Data Sketching for Large-Scale Kalman Filtering

Dimitris Berberidis, Student Member, IEEE, and Georgios B. Giannakis*, Fellow, IEEE

Abstract—In an age of exponentially increasing data generation, performing inference tasks by utilizing the available information in its entirety is not always an affordable option. The present paper puts forth approaches to render tracking of large-scale dynamic processes via a Kalman filter affordable, by processing a reduced number of data. Three distinct methods are introduced for reducing the number of data involved in the correction step of the filter. Towards this goal, the first two methods employ random projections and innovation-based censoring to effect dimensionality reduction and measurement selection respectively. The third method achieves reduced complexity by leveraging sequential processing of observations and selecting a few informative updates based on an information-theoretic metric. Simulations on synthetic data, compare the proposed methods with competing alternatives, and corroborate their efficacy in terms of estimation accuracy over complexity reduction. Finally, monitoring large networks is considered as an application domain, with the proposed methods tested on Kronecker graphs to evaluate their efficiency in tracking traffic matrices and time-varying link costs.

Index Terms—tracking, dimensionality reduction, censoring, random projections, Kalman filter, traffic matrix.

I. INTRODUCTION

Tracking nonstationary dynamic processes is of paramount importance in various applications. In the context of big data, being able to perform accurate and economical state estimation may render problems of prohibitive scale feasible. Weather prediction is an example of tracking a slowly-varying dynamic process, from a massive volume of observations acquired from fast-sampling sensors per time interval; see e.g., [1]. Monitoring large and dynamically evolving networks, where nodes may join or leave and connections may be established or lost as time progresses, provides an exciting domain in which the acquisition and processing of network-wide performance metrics becomes challenging as the network size increases [2]. For instance, monitoring path metrics such as delays or loss rates is challenging primarily because the number of paths generally grows as the square of the number of nodes in the network. Therefore, measuring and storing the delays of all possible origin-destination pairs is hard in practice, even for moderate-size networks [3].

In this context, efforts to reduce the number of measurements used for tracking have pursued two different directions. The first is that of optimal experimental design (OED), where the goal is to perform model-driven sensor selection based on ensemble performance metrics (e.g. the trace of the error covariance). Channel-aware dimensionality reduction of observations was reported in [3] and [4] using distributed wireless sensor networks (WSNs). Optimal and near optimal sensor schedules for a finite time horizon estimation was dealt with in [5], while entropy- and mutual-information-based sensor selection were advocated in [6] and [7]. A posterior-CRLB-based method to select sensors for tracking was introduced in [8], via convex optimization in [9] and [10], while a greedy algorithm leveraging submodularity was developed in [11] for measurement selection in sequential estimation. The latter has also been advocated as a means of reducing the complexity of Kalman filters that operate with limited processing resources [12]. OED is nicely attuned for designing low-dimensional observation models, but it is data-agnostic and thus sub-optimal when observations become available and need to be reduced.

The second direction is that of data-driven methods that select available measurements for processing. Specifically, censoring has recently been employed to select data for distributed parameter estimation using resource-constrained WSNs, thus trading off performance for tractability [13], [14]. Furthermore, censoring has been proposed for signal estimation using WSNs, for tracking, and control of dynamical processes [15], [16], [17], [18]. However, existing works on censoring mainly aim at reducing the rate at which sensors communicate their observations, and pertinent methods exhibit large computational complexity and storage requirements, which can be possibly afforded only at the fusion center.

The goal of this paper is to perform reliable tracking using the Kalman filter (KF), while reducing the amount of data and the computational complexity involved. To this end, the first two methods employ random projections and innovation-based censoring to respectively effect dimensionality reduction and measurement selection. The third method reduces complexity by leveraging sequential processing of observations when the noise is uncorrelated, and by selecting a few informative updates based on an information-theoretic metric. Finally, an efficient backward smoothing method is developed to mitigate the performance degradation caused by dimensionality reduction. Corroborating simulations compare with state-of-the-art greedy measurement selection algorithms, and illustrate the efficacy of the novel schemes. To demonstrate the applicability of the proposed update selection approach on real-world problems, traffic matrix estimation and network link cost estimation is also considered.

The rest of the paper is organized as follows. Section II introduces the proposed model of reduced complexity KF. Sections III and IV present the two dimensionality reduction modules based on RPs and censoring, respectively. The proposed update selection method is introduced in Section V. Numerical experiments are in Section VII while Section VIII includes experiments on network monitoring. Finally, concluding remarks are given in Section IX.

Work in this paper was supported by the ARO grant no. W911NF-15-1-0492 and NSF grants 1343660, 1442686, and 1500713. D. Berberidis and G. B. Giannakis are with the ECE Dept., University of Minnesota, Minneapolis, MN 55455, USA. E-mails: {bermp001, georgios} @umn.edu
Notation. Lower- (upper-) case boldface letters denote column vectors (matrices). Calligraphic symbols are reserved for sets, while T stands for transposition. Vectors 0, 1, and e_n denote the all-zeros, the all-ones, and the n-th canonical vector, respectively. Symbol I_E denotes the indicator for the event E. Notation $\mathcal{N}(m, C)$ stands for the multivariate Gaussian distribution with mean m and covariance matrix C, while $\text{tr}(X)$, $\lambda_{\text{min}}(X)$, and $\lambda_{\text{max}}(X)$ are reserved for the trace, the minimum and maximum eigenvalues of matrix X, respectively.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following linear dynamical system model

$$\theta_n = F_n \theta_{n-1} + G_n u_n + w_n$$

$$y_n = X_n \theta_n + v_n$$

where $\theta_n \in \mathbb{R}^p$ denotes the state vector at time n; F_n is the known state-transition matrix; G_n and u_n are known, deterministic control-input model and control-input vector respectively; $y_n \in \mathbb{R}^D$ is the measurement vector, and X_n is the known $D \times p$ measurement matrix; while w_n and v_n are zero-mean, mutually uncorrelated and individually uncorrelated across time random noise vectors, with respective covariance matrices Q_n and R_n. The initial state θ_0 has mean m_0, and covariance P_0.

Given the information-bearing data $\mathcal{I}_n := \{y_n, X_n, R_n\}$ of the measurement model (2) at time n, the most recent estimate $\theta_{n-1|n-1}$ and its covariance matrix $P_{n-1|n-1}$, the celebrated KF minimizes the minimum mean-square error (MSE) optimal estimate $\hat{\theta}_{n|n}$ in two steps. First, the state prediction $\hat{\theta}_{n|n-1}$ and its covariance matrix $P_{n|n-1}$ are obtained using the model dynamics $\{F_n, Q_n\}$ as [cf. (1)]

$$\hat{\theta}_{n|n-1} = F_n \hat{\theta}_{n-1|n-1} + G_n u_n$$

$$P_{n|n-1} = F_n P_{n-1|n-1} F^T_n + Q_n.$$

Subsequently, as \mathcal{I}_n becomes available, $\hat{\theta}_{n|n}$ is obtained as

$$\hat{\theta}_{n|n} = \arg \min_{\theta} \|y_n - X_n \theta\|^2_{R_n^{-1}} + \|\theta - \hat{\theta}_{n|n-1}\|^2_{P_{n|n-1}^{-1}}.$$ \hspace{1cm} (4)

The first term of the cost in (4) is a weighted least-squares term fitting the state θ with \mathcal{I}_n that arises from the linear observation model in (2), while the second regularization term corresponds to treating $\theta_{n|n-1}$ as a prior of θ_n. Solving (4) and applying the matrix inversion lemma (MIL) yields the well known KF correction step, e.g., [19] p. 205

$$\hat{\theta}_{n|n} = \hat{\theta}_{n|n-1} + K_n (y_n - X_n \hat{\theta}_{n|n-1})$$

where the so-called KF gain K_n and the state covariance update are given by

$$K_n = P_{n|n-1} X_n^T (X_n P_{n|n-1} X_n^T + R_n)^{-1}$$

$$P_{n|n} = (I_p - K_n X_n) P_{n|n-1}.$$

A dual form of the KF known as the information filter (IF) relies on the MIL to offer a more efficient solver of (4) as D grows large [19] Ch. 7. Nevertheless, even the low-complexity IF requires $\mathcal{O}(D^2 p^2)$ multiplications to solve (4) in the case of uncorrelated observations (R_n diagonal), and $\mathcal{O}(D^2 p)$ in general. Therefore, for large-scale KF problems where $D \gg p$, dimensionality reduction of the datasets \mathcal{I}_n is well motivated for rendering the solution of (4) computationally tractable, while also reducing other data-related costs, such as storage and transmission.

