Heavy Metal Toxicity in Plants: An Overview on Tolerance Mechanisms and Management Strategies

İlkay Yavaş1,a, Shafaqat Ali2,b, Zohaib Abbas2,c, Saddam Hussain3,d

1Department of Plant and Animal Production, Kocarlı Vocational High School, Aydın Adnan Menderes, University, 09100 Aydın, Türkiye
2Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad 38000 Pakistan
3Department of Agronomy, University of Agriculture, 38040 Faisalabad, Pakistan
4Corresponding author

A R T I C L E I N F O

Heavy metals are one of the factors that pollute the environment and significantly affect soil fertility, plant physiology, development, and productivity. The tolerance of plants to toxicity depends on the species and tissue, element type, and duration of exposure to stress. Some special signal molecules such as nitric oxide (NO), hydrogen peroxide (H₂O₂), beneficial ions, hyperaccumulating plants, stress hormones, nanoparticles, organic compounds, and microbial applications can be recommended to alleviate the stress effects caused by toxic heavy metals in plants. Induction of other promising techniques like seed priming, active involvement of plant growth regulator, use of osmoprotectants, successful plant microbes’ crosstalk and recent utilization of nanoparticles are worth using strategies in mitigation of heavy metal stress in plants. These practices effectively regulate the activities of antioxidant enzymes for the alleviation of stress in plants, creditably improving the plant tolerance via preserving cell homeostasis and amending the adverse effects of heavy metal stress in plants. These inventive strategies offer an enriched understanding of how to boost crop productivity under heavy metal stress in order to decrease the risk to global food security.

Introduction

Heavy metals, the elements with a specific gravity higher than 5 (g cm⁻³) (Khanna et al., 2018), at low concentrations, are vital for plant growth and development. These metals include aluminum (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), molybdenum (Mo), and zinc (Zn). These metals at higher concentrations are toxic to the environment (Luo et al., 2020) as well as to animals and plants. Heavy metals, when occurring at low concentrations, are involved in redox reactions, electron transfers, nucleic acid metabolism, and as an integral part of several enzymes. Some heavy metals such as Cu, Fe, Mn, Zn, and Ni are components of some enzymes and proteins, thereby essential for plant growth and metabolism. Plants, when grown in soils contaminated with heavy metals, are often faced with some changes at physiological levels which included nutrient accumulation, respiration, and gas changes. Heavy metals at higher concentrations also affect plant metabolism and physiological events, reduce growth, and contaminate the environment. Heavy metals also cause oxidative stress in plants mainly through the excessive production of reactive oxygen species (ROS). Excessive production of ROS increases the production of unsaturated lipid peroxidation fatty acids and disturbs cell membrane function. Cell membrane damage can cause an imbalance in enzymatic activities, disrupts the normal redox balance of the cell, and causes oxidative damage when affects cell metabolism (Luo et al., 2020). Metals accumulation in plants significantly affected plant viability, carbohydrate level, and respiratory rates (Kumar et al., 2019).

Heavy Metal Resistance (HMR) in Plants

Plants have developed some mechanisms against heavy metal stress. These mechanisms include immobilization, exclusion of plasma membranes, restriction of absorption and transport, synthesis of specific heavy metal carriers, induction of stress proteins, chelation, and sequestration by certain ligands (Kumar et al., 2019; Yu et al., 2019; Luo et al., 2020).
Resistance Mechanisms

Root Exudates

Root secretions are grouped as high molecular weight (polysaccharides and proteins) and low molecular weight (ie amino acids, organic acids, sugars, phenolics) compounds (Bais et al., 2006). Among these, low molecular weight organic acids are the most abundant and reactive with metals (Koo et al., 2010).

Organic Acids

Organic acids have one or more carboxyl groups and can be chelated with heavy metals. Thus, non-toxic compounds are formed by preventing them from entering the plant. The secretion of organic acids such as oxalic acid (OA), citric acid (CA), malic acid, tartaric acid, and succinic acid increases under heavy metal stress. It has been observed that the total organic acid secretion is higher in stress-resistant paddy varieties under Cd stress (Fu et al., 2017). Similarly, it has been found that the roots of Cd-tolerant peppers have more tartaric acid, oxalic acid, and acetic acid (Xin et al., 2014). Saber et al. (1999) stated that malic and citric acids may play a significant role in inducing resistance in Helianthus annuus (L.) to heavy metals. Previous research on Pb stressed Laurus olgensis seedlings demonstrated that oxalic acid or citric acid ameliorated Pb-induced physiological toxicity (Song et al., 2018).

Amino Acid

Amino acid secretion increases in plant roots under heavy metal stress conditions. The secretion of amino acids, including methionine, lysine, and histidine, from the roots increases significantly in paddy rice under Cd stress (Wang et al., 2016). Amino acids secreted from the roots are providing a food source for bacteria, fungi, yeast and sulphur bacteria. Sulphur bacteria also prevent heavy metals from entering the plant by reacting with heavy metals. Sharma and Dietz (2006) revealed that histidine, other amino acids, and particularly phytochelatins and glutathione play a role in metal binding. Free amino acids such as histidine and nicotinamide play an important role in inducing resistance in heavy metal hyperaccumulation (Hassan and Aarts, 2011).

Soluble Sugar and Protein

Soluble sugar is an important component produced by plants during respiration and photosynthesis (Aldoobie and Beltagi, 2013). The first of these is their involvement in various metabolic events; the other is that they act as signal molecules that regulate different genes specifically involved in photosynthesis, sucrose metabolism, and osmolyte synthesis (Rosa et al., 2009). Under heavy metal stress, more accumulation of soluble proteins and sugars is maintained in the plants (Yu et al., 2019). The soluble sugar content increases with increasing heavy metal concentration (Guangqiu et al., 2007).

Subcellular Structure

Cytoderm

Cellulose, hemicellulose, pectin, and proteins provide structure to the cell wall. Some of these functional groups such as carboxyl, hydroxyl, amino, and aldehyde groups prevent heavy metals to enter the cell. After removal of hemicellulose from the root zone in cabbage, leaf lettuce, pepper, tomato, and rice plants, zinc accumulation in cytoderm decreased significantly and increased in shoots (Choi and Harada, 2005). It has been observed that the application of NO increases the hemicellulose and pectin content in the cytoderm in some plants and increases the tolerance of the plants to Cd stress (Gilliam et al., 2016). It is observed that in cotton plants under stress, the cytoderm and the Casparian strip are thickened, thus the transport of Cd ions is blocked, and toxicity symptoms are alleviated (Chen et al., 2019).

Cytomembrane

It has been observed that overexpression of OsHMA3 increases the tolerance of paddy roots to cadmium (Sasaki et al., 2014), but overexpression of NtHMA3a and NtHMA3b did not increase mercury tolerance in tobacco, ABC carriers played an important role (Chang and Shu, 2015). Similarly, overexpression of PtABCC1 has been observed to increase Hg tolerance in various plants (Sun et al., 2018).

Chelation

Amino acids form a strong affinity for metal ions such as histidine, Zn2+, Co2+, Ni2+ and Cu2+ and therefore are involved in the direct chelation of heavy metals. When there is a high accumulation of cadmium in the cell wall, cadmium is transported to the vacuole. Cadmium combines with proteins, organic acids, sugars and other organic substances in the vacuole to form macromolecular compounds through chelation, thereby reducing cadmium toxicity (Riyazuddin et al., 2021; Yang et al., 2021).

Metallothionein (MT)

Metallothionein (MT) is a low molecular weight, cysteine-rich, metal-binding protein that is directly synthesized by mRNA transcription caused by heavy metal stress. Metallothionein is known to play a protective role against the toxicity of heavy metals and reactive oxygen species (Sato and Kondoh, 2002). The MT gene has been cloned in pea (Evans et al., 1992), mustard, and tobacco (Andrews and Geiser, 1999). In Arabidopsis, the MT2 gene has been found to increase tolerance to zinc (Gong et al., 2009), while the transfer of the SaMT3 gene to Escherichia coli increases resistance to Cu and Pb (Gupta et al., 2013a).

Phytochelatins (PC)

Phytochelatins can bind to a variety of metals, including Cd, As or Zn, through sulphhydryl and carboxyl residues, but biosynthesis is controlled by metal Cd or metalloid As. With the overexpression of phytochelatins synthase genes, Cd tolerance increases in yeast and bacteria (Gupta et al., 2013a). Cadmium, copper, mercury, lead, zinc, silver, strontium, gold, tin, nickel, arsenic, and selenium can cause phytochelatins production in maize and wheat. Different heavy metals have different bonding states to the phytochelatins. Cadmium has the strongest binding ability, followed by lead, zinc, antimony, silver, mercury, arsenic, copper, tin, gold, and strontium (Grill and Zenk, 1985).

Reduced glutathione (GSH)

It is an amino acid derivative composed of reduced glutathione, glutamic acid, cysteine, and glycine. It can
also act as a ligand to chelate heavy metals and reduce the toxicity of heavy metals. Reduced glutathione application promotes the formation of phytochelatin in some plants, causing it to reduce cadmium toxicity (Ding et al., 2017). Under conditions of HM stress, reduced glutathione helps reduce ROS levels to maintain proper cellular homeostasis (Asgher et al., 2017).

