Probing the Dynamic Distribution of Bound States for Methylcytosine-binding Domains on DNA*

Received for publication, August 21, 2013, and in revised form, November 22, 2013 Published, JBC Papers in Press, December 4, 2013 DOI 10.1074/jbc.M113.512236

Jason M. Cramer1, J. Neel Scarsdale5, Ninad M. Walavalkar5, William A. Buchwald5, Gordon D. Ginder2, and David C. Williams, Jr.1

From the 1Department of Biochemistry and Molecular Biology, the 5Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

Background: Although highly homologous to MBD2, the functional role of MBD3 remains in question. Results: MBD3 preferentially localizes to methylated and, to a lesser degree, unmethylated CpG dinucleotides. Conclusion: Dynamic distribution between methylated and unmethylated sites modifies the genomic localization of MBD3. Significance: Changes in the dynamic distribution on DNA dictate functional differences between MBD proteins.

Although highly homologous to other methylcytosine-binding domain (MBD) proteins, MBD3 does not selectively bind methylated DNA, and thus the functional role of MBD3 remains in question. To explore the structural basis of its binding properties and potential function, we characterized the solution structure and binding distribution of the MBD3 MBD on hydroxymethylated, methylated, and unmethylated DNA. The overall fold of this domain is very similar to other MBDs, yet a key loop involved in DNA binding is more disordered than previously observed. Specific recognition of methylated DNA constrains the structure of this loop and results in large chemical shift changes in NMR spectra. Based on these spectral changes, we show that MBD3 preferentially localizes to methylated and, to a lesser degree, unmethylated cytosine-guanosine dinucleotides (CpGs), yet does not distinguish between hydroxymethylated and unmethylated sites. Measuring residual dipolar couplings for the bound states clearly shows that the MBD3 structure does not change between methylation-specific and nonspecific binding modes. Furthermore, residual dipolar couplings measured for MBD3 bound to methylated DNA can be described by a linear combination of those for the methylation and nonspecific binding modes, confirming the preferential localization to methylated sites. The highly homologous MBD2 protein shows similar but much stronger localization to methylated as well as unmethylated CpGs. Together, these data establish the structural basis for the relative distribution of MBD2 and MBD3 on genomic DNA and their observed occupancy at active and inactive CpG-rich promoters.

The mammalian methylcytosine-binding domain proteins (MeCP2 and MBD1–4) selectively bind symmetrically methylated CpGs through a common methylcytosine-binding domain (MBD)1 and likely arose from a gene duplication event of a single common ancestral protein (MBD2/3)2. The preference of MBD2 for methylated DNA has been retained in both invertebrates and vertebrates; (3); however, the highly homologous MBD3 shows little to no preference for methylated DNA as a result of key differences in amino acids critical for DNA contact within the MBD (4, 5). Both proteins recruit a nucleosome remodeling and deacetylase (NuRD) complex (6) but in a mutually exclusive manner (7). The MBD2-NuRD complex has been specifically shown to promote methylation-dependent gene silencing and represents a potential therapeutic target for gene reactivation (6, 8–13), whereas the function of the MBD3-NuRD complex has not been clearly delineated.

A recent study showed that MBD3 co-localizes with Tet1 and suggested preferential binding to hydroxymethylated CpGs (hmCpG) (14). Subsequent experiments, however, failed to show a binding affinity preference for hmCpG (15) but instead found that both MBD2 and MBD3 preferentially localize to transcriptional start sites with CGIs (16, 17). MBD2 predominates at methylated CGIs, and the associated genes show reduced expression, whereas MBD3 appears to favor transcriptional start sites with unmethylated CGIs and is enriched at active promoters (16).

To help elucidate the structural differences between MBD2 and MBD3 and evaluate the recently proposed hydroxymethylation selectivity (14), we determined the structure of MBD3 and MBD2 on genomic DNA and their observed occupancy at active and inactive CpG-rich promoters.

The abbreviations used are: MBD, methylcytosine-binding domain; CpG, cytosine-guanosine dinucleotides; hmCpG, hydroxymethylated CpG; CGI, CpG island; RDC, residual dipolar coupling; NuRD, nucleosome remodeling and deacetylase complex; RMSD, root mean square deviation; HSQC, heteronuclear single quantum coherence.

