Vanishing results for the cohomology of complex toric hyperplane complements

M. W. Davis ∗ S. Settepanella †

October 23, 2012

Abstract

Suppose \mathcal{R} is the complement of an essential arrangement of toric hyperlanes in the complex torus $(\mathbb{C}^*)^n$ and $\pi = \pi_1(\mathcal{R})$. We show that $H^*(\mathcal{R};A)$ vanishes except in the top degree n when A is one of the following systems of local coefficients: (a) a system of nonresonant coefficients in a complex line bundle, (b) the von Neumann algebra $\mathcal{N}\pi$, or (c) the group ring $\mathbb{Z}\pi$. In case (a) the dimension of H^n is $|e(\mathcal{R})|$ where $e(\mathcal{R})$ denotes the Euler characteristic, and in case (b) the $n^{th} \ell^2$ Betti number is also $|e(\mathcal{R})|$.

AMS classification numbers. Primary: 52B30 Secondary: 32S22, 52C35, 57N65, 58J22.

Keywords: hyperplane arrangements, toric arrangements, local systems, L^2-cohomology.

1 Introduction

A complex toric arrangement is a family of complex subtori of a complex torus $(\mathbb{C}^*)^n$. The study of such objects is a relatively recent topic. Different versions of these arrangements, also known as toral arrangements, have been introduced and studied in works of Lehrer [16, 17], Dimca-Lehrer [11], Douglass [12], Looijenga [18] and Macmeikan [20, 21].

∗The first author was partially supported by NSF grant DMS 1007068.
†The second author was partially supported by the Institute for New Economic Thinking, INET inaugural grant #220.
The foundation of the topic can be traced to the paper [10] by De Concini and Procesi. There the main objects are defined and the cohomology of the complement of a toric arrangement is studied. An explicit goal of [10] is to generalize the theory of hyperplane arrangements. (For an extensive account of the work of De Concini and Procesi see [9].)

The next step is the work of Moci, in particular his papers [22, 23, 24], developing the theory with a special focus on combinatorics. In [25] Moci and Delucchi generalize results in [25] to a wider class of toric arrangements which they call \textit{thick}. In [3] D’Antonio and Delucchi generalize results in [25] to a wider class of toric arrangements which they call \textit{complexified} because of structural affinity with the case of hyperplane arrangements. They also prove that complements of complexified toric arrangements are minimal (see [3]).

In this paper we generalize to toric arrangements a well-known result for affine arrangements: vanishing conditions for the cohomology of the complement $M(A)$ of an arrangement A with coefficients in a complex local system A. Necessary conditions for $H^k(M(A); A) = 0$ if $k \neq n$, i.e., for the cohomology to be concentrated in top dimension, have been determined by a number of authors, including Kohno [15], Esnault, Schechtman and Viehweg [13], Davis, Januszkiewicz and Leary [5], Schechtman, Terao and Varchenko [28] and Cohen and Orlik [2]. In particular, in [28] (see also [2]) it is proved that the cohomology of the complement $M(A)$ of an arrangement with coefficients in a complex local system is concentrated in top dimension provided certain \textit{nonresonance} conditions for monodromies are fulfilled for a certain subset of edges (i.e., intersections of hyperplanes) that are called \textit{denses}.

In order to generalize the above results we use techniques developed by the first author in a joint work with Januszkiewicz, Leary and Okun, [5, 6, 7, 8]. One considers an open cover of the complement M by “small” open sets each homeomorphic to the complement of a central arrangement. In the cases of nonresonant rank one local coefficients or ℓ^2 coefficients, the E_1 page of the resulting Mayer-Vietoris spectral sequence is nonzero only along the bottom row, where it can be identified with the simplicial cochains with constant coefficients on a pair $(N(U), N(U_{\text{sing}}))$, which is homotopy equivalent to (\mathbb{C}^n, Σ) where Σ is the union of all hyperplanes in the arrangement. (The simplicial complex $N(U)$ is the nerve of an open cover of \mathbb{C}^n and $N(U_{\text{sing}})$ is a subcomplex.)

It follows that the E_2 page can be nonzero only in position $(l, 0)$. One also can prove that for an affine hyperplane arrangement of rank l only the
th ℓ^2-Betti number of the complement M can be nonzero and that it is equal to the rank of the reduced $(l - 1)$-homology of Σ (cf. [3]). Similarly, with coefficients in the group ring, \mathbb{Z}_π, for $\pi = \pi_1(M)$, $H^*(M; \mathbb{Z}_\pi)$ is nonzero only in degree l (cf. [4]). We generalize all three of these vanishing results to the toric case in Theorems 5.1, 5.2 and 5.3.

