CdS nanoparticles decorated anatase TiO$_2$ nanotubes with enhanced visible light photocatalytic activity

Lian Yua, Dongsheng Wangb,* Daiqi Yea

aCollege of Environment and Energy, South China University of Technology, Guangzhou 510006, China
bState Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China

A R T I C L E I N F O

Article history:
Received 21 June 2015
Received in revised form 27 October 2015
Accepted 29 October 2015
Available online 30 October 2015

Keywords:
TiO$_2$ nanotubes
CdS coupled TiO$_2$
Visible light photocatalysis
Heterostructure photocatalyst
Dyes

A B S T R A C T

One-dimensional nanotubes are promising nanostructured materials for environmental applications. In this study, CdS nanoparticles decorated anatase TiO$_2$ nanotubes were fabricated using an alkaline hydrothermal combined surface precipitation method. The structure and properties of the prepared samples were characterized by XRD, TEM, UV–vis/DRS, N$_2$ adsorption–desorption and XPS. It was found that the as-synthesized CdS/TNTs consisted of anatase TiO$_2$ nanotubes and cubic phase CdS. CdS nanoparticles were highly dispersed on the tube walls of TNTs. In comparison with P25 and TNTs, CdS/TNTs exhibited strong visible light absorption at about 550 nm. Compared to P25, TNTs, CdS nanoparticles and CdS/TiO$_2$, CdS/TNTs exhibited obviously enhanced visible light ($\lambda > 420$ nm) photocatalytic activity in the decomposition of Rh B and MO. This could be attributed to the synergic effects of some factors, such as the excellent crystallinity, electronic band structure, strong absorption in the visible light region, high specific surface area and large pore size. Based on the results of the study, the mechanism of photocatalysis on CdS/TNTs under visible light is also discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One-dimensional (1D) nanostructured TiO$_2$ such as nanotubes, nanowires and nanoribbons, have attracted much attention due to their unique structural and electronic properties. So far, they have been extensively used in a lot of fields, such as solar cells, lithium batteries, photodetectors, light waveguides, gas sensing, photocatalysis [1–10], and particularly used as photocatalysts in lithium batteries, photodetectors, light waveguides, gas sensing, photocatalysis [1–10], and particularly used as photocatalysts in environmental applications [11–13]. Among the 1D TiO$_2$ nanostructures, TiO$_2$ nanotubes (TNTs) possess high specific surface area and nanotubular morphology, which is important during photocatalytic oxidation of organic compounds. It has been reported that anatase TiO$_2$ nanotubes showed higher photocatalytic activity for degradation of organic compounds than anatase TiO$_2$ nanoparticles [12–17].

However, there are two obvious drawbacks for TNTs photocatalyst [18]. First, TNT is a wide band gap semiconductor which can only absorb UV light with the wavelength below 390 nm, this significantly hinders the utilization of the solar spectrum. Second, the quantum efficiency of TNT in photocatalytic reactions under UV light irradiation is very low. To improve the visible light photocatalytic activity, many efforts have been made, such as dye sensitisation [19], doping [20–24], and coupling with low bandgap semiconductors like PbS [25], CdTe [26], CdSe [27], ZnFe$_2$O$_4$ [28], Cu$_2$O [29], and CdS [18,30–32]. Among the low bandgap semiconductors, CdS has attracted much attention, it can be excited by visible light to produce electrons and holes due to the narrow band gap of 2.42 eV [33]. Previous studies have shown that in the CdS/TiO$_2$ system, heterojunctions between TiO$_2$ and CdS nanoparticles are formed and the conduction band (CB) of CdS is about 0.5 eV (more negative than that of TiO$_2$). So no holes generated in the CB of TiO$_2$, and the recombination of electrons–holes pairs is inhibited in the CdS/TiO$_2$ system. As a result, the coupled system can enhance light-harvesting efficiency, thus improving the photocatalytic performance of the catalyst. Recently, increasing efforts have been made on coupling TNTs with semiconductors to form efficient composite photocatalysts [34]. The prepared composites show high photocatalytic activities because of the synergic effects between TNTs and the semiconductors [34]. Various methods have been used to prepare CdS nanoparticles modified TNTs, such as ion-exchange reaction [35–37], employing sulfur powder and Cd$^{2+}$ in dimethyl sulfoxide [38], and sequential chemical bath deposition [39,40].