Strategies for Heavy Metal Tolerance in Plants

Several strategies have been opted to mitigate the detrimental effects induced by the heavy metal stress. Strategies that are used for the successful mitigation of heavy metal stress are given below.

Seed Priming

Heavy metal stress undesirably affects all phases of the plant from seed germination to the full growth of the plant, eventually, decreasing the overall yield of the economically vital crops. Sowing of seeds in soil that is excessively contaminated with toxic heavy metals results in declined germination, lowered growth of roots and shoots, fewer plant seedlings, and reduced biomass production. Metals are necessary for plant growth, but when they are present in excess amount, it causes severe toxicity and hindered the growth of the plant (Aihemaiti et al., 2018). In plant growth, seeds have a vital role as every crop is grown from the health seed. However, occasionally it experiences soil toxicity that limits the seedling emergence and ultimately leads to insignificant growth of the plant (Bisen et al., 2015). Plants developed various mechanisms to survive the heavy metal stress effectively (Emamverdian et al., 2015). Seed priming is considered as the most important instant approach to mitigate the adversarial effects of heavy metal stresses on plants as reported in different studies (Shah et al., 2020; Basit et al., 2021; Chen et al., 2021). Seed priming is denoted as a physiological strategy of seed hydration used to improve the metabolic process in plants to fasten the rate of germination, growth of plant seedlings as well as crop yield under both biotic and abiotic stress conditions (Rhaman et al., 2020).

Seed priming upholds a momentary balance of ROS scavengers to alleviate the oxidative stress produced under stressful conditions (Hussain et al., 2017). It results in the decreased production of hydrogen peroxide and malondialdehyde and improves the concentration of proline (Hossain et al., 2015). Plants accumulate inactive signalling proteins in primed seeds. These inactive proteins become active soon after sensing the stressful conditions (Saboor et al., 2019). Priming boost the vitality of the plant seed (Afzal et al., 2013). Different priming agents are used in this technique like salicylic acid (SA) which is actively involved in the regulation of various physiological changes under stressful conditions (Fariduddin et al., 2018). Salicylic primed seeds of *Trifolium repens* (perennial) and *Trifolium vesiculosum* (annual) showed significant improvement in germination and seedling growth of these two species against Al stress (Bortolin et al., 2020). Similarly, seed priming with salicylic acid (SA) and sodium hydrosulphide (NaHS) significantly improve the lead tolerance in *Zea mays* L. through a reduction in the uptake of Pb, thus resulting in dropping Pb toxicity to the food chain (Zanganeh et al., 2020). Selenium (Se) primed seeds of rice enhanced the growth and yield of the plant by restricting the translocation of arsenic (As) to the aerial parts of the plant. Full-grown plants of primed seeds showed much higher height and enough biomass under arsenic stress, signifying that seed priming is effective for enhancing plant growth against arsenic stress (Moullick et al., 2018). This overwhelming functioning of seed priming against heavy metals stress along with its positive effects on germination, growth, and yield of the different crops worldwide is quite evident as depicted in Table 1.

Plant Growth Regulators

Plant growth regulators (PGRs) are known as synthetic and naturally occurring compounds that directly affect the all-important metabolic processes and development in higher plants, generally at small doses. Plant growth regulators directly affect the hormonal status of the plants, and are not phytotoxic. They don’t possess any nutritive value for the plant (Rademacher, 2015). Plant growth regulators has the capacity to govern the majority of plant growth parameters from seed germination to reproduction and finally to plant death (Bhardwaj and Kapoor, 2019). Major PGRs including plant hormones like cytokines, auxins, jasmonic acid, abscisic acid, ethylene, gibberellins, and salicylic acid have attained significant attention over the last few years by agronomists as a suitable media for sustainable growth and development of plants under stressful conditions (Asgher et al., 2015). Use of different PGRs is regarded as an appreciated approach for the promotion of effective crop production (Nazir et al., 2019a, b).

Implementation of PGRs approach for the remediation of heavy metal stress is a very effective tool as reported in previous studies (Sytar et al., 2019; Aftab and Hakeem, 2021; Ranjan et al., 2021). Abscisic Acid (ABA) is a very important hormone that regulates the uptake of heavy metals in plants. Tang et al. (2020) studied the effects of various concentrations of abscisic acid on uptake of cadmium in lettuce under cadmium stress. Results indicates that the foliar application of abscisic acid (ABA) considerably improves the overall biomass of the plant and reduced the Cd concentration in shoots of the lettuce plant by 23.60 % as compared with the treatment of Cd. Thus, restricting the accumulation of toxic Cd concentration in edible parts of the plant. Similarly in another study, exogenous application of ABA also restricts the accumulation of Cd in *Arabidopsis*, increased the growth, and improved the photosynthesis under Cd stress (Pan et al., 2020). Salicylic acid (SA) is another plant hormone involved in affecting the growth of plant, developing and creating resistance in plants against various stressful conditions. Salicylic acid performs a vital role in the photosynthetic cycle, ion channel regulations, and improves the defense mechanism of plants by increasing activities of various antioxidant enzymes (Pan et al., 2015). Exogenous SA application effectively mitigated the Cd stress by stimulating the antioxidant enzymatic pathways via improving the endogenous SA contents, relative water content, proline and chlorophyll content together with a considerable decline in hydrogen peroxide (H₂O₂), superoxide anion radicals (O₂⁻) and malondialdehyde (MDA) in tomato plants exposed to Cd stress (Li et al., 2019).
Different studies reported that the application of gibberellins (Gas) reduce the harmful effects of abiotic conditions, especially heavy metal stress. Gibberellins perform crucial role in improving the cell division, cell elongation and are effectively involved in the expansion of different transition phases in plant life. Chen et al. (2021) studied that the application of gibberellins (10 µM) depleted the detrimental effects of Cd stress on plant growth. Its application significantly reduced the Cd absorption and translocation from roots to shoots in lettuce plant. Furthermore, gibberellins diminish the damaging effects of copper in spinach seedlings by increasing the concentration of proline and activities of antioxidant enzymes (Gong et al., 2021). Jasmonic acid (JA) is signaling molecule involved in governing of cellular defense and sequential developments in plants (Gomi, 2021). It plays a very significant role in controlling various stress responses during the developmental phases of plants (Liu and Timko, 2021). Kamran et al. (2021) reported that exogenous application of JA (0, 5, 10, and 20 µM) offset the deleterious effects of chromium stress on the physiology and growth of the choysum plant. Jasmonic acid application improves the photosynthetic efficiency and nutrients homeostasis in Cr stressed choysum plant. Its application mitigated the oxidative stress induced by the Cr stress via regulating glyoxalase defense and antioxidant system in the plant. Thus, it is concluded that these plant growth regulators improve plant tolerance against heavy metal stress. Recent studies indicating the aptitude of different plant growth regulator (phytohormone) to mitigate heavy metal stress in different plants species is given in Table 2.

Osmoprotectants

Plant employs different approaches to avoid heavy metal stress. One such approach is the utilization of osmoprotectants (Zulfiqar et al., 2020). Osmoprotectants are very small, highly soluble, and electrically neutral molecules with low toxicity. They are also known as compatible solutes as they possess high solubility and little interference with metabolic pathways. They include polyamines (Putrescine, Spermidine, Spermine) amino acid (proline) betaines (glycine betaine), Carbohydrate (Threahose, Fructan), and Sugar alcohol (Inositol) (Brito et al., 2019). These compatible molecules efficiently accumulate in plants when growing situations are not appropriate for plant growth and development. They are accountable for preserving the internal physiological practices that guarantee plant subsistence under prime conditions (Yang and Guo, 2018; Seleiman, 2019). These compounds are used for seed treatment or applied exogenously to protect the subcellular structures and to increase the activities of antioxidant enzymes in plants (Yang and Guo, 2018). These compounds are typically used during seed treatment or exogenously applied during various stages of crop development.

Among these compatible molecules, proline is regarded as the most proficient molecule that is produced in various plants under adverse environmental conditions (Siddique et al., 2018). Effective role of proline against heavy metal stress is extensively reported in different studies (Rasheed et al., 2014; Konotop et al., 2017; Yu et al., 2017). Proline takes active part in osmotic adjustment of various plants to increase plant resistance to mitigate the oxidative stress produced by the heavy metal stress via scavenging of ROS (Adejumoh et al., 2015). They reported massive improvement in growth and increase tolerance in maize plant against stress induced by lead. Similarly exogenous application of proline effectively alleviated the serious oxidative stress produced by the higher accumulation of Cd in olive plants. Application of proline improves the antioxidant system, photosynthetic activity, nutritional status, and growth of the plant under Cd stress (Zouari et al., 2016). Proline application helps to stabilize the protein structure, improve content of chlorophyll, stimulate the antioxidant enzymes, and perform a multifunctional role in plants to mitigate heavy metal stress as given in Figure 1.

