Online supplementary appendix to:

Auditory localisation should be considered as a sign of minimally conscious state based on multimodal findings

Carrière Manon¹,², MSc, Cassol Helena¹,², MSc, Aubinet Charlène¹,², MSc, Panda Rajanikant¹,², MSc, Thibaut Auroré¹,², PhD, Larroque Stephen K.¹,², MSc, Simon Jessica¹, PhD, Martial Charlotte¹,², PhD, Bahri Mohamed A.⁴, PhD, Chatelle Camille¹,², PhD, Martens Géraldine¹,², MSc, Chenmu Srivas⁵,⁶, PhD, Laureys Steven¹,², PhD & Gosseries Olivia¹,², PhD.

¹ Centre du Cerveau², University Hospital of Liège, Liège, Belgium.
² Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
³ Psychology and Neurosciences of Cognition Research Unit, University of Liège, Belgium
⁴ GIGA-Cyclotron Research Centre in Vivo Imaging, University of Liège, Liège, Belgium
⁵ School of Computing, University of Kent, UK
⁶ Department of Clinical Neurosciences, University of Cambridge, UK

This document includes:

Supplementary I. Inclusion criteria
Supplementary II. Demographic and clinical data of patients in UWS with at least one paraclinical assessment.
Supplementary III. Demographic data summary of MCS- patients and comparison with UWS LOCA and NO-LOCA patients.
Supplementary IV. Behavioral acquisitions using the Coma Recovery Scale-Revised.
Supplementary V. ¹⁸F- FDG-PET, MRI and EEG data acquisition parameters, preprocessing and analysis.
Supplementary VI. Seeds coordinates used in fMRI analyses, for the auditory, default mode and fronto-parietal networks.
Supplementary VII. Outcome data of the whole sample of patients (n=186)
Supplementary VIII. ¹⁸F-FDG-PET results: statistical values of the clusters obtained by the direct comparisons of LOCA and NO-LOCA patients with HCS.
Supplementary IX. fMRI results: Comparison between LOCA and HCS (on the left) and between NO-LOCA and HCS (on the right) of the correlation between the auditory (first row), default mode (second row) and fronto-parietal (third row) networks and the time series from all other brain voxels. Statistical maps are thresholded at p<0.05 false discovery rate corrected at non-parametric cluster-mass with clusters made of voxels surviving a p<0.001 (whole-brain level).
Supplementary X. fMRI results: statistical values of the clusters obtained by the comparisons of LOCA patients and HCS, and NO-LOCA patients and HCS for the auditory, default mode and fronto-parietal networks, and the comparison of LOCA and NO-LOCA, for the fronto-parietal network only.
Supplementary XI. List of all pharmacological agents acting on the nervous system, taken by the two groups of UWS patients (LOCA and NO-LOCA).

I. Inclusion criteria.

Patients were admitted to the Hospital University of Liege in Belgium between 2010 and 2018 for a multimodal assessment of the level of consciousness and they were included in the study if the following criteria were met:

