Signal Recognition Particle-dependent Membrane Insertion of Mouse Invariant Chain: A Membrane-spanning Protein with a Cytoplasmically Exposed Amino Terminus

Joachim Lipp and Bernhard Dobberstein
European Molecular Biology Laboratory, D-6900 Heidelberg, Federal Republic of Germany

Abstract. Invariant (Ii) chain is a membrane-spanning protein that is found associated intracellularly with class II histocompatibility antigens. In the endoplasmic reticulum Ii chain spans the membrane and exposes the NH₂ terminus on the cytoplasmic and the COOH terminus on the lumenal side. This orientation across the membrane is demonstrated directly with the monoclonal antibody In-1, which exclusively recognizes the NH₂ terminal cytoplasmically exposed part of Ii chain.

Membrane insertion of Ii chain requires signal recognition particle and docking protein. When tested in a wheat germ cell free system, signal recognition particle arrests translation of Ii chain. No signal sequence is cleaved from Ii chain upon membrane insertion.

SECRETORY and many membrane-spanning proteins are translocated across or inserted into the membrane of the endoplasmic reticulum (ER)¹ in a co-translational manner (for review see references 3, 21, 35, 50, and 51). Translocation requires a signal sequence on the nascent polypeptide chain and specific receptors, the signal recognition particle (SRP) and the docking protein (DP) or SRP receptor (1, 2, 6, 18, 19, 32, 33, 38, 46-49). SRP has been shown to interact with polysomes holding nascent preprolactin chains, and it has been proposed that SRP binds to the signal sequence (46). When probed in a wheat germ cell free system with prolactin or IgG light chain mRNAs, SRP arrests the peptide elongation after 70-80 amino acids have been polymerized (33, 47, 48). Elongation proceeds after SRP has bound to the DP, which is located in the ER membranes (18, 19, 33).

Cleavable signal sequences have also been found on proteins that span the membrane once and expose the carboxy (COOH) terminus on the cytoplasmic and the amino (NH₂) terminus on the extracytoplasmic side of the membrane. Examples of these types of proteins, which we call here type I membrane proteins, are the G protein of vesicular stomatitis virus (24, 30, 37) and class I and II histocompatibility antigens (12, 29). The PE₂ glycoproteins of Semliki Forest virus and Sindbis virus seem to have an uncleaved signal sequence (5, 16, 17). For the PE₂ protein of Sindbis virus, an SRP-mediated membrane insertion has been found (5). Translocation of the NH₂-terminal portion of type I membrane proteins is thought to proceed in a manner identical to that of secretory proteins (21, 35, 51). They become, however, arrested in the membrane by a hydrophobic stop transfer sequence, which is usually located close to the NH₂-terminal end of the protein (4, 13, 51).

No cleavable signal sequence has generally been found on proteins that span the membrane once and expose the NH₂ terminus on the cytoplasmic and the COOH terminus on the extracytoplasmic side. Among the investigated proteins are the influenza neuraminidase (8, 15), the rat and human asialoglycoprotein receptor (9, 20, 41), and the human transferrin receptor (39). These proteins we call type II membrane proteins. We are interested in the question of how these proteins become integrated into the membrane.

Invariant (Ii) chain (also called l-r-chain) is thought to be a type II membrane-spanning glycoprotein (13, 31). It is found intracellularly assembled with mouse Ia and human HLA-DR (class II) histocompatibility antigens (23, 25, 27, 34, 43). Assembly of Ii chain with class II antigens occurs already in the ER (27, 43). During the intracellular transport, the oligomeric complex disassembles and only class II antigens appear on the cell surface. Ii chain seems to remain in a yet unidentified intracellular compartment (27, 43).

