Comparing the Effect of Kinesiology Taping on Dynamic Balance and Pain of Men and Women With Unilateral Patellofemoral Pain Syndrome

Javid Mostamand1, Zohreh Shafizadegan2,3, Mohammad Javad Tarrahi4, *Zeinab Sadat Hosseini1

1. Department of Physical Therapy, Musculoskeletal Research Center, Faculty of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
2. Department of Physical Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
3. Department of Physical Therapy, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
4. Department of Epidemiology and Statistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.

Objective: Patellofemoral Pain Syndrome (PFPS) is one of the most common disorders of the knee joint. It is characterized by pain, reduced proprioception, and altered pattern of vastus muscle activation, which effectively maintain the balance needed for performing daily living activities such as walking and running. One treatment method that can reduce pain and improve balance in people with PFPS is Kinesiology Taping (KT). Considering the physiological and anatomical differences in the knee structure of men and women and the importance of studying the effect of KT on the dynamic balance of men with PFPS, this study aims to compare the effect of KT on dynamic balance and pain of men and women with unilateral PFPS.

Materials & Methods: This is a quasi-experimental and non-randomized clinical trial. The participants were 30 males and 31 females aged 18-40 years suffering from unilateral PFPS. They were recruited using a convenience sampling method. First, the subjects performed the Y-balance test three times in each of the anterior, posteromedial, and posterolateral directions. The maximum score obtained from the three repetitions in each direction was divided by the limb length and recorded in percentage as a dynamic balance score. After 5 minutes of rest and performing initial tests, the subjects performed the intervention. In this stage, KT with a tension equal to 50%-75% of its initial length was applied on the patella of the involved limb to cause medial glide. The effectiveness of KT was examined under a single-leg squat-test. For this purpose, all subjects performed unilateral squatting on their affected leg for 10 seconds with 45 degrees of knee flexion before and after KT, while their pain level was recorded using the visual analog scale. In case of a 50% reduction in pain, the subjects were allowed to enter the final stage (performing the Y-balance test); otherwise, patellar taping was repeated to obtain the appropriate pain reduction.

Results: Within-group comparison of balance parameters before and after KT using the paired t-test showed an increase in the reach distance at three directions in the Y-balance test, revealing a significant improvement in the dynamic balance following KT (P<0.05). According to the independent t-test results, there was no significant difference in balance parameters between males and females before and after the intervention (P>0.05). Moreover, the pain was significantly reduced in both genders after KT (P<0.05), but its difference between men and women was not statistically significant (P>0.05).

Conclusion: KT is an appropriate therapeutic intervention for improving dynamic balance and reducing pain in people with PFPS. It seems that KT has the same effect on dynamic balance and pain of women and men with PFPS.
Extended Abstract

Introduction

Pain in the anterior and posterior part of the patella, without the presence of other pathologies of the knee joint, is called Patellofemoral Pain Syndrome (PFPS) [1, 2]. One of the consequences of this syndrome is a change in balance control [4-8]. One of the influential anatomical factors in the patellar joint’s stability is the balance between the internal and external vas deferens muscles. After decreasing quadriceps muscle activity and disrupting the contraction sequence of these muscles in PFPS, joint stability indicators also change. Therefore, the afferents of muscle receptors alter, and knee joint proprioception, the most crucial sensory source for balance, is damaged [9-12]. Although muscular inhibition does not directly impair proprioception, it can impair neuromuscular control mechanisms in people with PFPS [13]. Regulating the proprioception in people with this PFPS helps to increase the patient’s performance and accelerate the rehabilitation process [14]. The results of previous studies have indicated a change in proprioception and a decrease in dynamic balance in these patients [15-18]. Hence, it is necessary to pay attention to improving proprioception and dynamic balance in rehabilitating people with PFPS.

One of the treatment techniques in physiotherapy that improves balance in people with PFPS is the use of kinesio taping. It can treat imbalance between the internal and external vas deferens muscles [19, 20]. It also improves the decreased proprioception in people with PFPS [21]. Since women’s knee joints are looser than men’s, it is expected that women’s knee joint proprioception decrease and their risk of injury increase, which can make a significant difference in balance between men and women [22, 23]. Neuromuscular control during physical movements has also been reported differently in male and female adolescents [24]. Besides, the presence of some hormonal, anatomical, and neuromuscular factors in women has made PFPS more common in women [12, 22, 25]. To our knowledge, there is no study, neither on the effect of kinesio taping on dynamic balance in men with PFPS nor on comparing its effect on dynamic balance and pain in non-athlete men and women with this syndrome. Therefore, considering the mentioned physiological and anatomical differences between men’s and women’s knees, it seems necessary to study the effect of kinesio taping on dynamic balance in men with PFPS and compare it with women. Given the importance of balance in daily activities, this study aimed to compare the effect of kinesio taping on pain and dynamic balance between non-athlete men and women with unilateral PFPS.

Materials and Methods

This study was performed with the approval of the Ethics Committee of Isfahan University of Medical Sciences and in the physiotherapy clinic of Shahid Sadoughi Hospital in Isfahan City, Iran. The participants were 30 men and 31 women aged 18-40 years with unilateral PFPS who were selected using a convenience sampling method. The inclusion criteria were the existence of pain in the back of the patella or anterior knee, exacerbated during at least two activities of walking, running, jumping, stair climbing, and prolonged kneeling and sitting [26]; unilateral PFPS [27]; a pain score more than 3 under single-leg squat-test on the involved leg up to a 45-degree angle for 10 seconds [28]; and the existence of external glide based on McConnell test [29]. The exclusion criteria were receiving any type of rehabilitation for the knee joint in the past three months [30]; participating in a particular sport; gradual onset of pain for at least 8 weeks [27]; surgery on the knee, lower back, hip, or lower limbs [31-33]; traumatic, inflammatory, infectious disorders, fracture or deformation in the knee and lower limbs [27, 28]; patellar dislocation and subluxation and any symptoms related to the presence of knee osteoarthritis in X-rays [27]; motion restriction of the affected knee in the sagittal plane; history of neurological, rheumatic and other musculoskeletal diseases in the lower limbs and pain in the lower back, hip, and sacroiliac region [32]; history of vertigo, uncorrected vision problems and inner ear disorders [18]; injection of corticosteroids in the past three months; and taking painkillers in the last 72 hours [34].

To evaluate the participants’ dynamic balance, we employed the Y-balance test before and after the intervention (ICC=0.84-0.92). In this test, the subject stands barefoot on one leg in the center and tries to reach three directions of anterior, posterolateral, and posteromedial (Figure 1). The test was repeated three times in each direction, and the maximum obtained numerical value in each direction was recorded [36]. The rest time between each repetition in each direction was 10 seconds, and between each movement was 20 seconds [37]. The following formula was used to eliminate the effect of individual differences such as height on the maximum reach distance:

\[\text{Score} = \frac{\text{Reach distance}}{\text{Limb length}} \times 100 \]

After 5 minutes of rest and initial tests, the intervention was started. At this stage, TEMTEX kinesio tape with a tension equal to 50%-75% of its initial length was applied on the patella of the involved limb to cause medial glide [38]. The subject was asked to lie on the bed with a straight knee. The tape was measured on the subject’s patella and cut into a Y shape. When the subject’s knee was straight or bent 20-30 degrees,
the first 2 cm of the tape was attached without stretching to the outside of the patella. The therapist then held the tape-applied site tightly with one hand and, while simultaneously performing medial gliding over the patella, guided the base of the tape with 50%-75% tension towards the knee. During the procedure, the person’s knee was bent completely, and the tape base was ended up to the mid-part of the patella. By maintaining the base of the tape, the first tail of the tape was attached to the upper part of the patella with a tension equal to 15%-25% of the initial length, and the second tail was attached to the lower part of the patella with the same amount of tension. Finally, the tail ends were attached to the patella without additional tension (Figure 2) [38].

