Abstract: To verify the responses of visible foliar injury (VFI), we exposed seedlings of three oak species for 4.5 months in an open air facility, using differing ozone (O₃) and drought treatments: O₃ (three levels from ambient to ×1.4 ambient), and drought (three levels of irrigation from 40% to 100% field capacity). We related the accumulated phytotoxic O₃ dose (POD₁) and cumulative drought index (CDI) to the O₃ and drought VFI and assessed growth increment (height, diameter, leaf number), biomass (of all organs), and physiological parameters: net photosynthesis per plant (Pₐ), photosynthetic nitrogen (PNUE) and phosphorus use efficiency (PPUE)). The results indicated that an increase in POD₁ promoted O₃ VFI in Quercus robur and Quercus pubescens, while Quercus ilex was asymptomatic. The POD₁-based critical level at the onset of O₃ VFI was lower for Q. robur than for Q. pubescens (12.2 vs. 15.6 mmol m⁻² POD₁). Interestingly, drought reduced O₃ VFI in Q. robur but increased it in Q. pubescens. Both O₃ and drought were detrimental to the plant biomass. However, Q. robur and Q. pubescens invested more in shoots than in roots, while Q. ilex invested more in roots, which might be related to a hormetic mechanism. Pₐ, PNUE and PPUE decreased in all species under drought, and only in the sensitive Q. robur (PPUE) and Q. pubescens (PNUE) under O₃. This study confirms that POD₁ is a good indicator to explain the development of O₃ VFI and helps a differential diagnosis of co-occurring drought and O₃ VFI in oak forests.

Keywords: tropospheric ozone; leaf symptoms; PODy; water stress; risk assessment

1. Introduction

Tropospheric ozone (O₃) is an oxidant pollutant harmful to plants [1]. Ozone enters the leaves through the stomata, reacts in the mesophyll, and triggers the formation of reactive oxidative species (ROS) with a cascade of events eventually promoting cell death and, finally, the appearance of visible foliar injury (VFI), physiological impairment, and growth reduction [2–4]. Furthermore, O₃ inhibits the efficient use of nutrients such as nitrogen (N) and phosphorus (P) and thereby causes a reduction of photosynthetic N and P use efficiency (PNUE and PPUE, respectively) [5,6]. Therefore, critical levels (CL) have been investigated to assess the O₃ negative impacts on several plant species, especially those related to biomass loss [7,8]. CLs are based on cumulative O₃ indexes, e.g., AOT40, defined as the accumulated exposure over 40 ppb hourly concentrations, and PODy, defined as the phytotoxic O₃ dose above an hourly threshold y of stomatal O₃ uptake [9]. PODy is considered the most realistic index with a high correlation with the detrimental effects of O₃ [10,11]. Ozone VFI is a forest-health indicator in forest monitoring programs [12].
The estimation of CL based on O$_3$ VFI has been proposed as a not destructive and easily repeated observation over long-term monitoring studies [13,14].

Ozone alone can affect plant growth and development, but its effect usually occurs in combination with other factors, such as drought, which is known as the most critical environmental factor limiting plant productivity worldwide [15,16]. The adverse effects of drought are progressive and, thus, are often evaluated by the cumulative drought index (CDI), defined as the accumulated difference of soil moisture relative to field capacity [17]. Drought stress also promotes the formation of specific VFI, which can be distinguished from O$_3$-induced foliar injury. While O$_3$ VFI is usually indicated by interveinal, irregular-border, yellow to dark-brown stippling [18,19], drought VFI consists in gradients of leaf margin necrosis increasing in severity from the base to the top of a plant [20], with the injury co-occurring when plants are exposed to a combination of these stress factors.

Both O$_3$ and drought can limit plant carbon fixation, and the effect of both stress factors has been reported as the cause of biomass loss for Quercus species [21,22], which are significant components of temperate forests. Previous papers from the same experiment presented here showed that the interacting factorial impacts of O$_3$ and drought were species-specific, and the order of O$_3$ sensitivity was $Q$. robur > $Q$. pubescens > $Q$. ilex from the point of view of total biomass [22] and leaf gas exchange [23,24]. Although physiological acclimations to O$_3$ and drought are not fully elucidated, diverse adaptation strategies were observed for tolerating stress in different oak species. One of the reasons for the variability of strategies is related to gas exchange regulation depending on their water use strategy (isohydric and anisohydric) [24]. Under elevated O$_3$ with sufficient water availability, the isohydric $Q$. robur limited O$_3$ uptake by stomatal closure, while the anisohydric $Q$. ilex and the intermediate $Q$. pubescens activated tolerance mechanisms and did not actively show a closing response of stomata. In particular, Pellegrini et al. [25] found that $Q$. ilex had a well-regulated antioxidative defense system through phenylpropanoid pathways. However, in the combination of O$_3$ and drought, the anisohydric $Q$. ilex and the intermediate $Q$. pubescens exhibited stomatal closure to prevent severe oxidative damage due to excess generation of ROS.

The present study aimed to characterize the VFI induced by O$_3$, drought, and their combination and assess their related effects on biomass, biometry, and physiological parameters. The results will help a differential diagnosis of co-occurring drought and O$_3$ VFI in oak forests. In detail, we addressed the following hypotheses: (1) the development of O$_3$ VFI may be better explained by PODy than by AOT40, (2) the reduction in soil water availability may reduce or exacerbate the negative impacts of O$_3$ on VFI, and (3) O$_3$ VFI may be an indicator to explain biomass reduction or physiological damage in Mediterranean oaks. We postulated that the effects on the development of VFI are modulated by the plant species-specific sensitivity to oxidative stressors.

