Impact of dietary Mannan-oligosaccharide and β-Glucan supplementation on growth, histopathology, E-coli colonization and hepatic transcripts of TNF-α and NF-κB of broiler challenged with E. coli O78

CURRENT STATUS: UNDER REVIEW

Sabreen Ezzat Fadl
Animal Health Research Institute

nourmallak@yahoo.com

Corresponding Author

ORCID: https://orcid.org/0000-0001-5541-6159

Ghada Ahmed El-Gammal
Animal Health Research Institute, Giza, Egypt

Osama Atia Sakr
Animal Health Research Institute, Giza, Egypt

Aly A.B.S. Salah
Animal Health Research Institute, Giza, Egypt

Ayman Ali Atia
Animal Health Research Institute, Giza, Egypt

Abdelbary Mohammed Prince
Cairo University

Abdelhaleem Mohamed Hegazy
Animal Health Research Institute, Giza, Egypt

DOI: 10.21203/rs.2.19307/v2

SUBJECT AREAS

Small Animal Medicine Large Animal Medicine

KEYWORDS

Antioxidant, Gene Expression, Growth Performance, Histopathology, Immunostimulant, Agrimos.
Abstract
Background: Using probiotics have become popular. They are considered an alternative to Antibiotic Growth Promoters (AGP). Probiotics are supplemented into animal feed for improving growth performance along with preventing and controlling enteric pathogens. The aim of this work was to study the impact of dietary supplementation of Mannan-oligosaccharide and β-Glucan (Agrimos®) on broiler challenged with Escherichia coli O78 (E. coli O78 - marked with an antibiotic (320 μg ciprofloxacin/ml broth) on growth performance, serum biochemistry, immune organs-histopathology, E-coli colonization, and hepatic transcripts of Tumor necrosis factor-alpha (TNF-α) and Nuclear factor-kappa B (NF-κB).Methods: A total of 125 one-day-old chicks were used for conducting the experiment. Five one-day-old chicks were slaughtered for measuring the initial weight of lymphoid tissue. The remaining chicks (120) were allotted into four groups according to Mannan-oligosaccharide and β-Glucan supplementation and E. coli infection. The data were analyzed using SPSS version 16.Results: Results indicated significant alteration of growth performance, serum biochemistry, selected liver gene expression with pathological lesions especially in lymphoid organs due to E. coli infection. These alterations were mitigated by Mannan-oligosaccharide and β-Glucan supplementation.Conclusion: It could be concluded Mannan-oligosaccharide and β-Glucan supplementation in broiler’s diet improved the immune response of broilers and mitigated pathological lesion resulted from E. coli infection.
Background
The increased demand for animal protein worldwide leads to a gap, thus searching for growth promoters to compensate for this gap. There are many growth promoters as antibiotic growth promoters (AGPs). AGPs are widely used to prevent poultry disease through prevention of pathogens and improve growth performance. But the use of AGPs in the diet of the poultry can cause serious problems such as antibiotic-resistant pathogens and drug residues [1]. Also, Tayeri et al. [2] reported routine use of an antibiotic (flavomycin) increase Enterococci. Thus searching for alternatives to antibiotics is very urgent. Prebiotics are used as one of the alternatives to antibiotic growth promoters [3]. Prebiotics are non-digestible components of feed derived from sugars, including raffinose, galactooligosaccharides, and β-glucans [4]. They prevent enteric diseases and improve performance
in poultry. Prebiotics have been shown to alter the immune system, modify gastrointestinal microflora, and reduce invasion of the pathogen such as *Salmonella* spp. and *E. coli* [5]. The major function of prebiotics is to activate the metabolism of some groups of beneficial bacteria in the intestinal tract and/or stimulate their growth. Pelicano et al. [6], Spring et al. [7], and Xu et al. [8] have shown that the addition of prebiotics to broilers' diet results in the improvement of the gut microflora and growth as well. The gut microflora composition plays an important role in digestion; which can be performed in a positive, negative or neutral manner. Gastrointestinal microflora modifications reduce attachment of the pathogen and may have a beneficial effect on the nutrients digestibility [9]. Administration of agrimos® (Mannan-oligosaccharides (MOS) and β-Glucans), which obtained from a specific strain of *Saccharomyces cerevisiae* cell wall was found to improve the productive performance and immune functions in broiler chickens [10]. Also, Wang et al. [1] and Dawood et al. [11] reported the antioxidant effect of Mannan-oligosaccharides in broilers and red sea bream, respectively.

Hence, this study was conducted to examine agrimos® (MOS and β-Glucans) effect on growth, immunity, serum biochemistry, histopathology, selected liver gene expressions, and colonization of *E. coli* in broilers.

**Results**

**Clinical Signs and Postmortem (PM) Lesions of *E. coli* Infection:** Experimental infection with *E. coli* revealed suggestive clinical signs and PM lesions after 48 hr. post-infection in the form of depression with whitish diarrhea.

PM lesions revealed liver enlarged and congested and distended gallbladder and cecum. Such changes were less prominent in the agrimos-infected group (see Table 1).

**Growth Performance:** The feed supplemented with agrimos® in the third and fourth groups significantly (*P* ≤ 0.05) increased the body weight (BW) and total gain along the whole experiment and improved feed conversion ratio (FCR) compared to the other groups (see Table 2). On the other hand, the above-mentioned parameters were decreased significantly (*P* ≤ 0.05) in the control-infected group as compared to the other groups.
Serum Parameters Related to Liver Function: In Table (3) there were significant \( P \leq 0.05 \) increases in the activities of alanine transaminase (ALT) and aspartate aminotransferase (AST) enzymes in the group of broiler chickens infected with \( E. \coli \) compared to the control non-infected group. However, serum total protein and albumin were significantly \( P \leq 0.05 \) decreased. Agrimos\textsuperscript{®} supplementation did not affect serum ALT, AST, and albumin but the serum total protein and globulin affected significantly \( P \leq 0.05 \) when compared with the control non-infected group.

Serum Antioxidant Enzymes Activity: Serum MDA level was significantly \( P \leq 0.05 \) increased in broiler chickens infected with \( E. \coli \) (see Table 4). However, serum catalase (CAT) and superoxide dismutase (SOD) activities were significantly \( P \leq 0.05 \) reduced compared to the other groups. Agrimos\textsuperscript{®} supplementation significantly \( P \leq 0.05 \) decreased serum lipid peroxidation (MDA) with significant \( P \leq 0.05 \) increased serum CAT and SOD when compared to the control-infected group.

Immune Response against Newcastle Disease (ND): Immune response to vaccination of ND, which evaluated by Hemagglutination Inhibition (HI) titer revealed a difference in log2 of GM. There was a significant difference in HI titer in the second week after infection between each of the \( E. \coli \) infected group and the control negative group, and the agrimos infected group. In addition, the agrimos group significantly differs about the other three groups.

After vaccination in the second and third week, this pattern was observed where no difference was recorded between each of the \( E. \coli \) infected group, control non-infected, and agrimos\textsuperscript{®} infected group. Besides, the agrimos group significantly differs about the other three groups (see Table 5).

