ON THE POINTWISE MULTIPLICATION IN BESOV AND LIZORKIN-TRIEBEL SPACES

DOUADI DRIHEM AND MADANI MOUSSAI

Received 1 February 2005; Revised 22 February 2006; Accepted 4 April 2006

Under some sufficient conditions satisfied by F-space of Lizorkin and Triebel and B-space of Besov, we prove some embeddings of types $F \cdot B \hookrightarrow F$, $F \cdot F \hookrightarrow F$, and $B \cdot B \hookrightarrow B$.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and preparations

In Besov spaces and Lizorkin-Triebel spaces, this paper is concerned with proving some embeddings of the form

$$F \cdot B \hookrightarrow F, \quad F \cdot F \hookrightarrow F, \quad B \cdot B \hookrightarrow B,$$

where F and B, with three indices, will denote the Lizorkin-Triebel space $F_{p,q}^{s}$ and the Besov space $B_{p,q}^{s}$, respectively. The different embeddings obtained here are under certain restrictions on the parameters.

In this introduction, we will recall the definition of some spaces and some necessary tools. In Sections 2 and 3, we give the first contribution of this work. The theorems of Section 2 will treat the case $F \cdot B \hookrightarrow F$ where the first theorem is a generalization of the results of Franke [4, Section 3.2, Theorem 1, Section 3.4, Corollary 1] and Marschall [7]. The second theorem is in the sense of Johnsen’s works (see [5]). Section 3 will contain a treatment of the embeddings of the types $F \cdot F \hookrightarrow F$ and $B \cdot B \hookrightarrow B$ which presents an improvement of [3].

In the sense of [5, Theorems 6.5, 6.11], some limit cases are considered in Section 4, which constitute the second contribution of this paper. Section 5 is an application of our results to the continuity of pseudodifferential operators on Lizorkin-Triebel spaces.

We will work on the Euclidean space \mathbb{R}^{n}. If $f \in \mathcal{S}$, the Fourier transform is defined by the formula

$$\mathcal{F} f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^{n}} f(x) e^{-ix \cdot \xi} \, dx \quad (\xi \in \mathbb{R}^{n})$$

(1.2)
Multiplication in Besov and Lizorkin spaces

and $\mathcal{F}^{-1}f$ denotes the inverse Fourier transform of f; as usual \mathcal{F} and \mathcal{F}^{-1} are extended from \mathcal{S}' to \mathcal{S}'.

Consider a partition of unity

$$\psi(\xi) + \sum_{j=1}^{\infty} \varphi(2^{-j}\xi) = 1 \quad (\xi \in \mathbb{R}^n),$$

(1.3)

where $\varphi, \psi \in C^\infty_0$ are positive functions such that $\text{supp} \varphi \subset \{\xi \in \mathbb{R}^n : 1 \leq |\xi| \leq 3\}$ and $\text{supp} \psi \subset \{\xi \in \mathbb{R}^n : |\xi| \leq 3\}$. We define the convolution operators Q_j and Δ_k by the following:

$$Q_j f = \mathcal{F}^{-1}(\psi(2^{-j} \cdot)) * f \quad (j = 1, 2, \ldots),$$

$$\Delta_k f = \mathcal{F}^{-1}(\varphi(2^{-k} \cdot)) * f \quad (k = 0, 1, \ldots),$$

(1.4)

and we set $Q_0 = \Delta_0$. Thus we obtain the Littlewood-Paley decomposition $f = \sum_{j=0}^{\infty} \Delta_j f$ (convergence in \mathcal{S}').

Let us now recall the definitions of $F_{p,q}^s$ and $B_{p,q}^s$, where the general references include [1, 9–13].

Definition 1.1. Let $\gamma > 0$, $-\infty < s < \infty$, $0 < p < \infty$ (resp., $0 < p \leq \infty$), and $0 < q \leq \infty$. The space $L_p^\gamma(\ell_q^s)$ (resp., $\ell_q^s(L_p^\gamma)$) is the set of the sequences $\{f_k\}_{k \in \mathbb{N}} \subset \mathcal{S}'$ such that $\text{supp} \hat{f}_k \subset \{\xi \in \mathbb{R}^n : |\xi| < \gamma 2^k\}$ and

$$\|\{f_k\}_{k \in \mathbb{N}} \|_{L_p^\gamma(\ell_q^s)} = \|\{2^{ks} f_k\}_{k \in \mathbb{N}} \|_{L_p^\gamma(\ell_q)} < \infty,$$

(1.5)

(respectively,

$$\|\{f_k\}_{k \in \mathbb{N}} \|_{\ell_q^s(L_p^\gamma)} = \|\{2^{ks} f_k\}_{k \in \mathbb{N}} \|_{\ell_q(L_p)} < \infty).$$

Definition 1.2. (i) Let $0 < p < \infty$, $0 < q \leq \infty$, and $-\infty < s < \infty$, then

$$F_{p,q}^s = \{f \in \mathcal{S}' : \|\{2^{ks} \Delta_k f\}_{k \in \mathbb{N}} \|_{L_p(\ell_q)} < \infty\}. \quad (1.6)$$

(ii) Let $0 < p, q \leq \infty$, and $-\infty < s < \infty$, then

$$B_{p,q}^s = \{f \in \mathcal{S}' : \|\{2^{ks} \Delta_k f\}_{k \in \mathbb{N}} \|_{\ell_q(L_p)} < \infty\}. \quad (1.7)$$

Remark 1.3. We introduce the maximal function

$$\Delta_k^{*,a} f(x) = \sup_{y \in \mathbb{R}^n} \frac{|\Delta_k f(x-y)|}{1 + (2^k |y|)^a}$$

(1.8)

for all $x \in \mathbb{R}^n$, $f \in \mathcal{S}'$, $a > 0$, and $k = 0, 1, \ldots$. Then, in Definition 1.2(i) (resp., (ii)), we can replace $\Delta_k f$ by $\Delta_k^{*,a} f$ with $a > (n/\min(p,q))$ (resp., $a > n/p$), (cf. see [13, Theorem 2.3.2]).
The product \(f \cdot g \) is defined by
\[
f \cdot g = \lim_{j \to \infty} Q_j f \cdot Q_j g \quad (\forall f, g \in \mathcal{F}')
\] (1.9)
if the limit on the right-hand side exists in \(\mathcal{F}' \) (see [10, Section 4.2]), and we have
\[
\Delta_k(f \cdot g) = \sum_{j, \ell=0}^{\infty} \Delta_k(\Delta_j g \cdot \Delta_\ell f) = (\Pi_{k,1} + \Pi_{k,2} + \Pi_{k,3})(f, g),
\] (1.10)
where
\[
\Pi_{k,1}(f, g) = \Delta_k(\Delta_{k+1} f \cdot Q_k g), \quad \Pi_{k,2}(f, g) = \Delta_k(Q_{k+1} f \cdot \Delta_k g),
\] (1.11)
\[
\Pi_{k,3}(f, g) = \sum_{j=k}^{\infty} \Delta_k(\Delta_j f \cdot \Delta_j g),
\]
with \(\Delta_k = \sum_{j=k-2}^{k+4} \Delta_j \) and \(\Delta_k = \sum_{j=k-1}^{k+1} \Delta_j \).