The complete sequences of human and mouse Ii chain have been determined (11, 31, 40, 42). DNA sequence analysis shows that Ii chain contains a single stretch of hydrophobic amino acids, and this is located between residues 31 and 56. Based on this finding, it has been proposed that Ii chain spans the membrane close to the NH₂ terminus and exposes the NH₂ terminus on the cytoplasmic side of the membrane (11, 40, 42). Here we provide direct experimental evidence that the mouse Ii chain exposes its NH₂ terminus on the cyto-

1. Abbreviations used in this paper: Con A, concanavalin A; DP, docking protein; ER, endoplasmic reticulum; Ii, invariant; SRP, signal recognition particle; TCA, trichloroacetic acid.
plasmic side of ER membranes and that II chain is inserted into the membrane in an SRP-dependent manner.

Materials and Methods

Materials
Concanavalin A (Con A)-Sepharose and protein A-Sepharose were obtained from Pharmacia, Uppsala, Sweden; guandimium-hydrochloride was from Bethesda Research Laboratories, Bethesda, MD; [35S]methionine and ENHANCE were from New England Nuclear, Boston, MA; 7-methylguanosine-5'-monophosphate and phenylmethylsulfonyl fluoride were from Sigma, München, FRG.; oligo (dT)-cellulose (type III) was from Collaborative Research, Inc. Waltham, MA; proteinase K was from Merck, Darmstadt, FRG.; RPMI 1640 was from Gibco, Bio-Cult Ltd., Paisley, Scotland; Staphylococcus aureus V8 protease was from Miles GmbH, Frankfurt, FRG.; tunicamycin was from Calbiochem, Giessen, FRG.

Monoclonal antibody In-1 has been described previously (26) and was a generous gift from Günther Hämmerling.

Methods

mRNA Purification and Size Fractionation. Total mRNA was isolated from the spleens of SL2 mice by a modified guandimium hydrochloride method (10). Approximately 20 g of frozen spleens were homogenized in 200 ml 6 M guandimium HCI/1 mM dithiothreitol/20 mM NaAc pH 7.0 (buffer 1), using a Sorvall Omni-mixer at full speed for pulses of 30-s each. The homogenate was centrifuged at 5 min at 5,000 g at 4°C. The resulting supernatant was adjusted to pH 5.0 with 4 N acetic acid and the RNA was precipitated by adding half a volume of ice-cold ethanol. Insoluble material was collected by centrifugation and dissolved in 100 ml of buffer 1 adjusted to pH 5. and precipitated as above. After centrifugation, the pellet was dissolved in 10 ml 50 mM Tris/HC1, pH 7.5, 120 mM NaCl, 5 mM EDTA, 1% SDS (buffer 2), and extracted twice with phenol/chloroform. Poly (A)+ RNA was obtained by affinity chromatography on an oligo(dT)-cellulose column. mRNA was size fractionated by sucrose gradient centrifugation. Fractions enriched in mRNA that code for II chain were identified by cell free translation (see below) and immunoprecipitation (12).

Cell Free Protein Synthesis. Total or size fractionated mRNA was translated in a wheat germ cell free system (36). The system was supplemented with either 2.3 A260 U/ml of dog pancreas microsomes, pretreated with micrococcal nuclease and high salt, and/or 0.1 A260 ml of gradient-fractionated SRP (48). Microsomes were prepared and treated as described previously (16, 32). SRP was prepared essentially as described (48) with the exception that Ninkkol was omitted in the fractionation on DEAE Sepharose and in the sucrose gradients. Except when otherwise stated, cell free translation was done at 25°C. Proteins were analyzed by SDS PAGE (28) and bands were visualized by fluorography (7) using ENHANCE.

Cell Culture and Labeling of Cells. B-lymphoma cells (CHL.1) were cultured in RPMI 1640 medium containing 8% fetal calf serum, 10 U penicillin/streptomycin, 10 μg mercaptoethanol. Cells were washed twice in methionine-free medium and incubated for 20 min at 37°C in the same medium. [35S]Methionine was added to a final concentration of 400 μCi/ml and the cells were incubated at 37°C for 60 min. Cells were washed and then solubilized in ice-cold 50 mM Tris-HCl buffer (pH 7.5) containing 0.15 M NaCl, 5 mM MgCl2, 1% Triton X-100. Protease inhibitor phenylmethylsulfonyl fluoride was added to a final concentration of 20 μg/ml. Debris were removed by centrifugation at 4°C for 15 min in a microfuge, and the supernatant was used for cell free translation.

