Species richness, abundance, distributional pattern and trait composition of butterfly assemblage change along an altitudinal gradient in the Gulmarg region of Jammu & Kashmir, India

Afaq Ahmad Dara, Khowaja Jamal, Muzamil Syed Shah, Mohd Ali, Samy Sayed, Ahmed Gaber, Hosny Kesba, Mohamed Salah

Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia
Department of Biology, College of Science, Taif University, P.D. Box 11099, Taif 21944, Saudi Arabia
Zoology and Agricultural Nematology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
Department of Biology, Turabah University College, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia

Article history:
Received 28 September 2021
Revised 17 November 2021
Accepted 28 November 2021
Available online 3 December 2021

Keywords:
Biodiversity
Lepidoptera
Altitudinal gradients
Butterflies
Gulmarg

Abstract
Despite enormous diversity, abundance, and role in ecosystem processes, little is known about how butterflies differ across altitudinal gradients. For this, butterfly communities were investigated along an altitudinal gradient of 2700–3200 m a.s.l along the Gulmarg region of Jammu & Kashmir, India. We aimed to determine how the altitudinal gradient and environmental factors affect the butterfly diversity and abundance. Our findings indicate that species richness and diversity are mainly affected by the synergism between climate and vegetation. Alpha diversity indices showed that butterfly communities were more diverse at lower elevations and declined significantly with increase in elevation. Overall, butterfly abundance and diversity is stronger at lower elevations and gradually keep dropping towards higher elevations because floristic diversity decreased on which butterflies rely for survival and propagation. A total of 2023 individuals of butterflies were recorded belonging to 40 species, represented by 27 genera and 05 families. Six survey sites (S I- S VI) were assessed for butterfly diversity from 2018 to 2020 in the Gulmarg region of Jammu & Kashmir. Across the survey, Nymphalidae was the most dominant family represented by 16 genera and 23 species, while Papilionidae and Hesperiidae were least dominant represented by 01 genera and 01 species each. Among the six collection sites selected, Site I was most dominant, represented by 16 genera and 21 species, while Site VI was least dominant, represented by 04 genera and 04 species.

1. Introduction
Lepidoptera is the second largest order of Class Insecta. It comprises two sub-orders, i.e., Moths (Heterocera) and Butterflies (Rhoplocera), consisting of about 124 families (Kristensen et al., 2007). According to Van Nieukerken et al. (2011), butterflies count for 1.87% of the global insect fauna. Butterflies are great focal species because they are involved in various environmental processes (Arroyo et al., 1982). Due to their diverse and abundant nature, they are easily identified, collected and sampled round the year. Thus proving to the best models for population and ecology (Pollard, 1991). They are considered valuable indicators of forests due to widespread distribution, different land-use systems (Dar and Jamal, 2021-a; Schulze et al., 2004) and land cover types (Soga et al., 2015). Their pollination efficiency is higher than that of bees at higher elevations. They account for 75% of the floral visitors of the Asteraceae family, one of the most common plant families in Brazilian grasslands (Mota et al., 2016). Lepidopteran species are highly sensitive to climatic factors such as temperature, humidity, rainfall, and wind speed (Bhardwaj et al., 2012), affecting their distribution across environmental gradients seen in both mountainous and low-lying areas. They also have a close...
association with the vegetation, that they need for food and protection from predators, especially in the immature stages (Ferrer-Paris et al., 2013). The adults feed on floral nectar, due to this, they are less specialized to their host plant than the larvae. As a result, the distribution of butterfly species is linked to plant structure and community makeup (Carneiro et al., 2014). Availability of plant resources, habitat quality and natural and semi-natural habitats are some of the factors that govern the distribution of butterflies. Mountains are ideal for exploring the effects of rising elevation and climate change on species diversity and abundance because they generate a variety of physical conditions in a relatively short distance. Patterns in species richness along altitudinal gradients are well-known ecological phenomena. However, there is a paucity of information about how ecological filtering processes affect the composition and features of butterfly assemblages at high altitudes. Altitudinal species gradients are shaped by long-term speciation processes, dispersal and extinction events (Mittelbach, 2010) and short-term ecological interactions with other organisms and the environment.

