Subsets of \mathbb{F}_{p^n} without three term arithmetic progressions have several large Fourier coefficients

Ernie Croot

February 1, 2008

Abstract
Suppose that $f : \mathbb{F}_{p^n} \to [0,1]$ satisfies

$$\sum_a f(m) = \theta F \in [F^{8/9}, F],$$

where $F = |\mathbb{F}_{p^n}| = p^n$.

In this paper we will show the following: Let f_j denote the size of the jth largest Fourier coefficient of f. If

$$f_j < \theta^{j/2+\delta} F,$$

for some integer j satisfying

$$J_0(\delta, p) < j < F^{1/8},$$

then $S = \text{support}(f)$ contains a non-trivial three-term arithmetic progression. Thus, the result is asserting that if the Fourier transform decays rapidly enough (though not all that rapidly – in particular, not quite exponentially fast), then S is forced to have a three-term arithmetic progression. This result is similar in spirit to that appearing in [1]; however, in that paper the focus was on the “small” Fourier coefficients, whereas here the focus is on the “large” Fourier coefficients (furthermore, the proof in the present paper requires much more sophisticated arguments than those of that other paper).

Here is a partial description of how this result was proved: First, to get our proof started, we reduced to the case where θ, δ and j satisfied certain nice constraints. For example, Meshulam's theorem [2] was used to reduce to the case $\theta < 1/p$; then, we reduced to the case $\delta < 2/3$ by using a “dimension collapsing and cutting argument” from [1] which says that for special “smooth” functions f, the underlying set S must always be rich in three-term arithmetic progressions; and finally, this same argument (dimension collapsing) was used to reduce to the case where $j < n^{2-\delta}$. The rest of the proof used a type of Roth-Meshulam [2] iteration. Unfortunately, because our main theorem is
to work with densities θ that can be much smaller than n^{-1}, which is the limit of the basic Roth-Meshulam [2] approach, we cannot expect to use the usual “density increment” principle to reach a subset of S containing lots of three-term arithmetic progressions. Instead, we showed that the number of “large Fourier coefficients” decreases by a lot at each iteration. To show that this count indeed decreases by “a lot”, and not just by one (as one can get by a trivial argument), we had to unravel some of the additive structure of the set of large Fourier coefficients. One type of argument that could perhaps do this for us is that of Shkredov [3]; unfortunately, it appears that his argument does not work well in our present context. Instead, a “phase shifting and pigeonhole” argument, which appears in Lemma 1, was used to get at some of this additive structure. But the hypotheses of this lemma are slightly unusual, and in order to make the Lemma useful for proving our main theorem, we needed to introduce an extra possibility into our Roth-Meshulam [2] iteration scheme; the two possibilities are basically the last two possible conclusions of Proposition 1. Because these conclusions are somewhat different from each other, we needed to introduce certain “invariants”, which are (8) through (15), in order to show that our process eventually terminates with S having a non-trivial three-term arithmetic progression.

We will assume throughout that

$$\mathbb{F} := \mathbb{F}_{p^n}, \text{ and } F := p^n = |\mathbb{F}|.$$

Suppose that

$$f : \mathbb{F} \rightarrow [0,1],$$

and that

$$\mathbb{E}(f) = F^{-1}\sum_a f(a) = \theta.$$

Define

$$\Lambda(f) := \mathbb{E}_{m,d}(f(m)f(m+d)f(m+2d)) = F^{-2}\sum_{m,d} f(m)f(m+d)f(m+2d).$$

Note that if f is an indicator function for some set, then $\Lambda(f)$ is some normalized count of the number of three-term arithmetic progressions in this set.

In this paper we will prove a theorem which says that if f has too few large Fourier coefficients, then

$$\Lambda(f) > \theta F^{-1},$$

2
which would thus imply that the set \(S \) given by

\[
S := \text{support}(f) = \{m \in \mathbb{F} : f(m) > 0\},
\]

contains three-term arithmetic progressions.

In order to properly state this result, we will need a few more definitions:

First, given a function \(f \) defined on \(\mathbb{F} \), and given \(a \in \mathbb{F} \), we let

\[
\hat{f}(a) := \sum_m f(m)e^{2\pi i(a \cdot m)/p},
\]

where the \(a \cdot m \) is the usual dot product. Next, write

\[
\mathbb{F} = \{a_1, \ldots, a_F\},
\]

where the \(a_i \)'s are ordered so that

\[
|\hat{f}(a_1)| \geq |\hat{f}(a_2)| \geq \cdots \geq |\hat{f}(a_F)|.
\]

Let us set

\[
a_1 = 0
\]

(there may be other values of \(a \) such that \(|\hat{f}(a)| = |\hat{f}(0)|\)), and let us assume that

\[
a_2 = -a_3, \ a_4 = -a_5, \ldots,
\]

which we know is possible because from the fact that \(f : \mathbb{F} \to [0,1] \) we deduce that

\[
\hat{f}(a) = \hat{f}(-a).
\]

The main theorem of this paper will show that if the Fourier transform of \(f \) decays rapidly enough, in the sense that \(|\hat{f}(a_j)|\) is small enough, then we can deduce that \(S \) contains a non-trivial three-term arithmetic progression. This sort of result was proved in [1]; however, the focus of that paper was more on properties of the “small” Fourier coefficients, whereas in the present paper we work only with the “large” Fourier coefficients. Our theorem is as follows:

Theorem 1 For any \(\delta > 0 \), and \(p \) prime, the following holds for all dimensions \(n \) (of our field \(\mathbb{F}_{p^n} \)) sufficiently large: Suppose that

\[
F^{-1/9} < \theta \leq 1,
\]

3
and suppose that for some integer j satisfying

$$J_0(\delta, p) < j < F^{1/8},$$

we have that

$$|\hat{f}(a_j)| < \theta^{j^{3/2 + 4}} F.$$ \hspace{1cm} (1)

Then, S contains a three-term arithmetic progression; more specifically, we have that

$$\Lambda(f) > \theta F^{-1}.$$

Remark 1. We note that a key strength of this theorem is this exponent $1/2 + \delta$ in (1); for, if the exponent were replaced by the larger value $1 + o(1)$, then the proof would be profoundly easier, and indeed Proposition 3 below gives such a result.

One way to get a feel for what this result is saying is to suppose that $\theta \sim n^{-100}$ (much too small to be dealt with using Roth-Meshulam \cite{2} iteration), and then suppose that f has at most, say, $n^{1.9}$ (the 1.9 can be any number smaller than 2) Fourier coefficients $\hat{f}(a)$ satisfying

$$F^{2/3} \leq |\hat{f}(a)| \leq \theta F.$$

Thus, a dyadic interval

$$[2^{-t} \theta F, 2^{-t+1} \theta F] \subseteq [F^{2/3}, \theta F]$$

contains on average about $n^{0.9 - o(1)}$ Fourier coefficients $|\hat{f}(a)|$ – or rather, norms of Fourier coefficients. Note that our Theorem 1 tells us that in this case S contains a non-trivial three-term arithmetic progression.