Colonization of \( E. \coli \): The colonization of \( E. \coli \) in the control infected group in different organs showed several rates of 67%, 44%, 22%, 44%, and 53% in the respiratory tract, liver, gallbladder, spleen, and fecal swab, respectively (see Table 6). However, in the agrimos infected group, the colonization of \( E. \coli \) in different organs showed reduced rates of 22%, 33%, 22%, 11%, and 33% in the respiratory tract, liver, gallbladder, spleen, and fecal swab, respectively.

The Weight of Immune Organs: At zero, 15, and 35 days of age, the weight of the immune organ versus body weight was evaluated (see Table 7 and Figure 1). On days 15 and 35, the results of
thymus weight showed a significant increase ($P \leq 0.05$) in the agrimos non-infected and infected groups in comparison with the other groups. However, there was a significant decrease ($P \leq 0.05$) in the control infected group compared to the control non-infected group.

The results of spleen on day 15 showed that there was a significant increase ($P \leq 0.05$) in the agrimos infected group compared to the other groups. Furthermore, there was a significant increase ($P \leq 0.05$) in the agrimos® non-infected group compared to the control non-infected and infected groups. However, on day 35, the agrimos non-infected group witnessed a significant increase in the spleen’s weight ($P \leq 0.05$) compared to the other groups. As well, the control infected group had a significant increase ($P \leq 0.05$) compared to the control non-infected group on day 15 but a significant decrease ($P \leq 0.05$) on day 35.

The bursa’s weight was significantly increased ($P \leq 0.05$) in the agrimos non-infected group compared to the other groups but it was significantly decreased ($P \leq 0.05$) in the control infected group compared to the other groups on days 15 and 35.

The thymus’ and bursa’s weight in the control non-infected group were significantly ($P \leq 0.05$) decreased but the spleen’s weight was significantly ($P \leq 0.05$) increased. The control-infected group showed a significant ($P \leq 0.05$) increase in the weights of thymus, spleen, and bursa on day 15, and then showed a significant ($P \leq 0.05$) decrease on day 35. The agrimos® non-infected and infected groups showed a significant ($P \leq 0.05$) increase in the weights of spleen and bursa on days 15 and 35 but showed a significant ($P \leq 0.05$) increase in the weight of thymus on day 15 only which returned to its normal size on day 35.

**The Pathological Findings of Broiler Chickens:** The histopathological examination of the spleen, bursa, thymus, liver, and duodenum of the chicks of the control non-infected group (on days 15 and 35 after infection) showed no obvious histopathological alterations (see Figure 2a and 2b). Concerning the control infected group (on day 15), the bursa showed variable degrees of epithelial hyperplasia, degeneration, and ulceration in some cases. These changes were associated with subcortical fibrous tissues proliferation in some cases (see Figure 2c, 2d and 2e). The thymus of this group showed a
narrowing in the cortical width and an increase in the medulla in most cases. Some other cases had the appearance of clear areas or holes that contained small dark nuclei (a defining characteristic of the apoptosis in the lymphoid organ) (see Figure 2f). No microscopical changes were detected on the spleen of this group. Regarding the control infected group (on day 35), similar changes were seen on day 15 but more holes were detected in the thymus. Also, the focal area of round cells aggregation was seen in the liver of this group (see Figure 3a). The duodenum of this group showed hyperplasia on the epithelial cells lining the intestinal villi accompanied with vacuolation (see Figure 3b)
The histopathological examination of the bursa of Fabricius in most cases in the agrimos non-infected group on day 15 (4 out of 5) showed normal atypical fold (plica) (see Figure 3c). Some of these cases showed a highly dilated germinal center and narrow cortex, associated with a mild degree of epithelial lobulation. One case showed follicular lymphocytic depletion. Similar histopathological changes were seen on the bursa of Fabricius in the agrimos non-infected group on day 35. One case showed pores within the cortex of many plicae (see Figure 3d), and this was associated with interfollicular edema. Regarding the thymus gland in both times (days 15 and 35), no obvious histopathological alterations were seen on the thymic lobe except in few cases (2 out of 10), which showed thrombus formation within the thymic vasculature (see Figure 3e). Concerning the caecal tonsil of the agrimos® non-infected group on days 15 and 35, just epithelial sloughing was seen in some cases (see Fig. 3f), and no obvious histopathological alterations were viewed on the lymphoid nodules (lymphoid aggregation) (see Figure 4a). Two cases (out of 10) showed a necrotic cyst (see Fig. 4b). No obvious microscopical changes were seen on the spleen of this group (see Figure 4c). The microscopical examination of the liver of this group showed mild focal areas of round cell aggregation (see Figure 4d) in two cases (out of 10).
The histopathological examination of the bursa of Fabricius in most cases in the agrimos infected group on days 15 and 35 after infection (2 out of 4) showed normal morphological appearances but 2 cases showed interfollicular edema (see Figure 4e) and epithelial hyperplasia and folding associated with mucous (goblet) cell activation. Regarding the thymus gland in both times (days 15 and 35), no obvious histopathological alterations were seen on the thymic lobe except in few cases (1 out of 4)
which showed focal areas of necrosis and hyalinization (see Figure 4f). No obvious microscopical changes were seen on the spleen of this group (see Table 8 and 9).

**Gene Expression Related to *E. coli* Infection and Agrimos Supplementation:** The results of Q-PCR revealed that the expression levels of nuclear factor-kappa (NF) and tumor necrosis factor-alpha (TNF) genes of liver tissues were significantly \((P \geq 0.05)\) increased in the group infected by *E. coli* (Figure 5) compared to the negative control group.

In the agrimos® non-infected group, the gene expression of NF and TNF in liver tissues did not show significant differences in comparison with the control non-infected group. The levels of such genes were similar to those of the control non-infected group.

It was found that the NF and TNF expression levels were significantly \((P \geq 0.05)\) reduced due to agrimos supplementation when compared to those of the infected group without supplementation. This shows the protective effect of agrimos supplementation on the expression of the above-mentioned genes of the infected broiler chicks.

**Discussion**

In the present study, the control infected group with *E. coli* showed varied clinical signs according to their age, an organ involved, and concurrent disease conditions. Results of Clinical signs in the *E. coli* infected groups (even in the treated one) similar to results of Remus et al. [12] who recorded severe liver damage occurs in cases of *E. coli* infection. However, dietary supplementation of agrimos® decreased the clinical signs and PM lesions. This result is consistent with Sohail et al. [13]. On the other hand, results of the growth performance in the control infected group showed significant retardation. This retardation may be attributed to the *E. coli* infection. This result is compatible with Manafi et al. [14]. Meanwhile, agrimos® dietary supplementation significantly improved growth performance, which may be ascribed to the increased digestibility and feed intake as well. Jahanian and Ashnagar [15] reported that dietary MOS supplementation improves digestibility coefficients of dry matter and crude protein. These results in harmony with the results of El-Far et al. [16] and Mousa et al. [17] in broilers and Japanese quail, respectively.

