Advances in Understanding the Genetic Basis of Fatty Acids Biosynthesis in Perilla: An Update

Seon-Hwa Bae 1, Yedomon Ange Byovs Zoclanclounon 2, Thamilarasan Senthil Kumar 2, Jae-Hyeon Oh 3, Jundae Lee 1, Tae-Ho Kim 2 and Ki Young Park 1,*

1 Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju 54896, Korea; cute1004bs@naver.com (S.-H.B.); ajall@bnu.ac.kr (J.L.)
2 Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; angez9914@gmail.com (Y.A.B.Z.); seninfobio@gmail.com (T.S.K.);
thkim1961@korea.kr (T.-H.K.)
3 R&D Coordination Division, Rural Development Administration, Jeonju 54875, Korea; jhob8288@korea.kr
4 Department of Practical Arts Education, Gongju National University of Education, Gongju 32553, Korea
* Correspondence: kypark7302@gju.ac.kr

Abstract: Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids’ pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.

Keywords: fatty acid biosynthesis; Perilla; transcription factor; oil crop; genomics; fatty acid desaturase; triacylglycerol biosynthesis; transcriptomics

1. Introduction

Perilla frutescens var. frutescens is an oil crop from the mint family that is widely distributed in East Asia including India, Vietnam, China, and Korea [1]. The Perilla genetic resource encompasses the oil crop type P. frutescens var. frutescens, the weedy/wild type P. frutescens, and wild species Perilla setoyensis, Perilla hirtella, and Perilla citriodora [2]. While P. citriodora is known as one of the diploid progenitors [3] of tetraploid P. frutescens, the second diploid donor has not yet been elucidated. In Korean dietary habits, P. frutescens var. frutescens is used for its oil and as leafy vegetable. The fresh leaves can serve as a wrap for meat and boiled rice and are also prepared in a pickled form [2]. In China,
Plants 2022, 11, 1207

where it originated [1,2]. Perilla is used secularly as a traditional herbal medicine and fragrance [2]. The health-promoting properties of this plant are attributable to its wide panel of phytochemical compounds [4]. Among them, fatty acids including omega-3, -6, and -9 have been reported as anti-cancer agents [5–7], coronary heart-disease protectants [8], anti-diabetic agents [9], insulin-resistant [10], anti-cardiovascular disease agents [11], and anti-depressive agents [12–14]. In addition, preclinical tests revealed the positive effect of Perilla for mitigating moderate dementia [15]. However, further investigations are required to confirm its role before a recommendation for its use as an antioxidative complement for patients with dementia [4,15]. In addition, Perilla is also used as a supplement in animal feeding [16,17]. Due to the numerous applications of fatty acids from Perilla in the health industry, the oil industry, and for animal breeding, a comprehensive background underpins fatty acid biosynthesis as a fundamental prerequisite for proper utilization in the biomedical, bioengineering, and animal industries.

Recently, Perilla entered into the genomics era with the sequencing of tetraploid P. frutescens and one diploid donor P. citriodora [3], laying a foundation for unraveling the genetic basis of its multiple health and nutraceutical benefits. In the present review, we will examine recent breakthroughs on the genetic basis of fatty acid biosynthesis in Perilla.

2. Earlier Identification and Cloning of Fatty Acid Encoding Gene in Perilla

The genetic characterization interest for Perilla as an oil crop with numerous health beneficial attributes started as early as the 1900s. Several fatty acid genes have been cloned and functionally characterized. Lee et al. (https://www.ncbi.nlm.nih.gov/nuccore/U59477.1/, accessed on 12 February 2021) first characterized a ω-3 fatty acid desaturase PfrFAD7 (Genbank accession: U59477.1) extracted from a Korean cultivar “Okdong” seedling. Subsequently, a cloning of a second gene PrFAD3 was conducted by Chung et al. [18]. PrFAD3 exhibited a seed-specific expression when compared to other organs including the leaf, stem, and root, suggesting a preferential accumulation of alpha-linolenic acid (ALA) in the seed.

Hwang et al. [19,20] also reported four 3-ketoacyl-acyl carrier protein synthases (KAS) encoding genes, PfKAS3a (KAS III) and PfKAS3b (KAS III), PfFAB1 (KAS I), and PfFAB24 (KAS II/IV), which were responsible in the high accumulation of alpha-linolenic synthesis in P. frutescens seeds. Another alpha-linolenic acid-related gene, the microsomal oleate 12-desaturase (PfFAD2) gene, was functionally characterized for the first time in P. frutescens var. frutescens seed [21] in later studies. In addition to the previously identified FAD3 and FAD7 type genes, Xue et al. [22] isolated two FAD8 alpha-linoleic-related genes (PrFAD8a and PrFAD8b) harboring two pyrimidine stretches. Interestingly, the expression of PrFAD8 genes was predominantly observed in the Perilla bud while its accumulation increased under injury, Methyl jasmonate (MeJA), Salicylic Acid (SA), and Abscisic acid (ABA) effects; highlighting their implications in plant defense, growth, and development.

3. Transcriptomics Sheds Lights into Key Master Player Enzymes of Perilla Fatty Acid Biosynthesis

Although some genes have been investigated earlier, the fully resolved biosynthesis pathway of fatty acids in Perilla was still unclear. To fill this gap, the RNA sequencing approach has been extensively used because it helps in uncovering expressed genes related to a biological process. By deciphering the transcriptome of Perilla using diverse organs, scientists were able to identify key genes related to fatty acid biosynthesis via de novo transcripts assembly and functional gene prediction. Thus, extensive transcriptome studies have been initiated using different materials, including P. frutescens var. frutescens, Perilla frutescens var. crispa f. purpurea (red Perilla), and P. frutescens var. crispa f. viridis (green Perilla) [23–26]. The uncovered key genes involved in fatty acid biosynthesis in Perilla have been summarized in Figure 1. Briefly, based on Perilla’s fatty acid desaturase subcellular localization prediction [27] and the well-studied Arabidopsis fatty acid biosynthesis model [28], most fatty acids, including palmitic acid (C16:0), stearic acid (C18:0),

and oleic acid (C18:1), were exclusively synthesized in plastids and conveyed into the cytoplasm where they entered into an acyl-CoA pool for the esterification process at sn-2 position resulting in phosphatidylcholine under the acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) enzyme effect.

