Electronic Inhomogeneities in the superconducting phase of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals

Anirban Dutta1, Neeraj Kumar2, A. Thamizhavel2 and Anjan K. Gupta1

1Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
2Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India

E-mail: adatta@iitk.ac.in

Abstract. Superconductivity in Iron-Arsenic based pnictides emerges in close proximity to an antiferromagnetic (AFM) ordered parent state and the AFM phase overlaps with superconducting (SC) phase in some pnictides for certain range of doping. CaFe$_{2-x}$Ni$_x$As$_2$ belongs to this category, where both the phases overlap. Here we use scanning tunneling microscopy and spectroscopy to investigate the local electronic properties of underdoped CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals in the vicinity of the boundary of the two phases. Both resistivity and magnetic measurements show that a tiny portion ($\sim 1.2\%$) of this compound becomes superconductor below the SC onset temperature $T_C \sim 15$ K. Topographic images show reasonably flat surface with signatures of atomic resolution. High temperature spectra are spatially homogeneous and show signatures of spin density wave (SDW) gap with a finite density of states near the Fermi energy. Below T_C, spectra show significant spatial inhomogeneity with a SDW gap everywhere but at some locations we also see an asymmetric or symmetric depression in $\sim \pm 5$ meV energy range together with the SDW gap. Inhomogeneity reduces significantly as the temperature goes above T_C and disappears completely far above T_C. These observations are discussed in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the SC dome boundary on the underdoped side of the phase diagram.

PACS numbers: 74.81.-g, 71.27.+a, 74.70.Xa, 75.30.Fv, 74.55.+v
Electronic Inhomogeneities in the SC phase of CaFe\textsubscript{1.96}Ni\textsubscript{0.04}As\textsubscript{2} single crystals

1. Introduction

The discovery\cite{1} of Iron-Arsenic (Fe-As) based pnictide superconductors with high critical temperature (T_C) provide us a system with rich physics. As in the cuprates, heavy fermions and organic superconductors, superconductivity in Iron-Arsenic based pnictides also emerges in close proximity to an antiferromagnetic (AFM) ordered parent state and T_C has dome-shaped dependence on doping or pressure\cite{2,3,4,5,6,7,8,9,10,11,12,13}. If the AFM and superconducting (SC) phases overlap in the phase diagram, the maximum T_C is found close to the extrapolated end point of the AFM transition. Conventional electron-phonon pairing mechanism cannot explain such high-T_C superconductors. It is widely believed that magnetic fluctuations have an important role in the origin of high-T_C superconductivity. Quantum fluctuations associated with the quantum critical point (QCP)\cite{14,15} may also have a crucial role in superconductivity. Muon spin relaxation (μSR) and Mössbauer spectroscopy on LaFeAsO$_{1-x}$F$_x$ show a discontinuous first-order-like transition from SDW to SC state without any coexistence of SDW and SC phases\cite{2}. Neutron scattering in CeFeAsO$_{1-x}$F$_x$ reveals a continuous second order transition, but the SDW and SC phases touch only at T = 0 and it could be a quantum critical point\cite{3}. On the contrary, in other cases such as scanning tunneling microscopy and spectroscopy on NaFe$_{1-x}$Co$_x$As\cite{4}, μSR\cite{5,6,7} and neutron diffraction\cite{8} study on Ba$_{1-x}$K$_x$Fe$_2$As$_2$, μSR study on Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$\cite{9,10}, μSR study on SmFeAsO$_{1-x}$F$_x$\cite{11}, μSR and nuclear quadropole resonance study on SmFe$_{1-x}$Ru$_x$AsO$_{0.85}F_{0.15}$\cite{12} and 75As NMR study on Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$\cite{13} show coexistence of the two phases. These two phases may coexist microscopically or in a phase separated way. SmFe$_{1-x}$Ru$_x$AsO$_{0.85}F_{0.15}$\cite{12} and Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$\cite{13} display phase separation while NaFe$_{1-x}$Co$_x$As\cite{4}, Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$\cite{9,10} show microscopic coexistence. In some pnictides for example Ba$_{1-x}$K$_x$Fe$_2$As$_2$ and SmFeAsO$_{1-x}$F$_x$, the issue of whether they have microscopic or phase separated AFM and SC coexistence is not completely clear yet\cite{5,6,8,7,11}. Therefore, pnictides with compositions close to the SC dome boundary on the under doped side are very attractive to study the evolution between magnetism and superconductivity.

