DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation

Highlights
- Double-degron system allows rapid protein degradation and DNA replication control
- DNA replication restrains PLK1 and CDK1 activities until S/G2 transition
- DNA replication, via CHK1/p38 signaling, prevents CDK1-driven DNA damage
- DNA replication functions as a brake that determines the timing of mitosis

Authors
Bennie Lemmens, Nadia Hegarat, Karen Akopyan, Joan Sala-Gaston, Jiri Bartek, Helfrid Hochegger, Arne Lindqvist

Correspondence
h.hochegger@sussex.ac.uk (H.H.), arne.lindqvist@ki.se (A.L.)

In Brief
Proliferating cells need to duplicate their genome before they divide. Lemmens et al. find that DNA replication determines the timing of cell division by restricting activation of mitotic kinases. This mechanism ensures that DNA replication and cell division are separated in time and prevents replication stress.
DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation

Bennie Lemmens,1,2,6 Nadia Hegarat,3,6 Karen Akopyan,1 Joan Sala-Gaston,1 Jiri Bartek,2,4 Helfrid Hochegger,3,* and Arne Lindqvist1,6,*

1Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
2Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
3Genome Damage and Stability Centre, University of Sussex, Brighton, UK
4Danish Cancer Society Research Center, Copenhagen, Denmark
5These authors contributed equally
6Lead Contact
*Correspondence: h.hochegger@sussex.ac.uk (H.H.), arne.lindqvist@ki.se (A.L.)
https://doi.org/10.1016/j.molcel.2018.05.026

SUMMARY

To maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.

INTRODUCTION

Cell proliferation is critical to the propagation of life and in eukaryotes is based on mitotic cell division. Mitotic cell division requires two basic steps: first, cells need to replicate their DNA, and second, cells need to divide the replicated genome to daughter cells. Strict separation of these steps in time is critical as division of partially duplicated chromosomes causes genome instability and cell death (Boddy et al., 1998; Piatti et al., 1995; Tercero et al., 2000). Furthermore, activation of mitotic factors during DNA replication causes replication fork instability and DNA damage (Beck et al., 2010; Neelsen et al., 2013). How cells coordinate genome duplication and mitosis thus constitutes a fundamental question in cell cycle control, which has major consequences for both proliferation and genome stability.

Almost 30 years ago, Hartwell and Weinert introduced the concept of a checkpoint and described it as a safety mechanism that prevents cell division if DNA replication is not complete (Hartwell and Weinert, 1989). However, empirical data supporting an intrinsic DNA replication checkpoint proved hard to obtain, as treatments to block DNA replication fork progression are prone to cause DNA damage, evoking secondary responses that halt mitotic progression (Kurose et al., 2006; Natsume et al., 2017). The concept of a checkpoint soon expanded and became increasingly used to depict a cell cycle block in response to DNA damage and other cellular stresses. Stress-induced checkpoints have been widely studied, which has led to the identification of well-conserved signaling kinases, such as CHK1 and p38 (Bulavin et al., 2002; Reinhardt and Yaffe, 2009). Meanwhile, the discovery of autonomous biochemical oscillators in yeast cells and de-nucleated Xenopus egg extracts provided alternative models that could explain orderly cell cycle progression without the need of a DNA replication checkpoint (Haase and Reed, 1999; Newport and Kirschner, 1984; Stern and Nurse, 1996). That is, self-regulating oscillators could in principle ensure sufficient time to finish DNA replication before mitosis is triggered.

The key to understand how DNA replication and cell division are separated is to understand how cell division is initiated. Mitotic entry is driven by the kinases CDK1 and PLK1, which through multiple feedback loops enhance each other’s activity (Lindqvist et al., 2009). Activation of CDK1 depends on CDK2-mediated accumulation of mitotic inducers, such as PLK1, which at a threshold level can induce a switch-like activation and mitotic entry. The threshold is defined by factors opposing CDK1 activation, including PP1 and PP2A phosphatases and Wee1/Myt1 kinases (Hégarat et al., 2016). In addition, checkpoint kinases as CHK1 and p38-MK2 can raise the activation threshold through phosphorylation of multiple CDK regulators (Reinhardt and Yaffe, 2009), effectively suppressing CDK activity in the presence as well as absence of exogenous DNA damage (Beck et al., 2010; Rodriguez-Bravo et al., 2007; Sørensen et al., 2004; Warmerdam et al., 2013). However, if and how
unperturbed DNA replication is integrated into this regulatory circuit remains unknown. We previously showed that both CDK1 and PLK1 are activated when the bulk of DNA replication is completed at the S/G2 transition (Akopyan et al., 2014). These observations resurged the prospect of the original checkpoint model and prompted us to test whether DNA replication restricts mitotic kinase activation (Figure 1A).

Here, we generated a double-degron system to rapidly deplete the essential DNA replication-initiation factor CDC6 and show that untransformed human cells shorten the cell cycle and prematurely enter mitosis in the absence of DNA replication. Using RNAi and inhibitors to independently target DNA replication licensing or firing, we find similar results in cancer cells. We also find that abrogating CHK1 activity in transformed cells, or CHK1 and p38 activity in untransformed cells, enhances CDK activation specifically upon G1/S transition, supporting the notion of a DNA replication checkpoint in human cells. While checkpoint inhibition causes premature activation of CDK2, PLK1, and CDK1, we find the latter most harmful and causing severe DNA replication stress.

Our results indicate that DNA replication is not only an output but also an integral signaling component of the cell cycle oscillator and is a major determinant for the timing of mitosis. DNA replication, through checkpoint kinase signaling, coordinates the cell cycle by allowing a slow buildup of CDK2 activity while suppressing CDK1 and PLK1 activation until S phase completion.

RESULTS

Nuclear PLK1 Activation Marks Completion of DNA Replication at S/G2 Transition

In order to simultaneously monitor DNA replication and mitotic kinase activation, we generated untransformed but immortalized retinal pigment epithelial (RPE) cell lines expressing a marker for DNA replication (proliferating cell nuclear antigen [PCNA]-cb)
A double-degron tagging by CRISPR

BMS prevents SMASH auto-cleavage producing unstable CDC6 fusion proteins

AUX triggers CDC6-mAID degradation via DOX-inducible OsTIR E3 ligase

DNA replication licensing

B

C

Cyclin A2

EdU

D

Asynch. cells

CDC6

E

Before licensing

AUX triggers CDC6-mAID degradation

via DOX-inducible OsTIR E3 ligase

Control

12h early S-phase

12h late S-phase

EDU intensity (a.u.)

Cyclin A2 intensity (a.u.)

EDU intensity (a.u.)

Cyclin A2 intensity (a.u.)
and a sensor for PLK1 target phosphorylation (PLK1-FRET). In agreement with our previous findings in U2OS cancer cells, PLK1 target phosphorylation remained undetectable during active DNA replication and only appeared when the bulk of PCNA foci disappeared (Figure 1B). The close correlation between PCNA foci disappearance and Plk1-mediated phosphorylation was retained when completion of DNA replication was delayed by addition of thymidine (Figures 1C, S1A, and S1B). To test PLK1-dependent phosphorylation of an endogenous target, we next assessed TCTP-pS46 staining (Cucchi et al., 2010) by quantitative immunofluorescence. To estimate temporal kinetics from fixed asynchronous cell populations, we sorted single cells based on cyclin A2 content, DNA content, and nuclear size (Akopyan et al., 2014, 2016). DNA replication was assessed by measuring EdU nucleotide incorporation immediately before fixation, and PLK1 activity was determined by PLK1-dependent TCTP-pS46 staining using a low dose of the PLK1 inhibitor BI2536 (Figure S2A). We note that there is a close correlation between the disappearance of EdU staining and the appearance of BI2536-sensitive TCTP-pS46 staining in U2OS, RPE, and early-passage primary fibroblasts (Figures 1D, S2A, and S2B). The robust coupling between completion of S phase and activation of PLK1 as assessed by both fixed and live readouts suggests that PLK1 activation can function as a marker for the S/G2 transition in human cells.

