Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems

Mariska Astrid Kusumaningtyasa,b,∗, Andreas A. Hutahaeanc, Helmut W. Fischerd, Manuel Pérez-Mayod, Daniela Ransbyd,e, Tim C. Jennerjahnb,f,∗∗

a Marine Research Centre, Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia
b Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
c Coordinating Ministry for Maritime Affairs, Jakarta, Indonesia
d Institute of Environmental Physics, University of Bremen, Germany
e Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
f Faculty of Geoscience, University of Bremen, Germany

A R T I C L E I N F O

Keywords:
Blue carbon
Carbon stock
Mangrove
Organic carbon accumulation
Stable carbon isotope

A B S T R A C T

Mangrove ecosystems are an important natural carbon sink that accumulate and store large amounts of organic carbon (Corg), in particular in the sediment. However, the magnitude of carbon stocks and the rate of carbon accumulation (CAR) vary geographically due to a large variation of local factors. In order to better understand the blue carbon sink of mangrove ecosystems, we measured organic carbon stocks, sources and accumulation rates in three Indonesian mangrove ecosystems with different environmental settings and conditions; (i) a degraded estuarine mangrove forest in the Segara Anakan Lagoon (SAL), Central Java, (ii) an undegraded estuarine mangrove forest in Berau region, East Kalimantan, and (iii) a pristine marine mangrove forest on Kongsi Island, Thousand Islands, Jakarta. In general, Corg stocks were higher in estuarine than in marine mangroves, although a large variation was observed among the estuarine mangroves. The mean total Corg stock in Berau (615 ± 181 Mg C ha⁻¹) is twice as high as that in SAL (298 ± 181 Mg C ha⁻¹). However, the Segara Anakan Lagoon displayed large within-system variation with a much higher Corg stock in the eastern (483 ± 124 Mg C ha⁻¹) than in the central lagoon (167 ± 36 Mg C ha⁻¹). The predominant accumulation of autochthonous mangrove organic matter likely contributed to the higher Corg stocks in Berau and the eastern SAL. Interestingly, the CAR distribution pattern in SAL is opposite to that of its Corg stocks. The central SAL that receives high sediment inputs from the hinterland has a much higher CAR than the eastern SAL (658 ± 311 g C m⁻² yr⁻¹ and 194 ± 46 g C m⁻² yr⁻¹, respectively), while Berau has one of the highest CAR (1722 ± 183 g C m⁻² yr⁻¹) ever measured. It appears that these large differences are driven by the environmental setting and conditions, mainly sediment dynamics and hydrodynamics, landform, and vegetation conditions. It is inferred that quantifying carbon accumulation in sediments is a useful tool in estimating the present-day carbon storage of mangrove ecosystems. This is a precondition for taking measures under REDD+ (Reducing Emissions from Deforestation and Forest Degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries) schemes.

1. Introduction

Situated in the transition zone between land and ocean, mangrove ecosystems are one of the most biogeochemically active areas in the biosphere due to permanent exchange of nutrients and organic matter with adjacent ecosystems. Although mangrove forests occupy only a small fraction of the global coastal area, they are highly productive, with a net primary production rate of 92–280 Tg C yr⁻¹ (Twilley et al., 1992; Jennerjahn and Ittekkot, 2002; Bouillon et al., 2008), and they contribute up to 15% of the total carbon accumulation in marine sediments (Jennerjahn and Ittekkot, 2002). Mangrove ecosystems are also among the most carbon-rich ecosystems in the tropics (Donato et al., 2011). They sequester and store high amounts of organic carbon in plant biomass and sediment, which makes them an important natural...
carbon sink (Twilley et al., 1992; Jennerjahn and Ittekkot, 2002; Bouillon et al., 2008). The mean global carbon stock of mangrove ecosystems is estimated at 956 Mg C ha$^{-1}$, which is much higher than those of rainforests, peat swamps, salt marshes, and seagrass meadows (Alongi, 2014). Their advantage over terrestrial forests is their much higher carbon accumulation in sediments/soils which is mainly due to high autochthonous and allochthonous inputs and low decomposition rates of organic matter because of the mostly anoxic conditions in the sediment (Donato et al., 2011; Kristensen, 2000). The rate of organic carbon accumulation in mangrove ecosystems is estimated to be around 20–24 Tg C yr$^{-1}$ (Twilley et al., 1992; Jennerjahn and Ittekkot, 2002; Duarte et al., 2004).

However, climate change and anthropogenic disturbances can strongly impair the ecosystem service of sequestering and storing carbon (Grellier et al., 2017; Jennerjahn et al., 2017; Pérez et al., 2017). Over several decades, mangrove areas have been declining worldwide mainly due to deforestation and land use change (Valiela et al., 2001; Alongi, 2002). The impacts are not only the loss of biodiversity and coastal protection, but also the loss of the carbon sink function (Nellemann et al., 2009). Thus, preventing mangrove loss is considered an effective strategy for climate change mitigation (Pendleton et al., 2012; Murdiyarso et al., 2015).

While it is commonly accepted that mangrove ecosystems are a carbon sink, there are large uncertainties in the magnitude of this sink with a global carbon stock estimated at 4–20 Pg (Donato et al., 2011). The magnitude of carbon storage in mangrove ecosystems varies geographically, which is largely determined by the type of environmental setting (Twilley et al., 1992; Woodroffe, 1992; Saintilan et al., 2013; Rovai et al., 2018). Initially, Thom (1982) defined five common environmental settings which were later described in more detail by Woodroffe (1992); these are (i) river-dominated, (ii) tide-dominated, (iii) wave-dominated, (iv) composite river and wave dominated, (v) drowned bed rock valley, and (vi) carbonate settings. Each of these settings contains suites of landforms and physical processes which control the distribution of mangrove species, transport and deposition of sediment, and the biogeochemical conditions. These processes thus influence the efflux, accumulation, storage, and composition of sediment organic matter (Thom, 1982; Woodroffe, 1992; Saintilan et al., 2013; Rovai et al., 2018). Given the large differences between environmental settings and the high within-system spatial variability of environmental conditions of mangrove ecosystems, it is conceivable that these uncertainties are to a large extent related to the scarce data base on carbon storage and the lack of knowledge on the underlying mechanisms.