![Diagram of fatty acid biosynthetic pathway in *Perilla* and triacylglycerols (TAGs) assembly.](image)

Figure 1. A simplified putative diagram view of fatty acids biosynthetic pathway in *Perilla* and triacylglycerols (TAGs) assembly. The schematic view involved biochemical interactions occurring in plastid, cytoplasm, and endoplasmic reticulum, respectively. The resulting TAGs are indicated in yellow. Purple circles indicate transcription factors, including WRINKLED (WRII), FUSCA3 (FUS3), LEAFY COTYLEDON1 (LEC1, LCE2), and ABSCISIC ACID INSENSITIVE3 (ABI3). The transcriptional regulation of FUS3, LCE1, LCE2, and ABI3 with PfFAD3.1 is not yet uncovered.

Abbreviations: PDHC: plastidial pyruvate dehydrogenase complex; ACCase: acetyl-CoA carboxylase; MCMT: malonyl-CoA ACP transacylase; KASIII: ketoacyl-ACP synthase type III; KAR: 3-ketoacyl-ACP reductase; HAD: 3-hydroxyacyl-ACP dehydratase; EAR: 2-enoyl-ACP reductase; KASII: ketoacyl-ACP synthase type II; KASI: ketoacyl-ACP synthase type I; SAD: stearoyl-acyl carrier protein desaturase; FATB: acyl-ACP thioesterase B; FATA: acyl-ACP thioesterase A; MGDG: monogalactosyldiacylglycerol; PfFAD: *Perilla frutescens* fatty acid desaturase; PC Pool: phosphatidylcholines pool; PCH: palmitoyl-CoA hydrolase; LACS: long-chain acyl-CoA synthetase; PDCT: phosphatidylcholineacylglycerol cholinephosphotransferase; FAX: fatty acid export; LPCAT: lysophosphatidylcholine acyltransferase; PDAT: phospholipid diacylglycerol acyltransferase; DGAT: diacylglycerol acyltransferase; GPAT: glycerol-3-phosphate acyltransferase; LPAT: 1-acylglycerol-3-phosphate acyltransferase; DHAP: dihydroxyacetone phosphate; PAH: phosphatidic acid phosphatase; OLEO: Oleosin.
Oleic acid was then desaturated in the endoplasmic reticulum (ER) to become consecutively linoleic acid (LA) and alpha-linolenic acid (ALA) under FAD2 and FAD3 genes, respectively. The resulting polyunsaturated fatty acids were transacylated onto the sn-3 position of diacylglycerol by phospholipid:diacylglycerol acyltransferase (PDAT) or returned to the acyl-CoA pool via LPCAT to be incorporated into TAG through the Kennedy pathway, inducing the production of triacylglycerols (TAGs) [29].

Using Perilla as a plant model, numerous fatty acid-related genes have been identified. From a time-course seed transcriptome analysis, Kim et al. [25] identified 43 acyl-lipid related genes in P. frutescens var. frutescens cv. Dayudeulkkae (Table 1). The identified genes via Arabidopsis orthologs detection covered the de novo fatty acid biosynthetic key enzymes present in the plastid, endoplasmic reticulum desaturases, oil body proteins, acyl-CoA-, and phosphatidylcholine-mediated TAG synthesis.

Table 1. Summary of Identified Major Genes Involved in Fatty Acid and Triacylglycerols Biosynthesis in Perilla.

Enzyme ID	Enzyme Name	GeneID	Homologous	Pathways Involved	Field of Study	References
PDH(E1α)	Pyruvate Dehydrogenase E1 Subunit Alpha 1	Locus_2112	AT1G01090.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
PDH(E1β)	Pyruvate Dehydrogenase E1 Subunit beta 1	Locus_25208	AT2G34590.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
EMB3003(E2)	Pyruvate dehydrogenase e2 component (dihydrolipoamide acetyltransferase)	Locus_33306	AT1G34430.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
LTA2 (E2)	Plastid E2 Subunit of Pyruvate Decarboxylase, PLE2	Locus_5104	AT3G25860.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
LPD1 (E3)	Lipoamide dehydrogenase	Locus_7407	AT3G16950.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
α-CTa	Alpha-carboxyltransferase Isoform a	Locus_8492	AT2G38040.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
α-CTb	Alpha-carboxyltransferase Isoform b	Locus_2178	AT2G38040.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
β-CT	Beta-carboxyltransferase	Locus_53041	ATCG00500.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
BC	Biotin carboxylase	Locus_22078	AT5G35360.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
BCCP1	Biotin carboxyl carrier protein of acetyl-CoA carboxylase 1	Locus_29162	AT5G16390.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
BCCP2	Biotin carboxyl carrier protein of acetyl-CoA carboxylase 2	Locus_17340	AT5G15530.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
MCMT	Malonyl-CoA ACP transacylase	Locus_14579	AT2G30200.1	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
Enzyme ID	Enzyme Name	GeneID	Homologous Pathways Involved	Field of Study	References	
----------	-------------------------------------	-------------------	-----------------------------	-------------------------	------------	
PF40	3-Ketoacyl-ACP synthase	Locus_10821	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
KASIII	3-Ketoacyl-ACP reductase	Locus_1445	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
HAD	3-hydroxyacyl-ACP dehydratase	Locus_19332	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
EAR	2-ensoyl-ACP reductase	Locus_25443	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
FATA	Fatty acyl-ACP thioesterase A	Locus_29919	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
FATB	Fatty acyl-ACP thioesterase B	Locus_6603	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
FAB2	Fatty acid biosynthesis 2	Locus_13564	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
DE56	Stearyl-acyl carrier protein desaturase	Locus_9486	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
KASI	Ketoacyl-ACP Synthase I	Locus_26341	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
KASII	Ketoacyl-ACP Synthase II	Locus_1373	A. Thaliana	FA de novo biosynthesis and export from plastid	Transcriptomics [25]	
LACS8	Long-chain acyl-CoA synthetase 8	chr07_36292788	A. Thaliana	Genome Assembly, Transcriptomics	[3,25]	
		chr07_36292788	A. Thaliana	Genome Assembly, Transcriptomics	[3,25]	
		chr19_22302145	A. Thaliana	Genome Assembly, Transcriptomics	[3,25]	
		chr02424545	A. Thaliana	Genome Assembly, Transcriptomics	[3,25]	
LACS9	Long-chain acyl-CoA synthetase 9	chr03_70622879	A. Thaliana	Genome Assembly, Transcriptomics	[3,25]	
		chr09_58853241	A. Thaliana	Genome Assembly, Transcriptomics	[3,25]	
		chr19_22302145	A. Thaliana	Genome Assembly, Transcriptomics	[3,25]	
FAX1	Fatty acid export 1	chr05_24242740	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
		chr01_71691539	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
FAX2	Fatty acid export 2	chr07_10626150	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
		chr01_71691539	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
FAX3	Fatty acid export 3	chr04_00857340	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
		chr04_00857340	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
FAX5	Fatty acid export 5	chr04_65529797	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
		chr07_22334802	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
		chr06_00746938	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
		chr01_010733560	A. Thaliana	FA de novo biosynthesis and export from plastid	[25]	
Table 1. Cont.

