RESEARCH PAPER

N-arachidonoyl glycine suppresses Na⁺/Ca²⁺ exchanger-mediated Ca²⁺ entry into endothelial cells and activates BKₑCa channels independently of GPCRs

Alexander I Bondarenko¹², Konstantin Drachuk², Olga Panasiuk², Vadim Sagach², Andras T Deak¹, Roland Malli¹ and Wolfgang F Graier¹

¹Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria, and ²Circulatory Physiology Department, A. A. Bogomoletz Institute of Physiology, National Academy of Sciences (NAS) of Ukraine, Kiev, Ukraine

BACKGROUND AND PURPOSE

N-arachidonoyl glycine (NAGly) is a lipoamino acid with vasorelaxant properties. We aimed to explore the mechanisms of NAGly’s action on unstimulated and agonist-stimulated endothelial cells.

EXPERIMENTAL APPROACH

The effects of NAGly on endothelial electrical signalling were studied in combination with vascular reactivity.

KEY RESULTS

In EA.hy926 cells, the sustained hyperpolarization to histamine was inhibited by the non-selective Na⁺/Ca²⁺ exchanger (NCX) inhibitor bepridil and by an inhibitor of reversed mode NCX, KB-R7943. In cells dialysed with Cs⁺-based Na⁺-containing solution, the outwardly rectifying current with typical characteristics of NCX was augmented following histamine exposure, further increased upon external Na⁺ withdrawal and inhibited by bepridil. NAGly (0.3–30 μM) suppressed NCX currents in a URB597- and guanosine 5’-O-(2-thiodiphosphate) (GDPβS)-insensitive manner, [Ca²⁺]ᵢ elevation evoked by Na⁺ removal and the hyperpolarization to histamine. In rat aorta, NAGly opposed the endothelial hyperpolarization and relaxation response to ACh. In unstimulated EA.hy926 cells, NAGly potentiated the whole-cell current attributable to large-conductance Ca²⁺-activated K⁺ (BKₑCa) channels in a GDPβS-insensitive, paxilline-sensitive manner and produced a sustained hyperpolarization. In cell-free inside-out patches, NAGly stimulated single BK Ca channel activity.

CONCLUSION AND IMPLICATIONS

Our data showed that NCX is a Ca²⁺ entry pathway in endothelial cells and that NAGly is a potent G-protein-independent modulator of endothelial electrical signalling and has a dual effect on endothelial electrical responses. In agonist pre-stimulated cells, NAGly opposes hyperpolarization and relaxation via inhibition of NCX-mediated Ca²⁺ entry, while in unstimulated cells, it promotes hyperpolarization via receptor-independent activation of BKₑCa channels.

Abbreviations

BKₑCa, high-conductance Ca²⁺-activated K⁺ channel; CB₁ receptor, cannabinoid receptor type 1; CB₂ receptor, cannabinoid receptor type 2; FAAH, fatty acid amide hydrolase; GDPβS, guanosine 5’-O-(2-thiodiphosphate); GPR18, GPCR 18; GPR92, GPCR 92; NAGly, N-arachidonoyl glycine; NCXₑmr, plasma membrane Na⁺-Ca²⁺ exchanger; NMDG, N-methyl-D-glucamine; O-1918, 1,3-dimethoxy-5-methyl-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-benzene; RACE, receptor-activated Ca²⁺ entry; SOCE, store-operated Ca²⁺ entry; STIM1, stromal interacting molecule 1; TRPV1, transient receptor potential cation channel V1
Introduction

The plasma membrane Na\(^+\)/Ca\(^{2+}\) exchanger (NCX\(_{pm}\)) is a bidirectional electrogenic transporter that, depending on the transmembrane gradient of substrate ions and membrane potential, transports Ca\(^{2+}\) either out of cells or into cells in exchange for three ions of Na\(^+\). In many cell types, this transporter is the principle mechanism of extrusion of Ca\(^{2+}\) (forward mode) under conditions of stimulated Ca\(^{2+}\) entry. In addition, Ca\(^{2+}\) entry via NCX\(_{pm}\) operating in reverse mode contributes to intracellular Ca\(^{2+}\) overload under pathological conditions such as myocardial ischaemia and reperfusion (Lee et al., 2005). Experimentally, such conditions can be mimicked in other cell types by exposure to hypoxic, acidic, ion-shifted Ringer followed by return to normal solution. In primary astrocyte cultures, such manoeuvres result in widespread cell loss (Bondarenko and Chesler, 2001) due to massive Ca\(^{2+}\) influx at the onset of reperfusion (Bondarenko et al., 2005).

NCX\(_{pm}\) is also present in endothelial cells, and reports regarding its functional role vary. In experiments using the excised rat aorta, it was found that the Na\(^+\) influx into endothelial cells induced by stimulation with ACh was sufficient to trigger Ca\(^{2+}\) inflow via NCX\(_{pm}\) (Bondarenko, 2004). Further, the reversed mode of NCX\(_{pm}\) following ACh exposure was shown to sustain endothelium-dependent relaxation and NO release (Schneider et al., 2002), indicating that in the vascular endothelium the NCX\(_{pm}\) may have an important physiological and pathophysiological role. Given the functional importance of Ca\(^{2+}\) entry into endothelial cells, exogenous compounds and endogenous signalling molecules that affect the activity of the NCX\(_{pm}\) may have a profound impact on endothelial cell signalling and function.

Over the past years, a number of endogenous compounds consisting of arachidonic acid conjugated with amino acids, including N-arachidonyl glycine (NAGly), have emerged as powerful modulators of pain (Vuong et al., 2008), inflammation (Burstein et al., 2011) and vascular function (O’Sullivan et al., 2005; Milman et al., 2006; Parmar and Ho, 2010). NAGly is an endogenous, enzymatically-oxygenated metabolite of the endo-cannabinoid anandamide (N-arachidonoyl ethanolamide) (Bradshaw et al., 2009; McHugh, 2012). NAGly is produced from anandamide via two distinct pathways including oxidative metabolism of the ethanolamine moiety of anandamide and conjugation of glycine to arachidonic acid, which is released during anandamide hydrolysis by fatty acid amide hydrolase (FAAH; Bradshaw et al., 2009). Unlike anandamide, NAGly has no effects on cannabinoid receptors, CB\(_1\) and CB\(_2\) (Huang et al., 2001) and has low affinity for the vanniloid transient receptor potential cation channel V1, TRPV1 (Sheskin et al., 1997). Recently, NAGly was demonstrated to be an endogenous ligand for GPCR 18 (GPR18; Kohno et al., 2006; McHugh et al., 2010; Takenouchi et al., 2012) and GPCR 92 (GPR92; Oh et al., 2008). In a microglial cell line (BV-2), human endometrial cell line (HEC-1B) and GPR18-transfected HEK-293 cells, NAGly was shown to control cell migration in a GPR18-dependent manner (McHugh et al., 2010; McHugh, 2012; McHugh et al., 2012). Consequently, GPR18 has been proposed to represent the putative abnormal cannabinoid receptor (McHugh et al., 2010; McHugh, 2012). However, given the discrepancies between the levels of expression of GPR18 and the levels of NAGly in different tissues (Alexander, 2012), the association between GPR18 and NAGly is not straightforward. Indeed, activation of GPR18 by NAGly was not observed in a recent study employing high-throughput beta-arrestin-based screen (Yin et al., 2009). In addition, the concept that NAGly acts as an agonist for GPR18 was further challenged recently when it was found that, in GPR18-expressing rat sympathetic neurons, NAGly failed to induce any GPR18-mediated inhibition of N-type (Ca\(_{2.2}\)) Ca\(^{2+}\) channel, a primary downstream effector of Gi/o (Lu et al., 2013). The authors concluded that NAGly is either not an agonist for GPR18 or that GPR18 signalling involves a non-canonical pathway.

