Penta-Quark Anti-Decuplet in Anisotropic Lattice QCD

N. Ishiia, T. Doib, H. Iidaa, M. Okab, F. Okiharuc, H. Suganumaa

a Dept. of Phys., H-27, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
b RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
c Dept. of Phys., Faculty of Science and Technology, Nihon Univ., Chiyoda, Tokyo 101-8308, Japan

The penta-quark(5Q) $\Theta^+(1540)$ is studied in anisotropic lattice QCD with renormalized anisotropy $a_s/a_t = 4$ for a high-precision measurement. Both the positive and the negative parity 5Q baryons are studied using a non-NK type interpolating field with $I = 0$ and $J = 1/2$. After the chiral extrapolation, the lowest positive parity state is found at $m_\Theta \simeq 2.25$ GeV, which is too heavy to be identified with $\Theta^+(1540)$. In the negative parity channel, the lowest energy state is found at $m_\Theta \simeq 1.75$ GeV. Although it is rather close to the empirical value, it is considered to be an NK scattering state rather than a localized resonance state.

LEPS group at SPring-8 discovered the first manifestly exotic hadron Θ^+ at 1.54 ± 0.01 GeV with a width smaller than 25 MeV \cite{1}. The experimental discovery \cite{1} was motivated by a theoretical prediction \cite{2}. Θ^+ is confirmed to have baryon number $B = 1$, charge $Q = +1$ and strangeness $S = +1$, which means that it is a baryon containing at least one \bar{s}. Hence, its simplest configuration is $uudd\bar{s}$, i.e., the penta-quark (5Q) state. There have been an enormous number of theoretical studies \cite{3,4} on Θ^+ since its discovery. One of the most important topics in 5Q studies is its parity. Experimentally, the parity determination of Θ^+ is quite challenging \cite{5,6}, while opinions are divided in the theoretical side \cite{8}.

There are several lattice QCD studies of $\Theta^+ \cite{7,8,9,10}$, which have not yet reached a consensus. Except for Ref. \cite{7}, all other calculations suggest that negative parity states are lighter than positive parity ones, and that the positive parity states are quite massive. Ref. \cite{9} has employed the NK-type interpolating field and found no signal on a 5Q resonance, whereas Refs. \cite{7,8} have employed non-NK type interpolating fields and claimed the existence of a 5Q resonance with negative parity. There is another type of lattice QCD studies of the static 5Q potential \cite{11} aiming at providing physical insights into the structure of penta-quark baryons.

In this paper, we study Θ^+ for both parities with high-precision data generated by using the quenched anisotropic lattice QCD. We employ the standard Wilson gauge action at $\beta = 5.75$ on the $12^3 \times 96$ lattice with the renormalized anisotropy $a_s/a_t = 4$. The anisotropic lattice technique is known to work as a powerful tool for high-precision measurements \cite{12,13,14,15}. The lattice spacing is determined from the static quark potential adopting the Sommer parameter $r_0 = 0.5$ MeV leading to $a_s^{-1} = 1.100(6) \text{ GeV}$ ($a_s \simeq 0.18$ fm) \cite{13}. The lattice size $12^3 \times 96$ amounts to $(2.15 \text{ fm})^3 \times 4.30 \text{ fm}$ in the physical unit. For the quark part, we employ the $O(a)$-improved Wilson (clover) action \cite{13} with four values of hopping parameters as $\kappa = 0.1210(0.0010)0.1240$, which correspond to $m_q/m_\rho = 0.81, 0.77, 0.72$ and 0.65. By keeping $\kappa_s = 0.1240$ fixed for s quark, we change $\kappa = 0.1210 - 0.1240$ for u and d quarks for chiral extrapolation. Anti-periodic boundary condition (BC) is imposed on the temporal direction, whereas periodic BC is imposed on the spatial directions for quark fields. To enhance the low-lying spectra, we adopt a smeared source with the gaussian size $\rho \simeq 0.4$ fm. We use 504 gauge configurations to construct correlators of Θ^+. For detail, see Ref. \cite{10}.

We consider a non-NK type interpolating field

*e-mail: ishii@rarfaxp.riken.jp
for Θ^+ as

$$O \equiv \epsilon_{abc}\epsilon_{adg} \left(u_d^T C \gamma_5 d_e \right) \left(u_f^T C d_g \right) \left(Cs_f^T \right), \quad (1)$$

where $a-g$ denote color indices, and $C \equiv \gamma_4 \gamma_2$ denotes the charge conjugation matrix. The quantum number of O is spin $J = 1/2$ and isospin $I = 0$. Under the spatial reflection of the quark fields, i.e., $q(t, \vec{x}) \rightarrow \gamma_4 q(t, -\vec{x})$, O transforms exactly in the same way, i.e., $O(t, \vec{x}) \rightarrow +\gamma_4 O(t, -\vec{x})$, which means that the intrinsic parity of O is positive. Although its intrinsic parity is positive, it couples to negative parity states as well [17].