- ≥18 years old
- > 28 days post-injury (prolonged DOC)
- At least five repeated assessments with the Coma Recovery Scale-Revised
- Diagnosis of UWS, MCS or EMCS
- Absence of previous neurological or psychiatric conditions
| Patient | Gender | Age | Etiology | Time since injury | Best CRS-R total score | Outcome at 2 years post-evaluation (GOS-E) | tMRI | fDG-FDG-PET | hdEEG | Sedation for fMRI |
|---------|--------|-----|----------|------------------|------------------------|---|-----|------------|-------|-----------------|
| UWS-loca1 | M | 41 | CA | 2 years | 5 | 3 | X | X | Yes |
| UWS-loca2 | F | 21 | TBI | 9 months | 5 | 1 | X | X | No |
| UWS-loca3 | M | 32 | CA | 14 years | 7 | 2 | X | X | Yes |
| UWS-loca4 | F | 40 | CA | 2 years | 5 | | X | X | Yes |
| UWS-loca5 | M | 26 | TBI | 15 months | 7 | 3 | X | X | Yes |
| UWS-loca6 | F | 46 | CA | 2 months | 3 | | X | X | Yes |
| UWS-loca7 | M | 31 | TBI | 3 years | 5 | 1 | X | X | No |
| UWS-loca8 | M | 23 | Anoxia | 15 months | 7 | 2 | X | X | Yes |
| UWS-noloca1 | F | 53 | Hemorrhage | 1 month | 5 | 1 | X | X | No |
| UWS-noloca2 | F | 46 | Anoxia | 6 months | 6 | 1 | X | X | No |
| UWS-noloca3 | M | 56 | Anoxia | 8 months | 5 | 2 | | | |
| UWS-noloca4 | F | 48 | Anoxia | 1 year | 6 | 1 | X | X | No |
| UWS-noloca5 | F | 36 | Anoxia | 4 years | 5 | 1 | | X | No |
| UWS-noloca6 | M | 43 | Anoxia | 1 month | 5 | 1 | X | X | No |
| UWS-noloca7 | M | 67 | CA | 1 month | 3 | 1 | X | X | No |
| UWS-noloca8 | M | 43 | Anoxia | 2 months | 5 | 1 | X | X | No |
| UWS-noloca9 | M | 56 | CA | 6 months | 6 | 1 | X | X | No |
| UWS-noloca10 | M | 53 | Meningitis | 2 months | 5 | 1 | X | Yes | |
| UWS-noloca11 | F | 34 | SAH | 1 year | 5 | | X | X | Yes |
| UWS-noloca12 | F | 24 | TBI | 2 years | 6 | 1 | X | X | No |
| UWS-noloca13 | M | 20 | TBI | 10 months | 6 | | X | X | Yes |
| UWS-noloca14 | F | 59 | CA | 3 years | 6 | 1 | | X | No |
| UWS-noloca15 | F | 73 | Stroke | 1 month | 7 | 1 | X | X | No |
| UWS-noloca16 | F | 68 | Anoxia | 1 month | 5 | | X | X | No |
| UWS-noloca17 | F | 68 | Anoxia | 1 year | 6 | 1 | X | X | Yes |
| UWS-noloca18 | F | 65 | TBI | 7 months | 7 | 1 | X | X | No |
| UWS-noloca19 | F | 74 | CA | 1 month | 5 | 1 | X | X | Yes |
| UWS-noloca20 | F | 48 | CA | 4 months | 4 | 1 | X | X | No |
| UWS-noloca21 | M | 39 | TBI | 1 year | 5 | 1 | X | X | No |
| UWS-noloca22 | F | 47 | CA | 6 months | 5 | 1 | X | X | Yes |
| UWS-noloca23 | M | 41 | Anoxia | 11 months | 5 | 2 | X | X | Yes |
| UWS-noloca24 | F | 31 | TBI | 13 months | 6 | 3 | | | |
| UWS-noloca25 | M | 30 | Anoxia | 5 years | 6 | 2 | X | X | X | No |
| UWS-noloca26 | F | 38 | Anoxia | 11 months | 5 | 2 | X | X | No |
| UWS-noloca27 | M | 39 | TBI | 13 months | 5 | 1 | X | X | Yes |
| UWS-noloca28 | F | 44 | Anoxia | 3 months | 6 | 1 | X | X | Yes |
| UWS-noloca29 | M | 31 | Anoxia | 15 months | 6 | 1 | X | Yes | |
| UWS-noloca30 | M | 28 | Anoxia | 2 years | 7 | 2 | X | X | X | No |
| UWS-noloca31 | M | 73 | CA | 3 months | 6 | 1 | X | | |
| UWS-noloca32 | M | 35 | CA | 19 years | 7 | 1 | X | | |
| UWS-noloca33 | M | 65 | Anoxia | 5 months | 6 | 1 | X | | |
| UWS-noloca34 | M | 62 | CA | 2 years | 5 | 1 | X | | |
| UWS-noloca35 | M | 49 | Anoxia | 8 years | 6 | 1 | X | | |