With its atomic scale structural and spectroscopic imaging capabilities, scanning tunneling microscopy and spectroscopy (STM/S) is an ideal probe to investigate the local electronic properties of these systems. In our variable temperature STM/S we also investigate the temperature evolution of the electronic properties to see how they correlate with various phases at different temperatures.

CaFe$_{2-x}$Ni$_x$As$_2$ has a very rich phase diagram. The parent compound CaFe$_2$As$_2$ undergoes a spin density wave (SDW) transition near $T_{SDW} = 170$ K\cite{17,18}. Around T_{SDW} a structural transition is also observed, where the symmetry changes from tetragonal ($I4/mmm$) to orthorhombic ($Fmmm$)\cite{17,18}. Electron doping by partially replacing Fe by Ni suppresses the SDW and the structural transitions, leading to superconductivity in CaFe$_2$As$_2$\cite{19}. With increase of Ni concentration, T_{SDW} start to decrease. Furthermore a drop in resistivity occurs at ~ 15 K for $x = 0.027$ which at
higher doping develops into a pure superconducting transition \cite{19}. SDW phase vanishes completely at $x = 0.06$ \cite{19}.

Here, we report temperature dependent STM/S studies of underdoped in situ cleaved CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals in 5.4 K - 292 K temperature range. We observed atomically flat terraces with homogeneous tunneling DOS between 292 K and 78 K and these spectra correlate well with the SDW gap. However the spatially resolved spectra below superconducting onset temperature T_C show inhomogeneous local tunneling DOS with two kinds of spectra: spectra with only SDW gap and spectra with some signature of asymmetric or symmetric suppression in DOS near ± 5 mV bias range together with the SDW gap. In the later case, some spectra show one peak near +5 mv and some spectra show a sharp decrease in DOS at negative bias without any peak. Although these spectra are unlike those described by Bardeen-Cooper-Schrieffer (BCS) theory that show two sharp coherence peaks, but they correlate well with the SC phase, as this asymmetric or symmetric suppression near ± 5 mV disappears above T_C. We also observed atomically resolved surfaces at the lowest studied temperature (5.4 K). A preliminary version of this work was also reported by us in a conference \cite{20}.

2. Experimental details

Single crystals of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ were grown \cite{19} by the high temperature solution growth using Sn-flux under identical condition as mentioned in Ref.\cite{21}. Electrical resistivity was measured using a standard four-probe method using a closed cycle refrigerator. DC magnetization was measured in a superconducting quantum interference device magnetometer. STM/S studies were done in cryogenic vacuum using a homemade variable temperature STM with fresh-cut Pt$_{0.8}$Ir$_{0.2}$ tips. The STM head is based on a design published earlier \cite{22} and we use RHK electronics and software. Standard ac-modulation technique was used for STS measurements with a modulation amplitude between 1 and 10 mV and frequency 2731 Hz.

A tunnel spectrum (dI/dV) differs from the actual DOS due to thermal smearing and the voltage dependence of the tunneling matrix element. The temperature smears out the spectral features of width less than a few $k_B T$. For small bias the tunneling matrix element is almost independent of bias voltage and the measured dI/dV displays thermally smeared local electron density of states. But for large bias we cannot ignore the voltage dependence of the tunneling matrix element. By plotting d(lnI)/d(lnV), one can normalize away the effect of the tunnel matrix element on the spectra \cite{23}. So for small bias (20 mV) we plot dI/dV directly to show the DOS, while d(lnI)/d(lnV) is plotted for large bias (250 mV), which sharpens the spectral features.