The effectiveness of kinesio taping was measured by performing a single-leg squat-test. For this purpose, before taping, the person was squatted on the involved leg for 10 seconds with the knee bent 45 degrees, and the pain intensity was recorded by the visual analog scale (ICC=0.6). This assessment was repeated after taping, and pain intensity before and after taping was finally compared. If the pain were reduced by approximately 50%, the subjects would enter the final stage of the test. Otherwise, the taping would be repeated to achieve the desired pain relief [16]. In the final step, the subjects performed the Y-balance test again. The paired t-test was used for within-group comparison of the changes, and the independent t-test was used to compare the changes between the male and female subjects. The homogeneity of the two groups was examined by Levene’s test (P>0.05) (Table 2). According to the independent t-test, no significant difference was observed in the balance parameters between males and females at baseline (P>0.05) (Table 2). Moreover, in both male and female groups, the amount of pain was significantly reduced after kinesio taping based on the paired t-test results (P<0.05), but the between-group comparison of pain intensity showed no significant difference (P>0.05). MANCOVA was used to compare better the two gender groups and eliminate the effect of pre-intervention scores. To eliminate the effect of the height factor on the reach distance, we normalized the values and reported them in Table 2.

Discussion and Conclusion

The present study results showed a significant improvement in dynamic balance and reduced the pain of the patients with PFPS before and after kinesio taping, but there was no significant difference between the men and women after kinesio taping. To control the balance system, afferents of proprioceptive, visual, and vestibular receptors must work adequately [39-41]. The impairment of these systems can impair balance [40]. Proprioceptive information obtained from mechanical receptors in muscles, joints, and ligaments is the most important component of somatosensory afferents and has a vital role in maintaining joint function and balance control [59]. In many studies, proprioception disorder in individuals with PFPS has been reported [9, 21]. It has been reported that knee joint proprioception,
which is essential in creating balance, is weaker in people with PFPS than in healthy people. Therefore, it seems that impairment in proprioception affects the body’s motor control and decreases balance [42]. Given the crucial role of proprioception and muscle activity for balance and their impairment in individuals with PFPS, balance disorders in these patients are expected [15].

Of course, the role of pain should not be ignored in the outcome. Patellofemoral joint reaction force in people with PFPS is more common, which can cause pain during functional activities [43]. Pain may inhibit the muscles around the knee [44]. Since these muscles are responsible for timely and effective motor responses in controlling the condition of the body, the impact of kinesio taping on improving the balance of individuals with PFPS may be related to its effect on the systems that affect the balance and reduce pain [44, 45]. The effect of kinesio taping on cutaneous mechanoreceptors and improvement of knee joint proprioception has already been reported [19, 46, 47]. Since sensory inputs can increase central nervous system feedback and reduce pain, the effect of kinesio taping seems to be justified based on the gate theory of pain. Considering the significant reduction of pain in all subjects in our study after the intervention and considering the direct relationship between pain and postural fluctuations, the improvement of balance can be justified [4]. Reduced pain increases the activity of the vastus medialis oblique muscle and helps stabilize the knee joint during testing [27]. As a result, it allows people to balance more effectively as they try to reach a greater distance. Because the

Characteristics	Mean±SD	P
Women (n=31)		
Height (cm)	162.3±6.5	<0.001
Weight (kg)	71.03±10.98	<0.001
Body mass index (kg/m²)	26.9±3.51	<0.869
Age (y)	34.77±5.78	<0.402
Men (n=30)		
Height (cm)	174.9±6.6	
Weight (kg)	81.60±1.73	
Body mass index (kg/m²)	26.74±4.038	
Age (y)	33.53±5.67	

Table 1. Age and anthropometric characteristics of the participants

Table 2. Comparing the Y-balance test results between men and women with PFPS

Variable	Group	Before the Intervention	After the Intervention	Mean Difference	P
Anterior reach distance (cm)	Men	69.30±5.63	73.38±5.61	4.08±2.64	<0.001*
Women	68.24±6.59	73.49±5.97	5.25±2.87	<0.001*	
P	0.502**	0.102***			
Posterolateral reach distance (cm)	Men	69.66±13.35	76.84±12.48	7.18±3.77	<0.001*
Women	66.31±10.62	75.25±10.85	8.93±3.87	<0.001*	
P	0.282**	0.051***			
Posteromedial reach distance (cm)	Men	71.13±13.68	77.03±12.43	5.90±3.78	<0.001*
Women	65.73±10.89	73.49±11.81	7.75±5.57	<0.001*	
P	0.093**	0.051***			
Pain	Men	5.93±2.06	2.38±1.22	3.55±1.51	<0.001*
Women	6.2±1.77	2.21±1.31	3.99±1.39	<0.001*	
P	0.585**	0.264***			

*The paired t-test; **The independent t-test; ***MANCOVA.
muscles around the knee need to function adequately and without delay to maintain balance, delayed muscle activity in people with PFPS leads to dysfunction of the sensorimotor system for controlling postural stability and increased risk of losing balance [17]. Patellar taping improves patellar proprioception and stability, leading to improved knee function [19]. Because of the close relationship between the sensory and motor control systems, studies have shown an improvement in neuromuscular activity following the use of tapes [19, 29, 48, 59]. It seems that the improvement in proprioception after kinesio taping is due to the feedback increase transmitted from the skin, soft tissue, ligaments, and muscles to the upper nerve centers [50]. Patellar taping alters afferents and affects the ability to maintain dynamic postural control in people with PFPS [27]. According to the present study results and the relationship between pain reduction and balance improvement [51], the increased reach distance in the specified directions during the Y-balance test (improved dynamic balance) seems reasonable.

In the present study, despite the anthropometric differences between men and women with PFPS, there was no significant difference between them in terms of maximum reach distance and dynamic balance after kinesio taping. The non-significant difference in pain between men and women (despite its decreasing trend after the intervention) is probably related to the negligible effect of kinesio taping on women and men's balance with PFPS. Hence, kinesio taping may affect the dynamic balance of men and women with PFPS. Therefore, gender does not affect kinesio taping. Although proprioception was not examined in this study, the increase in reach distance may be due to stimulation of mechanoreceptors and the effect of proprioception. Besides, there are the effects of reduction in pain and improvement in vastus medialis oblique muscle activity [19, 27].

Kinesio taping has the same effect on the dynamic balance of women and men with PFPS. Patellar kinesio taping is recommended as a suitable treatment method for reducing pain and improving dynamic balance in patients with PFPS.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of Isfahan University of Medical Sciences (code: RESEARCH.REC.1397.040) and registered in the Iranian Registry of Clinical Trials (code: IRCT20181001041197N1). Before the study, the research objectives and method were explained to the participants, and written informed consent was obtained. They were free to leave the study at any time and were assured of the confidentiality of their information.