Results of biochemical parameters showed a significant increase in serum AST and ALT activities and
globulin concentration meanwhile serum total protein and albumin were significantly decreased in the control infected group. These results agree with Manafi et al. [14] who reported the same results when birds were challenged with *E. coli*. These results may be attributed to *E. coli* infection. Pathogenic *E. coli* infection in broilers leads to local or systemic infection (colibacillosis). Colibacillosis is an infectious disease characterized by acute fatal septicemia or sub-acute fibrinous pericarditis, airsacculitis, salpingitis, and peritonitis [18]. In the present study, *E. coli* infection occurred colibacillosis infection, which indicated by results of *E. coli* colonization and increased serum biochemical parameters. In addition, Sharma et al. [19] reported that the increase in serum activities of ALT is indicative of cellular injury to hepatocytes and AST in cardiac muscles and hepatocytes as well. On the other hand, hypoproteinemia may be due to hepatocyte damage, which results in failure in the synthesis of plasma protein where the liver is a site for albumin synthesis. Also, hypoproteinemia may be due to kidney disease, which leads to protein loss, and congestive heart failure [19, 20]. At the same time, hyperglobulinemia is associated with liver cirrhosis, hepatitis, Kuffer cell proliferation [19]. However dietary supplementation of agrimos® not affect serum AST and ALT activities and albumin concentration but significantly increased total protein and globulin of the serum. The above results are consonant with those of Mousa et al. [17]. Meanwhile, Yalçinkaya et al. [21] found a significant decrease in the activities of AST and ALT. The results of the present study are incompatible with Rokade et al. [22] who found a significant increase in the serum activities of AST and ALT and protein concentration in broilers dietary supplemented with MOS. These results may be attributed to the antioxidant properties of the MOS, which was reported by Dawood et al. [11]. On the other hand, results of antioxidant enzymes and MDA in harmony with the results of Zhou et al. [23] found a significant decrease of antioxidant enzymes in birds infected with necrotic enteritis. These results may be attributed to infection, which was previously reported by Mishra B, Jha [24]. On the other hand, Abudabos et al. [25] reported that *Salmonella typhimurium* had no impact on total antioxidant capacity or oxidative stress in challenged broilers. However, agrimos® supplementation significantly decreased serum MDA and increased CAT. This result is compatible with that of El-Kader
et al. [26] in broilers.

The reduction of HI titer in the *E. coli* infected groups may be attributed to the stress of infection and diarrhea, which may change the acid-base balance [27]. In addition, the increase in HI titer due to the nutrition of agrimos® appears to be insignificant. This may be attributed to the fact that agrimos® tend to initiate non-specific immunity rather than humoral immunity [28]. The dietary MOS stimulates humoral immune responses against infectious bursal disease (IBDV) and Newcastle disease (NDV) vaccine viruses [29]. Regarding results of *E. coli* colonization, the higher colonization rates of *E. coli* in different organs of control infected group was in the respiratory tract, fecal swab, liver, and spleen where avian pathogenic *E. coli* cause severe respiratory and systemic diseases in poultry [30]. This result is in harmony with that of Manafi et al. [14]. However, this colonization was decreased by agrimos® dietary supplementation, which was supported by the results of Sohail et al. [13].

Cloacae bursa plays a crucial role in the poultry immune system. In addition, the bursal weight reflects the anatomical response to immune status in broilers [14]. In the present investigation, there were significant decreases in thymus and bursa’s weights versus body weight in the control infected group, which was supported by Gottardo et al. [31]. However, these results are incompatible with those obtained by Manafi et al. [14]. Also, the spleen’s weight versus body weight in the control infected group significantly increased on day 15 then decreased on day 35. These results may be attributable to the infection, which was supported by the results of Huff et al. [32] in turkeys. On the other hand, there were significant increases in thymus’, spleen, and bursa’s weights versus body weight in the agrimos® groups. These results are in harmony with that of Sohail et al. [13].

*Malfunctions of lymphoid organs reduce resistance to bacterial, viral, parasitic and fungal infections.* Thus birds become more susceptible to other infections, leading to high economic losses due to morbidity and mortality [33]. Therefore, the rational assessment of the immunosuppression in the poultry warrants rapid and accurate diagnostic approaches. *Thus, the present study focused on the pathology of lymphoid organs.*

The pathological changes in the control infected group were apoptosis in the lymphoid organ and
focal area of round cell aggregation in the liver. These results are in harmony with that of Kumar et al. [34]. Meanwhile, spleen revealed depletion of lymphocytes, areas of congestion, and necrosis of lymphocytes from the white pulp. Also, bursa of Fabricius showed lymphoid depletion in follicles, and thymus showed some lesions like medullary congestion and mild cortical depletion [33]. Remus et al. [12] reported *E. coli* caused severe liver and epithelial damage. However, agrimos supplementation to broilers revealed no pathological changes. This result is compatible with that of Awaad et al. [10]. As well, in the infected group, the supplementation of agrimos mitigated the pathological changes caused by infection. This result may be due to the composition of agrimos which contains β-Glucans and MOS. Pro-inflammatory cytokines such as nuclear factor (NF) and tumor necrosis factor (TNF) produced during the acute phase response can induce the production of several acute-phase proteins (APPs) by hepatocytes [35]. In the present study, it was found that agrimos had no clear effect on liver NF or TNF expression levels of the uninfected broiler chicks. However, the reduction in liver enzyme activities and the down-regulation of NF and TNF gene expressions indicate the protective effects and anti-inflammatory properties of agrimos in broiler chicks with *E. coli* infection. These results are consistent with that obtained by Markazi [36] in *Salmonella* challenge broilers. Most of the previous research has been performed on healthy chicks without infection conditions or has lacked to clear some gene expressions at the site of infection. *E. coli* infection is considered a common disease in poultry production, which can induce different oxidative and inflammatory stress. Thus, in the present study, *E. coli*-inoculated chickens were used to investigate the effects of agrimos on healthy chickens and under such conditions. Together with TNF or NF data, agrimos can apparently regulate the cytokine responses of broiler chicks with *E. coli* infection and its immunomodulatory effects seem to be protective by repressing the ongoing inflammation. In brief, the decreased TNF and NF expressions of liver tissues in the agrimos fed broiler chicks with *E. coli* infection may be an indication of slowdown inflammation and
gradual restoration of the infected broiler chicks’ health status.

Socio-Economic Importance: Veterinary medicine plays a crucial role in public health. The scope of veterinary public health includes food hygiene practices development and supervision in addition to zoonotic disease control and eradication [37]. In addition, antibiotic usage in animals plays a major role in the emerging public health crisis of antibiotic resistance [38]. Thus, nowadays, using probiotics or prebiotics have become popular. They are considered an alternative to Antibiotic Growth Promoters (AGP). Probiotics are supplemented into animal feed for improving growth performance along with preventing and controlling enteric pathogens [39].

Attention should be given to the enteric pathogens in the poultry field due to their economic effects (death, loss of weight, and poor conversion ratio). Besides, the spread of E. coli and the high usage of antibiotics in the poultry industry can result in bacterial resistance to such antibiotics. Instead, it is recommended to use prebiotics.

