LETTER TO THE EDITOR

A nonobstructive azoospermic patient with Trichomonas vaginalis infection in testes

Yue-Hua Gong1,2,*, Yue Liu3,4, Peng Li1,2, Zi-Jue Zhu1,2, Yan Hong1,2, Guo-Hui Fu1, Yun-Jing Xue4, Chen Xu2,3, Zheng Li1,2

Dear Editor,

Trichomonas vaginalis (T. vaginalis), a flagellated protozoan parasite emerged as one of the most common nonviral sexually transmitted infections worldwide, often inhabits the vagina, urethra, prostate, and epididymis.1 It has been estimated that there are more than 170 million new cases of T. vaginalis infections per year worldwide. However, current knowledge of T. vaginalis and trichomoniasis is based mainly on studies in female vaginal infections. The prevalence of trichomoniasis in males is far less well characterized than that in females, probably because the infection seems to be asymptomatic in most men and can be resolved after treatment with one dose of metronidazole.1-4

Among men, trichomoniasis has been considered as a cause of nongonococcal urethritis (NGU) and as involvement in the impairment of male fertility.1,3 T. vaginalis is found more often in infertile men than that in fertile individuals and its presence in semen results in significant decreased sperm parameter values, such as motility, normal morphology and viability.4 In vitro studies have also shown that T. vaginalis and its secretory products reduce sperm motility and fertilizing capacity.4,5 Although T. vaginalis has been identified in urethral discharge, urine, semen, and prostatic fluid, its infection may occur in other areas of the urogenital system. In rare cases reported, T. vaginalis infects the epididymis and prostate gland and occasionally, the testis.6,7

Herein, we report a novel case of nonobstructive azoospermia (NOA) with T. vaginalis infection in the testis. A 32-year-old male patient (1.76 m height and 90 kg weight), married for 10 years, presented with the complaint of infertility. General physical examination was normal (1.76 m height and 90 kg weight), anemia, and hypertension (BMI = 29.05). Genetic analysis showed normal 46, XY karyotype and no microdeletion of Yq azoospermia factor gene. No evidence of gross structural pathology was identified according to the formal urological evaluation and the diagnosis of NOA was given. At the same time, vaginal secretions from his wife were tested to be positive for trichomonas.

Therefore, we attempted retrieval of the patient’s spermatozoa via surgical biopsy of the testes, which would be cryopreserved for further in vitro fertilization (IVF) treatment with his wife’s oocytes. Wet preparations from fresh testicular biopsies from four locations in his right testis were examined for sperm under phase contrast microscopy and the pathological examination was performed at the same time. Sections of the testicular biopsies showed that very few germ cells, appearing to be spermatogonia and spermatocytes, were scattered in the seminiferous tubules, while spermatids were rarely detected (Figure 1a). The pathological diagnosis suggested a severe disruption of spermatogenesis. Meanwhile, wet preparations of testicular biopsies failed to demonstrate any sperm cells. However, some flagellated motile protozoa among numerous testicular and red blood cells were observed in one of the wet preparations (Figure 1b and Supplementary Information). In an attempt to identify the protozoa-like structures, Wright-Giemsa staining was made on the same day. On the basis of the morphological features of the cells, namely, an amoeboïd shape, the presence of one elliptically shaped nucleus and poorly defined cytoplasm (Figure 1c), a provisional identification of T. vaginalis parasites was made.

Furthermore, laboratory PCR analysis was notable for the presence of the parasite. Briefly, genomic DNA was prepared from 1.5 ml of semen or 5 ml of urine using DNA extract kit (Omega Bio-Tek, Norcross, GA, USA) according to the manufacturer’s instructions. PCR was performed to check the expression of Tvk and BTUB, according to the procedure described previously.8-10

Table 1: Hormonal profile of the patient

Hormonal profile	Value	Normal range
Follicle-stimulating hormone (mIU ml−1)	12.2	1.5–12.5
Luteinizing hormone (mIU ml−1)	5.5	1.7–8.6
Prolactin (ng ml−1)	4.9	4.8–23.3
Estrogen 2 (pg ml−1)	53.7	7.6–42.6
Testosterone (ng ml−1)	1.8	2.8–8.0