2. Materials and Methods

2.1. Plant Material and Experimental Setting

The experiment was conducted in an O$_3$ Free-Air Controlled Exposure (FACE) facility at Sesto Fiorentino, Italy (43°48'59" N, 11°12'01" E, 55 m a.s.l.). Two-year-old plants of $Q$. robur L., $Q$. pubescens Willd., and $Q$. ilex L. were obtained from nurseries and transplanted into 10-L plastic pots. They were exposed to three levels of O$_3$ (1.0, 1.2, and 1.4 times the ambient air concentration, denoted as AA, ×1.2, and ×1.4, respectively: 24-h averaged concentration, AA = 35.2 ppb, ×1.2 = 42.9 ppb, ×1.4 = 48.9 ppb) and three levels of water irrigation [100, 80, and 40% of field capacity (0.295 m$^3$ m$^{-3}$, Paoletti et al., 2017] on average, denoted as WW-treated (well-watered), MD-treated (moderate drought) and SD-treated (severe drought), respectively. Three replicated plots were assigned to each treatment, with three plants per combination of species, drought, and O$_3$. The experiment lasted for 4.5 months, from 1 June to 15 October.

The details of the FACE facility are described in Paoletti et al. [26], and the details of the experimental design are published in Hoshika et al. [27].
2.2. Evaluation of O\(_3\) and Drought Visible Foliar Injury

Two well-trained observers evaluated the presence of O\(_3\) and drought VFI during the experimental period for all plants for a total of 6 evaluation dates (Table 1). We applied photo guides to verify whether O\(_3\) and/or drought VFI was present [28–30]. VFI incidence (INC = number of injured plants/total number of plants \(\times 100\)) was calculated according to Chappelka et al. [31]. POD\(_1\)-based CLs and CDI-based CLs were calculated for the corresponding day when O\(_3\) and drought VFI onset was observed.

| Water Regime | O\(_3\) Treat. | Onset O\(_3\) Injury | AOT40 | Onset Drought Injury | CDI |
|--------------|----------------|---------------------|-------|----------------------|-----|
|              | Q. robur       | Q. pubescens       | Q. robur | Q. pubescens | Q. robur | Q. pubescens |
| WW-treated   | AA             | 12.07               | Asymp. | 17.78               | Asymp. | Asymp.       |
|              | \(\times 1.2\) | 12.40               | 15.69  | 16.41               | 23.77  | Asymp.       |
|              | \(\times 1.4\) | 11.62               | 20.46  | 15.15               | 33.88  | Asymp.       |
| MD-treated   | AA             | 13.02               | Asymp. | 21.74               | Asymp. | Asymp.       |
|              | \(\times 1.2\) | 12.13               | 18.41  | 16.41               | 30.43  | 6.10         |
|              | \(\times 1.4\) | 13.07               | 20.04  | 21.59               | 33.38  | 4.96         |
| SD-treated   | AA             | Asymp.              | Asymp. | Asymp.              | 10.20  | 10.20        |
|              | \(\times 1.2\) | Asymp.              | 13.13  | Asymp.              | 30.43  | 10.20        |
|              | \(\times 1.4\) | 10.72               | 12.81  | 26.23               | 26.23  | 10.20        |

2.3. Measure of Growth Parameters

The assessment of total annual biomass production during the experiment was performed based on dry weight per plant (DW) as described in Hoshika et al. [22], additionally discriminating the below-(roots) and above-ground biomass (stem and leaves) to calculate the ratio of root to shoot biomass (Ratio R/S). Furthermore, the total number of leaves, plant height increment (measured with a metric tape) and stem caliber increment (measured just above soil level) were expressed as the absolute values relative to the values at the beginning and end of the experiment.

2.4. Assessment of Photosynthetic Parameters

The net photosynthetic rate (\(P_n\)) was previously reported for mid-summer (July: [24]) and early and late summer and autumn (June, August, and October: [23]). Here, these published data of \(P_n\) were re-analyzed to address the cumulative effects of O\(_3\) and drought on the photosynthetic activity. The target leaves were fully sun-exposed leaves (4–6th from the shoot tip) of the plant main shoot (one representative leaf per plant, 1 to 3 plants per replicated plot per each O\(_3\) and W treatment). Measurements were made under light-saturated conditions (1500 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) PPFD [photosynthetic photon flux density]) with constant CO\(_2\) concentration (400 \(\mu\)mol mol\(^{-1}\)), relative humidity (40 to 50%), and leaf temperature (25 \(^{\circ}\)C) using a commercial gas exchange system (CIRAS-2 PP Systems, Herts, UK). Measurements were carried out in two campaigns (8–10 June and 27 September–6 October) for all O\(_3\) treatments and an additional campaign (6–9 August) for two O\(_3\) levels (1.2, and \(\times 1.4\)) on days with clear sky between 9:00 and 12:00 a.m. CET. The other detailed specifications for the photosynthetic measurements were described in our previous studies [23,24].

After the measurement of \(P_n\) in August and October, leaves were collected to examine the nitrogen (N) content. Nitrogen content per unit mass (N\(_{\text{mass}}\)) was determined by the dry combustion method using a LECO TruSpec C/N analyzer (Leco Corporation, St. Joseph, MI, USA). In October, the foliar phosphorus (P) content was also determined. Phosphorus content per unit mass (P\(_{\text{mass}}\)) was examined by an inductively coupled plasma-optical emission spectroscopy (ICP-OES) (iCAP7000, Thermo Fisher Scientific, Waltham, MA,
We calculated photosynthetic N use efficiency (PNUE) as the product of N mass and mass-based net photosynthetic rate and photosynthetic P use efficiency (PPUE) as the product of P mass and mass-based net photosynthetic rate.

2.5. Calculation of Accumulated Drought and Ozone Indexes

The accumulated drought index (CDI) was calculated from the beginning of the experimental period to the date of observation as follows:

$$ \text{CDI} = \sum |S_m - F_c| $$

where, \( S_m \) is soil moisture, and \( F_c \) is field capacity (0.295 m³ m⁻³) \([26]\); drought stress is considered severe when \( S_m \) values are lower than \( F_c \).

AOT40 and POD1 for each O₃ and drought treatment were calculated following the parameters applied by Hoshika et al. \([22]\) according to the methodology designed by CLRTAP (Convention on Long-range Transboundary Air Pollution) \([9]\).