Importantly, endocannabinoids and cannabinoid-like lipid compounds are able to modulate the activity of a number of ion channels independently of G-proteins (Oz, 2006; Barana et al., 2010; Bondarenko et al., 2011a,b). In rat odontoblasts, cannabinoid-induced Ca\(^{2+}\) influx through TRPV1 was recently shown to be functionally coupled to NCX\(_{pm}\)-mediated Ca\(^{2+}\) extrusion (Tsumura et al., 2012). Remarkably, NAGly exhibits a number of G-protein-independent effects, including inhibition of T-type (Ca\(_{3.1}\), Ca\(_{3.2}\) and Ca\(_{3.3}\)) Ca\(^{2+}\) channels (Barbara et al., 2009; Ross et al., 2009). NAGly was also shown to enhance inhibitory glycinergic synaptic transmission by blocking glycine uptake and inhibiting excitatory NMDA-mediated synaptic transmission (Jeong et al., 2010). In the vasculature, NAGly (Parmar and Ho, 2010) and its parent molecule anandamide (Jarai et al., 1999; McCollum et al., 2007) act as vasorelaxants, supposedly via stimulation of a putative G-protein coupled non-C\(_{B}\) or C\(_{B}\) cannabinoid receptor expressed in vascular endothelium, so-called anandamide or abnormal cannabidiol receptor coupled to NO production (Wagner et al., 1999; Herradon et al., 2007; McCollum et al., 2007). However, whether and how NAGly affects NCX\(_{pm}\)-mediated endothelial electrical signalling and, if so, whether GPCRs are required for the observed effects is not clear.

Previously, it was shown that stimulation of a human umbilical vein-derived cell line (EA.hy926) with histamine in rather artificial nominally Ca\(^{2+}\)-free conditions (no added Ca\(^{2+}\), no EGTA) induces Ca\(^{2+}\) oscillations due to a coordinated interplay between reversed NCX\(_{pm}\) operation and Ca\(^{2+}\) sequestration by sarcoplasmic-endoplasmic reticulum Ca\(^{2+}\) ATPase (Paltauf-Doburzynska et al., 2000). In the present study, we showed that, in the presence of physiological levels of Ca\(^{2+}\), these cells respond to histamine by a sustained hyperpolarization supported by Ca\(^{2+}\) influx via reversed mode NCX. We further demonstrated that NAGly concentration-dependently inhibits this NCX\(_{pm}\)-mediated current in a G-protein-independent manner and the sustained endothelial hyperpolarization, both in cultured and in situ endothelial cells, an effect that underlies the transient inhibition of endothelium-dependent relaxation to ACh. In contrast, in unstimulated cells, NAGly promoted hyperpolarization via direct stimulation of large-conductance Ca\(^{2+}\)-activated K\(^+\) (BK\(_{Ca}\)) channels.
Methods

Cell culture
The human umbilical vein-derived endothelial cell line, EA.hy926 (Edgell et al., 1983) at passage >45 was grown in DMEM containing 10% fetal calf serum and 1% HAT (5 mM hypoxanthine, 20 μM aminopterin, 0.8 mM thymidine) and cells were maintained in an incubator at 37°C in 5% CO2 atmosphere. Cells were plated on either 10 mm (for patch-clamp recordings) or 30 mm glass coverslips (for Ca2+ measurements).

Ca2+ measurements
Cytosolic free Ca2+ was measured using Fura-2/AM as previously described (Paltauf-Doburzynska et al., 2000; Bondarenko et al., 2010). Briefly, cells were loaded with 2 μM Fura-2/AM for 45 min at room temperature. Before the 20 min. experiments, cells were washed and equilibrated for a further 20 min. Subsequently, cells were illuminated on an inverted microscope (Eclipse 300 TE, Nikon Instruments Inc., Melville, NY, USA) alternatively at 340 and 380 nm (filters: 340HTI15 and 380HTI15; Omega Optical, Brattleboro, VT, USA) and emitted light was collected at 510 nm (510WB40 emission; Omega Optical) using a cooled charge-coupled device camera (−30°C; Quantix KAF 1400G2, Roper Scientific, Acton, MA, USA). All Ca2+ measurements were performed with a 40 × 1.3 N.A. oil-immersion objective (Plan Fluor, Nikon) at room temperature.

Animals and tissue preparation
All animal studies were performed in accordance with the recommendations of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes and approved by the Biomedical Ethics Committee of the A. A. Bogomoletz Institute of Physiology (Kiev, Ukraine). All studies involving animals are reported in accordance with the ARRIVE guidelines for reporting experiments involving animals (Kilkenny et al., 2010; McGrath et al., 2010). Male Wistar rats (250–300 g body weight) were killed by cervical dislocation. The abdomen was opened by a midline incision, and the aorta was carefully cut open and a strip was pinned to the rubber bottom of the chamber, which was perfused with modified Krebs bicarbonate buffer solution at a rate of 1 mL·min−1. The membrane potential of EA.hy926 cells was recorded using a nystatin-perforated patch clamp technique. For membrane potential recordings from EA.hy926 cells, the standard bath solution contained (in mM) 140 NaCl, 5 KCl, 1.2 MgCl2, 10 HEPES, 10 glucose, 2.4 CaCl2. For membrane potential recordings from both in situ endothelial cells and EA.hy926 cells, patch pipettes were filled with a solution containing (in mM) 140 KCl; 10 NaCl; 0.3 EGTA; 10 HEPES (pH adjusted to 7.2 using KOH). The resistance of the pipettes was 3–5 MΩ. Pharmacological agents were applied to the preparation by bath perfusion. Experiments were conducted at room temperature.

