On truncated generalized Gibbs ensembles in the Ising field theory

F H L Essler1, G Mussardo2,3 and M Panfil4

1 The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP, UK
2 SISSA and INFN, Sezione di Trieste, via Bonomea 265, I-34136, Trieste, Italy
3 International Centre for Theoretical Physics (ICTP), I-34151 Trieste, Italy
4 Institute of Theoretical Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
E-mail: milosz.panfil@fuw.edu.pl

Received 12 October 2016, revised 24 November 2016
Accepted for publication 11 December 2016
Published 27 January 2017

Abstract. We discuss the implementation of two different truncated Generalized Gibbs Ensembles (GGE) describing the stationary state after a mass quench process in the Ising Field Theory. One truncated GGE is based on the semi-local charges of the model, the other on regularized versions of its ultra-local charges. We test the efficiency of the two different ensembles by comparing their predictions for the stationary state values of the single-particle Green’s function $G(x) = \langle \psi^\dagger(x)\psi(0) \rangle$ of the complex fermion field $\psi(x)$. We find that both truncated GGEs are able to recover $G(x)$, but for a given number of charges the semi-local version performs better.

Keywords: correlation functions, integrable quantum field theory, quantum quenches, quantum thermalization
1. Introduction

It is by now well established that after a quantum quench integrable lattice models relax locally to generalized Gibbs ensembles (GGE) [1–6], see [7] for a recent review. The situation for integrable quantum field theories (QFT) is generally more complicated [2, 8–11]. A key issue is that, in quantum field theories, expectation values of ultra-local conservation laws typically suffer from ultraviolet divergences and in order to define a GGE density matrix an appropriate regularization procedure is needed. Here we follow the terminology of [12] and call conservation laws ultra-local, if they can be written as integrals of operators that act only at a point

\[Q_n = \int dx \ J_n(x), \quad n \in \mathbb{N}. \]

(1)

A related issue is that these ultra-local conservation laws are generally not complete, in the sense that the GGE based on them may be unable to describe the stationary state after an arbitrary global quantum quench. In [10] we have shown that in integrable QFTs one can construct a different set of conserved charges that fulfil a weaker form of locality. The densities \(I(x, x + \alpha) \) of these semi-local charges\(^5\) \(I(\alpha) \) act non-trivially only on a given finite interval \([x, x + \alpha]\)

\(^5\) In [10] we called the conservation laws (2) ‘quasi-local’. In order to avoid confusion with the use of this term for lattice models, e.g. see [13], we will refer to them as semi-local in the following.
In contrast to the ultra-local conservation laws, the I_a typically do not suffer from ultra-violet divergences. In the integrable QFTs considered in [10] the completeness of the set \{I_a\} derives from the fact that in the infinite volume the charges are in one-to-one correspondence with the 'mode occupation numbers' $n(k)$ of the elementary excitations that exhibit purely elastic scattering. The expectation values of the ultra-local charges Q_n encode only the moments of the mode distribution $n(k)$ and therefore their knowledge may be not sufficient to reconstruct $n(k)$. In this case the GGE built from the Q_n would not be complete. In integrable QFTs that support bound states (corresponding to string solutions of the Bethe Ansatz equations) the situation is more complicated and has been recently analyzed in [11].

In order to construct GGEs in practice, the concept of truncated GGEs introduced in [5] has proven very useful. It is based on approximating the full GGE by considering only certain subsets of conserved charges. By choosing an appropriate sequence of such subsets, the full GGE can then be defined by a limiting procedure. The main purpose of this note is to show how to implement a truncation procedure for GGEs built from semi-local charges. To do this we focus on the simplest possible case of a mass quench in the Ising field theory. We complement these considerations by a construction of truncated GGEs formed with regularized ultra-local charges.

