Branching Pattern Variations of the Celiac Trunk and Superior Mesenteric Arteries in a 94-Year-Old White Female Cadaver

Emma Beer¹, Ryan Frazier¹, Gary Wind² and Guinevere Granite²*

¹F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA
²Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, USA

*Corresponding author: Dr. Guinevere Granite, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, USA, E-mail: guinevere.granite@usuhs.edu

Citation: Emma B, Ryan F, Gary W, Guinevere G (2020) Branching Pattern Variations of the Celiac Trunk and Superior Mesenteric Arteries in a 94-Year-Old White Female Cadaver. Front J Anat Var Vol.1 No.1:02

Copyright: © 2020 Emma B, et al. This is an open-access article distributed under the terms of the creative commons attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received Date: 05 September 2020; Accepted Date: 14 September 2020; Published Date: 21 September 2020

ABSTRACT

Recognizing the presence of abdominal vascular anatomical variations in patients is imperative for surgeons who perform major abdominal surgeries, vascular interventionalists performing ablations or embolizations, and oncologists administering targeted chemotherapies. Neglecting to identify such variations can lead to significant patient morbidity and mortality. It is similarly important to anatomical instructors in the education of future medical providers. During cadaveric dissection of fifty-six cadavers, we observed several unique anatomical variations occurring within the major enteric vessels of the abdomen of a 94-year-old white female cadaver. These variations included a celiac trunk that gave rise to bilateral inferior phrenic arteries, the splenic artery, and a gastrohepatic artery that gave off the left gastric artery, an accessory left hepatic artery, and then continued as a common hepatic artery. Shortly from its origin, the common hepatic artery then trifurcated into a large gastroduodenal artery, the right hepatic artery, and the left hepatic artery. There was no definitive proper hepatic artery present. The accessory left hepatic artery gave off an accessory left gastric artery. The cystic artery derived directly from the superior mesenteric artery, and the middle colic artery arose from the gastroduodenal artery. The middle colic artery also had an accessory aberrant left colic artery branching from it. These anatomical variations described herein are of both clinical significance and academic consequence. While single anatomic variations are well described, the presence of multiple, complex variations in a single patient, such as those described here, is less common in the literature. To our knowledge, there are no other reports of this combination of variations in the literature to date. Operating surgeons and vascular interventionalists should be aware of these variants as they occur both individually and in combination while treating diverse patient populations. Accordingly, the developmental and clinical significance of these anomalous vessels is discussed here.
Keywords: Celiac trunk variations; Cystic artery variations; Superior mesenteric variations; Arterial branching variations; Replaced or aberrant left colic artery; Inferior phrenic artery variations; Accessory left hepatic artery; Accessory left gastric artery; Accessory aberrant left colic artery; Anatomical variations; Gastrointestinal anatomical variations

INTRODUCTION

Variations in the arterial anatomy supplying the liver, gallbladder, and gastrointestinal tract have been well described as occurring individually. The coexistence of multiple variations in a single individual, however, is less observed. This article highlights numerous, simultaneous potential celiac trunk (CT) variations and superior mesenteric artery (SMA) variations. Clinical implications of aberrant or variant arterial anatomy have consequences for both abdominal surgery and chemoembolization of malignant lesions. Case studies of variations are of great importance to training surgeons and the instruction of anatomists alike to avoid iatrogenic complications and further compile demographic data to guide clinical decision-making. This case highlights the importance of the embryologic development of the ventral abdominal arterial system, knowledge of both common and uncommon variants by anatomical instructors and interventionalists, and potential implications on patient morbidity and mortality. During anatomical dissection of fifty-six cadavers in the 2019-2020 undergraduate medical and graduate nursing anatomy courses at the Uniformed Services University of the Health Sciences (USUHS), we found numerous, simultaneous potential celiac trunk (CT) and superior mesenteric artery (SMA) variations present in a preserved 94-year-old white female cadaver donated to the USUHS.