Many hypotheses provide a framework for understanding patterns of species richness and abundance along altitudinal gradients. The species energy theory predicts that as the altitude rises, species richness will decline due to increased energy availability and reduced population sizes at the mountain tops (Chown et al., 2013). Another hypothesis explains the decrease of biodiversity along altitude gradients with the species-area relationship (Lomolino, 2000). However, biodiversity does not always follow a linear pattern with increasing altitude and can peak at intermediate altitudes, possibly as a result of reduced biodiversity at low elevations due to human impact, highest productivity at mid-elevations, and the mid-domain effect, which explains a species richness peak at mid-elevation by stochastic effects of randomly distributed species that overlap more towards the centre of a geographical domain (Colwell et al., 2004). The presence or absence of any species is determined by the traits of the species. Species that live in similar environments and climates have similar traits. Cool-adapted species are moving northward and upward to avoid rising temperatures (Parmesan, 2006). Mountain-dwelling species moved their optimal elevation higher than non-mountain species (Lenoir et al., 2008). As a result, examining species traits that are sensitive to climatic and environmental variables, such as those found along altitudinal gradients, could help researchers better understand how species react to climate change (Diamond et al., 2011).

Although Gulmarg is very rich in biodiversity, only a few studies have been carried out to explore the butterfly fauna. Moore, (1874) reported 103 species of butterflies from the Gulmarg region of Jammu & Kashmir. Afterwards, Lang, (1868) explored the butterfly fauna of Gulmarg. Recently, Qureshi et al., (2013) investigated the butterfly fauna of Gulmarg and reported 31 species belonging to 8 families. Sharma & Sharma, (2021) conducted a study in Shiwaliks of the Jammu region and reported 118 species of butterflies represented by 81 genera and 6 families. Moreover, Sheikh et al., (2021) prepared a consolidated checklist of Rhiphiceran fauna of Jammu & Kashmir, in which 308 species were reported. In this research paper diversity, abundance, distributional pattern and trait composition of butterflies in Gulmarg region of Jammu & Kashmir, were quantified over a 3-year period along an altitudinal gradient ranging from 2700 m a.s.l to 3200 m a.s.l. Results show that, richness and abundance is stronger at lower elevations and keeps on decreasing as elevation increases. Traits of butterflies were also studied, it showed that most of the traits of butterflies at low elevation kept on changing as elevation increases for e.g., large wing sized butterflies were dominant at higher elevation and small wing sized butterfly species were dominant at lower elevation. Overall, diversity and abundance is not only affected by increasing elevation, but environmental factors in synergism with vegetation change the community structure of butterflies.

2. Materials & methods

2.1. Study area and survey sites

Gulmarg is a famous hill station in the Baramulla district of Jammu & Kashmir, located at 2650 m a.s.l. in the Pir Panjal Range of the western Himalayas. In Gulmarg, Six Survey sites, SI- S VI, were selected for accessing butterfly diversity (As shown in Fig. 1). These sites were selected according to the elevation. S I was located by 2700 m a.s.l, while as Site VI was located at 3200 m a.s.l. Glacial deposits, lacustrine deposits, and moraines cover shales, sandstones, schists, and other types of rocks found in it. During the spring and summer, the natural meadows of gulmarg are covered in snow during the winter. Enclosed parks and small lakes are interspersed throughout the fields, which are flanked by verdant pine and forests.

2.2. Data collection

The field trips of the study area were undertaken from March 2018 to November 2020 to explore the butterfly diversity. In study area, six survey sites, (SI- S VI) were accessed for butterfly diversity and abundance. In each survey site, GPS coordinates and above sea level length was measured by GPS Garmin Etrex. The butterflies were collected by sweeping net, followed by the photography of them. None of the butterfly species were killed during the collection.

2.3. Identification

The identification of butterflies was carried out with the help of identification keys, standard reference keys, available literature viz., (Smetacek, 2018; Kehimkar, 2016; Wynter-Blyth, 1957; Evans, 1932).

2.4. Diversity indices

Shannon diversity index

The Shannon index is a metric for determining the diversity and abundance of species. It’s calculated using the following formula:

\[H = - \sum_{i=1}^{S} p_i \log(p_i) \]

Where:

- \(H \) = Shannon index for species diversity,
- \(S \) = Number of species,
- \(p_i \) = Proportion of total sample belonging to the \(i^{th} \) species, and
- \(\log \) = Natural log

Simpson’s diversity Index

\[SI = \sum_{i=1}^{S} pi^2 \]

Where:

- \(SI \) = Simpson’s Index of species diversity,
- \(S \) = No. of species, and
- \(pi \) = proportion of total sample belonging to the \(i^{th} \) species

Brillouin index

The Index is more sensitive to species abundance. It’s calculated as

\[HB = \frac{\ln(n!) - \sum \ln(n_i)}{N} \]