Towards this goal, we introduce a reduced-complexity Kalman-like filter (see Algorithm 1) that extracts a reduced (size $d < D$), yet informative dataset $\mathcal{I}_n^d := \{\hat{y}_n, \hat{X}_n, \hat{R}_n\}$ from the original \mathcal{I}_n, where $\hat{y}_n \in \mathbb{R}^d$, $\hat{X}_n \in \mathbb{R}^{d \times p}$ and $\hat{R}_n \in \mathbb{R}^{d \times d}$ are the corresponding reduced-dimension observation vector, measurement matrix, and covariance matrix; see also Fig. 1. Consequently, the problem reduces to the design of low-complexity sketching modules for informative dimensionality reduction. In the ensuing two sections, a data-agnostic method based on RPs followed by a data-adaptive method based on censoring are developed.

III. RP-BASED KF

RP-based dimensionality reduction amounts to premultiplying measurements and regressors $\{y_n, X_n\}$ with a random matrix H, and a diagonal matrix A, whose entries take the values $\{+1/\sqrt{D}, -1/\sqrt{D}\}$ equiprobably. The net result is a linear transformation of the measurement equations so that all rows convey “comparable information”. A subset of d rows of the transformed system is then extracted by simple random sampling, implemented by left multiplication with a random $d \times D$ selection matrix S_d.
the novelty here is RP-based reduced-dimensionality tracking of dynamical processes. Applying the Hadamard preconditioning and random sampling matrices on S_d yields the reduced-dimension observation model

$$\hat{y}_n := S_d H A y_n = S_d H A (X_n \theta_n + v_n) = \hat{X}_n \theta_n + \hat{v}_n$$

where $v_n := S_d H A v_n$ is zero mean with covariance $R_n = S_d H A R_n (S_d H A)^T$. Given $\theta_n|n-1$ and the reduced data I_n^d, state estimate $\hat{\theta}_{n|n}$ can be obtained as [cf. (4)]

$$\hat{\theta}_{n|n} = \arg \min_{\theta} \|y_n - \hat{X}_n \theta\|^2_{R_n^{-1}} + \|\theta - \hat{\theta}_{n|n-1}\|^2_{\Sigma_{n|n-1}^{-1}}. \tag{5}$$

Solving (5) and applying the MIL yields the novel RP-based KF, which is summarized as Algorithm 1 using Algorithm 2 as sketching method.

Proposition 1. With $R_n = \sigma_n^2 I_D$, let $A_n := [P_{n|n-1}/2, \sigma_n^{-1} X_n^T, b_n := [P_{n|n-1}^{-1} \hat{\theta}_{n|n-1}, \sigma_n^{-1} \gamma_n^T, T, A_n = U_n S_n V_n^T$. If $\|U_n U_n^T b_n\|_2 \geq \gamma \|b_n\|_2$ for some $\gamma \in (0, 1]$, then by choosing $d = O(p \ln(p D)/\epsilon)$ the following bound for the RP-KF estimates holds w.h.p.

$$\|\hat{\theta}_{n|n} - \hat{\theta}_{n|n}^*\|_2 \leq \sqrt{\kappa(A_n) \sqrt{\gamma^2 - 1}} \|\hat{\theta}_{n|n}^*\|_2$$

where $\kappa(A_n)$ denotes the condition number of A_n, and $\hat{\theta}_{n|n}^*$ is the full-data KF estimate.

Proof: See Appendix 1.

Proposition 1 asserts that, per time slot n, the estimate $\hat{\theta}_{n|n}$ of the RP-KF can be guaranteed to be close enough, in the relative squared-error sense, to the estimate $\hat{\theta}_{n|n}^*$ of the full KF, if the reduced dimension d is chosen to be large enough. Naturally, the quality of the approximation also depends on other parameters such as the observation matrix, noise variance and covariance of prediction. Nevertheless, being data-agnostic and requiring storage and processing of I_n in batch form per time slot renders the RP-KF less attractive in practice, and motivates the algorithms presented in the following two sections.

IV. CENSORING-BASED KF

Measurement censoring for estimating dynamical processes has been advocated as a means of reducing the inter-sensor transmission overhead when WSNs are deployed for distributed tracking [16, 17]; see also [15, 23], where censoring is employed for event-based estimation. Since the goal in the aforementioned applications is saving communication resources, censoring is performed solely on measurements y_n, with X_n and R_n assumed known and used even for the censored entries of y_n; thus, in our notation [16, 15, 23, 14, 17] rely on $I_n := \{y_n\}$. A subset of d observations $I_n^d := \{y_{n,i}, S_n\}$ is obtained, where $y_{n,i}$ is the i-th entry of y_n, and $S_n \subseteq \{1, \ldots, D\}$ denotes a set collecting the indices of uncensored observations. Given $y_{n,i}, X_n, \hat{R}_n$, the novelty here is RP-based reduced-dimensionality tracking and motivates the algorithms presented in the following two sections.
Algorithm 3 AC sketching module

Measurement selection with AC-LMS

Input: $\theta_{n|n-1}$, $\{y_n, X_n, R_n\}$

Initialization: $\hat{\theta}_{n|n-1,0} = \theta_{n|n-1}$, $S_{n,0} = \emptyset$

for $i = 1 : D$ do
 Obtain c_i as in (8)
 if $c_i = 0$, then
 $S_{n,i} = S_{n,i-1} \cup \{i\}$
 Update $\hat{\theta}_{n|n-1,i-1}$ as in (9)
 end if
end for

Return : $\{\hat{y}_n, \hat{X}_n, \hat{R}_n\} = \{y_n, S_{n,D}, X_n, S_{n,D}, R_n, S_{n,D}\}$

Given $\{x_n^T, \hat{\theta}_{n|n-1,i-1}, \tau_n\}$, a “censoring slab” is specified to determine whether $(x_{n,i}, y_{n,i})$ will be censored (if inside this slab) or not (if outside this slab). If deemed informative enough ($c_i = 0$), the i-th row is added to S_n, and subsequently involved in updating $\hat{\theta}_{n|n-1,i}$ as

$$\hat{\theta}_{n|n-1,i} = \hat{\theta}_{n|n-1,i-1} + (1-c_i)\mu_{x_{n,i}} y_{n,i} - x_{n,i}^T \hat{\theta}_{n|n-1,i-1}. \quad (9)$$

The role of the first-order update in (9) is to perturb the censoring slab towards the direction of $(x_{n,i}, y_{n,i})$, thus making it less likely for future measurements conveying information “close to” $(x_{n,i}, y_{n,i})$ to be retained. Intuitively speaking, such updates eliminate measurement redundancies and reduce estimation error. The AC sketching module is summarized as Algorithm 3 and when plugged into Algorithm 1 it yields the proposed adaptive censoring (AC)-KF scheme. With regards to its performance, we have the following result.

Proposition 2. If $R_n = \sigma_n^2 I$, $\sigma_n^2 \gg \text{tr}(P_{n|n-1})$, and v_n, ν_n are Gaussian with $\mu = 0$, then the AC-KF yields unbiased estimates $\forall \tau$.

Proof: See Appendix 3.

The assumptions in Proposition 2 were made to simplify the proof and are not necessary. Extensive simulations indicate that the AC-KF remains unbiased even for low σ_n^2 and correlated noise, and also for $\mu > 0$. Nevertheless, the variance of AC-KF largely depends on the choice of μ. Tuning μ to optimize the MSE performance of AC-KF is a challenging task. Accurate rules for selecting μ is part of our ongoing research. However, even for possibly suboptimal values of μ, the proposed scheme yields promising results. Simulations in Section VII will demonstrate that the proposed AC-KF attains estimation accuracy close to that of the KF using the greedy measurement selection method in (11). In addition, the proposed sketching module performs a single pass over the data, and requires $O(Dp)$ computations, which is markedly lower than the $O(Ddp^2)$ required to perform greedy selection. Furthermore, AC-KF is suitable for online implementation by processing rows of X_n sequentially.

