Conceptual design and parametric structural modeling of a FWA V biomimetic flapping wing

Saiaf Bin Rayhan

1School of Aeronautics, Northwestern Polytechnical University, 710072, Xi’an, China
rayhan.saiaf@mail.nwpu.edu.cn

Abstract. Flapping wing air vehicle is the latest technological achievement of the aviation industry, which is still maturing as a miniature of large aircraft before finally achieving the finest development. By mimicking the nature, parametric structural modeling of a flapping wing, made of composite membrane and aluminum alloy support beam is numerically investigated adopting commercial FE code Ansys. A flapping cycle is divided into twelve segments, and for each segment, the maximum stress, first ply failure and the deformation are studied. It is found that the fiber orientation angle has the highest impact on the structural properties during a flapping cycle, where improper stacking sequence will cause failure to the wing. Moreover, increasing the ply thickness has a positive impact on the overall structural performance of the model. Finally, appropriate support beam orientation can further improve the structure by increasing the stiffness and reducing the maximum stress significantly without increasing the overall weight of the wing.

1. Introduction

Flapping wing air vehicles (FWAV) have already gained popularity in the aviation industry due to their multiple applications in both civil and military sectors. However, despite technological advancements and scientific insights, the domain remains uncharted, and the current research works are mainly conducted based on the trial-and-error method [1]. Overall, the ongoing advancements of FWAV research can be divided into two major branches: i. Investigation of the flight mechanism, aerodynamics and wing structure of flying animals like insects and birds and ii. Development of theoretical models and applying them to flying robots by mimicking nature.

In nature, large birds use steady aerodynamic principles for their flight. In contrast, insects and smaller birds use more complex unsteady aerodynamic mechanisms like clap and fling mechanism, delayed stall and wing rotation, wake capturing, and asymmetric flapping [2]. A brief review of the aerodynamic phenomena of insect and bird flights can be found in [3-6]. Other notable contributions are mainly focused on the determination of optimal lift, thrust, and efficiency of flapping wings using both experiments and computational fluid dynamics [7-10]. Furthermore, development and successful flight testing of full-scale stable FWAV are achieved for various applications [11-13].

Even though numerous attempts were made to understand the unsteady aerodynamic behavior of the flapping wings, which is undoubtedly the most challenging task to unveil the flight mechanism, in contrast, very few research has been carried out to learn the structural performance, which also plays a great role in generating successful flapping. To investigate the structural properties of the Calliphora wing, both experimental and numerical studies were performed, and it was revealed that the mass per unit length is higher in the wing root and decreases towards the wing tip [14]. A more detailed structural analysis was carried out using a micro-CT scanner on Dragonfly wing, which unveiled that...
the vein and membrane thickness increases from tip to root, allowing the wing to bear both inertial and aerodynamic loads effectively [15]. Inspired by nature, a three-dimensional solid structural submodel of dragonfly forewing is created, and the Finite Element Method (FEM) is employed to find the stress distribution and deformation pattern of the model [16]. It was found that the maximum stress in the chitin layer is larger than that in the protein layer.

To validate the experimental flowfield and deflection measurements of an insect based flexible flapping wing, coupled computational fluid dynamics solver based on unsteady Reynolds-averaged Navier-Stokes (URANS) equations and computational structural dynamics solver capable of modeling nonlinear beam and shell element is adopted [17]. Overall, the CFD-CSD results showed good agreement with the measured experimental flowfield and wing deformation data.

Based on the three-dimensional unsteady vortex lattice method (UVLM), a bio-mimetic flapping wing was tested using FEM for three different material models; namely, linear, composite and Mooney-Rivlin model. It was found that the composite and the Mooney-Rivlin nonlinear models produce significantly lower stress compared to the linear elastic model [18]. Other notable bioinspired wing designs can be found in [19-21], and parallel research works on the control system mechanism can be found in [22].

The present investigation describes parametric structural modeling of a bio-mimetic flapping wing made of carbon-epoxy composite material and aluminum alloy. Firstly, a 3D wing model is developed, and downstroke and upstroke forces are calculated on the wing based on the UVLM method. Then the effect of fiber orientation angle on the flapping wing structure is investigated. Besides, the influence of laminate thickness and support beam thickness is also studied. Finally, the support beam orientation is examined on the structural performance of the wing model.

2. Theoretical Formulation

A flapping cycle is divided into 12 segments, and for each segment, both aerodynamic and inertial forces are calculated on the wing, dividing it into 32 elements. The aerodynamic force is calculated based on the three-dimensional UVLM method [23], which is given as follows.

$$\Delta F_y = -(\Delta P \Delta S)_y$$ \hfill (1)

where ΔP is the pressure of the element and ΔS is the area of the element.

