Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunvfeng National Forest Park in Northeast China

Yonglan Tuo*, Na Rong, Jiajun Hu, Guiping Zhao, Yang Wang, Zhenhao Zhang, Zhenxiang Qi, Yu Li* and Bo Zhang*

Abstract: In this paper, we analyze the macrofungi communities of five forest types in Wunvfeng National Forest Park (Jilin, China) by collecting fruiting bodies from 2019–2021. Each forest type had three repeats and covered the main habitats of macrofungi. In addition, we evaluate selected environmental variables and macrofungi communities to relate species composition to potential environmental factors. We collected 1235 specimens belonging to 283 species, 116 genera, and 62 families. We found that Amanitaceae, Boletaceae, Russulaceae, and Tricholomataceae were the most diverse family; further, Amanita, Cortinarius, Lactarius, Russula, and Tricholoma were the dominant genera in the area. The macrofungi diversity showed increasing trends from Pinus koraiensis Siebold et Zuccarini forests to Quercus mongolica Fischer ex Ledebour forests. The cumulative species richness was as follows: Q. mongolica forest A > broadleaf mixed forest B > Q. mongolica, P. koraiensis mix forest D (Q. mongolica was the dominant species) > Q. mongolica and P. koraiensis mix forest C (P. koraiensis was the dominant species) > P. koraiensis forest E. Ectomycorrhizal fungi were the dominant functional group; they were mainly in forest type A and were influenced by soil moisture content and Q. mongolica content (p < 0.05). The wood-rotting fungus showed richer species diversity than other forest types in broadleaf forests A and B. Overall, we concluded that most fungal communities preferred forest types with a relatively high Q. mongolica content. Therefore, the deliberate protection of Q. mongolica forests proves to be a better strategy for maintaining fungal diversity in Wunvfeng National Forest Park.

Keywords: community composition; conservation; edaphic variables; forest type; macrofungal species richness

1. Introduction

Fungal communities are essential for forest ecosystems and have many functions [1,2]. Ectomycorrhizal fungi (EM) participate in the soil nutrient cycle of forest ecosystems and promote the host plant’s absorption of nutrients, such as nitrogen, phosphorus, and water, thereby maintaining the above-ground primary productivity of the forest ecosystem [3]. Saprotrophic fungi can degrade wood components (i.e., lignin, cellulose, and hemicel lulose [4]), and they are considered essential wood-decay-promoting organisms. These functions indicate a crucial role in maintaining the forest ecosystem’s stability [5].

Many biotic and abiotic factors can affect the diversity and composition of fungal communities [6,7]. The composition of EM is strongly influenced by the soil’s nitrogen content [8,9], pH [10], temperature and moisture [11,12], the species composition of the host trees [13,14], and by the seasons [15]. Fungal communities living on the wood are closely dependent upon environmental factors, such as the amount, diameter, and stage of wood decomposition [16], wood chemistry [17], age [18], and tree species [19]. Factors influencing terricolous saprotrophic communities include litter quantity and pH [20], soil...
P content [21,22], plant species [23,24], and temperature [25]. The processes of natural or human-induced change in the vegetation composition of forests are also important drivers of fungal diversity [26–28], as they are associated with significant changes in litter and soil quality in the long term [29–31].

Our study sites are all within the Wunvfeng National Forest Park in the southeastern mountainous region of the Jilin Province, China. The reserve was established in 1992 and is part of the Changbai Mountain system. The original vegetation included *Quercus mongolica* Fischer ex Ledebour forests and mixed broadleaf forests, which changed when *Pinus koraiensis* Siebold et Zuccarini was planted in the 1980s [32]. Currently, the vegetation composition includes a *P. koraiensis* forest, and *P. koraiensis*–*Q. mongolica* mixed forests provide a unique opportunity to investigate the fungal communities of different forest types under the same climatic conditions. Usually, *Pinus* species are dependent upon macrofungi in symbiotic associations, which are essential for their growth and survival [33] because symbiotic associations facilitate the trees’ uptake of water and nutrients [34,35]. Some specific fungal species may be found in relatively stable *Pinus* forests. Thus, understanding the distribution characteristics of fungal communities in planted and native forests can provide better strategies for fungal diversity conservation, especially for the deliberate conservation of forest types that host a more significant number of fungal species. In this context, we conducted a three-year survey of macrofungi in different vegetation types in Wunvfeng National Forest Park. We study the relationship between selected environmental factors and community composition. We aim to investigate whether fungal communities differ among the five forest types and whether native forests dominated by *Q. mongolica* are potentially associated with fungal communities.

2. Materials and Methods

2.1. Study Area Description

Our study site, Wunvfeng National Forest Park, covers an area of 6867 hm\(^2\) [36] and is situated in Ji’an City in the extreme southeast part of the Jilin Province, Northeast China (126°2′21″–126°17′57″ E, 41°11′37″–41°21′40″ N). The area is characterized by a temperate continental monsoon climate with a mean annual precipitation of 950 mm with peaks from June–August and a mean annual air temperature of 6.5 °C [36]. The forest cover is 95%, and the dominant tree species is *Q. mongolica*. *P. koraiensis* was planted as a non-native tree species in 1980. At present, it has formed stable forest communities. Dark-brown soil [37] is the most frequent soil type. The fundamental geomorphological units belong to the Changbai Mountains, ranging in altitude from 500–1500 m [38].

2.2. Fruiting Body Sampling

We designated five following forest types: A, B, C, D, and E. Three 50 m × 50 m sampling plots with at least 500 m distance between them were located within each forest type (pictures of each forest type are provided in Figure 1).

Quercus mongolica site (A): Old-growth *Q. mongolica* forests with the original habitat, and no fallen or standing deadwood has been removed. There are 275 *Q. mongolica* with a coverage rate of 96.15%.

Broad-leaved forest site (B): Mixed broadleaved forest (uneven-aged), with *Q. mongolica*, *Tilia amurensis* Rupr., *Fraxinus mandshurica* Rupr., *Acer palmatum* Thunb., *Juglans regia* L., close to nature managed. There are 158 *Q. mongolica* with a coverage rate of 48.46%.

Pinus koraiensis and *Quercus mongolica* mixed sites (C): 30–50-year-old *P. koraiensis* forest, close to nature managed, and naturally grown *Q. mongolica*. *P. koraiensis* was artificially grown and is the dominant species. There are 42 *Q. mongolica* with a coverage rate of 48.46%.

Pinus koraiensis and *Quercus mongolica* mixed sites (D): 30–60-year-old *Q. mongolica* forests, close to nature managed, and artificially grown *P. koraiensis*. *Q. mongolica* is the dominant species. There are 183 *Q. mongolica* with a coverage rate of 74.69%.
artificially grown and is the dominant species. There are 42 *Quercus mongolica* with a coverage rate of 18.03%.

In the *Quercus mongolica* and *Pinus koraiensis* mixed sites (D), 30–60-year-old *Quercus mongolica* forests, close to nature managed, and artificially grown *Pinus koraiensis*. *Quercus mongolica* is the dominant species. There are 183 *Quercus mongolica* with a coverage rate of 74.69%.

Pinus koraiensis sites (E): Single species; 40-year-old *P. koraiensis* forests planted in 1980, close to nature managed, no fallen trees removed. There are zero *Quercus mongolica* with a coverage rate of 0%.

We collected samples 20–25 times per month from June to October 2019–2021. We randomly acquired macrofungi from each plot. We photographed the specimens in the field using a Canon EOS 800D digital camera and recorded fresh morphological characteristics and ecological characteristics (Figure 2). We selected the context or stipe tissue (1–2 g) of the same specimen when it was fresh and stored it in a sealed bag with silica gel for DNA extraction; we dried them in an oven (45–50 °C) and placed them in specimen boxes. We then took a morphotype of each specimen to the laboratory and used it for morphological species identification.

2.3. Soil Sampling, Analysis and Environmental Data Collection

We collected soil samples four times per month during July–September 2020. After cleaning and removing plant material and debris from the surface, we collected individual soil samples from the center and 4 corners in 15 plots using an auger (5 cm radius, 5 cm...
We mixed the soil samples from the same plots well and placed them in sealed bags. After removing impurities, we enclosed the fresh samples (20 g) from each clod in an aluminum box. We dried the samples to a constant weight in an oven at 105 °C to measure water content (SWC); we used natural air-dried composite samples (200 g) for each plot to analyze for pH, organic matter (SOM), available phosphorus (P), effective nitrogen (N), and available potassium (K) using the method described by Xing et al. [39]. Finally, we averaged the data from three plots of the five forests for subsequent analysis.

We obtained the temperature and relative humidity of the air and soil temperature from July–September 2020 from meteorological monitoring sites in the forest park. The tested results for the soil are included in Table 1.

Table 1. Quercus mongolica content and selected environmental variables properties in five forest types.

Environment Parameters	A	B	C	D	E
N (mg/kg)	68.2 a	56.59 b	44.07 c	46.65 c	47.94 c
P (mg/kg)	20.99 b	24.37 a	18.33 b	14.99 c	20.49 b
K (mg/kg)	408.9 a	372.73 ab	325.44 b	267.35 c	264.69 c
SOM (g/kg)	37.1 a	16.76 c	25.03 b	39.69 a	28.64 b
Soil pH	5.48 c	5.96 a	5.69 b	5.34 c	5.75 b
Temp1 (°C)	24 a	21.48 b	22.12 b	22.07 a	22.07 b
Temp2 (°C)	19.1 a	18.93 a	20.14 a	19.99 a	19.34 a
SWC (g/20 g)	6 a	5.2 a	3.8 b	5.6 a	4.8 ab
RH	0.82 a	0.83 a	0.83 a	0.83 a	0.86 a
QM	275 a	179 b	42 c	183 b	0 d

Note: Abbreviations: N = soil effective nitrogen; P = soil available phosphorus; K = soil available potassium; SOM = soil organic matter; pH = soil pH; Temp1 = soil temperature; Temp2 = air temperature; SWC = soil water content; RH = air relative humidity; QM = Number of Q. mongolica; Different lowercase letters indicate significantly different QM and environment parameter values among five forest type (p < 0.05).
2.4. Species Identification

We identified the macrofungi using morphological observations methods. We used molecular methods for the species that were morphologically difficult to identify. We measured different microscopic structures of taxonomic importance (e.g., spores, basidia, cystidia) [40]. We examined the morphological features of the fruiting bodies using appropriate monographs, including by Li et al. [41] and Liu et al. [42], to identify each macrofungi specimens. The specimens are currently housed in the Herbarium of Mycology of Jilin Agricultural University (HMJAU), Changchun, China.

Molecular identification involved sequencing the internal transcribed spacer (ITS). For this, we extracted the DNA of the macrofungi using a NuClean Plant Genomic DNA Kit (Cowin Biosciences, Taizhou, China), following the manufacturer’s instructions. We conducted final elutions in a total volume of 50 µL. We showed a polymerase chain reaction (PCR) with the primer pairs ITS-1F and ITS-4 [43]; finally, we sequenced the PCR products using the Sanger method. We conducted the PCR in 25 µL reactions consisting of 2 µL genomic DNA, 0.5 µL Taq, and one µL upstream and downstream primers, respectively. We used 14.5 µL ddH₂O, five µL 5× PCR buffer, and 1 µL dNTP in the PCR reactions that we ran under the following conditions: 95 °C for 3 min, followed by 35 cycles of 94 °C for 40 s, 55 °C for 45 s, and a final extension step at 72 °C for 6 min before storage at 4 °C. We purified the PCR products and sequenced them at Sangon Biotech Co., Ltd. (Shanghai, China). We performed molecular identification via BLAST comparisons. Species with >98% sequence similarity were also identified with morphological characteristics. GenBank accession numbers obtained are provided in Appendix B.