Remark 2. We feel that Theorem 1 should have a much simpler proof than we give here in the present paper, perhaps along the lines of the argument in \cite{1}; furthermore, we believe that it ought to be possible to prove a much, much stronger result. Here are two conjectures along these lines, the second much stronger than the first:

Conjecture 1. There exists $0 < c < 1$ such that the following holds for every $\delta > 0$, $p \geq 3$ prime, and dimensions n sufficiently large: If

$$\theta > F^{-c}, \text{ and } |\hat{f}(a_j)| < \theta^{j^\delta} F,$$

for some

$$J_0(\delta, p) < j < F^{1/8},$$
then \(S \) contains a non-trivial three-term arithmetic progression.

Conjecture 2. There exists \(0 < c_1 < 1 \) and \(c_2 > 0 \) such that the following holds for all \(p \geq 3 \) prime, and dimensions \(n \) sufficiently large: If

\[
\theta > F^{-c_1}, \text{ and } |\hat{f}(a_j)| < \theta^{c_2 \log j F},
\]

for some

\[
J_0(p) < j < F^{1/8},
\]

then \(S \) contains a non-trivial three-term arithmetic progression.

Remark 3. Here is a partial description of how the proof of Theorem 1 goes: First, to get the proof started we reduce to some case where \(\theta, \delta \) and \(j \) satisfy certain nice constraints. For example, we use Meshulam’s theorem [2] to reduce to the case \(\theta < 1/p \); then, we reduce to the case \(\delta < 2/3 \) by using a “dimension collapsing and cutting argument” from [1] which says that for special “smooth” functions \(f \), the underlying set \(S \) must always be rich in three-term arithmetic progressions; and, finally, we use this same argument (dimension collapsing) to reduce to the case \(j < n^{2-\delta} \). The rest of the proof uses a type of Roth-Meshulam [2] iteration. Unfortunately, because Theorem 1 is to work with densities \(\theta \) that can be much smaller than \(n^{-1} \), which is the limit of the basic Roth-Meshulam [2] approach, we cannot expect to use the usual “density increment” principle to reach a subset of \(S \) containing lots of three-term arithmetic progressions. To get around this, we instead show that at each Roth-Meshulam [2] iteration the number of “large Fourier coefficients” decreases by a lot. To show that this count indeed decreases by “a lot”, and not just by one (as one can get by a trivial argument), we must unravel some of the additive structure of the set of large Fourier coefficients. One type of argument that could perhaps do this for us is that of Shkredov [3]; unfortunately, it appears that his argument does not work well in our present context. Instead, we use a “phase shifting and pigeonhole” argument, which appears in Lemma 1 below, to get at some of this additive structure. But the hypotheses of this Lemma are slightly unusual, and in order to make the Lemma useful for proving Theorem 1 we need to introduce an extra possibility in our Roth-Meshulam [2] iteration scheme; the two possibilities are basically the last two possible conclusions of Proposition 1 which is stated in the next section. Because these conclusions are somewhat different from each other, we need to introduce certain “invariants”, which are (8) through (15), in order to show that our process eventually terminates with \(S \) having a non-trivial three-term arithmetic progression.
1 Proof of Theorem 1

1.1 Preliminary results

The proof of our theorem will follow a certain type of Roth iteration, but one which incorporates some of the non-trivial additive structure of sets having no three-term arithmetic progressions. The main proposition we use which incorporates this additive structure into Roth iteration is as follows.

Proposition 1 For every prime \(p \geq 3 \), there exist integers

\[n_0(p) \text{ and } j_0(p) > 1 \]

such that if the following all hold

- \(n = \dim(F) > n_0(p), \ j > j_0(p); \)

- \(f : F \to [0,1] \), where \(E(f) = \theta > 2F^{-1/8}; \) and,

- \(|\hat{f}(a_j)| < \theta^{1/2+\delta}F, \) and \(|\hat{f}(a_{j-1})| > 2F^{-1/2}, \) \hspace{1cm} (2)

then one of the following must hold:

- Either \(S = \text{support}(f) \) contains a non-trivial three-term arithmetic progression;

- or, for

\[\ell = \lceil j/50 \rceil \]

we have that

\[|\hat{f}(a_\ell)| < \theta^{2\ell/2+\delta}F; \]

- or, there exists a function \(h : F_{p^{n-1}} \to [0,1] \) such that

\[\text{support}(h) \text{ has 3APs } \implies S \text{ has 3APs}, \]
such that
\[E(h) = p^{-n+1} \sum_{w \in \mathbb{F}_{p^n-1}} h(w) \geq \theta, \]
and such that if we let
\[\{b_1, ..., b_{p^n-1}\} = \mathbb{F}_{p^n-1} \text{ satisfy } |\hat{h}(b_1)| \geq ... \geq |\hat{h}(b_{p^n-1})|, \]
and set
\[b_1 = 0, b_2 = -b_3, b_4 = -b_5, ..., \]
then for
\[\ell = j + 51 - \lfloor (j/50)^{1/2} \rfloor \]
we will have
\[|\hat{h}(b_\ell)| \leq \theta^{j^{1/2+\delta}} p^n. \]

Next, we will need the following two Propositions to clean up certain “exceptional cases” that arise later in the body of the proof of Theorem \(\|\). Furthermore, the second of these, Proposition \(\|\), can be thought of as a weak version of Theorem \(\|\), where instead of having \(j^{1/2}\) in the exponent \(\theta^{j^{1/2+\delta}}\), we have \(j + 2\).

Proposition 2 Suppose \(f : \mathbb{F} \to [0,1]\), that our dimension \(n\) is sufficiently large in terms of \(p\), that
\[\mathbb{E}(f) > 2pF^{-1/8}, \]
and that for some
\[2 \leq j < F^{1/8} \]
we have
\[|\hat{f}(a_j)| < \theta^2/32. \]
Then, \(S = \text{support}(f)\) contains a non-trivial three-term arithmetic progression.

Proposition 3 Suppose \(f : \mathbb{F} \to [0,1]\), that
\[n = \dim(\mathbb{F}) \geq n_0(p), \]
where \(n_0(p)\) is some function only of the characteristic \(p\) of the field \(\mathbb{F}\), and that
\[\mathbb{E}(f) = \theta > 2pF^{-1/8}. \]
If for some
\[2 \leq j \leq F^{1/8} \]
we have that
\[|\hat{f}(a_j)| < \theta^{j+2}F/2, \]
then \(S = \text{supp}(f) \) contains a non-trivial three-term arithmetic progression.

