An extremely high photometric precision in ground-based observations of two transits in the WASP-50 planetary system

Jeremy Tregloan-Reed* and John Southworth

Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK

Accepted 2013 February 4. Received 2013 January 29; in original form 2012 December 4

ABSTRACT

We present photometric observations of two transits in the WASP-50 planetary system, obtained using the ESO New Technology Telescope and the defocused-photometry technique. The rms scatters for the two data sets are 258 and 211 ppm with a cadence of 170–200 s, setting a new record for ground-based photometric observations of a point source. The data were modelled and fitted using the PRISM and GEMC codes, and the physical properties of the system calculated. We find the mass and radius of the hot star to be 0.861 ± 0.057 M⊙ and 0.855 ± 0.019 R⊙, respectively. For the planet we find a mass of 1.437 ± 0.068 MJup, a radius of 1.138 ± 0.026 RJup and a density of 0.911 ± 0.033 ρJup. These values are consistent with but more precise than those found in the literature. We also obtain a new orbital ephemeris for the system: T0 = BJD/TDB 245 5558.612 37 (20) + 1.955 0938(13) × E.

Key words: techniques: photometric – stars: fundamental parameters – stars: individual: WASP-50 – planetary systems.

1 INTRODUCTION

Mayor & Queloz (1995) discovered the first planet orbiting a normal star outside our own Solar system, 51 Peg, from radial velocity (RV) measurements. The first transiting planet was found using photometric observations of a system, HD 209458, already known from RV measurements to host a planet (Charbonneau et al. 2000; Henry et al. 2000). OGLE-TR-56 was the first planet discovered from its transits (Udalski et al. 2002; Konacki et al. 2003). The transit detection method uses photometry to measure the change in received flux from a star when a planet crosses the stellar disc. Since then, ground-based transit detection surveys such as Wide Angle Search for Planets (WASP) (Pollacco et al. 2006) and Hungarian Automated Telescope (Bakos et al. 2004) have been set up around the world. Once a survey has discovered a transiting extrasolar planet (TEP), follow-up spectroscopic and photometric observations are required to properly characterize the system.

To achieve high-precision photometry requires not only a high signal-to-noise ratio (S/N) but also nullification of many systematic effects inherent in ground-based photometry. Southworth et al. (2009a) investigated the use of defocused telescopes to obtain high-precision photometry. Telescope defocusing causes the light from point sources to be distributed over thousands of CCD pixels. This allows the use of longer exposure times, which means that the CCD is read out less often. This reduced dead time means that more photons can be collected over a given time interval, leading to lower Poisson and scintillation noise. Flat-fielding noise also averages down by an order of magnitude due to the large number of pixels in the software aperture, and changes in seeing become inconsequential. Many researchers have used the technique of defocused photometry to obtain precise measurements of the parameters of TEP systems (e.g. Demory et al. 2007; Gillon et al. 2007, 2008; Winn et al. 2007a,b). We note that the defocusing technique is only suitable for bright isolated stars. If a star is too faint, then the increased background and read-out noise can be detrimental. If the target and comparison stars are in a crowded field, then defocusing will cause their point spread functions (PSF) to become blended with those of nearby stars.

The discovery of the TEP system WASP-50 was presented by Gillon et al. (2011), who found it to comprise a TEP with a mass of 1.47 ± 0.09 MJup and radius of 1.15 ± 0.05 RJup, orbiting a cool star with mass and radius 0.89 ± 0.08 MJup and 0.84 ± 0.03 R⊙, respectively. We observed WASP-50 with the aim of improving its measured physical properties, using the telescope-defocusing approach. We used the New Technology Telescope (NTT) operated by ESO at La Silla, Chile. This telescope is alt-az mounted and has a thin primary mirror whose shape is maintained using active optics. Whilst these qualities are not outwardly well suited to the telescope-defocusing approach, we have previously found the NTT to work well for this type of observations (Hellier et al. 2011; Tregloan-Reed, Southworth & Tappert 2013). We observed two complete transits of WASP-50 using the NTT, achieving extremely low photometric scatters of 258 and 211 ppm, respectively, versus a fitted model. To our knowledge the latter is the lowest scatter ever achieved in ground-based photometry per point for a point source.