Where \(HB \) is Brillouin index.
3. Results

Altogether we recorded 2023 individuals of butterflies, belonging to 40 species under 27 genera and 5 families. The different species of butterflies are presented in Table 1. Out of 2023 individuals of butterflies, 1121 individuals belong to the family Nymphalidae, followed by 513 individuals belonging to Pieridae, 314 individuals belong to Lycaenidae, 58 individuals belong to Papilionidae, and 17 individuals belong to Hesperiidae (As shown in Fig. 2). The Nymphalidae family had the most species, with 23, followed by Lycaenidae with 8, Pieridae with 7, Papilionidae and Hesperiidae with 1 each (As shown in Fig. 3). The Nymphalidae family had the most genera 16, followed by Lycaenidae with 5 genera, Pieridae with 04 genera, Papilionidae and Hesperiidae with 01 genera each.

3.1. Diversity indices along altitudinal gradient

When diversity indices are applied, interpreting species distribution becomes easier. According to Barrantes and Sandoval, (2009), using multiple indices helps eliminate drawbacks of the individual index. Shannon’s index describes species diversity. Maximum species diversity was observed for Site I (2.92), and minimum for Site VI (1.261). Lastly, Fisher’s alpha was the fourth alpha diversity index employed. In cases where sample sizes vary a lot, Fisher’s alpha has a good discriminating capability. As the sample size for all the sampling stations varied, this index was used. Maximum value for this index was calculated for Site I (3.881) and the minimum for Site VI (0.8299). Thus, all the four alpha diversity indices confirm that maximum alpha diversity was observed at Site I and minimum at Site VI (As shown in Table 2). A similar type of research was carried out by (Dar et al., 2021; Dar and Jamal, 2021-b; Naz et al., 2021; Liu et al., 2019; Bokhorst et al., 2018; Qing et al., 2015; Illig et al., 2010; Cutz-pool et al., 2010). They also concluded that, diversity indices show a decrease in diversity and abundance decreases along an altitudinal gradient.

3.2. Change in abundance of butterfly community along altitudinal gradient

In terms of abundance, Site I, Site II, Site III, Site IV, Site V and Site VI were represented by 865, 403, 366, 148, 139 and 102 individuals (As shown in Table 3). In site I, Hyponephele kashmirica was the most dominant (75) and Kirinia eversmanni cashmirensis was the least abundant (14). In Site II, Pontia daplidice moorei was the most dominant (33), while as Melanitis phedima galkissa and Kaniska canace were least dominant (11 each). In Site III, Vanessa indica was the most abundant represented by 81 individuals, while as Nymphalis vaualbum was the least dominant represented by 06 individuals. In Site IV, Aulocera padma was the most dominant represented by 34 individuals while as Celastrina argiolus kollari was the least dominant represented by 06 individuals. In Site V, Argyrius children was the most dominant represented by 37 individuals.
while as Hypolimnas misippus was the least dominant represented by 10 specimens. In Site VI, Issoria lathonia issaea was the most dominant with 49 individuals, while as Aulocera swaha garuna was the least dominant with 16 individuals. Across the survey, Pieris brassicae nepalensi was the most dominant with 102 individuals, while as Nymphalis vaualbum was the least dominant with 15 individuals.