In recent work [27], Papadima and Suciu generalize the result in [2] to arbitrary minimal CW-complex, i.e., a complex having as many k-cells as the k-th Betti number. It would be very interesting to decide if the complement of toric arrangement also could be minimal. In this case Theorem 5.1 would be a consequence of minimality.

Our paper begins with a review of some background about toric and affine arrangements. Then, in Section 3 we give a brief account of open covers by “small” convex sets. In Section 4 we recall basic definitions on systems of local coefficients. Finally in Section 5 we prove that the cohomology of the complement of a toric arrangement with coefficient in a local system A vanishes except in the top degree when A is a nonresonant local system, the von Neumann algebra \mathcal{N}_π or the group ring \mathbb{Z}_π.

2 Affine and toric hyperplane arrangements

Affine hyperplanes arrangements A hyperplane arrangement \mathcal{A} is a finite collection of affine hyperplanes in \mathbb{C}^n. A subspace of \mathcal{A} is a nonempty intersection of hyperplanes in \mathcal{A}. Denote by $L(\mathcal{A})$ the poset of subspaces, partially ordered by inclusion, and let $\overline{L}(\mathcal{A}) := L(\mathcal{A}) \cup \{\mathbb{C}^n\}$. An arrangement is central if $L(\mathcal{A})$ has a minimum element. Given $G \in L(\mathcal{A})$, its rank, $\text{rk}(G)$, is the codimension of G in \mathbb{C}^n. The minimal elements of $L(\mathcal{A})$ form a family of parallel subspaces and they all have the same rank. The rank of an arrangement \mathcal{A} is the rank of a minimal element in $L(\mathcal{A})$. \mathcal{A} is essential if $\text{rk}(\mathcal{A}) = n$.

The singular set $\Sigma(\mathcal{A})$ of \mathcal{A} is the union of hyperplanes in \mathcal{A}. The complement of $\Sigma(\mathcal{A})$ in \mathbb{C}^n is denoted $M(\mathcal{A})$.

Toric arrangements Let $T = (\mathbb{C}^*)^n$ be a complex torus and let $\Lambda = \text{Hom}(T, \mathbb{C}^*)$ denote the group of characters of T. Then $\Lambda \cong \mathbb{Z}^n$. A character is primitive if it is a primitive vector in Λ. Given a primitive character χ and an element $a \in \mathbb{C}^*$ put

$$H_{\chi,a} = \{t \in T \mid \chi(t) = a\}.$$
The subtorus $H_{\chi,a}$ is a **toric hyperplane**. A finite subset $X \subset \Lambda \times \mathbb{C}^*$ defines a **toric arrangement**,

$$T_X := \{H_{\chi,a}\}_{(\chi,a) \in X}$$

The projection of X onto the first factor is denoted $p(X)$ and is called the **character set** of T_X. (Thus, $p(X) := \{\chi \mid (\chi,a) \in X\}$.) The **singular set**, Σ_X, is the union of toric hyperplanes in the arrangement. Its complement, $T - \Sigma_X$, is denoted R_X. The **intersection poset** L_X is the set of nonempty intersections of toric hyperplanes and $\overline{T}_X = L_X \cup \{T\}$. \overline{T}_X is partially ordered by inclusion. The **rank** of the arrangement is the dimension of the linear subspace of $\Lambda \otimes \mathbb{Z} \mathbb{R}$ spanned by $p(X)$. The arrangement is **essential** if its rank is n.

Suppose $G \in L_X$. Choose a point $x \in G$. The **tangential arrangement along** G is the arrangement \mathcal{A}_G of linear hyperplanes which are tangent to the complex toric hyperplanes containing G (i.e., all hyperplanes of the form $T_x(H_{\chi,a})$ where $T_x(G) \subset T_x(H_{\chi,a})$). It is a central hyperplane arrangement of rank equal to $n - \dim G$.

Given a toric arrangement T_X of rank l, let K_X denote the identity component of the intersection of all kernels in $p(X)$, i.e., K_X is the identity component of

$$\bigcap_{\chi \in p(X)} \text{Ker} \chi = \{t \in T \mid \chi(t) = 1, \ \forall \chi \in p(X)\}.$$

Put $\overline{T}_X := T/K_X$. Thus, K_X and \overline{T}_X are tori of dimensions $n - l$ and l, respectively. ($K_X \cong (\mathbb{C}^*)^{n-l}$ and $\overline{T}_X \cong (\mathbb{C}^*)^l$.) Let $\overline{\Sigma}_X$ denote the image of Σ_X in \overline{T}_X. Since $T \to T/K_X$ is a trivial K_X-bundle, we have a homeomorphism of pairs,

$$(T, \Sigma_X) \cong (K_X \times (\overline{T}_X, \overline{\Sigma}_X)). \tag{1}$$

In other words, the arrangement in T is just the product of the arrangement in \overline{T}_X with the torus K_X. We call \overline{T}_X the **essentialization** of T_X. So, it is not restrictive to consider essential toric arrangements.

