Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

Alireza Heidari1,2*, Katrina Schmitt1, Maria Henderson1 and Elizabeth Besana1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604; American International Standards Institute, Irvine, CA 3800, USA, E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Key words: americium nanoparticles, scanning electron microscope (SEM), 3d finite element method (FEM), heat transfer equation, optothermal, heat distribution, thermoplasmonic, americium nanorods, human cancer cells, tissues and tumors treatment, simulation, synchrotron radiation, emission, function, beam energy

Abstract

In the current study, thermoplasmonic characteristics of Americium nanoparticles with spherical, core-shell and rod shapes are investigated. In order, to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Americium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Americium nanoparticles by solving heat equation. The obtained results show that Americium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.
Introduction

In recent decade, metallic nanoparticles have been widely interested due to their interesting optical characteristics [1-8]. Resonances of surface Plasmon in these nanoparticles lead to increase in synchrotron radiation emission as a function of the beam energy scattering and absorption in related frequency [9,10]. Synchrotron radiation emission as a function of the beam energy absorption and induced produced heat in nanoparticles has been considered as a side effect in plasmonic applications for a long time [11-15]. Recently, scientists find that thermoplasmonic characteristic can be used for various optothermal applications in cancer, nanoflows and photonic [16-22]. In optothermal human cancer cells, tissues and tumors treatment, the descendant laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendant light converges to heat in nanoparticles [23-25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any harm to sound tissues [26,27]. Regarding the simplicity of ligands connection to Americium nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28-32]. In the current paper, thermoplasmonic characteristics of spherical, core-shell and rod Americium nanoparticles are investigated.

Heat generation in synchrotron radiation emission as a function of the beam energy-americiun nanoparticles interaction

When Americium nanoparticles are subjected to descendant light, a part of light scattered (emission process) and the other part absorbed (non-emission process). The amount of energy dissipation in non-emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section [33-39].

Americium nanoparticles absorb energy of descendant light and generate some heat in the particle. The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation [40-45].

Simulation

To calculate the generated heat in Americium nanoparticles, COMSOL software which works by Finite Element Method (FEM) was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [46-49]. In all cases, Americium nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendant light is 1 mW/μm². Dielectric constant of Americium is dependent on particle size [50-474].

Firstly, calculations were made for Americium nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The results show that by increase in nanoparticles size, extinction cross section area increases and maximum wavelength slightly shifts toward longer wavelengths. The maximum increase in temperature of nanospheres in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 (nm) nanoparticles (sphere with 50 (nm) radius), the maximum increase in temperature is 83 (K). When nanoparticles size reaches to 150 (nm), increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanospheres in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to decrease in ratio of light absorption to total energy of descendant light so that for 150 (nm) nanosphere, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendant light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution (Figure 3) shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Americium.

In this section, core-shell structure of Americium and silica is chosen. The core of a nanosphere with 45 (nm) radius and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.

According to Figure 4, silica shell causes to considerable increase in temperature of Americium nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution (Figure 5) shows that temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer inhibits heat transfer from metal to the surrounding aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuation in increase in nanoparticles temperature.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.

Variations of temperature in Americium nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.

Conclusion and summary

The calculations showed that in Americium nanoparticles, light absorption in Plasmon frequency causes to increase in temperature of the surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Americium nanospheres increases their temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostructure is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

Dent Oral Maxillofac Res, 2020 doi: 10.15761/DOMR.1000343

Figure 1. Maximum increase in temperature for Americium nanospheres

Figure 2. Variations of absorption to extinction ratio and scattering to extinction ratio for Americium nanospheres with various radiuses

Figure 3. Maximum increase in temperature for spherical nanoparticles with radius of 45 (nm) at Plasmon wavelength of 685 (nm)

Figure 4. Maximum increase in temperature for core–shell Americium nanospheres with various thicknesses of silica shell

Figure 5. Maximum increase in temperature for core–shell nanoparticles with radius of 45 (nm) and silica thickness of 10 (nm) at Plasmon wavelength of 701 (nm)

Figure 6. Extinction cross section area for Americium nanorods with effective radius of 45 (nm) and various dimension ratios
Maximum increase in temperature for nanorods with effective radius of 20 and 45 (nm) and various dimension ratios

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT12010093734722. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Synchrotron Light Source (NSLS-II) under the merit-based proposal scheme.

