The origin of heredity in protocells
Timothy West1,2, Victor Sojo1,2,3, Andrew Pomiankowski1,2 and Nick Lane1,2

1Department of Genetics, Evolution and Environment, and 2Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London Gower Street, London WC1E 6BT

3Systems Biophysics, Faculty of Physics, Ludwig-Maximilian University of Munich. Amalienstr. 54, 80799 Munich, Germany.

SI Table 1

Initial Values	Symbol	Name	Value	Notes
$V_{\text{crys}}^{\text{cyto}}(1)$	Initial mean crystal volume	1x10^{-15} \text{ cm}^3	Cuboid nanocrystal of length ~500nm	
$[\text{crys}]^{\text{mem}}(1)$	Initial concentration of crystal in membrane	1x10^{-9} \text{ mol dm}^{-3}	Set very low	
$[\text{aa}]^{\text{cyto}}(1)$	Initial concentration of amino acid in the cytosol	1x10^{-6} \text{ mol dm}^{-3}	Set low	
$[\text{fa}]^{\text{cyto}}(1)$	Initial concentration of fatty acid in the membrane	1x10^{-6} \text{ mol dm}^{-3}	Set low	
$S_{\text{A}}^{\text{cyto}}(1)$	Initial cytoplasm surface area	4.84x10^{-6} \text{ cm}^2		
$[\text{crys}]^{\text{cyto}}(1)$	Initial concentration of crystal in cytosol	1x10^{-6} \text{ mol dm}^{-3}	Typical particulate FeS found in hydrothermal vent samples [1]	
$V_{\text{crys}}^{\text{cyto}}(eq)$	Total crystal population volume (fixed)	6x10^{-10} \text{ cm}^3		

Transport	Symbol	Name	Value	Notes
$P_{\text{aa}}^{\text{cyto}}$	Permeability coefficient for amino acids from cytosol	1x10^{-9} \text{ cm s}^{-1}	Set very low	
$P_{\text{fa}}^{\text{cyto}}$	Permeability coefficient for fatty acids from cytosol	1x10^{-9} \text{ cm s}^{-1}	Set very low	
$P_{\text{crys}}^{\text{cyto}}$	Association constant for crystal permeation from cytosol	1x10^{-12} \text{ cm s}^{-1}	Set very low	
$P_{\text{mem}}^{\text{crys}}$	Association constant for crystal permeation from membrane	1x10^{-12} \text{ cm s}^{-1}	Set very low	
$P_{\text{surf}}^{\text{crys}}$	Permeability coefficient for FeS diffusion to crystal surface	1x10^{-12} \text{ cm s}^{-1}		
Crystal Growth

Symbol	Name	Value	Notes
k^Grow	Rate constant for crystal growth	$1 \times 10^{-6} \text{ s}^{-1}$	
$D_{\text{min}}^{\text{crys}}$	Minimum crystal size	$1 \times 10^{-16} \text{ cm}^3$	Minimum nanocrystal length ~50nm
K_{crys}	Saturation constant of FeS crystal nucleation	$1 \times 10^{-8} \text{ mol dm}^{-3}$	

Catalysis and Amino Acid Interactions

Symbol	Name	Value	Notes
$[CO_2]_{\text{in}}$	Concentration of aqueous CO$_2$ in cytosol	$1 \times 10^{-3} \text{ mol dm}^{-3}$	10x CO$_2$ concentration at Lost City hydrothermal field [2]
K_{CO_2}	CO$_2$ binding constant for iron-sulphur catalyst	$3 \times 10^{-4} \text{ mol dm}^{-3}$	~0.3mM affinity of CO$_2$ for ferredoxins [3]
K_{aa}	Binding constant of amino acids for crystals	$1 \times 10^{-4.5} \text{ to } 10^{-2} \text{ mol dm}^{-3}$	(varied in simulations)
λ_{aa}	Fraction of organic yield that is amino acid	1/10	
λ_{fa}	Fraction of organic yield that is fatty acid	1/4	
R_{cat}	Organic turnover rate per unit area	$1 \times 10^{11.8} \text{ to } 10^{9.3} \text{ mol cm}^{-2} \text{ s}^{-1}$	(varied in simulations)

Cell Geometry

Symbol	Name	Value	Notes
r_{mem}	Thickness of fatty acid bilayer	$1 \times 10^{-6} \text{ cm}$	~10nm thick bilayer in yeast [4]
ϕ_{fa}	Headgroup area of fatty acid	$2 \times 10^{-15} \text{ cm}^2$	~0.2nm2 surface area of arachidic acid [5]
V_{cyto}	Volume of protocell cytosol	$1 \times 10^{-9} \text{ cm}^3$	Cell of ~6000 μm3

Concentrations

Symbol	Name	Value	Notes
$[aa]_{\text{sink}}$	Concentration of amino acids in sink	$1 \times 10^{-6} \text{ mol dm}^{-3}$	~1μM concentrations in hydrothermal fluids and plume at Lost City [6]
$[fa]_{\text{sink}}$	Concentration of fatty acids in sink	$1 \times 10^{-6} \text{ mol dm}^{-3}$	

Constants

Symbol	Name	Value	Notes
A_N	Avogadro’s number	$6.023 \times 10^{23} \text{ mol}^{-1}$	
References for SI Table 1

1. Harmandas NG, Koutsoukos PG. 1996 The formation of iron(II) sulfides in aqueous solutions. *J Cryst. Growth* **167**, 719–724.

2. Fitzsimmons JN, Boyle EA, Jenkins WJ. 2014 Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. *Proc. Natl. Acad. Sci. USA.* **111**, 16654–61.

3. Thauer RK, Käufer B, Fuchs G. 1975 The active species of “CO2” utilized by reduced ferredoxin:CO2 oxidoreductase from Clostridium pasteurianum. *Europ. J. Biochem.* **55**, 111–7.

4. Schneiter R, Brügger B, Sandhoff R, Zellnig G, Leber A, Lampl M, et al. 1999. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. *J. Cell Biol.* **146**, 741–54.

5. Johann R, Brezesinski G, Vollhardt D, Möhwald H. 2001 The effect of headgroup interactions on structure and morphology of arachidic acid monolayers. *J. Phys. Chem.* **105**, 2957–2965.

6. Fuchida S, Mizuno Y, Masuda H, Toki T, Makita H. 2014 Concentrations and distributions of amino acids in black and white smoker fluids at temperatures over 200°C. *Organic Geochemistry* **66**, 98–106.