Conclusion
In the present study, the control infected group showed retardation in the growth performance parameters with abnormal serum biochemical parameters. These retardation and abnormalities were mitigated by agrimos® supplementation, which improved growth performance. Also, agrimos® improved the non-specific immunity, which in turn led to an improvement in the specific immunity against ND, which was reported in the discussion above. On the other hand, agrimos® reduces oxidative stress and slows down inflammation that occurs as a result of E. coli infection through decreased TNF and NF expressions in liver tissue. Consequently, there is no need to use antibiotics. So, Agrimos® proved to be a good alternative to antibiotics for controlling and reducing E. coli infection and colonization

Methods
Agrimos®: The combination of Manno-oligosaccharides (MOS) and Beta-Glucans, which was extracted from Saccharomyces cerevisiae with a specific dedicated manufacturing process produced agrimos®. Agrimos® modulates the non-specific immune response and favors the development of the specific response. It was made in Lallemand Company (a Canadian company) and imported by Egavet
Experimental Design, Feeding Program, and Management: 125 mixed-sex chicks (one-day-old) were used (Cobb-505 broiler strain). The chicks were obtained from a private farm at Kafrelsheikh Governorate where five chicks were slaughtered after weighting at the beginning of the experiment. Their bursa, spleen, and thymus gland were weighed. The remaining broiler chicks (120) were kept in a clean room, which was furnished with sawdust with good ventilation at the Animal Health Research Institute, Kafrelsheikh branch where the experiment was done. Chicks were supplemented with feed and water ad libitum and kept under good hygienic management and sanitation with light/dark 23/1 hrs./day. Chicks (average body weight = 40-50 g/chick) after 3 days acclimatization period were equally allotted into (ranking method) 4 groups each group contains 3 replicates (10 chicks/replicate). The negative control group (first group), was fed on a diet [40] without any additives (basal) or infection (Table 10). The positive control (second group), was fed on a diet without any additives but infected with *E. coli*. The third group was fed on agrimos® (2kg/ton) supplemented diet but without infection. The fourth group was fed on agrimos® (2kg/ton) supplemented diet and infected. All chicks groups were vaccinated against ND and IBD at 7 & 12 days, respectively. The chemical analysis of feed was determined according to AOAC [41]. Individual bird body weight was recorded at the starting of the experiment. All performance parameters (BW, weight gain (WG), and FCR) were calculated according to Vohra and Roudybush [42], Castell and Tiews [43], and Tacon [44], respectively. The feed intake for each pen was recorded weekly with the observation of chicks for symptoms, PM, and mortality along the experimental period.

The sacrificed birds from the experimental groups were used for sample collection. The remaining live birds were euthanized in strong bags by CO2 suffocation. all dead birds and slaughtered ones, as well as remnants of samples and bedding material, were buried in the strict hygienically controlled properly constructed burial pit.

Experimental Infection: At the starting of the experiment, all chicks in the two experimentally infected groups were infected with *E. coli* O78 via the oral route (1 ml containing 3x10⁸). This strain
was supplied from Animal Health Research Institute, Kafrelsheikh Regional Lab, Poultry and Rabbit Disease Department). *E. coli* O<sub>78</sub> was isolated from poultry and contained the virulence genes, which are a defining characteristic of Avian Pathogenic *E. coli* O<sub>78</sub> (APEC). *E. coli* O<sub>78</sub> was marked with an antibiotic (320 μg ciprofloxacin/ml broth) and prepared according to McFarland [45]. All groups (30 birds/group) were vaccinated against ND and IBD at Days 7 and 12, respectively.

**Sample Collection and Measurements of the Serum Parameters:** On day 35, blood samples were collected from 5 birds/group after slaughtering (the birds were euthanized by intraperitoneal injection of sodium pentobarbital (50 mg/kg) to minimize suffering during slaughtering). After coagulation of the blood, serum was separated (centrifugation at 3000 rpm for 15 min.) and kept in a freezer (-20º C) until analysis. Serum activities of CAT, SOD, ALT, and AST and concentration of MDA, total protein, and albumin were measured by using commercial kits obtained from BIODIAGNOSTIC Company.

**Immune Response against Newcastle Disease (ND):** HI titer was performed against ND [46]. The Newcastle disease virus and positive control serum were kindly provided by the Animal Health Research Institute, Kafrelsheikh.

**Colonization of *E. coli***: Shedding of the *E. coli* in the fecal matter and its colonization in organs was recorded and confirmed by the re-isolation of *E. coli* from infected birds.

**The Weight of Immune Organs:** Five chicks on zero-day of age and five chicks from each group were weighted then slaughtered on 15 and 35 days of age. Each organ including thymus, spleen, and bursa of Fabricius was isolated and weighed. The weight of the targeted immune organs was calculated as described by Keil et al. [47] following the equation below:

\[
\text{Immune Organ Weight/Body Weight} = \frac{\text{Organ Weight (gm)}}{\text{Body Weight (gm)}} \times 100
\]

**Necropsy and Histopathology:** Sections of liver, intestine, bursa, thymus gland, and spleen were taken after necropsy and fixed immediately in 10% buffered formalin and processed for histopathological evaluation, using routine paraffin embedding section. Sections of 3μm thickness were cut and stained using H&E according to Bancroft and Gamble [48].
**Q-PCR (Real-Time Polymerase Chain Reaction): Collection of the Sample:** On Day 35, samples of the liver were collected on liquid nitrogen from 4 birds/group into clean Eppendorf tubes and stored at -80 °C until use.

**Q-PCR (Real-Time Polymerase Chain Reaction):** The liver samples were collected (35 days) on liquid nitrogen from 4 birds/group into clean Eppendorf tubes and stored at -80 °C until use.

Total RNA from the liver samples was extracted using easy RED total RNA extraction kits (iNtRON Biotechnology, Inc.) according to the manufacturer’s instructions. The RNA integrity was verified by using agarose gel electrophoresis. The first-strand cDNA was synthesized with total RNA using Intron-Power cDNA synthesis kit (Cat. no. 25011).

The specific primers were used to amplify the selected genes of the chicken (Gallus gallus) with GAPDH as housekeeping (internal standard) gene-primer sequence (Table 11). The qRT-PCR assay was carried out using a Stratagene MX300P Q-PCR system (Agilent Technologies), using Real MODTM Green FAST qPCR master mix (S) following the manufacturer's recommendations. MxPro QPCR Software was used for data collection.

The relative gene expression levels were evaluated using the 2−ΔΔct method [49].

**Statistical Analysis:** The obtained results were statistically analyzed by one-way ANOVA using SPSS version 16.

**List Of Abbreviations**

AGP: Antibiotic Growth Promoters; ALT: alanine transaminase; APPs: acute-phase proteins; AST: aspartate aminotransferase; BW: body weight; CAT: catalase; DNA: deoxyribonucleic acid; *E. coli*: *Escherichia coli*; FCR: feed conversion ratio; HI: Hemagglutination Inhibition; IBDV: infectious bursal disease; Q-PCR: Real-Time Polymerase Chain Reaction; MDA: lipid peroxidation; MOS: mannan oligosaccharide; ND: Newcastle Disease; NDV: Newcastle disease virus; NF: nuclear factor; PM: postmortem; RNA: ribonucleic acid; SOD: superoxide dismutase; TNF: tumor necrosis factor

**Declarations**

**Ethics approval and consent to participate**

The current study was approved by the Ethical Committee for live birds sampling at the Animal Health
Research Institute, Egypt (License No. AHRI 42102017), according to local Egyptian laws.

Consent for publication
Not applicable

Availability of data and materials
The datasets used and/or analyzed during the current study are available from corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests

Funding
This research did not receive any specific financial support from funding agencies in public, commercial, or non-profit sectors.