V. UPDATE-SELECTION KF

In the last two sections, dimensionality reduction schemes were proposed for KF, by reducing the number of observations processed. The resulting algorithms can be used to reduce the complexity of filtering as well as other data-related costs such as storage and transmission. In the present section, the focus is solely on reducing computational complexity of processing D observations per time slot.

Suppose that the observation noise has diagonal covariance matrix with $R_{n,ii} = \sigma_i^2$. Then, the KF correction step at time n can be obtained by solving

$$\hat{\theta}_{n|n} = \arg \min_{\theta} \|\theta - \hat{\theta}_{n|n-1}\|^2_{P_{n|n-1}} + \sum_{i=1}^{D} \frac{1}{\sigma_i^2}(y_{n,i} - x_{n,i}^T \theta)^2. \quad (10)$$

A sequential (across entries of y_n) solution of (10) can also be obtained using the recursive least-squares (RLS) algorithm with parameter estimate and error covariance matrix initialized at $\hat{\theta}_{n|n-1}$ and $P_{n|n-1}$, respectively. Specifically, let $\hat{\theta}_{n|n,i} = \begin{bmatrix} \hat{\theta}_{n|n-1} \ y_{n,i-1} \end{bmatrix}$ and $P_{n|n,i} = \text{cov}(\hat{\theta}_{n|n,i})$, for $i \in \{0, \ldots, D\}$; clearly, $\hat{\theta}_{n|n,0} = \hat{\theta}_{n|n-1}$ and $\hat{\theta}_{n|n,D} = \hat{\theta}_{n|n}$. The following RLS-like iteration, corresponding to the i-th entry of y_n, updates the state estimate as

$$\hat{\theta}_{n|n,i} = \hat{\theta}_{n|n,i-1} + k_{n,i}e_{n,i} \quad (11)$$

where $e_{n,i} := y_{n,i} - x_{n,i}^T \hat{\theta}_{n|n,i-1}$ and

$$k_{n,i} = \frac{P_{n|n,i-1} x_{n,i} s_{n,i}^{-1}}{s_{n,i}} \quad (12)$$

with

$$s_{n,i} := x_{n,i}^T P_{n|n,i-1} x_{n,i} + \sigma_i^2. \quad (13)$$

The state covariance matrix is then updated as

$$P_{n|n,i} = P_{n|n,i-1} - P_{n|n,i-1} x_{n,i} x_{n,i}^T P_{n|n,i-1} s_{n,i}^{-1} \quad (14)$$

and the process is repeated until $i = D$, and all the measurements have been processed.

A common approach to dealing with $D \gg$ is simply to process as many data within time slot n as the available computational resources allow for; see, e.g. [19] Chapter 7. In the present work however, to reduce computational complexity, we propose judiciously skipping correction updates. The criterion according to which the i-th row of $\{y_n, X_n\}$ will be used to update $\hat{\theta}_{n|n,i-1}$ is based on how much the distribution $p(\hat{\theta}_{n|n-1}|\theta_{n|n-1}, [y_{n,1}])$ after the update will diverge from the posterior $p(\hat{\theta}_{n|n-1}|\theta_{n|n-1}, [y_{n,1}])$ before the update. A commonly used measure of difference between probability density functions (pdfs) is the Kullback-Leibler (KL) divergence, also known as relative entropy (see, e.g. [23]). The KL divergence between two pdfs $p(x)$ and $q(x)$ is defined as

$$D_{KL}(p||q) := \int p(x) \ln \frac{p(x)}{q(x)} dx = E_p \left[\ln \frac{p(x)}{q(x)} \right]$$

and is not symmetric with respect to its arguments. In fact, one can interpret $p(x)$ as being the “true” pdf of x while $q(x)$ is an approximate one. Then, $D_{KL}(p||q)$ is a measure of how far the approximation is from reality.

Aiming at carrying out only “useful” updates, $D_{KL}(p_{n|i}||p_{n,i-1})$ can be used as an indicator of how
informative the update that involves the \(i\)-th row of \(\{y_n, X_n\}\) is, where

\[
p_{n,i}(\theta_n) := p(\theta_n | \hat{\theta}_{n|n-1}, [y_{n}]_{1:i})
\]

and

\[
p_{n,i-1}(\theta_n) := p(\theta_n | \hat{\theta}_{n|n-1}, [y_{n}]_{1:i-1}).
\]

Proposition 3. Let observations be generated according to \(1) - 2\) with \(\omega_n\) and \(\nu_n\) Gaussian. Then, for the sequential estimator in \(11) - 14\) it holds that

\[
D_{KL}(p_{n,i}||p_{n,i-1}) = \frac{1}{2} \left(e_{n,i}^2 - 1 \right) - \frac{\gamma_{n,i}}{\gamma_{n,i} + \sigma_i^2} \ln \frac{\gamma_{n,i} + \sigma_i^2}{\sigma_i^2} + \ln \left| \frac{x_{n,i}^T P_{n|n,i}^{-1} x_{n,i}}{\sigma_i^2} \right|
\]

where \(\gamma_{n,i} := x_{n,i}^T P_{n|n,i}^{-1} x_{n,i}\), and \(e_{n,i} := e_{n,i} \sigma_i^{-1/2}\) is the per-entry normalized innovation.

Proof: See Appendix 3.

Proposition 5 offers a simple expression of \(D_{KL}(p_{n,i}||p_{n,i-1})\) that will come handy in performing informative updates. Consider first the quantities involved in \(D_{KL}(p_{n,i}||p_{n,i-1})\), namely the normalized innovation (residual) \(\tilde{e}_{n,i}\), which is a random variable and \(\gamma_{n,i}\) that is deterministic. Interestingly, \(\gamma_{n,i} := |x_{n,i}|^2 P_{n|n,i}^{-1}\) is an ensemble quantity capturing the expected power of the \(i\)-th observation across the main directions of state uncertainty, while \(\tilde{e}_{n,i}\) is a random data-dependent variable that measures how important the \(i\)-th update is for a specific realization of the problem. Depicted in Fig. 2(a) is a simulated sequence of \(D_{KL}(p_{n,i}||p_{n,i-1})\) as a function of index \(i\) for an arbitrary time-slot \(n\). Immediately noticeable is that the per-step divergence decreases with an approximate rate of \(1/i\) following the rate of decrease of \(P_{n|n,i}\). Furthermore, observe that \(D_{KL}(p_{n,i}||p_{n,i-1})\) may take negative values, if \(\tilde{e}_{n,i}\) is close to 0, and \(\gamma_{n,i}\) is large. Updates with large negative divergence can be interpreted as cases where the state estimate remains mostly unchanged while the confidence in it increases (\(P_{n|n,i}\) decreases). On the other hand, a large positive divergence signifies that the state estimate is poor and should be updated. Such an interpretation hints on the possibility of using \(D_{KL}(p_{n,i}||p_{n,i-1})\) to develop separate update rules for the state and the error covariance estimates. Nevertheless, since the present work focuses on computational efficiency, selection rules skipping both state and covariance updates are more desirable.

Towards this end, we considered the modified metric

\[
D(p_{n,i}, p_{n,i-1}) := D_{KL}(p_{n,i}||p_{n,i-1}) + D_{KL}(p_{n,i-1}||p_{n,i})
\]

also known as the symmetric KL divergence. As seen in Figs. 2(a) and 2(b) both metrics follow a similar trend and converge to 0 as the state estimate converges in probability. Nevertheless, unlike \(D_{KL}(p_{n,i}||p_{n,i-1})\), the symmetric divergence is a non-negative quantity, and thus can be more conveniently interpreted as a distance. Subsequently, the following rule is proposed for selecting informative updates

\[
D(p_{n,i}||p_{n,i-1}) \begin{cases} \geq \tau_{n,i} & \text{Update } \hat{\theta}_{n|n,i}, P_{n|n,i} \\ < \tau_{n,i} & \text{Skip updates.} \end{cases}
\]

Proposition 4. Let observations be generated according to \(1) - 2\) with \(\omega_n\) and \(\nu_n\) Gaussian. Then, for the sequential estimator in \(11) - 14\) it holds that

\[
D(p_{n,i}, p_{n,i-1}) = \frac{1}{2} e_{n,i}^2 \left(2\gamma_{n,i} - \frac{\gamma_{n,i}^2}{\sigma_i^2} \right) \sigma_i^{-1}. \tag{17}
\]

Proof: See Appendix 4.

