A systematic review of outcome and outcome-measure reporting in randomised trials evaluating surgical interventions for anterior-compartment vaginal prolapse: a call to action to develop a core outcome set

Constantin M. Durnea 1,2 · Vasilios Pergialiotis 3 · James M. N. Duffy 4,5 · Lina Bergstrom 6 · Abdullatif Elfituri 1 · Stergios K. Doumouchtsis 1,3,6 · CHORUS, an International Collaboration for Harmonising Outcomes, Research and Standards in Urogynaecology and Women’s Health

Abstract

Introduction We assessed outcome and outcome-measure reporting in randomised controlled trials evaluating surgical interventions for anterior-compartment vaginal prolapse and explored the relationships between outcome reporting quality with journal impact factor, year of publication, and methodological quality.

Methods We searched the bibliographical databases from inception to October 2017. Two researchers independently selected studies and assessed study characteristics, methodological quality (Jadad criteria; range 1–5), and outcome reporting quality (Management of Otitis Media with Effusion in Cleft Palate (MOMENT) criteria; range 1–6), and extracted relevant data. We used a multivariate linear regression to assess associations between outcome reporting quality and other variables.

Results Eighty publications reporting data from 10,924 participants were included. Seventeen different surgical interventions were evaluated. One hundred different outcomes and 112 outcome measures were reported. Outcomes were inconsistently reported across trials; for example, 43 trials reported anatomical treatment success rates (12 outcome measures), 25 trials reported quality of life (15 outcome measures) and eight trials reported postoperative pain (seven outcome measures). Multivariate linear regression demonstrated a relationship between outcome reporting quality with methodological quality ($\beta = 0.412; P = 0.018$).

No relationship was demonstrated between outcome reporting quality with impact factor ($\beta = 0.078; P = 0.306$), year of publication ($\beta = 0.149; P = 0.295$), study size ($\beta = 0.008; P = 0.961$) and commercial funding ($\beta = −0.013; P = 0.918$).

Conclusions Anterior-compartment vaginal prolapse trials report many different outcomes and outcome measures and often neglect to report important safety outcomes. Developing, disseminating and implementing a core outcome set will help address these issues.

Keywords Anterior repair · Colporrhaphy · Core outcome sets · Cystocele · Outcomes · Outcome measures

Introduction

The most common type of pelvic organ prolapse (PO) is anterior-compartment prolapse. Hendrix et al. demonstrated in a group of 16,616 postmenopausal women a prevalence of anterior-compartment prolapse of 34%, and this was much higher than the rates of apical- or posterior-compartment prolapse [1]. The aetiology of pelvic organ prolapse (POP) is complex and associated with various factors such as age, menopausal status and childbirth-related pelvic floor trauma [2, 3]. Possible surgical interventions include biological-graft, mesh and native tissue repair [4, 5]. The development of new surgical interventions is urgently required, and potential surgical
interventions require robust evaluation. Selecting appropriate efficacy and safety outcomes is a crucial step in designing randomised trials. Outcomes collected and reported in randomised trials should be relevant to a broad range of stakeholders, including women with anterior-compartment prolapse, healthcare professionals and researchers. For example, resolution of bladder symptoms is an important outcome for all stakeholders; however, it is not commonly reported across trials. Even when outcomes have been consistently reported, secondary research methods, including pair-wise meta-analysis, may be limited by the use of different definitions and measurement instruments [6, 7]. A core outcome set should help address these issues. The first stage in core outcome-set development is to evaluate outcome and outcome-measure reporting across published trials. Therefore, we systematically evaluated outcome and outcome-measure reporting in published randomised trials evaluating surgical interventions for anterior-compartment prolapse. In addition, we assessed the relationships between outcome reporting quality with other important variables, including year of publication, impact factor and methodological quality.

Materials and methods

This systematic review is part of a wider project of the International Collaboration for Harmonising Outcomes, Research and Standards in Urogynaecology and Women’s Health (CHORUS) (i-chorus.org) and was registered with the Core Outcome Measures in Effectiveness Trials (COMET) initiative database, registration number 981, and with the International Prospective Register of Systematic Reviews (PROSPERO), registration identification CRD42017062456. We searched bibliographical databases comprising the Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE and MEDLINE from inception to September 2017. The search strategy used several MeSH terms, including bladder prolapse, cystocele and POP. Randomised trials evaluating surgical interventions for anterior-compartment prolapse were eligible. We included trials evaluating the surgical management of anterior prolapse as a unicompartmental prolapse procedure, as well as trials in which anterior repair was undertaken in addition to other surgical interventions. Non-randomised studies, observational studies and case reports were excluded.

Two researchers (CD and AE) independently screened the titles and abstracts of electronically retrieved articles. The articles potentially eligible for inclusion were retrieved in full text to assess eligibility, and reference lists were independently reviewed. Any discrepancies between the researchers were resolved by review of a third senior researcher (SKD). Two researchers (CD and AE) independently extracted the study characteristics, including year of publication, journal topicality (subspecialist, general obstetrics and gynaecology or general medicine), journal’s impact factor and commercial funding (yes/no). The journal’s impact factor was determined using InCites Journal Citation Reports (Clarivate Analytics, Thomson Reuters, New York, NY, USA). Funding status was identified by reviewing the article text and included the