We identified ecological functions (ectomycorrhizal fungi; soil saprotroph; wood-decaying fungi; dung saprotroph; endophyte-insect pathogen) at the genera level using a FUNGuild (available online: http://www.funguild.org (accessed on 18 November 2021) search; these can be found in Appendix B. We classified macrofungi into eight types (agarics; large ascomycetes; boletes; polyporoid fungi; coral fungi; gasteoid fungi; jelly fungi; hydnaceous fungi, and cantharelloid fungi) according to the method of Li et al. [41]. The fungal nomenclature follows the Index Fungorum (available online: http://www.indexfungorum.org (accessed on 15 November 2021)). Setting scientific names at all taxonomic ranks in italics facilitates quick recognition in scientific papers [44].

2.5. Statistical Analysis

We used three alpha diversity indices to analyze the community composition of the macrofungi. The Menhinick richness index (R) reflected the species richness of the community. The Shannon index (D) reflected the diversity of the community species. Pielou’s evenness index (E) reflected the distribution of the number of individuals in each species. The diversity index formulae were as follows:

\[R = \frac{S}{\sqrt{N}} \]
\[D = -\sum P_i \ln (P_i) \]
\[E = H'/\ln S; H' = -\sum P_i \ln (P_i) \]

where \(P_i \) is the proportion of species \(i \) to the total number of individuals of all species in the plot; \(\ln \) is the natural logarithm; \(S \) is the total number of species in the plot; and \(N \) is the total number of individuals observed in the plot.

We analyzed the relationships between ectomycorrhizal fungi communities and selected variables using the canonical correlation analysis (CCA) from Canoco 5.0 [45]. We first used detrended correspondence analysis (DCA) to determine the appropriate model for direct gradient analysis. The results indicated that a unimodal model (gradient lengths > 3 standard units) would best fit our study data; we utilized CCA. Furthermore, we tested explanatory variables using the Monte Carlo permutation test provided by Canoco 5.0 software (with 999 randomizations). The species data matrix for the CCA
analysis was based on the presence–absence data of ectomycorrhizal fungi species in each forest type (three-year accumulation of the five forest types).

We used Origin 9.0 software to construct species stacked histograms at the genera level [46] to compare community compositions of the macrofungi species in the five forests and provide the relative proportion of macrofungi species richness (data include the number of species at the genera level in each forest type). Additionally, we generated pie charts, Venn diagrams, and species accumulation curves using Hiplot (available online: https://hiplot.com.cn/basic/venn (accessed on 20 October 2021)). The pie chart data were derived from the number of macrofungi types. The Venn diagram data included the species in each forest type. The accumulation curve data consisted of the cumulative number of species per collection.

3. Results
3.1. Species Richness

We collected 1235 specimens from 5 forest types, 940 (76.11%) of which we identified at the species level, and we classified these into 283 fungal species. We identified 244 species based on morphology and 39 species using morphology and molecular methods (Appendix B). The unidentified sporocarps were not part of our further analysis. We classified the macrofungi species into 116 genera, 62 families, 18 orders, and 2 phyla. Basidiomycota was the dominant phylum, divided into 12 orders, 50 families, 102 genera, and 265 species. Ascomycota was divided into 6 orders, 12 families, 14 genera, and 18 species. The Russulaceae was the most diverse family with 36 different species, followed by Tricholomataceae (21 species), Boletaceae (19 species), and Amanitaceae (16 species). Together, these accounted for 32.51% of the total collected species. The most abundant genera were Amanita, Cortinarius, Lactarius, and Russula. The Agaricales were the most prevalent order in the five forest types (59.36%). In terms of the trophic groups, most of the species were ectomycorrhizal fungi (47%), followed by wood-decaying fungi (20.14%) and soil saprotrophs (18.37%).

3.2. Macrofungal Types

The most significant genera of Agarics accounted for 69.26% of the identified species, followed by boletes, larger ascomytes, and polyporoid fungi, accounting for 9.89%, 6.36%, and 6.01% of the identified species, respectively. In contrast, hydnaceous and cantharelloid fungi were less abundant, accounting for 1.06% and 0.71%, respectively (see Figure 3). For more detailed information, see Appendix B. For images of some species, see Appendix A.

![Figure 3](image_url)
Figure 3. The proportion of different macrofungal types.

3.3. Analysis of Dominant Families and Genera

Among the identified species, there were 9 dominant families (number of species ≥10 species) of macrofungi (Table 2). The Russulaceae was the most diverse family. In addition, 53 families contained less than 10 species, accounting for 85.48% of the families and 48.06% of the identified species (Appendix B).
Table 2. Dominant families (≥10 species) of macrofungi in Wunvfeng National Forest Park.

Family	Number of Species	Percentage (%)
Russulaceae	36	12.72%
Tricholomataceae	21	7.42%
Boletaceae	19	6.71%
Amanitaceae	16	5.65%
Cortinariaceae	14	4.95%
Hygrophoraceae	11	3.89%
Agaricaceae	10	3.53%
Hymenochaetaceae	10	3.53%
Meruliaceae	10	3.53%
Total	147	51.94%

Among the identified species, there were 15 dominant genera (number of species ≥ 5 species) of macrofungi (Table 3). The Amanita, Lactarius, and Russula were the most diverse genera. In addition, 34 genera contained 2-4 species, accounting for 29.31% of the genera and 29.68% of the identified species; 67 of the genera contained only 1 species, accounting for 57.76% of the genera and 23.67% of the identified species (Appendix B).

Table 3. Dominant genera (≥5 species) of macrofungi in Wunvfeng National Forest Park.

Genera	Number of Species	Percentage (%)
Lactarius	18	6.36%
Amanita	16	5.65%
Russula	16	5.65%
Cortinarius	12	4.24%
Tricholoma	9	3.18%
Mycena	8	2.83%
Suillus	7	2.47%
Entoloma	7	2.47%
Agaricus	6	2.12%
Gymnopilus	6	2.12%
Hygrocybe	6	2.12%
Pluteus	6	2.12%
Clitocybe	5	1.77%
Marasmius	5	1.77%
Ramaria	5	1.77%
total	132	46.64%

3.4. Forest Type and Species Composition

The community of macrofungi was different among the five forest types (Figure 4). The species richness increased from E (18 species, 6.36%) < C (35 species, 12.37%) < D (49 species, 17.31%) < B (86 species, 30.39%) < A (142 species, 50.18%). The Lactarius (13 species), Amanita (12 species), Coprinellus (10 species), and Russula (7 species) were the most species-rich genera in forest type A. The Russula (6 species) and Gymnopilus (4 species) were the most species-rich genera in forest type B. The Gymnopilus (4 species) and Suillus (4 species) were the most species-rich genera in forest type C. The Russula (8 species), Amanita (7 species), and Mycena (4 species) were the most species-rich genera in forest type D. Finally, the Gymnopilus (2 species), Helvella (2 species), and Hydnellum (2 species) were the relatively abundant genera in forest type E. More detailed information is shown in Appendix B.

3.5. Cumulative Abundance of Macrofungi in Five Forest Types

The accumulation curves for the species identified in the five forests show a steady increase with more samplings (Figure 5). We reached saturation of macrofungi richness after 150 surveys. The species accumulation curves of A (Q. mongolica forest) and B (broad-
leaved forest) showed relatively steep upward slopes and produced higher macrofungi abundance values than the other forests. Nevertheless, forest type A (Q. mongolica forest) obtained the highest macrofungi diversity values.

![Figure 4](image_url)

Figure 4. The relative proportions of macrofungi taxa at the genera level in five forest types. (A): Q. mongolica forest; (B): Broad-leaved forest; (C): P. koraiensis and Q. mongolica mixed forest with P. koraiensis being the dominant species; (D): P. koraiensis and Q. mongolica mixed forest with Q. mongolica being the dominant species; (E): Pinus koraiensis forest.

Two genera (Clitocybe and Tricholoma) were shared in five forest types, but no species were shared. The unique species (found only in 1 forest) increased from E < C < D < B < A and consisted of 13, 22, 31, 50, and 104 fungal species, respectively (Table 4). Forest type A shared 27 species with B, 7 species with C, 11 species with D, and 2 species with E. Forest type B shared six species with C, eleven species with D, and three species with E. Forest type C shared three species with D and three species with E. The Gymnopus densilamellatus Antonin, Ryoo & Ka, and Suillus grevillei (Klotzsch) Singer only appeared in E and C. The S. luteus (L.) Roussel only appeared in D and C; Helvella crispa (Scop.) Fr. only appeared in B and E. The Amanita oberwinklerana Zhu L. Yang & Yoshim., Amanita orsonii Ash. Kumar & T.N. Lakh., Amanita virosa Bertill., Boletus edulis Bull., Phellinus pomaceus (Pers.) Maire, Russula paludosa Britzelm., and Tricholoma sejunctum (Sowerby) Quél., only appeared in A and D. The Agaricus moelleri Wasser, Gymnopus dryophilus (Bull.) Murrill, Pluteus leoninus (Schaeff.) P. Kumm., and Rhodocollybia butyracea (Bull.) Lennox only appeared in A and C.

The species richness increased from E < C < D < B < A (Table 4). Broad-leaved forests A and B, with the highest richness indices of 7.4023 and 5.4832, respectively, accounted for 80.57% of the total species. Among them, 142 species were found in forest type A, accounting for 50.18% of the total species. This indicates that the broadleaf forest was the main habitat of macrofungi in the area, especially regarding the Q. mongolica forest. Mixed forests C and D, with richness indices of 2.8296 and 4.6509, contained 84 species, accounting for 29.68% of the total species. However, we found that the species abundance was higher in forest type D (49 species) than in forest type C (35 species), indicating that macrofungal species are associated with Q. mongolica. In P. koraiensis forest E, with the smallest species...
richness index of 2.286, we only found 18 species, accounting for 6.36% of the total species. This indicates that *P. koraiensis* forests can only provide habitats for a few fungal species.

![Sample-based rarefaction curves](image)

Figure 5. Sample-based rarefaction curves (n = 195 observations per forest type within 3 years). (A): *Q. mongolica* forest; (B): broad-leaved forest; (C): *P. koraiensis* and *Q. mongolica* mixed forest with *P. koraiensis* being the dominant species; (D): *P. koraiensis* and *Q. mongolica* mixed forest with *Q. mongolica* being the dominant species; (E): *P. koraiensis* forest.

![Venn diagram](image)

Figure 6. A Venn diagram of 283 fungal species shows shared and unique fungi for the five forest types. The numbers in parentheses are the values of all observed fungi in each forest type studied (cumulative species richness).
Table 4. Diversity indices of macrofungi in five forest types.

Forest Type	Number of Species	Number of Collections	Richness Index	Diversity Index	Evenness Index
A	142	368	7.4023	4.7296	0.9543
B	86	246	5.4832	4.207	0.9445
C	35	153	2.8296	3.2048	0.9014
D	49	111	4.6509	3.7074	0.9526
E	18	62	2.286	2.6146	0.9046

Note: Abbreviations: A = *Q. mongolica* forest; B = Broad-leaved forest; C = *P. koraiensis* and *Q. mongolica* mixed forest, with *P. koraiensis* as the dominant species; D = *P. koraiensis* and *Q. mongolica* mixed forest, with *Q. mongolica* as the dominant species; E = *P. koraiensis* forest. The number of collections is the cumulative number of fruiting bodies per species.

3.6. Functional Diversity of Macrofungal Communities

The main functional groups were ectomycorrhizal fungi (EM), wood-decaying fungi (WS), and soil saprotroph (SS). The EM (133 species, 47.0%), WS (57 species, 20.14%), SS (52 species, 18.37%), and LS (38 species, 13.43%) increased from coniferous forest (E) < mixed coniferous forest (C, D) < broadleaf forest (A, B). EM fungi were most abundant in forest type A (Table 5). The highest content of EM fungi was *Amanita*, *Cortinarius*, *Lactarius*, and *Russula*. The most common WS were *Pleurotus* and *Polyporus*. The highest occurrence of SS was *Agaricus*, *Entoloma*, and *Hygrocybe*. The LS, *Clitocybe*, *Gymnopus*, *Mycena*, and *Pluteus*, showed the highest occurrence.

Table 5. Cumulative species richness of functional groups in five forest types.

