Temporal variations of 90Sr and 137Cs in atmospheric depositions after the Fukushima Daiichi Nuclear Power Plant accident with long-term observations

Takeshi Kinase1,2, Kouji Adachi1, Tsuyoshi Thomas Sekiyama1, Mizuo Kajino1, Yuji Zaizen1 & Yasuhiro Igarashi1,3

We have measured artificial radionuclides, such as 90Sr and 137Cs, in atmospheric depositions since 1957 in Japan. We observed the variations in 90Sr and 137Cs, which were emitted from atmospheric nuclear tests and nuclear power plant accidents, due to their diffusion, deposition, and resuspension. In March 2011, the Fukushima Daiichi Nuclear Power Plant accident occurred in Japan, and significant increases in 90Sr and 137Cs were detected at our main site in Tsukuba, Ibaraki. Our continual observations revealed that the 137Cs monthly deposition rate in 2018 declined to ~1/8100 of the peak level, but it remained more than ~400 times higher than that before the accident. Chemical analysis suggested that dust particles were the major carriers of 90Sr and 137Cs during the resuspension period at our main site. Presently, the effective half-life for 137Cs deposition due to radioactive decay and other environmental factors is 4.7 years. The estimation suggests that approximately 42 years from 2011 are required to reduce the atmospheric 137Cs deposition to a state similar to that before the accident. The current 90Sr deposition, on the other hand, shows the preaccident seasonal variation, and it has returned to the same radioactive level as that before the accident.

Atmospheric nuclear tests and nuclear power plant accidents have released artificial radionuclides into the atmosphere, land surface, and ocean. No artificial radionuclides occurred in the environment before 1945, and human activities have led to increases in environmental radioactivity levels. Thus, the monitoring of artificial radionuclides has been a global assignment1,2. We have continuously monitored artificial radionuclides in atmospheric depositions for more than 63 years in the Kanto areas around Tokyo, Japan. Our long-term observations clarified the historical variations in artificial radionuclides in atmospheric depositions as a result of nuclear tests and their atmospheric transport and circulation from the 1950s to the 1970s$^{3–8}$. For example, after the Partial Test Ban Treaty (PTBT) in 1963, atmospheric radionuclide deposition from the stratosphere, called global fallout, started to decline. However, the decline of the deposition rate was slowed because China and France continued nuclear tests until 1980. After the last nuclear test in 1980, the decrease rate increased until ~1990 (Fig. 1). In 1986, the Chernobyl accident caused a temporary increase in radionuclide deposition$^{9–11}$. From ~1990 until March 2011, the decrease of the deposition rate was slowed again because of the change in radionuclide deposition processes, i.e., resuspension of artificial radionuclides hosted by local and remote dust particles$^{12–15}$. These long-term observations of atmospheric deposition have demonstrated that the radionuclide changes in the environment depend on both global and local phenomena. The radionuclides in atmospheric deposition continued to decrease even after the cessation of their direct emissions.

In March 2011, an earthquake with a magnitude of 9.0 occurred and the subsequent tsunami severely damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP). The accident resulted in enormous emissions of...
artificial radionuclides including 90Sr, 134Cs, and 137Cs (radiocesium) into the atmosphere and ocean. Studies have estimated the amount of radioactive materials released from the accident and their geographic distributions. Other studies showed the chemical and physical properties of the carriers of radionuclides, such as glassy particles and sulfate, and estimated the resuspension processes of 137Cs in the atmosphere through dust suspensions or emissions of bioaerosols. The radionuclides released into the environment eventually decline due to radioactive decay and other environmental processes. The rate of radioactive decay is inversely proportional to the respective physical half-life, which is 28.9, 2.1, and 30.2 years for 90Sr, 134Cs, and 137Cs, respectively. However, the rate of decline due to environmental removal processes is complex and depends on the weather, environment, and physical and chemical properties of radionuclides. It is crucial to understand the time scale of environmental decay to predict the fate of radioactive materials from accidents and to evaluate their long-term influences on the environment and human health. Hence, this study aims (1) to show our long-term observation results, (2) to estimate the current resuspension carriers of radionuclides, and (3) to evaluate their environmental decay period. To achieve this goal, we measured the radioactivities of 90Sr, 134Cs, and 137Cs and stable elements and isotopes (Na, Mg, Al, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Sr, Ba, 9Be, 133Cs, 232Th, and 238U) of monthly atmospheric deposition samples collected at two sites in different environments: suburban site A and mountain site B (Supplementary Fig. S1).