Funding

This study was extracted from the Master’s thesis of the last author, Department of Epidemiology and Statistics, School of Health, Isfahan University of Medical Science, Isfahan. The study received financial support from the Deputy for Research and Technology of Isfahan University of Medical Sciences.

Authors’ contributions

Study design and ideation: Javid Mostamand, Zohreh Shafiezadegan, Zeinab Sadat Hosseini; Data collection: Zeinab Sadat Hossein; Data analysis and interpretation: Mohammad Javad Tarahi, Zeinab Sadat Hossein, Zohreh Shafiezadegan and Javid Mostamand; Manuscript edited by: Zeinab Sadat Hossein; Expert evaluation of the manuscript in terms of scientific concepts and approval of the final manuscript: Javid Mostamand and Zohreh Shafiezadegan. Maintaining the integrity of the study process from the beginning to the publication and responding to the opinions of the judges: Javid Mostamand.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

The authors would like to thank Dr. Khadem, Physiotherapy Clinic of Ayatollah Sadoughi Hospital in Isfahan City, and all participants for their valuable cooperation.
مقاله پژوهشی
 مقایسه تأثیر چسب کینزیولوژی روی تعادل پویا و درد بین زنان و مردان مبتلا به سندرم درد کشککی رانی

چاپ مصوب شده توسط شرکت پژوهش و تولید کننده بیمه فلکه

واژه‌کلیدی: سندرم درد کشککی رانی، چسب کینزیولوژی، تعادل پویا، Y تست تعادل

تاریخ دریافت: 1398/04/06
تاریخ پذیرش: 1399/06/19
تاریخ انتشار: 1399/06/21

تاریخ: 1398/06/21

اراده پژوهشی:

سندرم درد کشککی رانی، یکی از مشکلات مفصل زانوی زنان و مردان است. کاهش حس عمقی، درد و تغییر در الگوی فعالیت عضلات استووس داخلی و استووس خارجی در این گروه از بیماران دیده شده است. هرکدام از این عوامل به نحوی در توانایی حفظ تعادل مؤثر هستند. تعادل یکی از فاکتورهای کلیدی در انجام فعالیت‌های روزمره مثل راه‌رفتن و دویدن است. یکی از روش‌های درمانی که باعث کاهش درد و بهبود تعادل در افراد مبتلا به سندرم درد کشککی رانی می‌شود، چسب کینزیولوژی است. با توجه به تفاوت‌های فیزیولوژیک و آناتومیک موجود بین زانوی زنان و مردان و اهمیت بررسی تأثیر چسب کینزیولوژی روی تعادل پویا در مردان مبتلا به سندرم درد کشککی رانی، انجام پژوهشی در این راستا ضروری است. همچنین مطالعه‌ای که کاربرد و تأثیر چسب کینزیولوژی را در دو گروه زنان و مردان مبتلا به سندرم درد کشککی رانی، روی تعادل پویا و درد مقایسه کرده باشد، یافت نشد؛ بنابراین هدف مطالعه حاضر مقایسه تأثیر چسب کینزیولوژی روی تعادل پویا و درد، بین زنان و مردان مبتلا به سندرم درد کشککی رانی یک طرفه است.

سال با درگیری یک طرفه سندرم درد کشککی رانی و با روش نمونه‌گیری آسان تا 18 زن در گروه سنی 31 مرد و 30 روش بررسی

در این مطالعه مداخله‌ای نهضتی انجام داد و میزان تعادل قبل و بعد از اعمال چسب کینزیولوژی روی کشکک، با سه بار تکرار در هر جهت، انجام می‌شد. در مرحله اول، آزمودنی تست تعادل Y با نتایج این تست ثبت می‌شد. در مرحله دوم پس از درصد نسبت به طول انتهای آن، 75 تا 50 کشک اندام درگیر، با هدف ایجاد لغزش داخلی به وسیله چسب کینزیولوژی با کشش سنجیده می‌شد. به این منظور قبل و بعد از چسب زنی می‌شد. ملک مؤثر بودن روش چسب زنی، با تست درجه خمیدگی زانو، چمباتمه می‌شد و میزان شدت درد، توسط مقیاس دیداری درد 45 ثانیه روی پای درگیر و با زدن، فرد به مدت درصد در میزان شدت، افراد وارد مرحله نهایی 50 (P<0.5) شده می‌شد که تأثیر چسب کینزیولوژی در بهبود تعادل در آزمون Y تست تعادل قبل و بعد از مداخله، بر اساس آزمون تی مستقل، بین زنان و مردان تفاوت معنی‌داری نشان داد. همچنین در هر دو گروه زنان و مردان، با استفاده از آزمون تی زوجی، میزان شدت درد به صورت معناداری نسبت به قبل از P>0.05 (P<0.05) با پیوستن درد بعد از چسب زنی کاهش یافت. یافته‌ها نشان داد که استفاده از چسب کینزیولوژی می‌تواند باعث بهبود تعادل پویا و درد در بیماران مبتلا به سندرم درد کشککی رانی شود، هرچند به نظر می‌رسد میزان تأثیرگذاری این روش در زنان و مردان یکسان است و تفاوتی ندارد.

کلیدواژه‌ها: سندروم درد کشککی رانی، چسب کینزیولوژی، تعادل پویا، Y تست تعادل.
وضعیت مومه

وضعیت درد کشککی، یکی از اختلالات اسکلتی و عضلانی شایع است که می‌تواند به افراد، خصوصاً نوجوانان و جوانان فعال، در هنگام فعالیت‌های ورزشی و فیزیکی، منجر به ایجاد اختلال در حس عمقی نماید. این سندرم، بیشتر نوجوانان و جوانان فعال را مشاهده شده است.

تعادل نیازی اساسی برای انجام فعالیت‌های روزمره است و اصلگرایی این حس، به طور مستقل و بدون ایجاد ضرر، قابلیت این حس را در حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.

روش درمانی که در سال 1990 پیشنهاد و توکار حرکت کردن مفصل درد کشککی را با خاصیت بهبود تعادل و حفظ موقعیت در وضعیت ایستا و تسلط در حرکات و حرکات فیزیکی می‌دهد، که در افراد مبتلا به سندرم درد کشککی، بهبود تعادل ایستا و پویا در این زنان مشاهده شده است.
مقدمه

پایین‌السطح‌ها بیمارستان شهید صدوقی اصفهان در سال‌های اخیر به دلیل تشدید و پیشرفت سندرم درد کشککی رانی به‌طور گسترده‌ای در زنان است. درمان این سندرم نیازمند یافتن هدف مناسب و درک بهتر جهت تشخیص و درمان آن است. ایمنی و ارزیابی بهینه این درمان برای بهبود حالت بیمار از نظر توانایی انجام فعالیت‌های روزانه و افزایش بهره‌برداری جسمانی مورد نیاز است.

هدف مطالعه

هدف اصلی این مطالعه ارزیابی تأثیر چسب کینزیولوژی روی تعادل پویا در مردان و زنان مبتلا به سندرم درد کشککی رانی یک‌طرفه در اصفهان است.

