Incremental Versus Optimized Network Design

Saeideh Bakhshi† and Constantine Dovrolis∗
College of Computing, Georgia Tech

Even though the problem of network topology design is often studied as a “clean-slate” optimization, in practice most service-provider and enterprise networks are designed incrementally over time. This evolutionary process is driven by changes in the underlying parameters and constraints (the “environment”) and it aims to minimize the modification cost after each change in the environment. In this paper, we first formulate the incremental design approach (in three variations), and compare that with the more traditional optimized design approach in which the objective is to minimize the total network cost. We evaluate the cost overhead and evolvability of incremental design under two network expansion models (random and gradual), comparing incremental and optimized networks in terms of cost, topological similarity, delay and robustness. We find that even though incremental design has some cost overhead, that overhead does not increase as the network grows. Also, it is less costly to evolve an existing network than to design it “from scratch” as long as the network expansion factor is less than a critical value.

I. INTRODUCTION

Complex technological systems, such as transportation and communication networks, manufacturing processes, microprocessors and computer operating systems, are rarely designed “from scratch.” Instead, they are often subject to an evolutionary process in which existing designs are incrementally modified every time a new phase or version of the system is needed. There are numerous examples and they span every engineering discipline. To mention one of them, consider a wide-area communication network that expands over time to reach new locations, increasing its capacity depending on the offered load, and occasionally providing new services.

It is remarkable that even though the optimized design of complex systems and networks has been studied in depth for several decades, the literature rarely considers that the design process is often incremental (or evolutionary). Instead, it is typically assumed that the system is designed tabula rasa, in a "clean-slate" manner. The corresponding design problems are typically formulated as optimization problems with multiple constraints, none of which is imposed by an earlier design however. In the few previous studies that considered evolving networks (see Section IX), the focus was on the design algorithms and the corresponding optimization problems, rather than to examine the pros and cons of an incremental design relative the corresponding optimized design.

In this paper, we attempt a first investigation of the following fundamental question: how does an incremental design compare to an optimized design, when both designs provide the same function? Even though we believe that the previous question is relevant to the study of complex systems in general, we choose to focus on a rather narrow design problem and the engineering domain of our expertise, namely the topological design of communication networks. In that context, the objective of the design process is to create a network that interconnects a given set of locations under certain reliability and performance constraints, aiming to minimize a cost-related objective function. We further limit (admittedly in a very simplified manner) how the environment changes with time: the set of interconnected network locations expands by one or more nodes at each time step.

The previous network topology design problem allows us to examine several interesting questions about incremental versus optimized designs in a precise and quantitative framework. How can we mathematically formulate the incremental design problem, and how is that formulation different from the more traditional optimized design problem? How does an incremental design compare, in terms of cost, topological similarity, performance (delay), or robustness with the corresponding clean-slate design that provides the same function? How costly is it to modify an existing design, relative to the cost of re-designing the system from scratch? When is it better to abandon incremental changes on an existing system and start from scratch? What is the “price of evolution”, i.e., the cost overhead of an incremental design relative to the corresponding optimized design? How different, topology-wise, are two incremental and optimized network designs that provide the same function? What is the role of the pace at which the environment changes with time? Does the incremental design process perform better when the environment varies in certain non-random ways? And finally, how important is it that the incremental design process maintains an inventory of components from earlier designs that are not needed in the current design?

In Section III we present a formulation for the incremental design problem in which the objective is to minimize the modification cost relative to the existing network. We compare that formulation with an optimized design problem in which the objective is to minimize the total network cost. In Section III we start with a ring design problem. In this simpler network structure, we can derive expressions for the evolvability and cost overhead of the incremental design process. We also compare random expansion with gradual expansion. We then switch to the more general mesh network design problem. In Section IV we describe the optimized and evolved mesh network algorithms we use in the rest of the paper. In Section V we compare the incremental and optimized design processes under a single-node expansion model in which one node is added to the network at each new environment. In Section VI we examine a faster expansion model in which multiple nodes are added simultaneously. In Section VII we compare the ro-
bustness of the optimized and evolved networks in terms of a node centrality metric. In Section VIII we compare three variations of the incremental design process that differ in how we use existing components from previous designs that are not needed in the current design. We review the related work in Section IX and conclude in Section X.

II. FRAMEWORK AND METRICS

In this section, we present mathematical formulations for the clean-slate and incremental design problems. Even though these formulations are quite general, in the rest of the paper we apply them in the context of topology design for communication networks. As in any design problem, there is a desired function (e.g., construct a communication network to connect a given set of locations), some design elements (e.g., routers, wide-area links), certain constraints (e.g., related to reliability or maximum propagation delay) as well as an objective (e.g., minimize the total cost of the required design elements). The design process aims to use the appropriate elements so that we achieve the desired function, while satisfying the constraints and meeting a given objective. It is often assumed that this process is conducted only once in an otherwise static environment. Here, we consider the case that the design takes place in a dynamic environment. In the context of communication networks, the network may gradually expand to new locations, the cost of design elements may fluctuate, or the constraints may become more stringent from time to time. We consider a discrete-time model and we refer to the k’th time epoch as the k’th environment. At a given environment k, all inputs of the design problem are known and constant.

How can we design a communication network in a dynamic environment? We identify two fundamentally different approaches. In the clean-slate approach we aim to minimize in every environment the total cost of the network subject to the given constraints. We refer to the resulting network in each environment as optimized. In the incremental approach we aim instead to minimize the modification cost relative to the network of the previous environment, again subject to the given constraints; we refer to the resulting network as evolved.

More rigorously, let \(\mathcal{N}(k) \) be the set of acceptable networks at environment k, i.e., networks that provide the desired function and meet the given constraints at environment k. The cost of a particular network \(N \in \mathcal{N}(k) \) is \(C(N) \). \(C(N) \) is the sum of the costs of all design elements in \(N \). We assume that there are no other costs associated with \(N \); for instance, there is no monetary cost to compute the design or to interconnect its elements.

In clean-slate design, the objective is to identify an acceptable network \(N_{opt}(k) \) from the set \(\mathcal{N}(k) \) that has the minimum cost \(C_{opt}(k) \) at environment k,

\[
C_{opt}(k) \equiv C(N_{opt}(k)), \quad N_{opt}(k) \equiv \arg \min_{N \in \mathcal{N}(k)} C(N).
\]

We refer to \(N_{opt}(k) \) as the optimized network at environment k. If the optimized network is not unique, we break ties with secondary objectives (for instance, minimize the total number of links). Most network design problems are computationally intractable (NP-hard), and so they are often solved heuristically, approximating the previous optimization objective. This is what we also do in the algorithms of Sections III and IV. For this reason, we do not refer to \(N_{opt}(k) \) as optimal but as optimized. The former would be the actual solution to the previous problem if we could compute it; the latter is the best solution we can compute given a certain design heuristic.

