{\chi} > 0.2$ keV/c2. This is possible thanks to the intrinsic radiopurity, and high ionization yield and resolution, allowing for detection of single electrons, of noble liquids.

Unlike xenon, for which there exists a rich set of measurements that characterize its ionization response in the keV range (see, for instance, Refs. [10–14]), the argon response is almost unexplored. In spite of the smaller cross section of WIMP scattering on argon compared to xenon, due to the lower atomic number, interactions in argon produce more energetic recoils, with a higher probability of being detected above the threshold. The potential of dual-phase LAr TPC technology in direct dark matter search can therefore be significantly enhanced through a better understanding of the ionization response, especially in the sub-keV region. This represents the focus of this paper, through the measurement of the ionization response to electronic (ER) and nuclear (NR) recoils with DarkSide-50, using β-decay sources intrinsic to LAr, i.e. 37Ar and 39Ar, and neutron sources located just outside the TPC, specifically 241Am-13C and 241Am-11Be. In addition, external datasets from beam test experiments are included in the analysis to better constrain the NR ionization response. This approach, already adopted in the so-called DarkSide-50 low-mass analyses published in 2018 [8, 9], is presented in this paper in detail after being highly refined and improved.

Such calibrations not only have the potential to improve current limits with DarkSide-50, but also provide a basis for future detectors specifically designed to search for light dark matter candidates with LAr.

II. THE DARKSIDE-50 EXPERIMENT

The DarkSide-50 experiment is located in Hall C of the Gran Sasso National Laboratory (LNGS) in Italy. The TPC has a cylindrical active LAr target of \sim46 kg. The lateral walls are made of polytetrafluoroethylene (PTFE), surrounded by field shaping copper rings. Two arrays of 19 3-in diameter photomultiplier tubes (PMTs) are located on both ends behind the transparent anode and cathode respectively. They observe light signals from both primary scintillation (S1) and electroluminescence (S2) from ionization electrons, extracted in the gas phase, after being drifted with a 200 V/cm field in liquid. The extraction efficiency is estimated $>99.9\%$ at the extraction field of 2.8 kV/cm. The PTFE and the fused silica windows at the top and bottom of the cylinder are coated with tetraphenyl butadiene (TPB), a wavelength shifter, that absorbs the 128 nm photons emission and re-emits softer photons with a peak wavelength at 420 nm.

The TPC was first operated, between 2013 and 2014, with atmospheric argon, and then until 2019, with low-
radioactivity argon extracted from deep underground, naturally shielded against cosmogenic isotope production. For a more detailed description of the TPC, see ref. [15, 16].

The TPC is surrounded by a hermetic neutron veto, a 4 m diameter stainless steel sphere filled with 30 t of liquid scintillator, loaded with trimethyl borate molecule (TMB) at 5% mass fraction. 110 8-inch PMTs are mounted on the inner surface of the sphere to detect the scintillation light. Neutrons are mostly captured by 10B present in TMB via the 10B(n, α)7Li* and 10B(n, α)5Li reactions, with a mean capture time of ∼22 µs [17], thanks to the large 10B cross section for thermal neutrons. The first reaction, with 93.6% branching ratio, is also responsible for the emission of a characteristic 478 keV γ from the 7Li* de-excitation, efficiently detected thanks to the relatively high light yield of the scintillator (∼530 pe/MeV).

The neutron veto is in turn immersed in 1000 t of ultra-pure water, instrumented as a Cherenkov veto against cosmic muons, and passive shield against external background. See ref. [17] for more details on the veto system.

III. DETECTOR RESPONSE MODEL

The DarkSide-50 ionization signals are affected by instrumental effects, like the smearing induced by gas-phase electroluminescence and by the PMT charge response. The measured S2 yield (g2), defined as the mean number of photoelectrons per ionization electron extracted in the gas pocket and the associated relative resolution are 23±1 pe/e− and ∼27%, respectively, for events localized beneath the central PMT [8]. An additional instrumental effect is related to the electron lifetime, i.e. the survival time of an electron to the capture from impurities in LAr along the drift. This was measured to be about 10 ms, almost 30 times longer than the maximum drift time in the TPC (376 µs [5]). The distortion of the ionization signal induced by the electron lifetime is therefore limited to a few percent.

The dominant instrumental effect for the S2 response on the event radial position on the xz-plane, orthogonal to the electric field. The S2 response yields a factor of ∼4 difference between the centre and the edges of the TPC. This has been assessed using the 41.5 keV line from the 83Kr gas source injected into the active mass, and applying the position reconstruction algorithm [18], which provides a sub-cm-level resolution. Such a distortion may be due either to a non-uniformity of the TPB thickness, on the top fused-silica window, which would produce non-uniform conversion of VUV scintillation, or to the sagging of the window itself, resulting in a varying thickness of the gas pocket, and, in turn, of the number of electron-luminescence photons produced.

S2 pulses can be corrected using the radial-dependent efficiency measured with 83Kr data. However, the energy range of interest for the low-mass analysis extends down to ∼100 eV, where the reconstruction algorithm is inefficient because of the low number of S2 photoelectrons. The analysis published in 2018 [8] overcame this issue by exploiting a channel-based correction that defines the event position as that of the top-plane PMT (Chmax), which observes the largest fraction of photoelectrons. The position correction based on this definition is rather coarse, because it does not take the finite size (3-inches) of the DarkSide-50 PMTs into account.