Forest Type	Trophic Groups					
	EM (133)	WS (57)	SS (52)	LS (38)	EI (2)	DS (1)
A	71	26	25	20	1	0
B	27	28	18	11	0	1
C	13	3	9	10	0	0
D	36	5	2	6	0	0
E	10	2	2	4	0	0

Note: Abbreviations: EM = Ectomycorrhizal fungi; WS = Wood-decaying fungi; SS = Soil saprotroph; LS = Litter saprotroph; EI = Endophyte-insect pathogen; DS = Dung saprotroph. Values shown are the cumulative number of macrofungal functional groups in each forest type.

3.7. CCA Analysis of Macrofungal Communities and Selected Environmental Factors

We performed a canonical correspondence analysis (CCA) for the 130 ectomycorrhizal fungi (EM) species recorded in the 5 forest types. The variables included *Q. mongolica* content, effective soil nitrogen, soil available phosphorus, soil available potassium, soil organic matter, soil pH, soil temperature, air temperature, soil water content, effective soil nitrogen, and air relative humidity. The CCA results show that all samples were roughly separated into five groups according to their corresponding locations. Eigenvalue axis 1 (0.8963) is higher than axis 2 (0.7955), with a cumulative contribution of 28.8% and 25.57%, respectively. Of all the variables, the *Q. mongolica* content and soil moisture content were the most significant factors influencing the EM fungi. Many EM fungi (e.g., *Amanita*, *Cortinarius*, *Lactarius*) positively correlate with *Q. mongolica* and soil water (Figure 7).
This study is the first systematic survey of macrofungal diversity in Wunvfeng National Forest Park, Ji’an, China. We divided the forests into five main types: *Quercus mongolica* forests (A), mixed broad-leaved forests (B), artificial *P. koraiensis* forests (E), and mixed forests (C, D). This enabled us to analyze the composition of macrofungi according to the relative content change of *Q. mongolica* in different forest types. The results show differences in species richness and diversity among forest types with different relative contents of *Q. mongolica*. The species richness increases with the relative content of *Q. mongolica*. Forest types with a high cover of *Q. mongolica* may provide a stable environment for the growth of macrofungi [47]. More importantly, *Quercus* is the main host plant of EM fungi [48], such as *Lactarius* [49,50], *Amanita* [51], *Russula* [52], and *Cortinarius* [53]. Our results reveal that the EM fungi are mainly distributed in the *Q. mongolica* forest. Most EM fungi had a significant positive correlation with *Q. mongolica* content (Figure 7), especially *Amanita*, *Cortinarius*, and *Lactarius*. In addition, we found that 11 species are shared in forest types A and D (e.g., *Amanita ibotengutake* T. Oda, C. Tanaka & Tsuda, *Amanita oberwinklerana* Zhu L. Yang & Yoshim, *Amanita orsonii* Ash. Kumar & T.N. Lakh., and *Amanita virosa* Bertill).
However, they are not found in the *P. koraiensis* forest. These species may be associated with *Q. mongolica* (Figure 7, Ama7, Ama8, Ama9, Ama16), because the macrofungal communities change accordingly with the forest’s succession [54]. Therefore, these macrofungi shared in forest types D and A are likely to be in the early stages that develop from spore banks present in the soil [55].

The species richness of *P. koraiensis* forests is the lowest in our study. We only found 18 species. Theoretically, species richness may be similar between *Q. mongolica* and *P. koraiensis* forests because the EM fungi in temperate forests are significantly associated with *Quercus* and *Pinus* [56]. However, we only observed ten species of EM fungi in *P. koraiensis* forest (E) (e.g., *Hydnellum aurantiacum* (Batsch) P. Karst., *Hydnellum peckii* Banker, and *Tricholoma matsutake* (S. Ito & S. Imai) Singer). Our results differ from those of Gao [57], who found more EM fungi in *P. koraiensis* forests (aged < 150 years). On the one hand, EM fungi may need more time to form a stable symbiosis with the host plants [58]; on the other hand, the exotic trees have difficulty developing long-lasting symbiotic relationships with local EM fungi [59].

In our study, wood-dwelling fungi (57 species) are also a critical taxon that is mainly distributed in the *Q. mongolica* and mixed broad-leaved forests and grows on larger diameter *Q. mongolica* fallen wood (e.g., *Armillaria gallica* Marxm. & Romagn. & *Neolentinus cyathiformis* (Schaeff.) Della Magg. & Trassin). The wood-dwelling macrofungi may be related to forest type, as they tend to favor specific forest types under similar climatic conditions. In general, these combinations are determined by fungi closely related to the dominant tree, mainly because their enzymes have adapted to wood with different chemical and physical properties [60]. Another reason may be that large logs that provide a larger surface area have a greater chance of being colonized by fungal spores and mycelium than small logs. Species that produce large fruiting bodies also require more space [61]. Furthermore, we only found a few fallen trees in the *Q. mongolica* and mixed broadleaved forests; we found no fallen trees in the *P. koraiensis* forest, which is another factor that might affect fungal assemblage. The amount of deadwood also affects the macrofungal assemblage, which previous authors highlighted as the most crucial microhabitat in the forest [62,63]. The diversity of woody macrofungi strongly depends on the presence and amount of deadwood [64,65].

Saprophytic soil fungi (52 species) rely mainly on the decomposition of soil organic matter for nutrients, and they tend to prefer specific forest types under similar climatic conditions. Generally, the deciduous leaves of broad-leaved trees are more conducive to soil organic matter accumulation than coniferous forests [66]. The forest types with high soil organic matter have more opportunities to be colonized by fungal spores and mycelium than small logs. Species that produce large fruiting bodies also require more space [61]. Moreover, we only found thicker deciduous leaves in the *Q. mongolica* and mixed broad-leaved forests, affecting the grass rot fungal assemblage because litter saprotroph fungi strongly depend on deciduous leaves’ presence and volume [68].

The composition of fungi is also influenced and constrained by soil environmental variables [69,70]. These include soil moisture [71], soil pH [72], soil nutrients [73] and soil total C [74]. We analyzed the correlation between the main functional groups (ectomycorrhizal fungi) and selected environmental factors. The results showed that most ectomycorrhizal fungi are closely related to soil water content, especially *Amanita, Cortinarius, Lactarius,* and *Russula* (Figure 7). This result suggests that specific fungal communities respond to soil parameters differently [75–77]. Previous studies have shown that soil moisture is one factor that regulates the composition of the ectomycorrhizal fungi community [78–81]. Hydraulic lift contributes to maintaining EM fungi roots’ integrity and viability of extraradical hyphae [82]; further, EM fungi take up water and organic and inorganic nutrients from the soil via the extraradical hyphae and translocate these to colonized tree roots, receiving carbohydrates from the host in return [83]. This may be an important reason why most ectomycorrhizal fungi prefer forest types with relatively high soil water content.

This study with three years of species data is a small contribution that allows us to understand the distribution of fungal species in forest types with the different covers...
of *Q. mongolica*. The Wunvfeng National Forest Park has a strict protection policy for animals and plants, including soil protection. Thus, our soil data (with permission) are from July to September 2020 only. Nevertheless, our results illuminate the potential links between community composition and environmental factors because the July–September 2020 species data include almost all our species.

5. Conclusions

The *Q. mongolica* forests we analyzed are rich in macrofungal species. Although our data are based on only three years of sampling, we conclude that, as *Q. mongolica* increases in the forest, the abundance and diversity of macrofungal taxa also increase. We also observed that most EM species favored forest types with high *Q. mongolica* content (e.g., *Amanita, Cortinarius, Lactarius,* and *Russula*), indicating that some EM fungal communities are closely associated with *Q. mongolica*. We call for further studies to support this claim. In addition, we have only found *Tricholoma matsutake* (S. Ito & S. Imai) Singer in *P. koraiensis* forests, which is classified as an endangered species and considered an ectomycorrhizal fungus that is closely associated with *Pinus* trees. Therefore, according to our research, maintaining *P. koraiensis* forests is beneficial for conserving endangered species. However, deliberate conservation of *Q. mongolica* forests would be more useful for maintaining the diversity of macrofungal communities. Whether *P. koraiensis* affects other fungal species will need to be monitored over 3–5 years.

Author Contributions: Conceptualization, Y.T.; experimental design and methodology, Y.T. and B.Z.; performance of practical work, Y.T., J.H., Y.W. and G.Z.; statistical analyses, Y.T., N.R., Z.Z. and Z.Q.; validation, B.Z.; writing—original draft preparation, Y.T.; writing—review and editing, B.Z.; supervision, B.Z.; project administration, B.Z.; funding acquisition, B.Z. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: We would like to express our gratitude to all the people who gave help to this study. This research supported the National Natural Science Foundation of China (31970020); the Key Project on R&D of Ministry of Science and Technology (No. 2018YFE0107800); Jilin Province Science and Technology Development Plan Project (20190201026JC, 20190201256JC); The National Key R&D of Ministry of Science and Technology(2019YFD1001905-33); The Scientific Production and Construction Crops (No. 2021AB004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors state no conflict of interest.
Appendix A. Photos of Some Species
Larger Ascomycetes.

Figure A1. (A) Leotia lubrica; (B) Helvella elastica; (C) Sowerbyella rhenana; (D) Spathularia flavida;
(E) Ophiocordyceps nutans; (F) Xylaria hypoxylon; Bars: 1 cm.
Coral fungi.

Figure A2. (A) Clavulinopsis sulcata; (B) Ramaria stricta; (C) R. cokeri; (D) R. sanguinipes; (E) R. fennica; (F) Artomyces pyxidatus; Bars: 1 cm.
Agarics.

Figure A3. (A) *Tricholoma matsutake*; (B) *Russula furcata*; (C) *Clitocybe fasciculata*; (D) *Amanita orsonii*; (E) *Hygrophorus russula*; (F) *Galerina marginata*; Bars: 1 cm.
Boletes.

Figure A4. (A) Pulveroboletus macrosporus; (B) Tylopilus felleus; (C) Boletus edulis; (D) Chalciporus piperatus; (E) Butyriboletus roseoflavus; (F) Suillus grevillei; Bars: 1 cm.
Polyporoid fungi.

Figure A5. (A) Gloeostereum incarnatum; (B) Phellinus pomaceus; (C) Inonotus hispidus; (D) Polyporus umbellatus; (E) Lentinus arcularius; (F) Laetiporus sulphureus; Bars: 1 cm.
Jelly fungi and Hydnaceous fungi.