II. Demographic and clinical data of patients in UWS and MCS minus with at least one paraclinical assessment.

Patient	Gender	Age	Etiology	Time since injury	Best CRS-R total score	Outcome at 2 years post-evaluation (GOS-E)	tMRI	fDG-FDG-PET	hdEEG	Sedation for fMRI
MCSixminus1	F	40	Stroke	7 months	9	X	X	X	Yes	
MCSixminus2	F	49	TBI	7 months	7	3	X	X	Yes	
MCSixminus3	M	26	TBI	17 months	8		X	X	Yes	
MCSixminus4	M	47	Anoxia	4 years	13	3	X	X	Yes	
MCSixminus5	F	59	Anoxia	1 month	9	1		X	X	
MCSixminus6	F	26	CA	2 years	7	2	X	X	Yes	
MCSixminus7	M	28	TBI	2 months	7	2	X	X	Yes	
MCSixminus8	M	21	TBI	6 months	7	2	X	X	Yes	
MCSixminus9	M	53	Anoxia	1 month	15	1				
MCSixminus10	M	24	TBI	11 months	10	3	X	X	X	No
MCSixminus11	F	36	TBI	4 years	10	2	X	X	No	
MCSixminus12	M	19	TBI	3 years	9		X	X		
MCSixminus13	F	47	Anoxia	15 months	7	3	X	X	X	Yes
MCSixminus14	M	41	TBI	29 years	14					
MCSixminus15	F	45	TBI	8 months	7	1	X	X	No	
MCSixminus16	M	22	TBI	8 years	13	3	X	X	Yes	
MCSixminus17	M	60	TBI	5 years	13					
MCSixminus18	F	24	TBI	11 months	10		X	X	Yes	
MCSixminus19	M	53	Anoxia	5 months	13		X	Yes		
MCSixminus20	M	30	CA	20 months	13	3	X	Yes		
MCSixminus21	M	66	Stroke	1 month	12		X	No		
MCSixminus22	M	28	TBI	7 months	10		X	Yes		
MCSixminus23	M	49	Anoxia	3 years	12		X	Yes		
MCSixminus24	M	37	Anoxia	9 months	9	1	X	Yes		
MCSixminus25	M	57	TBI	1 month	7	8	X	No		
III. Demographic data summary of MCS minus patients and comparison with UWS LOCA and NO-LOCA patients.

	18F-FDG-PET	fMRI	hEEG
	p-value	p-value	p-value
	(vs LOCA)	(vs NO-LOCA)	(vs NO-LOCA)
Number of participants	19	20	11
Mean age ± SD	38±13	38±13	33±13
Gender (women/men)	8/11	7/13	4/7
Etiology (TBI/NTBI)	11/8	12/8	7/4
Median time since injury in months (range)	11 (1-359)	10 (1-110)	11 (1-110)

Abbreviations: FDG-PET=fluorodeoxyglucose positron emission tomography; fMRI=functional magnetic resonance imaging; hEEG=high-density electroencephalography; SD=standard deviation; TBI=traumatic brain injury; NTBI=non-traumatic brain injury. *statistically significant

IV. Behavioral acquisitions using the Coma Recovery Scale-Revised.

For each CRS-R evaluation, experienced clinicians assessed all the items of the CRS-R, which ensured to evaluate the auditory localisation every time for each patient. The auditory localisation was assessed as indicated in the CRS-R guidelines: an auditory stimulus was presented for five seconds by the assessor standing behind and out of view of the patient, for a total of four trials, two on each side. Auditory localisation was considered present when an orientation of the head or the eyes towards the stimulus could be observed on both trials for at least one side. Importantly, the CRS-R was systematically performed on the day of the PET, MRI and EEG examinations. The own name was used as it has been shown to elicit more responses than neutral sound.(Cheng et al., 2013)

V. 18F-FDG-PET, MRI and EEG data acquisition parameters, preprocessing and analysis.

FDG-PET: The scan started 30 minutes after an intravenous injection of the tracer (approximately 150-300 MBq of FDG) and lasted 12 minutes. 18FDG-PET images were reconstructed with standard 2x2x2 mm³ voxels using iterative list mode time-of-flight algorithm and corrections for attenuation, dead-time, random and scatter events were applied. Images for each subject were manually reoriented using Statistical Parametric Mapping (SPM 12, www.fil.ion.ucl.ac.uk/spm). They were then preprocessed including spatial normalization, smoothing (with an isotropic 14 mm FWHM Gaussian filter) and proportional scaling.

