The Production of Activated Carbon from Indonesian Mangrove Charcoal

A Budianto¹, E Kusdarini², S S W Effendi¹ and M Aziz³

¹Department of Chemical Engineering, Institut Teknologi Adhi Tama Surabaya (ITATS), Jalan Arief Rahman Hakim 100, Surabaya 60117, Indonesia; email: budichemical@itats.ac.id
²Department of Mining Engineering, Institut Adhi Tama Surabaya (ITATS), Jalan Arief Rahman Hakim 100, Surabaya 60117, Indonesia; email: esti@itats.ac.id

Abstract. Activated Carbon is an important material for purification, colour removal, adsorbent, and catalyst in the chemical industry. One of the iodine industries in East Java use active carbon as adsorbent that captures iodine from the solution. Indonesia still imports activated carbon despite the numerous raw materials of activated carbon in Indonesia. This research aims to determine the effect of the concentration of phosphoric acid (activating agent) and activation temperature on the production of activated carbon from mangrove charcoal. The activating agent used was phosphoric acid with 0.4-1.0 M and 2 hour immersion. The activation temperature was 650-725°C. The activated carbon of the research results was tested for its proximate level, iodine number, and specific surface area. The results showed that water content ranged from 0.11-0.38%, iodine number was around 769.075-1,019.087 mg/g. The highest iodine number was 1,019.87 mg/g and the surface area of 354.977 m²/g that occurred at 725°C with activator concentration of 1 M. Proximate analysis, iodine number, and specific surface area of activated carbon from mangrove charcoal have met Indonesian National Standardization (SNI 06-3730-1995).

1. Introduction

Indonesia is a country with the most number of islands in the world which makes Indonesia have the longest coastal area in the world. This fact makes the coastal area as important area. Two regions in East Java that actively cultivate mangroves are Tuban and Banyuwangi. Dry wood from these mangroves is widely used for firewood and charcoal, some of which are not even utilized. While at the same time, wood waste is very important for industry, especially for charcoal briquettes [1]. This utilization can still be increased to activated charcoal which is needed by various chemical industries and water treatment.

Changes in charcoal or wood into activated carbon require further processing. Some researchers have tried to use charcoal, sawdust, and agriculture waste for activated carbon. They examined the production of activated carbon from mahogany sawdust. The activation process was carried out using sodium carbonate and caustic soda, however, the absorption capacity of benzene still did not meet the requirement. The absorption capacity of this benzene was 14.5% [2]. Alpian et, al. tried to produce activated carbon from gelam wood, the result showed that the activated carbon produced from gelam wood has met SNI 06-3730-1995 standard [3]. Orange peel and Sapelli sawdust were made into activated carbon using microwave with rapid heating [4][5]. Eragrostis Plana Nees leaves were made into activated carbon with the help of microwave as well [6]. Masthura and Zulkarnain examined the
formation of pores in the heating of mangrove wood and coconut shell. This research showed that the most pore formation of mangrove wood and coconut shell were respectively at the temperature of 500 °C and 900 °C [7]. However, this research still has not shown the complete success of activated charcoal production from mangrove wood.

This research modifies the production method of activated charcoal from wood. The modified method was employed to transform mangrove charcoal to activated charcoal that complies with Indonesian National Standardization (SNI). The novelty of this research is the process of making activated carbon from mangrove charcoal using two methods of alternating activation, namely thermal and chemical. It is expected that the research results will be a reference for producing commercial activated carbon in the future.

2. Problem and data presentation

2.1 Problem

The production of activated carbon from mangrove charcoal is still a main attraction, especially in economic terms. Some researchers have made activated carbon from raw wood but the results still cannot be used to produce for commercial purposes. In 2018, Mastura and Zulkarnain have started a research on the effect of activation temperature on pore formation, but the research data were incomplete in which were not equipped with iodine absorption and SNI standards [7]. Accurate research is required since the commercial production of activated carbon from mangrove charcoal needs accurate data on procedure, proper activation temperature, activation time, chemical concentration for activation, and activated carbon specification.

2.2 Aim

This research aims to determine the effect of phosphoric acid concentration and activation temperature on the product proximate, iodine absorption, the addition of surface area after activation, and the best operating conditions for producing activated carbon to the product specifications compared to SNI 06-3730-1995.