Lemma 2.1. (cf. [5, Prop. 2.1]). Suppose T_X is an essential toric arrangement on T and $\Sigma = \Sigma_X$. Then $H_*(T, \Sigma)$ is free abelian and concentrated in degree n.

Proof. We follow the “deletion-restriction” argument in [5, Prop. 2.1] using induction on $\text{Card}(T_X)$. Choose a toric hyperplane $H \in T_X$. Let $T' = T_X -$
\{H\} and let \(T''\) be the restriction of \(T_X\) to \(H\), i.e., \(T'' = \{H \cap H' \mid H' \in T_X\}\.

Let \(\Sigma'\) and \(\Sigma''\) denote the singular sets of \(T'\) and \(T''\), respectively. Consider the exact sequence of the triple \((T, \Sigma, \Sigma')\),

\[
\rightarrow H_*(T, \Sigma') \rightarrow H_*(T, \Sigma) \rightarrow H_{*-1}(\Sigma, \Sigma') \rightarrow \tag{2}
\]

There is an excision, \(H_{*-1}(\Sigma, \Sigma') \cong H_{*-1}(H, \Sigma'')\). The rank of \(T'\) is either \(n\) or \(n-1\), while the rank of \(T''\) is always \(n-1\). The argument breaks into two cases depending on the rank of \(T'\).

Case 1: the rank of \(T'\) is \(n\). By induction, \(H_*(T, \Sigma')\) and \(H_*(H, H \cap \Sigma)\) are free abelian and concentrated in degrees \(n\) and \(n-1\), respectively. So, (2) becomes,

\[
0 \rightarrow H_n(T, \Sigma') \rightarrow H_n(T, \Sigma) \rightarrow H_{n-1}(H, H \cap \Sigma') \rightarrow 0
\]

and all other terms are 0. Therefore, \(H_*(T, \Sigma)\) is concentrated in degree \(n\) and \(H_n(T, \Sigma)\) is free abelian.

Case 2: the rank of \(T'\) is \(n-1\). Then the projection \(T \rightarrow \overline{T}\) takes \(H\) isomorphically onto \(\overline{T}\) and the arrangement \(T''\) on \(H\) maps isomorphically to the arrangement \(\overline{T}_X\) on \(\overline{T}\). So, \((H, H \cap \Sigma') \cong (\overline{T}, \overline{\Sigma})\). By (1), \((T, \Sigma') \cong K_X \times (H, H \cap \Sigma') \cong \mathbb{C}^* \times (H, H \cap \Sigma')\). By the Künneth Formula, \(H_*(T, \Sigma') \cong H_*(\mathbb{C}^*) \otimes H_*(H, H \cap \Sigma')\). So,

\[
H_{n-1}(T, \Sigma') \cong H_0(\mathbb{C}^*) \otimes H_{n-1}(H, H \cap \Sigma') \quad \text{and} \quad H_n(T, \Sigma') \cong H_1(\mathbb{C}^*) \otimes H_{n-1}(H, H \cap \Sigma');
\]

moreover, the first isomorphism is induced by the inclusion \((H, H \cap \Sigma') \rightarrow (T, \Sigma')\). So, (2) becomes,

\[
0 \rightarrow H_1(\mathbb{C}^*) \otimes H_{n-1}(H, H \cap \Sigma') \rightarrow H_n(T, \Sigma) \rightarrow H_{n-1}(H, H \cap \Sigma') \\
\rightarrow H_0(\mathbb{C}^*) \otimes H_{n-1}(H, H \cap \Sigma')
\]

where the last map is an isomorphism. It follows that \(H_{n-1}(T, \Sigma) = 0\) and that \(H_n(T, \Sigma) \cong H_1(\mathbb{C}^*) \otimes H_{n-1}(H, H \cap \Sigma')\), which, by inductive hypothesis, is free abelian. This proves the lemma. \(\Box\)

Complexified toric arrangements In \cite{dantoniodelucchi} D’Antonio-Delucchi consider the case of “complexified toric arrangements.” This means that for each \((\chi, a) \in X\), the complex number \(a\) has modulus 1 (where \(X \subset \Lambda \times \mathbb{C}^*\) is a
set defining a toric arrangement T_X. Let $T^{cpt} = (S^1)^n \subset \mathbb{C}^n$ be the compact torus. Then for each $H \in T_X$, $H \cap T^{cpt}$ is a compact subtorus of T^{cpt}. The set of subtori, $T^{cpt}_X := \{ H \cap S \mid H \in T \}$, is called the associated compact arrangement.