![Fig. 1 Study search and inclusion](image-url)
Author	Study year	Journal	Impact factor	Journal type	Jadad score	MOME NT score	Study size	Commercial funding	Validated questionnaire use	Intervention group 1	Intervention group 2	Intervention group 3	Intervention group 4
Altman et al.	2011	New England Journal of Medicine	29.1	G	4	5	389	Yes	Yes	Anterior colporrhaphy	Transvaginal mesh repair		
Antosh et al.	2013	Obstetrics and Gynaecology	4.78	S	3	6	60	No	Yes	Use of dilators post prolapse surgery	Non-use of dilators post prolapse surgery		
Ballard et al.	2014	International Urogynecology Journal	2.17	G	5	5	150	No	Yes	Preop. bowel preparation	Preop. non bowel preparation		
Benson et al.	1996	American Journal of Obstetrics and Gynaecology	–	S	3	3	80	No	No	Pelvic surgery for prolapse	Abdominal surgery		
Borstad et al.	2009	International Urogynecology Journal	2.84	SS	3	4	184	No	No	Anterior colporrhaphy TVT	Anterior colporrhaphy + TVT staged procedure		
Bray et al.	2017	European Journal of Obstetrics & Gynaecology and Reproductive Biology	N/A	G	3	5	60	No	N/A	Suprapubic catheter	Immediate removal of catheter		
Carey et al.	2009	British Journal of Obstetrics and Gynaecology	4.64	S	3	5	139	Yes	Yes	Conventional vaginal repair	Mesh vaginal repair		
Choe et al.	2000	Journal of Urology	2.64	SS	2	3	40	No	Yes	Antilogous vaginal wall slings	Micromesh		
Colombo et al.	2000	British Journal of Obstetrics and Gynaecology	4.64	S	3	3	71	No	No	Anterior colporrhaphy	Burch colposuspension		
da Silveira et al.	2014	International Urogynecology Journal	2.17	SS	3	5	184	Yes	Yes	Native tissue repair	Synthetic mesh repair		
Dahlgren et al.	2011	Acta Obstetricia et Gynaecologica Scandinavica	2.2	S	3	3	135	No	Yes	Conventional colporrhaphy	Porcine skin graft		
Delroy et al.	2013	International Urogynecology Journal	2.45	SS	5	6	79	Yes	Yes	Anterior colporrhaphy	Transvaginal mesh repair		
Dias et al.	2016		2.48	SS	5	6	88	No	Yes				
Author	Study year	Journal	Impact factor	Journal type	Jadad score	MOME NT score	Commercial funding	Validated questionnaire use	Intervention group 1	Intervention group 2	Intervention group 3	Intervention group 4	
------------------------------	------------	---	---------------	--------------	-------------	----------------	--------------------	---------------------------	--	--	--	--	
de Tayrac et al.	2012	Neurourology and Urodynamics	2.53	SS	3	5	147	No	Yes	Anterior colporrhaphy	Transvaginal mesh repair	Anterior colporrhaphy	Transvaginal mesh repair
Ek et al.	2012	International Urogynecology Journal	2.53	SS	2	4	99	No	Yes	Anterior trocar-guided transvaginal mesh repair	Anterior colporrhaphy	Trocar guided transvaginal mesh repair	Trocar guided transvaginal mesh repair
Ek et al.	2010	Neurourology and Urodynamics	3.01	SS	5	4	50	No	N/A	Anterior colporrhaphy	Transvaginal mesh repair	Anterior colporrhaphy	Transvaginal mesh repair
El-Nazer et al.	2012	American Journal of Obstetrics and Gynaecology	1.56	S	5	5	44	No	Yes	Anterior colporrhaphy	Conventional anterior colporrhaphy	Partially absorbable mesh	Partially absorbable mesh
Farthmann et al.	2013	International Urogynecology Journal	2.45	SS	3	3	200	Yes	Yes	Conventional anterior colporrhaphy	Partially absorbable mesh	SIS graft	SIS graft
Feldner et al.	2010	International Urogynecology Journal	2.66	SS	5	5	56	Yes	Yes	Anterior colporrhaphy	SIS graft	Traditional colporrhaphy	Traditional colporrhaphy
Feldner et al.	2012	Clinical Science	5.87	G	5	4	56	No	Yes	Small intestine submucosa graft	24-h catheterisation and vaginal tampon	3-h catheterisation and vaginal tampon	3-h catheterisation and vaginal tampon
Galvind et al.	2007	Acta Obstetricia et Gynecologica Scandinavica	1.94	G	3	2	136	No	N/A	Anterior colporrhaphy	Colporrhaphy and fascial patch	Colporrhaphy and fascial patch	Colporrhaphy and fascial patch
Gandhi et al.	2005	American Journal of Obstetrics and Gynaecology	4	S	3	5	154	No	No	Anterior colporrhaphy	Spontaneous postop. micturition	Micturition after bladder refill	Micturition after bladder refill
Geller et al.	2011	British Journal of Obstetrics and Gynaecology	4.34	S	3	4	50	No	N/A	Spontaneous postop. micturition	Micturition after bladder refill	Mesh repair	Mesh repair
Glazener et al.	2017	The Lancet	N/A	G	3	6	1352	No	Yes	Standard repair	Mesh repair	Biological graft	Biological graft
Glazener et al.	2017	Health Technology Assessment	N/A	G	4	6	3087	No	Yes	Standard repair	Mesh repair	Biological graft	Biological graft
Guerette et al.	2009		4.69	S	4	4	94	Yes	Yes	Anterior repair			
Author	Study year	Journal	Impact factor	Journal type	Jadad score	MOME score	Study size	Commercial funding	Validated questionnaire use	Intervention group 1	Intervention group 2	Intervention group 3	Intervention group 4
--------	------------	---------	---------------	--------------	-------------	------------	------------	-------------------	------------------------	-------------------	----------------------	----------------------	---------------------
Gupta et al.	2014	South African Journal of Obstetrics & Gynaecology	0.23	S	3	4	106	No	N/A	Anterior repair	Anterior repair + porcine graft mesh		
Hakvoort	2004	British Journal of Obstetrics and Gynaecology	4.75	S	2	3	100	No	N/A	4-day catheterisation	1-day catheterisation		
Henn et al.	2016	International Urogynecology Journal	1.83	SS	5	6	80	No	N/A	Vaginal vasoconstrictor infiltration	Vaginal saline infiltration		
Hiltunen et al.	2007	Obstetrics and Gynaecology	4.45	G	3	4	202	No	No	Anterior colporrhaphy	Transvaginal mesh repair		
Nieminen et al.	2010	American Journal of Obstetrics and Gynaecology	4.98	G	3	4	202	No	No	Anterior colporrhaphy	Transvaginal mesh repair		
Nieminen et al.	2008	International Urogynecology Journal	2.51	SS	3	2	202	No	No	Anterior colporrhaphy	Transvaginal mesh repair		
Huang et al.	2010	International Urogynecology Journal	2.66	SS	3	3	90	No	N/A	Removal of catheter on day 2 postop.	Removal of catheter on day 3 postop.		
Hviid et al.	2010	International Urogynecology Journal	2.66	SS	3	3	61	No	Yes	Conventional anterior repair	Anterior repair + porcine skin collagen implants		
Iglesia et al.	2010	Obstetrics and Gynaecology	4.98	S	5	6	65	No	Yes	Conventional colporrhaphy or uterosacral ligament suspension	Vaginal colpopexy with mesh		
Kamilya et al.	2010	Journal of Obstetrics and Gynaecology Research	1.13	S	3	6	200	No	N/A	Catheter removal day 4 postop.	Catheter removal day 1 postop.		
Khalil et al.	2016	Journal of Clinical Anaesthesia	1.64	S	5	5	57	No	No	General anaesthesia	General anaesthesia +		
Author	Study year	Journal	Impact factor	Journal type	Jadad score	MOME score	Study size	Commercial funding	Validated questionnaire use	Intervention group 1	Intervention group 2	Intervention group 3	Intervention group 4
-------------------	------------	---------------------------------------	---------------	--------------	-------------	------------	------------	---------------------	----------------------------	--	--	--	--
Kringle et al.	2010	International Urogynecology Journal	2.66	SS	3	5	232	No	N/A	Intraurethral catheterisation	Suprapubic catheterisation 24 h	Suprapubic catheterisation 96 h	Suprapubic catheterisation 96 h
Lambin et al.	2013	International Urogynecology Journal	2.45	SS	3	5	68	No	Yes	Anterior colporrhaphy with vaginal colposuspension	Transvaginal mesh repair	Anterior colporrhaphy	Anterior colporrhaphy
Lazzeri et al.	2007	Journal of Urology	4.27	S	3	5	47	No	Yes	Abdominal prolapse repair NO Burch colposuspension			
Lindholm et al.	1985	International Journal of Gynaecology	N/A	S	4	3	20	No	N/A	Phenoxethylamine use	Control	Control	Control
Mahuvrata et al.	2011	Journal of Obstetrics and Gynaecology	0.75	G	5	5	66	No	Yes	Mesh repair	PDS	Vicryl	Other laxatives postoperative
McNanley et al.	2012	Female Pelvic Medicine & Reconstructive Surgery	0.42	SS	3	6	60	No	Yes	Docusate sodium laxative postoperative	Other laxatives postoperative	Other laxatives postoperative	Other laxatives postoperative
Menefee et al.	2011	Obstetrics and Gynaecology	5.34	S	5	6	99	Yes	No	Anterior colporrhaphy plication	Mesh repair	Mesh repair	Mesh repair
Meschia et al.	2003	American Journal of Obstetrics and Gynaecology	2.96	S	3	5	50	No	No	Endopelvic fascia plication	TVT + Anterior repair	TVT + Anterior repair	TVT + Anterior repair
Minassian et al.	2014	Neurology and Urodynamics	2.71	SS	3	5	70	No	Yes	Conventional anterior colporrhaphy 24 h	Abdominal paravaginal defect repair	Abdominal paravaginal defect repair	Abdominal paravaginal defect repair
Miranda et al.	2011	Journal of Obstetrics and Gynaecology Canada	1.42	S	5	2	22	No	N/A	Anterior colporrhaphy with polyglactin 910 mesh	Anterior colporrhaphy without plication of pubovesical fascia	Anterior colporrhaphy without plication of pubovesical fascia	Anterior colporrhaphy without plication of pubovesical fascia
Natale et al.	2009		2.84	SS	3	5	190	No	Yes	Anterior colporrhaphy 24 h	Synthetic mesh	Synthetic mesh	Synthetic mesh
Author	Study year	Journal	Impact factor	Journal type	Jadad score	MOMEN score	Study size	Commercial funding	Validated questionnaire use	Intervention group 1	Intervention group 2	Intervention group 3	Intervention group 4
------------------------	------------	---	---------------	--------------	-------------	--------------	------------	---------------------	--	---	---	---	---
Park et al.⁴	2013	International Urogynecology Journal	2.45	SS	3	5	92	No	Yes	Anterior repair + TVT	TVT		
Pauls et al.⁴	2015	American Journal of Obstetrics and Gynaecology	5.23	S	5	5	74	No	Yes	Dexamethasone prior to surgery	Placebo		
Ploeger et al.²	2015	International Urogynecology Journal	1.83	SS	3	6	91	Yes	Yes	Prolapse surgery	Prolapse surgery + TVT		
Qatawneh et al.²	2013	Gynaecological Surgery	0.46	S	3	5	116	No	No	Native tissue repair	Mesh repair		
Quadri et al.⁴	2000	International Urogynecology Journal	1.15	SS	3	3	45	No	N/A	Use of PGE-2	Control		
Robert et al.⁴	2014	Obstetrics and Gynaecology	4.76	S	5	4	57	Yes	Yes	Anterior colporrhaphy	Transvaginal mesh repair		
Rudnicki et al.⁴	2013	British Journal of Obstetrics and Gynaecology	2.9	G	3	5	160	No	Yes	Anterior colporrhaphy	Transvaginal mesh repair		
Rudnicki et al.⁴	2015	British Journal of Obstetrics and Gynaecology	2.9	G	3	3	138	No	Yes	Anterior colporrhaphy	Transvaginal mesh repair		
Sand et al.⁴	2001	American Journal of Obstetrics and Gynaecology	2.72	S	3	4	161	No	N/A	Conventional anterior colporrhaphy	Use of mesh		
Schierlitz et al.	2013	International Urogynecology Journal	2.45	SS	3	5	80	No	Yes	Conventional pelvic repair	Conventional pelvic repair + TVT		
Segal et al.³	2006	International Urogynecology Journal	2.38	SS	3	5	40	No	No	Local anaesthesia	General anaesthesia		
Sivasilioglu et al.⁴	2007	International Urogynecology Journal	2.79	SS	3	2	90	No	Yes	Anterior colporrhaphy	Transvaginal mesh repair		
Stekkinger et al.	2011	International Urogynecology Journal	1.74	G	3	5	126	No	N/A	Trans urethral catheter	S/pubic catheter		
Table 1 (continued)