The periodic inertial force, generated from the acceleration and deceleration of the flapping wing, is one of the main acting loads during each cycle. The calculation formula of inertial force on each element during a specific flapping segment can be expressed as follows.

$$F_i(t) = \omega^2 m_i r_i \beta_{max} \cos(\alpha t) = \omega^2 \rho_i \beta_{max} A_i r_i \cos(\alpha t)$$ \hfill (2)

where $F_i(t)$ is the inertia force of element i, m_i is the mass of element i, r_i is the rotational radius of element i, ω is angular velocity, t is time, β_{max} is the amplitude of flapping angle, A_i is the area of the element and ρ_i is the material density.

To calculate the failure criterion of the composite flapping wing, Tsai-Wu failure theory is adopted [24].

3. Finite Element Setup

3.1 Flapping wing modelling

A conceptual 3D model of the flapping wing is developed using Ansys CAD modeler, shown in figure 1. The semispan of the wing is 320 mm long, and the maximum chord length is 100 mm. The membrane is 1 mm thick, which is supported by 9 vertical and 1 horizontal beam, forming a support beam system connected beneath. Both the width and thickness of each beam are 1 mm. Other important parameters that are mainly used to calculate the force acting on the membrane surface are flapping frequency = 8 Hz, flight velocity = 11 m/s, flapping angle = 45° and the angle of attack = 5°.

Since the biological material of bird wing shows a viscoelastic behavior after mechanical treatment [25], for modeling the membrane, carbon-epoxy is chosen, which are viscoelastic materials that...
exhibit creep and delayed failure [26]. The detailed mechanical properties of carbon-epoxy composite material with failure stress can be found in [27]. The support beam system is assumed to be isotropic since bone can be modeled as isotropic material from the nanoscale level in FEM [28] and a widely used aerospace aluminum alloy (Al-2024-T4) is adopted for beam modeling with linear properties [29].

To investigate the effect of fiber orientation angle on the structural properties of the wing model; namely, failure, maximum stress, and deflection, an 8 ply laminate with various configurations including quasi-isotropic, angle-ply, and cross-ply symmetric layers are considered. The investigated lay-ups are given as follows.

- **Quasi Isotropic Laminates**: \([0^\circ/45^\circ/-45^\circ/90^\circ]_s, [90^\circ/0^\circ/45^\circ/-45^\circ]_s, [0^\circ/90^\circ/45^\circ/-45^\circ]_s\)
- **Cross-ply Laminates**: \([0^\circ/90^\circ]_{2s}\)
- **Angle-ply Laminates**: \([\pm 30^\circ]_{2s}, [\pm 45^\circ]_{2s}, [\pm 60^\circ]_{2s}\)

To examine the effect of membrane thickness and support beams’ width and thickness, a comparison of structural properties is drawn based on the total weight of the flapping wing, Table 1. At first, the membrane thickness is increased gradually, fixing the beam thickness and width, and the total weight of the flapping wing is calculated. Then the membrane thickness is kept constant (1 mm), and support beam width and thickness are increased with the same value in such a way that it matches the total weight of the specific case number.

Case No.	I.	II.	III.	IV.	V.
Beam weight	3.129 g				
Total weight of the wing	56.459 g	62.853 g	67.129 g	72.429 g	83.129 g

To understand the influence of beam orientation on the overall structural performance of the flapping wing, apart from the conceptual one, two other support beam systems are designed; namely, bat-wing type and frame type, Figure 2. The total weight difference among the models is within 1%.

3.2 *Meshing and boundary conditions*

To simulate the real behavior of the flapping wing, the FEM model must be accurate. In general, smoothing the mesh would lead to more accurate results, even though it increases the CPU time. Therefore, a mesh convergence study is always appreciated to find the balance between accuracy and computation time [30].

For the present study, both the membrane and the support beams are modeled as shell elements. Commonly, the beam section is modeled as beam elements or solid elements. However, few predicted
results indicate that modeling the beam with shell elements does not affect the outcome. Therefore, to avoid the solid-shell surface connection in Ansys and to accurately define the bonded contact between membrane and beam section, both are modeled as quadrilateral shell elements, Figure 3 (a). Then a mesh convergence study is performed and the element size is determined as 2 mm, Figure 3 (b).

Figure 3. Mesh information of the flapping wing a) Meshed body with shell elements, b) Mesh convergence study.