Enzyme ID	Enzyme Name	GeneID	Homologous Pathways	Field of Study	References		
FAD2	Omega-6 fatty acid desaturase	chrl2, 56932398, 56934446 chrl1, 05992061, 05993208 chrl1, 05979254, 05976393	chr08_55538081, 55539229 AT3G12120.1	Acyl editing of phosphatidyl-choline	Genome Assembly, Transcriptomics	[3,25]	
		chrl2, 569484107 56949167	chrl1, 5419412, 54197265	chr08_55558209, 55559348	Genome Assembly, Transcriptomics	[3,25]	
FAD3	Omega-3 fatty acid desaturase	chrl2, 04645208, 04647776 chrl1, 72114246, 72119454	chr11_05592060, 05593208 chr11_05575254, 05576393	AT2G29980.1	Acyl editing of phosphatidyl-choline	Genome Assembly, Transcriptomics	[3,25]
FAD8	Omega-8 fatty acid desaturase	chr12, 569484107 56949167	chr11_05592060, 05593208 chr11_05575254, 05576393	chr08_55558209, 55559348	Acyl editing of phosphatidyl-choline	Genome Assembly, Transcriptomics	[3,25]
GPAT9	Glycerol-3-phosphate acyltransferase 9	chr12, 33733527, 33737991 chrl1, 26255533, 26259681	chr08_33038421, 33042132	AT5G05580.2	Acyl editing of phosphatidyl-choline	Transcriptomics	[25]
LPAT2	1-acyl-sn-glycerol-3-phosphate acyltransferase 2	chr05_2358386, 2358893 chrl05, 34440913, 34444444 chrl01, 72114246, 72119454	chr02_43313059, 43318262 chr02_32585727, 32589258	AT3G57650.1	Acyl-CoA-dependent TAG synthesis in Kennedy pathway	Genome Assembly, Transcriptomics	[3,25]
PAH1	Phenylalanine hydrolase 1	chr01, 61567423, 6157065 chrl4, 08979719, 08980206 chrl5, 37130964, 3718907 chrl3, 61656532, 61661875 chrl8, 09154357, 09159306 chrl7, 34575710, 34580644 chrl09, 5034045, 5034956	chr01_11516392, 11522733	Acyl-CoA-dependent TAG synthesis in Kennedy pathway	Genome Assembly, Transcriptomics	[3,25]	
DGAT1	Diacylglycerol O-acyltransferase 1	chr01_09730655, 09741367 chrl01_48275733, 48286173	chr05_08797620, 08800333	AT2G19450.1	Acyl-CoA-dependent TAG synthesis in Kennedy pathway	Genome Assembly, Transcriptomics	[3,25]
DGAT2	Diacylglycerol O-acyltransferase 2	chr14_26782964, 2678941 chrl18, 25811826, 25816791	chr10_25785382, 25790335	AT3G51520.1	Acyl-CoA-dependent TAG synthesis in Kennedy pathway	Genome Assembly, Transcriptomics	[3,25]
DGAT3	Diacylglycerol O-acyltransferase 3	chr01_06996630, 0701595 chrl01_56678891, 56685081 chrl01_03079195, 03084058 chrl07_53028425, 53045367 chrl01_43224061, 43229071 chrl02_66141068, 66147271 chrl02_04634020, 04638976 chrl19, 35211932, 35217537	chr08_11516392, 11522733	Acyl-CoA-dependent TAG synthesis in Kennedy pathway	Transcriptomics	[25]	
LPCAT	Lysophosphatidylcholine acyltransferase	chr01, 06996630, 0701595 chrl01_56678891, 56685081 chrl01_03079195, 03084058 chrl07_53028425, 53045367 chrl01_43224061, 43229071 chrl02_66141068, 66147271 chrl02_04634020, 04638976 chrl19, 35211932, 35217537	chr05_03187620, 03190829 chrl05_03187620, 03190829 chrl06_54113419, 54119561	AT1G12640.1	PC-mediated TAG synthesis	Transcriptomics	[3,25]
Table 1. Cont.