Results and discussion

Changes in radioactivity in atmospheric depositions after the accident. In March 2011, 134Cs was detected with the same activity as that of 137Cs. As 134Cs had not been detected before the accident except during the emission period resulting from the Chernobyl accident in 1986, the observed 134Cs/137Cs ratio verified that the only source of 134Cs and 137Cs was the FDNPP (Supplementary Fig. S2). Our atmospheric aerosol samples indicated that at least three plumes resulting from the FDNPP accident passed across site A (Supplementary Fig. S3). When these plumes arrived at site A, the activities of 90Sr and 137Cs in atmospheric deposition increased to 2.7×10^3 and 3.2×10^6 times, respectively, higher than those before the accident (between July 2009 and June 2010) (Fig. 1). The 137Cs/90Sr activity ratio calculated from our observational results in March 2011 was 4.5×10^3. This large difference in the rate of increase between 90Sr and 137Cs reflects the discrepancy between their emission rates, i.e., the total amounts of 90Sr and 137Cs released were estimated as 0.02 PBq and 14.5 PBq, respectively. These estimations indicated that the 90Sr emission level was much lower than that of 137Cs. The monthly 137Cs deposition peak due to the FDNPP accident (2.31×10^4 Bq m$^{-2}$) was much higher than those resulting from nuclear weapon tests (548 Bq m$^{-2}$; June 1963) and the Chernobyl accident (131 Bq m$^{-2}$; May 1986) (Fig. 1a). On the other hand, the 90Sr activity due to the FDNPP accident (5.2 Bq m$^{-2}$) was lower than that due to the nuclear tests in the 1960s (170 Bq m$^{-2}$; June 1963) (Fig. 1b). For comparison, the average 137Cs values in atmospheric depositions before the FDNPP accident (between July 2009 and June 2010) were 7.0 (1.2–22.5) mBq m$^{-2}$ at site A and 25.0 (6.1–76.4) mBq m$^{-2}$ at site B, while those for 90Sr amounted to 1.9 (ranging from not detectable...
(N.D.)–6.0) mBq m\(^{-2}\) at site A and 26.0 (6.5–116.8) mBq m\(^{-2}\) at site B. The possible causes of the higher deposition rates at site B than those at site A are the differences in altitude (site A: 40 m; site B: ~1390 m) and local environmental effects (site A: open area; site B: surrounded by forestland).

The activity of \(^{90}\text{Sr}\) and \(^{137}\text{Cs}\) in atmospheric depositions and that of \(^{137}\text{Cs}\) in aerosol samples rapidly decreased after the first surge in March 2011 (Fig. 2 and Supplementary Fig. S3). The decrease rate of radioactivity in atmospheric depositions at site A was due to the change in radionuclide emission, transport, and deposition processes\(^{29}\). We classify the period after the FDNPP accident into three phases. The first phase is dominated by direct emissions (March 2011), the second phase is dominated by tropospheric circulation and removal (from April to December 2011), and the third phase is dominated by resuspension (after January 2012). In the first phase, the direct discharge/emission of radioactive materials during the FDNPP accident and meteorological conditions governed the radionuclide concentration in the environment\(^{29,42–44}\). In the second phase, tropospheric transport of the radioactive materials remaining in the atmosphere after the FDNPP accident and their removal processes dominated atmospheric depositions\(^{17,29}\). The third phase (after January 2012) mainly depended on the resuspension of radioactive materials\(^{29–31,33–36}\). For comparison, the corresponding decrease rates (first, second, and third phases) resulting from the Chernobyl accident were shorter than those resulting from the FDNPP accident (for more discussion details, please refer to Supplementary Fig. S4 and the text). More discussions regarding the first and second phases were also presented in previous studies\(^{29,34}\), and hence the scope of the present study is restricted to the third phase.

The latest average monthly \(^{137}\text{Cs}\) atmospheric depositions in 2018 at sites A and B reached ~1/8100 (2.9 Bq m\(^{-2}\)) and ~1/4500 (3.0 Bq m\(^{-2}\)), respectively, with regard to the peak levels after the accident. But these levels were still ~400 and ~130 times, respectively, higher than those before the accident (Figs. 1a and 2a, respectively). On the other hand, the \(^{90}\text{Sr}\) depositions in 2018 amounted to 3.0 (1.2–10.5) mBq m\(^{-2}\) and 33.8 (3.1–117) mBq m\(^{-2}\) at sites A and B, respectively (Figs. 1b and 2b, respectively). These \(^{90}\text{Sr}\) deposition levels were almost at the same level as the preaccident deposition levels, and we concluded that the \(^{90}\text{Sr}\) deposition levels at our observation sites had returned to the preaccident levels in at least 2015 (Fig. 2b).
Before the FDNPP accident, the 90Sr and 137Cs activity in atmospheric deposition showed seasonal variations (Fig. 3 and Supplementary Figs. S5 and S6). The 137Cs deposition value peaks in spring (April) at site A. On the other hand, it peaks twice in May and September at site B (Supplementary Figs. S4 and S5). Similarly, 90Sr deposition reaches peak values during the spring season (March and April) at site A and during the fall season (September and October) at site B (Fig. 3). Studies have suggested that the 90Sr and 137Cs deposition peaks during the spring season at site A are caused by local and long-range transported dust particles14,15,34,45,46.