CASE DESCRIPTION

The branching pattern variations observed in the 94-year-old white female (listed cause of death of ischemic stroke) were as follows. The branches of the CT included the right inferior phrenic artery (RIPA), the left inferior phrenic artery (LIPA), a common trunk that gave rise to an accessory left hepatic artery (ALHA) and the left gastric artery (LGA), and a common trunk giving rise to the splenic artery (SA) and common hepatic artery (CHA). The ALHA also had an accessory left gastric artery (ALGA) branching from it. As the CHA became the proper hepatic artery (PHA), it gave off the following branches: the left hepatic artery (LHA), the right hepatic artery (RHA), and the gastroduodenal artery (GDA). The GDA had a common trunk branching from it that included the middle colic artery (MCA) and an accessory aberrant left colic artery (AALCA) (Figures 1-3). The AALCA assisted the marginal artery (MA) in supplying the distal third of the transverse colon and splenic flexure. The SMA gave rise to the cystic artery (CA), right colic artery (RCA), ileocolic artery (ICoA), and the ileal-jejunal arteries (I-JAs) (Figure 4).

![Figure 1](image_url)

Figure 1: Illustrative schematic of the vascular variations found with the celiac trunk and superior mesenteric arteries. ALGA = Accessory Left Gastric Artery; ALHA = Accessory Left Hepatic Artery; CA = Cystic Artery; CHA = Common Hepatic Artery; CT = Celiac Trunk; GDA = Gastroduodenal Artery; GHA = Gastrohepatic Artery; LGA = Left Gastric Artery; LHA = Left Hepatic Artery; LIPA = Left Inferior Phrenic Artery; MCA = Middle Colic Artery; RHA = Right Hepatic Artery; RIPA = Right Inferior Phrenic Artery; SA = Splenic Artery; SMA = Superior Mesenteric Artery.
Figure 2: Facilitated display highlighting the celiac trunk variations. ALGA = Accessory Left Gastric Artery; ALHA = Accessory Left Hepatic Artery; CA = Cystic Artery; CHA = Common Hepatic Artery; CT = Celiac Trunk; GDA = Gastroduodenal Artery; GHA = Gastrohepatic Artery; LGA = Left Gastric Artery; LHA = Left Hepatic Artery; LIPA = Left Inferior Phrenic Artery; LSAA = Left Superior Adrenal Artery; RHA = Right Hepatic Artery; RIPA = Right Inferior Phrenic Artery; SA = Splenic Artery.

Figure 3: Facilitated display highlighting the superior mesenteric artery variations. AALCA = Accessory Aberrant Left Colic Artery; GDA = Gastroduodenal Artery; IMA = Inferior Mesenteric Artery; LCA = Left Colic Artery; MCA = Middle Colic Artery; RCA = Right Colic Artery; SMA = Superior Mesenteric Artery; SMV = Superior Mesenteric Vein.
DISCUSSION

Variations in the number and branching patterns of the celiac-mesenteric arterial system have been described extensively. These variations typically occur independently and are described as single entities. The coexistence of multiple variations in a single individual, however, is less common in the literature. Here, we have described variations in branching of the CT and SMA that occurred in a single case study.

The importance using anatomical landmarks to identify the arterial vessels supplying abdominal organs was emphasized by J.F. Calot in 1891 [1]. He highlighted in particular those of the CA during cholecystectomy. Since then, variations in enteric circulation have been characterized to inform clinical decision making and guide surgical approaches. In-depth knowledge of branching patterns of these arteries is important for surgeons and anatomists alike.

CELIAC TRUNK (CT) BRANCING VARIATIONS

The CT classically arises as the first ventral branch of the abdominal aorta at the level of the T12 and L1 vertebrae and inferior to the esophageal hiatus of the diaphragm. The CT typically supplies the foregut, comprising the stomach, spleen, pancreas, liver, and part of the duodenum [2-28]. In order to supply these organs, the trunk travels forward in a horizontal plane and trifurcates into the LGA, CHA, and SA.

This branching pattern, however, can vary. Multiple authors have classified potential variations [2,14,27,29-34], with patterns ranging from two to six distinct branches [35]. When these variations occur in lieu of the typical branches, they are known as replaced or aberrant branches [4]. They are known as accessory branches when they occur alongside the usual LGA, CHA, and SA [4]. Variations in branching patterns include the inferior phrenic arteries [36], and superior adrenal arteries, while left or right middle adrenal, dorsal pancreatic, RHA, accessory hepatic, and MCA have also been described [4,5,26,37,38]. Clinical awareness of the variant origins of these arteries is important for surgeons approaching the stomach, duodenum, pancreas, hepatobiliary region, liver transplantation, and chemoembolization of pancreatic and hepatic tumors [37].