In the below proofs of the different cases of type (1.1), written as \(G_1 \cdot G_2 \sim G_3 \), to see \(f \cdot g \) belongs to \(G_3 \), \((f \in G_1, g \in G_2)\), it suffices to an estimate of terms of the form
\[
\| \{ \Pi_{k,i}(f, g) \}_{k \in \mathbb{N}} \|_{L^p_\gamma(p, q)}\|_{L^p_\gamma(p, q)} \text{ and } \| \{ \Pi_{k,i}(f, g) \}_{k \in \mathbb{N}} \|_{p, q(L^\gamma_\delta)} i \in \{1, 2, 3\}.
\]

Now we recall some lemmas which are useful for us.

Lemma 1.4. (i) Let \(-\infty < s_i < \infty, 0 < p_i < \infty \) (resp., \(0 < p_i \leq \infty \)), and \(0 < q_i \leq \infty \) (with \(i = 0, 1 \)). If
\[
s_0 > s_1, \quad p_0 = p_1,
\] (1.12)
or
\[
s_0 \geq s_1, \quad s_0 - \frac{n}{p_0} = s_1 - \frac{n}{p_1}, \quad (q_0 \leq q_1 \text{ for Besov space}),
\] (1.13)
then it holds
\[
F^s_{p_0, q_0} \xrightarrow{} F^s_{p_1, q_1}, \quad \text{resp., } B^s_{p_0, q_0} \xrightarrow{} B^s_{p_1, q_1},
\] (1.14)
(ii) Let \(-\infty < s, s_i < \infty, 0 < p, p_i < \infty \), and \(0 < q, q_i \leq \infty \) (with \(i = 0, 1 \)) such that \(s_0 - n/p_0 = s - n/p = s_1 - n/p_1 \). If
\[
s_0 > s > s_1, \quad q_0 \leq p \leq q_1,
\] (1.15)
or
\[
s_0 = s = s_1, \quad q_0 \leq \min(p, q), \quad q_1 \geq \max(p, q),
\] (1.16)
then it holds
\[
B^s_{p_0, q_0} \xrightarrow{} F^s_{p, q} \xrightarrow{} B^s_{p_1, q_1},
\] (1.17)
Multiplication in Besov and Lizorkin spaces

(iii) Let $-\infty < s < \infty$, $0 < p < \infty$ (resp., $0 < p \leq \infty$), and $0 < q \leq \infty$. If

$$s > \frac{n}{p},$$

or

$$s = \frac{n}{p}, \quad 0 < p \leq 1 \text{ (resp., } 0 < q \leq 1),$$

then it holds

$$F_{p,q}^s \hookrightarrow L_\infty \quad \text{(resp., } B_{p,q}^s \hookrightarrow L_\infty).$$

Lemma 1.5. Let $0 < \gamma < 1$ and $0 < q \leq \infty$. Let \(\{\varepsilon_k\}_{k \in \mathbb{N}} \) be a sequence of positive real numbers such that \(\|\{\varepsilon_k\}_{k \in \mathbb{N}} \|_{\ell_q} = A < \infty \). Then the sequences \(\delta_k = \sum_{j=0}^{k} \gamma^{j-k} \varepsilon_j \) and \(\eta_k = \sum_{j=k}^{\infty} \gamma^{j-k} \varepsilon_j \) belong to \(\ell_q \), and the estimate

$$\|\{\delta_k\}_{k \in \mathbb{N}} \|_{\ell_q} + \|\{\eta_k\}_{k \in \mathbb{N}} \|_{\ell_q} \leq cA$$

holds. The constant \(c \) depends only on \(\gamma \) and \(q \).

Lemma 1.6. Let $0 < p \leq \infty$ and $\gamma > 0$. Let \(\{f_j\}_{j \in \mathbb{N}} \subset L_p \) be a sequence of functions such that \(\text{supp} \hat{f}_j \subset \{ \xi \in \mathbb{R}^n : |\xi| \leq \gamma 2^j \} \). Then the estimate

$$\|\Delta_k f_j \|_{L_p} \leq c 2^{j-k \frac{n}{p}} \|f_j \|_{L_p} \quad \left(k \leq j < \infty, \quad q = \max \left(0, \frac{n}{p} - n \right) \right)$$

holds. The constant \(c \) depends only on \(n, p, \) and \(\gamma \).

Lemma 1.7. Let $0 < p < 1$ and $\gamma > 0$. Let \(\{f_j\}_{j \in \mathbb{N}} \subset L_p \) be a sequence of functions such that \(\text{supp} \hat{f}_j \subset \{ \xi \in \mathbb{R}^n : |\xi| \leq \gamma 2^j \} \). Then the estimate

$$\left\| \sum_{j=0}^{\infty} f_j \right\|_{B_{p,\infty}^q} \leq c \left\| \{2^j f_j\}_{j \in \mathbb{N}} \right\|_{L_p(\ell_\infty)} \quad \left(q = \frac{n}{p} - n \right)$$

holds. The constant \(c \) depends only on \(n, p, \) and \(\gamma \).

Lemma 1.8. Let $0 < p \leq q \leq \infty$ and $\gamma > 0$. Then there exists a constant $c = c(n, p, q) > 0$ such that for all $f \in L_p$ with \(\text{supp} \hat{f} \subset \{ \xi \in \mathbb{R}^n : |\xi| \leq \gamma \} \), one has

$$\|f \|_{L_q} \leq c \gamma^{n(1/p - 1/q)} \|f \|_{L_p}.$$

For Lemma 1.4, we can see [11, Sections 2.3 and 2.8] and [12, Section 2.7]. Lemma 1.5 follows from Young’s inequality in \(\ell_q \). The proof of Lemma 1.6 is given in [4, Section 2.4, Theorem 1(iii)] and Lemma 1.7 in [7, Lemma 3]. For the proof of Lemma 1.8, we can see [14, Proposition 2.13], $1 \leq p \leq q \leq \infty$, it is the classical inequality of Bernstein.
2. Multiplication of mixed type

The following results give an extension of the sufficient hypotheses used in [5, Theorem 6.1].

Theorem 2.1. Let $0 < p, p_1, p_2 < \infty$, $0 < q, q_2 \leq \infty$, $-\infty < s < \infty$, and $r > 0$ be such that

\[-r + \max\left(0, \frac{n}{p_1} + \frac{n}{p_2} - n\right) < s < \min\left(\frac{n}{p_1}, r\right),\]

\[
\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} - \frac{r}{n}, \quad \frac{1}{q_2} \geq \frac{1}{p_2} - \frac{r}{n}, \quad r < \frac{n}{p_2} \quad (\text{resp., } r = \frac{n}{p_2}).
\]

Then it holds

\[F^s_{p_1,q} \cdot B^r_{p_2,q_2} \hookrightarrow F^r_{p_1,q} \quad (\text{resp., } F^s_{p_1,q} \cdot (B^{n/p_2}_{p_2} \cap L_\infty) \hookrightarrow F^r_{p_1,q}).\]

Corollary 2.2. Under the hypotheses of Theorem 2.1. If $r < n/p_2$ (resp., $r = n/p_2$) then it holds

\[F^s_{p_1,q} \cdot F^r_{p_2,q_2} \hookrightarrow F^s_{p_1,q} \quad (\text{resp., } F^s_{p_1,q} \cdot F^{n/p_2}_{p_2,q_2} \hookrightarrow F^s_{p_1,q} \text{ for } p_2 \leq 1).\]

Furthermore, in particular, if $1 < p_1 < \infty$ and $r > n/p_1 + n/p_2 - n$, can be taken $s = 0$ in (2.3).

