Phylogenetic position of *Nyctotherus teleacus* isolated from a tortoise (*Astrochelys radiata*) and its electron microscopic features

Jun SUZUKI1), Seiki KOBAYASHI2)*, Naoko YOSHIDA2), Yoshiyuki AZUMA3), Namiko KOBAYASHI-OGATA4), Dwi Peni KARTIKASARI 5), Yasuaki YANAGAWA6) and Satoshi IWATA2)

1)Division of Food Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
2)Department of Infectious Diseases, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
3)Laboratory of Animal and Human Nutritional Physiology, Kitasato University School of Veterinary Medicine, 35-1 Higashi, 23-bancho, Towada-shi, Aomori 034-8628, Japan
4)Center for Advanced Marine Core Research, Kochi University, 200 Mononobe Otsu, Nangoku-shi, Kochi 783-8502, Japan
5)Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Kampus A UNAIR, JL Prof. Moestopo 47 Surabaya, 60132, Indonesia
6)AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan

ABSTRACT. A commensal ciliate was isolated from the stool of a tortoise (*Astrochelys radiata*). The ciliate was classified as *Nyctotherus teleacus*, according to its basic morphological features. Electron microscopic observations using cultured *N. teleacus* (NictoT1 strain) revealed many spherical hydrogenosomes and methanogen-suspected bacteria, together with a characteristic triangular macronucleus containing many spherical chromosomes in the cytoplasm of NictoT1. The results of phylogenetic analysis showed that NictoT1 was included in the cluster of *Nyctotheroides* spp. (*family Nyctotheridae*). *Nyctotheroides* spp. commonly infest amphibians, which are taxonomically closely related to reptiles, including the tortoises evaluated in the present study.

KEY WORDS: *Astrochelys radiate*, electron microscopic feature, genetic phylogeny, *Nyctotheroides* sp., *Nyctotherus teleacus*

The genus *Nyctotherus* was established by Leidy (1849) [10] after the discovery of *Nyctotherus velox* from the millipede *Julus marginatus*. Grassé (1928) [9] suggested a redefinition of *Nyctotherus* based on its karyophore and introduced the generic name *Nyctotheroides* to include members lacking or having an indistinct karyophore. Albaret (1975) [1] proposed that *Nyctotheroides* can be distinguished from *Nyctotherus* based on the presence of one (*Nyctotherus*) or two (*Nyctotheroides*) kinetal suture systems in the anterior part of the cell, and restricted *Nyctotheroides* to amphibian hosts and *Nyctotherus* to invertebrates and non-amphibian vertebrates (fishes and reptiles). *Nyctotherus teleacus* has a distinct karyophore from tortoise (reptile) [8]. However, these morphological classification criteria do not necessarily agree with the results of genetic classification among Nyctotheridae members [11]. To date, genetic information for *Nyctotheroides* spp. registered in GenBank is limited to that from frogs and toads (an amphibian), with information for *Nyctotherus* spp. limited to that from cockroaches (an insect) and millipede (a myriapod) [11].

N. teleacus was firstly isolated from three giant Galapagos tortoises (*Testudo hoodensis*, *T. elephantine*, and *T. vicina*) [8]. These common ciliate species have been suggested to be commensal organisms in the gastrointestinal tract of tortoises [3, 4, 6, 8, 16] and aid in the digestion of cellulose [7]. Accordingly, in the present study, we succeeded in cultivating *N. teleacus* isolated from *Astrochelys radiata*. We then analyzed *N. teleacus* using genetic methods and electron microscopy.