In the incremental design approach, on the other hand, we design the new network \(N_{evo}(k) \) based on the network \(N_{evo}(k-1) \) from the previous environment \(k-1 \). We refer to the former as the evolved network at environment k. The objective of the incremental design process is to identify an acceptable network \(N(k) \in \mathcal{N}(k) \) that minimizes the modification cost \(C_{mod}(N_{evo}(k-1); N(k)) \) between networks \(N_{evo}(k-1) \) and \(N(k) \). For simplicity, we denote the previous modification cost as \(C_{mod}(k) \).

To define the modification cost precisely we first have to answer the question: what should we do with design elements that are present in \(N_{evo}(k-1) \) but not in \(N(k) \)? We identify three options. First, we keep them active in \(N(k) \) (even though they are not necessary) - this is the Ownership option. Second, they are removed from \(N(k) \) (even though they could be reused in a future environment) - this is the Leasing option. The third option, that we adopt in most of this paper, is that there is an “inventory” \(I(k) \) of design elements that have been purchased prior to environment k but are not used in \(N(k) \) - this is the Inventory option. We assume that the cost of storing elements in the inventory, as well as the cost of moving them in/out of the inventory is zero. We compare the Ownership and Leasing options with the Inventory option in Section VII.

In the presence of an inventory, the modification cost \(C_{mod}(k) \) is defined as the cost of new design elements that are needed in \(N(k) \) but are not present in \(N_{evo}(k-1) \) and they cannot be found in the inventory \(I(k-1) \). Formally, \(C_{mod}(k) \) is the cost of the design elements in the set \(S_{mod}(k) \), where

\[
S_{mod}(k) = N(k) \setminus [N_{evo}(k-1) \cup I(k-1)]
\]

abusing the notation \(N(k) \) to also refer to the set of design elements in the network \(N(k) \). Similarly, the inventory at environment k includes the design elements that are present in \(N_{evo}(k-1) \) but are not present in \(N(k) \),

\[
I(k) = [N_{evo}(k-1) \cup I(k-1)] \setminus N(k).
\]

With the previous definitions, we can now formulate the incremental design process as:

\[
C_{evo}(k) \equiv C(N_{evo}(k)), \quad N_{evo}(k) \equiv \arg \min_{N \in \mathcal{N}(k)} C_{mod}(k)
\]

The evolved network \(N_{evo}(k) \) may not be unique in general. Ties are broken by considering a secondary objective: if two networks minimize the modification cost, select the network with the minimum total cost. As in the case of optimized design, we compute the solution of the incremental design problem with a heuristic described in Sections III and IV.

The cost of the evolved network can be expressed recursively as \(k \geq 1 \):

\[
C_{evo}(k) = C_{evo}(k-1) + C_{mod}(k) - [C_{inv}(k) - C_{inv}(k-1)]
\]
Thus, the cost of the evolved network at environment
that were purchased in the last
the cost of the initial network plus the cost of all design elements
relative to the corresponding optimized design
the inventory to the network at time
is empty (environment
in the inventory’s value at
the last term may be negative.
Note that the cost of the evolved network may decrease at
environment k if the modification cost (new design elements) is
less than the total value of the elements that are moved from
the inventory to the network at time k.
Expanding (5), we can write the cost of the evolved network as:
\[C_{\text{evo}}(k) = C_{\text{evo}}(0) + \sum_{i=1}^{k} C_{\text{mod}}(i) - C_{\text{inv}}(k). \] (6)
Thus, the cost of the evolved network at environment k is the
cost of the initial network plus the cost of all design elements
that were purchased in the last k environments, minus any-
thing that remains in the inventory at time k.

II.1. Metrics

We now introduce four metrics to compare a sequence of
optimized and evolved networks. We also introduce two spe-
cific models of dynamic environment we consider in this pa-
er, and quantify the rate at which the environment changes
with time.

First, the cost overhead $v(k)$ of the evolved design $N_{\text{evo}}(k)$
relative to the corresponding optimized design $N_{\text{opt}}(k)$ at
environment k is:
\[v(k) = \frac{C_{\text{evo}}(k)}{C_{\text{opt}}(k)} - 1 \geq 0 \] (7)
where the inequality is expected from the definition of
$C_{\text{opt}}(k)$.

What is more important however is whether the cost overhead of the incremental design process gradu-
ally increases, i.e., whether the evolved networks become in-
creasingly more expensive compared to the corresponding op-
timized networks. If that is the case, the incremental design
process would diverge over the long-term towards extremely
inefficient designs.

Second, the evolvability $e(k)$ is defined as:
\[e(k) = 1 - \frac{C_{\text{mod}}(k)}{C_{\text{opt}}(k)} \leq 1. \] (8)
The evolvability represents the cost of modifying the evolved
network from environment $k-1$ to k, relative to the cost of
redesigning the network “from scratch” at time k. High evolv-
ability, close to 1, means that it is much less expensive to mod-
ify the existing network than to re-design a new network. On
the other hand, when the evolvability becomes zero or neg-
ative, it is beneficial to stop the incremental design process
and design a new optimized network, i.e., clean-slate design
“beats” evolution in that case.

Third, the inventory overhead $r(k)$ is defined as:
\[r(k) = \frac{C_{\text{inv}}(k)}{C_{\text{evo}}(k)} \geq 0. \] (9)
The inventory overhead quantifies the cost of design elements
that have been previously purchased but are now left unused,
relative to the current cost of the evolved network. An in-
cremental design process that leads to a gradually increasing
inventory overhead would be inefficient in terms of its cumu-
lative cost over time.

Fourth, the topological similarity $t(k)$ between the opti-
mized $N_{\text{opt}}(k)$ and evolved $N_{\text{evo}}(k)$ networks is defined as the
Jaccard similarity coefficient of the two corresponding ad-
Jaccard similarity coefficient matrices. In other words, $t(k)$ is the fraction of dis-

tinct links in either network that are present in both networks. Even though the two network design approaches we consider
are different in terms of objective and design method, we are
interested to know how different the resulting networks are, struc-
ture-wise, over time.

II.2. Expansion models

We consider a specific way in which the environment
changes with time: expansion. Specifically, the set of loca-
tions that the network has to interconnect at any time k is in-
creasing with k. This is probably the most natural way the
environment can change with time in the context of commu-
nication networks.

In the simplest form of expansion, the network size in-
creases by only one node at each environment; we refer to
this as single-node expansion.

We also consider a multi-node expansion scenario in which the network size increases once by a multiplicative factor ρ, which we refer to as expansion factor. Specifically, if the net-
work size increases from n nodes to $n + m$ nodes, the ex-

We also compare two expansion models: random and grad-
ual. Suppose that the set of all possible locations is \mathcal{L} and that
the network expands at time k to X new locations. In random
expansion, the X new locations are selected randomly from
\mathcal{L}. In gradual expansion, we select iteratively each of the X
new locations from \mathcal{L} so that it is the closest location to either
any of the existing nodes in network $N(k-1)$ or to any of the
new locations we have just added in the network.