Figure 4. Boundary conditions of the flapping wing

A complete flapping cycle is divided into 12 segments, and for each segment, the load is calculated on each element, dividing the wing into 32 elements in total. The flapping wing is modeled as cantilever beam (left most vertical beam is fixed), and the calculated load of each component is applied on the wing surface, shown in Figure 4.

4. Numerical Validation

The validation of the present study is checked by comparing the out of plane displacement results of simply supported composite plates under uniformly distributed load available in the literature [24], Table 2. The results agree quite well with each other.

Laminate Code	Exact Solution Results [24]	Author FE Solution Results [24]	Ansys FE Results
[0°/90°]_T	47.8536 mm	47.9044 mm	47.752 mm
[0°/90°/0°/90°]_T	3.4036 mm	3.429 mm	3.4176 mm
[0°/90°/90°/0°]_T	5.8166 mm	5.842 mm	5.8322 mm
[45°/-45°/45°/-45°]_T	2.75844 mm	2.76098 mm	2.7639 mm
[15°/-15°/15°/-15°]_T	6.3881 mm	6.3881 mm	6.424 mm
[45°/-45°]_T	40.65524 mm	40.6654 mm	40.67 mm
[15°/-15°]_T	66.13906 mm	66.1416 mm	67.979 mm

5. Results of Parametric Studies

5.1 Effect of the fiber orientation angle

Firstly, equivalent von Mises stress results are checked on each layer of investigated composite laminates for the calculated pressure load, and results are plotted only for the layer which exhibits maximum stress during each segment, Figure 5. For all the laminates, the bottom-most layer which is connected with the support beam, shows maximum equivalent stress; except for the laminate code [90°/0°/45°/-45°], while the second bottom most layer exhibits maximum stress during the whole flapping cycle. It is important to note that, despite the variation in lay-up configuration, the stress curve pattern is similar for all the laminae while the peak maximum stress is found for flapping segment III (60°) during the downstroke events. Besides, for this segment, both the laminates [90°/90°/45°/-45°], and [45°/-45°]_2, experience almost 25% higher stress than [0°/45°/-45°/90°], and [30°/-30°]_2 laminates.
The maximum stress investigation does not represent the overall condition of the composite laminates. Therefore, a Tsai-Wu failure theory is adopted to confirm the first ply failure criterion of the membrane, Figure 6. For instance, even though $[\pm 60^\circ]_2s$ laminate shows less stress distribution than $[90^\circ/0^\circ/45^\circ/-45^\circ]$s and $[\pm 45^\circ]_2s$, however, failure is seen on the top and bottom most layers of the laminate, Figure 7. Apart from that, no other laminates were failed; nonetheless, the top and bottom most layers of $[90^\circ/0^\circ/45^\circ/-45^\circ]$s and $[\pm 45^\circ]_2s$ laminates have critical areas that should be taken into account for flapping wing design.

From Figure 8, it is evident that during a flapping cycle, support beam takes more stress than the laminates. The equivalent von Mises stress found on the support beams of $[\pm 60^\circ]_2s$ and $[\pm 45^\circ]_2s$ laminates are showing invalid results since the material model of aluminum alloy is linear and cannot predict accurate results after the yield criterion. Yet, it can describe the discrepancy of stress limits due to the adoption of the differently configured membrane. Similar trends can be observed for the deflection of the flapping wing tip, Figure 9.

Even though the stress distribution, failure index and deflection of $[0^\circ/45^\circ/-45^\circ/90^\circ]$s laminated flapping wing is satisfactory among all the examined models; however, it fails to meet the general requirements of the engineering design, where it exhibits large deflection at the wing tip, exceeding...
10% of the semi span length of the wing. Further analysis are carried out based on this selected configuration.

5.2. Effect of membrane thickness

The effect of increasing the membrane thickness and the support beam thickness and width is illustrated in Table 3 and 4, respectively, for the quasi-isotropic laminate \([0^\circ/45^\circ/-45^\circ/90^\circ]\), and flapping segment III. Some interesting results are observed here. As it can be seen, increasing the ply thickness gradually (keeping the support beam thickness and width constant) would result in less stress distribution on layer I (bottom most layer), VIII (top most layer) and support beam. However, increasing the width and thickness of the support beam would result in better stiffness of the flapping wing.