*This work was supported, in whole or in part, by National Institutes of Health Grants R01 GM098624 (to D. C. W.) and R01 DK029902 (to G. D. G.). NMR data were acquired using NMR Instrumentation in the Virginia Commonwealth University Massey Cancer Center Structural Biology Core, and surface plasmon resonance data were acquired in the Virginia Commonwealth University Massey Cancer Center Flow Cytometry Core, both of which are supported, in part, by NCI Cancer Center Core Support Grant P30 CA016059.

The atomic coordinates and structure factors (code 2mb7) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1 To whom correspondence should be addressed: Dept. of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599. Tel: 919-843-9949; Fax: 919-966-6718; E-mail: david_willjr@med.unc.edu.

2 © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
bound to DNA containing a single hmCpG dinucleotide. We observed that MBD3 adopts a structure very similar to that of MBD2. A critical loop connecting two anti-parallel β strands is less well defined in MBD3, but otherwise the two structures are nearly identical. Furthermore, we show that MBD3 does not specifically recognize hmCpG, but chemical shift analysis indicates that MBD3 binds differently to mCpG and spends a significant proportion of time on methylated sites. Occupancy depends on the number of unmethylated sites available, and MBD3 demonstrates chemical shift averaging indicative of fast exchange between the methylated and nonspecific binding modes. Residual dipolar coupling (RDC) analysis confirms our findings by showing that MBD3 preferentially localizes to mCpG sites and that MBD3 adopts a very similar structure on mCpG, CpG, and hmCpG DNA. As expected, MBD2 shows a strong preference for mCpG sites, exclusively localizing to the mCpG dinucleotide. We also find that MBD2 localization is influenced by unmethylated CpG density and that MBD2 shows an unanticipated additional weak localization to hmCpG.

Taken together, this information leads to a model in which the methylation specificity and occupancy of an MBD can be titrated by single amino acid substitutions. Importantly, the tendency to localize on a specific site does not necessarily translate into a global binding affinity preference. These data are consistent with recent studies showing that both MBD2 and MBD3 localize to transcription start sites associated with CGIs (16, 17). The ability to condense chromatin and silence transcription at or near methylated CGIs reflects MBD2 high affinity and stable occupancy of mCpG sites. Hence, we propose that MBD3 evolved, at least in part, to counterbalance MBD2 on unmethylated CGIs. The presence of MBD3 at unmethylated CGIs could modify the distribution of MBD2 and potentially mitigate strong silencing by the high affinity, more strongly specific MBD2 protein, thereby preserving bivalency with respect to transcription.

EXPERIMENTAL PROCEDURES

Purification of Proteins and DNA—The methylcytosine-binding domain of MBD3 (amino acids 1–70) was cloned, expressed, and purified as described previously for cMBD2 (18). 17- and 27-bp complementary oligonucleotides (Table 1) were purchased (Integrated DNA Technologies), annealed, and purified as described previously (18). The sequences were derived from the p16INK4a promoter known to be a native target sequence for MBD2 (5).

TABLE 1

DNA sequences	Length	Sequence
mCpG 17		GAGGCCGCT(mC)GGCGGCAG
hmCpG 17		GAGGCCGCT(hmC)GGCGGCAG
CpG(×3) 17		GAGGCCCTGGCGGCAG
CpG(×1) 17		GAGGCCCTGGCGGCAG
CpG(×2) 17		GAGGCCCTGGCGGCAG
mCpG27	27	GAGCTACTGGCGCT(mC)GGCGGCAG
mCpG10	10	GAGGCGCT(mC)GGCGGCAG

NMR Spectroscopy—Purified protein was combined with 10% excess purified dsDNA and buffer exchanged into 10 mM NaPO₄, pH 6.5, 1 mM dithiothreitol, 10% ²H₂O, and 0.02% sodium azide and concentrated to 0.2–1 mM. NMR spectra from standard experiments for resonance assignments, distance, and torsional angle restraints were collected on a Bruker Avance III 700-MHz instrument. The data were processed using NMRpipe (19) and analyzed with CcpNmr (20). Residual dipolar couplings were measured for complexes containing ²H, ¹³C, ¹⁵N-labeled protein using standard in-phase/anti-phase experiments and samples aligned by adding ~12 mg/ml pf1 bacteriophage (Asla Biotech, Ltd.). For each aligned sample, a one-dimensional ²H spectrum of ²H₂O was collected, and the deuterium quadrupole splitting was measured. When comparing RDC values between samples, the observed RDC values were normalized to an effective deuterium quadrupole splitting of 10 Hz.

