2nd International Conference on Communication, Computing & Security [ICCCS-2012]

Energy efficient target tracking mechanism using rotational camera sensor in WMSN

Debashis Dea*, Madhuparna Das Guptaa, Aditi Sena

aDepartment of Computer Science & Engineering,
BF-142, Sector 1, Salt Lake City, West Bengal University of Technology, kolkata, 700064, India

Abstract

Wireless Multimedia Sensor Networks (WMSN) have recently gained the attention of the research community due to their wide range of applications like Multimedia Surveillance Sensor Network, Environment monitoring and the advancement of Complementary Metal Oxide Semiconductor (CMOS) cameras. Energy-efficient operations are particularly important in order to extend monitoring over a long period of time. In this paper an energy efficient mechanism Energy Efficient Target Tracking (EETT) is presented in which the target detection capability is increased by means of rotation of camera sensor node in WMSN as it detects any target in its Field of View (FoV) and rotates until the target moves out of CS’s FoV. On an average 50.7704% energy efficiency is achieved in EETT.

© 2012 The Authors. Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of the Department of Computer Science & Engineering, National Institute of Technology Rourkela

Keywords: WMSN; Camera sensor; Rotational motion; Target detection; Energy efficiency;

1. Introduction

Wireless sensor networks (WSN) [1] have drawn the attention of the research community in the last few years, driven by a wealth of theoretical and practical challenges. Recently, the availability of inexpensive hardware such as CMOS cameras and microphones that are able to ubiquitously capture multimedia content from the environment has fostered the development of WMSNs [2,3], i.e., networks of wirelessly
interconnected devices that allow retrieving video and audio streams, still images, and scalar sensor data. Wireless multimedia sensor networks will not only enhance existing sensor network applications such as tracking, home automation, and environmental monitoring, but they will also enable several new applications such as: Multimedia surveillance sensor networks, Storage of potentially relevant activities, Traffic avoidance, enforcement and control systems, Advanced health care delivery, Automated assistance for the elderly and family monitors, Environmental monitoring etc. Wireless camera sensors can be used in both indoor and outdoor environments, where energy and network infrastructure are not available and where no human intervention is possible. They offer a wider panel of applications whether for environmental, industrial or military monitoring [4]. Most recent studies in WMSN focus on increasing the network lifetime [5]. Target monitoring is an important application of WMSN. Recently, various approaches [6-16] are proposed to maintain the accurate tracking of the targets as well as low energy consumption. Clustering is a fundamental technique to manage the scarce network resources [17-23]. The message complexity of an application can be significantly decreased when it is redesigned on top of a clustered network [24].

This paper presents a mechanism Energy Efficient Target Tracking (EETT) in which after detecting a target in its FoV, the camera sensor (CS) rotates as the target moves within the sensor field or in the area of interest till target is in its FoV and thus the detection probability of any target by the camera sensor increases. We also propose that this technique monitors target in an energy efficient manner.

2. Related Work

The mobile object tracking is one of the WMSNs applications. This application consists in locating the mobile target at every step of its progression in the surveillance area. The tracking solutions can be classified in three main categories [25]: naive, predictive based and dynamic clustering. Because of the high cost of the naive technique, it is unreasonable to use such a method in WMSNs where energy is a precious resource.

In the predictive based technique, a predictive model is used to predict the future position of the mobile target. An adapted Kalman Filter is used in [26] to calculate the future sensor utility depending on past data collected. In [27] the authors retrieve the mobility parameters of the target and use an autoregressive model to integrate them and predict the future trajectory. Dynamic clustering [28] is the most used technique in literature. A cluster of nodes is selected at every step of the evolution of the mobile target in the surveillance region. In [24] authors proposed static clustering for object tracking. This cluster ready infrastructure brings simplicity into target tracking and decreases the energy consumption.

