SINGULAR SPECTRAL SHIFT IS ADDITIVE

N. A. AZAMOV

Abstract. In this note it is proved that the singular part of the spectral shift function is additive. That is, if H_0, H_1 and H_2 are self-adjoint (not necessarily bounded) operators with trace-class differences, then

$$
\xi^{(s)}_{H_2, H_0} = \xi^{(s)}_{H_2, H_1} + \xi^{(s)}_{H_1, H_0}.
$$

Here, for any $\varphi \in C_c(\mathbb{R})$

$$
\xi^{(s)}_{H_1, H_0}(\varphi) := \int_0^1 \text{Tr}(V \varphi(H_r^{(s)})) \, dr,
$$

where $V = H_1 - H_0$, $H_r = H_0 + rV$ and $H_r^{(s)}$ is the singular part of H_r.

1. Introduction

Let H_0 be a self-adjoint operator and V be a trace class self-adjoint operator. The Lifshits-Krein spectral shift function ([L], [Kr], see also [Y, Chapter 8] and [S]) is the unique L_1-function $\xi_{H_0 + V, H_0}$ such that for any $\varphi \in C_c^{\infty}$ the equality

$$
\text{Tr}(\varphi(H_0 + V) - \varphi(H_0)) = \int \xi_{H_0 + V, H_0}(\lambda) \varphi'(\lambda) \, d\lambda.
$$

holds. Krein also showed in [Kr] that for any self-adjoint operators H_0, H_1 and H_2 with trace-class differences the equality

$$
\xi_{H_2, H_0} = \xi_{H_2, H_1} + \xi_{H_1, H_0}
$$

holds.

In [BS], Birman and Solomyak proved the following spectral averaging formula for the spectral shift function:

$$
\xi_{H_0 + V, H_0}(\varphi) := \int_0^1 \text{Tr}(V \varphi(H_r)) \, dr, \quad \varphi \in C_c(\mathbb{R})
$$

(note that if φ is a function then ξ in $\xi(\varphi)$ denotes a measure, and if λ is a number then ξ in $\xi(\lambda)$ denotes a function — density of the absolutely continuous measure ξ).

In [Az3] (see also [Az2, Az4]) I introduced the so-called absolutely continuous and singular spectral shift functions $\xi^{(a)}$ and $\xi^{(s)}$ by formulas

$$
\xi^{(a)}_{H_0 + V, H_0}(\varphi) := \int_0^1 \text{Tr}(V \varphi(H_r^{(a)})) \, dr, \quad \varphi \in C_c(\mathbb{R})
$$

2000 Mathematics Subject Classification. Primary 47A55;
and
\[\xi_{H_0+V,H_0}(\varphi) := \int_0^1 \text{Tr}(V \varphi(H_r^{(a)})) \, dr, \quad \varphi \in C_c(\mathbb{R}), \]
where \(H_r = H_0 + rV, \) \(H_r^{(a)} \) is the absolutely continuous part of \(H_r \) and \(H_r^{(s)} \) is the singular part of \(H_r \).

The distributions \(\xi^{(s)} \) and \(\xi^{(a)} \) are absolutely continuous finite measures \([Az3]\).

In \([Az3]\) it is proved that for all operators \(V_1 \) from a linear manifold \(\mathcal{A}_0 \subset \mathcal{L}_1 \), which is dense in \(\mathcal{L}_1 \), the equality
\[\xi^{(a)}_{H_0+V,H_0}(\varphi) = \xi^{(a)}_{H_0+V,H_0}(\varphi) + \xi^{(a)}_{H_0+V_1,H_0}(\varphi). \]
holds for all \(\varphi \in C_c^\infty \). This equality implies similar equality for \(\xi^{(s)} \).

In this note I give a proof of the equality \([1]\) for all trace-class self-adjoint operators \(V \) and \(V_1 \). This implies that for any self-adjoint operator \(H_0 \) and any trace-class self-adjoint operators \(V_1 \) and \(V_2 \) the equality
\[\xi^{(s)}_{H_0+V_2,H_0}(\varphi) = \xi^{(s)}_{H_0+V_2,H_0}(\varphi) + \xi^{(s)}_{H_0+V_1,H_0}(\varphi) \]
holds.

The additivity property \((2)\) of the singular spectral shift function \(\xi^{(a)} \) combined with the fact that the density \(\xi^{(s)}(\lambda) \) of the measure \(\xi^{(s)} \) is a.e. integer-valued \([Az3]\), suggests that the singular spectral shift function should be interpreted as generalization of spectral flow of eigenvalues (see e.g. \([APS, Ge, Phi, Phi, CP, CP, ACDS, ACS, Az4]\)) to the case of spectral flow inside the essential spectrum.