Enzyme ID	Enzyme Name	GeneID	Homologous Pathways Involved	Field of Study	References
CPT1	Diacylglycerol cholinephosphotransferase	PF40*	AT1G13560.1	PC-mediated TAG synthesis	Transcriptomics [25]
CPT2	Diacylglycerol cholinephosphotransferase	Dayudeulkkae**	AT3G25585.1	PC-mediated TAG synthesis	Transcriptomics [25]
PDA1	Phospholipid: diacylglycerol acyltransferase 1	chr05:44104376-44108847	AT5G13640.1	Acyl-CoA independent pathway	Transcriptomics [3,25]
		Locus_7821 AT1G13560.1	PC-mediated TAG synthesis	Transcriptomics [25]	
		Locus_22567 AT3G25585.1	PC-mediated TAG synthesis	Transcriptomics [25]	
		chr05:44104376-44108847	AT5G13640.1	Acyl-CoA independent pathway	Transcriptomics [3,25]
		chr02:52135886 AT4G25140.1	TAG assembly Transcriptomics [3,25]		
		chr09:00376677_00380564	Genome Assembly, Transcriptomics [3,25]		
PDA2	Phospholipid: diacylglycerol acyltransferase 2	chr05:38922115-38924735	AT3G44830.1	Acyl-CoA independent pathway	Transcriptomics [3,25]
		Locus_29208 AT2G30526	PC-mediated TAG synthesis	Transcriptomics [25]	
		chr02:5992086_45994691	Genome Assembly, Transcriptomics [3,25]		
PDCT	Phosphatidylcholine: diacylglycerol cholinephosphotransferase	chr03:46291224-46295449	AT3G15820.1	Acyl-CoA independent pathway	Transcriptomics [3,25]
		chr09:37050943_37053194	Transcriptomics [3,25]		
		Locus_15867 chr01:27228085_27230144	Transcriptomics [3,25]		
OLEO2	Oleosin2	chr15:52133834-52134256	AT5G40420.1	TAG assembly Transcriptomics [3,25]	
		Locus_31790	Transcriptomics [3,25]		
		chr17:50355018_50355440	Transcriptomics [3,25]		
OLEO	Oleosin	chr18:08871500_08871970	AT3G18570.1	TAG assembly Transcriptomics [3,25]	
		chr03:05196095_05196523	Transcriptomics [3,25]		
OLEO1	Oleosin1	chr01:30156121_30156549	AT4G25140.1	TAG assembly Transcriptomics [3,25]	
		Locus_29266 AT4G25140.1	Transcriptomics [3,25]		
OLEO5	Oleosin5	chr05:59989345_59989911	AT3G01570.1	TAG assembly Transcriptomics [3,25]	
		Locus_29276 AT5G0420.1	Transcriptomics [3,25]		

* Perilla frutescens var. frutescens cv. PF40; ** Perilla frutescens var. frutescens cv. Dayudeulkkae; *** Perilla citriodora.

The mentioned genes have been identified through de novo transcriptome mining coupled with Arabidopsis homologous sequences prediction.

Transcriptome mining revealed five sub-unit genes (α-PDH, β-PDH, EMB3003, LTA2, and LPD1) of the precursor enzyme plastidial pyruvate dehydrogenase complex (PDHC) involved in the synthesis of acetyl-CoA from pyruvate. Afterward, acetyl-CoA carboxylase (ACCase) transformed acetyl-CoA into malonyl-CoA [30]. The ACCase in Perilla encompassed two ACCases subunits alpha (α-CTa and α-CTb), one ACCase subunit beta (β-CT), two isoforms of biotin carboxyl-carrier protein (BCCP1 and BCCP2), and one biotin carboxylase (BC).

Furthermore, the malonyl-CoA ACP transacylase, an acyl carrier protein transacylase, catalyzed malonyl-CoA to form malonyl-ACP, paving the way for fatty acid elongation under the action of acyl-chain enzymes, i.e., 3-keto-acyl-ACP synthase (KAS), 3-ketoacyl-ACP reductase (KAR), 3-hydroxylacyl-ACP dehydratase (HAD), and Trans-Δ2-enoyl-ACP
reductase (EAR), respectively [23,24,31]. It is worth mentioning that WR1 is well conserved in plant species. For instance, homologous genes have been identified in *Brachypodium distachyon* [32], *Camelina sativa* [33], *Solanum tuberosum* [34], *Cocos nucifera* [35], *Brassica napus* [36], *Elaeis guineensis* [37], and *Jatropha curcas* [38]. In *A. thaliana*, through the promoter binding element AW-box, WR1 targets upstream genes encoding for malonyl-CoA:ACP malonyl transferase, enoyl-ACP reductase, pyruvate dehydrogenase, oleoyl-ACP thioesterase, biotin carboxyl carrier protein 2, ketoacyl-ACP synthase, and hydroxyacyl-ACP dehydrase [39–46]. The homologous sequence of WR1 has been demonstrated in augmentation from 10 to 40% of seed oil in transgenic maize [47] and *Brassica napus* [36], suggesting that *Perilla’s WR1* gene might be a promising candidate for oil-oriented bioengineering in *Perilla*.

Through carbon chain elongation, palmitoyl-ACP (C16:0) is converted into stearoyl-ACP (C18:0). The latter is transformed into oleic acid (C18:1)-ACP under the catalysis of stearoyl-acyl carrier protein desaturase (*SAD*). In *Perilla*, two *SAD* genes have been identified, including *PfFAB2* and *PfDES6* [25]. Using a red *Perilla* (*Perilla frutescens var. crispa F. purpurea*) seed transcriptome, Liao et al. [23] identified fatty acid desaturases PfFAD6 and PfFAD7/8 that act on the vector glycerolipid, i.e., monogalactosyldiacylglycerol (MGDG), in order to process (C18:1) into (C18:2) and (C18:2) to (C18:3), respectively (Figure 1).

