Unsupervised Morphology Induction using Word Embeddings

Radu Soricut, Franz J. Och
NAACL 2015

*now at Human Longevity Inc.
Word Embeddings

• vocabulary V, embedding function $e: V \rightarrow \mathbb{R}^n$

• vector space encodes semantic similarity
 • $e(\text{car}) \approx e(\text{automobile})$, $e(\text{car}) \neq e(\text{seahorse})$

• vector space encodes compositionality
 • semantic: $e(\text{king}) - e(\text{man}) + e(\text{woman}) \approx e(\text{queen})$
 • syntactic: $e(\text{cars}) - e(\text{car}) + e(\text{fireman}) \approx e(\text{firemen})$

• vector space encodes syntactic/semantic transformations
 • anti+: $e(\text{anticorruption}) - e(\text{corruption})$
British scientists recreated Down’s syndrome in mice in order to study the disease and develop new treatments.
British scientists recreated Down’s syndrome in mice in order to study the disease and develop new treatments.

Train on large monolingual corpus
SkipGram Embeddings: Introduction

Model Compositionality (Acc%) Similarity (Spearman ρ)

Model	Semantic	Syntactic	Stanford-C	Stanford-RW
SkipGram (Wikipedia 1Bw)	76.7	68.3	66.3	35.8

$$\arg\max_{v_w,v_c} \left(\sum_{(w,c)\in D_w} \log \sigma(v_w \cdot v_c) + \sum_{(w,c)\in \overline{D_w}} \log \sigma(-v_w \cdot v_c) \right)$$

$$\sigma(x) = \frac{1}{1 + e^x}$$

Size: 8,869 tuples

Evaluation: acc% closest point (over entire vocabulary)

Example:

- **Size:** 10,675 tuples
- **Compositionality (Acc%):**
 - Semantic: 76.7
 - Syntactic: 68.3
- **Similarity (Spearman ρ):**
 - Stanford-C: 66.3
 - Stanford-RW: 35.8

Example Sentences:

- **Example:**
 - King - man + woman \approx queen
 - Evaluation: acc% closest point (over entire vocabulary)
 - Size: 8,869 tuples

- **Example:**
 - Cars - car + fireman \approx firemen
 - Evaluation: acc% closest point (over entire vocabulary)
 - Size: 10,675 tuples

- **Example:**
 - Is a celebrated ?jazz clarinetist...
 - An English ?rock band...
 - Evaluation: Spearman corr. (against 10-human score avg.)
 - Size: 2034 pairs

- **Example:**
 - Belligerence \approx hostility
 - Amorphous \approx inorganic
 - Evaluation: Spearman corr. (against 10-human score avg.)
 - Size: 2003 pairs
Q: What do we want?

A: We want *high-quality* embeddings for all words (even ones outside V)
Q: What do we want?

A: We want *morphology-based transformations* that can accurately analyze words (even ones unseen at training time)
Unsupervised Morphology Induction: Algorithm

Steps:

1. From V, extract candidates for morphological rules (prefix & suffix only)

stop
stops
stopped
stopping
stoppage
stopper
stopover
...
wed
weds
...
wing

suffix:ε:s

suffix:ε:page

suffix:ed:ing
Steps:

1. From V, extract candidates for morphological rules (prefix & suffix only)
Unsupervised Morphology Induction: Algorithm

Steps:

2. Query against embedding space: *morphology does not shift meaning*

suffix: **ed:**ing	prefix: **ε:**S
adored adorned affected …	aura aux ave …
blamed blitzed blogged …	canned cans car care …
stayed stepped stopped …	crape cream creams …
weaned wed wedged whirled	miles mitten mothers …

\[
\text{rank}(\text{blamed} \rightarrow \text{blaming}) = 1 \\
\text{rank}(\text{stopped} \rightarrow \text{stopping}) = 2 \\
\text{rank}(\text{wed} \rightarrow \text{wing}) = 28609 \\
\text{rank}(\text{care} \rightarrow \text{Scare}) = 57778 \\
\text{rank}(\text{cream} \rightarrow \text{Scream}) = 9434 \\
\text{rank}(\text{miles} \rightarrow \text{Smiles}) = 18800
\]
Steps:

2. Query against embedding space: *morphology does not shift meaning*

Prefix: \texttt{un}: ε

unabated unable unabridged...
unaware unbalance unbeaten...
undoing undone undoubted...
untrusted untrustworthy...