Whole-cell fCa2+ was recorded from single EA.hy926 cells 24–36 h after plating using a conventional whole cell patch-clamp technique. Membrane currents and potential were recorded using a List EPC7 amplifier (List, Darmstadt, Germany) and pClamp 8.2 software (Axon Instruments from Molecular Devices, Sunnyvale, CA, USA). For recording the reverse (outward) NCXpm current obtained after the addition of Ca2+ to a Na+ free solution, the pipette solution contained (in mM) 125 NaCl, 10 CsCl, 2 MgCl2, 5 EGTA, 4.28 CaCl2 (1 μM free Ca2+), 10 HEPES and the bath solution contained 140 N-methyl-d-glucamine (NMDG)-Cl, 1 MgCl2, 10 TEA, 10 HEPES, 10 glucose with either 1 EGTA or 2.5 CaCl2. For recording the reverse NCXpm current using voltage ramps, the bath solution contained (in mM) 130 NaCl, 10 CaCl2, 1.2 MgCl2, 10 HEPES, 10 glucose and the pipette solution contained (in mM): 80 Cs-methanesulfonate, 25 NaCl, 20 CsCl, 3 NaATP, 1 MgCl2, 10 HEPES, 5 EGTA and 1.93 Ca2+ to set the free Ca2+ concentration to 100 nM. For recordings of both reversed and forward modes of the exchanger using voltage ramps, the bath solution contained (in mM) 140 NaCl, 5 TEACl, 2.4 CaCl2, 1.2 MgCl2, 10 HEPES, 10 glucose and the pipette solution contained (in mM): 110 Cs-methanesulfonate, 10 NaCl, 20 TEACl, 2 MgATP, 10 HEPES, 5 EGTA, 1.93 CaCl2 (100 nM free Ca2+). Voltage ramps of 1 s duration from −100 mV to +90 mV were delivered every 5 s from the holding potential of −40 mV.

Vascular rings were mounted isometrically in a tissue bath between a stationary stainless steel hook and an isometric transducer coupled to a polygraph. The rings were mounted with a resting tension of 1 g. Throughout the experiment, vascular preparations were superfused with modified Krebs bicarbonate buffer solution gassed with 5% CO2 in O2. After the equilibration period, arteries were precontracted with noradrenaline (NA, 10 μM) and when a stable level of contraction was established, 2 μM ACh was applied to observe relaxation. 5 μM NAGly was applied in addition to ACh when sustained relaxation was developed. Contractile experiments were conducted at 37°C. In some experiments, NAGly was applied to precontracted de-endothelized vessels. Denudation was achieved by an infusion of distilled water for 5–7 min and was confirmed by the inability of ACh to produce relaxation in the presence of NA.

Electrophysiological recordings
The membrane potential of endothelial cells from excised rat aorta was recorded using a perforated patch-clamp technique as described previously (Bondarenko, 2004). Briefly, ring segments were cut open and a strip was pinned to the rubber bottom of the chamber, which was perfused with modified Krebs bicarbonate buffer solution at a rate of 1 mL·min−1. The membrane potential of EA.hy926 cells was recorded using a nystatin-perforated patch clamp technique. For membrane potential recordings from EA.hy926 cells, the standard bath solution contained (in mM) 140 NaCl, 5 KCl, 1.2 MgCl2, 10 HEPES, 10 glucose, 2.4 CaCl2. For membrane potential recordings from both in situ endothelial cells and EA.hy926 cells, patch pipettes were filled with a solution containing (in mM) 140 KCl; 10 NaCl; 0.3 EGTA; 10 HEPES (pH adjusted to 7.2 using KOH). The resistance of the pipettes was 3–5 MΩ. Pharmacological agents were applied to the preparation by bath perfusion. Experiments were conducted at room temperature.

Whole-cell fCa2+ was recorded from single EA.hy926 cells 24–36 h after plating using a conventional whole cell patch-clamp technique. Membrane currents and potential were recorded using a List EPC7 amplifier (List, Darmstadt, Germany) and pClamp 8.2 software (Axon Instruments from Molecular Devices, Sunnyvale, CA, USA). For recording the reverse (outward) NCXpm current obtained after the addition of Ca2+ to a Na+ free solution, the pipette solution contained (in mM) 125 NaCl, 10 CsCl, 2 MgCl2, 5 EGTA, 4.28 CaCl2 (1 μM free Ca2+), 10 HEPES and the bath solution contained 140 N-methyl-d-glucamine (NMDG)-Cl, 1 MgCl2, 10 TEA, 10 HEPES, 10 glucose with either 1 EGTA or 2.5 CaCl2. For recording the reverse NCXpm current using voltage ramps, the bath solution contained (in mM) 130 NaCl, 10 CaCl2, 1.2 MgCl2, 10 HEPES, 10 glucose and the pipette solution contained (in mM): 80 Cs-methanesulfonate, 25 NaCl, 20 CsCl, 3 NaATP, 1 MgCl2, 10 HEPES, 5 EGTA and 1.93 Ca2+ to set the free Ca2+ concentration to 100 nM. For recordings of both reversed and forward modes of the exchanger using voltage ramps, the bath solution contained (in mM) 140 NaCl, 5 TEACl, 2.4 CaCl2, 1.2 MgCl2, 10 HEPES, 10 glucose and the pipette solution contained (in mM): 110 Cs-methanesulfonate, 10 NaCl, 20 TEACl, 2 MgATP, 10 HEPES, 5 EGTA, 1.93 CaCl2 (100 nM free Ca2+). Voltage ramps of 1 s duration from −100 mV to +90 mV were delivered every 5 s from the holding potential of −40 mV.

Whole-cell recordings of BKCa channels were obtained in standard bath solution, the pipette solution contained (in mM) 145 KCl, 10 HEPES, 1 MgCl2, 5 EGTA and free Ca2+ concentration was set to 300 nM by adding 3.27 mM CaCl2. The bath and the pipette K+-based solutions with 300 nM free Ca2+ were used for recordings of BKCa single-channel activity in inside-out configuration.
Statistical analysis

Experimental data are expressed as mean ± SEM. Student’s t-test was used to compare results, with P < 0.05 taken as the level of significance. In experiments with EA.hy926 cells, n denotes the number of cells studied and in experiments with vascular tissue, n denotes the number of rats used.

The nomenclature used for receptors and ion channels conforms to BJP’s Guide to Receptors and Channels (Alexander et al., 2011).

Results

Reversed mode of NCX_{pm} contributes to sustained endothelial hyperpolarization to histamine in the human umbilical vein-derived endothelial cell line EA.hy926

In the presence of 2.4 mM bath Ca^{2+}, histamine (10–100 μM) produced a sustained endothelial hyperpolarization with a very low decay (Figure 1A). In order to explore the contribution of NCX_{pm} to endothelial hyperpolarization in response to histamine under physiological, Ca^{2+}-containing conditions, bepridil, a blocker of NCX_{pm}, was administered during the plateau phase of the hyperpolarization. Administration of bepridil (50 μM) in the continued presence of histamine fully and reversibly inhibited (P < 0.05) the hyperpolarizing response (Figure 1B). Because NCX_{pm} operating in a reversed mode may contribute to the endothelial hyperpolarization by two mechanisms, that is net efflux of positive charge per cycle and secondary stimulation of Ca^{2+}-activated K⁺ channels (Bondarenko, 2004), the sensitivity of the hyperpolarization response to bepridil is indicative of NCX_{pm} operating in its Ca^{2+} entry mode during histamine-evoked hyperpolarization.