In this work, we fabricate CdS nanoparticles decorated anatase TiO$_2$ nanotubes via an alkaline hydrothermal combined surface precipitation method. CdS nanoparticles with controllable size...
were grown onto the surfaces of TNTs by reacting Na$_2$S with the Cd$^{2+}$ ions absorbed on the pretreated surfaces. Under visible light irradiation, the photogenerated electrons from CdS can transfer to the conduction band of TNTs, thus facilitating the separation of photogenerated electrons and holes, which contributes to the enhanced visible light photocatalytic activity for oxidation of organic pollutants.

2. Experimental

2.1. Photocatalyst synthesis

2.1.1. Materials

The chemicals rhodamine B (Rh B), methyl orange (MO), sodium hydroxide (NaOH), cadmium nitrate (Cd(NO$_3$)$_2$·4H$_2$O), and sodium sulfide (Na$_2$S) were obtained from Beijing Chemical Corporation (Beijing, China). Anatase titania nanosized powder (10 nm in size) was supplied from Alfa Aesar Co., Ltd. (Tianjin, China). All of the chemicals are analytic grades and used as received without further purification. Deionized water used in the synthesis was from local sources.

2.1.2. Synthesis of TNT

For the synthesis of TNTs [18], anatase titania powder (0.5 g) and an aqueous solution of NaOH (10 M, 40 mL) were mixed and kept stirring to form a homogeneous suspension, which was then transferred into a Teflon-lined autoclave and hydrothermally treated at 120 °C for 48 h in an oven. After the reaction, the precipitate was separated by filtration and washed with deionized water until the pH was neutral. In the subsequent step, the wet cakes were dispersed into 100 ml of 0.1 M HCl solution and kept under ambient conditions for 24 h, in order to promote proton exchange. The pH was neutral. In the subsequent step, the wet cakes were dispersed into 100 ml of 0.1 M HCl solution and kept under ambient conditions for 24 h, in order to promote proton exchange. The pH treatment process was repeated for three times, each day with a fresh 0.1 M HCl solution, followed by washing with deionized water, and then dried at 30 °C under vacuum for 48 h. The as-synthesized titane nanotubes were then calcined at 400 °C in air for 2 h to form TiO$_2$ nanotubes (TNTs).

2.1.3. Fabrication of CdS/TNTs nanocomposites

The obtained TNTs were added into Cd(NO$_3$)$_2$·4H$_2$O aqueous solution (20 ml, containing 0.39 g Cd(NO$_3$)$_2$·4H$_2$O) to allow Cd$^{2+}$ ions to be absorbed on the surfaces of TNTs (pH = 4.0). To grow CdS nanoparticles on the TNTs, Na$_2$S aqueous solution (20 ml, containing 0.11 g Na$_2$S) was added, significantly increasing the pH of the solution from 4.0 to 10.0. The mixture was placed in a 100 ml Teflon-lined autoclave, and then kept at 120 °C for 12 h. Interaction between Cd$^{2+}$ and free S$^{2-}$ ions in the solution then proceed, resulting in the continuous formation of CdS nanoparticles on the surface of TNTs. After cooling the autoclave to room temperature, the precipitate was separated by filtration and washed with deionized water until the pH was neutral. No Cd$^{2+}$ ion (<0.01 mg/L) was detected in the filtrate indicating that almost all Cd$^{2+}$ ions had precipitated. Under visible light irradiation, the precipitated surfaces of TNTs, thus facilitating the separation of photogenerated electrons and holes, which contributes to the enhanced visible light photocatalytic activity for oxidation of organic pollutants.

2.3. Photocatalytic activity measurements

The photocatalytic activity of CdS/TNTs heterostructure photocatalyst was evaluated by the photodegradation of Rh B and MO under visible light irradiation. In this work, the photocatalytic reactions were conducted in an open reactor with a cooling-water-cycle system keeping the reaction temperature constant. The light source was a 300 W xenon lamp (CHF-QX500 W, Beijing Changtuo Co., Ltd., wavelength range, 200 – 1100 nm) equipped with a 420 nm cut-off glass filter (removing the UV irradiation below 420 nm wavelength, > 420 nm), and the light intensity was 50 mW/cm2. Then 250 mg of CdS/TNTs were suspended in 500 mL of Rh B (20 mg/L) or MO (20 mg/L) solution. Before the photoreactions, the suspension was stirred in the dark for 120 min to achieve adsorption/desorption equilibrium. During the photoreactions, the suspension was stirred continuously. At a given time, 4 mL of the solution was taken from the reactor. For comparison, the photocatalytic activities of P25, CdS, pure TNTs, CdS/TiO$_2$ and S-doped TNTs were also examined under the same conditions. The photocatalysts were separated from the solution by centrifugation, and the concentration of the remaining Rh B and MO in solution was determined by UV–vis spectrophotometer (UV-2450, Japan) at the maximum absorbance peak (554 nm for Rh B and 465 nm for MO).