1.2 Body of the Proof of Theorem

1.2.1 Initial reductions

First, we can assume that
\[\theta < \min(1/p, 1/4), \]
for if \(\theta \geq 1/p \) or \(1/4 \), then by Meshulam’s theorem \[2\] we will have that once \(n \) is sufficiently large (as a functions of \(p \) alone), the set \(S \) contains a three-term arithmetic progression, thereby proving Theorem \[1\]

Next, we may assume that
\[\theta > F^{1/2 - 2j - 1/2} > 2pF^{-1/8}, \]
(4) for if this first inequality does not hold, then we will have from the hypotheses of Theorem \[1\] that
\[|\hat{f}(a_j)| < \theta^{j+2}F \leq F^{-2j \delta} F \leq F^{-1}. \]

So, since \(\theta > F^{-1/8} \), it follows that this is smaller than \(\theta^2/32 \) (for \(n \) sufficiently large), which would thus imply that \(S \) contains a three-term arithmetic progression.
1.2.2 Moving to a benign index \(j' \)

Now suppose that we are unlucky and have that

\[
|\hat{f}(a_{j-1})| < 2F^{1/2}.
\]

If this holds, then let \(j' < j \) be the largest index for which

\[
|\hat{f}(a_{j'-1})| \geq 2F^{1/2}, \text{ but } |\hat{f}(a_{j'})| < 2F^{1/2}.
\]

Such an index \(j' \) clearly exists, since

\[
\hat{f}(0) = \theta F > 2F^{7/8} > 2F^{1/2}.
\]

Next we claim that, in view of (4), we may assume that \(j' \) is as large as we might happen to need, simply by choosing \(J_0 \) as large as we like, where \(J_0 \) is assumed to be a lower bound for \(j \); more specifically, we will have that if

\[
j' \leq J_0^{1/2}/6 \leq j^{1/2}/6,
\]

then \(S \) would have to contain a three-term arithmetic progression: To see this, note that

\[
|\hat{f}(a_{j'})| < 2F^{1/2} < (F - 2j^{-1/2})^{j'+2}F/2 < \theta^{j'+2}F/2.
\]

Thus, Proposition 3 would imply that for \(n \) sufficiently large, the set \(S \) contains three-term arithmetic progressions.

Next, observe that (3) implies that for \(j \) sufficiently large,

\[
|\hat{f}(a_{j'})| < 2F^{1/2} < \theta^{j^{1/2+\delta}/4}F < \theta^{j^{1/2+\delta/2}}F < \theta^{(j')^{1/2+\delta/2}}F.
\]

What this means is that we have passed from the pair

\[
(j, \delta) \to (j', \delta'), \text{ with } \delta' = \delta/2,
\]

such that for this new instance of \(j \) and \(\delta \) we have the hypotheses of Theorem 1 hold, at least if we choose \(J_0 \) large enough so that \(j' > j_0 \), because we have that

\[
\theta^{(j')^{1/2+\delta'}}F > 2F^{1/2}, \text{ and } |\hat{f}(a_{j'-1})| \geq 2F^{1/2}.
\] \(\text{(5)} \)

The reason that this is useful is that it will allow us to use Proposition 1; furthermore, we will apply Proposition 1 iteratively, and at each step of the
iteration we will want that the invariants (5) are maintained (as well as several other invariants listed below).

For notational convenience, we will assume that we have (5) holding with j' replaced with j, and δ' replaced with δ. In other words, we will assume

$$\theta^{1/2+\delta} F > 2F^{1/2}, \text{ and } |\hat{f}(a_{j-1})| \geq 2F^{1/2}.$$ \hspace{1cm} (6)

1.2.3 Further reductions

We may assume that

$$\delta \leq 2/3,$$

at least for $j \geq 7$, since if $\delta > 2/3$, we would have that

$$|\hat{f}(a_j)| < \theta^{1/2+\delta} F < \theta^{7/6} F/2,$$

and then Proposition 3 would imply that S contains a three-term arithmetic progression.

Furthermore, we may assume that

$$j \leq n^{2-\delta},$$

for if $j > n^{2-\delta}$, then using the facts that $\delta < 2/3$ and that $\theta < 1/p$, along with the hypotheses of our theorem, we would have that

$$|\hat{f}(a_j)| < \theta^{1/2+(1/2+\delta)(2-\delta)} F = p^{-n^{1+3\delta/2-\delta^2}} F < \theta^2/32,$$

which by our argument above near (3) would imply that, again, S contains a three-term arithmetic progression.

1.2.4 Invariants of applying Proposition 1 iteratively

We now apply Proposition 1 iteratively, amplifying the value of $\delta > 0$ at each step, until we get ourselves in a position where we can apply Proposition 3. We will think of each such iteration as a process that takes a particular instance of j and δ, and produces a new instance; so, application of Proposition 1 iteratively corresponds to a sequence

$$(j_1, \delta_1) := (j, \delta) \rightarrow (j_2, \delta_2) \rightarrow (j_3, \delta_3) \rightarrow \cdots$$
At each iteration, rather than having a function $f : \mathbb{F} \rightarrow [0, 1]$, we will have a function $h_i : \mathbb{F}_{p_i^n} \rightarrow [0, 1]$; in other words, we also will have a corresponding sequence of functions and dimensions given by

$$(h_1, n_1) := (f, n) \rightarrow (h_2, n_2) \rightarrow (h_3, n_3) \rightarrow \cdots,$$

where

$$n_{i+1} = n_i \text{ or } n_i - 1.$$

We get that $n_{i+1} = n_i - 1$ precisely if the last bullet of the conclusion of Proposition 3 is applied; if the next-to-last bullet is applied, we instead get $n_{i+1} = n_i$, and just set $h_{i+1} = h_i$.

The process continues until we reach (j_T, δ_T) satisfying

$$\text{either } j_T < j_0, \text{ or } \delta_T > 2/3,$$

whichever of these occurs first, where $j_0 = j_0(p)$ is as appears in Proposition 1.

At each process of the iteration we need to maintain a number of invariants, in order for Proposition 1 to apply at the next iteration, and in order for us to later show that we reach a $\delta_T > 2/3$. These invariants are:

- We have that if $\{b_1, \ldots, b_{p_i^n}\}$ are the elements of $\mathbb{F}_{p_i^n}$ arranged so that
 $$|\hat{h}_i(b_1)| \geq |\hat{h}_i(b_2)| \geq \cdots,$$
 with
 $$b_1 = 0, \ b_2 = -b_3, \ b_4 = -b_5, \ldots,$$
 then
 $$|\hat{h}_i(b_{j_i})| < \theta^{j_i^{1/2+\delta_i}} p^{n_i}. \quad (8)$$

- The inequalities in (6) will be maintained; that is,
 $$\theta^{j_i^{1/2+\delta_i}} p^{n_i} > 2p^{n_i/2}, \text{ and } |\hat{f}(a_{j_i-1})| \geq 2p^{n_i/2}. \quad (9)$$

- We have that
 $$\mathbb{E}(h_i) = p^{-n_i} \sum_a h_i(a) \geq \theta. \quad (10)$$
• We have that
 \[\text{support}(h_i) \text{ has a 3AP } \implies S \text{ has a 3AP.} \quad (11) \]

