Intramedullary schwannomas (IMS) represent exceptional rare pathologies. They commonly present as solitary lesions; only five cases of multiple IMS have been described so far. Here, we report the sixth case of a woman with multiple IMS. Additionally, we performed the first complete systematic review of the literature for all cases reporting IMS. We performed a systematic review of the literature in PubMed, EMBASE and Cochrane Central Register of Controlled (CENTRAL) to retrieve all relevant studies and case reports on IMS. In a second step, we analysed all reported studies with respect to additional cases, which were not identified through the database search. Studies published in other languages than English were included. One hundred nineteen studies including 165 reported cases were included. In only five cases, the patients harboured more than one IMS. Gender ratio showed a ratio of nearly 3:2 (male:female); mean age of disease presentation was 40.2 years; 11 patients suffered from neurofibromatosis (NF) type 1 or 2 (6.6%). IMS are rare. Our first systematic review on this pathology revealed 166 cases, including the here reported case of multiple IMS. Our review offers a basis for further investigation on this disease.

Keywords Schwannoma · Spinal tumour · Intramedullary tumour · Review of the literature

Introduction

Within the group of central nervous system tumours, spinal tumours represent a minor fraction of 15% of all cases [1]. Spinal schwannomas represent about 10% of all spinal tumours [1]. Schwannomas occur most frequently within the intradural-extradural compartment [1]. The intramedullary location of schwannomas is a rare condition (0.3–1.5%) [2–4]. Furthermore, they commonly present as solitary lesions. To date, only five cases of multiple intramedullary schwannomas (IMS) have been described [5–9].

Here, we report a 6th case of a female patient with histologically proven IMS of the cervical spinal cord and an additional small lumbar localized lesion. Additionally, we performed the first complete systematic review of the literature searching PubMed, EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) for all cases reporting IMS.

Case report

A 53-year-old woman presented with a 4-month history of progressive sensory deficits of the upper and lower limbs, without any further neurological symptoms. There were no neurofibromatosis (NF) stigmas and no history of genetic disorders or spinal injury.

Clinical presentation

Neurological examination revealed hypaesthesia of the first three fingers of the right hand, the right lateral lower leg and the right lateral foot edge. There was no paresis of the upper and lower limbs; the muscular tension was normal. The muscle stretch reflexes were normal and symmetrical. No pyramidal tract signs were present, nor spinal ataxia. The patient was defined as grade I according to the modified McCormick scale [10, 11].
Imaging findings and additional diagnostics

Magnetic resonance imaging (MRI) of the neurocranium and the cervical spine revealed a 9.3 × 19 mm intramedullary lesion at the level of C2/3, which was isointense on T1-weighted and had both hypo- and hyperintense components on T2-weighted images. The lesion showed intense heterogeneous contrast enhancement and caused a massive perilesional spinal cord edema extending from the medulla oblongata to the level of C6 (Fig. 1).

Combining the MRI findings and the neurological examination, we considered a preliminary diagnosis of intramedullary ependymoma. As a consequence, further investigations including a holospinal MRI and a lumbar puncture were carried out to examine the possible presence of drop metastasis. The holospinal MRI revealed a second small (3.4 × 4 mm) lesion at the level of L2/3. The lesion was isointense on T1-weighted and hypointense in T2-weighted images with homogeneous contrast enhancement (Fig. 1). Cerebrospinal fluid examination showed no evidence of atypical, potentially malignant cells.

Operative findings and histopathology

The patient underwent uneventful microsurgical tumour resection through a posterior cervical approach and midline myelotomy with subsequent C2–C3 laminoplasty. Intraoperatively, the tumour appeared as a solid, yellowish mass comparable with a schwannoma. Complete tumour resection was achieved via meticulous microsurgical technique and ultrasonic aspiration. Intraoperative monitoring (somatosensory-evoked potentials) remained stable during the entire surgical procedure.

Microscopic examination of tissue samples obtained during surgery showed spindle-shaped cells, arranged in a typical fascicular pattern. Old haemorrhages were frequently seen. Immunohistochemistry revealed a strong homogeneous reaction for S-100 protein but was negative for epithelial membrane antigen. The proliferation rate (Ki-67 staining) was low (Fig. 2). Altogether, these findings were consistent with a histopathological diagnosis of a schwannoma.

Postoperative recovery

Immediately after the surgery, the sensory and motor functions of the patient were intact. During the inpatient stay, the patient had a veritable postoperative course; the sensory impairments remained unchanged. Postoperative MRI of the cervical spine confirmed complete removal of the intramedullary lesion.

Fig. 1 a–c Preoperative MRI of the cervical spine in sagittal (a, b) and transverse (c) slides. T2-weighted images show a hypo-and hyperintense intramedullary lesion at the level of C2/3 (a). T1-weighted images show a heterogeneous gadolinium-enhanced tumour in the sagittal (b) and transverse (c) slides. d–f Preoperative MRI of the lumbar spine in sagittal (d, e) and transverse (f) slides. T2-weighted images show a hypointense lesion at the level of L2/3 (d). T1-weighted images show a homogenous gadolinium-enhanced tumour in the sagittal (e) and transverse (f) slides. g–i Postoperative MRI of the cervical spine in sagittal (g, h) and transverse (i) slides confirming the complete tumour resection.
Interestingly, the massive spinal cord edema decreased almost completely within 10 days after surgery (Fig. 1). The patient was discharged to medical rehabilitation. Follow-up examination 4 months after surgery revealed favourable, unchanged neurological condition (modified McCormick scale: grade I).

Material and methods
For this study, no experiments on human subjects or animals have been carried out. We performed a systematic review of the literature in PubMed, EMBASE and CENTRAL up to January 1, 2020, to retrieve all relevant studies and case reports on IMS. We used the keywords “intramedullary simultaneous with “schwannoma OR neurinoma”. Selection criteria were the following: (1) at least one histological proven IMS reported, (2) available clinical information of the patient and (3) peer reviewed publication in a journal or book chapter. Studies published in other languages than English were included in order to receive a complete review of all reported cases. Melanotic IMS were excluded because of their reclassification as a distinct entity in 2016 [12]. In a second step, for complete identification, all reported studies on IMS have been analysed regarding additional cases of IMS. Each case which was mentioned in these articles was analysed with respect to our inclusion criteria. If not already found via keyword search, the case was added to our systematic review (Fig. 3).

Results
One hundred nineteen studies including 165 reported cases met our inclusion criteria. In only five cases, the patients harboured more than one IMS. Gender ratio was nearly 3:2 (male: female; 55.4% male; 39.2% female); mean age of disease presentation was 40.2 years (range 1 day–78 years); eleven patients suffered from NF (6.6%). A closer analysis of patients suffering from NF revealed that one patient had NF type 1, eight patients had NF type 2 and in two cases no information on the NF type was available. Most IMS were located in the cervical (45.8%) and thoracic (37.3%) spine; a smaller number was located in the cervicothoracic (6.2%), thoracolumbar (5.6%) and lumbar (2.3%) spine (Table 1).
We reviewed the included cases with respect to preoperative neurological status, the postoperative outcome and the follow-up, including tumour recurrence. In addition, we calculated the modified McCormick scale to determine the neurological status preoperatively and postoperatively. The analysis of preoperative neurological symptoms showed that sensory disturbance appeared in 67%, motor deficits in 68% and dysfunction of the autonomic nervous system, such as sphincter dysfunction, in 26% of the cases. The main duration of symptoms was 29 months. The preoperative neurological status according to the modified McCormick scale showed the following distribution: grade I (6%), grade II (27%), grade III (21%), grade IV (12%) and grade V (4%); in 30% of the cases, the preoperative modified McCormick scale was not determinable (Table 1).