Authors’ Contributions
All authors contributed equally to this work whereas they designed, conducted the experiment and wrote the manuscript.

SF and AS measured serum biochemistry

GE followed up isolation of E. coli, colonization and reisolation of E. coli

OS designed diet formulation and measured growth performance parameters.

AA examined pathological changes

AP measured Q-PCR for the collected samples

HAM followed up immune response against Newcastle disease, clinical signs and mortalities

SF made interpretation of the results

Acknowledgments:
We would like to thanks Prof. Rawhya Emran, Dep. of Pathology, Molecular Pathology Unit, Animal Health Research Institute for her valuable support.

References
1. Wang Y, Dong Z, Song D, Zhou H, Wang W, Miao H, Wang L, Li A. Effects of microencapsulated probiotics and prebiotics on growth performance, antioxidative
abilities, immune functions, and caecal microflora in broiler chickens. Food and agricultural immunology. 2018 Jan 1;29(1):859-69.

2. Tayeri V, Seidavi A, Asadpour L, Phillips CJ. A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers. Veterinary research communications. 2018 Sep 1;42(3):195-207.

3. Tavaniello S, Maiorano G, Stadnicka K, Mucci R, Bogucka J, Bednarczyk M. Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route. Poult sci. 2018;97(8):2979-87.

4. Sobolewska A, Elminowska-Wenda G, Bogucka J, Dankowiakowska A, Kułakowska A, Szczerba, A, Stadnicka K, Szpinda M, Bednarczyk M. The influence of in ovo injection with the prebiotic DiNovo® on the development of histomorphological parameters of the duodenum, body mass and productivity in large-scale poultry production conditions. J Anim Sci Biotechnol. 2017; 8(1):45.

5. Cummings JH, Macfarlane GT. Gastrointestinal effects of prebiotics. Br J Nutr. 2002; 87(Suppl.2):145-151 (Abstr.). DOI: https://doi.org/10.1079/BJN/2002530

6. Pelicano ER, Souza PA, Souza HB, Figueiredo DF, Boiago MM, Carvalho SR, Bordon VF. Intestinal mucosa development in broiler chickens fed natural growth promoters. Braz J Poultry Sci. 2005;7(4):221-9. http://dx.doi.org/10.1590/S1516-635X2005000400005

7. Spring P, Wenk C, Dawson KA, Newman KE. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult sci. 2000;79(2):205-11. https://doi.org/10.1093/ps/79.2.205

8. Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers.
9. Hajati H, Rezaei M. The application of prebiotics in poultry production. Int J Poult Sci. 2010;9(3):298-304. DOI: 10.3923/ijps.2010.298.304 · Source: DOAJ

10. Awaad MH, Atta AM, El-Ghany WA, Elmenawey M, Ahmed K, Hassan AA, Nada AA, Abdelaleem GA. Effect of a specific combination of mannan-oligosaccharides and β-glucans extracted from yeast cell wall on the health status and growth performance of ochratoxicated broiler chicken. J Am Sci. 2011;7(3):82-96. Available in research gate net.

11. Dawood MA, Koshio S, Fadl SE, Ahmed HA, El Asely A, Abdel-Daim MM, Alkahtani S. The modulatory effect of mannanoligosaccharide on oxidative status, selected immune parameters and tolerance against low salinity stress in red sea bream (Pagrus major). Aquacult Rep. 2020;16:100278.

12. Remus A, Hauschild L, Andretta I, Kipper M, Lehnen CR, Sakomura NK. A meta-analysis of the feed intake and growth performance of broiler chickens challenged by bacteria. Poult sci. 2014;93(5):1149-58. https://doi.org/10.3382/ps.2013-03540

13. Sohail MU, Ijaz A, Younus M, Shabbir MZ, Kamran Z, Ahmad S, Anwar H, Yousaf MS, Ashraf K, Shahzad AH, Rehman H. Effect of supplementation of mannan oligosaccharide and probiotic on growth performance, relative weights of viscera, and population of selected intestinal bacteria in cyclic heat-stressed broilers. J Appl Poult Res. 2013;22(3):485-91. https://doi.org/10.3382/japr.2012-00682

14. Manafi M, Hedayati M, Khalaji S, Kamely M. Assessment of a natural, non-antibiotic blend on performance, blood biochemistry, intestinal microflora, and morphology of broilers challenged with Escherichia coli. Rev Bras Zootec. 2016;45(12):745-54. http://dx.doi.org/10.1590/s1806-92902016001200003

15. Jahanian R, Ashnagar M. Effect of dietary supplementation of mannan-
oligosaccharides on performance, blood metabolites, ileal nutrient digestibility, and

gut microflora in Escherichia coli-challenged laying hens. Poult sci. 2015;94(9):2165-72. https://doi.org/10.3382/ps/pev180

16. El-Far AH, Ahmed HA, Shaheen HM. Dietary supplementation of phoenix dactylifera

seeds enhances performance, immune response, and antioxidant status in broilers.

Oxid Med Cell Longev. 2016;2016. http://dx.doi.org/10.1155/2016/5454963

17. Mousa SM, Soliman MM, Bahakaim AS. Effect of mannan oligosaccharides and β-glucans on productive performance and some physiological and immunological

parameters of growing Japanese quail chicks. Egypt Poult Sci J. 2014;34(2). © 2019
EBSCO Industries, Inc. All rights reserved

18. Kabir SM. Avian colibacillosis and salmonellosis: a closer look at epidemiology,

pathogenesis, diagnosis, control and public health concerns. International journal of

environmental research and public health. 2010;7(1):89-114.

19. Sharma V, Jakhar KK, Nehra V, Kumar S. Biochemical studies in experimentally

Escherichia coli infected broiler chicken supplemented with neem (Azadirachta

indica) leaf extract. Veterinary world. 2015;8(11):1340.

20. Blood D.C., Radostits O.M., Gay C.C., Arundel C.H., Ikede B.O., Mckenzie R.A.,

Trembley R.R.M., Henderson J.A. Veterinary Medicine. 8th ed. Eastbourne: The

English Language Book Society and Bailliere Tindall; 1994.

21. Yalçinkaya İ, Güngör T, Başalan M, Erdem E. Mannan oligosaccharides (MOS) from

Saccharomyces cerevisiae in broilers: Effects on performance and blood

biochemistry. Turk J Vet Anim Sci. 2008;32(1):43-8. This research was supported by

the Scientific Research Fund of the University of Kırıkkale, Project No: 03/09-03-02

22. Rokade JJ, Kagate M, Bhanja SK, Mehra M, Goel A, Vispute M, Mandal AB. Effect of

mannan-oligosaccharides (MOS) supplementation on performance, immunity and
HSP70 gene expression in broiler chicken during hot-dry summer. Indian J Anim Res. 2018;52(6):868-74. DOI:10.18805/ijar.B-3291

23. Zhou M, Zeng D, Ni X, Tu T, Yin Z, Pan K, Jing B. Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Dis. 2016;15(1):48. https://doi.org/10.1186/s12944-016-0219-2

24. Mishra B, Jha R. Oxidative stress in the poultry gut: Potential challenges and interventions. Frontiers in veterinary science. 2019;6.