3. Methodology

3.1. Data collection

This research was conducted in ITATS Chemical Engineering and mangrove charcoal was bought in the nearest traditional market in Surabaya. Mangrove charcoal was activated in two stages. The first stage was soaking the charcoal in phosphoric acid with certain concentration for 8 hours. Then, the charcoal was rinsed twice with distilled water at a temperature of 85°C until neutral pH was obtained. The dried mangrove charcoal was then ground and sieved to pass the 40 mesh filter. The ground mangrove charcoal was thermally activated for 2 hours at the selected temperature. Then, the activated carbon was cooled down in a desiccator and dried at 105°C for 6 hours followed by an analysis. Activated carbon analysis covered specific surface area with BET method, iodine absorption, and proximate analysis.

4. Data Analysis and result

4.1 Water content

Water content is one of the requirements of activated carbon. High water content may reduce the quality of activated carbon. According to SNI 06-3730-1995, the standard water content of activated carbon is less than 15%. Water content of mangrove charcoal activated carbon can be seen in Figure 1.
Figure 1. Water content of mangrove charcoal activated carbon at various temperatures

Figure 1. is the result of water content analysis of activated carbon at various temperature and phosphoric acid concentration. The water content of mangrove charcoal activated carbon ranged from 0.11-0.38% indicating that the water content of this activated carbon has met the SNI 06-3730-1995. This water content was better than activated carbon from bituminous and mahogany coal [2][8]. Besides due to thermal activation, the low water content was also caused by drying procedure at the end of the process.

4.2 Ash content
Ash content is one of the important active carbon requirements. If the ash content is high, it will reduce the absorption of this activated carbon. SNI 06-3730-1995 requires a maximum of 100% ash content in the activated carbon. Data on the ash content of mangrove charcoal activated carbon with thermal activation at various temperature and phosphate acid chemical activation are shown in the Figure 2. The maximum ash content of this activated carbon ranged from 6.8-10 % which has met Indonesian National Standardization (SNI 06-3730-1995), in which the maximum ash content of activated carbon is 10%.

Figure 2. Ash content of mangrove charcoal activated carbon with thermal activation at various temperature and phosphate acid chemical activation
The increase of activation temperature from 650°C to 725°C may increase ash content from 6.8-9.8%. This happens due to the partial increase of the volatile matter temperature will leave activated carbon. The ash content in this study was better than in the activated carbon from bituminous coal [8][9]. High ash content may cover the pores of activated carbon.

4.3 Volatile Matter
Volatile matter is a parameter describing the number of materials decomposed from activated carbon in certain temperature range. The maximum volatile matter allowed by SNI 06-3730-1995 is 25%. The data on activated carbon volatile matter of mangrove charcoal are presented in Figure 3. The volatile matter content of this activated carbon ranged from 19.8-23.4%. This number shows that all variables of activation temperature and phosphate acid concentration have formed activated carbon that met the requirement of volatile matter.

![Figure 3. Volatile matter content in mangrove charcoal activated carbon with chemical and thermal activation at various activation temperatures and phosphoric acid concentration (CAF)](image)

4.4 Fixed Carbon
Fixed carbon is a parameter describing the amount of carbon bound from activated carbon at certain temperature range. Fixed carbon content required by SNI 06-3730-1995 is 65%. The data on the analysis results of mangrove charcoal activated carbon can be seen in Figure 4. The fixed carbon content of this activated carbon ranged from 68.13%-70.25% showing that all activation temperature ranges and phosphate acid concentration used have met the requirement of fixed carbon. The highest fixed carbon content of mangrove charcoal activated carbon was 70.51% occurred at operating condition of 725°C thermal activation and phosphate acid concentration of 1.0 M. Fixed carbon in this study was higher than bituminous coal [8].
4.5 Iodine Number

Iodine number is a number showing the ability of 1 g activated carbon in absorbing iodine in mg. This iodine number is an absolute requirement of SNI that must be fulfilled by activated carbon. The iodine number required by SNI 06-3730-1995 is 750 mg/g. Data on iodine number of activated carbon is presented in Figure 6. This figure shows that iodine number of activated carbon from mangrove charcoal activated by phosphate acid with 0.4-1.0 M concentration and activation temperature ranged from 650-725°C is around 769–1019 mg/g. This showed that all operation conditions chosen in the experiment of producing mangrove charcoal activated carbon have met SNI requirement in terms of iodine number. The increase of temperature from 650°C to 725°C may increase iodine number up to 19-24 percent. The highest iodine number of mangrove charcoal activated carbon is 1,019 mg/g occurred at 725°C operation condition and phosphate acid concentration of 1.0 M. Iodine absorption in this study was lower than activated carbon from mahogany [2].