Our review showed that 161 of 165 patients underwent surgery; in four cases, the diagnosis of IMS was made postmortem by autopsy. The analysis of the postoperative recovery revealed that complete recovery was achieved in 23%, symptom improvement in 51% and stable neurological condition in 4% of the cases. The neurological symptoms worsened in only 4% of cases and in another 4% the patient died after surgery. Information on the postoperative recovery was missing in 14% of the cases. The postoperative neurological status
Case No.	Reference	Patient Characteristics	Recovery McCormick scale*	Follow-up	Tumour recurrence										
		Age	Sex	NF	Vertebra	Sensory system	Motor system	Autonomic nervous system	Duration (months)	Follow-up	Months	McCormick scale*	Tumour recurrence		
1	Penfield, 1932 [13]	12	M	No	C5	Yes	Yes	No	96	Yes	n.a.	n.a.	n.a.	n.a.	
2	Rasmussen et al., 1940 [14]	12	M	No	C4–7	n.a.	n.a.	n.a.	48	Yes	–	n.a.	n.a.	n.a.	
3	Roka, 1951 [15]	30	M	No	Cerv.	n.a.	n.a.	n.a.	36	Yes	n.a.	n.a.	n.a.	n.a.	
4	Rose, 1954 [16]	61	M	NF	1	C5	n.a.	n.a.	96	Yes	n.a.	n.a.	n.a.	n.a.	
5	Riggs/Clary, 1957 [17]	60	M	No	C4/5	Yes	Yes	Yes	n.a.	Yes	–	IV	IV	24	n.a.
6	Ramamurthi et al., 1958 [18]	35	M	No	T2	Yes	Yes	Yes	9	Yes	+	V	III	48	III
7	Scott/Bentz, 1962 [19]	46	F	No	T3	Yes	Yes	No	144	Yes	o	V	V	n.a.	n.a.
8	McCormick et al., 1964 [20]	62	M	No	L2	No	No	No	n.a.	No	n.a.	n.a.	n.a.	n.a.	
9	Sloof, 1964 [9]	62	F	No	Cerv.	Yes	No	No	n.a.	No (Autopsy)	n.a.	n.a.	n.a.	n.a.	
10	Mason/Keigher, 1968 [21]	37	M	No	T8–10	Yes	Yes	No	3	Yes	+	III	III	6	II
11	Chigasaki/Pennybacker, 1968 [22]	75	F	No	T3	Yes	Yes	No	7	Yes	–	V	V	6	n.a.
12	Van Duinen, 1971 [23]	24	F	No	C3	Yes	Yes	Yes	48	Yes	+	III	IV	3	II
13	Fabres et al., 1972 [24]	26	M	No	T2/3	Yes	Yes	No	13	Yes	+	IV	IV	n.a.	n.a.
14	Cambier et al., 1974 [25]	60	M	No	C2–4	Yes	Yes	No	6	Yes	–	III	IV	17	IV
15	Wood et al., 1975 [26]	48	M	No	C3	Yes	Yes	No	3	Yes	–	IV	IV	0	n.a.
16	Schmitt, 1975 [27]	68	M	No	L1	Yes	Yes	No	n.a.	No (Autopsy)	n.a.	n.a.	n.a.	n.a.	
17	Isu et al., 1976 [28]	30	F	No	Cl	Yes	Yes	No	6	Yes	n.a.	III	n.a.	n.a.	n.a.
18	Kumar/Galati, 1977 [29]	24	F	NF	Cerv.	Yes	Yes	No	12	Yes	o	V	V	n.a.	n.a.
19	Vailati et al., 1979 [30]	40	F	No	T8/9	No	Yes	No	12	Yes	+	IV	IV	6	II
20	Gegalian, 1979 [31]	37	F	No	T10/11	Yes	Yes	No	n.a.	Yes	+	IV	IV	120	II
21	Pandatscher et al., 1979 [8]	41	M	No	T2–8	Yes	Yes	Yes	6	Yes	–	IV	III	n.a.	n.a.
22	Shalit/Sandbank, 1981 [32]	21	F	No	C2-T2	Yes	Yes	No	6	Yes	+	IV	III	18	II
23	Guidetti, 1967 [33], Cantore et al., 1982 [34]	54	F	No	C3–5	Yes	Yes	No	24	Yes	+	II	I	n.a.	n.a.
24		57	M	No	T12–L1	No	No	No	n.a.	Yes	+	I	I	n.a.	n.a.
Case No.	Reference	Patient Age	Sex	NF	Vertebra	Sensory system	Motor system	Autonomic nervous system	Duration (months)	McCormick scale*	Follow-up	Recovery	McCormick scale*	Tumour recurrence	
----------	-----------	-------------	-----	----	----------	---------------	-------------	-------------------------	-----------------	----------------	-----------	----------	----------------	------------------	
25	Lesoin et al., 1983 [35]	45 F	No	C3–7	No	No	No	6	Yes	+	n.a.	II	n.a.	n.a.	n.a.
26	Rout et al., 1983 [36]	28 M	No	L1	No	Yes	Yes	50	Yes	+	n.a.	III	11	II	No
27	Kang/Song, 1983 [37]	50 F	No	C3–5	Yes	Yes	Yes	60	Yes	+	III	12	II	No	
28	Bouchez et al., 1984 [38]	47 M	No	C3–6	Yes	Yes	No	12	Yes	+	IV	III	6	II	No
29	Drapkin et al., 1985 [39]	34 M	No	C2–7	Yes	Yes	No	12	Yes	–	II	II	60	IV	No
30	Rout et al., 1983 [36]	30 F	No	C3–5	Yes	Yes	No	46	Yes	+	II	I	20	I	No
31	Lesoin et al., 1986 [40]	75 M	No	T3–6	Yes	Yes	Yes	60	Yes	+	IV	III	6	III	No
32	Maniki et al., 1986 [41]	42 F	No	T7/8	Yes	Yes	No	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	n.a.
33	Ross et al., 1986 [4]	67 F	No	C2–T1	Yes	Yes	Yes	48	Yes	+	II	I	6	I	No
34	Char/Cross, 1987 [42]	36 M	No	C4/5	Yes	Yes	No	4	Yes	+	II	I	n.a.	n.a.	n.a.
35	Garen et al., 1988 [43]	54 M	No	T3/4	Yes	Yes	Yes	1	Yes	–	II	I	0	n.a.	n.a.
36	Hida et al., 1988 [44]	30 F	No	C3–6	Yes	Yes	Yes	24	Yes	+	II	II	n.a.	n.a.	n.a.
37	Okuda et al., 1988 [45]	72 F	No	T8/9	Yes	Yes	Yes	132	Yes	+	IV	III	6	III	No
38	Gorman et al., 1989 [46]	23 M	No	Med.–C7	Yes	Yes	No	n.a.	Yes	+	IV	III	6	III	No
39	Sharma et al., 1989 [47]	15 F	No	C5/6	Yes	Yes	No	8	Yes	+	II	III	5	II	No
40	Herregodts et al., 1991 [50]	10 M	No	C5	Yes	Yes	Yes	12	Yes	+	IV	III	6	II	No
41	Meisel et al., 1990 [48]	36 M	No	T9/10	Yes	Yes	Yes	36	Yes	++	III	II	2	I	No
42	Li/Holtas, 1991 [49]	67 F	n.a.	C2	n.a.	n.a.	n.a.	n.a.	Yes	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
43	Jacquet et al., 1992 [51]	49 F	No	T2	No	Yes	Yes	60	Yes	+	III	III	2	II	No
44	Morimoto et al., 1992 [52]	44 M	No	T12 – L1	No	No	No	5	Yes	++	I	I	n.a.	n.a.	n.a.
45	Benini et al., 1993 [53]	42 M	No	T7–9	No	Yes	No	13	Yes	+	II	I	n.a.	n.a.	n.a.
46	Sereci et al., 1993 [54]	40 M	No	T7–9	Yes	Yes	Yes	36	Yes	+	III	IV	5	II	No
47	Radhakrishnan et al., 1993 [55]	43 M	No	C5/6	Yes	No	Yes	60	Yes	–	I	IV	12	IV	No
48	Sekerci et al., 1993 [54]	45 F	No	T1–3	Yes	Yes	No	4	Yes	o	II	IV	6	II	No
49	Nicoletti et al., 1994 [56]	50 F	No	C2–5	Yes	Yes	No	60	Yes	+	IV	II	12	II	No
50	Duong et al., 1995 [57]	55 M	No	C4–6	Yes	Yes	No	12	Yes	+	II	I	3	II	No
51	Melancia et al., 1996 [58]	47 F	No	C3–5	No	Yes	No	6	Yes	+	V	III	12	n.a.	No
52	Tu et al., 1995 [57]	52 F	No	T5–7	No	Yes	No	18	Yes	++	II	I	60	n.a.	Yes
53	Melancia et al., 1996 [58]	53 F	No	T11–L2	No	Yes	No	24	Yes	–	II	V	36	V	Yes
54	Lee et al., 1996 [2]	31 F	No	C5–T3	n.a.	n.a.	n.a.	n.a.	Yes	n.a.	n.a.	n.a.	12	II	n.a.
Table 1 (continued)