References

Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z. M. Design and Fabrication of Silicon Nanowires towards Efficient Solar Cells. Nano Today (2016), 11, 704–737, 10.1016/j.nantod.2016.10.001

Sandhu, S.; Fan, S. Current-Voltage Enhancement of a Single Coaxial Nanowire Solar Cell. ACS Photonics (2015), 2, 1698–1704, 10.1021/acsphotonics.5b00236

van Dam, D.; Van Hoof, N. J. J.; Cui, Y.; van Veldhoven, P. J.; Bakker, E. P. A. M.; Gómez Rivas, J.; Haverkort, J. E. M. High Efficiency and Stable Hydrogenated Amorphous Silicon Radial Junction Solar Cells Built on VLS-Grown Silicon Nanowires. Sol. Energy Mater. Sol. Cells (2013), 118, 90–95, 10.1016/j.solmat.2013.07.036

Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources. Nature (2007), 449, 885–889, 10.1038/nature06181

Razek, S. A.; Swilliam, M. A.; Allam, N. K. Vertically Aligned Crystalline Silicon Nanowires with Controlled Diameters for Energy Conversion Applications: Experimental and Theoretical Insights. J. Appl. Phys. (2014), 115, 194005, 10.1063/1.4876477

Dhinda, N.; Waliya, J.; Saini, S. A. Platform for Colorful Solar Cells with Enhanced Absorption. Nanotechnology (2016), 27, 495203, 10.1088/0957-4484/27/49/495203

Dhinda, N.; Waliya, J.; Pathirane, M.; Khodadad, J.; Wong, W. S.; Saini, S. A. Adjustable Optical Response of Amorphous Silicon Nanowires Integrated with Thin Films. Nanotechnology (2016), 27, 145703, 10.1088/0957-4484/27/14/145703

Zhu, J.; Yu, Z.; Burkhard, G. F.; Hsu, C.-M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGhee, M.; Fan, S.; Cui, Y. Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanowire Arrays. Nano Lett. (2009), 9, 279–282, 10.1021/nl802886y

Klinger, D.; Lusakowska, E.; Zymierska, D. Nano-Structure Formed by Nanosecond Pulsed-Excimer Laser Annealing on Amorphous Si Surface. Mater. Sci. Semicond. Process. (2006), 9, 323–326, 10.1016/j.mssp.2006.01.027

Kumar, P.; Krishna, M. G.; Bhattacharya, A. Excimer Laser Induced Nanostucturing of Silicon Surfaces. J. Nanosci. Nanotechnol. (2009), 9, 3224–3232, 10.1166/jnn.2009.207

Kumar, P. Surface Modulation of Silicon Surface by Excimer Laser at Laser Fluence below Ablation Threshold. Appl. Phys. A. Mater. Sci. Process. (2010), 99, 245–250, 10.1007/s00339-009-5510-x

Adikaari, A. A. D. T.; Silva, S. R. P. Thickness Dependence of Properties of Excimer Laser Crystallized Nano-Polycrystalline Silicon. J. Appl. Phys. (2005), 97, 114305, 10.1063/1.1899444

Adikaari, A. A. D. T.; Dissanyake, D. M. N. M.; Hatton, R. A.; Silva, S. R. P. Efficient Laser Textured Nanocrystalline Silicon-Polymer Bilayer Solar Cells. Appl. Phys. Lett. (2007), 90, 203514, 10.1063/1.2739365

Adikaari, A. A. D. T.; Silva, S. R. P. Excimer Laser Crystallization and Nanostructuring of Amorphous Silicon for Photovoltaic Applications. Nanoscale (2008), 3, 117–126, 10.1039/b712383m

Tang, Y. F.; Silva, S. R. P.; Boksoy, B. O.; Shannon, J. M.; Rose, M. J. Electron Field Emission from Excimer Laser Crystalized Amorphous Silicon. Appl. Phys. Lett. (2002), 80, 4154–4156, 10.1063/1.1482141

Jin, S.; Hong, S.; Matvenga, M.; Kim, B.; Shin, H. H.; Park, J. K.; Kim, T. W.; Jang, J. Low Temperature Polycrystalline Silicon with Single Orientation on Glass by Blue Laser Annealing. Thin Solid Films (2016), 618, 838–841, 10.1016/j.tsf.2016.02.026

Croucher, C. H.; Carey, J. E.; Warrender, J. M.; Aziz, M. J.; Mazur, E.; Génin, F. Y. Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon. Appl. Phys. Lett. (2004), 85, 1850–1852, 10.1063/1.1667044

Pedraza, A. J.; Fowlkes, J. D.; Lowndes, D. H. Silicon Micrololumn Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation. Appl. Phys. Lett. (1999), 74, 2322, 10.1063/1.122838

Volume 6: 4-18

Dent Oral Maxillofac Res, 2020 doi: 10.15761/DOMR.1000343

Figure 7. Maximum increase in temperature for nanorods with effective radius of 20 and 45 (nm) and various dimension ratios.
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation
110. Heidari, “Biomedical Study of Cancer Cells DNA Therapy Using Laser Irradiations at Presence of Intelligent Nanoparticles”, J Biomedical Sci. 5: 2, 2016.

111. Heidari, “Measurement of the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca²⁺), Iron (II) (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄⁻) and Zinc (Zn²⁺) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”, J Biom Biostat 7: 292, 2016.