3. Results and discussion

3.1. Characterization

3.1.1. XRD analysis

XRD patterns of the as-prepared TNTs, CdS NPs and CdS/TNTs were shown in Fig. 1. As can be seen in Fig. 1a, the peaks at 2θ ≈ 25.2°, 29.7°, 48.1°, 54.1°, 54.9°, 62.7°, 68.9°, 70.1°, and 75.1° can be ascribed to the (101), (004), (200), (105), (211), (204), (116), (220), and (215) crystalline planes of the anatase phase (JCPDS No. 21-1272), indicating that the crystal phase of TNTs is anatase TiO$_2$. The XRD pattern of CdS NPs (Fig. 1b) is in good agreement with the cubic phase CdS, and the peaks at 2θ = 26.5°, 43.9°, and 51.9° is corresponding to the (1 1 1), (2 2 0) and (3 1 1) planes of CdS (JCPDS No. 65–2887). As can be seen in Fig. 1c, besides the anatase TiO$_2$, the cubic phase CdS can also be detected in CdS/TNTs, and no other impure peaks can be observed, suggesting a two-phase composition of anatase TiO$_2$ and CdS in CdS/TNTs heterostructures.
3.1.2. TEM observation

The morphologies and structures of TNTs, CdS NPs and CdS/TNTs were characterized by TEM. It is observed from Fig. 2a that, the as-synthesized TNTs exhibited uniform nanotubular 1D structure along with the length, the inner diameter of the nanotubes is 5.0–6.0 nm whereas the outer diameter is 9.0–10.0 nm. As shown in Fig. 2b, the average size of CdS NPs is ~5 nm. As can be seen in Fig. 2c, the nanotubular structure of TNTs were still well-maintained in CdS/TNTs, and CdS nanocrystals with a diameter of ~5 nm were dispersed well on the walls of TNTs. It successfully avoids the agglomeration of CdS nanoparticles and creates intimate contacts between CdS nanoparticles and TNTs. This novel structure of CdS/TNTs is regarded as a main reason for their improved photocatalytic activity, which will be discussed in the following sections.

3.1.3. BET surface area and pore structure

Fig. 3 shows the N₂ adsorption–desorption isotherms and pore size distribution of TNTs and CdS/TNTs. The N₂ adsorption/desorption isotherms exhibit a hysteresis loop at relative pressure higher than P/P₀ = 0.4, indicating the existence of mesopores. The adsorption isotherms for the two samples present a typical type IV isotherm with H₃ hysteresis according to the IUPAC classification [41], suggesting the existence of slit-like pores [42]. TiO₂ nanotubes are multiwalled scrolls and formed through sheet folding or wrapping mechanism, there may be some slits on the nanotubes, so it is reasonable that they show the H₃ loop. The pore size distribution showed that the average pore diameters were 5.4 and 4.2 nm for TNTs and CdS/TNTs, respectively. The surface area for TNTs and CdS/TNTs are 343.34 and 273.62, respectively. This may be caused by CdS nanoparticles which covered TNTs surface and deposited inside the pores of TNTs.

3.1.4. UV–vis diffuse reflectance spectra

Fig. 4 shows the optical properties of P25, TNT CdS and CdS/TNTs. It was observed that P25 and TNTs exhibited photoresponse in the UV region with a wavelength below 390 nm due to its large energy band gap (3.2 eV), which is typical of anatase titania [33]. It was noted that blank CdS showed a sharp absorption edge at around 550 nm, it is well known that CdS has a narrow energy band gap and thus shows better visible light response ability. The introduction of CdS into TNTs has a significant effect on the optical property of CdS/TNTs, they show an enhanced absorbance in the visible light region with a sharp absorption edge at around 550 nm, and they are able to be photoexcited to generate electron–hole pairs under visible light irradiation [18].