روش‌های پژوهشی

مراحل بررسی تأثیر چسب کینزیولوژی روی تعادل پویا در مردان و زنان مبتلا به سندرم درد کشککی رانی یک‌طرفه در شهر اصفهان شامل عوامل زیر می‌باشد:

1- تشخیص و انتخاب مراحل پیاده‌ روی تعادل پویا به شکل Y Balance Test
2- مشخص کردن سندرم درد کشککی رانی یک‌طرفه در مردان و زنان مبتلا به این سندرم
3- تعیین معیارهای ورود و خروج از پژوهش
4- بررسی تأثیر چسب کینزیولوژی روی تعادل پویا در مردان و زنان مبتلا به سندرم درد کشککی رانی یک‌طرفه

نتایج

نتایج نشان داد که تفاوت‌های فیزیولوژیک و آناتومیک ذکرشده بین زانوی مردان و زنان مبتلا به سندرم درد کشککی رانی موجود بوده و در بررسی تأثیر چسب کینزیولوژی روی تعادل پویا، با توجه به وجود تفاوت‌های خاصی در سندرم درد کشککی رانی، مشخص نمود که این تفاوت‌ها باعث تفاوت در توانایی انجام فعالیت‌های روزانه، هدایت و تعادل پویا در مردان و زنان مبتلا به سندرم درد کشککی رانی یک‌طرفه می‌شود.

گزینش منابع

نمره: 83.2/1397-1399
روی خطوط رسم شده در زمین را در جهات قدامی، خلفی خارجی و خلافی داخلی انجام می‌دهد. به عبارتی، آزمودنی با نورک انگشت کنار یک سال مدرن در سطح ممکن در هریک از جهات مختصات درک می‌کند. در حالی که پای مبتلا به سندرم درد کشک هنگام حرکات یک‌طرفه در زمین، عمل تمام وزن و معده را انجام می‌دهد. سپس آزمودنی به انتقال وزن روی پای متحرک و بدون تغییر در سطح انداختن باز می‌گردد. پای متحرک را به کنار پای ثابت و به وضعیت اولیه (ایستاده روی دو پا) برمی‌گرداند.

به توضیح است در مطالعه حاضر فاصله بین محل تماس نوک انگشت شست پا آزاد تا مرکز آغازین اجرای حرکات، حداکثر فاصله دست‌یابی در نظر گرفته می‌شود. و بر اساس بررسی‌های داخلی داخلی انجام می‌شود.

اکثریت روزانه اوایل به همراه سایر افراد داخلی و خارجی انجام می‌شود. به طور کلی، در سطح رسم شده بر زمین، علامت گذاری و برحسب سانتی‌متر اندازه‌گیری می‌شود.

ثانیه ثانیه استراحت بین مراحل تکرار در هر جهت در نظر گرفته شده و بین هرکدام از جهات حرکتی، عدم رعایت هریک از مراحل فوق منجر به ابطال و بود. آزمون سه بار در هر جهت تکرار می‌شود. تکرار آزمون شده و بیشترین مقدار عددی فاصله دست‌یابی حاصل از سه بار تکرار حرکت مزبور در هر جهت، ثبت می‌شود.

به منظور به حداقل رساندن اثرات ممکن، آزمودنی هر چه بیشتر آزمودنی را بیشترین مقدار عددی فاصله دست‌یابی حداکثری روی خط رسم شده بر زمین، بر طول اندام تحتانی وی تقسیم به صورت درصد به عنوان نمره تعادل پویا در آن جهت ثبت می‌شود.

به منظور حکایت از مسائل اصلی به عنوان سایر پژوهش‌ها، جهت جلوگیری از ایجاد اثرات دوپامین، مورد آزمون و به عنوان سایر پژوهش‌ها، جهت جلوگیری از ایجاد اثرات دوپامین مورد آزمون و مصرف می‌شود. در حالی که پایه معده پایی زدن، انجام جهت تعادل می‌گیرد. به همراه این می‌تواند برای کاهش دست‌یابی در جهت تعادل در دو پا تکرار حرکت مزبور در هر جهت، ثبت می‌شود.

به منظور حکایت از مسائل اصلی به عنوان سایر پژوهش‌ها، جهت جلوگیری از ایجاد اثرات دوپامین، مورد آزمون و به عنوان سایر پژوهش‌ها، جهت جلوگیری از ایجاد اثرات دوپامین مورد آزمون و مصرف می‌شود. در حالی که پایه معده پایی زدن، انجام جهت تعادل می‌گیرد. به همراه این می‌تواند برای کاهش دست‌یابی در جهت تعادل در دو پا تکرار حرکت مزبور در هر جهت، ثبت می‌شود.
در این مطالعه، 62 فرد (30 زن و 32 مرد) با روش تنهاگیری آسان و روان مطالعه شدند. مشخصات جمعیتی شامل قدم، وزن، سن و خاکسپاری توده به درک شماره 2 داشتند. هدایت توسط گروه زنان و مردان تحت مطالعه براساس آزمون تی مستقل تقسیم می‌شد. در مطالعه

نمک، نگهداری و مدیریت مشکلات فردی و سوژه مورد نظر بوده که برای مقایسه نتایج، میزان شدت درد قبل و بعد از چسب زنی کشکک به صورت معنی‌داری کاهش یافت.

در سایر پارامترهای تست تعادل، مانند کشش زاویه زبان، کشش قوس و قوس دیگر، همچنین در حالت های انتهایی و داخلی تست تعادل، نتایج معنی‌داری کشف نشد. این نتایج نشان می‌دهد که تکنیک چسب زنی نسبت به سایر روش‌ها، بهترین روش برای کاهش درد در هماتریک‌های اختلالی در دست یابی است.

یافته‌ها

نتیجه مقایسه چسب زنی با فاصله 50 درصدی نشان داد که تفاوت معنی‌داری بین تعداد فردی در دو گروه وجود نداشت. این نتایج نشان می‌دهد که روش چسب زنی در کاهش درد در هماتریک‌های اختلالی در دست یابی، بهترین روش برای کاهش درد در هماتریک‌های اختلالی در دست یابی است.

بحث

پرسلی برویس‌هاهای اصلاح‌پذیر، به نظر می‌رسد تاکنون هیچ مطالعه‌ای به بررسی تأثیر چسب کیت‌هنری‌زی روی تعلم پیاده‌ها شامل گروه‌بندی با همگنی کشکک را بیان نگرده‌است. بنابراین نتایج این مطالعه، دلیلی برای تفاوت در مقایسه شاخص‌های دو گروه را تایید نمی‌کند.

در تحقیق‌های قبلی، کمک کشکک‌ها در کاهش درد در هماتریک‌های اختلالی در دست یابی به آسانی و راحتی وارد مطالعه شد. در این مطالعه، درد در هماتریک‌های اختلالی در دست یابی، و همچنین درد مصرف شد. در این مطالعه، نتایج نشان داد که تکنیک چسب زنی به‌عنوان یک روش مؤثر برای کاهش درد در هماتریک‌های اختلالی در دست یابی می‌باشد.

نمونه‌برداری:

۱۶۸ نفر از سالمندان از میان افراد ایرانی مبتلا به سندرم درد کشککی رانی در دو گروه آزمایشگر (33 نفر) و کنترل (33 نفر) مورد بررسی قرار گرفتند. در این مطالعه، نتایج نشان داد که تکنیک چسب زنی به‌عنوان یک روش مؤثر برای کاهش درد در هماتریک‌های اختلالی در دست یابی می‌باشد.