2.6. Statistical Analysis

Multiple Linear Regression (MLR) analysis was used to estimate the relationship between the O₃ indexes (AOT40 and POD1) and CDI versus growth (height, diameter, and N. leaves), biomass (Leaf, Shoot, Root, Total, and R/S), VFI (O₃ and Drought) and physiological parameters (\( P_n \), PNUE, and PPUE). Two models were compared, i.e., Model 1 (POD1 and CDI as predictor variables) and Model 2 (AOT40 and CDI as predictor variables). The statistical analyses were performed using the R software (R version 4.1.2 \([32]\)), considering a significance of \( p < 0.05 \). Principal component analysis (PCA) was conducted by using OriginPro 2021b software. The PCA was applied considering VFI (O₃ and drought), growth (Height, Diameter, and N. of leaves), biomass (Leaf, Shoot, Root; Total and R/S), and physiological (\( P_n \), PNUE, and PPUE) parameters in order to distinguish the groups of parameters better related to each symptomatic species; in this analysis, the asymptomatic Q. ilex species was not included.

3. Results

3.1. Visible Foliar Injury

The O₃ VFI in Q. robur was characterized by small homogeneously distributed dots between the primary leaf veins (Figure 1A). Q. robur plants from all water regimes but SD (AA and ×1.2) presented O₃ VFI (Tables 1 and 2). In fact, 11% of the SD-treated plants developed O₃ VFI at the end of the experiment, relative to 56% of the WW-treated plants (Table 2).

There were individual-specific differences on the day of VFI onset. The POD1 values calculated for the O₃ VFI onset in Q. robur were similar across O₃ treatments (approximately 10.7 to 13.0 mmol m⁻² POD1, average = 12.1 mmol m⁻² POD1), while the AOT40 values corresponding to the O₃ VFI onset increased from 15-16 ppm h to 26.2 ppm h; for SD-treated plants, the O₃ VFI onset occurred only in ×1.4 (10.7 ppm h, Table 1). In addition, the MLR revealed a positive regression of O₃ VFI with POD1 or AOT40 and a negative regression with CDI when tested with AOT40 (Model 2), but the effect was not significant when tested with POD1 (Model 1) (Figure 1B; Table 3).
Figure 1. Illustrative examples of O$_3$ visible foliar injury in *Quercus robur* (A) and *Q. pubescens* (C) characterized by small homogeneously distributed dots between the primary leaf veins (ellipse). (B, D) Results from the linear multiple regression of O$_3$ visible foliar injury with Cumulative Drought Index (CDI) and phototoxic O$_3$ dose (POD$_1$) as predictor factors in *Quercus robur* (B) and *Q. pubescens* (D). Colored dots represent well-watered (WW-blue), moderate drought (MD-grey), and severe drought (SD-red). The grey ellipsoid represents a confidence level of 75%. (+) positive regression, *** = p < 0.001, ns = not significant.

Table 2. Evaluation of O$_3$ and drought incidence of visible foliar injury (VFI) along the experimental period for *Q. robur* and *Q. pubescens* exposed to different levels of O$_3$ and drought.

| Water Regime | O$_3$ Treat./DOY | O$_3$ VFI incidence | WW-treat. | MD-treat. | SD-treat. |
|--------------|------------------|---------------------|-----------|-----------|-----------|
| WW-treat.    | AA               | 11 11 11 11 50      | -         | -         | 11 11     |
|              | ×1.2             | 22 33 33 44 44      | -         | -         | 22        |
|              | ×1.4             | 22 33 33 44 56      | -         | -         | 33        |
| MD-treat.    | AA               | 11 11 11 11 44      | -         | -         | 22        |
|              | ×1.2             | 22 22 22 44 44      | -         | -         | 22        |
|              | ×1.4             | 22 22 22 44 56      | -         | -         | 33        |
| SD-treat.    | AA               | 11 11 11 11 44      | -         | -         | 22        |
|              | ×1.2             | 11 11 11 11 44      | -         | -         | 33        |
|              | ×1.4             | 11 11 11 11 44      | -         | -         | 33        |

| Drought VFI incidence | O$_3$ Treat./DOY | O$_3$ VFI incidence | WW-treat. | MD-treat. | SD-treat. |
|-----------------------|------------------|---------------------|-----------|-----------|-----------|
| WW-treat.             | AA               | - - - - -           | -         | -         | 11 11     |
|                       | ×1.2             | - - - - -           | -         | -         | 22 33 33 33 |
|                       | ×1.4             | - - - - -           | -         | -         | 33 33 33 33 |
| MD-treat.             | AA               | - - - - -           | -         | -         | 11 11     |
|                       | ×1.2             | - - - - -           | -         | -         | 22 33 33 33 |
|                       | ×1.4             | - - - - -           | -         | -         | 33 33 33 33 |
| SD-treat.             | AA               | 22 22 22 22 22      | 22 22     | 39 39     | 44 44     |
|                       | ×1.2             | 22 22 22 22 22      | 22 22     | 39 39     | 44 44     |
|                       | ×1.4             | 22 22 22 22 22      | 22 22     | 39 39     | 44 44     |
Table 3. Regression coefficients of the multiple linear regression for the species *Q. robur*, *Q. pubescens*, and *Q. ilex*, considering Cumulative Drought Index (CDI) and phototoxic O₃ dose (POD₁) for Model 1, and CDI and accumulated exposure over 40 ppb hourly concentrations (AOT40) for Model 2 as predictor factors, and Growth: Plant height increment (cm), Stem diameter increment (cm), and leaf number increment (N. leaves—n); Biomass: Leaf (g), Shoot (g), Root (g), Total biomass (g), and Ratio root/shoot (Ratio R/S); Visible foliar injury (O₃ and drought—% of plants); Physiological parameters: Photosynthesis (Pₚ—μmol m⁻² s⁻¹), Photosynthetic nitrogen use efficiency (PNUE—μmol m⁻² s⁻¹) and Photosynthetic phosphorus use efficiency (PPUE—μmol m⁻² s⁻¹) as dependent parameters. Levels of significance (p), intercepts and determination coefficients (R²) are shown.

