Weight Change over the Course of Binge Eating Disorder Treatment: Relationship to Binge Episodes and Psychological Factors

Carly R. Pacanowski 1, Tyler B. Mason 2,3,4, Ross D. Crosby 3,4, James E. Mitchell 3,4, Scott J. Crow 5,6, Stephen A. Wonderlich 3,4, and Carol B. Peterson 5,6

Objective: Treatment for binge eating disorder (BED), a condition associated with both excess adiposity and psychological distress, has not typically produced significant weight loss despite reducing binge eating. Characterizing factors that promote or inhibit weight loss in individuals with co-occurring BED and obesity may help explain overall nonsignificant weight changes during treatment.

Methods: In this study, 189 adults with BED participated in a randomized clinical trial evaluating the efficacy of 5 months of cognitive behavioral therapy. Assessments included measured height and weight at baseline, midtreatment, end of treatment (EOT), and 6-month follow-up, the Eating Disorder Examination interview, and questionnaires.

Results: During treatment, there was a mean weight gain of 1.3 ± 12.0 lb. Twenty-two percent of the sample lost ≥5 lb, and 25% of the sample gained ≥8 lb. Results showed that baseline objective binge eating episodes predicted weight over treatment. Changes in weight were significantly positively related to concurrent changes in shape concern, weight concern, and disinhibition, but not binge eating episodes. Changes in objective binge eating episodes from baseline to EOT were associated with changes in weight from EOT to follow-up.

Conclusions: Further investigation of eating behavior during BED treatment to understand the energy balance contributions to weight change or stability is warranted.

Obesity (2018) 26, 838-844. doi:10.1002/oby.22149

Introduction

The majority of individuals with binge eating disorder (BED) have obesity or overweight (1,2). In this population, both excess adiposity and psychological distress and impairment associated with binge eating increase the risk for serious chronic health conditions and mortality (3,4). Cognitive behavioral therapy (CBT) is the most widely studied and empirically supported treatment for BED (5). However, CBT for BED has not typically produced statistically significant weight reductions despite significant decreases in the frequency of binge eating episodes (6-8).

Understanding how weight changes in response to BED treatment is critical because although decreasing the frequency of binge eating leads to improvement in psychosocial functioning (5), the maintenance or worsening of obesity increases the risk for chronic disease and mortality (4,9). Few published studies have investigated energy balance in relationship to BED treatment, binge eating episode reductions, and the lack of expected weight reduction. A recent study by Masheb and colleagues (10) found that achieving abstinence from binge eating during treatment (about half of the sample) was associated with a 400-calorie deficit in intake compared with those who did not achieve abstinence from binge eating. Importantly, those who achieved binge eating abstinence and the accompanying reported caloric deficit (measured by two random 24-hour recalls within the 6-month treatment period) also exhibited greater psychological improvements than those who did not achieve binge eating abstinence. This study found a significant mean reduction in body mass index (BMI) of about 1 kg/m² in the sample; however, changes in the percent of weight loss were not significantly different between those who did and did not achieve binge eating abstinence.

1 Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware, USA. Correspondence: Carly R. Pacanowski (cpakanow@udel.edu) 2 Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, USA 3 Department of Clinical Research, Neuropsychiatric Research Institute, Fargo, North Dakota, USA 4 Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Fargo, North Dakota, USA 5 Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota, USA 6 The Emily Program, University of Minnesota, St. Paul, Minnesota, USA.

Funding agencies: This work was supported by NIH grants DK 61912, DK 61973, P30 DK 60456, K02 MH65919, and T32 MH 082761.

Disclosure: The authors declared no conflict of interest.

Clinical trial registration: ClinicalTrials.gov identifier NCT00041743.

Received: 3 September 2017; Accepted: 24 January 2018; Published online 13 March 2018. doi:10.1002/oby.22149
Characterizing factors that may promote or inhibit weight loss in individuals with co-occurring BED and obesity may inform the development of novel treatments designed to target both conditions. Relative to energy balance, if an individual decreases the number of calories consumed over the course of treatment and all other factors affecting energy balance remain stable, weight loss would be a predictable outcome of BED treatment. Psychological predictors have been well examined in the literature in reference to weight loss populations (11); however, individuals with BED may represent a unique population and have been described as more similar to individuals with bulimia nervosa (e.g., in attitudes about shape and weight, psychiatric comorbidity) than obesity without an eating-related illness (12).