After the FDNPP accident, direct emissions and their tropospheric removal processes governed the 90Sr and 137Cs activity in atmospheric depositions at sites A and B, and seasonal variations were not apparent in the first and second phases (Fig. 2). After 2012 (in the third phase), although the mean 137Cs deposition value at site A had slightly increased in spring (peaking in April), no seasonal variations in 137Cs at either site were observed (Fig. 2 and Supplementary Figs. S5 and S6). After 2014, in contrast, the seasonal variations in the 90Sr radioactivity in atmospheric deposition at both sites showed similar trends to those before the accident (Figs. 2 and 3).

Possible carriers of 90Sr and 137Cs at sites A and B. The radionuclides in the atmosphere are generally carried by aerosol particles (host particles) emitted through, for example, geochemical and biological cycles. The correlations between dust components (e.g., Al and Fe) and radionuclides (90Sr and 137Cs) within the collected samples before the accident suggest that mineral dust particles are the dominant carriers of these radionuclides at site A (Fig. 4a). Previous studies have also demonstrated that the sources of these radionuclides are mainly resuspension of contaminated dust originating from long-range transport (large-scale phenomenon) and neighboring areas (local-scale phenomenon)14,15,33,34,45,46. After the accident, chemical analysis results indicate that dust particles are the dominant carriers of 90Sr and 137Cs at site A, except from 2012 to 2014 for 90Sr when the contributions from the accident were high (Fig. 2).

The correlations between the dust components and radionuclides after the accident at site B were poor (Fig. 4b). However, the 90Sr activity showed correlations with inorganic salts such as Mg, K, and Ca at site B. Scanning electron microscopy (SEM) observation exhibited the presence of inorganic salt particles including KCl, NaCl, and CaSO\textsubscript{4} in dried deposition samples (Supplementary Fig. S7). Although these salt particles had possibly crystallized during the preparation of the atmospheric deposition samples, it is probable that 90Sr coexists with these components in the environment as they are abundantly present in the samples. Studies have indicated that the biological cycle may be a source of these inorganic elements in forests47–49, i.e., the Mg, K, and Ca concentrations in throughfall depositions increase in forests due to foliar leaching. As Sr exhibits a similar geochemical behavior to that of Ca, the occurrence of Sr could be synchronous to that of Ca in the neighboring forest.

Before the accident, the 137Cs activity at site B showed positive correlations with major mineral dust components such as Mg, Mn, Ca, K, Fe, and Al (Fig. 4), suggesting that dust particles were the dominant host particles.
for 137Cs. However, no significant correlation was detected between mineral dust and the 137Cs activity after 2014.

Previous studies have suggested that bioaerosols contribute to the resuspension of 137Cs at forest sites in the contaminated area within the evacuation zone in Fukushima Prefecture\(^3\). Thus, it is possible that bioaerosols carry 137Cs at site B. The differences between the possible carriers may cause the observed differences in the activity ratios of sites B and A ($R_{B/A}$) for 90Sr and 137Cs deposition after the accident (Supplementary Fig. S7).

Estimation of the environmental decrease in 137Cs. With the use of regression curve fitting of the activity of 137Cs in atmospheric deposition, we estimated its effective half-life due to radioactive decay and environmental removal processes (Fig. 2). We adopted a single-exponential function before the accident from January 1990 to July 2010 and a multiple exponential function after the accident (2012–2018; the resuspension phase). The detailed method of the calculation is described in the Supplementary Information.

The effective half-lives of the short- and long-lived components (t_1 and t_2, respectively) of the 137Cs deposition were 195 days and 4.7 years, respectively, at site A, and those at site B were 148 days and 5.9 years, respectively. Interchange of the predominant short- and long-lived components occurred during the period between September and December 2013 (Fig. 2). Our estimation of the effective half-life of the long-lived component at site A is longer than the estimation by the previous study (~ 1.1 years)\(^2\) possibly because our estimation 1) excluded the direct emission period and 2) extended observation data by the end of 2018. The effective half-life of the long-lived component of 137Cs at site A after the FDNPP accident is shorter than that before the accident (8.5 years).