2. Ising QFT and its conserved charges

The Hamiltonian of the Ising field theory is

$$H(m) = \int dx \left\{ \frac{iv}{2} \left[R(x) \partial_x R(x) - L(x) \partial_x L(x) \right] + \text{im} R(x) L(x) \right\},$$

(3)

where $R(x)$ and $L(x)$ are real right and left-moving fermion fields. The model is diagonalised by the Bogoliubov transformation

$$R(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \sqrt{\frac{\omega(k) + vk}{2\omega(k)}} \left[e^{i\frac{\pi}{4}Z(k)} e^{-ik} + \text{h.c.} \right],$$

(4)

$$L(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \sqrt{\frac{\omega(k) - vk}{2\omega(k)}} \left[e^{-i\frac{\pi}{4}Z(k)} e^{-ik} + \text{h.c.} \right],$$

(5)

where \{Z(k), Z^\dagger(q)\} = 2\pi \delta(k-q). The Hamiltonian takes the form

$$H(m) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \sqrt{\frac{m^2 + v^2k^2}{\omega(k)}} Z^\dagger(k)Z(k).$$

(6)

It is obvious from (6) that the mode occupation numbers

$$N(k) = Z^\dagger(k)Z(k)$$

(7)
are conserved quantities. The Ising field theory has a set of conserved ultra-local charges of the form

\[Q_n^\pm = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \epsilon_n^\pm(k) N(k), \]

\[\epsilon_n^+(k) = \omega(k) k^{2n}, \quad \epsilon_n^-(k) = \nu k^{2n+1}. \]

It follows from the expressions for \(\epsilon_n^\pm(k) \) that expectation values of \(Q_n^\pm \) for sufficiently large \(n \) will generically suffer from ultra-violet divergences. Moreover, the functions \(k^n \) do not form a basis on the infinite interval \(k \in (-\infty, +\infty) \), which poses the question whether the set \(\{ Q_n^\pm \} \) is complete for constructing GGEs.

Applying the general construction of [10] to the Ising field theory results in two continuous families of semi-local conserved charges

\[I^\pm(\alpha) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \epsilon^\pm(k, \alpha) N(k), \]

\[\epsilon^+(k, \alpha) = \omega(k) \cos(\alpha k), \quad \epsilon^-(k, \alpha) = \sin(\alpha k). \]

These charges are clearly in one-to-one correspondence with the mode occupation operators \(N(k) \). It has been brought to our attention that the fact that (10) form a set of conserved charges for the Ising field theory has been previously noted in [14].

3. Mass quench

In the following we focus on a particular quantum quench, the one in which we prepare the system in the ground state \(|\Psi_0\rangle \) of \(H(m_0) \) and at time \(t = 0 \) suddenly quench the mass parameter from \(m_0 \) to \(m \). The time evolution following this quench is induced by \(H(m) \). This quench protocol has been previously studied in detail both on the lattice and in the continuum [4–6, 15]. In order to work out the occupation number densities we put our system into a large, finite box of length \(L \). In this case, the finite volume Bogoliubov fermion creation/annihilation operators fulfil

\[\{ \hat{Z}_k^\dagger(k_n), \hat{Z}_k(k_m) \} = i \delta_{n,m}, \quad k_n = \frac{2\pi n}{L}. \]

Denoting the ground state of \(H(m_0) \) in the finite volume by \(|\Psi_0\rangle_L \), the mode occupation number densities are [15]

\[\frac{1}{L} \langle \Psi_0 | Z_k^\dagger(k_n) Z_k(k_n) | \Psi_0 \rangle_L = \frac{|K(k_n)|^2}{1 + |K(k_n)|^2} \equiv \nu(k_n), \]

where

\[K(k) = \tan \left[\frac{1}{2} \arctan(\nu k/m) - \frac{1}{2} \arctan(\nu k/m_0) \right]. \]
We note that the mode occupation number densities are even functions of momentum, \(n(k) = n(-k) \). In order to construct GGEs we require the expectation values on the initial state \(|\Psi_0\rangle_L\) of the conserved charges. For the ultra-local conserved charges, the expectation values suffer from ultraviolet divergences, which can be cured by regularizing the theory in terms of a sharp momentum cutoff \(\Lambda \). This means neglecting, in any physical quantity, all contributions coming from modes higher than \(\Lambda \). As we are dealing with a free theory, in which the modes are decoupled, this regularization does not spoil the integrability of the original theory. The ‘initial data’ is then given by

\[
\frac{1}{L} \langle \Psi_0 | I^\pm(\alpha) | \Psi_0 \rangle_L = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \epsilon^\pm(k, \alpha) n(k),
\]