This paper addresses a gap in the literature by exploring how individual variability in changes in binge eating behaviors and psychological variables during treatment for BED is associated with body weight change. This study has the following four primary objectives: (1) to describe variability in weight change during BED treatment; (2) to identify baseline predictors of weight change during BED treatment; (3) to explore concurrent changes in weight, binge eating episode frequency, and psychological factors during BED treatment; and (4) to determine whether changes in binge eating episode frequency during treatment predicts a change in weight during follow-up.

Methods

Participants and procedure

This study utilized data from a larger randomized controlled clinical trial evaluating the effectiveness of different delivery methods of CBT (group-led, therapist-led, or self-help) (13). Wait-listed controls (n = 69) were included in the larger trial but not in the present analysis because they did not receive active treatment. Eligibility required meeting full criteria for the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) BED and having BMI ≥ 25. Exclusion criteria included pregnancy or lactation, lifetime diagnosis of bipolar or psychotic disorder, current diagnosis of substance abuse or substance dependence, medical or psychiatric instability including acute suicide risk, current psychotherapy, or current participation in a formal weight loss program. The participants completed measures at baseline, at a midpoint assessment (i.e., 10 weeks), at end of treatment (EOT) (i.e., 20 weeks/5 months), and at a 6-month follow-up (approximately 11 months after baseline). Details regarding other aspects of the study have been described previously (13). Ethical approval for the study was obtained from Institutional Review Boards at the University of Minnesota, University of North Dakota, and MeritCare/Sanford Health. The analytic sample for the present study included 189 adults who were randomized to one of three active treatment groups.

Measures

BMI. Anthropometric measurements of height and weight were collected. BMI was calculated using the standard formula for BMI (14).

Eating Disorder Examination (EDE) (15). The EDE is a semistructured interview that assesses eating disorder symptoms and psychopathology with a focus on the previous 28 days. The EDE assesses the frequency of different forms of overeating, including objective binge eating episodes (OBEs) (i.e., binge eating defined as unusually large quantities of food with a sense of loss of control), subjective binge eating episodes (SBEs) (i.e., episodes with a sense of loss of control while eating an amount of food that the individual considers to be large but interviewer does not), and objective overeating episodes (OEEs) (i.e., episodes of consumption of unusually large quantities of food with no associated sense of loss of control). The EDE comprises the following four subscales: restraint (Cronbach α as baseline for this sample = 0.65; EOT = 0.49), eating concern (baseline = 0.57; EOT = 0.63), shape concern (baseline = 0.67; EOT = 0.81), and weight concern (baseline = 0.61; EOT = 0.73) as well as a combined global scale. Items are rated on 7-point forced-choice scales (range 0-6), with higher scores reflecting greater severity and/or frequency. The EDE has well-established interrater and test-retest reliability in individuals with BED (16). Experienced graduate students administered the EDE and were blinded to the participant’s treatment condition; interrater reliability was 0.955 and higher (13). For a detailed discussion of the EDE interviewer training, please refer to Peterson et al. (13).

Three Factor Eating Questionnaire (TFEQ) (17). In this study, the 51-item TFEQ was used to measure dietary restraint, defined as cognitive attempts to control food intake, and disinhibition, defined as a proclivity to eat in response to external cues as opposed to internal hunger and/or satiety signals. The restraint subscale has 21 items and the disinhibition subscale has 16 items; possible scores range from 0 to 21 and 0 to 16, respectively. The first 36 items of the TFEQ use a dichotomous response format of 0 (false) and 1 (true). Participants respond to the final 15 items by using a 4-point scale with response options varying for each question. Cronbach α for restraint and disinhibition was 0.76 and 0.46 at baseline and 0.75 and 0.76 at EOT in the current sample, respectively. Given the lower α for disinhibition at baseline, we opted not to include results pertaining to baseline disinhibition as a predictor of weight trajectory.