• We will have that, except possibly at the last iteration, all the
 \[j_i > j_0. \quad (12) \]

• We have that, except at the last iteration,
 \[\delta_i \leq 2/3. \quad (13) \]

• The dimensions \(n_i \) never get too small; in fact, we will have that
 \[n_i > 99n/100. \quad (14) \]

• A final invariant, which we will prove in a later subsection is that
 \[
 \frac{1/2 + \delta_{i+1}}{1/2 + \delta_i} \geq 1 + \frac{\log \log(j_i) - \log \log(j_{i+1})}{10}. \quad (15)
 \]

 From this last invariant, it will follows that
 \[
 \frac{1/2 + \delta_T}{1/2 + \delta} \geq 1 + \frac{\log \log(j) - \log \log(j_T)}{10}.
 \]

 And so, if our process terminates with \(j_T < j_0 \) we will either have that
 \[
 \frac{1/2 + \delta_T}{1/2 + \delta} \geq 1 + \frac{\log \log(J_0) - \log \log(j_0)}{10},
 \]

 which can be made as large as desired by choosing \(J_0 \) as large as we like (relative to \(j_0 \)); or else, our process terminates early with \(\delta_T > 2/3 \), but with \(j > j_0 \). Either way, we can have our process end with
 \[
 \delta_T \geq 3 \text{ and } j_T > j_0, \text{ or with } \delta_T > 2/3 \text{ but } 2 \leq j_T \leq j_0.
 \]
Either way, if j_0 is large enough, it will give us that

$$|\hat{h}_T(b_j)| < \theta^{j+2}p^{n_T}/2,$$

and therefore since by (14) we have $n_T > n/2$, it follows also that

$$\mathbb{E}(h_T) \geq \theta > p^{-n/9} > 2p^{-n_T/8},$$

Proposition 3 will imply then that the support of h_T contains a three-term progression, which would mean that S does as well.

1.2.5 Proving that the invariants all hold

Let us suppose that we have already applied Proposition 1 $t-1$ times, and so have produced

$$(j_1, \delta_1) \to (j_2, \delta_2) \to \cdots \to (j_t, \delta_t),$$

as well as the corresponding functions h_i and the dimensions n_i. We will assume that

$$j_t \geq j_0(p),$$

since otherwise $t = T$ and we are done.

We note now that the hypotheses of Proposition 1 hold for the function f replaced with h_t (and F by F_{p,n_t}). So, one or the other of the conclusions of that proposition must hold. We may assume, moreover, that one of the last two conclusions must holds, since otherwise S has three-term progressions and we are done.

Case 1 (next to last conclusion)

Suppose that the next to last conclusion of Proposition 1 holds. Then, we set

$$h_{t+1} := h_t, \quad n_{t+1} := n_t, \quad j_{t+1} := \lceil j_t/50 \rceil,$$

and we let δ_{t+1} satisfy

$$2j_{t+1}^{1/2+\delta_t} = j_{t+1}^{1/2+\delta_{t+1}}.$$ \hspace{1cm} (17)

Note that our conclusion of Proposition 1 gives us

$$|\hat{h}_{t+1}(b_{t+1})| < \theta^{j_{t+1}^{1/2+\delta_{t+1}}}p^{n_{t+1}},$$

which means that (8) holds.
Since \(h_t \) satisfies the second part of invariant (9), and since we have (16), we must have that
\[
|\hat{h}_{t+1}(b_{j_{t+1}-1})| \geq |\hat{h}_{t+1}(b_{j_{t+1}})| = |\hat{h}_t(b_{\lceil j_t/50 \rceil})| \geq |\hat{h}_t(b_{j_t-1})| \geq 2p^{nt+1/2}.
\]
So, the second part of (9) holds for \(h_{t+1} \). Furthermore,
\[
2p^{nt+1/2} \leq |\hat{h}_{t+1}(b_{j_{t+1}})| < \theta^{j_{t+1}}p^{nt+1}
\]
implies that the first part of (9) holds for \(h_{t+1} \); so, we have that (9) holds for our new function \(h_{t+1} \) and choice of \(j_{t+1} \) and \(\delta_{t+1} \).

From the fact that \(h_{t+1} = h_t \) we get for free that (10), (11), and (14) all hold. The only invariant we have to show, then, to finish this case is that (15) holds, which we now do (we don’t have to worry about (12) or (13) because the only time they could be violated is at the last iteration): We note from (17) that
\[
1/2 + \delta_{t+1} \frac{1}{2 + \delta_t} = 1 + \frac{\log 2}{(1/2 + \delta_t) \log j_{t+1}}.
\]
On the other hand, we also have that
\[
\frac{\log \log (j_t) - \log \log (j_{t+1})}{10} \leq \frac{\log \log (j_t) - \log \left(\log (j_t) \left(1 - \frac{\log 50}{\log j_t} \right) \right)}{10} = -\frac{\log(1 - \log(50)/\log j_t)}{10} \leq \frac{\log 50}{5 \log j_t} \leq \frac{\log 50}{5 \log j_{t+1}} \leq \frac{\log 2}{(1/2 + \delta_t) \log j_{t+1}},
\]
at least for \(j_t \) sufficiently large and \(\delta_t \leq 2/3 \), both of which we assume to be true. So, we have that the invariant (15) holds.

Case 2 (the last conclusion). Suppose that the last conclusion of Proposition 1 holds. Then, we set
\[
h_{t+1} := h, \ n_{t+1} := n_t - 1, \text{ and } j_{t+1} = j_t + 51 - \lfloor (j_t/50)^{1/2} \rfloor, \quad (18)
\]
where h is as given in the proposition. One of the conclusions of Proposition 1 can thus be restated as

$$|\hat{h}_{t+1}(b_{jt+1})| < \theta^{1/2+\delta_t} p^{n_t}.$$

We let $\delta_{t+1} > 0$ be defined by

$$\theta^{1/2+\delta_{t+1}} p^{n_{t+1}} = \theta^{1/2+\delta_t} p^{n_t}. \tag{19}$$

The fact that such $\delta_{t+1} > 0$ exists and satisfies

$$\delta_{t+1} > \delta_t,$$

is guaranteed by the facts that $\theta < 1/p$, $n_{t+1} = n_t - 1$, and and $j_t > j_0$.

Now we have that

$$|\hat{h}_{t+1}(b_{jt+1})| < \theta^{1/2+\delta_{t+1}} p^{n_{t+1}},$$

which therefore means that (8) holds.

From the fact that h_t satisfied (9) we have that

$$\theta^{j_t/2+\delta_t} p^{n_t} \geq 2p^{n_t/2} > 2p^{n_{t+1}/2},$$

which, along with (19), implies that

$$|\hat{h}_{t+1}(b_{jt+1}-1)| > 2p^{n_{t+1}/2}.$$

So, we have that (9) holds as well for h_{t+1}.