Case No.	Reference	Patient Age	Sex	NF	Vertebra	Sensory system	Motor system	Autonomic nervous system	Duration (months)	McCormick scale* Prior OP	McCormick scale* Post OP	Follow-up	Tumour recurrence					
56	Bhayani/Goel, 1996 [6]	15 M	NF	C4/5	Yes	No	Yes	No	18	Yes +	III II	2 I No	No					
57	Botelho et al., 1996 [59]	52 F	No	C4–6	Yes	Yes	No	No	48	Yes +	III n.a.	12 II No	No					
58	Innocenzi et al., 1996 [60]	44 M	No	C1–3	No	Yes	No	No	18	Yes ++	II II	24 I No	No					
59	Bekar et al., 1997 [61]	40 M	No	C2–T1	Yes	Yes	Yes	Yes	60	Yes n.a.	II III	12 III No	No					
60	Böskonakli et al., 1997 [62]	42 F	No	T8	Yes	Yes	No	Yes	12	Yes +	III II	12 II No	No					
61	Chitojuku et al., 1998 [63]	26 M	NF	T4/5	Yes	Yes	No	n.a.	120	Yes ++	III III	n.a. n.a.	No					
62	Kotil et al., 1998 [64]	20 F	NF	T10/11	n.a.	n.a.	n.a.	Yes n.a.	12	III n.a.	n.a. n.a.	0 n.a. n.a.	No					
63	Hejazi/Hassler, 1998 [65]	65 M	No	T12–L1	Yes	Yes	Yes	No	120	Yes ++	n.a. n.a.	0 n.a. n.a.	No					
64	Binatlı et al., 1999 [66]	9 M	No	C6–T1	Yes	Yes	Yes	Yes	4	Yes ++	II I	3 I No	No					
65	Arellanes-Chávez et al., 2000 [67]	18 M	No	C2–5	No	Yes	No	36	Yes	+	II II	n.a. n.a.	No					
66	Riffaud et al., 2000 [3]	25 M	No	C1/2	Yes	Yes	No	12	Yes	+	III III	12 II No	No					
67	Ogumbgo et al., 2000 [68]	24 M	No	C4–7	Yes	Yes	No	36	Yes	+	III n.a.	18 II No	No					
68	Kodama et al., 2000 [69]	37 F	No	C3–5	Yes	Yes	No	108	Yes	+	n.a. n.a.	n.a. n.a.	No					
69	17 F	No	C1	Yes	Yes	Yes	12	Yes	+	n.a. n.a.	n.a. n.a.	No						
70	Patronas et al., 2001 [70]	26 n.a.	NF	2 n.a.	n.a.	n.a.	n.a.	n.a.	Yes	n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.					
71	Kono et al., 2001 [71]	59 M	No	T2	Yes	Yes	No	6	Yes	+	n.a. n.a.	n.a. n.a.	n.a. n.a.					
72	Maira et al., 2001 [72]	69 M	No	C2	Yes	Yes	Yes	n.a.	Yes	++	III I	36 n.a. No	No					
73	Sasaki et al., 2002 [73]	53 M	NF	C5/6	Yes	Yes	No	n.a.	Yes	+	II II	n.a. n.a.	No					
74	Darwish et al., 2002 [74]	68 F	No	C3/4	Yes	Yes	No	108	Yes	o	II II	n.a. n.a.	No					
75	Brown et al., 2002 [75]	51 F	No	T3–8	Yes	Yes	No	24	Yes	+	III IV	6 III No	No					
76	O’Brien et al., 2003 [76]	48 M	No	T11–L1	Yes	Yes	No	6	Yes	++	I I	6 I No	No					
77	Colosimo et al., 2003 [77]	59 M	No	C2	Yes	Yes	No	12	Yes	+	n.a. n.a.	48 I No	No					
78	47 F	No	T8	No	Yes	No	12	Yes	+	n.a. III	36 II No	No						
79	Panagiotopoulos et al., 2004 [78]	71 M	No	T6	Yes	Yes	No	12	Yes	++	IV II	36 I No	No					
80	51 M	No	T9/10	Yes	Yes	No	3	Yes	+	IV II	n.a. n.a.	No						
81	Siddiqui/Shah, 2004 [79]	13 F	NF	Med.–C3	Yes	Yes	No	6	Yes	+	III n.a.	3 II No	No					
82	Conti et al., 2004 [80]	28 F	NF	C1	Yes	Yes	n.a.	Yes	n.a.	IV n.a.	n.a. n.a.	n.a. n.a.	No					
83	31 F	No	C4–6	n.a.	n.a.	n.a.	72	Yes	+	n.a. n.a.	n.a. n.a.	Yes						
84	44 M	No	T10	n.a.	n.a.	n.a.	36	Yes	+	n.a. n.a.	n.a. n.a.	No						
Case No.	Reference	Patient Age	Sex	NF	Vertebra	Sensory system	Motor system	Autonomic nervous system	Duration (months)	Recovery McCormick scale*	Follow-up Months	McCormick scale*	Tumour recurrence					
----------	-----------	-------------	-----	----	----------	---------------	--------------	------------------------	------------------	-----------------------------	----------------	----------------	-------------------					
85	Chavez-Lopez et al., 2004 [81]	40	M	No	C4–6	Yes	Yes	No	24	Yes	II	I	n.a.	n.a.	No			
86	El Malki et al., 2005 [82]	40	F	No	C1–6	Yes	Yes	No	84	Yes	+	I	I	n.a.	n.a.	6	n.a.	No
87	Anato et al., 2005 [83]	38	F	No	C4	Yes	No	No	1	Yes	+	I	I	n.a.	n.a.	36	I	No
88	Matsuyama et al., 2009 [84], Kim et al., 2005 [85]	72	F	No	T8/9	Yes	No	No	10	Yes	+	II	II	n.a.	n.a.	n.a.	No	
89	Kyoshima et al., 2005 [86]	54	M	No	T9/10	Yes	Yes	Yes	48	Yes	+	II	III	60	II	No		
90	Shenoy/Raja, 2005 [87]	29	M	No	C4–7	Yes	Yes	Yes	36	Yes	+	n.a.	n.a.	n.a.	n.a.	No		
91	Kahilogullari et al., 2005 [88]	38	F	No	T12–L2	Yes	No	No	7	Yes	+	I	I	n.a.	n.a.	n.a.	No	
92	Ho et al., 2006 [89]	45	M	No	C5/6	No	No	No	n.a.	Yes	+	I	I	4	I	No		
93	Mukerji et al., 2007 [90]	8	M	No	C5–7	Yes	Yes	Yes	6	Yes	+	V	n.a.	18	I	No		
94	Hida et al., 2008 [91]	41	M	No	C1/2	Yes	Yes	Yes	6	Yes	+	n.a.	n.a.	n.a.	n.a.	No		
95	30	M	No	C5–7	Yes	Yes	No	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
96	Kim et al., 2009 [92]	11	F	No	T5/6	Yes	Yes	Yes	9	Yes	–	II	IV	138	III	No		
97	Nicácio et al., 2009 [93]	40	M	No	C4–6	Yes	Yes	Yes	24	Yes	+	III	III	24	III	No		
98	Hayashi et al., 2009 [94]	78	F	No	T11–L1	Yes	Yes	No	240	Yes	+	I	I	10	III	No		
99	Ohtonari et al., 2009 [95]	29	M	No	T12–L1	No	Yes	Yes	8	Yes	+	II	I	n.a.	n.a.	n.a.	n.a.	No
100	Adam et al., 2010 [96]	21	F	No	C2–5	Yes	Yes	Yes	18	Yes	++	II	I	12	I	No		
101	46	F	No	T2–6	n.a.	n.a.	n.a.	6	Yes	+	III	n.a.	48	n.a.	No			
102	Lyle et al., 2010 [97]	0	M	No	T2–Sacr.	Yes	Yes	n.a.	n.a.	Yes	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	No	
103	Bernal-Garcia et al., 2010 [5]	35	F	No	T1–5	Yes	Yes	Yes	36	Yes	+	III	n.a.	204	II	No		
104	18	F	NF 2	C5–7	Yes	Yes	Yes	24	Yes	+	III	n.a.	n.a.	II	No			
105	Teo et al., 2011 [98]	44	M	No	C5/6	Yes	Yes	No	24	Yes	+	II	I	n.a.	n.a.	n.a.	No	
106	Ryu et al., 2011 [99]	68	M	No	T6/7	Yes	Yes	No	17	Yes	+	III	III	1	II	No		
107	Vij et al., 2011 [100]	25	M	No	T10/11	Yes	Yes	Yes	36	Yes	–	III	IV	n.a.	n.a.	n.a.	No	
108	Das et al., 2012 [101]	55	M	No	C2/3	No	No	No	n.a.	Yes	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	No	
109	Li et al., 2013 [102]	42	M	No	T10/11	Yes	Yes	Yes	18	Yes	+	IV	IV	18	I	No		
110	Lee et al., 1999 [103], Lee et al., 2013 [104]	39	F	No	T1–4	n.a.	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No		
111	41	F	No	C5/6	n.a.	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
112	49	F	No	C5–7	n.a.	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
113	46	F	No	T1/2	n.a.	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
114	19	F	No	T6–8	n.a.	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
Case No.	Reference Patient	Localization	Symptoms	OP	Recovery McCormick scale*	Follow-up	Tumour recurrence											
---------	-------------------	--------------	----------	----	--------------------------	-----------	------------------											
		Age	Sex	NF	Vertebral	Sensory system	Motor system	Autonomic nervous system	Duration (months)	PréOP	Post OP	Months	McCormick scale*	Tumour recurrence				
115		42	M	No	T7/8	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
116		60	No	T7–10	n.a.	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
117		44	M	No	T8/9	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
118		37	F	No	T9/10	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
119		78	M	No	T10/11	n.a.	n.a.	n.a.	Yes	+	n.a.	n.a.	n.a.	n.a.	No			
120	Eljebbouri et al., 2013 [105]	10	M	No	T7–9	Yes	Yes	Yes	6	Yes	+	III	n.a.	18	I	No		
121	Wu et al., 2011 [106], Yang et al., 2014 [107]	52	M	No	C6–T4	No	Yes	Yes	120	Yes	o	III	III	154	III	No		
122		41	F	No	C4–6	No	Yes	No	6	Yes	++	II	II	140	I	No		
123		39	M	No	C3–5	Yes	No	No	12	Yes	++	I	I	125	I	No		
124		35	M	No	C6	Yes	No	No	36	Yes	++	I	II	114	I	No		
125		46	M	No	T3–5	Yes	Yes	No	12	Yes	+	III	III	102	II	No		
126		61	M	No	C6/7	Yes	No	No	24	Yes	++	II	I	94	I	No		
127		42	M	No	T10–12	Yes	No	No	24	Yes	++	III	II	85	I	No		
128		31	M	No	C3/4	Yes	No	No	12	Yes	++	II	I	78	I	No		
129		56	F	No	C5/6	Yes	Yes	No	36	Yes	++	II	III	74	I	No		
130		60	F	No	T2/3	Yes	No	No	36	Yes	++	II	I	65	I	No		
131		48	M	No	T9/10	Yes	Yes	Yes	144	Yes	+	III	IV	58	III	No		
132		59	M	No	C1/2	Yes	No	No	36	Yes	++	I	III	54	I	No		
133		50	F	No	C5/T1	Yes	No	No	24	Yes	++	II	III	51	I	No		
134		57	M	No	C4–6	No	No	No	6	Yes	++	II	II	47	I	No		
135		44	F	No	C5–7	Yes	No	No	48	Yes	++	II	II	41	I	No		
136		44	M	No	T3	Yes	Yes	No	12	Yes	++	II	II	24	I	No		
137		40	M	No	C3	Yes	No	No	2	Yes	++	II	II	20	I	No		
138		34	M	No	T12	No	Yes	No	48	Yes	++	II	II	16	I	No		
139		17	M	No	T6–8	Yes	No	No	12	Yes	++	II	III	12	I	No		
140		38	M	No	T11	Yes	No	Yes	18	Yes	++	III	II	6	I	No		
141	Yang et al., 2015 [108]	35	M	No	T11/12	Yes	Yes	Yes	24	Yes	++	II	II	3	I	No		
142	Gupta et al., 2015 [109]	48	M	No	C3/4	Yes	Yes	No	5	Yes	+	III	III	12	II	No		
143	Jagannatha et al., 2016 [110]	11	M	No	T11/12	Yes	Yes	Yes	12	Yes	++	III	n.a.	6	n.a.	No		
144	Sun et al., 2017 [111]	24	M	n.a.	C1/2	Yes	Yes	Yes	6	Yes	+	II	I	n.a.	n.a.	n.a.		
Table 1 (continued)