3.1.5. XPS analysis

X-ray photoelectron spectroscopy (XPS) was used to further investigate the elemental composition and surface chemical state of CdS/TNTs. As can be seen in Fig. 5a, the elemental composition on the surface of CdS/TNTs are S, C, Cd, Ti and O, which correspond to the values of the binding energy at 162.2 eV, 285.6 eV, 405.8 eV, 458.8 eV and 531.4 eV, respectively [33]. The XPS spectrum for the C 1s peak might be attributed to the adventitious carbonaceous species formed in the process of sample preparation [32]. From the XPS spectrum of Ti 2p (Fig. 5b), the binding energies of Ti 2p₃/₂ and Ti 2p₁/₂ in CdS/TNTs are 458.6 and 464.2 eV, respectively. This can be ascribed to Ti⁺⁺ on the surface of CdS/TNTs [33]. Fig. 5c shows the O 1s XPS spectrum of CdS/TNTs, the asymmetric peaks located at 529.7 and 531.6 eV can be seen, the binding energy at 531.6 eV was ascribed to the oxygen of surface hydroxyl groups (~OH), and that at 529.7 eV was assigned to the lattice oxygen of TiO₂ [33]. Fig. 5d shows the Cd 3d XPS spectra of CdS/TNTs, there are two sharp peaks at binding energies of 411.6 eV and 404.9 eV, which was assigned to the characteristic peaks of Cd 3d₃/₂ and Cd 3d₅/₂, respectively, indicative of Cd²⁺ in CdS/TNTs [43]. Furthermore, a spin–orbit separation of 6.7 eV between Cd 3d₃/₂ and Cd 3d₅/₂ can further confirm the existence of Cd²⁺ on the surface of CdS/TNTs. Fig. 5e demonstrates the XPS spectrum of S 2p, the peaks located at 162.1 eV and 161.0 eV could be ascribed to the characteristic peaks of S 2p₃/₂ and S 2p₁/₂, respectively, indicating that S²⁻ is the main existing form on the surface of CdS/TNTs for S element. Furthermore, 1.1 eV difference between the binding energies of S 2p₃/₂ and S 2p₁/₂ can also indicate the existence of S²⁻ in CdS/TNTs [43]. As can be seen from the XPS results, CdS and TiO₂ co-exist in CdS/TNTs nanocomposites.
and CdS/TiO2 were 99.8% and 93.1% respectively after 120 min visible light irradiation. Rh B can be removed by S-doped TNTs (not shown here). As can be seen in Fig. 6a, the degradation of Rh B by direct photolysis was almost negligible after 120 min of visible light irradiation. Although P25, pure TNTs could not respond to visible light, Rh B can be degraded slowly under visible light irradiation. The degradation rate of CdS/TNTs for Rh B is 91.4% under visible light irradiation for 240 min. This further confirmed that CdS/TNTs exhibited excellent visible light photocatalytic activity. As can be seen, the decoloration of Rh B and MO over the photocatalysts prepared in this work show similar trends: CdS/TNTs possess the highest photocatalytic activity under visible light irradiation among all the samples. The excellent crystallinity, the improvement of visible-light adsorption, larger surface area, the unique morphologies and nanostructures of the tubular CdS/TNTs, the intimate contact and the synergistic effect within the heterojunctions between CdS and TNTs [44], were supposed to be responsible for the highly efficient photocatalytic activity of CdS/TNTs [45].

Fig. 7 shows that in the first cycle, the degradation efficiency decreased obviously, and in the subsequent cycles, the degradation efficiency decreased slowly, this can be attributed to the agglomeration of CdS/TNTs. However, the removal efficiency after five cycles can still reach 88.5%, indicating its high durability and stability. Therefore, the recycling of CdS/TNTs is possible. CdS/TNTs should be a promising photocatalyst for treatment of organic contamination.

3.2. Photocatalytic activity

In this work, the photocatalytic activity of CdS/TNTs was evaluated by the decoloration of Rh B and MO solution without investigating the degradation intermediates in detail. For comparison, the photocatalytic activities of P25, TNTs, CdS and CdS/TiO2 as well as without the photocatalyst (direct photolysis) were also tested in the same system. As depicted in Fig. 6a, the degradation of Rh B by direct photolysis was almost negligible after 120 min of visible light irradiation. Although P25, pure TNTs could not respond to visible light, Rh B can be degraded slowly under visible light irradiation in the presence of P25 and pure TNTs, and the degradation efficiencies reached 28.5% for P25 and 47.3% for TNTs, respectively, after 120 min of photoreaction, this can be attributed to the photo-sensitized capability of Rh B [44]. 73.6% of Rh B could be decomposed by CdS under visible light irradiation for 120 min. 82.4% of Rh B can be removed by S-doped TNTs (not shown here). As can be seen, CdS/TNTs exhibited higher photocatalytic activity than CdS/TiO2, and the degradation efficiency of Rh B for CdS/TNTs and CdS/TiO2 were 99.8% and 93.1% respectively after 120 min visible light irradiation. The degradation rate of CdS/TNTs for Rh B is faster than that of CdS/TiO2. Rh B could be almost completely degraded by CdS/TNTs after 60 min visible light irradiation.