Moreover, identification of organic matter (OM) sources is important for evaluating the effectiveness of the ‘blue carbon’ sink in mangrove ecosystems, as various OM contribute differently to carbon sequestration, and their distribution and deposition vary geographically (Saintilan et al., 2013; Watanabe and Kuwae, 2015). Furthermore, with regard to the CO$_2$ sink function of mangrove ecosystems and the estimation of the global carbon budget, identification of the origin of allochthonous OM inputs will help to determine whether the OM is produced from newly fixed CO$_2$ or relocated “old” OM from terrestrial or marine reservoirs.

In order to better understand the spatial pattern of mangrove carbon storage and composition, we measured organic carbon stocks (above-ground and sediment) and accumulation rates, and we identified the sources of organic matter in three Indonesian mangrove ecosystems.
with different environmental settings and conditions: (i) a degraded estuarine mangrove forest in the Segara Anakan Lagoon, Central Java, (ii) an undegraded estuarine mangrove forest in the Berau region, East Kalimantan, and (iii) a pristine marine mangrove forest on Kongsi Island, Thousand Island Marine National Park, Jakarta. We hypothesize that the total organic carbon stock is higher in the undegraded than in degraded mangrove ecosystems.

2. Materials and methods

2.1. Study area

The Segara Anakan Lagoon (SAL) is a mangrove-fringed shallow coastal lagoon located in southern Central Java (108°46′E – 109°03′E, 8°35′S – 8°48′S; Fig. 1), which is separated from the Indian Ocean by the rocky mountainous Nusakambangan Island (Yuwono et al., 2007). The lagoon receives water input from the rivers in the west and by tidal exchange with the Indian Ocean through two channels in the western and eastern parts (Table 1). The extensive mangrove forest surrounding the lagoon, with a total area of approximately 9000 ha (Ardli and Wolff, 2009), is the largest remaining single mangrove forest in the south coast of Java, which is inhabited by 21 mangrove species and 5 understorey genera (Hinrichs et al., 2009). Mangrove density and diversity are higher in the eastern than in the central part of the lagoon, mainly as a consequence of environmental degradation due to high sedimentation, overexploitation of natural resources and land use conversion (Hinrichs et al., 2009; Lukas, 2017). The lagoon became narrower and shallower due to heavy sedimentation from several rivers, mainly the Citanduy River (Yuwono et al., 2007). Because of large differences in hydrodynamics and sediment dynamics, flora and fauna composition, and redox conditions and porewater nutrient biogeochemistry in sediments, the Segara Anakan Lagoon is considered to be consisting of two parts in our study, the western and central part (collectively named central part in the following) vs. the eastern part (Table 1; Hinrichs et al., 2009; Holtermann et al., 2009; Jennerjahn et al., 2009).

The Berau Regency is located in East Kalimantan (118°05′E, 2°25′S; Fig. 1). This region has a unique coastal system that displays a good example where mangroves, seagrasses and corals interact. In 2005, the Berau Marine Protected Area (1321°10′S) was established, which has the second highest coral reef biodiversity in Indonesia and the most extensive remaining mangrove forest in Kalimantan covering an area of 80,277 ha (Bengen et al., 2003; Wiryawan et al., 2005). Mangrove forests are found along the mainland coast (Tanjung Batu to Biduk-Biduk) and surrounding the Berau River estuary (Tomascik et al., 1997; Hoekstra et al., 2007). The forests are relatively undisturbed. Although some area near the estuary has been cleared for aquaculture, these activities are still in an early development stage. The hinterland is characterized by tropical rainforest, which has been partly converted into palm oil plantations. The hydrodynamics of the Berau coastal area are driven by rivers in the west, mainly the Berau River, and strong currents in the east influenced by the Indonesian Throughflow (ITF) that connects the Pacific and Indian Oceans through the Makassar Strait, with a tidal range of up to 3 m (Gordon, 2005; Wiryawan et al., 2005; Hoekstra et al., 2007). The rivers carry a considerable amount of sediments that are dispersed along the coast by the tidal and longshore currents, and form elongated mudflats seawards of the river mouth (Table 1; Tomascik et al., 1997; Hoekstra et al., 2007).

Kongsi Island is a pseudo atoll and forms part of the Pari Island cluster (106°36′E, 5°51′S; Fig. 1), situated in the Thousand Islands Marine National Park. The Thousand Islands are a group of small islands located in the Java Sea, approximately 40 km northwest of Jakarta Bay, in which 13 rivers debouch after passing Jakarta city (Damar, 2003). The hydrodynamics of the island is tidal-dominated. The mangrove forest stretches along the northern and eastern part of the coast and occupies up to 80% (807 m) of the coastline (Salim and Ahmad, 2013). It is a typical marine mangrove ecosystem with a

Location	Mangrove extent	Mangrove condition	Hydrodynamics	Sedimentation
Segara Anakan	ca. 90,000 ha	mature forest	tide-dominated	the central area is dominated by understory plants, while the eastern area is dominated by true mangrove species.
Lagoon		relatively undisturbed		
Berau	ca. 10,000 ha	dense forest; good consolidation; tide-dominated		
Kongsi Island		good condition; pristine; tide-dominated		

Table 1: Summary of site characteristics.
microtidal reef setting, and due to a lack of rivers, mangroves receive no or minimum allochthonous input from the hinterland. Mangroves grow densely and are still in a good condition. However, the island is affected by abrasion due to strong wave actions (Salim and Ahmad, 2013), which may wash off the autochthonous organic matter, and thus will affect sediment accumulation.

2.2. Field sampling and measurement

A sampling campaign was conducted from October to December 2016 in the Segara Anakan Lagoon and on Kongsi Island, while sampling in Berau was conducted in May 2013. In Segara Anakan, data and sample collection were undertaken at 12 stations, with seven stations located in the central area (C24, C49, C45, C41, C26, C42, C43) and five stations located in the eastern area (E40, E46, E44, E47, E16). These stations had been established during previous studies (Hinrichs et al., 2009; Jennerjahn and Yuwono, 2009). On Kongsi Island, data and samples were collected at two stations (K1 and K2), while in Berau, data and samples were collected at four stations located along the coast of Tanjung Batu (B1, B2, B3) and the Berau estuary (B4).