Inventory of Depressive Symptomatology (IDS) (18). The IDS is a 30-item scale that measures depressive symptoms (e.g., sadness, loss of interest). Participants rated items on a scale ranging from 0 to 3 with severity-based response options for each item (e.g., 0 = I do not feel sad, 1 = I feel sad less than half the time, 2 = I feel sad more than half the time, and 3 = I feel sad nearly all of the time); 28 of the 30 items are scored for a range of 0 to 84. Higher scores indicate more depressive symptoms. The IDS is strongly associated with other established measures of depressive symptoms (19). Cronbach α was 0.85 at baseline and 0.88 at EOT in the current sample.

Rosenberg Self-Esteem Scale (RSES) (20). The RSES is the most widely used scale to assess global self-esteem. Participants respond to 10 items on a Likert scale ranging from 1 (strongly disagree) to 4 (strongly agree); total scores range from 0 to 30. A sample item is “I take a positive attitude toward myself.” Higher scores indicate less self-esteem. The RSES has shown excellent psychometric properties (21). Cronbach α was 0.92 at baseline and 0.91 at EOT in the current sample.

Coping Scale for Bulimia Nervosa (CS-BN) (22). The CS-BN was used to measure coping strategies specific to BED. The CS-BN was modified for use with individuals with BED by removing
Results

Descriptive characteristics of the analytic sample are displayed in Table 1. For attrition rates at each study time point, please refer to Figure 1 in the main outcomes paper (13). A series of one-way analysis of variance (ANOVA) suggested no significant differences between the three groups in weight change during treatment, binge abstinence achieved during treatment, change in number of OBEs, OOE, or SBEs during treatment, or weight change during follow-up (all \(P > 0.05 \)).

Objective 1: variability of weight change during BED treatment (\(n = 132 \))

During the 5 months of treatment, participants gained an average of 1.3 ± 12.0 lb. Figure 1 highlights the variability in weight change during treatment by displaying each individual participant’s weight change. While 25% percent of the sample lost 5 lb or more, 25% of the sample gained at least 8 lb. Notably, 11 participants gained or lost more than 20 lb.

Objective 2: baseline predictors of weight change over treatment (\(n = 119-130 \) depending on completeness of data)

Baseline restraint (measured by either the EDE or TFEQ), eating concern, shape concern, weight concern, global EDE score, OOE, and SBEs were not significant predictors of weight trajectory over treatment. OBEs significantly predicted the trajectory of weight over the course of CBT. These relationships are displayed in Figure 2. Figure 2 illustrates the weight trajectory of mean OBE frequency at baseline and shows that higher reported OBEs predicted steeper weight gain as compared with the mean level or low OBE frequency at baseline (low and high defined as 1 SD above and below the mean).

Objective 3: associations between change in weight and change in binge episodes and psychological variables (\(n = 119-130 \) depending on completeness of data)

Associations between concurrent changes in weight and binge eating episodes and/or psychological variables are presented in Table 2. Shape concern, weight concern, and disinhibition were all positively and significantly related to weight change (Pearson \(r_s = 0.18, 0.19, \) and 0.19, respectively; \(Ps < 0.05 \)). Weight change was not significantly associated with concurrent change in EDE-assessed eating behaviors, restraint, or psychological variables.

Statistical analysis

For Objective 1, descriptive statistics were calculated for study variables. For Objective 2, multilevel modeling was used to examine baseline values of predictors of weight change over time. Multilevel models were calculated separately for each predictor. Models included the baseline predictor, the linear and quadratic terms of time in days, and the interaction between the baseline predictor and the linear and quadratic terms of time. Because this study examined three separate treatments, we controlled for the effect of treatment type in analyses. For Objective 3, we examined associations between changes in predictor variables and changes in weight from baseline to EOT. Bivariate Pearson correlations (as the normality assumption was met) were used to examine how changes in eating patterns over the course of treatment were associated with changes in weight. For Objective 4, the change in binge eating episodes from baseline to EOT was used as a predictor of weight change during the follow-up period, using separate models for 6-month and 12-month follow-up. All analyses used SPSS Statistics version 23 (IBM Corp., Armonk, New York), and \(\alpha \) was set to \(P < 0.05 \).