To terminate fatty acids synthesis in *Perilla* plastids, fatty acyl-ACP thioesterase (*FATA*), palmitoyl/stearoyl-acyl carrier protein thioesterase (*FATB*), and palmitoyl-CoA hydrolase (*PCH*) were solicitated. *PCH* specifically induced C18:1- and C18:2-synthesis, while *FATA* was a C18:1-exclusive catalyst. Meanwhile, *FATB* transformed only C16:0-ACP or C18:0-ACP to C16:0 or C18:0, respectively (Figure 1). Representative gene coding for these enzyme has been pinpointed by de novo transcriptome analysis and comparative transcripts with regard to the well characterized *A. thaliana* fatty acid-related gene [23,24]. Free FAs were then moved into the cytoplasm where they were esterified to form an Acyl-CoA pool under the action of long-chain acyl-CoA synthesis (LACS). Liao et al. [23] reported the important expression of LACS genes in *Perilla* seeds ten days after flowering, indicating an initiation of TAGs synthesis pathway in the endoplasmic reticulum (ER).

In the ER, esterified fatty acids are translated into phosphatidylcholines via lysophosphatidylcholine acyltransferase (*LPCAT*). Based on the Arabidopsis plant model, mainly two fatty acid desaturases have been identified in the ER: an *FAD2* that converts PC-C18:1 into PC-18:2 and an *FAD3* that catalyzes PC-C18:2 into PC-C18:3 [48–50]. Homologous sequences in *Perilla* seed (*PfFAD2* and *PfFAD3*) transcriptome [23–25] have also been identified (Table 1).

Recently, the transcriptome assessment of Chinese cultivar PF40 highlighted 33 candidate genes involved in TAG biosynthesis-covering transcription factors (Supplementary Table S1), and fatty acids were exported from plastid, acyl editing of phosphatidylcholine, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, and TAGs assembly into oil bodies (Table 1). The identified genes corroborated with previous findings [23–25], except for the first identification of fatty export1 (*FAX1*) as an additional enzyme to long-chain acyl-CoA synthetase (LACS) that mediated plastid fatty acid export.

In the absence of a whole genome representative resources, the detection of potential genes isoforms and the full FADs gene repertoire is difficult to predict, and diverse gene targets for functional validation and bio-engineering purposes are not provided. Due to the fact that *Perilla* has entered into the genomics era, the next section covers genomics-based advances in the detection of fatty acids in *Perilla* via genome-wide identification and genome-wide association study strategies.

4. Whole-Genome-Driven Fatty Acid Genes Discovery

With the advent of long-reads and chromosome conformation capture technologies, a high-quality chromosome scale genome of tetraploid *P. frutescens var. frutescens* has recently been assembled [3]. The genome spanned 1.203 Gb, along with 20 chromosomes with an N50 of 62.64 Mb and a total of 38,941 predicted gene models.
From a panel of 191 accessions, a genome-wide association study for seed alpha-linolenic acid content enabled the identification of an LPCAT encoding region located in chromosome 2. This finding corroborates previous observations, suggesting the role of LPCAT in FAs and TAGs synthesis in B. napus [51] and A. thaliana [52]. Interestingly, a deletion of this gene was noted in some individuals of the studied panel corresponding to a loss of around 6% of seed oil ALA content. This suggests that the transcriptional regulation of LPCAT might be responsible for ALA content variations in Perilla.

Taking advantage of the PF40-generated high-quality genome, in silico genome-wide analysis identified a repertoire of 42 fatty acid desaturases clustered into five families including omega-3 desaturase, Δ7/Δ9 desaturase, FAD4 desaturase, Δ12 desaturase, and front-end desaturase [27]. The heterologous validation of candidate fatty acid desaturase genes using A. thaliana revealed a positive impact (increase of 18–37% alpha-linolenic acid content) of the PfFAD3.1 gene.

Furthermore, the upregulation of WRINKLED (WRI1), FUSCA3 (FUS3), LEAFY COTYLEDON1 (LEC1 and LCE2), and ABSICIC ACID INSENSITIVE3 (ABI3) transcription factors was noted in PfFAD3.1 Arabidopsis transgenic lines [3] and Perilla seed expression profiles [23], suggesting their regulation roles in the Perilla FAs synthesis pathway.

5. Concluding Remarks and Outlook

Fatty acids play an important role in the lipid supply of plants and have valuable medicinal properties for humans. Here, we summarized the breakthroughs that shed light into the genetic and molecular determinants of FA and TAG synthesis in Perilla. Transcriptomics and genomics studies revealed the key master player enzymes responsible for FAs synthesis in Perilla, including polyunsaturated fatty acids desaturases, acyl-related enzymes, and transcription factors. However, the evidence of their role is still elusive since strong functional validation has not yet been provided.

The mechanism of the regulation of FA synthesis by TFs in Perilla is still elusive. Meanwhile, the recent work from Moreno-Perez et al. [53] suggested histone methylation (H3K4me3) implication into fatty acid biosynthesis in sunflowers with interactions with TFs. Moreover, acetyl-CoA, which is involved in fatty acid synthesis in plants, has been found to be correlated with histone acetylation and DNA methylation in A. thaliana through the beta-oxidation process [54]. Therefore, an in-depth investigation of identified TFs, such as ABI3, FUS3, LEC1, and LEC2, and the epigenome landmark of Perilla will pave a new avenue in deciphering the full landscape of fatty-acid biosynthesis in Perilla.

Functional validation using Perilla as a material instead of A. thaliana would drastically shape the validation efficiency of the identified genes. For this purpose, Agrobacterium-based protocols [55,56] have been tested and can serve as further functional validation. Moreover, in the current era of gene and genome editing with applicable cases in plants [57–60], designing appropriate gene editing strategies that fit into the Perilla system will surely expedite the production of enriched alpha-linolenic acid-Perilla genotypes. Furthermore, considering the species diversity within the Perilla genus, systematic fatty acid content evaluation within the Perilla species will help reveal potential alpha-linolenic acid-enriched species donors and characterize their respective biosynthetic pathways.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/plants11091207/s1, Table S1: Identified transcription factors from Perilla through transcriptome, whole genome, and in silico co-expression analyses.