Case No.	Reference	Age	Sex	NF	Localization	Symptoms	OP	Recovery McCormick scale*	Follow-up	Tumour recurrence
145	Nayak et al., 2017 [112]	28	M	No	T1–9	Yes Yes Yes	36	Yes +	IV III n.a. n.a. n.a.	
146	Gao et al., 2017 [113]	34–59	6 M 2 F	No	T8/9	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. n.a. n.a.	
147	No	T9/10	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. n.a. n.a. n.a.				
148	No	T10	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. n.a. n.a. n.a.				
149	No	T4–6	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. n.a. n.a. n.a.				
150	No	T10/11	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. n.a. n.a. n.a.				
151	No	C6–T1	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. n.a. n.a. n.a.				
152	No	C5/6	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. n.a. n.a. n.a.				
153	No	C4–7	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. n.a. n.a. n.a.				
154	Karatay et al., 2017 [114]	30	F	No	T12/L1	No Yes No	2	Yes +	II n.a. n.a. n.a. n.a.	
155	Li et al., 2017 [115]	30	M	No	C3–5	No No No	1 No n.a. n.a. n.a. n.a.			
156	Navarro Fernández et al., 2018 [116]	19	M	No	C6–7	Yes Yes No	36	Yes +	IV IV 1 III No	
157	Landi et al., 2018 [117]	8	F	No	T10/11	Yes Yes No	8	Yes ++	III II 84 I No	
158	Singh et al., 2018 [118]	27	F	No	T12–L2	Yes Yes Yes	12	Yes +	III III 6 III No	
159	Wang et al., 2018 [119]	9	M	No	T8	Yes Yes No	6	Yes ++	II I 36 I No	
160	Shi et al., 2019 [120]	42	F	No	Cerv.	n.a. n.a. n.a.	n.a.	Yes n.a.	n.a. n.a. n.a. 36 n.a. n.a.	
161	Dhake/Chatterjee, 2019 [121]	10	M	No	T10–12	Yes Yes Yes	6	Yes +	III n.a. 216 V Yes	
162	57	F	No	T9/10	Yes Yes No	24	Yes +	IV n.a. 24 III Yes		
163	Dai et al., 2019 [122]	34	M	No	C3/4	Yes Yes No	24	Yes ++	I I 12 I No	
164	Sekar et al., 2019 [123]	37	F	No	C5–7	Yes Yes Yes	12	Yes n.a.	II n.a. n.a. n.a. n.a. n.a.	
165	Kelly et al., 2020 [124]	43	M	No	C4-T2	Yes Yes No	18	Yes +	V V 3 IV No	

*Modified McCormick scale

n.a. information not available

NF neurofibromatosis

OP operation
our own study is the largest review of cases on IMS. An
research of the databases. This series of 166 cases including
case series revealed cases, which were missed by keyword
tabases did not show all cases; further analysis of reported
Portuguese, German and Spanish were not included in previ-

The average duration of follow-up on a patient with IMS
was 34 months. Tumour recurrence was only observed in 4% of
the cases (Table 1).

Information on MRI images were available in only half of
the cases. In the available T_1-weighted images, most cases
showed an isointense (18.1%) or hypointense (16.9%) imaging
pattern; mixed (6.8%) and hyperintense (6.2%) patterns
were observed less frequently. T_2-weighted images showed in
23.2% a hyperintense, in 11.9% an isointense, in 8.5% a
mixed and in 7.9% a hypointense pattern. All cases showed
a gadolinium enhancement, which was homogenous in
32.8%, heterogenous in 18.6%, some cases showed only a
circular (5.6%) and 2 cases were reported to only show min-
imal gadolinium enhancement (1.1%). 17.5% of the IMS
showed a cystic component. Perifocal edema was observed
in 22% of the cases; 20.9% of cases were associated with syringomyelia (Table 2).

Discussion

To our knowledge, no complete review of all reported cases
has been performed thus far. Here, we attempted to gather all
reported cases since 1932. Interestingly, we found more cases
than previously described in other series [62, 80, 98]. Due to
the language barrier, reports in Japanese, Chinese, French,
Portuguese, German and Spanish were not included in previ-
ous reports. Additionally, keyword research in the known da-
tabases did not show all cases; further analysis of reported
case series revealed cases, which were missed by keyword
research of the databases. This series of 166 cases including
our own study is the largest review of cases on IMS. An
uncomplete review of this very rare pathology might consti-
tute a limitation, which impacts the estimated epidemiology.