\[\text{rank(} \text{unaware } \rightarrow \text{ aware}) = 1 \]
\[\text{rank(} \text{ undone } \rightarrow \text{ done}) = 129 \]
Unsupervised Morphology Induction: Algorithm

Steps:

2. Query against embedding space: *morphology does not shift meaning*

prefix: un: ε

unabated unable unabridged...
unaware unbalance unbeaten...
undoing undone undoubted...
untrusted untrustworthy...

\[
\text{rank}(\text{unaware} \rightarrow \text{aware}) = 0
\]
\[
\text{rank}(\text{undone} \rightarrow \text{done}) = 129
\]
\[
\text{rank}(\text{undone} + \uparrow\text{un-} \rightarrow \text{done}) = 4
\]
Unsupervised Morphology Induction: Algorithm

Steps:

3. Extract candidate rules using embedding-based stats

Candidate Rule	Direction	#Correct	#Total	Acc10
suffix:h:a	↑Teh	1	449	0.4%
suffix:o:es	↑Tono	7	688	1.0%
prefix:D:W	↑Daring	9	675	1.3%
prefix:un:ε	↑undelivered	166	994	23.3%
suffix:ed:ing	↑procured	2138	4714	56.2%
suffix:ating:ate	↑formulating	255	395	74.7%
suffix:sed:zed	↑victimised	153	186	90.9%
Steps:

4. Use rules to extract lexicalized, weighted morphological transformations

Start	Rule + Direction = Transformation	End	Cosine	Rank
...				
recreations	suffix:ions:e + ↑investigations	recreate	0.69	1
recreations	suffix:itions:te + ↑investigations	recreate	0.70	1
recreations	suffix:ions:ed + ↑delineations	recreated	0.51	29
recreations	suffix:ions:ing + ↑reconstruction	recreating	0.72	1
...				
unaware	prefix:un:ε + ↑uncivilized	aware	0.77	1
unaware	prefix:un:ε + ↑undelivered	aware	0.63	7
Unsupervised Morphology Induction: Algorithm

Output (I): labeled, weighted, cyclic, directed multigraph G^V_{Morph}

- words are nodes, morphological transformations are (weighted) edges
Unsupervised Morphology Induction: Algorithm

Output (II): labeled, weighted, acyclic, directed graph D^V_{Morph}

- words are nodes, morphological mappings are weighted edges
Q: What do we want?

A: We want *morphology-based transformations* that can accurately analyze words (even ones unseen at training time)
Unsupervised Morphology Induction

Basic algorithm: embedding words outside V

Outside Wikipedia (1B tokens, $|V| = 4.3$M)

animalize (0)
balminess (0)
caesarism (0)
containerful (0)
nonindulgent (0)
unassertiveness (0)
Analyze words outside V

1. Train time: extract and count all paths ending in a “fix-point” from the directed acyclic graph D^V_{Morph}
 - each path is called a “rule sequence”

rule sequence	count
suffix:s:ɛ	3119
suffix:ed:ɛ	687
suffix:ing:ed	412
prefix:un:ɛ	207
suffix:ness:ɛ	162
suffix:ness:ly	25
suffix:y:ier,suffix:er:ness	10
prefix:un:ɛ,suffix:ed:ing	5
Analyze words outside \(V \)

2. Run time: apply each rule sequence in descending order of counts
 - if rule fires, check that result has count > 0 and in-degree > 0
 - stop at first winner

rule sequence	count
suffix:s:ε	3119
suffix:ed:ε	687
suffix:ing:ed	412
prefix:un:ε	207
suffix:ness:ε	162
suffix:ness:ly	25
suffix:y:ier,suffix:er:ness	10
prefix:un:ε,suffix:ed:ing	5

\[
\text{unassertiveness} = \text{assertiveness} + \uparrow \text{un+}
\]
A: We want *morphology-based transformations* that can accurately analyze words unseen at training time.

| Language | |Tokens| |V| \(|G_{\text{Morph}}^V|\) | \(|D_{\text{Morph}}^V|\) |
|---|---|---|---|---|
| EN | 1.1b | 1.2m | 780k | 75,823 |
| DE | 1.2b | 2.9m | 3.7m | 169,017 |
| FR | 1.5b | 1.2m | 1.8m | 92,145 |
| ES | 566m | 941k | 2.2m | 82,379 |
| RO | 1.7b | 963k | 3.8m | 141,642 |
| AR | 453m | 624k | 2.4m | 114,246 |
| UZ | 850m | 2.0m | 5.6m | 194,717 |
Unsupervised Morphology Induction: Evaluation