Some of the highest photometric precisions previously accomplished for a TEP system are 479 ppm for CoRot-1 using the 8.2 m VLT (Pont et al. 2010), 478 ppm for WASP-4 using the 6.5 m Magellan Baade telescope (Winn et al. 2009), 470 ppm for...
WASP-10 using the University of Hawaii 2.2 m telescope (Johnson et al. 2009), 387 ppm for WASP-2 using a 1.5 m telescope (Southworth et al. 2010) and 316 ppm for TrES-2 using the 10.4 m Gran Telescopio Canarias (Colón et al. 2010). The highest photometric precision we are aware of from a ground-based telescope was previously 258 ppm in time series observations of stars in the open cluster M67 (Gilliland et al. 1993).

An alternative metric which is well-suited to direct comparison is S/N per unit time. We have calculated the scatter in parts per million per minute of observing time for the data sets listed above. By this metric the better of our two data sets is almost exactly equal to the best one presented by Gilliland et al. (1993), and both of our light curves are better than any previously published ground-based photometric observations of a TEP system.

2 OBSERVATIONS AND DATA REDUCTION

Two transits of WASP-50 were observed on the nights of 2011 November 20 and 24 using the NTT with the ESO Faint Object Spectrograph and Camera 2 (EFOSC2) instrument operated in imaging mode. In this setup the CCD covers a field of view of (4.1 arcmin)2 with a plate scale of 0.12 arcsec pixel−1. The images were windowed down to 1100 × 1600 pixels and no binning was used, resulting in a dead time between consecutive images of 50 s. The observations were taken through a Gunn r filter (ESO filter #784). The moon was below the horizon for half of the first transit and all of the second transit. The telescope was initially focused and the shape of its primary mirror was adjusted to obtain the best image possible. We then applied a defocus to the telescope and performed the full observing sequence without adjusting the telescope focus or mirror shape.

The pointing of the telescope was adjusted to allow a good comparison star to be observed simultaneously with WASP-50. The comparison star used was 2MASS J02544939−1051548, which is of a similar apparent magnitude and colour to WASP-50. The 2MASS J − Ks colour indices of the two objects are 0.432 for WASP-50 and 0.357 for the comparison star (Skrutskie et al. 2006). We were able to keep the telescope autoguided through all observations. An observing log is given in Table 1.

Fig. 1 shows the shape of the PSF of WASP-50 in an image taken at random from the observing sequence on the night of 2011 October 24. The x and y axes are in pixels. The lowest and highest counts are 684 and 24 726 ADUs, respectively, and the z axis is on a linear scale.

In order to confirm the low scatter of the resulting light curves we performed a second data reduction with completely different methods. We used the Starlink/AUTOPHOTOM package (Eaton, Draper & Allen 1999) driven by a custom C-shell script (Southworth, Maxted & Smalley 2004a), and obtained a light curve with an rms scatter of 414 ppm for the first night of data. This result agrees with our light curve from DAOPHOT, once the discretization of the data points (AUTOPHOTOM quotes instrumental magnitudes to only three decimal places) is taken into account.

3 DATA ANALYSIS

We fitted the WASP-50 data in a similar manner to Tregloan-Reed et al. (2013). Planetary Retrospective Intergrated Starspot Model (PRISM)1 was used to model the transit. PRISM uses a pixellation approach to represent the star and planet on a two-dimensional array in Cartesian coordinates. This makes it possible to model the transit, limb darkening and starspots on the stellar disc simultaneously. Limb darkening was implemented using the standard quadratic law. PRISM used the six parameters given in Table 2 to model the system, where the fractional stellar and planetary radii are defined as the absolute radii scaled by the semimajor axis (R∗p = R∗p/a).

Genetic Evolution Markov Chain (GEMC)1 was used to fit the model to the data. GEMC begins by randomly generating parameters for the starting points of N chains, within the user-defined parameter

Table 1. Log of the observations presented in this work. Nobs is the number of observations. ‘Moon illum.’ and ‘Moon dist.’ are the fractional illumination of the Moon, and its distance from W ASP-50 in degrees, at the mid-point of the transit.