112. Heidari, “Spectroscopy and Quantum Mechanics of the Helium Dimer (He²⁺), Neon Dimer (Ne²⁺), Argon Dimer (Ar²⁺), Krypton Dimer (Kr²⁺), Xenon Dimer (Xe²⁺), Radon Dimer(Re²⁺) and Unonacton Dimer (Uuo²⁺)” Molecular Cations”, J Chem Sci 7: e112, 2016.

113. Heidari, “Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Biospectroscopic Techniques”, J Drug Metab Toxicol 7: e129, 2016.

114. Heidari, “Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells’ Treatment”, Biochem Pharmacol (Los Angeles) 5: 207, 2016.

115. Heidari, “A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage”, Struct Chem Crystallogr Commun 2: 1, 2016.

116. Heidari, “Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cells”, Pharm Anal Chem Open Access 2: 113, 2016.

117. Heidari, “A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh₂O₃) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment”, Chem Open Access 5: e129, 2016.

118. Heidari, “Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacobimet Ther 1: e005, 2016.

119. Heidari, “Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical, Electrochemical and Spectroscopic Techniques”, Insights Anal Electrochem 2: 1, 2016.

120. Heidari, “Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicity Dis 1: 2, 2016.

121. Heidari, “Combined Theoretical and Computational Study of the Belousov–Zhabotinsky Chaotic Reaction and Curtiss Rearrangement for Synthesis of Methocelzrethamine, Cisplatin, Streptozotocin, Cyclophosphamide, Melphalan, Busulfan and BCNU as Anti-Cancer Drugs”, Insights Med Phys. 1: 2, 2016.

122. Heidari, “A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed. 7: 2, 2016.

123. Heidari, “Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedicine Biotherapeutic Discov 6: e144, 2016.

124. Heidari, “Molecular Dynamics and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDI, Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glyclobiological Study”, J Glycobial 5: e111, 2016.

125. Heidari, “Synthesis and Study of 5-{(Phenylthionyl)Amino}-1,3,4-Thiazolide-2-Sulfonamide as Potential Ant-Persuss Drug Using Chromatography and Spectroscopy Techniques”, Transl Med (Sunnyvale) 6: e138, 2016.

126. Heidari, “Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O₃) Using Soave-Redlich-Kwong (SRK) and Pang-Robinson (PR) Equations”, Electronic J Biol 12: 4, 2016.

127. Heidari, “An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids”, Austin J Anal Pharm Chem. 3 (1): 1058, 2016.

128. Heidari, C. Brown, “Phase, Composition and Morphology Study and Analysis of Ox-Pd/HfC Nanocomposites”, Nano Res Appl. 2: 1, 2016.

129. Heidari, C. Brown, “Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cunene”, International Journal of Advanced Chemistry, 4 (4) 5-9, 2016.

130. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues”, Arch Can Res. 4: 2, 2016.

131. Heidari, “Genomics and Proteomics Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Miroprofen, Zolimidine, Olprinone and Abuafangin as Anti-Tumor; Peptide Antibiotics, Anti-Viral and Central Nervous System (CNS) Drugs”, J Data Mining Genomics & Proteomics 7: e125, 2016.

132. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Pafacetaxl Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells”, J Pharmacogenomics Pharmacoproteomics 7: e153, 2016.

133. Heidari, “Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach”, Transl Biomed. 7: 2, 2016.

134. Heidari, “A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method”, Arch Can Res. 4: 2, 2016.

135. Heidari, “Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxaliplatin, Hepaplatin and Lobaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study”, J Inform Data Min 3: 1, 2016.

136. Heidari, “Linear and Non-Linear Quantitative Structure–Anti-Cancer–Activity Relationship (QSACAR) Study of Hydrous Ruthenium (IV) Oxide (RuO₂) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs”, J Integr Oncol 5: e110, 2016.

137. Heidari, “Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J Nanosci Curr Res 1: e101, 2016.

138. Heidari, “Coplanarity and Collinearity of 4–Dimethyl–2,2–Bithiazole in One Domain of Bleomycin and Pungyngycin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drug”, Int J Drug Dev & Res 8: 007–008, 2016.

139. Heidari, “A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations”, J Pharmacovigil 4: e161, 2016.

140. Heidari, “Nanotechnology in Preparation of Semipermeable Polymers”, J Adv Chem Eng 6: 157, 2016.

141. Heidari, “A Gastrointestinal Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for Analysis 5–Aminosalicylates Nano Particles as Digestive System Nano Drugs under Synchrotron Radiations”, J Gastroint Dig Syst 6: e119, 2016.

142. Heidari, “DNA/RNA Fragmentation and Cytology in Human Cancer Cells Treated with Diphosphate Nano Particles Derivatives”, Biomedical Data Mining 5: e102, 2016.