The authors in [29] propose a distributed solution based on node collaboration to select the optimal subset of camera sensors that participate in the target location process. SensEye [30] is the first solution that introduces the concept of heterogeneous network. The authors propose three-tier camera sensors; every tier supports a specific task. The first tier assumes target detection and localization while the second one performs target recognition and the last tier assumes target tracking. The authors of [31] also used the concept of heterogeneous networks but for different objectives. Indeed, the activation goal is the event coverage, they used the scalar sensors to determine the event boundary and actuate the necessary camera sensors. The main objective is the elimination of data redundancy. In [5], authors propose a low-cost new solution for tracking a mobile target called Energy Aware Object Tracking (EAOOT). It consists of a distributed cooperative algorithm that runs in heterogeneous Wireless Sensor Networks composed of both scalar and multimedia sensors. The scalar sensors (SS) are equipped with a motion detector; their role is to detect the target and then activate the camera sensors (CS) through message exchanges.

In [5] the authors consider the camera sensors are static i.e. they can’t rotate. We have improved the performance of WMSN in both target detection capability and energy consumption by considering rotational motion of camera sensor in EETT.
3. System Model

3.1 Network architecture

We have considered Multi-tier clustered architecture [4, 32] of WMSN in our new proposal as shown in Fig.1(a). In this architecture, the tier 1 consists of scalar sensors that perform simple tasks, like measuring scalar data i.e. light, temperature etc. from surrounding environment, the tier 2 consists of camera sensors that perform more complex tasks such as image capturing or object recognition [33, 34, 35]. Each tier has a central hub or gateway for data processing and communication.

3.2 Cluster formation

In our new approach, clusters are formed statically at the time of network deployment so all the member nodes and their related leader nodes are defined before the tracking algorithm comes into play[24]. This cluster ready infrastructure brings simplicity into target tracking and decreases the energy consumption.

3.3 Kinematic model of rotational camera

In our new proposal we have used rotational camera sensor node. In this subsection we give some definitions.

- Definition 1: Each object located in the Field of Detection (FoD) of SS can be detected. FoD is represented by a circle with radius D as illustrated in Fig. 1 (b).
Definition 2: The Camera Sensor (CS) is a wireless multimedia sensor equipped with both motion detector and camera. Each object located in CS’s FoV can be visually detected. FoV is a CS’s directional of view and it is assumed to be a cone with angle α and radius D as illustrated in Fig. 1 (c).

The main difference between SS and CS is not only limited to the services but also to the energy consumption. CS requires more energy to run its cameras compared to SS [5]. The control objective is to maintain the target being tracked in the center of the camera view. In our proposition, we adopt the kinematic model of pan-tilt cameras developed in [36,37] to explain the camera control objective.

3.4 Energy model for packet exchange

Heinzelman et al. [38] proposed a mechanism for power aware transmission in wireless networks. They used a transceiver model [39] in which the power consumed to transmit a k-bit message over a distance d is given by eq.(1),

$$E_t = k \cdot (\epsilon_c + \epsilon_{amp} \cdot d^{pl}) \quad (1)$$

where ϵ_c is the energy used by the circuit per bit, ϵ_{amp} is the energy used by the amplifier per bit, and pl is the path loss exponent. The power consumed in receiving k bits is given by eq.(2),

$$E_r = k \cdot \epsilon_c \quad (2)$$

4. Proposed work

In this paper we present an improved performance both in target detection capability and energy consumption over EAOT proposed in [5].

The main objectives of our proposition are:
- To increase the target detection capability.
- To save the energy consumption of network.

![Fig. 2 An example of target monitoring with EETT](image)
In our propose mechanism when a target enters in the area of interest then SS in the border region of clusters detects the target and predict, the target’s next location after a predefined time interval, and trigger first camera sensor (CS₁) that is within their transmission range and nearest to the target’s path by broadcasting DETECTION messages. The first camera sensor becomes active after target enters the area of interest when CS₁ receives at least 2 DETECTION messages that is set as threshold. Then CS₁ starts rotating horizontally as the target moves. When the target is about to move out of FoD of CS₁ then CS₁ passes a control message to the next CS (i.e. CS₂), according to the target movement path, to activate CS₂. When the target moves out of FoD of CS₁, CS₁ goes to sleep mode. Now CS₂ rotates with the moving target. When the target is about to move out of FoD of CS₂, it activates another CS (i.e. CS₃) by passing one control message and when target moves out of FoD of CS₂, it goes to sleep mode. The process continues for target monitoring as shown in Fig. 2.

In this proposition presented here, as the camera sensor rotates with moving target, the target detection capability increases than that of using fixed camera sensors.