A Double-Degron System to Prevent DNA Replication Licensing

To assess whether PLK1 activation is restricted by DNA replication, we sought to analyze cells that progressed through the cell cycle without replicating DNA. In yeast, mutants in the DNA replication licensing factor Cdc6 can efficiently suppress DNA replication without blocking cell cycle progression (Muzi Falconi et al., 1996; Piatti et al., 1995). We therefore set out to generate a genetic system that would allow rapid degradation of CDC6 in untransformed human cells. We used p53−/− RPE cells to avoid a licensing checkpoint (Nevis et al., 2009; Shreeram et al., 2002) and labeled both endogenous CDC6 alleles with an optimized double-degron tag. The double degron is based on two protein degradation tags: mAID (Nishimura et al., 2009) and SMASH (Chung et al., 2015), allowing rapid depletion of endogenously tagged CDC6 (Figures 2A, 2B, S3A, and S3B; STAR Methods). CDC6 degradation using both mAID and SMASH prevented EdU incorporation more efficiently than using mAID or SMASH alone, showing an additive effect of both degradation tags on suppressing DNA replication (Figures 2C and S3B). After 48 hr CDC6 degradation, cyclin A2 expression and CDK-mediated phosphorylation of lamin A/C pS22 was not reduced, indicating that cells remained engaged in the cell cycle (Figures S3C and S3D). Whereas mitotic cells were abundant, they showed half the DNA content of their control counterparts and few anaphase figures, as expected for cells entering mitosis without sister chromatids (Figures S3E–S3G). Taken together, our results show that the CDC6 double-degron system can be used to suppress DNA replication.

Suppression of DNA Replication Initiation in Unsynchronized Human Cells

We next pursued to study cell cycle progression in the absence of DNA replication. We aimed to prevent initiation of replication, as perturbation of ongoing replication leads to DNA damage and cell cycle arrest (Natsume et al., 2017). Meanwhile, to avoid secondary effects due to continued proliferation with incomplete DNA replication, we sought to detect the immediate effects of suppressed initiation of DNA replication. To this end, we combined CDC6 degradation and a CDC7 inhibitor, targeting both origin licensing and origin firing, the two main events necessary for initiation of DNA replication. DNA replication licensing by CDC6 can in principle start as soon as CDK activities are reset at anaphase. Cells depleted of CDC6 before mitotic exit should thus be impaired in DNA replication initiation. In contrast, G1 or S phase cells already harbor licensed origins and thus should remain DNA replication competent despite CDC6 degradation. To test this prediction, we monitored EdU incorporation between 10 and 12 hr after targeting CDC6, CDC7, or both CDC6 and CDC7. We reasoned that, at this time, G2 cells would have progressed through mitosis and recently entered S phase, whereas G1 cells would have progressed to late S phase (Figures 2D and 2E). To independently monitor DNA replication and cell cycle position, we plotted EdU incorporation versus cyclin A2 content of single cells. The gradual accumulation of cyclin A2 levels from the G1/S border allows identification of cell cycle position within S phase (Akopyan et al., 2014). As predicted, EdU incorporation was effectively abrogated in early S phase cells, whereas it was sustained in late S phase cells (Figures 2D and 2E). This shows that our setup efficiently prevents initiation of DNA replication, while allowing ongoing DNA replication to continue.

DNA Replication Determines Cell Cycle Duration

To study the direct consequence of failed DNA replication initiation, we used time-lapse microscopy to follow single cells that...
entered mitosis shortly after destruction of CDC6d and inhibition of CDC7 (Figures 3A and S4; Video S1). In parallel, we treated cells with EdU and stained for cyclin A to detect efficiency of DNA replication in S phase (Figures 3A–3C). Combined CDC6d depletion and CDC7 inhibition decreased median cell cycle duration by ~4 h (~25%) and allowed cells to re-enter mitosis as early as 6–8 hr after cell division (Figure 3D). Initiation of DNA replication thus constitutes a major brake on cell cycle progression.

We find that only a limited amount of DNA replication is sufficient to delay the cell cycle. After CDC6d depletion or CDC7 inhibition alone, EdU incorporation is suppressed but still detectable in early S phase cells, while double treatment effectively abolished new synthesis of DNA (Figures 3B and 3C). The need for combined CDC6d depletion and CDC7 inhibition to efficiently suppress DNA replication could in part be due to compensatory mechanisms that enhance firing in genomic regions where origins are sparse (Fragkos et al., 2015; Ozeri-Galai et al., 2011) or due to the fact that CDK activity can complement CDC7 to fire a restricted set of origins (Rainey et al., 2017). Importantly, CDC6d depletion or CDC7 inhibition alone...
postponed mitotic entry, increasing median cell cycle duration by \(\sim 10 \) hr \((+70\%); \) Figure 3D). The limited availability of licensed or fired origins is expected to delay DNA replication completion, which in turn could postpone mitotic entry. Our results are in agreement with a threshold model in which low levels of DNA replication are sufficient to prolong the cell cycle while a complete block of DNA replication leads to premature mitosis.

DNA Replication Controls Activation of Plk1

To study the impact of DNA replication on activation of Plk1, we targeted origin licensing (by depleting licensing factors CDC6 and CDT1) or origin firing (by combined CDC45 depletion and CDC7 inhibition) in U2OS PLK1-FRET PCNA-cb cells. We find that, after interfering with either DNA replication licensing or origin firing, a subset of cells showed PLK1 activation 4–6 hr after mitosis (Figures 4A, 4B, and S5A). Similarly, some cells entered

![Image](https://via.placeholder.com/150x150?text=Image)
Figure 5. DNA Replication Restricts PLK1 and CDK1/2 Activity to Prevent Replication Stress
(A) Asynchronous U2OS cells expressing PLK1-FRET and APC/C\(^{\text{Cdh1}}\) substrate reporter were mock treated or treated with 50 nM CHIR-124 at mitosis (±1 hr) and followed by time-lapse microscopy for 24 hr. Each line represents a single cell showing expression of APC/C\(^{\text{Cdh1}}\) substrate probe (light blue) and/or PLK1 activity (red). Visual appearance of nuclear GEM-RED signal (i.e., stabilization of the APC/C\(^{\text{Cdh1}}\) substrate probe) was used to assess APC/C inactivation at the G1/S transition (APCOFF). Detection of nuclear PLK1 FRET signal was used to assess PLK1 activation at the S/G2 transition (PLK1ON).

(B) Boxplot depicts G1 phase duration of 50 single cells, as determined by the time observed between mitosis and APC/C\(^{\text{Cdh1}}\) substrate appearance at the G1/S transition. Boxplots indicate 10, 25, 50, 75, and 90th percentiles. n.s. indicates p > 0.5; Student’s t test.