Comparable to what we have noticed above, glycine betaine also reported to mitigate the heavy metal stress in plants. Being more metabolically stable among other osmoprotectants like sugar and proline, glycine betaine is more useful (Jain et al., 2021). Glycine betaine is important osmoregulator in plants. Application of glycine betaine (GB) improves growth and development of the plant, increase nutrients uptake, reduce the oxidative stress via limiting the uptake of heavy metals in plants (Ali et al., 2020). Glycine betaine under heavy metal stress improves plant growth via improving the chlorophyll content and minimizing oxidative damage (Demidchik, 2015). Similarly, Ahmad et al. (2020) also reported that application of GB maintains and improves plant growth, biomass production, gas exchange parameters and photosynthetic traits in Brassica oleracea L by overcoming the oxidative stress induced by chromium stress. Application of GB showed a useful impact in inhibiting the contents of lead in tissues of olive plant, thus reducing its unapproachable influences on plant growth (Zouari et al., 2018)

Soluble sugar molecules such as trehalose, hexasuc, and sucrose act as osmoprotectants. They perform a vital role in the maintenance and conservation of cellular organizations, scavenging of ROS and improvement of photosynthetic proficiency. They perform various physiological functions such as coordinating antioxidant activity, consolidating membrane integrity, and sustaining water requirements under stressful conditions (Ahmad et al., 2020). Trehalose (TR) plays a vital role in osmotic protection, thus improving plant tolerance toward heavy metal stress. Wang et al (2020) studied that the application of TR effectively decreased the toxicity of harmful CD to rice plants by creating TR-CD chelate. Exogenously applied TR restricts the accumulation of harmful concentrations of CD in roots and shoot of the rice seedlings.

![Figure 1. Multiple functions of proline under heavy metal stress.](image-url)
Table 1. Seed priming with different agents for mitigation of heavy metal stress

HMS	Plant species	Priming agent	References
Cd	Black Cumin (Nigella sativa)	salicylic acid (SA)	Espanany et al. (2016)
Nano-ZnO	Rice (Oryza sativa)	polyethylene glycol	Sheteiwy et al. (2016)
Cd	Lettuce (Lactuca sativa L.)	salicylic acid	Šabanović et al. (2018)
Cd	Lettuce	Silicon	Pereira et al. 2021
Pb	Wheat (Triticum aestivum)	Purslane extract, Aqueous chard extract	Sobhy et al. (2019)
Cd	Maize (Zea mays)	Multiwall carbon nanotubes (MWCNTs)	Chen et al. (2021)
Cd	Faba bean (Vicia faba)	Calcium chloride	Nouairi et al. (2019)
Mn	Sunflower (Helianthus annuus L.)	Sulfur Nanoparticles	Ragab & Saad-Allah (2020)
Cd	Cucumbers (Cucumis sativus)	3-epibrassinolide	Shah et al. (2020)
Cr	Rice (Oryza sativa)	brassinosteroids	Basit et al. (2021)
Cd	Coriandrum sativum	Karrikinolide	Sardar et al. (2021)
As	Garden cress (Lepidium sativum)	Gibberellic acid (GA), Salicylic acid (SA), Citric acid (CA), Sodium chloride (NaCl), Potassium chloride (KCl), Zinc (Zn) and Iron (Fe)	Nouri & Haddioui, 2021
Cd	Cowpea (Vigna unguiculata (L.))	Proline and Glycine Betaine	Sadeghipour, 2020
Cd	Wheat (Triticum)	Salicylic acid	GUl et al. 2020
Al	Barley (Hordeum vulgare)	Ascorbic acid and Salicylic acid	Shahnawaz & Sanadhya (2017)

Table 2. Representative studies on the role of plant growth regulators on different plants exposed to heavy metal stress

HMS (Plant)	Plants	PGR (Phytohormone)	Mitigation Effects by PGRs	References
Co	Grey mangrove (Avicennia marina)	Jasmonic acid (1, 10 μM)	JA efficiently reduced the accumulation of Cd in leaves.	Yan et al. (2015)
Cd	Faba bean (Vicia faba L.)	Jasmonic acid (JA)	JA alleviate the undesirable impacts of Cd stress by preventing the accumulation of Cd	Ahmad et al. (2017)
Ni	Alyssum inflatum Náyr	Salicylic acid (0, 50, 200μM), jasmonic acid (0, 5, 10 μM)	SA and JA showed ROS detoxification in plant exposed to Ni stress.	Kakavand et al. (2019)
Pb	Brassica campestris	Salicylic acid (SA)	Application of SA improve the growth and yield of the plant by regulating the antioxidant defense system	Hasanuzzaman et al. (2019)
Cd and Zn	Virginia saltmarsh mallow (Kosteletzkya pentacarpos)	Cytokinin (10 μM)	Increased resistance to heavy metals	Zhou et al. (2019)
Cd	Lettuce (Lactuca sativa L.)	Abscisic acid (ABA)	exogenous ABA increases the biomass, photosynthesis and activities of antioxidant enzymes under stressful conditions	Dawuda et al. (2020)
Cd	Maize (Zea mays L.)	Salicylic acid (SA)	Exogenous SA improved the process of photosynthesis and reduce the oxidative damage occurred under Cd stress	El Dakak and Hassan (2020)
Pb	Triticum aestivum L.	Salicylic acid (SA)	SA application considerably reduced the effect of Pb and improve the amount of biochemical traits of T. aestivum L.	Gillani et al. (2021)
Cd	Bean (Phaseolus vulgaris L.)	Salicylic acid (SA)	Foliar application of SA alleviate ed-encouraged ROS, methylglyoxal along with lipid peroxidation	Hediji et al. (2021)
Cd	Vigna radiata L.	Gibberellins (GAs)	Application GA improve the plant metabolism, enhance the photosynthetic pigments under Cd stress	Hakla et al. (2021)
Cd	Tomato	Salicylic acid (SA)	Exogenous SA reduced the uptake of Cd in tomato plants and its subcellular cells	Jia et al (2021)

PGR: Plant Growth Regulators
Microorganism

Mitigation of metal stress is essential for the conservation and protection of the contaminated soil. Biological methods for the removal of harmful toxic metals are considered as environmentally friendly, cost effective and natural. Use of beneficial microbes for the mitigation of heavy metal stress is one such method. The use of microbes is a very effective bioremediation method in the context of global climate change and the overuse of different fertilizers in soils (Tiwari et al., 2016). Microbes have the potential to survive adverse environmental stresses (Ma et al., 2016b). Rhizosphere soil is crucial territory for various microbes including bacteria, protozoa, fungi and algae. They enjoy a variety of associations with plant species (Zubair et al., 2016). Being an imperative component of the soil, become an essential part of the agricultural production system once the seed comes in to the soil to start a new cycle of life. Microorganisms form a symbiotic relationship with plants. This symbiotic relationship offers ultimate support to the plants in attaining a significant tolerance against heavy metal stress and gaining the essential nutrients (Turner et al., 2013a).

Rhizosphere microorganism has the capacity to degrade the organic and inorganic contaminants via transformation, volatilization, and rhizo degradation (Ullah et al., 2015b). Microorganisms also improve the bioavailability of heavy metals through acidification, chelation, and precipitation. Organic acid released from the microbes pay the way for the sequestration of different metal ions by lowering the pH of soil (Mishra et al., 2017). Oxalic, malic, acetic and gluconic acid are primarily testified for heavy metal solubilization through soil microbes (Gube, 2016). Microbes can easily metabolize the metal ions and obtain energy via oxidation/reduction process (Sathendra et al., 2018). Bacterial strains are widely used for the mitigation of heavy metal stress. Bacterial communities mitigate the heavy metal stress through immobilizing, uptake, mobilizing and transforming the metals ions effectively (Hassan et al., 2017). Different plant growth-promoting rhizobacteria (PGP) resides around plant root area and positively improve plant growth via facilitating and supplying sufficient amount of nutrient from soil (Nadeem et al., 2014). These (PGP) bacteria have different approaches for the successive metal tolerance, including precipitation, bioaccumulation, biosorption and exclusion in both external and intercellular spaces (Glick, 2010).