Furthermore, (10), (11), and (13) will all hold. We will have to hold off for the time being on showing that (12) holds, as its proof amounts to showing that it does not take more than $n/100$ iterations before our process of constructing the functions h_t terminates.

It remains to show that (15) holds. To do this, we observe from (19) that

$$\frac{1/2 + \delta_{t+1}}{1/2 + \delta_t} = \frac{\log j_t}{\log j_{t+1}} + O\left(\frac{\log p}{j_{t+1/2+\delta_t} \log j_{t+1}}\right). \tag{20}$$

Now we claim that

$$\frac{\log j_t}{\log j_{t+1}} > 1 + \log \log j_t - \log \log j_{t+1},$$
which can be seen by letting \(j_{t+1} = j_t^{1-\gamma} \), \(0 < \gamma < 1 \), and then noting that this inequality is equivalent to
\[
\frac{1}{1 - \gamma} > 1 - \log(1 - \gamma),
\]
which is easy to verify on taking a Taylor expansion.

So, to verify \((15)\) we just need to address this big-oh error term above. This we do by noting that the value of \(j_{t+1} \) given in \((18)\) implies that
\[
\frac{\log j_t}{\log j_{t+1}} > \frac{1}{1 + \frac{1}{\log j_t} \log \left(1 - \frac{(j_t/50)^{1/2} - 51}{j_t} \right)}.
\]

By having \(j_0 \) sufficiently large, we can arrange to have the right-hand-side exceed
\[
1 + \frac{1}{8 j_t^{1/2} \log j_t};
\]
and, in fact, by choosing \(j_0 \) large enough, we can have that the big-oh error term on \((20)\) will be strictly smaller than
\[
\frac{1}{2} \left(\frac{\log j_t}{\log j_{t+1}} - 1 \right).
\]
So, it follows that
\[
\frac{1/2 + \delta_{t+1}}{1/2 + \delta_t} > 1 + \frac{\log \log j_t - \log \log j_{t+1}}{2},
\]
which thus establishes \((15)\) for \(h_{t+1} \) (in fact, it establishes somewhat more).

We note that three still remains the problem of showing that \((14)\) holds, and we will establish this in the next sub-sub-section.

1.2.6 A lower bound on the residual dimension, and the conclusion of the proof

To fix this last loose end of showing that \((14)\) holds, note that only case 2 above, where \(n_{t+1} = n_t - 1 \), could cause us problems. The absolute worst thing that could happen, then, is if we were in Case 2 every single step of the way. Let us see what value for the final dimension \(n_T \) this would give: First we claim that the absolute most number of times we could pass through Case 2 is:
\[
T < 20 j^{1/2} \log j, \quad (21)
\]
which would prove that at each iteration,

\[n_t > n - 20j^{1/2} \log j > n - n^{1-\delta/2+o(1)} > 99n/100. \]

Here, we have used the fact that

\[n < j^{2-\delta}. \]

Let us now see that (21) holds: First, we will use the fact that

\[j_{t+1} < j_t - j_t^{1/2}/10 \]

at least if \(j_t > j_0 \) is sufficiently large. So, if we run the process Case 2 for at least \(10j^{1/2} \) steps, then we claim that we will reach a

\[j_t < j/2. \]

To see this, note that at each step \(i \) where

\[i < t := \lfloor 10j^{1/2} \rfloor, \]

if we always had that

\[j_i > j/2, \]

then we would get that at step \(t \) that

\[j_t < j - (t - 1)(j/2)^{1/2}/10 < j/2, \]

for \(j \) sufficiently large (say \(j > j_0 \)).

Applying (22) iteratively, we see that so long as \(j' \) is sufficiently large, if we pass through Case 2 for

\[m = \lfloor 10j^{1/2} \log(j/j')/\log(2) \rfloor + 1 \]

iterations, our value of \(j_m \) will be less than \(j' \). So, after at most

\[T < 20j^{1/2} \log j \]

steps we reach our

\[\delta_T > 2/3 \text{ or } j_T < j_0, \]

which finishes the verification of (14), and so finishes the proof of our theorem.
2 Proof of Proposition 1

The proof of this proposition is fairly complex, and itself requires two long lemmas, both of which are proved in separate subsections within this section. The next subsection contains the statements of these lemmas.

2.1 Preliminary Lemmata

Lemma 1 We begin by supposing that $B > 1$ is some integer constant, that n is sufficiently large (as a function of B), and that $f : \mathbb{F} \to [0, 1]$ satisfies

$$0 < \theta := \mathbb{E}(f) < 1/4.$$

If there exists an index

$$1 \leq \ell \leq F/B$$

such that

$$|\hat{f}(a_\ell)| = \gamma F,$$

then

$$|\hat{f}(a_{B\ell})| < \theta \gamma^2 F,$$

then one of the following two conclusions must hold:

- Either

 $$\Lambda(f) > \theta \gamma^2 /4;$$

- or, if we let

 $$R_1 := \{a_1, ..., a_\ell\}, \text{ and } R_2 := \{a_1, ..., a_{B\ell}\},$$

then there exists $t \in \mathbb{F}$ such that

$$|R_2 \cap (R_2 + t)| \geq (\ell/B)^{1/2}.$$

2.2 Body of the proof of Proposition 1

We begin by noting that we may assume that $\theta < 1/4$, since otherwise Meshulam’s theorem implies that S contains a three-term arithmetic progression once n is sufficiently large.

Next, as in the hypotheses of our Proposition, we assume that that

$$\delta > \varepsilon > 0,$$
and we let

\[B := 50. \]

The proof of our Proposition amounts to verifying that we can perform a certain type of “Roth iteration”, where at each step the number of “large” Fourier coefficients decreases a lot, due to the additive structure of \(R_2 \) elucidated in Lemma 1.

2.2.1 Two cases

Now, let

\[k := \lceil j/B \rceil, \quad k > k_0. \]

(which forces \(j \) to be sufficiently large in terms of \(\varepsilon \)), and then define \(\gamma > 0 \) via the relation

\[|\hat{f}(a_k)| = \gamma F. \]

Then, we either have that

\[|\hat{f}(a_{Bk})| < \gamma^3 F, \quad (24) \]

or we don’t.

Case 1 (reverse inequality holds). If the reverse inequality holds, by which we mean that

\[|\hat{f}(a_{Bk})| \geq \gamma^3 F, \]

then it follows that for \(k \) sufficiently large,

\[|\hat{f}(a_k)| \leq \theta^{3/2 + \delta} F < \theta^{2k^{1/2 + \delta}} F, \]

which is one of the conclusions of our Proposition.

Case 2 (inequality (24) holds). On the other hand, if (24) holds, then so long as \(k > k_0 \) and \(n \) is sufficiently large, we will have that the hypotheses of Lemma 1 are met for \(\ell = k \). So, one or the other of the conclusions of Lemma 1 must hold.

