Clinical Validity of Expanded Carrier Screening: Evaluating the Gene-Disease Relationship in more than 200 Conditions

Marie Balzotti
Clinical Genomics Scientist, Myriad Genetics

Presented at ACMG on March 18, 2020
Financial Disclosure

All authors are current or former employees of Myriad Genetics or Baylor Genetics.
Introduction

• The purpose of carrier screening is to determine whether couples are at high risk of having children affected with serious genetic conditions.

• Expanded carrier screening (ECS) is an acceptable testing strategy for pre-pregnancy and prenatal screening.

• Broader guideline support and payer adoption requires evidence of gene-disease association.
Objective

Apply a standardized framework for evaluation of gene-disease association to assess the clinical validity of conditions screened by ECS panels.
Methods

- The Clinical Genome Resource (ClinGen) gene curation framework was used to assess 208 genes and conditions:
 - Twenty-one conditions were previously classified by ClinGen
 - The remaining 187 were evaluated by curation teams at Myriad and Baylor.
- Concordance was evaluated on a subset of conditions.
- Myriad also evaluated nine rare recessive conditions not typically screened for ECS.
Methods
The Gene Curation Process

Gene-disease curation

Curate Genetic Evidence

Curate Experimental Evidence

Curate Contradictory Evidence (if any)

Lab Director Review

ClinGen Expert Panel Review

Manuscript

GenCC

Data available to public

Summarize Evidence and Assign Classification
Methods

Evidence types

Case-Level Data^A	Evidence Type	Case Information	Suggested Points/Case	Points Given	Max Score	
	Autosomal Dominant OR X-Linked Disorder^B	Variant is de novo^C	2	0-3	12	
		Proband with predicted or proven null variant^D	1.5	0-2	10	
		Proband with other variant type with some evidence of gene impact^E	0.5	0-1.5	7	
	Autosomal Recessive	Two variants in trans and at least one de novo^F or a predicted/proven null variant^G	2	0-3	12	
		Two variants (not predicted/proven null) with some evidence of gene impact^H in trans	1	0-1.5	7	
	Segregation Evidence	Evidence of segregation in one or more families	LOD Score Examples	3	0-7	7

Case-Control Study Type^I	Case-Control Quality Criteria^J	Suggested Points/Study	Points Given	Max Score
Single Variant Analysis^K	- Variant Detection Methodology^L	0-6	12	
	- Power^M			
Aggregate Variant Analysis^N	- Bias and Confounding Factors^O	0-6	12	
	- Statistical Significance^P			

Total Allowable Points for Genetic Evidence 12

Evidence Type

Evidence Category	Evidence Type	Suggested Points/Case	Points Given	Max Score
Function	Biochemical Function	0.5	0-2	2
	Protein Interaction	0.5	0-2	2
	Expression	0.5	0-2	2
Functional Alteration	Cells from affected individual	1	0-2	2
	Engineered cells	0.5	0-1	2
Models & Rescue	Animal model	2	0-4	4
	Cell culture model system	1	0-2	4
	Rescue in animal model	2	0-4	4
	Rescue in engineered equivalent	1	0-2	4

Total Allowable Points for Experimental Evidence 6

Strande et. al., AJHG 100(6), 895-906 (2017)
Methods

Evidence types

Evidence Type	Case Information	Suggested Points/Case	Points Given	Max Score		
Autosomal Dominant OR X-Linked Disorder^A	Variant is *de novo*^C	2	0-3	12		
	Proband with predicted or proven null variant^A	1.5	0-2	10		
	Proband with other variant type with some evidence of gene impact^A	0.5	0-1.5	7		
Autosomal Recessive	Two variants in *trans* and at least one *de novo*^D or a predicted/proven null variant^D	2	0-3	12		
	Two variants (not predicted/proven null) with some evidence of gene impact^E in *trans*	1	0-1.5			
Segregation^F Evidence	Evidence of segregation in one or more families	LOD Score Examples	3 2 1.5 1	5 4 3 1.5	0.7	7
Case-Control Study Type^H	Case-Control Quality Criteria^I	Suggested Points/Study	Points Given	Max Score		
Single Variant Analysis^{Ab}	Variant Detection Methodology^a	0-6		12		
	Power^b					
Aggregate Variant Analysis^{Ab}	Bias and Confounding Factors^c	0-6				
	Statistical Significance^g					

