ON REGULARITY THEOREMS FOR LINEARLY INVARIANT FAMILIES OF HARMONIC FUNCTIONS

Abstract. The classical theorem of growth regularity in the class S of analytic and univalent in the unit disc Δ functions f describes the growth character of different functionals of $f \in S$ and $z \in \Delta$ as z tends to $\partial \Delta$. Earlier the authors proved the theorems of growth and decrease regularity for harmonic and sense-preserving in Δ functions which generalized the classical result for the class S. In the presented paper we establish new properties of harmonic sense-preserving functions, connected with the regularity theorems. The effects both common for analytic and harmonic case and specific for harmonic functions are displayed.

Key words: regularity theorem, linearly invariant family, harmonic function

2010 Mathematical Subject Classification: 30C55

1. Introduction. For a function $u(z)$, continuous in the disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, we denote

$$M(r, u) = \max_{|z| \leq r} |u(z)| \quad \text{and} \quad m(r, u) = \min_{|z| \leq r} |u(z)|.$$

Let S be the class of all univalent analytic functions $f(z) = z + \ldots$ in Δ. The theorem of growth regularity asserts that functions having the maximal growth in the given class, grows smoothly (regularly).

Theorem A. [1], [2], [3] pp. 104, 105], [4] pp. 8–9] Let $f \in S$. Then there exist a $\delta_0 \in [0, 1]$ with

$$\lim_{r \to 1^-} \left[M(r, f) \frac{(1-r)^2}{r} \right] = \lim_{r \to 1^-} \left[M(r, f') \frac{(1-r)^3}{1+r} \right] = \delta^0,$$
\[\delta^0 = 1 \text{ iff } f(z) = z(1 - ze^{-i\theta})^{-2}. \] If \(\delta^0 \neq 1 \), then the functions under the sign of the limit increase on \(r \).

If \(\delta^0 \neq 0 \), then there exists \(\varphi^0 \in [0; 2\pi) \) such that
\[
\lim_{r \to 1^-} \left| f(re^{i\varphi}) \right| \left(\frac{(1-r)^2}{r} \right) = \lim_{r \to 1^-} \left| f'(re^{i\varphi}) \right| \left(\frac{(1-r)^3}{1+r} \right) = \begin{cases} \delta^0, & \varphi = \varphi^0 \\ 0, & \varphi \neq \varphi^0. \end{cases}
\]
Here the functions under the sign of the limit are also increasing on \(r \in (0, 1) \).

In [5], Ch. Pommerenke showed that many properties of functions from the class \(S \) can be extended to linearly invariant families (LIFs) of locally univalent analytic functions in \(\Delta \) of finite order. In [6] and [7], the theorem of growth regularity was obtained for such LIFs.

In [8], [9], the authors introduced the notion of LIF for complex-valued harmonic functions \(f \) in \(\Delta \). Every such function can be presented, using analytic functions \(h \) and \(g \) in \(\Delta \) in the following way:
\[f(z) = h(z) + g(z), \] (1)
where
\[h(z) = z + \sum_{n=2}^{\infty} a_n(f)z^n \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} a_{-n}(f)z^n. \]
As in [5], L. E. Shaubroek considered locally univalent functions in \(\Delta \). Moreover, these functions are sense-preserving in \(\Delta \), i.e. the Jacobian \(J_f(z) \) satisfies
\[J_f(z) = |h'(z)|^2 - |g'(z)|^2 > 0 \quad \forall z \in \Delta. \]

Definition 1. [8], [9] A set \(\mathcal{M}_H \) of harmonic sense-preserving functions \(f \) in \(\Delta \) of form (1) is called the linearly invariant family (LIF) if for all \(f \in \mathcal{M}_H \) and for any conformal automorphism \(\phi(z) = \frac{z+a}{1+\bar{a}z}, a \in \Delta \), the function \(e^{-i\theta}f_a(ze^{i\theta}) \) belongs to \(\mathcal{M}_H \), where
\[f_a(z) = \frac{f(\phi(z)) - f(\phi(0))}{h'(\phi(0))\phi'(0)}. \] (2)

It is assumed that the order of a family \(\mathcal{M}_H \)
\[\text{ord} \mathcal{M}_H = \sup_{f \in \mathcal{M}_H} |a_2(f)| \]
is finite.
In the analytic case (when \(g(z) \equiv 0\)), the definitions of LIF and \(\text{ord}\mathcal{M}_H\) coincide with the definitions of Pommerenke [5].

In [10], for LIFs of harmonic functions, the strong order

\[
\overline{\text{ord}}\mathcal{M}_H = \sup_{f \in \mathcal{M}_H} \frac{|a_2(f) - a_{-1}(f)a_{-2}(f)|}{1 - |a_{-1}(f)|^2}
\]

was defined. The strong order proved to be convenient for investigation of LIFs, because it is not necessary to assume the affine invariance of a family. Moreover, for an affine LIF \(\mathcal{M}_H\) the strong order does not exceed the old order:

\[
\text{ord}\mathcal{M}_H - \frac{1}{2} \leq \overline{\text{ord}}\mathcal{M}_H \leq \text{ord}\mathcal{M}_H.
\]

This fact allows to describe properties of affine LIFs more precisely. For a LIF \(\mathcal{M}\) of analytic functions, \(\text{ord}\mathcal{M}_H = \overline{\text{ord}}\mathcal{M}_H\). Analogously to the analytic case in [10] the universal LIF \(\mathcal{U}^H_\alpha\) was introduced and studied. The family \(\mathcal{U}^H_\alpha\) is defined as the union of all LIFs \(\mathcal{M}_H\) such that \(\overline{\text{ord}}\mathcal{M}_H \leq \alpha\). Equivalently, \(\mathcal{U}^H_\alpha\) is the set of all harmonic sense-preserving functions \(f\) in \(\Delta\) of the form (1) such that

\[
\overline{\text{ord}} f \overset{\text{def}}{=} \overline{\text{ord}} \{e^{-i\theta} f_a(ze^{i\theta}) : a \in \Delta, \theta \in \mathbb{R}\} \leq \alpha.
\]

It was shown in [10] that \(\overline{\text{ord}}\mathcal{U}^H_\alpha \geq 1\).