Some patients required light sedation during the scanning to prevent excessive movements but this does not affect the results.

MRI: Functional MRI included an Echo Planar Imaging sequence (32 slices, repetition time = 2000 ms, echo time = 30 ms, field of view = 192x192 mm², flip angle = 78 degrees, voxel size = 3x3x3 mm³) and the structural MRI included a T1-weighted 3D gradient echo images (120 slices, repetition time = 2300 ms, echo time = 2.47 ms, voxel size = 1x1x1.2 mm³, flip angle = 9°, field of view = 256x256 mm²). Data preprocessing consisted of slice-time correction, realignment, co-registration of functional on structural data, spatial normalization and smoothing with Gaussian isotropic kernel (8mm of full-width-at-half-maximum). For the normalization procedure we used a study-specific template created with DARTEL obtained from patients and HCS.(Ashburner, 2007) (Di Perri et al., 2013) (Peelle et al., 2012) This template was used to minimize normalization difficulty as it decreases the degree of warping necessary for patient brains in the normalization step and reduces the likelihood of misclassification and normalization errors that can occur during the voxel-based morphometry process. For BOLD noise reduction, we used the anatomical component-based noise correction method(Behzadi et al., 2007) as implemented in the CONN functional connectivity toolbox(Whitfield-Gabrieli and Nieto-Castanon, 2012). A temporal band-pass filter of 0.008-0.09 Hz was applied on the time series as classically performed in seed-correlation analysis(Greicius et al., 2003; Fox et al., 2005). Regarding
motion correction, we used the artefact detection toolbox (ART; http://nitrc.org/projects/artifact_detect) as described elsewhere(Aubinet et al., 2018), using a composite motion measure. With this approach, a volume was defined as an outlier (artifact) if the largest voxel movement detected was above the specified thresholds. Specifically, an image was defined as an outlier (artifact) image if the head displacement in x, y or z direction was greater than 0.5 mm from the previous frame, or if the rotational displacement was greater than .02 rad from the previous frame, or if the global mean intensity in the image was greater than 3 SD from the mean image intensity for the entire resting scan. Outliers in the global mean signal intensity and motion were subsequently included as nuisance regressors (i.e., one regressor per outlier within the first-level general linear model). In doing so, the temporal structure of the data was not disrupted.

For some patients, a light sedation was required to reduce the severity of movement artefact during the fMRI data acquisition (6/8 LOCA patients and 9/25 NO LOCA patients).

EEG: The recording was acquired while patients were lying in bed, with the eyes open. Data were preprocessed using the following steps: band-pass filtering at 0.05 to 48Hz, baseline correction, independent component analysis to discard the noise components, interpolation of bad channels, average re-referencing and down-sampling to 250Hz. dwPLI is considered as the measure of asymmetry of phase differences between two EEG signals. The participation coefficient measures the between-module connectivity strength as a property of global network integration. Broadly, regions with a high participation coefficient have strong connections to many modules.(Baum et al., 2017)