Table 1 Baseline characteristics of analytic sample

Variable	Mean ± SD or %
Age (y) (\(n = 189 \))	46.7 ± 10.2
BMI (kg/m²) (\(n = 189 \))	39.3 ± 8.1
Sex, female (%) (\(n = 189 \))	89.9%
Ethnicity, white (%) (\(n = 181 \))	95.8%
Education, at least some college (%) (\(n = 171 \))	46.8%

Rosenberg Self-Esteem Scale (RSES)

The CS-BN measures several dimensions of coping strategies, including avoidant/alternative (e.g., called a supportive friend), and cognitive (e.g., challenged unrealistic thoughts) strategies. Higher scores indicate greater use of coping strategies. Participants rated 36 items on a scale ranging from 0 (never) to 3 (frequently); scores range from 0 to 108. Cronbach \(\alpha \) was 0.92 at baseline and 0.93 at EOT in the current sample.
Objective 4: changes in binge eating behaviors during treatment predicting weight change during follow-up ($n = 101$ at 6 months; $n = 70$ at 12 months)

Because expected significant relationships were not found between changes in weight and binge eating episodes (i.e., greater decreases in OBEs from baseline to EOT being associated with concurrent greater decreases in weight), we explored the possibility that changes in binge eating episodes during treatment may be related to a change in weight during follow-up (defined separately as 6-month follow-up minus EOT weight and as 12-month follow-up minus EOT weight). Six months after EOT, the mean change in weight was -0.9 ± 12.72 lb (range $= -59.40$ to 36.80 lb; $n = 101$). Twelve months after EOT, the mean change in weight was -6.85 ± 22.65 lb (range $= -88.00$ to 31.20 lb; $n = 70$). Changes in OBEs during treatment significantly positively predicted change in weight during the first 6 months after EOT ($r = 0.198; P = 0.047$), meaning that a greater decrease in OBEs during treatment was associated with a greater decrease in weight. Twelve months after treatment, this change was no longer significant. Changes in OOE or SBE during treatment did not significantly predict changes in weight 6 months or 12 months following treatment.

Discussion

Although BED treatment targets binge eating episodes and has successfully been shown to decrease binge eating frequency, body weight is an important factor to consider in treatment and follow-up as obesity is associated with physiological and psychological comorbidities. To this end, this study aimed to examine the variability of weight change during the course of CBT treatment for BED (from losing 40 lb to gaining 40 lb). A substantial number of participants gained weight and a substantial number lost weight. This finding is not surprising given published studies finding heterogeneity in weight change in individuals with BED 12 months prior to treatment (from losing 40 lb to gaining 62 lb) (23). Additionally, it has been shown that this heterogeneity in weight change is specific to individuals with comorbid overweight and/or obesity and BED as compared with individuals with overweight and/or obesity without BED (24).

At baseline, greater self-reported OBEs significantly predicted weight gain during 5 months of treatment, which appeared to begin leveling off by EOT. Because individuals engaging in higher levels of OBEs and/or binge eating are consuming more calories, they may continue to gain weight during early stages of treatment, but weight gain levels off as binge eating behaviors improve. Longer term trials assessing BED and weight change are minimal; however, in one weight loss maintenance study that did not include treatment for binge eating, binge eating was associated with weight regain over time (25), suggesting that the relationship between binge eating and weight gain or regain over time may be of importance.

Decreases in weight during treatment were significantly associated with concurrent decreases in shape concern, weight concern, and disinhibition. Weight and shape concerns are core symptoms associated with binge eating (26) and are an important target in CBT for BED (27). Reducing weight may be a possible mechanism for improving binge eating as well as preventing relapse through its relationship with decreasing weight and shape concerns, though the direction of causality is unclear (i.e., improving binge eating and weight and shape concerns is likely to lead to weight loss) and may be bidirectional. However, decreases in weight during treatment...
were not significantly related to decreases in OBEs, SBEs, or OOE. Nonetheless, decreases in OBEs during treatment significantly predicted greater weight loss during 6 months of follow-up. A delay in energy balance effect is possible, such that the decrease in caloric intake from fewer OBEs does not produce a change in weight until after a few weeks or months, but future research is needed to determine the direction of causality and mechanisms associated with these changes.