If the first conclusion of Lemma 1 holds, then we have that \(S \) contains a three-term arithmetic progression since we have from (2), along with the fact \(k \leq j - 1 \), that

\[\Lambda(f) > \theta \gamma^2 / 4 > \theta (2F^{-1/2})^2 / 4 > \theta F^{-1}. \]
If the second conclusion of Lemma 1 holds, then we have that

\[R_2 := \{a_1, ..., a_{Bk}\} \]

satisfies

\[|R_2 \cap (R_2 + t)| \geq k^{1/2}, \]

for some \(t \in \mathbb{F} \). So, since

\[j \leq Bk < j + B, \]

we deduce that if

\[R := \{a_1, ..., a_j\}, \]

then

\[|R \cap (R + t)| \geq k^{1/2} - B \geq (j/B)^{1/2} - B. \quad (25) \]

We now initiate another sub-subsection to expound upon this last case.

2.2.2 Construction of the function \(h \), and conclusion of the proof

Let \(t \) be as in (25), and then define

\[V := \{v \in \mathbb{F} : v \cdot t = 0\}; \]

that is, \(V \) is the orthogonal complement of the one-dimensional subspace generated by \(t \). Next, suppose that \(x \) is some multiple of \(t \), and then define the function

\[g(n) := f(n - x)V(n), \]

where \(V(n) \) is just the indicator function for \(V \). Since \(V \) is isomorphic as a vector space to \(\mathbb{F}_{p^n-1} \), say the isomorphism is

\[\varphi : \mathbb{F}_{p^n-1} \to V, \]

then the new function

\[h(n) = (g \circ \varphi)(n) \]

satisfies

\[h : \mathbb{F}_{p^n-1} \to [0, 1] \]

and if we let

\[T = \text{support}(h), \]

then \(T \) has a non-trivial three-term arithmetic progression implies that \(g \), and therefore \(f \), both do as well.
Passing from f to this new function h defined on a smaller dimensional space, constitutes one Roth-Meshulam iteration. We now consider what the Fourier coefficients of h look like: As is well known (and easy to show), the Fourier coefficients of h are the same as those of g (when the Fourier transform is restricted to V), since vector space isomorphisms preserve Fourier spectra. Thus, to compute the largest Fourier coefficients of h, we just need to compute those of g. With a little work one can see that for $v \in V$,

$$
\hat{g}(v) = p^{-1} \sum_{u \in \mathbb{F}_p} e^{2\pi i ux/p} \hat{f}(v + tu);
$$

that is, $\hat{g}(v)$ is some sort of weighted average over $\hat{f}(v + tu)$ where u ranges over \mathbb{F}_p.

Let us assume that x is chosen so that $\hat{g}(0)$ is maximal, and therefore satisfies $\mathbb{E}(h) \geq \theta$. Such x exists because the average of $\hat{g}(0)$ over all x is θp^{n-1}.

Next, let us consider how many Fourier coefficients $\hat{g}(v)$ satisfy

$$
|\hat{g}(v)| > \theta^{1/2+\delta} p^n.
$$

Clearly any such v must have the property that at least one of $|f(v)|$, $|f(v + t)|$, ..., or $|f(v + (p-1)t)| > \theta^{1/2+\delta} p^n$.

Furthermore, since we are assuming that (25) holds, we must have that for at least j/B of these values $v \in V$, the sum in (26) contains at least two elements from

$$
R := \{a_1, ..., a_j\}.
$$

What that means is that there are a lot fewer v where $|\hat{g}(v)|$ is large, than there were places a where $|\hat{f}(a)|$ is large. In fact, we will have that if we write

$$
\mathbb{F}_{p^{n-1}} := \{b_1, ..., b_G\}, \text{ where } G := p^{n-1},
$$

where the b_i are arranged so that

$$
|\hat{h}(b_1)| \geq |\hat{h}(b_2)| \geq \cdots \geq |\hat{h}(b_G)|,
$$

then for any

$$
\ell \geq j - (j/B)^{1/2} + B,
$$

we will have that

$$
|\hat{h}(b_\ell)| \leq p\theta^{1/2+\delta} G.
$$

This finishes the proof of our Proposition.
2.3 Proof of Lemma

Suppose that the hypotheses of the Lemma hold. We will first establish the following claim.

Claim. Suppose that there exists a pair of points

\[b_1, b_2 \in R_1, \]

such that the only triple of the form

\[-2a, a + b_1, a + b_2 \]

lying in \(R_2 \), is

\[0, b_1, b_2. \]

Then, we must have that (23) holds.

Proof of the claim. We begin with the basic fact that

\[\Lambda(f) = F^{-3} \sum_a \hat{f}(a)^2 \hat{f}(-2a). \]

What we will do is modify the product of the two \(\hat{f}(a) \) in the \(\hat{f}(a)^2 \) to \(\hat{f}_1(a)\hat{f}_2(a) \) in such a way that we can produce a lower bound for \(\Lambda(f) \), while at the same time making use of the hypothesis of the claim.

These new functions are

\[f_1(m) := f(m)e^{2\pi ib_1m/p}, \]

and

\[f_2(m) := f(m)e^{2\pi ib_2m/p}. \]

Clearly,

\[\text{support}(f_1) = \text{support}(f_2) = \text{support}(f); \]

and so, we must have that

\[\Lambda(f) \geq F^{-3} \left| \sum_a \hat{f}_1(a)\hat{f}_2(a)\hat{f}(-2a) \right|. \]

Let us now look at this sum over \(a \) a little more closely: First, we observe that

\[\hat{f}_1(a) = \sum_m f(m)e^{2\pi im(b_1+a)/p} = \hat{f}(a + b_1), \]
and
$$\hat{f}_2(a) = \sum_m f(m) e^{2\pi im \cdot (b_2 + a) / p} = \hat{f}(a + b_2).$$

Thus,
$$\Lambda(f) \geq F^{-3} \left| \sum_a \hat{f}(a + b_1) \hat{f}(a + b_2) \hat{f}(-2a) \right|.$$

From this, and the hypotheses of our claim, we can easily deduce that
$$\Lambda(f) \geq F^{-3} |\hat{f}(b_1)\hat{f}(b_2)\hat{f}(0)| - 3F^{-3} \sup_{a \in \mathbb{F} \setminus R_2} |\hat{f}(a)|^2 \sum_a \hat{f}(a)^2$$
$$\geq \theta \gamma^2 - 3(\theta \gamma^2)\theta.$$

This then proves the claim, as \(\theta < 1/4. \)

From this claim we easily deduce that either (23) holds, or else for every pair
$$b_1, b_2 \in R_1$$
there exists \(a \) such that
$$-2a, a + b_1, a + b_2 \in R_2.$$

So, by the pigeonhole principle, either (23) holds, or else there exists \(a \) such that \(-2a \in R_2\) and
$$|\{(b_1, b_2) \in R_1 \times R_1 : a + b_1, a + b_2 \in R_2\}| \geq \ell^2 (B\ell)^{-1}$$
$$= \ell / B.$$

In other words,
$$|\{b \in R_1 : a + b \in R_2\}| \geq (\ell / B)^{1/2}.$$

So,
$$|R_2 \cap (R_2 + a)| \geq |R_2 \cap (R_1 + a)| \geq (\ell / B)^{1/2},$$
and the Lemma follows for \(t = a. \)

3 Proof of Proposition 2

First, we require the following:
Lemma 2 For $1 \leq j < F^{1/8}$, there exists an additive subgroup V of \mathbb{F}_{p^n} having dimension $\lfloor 3n/4 \rfloor$, so that all the cosets

$$a_1 + V, ..., a_j + V, -2a_1 + V, ..., -2a_j + V,$$

are distinct.