Figure A6. (A) Craterellus cornucopioides; (B) Tremella fuciformis; (C) Dacrymyces yunnanensis; (D) D. chrysospermus; (E,F) Hydnellum aurantiacum; Bars: 1 cm.
Appendix B. Macrofungi were collected in five forest types of Wunvfeng National Forest Park

Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
Agaricus arvensis Schaeff.	Agaricaceae	Agaricus							4	SS	Agarics	HMJAU60588	
Agaricus dulcidulus Schulzer	Agaricaceae	Agaricus							2	SS	Agarics	HMJAU60589	
Agaricus moelleri Wasser	Agaricaceae	Agaricus					√		3	SS	Agarics	HMJAU60590	
Agaricus placomyces Peck	Agaricaceae	Agaricus						√	1	SS	Agarics	HMJAU60591	
Agaricus senotes Fr.	Agaricaceae	Agaricus						√	2	SS	Agarics	HMJAU60592	
Agaricus subrufescens Peck	Agaricaceae	Agaricus							1	SS	Agarics	HMJAU60593	
Agrocybe arvalis (Fr.) Singer	Strophariaceae	Agrocybe							3	SS	Agarics	HMJAU60594	
Agrocybe erebia (Fr.) Kühner ex Singe	Strophariaceae	Agrocybe							2	SS	Agarics	HMJAU60595	
Amanita altaipes Zhu L. Yang, M. Weiss & Oberw.	Amanitaceae	Amanita						√	6	EM	Agarics	HMJAU60596	
Amanita chepangiana Tulloss & Bhandary	Amanitaceae	Amanita							1	EM	Agarics	HMJAU60597	
Amanita excavata (Fr.) Bertill.	Amanitaceae	Amanita							1	EM	Agarics	HMJAU60598	
Amanita flavesces S. Imai	Amanitaceae	Amanita							2	EM	Agarics	HMJAU60600	
Amanita fuliginea Hongo	Amanitaceae	Amanita							2	EM	Agarics	HMJAU60601	
Amanita hemibapha (Berk. & Broome) Sacc.	Amanitaceae	Amanita							2	EM	Agarics	HMJAU60602	
Amanita ibotengutake T. Oda, C. Tanaka & Tsuda	Amanitaceae	Amanita						√	6	EM	Agarics	HMJAU60603	
Amanita oerwinklerana Zhu L. Yang & Yoshim.	Amanitaceae	Amanita					√		3	EM	Agarics	HMJAU60604	
Amanita orsonii Ash. Kumar & T.N. Lakh.	Amanitaceae	Amanita							5	EM	Agarics	HMJAU60605	
Amanita pallidocarnea (Höhn.) Boedijn	Amanitaceae	Amanita							2	EM	Agarics	HMJAU60606	
Amanita pallidorosea P. Zhang & Zhu L. Yang	Amanitaceae	Amanita							2	EM	Agarics	HMJAU60607	
Amanita rimosa P. Zhang & Zhu L.	Amanitaceae	Amanita							1	EM	Agarics	HMJAU60608	
Amanita rubescens Pers.	Amanitaceae	Amanita							2	EM	Agarics	HMJAU60609	
Amanita subglobosa Zhu L. Yang	Amanitaceae	Amanita							1	EM	Agarics	HMJAU60610	
Amanita vaginata (Bull.) Lam.	Amanitaceae	Amanita						√	3	EM	Agarics	HMJAU60611	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
---------------------------------	-----------------	-----------------	---	---	---	---	---	---	-----	----	---------------	-------------	----------------
Amanita virosa Secr.	*Amanitaceae*	*Amanita*	√						4	EM	Agarics	HMJAU60612	
Ampulloclitocybe clavipes (Pers.) Redhead, Lutzoni, Moncalvo & Vilgalys	*Hygrophoraceae*	*Ampulloclitocybe*		√					4	LS	Agarics	HMJAU60613	
Armillaria gallica Marxm. & Romagn.	*Physalacriaceae*	*Armillaria*			√				15	WS	Agarics	HMJAU60614	OL891486
Armillaria mellea (Vahl) P. Kumm.	*Physalacriaceae*	*Armillaria*		√					1	WS	Agarics	HMJAU60615	
Arthonomyces pyxidatus (Pers.) Jülich	*Auriscalpiaceae*	*Arthonomyces*				√			7	WS	Coral fungi	HMJAU60616	
Bjerkantera adusta (Willd.) P. Karst.	*Phanerochaetaceae*	*Bjerkantera*				√			1	WS	Polyporoid fungi	HMJAU60617	
Boletus aereus Bull.	*Boletaceae*	*Boletus*							2	EM	Boletes	HMJAU60618	
Boletus edulis Bull.	*Boletaceae*	*Boletus*				√			4	EM	Boletes	HMJAU60619	
Bothia castanella (Peck) Halling, T.J. Baroni & Manfr. Binder	*Boletaceae*	*Bothia*					√		2	EM	Boletes	HMJAU60620	
Bulgaria inquinans (Pers.) Fr.	*Phacidiaeae*	*Bulgaria*							1	WS	Larger Ascomytes	HMJAU60621	
Butyriboletus regius D. Arora & J.L. Frank	*Boletaceae*	*Butyriboletus*							2	EM	Boletes	HMJAU60622	OL891490
Butyriboletus roseoflavus (Hai B. Li & Hai l. Wei) D. Arora & J.L. Frank	*Boletaceae*	*Butyriboletus*							3	EM	Boletes	HMJAU60623	OL891497
Calocybe persicolor (Fr.) Singer	*Lyophyllaceae*	*Calocybe*							3	SS	Agarics	HMJAU60624	
Chalciporus piperatus (Bull.) Bataille	*Boletaceae*	*Chalciporus*							1	EM	Boletes	HMJAU60625	
Chroogomphus helveticus (Singer) M.M. Moser	*Gomphidiaceae*	*Chroogomphus*							4	EM	Agarics	HMJAU60626	OL891485
Clavaria fragilis Holmsk.	*Clavariaceae*	*Clavaria*							1	SS	Coral fungi	HMJAU60627	
Clavulinopsis corniculata (Schaeff.) Corner	*Clavariaceae*	*Clavulinopsis*							1	SS	Coral fungi	HMJAU60628	
Clavulinopsis sulcata Overeem	*Clavariaceae*	*Clavulinopsis*							10	SS	Coral fungi	HMJAU60629	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
---------------------------------	-------------------	----------	---	---	---	---	---	---	----	----	---------------	------------	---------------
Clitocybe fasciculata	Tricholomataceae	Clitocybe	✓	✓	✓	✓				LS	Agarics	HMJAU60630	
Clitocybe geotropa (Bull.) Quel.	Tricholomataceae	Clitocybe			✓					LS	Agarics	HMJAU60631	
Clitocybe gibba (Pers.) P. Kumm.	Tricholomataceae	Clitocybe				✓				LS	Agarics	HMJAU60632	
Clitocybe odora (Bull.) P. Kumm.	Tricholomataceae	Clitocybe				✓				LS	Agarics	HMJAU60633	
Clitocybe subditaepoda Peck	Tricholomataceae	Clitocybe	✓	✓	✓					LS	Agarics	HMJAU60634	
Coltricia crassa Y.C. Dai	Hymenochaetaceae	Coltricia					✓			LS	Polyporoid fungi	HMJAU60635	
Coltricia strigosipes Corner	Hymenochaetaceae	Coltricia					✓			EM	Polyporoid fungi	HMJAU60636	
Coprinellus disseminatus (Pers.) J.E. Lange	Psathyrellaceae	Coprinellus				✓				SS	Agarics	HMJAU60637	
Coprinellus radians (Desm.) Vilgalys, Hopple & Jacq. Johnson	Psathyrellaceae	Coprinellus				✓				SS	Agarics	HMJAU60638	
Coprinus comatus (O.F. Müll.) Pers.	Agaricaceae	Coprinus				✓				DS	Agarics	HMJAU60639	
Cordyceps militaris	Cordycipitaceae	Cordyceps					✓			EI	Larger Ascomyctetes	HMJAU60640	
Cortinarius anomalous (Fr.) Fr.	Cortinariaceae	Cortinarius				✓				EM	Agarics	HMJAU60641 OL891464	
Cortinarius armillatus (Fr.) Fr.	Cortinariaceae	Cortinarius				✓				EM	Agarics	HMJAU60642 OL891465	
Cortinarius balaustinus Fr.	Cortinariaceae	Cortinarius				✓				EM	Agarics	HMJAU60643	
Cortinarius bicelus (Fr.) Fr.	Cortinariaceae	Cortinarius				✓	✓			EM	Agarics	HMJAU60644 OL891467	
Cortinarius caperatus (Pers.) Fr.	Cortinariaceae	Cortinarius				✓	✓			EM	Agarics	HMJAU60645 OL891466	
Cortinarius cotoneus Fr.	Cortinariaceae	Cortinarius				✓	✓			EM	Agarics	HMJAU60646 OL891468	
Cortinarius ectypus J. Favre	Cortinariaceae	Cortinarius				✓				EM	Agarics	HMJAU60647	
Cortinarius flameoauraceus Niskanen, Kytov., Liimat., Ammirati & Dima	Cortinariaceae	Cortinarius				✓				EM	Agarics	HMJAU60648 OL891470	
Cortinarius hesleri	Cortinariaceae	Cortinarius				✓				EM	Agarics	HMJAU60649	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
---------------------------------	-----------------------	-------------------	---	---	---	---	---	---	---	----	------------------	-------------	-----------------
Cortinarius pholideus (Lilj.) Fr.	Cortinariaceae	Cortinarius							3	EM	Agarics	HMJAU0650	OL891469
Cortinarius sanguineus (Wulfen) Gray	Cortinariaceae	Cortinarius							2	EM	Agarics	HMJAU0651	
Cortinarius subbalaustinus Rob. Henry	Cortinariaceae	Cortinarius							1	EM	Agarics	HMJAU0652	
Cortinarius torvus (Fr.) Fr.	Cortinariaceae	Cortinarius							1	EM	Agarics	HMJAU0653	
Cotylidia diaphana (Cooke) Lentz	Rickenellaceae	Cotylidia							4	SS	Jelly fungi	HMJAU0654	
Craterellus cornucopioides (L.) Pers.	Hydnaceae	Craterellus							1	EM	Cantharelloidal	HMJAU0655	
Crepidotus applanatus (Pers.) P. Kumm.	Crepidotaceae	Crepidotus							1	WS	Agarics	HMJAU0656	
Crepidotus malachius Sacc.	Crepidotaceae	Crepidotus							5	WS	Agarics	HMJAU0657	
Cycloocybe erebia (Fr.) Vizzini & Matheny	Tubariaceae	Cycloocybe							2	SS	Agarics	HMJAU0658	
Cystoderma granulosum (Batsch) Fayod	Agaricaceae	Cystoderma							4	SS	Agarics	HMJAU0659	
Dacrymyces chrysospermus Berk. & M.A. Curtis	Dacrymycetaceae	Dacrymyces							3	WS	Jelly fungi	HMJAU0660	
Dacrymyces yunnanensis B. Liu & L. Fan	Dacrymycetaceae	Dacrymyces							6	WS	Jelly fungi	HMJAU0661	
Daldinia concentrica (Bolton) Ces. & De Not.	Hypoxylaceae	Daldinia							5	WS	Larger Ascomytetes	HMJAU0662	
Elmerina cladophora (Berk.) Bres.	Auriculariaceae	Elmerina							3	WS	Polyporoid fungi	HMJAU0663	
Elmerina hispida (Imazeki) Y.C. Dai & L.W. Zhou	Auriculariaceae	Elmerina							1	WS	Polyporoid fungi	HMJAU0664	
Entoloma abortivum (Berk. & M.A. Curtis) Donk	Entolomataceae	Entoloma							2	SS	Agarics	HMJAU0665	
Entoloma alboumbonatum Hesler	Entolomataceae	Entoloma							2	SS	Agarics	HMJAU0666	
Entoloma caespitosum W.M. Zhang	Entolomataceae	Entoloma							5	SS	Agarics	HMJAU0667	
Entoloma clypeatum (L.) P. Kumm.	Entolomataceae	Entoloma							4	SS	Agarics	HMJAU0668	
Entoloma holocydoniatum (Largent & Thiers) Noordel. & Co-David	Entolomataceae	Entoloma							4	SS	Agarics	HMJAU0669	
Entoloma mediterraneense Noordel. & Hauskn.	Entolomataceae	Entoloma							1	SS	Agarics	HMJAU0670	
Entoloma rhodopolium (Fr.) P. Kumm.	Entolomataceae	Entoloma							2	SS	Agarics	HMJAU0671	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	
---------------------------------	-----------------	---------------	---	---	---	---	---	---	---	---	--------------------------	---------------	
Entonaema liquescens Möller	Hypoxylaceae	Entonaema				√			3	WS	Larger Ascomytes	HMJAU60672	
Favolus squamosus (Huds.) A. Ames	Polyporaceae	Favolus				√			1	WS	Polyporoid fungi	HMJAU60673	
Flammulaster erinaceellus (Peck) Watling	Tubariaceae	Flammulaster						√	6	WS	Agarics	HMJAU60674	
Galerina helvoleps (Berk. & M.A. Curtis) Singe	Hymenogastraceae	Galerina				√			4	WS	Agarics	HMJAU60675	
Galerina marginata (Batsch) Kühner	Hymenogastraceae	Galerina						√	4	WS	Agarics	HMJAU60676	
Geastrum triplex Jungh.	Geastraceae	Geastrum				√			1	LS	Gasteroid fungi	HMJAU60677	
Gerhardtia borealis (Fr.) Contu & A. Ortega	Lyophyllaceae	Gerhardtia						√	3	SS	Agarics	HMJAU60678	
Gerronema nemorale Har. Takah.	Marasmiaceae	Gerronema						√	1	WS	Agarics	HMJAU60679	