TOTAL ALLOWABLE POINTS for Genetic Evidence 12

Evidence Category	Evidence Type	Suggested Points	Points Given	Max Score
Function	Biochemical Function	0.5	0-2	2
	Protein Interaction			
	Expression		0-2	
Functional Alteration	Cells from affected individual	1	0-2	2
	Engineered cells	0.5	0-1	
	Animal model	2	0-4	
	Cell culture model system	1	0-2	
	Rescue in animal model	2	0-4	
	Rescue in engineered equivalent	1	0-2	

Total Allowable Points for Experimental Evidence 6

Strande et. al., AJHG 100(6), 895-906 (2017)
Methods

Evidence types

Case-Level Data^a	Evidence Type	Case Information	Suggested Points/Case	Points Given	Max Score
Autosomal Dominant OR X-Linked Disorder^b	Variant Evidence	Variant is de novo^c	2	0-3	12
Autosomal Recessive	Proband with predicted or proven null variant^d	1.5	0-2	10	
	Proband with other variant type with some evidence of gene impact^e	0.5	0-1.5	7	
Segregation Evidence^f	Two variants in trans and at least one de novo^g or a predicted/proven null variant^h	2	0-3	12	
	Two variants (not predicted/proven null) with some evidence of gene impactⁱ in trans	1	0-1.5	7	
Case-Control Study Type^h	Evidence of segregation in one or more families	LOD Score Examples	3	5	0.7
	2	4			
	1.5	3			
	1	1.5			

Evidence Category

Evidence Type	Suggested Points/Case	Points Given	Max Score	
Function	Biochemical Function	0.5	0-2	2
	Protein Interaction	0.5	0-2	
	Expression	0.5	0-1	
Functional Alteration	Cells from affected individual	1	0-2	2
Models & Rescue	Engineered cells	0.5	0-1	
	Animal model	2	0-4	
	Cell culture model system	1	0-2	
	Rescue in animal model	2	0-4	
	Rescue in engineered equivalent	1	0-2	

Case-Control Data

Case-Control Quality Criteriaⁱ	Suggested Points/Study	Points Given	Max Score
Single Variant Analysis^{ja}	Variant Detection Methodology^{ja}	0-6	12
Aggregate Variant Analysis^{jb}	Power^{jb}	0-6	12
	Bias and Confounding Factors^{jc}		
	Statistical Significance^{jd}		

TOTAL ALLOWABLE POINTS for Genetic Evidence 12

Strande et. al., AJHG 100(6), 895-906 (2017)
Methods

Evidence types

Evidence Type	Case Information	Suggested Points/Case	Points Given	Max Score
Autosomal Dominant OR X-Linked Disorder	Variant is de novo^a	2	0-3	12
	Proband with predicted or proven null variant^b	1.5	0-2	10
	Proband with other variant type with some evidence of gene impact^c	0.5	0-1.5	7
Autosomal Recessive	Two variants in trans and at least one de novo^d or a predicted/proven null variant^e	2	0-3	12
	Two variants (not predicted/proven null) with some evidence of gene impact^f in trans	1	0-1.5	7
Segregation Evidence	Evidence of segregation in one or more families	LOD Score Examples		
		3	5	
		2	4	
		1.5	3	
		1	1.5	
	Evidence of segregation in one or more families	0.7		
		LOD Score Examples		
		3	5	
		2	4	
		1.5	3	
		1	1.5	

Evidence Category

Evidence Type	Suggested Points	Points Given	Max Score
Function	0.5	0-2	2
Protein Interaction	0.5	0-2	2
Expression	0.5	0-2	2
Cells from affected individual	1	0-2	2
Engineered cells	0.5	0-1	2
Animal model	2	0-4	4
Cell culture model system	1	0-2	2
Rescue in animal model	2	0-4	4
Rescue in engineered equivalent	1	0-2	2

Case-Control Data

Case-Control Study Type	Case-Control Quality Criteria	Suggested Points/Study	Points Given	Max Score
Single Variant Analysis	• Variant Detection Methodology^a	0-6		12
	• Power^b			
Aggregate Variant Analysis	• Bias and Confounding Factors^c	0-6		
	• Statistical Significance^d			

