JUMP-TYPE HUNT PROCESSES GENERATED BY LOWER BOUNDED SEMI-DIRICHLET FORMS

BY MASATOSHI FUKUSHIMA AND TOSHIHIRO UEMURA

Osaka University and Kansai University

Let E be a locally compact separable metric space and m be a positive Radon measure on it. Given a nonnegative function k defined on $E \times E$ off the diagonal whose anti-symmetric part is assumed to be less singular than the symmetric part, we construct an associated regular lower bounded semi-Dirichlet form η on $L^2(E; m)$ producing a Hunt process X^0 on E whose jump behaviours are governed by k. For an arbitrary open subset $D \subset E$, we also construct a Hunt process $X^{D,0}$ on D in an analogous manner. When D is relatively compact, we show that $X^{D,0}$ is censored in the sense that it admits no killing inside D and killed only when the path approaches to the boundary. When E is a d-dimensional Euclidean space and m is the Lebesgue measure, a typical example of X^0 is the stable-like process that will be also identified with the solution of a martingale problem up to an η-polar set of starting points. Approachability to the boundary ∂D in finite time of its censored process $X^{D,0}$ on a bounded open subset D will be examined in terms of the polarity of ∂D for the symmetric stable processes with indices that bound the variable exponent $\alpha(x)$.

1. Introduction. Let E be a locally compact separable metric space equipped with a metric d, m be a positive Radon measure with full topological support and $k(x, y)$ be a nonnegative Borel measurable function on the space $E \times E \setminus$ diag, where diag denotes the diagonal set $\{(x, x) : x \in E\}$. A purpose of the present paper is to construct Hunt processes on E and on its subsets with jump behaviors being governed by the kernel k by using general results on a lower bounded semi-Dirichlet form on $L^2(E; m)$.

The inner product and the norm in $L^2(E; m)$ are denoted by (\cdot, \cdot) and $\| \cdot \|$, respectively. Let \mathcal{F} be a dense linear subspace of $L^2(E; m)$ such that $u \land 1 \in \mathcal{F}$ whenever $u \in \mathcal{F}$. A (not necessarily symmetric) bilinear form η on \mathcal{F} is called a lower bounded closed form if the following three conditions are satisfied: we set $\eta_\beta(u, v) = \eta(u, v) + \beta(u, v)$, $u, v \in \mathcal{F}$. There exists a $\beta_0 \geq 0$ such that:

(B.1) (lower boundedness); for any $u \in \mathcal{F}$, $\eta_{\beta_0}(u, u) \geq 0$.
(B.2) (sector condition); for any $u, v \in \mathcal{F}$,

$$|\eta(u, v)| \leq K \sqrt{\eta_{\beta_0}(u, u) \cdot \eta_{\beta_0}(v, v)}$$

Received March 2010; revised November 2010.

MSC2010 subject classifications. Primary 60J75, 31C25; secondary 60G52.

Key words and phrases. Jump-type Hunt process, semi-Dirichlet form, censored process, stable-like process.
for some constant $K \geq 1$.

(B.3) (completeness); the space \mathcal{F} is complete with respect to the norm $\eta^{1/2}(\cdot, \cdot)$ for some, or equivalently, for all $\alpha > \beta_0$.

For a lower bounded closed form (η, \mathcal{F}) on $L^2(E; m)$, there exist unique semi-groups $\{T_t; t > 0\}, \{\hat{T}_t; t > 0\}$ of linear operators on $L^2(E; m)$ satisfying

$$
(T_t f, g) = (f, \hat{T}_t g),
$$

(1.1)

$$
f, g \in L^2(E; m), \|T_t\| \leq e^{\beta_0 t}, \|\hat{T}_t\| \leq e^{\beta_0 t}, t > 0,
$$

such that their Laplace transforms G_α and \hat{G}_α are determined for $\alpha > \beta_0$ by

$$
G_\alpha f, \hat{G}_\alpha f \in \mathcal{F}, \quad \eta_\alpha(G_\alpha f, u) = \eta_\alpha(u, \hat{G}_\alpha f) = (f, u),
$$

$$
f \in L^2(E; m), u \in \mathcal{F}.
$$

See the first part of Section 3 for more details. $\{T_t; t > 0\}$ is said to be Markovian if $0 \leq T_t f \leq 1$, $t > 0$, whenever $f \in L^2(E; m), 0 \leq f \leq 1$. It was shown by Kunita [15] that the semigroup $\{T_t; t > 0\}$ is Markovian if and only if

$$
\eta(U u, u - U u) \geq 0 \quad \text{for any } u \in \mathcal{F},
$$

(1.2)

where $U u$ denotes the unit contraction of u: $U u = (0 \lor u) \land 1$. A lower bounded closed form (η, \mathcal{F}) on $L^2(E; m)$ satisfying (1.2) will be called a lower bounded semi-Dirichlet form on $L^2(E; m)$. The term "semi" is added to indicate that the dual semigroup $\{\hat{T}_t; t > 0\}$ may not be Markovian although it is positivity preserving. As we shall see in Section 3 for a lower bounded semi-Dirichlet form η which is regular in the sense stated below, if the associated dual semigroup $\{\hat{T}_t; t > 0\}$ were Markovian, or equivalently, if m were excessive, then η is necessarily a nonnegative definite closed form, namely, β_0 in conditions (B.1), (B.3) [resp., (B.2)] can be retaken to be 0 (resp., 1).

A lower bounded semi-Dirichlet form (η, \mathcal{F}) is said to be regular if $\mathcal{F} \cap C_0(E)$ is uniformly dense in $C_0(E)$ and η_α-dense in \mathcal{F} for $\alpha > \beta_0$, where $C_0(E)$ denotes the space of continuous functions on E with compact support. Carrillo-Menendez [8] constructed a Hunt process properly associated with any regular lower bounded semi-Dirichlet form on $L^2(E; m)$ by reducing the situation to the case where η is nonnegative definite. We shall show in Section 4 that a direct construction is possible without such a reduction.

Later on, the nonnegative definite semi-Dirichlet form was investigated by Ma, Oberbeck and Röckner [16] and Fitzsimmons [10] specifically in a general context of the quasi-regular Dirichlet form and the special standard process. However, in producing the forms η from nonsymmetric kernels k corresponding to a considerably wide class of jump type Hunt processes in finite dimensions whose dual semigroups need not be Markovian, we will be forced to allow positive β_0.

To be more precise, we set for $x, y \in E, x \neq y$,

$$
k_\delta(x, y) := \frac{1}{2} \{k(x, y) + k(y, x)\} \quad \text{and} \quad k_\alpha(x, y) := \frac{1}{2} \{k(x, y) - k(y, x)\},
$$

(1.3)
that is, the kernel $k_s(x, y)$ denotes the symmetrized one of k, while $k_a(x, y)$ represents the anti-symmetric part of k. We impose four conditions (2.1)–(2.4) on k_s and k_a stated below. Condition (2.1) on k_s is nearly optimal for us to work with the symmetric Dirichlet form (1.4) defined below, while conditions (2.2)–(2.4) require k_a to be less singular than k_s.

Let conditions (2.1)–(2.4) be in force on k. Denote by $C_{lip}^0(E)$ the space of uniformly Lipschitz continuous functions on E with compact support. We also let

\[E(u, v) := \int_{E \times E \setminus \text{diag}} (u(y) - u(x))(v(y) - v(x)) \times k_s(x, y) m(dx) m(dy), \]

\[\mathcal{F}^r = \{ u \in L^2(E; m) : u \text{ is Borel measurable and } E(u, u) < \infty \}. \]

$(\mathcal{E}, \mathcal{F}^r)$ is a symmetric Dirichlet form on $L^2(E; m)$ and \mathcal{F}^r contains the space $C_{lip}^0(E)$. We denote by \mathcal{F}^0 the E_1-closure of $C_{lip}^0(E)$ in \mathcal{F}^r. $(\mathcal{E}, \mathcal{F}^0)$ is then a regular Dirichlet form on $L^2(E; m)$ (cf. [13], Example 1.2.4, Theorem 3.1.1 and see also [23] and [24]).

For $u \in C_{lip}^0(E)$ and $n \in \mathbb{N}$, the integral

\[\mathcal{L}^n u(x) := \int_{\{ y \in E : d(x, y) > 1/n \}} (u(y) - u(x))k(x, y) m(dy), \quad x \in E, \]

makes sense. We prove in Proposition 2.1 and Theorem 2.1 in Section 2 that the finite limit

\[\eta(u, v) = - \lim_{n \to \infty} \int_E \mathcal{L}^n u(x) v(x) m(dx) \quad \text{for } u, v \in C_{lip}^0(E), \]

exists, η extends to $\mathcal{F}^0 \times \mathcal{F}^0$ and (η, \mathcal{F}^0) is a lower bounded semi-Dirichlet form on $L^2(E; m)$ with parameter $\beta_0 = 8(C_1 \lor C_2 C_3)(\geq 0)$ where C_1–C_3 are constants appearing in conditions (2.2)–(2.4). Furthermore, the form \mathcal{E} is shown to be a reference (symmetric Dirichlet) form of η in the sense that, for each fixed $\alpha > \beta_0$,

\[c_1 \mathcal{E}_1(u, u) \leq \eta(u, u) \leq c_2 \mathcal{E}_1(u, u), \quad u \in \mathcal{F}^0, \]

for some positive constants c_1, c_2 independent of $u \in \mathcal{F}^0$. Therefore, (η, \mathcal{F}^0) becomes a lower bounded semi-Dirichlet form on $L^2(E; m)$ and gives rise to an associated Hunt process $X^0 = (X^0_t, P^0_x)$ on E. We call X^0 the minimal Hunt process associated with the form η. Equation (1.6) indicates that the limit of \mathcal{L}^n in n plays a role of a pre-generator of X^0 informally.

If we define the kernel k^* by

\[k^*(x, y) := k(y, x), \quad x, y \in E, x \neq y, \]

and the form η^* by (1.5) and (1.6) with k^* in place of k, we have the same conclusions as above for η^* (Corollary 2.1 of Section 2). In particular, there exists a minimal Hunt process $X^0_{\eta^*}$ associated with the form η^*.

In the second half of Section 3, we are concerned with a killed dual semigroup \(\{e^{-\beta t}\tilde{T}_t; t > 0\} \), which can be verified to be Markovian for a large \(\beta > 0 \) but only for a restricted subfamily of the forms \(\eta \) considered in Section 2 (lower order cases). For a higher order \(\eta \), the killed dual semigroup may not be Markovian no matter how big \(\beta \) is. We shall also exhibit an example of a one-dimensional probability kernel \(k [\int_{\mathbb{R}^d} k(x, y) \, dy = 1] \) with \(m \) being the Lebesgue measure, for which the associated semi-Dirichlet form \(\eta \) is not nonnegative definite and accordingly the associated dual semigroup itself is non-Markovian.

When \(E = \mathbb{R}^d \) the \(d \)-dimensional Euclidean space and \(m(dx) = dx \) the Lebesgue measure on it, we shall verify in Section 5 that our requirements (2.1)–(2.4) on the kernel \(k(x, y) \) are fulfilled by

\[
k^{(1)}(x, y) = w(x)|x - y|^{-d-\alpha(x)},
\]
(1.9)
\[
k^{(1)*}(x, y) = w(y)|x - y|^{-d-\alpha(y)}, \quad x, y \in \mathbb{R}^d, x \neq y,
\]
for \(w(x) \) given by (5.1) and \(\alpha(x) \) satisfying the bounds (5.2). A Markov process corresponding to \(k^{(1)} \) is called a stable-like process and has been constructed by Bass [4] as a unique solution to a martingale problem. In this case, we shall prove that the minimal Hunt process associated with the corresponding form \(\eta \) is conservative and actually a solution to the same martingale problem, identifying it with the one constructed in [4] up to an \(\eta \)-polar set of starting points.

In Section 6, we consider an arbitrary open subset \(D \) of \(E \). Define \(m_D \) by \(m_D(B) = m(B \cap D) \) for any Borel set \(B \subseteq E \). By replacing \(E \) and \(m \) with \(D \) and \(m_D \), respectively, in (1.4), we obtain a symmetric Dirichlet form \((\mathcal{E}_D, \mathcal{F}_D^0) \) on \(L^2(D; m_D) \). Denote by \(\overline{D} \) the closure of \(D \) and by \(C^\text{lip}_0(\overline{D}) \) the restriction to \(\overline{D} \) of the space \(C^\text{lip}_0(E) \). We also denote by \(C^\text{lip}_0(D) \) the space of uniformly Lipschitz continuous functions on \(D \) with compact support in \(D \). Let \(\mathcal{F}_D^0 \) and \(\mathcal{F}_D^1 \) be the \(\mathcal{E}_{D,1} \)-closures of \(C^\text{lip}_0(\overline{D}) \) and \(C^\text{lip}_0(D) \), respectively, in \(\mathcal{F}_D \). Then \((\mathcal{E}_D, \mathcal{F}_D^0) \) is a regular symmetric Dirichlet form on \(L^2(D; m_D) \), while \((\mathcal{E}_D^0, \mathcal{F}_D^0)\) is a regular symmetric Dirichlet form on \(L^2(D; m_D) \) where \(\mathcal{E}_D^0 \) is the restriction of \(\mathcal{E}_D \) to \(\mathcal{F}_D^0 \times \mathcal{F}_D^0 \).

By making the same replacement in (1.5) and (1.6), we get a form \(\eta_D \) on \(C^\text{lip}_0(\overline{D}) \times C^\text{lip}_0(\overline{D}) \), which extends to \(\mathcal{F}_D^0 \times \mathcal{F}_D^0 \) to be a regular lower bounded semi-Dirichlet form on \(L^2(\overline{D}; m_D) \) possessing \(\mathcal{E}_D \) as its reference form, yielding an associated Hunt process \(X_{\overline{D}} \) on \(\overline{D} \). We also consider the restriction \(\eta_D^0 \) of \(\eta_D \) to \(\mathcal{F}_D^0 \times \mathcal{F}_D^0 \) so that \((\eta_D^0, \mathcal{F}_D^0) \) is a regular lower bounded semi-Dirichlet form on \(L^2(D; m_D) \) possessing \(\mathcal{E}_D^0 \) as its reference form. We shall show in Section 6 that the part process \(X^{D,0} \) of \(X_{\overline{D}} \) on \(D \), namely, the Hunt process obtained from \(X_{\overline{D}} \) by killing upon hitting the boundary \(\partial D \), is properly associated with \((\eta_D^0, \mathcal{F}_D^0) \).