IMS represent 0.3–1.5% of all spinal schwannomas [2–4].
Several studies described a gender distribution of 3:1
(male:female) [93, 107, 113]. Our results showed a higher rate
of female patients and thus a gender distribution of 3:2
(male:female). Previous studies found the mean age of disease
presentation to be in the fourth decade of life [92, 113, 117].
The mean age of disease presentation in our series was
40.2 years (range: 1 day–78 years old). Thus, the analysis of
our series confirmed the previously reported results. The cer-
vical spine followed by the thoracic spine was reported as the
most common localization of IMS [3, 85, 88, 89]. These find-
ings are also consistent with our analysis.

Previous studies addressing the clinical features and surgical
outcome of patients with IMS revealed sensory distur-
bance as the most common initial symptom [107]. Our results
show that patients with IMS suffer from sensory deficits as
often as from motor deficits, but we agree with Yang et al. on
the value of sphincter dysfunction as a late symptom [107].
Overall, patients with IMS seem to benefit from operation,
which is clearly shown by an improved postoperative neuro-
logical status in 86% of the patients. Previous studies on IMS
observed that patients with a longer symptom duration benefit
less from surgery due to chronic compression of the neuro-
mal tissue by the tumour [107]. In our review, we were not able
to confirm this hypothesis, since the analysis of the postoper-
ative outcome as a function of the duration of symptoms re-
vealed no significantly worse outcome for patients with a
symptom duration ≥10 years. In most of the cases, gross total
resection can be achieved easily [107]. In cases in which the
tumour is strongly adherent to the surrounding neuronal tis-
ue, subtotal resection should be considered in order to avoid
deterioration of the neurological status. In particularly compli-
cated cases, two-stage surgery provides a possible approach
towards better therapeutic results [91].

Conti et al. stated that IMS associates with NF; however,
several studies showed a prevalence of 0–2% in spinal tu-
mours [7, 70, 80, 103, 125]. Our review found NF in 11 of
166 cases (6.6%). These results reveal slightly higher rates of
NF in patients with IMS than previously described; however,
no firm association between NF and IMS was found.

