Supporting Information (SI)

Guar Gum-Grafted Terpolymer Hydrogels for Ligand-Selective Individual and Synergistic Adsorption: Effect of Comonomer Composition

Nayan Ranjan Singha, *,† Arnab Dutta, † Manas Mahapatra, † Mrinmoy Karmakar, † Himarati Mondal, † Pijush Kanti Chattopadhyay§ and Dilip Kumar Maiti*, †

†Advanced Polymer Laboratory, Department of Polymer Science and Technology, and §Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India.
‡Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India

Corresponding Authors
*E-mail: drs.nrs@gmail.com (N.R.S.).
*E-mail: maitidk@yahoo.com (D.K.M.).

ORCID
Nayan Ranjan Singha: 0000-0002-0219-1790
EXPERIMENTAL SECTION

Methodology

MV and Hg(II) solutions of varying concentrations (i.e. 10–60 ppm) were prepared by exact dilution of 1000 ppm stock solutions. In the present study, 0.025 g of dry GGAMSAASPs were added to 50 mL buffered solutions of MV and Hg(II), with constant stirring at 300 rpm. The progress of adsorption was monitored by withdrawing supernatant solution after pre-determined time intervals, followed by measuring absorbance at λ_{max} using UV-vis spectrophotometer and atomic absorption spectrometer for MV and Hg(II), respectively. From the pre-calibrated equation, the dye concentration (C_t) was calculated to determine adsorption capacity (AC, q_t) (mg g^{-1}) using eq S1.

\[q_t = \frac{(C_0 - C_t)V}{m_s} \]

(S1)

Here, C_0/C_t (ppm), V (mL) and m_s (g) are feed dye concentrations at t = 0/t, volume of adsorbate solutions and mass of GGAMSAASPs, respectively. However, equilibrium AC (q_e, mg g^{-1}) was obtained via replacing C_t by C_e in eq S1. The equilibrium data were fitted to the following adsorption isotherm models (eq S2–S4).

\[q_e = q_{max} \frac{k_L C_e}{1 + k_L C_e} \]

(S2)

\[q_e = k_F C_e^{1/n} \]

(S3)

\[q_e = q_{max} \frac{(k_L C_e)^y}{1 + (k_L C_e)^y} \]

(S4)
Here, k_L, k_F, k_S are corresponding isotherm constants and q_{max}, n, γ are respective parameters of isotherm models.

RESULTS AND DISCUSSION

Swelling and pH reversibility studies of GGAMSAASPs

Swelling property of hydrogel is highly essential for studying hydrophilicity of the network that depends on the number of ionizable hydrophilic groups, such as –NH_2, –COOH, –OH, –CONH_2, and –CONH– attached with the polymeric chains, along with the capillary effect and osmotic pressure. In the present case, swelling studies were carried out in buffer solutions of pH$_i$ = 3.0, 5.0, 7.0, 9.0, and 12.0 at 30 °C to find out the ESR. However, the maximum ESR was observed at pH$_i$ = 9 for both the GGAMSAASPs. In fact, subsequent shrinking and poor swelling were observed for both the GGAMSAASPs in acidic pH$_i$ of 3 and 5, owing to the lower population of –COO^- resulting in lower electrostatic repulsion, which produced lesser space for water accommodation and hence, low ESR. In fact, at the swelled state, the coexistence of liquid and homogeneous gel phases has already been reported.\(^1\) This infers that hydrogel is not completely dissolved in the solvent during swelling, yet retains the structural integrity even in the swollen state, owing to the presence of hydrophobic skeleton and certain degree of hydrophilic functional groups. These hydrophilic groups interact with water and cationic dyes/metal ions [i.e. M(II/III/VI)], but the overall hydrophobic structure restricts the dissolution of hydrogel in the polar solvent/solution(s). Thus, swelling does not result in the dissolution of GGAMSAASP network. In this context, the shrinking phenomenon of the swelled GGAMSAASP was reported by us, in the section of gel content measurement, in which
the known amount of dry GGAMSAASP was allowed to swell up to the equilibrium in double distilled water and the swelled GGAMSAASP was again dried to obtain the xerogel. This phenomenon clearly indicated the retention of structural integrity of GGAMSAASP during the time of swelling measurement. Moreover, the decrease in water absorbency at acidic pH\textsubscript{i} could also be attributed to the protonation of –CONH\textsubscript{2} and –COO− leading to the decrease in H-bonding with water. At pH\textsubscript{i} = 9, the occurrence of the maximum ESR for both the GGAMSAASPs (Figure 7c,d) could be explained via predominant population of –COO− resulting in the electrostatic repulsion, which led to macromolecular expansion and allowed large quantity of water to penetrate. However, at very high pH\textsubscript{i} (i.e. pH\textsubscript{i} = 12), rapid ionization of the available functional groups created significant amount of counter ion concentration inside the polymeric matrix, resulting in lower electrostatic repulsion and hence, lower ESR. Furthermore, the formation of hydration sheath around the polymeric network by aqua-ions at higher pH\textsubscript{i} might cause significant reduction in the degree of ionization and ESR. Moreover, GGAMSAASP18 showed reduced swelling with the increase in ionic strength of the solution (Figure S6).