We shall also prove in Section 6 that \(X_{\overline{D}} \) admits no jump from \(D \) to \(\partial D \), and furthermore when \(D \) is relatively compact, \(X_{\overline{D}} \) is conservative so that \(X^{D,0} \) admits
no killing inside D and its sample path is killed only when it approaches to the boundary ∂D. $X^{D,0}$ is accordingly different from the part process of X^0 on the set D in general because the sample path of X^0 may jump from D to $E \setminus D$ resulting in a killing inside D of its part process. By adopting k^* instead of k, we get in an analogous manner Hunt processes $X^{D,*}$ on \overline{D} and $X^{D,0,*}$ on D satisfying the same properties as above.

When $(\mathcal{E}, \mathcal{F}^r)$ is the Dirichlet form on $L^2(\mathbb{R}^d)$ of a symmetric stable process on \mathbb{R}^d, the space \mathcal{F}^0 is identical with \mathcal{F}^r. In this case, for an arbitrary open set $D \subset \mathbb{R}^d$, the symmetric Hunt process on D associated with $(\mathcal{E}_D^0, \mathcal{F}_D^0)$ is a censored stable process on D in the sense of Bogdan, Burdzy and Chen [7]. It was further shown in [7] that, if D is a d-set, then the space \mathcal{F}_D^r coincides with \mathcal{F}_D^r so that the symmetric Hunt process on \overline{D} associated with $(\mathcal{E}_D, \mathcal{F}_D^r)$ was called a reflecting stable process over \overline{D}.

For the nonsymmetric kernel $k^{(1)}$ on \mathbb{R}^d as (1.9), associated Hunt processes $X^{D,0}, X^{D,0,*}$ on an arbitrary open set $D \subset \mathbb{R}^d$ may well be called censored stable-like processes in view of the stated properties of them. However, it is harder in this case to identify the space \mathcal{F}_D^r with \mathcal{F}_D^r, and accordingly we call the associated Hunt processes $X^{\overline{D}}, X^{\overline{D}}$ over \overline{D} modified reflecting stable-like processes analogously to the Brownian motion case (cf. [11]). At the end of Section 6, we give sufficient conditions in terms of the upper and lower bounds of the variable exponent $\alpha(x)$ for the approachability in finite time of the censored stable-like processes to the boundary.

We are grateful to Professor Yoichi Oshima for providing us with his unpublished lecture notes [19] on nonsymmetric Dirichlet forms as well as an updated version of a part of it, which are very valuable for us.

2. Construction of a lower bounded semi-Dirichlet form from k. Throughout this section, we make the following assumptions on a nonnegative Borel measurable function $k(x, y)$ on $E \times E \setminus \text{diag}$:

$$M_s \in L^2_{\text{loc}}(E; m) \quad \text{for } M_s(x) = \int_{y \neq x} (1 \wedge d(x, y)^2) k_s(x, y) m(dy),$$

(2.1) \[x \in E, \]

$$C_1 := \sup_{x \in E} \int_{d(x, y) \geq 1} |k_a(x, y)| m(dy) < \infty,$$

(2.2) \[\text{and there exists a constant } \gamma \in (0, 1) \text{ such that} \]

$$C_2 := \sup_{x \in E} \int_{d(x, y) < 1} |k_a(x, y)|^\gamma m(dy) < \infty,$$

(2.3) \[\text{and furthermore, for some constant } C_3 \geq 0, \]

$$|k_a(x, y)|^{2-\gamma} \leq C_3 k_s(x, y) \quad \text{for any } x, y \in E$$

(2.4) \[\text{with } 0 < d(x, y) \leq 1. \]
For each $n \in \mathbb{N}$, define $L^n u$ for $u \in C^{\text{lip}}_0(E)$ by (1.5) and $\eta^n(u, v)$ for $u, v \in C^{\text{lip}}_0(E)$ by
\[
\eta^n(u, v) := - \int_E L^n u(x)v(x)m(dx),
\]
the integral on the right-hand side being absolutely convergent by (2.1). We note that any $u \in C^{\text{lip}}_0(E)$ belongs to the domain F^γ of the form \mathcal{E} defined by (1.4). In fact, if we denote by K the support of u, then $\mathcal{E}(u, u)$ is dominated by twice the integral of $(u(x) - u(y))^2 k_s(x, y)m(dx)m(dy)$ on $K \times E$, which is finite by (2.1).

$\mathcal{E}(u, v)$ admits also an alternative expression for $u, v \in C^{\text{lip}}_0(E)$,
\[
\mathcal{E}(u, v) := \iint_{E \times E \setminus \text{diag}} (u(y) - u(x))(v(y) - v(x))k(x, y)m(dx)m(dy),
\]
because the right-hand side of the above can be seen to be equal to the same integral with $k(y, x)$ in place of $k(x, y)$ by interchanging the variables x, y, and we arrive at the expression in (1.4) by averaging. In particular, $\mathcal{E}(u, v) = \lim_{n \to \infty} \mathcal{E}^n(u, v)$ for $u, v \in C^{\text{lip}}_0(E)$ where
\[
\mathcal{E}^n(u, v) := \iint_{d(x, y) > 1/n} (u(y) - u(x))(v(y) - v(x))k(x, y)m(dx)m(dy).
\]

Proposition 2.1. Assume (2.1)–(2.4). Then for all $u, v \in C^{\text{lip}}_0(E)$, the limit
\[
\eta(u, v) = \lim_{n \to \infty} \eta^n(u, v)
\]
exists. Moreover, the limit has the following expression:
\[
\eta(u, v) = \frac{1}{2} \mathcal{E}(u, v) + \iint_{y \neq x} (u(x) - u(y))v(y)k_a(x, y)m(dx)m(dy),
\]
where \mathcal{E} is defined by (1.4) and the integral on the right-hand side is absolutely convergent.

Proof. For $u, v \in C^{\text{lip}}_0(E)$, we have
\[
\eta^n(u, v) - \eta^n(v, u) = - \int_{d(x, y) > 1/n} (u(y) - u(x))v(x)k(x, y)m(dx)m(dy)
\]
\[+ \int_{d(x, y) > 1/n} (v(y) - v(x))u(x)k(x, y)m(dx)m(dy)
\]
\[= - \int_{d(x, y) > 1/n} u(y)v(x)k(x, y)m(dx)m(dy)
\]
\[+ \int_{d(x, y) > 1/n} v(y)u(x)k(x, y)m(dx)m(dy)
\]
\[= 2 \int_{d(x, y) > 1/n} u(x)v(y)k_a(x, y)m(dx)m(dy),
\]
and further
\[\eta^n(u, v) + \eta^n(v, u) \]
\[= - \iint_{d(x, y) \geq 1/n} (u(y) - u(x)) v(x) k(x, y) m(dx) m(dy) \]
\[- \iint_{d(x, y) \geq 1/n} (v(y) - v(x)) u(x) k(x, y) m(dx) m(dy) \]
\[= \iint_{d(x, y) \geq 1/n} (u(y) - u(x)) (v(y) - v(x)) k(x, y) m(dx) m(dy) \]
\[- \iint_{d(x, y) \geq 1/n} (u(y) - u(x)) v(y) k(x, y) m(dx) m(dy) \]
\[- \iint_{d(x, y) \geq 1/n} (v(y) - v(x)) u(x) k(x, y) m(dx) m(dy) \]
\[= \mathcal{E}^n(u, v) - 2 \iint_{d(x, y) \geq 1/n} u(y) v(y) k_a(x, y) m(dx) m(dy). \]

By adding up the obtained identities, we get for \(u, v \in C_0^{\text{lip}}(E) \),
\[2\eta^n(u, v) = \mathcal{E}^n(u, v) + 2 \iint_{d(x, y) > 1/n} (u(x) - u(y)) v(y) \times k_a(x, y) m(dx) m(dy). \]
(2.8)

Since \(\mathcal{E}^n(u, v) \) converges to \(\mathcal{E}(u, v) \) as \(n \to \infty \), it remains to see that the second term of the right-hand side also converges absolutely as \(n \to \infty \) for each \(u, v \in C_0^{\text{lip}}(E) \).

From the Schwarz inequality and (2.2), we see that
\[
\iint_{d(x, y) > 1/n} |(u(x) - u(y)) v(y) k_a(x, y)| m(dx) m(dy)
\leq \iint_{1/n < d(x, y) < 1} |u(x) - u(y)| \cdot |v(y)| |k_a(x, y)|^{\gamma/2}
\times |k_a(x, y)|^{1-\gamma/2} m(dx) m(dy)
+ \iint_{d(x, y) \geq 1} |u(x) - u(y)| \cdot |v(y)| k_s(x, y)^{1/2} |k_a(x, y)|^{1/2} m(dx) m(dy)
\leq \sqrt{\iint_{1/n < d(x, y) < 1} (u(x) - u(y))^2 |k_a(x, y)|^{2-\gamma} m(dx) m(dy)}
\times \sqrt{\iint_{1/n < d(x, y) < 1} v(y)^2 |k_a(x, y)|^{\gamma} m(dx) m(dy)}
+ \sqrt{C_1 \|v\| \iint_{d(x, y) \geq 1} (u(x) - u(y))^2 k_s(x, y) m(dx) m(dy)}.
\]
So, by making use of assumptions (2.3) and (2.4) and an elementary inequality
\[\sqrt{A} + \sqrt{B} \leq \sqrt{2} \sqrt{A + B} \]
holding for \(A \geq 0 \) and \(B \geq 0 \), we have
\[
\int \int_{d(x,y)>1/n} |(u(x) - u(y))v(y)k_d(x,y)|m(dx)m(dy) \\
\leq \sqrt{2} \sqrt{C_1 \vee C_2 C_3} ||v|| \cdot \sqrt{\mathcal{E}^n(u, u)}.
\]
Then taking \(n \to \infty \),
\[
\int \int_{y\neq x} |(u(x) - u(y))v(y)k_d(x,y)|m(dx)m(dy) \\
\leq \sqrt{2} \sqrt{C_1 \vee C_2 C_3} ||v|| \cdot \sqrt{\mathcal{E}(u, u)} < \infty
\]
as was to be proved. \(\square \)

For \(u, v \in C_0^{\text{lip}}(E) \), set
\[\eta_\beta(u, v) = \eta(u, v) + \beta(u, v), \quad \beta > 0, \]
and
\[
B(u, v) := \int \int_{x \neq y} (u(x) - u(y))v(y)k_d(x,y)m(dx)m(dy).
\]
Then equation (2.7) reads
\[
\eta(u, v) = \frac{1}{2} \mathcal{E}(u, v) + B(u, v), \quad u, v \in C_0^{\text{lip}}(E),
\]
while we get from the proof of the preceding proposition
\[
|B(u, v)| \leq C_4 ||v|| \sqrt{\mathcal{E}(u, u)},
\]
where \(C_4 = \sqrt{2} \cdot \sqrt{C_1 \vee C_2 C_3} \). Now we put \(\beta_0 := 4(C_4)^2 = 8(C_1 \vee C_2 C_3) \).

From equation (2.10) and the bound (2.11), we have for \(u \in C_0^{\text{lip}}(E) \),
\[
\eta_{\beta_0}(u, u) = \frac{1}{4}\mathcal{E}_{\beta_0}(u, u) + \frac{1}{4}\mathcal{E}(u, u) + \frac{3}{4}\beta_0 ||u||^2 + B(u, u) \\
\geq \frac{1}{4}\mathcal{E}_{\beta_0}(u, u) + \sqrt{3}C_4 \sqrt{\mathcal{E}(u, u)} ||u|| + B(u, u) \geq \frac{1}{4}\mathcal{E}_{\beta_0}(u, u).
\]

Further, for \(u, v \in C_0^{\text{lip}}(E) \),
\[
|\eta(u, v)| \leq \frac{1}{2}|\mathcal{E}(u, v)| + |B(u, v)| \\
\leq \frac{1}{2}\sqrt{\mathcal{E}(u, u)} \sqrt{\mathcal{E}(v, v)} + C_4 ||v|| \sqrt{\mathcal{E}(u, u)} \\
\leq \frac{1}{2} (\sqrt{\mathcal{E}(v, v)} + 2C_4 ||v||) \sqrt{\mathcal{E}(u, u)} \\
\leq \frac{\sqrt{2}}{2} \sqrt{\mathcal{E}_{\beta_0}(v, v)} \sqrt{\mathcal{E}_{\beta_0}(u, u)}.
\]
So it also follows that

\[
|\eta(u, v)| \leq 2\sqrt{2}\sqrt{\frac{\eta_{\beta_0}(u, u)}{\eta_{\beta_0}(v, v)}}
\]

and

\[
\frac{1}{2}\mathcal{E}_{\beta_0}(u, u) \leq \eta_{\beta_0}(u, u) \leq 2 + \sqrt{2}\mathcal{E}_{\beta_0}(u, u), \quad u, v \in C_{0}^{\text{lip}}(E).
\]

Let \(\mathcal{F}^0\) be the \(\mathcal{E}_1\)-closure of \(C_{0}^{\text{lip}}(E)\) in \(\mathcal{F}\). Since \(\mathcal{F}^0\) is complete with respect to \(\mathcal{E}_\alpha\) for any \(\alpha > 0\), the estimates obtained above readily lead us to the first conclusion of the following theorem.

Theorem 2.1. Assume (2.1)–(2.4). Then the form \(\eta\) defined by Proposition 2.1 extends from \(C_{0}^{\text{lip}}(E) \times C_{0}^{\text{lip}}(E)\) to \(\mathcal{F}^0 \times \mathcal{F}^0\) to be a lower bounded closed form on \(L^2(E; m)\) satisfying (B.1)–(B.3) with \(\beta_0 = 8(C_1 \vee C_2 C_3)\), \(K = 2\sqrt{2}\) and possessing \((\mathcal{E}, \mathcal{F}^0)\) as a reference form in the sense of (1.7).