In [11] and [12], the following regularity theorems for harmonic functions were proved:

Theorem B. (regularity of growth) Let \(f \in \mathcal{U}^H_\alpha\). Set

\[
\Phi_1(r) = \int_0^r M(\rho, J_f) \, d\rho, \quad \Psi_1(r, \varphi) = \int_0^r J_f(\rho e^{i\varphi}) \, d\rho, \quad \text{and}
\]

\[
F_1(r) = \int_0^r \frac{(1 + \rho)^{2\alpha - 2}}{(1 - \rho)^{2\alpha + 2}} \, d\rho.
\]

For each \(n \geq 2\) successively denote

\[
\Phi_n(r) = \int_0^r \Phi_{n-1}(\rho) \, d\rho, \quad \Psi_n(r, \varphi) = \int_0^r \Psi_{n-1}(\rho, \varphi) \, d\rho, \quad \text{and}
\]
$$F_n(r) = \int_0^r F_{n-1}(\rho) d\rho.$$

Then

a) for every $\varphi \in [0; 2\pi)$ and $n \in \mathbb{N}$, the functions

$$J_f(re^{i\varphi})(1 - r)^{2\alpha+2} \left(1 + r \right)^{2\alpha-2}, \quad M(r, J_f)(1 - r)^{2\alpha+2} \left(1 + r \right)^{2\alpha-2},$$

$$\frac{\Phi_n(r)}{F_n(r)}, \quad \frac{\Psi_n(r, \varphi)}{F_n(r)}, \quad \text{and} \quad \max_{\varphi} \frac{\Psi_n(r, \varphi)}{F_n(r)}$$

are non-increasing on $r \in (0; 1)$;

b) there exist constants $\delta^0 \in [0; 1]$ and $\varphi^0 \in [0; 2\pi)$ such that for $1 \leq n \leq 2\alpha+2,

$$\delta^0 = \lim_{r \to 1^-} \left[\frac{M(r, J_f)(1 - r)^{2\alpha+2}}{J_f(0)4(\alpha+1)(1 + r)^{2\alpha-3}} \right] = \lim_{r \to 1^-} \left[\frac{M(r, \partial_r J_f)}{J_f(0)4(\alpha+1)(1 + r)^{2\alpha-3}} \right] = \lim_{r \to 1^-} \left[\frac{\left| \frac{\partial}{\partial r} J_f(re^{i\varphi^0}) \right|}{J_f(0)4(\alpha+1)(1 + r)^{2\alpha-3}} \right] = \lim_{r \to 1^-} \left[\frac{\int_0^r M(\rho, \partial_\rho J_f) d\rho (1 - r)^{2\alpha+2}}{J_f(0)(1 + r)^{2\alpha-2}} \right] = \lim_{r \to 1^-} \left[\frac{\int_0^r \left| \frac{\partial}{\partial \rho} J_f(\rho e^{i\varphi^0}) \right| d\rho (1 - r)^{2\alpha+2}}{J_f(0)(1 + r)^{2\alpha-2}} \right] = \lim_{r \to 1^-} \Phi_n(r) = \lim_{r \to 1^-} \frac{\Psi_n(r, \varphi^0)}{J_f(0)F_n(r)} = \lim_{r \to 1^-} \frac{\Psi_n(r, \varphi^0)}{J_f(0)F_n(r)} = \lim_{r \to 1^-} \frac{\max_{\varphi} \Psi_n(r, \varphi)}{J_f(0)F_n(r)};$$

c) $\delta^0 = 1$ for functions $q_\theta(z) = e^{i\theta}k_\alpha(ze^{-i\theta}) + \sigma e^{i\theta}k_\alpha(ze^{-i\theta})$, where $\sigma \in \Delta, \theta \in \mathbb{R}$, and

$$k_\alpha(z) = \frac{1}{2\alpha} \left[\left(\frac{1 + z}{1 - z} \right)^\alpha - 1 \right].$$
Theorem C. (regularity of decrease) Let $f \in \mathcal{U}_\alpha^H$. Set
\begin{align*}
Q_1(r) &= \int_r^1 m(\rho, J_f) \, d\rho, \quad E_1(r) = \int_r^1 \frac{(1 - \rho)^{2\alpha - 2}}{(1 + \rho)^{2\alpha + 2}} \, d\rho.
\end{align*}
For each $n \geq 2$ successively denote
\begin{align*}
Q_n(r) &= \int_r^1 Q_{n-1}(\rho) \, d\rho, \quad \text{and} \quad E_n(r) = \int_r^1 E_{n-1}(\rho) \, d\rho.
\end{align*}
Then
\begin{enumerate}
\item[a)] for every $\varphi \in [0; 2\pi)$ and $n \in \mathbb{N}$ the functions
\begin{align*}
J_f(re^{i\varphi}) \frac{(1 + r)^{2\alpha + 2}}{(1 - r)^{2\alpha - 2}}, \quad m(r, J_f) \frac{(1 + r)^{2\alpha + 2}}{(1 - r)^{2\alpha - 2}}, \quad \text{and} \quad \frac{Q_n(r)}{E_n(r)}
\end{align*}
are non-decreasing on $r \in (0; 1)$;
\item[b)] there exist constants $\delta_0 \in [1; \infty)$ and $\varphi_0 \in [0; 2\pi)$ such that
\begin{align*}
\delta_0 &= \lim_{r \to 1^-} \left[\frac{m(\rho, J_f)}{J_f(0)} \frac{(1 + r)^{2\alpha + 2}}{(1 - r)^{2\alpha - 2}} \right] = \lim_{r \to 1^-} \left[\frac{J_f(re^{i\varphi_0})}{J_f(0)} \frac{(1 + r)^{2\alpha + 2}}{(1 - r)^{2\alpha - 2}} \right] = \lim_{r \to 1^-} \frac{Q_n(r)}{J_f(0)E_n(r)};
\end{align*}
\item[c)] for $\varphi \in [0; 2\pi)$ denote
\begin{align*}
R_1(r, \varphi) &= \int_r^1 J_f(\rho e^{i\varphi}) \, d\rho,
\end{align*}
and for $n \geq 2$, set
\begin{align*}
R_n(r, \varphi) &= \int_r^1 R_{n-1}(\rho, \varphi) \, d\rho
\end{align*}
(under the assumptions of Theorem C the integrals converge). If $\delta_0 < \infty$ then for $n \geq 1$ the function $\frac{R_n(r, \varphi_0)}{E_n(r)}$ is non-decreasing on $r \in (0; 1)$. Moreover,
\begin{align*}
\delta_0 &= \lim_{r \to 1^-} \frac{R_n(r, \varphi_0)}{J_f(0)E_n(r)};
\end{align*}
d) if $J_f(z)$ is bounded in Δ, then for every $n \in \mathbb{N}$ and every $\varphi \in [0; 2\pi)$, the functions
\[
\frac{R_n(r, \varphi)}{E_n(r)} \quad \text{and} \quad \frac{\min R_n(r, \varphi)}{E_n(r)}
\]
are non-decreasing on $r \in (0; 1)$ and
\[
\delta_0 = \lim_{r \to 1^-} \frac{\min R_n(r, \varphi)}{J_f(0)E_n(r)};
\]
e) $\delta_0 = 1$ for functions $q_\theta(z) = e^{i\theta}k_\alpha(ze^{-i\theta}) + \sigma e^{i\theta}k_\alpha(ze^{-i\theta})$, where $\sigma \in \Delta$, $\theta \in \mathbb{R}$, and $k_\alpha(z)$ is the function defined by (3).