143. Heidari, “A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm”, J Mol Biol Biotechnol 1: 1, 2016.

144. Heidari, “Computational Study on Molecular Structures of C_{20}, C_{28}, C_{32}, C_{36}, C_{40}, C_{44} and C_{46} Fullerene Molecules under Synchrotron Radiations Using Fuzzy Logic”, J Material Sci Eng 5: 282, 2016.

145. Heidari, “Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs)”, J Appl Computat Math 5: e143, 2016.

146. Heidari, “The Impact of High Resolution Imaging on Diagnosis”, Int J Clin Med Imaging 3: 1000e101, 2016.
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

147. Heidari, “A Comparative Study of Conformational Behavior of Isotretinoin (13–Cis Retinoic Acid) and Tretinoin (All-Trans Retinoic Acid (ATRA)) Nano Particles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree-Fock (HF) and Density Functional Theory (DFT) Methods”, Insights in Biomed 1: 2, 2016.

148. Heidari, “advances in Logic, Operations and Computational Mathematics”, J Appl Comput Math 5: 5, 2016.

149. Heidari, “Mathematical Equations in Predicting Physical Behavior”, J Appl Comput Math 5: 5, 2016.

150. Heidari, “Chemotherapy a Last Resort for Cancer Treatment”, Chemo Open Access 5: 4, 2016.

151. Heidari, “Separation and Pre-Concentration of Metal Cations-DNA/RNA Chelates Using Molecular Beam Mass Spectrometry with Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation and Various Analytical Methods”, Mass Spectrom Purif Tech e1:01, 2016.

152. Heidari, “Isotroscopic Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti-Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm”, Insight Pharm Res 1: 1, 2016.

153. Heidari, “Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiations Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies”, Int J Clin Med Imaging 3: 516, 2016.

154. Heidari, “A Novel Approach to Biology”, Electronic J Biol 12: 4, 2016.

155. Heidari, “Innovative Biomedical Equipment’s for Diagnosis and Treatment”, J Bioengineering & Biomedical Sci 6: 2, 2016.

156. Heidari, “Integrating Precision Cancer Medicine into Healthcare, Medicare Reimbursement Changes and the Practice of Oncology: Trends in Oncology Medicine and Practices”, J Oncol Med Pract 1: 2, 2016.

157. Heidari, “Promoting Convergence in Biomedical and Biomaterials Sciences and Silk Proteins for Biomedical and Biomaterials Applications: An Introduction to Materials in Medicine and Bioengineering Perspectives”, J Bioengineering & Biomedical Sci 6: 3, 2016.

158. Heidari, “X-Ray Fluorescence and X-Ray Diffraction Analysis on Discrete Element Modeling of Nano Powder Metalurgy Processes in Optimal Container Design”, J Powder Metall Min 6: 1, 2017.

159. Heidari, “Biomolecular Spectroscopy and Dynamics of Nano– Sized Molecules and Clusters as Cross-Linking-Induced Anti-Cancer and Immune-Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells’ Membranes under Synchrotron Radiations: A Payload-Based Perspective”, Arch Chem Res 1: 2, 2017.

160. Heidari, “Deficiencies in Repair of Double–Standard DNA/RNA–Binding Molecules Identified in Many Types of Solid and Liquid Tumors Oncology in Human Body for Advancing Cancer Immunotherapy Using Computer Simulations and Data Analysis: Number of Mutations in a Synchronous Tumor Varies by Age and Type of Synchronous Cancer”, J Appl Bioinforma Comput Biol, 6: 1, 2017.

161. Heidari, “Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing”, Glob J Res Rev 4: 2, 2017.

162. Heidari, “Polyorphism in Nano– Sized Graphene Ligand–Induced Transformation of AuSn2xPb2 (SPb–b) to AuSn2xPb2 (SPb–h) (x = 1–12) Nanomolecules for Synthesis of AuSn2xPb2 (SPb–h) and AuSn2xPb2 (SPb–b) (x = 1–12) Nanomolecules with Monochromatic Microbeams (MWCNTs) with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in Situ During the Polymerization of Aniline Mononuclear Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation”, Br J Res, 4(3): 16, 2017.

163. Heidari, “Sedative, Analgesic and Ultrasound–Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal Endoscopic Procedure, Nano Drug–Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity”, Res Rep Gastroenterol 1: 1, 2017.

164. Heidari, “Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stabling, Safety and Efficacy of Orphan Nano Drugs to Treat High Cholesterol and Related Conditions and to Prevent Cardiovascular Disease under Synchrotron Radiation”, J Pharm Sci Emerg Drugs 5: 1, 2017.

165. Heidari, “A Novel Approach to Future Horizon of Top Seven Biomedical Research Topics to Watch in 2017: Alzheimer’s, Ebola, Hypersomnia, Human Immunodeficiency Virus (HIV), Tuberculosis (TB), Microbiome/Innate Resistance and Endovascular Stroke”, J Bioengineering & Biomedical Sci 7: e127, 2017.