Table 1

S. No	Species	Total no. of individuals	Family	Author & Year
01	Junonia iphita siccata	55	Nymphalidae	(Fruhstorfer, 1900)
02	Junonia orthya swinhoei	48	Nymphalidae	(Butler, 1885)
03	Junonia hiertha	37	Nymphalidae	(Fabricius, 1798)
04	Aulocera brahminus	65	Nymphalidae	(Blanchard, 1853)
05	Aulocera padma	76	Nymphalidae	(Kollar, 1844)
06	Aulocera swaha garuna	46	Nymphalidae	(Fruhstorfer, 1911)
07	Hyponephle coenonympha	66	Nymphalidae	(C. & R. Felder, 1867)
08	Hyponephle kashmirica	75	Nymphalidae	(Moore, 1892)
09	Vanessa cardui	68	Nymphalidae	(Linnaeus, 1758)
10	Vanessa indica	89	Nymphalidae	(Herbst, 1794)
11	Argynnis hyperbius	38	Nymphalidae	(Linnaeus, 1763)
12	Argynius childreni	37	Nymphalidae	(Kollar, 1848)
13	Aglais caschmirensis	30	Nymphalidae	(Kollar, 1884)
14	Melanitis phedima galkissa	31	Nymphalidae	(Fruhstorfer, 1911)
15	Libythea lepta	56	Nymphalidae	(Moore, 1858)
16	Kaniska canace	29	Nymphalidae	(Linnaeus, 1763)
17	Nephis hylas kamarupa	33	Nymphalidae	(Moore, 1875)
18	Callerebia nirmala daksha	90	Nymphalidae	(Moore, 1874)
19	Kirinia eversmanni cashmirensis	37	Nymphalidae	(Moore, 1874)
20	Lasiommata scharka	20	Nymphalidae	(Kollar, 1844)
21	Nymphalis vaualbum	46	Nymphalidae	(Denis & Schiffermuller, 1775)
22	Hypolimnas misippus	31	Nymphalidae	(Linnaeus, 1764)
23	Issoria lathonia issaea	49	Nymphalidae	(Gray, 1864)
24	Colias field	74	Pieridae	(Menetries, 1855)
25	Colias erate	66	Pieridae	(Esper, 1805)
26	Pieris brassicae nepalensi	102	Pieridae	(Gray, 1846)
27	Pieris canidia indica	94	Pieridae	(Evans, 1926)
28	Aporia nabellica	46	Pieridae	(Bosiduval, 1836)
29	Aporia soraca	38	Pieridae	(Moore, 1857)
30	Poncia daplidice moorei	93	Pieridae	(Robe, 1907)
31	Rapala nissa	35	Lycaenidae	(Moore, 1857)
32	Rapala selira	47	Lycaenidae	(Moore, 1847)
33	Celastrina gigas moorei	24	Lycaenidae	(Hemming, 1928)
34	Celastrina argiolus kollarri	33	Lycaenidae	(Westwood, 1852)
35	Lycaena phlaeas baralacha	48	Lycaenidae	(Linnaeus, 1761)
36	Lycaena koyapa	34	Lycaenidae	(Moore, 1865)
37	Aricia agestis nazira	17	Lycaenidae	(Moore, 1865)
38	Lampides boeticus	76	Lycaenidae	(Linnaeus, 1767)
39	Papilio machaon asiatica	58	Papilionidae	(Menetries, 1855)
40	Pelopidas mathies	17	Hesperiidae	(Fabricius, 1798)
	Total	2023		

Fig. 2

The species abundance of butterfly fauna in relation to their families in Gulmarg region of Jammu & Kashmir.

Fig. 3

The species richness of butterfly fauna in relation to their families in Gulmarg region of Jammu & Kashmir.
In line with the results that we observed, that total butterfly abundance shows significant decline with an increase in altitude, which, as per the results of some earlier studies carried out by (Afzal et al., 2021; Sharma and Sharma, 2021; Antão et al., 2020; Leingärtner et al., 2014; Diamond et al., 2011).

3.3. Change in species richness of butterfly community along elevation gradient

Among the survey sites, Site I with an elevation of 2700 m a.s.l was most dominant with 16 genera and 21 species, followed by Site II with an elevation of 2800 m a.s.l represented by 11 genera and 16 species, Site III with an elevation of 2900 m a.s.l represented by 09 genera and 12 species, Site IV with an elevation of 3000 m a.s.l represented by 08 genera and 08 species, Site V with elevation of 3100 m a.s.l represented by 06 genera and 06 species, while as Site VI was least dominant with an elevation of 3200 m a.s.l represented by 04 genera and 04 species (As shown in Table 3 and Fig. 4). In Site I, 11 species belong to family Nymphalidae, 7 species to Pieridae, 2 species to Lycaenidae and 1 species to Hesperiidae. In Site II, 6 species belong to Nymphalidae, 5 species to Pieridae and 5 species to Lycaenidae. In Site III, 6 species belong to Nymphalidae, 2 species to Pieridae and 2 species to Lycaenidae. In Site IV, 5 species belong to Nymphalidae, 2 species to Lycaenidae and 1 species to Papilionidae. In Site V, 5 species belong to Nymphalidae and 1 species to Papilionidae. Lastly, in Site VI, 3 species belong to Nymphalidae and 1 species to Lycaenidae.

Our results are in agreement with the research carried out by (Sharma and Sharma, 2021; Singh and Sondhi, 2016; Sondhi and Kunte, 2016; Chown et al., 2012; Joshi et al., 2008; Joshi and Arya, 2007; Ockinger et al., 2006). They also concluded that total butterfly species richness significant decline with an increase in altitude.