To improve the accuracy of the measurement of the intrinsic LAr response to ionization signals, all effects mentioned in this section have been incorporated into a Monte Carlo simulation. This approach has been validated on a sample of 37Ar decays, naturally present in LAr. This cosmic background decays via a single electron capture transition, ground-state to ground-state, with a half-life of 35.01 (2) d [19].

The dominant 37Ar decay branches are from the electron capture on K (2.83 keV) and L1 (0.277 keV) atomic shells, with branching ratios of ∼90.4% and ∼8.4%, respectively, determined with the BetaShape code [20, 21] using the latest recommended Q-value of 813.87 (20) keV [22]. The emitted cascades of electrons, X-rays, and UV photons are evaluated with the RELAX software [23], based on the latest EADL2017 library of atomic transition data [24]. RELAX calculates atomic relaxation spectra of UV photons, X-rays and Auger electrons, hereafter referred to as “primaries”, due to bound-state-to-bound-state transitions for a single initial vacancy in the different sub-shells. From the atomic transition probabilities, a deterministic step-by-step propagation of the vacancies was made up to the valence shell and to the neutralization. Atomic configuration has been accounted for, rejecting transitions that would require more electrons in a sub-shell than those actually present. It should be underlined that the only information available in the EADL2017 library is for a single atomic vacancy. In principle, each additional vacancy due to an Auger transition would require a complete recalculation of the atomic energies, wave functions and transition probabilities, which is not considered in this work.

The relaxation paths estimated by RELAX are 5213 and 72 for the K and L1 shells, respectively. Each contribution is determined per initial vacancy and weighted by the corresponding capture probability. The average energies of Auger electrons, UV photons and X-rays grouped by shell, are quoted in Table I. We can assume that the primary particle is almost always an electron, either because directly emitted or because extracted by X-rays or UV photons via photoelectric effect. The K- and L1-shells emit, on average 3.9 and 2.8 primaries, respectively, neglecting UV photons with energy not sufficient to photo-ionize an 40Ar atom. To evaluate the ionization yield, the mean number of primaries will be subtracted from the number of detected electrons, as primaries are also drifted and extracted in the gas pocket and contribute to the S2 signal.
TABLE I. Average numbers (∑N) and energies (∑E) of primaries (electrons, X-rays and UV photons) emitted in electron capture-induced cascades on 37Ar K and L1 shells as determined using RELAX [23] and the EADL2017 library [24]. The capture probabilities were evaluated with BetaShape [20], [21]. All energies are expressed in eV.

Branching Ratio	K–shell EC	L1–shell EC		
Total Released Energy	2829	277		
Mean number of primaries	3.9	2.8		
K Auger electrons	0.905	2414		
K X-rays	0.095	2634		
L Auger electrons	1.77	179	0.9995	179
L X-rays	8E-4	188	0.0005	207
M Auger electrons	0.35	51	0.96	51
UV photons (E>16 eV)	0.77	25	0.86	25
Undetectable via ionization	3.26	13	2.10	13

a Excluding undetectable via ionization.

The two lines from K and L1 electron capture are observed in the DarkSide-50 data by subtracting the latest ~500 days of the underground argon campaign dataset (from 2015 to 2018), where 37Ar is almost entirely decayed, from the first ~100 days, normalizing the two samples by their livetimes. The subtracted spectrum is fitted with simulated spectra, generated by independently样品 by their livetimes. The subtracted spectrum is fit-ted, from the first 37 days (from 2015 to 2018), where ∼Ar is almost entirely de-cayed, from the first ~100 days, normalizing the two sam-ples by their livetimes. The subtracted spectrum is fit-ted with simulated spectra, generated by independently varying the average number of detected electrons (∑N) for each of the two 37Ar lines. Events are simulated with a uniform spatial distribution in the TPC. The intrinsic fluctuations induced by the number of emitted particles and by the LAr ionization response to ERs are modelled with an empirical fudge factor implemented as a Fano factor [25]. In the Monte Carlo, a fraction of electrons is suppressed according to the electron lifetime. The surviving free electrons are extracted in the gas pocket with 100% efficiency, and converted into S2 photoelectrons with g2 that varies depending on the x-y position of the event, according to relative efficiency derived with the 83mKr calibration source.

The fit is performed with a χ² analysis, where the free parameters are the numbers of extracted electrons induced by the two 37Ar lines and the Fano factor. It is worth mentioning that no additional correction is applied to the resolution model. The shoulder-like structure observed at ∼35 e⁻ in Figure 1 originates from the non-uniform radial response of the detector and is well reproduced by the Monte Carlo starting from input parameters only.

The resulting numbers of electrons are 12.0 ± 0.1 (stat.) ± 0.5 (syst.) and 48.2 ± 0.2 (stat.) ± 2.1 (syst.) for the 37Ar L1– and K–shell, respectively. The systematic errors are calculated by propagating the uncertainty on the g2 value. The best-fitted simulated spectrum is shown in Figure 1 together with data, as a function of the reconstructed number of electrons. The fit returns a reduced χ² of 82.4 / 64.

The ratio between the measured amplitudes of the two lines, equal to 0.10±0.01, is in excellent agreement with ~0.093, the expected value determined with BetaShape, and with measured values in literature (0.103±0.003 [26], 0.102±0.004 [27], 0.098±0.003 [28]).