Let $\Sigma^{cpt} := \Sigma_X \cap T^{cpt}$. We note that (T, Σ_X) deformation retracts onto (T^{cpt}, Σ^{cpt}). Here are a few observations.

(i) The universal cover of T^{cpt} is \mathbb{R}^n (actually the subspace $i\mathbb{R}^n \subset \mathbb{C}^n$). Let $\pi : \mathbb{R}^n \rightarrow T^{cpt}$ be the covering projection. Then for each $H^{cpt} \in T^{cpt}_X$, each component of $\pi^{-1}(H^{cpt})$ is an affine hyperplane and the collection of these hyperplanes is a periodic affine hyperplane arrangement in \mathbb{R}^n.

(ii) If T_X is essential, then Σ^{cpt} cuts T^{cpt} into a disjoint union of convex polytopes, called chambers (see [25]). The inverse images of these polytopes under π give a tiling of \mathbb{R}^n.

(iii) When T_X is essential, it follows from (ii) that for $n \geq 2$, Σ^{cpt} is connected and that for $n \geq 3$, $\pi_1(\Sigma^{cpt}) = \pi_1(T^{cpt})$.

(iv) It is easy to prove Lemma 2.1 in the case of a compact arrangement. We have an excision $H_*(T^{cpt}, \Sigma^{cpt}) \cong H_*(\bigsqcup(P_i, \partial P_i))$ where each chamber P_i is an n-dimensional convex polytope. Hence, $H_*(T^{cpt}, \Sigma^{cpt})$ is concentrated in degree n and is free abelian. Moreover, the rank of $H_*(T^{cpt}, \Sigma^{cpt})$ is the number of chambers.

(v) Let $\tilde{\Sigma}^{cpt}$ denote the inverse image of Σ^{cpt} in \mathbb{R}^n and let $\tilde{\Sigma}_X$ be the induced cover of Σ_X. Suppose T_X is essential. Then Σ^{cpt} cuts \mathbb{R}^n into compact chambers. It follows that $\tilde{\Sigma}^{cpt}$ (and hence, $\tilde{\Sigma}$) is homotopy equivalent to a wedge of $(n-1)$-spheres.

3 Certain covers and their nerves

Equip the torus $T = (\mathbb{C}^*)^n$ with an invariant metric. This lifts to a Euclidean metric on \mathbb{C}^n induced from an inner product. Hence, geodesics in T lift to straight lines in \mathbb{C}^n and each component of the inverse image of a subtorus of T is an affine subspace of \mathbb{C}^n. A convex subset of T means a geodesically convex subset. Thus, each component of the inverse image of a convex subset of T is a convex subset of \mathbb{C}^n.

The intersection of an open convex subset of T with the toric hyperplanes in \mathcal{T}_X is equivalent to an affine arrangement. An open convex subset $U \subset T$ is \textit{small} (with respect to \mathcal{T}_X) if this affine arrangement is central. In other words, U is \textit{small} if the following two conditions hold (cf. [5, 6]):

(i) $\{G \in \mathcal{T}(\mathcal{T}_X) \mid G \cap U \neq \emptyset\}$ has a unique minimum element, $\text{Min}(U)$.

(ii) A toric hyperplane $H \in \mathcal{T}_X$ has nonempty intersection with U if and only if $\text{Min}(U) \subset H$.

If (i) and (ii) hold, then the arrangement in U is equivalent to the tangential arrangement along $\text{Min}(U)$, which we denote by $\mathcal{A}_{\text{Min}(U)}$. The intersection of two small convex open sets is also a small convex set; hence, the same is true for any finite intersection of such sets.

Let $U = \{U_i\}_{i \in I}$ be an open cover of T by small convex sets, put

$U_{\text{sing}} := \{U \in U \mid U \cap \Sigma_X \neq \emptyset\}$.

Given a nonempty subset $\sigma \subset I$, put $U_\sigma := \bigcap_{i \in \sigma} U_i$. The \textit{nerve} $N(U)$ of U is the simplicial complex defined as follows. Its vertex set is I and a finite, nonempty subset $\sigma \subset I$ spans a simplex of $N(U)$ if and only if U_σ is nonempty. We have the following lemma.

\textbf{Lemma 3.1.} Suppose \mathcal{T}_X is essential. $N(U)$ is homotopy equivalent to T and $N(U_{\text{sing}})$ is a subcomplex homotopy equivalent to Σ_X. Moreover, $H_n(N(U), N(U_{\text{sing}}))$ is concentrated in degree n and $H_n(N(U), N(U_{\text{sing}}))$ is free abelian.

