Techno-economic feasibility of flare gas utilization using adsorbed natural gas

Yuswan Muharam¹,³, Fiqi Giffari¹ and Mirza Mahendra²

¹ Department of Chemical Engineering, University of Indonesia, Depok 16424, Indonesia
² Indonesia Ministry of Energy and Natural Resources

E-mail: muharam@gmail.com

Abstract. Adsorbed natural gas (ANG) is a natural gas storage technology, which is potential to transport natural gas in small and medium quantity. The objective of this study is to determine the techno-economic feasibility of ANG technology for flare gas to consumers around flare gas sources. The method is process simulation, economic calculation and optimization with variables being ANG selling price, flare gas price, and the percentage of capital financing by the government. The process simulation shows that the ANG product is in the range of 2.07 MMSCFD – 2.97 MMSCFD. The economic calculation results in the interest rate of return of less than 10%. With optimization, the IRR increases to more than 20%.

1. Introduction

The supply of 587 MMSCFD flare gas in Indonesia is potential to be utilized. However, due to its low flowrate and remote location, the appropriate gas transportation technology is required to utilize flare gas [1]. Compressed Natural Gas (CNG) is one of the technologies used to distribute natural gas in small to medium quantities and distances of less than 965 km. However, CNG has a deficiency in terms of safety due to relatively high operating pressure (> 200 bar). This disadvantage of CNG leads to the development of adsorbed natural gas (ANG) [2, 3]. This technology does not require liquefaction process such as liquid natural gas (LNG) or compression process such as CNG. In ANG technology, natural gas is deposited on a porous material (adsorbent) as adsorbed phase at the pressure of 3.5-4.0 MPa. The energy density of ANG at the pressure of 500 psi (~ 3.4 Mpa) is proportional to that of CNG at 2400 psi (~ 16.5Mpa) pressure [4].

ANG technology continues to grow up in line with the development of research on adsorbents for methane. It is reported in 2013 that the adsorbent of type HKUST-1 has the storage capacity of 267 V(STP)/V at 10 MPa [5]. With this advantage, ANG technology is considered to be feasible as a flare gas transportation technology that has a relatively small capacity. Therefore, the recent study is to determine the techno-economic feasibility of ANG technology for flare gas utilization to consumers around flare gas sources.

³ To whom any correspondence should be addressed.
2. Methodology
The study uses flare gases from three natural gas fields with the specification as shown in Table 1.

Table 1. Detailed specification of flare gas from three natural gas fields.

Composition	Field X	Field Y	Field Z
Mole fraction			
C$_1$	0.49886	0.75060	0.80752
C$_2$	0.03943	0.08900	0.00498
C$_3$	0.04001	0.08450	0.00499
iC$_4$	0.01398	0.01920	0.00498
nC$_4$	0.02027	0.02250	0.00279
iC$_5$	0.01098	0.00730	0.00158
nC$_5$	0.00991	0.00490	0.00132
C$_6$+	0.02528	0.00820	0.00267
N$_2$	0.00227	0.00800	0.01733
CO$_2$	0.32692	0.00580	0.15004
H$_2$S	0.01209	0.00000	0.00180
Location	Onshore	Offshore	Offshore
Pressure (psig)	77.00	71.00	75.00
Temperature (°F)	117.00	108.00	105.00
Flowrate (MMSCFD)	4.80	2.50	3.77

Figure 1, Figure 2 and Figure 3 show the process flow diagram of Field X, Field Y and Field Z. Field X requires compression, gas sweetening and fractionation facilities to process the flare gas. Field Y needs compression and fractionation facilities. Field Z involves compression facilities and gas sweetening facilities in the plant. The process simulation results in mass balance, energy consumption, and equipment sizes, which in turn were used to estimate the capital and operating costs. The cashflow was calculated using the following assumption: project duration = 10 years, discount factor = 10%, operating time = 330 days/year, flare gas price = 2.7 US$/MMBTU, energy price = flare gas price, ANG selling price = 7 US$/MMBTU, condensate selling price = 40 US$/BBL, LPG selling price = 300 US$/ton, and HKUST-1 price = 6.5 US$/kg.