The fitted Fano factor, 0.10±0.03, is compatible with predictions on the LAr ionization fluctuation from the Shockley (0.107) and the Alkhazov (0.116) models [29]. This result suggests that intrinsic fluctuations of the number of particles emitted in atomic cascades are negligible compared to the ionization fluctuation.

As already mentioned, in order to extract the number of ionization electrons from the two lines, the number of emitted primaries in the atomic cascades must be subtracted from the number of detected electrons. In the L1–shell cascade, the mean number of primaries is 2.8. The 25 eV UV has high probability of extracting an electron by photoionization, but with insufficient energy to induce additional ionization electrons.

The 51 eV M-shell electron is sufficiently energetic to ionize up to two atoms. The Thomas-Incl model, discussed in the following section, predicts a suppressed ion-electron recombination probability at such low ionization densities [30], a finding confirmed by numerical simulations [31]. Yet the energy lost to excitations is unknown at such low energies. Therefore because of uncertainties on the ionization mechanism, we conservatively assume that the 51 eV line contributes with 1±1 ionization electrons to the L-shell cascade. In addition, we assume negligible interactions between the 51 eV and the L–shell 179 eV electron-ion clouds because of their low ionization density. The resulting number of ionization electron at 179 eV is 8.2±1.3, where the uncertainty takes into account both statistical and systematic errors, corresponding to a ionization yield of 45.7±7.0 e⁻/keV_e. (1.8 multiplicity) cannot be ne-
glected. However, the lack of a model able to describe the complex event topology does not allow to estimate the overall recombination effect. For this reason, we do not include data from 37Ar K-shell in the analysis, discussed in the following section, for the determination of the ER ionization yield.

IV. ELECTRONIC RECOIL IONIZATION YIELD

The calibration of the ER energy scale relies on 37Ar data, discussed in the previous section, and on the cosmogenic 39Ar $\beta^−$-decay sample from the 2013-2014 atmospheric argon (AAr) campaign [15], acquired with the same drift field of 200 V/cm. In AAr, 39Ar has a specific activity of ~1 Bq/kg [15], and dominates the event rate. To suppress the “external” background from radioactivity in detector materials surrounding the active mass, events are selected within a central cylinder with 2 cm radius and 21.6 cm height, 16.8 cm far from the lateral walls and 7 cm from the top and bottom of the TPC. The very narrow cut in radius selects events corresponding to the innermost area of the central PMT only, minimizing the non-uniformity of the detector response. To further remove residual external contamination, events with more than one S2 pulse are rejected. These are multiple scatter events, and not compatible with the topology of the 39Ar β-decay signature.

The kinetic energy of each event is reconstructed exploiting the full anti-correlation between the S1 and S2 signals, through the so-called “rotated” energy variable

$$E_{er} = w \left(\frac{S_1}{g_1} + \frac{S_2}{g_2} \right),$$

where $w=19.5\pm0.1$ eV [32] is the average energy required to produce a quantum (excitation or ionization) and g_1 the S1 collection efficiency (0.16±0.01 [18]). The number of ionization electrons escaping the ion-electron recombination process, $N_{i.e.}$, is calculated for each event of the 39Ar sample as

$$N_{i.e.} = \frac{S_2}{g_2} - 1,$$

which accounts for the subtraction of the primary electron from the β-decay. The mean value of the ER ionization yield, Q_y^{ER}, is estimated using eqs. 1 and 2 for each 0.2–keV$_{er}$ bin. A lower threshold of $E_{er}>1.7$ keV is applied to guarantee 100% efficiency in the identification of the S1 pulse. The uncertainty is dominated by the systematics from the g_2 parameter.

The ionization yield per unit of ER energy from 37Ar and 39Ar data is defined as

$$Q_y^{ER} = \frac{N_{i.e.}}{E_{er}} = \frac{(1-r)N_i}{E_{er}},$$

where N_i is the number of produced electron-ion pairs. The electron recombination probability (r) is predicted at low energies, $O(\text{keV}_{er})$, by the Thomas-Imel box model [30],

$$1 - r = \frac{1}{\gamma N_i} \ln(1 + \gamma N_i),$$

with γ is a free parameter describing the recombination of the initial electron-ion pairs contained in a box and immersed in an electric field. This model has proven to work well in noble liquids for spatially short tracks [33], in the $O(\text{keV}_{er})$ range for ERs. In this range, Eq. 3 can be parametrized as

$$Q_y^{ER} = \frac{1}{\gamma} \frac{\ln(1 + \gamma \rho E_{er})}{E_{er}},$$

with $\rho=N_i/E_{er}$ and γ the free parameters of the model. γ can be expressed as C_{box}/F, where F is the drift field (200 V/cm) and C_{box} depends on the mean ionization electron velocity and on the size of the ideal box containing the electron-ion cloud. In this parameterization, we assume the approximation of a constant excitation-to-ionization ratio, which implies that N_i is proportional to the deposited energy [18]. The impact of this approximation is discussed at the end of this section.

39Ar data, together with the 37Ar calibration line, are fitted with Eq. 5 up to 3 keV$_{er}$. As shown in Figure 2, the Thomas-Imel box model is in good agreement with 37Ar and 39Ar data points with $E_{er}<3$ keV$_{er}$.