Proof. Since $F^r_{p_2,q_2} \hookrightarrow B^r_{t_2,t}$ with $t = (1/p_2 - r/n)^{-1}$, we obtain the first embedding. However, the second embedding follows from $F^{n/p_2}_{p_2,q_2} \hookrightarrow B^{n/p_2}_{p_2} \cap L_\infty$. \qed

Remark 2.3. In Corollary 2.2, when $r < n/p_2$ (resp., $r = n/p_2$), we obtain [10, Theorems 4.4.3/2(21) and 4.4.4/2(16) (resp., Theorems 4.4.3/2(22) and 4.4.4/2(17))]. The particular case $s = 0$ presents a complement of [10, Theorem 4.4.4/4(i)].

To prove Theorem 2.1, we need the following lemma.

Lemma 2.4. Let $0 < p < \infty$ and $a > n/p$. Then there exists a constant $c > 0$ such that

\[\|\{Q^a_j g\}_{j \in \mathbb{N}}\|_{L^p(\ell_\infty)} \leq c\|g\|_{F^0_{p,2}},\]

for any $g \in F^0_{p,2}$.

Proof. First, we define the maximal function of $Q_j g$, of Hardy-Littlewood type, by the formula

\[MQ_j g(x) = \sup_{r > 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} |Q_j g(y)| \, dy,\]

where $B(x, r)$ is the ball centered at x of radius r and $|B(x, r)|$ denotes its measure. Next, let $t > 0$ satisfy $n/a < t < p$. From [13, Theorem 1.3.1], we have

\[Q^a_j g(x) \leq Q^{n/t}_j g(x) \leq c(M|Q_j g|_t(x))^{1/t} \quad (\forall x \in \mathbb{R}^n).\]
Then we obtain
\[
\sup_{j \in \mathbb{N}} Q_j^* a_j g \ | \ L_p \leq c \left(\sup_{j \in \mathbb{N}} M | Q_j g |^{1/t} \right)^{1/t} \ | \ L_p = c \left(\sup_{j \in \mathbb{N}} M | Q_j g |^{1/t} \ | \ L_{p/t} \right)^{1/t} \\
\leq c' \left(\sup_{j \in \mathbb{N}} | Q_j g |^{1/t} \ | \ L_{p/t} \right)^{1/t}.
\]

(2.7)

A proof of the last inequality may be found in [13, Theorem 2.2.2, page 89]. Now, it is easy to see that the last member of (2.7) is bounded by
\[
\left\| \sup_{j \in \mathbb{N}} | Q_j g | \ | \ L_p \right\| \leq c \left\| g \ | \ F^{0}_{p,2} \right\|.
\]

(2.8)

Inequality (2.8) follows from the equality between the local Hardy spaces \(h_p \) and \(F^{0}_{p,2} \), (cf. see [12, Section 2.2, page 37, and Theorem 2.5.8/1]).

\[
\text{Proof of Theorem 2.1}
\]

Case 1 \((r < n/p_2) \). (i) Estimate of \(\{ \Pi_{k,1}(f,g) \}_{k \in \mathbb{N}} \). Since
\[
\left| \Pi_{k,1}(f,g)(x) \right| = \left| \int_{\mathbb{R}^n} (\overline{F}^{-1} \phi(y)) (Q_{k+1} g \cdot \tilde{\Delta}_k f) (x - 2^{-k} y) \, dy \right| \\
\leq c Q_{k+1}^* a_1 g(x) \tilde{\Delta}_k^* a_2 f(x) \ (\forall x \in \mathbb{R}^n),
\]

(2.9)

where \(Q^* \) and \(\tilde{\Delta}^* \) are defined as in Remark 1.3, we obtain
\[
\left\| \left\{ 2^k \Pi_{k,1}(f,g) \right\}_{k \in \mathbb{N}} \mid \ell_q \right\| \leq c \sup_{j \in \mathbb{N}} \left(Q_j^* a_1 g \right) \left\| \left\{ 2^k \tilde{\Delta}_k^* a_2 f \right\}_{k \in \mathbb{N}} \mid \ell_q \right\|,
\]

(2.10)

where \(a_1 \) and \(a_2 \) are real numbers at our disposal. We set \(1/b = 1/p_2 - r/n \). The left-hand side of (2.10), in \(L_p \)-norm, is bounded by
\[
c \left\| \sup_{j \in \mathbb{N}} Q_j^* a_1 g \mid L_b \right\| \left\| \left\{ 2^k \tilde{\Delta}_k^* a_2 f \right\}_{k \in \mathbb{N}} \mid L_{p_1}(\ell_q) \right\|.
\]

(2.11)

Choose \(a_1 > n/b \) and \(a_2 > n/min(p_1, q) \), then both Lemma 2.4 and the embedding \(B_{p_2,q_2}^r \hookrightarrow F^{0}_{b,2} \) yield that (2.11) is estimated as desired.

(ii) Estimate of \(\{ \Pi_{k,2}(f,g) \}_{k \in \mathbb{N}} \). Let \(u \in \mathbb{R} \) such that
\[
\max \left(0, \frac{1}{p_1} - \frac{r}{n} \right) < \frac{1}{u} < \min \left(\frac{1}{p_1}, \frac{1}{p_1} - \frac{s}{n} \right).
\]

(2.12)

We set
\[
\frac{1}{v} = \frac{1}{p_2} + \frac{1}{u}, \quad \sigma = s - \frac{n}{p} + \frac{n}{v}, \quad \beta = s - \frac{n}{p_1} + \frac{n}{u}.
\]

(2.13)
We have
\[\ell_p^a(L^1_v) \hookrightarrow L_p^\gamma(\ell_q^s), \quad F_{p_1,q}^s \hookrightarrow B_{u_1,p_1}. \quad (2.14) \]

For the first embedding of (2.14), we can see [4, Section 2.3, Theorem 3]. On the other hand, the Hölder inequality yields
\[2^{k\sigma}||\Pi_{k,2}(f,g)|L_v|| \leq c2^{k\sigma}||\tilde{\Delta}_k g|L_{p_2}||\left(2^{k\beta}\sum_{j=0}^{k+1}2^{-j\beta} \cdot 2^j\beta||\Delta_j f|L_u||\right). \quad (2.15) \]

We set \(1/\bar{q}_2 = 1/p - 1/p_1 \). Applying, successively, the Hölder inequality again in \(\ell_p \)-norm and Lemma 1.5, we obtain the bound \(c||g|B_{p_2,q_2}^r||f|B_{u_1,p_1}^\beta \). So (2.14) and \(B_{p_1,q_2}^r \hookrightarrow B_{p_2,q_2}^r \) give
\[||\{2^{k\sigma}\Pi_{k,2}(f,g)\}_{k\in\mathbb{N}}|L_p(\ell_q^s)|| \leq c||g|B_{p_2,q_2}^r||f|F_{p_1,q_2}^s||. \quad (2.16) \]

(iii) Estimate of \(\{\Pi_{k,3}(f,g)\}_{k\in\mathbb{N}} \). We first consider \(1/p_1 + 1/p_2 \leq 1 \). Let \(u \in \mathbb{R} \) such that
\[\max\left(0, 1/p_1 - \frac{1}{n}, 1/p_1 - \frac{r+s}{n}\right) < \frac{1}{u} < \frac{1}{p_1}. \quad (2.17) \]

We use the notations \(v, \sigma, \) and \(\beta \) from (2.13). Lemma 1.6 provides
\[2^{k\sigma}||\Pi_{k,3}(f,g)|L_v|| \leq c2^{k(\beta+r)}\sum_{j=k}^{\infty}2^{-j(\beta+r)}\cdot2^{j(\beta+r)}||\tilde{\Delta}_j g|L_{p_2}||||\Delta_j f|L_u||. \quad (2.18) \]

A similar argument as above yields
\[||\{2^{k\sigma}\Pi_{k,3}(f,g)\}_{k\in\mathbb{N}}|L_p(L_v)|| \leq c||\{2^{j(\beta+r)}||\tilde{\Delta}_j g|L_{p_2}||||\Delta_j f|L_u||\}_{j\in\mathbb{N}}|L_p||. \quad (2.19) \]

We set \(1/\tilde{q}_2 = 1/p - 1/p_1 \). By the Hölder inequality in \(\ell_p \)-norm, the right-hand side of (2.19) is bounded by \(c||g|B_{p_2,\tilde{q}_2}^r||f|B_{u_1,p_1}^\beta \). Then we conclude the desired estimate by (2.14).