*These authors contributed equally to this work.
Correspondence: Dr. C Xu (chemx@shsmu.edu.cn) or Dr. Z Li (lizhengboshi@163.com)
Received: 02 September 2016; Revised: 31 October 2016; Accepted: 29 November 2016
The results of PCR showed approximately 261 bp fragments representing Tkv 3/7, which has previously been shown to be the most sensitive conventional PCR test for T. vaginalis, in the DNA extracts of both the semen and the urine. Likewise, results also showed an approximately 112 bp fragment representing BTUB 9/2, although a bit weak, in the DNA extract of the semen (Figure 1d). Therefore, both semen and urine from the patient were considered positive for T. vaginalis, and the NOA symptom may be caused by T. vaginalis-induced orchitis.

To our knowledge, this clinical case represents the first report of NOA related to T. vaginalis infection at the level of the testis. Combined with the existing reports, it illustrates that spermaticogenesis failure resulting from T. vaginalis infection in testis may be accompanied by low serum testosterone and atrophic testes, which may reflect the cytotoxicity of T. vaginalis in damaging germ cells and Leydig cells. Therefore, T. vaginalis infection in testis, although occasional, can seriously injure the niche essential for spermatogenesis. Meanwhile, male trichomoniasis is almost asymptomatic and few cases are diagnosed and treated. Hence, the infection persists, and males with male trichomoniasis may develop male infertility with serious harm to the reproductive system. Above all, it is important to improve the microenvironment of the urogenital tract in defending against pathogens during the therapy for trichomoniasis.

AUTHOR CONTRIBUTIONS

CX and ZL designed the experiment. YHG and YL performed the experimental work and participated in the pathological work. PL, ZJZ, and YH provided assistance in sample collection and treatment. GHF and YJX participated in the pathological work. All authors read and approved the final manuscript.

COMPETING INTERESTS

All authors declared no competing interests.

ACKNOWLEDGMENTS

This study was supported by a key grant from the Joint Research Project for Emerging Frontier (SHDC12015122), Shanghai Shenkang Hospital Applicable Technology Project, the National Key Basic Research Program of China (2015AA020404) and the National Nature Science Foundation of China (81671512).

Supplementary information is linked to the online version of the paper on the Asian Journal of Andrology website.

REFERENCES

1. Mielcarek E, Blaszewska J. Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Infection 2016; 44: 447–58.
2. Sherrard J, Ison C, Moody J, Wainwright E, Wilson J, et al. United Kingdom national guideline on the management of Trichomonas vaginalis 2014. Int J STD AIDS 2014; 25: 541–9.
3. Gimenes F, Souza RP, Bento JC, Teixeira JJ, Maria-Engler SS, et al. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol 2014; 11: 672–87.
4. La Vignera S, Vicari E, Condorelli RA, D’Agata R, Calogero AE. Male accessory gland infection and sperm parameters (review). Int J Androl 2011; 34: e330–47.
5. Roh J, Lim YS, Seo MY, Choi Y, Ryu JS. The secretory products of Trichomonas vaginalis decrease fertilizing capacity of mice sperm in vitro. Asian J Androl 2015; 17: 319–23.
6. Janssen-Swenk C, Tournaye H, Pierard D, Devroye P, Van Steirteghem A. Microsurgical epididymal sperm aspiration with motile trophozoite cells but no spermatozoa. Hum Reprod 1997; 12: 2217–9.
7. Lloyd G, Case JR, De Fries D, Brannigan RE. Trichomonas vaginalis orchitis with associated severe oligozoospermia and hypogonadism. J Urol 2003; 170: 924.
8. Crucitti T, Van Dyck E, Tehe A, Abdellati S, Vuylsteke B, et al. Comparison of culture and different PCR assays for detection of Trichomonas vaginalis in self-collected vaginal swab specimens. Sex Transm Infect 2003; 79: 393–8.
9. Pillay A, Lewis J, Ballard RC. Evaluation of Xenostrip-Tv, a rapid diagnostic test for Trichomonas vaginalis infection. J Clin Microbiol 2004; 42: 3853–6.
10. Madico G, Quinn TC, Rompalo A, McKee KT Jr, Gaydos CA. Diagnosis of Trichomonas vaginalis infection by PCR using vaginal swab samples. J Clin Microbiol 1998; 36: 3205–10.

©The Author(s) (2017)