(C) As in (B), yet boxplot depicts S phase duration as determined by the time observed between APC/C\(^{\text{Cdh1}}\) substrate appearance and the detection of nuclear PLK1 activity. Boxplots indicate 10, 25, 50, 75, and 90th percentiles. * indicates p < 0.01; Student’s t test.

(D) Images illustrate representative cells in S phase (13 hr post-mitosis) or G2 phase (17 hr post-mitosis).

(E) Asynchronous RPE cells were treated with EdU, CHIR-124 (Chk1i), and SB202190 (p38i) for 2 hr and during the last hour with RO-3306 (CDK1i) and NU6140 (CDK2i) as indicated. EdU is used to mark S phase cells and directly correlate the presence of DNA replication with CHK1i-induced CDK activation and DNA damage. Graphs show DAPI, lamin A/C pS22, and H2AX pS139 for >800 cells measured by high-content microscopy. Single-cell illustrations below the graph indicate cell cycle phases and presence of DNA replication stress.

(legend continued on next page)
mitosis 6–8 hr after cell division, in contrast to control cells, in which the shortest time between two cell divisions was 15 hr. Premature PLK1 activation correlated to the absence of PCNA-cb foci and abolished EdU incorporation in S phase cells, indicating that premature PLK1 activation depends on suppression of DNA replication (Figures 4A–4D and S6B). In agreement with a threshold model, intermediate reduction of EdU incorporation or PCNA foci delayed PLK1 activation compared to control cells (Figure 4C). Our data suggest that DNA replication restrictions activate the mitotic kinase PLK1 and that completion of DNA replication functions as a trigger for PLK1 activation.

CHK1/p38 Signaling Represses PLK1 Activity and Toxic CDK1 during DNA Replication

The function of replication intermediates as direct inhibitors of mitosis via constitutive checkpoint activation is a long-standing yet unproven hypothesis in the cell cycle field (Enoch and Nurse, 1991; Hartwell and Weinert, 1989). Our finding that DNA replication initiation postpones cell cycle progression predicts the need for factors that can sense ongoing DNA replication and suppress the activity of mitotic kinases. Good candidates for such signaling factors are DNA damage checkpoint kinases, as they are known to control DNA replication fidelity during unperturbed growth and inhibit PLK1 activity upon ectopic DNA damage (Smits et al., 2000; Sørensen and Sylliūsæn, 2012). Indeed, we find that two structurally unrelated CHK1 inhibitors cause premature PLK1 activation in replicating U2OS cells (Figure S6A). Notably, CHK1 inhibition did not affect progression through G1 phase, but uncoupled nuclear PLK1 target phosphorylation from on-going DNA replication, causing interphase cells to reach high PLK1-FRET levels in the presence of PCNA-cb foci (Figures 5A–5D). Similarly, a live-cell CDK1/2-activity sensor rapidly became saturated in U2OS cells containing PCNA-cb foci (Figures S6B and S6C). CHK1 can function synergistically with the p38-MK2 axis (Dietlein et al., 2015), and combined CHK1/p38 inhibition increased CDK1/2-mediated phosphorylation of lamin A/C in RPE cells (Figure 5E). These data support the notion that mitotic kinases are actively suppressed during S phase.

Loss of CDK1/2 regulation is highly genotoxic and causes DNA replication stress (Sørensen and Sylliūsæn, 2012). Accordingly, inhibition of CHK1/p38 leads to phosphorylation of the DNA damage marker H2AX specifically in replicating cells (Figures 5E, 5F, and S6D). A short pulse of CDK activity is likely sufficient to induce DNA damage, as contrary to CDK inhibition 1 hr after CHK1/p38 inhibition, simultaneous addition of all inhibitors abolished H2AX phosphorylation (Figures 5E, 5G, S6E, and S6F). Whereas addition of a CDK2 inhibitor decreased EdU incorporation in S phase cells, inhibition of CDK1 suppressed phosphorylation of H2AX (Figures 5G and S6F). Although this does not rule out overlapping functions of CDK1 and CDK2, it suggests that CDK1 activity is the major toxic component for replicating cells. Thus, CDK2 activity stimulates DNA replication (Coverley et al., 2002; Walter, 2000), which in turn activates checkpoint kinases to restrict CDK1 and PLK1 activity. As a consequence, DNA replication is part of a feedforward system that restricts mitotic kinase activation to prevent replication stress.

DNA Replication Checkpoint Acts after G1/S Transition to Limit CDK Activation

A prediction of such a system is that DNA replication continuously restricts CDK activity. We therefore sought to monitor CDK activity as cells entered S phase. A live sensor for CDK1/2 activity shows a gradual increase, starting from before S phase is initiated (Cappell et al., 2016; Figure 6A). In the presence of CHK1 inhibition, we detect no difference in CDK1/2 sensor localization through G1 phase (Figures 6A–6C). However, we detect enhanced CDK activity from the moment cells enter S phase as estimated by appearance of PCNA-cb foci (Figures 6A and 6B) or by expression of an anaphase-promoting complex (APC)/Cdh1 substrate reporter (Cappell et al., 2016; Figure 6C). Similarly, blocking DNA replication licensing or DNA replication firing causes elevated CDK activity upon S phase entry (Figures 6D–6F). We also detect elevated CDK1/2-mediated phosphorylation of Lamin A/C pS22 in cells in which DNA replication initiation is prevented by targeted destruction of CDC6 (Figures S7A–S7C). Thus, rather than merely a consequence of cell cycle signaling (Krude et al., 1997), DNA replication coordinates gradual CDK activation throughout S phase with activation of mitotic kinases PLK1 and CDK1 after completion of S phase (Figure 7).

DISCUSSION

Separation of DNA replication and cell division lies at the heart of the cell cycle. Several not mutually exclusive models for how cells ensure completion of DNA replication before mitosis have been proposed (reviewed in Uhmann et al., 2011). These models include (1) a slow buildup of CDK activity coupled to different thresholds for starting DNA replication and mitosis (Stern and Nurse, 1996), (2) different cyclin proteins appear at given times and cellular locations (Murray, 2004), (3) transcriptional oscillator networks (Haase and Reed, 1999; but see also Rahi et al., 2016), and (4) a checkpoint that restricts mitosis before DNA replication is completed (Hartwell and Weinert, 1989). Our results suggest that, in human cells, DNA replication is a major determinant of cell cycle duration and timing of mitosis. We propose that DNA replication functions as a continuous brake with the possibility to separate and coordinate different cell cycle activities.

We find that severe suppression of DNA replication initiation is required to prematurely activate mitotic kinases and to advance mitotic entry. For instance, CDC7 inhibition or CDC6 degradation alone postpones mitotic entry, while combined treatment advances mitotic entry (Figure 3). This suggests that a threshold...
Figure 6. DNA Replication Limits CDK1/2 Activation upon S Phase Entry

(A) Single U2OS cells were filmed upon mitotic exit, and cells that were ±1 hr from mitosis upon addition of CHIR-124 (CHK1i) were selected for analysis. Montages depict an example cell expressing CDK1/2 activity sensor and PCNA-cb followed by time-lapse microscopy. Time between images is 45 min. Note the rapid cytoplasmic translocation of the CDK1/2 sensor at the G1/S transition in the presence of CHK1i. Please see Figure S6C for readout details.

(B) Quantification of single cells imaged as in (A). Red line indicates relative CDK1/2 activity, and blue line indicates PCNA-cb intensity variation as a surrogate measurement for DNA replication. Grey lines show average CDK1/2 activity of control cells. To illustrate concurrence at G1/S, three single cells with different G1 lengths are depicted.