Structure Calculations—The structure of the MBD3 MBD was calculated by simulated annealing as implemented in the Xplor-NIH software package (21) and based on NOE-derived distance constraints, torsion angle restraints, and residual dipolar couplings, as well as a torsion angle database potential of mean force (22) and a quartic van der Waals repulsion term for nonbonded contacts (23). Backbone torsional angle restraints were derived from chemical shifts using the TALOS+ software (24), and hydrogen bond distance and angle restraints were introduced based on backbone torsional angles and characteristic NOE patterns.

Binding Affinity—Binding affinities were determined by surface plasmon resonance analysis on a Biacore T100 system (GE Healthcare) as described previously (18). The binding affinity was determined from steady state analysis of the SPR relative response at varying concentrations of protein. As previously shown, the maximum steady state response (Rmax) in SPR depends on stoichiometry (n) of binding (25). Prior to fitting, the steady state response at each protein concentration (R) was normalized (Rnorm) to the total DNA immobilized (Rl) and molecular weights of the DNA and protein (MWl and MWA, respectively).

\[
R_{\text{norm}} = \frac{R}{R_l \left(\frac{MW_A}{MW_l} \right)} \quad \text{(Eq. 1)}
\]

Final data analysis, plotting, and curve fitting were performed with pro Fit software (QuantumSoft).

RESULTS

Solution Structure of the MBD3 MBD Is Nearly Identical to That of MBD2—We determined the solution structure of the MBD from MBD3 (amino acids 1–70) bound to a 17-bp dsDNA with a central hydroxymethylated CpG dinucleotide. The structure was calculated based on 528 NOE-derived distance constraints, 120 dihedral angle restraints, and 53 residual dipolar coupling restraints (Table 2). The overall protein structure is well defined (Fig. 1, A and B) with average pairwise root mean square deviations (RMSD) of 0.7 ± 0.1 Å (backbone) and 1.2 ± 0.1 Å (all heavy atoms) for ordered regions (residues 6–23 and
TABLE 2
NMR and refinement statistics
The number and type of structural constraints as well as the final refinement statistics are presented for the solution structure of MBD3 bound to hydroxymethylated DNA.

Protein	NMR distance and dihedral constraints	Structure statistics
	Distance constraints	Structure statistics
	Total NOE	Violations (mean and S.D.)
	Intraregion	Distance constraints (Å)
	Inter-residue	Dihedral angle constraints (°)
	Sequential (i–j = 1)	Maximum dihedral angle violation (°)
	Medium range (i–j = 3)	Maximum distance constraint violation (Å)
	Long range (i–j > 5)	Deviations from idealized geometry (mean and S.D.)
	Hydrogen bonds	Bond lengths (Å)
	Total dihedral angle restraints	Bond angles (°)
		Improper (°)
		Average pairwise RMSD (Å)*
	φ	Heavy
	ψ	Backbone
	χ1	Ramachandran plot summary for ordered regions
	χ2	Most favored regions
		Additionally allowed regions
		Generously allowed regions
		Disallowed regions

* Pairwise RMSD and S.D. from the mean was calculated among 20 (of 50) lowest energy refined structures for ordered residues (residues 6–23 and 34–71).

As expected, the fold is very similar to that of chicken MBD2 (cMBD2; RMSD = 2.0 ± 0.1 Å) for the same ordered regions (Fig. 1D) (18).

As with all MBD proteins studied to date, the topology of the MBD comprises a four-stranded β-sheet followed by a single α-helix and a C-terminal loop. The central two strands of the β-sheet (β2 and β3) form a long finger-like projection that can extend down and across the major groove of DNA to make base specific contacts. The most notable difference between the cMBD2 and MBD3 structures is that the loop connecting the long fingerlike projection is not as well ordered in MBD3 (residues 24–33; Fig. 1, A and C) with an RMSD of 1.7 ± 0.5 Å (backbone) as compared with cMBD2 with an RMSD of 0.9 ± 0.3 Å. Residues at the base of this loop form critical DNA specific contacts and a hydrogen bond network that stabilizes the interaction with the methylated CpG dinucleotide (Fig. 1E).

Predicting backbone order parameters (S²) based on chemical shifts using the random coil index method (24, 26) confirms that this loop is less well ordered in MBD3 (Fig. 2). The difference in predicted S² between complexes shows that residues 24–33 become progressively more ordered between the MBD3-hmCpG, MBD3-mCpG, and cMBD2-mCpG complexes, respectively. Thus in the absence of a methylation-specific binding mode, the loop connecting the central two β-strands is more flexible.