| Parameters | Model 1 (POD₁, CDI) | Model 2 (AOT40, CDI) |
|------------|----------------------|----------------------|
|            | Intercept p | p | p² | Intercept p | p | p² |
| Injury O₃   | ***       | -0.043 | n.s | 94.667 | *** | 0.717 | 0.022 | *** | -2.027 | *** | -20.603 | *** | 0.738 |
| Drought    | 4.802      | 5.892 | n.s | -48.059 | 0.597 | 0.003 | n.s | 4.524 | n.s | -31.350 | *** | 0.601 |
| Growth Height | 0.316 | 0.035 | n.s | -1.197 | n.s | 0.389 | 0.359 | n.s | -0.043 | n.s | -0.233 | n.s | 0.901 |
| Diameter   | 0.032 | -0.051 | ** | 5.182 | *** | 0.321 | 0.19 | n.s | -0.059 | n.s | 5.214 | *** | 0.338 |
| N. Leaves  | 0.064 | -2.528 | *** | 180.955 | 0.521 | 0.005 | n.s | -2.551 | *** | 195.913 | *** | 0.521 |
| Biomass Leaf | 0.184 | 0.013 | n.s | 7.141 | n.s | 0.404 | 0.064 | n.s | 0.404 | n.s | 3.743 | *** | 0.191 |
| Shoot      | -0.063 | -0.176 | *** | 12.517 | 0.404 | 0.017 | n.s | -0.166 | n.s | 12.268 | *** | 0.418 |
| Root       | -0.063 | 0.568 | 40.086 | 0.598 | -0.297 | * | 0.391 | n.s | 35.097 | *** | 0.476 |
| Total       | -0.063 | -0.732 | *** | 56.357 | 0.428 | -0.236 | n.s | -0.507 | n.s | 51.108 | *** | 0.427 |
| Ratio R/S   | 0.063 | 0.319 | n.s | 2.602 | n.s | 0.622 | 0.005 | n.s | 0.005 | n.s | 2.163 | *** | 0.481 |
| Physiology Pₚ | n.s | -0.596 | n.s | -0.507 | * | 14.724 | * | -0.070 | -0.152 | n.s | 10.032 | *** | 0.598 |
| PPUE        | 0.079 | -1.560 | 82.520 | 0.594 | 0.047 | n.s | 61.287 | *** | 0.760 |
|            |          |       |          |          |       |          |          |          |          |          |          |          |
| Injury O₃   | 1.827 | 0.045 | *** | -26.982 | 0.529 | 0.074 | n.s | 0.000 | n.s | -14.377 | *** | 0.907 |
| Drought    | 1.279 | 3.698 | n.s | -23.673 | 0.797 | 0.640 | n.s | 3.299 | *** | -17.183 | *** | 0.792 |
| Growth Height | 0.041 | -0.001 | n.s | -0.472 | 0.537 | 0.013 | n.s | -0.002 | n.s | 1.039 | n.s | 0.071 |
| Diameter   | 0.011 | -0.002 | 8.020 | 0.485 | -0.002 | n.s | -0.017 | n.s | 6.959 | *** | 0.244 |
| N. Leaves  | -4.901 | -1.001 | 277.047 | 0.000 | -2.117 | n.s | 136.376 | *** | 0.280 |
| Biomass Leaf | -0.019 | -0.012 | n.s | 4.183 | 0.000 | -0.005 | n.s | 3.865 | *** | -0.075 |
| Shoot      | -0.021 | -0.010 | n.s | 13.67 | 0.000 | -0.005 | n.s | 11.667 | n.s | 0.070 |
| Root       | -0.056 | -0.223 | 22.385 | 0.006 | -0.005 | n.s | 22.072 | *** | 0.372 |
| Total       | -0.279 | -0.364 | 30.497 | 0.000 | -0.005 | n.s | 37.625 | *** | 0.396 |
| Ratio R/S   | -0.017 | -0.009 | 2.158 | 0.035 | -0.009 | n.s | 1.952 | n.s | 0.277 |
| Physiology Pₚ | 0.070 | -0.255 | 13.500 | 0.000 | -0.005 | n.s | 12.280 | *** | 0.771 |
| PPUE        | -0.005 | -0.155 | 14.871 | 0.000 | -0.005 | n.s | 10.022 | *** | 0.757 |
|            | 0.000 | -1.560 | 82.520 | 0.594 | 0.047 | n.s | 61.287 | *** | 0.760 |

* = p < 0.05, ** = p < 0.01, *** = p < 0.001, n.s = not significant.

The O₃ VFI in *Q. pubescens* was similar to that developed by *Q. robur* (Figure 1C). Independently of the water regime, plants from AA did not show O₃ VFI, while plants from ×1.2 and ×1.4 treatments presented O₃ VFI (Tables 1 and 2). The percentage of plants presenting VFI was lower than for *Q. robur*, with a maximum of 33% presenting VFI (Table 2). VFI occurred for the first time at DOY 247 or 266, i.e., around the end of the experiment. The POD₁ and AOT40 values for the O₃ VFI onset were 12.8—24.66 mmol m⁻² POD₁ (average = 16.8 mmol m⁻² POD₁) and 24—33 ppm h AOT40, respectively (Table 1). The MLR revealed a positive regression with the O₃ indexes (POD₁ and AOT40; Figure 1D, Table 3). Interestingly, CDI positively affected the O₃ VFI when tested with POD₁ (Model 1), but the effect was not significant when tested with AOT40 (Model 2) (Table 3).