25. Abudabos AM, Alyemni AH, Zakaria HA. Effect of two strains of probiotics on the antioxidant capacity, oxidative stress, and immune responses of Salmonella-Challenged broilers. Braz J Poult Sci. 2016;18(1):175-80. http://dx.doi.org/10.1590/18069061-2015-0052

26. El-Kader HA, Alam SS, Nafeaa AA, Mahrous KF. Influence of dietary supplementation of mannanoligosaccharide (bio-mos®) prebiotic on the genotoxic and antioxidant status in Japanese quail. Int. J. Pharm. Sci. Rev. Res. 2014;27:289-95. Available online at www.globalresearchonline.net

27. Sil GC, Das PM, Islam MR, Rahman MM. Management and disease problems of cockrels in some farms of Mymensingh, Bangladesh. Int J Poult Sci. 2002;1(4):102-5. © Asian Network for Scientific Information 2002

28. Eddie Ip WK, Takahashi K, Alan Ezekowitz R, Stuart LM. Mannose-binding lectin and innate immunity. Immunol Rev. 2009;230(1):9-21. https://doi.org/10.1111/j.1600-065X.2009.00789.x

29. Oliveira MC, Figueiredo-Lima DF, Faria Filho DE, Marques RH, Moraes VM. Effect of mannanoligosaccharides and/or enzymes on antibody titers against infectious bursal and Newcastle disease viruses. Arq Bras Med Vet Zoo. 2009;61(1):6-11.
30. Sadeyen JR, Kaiser P, Stevens MP, Dziva F. Analysis of immune responses induced by avian pathogenic Escherichia coli infection in turkeys and their association with resistance to homologous re-challenge. Vet Res. 2014;45(1):19. doi:10.1186/1297-9716-45-19

31. Gottardo ET, Burin Junior ÁM, Lemke BV, Silva AM, Pasa B, Cassiano L, Muller Fernandes JI. Immune response in Eimeria sp. and E. coli challenged broilers supplemented with amino acids. Austral J Vet Sci. 2017;49(3):175-84. http://dx.doi.org/10.4067/S0719-81322017000300175

32. Huff GR, Huff WE, Balog JM, Rath NC. The effects of dexamethasone immunosuppression on turkey osteomyelitis complex in an experimental Escherichia coli respiratory infection. Poult Sci. 1998;77(5):654-61. https://doi.org/10.1093/ps/77.5.654

33. Wani BM, Darzi MM, Masood Saleem Mir SA, Shakeel I. Pathological and Pharmacochemical Evaluation of Broiler Chicken Affected Naturally with Colibacillosis in Kashmir Valley. Int J Pharmacol. 2017;13(4):388-95. Doi: 10.3923/ijp.2017.388.395

34. Kumar A, Jindal N, Shukla CL, Asrani RK, Ledoux DR, Rottinghaus GE. Pathological changes in broiler chickens fed ochratoxin A and inoculated with Escherichia coli. Avian Pathol. 2004;33(4):413-7. https://doi.org/10.1080/03079450410001724021

35. Petersen HH, Nielsen JP, Heegaard PM. Application of acute phase protein measurements in veterinary clinical chemistry. Vet Res. 2004;35(2):163-87. https://doi.org/10.1051/vetres:2004002

36. Markazi A. Effects of Whole Yeast Cell Product Supplementation in Chickens Post-coccidial and Post-Salmonella Challenge (Doctoral dissertation, The Ohio State University). http://rave.ohiolink.edu/etdc/view?acc_num=osu1437497725
37. Lathers CM. Role of veterinary medicine in public health: antibiotic use in food animals and humans and the effect on evolution of antibacterial resistance. J Clin Pharmacol. 2001;41(6):595-9. https://doi.org/10.1177/00912700122010474

38. Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 2012;127(1):4-22. https://doi.org/10.1177/003335491212700103

39. Bajagai YS, Klieve AV, Dart PJ, Bryden WL. Probiotics in animal nutrition: production, impact and regulation. FAO; 2016. Available in Google scholar.

40. Nutrient requirements of poul., 9th ed. National Academy of Sci., Washington, DC. 1994. Available in Google scholar.

41. Official methods of analysis.13th Ed., w. Horwitz. w, (Editor), Academic Press, Washington, D.C., USA, no. 925.09. 2000. Available in Google scholar.

42. Vohra P, Roudy bush T. The effect of various levels of dietary protein on the growth and egg production of Coturnix coturnix japonica. Poult Sci. 1971;50(4):1081-4. https://doi.org/10.3382/ps.0501081

43. Castell JD, Tiews K. Report of the EIFAC. IUNS and ICES working group on the standardization of methodology in fish nutrition research. Hamburg, Fedral Republic of Germany, EIFAC. Technology. 1980,36, 24. Available in Google scholar.

44. Tacon A. The nutrition and feeding of farmed fish and shrimp a training manual. V61. 1. The essential nutrients FAO. 1987;PP. 117-130. Available in Google scholar.

45. McFarland J. Nephelometer: an instrument for media used for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. The Journal of the American Medical Association, 1907;14, 1176-8. 1907;XLIX(14):1176-1178. doi:10.1001/jama.1907.25320140022001f

46. King DJ, Seal BS. (1998). Biological and molecular characterization of ND. virus field
isolates with comparison to reference NDV strain and pathogenicity after chicken or embryo passage of selected isolates. Avian Dis. 1998;42, 507-516. DOI: 10.2307/1592677. https://www.jstor.org/stable/1592677

47. Keil DE, Mehlmann T, Butterworth L, Peden-Adams MM. Gestational exposure to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol Sci. 2008;103(1):77-85. https://doi.org/10.1093/toxsci/kfn015

48. Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. Elsevier health sciences; 2008. Available in Google scholar

49. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001 Dec 1;25(4):402-8. Available in Google scholar.

50. Tabatabaei SM, Badalzadeh R, Mohammadnezhad GR, Reza Balaei R. Effects of Cinnamon extract on biochemical enzymes, TNF-α and NF-κB gene expression levels in liver of broiler chickens inoculated with Escherichia coli. Pesqui Vet Bras. 2015;35(9):781-787.

Tables

**Table 1:** Experimental feeding program.

| Physical composition     | Basal diet (0 - 3) weeks | Basal diet (3 - 6) weeks |
|--------------------------|--------------------------|--------------------------|
| Yellow corn              | 55                       | 61.35                    |
| Soybean meal 48%         | 32                       | 30.6                     |
| Corn gluten 62%          | 4.42                     | 0                        |
| Sunflower oil            | 4.4                      | 4.4                      |
| Methionine               | 0.16                     | 0.08                     |
| Dicalcium phosphate      | 1.85                     | 1.4                      |
| Lime stone               | 1.25                     | 1.3                      |
| Choline 60%              | 0.22                     | 0.17                     |
| Common salt              | 0.4                      | 0.4                      |
| Premix*                  | 0.3                      | 0.3                      |

| Chemical composition %   |                          |                          |
|--------------------------|--------------------------|--------------------------|
| ME Kcal/kg               | 3218.5                   | 3229.7                   |
| Crude protein            | 23.02                    | 20.03                    |
| Calcium                  | 1                        | .9                       |
| Available phosphorus     | 0.45                     | 0.35                     |
| Lysine                   | 1.1                      | 1                        |
| Methionine + cysteine    | 0.9                      | .72                      |
| Choline                  | 1300mg/1kg               | 1000mg/1kg               |
* The used premix (Multivita Co.) composed of retinol 12000000 IU, cholecalciferol 2200000 IU, tocopherol 10000 mg, menadione 2000 mg, thiamin 1000 mg, riboflavin 5000 mg, pyridoxal 1500 mg, cobalamin 10 mg, Niacin 30000 mg, Biotin 50 mg, Folic acid 1000 mg, Pantothenic acid 10000 mg, Iron 30000 mg, Manganese 60000 mg, Copper 4000 mg, Zinc 50000 mg, Iodine 1000 mg, Cobalt 100 mg, Selenium 100 mg, calcium carbonate (CaCO3) carrier to 3000g.