(C) U2OS cells expressing CDK1/2 activity sensor and APC/C^{Cdc11} substrate (GEM-RED) after CHIR-124 treatment and followed as in (A). To illustrate concurrence at G1/S, two single cells with different G1 lengths are depicted.

(D) Quantification of single cells imaged as in (A) yet 24 hr after transfection of Cdc6 and Cdt1 siRNA. Red line indicates relative CDK1/2 activity, and blue line indicates PCNA-cb intensity variation as a surrogate measurement for DNA replication. Grey lines show average CDK1/2 activity of control cells.

(legend continued on next page)
of replication activity exists, under which mitotic entry is not prevented. DNA replication in human cells is performed by thousands of replication forks (Chagin et al., 2016). How many replication forks are required to reach this threshold is not clear. However, it is likely that a single replication fork is not sufficient to block mitotic entry as Plk1 activation is observed in the presence of occasional weak PCNA-cb foci (Akopyan et al., 2014) and DNA synthesis at fragile sites has been detected in mitotic cells (Minocherhomji et al., 2015; Pedersen et al., 2015).

While complete DNA replication is critical for proper chromosome segregation in mitosis, DNA replication per se is not a prerequisite for mitotic entry. Yeast mutants lacking CDC6, CDT1, ORC2, RFC5, CDC45, or CDC7/DBF4 enter mitosis with unreplicated chromatids (Dowell et al., 1994; Hofmann and Beach, 1994; Liang et al., 1995; Piatti et al., 1995; Sugimoto et al., 1996). Whether mitotic entry in these studies depends on gene-specific functions independent of DNA replication initiation has been debated (Bueno and Russell, 1992). Given that all these proteins have in common to affect initiation of DNA replication, we consider that the most likely explanation involves initiation of DNA replication. In support of this notion, we detect premature mitotic kinase activation and shorter cell cycles in the absence of DNA replication origin licensing and/or origin firing in human cells.

Once initiated, CDK2 activity will promote both DNA replication and stimulate CDK1 and PLK1 activity (Fu et al., 2008; Gheghiani et al., 2017). However, at the same time, CDK1 and PLK1 are restricted by DNA replication, constituting an incoherent feedforward loop (Figure 7). Given that CDK1 activation causes DNA damage during DNA replication, there is a possibility that the feedforward loop is complemented by feedback between CDK1 and DNA replication, ensuring a continuous low level of checkpoint activation. We note that a feedforward system not only ensures that mitosis is avoided until DNA replication is completed but also can ensure that mitotic kinase activation commences immediately after S phase, ensuring a tight coupling between S phase and mitosis.

The feedforward loop between CDK2, DNA replication, and mitotic kinase activation contributes to genome stability in two ways. First, it ensures that mitosis is delayed until the bulk of DNA is duplicated. Second, it prevents DNA replication stress and CDK1-mediated DNA damage. In this sense, complete deregulation of the feedforward loop likely is lethal, whereas slight perturbations have the possibility to contribute to CDK-dependent DNA lesions in S phase (Lecona and Fernández-Capetillo, 2014; Szakal and Branzei, 2013; Zhang and Hunter, 2014) and might promote the occurrence of underreplicated DNA in mitosis (Lukas et al., 2011; Minocherhomji et al., 2015). Such perturbations may not only have consequences for mitosis but also for G1 duration and cell fate of daughter cells (Arora et al., 2017; Barr et al., 2017).

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- CONTACT FOR REAGENT AND RESOURCE SHARING
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
- METHOD DETAILS
 - Cell Culture
 - Plasmids and Cell lines
 - RNA Interference and Inhibitors
 - Live-Cell Microscopy and Quantitative Immunofluorescence
 - Antibodies
- QUANTIFICATION AND STATISTICAL ANALYSIS
- DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental information includes seven figures, one video, and one data file and can be found with this article online at https://doi.org/10.1016/j.molcel.2018.05.026.

ACKNOWLEDGMENTS

This study has been supported by the Wenner-Gren Foundation (to B.L.), the Swedish Research Council (to J.B. and A.L.), the Swedish Cancer Society (to B.L., J.B., and A.L.), BBSRC LoLa grant BB/M00354X/1 (to H.H. and N.H.), and a Cancer Research UK senior research fellowship C28206/A14499 (to H.H.).

AUTHOR CONTRIBUTIONS

Study Conception and Design, A.L. and B.L.; Double Degron Design and Development, H.H. and N.H.; Generation and Design of hCDC6-degron Cells, B.L.; Acquisition of Data and Image Analysis, B.L., K.A., and J.S.-G.; Analysis and Interpretation of Data, B.L., A.L., and K.A.; Drafting of Manuscript, A.L. and B.L.; Critical Manuscript Revision, J.B. and H.H.; Review and Editing, A.L. and B.L.; Supervision, A.L., B.L., and J.B.; Funding Acquisition, A.L., B.L., J.B., and H.H.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Figure 7. Model for Integral Role of DNA Replication in Human Cell Cycle Wiring

Proposed model in which DNA replication constitutes a functional output as well as an integral component of an incoherent feedforward loop in human cell cycle signaling. DNA replication generates a CHK1- and p38-dependent signal that prevents premature mitosis and CDK1-driven DNA damage in S phase.

(E) U2OS cells expressing CDK1/2 activity sensor and APC/C^Cdh1 substrate (GEM-RED) treated and followed as in (D). To illustrate concurrence at G1/S, two single cells with different G1 lengths are depicted per condition. (F) Quantification of CDK1/2 reporter of cells monitored as in (C) and (E). G1 is defined as 1 hr before and S phase as 3 hr after appearance of APC/C^Cdh1 substrate reporter. Graph shows mean and SD of 14 cells per condition. *p < 0.04; Student’s t test.
REFERENCES

Akopyan, K., Silva Cascales, H., Hukasova, E., Saurin, A.T., Mullers, E., Jaiswal, H., Hollman, D.A., Kops, G.J., Medema, R.H., and Lindqvist, A. (2014). Assessing kinetics from fixed cells reveals activation of the mitotic entry network at the S/G2 transition. Mol. Cell 53, 843–853.

Akopyan, K., Lindqvist, A., and Mullers, E. (2016). Cell cycle dynamics of proteins and post-translational modifications using quantitative immunofluorescence. Methods Mol. Biol. 1342, 173–183.

Arora, M., Moser, J., Phadke, H., Basha, A.A., and Spencer, S.L. (2017). Endogenous replication stress in mother cells leads to quiescence of daughter cells. Cell Rep. 19, 1351–1364.

Barr, A.R., Cooper, S., Heldt, F.S., Butera, F., Stoy, H., Mansfeld, J., Novak, B., and Bakal, C. (2017). DNA replication stress in mother cells leads to quiescence of daughter cells. Cell Rep.

Boddy, M.N., Fumari, B., Mondesert, O., and Russell, P. (1998). Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280, 909–912.

Buono, A., and Russell, P. (1992). Dual functions of CDC6: a yeast protein required for DNA replication also inhibits nuclear division. EMBO J. 11, 2167–2176.

Bulavin, D.V., Amundson, S.A., and Fornace, A.J. (2002). p38 and Chk1 kinases: different conductors for the G2/M checkpoint symphony. Curr. Opin. Genet. Dev. 12, 92–97.