Filtered intermolecular NOE spectra did not contain NOE cross-peaks, which is consistent with the observed line broadening for residues at the DNA interface and the overall lower affinity of MBD3 for DNA and suggests nonspecific protein-DNA interaction with dynamic exchange between binding sites. Based on subsequent analyses that indicate MBD3 preferentially localizes to methylated sites, we collected filtered NOE spectra for MBD3 bound to methylated DNA (mCpG). Like-
Methyl-specific binding mode stabilizes a dynamic loop in MBD3. A, ribbon diagram of the MBD3 solution structure is shown and colored based on order parameters predicted from chemical shift index (SI; shading from blue to red reflects low to high). B, the predicted order parameters (SI) are plotted for the MBD3-hmCpG (black), MBD3-mCpG (blue dotted), and cMBD2-mCpG (red) complexes. C, bar plots are shown for the difference in order parameters (ΔSI) between the cMBD2-mCpG complex and MBD3-mCpG (black) and MBD3-hmCpG (gray) complexes. The loop connecting β2 and β3 (residues 24–33) is highlighted in light yellow in B and C.

wise, we did not detect any intermolecular NOE cross-peaks with methylated DNA, indicating that MBD3 exchanges among different binding modes whether on methylated or hydroxymethylated DNA. Given the absence of informative intermolecular NOEs, we did not determine a solution structure of the protein-DNA complex. Importantly, we noted that chemical shifts of MBD3 bound to hmCpG (discussed in detail below) are more similar to MBD3 on unmethylated DNA than methylated DNA, which led us to compare spectra of MBD3 on different DNA molecules to probe both methylation-specific and nonsequence-specific interaction with DNA. Furthermore, the chemical shift changes are consistent with preferential localization at the CpG and mCpG sites.

Using cMBD2 as representative of the methylation-specific binding mode could introduce structural and primary sequence differences that affect observed chemical shifts. Therefore we sought to generate an MBD3 MBD that binds with high selectivity for mCpG, which would allow us to evaluate chemical shift changes for more backbone resonances with fewer confounding sequence variations. Previous studies have established that the lack of mCpG specificity for MBD3 reflects two amino acids (His30 and Phe34) that differ from other MBD proteins (Lys32 and Tyr36 in cMBD2) (4, 5). We introduced the H30K,F34Y double mutation into MBD3 (MBD3KY), and as predicted, the chemical shifts of these reporter resonances fall at the same fractional distance between the extrema represented by cMBD2-mCpG and MBD3-CpG (Fig. 3B), shifting toward the position in the cMBD2-mCpG complex as the number of unmethylated CpG sites increases and with the addition of a methylated CpG. These observations strongly indicate chemical shift averaging between two binding modes (28) reflective of fast exchange between methylation-specific and nonsequence specific interaction with DNA. Furthermore, the chemical shift changes are consistent with preferential localization at the CpG and mCpG sites.

The Dynamic Distribution of MBD3 on DNA

show the same chemical shifts for MBD3-hmCpG (Fig. 3B). In particular, the ^{1}H of Arg24, which forms a side chain hydrogen bond with Asp32, is shifted farther downfield (9.5 ppm) in cMBD2-mCpG, is only shifted to 7.5 ppm in MBD3. Likewise, Gly27 is shifted upfield in ^{15}N to 102 ppm in cMBD2-mCpG, but not to the same degree in MBD3-hmCpG (105 ppm), and finally Ala30 is shifted upfield in ^{1}H to 6.8 ppm in cMBD2-mCpG but only 7.6 ppm in MBD3-hmCpG.

We hypothesized that these large chemical shift changes reflect a difference between methylation-specific and nonsequence-specific binding modes. Arg24 and Asp32 are positioned at the N and C termini of the poorly structured loop in MBD3, whereas Ala30 and Gly27 also fall within this same loop. Methylation-specific binding stabilizes the Arg24–Asp32 H-bond and the loop containing Gly27 and Ala30. To test this hypothesis, we compared HSQC spectra for MBD3 bound to a DNA sequence with three CpG dinucleotides in which the central CpG is methylated (mCpG), hydroxymethylated (hmCpG), or unmethylated (CpG), as well as similar DNA sequences with only one (CpG) or no CpGs (CpG(×0)) (Table 1). We found that the chemical shifts of these reporter resonances fall on a line between extrema represented by the cMBD2-mCpG and MBD3-CpG(×0). Importantly, the peak position for each of the reporter resonances falls at the same fractional distance between these extrema (Fig. 3B), shifting toward the position in the cMBD2-mCpG complex as the number of unmethylated CpG sites increases and with the addition of a methylated CpG.