The pH reversibility of GGAMSAASPs was ascertained via repeating swelling/deswelling studies at low/high pH\textsubscript{i} (3/10) (Figure 7a). A 0.01 g of xerogel was first immersed into pH\textsubscript{i} = 3 for 1 h, followed by immersing into solution of pH\textsubscript{i} = 10 for another 1 h, and the same procedure was continued for several cycles until GGAMSAASPs remained stable. However, after 3 complete cycles of immersion, both the AMSAASPs became fragile, whereas the GGAMSAASPs exhibited enough stability to withstand up to 5 complete cycles. In fact, both the GGAMSAASPs exhibited high pH reversibility and hence, pH\textsubscript{i} > pH\textsubscript{PZC} was chosen for adsorption.
Calculation of % gel content (%GC), % graft ratio (%GR), and pH\textsubscript{PZC} of GGAMSAASPs

The %GC of GGAMSAASPs were estimated by a method reported elsewhere using eq S5. \cite{S34}

\[
\%GC = \frac{W_2}{W_i} \times 100
\]

(S5)

Accurately weighed air-dried GGAMSAASPs were further dried in a vacuum oven at 50 °C to obtain a constant weight \(W_i\). Then, it was dispersed in distilled water for 72 h with occasional stirring to fully swell them for elimination of water soluble components from the network. The water insoluble GGAMSAASPs were then dried in vacuum oven until a constant weight \(W_d\) was obtained. However, %GC of GGAMSAASP\textsubscript{14/18} were found to be 75.64/92.37 %. The %GR of GGAMSAASPs were calculated by employing eq S6. \cite{S34}

\[
\%GR = \frac{W_2}{W_1} \times 100
\]

(S6)

Here, \(W_2\) and \(W_1\) represent masses of GG and GGAMSAASPs, respectively. The %GR of the used GGAMSAASP\textsubscript{18/14} were obtained to be 2.62/3.20 %.

The pH\textsubscript{PZC} of both the GGAMSAASPs were estimated by a method reported elsewhere. \cite{S34} In this context, 0.05 g of xerogel was taken in 50 mL buffer solutions of different pH\textsubscript{i} within 2–10. After 72 h of immersion, final pH (pH\textsubscript{f}) of all the solutions were estimated. The difference of these pH\textsubscript{f} and pH\textsubscript{i} was plotted against pH\textsubscript{i} to find the pH\textsubscript{PZC}. However, pH\textsubscript{PZC} were found to be 6.07 and 5.85, for GGAMSAASP\textsubscript{18} and GGAMSAASP\textsubscript{14}, respectively (Figure 5b).
Figure S1. FTIR of (a/b/c) GGAMSAASP18, (d/e) GGAMSAASP14, (f/g) Hg(II)-GGAMSAASP18 and (h) Hg(II)-GGAMSAASP14
Figure S2. 1H-NMR of (a) AM, (c) AA, (e) MBA and (g) GG and 13C-NMR of (b) AM, (d) AA and (f) MBA
Figure S3. Pareto chart for screening of synthetic parameters
Figure S4. Freundlich fitting for (a/b) Hg(II)-GGAMSAASP18/14 and (c/d) MV-GGAMSAASP18/14
Figure S5. Pseudosecond order kinetics plots for (a/b and c/d) Hg(II)-GGAMSAASP18/14 and MV-GGAMSAASP18/14; ln k_d vs. 1/T for (e/f and g/h) Hg(II)-GGAMSAASP18/14 and MV-GGAMSAASP18/14; ln k_2 vs. 1/T plots for (i and j) Hg(II)-GGAMSAASP18/14 and MV-GGAMSAASP18/14; Boyd fitting for (k and l) Hg(II)-GGAMSAASP18/14 and MV-GGAMSAASP18/14
Figure S6. ESR of GGAMSAASP18 in various ionic strengths of solutions
Table S1. Center Composite Design of Experiment