The random and gradual expansion models represent two
significantly different models in which the environment
changes with time. In random expansion, the new locations
can be anywhere and so it may be costly for the incremental
design to adjust the previous network with only minor modifi-
cations. In gradual expansion, the environment changes in an
“evolution-friendly” manner because the new locations are as
close as possible to the existing network.
III. RING NETWORKS

In this section, we compare the optimized and incremental design approaches in the context of a ring topology. Ring networks are widely used mostly in metropolitan-area networks, as they are robust to single-node failures (two node-disjoint paths exist between any pair of nodes) and they are typically less costly than mesh networks [10]. For our purposes, the ring topology has two additional features. First, we can use an existing software package (Concorde) [5] that computes excellent approximations to the optimal ring design problem. Second, we can leverage existing analytical results to derive asymptotic expressions for the evolvability and cost overhead of incremental ring design under random and gradual expansion.

III.1. Optimized versus incremental ring design

We assume that all potential nodes of the expanding ring network are located in a bounded plane region. Further, we assume that the cost of a network is equal to the sum of its link costs, and the cost of each link is proportional to its length. So, the minimum-cost ring design problem is equivalent to the NP-Hard Traveling Salesman Problem (TSP) [2]. We rely on a TSP-solving software package called Concorde [9], which is based on a branch-and-cut algorithm. Concorde’s TSP solver has computed the optimal solutions to 106 of the 110 TSPLIB problem instances; the largest of them has 15,112 nodes.

Further, in the case of ring design, we can use a simple asymptotic expression for the length of the optimal TSP tour. Specifically, Beardwood et al. proved that \(\text{the length of the shortest closed path through } n \text{ points in a bounded plane region of area } A \text{ is always almost asymptotically proportional to } \sqrt{A \times n} \text{ for large } n \) [4]. In our context, the length of the TSP tour is equal to the cost of the optimized ring.

In the case of random expansion, the \(n \) nodes of the ring can be anywhere in the given region and so the area \(A \) does not depend on \(n \). Thus, the cost of the optimized ring increases as

\[
C_{opt}^{\text{rand}}(n) \sim \sqrt{A \times n} \sim \sqrt{n} \tag{11}
\]

where the notation \(x \sim f(n) \) means that \(x \) tends to become proportional to \(f(n) \) as \(n \) increases.

In the case of gradual expansion, the area in which the \(n \) ring nodes are located increases with \(n \). If we assume that all possible nodes are uniformly distributed with point density \(\sigma_{grd} \) in a bounded plane region, then the area \(A \) in which \(n \) ring nodes are located increases proportionally with \(n \) (\(n = A \sigma_{grd} \)). Thus,

\[
C_{opt}^{\text{grad}}(n) \sim \sqrt{\sigma_{grd} \times n^2} \sim n \tag{12}
\]

In the incremental ring design process, we can compute the minimum modification cost under single-node expansion. Suppose that the existing ring \(N_{evo}(k - 1) \) has size \(n \) and we add a single extra node \(z \) at time \(k \). The minimum modification cost will result if we connect \(z \) to two adjacent nodes \(x \) and \(y \) of \(N_{evo}(k - 1) \), such that

\[
C_{mod}(k) = \min_{(x,y) \in N_{evo}(k-1)}(||z - x|| + ||z - y||) \tag{13}
\]

and then removing the edge \((x, y)\). This process is illustrated in Figure 1(a). Note that there is no other way to connect \(z \) to \(N_{evo}(k - 1) \) so that the resulting network is still a ring but with lower modification cost.

In the case of multi-node expansion, we use an iterative heuristic that aims to minimize the modification cost. Suppose that the existing ring \(N_{evo}(k - 1) \) has size \(n \) and we add a set \(Z \) of more than one new nodes at time \(k \). In each iteration, we select the node \(z \) from \(Z \) that minimizes the modification cost [13]. Then, connect \(z \) to the existing ring as we do in the case of single-node expansion, and then move \(z \) from \(Z \) to the set of nodes in \(N_{evo}(k - 1) \). This process is illustrated in Figure 1(b). Note that this greedy heuristic may be sub-optimal in minimizing the modification cost \(C_{mod}(k) \) - an exhaustive search for the optimal solution however can be prohibitively slow.

III.2. Random single-node expansion

To simplify the notation, instead of referring to an environment \(k \), we simply refer to the ring size \(n \). So, instead of writing \(C_{mod}(k) \) we write \(C_{mod}(n) \), which refers to the modification cost when the ring expands to \(n \) nodes.

To compute the modification cost under random expansion, we rely on a result for the nearest neighbor problem: given a set \(S \) of \(n \) points and a new point \(z \) find the closest neighbor of \(z \) in \(S \). When \(n \) points reside in a two-dimensional region of size \(A \) with point density \(\sigma_{rnd} \), the expected value of the nearest neighbor distance is \(1/\sqrt{\pi \sigma_{rnd}} = 1/\sqrt{n/A} \) [2]. The modification cost in Equation (13) can be approximated as twice the distance between the new node and the nearest node in the ring. The expected value of the latter is \(1/\sqrt{n/A} \) because the \(n \) ring nodes are randomly placed in the region \(A \). So, based on the previous approximation, the modification cost \(C_{mod}(n) \) also scales as the mean nearest neighbor distance,

\[
C_{mod}^{\text{rand}}(n) \sim \frac{1}{\sqrt{n}}. \tag{14}
\]

We have confirmed the validity of the previous approximation with computational results (see Figure 2(c)).

Using Equation (6), and considering that the incremental ring design process does not use the inventory, we see that the cost of the evolved network has the same scaling behavior as

![Figure 1: Connecting new nodes to an existing ring: (a) single-node expansion, (b) multi-node expansion (we show the order in which nodes are connected).](image-url)
the cost of the optimized network,

\[C_{\text{evo}}^{\text{rnd}}(n) = \sum_{i=2}^{n} C_{\text{mod}}^{\text{rnd}}(i) \sim \sqrt{n}. \]

(15)

We can now derive asymptotic expressions for the evolvability and cost overhead under random expansion. From (11) and (14), it follows that

\[1 - e_{\text{evo}}^{\text{rnd}}(n) \sim \frac{1}{n}. \]

(16)

Thus, the evolvability under single-node expansion converges to one, i.e., for large rings, the modification cost is practically zero compared to the cost of designing a new optimized ring. Also, we expect that the cost overhead will be practically constant for large values of \(n \) because both the evolved and optimized network costs scale as \(\sqrt{n} \),

\[v_{\text{evo}}^{\text{rnd}}(n) \sim \text{constant}. \]

(17)

Thus, the evolved ring does not become increasingly more expensive relative to the optimized ring under random single-node expansion. The exact value of the cost overhead depends on the placement of the nodes, the order in which they are added to the network, and the initial ring we start from.

We have confirmed these asymptotic expressions with computational experiments in which the optimized ring is designed using Concorde and the evolved ring is designed based on Equation (14). Figure 2(a) shows the optimized and evolved network costs (with 90% confidence intervals for the empirical results after 20 runs), Figure 2(c) shows the modification cost, while Figure 2(d) shows the evolvability and cost overhead. In the last graph, note that the cost overhead converges to about 0.8.