Furthermore, the pair \((\eta, \mathcal{F}^0)\) is a regular lower bounded semi-Dirichlet form on \(L^2(E; m)\).

We note that the above constant \(\beta_0\) is equal to 0 if \(k\) is symmetric: \(k(x, y) = k(y, x), (x, y) \in E \times E \setminus \text{diag}\).

Proof of Theorem 2.1. It suffices to prove the contraction property (1.2) for the present pair \((\eta, \mathcal{F}^0)\). We first show this for \(u \in C_{0}^{\text{lip}}(E)\). Note that \(Uu \in C_{0}^{\text{lip}}(E)\) and, for \(n \in \mathbb{N}\),

\[
\eta^n(Uu, u - Uu) = -\int\int_{d(x, y) > 1/n} (Uu(y) - Uu(x))(u(x) - Uu(x))k(x, y)m(dx)m(dy)
\]

\[
= \int\int_{\{d(x, y) > 1/n\} \cap \{x : u(x) \geq 1\}} (1 - Uu(y))(u(x) - 1)k(x, y)m(dx)m(dy)
\]

\[
- \int\int_{\{d(x, y) > 1/n\} \cap \{x : u(x) \leq 0\}} Uu(y)u(x)k(x, y)m(dx)m(dy)
\]

\[
\geq 0.
\]

Then, we have by Proposition 2.1

\[
\eta(Uu, u - Uu) = \lim_{n \to \infty} \eta^n(Uu, u - Uu) \geq 0.
\]

Following a method in [17], Lemma 4.9, we next prove (1.2) for any \(u \in \mathcal{F}^0\). Choose a sequence \(\{u_\ell\} \subset C_{0}^{\text{lip}}(E)\) which is \(\mathcal{E}_1\)-convergent to \(u\). Then

\[
\|Uu_\ell - Uu\| \to 0, \quad \ell \to \infty,
\]
because \(U \) is easily seen to be a continuous operator from \(L^2(E; m) \) to \(L^2(E; m) \). Fix \(\alpha > \beta_0 \). We then get from (1.7) the boundedness

\[
\sup_{\ell} \eta_\alpha(Uu_\ell, Uu_\ell) \leq C_2 \sup_{\ell} \mathcal{E}_1(u_\ell, u_\ell) < \infty.
\]

On the other hand, using the dual resolvent \(\hat{G}_\alpha \) associated with the lower bounded closed form \((\eta, \mathcal{F}^0)\), we see from equation (3.1) below that, for any \(g \in L^2(E; m) \),

\[
\eta_\alpha(Uu_\ell, \hat{G}_\alpha g) = (Uu_\ell, g) \to (Uu, g) = \eta_\alpha(Uu, \hat{G}_\alpha g), \quad \ell \to \infty.
\]

Since \(\{\hat{G}_\alpha g : g \in L^2(E, m)\} \) is \(\eta_\alpha \)-dense in \(\mathcal{F}^0 \), we can conclude by making use of the above \(\eta_\alpha \)-bound of \(\{Uu_\ell\} \) and the sector condition (B.2) that \(\{Uu_\ell\} \) is \(\eta_\alpha \)-weakly convergent to \(Uu \) as \(\ell \to \infty \). In particular, by the above \(\eta_\alpha \)-bound and (B.2) again, we have

\[
(2.15) \quad \eta_\alpha(Uu_\ell, u_\ell) \to \eta_\alpha(Uu, u), \quad \ell \to \infty.
\]

We consider the dual form \(\widehat{\eta} \) and the symmetrizing form \(\tilde{\eta} \) of \(\eta \) defined by

\[
\widehat{\eta}(u, v) = \eta(v, u), \quad \tilde{\eta}(u, v) = \frac{1}{2}(\eta(u, v) + \eta(v, u)), \quad u, v \in \mathcal{F}^0.
\]

In the same way as above, we can see that \(\{Uu_\ell\} \) converges as \(\ell \to \infty \) to \(Uu \) \(\tilde{\eta}_\alpha \)-weakly and consequently \(\tilde{\eta}_\alpha \)-weakly. Since \((\tilde{\eta}_\alpha, \mathcal{F}^0)\) is a nonnegative definite symmetric bilinear form, it follows that

\[
(2.16) \quad \eta_\alpha(Uu, Uu) = \tilde{\eta}_\alpha(Uu, Uu) \leq \liminf_{\ell \to \infty} \tilde{\eta}_\alpha(Uu_\ell, Uu_\ell) = \liminf_{\ell \to \infty} \eta_\alpha(Uu_\ell, Uu_\ell).
\]

We can then obtain (1.2) for \(u \in \mathcal{F}^0 \) from (2.14), (2.15) and (2.16) as

\[
\eta(Uu, u - Uu) \geq \lim_{\ell \to \infty} \eta(Uu_\ell, u_\ell) - \liminf_{\ell \to \infty} \eta(Uu_\ell, Uu_\ell) \\
= \limsup_{\ell \to \infty} \eta(Uu_\ell, u_\ell - Uu_\ell) \geq 0.
\]

For the kernel \(k^* \) defined by (1.8), we have obviously

\[
(2.17) \quad k^*_s(x, y) = k_s(x, y) \quad \text{and} \quad k^*_a(x, y) = -k_a(x, y), \quad x, y \in E, x \neq y.
\]

Hence, if the kernel \(k(x, y) \) satisfies (2.1)–(2.4), so does the kernel \(k^*(x, y) \). Define \(\eta^* \) as in Proposition 2.1 with \(k^*(x, y) \) in place of \(k(x, y) \). The same calculations made above for \(k(x, y) \) remain valid for \(k^*(x, y) \). Note also that the domain \(\mathcal{F}^{0*} \) is the same as \(\mathcal{F}^0 \) since the symmetric form \(\mathcal{E}^* \) defined by \(k^* \) is also the same as \(\mathcal{E} \). Thus, we can have the following corollary.

Corollary 2.1. Assume conditions (2.1)–(2.4) hold. Then the pair \((\eta^*, \mathcal{F}^0)\) is also a regular lower bounded semi-Dirichlet form on \(L^2(E; m) \).
3. Markov property of dual semigroups. First, we fix a general lower bounded closed form \((\eta, \mathcal{F})\) on \(L^2(E; m)\) satisfying (B.1)–(B.3) and make several remarks on it. The last condition (B.3) is equivalent to

\[(B.3)' \quad (\tilde{\eta}_\beta, \mathcal{F}) \text{ is a closed symmetric form on } L^2(E; m),\]

where \(\tilde{\eta}\) denotes the symmetrization of the form \(\eta : \tilde{\eta}(u, v) = \frac{1}{2}(\eta(u, v) + \eta(v, u)).\)

\(\eta_\beta\) is therefore a coercive closed form in the sense of [17], Definition 2.4, so that, by [17], Theorem 2.8, there exist uniquely two families of linear bounded operators \(\{G_\alpha\}_{\alpha > \beta_0}, \{\hat{G}_\alpha\}_{\alpha > \beta_0}\) on \(L^2(E; m)\) such that, for \(\alpha > \beta_0, G_\alpha(L^2(E; m)), \hat{G}_\alpha(L^2(E; m)) \subset \mathcal{F}\) and

\[\eta_\alpha(G_\alpha f, u) = (f, u) = \eta_\alpha(u, \hat{G}_\alpha f), \quad f \in L^2(E; m), u \in \mathcal{F}.\] (3.1)

In particular, \(G_\alpha\) and \(\hat{G}_\alpha\) are mutually adjoint:

\[\langle G_\alpha g, f \rangle = \langle g, \hat{G}_\alpha f \rangle, \quad f, g \in L^2(E; m), \alpha > \beta_0.\] (3.2)

We call \(\{G_\alpha; \alpha > \beta_0\}\) (resp., \(\{\hat{G}_\alpha; \alpha > \beta_0\}\)) the resolvent (resp., dual resolvent) associated with \((\eta, \mathcal{F})\).

Accordingly we see in exactly the same way as the proof of Theorem 2.8 of [17] that there exist strongly continuous contraction semigroups \(\{S_t; t > 0\}, \{\hat{S}_t; t > 0\}\) of linear operators on \(L^2(E; m)\) such that, for \(\alpha > 0, f \in L^2(E; m),\)

\[G_{\beta_0 + \alpha} f = \int_0^\infty e^{-\alpha t} S_t f \, dt, \quad \hat{G}_{\beta_0 + \alpha} f = \int_0^\infty e^{-\alpha t} \hat{S}_t f \, dt.\]

We then set \(T_t = e^{\beta_0 t} S_t, \quad \hat{T}_t = e^{\beta_0 t} \hat{S}_t\) to get strongly continuous semigroups \(\{T_t; t > 0\}, \{\hat{T}_t; t > 0\}\) satisfying

\[G_\alpha f = \int_0^\infty e^{-\alpha t} T_t f \, dt, \quad \hat{G}_\alpha f = \int_0^\infty e^{-\alpha t} \hat{T}_t f \, dt, \quad \alpha > \beta_0.\] (3.3)

as well as (1.1).

We call \(\{T_t; t > 0\}\) (resp., \(\{\hat{T}_t; t > 0\}\)) the semigroup (resp., dual semigroup) on \(L^2(E; m)\) associated with the lower bounded closed form \((\eta, \mathcal{F})\). We introduce the dual form \(\tilde{\eta}\) of \(\eta\) by

\[\tilde{\eta}(u, v) = \eta(v, u), \quad u, v \in \mathcal{F}.\]

Then \((\tilde{\eta}, \mathcal{F})\) is a lower bounded closed form on \(L^2(E; m)\) with which \(\{\hat{T}_t; t > 0\}\) and \(\{\hat{G}_\alpha; \alpha > \beta_0\}\) are the associated semigroup and resolvent, respectively.

Suppose \((\eta, \mathcal{F})\) is a lower bounded semi-Dirichlet form, namely, it satisfies the contraction property (1.2) additionally. As in the proof of the corollary to Theorem 4.1 of [15] or the proof of Theorem 4.4 of [17], we can then readily verify that the family \(\{\alpha G_\alpha; \alpha > \beta_0\}\) is Markovian, which is in turn equivalent to the Markovian property of \(\{T_t; t > 0\}\). Together with \(\{T_t; t > 0\}\), its Laplace transform then determines a bounded linear operator \(G_\alpha\) on \(L^\infty(E; m)\) for every \(\alpha > 0\)
and \(\{\alpha G_{\alpha}; \alpha > 0\} \) becomes Markovian. Further, \(\{\tilde{T}_t; t > 0\} \) is positivity preserving in view of (1.1).

Suppose additionally that \((\eta, \mathcal{F}) \) is regular. Then the associated Markovian semigroup and resolvent can be represented by the transition function \(\{P_t; t > 0\} \) and the resolvent \(\{R_{\alpha}; \alpha > 0\} \) of the associated Hunt process \(X \) specified in Theorem 2 of the next section: \(P_t f = T_t f, t > 0, \) and \(R_{\alpha} f = G_{\alpha} f, \alpha > 0, \) for any \(f \in \mathcal{B}_b(E) \cap L^2(E; m) \). We call a \(\sigma \)-finite measure \(\mu \) on \(E \) excessive relative to \(X \) if \(\mu P_t \leq \mu \) for any \(t > 0 \). The next lemma was already observed in Silverstein [20].

LEMMA 3.1. Let \(\eta \) be a regular lower bounded semi-Dirichlet form on \(L^2(E; m) \).

(i) The following three conditions are mutually equivalent:

1. \(m \) is excessive relative to \(X \).
2. The dual semigroup \(\{\tilde{T}_t; t > 0\} \) is Markovian.
3. \(\eta(u - U u, U u) \geq 0 \) for any \(u \in \mathcal{F} \).

(ii) If one of the three conditions in (i) is satisfied, then \(\eta \) is nonnegative definite and the constant \(\beta_0 \) in conditions (B.1), (B.3) [resp., (B.2)] can be retaken to be 0 (resp., 1).

Proof. (i) 3 is the Markovian criterion (1.2) for the dual semigroup. If 2 is satisfied, then for any \(f \in L^2(E; m) \) with \(0 \leq f \leq 1 \), \(0 \leq \tilde{T}_t f \leq 1 \) so that \((f, P_th) = (\tilde{T}_t f, h) \leq (1, h) \) for any \(h \in \mathcal{B}_+ \cap L^2(E; m) \), from which 1 follows. The converse can be shown similarly.

(ii) By the Schwarz inequality,

\[
(R_{\alpha} f(x))^2 \leq R_{\alpha} 1(x) R_{\alpha} f^2(x) \leq \frac{1}{\alpha} R_{\alpha} f^2(x), \quad x \in E, \ f \in \mathcal{B}_b(E) \cap L^2(E; m).
\]

Assuming 1 of (i), an integration with respect to \(m \) yields \(\alpha^2 \|G_{\alpha} f\|^2 \leq \|f\|^2 \), the \(L^2 \)-contraction property of \(\alpha G_{\alpha} \). In view of [17], Theorem 2.13, \(\eta(u, u) = \lim_{\alpha \to \infty} \alpha(u - \alpha G_{\alpha} u, u) \in \mathcal{F} \), which particularly implies that \(\eta(u, u) \geq 0, u \in \mathcal{F} \), and \(\{\eta_{\alpha}; \alpha > 0\} \) become equivalent on \(\mathcal{F} \).