Figure 4: Facilitated display of the branching pathway of the cystic artery as it branched from the superior mesenteric artery. CA = Cystic Artery; SMA = Superior Mesenteric Artery; SMV = Superior Mesenteric Vein.
Vascular variations as a whole are understood to correlate with embryologic development. The arterial supply for the abdominal alimentary organs develops segmentally with paired ventral splanchnic arteries diverging from the paired dorsal aortae [2,4,5,10-12,14,22,34,37,39-46]. These paired ventral splanchnic arteries fuse into unpaired trunks after the fusion of the dorsal aortae, ultimately supplying the primitive digestive tube. Dorsal and ventral splanchnic anastomoses connect these trunks longitudinally along the dorsal and ventral aspects of the tube. The arterial supply to the digestive tube is simplified and transformed in the later stages of development into three systems of arteries. These supply the foregut, midgut, and hindgut as the CA, SMA, and inferior mesenteric arteries respectively [45].

However, abnormal fusion of the ventral branches of the dorsal aortae may result in variations including formation of celiacomesenteric, celiacomesentericophrenic, or hepatomesenteric trunks [3-5,37,47]. These variations of the celiac trunk were classified by Michels into six key types [47]. The variation described in this article most closely resembles Type V given the presence of an accessory left hepatic artery. However, this classification does not account for the accessory right and left inferior phrenic arteries arising from the CT in this case (Figures 1 and 2). The presence of bilateral inferiorphrenics has been described in 13-51% of cases, as described by Toro and colleagues in 2017 [36].

Furthermore, the case reported here describes the presence of an ALGA arising from an ALHA, which is likewise not accounted for in Michels’ classification schema. In 2006, Ishigami and colleagues detected the presence of a LGA originating from the LHA in 21% of patients receiving in a cohort study comparing the diagnostic accuracy of multiphase contrast-enhanced CT and CT during angiography with intra-arterial injection of contrast (n=118) [48]. This is in contrast with the incidence reported by Nakamura (14.2%) and Michels (3.0%) [49,50]. An awareness of these reports is clinically significant because an ALGA may mistakenly be identified as an intrahepatic branch of the LHA during prophylactic embolization prior to hepatic arterial infusion chemotherapy [48,49,51]. Additionally, Kim and colleagues (2016) noted that identification and preservation of large diameter (>5 mm) ALHA during laparoscopic gastrectomy correlated with improved hepatic function in the postoperative period, suggesting further clinical implications for the study and recognition of these variations [52].

Additional variations in CT anatomy noted in this case include the MCA, which is usually a branch of the SMA, arising from the GDA. Further discussion of this variation is included below.

REPLACED CYSTIC ARTERY

The SMA classically originates at the lower third level of L1 vertebrae as the second branch of the abdominal aorta and branches into the inferior pancreaticoduodenal artery, MCA, right colic artery and ileocolic artery. With these branches, the SMA supplies blood to parts of the duodenum and pancreas, the small intestines, and the left third of the transverse colon [31,38,53]. Like those of the CT discussed above, the SMA can present with variations in location, number, and branching patterns [2,3,5,6,18,21,25,31,34,35,50,54-66].

Indeed, the classic branching pattern was only found to occur in 22-33% of cadavers assessed by various researchers [3,33,56]. Variations can potentially include normal branches or sub-branches of the CT as well as accessory branches such as a dorsal pancreatic artery that typically arises from other abdominal arteries [33,67,68].

The variation described in this article is the presence of the CA from the SMA (Figure 4). The CA classically originates from the RHA in Calot’s triangle, reaching the gallbladder by traversing posterior to the cystic duct. Variations in the origin of the CA have been described, however, with the CA arising from the PHA in 22% of cases and GDA in 8% [69] and 3% of cases [70]. Pushpalatha (2010) noted the CA to arise from the SMA in 2% of cases, while Anson (1963) and Michels (1965) found no occurrences of such variation in their separate studies [50,71,72].