Protease Treatments. A lysate (0.5 ml) derived from 2 x 106 CHL.1 cells was treated with different amounts (5–50 μg) of Staphylococcus aureus V8 protease for 15 min at 30°C. Proteolysis was stopped by addition of trichloracetic acid (TCA) to a final concentration of 10%. The TCA precipitate was washed twice with 10% TCA/50% acetone to remove the detergent and solubilized in 25 μl of sample buffer containing 3% SDS (3). After SDS PAGE, the proteins were transferred onto nitrocellulose filters (44).

In vitro synthesized proteins were digested with protease by adding 1 vol of 2% Triton X-100, 100 mM Tris HCl, pH 7.5, 300 mM NaCl, and Staphylococcus aureus V8 protease to a final concentration of 50 μg/ml and incubating the sample for 15 min at 30°C. Proteolysis was stopped by addition of phenylmethylsulfonyl fluoride (50 μg/ml). For proteolysis of immunoadsorbed II chain, In-1 antibody and protein A-Sepharose were added to either a CHL.1 cell lysate or a cell free lysate (12). The mixture was incubated for 60 min and the Sepharose beads with bound IgC and II chains were washed and resuspended in 20 μl of 10 mM Tris-HCl pH 7.5 and 50 μg/ml of Staphylococcus aureus V8 protease. After incubation for 15 min at 30°C, protein fragments were immediately analysed by SDS PAGE.

Immunoblotting. Proteins were electrophoretically transferred from SDS polyacrylamide gels onto a nitrocellulose filter (44). The nitrocellulose filter was washed twice for 20 min in phosphate-buffered saline (PBS) containing 10% newborn calf serum, then treated for 90 min with cell culture supernatant containing In-1 antibody, washed 4X in PBS/newborn calf serum and once in PBS/newborn calf serum containing 0.05% Triton X-100. Bound antibody was detected with rabbit anti-rat IgG coupled to horseradish peroxidase and stained with diaminobenzidine (44).

Binding of Proteins to Con A-Sepharose. After translation of spleen cell mRNA in a 25-μl wheat germ cell free system in the presence of rough microsomes, membranes were pelleted by centrifugation for 20 min at 10,000 rpm at 4°C. They were then solubilized in 0.5% Triton X-100, 150 mM NaCl, 50 mM Tris-HCl, pH 7.5, 1 mM CaCl2, 1 mM MnCl2, and 4 μg/ml of phenylmethylsulfonyl fluoride and then 50 μl of Con A-Sepharose was added (a slurry containing beads to solubilization buffer in a 1:1 ratio). The mixture was incubated for 60 min at room temperature. Beads were then washed three times with 100 mM acetate at pH 6.5, 150 mM NaCl, 1 mM MnCl2, 1 mM CaCl2, and 1 mM MgCl2. To the pelleted beads sample buffer for SDS PAGE was added and proteins analyzed as described (28).

Results

To characterize the disposition of II chain across the membrane of the ER, we translated mRNA from mouse spleen cells in a wheat germ cell free system in the presence of microsomal membranes derived from dog pancreas. In such a system membrane proteins become inserted into the membrane asymetrically in the same way as in the cell and the orientation across the membrane can be determined by protein treatment (24, 37). Protease will cleave only that part of a membrane protein that is exposed on the cytoplasmic side, whereas the lumenally disposed part is protected by the membrane. The orientation of the protein across the membrane can then be deduced, if the means exist for detecting the COOH or NH2 termini of the protein. Since we could make use of a monoclonal antibody specific for II chain, we tested whether the antibody recognizes exclusively either the lumenally or the cytoplasmically disposed portion of II chain. Depending on the location of the antigenic determinant of In-1 we would be able to discriminate between the two possible orientations of II chain across the membrane.