Using (17), rule (16) can be readily implemented. Regarding the sequence of thresholds \(\{\tau_{n,i}\}_{i=1}^{D}\), a judicious choice is

\[
\tau_{n,i} = \tau_n \frac{1}{i}
\]

which promotes updates with large informational value relative to the stage of the estimation process. The total number of updates per slot \(n\) can be tuned by \(\tau_n\). A couple of remarks are now in order.
Remark 1: KL divergence induced by a measurement was also employed by [17] to offer an alternative viewpoint on a distributed censoring rule for reducing the communication load in WSNs. Specifically, it was shown that the KL divergence of \(p(\theta_n) \) with \(p(\theta_{n,i}) \) as reference (i.e. \(D_{KL}(p(\theta_n)||p(\theta_{n,i})) \)) is proportional to the magnitude of \(\varepsilon_{n,i} \), which implies that the latter is related to the informational value of a measurement. Apart from the different goals and context, a major difference of the present section’s contribution relative to [17] is the explicit calculation, and use of the (symmetric) KL divergence in the proposed update selection rule.

Remark 2: Interestingly, our proposed data-driven update selection using \(D_{KL}(p_{n,i}||p_{n,i-1}) \) is also related to OED-type sensor selection schemes that are based on the mutual information between a sensor and the model (e.g., [17]). This relation can be observed upon recalling that the mutual information \(I(X;Y) \) between two random variables \(X \) and \(Y \) can be expressed as

\[
I(X;Y) = \mathbb{E}_Y[\mathbb{D}_{KL}(p(X||Y)||p(X))].
\]

(19)

In the present context, (19) implies that the mutual information between the \(i \)-th “sensor” at time slot \(n \) and \(\theta_n \) in a sequential processing setting, equals its \(D_{KL}(p_{n,i}||p_{n,i-1}) \) averaged over all possible measurements \(y_{n,i} \).

A. Reduced-complexity censoring rule

In the previous section, an update selection rule was introduced in [16] relying on the information metric in [17]. Practical implementation of [16] requires careful consideration of the computational complexity needed to obtain \(D(p_{n,i},p_{n,i-1}) \). As seen in [17], to obtain the latter it suffices to compute \(\varepsilon_{n,i} \) and \(\gamma_{n,i} \) (since \(s_{n,i} = \gamma_{n,i} + \sigma_i^2 \)). While computing \(\varepsilon_{n,i} \) requires only \(O(p) \) products, obtaining \(\gamma_{n,i} := x_{n,i}^T V_{n,i-1} n,i \) requires a matrix-vector product that comes with \(O(p^2) \) complexity. Thus, even though checking whether an update is informative or not has smaller complexity than the update itself (cf. (11)-(14)), both tasks are of the same order of \(O(p^2) \) complexity. Ideally, checking the update should be less costly than performing the update by an order of magnitude.

For this purpose, a low-complexity approximation of \(\gamma_{n,i} \) is highly desirable. One way to approximate \(\gamma_{n,i} \) is to use the eigen-decomposition of \(\mathbf{P}_{n,i} = V_{n,i-1} \Lambda_{n,i-1} V_{n,i-1}^T \) to produce the best \(k \)-rank approximation of \(\mathbf{P}_{n,i-1} \) as

\[
\hat{\mathbf{P}}_{n,i-1} = V_{n,i-1} \Lambda_{n,i-1}^{-1} V_{n,i-1}^T
\]

where \(\Lambda_{n,i-1}^{-1} \) is a \(k \times k \) diagonal matrix containing the \(k \leq p \) largest eigenvalues of \(\mathbf{P}_{n,i-1} \), and \(V_{n,i-1} \) is the \(p \times k \) matrix of the corresponding eigenvectors. Using \(\hat{\mathbf{P}}_{n,i-1} \) to approximate \(\gamma_{n,i} \), yields

\[
g_{n,i} := x_{n,i}^T \hat{\mathbf{P}}_{n,i-1} x_{n,i} = x_{n,i}^T V_{n,i-1} \Lambda_{n,i-1}^{-1} V_{n,i-1}^T V_{n,i-1}^T
\]

(20)

which can be obtained with \(O(pk) \) complexity. Although \(g_{n,i} \) exactly captures the power of \(x_{n,i}^T \) along the principal directions of \(\mathbf{P}_{n,i-1} \), it is in general a poor estimate of \(\gamma_{n,i} \). In fact, ignoring the power of the \(p - k \) smallest eigenvalues of \(\mathbf{P}_{n,i-1} \) leads to under-estimation; that is \(g_{n,i} \leq \gamma_{n,i} \). To mitigate this problem, let us denote the power of \(x_{n,i}^T \) that is not captured by the first \(k \) principal directions as

\[
g_{n,i}^k := \|x_{n,i}\|^2 - \|x_{n,i}^k V_{n,i-1}^T \|^2.
\]

Then, if the remaining power \(g_{n,i}^k \) is distributed evenly along the \(p - k \) directions that correspond to the smallest eigenvalues of \(\mathbf{P}_{n,i-1} \), an approximate expression of \(\gamma_{n,i} \) is

\[
\hat{\gamma}_{n,i} = g_{n,i} + \frac{1}{p-k} g_{n,i}^k \sum_{j=k+1}^p \lambda_{n,i-1}(j)
\]

(21)

where for the second equality we used that \(\text{tr}(\mathbf{P}_{n,i-1}) = \text{tr}(\mathbf{P}_{n,i-1}) \). Essentially, by ignoring the angle of \(x_{n,i}^T \) along the \(p - k \) least important directions of uncertainty, an estimate \(\hat{\gamma}_{n,i} \approx \gamma_{n,i} \) can be found with \(O(pk) \) complexity. Simulations will demonstrate that for most cases \(k \) need not be very large for the purpose of obtaining a reliable approximation of \(\gamma_{n,i} \), and thus of the update selection rule in (16).

Finally, let us consider the computational burden of recomputing the eigen-decomposition of \(\mathbf{P}_{n,i-1} \) when an update is performed. Fortunately, the decomposition needs only be fully computed once for \(\mathbf{P}_{n,i} \), after the prediction step. Then, exploiting that \(\mathbf{P}_{n,i-1} \) is given as a sequence of rank-one updates of symmetric positive matrices (cf. (14)) allows for low-complexity \(O(p^2) \) updates of the eigen-decompositions, see e.g. [26] and [27], while the fact that only the first \(k \) eigen-pairs are required can further reduce the complexity of the updates. The need for tracking the principal eigen-pairs of \(\mathbf{P}_{n,i-1} \) can be completely eliminated by setting \(k = 0 \), which yields the estimate

\[
\hat{\gamma}_{n,i}^0 = \frac{1}{p} \|x_{n,i}\|^2 \text{tr}(\mathbf{P}_{n,i-1})
\]

(22)

with \(O(p) \) complexity, at the cost of ignoring information given by the angle of \(x_{n,i} \). For cases where the eigenvalues of \(\mathbf{P}_{n,i-1} \) are approximately uniform, (22) provides a practical and sufficiently accurate estimate of \(\gamma_{n,i} \). Generally, obtaining (21) requires \(O(p(k+1)) \) computations. Overall, the complexity of the correction step using the iterative method in (11)-(14) with the update selection rule in (16) and the approximation in (21) is \(O(dp^2) + O(Dp(k+1)) \), where \(d \ll D \) is the number of updates. Depending on the size of \(p, d, D \), the overall complexity of the proposed scheme can be considerably less than the standard \(O(Dp^2) \).