Despite the aforementioned statically significant findings, Pearson correlation coefficients ranged from 0.18 to 0.20, evidencing small to medium effect sizes (28). Additionally, some expected relationships were not significant (e.g., change in weight was not significantly associated with change in binge episodes during treatment). Most striking was the lack of relationship between changes in types of binge eating episodes and weight. The only significant finding, that change in OBEs during treatment predicted weight change over the 6 months after EOT but not 12 months after EOT, is in the expected direction (as were the other nonsignificant findings) but was a surprisingly small correlation.

There are several possible explanations for the lack of expected findings. First, other eating behaviors (e.g., snacking or “picking and nibbling,” an item later added to the EDE to address a possible shift from binge episodes to other eating behaviors) may increase concurrently as decreases in binge or overeating episodes are observed. To assess this possible explanation, posthoc correlation analyses were run between changes in the number of episodes of OBEs, OOE, and SBE during treatment and changes in (1) the number of days of reported snacks (mid-morning, mid-afternoon, evening, or nocturnal), (2) a composite number of days on which snacking took place, and (3) the number of days of reported picking and nibbling. The only statistically significant correlation was between the change in the number of OBEs and the change in the number of days having an evening snack (Pearson $r = 0.269; P < 0.001$), indicating that a greater change (either increase or decrease) in OBEs was associated with a greater change in the number of evening snack days. Masheb, Roberto, and White (29) also found a lack of a relationship between binge episodes and picking and nibbling; it is unclear whether decreases in binge eating are not associated with increases in picking and nibbling or if lack of findings reflect a measurement issue. Second, it is possible that the sample was underpowered to detect these effects; however, this is unlikely because of some expected effects emerging within the present sample. Recent published findings have suggested that a difference in caloric consumption may be more apparent between those achieving abstinence from binge eating versus those not achieving abstinence (10), which, if continued over time, should equate to a difference in weight between those achieving and not achieving binge abstinence (assuming no marked change in physical activity). In this study, posthoc analyses showed that at EOT, 18 individuals reported not experiencing any OBE, OOE, or SBE in the past 28 days. These 18 individuals lost an average of 0.58 ± 12.30 lb, while the 112 who did not achieve abstinence from binge eating at EOT gained an average of 1.46 ± 11.84 lb ($t = 0.67; df = 128$). Though this difference was not statistically significant ($P = 0.51$), individuals who achieved abstinence from binge eating having an overall decrease in weight versus individuals not
achieving abstinence having an average increase in weight is consistent with findings in recent literature (10).

In the weight loss literature, behavioral weight loss has often produced an increase in dietary restraint associated with a decrease in weight (30). However, in response to BED treatment, there is variability in weight change such that some gain weight while others lose weight, possibly resulting in a net weight change not significantly different from zero. The finding that increases in dietary restraint are associated with decreases in weight does not necessarily mean that increases in weight are associated with decreases in dietary restraint. The net change in this study was close to 1 lb gained, and we would not expect a weight change of that magnitude to be associated with a change in restraint score. Furthermore, CBT for BED does not focus on dietary restraint; in fact, it discourages dietary restraint based on the presumed link between dietary restraint (i.e., strict, rigid rules regarding food intake) and binge eating (31). Additionally, as is common in BED samples, because participants’ mean level of dietary restraint was low to begin with (EDE restraint = 1.6; TFEQ restraint = 6.7), we would not expect a further significant decrease.

This study is limited by its primarily Caucasian and female sample. In addition, three treatment groups were combined in this secondary analysis. All treatment groups were CBT-focused, but the method of intervention delivery differed (therapist-assisted group [n = 60], therapist-led group [n = 62], or self-help group [n = 67]). Although there were significant differences noted in the outcomes reported in the main paper (13) (i.e., percent of women randomized to each group, greater percentage of binge abstinence achieved in therapist-led versus self-help or control groups during treatment), because of an absence of significant differences between the groups for weight loss over treatment or follow-up and the fact that identical content was presented to each of the three groups (13), we combined groups. Other individual difference variables (e.g., personality factors) may be significantly related to weight change during treatment and were not explored. Further research is necessary to determine if these results are generalizable to other BED samples.