To test more specifically that the reversed mode of NCX_{pm} was involved in this response, the drug KB-R7943 was used. Similar to bepridil, KB-R7943 (20 μM), an inhibitor of reversed NCX_{pm}, reversibly inhibited (P < 0.05) the endothelial hyperpolarization response to histamine (Figure 1C).

The operation of NCX_{pm} in Ca^{2+} entry mode following histamine stimulation is apparently ensured by a pronounced increase in Na⁺ influx, which would override the forward mode of the exchanger activated by a rise in intracellular Ca^{2+} concentration. To explore the role of Na⁺ entry in the NCX_{pm}-mediated sustained endothelial hyperpolarization to histamine, the Na⁺ gradient was reduced during the plateau phase of the hyperpolarization. Although the reduction of external Na⁺ is an intervention that increases the driving force for reversed mode NCX_{pm} under a fixed level of intracellular Na⁺, this manoeuvre was expected to inhibit NCX_{pm}-mediated Ca^{2+} entry in confluent cells, when Na⁺ influx triggers the reversed mode of NCX_{pm}. In these experiments, histamine (10 μM) hyperpolarized endothelial cells from −34.3 ± 2.3 mV to −56 ± 3.6 mV (n = 6). A reduction in extracellular Na⁺ concentration from 140 mM to 20 mM reversibly inhibited (P < 0.05) the sustained component of the hyperpolarization, driving the membrane potential level to −33.7 ± 2.4 mV (n = 5; Figure 1D). Collectively, these results indicate that cells from the human umbilical vein endothelial cell-derived cell line express a functional NCX_{pm}, the operation of which, in its Ca^{2+} entry mode, ensures a sustained endothelial hyperpolarization during cell stimulation by histamine.

Reversed mode NCX_{pm} current is enhanced by histamine stimulation

To demonstrate an endogenous NCX_{pm} current in endothelial cells, we drove the transporter backwards by switching the Na⁺-free external solution from a Ca^{2+}-free to a 2.5 mM Ca^{2+}-containing solution with 120 mM Na⁺ in the pipette at a holding potential 0 mV. Adding Ca^{2+} to the bath solution elicited an outward current that was inhibited by 20 μM...
NAGly inhibits NCX_{pm}-mediated Ca²⁺ entry and activates BK channels

Figure 2

NCX_{pm} is active and is stimulated by histamine. (A) Ca²⁺ addition produces outward KB-R7943-sensitive current in Na⁺-loaded endothelial cells. Representative record out of four experiments. Membrane potential was clamped at 0 mV. Pipette was filled with 120 mM NaCl-containing solution. (B) Representative current traces to voltage ramps before (control), during 10 µM KB-R7943 (Figure 2A), demonstrating that these cells develop significant NCX_{pm} currents.

We next examined the role of NCX_{pm} in histamine-evoked whole-cell currents. For this purpose, we applied voltage ramps to Na⁺-loaded (28 mM Na⁺ in the pipette solution) cells, a condition that favours the NCX_{pm} operating in reversed mode. KCa channels were suppressed by substituting Cs⁺ for K⁺ in the internal solution and the internal Ca²⁺ was buffered at 100 nM. Under these conditions, the voltage ramps produced an outwardly rectifying current with a typical I-V relationship that is characteristic of NCX_{pm} (Figure 2B). Stimulation with 10 µM histamine markedly enhanced the peak currents (by 230%) and subsequent administration of bepridil (20 and 100 µM) strongly suppressed the current amplitude (Figure 2B,C). In another set of experiments, histamine exposure was followed by cell superfusion with Na⁺-free external solution in the continued presence of Ca²⁺ and histamine to boost the reversal of the exchanger. This manoeuvre strongly increased both the outward and inward currents (Figure 2D). Because under these experimental ionic conditions, the driving force of the reversed NCX_{pm} is limitless, the inward current observed at negative potentials is highly unlikely to reflect the forward mode of the exchanger. Nevertheless, subsequent addition of 50 µM bepridil suppressed the outwardly rectifying current (Figure 2D). Taken together, these observations indicate that in endothelial cells under our experimental conditions the basal NCX_{pm} currents are enhanced by histamine exposure.

NAGly inhibits NCX_{pm}-mediated ion currents stimulated by histamine

Next, we assessed the effect of NAGly on NCX_{pm}-mediated whole-cell currents. When cells were dialysed with the Cs-based intracellular solution containing low Ca²⁺ (100 nM) and high Na⁺ (28 mM), a condition which favours reversed NCX_{pm}, voltage ramps from –100 to 85 mV revealed an outwardly rectifying current that met the characteristics of NCX_{pm}. This outwardly rectifying current was amplified by histamine and was further potentiated by substitution of external Na⁺ for NMDG⁺ (Figure 3A,B). Administration of 10 µM NAGly evoked a gradual suppression of the current (Figure 3A,B), which in some cells was preceded by transient potentiation of current amplitude (Figure 3A). When NAGly (10 µM) was applied to histamine-stimulated cells without prior exposure to Na⁺-free solution, it abolished the outwardly rectifying current stimulated by histamine and strongly suppressed basal NCX_{pm} currents (Figure 3C,D).

NAGly inhibits NCX_{pm}-mediated ion currents and intracellular Ca²⁺ rise independently of store depletion

The next question we addressed is whether cell stimulation with histamine and the associated store depletion and/or initiation of store-operated or receptor-activated Na⁺ and Ca²⁺ influx is required for the inhibitory effect of NAGly on reversed mode NCX_{pm}. To explore the role of the cell signal-
Figure 3
NAGly inhibits NCX pm currents. (A) The time course of inhibition NCX pm currents by 10 μM NAGly. NCX currents were maximally pre-stimulated with histamine and Na⁺ removal. (B) Representative NCX currents evoked by voltage ramps from the time course shown in (A) before (control), in the presence of 10 μM histamine (histamine) and following Na⁺ removal (0 Na⁺ histamine) and the effect of 10 μM NAGly on NCX pm potentiated currents. Similar results were obtained in six cells. (C, D) The time course of inhibition of NCX pm current amplitude by NAGly (1 and 10 μM) preliminary augmented with histamine (10 μM; C) and corresponding current traces (D) in response to voltage ramps before (control), during 10 μM histamine exposure (histamine) and in the combined presence of histamine with either 1 or 10 μM NAGly. Similar results were obtained in six cells.