STM/S measurements were performed on in situ cleaved single crystals. The in situ cleaving was done at room temperature and at 4×10^{-6} mbar pressure before transferring the sample to the STM head at low temperature (78 K). STM/S measurements were performed in two different temperature ranges: 78 K to 292 K and 5.4 K to 19.7 K. To obtain the temperature below 78 K, we used liquid helium. We took
Electronic Inhomogeneities in the SC phase of $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystals

Figure 1. Temperature dependence of the in plane electrical resistivity for as-grown $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystal. The inset shows an expended view of the region near the superconducting transition.

$\frac{dI}{dV}$ Vs V spectra at different positions of the crystal surface over an area of around $2 \times 2 \mu\text{m}^2$ for all studied temperatures. The tunneling spectra in the temperature range 78 K to 292 K were taken with 100 pA tunnel current and 250 mV bias. Whereas, the tunneling spectra in temperature range 5.4 K to 19.7 K were taken with 100 pA tunnel current and 20-250 mV bias.

3. Results and Analysis

Fig. 1 shows the in-plane electrical resistivity of as-grown $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystal. The in-plane resistivity decreases slowly with decreasing temperature below room temperature down to 121.5 K. Then there is a relatively broad upturn starting at $T_{SDW} = 121.5\text{K}$ due to SDW transition. This rise in resistivity is attributed to the opening of a gap in parts of the Fermi surface giving rise to a loss in DOS at E_F upon entering the SDW state. However, resistivity starts decreasing rapidly as the temperature is reduced further indicating that the Fermi surface is only partially gapped in the SDW state. As the temperature decreases further, a sharp drop in the resistivity occurs at \sim 15 K due to the onset of superconducting order. But the resistivity does not go to zero down to 1.3 K. Full superconducting transition develops only at slightly higher Ni doping (0.053 and 0.06)[19] with an onset T_C of 15 K. The drop in the resistivity at \sim 4 K is due to the presence of traces of Sn on the surface of single crystals.

Fig. 2 shows the temperature dependence of magnetic susceptibility χ measured under zero field cool (ZFC) condition at 50 Oe. Field was applied perpendicular to the c-axis of the crystals. The susceptibility remains unchanged (nearly zero) with decreasing temperature down to 15 K. χ starts decreasing for temperature below \sim 15 K and becomes negative. But $4\pi\chi$ does not saturates to -100 % down to 4 K. This
Electronic Inhomogeneities in the SC phase of $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystals

Figure 2. Temperature dependence of the zero field cooling (ZFC) magnetic susceptibility for $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystal in 50 Oe.

Figure 3. (Color online) Simultaneously acquired (a) topographic and (b) conductance images (area: 140×140 nm2) of $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystal at 292 K taken with a junction bias of 500 mV, a tunnel current of 60 pA and an ac-modulation voltage of 10 mV. (c) Topographic profile along the lines marked in (a). (d) dI/dV variation along the marked line in (b), which is less than 9%.

indicates that the system is not fully shielded. Assuming demagnetization factor to be zero for $H \parallel a - b$ plane, measured shielding fraction is only $\sim 1.2\%$ at 5 K. Thus only a small portion of the system is superconducting at 4 K.

Simultaneously acquired STM topographic and conductance images of in situ cleaved $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystal at 292 K are shown in Fig. 3. Topographic image in Fig. 3 (a) shows a nice step-terrace morphology. The surface is atomically flat over the terraces, with an rms roughness over any terrace as ~ 0.11 nm. At all studied temperatures, the STM topographic images show a similar kind of step-terrace
Electronic Inhomogeneities in the SC phase of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals

Figure 4. (Color online) (a) and (b) are the STM topographic images at 5.4 K of 69.22×69.22 nm2 and 13.17×13.17 nm2 respectively. Image in (a) was taken with a junction bias of 100 mV and a tunnel current of 100 pA while that in (b) was taken with constant height mode.

The line profile in Fig. 3 (c) along the line marked in the topographic image in Fig. 3 (a) shows that the terraces are separated by twice the atomic steps of height ~ 1.2 (±0.11) nm [19]. The topographic image in Fig. 4 at the lowest studied temperature (5.4 K) shows signatures of atomic resolution. The conductance has very little variation over the flat terraces except for few isolated bright (yellow) spots. Magnified conductance image near these spots does not show same contrast indicating these spots are arise due to noise. The variation of conductance along a line marked in the conductance image in Fig. 3 (b) is shown in the Fig. 3 (d) showing a homogeneous nature. There is a little jump in the conductance at the steps resulting from feedback instability at the steps.