This research offers several avenues for research on energy balance and weight within the context of BED. Improved measurement of variables impacting energy balance would allow for a more nuanced understanding of caloric balance during and after treatment for BED. Currently, treatment trials for BED rarely include energy balance assessments in their research protocols. Random-24-hour dietary recalls as well as novel ecological momentary assessment approaches could be used to quantify caloric intake along with self-reported OBE, OOE, and SBE episodes. Furthermore, although physical activity has often not been reported in BED treatment trials, the importance of physical activity in energy balance make this variable critical to measure. Finally, investigation of other potential predictors’ response to BED treatment, including biological and physiological markers (i.e., weight suppression, weight regulatory hormones), is warranted because of the consequences of potential weight gain during treatment. In addition, there may be clinical utility in adding other approaches to binge eating treatments such as physical activity and nutritional components in order to increase weight loss and improve targeted outcomes (e.g., improvements in weight and shape concerns, decreases in binge eating). For example, one study found that the addition of exercise and nutritional counseling to CBT was associated with greater weight loss in patients with co-occurring obesity and BED (32). Adding physical activity components to BED treatment may be effective in enhancing weight loss as well as improving mental health symptoms. Physical activity may help decrease weight both directly (33) and indirectly by improving emotional health (34), which is a common trigger of binge eating (35). Given that participants in BED treatment trials often express a desire to lose weight, adding these components to treatment may also increase treatment acceptability and retention.

In conclusion, findings from this study suggest that there is substantial variability in weight change during CBT treatment for BED in adults with overweight or obesity. Although decreases in binge eating behavior frequency were not significantly associated with concurrent decreases in weight during treatment, greater decreases in OBEs during treatment significantly predicted greater decreases in weight during 6 months of follow-up. It may be useful to provide additional treatment and support for those at risk of weight gain during BED treatment (i.e., those with greater baseline OBEs) to prevent this outcome given the medical complications associated with further weight gain and obesity.

REFERENCES
1. Kessler RC, Berglund PA, Chiu WT, et al. The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biol Psychiatry 2013;73:904-914.
2. de Zwaan M. Binge eating disorder and obesity. Int J Obes Relat Metab Disord 2001;25(suppl 1):S51-S55.
3. Kalarchian MA, Marcus MD, Levine MD, et al. Psychiatric disorders among bariatric surgery candidates: relationship to obesity and functional health status. Am J Psychiatry 2007;164:328-334.
Weight Change During BED Treatment

4. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. *JAMA* 2013;309:71-82.

5. Iacovino JM, Gredysa DM, Altman M, Wilfley DE. Psychological treatments for binge eating disorder. *Curr Psychiatry Rep* 2012;14:432-446.

6. Brownley KA, Berkman ND, Sedway JA, Lohr KN, Bulik CM. Binge eating disorder treatment: a systematic review of randomized controlled trials. *Int J Eat Disord* 2007;40:337-348.

7. Grilo CM, Reas DL, Mitchell JE. Combining pharmacological and psychological treatments for binge eating disorder: current status, limitations, and future directions. *Curr Psychiatry Rep* 2016;18:1-11.

8. Palavras MA, Hay P, Filho CA, Claudino A. The efficacy of psychological therapies in reducing weight and binge eating in people with bulimia nervosa and binge eating disorder who are overweight or obese-a critical synthesis and meta-analyses. *Nutrients* 2017;9:E299. doi:10.3390/nu9030299

9. Cecchini M, Sassi F, Lauer JA, Lee YY, Guajardo-Barron V, Chisholm D. Tackling unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness. *Lancet* 2010;376:1775-1784.

10. Masheb RM, Dorflinger LM, Rolls BJ, Mitchell DC, Grilo CM. Binge abstinence is associated with reduced energy intake after treatment in patients with binge eating disorder and obesity. *Obesity (Silver Spring)* 2016;24:2491-2496.

11. Lasikiewicz N, Myrsoa K, Hoyland A, Lawton CL. Psychological benefits of weight loss following behavioural and/or dietary weight loss interventions. A systematic research review. *Appetite* 2014;72:123-137.

12. Dingermans AE, Bruna MJ, Van Furth EF. Binge eating disorder: a review. *Int J Obes Relat Metab Disord* 2002;26:299-307.