۱۶۸ نفر از سالمندان از میان افراد ایرانی مبتلا به سندرم درد کشککی رانی در دو گروه آزمایشگر (33 نفر) و کنترل (33 نفر) مورد بررسی قرار گرفتند. در این مطالعه، نتایج نشان داد که تکنیک چسب زنی به‌عنوان یک روش مؤثر برای کاهش درد در هماتریک‌های اختلالی در دست یابی می‌باشد.

۱۶۸ نفر از سالمندان از میان افراد ایرانی مبتلا به سندرم درد کشککی رانی در دو گروه آزمایشگر (33 نفر) و کنترل (33 نفر) مورد بررسی قرار گرفتند. در این مطالعه، نتایج نشان داد که تکنیک چسب زنی به‌عنوان یک روش مؤثر برای کاهش درد در هماتریک‌های اختلالی در دست یابی می‌باشد.
در زمستان، از آنجا که این عضلات، مسئول پاسخ‌های حرکتی درد ممکن است به طور رفلکس باعث مهار عضلات اطراف زانو مفصل کشکی رانی، در افراد مبتلا به سندرم درد کشکی رانی، به این سندرم متفاوت است و این تغییر در مقدار نیروی واکنشی نیروی واکنشی مفصل کشکی رانی بین افراد سالم و افراد مبتلا به کمر سیستم عصبی مرکزی بیش از زمینه کشکی رانی.

با توجه به نقش حس عمقی و لزوم حرکتی بدن را تحت تأثیر قرار داده و افت واکنش‌های تعادلی را است؛ بنابراین به نظر می‌رسد که اختلال در حس عمقی، کنترل مبتلا به سندرم درد کشکی رانی نسبت به افراد سالم، ضعیف تر می‌باشد.

در بسیاری از مطالعات به سیستم حسی حرکتي بوده و نقش حیاتي در ثبات عملکرد مفاصل و لیگامان ها به دست می‌آید به عنوان مهم ترین جزء آوران حس عمقي که از طریق گیرنده‌های مکانیکی موجود در عضلات، اطلاعات حساسی دریافت می‌کند و برای برقراری تعادل، سیستم کنترل وضعیت نیازمند آوران های حسی مثل حس بینی و وستیبولار است تا.

حس عمقی مفصل زانو که یکی از اشاره‌هاست، بیشتر در حین فعالیت‌های عملکردی می‌شود و در افراد مبتلا به سندرم درد کشکی رانی به نحوی که در جهت‌های قبلی و داخلی افزایش دارد، در حالی که در جهت‌های خلفی داخلی و خارجی کاهش می‌یابد. به همین‌گونه که در واقع، این تغییرات می‌تواند برای آورن‌های حس عمقي، کنترل مبتلا به سندرم درد کشکی رانی، ضعیف تر باشد.

به همچنین، در واقع، این تغییرات می‌تواند برای آورن‌های حس عمقي، کنترل مبتلا به سندرم درد کشکی رانی، ضعیف تر باشد.

برای مقایسه تأثیر مداخله نوعی مفصل درمانی در تفادی از درد و بهبود ثبات عملکرد مفصل، مقایسه خودکارتگی بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم انجام گرفته است.

نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در این مطالعه، در افراد مبتلا به سندرم درد کشکی رانی، میزان توانایی حفظ تعادل و درد سیستمیکی کنترل تعادل بین دو گروه متفاوت بود و این تفاوت معنی‌دار بود.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.

در انتها، نتایج مطالعه ایبراهیمی عطری که روی 15 زن و 15 مرد که در سن‌های مختلف و با پیشینه متفاوت از این سندرم مبتلا بودند، به مقایسه بین دو گروه مبتلا به سندرم درد کشکی رانی و افراد سالم، پرداخته بودند.
مقدار تغییر در فاصله دست یابی در زنان (نرخ درصدی) و مردان (نرخ درصدی) همراه با معنی‌داری P

تاریخ	زنان	مردان	P
پیش‌مانند	34 ± 12	33 ± 10	<0.001
پس‌مانند	31 ± 10	30 ± 9	<0.001

در لینک پیش‌مانند، زنان به‌طور متوسط 34 ± 12 سانتی‌متر فاصله دست یابی داشتند که این نتیجه به‌طور کلی به تغییرات در حالات تعادل نسبت داده می‌شود. در لینک پس‌مانند نیز، این تغییرات به‌طور کلی ثابت ماند و نرخ درصدی معنی‌داری P <0.001 داشت.

در این مطالعه، مقایسه میانگین فاصله دست یابی قبل و بعد از اعمال مداخله در زنان و مردان مبتلا به سندرم درد کشککی رانی یافت. مقادیر روزانه ضایعات کیتیژیولاپیتوسیفی (VMO) در زنان و مردان قبل و بعد از اعمال مداخله در این مطالعه نشان داد که در زنان نرخ درصدی P <0.001 و در مردان نرخ درصدی P <0.001 ثابت ماند.

در نتیجه، مداخله‌های ارائه شده به‌طور کلی به تدریج بهبود تعادل و کاهش درد در افراد مبتلا به سندرم درد کشککی رانی می‌رسید.

نتایج:

- در زنان، نرخ درصدی P <0.001 ثابت ماند.
- در مردان، نرخ درصدی P <0.001 ثابت ماند.

مطالعه:

- تفاوت نسبت به پیش‌مانند، زنان به‌طور متوسط 34 ± 12 سانتی‌متر فاصله دست یابی داشتند که این نتیجه به‌طور کلی به تغییرات در حالات تعادل نسبت داده می‌شود. در لینک پس‌مانند نیز، این تغییرات به‌طور کلی ثابت ماند و نرخ درصدی معنی‌داری P <0.001 داشت.

در این مطالعه، مقایسه میانگین فاصله دست یابی قبل و بعد از اعمال مداخله در زنان و مردان مبتلا به سندرم درد کشککی رانی یافت. مقادیر روزانه ضایعات کیتیژیولاپیتوسیفی (VMO) در زنان و مردان قبل و بعد از اعمال مداخله در این مطالعه نشان داد که در زنان نرخ درصدی P <0.001 و در مردان نرخ درصدی P <0.001 ثابت ماند.

در نتیجه، مداخله‌های ارائه شده به‌طور کلی به تدریج بهبود تعادل و کاهش درد در افراد مبتلا به سندرم درد کشککی رانی می‌رسید.

نتایج:

- در زنان، نرخ درصدی P <0.001 ثابت ماند.
- در مردان، نرخ درصدی P <0.001 ثابت ماند.
سیستم حسی و کنترل حرکتی، نتایج مطالعات نیز نشان دهنده بهبود فعالیت عضلاتی به دلیل استفاده از چسب زنی است [46، 47، 50، 51].

حس عمیق به عنوان یک اجزای مهم می‌تواند مفصل زاپ در مطالعات کاهش حرکتی نشان دهد که می‌تواند بهبود فعالیت عضلاتی به دلیل استفاده از چسب زنی مثابه در اثر جریه قدرت جاذبیت، نتایج مطالعات نیز نشان دهنده بهبود فعالیت عضلاتی به دلیل استفاده از چسب زنی است [48، 49، 50، 51].