2. Results

Theorem 2.1. Let \(H_0 \) be a self-adjoint operator on \(\mathcal{H} \), let \(V \) be a trace-class self-adjoint operator on \(\mathcal{H} \). If \(V_1, V_2, \ldots \) is a sequence of self-adjoint trace-class operators converging to \(V \) in the trace-class norm, then for any \(\varphi \in C_c \) the equality
\[\lim_{n \to \infty} \xi^{(a)}_{H_0+V_n,H_0}(\varphi) = \xi^{(a)}_{H_0+V,H_0}(\varphi). \]
holds. Shortly, the absolutely continuous part of the spectral shift function \(\xi^{(a)}_{H_0+V,H_0} \) is weakly-continuous with respect to \(V \in \mathcal{L}_1(\mathcal{H}) \).

Proof. We have to prove that for any \(\varphi \in C_c(\mathbb{R}) \) the difference
\[\int_0^1 \left(\text{Tr} \left(V \varphi(H_0 + rV)^{(a)} \right) - \text{Tr} \left(V_n \varphi(H_0 + rV_n)^{(a)} \right) \right) \, dr \]
goes to 0 as \(n \to \infty \). Since the integrand as a function of \(r \) is bounded by \(2 \| V \|_1 \| \varphi \|_\infty \) for all large enough \(n \), it follows from the Lebesgue dominated convergence theorem that it is enough to prove that for any fixed \(r \in [0,1] \)
\[\lim_{n \to \infty} \text{Tr} \left(V_n \varphi(H_0 + rV_n)^{(a)} \right) = \text{Tr} \left(V \varphi(H_0 + rV)^{(a)} \right). \]
Further, since
\[
\text{Tr} \left(V \phi(H_0 + rV)^{(a)} \right) - \text{Tr} \left(V_n \phi(H_0 + rV_n)^{(a)} \right) = \text{Tr} \left((V - V_n) \phi(H_0 + rV_n)^{(a)} \right) + \text{Tr} \left(V \left(\phi(H_0 + rV)^{(a)} - \phi(H_0 + rV_n)^{(a)} \right) \right)
\]
and since
\[
\left| \text{Tr} \left((V - V_n) \phi(H_0 + rV_n)^{(a)} \right) \right| \leq \|V - V_n\|_1 \cdot \|\phi\|_\infty \to 0 \text{ as } n \to \infty,
\]
it is enough to prove that
\[
\lim_{n \to \infty} \text{Tr} \left(V \left(\phi(H_0 + rV)^{(a)} - \phi(H_0 + rV_n)^{(a)} \right) \right) = 0.
\]

It follows from [Y, Lemma 6.1.3], that for this it is enough to show that
\[
\text{s- lim}_{n \to \infty} \phi(H_0 + rV_n)^{(a)} = \phi(H_0 + rV)^{(a)},
\]
where the limit is taken in the strong operator topology. We can assume that \(r = 1 \). Let \(H = H_0 + V \), \(H_n = H_0 + V_n \). For self-adjoint operators \(H_0 \) and \(H_1 \), let \(W_\pm(H_1, H_0) \) be wave operators of the pair \(H_0 \) and \(H_1 \) (if they exist) and let \(P^{(a)}(H_0) \) be the orthogonal projection onto the absolutely continuous part of \(H_0 \). Since
\[
W_+(H_n, H) \phi(H^{(a)}) W_+^*(H_n, H) = \phi(H^{(a)}),
\]
it follows that
\[
\phi(H^{(a)}) - \phi(H^{(a)}_n) = \phi(H^{(a)}) - W_+(H_n, H) \phi(H^{(a)}_n) W_+^*(H_n, H) = \left(\phi(H^{(a)}) - W_+(H_n, H) \phi(H^{(a)}) \right) + \left(W_+(H_n, H) \phi(H^{(a)}_n) - W_+(H_n, H) \phi(H^{(a)}) W_+^*(H_n, H) \right) = \left(P^{(a)}(H) - W_+(H_n, H) \right) \phi(H^{(a)}) + W_+(H_n, H) \phi(H^{(a)}) \left(P^{(a)}(H) - W_+^*(H_n, H) \right).
\]

[Y, Theorem 6.3.6] implies that
\[
\text{s- lim}_{n \to \infty} W_+(H_n, H) = P^{(a)}(H)
\]
and
\[
\text{s- lim}_{n \to \infty} W_+^*(H_n, H) = P^{(a)}(H).
\]

It follows from this and (6) that (5) holds.

The proof is complete. \(\square \)

Theorem 2.2. The absolutely continuous part of the spectral shift function is additive. That is, if \(H_0 \) is a self-adjoint operator on \(\mathcal{H} \), and if \(V_1, V_2 \) are trace-class self-adjoint operators on \(\mathcal{H} \), then for any \(\phi \in C_c(\mathbb{R}) \) the equality
\[
\xi_{H_0 + V_2, H_0}^{(a)}(\phi) = \xi_{H_0 + V_2, H_0 + V_1}^{(a)}(\phi) + \xi_{H_0 + V_1, H_0}^{(a)}(\phi)
\]
holds.
Proof. Let H_0 be a self-adjoint operator on \mathcal{H}, and let V and V_1 be two trace-class self-adjoint operators on \mathcal{H}. We need to show that for any $\varphi \in C^\infty_c$

$$\xi^{(a)}_{H_0+V,H_0}(\varphi) = \xi^{(a)}_{H_0+V,H_0,V_1}(\varphi) + \xi^{(a)}_{H_0+V_1,H_0}(\varphi)$$

By [Az3, Lemma 5.2], for a given trace-class operator V one can choose a frame operator F (see [Az3] for the definition of the frame operator) such that $V \in A(F) \subset L^1(\mathcal{H})$, where $A(F)$ is a dense linear subset of $L^1(\mathcal{H})$ (see [Az3, §5] for the definition of the class $A(F)$).