We now study case \(1/p_1 + 1/p_2 > 1 \). Let \(u \in \mathbb{R} \) such that
\[\max\left(0, 1 - \frac{1}{p_2}, 1/p_1 - \frac{r}{n}\right) < \frac{1}{u} < \frac{1}{p_1}. \quad (2.20) \]

We employ the notations \(v \) and \(\sigma \) from (2.13). By Lemma 1.6, we obtain
\[2^{k\sigma}||\Pi_{k,3}(f,g)|L_v|| \leq c2^{k\mu}\sum_{j=k}^{\infty}2^{-j\mu} \cdot 2^{j(r+\mu)}||\tilde{\Delta}_j g|L_{p_2}||||\Delta_j f|L_u||, \quad (2.21) \]

where \(q = s - n/p_1 + n/u \) and \(\mu = s + r - n/p_1 - n/p_2 + n > 0 \), therefore,
\[||\{2^{k\sigma}\Pi_{k,3}(f,g)\}_{k\in\mathbb{N}}|L_p(L_v)|| \leq c||\{2^{j(r+\mu)}||\tilde{\Delta}_j g|L_{p_2}||||\Delta_j f|L_u||\}_{j\in\mathbb{N}}|L_p||. \quad (2.22) \]
On the right-hand side of (2.22), we employ the Hölder inequality in ℓ_p-norm (with $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{\tilde{q}_2}$), $F^s_{p_1,q} \hookrightarrow B^0_{\mu,p_1}$, and $B^r_{p_2,q_2} \hookrightarrow B^r_{p_2,\tilde{q}_2}$ successively. Since $\sigma > s$ and $\nu < p$, we can finish the proof of this case by applying, in the left-hand side of (2.22), embeddings (2.14).

Case 2 ($r = n/p_2$). We only estimate $\{\Pi_{k,1}(f,g)\}_{k \in \mathbb{N}}$. It is sufficient to see that

$$2^{ks} |\Pi_{k,1}(f,g)| \leq c \|g\|_{L_\infty} (2^{ks} \Delta^*_k f)$$

with $a > n/\min(p_1,q)$ and to take the $L_{p_1}(\ell_q)$-norm. □

Theorem 2.5. Let $0 < p, p_1 < \infty, 0 < p_2, q \leq \infty, -\infty < s < \infty$, and $r > 0$ be such that

$$-r + \max \left(0, \frac{n}{p_1} + \frac{n}{p_2} - n \right) < s < r.$$ \hspace{1cm} (2.24)

If either of the following assertions is satisfied:

(i) $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$,

(ii) $\max \left(\frac{1}{p_1}, \frac{s}{n} \right) + \max \left(0, \frac{1}{p_2} - \frac{r}{n} \right) < \frac{1}{p} < \frac{1}{p_1} + \frac{1}{p_2}$,

then it holds

$$F^s_{p_1,q} \cdot B^r_{p_2,\infty} \hookrightarrow F^s_{p_1,q}.$$ \hspace{1cm} (2.25)

Corollary 2.6. Let p, p_1, q, r, s be as in Theorem 2.5 and $0 < p_2 < \infty$. If (i) or (ii) of Theorem 2.5 is satisfied, then the embedding $F^s_{p_1,q} \cdot Br_{p_2,\infty} \hookrightarrow F^s_{p_1,q}$ holds.

The proof of Corollary 2.6 is immediate because $Br_{p_2,\infty} \hookrightarrow Br_{p_2,\infty}$.

Remark 2.7. We note that Theorem 2.5(i) when $p_2 = \infty$ is given in [4, Section 3.2, Theorem 1]. Also, we note that Corollary 2.6 is given in both [5, Theorem 6.1 with $r = p$ in formula (6.6)] and [10, Theorems 4.4.3/1(7) and 4.4.4/1(7)].

Proof of Theorem 2.5(i). Noting Remark 2.7, we only need to treat the part $0 < p_2 < \infty$.

(i) Estimate of $\{\Pi_{k,1}(f,g)\}_{k \in \mathbb{N}}$. From (2.9) and Lemma 2.4, we have

$$\|\{2^{ks} \Pi_{k,1}(f,g)\}_{k \in \mathbb{N}} \|_{L_p(\ell_q)} \leq c \|g\|_{F^0_{p_2,\infty}} \|f\|_{F^s_{p_1,q}}.$$ \hspace{1cm} (2.26)

By embeddings $B^r_{p_2,\infty} \hookrightarrow B^0_{p_2,\min(p_2,2)} \hookrightarrow F^0_{p_2,\infty}$, we obtain that the last term of (2.26) is bounded by the desired quantity.

(ii) Estimate of $\{\Pi_{k,2}(f,g)\}_{k \in \mathbb{N}}$. The Hölder inequality provides

$$\|\Pi_{k,2}(f,g)\|_{L_p} \leq c \left(2^{-kr} \sum_{j=0}^{k+1} 2^{-j(s-r)} \cdot 2^{-jr} \right) \|g\|_{B^r_{p_2,\infty}} \|f\|_{B^s_{p_1,\infty}}.$$ \hspace{1cm} (2.27)

The hypothesis $s < r$ yields

$$\|\{2^{ks} \Pi_{k,2}(f,g)\}_{k \in \mathbb{N}} \|_{\ell_{\min(p,q)}(L_p)} \leq c \|g\|_{B^r_{p_2,\infty}} \|f\|_{B^s_{p_1,\infty}}.$$ \hspace{1cm} (2.28)
Using embeddings

\[\ell_{\min(p,q)}^s(L^p) \hookrightarrow L^\gamma(p_q^s), \quad F_{p,q}^s \hookrightarrow B_{p_1,\infty}^s, \quad (2.29) \]

we obtain the desired result.

(iii) Estimate of \{\Pi_{k,3}(f,g)\}_{k \in \mathbb{N}}. We set \(q = s + r - \max(0, n/p - n) \). Using Lemma 1.6, we obtain

\[2^{ks}||\Pi_{k,3}(f,g) | L_p || \leq c2^{-kr} \cdot 2^{kq} \sum_{j=k}^{\infty} 2^{-jq}(2^{jr}||\Delta_j g | L_{p_j} ||)(2^{js}||\Delta_j f | L_{p_j} ||) \]

\[\leq c2^{-kr}||g | B_{p_2,\infty}^r |||| f | B_{p_1,\infty}^s ||. \quad (2.30) \]

□

In this inequality, we take \(\ell_{\min(p,q)} \)-norm and we conclude the desired estimate using (2.29).