NAGly reversibly inhibits both reversed and forward mode of NCX pm in a concentration-dependent manner
The above voltage clamp experiments were performed by using pipette solution containing 28 mM Na⁺ and 100 nM Ca²⁺, a condition which favours the reverse mode of NCX pm along the membrane potentials tested. To determine whether NAGly exclusively suppresses the reversed mode of the exchanger, in experiments described below cells were dialysed with internal solution containing 10 mM Na⁺ and 100 mM free Ca²⁺ in the presence of 2.4 mM bath Ca²⁺, a condition which allows the recording of both forward and reversed modes of the exchanger depending on the membrane voltage applied. Forward and reverse mode NCX pm currents were estimated at −95 mV and +85 respectively. Representative currents in response to voltage ramps from −100 to 90 mV before and after NAGly administration are shown in Figure 5 A,B. Both outward and inward currents were inhibited by 0.3 μM NAGly with a similar time course (Figure 5A). At a concentration of 0.3 μM, NAGly was slow to exert its full effect on NCX pm currents, the degree of inhibition increased with time and a steady-state value was reached over 200–250 s after initial application (Figure 5A). The effect of NAGly on NCX pm currents was reversible; restoration of I NCX occurred within 250–300 s following 0.3 μM NAGly washout. Corresponding I-V curves before application of 0.3 μM NAGly, during the plateau of the response and following washout of the compound are shown in Figure 5B.

Inhibition of I NCX by NAGly was concentration-dependent within the concentration range tested (0.3–30 μM). Increasing the NAGly concentration from 0.3 to 10 μM produced a stronger inhibitory effect on I NCX and reduced the time to reach the steady-state inhibition of I NCX to 120–150 s (Figure 5C). Cumulative addition of increasing concentrations of NAGly into the bath solution caused a gradually
developing inhibition of the current amplitude (Figure 5D,E). At the end of experiment, the cells were exposed to bepridil (50 μM). The bepridil-sensitive current, which represents only the NCX current, was calculated by subtracting the current remaining after 50 μM bepridil exposure from the total measured current at each NAGly concentration tested. A similar degree of suppression of both the outward and inward current amplitudes was observed at a particular concentration of NAGly that inhibited the reverse and forward modes of NCX activity at an IC50 of 1.22 μM and 1.09 μM respectively (Figure 5F,G). The Hill coefficient was 1.09 for the forward and 1.18 for the reversed mode of the exchanger, suggesting one binding site for NAGly. These experiments indicate that inhibition of NCXpm by NAGly appears to be non-mode selective.

NAGly suppresses NCX currents independently of GPCRs

To examine whether GPCRs mediate the effect of NAGly on I_{SCX}, we next tested the effect of the synthetic cannabinoid analogue O-1918 on I_{SCX}. It was presumed O-1918 is an antagonist of a putative endothelial abnormal cannabidiol receptor activated by NAGly and anandamide (McHugh et al., 2010; Parmar and Ho, 2010). Exposure to O-1918 (10 μM) gradually suppressed (up to 82%) both the basal I_{SCX} (Figure 6A) and that pre-stimulated by low (20 mM) Na+ (switch from 140 mM [Na+]o to 20 mM [Na+]o) (Figure 6B,C). Administration of 10 μM NAGly in the continued presence of 10 μM O-1918 further suppressed the remaining portion of the current. Supplementation of the patch pipette solution with guanosine 5’-O-(2-thiodiphosphate) (GDPβS; 0.5–1 mM), a potent and irreversible G-protein inhibitor, was also tested to examine whether GPCRs are required for suppression of I_{SCX} by NAGly. Under these conditions, administration of 10 μM NAGly to the external solution inhibited the currents (n = 7) to the same extent as in the absence of GDPβS (Figure 6D,E). Because NAGly is susceptible to metabolic degradation via FAAH (Bradshaw et al., 2009), we explored whether it is actually NAGly that is causing the effect and not arachidonic acid or glycine generated by NAGly hydrolysis. Pre-incubation and continuous incubation of 1 μM URB597, a FAAH inhibitor (Ho and Randall, 2007; Bradshaw et al., 2009), was unable to prevent inhibition of I_{SCX} following NAGly application (Figure 6F,G). When 10 μM NAGly was introduced into the patch pipette, a manoeuvre, which allows NAGly administration to the inner surface of the cell avoiding binding to GPCRs, I_{SCX} was gradually suppressed within 200–250 s (Figure 6H,I). However, the mean suppressive effect on I_{SCX} induced by intracellular NAGly administration was significantly less than that observed induced by external NAGly application (Figure 6J). The fractional inhibition of I_{SCX} by 10 μM of internal NAGly at +85 mV was 55.9 ± 4.2% (n = 4), while external NAGly administration produced a fractional inhibition of I_{SCX} of 75.0 ± 7.1% (n = 9). Taken together, these data strongly indicate that the endogenous lipoamino acid NAGly inhibits NCXpm-mediated currents in a GPCR-independent manner.

Anandamide suppresses NCX currents independently of G-proteins

Unlike NAGly, extracellular administration of anandamide, a parent and structurally similar molecule, at a concentration of 3 μM only marginally suppressed I_{SCX}. Increasing the anandamide concentration to 10 μM strongly (up to 80%) inhibited I_{SCX} (Figure 7A–C; n = 3), suggesting that anandamide inhibits I_{SCX} with the potency lower than that for NAGly. Inclusion of 0.5 mM GDPβS into the patch pipette failed to
abolish the anandamide effect on both basal (not shown, \(n = 3 \)) and pre-stimulated \(I_{\text{NCX}} \) by low (20 mM) \(\text{Na}^+ \) \((n = 4 \); Figure 7D,E).

Dual effect of NAGly on endothelial membrane potential

We examined the effect of NAGly on the membrane potential of unstimulated and histamine-stimulated EA.hy926 cells.

NAGly was administered either before or during the plateau phase of the hyperpolarization to histamine. NAGly (3 \(\mu \text{M} \)) induced a slowly developing long-lasting hyperpolarization with an amplitude of \(8.9 \pm 2.1 \text{ mV} \) \((n = 8 \)). This hyperpolarization was reversed by iberiotoxin (400 \(\text{nM} \)), an inhibitor of \(\text{BK}_{\text{Ca}} \) channels (Figure 8A). When histamine was administered in the continued presence of NAGly, only transient hyperpolarization with a reduced amplitude \(7.3 \pm 0.9 \text{ mV} \) \((n = 4 \),
Figure 6

NAGly suppresses NCX currents independently of G-proteins. (A) Representative time course of changes in NCX current amplitudes at −100 and +85 mV during voltage ramps before and during application of 10 μM O-1918. (B) O-1918 (10 μM) suppresses NCXpm current pre-stimulated with a decrease in bath Na⁺ to 20 mM. The time course of the response. (C) Corresponding current traces elicited by voltage ramps at time points indicated in (B). (D) Representative time course of changes in the NCXpm current amplitudes to voltage ramps at voltages indicated in the presence of GDPβS in the patch pipette under control conditions (1), in the presence of 20 mM Na⁺ in the bath (2) and in the presence of either 3 μM (3) or 10 μM (4) of bath NAGly in low Na⁺ solution. (E) Corresponding current traces at time points shown in (D). (F) Representative time course of changes in current amplitudes at −100 and +85 mV during voltage ramps before and during application of 10 μM NAGly in the continued presence of URB597. Pipette solution was supplemented with 0.5 mM GDPβS. (G) Corresponding I-V relationship. (H) Representative time course of the changes in current amplitude during intracellular dialysis of EA.hy926 cell with 10 μM NAGly before and after a decrease in bath Na⁺, (I) corresponding I-V relationship at time points indicated in (A). (J) Mean fractional inhibition of I_{NCX} at +85 mV by extracellular and intracellular NAGly (10 μM). Fractional inhibition was obtained using the function: fractional inhibition = (I_{control} - I_{NAGly})/I_{control} × 100.