3.4. Impact of environmental gradients on species richness and abundance along an elevation gradient

Biodiversity gradients are the outcome of several temporal and spatial dimensions of evolutionary and ecological processes (Ricklefs and Jenkins, 2011). Abiotic variables, such as climate and topographic gradients, are connected with the majority of these biological processes (Stein et al., 2014). The climate and topography gradients are inextricably linked. Climate change can have an indirect impact on species diversity due to its impacts on vegetation (Stein et al., 2014). While topography has an impact on both climate and vegetation, it also has an impact on species diversity. (Stein et al., 2014; Ruggiero and Hawkins, 2008). We employed four variables to account for climatic factors: (i) average temperature, (ii) average rainfall, (iii) average relative humidity, and (iv) average rainy days are represented from 2018 to 20. All climatic variables were downloaded from Indian Meteorological Department, Govt. of India ("IMD | Home," n.d.).

The average temperature was observed maximum in the month of August and minimum in November. As the monsoon ends in the month of August, this suggests that maximum species richness and abundance are related to the temperature. Another variable is rainfall; the maximum rainfall is observed in the month of monsoon, which falls in the month of July and August. This maximum rainfall is indirectly associated with the growth of floral diversity, on which butterflies and other taxa feed, survive and propagate. The final variable is average relative humidity. It’s a well-known fact that the more the relative humidity, the more will be richness and abundance. The maximum value of average relative humidity is seen in July and August, while as minimum average relative humidity is seen in November. Our findings were also in agreement with (Lee et al., 2014; Montero-Munoz et al., 2013; Valtonen et al., 2013; Camero et al., 2007; Clark et al., 2007). They concluded that environmental gradients directly or indirectly influence the butterfly richness and abundance.

3.5. Trait composition along an elevational gradient

In this step, we analyzed whether the trait composition of butterflies such as wing-length, abdomen size, body coloration and dispersal of butterfly assemblages change with increasing altitude or not? We observed large winged butterflies were found at higher altitudes than lower altitudes. Along the increasing altitudinal gradient from Site I to Site VI, the percentage of small wing size butterflies shows an increase but started declining after site III. In contrary to medium wing size butterflies, showed a considerable decrease in wing size on altitudinal increase. The percentage of large wing size butterflies increase with increasing elevation. Therefore, we can conclude that wing size decreases as elevation increases. Similarly, abdomen size increases on moving from low elevation to high elevation. At high altitude, most of the catches were having large abdomen sizes. Lastly, on observing the coloration of the butterflies, we found that altitudinal gradients have no effect on coloration. At lower altitudes, some butterflies were brightly coloured and had a wide variety of coloration, and at high altitude, some were brightly colored and rest were dull coloured. Our findings are in agreement with (Wagner et al., 2011; Gaston et al., 2008); Karl et al., 2008; Berner et al., 2004).

4. Discussion

Biodiversity is changing dramatically and quickly all over the world. The significance of this transition, however, is unclear, as community-level alterations may obscure differences in individual population trajectories. For decades, ecologists and biogeographers have been fascinated by the richness, abundance, and distribution of species along elevational gradients (Rohde, 1999). In a range of habitats and taxa, multiple studies have observed species distribution along elevational and latitudinal gradients, and many mechanisms have been proposed to explain spatial variation in species richness (Szewczyk and McCain, 2016). The factors that underpin species distribution over elevational gradients, on the other hand, remain poorly understood. It is widely accepted that species diversity decreases as elevation rises, such declines are rarely clear. Several quantitative studies of diverse taxa have discovered evidence for changes in species richness and abundance.
Table 3
Butterfly fauna at survey sites (S I- S VI) showing elevation, abundance and GPS Coordinates.