During embryogenesis, the extrahepatic biliary system arises from an intestinal diverticulum, which carries a supply of blood vessels from the aorta, CT, and SMA. The majority of these vessels are later absorbed, thereby leaving behind a mature vascular system. However, the pattern in which these blood vessels are absorbed can vary. Recognition of the possible variations in CA anatomy is important for the approach to surgical resection of the gallbladder. During laparoscopic cholecystectomy in particular, dissection is limited to a field visible by a laparoscope magnified on a video monitor. Therefore, detailed understanding of possible CA variations and variations in its branches is critical for proper identification and ligation of the vessel intraoperatively.

REPLACED MIDDLE COLIC ARTERY (MCA)

The MCA typically originates from the SMA in 78-99% of cases and supplies the transverse colon [2,3,42,50,56,73,77]. Despite this, there are numerous reports in the literature of variations in course, origination, and number. The MCA derives from the SMA, with the uncinate process of the pancreas superiorly, the third part of the duodenum posteriorly [2,12,44,73,74,76,78]. It divides into left and right branches after traversing the transverse mesocolon inferiorly.
As discussed above, celiacomesenteric anatomy variations are well documented in the literature. However, we were only able to identify three previously reported cases of MCA arising from the GDA [44,79]. Our case presented a MCA that arose from the GDA (Figures 1 and 2).

Previously described MCA variant anatomy includes: replaced MCA arising from the SA, CHA, inferior mesenteric artery, inferior pancreaticoduodenal artery, and aorta [77,79-81]; absent MCA [77]; and accessory MCA [77].

Indrajit et al. (2013) detailed two cases similar to our case study, in which the MCA arose directly from the GDA [44]. In the first case, the researchers noted the GDA supplied the right and middle part of the transverse colon in addition to its usual branches. In the second case, the GDA likewise supplied the hepatic flexure and right part of the transverse colon in addition to its normal branches. Kwong et al. (2019) reported a similar finding intraoperatively during a Whipple procedure, which further emphasizes the clinical importance of recognizing vascular anomalies and careful technical dissection intraoperatively [79].

Notably, the cases reported by Indrajit et al. (2013), Kwong et al. (2019), and our case study all involved female cadavers [44,79]. The rarity of this anatomical variant in combination with the concurrence of reported female cases serves as mounting evidence that female sex may be a predilection for this condition. Knowledge of anomalous foregut and midgut vasculature is necessary to prevent injury to these vessels during surgical and intravascular intervention on these regions.

Our case study also had an AALCA that derived from the replaced MCA. In our review of the literature, there is a discordance of nomenclature surrounding this structure as evidenced by Ito et al. (2019) [82]. These researchers asserted that the terms ‘superior left colic artery,’ ‘left accessory aberrant colic artery,’ and ‘accessory left colic artery’ are different terms for accessory middle colic arteries. The term “superior left colic artery” was first coined by Koizumi et al (1990) [83]. Koizumi and colleagues observed this artery in 32 of 65 specimens studied (49.2%) [83]. They proposed, in the presence of a superior left colic artery, referring to the LCA by the name “inferior left colic artery” [83]. Koizumi et al. (1990)’s description of this variance mimics the anatomical relationship of the MCA and the additional artery present in our case study.

Rusu and colleagues (2008) challenged this designation after surveying seven similar studies in comparison to their own superior left colic artery, which derived from the SMA [3,56,80,83-85]. Rusu et al. (2008) suggests that if the artery derives from an origin other than the IMA or its network, it ought to be called “aberrant” [84]. They termed their discovered variant “left accessory aberrant colic artery.” In light of these recommendations, we agree with Rusu et al. (2008)’s designation since our additional artery does not derive from the IMA, but provides blood supply to the distal third of the transverse colon and the splenic flexure.

This necessitates that the superior left colic artery discovered in our case study, which derives its origin from a common trunk with the MCA that arose from the GDA, rather than directly from the SMA, should be called “accessory aberrant left colic artery (AALCA).” We believe this to be the most accurate description of this variant anatomy, as the hindgut receives its vascular supply from foregut vasculature.