Stool samples from three tortoises (*A. radiata*) (7 years old, gender unknown) that were bred and kept isolated from other
reptiles and amphibians in a zoo in Kanto region, Japan, were collected as soon as possible after defecation and provided by the zoo. A stool sample (approximately 10–200 mg) from a tortoise containing cysts (approximately 2,400–3,400/g) of *Nyctotherus* sp. (identified morphologically) was inoculated into 1.5 ml of modified BR medium containing 4% bovine serum replaced with modified R medium \[19\] immediately before the primary culture or subculture. The cultured ciliates (*NictoT1*) were partially purified by centrifugation at 400 × \(g\) for 30 min after layering the cultured suspension (4 ml) on 3 ml of 30% Percoll PLUS (GE Healthcare Bio-Sciences AB, Little Chalfont, UK) and observed by scanning electron microscopy (JSM5600LV; JEOL Ltd., Tokyo, Japan) \[17\]. Ultrathin sections of the specimens were observed under a HITACHI H-7600 electron microscope (Hitachi High-technologies Corp., Tokyo, Japan) after staining with 1% uranyl acetate and lead citrate. The DNA sample (100–200 ciliate cells) was used as a PCR template for the 18S rRNA genes from *NictoT1*. We used primers targeting the eukaryotic 16S-like rRNA-coding regions \[14\]. The amplified fragments were cloned into the pANT vector (Nippon Gene Co., Ltd., Toyama, Japan), and eight positive clones were directly sequenced using the ABI Prism BigDye Terminator v3.1 Cycle Sequencing Ready Reaction Kit and ABI Prism 3500 genetic analyzer (Applied Biosystems, Foster City, CA, USA). In addition to the 18S rRNA sequences of *Nyctotherus* sp. obtained in this study, other armophorean sequences \[11\] were retrieved from the GenBank database (Fig. 3); the sequence of *Metopus palmaeformis* was used as an outgroup. The sequences were aligned using ClustalW algorithm. Ambiguously aligned positions were discarded. Phylogenetic trees were constructed using the Bayesian (BI) method \[15\], which was implemented in MrBayes 3.2. The data were bootstrap resampled 1,000 times to estimate the relative branch support. In the Bayesian analysis, we ran four simultaneous chains (\(n\text{chain}=4\)), 2,000,000 generations, and an initial burn-in of 1,250, at which point, the likelihood values had stabilized. The general time-reversible model was used, and trees were sampled every 100 generations. Because the ML analytical model provided the highest log likelihood, the ML tree was derived using the Tamura 3-parameter model \[18\] employing estimates of the proportion of invariable sites and gamma distribution with five rate categories; statistical support was evaluated by bootstrapping with 1,000 replications. The characteristic features of *N. teleacus* \[8\] and the present isolate (*NictoT1*) were well-matched with those of *N. teleacus* \[8\]. The size of *NictoT1* (110–171 × 55–94 µm) frequently changed depending on its growth stage (e.g., excystation, division, and growth degree) and culture conditions (Fig. 1A).
The SEM images showed that the external cortex of NictoT1 cells consisted of a partial pleated structure with small peaks and troughs, and the cilia appeared from the lower troughs of the plications (striations; Fig. 2A). In the TEM images, the external cortex consisted of mucocyst-like cells [2, 5]. In the front part of the cortex, some spherical or hemispherical and electron-dense structures were observed (Sls: Fig. 2B, 2C). These structures were regularly arranged on the surface of the sloped faces of plications in the SEM images (Sls: Fig. 2A). The longitudinal sections of the vocal cavities of peristomes showed many regularly arranged layers of kinetosomes on one side only, and many thin cross-sections of cilia were observed in the cavity (Fig. 2E). The cytopyge (Cp) was located at the base of the posterior end (Fig. 2G). In the TEM images, intracellular organelles [e.g., macro- and micronuclei (Ma and Mi), hydrogenosomes (Hg), and food vacuoles (Fv)] were observed (Fig. 2D, 2H). The TEM images of the endosymbiotic methanogen (M) are shown in Fig. 2F1 and 2F2.

The nucleotide sequences of the eight clones obtained by gene cloning of NictoT1 were identical. This 18S rRNA sequence consisting of 1666 nucleotides has been deposited in the GenBank/EMBL/DDBJ databases under accession number LC43448. In the Bayesian analyses tree of Clevelandellidae ciliates, NictoT1 from A. radiate was found to belong to the Nyctotheroides spp. cluster but not the Nyctotherus spp. cluster (Fig. 3).

In the present study, NictoT1 was identified as *N. teleacus* according to the basic morphological features of the organism. However, it is not easy to distinguish the generic difference in morphological and genetic features of *Nyctotherus* spp. from *Nyctotheroides* spp. [11]. In the Bayesian analysis tree, *Nyctotheroides* spp. and *Nyctotherus* spp. clusters were found to be sister taxa in 100% of bootstrap replicates. NictoT1 was identified as an approximate species of *Nyctotheroides* sp. based on the sequence homology and phylogenetic analyses of the 18S rRNA gene with closely related species of the order Clevelandellida. However, the DNA sequences of *Nyctotheroides* spp. from tortoises have not been registered, and the nearest registered sequence data are only from amphibians [11, 12]. In contrast, all registered sequence from *Nyctotherus* spp. is from cockroach or millipede, and those from *Clevelandella* spp. are only from wood-feeding roaches [13].

Hence, we report the sequence of the 18S rRNA gene of NictoT1 as a reference of a ciliate with consideration of validity of the genus *Nyctotheroides* from a tortoise. However, we were unable to find comparable genetic information of this family of ciliates isolated from reptiles, including tortoises, for phylogenetic classification.
Some spherical or hemispherical and electron-dense structures were identified, but they differed from the characteristic structures of cilia. We hypothesized that this structure was a sensor-like organ because the hemispherical form was exposed to the outside to sense environmental changes.

In summary, the morphological details of N. teleacus (NictoT1) were determined from cultured cells, and this organism was classified in the genus Nyctotherus based on the morphological analysis. Additional genetic studies using more nyctotherid spp. from reptiles, including tortoises, are needed to determine the genus of nyctotherid spp. Hence, we are continuously trying to culture isolates of independent species of Nyctotherid from reptiles in order to support this study’s genetic classification of N. teleacus.

ACKNOWLEDGMENTS. This study was partially supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research [(C) 24590511 and (B) 16H05819].