The extension of the model to higher energies through the empirical Doke-Birks parameterization [34], in good agreement with data from the ARIS experiment above ~40 keV$_{er}$ [35], is not compatible with 39Ar data in the 3–20 keV$_{er}$ range. Instead, the agreement with 39Ar data
is recovered in the whole data range, as shown in Figure 2 by adding a custom term to Eq. 5 as follows

\[Q_y^{ER} = \left(\frac{1}{\gamma} + p_0 E_{er}/E_{cr} p_1 \right) \frac{\ln(1 + \gamma \rho E_{cr})}{E_{cr}}, \]

(6)

with two free parameters, \(p_0 \) and \(p_1 \).

The fit yields \(C_{box}=9.2\pm0.9 \text{ V/cm} \), \(\rho = 54.4\pm7.3 \text{ keV}^{-1} \), \(p_0 = 0.11\pm0.03 \), and \(p_1 = 1.71\pm0.08 \). The \(C_{box} \) and \(\rho \) parameters are compatible within 1σ with 8.6±1.5 V/cm and 52.7±10.9 keV\(^{-1} \), respectively, obtained from the fit with the Thomas-Imel box model up to 3 keV\(_{er}\). It is worth highlighting that the extrapolation of the ER ionization yield below the lowest measured energy (179 eV\(_{er}\) from the \(^{37}\text{Ar} \) L1-shell electron) is weakly dependent on the custom term introduced in Eq. 4 as it is mainly driven by the Thomas-Imel box model.

To test the impact of the constant excitation-to-ionization ratio assumption, an energy-dependent parametrization was introduced in Eq. 4 so that

\[\rho \rightarrow \frac{\rho}{1 + \alpha(E_{cr})}, \]

(7)

where

\[\alpha(E_{cr}) = \frac{0.21}{1 + e^{(E_{cr} \cdot b)/b_2}}, \]

(8)

is a sigmoid function tending to the excitation-to-ionization ratio (\(N_{ex}/Ni \)) of 0.21, as measured at high energies \(^{37}\text{Ar} \). The fit of \(^{37}\text{Ar} \) and \(^{39}\text{Ar} \) data, assuming the change of variable as in eq. 4 requires two additional free parameters, and does not lead to significant variations of \(Q_y^{ER} \) with respect to the constant \(\rho \) approximation.

Therefore, we conclude that data are not sensitive to either assumption and opt to retain the formalism with constant \(N_{ex}/Ni \) that represents the simplest model.

V. NUCLEAR RECOIL IONIZATION YIELD

The NR ionization yield (\(Q_y^{NR} \)) is formalized in analogy with the ER one in eq. 3:

\[Q_y^{NR} = \frac{N_{ex}}{E_{nr}} = \frac{(1-r)Ni}{E_{nr}}, \]

(9)

where the electron recombination probability, \(r \), is described by the Thomas-Imel box model in eq. 4.

Under the assumption that the excitation-to-ionization ratio is constant, \(Ni \) can be expressed \(^{36}\) as:

\[Ni = \beta \kappa(\epsilon) = \beta \frac{\epsilon s_e(\epsilon)}{s_n(\epsilon) + s_e(\epsilon)} \]

(10)

where \(\beta \) is a normalization constant taken as the second free parameter of the model together with \(C_{box} \). The dimensionless parameter \(\kappa \) represents the energy lost in electronic excitations giving rise to ionization and scintillation signals. \(s_e \) is the rate at which electrons are excited by inelastic collisions while \(s_n \) is the rate at which energy is transferred to recoiling nuclei by elastic collisions. They all depend on the dimensionless parameter \(\epsilon \) defined as:

\[\epsilon = \frac{a}{2e^2 Z^2} E_{nr}/\text{keV} \simeq 0.0135 E_{nr}/\text{keV} \]

(11)

where the Thomas-Fermi screening length \(a = 0.626 \cdot a_0 \cdot Z^{-1/3} \) \(^{36}\) is used with \(a_0 = \hbar/(am_e c) \simeq 0.529 \cdot 10^5 \text{ fm} \). The stopping power, \(s_e \), can be expressed as \(^{36}\): \(^{37}\)

\[s_e(\epsilon) = \frac{0.133 Z^{2/3}}{A_{1/2} F(v/v_0)} \sqrt{\epsilon} \]

(12)

where \(F(v/v_0) \) is a correction factor dependent on the nuclear \(v \) and Bohr \(v_0 = e^2/h \) velocities. With no available theoretical calculation backing either a suppression or an enhancement of the electronic stopping power, we assume \(F(v/v_0)=1 \). However, at the end of this section, we define an ad-hoc function as in Ref. \(^{38}\) to test the sensitivity of the calibration data to a potential suppression of \(s_e(\epsilon) \) at low energies.

The nuclear stopping power, \(s_n \), is modelled by Ziegler et al. using an universal screening function \(^{37}\): \(^{37}\)

\[s_n(\epsilon) = \frac{\ln(1 + 1.1383 f_Z \epsilon)}{2[f_Z \epsilon + 0.01321 (f_Z \epsilon) ^{0.21226} + 0.19593 (f_Z \epsilon) ^{0.5}]} \]

(13)

where \(f_Z \simeq 0.953 \) is a conversion factor for argon that accounts for the slightly different dimensionless energy definition used in Ref. \(^{37}\) compared to Eq. (11).

The NR response model is applied to simulated events analogously to what done for ERs in Section III. The only difference is in the intrinsic resolution of the NR ionization process. Following the procedure used in Ref. \(^{3} \), we considered two extreme models: one allowing for fluctuations in energy quenching, ionization yield, and recombination processes obtained with binomial distributions, and an other where the fluctuations in energy quenching are set to zero. The analysis described in the below cannot distinguish between the two models, as the difference in the results is negligible. For this reason, in the following, we only consider the model without quenching fluctuations.