\textit{Proof.} U_{sing} is an open cover of a neighborhood of Σ_X which deformation retracts onto Σ_X. For each simplex σ of $N(U)$, U_σ is contractible (in fact, it is a small convex open set). By a well-known result (see [14, Cor. 4G.3 and Ex. 4G(4)]) $N(U)$ is homotopy equivalent to T and $N(U_{\text{sing}})$ is homotopy equivalent to Σ_X. The last sentence of the lemma follows from Lemma 2.1. \hfill \Box

\textbf{Definition 3.2.} $\beta(\mathcal{T}_X)$ is the rank of $H_n(N(U), N(U_{\text{sing}}))$.

Equivalently, $\beta(\mathcal{T}_X)$ is the rank of $H_n(T, \Sigma_X)$. It is not difficult to see that, for essential arrangements, $(-1)^n \beta(\mathcal{T}_X) = e(T, \Sigma_X) = -e(\Sigma_X) = e(\mathcal{R}_X)$, where $e(\cdot)$ denotes Euler characteristic.
4 Local coefficients

Generic and nonresonant coefficients Consider an affine arrangement A. The fundamental group π of its complement, $M(A)$, is generated by loops a_H for $H \in A$, where the loop a_H goes once around the hyperplane H in the “positive” direction. Let α_H denote the image of a_H in $H_1(M(A))$. Then $H_1(M(A))$ is free abelian with basis $\{\alpha_H\}_{H \in A}$. So, a homomorphism $H_1(M(A)) \to C^*$ is determined by an A-tuple $\Lambda = (\lambda_H)_{H \in A}$, where $\Lambda = (\lambda_H)_{H \in A}$ corresponds to the homomorphism sending α_H to λ_H.

Let $\psi_\Lambda : \pi \to C^*$ be the composition of this homomorphism with the abelianization map $\pi \to H_1(M(A))$. The resulting rank one local coefficient system on $M(A)$ is denoted A_{Λ_T}. Returning to the case where T_X is a toric arrangement, for each simplex σ in $N(\hat{U})$, let $A_\sigma := A_{\text{Min}(U_\sigma)}$ be the corresponding central arrangement (so that $\hat{U}_\sigma \cong M(A_\sigma)$). Given $A_{\Lambda_\sigma} \in (C^*)^{A_\sigma}$, put

$$\lambda_\sigma := \prod_{H \in A_\sigma} \lambda_H.$$

Let $A_{\Lambda_T} \in \text{Hom}(H_1(R_X), C^*)$ be a local coefficient system on R_X. The localization of A_{Λ_T} on the open set \hat{U}_σ has the form A_{Λ_σ}, where Λ_σ is a A_σ-tuple in C^*. We call Λ_T generic if $\lambda_\sigma \neq 1$ for all $\sigma \in N(U_{\text{sing}})$. We call Λ_T nonresonant if Λ_σ is nonresonant in the sense of [2] for all $\sigma \in N(U_{\text{sing}})$ i.e., if the Betti numbers of $M(A_\sigma)$ with coefficients in A_{Λ_σ} are minimal.

ℓ^2-cohomology and coefficients in a group von Neumann algebra For a discrete group π, $\ell^2\pi$ denotes the Hilbert space of complex-valued, square integrable functions on π. There are unitary π-actions on $\ell^2\pi$ by either left or right multiplication; hence, $\mathbb{C}\pi$ acts either from the left or right as an algebra of operators. The associated von Neumann algebra $\mathcal{N}\pi$ is the commutant of $\mathbb{C}\pi$ (acting from, say, the right on $\ell^2\pi$).

Given a finite CW complex Y with fundamental group π, the space of ℓ^2-cochains on the universal cover \tilde{Y} is equal to $C^*(Y; \ell^2\pi)$, the cochains with local coefficients in $\ell^2\pi$. The image of the coboundary map need not be closed; hence, $H^*(Y; \ell^2\pi)$ need not be a Hilbert space. To remedy this, one defines the reduced ℓ^2-cohomology $H^*_{\text{red}}(Y; \ell^2\pi)$ to be the quotient of the space of cocycles by the closure of the space of coboundaries. The von Neumann algebra admits a trace. Using this, one can attach a “dimension,”
dim_{\mathcal{N}_\pi} V$, to any closed, π-stable subspace V of a finite direct sum of copies of $\ell^2\pi$ (it is the trace of orthogonal projection onto V). The nonnegative real number $\dim_{\mathcal{N}_\pi}(H^p_{\text{red}}(Y; \ell^2\pi))$ is the $p^{\text{th}} \ell^2$-Betti number of Y.