The temperature dependent tunneling spectra, dI/dV versus V between temperatures 78 K and 292 K are shown in Fig. 5 (a). Each plotted spectrum at a particular temperature is a spatial average of about one hundred spectra. We plotted spatial average because spatially resolved spectra in this temperature range (78 - 292 K) show very little inhomogeneity as seen from the conductance map discussed earlier. Spectra at 78 K at different locations of the sample are shown in Fig. 6 (a). The conductance near zero bias for the low temperature spectra shows a dip indicating the presence of a partial gap, while that at higher temperatures only has a noticeable curvature. $d(lnI)/d(lnV) - V$ is plotted in Fig. 5 (b) which eliminates the effect of the voltage dependence of the tunneling matrix element and sharpens the gap feature, as discussed earlier. Above T_{SDW} (121.5 K), there is a broad depression in the $d(ln I)/d(ln V)$-V spectra which becomes more pronounced as the temperature goes below T_{SDW}. We attribute this to the opening of a partial gap at the E_F upon entering the SDW state. Similar gap was seen in EuFe$_2$As$_2$ [24]. The spectra at 147 K (above T_{SDW}) has a weak signature of gap. The gap signature above the SDW transition may arise from short-range SDW fluctuations [23].

The spatially resolved dI/dV - V spectra are shown in Fig. 6 (b) at 5.4 K. These spectra show significant spatial inhomogeneity as compared to that at 78 K. However, all the spatially resolved dI/dV - V spectra show SDW gap. But the spectra do not show
Electronic Inhomogeneities in the SC phase of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals

Figure 5. Temperature dependent (a) dI/dV and (b) $d(\ln I)/d(\ln V)$ spectra of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals between 292 K and 78 K. Spectra were taken with a junction bias of 250 mV and a tunnel current of 100 pA. Consecutive spectra have been shifted uniformly upwards for clarity.

any signature of superconducting gap as expected from the resistivity behavior. These spectra were taken using 10 mV ac modulation voltage. We reduced ac modulation voltage to 1 mV as well as the bias range to see the low energy features more carefully.

Spatially resolved dI/dV spectra along a line of a topographic image taken with 1 mV ac modulation are shown in Fig. 7 at 5.4 K. These dI/dV spectra are plotted in Fig. 7(b) to (e). Each spectrum at a particular location is an average of 10 - 20 spectra and the distance between two consecutive locations is 2.4 nm. We clearly see that the nature of the spectra changes over nm length scale. Fig. 8 shows a spectrum over a large energy range indicating the coexistence of SDW and SC phases at the same location.

We also took dI/dV - V spectra at a number of different locations on the surface of the crystal. These dI/dV - V spectra at 5.4 K at different locations are plotted in Fig. 9(a) - (d) showing significant spatial variations similar to those obtained along a line as discussed earlier. None of the spectra show true superconducting gap with two coherence peaks but there is some signature of asymmetric suppression in DOS in ±5 mV bias range in some of the spectra. In some spectra, one peak is observed near +5 mV in the dI/dV spectra. In some cases a sharp decrease in DOS occurs at negative bias without any peak. Few spectra show a symmetric depression over ±5 mV bias. In some locations the spectra show a rising DOS with a minima near zero bias but without any low energy features, i.e. these spectra are similar to the ones above 20 K.

We measured tunnel spectra at different locations across T_C at four more temperatures (8.6, 11.8, 15.8 and 19.7 K) to see how the inhomogeneity evolves with temperature. Fig. 9(e) - (h) show dI/dV spectra at 19.7 K at different locations. Below
Figure 6. dI/dV spectra of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals taken at different locations of the sample at (a) 78 K and (b) 5.4 K. These spectra were taken with a junction bias of 250 mV and a tunnel current of 100 pA. Consecutive spectra have been shifted uniformly upwards for clarity. Insets show the spatially averaged dI/dV spectra.