TOTAL ALLOWABLE POINTS for Genetic Evidence: 12

Strande et. al., AJHG 100(6), 895-906 (2017)
Methods

Evidence types

Evidence Type	Case Information	Suggested Points/Case	Points Given	Max Score
Autosomal Dominant OR X-Linked Disorder	Variant is de novo^C	2	0-3	12
	Proband with predicted or proven null variant^D	1.5	0-2	10
	Proband with other variant type with some evidence of gene impact^F	0.5	0-1.5	7
Autosomal Recessive	Two variants in trans and at least one de novo^G or a predicted/proven null variant^H	2	0-3	12
	Two variants (not predicted/proven null) with some evidence of gene impact^I in trans	1	0-1.5	7
Segregation Evidence	Evidence of segregation in one or more families LOD Score Examples	3	5	0-7
Case-Control Study Type	Case-Control Quality Criteria^J	Suggested Points/Study	Points Given	Max Score
Single Variant Analysis^K	- Variant Detection Methodology^L	0-6		12
	- Power^M			
Aggregate Variant Analysis^L	- Bias and Confounding Factors^L	0-8		
	- Statistical Significance^L			

Total Allowable Points for Genetic Evidence: 12

Strande et. al., AJHG 100(6), 895-906 (2017)
Methods

Clinical Validity Classifications

- Definitive
- Strong
- Moderate
- Limited
- No reported evidence
- Disputed
- Refuted

Supportive evidence

Assertion criteria	Genetic Evidence (0-12 points)	Experimental Evidence (0-6 points)	Total Points (0-18)	Replication Over Time (Y/N)
Description	Case-level, family segregation, or case-control data that support the gene-disease association	Gene-level experimental evidence that support the gene-disease association	Sum of Genetic & Experimental Evidence	> 2 publications with convincing evidence over time (>3 yrs)
Assigned Points				

CALCULATED CLASSIFICATION

- LIMITED 1-6
- MODERATE 7-11
- STRONG 12-18
- DEFINITIVE 12-18 & Replicated Over Time

List references and describe evidence:

CURATOR CLASSIFICATION

FINAL CLASSIFICATION

Strande et. al., AJHG 100(6), 895-906 (2017)
An Example:

NEB – Nemaline myopathy

Evidence Type	Case Information	Suggested Default	Range	Points Given	Max Score	PMIDs/Notes
Autosomal dominant disease, OR X-linked disease, affected males	Variant is de novo	2	0-3	0	12	12
Proband with predicted or proven null variant	1.5	0-2	0	10	10	
proband with other variant type with some evidence of gene impact	0.5	0-1.5	0	7	7	

Autosomal recessive disease, OR X-linked disease, affected females | Two variants in trans, at least one is LOF or de novo | 2 | 0-3 | 0 | 12 | 12
| Two non-LOF variants in trans | 1 | 0-1.5 | 0 | 7 | 7

Segregation Evidence

Total LOD Score	Candidate Gene Sequencing	Exon/Gene name or all genes sequenced in linkage region	Total Cases	Points Given	Max Score
2-2.99	0.5	1	0-3	0	3
3-4.99	1	2	0-3	0	3

Total Genetic Evidence Points (Maximum 12): 12

Case-Control Study Type	Case-Control Quality Criteria	Suggested points/study	Points Given	Max Score
Single Variant Analysis	Variant Detection Methodology	0-6	0	12
Power				
Aggregate Variant Analysis	Bias and Confounding Factors	0-6	0	12
Statistical Significance				

Total Genetic Evidence Points (Maximum 12): 12

Experimental Evidence Summary

Evidence Category	Evidence Type	Suggested Default	Range	Points Given	Max Score	PMIDs/Notes
Function	Biochemical Function	0.5	0-2	0	2	25110572, 15206903, 22941678, 19944167
Protein Interaction	0.5	0-2	0.5	2		
Expression	0.5	0-2	1	2		
Functional Alteration	Patient Cells	1	0-2	1	2	22159874, 27215641, 16802413
Non-Patient Cells	0.5	0-1	0	2		
Models	Non-human model organism	2	0-4	5	6	
Cell culture model	1	0-2	0	2		
Rescue	Rescue in human	2	0-4	0	4	
Rescue in non-human model organism	2	0-4	0	4		
Rescue in cell culture model	1	0-2	0	2		
Rescue in Patient Cells	1	0-2	0	2		