Mouse II ChainSpans the Membrane

When spleen mRNA is translated in the wheat germ cell free system and labeled proteins are immunoprecipitated with monoclonal In-1 antibody, a 25-kD form of II chain is selected (II') (Fig. 1, lane 1). When translation is performed in the presence of microsomal membranes, a 31-kD protein is synthesized and this has the same molecular weight as the authentic II chain synthesized in vivo (Fig. 1, lane 2). The latter form is glycosylated, whereas the former is not (see below). Both forms have been described previously (40). Due to the binding to protein A or Con A, the heavy chains of IgC are also precipitated (Fig. 1, lanes 1, 2, 3, 5, and 6). IgC is a typical secretory protein that is translocated across microsomal membranes and therefore can be used to test the intactness of the microsomal membranes. After digestion with proteinase K no II chain-related protein can be precipitated with In-1 antibody (Fig. 1, lane 3). Heavy chain of IgG,
of Ii Chain

ln-1 Antibody Recognizes the NH2-Terminal Portion of Ii Chain

To determine the recognition site for ln-1 on Ii chain, proteolytic fragments of Ii chain were generated using Staphylococcus V8 protease.

Mouse CH1.1. cells, which express relatively large amounts of Ii chain, were labeled for 1 h with [35S]methionine and Ii chains were precipitated with In-1 antibody. Immunoprecipitated polypeptides were characterized by SDS PAGE, either directly (Fig. 2, lanes 1 and 4) or after treatment with 5 µg/ml (Fig. 2, lane 2) or 50 µg/ml (Fig. 2, lane 3) V8 protease. As expected, Ii chain and a 41-kD protein were precipitated with the ln-1 antibody (26, 52, 53). The 41-kD protein is an Ii gene product generated most likely by differential splicing (52). With increasing concentrations of the V8 protease, Ii chain was digested into three major polypeptides, labeled A, B, and C (Fig. 2). Polypeptide A has a molecular weight of ~29 kD, B of ~20 kD, and C of ~10 kD. It appears that the cleavage of A generates fragments B and C adding up to the molecular weight of 29 kD.

To obtain information about the location of the three proteolytic fragments in the linear structure of the Ii chain, the same digestion was performed on [35S]cysteine-labeled Ii chain. A single cysteine residue is known to occur in Ii chains and this residue is located in the NH2-terminal portion of Ii chain (11, 31, 42). Fig. 2, lanes 5–7 shows the results obtained with [35S]cysteine-labeled Ii chains before (lane 5) or after the digestion with 5 µg/ml (lane 6) or 50 µg/ml (lane 7) of V8 protease. Ii chain and the fragments A and C are radioactively labeled with cysteine, but not fragment B. Thus, Staphylococcus aureus V8 protease cuts the Ii chain essentially twice giving rise to three polypeptides labeled A, B, and C in Fig. 2.

To demonstrate the location of the fragment C within the polypeptide chain directly, we introduced a gradient of label into Ii chain. mRNA from spleen cells was translated in the presence of microsomal membranes. 1 min after the start of translation, 7-methyl-guanosine was added to synchronize mRNA translation. After different time intervals (Fig. 3), unlabeled methionine was added to a final concentration of

![Diagram](image-url)
In-1 antibody recognizes proteolytic fragment C of Ii chain synthesized by CH1.1. cells. 1 x 10^7 mouse CH1.1. cells were detergent solubilized and nuclei removed by centrifugation at 5,000 g for 10 min. Solubilized antigens were treated either with no protease (lane 1) or with 5 µg/ml (lane 2) or 50 µg/ml (lane 3) V8 protease for 15 min at 30°C and then precipitated with 10% TCA, 50% acetone. After resolubilization in SDS-containing sample buffer, proteins were separated by SDS PAGE. After transfer onto nitrocellulose, proteins were reacted with In-1 antibody and visualized by peroxidase-coupled anti-rat antibody and diaminobenzidine staining.