Date	Start time (UT)	End time (UT)	Nobs	Exposure time (s)	Filter	Airmass	Moon illum.	Moon dist.	Aperture sizes (pixel)	Scatter (ppm)
2011-11-20	00:59	06:02	127	120–150	Gunn r	2.62	0.384	91.2	75, 105, 120	258
2011-11-24	01:08	06:27	124	150	Gunn r	2.10	0.045	137.4	75, 100, 125	211

1 Available from http://www.astro.keele.ac.uk/~jtr.
space, and then simultaneously evolves the chains for \(X \) generations. At each generation the chains are evaluated for their fitness. The parameters of the fittest member undergo a maximum \(\pm 1 \) per cent perturbation and its fitness is then re-evaluated. If the fitness has improved, it is accepted but if the fitness has deteriorated it may or may not be accepted based on a Gaussian probability distribution:

\[
P = \exp\left(\frac{\chi^2_\text{new} - \chi^2_\text{old}}{2}\right),
\]

where \((n-1)\) is the previous generational chain and \(n \) is the current generational chain being evaluated. The next step is to evolve the other chains. This is accomplished in a similar way as a genetic algorithm, in that the chain parameters are modified by incorporating the parameters of another chain. But unlike a genetic algorithm where a member is picked by a weighted random number and then the digits of each parameter are crossed over with the digits from a different member, \texttt{GEMC} directly perturbs the parameters of each chain in a vector towards the best-fitting chain. The size of this perturbation is between zero and twice the distance to the best-fitting chain, allowing the chain to not only move towards but also to overshoot the position of the best-fitting chain. This continues until all the chains have converged around the optimal solution. Once the burn-in phase has been completed the chains cease communication and begin independent Markov Chain runs.

Because \texttt{GEMC} is a hybrid between the Markov Chain Monte Carlo approach and a genetic algorithm, the burn-in phase is relatively short, allowing us to use a large parameter search space.

The boundaries of the search space for each parameter are given in Table 2, which also contains the individual results for the two light curves. Table 2 also gives the final photometric parameters for the WASP-50 system, which are weighted means of the results from the two individual fits. All error bars denote 1\(\sigma \) uncertainties. Figs 2 and 3 compare the light curves to the best-fitting models, including the residuals. The two data sets were modelled individually, and the agreement between the best-fitting parameters is exceptionally good. The best-fitting limb-darkening coefficients are also in good agreement with the theoretically predicted values for WASP-50 A of \(u_1 = 0.407 \) and \(u_2 = 0.281 \) (Claret 2004). Our data were taken with 120 and 150 s exposures, so we have checked whether these relatively long exposure times affect the derived parameters. For this we modelled the data using the \texttt{JKTEBOP} code (Southworth, Maxted & Smalley 2004b), finding results in good agreement with those from \texttt{PRISM}. We then used \texttt{JKTEBOP}'s option to numerically integrate the model over the duration of each exposure whilst finding the best fit (Southworth 2011). The final parameters for each light curve altered by only 0.1–0.25\(\sigma \), allowing us to conclude that smearing of the transit shape due to long exposure times does not have a significant effect on our results.

To check for correlated ‘red’ noise we used the Monte Carlo and residual-permutation algorithms in \texttt{JKTEBOP} (Southworth 2008) to assess the uncertainties in the fitted parameters. We found a difference between the two methods of only 0.1 per cent, and conclude that the correlated noise is not present at a significant level in our data.

We also used \texttt{JKTEBOP} to check whether the removal of the slow drift in brightness with a first-order polynomial had any effect on our results. We found that including the polynomial coefficients as

Table 2.

Parameter	Symbol	Search interval	2011-11-20	2011-11-24	Combined photometric parameters
Radius ratio \(r_p/r_s \)	\(r_p/r_s \)	0.05–0.30	0.137 10 ± 0.000 49	0.136 61 ± 0.000 36	0.136 78 ± 0.000 29
Sum of fractional radii	\(r_s + r_p \)	0.10–0.50	0.1552 ± 0.0018	0.1553 ± 0.0016	0.1552 ± 0.0012
Linear LD coefficient	\(u_1 \)	0.0–1.0	0.386 ± 0.068	0.385 ± 0.049	0.386 ± 0.040
Quadratic LD coefficient	\(u_2 \)	0.0–1.0	0.281 ± 0.109	0.279 ± 0.043	0.280 ± 0.040
Inclination (degrees)	\(i \)	70.0–90.0	84.43 ± 0.17	84.45 ± 0.14	84.44 ± 0.11
Transit epoch (BJD/UTC)	\(T_0 \)	±0.5 in phase	245 5855.781 72 ± 0.000 076	245 5859.691 75 ± 0.000 118	}

Figure 2. Transit light curve and the best-fitting model for 2011 November 20. The residuals are displayed at the base of the figure.
fitted parameters caused changes in the other parameters of roughly 0.001σ. We conclude that the detrending process has had no deleterious effect on our results.