166. Heidari, “Opinion on Computational Fluid Dynamics (CFD) Technique”, Fluid Mech Open Acc 4: 157, 2017.

167. Heidari, “Concurrent Diagnosis of Oncology Infections Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and AuSn2xPb2 (SPb–h) (x = 1–12) Nanomolecules with Monochromatic Microbeams (MWCNTs) with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in Situ During the Polymerization of Aniline Mononuclear Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation”, J Nanotechnol Material Sci 4 (2): 1–5, 2017.

168. Heidari, “Non–Linear Compact Proton Strokes to Improve Human Cancer Cells and Tissues Treatments and Diagnostics through Particle Therapies Accelerators with Monochromatic Microbeams”, J Cell Biol Mol Sci 2 (1): 1–5, 2017.

169. Heidari, “Design of Targeted Metal Chelation Therapeutics Nanocapsules as Colloidal Carriers and Blood–Brain Barrier (BBB) Translocation to Targeted Delivery Anti-Cancer Nano Drugs into the Human Brain to Treat Alzheimer’s Disease under Synchrotron Radiation”, J Nanotechnol Material Sci 4 (2): 1–5, 2017.

170. R. Gohato, A. Heidari, “Calculations Using Quantum Chemistry for Inorganic Molecular Simulation ReLiSe”, Science Journal of Analytical Chemistry, Vol. 5, No. 6, Pages 76–85, 2017.
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation.
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

212. Heidari, “Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Austin Pharmacol Pharm, 3 (1): 1011, 2018.

213. Heidari, “Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Interaction among Human Blood Cancer Cells, Tissues, Tumors and Metastases with Synchrotron Radiation under Anti-Cancer Nano Drugs Delivery Efficacy Using MATLAB Modeling and Simulation”, Madridge J Nov Drug Res, 1 (1): 18–24, 2017.

214. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Open Access J Trans Med Res, 2 (1): 00026–00032, 2018.

215. M. R. R. Gobato, R. Gobato, A. Heidari, “Planting of Jactobica Trees for Landscape Repair of Degraded Area”, Landscape Architecture and Regional Planning, Vol. 3, No. 1, 2018, Pages 1–9, 2018.

216. Heidari, “Fluorescence Spectroscopy, Photophorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, SM J Clin. Med. Imaging, 4 (1): 1018, 2018.

217. Heidari, “Nuclear Inelastic Scattering Spectroscopy (NISS) and Nuclear Inelastic Absorption Spectroscopy (NIAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Pharm Sci, 2 (1): 1–14, 2018.

218. Heidari, “Y–X Diffraction (YRD), Powder X–Ray Diffraction (PXRD) and Energy–Depressive X–Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Oncol Res; 2 (1): 1–14, 2018.

219. Heidari, “Correlation Two–Dimensional Nuclear Magnetic Resonance (NMR) (2–NMR) (COST) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Can Sci, 1–1, 2018.

220. Heidari, “Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macroscopic Spectroscopy and Photothermal Macroscopic Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, SM J Biometrics Biostat, 3 (1): 1024, 2018.

221. Heidari, “A Modern and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy”, Open Ace J Oncol Med. 1 (1), 2018.

222. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple–Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple–Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocytology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018.

223. Heidari, “Nuclear Resonance Vibrational Spectroscopy (NIRVS), Nuclear Inelastic Scattering Spectroscopy (NISS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X–Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Biotech Chem Mol Biol. 6 (16e): 1–5, 2018.

224. Heidari, “A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation”, Glob J Endocrinol Metab. 1 (3).

225. Heidari, “Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple–Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple–Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Pharma 3, 1 (1): 302–308, 2018.

226. Heidari, “A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Analyt Molecul Tech. 3 (1): 8, 2018.

227. Heidari, “Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, European Modern Studies Journal, Vol. 2, No. 1, 13–29, 2018.

228. Heidari, “Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Imaging J Clin Medical Sci. 5 (1): 001–007, 2018.

229. Heidari, “Small–Angle Neutron Scattering (SANS) and Wide–Angle X–Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Biochem Mol Biol. 5 (2): 1–6, 2018.

230. Heidari, “Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, Non–Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non–Melanoma Skin Cancer Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, Ther Res Skin Dis 1 (1), 2018.

231. Heidari, “Attenuated Total Reflectance Fourier Transform Infrared (ATR–FTIR) Spectroscopy, Micro–Attenuated Total Reflectance Fourier Transform Infrared (Micro–ATR–FTIR) Spectroscopy and Macro–Attenuated Total Reflectance Fourier Transform Infrared (Macro–ATR–FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, International Journal of Chemistry Papers, 2 (1): 1–12, 2018.

232. Heidari, “Mößbauer Spectroscopy, Mößbauer Emission Spectroscopy and 3Fe Mößbauer Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Cancer Biology 2.3: 17–20, 2018.

233. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Organic & Medicinal Chem. 6 (1): 555676, 2018.

234. Heidari, “Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AIDS–Related Cancers Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Biosial Biomed. 2 (1): 001–007, 2018.

235. Heidari, “Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues Studies under Synchrotron Radiation and Anti–Cancer Nano Drugs Delivery”, Am J Nanotechnol Nanomed. 1 (1): 001–009, 2018.

236. Heidari, “Vivo /II or Proton NMR, 1H NMR, 13C NMR and 15N NMR Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Ann Biomet Biostat. 1 (1): 1001, 2018.

237. Heidari, “Grazing–Incidence Small–Angle Neutron Scattering (GISANS) and Grazing–Incidence X–Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation”, Ann Cardiovasc Surg. 1 (2): 1006, 2018.

238. Heidari, “Adsorption Isotherms and Kinetics of Multi–Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blasitoma Cancer Cells and Tissues”, Clin Med Rev Case Rep 5: 201, 2018.

239. Heidari, “Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredible Natural–and Abundance Double–Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple–Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOEST) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROEST) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Pharmaceutical Sciences 2.5: 30–35, 2018.

240. Heidari, “Small–Angle X–Ray Scattering (SAXS), Ultra–Small–Angle X–Ray Scattering (USAXS), Fluotuation X–Ray Scattering (FXS), Wide–Angle X–Ray Scattering (WAXS), Grazing–Incidence Small–Angle X–Ray Scattering (GISAXS), Grazing–Incidence Wide–Angle X–Ray Scattering (GIWAXS), Small–Angle Neonar Scattering (SANS), Grazing–Incidence Small–Angle Neutron Scattering (GISANS), X–Ray Diffraction (XRD), Powder X–Ray Diffraction (PARD), Wide–Angle X–Ray Diffraction (WAXD), Grazing–Incidence X–Ray Diffraction (GIAD) and Energy–Depressive X–Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Oncol Res Rev, Volume 1 (1): 1–10, 2018.

Dent Oral Maxillofac Res, 2020 doi: 10.15761/DOMR.1000343 Volume 6: 10-18
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (6): 1-8, 2018.

298. Heidari, “A Novel and Comprehensive Study on Manufacturing and Fabrication Nanoparticles Methods and Techniques for Processing Cudmium Oxide (CdO) Nanoparticles Colloidal Solution”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

299. Heidari, “A Combined Experimental and Computational Study on the Catalytic Effect of Aluminium Nitride Nanocrystal (AlN) on the Polymerization of Benzene, Naphthalene, Anthracene, Phenantrene, Chryzene and Tetracene”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

300. Heidari, “Novel Experimental and Three-Dimensional (3D) Multiphysics Computational Framework of Michaels-Menten Kinetics for Catalyst Processes Innovation. Characterization and Carrier Applications”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

301. Heidari, “The Hydrolysis Constants of Copper (I) (Cu") and Copper (II) (Cu") in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

302. Heidari, “Vibrational Biospectroscopic Study of Ginormous Viruses–Sized Macromolecule and Polypeptide Macromolecule as Mega Macromolecules Using Attenuated Total Reflectance–Fourier Transform Infrared (ATR–FTIR) Spectroscopy and Mathematical I.I.”, Glob Imaging Insights, Volume 4 (1): 1-8, 2019.

303. Heidari, “Three-Dimensional (3D) Imaging Spectroscopy of Carcinoma, Sarcoma, Leukemia, Lymphoma, Multiple Myeloma, Melanoma, Brain and Spinal Cord Tumors, Germ Cell Tumors, Neuroendocrine Tumors and Carcinoid Tumors under Synchrotron Radiation”, Glob Imaging Insights, Volume 4 (1): 1-9, 2019.

304. R. Gobato, M. R. R. Gobato, A. Heidari, “Storm Fronts in the Center of Paraná State on June 6, 2017: A Case Study”, Sumerian Journal of Scientific Research, Vol. 2, No. 2, Pages 24-31, 2019.

305. R. Gobato, M. R. R. Gobato, A. Heidari, “Enhanced Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadium Oxide (CdO) Nanoparticles”, J Toxicol Risk Assess 4: 1, 012–025, 2018.

306. Heidari, “Mechanism of Action and Their Side Effects at a Glance Prevention, Treatment and Management of Immune System and Human Cancer Nano Chemotherapy”, Nanosci Technol 6 (1): 1-4, 2019.

307. Heidari, J. Esposito, A. Caissutti, “The Quantum Entanglement Dynamics Induced by Non–Linear Interaction between a Mering Nano Molecule and a Two–Mode Field with Two–Photon Transitions Using Reduced Von Neumann Entropy and Jaynes–Cummings Model for Human Cancer Cells, Tissues and Tumors Diagnosis”, Int J Crit Care Emerg Med 5 (2): 071–084, 2019.