2.2.1. Aboveground tree biomass

At each station, a 100 m transect was laid from the water edge perpendicular towards the mangrove forest. Square plots sized 10 × 10 m were set along the transect in 10 m intervals (5 plots in total). Mangrove plants inside the plots were identified at species level (species identification based on Noor et al., 1999), counted, and diameter at breast height (DBH) of each tree was measured for the estimation of aboveground biomass.

2.2.2. Sediment

Sediments were collected with a 1 m long semi-cylindrical auger. The sediment corer was inserted vertically into the sediment, twisted several times to cut through any fine roots, and then gently pulled out. Sediments were sampled only down to 1 m depth. After the sediment was successfully extracted, it was sampled in 5 cm intervals, collected into plastic bags, and then preserved in a coolbox before the samples were transferred to the laboratory.

2.3. Analyses

2.3.1. Elemental C, N and stable carbon isotope analysis

All samples were dried at 60 °C for 48–72 h, weighed, ground to fine powder and then flash-combusted in an elemental analyzer (Eurovector EA3000 Elemental Analyzer) to obtain the total C content, total N content and organic carbon (Corg) content. The Corg content was determined after removing carbonate by acidification with hydrochloric acid and subsequent drying at 40 °C. The samples were then measured for the stable carbon isotope composition (δ13Corg) using a Thermo Finnigan Delta plus mass spectrometer coupled to a Flash EA1112 Elemental Analyzer. All data were expressed in a conventional delta (δ) notation, where the isotopic ratio of 13C/12C was reported relative to the international VPDB standard as defined below:

\[\delta (\%) = \left[\frac{\text{Ratio}_{\text{sample}} \cdot \text{Ratio}_{\text{standard}}}{\text{Ratio}_{\text{standard}}} \right] \times 1000 \]

The precision of instruments was determined by replicate analysis of the standards which resulted in standard deviations as follows:

C = ± 0.04%, N = ± 0.006%, \(\delta^{13}\text{C}_{\text{org}} = \pm 0.08\% \).

2.3.2. Stable isotope mixing model

The stable carbon isotope composition (\(\delta^{13}\text{C}_{\text{org}} \)) was used to identify the sources of organic matter in the mangrove sediment. The natural variation in the isotope composition of organic matter occurs as a consequence of distinct photosynthetic pathways by different groups of plants; the C3, C4 and CAM plants (Smith and Epstein, 1971; Fry, 2006). However, due to a strong overlap of \(\delta^{13}\text{C} \) between C4 vegetation and marine-derived organic matter, \(\delta^{13}\text{C} \) was used in combination with the carbon to nitrogen (C/N) ratio to distinguish organic matter (Bouillon et al., 2003; Fry, 2006; Khan et al., 2015). The C/N ratio can be used to distinguish aquatic from terrestrial organic matter due to a higher relative N content of aquatic organic matter (Tyson, 1995).

The Bayesian isotopic modeling package, Stable Isotope Mixing Model in R (SIMMR) was used to estimate the proportional contribution of potential sources to sedimentary organic carbon based on their isotopic and elemental signatures. The SIMMR model is an updated version of the SIAR package (Parnell et al., 2010), which has been used elsewhere to analyze source contribution of organic matter in coastal ecosystems (Sarma et al., 2014; Watanabe and Kuwae, 2015). This model uses the Markov Chain Monte Carlo (MCMC) algorithm to determine the probability of source proportions to the observed mixture while incorporating the uncertainty for correction (e.g. isotopic fractionation, concentration-dependency, residual error, etc.). Two variables (\(\delta^{13}\text{C}_{\text{org}} \) and C/N atomic) were used and five endmembers (mangrove root and leaf litter, general C3 plants, soils, riverine surface sediment, and coastal Particulate Organic Matter = POM) were considered in this study. The number of endmembers was selected carefully in order to maximize the estimation of source contribution by checking a diagnostic matrix plot of proportional source contributions. The isotopic fractionation and concentration-dependency were set to zero, assuming that the early degradation of organic matter in mangrove sediment does not significantly alter the stable isotope composition (Meyers, 1994; Khan et al., 2015). A model was run through 1 × 10^5 iterations, and the results are presented using a boxplot which depicts the 50% credibility interval.

The endmember’s signatures were taken from region-relevant literature, e.g. mostly collected from Segara Anakan such as mangrove leaf litter (Herbon and Nordhaus, 2013; supplementary information in Nordhaus et al., 2017), surface sediment from the Citaruday River and rice field soils (Yuwono et al., 2007). In addition, data from other areas were also used, for surface sediment from the Berau River (Weiss et al., 2016), for coastal POM from Madura Strait, Indonesia (Jennerjahn et al., 2004), for land plants from Trang, Thailand (Kuramoto and Minagawa, 2001), and for mangrove roots (fresh and decomposed) from Segara Anakan and a Kenyan mangrove forest (Huxham et al., 2010; Weiss et al., 2016). We found that the values of \(\delta^{13}\text{C}_{\text{org}} \) and C/N ratio between mangrove leaf litter and dead roots were overlapping, therefore, we did not separate these endmembers.

2.3.3. Biomass and carbon stocks

Tree biomass was determined by using published allometric equations (Table 2). The aboveground Corg stock was then calculated by multiplying the biomass of the individual tree by their specific Corg content. For sediment, carbon density of the sediment was determined by multiplying sediment dry bulk density with Corg content (wt%) at a specific depth. Dry bulk density was obtained by dividing the mass of the dried sample by the initial volume of the sample. The sediment Corg stock per sampled depth interval was then calculated as follows:

\[\text{Corg stock (Mg C ha}^{-1}) = \text{Corg density (g cm}^{-3}) \times \text{depth interval (cm)} \]

The total sediment Corg stock from one core was determined by summing up Corg stocks at all depth intervals from the entire core (to 1 m depth).