A technical advance of Lück [19, Ch. 6] is the use local coefficients in \mathcal{N}_π in place of the previous version of ℓ^2-cohomology. He shows there is a well-defined dimension function on \mathcal{N}_π-modules, $A \to \dim_{\mathcal{N}_\pi} A$, which gives the same answer for ℓ^2-Betti numbers, i.e., for each p one has that $\dim_{\mathcal{N}_\pi} H^p(Y; \mathcal{N}_\pi) = \dim_{\mathcal{N}_\pi} H^p_{\text{red}}(Y; \ell^2\pi)$.

Group ring coefficients Let Y be a connected CW complex, $\pi = \pi_1(Y)$ and $r : \tilde{Y} \to Y$ the universal cover. There is a well-defined action of π on \tilde{Y} and hence, on the cellular chain complex of \tilde{Y}. Given the left π-module \mathbb{Z}_π, define the cochain complex with group ring coefficients

$$C^*(Y; \mathbb{Z}_\pi) := \text{Hom}_\pi(C_*(\tilde{Y}), \mathbb{Z}_\pi).$$

Taking cohomology gives $H^*(Y; \mathbb{Z}_\pi)$.

5 The Mayer-Vietoris spectral sequence

Statements of the main theorems Suppose \mathcal{T}_X is an essential toric arrangement in T and $\pi = \pi_1(\mathcal{R}_X)$.

Theorem 5.1. Let Λ_T be a generic X-tuple with entries in k^*. Then $H^*(\mathcal{R}_X; A_{\Lambda_T})$ is concentrated in degree n and

$$\dim_k H^n(\mathcal{R}_X; A_{\Lambda_T}) = \beta(\mathcal{T}_X).$$

Theorem 5.2. (cf. [7]). The ℓ^2-Betti numbers of \mathcal{R}_X are 0 except in degree n and $\ell^2 b_n(\mathcal{R}_X) = \beta(\mathcal{T}_X)$.

Theorem 5.3. (cf. [6] [8]). $H^*(\mathcal{R}_X; \mathbb{Z}_\pi)$ vanishes except in degree n and $H^n(\mathcal{R}_X; \mathbb{Z}_\pi)$ is free abelian.

Remark 5.4. Suppose W is a Euclidean reflection group acting on \mathbb{R}^n and that $\mathbb{Z}^n \subset W$ is the subgroup of translations. The quotient $W' := W/\mathbb{Z}^n$ is a finite Coxeter group. The reflection group W acts on the complexification \mathbb{C}^n and W' acts on the torus $T = \mathbb{C}^n/\mathbb{Z}^n$. The image of the affine reflection arrangement in \mathbb{C}^n gives a toric arrangement \mathcal{T}_X in T. The fundamental
group of \mathcal{R}_X is the Artin group A associated to W and \mathcal{R}_X is the Salvetti complex associated to A. The quotient of the compact torus by W' can be identified with the fundamental simplex Δ of W on \mathbb{R}^n. (If W is irreducible, then Δ is a simplex.) It follows that $\beta(T_X) = |W'|$ (i.e., the index of \mathbb{Z}^n in W). So, in this case Theorem 5.2 is a special case of the main result of [7] and Theorem 5.3 is a special case of a result of [8, Thm. 4.1].

Lemma 5.5. Suppose A is a finite, central arrangement of affine hyperplanes. Let $\pi' = \pi_1(M(A))$. Then

1. (cf. [28, 2, 5]). For any generic system of local coefficients A, $H^*(M(A); A)$ vanishes in all degrees.

2. (cf. [5]). $H^*(M(A); N\pi')$ vanishes in all degrees. Hence, all ℓ^2-Betti numbers are 0.

3. (cf. [6]). If the rank of A is l, then $H^*(M(A); \mathbb{Z}\pi')$ vanishes except in the top degree, l.

Proofs using the Mayer-Vietoris spectral sequence The proofs of these three theorems closely follow the argument in [7], [5] and particularly, in [6]. For $\pi = \pi_1(\mathcal{R}_X)$, let A denote one of the left π-modules in Section 4.

Let $\mathcal{U} = \{U_i\}$ be an open cover of T by small convex sets. We may suppose that \mathcal{U} is finite and that it is closed under taking intersections. For each $G \in \mathcal{L}_X$, put

$$U_G := \{U \in \mathcal{U} \mid \text{Min}(U) \leq G\},$$

$$U_G^{\text{sing}} := \{U \in \mathcal{U} \mid \text{Min}(U) < G\} = \{U \in U_G \mid U \cap \Sigma_X \cap G \neq \emptyset\}.$$

The open cover \mathcal{U} restricts to an open cover $\widehat{\mathcal{U}} = \{U - \Sigma_X\}_{U \in \mathcal{U}}$ of \mathcal{R}_X. Any element $\widehat{U} = U - \Sigma_X$ of the cover is homotopy equivalent to the complement of a central arrangement $M(A_{\text{Min}(U)})$.