Table 2: Primers used for qPCR analysis

| Primer    | Sequence                  | Reference |
|-----------|---------------------------|-----------|
| TNF-α     | for: 5'-GAGCTGTGGGGAGAACAAAAGGA-3'  |
|           | Rev: 5'-TTGGCCCTTGAAGGACCTG-3'  | Tabatabaei et al. |
| NF-κB     | for: 5'-CAAGGCAGCAATAGACGAG-3'  |
|           | Rev: 5'-GTGGAGGTAGCAGTGGAGCA-3'  |
| GAPDH     | For: 5'CCTCTCTGGCAAAGTCCAAG3'  |
|           | Rev- 5'CAACATCAAATGGGCGAGATG3'  |

TNF-α: Tumor necrosis factor-alpha, NF-κB: Nuclear factor-kappa B, GAPDH: Glyceraldehyde-3 phosphate dehydrogenase.

Table 3 The mortality rate of broiler chicken infected with *E. coli* and fed on agrimos® at 35 days.

| Groups | Control noninfected | Control infected | Agrimos® noninfected | Agrimos® infected |
|--------|---------------------|------------------|----------------------|-------------------|
| Total No. | 30                  | 30               | 30                   |                   |
| Dead No.  | 1                   | 2                | 0                    |                   |
| Survival % | 96.67               | 93.33            | 100                  |                   |
| Mortality % | 3.33                | 6.67             | 0                    |                   |

Table 4 Growth performance of broiler chicken infected with *E. coli* and fed on agrimos® at 35 days.

| Parameters                  | Control noninfected | Control infected | Agrimos® noninfected | Agrimos® infected |
|-----------------------------|---------------------|------------------|----------------------|-------------------|
| Initial body weight (g/chick) | 45.33 ± 0.88a       | 45 ±1.00a        | 45.67 ± 0.88a        |                   |
| Final body weight (g/bird)   | 1544.33 ± 1.76b     | 1358.67 ± 2.03c  | 1736.33 ± 2.33a      | 15                |
| Total Weight gain (g/bird)   | 1499 ± 1.53b        | 1313.67 ± 2.19c  | 1690.67 ± 1.45a      | 15                |
| FCR value                   | 1.67 ±0.005b        | 1.87 ±0.006a     | 1.54 ±0.003c         | 15                |

Values are expressed as mean ± standard errors. Means in the same row (a-c) with different letters significantly differ at (p≤0.05).

Table 5

Serum liver function of broiler chicken infected with *E. coli* and fed on agrimos® at 35 days.
| Groups               | Control noninfected | Control infected | Agrimos® noninfected | Agrimos® infected |
|----------------------|---------------------|------------------|----------------------|-------------------|
| Parameters           |                     |                  |                      |                   |
| ALT (u/l)            | 19.33 ± 0.88b       | 26.33 ± 0.88a    | 18.67 ± 0.88b        | 23 ± 2.07ab       |
| AST (u/l)            | 53.33 ± 1.76b       | 92.67 ± 0.88a    | 51.33 ± 0.88b        | 50 ± 2.07a        |
| Total protein (g/dl) | 2.27 ± 0.08b        | 1.9 ± 0.06c      | 2.9 ± 0.12a          | 2 ± 0.06a         |
| Albumin (g/dl)       | 1.20 ± 0.02a        | 0.47 ± 0.05b     | 1.24 ± 0.03a         | 2.5 ± 0.06a       |
| Globulin (g/dl)      | 1.06 ± 0.09b        | 1.43 ± 0.01a     | 1.66 ± 0.12a         | 1.49 ± 0.04a      |

Values are expressed as mean ± standard errors. Means in the same row (a-c) with different letters significantly differ at (p≤0.05).

Table 6
Serum antioxidant of broiler chicken infected with *E. coli* and fed on agrimos® at 35 days.

| Groups               | Control noninfected | Control infected | Agrimos® noninfected | Agrimos® infected |
|----------------------|---------------------|------------------|----------------------|-------------------|
| Parameters           |                     |                  |                      |                   |
| MDA (n.mol/l)        | 0.65 ± 0.02c        | 1.17 ± 0.08a     | 0.65 ± 0.01c         | 0.6 ± 0.08ab      |
| CAT (u/ml)           | 12.7 ± 0.01b        | 9.73 ± 0.15c     | 15.36 ± 0.13a        | 16 ± 0.08a        |
| SOD (u/ml)           | 12.18 ± 0.0c        | 9.37 ± 0.0d      | 17.2 ± 0.89a         | 17.2 ± 0.09a      |

Values are expressed as mean ± standard errors. Means in the same row (a-c) with different letters significantly differ at (p≤0.05).

Table 7 HI titer for ND at different periods

| Groups               | Control noninfected | Control infected | Agrimos® noninfected | Agrimos® infected |
|----------------------|---------------------|------------------|----------------------|-------------------|
| Age                  |                     |                  |                      |                   |
| 0 day                | 4.6 ± 0.07b         | 4.8 ± 0.06b      | 4.8 ± 0.06b          | 5.2 ± 0.06a       |
|                      | C.V=11.6%           | C.V=9.03%        | CV=9.3%              | CV=8.3%           |
| 1st weeks p. v       | 5.2 ± 0.06c         | 5.6 ± 0.07b      | 5.6 ± 0.07b          | 6.2 ± 0.06a       |
|                      | C.V=8.6%            | CV=9.5%          | CV=9.5%              | CV=7.2%           |
| 2nd weeks P. v       | 6 ± 0.09b           | 6.2 ± 0.11b      | 6.2 ± 0.06b          | 7 ± 0.09a         |
|                      | C.V=11.5            | CV=13.4          | CV=6.9%              | CV=10%            |
| 3rd weeks P. v       | 4.95 ± 0.09b        | 4.6 ± 0.24b      | 4.8 ± 0.06b          | 6 ± 0.09a         |
|                      | C.V=14.5%           | CV=11.6%         | CV=9%                | CV=11.7%          |
| Average of log2GM ±SEM | 5.19 ± 0.3b        | 5.3 ± 0.37b      | 5.35 ± 0.34b         | 6.1 ± 0.37a       |

GM: geometric mean. CV: coefficient of variation. p. v: post vaccination
No difference between item carries the same letter in the same row.