Table 3. List of plant-associated microbes reported for plant growth promotion under heavy metal stress (2019 onward)

HMX	Microorganism	Plants	References
Ld	Trichoderma	Mustard	Yaman and Mehta, (2019)
As	Bradyrhizobium japonicum E109 and Azospirillum brassienne Az39	Soybeans	Armendariz et al. (2019)
Cd	Bacillus cereus M4	Oryza sativa L.	Wang et al. (2019b)
Cd	Bacillus cereus strain, ALT1	Soybean	Sahile et al. (2019)
Cd	Rhizophagus clarus	Maize (Zea mays)	Rafique et al. (2019)
Cd	Pseudomonas	Sullen corana	Chiboub et al. (2020)
Hg	Pseudomonas putida	Turnip	Alsaheb et al. (2020)
Cr	Staphylococcus aureus strain K1	Wheat	Zeng et al. (2020)
As	Ochrabactrum tritici	Rice	Moens et al. (2020)
Cu	Paenibacillus polymyxa and Bacillus circulans	Maize	Abdul Latif et al. (2020)
Cu	Bacillus sp. 505Y11	Zea mays	Eser et al. (2020)
Cr	Bradyrhizobium japonicum E109	Capsicum annum	Nemot et al. (2020)
Pb	Trichoderma asperellum SD-5	Perennial ryegrass	Sun et al. (2020)
Cd	Pseudomonas Tcd-1	Rice (Oryza sativa L.)	Wang et al. (2021)
Cu	Pseudomonas furida strain EOO26	Helianthus annuus L.	Kumar et al. (2021a)
Cd	Azospirillum brasiliense Az39	Wheat	Vázquez et al. (2021)
Cd	Aspergillus niger and Penicillium chrysosporum	Vicia faba L.	El-Mahdy et al. (2021)
Zn	Lysinibacillus	Maize (Zea mays L.)	Jinal et al. (2021)
Cd	Aspergillus niger	Tomato	Hamayun et al. (2021)
Cr	Aspergillus sp. A31 and Curvararia geniculata P1	Oryza sativa L.	de Siqueira et al. (2021)
Cd	Aspergillus flavus	Solanum lycopersicum	Hamayun et al. (2021)
Cd	Aspergillus niger TL-F2 and Aspergillus flavus TL-F3	Ryegrass	Fan et al. (2021)
Cd	Pseudomonas sp. K32	Rice seeding	Pramanik et al. 2021
Pb	Bacillus cereus	Pistia stratoites and Eichhornia crassipes	Zahari et al. (2021)
Cr	Bacillus cereus	Brassica nigra L.	Akhtar et al. (2021)
Cd	Pseudomonas sp. K32	Rice seeding	Pramanik et al. (2021)
Pb	Pseudomonas gessardii BLP141	Sunflower	Raza Altaf et al. (2021)
Table 4. Heavy metal tolerance enhancement in plants through the application of nanoparticles

HMS	NPs	Concentrations	Plant Studied	Impact	References
Cd	ZnO-NPs	(0, 50, 75, 100 mg/L)	Rice (Oryza sativa L.)	Reduced the Cd accumulation in plant	Ali et al. (2019)
Cd	Fe-NPs	(0, 5, 10, 15, 20 ppm)	Wheat	Increased chlorophyll contents and gas exchange attributes in plant	Hussain (2019)
Cd, Pb	ZnO-NPs	(100 mg/L)	Lettuce (Lactuca sativa L. var. Longifolia)	ZnO NPs significantly reduced the accumulation of Cd and Pb in roots and shoots of the plant	Sharifan (2019)
Cd	ZnO-NPs	(50, 100, 500 mg/kg)	Rice (Oryza sativa L.)	ZnO-NPs could improve plant growth, especially in the early-growth stage, and alleviate the toxic effects of Cd	Zhang et al. (2019)
Cd	TiO₂-NPs	(0, 100, 250 mg/L)	Maize (Zea mays L.)	It remarkably reduces the accumulation of Cd in plant	Lian et al. (2020)
Co	Co₃O₄-NPs	Co₃O₄ NPs (0, 50, 100, 250, 500, 1000, 2000, 4000 mg L⁻¹)	Brassica napus L.	Co₃O₄-NPs showed positive effect on growth and antioxidant system of the plant	Jahani et al. (2020)
Cr	Cu NPs	(0, 25, 50, 100 mg kg⁻¹ of soil)	Wheat	Decrease the cellular oxidative stress and improve the plant growth	Noman et al. (2020)
As	Nano-TiO₂	(0, 10, 100, 1000 mg/L)	Rice (Oryza sativa L.)	Nano-TiO₂ amendment notably alleviated oxidative stress resulting from arsenic exposure	Wu et al. (2021)
As	MgO-NPs	(200 mg kg⁻¹)	Rice (Oryza sativa L.)	MgO-NPs decreased the ROS and inhibited arsenic translocation in rice plants	Ahmed et al. (2021)
Cd	FeO-NPs	(0, 25, 50, 100 mg/kg)	Wheat	Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat, facilitating photosynthetic pigments and restricting cadmium uptake	Manzoor et al. (2021)
Cd	TiO₂-NPs	(100 mg/L)	Wheat	TiO₂-NPs significantly decreased Cd in wheat straw, roots, and grain	Irshad et al. (2021)
Cu	TiO₂-NPs	(1, 2, 5, 20 mg/L)	Soybean (Glycine max L.)	TiO₂-NPs improve growth and restricts the bio-availability of Cu	Xiao et al. (2021)
Cd	SiO₂-NPs	SiO₂ NPs (100, 200 μM)	Moso bamboo	Silicon nanoparticles improve the seedling growth and seedling biomass under Cr stress.	Emamverdian et al. (2021)
Hg	S-NPs	(300 mg/L)	Brassica napus L.	Sulfur (SNPs) alleviated Hg-induced oxidative stress and improved plant growth	Yuan et al. (2021)
Pb	MgO-NPs	(5 mmol/L)	Wild carrot (Daucus carota)	Magnesium oxide nanoparticles detoxified ROS to mitigate Pb stress and improved the growth of plants	Faiz et al. (2021)
Cu	ZnO-NPs	(50 mg/L)	Tomato	ZnO-NPs promoted photosynthetic capacity by enhancing antioxidant activities leading to ROS scavenging.	Faizan et al. (2021)
As	Fe₂O₃-NPs	(5, 10, 15 ppm)	Rice (Oryza sativa L.)	Fe₂O₃-NPs alleviated the arsenic stress and enhanced the plant growth.	Khan et al. (2021)
As	ZnO-NPs	(25 ppm)	Wheat	ZnO-NPs increased germination percentage, shoot and root growth, chlorophyll, carotenoid, RWC, MSI and protein content.	Kumar et al. (2021b)
As	Fe-NPs	(0, 25, 50 mg/L)	Rice (Oryza sativa)	Fe-NPs reduced the as phytotoxicity by increasing the content of chelating agents (proline, GSH and PCs)	Bidi et al. (2021)
Cd	TiO₂-NPs	(0, 40, 80, 160 mg/L)	Coriandrum sativum L.	TiO₂-NPs treated seedlings exhibited reduced Cd contents besides improved agronomic traits (seedlings biomass, number of seeds and yield.	Sardar et al. (2021)
Bacterial population in excessively metal contaminated soil primarily comprises of Proteobacteria, Firmicutes and Actinobacteria. While most prominent genera include Arthrobacter, Bacillus and Pseudomonas (Pires et al., 2017). Similarly filamentous fungi genera including Penicillium, Trichoderma, Mucor and Aspergillus are widely recognized for their effective role in remediation of heavy metal stress (Ikrám et al., 2018; Sun et al., 2020; ElMahdy et al., 2021; Li et al., 2021). Cell wall of fungi possess excellent metal binding characteristics owing to the presence of negatively charged functional groups including sulfhydryl, amine, and carboxylic in wall components (Ong and Ho, 2017). Arbuscular mycorrhizal fungi (AMF) are also admirable soil microorganism reported in heavy metal stress tolerance. They develop a direct physical linkage between the plant root and soil, which in turn increases the surface area of root enabling the nutrients and mineral absorption by various plants species (Saxena et al., 2017). AM fungi are also actively involved in the mitigation of heavy metal stress in different plants as reported in various studies (Cantamessa et al., 2020; Hao et al., 2021; Zhang and Chen, 2021). At this point, we have gathered a list of newly published research studies depicting the successful implementation of plant-microbes association for the effective mitigation of metal stress in various plants in Table 3.

Nanoparticles

Nanotechnology is performing a substantial role in addressing an immense array of environmental complications by providing effective and advanced solutions. Heavy metal pollution has gained huge consideration due to their ever-increasing concentration in the environment. Unique physiochemical properties of nanoparticles (NPs) make them extremely effective for the remediation of heavy metal stress (Zhou et al., 2021). Nanoparticles (NPs) are tiny units with a size of 1-100 nm in range (Sachdev and Ahmad, 2021). In comparison to the other ordinary materials, NPs possess several advantages including decent catalytic proficiency, extra added surface reaction site and high surface activity along with other exclusive magnetic and optical properties (Yang et al., 2018; Wang et al., 2019), making them a favorable technology for endorsing plant productivity and growth (Mostamed et al., 2019). Nanoparticles (NPs) are efficaciously applied in agriculture sector for the sustainable production of crops worldwide (Gandhi, 2021). Nanotechnology showed a great opportunity to increase the crop yield and its protection and thus resolved some of the major challenges that are currently encountered in agriculture (Neyssanian et al., 2020).