P < 0.05) was produced (Figure 8B). Administration of 3 μM NAGly during the plateau phase of the hyperpolarization to histamine (10 μM) strongly and reversibly inhibited the hyperpolarization within 4 min from 25.2 ± 3.2 mV to 11.0 ± 3.1 mV (n = 4; Figure 8C). Administration of 10 μM NAGly fully inhibited the hyperpolarization to 10 μM histamine (Figure 8D). Upon NAGly washout, the time course of the hyperpolarization was gradually restored within 7–8 min. These results show that NAGly directly affects the endothelial membrane potential.

G-proteins are not required for stimulation of BKCa channels by NAGly

Because NAGly produced iberiotoxin-sensitive sustained hyperpolarization in EA.hy926 cells, we next assessed the effect of NAGly on whole-cell potassium currents and whether G-proteins are required for this effect. When the pipettes were filled with KCl-based solution containing 300 nM free Ca2+, voltage ramps from −80 to 80 mV revealed an outwardly rectifying current. External NAGly (3 and 10 μM) strongly potentiated the current with characteristics typical of the BKCa channel present in these cells (Bondarenko et al., 2010; 2011a). The effect of NAGly was completely abolished by 1 μM paxilline (n = 4; Figure 8E), a BKCa channel inhibitor, but not by intracellular dialysis with the irreversible G-protein inhibitor GDPβS (1 mM; n = 4, Figure 8F). To explore whether NAGly affects BKCa channels when applied to the cytosolic face of excised membrane, the BKCa single-channel activity was recorded in inside-out patches under symmetrical K+ conditions and in the presence of 300 nM free Ca2+.

Figure 7
Anandamide suppresses NCX currents independently of G-proteins. (A) Representative time course of changes in current amplitudes at −100 and +85 mV during voltage ramps in response to 3 μM NAGly followed by washout and administration of 3 and 10 μM anandamide. (B, C) Corresponding current traces elicited by voltage ramps at time points indicated in (A). (D) The time course of the changes in NCXpm current amplitude augmented by a decrease in external Na+ concentration to 20 mM followed by administration of 10 μM anandamide and 50 μM bepridil. (E) Corresponding current traces elicited by voltage ramps at time points indicated in (D). Pipette solution was supplemented with 0.5 mM GDPβS.

G-proteins are not required for stimulation of BKCa channels by NAGly

Because NAGly produced iberiotoxin-sensitive sustained hyperpolarization in EA.hy926 cells, we next assessed the effect of NAGly on whole-cell potassium currents and whether G-proteins are required for this effect. When the pipettes were filled with KCl-based solution containing 300 nM free Ca2+, voltage ramps from −80 to 80 mV revealed an outwardly rectifying current. External NAGly (3 and 10 μM) strongly potentiated the current with characteristics typical of the BKCa channel present in these cells (Bondarenko et al., 2010; 2011a). The effect of NAGly was completely abolished by 1 μM paxilline (n = 4; Figure 8E), a BKCa channel inhibitor, but not by intracellular dialysis with the irreversible G-protein inhibitor GDPβS (1 mM; n = 4, Figure 8F). To explore whether NAGly affects BKCa channels when applied to the cytosolic face of excised membrane, the BKCa single-channel activity was recorded in inside-out patches under symmetrical K+ conditions and in the presence of 300 nM free Ca2+.

Figure 7
Anandamide suppresses NCX currents independently of G-proteins. (A) Representative time course of changes in current amplitudes at −100 and +85 mV during voltage ramps in response to 3 μM NAGly followed by washout and administration of 3 and 10 μM anandamide. (B, C) Corresponding current traces elicited by voltage ramps at time points indicated in (A). (D) The time course of the changes in NCXpm current amplitude augmented by a decrease in external Na+ concentration to 20 mM followed by administration of 10 μM anandamide and 50 μM bepridil. (E) Corresponding current traces elicited by voltage ramps at time points indicated in (D). Pipette solution was supplemented with 0.5 mM GDPβS.
bath Ca2+. Under these conditions, 3 μM NAGly potentiated BK\textsubscript{Ca} channel activity (NPo) from 0.046 ± 0.008 to 0.139 ± 0.025 (n = 11), while the single-channel amplitude was unaffected in the presence of NAGly.

Vascular tissue experiments

To determine whether NAGly-induced inhibition of NCX\textsubscript{pm} and corresponding suppression of the hyperpolarization to histamine was a phenomenon unique to cell culture, experiments were performed on in situ endothelium of excised rat aorta, where NCX\textsubscript{pm} operating in reverse mode is critical for sustained endothelial cell hyperpolarization (Bondarenko, 2004). When the membrane potential was recorded from in situ endothelium, administration of NAGly (3 μM) in the continued presence of ACh strongly inhibited the hyperpolarization (Figure 9A).

To address the functional relevance of the reduction of endothelial hyperpolarization by NAGly, we tested the effect of NAGly on endothelium-dependent relaxation of rat aortic rings produced by ACh (2 μM). Once the relaxation was developed, 5 μM NAGly produced a significant transient reduction of the relaxation (up to 70%) from the pre-NAGly levels (Figure 9B). However, this NAGly-induced inhibition of
indicating that in these cells, NCX_{pm} operates in a Ca^{2+} influx mode during exposure to histamine and this contributes to cell hyperpolarization. Our membrane potential measurements are substantiated by whole-cell current recordings under experimental conditions adjusted to suppress K+ conductance with physiological levels of intracellular Na+. The outwardly rectifying current with typical characteristics of NCX_{pm} observed under basal conditions was potentiated by histamine and further greatly enhanced by Na+ withdrawal. These outwardly rectifying currents were suppressed by bepridil, further demonstrating that the current potentiated by histamine can be attributed to NCX_{pm}. Our electrophysiological data, obtained from ion substitution and pharmacological experiments, together with the typical I-V characteristics of the current indicate that the major mechanism of Ca^{2+} inflow into EA.hy926 cells following stimulation with histamine is the reversed mode NCX_{pm}. The function of NCX_{pm} as a pathway for Ca^{2+} entry has also been demonstrated previously in experiments on the endothelium of excised rat aorta exposed to Ach (Bondarenko, 2004), and mechanical injury (Berra-Romani et al., 2012), emphasizing the importance of the transport in regulation of Ca^{2+}-dependent processes.