2.3.4. Radionuclide analyses

Natural and artificial gamma emitting radionuclides were analyzed in three sediment cores, C24 (central SAL), E40 (eastern SAL) and B2 (Berau) in order to estimate sediment accumulation rates. Their activity concentrations were determined by reverse electrode coaxial HPGe detector (Canberra Industries, 50% rel. efficiency) with a carbon-
The values for supported 210Pb (210Pb_{xs}) were derived from the concentrations of 228Ra and 222Rn and its daughters to prevent underestimation of excess 228Th (Pittauerová et al., 2014), which can be used as a mixing proof in a form of a deep penetration of a shorter lived radioisotope model, as there was neither a direct observation of it, nor an indirect proof in a form of a deep penetration of a shorter lived radioisotope excess 228Th (Pittauerová et al., 2014), which can be used as a mixing proof. The carbon accumulation rate (CAR) was calculated by multiplying the sediment accumulation rates with sediment dry bulk density (δCorg) between areas (SAL East, SAL Central, Berau, Kongsi), and their differences with depth were analyzed by using a one-way ANOVA. The normality of data distribution was tested using Shapiro-Wilk prior to statistical analysis. If the data were not normally distributed, the respective variables were log-transformed to fit a normal distribution when testing linear models. The analyses were performed in R programming (R Core Team, 2017).

3. Results

3.1. Elemental and isotopic composition of sediment organic matter

On average, the highest bulk density was measured in marine mangroves on Kongsi Island (1.35 ± 0.18 g cm⁻³). It was lower in the estuarine mangroves in Berau (1.20 ± 0.36 g cm⁻³) and in the Segara Anakan Lagoon (0.62 ± 0.11 g cm⁻³ in the east, 0.74 ± 0.11 g cm⁻³ in the central area). While Corg and N contents were higher in the estuarine than in the marine mangroves, δ¹³Corg was higher in marine mangroves than in estuarine mangroves (Table 3).

3.2. Radionuclides and accumulation rates

210Pb_{xs} in core C24 decreased with depth (Fig. 2). The mass accumulation rate was calculated using the Constant Flux - Constant Sedimentation (CF-CS) model (e.g., Appleby and Oldfield, 1983; Sanchez-Cabeza and Ruiz-Fernández, 2012), using a single exponential fit, for which all samples were considered. No mixing was assumed in this model, as there was neither a direct observation of it, nor an indirect proof in a form of a deep penetration of a shorter lived radioisotope excess 228Th (Pittauerová et al., 2014), which can be used as a mixing proof.

Table 2

Allometric equations used in this study to determine aboveground biomass (D is tree DBH in cm; ρ is wood density in g cm⁻³).

Species	Equation	Reference	Wood density (ρ)
Aegiceras corniculatum	0.251ρD²-46	Komiyama et al. (2005)	0.5967
Aegiceras floridus	0.251ρD²-46	Komiyama et al. (2005)	0.76
Avicennia alba	0.251ρD²-46	Komiyama et al. (2005)	0.6987
Bruguiera gymnorrhiza	0.0754ρD²-505	Kauffman and Cole (2010)	0.741
Bruguiera parviflora	0.0754ρD²-505	Kauffman and Cole (2010)	0.8427
Ceriops decandra	0.251ρD²-46	Komiyama et al. (2005)	0.725
Ceriops tagal	0.251ρD²-46	Komiyama et al. (2005)	0.8859
Heritiera littoralis	0.251ρD²-46	Komiyama et al. (2005)	0.8847
Lumnatarea littorea	0.251ρD²-46	Komiyama et al. (2005)	0.83
Lumnatarea racemosa	0.251ρD²-46	Komiyama et al. (2005)	0.88
Rhizophora apiculata	0.043D²-63	Amira (2008)	0.8814
Rhizophora mcrconata	0.128D²-60	Fromard et al. (1998)	0.8483
Rhizophora stylosa	0.105D²-60	Clough and Scott (1989)	0.94
Scyphiphora hydrophyllacea	0.251ρD²-46	Komiyama et al. (2005)	0.685
Sonneratia alba	0.3841ρD²-101	Kauffman and Cole (2010)	0.6443
Sonneratia caseolaris	0.251ρD²-46	Komiyama et al. (2005)	0.5337
Xylocarpus granatum	0.1832D²-2	Tarlan (2008)	0.6721
Xylocarpus moluccenisis	0.251ρD²-46	Komiyama et al. (2005)	0.6535

2.3.5. Statistical analysis

The differences of a single variable (C_{org} content, N content, bulk density and δ¹³C_{org}) between areas (SAL East, SAL Central, Berau, Kongsi), and their differences with depth were analyzed by using a one-way ANOVA. The normality of data distribution was tested using Shapiro-Wilk prior to statistical analysis. If the data were not normally distributed, the respective variables were log-transformed to fit a normal distribution when testing linear models. The analyses were performed in R programming (R Core Team, 2017).

Table 3

Mean values (± SD) of sediment dry bulk density, elemental C_{org} and N content, atomic C/N ratio and δ¹³C_{org} from all locations.

Location	Bulk density (g cm⁻³)	C_{org} (%)	N (%)	C_{org}/N	δ¹³C_{org} (%)
SAL East	0.69 ± 0.12	4.6 ± 3.0	0.22 ± 0.05	22.8 ± 11.9	−27.2 ± 0.6
- Central	0.62 ± 0.11	7.7 ± 1.8	0.26 ± 0.04	34.7 ± 8.8	−27.6 ± 0.4
Berau	1.20 ± 0.36	5.7 ± 3.7	0.17 ± 0.08	37.1 ± 6.4	−27.8 ± 0.1
Kongsi Island	1.35 ± 0.18	0.8 ± 0.2	0.05 ± 0.01	20.8 ± 0.6	−24.2 ± 0.5
impact. The average mass accumulation rate was estimated to be 2.4 ± 1.4 g cm⁻² yr⁻¹ (Table 4). High fluctuation of values around the model is responsible for high uncertainty of the mean accumulation rate. No ¹³⁷Cs could be detected with a decision threshold between 0.50 and 1.25 Bq·kg⁻¹. Detailed results of radionuclide analyses are presented in Table S1.

The ²¹⁰Pbxs depth profile of core E40 is less regular and does not allow the use of the CF-CS model. A single positive value of artificial ¹³⁷Cs was detected at the depth of 22.5 cm (equivalent to the cumulative mass depth of 80 g cm⁻²) (Table 4). High fluctuation of values around the model is responsible for high uncertainty of the mean accumulation rate. No ¹³⁷Cs could be detected with a decision threshold between 0.50 and 1.25 Bq·kg⁻¹. Detailed results of radionuclide analyses are presented in Table S1.