CONCLUSION

The presence of several vascular anomalies a 94-year-old white female cadaver emphasizes the importance of anatomical study for future health care providers, preoperative diagnostic imaging before surgical intervention, and intraoperative awareness of the array of vascular anomalies that can be present. The frequency for these variations to occur independently in one individual is estimated to be extremely low. It is more likely, then, that these variations are due to disruptions in the embryonic development of the enteric circulation, causing the combination of rare arterial variations presented in the current case. Accordingly, the case described herein further adds to the growing list of existing complex variations in the celiac-mesenteric arterial system.

ACKNOWLEDGEMENTS

We would like to thank the family of our donor for their beneficent contribution. Without their generosity, this article would not have been possible. We would also like to thank Ms. Sara Chae for assisting us in our literature review.

GRANT SUPPORT

There is no grant support related to this research or publication.

Presentation at meeting: Not applicable

DISCLAIMER

The opinions or assertions contained herein are the private ones of the author/speaker and are not to be
REFERENCES
1. Calot J (1981) De la cholecystecomie. Med Frc de Paris. Dissertation.
2. Granite G, Meshida K, Wind G (2019) Branching pattern variations of the celiac trunk and superior mesenteric artery in a 72-year-old white female cadaver. Int J Anat Var Vol 124: 55.
3. Nelson TM, Pollak R, Jonasson O, Abcarian H (1988) Anatomic variants of the celiac, superior mesenteric, and inferior mesenteric arteries and their clinical relevance. Clin Anat 12: 75-91.
4. Astik RB, Dave UH (2011) Uncommon branching pattern of the celiac trunk: origin of seven branches. Int J Anat Var 41: 83-85.
5. Awad AS, Imam AA, Mohamed EA, Shona SA (2017) Anatomical variations of celiac trunk: an angiographic study. Med J Cairo Univ 85: 119-126.
6. Saritha S, Supriya G, Anjankar S, N. Himabindu (2013) Coeliac trunk variations and a reminder of surgical anatomy. An autopsy series of 40 dissections. Int J Res Med Sci 1: 3.
7. Sehgal G, Srivastava A, Sharma P, Kumar N, Singh R, et al (2013) Morphometry of the celiac trunk: a multidetector computed tomographic angiographic study. J Ant Soc India 621: 23-27.
8. Tihan D, Babacan S, Ergin T, Teomete U, Dandin Ö, et al (2016) Absence of the celiac trunk in a rectal cancer patient: case report. Anat Int J Exp Clin Anat 10.
9. Agarwal S, Pangtey B, Vasudeva N (2016) Branching pattern variations of the celiac trunk and its embryological and clinical perspective. J Clin Diagn Res 106: AD05.
10. Betal R, Mazumdar S, Mazumdar A (2016) Absence of middle colic artery from the superior mesenteric artery. BLDE Univ J Health Sci 11: 49-51.
11. De Martino RR (2015) Normal and variant mesenteric anatomy. In mesenteric vascular disease. Springer 8: 9-23.
12. Vijaykiran B, Sontakke Y (2018) Variant middle colic artery arising from inferior mesenteric artery. Eur J Pharm Med Res 5: 507-509.
13. Nayak SB, Sirasanagandla S, George BM, Mishra S, Kumar N, et al. (2014) Unusual origin of left colic artery from the superior mesenteric artery and its course across the left kidney. OA Case Reports 3: 1-3.
14. Dilli Babu E, Khkrab P (2013) Coeliac trunk variations: review with proposed new classification. Int J Anat Res 1: 165-170.
15. Khan RN, Ali M, Sadiq M (2017) Detecting anatomical variations of coeliac trunk branching pattern in the population of Karachi using 3D multidetector computed tomographic angiography (MDCTA). Annals ASH KM & DC 22: 262-269.