Proof of Theorem 2.5 (ii). (1) Estimate of \{\Pi_{k,1}(f,g)\}_{k \in \mathbb{N}}. We set \(1/u = 1/p - 1/p_1 \). As in (2.26), we have the bound \(c ||g | F_{u,2}^0 || || f | F_{p_1,q}^s || \) which, by the embeddings \(B_{p_1,\infty}^r \hookrightarrow B_{p_2,\infty}^{n/p_2-n/u} \hookrightarrow F_{u,2}^0 \), is estimated as desired.

(2) Estimate of \{\Pi_{k,2}(f,g)\}_{k \in \mathbb{N}}. In part, for technical reasons, we prove this in three separate cases:

Case 1 \((s < 0)\). By Lemma 1.6, the Hölder inequality, and Lemma 1.8, we have

\[||\Pi_{k,2}(f,g) | L_p || \leq c2^{(n/p_1+n/p_2-n/p-r-s)k} ||g | B_{p_2,\infty}^r || || f | B_{p_1,\infty}^s ||. \quad (2.31) \]

Since \(n/p_1 + n/p_2 - n/p - r < 0 \), we obtain an inequality of type (2.28) and finish the proof of this case using (2.29).

Case 2 \((0 \leq s < n/p_1)\). We set \(1/b = 1/p_2 + 1/p_1 - s/n \). We continue with the following subcases.

Subcase 2.1 \((r \leq n/p_2 \text{ and } p \leq b \text{ (or } s \leq n/p_2 < r \text{ and } p \leq b))\). As in Case 1, we have

\[||\Pi_{k,2}(f,g) | L_p || \leq cy_k 2^{-kr} ||g | B_{p_2,\infty}^r || || f | B_{p_1,\infty}^s ||, \quad (2.32) \]

where

\[y_k = \left\{ \begin{array}{ll}
 k + 2 & \text{if } p = b, \\
 (1 - 2^{n/b-(n/p)-s})^{-1} & \text{if } p < b.
\end{array} \right. \quad (2.33) \]

Now since \(2^{k(s-r)}y_k \in \ell_{\min(p,q)} \), we conclude the desired conclusion using (2.28) and (2.29).

Subcase 2.2 \((r \leq n/p_2 \text{ and } p > b \text{ (or } s \leq n/p_2 < r \text{ and } p > b))\). Let \(u > 0 \) satisfy

\[\max \left(0, \frac{1}{p} - \frac{1}{p_2} \right) < \frac{1}{u} < \frac{1}{p_1} - \frac{s}{n}. \quad (2.34) \]
We employ the notations \(v, \sigma, \) and \(\beta \) from (2.13). We have
\[
\| \Pi_{k,2}(f,g) \|_{L_r} \leq c \| g \|_{B_{p_1,\infty}^{\sigma}} \| f \|_{B_{u,\infty}^{\beta}(2^{-k(\beta-r)})}.
\] (2.35)

Since \(\{2^{-k(\beta+r-\sigma)}\}_{k \in \mathbb{N}} \in \ell_p \), we can finish the proof of this case using (2.14).

Subcase 2.3 \((n/p_2 < s < r)\). We have only case \(p < b \) needs to be verified. As in (2.32), we immediately obtain the result.

Case 3 \((s \geq n/p_1)\). We have the following subcases.

Subcase 3.1 \((p < p_2)\). We set \(1/v = 1/p - 1/p_2 \). Observe that
\[
2^{k\epsilon} \| \Pi_{k,2}(f,g) \|_{L_p} \leq c 2^{k\epsilon} \| \tilde{\Delta}_k g \|_{L_{p_2}} \left(2^{k(s-r)} \sum_{j=0}^{k+1} 2^{j(n/p_1-n/v)} \| \Delta_j f \|_{L_{p_1}} \right)
\]
(2.36)
Then, we calculate \(\ell_{\min(p,q)} \)-norm and conclude the desired estimate by the fact that
\[
\left\{ 2^{k(s-r)} \sum_{j=0}^{k+1} 2^{-jn/v} \right\}_{k \in \mathbb{N}} \in \ell_{\min(p,q)}.
\] (2.37)

Subcase 3.2 \((s > n/p_1 \) and \(p \geq p_2)\). It suffices to apply both embedding \(B_{p_1,\infty}^{s} \hookrightarrow B_{p_1,1}^{n/p_1} \) and (2.29) to
\[
\| \Pi_{k,2}(f,g) \|_{L_p} \leq c \| \tilde{\Delta}_k g \|_{L_{p_2}} \| Q_{k+1} f \|_{L_\infty}
\]
(2.38)
\[
\leq c 2^{k(n/p_2-r-n/p)} \| g \|_{B_{p_2,\infty}^{s}} \| f \|_{B_{p_1,1}^{n/p_1}}.
\]

Subcase 3.3 \((s = n/p_1 \) and \(p \geq p_2)\). We choose \(\alpha > 0 \) such that \(\epsilon = \alpha - n/p + n/p_1 + n/p_2 - r < 0 \), then it suffices to apply (2.29) to
\[
2^{kn/p_1} \| \Pi_{k,2}(f,g) \|_{L_p} \leq c 2^{k\epsilon} \| g \|_{B_{p_2,\infty}^{s}} \| f \|_{B_{p_1,1}^{n/p_1-n}}.
\] (2.39)

(3) Estimate of \(\{ \Pi_{k,3}(f,g) \}_{k \in \mathbb{N}} \). The proof of this case is obtained similarly to the proof of Theorem 2.1 just by replacing (2.17) and (2.20) with
\[
\frac{1}{p} - \frac{1}{p_2} \frac{1}{p_1} < \frac{1}{u} < \frac{1}{p_1},
\] (40)
\[
\frac{1}{p_2} \frac{1}{p} - \frac{1}{p_2} \frac{1}{p_1} < \frac{1}{u} < \frac{1}{p_1},
\] respectively.

3. Multiplication of types \(F \cdot B \) and \(B \cdot B \)

The next theorem presents a continuation of [3], [5, Theorem 6.1], [6], and [7, Section 5].
Theorem 3.1. Let $0 < p_1 < \infty$ (resp., $0 < p_1 \leq \infty$), $1 \leq p_2 \leq \infty$, $0 < q \leq \infty$, and $n/p_1 - n < s < \min(n/p_1, n/p_2)$. Then it holds

$$F_{p_1, q}^s \cdot (B_{p_2, \infty}^{n/p_2} \cap L_{\infty}) \subset F_{p_1, q}^s \quad \text{(resp., } B_{p_1, \infty}^{n/p_1} \cap L_{\infty} \subset B_{p_1, q}^s \rangle. \quad (3.1)$$

Remark 3.2. We note that (3.1), in the F-case, was proved by Franke [4, Section 3.4, Corollary 1] but only in the particular case

$$p_2 = \begin{cases} p_1 & \text{if } 0 < p_1 < 2, \\ p_1(p_1 - 1)^{-1} & \text{if } 2 \leq p_1 < \infty. \end{cases} \quad (3.2)$$

Also this case yields

$$F_{p_1, q}^s \cdot (F_{p_2, \infty}^{n/p_2} \cap L_{\infty}) \subset F_{p_1, q}^s. \quad (3.3)$$

Remark 3.3. Theorem 3.1, when $1 \leq p_1 \leq p_2 < \infty$, was proved in [3].