B. First-order updates

The fact that the update selection rule in (16) requires at least \(O(p) \) computations hints at possible modifications of the present scheme, that are considered in this section. Specifically, instead of using (16) to completely skip updates, one may incorporate a simple \(O(p) \) update without noticeably increasing the overall complexity of the algorithm. For instance,
having computed $e_{n,i}$ which is required in (16), the following LMS-like parameter update can readily be implemented
\[
\theta_{n|n,i} = \theta_{n|n,i-1} + \mu_{n,i} x_{n,i} e_{n,i} \tag{23}
\]
where $\mu_{n,i}$ denotes a user selected stepsize. Given the update in (23), consider the difference
\[
\Delta_n(\mu_{n,i}) := \text{MSE}(\hat{\theta}_{n|n,i}) - \text{MSE}(\hat{\theta}_{n|n,i-1}) \tag{24}
\]
where $\text{MSE}(\theta) := \mathbb{E}[\|\theta - \theta_n\|^2]$. Clearly, $\mu_{n,i}$ should be chosen such that $\Delta_n(\mu_{n,i}) \leq 0$, or, ideally such that $\Delta_n(\mu_{n,i})$ is minimized. But first, it is useful to derive an explicit expression for $\Delta_n(\mu_{n,i})$.

Proposition 5. For an update of the form (23) that follows an update of (11)-(14) it holds that
\[
\Delta_n(\mu_{n,i}) = \|x_{n,i}\|^2 \left(\gamma_{n,i} + \sigma_i^2\right)\mu_{n,i}^2 - 2\gamma_{n,i}\mu_{n,i}. \tag{25}
\]

Proof: See Appendix 5.
To guarantee $\Delta_n(\mu_{n,i}) \leq 0$, it suffices to choose $\mu_{n,i}$ as
\[
0 \leq \mu_{n,i} \leq \frac{2\gamma_{n,i}}{\|x_{n,i}\|^2(\gamma_{n,i} + \sigma_i^2)} \tag{26}
\]
while for
\[
\mu_{n,i}^* = \frac{\gamma_{n,i}}{\|x_{n,i}\|^2(\gamma_{n,i} + \sigma_i^2)} \tag{27}
\]
the minimum of $\Delta_n(\cdot)$ is attained
\[
\Delta_n(\mu_{n,i}^*) = - \frac{\gamma_{n,i}^2}{\|x_{n,i}\|^2(\gamma_{n,i} + \sigma_i^2)}. \tag{28}
\]

Although the LMS-like iteration (23) reduces the MSE by as much as $-\Delta_n(\mu_{n,i}^*)$, updating $\theta_{n|n,i-1}$ incurs complexity $O(\mu^2)$, and it is thus skipped. Skipping covariance updates for first-order updates is also well motivated by the fact that $-\Delta_n(\mu_{n,i})$ is generally significantly smaller than the reduction achieved by the second-order updates (11)-(14). Nevertheless, one may in practice use $\mu_{n,i} \leq \mu_{n,i}^*$ to compensate for the (slow) decrease in estimation variance. Finally, while the exact value of $\gamma_{n,i}$ is generally not available, $\mu_{n,i}$ can be selected after using the estimate $\hat{\gamma}_{n,i}$ from (21) in (26) or (27). The overall proposed reduced-complexity update-selection (US) KF described in Section V is tabulated as Algorithm 4.

VI. BUDGETED FIXED-INTERVAL SMOOTHING

The methods introduced in Sections III, IV and V utilize dimensionality reduction, measurement selection, and update selection, in order to promote low-complexity correction updates of the KF. In the present section, we briefly explore another direction that allows for reliable tracking with smaller data usage and computational complexity. Specifically, consider the “smoothed” estimate $\hat{\theta}_n^{KS} := \mathbb{E}[\hat{\theta}_n|\{y_n\}_{n=1}^N]$, and let $\hat{\theta}_n^{KS}$ be formed by concatenating all such smoothed estimates. This can also be written as
\[
\hat{\theta}_n^{KS} = \arg\min_{\theta} \frac{1}{2} \sum_{n=1}^N \|y_n - x_n \theta_n\|^2_{R_n^{-1}} + \|\theta_n - F_n \hat{\theta}_{n-1}\|^2_{Q_n^{-1}} + \|\theta_0 - m_0\|^2_{P_0^{-1}}. \tag{29}
\]

which is optimal in the linear minimum mean-square error (LMMSE) sense.

Aiming at a recursive solver of (29), one can rely on the Rauch-Tung-Stribel (RTS) forward-backward KS algorithm [28]. In its forward pass, the RTS algorithm is identical to the KF. The KS estimates $\{\hat{\theta}_{n|n}\}_{n=1}^N$ are then stored and processed by the backward pass of the KS, while the error covariance matrices $\{P_{n|n}\}_{n=1}^N$ are computed off-line.

Given $\hat{\theta}_{n+1|N}$, the backward iteration solves
\[
\hat{\theta}_{n|N} := \arg\min_{\theta} \|\hat{\theta}_{n+1|N} - F_n \theta\|^2_{Q_n^{-1}} + \|\theta - \hat{\theta}_{n|n}\|^2_{P_{n|n}}. \tag{30}
\]

Similar to filtering, the minimizer of (30) is also given in closed form as
\[
\hat{\theta}_{n|N} = \left(F_n^T Q_n^{-1} F_n + P_{n|n}^{-1} \right)^{-1} \left(F_n^T Q_n^{-1} \hat{\theta}_{n+1|N} + P_{n|n}^{-1} \hat{\theta}_{n|n} \right). \tag{31}
\]

After invoking the MIL and letting $B_n := P_{n|n} F_n^T P_{n+1|n}$, the estimate $\hat{\theta}_{n|N}$ is given in the correction form of $\theta_{n|n}$ as
\[
\hat{\theta}_{n|N} = \hat{\theta}_{n|N} + B_n \left(\hat{\theta}_{n+1|N} - F_n \hat{\theta}_{n|n} \right) \tag{31}
\]
with corresponding error covariance matrix
\[
P_{n|N} = P_{n|n} + B_n (B_{n+1|N} - P_{n+1|n}) B_n^T. \tag{32}
\]

A key property of the backward KS iteration, is that it improves KF performance using from $\{I_{n}\}_{n=1}^N$ only the information encapsulated in the output $\hat{\theta}_{n|N}$ of the forward filter. Therefore, backward iterations can be readily applied on filtered estimates of RP-KF, AC-KF or the US-KF to limit the tracker’s performance loss caused by the measurement reduction.
For the following experiments, we set $v_{\text{correlated}}$; thus, $\begin{array}{c}
\sim
\end{array}$ then weighted independently by coefficients α have two non-zero values θ_{entry}, and concatenated in y with N and R.

Clearly, for θ_{d}, it holds that $P_{n|N} = P_{n|n}$; while for $\theta_{\text{n|n}} \notin \Theta_{b}^{o}$, the error covariance is given by (32). Essentially, KS estimates that are consistent enough with the computed model are not smoothed, thus saving the computations required. Here, the threshold τ_{b} in (33) can be tuned to control the amount of “acceptable” deviation from the model. The novel economical, fixed-interval smoother on a budget, that we abbreviate as Bud-KS, is tabulated as Algorithm 5.