Definition 2. We say that the constant φ^0 from Theorem B is a direction of maximal growth (d.m.g.) of a function $f(z)$. The constant φ_0^* from Theorem C is a direction of maximal decrease (d.m.d.) of $f(z)$.

Definition 3. The numbers δ^0 from Theorem B and δ_0 from Theorem C are called the Hayman numbers of a function $f(z)$.

In the presented paper we establish new properties of U^H_α, connected with the regularity theorems.

2. Main results. For fixed $c \in [0; 1)$ introduce the class $U^H_{\alpha,c}$, consisting of all functions $f = h + \overline{g} \in U^H_\alpha$ such that $|g'(0)| \leq c$. That is, $J_f(0) \geq 1 - c^2 > 0$ for all $f \in U^H_{\alpha,c}$. The class $U^H_{\alpha,c}$ is not a LIF. Note that the family U^H_α is not compact in the topology induced by locally uniform convergence in Δ, but for $U^H_{\alpha,c}$ the following theorem takes place.

Theorem 1. The family $U^H_{\alpha,c}$ is compact in the topology induced by locally uniform convergence in Δ.

Proof. Let $f_n \in U^H_{\alpha,c}$, $f_n = h_n + \overline{g}_n$, $n \in \mathbb{N}$, h_n and g_n be analytic functions in Δ. By A_α denote the set of all analytic functions h in Δ such that there exists an analytic function g in Δ and $f = h + \overline{g} \in U^H_\alpha$. In other words, A_α is the set of analytic parts of functions $f \in U^H_\alpha$. The lineary invariance of U^H_α implies that A_α is a LIF of analytic functions. But for LIFs of analytic functions $\text{ord} A_\alpha = \text{ord} A_\alpha$. Therefore for all $h \in A_\alpha$
\[
|h'(z)| \leq \frac{(1 + r)^{\alpha - 1}}{(1 - r)^{\alpha + 1}}, \quad |z| = r;
\]
see [5]. Since $J_f(z) = |h'(z)|^2 - |g'(z)|^2 > 0$ for all $z \in \Delta$ and all $f \in \mathcal{U}^H_\alpha$, we have

$$|g'(z)| \leq \frac{(1 + r)^{\alpha - 1}}{(1 - r)^{\alpha + 1}},$$

for all $f = h + \bar{g} \in \mathcal{U}^H_\alpha$ and $z \in \Delta$, $|z| = r$. Consequently, $\mathcal{U}^H_{\alpha, c} \subset \mathcal{U}^H_\alpha$ is uniformly bounded on compact subsets of Δ. According to the compactness principle, there exists a subsequence of f_n (let us save the notation) which converges locally uniformly in Δ to a harmonic function f_0. Let us show that $f_0 \in \mathcal{U}^H_{\alpha, c}$.

For $f \in \mathcal{U}^H_\alpha$ the following inequality holds (see [10])

$$\frac{(1 - r)^{2\alpha - 2}}{(1 + r)^{2\alpha + 2}} \leq J_f(z) \leq \frac{(1 + r)^{2\alpha - 2}}{(1 - r)^{2\alpha + 2}}, \quad |z| = r.$$

Therefore for $f_n \in \mathcal{U}^H_{\alpha, c}$ we have

$$J_{f_n}(z) \geq \frac{(1 - r)^{2\alpha - 2}}{(1 + r)^{2\alpha + 2}}(1 - c^2) > 0.$$

This implies $J_{f_0}(z) > 0$ for all $z \in \Delta$. This means that the harmonic in Δ function f_0 is sense-preserving.

Next, we prove that $\text{ord} f_0 \leq \alpha$. Suppose not. Then, we may let $\text{ord} f_0 = \beta > \alpha$. Then, by the definition of the strong order, there exist a conformal automorphism $\varphi(z) = \frac{z + a}{1 + \bar{a}z}$ of Δ and $\theta \in \mathbb{R}$ such that for harmonic function

$$e^{-i\theta}(f_0)_a(ze^{i\theta}) = \frac{f_0(\varphi(ze^{i\theta})) - f_0(\varphi(0))}{h'_0(\varphi(0))\varphi'(0)e^{i\theta}} = \sum_{k=1}^{\infty} (A_k z^k + A_{-k} \bar{z}^k),$$

$(A_1 = 1, \ f_0 = h_0 + \bar{g}_0)$ the inequality

$$\frac{|A_2 - A_{-1}A_{-2}|}{1 - |A_{-1}|^2} > \alpha + \frac{\beta - \alpha}{2} \quad (4)$$

is valid.

For the automorphism φ and the number θ denote

$$e^{-i\theta}(f_n)_a(ze^{i\theta}) = \sum_{k=1}^{\infty} (A_k^{(n)} z^k + A_{-k}^{(n)} \bar{z}^k), \quad (A_1^{(n)} = 1).$$
From locally uniform convergence of f_n to f_0, the Weierstrass theorem on series of analytic functions, and inequality [4] it follows that for sufficiently large $n > N$

$$\frac{|A_2^{(n)} - A_{-1}^{(n)}A_{-2}^{(n)}|}{1 - |A_{-1}^{(n)}|^2} > \alpha + \frac{\beta - \alpha}{2}.$$

Hence if $n > N$ we have $\text{ord}_f f_n > \alpha + \frac{\beta - \alpha}{2}$ and $f_n \notin U_{\alpha,c}$. This contradiction proves the theorem. □

In claim c) of Theorem B and claim e) of Theorem C some set of functions with the Hayman number $\delta^0 = 1$ (or $\delta_0 = 1$ for the theorem of decrease regularity) is described. These claims differ from the analytic case. In the analytic case $\delta^0 = 1$ and $\delta_0 = 1$ only for the functions $e^{i\theta}k_\alpha(ze^{-i\theta})$, where $\theta \in \mathbb{R}$, $k_\alpha(z)$ is the function defined by [3], [7], [13], [14]. The following example shows that in the harmonic case this set has more complicated structure. We construct the example of functions f of arbitrary strong order $\beta \geq 3/2$ with $\delta_0 = 1$. These functions are not equal to the function $q_\theta(z)$ from Theorem B. We use the Clunie and Sheil-Small shear construction [15] (see also [16, ch. 3.4]) to give our example. Let us note that our construction is not stable. As one can show, if we multiply the coanalytic part g of the function from our example by constant $k \in (0, 1)$, then the strong order of the function changes stepwise and $\delta_0 \neq 1$ for this function.