In core B2, ²¹⁰Pbxs is present in the entire core and does not show any trend with depth. At the cumulative mass depth of 80 g cm⁻² the ²¹⁰Pbxs concentration did not decrease in comparison to the top of the core, so the sediment is very likely younger than 100 years. In the rest of the core, below 30 g cm⁻², ²¹⁰Pbxs activities were very low, not detectable by the gamma spectrometry indicator. The average mass accumulation rate was estimated to be 2.4 ± 1.4 g cm⁻² yr⁻¹ (Table 4). High fluctuation of values around the model is responsible for high uncertainty of the mean accumulation rate. No ¹³⁷Cs could be detected with a decision threshold between 0.50 and 1.25 Bq·kg⁻¹. Detailed results of radionuclide analyses are presented in Table S1.

3.3. Carbon accumulation rates (CAR)

The highest carbon accumulation rate (CAR) was measured in the mature and undisturbed forest in Berau (B2: 1722 ± 183 g C m⁻² yr⁻¹), followed by a disturbed forest that receives high sediment input from river discharge in the central SAL (C24: 658 ± 311 g C m⁻² yr⁻¹). The lowest was measured in the eastern SAL (E40: 194 ± 46 g C m⁻² yr⁻¹) which does not receive significant input from the hinterland. No CAR could be calculated for Kongsi Island as radionuclides were not analyzed. For carbonate-rich sediments like these, the atmospheric-borne radionuclide activities are usually extremely low and age dating is impossible. However, as Kongsi Island has little allochthonous input and the Corg concentration is low, it is likely that the CAR is also very low.

Fig. 2. Distribution of ²¹⁰Pbxs activity concentrations in mangrove sediment cores from Segara Anakan Lagoon and Berau. Horizontal error bars mark the combined counting and calibration uncertainties (± SD), vertical error bars mark the sampling interval.

Table 4

Core	Accumulation rate (g cm⁻² yr⁻¹)	Sedimentation rate (mm yr⁻¹)	²¹⁰Pbxs inventory (kBq m⁻²)
C24	2.4 ± 1.4	36 ± 22	14 ± 9
E40	≥0.2	≥3.3	−1.1
B2	≥1.6	≥18	−5.7

a Estimated using an extrapolation of the exponential fit. In the measured part of the core down to the depth of 100 cm there was about 6.5 kBq·m⁻².

b Estimated between 0 and 90 cm, there is probably more ²¹⁰Pbxs below this depth.

Table 5

Location	Aboveground biomass (Mg ha⁻¹)	Sediment Corg stock (Mg ha⁻¹)	Mean total Corg stock (Mg ha⁻¹)
SAL	28.4 ± 15.0	13.3 ± 6.9	288 ± 175
- East	33.7 ± 18.5	15.8 ± 8.6	467 ± 118
- Central	21.7 ± 6.3	10.3 ± 3.0	161 ± 34
Berau	262.2 ± 65.3	130.1 ± 32.1	485 ± 197
Kongsi Island	161.4 ± 43.6	74.3 ± 20.2	37 ± 3

Mean total Corg stock was highest in Berau (485 ± 197 Mg C ha⁻¹), but it was almost similar with the eastern area of Segara Anakan Lagoon (467 ± 118 Mg C ha⁻¹), while the sediment Corg stock in the central area was lower (161 ± 34 Mg C ha⁻¹). Kongsi Island had the lowest sediment Corg stock (37 ± 3 Mg C ha⁻¹) due to a low sediment depth of 40 cm and a low Corg content.
Conversely, sedimentary $\delta^{13}C_{\text{org}}$ stock in the central SAL is mainly allochthonous (Fig. 3), with values being 25.8 to 29.4 and the C/N ratio (9.2 to 13.0) similar to those of the eastern SAL (p > 0.05). While marine mangroves on Kongsi Island had the lowest C_{org} stocks (112 ± 24 Mg C ha$^{-1}$).

4. Discussion

4.1. 210Pb inventories

Expected inventories of 210Pb in sediments of the study region can be calculated from the atmospheric deposition of 210Pb. While the authors are not aware of any estimates for Indonesia, literature values for north Australia, Torres Strait, and Malaysia can provide an indication. Brunskill et al. (2004) estimated deposition of 210Pb in north Queensland based on rain collections and 15 soil profiles as 50 Bq m$^{-2}$ yr$^{-1}$ and at Sasse Island in Torres Strait of 18–22 Bq m$^{-2}$ yr$^{-1}$ based on three soil profiles. Bonnyman and Molina-Ramos (1971, cited in Brunskill et al., 2004) reported an average of 90 Bq m$^{-2}$ yr$^{-1}$ deposition for Darwin. Gharibrezaz et al. (2013) derived an atmospheric 210Pb flux of 90 Bq m$^{-2}$ yr$^{-1}$ to Berau, and on Kongsi Island has a lower sedimentary Corg content (0.8 ± 0.2%). This high C/N ratio of sediments in Berau displayed $^{13}C_{\text{org}}$ (−28.4 to −26.9) and C/N (20.1–62.8) values similar to those of the eastern SAL (p > 0.05), and the 30–50% (median = 41%) mangrove root and leaf litter contributions indicate an important accumulation of autochthonous organic matter. However, due to overlapping values of $^{13}C_{\text{org}}$ and C/N ratio between mangrove leaf litter and roots, the proportion of contribution from each of these endmembers was uncertain. Mangrove leaf litter and roots are important sources of organic matter. In some mangrove ecosystems, organic carbon content in sediment is determined more by the capacity of root production than by litter fall (Chen and Twilley, 1999). There, slow degradation of dead roots in combination with high rates of root production are the critical processes controlling organic carbon accumulation in the sediment (Middleton and McKee, 2001; Robertson and Alongi, 2016).