We now return to the setting of the preceding section that \((\eta, \mathcal{F}^0) \) is defined in terms of the kernel \(k \) satisfying conditions (2.1)–(2.4). By Proposition 2.1, \(\tilde{\eta}(u, v) = \frac{1}{2} \mathcal{E}(v, u) + B(v, u) \) where \(B \) is defined by (2.9) on \(\mathcal{F}^0 \times \mathcal{F}^0 \). On the other hand, we have from (2.17) that \(\eta^*(u, v) = \frac{1}{2} \mathcal{E}(u, v) - B(u, v) \) and consequently

\[
(3.4) \quad \tilde{\eta}(u, v) = \eta^*(u, v) + (B(u, v) + B(v, u)), \quad u, v \in \mathcal{F}^0.
\]

We know from Theorem 2.1 and Corollary 2.1 that both \((\eta, \mathcal{F}^0) \) and \((\eta^*, \mathcal{F}^0) \) are regular lower bounded semi-Dirichlet forms. In order to get a similar property
for the dual form \(\hat{\eta} \), we need to impose on the kernel \(k \) stronger conditions than (2.1)–(2.4) making the additional term on the right-hand side of (3.4) controllable.

In the rest of this section, we assume that the kernel \(k \) satisfies the condition

\[
M_s \in L^2_{\text{loc}}(E; m) \quad \text{for } M_s(x) = \int_{y \neq x} (1 \wedge d(x, y))k_s(x, y)m(dy),
\]

(3.5)

\(x \in E, \)

in place of (2.1), and further satisfies condition (2.2) as well as (2.3) for \(\gamma = 1 \) so that

\[
\frac{\beta_1}{2} := \sup_{x \in E} \int_{x \neq y} |k_d(x, y)|m(dy)
\]

(3.6)

\[
= \sup_{x \in E} \frac{1}{2} \int_{x \neq y} |k(x, y) - k(y, x)|m(dy) < \infty.
\]

Notice that condition (2.4) for \(\gamma = 1 \) is always satisfied with \(C_3 = 1 \).

Then the integrals

\[
\mathcal{L}u(x) = \int_{y \neq x} (u(y) - u(x))k(x, y)m(dy) \quad \text{and}
\]

(3.7)

\[
\mathcal{L}^*u(x) = \int_{y \neq x} (u(y) - u(x))k^*(x, y)m(dy),
\]

converge for \(u \in C^\text{lip}_0(E), x \in E \), and we get from Proposition 2.1 the identities

(3.8) \(\eta(u, v) = -(\mathcal{L}u, v), \quad \eta^*(u, v) = -(\mathcal{L}^*u, v), \quad u, v \in C^\text{lip}_0(E). \)

Furthermore,

\[
K(x) := 2 \int_{y \neq y} k_d(x, y)m(dy)
\]

(3.9)

\[
= \int_{y \neq x} (k(x, y) - k(y, x))m(dy), \quad x \in E,
\]

defines a bounded function on \(E \) and (3.4) readily leads us to

\[
\hat{\eta}(u, v) = \eta^*(u, v) + (u, K v), \quad u, v \in \mathcal{F}^0,
\]

which combined with (3.7) means that \(\widehat{\mathcal{L}} = \mathcal{L}^* - K \) is the formal adjoint of \(\mathcal{L} \). \(\hat{\eta} \) does not necessarily satisfy the contraction property (1.2), but the form

\[
\hat{\eta}_\beta(u, v) = \eta^*(u, v) + (u, (K + \beta) v), \quad \beta \geq \beta_1,
\]

does because so does the form \(\eta^* \) by Corollary 2.1 and \(K + \beta \geq 0 \) if \(\beta \geq \beta_1 \). So we have the following proposition.
PROPOSITION 3.1. Assume that (3.5) and (3.6) hold. Then $(\overline{\eta}_\beta, \mathcal{F}^0)$, which is the dual of $(\eta_\beta, \mathcal{F}^0)$, is a regular lower bounded semi-Dirichlet form on $L^2(E; m)$ provided that $\beta \geq \beta_1$.

This proposition means that, under conditions (3.5) and (3.6), $\{e^{-\beta t} \hat{T}_t; t > 0\}$ is Markovian for the dual semigroup $\{\hat{T}_t; t > 0\}$ associated with η when $\beta \geq \beta_1$. If (3.6) fails, the dual semigroup of $\{e^{-\beta t} T_t; t > 0\}$ may not be Markovian no matter how large β is.

A nonnegative Borel function k on $E \times E$ is said to be a probability kernel if $\int_E k(x, y) m(dy) = 1, x \in E$. A probability kernel k with the additional property $\sup_{x \in E} \int_D k(y, x) m(dy) < \infty$ (3.10) satisfies conditions (3.5) and (3.6) and η defined by (3.8) yields a regular lower bounded semi-Dirichlet form on $L^2(E; m)$. We now give an example of such a kernel on \mathbb{R}^1 with m being the Lebesgue measure for which the associated semi-Dirichlet form η is not nonnegative definite so that, according to Lemma 3.1, the associated dual semigroup $\{\hat{T}_t, t > 0\}$ is not Markovian although $\{e^{-\beta t} \hat{T}_t; t > 0\}$ is Markovian for a large $\beta > 0$ in view of Proposition 3.1. A transition probability density function with respect to the Lebesgue measure of the one-dimensional Brownian motion with a mildly localized drift serves to be an example of such a kernel k.

Consider a diffusion Y on \mathbb{R}^1 with generator $\mathcal{G}u = \frac{1}{2} u'' + \lambda b(x) u'$ where λ is a positive constant and b is a function in $C^1_C(\mathbb{R}^1)$ not identically 0. Then $\mathcal{G} = \frac{d}{dm} \cdot \frac{d}{ds}$ for

$$dm(x) = m(x) dx, \quad ds(x) = 2m(x)^{-1} dx,$$

where

$$m(x) = 2 \exp \left\{ 2 \lambda \int_0^x b(y) dy \right\},$$

namely, Y is a diffusion with canonical scale s and canonical (speed) measure dm.

The following facts about Y are taken from [12]. Since $m(x)$ is bounded from above and from below by positive constants, both $\pm \infty$ are nonapproachable in the sense that $s(\pm \infty) = \pm \infty$. Therefore, Y is recurrent and consequently conservative: $q_t(x, E) = 1, x \in E$, where $\{q_t; t > 0\}$ denotes the transition function of Y. Y is m-symmetric and its Dirichlet form $(\mathcal{E}^Y, \mathcal{F}^Y)$ on $L^2(\mathbb{R}^1, m)$ is given by

$$\mathcal{E}^Y(u, v) = \frac{1}{2} \int_{\mathbb{R}^1} u'(x)v'(x)m(x) dx,$$

$$\mathcal{F}^Y = \{u \in L^2(\mathbb{R}^1; m): u \text{ is absolutely continuous and } \mathcal{E}^Y(u, u) < \infty \} (= H^1(\mathbb{R}^1)).$$
For \(u \in C^1_0(\mathbb{R}^1) \), \(\mathcal{E}^Y(u, \frac{u}{m}) \) is seen to be equal to \(\frac{1}{2} \int_{\mathbb{R}^1} ((u')^2 - 2\lambda bu'u) \, dx \) and so

\[
\mathcal{E}^Y(u, \frac{u}{m}) = \frac{1}{2} \left(\int_{\mathbb{R}^1} (u')^2 \, dx + \lambda \int_{\mathbb{R}^1} b'u^2 \, dx \right).
\]

There is a finite interval \(I \subset \mathbb{R}^1 \) where \(b' \) is strictly negative. Choose \(u_0 \in C^1_0(\mathbb{R}^1) \) not identically zero and with support being contained in \(I \). We can then make a choice of \(\lambda > 0 \) such that the right-hand side of the above equation is negative for \(u = u_0 \).

Since \(q_t \) maps \(L^2(\mathbb{R}^1; m) \) into \(\mathcal{F}^Y \subset C(\mathbb{R}^1) \), \(q_t(x, \cdot) \) is absolutely continuous with respect to \(m \) and hence with respect to the Lebesgue measure for each \(x \in \mathbb{R}^1 \). Denote by \(q_t(x, y) \) its density with respect to the Lebesgue measure so that

\[
\int_{\mathbb{R}^1} q_t(x, y) \, dy = 1, \quad x \in \mathbb{R}^1, \quad \text{with} \quad q_t(y, x) = m(x)q_t(x, y) \frac{1}{m(y)}.
\]

Equality (3.10) follows from (3.11).

4. Associated Hunt process and martingale problem. Let \((\eta, \mathcal{F})\) be a regular lower bounded semi-Dirichlet form on \(L^2(\mathbb{E}; m) \) as is defined in Section 1. For the symmetrization \(\tilde{\eta} \), \((\tilde{\eta}, \mathcal{F}^0)\) is then a closed symmetric form on \(L^2(\mathbb{E}; m) \) but not necessarily a symmetric Dirichlet form. A symmetric Dirichlet form \(\mathcal{E} \) on \(L^2(\mathbb{E}; m) \) with domain \(\mathcal{F} \) will be called a reference (symmetric Dirichlet) form of \(\eta \) if, for each fixed \(\alpha > \beta > 0 \),

\[
c_1 \mathcal{E}_1(u, u) \leq \eta(u, u) \leq c_2 \mathcal{E}_1(u, u), \quad u \in \mathcal{F},
\]

for some positive \(c_1, c_2 \) independent of \(u \in \mathcal{F} \). \(\mathcal{E} \) is then a regular Dirichlet form. In what follows, we assume that \(\eta \) admits a reference form \(\mathcal{E} \). This assumption is really unnecessary (cf. [16, 19]) but convenient to simplify some arguments. The regular lower bounded semi-Dirichlet form \((\eta, \mathcal{F}^0)\) constructed in Section 2 from a kernel \(k \) satisfying (2.1)–(2.4) has a reference form \((\mathcal{E}, \mathcal{F}^0)\) defined right after (1.4).

In formulating an association of a Hunt process with \(\eta \), Carrillo Menendez adopted a functional capacity theorem due to Ancona [2]. More specifically, denote by \(\mathcal{O} \) the family of all open sets \(A \subset \mathbb{E} \) with \(\mathcal{L}_A = \{u \in \mathcal{F}: \exists 1 \text{ m-a.e. on } A\} \neq \)

(4.2) \(e_A \in \mathcal{L}_A, \quad \eta_\alpha(e_A, w) \geq \eta_\alpha(e_A, e_A) \) for any \(w \in \mathcal{L}_A \).

A set \(N \subset E \) is called \(\eta \)-polar if there exist decreasing \(A_n \in \mathcal{O} \) containing \(N \) such that \(e_{A_n} \) is \(\eta_\alpha \)-convergent to 0 as \(n \to \infty \). A numerical function \(u \) on \(E \) is called \(\eta \)-quasi-continuous if there exist decreasing \(A_n \in \mathcal{O} \) such that \(e_{A_n} \) is \(\eta_\alpha \)-convergent to 0 as \(n \to \infty \) and \(u|_{E \setminus A_n} \) is continuous for each \(n \).

The capacity \(\text{Cap} \) for the reference form \(\mathcal{E} \) is defined by

\[
\text{Cap}(A) = \inf \{ \mathcal{E}_1(u, u) : u \in \mathcal{L}_A, A \in \mathcal{O} \}.
\]

It then follows from (4.1) that

\[
c_1 \text{Cap}(A) \leq \eta_\alpha(e_A, e_A) \leq c_2 K_\alpha^2 \text{Cap}(A), \quad A \in \mathcal{O},
\]

because (4.2) and (B.2) imply \(\eta_\alpha(e_A, e_A) \leq K_\alpha^2 \eta_\alpha(w, w), w \in \mathcal{L}_A \). Equation (4.3) means that a set \(N \) is \(\eta \)-polar iff it is \(\mathcal{E} \)-polar in the sense that \(\text{Cap}(N) = 0 \), and a function \(u \) is \(\eta \)-quasi-continuous iff it is \(\mathcal{E} \)-quasi-continuous in the sense that there exist decreasing \(A_n \in \mathcal{O} \) with \(\text{Cap}(A_n) \downarrow 0 \) as \(n \to \infty \) and \(u|_{E \setminus A_n} \) is continuous for each \(n \). Every element of \(\mathcal{F} \) admits its \(\eta \)-quasi-continuous \(m \)-version. If \(\{u_n\} \subset \mathcal{F} \) is \(\eta_\alpha \)-convergent to \(u \in \mathcal{F} \) and if each \(u_n \) is \(\eta \)-quasi-continuous, then (4.1) implies that a subsequence of \(\{u_n\} \) converges \(\eta \)-q.e., namely, outside some \(\eta \)-polar set, to an \(\eta \)-quasi-continuous version of \(u \). We shall occasionally drop \(\eta \) from the terms \(\eta \)-polar, \(\eta \)-q.e. and \(\eta \)-quasi-continuity for simplicity.

Recall that the \(L^2 \)-resolvent \(\{G_\alpha; \alpha > \beta_0\} \) associated with \(\eta \) determines the resolvent \(\{G_\alpha; \alpha > 0\} \) on \(L^\infty(E; m) \) with \(\|G_\alpha f\|_\infty \leq \frac{1}{\alpha} \|f\|_\infty, \quad \alpha > 0, \quad f \in L^\infty(E; m) \).

Lemma 4.1. Suppose \(G_\beta f \) admits a quasi-continuous \(m \)-version \(R_\beta f \) for a fixed \(\beta > \beta_0 \) and for every bounded Borel \(f \in L^2(E; m) \). Then, for any \(\alpha \) with \(0 < \alpha \leq \beta_0 \) and for any bounded Borel \(f \in L^2(E; m) \),

\[
R_\alpha f(x) = \sum_{k=1}^{\infty} (\beta - \alpha)^{k-1} R_\beta^k f(x)
\]

converges q.e. and defines a quasi-continuous \(m \)-version of \(G_\alpha f \). Further the resolvent equation

\[
R_\alpha f - R_\beta f + (\alpha - \beta)R_\alpha R_\beta f = 0
\]

holds q.e. for any bounded Borel \(f \in L^2(E; m) \).
PROOF. Choose a regular nest \(\{ F_\ell \} \) so that \(R_k^{\beta} f \in C(\{ F_\ell \}) \) for \(k \geq 1 \). Define \(v_n(x) = \sum_{k=1}^{n} (\beta - \alpha)^{k-1} R_k^{\beta} f(x) \). By the resolvent equation for \(\{ G_\alpha ; \alpha > 0 \} \), we have

\[
G_\alpha f = v_n + (\beta - \alpha)^n G_\beta^n G_\alpha f.
\]

The \(L^\infty \)-norm of the second term of the right-hand side is dominated by \(\frac{1}{\alpha} (\frac{\beta - \alpha}{\beta})^n \| f \|_\infty \), which tends to 0 as \(n \to \infty \). Therefore, \(\{ v_n \} \) is convergent uniformly on each set \(F_\ell \) to a quasi-continuous version of \(G_\alpha f \). The resolvent equation is clear. \(\square \)

THEOREM 4.1. There exist a Borel \(\eta \)-polar set \(N_0 \subset E \) and a Hunt process \(X = (X_t, P_x) \) on \(E \setminus N_0 \) which is properly associated with \((\eta, F) \) in the sense that \(R_\alpha f \) is a quasi continuous version of \(G_\alpha f \) for any \(\alpha > 0 \) and any bounded Borel \(f \in L^2(E; m) \). Here \(R_\alpha \) is the resolvent of \(X \) and \(G_\alpha \) is the resolvent associated with \(\eta \).