Evaluate OOV analysis using low-count words
Evaluate OOV analysis using rare words

| Language | $|V_{[1000,2000]}|$ | Accuracy |
|----------|----------------|----------|
| | Have analysis | Don’t have analysis | Have analysis | Don’t have analysis |
| EN | 3421 | 10617 | 89.7% | 89.6% |
| DE | 10778 | 21234 | 90.8% | 93.1% |
| FR | 6435 | 9807 | 90.3% | 90.4% |
| ES | 5724 | 7412 | 91.1% | 90.3% |
| RO | 11905 | 9254 | 86.5% | 85.3% |
| AR | 7913 | 5202 | 92.4% | 69.0% |
| UZ | 11772 | 9027 | 81.3% | 84.1% |
Q: What do we want?

A: We want *morphology-based transformations* that can accurately analyze words (even ones unseen at training time)

Key result

Improved word similarity judgment: unknown, low-count, high-count words

- evaluation on Stanford Rare Word similarity dataset (RW-EN)
- evaluation of similarity datasets on various languages (RG-DE)
Unsupervised Morphology Induction: Evaluation

Training Setup

| Language | Train Set | |Tokens| | |V| | |G^{V}_{Morph}| | |D^{V}_{Morph}| |
|----------|-------------|--------|--------|-------|---------|--------|
| **Small** | | | | | | | |
| EN | Wiki-EN | 1.1b | 1.2m | 780k | 75,823 |
| DE | WMT-DE | 1.2b | 2.9m | 3.7m | 169,017 |
| **Large** | | | | | | | |
| EN | News-EN | 120b | 1.0m | 2.9m | 98,268 |
| DE | News-DE | 20b | 1.8m | 6.7m | 351,980 |
Unsupervised Morphology Induction: Evaluation

Evaluation on similarity datasets (RG-DE, RW-EN)

| Language | Train Set | |Tokens| |V| |G_{Morph}| |D_{Morph}|
|---|---|---|---|---|---|---|---|
| EN | Wiki-EN | 1.1b | 1.2m | 780k | 75,823 |
| DE | WMT-DE | 1.2b | 2.9m | 3.7m | 169,017 |
| EN | News-EN | 120b | 1.0m | 2.9m | 98,268 |
| DE | News-DE | 20b | 1.8m | 6.7m | 351,980 |

size: 2034 pairs
impossibilities unattainableness 8.8
deregulating liberation 8.0
baseness unworthiness 4.0
transmigrating born 1.1

System	RW-EN Testset	Unembedded	Spearman ρ
	Wiki-EN	News-EN	Wiki-EN
SkipGram	78	177	35.8
SkipGram+Morph	1	0	41.8
Unsupervised Morphology Induction: Evaluation

Evaluation on similarity datasets (RG-DE, RW-EN)

| Language | Train Set | |Tokens| | |V| | G_{Morph}^V | D_{Morph}^V |
|----------|------------|-----------------|------------|----------|------------|----------|
| EN | Wiki-EN | 1.1b | 1.2m | 780k | 75,823 |
| DE | WMT-DE | 1.2b | 2.9m | 3.7m | 169,017 |
| EN | News-EN | 120b | 1.0m | 2.9m | 98,268 |
| DE | News-DE | 20b | 1.8m | 6.7m | 351,980 |

RW-EN Testset

System	Wiki-EN	News-EN	Spearman p
SkipGram	80	177	35.8
SkipGram+Morph	1	0	41.8

RG-DE Testset

System	WMT-DE	News-DE	WMT-DE	News-DE
SkipGram	0	20	62.4	62.1
SkipGram+Morph	0	0	64.1	69.1
Conclusions

1. Method for inducing morphological transformations between words
 • from scratch, unsupervised, language agnostic

2. Provides morphology-based structure over embedding spaces

3. Provides high-quality embeddings for out-of-vocabulary and low-count morphological variants
Next steps

• Going beyond suffix & prefix morphology
 • nothing in the approach prevents from extending it

• Use it for improved Machine Translation
 • quick and painless morphological analysis on source side
 • generate morphological variants on target side (even new ones!)

• Use it for improved Information Retrieval

Thank you