The drought VFI of *Q. robur* was evident exclusively on the leaf edge that became dry and brownish (Figure 2A). The VFI progressively increased in MD- and SD-treated plants until the end of the experimental period, while WW-treated plants did not show any injury (Table 2). At the end of the experiment, 89—100% of the SD-treated plants showed drought VFI, relative to 63—67% of the MD-treated plants (Table 2). The CDI calculated at the drought VFI onset was the same for all SD-treated plants (CDI = 10.20 for all AA, ×1.2, ×1.4 treatments, Table 1) and similar for MD-treated plants (CDI= 4.96 to 6.10, Table 1). The MLR revealed a strong positive regression between the *Q. robur* drought VFI and CDI, although POD₁ or AOT40 also increased the extent of drought VFI (Figure 2B, Table 3).
Figure 2. Illustrative examples of drought visible foliar injury in *Q. robur* (A) and *Q. pubescens* (C) characterized by dry and brownish leaf edges (arrow). (B, D) Results from the linear multiple regression of drought visible foliar injury with Cumulative Drought Index (CDI) and phototoxic O$_3$ dose (POD$_1$) as predictor factors in *Q. robur* (B) and *Q. pubescens* (D). Colored dots represent well-watered (WW—blue), moderate drought (MD—grey), and severe drought (SD—red). The grey ellipsoid represents a confidence level of 75%. (+) positive regression, * = $p < 0.05$, *** = $p < 0.001$, ns = not significant.

The drought VFI of *Q. pubescens* was similar to that developed by *Q. robur* (Figure 2C). At the end of the experimental period, *Q. pubescens* presented 44–78% of the SD-treated plants with VFI, 11–33% of the MD-treated plants, and no VFI for the WW-treated plants. As found in *Q. robur*, the CDI calculated at the drought VFI onset was the same for all SD-treated plants (CDI = 10.20 for all AA, $\times$1.2, $\times$1.4 treatments) and similar for MD-treated plants (CDI = 4.04 to 6.52, Table 1). Interestingly, the CDI values at drought VFI onset were similar in *Q. robur* and *Q. pubescens* within the same O$_3$ and drought treatments (Table 1). In addition, the MLR revealed a positive regression with CDI, POD$_1$, and AOT40 (Table 3, Figure 2D). The evergreen *Q. ilex* did not present O$_3$ or drought VFI.

3.2. Physiological Responses

In both *Q. robur* and *Q. pubescens*, $P_n$ was negatively affected by POD$_1$ and CDI (Table 3, Figure S1B and D), but it unexpectedly increased with increasing AOT40 (Table 3). Furthermore, PNUE and PPUE were negatively related to CDI and POD$_1$ except for PNUE in *Q. robur* (Table 3).

For *Q. ilex*, the MLR revealed that CDI negatively affected $P_n$ (Figure S1F), PNUE, and PPUE, with no significant relationship with the O$_3$ indexes (POD$_1$ and AOT40, Table 3).

3.3. Growth and Biomass

The MLR indicated that height increment was positively affected by POD$_1$ or AOT40 in *Q. robur*, while increments of diameter and number of leaves were negatively affected by CDI (Table 3). As confirmed by negative regression coefficients with CDI, most biomass
parameters of *Q. robur* were reduced by drought. On the other hand, POD1 or AOT40 positively affected leaf biomass and negatively affected root biomass, indicating a reduction of the R/S ratio under elevated O3 exposure (Table 3, Figure S1A).

In *Q. pubescens*, the O3 indexes (POD1 and AOT40) were positively related to plant height increment, while CDI was negatively related to height only when tested with AOT40 (Table 3). Increments in shoot diameter and number of leaves in this species were negatively related to POD1 and AOT40, while they were negatively related to CDI when tested with POD1 (Model 1, Table 3). Regarding the biomass parameters, leaf biomass was not affected by any factor, while shoot biomass was negatively affected by both O3 indexes (POD1 and AOT40) and CDI (Table 3). Root and total biomass were negatively related to CDI, and the R/S ratio was negatively influenced by CDI and POD1 (Table 3, Figure S1C).

In *Q. ilex*, plant height increment was not affected by any factors, while a positive relationship between diameter increments and O3 indexes was found (Table 3). The increment in the number of leaves was positively affected by POD1 and AOT40 and positively affected by CDI when tested together with POD1 (Table 3), although leaf and total biomass were not significantly affected by those factors. Shoot biomass was negatively affected by CDI only when tested with AOT40, and root biomass was positively affected only by POD1 (Table 1). The R/S ratio was positively related only to POD1 (Table 3, Figure S1E).

The raw data off all growth parameters for the species *Q. robur*, *Q. pubescens*, and *Q. ilex* are available in Table S1.

### 3.4. Principal Component Analysis

The PCA detected separate multivariate spaces between the two symptomatic species as groups related to different growth, biomass, and physiological parameters related to O3 or drought VFI (Figure 3).

Since *Q. ilex* did not show VFI, this species was not included in the analysis. The first two components of the PCA explained 45.57 and 27.05% of the variances. The SD-treated plants of both species were grouped near the drought VFI (DS) with no other parameter following the same vector direction. The individuals of *Q. robur* (especially MD-treated
plants) were grouped near the vectors of the growth parameters number of leaves and height, leaf biomass, and O$_3$ VFI, which presented the same direction, thus indicating that when O$_3$ VFI increased, these parameters also increased. The individuals of Q. pubescens (specially WW-treated plants) were grouped near $P_n$, PNUE, and R/S, with the vectors in the opposite direction of O$_3$ and drought VFI, thus indicating that when O$_3$ and drought VFI increased, these parameters decreased.

4. Discussion

4.1. Development of Visible Injury Due to Ozone and Drought Stress

The POD$_1$ values corresponding to the onset of O$_3$ VFI for the two symptomatic deciduous oaks (on average, 14.4 mmol m$^{-2}$) were similar to those estimated for broadleaf species under field conditions in Italy and France (10 mmol m$^{-2}$ s$^{-1}$) [10]. However, the CL for the VFI onset was lower for Q. robur than for Q. pubescens, indicating its higher sensitivity to O$_3$, possibly related to its lower antioxidative capacity and inability to protect the cell structure [25]. Furthermore, O$_3$ VFI increased with increasing POD$_1$ in the two deciduous oaks. This suggests that POD$_y$ is a key indicator to describe the development of O$_3$ VFI once it is well known that O$_3$ damage is closely related to stomatal O$_3$ uptake [1]. In fact, the absence of O$_3$ VFI in Q. ilex might be related to its low $g_{\text{max}}$ (165 mmol O$_3$ m$^{-2}$ s$^{-1}$, compared to 225 mmol O$_3$ m$^{-2}$ s$^{-1}$ and 200 mmol O$_3$ m$^{-2}$ s$^{-1}$ of Q. pubescens and Q. robur, respectively, [22] suggesting that the development of VFI might be discussed in terms of the specific-species patterns of stomatal conductance.