This theorem was proved in [8] first by assuming that \(\beta_0 = 0 \) and then reducing the situation to this case. Actually the proof can be carried out without such a reduction. Indeed, after constructing the kernel \(\hat{V}_\lambda \) of [8], Proposition II.2.1, for every rational \(\lambda > \beta_0 \) ([8], Proposition II.2.2) can be shown first for every rational \(\lambda > \beta_0 \), and then for every \(0 < \lambda \leq \beta_0 \) by using Lemma 4.1. The rest of the arguments in [8] then works in getting to Theorem 4.1.

Our next concern will be exceptional sets and fine continuity for the Hunt process \(X = (X_t, P_x) \) appearing in Theorem 4.1. Denote by \(B(E) \) the family of all Borel sets of \(E \). For \(B \in B(E) \), we let

\[
\sigma_B = \inf\{ t > 0 : X_t \in B \}, \quad \sigma_{\bar{B}} = \inf\{ t > 0 : X_t \notin B \}, \quad \inf \emptyset = \infty.
\]

\(A \in B(E) \) is called \(X \)-invariant if

\[
P_x(\sigma_{E \setminus A} \land \sigma_{E \setminus A} < \infty) = 0 \quad \forall x \in A.
\]

\(N \in B(E) \) is called properly exceptional (with respect to \(X \)) if \(m(N) = 0 \) and \(E \setminus N \) is \(X \)-invariant.

A set \(N \subset E \) is called \(m \)-polar if there exists \(N_1 \supset N, N_1 \in B(E) \) such that \(P_m(\sigma_{N_1} < \infty) = 0 \). Any properly exceptional set is \(m \)-polar.

THEOREM 4.2.

(i) For \(A \in \mathcal{O} \), the function \(p_\alpha^A \) defined by \(p_\alpha^A(x) = E_x[e^{-\alpha \sigma_A}], x \in E \setminus N_0, \) is a quasi-continuous version of \(e_A, \alpha > \beta_0 \).

(ii) For any \(\eta \)-polar set \(B \), there exists a Borel properly exceptional set \(N \) containing \(N_0 \cup B \).
(iii) If u is η-quasi-continuous, then there exists a Borel properly exceptional set $N \supset N_0$ such that, for any $x \in E \setminus N$,

\[P_x \left(\lim_{i \uparrow t} u(X_{t_i}) = u(X_t) \forall t \geq 0 \text{ and } \lim_{i \uparrow t} u(X_{t_i}) = u(X_{t_-}) \forall t \in (0, \zeta) \right) = 1, \]

where ζ is the lifetime of X. In particular, u is finely continuous with respect to the restricted Hunt process $X|_{E \setminus N}$.

(iv) Any X-semi-polar set is η-polar.

(v) A set $N \subset E$ is η-polar if and only if N is m-polar.

Proof. (i) A function $u \in L^2(E; m)$ is said to be α-excessive if $u \geq 0$, $\beta G_{\alpha \beta} u \leq u, \beta > 0$. A function $u \in \mathcal{F}$ is α-excessive iff $\eta_\alpha(u, v) \geq 0$ for all non-negative $v \in \mathcal{F}$ (cf. [16], Theorem 2.4). In particular, e_A is α-excessive and further $v = e_A \wedge p^\alpha_0$ is an α-excessive function in \mathcal{F} (cf. [16], Theorem 2.6). Hence, $\eta_\alpha(v, e_A - v) \geq 0$. Since $v \in \mathcal{L}_A$, $\eta_\alpha(e_A, e_A - v) \leq 0$ so that $v = e_A$ and $e_A \leq p^\alpha_0$.

The converse inequality can be obtained as in the proof of Theorem 6.1 below by using the optional sampling theorem for a supermartingale but with time parameter set being a finite set.

Since the quasi-continuous function $\beta R_{\alpha + \beta} p^\alpha_A$ converges to p^α_A as $\beta \to \infty$ pointwise and in η_α, we get the quasi-continuity of p^α_A.

(ii) Choose a decreasing sets $A_n \in \mathcal{O}$ with $A_n \supset B$, $\text{Cap}(A_n) \to 0, n \to \infty$ and put $B_1 = \bigcap_n A_n$. By (4.1) and (i), $\lim_{n \to \infty} p^\alpha_{A_n} = 0$ q.e. so that

\[P_x (\sigma_{B_1} \wedge \tilde{\sigma}_{B_1} < \infty) = 0, \quad x \in E \setminus N_1, \]

for some polar set N_1. Choose next a decreasing sets $A'_n \in \mathcal{O}$ containing $B_1 \cup N_1 \cup N_0$ with $\text{Cap}(A'_n) \to 0, n \to \infty$ and put $B_2 = \bigcap_n A'_n$. Then the above identity holds for $x \in E \setminus B_2$. Moreover, the above identity holds true for B_2 in place of B_1 and for some polar set N_2 in place of N_1. Repeating this procedure, we get an increasing sequence $\{B_k\}$ of G_δ-sets which are polar sets such that

\[P_x (\sigma_{B_k} \wedge \tilde{\sigma}_{B_k} < \infty) = 0, \quad x \in E \setminus B_{k+1}. \]

It then suffices to put $N = \bigcup_k B_k$.

(iii) Choose decreasing $A_n \in \mathcal{O}$ such that $\text{Cap}(A_n) \to 0, n \to 0$, and $u|_{E \setminus A_n}$ is continuous for each n. Let N be a properly exceptional set constructed in (ii) starting with this sequence $\{A_n\}$. Then, for any $x \in E \setminus N$, $\lim_{n \to \infty} p^\alpha_{A_n}(x) = 0$ and consequently $P_x (\lim_{n \to \infty} \sigma_{A_n} = \infty) = 1$, which readily implies (4.4).

(iv) We reproduce a proof by Silverstein [20]. For $B \in \mathcal{B}(E)$, consider the entry time $\tilde{\sigma}_B = \inf \{t \geq 0 : X_t \in B\}$ and the function $\hat{p}^\alpha_B(x) = E_x[e^{-\alpha \tilde{\sigma}_B}], x \in E, \alpha > \beta_0$. Let K be a compact thin set: K admits no regular point relative to X. It suffices to show that K is η-polar.

Choose relatively compact open sets $\{G_n\}$ such that $G_n \supset \overline{G}_{n+1}$ and $\bigcap_n G_n = K$. Due to the quasi-left continuity of X, $p^\alpha_{G_n}(x) = \hat{p}^\alpha_{G_n}(x)$ then decreases to
\(\hat{p}_K^\alpha(x) \) as \(n \to \infty \) for each \(x \in E \). By (i) and (4.1) and (4.2), the sequence \(\{ \hat{p}_G^\alpha_n \} \) is \(\mathcal{E}_1 \)-bounded so that the Cesàro mean sequence \(f_n \) of its suitable subsequence is \(\mathcal{E}_1 \)-convergent. Since \(f_n \) are quasi-continuous and converges to \(\hat{p}_K^\alpha \) pointwise as \(n \to \infty \), we conclude that \(\hat{p}_K^\alpha \) is a quasi-continuous element of \(\mathcal{F} \). On the other hand, the quasi-continuous function \(\beta R_{r^*} + \hat{p}_K^\alpha \) converges to \(p_K^\alpha \) as \(\beta \to \infty \) pointwise and in \(\eta_\alpha \) so that \(p_K^\alpha \) is also a quasi-continuous version of \(\hat{p}_K^\alpha \). Therefore, \(p_K^\alpha = \hat{p}_K^\alpha \) q.e. and in particular \(K \) is \(\eta \)-polar.

(v) “only if” part follows from (ii). To show “if” part, assume that \(K \) is a compact \(m \)-polar set. Then \(p_K^\alpha = 0 \) \(m \)-a.e. Choose for \(K \) relatively compact open sets \(\{ G_n \} \) as in the proof of (iv) so that the Cesàro mean \(f_\ell \) of a certain subsequence \(\{ p_{G_n \ell}^\alpha \} \) is \(\mathcal{E}_1 \)-convergent to \(p_K^\alpha \) as \(\ell \to \infty \) which is now a zero element of \(\mathcal{F}^0 \). Since \(f_\ell \geq 1 \) \(m \)-a.e. on \(G_n \ell \), we have \(\text{Cap}(K) \leq \text{Cap}(G_n \ell) \leq \mathcal{E}_1(f_\ell, f_\ell) \) and we get \(\text{Cap}(K) = 0 \) by letting \(\ell \to \infty \). For any Borel \(m \)-polar set \(N \), we have \(\text{Cap}(N) = \sup \{ \text{Cap}(K) : K \subset N, K \text{ is compact} \} = 0. \) \(\square \)

Clearly, the restriction of \(X \) outside its properly exceptional set is again a Hunt process properly associated with \(\eta \).

Our final task in this section is to relate the Hunt process of Theorem 4.1 to a martingale problem.

We consider the case where \(\eta \) admits the expression

\[
\eta(f, g) = -(\mathcal{L} f, g), \quad f \in \mathcal{D}(\mathcal{L}), g \in \mathcal{F},
\]

for a operator \(\mathcal{L} \) with domain \(\mathcal{D}(\mathcal{L}) \) satisfying the following:

(L.1) \(\mathcal{D}(\mathcal{L}) \) is a linear subspace of \(\mathcal{F} \cap C_0(E) \),

(L.2) \(\mathcal{L} \) is a linear operator sending \(\mathcal{D}(\mathcal{L}) \) into \(L^2(E; m) \cap C_b(E) \),

(L.3) there exists a countable subfamily \(\mathcal{D}_0 \) of \(\mathcal{D}(\mathcal{L}) \) such that each \(f \in \mathcal{D}(\mathcal{L}) \) admits \(f_n \in \mathcal{D}_0 \) such that \(f_n, \mathcal{L} f_n \) are uniformly bounded and converge pointwise to \(f, \mathcal{L} f \), respectively, as \(n \to \infty \).

We also consider an additional condition that

(L.4) there exists \(f_n \in \mathcal{D}(\mathcal{L}) \) such that \(f_n, \mathcal{L} f_n \) are uniformly bounded and converge to 1, 0, respectively, as \(n \to \infty \).

Theorem 4.3. Assume that \(\eta \) admits the expression (4.5) with \(\mathcal{L} \) satisfying conditions (L.1), (L.2), (L.3).

(i) There exists then a Borel properly exceptional set \(N \) containing \(N_0 \) such that, for every \(f \in \mathcal{D}(\mathcal{L}) \),

\[
M_t^{[f]} = f(X_t) - f(X_0) - \int_0^t (\mathcal{L} f)(X_s) \, ds, \quad t \geq 0,
\]

is a \(P_x \)-martingale for each \(x \in E \setminus N \).

(ii) If the additional condition (L.4) is satisfied, then the Hunt process \(X \big|_{E \setminus N} \) is conservative.
Proof. (i) Take \(f \in D(\mathcal{L}) \) and \(g \in L^2(E; m) \). By (4.5) and (3.2), we have, for \(\alpha > \beta_0 \),

\[
(G_\alpha \mathcal{L} f, g) = (\mathcal{L} f, \widehat{G}_\alpha g) = -\eta(f, \widehat{G}_\alpha g)
\]

\[
= -\eta_\alpha(f, \widehat{G}_\alpha g) + \alpha(f, \widehat{G}_\alpha g)
\]

\[
= -(f, g) + \alpha(G_\alpha f, g).
\]

Thus, \((G_\alpha \mathcal{L} f, g) = (\alpha G_\alpha f - f, g)\) holds for any \(g \in \mathcal{F} \) and

\[
\frac{1}{\alpha} G_\alpha(\mathcal{L} f)(x) = G_\alpha f(x) - \frac{f(x)}{\alpha}, \quad m\text{-a.e.}
\]

We denote by \(\{P_t; t \geq 0\} \) and \(\{R_\alpha; \alpha > 0\} \) the transition function and the resolvent of \(X \), respectively:

\[
P_t h(x) = \mathbb{E}_x[h(X_t)], \quad R_\alpha h(x) = \int_0^\infty e^{-\alpha t} P_t h(x) \, dt.
\]

Since \(X \) is properly associated with \(\eta \) by Theorem 4.1, we get

\[
\frac{1}{\alpha} R_\alpha(\mathcal{L} f)(x) = R_\alpha f(x) - \frac{f(x)}{\alpha}, \quad \text{q.e.}
\]

Hence, by virtue of Theorem 4.2(ii), there exists a Borel properly exceptional set \(N \) such that

\[
\int_0^\infty e^{-\alpha t} \left(\int_0^t P_s(\mathcal{L} f)(x) \, ds \right) \, dt = \int_0^\infty e^{-\alpha t} (P_t f(x) - f(x)) \, dt, \quad x \in E \setminus N,
\]

holds for any \(\alpha \in \mathbb{Q}_+ \) with \(\alpha > \beta_0 \) and for any \(f \in D_0 \).