IMS are frequently misdiagnosed as another tumour entity
because of the tumour location and its heterogenous appear-
ance in MRI diagnostics [113, 122]. Several series described
the MRI appearance of schwannomas as being iso/
hypointense in the T_1- and hyperintense in the T_2-weighted
images [1]. However, the T_1- and T_2-weighted appearance of
IMS varies among studies [107, 113]. The summary of these
studies in our review reveals that in most cases, IMS show a
similar MRI appearance as schwannomas. Specifically, in T_1-
weighted images, 35% of all cases appeared iso- or hypointense and in T_2-weighted images, 23.2% were
Case No.	Reference	Localization	MRI						
1	Penfield, 1932 [13]	C5	n.a.						
2	Rasmussen et al., 1940 [14]	C4–7	n.a.						
3	Roka, 1951 [15]	Cerv.	n.a.						
4	Rose, 1954 [16]	C5	n.a.						
5	Riggs/Clary, 1957 [17]	C4/5	n.a.						
6	Ramamurthi et al., 1958 [18]	T2	n.a.						
7	Scott/Bentz, 1962 [19]	T3	n.a.						
8	McCormick et al., 1964 [20]	L2	n.a.						
9	Sloof, 1964 [9]	Cerv.	n.a.						
10	Mason/Keigher, 1968 [21]	T8–10	n.a.						
11	Chigasaki/Pennybacker, 1968 [22]	T3	n.a.						
12	Van Duinen, 1971 [23]	C3	n.a.						
13	Fabres et al., 1972 [24]	T2/3	n.a.						
14	Cambier et al., 1974 [25]	C2–4	n.a.						
15	Wood et al., 1975 [26]	C3	n.a.						
16	Schmitt, 1975 [27]	L1	n.a.						
17	Isu et al., 1976 [28]	C1	n.a.						
18	Kumar/Gulati, 1977 [29]	Cerv.	n.a.						
19	Vailati et al., 1979 [30]	T7–9	n.a.						
20	Gegalian, 1979 [31]	T8/9	n.a.						
21	Pardatscher et al., 1979 [8]	T2–8	n.a.						
22	Shalit/Sandbank, 1981 [32]	C2-T2	n.a.						
23	Guidetti, 1967 [33]	C3–5	n.a.						
24	Lesoin et al., 1983 [35]	T12 – L1	n.a.						
25	Lesoin et al., 1983 [35]	C3–7	n.a.						
26	Rout et al., 1983 [36]	L1	n.a.						
27	Kang/Song, 1983 [37]	C3–6	n.a.						
28	Bouchez et al., 1984 [38]	C2–7	n.a.						
29	Drapkin et al., 1985 [39]	C3–5	n.a.						
30	Lesoin et al., 1986 [40]	T3–6	n.a.						
31	Maruki et al., 1986 [41]	T7/8	n.a.						
32	Ross et al., 1986 [4]	C2–T1	Iso.	Hyper.	n.a.	n.a.	n.a.	n.a.	n.a.
33	Adachi et al., 1990 [42]	C4/5	n.a.						
34	Char/Cross, 1987 [42]	T3/4	n.a.						
35	Garen et al., 1988 [43]	C3–6	n.a.						
36	Hida et al., 1988 [44]	T8/9	n.a.						
37	Okuda et al., 1988 [45]	Med.–C7	n.a.						
38	Gorman et al., 1989 [46]	C5/6	Mixed	Hyper.	n.a.	No	No	No	No
39	Sharma et al., 1989 [47]	C5	n.a.						
40	Meisel et al., 1990 [48]	T9/10	Hyper.	Hypo.	Homo.	No	Yes	Yes	No
41	Li/Holtas, 1991 [49]	C2	Hypo./Iso.	Iso./Hypo.	Homo.	No	Yes	No	No
Case No.	Reference	Localization	MRI						
----------	-----------	--------------	-----						
		Vertebra	T1	T2	GA	CYS	OE	SYX	
43	Herregodts et al., 1991 [50]	T2	Hyper.	n.a.	Homo.	No	Yes	No	
44	Jacquet et al., 1992 [51]	T12–L1	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	
45	Morimoto et al., 1992 [52]	T7–9	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	
46	Benini et al., 1993 [53]	T7–9	n.a.	Hyper.	Minimal	No	No	No	
47	Sekerci et al., 1993 [54]	C5/6	n.a.	Iso.	Homo.	No	No	Yes	
48	Radhakrishnan et al., 1993 [55]	T1–3	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	
49	C5/6	n.a.	n.a.	Homo.	n.a.	No	Yes	No	
50	C4–6	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	n.a.	
51	Nicoletti et al., 1994 [56]	C3–5	Hyper.	Hypo.	Homo.	n.a.	No	No	No
52	Duong et al., 1995 [57]	T5–7	Iso.	Iso.	Homo.	Yes	Yes	Yes	
53	Melancia et al., 1996 [58]	T11–L2	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	
54	Lee et al., 1996 [2]	C5–T3	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	
55	C5	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	n.a.	
56	Botelho et al., 1996 [59]	C4–6	n.a.	n.a.	Homo.	Yes	No	Yes	
57	Innocenzi et al., 1996 [60]	C1–3	Hypo.	Hyper.	Homo.	No	No	No	
58	Bekar et al., 1997 [61]	C2–T1	Hyper.	Hyper.	Homo.	Yes	No	No	
59	Beşkonakli et al., 1997 [62]	T8	Hyper.	n.a.	Homo.	No	Yes	No	
60	Cotó et al., 1998 [63]	T4/5	Hypo.	Iso.	Homo.	n.a.	n.a.	Yes	
61	Kotil et al., 1998 [64]	T10/11	n.a.	Hyper.	Homo.	n.a.	n.a.	n.a.	
62	Hejazi/Hassler, 1998 [65]	T12–L1	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	
63	Binati et al., 1999 [66]	C6–T1	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	
64	Arellanes-Chávez et al., 2000 [67]	C2–5	Iso.	Hyper.	Homo.	Yes	No	Yes	
65	Riflaud et al., 2000 [3]	C1/2	Hyper.	Hypo.	Homo.	No	No	Yes	
66	Ogunjogo et al., 2000 [68]	C4–7	n.a.	n.a.	Homo.	No	No	Yes	
67	Kodama et al., 2000 [69]	C3–5	Hyper.	Iso./Hypo.	Homo.	Yes	No	No	
68	C1	Hyper.	Hyper.	Circ.	Homo.	Yes	Yes	Yes	
69	Patronas et al., 2001 [70]	T2	Iso./Hyper.	Homo.	Yes	No	No		
70	Kono et al., 2001 [71]	C2	n.a.	n.a.	Homo.	No	No	No	
71	Maira et al., 2001 [72]	C5/6	Hypo.	Iso.	Homo.	n.a.	n.a.	n.a.	
72	Sasaki et al., 2002 [73]	C3/4	n.a.	n.a.	Homo.	No	No	Yes	
73	Darwish et al., 2002 [74]	T3–8	n.a.	n.a.	Heter.	No	No	Yes	
74	Brown et al., 2002 [75]	O'Brien et al., 2003 [76]	T11–L1	n.a.	Hyper.	Homo.	n.a.	n.a.	n.a.
75	Colosimo et al., 2003 [77]	C2	Iso.	Hypo.	Homo.	n.a.	n.a.	n.a.	
76	Panagiotopoulos et al., 2004 [78]	T6	Hypo.	Homo.	No	No	No		
77	Siddiqui/Shah, 2004 [79]	T9/10	Hypo.	Homo.	No	No	No		
78	Conti et al., 2004 [80]	Med.–C3	Iso./Hypo.	Homo.	Heter.	No	No	Yes	
79	C1	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	n.a.	
80	C4–6	n.a.	n.a.	Homo.	n.a.	n.a.	n.a.	n.a.	
81	Chavez-Lopez et al., 2004 [81]	C4–6	Iso.	Homo.	No	No	Yes		
82	El Malki et al., 2005 [82]	C1–6	Hyper.	Homo.	Heter.	Yes	No	Yes	
83	Amato et al., 2005 [83]	C4	Hyper.	Homo.	No	No	Yes		
84	Matsuyama et al., 2009 [84]	Kim et al., 2005 [85]	T8/9	n.a.	Iso.	Homo.	No	Yes	No
Case No.	Reference	Localization	MRI						
---------	----------------------------	--------------	-----						
89	Kyoshima et al., 2005 [86]	T9/10	Iso./Hypo. Iso. Circ. No No No						
90	Shenoy/Raja, 2005 [87]	C4–7	Iso./Hypo. Hyper. Circ. No No Yes						
91	Kahilogullari et al., 2005 [88]	T12–L2	n.a. n.a. Heter. n.a. n.a. n.a.						
92	Ho et al., 2006 [89]	C5/6	Iso. Hyper. Homo. No No No						
93	Mukerji et al., 2007 [90]	C5–7	Iso. Hyper. n.a. No Yes No						
94	Hida et al., 2008 [91]	C1/2	Hypo. Iso. Heter. No Yes No						
95	T2–6	n.a. n.a.	Homo. No No No						
96	Kim et al., 2009 [92]	T5/6	Hypo. Iso. Circ. No No Yes						
97	Nicácio et al., 2009 [93]	C4–6	Hyper. Hypo. Heter. No Yes Yes						
98	Hayashi et al., 2009 [94]	T11–L1	Hypo. Iso. Circ. Yes Yes No						
99	Ohtonari et al., 2009 [95]	T12–L1	Iso. n.a. Homo. Yes No No						
100	Adam et al., 2010 [96]	C2–5	n.a. n.a. n.a. n.a. n.a. n.a.						
101	T2–6	n.a. n.a.	Homo. No No No						
102	Lyle et al., 2010 [97]	T2–Sac.	n.a. Iso. Heter. No No No						
103	Bernal-García et al., 2010 [5]	T1–5	Iso. Hyper. Homo. No Yes No						
104	C5–7	Hyper. Iso.	Homo. No No No						
105	Teo et al., 2011 [98]	C5/6	Hypo. Hyper. Homo. Yes Yes No						
106	Ryu et al., 2011 [99]	T6/7	Iso. Hyper. Homo. No Yes Yes						
107	Vij et al., 2011 [100]	T10/11	Hypo. Iso. n.a. No No No						
108	Das et al., 2012 [101]	C2/3	Hypo. Hyper. n.a. No Yes No						
109	Li et al., 2013 [102]	T10/11	Iso. Hypo. Heter. Yes No No						
110	Lee et al., 1999 [103], Lee et al., 2013 [104]	C4–7	n.a. n.a. Heter. n.a. n.a. n.a.						
111	C5/6	n.a. n.a.	Homo. n.a. n.a. n.a. n.a.						
112	C5–7	n.a. n.a.	Homo. n.a. n.a. n.a.						
113	T1/2	n.a. n.a.	Homo. n.a. n.a. n.a.						
114	T6–8	n.a. n.a.	Homo. n.a. n.a. n.a.						
115	T7/8	n.a. n.a.	Homo. n.a. n.a. n.a.						
116	T7–10	n.a. n.a.	Homo. n.a. n.a. n.a.						
117	T8/9	n.a. n.a.	Homo. n.a. n.a. n.a.						
118	T9/10	n.a. n.a.	Homo. n.a. n.a. n.a.						
119	T10/11	n.a. n.a.	Homo. n.a. n.a. n.a.						
120	Eljebbouri et al., 2013 [105]	T7–9	n.a. Hyper. Heter. Yes Yes No						
121	Wu et al., 2011 [106], Yang et al., 2014 [107]	C6-T4	Hypo./Iso. Hyper. Heter. Yes Yes No						
122	C4–6	Hypo. Hyper.	Homo. No No Yes						
123	C3–5	Iso. Iso.	Homo. No No Yes						
124	C6	Hypo. Hyper.	Homo. No No Yes						
125	T3–5	Hypo./Iso.	Hyper. Heter. Yes Yes No						
126	C6/7	Hypo. Hyper./Iso.	Circ. Yes Yes No						
127	T10–12	Hypo./Iso.	Hyper./Iso. Heter. Yes No No						
138	C3/4	Iso. Iso.	Heter. No No No						
129	C5/6	Hypo. Hyper.	Heter. Yes Yes No						
130	T2/3	Iso. Iso.	Homo. No No Yes						
131	T9/10	Iso. Hyper.	Homo. No No Yes						
132	C1/2	Iso. Iso.	Homo. No No Yes						
133	C5/T1	Hypo. Hyper./Iso.	Heter. Yes Yes No						
134	C4–6	Hypo./Iso.	Hyper. Heter. Yes Yes No						
Case No.	Reference	Localization	MRI						
---------	------------------------	--------------	----------------------						
135	C5–7	Iso.	Hyper./Iso.	Heter.	No	No	Yes		
136	T3	Iso.	Iso.	Homo.	No	Yes	No		
137	C3	Iso.	Hyper.	Heter.	No	No	Yes		
138	T12	Iso.	Hyper./Iso.	Heter.	Yes	No	Yes		
139	T6–8	Iso.	Hyper./Iso.	Heter.	Yes	No	Yes		
140	T11	Iso.	Iso.	Homo.	No	No	No		
141	Yang et al., 2015 [108]	T11/12	Iso.	Hypo.	Heter.	Yes	No	Yes	
142	Gupta et al., 2015 [109]	C3/4	n.a.	Iso.	Heter.	Yes	No	No	
143	Jagannatha et al., 2016 [110]	T11/12	Hyper./Hypo.	Hypo.	Heter.	Yes	No	Yes	
144	Sun et al., 2017 [111]	C1/2	Iso.	Iso.	Homo.	No	No	Yes	
145	Nayak et al., 2017 [112]	T1–9	Hyper.	Hypo.	Homo.	No	No	No	
146	Gao et al., 2017 [113]	T8/9	Iso.	Hypo./Hyper.	Heter.	No	Yes	No	
147	T9/10	Hypo.	Hypo.	Heter.	No	Yes	No		
148	T10	Hypo.	Hypo.	Heter.	No	Yes	Yes		
149	T4–6	Hypo.	Hyper.	Homo.	No	No	No		
150	T10/11	Hypo.	Hypo.	Homo.	No	No	No		
151	C6–T1	Hypo.	Hypo./Hyper.	Homo.	No	Yes	Yes		
152	C5/6	Hypo.	Hypo./Hyper.	Homo.	No	Yes	No		
153	C4–7	Hypo.	Hypo./Hyper.	Homo.	No	No	No		
154	Karatay et al., 2017 [114]	T12/L1	Hypo.	Hyper.	Homo.	No	No	Yes	
155	Li et al., 2017 [115]	C3–5	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
156	Navarro Fernández et al., 2018 [116]	C6–7	Iso.	Hyper.	Circ.	Yes	Yes	No	
157	Landi et al., 2018 [117]	T10/11	n.a.	Hypo.	Homo.	No	No	No	
158	Singh et al., 2018 [118]	T12–L2	Hypo./Hyper.	Hyper.	Heter.	Yes	No	No	
159	Wang et al., 2018 [119]	T8	Hypo.	Iso.	Homo.	No	No	Yes	
160	Shi et al., 2019 [120]	Cerv.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
161	Dhake/Chatterjee, 2019 [121]	T10–12	Iso./Hypo.	Hyper.	Heter.	No	No	No	
162	T9/10	Hypo.	Hyper.	Circ.	No	No	No		
163	Dai et al., 2019 [122]	C3/4	Iso.	Hyper.	Minimal	No	Yes	No	
164	Sekar et al., 2019 [123]	C5–7	Hypo.	Hyper.	n.a.	Yes	No	Yes	
165	Kelly et al., 2020 [124]	C4–T2	Iso./Hypo.	Hyper.	Heter.	No	No	Yes	

MRI magnetic resonance imaging
T1 T1-weighted images
T2 T2-weighted images
GA gadolinium enhanced
CYS cystic lesion
OE oedema in T2-weighted images
SYX tumour-associated syringomyelia
iso. isointense
Hypo. hypointense
Hyper. hyperintense
Homo. homogenous
Heter. heterogenous
Circ. circular
n.a. information not available
1848

hyperintense. Interestingly, 1/5 of all cases associated with syringomyelia and in 20%, a perilesional edema was observed. The treated patient in our institution suffered from a perilesional edema, which showed a complete remission in the follow-up MRI after 4 months.