Here we have defined

\[
\epsilon^\pm_n(k) = \int_{-\Lambda}^{\Lambda} \frac{dk}{2\pi} \epsilon^\pm_n(k) N(k).
\]

We note that, unlike the original ultra-local charges \(Q_n^\pm \), their regularized versions are no longer ultra-local but have instead densities that act non-trivially on the entire system. Moreover, in the presence of the cut-off, the functions \(\epsilon^\pm_n(k) \) form a basis on the finite interval \([-\Lambda, \Lambda]\), and therefore for the cutoff theory we expect that the charges \(Q_{n,\Lambda}^\pm \) are also able to construct a GGE. It is then interesting to compare the results obtained from the GGE’s constructed from the two sets of conserved charges, namely the semi-local ones and the regularized version of the ultra-local charges.

As \(n(k) \) is an even function the expectation values of \(I^-(\alpha) \) and \(Q_{n,\Lambda}^\pm \) are identically zero, and these charges do not play a role in the respective GGEs, see [5]. From here on we focus on the following Green’s function (other Green’s functions can be analysed in the same way)

\[
G(x, t) = \lim_{L \to \infty} \frac{L \langle \Psi_L(t) | \psi^\dagger(x) \psi(0) | \Psi_L \rangle_L}{L \langle \Psi_L | \Psi_L \rangle_L}, \quad \psi(x) = \frac{1}{\sqrt{2}} (R(x) + iL(x)).
\]

At late times, \(G(x > 0, t) \) approaches stationary values

\[
g(x) = \lim_{t \to \infty} G(x, t) = \int_0^{\infty} \frac{dk}{2\pi} \frac{m \cos(kx)}{\omega(k)} (2n(k) - 1), \quad x > 0.
\]

The question we are interested is how well \(g(x) \) can be described by the two different kinds of truncated GGEs based on the sets \(\{I_\lambda(\alpha)\} \) and \(\{Q_{n,\Lambda}\} \) respectively.

3.1. Truncated GGE built from semi-local charges

Following the rationale of [5], we now wish to construct a truncated GGE by retaining only a finite subset of the conserved charges \(I^+(\alpha) \)
On truncated generalized Gibbs ensembles in the Ising field theory

\[\rho_{\text{sl}, M} = \frac{1}{Z_{\text{sl}, M}} \exp \left(- \sum_{m=1}^{M} \lambda^{+}(\alpha_m) I^{+}(\alpha_m) \right), \]

where the Lagrange multipliers are fixed by the conditions

\[\lim_{L \to \infty} \frac{1}{L} \frac{\langle \Psi_0 | I^{+}(\alpha_m) | \Psi_0 \rangle_L}{\langle \Psi_0 | \Psi_0 \rangle_L} = \lim_{L \to \infty} \frac{1}{L} \text{tr}(\rho_{\text{sl}, M} I^{+}(\alpha_m)), \quad m = 1, 2, \ldots, M. \]

Equations (20) do not require regularization except for \(\alpha_m = 0 \), which corresponds to the energy density and which is ultraviolet divergent for the mass quench considered. It is important to take the energy density into account, as the semi-local conservation laws with \(\alpha \neq 0 \) cannot distinguish between eigenstates characterized by a density \(n(k) \) and eigenstates with density \(n(k) + c/\omega(k) \) because

\[\int_{-\infty}^{\infty} \frac{dk}{2\pi} \epsilon^{\pm}(k, \alpha) \frac{c}{\omega(k)} = 0, \quad \alpha \neq 0. \]