Example. Put $h'(z) = \frac{(1+z)^{\alpha-1}}{(1-z)^{\alpha+1}}$, $g'(z) = zh'(z)$, $z \in \Delta$. Let $\alpha \in [1, \infty)$ be fixed. If $\varphi(z) = \frac{z+a}{1+az}$, $a \in \Delta$, is an automorphism of Δ, then for $f = h + \tilde{g}$ we have

$$f_a(z) =: F(z) = H(z) + \overline{G(z)} = \frac{h(\varphi(z)) - h(\varphi(0))}{h'(\varphi(0))\varphi'(0)} + \left(\frac{g(\varphi(z)) - g(\varphi(0))}{h'(\varphi(0))\varphi'(0)}\right),$$

where H and G are functions analytic in Δ,

$$H'(z) = \frac{h'(\varphi(z))\varphi'(z)}{h'(\varphi(0))\varphi'(0)}$$

and

$$G'(z) = \frac{g'(\varphi(z))\varphi'(z)}{h'(\varphi(0))\varphi'(0)} = \frac{\varphi(z)h'(\varphi(z))\varphi'(z)}{h'(\varphi(0))\varphi'(0)}.$$
Note that

\[J_F(z) = |H'(z)|^2 - |G'(z)|^2 = \frac{|h'(\varphi(z))|^2|\varphi'(z)|^2(1 - |\varphi(z)|^2)}{|h'(\varphi(0))|^2|\varphi'(0)|^2}, \]

and, in particular,

\[J_F(0) = 1 - |\varphi(0)|^2. \]

Therefore,

\[
\frac{J_F(z)}{J_F(0)} = \left| 1 + \frac{z + a}{\overline{1+\overline{a}z}} \right|^{2\alpha-2} \cdot \left| 1 - \frac{a}{\overline{1+\overline{a}z}} \right|^{2\alpha+4} \cdot \frac{(1 - |a|^2)^2}{|1 + \overline{a}z|^4} \times \]

\[
\left(1 - \left| \frac{z + a}{\overline{1+\overline{a}z}} \right|^2 \right) \frac{1}{(1 - |a|^2)^3} = \]

\[
\left| \frac{1 + \overline{1+\overline{a}z}}{1 - \overline{z}} \right|^{2\alpha-2} \cdot \left| 1 + \overline{a}z \right|^2 - \left| z + a \right|^2 = \left| \frac{1 + \overline{1+\overline{a}z}}{1 - \overline{z}} \right|^{2\alpha+4} (1 - |z|^2), \]

by generalized Schwarz’s lemma. Consequently, for \(r \in (0, 1) \)

\[
\sup_{a \in \Delta, \ |z| = r} \frac{J_F(z)}{J_F(0)} = \frac{(1 + r)^{2\alpha-1}}{(1 - r)^{2\alpha+3}}. \]

Therefore for \(\beta = \alpha + \frac{1}{2} \), all \(a \in \Delta \), and \(|z| = r \) we get

\[
\frac{J_F(z)}{J_F(0)} \leq \frac{(1 + r)^{2\beta-2}}{(1 - r)^{2\beta+2}}. \tag{5} \]

In \[10\] it was shown that for functions \(f \) harmonic and sense-preserving in \(\Delta \),

\[
\overline{\text{ord}} f = \inf \left\{ \beta : \frac{J_F(z)}{J_F(0)} \leq \frac{(1 + |z|)^{2\beta-2}}{(1 - |z|)^{2\beta+2}}, \ \forall F = f_a, \forall z \in \Delta \right\}. \tag{6} \]

From (5) and (6) we conclude that \(\overline{\text{ord}} f \leq \beta = \alpha + \frac{1}{2} \). From Theorem B it follows that if for a function \(f \) harmonic and sense-preserving in \(\Delta \)

\[
\lim_{r \to 1^-} \left[\frac{J_f(z)}{J_f(0)} \left(\frac{1 - r}{1 + r} \right)^{2\beta+2} \right] > 0, \tag{7} \]
then $\text{ord} f \geq \beta$. For the considered function f the limit in \[7\] equals 1. Therefore, $\text{ord} f = \beta$ and

$$\delta^0 = \lim_{r \to 1^-} \left[\frac{J_f(r)}{J_f(0)} \frac{(1-r)^{2\beta+2}}{(1+r)^{2\beta-2}} \right] = 1.$$

It is interesting to find out if there exist functions with $\delta^0 = 1$ which are not equal to the function from the example and the functions $q_\theta(z)$.

Definition 4. A direction of intensive growth (d.i.g.) of a function $f(z)$ is a constant $\varphi \in [0; 2\pi)$ such that

$$\lim_{r \to 1^-} \left[\frac{J_f(re^{i\varphi})}{J_f(0)} \frac{(1-r)^{2\alpha+2}}{(1+r)^{2\alpha-2}} \right] = \delta(f, \varphi) > 0.$$

A direction of intensive decrease (d.i.d) of a function $f(z)$ is a constant $\varphi \in [0; 2\pi)$ such that

$$\lim_{r \to 1^-} \left[\frac{J_f(re^{i\varphi})}{J_f(0)} \frac{(1+r)^{2\alpha+2}}{(1-r)^{2\alpha-2}} \right] = \delta'(f, \varphi) < \infty.$$

Since we study LIFs, it is important to know how d.i.g.-’s and d.i.d.-’s of a function $f(z)$ are changed under the transformation $e^{-i\theta} f_a(ze^{i\theta})$. The case $a = 0$ is trivial: a d.i.g. (d.i.d.) $\varphi - \theta$ of the function $e^{-i\theta} f(ze^{i\theta})$ corresponds to the d.i.g. (d.i.d.) φ of $f(z)$. In this situation $\delta(f(z), \varphi) = \delta(f(ze^{i\theta}), \varphi - \theta)$ (and $\delta'(f(z), \varphi) = \delta'(f(ze^{i\theta}), \varphi - \theta)$). It is also interesting to find out the relationship between the Hayman numbers of the functions f and f_a in general case. The following theorem concerns the non-obvious case $a \neq 0$.