حس عمیق به عنوان یک اجزای مهم ثبات دینامیک مفصل زاپ در مطالعات نیز نشان دهنده بهبود فعالیت عضلاتی به دلیل استفاده از چسب زنی است. در مطالعه حاضر، عناصر اصلی کنترل حرکتی به شمار می‌آید: مکانیسم بهبود در حس عمیق بعد از کاربرد چسب زنی به دلیل افزایش فیدبک‌هایی که از پوست، بافت نرم، لیگامان و عضله به مراکز عصبی بالا می‌رسد. کلیه این فیدبک‌ها جمعاً باعث تغییر در آوران ها شده و بر توانایی نگهداری پاسیون پویا در افراد مبتلا به سندرم درد کشککی مؤثر است. او باعث درمانی مناسب برای بهبود درد و تعادل پویا در بیماران مبتلا به سندرم درد کشککی را به عنوان یک روش پیشنهاد می‌کند.

به نظر می‌رسد کشف منابع حساسیت در زانو و از عناصر اصلی کنترل حرکتی به شمار می‌آید. بنابراین نتایج این مطالعه به افراد مبتلا به سندرم درد کشککی، راه‌حل‌های جدیدی را به‌دست می‌دهد.

در مطالعه حاضر فردیت، اکثریت پاسیون (بله) به دلیل شیوع بالا در سندرم درد کشککی رانی، صرفاً شرکت‌کنندگان در این ارائه به تأخیر درمی‌آورد. بنابراین نتایج این مطالعه به افراد دارای انواع دیگر لغزش قابل تعمیم نمی‌باشند.

نتایج نهایی این مطالعه، همچنین ارزش داشته‌اند برای استفاده در مطالعات بعدی. همچنین برای ارزیابی بررسی‌های دیگر، در مورد مختصر آزمون‌های تیک و تخته، یاقتان شد. همچنین برای ارزیابی بررسی‌های دیگر، در مورد مختصر آزمون‌های تیک و تخته، یاقتان شد.

ملاحظات اخلاقی

پیروی از اصول اخلاقی پژوهش

این مطالعه با تأیید کمیته اخلاق دانشگاه علوم پزشکی اصفهان (RESEARCH.REC.1397.040) انجام گرفت. در ابتدا نهایی، از نظر مفاهیم علمی و تأیید دست نوشته نهایی: جاوید مستمند و زهره شفیع‌زاده.

مشارکت‌های اولویت‌گذاری

طراحی و ایده‌پردازی مطالعه: جاوید مستمند، زهره شفیع‌زاده، زینب سادات حسینی؛ جمع‌آوری داده‌ها و طراحی سیستم حسی و کنترل حرکتی: جاوید مستمند، زهره شفیع‌زاده، زینب سادات حسینی؛ تحلیل و تفسیر داده‌ها و مطالعات استادی: جاوید مستمند، زهره شفیع‌زاده، زینب سادات حسینی؛ واکنش به نظرات داوران: جاوید مستمند.

محقق مالی

این مقاله مستخرج از پایان‌نامه کارشناسی ارشد مستم‌زاده در گروه اپیدمیولوژی و آمار، دانشکده بهداشت، دانشگاه علوم پزشکی اصفهان، اصفهان است. همچنین نویسندگان از حمایت مالی و مالی تحقیقات و فناوری دانشگاه علوم پزشکی اصفهان برخوردار بودند.

مشارکت‌های اولویت‌گذاری

طراحی و ایده‌پردازی مطالعه: جاوید مستمند، زهره شفیع‌زاده، زینب سادات حسینی؛ جمع‌آوری داده‌ها و طراحی سیستم حسی و کنترل حرکتی: جاوید مستمند، زهره شفیع‌زاده، زینب سادات حسینی؛ تحلیل و تفسیر داده‌ها و مطالعات استادی: جاوید مستمند، زهره شفیع‌زاده، زینب سادات حسینی؛ واکنش به نظرات داوران: جاوید مستمند.
بنابر اظهار نویسندگان این مقاله تعارض منافع ندارد.

تشکر و قدردانی

در این بخش از جنبه آقای دکتر خادم و کلینیک فیزیوتراپی بیمارستان آیت الله صدوقی اصفهان که در اجراي این طرح به همکاری را طاشندند تشکر و قدردانی به عمل می‌آید.
References

[1] Crossley K, Bennell K, Green S, Gowan S, McConnell J. Physical therapy for patellofemoral pain. The American Journal of Sports Medicine. 2002; 30(6):857-65. [DOI:10.1177/03635465020300061701] [PMID]

[2] Petersen W, Ellermann A, Göösce-Koppenburg A, Best R, Rembitzki IV, Brüggemann GP, et al. Patellofemoral pain syndrome. Knee Surgery, Sports Traumatology, Arthroscopy. 2014; 22(10):2264-74. [DOI:10.1007/s00167-013-2759-6] [PMID] [PMCID]

[3] Barton C, Balachandar V, Lack S, Morrissey D. Patellar taping for patellofemoral pain: A systematic review and meta-analysis to evaluate clinical outcomes and biomechanical mechanisms. British Journal of Sports Medicine. 2013; 48(6):407. [DOI:10.1136/bjsports-2013-092437] [PMID]

[4] Fagan V, Delahunt E. Patellofemoral pain syndrome—a review on the associated neuromuscular deficits and current treatment options. British Journal of Sports Medicine. 2008; 42(10):789-95. [DOI:10.1136/bjsports-2008.066263] [PMID]

[5] McConnell J. The management of chondromalacia patellae: A long term solution. Australian Journal of Physiotherapy. 1986; 32(4):215-23. [DOI:10.1016/S0004-9514(14)60654-1]

[6] Wittrouw E, Lyssens R, Bellermans J, Cambier D, Vanderstraeten G. Intrinsic risk factors for the development of anterior knee pain in an athletic population. American Journal of Sports Medicine. 2000; 28(4):480-8. [DOI:10.1177/03635465000280040701] [PMID]

[7] Logan CA, Bhashyam AR, Tisosky AJ, Haber DB, Jorgensen A, Soma S. Systematic review of the effect of taping techniques on patellofemoral pain syndrome. Sports Health. 2017; 9(5):456-61. [DOI:10.1136/bjsports-2017-098130] [PMID] [PMCID]

[8] Aghapour E, Kamali F, Sinaei E. Effects of Kinesio Taping® on knee function and pain in athletes with patellofemoral pain syndrome. Journal of Bodywork and Movement Therapies. 2017; 21(4):835-9. [DOI:10.1016/j.jbmt.2017.01.012] [PMID] [PMCID]

[9] Lim EH, Kim ME, Kim SH, Park KN. Effects of posterior X taping on movement quality and knee pain intensity during forward step-down in patients with patellofemoral pain syndrome. Journal of Sports Science and Medicine. 2020; 19(1):224. [PMCID] [PMID]

[10] Mostamand J, Bader DI, Hudson Z. Reliability testing of the Patellofemoral Joint Reaction Force (PFJRF) measurement during double-legged squatting in healthy subjects: A pilot study. Journal of Bodywork and Movement Therapies. 2012; 16(2):217-23. [DOI:10.1016/j.jbmt.2011.03.003] [PMID]

[11] Osorio JA, Vairo GI, Rezaa GD, Boshb PJ, Millard RL, Aukerman DF, et al. The effects of two therapeutic patellofemoral taping techniques on strength, endurance, and pain responses. Physical Therapy in Sport. 2013; 14(4):199-206. [DOI:10.1016/j.ptsr.2012.09.006] [PMID]