Gloeostereum incarnatum S. Ito & S. Imai	Cyphellaceae	Gloeostereum						√	4	WS	Polyporoid fungi	HMJAU60680	
Gomphidius maculatus (Scop.) Fr.	Gomphidiaceae	Gomphidius						√	2	EM	Canthareloid	HMJAU60681	
Gymnopilus junonius (Fr.) P.D. Orton	Hymenogastraceae	Gymnopilus						√	3	WS	Agarics	HMJAU60682	
Gymnopilus penetrans (Fr.) Murrill	Hymenogastraceae	Gymnopilus						√	2	WS	Agarics	HMJAU60683	
Gymnopilus suberis (Maire) Singer	Hymenogastraceae	Gymnopilus						√	6	WS	Agarics	HMJAU60684	
Gymnopus alnicola J.L. Mata & Halling	Omphalotaceae	Gymnopus						√	4	LS	Agarics	HMJAU60685	
Gymnopus confluens (Pers.) Antonin, Halling & Noordel.	Omphalotaceae	Gymnopus				√			14	LS	Agarics	HMJAU60686 OL884222	
Gymnopus densilamellatus Antonin, Ryoo & Ka	Omphalotaceae	Gymnopus				√			25	LS	Agarics	HMJAU60687 OL884223	
Gymnopus dryophilus (Bull.) Murrill	Omphalotaceae	Gymnopus				√			30	LS	Agarics	HMJAU60688 OL891463	
Gymnopus gibbosus (Corner) A.W. Wilson, Desjardin & E. Horak	Omphalotaceae	Gymnopus				√			7	LS	Agarics	HMJAU60689 OL884224	
Gymnopus liseleuretiatorum (M.M. Moser, Gerhold & Tobies) Antonin & Noordel.	Omphalotaceae	Gymnopus				√			7	LS	Agarics	HMJAU60690	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
--------------------------------------	-----------------------	-----------------	---	---	---	---	---	---	---	----	-----------------------------	------	------------------
Harrya chromapes (Frost) Halling, Nuhn, Osmundson & Manfr.	Boletaceae	Harrya	✓						1	EM	Boletes	HMJAU60691 OL891492	
Hebeloma birrus (Fr.) Gillet	Hymenogastraceae	Hebeloma	✓						6	EM	Agarics	HMJAU60692 OL891483	
Helocybe sulcata (Berk.) Redhead & Ginns	Gloeophyllaceae	Helocybe	✓						2	WS	Agarics	HMJAU60693	
Helvella crispa (Scop.) Fr.	Hydnaceae	Helvella	✓	✓					2	EM	Larger Ascomyetes	HMJAU60694	
Helvella elastica Bull.	Helvellaceae	Helvella	✓						1	EM	Larger Ascomyetes	HMJAU60695	
Helvella macrops (Pers.) P. Karst.	Helvellaceae	Helvella	✓	✓					3	EM	Larger Ascomyetes	HMJAU60696	
Hemistropharia alboarenula (Peck) Jacobsson & E. Larss.	Tubariaceae	Hemistropharia	✓						1	SS	Agarics	HMJAU60697	
Hericium erinaceus (Bull.) Pers.	Hericiaceae	Hericium	✓						1	WS	Hydnaceous fungi	HMJAU60698	
Humaria hemisphaerica (E.H. Wigg.) Fuckel	Pyronemataceae	Humaria	✓						1	EM	Larger Ascomyetes	HMJAU60699	
Hydnellum aurantiacum (Batsch) P. Karst.	Bankeraceae	Hydnellum	✓						2	EM	Hydnaceous fungi	HMJAU60700 OL891471	
Hydnellum peckii Banker	Bankeraceae	Hydnellum	✓						2	EM	Hydnaceous fungi	HMJAU60701 OL891487	
Hygrocybe cantharellus (Schwein.) Murrill	Hygrophoraceae	Hygrocybe	✓						5	SS	Agarics	HMJAU60702	
Hygrocybe chlorophana (Fr.) Wünsche	Hygrophoraceae	Hygrocybe	✓						5	SS	Agarics	HMJAU60703	
Hygrocybe coccinea (Schaeff.) P. Kumm.	Hygrophoraceae	Hygrocybe	✓						4	SS	Agarics	HMJAU60704	
Hygrocybe coccineocrenata D. Orton M.M. Moser	Hygrophoraceae	Hygrocybe	✓						5	SS	Agarics	HMJAU60705	
Hygrocybe miniata (Fr.) P. Kumm.	Hygrophoraceae	Hygrocybe	✓						4	SS	Agarics	HMJAU60706	
Hygrocybe reidii Kühner	Hygrophoraceae	Hygrocybe	✓						1	SS	Agarics	HMJAU60707	
Hygrophoropsis aurantiaca (Wulfen) Maire	Hygrophoropsidaceae	Hygrophoropsis	✓	✓					7	LS	Agarics	HMJAU60708 OL891484	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
-------------------------------	---------------	----------------	---	---	---	---	---	---	-----	-----	------------	-------------	----------------
Hygrophorus conicus (Schaeff.) Fr.	Hygrophoraceae	Hygrophorus	√	✓					6	EM	Agarics	HMJAU60709	
Hygrophorus nemoreus (Pers.) Fr.	Hygrophoraceae	Hygrophorus	√	✓					9	EM	Agarics	HMJAU60710	
Hygrophorus pudorinus (Fr.) Fr.	Hygrophoraceae	Hygrophorus			√				1	EM	Agarics	HMJAU60711	
Hygrophorus russula (Schaeff. ex Fr.) Kauffman	Hygrophoraceae	Hygrophorus			✓				2	EM	Agarics	HMJAU60712	
Hopholoma capnoides (Fr.) P. Kumm.	Strophariaceae	Hopholoma					√		2	WS	Agarics	HMJAU60713	
Hopholoma sublateritium (Fr.) Quél.	Strophariaceae	Hopholoma					✓		4	WS	Agarics	HMJAU60714	
Infundibulicybe geotropa (Bull.) Harmaja	Tricholomataceae	Infundibulicybe					✓		2	SS	Agarics	HMJAU60715	
Infundibulicybe gibba (Pers.) Harmaja	Tricholomataceae	Infundibulicybe					✓		2	SS	Agarics	HMJAU60716	
Inocybe assimilata Britzelm.	Inocybaceae	Inocybe					✓		2	EM	Agarics	HMJAU60717	
Inocybe asterospora Quél.	Inocybaceae	Inocybe					✓		1	EM	Agarics	HMJAU60718	
Inocybe suevulens D.E. Stuntz	Inocybaceae	Inocybe					✓		2	EM	Agarics	HMJAU60719	OL891472
Inonotus hispidus (Bull.) P. Karst.	Hymenochaetaceae	Inonotus					✓		3	WS	Polyporoid fungi	HMJAU60720	
Laccaria amethystina Cooke	Hydnangiaceae	Laccaria					✓		4	EM	Agarics	HMJAU60721	
Laccaria laccata (Scop.) Cooke	Hydnangiaceae	Laccaria					✓		4	EM	Agarics	HMJAU60722	
Lactarius albidocelestes X.H. Wang, S.F. Shi & T. Bau	Russulaceae	Lactarius					✓		2	EM	Agarics	HMJAU60723	OL891473
Lactarius briooeolascens Bon	Russulaceae	Lactarius					✓		1	EM	Agarics	HMJAU60724	
Lactarius conglutinatus X.H. Wang	Russulaceae	Lactarius					✓		6	EM	Agarics	HMJAU60725	
Lactarius deterirmus Gröger	Russulaceae	Lactarius					✓		5	EM	Agarics	HMJAU60726	
Lactarius flavidus Boud.	Russulaceae	Lactarius					✓		1	EM	Agarics	HMJAU60727	
Lactarius glyciosmus (Fr.) Fr.	Russulaceae	Lactarius					✓		1	EM	Agarics	HMJAU60728	
Lactarius hirtipes J.Z. Ying	Russulaceae	Lactarius					✓		3	EM	Agarics	HMJAU60729	
Lactarius lilacinus Fr.	Russulaceae	Lactarius					✓		3	EM	Agarics	HMJAU60730	
Lactarius pallidus Pers.	Russulaceae	Lactarius					✓		2	EM	Agarics	HMJAU60731	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
---------------------------------	----------------	---------	---	---	---	---	---	---	----	----	------------	--------	----------------
Lactarius piperatus (L.) Pers.	Russulaceae	Lactarius	✓						1	EM	Agarics	HMJAU60732	
Lactarius proximellus Beardslee & Burl.	Russulaceae	Lactarius	✓						1	EM	Agarics	HMJAU60733	
Lactarius pubescens Fr.	Russulaceae	Lactarius	✓						1	EM	Agarics	HMJAU60734	
Lactarius subvellereus Peck	Russulaceae	Lactarius	✓						2	EM	Agarics	HMJAU60735	
Lactarius torminosus (Schaeff.) Pers.	Russulaceae	Lactarius	✓						2	EM	Agarics	HMJAU60736	
Lactarius trivialis (Fr.) Fr.	Russulaceae	Lactarius	✓						1	EM	Agarics	HMJAU60737	OL891474
Lactarius volemus (Fr.) Fr.	Russulaceae	Lactarius	✓						3	EM	Agarics	HMJAU60738	
Lactarius zonarius (Bull.) Fr.	Russulaceae	Lactarius	✓						2	EM	Agarics	HMJAU60740	
Lactifluus bertillonii (Neuhoff ex Z. Schaeff.) Verbeken	Russulaceae	Lactifluus	✓						1	EM	Agarics	HMJAU60741	OL891489
Lactifluus pilosus (Verbeken, H.T. Le & Lumyong) Verbeken	Russulaceae	Lactifluus	✓						1	EM	Agarics	HMJAU60742	
Lentinellus ursinus (Fr.) Kühner	Auriscalpiaceae	Lentinellus	✓	✓					6	WS	Agarics	HMJAU60745	
Lentinus edodes (Berk.) Singer	Omphalotaceae	Lentinus	✓						2	WS	Agarics	HMJAU60748	
Lentinus sajor-caju (Fr.) Fr.	Polyporaceae	Lentinus	✓						6	WS	Agarics	HMJAU60749	OL891475
Leotia lubrica (Scop.) Pers.	Leotiaceae	Leotia	✓						4	SS	Larger Ascomytes	HMJAU60750	
Lepiota castanea Quel.	Agaricaeae	Lepiota	✓						5	LS	Agarics	HMJAU60751	
Lepiota cristata (Bolton) P. Kumm.	Agaricaeae	Lepiota	✓						4	LS	Agarics	HMJAU60752	
Lepista nuda (Bull.) Cooke	Tricholomataceae	Lepista	✓	✓					9	SS	Agarics	HMJAU60753	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
---------------------------------	----------------------	-------------------------	---	---	---	---	---	---	---	----	--------------------------	------------	---------------
Lepista personata (Fr.) Cooke	Tricholomataceae	*Lepista*				✓			1	SS	Agarics	HMJAU60754	
Leucocybe connata (Schumach.) Vizzini, P. Alvarado, G. Moreno & Consiglio	Lyophyllaceae	*Leucocybe*						✓	3	EM	Agarics	HMJAU60755	
Lycoperdon mammiforme Pers.	Lycoperdaceae	*Lycoperdon*			✓				8	SS	Agarics	HMJAU60756	
Lycoperdon perlatum Pers.	Lycoperdaceae	*Lycoperdon*	✓			✓			5	SS	Gasteroid fungi	HMJAU60757	
Lycoperdon umbrinum Pers.	Lycoperdaceae	*Lycoperdon*			✓				3	SS	Gasteroid fungi	HMJAU60758	
Lyophyllum decastes (Fr.) Singer	Lyophyllaceae	*Lyophyllum*			✓				3	EM	Agarics	HMJAU60759	
Lyophyllum infatum (Bres.) Kühner	Lyophyllaceae	*Lyophyllum*				✓			1	EM	Agarics	HMJAU60760	OL891476
Macrocystidia cucumis (Pers.) Joss.	Macrocytidiaceae	*Macrocystidia*				✓			2	SS	Agarics	HMJAU60761	
Marasmius confertus Berk. & Broome	Marasmiaceae	*Marasmius*			✓				2	LS	Agarics	HMJAU60762	
Marasmius maximus Hongo	Marasmiaceae	*Marasmius*	✓			✓			8	LS	Agarics	HMJAU60763	
Marasmius nigrodiscus (Peck) Halling	Marasmiaceae	*Marasmius*				✓			2	LS	Agarics	HMJAU60764	
Marasmius occultatiformis Antonin, Ryoo & H.D. Shin	Marasmiaceae	*Marasmius*	✓						4	LS	Agarics	HMJAU60765	
Marasmius succus (Schwein.) Fr.	Marasmiaceae	*Marasmius*		✓					1	LS	Agarics	HMJAU60766	
Megacollybia clitocybeoides R.H. Petersen, Takehashi & Nagas.	Megacollybiaceae	*Megacollybia*	✓			✓			4	WS	Agarics	HMJAU60767	
Melanoleuca cognata (Huds.) Fr.	Tricholomataceae	*Melanoleuca*	✓						1	SS	Agarics	HMJAU60768	
Mucidula brunneomarginata Lj.N. Vassiljeva) R.H. Petersen	Physalaciaceae	*Mucidula*	✓						2	WS	Agarics	HMJAU60769	
Mutinus caninus (Huds.) Fr.	Phallaceae	*Mutinus*	✓						4	LS	Gasteroid fungi	HMJAU60770	
Mycena galericulata (Scop.) Gray	Mycenaceae	*Mycena*	✓						5	LS	Agarics	HMJAU60771	
Mycena haematopus (Pers.) P. Kumm.	Mycenaceae	*Mycena*	✓						3	LS	Agarics	HMJAU60772	
Mycena pelianthina (Fr.) Quél.	Mycenaceae	*Mycena*	✓					✓	1	LS	Agarics	HMJAU60773	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
--	----------------------	--------	---	---	---	---	---	---	----	----	--------------	---------------	----------------
Mycena polygramma (Bull.) Gray	Mycenaceae	Mycena				✓			2	LS	Agarics	HMJAU60774	
Mycena pura (Pers.) P. Kumm.	Mycenaceae	Mycena			✓	✓			4	LS	Agarics	HMJAU60775	
Mycena roseocephala (Peck) Sacc.	Mycenaceae	Mycena							1	LS	Agarics	HMJAU60776	