Suppose $N(\mathcal{U})$ is the nerve of \mathcal{U} and $N(U_G)$ is the subcomplex defined by U_G. Since $N(U_G)$ and $N(U_G^{\text{sing}})$ are nerves of covers of G and $\Sigma_X \cap G$, respectively, by contractible open subsets, we have that for each $G \in \mathcal{L}(A)$,

$$H^*(N(U_G), N(U_G^{\text{sing}})) = H^*(G, \Sigma(T_X \cap G)).$$

(3)
For each k-simplex $\sigma = \{i_0, \ldots, i_k\}$ in $N(U)$, let
\[U_\sigma := U_{i_0} \cap \cdots \cap U_{i_k} \]
denote the corresponding intersection.

Let $r : \tilde{R}_X \to R_X$ be the universal cover. The induced open cover \(\{r^{-1}(U)\} \) of R_X has the same nerve $N(\tilde{U}) (= N(U))$. We have the Mayer–Vietoris double complex,
\[C_{i,j} := \bigoplus_{\sigma \in N^{(i)}} C_j(r^{-1}(\tilde{U}_\sigma)), \]
where $N^{(i)}$ denotes the set of i-simplices in $N(U)$ (cf. [1, Ch. VII].) We get a corresponding double cochain complex,
\[E_{0,j}^i := \text{Hom}_\pi(C_{i,j}, A), \]
where $\pi = \pi_1(R_X)$. The filtration on the double complex gives a spectral sequence converging to the associated graded module for cohomology:
\[\text{Gr} H^m(R_X; A) = E_\infty := \bigoplus_{i+j=m} E_{i,j}^\infty. \]

By first using the horizontal differential, there is a spectral sequence with E_1 page
\[E_{1,j}^i = C^i(N(U); \mathcal{H}^j(A)) \]
where $\mathcal{H}^j(A)$ is the coefficient system on $N(U)$ defined by
\[\sigma \mapsto H^j(\tilde{U}_\sigma; A), \]
where $\tilde{U}_\sigma \cong M(A_{\text{Min}(U_\sigma)})$. For $A = A_T$ or \overline{A} these coefficients are 0 for $G \neq T$. For $A = \mathbb{Z}_\pi$, they are 0 for $j \neq \dim(G)$. Hence, in all cases, for any coface σ' of σ, if $G' := \text{Min}(U_{\sigma'}) < G$, the coefficient homomorphism $H^j(M(A_G); A) \to H^j(M(A_{G'}); A)$ is the zero map. Moreover, the E_1 page of the spectral sequence decomposes as a direct sum (cf. [8, Lemma 2.2]). In fact, for a fixed j, by using Lemma 5.5, we see that the $E_{1,j}^i$ term decomposes as
\[E_{1,j}^i = \bigoplus_{G \in \mathcal{L}_X^{-j}} C^i(N(U_G), N(U_G^{\text{sing}}); H^j(M(A_G); A)), \]
where we have constant coefficients in each summand. Hence, at E_2 we have

$$E_2^{i,j} = \bigoplus_{G \in \mathcal{L}_n^{-j}} H^i(N(U_G), N(U_G^{\text{sing}}); H^j(M(A_G); A))$$

$$= \bigoplus_{G \in \mathcal{L}_n^{-j}} H^i(G, \Sigma_X \cap G; H^j(M(A_G); A)), \quad (5)$$

where the second equation follows from (3).

When $A = A_{\Lambda_T}$ or $A = N\pi$, all summands vanish for $G \neq T$ and $j \neq 0$. So, we are left with $E_2^{n,0} = H^n(T, \Sigma_X; A)$, which is isomorphic to the tensor product free abelian group of rank $\beta(T_X)$ with A. It follows that $H^*(\mathcal{R}_X; A)$ is concentrated in degree n and that $\dim H^n(\mathcal{R}_X; A_{\Lambda_T}) = \beta(T_X) = \dim A_{\Lambda_T} H^n(\mathcal{R}_X; N\pi)$. This proves Theorems 5.1 and 5.2.

Consider formula (5) for $A = \mathbb{Z}\pi$. By Lemma 2.1, $H^i(G, \Sigma_X \cap G)$ is concentrated in degree $\dim G = n - j$. Hence, $E_2^{i,j}$ is nonzero (and free abelian) only for $i + j = n$. It follows that the spectral sequence degenerates at E_2, i.e., $E_2 = E_\infty$. This proves Theorem 5.3.

Remark 5.6. Let us remark that the statement of Theorem 5.1 holds even if the local system Λ_T is nonresonant or if it verifies the Schechtman, Terao and Varchenko nonresonance conditions in all small open convex sets, i.e. Λ_T verifies the nonresonance conditions in [28] for all $\sigma \in N(U^{\text{sing}})$. Indeed under these conditions Lemma 5.5 holds.