The hydro-geomorphics likely influenced the variations of sedimentary OM in the studied sites, as also reported from other studies (Kuramoto and Minagawa, 2001; Saintilan et al., 2013). Mangrove sediments growing in the river-dominated estuary in the central SAL, accumulated larger portions of allochthonous OM (mainly riverine sediment) than those in the tide-dominated estuaries in the eastern SAL and in Berau. Due to less dilution from river discharge, sediment mangroves in the eastern SAL and in Berau contained higher organic carbon content (7.7 ± 1.8% and 5.7 ± 3.7%, respectively) than the central SAL (2.4 ± 0.8%) which received high sediment inputs from the hinterland, with a large portion of mineral sediment diluting the C_{org} content.

In contrast to estuarine mangroves, sediment on Kongsi Island had a higher $^{13}C_{\text{org}}$ (−25.9 to −22.1‰), which is closer to that of marine-derived organic matter, and the highest contribution comes from coastal POM (13–38%; Fig. 4). This carbonate setting is distinctly different from the estuarine systems, mainly because of the absence of river influence, and often being dependant upon in situ production of either mangrove peat or calcareous sediment (Woodroffe, 1992). In many cases, island mangroves accumulate a thick peat-muck layer overlying hard coral sand, and thus contain high sedimentary organic carbon, such as reported for the Yap and Palau islands, Micronesia, with around 14.2% and 18.4% of C_{org} content, respectively (Donato et al., 2011). Despite having similar characteristics with Yap and Palau islands where mangroves grow over former reef flats and coral sands fringing the island (Kauffman et al., 2011), the mangrove ecosystem on Kongsi Island has a lower sedimentary C_{org} content (0.8 ± 0.2%). This

![Fig. 3. Bi-plot of $\delta^{13}C_{\text{org}}$ and the C/N ratio of sediments from the study area and potential endmembers.](image-url)
is probably because mangroves on Kongsi Island grow in the low intertidal zone that is frequently flushed by tides, which prevents the accumulation of autochthonous organic matter. Tides might have also delivered organic matter from sea water, and a large amount of eroded coral rubble that diluted the autochthonous organic matter, as indicated by a very high calcium carbonate content of the sediment (94.6 ± 1.0%).

4.3. Downcore variation of organic matter composition

Variation of organic carbon in the sediment is the result of changes in deposition from multiple sources and the decomposition of organic matter by microbes (Bouillon et al., 2008; Kuramoto and Minagawa, 2001). The downcore enrichment of $^{13}\text{C}_{\text{org}}$ ($p < 0.001$) coupled with a constant C/N ratio ($p = 0.13$) in the central SAL indicates a shift in the organic matter source, because decomposition of organic matter usually does not cause a significant enrichment of $^{13}\text{C}_{\text{org}}$ (Saintilan et al., 2013). It seems there was a shift in OM accumulation from a predominance of riverine sediment ($δ^{13}\text{C}_{\text{org}} = −26.2 ± 1.6‰, \text{C/N} 10.5 ± 1.9$) and hinterland soils ($δ^{13}\text{C}_{\text{org}} = −25.9 ± 1.6‰, \text{C/N} 15.4 ± 3.9$; Kuramoto and Minagawa, 2001; Yuwono et al., 2007; Weiss et al., 2016) in the bottom layer, to more C3 vegetation ($δ^{13}\text{C}_{\text{org}} = −28.2 ± 2.2‰, \text{C/N} 22.8 ± 3.8$; Kuramoto and Minagawa, 2001) in the upper layer (Fig. 5). Moreover, the gradual decrease of C_{org} content and C_{org} density downcore ($p < 0.001$) reflects the dilution with mineral matter which is generally high in riverine suspended matter and soils (Yuwono et al., 2007). In the eastern SAL, the low $δ^{13}\text{C}_{\text{org}}$ and high C/N ratio fall in the range of mangrove leaf litter ($δ^{13}\text{C}_{\text{org}} = −31 \text{ to } −28‰, \text{C/N} 28–84$; Herbon and Nordhaus, 2013; Nordhaus et al., 2017), and mangrove roots ($δ^{13}\text{C}_{\text{org}} = −29 \text{ to } −28‰, \text{C/N} 28–60$ of decomposed roots; Huxham et al., 2010; Weiss et al., 2016). Their increase with depth ($p < 0.001$), in combination with a downcore increase of C_{org} content and density indicates the predominance of autochthonous mangrove OM in the sediments. The somewhat lower concentrations at the surface are probably caused by an admixture of allochthonous sediment input by the tides. In Berau, downcore profiles of C_{org} content, C_{org} density, and the C/N ratio did not show variations ($p = 0.67, 0.93, 0.62$, respectively) and $δ^{13}\text{C}_{\text{org}}$ increased only slightly with depth ($p < 0.001$). Values were in the same range as in the eastern SAL, and indicate a predominance of autochthonous mangrove OM throughout the core. Downcore variations at Kongsi Island are negligible.

4.4. Variation of organic carbon stocks

A variation of C_{org} stocks in different mangrove ecosystems was observed in this study, where the majority of C_{org} is stored in the sediment (from 79% in Berau up to 96% in the eastern SAL), which is in accordance with other studies (Donato et al., 2011; Kauffman et al., 2011; Adame et al., 2013; Murdiyarso et al., 2015). An exception was observed on Kongsi Island, where only 33% of the total C_{org} stock is allocated in the belowground pool because of dilution with eroded carbonate rubble which makes up 95% of the sediment.

4.4.1. The impact of ecosystem degradation on carbon storage

The aboveground C_{org} stock was higher in the undisturbed mangrove ecosystems in Berau (130.1 ± 32.1 Mg C ha$^{-1}$) and Kongsi Island (74.3 ± 20.2 Mg C ha$^{-1}$) than in the degraded mangrove ecosystem in the Segara Anakan Lagoon (15.8 ± 8.6 Mg C ha$^{-1}$ in the eastern and 10.3 ± 3.0 Mg C ha$^{-1}$ in the central lagoon, (Fig. 6)). The mangrove forest in SAL is dominated by a small-stature vegetation, where the highest mean DBH was only $6.30 ± 3.57$ cm (from species S. caseolaris), while DBH was up to $50.2 ± 22.5$ m (from species S. alba) in Berau (Kusumaningtyas, 2017). According to a previous study (Hinrichs et al., 2009), most of the large mangrove trees in SAL had
Fig. 5. Downcore variations of sediment properties at the studied sites (error bars indicate the standard deviation).
already been cut. Even during our data collection, at some stations in the central area, many cut trees were found. As a consequence, the aboveground Corg stocks are very low in SAL.