Because of its stabilization and low photosensitized property, MO solution was more difficult to be decolorized compared to Rh B. However, as can be seen in Fig. 6b, CdS/TNTs presented highest photocatalytic activity under visible light irradiation among all samples, and the decoloration efficiency of MO solution was 91.4% under visible light irradiation for 240 min. This further confirmed that CdS/TNTs exhibited excellent visible light photocatalytic activity. As can be seen, the decoloration of Rh B and MO over the photocatalysts prepared in this work show similar trends: CdS/TNTs possess the highest photocatalytic activity under visible light irradiation among all the samples. The excellent crystallinity, the improvement of visible-light adsorption, larger surface area, the unique morphologies and nanostructures of the tubular CdS/TNTs, the intimate contact and the synergistic effect within the heterojunctions between CdS and TNTs [44], were supposed to be responsible for the highly efficient photocatalytic activity of CdS/TNTs [45].

Fig. 7 shows that in the first cycle, the degradation efficiency decreased obviously, and in the subsequent cycles, the degradation efficiency decreased slowly, this can be attributed to the agglomeration of CdS/TNTs. However, the removal efficiency after five cycles can still reach 88.5%, indicating its high durability and stability. Therefore, the recycling of CdS/TNTs is possible. CdS/TNTs should be a promising photocatalyst for treatment of organic contamination.

3.3. Photocatalytic mechanism

Fig. 8 shows the schematic diagram of the separation of photogenerated electrons–holes pairs on the interface of CdS/TNTs under visible light irradiation. Firstly, CdS is excited to yield electron–hole pairs. Secondly, the electrons in the CB of TNTs react with molecular oxygen to generate superoxide radical (O2•−) (Eq. (3)) and hydrogen peroxide (H2O2) (Eq. (4)) [44]. Then O2•− and H2O2 inter-react to form hydroxyl radical ‘OH (Eq. (5)). Thirdly, dye molecules are oxidized by these oxidants step by step (Eq. (6)). In addition, the holes themselves can directly oxidize Rh B and MO molecules (Eq. (7)), and this is considered as the dominant pathway, because it is the prerequisite step for the photocatalytic reaction that dye molecules adsorbed on the surface of CdS/TNTs. As for this study, it is thought that both indirect oxidation by hydroxyl radical and direct oxidation by holes simultaneously functioned to oxidize dye molecules.

CdS/TNTs + hv → CdS(e− + h+) / TNTs

CdS(e− + h+) / TNTs → CdS(h+) / TNTs(e−)

CdS(h+)/TNTs(e−) + O2 → CdS(h+)/TNTs + O2•−

CdS(h+)/TNTs(e−) + O2 + H+ → CdS(h+)/TNTs + H2O2

This study, it is thought that both indirect oxidation by hydroxyl radical and direct oxidation by holes simultaneously functioned to oxidize dye molecules.

CdS/TNTs + hv → CdS(e− + h+)/TNTs

CdS(e− + h+)/TNTs → CdS(h+)/TNTs(e−)

CdS(h+)/TNTs(e−) + O2 → CdS(h+)/TNTs + O2•−

CdS(h+)/TNTs(e−) + O2 + H+ → CdS(h+)/TNTs + H2O2

This study, it is thought that both indirect oxidation by hydroxyl radical and direct oxidation by holes simultaneously functioned to oxidize dye molecules.
\[
\begin{align*}
H_2O_2 + O_2 & \rightarrow OH^- + OH^- + O_2 \\
Dye + \cdot O_2 (H_2O_2/ OH^-) & \rightarrow \text{products} \\
\text{CdS} (h^+) / \text{TNTs} + \text{Dye}_{ads} & \rightarrow \text{CdS} / \text{TNTs} + \text{Dye}_{ads}^+ \\
& \rightarrow \text{CdS} / \text{TNTs} + \text{products}
\end{align*}
\]