Nanoparticles are also remarkably being examined in the field of green agriculture, particularly in linked with the plant growth. Nanoparticles are effectually involved in the regulation of oxidative stress in various plants (Sachdev and Ahmad, 2021). Nanoparticles could effortlessly improve plant growth, seed germination, increase rate of photosynthesis, mitigate oxidative stress, regulating gene expression, promoting nutrition balance, improving productivity, and crop yield as re-port ed in previous studies (Kah et al., 2019; Neyssanian et al., 2020; Rai and Jajoo, 2021). Then again, NPs are also utilized as nano pesticides and nano fertilizers (Muhammad et al., 2020; Rehmanullah et al., 2020; Fatima et al., 2021). On the other hand, wide range of NPs including titanium oxide (nTiO₂), aluminum oxide (nAl₂O₃), zinc oxide (nZnO), silicon dioxide (nSiO₂), copper oxide (nCuO), cerium dioxide (nCeO₂), magnetite (nFe₃O₄) and carbon nanotubes (CNTs) have shown tremendous potential towards plant growth promotion, scavenging of (ROS), enhancing the activities of antioxidative enzymes, mitigating the plant stress, improving quality and yield of the crop (Usman et al., 2020; Wang et al., 2021).

Past decade has received incredible contribution from nanoparticle in improving the soil characteristics and plant growth, specifically in the management of soil contaminated by heavy metals (Tripathi et al., 2015; Li et al., 2016; Hussain et al., 2018; Rizwan et al., 2019; Lian et al., 2020; Adrees et al., 2021). NPs usually accumulate in plant’s cell wall, where they bind themselves with heavy metals and form different complexes. These complexes adsorbed on cell surface, thereby impeding the active migration of heavy metals in plant tissues. Nanoparticles effectively absorb and transform the heavy metals in soil by limiting the bioavailability and mobility of these toxic heavy metals. For example, Yue et al. (2021) reported that Nano-iron materials transform the arsenic and stabilizes it in soil. Amendment of Cu-NPs showed significant reduction in the translocation of Cr from roots to shoots of the wheat plant through effectively immobilizing the Cr in soil, thereby supporting plant growth by dismissing severe cellular oxidative stress (Noman et al., 2020). Similarly, amendment of meta-sodium silicate significantly reduced the bioavailability of lead (Pb) and decreased the accumulation of Pb in brown rice via increasing the sorption of Pb onto ferrihydrite and effective precipitation of PbSiO₃, in soil (Zhao et al., 2017). NPs increase the defense capacity of plant by regulating the transport genes involved in the transport of heavy metals. Nanoparticles improve soil strength, it decreases compressibility and permeability of soil (Taipodia et al., 2011). NPs effectively improve the antioxidant system of the plant via magnificently mitigating the oxidative damage through scavenging the (ROS), which ultimate increases the growth, yield and nutritional content of the plant. García-López et al. (2018) reported that application of zinc oxide nanoparticles significantly improves the activity of antioxidant enzymes, such as activities of POD, APX and CAT were considerably improving by 2.3 at 400 mg L⁻¹ of ZnO NPs, 4 500 mg L⁻¹ ZnO NPs and 6.4 folds 500 mg L⁻¹ ZnO NPs respectively in Capsicum chinense. Different studies suggests that nanoparticles ameliorate the harmful effects of heavy metals by immobilization of heavy metals (Azeez et al., 2019; Lin et al., 2019), restricting the accumulation of heavy metals (Manzoor et al., 2021) improvement performance of photosynthetic pigments (Rai-Kalal and Jajoo, 2021), mitigation of oxidative stress (Rizwan et al., 2019; Yuan et al., 2021) and improving the growth under heavy metal stress (Fatima et al., 2021). The fruitful contribution of nanoparticles (NPs) in incapacitating challenges of heavy metal induced toxicity has been reported by different investigators globally as given in Table 4.

Conclusions

Metals such as aluminium, cobalt and chromium at low concentrations are essential for plant growth but cause toxic effects to the environment and plants at higher concentrations. The first way to tolerate heavy metals in
plants is avoidance and the second way is resistance. When plants are exposed to heavy and toxic metals, they developed various detoxification mechanisms to minimize harmful effects. Metal tolerance in plants depends on biological, chemical, and physiological adaptations. Other practices including seed priming, active involvement of plant growth regulator, use of osmoprotectants, successful plant microbes’ crosstalk, and recent utilization of nanoparticles are worth using strategies in mitigation of heavy metal stress in plants. These practices effectively regulate the activities of antioxidant enzymes for the alleviation of heavy metal stress in plants, creditably improving the plant tolerance via preserving cell homeostasis and amending the adversative effects of heavy metal stress in plants. These inventive strategies offer an enriched understanding of how to boost crop productivity under heavy metal stress in order to decrease the risk to global food security.

References
Abdel Latef AAH, Zaid A, Abo-Baker AB, Taleb M, Wu J, Alhmad MF. 2020. Mitigation of copper stress in maize by inoculation with Paenibacillus polymyxa and Bacillus circulans. Plants, 9(11): 1513.

Adejumo SA, Adeosun AA, Olaniyan AB, Awodoyin RO. 2015. Seasonal variations in distribution, heavy metal uptake and proline production of native plants growing on Pb contaminated site in Ibadan South-Western, Nigeria. Nigerian Journal of Ecology, 14: 37-47.

Adrees M, Khan ZS, Hafeez M, Rizwan M, Hussain K, Asrar M, Nasser Aleyemeni M, Wijaya L, Ali S. 2021. Foliar exposure of zinc oxide nanoparticles im-proved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficit stress. Ecotoxicology and Environment-salmony, 208: 111627.

Aftab T, Hakeem KR. (Eds.). 2021. Plant Growth Regulators: Signalling Under Stress Conditions. Springer Nature.

Afral I, Basra SMA, Cheema MA. 2013. Seed priming: A shotgun approach for alleviation of salt stress in wheat. Int. J. Agric. Biol., 15: 1199-1203

Ahmad F, Singh A, Kamal A. 2020. Osmoproective Role of Sugar in Mitigating Abiotic Stress in Plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress, Wiley: Hoboken, NJ, USA, pp. 53-70.

Ahmad P, Aleyemeni MN, Wijaya L, Alam P, Ahsanger MA, Alamri SA. 2017. Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Archives of Agronomy and Soil Science, 63(13): 1889-1899.

Ahmed T, Nonan M, Manzoor N, Shahid M, Hussaini KM, Rizwan M, Ali S, Maqsood A, Li B. 2021. Green magnesium oxide nanoparticles-based modulation of cellular oxidative repair mechanisms to reduce arsenic uptake and translocation in rice (Oryza sativa L.) plants. Environmental Pollution, 288: 117785.

Ahhemait A, Jiang J, Li DA, Liu N, Yang M, Meng Y, Zou Q. 2018. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area. J Environ Manag, 222: 216-226.

Akhtar N, Ilyas N, Yasmin H, Sayeed RZ, Hasnain ZA, Elsayed E, El Eshasy HA. 2021. Role of Bacillus cereus in improving the Growth and Phytoextractionability of Brassica nigra (L.) K. Koch in Chromium Contaminated Soil. Molecules, 26(6): 1569

Aldoobie NF, Belgati MS. 2013. Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. Afr. J. Biotechnol., 12: 4614-4622

Ali S, Abbas Z, Seleiman MF, Rizwan M, Yavas Y, Alhammed BA, Shami A, Hsanuzzaman M, Kalderis D. 2020. Glycine betaine accumulation, significance and interest for heavy metal tolerance in plants. Plants, 9(7): 896.

Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Abd Allah EF, Alqarawi AA, Ahmad P. 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 26(11): 11288-11299.

Alsaeleh A, Astaraei AR, Emami H, Lakzian A. 2020. Impact of Pseudomonas putida Inoculation on Alleviating Mercury Stress in Turnip Planted on a Saline Soil. Malaysian Journal of Soil Science, 24: 72.

Andrews GK, Geiser J. 1999. Expression of the Mouse Metallothionein-I and -II Genes Provides a Reproductive Advantage during Maternal Dietary Zinc Deficiency. Journal of Nutrition, 129(9): 1643.

Armandariz AL, Talano MA, Micotra MFO, Escudero L, Breser ML, Porporatto C, Agostini E. 2019. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiology and Biochemistry, 138: 26-35.

Asgher M, Khan MIR, Anjum NA, Khan NA. 2015. Minimising toxicity of cadmium in plants role of plant growth regulators. Protoplasma, 252(2): 399-413.

Asgher M, Per T, Anjum S, Khan MIR, Masood A, Verma S, Khan NA. 2017. Contribution of glutathione in heavy metal stress tolerance in plants, in Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, eds M.I.R. Khan and N.A. Khan (Singapore: Springer Nature Singapore Pte. Ltd.). pp. 297-313.

Azeez L, Adejumo AL, Lateef A, Adebisi SA, Adetoro RO, Adewuyi SO, Tijani KO, Olayo O. 2019. Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. Plant physiology and Biochemistry, 139: 283-292.

Aziz L, Hamayun M, Rauf M, Iqbal A, Arif M, Hussain A, Khan SA. 2021. Endophytic Aspergillus niger reprograms the physicochemical traits of tomato under cadmium and chromium stress. Environmental and Experimental Botany, 186: 104456.

Bais H, Weir T, Perry L, Gilroy S, Vivanco J. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. The Annual Review of Plant Biology, 57: 233-66.