Mycena sanguinolenta (Alb. & Schwein.) P. Kumm.	Mycenaceae	Mycena							8	LS	Agarics	HMJAU60777	
Mycena stylobates (Pers.) P. Kumm.	Mycenaceae	Mycena				✓			12	LS	Agarics	HMJAU60778	
Neolentinus cyathiformis (Schaeff.) Della Magg. & Trassin.	Gloeophyllaceae	Neolentinus	✓	✓	✓				12	LS	Agarics	HMJAU60779	OL891477
Omphalina pyxidata (Bull.) Quél.	Tricholomataceae	Omphalina							3	LS	Agarics	HMJAU60780	
Ophiocordyceps nutans (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora	Ophiocordycipitaceae	Ophiocordyceps	✓	✓	✓				1	EI	Larger Ascomyctetes	HMJAU60781	
Oudemansiella mucida (Schrad.) Höhn.	Physalaciaceae	Oudemansiella	✓						4	WS	Agarics	HMJAU60782	
Paxillus involutus (Batsch) Fr.	Paxillaceae	Paxillus	✓	✓	✓				2	EM	Agarics	HMJAU60783	
Paxillus orientalis Gelardi, Vizzini, E. Horak & G. Wu	Paxillaceae	Paxillus	✓	✓	✓				1	EM	Agarics	HMJAU60784	
Peziza domiciliana Cooke	Pezizaceae	Peziza	✓						3	SS	Larger Ascomyctetes	HMJAU60785	
Phallus tenuissimus T.H. Li, W.Q. Deng & B. Liu	Phallaceae	Phallus	✓						2	LS	Gasteroid fungi	HMJAU60786	
Phellinus pomaccus (Pers.) Maire	Hymenochaetaceae	Phellinus	✓	✓	✓				2	WS	Polyporoid fungi	HMJAU60787	
Pholiota aurivella (Batsch) P. Kumm.	Strophariaceae	Pholiota	✓						4	WS	Agarics	HMJAU60788	
Pholiota squarrosoides (Peck) Sacc.	Strophariaceae	Pholiota	✓						3	WS	Agarics	HMJAU60789	
Phylloporus yunnanensis N.K. Zeng, Zhu L. Yang & L.P. Tang	Boletaceae	Phylloporus	✓						2	EM	Boletes	HMJAU60790	
Phyllophoropsis nidulans (Pers.) Singer	Phyllophoropsidaceae	Phylloporus	✓						7	WS	Agarics	HMJAU60791	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
---------------------------------	-------------------------	-----------------	---	---	---	---	---	---	----	----	---------------------	------	---------------
Piptoporus soloniensis (Dubois) Pilát	Fomitopsidaceae	Piptoporus	√						2	WS	Polyporoid fungi		HMJAU60792
Pleurotus citrinopileatus Singer	Pleurotaceae	Pleurotus							4	WS	Agarics		HMJAU60793
Pleurotus ostreatus (Jacq.) P. Kumm.	Pleurotaceae	Pleurotus	√						8	WS	Agarics		HMJAU60794
Pleurotus pulmonarius (Fr.) Quél.	Pleurotaceae	Pleurotus							2	WS	Agarics		HMJAU60795
Pluteus atromarginatus (Konrad) Kühner	Pluteaceae	Pluteus							2	LS	Agarics		HMJAU60796
Pluteus cervinus (Schaeff.) P. Kumm.	Pluteaceae	Pluteus							1	LS	Agarics		HMJAU60797
Pluteus hispidulus (Fr.) Gillet	Pluteaceae	Pluteus							1	LS	Agarics		HMJAU60798
Pluteus leoninus (Schaeff.) P. Kumm	Pluteaceae	Pluteus	√						1	LS	Agarics		HMJAU60799
Pluteus phlebophorus (Ditmar) P. Kumm.	Pluteaceae	Pluteus					√		2	LS	Agarics		HMJAU60800
Pluteus pouzarianus Singer	Pluteaceae	Pluteus							2	LS	Agarics		HMJAU60801
Podoscypha nitidula (Berk.) Pat.	Podoscyphaceae	Podoscypha		√							Polyporoid fungi		HMJAU60802
Polyporus arcularius (Batsch) Fr.	Polyporaceae	Polyporus							10	WS	Polyporoid fungi		HMJAU60803
Polyporus submelanopus H.J. Xue & L.W. Zhou	Polyporaceae	Polyporus							1	WS	Polyporoid fungi		HMJAU60804
Polyporus umbellatus (Pers.) Fr.	Polyporaceae	Polyporus							4	SS	Polyporoid fungi		HMJAU60805
Psathyrella delineata (Peck) A.H. Sm.	Psathyrellaceae	Psathyrella		√							Agarics		HMJAU60806
Psathyrella typhae (Kalchb.) A. Pearson & Dennis	Psathyrellaceae	Psathyrella						√			Agarics		HMJAU60807
Pseudolaccaria fellea (Peck) Vizzini, Matheny & Consiglio & M. Marchetti	Callistosporiaceae	Pseudolaccaria	√						3	WS	Agarics		HMJAU60808
Pseudoplectania nigrella (Pers.) Fuckel	Sarcosomataceae	Pseudoplectania	√						5	SS	Larger Ascomyctetes		HMJAU60809
Pulveroboletus macrosorus G. Wu & Zhu L. Yang	Boletaceae	Pulveroboletus	√						1	EM	Boletes		HMJAU60810
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	GenBank Number	
---	-----------------	---------	---	---	---	---	---	---	----	----	------------	----------------	
Ramaria cokeri R.H. Petersen	Gomphaceae	Ramaria	✓		✓				2	EM	Coral fungi	HMJAU60811	
Ramaria femmica (P. Karst.) Ricken	Gomphaceae	Ramaria			✓				1	EM	Coral fungi	HMJAU60812	
Ramaria marrii Scates	Gomphaceae	Ramaria						✓	2	EM	Coral fungi	HMJAU60813	
Ramaria sanguinipes R.H. Petersen & M. Zang	Gomphaceae	Ramaria						✓	2	EM	Coral fungi	HMJAU60814	
Ramaria stricta (Pers.) Quél.	Gomphaceae	Ramaria						✓	3	EM	Coral fungi	HMJAU60815	
Ramaria butyracea (Bull.) Lennox	Omphalotaceae	Rhodocollybia	✓						12	SS	Agarics	HMJAU60816	
Russula aquigena Lindblad ex Fr.	Russulaceae	Russula		✓					3	EM	Agarics	HMJAU60817	
Russula amoena Quél.	Russulaceae	Russula	✓	✓	✓				2	EM	Agarics	HMJAU60818	
Russula cyanoxantha (Schaeff.) Fr.	Russulaceae	Russula					✓		1	EM	Agarics	HMJAU60819	
Russula emtica (Schaeff.) Pers.	Russulaceae	Russula	✓	✓	✓	✓			18	EM	Agarics	HMJAU60820	
Russula foeiens Pers.	Russulaceae	Russula	✓		✓				3	EM	Agarics	HMJAU60821	
Russula fucata Pers.	Russulaceae	Russula			✓				3	EM	Agarics	HMJAU60822	
Russula grata Britzelm.	Russulaceae	Russula	✓						2	EM	Agarics	HMJAU60823	
Russula lakhampali A. Ghosh, K. Das & R.P. Bhatt	Russulaceae	Russula				✓			2	EM	Agarics	HMJAU60824	OL891479
Russula paludosa Britzelm.	Russulaceae	Russula	✓		✓				6	EM	Agarics	HMJAU60825	
Russula risigallina (Batsch) Sacc.	Russulaceae	Russula			✓				3	EM	Agarics	HMJAU60826	
Russula rosea Pers.	Russulaceae	Russula	✓	✓					4	EM	Agarics	HMJAU60827	
Russula seneics S. Imai	Russulaceae	Russula				✓			6	EM	Agarics	HMJAU60828	
Russula sororia (Fr.) Romell	Russulaceae	Russula					✓		3	EM	Agarics	HMJAU60829	
Russula vetersosa Fr.	Russulaceae	Russula				✓			2	EM	Agarics	HMJAU60830	
Russula vinosa Lindblad	Russulaceae	Russula				✓			2	EM	Agarics	HMJAU60831	
Russula virescens (Schaeff.) Fr.	Russulaceae	Russula					✓		1	EM	Agarics	HMJAU60832	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
---------------------------------	--------------	-------------------	---	---	---	---	---	---	---	----	-------------------	--------	---------------
Sarcodontia spumea (Sowerby) Spirin	*Meruliaceae*	*Sarcodontia*							3	WS	Polyporoid fungi	HMJAU60833	
Schizophyllum commune Fr.	*Schizophyllaceae*	*Schizophyllum*							4	WS	Agarics	HMJAU60834	
Scleroderma areolatum Ehrenb.	*Sclerodermataceae*	*Scleroderma*				√			4	EM	Gasteroid fungi	HMJAU60835	
Sowerbyella rhenana (Fuckel) J. Moravec	*Pyronemataceae*	*Sowerbyella*							5	EM	Larger Ascomyentes	HMJAU60836	
Spathularia flavida Pers.	*Cudoniaceae*	*Spathularia*							4	SS	Larger Ascomyentes	HMJAU60837	
Stropharia rugosoannulata Farl. ex Murrill	*Tubariaceae*	*Stropharia*							3	SS	Agarics	HMJAU60838	
Suillus americanus (Peck) Snell	*Suillaceae*	*Suillus*							1	EM	Boletes	HMJAU60839	
Suillus granulatus (L.) Roussel	*Suillaceae*	*Suillus*							1	EM	Boletes	HMJAU60840	
Suillus grevillei (Klotzsch) Singer	*Suillaceae*	*Suillus*				√			10	EM	Boletes	HMJAU60841 OL891494	
Suillus luteus (L.) Roussel	*Suillaceae*	*Suillus*				√			4	EM	Boletes	HMJAU60842 OL891496	
Suillus placidus (Bonord.) Singer	*Suillaceae*	*Suillus*							3	EM	Boletes	HMJAU60843 OL884444	
Suillus subaureus (Peck) Snell	*Suillaceae*	*Suillus*							5	EM	Boletes	HMJAU60844 OL891495	
Suillus tomentosus Singer, Snell & E.A. Dick	*Suillaceae*	*Suillus*							3	EM	Boletes	HMJAU60845	
Sutorius brunneissimus (W.F. Chiu) G. Wu & Zhu L. Yang	*Boletaceae*	*Sutorius*							1	EM	Boletes	HMJAU60846	
Tengioboletus glutinosus G. Wu & Zhu L. Yang	*Boletaceae*	*Tengioboletus*				√			5	EM	Boletes	HMJAU60847	
Tremella Fuciformis Berk.	*Tremellaceae*	*Tremella*							3	WS	Jelly fungi	HMJAU60848	
Trichoderma rhododendri (Jaklitsch) Jaklitsch & Voginayar	*Hypocreaceae*	*Trichoderma*							3	WS	Larger Ascomyentes	HMJAU60849	
Tricholoma matsutake (S. Ito & S. Imai) Singer	*Tricholomataceae*	*Tricholoma*							4	EM	Agarics	HMJAU60850	
Tricholoma psammopus (Kalchbr.) Quél.	*Tricholomataceae*	*Tricholoma*				√			5	EM	Agarics	HMJAU60851 OL891480	
Tricholoma saponaceum (Fr.) P. Kumm.	*Tricholomataceae*	*Tricholoma*							2	EM	Agarics	HMJAU60852	
Tricholoma sejunctum (Sowerby) Quél.	*Sarcoscyphaceae*	*Tricholoma*							4	EM	Agarics	HMJAU60853 OL891481	
Species	Family	Genera	A	B	C	D	E	F	N	ML	Categories	SN	GenBank Number
------------------------	----------------------	-------------	---	---	---	---	---	---	-----	----	------------	----	----------------
Tricholoma stans (Fr.) Sacc.	Tricholomataceae	Tricholoma	√						2	EM	Agarics	HMJAU60854	
Tricholoma subacutum Peck	Tricholomataceae	Tricholoma		√					2	EM	Agarics	HMJAU60855	
Tricholoma ustale (Fr.) P. Kumm.	Tricholomataceae	Tricholoma		√					1	EM	Agarics	HMJAU60856 OL891482	
Tricholoma ustaloides Romagn.	Tricholomataceae	Tricholoma							1	EM	Agarics	HMJAU60857	
Tricholomopsis ratilans (Schaeff.) Singer	Tricholomataceae	Tricholomopsis						√	2	SS	Agarics	HMJAU60858	
Tylopilus eximius (Peck) Singer	Boletaceae	Tylopilus						√	1	EM	Boletes	HMJAU60859 OL891491	
Tylopilus felleus (Bull.) P. Karst.	Boletaceae	Tylopilus						√	1	EM	Boletes	HMJAU60860	
Tylopilus virens (W.F. Chiu) Hongo	Boletaceae	Tylopilus						√	2	EM	Boletes	HMJAU60861 OL891493	
Tyromyces lacteus (Fr.) Murrill	Incrustoporiciaceae	Tyromyces							1	WS	Polyporoid fungi	HMJAU60862	
Vanrijia pseudolonga (M. Takash., Sugita, Shinoda & Nakase) Weiß	Cryptococcaceae	Vanrijia							1	EM	Boletes	HMJAU60863	
Volvopluteus michiganensis (A.H. Sm.) Justo & Minnis	Pluteaceae	Volvopluteus						√	1	SS	Boletes	HMJAU60864	
Wynnea gigantea Berk. & M.A. Curtis	Wynneace	Wynnea				√			5	SS	Larger Ascomytes	HMJAU60865	
Xerocomus ferragineus (Schaeff.) Alessio	Boletaceae	Xerocomus						√	1	EM	Boletes	HMJAU60866	
Xerocomus magnipurorus M. Zang & R.H. Petersen	Boletaceae	Xerocomus						√	1	EM	Boletes	HMJAU60867	
Xeromphalina campanella (Batsch) Kühner & Maire	Mycenaceae	Xeromphalina						√	1	WS	Agarics	HMJAU60868	
Xylaria hypoxylon (L.) Grev.	Xylariaceae	Xylaria						√	4	WS	Larger Ascomytes	HMJAU60869	
Xylaria polymorpha (Pers.) Grev.	Xylariaceae	Xylaria						√	1	WS	Larger Ascomytes	HMJAU60870	