For both injured species (Q. robur and Q. pubescens) at the end of the experimental period, the severe drought treatment reduced POD$_1$ by 30 to 40% [22], which would be expected to decrease the O$_3$-induced VFI in plants as reported before for ecophysiological responses in poplars [34]. In Q. robur, the presence of O$_3$ VFI was decreased under drought. On the contrary, drought stress aggravated the O$_3$ VFI in Q. pubescens. Drought has been reported to have the potential to aggravate the harmful effects of O$_3$ [35]. Furthermore, Hoshika et al. [24] found that the combination of O$_3$ and drought altered the activity of the antioxidant system so that Q. pubescens was not protected from the severe oxidative stress resulting from the combined stress of O$_3$ and drought.

For the symptomatic species (Q. robur and Q. pubescens), the progression of drought VFI could be attributed to the obstruction of conducting tissue [20], conferring to both species a high sensitivity. In the asymptomatic Q. ilex, this phenomenon might not happen due to its capacity to increase the cell wall thickness by reinforcing the strength and rigidity of the secondary cell walls with hemicellulose and lignin deposition (data not published). Changes in lignin might function as physical desiccation tolerance and maintenance of protein integrity in drought-tolerant species [36], thus helping the photosynthetic recovery activity after re-watering from severe drought episodes [37]. The CDI threshold for the appearance of drought VFI in the two symptomatic species was higher in SD-treated than MD-treated plants, possibly due to the interaction with leaf aging, which is an important physiological and biochemical defense factor against drought stress [38]. In fact, most plants showed drought VFI in mid- or late-summer in both SD-treated and MD-treated plants when leaves were relatively old.

4.2. Effects of Ozone and Drought Stress on Growth and Biomass Parameters

For both deciduous species (Q. robur and Q. pubescens), height increment was higher when exposed to O$_3$ treatment. This phenomenon was verified in other species, such as Populus sp. [39], and it is possibly related to promoting a new leaf development as a compensative response against O$_3$ damage. However, the decrease in the number of leaves was eventually found to be due to O$_3$ exposure, which might be related to the potential O$_3$ phytotoxicity that triggers programmed cell death, promoting an increase in leaf senescence [40]. When combined with drought stress, the effect can be more substantial once the lack of water and nutrients promotes a decrease in new leaf development.
Both O$_3$ and drought stresses were detrimental to the plant biomass increment in all the oak species. In fact, the reduction of biomass due to drought stress is reported for many species and is related to the reduction of water content, diminished leaf water potential and turgor loss, promotion of stomatal closure, and decreased cell enlargement growth [41,42]. As previously revealed by Alonso et al. [21], drought stress does not protect holm oak from O$_3$ effects when considering the whole plant response. However, differences between the species responses must be considered when comparing the species sensitivity. For example, we observed that Q. robur and Q. pubescens invested more in shoots than in roots when exposed to both stresses, while Q. ilex performed the opposite, which might be another strategy of Q. ilex indicating a hormetic mechanism of tolerance for increasing conducting tissue and maintaining the water flow. These tolerance mechanisms may be associated with morphological/anatomical adjustments, such as a versatile root system, conservative growth and carbon allocation patterns, and diverse adaptations in the leaf morphology [20,43]. This might increase the apoplastic water fraction [44] and promote the species tolerance to O$_3$ and drought stress.

4.3. Effects of Ozone and Drought Stress on Physiological Parameters

The O$_3$ and drought stress negatively affected the physiological parameters. Drought stress induced a decrease of $P_n$ regardless of the different species, as confirmed by a negative relationship with CDI. A decrease in $P_n$ with increasing POD$_1$ was verified for both sensitive species (Q. robur and Q. pubescens), while no such reduction was found in Q. ilex. The present discussion is based on the species responses to POD$_1$ once the flux-based index is more realistic [9]. In fact, AOT40 was positively related to $P_n$ in the two deciduous oaks, which does not agree with a consensus about O$_3$ negatively affecting photosynthetic capacity [45]. In fact, the regression coefficient was very low (=0.000), although the regression slope was numerically significant. Even though data was generated from an underlying distribution, the significance is a rather unlikely biological sense. The data suggest that a biological-sound index such as POD$_1$ is superior to AOT40 for the studies of the O$_3$ effects on vegetation because it can consider the principal physiological cause of O$_3$ damage, i.e., stomatal O$_3$ uptake.

Drought stress decreased PNUE and PPUE for all three species, while O$_3$ stress negatively affected PNUE for Q. pubescens and PPUE for the sensitive species Q. robur and Q. pubescens. Drought stress is directly related to changes in the allocation of N and P to leaves, no matter the species sensitivity to O$_3$ stress. However, a reduced allocation of N and P to the photosynthetic apparatus [5,6,46] is more pronounced in O$_3$ sensitive species. The N-uptake efficiency and leaf N efficiency are important traits to improve growth under drought [47]; thus, the decline in root biomass might explain the decrease in PNUE and PPUE for those species, once reduced quantity of absorptive roots reduces water and nutrient uptake as verified for the same oak species in a previous study [48].

4.4. Is the Ozone Visible Injury an Indicator to Explain Biomass Reduction or Physiological Damage in Mediterranean Oaks?