The pathogenesis of IMS is controversially debated among experts because of the absence of Schwann cells within the central nervous system (CNS) in healthy individuals [69]. Currently, there are six hypotheses regarding the origin of IMS: (a) conversion of pial mesodermal cells into neuroectodermal Schwann cells [126]; (b) migration and late neoplastic growth of ectopic Schwann cells during embryonal development [18, 30]; (c) origin from Schwann cells from the perivascular nerve plexus surrounding the blood vessels within the CNS [17, 27, 36, 127, 128]; (d) schwannosis in proximity to the anterior spinal artery [129]; (e) centripetal growth from a dorsal nerve root entry zone into the spinal cord [20, 21, 26, 128] and (f) result from imperfect regeneration of the spinal cord after mechanical trauma or chronic disease [130].

Although some association of proliferating vessels around the tumour [4, 32, 35, 68, 102], tumour connection to a nerve root [4, 27, 34, 43, 46, 52, 58, 68, 71, 76, 77, 84, 89, 99, 104, 107, 109, 115, 123] or chronic disease of the spinal cord could be observed in reported cases [39, 100, 107], it is still not possible to make a general statement regarding the pathogenesis of IMS. In our case, a tumour connection to the nerve root could be observed in the MRI of the cervical spine. This is why we rather support the hypothesis of centripetal growth from a nerve root entry zone into the spinal cord as a possible pathomechanism for development of IMS. However, this mechanism is not able to explain the formation of multiple IMS. The special subgroup of multiple IMS might have implications for the pathomechanism of IMS, but the available information do not allow a conclusions about differences in the pathogenesis of singular and multiple IMS.

As part of the preoperative examination and consultation of patients with intramedullary tumours, it is important to make a correct tentative diagnosis to ensure the best possible treatment. Since IMS are benign tumours of the spinal cord, their treatment might differ from other tumours, like spinal astrocytoma or ependymoma. Patients with IMS show a low rate of tumour recurrence. Even in cases with subtotal tumour resection, tumour recurrence is not necessarily observed [107]. In contrast, for patients with spinal ependymoma, the gross total resection is the gold standard to achieve the longest possible progression-free survival [131–134]. Therefore, complete removal of the tumour should be the goal of the surgery. Furthermore, it is unclear if patients with spinal astrocytoma benefit from gross total resection as patients with spinal ependymoma do [135–138]. Additionally, gross total resection is difficult to achieve in patients with spinal astrocytoma without causing a worse neurological outcome, which is why the primary goal of surgery is to spare the surrounding nervous tissue [139, 140]. Unfortunately, spinal astrocytoma and ependymoma are difficult to distinguish from IMS by use of MRI [107, 113, 141]. Therefore, it seems to be important to differentiate intramedullary tumours during surgery with the aid of intraoperative frozen sections in order to provide the patient with the best possible therapy [95, 104].

Conclusion

IMS are rare tumours of the spinal cord. One hundred sixty-six cases have been reported so far, including the here reported case. IMS are more frequently found in male patients; the mean age of disease presentation is the fourth decade of life. The most common localization of IMS is the cervical spine, followed by the thoracic spine. Although several explanations regarding the pathogenesis of IMS have been proposed, it is still not possible to make a general statement regarding the pathogenesis of these tumours, especially for the subgroup of patients with multiple IMS. In our study, no firm association between NF and IMS was found.

Patients suffering from IMS present in most of the cases with sensory and motor deficits; sphincter dysfunction seems to be a late symptom. Due to heterogenous imaging patterns in MRI, it is difficult to preoperatively differentiate an IMS from other intramedullary tumours. Therefore, intraoperative frozen section might be useful to determine the tumour entity and the best suited surgical strategy. Overall, patients with IMS seem to benefit from operation; in most of the cases, gross total resection can be achieved easily. Nevertheless, further multicentre studies are necessary to elucidate the pathomechanism leading to IMS formation and to determine strategies for the best clinical care for these patients.

Acknowledgements The authors thank Dr. Milad Neyazi for the translation of Japanese publications.

Code availability Not applicable.

Author’s contributions All mentioned authors contributed to the study conception and design. Literature search and data collection were performed by VMS. Data analysis and writing of the first manuscript draft were performed by VMS and BN. All authors commented on previous versions of the manuscript and approved the final manuscript.

Funding Open Access funding provided by Projekt DEAL.

Data availability The authors declare that the data supporting the findings of this study are available within the article.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.
References

1. Ottenhausen M, Ntoulias G, Bodhinayake I, Ruppert F-H, Schreiber S, Förschler A, Boockvar JA, Jödicke A (2018) Intradural spinal tumors in adults—update on management and outcome. Neurosurg Rev 42:371–388. https://doi.org/10.1007/s10143-018-0957-x

2. Lee DY, Chung CK, Kim HJ (1999) Thoracic intramedullary schwannoma. J Spinal Disord 12:174–176

3. Riffaud L, Morandi X, Massengo S, Carsin-Nicol B, Heresbach DC, Marchesseau A, Vauthier K (2009) Intramedullary neurinomas of the spinal cord: report of two cases and review of the literature. Neurosurgery 19:458–464. https://doi.org/10.1227/00007090-200906000-00023

4. Riffaud L, Morandi X, Massengo S, Carsin-Nicol B, Heresbach DC, Marchesseau A, Vauthier K (2009) Intramedullary neurinomas of the spinal cord: report of two cases and review of the literature. Neurosurgery 19:458–464. https://doi.org/10.1227/00007090-200906000-00023

5. Bernal-Garcia LM, Cabazo-Argero JM, Ortega-Martinez M, Porras-Estrada LF, Fernandez-Portales I, Ugarriza-Echebarrieta LF, Molina-Orozco M, Pimentel-Leo JJ (2010) Intramedullary schwannomas. Report of two cases. Neurocirugía 21:232–238 discussion 238-239

6. Bhayani R, Goel A (1996) Multiple intramedullary schwannomas—case report. Neurol Med Chir (Tokyo) 36:466–468. https://doi.org/10.2176/nmc.36.466

7. Kushel’ YV, Belova YD, Tekoev RB (2017) Intramedullary spinal cord tumors and neurofibromatosis. Zh Vopr Neirokhir Im N N Burdenko 81:70–73. https://doi.org/10.17161/neiro201780770-73

8. Pardatscher K, Inaci G, Cappelloppi P, Rigobello L, Pellone M, Fiore D (1979) Multiple intramedullary neuromas of the spinal cord. Case report. J Neurol Neurosurg Psychiatry 42:458–464. https://doi.org/10.1136/jnnp.42.4.458

9. Sloof, J.L., Kernohan, J.W., McCarty, C.S., 1964. Primary intramedullary tumors of the spinal cord and filum terminale. Philadelphia: Saunders Company Ed.