Given that the energy density is ultraviolet divergent for the mass quench, one could simply replace it by the density itself. This would remove the ambiguity (21). However, in order to solve the initial conditions (20), it is in practice very helpful to introduce a cutoff. We therefore proceed by introducing semi-local charges with a cutoff \(\Lambda \)

\[I_{\Lambda}^{\pm}(\alpha) = \int_{-\Lambda}^{\Lambda} \frac{dk}{2\pi} \epsilon^{\pm}(k, \alpha) N(k), \]

and then solve the initial conditions

\[\lim_{L \to \infty} \frac{1}{L} \frac{\langle \Psi_0 | I_{\Lambda}^{+}(\alpha_m) | \Psi_0 \rangle_L}{\langle \Psi_0 | \Psi_0 \rangle_L} = \lim_{L \to \infty} \frac{1}{L} \text{tr}(\rho_{\text{sl}, M} I_{\Lambda}^{+}(\alpha_m)), \quad m = 1, 2, \ldots, M. \]

This set of coupled nonlinear equations can be efficiently solved numerically by increasing the number of charges \(M \) by one at a time. The set \(\{ \alpha_k | k = 1, \ldots, M \} \) that defines the truncated GGE is conveniently chosen as shown in figure 1

\[\alpha_j = (j - 1) \frac{\gamma}{M - 1}, \quad j = 1, \ldots, M. \]

Once the Lagrange multipliers \(\lambda^{+}(\alpha_m) \) have been computed we can evaluate the expectation value

doi:10.1088/1742-5468/aa53f4
On truncated generalized Gibbs ensembles in the Ising field theory

\[g_{\alpha M}(x) = \text{tr}(\rho_{\alpha M} \psi^\dagger(x) \psi(0)) = \int_0^\infty \frac{dk}{2\pi} \frac{m \cos(kx)}{\omega(k)} (2n_{\alpha M}(k) - 1), \quad x > 0, \]

\[n_{\alpha M}(k) = \left[1 + \exp\left(-\sum_{m=1}^M \lambda_m^+ (\alpha_m) \epsilon_m^+(k, \alpha_m) \right) \right]^{-1}. \]

(25)

3.2. Truncated GGE built from (regularized) ultra-local charges

One can repeat the construction of the previous section but this time using the regularized ultra-local charges (16). The density matrix is now

\[\rho_{\alpha M} = \frac{1}{Z_{ul,M}} \exp\left(-\sum_{m=1}^M \lambda_m^+ Q_{m,\Lambda}^+ \right), \]

(26)

and the Lagrange multipliers \(\lambda_m^+ \) are fixed by the conditions

\[\lim_{L \to \infty} \frac{1}{L} \frac{L\langle \Psi_0 | Q_{m,\Lambda}^+ | \Psi_0 \rangle_L}{L\langle \Psi_0 | \Psi_0 \rangle_L} = \lim_{L \to \infty} \frac{1}{L} \text{tr}(\rho_{\alpha M} Q_{m,\Lambda}^+), \quad m = 1, 2, \ldots M. \]

(27)

A direct numerical solution of (27) is difficult, because the expectation values of \(Q_{m,\Lambda}^+ \) increase rapidly with the index \(m \) and there is a lack of continuity in the values of the Lagrange multipliers \(\lambda_m^+ \) with respect to the total number of charges, i.e. the solutions \(\{\lambda_m^+\} \) for the ensembles with \(M \) and \(M + 1 \) charges will differ significantly. In order to obtain a stable procedure we find it convenient to work with particular linear combinations of the charges \(Q_{n,\Lambda}^+ \)

\[\tilde{Q}_m = 2 \int_0^\Lambda \frac{dk}{2\pi} \omega(k) T_{2(m-1)}(k/\Lambda) N(k), \]

(28)

where \(T_m(x) \) are Chebyshev polynomials. In practice we re-express (26) and (27) in terms of these linear combinations and solve for the corresponding Lagrange multipliers. From these we can then determine the \(\lambda_m^+ \). The Green’s function takes the same form as in (25) but now with the ultra-local density matrix

\[g_{ul,M}(x) = \text{tr}(\rho_{ul,M} \psi^\dagger(x) \psi(0)) = \int_0^\Lambda \frac{dk}{2\pi} \frac{m \cos(kx)}{\omega(k)} (2n_{ul,M}(k) - 1), \quad x > 0, \]

\[n_{ul,M}(k) = \left[1 + \exp\left(-\sum_{m=1}^M \lambda_m^+ \epsilon_m^+(k) \right) \right]^{-1}. \]