Figure 7. (Color online) (a) STM topographic image at 5.4 K. (b)-(e) Spatially resolved dI/dV spectra along the marked line of the topographic image in (a). Separation between two consecutive spectra is 2.4 nm. Spectra were taken with a junction bias of 20 mV bias and a tunnel current of 100 pA.
Electronic Inhomogeneities in the SC phase of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals

Figure 8. dI/dV spectra of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals at 5.4 K. Spectra were taken with a junction bias of 30 mV and a tunnel current of 100 pA. Downward arrow indicates the SC gap.

Figure 9. (a)-(d) dI/dV spectra at different locations taken with a junction bias of 20 mV and a tunnel current of 100 pA at 5.4 K. They have been grouped in different panels based on similarity between spectra. (e)-(h) dI/dV spectra at different locations taken with same junction parameters but at 19.7 K.
Electronic Inhomogeneities in the SC phase of CaFe$_{1.96}$Ni$_{0.04}$As$_2$ single crystals

Figure 10. (a) Spatially averaged dI/dV spectra with a sharp change in DOS at -ve bias at different temperatures and (b) Spatially averaged dI/dV spectra with a peak at +ve bias at different temperatures.

T_C, the dI/dV spectra show qualitatively similar inhomogeneities as observed at 5.4 K with some reduction in sharpness in features. Above T_C, the spatially resolved dI/dV spectra do not show any peaks and the spatial variation is markedly reduced. We would like to state that we cannot track the same area as a function of temperature in our STM as the relative xy-shift between tip and sample with temperature is significant.

Based on the observed spectra we divided them into three categories: spectra with a sharp change in DOS at -ve bias, spectra with a peak at +ve bias, and spectra with no sharp change. We took the spatial average of the spectra showing peak at +ve bias and of those showing sharp change in DOS at -ve bias. We plot the temperature dependence of these two types of spatially averaged spectra in Fig. 10(a) and (b), which clearly demonstrate the evolution of the DOS across the T_C. Below T_C, there is some depression in the DOS near the Fermi energy (at zero bias) and this depression becomes more pronounced as the temperature goes down.

Our observed tunnel spectra at low temperatures are unlike those of typical superconductors, which show a BCS gap with two coherence peaks in DOS. However, the observed asymmetric or symmetric depression in DOS correlates well with the bulk superconductivity below T_C. Above T_C, there is no peak or depression in the tunnel spectra but as the temperature crosses the superconducting transition temperature, peak or depression in the tunnel spectra starts to appear. The depression in DOS at low energies is most pronounced at the lowest studied temperature. The temperature variation of the tunnel spectra across T_C clearly indicates that this peak disappears above superconducting transition. Moreover, from the quality of the images with some
signatures of atomic resolution, we believe that we are probing an intrinsic surface. If we take a spatial average of these spectra we do get a gap-like structure with symmetric depression in DOS and weak peak-like features corresponding to BCS coherence peaks. Asymmetric spectra with gap have been seen routinely in high-T_C cuprates [25, 26] with an energy gap and two coherence peaks. So the spectra that we observed are somewhat peculiar but correlate with the SC transition.

4. Discussions

All of the tunnel spectra below T_C show a SDW gap and some of them have both SDW and SC gap. This suggests that only a fraction of the system becomes SC below T_C. Emergence of inhomogeneous DOS only below the SC onset temperature is somewhat puzzling. It is possible that some small inhomogeneities do exist above T_C and they evolve into more clearly visible features below T_C. These features mainly involve an asymmetric depression in DOS near Fermi energy in 5 mV energy range. This energy scale is consistent with the typical superconducting gap reported in some of the pnictides [4, 27]. Susceptibility data also show that a tiny fraction ($\sim 1.2\%$) of the system is in the SC state below T_C. Thus below T_C, a major portion of the system is in non-SC state and a tiny portion is in SC state. Below T_{SDW}, a portion of the Fermi surface is disappearing due to the SDW transition. Thus the Cooper pairing occurs when a portion of the Fermi surface is already gapped by the magnetic order.