Cappell, S.D., Chung, M., Jaimovich, A., Spencer, S.L., and Meyer, T. (2016). Irreversible APC(Cdh1) inactivation underlies the point of no return for cell-cycle entry. Cell 176, 167–180.

Chagin, V.O., Casas-Delucchi, C.S., Reinhart, M., Schermelleh, L., Markaki, Y., Maier, A., Bolius, J.J., Bensimon, A., Fillies, M., Domaing, P., et al. (2016). 4D visualization of replication foci in mammalian cells corresponding to individual replication forks. Nat. Commun. 7, 11231.

Chung, H.K., Jacobs, C.L., Huo, Y., Yang, J., Krumm, S.A., Plemper, R.K., Tsen, R.Y., and Lin, M.Z. (2015). Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11, 713–720.

Coverley, D., Laman, H., and Laskey, R.A. (2002). Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat. Cell Biol. 4, 523–528.

Cucchi, U., Gianellini, L.M., De Ponti, A., Sola, F., Alzani, R., Patton, V., Pezzoni, A., Troiani, S., Saccardo, M.B., Rizzi, S., et al. (2010). Phosphorylation of TCTP as a marker for polo-like kinase-1 activity in vivo. Anticancer Res. 30, 4973–4985.

Diehl, F., Kolb, B., Jokic, M., Noll, E.M., Strong, A., Tharun, L., Ozretic, L., Kunstlunger, H., Kambiatel, K., Randerath, W.J., et al. (2015). A synergistic interaction between Chk1 and MK2 inhibitors in KRAS-mutant cancer. Cell 162, 146–159.

Dowell, S.J., Romanowski, P., and Diffley, J.F. (1994). Interaction of Dbf4, the Cdc7 protein kinase regulatory subunit, with yeast replication origins in vivo. Science 265, 1243–1246.

Enoch, T., and Nurse, P. (1991). Coupling M phase and S phase: controls maintaining the dependence of mitosis on chromosome replication. Cell 65, 921–923.

Fragkos, M., Ganier, O., Coulombe, P., and Méchali, M. (2015). DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 16, 360–374.

Fu, Z., Malareanu, L., Huang, J., Wang, W., Li, H., van Deursen, J.M., Tindall, D.J., and Chen, J. (2008). Pkl1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat. Cell Biol. 10, 1076–1082.

Gheghiani, L., Loew, D., Lombard, B., Mansfeld, J., and Gavet, O. (2017). Pkl1 activation in late G2 sets up commitment to mitosis. Cell Rep. 19, 2060–2073.

Hass, S.B., and Reed, S.I. (1999). Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle. Nature 401, 394–397.

Hartwell, L.H., and Weinert, T.A. (1988). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634.

Hégaret, N., Rata, S., and Hochegger, H. (2016). Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. BioEssays 38, 627–643.

Hofmann, J.F., and Beach, D. (1994). cdt1 is an essential target of the Cdc10/Mcm2 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J. 13, 425–434.

Hukasova, E., Silva Cascales, H., Kumar, S.R., and Lindqvist, A. (2012). Monitoring kinase and phosphatase activities through the cell cycle by ratio-metric FRET. J. Vis. Exp. e3410.

Krude, T., Jackman, M., Pines, J., and Laskey, R.A. (1997). Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system. Cell 88, 109–119.

Kurose, A., Tanaka, T., Huang, X., Traganos, F., and Darzyckiewicz, Z. (2006). Synchronization in the cell cycle by inhibitors of DNA replication induces histone H2AX phosphorylation: an indication of DNA damage. Cell Prolif. 39, 231–240.

Lecona, E., and Fernández-Capetillo, O. (2014). Replication stress and cancer: it takes two to tango. Exp. Cell Res. 329, 26–34.

Liang, C., Weinreich, M., and Stillman, B. (1995). ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81, 667–676.

Lindqvist, A., Rodríguez-Bravo, V., and Medema, R.H. (2009). The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J. Cell Biol. 185, 193–202.

Lucas, C., Savic, V., Bekker-Jensen, S., Doli, C., Neumann, B., Pedersen, R.S., Grothe, M., Chan, K.L., Hickson, I.D., Bartek, J., and Lukas, J. (2011). S3BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat. Cell Biol. 13, 243–253.

Minocherhomji, S., Ying, S., Bjerregård, V.A., Bursomano, S., Aleliuniäte, A., Wu, W., Mankouri, H.W., Shen, H., Liu, Y., and Hickson, I.D. (2015). Replication stress activates DNA repair synthesis in mitosis. Nature 528, 286–290.

Murray, A.W. (2004). Recycling the cell cycle: cyclins revisited. Cell 116, 221–234.

Muñoz-Falconi, M., Brown, G.W., and Kelly, T.J. (1996). cdc18+ regulates initiation of DNA replication in Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 93, 1566–1570.

Natsume, T., Kiyomitsu, T., Saga, Y., and Kanemaki, M.T. (2016). Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210–218.

Natsume, T., Nishimura, K., Minocherhomji, S., Bhowmick, R., Hickson, I.D., and Kanemaki, M.T. (2017). Acute inactivation of the replicative helicase in human cells triggers MCM8-dependent DNA synthesis. Genes Dev. 31, 816–829.

Neelsen, K.J., Zanini, I.M., Herrard, R., and Lopes, M. (2013). Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J. Cell Biol. 200, 699–708.

Nevis, K.R., Cordeiro-Stone, M., and Cook, J.G. (2009). Origin licensing and p53 status regulate Cdk2 activity during G1. Cell Cycle 8, 1952–1963.

Newport, J.W., and Kirschner, M.W. (1984). Regulation of the cell cycle during early Xenopus development. Cell 37, 731–742.

Nishimura, K., Fukagawa, T., Takisawa, H., Kaki moto, T., and Kanemaki, M. (2009). An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922.
Ozeri-Galai, E., Lebofsky, R., Rahat, A., Bester, A.C., Bensimon, A., and Kerem, B. (2011). Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol. Cell 43, 122–131.

Pedersen, R.T., Kruse, T., Nilsson, J., Oestergaard, V.H., and Lisby, M. (2015). TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells. J. Cell Biol. 210, 565–582.

Piatti, S., Lengauer, C., and Nasmyth, K. (1995). Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a ‘reductional’ anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 14, 3788–3799.

Rahi, S.J., Pecani, K., Ondracka, A., Oikonomou, C., and Cross, F.R. (2016). The CDK-APC/C oscillator predominantly entrains periodic cell-cycle transcription. Cell 176, 475–487.

Rainey, M.D., Quachthithu, H., Gaboriau, D., and Santocanale, C. (2017). DNA replication dynamics and cellular responses to ATP competitive CDC7 kinase inhibitors. ACS Chem. Biol. 12, 1893–1902.

Reinhardt, H.C., and Yaffe, M.B. (2009). Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr. Opin. Cell Biol. 21, 245–255.

Rodriguez-Bravo, V., Guaita-Esteruelas, S., Salvador, N., Bachs, O., and Agell, N. (2007). Different S/M checkpoint responses of tumor and non tumor cell lines to DNA replication inhibition. Cancer Res. 67, 11648–11656.

Shreeam, S., Sparks, A., Lane, D.P., and Blow, J.J. (2002). Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene 21, 6624–6632.

Silva Cascales, H., Burdova, K., Mullers, E., Stoy, H., von Morgen, P., Macurek, L., and Lindqvist, A. (2017). Cyclin A2 localises in the cytoplasm at the S/G2 transition to activate Plk1. bioRxiv. https://doi.org/10.1101/191437.