Since \(P_t h(x) \) is a right continuous in \(t \geq 0 \) for any \(h \in C_b(E) \), we get

\[
(4.7) \quad P_t f(x) - f(x) = \int_0^t P_s(\mathcal{L} f)(x) \, ds, \quad t \geq 0, \quad x \in E \setminus N,
\]

holding for any \(f \in D_0 \). By virtue of condition (L.3), we conclude that the equation (4.7) holds true for any \(f \in D(\mathcal{L}) \). Equation (4.7) implies that, for any \(f \in D(\mathcal{L}) \), the functional \(M_{t[f]}^1, t \geq 0 \), defined by (4.6) is a mean zero, square integrable additive functional of the Hunt process \(X|_{E \setminus N} \) so that it is a \(P_x \)-martingale for each \(x \in E \setminus N \).

(ii) Under the additional condition (L.4), we let \(n \to \infty \) in equation (4.7) with \(f_n \) in place of \(f \) arriving at \(P_t 1 = 1, t \geq 0 \). \(\Box \)

Theorem 4.3 will enable us in the next section to relate our Hunt process to the solution of a martingale problem in a specific case.
5. Stable-like process. In this section, we consider the case that $E = \mathbb{R}^d$ and $m(dx) = dx$ is the Lebesgue measure on \mathbb{R}^d. For a positive measurable function $\alpha(x)$ defined on \mathbb{R}^d, Bass introduced the following integro-differential operator in [5] (see also [4, 6]): for $u \in C^2_b(\mathbb{R}^d)$,

$$L u(x) = w(x) \int_{h \neq 0} (u(x + h) - u(x) - \nabla u(x) \cdot h 1_B((h)) |h|^{-d - \alpha(x)}dh,$$

where $w(x)$ is a function chosen so that $L e^{iux} = -|u|\alpha(x) e^{iux}$ and $C^2_b(\mathbb{R}^d)$ denotes the set of twice-differentiable bounded functions. If α is Lipschitz continuous, bounded below by a constant which is greater than 0, and bounded above by a constant which is less than 2, then he constructed a unique strong Markov process associated with L by solving the L-martingale problem for every starting point $x \in \mathbb{R}^d$. Using the theory of stochastic differential equation with jumps, Tsuchiya [22] also succeeded in constructing the Markov process associated with L (see also [18]). Note that the weight function $w(x)$ is given by

$$w(x) = \frac{\Gamma((1 + \alpha(x))/2)\Gamma((\alpha(x) + d)/2)\sin(\pi \alpha(x)/2)}{2^{1-\alpha(x)}\pi^{d/2+1}}$$

(see, e.g., [3]).

Put $k(x, y) = w(x)|x - y|^{-d - \alpha(x)}$, $x, y \in \mathbb{R}^d$ with $x \neq y$. Then this falls into our case when we consider the following conditions: there exist positive constants $\underline{\alpha}, \overline{\alpha}, M$ and δ so that for $x, y \in \mathbb{R}^d$,

$$0 < \underline{\alpha} \leq \alpha(x) \leq \overline{\alpha} < 2, \overline{\alpha} < 1 + \frac{\alpha}{2} \quad \text{and} \quad |\alpha(x) - \alpha(y)| \leq M|x - y|^\delta$$

(5.2) for δ with $0 < \frac{1}{2} (2\overline{\alpha} - \underline{\alpha}) < \delta \leq 1$.

Proposition 5.1. Assume (5.2) holds. Then conditions (2.1)–(2.4) are satisfied by the function

$$k(x, y) = w(x)|x - y|^{-d - \alpha(x)}, \quad x, y \in \mathbb{R}^d, x \neq y.$$

(5.3)

Proof. Note first that, from equation (5.1) defining the weight $w(x)$, we easily see that there exist constants c_i ($i = 1, 2, 3$) so that for $x, y \in \mathbb{R}^d$,

$$c_1 \leq w(x) \leq c_2, \quad |w(x) - w(y)| \leq c_3|\alpha(x) - \alpha(y)|.$$

Then

$$k(x, y) = \frac{1}{2}(w(x)|x - y|^{-d - \alpha(x)} + w(y)|x - y|^{-d - \alpha(y)})$$

$$\leq \begin{cases} M|x - y|^{-d - \overline{\alpha}}, & |x - y| \leq 1, \\ M|x - y|^{-d - \underline{\alpha}}, & |x - y| > 1. \end{cases}$$
This and the condition $0 < \alpha \leq \alpha < 2$ imply that condition (2.1) is fulfilled because the function M_s in it is bounded. Condition (2.2) is also valid as $|k_a(x, y)| \leq k_s(x, y)$.

On the other hand, since

$$k_a(x, y) = w(x)|x - y|^{-d - \alpha(x)} - w(y)|x - y|^{-d - \alpha(y)}$$
$$= (w(x) - w(y))|x - y|^{-d - \alpha(x)}$$
$$+ w(y)|x - y|^{-d}(|x - y|^{-\alpha(x)} - |x - y|^{-\alpha(y)})$$

and

$$|x - y|^{-\alpha(x)} - |x - y|^{-\alpha(y)} = \int_{\alpha(y)}^{\alpha(x)} |x - y|^{-u} \frac{1}{\ln|x - y| - 1} du,$$

we see that for $|x - y| < 1$,

$$|k_a(x, y)| \leq |w(x) - w(y)| \cdot |x - y|^{-d - \alpha(x)}$$
$$+ w(y)|x - y|^{-d}|\alpha(x) - \alpha(y)| \cdot |x - y|^{-((\alpha(x) + \alpha(y)) - 1)}$$
$$\leq M \left(|x - y|^{-d - \alpha + \delta} + |x - y|^{-d - \alpha + \delta} \frac{1}{\ln|x - y| - 1}\right)$$
$$\leq M' |x - y|^{-d - \alpha + \delta} \frac{1}{\ln|x - y| - 1}.$$

So if γ satisfies

$$\gamma (d + \alpha - \delta) - (d - 1) < 1,$$

then condition (2.3) holds. As for condition (2.4), note that

$$k_s(x, y) \geq M' |x - y|^{-d - \alpha}, \quad |x - y| < 1.$$

So, (2.4) is valid when

$$(d + \alpha - \delta)(2 - \gamma) < d + \alpha.$$

Therefore, conditions (2.3) and (2.4) hold provided that γ satisfies

$$\frac{d + 2\alpha - 2\delta - \alpha}{d + \alpha - \delta} < \gamma < \frac{d}{d + \alpha - \delta}.$$

Let (η, F^0) be the regular lower bounded semi-Dirichlet form on $L^2(\mathbb{R}^d)$ associated with the kernel (5.3) satisfying (5.2) according to Theorem 2.1. Let $X = (X_t, P_x)$ be the Hunt process on \mathbb{R}^d properly associated with (η, F) by Theorem 4.1.
Define a linear operator \(L \) by
\[
\begin{cases}
\mathcal{D}(L) = C^2_0(\mathbb{R}^d), \\
L u(x) = \int_{h \neq 0} (u(x + h) - u(x) - \nabla u(x) \cdot h \mathbf{1}_{B_1(0)}(h)) \frac{w(x)}{|h|^{d + \alpha(x)}} dh, \\
x \in \mathbb{R}^d.
\end{cases}
\]

\(C^2_0(\mathbb{R}^d) \) is a linear subspace of \(\mathcal{F}^0 \cap C_0(\mathbb{R}^d) \) and, by condition (5.2), we can see that \(L \) maps \(C^2_0(\mathbb{R}^d) \) into \(L^2(\mathbb{R}^d) \cap C_b(\mathbb{R}^d) \). As any continuously differentiable function and its derivatives can be simultaneously approximated by polynomials and their derivatives uniformly on each rectangles (cf. [9], Chapter II), conditions (L.1), (L.2), (L.3) in the preceding section on \(L \) are fulfilled. We can easily verify that the present \(L \) satisfies condition (L.4) as well.

Since the vector valued function \(hw(x)1_{B_1(0)}(h)|h|^{-d - \alpha(x)} \) is odd with respect to the variable \(h \) for each \(x \in \mathbb{R}^d \), we get for \(u \in C^2_0(\mathbb{R}^d) \),
\[
\eta^n(u, v) = -\int \int_{|x - y| > 1/n} (u(y) - u(x)) v(x) \frac{w(x)}{|x - y|^{d + \alpha(x)}} dx dy
\]
\[
= -\int \int_{|h| > 1/n} (u(x + h) - u(x)) v(x) \frac{w(x)}{|h|^{d + \alpha(x)}} dx dh
\]
\[
= -\int \int_{|h| > 1/n} (u(x + h) - u(x) - \nabla u(x) \cdot h 1_{B_1(0)}(h)) v(x) \times \frac{w(x)}{|h|^{d + \alpha(x)}} dx dh.
\]

By letting \(n \to \infty \), we have
\[
\eta(u, v) = -(Lu, v),
\]
that is, \(\eta \) is related to \(L \) by (4.5).

By virtue of Theorem 4.3, there exists a Borel properly exceptional set \(N \subset \mathbb{R}^d \) so that \(X|\mathbb{R}^d \setminus N \) is conservative and, for each \(x \in \mathbb{R}^d \setminus N \),
\[
M^{|f|}_t = f(X_t) - f(X_0) - \int_0^t (Lf)(X_s) ds, \quad t \geq 0,
\]
is a martingale under \(P_x \) for every \(f \in C^2_0(\mathbb{R}^d) \). Approximating \(f \in C^2_b(\mathbb{R}^d) \) by a uniformly bounded sequence \(\{f_n\} \subset C^2_0(\mathbb{R}^d) \) such that \(\{Lf_n\} \) is uniformly bounded and convergent to \(Lf \), we see that (4.6) remains valid for \(f \in C^2_b(\mathbb{R}^d) \) and \(M^{|f|}_t \) is still a martingale under \(P_x \) for \(x \in \mathbb{R}^d \setminus N \). For each \(x \in \mathbb{R}^d \setminus N \), the measure \(P_x \) is thus a solution to the martingale problem for the operator \(L \) of (5.4) starting at \(x \) so that \(P_x \) coincides with the law constructed by Bass [5] because of the uniqueness also due to [5].
Remark 5.1. Let

\[k^*(x, y) = \frac{w(y)}{|x - y|^{d+\alpha(y)}}, \quad x, y \in \mathbb{R}^d, x \neq y. \]

Under condition (5.2), the form \(\eta^* \) corresponding to the kernel \(k^* \) is a regular lower bounded semi-Dirichlet form on \(L^2(\mathbb{R}^d) \) by virtue of Proposition 5.1 and Corollary 2.1. By Theorem 4.1, \(\eta^* \) admits a properly associated Hunt process \(X^* \) on \(\mathbb{R}^d \). Furthermore, we can have an explicit expression

\[\eta^*(u, v) = -(\mathcal{L}^* u, v) \]

for \(u \in C_0^2(\mathbb{R}^d) \) and \(v \in \mathcal{F}^0 \) with

\[
\mathcal{L}^* u(x) = \int_{h \neq 0} (u(x + h) - u(x) - \nabla u(x) \cdot h 1_{B_1(0)}(h)) \frac{w(x + h)}{|h|^{d+\alpha(x+h)}} dh \\
+ \frac{1}{2} \int_{0<|h|<1} \nabla u(x) \cdot h \left(\frac{w(x + h)}{|h|^{d+\alpha(x+h)}} - \frac{w(x - h)}{|h|^{d+\alpha(x-h)}} \right) dh, \quad x \in \mathbb{R}^d.
\]

In a lower order case as is considered in Section 3, both \(\mathcal{L} \) and \(\mathcal{L}^* \) admit simpler expressions (3.7) and \(\mathcal{L}^* - K \) is a formal adjoint of \(\mathcal{L} \) for a function \(K \) defined by (3.9).

6. Associated Hunt processes on open subsets and on their closures. We make the same assumptions on \(E, m, k \) as in Section 2. Let \(D \) be an arbitrary open subset of \(E \) and \(\overline{D} \) be the closure of \(D \), \(m_D \) is defined to be \(m_D(B) = m(B \cap D), B \in \mathcal{B}(E) \) and \((u, v)_D \) denotes the inner product of \(L^2(D, m_D) \) (=\(L^2(\overline{D}, m_D) \)). Consider the related function spaces \(C_{lip}^0(\overline{D}) \) and \(C_{lip}^0(D) \) introduced in Section 1. Define

\[
\begin{align*}
\mathcal{E}_D(u, v) & := \int_{D \times D \setminus \text{diag}} (u(y) - u(x))(v(y) - v(x)) \times k_s(x, y)m_D(dx)m_D(dy), \\
\mathcal{F}^0_D & = \{ u \in L^2(D; m_D) : u \text{ is Borel measurable and } \mathcal{E}_D(u, u) < \infty \},
\end{align*}
\]

and let \(\mathcal{F}_{\overline{D}}^0 \) and \(\mathcal{F}_D^0 \) be the \(\mathcal{E}_{D,1} \)-closures of \(C_{lip}^0(\overline{D}) \) and \(C_{lip}^0(D) \) in \(\mathcal{F}^0_D \), respectively. \((\mathcal{E}_D, \mathcal{F}_D^0) [\text{resp., } (\mathcal{E}_D, \mathcal{F}_{\overline{D}}^0)] \) is a regular symmetric Dirichlet form on \(L^2(\overline{D}, m_D) \) [resp., \(L^2(D; m_D) \)] where \(\mathcal{E}^0_D \) denotes the restriction of \(\mathcal{E}_D \) to \(\mathcal{F}^0_D \times \mathcal{F}^0_D \). Furthermore, in view of [13], Theorem 4.4.3, we have the identity

\[\mathcal{F}^0_D = \{ u \in \mathcal{F}_{\overline{D}}^0 : \tilde{u} = 0, \mathcal{E}_D\text{-q.e. on } \partial D \}, \]

where \(\tilde{u} \) denotes an \(\mathcal{E}_D \)-quasi continuous version of \(u \in \mathcal{F}_{\overline{D}}^0 \). We keep in mind that a subset of \(D \) is polar for \((\mathcal{E}_D, \mathcal{F}^0_D) \) if it is for \((\mathcal{E}_D, \mathcal{F}_{\overline{D}}^0) \), and the restriction to \(D \) of a quasi continuous function with respect to the latter is quasi-continuous with respect to the former.