Sites	Elevation m a.s.l	Species found	Total no. of Individuals	GPS Coordinates
I	2700	1. Colias fieldi	50	34°11′20.58″N
		2. Colias erate	45	74°12′3.22″E
		3. Pieris brassicae nepalensi	60	
		4. Pieris canidia indica	48	
		5. Aporia nabellica	46	
		6. Aporia soracta	38	
		7. Junonia iphita siccata	32	
		8. Junonia orithya swinhoei	35	
		9. Hyponephele coenonympha	66	
		10. Hyponephele kashmirica	75	
		11. Argytnis hyperbius	23	
		12. Melanitis phedima galkissa	20	
		13. Libythea lepita	56	
		14. Kaniska canace	18	
		15. Nymphalis vaalumbum	9	
		16. Lampides boeticus	76	
		17. Celastrina gigas	24	
		18. Pontia daplidice moorie	60	
		19. Pelopidas mathias	17	
		20. Callerebia nirmala daksha	53	
		21. Kirinia eversmanni cashmirensis	14	
II	2800	1. Colias fieldi	24	34°11′12.96″N
		2. Colias erate	21	74°10′56.56″E
		3. Pieris brassicae nepalensi	30	
		4. Pieris canidia indica	32	
		5. Rapala selbra	47	
		6. Rapala nissa	25	
		7. Lycaena phlaeas baralacha	30	
		8. Lycaena kasyapa	34	
		9. Junonia iphita siccata	23	
		10. Junonia orithya swinhoei	13	
		11. Celastrina argiolus kollari	17	
		12. Pontia daplidice moorie	33	
		13. Argytnis hyperbius	15	
		14. Melanitis phedima galkissa	11	
		15. Kaniska canace	11	
		16. Callerebia nirmala daksha	37	
III	2900	1. Pieris brassicae nepalensi	12	34°12′1.08″N
		2. Pieris canidia indica	14	74°11′27.92″E
		3. Aulocera brahminus	65	
		4. Aulocera padma	42	
		5. Vanessa cardui	68	
		6. Vanessa indica	81	
		7. Kirinia eversmanni cashmirensis	10	
		8. Nymphalis vaalumbum	6	
		9. Lycaena phlaeas baralacha	11	
		10. Rapala nissa	10	
		11. Celastrina argiolus kollari	10	
		12. Junonia hiertha	37	
IV	3000	1. Lycaena phlaeas baralacha	7	34°12′54.07″N
		2. Kirinia eversmanni cashmirensis	13	74°10′10.27″E
		3. Aulocera padma	34	
		4. Argytnis hyperbius	8	
		5. Celastrina argiolus kollari	6	
		6. Hypolimnas misippus	21	
		7. Papilio machaon asiatica	40	
		8. Aglais casmiresensis	19	
V	3100	1. Argytnis childreni	37	34°13′12.65″N
		2. Neptis jylas kumarupa	33	74°10′6.28″E
		3. Aglais casmiresensis	11	
		4. Hypolimnas misippus	10	
		5. Papilio machaon asiatica	18	
		6. Aulocera swaha garuna	30	
VI	3200	1. Aricia agestis nazira	17	34°13′39.49″N
		2. Issoria latonia isea	48	74°9′28.67″E
		3. Lasionycta scharka	20	
		4. Aulocera swaha garuna	16	

for four main species diversity patterns along elevational gradients: monotonic decrease, low plateau, low plateau with a mid-elevational peak, and unimodal mid-elevational peak, with the last being the most common (Grytnes and McCain, 2007). During the present investigation, Family Nymphalidae was found to dominate the fauna, represented by 1121 individuals, under 16 genera and 23 species, followed by Pieridae represented by 315 individuals under 4 genera and 7 species, Pieridae with 314 individuals under 5 genera and 8 species, Papilionidae with 58 individuals under 10 genera and 01 species, and Hesperidae with 17 individuals under 01 genera and 01 species. Across the survey, 2023 individuals were collected belonging to 40 species under 27 genera and 05 families.
Environmental variables such as climate and vegetation properties have been used to explain animal species richness and abundance distribution patterns (Mittelbach, 2010). Environmental gradients (EG) such as temperature, humidity, rainfall and vegetation cover are the potential drivers of broad-scale patterns of species richness and abundance. From 2700 to 3200 m a.s.l, we looked into the influence of environmental gradients and vegetation on butterfly distribution. We assessed the strength of the association among butterflies, vegetation, and climate. Among the environmental conditions that shift strongly with elevation is temperature, which gradually decreased with elevation and proved detrimental for the butterfly community. Butterflies survival and reproduction are highly dependent on temperature variations. Any deviation from the optimal temperature causes substantial inhibition and propagation. As evident, temperature decreases as altitude increases, which decreases the species richness and abundance. Similar results are also shown by rainfall. As the elevation increases, humidity decreases, which hinders the growth of vegetation, on which butterflies rely for survival and propagation. Therefore, species richness and abundance decrease.

Furthermore, altitudinal climatic circumstances substantially constrain the availability and turnover of basal resources, vegetation cover is discovered to have a considerable impact on the butterfly community and can be seen as nature’s own field trials. While studying the environmental gradients, a linear decrease of species richness and abundance was observed along the altitudinal gradient. This linear decrease may be due to the non-favorable environmental conditions, which doesn’t support the propagation of butterfly species. Results depict that, Site I was having the highest species richness (21 species), followed by Site II (16 species), Site III (12 species), Site IV (8 species), Site V (6 species) and Site VI (4 species). This linear decrease of butterfly species is due to the direct influence of environmental gradients, which doesn’t support species richness at higher altitudes. As already described, Shannon’s diversity index reflects diversity. Among the sites, Site I was showing maximum species diversity and Site VI was least diversity. Similarly, Simpson’s Index, Brillouin’s index and Fisher’s alpha showed maximum values in Site I and the least value in Site VI.