Basit F, Chen M, Ahmed T, Shahid M, Noman M, Liu J, An J, Hashem A, Al-Arjani ABF, Alqarawi AA, Alsayed MFS, Hu J, Guan Y. 2021. Seed Priming with Brassinosteroids Alleviates Chromium Stress in Rice Cultivars via Improving ROS Metabolism and Antioxidant Defense Response at Biochemical and Molecular Levels. Antioxidants, 10(7):1089.

Bhardwaj S, Kapoor D. 2019. Role of Plant Growth Regulators in Abiotic Stress Tolerance. International Journal of Emerging Technologies and Innovative Research (www. jiter.org), ISSN, 2349-5162.

Bidi H, Fallah H, Niknejad Y, Tari DB. 2021. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiology and Biochemistry, 163: 348-357.

Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB. 2015. Unrealized potential of seed biopriming for versatile and systemic improvement of nutrition, yield and quality in rice (Oryza sativa L.) plant. Environmental Pollution, 288: 117785.
A3a and NtHMA3b) in regulation, 39(1):1211.

Chang S, Shu H. 2015. The Inhibition Analysis of Two Heavy Metal ATPase Genes (NtHMA3a and NtHMA3b) in Nicotiana tabacum. Bioremediation Journal, 19(2):113-123.

Chen H, Li Y, Ma X, Guo L, He Y, Ren Z, Kuang Z, Zhang X, Zhang Z. 2019. Analysis of potential strategies for cadmium stress tolerance revealed by transcriptome analysis of upland cotton. Sci. Rep., 9.

Chen H, Yang R, Zhang X, Chen Y, Xia Y, Xu X. 2021. Foliar application of gibberellin inhibits the cadmium uptake and xylem transport in lettuce (Lactuca sativa L.). Scientia Horticulturae, 288:110410.

Chiboub M, Jebara SH, Abid G, Jebara M. 2020. Co-inoculation effects of Rhizobium sulfure and Pseudomonas sp. on growth, antioxidiant status, and expression pattern of genes associated with heavy metal tolerance and accumulation of cadmium in Sulla coronaria. Journal of Plant Growth Regulation, 39(1):216-228.

Choi YE, Harada E. 2005. Roles of calcium and cadmium on Cd-containing intra-and extracellular formation of Ca crystals in tobacco. Journal of Plant Biology, 48(1):113-119.

Dawuda MM, Liao W, Hu L, Yu J, Xie J, Calderón-Ureá A, Wu Y, Tang Z. 2020. Foliar application of abscisic acid mitigates cadmium stress and increases food safety of cadmium-sensitive lettuce (Lactuca sativa L.) genotype. Peer J, 8:e9270

De Siqueira KA, Senabio JA, Pietro-Souza W, de Oliveira Mendes TA, Soares MA. 2021. Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Archives of Microbiology, 1-17.

Demidchik V. 2015. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot., 109:212-224.

Ding S, Ma CF, Shi WG, Liu WZ, Lu Y, Liu QF, Luo ZB. 2017. Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in Populus × canescens. Tree Physiology, 37:1697-1712.

El Dakak RA, Hassan IA. 2020. The alleviative effects of salicylic acid on physiological indices and defense mechanisms of maize (Zea Mays L. Giza 2) stressed with cadmium. Environmental Processes, 7(3):873-884.

El-Mahdy OM, Mohamed HI, Mogazy AM. 2021. Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd-and Pb-contaminated soil and their physiological effects on Vicia faba L. Environmental Science and Pollution Research, 1-24.

Emamverdian A, Ding Y, Mokhberdoran F, Ahmad Z, Xie Y. 2021. The Effect of Silicon Nanoparticles on the Seed Germination and Seedling Growth of Moso Bamboo (Phyllostachys edulis) under Cadmium Stress. Polish Journal of Environmental Studies, 30(4).

Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci World J, 1-18.

Espanyan A, Fallah S, Tadayyon A. 2016. Seed priming improves seed germination and reduces oxidative stress in black cumin (Nigella sativa) in presence of cadmium. Industrial Crops and Products, 79:195-204.

Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ. 1992. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Molecular Biology, 20(6):1019-1028.

Faiz S, Yasin NA, Khan WU, Shah AA, Akram W, Ahmad A, Naveed NH, Riaz L. 2021. Role of magnesium oxide nanoparticles in the mitigation of lead-induced stress in Daucus carota: modulation in polyamines and antioxidant enzymes. International Journal of Phytoremediation, 1-9.

Faizan M, Bhat JA, Nourelddeen A, Ahmad P, Yu F. 2021. Zinc oxide nanoparticles and 24-epibrassinolide alleviates Cu toxicity in tomato by regulating ROS scavenging, stomatal movement and photosynthesis. Ecotoxicology and Environmental Safety, 218:112293.

Fan T, Liu R, Pan D, Liu Y, Ye W, Lu H, Kianpour Kalkhajeh Y. 2021. Accumulation and subcellular distribution of cadmium in ryegrass induced by Aspergillus niger TL-F2 and Aspergillus flavus TL-F3. International Journal of Phytoremediation, 1-8.

Faraduddin Q, Khan TA, Yusuf M, Auffagee ST, Khalil RRAE. 2018. Amelio-rative role of salicylic acid and spermidine in the presence of excess salt in Lycopersicon esculentum. Photosynthetica, pp 1-13.

Fatima F, Hashim A, Anees S. 2021. Efficacy of nanoparticles as nanofertilizer production: a review. Environmental Science and Pollution Research, 28(2):1292-1303.

Fu H, Yu H, Li T, Zhang X. 2017. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicology and Environmental Safety, 150:168.

Gandi N. 2021. Facile and Eco-Friendly Method for Synthesis of Calcium Oxide (CaO) Nanoparticles and its Potential Application in Agriculture. Haya Sandhi J Life Sci, 6(5):89-103.

García-López JI, Zavalá-García F, Olivares-Sáenz E, Lira-Saldívar RH, Díaz Barriga-Castro E, Ruiz-Torres NA, Niño-Medina G. 2018. Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy, 8(10):215.

Gillani SR, Murtaza G, Mehmood A. 2021. Mitigation of Lead Stress in Triticum aestivum L. Seedlings by Treating with Salicylic Acid. Pak. J. Bot, 53(1):39-44.

Gilliam FS, Billmyer JH, Walter CA, Peterjohn WT. 2016. Effects of excess ni-rogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species. Atmospheric Environment, 146:261-270.

Glick B. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv, 28(3):367e374.

Gomi K. 2021. Jasmonic Acid Pathway in Plants. Int J Mol Sci, 22(7):3506.

Gong Q, Li ZH, Wang L, Zhou JY, Kang Q, Niu DD. 2021. Gibberellic acid application on biomass, oxidative stress response, and photosynthesis in spinach (Spinacia oleracea L.) seedlings under copper stress. Environmental Science and Pollution Research, 1-11.

Gong ZJ, Zhou WW, Yu HZ, Mao CG, Zhang CX, Cheng JA, Zhu ZR. 2009. Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Insect Molecular Biology, 18(3):405-417.

Grill E, Zenk MH. 1985. Phytochelatins: The Principal Heavy-Metal Complexing Peptides of Higher Plants. Science, 230(4726):674-6.

Guangju Q, Chongling Y, Haoiliang L. 2007. Influence of heavy metals on the carbohydrate and phenolics in mangoes Aegiceras corniculatum L. seedlings. Bull Environ Contam Toxicol., 78:440-444.

Gube M. 2016. Fungal molecular response to heavy metal stress. In Biochemistry and Molecular Biology, ed. D. Hoffmeister (Cham: Springer International Publishing). 47-68.

Gul F, Arfan M, Shahbaz M, Basra S. 2020. Salicylic acid seed priming modulates morphology, nutrient relations and photosynthetic attributes of wheat grown under cad-mium stress. Int. J. Agric. Biol, 23:197-204.

1477
Gupta DK, Vandenhoove I, Inouthe M. 2013a. Role of Phytocatalysts in Heavy Metal Stress and Detoxification Mechanisms in Plants. In: Gupta D., Corpas F., Palma J. (eds) Heavy Metal Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38469-1_4

Hakla HR, Sharma S, Urfan M, Yadav NS, Rajput P, Kotwal D, Abdel Latef AAh, Pal S. 2021. Gibberellins Target Shoot-Root Growth. Morpho-Physiological and Molecular Pathways to Induce Cadmium Tolerance in Vigna radiata L. Agronomy, 11(5): 896.

Hao L, Zhang Z, Hao B, Diao F, Zhang J, Bao Z, Guo W. 2021. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicology and Environmental Safety, 212: 111996.

Hasanuzzaman M, Matin MA, Fardous J, Hasanuzzaman M, Hossain MS, Parvin K. 2019. Foliar application of salicylic acid improves growth and yield attributes by up-regulating the antioxidant defense system in Brassica campestris plants grown in lead- amended soils. Acta Agrobotanica, 72(2).

Hassan TU, Bano A, Naz I. 2017. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int. J. Phytoremediation, 19: 522-529.