Now define for \(u \in C_{lip}^0(\overline{D}) \) and \(n \in \mathbb{N} \)

\[
\mathcal{L}^0_D u(x) := \int_{\{ y \in D : d(x, y) > 1/n \}} (u(y) - u(x))k(x, y)m_D(dy), \quad x \in D.
\]
Then, just as in Proposition 2.1 and Theorem 2.1 of Section 2, we conclude that the finite limit
\begin{equation}
\eta_D(u, v) = -\lim_{n \to \infty} \int_D L_n^D u(x)v(x)m_D(dx)
\end{equation}
exists, \(\eta_D \) extends to \(\overline{\mathcal{F}}_D \times \overline{\mathcal{F}}_D \) and \((\eta_D, \overline{\mathcal{F}}_D)\) becomes a regular lower bounded semi-Dirichlet form on \(L^2(\overline{D}; m_D) \) possessing \((\mathcal{E}_D, \mathcal{F}_D)\) as its reference symmetric Dirichlet form. In parallel with \((\eta_D, \overline{\mathcal{F}}_D)\), the space \((\eta_0^D, \overline{\mathcal{F}}_D)\) becomes a regular lower bounded semi-Dirichlet form on \(L^2(D; m_D) \) possessing \((\mathcal{E}_0^D, \mathcal{F}_0^D)\) as its reference symmetric Dirichlet form. Here \(\eta_0^D \) is the restriction of \(\eta_D \) to \(\overline{\mathcal{F}}_D \times \overline{\mathcal{F}}_D \).

Let \(X^\overline{D} = (X_t, P_x) \) be a Hunt process on \(\overline{D} \) properly associated with the form \((\eta_D, \overline{\mathcal{F}}_D)\) on \(L^2(\overline{D}; m_D) \). Denote by \(X^{D,0} = (X^{D,0}_t, P_x) \) the part process of \(X^\overline{D} \) on \(D \), namely, \(X^{D,0}_t \) is obtained from \(X_t \) by killing upon hitting the boundary \(\partial D \):
\begin{align*}
X^{D,0}_t &= X_t, \quad t < \sigma_{\partial D}; \\
X^{D,0}_t &= \Delta, \quad t \geq \sigma_{\partial D}.
\end{align*}

\(X^{D,0} \) is a Hunt process with state space \(D \).

Theorem 6.1. The part process \(X^{D,0} \) of \(X^\overline{D} \) on \(D \) is properly associated with the regular lower bounded semi-Dirichlet form \((\eta_0^D, \overline{\mathcal{F}}_D)\) on \(L^2(D; m_D) \).

Proof. Let \(\{R_\alpha; \alpha > 0\} \) be the resolvent of \(X^\overline{D} \). \(\sigma \) will denote the hitting time of \(\partial D \) by \(X^\overline{D} \) : \(\sigma = \sigma_{\partial D} \). Put, for \(\alpha > 0 \) and \(x \in \overline{D} \),
\begin{align*}
R^{D,0}_\alpha f(x) &= E_x \left[\int_0^\sigma e^{-\alpha t} f(X_t) dt \right], \\
H^{D,0}_\alpha u(x) &= E_x [e^{-\alpha \sigma} u(X_\sigma)], \quad x \in \overline{D},
\end{align*}

\(\{R^{D,0}_\alpha |_{D}; \alpha > 0\} \) is the resolvent of the part process \(X^{D,0} \) of \(X^\overline{D} \) on \(D \).

We need to prove that, for any \(\alpha > \beta_0 \) and any \(f \in \mathcal{B}(\overline{D}) \cap L^2(\overline{D}, m_D) \),
\begin{equation}
R^{D,0}_\alpha f \text{ is } \eta_0^D \text{-quasi-continuous,}
\end{equation}
\begin{equation}
R^{D,0}_\alpha f \in \overline{\mathcal{F}}_D, \quad \eta_0^D(\alpha R^{D,0}_\alpha f, v) = (f, v)_D \quad \text{for any } v \in \mathcal{F}_D^0.
\end{equation}

We denote by \(\mathcal{G} \) the space appearing in the right-hand side of (6.2). Notice that \(\mathcal{E}_D \)-q.e. (resp., \(\mathcal{E}_D \)-quasi-continuity) is now a synonym of \(\eta_D \)-q.e. (resp., \(\eta_D \)-quasi-continuity). As the set of points of \(\partial D \) that are irregular for \(\partial D \) is known to be semi-polar, we have \(P_x(\sigma = 0) = 1 \) and so \(R^{D,0}_\alpha f(x) = 0 \) for \(\eta_D \)-q.e. \(x \in \partial D \) owing to Theorem 4.2(iv). Since
\begin{align*}
R_\alpha f \text{ is } \eta_D \text{-quasi-continuous,}
R_\alpha f \in \mathcal{F}_D, \quad \eta_{D,\alpha}(R_\alpha f, v) = (f, v)_D \quad \text{for any } v \in \mathcal{F}_D.
\end{align*}
and
\(R_\alpha f(x) = R_{\alpha}^{D,0} f(x) + H_\alpha^{\partial D} R_\alpha f(x) \), \(x \in \overline{D} \),

we see that, for the proof of (6.5), it is enough to show that
\[
H_\alpha^{\partial D} R_\alpha f \text{ is } \eta_D\text{-quasi-continuous},
\]
(6.7)
\[
H_\alpha^{\partial D} R_\alpha f \in F_{\overline{D}} \qquad \eta_{D,\alpha}(H_\alpha^{\partial D} R_\alpha f, v) = 0 \quad \text{for any } v \in G.
\]

To this end, we fix \(\alpha > \beta_0 \), \(f \in B_+^{D} \cap L^2(D; m_D) \) and put \(u = R_\alpha f \). Consider a closed convex subset of \(F_{\overline{D}} \) defined by
\[
L_{u,\partial D} = \{ v \in F_{\overline{D}}, \tilde{v} \geq \tilde{u} \text{ q.e. on } \partial D \}.
\]

Let \(u_\alpha \) be the \(\eta_{D,\alpha}\)-projection of 0 on \(L_{u,\partial D} \):
\[
u_{u,\alpha}(u_\alpha, v - u_\alpha) \geq 0, \quad \text{for any } v \in L_{u,\partial D}.
\]

Both \(u \) and \(u_\alpha \) are \(\alpha \)-excessive elements of \(F_{\overline{D}} \). By making use of the function \(v = u_\alpha \wedge u \) as in the proof of Proposition 3.1(i), we readily get
\[
\tilde{u}_\alpha = u \text{ q.e. on } \partial D, \quad \eta_{D,\alpha}(u_\alpha, v) = 0 \quad \text{for any } v \in G.
\]
(6.8)

Finally, we prove that
\[
H_\alpha^{\partial D} u \text{ is } \eta_D\text{-quasi continuous,} \quad H_\alpha^{\partial D} u = u_\alpha,
\]
which leads us to the desired property (6.7). By (6.6), \(H_\alpha^{\partial D} u \) is an \(\alpha \)-excessive function dominated by \(u \in F_{\overline{D}} \) so that \(H_\alpha^{\partial D} u \) is a quasi-continuous element of \(F_{\overline{D}} \). Further \(H_\alpha^{\partial D} u = u \text{ q.e. on } \partial D \) by (6.6) and an observation made preceding it.

Let \(v = H_\alpha^{\partial D} u \wedge u_\alpha \). Then \(\tilde{v} = H_\alpha^{\partial D} u \wedge \tilde{u}_\alpha = u \text{ q.e. on } \partial D \) so that \(\eta_{D,\alpha}(u_\alpha, u_\alpha - v) = 0 \) by (6.8). On the other hand, \(v \) is \(\alpha \)-excessive and so \(\eta_{D,\alpha}(v, u_\alpha - v) \geq 0 \). Consequently, \(\eta_{\alpha}(u_\alpha - v, u_\alpha - v) \leq 0 \) and we get the inequality \(u_\alpha \leq H_\alpha^{\partial D} u \).

To get the converse inequality, consider a bounded nonnegative Borel function \(h \) on \(D \) with \(\int_D h dm = 1 \). Denote by \(\{ p_t; t \geq 0 \} \) the transition function of \(X_{\overline{D}} \). We choose a Borel measurable quasi-continuous version \(\tilde{u}_\alpha \) of \(u_\alpha \in F_{\overline{D}} \). We set \(\tilde{u}_\alpha(\Delta) = 0 \) for the cemetery \(\Delta \) of \(X_{\overline{D}} \). Since \(u_\alpha \) is \(\alpha \)-excessive, \(e^{-\alpha t} p_t \tilde{u}_\alpha \leq \tilde{u}_\alpha \text{ m-a.e.} \), and we can see that the process \(\{ Y_t = e^{-\alpha t} \tilde{u}_\alpha(X_t); t \geq 0 \} \) is a right continuous positive supermartingale under \(P_{h,m} \) in view of Theorem 4.2(iii). For any compact set \(K \subset \partial D \), we get from the optional sampling theorem and (6.8),
\[
E_{h,m}[Y_{\sigma_K}] = E_{h,m}[e^{-\alpha \sigma_K} \tilde{u}_\alpha(X_{\sigma_K})] \\
= E_{h,m}[e^{-\alpha \sigma_K} u(X_{\sigma_K})] \leq E_{h,m}[Y_0] \\
= (h, u_\alpha)_D.
\]

By choosing \(K \) such that \(\sigma_K \downarrow \sigma \text{ in } P_{h,m}\text{-a.e.} \), we obtain \((h, H_\alpha^{\partial D} u)_D \leq (h, u_\alpha)_D \) and \(H_\alpha^{\partial D} u \leq u_\alpha \). □
As a preparation for the next lemma, we take any open set \(G \subset D \) and denote by \(m_G \) the restriction of \(m \) to \(G \). Let \(\mathcal{F}_G^0 \) be the \(\mathcal{E}_{D,1} \)-closure of \(\mathcal{C}_1^0(G) \) in \(\mathcal{F}_D \) and \(\eta_G^0 \) be the restriction of \(\eta_D \) to \(\mathcal{F}_G^0 \times \mathcal{F}_G^0 \). Then, just as above,

\[
\mathcal{F}_G^0 = \{ u \in \mathcal{F}_D : \tilde{u} = 0 \ \text{q.e. on} \ \overline{D} \setminus G \}
\]

and \((\eta_G^0, \mathcal{F}_G^0) \) becomes a regular lower bounded semi-Dirichlet form on \(L^2(G; m_G) \) with which the part process \(X^G,0 \) on \(G \) is properly associated. The resolvent of \(X^G,0 \) will be denoted by \(R_{\alpha}^{G,0} \).

Define

\[
H_{\alpha}^{\tilde{D} \setminus G} u(x) = E_x[e^{-\alpha \tau_G} v(X_{\tau_G})], \quad x \in \overline{D}.
\]

As (6.7), we have, for \(u = R_{\alpha} f, f \in \mathcal{B}(\overline{D}) \cap L^2(\overline{D}; m_D), \alpha > \beta_0, \)

\[
H_{\alpha}^{\tilde{D} \setminus G} u \in \mathcal{F}_D, \quad \eta_D,\alpha(H_{\alpha}^{\tilde{D} \setminus G} u) = 0 \quad \text{for any} \ v \in \mathcal{F}_G^0,
\]

and the bound \(\eta_D,\alpha(H_{\alpha}^{\tilde{D} \setminus G} u) \leq \eta_D,\alpha(u, u) \). We can easily see that (6.10) holds true for any \(u \in \mathcal{F}_D \cap C_0(\overline{D}) \) where \(C_0(\overline{D}) \) denotes the restrictions to \(\overline{D} \) of functions in \(C_0(E) \). In fact, by the resolvent equation, (6.10) is true for \(R_{\beta} u, \beta > \beta_0 \), in place of \(u \). Since \(\{ \beta_n R_{\beta_n} u \} \) converges to \(u \) pointwise as well as in \(\eta_D,\alpha \)-metric as \(\beta_n \to \infty \), so does the sequence \(\{ \beta_n H_{\alpha}^{\tilde{D} \setminus G} R_{\beta_n} u \} \), arriving at the validity of (6.10) for such \(u \).

Lemma 6.1. Let \(G \) be a relatively compact open set with \(\overline{G} \subset D \). Then for any \(v \in \mathcal{F}_D \cap C_0(\overline{D}) \) with \(\text{supp}[v] \subset \overline{D} \setminus \overline{G} \), it follows for \(\alpha > \beta_0 \) that

\[
E_x[e^{-\alpha \tau_G} v(X_{\tau_G})] = R_{\alpha}^{G,0} g_v(x) \quad \text{for q.e.} \ x \in G,
\]

where \(\tau_G = \sigma_{\tilde{D} \setminus G} \wedge \xi \) is the first leaving time from \(G \) and \(g_v \) is a function given by

\[
g_v(x) = 1_G(x) \int_{\overline{D} \setminus \overline{G}} k(x, y)v(y)m_D(dy), \quad x \in \overline{D}.
\]

Proof. Take any \(u \in \mathcal{F}_D \cap C_0(\overline{D}) \) such that \(\text{supp}[u] \subset G \). From (6.3) and (6.4), we then have

\[
\eta_D(u, v) = -\int_{G \times (\overline{D} \setminus \overline{G})} u(y)v(x)k(x, y)m_D(dx)m_D(dy).
\]

We can now proceed as in [13], page 163. The function \(g_v \) defined by (6.12) belongs to \(L^2(G; m_G) \) on account of condition (2.1) on the kernel \(k \). Therefore, we
obtain from (6.13)
\[
\eta_{G,\alpha}^0(R^{G,0}_\alpha g_v, u) = \int_G g_v(x)u(x)m_G(dx)
\]
\[
= \int_{G \times (\overline{D}\setminus G)} u(x)v(y)k(x, y)m_D(dx)m_D(dy)
\]
\[
= -\eta_D(v, u) = -\eta_{D,\alpha}(v, u)
\]
\[
= -\eta_{G,\alpha}^0(v - H^{\overline{D}\setminus G}_\alpha v, u), \quad \alpha > \beta_0.
\]
the last identity being a consequence of (6.10). Since \(\mathcal{F}^{\overline{D}} \cap C_0(G)\) is \(\eta_{G,\alpha}^0\)-dense in \(\mathcal{F}_G^0\), we get
\[
H^{\overline{D}\setminus G}_\alpha v(x) = H^{\overline{D}\setminus G}_\alpha v(x) - v(x) = R^{G,0}_\alpha g_v(x) \quad \text{for } m_G\text{-a.e. on } G.
\]
We then obtain (6.11) because \(H^{\overline{D}\setminus G}_\alpha v\) and \(R^{G,0}_\alpha g_v\) are \(\eta_{G}^0\)-quasi-continuous by (6.10). □

THEOREM 6.2.