The PCA biplot contains the strength of VFI, physiology, and growth relationships, along with the species-specific sensitivity to drought and O$_3$ stress. Relationships between O$_3$ VFI and biomass growth were discussed by other authors [49,50]. In the present study, we observed that the vector of O$_3$ VFI injury (O$_3$S) and total biomass (TB) were crossing at the right angle of each other, suggesting a weak association between these two parameters in Mediterranean oaks. However, the O$_3$S vector shows the same direction as those of leaf parameters (number of leaves [N.L] and leaf biomass [LB]) in plants presenting more O$_3$ VFI, which may indicate the promotion of carbon allocation to leaves as a compensation response against O$_3$ injury. In addition, opposite directions of the vectors were found for O$_3$ VFI (O$_3$S) and net photosynthesis ($P_n$), PNUE, and the R/S ratio, highlighting a negative correlation between O$_3$ VFI and these parameters. The results indicate that O$_3$ VFI was not a direct indicator of biomass reduction under elevated O$_3$ in these oaks but provides
important insights regarding the impairment of photosynthetic capacity and biomass partitioning to roots. Mediterranean oak species generally develop taproots that grow deep into the soil, enhancing resistance to abiotic stress such as drought [51]. However, small amounts of roots due to O<sub>3</sub> exposure imply a loss of water and nutrient uptake, suggesting that O<sub>3</sub> VFI should be considered a bioindicator in forests exposed to the combination of O<sub>3</sub> pollution and drought.

5. Conclusions

We examined O<sub>3</sub>- and drought-induced VFI and their effects on growth, biomass, and physiological parameters by using cumulative indexes and oak species known for showing differential sensitivity to these stressors. The increase in POD<sub>1</sub> promoted the development of specific O<sub>3</sub> VFI in the isohydric Q. robur and the intermediate Q. pubescens, while the anisohydric Q. ilex was asymptomatic. In Q. robur, the presence of O<sub>3</sub> VFI was decreased under drought probably because drought-induced stomatal closure reduced O<sub>3</sub> uptake and thus limited O<sub>3</sub> damage. However, drought stress aggravated O<sub>3</sub> VFI in Q. pubescens. This result indicates the importance of the protective role of antioxidant activity under the combination of O<sub>3</sub> and drought, which may be weakened by the combined stress factors and become a dominant factor in species that are not strictly isohydric. On the other hand, the drought VFI was clearly distinguished from the O<sub>3</sub>-induced VFI, and it developed with increasing CDI in Q. robur and Q. pubescens but not in Q. ilex, suggesting a high tolerance of Q. ilex to drought stress. Therefore, we suggest using the specific O<sub>3</sub> or drought VFI as a bioindicator, especially for establishing the onset injury CL.

We also confirmed that P<sub>n</sub> was decreased progressively with POD<sub>1</sub> and CDI in the two deciduous oaks, in tandem with PNUE decline, suggesting a cumulative effect of O<sub>3</sub> and drought on photosynthetic capacity. As a result, both stress factors showed a deleterious effect on the development of VFI and biomass growth. Interestingly, the two deciduous oaks increased the allocation to shoot growth rather than to root growth when exposed to both stresses, while an opposite result was found in Q. ilex. The imbalance in carbon allocation to roots may reduce the stability against strong winds and impair water uptake under the warming climate expected in future climate change [52,53].

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/plants11141836/s1, Figure S1: Results of the multiple linear regression for shoot/root (Ratio R/S) and Photosynthesis (P<sub>n</sub>) parameters; Table S1: Raw data of growth parameters.

Author Contributions: Conceptualization, E.P. and Y.H.; methodology, E.P., Y.H. and B.B.M.; formal analysis, Y.H. and B.B.M.; investigation, E.P., Y.H.; resources, E.P., F.F. and O.B.; data curation, Y.H. and B.B.M.; writing—original draft preparation, E.P., Y.H. and B.B.M.; writing—review and editing, E.P., O.B., F.F. and Y.H.; visualization, B.B.M.; supervision, E.P., O.B. and F.F.; project administration, E.P. and Y.H.; funding acquisition, E.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fondazione Cassa di Risparmio di Firenze (2013/7956), the LIFE15 ENV/IT/000183 project MOTTLES and the APC was funded by LIFE: MODERN(NEC) (LIFE20 GIE_IT_000991).

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to technical limitations and other restrictions.

Acknowledgments: We want to thank Alessandro Materassi and Gianni Fasano for designing and maintaining the ozone FACE; Moreno Lazzara for support during fieldwork; Cristina Mascalchi for administrative and logistic support; Marcello Vitale for providing the Q. ilex seedlings; Giulia Carriero for help during the biomass assessment; the Fondazione Cassa di Risparmio di Firenze (2013/7956) for supporting the ozone FACE installation; and the NEC Italy and MODERN(NEC) (LIFE20 GIE_IT_000991) projects coordinated by CUFAA for supporting the ozone FACE maintenance.

Conflicts of Interest: The authors declare no conflict of interest.
25. Pellegrini, E.; Hoshika, Y.; Dusart, N.; CotroZZi, L.; Gérard, J.; Nali, C.; Vaulot, M.N.; Jolivet, Y.; Lorenzini, G.; Paoletti, E. Antioxidative Responses of Three Oak Species under Ozone and Water Stress Conditions. Sci. Total Environ. 2019, 647, 390–399. [CrossRef] [PubMed]

26. Paoletti, E.; Carriero, G. A New-Generation 3D Ozone FACE (Free Air Controlled Exposure). Sci. Total Environ. 2017, 575, 1407–1414. [CrossRef] [PubMed]

27. Moura, B.B.; Hoshika, Y.; Ribeiro, R.V.; Paoletti, E. Exposure- and Flux-Based Assessment of Ozone Risk to Sugarcane Plants. Atmos. Environ. 2018, 176, 252–260. [CrossRef]

28. Innes, J.L.; Skelly, J.M.; Schaub, M. Ozone and Broadleaved Species: A Guide to the Identification of Ozone-Induced Foliar Injury/Ozone, Laubholz-Und Krautpflanzen: Ein Führer Zum Bestimmen von Ozesymptomen; Haupt: Bern, Switzerland, 2001.

29. Vollenweider, P.; Günthardt-Goerg, M. Erratum to “Diagnosis of Abiotic and Biotic Stress Factors Using the Visible Symptoms in Foliage”. Environ. Pollut. 2006, 140, 562–571. [CrossRef]

30. Günthardt-Goerg, M.S.; Kuster, T.M.; Arend, M.; Vollenweider, P. Foliage Response of Young Central European Oaks to Air Warming, Drought and Soil Type. Plant Biol. 2013, 15, 185–197. [CrossRef]

31. Chappelka, A.; Renfro, J.; Somers, G.; Nash, B. Evaluation of Ozone Injury on Foliage of Black Cherry (Prunus Serotina) and Tall Milkweed (Asclepias Exaltata) in Great Smoky Mountains National Park. Environ. Pollut. 1997, 95, 13–18. [CrossRef]

32. Team R Development Core. A Language and Environment for Statistical Computing. 2018. Available online: https://www.R-project.org/ (accessed on 21 May 2022).