Electrodes used for each brain region:
- Left_frontal: {24, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 54, 55};
- Right_frontal: {1, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 23, 24, 25, 26, 27};
- Left_central: {42, 43, 44, 50, 51, 52, 53, 56, 57, 58, 59, 65};
- Right_central: {144, 182, 183, 184, 185, 195, 196, 197, 204, 205, 206, 212};
- Left_temporal: {62, 63, 64, 68, 69, 70, 71, 74, 75, 83, 84, 94, 95};
- Right_temporal: {178, 179, 180, 190, 191, 192, 193, 202, 203, 210, 211, 219};
- Left_parietal: {60, 66, 72, 76, 77, 78, 79, 85, 86, 87, 88, 97, 98, 99};
- Right_parietal: {141, 142, 143, 152, 153, 154, 155, 161, 162, 163, 164, 171, 172, 173};
- Left_occipital: {6, 7, 8, 9, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 27, 32, 186};
- Right_occipital: {140, 150, 159, 160, 169};
- Upper_midline: {6, 7, 8, 9, 14, 15, 16, 17, 20, 21, 22, 23, 25, 26, 27, 32, 186};
- Lower_midline: {80, 81, 89, 90, 100, 101, 110, 117, 118, 119, 124, 125, 126, 127, 128, 129, 130, 131, 137, 138, 139, 149}

VI. Seeds coordinates used for fMRI analyses, for the auditory, default mode and fronto-parietal networks.

Networks (reference)	Seeds	MNI coordinates (x, y, z)
Auditory network(Maudoux et al., 2012)	Anterior cingulate cortex	6, -7, 43
	Left precentral gyrus	-53, -6, 8
	Right precentral gyrus	58, -6, 11
	Left superior temporal Gyrus	44, -6, 11
	Right superior temporal Gyrus	44, -6, 11
	Right visual cortex	6, -88, 37
	Left visual cortex	-6, -88, 37
Default mode network(Raichle et al., 2001)	Left cerebellum	-25, -81, -33
	Right cerebellum	25, -81, -33
	Left inferior temporal gyrus	-61, -24, -9
	Right inferior temporal gyrus	58, -24, -9
	Left lateral parietal cortex	-46, -66, 30
	Right lateral parietal cortex	49, -63, 33
	Medial prefrontal cortex	-1, 54, 27
	Posterior cingulate cortex	0, -52, 27
	Thalamus	0, -12, 9
Fronto-parietal network(Fair et al., 2009)	Left dorsolateral prefrontal cortex	-43, 22, 34
	Right dorsolateral prefrontal cortex	43, 22, 34
	Left premotor	-41, 3, 36
	Right premotor	41, 3, 36
VII. Outcome data of the whole sample of patients (n=125/186)

	Survival	Death	Improvement	Stability	Decline	Missing
UWS						
LOCA (n=8)	4/7 (57%)	3/7	2/7 (28%)	2/7 (28%)	NA	1/8
NO-LOCA (n=56)	16/38 (42%)	23/38 (60%)	3/38 (8%)	13/38 (34%)	NA	17/56
MCS-						
LOCA (n=15)	5/7 (72%)	2/7	0/7 (0%)	4/7 (57%)	1/7 (14%)	6/13
NO-LOCA (n=15)	8/11 (73%)	3/11	1/11 (9%)	4/11 (36%)	3/11 (27%)	4/15
MCS+						
LOCA (n=44)	25/30 (84%)	5/30	1/3 (3%)	22/30 (73%)	2/30 (6%)	14/44
NO-LOCA (n=27)	13/19 (69%)	6/19	0/19 (0%)	10/19 (53%)	3/19 (16%)	8/27
EMCS						
LOCA (n=18)	10/10 (100%)	0/10	1/10 (10%)	3/10 (30%)	6/10 (60%)	8/18
NO-LOCA (n=5)	2/3 (67%)	1/3	0/3 (0%)	1/3 (33%)	1/3 (33%)	2/5
Total (%)						
LOCA (n=83)	44/54 (81.5%)	10/54	4/54 (9%)	36/54 (67%)	4/47 (8.5%)	29/83 (35%)
NO-LOCA (n=103)	39/71 (56%)	11/71	4/71 (6%)	29/71 (41%)	6/33 (18%)	32/103 (31%)

Abbreviations: NA= not applicable
Survival: GOSE ≠ 1; Improvement: for UWS GOSE > 2, MCS GOSE > 3, EMCS GOSE > 4; Stability: for UWS GOSE = 2, for MCS GOSE = 3, for EMCS GOSE = 4; Decline: for MCS GOSE = 2; EMCS GOSE = 2 or 3.