Author	Study year	Journal	Impact factor	Journal type	Jadad score	MOMEN T score	Study size	Commercial funding	Intervention group 1	Intervention group 2	Intervention group 3	Intervention group 4	
Tamanini et al.	2012	Gynecologic and Obstetric investigation	1.24	G	4	5	100	No	Anterior colporrhaphy	Transvaginal mesh repair			
		International Braz J J Urol: official journal of the Brazilian Society of Urology											
Tamanini et al.	2012	Gynecologic and Obstetric investigation	1.24	G	4	5	100	No	Anterior colporrhaphy	Transvaginal mesh repair			
		International Braz J J Urol: official journal of the Brazilian Society of Urology											
Tamanini et al.	2014	Journal of Urology	4.68	S	4	5	92	No	Anterior colporrhaphy	Transvaginal mesh repair			
Tantanasis et al.	2008	Acta Obstetricia et Gynecologica Scandinavica	1.72	S	2	2	50	No	Anterior colporrhaphy	Bladder base tape repair			
Thiagamoorthy et al.	2013	International Urogynecology Journal	2.45	SS	5	6	190	N/A	Use of postop. vaginal pack	No use of postop. vaginal pack			
Tincello et al.	2009	British Journal of Obstetrics and Gynaecology	4.18	S	3	4	31	No	Colposuspension + anterior repair	TVT + Anterior repair			
Turgal et al.	2013	European Journal of Obstetrics & Gynaecology and Reproductive Biology	2.4	G	3	2	40	No	Anterior colporrhaphy	Transvaginal mesh repair			
Van et al.	2011	International Urogynecology Journal	2.39	SS	3	5	179	N/A	1-day suprapubic catheterisation	3-day suprapubic catheterisation			
Vollebregt et al.	2011	British Journal of Obstetrics and Gynaecology	2.96	S	5	6	125	No	Anterior colporrhaphy	Transvaginal mesh repair			
Author	Study year	Journal	Impact factor	Journal type	Jadad score	MOME NT score	Study size	Commercial funding	Validated questionnaire use	Intervention group 1	Intervention group 2	Intervention group 3	Intervention group 4
------------------------	------------	--	---------------	--------------	-------------	---------------	------------	-------------------	-------------------------------	--	---	--	--
Vollebregt et al.	2001	American Journal of Obstetrics and Gynaecology	2.72	G	2	3	114	No	No	Unilateral anterior colporrhaphy	Anterior colporrhaphy	Transvaginal mesh repair	
Weber et al.	2011	American Journal of Obstetrics and Gynaecology	5.34	G	4	4	114	No	No	Unilateral anterior colporrhaphy	Anterior colporrhaphy	Transvaginal mesh repair	
Chmielewski et al.	2011	International Urogynaecology Journal	2.39	SS	3	6	246	No	N/A	Postop. catheterisation for 2 days	Postop. catheterisation for 5 days	Transvaginal mesh repair	
Weemhoff et al.	2016	Female Pelvic Medicine & Reconstructive Surgery	1.49	SS	4	5	93	No	Yes	Use of postop. vaginal pack	No use of postop. vaginal pack	Transvaginal mesh repair	
Withagen et al.	2011	Obstetrics and Gynaecology	5.34	S	5	6	194	No	Yes	Conventional colporrhaphy	Transvaginal mesh repair		
Milani et al.	2011	Journal of Sexual Medicine	3.67	SS	3	6	59	No	Yes	Conventional colporrhaphy	Trocar-guided Mesh		
Yuk et al.	2012	Minimally Invasive Gynaecology	2.1	S	3	3	87	No	N/A	2-point mesh	4-point mesh		