Figure 4

In-1 antibody recognizes proteolytic fragment C of Ii chain synthesized by CH1.1. cells. 1 x 10^7 mouse CH1.1. cells were detergent solubilized and nuclei removed by centrifugation at 5,000 g for 10 min. Solubilized antigens were treated either with no protease (lane 1) or with 5 µg/ml (lane 2) or 50 µg/ml (lane 3) V8 protease for 15 min at 30°C and then precipitated with 10% TCA, 50% acetone. After resolubilization in SDS-containing sample buffer, proteins were separated by SDS PAGE. After transfer onto nitrocellulose, proteins were reacted with In-1 antibody and visualized by peroxidase-coupled anti-rat antibody and diaminobenzidine staining.

Figure 5

Ii chain is synthesized without a cleavable signal sequence. Mouse CH1.1. cells were labeled for 1 h with [35S]methionine in the absence (lane 1) or presence (lane 2) of 3 µg/ml tunicamycin (added 150 min before labeling). mRNA from mouse spleen cells was translated in a wheat germ cell free system (lane 3). Antigens were precipitated with In-1 antibody. Ii, glycosylated Ii chain, Ii', unconjuglated Ii chain integrated (lane 2) or not integrated (lane 3) into membranes of the ER.

Ii Chain Is Synthesized without a Cleavable Signal Sequence

Membrane proteins which expose the NH2 terminus on the luminal side of the ER are usually synthesized with a cleavable signal sequence (35, 51). In contrast, proteins that expose the NH2-terminal end on the cytoplasmic side, like the influenza neuraminidase and the rat and human asialoglycoprotein receptor, are synthesized without a cleavable signal sequence (15, 20, 41). We therefore asked whether Ii chain is also synthesized without a cleavable signal sequence. In glycoproteins, the presence or absence of a cleavable signal sequence can be determined by comparing the molecular weight of the translation products synthesized in a cell free system in the absence of microsomal membranes with those synthesized in vivo in the presence of tunicamycin. Tunicamycin is known to prevent glycosylation but does not interfere with membrane insertion and cleavage of a signal sequence. As can be seen in Fig. 5, Ii chain is synthesized in CH1.1. cells in the presence of tunicamycin as a 25-kD polypeptide chain. The identical molecular weight is found for the Ii chain when it is synthesized in a wheat germ cell free system in the absence of microsomal membranes.

Membrane Insertion of Ii Chain Is SRP Dependent

For proteins that are translocated across the membrane of the ER, it is known that SRP and DP are required for their
Lipp and Dobberstein

Membrane Junction of \(\text{Ii} \) Chain

Discussion

Orientation of \(\text{Ii} \) across the ER Membrane

Several lines of evidence suggest that \(\text{Ii} \) chain spans the membrane and exposes the NH\(_2\)-terminal end on the cytoplasmic and the COOH-terminal end on the luminal side of the membrane of the ER. (\(a \)) Sequence data derived from a cDNA for \(\text{Ii} \) chain locate a single stretch of 26 hydrophobic or uncharged amino acid residues close to the NH\(_2\)-terminal end (11, 31, 42). Hydrophobic sequences are known to occur in regions of proteins that span the membrane. (\(b \)) When protease is used to digest the cytoplasmically exposed portion of \(\text{Ii} \) chain, a segment comprising ~30 amino acid residues can be removed. This segment corresponds to the length found between the NH\(_2\) terminus and the stretch of uncharged amino acid residues in the \(\text{Ii} \) chain. The remaining 170 amino acids are protected by the membrane barrier and must thus be located on the luminal side of the membrane. (\(c \)) The monoclonal antibody In-1 recognizes a determinant located on a part of the \(\text{Ii} \) chain that is exposed on the cytoplasmic side of the membrane. Protease digestion of intact microsomal vesicles destroys this binding site. It is the NH\(_2\) terminally located fragment C which is recognized by In-1 antibody.