VIII. \(^{18}\)FDG-PET results. Statistical values of the clusters obtained by the direct comparisons of LOCA and NO-LOCA patients with HCS, as well as LOCA and NO-LOCA with MCS minus patients.

Contrast	Set	Cluster	Peak	MNI coordinates									
	p	c	P(FWE-corr)	equiv k	p(unc)	P(FDR-corr)	p(eq)	T	equiv Z	p(unc)	x,y,z [mm]		
LOCA-HCS	0.263	7	0.000	23190	0.000	0.000	0.000	7.89	6.6	0.000	-2	-38	34
	0.004	0.000	5.28	4.8	0.000	16	-60	16					
	0.022	0.001	4.74	4.38	0.000	-10	-58	10					
	0.546	855	0.153	0.000	0.000	6.04	5.37	0.000	-6	-14	8		
	0.002	0.000	5.49	4.97	0.000	2	-14	6					
	0.310	0.006	3.77	3.57	0.000	-22	4	4					
	0.955	122	0.599	0.128	0.003	4.13	3.88	0.000	24	14	4		
	0.966	92	0.654	0.969	0.034	2.77	2.69	0.004	-26	46	38		
	0.991	010	0.908	0.980	0.038	2.71	2.63	0.004	-52	-68	28		
	0.994	01979	0.983	0.040	2.69	2.61	0.005	12	2	2			
	0.985	30	0.818	0.987	0.042	2.65	2.57	0.005	0	58	-4		
NO-LOCA-HCS	0.000	77435	0.000	0.000	0.000	14.27	Inf	0	0	0	-40	34	
	0.000	0.000	13.02	Inf	0.000	-6	-68	34					
	0.000	0.000	11.47	Inf	0.000	-38	8	56					
	0.000	0.000	10.39	Inf	0.000	-26	26	50					
	0.000	0.000	9.90	7.72	0.000	-6	-14	8					
	0.000	0.000	9.82	7.68	0.000	-46	-58	48					
IX. fMRI results. Comparaison between LOCA and HCS (on the left) and between NO-LOCA and HCS (on the right) of the correlation between the auditory (first row), default mode (second row) and fronto-parietal (third row) networks and the time series from all other brain voxels. The blue spots show significantly decreased functional connectivity between patients and HCS. Statistical maps are thresholded at p<0.05 false discovery rate corrected at non-parametric cluster-mass with clusters made of voxels surviving a p<0.001 (whole-brain level).