In our STM/S we have observed the inhomogeneities on a very small length-scale (~ 1 nm). A very homogeneous Ni distribution at this doping (0.04) will give ~ 1.4 nm average separation between Ni atoms in a-b plane. So we cannot reconcile our results with clustering of Ni atoms as that would lead to an inhomogeneity over a much larger length scale. We have also seen the same inhomogeneous spectra in 3-4 different surfaces of these crystals, which makes it very unlikely that Ni is segregating over length scales larger than what is accessible to our STM scanner. This is further ruled out from smooth susceptibility data without any sharp jumps. Signatures of atomic resolution and atomic steps with flat terraces make the surface contamination a very unlikely possibility.

In a typical pnictide phase diagram (see Fig. 11), which is similar to cuprate superconductors, there is the famous superconducting dome and a phase boundary extending to much higher temperatures that separates the SDW phase from the paramagnetic phase. Thus the phase boundaries touch the $T = 0$ axis at three points (x_1, x_2 and x_3) and it is not fully clear if all the three points are QCPs. The temperature dependent resistivity, penetration depth and spin-lattice relaxation measurements have strongly suggested that x_2 is a QCP in pnictides [14, 15]. In cuprates field doping near x_1 point has also revealed a QCP due to crossover between SC phase and an insulator phase[28]. Larger inhomogeneities have been observed in underdoped cuprates than the overdoped ones [29]. Superconductor to insulator transition has also been reported in heavily disordered conventional superconductors although it is not clear if this disorder also acts as a dopant and directly affects the SC order [30]. In the latter
case inhomogeneities have also been systematically studied using STM/S [31].

The inhomogeneities reported here have similarities to some of those seen in disordered conventional superconducting films and also under-doped cuprates close to and below T_C. The composition of our crystals is close to the superconducting dome boundary on the under-doped side. Proximity to this boundary makes the non-SC phases easily accessible and presence of disorder will further help in nucleating such phases. We believe that in proximity to this crossover point, which may be a QCP, the system will be extremely susceptible to disorder and eventually the disorder might influence this crossover more than doping. Our results are suggestive of the presence of a QCP near x_1 in pnictides. The composition of studied sample is very close to x_1 and this proximity to QCP will amplify the effect of disorder arising due to Ni dopants.

5. Conclusions

In conclusion, we presented a detailed temperature dependent STM/S investigation of underdoped $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystals. Temperature dependent resistivity measurement shows that $\text{CaFe}_{1.96}\text{Ni}_{0.04}\text{As}_2$ single crystals undergo both SDW at ~ 121.5 K and SC transition at ~ 15 K. Magnetic measurement confirm a tiny portion ($\sim 1.2\%$) of this compound being superconductor below the SC onset temperature $T_C \sim 15$ K. Our STM measurements show atomically flat terraces separated by monatomic steps with signatures of atomic resolutions at lowest temperature indicate good surface quality. Above T_C, the tunnel spectra show homogeneous local DOS with a SDW gap. However, the tunnel spectra show inhomogeneity in local DOS in superconducting state with SDW gap. But low energy scale spectra at low temperatures ($< T_C$) show an asymmetric or a symmetric dip in DOS at ± 5 meV energy in some of the spectra. In some locations the spectra show a rising DOS with a minima near zero bias but without any low energy features, i.e. these spectra show only SDW gap. We attribute this asymmetric or symmetric depression to the SC transition as it correlates well with T_C. Thus
whenever SC phase arises below T_C, it coexists with SDW phase at the same location. Which also indicates that Cooper pairs can be formed even when the Fermi surface is partially gaped due to SDW transition. However, as the temperature goes above the superconducting transition temperature, the inhomogeneity disappears. Inhomogeneity could be attributed to the chemical inhomogeneity, in particular distribution of Ni substitutions but the three different types of qualitatively different spectra do not fit this scenario. Observed inhomogeneity over such a small length-scale (~ 1 nm) and smooth susceptibility data also exclude the possibility of segregation of Ni. We believe the inhomogeneities in this underdoped compound below T_C are intrinsic due to proximity to the non-sc phase.