SS subspecialty (urogynaecology), *S* specialty (obs/gyn), *G* general, *TVT* tension free vaginal tape (retropubic tape), *PDS* polydioxanone

a Studies focused on surgical management of anterior repair solely, *b* original study, *c* secondary analysis
donation of equipment or other resources. Two researchers (CD and AE) independently assessed the methodological quality of included randomised trials using the modified Jadad criteria (score range 1–5) [8]. Studies were assessed as high quality when they achieved a score >4. Outcome reporting quality was assessed using the Management of Otitis Media with Effusion in Cleft Palate (MOMENT) criteria (score range 1–5) [9]. Studies were assessed as high quality when they achieved a score >4.

The non-parametric Spearman’s rank correlation coefficient (Spearman’s rho) was used to explore univariate associations between outcome reporting quality and impact factor during the year of publication, year of publication and methodological quality. Multivariate linear regression analysis using the Enter model was also undertaken to assess the combined association of quality of outcome reporting and journal type, impact factor during the year of publication, year of publication and methodological quality (independent variables) with outcome reporting (dependent variable). All tests were two-tailed. Statistical significance was set at 0.05, and analyses were conducted using the SPSS statistical software (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY, USA).

This study was reported with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [6].

Results

In total, 2482 titles and abstracts were screened, and 231 potentially relevant studies were examined in detail (Fig. 1). Sixty-eight randomised trials, reporting data from 10,499 participants, met the inclusion criteria (Table 1) [5, 10–88]. Additionally, 12 randomised trials published long-term follow-up data [5, 22, 29, 39, 40, 64, 71, 72, 79, 81, 86, 87].

Outcome domains	RCTs reporting on the domain	Outcomes reported	Outcome measures reported
Presence of symptoms posttreatment	50	28	28
Prolapse treatment success rate	47	3	16
Perioperative complications and	46	15	13
observations			
Quality of life and satisfaction with	40	5	25
treatment			
Treatment success evaluation	15	11	–
Postoperative catheterisation	10	17	10
Pain	9	4	7
Mesh-related outcomes	8	3	–

RCT randomised controlled trial

Trials were published between 1985 and 2017, with most being published in subspecialty journals (33/80; 41%). Trials were frequently published in journals with an impact factor <3 [median = 2.7; interquartile range (IQR) = 2.2–4.3] and were generally small (median = 93; IQR = 60–154). Ten trials (14%) declared commercial funding. The methodological quality and outcome reporting quality varied considerably between trials (Table 1). One hundred different outcomes were organised into 11 thematic domains. The three most commonly reported thematic domains were presence of symptoms posttreatment (50 trials, 28 outcomes; 28 outcome measures), prolapse treatment success rates (47 trials; 3 outcomes; 16 outcome measures) and perioperative complications (46 trials; 15 outcomes; 13 outcome measures) (Table 2). Commonly reported outcomes were anatomical prolapse stage (43 trials; 54%), commonly assessed using the Pelvic Organ Prolapse Quantification (POP-Q) instrument (35 trials; 81%), QoL (25 trials; 31%); and intra- and postoperative complications (23 trials; 29%). Patient-reported outcomes were infrequently reported; for example, a minority of trials reported prolapse symptoms (9 trials; 11%), urinary symptoms (11 trials; 14%) and sexual dysfunction (14 trials; 17%) (Table 3). Eleven trials (14%) reported patient satisfaction.

Forty-two randomised trials compared native tissue or biological graft versus mesh repair for anterior vaginal prolapse. Mesh-related complications were rarely reported: seven trials (9%) reported mesh erosion, six (7%) reported mesh shrinkage and a single trial (1%) reported the degree of morbidity associated with mesh. Only three trials (4%) evaluated cost effectiveness. One hundred and twelve different outcome measures were reported (Table 4). Forty-six questionnaires were used as measurement instruments, most of which were validated (45; 98%). Anterior prolapse symptoms were measured using the Pelvic Organ Prolapse Urinary Incontinence Sexual Questionnaire (PISQ-12) (13 trials; 16%), Urogenital Distress Inventory (UDI-6) (11 trials; 14%) and the Pelvic Floor Distress Inventory...
Table 3 Outcomes reported in 80 randomised controlled trials (RCTs) evaluating surgical management of anterior-compartment prolapse

Outcomes	Reporting studies
Prolapse treatment success rate	
Anatomical prolapse stage	43
Composite anatomical/functional success rate	3
Urethral mobility	1
Perioperative complications and observations	
Complications intra-/postoperatively	23
Postoperative hospital stay length	11
Blood loss intraoperatively	6
Duration of operation	6
Quality and time of recovery	4
Postoperative nausea and vomiting	3
Bleeding postoperatively (with/out vaginal pack use)	2
Constipation preoperatively	2
Blood pressure	2
Blood transfusion indicated	2
Heart rate change	2
Consistency of bowel movement postoperatively	1
Intra- and postoperative morbidity	1
Time to first postoperative bowel movement	1
Time to mobilisation	1
Pain	
Postoperative pain	8
Intraoperative requirement of analgesics	1
Total analgesic consumption	1
Pain level associated with first postoperative bowel movement	1
Postoperative catheterisation	
Postoperative UTI	5
Recatheterisation rates	5
Postoperative catheterisation duration	4
First postvoid residual volume	4
Time to normal spontaneous voiding	2
Acute urinary retention	1
Bacterial count in the urine	1
Catheter blockage	1
Day of spontaneous voiding	1
Diagnostic accuracy of different voiding trial methods	1
Mean residual urine volume pre- and postoperatively	1
Prediction of voiding dysfunction lasting >7 days.	1
Prolonged catheterisation	1
Pyelectasia	1
Residual urine volume	1
Urinary retention prevention with intravesically administered prostaglandin-E2	1
Urinary retention rates	1
Postoperative vaginal packing	
Bleeding postoperatively (with/out vaginal pack use) (compared with menstrual average)	1

Table 3 (continued)