10. McCormick PC, Torres R, Post KD, Stein BM (1990) Intramedullary ependymoma of the spinal cord. J Neurosurg 72:523–532. https://doi.org/10.3171/jns.1990.72.4.0523

11. Schneider C, Hidalgo ET, Schmitt-Meckel T, Rothbauer KF (2014) Quality of life after surgical treatment of primary intramedullary spinal cord tumors in children. J Neurosurg. Pediatr. 13:170–177. https://doi.org/10.3171/2013.11.PEDS13346

12. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl) 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

13. Penfield W (1932) Cytology and pathology of the central nervous system, 3rd edn. P.B. Hoebner, Incorporated

14. Rasmussen TB, Kernohan JW, Adson AW (1940) Pathologic classification, with surgical consideration, of intraspinal tumors. Ann Surg 111:513–530. https://doi.org/10.1097/00000658-194004000-00001

15. Roka L (1951) Clinical aspects and pathologic anatomy of tumors of the oblongata and cord in the region of the foramen magna. Arch Psychiatr Nervenkrankh Ver Mit Z Gesamte Neurol Psychiatr 186:413–436. https://doi.org/10.1007/bf00716069

16. Rose K (1954) Neuropathologist study of Recklinghausens’s disease; a contribution to the formal genesis of junta- and intramedullary neurinoma. Psychiatr Neurol Med Psychol (Leipzig) 6:163–173

17. Rigg HE, Clary WU (1957) A case of intramedullary sheath cell tumor of the spinal cord: consideration of vascular nerves as a source of origin. J Neuropath Exp Neurol 16:332–336. https://doi.org/10.1097/00005072-195707000-00004

18. Ramamurthi B, Anguli VC, Iyer CG (1958) A case of intramedullary neurinoma. J Neurol Neurosurgery Psychiatry 21:92–94. https://doi.org/10.1136/jnnp.21.2.92

19. Scott M, Bentz R (1962) Intramedullary neurilemmoma (neurinoma) of the thoracic cord. A case report. J Neuropath Exp Neurol 21:194–200. https://doi.org/10.1097/00005072-196204000-00003

20. Mccormick WF (1964) Intramedullary spinal cord schwannoma. A unique case. Arch Pathol 77:378–382

21. Mason TH, Keigher HA (1968) Intramedullary spinal neurinoma: case report. J Neurosurg 29:414–416. https://doi.org/10.3171/jns.1968.29.4.0414

22. Chigasaki H, Pennybacker JB (1968) A long follow-up study of 128 cases of intramedullary spinal cord tumours. Neurol Med Chir (Tokyo) 10:25–66. https://doi.org/10.2176/nmc.10.25

23. Doppman JL, Branden MT (1971) Intramedullary neurinoma. Ned Tidschr Geneeskd 115:1070–1074

24. Fabres A, Conocente Y, Chiorino S (1985) Neuromas intramedullares dorsal. Presentacion de un caso. Clin Neurochir 30:100–102

25. Cambier J, Masson M, Hurth M, Poirier J, Dehen H (1974) Unilateral posterior-column syndrome due to intramedullary neurinoma. Imitative homolateral synkinesias. Rev Neurol (Paris) 130:189–199

26. Wood WG, Rothman LM, Nussbaum BE (1975) Intramedullary neurinoma of the cervical spinal cord. Case report. J Neurosurg 42:465–468. https://doi.org/10.3171/jns.1975.42.4.0465

27. Schmitt HP (1975) “Epi-” and intramedullary neurilemmoma of the spinal cord with denervation atrophy in the related skeletal muscles. J Neurol 209:271–278. https://doi.org/10.1007/bf00314366

28. Ishi T, Tashiro K, Mitsumori K, Sato M, Tsuru M (1976) A case of intramedullary spinal schwanna (author’s transl). No Shinkei Geka 4:897–901

29. Kumar S, Gulati DR (1977) Intramedullary neurilemmoma. A case report. Neurology India 25:255–256

30. Vailati G, Ochionirosso M, Troccoli V (1979) Intramedullary thoracic schwannoma. Surg Neurol 11:60-62

31. Geggalian L (1979) Use of hyaluronidase in the central nervous system. Surg Neurol 12:3–5

32. Shahid MN, Sandbank U (1981) Cervical intramedullary schwannoma. Surg Neurol 16:61–64. https://doi.org/10.1016/s0090-3019(81)80069-9

33. Guidetti B (1967) Intramedullary tumours of the spinal cord. Acta Neurochir 17:7–23. https://doi.org/10.1007/bf01670413
110. Jagannatha AT, Joshi KC, Rao S, Srikantha U, Varma RG, Mahadevan A (2016) Paediatric calcified intramedullary schwannoma at conus: a common tumor in a conspicuous location. J Pediatr Neurosci 11:319–321. https://doi.org/10.4103/1817-1745.199474

111. Sun J, Teo M, Wang Z, Li Z, Wu H, Zheng M, Chang Q, Han Y, Cui Z, Chen M, Wang T, Chen X (2017) Characteristic and surgical results of multisegment intramedullary spinal cord tumors. Interdiscip Neurosurg 7:29–43. https://doi.org/10.1016/j.inat.2016.11.004

112. Nayak R, Chaudhuri A, Chattopadhyay A, Ghosh SN (2015) Thoracic intramedullary schwannoma: a case report and review of literature. Asian J Neurosurg. 10:126–128. https://doi.org/10.4103/1793-5482.145155

113. Gao L, Sun B, Han F, Jin Y, Zhang J (2017) Magnetic resonance imaging features of intramedullary schwannomas. J Comput Assist Tomogr 41:137–140. https://doi.org/10.1097/RCT.0000000000000493

114. Karatay M, Koktekir E, Erdem Y, Celik H, Serbagi I, Bayar MA (2017) Intramedullary schwannoma of conus medullaris with syringomyelia. Asian J Surg 40:240–242. https://doi.org/10.1016/j.ajns.2014.04.004

115. Li X, Xu G, Su R, Lv J, Lai X, Yu X (2017) Intramedullary schwannoma of the upper cervical spinal cord: a case study of identification in pathologic autopsy. Forensic Sci Res 2:46–49. https://doi.org/10.1080/20961790.2016.1265236

116. Navarro Fernandez JO, Monroy Sosa A, Cacho Diaz B, Arrieta VA, Ortiz Leyva RU, Cano Valdez AM, Reyes Soto G (2018) Cervical intramedullary schwannoma: case report and review of the literature. Case Rep Neuro 10:18–24. https://doi.org/10.1159/0004907389

117. Landi A, Grasso G, Gregori F, Iacopino G, Ruggeri A, Delfini R (2018) Isolated pediatric intramedullary schwannoma: case report and review of literature. World Neurosurg 115:417–420. https://doi.org/10.1016/j.wneu.2018.04.220

118. Singh R, Chaturvedi S, Pant I, Singh G, Kumari R (2018) Intramedullary schwannoma of conus medullaris: rare site for a common tumor with review of literature. Spinal Cord Ser Cases 4:99. https://doi.org/10.1038/s41394-018-0134-z

119. Wang K, Zhao J, Zhang Y, Su Y (2018) Pediatric intramedullary schwannoma with syringomyelia: a case report and literature review. BMC Pediatr 18:374. https://doi.org/10.1186/s12887-018-1341-2

120. Shi W, Wang S, Zhang H, Wang G, Guo Y, Sun Z, Wu Y, Zhang P, Jing L, Zhao B, Xing J, Wang J, Wang G (2019) Risk factor analysis of progressive spinal deformity after resection of intramedullary spinal cord tumors in patients who underwent laminoplasty: a report of 105 consecutive cases. J Neurosurg Spine 30:655–663. https://doi.org/10.1016/j.jns.2018.10.018

121. Dhake RP, Chatterjee S (2019) Recurrent thoracic intramedullary schwannoma: report of two cases with long term follow up. Br J Neurosurg 1:4–1:4. https://doi.org/10.1080/02688697.2019.1566516

122. Dai LM, Qiu Y, Cen B, Lv J (2019) Intramedullary schwannoma of cervical spinal cord presenting inconspicuous enhancement with gadolinium. World Neurosurg. 127:418–422. https://doi.org/10.1016/j.wneu.2019.04.118

123. Sekar S, Vinayagamani S, Thomas B, Poyuran R, Kesavadas C (2019) Haemosiderin cap sign in cervical intramedullary schwannoma mimicking ependymoma: how to differentiate? Neuroradiology 61:945–948. https://doi.org/10.1007/s00234-019-02229-6

124. Kelly A, Legkwa P, Youmas A (2020) Extensive intramedullary schwannoma of the sub-axial cervical spine—a case report. Interdiscip. Neurosurg. 19:100621. https://doi.org/10.1016/j.inat.2019.100621

125. Mautner VF, Tatagiba M, Lindena M, Fürnester C, Pulst SM, Baser ME, Kluve L, Zanella FE (1995) Spinal tumors in patients with neurofibromatosis type 2: MR imaging study of frequency, multiplicity, and variety. AJR Am J Roentgenol 165:951–955. https://doi.org/10.2214/ajr.165.4.7676998

126. Russell D, Rubinstein L. (1963) Pathology of tumors of the nervous system. E. Arnold, p. pp 23. 34. 243. 244

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.