Algorithm 5 The budgeted Kalman smoother (Bud-KS)

```
for $n = N - 1 ; 0 \text{ do}$
    if $\hat{\theta}_{n|n} \in \Theta_{n}^{S}$ then
        $\hat{\theta}_{n|N} = \hat{\theta}_{n|n}$
        $P_{n|N} = P_{n|n}$
    else
        $\hat{\theta}_{n|N} = \hat{\theta}_{n|n} + B_{n} \left( \hat{\theta}_{n+1|N} - F_{n} \hat{\theta}_{n|n} \right)$
        $B_{n} = P_{n|n} F_{n} P_{n+1|n}^{-1}$
        $P_{n|N} = P_{n|n} + B_{n} \left( P_{n+1|N} - P_{n+1|n} \right) B_{n}^{T}$
    end if
end for
```

In addition, the backward iteration can also be modified to operate within a limited computational budget. Given the smoothed estimate at time $n + 1$, let us define the set

$$
\Theta_{n}^{b} := \left\{ \theta \left| \beta \hat{\theta}_{n+1|N} - \beta F_{n} \theta \right|_{Q_{n}}^{2} \leq \tau_{b} \right\} \quad (33)
$$

of states at time n that are consistent enough with the transition model in the WLS sense. Based on (33), the Bud-KS estimate at time n is given as

$$
\hat{\theta}_{n|N} = \left\{ \begin{array}{ll}
\hat{\theta}_{n|n}, & \hat{\theta}_{n|n} \in \Theta_{n}^{b}, \\
\hat{\theta}_{n|n} + B_{n} \left(\hat{\theta}_{n+1|N} - F_{n} \hat{\theta}_{n|n} \right), & \hat{\theta}_{n|n} \notin \Theta_{n}^{b}.
\end{array} \right. \quad (34)
$$

Clearly, for $\hat{\theta}_{n|n} \in \Theta_{n}^{b}$, it holds that $P_{n|N} = P_{n|n}$; while for $\hat{\theta}_{n|n} \notin \Theta_{n}^{b}$, the error covariance is given by (32). Essentially, KS estimates that are consistent enough with the computed model are not smoothed, thus saving the computations required. Here, the threshold τ_{b} in (33) can be tuned to control the amount of “acceptable” deviation from the model. The novel economical, fixed-interval smoother on a budget, that we abbreviate as Bud-KS, is tabulated as Algorithm 5.

VII. NUMERICAL TESTS

The novel AC-KF, RP-KF, US-KF and Bud-KS algorithms are tested here on a simulated linear dynamical system. For this experiment, a simple state transition model that performs cyclical shifting of the entries of the state was implemented. The state transition matrix is

$$
F_{n|n} = \begin{cases}
1, & i = j - 1 \\
0, & \text{otherwise}
\end{cases}, \forall n
$$

and $F_{1|n} = 1$, while the state dimension is set to $p = 50$. The state noise $(w_{n})_{n=1}^{N}$ was generated i.i.d. with $w_{n} \sim N(0, \sigma_{w}^{2} Q_{n})$, where $Q_{n,ij} = 0.5^{|i-j|}$ and $\sigma_{w} = 0.01$. Finally, the initial state is $\theta_{0} \sim N(m_{0}, P_{0})$, with m_{0} set to have two non-zero values 20 and −30 in its first and fifth entry, and $P_{0} = 0.04 I$. Per time instant $n \in \{1, \ldots, N\}$ with $N = 100$, $D = 500$ measurements are obtained and concatenated in $y_{n} = X_{n} \theta_{n} + v_{n}$, where rows of X_{n} are generated as i.i.d. standardized Gaussian vectors and then weighted independently by coefficients α drawn from $\alpha \sim \text{Unif}([0.5, 1.5])$. For this experiment, observations are correlated; thus, $v_{n} \sim N(0, \sigma_{v}^{2} R_{n})$, where $R_{n,ij} = 0.5^{|i-j|-1}$. For the following experiments, we set $\sigma_{v}^{2} = 1$, upon observing that the results remain qualitatively similar for different noise levels.

A. AC-KF, RP-KF, and US-KF

To determine the average performance in terms of estimation error and computational complexity of AC-KF and RP-KF for different values of d/D, 20 Monte Carlo realizations were run on the same simulated linear dynamical system. The estimation performance was measured in terms of root mean-square error (RMSE) of the estimates across iterations; that is,

$$
\text{RMSE} = \frac{1}{N} \sum_{n=1}^{N} \| \hat{\theta}_{n|n} - \theta_{n} \|.
$$

AC-KF and US-KF were run first, with thresholds tuned such that a constant number of approximately d observations were selected per time slot; RP-KF and the greedy algorithm were then set to obtain d measurements per time slot. As a performance benchmark for the three algorithms, KF was also run with d randomly sampled observations per time step.

The average RMSE of the five methods as a function of d/D is plotted in Fig. 5. These plots confirm that the proposed data-agnostic RP-KF is useful for increasing the accuracy (compared to plain random sampling) when estimating dynamic processes. With regards to the more elaborate algorithms, AC-KF has comparable performance with the KF using greedy OED measurement selection, while being orders of magnitude faster in terms of runtime. Last but not least, the US-KF with $k = 0$ outperforms the other methods while maintaining $O(d p^{2})$ complexity, even when the observation noise is correlated.

Finally, experiments were performed to assess sensitivity of the US-KF to the choice of parameter k. Recall that k determines the accuracy of the approximation of $\gamma_{n,i}$ (cf. (20)-(21)), and therefore how accurately the update selection rule in (16) is implemented; at the same time, the computational complexity of implementing (16) increases with k at a rate of $O(p(k+1))$. Interestingly, experiments indicate that $k \ll p$ can be sufficient in practice, while sensitivity to k only manifests itself for relatively small values of the compression ratio d/D.

As seen in Fig. 4, RMSE of US-KF with $k = 1$ is almost as low as the one achieved with $k = p$, while setting $k = 0$ still yields reliable estimates, with the gap becoming smaller as d/D increases. Recall that using $k = 0$ leads to the simple rule in (22), and bears the additional advantage that no eigenpairs of $P_{n|n-1,i}$ need be tracked.

B. Bud-KS

In the last experiment, the extent to which backward smoothing iterations can improve reduced-observation filtering was examined. The AC-KF algorithm was first run for the low SNR model with d/D ranging from 0.0095 up to 0.65; Bud-KF was then run with $\tau_{b} = 0$ in order to smooth all N filtered estimates. Figure 5 depicts the average RMSE of the AC-KF with and without smoothing. Evidently, smoothing can significantly reduce RMSE over the entire range of dimensionality.
reduction, while its effect becomes more prominent as \(d/D\) decreases. Upon examining Fig. 5 the AC-KF using < 1% of the data followed by Bud-KS, attains the same RMSE as the AC-KF using 5% of the data; a surprising five-fold decrease. Thus, at the cost of introducing non-causality (or delay if a fixed-lag KS is used), smoothing offers room for significant decrease in the data requirements and complexity of tracking.

VIII. APPLICATION TO MONITORING DYNAMIC GRAPHS

Dynamically evolving graphs offer a promising application domain for our proposed algorithms. In this context, measurements are obtained from a graph of known and constant topology in order to infer a set of hidden time-varying properties. Specifically, traffic matrix estimation and link cost estimation are two tasks that involve tracking of large-scale dynamical processes from linearly obtained observations. To demonstrate the applicability of US-KF in reducing the complexity of such tasks, a Kronecker graph \(G = (V, E)\) with \(|V| = 50\) vertices was generated. The adjacency matrix \(A_k\) of a Kronecker graph can be generated recursively as \(A_k = A_k \otimes A_{k-1}\), and is completely determined by the initiator graph \(A_1\). As shown in [29], Kronecker graphs exhibit many real-word graph properties such as power-law degree distributions, and are thus highly recommended for simulating algorithms. For our experiments, a Kronecker graph was generated with initiator

\[
A_1 = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]

until 100 nodes become available. Nodes adjacent to all other nodes were removed in order to decrease the connectivity of the graph to more realistic levels. The resulting adjacency matrix is depicted in Fig. 6.