Smits, V.A., Klompmaker, R., Arnaud, L., Rijken, G., Nigg, E.A., and Medema, R.H. (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat. Cell Biol. 2, 672–676.

Sørensen, C.S., and Syljuåsen, R.G. (2012). Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEEL restrain CDK activity during normal DNA replication. Nucleic Acids Res. 40, 477–486.

Sørensen, C.S., Syljuåsen, R.G., Lukas, J., and Bartek, J. (2004). ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 3, 941–945.

Spencer, S.L., Cappell, S.D., Tsai, F.C., Overton, K.W., Wang, C.L., and Meyer, T. (2013). The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369–383.

Stem, B., and Nurse, P. (1996). A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350.

Sugimoto, K., Shimomura, T., Hashimoto, K., Araki, H., Sugino, A., and Matsumoto, K. (1996). Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Proc. Natl. Acad. Sci. USA 93, 7048–7052.

Sakal, B., and Branzei, D. (2013). Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover. EMBO J. 32, 1155–1167.

Stern, B., and Nurse, P. (1996). A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350.

Tercero, J.A., Labib, K., and Diffley, J.F. (2000). DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. EMBO J. 19, 2982–2993.

Uhlmann, F., Bouchoux, C., and López-Aviliés, S. (2011). A quantitative model for cyclin-dependent kinase control of the cell cycle: revisited. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3572–3583.

Walter, J.C. (2000). Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J. Biol. Chem. 275, 39773–39778.

Warmerdam, D.O., Brinkman, E.K., Marteijn, J.A., Medema, R.H., Kanaar, R., and Smits, V.A. (2013). UV-induced G2 checkpoint depends on p38 MAPK and minimal activation of ATR-Chk1 pathway. J. Cell Sci. 126, 1923–1930.

Zhang, Y., and Hunter, T. (2014). Roles of Chk1 in cell biology and cancer therapy. Int. J. Cancer 134, 1013–1023.
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
CyclinA2	Santa Cruz	sc-751
CyclinA2	Cell Signaling	4656
PLK1	Abcam	ab14210
pTCTP	Cell Signaling Technology	5251
pH2AX	Cell Signaling Technology	2577
pCyclinB1	Abcam	ab55184
pLaminA/C	Cell Signaling Technology	2026
Alexa Fluor 488 Goat anti-Rabbit	Life Technologies	A11008
Alexa Fluor 555 Goat anti-Mouse	Life Technologies	A21422
CDC6	Santa Cruz	sc-9964
CDT1	Santa Cruz	sc-28262
GAPDH	Sigma	G8795
Anti-Rabbit HRP	Abcam	ab6721
Anti-Mouse HRP	Abcam	ab97023
Chemicals, Peptides, and Recombinant Proteins		
CHIR-124	Selleck Chemicals	S2683
UCN-01	Sigma	U6508
RO-3306	Calbiochem	217699
NU6140	Calbiochem	238804
Roscovitine	Selleck Chemicals	S1153
CDK1/2 inhibitor III	Millipore	217714
SB202190	Selleck Chemicals	S1077
BI2536	Selleck Chemicals	S1109
GSX61364	Selleck Chemicals	S2193
XL-413	Selleck Chemicals	S7547
BMS-650032	Adooq Bioscience	A11295
3-Indoleacetic acid	Sigma-Aldrich	I3750
Doxycycline	Sigma-Aldrich	D3447
Experimental Models: Cell Lines		
BJ	ATCC	CRL-2522
U2OS	Rene Medema (NL)	N/A
Human hTERT-RPE1	Rene Medema (NL)	N/A
Human hTERT-RPE1 p53KO	Libor Macurek (CZ)	N/A
Oligonucleotides		
CDC6 siRNA SMARTpool ON-TARGET plus	Dharmaco	003233
Non-targeting siRNA SMARTpool ON-TARGET plus	Dharmaco	001810
CDC45 siRNA SMARTpool ON-TARGET plus	Dharmaco	003232
CDT1_{_7} siRNA Flexitube	QIAGEN	SI04142250
CDT1_{_8} siRNA Flexitube	QIAGEN	SI04159477
Recombinant DNA		
pCCC-TagRFP (PCNacb)	Chromotek	N/A
pCSII-EF-Cdk2probe	Sabrina Spencer (US)	N/A
pRetroX-SG2M-Red	Clontech	631465

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Arne Lindqvist (arne.lindqvist@ki.se).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Source of cell lines used in this study is reported in the Key Resources Table.

METHOD DETAILS

Cell Culture

Human hTERT-RPE1 (hereafter referred to as RPE), U2OS and BJ cells were cultured in an ambient-controlled incubator at 37°C and 5% CO2. Early passage BJ cells were purchased from ATCC (CRL-2522) and examined prior to population doubling 10. RPE and U2OS cells were a kind gift from Dr. René Medema. All cell lines were regularly tested for mycoplasma. RPE cells were cultured using DMEM-F12 GlutaMAX (Invitrogen) supplemented with 1% Pen/Strep (HyClone) and 10% heat-inactivated FBS (HyClone). U2OS and BJ cells were cultured using DMEM GlutaMAX (Invitrogen) supplemented with 1% Pen/Strep (HyClone) and 6% or 10% heat-inactivated fetal bovine serum (FBS, HyClone), resp.

Plasmids and Cell lines

Reporter plasmids pCCC-TagRFP (Chromotek, PCNA-cb), pCSII-EF-Cdk2probe (Spencer et al., 2013) or pRetroX-SG2M-Red (Clontech, 631465) were used to obtain stable cell lines by random plasmid integration. Plasmid transfection was performed using LipofectAMINE 2000 Reagent (Life Technologies) or standard calcium phosphate precipitation. Stable polyclonal populations were selected by flow cytometry using BD-FACSAria II and correct expression patterns were validated by live-cell microscopy.

TP53 knockout RPE cells were from Silva Cascales et al. (2017). Stable OsTIR expression was established by CRISPR-mediated integration: Transient GFP+ cells were sorted 3 days post transfection of pROSA26-DV1_OsTIR and PX458_Cas9_GFP (Addgene 48138) and subsequently subjected to bleomycin selection. For inducible expression of OSTir1 we used a previously described construct (Natsume et al., 2016) that was combined with a bleomycin selection cassette and cloned into a Rosa26 targeting construct to generate pROSA26-DV1_OsTIR. To target the human Rosa26 locus we used the following gRNA sequence: 5′ GACCTGCTACAGGCACTCGT 3′ cloned into pPV576_grRNA_ROSA26. Subsequent double degron tagging at the human CDC6 locus was established through CRISPR-mediated targeting: First a CDC6 guide sequence was cloned into PX458_Cas9_GFP (Addgene 48138) using BbsI sites and two annealed oligos CACCGCCAGCTGAATACTTTCGGG and AAACCCCGAAAGTATTCACTGGC. Second, a targeting vector was generated named hCDC6_mAID_SMASH_T2A_Neo, by cloning CDC6 homology arms (gBlock IDT) into a mAID_SMASH_T2A_Neo backbone using SbfI and NotI sites. The mAID_SMASH_T2A_Neo backbone was constructed via Gibson assembly cloning.