Using cMBD2 as representative of the methylation-specific binding mode could introduce structural and primary sequence differences that affect observed chemical shifts. Therefore we sought to generate an MBD3 MBD that binds with high selectivity for mCpG, which would allow us to evaluate chemical shift changes for more backbone resonances with fewer confounding sequence variations. Previous studies have established that the lack of mCpG specificity for MBD3 reflects two amino acids (His30 and Phe34) that differ from other MBD proteins (Lys32 and Tyr36 in cMBD2) (4, 5). We introduced the H30K,F34Y double mutation into MBD3 (MBD3KY), and as expected, this mutant bound with higher affinity and selectivity for mCpG comparable to cMBD2 (Fig. 7 and Table 3). Each of the reporter resonances now show chemical shifts that are very similar to those of the cMBD2-mCpG complex, confirming that the unique chemical shifts do reflect a methylation-specific binding mode.

To further explore the chemical shift changes associated with the different binding modes, we assigned the backbone resonances ($^{15}N,^{1}H$) for MBD3 bound to mCpG or CpG(×3) and MBD3KY bound to mCpG. In Fig. 3A, the chemical shift distances are plotted for backbone resonances between the different complexes. The largest chemical shift changes are seen for the poorly structured loop (residues 24–33) when comparing the MBD3KY–mCpG and MBD3–mCpG complexes with the MBD3–hmCpG complex. In contrast, the ^{15}N HSQC spectra...
for the MBD3-hmCpG and MBD3-CpG(3) complexes show nearly identical chemical shifts and spectra (Fig. 4A).

These observations strongly support a binding model in which MBD3 exhibits fast exchange between methylation-specific and nonspecific binding. Thus the observed chemical shift \(\sigma_{\text{obs}} \) reflects a weighted average of the methylation-specific \(\sigma_{\text{MBD3(KY)-mCpG}} \) and nonspecific \(\sigma_{\text{MBD3-CpG(3)}} \) binding modes, as given by Equation 2,

\[
\sigma_{\text{obs}} = \rho_m \cdot \sigma_{\text{MBD3-KY-mCpG}} + (1 - \rho_m) \cdot \sigma_{\text{MBD3-CpG(3)}} \quad \text{(Eq. 2)}
\]

where \(\rho_m \) is the fraction in the methylation-specific binding mode. Hence, these chemical shifts are direct measures of the average time spent on the mCpG site. Using 11 backbone \(^1H, ^15N \) resonances that show a clear linear relationship between chemical shift and DNA bound, we find that MBD3 spends \(43\% \) (±5\%) of the time on the mCpG site (Fig. 3B).

These data further indicate that, despite a lack of a strong global binding affinity preference for mCpG DNA, MBD3 still spends a significant proportion of time on methylated sites. To confirm that this finding was not the result of very weak binding with chemical shift averaging between DNA bound and free MBD3, we compared HSQCs for 600 and 300 \(M \) samples of protein on DNA. The peaks for each reporter residue show nearly identical chemical shifts at both concentrations (Fig. 5B), indicating that the observed chemical shift changes of the reporter residues were not the result of exchange between bound and free states but instead represent averaging between different bound states. The observed differences in chemical shift represent changes in the binding distribution on DNA, not changes in the distribution between bound and free states.

We developed a statistical-mechanical model to describe the distribution of MBD3 on methylated DNA (Fig. 3C) in which the partition function comprises a sum of Boltzmann factors \(e^{-\Delta E/kT} \) for methylation-specific and nonspecific binding modes, \(\Delta E \) is the difference in energy between binding modes, and \(N \) is the number of nonspecific sites. The additional methylation-specific interactions formed by MBD2 lead to a larger

\[Q = \sum_i e^{-\Delta E_i/kT} \]
Because the observed residual dipolar couplings reflect a population of MBD3-hmCpG (ated complex against those from wild type MBD3 or MBD3KY results in chemical shift changes for Gly27 and Ala30 toward the mCpG (Fig. 3).