[12] de Moura Campos Carvalho ESAP, Peixoto Leao Almeida G, Oliveira Magalhaes M, Renovato Franca FJ, Vidal Ramos LA, Comacho JA, et al. Dynamic postural stability and muscle strength in patellofemoral pain: Is there a correlation? Knee. 2016; 23(4):616-21. [DOI:10.1016/j.knee.2016.04.013] [PMID]

[13] Etemadi M, Azadi Z, Hedayati R, Salavati M, Arminian Far A. Effects of the surface instability degrees on dynamic postural stability in anterior knee pain patients and healthy subjects. Koomesh. Journal. 2013; 15(1):67-77. http://koomeshjournal.semums.ac.ir/article-1-1457-en.html

[14] Levinger P, Gilleard W, Coleman C. Femoral medial deviation angle during a one-leg squat-test in individuals with patellofemoral pain syndrome. Physical Therapy in Sport. 2007; 8(4):163-8. [DOI:10.1016/j.jptsp.2007.03.003]

[15] Souza RB, Draper CE, Fredericson M, Powers CM. Femur rotation and patellofemoral joint kinematics: A weight-bearing magnetic resonance imaging analysis. Journal of Orthopaedic & Sports Physical Therapy. 2010; 40(5):277-85. [DOI:10.2519/jospt.2010.3215] [PMID] [PMCID]

[16] Mostalche A, Mohamadi M, Moghadam MB, Nejati N, Arjang N, Ebrahimim N. Effects of core neuromuscular training on pain, balance, and functional performance in women with patellofemoral pain syndrome: A clinical trial. Journal of Chiropractic Medicine. 2019; 18(1):9-18. [DOI:10.1016/j.jcme.2018.07.006] [PMID] [PMCID]

[17] Reimer RC, Wikstrom EA. Functional fatigue of the hip and ankle musculature cause similar alterations in single leg stance postural control. Journal of Science and Medicine in Sport. 2010; 13(1):161-6. [DOI:10.1016/j.jsams.2009.01.001] [PMID]

[18] Salavati M, Moghadam M, Ebrahimim I, Arab AM. Changes in postural stability with fatigue of lower extremity frontal and sagittal plane movers. Gait Posture. 2007; 26(2):214-8. [DOI:10.1016/j.gaitpost.2006.09.001] [PMID]

[19] Mokhtari-Nia HR, Ebrahimim E, Salavati M. Comparative criteria study of dynamic balancing in patients with patello-femoral pain (Persian). Archives of Rehabilitation. 2005; 6(3):33-7. http://rehabilitation.uswr.ac.ir/article-1-80-fa.html

[20] Hosseini SH, Anbarian M, Farahmand F, Ansari M. Effect of kneeisokinetic extension training with maximum lateral tibial rotation on vastus amplitudes in patellofemoral pain patients (Persian). Archives of Rehabilitation. 2016; 16(4):312-23. http://rehabilitation.uswr.ac.ir/article-1-1623-fa.html

[21] Akseli D, Akkaya G, Erduran M, Pinar H. Proprioception of the knee joint in patello-femoral pain syndrome. Acta Orthopaedica et Traumatologica Turcica. 2008; 42(5):316-21. [DOI:10.3944/AOTT.2008.316] [PMID]

[22] Rezazadeh F, E'zati K, Karimi N, Vali-Zadeh A. Comparison of the balance indices of professional athletes with and without Patellofemoral Pain Syndrome (Persian). Archives of Rehabilitation. 2012; 13(2):49-55. http://rehabilitation.uswr.ac.ir/article-1-1044-fa.html

[23] Salavati M. [Postural control abnormalities in patient with chronic low back pain: Effects of active specific spinal stabilization exercise (Persian)]. [PhD Dissertation]. Tehran: Tarbiat Modarres University; 2002.

[24] Kramer J, Handfield T, Kiefer G, Forrest I, Birmingham T. Comparisons of weight-bearing and non-weight-bearing tests of knee proprioception performed by patients with patello-femoral pain syndrome and asymptomatic individuals. Clinical Journal of Sport Medicine. 1997; 7(2):113-8. [DOI:10.1097/00042752-199704000-00007] [PMID] [PMCID]
Negahban H, Etemadi M, Naghibi S, Emrani A, Yazdi MJS, Baharlouei H, Khoshavi O, Garmabi Z, Fereshtenejad N, Jaraczewska E, Long C. Kinesio® taping in stroke: Improving balance in people with and without patellofemoral pain syndrome. Gait Posture. 2013; 37(3):336-9. [DOI:10.1016/j.gaitpost.2012.07.073] [PMID]

Ayta H, Ozunlu N, Surenkool O, Baltaci G, Oztop P, Karatas M. Initial effects of kinesio® taping in patients with patellofemoral pain syndrome: A randomized, double-blind study. Isokinetics and Exercise Science. 2011; 19(2):135-42. [DOI:10.3233/IES-2011-0413]

Kannus P, Natri A, Paakkala T, JÄrvinen M. An outcome study of chronic patellofemoral pain syndrome. Seven-year follow-up of patients in a randomized, controlled trial. Journal of Bone and Joint Surgery. 1999; 81(3):355-63. [DOI:10.2106/00004623-199903000-00007] [PMID]

Chang WD, Chen FC, Lee JP. Effects of short-term treatment with kinesiotaping for patellar fasciitis. Journal of Musculoskeletal Health. 2013; 5(3):214-9. [DOI:10.1177/1941738112473561] [PMID] [PMCID]

Ebrahimi Atri A, Dehghani Tafti M, Khoshraftare Yazdi N, Dehghani Tafti V. The effects of patellar taping on dynamic balance and pain reduction of in athletic women with Patellofemoral Pain Syndrome (PFPS) (Persiaan). The Journal of Shahid Sadoughi University of Medical Sciences. 2012; 20(3):332-39. https://www.magiran.com/paper/1038741/?lang=en

Mostamand J, Bader DL, Hudson Z. The effect of patellar taping on joint reaction forces during squatting in subjects with Patellofemoral Pain Syndrome (PFPS). Journal of Bodywork and Movement Therapies. 2010; 14(4):375-81. [DOI:10.1016/j.jbmt.2009.07.003] [PMID]

Callaghan MJ, McKie S, Richardson P, Oldham JA. Effects of patellar taping on brain activity during knee joint proprioception tests using functional magnetic resonance imaging. Physical Therapy. 2012; 92(6):821-30. [DOI:10.2522/prj.2011.0209] [PMID] [PMCID]

Shafizadegan Z, Baharlouei H, Khoshavi O, Garmabi Z, Feresthenejad N. Evaluating the short-term effects of Kinesiology taping and Stretching of Gastrocnemius on postural control: A randomized clinical trial. Journal of Bodywork and Movement Therapies. 2019; 24(2):196-201. [DOI:10.1016/j.jbmt.2019.11.003] [PMID]

Jarakczevska E, Long C. Kinesio® taping in stroke: Improving functional use of the upper extremity in hemiplegia. Topics in Stroke Rehabilitation. 2006; 13(3):42-51. [DOI:10.13103/33KAYE3-QWJB-WGT6] [PMID]