(29)

4. Results

In the following we present results for two quench processes (i) a small quench \(m_0 = m/2 \to m \); (ii) a large quench \(m_0 = 5m \to m \). Here large/small is measured by the density of excitations \(n(k) \) after the quench, see [4]. In order to better distinguish

\[\text{doi:10.1088/1742-5468/aa53f4} \]
between the different ensembles we focus on the dimensionless mode-distribution dependent part of the Green’s functions
\[g(x) = 2v \int_{0}^{\infty} \frac{dk}{2\pi} \frac{\cos(kx)}{\omega(k)} n(k), \]
and on the mode occupation number densities \(n(k) \). The cutoff \(\Lambda \) entering our construction of the ensembles is chosen such that in the spatial range considered in our plots the function
\[g_{\Lambda}(x) = 2v \int_{0}^{\Lambda} \frac{dk}{2\pi} \frac{\cos(kx)}{\omega(k)} n(k) \]
reproduces the full answer \(g(x) \) up to errors that are negligible on the scale of our plots. The values we use are \(\Lambda = 5m/v \) for the small quench and \(\Lambda = 20m/v \) for the large quench.

As we will see, both truncated GGEs provide good approximations for both \(g(x) \) and \(n(k) \). Their ability to reproduce \(g(x) \) can be seen as a consequence of their ability to reproduce \(n(k) \) according to equations (25) and (29).

4.1. Truncated ultra-local GGE

Our truncated ultra-local GGEs are characterized by the number \(M \) of conserved charges and the momentum cutoff \(\Lambda \). We first analyze the dependence on \(M \) for a fixed value of \(\Lambda \).

Figure 2 shows the effect of increasing the number of charges \(M \) employed in the ultra-local GGE, while keeping the cutoff fixed. We see that increasing \(M \) extends the region in \(mx/v \), over which the truncated GGE provides an accurate approximation \(g_{UL,M}(x) \) of the stationary Green’s function \(g_{\Lambda}(x) \). We next investigate the cutoff dependence at a fixed number \(M \) of charges. We consider a small quench so that a small number of charges already provides good results. As shown in figure 3 increasing \(\Lambda \) at fixed \(M \) (and of course adjusting the Lagrange multipliers accordingly) gives a truncated GGE that provides a good description of \(g(x) \) over a decreasing range in \(mx/v \).

We may summarize our results for truncated ultra-local GGEs as follows:

(i) In order to obtain an accurate description of \(g(x) \) on a given range \([0, x_0]\) we require a sufficiently large cutoff \(\Lambda \).

(ii) Given \(\Lambda \) one needs to increase the number of ultra-local charges \(M \) until convergence of \(g_{ul,M}(x) \) on the interval \([0, x_0]\) has been achieved. The larger \(\Lambda \), the higher \(M \) needs to be.

4.2. Truncated semi-local GGE

Our truncated semi-local GGEs depend on three parameters: (i) the number of charges \(M \); (ii) the ‘spread’ \(\gamma \); (iii) the cutoff \(\Lambda \). We find that, unlike in the ultra-local case, the cutoff dependence does not play an important role and we therefore exclude it from further discussion. To proceed we simply fix the cutoff \(\Lambda \) a sufficiently large value to
ensure that the difference $|q(x) - g(x)|$ is negligible on the interval $[0, x_0]$ of interest. We first consider the M-dependence at a fixed value of γ, see figure 4.

We observe that, as long as the separation x is sufficiently much smaller than the spread γ, increasing M leads to a more accurate description of the stationary state Green’s function. As soon as $x \sim \gamma$ increasing M beyond a certain value ceases to improve the accuracy of the corresponding truncated GGEs. In figure 5 we show results for the γ-dependence of the truncated semi-local GGE for a fixed number of charges. We consider a small quench, for which $M = 15$ already produces accurate results. We see that the effect of increasing γ is to increase the spatial interval, over which the truncated GGE provides a good approximation to the exact stationary Green’s function.
4.3. Mode occupation number densities