Note: Abbreviations: A = Q. mongolica forest; B = Broad-leaved forest; C = P. koraiensis and Q. mongolica mixed forest, with P. koraiensis as the dominant species; D = P. koraiensis and Q. mongolica mixed forest, with Q. mongolica as the dominant species; E = P. koraiensis forest; F = random collection; N = Number of fruiting bodies; ML = Mode of Life; SN = Specimen Number; EM = ectomycorrhizal; SS = soil saprotroph; WS = wood saprotroph; LS = litter saprotroph; DS = dung saprotroph; EI = endophyte-insect pathogen.
Appendix C. Species Scientific Names and Corresponding Abbreviations

Species	Acronyms	Species	Acronyms	Species	Acronyms	Species	Acronyms	Species	Acronyms
Amanita altipes	Ama1	Cortinarius armillatus	Cor2 (A)	Inocybe assimilata	Ino1 (A)	Leccinum scabrum	Lec2 (D)	Russula vinosa	Ru14
Amanita chepangiana	Ama2	Cortinarius balaustinus	Cor3 (A)	Inocybe asterospora	Ino2 (A)	Leccinum versipelle	Lec3 (A)	Russula virens	Ru15 (A)
Amanita excelsa	Ama3 (D)	Cortinarius bivelus	Cor4	Inocybe suaveolens	Ino3	Leucocybe connata	Leu1 (A)	Scleroderma areolatum	Scl1
Amanita flavipes	Ama4	Cortinarius caperatus	Cor5 (A)	Laccaria amethystina	Lac1 (D)	Lyophyllum decastes	Lyo1 (A)	Sowerbyella rhenana	Sow1 (D)
Amanita fuliginea	Ama5	Cortinarius cotoneus	Cor6	Laccaria laccata	Lac2	Lyophyllum infatum	Lyo2	Suillus americanus	Sui1
Amanita hemibapha	Ama6	Cortinarius ectypus	Cor7 (A)	Lactarius albidocinereus	Lact1 (D)	Paxillus involutus	Pax1	Suillus grevillei	Sui2
Amanita ibotengutake	Ama7	Cortinarius flavonourceus	Cor8 (A)	Lactarius brunneviolascens	Lact2 (A)	Paxillus orientalis	Pax2 (A)	Suillus luteus	Sui3
Amanita oberwinklerana	Ama8	Cortinarius hesleri	Cor9 (A)	Lactarius conglutinatus	Lact3 (A)	Phylloporus yunnanensis	Phy1 (A)	Suillus placidus	Sui4
Amanita orsonii	Ama9	Cortinarius pholideus	Cor10 (D)	Lactarius deterrinun	Lact4	Pulveroboletus macrosporus	Pul1 (D)	Suillus subaureus	Sui5 (A)
Amanita pallidocarnea	Ama10	Cortinarius sanguineus	Cor11 (D)	Lactarius flavidus	Lact5 (A)	Ramaria coker	Ram 1	Suillus tomentosus	Sui6 (A)
Amanita pallidorosea	Ama11 (A)	Cortinarius subbalustinus	Cor12 (A)	Lactarius glycosmus	Lact6 (A)	Ramaria marri	Ram2 (A)	Tengioboletus glatinum	Ten1
Amanita rimosa	Ama12 (A)	Cortinarius torvus	Cor13 (A)	Lactarius hirtipes	Lact7 (A)	Ramaria sanguinipes	Ram 3	Tricholoma matsutake	Tri1
Amanita rubescens	Ama13	Craterellus cornucopioides	Cra1(A)	Lactarius lilacinus	Lact8 (A)	Ramaria stricta	Ram 4	Tricholoma psammopus	Tri2
Amanita subglobosa	Ama14 (A)	Gomphidius maculatus	Gom1	Lactarius pallidus	Lact9	Russula aeruginosa	Rus1 (D)	Tricholoma psammopus	Tri2
Species Acronyms									
------------------	------------------	------------------	------------------	------------------	------------------	------------------			
Amanita vaginata	Ama15	Harrya chromapes	Har1 (A)	Lactarius piperatus	Lact10 (A)	Russula amoena	Russ2		
Amanita virosa	Ama16	Helvelona birrus	Heb1 (A)	Lactarius proxinellus	Lact11	Russula cyanoxantha	Russ3		
Boletus aereus	Bol1	Helvella crispa	Hel1	Lactarius pubescens	Lact12 (A)	Russula emetica	Russ4		
Boletus edulis	Bol2	Helvella elastica	Hel2	Lactarius subvellereus	Lact13 (A)	Russula foetens	Russ5		
Bothia castanella	Bot1 (A)	Helvelona macropus	Hel3	Lactarius torminosus	Lact14 (D)	Russula furcata	Russ6 (D)		
Butyriboletus regius	But1 (A)	Hymenesthes hemisphaerica	Hum1	Lactarius trivialis	Lact15 (A)	Russula grata	Russ7 (A)		
Butyriboletus roseoflavus	But2	Hydnellum aurantiacum	Hyd1	Lactarius virens	Lact16 (A)	Russula lakhampalii	Russ8 (D)		
Chalciporus piparius	Cha1	Hydnellum peckii	Hyd2	Lactarius volemus	Lact17 (A)	Russula paludos	Russ9		
Chroogomphus helveticus	Chr1	Hygrophorus conicus	Hyg1	Lactarius zonarius	Lact18	Russula rosea	Russ10		
Coltricia crassa	Col1	Hygrophorus nemoreus	Hyg2	Lactifluus bertillonii	Lacti1 (A)	Russula sencic	Russ11 (D)		
Coltricia strigosipes	Col2 (A)	Hygrophorus pudorinus	Hyg3 (A)	Lactifluus pilosus	Lacti2 (A)	Russula sororia	Russ12 (D)		
Cortinarius anomalous	Cor1 (D)	Hygrophorus russula	Hyg4 (A)	Leccinum aurantiacum	Lec1 (A)	Russula veternosa	Russ13 (A)		

Note: Abbreviations: Overlapping species labels are marked and noted in parentheses. A = Q. mongolica forest; D = P. koraiensis and Q. mongolica mixed forest, with Q. mongolica as the dominant species.
26. Heine, P.; Hausen, J.; Ottermanns, R.; Schäffer, A.; Roß-Nickoll, M. Forest conversion from Norway spruce to European beech increases species richness and functional structure of above-ground macrofungal communities. *For. Ecol. Manag.* 2019, 432, 522–533. [CrossRef]

27. Tomao, A.; Bonet, J.A.; Castaño, C.; de-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. *For. Ecol. Manag.* 2020, 457, 117678. [CrossRef]

28. Li, H.; Guo, J.; Karunarathna, S.C.; Ye, L.; Xu, J.; Hyde, K.D.; Mortimer, P.E. Native Forests Have a Higher Diversity of Macrofungi Than Comparable Plantation Forests in the Greater Mekong Subregion. *Fores* 2018, 9, 402. [CrossRef]

29. Kooch, Y.; Sanji, R.; Tabari, M. The effect of vegetation change in C and N contents in litter and soil organic fractions of a Northern Iran temperate forest. *Catena* 2019, 178, 32–39. [CrossRef]

30. Aerts, R.; Ewald, M.; Nicolas, M.; Piat, J.; Skowronek, S.; Lenoir, J.; Hattab, T.; Garzón-López, C.X.; Feilhauer, H.; Schmidtlein, S.; et al. Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. *Front. Plant Sci.* 2017, 8, 179. [CrossRef]

31. Dobrovolný, L. Density and spatial distribution of beech (*Fagus sylvatica* L.) regeneration in Norway spruce (Pinus sylvestris L.) stands in the central part of the Czech Republic. *Ifor. Biogeosci.* 2016, 9, 666–672. [CrossRef]

32. Liang, J.H.; Tang, Z.Z. Jian Lin National Nature Reserve key protected plants and protective measures. *For. Investig. Des.* 2015, 4, 80–83.