Baharlouei H, Khoshavi O, Garmabi Z, Feresthenejad N, Shafizadegan Z. Comparing the immediate effects of kinesio-taping and stretching of gastrocnemius on balance in elderly. Journal of Mazandaran University of Medical Sciences. 2017; 27(149):99-110. https://www.wjcochranelibrary.com/es/central/doi/10.1002/centr/CLN-01733733/full

Ibrahim Takamjani I, Salavati M, Mokhtarinia H, Dadgoo M. The effect of patellar taping on knee joint proprioception in PFPS and healthy subjects. Razi Journal of Medical Sciences. 2004; 11(40):185-93. http://rjms.tums.ac.ir/browse.php?a_id=2&slang=en

Tsai CT, Chang WD, Lee JP. Effects of short-term treatment with kinesiotaping for plantar fasciitis. Journal of Musculoskeletal Pain. 2010; 18(1):71-80. [DOI:10.3109/10582450903495882]

Song CX, Lin JJ, Chang AH. Effects of femoral rotational taping on dynamic postural stability in female patients with patellofemoral Pain. Clinical Journal of Sport Medicine. 2017; 27(5):438-43. [DOI:10.1097/JSM.0000000000000392] [PMID]

Miller J, Westrick R, Diehl A, Marks C, Gerber JP. Immediate effects of lumbosacral manipulation and lateral gluteal kinesio taping on unilateral patellofemoral pain syndrome: A pilot study. Sports Health. 2013; 5(3):214-9. [DOI:10.1177/1941738112473561] [PMID] [PMCID]

Rozzi SL, Lephart SM, Gear WS, Fu FH. Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. The American Journal of Sports Medicine. 1999; 27(3):312-9. [DOI:10.1053/jams.1999.00007] [PMID] [PMCID]

Chappell JD, Yu B, Kirkenendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. The American journal of sports medicine. 2002; 30(2):261-7. [DOI:10.1177/03635465020300021901] [PMID] [PMCID]

Prins MR, Van der Wurf P. Females with patellofemoral pain syndrome have weak hip muscles: A systematic review. Australian Journal Of Physiotherapy. 2009; 55(1):9-15. [DOI:10.1016/S0004-9514(09)70055-8]

Ford KR, Myer GD, Smith RI, Vianello RM, Seiwerdt SL, Hewett TE. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clinical Biomechanics. 2006; 21(3):33-40. [DOI:10.1016/j.clinbiomech.2005.08.010] [PMID]

Holden S, Boreham C, Doherty C, Wang D, Delahant E. Dynamic postural stability in young adolescent male and female athletes. Pediatric Physical Therapy. 2014; 26(4):447-52. [DOI:10.1097/PEP.0000000000000071] [PMID] [PMCID]

Mokhtarinia H, Ebrahimi-Takamjani I, Salavati M, Goharpay S, Khosravi A. The effect of patellar taping on knee joint proprioception in patients with patellofemoral pain syndrome. Acta Medica Iranica. 2008; 46(3):183-90. https://www.sid.ir/en/Journal/ViewPaper.aspx?id=109611

Aminaka N, Gribble PA. Patellar taping, patellofemoral pain syndrome, lower extremity kinematics, and dynamic postural control. Journal of athletic training. 2008; 43(1):21-8. [DOI:10.4085/1062-6050-43.1.21] [PMID] [PMCID]

Citaker S, Kaya D, Yuksel I, Yosmaoglu B, Nyland J, Atay OA, et al. Static balance in patients with patellofemoral pain syndrome. Sports Health. 2011; 3(6):524-7. [DOI:10.1016/j.srh.2011.04.001] [PMID] [PMCID]

Baker V, Bennell K, Stillman B, Gowen S, Crossley K. Abnormal knee joint position sense in individuals with patellofemoral pain syndrome. Journal of Orthopaedic Research. 2002; 20(2):208-14. [DOI:10.1002/sim.736] [PMID] [PMCID]
[49] Herrington L. The inter-tester reliability of a clinical measurement used to determine the medial/lateral orientation of the patella. Manual Therapy. 2002; 7(3):163-7. [DOI:10.1054/math.2002.0463] [PMID]

[50] Toullette C, Thevenon A, Fabre C. Effects of training and detraining on the static and dynamic balance in elderly fallers and non-fallers: A pilot study. Disability and Rehabilitation. 2006; 28(2):125-33. [DOI:10.1080/09638280500163653] [PMID]

[51] Messier SP, Glasser JL, Ettinger WH, Craven TE, Miller ME. Declines in strength and balance in older adults with chronic knee pain: A 30-month longitudinal, observational study. Arthritis Care & Research (Hoboken). 2002; 47(2):141-8. [DOI:10.1002/art.10339] [PMID]

[52] Hertel J, Miller SJ, Donegar CR. Intratester and intertester reliability during the Star Excursion Balance Tests. Journal of Sport Rehabilitation. 2000; 9(2):104-16. [DOI:10.1123/jsr.9.2.104]

[53] Robinson RH, Griibble PA. Support for a reduction in the number of trials needed for the star excursion balance test. Archives of Physical Medicine and Rehabilitation. 2008; 89(2):364-70. [DOI:10.1016/j.apmr.2007.08.139] [PMID]

[54] Griibble PA, Hertel J. Considerations for normalizing measures of the Star Excursion Balance Test. Measurement in Physical Education and Exercise Science. 2003; 7(2):89-100. [DOI:10.1207/S15327841MPEE0702_3]

[55] Bouillon LE, Baker JL. Dynamic balance differences as measured by the star excursion balance test between adult-aged and middle-aged women. Sports Health. 2011; 3(5):466-9. [DOI:10.1016/j.spmh.2011.03.001] [PMID]

[56] Plisky PJ, Gorman PP, Butler RJ, Kiesel KB, Underwood FB, Elkins B. The reliability of an instrumented device for measuring components of the star excursion balance test. North American Journal Of Sports Physical Therapy: NAJSPT. 2009; 4(2):92-9. [PMICID] [PMID]

[57] Kahle NL, Gribble PA. Core stability training in dynamic balance testing among young, healthy adults. Athletic Training and Sports Health Care. 2009; 1(2):65-73. [DOI:10.3928/19425864-20090301-03]

[58] Kase K, Wallis J, Kenzo K. Clinical therapeutic applications of the Kinesio taping methods. Kinesio: Kinesio Taping Association International. 2013. https://books.google.com/books?id=TW_eSAAACAAJ&dq=

[59] Riemann BL, Lephart SM. The sensorimotor system, part I: The physiologic basis of functional joint stability. Journal of Athletic Training. 2002; 37(1):71-9. [PMICID] [PMID]

[60] Shumway-Cook A, Woollacott MH. Motor control: Translating research into clinical practice. Philadelphia: Lippincott Williams & Wilkins; 2007. https://books.google.com/books?id=enKNdrxQYBwC&sa=fp&ed=ByJL3mxz3wCM&oi=fnd&pg=PA1&dq=

[61] Hassan B, Mockett S, Doherty M. Static postural sway, proprioception, and maximal voluntary quadriceps contraction in patients with knee osteoarthritis and normal control subjects. Annals of the Rheumatic Diseases. 2001; 60(6):612-8. [DOI:10.1136/ard.60.6.612] [PMID] [PMICID]