The proof of this lemma can be found in a later subsection within this section.

Now we define an auxiliary function g to be

$$g(m) = (fW \ast V)(m) = \sum_{b \in V} f(m-b)W(m-b),$$

where $V(m)$ is the indicator function of the subspace V given in Lemma 2 and where $W(m)$ is the indicator function of $W = V^\perp$. A simple calculation reveals that

$$\hat{g}(a) = \begin{cases} \sum_{v \in V} \hat{f}(a + v), & \text{if } a \in W; \\ 0, & \text{if } a \notin W. \end{cases}$$

We now introduce some additional notation: Given an $a \in F$, we write a uniquely as

$$a = w(a) + v(a), \text{ where } w(a) \in W, \text{ and } v(a) \in V.$$

From the conclusion of Lemma 2 above, we have that for $i = 1, ..., j$,

$$|\hat{g}(w(a_i)) - \hat{f}(a_i)| = \left| \sum_{v \neq v(a_i)} \hat{f}(w(a_i) + v) \right| \leq |V| \sup_{v \neq v(a_i)} |\hat{f}(w(a_i) + v)| \leq |V| \cdot |\hat{f}(a_{j+1})| \leq \theta^2 |V|/32. \quad (27)$$

Here, we have used the conclusion of Lemma 2 which implies that

$$\{a_1, ..., a_j\} \cap \{w(a_i) + v : v \in V, v \neq v(a_i)\} = \emptyset.$$

Also, note that one of the hypotheses of Proposition 2 implies that

$$|\hat{f}(a_{j+1})| \leq |\hat{f}(a_j)| < \theta^2/32.$$

We likewise can deduce from Lemma 2 that for $i = 1, ..., j$,

$$|\hat{g}(-2w(a_i)) - \hat{f}(-2a_i)| < \theta^2 |V|/32. \quad (28)$$

24
On the other hand, we have that

if $w \in W$, $w \neq w(a_i)$ (for any $i = 1, \ldots, j$), then $|\hat{g}(w)| < \theta^2|V|/32$. \hfill (29)

Before pressing on, let us point out one conclusion of \[(27)\] that we will use later on:

$$|E(g) - E(f)| = F^{-1}|\hat{g}(0) - \hat{f}(0)| < F^{-1}|V| = |W|^{-1}. \hfill (30)$$

Putting together the above observations we can deduce that

$$\sum_{m,d \in F} g(m)g(m + d)g(m + 2d) = F^{-1}\sum_{w \in W} \hat{g}(w)^2 \hat{g}(-2w) = F^{-1}\sum_a \hat{f}(a)^2 \hat{f}(-2a) + E = \sum_{m,d \in F} f(m)f(m + d)f(m + 2d) + E,$$

where E is a certain error that can be computed through the use of the Cauchy-Schwarz inequality as follows.

3.1 The error E

First, we observe that

$$F^{-1}\sum_a \hat{f}(a)^2 \hat{f}(-2a) = F^{-1}\sum_{i=1}^j \hat{f}(a_i)^2 \hat{f}(-2a_i) + E_1,$$

where by Parseval and Cauchy-Schwarz,

$$|E_1| \leq F^{-1}|\hat{f}(a_{j+1})||\sum_a |\hat{f}(a)|^2 < \theta^3 F/32.$$

Next, we have that

$$F^{-1}\sum_{i=1}^j \hat{f}(a_i)^2 \hat{f}(-2a_i) = F^{-1}\sum_{i=1}^j \hat{g}(w(a_i)) \hat{f}(a_i) \hat{f}(-2a_i) + E_2,$$

where by Parseval and Cauchy-Schwarz

$$|E_2| = |F^{-1}\sum_{i=1}^j \hat{f}(a_i) - \hat{g}(w(a_i)) \hat{f}(a_i) \hat{f}(-2a_i)| < \theta^3|V|F/32.$$

Next, we replace another of the factors $\hat{f}(a_i)$ with $\hat{g}(a_i)$, incurring a small error: We have that

$$F^{-1}\sum_{i=1}^j \hat{g}(w(a_i)) \hat{f}(a_i) \hat{f}(-2a_i) = F^{-1}\sum_{i=1}^j \hat{g}(w(a_i))^2 \hat{f}(-2a_i) + |E_3|,$$
where by Cauchy-Schwarz, Parseval, the fact that \(0 \leq g(m) \leq 1\) and \(30\), we have that

\[
|E_3| = \left| F^{-1} \sum_{i=1}^{j} \hat{g}(w(a_i))(\hat{f}(a_i) - \hat{g}(w(a_i)))\hat{f}(-2a_i) \right| < \theta(\theta + |W|^{-1})V|F| < \theta^3 V|F|/16.
\]

Next, we replace the \(\hat{f}(-2a_i)\) with \(\hat{g}(-2w(a_i))\) using \(28\), by first writing

\[
F^{-1} \sum_{i=1}^{j} \hat{g}(w(a_i))^2 \hat{f}(-2a_i) = F^{-1} \sum_{i=1}^{j} \hat{g}(w(a_i))^2 \hat{g}(-2w(a_i)) + E_4,
\]

where

\[
|E_4| = \left| F^{-1} \sum_{i=1}^{j} \hat{g}(w(a_i))^2 (\hat{f}(-2a_i) - \hat{g}(-2w(a_i))) \right|
< \theta^2(\theta + |W|^{-1})^2 V|F|/32
< \theta^3 V|F|/16.
\]

Finally, we consider the complete sum

\[
F^{-1} \sum_{w \in W} \hat{g}(w)^2 \hat{g}(-2w) = F^{-1} \sum_{i=1}^{j} \hat{g}(w(a_i))^2 \hat{g}(-2w(a_i)) + E_5,
\]

where by \(29\), Cauchy-Schwarz, and Parseval, we have that

\[
|E_5| < F^{-1}|V|(\theta + |W|^{-1})\theta^2 F^2/32 < \theta^3 V|F|/16.
\]

Combining the errors \(E_1, E_2, E_3, E_4\) and \(E_5\), we deduce that

\[
|E| < \theta^3 V|F|/4.
\]