Outcomes	Reporting studies
Bleeding postoperatively (with/out vaginal pack use)	1
Presence of vaginal haematoma	1
Presence of vaginal infection	1
Bother related to the pack	1
Presence of symptoms posttreatment	
Sexual dysfunction symptoms	14
Urinary symptoms	11
Prolapse symptoms postoperatively	9
Dyspareunia	6
SUI postoperatively	5
De novo SUI postoperatively	4
Change in urinary symptoms (any)	3
Prolapse symptoms severity	3
De novo urinary urgency	2
Postoperative urinary symptoms	2
Urinary symptoms severity	2
Bowel symptoms	2
Facal incontinence	2
Postoperative bowel symptoms	2
Change in incontinence rates	1
De novo urinary symptoms	1
De novo voiding difficulty	1
Urgency and urge urinary incontinence	1
Worsening urinary symptoms (any)	1
Obstructed defecation	1
Back pain improvement	1
Change in a pelvic symptom score	1
Change of vaginal symptoms	1
Symptomatic prolapse improvement	1
Time of prolapse recurrence	1
De novo dyspareunia	1
Sexual function in partner	1
QoL and satisfaction with treatment	25
QoL. and impact from symptoms evaluation	
Patient satisfaction with treatment	11
Surgeon satisfaction with operation	2
Patient acceptability of preoperative bowel preparation	1
Surgeon—ease of procedure	1
Treatment success evaluation	
Symptoms—presence posttreatment	5
Subjective cure rates	3
Cure of SUI postoperatively	3
Reoperation rates	3
Symptoms—bother change	2
Retreatment success rates	1
Symptom improvement	1
Functional recurrence	1
Healing abnormalities	1
Table 3 (continued)

Outcomes	Reporting studies
Need for subsequent anti-incontinence surgery	1
Treatment of overactive bladder	1
Mesh-related outcomes	
Mesh erosion	6
Mesh shrinkage	2
Degree of morbidity in mesh vs. native tissue	1
Cost/effectiveness	
Cost-effectiveness of treatment	2
Cost of procedure	1
Recruitment feasibility	
Number of patients agreed to participate	1
Number of eligible patients	1
Physician acceptance and protocol	1
Rate of recruitment compliance	1

UTI urinary tract infection, SUI stress urinary incontinence, QoL quality of life

(PFDI-20) (9 trials; 11%), QoL was measured using the Prolapse Quality of Life (P-QoL) (10 trials; 12%), Pelvic Floor Impact Questionnaire Short Form (PFIQ-7) (8 trials; 10%) and the Incontinence Impact Questionnaire Short Form (IIQ-7) (6 trials; 7%). Table 5 summarises our main findings, demonstrating the most frequently reported outcomes. It reveals the significant discrepancies in terms of outcome reporting.

We observed a moderate correlation between outcome reporting quality and year of publication in the univariate analysis ($r = 0.458; p < .001$) and study quality ($r = 0.409; p < .001$) (Table 6). The latter index significantly affected outcome reporting in the multivariate logistic regression ($\beta = 0.412; p = .018$).

Discussion

Summary of main findings

This study demonstrated considerable variation in outcome and outcome-measure reporting across published trials evaluating surgical interventions for anterior-compartment prolapse. Commonly reported outcomes included normalised anatomy, QoL and pain. Patient-reported outcomes were infrequently reported, and a minority of trials reported on patient satisfaction. Mesh-related complications, including erosion, shrinkage and morbidity, were rarely reported. Forty-five different questionnaires were used as measurement instruments; most were validated. Only a few trials considered cost effectiveness.
Strengths and limitations

Strengths of our systematic review include originality, a rigorous search strategy and methodological robustness. To our
Table 5 Reported outcomes by by more than eight studies with greater than 93 participants (median value)

Study	Sample size (N)	Outcomes								
		Anatomical prolapse stage	Quality of life and impact from symptoms	Complications intra-/postoperatively	Sexual dysfunction symptoms	Postoperative hospital stay length	Urinary symptoms	Patient satisfaction with treatment	Prolapse symptoms postoperatively	Postoperative pain
Glazener et al.	1352	x	x	x	x	x	x			
Altman et al.	389	x	x	x	x					
Wei et al.	337	x	x							
Weemhoff et al.	246	x	x	x						
Nieminen et al.	203	x	x	x						
Hiltunen et al.	202	x	x	x						
Farthmann et al.	200	x	x	x	x					
Kamilya et al.	200	x	x							
Withagen et al.	194	x	x	x	x	x				
Natale et al.	190	x	x							
Thiaagamoonthy et al.	190	x	x							
da Silveira et al.	184	x	x	x						
Borstad et al.	184	x	x							
Van et al.	179	x	x							
Sand et al.	161	x	x	x						
Rudnicki et al.	160	x	x	x						
Gandhi et al.	154	x	x							
Ballard et al.	150	x	x	x	x					
de Tayrac et al.	147	x	x	x	x					
Carey et al.	139	x	x	x	x					
Rudnicki et al.	138	x	x	x	x					
Dahlgren et al.	135	x	x	x	x	x				
Stekkinger et al.	126	x	x	x						
Vollebregt et al.	125	x	x	x	x					
Qatawneh et al.	116	x	x	x	x	x				
Weber et al.	114	x	x							
Chmielewski et al.	114	x	x							
Gupta et al.	106	x	x							
Tamanini et al.	100	x	x	x	x	x				
Hakvoort	100	x	x	x	x	x				
Menefee et al.	99	x	x	x	x	x				
Ek et al.	99	x	x	x	x	x				
knowledge, this systematic review is the first to evaluate outcomes and outcome measures in anterior-compartment prolapse trials. Study screening and selection and data extraction and assessment were conducted independently by two researchers to avoid bias. Our findings were based on outcome reporting in published randomised trials. The exclusion of observational studies may have potentially missed outcomes related to harm [89, 90] and selecting only trials reported in English may have introduced selection bias. The variation of interventions for correcting anterior prolapse may have caused variation in outcome and outcome-measure reporting.

Interpretation

Randomised trials require a substantial investment of resources. Variation in outcomes and outcome measures limits the ability of trials to be combined with meta-analyses, which contributes to inevitable research waste, as identified in various areas of women’s health, including childbirth trauma, endometriosis and pre-eclampsia [91–94]. This systematic review is the first step in the development of a minimum data set, which will be known as a core outcome set. It will be developed with reference to methods described by the COMET initiative, Core Outcomes in Women’s and Newborn Health (CROWN) initiative and other core-outcome-set development studies, including those on endometriosis, pre-eclampsia, termination of pregnancy, Twin-Twin Transfusion Syndrome and neonatal medicine [95–99].