III.3. Gradual single-node expansion

In this case, a new node is selected among all potential locations as the closest location to any existing ring node. We can rely again on the nearest neighbor problem to estimate the modification cost. Suppose that all potential new locations are uniformly distributed in the given area with density \(\sigma_{\text{grd}} \). The expected value of the distance between a node in the current ring (of size \(n \)) and the nearest potential location is \(\frac{1}{\sqrt{\sigma_{\text{grd}}}} \), which does not depend on \(n \). The modification cost can be again approximated by twice the previous distance, and so it should not increase with \(n \), at least for large rings,

\[C_{\text{grd}}^{\text{mod}}(n) \sim \text{constant}. \]

(18)

Using Equation (6), and considering that the incremental ring design process does not use an inventory, we see that the cost of the evolved network under gradual expansion scales linearly with \(n \),

\[C_{\text{evo}}^{\text{grd}}(n) = \sum_{i=2}^{n} C_{\text{mod}}^{\text{grd}}(i) \sim n. \]

(19)

So, the evolvability under gradual expansion scales as in the case of random expansion

\[1 - e_{\text{evo}}^{\text{grd}}(n) \sim \frac{1}{n}. \]

(20)

The cost overhead does not increase with \(n \) for large values of \(n \), as in the case of random expansion,

\[v_{\text{grd}}^{\text{mod}}(n) \sim \text{constant} \]

(21)

based on Equations (19) and (12).

The difference between random and gradual single-node expansion becomes evident in the computational results (see
Figure 3. For the same ring size, the evolved and optimized costs are lower under gradual expansion, the modification cost is practically constant (and lower than under random expansion), the evolvability is not significantly different between the two expansion models, while the cost overhead is significantly lower under gradual compared to random expansion. In other words, when the ring expands in a gradual manner, we expect that the evolved network will be closer, in terms of cost, to the optimized network compared to random expansion.

III.4. Effect of expansion factor ρ

Suppose that we add m new nodes to a ring of size n so that the resulting network is a ring with $n+m$ nodes. The expansion factor is $\rho = \frac{n+m}{n} > 1$. What can we expect about the evolvability and cost overhead of the incremental design process as functions of ρ?

If $m \ll n$ (i.e., ρ is close to one), we can rely on the following simple approximation. Under random expansion, the modification cost $C_{\text{mod}}(n; m)$ when we add m new nodes will be approximately m times larger than the modification cost $C_{\text{mod}}(n)$ when we add a single new node at a ring of size n. So,

$$C_{\text{mod}}(n; m) \approx m \cdot C_{\text{mod}}(n) \sim m/\sqrt{n}. \tag{22}$$

On the other hand, the cost of an optimal ring with $n+m$ nodes will be

$$C_{\text{opt}}(n; m) \sim \sqrt{n + m}. \tag{23}$$

Thus, the evolvability under random expansion scales as

$$1 - e^{\text{rnd}}(n; m) = \frac{C_{\text{opt}}(n; m)}{C_{\text{mod}}(n; m)} \sim \frac{m}{\sqrt{n(n + m)}} \tag{24}$$

that can be written as

$$1 - e^{\text{rnd}}(n; m) \sim \frac{\rho - 1}{\sqrt{\rho}}. \tag{25}$$

As ρ increases the evolvability decreases and there is a critical expansion factor value $\hat{\rho}$ at which the evolvability becomes zero. For larger expansions than $\hat{\rho}$, it is better to abandon the existing network and redesign the ring in a clean-slate manner.

In the case of gradual expansion, the modification cost $C_{\text{mod}}(n; m)$ will again be roughly m times larger than the modification cost $C_{\text{mod}}(n)$ when we add only one node,

$$C_{\text{mod}}(n; m) \approx m \cdot C_{\text{mod}}(n) \sim m \times \text{constant} \tag{26}$$

while the cost of an optimal ring with $n+m$ nodes is

$$C_{\text{opt}}(n; m) \sim n + m. \tag{27}$$

Thus, the evolvability under gradual expansion scales as

$$1 - e^{\text{grad}}(n; m) = \frac{C_{\text{mod}}(n; m)}{C_{\text{opt}}(n; m)} \sim \frac{m}{n + m} \tag{28}$$

that can be written as

$$e^{\text{grad}}(n; m) \sim \frac{1}{\rho}. \tag{29}$$

Again, as ρ increases the evolvability decreases, but more slowly than under random expansion. It is also important that a critical expansion factor at which the evolvability becomes zero may not exist under gradual expansion. Equation (29) was derived assuming that ρ is close to one, and so we cannot rely on that expression to prove that the evolvability is always positive. Computational results, however, indicate that this may be the case under gradual expansion (see Figure 3(a)).

To derive the cost overhead under multi-node expansion, we have to make two additional assumptions. First, the evolved network at size n is the same with the optimized network at size n (i.e., $C_{\text{evo}}(n) = C_{\text{opt}}(n)$). Second, because $m \ll n$, the cost of the optimized network at size n is approximately equal to the cost of the optimized network at size $n + m$ (i.e., $C_{\text{opt}}(n + m) \approx C_{\text{opt}}(n + m)$). Then, under both random and gradual expansion, we can write that

$$C_{\text{evo}}(n + m) = C_{\text{evo}}(n) + C_{\text{mod}}(n; m) = C_{\text{opt}}(n + m) + m \cdot C_{\text{mod}}(n) \tag{30}$$

and so the cost overhead is

$$v(\rho) = \frac{C_{\text{evo}}(n + m)}{C_{\text{opt}}(n + m)} - 1 \approx m \cdot \frac{C_{\text{mod}}(n)}{C_{\text{opt}}(n)}. \tag{31}$$

Thus, under random expansion, the cost overhead scales as

$$v^{\text{rnd}}(\rho) \sim \frac{\rho - 1}{\sqrt{\rho}}. \tag{32}$$

while under gradual expansion it scales as

$$v^{\text{grad}}(\rho) \sim 1 - \frac{1}{\rho}. \tag{33}$$

The previous scaling expressions are derived assuming that ρ is close to one, but computational results confirm that they are quite accurate when ρ is as high as four (see Figure 3(b)).

We conducted computational experiments in which an initial ring (of size 50) is increased, under random or gradual multi-node expansion, by different factors ρ. Figure III.4 shows the evolvability and cost overhead as functions of ρ. The previous scaling expressions, which are derived assuming that n is large and ρ is close to one, are actually in close agreement with the numerical results when ρ is as high as four. Under random expansion, the critical expansion factor is $\hat{\rho} \approx 2$, while the corresponding cost overhead is approximately 25%, meaning that even though it is then beneficial to re-design the network from scratch, the cost overhead of the evolved network is still quite low. Under gradual expansion, the evolvability does not become negative, at least in the given range of ρ, and the cost overhead is significantly lower than under random expansion.