We consider here the energy consumption for rotational motion of camera and for passing messages within the network. The energy expenditure for rotational motion of CS is calculated using the following eq. (3).

\[E_r = 0.5 \cdot I_d \cdot \omega^2 \] \hspace{1cm} (3)

where, \(I_d \)=Moment of Inertia of camera module, \(\omega \)=angular velocity

Thus the energy expenditure in the network when CS₁ becomes active is calculated using eq.(4).

\[E_{mc_1} = E_r + E_{act} + 2 \cdot (E_{tx} + E_{rx}) \] \hspace{1cm} (4)

and for activating other camera sensor nodes (CSᵢ for i = 2 ... n) each time the energy consumption is calculated using eq. (5).

\[E_{mc_{other}} = E_r + E_{act} + E_{tx} + E_{rx} \] \hspace{1cm} (5)

where, \(E_{act} \)=Activation energy of CS, \(E_{tx} \)=Energy of packet transmission, \(E_{rx} \)=Energy of packet receive. Thus energy consumed by rotating CSs in network is calculated through eq. (4) and eq. (5).

5. Simulation result

Table 1: Simulation Parameter

Parameter	Value
Target speed(v)	1.38m/s [5]
Transmission range(d)	30m
Depth of view (R) of CS	20m [5]
Angle of view of CS(\(\alpha \))	60° [5]
Size of message(k)	64Kb [5]
Mass of Camera module	0.04Kg
Length of Camera module	38mm
Width of Camera module	34.5mm
Energy used by circuit/bit(\(e_c \))	50nJ/bit/m² [3]
Energy used by amplifier/bit(\(e_{amp} \))	0.1nJ/bit/m² [3]
Path Loss(pl)	2 [3]
We have used Matlab7 simulator to simulate our proposed algorithm EETT. We have used 1.3 Mega Pixel HD Serial RS232 Camera Module with Omni Vision CMOS OV9655 sensor [40]. In all scenarios, all the nodes are placed in a rectangle area. The two metrics are used to compare EETT with EAOT: Target detection by CS and energy consumption. All the parameter value for simulation are summarized in Table 1.

5.1 Target detection by CS

We have considered a defined target trajectory. In Fig. 3 (a), If the target is detected by CS then the phenomenon is represented by 1 otherwise 0 i.e. in case of not detection.

Our new proposed solution EETT performs better than EAOT as shown in Fig. 3 (a). Initially in both scenario target is detected by CS. After some time span when the target moved out of detection range of fixed CS, target is not detected by fixed CS but is detected by Rotating CS as it rotates with the moving target. Again when the target comes within the detection range of fixed CS, target is detected by fixed camera. The detection line of EETT takes constantly the value 1 because the target is always detected by rotational CSs as CSs rotate with target movement.

5.2 Energy consumption

The energy expenditure is much less in EETT than EAOT as shown in Fig. 3 (b). We have considered here that the target is within the area of interest throughout whole time span. As per EAOT if the target is in area of interest, DETECTION massages are broadcasted by SSs each time CS is activated and if target is within FoV of CS ,CS sends LOCALIZATION Massage. In EETT, when target enters in the area of interest, to activate the first CS only, DETECTION massages are broadcasted by SSs. When target is about to move out of FoD of CS then CS passes a control massage to the next CS to activate it. The energy consumption of network in EETT is calculated using eq.(3),eq.(4) and eq.(5).Spikes in line of energy consumption of EAOT, indicates that the LOCALIZATION massage is sent by CS and the straight line indicates only DETECTION massages are received by CS and no LOCALIZATION message is transmitted i.e. the target in not within FoV of CS. Spikes in line of energy consumption of EETT, indicates that the control massage is passed between two CSs.
when one CS transmits control message to next CS to activate it and straight line indicates no massages are passed by CS, only energy is consumed for rotational motion of CS.

6. Conclusion

In this paper energy efficient target tracking mechanism EETT is proposed in which camera sensor rotates with the moving target when the target is in the detection range of that camera sensor. Thus the detection capability of the network increases than that of using static camera sensor as proposed in [5]. As the lifetime of WMSN is a crucial issue, the detection mechanism is presented in an energy efficient way to save the energy consumption of WMSN. On an average the energy consumption for EETT is approximately $1.1173 \times 10^2 \mu J$ than earlier $2.2696 \times 10^5 \mu J$ [5].