X. fMRI results: Statistical values of the clusters obtained by the comparisons of LOCA patients and HCS, and NO-LOCA patients and HCS for the auditory, default mode and fronto-parietal networks; and the comparison of LOCA and NO-LOCA, for the fronto-parietal network only.
Auditory	LOCA < HCS	1088	5,078	64	2	0	Superior Temporal Gyrus, anterior division
		4,843	66	4	20		Precentral Gyrus
		4,799	42	-2	-6		Insular Cortex
		412	4,972	-62	-4	18	Precentral Gyrus
		3,559	-62	-26	10		Planum Temporale
		167	4,951	0	-4	60	Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex)
		110	4,685	42	-10	34	Precentral Gyrus
		118	4,409	10	-86	28	Cuneal Cortex
		156	4,274	12	-64	-12	Lingual Gyrus
		234	4,195	30	-34	60	Postcentral Gyrus
		3,685	40	-18	70		Precentral Gyrus
NO-LOCA < HCS	6025	7,794	16	-82	34	Lateral Occipital Cortex, superior division	
		6,397	4	-86	18		Cuneal Cortex
		5,933	16	-56	-12	Lingual Gyrus	
		4902	7,083	42	-8	8	Lingual Cortex
		6,789	60	-2	0		Planum Polare
		6,338	42	-14	34	Postcentral Gyrus	
		5085	6,581	46	4		Planum Polare
		6,258	50	-8	28		Precentral Gyrus
		6,150	-54	-28	10	Planum Temporale	
		639	5,490	-18	-64	-14	Lingual Gyrus
		2409	5,441	30	-34	58	Postcentral Gyrus
		5,395	4	-8	60	Juxtapositional Lobule Cortex (formerly Supplementary Motor Cortex)	
		4,195	-6	-14	42	Cingulate Gyrus, anterior division	
Default mode	LOCA < HCS	1125	6,597	4	-58	30	Precuneus Cortex
NO-LOCA < HCS	822	5,304	-48	-64	30	Lateral Occipital Cortex, superior division	
		3,831	-42	-70	50	Lateral Occipital Cortex, superior division	
		430	4,847	0	50	24	Paracingulate Gyrus
		4,143	0	-46	4	Cingulate Gyrus, anterior division	
		451	4,748	58	-56	28	Angular Gyrus
		3,901	42	-64	46	Lateral Occipital Cortex, superior division	
NO-LOCA < HCS	2076	9,312	4	-52	28	Cingulate Gyrus, posterior division	
		3,842	-4	-68	18	Precuneus Cortex	
		1314	6,818	-48	-64	30	Lateral Occipital Cortex, superior division
		5,386	-38	-74	46	Lateral Occipital Cortex, superior division	
		3,347	-64	-62	18	Angular Gyrus	
		3220	6,727	0	50	4	Paracingulate Gyrus
		5,937	0	50	26	Paracingulate Gyrus	
		5,377	18	32	48	Superior Frontal Gyrus	
		963	6,414	58	-56	28	Angular Gyrus
		4,445	42	-64	48	Lateral Occipital Cortex, superior division	
		369	5,768	-38	16	52	Middle Frontal Gyrus
		206	4,877	-56	4	32	Temporal Pole
		4,370	-44	16	-44	Temporal Pole	
		249	4,835	66	-2	-24	Middle Temporal Gyrus, anterior division
		3,796	56	4	-42	Temporal Pole	
		90	4,481	-18	-26	-12	Parahippocampal Gyrus, posterior division
Fronto-parietal	LOCA < HCS	407	4,891	66	-34	-6	Middle Temporal Gyrus, posterior division
		417	4,760	-14	-88	-24	Occipital Fusiform Gyrus
		120	4,497	-66	-44	-2	Middle Temporal Gyrus, temporooccipital part
		113	4,387	28	14	66	Superior Frontal Gyrus
		261	4,285	52	-46	52	Supramarginal Gyrus, posterior division
		3,450	50	-58	36	Angular Gyrus	
NO-LOCA < HCS	182	5,650	66	-38	-2	Middle Temporal Gyrus, temporooccipital part	
		884	5,358	48	-50	54	Angular Gyrus
		3,696	64	-48	42	Angular Gyrus	
		164	4,990	6	-10	10	Right Thalamus
		477	4,829	-50	-52	54	Supramarginal Gyrus, posterior division
		3,760	-32	-64	54	Lateral Occipital Cortex, superior division	
LOCA>N-LOCA	323	5,055	-34	-84	26	Occipital pole	
		4,155	-18	-94	18	Lateral occipital cortex	
XI. List of all pharmacological agents acting on the nervous system, taken by the patients who underwent neuroimaging/electrophysiological examinations