In the generalized micro-canonical ensemble [6, 16, 17] the stationary state after a quantum quench to an integrable model is described by a simultaneous eigenstate of all conservation laws [6]. In general this state is characterized by its Bethe Ansatz root distribution functions. In our particular case of the Ising field theory this amounts to specifying the mode occupation number density $n(k)$. It is therefore an interesting question, how well our truncated GGEs reproduce the exact $n(k)$ that describes the stationary state. In figures 6 and 7 we show results for large quench. We see that both our truncated GGEs give a reasonable account of $n(k)$. The quality of the the truncated GGE predictions for $n(k)$ depends on the number of charges: increasing the number of ultra-local charges gives a better overall match in the interval $[0, \Lambda]$ (see figure 6), while increasing number of semi-local charges extends the region of accuracy in k (see figure 7).

We note that above we always considered spreads such that $\gamma > \Lambda^{-1}$. In this regime the

Figure 4. M-dependence of the truncated semi-local GGE prediction for the Green’s function. The cutoff has been fixed at $\Lambda = 20m/v$ and the spread is $\gamma = 5v/m$.

Figure 5. γ-dependence of the truncated semi-local GGE prediction for the Green’s function $g_{x,M}(x)$ for fixed number of conserved charges $M = 15$.
cutoff essentially regularizes the energy density without influencing other semi-local charges. We find that the mode occupation number densities have only a very weak \(\gamma \) dependence.

5. Conclusions

We have considered the implementation of truncated GGEs [5] for describing the stationary state after quantum quenches to integrable field theories, focusing on the simple case of a mass quench in the Ising field theory. Following [10] we have constructed two kinds of GGEs, built from ultra-local and semi-local conservation laws respectively. We have compared the predictions of the two ensembles for the two-point
function $G(x) = \langle \psi^d(x)\psi(0) \rangle$ of Fermi fields in the stationary state reached at late times after the quench. We find that once appropriate regularization procedures have been put in place, both ensembles give a good account of $G(x)$, although, on balance, the ensemble built from semi-local charges performs slightly better. It would be interesting to generalize the results presented here to a fully interactive field theory such as a Lieb–Liniger model [18]. Interaction quenches in this model have been investigated by a number of groups [9]. A key difficulty compared to the simple case studied here is that correlations functions of interactive theories as the the Lieb–Liniger model cannot be calculated analytically, and one needs to resort to numerical methods such as ABACUS [19].

Acknowledgments

We thank B Doyon, D Fioretto and G Takacs for helpful discussions. MP would like to acknowledge hospitality and support from the Galileo Galilei Institute, where part of this work was carried out during the program ‘Statistical Mechanics, Integrability and Combinatorics’. This work was supported by the EPSRC under grant EP/N01930X/1, the ERC under the Starting Grant no. 279391 and by the NCN under FUGA grant 2015/16/S/ST2/00448.