13. Peterson CB, Mitchell JE, Crow SJ, Crosby RD, Wonderlich SA. The efficacy of self-help group treatment and therapist-led group treatment for binge eating disorder. *Am J Psychiatry* 2009;166:1347-1354.

14. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. *J Chronic Dis* 1972;25:329-343.

15. Fairburn CG, Cooper Z, Shafran R. Cognitive behaviour therapy for eating disorders: a “transdiagnostic” theory and treatment. *Behav Res Ther* 2004;41:509-528.

16. Cohen J. A power primer. *Psychol Bull* 1992;112:155-159.

17. Masheb RM, Roberto CA, White MA. Nibbling and picking in obese patients with binge eating disorder. *Eat Disord* 2011;19:255-264.

18. Rush AJ, Trivedi M, Carmody TJ, et al. One-year clinical outcomes of depressed public sector outpatients: a benchmark for subsequent studies. *Biol Psychiatry* 2004;56:46-53.

19. Rosenberg M. *Society and the Adolescent Self-Image*. Princeton, NJ: Princeton University Press; 1965.

20. Sinclair SJ, Blais MA, Gansler DA, Sandberg E, Bistis K, LoCicero A. Psychometric properties of the Rosenberg Self-Esteem Scale: overall and across demographic groups living within the United States. *Eval Health Prof* 2010;33:56-80.

21. Fairburn CG, Cooper Z, Shafran R. Cognitive behaviour therapy for eating disorders: a “transdiagnostic” theory and treatment. *Behav Res Ther* 2004;41:509-528.

22. Biro HR, Massel MP, Crosby RD, Peterson CB, Crow SJ, Mitchell JE. Coping strategies in bulimia nervosa treatment: impact on outcome in group cognitive-behavioral therapy. *J Consult Clin Psychol* 2005;73:1089-1096.

23. Barnes RD, Blomquist KK, Grilo CM. Exploring pretreatment weight trajectories in obese patients with binge eating disorder. *Compr Psychiatry* 2011;52:312-318.

24. Ivezaj V, Kalebjian R, Grilo CM, Barnes RD. Comparing weight gain in the year prior to treatment for overweight and obese patients with and without binge eating disorder in primary care. *J Psychiatr Res* 2014;47:151-154.

25. Pacanowski CR, Senso MM, Orisogun K, Crain AL, Sherwood NE. Binge eating behavior and weight loss maintenance over a 2-year period. *J Obes* 2014;2014:249315. doi:10.1155/2014/249315

26. Stice E, Shaw HE. Role of body dissatisfaction in the onset and maintenance of eating pathology: a synthesis of research findings. *J Psychosom Res* 2002;53:985-993.

27. Fairburn CG, Cooper Z, Shafran R. Cognitive behaviour therapy for eating disorders: a “transdiagnostic” theory and treatment. *Behav Res Ther* 2004;41:509-528.

28. Cohen J. A power primer. *Psychol Bull* 1992;112:155-159.

29. Masheb RM, Roberto CA, White MA. Nibbling and picking in obese patients with Binge Eating Disorder. *Eat Behav* 2013;14:424-427.

30. Bjorvell H, Rossner S, Stunkard A. Obesity, weight loss, and dietary restraint. *Int J Eat Disord* 1986;5:727-734.

31. Fairburn C. *Cognitive Behavior Therapy and Eating Disorders*. New York: Guilford Press; 2008.

32. Fossati M, Amati F, Painot D, Reiner M, Haenni C, Golay A. Cognitive-behavioral therapy with simultaneous nutritional and physical activity education in obese patients with binge eating disorder. *Eat Weight Disord* 2011;16:297-306.

33. Jeffery RW, Wing RR, Sherwood NE, Tate DF. Physical activity and weight loss: does prescribing higher physical activity goals improve outcome? *Am J Clin Nutr* 2003;78:684-689.

34. Penedo FJ, Dahn JR. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. *Curr Opin Psychiatry* 2005;18:189-193.

35. Haed-Matt AA, Keel PK. Revisiting the affect regulation model of binge eating: a meta-analysis of studies using ecological momentary assessment. *Psychol Bull* 2011;137:660-681.