33. Cox, F.; Barsoum, N.; Lilleskov, E.A.; Bidartondo, M.I. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. *Ecol. Lett.* 2010, 13, 1103–1113. [CrossRef][PubMed]

34. Suz, L.M.; Barsoum, N.; Benham, S.; Dietrich, H.P.; Fetzler, K.D.; Fischer, R.; García, P.; Gehman, J.; Kristöfel, F.; Manninger, M.; et al. Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. *Mol. Ecol.* 2014, 23, 5628–5644. [CrossRef]

35. Shuhada, S.N.; Salim, S.; Nobilly, F.; Lechner, A.M.; Azhar, B. Conversion of peat swamp forest to oil palm cultivation reduces the diversity and abundance of macrofungi. *Glob. Ecol. Conserv.* 2020, 23, e01122. [CrossRef]

36. Wang, S. The Research on the Evaluation and satisfaction of the Ecological Tourism Resources of Ji’an Wunvfeng National Forest Park. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2013.

37. Shi, X.; Yu, D.; Xu, S.; Warner, E.D.; Wang, H.; Sun, W.; Zhao, Y.; Gong, Z. Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. *Geoderma* 2010, 155, 344–350. [CrossRef]

38. Chen, H.J.; Yu, H.B.; Ma, Y.G.; Chen, J.S.; Qian, C.; Liu, S.W.; Cui, T.R.; Zhong, H. Zircon U-Pb Age, Petrological Geochemistry and Tectonic Implication of Alkaline Granite in South-Eastern, Thin Province. *J. Jilin Univ. (Earth Sci. Ed.)* 2020, 50, 531–541. [CrossRef]

39. Xing, P.; Xu, Y.; Gao, T.; Li, G.; Zhou, J.; Xie, M.; Ji, R. The community composition variation of Russulaceae associated with the Quercus mongolica forest during the growing season at Wudalianchi City, China. *PeerJ* 2020, 8, e8527. [CrossRef]

40. Qin, N.; Bau, T. Recognition of Mycena sect. Amparoinasect. nov. (Mycenaceae, Agaricales), including four new species and revision of the limits of sect. Sacchariferae. *Mycologia* 2019, 12, 103–124. [CrossRef]

41. Li, Y.; Li, T.H.; Yang, Z.L.; Bau, T.; Dai, Y.C. *Atlas of Chinese Macrotfungal Resources*; Central China Farmer’s Publishing House: Zhengzhou, China, 2015.

42. Liu, X.L. *The Macrotfungi in China*; HeNan Science and Technology Press: Zhengzhou, China, 2000.

43. Manter, D.K.; Vivanco, J.M. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-forest communities. *Eur. J. Soil Biol.* 2010, 46, 280–287. [CrossRef]

44. Thines, M.; Aoki, T.; Crous, P.W.; Hyde, K.D.; Mortimer, P.E. Native Forests Have a Higher Diversity of Macrofungi Than Comparable Plantation Forests in the Greater Mekong Subregion. *Fores* 2018, 9, 402. [CrossRef]

45. Ter Braak, C.J.; Smilauer, P. *Canonical Analysis of Principal Coordinates*. Microcal Massachusetts: Northampton, MA, USA, 2012.

46. Wang, Q.; He, X.H.; Guo, L.-D. Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. *Mycorrhiza* 2012, 22, 461–470. [CrossRef][PubMed]
53. Zotti, M.; Ambrosio, E.; Di Piazza, S.; Bidaud, A.; Boccardo, F.; Pavarino, M.; Mariotti, M.; Vizzini, A. Ecology and diversity of *Cortinarius* species (Agaricales, Basidiomycota) associated with *Quercus ilex* L. in the Mediterranean area of Liguria (North-western Italy). *Plant Biol.* 2014, **14**, 357–366. [CrossRef]

54. Smith, J.; Molina, R.; Huso, M.M.; Luoma, D.; McKay, D.; Castellano, M.; Lebel, T.; Valachovic, Y. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (*Pseudotsuga menziesii*) in the Cascade Range of Oregon, USA. *Can. J. Bot.* 2002, **80**, 186–204. [CrossRef]

55. Hernández-Rodríguez, M.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Post-fire fungal succession in a Mediterranean ecosystem dominated by *Cistus ladanifer* L. *For. Ecol. Manag.* 2013, **289**, 48–57. [CrossRef]

56. Courty, P.-E.; Buée, M.; Diedhiou, A.G.; Frey-Klett, P.; Le Tacon, F.; Rineau, F.; Turpault, M.-P.; Uroz, S.; Garbaye, J. The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. *Soil Biol. Biochem.* 2010, **42**, 679–698. [CrossRef]

57. Gao, T.T. Dynamic Changes of Ectomycorrhizal Fungal Community in Pinus Koraiensis with Time Scale and the Influencing Factors. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2020.

58. Alem, D.; Dejene, T.; Oria-de-Rueda, J.A.; Geml, J.; Martín-Pinto, P. Soil Fungal Communities under Pinus patula Schiede ex Schltdl. & Cham. Plantation Forests of Different Ages in Ethiopia. *Fores* 2020, **11**, 1109. [CrossRef]

59. Dickie, I.A.; Bolstridge, N.; Cooper, J.A.; Peltzer, D. Co-invasion by Pinus and its mycorrhizal fungi. *New Phytol.* 2010, **187**, 475–484. [CrossRef]

60. Copot, O.; Mardari, C.; Bîrsan, C.C.; Târnase, C.C. Lignicolous fungal assemblages and relationships with environment in broadleaved and mixed forests from the North-East Region of Romania. *Plant Ecol. Evol.* 2020, **153**, 43–58. [CrossRef]

61. Gates, G.M.; Mohammed, C.; Wardlaw, T.; Ratkowsky, D.A.; Davidson, N.J. The ecology and diversity of wood-inhabiting macrofungi in a native Eucalyptus obliqua forest of southern Tasmania, Australia. *Fungal Ecol.* 2011, **4**, 56–67. [CrossRef]

62. Heilmann-Clausen, J. A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. *Mycol. Res.* 2001, **105**, 575–596. [CrossRef]

63. Goia, I.; Gafita, D. Beech versus spruce deadwood as forest microhabitat: Does it make any difference to bryophytes? *Plant Biosyst. Int. J. All Asp. Plant Biol.* 2018, **153**, 187–194. [CrossRef]

64. Rudolf, K.; Morschhauser, T.; Pál-Fám, F. Macrofungal diversity in disturbed vegetation types in North-East Hungary. *Open Life Sci.* 2012, **7**, 634–647. [CrossRef]

65. Heilmann-Clausen, J.; Aude, E.; Dorts, K.V.; Christensens, M.; Pil taper, A.; Veerkamp, M.; Walley, R.; Siller, I.; Standovár, T.; Ódor, P. Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe-reflecting substrate quality or shaped by climate and forest conditions? *J. Biogeogr.* 2014, **41**, 2269–2282. [CrossRef]

66. Su, F.; Xu, S.; Sayer, E.J.; Chen, W.; Du, Y.; Lu, X. Distinct storage mechanisms of soil organic carbon in coniferous forest and evergreen broadleaf forest in tropical China. *J. Environ. Manag.* 2021, **295**, 113–142. [CrossRef]

67. Zakaria, A.J.; Boddyl, L. Mycelial foraging by Resinicium bicolor: Interactive effects of resource quantity, quality and soil composition. *FEMS Microbiol. Ecol.* 2002, **40**, 135–142. [CrossRef]

68. Bahnmann, B.; Mašínová, T.; Halvorsen, R.; Davey, M.L.; Sedlák, P.; Tomšovský, M.; Bal drian, P. Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. *Soil Biol. Biochem.* 2018, **119**, 162–173. [CrossRef]

69. Bahram, M.; Peay, K.G.; Tedersoo, L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. *New Phytol.* 2015, **205**, 1454–1463. [CrossRef] [PubMed]

70. Ferrari, B.C.; Bissett, A.; Snape, I.; van Dorst, J.; Palmer, A.S.; Ji, M.; Siciliano, S.D.; Stark, J.S.; Winsley, T.; Brown, M.V. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. *Environ. Microbiol.* 2016, **18**, 1834–1849. [CrossRef] [PubMed]

71. Shuhada, S.N.; Salim, S.; Nobilly, F.; Zubaid, A.; Azhar, B. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings. *Ecol. Evol.* 2017, **7**, 7187–7200. [CrossRef] [PubMed]

72. Rousk, J.; Bååth, E.; Brookes, P.C.; Laube, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. *ISME J.* 2010, **4**, 1340–1351. [CrossRef]

73. Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. *Soil Biol. Biochem.* 2008, **40**, 2407–2415. [CrossRef]

74. Yang, Y.; Gao, Y.; Wang, S.; Xu, D.; Yu, H.; Wu, L.; Lin, Q.; Hu, Y.; Li, X.; He, Z.; et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. *ISME J.* 2014, **8**, 430–440. [CrossRef]

75. Crowther, T.W.; Stanton, D.W.; Thomas, S.M.; A’ Bear, A.D.; Hiscox, J.; Jones, T.H.; Voříšková, J.; Baldrian, P.; Boddy, L. Top-down control of soil fungal community composition by a globally distributed keystone consumer. *Ecology* 2013, **94**, 2518–2528. [CrossRef] [PubMed]

76. Koide, R.T.; Fernandez, C.; Malcolm, G. Determining place and process: Functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. *New Phytol.* 2014, **201**, 433–439. [CrossRef]

77. Van der Linde, S.; Suz, L.M.; Orme, C.D.L.; Cox, F.; Andreade, H.; Asi, E.; Atkinson, B.; Benham, S.; Carroll, C.; Cools, N. Environment and host as large-scale controls of ectomycorrhizal fungi. *Nature* 2018, **558**, 243–248. [CrossRef]
78. Taniguchi, T.; Kitajima, K.; Douhan, G.W.; Yamanaka, N.; Allen, M.F. A pulse of summer precipitation after the dry season triggers changes in ectomycorrhizal formation, diversity, and community composition in a Mediterranean forest in California, USA. *Mycorrhiza* 2018, 28, 665–677. [CrossRef] [PubMed]

79. Nickel, U.T.; Weikl, F.; Kerner, R.; Schäfer, C.; Kallenbach, C.; Munch, J.C.; Pritsch, K. Quantitative losses vs. qualitative stability of ectomycorrhizal community responses to 3 years of experimental summer drought in a beech–spruce forest. *Glob. Change Biol.* 2018, 24, e560–e576. [CrossRef] [PubMed]

80. Swaty, R.L.; Deckert, R.J.; Whitham, T.G.; Gehring, C.A. Ectomycorrhizal abundance and community composition shifts with drought: Predictions from tree rings. *Ecology* 2004, 85, 1072–1084. [CrossRef]

81. Allen, M.F.; Kitajima, K. In situ high-frequency observations of mycorrhizas. *New Phytol.* 2013, 200, 222–228. [CrossRef] [PubMed]

82. Querejeta, J.; Egerton-Warburton, L.M.; Allen, M.F. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. *Ecology* 2009, 90, 649–662. [CrossRef]

83. Smith, S.E.; Read, D.J. *Mycorrhizal Symbiosis*; Academic Press: Cambridge, MA, USA, 2010.