REFERENCES

1. Albaret, J. L. 1975. Etudé systématique et cytologique sur les ciliés hétérotriches endocommensaux. Mem. Mus. Nat. Hist. Nat. 44: 521–531, 3e sér.
2. Bardele, C. F., Schultheiß, S., Lynn, D. H., Wright, A. G., Dominguez-Bello, M. G. and Obispo, N. E. 2017. Aviisotricha hoazini n. gen., n. sp., the morphology and molecular phylogeny of an anaerobic ciliate from the crop of the Hoatzin (Opisthocomus hoazin), the cow among the birds. Protist 168: 335–351. [Medline] [CrossRef]
3. Bone, R. D. 1992. Gastrointestinal system. pp. 107–108. In: Manual of Reptiles (Beynon, P.H., Cooper, J.E. and Lawton, M. P. C. eds.), British Small Animal Veterinary Association, Quedgeley.
4. Bosschere, H. D. and Roels, S. Balantidium sp. and Nyctotherus sp.: two common members of the digestive-tract flora in Mediterranean tortoises. http://www.tortoisetrust.org/articles/balantidium.htm [accessed on June 11, 2018].
5. Cameron, S. L. and O’Donoghue, P. J. 2002. Trichostome ciliates from Australian marsupials. I. Bandia gen. nov. (Litostomatea: Amylovoracidae). Eur. J. Protistol. 38: 405–429. [CrossRef]
6. Ernst, C. H. and Nichols, J. N. 1974. Internal ciliates of tortoises. Br. J. Herpetol. 5: 450–451.
7. Frye, F. L. 1991. Biomedical and surgical aspects of captive reptile husbandry. pp. 281–325. In: Applied Clinical Nonhemic Parasitology of Reptiles, Krieger Publishing Company, Malabar.
8. Geiman, Q. M. and Wichterman, R. 1937. Intestinal protozoa from Galapagos tortoises (with descriptions of three new species). *J. Parasitol.* **23**: 331–347. [CrossRef]

9. Grassé, P. P. 1926. Sur quelques *Nyctotherus* (*Infusoires heterotriches*) nouveaux ou peu connus. *Ann Protistol* 1: 55–68.

10. Leidy, J. 1849. *Nyctotherus*, a new genus of Polygastrica, allied to Plescoma. *Proc. Acad. Nat. Sci. Philadelphia* 4: 233.

11. Li, M., Li, C., Grim, J. N., Ponce-Gordo, F., Wang, G., Zou, H., Li, W. and Wu, S. 2017. Supplemental description of Nyctotheroides pyriformis n. comb. (=Macrocystopharynx pyriformis (Nie, 1932) Li et al. 2002) from frog hosts with consideration of the validity of the genus Macrocystopharynx (Armpohorea, Clevelandellida). *Eur. J. Protistol.* **58**: 152–163. [CrossRef]

12. Li, M., Sun, Z. Y., Grim, J. N., Ponce-Gordo, F., Wang, G. T., Zou, H., Li, W. X. and Wu, S. G. 2016. From frog hosts with molecular phylogenetic study of Clevelandellid ciliates (Armpohorea, Clevelandellida). *J. Eukaryot. Microbiol.* **63**: 751–759. [CrossRef]

13. Lynn, D. H. and Wright, A. D. 2013. Biodiversity and molecular phylogeny of Australian Clevelandella species (Class Armophorea, Order Clevelandellida, Family Clevelandellidae), intestinal endosymbiotic ciliates in the wood-feeding roach *Panesthia cribrita* Saussure, 1864. *J. Eukaryot. Microbiol.* **60**: 335–341. [Medline] [CrossRef]

14. Medlin, L., Elwood, H. J., Stickel, S. and Sogin, M. L. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. *Gene* **71**: 491–499. [Medline] [CrossRef]

15. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. and Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* **61**: 539–542. [Medline] [CrossRef]

16. Satbige, A. S., Kasaralikar, V. R., Halmandge, S. C. and Rajendran, C. 2017. *Nyctotherus* sp. infection in pet turtle: a case report. *J. Parasit. Dis.* **41**: 590–592. [Medline] [CrossRef]

17. Suzuki, J., Kobayashi, S., Osuka, H., Kawahata, D., Oishi, T., Sekiguchi, K., Hamada, A. and Iwata, S. 2016. Characterization of a human isolate of *Tritrichomonas foetus* (cattle/swine genotype) infected by a zoonotic opportunistic infection. *J. Vet. Med. Sci.* **78**: 633–640. [Medline] [CrossRef]

18. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol. Biol. Evol.* **30**: 2725–2729. [Medline] [CrossRef]

19. Yoshida, N., Kobayashi, S., Suzuki, J., Azuma, Y., Kobayashi-Ogata, N., Kartikasari, D. P., Yanagawa, Y. and Iwata, S. 2019. Growth-promoting effects of the hydrogen-sulfide compounds produced by *Desulfovibrio desulfuricans* subsp. *desulfuricans* co-cultured with *Escherichia coli* (DHSu) on the growth of *Entamoeba* and *Endolimax* species isolates from swine. *Biosci. Trends* **13**: 402–410. [Medline] [CrossRef]