There are two possible reasons for the difference between the effective half-lives before and after the accident. First, the dominant resuspension processes are different before and after the accident. Second, the elapsed time after contaminations is different between the pre and postaccident periods, i.e., more than 30 years had passed for the analysis period before the accident since the last atmospheric nuclear test, on the other hand, only 8 years had passed since the significant pollution after the FDNPP accident.

The above estimated effective half-lives imply that, based on the atmospheric 137Cs deposition level, ~ 42 and ~ 48 years will be required from the year of the accident to reach the preaccident level at sites A and B, respectively. These estimates contain uncertainties due to the short observation period compared to the effective half-life before the FDNPP accident (8.5 years). A better understanding of the carriers, resuspension processes,
and environmental circulation conditions of radionuclides is needed to confirm the above estimates. The radio-
nuclide decreasing trend may change in the future if resuspension process, biological recycling, and their car-
riers changed. Finally, our observations only pertain to atmospheric deposition and provide limited features
of the environmental radionuclide cycle. The contamination in other fields, such as surface soils, forests, and
oceans, will exhibit different effective half-lives. Nevertheless, our continuous observations of the radionuclides
in atmospheric deposition before and after the accident enable the evaluation of the atmospheric phases and the
changes in various processes to regain the environmental conditions before the nuclear power plant accident.

Material and methods

We collected monthly atmospheric deposition samples at two sites: a suburban site in the Kanto Plain (site A;
36.1°N, 140.1°E) and a mountain site in the northwestern corner of the Kanto Plain (site B; 36.5°N, 138.9°E)
(Supplementary Fig. S1). Site A is the main observation base and was established in 1980 at the Meteorological
Research Institute (MRI), Tsukuba, Japan. From 1957 to 1980, the main observation site was located in Koenji,
Tokyo, which was shifted to the current base due to the move of the MRI in 198050. Sampling trays were placed
on quartz fiber filters (QR100, Advantech Ltd., USA) at a flow rate of 700 L per minute to observe the atmospheric
collected aerosol samples using high-volume air samplers (HV-1000F, Shibata Scientific Technology Ltd., Japan)
were sieved through a 106 µm mesh. The deposition samples were dried using rotary evaporators (Eyela NE-12,
Co., Japan) with an energy-dispersive X-ray spectrometer (EDX; E-max 50 mm, Horiba Ltd., Japan) was adopted
for chemical and physical analysis of the dried deposition samples.

The activity of radioactivity was measured by Ge semiconductor detectors (of the coaxial type from ORTEC
EG&G and Eurisys) coupled with a computed spectrometer analyzer (Oxford-Tennelec: Multiport or Seiko
EG&G 92x) using a maximum live time of 106 s after the FDNPP accident. After the radiocesium measurement,
radioactivity concentration.

The stable elements (Na, Mg, Al, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Sr, and Ba) and isotopes (9Be, 133Cs, 232Th, and
238U) were measured by inductively coupled plasma atomic emission spectrometry (Ciros-120, Rigaku Corp.,
Japan, or Vista-PRO, Varian Inc., USA) and inductively coupled plasma mass spectrometry (Agilent7500c or
Agilent8000, Agilent, Ltd., USA), respectively, based on aliquots of the samples (3.6% in mass) during the acid
decomposition processes. The detection limit and quantification values were estimated as three and ten times
the standard deviation of ten measurements of 10 ppb standards. An SEM (SU-3500, Hitachi High Technologies
Co., Japan) with an energy-dispersive X-ray spectrometer (EDX; E-max 50 mm, Horiba Ltd., Japan) was adopted
for chemical and physical analysis of the dried deposition samples.

Received: 17 June 2020; Accepted: 18 November 2020
Published online: 10 December 2020

References

1. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2000 Report to the General
Assembly, with Scientific Annexes. UNSCEAR. https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf
(2000).

2. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2013 Report to the General
Assembly, with Scientific Annexes, Volume2 Scientific Annex B. UNSCEAR. https://www.unscear.org/docs/publications/2013/
UNSCEAR_2013_Report_Vol.II.pdf (2013)

3. Hirose, K., Sugimura, Y. & Katsuragi, Y. 90Sr and 239–240Pu in the surface air in Japan: their concentrations and size distributions.
Pap. Meteorol. Geophys. 37(4), 255–269. https://doi.org/10.2467/1986.mrjpapers.37.255 (1986).