IV. MESH NETWORK DESIGN

We now describe the algorithms that we use to design optimized and evolved mesh networks. The main difference between mesh and ring topologies, at least in the context of this
work, is that the former has an additional design constraint that is related to the delay of each path. Even though ring topologies are common in metropolitan networks, mesh networks are the norm in wide-area service provider backbones and enterprise networks. A ring topology is not appropriate in that context because it can lead to unacceptably large delays.

Specifically, the reliability constraint is that every pair of networks should be connected through at least two node-disjoint paths, the primary and the secondary. The primary path is the path with the minimum propagation delay, i.e., the shortest path when each link cost is equal to the link’s propagation delay. The secondary path is also the shortest path, but after we have removed the nodes that participate in the primary path (except the source and destination). The propagation delay in both paths should be less than \(D \). We say that a network is acceptable if it meets the previous reliability and delay constraints for every pair of nodes. Note that depending on the distances between nodes and the bound \(D \) an acceptable network may not exist.

Given a set of locations, we only consider the cost of links (edges). The routers (nodes) would introduce the same cost in all networks as long as we have one router at each location. As in the case of ring networks, we assume that the cost of a link is proportional to its length. In other words, we focus on the cost of installing a fiber optic trunk between two remote locations. That cost is typically much larger than the cost of the router interfaces for a link, it does not depend on the capacity of the link, and it increases roughly linearly with distance (at least for transcontinental links).

Because the problem of minimum-cost topological design for mesh networks with reliability and delay constraints is NP-Hard [21], we rely on heuristics. Even though there are some approximation bounds for special networks, mostly trees, we are not aware of such bounds and approximation algorithms for general mesh networks under the previous design constraints. Our objective is not to study network design algorithms but to compare optimized with evolved designs, and so we use two rather simple algorithms referred to as OPT and EVO. Both algorithms are probabilistic and iterative. The two algorithms are quite similar in terms of how they add and remove links, but they differ in their objective functions. Additionally, the EVO algorithm makes use of links stored in an inventory.

In the OPT algorithm the objective function is to minimize the total network cost. That is computed as the sum of all link costs. In the EVO algorithm, the objective is to minimize the modification cost relative to the previous network, reusing any links that may exist in the inventory. In EVO, the modification cost is the sum of the costs for all new links that are needed in the evolved network. That cost does not include the cost of any existing links in the previous network, or any links that are moved from the inventory to the new network.

In both algorithms, we use the same stopping criterion. Because the algorithms are probabilistic, each iteration may result in a different acceptable network (if such a network exists). If the new network is not better, in terms of the optimization objective of each algorithm, than the best network that has been computed up to that point, we move to the next iteration. The algorithms terminate if we cannot improve the optimization objective of each algorithm for a number (10) of successive iterations. It should be noted that we have also experimented with several other algorithms. The aforementioned performed consistently better in terms of minimizing the two corresponding objective functions than any other heuristic we experimented with. So, even though we cannot claim that the following algorithms are optimal or that they have a certain approximation ratio, we are certain that they do not produce “bad” solutions either.

IV.1. The OPT algorithm

Algorithm 4 describes a single iteration of the OPT design process. Each iteration aims to find an acceptable network. At the end we choose the network with minimum total cost among all the designed acceptable networks. Each iteration has two phases. In the first phase, the algorithm adds links probabilistically, in order of increasing cost, until an acceptable network is computed. In the second phase, the algorithm attempts to remove as many existing links as possible, in order of decreasing cost, as long as the network remains acceptable. That stage is also probabilistic. The previous process starts from an optimized ring that interconnects all given locations, computed using the Concorde TSP solver (see Section III).

We found empirically that the two probabilities \(p_{\text{add}} \) and \(p_{\text{del}} \) do not have a strong impact on the resulting minimum network cost, as long as they are between 0.8 and 1; we use \(p_{\text{add}}=p_{\text{del}}=0.9 \).
We consider a rectangular area of length 3000 and width 1500 expansion.

and evolved networks, as well as between random and gradual node expansion. We focus on comparisons between optimized networks. The algorithm is similar to Initial network

\[\text{Require: Initial network } N_{\text{init}} \text{: Concorde ring connecting all nodes} \]
1. FoundAcceptable = false
2. \(N_{\text{OPT}} = \text{graph complement of } N_{\text{OPT}} \)
3. LinkstoAdd = all the links in \(N_{\text{OPT}} \)
 \{Link addition phase\}
4. \textbf{while} LinkstoAdd is not empty and not FoundAcceptable \textbf{do}
5. \(s = \text{shortest link in LinkstoAdd} \)
6. Add \(s \) to \(N_{\text{OPT}} \) with probability \(p_{\text{add}} \)
7. remove \(s \) from LinkstoAdd
8. if \(N_{\text{OPT}} \) is acceptable then
9. FoundAcceptable = true
10. \textbf{end if}
11. \textbf{end while}
12. \{Link deletion phase\}
13. LinkstoRemove = all the links in \(N_{\text{OPT}} \)
14. \textbf{while} LinkstoRemove is not empty and foundAcceptable \textbf{do}
15. \(s = \text{longest link in } N_{\text{OPT}} \)
16. Examine if \(N_{\text{OPT}} \) would remain acceptable if \(s \) is removed
17. if so, remove \(s \) with probability \(p_{\text{del}} \)
18. remove \(s \) from LinkstoRemove
19. \textbf{end while}
20. return Optimized network \(N_{\text{OPT}} \) and FoundAcceptable

IV.2. The EVO algorithm

Algorithm describes a single iteration of the EVO design process. The algorithm is similar to OPT in the way it adds and deletes links, but with three important differences. First, EVO connects the given set of new nodes to the previous network using the iterative process that was also used in Section III; recall that that algorithm aims to connect each new node to the existing network introducing the lowest modification cost.

Second, EVO attempts to reuse links from the inventory as much as possible so that it minimizes the new links that we need to acquire at this environment. Note that the latter are the only links that contribute to the modification cost.

Third, EVO has two link deletion phases. It first removes (probabilistically) new links that are not necessary in order of decreasing cost. Any link deletions in this phase reduce the modification cost. Then, it moves (again, probabilistically and in order of decreasing cost) existing links that are not necessary into the inventory. Any link deletions in this phase do not reduce the modification cost, but they reduce the cost of the evolved network. Note that the latter is a secondary objective, and it is pursued only after we have reduced the modification cost as much as possible.

We use the same values for \(p_{\text{add}} \) and \(p_{\text{del}} \) as in OPT.

V. SINGLE-NODE MESH EXPANSION

We now present results for mesh networks under single-node expansion. We focus on comparisons between optimized and evolved networks, as well as between random and gradual expansion.

The computational experiments are performed as follows. We consider a rectangular area of length 3000 and width 1500 (roughly the aspect ratio of the continental US) and 500 potential locations in that area. We start from a randomly chosen location and in each step we expand the network (randomly or gradually) by adding one more location. We design the optimized and evolved networks so that they always interconnect the same set of locations. The maximum network consists of 60 locations - this is a realistic scale for the backbone of a service provider. The experiments are repeated 20 times, and we report 90% confidence intervals for all results.