The model from Eq. 9 is constrained by fitting DarkSide-50 calibration data, using \(^{241}\text{Am-}^{13}\text{C} \) and \(^{241}\text{Am-}^{9}\text{Be} \) neutron sources \(^{38}\), acquired during the underground argon (UAr) campaign, and external datasets from the SCENE \(^{39}\), ARIS \(^{37}\), and Joshi et al. \(^{40}\) experiments, as described in the following.
γ-rays with an energy >99 keV and branching ratio >10⁻⁹, as quoted in [12], are simulated with G4DS [13], the DarkSide-50 Monte Carlo, to derive the spectrum of AmC uncorrelated events. The detector response is applied as described in Section III.

The AmC NR analysis is performed on events with Ch_{max} corresponding to channels 24, 25, 30, and 31, the 4 central PMTs less exposed to the source, as shown in Figure 3 with ^{241}Am γ contamination minimized to 5.2%, as estimated from a Monte Carlo simulation. Events selected by channels 26, 29, and 35 (see Figure 3) are excluded from the analysis because of the high rate of ^{241}Am γ-rays. Events not correlated with the source are subtracted using data from the UAr campaign, selected with the same Ch_{max} cuts and normalized by the livetime.

Figure 4 shows AmC and UAr data spectra, the latter normalized by the livetime, and the simulated spectrum of γ-events from ^{241}Am reaching the TPC. The uncertainty on the source position affects the amplitude of the simulated spectrum, which is then normalized to the UAr-subtracted AmC spectrum in the [250, 900] N_e range, where no NR event is expected. The excess of events from the source, shown in Figure 4 with respect to the TPC intrinsic contamination and to simulated ^{241}Am γ-rays, is attributed to neutron scatterings.

B. $^{241}\text{Am-}^{9}\text{Be data selection}$

The $^{241}\text{Am-}^{9}\text{Be}$ source (from now on AmBe) emits neutrons in association with the emission of, among others, 4.4 MeV γ-rays. The prompt γ signal is detected in the liquid scintillator veto [17], where the source is deployed. Most neutrons, once scattered in the TPC LAr target, escape the TPC given the low neutron capture cross section in ^{40}Ar. Scattered neutrons that reach the neutron veto are mostly captured by ^{10}B with 22 µs mean time.

NRs in the TPC are selected with a three-fold coincidence by looking at the prompt 4.4 MeV γ-ray followed by a single-scatter signal in the TPC within a few tens

FIG. 3. Schematic top view of the detector. The source holder is located in the liquid scintillator veto. Source events have to cross the cryostat, the LAr buffer and the PTFE walls before reaching the active mass. Events whose position is associated to channels in the outer ring (white) are not included in this analysis. Only events with maximum fraction of light observed by PMTs highlighted in green in the figure are included in the AmC analysis. The analysis of the AmBe source is extended also to events selected by PMTs highlighted in red.

FIG. 4. Comparison between AmC spectrum (black) and contamination from TPC intrinsic events and γ-rays from ^{241}Am, as described in the text. The low-energy excess is due nuclear recoils induced by neutrons.
of nanoseconds, in turn followed by the delayed neutron capture in the veto. In order to apply this selection, events with both S1 and S2 pulses are required. The events with S2 signal only, in fact, are delayed by the drift time up to a maximum of 376 μs, much longer than the coincidence time with the prompt signal in the veto, which, in most cases, falls outside the acquisition window. On the contrary, the S1 signal is very fast, and allows not to miss the coincidence with the prompt signal in the veto. The requirement of an S1 signal, however, implies an energy threshold, dictated by the S1 trigger and pulse-finder efficiencies. The overall efficiency for NR events is defined as the ratio between 2-pulses events (S1+S2) and all events with either S2-only or S1+S2. The efficiency is extracted from the AmC dataset, by subtracting the ER contamination from each of the two S2-only and S1+S2 samples. The resulting efficiency, which from now on is named S1 detection efficiency, is fitted with an error function, which takes into account Gaussian fluctuations expected in the S1 efficiency, as shown in Figure 5.

Prompt signals in the veto are selected by requiring an electron equivalent energy in the [4, 5] MeV range, and a time difference with respect to the TPC between -600 and -500 ns, taking into account the time offset of -550 ns between veto and TPC. The delayed signal is selected in the [10, 45] μs time window, and with event energy in the [370, 510] keV range, a range properly tuned to account for quenching effects and γ energy deposition in passive materials. The 10 μs low time threshold is applied to avoid veto PMT afterpulses. The selection cuts are shown in Figure 6.

The AmBe events selected in triple coincidence still suffer from a residual contamination due to accidental ERs. Such a contamination is account for by looking in control region where no NR is expected. The control region is defined selecting events with N_e in the [200, 500] range and with $f_{90}<0.4$, where f_{90} is the pulse shape discrimination estimator of DarkSide-50 [15], less than 0.4, a region where no NR is expected. The UAr spectrum is normalized with respect to the same selection criteria, and subtracted from the AmBe one. The contributions from AmBe and non-source events are shown in Figure 7.