CHORUS is aiming to work towards a standardisation of outcomes and outcome measures and subsequently establish a minimum of standards in research and clinical practice. Chorus working groups are currently evaluating reported outcomes in all areas of urogynaecology and have been registered with the COMET (registration number 981, http://www.comet-initiative.org/studies/details/981) and CROWN initiatives. Each working group has carefully considered the scope of its work [100], and CHORUS will replicate the

Table 5 (continued)

Study	Sample size (N)	Outcomes	Study Sample size (N)	Outcomes	Study Sample size (N)
Guerette et al.	94	x			
Westermann et al.	<93	x			
Studies not included					
Total studies	43	25	11	9	8

Table 6 Univariate and multivariate correlation with outcome reporting quality

Factor	Univariate	Multivariate		
	Spearman’s rho	P value	Beta	P value
Study quality (Jadad)	0.409	<0.001	0.412	0.018
Journal IF	0.053	0.643	0.078	0.306
Year of publication	0.458	<0.001	0.149	0.295
Study size	0.215	0.051	0.008	0.961
Journal type	–	–	0.024	0.852
Commercial funding	–	–	–0.013	0.918
Validated questionnaire	–	–	1.310	0.196

Bolded data statistically significant
success of other international initiatives that have standarised outcome selection, collection and reporting across preterm birth research [101].

In the absence of a core outcome, we recommend QoL (incorporating sexual function), postoperative complications, patient and physician satisfaction and postoperative prolapse, bladder and bowel symptoms be collected across all anterior prolapse trials.

Conclusion
Anterior-compartment prolapse trials report many different outcomes and outcome measures and often neglect to report important safety outcomes. Developing, disseminating and implementing a core outcome set will help address these issues.

Compliance with ethical standards

Conflicts of interest The authors report that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References
1. Hendrix SL, Clark A, Nygaard I, Aragaki A, Barnabei V, McTiernan A. Pelvic organ prolapse in the Women’s Health Initiative: gravity and gravidity. Am J Obstet Gynecol. 2002;186(6):1160–6.
2. MacLennan AH, Taylor AW, Wilson DH, Wilson D. The prevalence of pelvic floor disorders and their relationship to gender, age, parity and mode of delivery. BJOG. 2000;107(12):1460–70.
3. Dumea CM, Khashan AS, Kenny LC, Dumea UA, Smyth MM, O’Reilly BA. Prevalence, etiology and risk factors of pelvic organ prolapse in premenopausal primiparous women. Int Urogynecol J. 2014;25(11):1463–70.
4. Maher C, Feiner B, Baessels K, Christmann-Schmid C, Haya N, Brown J. Surgery for women with anterior compartment prolapse. Cochrane Database Syst Rev. 2016;11:CD004014.
5. Glazener CM, Breeman S, Elders A, Hemming C, Cooper KG, Freeman RM, et al. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: two parallel-group, multicentre, randomised, controlled trials (PROSPECT). Lancet. 2017;389(10067):381–92.
6. Anderson NK, Jayaratne YS. Methodological challenges when performing a systematic review. Eur J Orthoped. 2015;37(3):248–50.
7. Duffy J, Bhattacharya S, Herman M, Mol B, Vail A, Wilkinson J, et al. Reducing research waste in benign gynaecology and fertility research. BJOG. 2017;124(3):366–9.
8. Stephen H. Halpern (Editor) MJDE. Evidence-Based Obstetric Anesthesia (Appendix: Jadad scale for reporting randomized controlled trials.).: Blackwell Publishing; p.237 http://onlineibrary.wiley.com/store/10.1002/9780470988343.
9. Harman NL, Bruce IA, Callery P, Tierney S, Sharif MO, O’Brien K, et al. MOMENT – Management of Otitis Media with Effusion in Cleft Palate: protocol for a systematic review of the literature and identification of a core outcome set using a Delphi survey. Trials. [journal article]. 2013 March 12;14(1):70.
10. Altman D, Vayrynen T, Engh ME, Axelsen S, Falconer C. Anterior colporrhaphy versus transvaginal mesh for pelvic-organ prolapse. N Engl J Med. 2011;364(19):1826–36.
11. Antosh DD, Gutman RE, Park AJ, Sokol AJ, Peterson JL, Kingsberg SA, et al. Vaginal dilators for prevention of dyspareunia after prolapse surgery: a randomized controlled trial. Obstet Gynecol. 2013;121(6):1273–80.
12. Ballard AC, Parker-Auty CY, Markland AD, Varner RE, Huisingsh C, Richter HE. Bowel preparation before vaginal prolapse surgery: a randomized controlled trial. Obstet Gynecol. 2014;123(2 Pt 1):232–8.
13. Benson JT, Lucente V, McClellan E. Vaginal versus abdominal reconstructive surgery for the treatment of pelvic support defects: a prospective randomized study with long-term outcome evaluation. Am J Obstet Gynecol. 1996;175(6):1418–21. discussion 21-2
14. Borstad E, Abdelnoor M, Staff AC, Kulseng-Hanssen S. Surgical strategies for women with pelvic organ prolapse and urinary stress incontinence. Int Urogynecol J. 2010;21(2):179–86.
15. Bray R, Cartwright R, Digues U, Fernando R, Khullar V. A randomised controlled trial comparing immediate versus delayed catheter removal following vaginal prolapse surgery. Eur J Obstet Gynecol Reprod Biol. 2017;210:314–8.
16. Carey M, Higgs P, Goh J, Lim J, Leong A, Krause H, et al. Vaginal repair with mesh versus colporrhaphy for prolapse: a randomised controlled trial. BJOG. 2009;116(10):1380–6.
17. Choe JM, Ogan K, Battino BS. Antimicrobial mesh versus vaginal wall sling: a comparative outcomes analysis. J Urol. 2000;163(6):1829–34.
18. Colombo M, Vitobello D, Prietto F, Milani R. Randomised comparison of Burch colposuspension versus anterior colporrhaphy in women with stress urinary incontinence and anterior vaginal wall prolapse. BJOG. 2000;107(4):544–51.
19. Da Silveira Dos Reis Brandoa S, Haddad JM, de Jarmy-Di Bella ZI, Nasti R, Kawabata MG, da Silva Carramao S, et al. Multicenter, randomized trial comparing native vaginal tissue repair and synthetic mesh repair for genital prolapse surgical treatment. Int Urogynecol J. 2015;26(3):335–42.
20. Dahlgren E, Kjolhede P. Long-term outcome of porcine skin graft in surgical treatment of recurrent pelvic organ prolapse. An open randomized controlled multicenter study. Acta Obstet Gynecol Scand. 2011;90(12):1393–401.
21. Delroy CA, Castro Rde A, Dias MM, Feldner PC Jr, Bortolini MA, Girao MJ, et al. The use of transvaginal synthetic mesh for anterior vaginal wall prolapse repair: a randomized controlled trial. Int Urogynecol J. 2013;24(11):1899–906.
22. Dias MM, De ACR, Bortolini MA, Delroy CA, Martins PC, Girao MJ, et al. Two-years results of native tissue versus vaginal mesh repair in the treatment of anterior prolapse according to different success criteria: a randomized controlled trial. Neurourol Urodyn. 2016;35(4):509–14.
23. de Tayrac R, Cornille A, Eglin G, Guilbaud O, Mansoor A, Alonso S, et al. Comparison between trans-obturator trans-vaginal mesh and traditional anterior colporrhaphy in the treatment of...
anterior vaginal wall prolapse: results of a French RCT. Int Urogynecol J. 2013;24(10):1651–61.