The output of the cashflow calculation is interest rate of return (IRR), net present value (NPV), period of time (POT) and profitability index (PI). If the economic indicators indicate that the project is not feasible, then feasibility optimization is performed by: setting the ANG selling price in the range of 8-10 US$/MMBTU, based on the existing range of CNG selling price for the industrial sector in Indonesia; setting flare gas price ranging from 0.45 US$/MMBTU to 2.7 US$/MMBTU, based on the government regulation and the average selling price of flare gas in other countries; alternating the financing scheme using public private partnership where the government capital financing share is in the range of 0-100%, based on the history of government cooperation with private parties ever undertaken.

3. Results and discussion
The results of the process simulation on Field X, Field Y, and Field Z exhibits in Table 2. It can be seen in the table that the ANG production in Field Z is the highest, followed by Field X and Field Y. If
viewed from the flare gas flowrates, Field Z yields 3.77 MMSCFD flare gas, lower than 4.80 MMSCFD from Field X. The higher ANG from Field Z if compared to that from Field X is because the methane fraction in flare gas from Field Z is twice of that from Field X. The energy consumption is directly proportional to the flare gas flowrate. The higher flare gas flowrate consumes higher energy.

The capital cost, as shown in table 3 is insignificantly effected to the flare gas flowrate. This is because the flowrate in the three fields is almost the same. Capital cost is heavily influenced by infrastructure. Field Y, although its flare gas flowrate is the lowest, but its capital cost is the highest. This is because the distance between Field Y and the mainland is the farthest among the three fields that requires the capital costs for the flowline and the gathering facility.

The operating cost, as exhibited in table 4 is directly proportional to the flare gas flowrate. Field X needs the highest capital cost because its flare gas is the highest.

Figure 1. Process flow diagram of Field X.

Figure 2. Process flow diagram of Field Y.

Table 5 shows that Field Y has the best economy than the others although the flare gas flowrate is the lowest and the capital cost is the highest. This is because the flare gas from Field Y possesses the
lowest impurities (CO₂ and H₂S) resulting in the highest conversion ratio among the three fields. It appears from the table that the economics of the Field X, Field Y, and Field Z are not feasible. Therefore, it is necessary to optimize the projects of the three fields.

![Process flow diagram of Field Z.](image)

Optimization is carried out by calculating hundreds of possible scenarios. Table 6, table 7 and table 8 exhibit only five scenario results including the best scenarios. Optimization result for Field X, as seen in table 6, shows that without the Government financing Field X will be feasible with IRR being higher than 20% if the flare gas price is set at 1 US$/MMBTU and the ANG selling price is 9 US$/MMBTU, whereas with the Government financing, it will be feasible with IRR more than 20% if the government bears 70% of the capital cost and the flare gas price is set at 2 US$/MMBTU. As for Field Y, as seen table 7, with the Government financing, Field Y will be feasible with IRR greater than 20% if the government bears 40% of the capital cost, the flare gas price is 2.5 US$/MMBTU, and the ANG selling price is 10 US$/MMBTU. As to Field Z, as seen in table 8, with the Government financing, Field Z will be feasible with IRR higher than 20% if the government endures 70% of the capital cost, the flare gas price is set at 2.7 US$/MMBTU, and the ANG selling price set to 9 US$/MMBTU.

Field	X	Y	Z
Feed (MMSCFD)	4.80	2.50	3.77
Product			
Condensate (BBL/day)	88.76	46.47	0.00
LPG (ton/day)	17.89	18.38	0.00
ANG (MMSCFD)	2.33	2.07	2.97
Energy consumption (MMBTUD)			
Pipeline and compression	91.81	33.53	50.30
Gas sweetening	90.86	0.00	91.20
Fractionation	51.72	29.74	0.00
ANG filling station	11.72	3.16	7.08
Total	**246.12**	**66.43**	**148.58**
Table 3. Estimated capital cost.

Capital cost component (US$)	X	Y	Z
Direct cost	16,185,723	26,386,124	27,008,895
Main equipment	12,999,064	19,751,993	20,658,988
Compressor facility	893,750	536,250	715,000
Flowline and gathering	285,000	14,915,000	11,275,000
Gas sweetening facility	4,510,289	-	3,854,956
Fractionation facility	1,932,981	1,264,974	-
ANG filling facility	1,430,925	905,761	1,280,775
Transportation facility	3,946,120	2,130,008	3,533,257
Installation	1,677,189	3,491,648	3,342,056
Piping and instrumentation	1,509,470	3,142,483	3,007,850
Indirect cost	4,279,574	8,330,393	8,095,800
Engineering	1,975,188	3,844,797	3,736,523
Building and construction	1,316,792	2,563,198	2,491,015
Contingency	987,594	1,922,398	1,868,262
Total capital cost	20,465,296	34,716,517	35,104,695

Table 4. Estimated operating cost.