C. External datasets

A further constraint to the LAr response to the ionization signal is provided by “external” datasets, i.e. measurements perfomed with small scale LAr detectors exposed to neutron beams. The SCENE collaboration [39] measured the ionization yield for 4 NR energies, between 16.9 and 57.3 keV, with $g_2=3.1\pm0.3$ pe/e$^-$. The drift field at 193 V/cm is very close to one used in DarkSide-50 (200 V/cm), and the difference is assumed negligible in this analysis. SCENE results are normalized to the DarkSide-50 response by the ratio between the corresponding g_2's.
The ARIS collaboration [35] characterized the LAr scintillation response at 200 V/cm for 8 NR energies, between 7.1 and 117.8 keV. ARIS S1 data at 200 V/cm are rescaled to the DarkSide-50 response by the ratio between field-off S1 yields of DarkSide-50 (8.0±0.1 pe/keV) and ARIS (6.35±0.05 pe/keV). This allows to associate the NR nominal energies from ARIS to the correspondent S1 at 200 V/cm in DarkSide-50. The final step is the conversion of the so-obtained S1 values to S2, by looking at the S2/S1 ratio from NRs selected with the triple coincidence in the AmBe dataset. The correlation between S1 and S2 signals for the AmBe source was accounted for by means of Monte Carlo simulations, which embeds the DarkSide-50 energy and optical response models [18].

The resulting ionization yield is slightly lower at low energies than that published in 2018 [8]. This difference is due to the improved modelling of the detector response.

Joshi et al. [40] have measured the ionization yield of NRs at 6.7 keV using the endpoint of a spectrum induced by monochromatic 70 keV neutrons from a beam. The measurement at 240 V/cm, the closest field to the DarkSide-50 one, results in $Q_{y} = 3.6^{+1.7}_{-1.1}$ e$/keV$. However, after consulting with the authors, the data point is corrected for their single electron yield using the 2.82 keV K-shell capture 37Ar line from their experiment and DarkSide-50 as a cross-calibration point. The corrected value is then $Q_{y} = 6.0^{+0.8}_{-1.5}$ e$/keV$. However, because of this correction, we preferred not to include the measurement by Joshi et al. in this analysis, but to quote it in the comparison with the final result.

D. Global fit to data

The energy Monte Carlo spectra for fitting both AmC and AmBe data samples are generated with G4DS, which accurately describes detector and source geometries, with a statistics of about 10^5 neutron events, between 1 and 2 orders of magnitude higher than the data statistics. The detector response is applied with a toy Monte Carlo approach, as described earlier, by varying β and C_{box} parameters from the model with a fine scan. In addition, in order to take into account the inefficiency on S1 pulses, the efficiency curve shown in Figure 5 is applied to AmBe simulated events as a function of N_{e}.

The AmC and AmBe datasets are simultaneously fitted with a χ^2 analysis in the $[3, 250] N_{e}$ range. The fit includes g_2 as an additional fit parameter constrained to the measured value within its uncertainty. To minimize the statistical fluctuations, the χ^2 value is averaged over 800 toy simulations for each (β, C_{box}) parameter pair. The resulting χ^2 map in the (β, C_{box}) parameter space is summed to the one from the simultaneous fit of the external datasets from SCENE and ARIS presented in the previous section.

The resulting best parameters of such a global fit are $C_{\text{box}} = 8.1^{+0.2}_{-0.1}$ V/cm and $\beta = (6.8^{+0.1}_{-0.3}) \times 10^3$. The corresponding model of the ionization yield is shown as a function of the nuclear recoil energy in Figure 8. The errors on the model are from statistical uncertainties and systematic error on g_2. The Q_{y}^{NR} extracted from external datasets only is in excellent agreement with the one from AmC and AmBe calibrations, as shown in Figure 8 and the reduced χ^2 from combined fit of all the datasets is equal to 1.34 ($\chi^2/NDF = 676/506$). Figure 9 shows the comparison between data and model, for both AmC and AmBe, assuming best fitted parameters. The model is constrained at low energy by the AmC calibration data, with a minimum energy value of 435$^{+47}_{-34}$ eV$_{nr}$, corresponding to 3 electrons. This is the lowest NR calibration threshold ever achieved in LAr.

Regarding potential systematics, we have investigated the impact of S1 detection efficiency on the result for 5 low thresholds, ranging from 0 to 40 N_{e}, applied to the AmBe dataset. The results obtained by repeating the fit for each threshold are in agreement within 1 σ with the one without threshold, confirming that the S1 detection efficiency does not induce any appreciable systematics.

E. Sensitivity to other theoretical models

We have investigated the sensitivity of our data to different models of the nuclear stopping power as a function of energy stemming from different assumption on screening effects from atomic electrons. This is encapsulated in screening functions arising from different models that can be written as [36]

\[
 f(q) = \frac{\lambda \eta^{1-2m}}{(1 + 2\lambda \eta^{2(1-m)})^{q/2}}. \tag{14}
\]

with each model characterised by a different set of parameters. The additional tested models, as suggested by
Bezrukov et al. [35], are Molière \((m = 0.216, q = 0.570, \lambda = 2.37)\) [36], and Lenz-Jensen \((m = 0.191, q = 0.512, \lambda = 2.92)\) [44, 45]. Each of them leads to a different nuclear stopping power through

\[
s_n(\epsilon) = \frac{1}{\epsilon} \int_0^\epsilon f(\eta) \, d\eta,
\]

with \(\epsilon\) from Eq. (11). The Thomas-Fermi screening function, also investigated by Bezrukov et al. [30], is not included in this study as it is relevant when the projectile is a naked nucleus or an elementary particle, but not for partially ionized atoms.