The delay bound is set to \(D = 1.3 \times d \), where \(d \) is the length of the diagonal in the previous rectangle. With this value of the delay bound, the designed networks are sparse (the number of links is typically at most twice the number of nodes), which is also a characteristic of the physical-layer backbone connectivity in practice [12]. Further, with this value of \(D \) we can always compute an acceptable network using the algorithms of the previous section.

We have also experimented with other delay bounds between \(1.2 \times d \) and \(2.5 \times d \), without observing significant qualitative differences. As \(D \) increases, the resulting networks get sparser and after a certain point they become rings. As \(D \) approaches \(d \), on the other hand, it becomes likely that there are no acceptable networks for a given set of locations and the networks can be unrealistically dense.
The costs of the optimized and evolved networks are shown in Figures 6(a) and 6(b) for random and gradual expansion, respectively. We have confirmed that these costs scale as \sqrt{n} in the case of random expansion, and as n in the case of gradual expansion (the regression lines are omitted for clarity). Interestingly, these are the same scaling expressions we derived in the case of ring networks.

The modification costs also scale as ring networks, even though there is significantly higher variability in mesh networks. Specifically, the modification cost decreases as $1/\sqrt{n}$ under random expansion, and it remains practically constant under gradual expansion (Figure 6(c)). All previous costs are higher in random than in gradual expansion. This is because gradual expansion leads to much shorter links (Figure 7(c)).

In terms of cost overhead, the scaling analysis for rings predicts that $v(n)$ should not depend on the network size for large values of n. Figures 6(d) and 6(e) show the cost overhead for mesh networks under random and gradual expansion, respectively. The variability across different experiments is large, and so we use the non-parametric Mann-Kendall hypothesis test for trend detection. Indeed, when we focus on the larger values of n, say $n > 20$, the test cannot reject the null hypothesis that the cost overhead shows no trend (p-value = 0.36 for random expansion and 0.34 for gradual expansion). So, we expect that the cost overhead does not increase under single-node expansion, even in the case of mesh networks. Additionally, as expected from the case of rings, the cost overhead is significantly higher under random expansion than gradual expansion.

Figures 6(d) and 6(e) also show the evolvability under random and gradual expansion. They both increase fast until they become approximately equal to one. So, as in the case of rings, it is less costly to incrementally modify an existing network instead of re-designing it from scratch. It is interesting...
that the evolvability under gradual expansion is slightly less than under random expansion when \(n < 20 \). This is a consequence of the lower optimized network cost under gradual expansion - the modification cost is not significantly lower than the optimized cost in that range of network sizes.

The topological similarity between the corresponding optimized and evolved networks is shown in Figure 6(b). Even though it does not show a clear trend with \(n \), it is interesting that the two networks share about 50-70% of their links, when \(n > 20 \). Thus, the two network topologies become (and stay) significantly different during the expansion process (even though they started from the same three-node ring).

The inventory overhead is shown in Figure 7(a). There is a decreasing trend under both random and gradual expansions. The fact that the inventory overhead does not increase means that the inventory does not become increasingly more costly relative to the cost of the evolved network. If that was the case, the evolved network would gradually accumulate a “baggage” of unused links with increasing cost relative to the cost of the network itself. The opposite happens: even though the cost of the inventory increases in absolute terms, it decreases relative to the cost of the network.

We have also compared the performance of the two networks, in terms of the path propagation delay, when there are no failures. In that case only the primary path is used for each pair of nodes. Figure 7(b) shows the ratio of the propagation delay in the primary path between the optimized and evolved networks. The evolved network, under random expansion, gives significantly lower propagation delay than the corresponding optimized network. One reason is that the former has larger link density. A second reason, related to the presence of hubs in the evolved network, is discussed in Section VII. The difference is not significant under gradual expansion because the links in those networks are of comparable number and length.

Another significant difference between random and gradual expansion is shown in Figure 7(c). Under gradual expansion, the average link length remains practically constant as the network grows.

Under random expansion, the average link length is consistently higher than under gradual expansion, but it decreases with \(n \). The reason is that, as the network grows, it gradually covers a larger span of the rectangular region in which all potential nodes are located. So, the need for longer links is gradually decreased and the new links that are added in each environment get shorter over time.

VI. MULTI-NODE MESH EXPANSION

In this section, we consider multi-node expansion in mesh networks. An expansion factor \(\rho \) means that the network expands at a single environment from an initial size of \(n \) nodes to \(\lceil \rho n \rceil \) nodes. In the following experiments, \(n=15 \) nodes.

The initial evolved network (before the multi-node expansion) is designed using single-node expansion, until it reaches size \(n \). We focus on the effect of \(\rho \) on the two main metrics: the evolvability \(c(\rho) \) and cost overhead \(v(\rho) \).

Figure 8(a) shows the evolvability under random and gradual expansion as \(\rho \) increases. As in the case of rings, the evolvability decreases with \(\rho \), and the decrease is faster under random expansion. The critical expansion factor \(\rho \) under random expansion is larger than four. Thus, at least in these computational results, it is less costly to modify the existing network incrementally than to redesign it from scratch if the network size increases by less than a factor of four. On the other hand, the evolvability under gradual expansion remains positive in the range of network sizes that we could design (as in the case of rings). It is an open question whether the evolvability can ever be negative under gradual expansion.

Figure 8(b) shows that the cost overhead increases with \(\rho \) under both random and gradual expansion. The latter leads to significantly lower values, as in the case of rings. The increase of the cost overhead, however, is concave under both random and gradual expansion, and it does not exceed 100%, at least in these computation results, when \(\rho \) is less than four.

The scaling expressions that were derived for ring networks assuming that \(\rho \) is close to one (see Equations 25, 29, 32 and 33) also give accurate regression curves for mesh networks (at least when \(\rho < 3.5 \)). Recall however that these expressions should not be used to examine the asymptotic behavior of the evolvability or cost overhead as \(\rho \) increases.

VII. CENTRALITY AND ROBUSTNESS

The generated networks are robust to single node or link failure because they have two node-disjoint paths (primary
and secondary) between each pair of nodes. We could compare the robustness of the designed topologies by considering multiple link or node failures that are randomly generated in a simulator. We rely instead on a more abstract network analysis approach based on the betweenness centrality metric. Specifically, we define as Betweenness Centrality of a node (node-BC) the fraction of primary paths that traverse that node, among all primary paths in the network. Similarly, the Betweenness Centrality of a link (link-BC) is the fraction of primary paths that traverse that link. The nodes (or links) with the highest BC values can be thought of as the network’s most critical components; if they are somehow perturbed (without necessarily failing), the impact on the entire network will be much higher than if we perturb nodes (links) with low BC. Similarly, we can compare the robustness of two networks X and Y that have the same number of nodes (and thus the same number of primary paths) using the BC metric. If the average node-BC across all nodes in X is higher than in Y , network X is more susceptible (or less robust) to node perturbations than network Y ; similarly for link perturbations.