Hassan Z, Aarts MGM. 2011. Opportunities and feasibilities for biotechnological improve-ment of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72: 53-63

Hediji H, Kharbech O, Massoud MB, Boukari N, Debez A, Chaibi W, Chaoui A, Djebali W. 2021. Salicylic acid mitigates cadmium toxicity in bean (Phaseolus vulgaris L.) seedlings by modulating cellular redox status. Environmental and Experimental Botany, 186: 104432.

Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M, Tran LSP. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance insights from ROS detoxification and scavenging. Front Plant Sci., 6: 420.

Hussain A, Ali S, Rizwan M, ur Rehman MZ, Javed MR, Imran M, Chatha SAS, Nazir R. 2018. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environmental Pollution, 242: 1518-1526.

Hussain A, Ali S, Rizwan M, ur Rehman MZ, Qayyum MF, Wang H, Rinklebe J. 2019. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicology and environmental safety, 173: 156-164.

Hussain M, Farooq M, Nawaz A, Al-Sadi AM, Solaiman ZM, Alghamdi SS, Siddiqui KH. 2017. Biochar for crop production: potential benefits and risks. J Soils Sediment, 17(3): 685-716.

Ikrarn M, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun H. 2018. IAA producing fungal endophyte Penicillium roqueforti Thom. enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS One, 13(11): e0208150.

Irshad MA, ur Rehman MZ, Anwar-ul-Haq M, Rizwan M, Nawaz R, Shakoor MB, Wijaya L, Alyemeni MN, Parvaiz A, Ali S. 2021. Effect of green and chemically synthesized titanium dioxide nanoparticles on cadmium accumulation in wheat grains and potential dietary health risk: A field investigation. Journal of Hazardous Materials. 415: 125585.

Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S. 2020. Effects of cobalt oxide nanoparticles (CoO: NPs) on ion levels of tap water. antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3): 1260-1275.

Jain P, Pandey B, Singh P, Singh R, Singh SP, Sonkar S, Gupta R, Rathore SS, Singh AK. 2021. Plant Performance and Defensive Role of Glycine Betaine under En-viromental Stress. In Plant Performance under Environmental Stress, pp. 225-248. Springer, Cham.

Jia H, Wang X, Wei T, Wang M, Liu X, Hua L, Ren XH, Guo JK, Li J. 2021. Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicology and Environmental Safety, 207: 111550.

Jinali HN, Gopi K, Kumar K, Amaresan N. 2021. Effect of zinc-resistant Lysinibacillus species inoculation on growth, physiological properties, and zinc uptake in maize (Zea mays L.). Environmental Science and Pollution Research, 28(6): 6540-6548.

Kah M, Tufenkji N, White JC. 2019. Nano-enabled strategies to enhance crop nu-trition and protection. Nat. Nanotechnol, 14: 532-540.

Kale SK, Parishwad GV, Hussainy ASN, Patil AS. 2021. Emerging Agriculture Applications of Silver Nanoparticles. ES Food and Agroforestry, 3: 17-22.

Kamran M, Wang D, Alhaithilouf HAS, Afghanem SM, Aftab T, Xie K, Lu Y, Shi C, Sun J, Gu W, Xu P, Soliman MH. 2021. Jasmionic acid-mediated enhanced regulation of oxidative, glyoxalase defense system and reduced chromium uptake contributes to alleviation of chromium (VI) toxicity in chrysos (Brassica parachinensis L.). Ecotox. Environ. Saf., 208: 111758.

Karimi N, Ghasempour HR. 2019. Salicylic acid and jasmonic acid restrains nickel toxicity by ameliorating antioxidant defense system in shoots of metallicolous and non-metallicolous Alysum inflatum Nayr. populations. Plant Physiol. Biochem, 135: 450-459.

Khan S, Akhtar N, Rehman SU, Shujah S, Rha ES, Jamil M. 2021. Biosynthesized Iron Oxide Nanoparticles (FeOx NPs) Mitigate Arsenic Toxicity in Rice Seedlings. Toxics, 9(1): 2.

Khanna K, Kohli SK, Bali S, Kaur P, Saini P, Bakshi P, Bhardwaj R. 2018. Role of Microorganisms in Modulating Antioxidant Defense in Plants Exposed to Metal Toxicity. In Plants under Metal and Metalloid Stress. 303-335. Springer, Singapore.

Konotop Y, Kova lenko M, Matušiková I, Batsmanova L, Taran N. 2017. Proline application triggers temporal redox imbalance, but alleviates cadmium stress in wheat seedlings. Pak. J. Bot., 49(6): 2145-2151.

Koo B, Chang AC, Crowley DE, Page AL. 2006. Characterization of organic acids recovered from rhizosphere of corn grown on biosolids-treated medium. Communications in Soil Science and Plant Analysis, 37: 871–887.

Kumar V, Singh J, Kumar P. 2019. Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. Contam Agric Environ Health Risks Remed., 1: 38

Kumar A, Voropaeva O, Maleva M, Panikovskaya K, Borisova G, Rajkumar M, Bruno LB. 2021. Bioaugmentation with copper tolerant endophyte Pseudomonas luidura strain EOO26 for improved plant growth and copper phytoaccumulation by Helianthus annuus. Chemosphere, 266: 128983.

Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J. 2016. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedlings. Frontiers in Plant Science, 7: 615.

Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J. 2019. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicology and environmental safety, 172: 317-325.

Li X, Lan X, Feng X, Lan X, Cao X, Cui Z. 2021. Biosorption resistant Lysinibacillus species bioaugmented with Solanum nigrum L. for the cleanup of lead, cadmium and arsenic. Ecotoxicology and Environmental Safety, 212: 112014.

Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W. 2020. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere, 239: 124794.
Lin J, Sun M, Su B, Owens G, Chen Z. 2019. Immobilization of cadmium in polluted soils by phytogenic iron oxide nanoparticles. Science of the Total Environment, 659: 491-498.
Liu H, Timko MP. 2021. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences, 22(6): 2914.
Luo S, Calderón-Urra A, Yu J, Liao W, Xie J, Ly J, Feng Z, Tang Z. 2020. The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant Soil, 449: 1-10.
Ma Y, Rajkumar M, Zhang C, Freitas H. 2016b. Beneficial role of bacterial endo-phyltes in heavy metal phytoremediation. J. Environ. Manag, 174: 14e25.
Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of the Total Environment, 769: 145221.
Mishra S, Mishra A, Küpper H. 2017. Protein biochemistry and expression of cadmium/zinc pumping ATPases in the hyperaccumulator plants Arabidopsis halleri and Noccaea caerulescens. Front. Plant. Sci, 7: 8. 835.
Moatamed ER, Hussein AA, El-Desoky MM, Khayat ZE. 2019. Comparative study of zinc oxide nanoparticles and its bulk form on liver function of Wistar rat. Toxicol. Ind. Health, 35 (10): 627-637.
Moens M, Branco R, Morais PV. 2020. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tiriciti reduces rice plant arsenic levels. World Journal of Microbiology and Biotechnology, 36(2): 1-11.
Moulick D, Santra SC, Ghosh D. 2018. Effect of selenium nanoparticles on rice plant growth and photosynthetic performance in stressful environments. Biotechnol Adv, 32(2): 429-448.
Nadim S, Ahmad M, Zahir ZA, Javaid A. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Adv., 32(2): 429-448.
Nazar F, Hussain A, Fariduddin Q. 2019a. Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 230: 544-558.
Nazar F, Hussain A, Fariduddin Q. 2019b. Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environmental and Experimental Botany, 162: 479-495.
Nemat H, Shah AA, Akram W, Ramzan M, Yasin NA. 2020. Ameliorative effect of co-application of Bradyrhizobiurn japonicum E109 and Se to mitigate chromium stress in Capsicum annum L. International Journal of Phytoremediation, 22(13): 1396-1407.
Neyssian M, Iranbakhsh A, Ahmadvand R, Oraghi Ardebili Z, Ebadi M. 2020. Comparative efficacity of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato, potential benefits and risk assessment. PloS One, 15(12): e0244207.
Noman M, Shahid M, Ahmad T, Tahir M, Naqash T, Muhammad S, Song F, Abid HMA, Aslam Z. 2020. Green Copper Nanoparticles drom A Native Klebsiella pneumiae Strain Alleviated Oxidative Stress Impairment of Wheat Plants by Reducing the Chromium Bioavailability and Increasing the Growth. Ecotoxicol. Environ. Saf, 192: 110303.
Nouairi I, Jalali K, Zribi F, Barhoumi F, Zribi K, Mhadhbi H. 2019. Seed priming with calcium chloride improves the photosynthesis performance of faba bean plants subjected to cadmium stress. Photosynthetica, 57(2): 438-445.
Nouri M, Haddioui A. 2021. Improving seed germination and seedling growth of Lepidium sativum with different priming methods under arsenic stress. Acta Ecologica Sinica, 41(1): 64-71.
Ong GH, Ho XH, Shamkavee S, Fernando MS, Shimen A, Wong LS. 2017. Biososorption study of potential fungi for copper remediation from Peninsular Malaysia. Remediat. J, 27: 59-63.
Pål M, Szalai G, Janda T. 2015. Speculation: polyamines are important in abiotic stress signalling. Plant Sci, 237: 16-23.
Pan W, You Y, Shentu JL, Weng YN, Wang ST, Xu QR, Liu HJ, Du ST. 2020. Abscisic acid (ABA)-importing transporter 1 (AFTI) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. Journal of hazardous materials, 391: 122189.
Pereira AS, Bottellon GS, Dorneles AOS. Meneghelo GE, do Amarante L, Mauch CR. 2021. Silicon seed priming attenuates cadmium toxicity in lettuce seedlings. Environmental Science and Pollution Research, 28(17): 21101-21109.
Pires C, Franco AR, Pereira SHA, Henriques I, Correia A, Magan N, Castro PML. 2017. Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol. J. 1-9.
Pramanik K, Mandal S, Banerjee S, Ghosh A, Matik TK, Mandal NC. 2021. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress. Chemosphere, 274: 129819.
Rademacher W. 2015. Plant growth regulators: backgrounds and uses in plant production. Journal of plant growth regulation, 34(4): 845-872.
Rafique M, Ortas I, Rizwan M, Sultan T, Chaudhary NJ, Işık M, Aydin O. 2019. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environmental Science and Pollution Research, 26(20): 20689-20700.
Ragab G, Saad-Allah K. 2020. Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. Journal of Plant Growth Regulation, 1-9.
Rai-Kalal P, Jajoo A. 2021. Priming with zinc oxide nanoparticles improves germination and photosynthetic performance in wheat. Plant Physiolology and Biochemistry, 160: 341-351.
Rajan A, Rajput VF, Minkina T, Bauer T, Chauhan A, Jindal T. 2021. Nano-particles Induced Stress and Toxicity in Plants. Environmental Nanotechnology, Monitoring and Management, 100457.
Rasheed R, Ashraf MA, Hussain I, Haider MZ, Kanwal U, Iqbal M. 2014. Exogenous proline and glycinebetaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Brazilian Journal of Botany, 37(4): 399-406.
Raza Altaf A, Teng H, Saleem M, Raza Ahmad H, Adil M, Shahzad K. 2021. Associative interplay of Pseudomonas gessardii BLP141 and presmut ameliorated growth, physiology, yield, and Pb-toxicity in sunflower. Bioremediation Journal, 25(2): 178-188.
Rehmanullah ZM, Inayat N, Majeed A. 2020. Application of Nanoparticles in Agriculture as Fertilizers. New Frontiers in Stress Management for Durable Agriculture, 281.
Rhaman MS, Rauf F, Tania SS, Khatun M. 2020. Seed priming methods: application in field crops and future perspectives. Asian Journal of Research in Crop Science, 8-19.
Yavaş et al. / Turkish Journal of Agriculture - Food Science and Technology, 10(8): 1468-1481, 2022