We have collected the available times of mid-transit for WASP-50 from the literature (Gillon et al. 2011; Sada et al. 2012). All timings were converted to the BJD/TDB time-scale and used to obtain an improved orbital ephemeris:

$$T_0 = \text{BJD/TDB} 245 5558.61237(20) + 1.955 0938(13) \times E,$$

where E represents the cycle count with respect to the reference epoch and the bracketed quantities represent the uncertainty in the final digit of the preceding number. Fig. 4 and Table 3 show the residuals of these times against the ephemeris. We find no evidence for transit timing variations in the system.

3.1 Physical properties of the WASP-50 system

Once the photometric parameters of WASP-50 had been measured, we moved to the determination of its physical characteristics. We adopted the approach of Southworth (2009), which uses the parameters measured from the light curves and spectra, plus tabulated predictions of several theoretical models. We adopted the values of i, r_p/r_s and $r_s + r_p$ from Table 2, and the stellar properties of effective temperature $T_{\text{eff}} = 5400 \pm 100$ K, metal abundance $\frac{\text{[Fe/H]}}{\text{H}} = -0.12 \pm 0.08$ and velocity amplitude $K_p = 256.6 \pm 4.4$ m s$^{-1}$ (Gillon et al. 2011).

An initial value of the velocity amplitude of the planet, K_p, was used to calculate the physical properties of the system using standard formulae and the physical constants listed by Southworth (2011). The mass and $\frac{\text{[Fe/H]}}{\text{H}}$ of the star were then used as interpolates within tabulated predictions from stellar theoretical models, in order to find the expected T_{eff} and radius. K_p was then iteratively refined to find the best agreement between the observed and predicted T_{eff}, and the light-curve-derived r_s and predicted R_s/a. This was performed for ages ranging from zero age to the terminal-age main sequence, in steps of 0.01 Gyr. The overall best fit was

Time of minimum (BJD/TDB - 240 0000)	Cycle no.	Residual (BJD)	Reference
555 58.612 37 ± 0.000 20	0.0	0.000 00	1
558 49.921 31 ± 0.000 60	149.0	-0.000 04	2
558 51.876 34 ± 0.000 28	150.0	-0.000 10	2
558 55.786 64 ± 0.000 08	152.0	0.000 01	3
558 59.696 80 ± 0.000 12	154.0	-0.000 01	3

References: (1) Gillon et al. (2011); (2) Sada et al. (2012); (3) This work.
in the longer term by using sets of stellar models which show a better interagreement on properties of the host star WASP-50 A.

In our study of WASP-19 (Tregloan-Reed et al. 2013) we found a modest discrepancy between limb-darkening coefficients measured from three data sets taken with the same telescope. This was attributed to the fact that WASP-19 A is an active star with significant starspot activity, which alters the limb-darkening behaviour of the star (Ballerini et al. 2012). Whilst WASP-50 does show modest chromospheric activity, as judged from emission in the Ca II H&K lines (Gillon et al. 2011), starspot anomalies have not been observed in any of the five transit light curves of this system. The limb-darkening coefficients found from our two data sets are in excellent agreement (0.02σ), supporting the suggestion that starspots affect stellar limb darkening.

Finally, we have checked if observations of this high precision could be used to characterize transiting super-Earths. We injected a synthetic transit of a 2 R⊕ planet orbiting WASP-50 A into the residuals of our best fits from both nights, and binned the data together. This simulated light curve (Fig. 5) shows a clear transit signature, suggesting that ground-based defocused photometry of transiting super-Earths is a viable possibility.

ACKNOWLEDGEMENTS

We like to thank the anonymous referee for the helpful comments on the manuscript. The reduced light curves presented in this work will be made available at the CDS (http://cdsweb.u-strasbg.fr/) and at both http://www.astro.keele.ac.uk/~jtr/ and http://www.astro.keele.ac.uk/~jkt/. This paper used data collected from the New Technology Telescope at the European Southern Observatory, Chile, programme number 088.C-0204(A). JTR acknowledges financial support from STFC in the form of a PhD studentship. JS acknowledges financial support from STFC in the form of an Advanced Fellowship.

