Instance-Dependent Complexity of Contextual Bandits and Reinforcement Learning: A Disagreement-Based Perspective*

Dylan J. Foster
Microsoft Research, New England

Alexander Rakhlin
Massachusetts Institute of Technology

David Simchi-Levi
Massachusetts Institute of Technology

Yunzong Xu
Massachusetts Institute of Technology

Editors: Mikhail Belkin and Samory Kpotufe

Abstract
In the classical multi-armed bandit problem, instance-dependent algorithms attain improved performance on “easy” problems with a gap between the best and second-best arm. Are similar guarantees possible for contextual bandits? While positive results are known for certain special cases, there is no general theory characterizing when and how instance-dependent regret bounds for contextual bandits can be achieved for rich, general classes of policies. We introduce a family of complexity measures that are both sufficient and necessary to obtain instance-dependent regret bounds. We then introduce new oracle-efficient algorithms that adapt to the gap whenever possible, while also attaining the minimax rate in the worst case. Finally, we provide structural results that tie together a number of complexity measures previously proposed throughout contextual bandits, reinforcement learning, and active learning and elucidate their role in determining the optimal instance-dependent regret. In a large-scale empirical evaluation, we find that our approach often gives superior results for challenging exploration problems.

Turning our focus to reinforcement learning with function approximation, we develop new oracle-efficient algorithms for reinforcement learning with rich observations that obtain optimal gap-dependent sample complexity.

Keywords: contextual bandits, reinforcement learning, function approximation, instance dependence, disagreement coefficient, star number, eluder dimension

*Extended abstract. The full paper appears as [arXiv: 2010.03104 v1].

© 2021 D.J. Foster, A. Rakhlin, D. Simchi-Levi & Y. Xu.