run no.	amount of AM (wt %)	total amount crosslinker (wt %)	pH_i (−)	ESR (−)
1	6.25	1.00	4.00	5.50
2	25.00	1.00	4.00	5.10
3	6.25	5.00	4.00	3.30
4	25.00	5.00	4.00	2.90
5	6.25	1.00	12.00	9.22
6	25.00	1.00	12.00	7.68
7	6.25	5.00	12.00	5.56
8	25.00	5.00	12.00	2.21
9	0.00	3.00	8.00	10.80
10	31.39	3.00	8.00	8.32
11	15.62	0.00	8.00	7.90
12	15.62	6.36	8.00	3.00
13	15.62	3.00	1.27	2.33
14	15.62	3.00	13.00	10.34
15	15.62	3.00	8.00	18.40
16	15.62	3.00	8.00	18.40
17	15.62	3.00	8.00	18.40
18	15.62	3.00	8.00	18.40
19	15.62	3.00	8.00	18.40
20	6.25	3.00	8.00	18.40
Table S2. ANOVA Statistics of CCD

source	sum of squares	degrees of freedom	mean square	F value	p-value
model	759.70	9	84.41	213.80	< 0.0001*
amount of AM (A)	6.74	1	6.74	17.07	0.0020*
amount of crosslinker (B)	21.29	1	21.29	53.92	< 0.0001*
pH, (C)	12.78	1	12.78	32.37	0.0002*
AB	0.41	1	0.41	1.037	0.3325
AC	2.09	1	2.09	5.30	0.0442*
BC	2.80	1	2.80	7.08	0.0238*
A²	141.64	1	141.64	358.76	< 0.0001*
B²	307.61	1	307.61	779.11	< 0.0001*
C²	283.46	1	283.46	717.95	< 0.0001*
residual	3.95	10	0.39		
lack of fit	3.95	5	0.79		
pure error	0.00	5	0.00		
cor. total					
std. dev.	0.63		R²	0.9948	
mean	9.73		adj. R²	0.9901	
CV %	6.46		pred. R²	0.9597	
PRESS	30.76		adeq. precision	36.6606	