Figure 4. Fixed carbon content of mangrove charcoal activated carbon with chemical and thermal activation at various temperatures and phosphate acid concentration

Figure 5. Iodine number of mangrove charcoal activated carbon activated using chemical and thermal activation at various activation temperatures and phosphate acid concentration
4.6 Specific Surface Area
Specific surface area of mangrove charcoal before activation was 136.345 m²/g. Activation of 1.0 M phosphate acid and heating at 725°C produced activated carbon with surface area of 354.977 m²/g. The activation process has succeeded in increasing specific surface area by 160%. The specific surface area of this activated carbon was better than activated carbon from cacao shell, but lower than those from coconut shell [10],[11],[12]. The specific surface area of this activated carbon is sufficient to be commercial activated carbon.

5. Conclusion
Activation temperature and phosphate acid concentration affected proximate properties, specific surface area, and iodine number of mangrove charcoal activated carbon. Water content, ash content, volatile matter content, tethered carbon content, iodine number, and specific surface area of mangrove charcoal activated carbon in this research have met the SNI–06-3730-1995 activated carbon standard. The highest iodine number was 1,019 mg/g occurred at 725°C and phosphate acid concentration of 1.0 M. The specific surface area of this mangrove activated carbon was 354.977 m²/g. The best operating conditions for producing activated carbon from mangrove charcoal was at 725°C with phosphate acid concentration of 1.0 M.

6. References
[1] A Saleh, I Novianty, S Murni, A Nurrhama 2017 Analisis kualitas briket serbuk gergaji kayu dengan penambahan tempurung kelapa sebagai bahan bakar alternatif, Al Kimia volume 5 No. 1, pp 21-33.
[2] R Pujartati, JPG Sutapa 2005 Mutu arang aktif dari limbah kayu Mahoni (Swietenia macrophylla King) sebagai bahan penjerih air, Jurnal Ilmu dan Teknologi Kayu Tropis. Volume 3 No.2 pp. 33-36.
[3] Alpian, TA Prayitno JPG Sutapa, and Budiaidi 2010 Kualitas Arang Aktif Kayu Gelam dan Aplikasinya untuk Meningkatkan Kualitas Air, Jurnal Ilmu dan Teknologi Kayu Tropis. Volume 8 No.2 pp. 155-168.
[4] SS Lam, RK Liew,YM Wong, PNY Yek, N L M, CL Lee, and HA Chase 2017 Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent, journal of cleaner production, No. 162, pp 1376-1387.
[5] PS Thue, GSD Reis, EC Lima, JM Sieliechi, GL Dotto, AGN Wamba, SLP Dias, FA Pavan 2017 Activated carbon obtained from sapelli wood sawdust by microwave heating for o-cresol adsorption, Res Chem Intermed, Nomor 43, pp.1063–1087.
[6] MR Cunha, EC Lima, NFGM Cimirro1, PS Thue, SLP Dias, MA Gelesky, GL Dotto, GSD Reis, FA Pavan 2018 Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions, Environmental Science and Pollution Research, Volume 25 Issue 23, pp. 23315–23327
[7] Masthura, P Zulkarnain 2018 Characterization of Activated Carbon Microstructure of Coconut Shell and Mangrove Wood, Elkawnie: Journal of Islamic Science and Technology Vol. 4, No.1, pp 45-54.
[8] E Kusdarini, A Budianto, D Ghafarunnisa 2017 Produksi Karbon Aktif dari Batubara Bituminus dengan Aktivasi Tunggal H₃PO₄, Kombinasi H₃PO₄-NH₄HCO₃, dan Termal, Reaktor, Volume 17 no 2, pp 74-80.
[9] M Rahim and OS Indriyani 2010 Pembuatan Karbon Aktif dari Batubara Peringkat Rendah, Jurnal Teknologi Media Perspektif, Volume 10 No. 2, pp. 60-114.
[10] A Budianto, Romiarto and Fitriiningtyas 2016 Pemanfaatan Limbah Kakao (Theobroma Cacao L) sebagai Karbon Aktif dengan Aktifator Termal dan Kimia, Prosiding Seminar Nasional Sains dan Teknologi Terapan IV, pp. 208-213.
[11] SPD Kaman, IAW Tan and LLP Lim 2017 Palm oil mill effluent treatment using coconut shell–based activated carbon: Adsorption equilibrium and isotherm, Proceeding of MATEC Web of Conferences 87, 03009, pp. 1-6.

[12] IAW Tan, MO Abdullah, LLPB Lim, THC Yeo 2017, Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments, Journal of Applied Science & Process Engineering Vol. 4, No. 2, pp. 186-194

Acknowledgements
ITATS research team would like to thank the head of YPTS and ITATS as well as the head of Chemical Engineering Department for the permission given to use laboratory facilities for this research.