Proof of Theorem 3.1. The estimates of $\{\Pi_{k, 1}(f, g)\}_k \subset \ell_q$ and $\{\Pi_{k, 2}(f, g)\}_k \subset \ell_q$ are similar to Theorem 2.1, see also [3]. For $\{\Pi_{k, 2}(f, g)\}_k \subset \ell_q$, we take, in (2.16), $r = n/p_2$, and $q_2 = \tilde{q}_2 = \infty$, we obtain (3.1) in the F-case. In the B-case, we will employ the notations u, v, σ, and β from (2.12) and (2.13) with the modifications $r = n/p_2$ and $\sigma = s - n/p_1 + n/v$. One has

$$2^{k+1}\|\Pi_{k, 2}(f, g) \cdot L_v\| \leq c\|g \cdot B_{p_2, \infty}^{n/p_2}\| \left(2^{k+1} \sum_{j=0}^{k+1} 2^{-j\beta} \cdot 2^{j\beta} \|\Delta_j f \cdot L_u\| \right). \quad (3.4)$$

Since $\beta < 0$, the last inequality, in the ℓ_q-norm, is bounded by the expression $c\|g \cdot B_{p_2, \infty}^{n/p_2}\| \|f \cdot B_{p_1, q}\|$. At the end, it suffices to use

$$\ell_q^s(L_v^s) \subset \ell_q^s(L_{p_1}^s), \quad B_{p_1, q}^s \subset B_{p_1, q}^\beta. \quad (3.5)$$

4. Some limit cases

We will prove results of independent interest concerning the limit case for the parameters $s + r$, see [5, Theorems 6.5 and 6.11].

Theorem 4.1. Let $0 < p, q, p_i, q_i \leq \infty$, $(i = 1, 2)$, $-\infty < s < \infty$, and $r > 0$ such that

$$\frac{1}{q_1} + \frac{1}{q_2} \geq 1, \quad s + r = \frac{n}{p_1} + \frac{n}{p_2} - n > 0. \quad (4.1)$$
If either of the following assertions is satisfied:

(i)
\[
\frac{r}{p_2} < \frac{n}{p_2}, \quad \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} - \frac{r}{n}, \quad s < \min\left(\frac{n}{p_1}, r\right),
\]

\[
\frac{1}{q_2} \geq \frac{1}{p_2} - \frac{r}{n}, \quad q = \infty, \quad p_2 \neq \infty,
\]

(ii)
\[
\max\left(\frac{1}{p_1}, \frac{s}{n}\right) + \max\left(0, \frac{1}{p_2} - \frac{r}{n}\right) < \frac{1}{p} \leq \frac{1}{p_1} + \frac{1}{p_2}
\]

and either of the following cases is satisfied:

(1) \(s < r, \quad q_1 \leq q\),

(2) \(s = r, \quad \max(q_1, q_2) \leq q\),

then it holds

\[
F^{s}_{p_1, q_1} \cdot F^{r}_{p_2, q_2} \hookrightarrow F^{s}_{p, q}.
\]

Remark 4.2. In Theorem 4.1(i), when \(r = n/p_2\), we have

\[
B^{s}_{p_1, q_1} \cdot (B^{n/p_2}_{p_2, q_2} \cap L_{\infty}) \hookrightarrow B^{s}_{p_1, q}.
\]
Theorem 4.5. Let $0 < p, p_1 < \infty$, $0 < p_2, q_1, q_2 \leq \infty$, $-\infty < s < \infty$, and $r > 0$ such that
\begin{equation}
q_1 \geq p_1, \quad \frac{1}{q_1} + \frac{1}{q_2} \geq 1, \quad s < r, \quad s + r = \max\left(0, \frac{n}{p_1} + \frac{n}{p_2} - n\right). \tag{4.11}
\end{equation}

If either of the following assertions is satisfied:

(i) \begin{equation}
\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}, \tag{4.12}
\end{equation}

(ii) \begin{equation}
\max\left(\frac{1}{p_1}, \frac{s}{n}\right) + \max\left(0, \frac{1}{p_2} - \frac{r}{n}\right) < \frac{1}{p} < \frac{1}{p_1} + \frac{1}{p_2}, \tag{4.13}
\end{equation}

then it holds
\begin{equation}
F^s_{p_1, q_1} \cdot B^r_{p_2, q_2} \hookrightarrow F^s_{p, q_1}. \tag{4.14}
\end{equation}

Proof of Theorem 4.1 (i). (i) Estimate of $\{\Pi_{k,1}(f,g)\}_{k \in \mathbb{N}}$. We set $1/u = 1/p_2 - r/n$. The Hölder inequality and Lemma 2.4 give
\begin{equation}
2^{ks}\|\Pi_{k,1}(f,g) | L_p\| \leq c\|g | F^0_{u,2}\|\left(2^{ks}\|\tilde{\Delta}_k f | L_p\|\right). \tag{4.15}
\end{equation}

The embedding $B^r_{p_2, q_2} \hookrightarrow F^0_{u,2}$ together with the ℓ_{∞}-norm of (4.15) and $\ell_{q_1} \hookrightarrow \ell_{\infty}$ give the desired estimate.

(ii) Estimate of $\{\Pi_{k,2}(f,g)\}_{k \in \mathbb{N}}$. Using the notations u, v, σ, and β from (2.12) and (2.13), we have, as in (2.15),
\begin{equation}
2^{ks}\|\{\Pi_{k,2}(f,g)\}_{k \in \mathbb{N}} | \ell_{\infty}(L_v)\| \leq c\|g | B^r_{p_2, \infty}\|\|f | B^\beta_{u, \infty}\|, \tag{4.16}
\end{equation}

and the conclusion is obtained by (3.5).

(iii) Estimate of $\{\Pi_{k,3}(f,g)\}_{k \in \mathbb{N}}$. We set $1/b = 1/p_1 + 1/p_2$. By Lemma 1.6 and the Hölder inequality, we obtain
\begin{equation}
\|\Pi_{k,3}(f,g) | L_b\| \leq c2^{-k(s+r)}\sum_{j=k}^{\infty}(2^{jr}\|\Delta_j g | L_{p_2}\|)(2^{js}\|\Delta_j f | L_{p_1}\|). \tag{4.17}
\end{equation}

Using $\ell_d \hookrightarrow \ell_1$ (with $1/d = 1/q_1 + 1/q_2$) we employ the Hölder inequality again to conclude that the last term of (4.17) is bounded by $c\|g | B^r_{p_1, q_1}\|\|f | B^\beta_{p_2, q_2}\|$. We finish the proof of this case by applying the embedding $\ell_{\infty}^{s+r}(L^\gamma_b) \hookrightarrow \ell_{\infty}(L^\gamma_p)$. \hfill \Box

Proof of Theorem 4.1 (ii). For $\{\Pi_{k,1}(f,g)\}_{k \in \mathbb{N}}$ and $\{\Pi_{k,2}(f,g)\}_{k \in \mathbb{N}}$, we can use the same methods in Theorem 2.5, see also [10, Sections 4.4.3 and 4.4.4].
Estimate of \(\{ \Pi_{k,3}(f, g) \}_{k \in \mathbb{N}} \). By Lemmas 1.6, 1.8 and the Hölder inequality, we have

\[
2^{ks} \| \Pi_{k,3}(f, g) \|_{L^p} \leq c 2^{k(n/p_1 + n/p_2 - n/p - r)} \sum_{j=k}^{\infty} (2^{jr} \| \Delta_j g \|_{L^{p_2}})(2^{js} \| \Delta_j f \|_{L^{p_1}}). \tag{18}
\]

Since \(n/p_1 + n/p_2 - n/p - r < 0 \), we conclude the desired estimate using \(\ell_d \mapsto \ell_1 \) (with \(1/d = 1/q_1 + 1/q_2 \)). \(\Box \)

Proof of Theorem 4.3(i). (i) Estimate of \(\{ \Pi_{k,1}(f, g) \}_{k \in \mathbb{N}} \). We set \(1/u = 1/p_2 - r/n \), (i.e., \(1/p = 1/p_1 - 1/u \)). As in (2.9), the choice of \(a_1 > n/u \) and \(a_2 > n/p_1 \) leads to

\[
\| \{ 2^{k} \Pi_{k,1}(f, g) \}_{k \in \mathbb{N}} | \ell_\infty(L^p) \| \leq c \| \sup_j Q^*_j a_1 g | L_u \| \| \{ 2^{k} \Delta_j a_1 f \}_{k \in \mathbb{N}} | \ell_\infty(L^p) \| \leq c \| g \|_{F_{u,2}^0} \| f \|_{B_{p,1}^{a_1}}. \tag{19}
\]

We conclude the desired estimate by applying both \(F_{p_1, \infty}^r \mapsto F_{u,2}^0 \) and \(F_{p_1, \infty}^s \mapsto B_{p,1}^{a_1} \).