Theorem 2. Let $f \in U^H_\alpha$. Denote

$$R(r) = \left| \frac{re^{i\varphi} + a}{1 + \overline{a}re^{i\varphi}} \right|, \quad \gamma(r) = \arg \frac{re^{i\varphi} + a}{1 + \overline{a}re^{i\varphi}}, \quad a \in \Delta, \quad re^{i\varphi} \neq -a.$$

1) φ is a d.i.g. (d.i.d.) of the function $f_a(z)$ iff γ is a d.i.g. (d.i.d.) of $f(z)$ and

$$e^{i\varphi} = \frac{e^{i\gamma} - a}{1 - \overline{a}e^{i\gamma}}.$$

(8)
2) for all $\gamma \in [0, 2\pi)$

$$
\lim_{r \to 1^-} \left[\frac{J_f(re^{i\gamma})}{J_f(0)} \frac{(1 - r)^{2\alpha + 2}}{(1 + r)^{2\alpha - 2}} \right] = \lim_{r \to 1^-} \left[\frac{J_f(R(r)e^{i\gamma(r)})}{J_f(0)} \frac{(1 - R(r))^{2\alpha + 2}}{(1 + R(r))^{2\alpha - 2}} \right],
$$

and

$$
\lim_{r \to 1^-} \left[\frac{J_f(re^{i\gamma})}{J_f(0)} \frac{(1 + r)^{2\alpha + 2}}{(1 - r)^{2\alpha - 2}} \right] = \lim_{r \to 1^-} \left[\frac{J_f(R(r)e^{i\gamma(r)})}{J_f(0)} \frac{(1 + R(r))^{2\alpha + 2}}{(1 - R(r))^{2\alpha - 2}} \right].
$$

Here φ and γ are connected by (8).

3) if φ is a d.i.g. of $f_a(z)$, γ is a d.i.g. of $f(z)$, and φ is connected with γ by (8), then

$$
\delta(f, \gamma) = \delta(f_a, \varphi) \frac{J_f(a)}{J_f(0)} \frac{1 - |a|^2}{|1 + \alpha e^{i\varphi}|^4};
$$

if φ is a d.i.d. of $f_a(z)$, γ is a d.i.d. of $f(z)$, and φ is connected with γ by (8), then

$$
\delta'(f, \gamma) = \delta'(f_a, \varphi) \frac{J_f(a)}{J_f(0)} \frac{|1 + \alpha e^{i\varphi}|^4}{|1 + \alpha z|^4};
$$

Proof. 1) Let φ be a d.i.g. of $f_a(z)$. This means that there exists the limit

$$
\delta(f_a, \varphi) = \lim_{r \to 1^-} \left[\frac{J_{f_a}(re^{i\varphi})}{J_{f_a}(0)} \frac{(1 - r)^{2\alpha + 2}}{(1 + r)^{2\alpha - 2}} \right] > 0.
$$

Note that

$$
J_{f_a}(z) = \frac{J_f \left(\frac{z + a}{1 + \alpha z} \right)}{|h'(a)|^2|1 + \alpha z|^4}, \quad (9)
$$

and

$$
J_{f_a}(0) = \frac{J_f(a)}{|h'(a)|^2}. \quad (10)
$$

Let us calculate the following limit, using (9) and (10),

$$
\delta \overset{\text{def}}{=} \lim_{r \to 1^-} \left[\frac{J_f(R(r)e^{i\gamma(r)})}{J_f(0)} \frac{(1 - R(r))^{2\alpha + 2}}{(1 + R(r))^{2\alpha - 2}} \right] =
$$

$$
= \lim_{r \to 1^-} \left[\frac{J_{f_a}(re^{i\varphi})}{J_{f_a}(0)} |h'(a)|^2|1 + \alpha e^{i\varphi}|^4 \frac{(1 - r)^{2\alpha + 2}}{(1 + r)^{2\alpha - 2}} \left(\frac{1 - R(r)}{1 - r} \right)^{2\alpha + 2} \right].
$$
We have
\[
\lim_{r \to 1^-} \frac{1 - R(r)}{1 - r} = \lim_{r \to 1^-} R'(r) = \frac{1 - |a|^2}{|1 + \overline{a}e^{i\varphi}|^2}.
\] (11)

Using (11), we obtain
\[
\delta = \delta(f, \varphi) \frac{J_f(a)}{J_f(0)} |1 + \overline{a}e^{i\varphi}|^4 \left(\frac{1 - |a|^2}{|1 + \overline{a}e^{i\varphi}|^2} \right)^{2\alpha + 2} > 0.
\] (12)

By (11), \(r \to 1^- \), therefore the function \(R(r) \) increases on an interval \((r_0, 1)\). By Theorem B, for \(r_0 < r < r_1 < 1 \)
\[
\frac{J_f(R(r_1)e^{i\gamma(r_1)})}{J_f(0)} (1 - R(r_1))^{2\alpha + 2} \leq \frac{J_f(R(r)e^{i\gamma(r_1)})}{J_f(0)} (1 - R(r))^{2\alpha + 2} \frac{(1 + R(r_1))^{2\alpha - 2}}{(1 + R(r))^{2\alpha - 2}}.
\]

Passing to the limit as \(r_1 \to 1^- \) and using (8), we get
\[
\delta \leq \frac{J_f(R(r)e^{i\gamma})}{J_f(0)} (1 - R(r))^{2\alpha + 2} \frac{(1 + R(r_1))^{2\alpha - 2}}{(1 + R(r))^{2\alpha - 2}}.
\]

Thus,
\[
\delta(f, \gamma) = \lim_{r \to 1^-} \left[\frac{J_f(R(r)e^{i\gamma})}{J_f(0)} (1 - R(r))^{2\alpha + 2} \frac{(1 + R(r_1))^{2\alpha - 2}}{(1 + R(r))^{2\alpha - 2}} \right] \geq \delta.
\] (13)

Taking into account (12), we conclude that \(\gamma \) is a d.i.g. of \(f(z) \).