A. Traffic matrix estimation

Consider the task of measuring the traffic volume at the links of a network, in order to estimate the volume of origin-to-destination (OD) flows, a very important task in many networks ranging from the Internet to transportation. Since OD flows are defined by a set of origins \(O \subseteq V\) and a set of destinations \(D \subseteq V\), they can be represented as the entries of an \(|O| \times |D|\) traffic matrix \(F\). Similar to [30], [31] and [32],

![Fig. 3. Average RMSE for the US-KF, AC-KF, Greedy algorithm, RP-KF and random sampling as a function of \(d/D\).](image1)

![Fig. 4. Average RMSE for US-KF for different values of \(k\).](image2)

![Fig. 5. RMSE of AC-KF versus Bud-KS, as a function of \(d/D\).](image3)

![Fig. 6. Adjacency matrix of a Kronecker graph with 100 nodes.](image4)
the following linear state-transition and observation models is considered

\[f_n = f_{n-1} + w_n \]
\[l_n = Rf_n + v_n \]

where \(f_n := \text{vec}(F_n) \) is the vectorized traffic matrix at time slot \(n \) that is assumed to evolve according to a random walk with driving Gaussian noise \(w_n \) with known covariance matrix \(\sigma_w^2 Q \) such that \(Q_{i,j} = 0.2^{|i-j|} \); \(l_n \) contains the link measurements at time slot \(n \); and, \(v_n \) is the observation noise with \(\text{cov}(v_n) = \sigma_v^2 I \). The choice of a non-diagonal \(Q_n \) was made to reflect the fact that flows tend to be highly correlated (see e.g., [2]). For this experiment, we set \(\sigma_f = 0.02, \sigma = 0.5, \) and generated the initial state as \(f_0 \sim \mathcal{N}(2 \cdot 1, Q) \)

In this model, the role of the measurement matrix is played by the routing matrix \(R \in \{0,1\}^{|E| \times |O| \times |D|} \), each column of which corresponds to an OD flow with entries taking the value 1, if the corresponding links are part of the flow. Simply put, each column of \(R \) describes the path that the corresponding OD flow takes through the graph. For this experiment, OD paths were chosen to be the shortest possible using Dijkstra’s algorithm. To make this experiment even more challenging, flows with paths that consist of a single link were not considered; flows with no sampled links and irrelevant links were also removed from the model. Overall, 189 edges were sampled in order to track 689 OD flows.

Plotted in Fig. 7 is the MSE (\(\mathbb{E}[\|f_n - \hat{f}_n\|^2] \)) of the estimated traffic matrix across time, for the proposed US-KF (Alg.4), and the KF with random sampling. The algorithms were run for \(N = 100 \) time slots and the results were averaged across 100 runs. Both algorithms were tuned to utilize 6% of edge measurements per time slot, and require approximately the same runtime. As seen in the plot, the estimates \(\hat{f}_n \) of the proposed US-KF converge faster than those of the sub-sampled KF, and keep a closer track of the true traffic matrix \(f_n \).

It should be noted that, due to the large state dimension, other methods such as the RP-KF or greedy OED become impractical.

B. Estimation of link costs from path-cost measurements

Consider now that every edge \(e \) of the graph is associated with a cost \(c(e) \), and that the concatenation of all such costs forms the link cost vector \(c \). A common task associated with networks is inference of \(c \) by measuring path costs \(p_{ij} \), where \(p_{ij} \) is the total cost of a flow between nodes \(v_i \) and \(v_j \) (see e.g., [2] Chap. 9.4.1). Since \(p_{ij} \) is the aggregation of all costs of the edges that the corresponding path crosses, it can be expressed as the inner product between \(c \) and the corresponding row of the routing matrix. Consequently, path costs and link costs are linked through the linear observation model \(p = Rc \), where \(p \) is the vector with all the available path cost measurements. Considering dynamic graphs where the link costs \(c_n \) and path costs \(p_n \) evolve across time slots \(n \), leads to the familiar linear state-transition and state-observation models

\[c_n = c_{n-1} + w_n \]
\[p_n = R^T c_n + v_n \]

where \(w \sim \mathcal{N}(0, \sigma_c^2 I), v \sim \mathcal{N}(0, \sigma_v^2 I) \), and the initial state is \(c_0 \sim \mathcal{N}(m, \sigma_0^2 I) \). For this experiment, we used the same graph and routing matrix as in the traffic estimation experiment, and generated \(c_n \) and \(p_n \) according to (37) and (38) correspondingly, with \(\sigma_c = 0.04, \sigma = 0.1, m = 1 \) and \(\sigma_0 = 0.1 \).

Plotted in Fig. 8 is the MSE (\(\mathbb{E}[\|c_n - \hat{c}_n\|^2] \)) of the estimated link costs across time, for the proposed US-KF (Alg.4) and the KF with random sampling, for \(N = 100 \) time slots and averaged across 100 runs. Both algorithms were tuned to utilize 4% of path cost measurements per time slot, and require approximately the same runtime. As seen in the plot, the proposed US-KF successfully tracks the slowly evolving link costs by judiciously selecting and using a small fraction of the available path cost observations. Furthermore, it can be observed that if the same fraction (4%) of measurements is selected at random, then the KF fails to track the link costs, with its estimate diverging from the true value as time progresses. The divergence of the KF with random sampling is consistent with the results in [33], where it is shown that...
there exists a cut-off value for the data rate, below which the error covariance may become unbounded. Interestingly, the proposed reduced-complexity US-KF appears to be much more robust to divergence.

IX. CONCLUDING REMARKS

We introduced random projections and censoring as dimensionality reduction and measurement selection methods for tracking dynamical processes with generally time-varying parameters. The proposed methods are simple routines that can be used as dimensionality reduction modules coupled with an ordinary KF. Furthermore, we introduced a reduced-complexity KF that processes measurements sequentially and with an ordinary KF. Furthermore, we introduced a reduced-dimensionality reduction and measurement selection methods. The proposed methods are simple routines that can be used as dimensionality reduction and measurement selection methods that are commonly used in real-world problems, and we examined the network-related applications of traffic matrix estimation and network flow estimation.

APPENDIX

Proof of Proposition 2

Follows readily from Theorem 2 in [34].

Proof of Proposition 3

From the assumption of large and uncorrelated noise \(\mathbf{R}_n = \sigma^2_n \mathbf{I} \), the inverse reduced innovation covariance matrix can be approximated as

\[
(\mathbf{X}_n \mathbf{P}_{n|i-1} \mathbf{X}_n^T + \mathbf{R}_n)^{-1} \approx \sigma_n^{-2} \mathbf{I}
\]

and hence the correction update as

\[
\hat{\theta}_{n|i} = \hat{\theta}_{n|i-1} + \sigma_n^{-2} \mathbf{P}_{n|i-1} \sum_{i=1}^{D} \mathbf{x}_{n,i} \hat{y}_{n,i}(1 - c_{n,i}) \tag{39}
\]

where \(\hat{y}_{n,i} := \mathbf{x}_n^T(\hat{\theta}_{n|i-1}) + v_{n,i} \). Furthermore, for \(\mu = 0 \) the censoring rule in (38) simplifies to \(1 - c_{n,i} = \mathbb{I}\{y_{n,i} \geq \tau_n\} \), where \(y_{n,i} \sim \mathcal{N}(0, \mathbf{x}_{n,i}^T \mathbf{P}_{n|i-1} \mathbf{x}_{n,i} + \sigma_n^2) \). If \(\hat{\theta}_{n|i-1} \) is unbiased, then it readily follows that \(\hat{\theta}_{n|i} \) is also unbiased, and (39) yields

\[
\mathbb{E}[\hat{\theta}_{n|i} - \theta_{n|i}] = \sigma_n^{-2} \mathbf{P}_{n|i-1} \sum_{i=1}^{D} \mathbf{x}_{n,i} \mathbb{E}[\hat{y}_{n,i}(1 - c_{n,i})], \tag{40}
\]

Since

\[
\mathbb{E}[\hat{y}_{n,i}(1 - c_{n,i})] = \mathbb{E}[\hat{y}_{n,i} \mathbb{I}\{y_{n,i} \geq \tau_n\}] = \mathbb{E}[\hat{y}_{n,i}] - \mathbb{E}[\hat{y}_{n,i} \mathbb{I}\{y_{n,i} \leq \tau_n\}] \propto \int_{-\tau_n}^{\tau_n} \hat{y}_{n,i} e^{-c(\hat{y}_{n,i})^2} d(\hat{y}_{n,i}) = \frac{1}{2c}(e^{-c\tau_n^2} - e^{-c(-\tau_n)^2}) = 0 \tag{41}
\]

where \(c := 0.5(\mathbf{x}_{n,i}^T \mathbf{P}_{n|i-1} \mathbf{x}_{n,i} + \sigma_n^2)^{-1} \), it follows from (41) and (40) that \(\mathbb{E}[\hat{\theta}_{n|i} - \theta_{n|i}] = 0 \), and the AC-KF is unbiased.