Case No.	Total deformation	Stress at layer I	Stress at layer VIII	Stress on al. beam
I	66 mm	176.5 MPa	133.5 MPa	225.6 MPa
II	48.03 mm	143.14 MPa	108.21 MPa	171.65 MPa
III	39.5 mm	125.84 MPa	95.08 MPa	145.21 MPa
IV	31.428 mm	108.24 MPa	81.74 MPa	119.5 MPa
V	20.808 mm	82.46 MPa	62.21 MPa	84.418 MPa

Case No.	Total Deformation	Stress at Layer I	Stress at Layer VIII	Stress on Al. Beam
I	66 mm	176.5 MPa	133.5 MPa	225.6 MPa
II	45.83 mm	143.46 MPa	122.13 MPa	223.17 MPa
III	36 mm	126 MPa	117 MPa	203.61 MPa
IV	27.2 mm	108 MPa	116.2 MPa	170 MPa
V	16.6 mm	82.02 MPa	96.66 MPa	123.12 MPa

5.3. Effect of the beam orientation

Support beam plays a vital role in carrying the stress and provides the stiffness of the wing during a flapping cycle. Therefore, support beams are modeled in three different ways without increasing the total weight of the flapping wing, to study the effect of its orientation on the structural properties of the flapping wing, Table 5 (flapping segment III, membrane laminate \([0^\circ/45^\circ/-45^\circ/90^\circ]\)). It can be seen that both the bat-beam model and frame-beam model increase the stiffness of the flapping wing by reducing the wing tip deformation by 16.67% and 25.75%, respectively. However, adoption of the bat-beam model would increase the stress at layer I by 22% and layer VIII by 46%, which would eliminate the preference of using the bat-beam model as support beam system. On the other hand, in comparison with the initial beam model, the frame-beam model reduces the maximum stress at layer I and layer VIII by 35.8% and 17.2%, respectively, and reduces the maximum equivalent stress of the support beam by 7.55%; which makes it a better choice for the design.

Beam Model	Total Deformation	Stress at Layer I	Stress at Layer VIII	Stress on Al. Beam
Initial beam Model	66 mm	176.5 MPa	133.5 MPa	225.6 MPa
Bat-beam Model	55 mm	214.25 MPa	195.9 MPa	245.17 MPa
Frame-beam Model	49.6 mm	113.7 MPa	110 MPa	208.6 MPa
6. Conclusion
Manufacturing a flapping wing air vehicle is challenging due to its tiny structure, accessible material selection, appropriate flight mechanism, and complex aerodynamics model. They are still undergoing crucial developmental stages, where every parameter related to air vehicle modeling is critical. To contribute to the ongoing research, parametric structural modeling is performed on a biomimetic flapping wing made of composite laminate and aluminum alloy support beam, and the following conclusions are derived from the present study.
1. Fiber orientation angle can significantly impact the flapping wing structure from becoming safe to a completely failed one. Among the investigated ply orientation sequences, quasi-isotropic $[0/45/-45/90]$ laminate performs best.
2. Even though the initial flapping wing model, $[0/45/-45/90]$, has passed the failure criterion, however, large tip deflection results may invalidate the model.
3. During a flapping cycle, support beam takes more stress than the membrane of the wing.
4. Increasing the ply thickness would significantly reduce the total deformation and increase the load-carrying capacity of the wing.
5. Increasing the beam thickness and width would consequently increase the stiffness of the model.
6. Support beam structure can play a vital role in combination with the appropriate ply orientation to further improve the overall stiffness and the load-carrying capacity of the wing. Among the three different support beam models, the frame type support beam has exhibited better performance in terms of structural modeling.

In summary, parametric structural modeling has provided an insight into designing the flapping wing and revealed the important parameters to be considered during the primary stages of modeling. In the future, a composite support beam system will be investigated in order to achieve a more reliable flapping wing for micro air vehicles.

References
[1] Croon G, Perçin M, Remes B, Ruijsink R and Wagter C 2016 The DelFly (1st ed. Dordrecht: SPRINGER)
[2] Shreyas J, Devranjan S and Sreenivas K 2011 Aerodynamics of Bird and Insect Flight Journal of the Indian Institute of Science 91 3
[3] Sane S 2003 The aerodynamics of insect flight Journal of Experimental Biology 206 pp 4191-4208
[4] Wang Z 2005 DISSECTING INSECT FLIGHT Annual Review of Fluid Mechanics 37 pp 183-210
[5] Dvořák R 2015 Aerodynamics of bird flight EFM15 - 10th Anniversary International Conference on Experimental Fluid Mechanics 2015 (EDP Sciences)
[6] Chin D and Lentink D 2016 Flapping wing aerodynamics: from insects to vertebrates The Journal of Experimental Biology 219 pp 920-932
[7] Platzer M, Jones K, Young J and Lai J 2008 Flapping Wing Aerodynamics: Progress and Challenges AIAA Journal 46 pp 2136-2149
[8] Hu H, Kumar A, Abate G and Albertani R 2010 An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight Aerospace Science and Technology 14 pp 575-586
[9] Cheng Y and Li D 2020 Numerical Analysis of Piezoelectric Signal of PVDF Membrane Flapping Wing in Flight IOP Conf. Ser.: Mater. Sci. Eng. 774 012090
[10] Prosser D and Crassidis A 2016 Computational Approaches to Design and Analysis of Small-Scale Flapping Wings Journal of Aircraft 53 pp 651-664
[11] Jung H, Choi J, Wang C and Park G 2015 Analysis and Fabrication of Unconventional Flapping Wing Air Vehicles International Journal of Micro Air Vehicles 7 pp 71-88
[12] Phan H, Kang T and Park H 2017 Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control Bioinspiration & Biomimetics 12 036006
[13] Bin Abas M, Bin Mohd Rafie A, Bin Yusoff H and Bin Ahmad K 2016 Flapping wing micro-
aerial-vehicle: Kinematics, membranes, and flapping mechanisms of ornithopter and insect flight. Chinese Journal of Aeronautics 29 pp 1159-1177