308. Heidari, J. Esposito, A. Caissutti, “Palytoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, J Pharm Drug Res, 3 (1): 150–170, 2019.

309. Heidari, J. Esposito, A. Caissutti, “Aphytoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, J Chem Sci Eng, 2 (2): 70–89, 2019.

310. Heidari, J. Esposito, A. Caissutti, “Cytotoxicity Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Br J Med Health Res. 6 (04): 21–60, 2019.

311. Heidari, J. Esposito, A. Caissutti, “Palytoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Ann Nanosci Nanotechnol. 3 (1): 1006–1019, 2019.

312. Heidari, J. Esposito, A. Caissutti, “Study of Anti-Cancer Properties of Thin Layers of Cadium Oxide (CdO) Nanomaterial”, J Analit Bioanal Methods 1 (1): 003–022, 2019.

313. Heidari, J. Esposito, A. Caissutti, “Alpha–Conotoxin, Omega–Conotoxin and Mu–Conotoxin Time–Resolved Absorption and Resonance FT–IR and Raman Synchrocyclotron and LASER Radiations in Human Cancer Cells, Tissues and Tumors Transformation Process to Benign Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment”, Toxicol Risk Assess 4: 1, 012–025, 2018.

314. R. Gobato, M. R. R. Gobato, A. Heidari, “Raman Scattering Study of the Nano Molecule C_H_BeLi2SeSi Using ab initio and Hartree–Fock Methods in the Basis Set CC–pVTZ and 6–311G**(3df, 3pd)”, Am J Nanosci Nanotechnol. 3 (1): 1006–1019, 2018.

315. R. Gobato, M. R. R. Gobato, A. Heidari, “Potential and Theranostics Applications of Novel Anti–Cancer Nano Drugs Delivery Systems”, Res Adv Biomed Sci Technol 1 (1): 01–17, 2019.

316. R. Gobato, M. R. R. Gobato, A. Heidari, “Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadium Oxide (CdO) Nanoparticles”, Int J Toxicol Risk Assess 4: 1, 012–025, 2018.

317. R. Gobato, M. R. R. Gobato, A. Heidari, “Anti–Cancer Nano Drugs Delivery Systems for Anti-Cancer Targeting and Treatment under Synchrotron Radiation”, Glob Imaging Insights, Volume 4 (1): 1-9, 2019.
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

Dent Oral Maxillofac Res, 2020 doi: 10.15761/DOMR.1000343

336. Heidari, A (2020) "Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation", International Journal of Dent Oral Maxillofac Res, 7:1, 1-24, 2019.

337. Heidari, A. (2019) "Evidence of Tornado Storm Hit the Counties of Rio Branco do Ivaí and Rosario de Ivaí, Southern Brazil", Sci Lett, 7 (1): 32-40, 2019.

338. Heidari, A. (2019) "Cluster Analysis of DCM, Long-term Trend and Impact of Various Factors on DCM in Southern Brazil: The Importance of Quantum Hydrodynamics (QHD) Approach to Single-Walled Carbon Nanotubes (SWCNT) and Multi-Walled Carbon Nanotubes (MWCNT) in Genetic Science", SCIOL Genet Sci. 2 (1): 113-129, 2019.

339. Heidari, A. (2019) "The Importance of Analysis of Vibronic–Mode Coupling Structure in Vibrational Spectra of Supramolecular Aggregates of (CA*M) and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", J Adv. Phys. Chem., Volume 1, Issue 1, pp. 1-6, 2019.

340. Heidari, A. (2019) "α-Bungarotoxin, Beta–Bungarotoxin and Kappa-Bungarotoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Archives of Pharmacology and Pharmaceutical Sciences, ReDelve, Volume 2019, Issue 01, pp. 25-32, 2019.

341. Heidari, A. (2019) "α-Bungarotoxin, Beta–Bungarotoxin and Kappa-Bungarotoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", J Analyst Bioanalyt Methods 1 (1): 1-19, 2019.

342. Heidari, A. (2019) "Investigation of the Processes of Absorption, Distribution, Metabolism and Elimination (ADME) as Vital and Important Factors for Modulating Drug Action and Toxicity", Open Access J Oncol, 2 (1): 180010-180012, 2019.

343. Heidari, A. (2019) "Perutzin Toxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Chemistry Reports, Vol. 1 Iss. 2, Pages 1–5, 2019.

344. R. Gobato, M. R. R. Gobato, A. Heidari, "Rhodochrosite as Crystal Oscillator", Am J Biomed Sci & Res. 3 (2), 187, 2019.

345. Heidari, A. (2019) "Decarbamoylsaxitoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Journal of New Developments in Chemistry, Volume No: 2, Issue No: 3, Page Numbers 26–48, 2019.