Acknowledgements

We thank Sourabh Barua for his help in the resistivity measurement. We also like to acknowledge Amit Dutta for helpful discussions. Anirban acknowledges financial support from the CSIR of the Government of India. A.K.G. acknowledges a research grant from the CSIR of the Government of India.

References

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Luetkens H et al. 2009 Nature Mater. 8 305
[3] Zhao J et al. 2008 Nature Mater. 7 953
[4] Cai P et al. 2013 Nat. Commun. 4 1596
[5] Goko T et al. 2009 Phys. Rev. B 80 024508
[6] Park J T et al. 2009 Phys. Rev. Lett. 102 117006
[7] Wiesenmayer E, Luetkens H, Pascua G, Khasanov R, Amato A, Potts H, Banus B, Klauss H H and Johrendt D 2011 Phys. Rev. Lett. 107 237001
[8] Chen H et al. 2009 Europhys. Lett. 85 17006
[9] Marsik P et al. 2010 Phys. Rev. Lett. 105 057001
[10] Bernhard C et al. 2012 Phys. Rev. B 86 184509
[11] Drew A J et al. 2009 Nature Mater. 8 310
[12] Sanna S, Carretta P, Bonfà P, Prando G, Allodi G, Renzi R De, Shiroma T, Lamura G, Mùrtinelli A and Putti M 2011 Phys. Rev. Lett. 107 272003
[13] Laplace Y, Bobroff J, Brouet V, Collin G, Rullier-Albenque F, Colson D and Forget A 2012 Phys. Rev. B 86 020510(R)
[14] Zhou R, Li Z, Yang J, Sun D L, Lin C T and Zheng Guo-qing 2013 Nat. Commun. 4 2265
[15] Shibata T, Carrington A and Matsuda Y 2014 Annu. Rev. Condens. Matter Phys. 5 113
[16] Julien M H, Mayaffre H, Horvatić M, Berthier C, Zhang X D, Wu W, Chen G F, Wang N L and Luo J L 2009 Euro. Phys. Lett. 87 37001
[17] Ni N, Nandi S, Kreysig S, Goldman A I, Mun E D, Bud’ko S L and Canfield P C 2008 Phys. Rev. B 78 014523
[18] Ronning F, Klinczuk T, Bauer E D, Volz H and Thompson J D 2008 J. Phys.: Condens. Matter 20 322201
[19] Kumar N, Chi S, Chen Y, Rana K G, Nigam A K, Thamizhavel A, Ratcliff W, Dhar S K and Lynn J W 2009 Phys. Rev. B 80 144524
[20] Dutta A, Thamizhavel A and Gupta A K 2014 AIP Conference Proceedings 1591 1657
Electronic Inhomogeneities in the SC phase of CaFe_{1.96}Ni_{0.04}As_{2} single crystals

[21] Kumar N, Nagalakshmi R, Kulkarni R, Paulose P L, Nigam A K, Dhar S K and Thamizhavel A 2009 Phys. Rev. B 79 012504
[22] Gupta A K and Ng K-W 2001 Rev. Sci. Instrum. 72, 3552
[23] Stroscio A J, Feenstra R M and Fein A P 1986 Phys. Rev. Lett. 57 2579
[24] Dutta A, Anupam, Hossain Z and Gupta A K 2013 J. Phys.: Condens. Matter 25 375602
[25] Pan S H et al. 2001 Nature 413 282
[26] McElroy K, Lee J, Slezak J A, Lee D-H, Eisaki H, Uchida S and Davis J C 2005 Science 309 1048
[27] Yin Y, Zech M, Williams T L and Hoffman J E 2009 Physica C 469 535
[28] Bollinger A T, Dubuis G, Yoon J, Pavuna D, Misewich J and Božović I 2011 Nature 472 458
[29] Gomes K K, Pasupathy A N, Pushp A, Ono S, Ando Y and Yazdani A 2007 Nature 447 569
[30] Goldman A M and Markovic N 1998 Phys. Today 51 39
[31] Sacépé B, Dubouchet T, Chapelier C, Sanquer M, Ovadia M, Shahar D, Feigelman M and Ioffe L 2011 Nature Phys. 7 239