Recent findings indicate that in endothelium from rat aorta exposed to ATP, NCX_{pm} operates in the forward mode contributing to the restoration of internal Ca^{2+} (Berra-Romani et al., 2010), suggesting that the mode of NCX_{pm} operation is agonist-specific. Given that NCX_{pm} is an electrogenic transporter, NCX_{pm} operating in the forward mode contributes to a faster decay of the hyperpolarization and intracellular Ca^{2+} rise. Obviously, NCX_{pm} operation in response to the action of specific agonists not only provides an additional pathway for Ca^{2+} entry or extrusion, but also shapes the electrical responses ensuring a characteristic ‘fingerprint’ typical for a particular agonist. Thus, the hyperpolarization to ATP (Bondarenko and Sagach, 1996) and ionomycin (Bondarenko and Sagach, 2006) in *in situ* aortic endothelium is more transient and is followed by the depolarization phase, while Ach produces a long-lasting hyperpolarization, which in addition to reversed NCX_{pm} is supported by Na+ pump stimulation (Bondarenko and Sagach, 2006). The results of the current study show that the EA.hy926 cell line may serve as a convenient model for studying the mechanisms of regulation and modulation of NCX_{pm}-mediated Ca^{2+} entry in endothelial cells.

Using the same endothelial cell line, it was demonstrated previously that in rather artificial, nominal Ca^{2+}-free conditions (no added Ca^{2+} no EGTA), histamine evokes oscillations in intracellular Ca^{2+} concentration due to coordinated interplay between reversed NCX_{pm} operation and Ca^{2+} sequestration by sarcoplasmic-endoplasmic reticulum Ca^{2+} ATPase (Paltaluf-Doburzynska et al., 2000). The oscillations were not seen in the presence of physiological levels of bath Ca^{2+}. However, it was not clear from that study whether histamine exposure in the presence of physiological levels of Ca^{2+} results in the NCX_{pm}-mediated Ca^{2+} entry. In fact, in follow up studies, Ca^{2+} entry into EA.hy926 cells stimulated with histamine has widely been attributed to the store-operated Ca^{2+} entry (RACE; Jousset et al., 2008). In experiments with cytosolic and endoplasmic reticulum (ER) Ca^{2+} measurements and with the use of 10 μM La^{3+} as a dis-
The inhibitory effect of NAGly on endothelial hyperpolarization does not appear to be unique for cell culture since NAGly effectively suppressed the endothelial hyperpolarization response to ACh in excised rat aorta. In this vascular bed, ACh produces a sustained endothelial hyperpolarization supported by Ca2+ influx via the reverse mode of NCX\textsubscript{pm} (Bondarenko, 2004) ensuring a sustained NO release and endothelium-dependent relaxation (Schneider et al., 2002). The inhibitory effect of NAGly on endothelial cell hyperpolarization occurs at low micromolar concentrations, which were previously shown to induce endothelium-dependent component of relaxation, presumably by binding to putative non-CB\textsubscript{1}/non-CB\textsubscript{2} endothelial cannabinoid receptors (Parmar and Ho, 2010). In excised rat aorta, the reduced hyperpolarization was accompanied by a transient suppression of the endothelium-dependent relaxation to ACh, demonstrating a functional link between reduced endothelial hyperpolarization and altered endothelium-dependent relaxation induced by NAGly.

It is noteworthy that NAGly exhibited an inhibitory effect on both the forward and reversed NCX\textsubscript{pm} and taking into account that the mode of NCX\textsubscript{pm} operation in vascular endothelium may depend on incoming stimuli (Berra-Romani et al., 2010) and vary between different vascular beds, it is tempting to speculate that in certain vascular beds, which respond to a specific agonist by stimulation of NCX\textsubscript{pm}-mediated Ca2+ extrusion from the endothelium, NAGly may promote endothelium-dependent vasodilatation via NCX\textsubscript{pm} inhibition. Importantly, NAGly appears to have complex effects on different key ion transport systems expressed in endothelial cells. Recently we showed that in cells overexpressing the key molecular constituents of SOCE, the stromal interacting molecule 1 (STIM1) and the pore-forming subunit of SOCE channels, Orai1, NAGly hampers SOCE primarily by uncoupling STIM1 from Orai1 (Deak et al., 2013). Accordingly, that and our current data indicate that endogenous lipoaminoacid NAGly fine-tunes the interplay between crucial molecular players of cellular signalling. Recently, evidence has been obtained indicating that lipoamino acids including NAGly potently inhibit T-type Ca2+ channels (Barbara et al., 2009; Ross et al., 2009). Although endothelial cells commonly lack voltage-gated Ca2+ channels, some...
reports do suggest the functional presence of these channels in endothelial cells. Hence, we performed additional experiments designed to exclude the possibility that the action of NAGly on NCX in our cell model is influenced by voltage-gated Ca\(^{2+}\) channels. Depolarizing voltage steps failed to induce inward currents in EA.hydro926 cells.

Our data indicate that the inhibitory effect of NAGly on NCX\(_{\text{pm}}\) is not restricted to endothelial cells. Indeed, we showed here that in de-endothelialized NA-precontracted rat aortic segments, NAGly opposes the contraction, which is partially controlled by NCX\(_{\text{pm}}\)-mediated Ca\(^{2+}\) entry (Lagaud et al., 1999; Zhang et al., 2010). Therefore, it is likely that both NCX\(_{\text{pm}}\) inhibition and BK\(_{\text{ca}}\) stimulation may account for the endothelium-independent component of relaxation. Although our findings indicate that the mechanism of the NAGly action on endothelial cells is not dependent on G-proteins and highlight a receptor-independent action, they do not rule out the possible involvement of as yet unidentified GPCRs sensitive to endocannabinoids in the endothelium-dependent component of the vascular relaxation reported earlier in a number of studies (Jarai et al., 1999; Mukhopadhyay et al., 2002; Offertaler et al., 2003; Begg et al., 2005). Because endothelial cells undergo significant changes in culture, some aspects of endothelial cell physiology, including expression of ion channels and receptors may be altered in cultured cells (Marchenko and Sage, 1993; Sandow and Grayson, 2009). These alterations may be relevant for endocannabinoid signalling mechanisms. More extensive electrophysiological studies using in situ vascular endothelium are required to resolve the enigma of the existence of still unidentified cannabinoid receptors in the vascular endothelium. Inasmuch as NCX\(_{\text{pm}}\) is implicated in ischaemic/reperfusion injury, we hypothesize that this endogenous lipid may exhibit cardio- and neuroprotection against myocardial ischaemia or brain insults. This still unrecognized feature of NAGly and possible alterations of endogenous levels of NAGly in ischaemic tissues warrant further investigation.