33. Fernandes, F.F.; Moura, B.B. Foliage Visible Injury in the Tropical Tree Species, Astronium Graveolens Is Strictly Related to Phytoxic Ozone Dose (PODY). Environ. Sci. Pollut. Res. 2021, 28, 41726–41735. [CrossRef]

34. Gao, F.; Catalayud, V.; Paoletti, E.; Hoshika, Y.; Feng, Z. Water Stress Mitigates the Negative Effects of Ozone on Photosynthesis and Biomass in Poplar Plants. Environ. Pollut. 2017, 230, 268–279. [CrossRef]

35. Grulke, N.E. The Physiological Basis of Ozone Injury Assessment Attributes in Sierran Conifers. Dev. Environ. Sci. 2003, 2, 55–81. [CrossRef]

36. Yoshimura, K. Programmed Proteome Response for Drought Avoidance / Tolerance in the Root of a C 3 Xerophyte (Wild Watermelon) Under Water Deficits. Plant Cell Physiol. 2018, 60, 1072–1082. [CrossRef]

37. Le Gall, H.; Philippe, F.; Domon, J.M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell Wall Metabolism in Response to Abiotic Stress. Tropospheric Ozone—A Hazard for Vegetation and Human Health Impacts of Ozone on the Ecophysiology of Forest Tree Species. In Progress in Botany; Esser, K., Lütte, U., Beyschlag, W., Hellwig, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-642-55819-1.

38. Jaleel, C.A.; Manivannan, P.; Wahid, A.; Farooq, M.; Al-Juburi, H.J.; Somasundaram, R.; Panneerselvam, R. Drought Stress in Populus Tremuloides Michx. to Ozone Stress. J. Exp. Bot. 2011, 62, 869–882. [CrossRef]

39. Pell, E.J.; Sinn, J.P.; Johansen, C.V. Nitrogen Supply as a Limiting Factor Determining the Sensitivity of Populus Tremuloides Michx. to Ozone Stress. New Phytol. 1995, 130, 437–446. [CrossRef]

40. Serrano, L.; Peñuelas, J. Climatic Factors Influence Leaf Structure and Thereby Affect the Ozone Sensitivity of Ipomoea Nil “Scarlet O’Hara”. Environ. Pollut. 2014, 194, 11–16. [CrossRef]

41. Somers, G.L.; Chappelka, A.H.; Rosseau, P.; Renfro, J.R. Empirical Evidence of Growth Decline Related to Visible Ozone Injury. For. Ecol. Manag. 1998, 104, 129–137. [CrossRef]

42. Marzuoli, R.; Gerosa, G.; Bussotti, F.; Pollastrini, M. Assessing the Impact of Ozone on Forest Trees in an Integrative Perspective: Are Foliar Visible Symptoms Suitable Predictors for Growth Reduction? A Critical Review. Forests 2019, 10, 1144. [CrossRef]

43. Moura, B.B.; Alves, E.S. Climatic Factors Influence Leaf Structure and Thereby Affect the Ozone Sensitivity of Ipomoea Nil “Scarlet O’Hara”. Environ. Pollut. 2014, 194, 11–16. [CrossRef]

44. Serrano, L.; Peñuelas, J. Contribution of Physiological and Morphological Adjustments to Drought Resistance in Two Mediterranean Tree Species. Biol. Plant. 2005, 49, 551–559. [CrossRef]

45. Watanebe, M.; Agathokleous, E.; Anav, A.; Araminiene, V.; Carrari, E.; De Marco, A.; Hoshika, Y.; Proietti, C.; Sicard, P.; Paoletti, E. Impacts of Ozone on the Ecophysiology of Forest Tree Species. In Tropospheric Ozone—A Hazard for Vegetation and Human Health; Agrawal, S.B., Agrawal, M., Singh, A., Eds.; Cambridge Scholars: Newcastle, UK, 2021; pp. 277–306.

46. Shah, B.; Xu, Y.; Dai, L.; Yuan, X.; Feng, Z. Elevated Ozone Reduced Leaf Nitrogen Allocation to Photosynthesis in Poplar. Sci. Total Environ. 2019, 657, 169–178. [CrossRef]

47. Weih, M.; Bonosi, L.; Ghelardini, L.; Rönnberg-Wästljung, A.C. Optimizing Nitrogen Economy under Drought: Increased Leaf Nitrogen Is an Acclimation to Water Stress in Willow (Salix Spp.). Ann. Bot. 2011, 108, 1347–1353. [CrossRef]

48. Mør, T.; Straus, I.; Grebenc, T.; Grčar, J.; Hoshika, Y.; Carriero, G.; Paoletti, E.; Kraigher, H. Different Belowground Responses to Elevated Ozone and Soil Water Deficit in Three European Oak Species (Quercus Ilex, Q. Pubescens and Q. Robur). Sci. Total Environ. 2019, 651, 1310–1320. [CrossRef]
52. Giovannelli, A.; Traversi, M.L.; Anichini, M.; Hoshika, Y.; Fares, S.; Paoletti, E. Effect of Long-Term vs. Short-Term Ambient Ozone Exposure on Radial Stem Growth, Sap Flux and Xylem Morphology of O3-Sensitive Poplar Trees. *Forests* **2019**, *10*, 396. [CrossRef]

53. Agathokleous, E.; Saitanis, C.J.; Wang, X.; Watanabe, M.; Koike, T. A Review Study on Past 40 Years of Research on Effects of Tropospheric O3 on Belowground Structure, Functioning, and Processes of Trees: A Linkage with Potential Ecological Implications. *Water, Air, Soil Pollut.* **2016**, *227*, 33. [CrossRef]