Residual Dipolar Couplings Confirm MBD3 Localizes to Methylated Sites without Significant Conformational Change—As an alternative method to assess the ensemble of binding modes, we measured residual dipolar couplings (\(1D_{\text{NH}}\)) for MBD3 bound to methylated and unmethylated DNA as well as for MBD3KY bound to methylated DNA. As can be seen in Fig. 5, the observed \(1D_{\text{NH}}\) are similar but not identical between the different complexes. When plotting \(1D_{\text{NH}}\) from the unmethylated complex against those from wild type MBD3 or MBD3KY methylated complexes, the data fall off of the line of identity (\(y = x\)), as highlighted by the red dotted ovals in Fig. 5 (A and B). Because the observed residual dipolar couplings reflect a weighted average of the different binding modes (29), the \(1D_{\text{NH}}\) for each residue (n) of MBD3 bound to mCpG is a linear combination of \(1D_{\text{NH}}\) for MBD3 bound to CpG(\(\times 3\)) (nonspecific binding mode) and \(1D_{\text{NH}}\) for MBD3KY bound to mCpG (methylation-specific binding mode).

\[
1D_{\text{NH,MBD3-mCpG}}(n) = \rho_m \cdot 1D_{\text{NH,MBD3-CpG}}(n) + (1 - \rho_m) \cdot 1D_{\text{NH,MBD3-KY-mCpG}}(n) \quad (\text{Eq. 3})
\]

In Equation 3, \(\rho_m\) is the fraction in the mCpG specific binding mode and \(1D_{\text{NH}}(n)\) are the residual dipolar couplings for each residue in the MBD3-mCpG, MBD3-CpG, and MBD3KY-mCpG complexes. Fitting the observed \(1D_{\text{NH}}\) to Equation 3 as a function of \(\rho_m\) provides the fraction of MBD3 in the methylation-specific binding mode. As shown in Fig. 5C, the sum of
The Dynamic Distribution of MBD3 on DNA

FIGURE 6. MBD2 distribution is influenced by DNA methylation status and CpG density. A, an overlay of 15N HSQC spectra for key reporter residues of MBD2 bound to CpG(0), CpG(1), and CpG(3). B, a comparison of 15N-MBD2 bound to mCpG and unmethylated DNA. The reporter peaks show good agreement with tight clustering around $y = x$ (Fig. 5D). Therefore, using RDCs as an independent measure of methylation selectivity, we find that MBD3 spends ~37% of the time on the methylated binding site, which agrees within experimental error with the results from chemical shift analysis.

The residual dipolar couplings for each complex were fit to determine the solution structure of MBD3 bound to hmCpG using singular value decomposition as implemented by PALES software (30). Despite the differences in RDCs between complexes, each data set fit quite well to the MBD3 structure with Q factors of 0.01 and 0.98, respectively. Both bind unmethylated DNA with much lower affinity and high stoichiometry (K_D = 74 ± 4 μM and 17 ± 2 μM, respectively) indicative of a high degree of methylation selectivity. Although NMR analyses indicate MBD3 binds DNA with sufficient affinity to be fully bound at 300 μM concentration (Fig. 4B), solubility limits of the isolated protein preclude accurate determination of binding constants by surface plasmon resonance. The qualitative results of these studies, however, are very similar to those reported previously by Hashimoto et al. (15), who determined DNA binding affinity for full-length MBD3 by fluorescence anisotropy. In those previous studies, MBD3 bound with similar low affinity to unmethylated and hydroxymethylated DNA and with a small but weak preference (~5-fold) for methylated DNA. The current SPR data indicate a small preference for mCpG as well (Fig. 7).

Likewise, cMBD2 shows similar low affinity and high stoichiometry when binding to hydroxymethylated and unmethylated DNA with 0–3 CpG dinucleotides (Fig. 7 and Table 3). Therefore, global binding analysis reveals a marked preference for mCpG by cMBD2 and MBD3K in both methylated and unmethylated sequences investigated were determined by steady state analysis of surface plasmon resonance data, as described previously (18). To allow for direct comparison of binding stoichiometry, we normalized the relative steady state response to the amount of DNA coupled to the sensor chip such that the maximum steady state response reflects the number of binding sites on the DNA (25). As can be seen in Fig. 7 and Table 3, both cMBD2 and MBD3K bind mCpG DNA with high affinity and stoichiometry of approximately one (K_D = 105 ± 7 nm and 113 ± 11 nm and R_max = 0.83 ± 0.01 and 0.98 ± 0.02, respectively). Both bind unmethylated DNA with much lower affinity and high stoichiometry (K_D = 74 ± 4 μM and 17 ± 2 μM, respectively) indicative of a high degree of methylation selectivity. Although NMR analyses indicate MBD3 binds DNA with sufficient affinity to be fully bound at 300 μM concentration (Fig. 4B), solubility limits of the isolated protein preclude accurate determination of binding constants by surface plasmon resonance. The qualitative results of these studies, however, are very similar to those reported previously by Hashimoto et al. (15), who determined DNA binding affinity for full-length MBD3 by fluorescence anisotropy. In those previous studies, MBD3 bound with similar low affinity to unmethylated and hydroxymethylated DNA and with a small but weak preference (~5-fold) for methylated DNA. The current SPR data indicate a small preference for mCpG as well (Fig. 7).