Two independent methods were used to locate fragment C within \(\text{Ii} \) chain: (i) After digestion of \(\text{Ii} \) chain with *Staphylococcus aureus* V8 protease, fragment C was found to be the only one that labeled with \([35S]\)cysteine. The only cysteine in \(\text{Ii} \) chain occurs 28 amino acid residues away from the NH\(_2\)-terminal end (see Fig. 7). (ii) When a gradient of \([35S]\)cysteine label was introduced into \(\text{Ii} \) chain, the amount of label in fragment C remained constant throughout the chase period. This is only consistent with a location of fragment C close to NH\(_2\)-terminal end. (\(d \)) There is no cleavable signal sequence found in \(\text{Ii} \) chain. The unglycosylated precursor of \(\text{Ii} \) chain synthesized in the wheat germ cell free system in the absence of microsomal membranes has the identical molecular weight as unglycosylated and membrane-inserted \(\text{Ii} \) chain synthesized by CHI.1 cells. Cleavable signal sequences have a length between 13 and 45 amino acid residues (45). A difference of five amino acids would have been detected by the SDS PAGE system used.

These facts demonstrate that \(\text{Ii} \) chain exposes the NH\(_2\)-terminal end on the cytoplasmic and the COOH-terminal end on the luminal side of the membrane of the ER.

In-1 antibody has previously been used to locate the \(\text{Ii} \) chain on the cell surface (26). As this antibody, however, does not recognize a determinant exposed on the external surface of the cell, it must be concluded that broken cells were responsible for the observed binding of In-1 antibody. Using fluorescence activated cell sorter analysis, no surface labeling could be detected using this antibody (Arnold, B., and J. Lipp, unpublished results).

Membrane Insertion of \(\text{Ii} \) Chain, a Type II Membrane-spanning Protein

Proteins that span the membrane once can expose either their COOH-terminal end (type 1 membrane proteins) or their NH\(_2\)-terminal end (type 2 membrane proteins) on the cytoplasmic side. Like secretory proteins, type 1 membrane proteins are usually synthesized with cleavable signal sequences. Their membrane insertion proceeds co-translationally and requires SRP and DP. The same requirements were found for...
membrane insertion of II chain for a typical type 2 membrane protein.

What mechanism can be envisaged for a common step in membrane insertion of secretory and type 1 and 2 membrane proteins? A very attractive possibility, first proposed by Inouye and his colleagues for the lipoprotein of *Escherichia coli* and further extended to membrane-spanning proteins, is that the insertion of the NH2-terminal portion of nascent secretory or membrane-spanning proteins into the membrane of the ER occurs in a loop-like fashion (14, 22, 45). This model is based on the assumption that the NH2-terminal end of the signal sequence, cleavable or noncleavable, remains exposed on the cytoplasmic side of the ER membrane. Cleavage of the signal sequence then releases the new NH2-terminal end of the mature protein to the lumen of the ER vesicle. The cleaved signal sequence might remain in some or all cases buried in the membrane. Type 1 membrane-spanning proteins, like the H-2 antigens or VSV G protein, have in addition to a cleavable signal sequence a second stretch of uncharged amino acid residues located close to the COOH-terminal end. This functions as a “stop transfer” sequence and anchors the protein in the membrane. In type 2 membrane proteins with uncleavable signal sequence the single hydrophobic segment might perform two functions: (a) as a single sequence mediating SRP-dependent membrane insertion, and (b) as a stop transfer sequence anchoring the protein in the membrane. Certainly further direct evidence is required for support of this model for membrane insertion of type 2 membrane proteins.

We thank David I. Meyer and Christian Zwieb for helpful discussion and comments. We also thank Annie Steiner for typing this manuscript.

This work was supported by a grant from the Deutsche Forschungsgemeinschaft.

Received for publication 5 December 1985, and in revised form 27 February 1986.

References

1. Anderson, D. J., P. Walter, and G. Blobel. 1982. Signal recognition protein is required for the integration of acetylcholine receptor subunits, a transmembrane glycoprotein, into the endoplasmic reticulum membrane. *J. Cell Biol.* 93:501–506.

2. Anderson, D. J., K. E. Mostov, and G. Blobel. 1983. Mechanisms of insertion of the nascent and mature forms of secretory proteins in membranes: an overview. *Proc. Natl. Acad. Sci. USA.* 80:7249–7253.