4. Katsuragi, Y. A study of 90Sr fallout in Japan. Pap. Meteorol. Geophys. 33(4), 277–291. https://doi.org/10.2467/mrjpapers.33.277
(1983).

5. Katsuragi, Y. & Michio, A. Seasonal variation of Sr-90 fallout in Japan through the end of 1983. Pap. Meteorol. Geophys. 37(1),
15–36. https://doi.org/10.2467/mrjpapers.37.15 (1986).

6. Miyake, Y. Artificial radioactivity in rain water observed in Japan, from Autumn 1954 to Spring 1955. Pap. Meteorol. Geophys.
5(2), 53–62. https://doi.org/10.2467/mrjpapers1950.6.1_26 (1955).

7. Miyake, Y., Saruhashi, K., Katsuragi, Y., Kanazawa, T. & Tsunogai, S. Deposition of Sr-90 and Cs-137 in Tokyo through the end of
July 1963. Pap. Meteorol. Geophys. 14, 58–65 (1963).

8. Miyake, Y., Katsuragi, Y. & Sugimura, Y. A study on Pu fallout. Pap. Meteorol. Geophys. 15(4), 347–356. https://doi.org/10.2467/
1966.mrjpapers.15.347 (1966).

9. Aoyama, M., Hirose, K., Suzuki, Y., Inoue, H. & Sugimura, Y. High level radioactive nuclides in Japan in May. Nature 321, 819–820.
https://doi.org/10.1038/321819a0 (1986).

10. Aoyama, M., Hirose, K. & Sugimura, Y. Deposition of gamma-emitting nuclides in Japan after the reactor-IV accident at Chernobyl.
J. Radioanal. Nucl. Chem. 116, 291–306. https://doi.org/10.1023/B:JRCM.0000035773 (1987).

11. Hirose, K., Takatani, S. & Michio, A. Wet deposition of radionuclides derived from the Chernobyl accident. J. Atmos. Chem. 17,
61–71. https://doi.org/10.1007/BF00699114 (1993).
45. Igarashi, Y., Aoyama, M., Hirose, K., Povenic, P. & Yabuki, S. What anthropogenic radionuclides (90Sr and 137Cs) in atmospheric deposition, surface soils and aeolian dusts suggest for dust transport over Japan. Water Air Soil Pollut. 5, 51–69. https://doi.org/10.1007/s11267-005-0276-z (2005).

46. Igarashi, Y., Fujiwara, H. & Jugder, D. Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia. Water Air Soil Pollut. 11, 7069–7080. Atoms. Chem. Phys. https://doi.org/10.5194/acp-11-7069-2011 (2011).

47. Houle, D., Quimet, R., Paquin, R. & Laflamme, J.-G. Interactions of atmospheric deposition with a mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Can. J. For. Res. 29, 1944–1957. https://doi.org/10.1139/x99-212 (1999).

48. Su, L., Zhao, C., Xu, W. & Xie, Z. Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest. Forest 10, 507. https://doi.org/10.3390/f10060507 (2019).

49. Uehara, Y. et al. Atmospheric deposition and interactions with Pinus palustris on Mount Tateyama in the northern Japanese Alps. Arct. Alp. Res. 47(2), 389–399. https://doi.org/10.1657/AAR0013-126 (2015).

50. Katsuragi, Y., Hirose, K. & Sugimura, Y. A study of Plutonium fallout in Japan. Pap. Meteorol. Geophys. 33(2), 85–93. https://doi.org/10.2467/ripa-papers.33.85 (1982).

51. Otsuji-Hatori, M., Igarashi, Y. & Hirose, K. Preparation of a reference fallout material for activity measurements. J. Environ. Radioact. 3(2), 143–155. https://doi.org/10.1016/0265-931X(95)00048-F (1996).

Acknowledgements
The authors thank Kenzo Hama, Keiko Kamioka and Minami Ide-Tanimoto (ATOX Co. Ltd.) for the samplings and measurements and Kayo Yanagida, Kyoko Kaneko and Joseph Ching (MRI) for sampling atmospheric deposition at site A. This study was financially supported by the former Ministry of Education, Culture, Sports, Science and Technology and the current Nuclear Regulation Authority (Japanese Radioactivity Survey) and the Environmental Restoration and Conservation agency (Grant Number: 1-1801).

Author contributions
T.K., Y.I. and Y.Z. collected samples. T.K. and M.K. analyzed the data. Y.I., T.S., M.K., and Y.Z. managed the project. T.K. and K.A. wrote this paper, and all authors contributed to discussions.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-78312-3.

Correspondence and requests for materials should be addressed to T.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020, corrected publication 2021