By [Az3, Theorem 9.12], there exists a dense linear subset A_0 (which depends on H_0) of $A(F)$, such that for any $\tilde{V} \in A_0$ and any function $\varphi \in C_c(\mathbb{R})$ the equality

$$\xi^{(a)}_{H_0+\tilde{V},H_0}(\varphi) = \xi^{(a)}_{H_0+V,H_0,V_1}(\varphi) + \xi^{(a)}_{H_0+V_1,H_0}(\varphi)$$

holds. By Theorem 2.1

$$\lim_{n \to \infty} \xi^{(a)}_{H_0+V_n,H_0}(\varphi) = \xi^{(a)}_{H_0+V_1,H_0}(\varphi).$$

It directly follows from the definition of $\xi^{(a)}$ that

$$\xi^{(a)}_{H_1,H_0} = - \xi^{(a)}_{H_0,H_1}$$

for any two self-adjoint operators H_0, H_1 with trace-class difference. It follows from (11) and Theorem 2.1 that

$$\lim_{n \to \infty} \xi^{(a)}_{H_0+V,H_0+V_n}(\varphi) = \xi^{(a)}_{H_0+V,H_0+V_1}(\varphi).$$

Combining this equality with (9) and (10) completes the proof.

Corollary 2.3. The singular part of the spectral shift function is additive. That is, if H_0 is a self-adjoint operator on \mathcal{H}, and if V_1, V_2 are trace-class self-adjoint operators on \mathcal{H}, then for any $\varphi \in C_c(\mathbb{R})$ the equality

$$\xi^{(s)}_{H_0+V_2,H_0}(\varphi) = \xi^{(s)}_{H_0+V_2,H_0+V_1}(\varphi) + \xi^{(s)}_{H_0+V_1,H_0}(\varphi)$$

holds.

Proof. This follows from Theorem 2.2 and additivity of the Lifshits-Krein spectral shift function.

SINGULAR SPECTRAL SHIFT IS ADDITIVE

References

[APS] M. Atiyah, V. Patodi, I. M. Singer, *Spectral Asymmetry and Riemannian Geometry. III*, Math. Proc. Camb. Phil. Soc. **79** (1976), 71–99.

[Az] N. A. Azamov, *Infinitesimal spectral flow and scattering matrix*, preprint, arXiv:0705.3282v4.

[Az2] N. A. Azamov, *Pushnitski’s μ-invariant and Schrödinger operators with embedded eigenvalues*, preprint, arXiv:0711.1190v1.

[Az3] N. A. Azamov, *Absolutely continuous and singular spectral shift functions*, preprint, arXiv:submit/0092981.

[Az4] N. A. Azamov, *Spectral shift function in von Neumann algebras*, VDM Verlag, 2010.

[ACDS] N. A. Azamov, A. L. Carey, P. G. Dodds, F. A. Sukochev, *Operator integrals, spectral shift and spectral flow*, Canad. J. Math. **61** (2009), 241–263.

[ACS] N. A. Azamov, A. L. Carey, F. A. Sukochev, *The spectral shift function and spectral flow*, Comm. Math. Phys. **276** (2007), 51–91.

[BS] M. Sh. Birman, M. Z. Solomyak, *Remarks on the spectral shift function*, J. Soviet math. **3** (1975), 408–419.

[CP] A. L. Carey, J. Phillips, *Unbounded Fredholm modules and spectral flow*, Canad. J. Math. **50** (1998), 673–718.

[CP2] A. L. Carey, J. Phillips, *Spectral flow in Fredholm modules, eta invariants and the JLO cocycle*, K-Theory **31** (2004), 135–194.

[Ge] E. Getzler, *The odd Chern character in cyclic homology and spectral flow*, Topology **32** (1993), 489–507.

[Kr] M. G. Krein, *On the trace formula in perturbation theory*, Mat. Sb., **33** 75 (1953), 597–626.

[L] I. M. Lifshits, *On a problem in perturbation theory*, Uspekhi Mat. Nauk **7** (1952), 171–180 (Russian).

[Ph] J. Phillips, *Self-adjoint Fredholm operators and spectral flow*, Canad. Math. Bull. **39** (1996), 460–467.

[Ph2] J. Phillips, *Spectral flow in type I and type II factors — a new approach*, Fields Inst. Comm. **17** (1997), 137–153.

[S] B. Simon, *Trace ideals and their applications: Second Edition*, Providence, AMS, 2005, Mathematical Surveys and Monographs, **120**.

[Y] D. R. Yafaev, *Mathematical scattering theory: general theory*, Providence, R.I., AMS, 1992.

School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, 5042, SA Australia.

E-mail address: azam0001@csem.flinders.edu.au