Vázquez A, Zawoznik M, Benavides MP, Groppa MD. 2021. Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress. Plant Science, 11056.

Wang K, Li F, Gao M, Huang Y, Song Z. 2020. Mechanisms of trehalose-mediated mitigation of Cd toxicity in rice seedlings. Journal of Cleaner Production, 267: 121982.

Wang Q, Chen L, He LY, Sheng XF. 2016. Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth promoting Neorhizobium huautlense T1-17 and biochar. Agriculture Ecosystems and Environment, 228: 9-18.

Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW. Xing B. 2019. Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. J. Environ. Manag., 241: 319-327.

Wang Y, Zheng X, He X, Lü Q, Qian X, Xiao Q, Lin R. 2021. Effects of Pseudomonas TCD-1 on rice (Oryza sativa) cadmium uptake, rhizosphere soils enzyme activities and cadmium bioavailability under cadmium contamination. Ecotoxicology and Environmental Safety, 218: 112249.

Wu X, Hu J, Wu F, Zhang X, Wang B, Yang Y, Shen G, Liu J, Tao S, Wang X. 2021. Application of TiO$_2$ nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. Journal of Hazardous Materials, 405: 124047.

Xiao Y, Du Y, Xiao Y, Zhang X, Wu J, Yang G, He Y, Zhou Y, Peijningen WJGM, Loo L. 2021. Elucidating the effects of TiO$_2$ nanoparticles on the toxicity and accumulation of Cu in soybean plants (Glycine max L.). Ecotoxicology and Environmental Safety, 219: 112312.

Xin J, Huang B, Dai H, Liu A, Zhou W, Liao K. 2014. Characterization of cadmium uptake, translocation, and distribution in young seedlings of two hot pepper cultivars that differ in fruit cadmium concentration. Environmental Science and Pollution Research, 21(12): 7449-7456.

Yaman Kumar P, Meht C. 2019. Trichoderma Mediated Mitigation of Lead Toxicity in Mustard with Special Reference to its Yield and Attributes. Journal of Emerging Technologies and Innovative Research, 6(2): 311-324.

Yan Z, Li X, Chen J, Tam NYF. 2015. Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid. Ecotoxicology and environmental safety, 113: 124-132.

Yang J, Jiang F, Ma C, Rui Y, Rui M, Adee M, Cao W, Xing B. 2018. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study. J. Agric. Food Chem, 66: 2589-2597.

Yang Y, Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Plantologist, 217: 523-539.

Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM. 2021. Research on the mechanisms of plant enrichment and detoxification of cadmium. Biology, 10(6): 544.

Yu G, Ma J, Jiang P, Li J, Gao J, Qiao S, Zhao Z. 2019. IOP Conf. Ser.: Earth Environ. Sci., 310: 052004. doi:10.1088/1755-1315/310/5/052004

Yu XZ, Lin YJ, Fan WJ, Lu MR. 2017. The role of exogenous proline in amelioration of lipid peroxidation in rice seedlings exposed to Cr (VI). International Biodegradation and Biodegradation, 123: 106-112.

Yuan H, Liu Q, Guo Z, Fu J, Sun Y, Gu C, Xing B, Dhankher OP. 2021. Sulfur nanoparticles improved plant growth and reduced mercury toxicity via mitigating the oxidative stress in Brassica napus L. Journal of Cleaner Production, 318: 128589.

Yue C, Du H, Li Y, Yin N, Peng B, Cui Y. 2021. Stabilization of soil arsenic with iron and nano-iron materials: a review. Journal of Nanoscience and Nanotechnology, 21(1): 10-21.

Zahari NZ, Tua PM, Rahim SA. 2021. Inoculation of Bacillus cereus enhance phytoremediation efficiency of Pista stratiotes and Eichhornia crassipes in removing heavy metal Pb. In IOP Conference Series: Earth and Environmental Science, 847:1, 012012. IOP Publishing.

Zanganeh R, Jamei R, Rahmani F. 2020. Pre-sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L.). Ecotoxicology and Environmental Safety, 206: 111392.

Zheng F, Zahooor M, Waseem M, Anayat A, Rizwan M, Ahmad A, Wijaya L. 2020. Influence of metal-resistant Staphylococcus aureus strain K1 on the alleviation of chromium stress in wheat. Agronomy, 10(9): 1354.

Zhang C, Chen Z. 2021. Advances in study on the effects of arbuscular mycorrhizal fungi on plants in remediation of arsenic-contaminated soil. Acta Agriculturae Scandinavica-rica, Section B-Soil and Plant Science, 1-10.

Zhang W, Long J, Li J, Zhang M, Xiao G, Ye X, Chang W, Zeng H. 2019. Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.). Environmental Science and Pollution Research, 26(22): 23119-23128.

Zhao M, Liu Y, Li H, Cai Y, Wang MK, Chen Y, Xie T, Wang G. 2017. Effects and mechanisms of meta-sodium silicate amendments on lead uptake and accumulation by rice. Environ. Sci.Pollut. Res., 24: 21700-21709.

Zhou M, Ghiya T, Dailly H, Cui G, Vanpee B, Han R, Lutts S. 2019. The cytokinin trans-Zeatin riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl. Chemosphere, 233: 954-965.

Zhou P, Adeel M, Shakoor N, Guo M, Hao Y, Azemem I, Li M, Rui Y. 2021. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials, 11(1): 26.

Zouari M, Ahmed CB, Elloumi N, Bellassoued K, Delmail D, Labrousse P, Abdallah FB, Rouina BB. 2016. Impact of proline application on cadmium accumu-lation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. Ecotoxicology and environmental safety, 128: 195-205.

Zouari M, Elloumi N, Labrousse P, Ben Rouina B, Ben Abdallah F, Ben Ahmed C. 2018. Olive trees response to lead stress: Exogenous proline provided better tolerance than glycine betaine. S. Afr. J. Bot, 118:158-165.

Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S, Shafiq S, Kanwal N, Ali F, Nasir IA. 2016. Rhizobacteria and phytoremediation of heavy metals. Environ. Technol. Rev, 5: 112e119.

Zulfiqar F, Akram NA, Ashraf M. 2020. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta, 251(1): 1-17.