Author Contributions: Conceptualization, S.-H.B.; methodology, S.-H.B. and Y.A.B.Z.; writing—original draft preparation, S.-H.B., Y.A.B.Z. and T.S.K.; writing—review and editing, S.-H.B., J.-H.O., J.L., T.-H.K. and K.Y.P.; visualization, Y.A.B.Z.; supervision, J.L., T.-H.K. and K.Y.P.; funding acquisition, K.Y.P. All authors have read and agreed to the published version of the manuscript.

Funding: This study received no external funding.
Data Availability Statement: The data presented in this study are available in Table S1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nitta, M.; Lee, J.K.; Kang, C.W.; Katsuta, M.; Yasumoto, S.; Liu, D.; Nagamine, T.; Ohnishi, O. The Distribution of Perilla Species. *Genet. Resour. Crop Evol.* 2005, 52, 797–804. [CrossRef]

2. Nitta, M.; Lee, J.K.; Ohnishi, O. Asian Perilla crops and their weedy forms: Their cultivation, utilization and genetic relationships. *Econ. Bot.* 2003, 57, 245–253. [CrossRef]

3. Zhang, Y.; Shen, Q.; Leng, L.; Zhang, D.; Chen, S.; Shi, Y.; Ning, Z.; Chen, S. Incipient diploidization of the medicinal plant Perilla within 10,000 years. *Nat. Commun.* 2021, 12, 5508. [CrossRef] [PubMed]

4. Ahmed, H.M. Ethnomedicinal, phytochemical and pharmacological investigations of *Perilla frutescens* (L.) Britt. *Molecules* 2019, 24, 102. [CrossRef]

5. Banno, N.; Akihisa, T.; Tokuda, H.; Yasukawa, K.; Higashihiara, H.; Ukiya, M.; Watanabe, K.; Kimura, Y.; Hasegawa, J.I.; Nishino, H. Tripterpenes from the leaves of *Perilla frutescens* and their anti-inflammatory and antitumor-promoting effects. *Biosci. Biotechnol. Biochem.* 2004, 68, 85–90. [CrossRef]

6. Narisawa, T.; Takahashi, M.; Kotanagi, H.; Kusaka, H.; Yamazaki, Y.; Koyama, H.; Fukaura, Y.; Nishizawa, Y.; Kotsugai, M.; Isoda, Y.; et al. Inhibitory Effect of Dietary Perilla Oil Rich in the n-3 Polyunsaturated Fatty Acid α-Linolenic Acid on Colon Carcinogenesis in Rats. *Jpn. J. Cancer Res.* 1991, 82, 1089–1096. [CrossRef]

7. Lin, C.S.; Kuo, C.L.; Wang, J.P.; Cheng, J.S.; Huang, Z.W.; Chen, C.F. Growth inhibitory and apoptosis inducing effect of Perilla leaves. *Biosci. Biotechnol. Biochem.* 2004, 68, 85–90. [CrossRef]

8. Wijendran, V.; Hayes, K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. *Annu. Rev. Nutr.* 2004, 24, 597–615. [CrossRef]

9. Wang, F.; Zhu, H.; Hu, M.; Wang, J.; Xia, H.; Yang, X.; Yang, L.; Sun, G. Perilla Oil Supplementation Improves Hypertriglyceridemia and Gut Dysbiosis in Diabetic KKaye Mice. *BMC Genom.* 2016, 17, 680299. [CrossRef]

10. Zhang, T.; Zhao, S.; Li, W.; Ma, L.; Ding, M.; Li, R.; Liu, Y. High-fat diet from perilla oil induces insulin resistance despite lower serum lipids and increases hepatic fatty acid oxidation in rats. *Lipids Health Dis.* 2014, 13, 15. [CrossRef]

11. Paradee, N.; Utama-ang, N.; Uthaipibull, C.; Porter, J.B.; Garbowski, M.W.; Srichairatanakool, S. Extracts of Thai *Perilla frutescens* leaves attenuate tumour necrosis factor-α-activated generation of microparticles, ICAM-1 and IL-6 in human endothelial cells. *Biosci. Rep.* 2020, 40, 1–12. [CrossRef] [PubMed]

12. Nakazawa, T.; Yasuda, T.; Ueda, J.; Ohsawa, K. Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from *Perilla frutescens* in the forced swimming test. *Biol. Pharm. Bull.* 2003, 26, 474–480. [CrossRef] [PubMed]

13. Takeda, H.; Tsuji, M.; Inazui, M.; Egashira, T.; Matsumiya, T. Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. *Eur. J. Pharmacol.* 2002, 449, 261–267. [CrossRef]

14. Takeda, H.; Tsuji, M.; Miyamoto, J.; Matsumiya, T. Rosmarinic acid and caffeic acid reduce the defensive freezing behavior of mice exposed to conditioned fear stress. *Psychopharmacology* 2002, 164, 233–235. [CrossRef] [PubMed]

15. Kamalashiran, C.; Pattaraarchachai, J.; Muengtaweepongsa, S. Feasibility and Safety of Perilla Seed Oil as an Additional Antioxidative Therapy in Patients with Mild to Moderate Dementia. *J. Aging Res.* 2017, 2017, 557–567. [CrossRef]

16. Cui, X.; Gou, Z.; Fan, Q.; Li, L.; Lin, X.; Wang, Y.; Jiang, S.; Jiang, Z. Effects of dietary perilla seed oil supplementation on lipid metabolism, meat quality, and fatty acid profiles in Yellow-feathered chickens. *Poult. Sci.* 2019, 98, 5714–5723. [CrossRef] [PubMed]