16. Lakshmi VV, Vasanthi A, Devi GR (2017) Anatomical variation of the coeliac trunk. J Dent Med Sci 16: 50-53.
17. Mahajan A, Tiwari S, Mishra S (2018) A unique conglomeration of variations in the celiac, hepatic, and superior mesenteric artery: A clinico-embryological perspective. Int J Appl Basic Med Res 8: 256.
18. Marco-Clement I, Martinez-Barco A, Ahumada N, Simon C, Valderrama JM, et al. (2016) Anatomical variations of the celiac trunk: cadaveric and radiological study. Surg Radiol Anat 38: 501-510.
19. Pinal-Garcia DF, Nuno-Guzman CM, Gonzalez-Gonzalez ME, Ibarra-Hurtado TR (2018) The celiac trunk and its anatomical variations: A cadaveric study. J Clin Med Res 10: 321.
20. Rajini T, Mokhasi V, Geethanjali B, Sivacharan PV, Shashirekha M (2012) Coeliac trunk and its branches: anatomical variations and clinical implications. Singapore Med J 53: 329-331.
21. White RD, Weir-McCall JR, Sullivan CM, Mustafa SA, Yeap PM, et al. (2015) The celiac axis revisited: anatomic variants, pathologic features, and implications for modern endovascular management. Radiographics 35: 879-898.
22. Yadav SP, Sinha RS, Patil T (2014) Study of variations of coeliac trunk in western Maharashtra population. Int J Cur Res Rev 6: 31.
23. Jain P, Motwani R (2013) Morphological variations of superior mesenteric artery: a cadaveric study. Int J Anat Res 1: 83-87.
24. Yang Y, Oraee S, Viejo C, Stern H (2011) Computed tomography celiac trunk topography relating to celiac plexus block. Reg Anesth Pain Med 36: 21-25.
25. Caliskan E, Acar T, Ozturk M, Bayramoglu Z, Yilmaz R, et al. (2018) Coeliac trunk and common hepatic artery variations in children: an analysis with computed tomography angiography. Folia Morphol 77: 670-676.
26. Hemamalini (2018) Variations in the branching pattern of the celiac trunk and its clinical significance. Anat Cell Biol 51: 143-149.
27. Panagouli E, Venieratos D, Lolis E, et al. Variations in the anatomy of the celiac trunk: a systematic review and clinical implications. Ann Anat. 2013;195:501-511.
28. Venieratos D, Panagouli E, Lolis E, Skandalakis P (2013) A morphometric study of the celiac trunk and review of the literature. Clin Anat 195:501-511.
29. Lipshtuz B (1917) A composite study of the coeliac axis artery. Ann Surg 65: 159.
30. Uflacker R (1997) Atlas of vascular anatomy: an angiographic approach. Williams & Wilkins 83: 661-667.
31. Adachi B, Haseki D, Daigaku KT (1928) The arterial system of the Japanese. Imperial-Japanese University of Kyoto 2: 365-368.
32. Morita M (1935) Reports and conception of three anomalous cases on the area of the celiac and superior mesenteric arteries. Acta Med 9: 1993-2006.
33. Michels NA (1966) Newer anatomy of the liver and its variant blood supply and collateral circulation. Am J Surg 112: 337-347.
34. Sureka B, Mittal MK, Mittal A, Sinha M, Bhambri NK, et al. (2013) Variations of celiac axis, common hepatic artery and its branches in 600 patients. Indian J Radiol Imaging 23: 223.
35. Sahni D, Aggarwal A, Gupta T, Kaur H, Gupta R, et al. (2016) Abdominal aorta-Bergman’s Comprehensive Encyclopedia of Human Anatomical Variations. Wiley Blackwell: Hoboken 6: 19-81.
36. Toro JSC, Prada G, Takeuchi SYR, Carbonell JP, Charry D (2017) Prevalence of anatomical Celiac Trunk variations using 3D Angiography Computed Tomography images in a reference Hospital. J Clin Exp Res Cardiol 3: 201.
37. Agarwal S, Pangtey B, Vasudeva N (2016) Unusual variation in the branching pattern of the celiac trunk and its embryological and clinical perspective. J Clin Diag Res 10: 05-07.