References

[1] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Phys. Rev. Lett. 98 050405
[2] Calabrese P and Cardy J 2007 J. Stat. Mech. P06008
[3] Cramer M, Dawson C M, Eisert J and Osborne T J 2008 Phys. Rev. Lett. 100 030602
Barthel T and Schollwöck U 2008 Phys. Rev. Lett. 100 100601
Essler F H L, Evangelisti S and Fagotti M 2012 Phys. Rev. Lett. 109 247206
Pozsgay B 2013 J. Stat. Mech. P07003
Fagotti M and Essler F H L 2013 J. Stat. Mech. P07012
Fagotti M 2014 J. Stat. Mech. P03016
Fagotti M, Collura M, and Essler F H L and Calabrese P 2014 Phys. Rev. B 89 125101
Wouters B, De Nardis J, Brockmann M, Fiorettio D, Rigol M and Caux J-S 2014 Phys. Rev. Lett. 113 117202
Pozsgay B, Mestyán M, Werner M A, Kormos M, Zarànd G and Takács G 2014 Phys. Rev. Lett. 113 117203
Sotiriadis S and Calabrese P 2014 J. Stat. Mech. P07024
Goldstein G and Andrei N 2014 Phys. Rev. A 90 043625
Brockmann M, Wouters B, Fioretto D, De Nardis J, Vlijm R and Caux J-S 2014 J. Stat. Mech. P12009
Pozsgay B 2014 J. Stat. Mech. P10045
Rigol M 2014 Phys. Rev. E 90 031301
Mestyán M, Pozsgay B, Takács G and Werner M A 2015 J. Stat. Mech. P04001
Ilievski E, De Nardis J, Wouters B, Caux J-S, Essler F H L and Prosen T 2015 Phys. Rev. Lett. 115 157201
Essler F H L and Fagotti M 2016 J. Stat. Mech. P064002
Ilievski E, Quinn E, De Nardis J and Brockmann M 2016 J. Stat. Mech. 063101
Piroli L, Vernier E and Calabrese P 2016 Phys. Rev. B 94 054313
[4] Calabrese P, Essler F H L and Fagotti M 2011 Phys. Rev. Lett. 106 227203
Calabrese P, Essler F H L and Fagotti M 2012 J. Stat. Mech. P07016
Calabrese P, Essler F H L and Fagotti M 2012 J. Stat. Mech. P07022
[5] Fagotti M and Essler F H L 2013 Phys. Rev. B 87 245107
[6] Caux J-S and Essler F H L 2013 Phys. Rev. Lett. 110 257203
[7] Essler F H L and Fagotti M 2016 J. Stat. Mech. P064002
[8] Calabrese P and Cardy J 2016 J. Stat. Mech. 064003

doi:10.1088/1742-5468/aa53f4
On truncated generalized Gibbs ensembles in the Ising field theory