346. Heidari, A. (2019) "The Importance of Analysis of Vibronic–Mode Coupling Structure in Vibrational Spectra of Supramolecular Aggregates of (CA*PM) Cyanuric acid (CA) and Melamine (M) beyond the Franch-Condron Approximation", Journal of Clinical and Medical Images, 2 (2): 1-20, 2019.

347. Heidari, A. (2019) "Microcystin-LR Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Malaysian Journal of Chemistry, Vol. 21 (1), 70-95, 2019.

348. Heidari, A. (2019) "Domoic Acid (DA) Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Journal of Mechanical Design and Vibration, Vol. 7, no. 1: 1-15, 2019.

349. Heidari, A. (2019) "Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation", Current Clinical Oncology Journal 1. 1: 01-06, 2019.

350. Heidari, A. (2019) "Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation", Current Clinical Oncology Journal 1. 2: 1-24, 2019.

351. Heidari, A. (2019) "Sulfuric Acid Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Current Drug Delivery Research 1. 1: 07-12, 2019.

352. Heidari, A. (2019) "Aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), M1 (AFM1), M2 (AFM2), Q1 (AFQ1) and P1 (AFP1) Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Current Drug Delivery Research 1. 1: 13-18, 2019.

353. Heidari, A. (2019) "Butoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Current Drug Delivery Research 1. 1: 19-24, 2019.

354. Heidari, A. (2019) "Katicin Acid (Kainate) Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Current Journal of Neurology 1. 2: 02-07, 2019.

355. Heidari, A. (2019) "Nereistoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Current Journal of Neurology 1. 2: 19-24, 2019.

356. Heidari, A. (2019) "Spider Toxin and Rassvetoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Parana Journal of Science and Education, Vol. 5, No. 4, pp. 1-28, 2019.

357. Heidari, A. (2019) "Ochratoxin A, Ochratoxin B, Ochratoxin C, Ochratoxin a and Ochratoxin TA Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Cientific Clinical Oncology Journal 1. 1: 01-06, 2019.

358. Heidari, A. (2019) "Brevetoxin A and B Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis", Cientific Clinical Oncology Journal 1. 2: 03-10, 2019.

359. Heidari, A. (2019) "Acute and Subchronic Oral Toxicity of (CA*PM) Cyanuric acid (CA) and Melamine (M) beyond the Franch-Condron Approximation", Journal of Clinical and Medical Images, 2 (2): 1-20, 2019.
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

411. Heidari, K. Schmitt, M. Henderson, E. Besana, “Modelling of Interaction between Yterrium Nanoparticles and Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 5, Issue 5, Pages 1–17, 2019.

414. Heidari, K. Schmitt, M. Henderson, E. Besana, “Advantages of Lawrencium Nanoparticles for Human Gum Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Dent Oral Maxillofac Res, Volume 5, Issue 5, Pages 1–17, 2019.

412. Heidari, K. Schmitt, M. Henderson, E. Besana, “Advantages of Americium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, J. Cancer Research and Cellular Therapeutics, Volume 2 (4), Pages 1–19, 2019.

413. Heidari, K. Schmitt, M. Henderson, E. Besana, “Study of Gdolinium Nanoparticles Delivery Effect on Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Applied Chemistry, 2 (2) 55–97, 2019.

414. Heidari, K. Schmitt, M. Henderson, E. Besana, R. Gobato, “Pros and Cons of Livermorium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation Using Mathematica 12.0”, Parauna Journal of Science and Education (PJSE) – v. 6, n. 1, (1–31) January 11, 2020.

415. R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “Challenging Giants. Hartree–Fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells Through Synchrotron Radiation”, Biomed J Sci & Tech Res 25 (1), pp. 18843–18848, 2020.
Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation. Dent Oral Maxillofac Res, 2020. doi: 10.15761/DOMR.1000343
Heidari A (2020) Nanomedicines based americium nanoparticles drug delivery systems for anti-cancer targeting and treatment under synchrotron radiation

471. Heidari, V. Peterson, “A Comprehensive Review on Functional Roles of Cancerous Immunoglobulins and Potential Applications in Cancer Immunodiagnostics and Immunotherapy”, International Journal of Advanced Chemistry, Vol. 8, No. 1, Pages 44–58, 2020.

472. Heidari, V. Peterson, “An Encyclopedic Review on Stereotactic Hypofractionated Radiotherapy, Re-irradiation and Cancer Genome Research”, International Journal of Advanced Chemistry, Vol. 8, No. 1, Pages 59–74, 2020.

473. Heidari, V. Peterson, “A Pervasive Review on Biomarker in Cervical Intraepithelial Lesions and Carcinoma”, International Journal of Advanced Chemistry, Vol. 8, No. 1, Pages 75–88, 2020.

474. Heidari, “Future Advanced Study of Thin Layers of DNA/RNA Hybrid Molecule Nanostructure”, J Mol Nanot Nanom 2 (1): 110, 2020.

Copyright: ©2020 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.