Operating cost component (US$/year)	X	Y	Z
Plant fixed cost	799,557	247,654	534,097
Labor cost	137,130	137,130	137,130
Plant maintenance cost	511,632	104,150	175,523
Miscellaneous cost	150,795	6,374	221,443
Energy cost (variable cost)	239,230	64,573	144,416
Pipeline and compression	89,244	32,592	48,892
Gas sweetening facilities	88,320	-	88,647
Fractionation facilities	50,275	28,906	
ANG filling facilities	11,392	3,075	6,877
Transportation facilities	1,098,587	592,988	983,648
Fuel cost	260,059	140,373	232,850
Vehicle maintenance	557,990	301,188	499,611
Driver cost	258,958	139,779	231,865
License cost	21,580	11,648	19,322
Total operating cost	2,137,375	905,214	1,662,161

Table 5. Economic simulation result.

Result	X	Y	Z
Total cashflow, US$	3,239,789	8,791,045	(10,172,147)
POT (PBP), year	10.64	9.73	0.00
IRR	1.77%	3.75%	-4.37%
NPV, US$	(9,111,223)	(9,093,169)	(20,920,597)
PI (BCR)	0.63	0.74	0.43
Table 6. Field X optimization result.

Scenario	Government capital share	ANG price (US$/MMBtu)	Flare gas price (US$/MMBtu)	Private cashflow	Government cashflow		
				IRR	NPV (MUS$)	IRR	NPV (MUS$)
7	0%	10	2.7	10.81%	957	-	40,327
22	0%	7	1.5	10.42%	445	-	24,419
33	0%	9	1	20.37%	11,139	-	23,946
344	70%	7	2.7	12.44%	1,511	30.61%	21,002
347	70%	8.5	2.7	20.30%	6,546	33.62%	23,843
358	70%	7	2	22.45%	7,086	24.08%	15,037

Table 7. Field Y optimization result.

Scenario	Government capital share	ANG price (US$/MMBtu)	Flare gas price (US$/MMBtu)	Private cashflow	Government cashflow		
				IRR	NPV (MUS$)	IRR	NPV (MUS$)
14	0%	10	2.5	10.46%	699	#NUM!	24,454
197	40%	7	2.7	11.20%	1,204	14.92%	7,058
210	40%	10	2.5	20.40%	10,996	20.12%	11,229

Table 8. Field Z optimization result.

Scenario	Government capital share	ANG price (US$/MMBtu)	Flare gas price (US$/MMBtu)	Private cashflow	Government cashflow		
				IRR	NPV (MUS$)	IRR	NPV (MUS$)
34	0%	9.5	1	11.36%	2,113	#!	18,830
345	70%	7.5	2.7	11.64%	1,169	7.57%	3,006
348	70%	9	2.7	20.35%	7,660	9.71%	5,645

4. Conclusion
The ANG technology would be optimal for fields having flare gas with high methane content and low impurities. The economics of flare gas utilization using ANG technology will be feasible if the financing pattern being the cooperation between privates and the Government where the part of Government cost capital is more than 40%.

5. Acknowledgements
We express our gratitude to the University of Indonesia, which funded this research through the scheme of Hibah Publikasi Internasional Terindeks untuk Tugas Akhir Mahasiswa No 864/UN2.R3.1/HKP.05.00/2017.

6. References
[1] KESDM 2016 Handbook Economic & Energy Statistic of Indonesia Jakarta
[2] Zheng Q R, Feng Y L, Zhu Z W and Wang X H 2016 Appl. Therm. Eng. 98 778
[3] Vasiliev L L, Kanonchik L E, Mishkinis D A and Rabetsky M I 2000 Int. J. Therm. Sci. 39 1047
[4] Nie Z, Lin Y and Jin X 2016 Front. Mech. Eng. 11(3) 1
[5] Peng Y, Krungleviciute V, Eryazici I, Hupp J T, Farha O K, Yildirim T 2013 J. Am. Chem. Soc. 135 11887