*significant
Table S3. Comparative Table

name of adsorbate	name of adsorbent	adsorption capacity (mg g⁻¹)	ref.
Hg(II)	Chitosan derivative adsorbent	9.02/3.0/60/298	S1
	RGO^a-MnO₂	9.50/−/1/303	S2
	RGO^a-Ag	9.53/−/1/303	S2
	APT^b	13.20/5.0/3800/303	S3
Hardwickia binata bark		13.50/6.0/400/298	S4
Natural chitosan spheres		13.50±0.40/6.0/38−375/298	S5
Mesoporous silica-coated magnetic particles		14.00/2.0/10−60/−	S6
poly(AAm-co-AAc)^c		15.50/2.5/100/288	S7
Ti(IV)^d		17.20/6.0/20/293−323	S8
SMs^e		20.00/7.5/100−900/303	S9
GMA-MMA-DVB^f		20.06/7.0/15/298	S10
Chemically treated sawdust (Acacia arabica)		20.62/6.0/3/−	S11
Multifunctional mesoporous material		21.05/−/1000/−	S12
CTS–PVA^g		24.98/5.5/50/303	S13
Ca-alginate beads		28.90±0.70/6.0/200/298	S14
Poly(MMA-MAGA)^h		29.90/2.0−6.0/100/293	S15
Epichlorohydrin-crosslinked chitosan membranes		30.30/6.0/38−375/298	S16
Glutaraldehyde-crosslinked chitosan spheres		31.10±0.30/6.0/38−375/298	S5
BTESPT-SMs^i		37.00/7.5/100−900/303	S9
Cellulose–Lysine–Schiff Bases		50.60/4.4/100/303	S17
TCPF^j		52.63/6.0/50/301	S18
4-aminoantipyrine immobilized bentonite		52.90/4.0/1/298	S19
CNTs/Fe₃O₄^k		65.52/6.5/50/298	S20
GGAMSAAASP18^l		40.95/7.0/5−30/303	TS
GGAMSAAASP14^m		49.12/7.0/5−30/303	TS
MV			
CPSA4^n		2.09/7.0/2/298	S21
Semi-IPN of starch and copolymer of AM^o and HEMA^p		2.47/7.0/2.5/303	S22
Bagasse fly ash		3.712/9.0/10/303	S23
Poly(VP-co-MA)^q		4.22/7.0/500/298	S24
Soya ash		5.76/9.0/25/303	S25
Poly(AM-co-AA)^r		6.38/7.0/50/298	S26
Orange peel		11.50/5.3/100/303	S27
Banana peel		12.20/5.3/100/303	S27
Mansonlia (Mansonia altissima) wood sawdust		16.11/10.0/120/299	S28
MSWI bottom ash^s		19.58/8.0/24/303	S29
Mansonlia wood sawdust		20.20/10.0/30−120/309	S30
Cereal chaff		20.30/11.0/30/293	S31
PAAC^t		49.96/9.2/25/295	S32
Halloysite nanotube-Fe₃O₄ composite		64.40/9.0/150/298	S33
IPNS^u		21.68/10.0/5−30/303	S34
GGAMSAASP18
53.28/9.0/5–30/303
TS
GGAMSAASP14
50.29/9.0/5–30/303
TS

*aReduced graphene oxide, *battapulgite, *c(poly(acrylic acid/acrylamide), *d(Ti(IV) iodovanadate cation exchanger,*e)silica microspheres, *fmethyl methacrylate-glycidyl methacrylate-divinylbenzene terpolymer beads, *gchitosan–poly(vinyl alcohol), *hpoly(methyl methacrylate–methacryloyloxyethylidoglutamic acid), *jis(triethoxysilylpropyl) tetrasulfide silica microspheres, *kthinocarbohydrazide cross-linked chitosan-poly(vinyl alcohol) framework, *lcarbon nanotube/magnetite nanocomposites, *mguar gum-(acrylamide-‐co-‐sodium acrylate-‐co-‐acrylamidosodium propanoate)18, *nguar gum-‐(acrylamide-‐co-‐sodium acrylate-‐co-‐acrylamidosodium propanoate)14, *nIPN of poly(acrylic acid-‐co-‐acrylamide) and sodium alginate, *apoly(acrylic acid-‐co-‐acrylamide), *bpoly(acrylamide-co-acrylic acid), *cmunicipal solid waste incinerator, *dphragmites australis activated carbon, and *einterpenetrating polymer network superadsorbent

REFERENCES

(S1) Tang, X., Niu, D., Bi, C., & Shen, B. (2013). Hg\(^{2+}\) adsorption from a low-concentration aqueous solution on chitosan beads modified by combining polyamination with Hg\(^{2+}\)-imprinted technologies. *Industrial & Engineering Chemistry Research*, 52, 13120–13127.

(S2) Sreeprasad, T. S., Maliyekkal, S. M., Lisha, K. P., & Pradeep, T. (2011). Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. *Journal of Hazardous Materials*, 186, 921–931.