DISCUSSION

Although it has been established that MBD3 binds DNA with lower affinity and much less specificity for mCpG dinucleotides than MBD2, the functional role of MBD3 has not been well defined. Based on NMR structural, chemical shift, and residual dipolar coupling analyses, we have demonstrated that MBD3 binding to methylated DNA can be described by an ensemble of
mBD2 and MB3D are found at unmethylated CGIs, whereas MB32 binds with much greater affinity and likely excludes MB3D from methylated CGIs. Finally, these studies clearly indicate that MB3D does not exhibit a binding preference for or a structural recognition of hmCpG DNA. From the standpoint of MB3D, hydroxymethylation is functionally equivalent to demethylation.

Genomes containing both MB32 and MB3D proteins emerge at the same time as the vertebrate methylation pattern, which includes largely unmethylated CGIs. This concurrence along with the preceding characterization of DNA binding by MB3D leads us to speculate that MB3D plays an important role in regulating genes with unmethylated CGIs. One possibility these studies raise is that MB3D helps counterbalance the tendency of MB32 to preferentially localize to CpG dinucleotides by competing with MB32 at unmethylated CGIs. We found that MB3D does modify the distribution of MB32 on DNA such that MB32 spends less time on CpG sites. Thus MB3D could help prevent gene silencing by MB32 at unmethylated gene promoters and enhancers depending on the relative concentration of the two proteins and cellular context. Indeed, recent studies have shown that knockdown of MB3D can lead to decreased gene expression (16, 17).

Mammalian cells express multiple MBD proteins as well as different isoforms of individual MBDs. Different splice variants as well as distinct genes encode for MB32 and MB3D proteins, some of which lack the DNA binding domain itself. Here we have studied the solution structure and DNA binding of MB3D by NMR. Chemical shift analyses indicate that MB3D recognizes and preferentially localizes to both mCpG and CpG sites but not to the same extent as MB32. Single amino acid differences dictate the degree to which these proteins localize on mCpG sites. Importantly these binding characteristics do not necessarily lead to changes in global binding affinities but rather correlate with localization of MB32 and MB3D to CGIs in whole cells. Hence a number of different NuRD complexes can be formed that show varying degrees of DNA methylation selectivity and provide distinct functional roles. For MB3D, these functional differences appear to reflect subtle distinctions in the behavior of the MBD when bound to methylated and unmethylated DNA. Therefore, these data establish a structural basis for the relative distribution of MB32 and MB3D on genomic DNA and help explain their observed occupancy at CpG-rich promoters.

REFERENCES
1. Hendrich, B., and Bird, A. (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell Biol. 18, 6538–6547
2. Hendrich, B., and Tweedie, S. (2003) The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269–277
3. Matsumoto, M., and Toraya, T. (2008) cDNA cloning, expression, and characterization of methyl-CpG-binding domain type 2/3 proteins from starfish and sea urchin. Gene. 420, 125–134
4. Saito, M., and Ishikawa, F. (2002) The mCpG-binding domain of human MB3D does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J. Biol. Chem. 277, 35434–35439
5. Fraga, M. F., Ballestar, E., Montoya, G., Taysavang, P., Wade, P. A., and Esteller, M. (2003) The affinity of different MBD proteins for a specific
The Dynamic Distribution of MBD3 on DNA

methylated locus depends on their intrinsic binding properties. *Nucleic Acids Res.* **31**, 1765–1774

6. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., and Reinberg, D. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. *Genes Dev.* **13**, 1924–1935

7. Le GuezenneC, X., Vermeulen, M., Brinkman, A. B., Hoeijmakers, W. A., Cohen, A., Lasonder, E., and Stunnenberg, H. G. (2006) MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. *Cell Biol.** 26**, 843–851

8. Gnanapragasam, M. N., Scarsdale, J. N., Amaya, M. L., Webb, H. D., Desai, M. A., Walavalkar, N. M., Wang, S. Z., Zu Zhu, S., Ginder, G. D., and Williams, D. C., Jr. (2011) p66α-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 7487–7492