We consider the asymptotic behavior of the zero-momentum projected correlator as

$$G_{\alpha\beta}(t) \equiv \frac{1}{V} \sum_{\vec{x}} \left\langle O_{\alpha}(t, \vec{x}) O_{\beta}(0, \vec{0}) \right\rangle, \quad (2)$$

where V denotes the spatial volume. In the region of $0 \ll t \ll N_t$ with N_t being the temporal lattice size, the correlator is decomposed into two parts as

$$G(t) = P_+ \left(C_+ e^{-m_+ t} - C_- e^{-m_- (N_t - t)} \right) + P_- \left(C_- e^{-m_- t} - C_+ e^{-m_+(N_t - t)} \right), \quad (3)$$

where m_{\pm} refer to the energies of lowest-lying states in positive and negative parity channels, respectively. $P_{\pm} \equiv (1 \pm \gamma_4)/2$ serve as projection matrices onto the “upper” and “lower” Dirac subspaces, respectively, in the standard Dirac representation. Eq. (3) suggests that, in the region of $0 \ll t \ll N_t/2$, the backwardly propagating states can be neglected. Hence, “upper” Dirac subspace is dominated by the lowest-lying positive parity state, whereas “lower” Dirac subspace is dominated by the lowest-lying negative parity state. We utilize this property for parity projection.

In Fig. 1 we show the effective mass plots for both parity channels, which are obtained from a correlator with a smeared source and a point sink, adopting a typical set of the hopping parameters as $(\kappa_s, \kappa) = (0.1240, 0.1220)$. For both channels, we find plateaus in the region $25 \leq t \leq 35$. We simply neglect the data for $t > 35$, where backwardly propagating contributions are seen to become less negligible. The single-exponential fit is performed in the plateau region. The results are denoted by solid lines. The dotted lines indicate the p-wave (s-wave) NK thresholds for positive (negative) parity channels on the spatial lattice size $L \simeq 2.15$ fm. In Fig. 2 the masses of positive (triangle) and negative (circle) parity Θ^+ are plotted against m_n^2. The open symbols denote direct lattice data. We find that the data behaves linearly in m_n^2. Such a linear behavior against m_n^2 is also observed for ordinary non-PS mesons and baryons [13,14]. We extrapolate the lattice data linearly to the physical quark mass region. The results are denoted by closed symbols. For convenience, we show p-wave (upper) and s-wave (lower) NK
threshold with dotted lines.

In the positive parity channel, the chiral extrapolation leads to $m_\Theta = 2.25$ GeV, which is much heavier than the experimentally observed $\Theta^+ (1540)$. In contrast, in the negative parity channel, the chiral extrapolation leads to $m_\Theta = 1.75$ GeV, which is rather close to the empirical value. However, from a recent progress using a new general method with a “hybrid boundary condition”, we have concluded that it is an NK scattering state. For detail, see Ref. [10].

Acknowledgements
Lattice QCD Monte Carlo calculations have been done on NEC-SX5 at Osaka University.

REFERENCES
1. LEPS Collaboration, T. Nakano et al., Phys. Rev. Lett. 91 (2003) 012002.
2. D. Diakonov, V. Petrov and M.V. Polyakov, Z. Phys. A359 (1997) 305.
3. For a review article, M. Oka, Prog. Theor. Phys. 111 (2004) 1, and references therein.
4. S.L. Zhu, [hep-ph/0406204] and its references.
5. T. Nakano and K. Hicks, Mod. Phys. Lett. A19 (2004) 645.
6. A.W. Thomas, K. Hicks and A. Hosaka, Prog. Theor. Phys. 111 (2004) 291.
7. F. Csikor, Z. Fodor, S.D. Katz and T.G. Kovacs, JHEP 0311 (2003) 070.
8. S. Sasaki, in this proceedings.
9. T.W. Chiu and T.H. Hsieh, [hep-ph/0403020].
10. N. Mathur, F.X. Lee, A. Alexandru, C. Bennhold, Y. Chen, S.J. Dong, T. Draper, I. Horváth, K.F. Liu, S. Tamhankar and J.B. Zang, [hep-ph/0406196].
11. H. Suganuma, T.T. Takahashi, F. Okiharu and H. Ichie, Proc. of QCD Down Under, Adelaide, March 2004, Nucl. Phys. B (Proc. Suppl.) in press; F. Okiharu, H. Suganuma and T.T. Takahashi, [hep-lat/0407001].
12. T.R. Klassen, Nucl. Phys. B533 (1998) 557.
13. H. Matsufuru, T. Onogi and T. Umeda, Phys. Rev. D64 (2001) 114503.
14. Y. Nemoto, N. Nakajima, H. Matsufuru and H. Suganuma, Phys. Rev. D68 (2003) 094505.
15. N. Ishii, H. Suganuma and H. Matsufuru, Phys. Rev. D66 (2002) 094506; Phys. Rev. D66 (2002) 014507.
16. N. Ishii, T. Doi, H. Iida, M. Oka, F. Okiharu and H. Suganuma, [hep-lat/0408030].
17. I. Montvay and G. Münster, “Quantum Fields on a Lattice”, (Cambridge Univ. Press, Cambridge, England, 1994), p. 1.