24. Ek M, Altman D, Gunnarsson J, Falconer C, Tegerstedt G. Clinical efficacy of a trocar-guided mesh kit for repairing lateral defects. Int Urogynecol J. 2013;24(2):249–54.

25. Ek M, Tegerstedt G, Falconer C, Kjaeldgaard A, Rezapour M, Rudnicki M, et al. Urodynamic assessment of anterior vaginal wall surgery: a randomized comparison between colporrhaphy and transvaginal mesh. Neurourol Urodyn. 2010;29(4):527–31.

26. El-Nazer MA, Gomaa IA, Ismail Madkour WA, Swidan KH, El-Etrihy MA. Anterior colporrhaphy versus repair with mesh for anterior vaginal wall prolapse: a comparative clinical study. Arch Gynecol Obstet. 2012;286(4):965–72.

27. Farthmann J, Watermann D, Niesal A, Funfgeld C, Kraus A, Lenz F, et al. Lower exposure rates of partially absorbable mesh compared to nonabsorbable mesh for cystocele treatment: 3-year follow-up of a prospective randomised trial. Int Urogynecol J. 2013;24(9):1057–63.

28. Feldner PC Jr, Castro RA, Cipolotti LA, Delroy CA, Sartori MG, Girao MJ. Anterior vaginal wall prolapse: a randomized controlled trial of SIS graft versus traditional colporrhaphy. Int Urogynecol J. 2010;21(9):1057–63.

29. Feldner PC Jr, Delroy CA, Martins SB, Castro RA, Sartori MG, Girao MJ. Sexual function after anterior vaginal wall prolapse surgery. Clinics (Sao Paulo). 2012;67(8):871–5.

30. Glavind K, Morup L, Madsen H, Glavind J. A prospective, randomised, controlled trial comparing 3 hour and 24 hour postoperative removal of bladder catheter and vaginal pack following vaginal prolapse surgery. Acta Obstet Gynecol Scand. 2005;84(9):1122–5.

31. Gandhi S, Goldberg RP, Kwon C, Koduri S, Beaumont JL, Gower M, et al. Optimal duration of urinary bladder catheterization after anterior colporrhaphy. Int J Gynaecol Obstet. 2011;22(4):485–91.

32. Geller EJ, Hankins KJ, Parnell BA, Robinson BL, Dunivan GC. Clinical efficacy of a trocar-guided mesh kit for repairing lateral defects. Int Urogynecol J. 2013;24(10):1651–61.

33. Geller EJ, Hankins KJ, Parnell BA, Robinson BL, Dunivan GC. Diagnostic accuracy of retrograde and spontaneous voiding trials for postoperative voiding dysfunction: a randomized controlled trial. Obstet Gynecol. 2008;112(1):59–65.

34. Guerette NL, Peterson TV, Aguirre OA, Vandrie DM, Biller DH, Davila GW. Anterior repair with or without collagen matrix reinforcement: a randomized controlled trial. Obstet Gynecol. 2009;114(1):59–65.

35. Gupta BS, Guleria K, Jain S. Anterior vaginal prolapse repair: A randomised trial of traditional anterior colporrhaphy and self-tailored mesh repair. South African Journal of Obstetrics and Gynaecology. 2014; August; Vol. 20, No. 2.

36. Hakvoort RA, Elberink R, Vollebregt A, Ploeg T, Emanuel MH. How long should urinary bladder catheterisation be continued after vaginal prolapse surgery? A randomised controlled trial comparing short term versus long term catheterisation after vaginal prolapse surgery. BJOG. 2004;111(8):328–30.

37. Henn EW, Nondabula T, Juul L. Effect of vaginal infiltration with ommipresin or saline on inoperative blood loss during vaginal prolapse surgery: a randomised controlled trial. Int Urogynecol J. 2016;27(3):407–12.

38. Hiltunen K, Niemenen K, Takala T, Heiskanen E, Merikari M, Niemi K, et al. Low-weight polypropylene mesh for anterior vaginal wall prolapse: a randomized controlled trial. Obstet Gynecol. 2007;110(2 Pt 2):455–62.
55. Miranda V, Alarab M, Murphy K, Pineda R, Drutz H, Lovatiss D. Randomized controlled trial of cystocele plication risks: a pilot study. J Obstet Gynaecol Can. 2011;33(11):1146–9.

56. Natale F, La Penna C, Padoa A, Agostini M, De Simone E, Cervigni M. A prospective, randomized, controlled study comparing Gynemesh, a synthetic mesh, and Pelvicol, a biologic graft, in the surgical treatment of recurrent cystocele. Int Urogynecol J Pelvic Floor Dysfunt. 2009;20(1):75–81.

57. Park HK, Paick SH, Lho YS, Choo GY, Kim HG, Choi J. Lack of effect of concomitant stage II cystocele repair on lower urinary tract symptoms and surgical outcome after tension-free vaginal tape procedure: randomized controlled trial. Int Urogynecol J. 2013;24(7):1123–6.

58. Pauls RN, Crisp CC, Oakley SH, Westermann LB, Mazloomdoost D, Kleeman SD, et al. Effects of dexamethasone on quality of recovery following vaginal surgery: a randomized trial. Am J Obstet Gynecol. 2015 Nov;213(5):718 e1–7.

59. van der Ploeg JM, Oude Rengerink K, van der Steen A, van Leeuwen JH, van der Vaart CH, Roovers JP. Vaginal prolapse repair with or without a midurethral sling in women with genital prolapse and occult stress urinary incontinence: a randomized trial. Int Urogynecol J. 2016;27(7):1029–38.

60. Qatawneh FA-K A, Saleh S, Thekrallah F, Bata M, Sumreen I, Al-Rahmi S. Is transvaginal mesh surgery with site-specific surgery in the treatment of cystocoele. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(4):467–71.

61. Robert M, Girard I, Brennand E, Tang S, Birch C, Murphy M, et al. Absorbable mesh augmentation compared with no mesh for anterior prolapse: a randomized controlled trial. Obstet Gynecol. 2014;123(2 Pt 1):288–94.

62. Rudnicki M, Laukitis K, Pogorese R, Kinne I, Jakobsson U, Telemans P. Anterior colporrhaphy compared with collagen-coated transvaginal mesh for anterior vaginal wall prolapse: a randomised controlled trial. BJOG. 2014 Jan;121(1):102–10. discussion 10-1

63. Raczkowski A, Laukitis K, Pogorese R, Kinne I, Jakobsson U, Telemans P. A 3-year follow-up after anterior colporrhaphy compared with collagen-coated transvaginal mesh for anterior vaginal wall prolapse: a randomised controlled trial. BJOG. 2016;123(1):136–42.