The above-described analysis was performed for the Molière and Lenz-Jensen models and was found that both can fit successfully the data, with no statistically significant difference among them. The \(Q^{NR}_y\)'s obtained from the fit using the different screening functions are shown in Figure 10. The comparison between model and data for two cases, Ziegler et al. and Molière, is shown in Figure 9.

The Ziegler et al. model is the one yielding the lowest \(Q^{NR}_y\) in the region of interest for WIMP analysis. Therefore the adoption of this model will result in the more conservative choice for the sensitivity to WIMPs in future DarkSide searches.

VI. CONCLUSIONS

In this work, we presented the calibration of the LAr ionization response to electronic and nuclear recoils in the keV region at 200 V/cm with DarkSide-50. The electronic recoil one is measured down to 179 eV_{nr}, the energy of the L1-shell Auger electron from \(^{37}\)Ar, and extrapolated down to few tens of eV by fitting data with the Thomas-Imel box model. The nuclear recoil ionization response is measured with a low threshold of \(\sim 500\) eV_{nr}, corresponding to 3 ionization electrons, the lowest ever performed in LAr. The measured ER and NR ionization yields will impact direct dark matter searches with LAr, extending the observation window to low-mass candidates, like Weakly Interacting Massive Particles of few GeV/c^2 mass, axion-like particles, dark photons and sterile neutrinos, and to neutrino bursts from core-collapse supernovae [47]. Dedicated campaigns of measurement
FIG. 11. Allowed region (red) for low energy Q_{NR}^{y} suppression tested on the AmC dataset, and best fitted Q_{NR}^{y} (blue), using the Ziegler et al. screening function. Dark (light) shaded area corresponds to 1σ (2σ) uncertainty. The dashed line represents the Q_{NR}^{y} suppression tested in [36] assuming eq. 16 with $z=0.25$.

with setups exposed to neutron beams are highly desirable in the future to improve and better constrain response models at the keV scale.

ACKNOWLEDGMENTS

We are grateful to Francesc Salvat and Pascal Lablanque for their comments and suggestions. The DarkSide Collaboration offers its profound gratitude to the LNGS and its staff for their invaluable technical and logistical support. We also thank the Fermilab Particle Physics, Scientific, and Core Computing Divisions. Construction and operation of the DarkSide-50 detector was supported by the U.S. National Science Foundation (NSF) (Grants No. PHY-0919363, No. PHY-1004072, No. PHY-1004054, No. PHY-1242585, No. PHY-1314483, No. PHY-1314501, No. PHY-1314507, No. PHY-1352795, No. PHY-1622415, and associated collaborative grants No. PHY-1211308 and No. PHY-1455351), the Italian Istituto Nazionale di Fisica Nucleare, the U.S. Department of Energy (Contracts No. DE-FG02-91ER40671, No. DEAC02-07CH11359, and No. DE-AC05-76RL01830), the Polish NCN (Grant No. UMO-2014/15/B/ST2/02561) and the Foundation for Polish Science (Grant No. Team2016-2/17). We also acknowledge financial support from the French Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), the IN2P3-COPIN consortium (Grant No. 20-152), and the UnivEarthS LabEx program (Grants No. ANR-10-LABX-0023 and No. ANR-18-IDEX-0001), from the Sao Paulo Research Foundation (FAPESP) (Grant No. 2016/09084-0), from the Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research”, from the Program of the Ministry of Education and Science of the Russian Federation for higher education establishments, project No. FZWG-2020-0032 (2019-20169), and from IRAP AstroCeNT funded by FNP from ERDF. Isotopes used in this research were supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics.