Collectively, the results of the present study demonstrate a previously unrecognized inhibitory effect of NAGly on NCX\(_{\text{pm}}\) activity, which largely controls endothelial cell function. In the vasculature, the action of NAGly does not appear to be limited to promoting endothelial hyperpolarization and vasodilatation, but it may also inhibit agonist-stimulated endothelial hyperpolarization induced by reversed NCX\(_{\text{pm}}\). This effect on endothelial electrical signalling is accompanied by a transient reversal of endothelium-dependent vasodilatation. A better understanding of the role of NAGly and related lipid compounds in the mechanisms involved in the regulation and modulation of cardiovascular function in health and disease is important for the development of novel effective approaches for the management of cardiovascular disorders.

Acknowledgements

We are grateful for continuous financial support from the Austrian Science Funds (FWF, P21857-B18 and P22553-B18) and for excellent technical assistance of Dr. R. Rost (Medical University of Graz) and L. Stepanenko (Bogomolts Institute of Physiology). A. Deak is funded by the PhD programme ‘Neuroscience’ at the Medical University of Graz.

Conflicts of interest

None to declare.

References

Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008). Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103: 1289–1299.

Alexander SP (2012). So what do we call GPR18 now? Br J Pharmacol 165: 2411–2413.

Alexander SPH, Mathie A, Peter JA (2011). Guide to Receptors and Channels (GRAC), 5th edition. Br J Pharmacol 164 (Suppl. S1): S1–S324.

Barana A, Amoros I, Caballero R, Gomez R, Osuna L, Lillo MP et al. (2010). Endocannabinoids and cannabinoid analogues block cardiac hKv1.5 channels in a cannabinoid receptor-independent manner. Cardiovasc Res 85: 56–67.

Barbara G, Alloui A, Nargeot J, Lory P, Eschalier A, Bourinet E et al. (2009). T-type calcium channel inhibition underlies the analgesic effects of the endogenous lipoamino acids. J Neurosci 29: 13106–13114.

Beech DJ (2009). Harmony and discord in endothelial calcium entry. Circ Res 104: e22–e23.

Begg M, Pacher P, Batkai S, Osei-Hyiaman D, Offertaler L, Mo FM et al. (2005). Evidence for novel cannabinoid receptors. Pharmacol Ther 106: 133–145.

Berra-Romani R, Raqeeb A, Guzman-Silva A, Torres-Jacome J, Tanzi F, Moccia F (2010). Na\(^{+}\)-Ca\(^{2+}\) exchange in ATP-stimulated endothelium of intact rat aorta. Biochem Biophys Res Commun 395: 126–130.

Berra-Romani R, Raqeeb A, Torres-Jacome J, Guzman-Silva A, Guerra G, Tanzi F et al. (2012). The mechanism of injury-induced intracellular calcium concentration oscillations in the endothelium of excised rat aorta. J Vasc Res 49: 65–76.

Bondarenko A (2004). Sodium-calcium exchanger contributes to membrane hyperpolarization of intact endothelial cells from rat aorta during acetylcholine stimulation. Br J Pharmacol 143: 9–18.

Bondarenko A, Chesler M (2001). Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34: 134–142.

Bondarenko A, Sagach V (2006). Na\(^{+}\)-K\(^{-}\)-ATPase is involved in the sustained ACh-induced hyperpolarization of endothelial cells from rat aorta. Br J Pharmacol 149: 958–965.

Bondarenko A, Svichar N, Chesler M (2005). Role of Na\(^{+}\)-H\(^{+}\) and Na\(^{-}\)-Ca\(^{2+}\) exchange in hypoxia-related acute astrocyte death. Glia 49: 143–152.

Bondarenko A, Waldeck-Weiermair M, Baghdii S, Poteser M, Malli R, Graier WF (2010). GPR55-dependent and -independent ion signalling in response to lysophosphatidylinositol in endothelial cells. Br J Pharmacol 161: 308–320.

Bondarenko AI, Sagach VF (1996). Modulation of the membrane potential of intact guinea pig aortic endothelium. Neurophysiology 28: 202–207.
Oz M (2006). Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. Pharmacol Ther 111: 114–144.

Paltauf-Doburzynska J, Frieden M, Spitaler M, Graier WF (2000). Histamine-induced Ca²⁺ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca²⁺-ATPase. J Physiol 524 (Pt 3): 701–713.

Parmar N, Ho WS (2010). N-arachidonoyl glycine, an endogenous lipid that acts as a vasorelaxant via nitric oxide and large conductance calcium-activated potassium channels. Br J Pharmacol 160: 594–603.

Ross HR, Gilmore AJ, Connor M (2009). Inhibition of human recombinant T-type calcium channels by the endocannabinoid N-arachidonoyl dopamine. Br J Pharmacol 156: 740–750.

Sandow SL, Grayson TH (2009). Limits of isolation and culture: intact vascular endothelium and BKCa. Am J Physiol Heart Circ Physiol 297: H1–H7.

Schneider JC, El Kebir D, Chereau C, Mercier JC, Dall’Ava-Santucci J, Dinh-Xuan AT (2002). Involvement of Na⁺/Ca²⁺ exchanger in endothelial NO production and endothelium-dependent relaxation. Am J Physiol Heart Circ Physiol 283: H837–H844.

Sheskin T, Hanus L, Slager J, Vogel Z, Mechoulam R (1997). Structural requirements for binding of anandamide-type compounds to the brain cannabinoid receptor. J Med Chem 40: 659–667.

Takenouchi R, Inoue K, Kambe Y, Miyata A (2012). N-arachidonoyl glycine induces macrophage apoptosis via GPR18. Biochem Biophys Res Commun 418: 366–371.

Tsumura M, Sobhan U, Muramatsu T, Sato M, Ichikawa H, Sahara Y et al. (2012). TRPV1-mediated calcium signal couples with cannabinoid receptors and sodium-calcium exchangers in rat odontoblasts. Cell Calcium 52: 124–136.

Vuong LA, Mitchell VA, Vaughan CW (2008). Actions of N-arachidonoyl-glycine in a rat neuropathic pain model. Neuropharmacology 54: 189–193.

Wagner JA, Varga K, Jarai Z, Kunos G (1999). Mesenteric vasodilation mediated by endothelial anandamide receptors. Hypertension 33 (1 Pt 2): 429–434.

Yin H, Chu A, Li W, Wang B, Shelton F, Otero F et al. (2009). Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 284: 12328–12338.

Zhang J, Ren C, Chen L, Navedo MF, Antos LK, Kinsey SP et al. (2010). Knockout of Na⁺/Ca²⁺ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca²⁺ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol 298: H1472–H1483.