4. Conclusions

In this study, a new type of 1D nanostructure of CdS/TNTs heterostructures were successfully fabricated via an alkaline hydrothermal method combined surface precipitation method. From the above experimental results, it was revealed that CdS/TNTs consisted of anatase TiO_2 nanotubes and cubic phase CdS,
CdS nanoparticles were well deposited on the tube walls. This unique structure can transfer the photogenerated electrons very efficiently, thus effectively inhibiting the recombination of photoexcited electron–hole pairs. Compared with P25 and TNTs, the absorption edge of CdS/TNTs was drastically extended to around 550 nm. CdS/TNTs exhibited highest visible light photocatalytic activity due to the increase of specific surface area for more absorbed dyes, the electronic band structure and the additional synergistic effect between CdS and TNTs.

Acknowledgements

This work has been supported by National Nature Science Foundation of China (Grant No. 51338010, 21107125 and 51222182), National Basic Research Program of China (973 Program, Grant No. 2011CB933704), and the National Natural Science Funds for Distinguished Yong Scholar (Grant No. 51025830).

References

[1] W.J. Huyh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells, Science 295 (2002) 2425–2427.
[2] B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 449 (2007) 885–888.
[3] A.I. Hochbaum, R. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P.D. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451 (2008) 163–165.
[4] U.K. Gautam, X.S. Fang, Y. Bando, J.H. Zhan, D. Golberg, Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-In nanowire core–shell heterostructures, ACS Nano 2 (2008) 1015–1021.
[5] J.F. Wang, M.S. Gudiksen, X.F. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science 293 (2001) 1455–1457.
[6] J. McPhillips, A. Murphy, M.P. Jonsson, W.R. Hendren, R. Atkinson, F. Höök, A.V. Zayats, R.J. Pollard, High-performance biosensing using arrays of plasmonic nanotubes, ACS Nano 4 (2010) 2210–2216.
[7] G.K. Moi, O.K. Varghese, M. Paulose, M. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells 90 (2006) 2011–2075.
[8] X.F. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891–2959.
[9] Y.L. Wang, X.C. Jiang, Y.N. Xia, A. Solution-Phase, Precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 125 (2003) 16176–16177.
[10] Z.L. Wang, Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology, ACS Nano 2 (2008) 1987–1992.
[11] H. Wang, W. Yu, B.Q. Xu, Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis, Appl. Catal. B 59 (2005) 139–146.
[12] T. Tachiwaka, S. Tojo, M. Fujitsuka, T. Sekino, T. Majima. Photoinduced charge separation in titania nanotubes, J. Phys. Chem. B 110 (2006) 14055–14059.
[13] L. Qian, Z.S. Jin, Y.L. Yang, Z.L. Du, X. Rong, Bright visible photoluminescence from nanotube titania grown by soft chemical process, Chem. Mater. 17 (2005) 5334–5338.
[14] H.G. Yu, J.G. Yu, B. Chang, J. Lin, Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titnatate nanotube composites, J. Mater. Chem. 14 (2007) 581–587.
[15] H.G. Yu, J.G. Yu, B. Cheng, Photocatalytic activity of the calcined H-titmate nanowires for photocatalytic oxidation of acetone in air, Chemospheres 66 (2007) 2050–2057.
[16] P. Góraska, A. Zaleska, E. Kowalska, T. Klimczuk, J.W. Sobczak, E. Skwarek, W. Harzard. Mater. 147 (2007) 581–587.
[17] L. Zhao, Y. Sun, F.N. Castellano, Visible-light induced water detoxification with CdS quantum dot sensitized anatase TiO2 films to enhance electron transport in polycrystalline SnO2, Electrochim. Acta 56 (2010) 396–400.
[18] T.-H. Jang, T. Sekino, M. Fujitsuka, TiO2 nanotubes and multiply enhanced field-emission properties of branched ZnS nanotube core–shell heterostructures, ACS Nano 2 (2008) 2423–2424.
[19] K.P. Wang, H. Teng, Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination, Phys. Chem. Chem. Phys. 11 (2009) 9489–9496.
[20] T. Liu, J. Wang, Y. Tan, X. Zhou, Y. Lin, Photovoltacic performance improvement of dye-sensitized solar cells based on tantalum-doped TiO2 thin films, Electrochim. Acta 56 (2010) 396–400.
[21] K.P. Wang, H. Teng, Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells based on tantalum-doped TiO2 thin films, Electrochim. Acta 56 (2010) 396–400.
[22] X.F. Gao, H.B. Li, W.T. Sun, Q. Chen, F.Q. Tang, L.M. Peng, CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes, J. Phys. Chem. C 113 (2009) 7531–7535.
[23] H. Lee, M. Wang, P. Chen, D.R. Gamlin, S.M. Zakareudnik, M. Grätzel, M.K. Nazeeruddin, Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process, Nano Lett. 9 (2009) 4221–4227.
[24] M.Y. Wang, L. Sun, J.H. Cai, P. Huang, Y.F. Su, C.J. Lin, A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity, J. Mater. Chem. A 1 (2013) 12082–12087.
[25] M.Y. Wang, L. Sun, Z.Q. Lin, J.H. Cai, K.P. Xue, C.J. Lin, P-n Heterojunction photocatalysts composed of CdO-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activities, Energy Environ. Sci. 6 (2013) 1211–1220.
[26] H.I. Okur, Y. Turker, O.M. Dag, Synthesis of stable mesosstructred coupled semiconductor thin films: meso-CdS–TiO2, and meso-CdSe–TiO2, Langmuir 26 (2009) 538–544.
[27] J.C. Kim, J. Choi, Y.B. Lee, J.H. Hong, J.I. Lee, J.W. Yang, W.I. Lee, N.H. Hur, Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles, Chem. Commun. 48 (2006) 5024–5026.
[28] E.Y. Gou, L.W. Yin, L.Y. Zhang, CdS quantum dot sensitized anatase TiO2 hierarchical nanostructures for photocatalytic application, CrystEngComm 16 (2014) 3403–3413.
[29] C. Xue, T. Wang, G.D. Yang, B.L. Yang, S.J. Ding, A facile strategy for the synthesis of hierarchical TiO2/CdS hollow sphere heterostructures with excellent visible light activity, J. Mater. Chem. A 2 (2014) 7674–7679.
for efficient photocatalytic hydrogen production from water, J. Mater. Chem. 21 (2011) 5134–5141.