Now let us consider the sets
\[
A = \{e^{i\gamma} : \gamma \text{ is a d.i.g. of } f(z)\},
\]
\[
B = \left\{ \frac{e^{i\varphi} + a}{1 + \overline{a}e^{i\varphi}} : \varphi \text{ is a d.i.g. of } f_a(z) \right\},
\]
\[
C = \{e^{i\eta} : \eta \text{ is a d.i.g. of } [f_a]_{(-a)}(z)\}.
\]

Here \([f_a]_{(-a)}(z)\) is the transformation (2) of the function \(f_a \) with the parameter \(-a\). If \(\eta \) is a d.i.g. of \([f_a]_{(-a)}(z)\), then, as it was proved above,
\[
e^{i\eta} = \frac{e^{i\varphi} + a}{1 + \overline{a}e^{i\varphi}},
\]
where \(\varphi \) is a d.i.g. of \(f_a(z) \). This implies that \(C \subset B \). Let \(\varphi \) be a d.i.g. of \(f_a(z) \). Then
\[
e^{i\varphi} = \frac{e^{i\varphi} + a}{1 + \overline{a}e^{i\varphi}},
\]
where \(\gamma \) is a d.i.g. of \(f(z) \). Thus \(B \subset A \). Since \([f_a](-a)(z) = f(z)\), we have \(A = C \) and, consequently, \(A = B \). This completes the proof of the statement about d.i.g.-’s.

The statement about d.i.d.-’s is proved analogously.

2) Let us prove the first equality. If \(\gamma \) is not a d.i.g. of \(f(z) \), then

\[
\lim_{r \to 1^-} \left[\frac{J_f(re^{i\gamma})}{J_f(0)} \frac{(1 - r)^{2\alpha + 2}}{(1 + r)^{2\alpha - 2}} \right] = 0.
\]

Thus, by (13),

\[
\delta \leq \lim_{r \to 1^-} \left[\frac{J_f(R(r)e^{i\gamma})}{J_f(0)} \frac{(1 - R(r))^{2\alpha + 2}}{(1 + R(r))^{2\alpha - 2}} \right] = 0.
\]

This implies \(\delta = 0 \).

Now let us consider the case when \(\gamma \) is a d.i.g. of \(f(z) \). We have proved above that \(\delta(f, \gamma) \geq \delta \) (see (13)). It remains to show that \(\delta(f, \gamma) \leq \delta \).

Denote

\[
R_1(r) = \left| \frac{re^{i\gamma} - a}{1 - \overline{a}re^{i\gamma}} \right|.
\]

Since \([f_a](-a)(z) = f(z)\), \(\gamma \) is a d.i.g. of \([f_a](-a)(z)\), i.e.

\[
\delta([f_a](-a), \gamma) = \delta(f, \gamma) = \lim_{r \to 1^-} \left[\frac{J_{[f_a](-a)}(re^{i\gamma})}{J_f(0)} \frac{(1 - r)^{2\alpha + 2}}{(1 + r)^{2\alpha - 2}} \right] > 0.
\]

Arguing as in the proof of claim 1), one can note that there exists

\[
\delta^* \overset{\text{def}}{=} \lim_{r \to 1^-} \left[\frac{J_{[f_a]}(re^{i\varphi} - a)}{J_{[f_a]}(0)} \frac{(1 - R_1(r))^{2\alpha + 2}}{(1 + R_1(r))^{2\alpha - 2}} \right] = 0.
\]

Apply (13) to the function \(f_a(z) \), using (9), (10), and (11):

\[
\delta^* \leq \lim_{r \to 1^-} \left[\frac{J_{f_a}(re^{i\varphi})}{J_{f_a}(0)} \frac{(1 - r)^{2\alpha + 2}}{(1 + r)^{2\alpha - 2}} \right] = \lim_{r \to 1^-} \left[\frac{J_f(re^{i\varphi} + a)}{J_f(a)|1 + \overline{a}re^{i\varphi}|^4} \frac{(1 - R(r))^{2\alpha + 2}}{(1 + R(r))^{2\alpha - 2}} \right] \cdot \lim_{r \to 1^-} \left(\frac{1 - r}{1 - R(r)} \right)^{2\alpha + 2} \]
\[
\frac{\delta J_f(0)}{J_f(a)|1 + \bar{a}e^{i\varphi}|^4} \left(\frac{|1 + \bar{a}e^{i\varphi}|^2}{1 - |a|^2} \right)^{2\alpha + 2} = \frac{\delta J_f(0)}{J_f(a)} \frac{|1 + \bar{a}e^{i\varphi}|^{4\alpha}}{(1 - |a|^2)^{2\alpha + 2}}. \tag{14}
\]

On the other hand, by (9),
\[
J_f \left(\frac{z - a}{1 - \bar{a}z} \right) = \frac{J_f(z)}{|h'(a)|^2 \left| 1 + \bar{a} \frac{z - a}{1 - \bar{a}z} \right|^4}.
\]

Thus, using (8), (10), and (11), we can write \(\delta^*\) in the form
\[
\delta^* = \lim_{r \to 1^-} \left[\frac{J_f(\rho e^{i\gamma})}{J_f(a)} \left| 1 + \bar{a} \frac{\rho e^{i\gamma} - a}{1 - \bar{a}e^{i\gamma}} \right|^4 \frac{(1 - r)^{2\alpha + 2}}{(1 + r)^{2\alpha - 2}} \right] \times \\
\times \lim_{r \to 1^-} \left(\frac{1 - R_1(r)}{1 - r} \right)^{2\alpha + 2} = \\
= \delta(f, \gamma) \frac{J_f(0)}{J_f(a)|1 + \bar{a}e^{i\varphi}|^4} \left(\frac{1 - |a|^2}{|1 - \bar{a}e^{i\gamma}|^2} \right)^{2\alpha + 2} = \\
= \delta(f, \gamma) \frac{J_f(0)}{J_f(a)} \frac{|1 + \bar{a}e^{i\varphi}|^{4\alpha}}{(1 - |a|^2)^{2\alpha + 2}}.
\]

Substituting
\[
\delta^* = \delta(f, \gamma) \frac{J_f(0)}{J_f(a)} \frac{|1 + \bar{a}e^{i\varphi}|^{4\alpha}}{(1 - |a|^2)^{2\alpha + 2}}
\]
in (14), we get \(\delta(f, \gamma) \leq \delta\). Therefore, \(\delta(f, \gamma) = \delta\).

The second equality of claim 2) is proved analogously.

3) The formula, connected \(\delta(f, \gamma)\) and \(\delta(f_a, \varphi)\) is obtained from (12), using \(\delta = \delta(f, \gamma)\).