References

[1] K. S. Brown, *Cohomology of Groups*, Springer-Verlag, Berlin and New York, 1982.

[2] D. C. Cohen and P. Orlik, *Arrangements and local systems*, Math. Res. Lett. 7 (2000), 299-316.

[3] G. D’Antonio and E. Delucchi, *A Salvetti complex for toric arrangements and its fundamental group*, International Mathematics Research Notices 15 (2012), 3535–3566.

[4] G. D’Antonio and E. Delucchi, *Minimality of toric arrangements*, arXiv:1112.5041.
[5] M.W. Davis, T. Januszkiewicz and I.J. Leary, *The ℓ^2-cohomology of hyperplanes complements*, Groups Geom. Dyn. 1 (2007), 301–309.

[6] M.W. Davis, T. Januszkiewicz, I.J. Leary and B. Okun, *Cohomology of hyperplane complements with group ring coefficients*, IMRN (2011), 2110–2116.

[7] M. W. Davis and I. J. Leary, *The ℓ^2-cohomology of Artin groups*, J. London Math. Soc. (2) 68 (2003), 493–510.

[8] M.W. Davis and B. Okun, *Cohomology computations for Artin groups, Bestvina–Brady groups, and graph products*, Groups Geom. Dyn. 6 (2012), 485–531.

[9] C. De Concini and C. Procesi, *Topics in hyperplane arrangements, polytopes and box-splines*, Springer Verlag, 2010.

[10] C. De Concini and C. Procesi *On the geometry of toric arrangements*, Transformation Groups 10 (2005), 387–422.

[11] A. Dimca and G.I. Lehrer, *Purity and equivariant weight polynomials*, in: *Algebraic Groups and Lie Groups* Austral. Math. Soc. Lect. Ser., Vol. 9, Cambridge University Press, Cambridge, 1997, 161–181.

[12] J.M. Douglass, *Toral arrangements and hyperplane arrangements*, Rocky Mountain J. Math. 28 (1998), 939–956.

[13] H. Esnault, V. Schechtman and E. Viehweg, *Cohomology of local systems on the complement of hyperplanes*, Invent. math. 109 (1992), 557–561 (1992); Erratum. 112 (1993).

[14] A. Hatcher, *Algebraic Topology*, Cambridge Univ. Press, Cambridge, 2001.

[15] T. Kohno, *Homology of a local system on the complement of hyperplanes*, Proc. Japan. Acad. Ser. A 62 (1986),144–147.

[16] G. I. Lehrer, *A toral configuration space and regular semisimple conjugacy classes*, Math. Proc. Cambridge Philos. Soc. 118(1) (1995), 105–113.
17] G. I. Lehrer, The cohomology of the regular semisimple variety, J. Algebra 199 (1998), no. 2, 666-689.

[18] E. Looijenga, Cohomology of M3 and M1 3. Mapping class groups and moduli spaces of Riemann surfaces, (Gottingen, 1991/Seattle, WA, 1991), Contemp. Math., Vol. 150, Amer. Math. Soc., 1993, 205–228.

[19] W. Lück, L^2-invariants and K-theory, Springer-Verlag, Berlin and New York, 2002.

[20] C. Macmeikan, Modules of derivations for toral arrangements, Indag. Math. 15 (2004), 257–267.

[21] C. Macmeikan, The Poincaré polynomial of an mp arrangement, Proc. Amer. Math. Soc. 132 (2004), 1575–1580.

[22] L. Moci, Combinatorics and topology of toric arrangements defined by root systems, Rend. Lincei Mat. Appl. 19 (2008), 293–308.

[23] L. Moci, A Tutte polynomial for toric arrangements, Transaction of AMS 364 (2012), 1067–1088.

[24] L. Moci, Wonderful models for toric arrangements, Int. Math. Res. Not. (2011) doi:10.1093/imrn/rnr016

[25] L. Moci and S. Settepanella. The homotopy type of toric arrangements, Journal of Pure and Applied Algebra 215, (2011), 1980–1989.

[26] P. Orlik and H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin and New York, 1992.

[27] S. Papadima and A. I. Suciu, The spectral sequence of an equivariant chain complex and homology with local coefficients, Trans. Amer. Math. Soc. 362 (2010), 2685–2721.

[28] V. Schechtman, H. Terao and A. Varchenko, Cohomology of local systems and the Kac-Kazhdan condition for singular vectors, J. Pure Appl. Algebra 100 (1995), 93–102.

M. W. Davis, Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus Ohio 43210 mdavis@math.ohio-state.edu

S. Settepanella, Scuola Superiore Sant’Anna, Piazza Martiri 2, 56127 Pisa, Italy s.settepanella@sssup.it