(i) \(X^{\overline{D}} = (X_t, P_x)\) admits no jump from \(D\) to \(\partial D\):
\[
P_x(X_{t-} \in D, X_t \in \partial D \text{ for some } t > 0) = 0 \quad \text{for q.e. } x \in D.
\]

(ii) If \(D\) is relatively compact, then \(X^{\overline{D}}\) is conservative: denoting by \(\zeta\) the lifetime of \(X^{\overline{D}}\),
\[
P_x(\zeta = \infty) = 1 \quad \text{for q.e. } x \in \overline{D}.
\]

(iii) If \(D\) is relatively compact, then \(X^{D,0} = (X^{D,0}_t, P_x)\) admits no killing inside \(D\): denoting by \(\zeta^0\) the lifetime of \(X^{D,0}\),
\[
P_x(X^{D,0}_\zeta^0 \in D, \zeta^0 < \infty) = 0 \quad \text{for q.e. } x \in D.
\]

PROOF. (i) For any open set \(G\) as Lemma 6.1 and any compact subset \(F\) of \(\partial D\), we can find a uniformly bounded sequence \(\{v_n\} \subset \mathcal{F}^{\overline{D}} \cap C_0(\overline{D})\) with support being contained in a common compact subset of \(\overline{D} \setminus G\) and \(\lim_{n \to \infty} v_n = 1_F\). Then \(g_{v_n}(x)\) are uniformly bounded and converge to \(g_1f(x) = 0\) as \(n \to \infty\). Therefore, by letting \(n \to \infty\) in (6.11) with \(v_n\) in place of \(v\), we get \(P_x(X_{tG} \in F) = 0\) for q.e. \(x \in G\). Since \(G\) and \(F\) are arbitrary with the stated properties, we have (6.14).

(ii) When \(D\) is relatively compact, \(1 \in C^{\text{lip}}_0(\overline{D})\) so that we see from (6.3) and (6.4) that \(1 \in \mathcal{F}^{\overline{D}}\) and \(\eta_D(1, v) = 0\) for any \(v \in \mathcal{F}^{\overline{D}}\). We have therefore, for any \(\alpha > \beta_0\) and \(f \in L^2(\overline{D}, m_D)\),
\[
0 = \eta_D(1, \hat{G}_\alpha f) = (1, f)_D - \alpha(1, \hat{G}_\alpha f)_D = (1 - \alpha R_\alpha 1, f)_D,
\]
where $\hat{\mathcal{G}}$ is the dual resolvent. This implies that $\alpha R_\alpha 1 = 1_{MD}$-a.e. for $\alpha > \beta_0$ and consequently q.e. on \overline{D} because $R_\alpha 1$ is quasi-continuous. Equation (6.15) is proven.

(iii) This is an immediate consequence of (i), (ii) as $X^{D,0}$ is the part process of $X^\overline{D}$ on D. □

We conjecture that the property (6.16) for $X^{D,0}$ holds true without the assumption of the relative compactness of D and especially for the minimal process X^0 on E.

Finally, we consider the case where E is \mathbb{R}^d and m is the Lebesgue measure on it. For $\alpha \in (0, 2)$ and an arbitrary open set $D \subset \mathbb{R}^d$, we make use of the Lévy kernel

$$k^{[\alpha]}(x, y) = \frac{\alpha 2^{\alpha-1} \Gamma((\alpha + d)/2)}{\pi^{d/2} \Gamma(1 - \alpha/2)} \frac{1}{|x - y|^{d+\alpha}}, \quad x, y \in \mathbb{R}^d,$$

of the symmetric α-stable process to introduce the Dirichlet form

$$\begin{align*}
\mathcal{E}^{[\alpha]}_D(u, v) := & \int_{D \setminus \text{diag}} (u(y) - u(x))(v(y) - v(x))k^{[\alpha]}(x, y) \, dx \, dy, \\
\mathcal{F}^{[\alpha],r}_D = & \{ u \in L^2(D) : u \text{ is Borel measurable and } \mathcal{E}^{[\alpha]}_D(u, u) < \infty \},
\end{align*}$$

on $L^2(D)$ based on the Lebesgue measure on D. Denote by $\mathcal{F}^{[\alpha]}_D$ the $\mathcal{E}^{[\alpha]}_{D,1}$-closure of $\mathcal{E}^{[\alpha]}_{D,0}$ in $\mathcal{F}^{[\alpha],r}_D$. For $s \in (0, d]$, a Borel subset Γ of \mathbb{R}^d is said to be an s-set if there exist positive constants c_1, c_2 such that for all $x \in \Gamma$ and $r \in (0, 1]$, $c_1 r^s \leq \mathcal{H}^s(\Gamma \cap B(x, r)) \leq c_2 r^s$, where \mathcal{H}^s denotes the s-dimensional Hausdorff measure on \mathbb{R}^d and $B(x, r)$ is the ball of radius r centered at $x \in \mathbb{R}^d$.

If the open set D is a d-set, then, by making use of Jonsson–Wallin’s trace theorem [14] as in [7], one can show that $\mathcal{F}^{[\alpha]}_D = \mathcal{F}^{[\alpha],r}_D$ and moreover that a subset of \overline{D} is $\mathcal{E}^{[\alpha]}_D$-polar iff it is polar with respect to the symmetric α-stable process on \mathbb{R}^d.

Let us consider the kernel $k^{(1)}$ of (1.9) for $w(x)$ given by (5.1) and $\alpha(x)$ satisfying condition (5.2). In particular, it is assumed that

$$0 < \underline{\alpha} \leq \alpha(x) \leq \overline{\alpha} < 2$$

for some constant $\alpha, \overline{\alpha}$. $k^{(1)}$ satisfies conditions (2.1)–(2.4) by Proposition 5.1 and one can associate with it the regular lower bounded semi-Dirichlet form η_D (resp., η^0_D) on $L^2(D; 1_D \, dx)$ [resp., $L^2(D)$] possessing as its reference form $\mathcal{E}^{[\alpha]}_D$ (resp., $\mathcal{E}^{[\alpha]}_D$) defined right after (6.1) for $k^{(1)}$ and the Lebesgue measure in place of k and m.
Suppose \(D \) is bounded, then there exist positive constants \(c_3, c_4 \) with
\[
c_3 k^{[2]}(x, y) \leq k^{(1)}_2(x, y) \leq c_4 k^{[2]}(x, y), \quad x, y \in \overline{D},
\]
so that
\[
(6.18) \quad c_3 \mathcal{E}^\alpha_D(u, u) \leq \mathcal{E}_D(u, u) \leq c_4 \mathcal{E}^\alpha_D(u, u), \quad u \in C^\alpha_0(\overline{D}).
\]

For the kernel \(k^{(1)} \), the Hunt process \(\bar{X}^D \) on \(D \) associated with \((\eta_D, \mathcal{F}_D)\) is called a modified reflecting stable-like process, while its part process \(X^{D,0} \) on \(D \), which is associated with \((\eta^0_D, \mathcal{F}^0_D)\), is called a censored stable-like process.

PROPOSITION 6.1. Assume that \(D \) is a bounded open \(d \)-set.

(i) If \(\partial D \) is polar with respect to the symmetric \(\alpha \)-stable process on \(\mathbb{R}^d \), then the censored stable-like process \(X^{D,0} = (X^{D,0}_t, P_x, \xi^0) \) is conservative and it does not approach to \(\partial D \) in finite time:
\[
(6.19) \quad P_x(\xi^0 = \infty) = 1, \quad P_x(X^{D,0}_t \in \partial D \text{ for some } t > 0) = 0.
\]

(ii) If \(\partial D \) is nonpolar with respect to the symmetric \(\alpha \)-stable process on \(\mathbb{R}^d \), then the censored stable-like process \(X^{D,0} \) satisfies
\[
(6.20) \quad \int_D P_x(X^{D,0}_{\xi^0_0} \in \partial D, \xi^0 < \infty)h(x)\,dx = \int_D P_x(\xi^0 < \infty)h(x)\,dx > 0
\]
for any strictly positive Borel function \(h \) on \(D \) with \(\int_D h(x)\,dx = 1 \).

PROOF. (i) Since \(\mathcal{E}_D \) is a reference form of \((\eta_D, \mathcal{F}_D)\), we see that \(\partial D \) is \(\eta_D \)-polar by (6.18) and the stated observation in [7]. The assertions of (i) then follows from Theorem 4.2(ii) and Theorem 6(ii).

(ii) \(\partial D \) is not \(\eta_D \)-polar by (6.18) and accordingly not \(m \)-polar with respect to the process \(\bar{X}^D \) by Theorem 4.2(v), where \(m \) is the Lebesgue measure on \(D \). Taking Theorem 6.2(i), (iii) into account, we then get (6.20). \(\square \)

The polarity of a set \(N \subset \mathbb{R}^d \) with respect to the symmetric \(\alpha \)-stable process is equivalent to \(C^{\alpha/2,2}(N) = 0 \) for the Bessel capacity \(C^{\alpha/2,2} \) (cf. Section 2.4 of the second edition of [13]). The latter has been well studied in [1] in relation to the Hausdorff measure and the Hausdorff content. For instance, when \(\alpha \leq d \) and \(\partial D \) is a \(s \)-set, \(\partial D \) is polar in this sense if and only if \(\alpha + s \leq d \). Of course, we get the same results as above for the second kernel \(k^{(1)*} \) in (1.9).

REFERENCES

[1] Adams, D. R. and Hedberg, L. I. (1996). *Function Spaces and Potential Theory*. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] \textbf{314}. Springer, Berlin. MR1411441
[2] Ancona, A. (1972). Théorie du potentiel dan les espaces fonctinnels a forme coercive, Lecture Notes Univ. Paris VI.

[3] Aronszajn, N. and Smith, K. T. (1961). Theory of Bessel potentials. I. Ann. Inst. Fourier (Grenoble) 11 385–475. MR0143935

[4] Bass, R. F. (1988). Occupation time densities for stable-like processes and other pure jump Markov processes. Stochastic Process. Appl. 29 65–83. MR0952820

[5] Bass, R. F. (1988). Uniqueness in law for pure jump Markov processes. Probab. Theory Related Fields 79 271–287. MR0958291

[6] Bass, R. F. (2004). Stochastic differential equations with jumps. Probab. Surv. 1 1–19 (electronic). MR2095564

[7] Bogdan, K., Burdzy, K. and Chen, Z.-Q. (2003). Censored stable processes. Probab. Theory Related Fields 127 89–152. MR2006232

[8] Carrillo-Mendenes, S. (1975). Processus de Markov associé à une forme de Dirichlet non symétrique. Z. Wahrsch. Verw. Gebiete 33 139–154. MR0386030

[9] Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics 1. Wiley, New York.

[10] Fitzsimmons, P. J. (2001). On the quasi-regularity of semi-Dirichlet forms. Potential Anal. 15 151–185. MR1837263

[11] Fukushima, M. (1999). On semi-martingale characterizations of functionals of symmetric Markov processes. Electron. J. Probab. 4 32 pp. (electronic). MR1741537

[12] Fukushima, M. (2010). From one dimensional diffusions to symmetric Markov processes. Stochastic Process. Appl. 120 590–604. MR2603055

[13] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. de Gruyter, Berlin. MR1303354

[14] Jonsson, A. and Wallin, H. (1984). Function spaces on subsets of \(\mathbb{R}^n \). Math. Rep. 2 xiv+221. MR0820626

[15] Kunita, H. (1970). Sub-Markov semi-groups in Banach lattices. In Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) 332–343. Univ. of Tokyo Press, Tokyo. MR0267412

[16] Ma, Z. M., Overbeck, L. and Röckner, M. (1995). Markov processes associated with semi-Dirichlet forms. Osaka J. Math. 32 97–119. MR1323103

[17] Ma, Z. M. and Röckner, M. (1992). Introduction to the Theory of (nonsymmetric) Dirichlet Forms. Springer, Berlin. MR1214375

[18] Negoro, A. (1994). Stable-like processes: Construction of the transition density and the behavior of sample paths near \(t = 0 \). Osaka J. Math. 31 189–214. MR1262797

[19] Øshima, Y. (1988). Lectures on Dirichlet spaces, Lecture Notes at Erlangen Univ.

[20] Silverstein, M. L. (1977). The sector condition implies that semipolar sets are quasi-polar. Z. Wahrsch. Verw. Gebiete 41 13–33. MR0467934

[21] Stampacchia, G. (1964). Formes bilinéaires coercitives sur les ensembles convexes. C. R. Math. Acad. Sci. Paris 258 4413–4416. MR0166591

[22] Tsuchiya, M. (1992). Lévy measure with generalized polar decomposition and the associated SDE with jumps. Stochastics Stochastics Rep. 38 95–117. MR1274897

[23] Uemura, T. (2002). On some path properties of symmetric stable-like processes for one dimension. Potential Anal. 16 79–91. MR1880349

[24] Uemura, T. (2004). On symmetric stable-like processes: Some path properties and generators. *J. Theoret. Probab.* **17**, 541–555. MR2091550

Branch of Mathematical Science
Faculty of Engineering Science
Osaka University
Toyonaka, Osaka 560-8531
Japan

and

Department of Mathematics
Faculty of Engineering Science
Kansai University
Suita, Osaka 564-8680
Japan

E-mail: fuku2@mx5.canvas.ne.jp
t-uemura@kansai-u.ac.jp