3. Blobel, G. 1980. Intranuclear protein topogenesis. *Proc. Natl. Acad. Sci. USA.* 77:14960–1500.

4. Bonhoeffer, M., and D. I. Meyer. 1984. Absence of a cleavable signal sequence in Sindbis virus glycoprotein PE4. *J. Biol. Chem.* 259:12261–12264.

5. Bonnet, W. M., and R. A. Laskey. 1974. A film detection method for tritium-labeled proteins and nuclei acids in polyacrylamide gels. *Eur. J. Biochem.* 46:83–88.

6. Box, T. J., A. R. Davis, and D. P. Nayak. 1984. NH2-terminal hydrophobic region of influenza virus neuraminidase provides the signal function in translocation. *Proc. Natl. Acad. Sci. USA.* 81:2327–2331.

7. Chiacchia, K. B., and K. Drickamer. 1982. Direct evidence for the transmembrane orientation of the hepatic glycoprotein receptors. *J. Biol. Chem.* 257:14400–14406.

8. Chirgwin, J. M., A. E. Prybyla, R. J. McDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonuclease A from sources enriched in ribonuclease. *Biochemistry.* 18:5294–5299.
38. Rottier, P., J. Armstrong, and D. I. Meyer. 1985. Signal recognition particle-dependent insertion of coronavirus E1, an intracellular membrane glycoprotein. J. Biol. Chem. 260:4648–4652.
39. Schneider, C., H. J. Owen, D. Banville, and J. G. Williams. 1984. Primary structure of human transferrin receptor deduced from the mRNA sequence. Nature (Lond.). 311:675–678.
40. Singer, P. A., W. Lauer, Z. Dembic, W. E. Mayer, J. Lipp, N. Koch, G. Hämmerling, J. Klein, and B. Dobberstein. 1984. Structure of the murine la-associated invariant (li) chain as deduced from a cDNA clone. EMBO (Eur. Mol. Biol. Organ.) J. 3:873–877.
41. Spiess, M., A. I. Schwartz, and H. F. Lodish. 1985. Sequence of human asialoglycoprotein receptor cDNA. An internal signal sequence for membrane insertion. J. Biol. Chem. 260:1979–1982.
42. Strubin, M., B. Mach, and E. O. Long. 1984. The complete sequence of the mRNA for the HLA-DR associated li chain reveals a polypeptide with an unusual transmembrane polarity. EMBO (Eur. Mol. Biol. Organ.) J. 3:869–872.
43. Sung, E., and P. Jones. 1981. The invariant chain of murine la antigens: its glycosylation, abundance and subcellular localization. Mol. Immunol. 18:899–913.
44. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76:4350–4354.
45. Von Heijne, G. 1985. Structural and thermodynamic aspects of the transfer of proteins into and across membranes. In Current Topics in Membranes and Transport. Vol 24. F. Bronner, editor. Academic Press, Inc., New York. 1–63.
46. Walter, P., I. Ibrahimii, and G. Blobel. 1981. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91:454–550.
47. Walter, P., and G. Blobel. 1981. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91:557–561.
48. Walter, P., and G. Blobel. 1980. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 77:7112–7116.
49. Walter, P., and G. Blobel. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature (Lond.). 299:691–698.
50. Walter, P., R. Gilmore, and G. Blobel. 1984. Protein translocation across the endoplasmic reticulum Cell. 38:5–8.
51. Wickner, W. T., and H. F. Lodish. 1985. Multiple mechanisms of protein insertion into and across membranes. Science (Wash. DC). 230:400–407.
52. Yamamoto, K., N. Koch, M. Steinmetz, and G. J. Hämmerling. 1985. One gene encodes two distinct lA-associated li chains. J. Immunol. 134:3461–3467.
53. Zecher, R., W. Baihausen, K. Renke, D. Linder, M. Schlüter, and S. Stirn. 1984. Invariant chains of mouse class II antigens: biochemical properties and molecular relationship. Eur. J. Immunol. 14:511–517.