(ii) Estimate of \(\{ \Pi_{k,2}(f, g) \}_{k \in \mathbb{N}} \). Using the notations \(u, v, \sigma, \) and \(\beta \) from (2.12) and (2.13), we have

\[
2^{k\sigma} | \Pi_{k,2}(f, g) | \leq c \sup_{\ell \in \mathbb{N}} (2^{k} \Delta_j a_1 g) \left(2^{k\beta} \sum_{j=0}^{k+1} 2^{-j\beta} (2^{j} \Delta_j a_1 f) \right). \tag{20}
\]

Since \(\beta < 0 \), then

\[
\| \{ 2^{k\sigma} \Pi_{k,2}(f, g) \}_{k \in \mathbb{N}} | \ell_\infty \| \leq c \sup_{\ell \in \mathbb{N}} (2^{k} \Delta_j a_1 g) \| \{ 2^{j} \Delta_j a_1 f \}_{j \in \mathbb{N}} | \ell_\infty \|. \tag{21}
\]

We choose \(a_1 > n/p_2 \) and \(a_2 > n/u \). We obtain the desired result by applying the Hölder inequality, the embeddings \(L^v_\ell (L^s_\infty) \mapsto L^s_\ell (L^s_\infty) \mapsto L^s_\ell (L^r_\infty) \) and \(F_{p_1, q}^s \mapsto F_{u, \infty}^s \).

(iii) Estimate of \(\{ \Pi_{k,3}(f, g) \}_{k \in \mathbb{N}} \). We set \(1/u = 1/p_2 + 1/p_1 \). We begin by the inequality

\[
\left\| \sum_{k=0}^{\infty} \Pi_{k,3}(f, g) \right\|_{B_{p, \infty}^s} \leq c \left\| \sum_{j=0}^{\infty} Q_j (\Delta_j g \cdot \Delta_j f) \right\|_{B_{u, \infty}^{s+r}}. \tag{22}
\]

We can write

\[
| Q_j (\Delta_j g \cdot \Delta_j f) | \leq c \sup_{j \in \mathbb{N}} (\Delta_j a_1 g \cdot \Delta_j a_2 f). \tag{23}
\]

We choose \(a_1 > n/p_2 \) and \(a_2 > n/\min(p_1, q) \). Then Lemma 1.7 gives the correct bound for (4.22). \(\Box \)

The same method works for the proofs of Theorems 4.3(ii) and 4.5. We omit the details.
Remark 4.6. Theorems 4.1(i) and 4.3(i), when $1 \leq p \leq \infty$, were proved by Johnsen in [5, Theorems 6.11 and 6.5], respectively.

5. Application

We consider $S^0_{1,0}(E)$ (E a Banach space), the class of symbols $(x, \xi) \to a(x, \xi)$ satisfying
\[
\|\Delta^{\beta} a(\cdot, \xi) | E \| \leq c_\beta (1 + |\xi|)^{-|\beta|} \quad (\forall \beta \in \mathbb{N}^n),
\]
and we define the pseudodifferential operator by the formula
\[
\text{Op}_a f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} a(x, \xi) \hat{f}(\xi) d\xi \quad (\forall f \in \mathcal{S}, \forall x \in \mathbb{R}^n).
\]

As mentioned in the introduction, the theorems of this section present an application of the previous results in this paper.

Theorem 5.1. Let $1 \leq p, r, q \leq \infty$, $-\infty < s < \infty$, and $r > 0$. Under the hypotheses of Theorem 2.1 (with $p_2 \neq \infty$ and $r < n/p_2$) or Theorem 2.5, the operator Op_a is bounded from $F^r_{p, q}$ to $F^s_{p, q}$ for all $a \in S^0_{1, 0}(B^r_{p, q_2})$.

The proof of Theorem 5.1 is based on the following almost-orthogonality lemma.

Lemma 5.2. Let $\gamma > 1$ and let $p, p_1, p_2, q, q_2, r, s$ be the same as in Theorem 2.1 (with $p_2 \neq \infty$ and $r < n/p_2$) or Theorem 2.5. For all sequences $\{m_j\}_{j \in \mathbb{N}} \subset B^r_{p_2, q_2}$ and all sequences $\{f_j\}_{j \in \mathbb{N}}$ of functions such that $\text{supp} \hat{f}_j \subset \{ \xi \in \mathbb{R}^n : \gamma^{-1} 2^j \leq |\xi| \leq 2^j \}$, the estimate
\[
\left\| \sum_{j=0}^{\infty} m_j \cdot f_j \right\|_{F^s_{p_1, q_1}} \leq c \left\| \left\{ f_j \right\}_{j \in \mathbb{N}} \right\|_{L^s_{p_1}(E^q)}
\]
holds with $c = c' \sup_{j=0} \|m_j\|_{B^r_{p_2, q_2}}$.

Proof. Observe that $\Delta_k f_j \neq 0$ and $Q_{k+1} f_j \neq 0$ if $k - N \leq j \leq k + N + 2$ and $j \leq k + N + 2$, respectively, where $N = \lfloor \log_2 \gamma \rfloor$; (here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x). Then it suffices to apply Theorem 2.1 (and/or Theorem 2.5) to the following decomposition:
\[
\Delta_k \left(\sum_{j=0}^{\infty} m_j \cdot f_j \right) = \sum_{\ell=-N}^{N+2} \Pi_{k,1}(m_{k+\ell}, f_{k+\ell}) + \sum_{j=0}^{k+N+2} \Pi_{k,2}(m_j, f_j) + \sum_{\ell=-N}^{N+2} \tilde{\Pi}_{k,3}(m_{-\ell}, f_{+\ell}),
\]
where $\tilde{\Pi}_{k,3}(m_{-\ell}, f_{+\ell}) = \sum_{j=0}^{\infty} \Delta_j (m_{j+\ell} \cdot \Delta_j f_{j+\ell})$ (see also (2.7)).