The second equality is proved analogously. \(\square\)

Theorem 2 implies the following

Remark. Let \(f \in \mathcal{U}^H_\alpha\). For every \(\varphi \in [0; 2\pi)\) there exist \(\delta(f, \varphi) \in [0; 1]\) and \(\delta'(f, \varphi) \in [1; \infty]\) such that for any circle or straight line \(\Gamma \subset \Delta\), orthogonal to \(\partial \Delta\) at the point \(e^{i\varphi}\), we have
\[
\lim_{\Gamma \ni z \to e^{i\varphi}} \left[\frac{J_f(z) (1 - |z|)^{2\alpha + 2}}{J_f(0) (1 + |z|)^{2\alpha - 2}} \right] = \delta(f, \varphi),
\]
By Theorem B, for any \(a \in [0; 2\pi) \) there exists

\[
\Delta \ni \phi \quad \text{such that} \quad f(z)(1 + |z|)^{2\alpha+2} [J_f(0)/(1 - |z|)^{2\alpha-2}] = \phi.
\]

From Theorem C.

Theorem 3. 1) If \(f \in U^H_\alpha(\delta_0) \), \(\delta_0 \in (0; 1) \), then for every \(\delta \in [\delta_0, 1) \) there exists \(a \in \Delta \) such that \(f_a(z) \in U^H_\alpha(\delta) \).

2) If \(f \in U^H_\alpha(\delta_0) \), \(\delta_0 \in (1; \infty) \), then for every \(\delta' \in (1, \delta_0] \) there exists \(a \in \Delta \) such that \(f_a(z) \in U^H_\alpha(\delta') \).

Proof. By Theorem B, for any \(\varphi \in [0; 2\pi) \) there exists

\[
\lim_{r \to 1-} \left[\frac{J_f(re^{i\varphi})}{J_f(0)} \right] (1 - r)^{2\alpha+2} = \delta(f, \varphi).
\]

Let us fix \(a \in \Delta \) \(\varphi \in [0; 2\pi) \). Denote \(z = \frac{re^{i\varphi} - a}{1 - ae^{i\varphi}}, |z| = R(r) \) and consider the limit

\[
\delta^*(\varphi) \overset{\text{def}}{=} \lim_{r \to 1-} \left[\frac{J_f_a(z)}{J_f_a(0)} \right] (1 - R(r))^{2\alpha+2}.
\]

Let us calculate \(\delta^*(\varphi) \), using (9) and (10)

\[
\delta^*(\varphi) = \lim_{r \to 1-} \left[\frac{J_f(re^{i\varphi})}{J_f(a)} \right] \left| 1 + \frac{re^{i\varphi} - a}{1 - ae^{i\varphi}} \right|^{2\alpha+2} = \frac{J_f(0)(1 - r)^{2\alpha+2}}{J_f(0)(1 + r)^{2\alpha-2}} \left(\frac{1 - R(r)}{1 - r} \right)^{2\alpha+2}.
\]

By (11),

\[
\delta^*(\varphi) = \delta(f, \varphi) \frac{J_f(0)(1 - |a|^2)^{2\alpha+2}}{|1 - ae^{i\varphi}|^{4\alpha+4}} \frac{|1 - ae^{i\varphi}|^4}{(1 - |a|^2)^4} = \frac{J_f(0)(1 - |a|^2)^{2\alpha-2}}{|1 - ae^{i\varphi}|^{4\alpha}} \leq \delta(f, \varphi).
\]
Then, using (11) for R

\[\lim_{R(r) \to 1} - \left[\frac{M(R(r), J_{f_a}) (1 - R(r))^{2\alpha + 2}}{J_{f_a}(0)} (1 + R(r))^{2\alpha - 2} \right] \text{def} = \delta_a. \]

Let φ be equal to d.m.g. φ^0 of $f(z)$ and $a = re^{i\varphi^0}$. Then $\delta(f, \varphi) = \delta^0$ and

\[\delta^0 \frac{J_f(0)}{J_f(re^{i\varphi^0})} \left(\frac{1 - \rho^2}{1 - \rho} \right)^{2\alpha - 2} = \delta^0 \frac{J_f(0)}{J_f(re^{i\varphi^0})} \left(1 + \rho \right)^{2\alpha - 2} \leq \delta_a. \tag{15} \]

By Theorem B, there exists a d.m.g. $\varphi_1 \in [0; 2\pi)$ of $f_a(z)$ such that

\[\delta_a = \lim_{r \to 1^-} \left[\frac{J_{f_a}(re^{i\varphi^0}) (1 - r)^{2\alpha + 2}}{J_{f_a}(0) (1 + r)^{2\alpha - 2}} \right] = \]

\[= \lim_{r \to 1^-} \left[\frac{J_f \left(\frac{re^{i\varphi^0} + a}{1 + are^{i\varphi^0}} \right) (1 - r)^{2\alpha + 2}}{J_f(a) |1 + are^{i\varphi^0}|^4 (1 + r)^{2\alpha - 2}} \right]. \]

Denote $R_1(r)e^{i\gamma_1(r)} = \frac{re^{i\varphi^0} + a}{1 + are^{i\varphi^0}}$, where $\gamma_1(r)$ is a real-valued function. Then, using (11) for $R(r) = R_1(r)$, we obtain

\[\delta_a \leq \lim_{r \to 1^-} \left[\frac{M(R_1(r), J_f) (1 - r)^{2\alpha + 2}}{J_f(a) |1 + are^{i\varphi^0}|^4 (1 + r)^{2\alpha - 2}} \right] = \]

\[= \lim_{r \to 1^-} \left[\frac{M(R_1(r), J_f) (1 - R_1(r))^{2\alpha + 2}}{J_f(0) (1 + R_1(r))^{2\alpha - 2}} \right] \times \]

\[\times \frac{J_f(0)}{J_f(a) |1 + are^{i\varphi^0}|^4} \cdot \lim_{r \to 1^-} \left(\frac{1 - r}{1 - R_1(r)} \right)^{2\alpha + 2} = \]

\[= \delta^0 \frac{J_f(0)}{J_f(a) |1 + are^{i\varphi^0}|^4} \left(\frac{|1 + are^{i\varphi^0}|^2}{1 - |a|^2} \right)^{2\alpha + 2} \leq \delta^0 \frac{J_f(0) |1 + are^{i\varphi^0}|^{4\alpha}}{J_f(a) (1 - |a|^2)^{2\alpha + 2}} \leq \]

\[\leq \delta^0 \frac{J_f(0) (1 + \rho)^{4\alpha}}{J_f(a) (1 - \rho^2)^{2\alpha + 2}} = \delta^0 \frac{J_f(0) (1 + \rho)^{2\alpha - 2}}{J_f(a) (1 - \rho)^{2\alpha + 2}}. \]

Taking into account inequality (15), we get

\[\delta^0 \frac{J_f(0) (1 + \rho)^{2\alpha - 2}}{J_f(re^{i\varphi^0}) (1 - \rho)^{2\alpha + 2}} = \delta_a. \]
Since the continuous function \(\frac{J_f(0)}{J_f(\rho e^{i\phi})} \frac{(1+\rho)^{2\alpha-2}}{(1-\rho)^{2\alpha+2}} \) decreases on \(\rho \), equals 1 as \(\rho = 0 \), and tends to zero as \(\rho \to 1^- \), then we can find \(\rho \in [0; 1) \) such that \(\delta_a \) takes preassigned value from \([\delta^0; 1)\).