REFERENCES

Bakos G., Noyes R. W., Kovács G., Stanek K. Z., Sasselov D. D., Domsa I., 2004, PASP, 116, 266
Ballerini P., Micela G., Lanza A. F., Pagano I., 2012, A&A, 539, A140
Charbonneau D., Brown T. M., Latham D. W., Mayor M., 2000, ApJ, 529, L45
Claret A., 2004, A&A, 428, 1001
Colón K. D., Ford E. B., Lee B., Mahadevan S., Blake C. H., 2010, MNRAS, 408, 1494
Demory B.-O. et al., 2007, A&A, 475, 1125
Eaton N., Draper P. W., Allen A., 1999, Starlink User Note 45.9 (http://www.starlink.rl.ac.uk/docs/sun45.htx/node33.html)
Gilliland R. L. et al., 1993, AJ, 106, 2441

Table 4. Physical properties of the WASP-50 system. The equilibrium temperature, T_{eq}, is for an assumed zero albedo and full heat redistribution. Θ is the Safronov (1972) number.

Parameter	This work	Gillon et al. (2011)
M_A (M☉)	0.861 ± 0.052 ± 0.023	0.892 ±0.080 -0.074
R_A (R☉)	0.855 ± 0.018 ± 0.007	0.843 ±0.031
log g_A (cgs)	4.509 ± 0.012 ± 0.004	4.537 ±0.022
ρ_A (g cm$^{-3}$)	1.376 ± 0.032	1.48±0.10 -0.09
M_b (M$_{\text{Jup}}$)	1.437 ± 0.063 ± 0.025	1.468±0.091 0.086
R_b (R$_{\text{Jup}}$)	1.138 ± 0.024 ± 0.010	1.153 ±0.048
g_b (m s$^{-2}$)	27.50 ± 0.64	27.5 ± 1.6
ρ_b (g cm$^{-3}$)	0.911 ± 0.032 ± 0.008	0.958±0.005 0.002
T_{eq} (K)	1410 ± 5	1393 ± 30
a (au)	0.029 ± 0.000 0.009	0.02945 ±0.000 85
Age (Gyr)	8.1±7.1 ±4.4 ±1.3	8.1±7.1 ±4.4 ±1.3

Figure 5. Simulated light curve of a 2 R⊕ planet orbiting WASP-50 A.
Gillon M. et al., 2007, A&A, 472, L13
Gillon M., Triaud A. H. M. J., Mayor M., Queloz D., Udry S., North P., 2008, A&A, 485, 871
Gillon M. et al., 2011, A&A, 533, A88
Hellier C., Anderson D. R., Collier-Cameron A., Miller G. R. M., Queloz D., Smalley B., Southworth J., Triaud A. H. M. J., 2011, ApJ, 730, L31
Henry G. W., Marcy G. W., Butler R. P., Vogt S. S., 2000, ApJ, 529, L41
Johnson J. A., Winn J. N., Cabrera N. E., Carter J. A., 2009, ApJ, 692, L100
Konacki M., Torres G., Jha S., Sasselov D. D., 2003, Nat, 421, 507
Mayor M., Queloz D., 1995, Nat, 378, 355
Pollacco D. L. et al., 2006, PASP, 118, 1407
Pont F. et al., 2010, MNRAS, 402, L1
Sada P. V. et al., 2012, PASP, 124, 212
Safronov V. S., 1972, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. Israel Program for Scientific Translation, Jerusalem
Skrutskie M. F. et al., 2006, AJ, 131, 1163
Southworth J., 2008, MNRAS, 386, 1644
Southworth J., 2009, MNRAS, 394, 272
Southworth J., 2010, MNRAS, 408, 1689
Southworth J., 2011, MNRAS, 417, 2166
Southworth J., Maxted P. F. L., Smalley B., 2004a, MNRAS, 349, 547
Southworth J., Maxted P. F. L., Smalley B., 2004b, MNRAS, 351, 1277
Southworth J. et al., 2009a, MNRAS, 396, 1023
Southworth J. et al., 2009b, MNRAS, 399, 287
Southworth J. et al., 2010, MNRAS, 408, 1680
Stetson P. B., 1987, PASP, 99, 191
Tregloan-Reed J., Southworth J., Tappert C., 2013, MNRAS, 428, 3671
Udalski A., Zebrun K., Szymanski M., Kubiak M., Soszynski I., Szewczyk O., Wyrzykowski L., Pietrzyński G., 2002, Acta Astron., 52, 115
Winn J. N. et al., 2007a, AJ, 133, 1828
Winn J. N. et al., 2007b, AJ, 134, 1707
Winn J. N., Holman M. J., Carter J. A., Torres G., Osip D. J., Beatty T., 2009, AJ, 137, 3826

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.