9. Denslow, S. A., and Wade, P. A. (2007) The human Mi-2/NuRD complex and gene regulation. *Oncogene* **26**, 5433–5438

10. Kransdorf, E. P., Wang, S. Z., Zhu, S. Z., Langston, T. B., Rupon, J. W., and Ginder, G. D. (2006) MBD2 is a critical component of a methyl cytosine-binding protein complex isolated from primary erythroid cells. *Blood** **108**, 2836–2845

11. Singal, R., Wang, S. Z., Sargent, T., Zhu, S. Z., and Ginder, G. D. (2002) Methylation of promoter proximal-transcribed sequences of an embryonic globin gene inhibits transcription in primary erythroid cells. *Cell** **130**, 5891–5898

12. Feng, Q., and Zhang, Y. (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. *Genes Dev.* **15**, 827–832

13. Ng, H. H., Zhang, Y., Hendrich, B., Johnson, C. A., Turner, B. M., Erdjument-Bromage, H., Tempst, P., Reinberg, D., and Bird, A. (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. *Nat. Genet.* **23**, 58–61

14. Yildirim, O., Li, R., Hung, J. H., Chen, P. B., Dong, X., Ee, L. S., Weng, Z., Rando, O. J., and Fazzio, T. G. (2011) Mbd3/NuRD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. *Cell** **147**, 1498–1510

15. Hashimoto, H., Liu, Y., Upadhaya, A. K., Chang, Y., Howerton, S. B., Vertino, P. M., Zhang, X., and Cheng, X. (2012) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. *Nucleic Acids Res.* **40**, 4841–4849

16. Baubec, T., Ivánek, R., Lienert, F., and Schübel, D. (2013) Methylation-dependent and -independent genomic targeting principles of the MBD protein family. *Cell** **153**, 480–492

17. Günther, K., Rust, M., Leers, J., Boettger, T., Scharfe, M., Jarek, M., Bartkuhn, M., and Renkawitz, R. (2013) Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences. *Nucleic Acids Res.* **41**, 3010–3021

18. Scarsdale, J. N., Webb, H. D., Ginder, G. D., and Williams, D. C., Jr. (2011) Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence. *Nucleic Acids Res.* **39**, 6741–6752

19. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe. A multidimensional spectral processing system based on UNIX pipes. *J. Biomol. NMR* **6**, 277–293

20. Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinás, M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D. (2005) The CCPN data model for NMR spectroscopy. Development of a software pipeline. *Proteins** **59**, 687–696

21. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003) The Xplor-NIH NMR molecular structure determination package. *J. Magn. Reson.** **160**, 65–73

22. Clore, G. M., and Kuszewski, J. (2002) Chi^4^ rotamer populations and angles of mobile surface side chains are accurately predicted by a torsion angle database potential of mean force. *J. Am. Chem. Soc.* **124**, 2866–2867

23. Clore, G. M., and Gronenborn, A. M. (1998) New methods of structure refinement for macromolecular structure determination by NMR. *Proc. Natl. Acad. Sci. U.S.A.* **95**, 5891–5898

24. Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009) TALOS+. A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. *J. Biomol. NMR** **44**, 213–223

25. Mistrik, P., Moreau, F., and Allen, J. M. (2004) BiaCore analysis of leptin-leptin receptor interaction. Evidence for 1:1 stoichiometry. *Anal. Biochem.* **327**, 271–277

26. Berjanskii, M. V., and Wishart, D. S. (2005) A simple method to predict protein flexibility using secondary chemical shifts. *J. Am. Chem. Soc.* **127**, 14970–14971

27. Ho, K. L., McNae, I. W., Schmiedeberg, L., Klose, R. J., Bird, A. P., and Walkinshaw, M. D. (2008) MeCP2 binding to DNA depends upon hydration at methyl-CpG. *Mol. Cell* **29**, 525–531

28. Tseng, S. R., and Kalodimos, C. G. (2012) Protein activity regulation by conformational entropy. *Nature** **488**, 236–240

29. Williams, D. C., Jr, Cai, M., Suh, J. Y., Peterkofsky, A., and Clore, G. M. (2005) Solution NMR structure of the 48-kDa IIAMannose-HPr complex of *Escherichia coli* mannose phosphotransferase system. *J. Biol. Chem.* **280**, 20775–20784

30. Zweckstetter, M., and Bax, A. (2000) Prediction of stERICALLY induced alignment in a dilute liquid crystalline phase. Aid to protein structure determination by NMR. *J. Am. Chem. Soc.* **122**, 3791–3792