38. Mahajan A, Tiwari S, Mishra S (2018) A unique conglomeration of variations in the celiac, hepatic, and superior mesenteric artery: a clinico-embryological perspective. Int J Appl Basic Med Res 8: 256-258.
39. Tihan D, Babacan S, Ergin T, Teomete U, Dandin Ö, et al. (2016) Absence of the celiac trunk in a rectal cancer patient: case report. Anat Int J Exp Clin Anat 1: 235-238.
40. Santos PVD, Barbosa ABM, Targino VA, Silva ND, Silva YC, et al. (2018) Anatomical variations of the celiac trunk: a systematic review. Arq Bras Cir Dig 31: e1403.
41. Thamke S, Rani P (2017) Variant anatomy of common hepatic artery and its branching pattern: a cadaveric study with clinical implication. Int J Res Med Sci 5: 3966-3970.
42. Milnerowicz S, Milnerowicz A, Tabola R (2012) A middle mesenteric artery. Surg Radiol Anat 34: 973-975.
43. Covajtěn S, Mazuruc N, Belic O (2017) An unusual case of colon vascularization by the inferior mesenteric artery. J Vasc Bras 16: 52-55.
44. Indrajit G, Ansuman R, Pallab B (2013) Variant origin of the middle colic artery from the gastroduodenal artery. Int J Anat Var 6.
45. Williams PL, Worwick R (1980) Gray’s Anatomy.36th ed. Churchill Livingstone: 149-168.
46. Karmalkar AS, Patil PS, Pote AJ, Nikam VR, Patil AD, et al. (2014) Anatomical variation and clinical implications of celiac trunk and superior mesenteric arteries. Int J Anat Radiol Surg 3: 7-10.
47. Michels NA (1995) Blood supply and anatomy of the upper abdominal organs with descriptive atlas. Lippincott.
48. Ishigami K, Yoshimitsu K, Irie H, Tajima T, Asayama Y, et al. (2006) Accessory left gastric artery from left hepatic artery shown on MDCT and conventional angiography: correlation with CT hepatic arteriography. AJR Am J Roentgenol 187: 1002-1009.
49. Nakamura H, Uchida H, Kuroda C, Yoshioka H, Tokunaga K, et al. (1980) Accessory left gastric artery arising from left hepatic artery: angiographic study. AJR Am J Roentgenol 134: 529-532.
50. Michels NA, Siddharth P, Kornblith PL, Parke WW (1965) The variant blood supply to the descending colon, rectosigmoid and rectum based on 400 dissections. Its importance in regional resections: a review of medical literature. Dis Colon Rectum 8: 251-278.
51. Marnix G, Lam H, Borggreve AS, Anadejida J, Landman C, et al. (2016) Accessory left hepatic artery from left hepatic artery is a potential risk for radioembolization complications. Cardiovasc Intervent Radiol 39: 1367.
52. Kim J, Kim SM, Seo JE, Ha MH, An JY, et al. (2016) Should an aberrant left hepatic artery arising from the left gastric artery be preserved during laparoscopic gastrectomy for early gastric cancer treatment? J Gastric Cancer 16: 72-77.
53. Sahani DV, Krishnamurthy SK, Kalva S, Cusack J, Hahn PF, et al. (2004) Multidetector-row computed tomography angiography for planning intra-arterial chemotherapy pump placement in patients with colorectal metastases to the liver. J Comput Assist Tomogr 28: 478-484.
54. Rajini T, Mokhari V, Geethanjal P, Sivacharan PV, Shashikha M (2012) Coeliac trunk and its branches: anatomical variations and clinical implications. Singapore Med J 53: 329-331.
55. Marco-Clement I, Martinez-Barco A, Ahumada N, Simon C, Valderrama JM, et al. (2016) Anatomical variations of the celiac trunk: cadaveric and radiological study. Surg Radiol Anat 38: 501-510.
56. Sonneland J, Anson BJ, Beaton LE (1958) Surgical anatomy of the arterial supply to the colon from the superior mesenteric artery based upon a study of 600 specimens. Surg Gynecol Obstet 106: 385-398.