3.2 Resumption of the proof of Proposition 2

To finish the proof of the proposition, we derive a lower bound for \(\Lambda(g)\), and then a lower bound for \(\Lambda(f)\): First, observe that since \(g\) is translation-invariant by elements of \(V\), we have that

\[
\Lambda(g) \geq F^{-2}|V|^2 \sum_{w \in W} g(w)^3 \geq |W|^{-2}|W|(\theta - |W|^{-1})^3 > (2|W|)^{-1}\theta^3.
\]

On the other hand, our bound on \(E\) above guarantees that

\[
\Lambda(f) \geq \Lambda(g) - F^{-2}|E| \geq (2|W|)^{-1}\theta^3 - (4|W|)^{-1}\theta^3
= (4|W|)^{-1}\theta^3,
\]

which exceeds the trivial lower bound of \(\theta|F|^{-1}\) so long as

\[
\theta^2 > 4|V|^{-1}.
\]

In other words, our theorem holds, so long as

\[
\theta > 2pF^{-1/8}.
\]
3.3 Proof of Lemma

By basic properties of subspaces, the claim of the lemma is easily seen to be implied by the statement

\[B \cap V = \emptyset, \quad (31) \]

where

\[B := \{a_{i_1} - a_{i_2} : 1 \leq i_1 < i_2 \leq j\} \cup \{2a_{i_1} + a_{i_2} : 1 \leq i_1 < i_2 \leq j\}. \]

Note that

\[|B| \leq j(j-1). \]

The idea will be to show that with positive probability, a randomly chosen subspace \(V \) of dimension \(n' = \lfloor 3n/4 \rfloor \), satisfies \((31) \). To this end, we first observe that the probability that any non-zero element of \(F \) happens to lie in our randomly chosen \(V \) is the same as any other non-zero element of \(F \); so, for any \(x \in F \setminus \{0\} \) we have that

\[\text{Prob}(x \in V) = \frac{|V| - 1}{F - 1}. \]

It follows that the probability that none of the element of \(B \) happen to lie in \(V \) is at least

\[1 - j(j-1) \frac{|V| - 1}{F - 1} > 1 - \frac{(F^{1/8})(F^{1/8} - 1)(F^{3/4} - 1)}{F - 1} > 0. \]

This completes the proof of the lemma.

4 Proof of Proposition

First, we may assume that \(\theta < 1/p \), since if \(\theta \geq 1/p \) we have by Meshulam’s theorem \[2\] that for \(n \) sufficiently large that the set \(S \) contains a three-term arithmetic progression.

The proof of the proposition will be very different according as to whether

\[j \leq 3n/2, \text{ or } 3n/2 \leq j < F^{1/8}. \]
4.1 Case 1: \(j \leq 3n/2 \)

As the title of this subsection suggests we will assume that

\[j \leq 3n/2. \]

Let

\[V := \text{span}(a_1, \ldots, a_j). \]

Using the fact that \(a_2 = -a_3, \ a_4 = -a_5, \) and so on, we deduce that

\[V = \begin{cases} \text{span}(a_2, a_4, \ldots, a_j), & \text{if } j \text{ even;} \\ \text{span}(a_2, a_4, \ldots, a_{j-1}), & \text{if } j \text{ odd.} \end{cases} \]

Note that in either case, we will have that

\[\dim_{\mathbb{F}}(V) \leq 3n/4. \]

Next, define \(W \) to be the orthogonal complement of \(V \), and let

\[g(n) = f(n-x)W(n), \]

where \(W(n) \) is the indicator function for \(W \). By averaging we can clearly choose \(x \) so that

\[\mathbb{E}(g) \geq |V|^{-1}\theta; \text{ or, equivalently, } \hat{g}(0) \geq \theta|W|. \]

Now, if we let \(T \) be the support of \(g \), then \(T \) contains a non-trivial three-term arithmetic progression clearly implies that \(S \) does as well; and, to decide whether \(T \) has three-term progressions, we compute

\[
\sum_{a,d \in W} g(a)g(a + d)g(a + 2d) = |W|^{-1} \sum_{b \in W} \hat{g}(b)^2 \hat{g}(-2b) = |W|^{-1} \hat{g}(0)^3 - E, \tag{32}
\]

where the error \(E \) satisfies

\[|E| \leq M|W|^{-1} \sum_{b \in W} |\hat{g}(b)|^2 \leq M\hat{g}(0), \]

where

\[M := \sup_{b \in W \setminus \{0\}} |\hat{g}(b)|. \]

So, the quantity in (32) is at least

\[\hat{g}(0) \left(|W|^{-1} \hat{g}(0)^2 - M\right). \tag{33} \]
To bound M from above, we will need a formula for the Fourier transform $\hat{g}(b)$, and such a formula (which is easy to show) is

$$\hat{g}(b) = |V|^{-1} \sum_{v \in V} e^{2\pi i x \cdot v/p} \hat{f}(b + v).$$

Now, if $b = 0$, then this sum will include all the $\hat{f}(a_i)$ for $i = 1, \ldots, j$; and, if $b \in W \setminus \{0\}$, then the sum includes none of these numbers, which implies that

for $b \in W \setminus \{0\}$, $|\hat{g}(b)| \leq |\hat{f}(a_{j+1})| \leq \theta^{j+2} F/2 < \theta^2 p^{-j} F/2$.

Thus,

$$M < p^{-j} \theta^2 F/2 < \theta^2 W/2,$$

and it follows that the quantity in (33) is at least

$$\hat{g}(0) (|W|^{-1} \hat{g}(0)^2 - \theta^2 |W|/2) > \theta^3 |W|^2/2.$$

In order for S to contain a non-trivial three-term arithmetic progression, we need that this last quantity exceeds $\theta |W|$, and it does provided that

$$\theta > 2|W|^{-1/2} = 2(p^{n-\dim(V)} - 1)^{-1/2} > 2p^{-n/8} = 2F^{-1/8}.$$

4.2 Case 2 : $3n/2 < j < F^{1/8}$

To handle this case we will apply Proposition 2. First, from the hypothesis of our Proposition 3 along with the assumption $j > 3n/2$ we have for n sufficiently large, and $\theta < 1/p$, that

$$|\hat{f}(a_j)| < \theta^{j+2} F/2 < \theta^2/32. \quad (34)$$

Of course if $\theta \geq 1/p$, then we know from Meshulam’s theorem [2] that for n large enough, S contains a three-term arithmetic progression.

So, since (34) holds we have by Proposition 2 that S contains a three-term arithmetic progression, and our proposition is proved.

References

[1] E. Croot, *On the decay of the Fourier transform and three term arithmetic progressions*, Online Jour. of Analy. Comb. 2 (2007).

[2] R. Meshulam, *On subsets of finite abelian groups with no 3-term arithmetic progressions*, J. Comb. Theory Ser. A 71 (1995), 168-172.

[3] I. D. Shkredov, *On sets of large exponential sum*, preprint on the archives.