Proof of Proposition 3

For observations generated according to the linear Gaussian model, and since \(\hat{\theta}_{n|i} \) is the MMSE estimator of \(\theta_{n|i} \), given \(\hat{\theta}_{n|i-1} \) and \(y_{n,i} \), it follows that the posterior of \(\theta_{n|i} \) is also Gaussian with \(p_{n,i}(\theta_{n|i}) = \mathcal{N}(\hat{\theta}_{n|i}, \mathbf{P}_{n|i}) \). Similarly, one can obtain \(p_{n,i-1}(\theta_{n|i}) = \mathcal{N}(\hat{\theta}_{n|i-1}, \mathbf{P}_{n|i-1}) \). Using the closed-form identity for the KL divergence between two multivariate normal pdfs, we arrive at

\[
\mathcal{D}_{KL}(p_{n,i}||p_{n,i-1}) = \frac{1}{2} \left[\text{tr}(\mathbf{P}_{n|i-1}^{-1} \mathbf{P}_{n|i}) + (\hat{\theta}_{n|i-1} - \hat{\theta}_{n|i})^T \mathbf{P}_{n|i-1}^{-1} (\hat{\theta}_{n|i-1} - \hat{\theta}_{n|i}) - p + \ln \left(\frac{\mathbf{P}_{n|i-1}}{\mathbf{P}_{n|i}} \right) \right] \tag{42}
\]

where \(\text{tr}(\mathbf{P}) \) denotes the trace of matrix \(\mathbf{P} \) and \(|\mathbf{P}| \) its determinant.

Upon observing that for the RLS-like iteration in (11) the inverse of the covariance matrix is updated as

\[
\mathbf{P}_{n|i}^{-1} = \mathbf{P}_{n|i-1}^{-1} + \mathbf{x}_{n,i} \mathbf{x}_{n,i}^T \sigma_i^{-2} \tag{44}
\]

the fourth summand in (42) can be expressed as

\[
\text{tr}(\mathbf{P}_{n|i-1}^{-1} \mathbf{P}_{n|i}) = \text{tr}(\mathbf{I} + \mathbf{x}_{n,i} \mathbf{x}_{n,i}^T \sigma_i^{-2}) = p - \mathbf{x}_{n,i}^T \mathbf{P}_{n|i-1}^{-1} \mathbf{x}_{n,i} \sigma_i^{-2}. \tag{43}
\]

The remaining summands can be expressed as

\[
\ln \left(\frac{\mathbf{P}_{n|i-1}}{|\mathbf{P}_{n|i}|} \right) = \ln \left(\mathbf{P}_{n|i-1} \right) + \ln \left(\mathbf{I} - \mathbf{P}_{n|i-1}^{-1} \right) = \ln \left(\mathbf{P}_{n|i-1}^{-1} \right) + \ln \left(\mathbf{I} + \mathbf{x}_{n,i} \mathbf{x}_{n,i}^T \sigma_i^{-2} \right) = \ln \left(\mathbf{I} + \mathbf{x}_{n,i} \mathbf{x}_{n,i}^T \sigma_i^{-2} \right). \tag{45}
\]
Since $\hat{\gamma}_{n,i} = 0$, the trace of the expectation in (50) yields

$$
\bar{D}(p_{n,i}^{-1}) = \frac{1}{2} \left(\frac{\hat{\gamma}_{n,i}}{\bar{\sigma}_{n,i}^2} \right) + \frac{1}{2} \left(\frac{\hat{\gamma}_{n,i}}{\bar{\sigma}_{n,i}^2} \right)^2.
$$

Utilizing (44) and that $\theta_{n,i-1} - \hat{\theta}_{n,i} = -k_{n,i}e_{n,i}$ yields

$$
D(p_{n,i}^{-1}) = \frac{1}{2} k_{n,i}^2 x_{n,i}^T x_{n,i} - e_{n,i} + \epsilon_{n,i}^{-1/2}/2
$$

and since $\gamma_{n,i} := x_{n,i}^T P_{n,i}^{-1} x_{n,i}$ and $\bar{\epsilon}_{n,i} := e_{n,i}^{-1/2}/2$ the proposition holds.

Proof of Proposition 5

Recalling that $e_{n,i} := y_{n,i} - x_{n,i}^T \hat{\theta}_{n,i-1}$ and $y_{n,i} = x_{n,i}^T \theta_n + v_{n,i}$, (43) yields

$$
\hat{\theta}_{n,i} = \theta_{n,i-1} - \mu_n x_{n,i} x_{n,i}^T (\theta_{n,i-1} - \hat{\theta}_{n,i-1} + \mu_n x_{n,i} v_{n,i}).
$$

With $\theta_{n,i} := \hat{\theta}_{n,i} - \theta_n$ denoting the error vector, (48) can be expressed as

$$
\hat{\theta}_{n,i} = \left(I_p - \mu_n x_{n,i} x_{n,i}^T \right) \hat{\theta}_{n,i-1} + \mu_n x_{n,i} v_{n,i}.
$$

The outer product of both sides in (49) yields

$$
\hat{\theta}_{n,i}^T \hat{\theta}_{n,i} = \left(I_p - \mu_n x_{n,i} x_{n,i}^T \right) \hat{\theta}_{n,i-1}^T + \left(I_p - \mu_n x_{n,i} x_{n,i}^T \right) \hat{\theta}_{n,i-1} + 2 \left(I_p - \mu_n x_{n,i} x_{n,i}^T \right) \hat{\theta}_{n,i-1} \mu_n x_{n,i} v_{n,i} + (\mu_n x_{n,i} x_{n,i}^T v_{n,i})^2 \sigma_i^2.
$$

Since $\hat{\theta}_{n,i-1}$ is unbiased, it follows that $\hat{\theta}_{n,i} \mu_n x_{n,i}$ is unbiased too, and therefore the MSE equals the trace of the covariance matrix. Since the expected value of the second summand in (50) is zero, the trace of the expectation in (50) yields

$$
\text{tr} \left(P_{n,i}^{-1} \right) = \text{tr} \left(\left(I_p - \mu_n x_{n,i} x_{n,i}^T \right)^2 P_{n,i}^{-1} \right)
$$

where $P_{n,i}^{-1}$ is the covariance matrix after the first-order update in (23). Given that $\Delta_{n,i} := \text{tr} \left(P_{n,i}^{-1} \right) - \text{tr} \left(P_{n,i-1}^{-1} \right)$, and upon observing that $\text{tr} \left(x_{n,i} x_{n,i}^T P_{n,i-1}^{-1} \right) = \gamma_{n,i}$ and $\text{tr} \left(x_{n,i} x_{n,i}^T P_{n,i-1}^{-1} \right) = \| x_{n,i} \|^2 \gamma_{n,i}$, the proof is complete after using (51).
[26] K.-B. Yu, “Recursive updating the eigenvalue decomposition of a covariance matrix,” IEEE Trans. Sig. Proc., vol. 39, no. 5, pp. 1136–1145, 1991.

[27] M. Gu and S. C. Eisenstat, “A stable and efficient algorithm for the rank-one modification of the symmetric eigenproblem,” SIAM J. on Matrix Anal. and Appl., vol. 15, no. 4, pp. 1266–1276, 1994.

[28] H. E. Rauch, C. Striebel, and F. Tung, “Maximum likelihood estimates of linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450, 1965.

[29] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker graphs: An approach to modeling networks,” J. Machine Learning Res., vol. 11, pp. 985–1042, 2010.

[30] K. Rajawat, E. Dall’Anese, and G. B. Giannakis, “Dynamic network delay cartography,” IEEE Trans. Info. Theory, vol. 60, no. 5, pp. 2910–2920, May 2014.

[31] A. Soule, K. Salamatian, A. Nucci, and N. Taft, “Traffic matrix tracking using Kalman filters,” SIGMETRICS Perform. Eval. Rev., vol. 33, no. 3, pp. 24–31, Dec 2005.

[32] P. Casas, S. Vaton, L. Fillatre, and L. Chonavel, “Efficient methods for traffic matrix modeling and on-line estimation in large-scale IP networks,” in Proceedings of Intl. Teletraffic Congress, Paris, France, Sept 2009, pp. 1–8.

[33] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE Trans. Auto. Cont., vol. 49, no. 9, pp. 1453–1464, 2004.

[34] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster least squares approximation,” Numerische Mathematik, vol. 117, no. 2, pp. 219–249, 2011.