Acknowledgement

Authors are grateful to Department of Science and Technology (DST) for sanctioning a research Project entitled “Dynamic Optimization of Green Mobile Networks: Algorithm, Architecture and Applications” under Fast Track Young Scientist scheme reference no.: SERC/ET-0213/2011 under which this paper has been completed.

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Comput. Networks (Elsevier) 38 (4) (2002) 393–422.
[2] E. Gurses, O.B. Akan, Multimedia communication in wireless sensor networks, Ann. Telecommun. 60 (7-8) (2005) 799–827.
[3] S. Misra, M. Reisslein, G. Xue, A survey of multimedia streaming in wireless sensor networks, IEEE communications surveys & tutorials, vol. 10, no. 4, fourth quarter 2008.
[4] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on wireless multimedia sensor networks, Computer Networks 51 (2007) 921–960.
[5] I. Boulanouar, A. Rachedi, S. Lohier, G. Roussel, Energy-Aware Object Tracking Algorithm using Heterogeneous Wireless Sensor Networks, IEEE conference, 2011.
[6] W. Yang, Z. Fu, J. Kim, and M.-S. Park, "An Adaptive Dynamic Cluster- Based Protocol for Target Tracking in Wireless Sensor Networks", in Proc. of WAIM 07, 2007, pp. 157-167.
[7] W. Chen, and J. Hou, "Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks", IEEE Transactions on Mobile Computing, vol. 20, 2004, pp. 258-271.
[8] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, "Distributed Target Classification and Tracking in Sensor Networks", IEEE Signal Processing Magazine, vol. 91, 2002, pp. 1163-1171.
[9] S. Suganya, "A Cluster-Based Approach for Collaborative Target Tracking in Wireless Sensor Networks", in Proc. of ICETET 08, 2008, pp. 276-281.
[10] H. Yang, and B. Sikdar, "A Protocol for Tracking Mobile Targets Using Sensor Networks", in Proc. of SNPA 03, 2003, pp. 7181.
[11] E. Olale, G. Wang, Minyi Guo, and Mianxiong Dong, "RARE: An Energy-Efficient Target Tracking Protocol for Wireless Sensor Networks", in Proc. of ICPPW 07, 2007, pp. 76.
[12] Y. Xu, and W. Lee, "Compressing Moving Object Trajectory in Wireless Sensor Networks", International Journal of Distributed Sensor Networks, vol. 3(2), 2007, pp. 151 - 174.
[13] R. Goshorn, J. Goshorn, D. Goshorn, and H. Aghajan, "Architecture for Cluster Based Automated Surveillance Network for Detecting and Tracking Multiple Persons", in Proc. of ICDSC 07, 2007, pp. 219-226.
[14] W. Zhang, and G. Cao, "DCTC: Dynamic Convoy Tree-Based Collaboration for Target Tracking in Sensor Networks", IEEE Transactions on Wireless Communications, pp. 1689-1701, 2004.
[15] Z. Wang, H. Li, X. Shen, X. Sun, and Z. Wang, "Tracking and Predicting Moving Targets in Hierarchical Sensor Networks", in Proc. of ICNSC 08, pp. 1169-1173, 2008.
[16] K. Mechtov, S. Sundresh, Y. Kwon, and G. Agha, " Cooperative Tracking with Binary-Detection Sensor Networks", in Proc. of ACM SenSys 03, pp. 332-333, 2003.
[17] S. Bandyopadhyay, E. J. Coyle, "An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks", in Proc of INFOCOM 03, vol. 3, 2003, pp. 1713-1723.

[18] S. Ghiasi, A. Srivastava, X. Yang, M. Sarrafzadeh, M., "Optimal Energy Aware Clustering in Sensor Networks", in Proc. of MDPI 02, 2002.

[19] H. Huang, J. Wu, "A Probabilistic Clustering Algorithm in Wireless Sensor Networks", in Proc. of VTC 2005, vol. 3, 2005, pp. 1796-1798.

[20] Y. Jin, L. Wang, Y. Kim, X. Yang, "EEMC: An Energy-Efficient Multi-Level Clustering Algorithm for Large-Scale Wireless Sensor Networks", Elsevier Computer Networks, 2007.