Total Experimental Evidence Points (Maximum 6): 6

Strande et. al., AJHG 100(6), 895-906 (2017)
Summary Matrix
Assertion Criteria
Description
Assigned Points
Calculated Classification
Valid Contradictory Evidence (Y/N)
Calculated Curator Classification:
Comments:
LD Classification:
Final Expert Classification:
Assertion Criteria

Description
Assigned Points
Calculated Classification
Valid Contradictory Evidence (Y/N)
Calculated Curator Classification:
Comments:
LD Classification:
Final Expert Classification:

Strande et. al., AJHG 100(6), 895-906 (2017)
Results

- All 208 evaluated conditions met the evidence threshold for supporting a gene-disease association.
- 203 of 208 (98%) achieved the strongest ('Definitive') level of gene-disease association.
- Rare conditions predominantly showed 'Moderate' evidence.

	Definitive	Strong	Moderate	Limited	No Evidence	Disputed	Refuted	Total
ECS Panel	203	0	4	1	0	0	0	208
Rare Conditions	1	2	4	2	0	0	0	9
Results

• Conditions evaluated by both commercial laboratories were similarly classified.
Results

- Conditions evaluated by both commercial laboratories were similarly classified.
Results

- Conditions evaluated by both commercial laboratories were similarly classified.
Results

Genetic evidence
- 2 non-LOF variants in *trans* or de novo variant
- 2 variants in *trans*; ≥1 LOF or de novo
- case-control data
- proband w/ variant

Experimental evidence
- Functional data
- Functional alteration
- Models & Rescue

Gene	X-linked Severe Combined Immunodeficiency	Hb Beta Chain-Related Hemoglobinopathy	Familial Mediterranean Fever	Joubert Syndrome 2
IL2RG	LIMITED	MODERATE	STRONG / DEFINITIVE	
HBB	LIMITED	MODERATE	STRONG / DEFINITIVE	
MEFV	LIMITED	MODERATE	STRONG / DEFINITIVE	
TMEM216	LIMITED	MODERATE	STRONG / DEFINITIVE	

of ECS gene-disease pairs vs Evidence points
Results

‘Limited’ Gene-disease associations

HYLS1 – hydrolethalus syndrome (HLS)

- Borderline between 'Moderate' and 'Limited'
- Conservatively downgraded to 'Limited'
Conclusions

• Strong evidence shown for gene-disease association on two ECS panels.

• Established disease-level clinical validity of these panels.

• Clinical validity of gene-disease association is just one of many factors that influence the selection of conditions included on ECS panels.

• All classifications have been submitted to ClinGen for public availability.
Acknowledgements

- Krista Moyer
- Katie Johansen Taber
- Dale Muzzey
- Jenny Goldstein
- Becca Mar-Heyming
- Bethany Buckley
- Linyan Meng
- Jim Goldberg
- Anna Gardiner
- Myriad and Baylor Curation Teams
References

- Strande, N. T., Riggs, E. R., Buchanan, A. H., Ceyhan-Birsoy, O., DiStefano, M., Dwight, S. S., . . . Berg, J. S. (2017). Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. Am J Hum Genet, 100(6), 895-906. doi:10.1016/j.ajhg.2017.04.015

- The Clinical Genome Resource Gene Curation Working Group. (2017). Gene Clinical Validity Curation Process Standard Operating Procedure, Version 5. Retrieved from https://www.clinicalgenome.org/site/assets/files/2169/gene_curation_sop_2016_version_5_11_6_17.pdf

- The Clinical Genome Resource. Gene Validity Curations. Retrieved from https://www.clinicalgenome.org/site/assets/files/2169/gene_curation_sop_2016_version_5_11_6_17.pdf

- Bean, L. J. H., Funke, B., Carlston, C. M., Gannon, J. L., Kantarci, S., Krock, B. L., . . . Bayrak-Toydemir, P. (n.d.). Diagnostic gene sequencing panels: from design to report - a technical standard of the American College of Medical Genetics and Genomics (ACMG). GENETICS in MEDICINE. https://doi.org/10.1038/s41436-019

- McGlaughon, J. L., Goldstein, J. L., Thaxton, C., Hemphill, S. E., & Berg, J. S. (2018). The progression of the ClinGen gene clinical validity classification over time. Hum Mutat, 39(11), 1494-1504. doi:10.1002/humu.23604