[35] M. Hodos, E. Horvath, H. Haspel, A. Kukovecz, Z. Konya, I. Kiricsi, Photo sensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles, Chem. Phys. Lett. 399 (2004) 512–515.

[36] C. Xing, D. Jing, M. Liu, L. Guo, Photocatalytic hydrogen production over Na,Ti2O2(OH)2 nanotube sensitized by CdS nanoparticles, Mater. Res. Bull. 44 (2009) 442–445.

[37] Y.J. Zhang, Y.P. Wu, Z.H. Wang, Y.R. Hu, Preparation of CdS/TiO2 NTs nanocomposite and its activity of photocatalytic hydrogen production, Rare Metal Mater. Eng. 38 (2009) 1514–1517.

[38] Y.X. Yin, Z.G. Jin, F. Hou, Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays, Nanotechnology 18 (2007) 495608.

[39] W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes, J. Am. Chem. Soc. 130 (2008) 1124–1125.

[40] J. Bai, J.H. Li, Y.B. Liu, B.X. Zhou, W.M. Cai, A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays, Appl. Catal., B 95 (2010) 408–413.

[41] R.A. Doong, S.M. Chang, C.W. Tsai, Enhanced photoactivity of Cu-deposited titanate nanotubes for removal of bisphenol A, Appl. Catal., B 129 (2013) 48–55.

[42] E. Lorençon, D.C.B. Alves, K. Krambrock, E.S. Ávila, R.R. Resende, A.S. Ferlauto, R.M. Lago, Oxidative desulfurization of dibenzothiophene over titanate nanotubes, Fuel 132 (2014) 51–61.

[43] G.D. Yang, B.L. Yang, T.C. Xiao, Z.F. Yan, One-step solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity, Appl. Surf. Sci. 283 (2013) 402–410.

[44] J.W. Shi, X.X. Yan, H.J. Cui, X. Zong, M.L. Fu, S.H. Chen, L.Z. Wang, Low-temperature synthesis of CdS/TiO2 composite photocatalysts: influence of synthetic procedure on photocatalytic activity under visible light, J. Mol. Catal. A: Chem. 356 (2012) 53–60.

[45] X.Y. Guo, C.F. Chen, W.Y. Song, X. Wang, W.H. Di, W.P. Qin, CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis, J. Mol. Catal. A: Chem. 387 (2014) 1–6.