(S3) Wang, X., & Wang, A. (2010). Adsorption characteristics of chitosan-g-poly(acrylic acid)/attapulgite hydrogel composite for Hg(II) ions from aqueous solution. *Separation Science and Technology*, 45, 2086–2094.

(S4) Deshkar, A. M., Bokade, S. S., & Dara, S. S. (1990). Modified *Hardwickia Binata* bark for adsorption of mercury (II) from water. *Water Research*, 24, 1011–1016.

(S5) Vieira, R. S., & Beppu, M. M. (2006). Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. *Water Research*, 40, 1726–1734.

(S6) Dong, J., Xu, Z., & Wang, F. (2008). Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. *Applied Surface Science*, 254, 3522–3530.

(S7) Bingöl, D., Saraydin, D., & Özbay, D. S. (2015). Full factorial design approach to Hg(II) adsorption onto hydrogels. *Arabian Journal for Science and Engineering*, 40, 109–116.

(S8) Naushad, M., ALOthman, Z. A., Awual, M. R., Alam, M. M., & Eldesoky, G. E. (2015). Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb\(^{2+}\) and Hg\(^{2+}\) metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. *Ionics*, 21, 2237–2245.
(S9) Saman, N., Johari, K. & Mat, H. (2014). Adsorption characteristics of sulfur-functionalized silica microspheres with respect to the removal of Hg(II) from aqueous solutions. *Industrial & Engineering Chemistry Research, 53*, 1225–1233.

(S10) Bicak, N., Sherrington, D. C., Sungur, S., & Tan, N. (2003). A glycidyl methacrylate-based resin with pendant urea groups as a high capacity mercury specific sorbent. *Reactive & Functional Polymers*, 141–147.

(S11) Meena, A. K., Kadirvelu, K., Mishra, G. K., Rajagopal, C., & Nagar, P. N. (2008). Adsorptive removal of heavy metals from aqueous solution by treated sawdust (*Acacia arabica*). *Journal of Hazardous Materials*, 150, 604–611.

(S12) Wang, C., Tao, S., Wei, W., Meng, C., Liu, F., & Han, M. (2010). Multifunctional mesoporous material for detection, adsorption and removal of Hg$^{2+}$ in aqueous solution. *Journal of Materials Chemistry*, 20, 4635–4641.

(S13) Wang, X., Yang, L., Zhang, J., Wang, C., & Li, Q. (2014). Preparation and characterization of chitosan–poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. *Chemical Engineering Journal*, 251, 404–412.

(S14) Kacar, Y., Arpa, C., Tan, S., Denizli, A., Genc, O., & Arica, M. Y. (2002). Biosorption of Hg(II) and Cd(II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated *Phanerochaete chrysosporium*. *Process Biochemistry*, 37, 601–610.

(S15) Denizli, A., Sanli, N., Garipcan, B., Patir, S., & Alsancak, G. (2004). Methacryloylamidoglutamic acid incorporated porous poly(methylmethacrylate) beads for heavy-metal removal. *Industrial & Engineering Chemistry Research*, 43, 6095–6101.

(S16) Vieira, R. S., & Beppu, M. M. (2006). Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 279, 196–207.

(S17) Kumari, S., & Chauhan, G. S. (2014). New cellulose-lysine schiff-base-based sensor-adsorbent for mercury ions. *ACS Applied Materials & Interfaces*, 6, 5908–5917.

(S18) Ahmad, M., Manzoor, K., Chaudhuri, R. R., & Ikram, S. (2017). Thiocarbohydrazide cross-linked oxidized chitosan and poly(vinyl alcohol): A green framework as efficient Cu(II), Pb(II), and Hg(II) adsorbent. *Journal of Chemical & Engineering Data*, 62, 2044–2055.

(S19) Wang, Q., Chang, X., Li, D., Hu, Z., Li, R., & He, Q. (2011). Adsorption of chromium(III), mercury(II) and lead(II) Ions onto 4-Aminoantipyrine immobilized bentonite. *Journal of Hazardous Materials*, 186, 1076–1081.