17. Peiretti, P.G.; Gasco, L.; Brugiapaglia, A.; Gai, F. Effects of perilla (*Perilla frutescens* L.) seeds supplementation on performance, carcass characteristics, meat quality and fatty acid composition of rabbits. *Livest. Sci.* 2011, 138, 118–124. [CrossRef]

18. Chung, C.-H.; Kim, J.-L.; Lee, Y.-C.; Choi, Y.-L. Cloning and Characterization of a Seed-Specific -3 Fatty Acid Desaturase cDNA from Perilla frutescens. *Plant Cell Physiol.* 1999, 40, 114–118. [CrossRef]

19. Hwang, S.K.; Hwang, Y.S. Molecular cloning and functional expression of Perilla frutescens 3-ketoacyl-(acyl carrier protein) synthase III. *Mol. Cells* 2000, 10, 375–381. [CrossRef] [PubMed]

20. Hwang, S.K.; Kim, K.H.; Hwang, Y.S. Molecular cloning and expression analysis of 3-ketoacyl-ACP synthases in the immature seeds of *Perilla frutescens*. *Mol. Cell. Biol.* 2000, 10, 533–539. [CrossRef] [PubMed]

21. Lee, K.-R.; Lee, Y.; Kim, E.-H.; Lee, S.-B.; Roh, K.H.; Kim, J.-B.; Kang, H.-C.; Kim, H.U. Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from *Perilla frutescens* var. *frutescens*. *Plant Cell Rep.* 2016, 35, 2523–2537. [CrossRef] [PubMed]

22. Xue, Y.; Chen, B.; Win, A.N.; Fu, C.; Lian, J.; Liu, X.; Wang, R.; Zhang, X.; Chai, Y. Omega-3 fatty acid desaturase gene family from two ω-3 sources, *Salvia hispanica* and *Perilla frutescens*: Cloning, characterization and expression. *PLoS ONE* 2018, 13, 1–25. [CrossRef] [PubMed]

23. Liao, B.N.; Hao, Y.J.; Lu, J.X.; Bai, H.Y.; Guan, L.; Zhang, T. Transcriptomic analysis of *Perilla frutescens* seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. *BMC Genom.* 2018, 19, 213. [CrossRef] [PubMed]
24. Zhang, T.; Song, C.; Song, L.; Shang, Z.; Yang, S.; Zhang, D.; Sun, W.; Shen, Q.; Zhao, D. RNA sequencing and coexpression analysis reveal key genes involved in α-linolenic acid biosynthesis in Perilla frutescens seed. *Int. J. Mol. Sci.* 2017, 18, 2433. [CrossRef] [PubMed]

25. Kim, H.U.; Lee, K.R.; Shim, D.; Lee, J.H.; Chen, G.Q.; Hwang, S. Transcriptome analysis and identification of genes associated with α-3 fatty acid biosynthesis in *Perilla frutescens* (L.) var. frutescens. *BMC Genom.* 2016, 17, 474. [CrossRef]

26. Fukushima, A.; Nakamura, M.; Suzuki, H.; Saito, K.; Yamazaki, M. High-throughput sequencing and de novo assembly of red and green forms of the *Perilla frutescens* var. crispa transcriptome. *PLoS ONE* 2015, 10, e0129154. [CrossRef]

27. Duan, W.; Shi-Mei, Y.; Zhi-Wei, S.; Jing, X.; De-Gang, Z.; Hong-Bin, W.; Qi, S. Genome-Wide Analysis of the Fatty Acid Desaturase Gene Family Reveals the Key Role of *PfFAD3* in α-Linolenic Acid Biosynthesis in *Perilla* Seeds. *Front. Genet.* 2021, 12, 733862. [CrossRef]

28. Liping, W.; Shen, W.; Kazachkova, M.; Chen, G.; Chen, Q.; Carlsson, A.S.; Stymne, S.; Weselake, R.J.; Zou, J. Metabolic interactions between the lands cycle and the Kennedy pathway of glycerolipid synthesis in arabidopsis developing seeds. *Plant Cell* 2012, 24, 4652–4669. [CrossRef]

29. Bates, P.D.; Fathi, A.; Snapp, A.R.; Carlsson, A.S.; Browse, J.; Lu, C. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. *Plant Physiol.* 2012, 160, 1530–1539. [CrossRef]

30. Konishi, T.; Shinohara, K.; Yamada, K.; Sasaki, Y. Acetyl-CoA Carboxylase in Higher Plants: Most Plants Other Than Gramineae Have Both the Prokaryotic and the Eukaryotic Forms of This Enzyme. *Plant Cell Physiol.* 1996, 37, 117–122. [CrossRef]

31. Jung, S.H.; Kim, R.J.; Kim, K.J.; Lee, D.H.; Suh, M.C. Plastidial and mitochondrial malonyl CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content. *Plant Cell Physiol.* 2019, 60, 1239–1249. [CrossRef] [PubMed]

32. Yang, Y.; Munz, J.; Cass, C.; Zienkiewicz, A.; Kong, Q.; Ma, W.; Sanjaya, S.; Sedbrook, J.C.; Benning, C. Ectopic expression of WRI1 affects fatty acid homeostasis in *Brachypodium distachyon* vegetative tissues. *Plant Physiol.* 2015, 169, 1836–1847. [CrossRef]

33. An, D.; Kim, H.; Ju, S.; Go, Y.S.; Kim, H.U.; Suh, M.C. Expression of Camelina WRRKLED1 Isoforms Rescue the Seed Phenotype of the Arabidopsis wri1 Mutant and Increase the Triacylglycerol Content in Tobacco Leaves. *Front. Plant Sci.* 2017, 8, 1–13. [CrossRef] [PubMed]