Cazalilla M A and Chung M-C 2016 J. Stat. Mech. 064004
Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801
Cazalilla M A 2006 Phys. Rev. Lett. 97 156403
Gritsev V, Demler E, Lukin M, and Polkovnikov A 2007 Phys. Rev. Lett. 99 200404
Fioretto D and Mussardo G 2010 New J. Phys. 12 055015
Caux J-S and Konik R M 2012 Phys. Rev. Lett. 109 175301
Mussardo G 2013 Phys. Rev. Lett. 111 100401
Kormos M, Collura M, and Calabrese P 2014 Phys. Rev. A 89 013609
Bertini B, Schuricht D and Essler F H L 2014 J. Stat. Mech. P10005
Collura M, Kormos M and Calabrese P 2014 J. Stat. Mech. P01009
Sotiriadis S 2016 Phys. Rev. A 94 031605
Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801
Cazalilla M A 2006 Phys. Rev. Lett. 97 156403
Gritsev V, Demler E, Lukin M, and Polkovnikov A 2007 Phys. Rev. Lett. 99 200404
Fioretto D and Mussardo G 2010 New J. Phys. 12 055015
Caux J-S and Konik R M 2012 Phys. Rev. Lett. 109 175301
Mussardo G 2013 Phys. Rev. Lett. 111 100401
Kormos M, Collura M, and Calabrese P 2014 Phys. Rev. A 89 013609
Bertini B, Schuricht D and Essler F H L 2014 J. Stat. Mech. P10005
Collura M, Kormos M and Calabrese P 2014 J. Stat. Mech. P01009
Sotiriadis S 2016 Phys. Rev. A 94 031605
Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801
Cazalilla M A 2006 Phys. Rev. Lett. 97 156403
Gritsev V, Demler E, Lukin M, and Polkovnikov A 2007 Phys. Rev. Lett. 99 200404
Fioretto D and Mussardo G 2010 New J. Phys. 12 055015
Caux J-S and Konik R M 2012 Phys. Rev. Lett. 109 175301
Mussardo G 2013 Phys. Rev. Lett. 111 100401
Kormos M, Collura M, and Calabrese P 2014 Phys. Rev. A 89 013609
Bertini B, Schuricht D and Essler F H L 2014 J. Stat. Mech. P10005
Collura M, Kormos M and Calabrese P 2014 J. Stat. Mech. P01009
Sotiriadis S 2016 Phys. Rev. A 94 031605
Calabrese P and Cardy J 2006 Phys. Rev. Lett. 96 136801
Cazalilla M A 2006 Phys. Rev. Lett. 97 156403
Gritsev V, Demler E, Lukin M, and Polkovnikov A 2007 Phys. Rev. Lett. 99 200404
Fioretto D and Mussardo G 2010 New J. Phys. 12 055015
Caux J-S and Konik R M 2012 Phys. Rev. Lett. 109 175301
Mussardo G 2013 Phys. Rev. Lett. 111 100401
Kormos M, Collura M, and Calabrese P 2014 Phys. Rev. A 89 013609
Bertini B, Schuricht D and Essler F H L 2014 J. Stat. Mech. P10005
Collura M, Kormos M and Calabrese P 2014 J. Stat. Mech. P01009
Sotiriadis S 2016 Phys. Rev. A 94 031605
Sotiriadis S and Martelloni G 2016 J. Phys. A: Math. Theor. 49 095002
Cardy J 2016 J. Stat. Mech. 023103
Bertini B, Piroli L and Calabrese P 2016 J. Stat. Mech. P10035
Collura M, Kormos M and Calabrese P 2014 Phys. Rev. Lett. 110 125302
Collura M, Sotiriadis S and Calabrese P 2013 Phys. Rev. Lett. 110 245301
Gritsev V, Rostunov T and Demler E 2010 J. Stat. Mech. P05012
Pozsgay B 2011 J. Stat. Mech. P11017
Panfil M, De J Nardis and Caux J-S 2013 Phys. Rev. Lett. 110 125302
Collura M, Sotiriadis S and Calabrese P 2013 Phys. Rev. Lett. 110 245301
Collura M, Sotiriadis S and Calabrese P 2013 J. Stat. Mech. P09025
Kormos M, Shashi A, Chou Y-Z, Caux J-S and Imambekov A 2013 Phys. Rev. B 88 205131
De Nardis J, Wouters B, Brockmann M, and Caux J-S 2014 Phys. Rev. A 89 033601
De J Nardis and Caux J-S 2014 J. Stat. Mech. P12012
Bertini B, Piroli L and Calabrese P 2016 J. Stat. Mech. P12012
Iyer D and Andrei N 2012 Phys. Rev. Lett. 109 115304
Ilievski E, Medenjak M, Prosen T and Zadnik L 2016 J. Stat. Mech. 064008
Korepin V E, Izergin A G and Bogoliubov N M 1993 Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz (Cambridge: Cambridge University Press)
Ilievski E, Medenjak M and Prosen T 2015 Phys. Rev. Lett. 115 120601
Fagotti M and Calabrese P 2008 Phys. Rev. A 78 010306
Rossini D, Silva A, Mussardo G and Santoro G 2009 Phys. Rev. Lett. 102 127204
Rossini D, Suzuki S, Mussardo G, Santoro G E and Silva A 2010 Phys. Rev. B 82 144302
Foini L, Cugliandolo L F and Gambassi A 2011 Phys. Rev. B 84 212404
Rieger H and Ilgöi F 2011 Phys. Rev. B 84 165117
Sengupta K, Powell S and Sachdev S 2004 Phys. Rev. A 69 053616
Fagotti M and Calabrese P 2008 Phys. Rev. A 78 010306
Rossini D, Silva A, Mussardo G and Santoro G 2009 Phys. Rev. Lett. 102 127204
Rossini D, Suzuki S, Mussardo G, Santoro G E and Silva A 2010 Phys. Rev. B 82 144302
Foini L, Cugliandolo L F and Gambassi A 2011 Phys. Rev. B 84 212404
Rieger H and Ilgöi F 2011 Phys. Rev. B 84 165117
Schrüdt C and Essler F H L 2012 J. Stat. Mech. P04017
Foini L, Cugliandolo L F and Gambassi A 2012 J. Stat. Mech. P09001
Bucciantini L, Kormos M and Calabrese P 2014 J. Phys. A: Math. Theor. 47 175002
Cassidy A C, Clark C W and Rigol M 2011 Phys. Rev. Lett. 106 140405
Caux J-S 2016 J. Stat. Mech. 064006
Lieb E H and Liniger W 1963 Phys. Rev. 130 1605
Caux J S 2009 J. Math. Phys. 50 095214