57. Matusz P, Iacob N, Miclaus GD, Pureca A, Ples H, et al. (2013) An unusual origin of the celiac trunk and the superior mesenteric artery in the thorax. Clin Anat 26: 975-979.

58. Varma KS, Pamidi N, Vollala VR, Bolla SR (2010) Hepato-spleno-mesenteric trunk: a case report. Rom J Morphol Embryol 51: 401-402.

59. Brasil IRC, de Araujo IF, Lima A, Melo EL, Esmeraldo RD (2018) Computed tomography angiography study of variations of the celiac trunk and hepatic artery in 100 patients. Radiol Bras 51: 32-36.

60. Pandey SK, Bhattacharya S, Mishra RN, Shukla VK (2004) Anatomical variations of the splenic artery and its clinical implications. Clin Anat 17: 497-502.

61. Ray CE, Gupta AK, Shenoy SS (1998) Left gastric artery arising from the superior mesenteric artery-case reports. Angiology 49:1017-1021.

62. Ye Z, Ye S, Zhou D, Zheng S, Wang W (2017) A rare variation of celiac trunk and hepatic artery complicating pancreaticoduodenectomy. A case report and literature review. Medicine 96: 1-5.

63. Farghadani M, Momeni M, Hekmatnia A, Momeni F, Mahdavi MM (2016) Anatomical variation of celiac axis, superior mesenteric artery, and hepatic artery: Evaluation with multidetector computed tomography angiography. J Res Med Sci 21: 129.

64. Nonent M, Larroche P, Forlodou P, Senecail B (2001) Celiac-bimesenteric trunk: anatomic and radiologic description-case report. Radiol 220: 489-491.

65. Belilo MA, Ali IA, Abuelnor MA (2017) Cadaveric study of anatomical variations of hepatic artery in sudanese 2014. Anat Phys Biochem Int J 3: 555612.

66. Tsukamoto N (1929) The branches of the abdominal visceral arteries in Japanese. Kaibogaku Zasshi Asshi 2: 780-829.

67. Thomford NR, Chandnani PC, Taha AM, Chablani VN, Busnardo AC (1986) Anatomic characteristics of the pancreatic arteries. Radiologic observations and their clinical significance. Am J Surg 151: 690-693.

68. Vandamme JP, Bonte J (1985) The branches of the celiac trunk. Cells Tissues Organs 122: 110-114.

69. Dandekar U, Dandekar K (2016) Cystic artery: morphological study and surgical significance. Anat Res Int 16: 01-06.

70. http://www.anatomyatlases.org/}

71. Pushpalatha K, Shamasundar N (2010) Variation in the origin of cystic artery. J Anat Soc India 59: 35-37.

72. Anson BH (1963) The aortic arch and its branches. In Cardiology. New York 119.

73. Wadhwa S, Barua MP (2008) Anomalous middle colic artery originating from common hepatic artery: a case report. Clin Anat 21: 798-799.

74. García-Ruiz A, Milson JW, Ludwig KA, Marchesa P (1996) Right colonic arterial anatomy. Implications for laparoscopic surgery. Dis Colon Rectum 39: 906-911.

75. Basmaian JV (1995) The main arteries of the large intestine. Surg Gynecol Obstet 101: 585-591.

76. Ramasamy C Ramasamy SK (2015) Double middle colic arteries in a female cadaver of asian origin-a case report. Argent J Clin Anat 7: 118-121.

77. Steward J, Rankin FW (1933) Blood supply of the large intestine: its surgical considerations. Arch Surg 26: 843-891.

78. Tubbs RS, Shoja MM, Loukas M (2016) Bergman’s comprehensive encyclopedia of human anatomic variation. John Wiley & Sons.

79. Kwong ML, Pelton J (2019) Middle colic artery originating from the gastroduodenal artery discovered during a whipple. Case Rep Surg 19.

80. Amonoo-Kuofi HS, El-Badawi MG, El-Naggar ME (1995) Anomalous origins of colic arteries. Clin Anat 8: 288-293.

81. Chitra R (2010) Clinically relevant variations of the coeliac trunk. Singapore Med J 51: 216-219.

82. Ito K, Takemura N, Inagaki F, Mihara F, Kurokawa T, et al. (2019) Arterial blood supply to the pancreas from accessory middle colic artery. Pancreatol 19: 781-785.

83. Koizumi M, Horiguchi M (1990) Accessory arteries supplying the human transverse colon. Cells Tissues Organs 137: 246-251.

84. Rusu M, Vlad M, Voinea LM, Cucă GC, Şişu AM (2008) Detailed anatomy of a left accessory aberrant colic artery. Surg Radiol Anat 30: 595-599.

85. Vandamme J, Bonte J, Van der Schueren G (1982) Re-evaluation of the colic irrigation from the inferior mesenteric artery. Cells Tissues Organs 112: 18-30.