The resultant PX458_Cas9_GFP_hCDC6 and hCDC6_mAID_SMASH_T2A_Neo vectors were sequence-verified and transfected into OsTIR-RPE1 cells. Three days post transfection GFP+ cells were sorted and subjected to Geneticin selection (G418; Gibco). Clonal cell lines were established by limiting dilution in a 96-well plate. Successful Cdc6 degron-tagging in single clones was verified by western blot and degron-induced growth arrest.

RNA Interference and Inhibitors

Knockdown studies were performed using SMARTpool scrambled control siRNA (Dharmacon), SMARTpool ON-TARGET plus CDC6 siRNA (Dharmacon), SMARTpool ON-TARGET plus CDC45 siRNA (Dharmacon), FlexiTube Hs_CDT1_7 (QIAGEN) and FlexiTube

Continued

REAGENT or RESOURCE	SOURCE	IDENTIFIER
hCDC6_mAID_SMASH_T2A_Neo	This paper	N/A
pROSA26-DV1_OsTIR	This paper	N/A
PX458_Cas9_GFP	Addgene	48138
PX458_Cas9_GFP_hCDC6	This paper	N/A

Software and Algorithms

ImageJ 1.51h ImageJ https://imagej.nih.gov
MATLAB R2015b MathWorks https://www.mathworks.com
CellProfiler 2.2.0 CellProfiler http://cellprofiler.org
Live-Cell Microscopy and Quantitative Immunofluorescence

For time-lapse microscopy of RPE CDC6d cells (Figure 2D), transmitted light images were acquired every 10 min using a Leica DMI6000 Imaging System with 20x (NA 0.4) air objective at 37°C and 5% CO2. Images were analyzed using ImageJ and cells were tracked manually. For live cell fluorescence imaging experiments, 6000-9000 cells were seeded in 96-well imaging plates (BD Falcon) in DMEM with 1% Pen/Strep and 6%–10% FBS and at least 6 hr prior to imaging the medium was changed to Leibovitz-15 (Invitrogen) with 1% Pen/Strep and 6%–10% FBS. Images were acquired at 37°C at 20-45min intervals using ImageXpress microscope (Molecular Devices) 20X objective (NA 0.45) and analyzed using custom ImageJ or MATLAB scripts (Akopyan et al., 2014; Hukasova et al., 2012). PLK1 FRET was measured using ImageJ (Akopyan et al., 2014; Hukasova et al., 2012), using rolling ball background subtraction, 3x YFP signal multiplication and RatioPlus plugin (background 0 and clipping values 25-50). Normalized PCNA-cb intensity variation (i.e., standard deviation of nuclear RFP signal divided by median nuclear RFP intensity) is used as a surrogate measurement for DNA replication; the last few bright PCNA foci at the end of S-phase cause a characteristic peak in PCNA-cb intensity variation (Figures 1C and 4C). CDK1/2 activity probe was analyzed using ImageJ; nuclear ROIs were selected manually and ratio between nuclear YFP intensities and cytoplasmic YFP intensities was determined using custom ImageJ macro’s and Excel (see Data S1 for example macro). For quantitative IF experiments 6000-9000 cells were seeded in 96-well imaging plates (BD Falcon) in DMEM with 1% Pen/Strep and 6%–10% FBS and after treatment washed in DPBS (GIBCO), fixed in formalin (Sigma Aldrich) for 7 min, permeabilised in cold methanol (Sigma Aldrich) for 2 min and finally incubated in blocking media (TBS supplemented with 0.1% Tween20 and 2% bovine albumin serum) for 1 hr at room temperature. For pulse-chase experiments or DNA replication measurements 10mM EdU (5-ethyl-2′-deoxyuridine, Molecular probes) was added to live cells prior to fixation. Fixed samples were incubated with primary antibodies in blocking media overnight at 4°C, washed in DPBS (GIBCO) and incubated with secondary antibodies and DAPI for 1h at room temperature. Samples were stored in PBS and in case of DNA replication measurements EdU-Click chemistry was performed by incubation in 100mM Tris, 1mM CuSO4, 100mM ascorbic acid and fluorescent dye azide (#A10277, Invitrogen) for 1h at room temperature. Images were acquired at room temperature using ImageXpress microscope (Molecular Devices) 20X objective (NA 0.45) and analyzed using custom Cell profiler pipelines. To assess kinetics and cell cycle stages from quantitative IF data, cells were ordered and distributed linearly based on increasing nuclear Cyclin A2 intensities and normalized DAPI levels (Akopyan et al., 2016). For RPE and BJ cells in Figure 1C, cells containing low DAPI levels (corresponding to under mid S-phase levels) were sorted based on the ratio between nuclear size and roundness, and remaining cells were sorted by Cyclin A2 content.

Antibodies

The following antibodies were used for IF and diluted in TBS supplemented with 0.1% Tween20 and 2% BSA: CyclinA2 (1:400; #sc-751; Santa Cruz), CyclinA2 (1:400; #4656; Cell Signaling), PLK1 (1:400; ab14210; Abcam), pTCTP (1:400; #5251; Cell Signaling), pH2AX (1:800; #2577; Cell Signaling), pCyclinB1 (1:400; #ab55184; Abcam), pLaminA/C (1:400; #2026; Cell Signaling), Alexa Fluor 488-Goat anti-Rabbit (1:2000; #A11008 Life Technologies) and Alexa Fluor 555-Goat anti-Mouse (1: 2000; #A21422 Life Technologies). The following antibodies were used for WB and diluted in TBS supplemented with 0.1% Tween20 and 5% milk powder: CDC6 (1:400; #sc-9964 Santa Cruz), CDT1 (1:400; #sc-282862 Santa Cruz), GAPDH (1:20000; #G8795; Sigma), anti-Rabbit HRP (1:2000; #ab6721; Abcam) and anti-Mouse HRP (1:2000; #ab97023; Abcam).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using the Student’s t test. Quantitative IF studies included >200 cells per conditions and represent at least two independent experiments. Qualitative example images are representative for >10 independent biological replicates. Information about the statistical tests and the number of cells analyzed is provided in the figure legends. For all experiments, samples were not randomized and the investigators were not blinded to the group allocation during experiments and outcome assessment.

DATA AND SOFTWARE AVAILIBILITY

Original imaging data have been deposited to Mendeley Data and are available at https://doi.org/10.17632/47s44zbn7c.1.
Supplemental Information

DNA Replication Determines Timing of Mitosis
by Restricting CDK1 and PLK1 Activation

Bennie Lemmens, Nadia Hegarat, Karen Akopyan, Joan Sala-Gaston, Jiri Bartek, Helfrid Hochegger, and Arne Lindqvist
Figure S1. Related to Figure 1: Stalled DNA replication postpones PLK1 activation
(A) Asynchronous U2OS cells carrying PLK1-FRET and APC/CCdh1 substrate reporters were mock treated or treated with excess thymidine (2.5mM). For each condition 50 single cells we selected that were at mitosis upon treatment (+/- 1 h) and appearance of the APC/CCdh1 substrate (APCOFF) or nuclear PLK1 activity (PLK1ON) was scored during the following 24 hours. (B) Boxplot depicts G1 phase duration of 50 single cells as determined by the time observed between mitosis and appearance of the APC/CCdh1 substrate (APCOFF). Box plots indicate 10, 25, 50, 75, and 90th percentile. n.s. indicates p<0.5, students t-test.
Quantification of DAPI and Cyclin A2 fluorescence in single cells. Sorted cells based on increasing DAPI and Cyclin A2 levels. Time estimated based on average cell cycle duration (h).