Table 8: Colonization of *E. coli* and rate of shedding as judged by intestinal colonization.
| Organs          | C-       | C+       | C-       | C+       | C-       | C+       | C-       | C+       | C-       |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                | T/B.W.  |
|                | Zero-day| At 15 days| At 35 days| Zero-day| At 15 days| At 35 days| Zero-day| At 15 days| At 35 days|
| T/B.W.         | 0.287 ± 0.033 Y | 0.59 ± 0.012 bX | 0.134 ± 0.008 BZ | 0.287 ± 0.033 Y | 0.377 ± 0.013 cX | 0.069 ± 0.006 CZ | 0.007 ± 0.003 dY | 0.003 ± 0.004 CY | 0.011 ± 0.004 CY |
| S/B.W.         | 0.036 ± 0.007 Y | 0.046 ± 0.003 dY | 0.132 ± 0.011 BX | 0.036 ± 0.007 Z | 0.094 ± 0.004 cX | 0.056 ± 0.006 CY | 0.0157 ± 0.0024 Y | 0.329 ± 0.003 bX | 0.121 ± 0.004 CY |
| B/B.W.         | 0.157 ± 0.024 Y | 0.329 ± 0.003 bX | 0.121 ± 0.004 CY | 0.157 ± 0.024 Y | 0.259 ± 0.001 cX | 0.064 ± 0.006 DZ | 0.007 ± 0.003 dY | 0.003 ± 0.004 CY | 0.01 ± 0.004 CY |

T = thymus B. W. = body weight S = spleen B = bursa

Values are expressed as mean ± standard errors. Means in the same row (a-d), (A-C) and (X-Z) with different letters significantly differ at (p≤0.05).

Table (10): Histopathological assessment of dietary agrimos® supplementation on E. coli challenged broiler chicken.
| Lesions                                                                 | Infected group | Agrimos non-infected group |
|------------------------------------------------------------------------|----------------|---------------------------|
|                                                                        | At 15 days     | At 35 days                |
|                                                                        | B  T  S        | B  T  S                   |
| Sub capsular heterophilic aggregation                                  | -              | N                         |
|                                                                        |                | N                          |
| Sub and interstitial edema                                             | -              | o                         |
|                                                                        |                | o                          |
| Interstitial hemorrhages                                               | -              | r                         |
|                                                                        |                | r                          |
| Interstitial connective tissue proliferation                           | -              | a                         |
|                                                                        |                | a                          |
| Epithelial folding and lobulation                                      | +              | l                         |
|                                                                        |                | l                          |
| Epithelial hyperplasia                                                | +              | +                         |
|                                                                        |                | +                          |
| Epithelial degeneration and/or necrosis                                | +              | +                         |
|                                                                        |                | +                          |
| Reduction in size and numbers of follicles                             | -              | -                         |
|                                                                        |                | -                          |
| Follicular atrophy or cortical atrophy                                | -              | -                         |
|                                                                        |                | -                          |
| Follicular cyst and necrosis                                           | -              | -                         |
|                                                                        |                | -                          |
| Lymphocytic depletion                                                 | -              | -                         |
|                                                                        |                | -                          |
| Appearance of holes in medulla                                        | -              | +                         |
|                                                                        |                | +                          |
| Reticular cells proliferation                                          | -              | -                         |
|                                                                        |                | -                          |
| Vasculitis                                                             | -              | -                         |
|                                                                        |                | -                          |
| Cortical necrosis                                                     | -              | -                         |
|                                                                        |                | -                          |
| Apoptotic bodies and/or karyorhexis                                    | -              | +                         |
|                                                                        |                | +                          |
| Hyalinization and thrombosis of blood vessels                          | -              | -                         |
|                                                                        |                | -                          |

+++ Sever  ++ Moderate  + Mild  B= Bursa  T=Thymus  S=Spleen

Table (11): Incidence of pathological changes in organs at different periods

| Groups | Infected group | Agrimos non-infected group | Agrimos infected |
|--------|----------------|---------------------------|-----------------|
|        | At 15 days     | At 35 days                | At 15 days      |
|        | B  T  S        | B  T  S                   | B  T  S        |
| N      | A              | T                          | N              |

B= Bursa  T=Thymus  S=Spleen  N=Normal  A=Abnormal  T=Total  %= Ratio

Figures
Figure 1

Thymus of one-day-old chicken (A1). Thymus of control non-infected group at 35 days (A2). Thymus of control infected group at 35 days (A3). Thymus of agrimos non-infected group at 35 days (A4). Thymus of agrimos infected group at 35 days (A5). Bursa of one-day-old chicken (B1). Bursa of control non-infected group at 35 days (B2). Bursa of control infected
group at 35 days (B3). Bursa of agrimos non-infected group at 35 days (B4). Bursa of agrimos infected group at 35 days (B5). Spleen of one-day-old chicken (C 1). Spleen of control non-infected group at 35 days (C 2). Spleen of control infected group at 35 days (C 3). Spleen of agrimos non-infected group at 35 days (C 4). Spleen of agrimos infected group at 35 days (C 5).
a. showing normal bursa of Fabricius. Control negative one-day-old chick. b. showing normal thymus. Control negative one-day-old chick. C. Bursa of Fabricius showing variable degree of epithelial hyperplasia (arrow a) and ulceration (arrow b). Control infected group at 15
days post infection. d. Bursa of Fabricius showing variable degree of epithelial hyperplasia (arrow a) associated with degeneration and ulceration (arrow b). Control infected group at 15 days post infection. e. Bursa of Fabricius showing variable degree of epithelial hyperplasia associated with degeneration and sub cortical fibrous tissues proliferation. Control infected group at 15 days post infection. f. Thymus showing numerous holes on the cortex and medulla. Control infected group at 15 days post infection. H&E. a and b X 100 other figures X 200.
Figure 3

a. Liver showing focal area of round cells aggregation. Control infected group at 35 days post infection. b. Intestine (duodenum) showing hyperplasia of the epithelial lining the intestinal villi associated with vaculation. Control infected group at 35 days. c. Bursa of
Fabricius showing normal atypical fold. Agrimos® non-infected group at 15 days. d. Bursa of Fabricius showing pores within the cortex. Agrimos® non-infected group at 35 days. e. Thymus showing thrombus formation (arrow). Agrimos® non-infected group at 15-35 days. f. Caecal tonsil showing epithelial sloughing (arrow). Agrimos® non-infected group at 15-35 days. H&E. X 200 for all figures except c X 100.
Figure 4

a. Caecal tonsil showing normal lymphoid aggregation (arrow). Agrimos® non-infected
group at 15-35 days. b. Caecal tonsil showing necrotic cyst (arrow). Agrimos® non-infected
group at 15-35 days. c. Spleen showing normal appearance. Agrimos® non-infected group
at 15-35 days. d. Liver showing mild focal areas of round cells aggregation (arrow).
Agrimos® non-infected group at 15-35 days. e. Bursa of Fabricius showing inter follicular
edema. Agrimos® infected group at 15 days post infection. f. Thymus showing numerous
cortical holes in cortex and medulla (these holes containing apoptotic bodies). Agrimos®
infected group at 15 days post infection. H&E. X 200 for all figures except e X 100.

Figure 5

Changes in the gene expression of NF (right) and TNF-α (left) among experimental groups. C
(negative control), C+ (positive control), A (agrimos® treated without infection), A+
(agrimos® treated group with E. coli infection)

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
NC3Rs ARRIVE Guidelines 2013 (1).docx