Studies involving the conservation of butterfly diversity are vital as Lepidoptera are an integral part of the food chain connecting autotrophs and heterotrophs. They are also well-known ecological indicators, sensitive to climatic and ecological changes and respond quickly to the stratification of the vegetation in terms of temperature, wind, light and humidity (Dar and Jamal, 2021). Moreover, studying the diversity of butterflies provide us with insight information about changes in abundance, evenness and richness affected by vegetation and species interactions and landscapes. The information about the species diversity, richness and abundance help in constructing conservation measures and management practices.

5. Conclusion

Our findings showed that in the Gulmarg region of Jammu & Kashmir, butterflies species richness and abundance are decreasing linearly as the elevation increases. This linear decrease is the resultant of decrease in vegetation assemblages along with other environmental factors which act along the altitudinal gradient. Thus we can conclude that, butterfly species are abundant at the lower elevation and keeps on decreasing as the elevation decreases. Alpha diversity indices are also in agreement with our results. Moreover, this linear decrease is not only due to the elevation, but environmental factors such as temperature, rainfall, humidity are also acting along with vegetation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors are highly thankful to the Chairperson, Department of Zoology, Aligarh Muslim University, for providing the necessary facilities to carry out this research work. Moreover, the first author is also grateful to Aamir Hameed War for assisting during the field surveys. In addition, the first author wishes to express his gratitude to Dr. Rifat Ara for her unwavering support throughout the journey of this paper. This study was funded by Taif University Researchers Supporting Project number (TURSP-2020/92), Taif University, Taif, Saudi Arabia.

References

Afzal, S., Nesar, H., Imran, Z., Ahmad, W., 2021. Altitudinal gradient affect abundance, diversity and metabolic footprint of soil nematodes in Banial-Pass of Pir-Panjal mountain range. Sci. Rep. 11, 1–13.
Aníl, L.H., Pózyr, J., Liikonen, R., Roslin, T., Lancaster, L., 2020. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 29 (5), 896–907.
Arroyo, M.K., Primack, R., Armesto, J., 1982. Community studies in pollination ecology in the high temperate Andes of central Chile. I pollination mechanisms, altitudinal variation. Am. J. Bot. 69, 82–97.
Barrantes, G., Sandoval, L., 2009. Conceptual and statistical problems associated with the use of diversity indices in ecology. Rev. Biol. Trop. 57, 451–460.
https://doi.org/10.15517/rbt.v57i3.5467.
Berner, D., Körner, C., Blanckenhorn, W.U., 2004. Grasshopper populations across 2000 m of altitude: is there life history adaptation? Ecography 27, 733–740.
https://doi.org/10.1111/j.0906-7590.2005.04012.x.
Bhurjwaj, M., Unyali, V.P., Sanay, A.K., Singh, A.P., 2012. Butterfly communities along an elevational gradient in the Tons valley, Western Himalayas: Implications of rapid assessment for insect conservation. J. Asia-Pac. Entomol. 15 (2), 207–217.
Bokhorst, S., (Ciska) Veen, G.F., Sandqvist, M., De Long, J.R., Kardol, P., Wardle, D.A., 2018. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64.
Camero, E., Anderson, M., Calderon, C., 2007. Comunidad de mariposas diurnas (Lepidoptera:Rhopalocera) en un gradiente altitudinal del cafén del río Combeima-Tolima, Colombia. Acta Biológica Colombiana 12, 95–110.
Carneiro, E., Mielke, O.H.H., Casagrande, M.M., Fiedler, K., 2014. Skipper richness (Hesperiidae) along elevational gradients in Brazilian Atlantic Forest. Neotropical Entomol. 43, 27–38.
Chown, S.L., Roux, P.C.L., Ramawatki, R., et al., 2012. Climate change and elevational diversity capacity: do weedy species take up the slack? Biol. Lett. 9, 20120806.
http://doi.org/10.1098/rsbl.2012.0806.
Clark, F.J., Reed, J.M., Chew, F.S., 2007. Effects of urbanization on butterfly species richness, guild structure, and rarity. Urban Ecosyst. 10 (3), 321–337.
Colwell, R., Rahbek, C., Gotelli, N., 2004. The mid-domain effect and species richness patterns: what have we learned so far? Am Nat. 163 (3), E1–E23. https://doi.org/10.1086/382056.
Afaq Ahmad Dar, K. Jamal, Muzamil Syed Shah et al. Saudi Journal of Biological Sciences 29 (2022) 2262–2269

Liu, J., Yang, Q., Siemann, E., Huang, W., Ding, J., 2019. Latitudinal and altitudinal gradients in plant species richness. Philos. Trans. R. Soc. Lond., B Biol. Sci. 366 (1576), 2438–2448. https://doi.org/10.1098/rstb.2016.0066.