Proof of Theorem 5.1. We begin by writing
\[
a(x, \xi) = (2\pi)^{-n} \int_{\mathbb{R}^n} (1 + |u|^2)^{-(n+1)/2} a_0(x, \xi) du + \lambda(x, \xi),
\]
where \(\lambda(x, \xi) = 0 \) for \(|\xi| \geq 3 \),

\[
\| \partial_\xi^\beta \lambda(\cdot, \xi) \|_{B^{r}_{p, q}} \leq c_\beta (1 + |\xi|)^{-|\beta|} \quad (\forall \beta \in \mathbb{N}^n),
\]

\[a_u(x, \xi) = \sum_{j=0}^{\infty} m_{j, u}(x) \theta_u(2^{-j} \xi), \tag{5.6}\]

\[
\sup_{j \in \mathbb{N}, u \in \mathbb{R}^n} \|[m_{j, u}]_{B^{r}_{p, q}}\| \leq c,
\]

\[
\theta_u(\xi) = (2\pi)^{-n}(1 + |u|^2)^{(n+1-L)/2} e^{iu \cdot \xi} \theta(\xi),
\]

\(\theta \) is a \(C^\infty \) function with \(\text{supp} \theta \subset \{ \xi \in \mathbb{R}^n : 1 \leq |\xi| \leq 3 \} \), and

\[
\| \theta_u^{(\beta)} \|_{L_\infty} \leq c \quad (\forall u \in \mathbb{R}^n, |\beta| \leq L - n - 1). \tag{5.7}\]

For the decomposition (5.5), we refer the reader to [2] or [8].

Now, by Lemma 5.2, we have

\[
\| \operatorname{Op}_a f \|_{F^{s}_{p, q}} \leq \sup_{u \in \mathbb{R}^n} \|b_u \cdot f(\cdot + u)\|_{F^{s}_{p, q}}, \tag{5.8}\]

where \(\overline{f}(u)(\xi) = \theta_u(2^{-j} \xi) \hat{f}(\xi) \) and \(c' \) is independent of \(u \). Next, we can write

\[
\operatorname{Op}_a f(x) = \int_{\mathbb{R}^n} (1 + |u|^2)^{-(n+1)/2} b_u(x) f(x + u) du, \tag{5.9}\]

where

\[
b_u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-iu \cdot \xi} (I - \Delta)^{2n} \lambda(x, \xi) d\xi. \tag{5.10}\]

Theorems 2.1 and 2.5 immediately give

\[
\| \operatorname{Op}_a f \|_{F^{s}_{p, q}} \leq \left(\sup_{u \in \mathbb{R}^n} \|[b_u]_{B^{r}_{p, q}}\| \right) \| f \|_{F^{s}_{p, q}} \leq c \| f \|_{F^{s}_{p, q}}. \tag{5.11}\]

\(\square \)

Theorem 5.3. Let \(1 \leq p, p_1, q, q_1 \leq \infty \), \(r > 0 \), and

\[
-s + \frac{n}{p} + \frac{n}{p_1} - n < s < \min\left(\frac{n}{p}, r \right). \tag{5.12}\]

Suppose that \(a \in \mathcal{S}^0_{1,0}(B^{r}_{p, q}) \) if \(r > n/p_1 \) and \(a \in \mathcal{S}^0_{1,0}(L_\infty) \cap \mathcal{S}^0_{1,0}(B^{n/p_1}_{p_1, \infty}) \) if \(r = n/p_1 \). Then the operator \(\operatorname{Op}_a \) is bounded on \(F^{s}_{p, q} \) and \(B^{s}_{p, q} \).
For the proof, we apply Theorem 3.1 and proceed as in Theorem 5.1, however, we need an almost-orthogonality estimate of the type in Lemma 5.2, that is, the following lemma.

Lemma 5.4. Let $\gamma > 1$, $0 < p, p_1, q, q_1 \leq \infty$, $r \geq n/p_1$, and s be as in Theorem 5.3. For all sequences of functions $\{f_j\}_{j \in \mathbb{N}}$ such that $\text{supp} \hat{f}_j \subset \{\xi \in \mathbb{R}^n : \gamma^{-1}2^j \leq |\xi| \leq \gamma 2^j\}$ and all sequences $\{m_j\}_{j \in \mathbb{N}} \subset B'_{p_1,q_1}$ (or $\{m_j\}_{j \in \mathbb{N}} \subset B'_{n/p_1,p_1,q_1} \cap L_\infty$), the estimates

\[
\left\| \sum_{j=0}^\infty m_j \cdot f_j \right\|_{F_p^s L_p} \leq c \left\| \{f_j\}_{j \in \mathbb{N}} \right\|_{L_p^s (\ell_q^s)} ,
\]

\[
\left\| \sum_{j=0}^\infty m_j \cdot f_j \right\|_{B_p^s} \leq c' \left\| \{f_j\}_{j \in \mathbb{N}} \right\|_{\ell_q^s (L_p^s)} ,
\]

\[
(5.13)
\]

hold. The constants c and c' are of the form $c'' \sup_{j \in \mathbb{N}} (\|m_j \|_{L_\infty} + \|m_j \|_{B'_{p_1,q_1}})$.

Acknowledgment

We would like to thank the referee(s) for the most helpful remarks and corrections which led to the improvements, the results, and the presentation of this paper.

References

[1] J. Bergh and J. Löfström, *Interpolation Spaces. An Introduction*, Springer, Berlin, 1976.
[2] G. Bourdaud and M. Moussai, *Continuité des commutateurs d’intégrales singulières sur les espaces de Besov*, Bulletin des Sciences Mathématiques 118 (1994), no. 2, 117–130.
[3] D. Drihem and M. Moussai, *Some embeddings into the multiplier spaces associated to Besov and Lizorkin-Triebel spaces*, Zeitschrift für Analysis und ihre Anwendungen 21 (2002), no. 1, 179–184.
[4] J. Franke, *On the spaces $F_{p,q}^s$ of Triebel-Lizorkin type: pointwise multipliers and spaces on domains*, Mathematische Nachrichten 125 (1986), 29–68.
[5] J. Johnsen, *Pointwise multiplication of Besov and Triebel-Lizorkin spaces*, Mathematische Nachrichten 175 (1995), 85–133.
[6] J. Marschall, *On the boundedness and compactness of nonregular pseudo-differential operators*, Mathematische Nachrichten 175 (1995), 231–262.
[7] _____, *Nonregular pseudo-differential operators*, Zeitschrift für Analysis und ihre Anwendungen 15 (1996), no. 1, 109–148.
[8] M. Moussai, *Continuity of pseudo-differential operators on Bessel and Besov spaces*, Serdica. Mathematical Journal 27 (2001), no. 3, 249–262.
[9] J. Peetre, *New Thoughts on Besov Spaces*, Duke University Mathematics Series, no. 1, Mathematics Department, Duke University, North Carolina, 1976.
[10] T. Runst and W. Sickel, *Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations*, de Gruyter Series in Nonlinear Analysis and Applications, vol. 3, Walter de Gruyter, Berlin, 1996.
[11] H. Triebel, *Interpolation Theory, Function Spaces, Differential Operators*, North-Holland Mathematical Library, vol. 18, North-Holland, Amsterdam, 1978.
[12] _____, *Theory of Function Spaces*, Monographs in Mathematics, vol. 78, Birkhäuser, Basel, 1983.
Multiplication in Besov and Lizorkin spaces

[13] ______, *Theory of Function Spaces. II*, Monographs in Mathematics, vol. 84, Birkhäuser, Basel, 1992.

[14] M. Yamazaki, *A quasi-homogeneous version of paradifferential operators. I. Boundedness on spaces of Besov type*, Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics 33 (1986), no. 1, 131–174.

Douadi Drihem: Department of Mathematics, Laboratory of Mathematics Pure and Applied, M’Sila University, P.O. Box 166, M’Sila 28000, Algeria
E-mail address: douadidr@yahoo.fr

Madani Moussai: Department of Mathematics, Laboratory of Mathematics Pure and Applied, M’Sila University, P.O. Box 166, M’Sila 28000, Algeria
E-mail address: mmoussai@yahoo.fr