The mangrove habitat in SAL has undergone transformation due to temporal dynamics of riverine sediment input and deforestation, which caused the decline of mangrove tree density and the overall species number and diversity, particularly in the central area (Yuwono et al., 2007; Hinrichs et al., 2009; Lukas, 2017). In the past, some mangrove species such as A. alba, A. corniculatum, S. caseolaris, Rhizophora and Bruguiera were found in higher numbers in the central SAL, but the changing environmental conditions caused a shift from mangrove-dominated to understorey-dominated communities such as Dennsis and Acanthus. The abundance of Acanthus, which characterizes degraded mangrove areas in Java (Whitten et al., 2000; Hinrichs et al., 2009), was attributed to uncontrolled deforestation, high freshwater discharge, and high sedimentation as a result of extensive erosion in the hinterland due to land conversion for agriculture and settlements, deforestation for timber production, and volcanic eruptions (Yuwono et al., 2007; Hinrichs et al., 2009; Lukas, 2017; Nordhaus et al. this volume). Excess sediment input can reduce seedling numbers and bury aerial roots, thus inhibiting mangrove growth (Ellison, 1999; Sidik et al., 2016), and being aggravated with deforestation practices, these disturbances can prevent mangrove forests to reach a mature state.

Previous studies (Sun, 2011; Wang et al., 2013) found organic carbon content and density in the upper layers (down to 100 cm) increasing along with biomass growth, as primary production increased and input of dead roots and leaf litter also increased. In our study, sediment Corg stock in the upper meter layer in the eastern SAL (467 ± 118 Mg C Ha⁻¹) was similar to that in Berau (485 ± 197 Mg C Ha⁻¹), and much higher than that on Kongsi Island (37 ± 3 Mg C Ha⁻¹), despite a lower aboveground biomass. This is probably due to a combination of two factors. The relatively high tree density in the eastern SAL (Hinrichs et al., 2009), despite an absence of large trees, probably reflects a moderately high productivity that provided a large supply of mangrove litter and dead roots. High vegetation density also can inhibit resuspension by water motion and trap particles in the forest floor (Alongi, 2012). Moreover, the very low allochthonous input does not dilute the autochthonously produced OM. By contrast, the low sediment Corg stock in the central SAL is probably the result (i) of a lower tree density and low primary production due to an uncontrolled deforestation, and (ii) of a dilution with allochthonous mineral sediment input from the Citanduy River.

4.4.2. Carbon stocks in contrasting environmental settings

While carbon stocks also vary geographically, there are major differences between estuarine and marine settings, because of the different relative importance of allochthonous input by rivers vs. autochthonous production. The mean total Corg stocks found in the estuarine mangroves in Berau and Segara Anakan are higher than those in marine mangroves on Kongsi Island. This is in accordance with the pattern reported by Murdiyarso et al. (2009) who found a higher mean total Corg stock in the river-delta mangroves in Tanjung Puting, Central Kalimantan (1220 Mg C ha⁻¹) than in the oceanic mangroves in Bunaken, North Sulawesi (939 Mg C ha⁻¹). Donato et al. (2011) also found a higher Corg stock in estuarine mangroves (alluvial delta) than in oceanic mangroves (1074 Mg C ha⁻¹ and 990 Mg C ha⁻¹, respectively) in the SE Asia region. Conversely, Weiss et al. (2016) reported a higher sediment Corg stock within the topmost meter of oceanic mangroves on the Togian Islands, Sulawesi (570 Mg C ha⁻¹) than in the estuarine mangroves in the Berau Estuary (310 Mg C ha⁻¹).

A major factor in explaining the large geographical variation of Corg stocks is the simple fact that the length of obtained sediment cores can vary largely. Depending on the coring device used and the system natural variability, it is possible that not the full sediment record is covered by the core, hence Corg stock calculations may have large uncertainties or even be underestimates. For example, in an Indonesia-wide study, sediment cores from 8 mangrove ecosystems differed between 46 cm and 300 cm in length even in one system, the respective carbon stocks varied between 408 and 2208 Mg C ha⁻¹ (Supplementary information in Murdiyarso et al., 2015). Estuarine mangrove forests may have a higher Corg stock due to a longer sediment record compared to most oceanic mangroves (Donato et al., 2011). This is mainly because the estuarine mangroves receive large allochthonous inputs from river discharge, which is to a large extent mineral sediment diluting the carbon content. However, depending on the proportion of mineral sediment, this dilution may also result in lower carbon stocks. In order to highlight geographical variations, we compare carbon stocks standardized to 1 m sediment depth. In cases where sediment cores have a maximum depth < 1 m, Corg stocks were extrapolated to 1 m depth. We grouped carbon stocks into estuarine and marine mangroves (Fig. 7). Marine/oceanic mangroves have no river influence, and include island mangroves, intertidal fringe mangroves, as well as mangrove forests growing in a karstic or carbonate landscape. Estuarine mangroves were categorized based on the existence of rivers, and include riverine and deltacal mangrove forests.

The overall total carbon stock (aboveground biomass and sediment including belowground biomass) at all stations.

Fig. 6. Organic carbon stocks (aboveground biomass and sediment including belowground biomass) at all stations.
coastal environmental settings. Similar to our results, it finds lower carbon densities in river delta, estuarine and lagoon settings with a substantial allochthonous inorganic sediment input than in other settings (Rovai et al., 2018).

Carbon stocks are also highly variable among marine mangrove forests, in which, Kongsi Island has the lowest Corg stock (Fig. 7). It implies that not all marine mangroves accumulate high sediment organic carbon, despite little or no dilution from river discharge. Local factors such as tidal amplitude, wave action, landform and elevation are the important drivers controlling organic carbon distribution and deposition in the intertidal mangroves. The restricted accumulation of organic carbon can be partly related to rapid water circulation that washes off autochthonous organic matter, high input from the ocean such as coral rubble that dilutes the organic matter, and a low residence time of water that increases exposure time to oxygen and promotes decomposition (Bouillon et al., 2008; Ranjan et al., 2011). These typical overwash mangrove ecosystems are usually found in carbonate reef environments (Woodroffe et al., 2016), such as on Kongsi Island. With its very low sedimentary Corg content and stock it appears to be an extreme example, but it highlights that the variability of carbon stocks for oceanic mangroves is larger than reported so far.