[21] F. Kuhn, T. Moscibroda, R. Wattenhofer, "Fault-Tolerant Clustering in Ad Hoc and Sensor Networks", in Proc. of ICDCS 06, 2006, pp. 68-78.

[22] C. Li, M. Ye, G. Chen, J. Wu, "An Energy-Efficient Unequal Clustering Mechanism for Wireless Sensor Networks", vol. 16(1), 2005, pp. 3-17. Erciyes, K., Oszoyeller, D., and Dagdeviren, O, "Distributed Algorithms to Form Cluster based Spanning Trees in Wireless Sensor Networks", in Proc. of ICCS 08, 2008.

[23] O. Younis, and S. Fahmy, "Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-Efficient Approach", in Proc. of INFOCOM 04, 2004, pp. 629-640.

[24] A.Alaybeyoglu, O. Dagdeviren, K.Erciyes, A.KantarciPerformance Evaluation of Cluster-based Target Tracking Protocols for Wireless Sensor Networks, ISCIS 2009.

[25] G.Jin, X.Lu, M.Park, “Dynamic clustering for object tracking in wireless sensor networks », in Proc.3rd Int .Symp. UCS, Korea, 2006.

[26] P. Pahalawatta, T. N. Pappas, and A. K. Katsaggelos, “Optimal sensor selection for video-based target tracking in a wireless sensor network,” in Proc.IEEE Int. Conf. Image Process, Singapore,2004.

[27] Z.R.Zaidi, B.I.Mark, “Mobility Tracking based on Autoregressive Models”l, in IEEE Transactions on mobile Computing, Vol 10,January 2011.

[28] F.Zaho, J.Liu, J.Liu, L. Guibas, and J. Reich “Collaborative Signal and Information Processing:An Information Directed Approach” Proceedings of the IEEE 91 (8) (2003).

[29] L.Liu, X.Zhang,” Optimal Node Selection for Target Localisation in Wireless Camera Sensor Networks”, in IEEE Trans. Vehicular Technology Vol. 59, No. 7, September 2010.

[30] P.Kulkarni,D.Ganesan,P.Shenoy,Q.Lu,”SenaEye: A Multitier Camera Sensor Network”, in ACM International Conference on Multimedia (2005)

[31] A.Newell,K.Akkay,"Distributed Collaborative camera actuation for redundant data elimination in Wireless Multimedia Sensors”, networks,Ad Hoc Networks, June 2011

[32] M.AlNuaimi, F.Sallabi and K.Shuab, A Survey of Wireless multimedia Sensor Networks Challenges and Solutions,IEEE conference, Innovations,2011.

[33] F. Akyildiz, T. Melodia, and K. R. Chowdhury, “Wireless Multimedia Sensor Networks: Applications and Testbeds,” Proc. IEEE, vol. 96, no. 10, pp. 1588–1605, Oct. 2008.

[34] Almalkawi, I.T.; Guerrero Zapata, M.; Al-Karaki, J.N.; Morillo-Pozo, J. Wireless Multimedia Sensor Networks: Current Trends and Future Directions. Sensors 2010, 10, 6662-717.

[35] S. Soro and W. B. Heinzelman, 2005. “On the coverage problem in video-based wireless sensor networks,” in Proceedings of the 2nd International Conference on Broadband Networks (BROADNETS '05), pp. 9–16.

[36] P. Petrov, O. Boumburov, and K. Muratovski, “Face detection and tracking with an active camera,” in Proc. 4th Int. IEEE Conf. Intell. Syst., Varna, Bulgaria, Sep. 2008, pp. 14-39.

[37] D.Wu,S.Chi,H.Luo,Y.Ye and H.Wang, Video Surveillance Over Wireless Sensor and Actuator Networks Using Active Cameras, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011.

[38] H. Wu and A. Abouzeid. Power aware image transmission in energy constrained wireless networks. In Proc. Ninth International Symposium on Computers and Communications, pages 202–207, July 2004.

[39] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks. In Proc. Hawaii International Conference on System Sciences, (HICSS), January 2000.

[40] J.Liu,D.O’Rourke,T.Wark,R.Lakemond,S.sridharan,Camera Calibration in Wireless multimedia Sensor Networks,ISSNIP 2009, pages 301-306,2009.