UWS-loca1	Depakine, Rivotril
UWS-loca2	Amantadine
UWS-loca3	/
UWS-loca4	Lormetazepam, Phenytoin, Lamictal, Keppra, Rivotril, Diazepam
UWS-loca5	Keppra, Lamictal, Lorazepam
UWS-loca6	Depakine, Dafalgan, Keppra, Gardenal
UWS-loca7	Mantadix, Rivotril
UWS-loca8	Amantadine, Citalopram, Gabapentine
UWS-noloca1	Keppra
UWS-noloca2	/
UWS-noloca3	Hydromorphone, Fentanyl, Amantadine, Levetiracetam, Clonidine, Escitalopram
UWS-noloca4	Keppra
UWS-noloca5	Depakyn
UWS-noloca6	Morphine
UWS-noloca7	/
UWS-noloca8	/
UWS-noloca9	Keppra, Amantadine, Trazodone, Depakine
UWS-noloca10	Keppra
UWS-noloca11	Depakine, Levetiracetam, Tegretol, Amantadine
UWS-noloca12	/
UWS-noloca13	/
UWS-noloca14	Lexomil, Lyrica, Contrainal
UWS-noloca15	/
UWS-noloca16	Epanutin, Keppra
UWS-noloca17	Seroxat, Rifotril, Tegretol
UWS-noloca18	Keppra, Tegretol
UWS-noloca19	Depakine
UWS-noloca20	Trazolan, Durogesic
UWS-noloca21	Amantadine, Valium
UWS-noloca22	Lysanxia
UWS-noloca23	Valium
UWS-noloca24	Keppra, Amantadine, Dominal
UWS-noloca25	Diphatonine, Lioresal, Diazepam, Lysanxia, Depakine
UWS-noloca26	Keppra, Amantadine
UWS-noloca27	Amantadine
UWS-noloca28	Keppra, Lysanxia, Zolpidem, Trazolan
UWS-noloca29	Keppra, Rivotril, Cerebrolysin, Piracetam
UWS-noloca30	Gardenal, Keppra, Amantadine, Diphatonine
UWS-noloca31	Prolopa
UWS-noloca32	/
UWS-noloca33	Clonazepam
UWS-noloca34	Keppra
MCSminus1	Oxynorm instant, Spralex, Durogesic
MCSminus2	Amantadine
MCSminus3	Keppra
MCSminus4	/
MCSminus5	Xanax
MCSminus6	OXazepam, Depakine, Valium
MCSminus7	Valium, Serlawn
MCSminus8	/
MCSminus9	Dominal forte, Rivotril
MCSminus10	Keppra
MCSminus11	Xanax, Midazolam
MCSminus12	Keppra, Valproate
MCSminus13	Transtec, Trazolan, Loramet, Lysanxia
MCSminus14	Keppra, Diphatonine
MCSminus15	Depakine
MCSminus16	/
MCSminus17	Keppra, Spralex
MCSminus18	Depakine, Keppra
MCSminus19	Prazepam, Keppra, Amantadine
MCSminus20	Amantadine, Seroxat, Theralene
MCSminus21	/
MCSminus22	Keppra, Spralex, Trazolan, Amantadine, Lysanxia
MCSminus23	Rivotril, Diphatonine, Keppra
MCSminus24	Epanutin
References

Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38: 95–113.

Aubinet C, Larroque SK, Heine L, Martial C, Majerus S, Laureys S, et al. Clinical subcategorization of minimally conscious state according to resting functional connectivity. Hum Brain Mapp 2018; 39: 4519–4532.

Baum GL, Ciric R, Roalf DR, Betzel RF, Moore TM, Shinohara RT, et al. Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth. Curr Biol 2017; 27: 1561-1572.e8.

Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007; 37: 90–101.

Cheng L, Gossseries O, Ying L, Hu X, Yu D, Gao H, et al. Assessment of localisation to auditory stimulation in post-comatose states: Use the patient’s own name. BMC Neurol 2013; 13

Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA, Miezin FM, et al. Functional brain networks develop from a ‘local to distributed’ organization. PLoS Comput Biol 2009; 5: 14–23.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005; 102: 9673–8.

Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003; 100: 253–8.

Maudoux A, Lefebvre P, Cabay JE, Demertzi A, Vanhaudenhuyse A, Laureys S, et al. Auditory resting-state network connectivity in tinnitus: A functional MRI study. PLoS One 2012; 7: 1–9.

Peelle JE, Cusack R, Henson RNA. Adjusting for global effects in voxel-based morphometry: Gray matter decline in normal aging. Neuroimage 2012; 60: 1503–1516.

Di Perri C, Bastianello S, Bartsch AJ, Pistorini C, Maggioni G, Magrassi L, et al. Limbic hyperconnectivity in the vegetative state. Neurology 2013; 81: 1417–1424.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001; 98: 676–82.

Whitfield-Gabrieli S, Nieto-Castanon A. Conn : A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connect 2012; 2: 125–141.