[1] E. Aprile et al. (XENON), Phys. Rev. Lett. 121, 111302 (2018), arXiv:1805.12562 [astro-ph.CO]
[2] X. Cui et al. (PandaX-II), Phys. Rev. Lett. 119, 181302 (2017), arXiv:1708.09617 [astro-ph.CO]
[3] D. Akerib et al. (LUX), Phys. Rev. Lett. 118, 021303 (2017), arXiv:1608.07486 [astro-ph.CO]
[4] R. Aja et al. (DEAP), (2019), arXiv:1902.04048 [astro-ph.CO]
[5] P. Agnes et al. (DarkSide), Phys. Rev. D98, 102006 (2018), arXiv:1802.07198 [astro-ph.CO]
[6] E. Aprile et al. (XENON), Phys. Rev. Lett. 123, 251801 (2019), arXiv:1907.11485 [hep-ex]
[7] E. Aprile et al. (XENON), Phys. Rev. Lett. 123, 241803 (2019), arXiv:1907.12771 [hep-ex]
[8] P. Agnes et al. (DarkSide), Phys. Rev. Lett. 121, 081307 (2018), arXiv:1802.06994 [astro-ph.HE]
[9] P. Agnes et al. (DarkSide), Phys. Rev. Lett. 121, 111303 (2018), arXiv:1802.06998 [astro-ph.CO]
[10] P. Sorensen et al. (XENON10), Nucl. Instrum. Meth. A 601, 339 (2009), arXiv:0807.0459 [astro-ph]
[11] L. Goetzke, E. Aprile, M. Anthony, G. Plante, and M. Weber, Phys. Rev. D 96, 103007 (2017), arXiv:1611.03232 [astro-ph.IM]
[12] D. Akerib et al. (LUX), (2016), arXiv:1608.05381 [physics.ins-det]
[13] E. Aprile et al. (XENON), Phys. Rev. D 97, 092007 (2018), arXiv:1709.10149 [astro-ph.IM]
[14] E. Aprile et al. (XENON), Phys. Rev. D 99, 112009 (2019), arXiv:1902.11297 [physics.ins-det]
[15] P. Agnes et al. (DarkSide), Phys. Lett. B743, 456 (2015), arXiv:1410.0653 [astro-ph.CO]
[16] P. Agnes et al. (DarkSide), Phys. Rev. D95, 081101 (2016) [Addendum: Phys. Rev.D95,no.6,069901(2017)], arXiv:1510.00702 [astro-ph.CO]
[17] P. Agnes et al. (DarkSide), JINST 11 (03), P03016, arXiv:1512.07896 [physics.ins-det]
[18] P. Agnes et al. (DarkSide), JINST 12 (10), P10015, arXiv:1707.05630 [physics.ins-det]
[19] M.-M. Bé, V. Chisté, C. Dulieu, X. Mougeot, V. Chechev, F. Kondev, A. Nichols, X. Huang, and B. Wang, Table of Radioisotopes Monographie BIPM-5, Vol. 7 (Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92310 Sèvres, France, 2013).
[20] X. Mougeot, Appl. Radiat. Isot. 134, 225 (2018)
[21] X. Mougeot, Applied Radiation and Isotopes 154, 10884 (2019)
[22] M. Wang, W. Huang, F. Kondev, G. Audi, and S. Naimi, Chinese Physics C 45, 030003 (2021).
[23] D. E. Cullen, *Program RELAX: A code designed to calculate atomic relaxation spectra of x-rays and electrons*, Tech. Rep. UCRL-ID.110438 1992 (Lawrence Livermore National Laboratory).
[24] D. E. Cullen, *A Survey of Atomic Binding Energies for Use in EPICS2017*, Tech. Rep. IAEA-NDS-0224 (IAEA, 2017).
[25] U. Fano, Phys. Rev. 72, 26 (1947).
[26] A. G. Santos-Ocampo and D. C. Conway, Phys. Rev. 120, 2196 (1960).
[27] P. W. Dougan, K. W. D. Ledingham, and R. W. P. Drever, *The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics* 7, 475 (1962).
[28] D. Totzek and K. W. Hoffmann, Zeitschrift für Physik 205, 137 (1967).
[29] T. Doke, A. Hitachi, S. Kubota, A. Nakamoto, and T. Takahashi, *Nuclear Instruments and Methods* 134, 353 (1976).
[30] J. Thomas and D. A. Imel, Phys. Rev. A 36, 614 (1987).
[31] M. Jaskolski and M. Wojcik, J. Phys. Chem. A 115, 4317 (2011).
[32] T. Doke, A. Hitachi, J. Kikuchi, K. Masuda, H. Okada, and E. Shibamura, Jap. J. Appl. Phys. 41, 1538 (2002).
[33] P. Sorensen and C. E. Dahl, Phys. Rev. D 83, 063501 (2011) arXiv:1101.0080 [astro-ph.IM].
[34] T. Doke, H. Crawford, A. Hitachi, J. Kikuchi, P. Lindstrom, K. Masuda, E. Shibamura, and T. Takahashi, Nucl. Instrum. Meth. A 269, 291 (1988).
[35] P. Agnes et al., Phys. Rev. D97, 112005 (2018), arXiv:1801.06653 [physics.ins-det].
[36] F. Bezrukov, F. Kahlhoefer, and M. Lindner, Astropart. Phys. 35, 119 (2011), arXiv:1011.3990 [astro-ph.IM].
[37] J. P. Biersack and J. F. Ziegler, in *Ion Implantation Techniques*, edited by H. Ryssel and H. Glawischning (Springer Berlin Heidelberg, Berlin, Heidelberg, 1982) pp. 122–156.
[38] P. Agnes et al. (DarkSide), JINST 12 (12), T12004, arXiv:1611.02750 [physics.ins-det].
[39] H. Cao et al. (SCENE), Phys. Rev. D91, 092007 (2015), arXiv:1406.4825 [physics.ins-det].
[40] T. H. Joshi et al., Phys. Rev. Lett. 112, 171303 (2014), arXiv:1402.2037 [physics.ins-det].
[41] J. Liu, R. Carr, D. A. Dwyer, W. Q. Gu, G. S. Li, R. D. McKeown, X. Qian, R. H. M. Tsang, F. F. Wu, and C. Zhang, Nucl. Instrum. Meth. A797, 260 (2015), arXiv:1504.07911 [physics.ins-det].
[42] R. B. Firestone, C. Baglin, and S. Y. F. Chu, *Table of isotopes: 1996 CD ROM Edition* (Wiley, New York, NY, 1996).
[43] G. Moliere, Zeitschrift fr Naturforschung A 2, 133 (1947).
[44] W. Lenz, Zeitschrift fr Physik 77, 713 (1932).
[45] H. Jensen, Zeitschrift für Physik 77, 722 (1932).
[46] I. S. Tilinin, Phys. Rev. A 51, 3058 (1995).
[47] P. Agnes et al. (DarkSide 20k), JCAP 03, 043, arXiv:2011.07591 [astro-ph.HE].