FIG. 9. Robustness graphs under single-node random expansion(n=50)

We compare next the robustness of evolved and optimized networks under single-node random expansion. Due to space constraints we focus on the node-BC metric; the results are similar for link-BC. Figure 9(a) shows the empirical CDF of the BC across all nodes in networks of size n=50. These empirical CDFs are constructed from 20 independently generated networks (i.e., the sample size in each empirical CDF is 1000 values). Note that the nodes of the optimized network have higher betweenness centrality than the nodes of the evolved network, at least when the BC is less than 20%. The average node-BC is 0.15 in the optimized and 0.10 in the evolved networks. So, we expect that the evolved network will be more robust to node perturbations, on average, than the optimized network.

There is an interesting difference between the two networks however, which is not evident from the previous CDFs. Figure 9(b) shows a scatter plot for the node degree and BC in the 20 evolved networks we consider, while Figure 9(c) shows the corresponding scatter plot for the 20 optimized networks. In the evolved networks, there is a strong positive correlation (Pearson’s correlation coefficient: 84%) between node degree and BC, while there is no significant correlation in optimized networks (Pearson’s correlation coefficient: 11%). In other words, in the evolved network the most critical nodes (highest BC) are also the nodes with the largest number of connections; this is not the case in optimized networks.

We also compare the degree distribution of evolved and optimized networks (see Figure 10). In evolved networks, about 4% of the nodes have a degree of eight or more; the corresponding percentage is 2% in optimized networks and there are no nodes with degree higher than eight. Additionally, the percentage of nodes with only two links (the minimum degree that is necessary to satisfy the reliability constraint) is 38% in evolved and 23% in optimized networks. In other words, the evolved networks also have a more skewed degree distribution (the skewness of the degree distribution is 1.2 in optimized and 1.5 in evolved networks). We refer to those higher-degree nodes as hubs. It is the hubs that also have the highest BC in evolved networks.

Why is it that the incremental design process creates nodes with considerably larger degree and BC than most other nodes in the same network? The evolved network at environment k is generated from the corresponding network at environment k−1; so, any existing hubs are inherited to the network of the next environment. Further, a hub offers short paths to many other nodes (due to its large number of connections). So, if the addition of a new node in the network causes a violation of the reliability or delay constraints, it is more likely that a new hub connection will resolve that violation than a new connection to a low degree node. We have also confirmed that the nodes with the highest degree in evolved networks are nodes that were created early in the incremental design process, accumulating a large degree over time (results not shown due to

FIG. 10. Degree distribution of evolved and optimized networks.
space constraints). On the contrary, the optimized design process creates a new network at each environment, and so it is not likely that a hub at environment \(k - 1 \) will also be a hub at environment \(k \).

In summary, evolved networks are more robust than optimized networks, in terms of the average BC metric we consider. If we randomly select a node in each network and perturb it, we expect that the impact of the perturbation will be higher in the optimized network. At the same time however, an evolved network has a small number of hubs that also have high BC, relative to the rest of the nodes in that network; those nodes represent “Achilles’ heel” in evolved networks. Further, evolved networks have more hubs (more nodes at the tail of the degree distribution) than optimized networks, and so evolved networks are more susceptible to hub perturbations than optimized networks. These observations are similar to a well-known finding about scale-free networks [1]: those networks are robust to the failure of randomly selected nodes but are fragile to the failure of hubs. We cannot claim, however, that the evolved networks we consider in this paper are scale-free because of the limited network sizes we can generate computationally. The connection between our study and the literature of scale-free networks is an interesting problem for future research.

VIII. OWNERSHIP AND LEASING

In the previous mesh network design sections, we adopted the Inventory option, in which any unnecessary links are “turned off” and they are (physically or virtually) moved to an inventory so that they can be reused in the future if needed. As discussed in Section II we can also consider two variations of the incremental design process that do not require an inventory: an Ownership option in which the network maintains existing links even if they are not necessary, and a Leasing option in which links that are not necessary in the current environment are removed (if those links are needed again in the future, they will have to be re-purchased). In this section, we compare the Inventory option with the Ownership and Leasing options under single-node expansion. Due to space constraints, we only summarize the results without including graphs.

The Ownership option results in significantly higher evolved network cost than the two other options (by a factor of about two in our random expansion experiments). The reason is that the former leads to a much larger number of links. What is more interesting, however, is that the difference between the Inventory and Leasing options is statistically insignificant \((C_{\text{evo}} \text{ is only marginally higher in the former}) \). In other words, even though the Inventory option keeps some unnecessary links in the network, those links are only few relative to the total number of links in the network. This is related to the earlier observation regarding the decreasing trend of the inventory overhead (Figure 7(a)).

On the other hand, the modification cost is typically higher in Leasing than in the two other options. With Leasing, the incremental design process has to occasionaly acquire more new links than with the two other option. This difference in

\[C_{\text{mod}}, \text{however, is insignificant compared to the optimized network cost } C_{\text{opt}} \text{ (19)} \text{ and so the evolvability of the three options is practically the same (but with higher variance in the leasing option).} \]

In terms of cost overhead, the Ownership option results in significantly higher values than the two other inventory options (on the average about 0.6 versus 0.1, for large networks). The difference between Leasing and Inventory is not statistically significant at most environments.

In summary, the incremental design process clearly benefits if it does not use the Ownership option. The Inventory option represents a good compromise between minimizing \(C_{\text{evo}} \text{ and } C_{\text{mod}} \). When it is not possible, however, to maintain an inventory, the results of this section show that the Leasing option would result in similar evolvability and cost overhead with the Inventory option.

IX. RELATED WORK

The topology design literature is extensive both in the domain of computer networks and in theoretical computer science, and it is well covered in a recent book by Pioro and Medhi [21]. The vast majority of that literature, however, focuses on optimized network design. Only few studies have focused on incremental network design (also referred to as “multi-period design”), and none of them, to the extent of our knowledge, have focused on a comparison between incremental and optimized design.

Specifically, there are some studies that focus on incremental network design [5, 8, 17, 13, 20, 23–26] (see also section 11.2 of [21]). Those works mostly propose algorithms and optimization frameworks for incremental network design under a wide range of different constraints and objectives. Some of them consider topology design while others consider capacity expansion coupled with routing changes, and some of them consider reliability constraints while others consider limited budget constraints. None of them, however, is significantly relevant to our study because they do not compare incremental designs with the corresponding optimized designs, and they do not consider different expansion models (e.g., random versus gradual or single-node versus multi-node).

Chiang and Yang have focused on various “X-ities”, such as evolvability, scalability, reliability, or adaptability in the context of computer networks [6]. They present an analytic framework to capture the notions of evolvability and scalability. They also present an Evolvable Network Design (END) Tool using dynamic programming methods to design the multi-phase deployment of a network so that early phase designs are more evolvable in later stages.