Claim 2 of the theorem is proved analogously. □

In [7] (see also [17], [14]) it was proved that the set of all d.i.g.-’s and d.i.d.-’s of a given analytic function is at most countable. The following theorem shows that this statement is true for set of d.i.g.-’s of harmonic function too. But we don’t know whether this fact is true for set of d.i.d.-’s.

Theorem 4. Let \(f \in \mathcal{U}^H_{\alpha} \). Then the set of all d.i.g.-’s of \(f \) is at most countable.

Proof. If \(f = h + \bar{g} \in \mathcal{U}^H_{\alpha} \), then \(\overline{\text{ord}} \ h \leq \alpha \). Since

\[
J_f(z) = |h'(z)|^2 - |g'(z)|^2 \leq |h'(z)|^2
\]

for all \(z \in \Delta \), then for \(\varphi \in [0, 2\pi) \) and \(r \in [0, 1) \)

\[
\frac{J_f(re^{i\varphi})}{J_f(0)} \frac{(1-r)^{2\alpha+2}}{(1+r)^{2\alpha-2}} \leq \left[|h'(re^{i\varphi})| \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}} \right]^2 \frac{1}{J_f(0)}, \tag{16}
\]

By Theorem B and theorem of growth regularity from [7], there exist the limits

\[
\delta(f, \varphi) = \lim_{r \to 1^-} \left[\frac{J_f(re^{i\varphi})}{J_f(0)} \frac{(1-r)^{2\alpha+2}}{(1+r)^{2\alpha-2}} \right],
\]

and

\[
\tilde{\delta}(h, \varphi) = \lim_{r \to 1^-} \left[|h'(re^{i\varphi})| \frac{(1-r)^{2\alpha+2}}{(1+r)^{2\alpha-2}} \right];
\]

From (16) we get \(\delta(f, \varphi) \leq \frac{\tilde{\delta}^2(h, \varphi)}{J_f(0)} \). If \(\varphi \) is a d.i.g. of \(f \), then \(\delta(f, \varphi) > 0 \). Consequently, \(\tilde{\delta}(h, \varphi) > 0 \) and \(\varphi \) is a d.i.g. of \(h \). Therefore the set \(V \) of all d.i.g.-’s of \(f \) is contained in the set \(W \) of all d.i.g.-’s of \(h \). As it was proved in [7], \(W \) is at most countable. Hence \(V \) is at most countable too. □

Acknowledgment. This work was supported by RFBR (projects N 14-01-00510f, N 14-01-92692). The authors thank S. Yu. Graf and S. Ponnusamy for valuable comments on improving the paper.
References

[1] Hayman W. K. Some applications of the transfinite diameter to the theory of functions. J. Anal. Math., 1951, no. 1, pp. 155–179.

[2] Krzyż J. On the maximum modulus of univalent function. Bull. Pol. Acad. Sci. Math., 1955, vol. CI, no. 3, pp. 203–206.

[3] Bieberbach L. Einführung in die konforme Abbildung. Sammlung Göschen, Band 768/786a, 1967.

[4] Hayman W. K. Multivalent functions. Cambridge University Press, 1994.

[5] Pommerenke Ch. Linear-invariante Familien analytischer Funktionen. I. Math. Ann., 1964, vol. 155, pp. 108–154. DOI: 10.1007/BF01344077.

[6] Campbell D. M. Applications and proofs of a uniqueness theorems for linear invariant families of finite order. Rocky Mountain J. Math., 1974, vol. 4, no. 4, pp. 621–634. DOI: 10.1216/RMJ-1974-4-4-621.

[7] Starkov V. V. Regularity theorems for universal linearly invariant families of functions. Serdica Math. J., 1985, vol. 11, no. 3, pp. 299–318. (in Russian).

[8] Schaubroeck L. E. Subordination of planar harmonic functions. Complex Variables, 2000, vol. 41, is. 2, pp. 163–178. DOI: 10.1080/17476930008815245

[9] Sheil-Small T. Constants for planar harmonic mappings. J. Lond. Math. Soc. (2), 1990, vol. 42, pp. 237–248. DOI: 10.1112%2Fjams%2Fs2-42.2.237.

[10] Sobczak-Kneć M., Starkov V. V., Szynal J. Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian. Ann. Univ. Mariae Curie-Sklodowska Sect. A, 2012, vol. LXV, no. 2, pp. 191–202. DOI: 10.2478/v10062-011-0024-3

[11] Ganenkova E. G., Starkov V. V. Regularity theorems for harmonic functions. J. Appl. Anal., 2014, vol. 21, is. 1, pp. 25-36. DOI: 10.1515/jaa-2015-0003.

[12] Graf S. Yu. Regularity theorems for Jacobian in linearly and affine invariant families of harmonic mappings. Application of the functional analysis in the approximation theory, 2014, pp. 10–21. (in Russian).

[13] Ganenkova E. G. A theorem of decrease regularity in linearly invariant families of functions. Tr. Petrozavodsk. Gos. Univ. Ser. Mat, 2006, vol. 13, pp. 46–59 (in Russian).

[14] Ganenkova E. G. A theorem on the regularity of decrease in linearly invariant families of functions. Russian Mathematics (Izvestiya VUZ. Matematika), 2007, vol. 51, no. 2, pp. 71-74. DOI: 10.3103/S1066369X07020090.
[15] Clunie J., Sheil-Small T. *Harmonic univalent functions.* Ann. Acad. Sci. Fenn. Math., 1984, vol. 9, pp. 3–25. DOI: 10.5186/aasfm.1984.0905#sthash.GEE2gFK0.dpuf.

[16] Duren P. *Harmonic mappings in the plane.* Cambridge university press, 2004.

[17] Godula J., Starkov V. V. *Linear invariant families.* Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1998, vol. 5, p. 3–96 (in Russian).

Received May 14, 2015.
In revised form, September 3, 2015.

Petrozavodsk State University
33, Lenina st., 185910 Petrozavodsk, Russia
E-mail: g_ek@inbox.ru, Vstar@psu.karelia.ru