Quantification of EdU and pTCTP fluorescence in sorted cells with or without inhibition of Plk1. Calculated running median of EdU and pTCTP values. Calculated amplitude of Plk1 target phosphorylation based on pTCTP median and PLK1i value subtraction (AU).

Figure S2. Related to Figure 1; Workflow assessing DNA replication and phosphorylation kinetics from fixed cells. (A) Stepwise description of the workflow used to assess PLK1 target phosphorylation throughout the cell cycle based on high-content imaging of fixed cells. Validation and broad use of this approach is described in Akopyan et al. 2014. Cells were fixed after a 1h EdU pulse and analyzed as indicated; graphs depict U2OS data. (B) Example images of U2OS cells described in (A). Representative cells for each cell cycle phase are indicated. Please note that PLK1 target phosphorylation (pTCTP) is enhanced in G2 cells (Edu negative, nuclear and cytoplasmic CyclinA2 positive cells) and peaks when cells enter mitosis, which mirrors PLK1 FRET probe phosphorylation (Akopyan et al. 2014).
Figure S3. Related to Figure 2; CDC6 degradation in RPE CDC6d cells prevents DNA replication but allows cell cycle progression (A). Western blot analysis of CDC6 degradation after treatment as indicated in upper panel. RPE CDC6d cells and parental RPE cells were pre-treated with 1μg/ml doxycycline (DOX) for 24h to induce OsTIR expression and exposed to 1μM asunaprevir (BMS) and 0.5 mM auxin (AUX) for 3h. Cells were harvested and cell lysates were probed for CDC6 protein. We noted that OsTIR expression can cause AUX-independent CDC6-mAID degradation and thus minimized DOX pretreatment in all other setups described in this study. (B) Two independent clonal RPE CDC6d cell lines were treated with 1μg/ml DOX, 100nM BMS and 50μM AUX and harvested as indicated in upper panel. Cell lysates were probed for CDC6 protein and GAPDH for loading. Please note enhanced CDC6 degradation by combining two degron systems. (C) RPE CDC6d cells were mock-treated or treated with DOX, BMS and AUX as depicted in (B) and fixed for immunofluorescence analysis 48h post AUX addition. DAPI, EDU and Lamin A/C pS22 intensities are false-colored as indicted on the right. Please note anti-correlation between EdU incorporation and CDK-target phosphorylation. (D) Two independent clonal RPE CDC6d lines were mock-treated (Ctrl) or treated with DOX, BMS and AUX as depicted in (B) and fixed 24h or 48h post AUX addition. Graphs depict DAPI intensities against nuclear EdU, Lamin A/C pS22 or CyclinA2 intensities of >600 cells per condition. Dashed box highlights population of S/G2 cells having high levels of Lamin A/C pS22 or CyclinA2 yet lacking EdU incorporation (E) Examples of mitotic DAPI figures of RPE CDC6d cells treated as in (C). (F) Quantification of DAPI intensities of mitotic cells after treatment as in (C). (G) Quantification of anaphase DAPI figures among mitotic cells after treatment as in (C).
Lemmens_Figure S4

Figure S4. Related to Figure 3; Examples of mitosis in three control and three DOX/BMS/AUX/Cdc7i treated cells, as quantified in Fig 3D. Time between images 10 min. Mitotic entry was estimated primarily by cell rounding, and when possible confirmed by disappearance of nucleoli and nuclear border (dotted line to left). The duration of mitosis was estimated until anaphase onset, the cell settling down, or dying (dotted line to right). A movie including both the first mitosis (shortly after drug addition) and the second mitosis visualised here is available as Movie S1.
Figure S5. Related to Figure 4; Impaired DNA replication licensing causes premature PLK1 activation (A) Asynchronous U2OS cells carrying PLK1-FRET and APC/CCdh1 substrate reporters were mock treated or treated with excess thymidine (2.5mM). For each condition 50 single cells we selected that were at mitosis upon treatment (+/- 1 h) and appearance of the APC/CCdh1 substrate (APCOFF) or nuclear PLK1 activity (PLK1ON) was scored during the following 24 hours. (B) Boxplot depicts G1 phase duration of 50 single cells as determined by the time observed between mitosis and appearance of the APC/CCdh1 substrate (APCOFF). Box plots indicate 10, 25, 50, 75, and 90th percentile. n.s. indicates p<0.5, students t-test.
Figure S6. Related to Figure 5; CHK1 and p38 limit PLK1 activation and CDK1-dependent replication stress (A). U2OS cells expressing PLK1-FRET were followed by time-lapse microscopy. Cells that were +/- 1h from mitosis upon addition of indicated inhibitors were selected for analysis. Panels show quantification of PLK1-FRET of 20-25 single cells per condition. The approximate position of S-phase based on time after mitosis is indicated. (B). U2OS cells expressing CDK1/2 sensor and containing visible PCNA-cb foci were followed every 45 min by time-lapse microscopy. Graph shows average and SD of CDK1/2 activity of 25 cells, relative to time point of addition of CHIR-124. (C). Schematic of CDK1/2 sensor. Top, nuclear/cytoplasmic ratios of probe intensity reflect CDK1/2 activity. Bottom, CDK1/2 driven phosphorylation causes cytoplasmic translocation of the probe (Spencer et al., 2013) (D). U2OS cells were treated with CHIR-124 (CHK1i) as indicated. To define S-phase, cells were incubated with EdU 1h prior to fixation. Panels show quantifications of high-content microscopy for H2AX pS139 in single cells. Cell populations were separated according to DAPI and EdU intensity. (E). RPE cells were treated with EdU, CHIR-124 (CHK1i), SB202190 (p38i), CDK1/2 inhibitor III, and/or Roscovitine as indicated for 4h. Images show staining for H2AX pS139. (F). U2OS cells were treated with CHIR-124 (CHK1i), NU6140 (CDK2i), RO3306 (CDK1i), CDK1/2 inhibitor III (CDK1/2i), and Roscovitine as indicated for 4h. Before fixation, cells were incubated for 1h with EdU. Box plots show 90, 75, 50, 25, and 10th percentiles of EdU signal or H2AX pS139 signal of EdU positive cells, as assessed by high-content microscopy. * indicates p=0.04, *** indicates p<0.001 and ns indicates p>0.1, student’s t-test.
Figure S7. Related to Figure 6: Preventing DNA replication causes CDK hyperactivation at G1/S transition

(A) Schematic of experimental setup. EdU pulse-chase is used to mark cells that are expected to be devoid of CDC6 in the next G1 phase; the time CDC6 is required for origin licensing. Only EdU positive cells are analyzed to enrich for cells that were in G2/M phase during induced depletion of CDC6d or addition of CDC7 inhibitor. Graph includes EdU positive cells with low (grey dots) or enhanced (red dots) phosphorylation of Lamin A/C S22, plotted versus DNA content as measured by DAPI intensity (n=1800 cells per condition). Please note that 14 hours post EdU pulse a subset of Ctrl cells has entered S-phase and started to gain DNA content, while maintaining low pLamin A/C pS22 levels. Notably, upon CDC6d depletion (and CDC7 inhibition) a subset of cells fail to gain DNA content and instead show enhanced phosphorylation of Lamin A/C S22. The enhanced phosphorylation of Lamin A/C S22 depends on CDK1/2 activity as it is reversed by addition of CDK1/2 III 30min prior to fixation. (C) Schematic of cell fate of EdU pulse-chased single cells upon Cdc7 inhibition/Cdc6 degradation.