Kristensen, N., Scoble, M.J., Karsholt, O., 2007. Lepidoptera phylogeny and systematics: The state of inventorying moth and butterfly diversity. Zootaxa. 17 (3), 293–301.

Moore, F., 1874. List of Diurnal Lepidoptera collected in Cashmere Territory by Capt. R. B. Reed, 12th Regt. With Descriptions of new Species. Proc. Zool. Soc. Lond. 4, 264–274. http://doi.org/10.1111/j.1096-3642.1874.tb02482.x.

Mora, N.M., Rezende, V.L., da Silva Mota, C., Fernandes, C.W., Nunes, Y.R.F., 2016. Forces driving the regeneration component of a rupestrian grassland complex along an altitudinal gradient. Brazilian J. Bot. 39, 845–860.

Naz, H., Usmani, M.K., Ali, M., Mobin, S., Khan, M.I., 2021. Arid soil diversity, species composition and distributional pattern in Teral region of Uttarakhnad, India. Int. J. Trop. Insect Sci. 41 (1), 547–553.

Ockinger, E., Eriksson, A.K., Smith, H.G., 2006. Effects of grassland management, abandonment and restoration on butterflies and vascular plants. Biol. Conserv. 133, 291–300.

Parsnesan, C., 2006. Ecological and evolutionary responses to recent climate change. In: Annual review of ecology and systematics. Annu. Rev. Ecol. Evol. Syst. 37, 637–639.

Pollard, E., 1991. Monitoring butterfly numbers. In: Goldsmith, F.B. (Ed.), Monitoring for conservation and ecology. Chapman and Hall, London, pp. 1–87.

Qing, X., Bent, W., Steel, H., Quisado, J., de Ley, I.T., 2015. Soil and litter nematode diversity of forest and agricultural land use in China. Plant Ecol. 220 (10), 965–976.

Ricklefs, R.E., Jenkins, D.G., 2011. Biogeography and ecology: towards the integration of two disciplines. Philos. Trans. R. Soc. Lond., B Biol. Sci. 366 (1576), 2438–2448. https://doi.org/10.1098/rstb.2011.0066.

Ruggiero, A., Hawkins, B.A., 2008. Why do mountains support so many species of butterflies? Ecography 31, 306–315. https://doi.org/1111/j.1090-7552.2008.00333.x.

Smetacek, P., 2018. A naturalist’s guide to the Butterflies of India. John Beaufoy Publishing, London.

Tiwari, E.S., Parashar, P., Sharma, A.K., Pandey, L., 2016. Butterflies of Garhwal, Uttarakhand, Western Himalaya, India. J. Threat Taxa. 8 (3), 8666. https://doi.org/10.11609/jott.2016.8.3.8641-8666.

Van Nieukerken, E.J., Kaila, L., Kitching, I.J., Kristensen, N.P., Lees, D.C., Minet, J., ... & Ward, M.S., 2015. Phylogeny and classification of the Lepidoptera (Butterflies and Moths). ZooKeys. 474, 1–264. http://doi.org/10.3897/zookeys.474.5177.

Wallace, A.R., 1970. The dominance of the larger species groups (Lepidoptera, Coleoptera, Hymenoptera) in relation to the height of the trees. Store. S. Bull. 11, 175–187.

Wagner, K.D., Krauss, J., Steffan-Dewenter, I., 2011. Changes in the life history traits of myrmecophytes in response to climate change. J. Biogeogr. 38, 1125–1138. https://doi.org/10.1111/j.1365-2699.2011.02530.x.

Wagner, K.D., Krauss, J., Steffan-Dewenter, I., 2011. Changes in the life history traits of myrmecophytes in response to climate change. J. Biogeogr. 38, 1125–1138. https://doi.org/10.1111/j.1365-2699.2011.02530.x.

Wagner, K.D., Krauss, J., Steffan-Dewenter, I., 2011. Changes in the life history traits of myrmecophytes in response to climate change. J. Biogeogr. 38, 1125–1138. https://doi.org/10.1111/j.1365-2699.2011.02530.x.