34. Grimmel, A.; Carlsson, A.S.; Marttila, S.; Bhalerao, R.; Hofvander, P. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues. *BMC Plant Biol.* 2015, 15, 192. [CrossRef]

35. Sun, R.; Ye, R.; Gao, I.; Zhang, L.; Wang, R.; Mao, T.; Zheng, Y.; Li, D.; Lin, Y. Characterization and Ectopic Expression of CoWRI1, an AP2/EREBP Domain-Containing Transcription Factor from *Cocos nucifera* L. Endosperm, Changes the Seeds Oil Content in Transgenic Arabidopsis thaliana and Rice (*Oryza sativa* L.). *Front. Plant Sci.* 2017, 8, 1–15. [CrossRef] [PubMed]

36. Liu, J.; Hua, W.; Zhan, G.; Wei, F.; Wang, X.; Liu, G.; Wang, H. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. *Plant Physiol. Biochem.* 2010, 48, 9–15. [CrossRef]

37. Ma, W.; Kong, Q.; Arondel, V.; Kilaru, A.; Bates, P.D.; Thrower, N.A.; Benning, C.; Ohlrogge, J.B. WRINKLED1, A Ubiquitous Regulator in Oil Accumulating Tissues from Arabidopsis Embryos to Oil Palm Mesocarp. *PLoS ONE* 2013, 8, e68887. [CrossRef] [PubMed]

38. Yang, H.; Yu, C.; Yan, J.; Wang, X.; Chen, F.; Zhao, Y.; Wei, W. Overexpression of the Jatropha curcas *JcERF1* gene coding an α-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. *Int. J. Mol. Sci.* 2017, 18, 2433, 1207–1211. [CrossRef]

39. Pouvreau, B.; Baud, S.; Vernoud, V.; Morin, V.; Py, C.; Gendrot, G.; Pichon, J.P.; Rouster, J.; Paul, W.; Rogowsky, P.M. Duplicate mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. *Plant Physiol.* 2012, 159, 160–169. [CrossRef] [PubMed]

40. Browse, J.; McConn, M.; James, D.; Miquel, M. Mutants of Arabidopsis deficient in the synthesis of α-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. *J. Biol. Chem.* 1993, 268, 16345–16351. [CrossRef] [PubMed]
49. Okuley, J.; Lightner, J.; Feldmann, K.; Yadav, N.; Lark, E.; Browse, J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. *Plant Cell* **1994**, *6*, 147–158. [CrossRef]

50. Speerling, P.; Heinz, E. Isomeric sn-1-octadecenyl and sn-2-octadecenyl analogues of lysophosphatidylcholine as substrates for acylation and desaturation by plant microsomal membranes. *Eur. J. Biochem.* **1993**, *213*, 965–971. [CrossRef]

51. Chen, J.; Tan, R.K.; Guo, X.J.; Fu, Z.L.; Wang, Z.; Zhang, Z.Y.; Tan, X.L. Transcriptome analysis comparison of lipid biosynthesis in the leaves and developing seeds of *Brassica napus*. *PLoS ONE* **2015**, *10*, e0130067. [CrossRef] [PubMed]

52. Wang, L.; Kazachkov, M.; Shen, W.; Bai, M.; Wu, H.; Zou, J. Deciphering the roles of Arabidopsis LPCAT and PAH in phosphatidylcholine homeostasis and pathway coordination for chloroplast lipid synthesis. *Plant J.* **2014**, *80*, 965–976. [CrossRef] [PubMed]

53. Moreno-Pérez, A.J.; Santos-Pereira, J.M.; Martins-Noguerol, R.; DeAndrés-Gil, C.; Troncoso-Ponce, M.A.; Venegas-Calerón, M.; Sánchez, R.; García, R.; Salas, J.J.; Tena, J.J.; et al. Genome-Wide Mapping of Histone H3 Lysine 4 Trimethylation (H3K4me3) and Its Involvement in Fatty Acid Biosynthesis in Sunflower Developing Seeds. *Plants* **2021**, *10*, 706. [CrossRef] [PubMed]

54. Wang, L.; Wang, C.; Liu, X.; Cheng, J.; Li, S.; Zhu, J.K.; Gong, Z. Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in Arabidopsis. *Proc. Natl. Acad. Sci. USA* **2019**, *116*, 10576–10585. [CrossRef]

55. Yamazaki, M.; Kobayashi, M.; Saito, K. Transformation of *Perilla frutescens* var. crispa Using an Agrobacterium-Ri Binary Vector System. *Plant Biotechnol.* **1997**, *14*, 169–173. [CrossRef]

56. Kim, K.-H.; Lee, Y.-H.; Kim, D.; Park, Y.-H.; Lee, J.-Y.; Hwang, Y.-S.; Kim, Y.-H. Agrobacterium-mediated genetic transformation of *Perilla frutescens*. *Plant Cell Rep.* **2004**, *23*, 386–390. [CrossRef]

57. Dolgin, E. T-cell vaccines could top up immunity to COVID, as variants loom large. *Nat. Biotechnol.* **2022**, *40*, 3–4. [CrossRef]

58. Schwartz, C.; Lenderts, B.; Feigenbutz, L.; Barone, P.; Ilaca, V.; Fengler, K.; Svitashev, S. CRISPR–Cas9-mediated 75.5-Mb inversion in maize. *Nat. Plants* **2020**, *6*, 1427–1431. [CrossRef]

59. Kelliher, T.; Starr, D.; Su, X.; Tang, G.; Chen, Z.; Carter, J.; Wittich, P.E.; Dong, S.; Green, J.; Burch, E.; et al. One-step genome editing of elite crop germplasm during haploid induction. *Nat. Biotechnol.* **2019**, *37*, 287–292. [CrossRef]

60. Svitashev, S.; Schwartz, C.; Lenderts, B.; Young, J.K.; Mark Cigan, A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. *Nat. Commun.* **2016**, *7*, 13274. [CrossRef]