[14] Ganguli R, Gorb S, Lehmann F, Mukherjee S and Mukherjee S 2009 An Experimental and Numerical Study of Calliphora Wing Structure Experimental Mechanics 50 pp 1183-1197

[15] Jongerius S and Lentink D 2010 Structural Analysis of a Dragonfly Wing Experimental Mechanics 50 pp 1323-1334

[16] Ren H, Wang X, Chen Y and Li X 2012 Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation Chinese Physics B 21 034501

[17] Lankford J and Chopra I 2016 A Computational and Experimental Study of Insect-Based Flexible Flapping Wing Aerodynamics and Structural Deformation AHS International 72nd Annual Forum & Technology Display - American Helicopter Society (Florida: American Helicopter Society International)

[18] Yu C, Kim D and Zhao Y 2014 Stress Analysis of Membrane Flapping-Wing Aerial Vehicle Based on Different Material Models Journal of Applied Mathematics and Physics 2 pp 1023-1030

[19] Zhang G, Peyada N, Go T and Yu S 2014 Design and investigation of a bio-inspired ventilated flapping wing Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 229 pp 747-763

[20] Truong T, Nguyen Q and Lee H 2017 Bio-Inspired Flexible Flapping Wings with Elastic Deformation Aerospace 4 37

[21] Deng S, Wang J and Liu H 2019 Experimental study of a bio-inspired flapping wing MAV by means of force and PIV measurements Aerospace Science and Technology 94 105382

[22] Tong S, Weiping Z, Jiawang M and Zhaoy C 2019 Research Progress on Control of Bioinspired Flapping-wing Micro Air Vehicles 2019 IEEE International Conference on Unmanned Systems (ICUS) (IEEE)

[23] Yu C, Ang H and Chen Q 2008 Three-dimension unsteady vortex lattice method for flexible structure flapping-wing aerial vehicle Journal of Nanjing University of Aeronautics and Astronautics 40 pp 451-455

[24] Reddy J and Pandey A 1987 A first-ply failure analysis of composite laminates Computers & Structures 25 pp 371-393

[25] Bachmann T, Emmerlich J, Baumgartner W, Schneider J and Wagner H 2012 Flexural stiffness of feather shafts: geometry rules over material properties Journal of Experimental Biology 215 pp 405-415

[26] Dillard D, Morris D and Brinson H 1983 Environmental effects and viscoelastic behavior of laminated graphite/epoxy composites (NASA Technical Report Server pp 445-453)

[27] Singh S and Kumar D 2010 Cutout shape and size effects on response of quasi-isotropic composite laminate under uni-axial compression Structural Engineering and Mechanics 35 pp 335-348

[28] Hambli R 2011 Numerical procedure for multiscale bone adaptation prediction based on neural networks and finite element simulation Finite Elements in Analysis and Design 47 pp 835-842

[29] Yang H, Wang Y, Wang X, Pan P and Jia D 2016 Synergistic effect of environmental media and stress on the fatigue fracture behaviour of aluminium alloys Fatigue & Fracture of Engineering Materials & Structures 39 pp 1309-1316

[30] Valeš J and Kala Z 2017 Mesh convergence study of solid FE model for buckling analysis INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017) (AIP Publishing)

Acknowledgement
The author would like to thank Dr. Yu Chunjin, Professor at Institute of Flight Vehicle Engineering, Nanchang Hangkong University to permit using python code to calculate pressure on the flapping wing. The author is also grateful to China Scholarship Council (CSC) to finance his research in Northwestern Polytechnical University, China (CSC grant No. GXZ023506).