A quite different, but still relevant, study by Tero et al. [22] compared the Tokyo rail system (as an example of an optimally designed transportation network) with a natural network formed by the slime mold Physarum polycephalum. The slime mold was allowed to grow on a rectangular map of the city of Tokyo; the map contained food on the locations at which the Tokyo rail system has stations. The slime mold network grew in an incremental manner, without any centralized control or “intelligence”, and it gradually covered and intercon-
connected all food locations while refining its connectivity over time. The authors compared the two networks in terms of efficiency, fault tolerance, and cost and found that they are actually quite similar! This novel experiment implies that even a simple and incremental design process may be able to produce a network that has the cost efficiency and reliability properties that we usually only expect from optimized networks.

X. CONCLUSIONS

We can now return to the questions that were asked in the introduction and summarize our main findings. The following conclusions are supported by asymptotic scaling expressions for rings and by computational results in the case of mesh networks; it appears though that the analytical expressions for rings also fit well the computational results for the mesh networks we experimented with.

1. We formulated the incremental network design process as an optimization problem that aims to minimize the modification cost relative to the previous network. We also identified and compared certain expansion models (random versus gradual, and single-node versus multi-node) and three variations of the incremental design process (Inventory, Ownership, Leasing).

2. Even though an evolved network has higher cost than the corresponding optimized network, the cost overhead of the former does not increase as the network grows, at least under single-node expansion.

3. In the case of mesh networks, the incremental design process leads to networks with larger link density, higher performance in terms of the average propagation delay across all primary paths, and improved robustness in terms of a node betweenness centrality metric, compared to optimized networks. These differences are more pronounced under random expansion.

4. Under single-node (random or gradual) expansion, it is less costly to follow the incremental design approach than to re-design the network from scratch. The evolvability under basic expansion approaches one as the network grows.

5. Under multi-node and random expansion, there is a critical value \(\hat{\rho} \) of the expansion factor beyond which it is less costly to abandon the existing network and re-design the network from scratch. It is not clear whether this is ever the case under gradual expansion; our computational experiments have never produced negative evolvability in that case.

6. The incremental and optimized design processes lead to significantly different network topologies. The evolved network has a more skewed degree distribution compared to the optimized network, and it includes few nodes (hubs) with much higher degree and betweenness centrality than most other nodes.

7. The inventory overhead of the incremental design process does not increase with time, and so the cumulative cost of the inventory does not diverge relative to the cost of the evolved network.

8. Under gradual expansion, the evolvability is higher and the cost overhead is lower than under random expansion. The model of gradual expansion represents a more “evolution-friendly” dynamic environment than random expansion.

9. The Inventory option is a good compromise between cost overhead and modification cost, compared to the Ownership and Leasing options. If it is not possible to maintain an inventory, the Leasing option performs quite similar to the Inventory option.

In terms of future work, we believe that the previous questions can be studied more mathematically for specific regular or random network topologies, deriving exact expressions. It would also be interesting to examine other dynamic environment models, such as iterated multi-node expansion, models in which the traffic loads and link capacities change with time as well, as well as more elaborate economic models that involve discounting or dynamic costs. It would also be interesting to see this quantitative framework and comparisons between evolved and optimized designs applied in other problems and technological domains.

[1] R. Albert, H. Jeong, and A. Barabasi. Error and attack tolerance of complex networks. *Nature*, 406:378, 2000.
[2] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. *The Traveling Salesman Problem: A Computational Study*. Princeton University Press, 2006.
[3] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. *J. ACM*, 45:891–923, 1998.
[4] J. Beasley, J. Halton, and J. Hammersley. The shortest path through many points. *Mathematical Proceedings of the Cambridge Philosophical Society*, (55):299–327, 1959.
[5] F. Carvalho, L. Ferreira, F. Lobo, and L. Barrancho. Optimal distribution network expansion planning under uncertainty by evolutionary decision convergence. *International Journal of Electrical Power & Energy Systems*, 20(2):125–129, 1998.
[6] M. Chiang and M. Yang. Towards Network X-ites From a Topological Point of View: Evolvability and Scalability. *Proc., Allerton Conf. on Comm., Control, and Computing*, 2004.
[7] N. Geary, A. Antonopoulos, E. Drakopoulos, and J. O'Reilly. Analysis Of Optimisation Issues In Multi-Period DWDM Network Planning. In *IEEE INFOCOM*, 2001.
[8] S. Gopal and Krishna Jain. On Network Augmentation. *IEEE Transactions on Reliability*, 35(5):541–543, 1986.
[9] M. Hahsler and K. Hornik. TSP Infrastructure for the Traveling Salesperson Problem. *IEEE/ACM Transactions on Networking*, 23(2), December 2007.
[10] M. Herzog, M. Maier, and M. Reisslein. Metropolitan area packet-switched wdm networks: A survey on ring systems. *Communications Surveys & Tutorials, IEEE*, 6(2):2–20, 2004.
[11] H. Lee and D. Dooly. Heuristic algorithms for the fiber optic network expansion problem. *Telecommunication Systems*, 7:355–378, 1997.
[12] L. Li, D. Alderson, W. Willinger, and J. Doyle. A First-Principles Approach to Understanding the Internet’s Router-Level Topology. In *Proceedings of ACM SIGCOMM*, 2004.
[13] A. Meyerson, K. Munagala, and S. Plotkin. Designing Networks Incrementally. *IEEE FOCS*, 2001.
[14] In a communication network, to place a physical link in the
inventory means that the corresponding fiber trunk would not be connected to any switching equipment, even though it is already laid of course.

[15] In our computational experiments, two modification costs are rarely equal because link costs are based on distance and they are real numbers.

[16] The reader should note that the cost overhead metric is different than the well-known approximation ratio. The latter examines the worse-case solution produced by an algorithm relative to the optimal solution of a given problem. The cost overhead compares the solutions (costs) of two algorithms that aim to minimize two different optimization objectives.

[17] We could move that edge to the inventory, but in the case of ring design the inventory is never used. So, in this section, the Inventory and Leasing options are equivalent.

[18] We assume that the propagation delay of a link is proportional to its straight-line length on the Euclidean plane.

[19] Obviously, C_{opt} does not depend on the three inventory options of the incremental design process.

[20] M. Pickavet and P. Demeester. Long-term planning of WDM networks: A comparison between single-period and multi-period techniques. Photonics Network Communications, 1(4):331–346, 1999.

[21] M. Pioro and D. Medhi. Routing, Flow and Capacity Design in Communication and Computer Networks. The Morgan Kaufmann Series in Networking, 2004.

[22] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. Bebber, M. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki. Rules for Biologically Inspired Adaptive Network Design. Science, 327(5964):439–442, 2010.

[23] K. Vajanapoom and D. Tipper. Risk based incremental survivable network design. 2007.

[24] T. Wu, R. Cardwell, and M. Broyden. A multi-period design model for survivable network architecture selection for SONET interoffice networks. IEEE Trans. on Reliability, 40:417–427, October 1991.

[25] B. Yaged. Minimum Cost Routing for Dynamic Network Models. Networks, 3:193–224, 1973.

[26] N. Zadeh. On Building Minimum Cost Communication Networks over time. Networks, 4:19–34, 1974.