64. Sand PK, Koduri S, Lobel RW, Winkler HA, Tomeszko J, Culligan PJ, et al. Prospective randomized trial of polyglactin 910 mesh to prevent recurrence of cystoceles and rectoceles. Am J Obstet Gynecol. 2001;184(7):1357–62. discussion 62-4

65. Schiriliz L, Dwyer PL, Rosamilia A, De Souza A, Murray C, Thomas E, et al. Pelvic organ prolapse surgery with and without tension-free vaginal tape in women with occult or asymptomatic urodynamic stress incontinence: a randomised controlled trial. Int Urogynecol J. 2014;25(1):33–40.

66. Segal JL, Owens G, Silva WA, Kleeman SD, Pauls R, Karram MM. A randomized trial of local anesthesia with intravenous sedation vs general anesthesia for the vaginal correction of pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunt. 2007;18(7):807–12.

67. Silvasloghi AA, Unlubilgin E, Dolen I. A randomized comparison of polypropylene mesh surgery with site-specific surgery in the treatment of cystocele. Int Urogynecol J Pelvic Floor Dysfunt. 2008;19(4):467–71.

68. Stekkinger E, van der Linden PJ. A comparison of suprapubic and transurethral catheterization on postoperative urinary retention after vaginal prolapse repair: a randomized controlled trial. Gynecol Obstet Investig. 2011;72(2):109–16.

69. Tamarind TJ, Tamarind MM, Castro RC, Feldner PC Jr, Castro Rde A, Sartori MG, et al. Treatment of anterior vaginal wall prolapse with and without polypropylene mesh: a prospective, randomised and controlled trial - part I. Int Braz J Urol. 2013;39(4):519–30.

70. Tamarind TJ, Castro RC, Tamarind MM, Feldner PC Jr, Castro Rde A, Sartori MG, et al. Treatment of anterior vaginal wall prolapse with and without polypropylene mesh: a prospective, randomized and controlled trial - part II. Int Braz J Urol. 2013;39(4):531–41.

71. Tamarind TJ, de Oliveira Souza Castro RC, Tamarind MM, Castro RA, Sartori MG, Girao MJ. A prospective, randomized, controlled trial of the treatment of anterior vaginal wall prolapse: medium term follow up. J Urol. 2015;193(4):1298–304.

72. Tanantasis T, Giannoulis C, Daniilidis A, Papathanasiou K, Loufopoulos A, Tzafetts J. Anterior vaginal wall reconstruction: anterior colporrhaphy reinforced with tension free vaginal tape beneath bladder base. Acta Obstet Gynecol Scand. 2008;87(4):464–8.

73. Thiagamoorthy G, Khalil A, Cardozo L, Srikrishna S, Leslie G, Robinson D. The value of vaginal packing in pelvic floor surgery: a randomised double-blind study. Int Urogynecol J. 2014;25(5):585–91.

74. Tincello DG, Kenyon S, Slack M, Toozs-Hobson P, Mayne C, Jones D, et al. Colposuspension or TVT with anterior repair for urinary incontinence and prolapse: results of and lessons from a pilot randomised patient-preference study (CARPET 1). BJOG. 2009;116(13):1809–14.

75. Turgul M, Sivasloghi A, Yildiz A, Dolen I. Anatomical and functional assessment of anterior colporrhaphy versus polypropylene mesh surgery in cystoceles. Int J Gynecol Obstet Reprod Biol. 2013;120(2):555–8.
recurrent prolapse: a randomized controlled trial. Obstet Gynecol. 2011;117(2 Pt 1):242–50.
86. Withagen MI, Milani AL, de Leeuw JW, Vierhout ME. Development of de novo prolapse in untreated vaginal compartments after prolapse repair with and without mesh: a secondary analysis of a randomised controlled trial. BJOG. 2012;119(3):354–60.
87. Milani AL, Withagen MI, The HS, Nedelcu-van der Wijk I, Vierhout ME. Sexual function following trocar-guided mesh or vaginal native tissue repair in recurrent prolapse: a randomized controlled trial. J Sex Med. 2011;8(10):2944–53.
88. Yuk JS, Jin CH, Yi KW, Kim T, Hur JY, Shin JH. Anterior transobturator polypropylene mesh in the correction of cystocele: 2-point method vs 4-point method. J Minim Invasive Gynecol. 2012;19(6):737–41.
89. Perry H, Duffy JMN, Umadia O, Khalil A. Outcome reporting across randomised trials and observational studies evaluating treatments for twin-twin transfusion syndrome: a systematic review. Ultrasound Obstet Gynecol 2018.
90. Duffy J, Hirsch M, Pealing L, Showell M, Khan KS, Ziebland S, et al. Inadequate safety reporting in pre-eclampsia trials: a systematic evaluation. BJOG 2018;125(7):795–803.
91. Pergialiotis V DC, Duffy JMN, Ellifriti A, Doumouchtsis S. Do we need a core outcome sets for childbirth trauma research? A systematic review of outcome reporting in randomised trials evaluating the management of childbirth trauma. Accepted by BJOG: International Journal of Obstetrics and Gynaecology. 2018.
92. Hirsch M, Duffy JMN, Kusznir JO, Davis CJ, Plana MN, Khan KS. Variation in outcome reporting in endometriosis trials: a systematic review. Am J Obstet Gynecol. 2016;214(4):452–64.
93. Duffy JMN, Hirsch M, Gale C, Pealing L, Kawser A, Showell M, et al. A systematic review of primary outcomes and outcome-measure reporting in randomized trials evaluating treatments for pre-eclampsia. Int J Gynaecol Obstet. 2017;139(3):262–7.
94. Duffy J, Hirsch M, Kawser A, Gale C, Pealing L, Plana MN, et al. Outcome reporting across randomised controlled trials evaluating therapeutic interventions for pre-eclampsia. BJOG. 2017;124(12):1829–39.
95. Duffy J, Rolph R, Gale C, Hirsch M, Khan KS, Ziebland S, et al. Core outcome sets in women's and newborn health: a systematic review. BJOG 2017;124(10):1481–1489.
96. Duffy JM, Van’t Hooft J, Gale C, Brown M, Grobman W, Fitzpatrick R, et al. A protocol for developing, disseminating, and implementing a core outcome set for pre-eclampsia. Pregnancy Hypertens. 2016;6(4):274–8.
97. Whitehouse KC, Kim CR, Ganatra B, Duffy JMN, Blum J, Brahmi D, et al. Standardizing abortion research outcomes (STAR): a protocol for developing, disseminating and implementing a core outcome set for medical and surgical abortion. Contraception. 2017;95(5):437–41.
98. Khalil A, Perry H, Duffy J, Reed K, Baschat A, Deprest J, et al. Twin-twin transfusion syndrome: study protocol for developing, disseminating, and implementing a core outcome set. Trials. 2017;18(1):325.
99. Webbe J, Brunton G, Ali S, Duffy JM, Modi N, Gale C. Developing, implementing and disseminating a core outcome set for neonatal medicine. BMJ Paediatr Open. 2017;1(1):e000048.
100. JMN Duffy RM. Influence of methodology upon the identification of potential core outcomes: recommendations for core outcome set developers are needed. Obstetrics & Gynaecology. 18 July 2016 Volume123(Issue10):1599-.