(S20) Zhang, C., Sui, J., Li, J., Tang, Y., & Cai, W. (2012). Efficient removal of heavy metal ions by thiol-functionalized super paramagnetic carbon nanotubes. *Chemical Engineering Journal*, 210, 45–52.
(S21) Bhattacharyya, R., & Ray, S. K. (2015). Adsorption of industrial dyes by semi-IPN hydrogels of acrylic copolymers and sodium alginate. *Journal of Industrial and Engineering Chemistry, 22*, 92–102.

(S22) Bhattacharyya, R., & Ray, S. K. (2014). Enhanced adsorption of synthetic dyes from aqueous solution by a semi-interpenetrating network hydrogel based on starch. *Journal of Industrial and Engineering Chemistry, 20*, 3714–3725.

(S23) Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses. *Dyes and Pigments, 69*, 210–223.

(S24) Şolpan, D. S., & Kölge, Z. K. (2006). Adsorption of methyl violet in aqueous solutions by poly(N-vinylpyrrolidone-co-methacrylic acid) hydrogels. *Radiation Physics and Chemistry, 75*, 120–128.

(S25) Gupta, V. K., Mittal, A., Gajbe, V., & Mittal, J. (2008). Adsorption of basic fuchsin using waste materials-bottom ash and deoiled soya-as adsorbents. *Journal of Colloid and Interface Science, 319*, 30–39.

(S26) Solpan, D., Duran, S., Saraydin, D., & Guven, O. (2003). Adsorption of methyl violet in aqueous solutions by poly(acrylamide-co-acrylic acid) hydrogels. *Radiation Physics and Chemistry, 66*, 117–127.

(S27) Annadurai, G., Juang, R., & Lee, D. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. *Journal of Hazardous Materials, 92*, 263–274.

(S28) Ofomaja, A. E., (2008). Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (*Mansonia altissima*) wood sawdust. *Chemical Engineering Journal, 143*, 85–95.

(S29) Gupta, V. K., Ali, I., Saini, V. K., Gerven, T. V., Van der Bruggen, B., & Vandecasteele, C. (2005). Removal of dyes from wastewater using bottom ash. *Industrial & Engineering Chemistry Research, 44*, 3655–3664.

(S30) Ofomaja, A. E., & Ho, Y. (2008). Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. *Bioresource Technology, 99*, 5411–5417.

(S31) Han, R., Wang, Y., Han, P., Shi, J., Yang, J., & Lu, Y. (2006). Removal of methylene blue from aqueous solution by chaff in batch mode. *Journal of Hazardous Materials, B137*, 550–557.

(S32) Chen, S., Zhang, J., Zhang, C., Yue, Q., Li, Y., & Li, C. (2010). Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from *Phragmites australis*. *Desalination, 252*, 149–156.

(S33) Duan, J., Liu, R., Chen, T., Zhang, B., & Liu, J. (2012). Halloysite nanotube-Fe$_3$O$_4$ composite for removal of methyl violet from aqueous solutions. *Desalination, 293*, 46–52.

(S34) Singha, N. R., Karmakar, M., Mahapatra, M., Mondal, H., Dutta, A., Roy, C., & Chattopadhyay, P. K. (2017). Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating
polymer network for superadsorption of dyes/M(II): Determination of physicochemical changes in loaded hydrogels. *Polymer Chemistry*, 8, 3211–3237.

(S35) Hüther, A., Xu, X., & Maurer, G. (2004). Swelling of N-isopropylacrylamide Hydrogels in Water and Aqueous Solutions of Ethanol and Acetone. *Fluid Phase Equilibria*, 219, 231–244.

(S36) Xin, W., Song, Y., Peng, J., Liu, R., & Han, L. (2017). Synthesis of Biomass-Derived Mesoporous Carbon with Super Adsorption Performance by an Aqueous Cooperative Assemble Route. *ACS Sustainable Chemistry and Engineering*, 5, 2312–2319.

(S37) Li, L. H., Xiao, J., Liu, P., & Yang, G. W. (2015). Super Adsorption Capability from Amorphousization of Metal Oxide Nanoparticles for Dye Removal. *Scientific Reports*, DOI: 10.1038/srep09028.