The standardization to 1 m sediment depth allows for a better comparison of Corg stocks among sites and hence a better assessment of the factors responsible for any observed variability. However, it does not provide the total Corg stock of a mangrove ecosystem. Moreover, sediment cores obtained for carbon stock assessments are usually not longer than 3 m although the total sediment record may be longer which adds more uncertainty to carbon stock estimates. In mangrove ecosystems with high allochthonous (mineral sediment) input, the sedimentary organic matter, the high sedimentation and carbon accumulation rates and a Corg concentration of around 5% (Fig. 3) indicate a predominantly autochthonous origin of sedimentary organic matter, the high sedimentation and carbon accumulation rates and a Corg concentration of around 5% (Fig. 3) suggest high allochthonous input mainly of mineral sediment. The high CAR in Berau is therefore probably a product of high primary production and high allochthonous input. Primary production usually increases with age, and so does carbon burial in sediment (Alongi, 2014; Marchand, 2017). The high sedimentation rate measured in Berau (core B2) it is even an order of magnitude higher and among the highest rates ever measured (Fig. 8). While OM proportions in our endmember mixing model (Fig. 3) indicate a predominantly autochthonous origin of sedimentary organic matter, the high sedimentation and carbon accumulation rates and a Corg concentration of around 5% (Fig. 5) are likely related to high river floods, during which the mean river discharge can be up to 2000 m3s$^{-1}$ (Hoekstra et al., 2007).

In order to assess the present day sink function of mangrove forests for atmospheric CO$_2$ it is likely more useful to measure the current carbon accumulation rate (CAR) in mangrove sediments. In our study, the CAR of all dated cores (C24, E40, B2) is higher than the global average of 174 g C m$^{-2}$ yr$^{-1}$ (Alongi, 2012), in Berau (core B2) it is even an order of magnitude higher and among the highest rates ever measured (Fig. 8). While OM proportions in our endmember mixing model (Fig. 3) indicate a predominantly autochthonous origin of sedimentary organic matter, the high sedimentation and carbon accumulation rates and a Corg concentration of around 5% (Fig. 5) suggest high allochthonous input mainly of mineral sediment. The high CAR in Berau is therefore probably a product of high primary production and high allochthonous input. Primary production usually increases with age, and so does carbon burial in sediment (Alongi, 2014; Marchand, 2017). The high sedimentation rate measured in Berau (18 mm yr$^{-1}$) is likely related to high river floods, during which the mean river discharge can be up to 2000 m3s$^{-1}$ (Hoekstra et al., 2007).
Occasionally, strong currents and waves influenced by the Indonesian Throughflow (ITF) may cause resuspension of sediment and prevent its settlement. However, wave effects in the northern part of Berau are generally limited due to the breakwater effects of the delta front barrier reef and its shallow depth (Hoekstra et al., 2007), which may promote the settling of particulate organic matter in Berau.

In some cases the rate of sediment delivery may be a more important driver of CAR than primary production (Alongi et al., 2001), in particular in impacted areas, such as in the Jiulongjiang estuary, China, which receives high amounts of sewage and has a massive accretion rate of 46.3 mm yr$^{-1}$ (Alongi, 2005). In a highly impacted mangrove ecosystem in Cubatão, Brazil, the high CAR of 1023 g C m$^{-2}$ yr$^{-1}$ was to a large extent attributed to the eutrophication of coastal waters (Sanders et al., 2014, Fig. 8). Interestingly, the CAR distribution pattern in the Segara Anakan Lagoon is opposite to that of the C_{org} stocks. While the latter is higher in SAL East, the CAR is much higher in the central than in the eastern lagoon. The high sedimentation rate (36 ± 22 mm yr$^{-1}$) and CAR in the central SAL is most likely a result of high river input due to erosion in the agriculture-dominated hinterland (Yuwon et al., 2007; Lukas, 2017) as also illustrated by the high 210Pb$_{bs}$ inventory. Sedimentary OM is diluted by high mineral sediment input leading to the low C_{org} stock, as indicated by a C_{org} concentration of 2-4%, and it consists of a mixture of autochthonous and allochthonous OM, in which mangrove OM appears to be a minor contribution only (Figs. 3 and 4). In contrast, in SAL East little river influence, hence little allochthonous input, is responsible for a lower, but still significant accumulation rate of OM that is mainly of mangrove origin (Fig. 4).

On a global scale, the CAR in Berau and in the central SAL is at the upper end of the range and even in the eastern SAL it is higher than the global average. High rates of 581 ± 130 g C m$^{-2}$ yr$^{-1}$ were also measured in Irian Jaya (now Papua), Indonesia, in the Ajkwa River estuary. There, the mangrove forest receives high inputs of allochthonous sediment from the mountainous hinterland and it has a macrotidal exchange with the Arafura Sea (Brunskill et al., 2004). Similarly, a CAR of up to 949 g C m$^{-2}$ yr$^{-1}$ was measured at the margin of a mangrove forest in Tamandaré, Brazil, which receives allochthonous sediment input from a small river and has a mesotidal exchange with the Atlantic Ocean (Sanders et al., 2010a). In contrast, very low carbon accumulation rates of 67 ± 31 g C m$^{-2}$ yr$^{-1}$ were obtained in Rookery Bay, USA. It has an annual average tidal range of 0.6 m and a very low supply of allochthonous sediment by Henderson Creek which has a discharge of 0.7 m3s$^{-1}$ only (Lynch et al., 1989). The low CAR of 55–70 g C m$^{-2}$ yr$^{-1}$ in mangrove forests in Celestun Lagoon, Mexico, is also related to low allochthonous inputs (Lynch et al., 1989). The lagoon is located in a karstic landscape and therefore has almost no surface runoff and a maximum tidal range of 1.5 m (Herrera-Silveira and Morales-Ojeda, 2010). It appears that besides productivity, the environmental setting is a major driver of carbon accumulation in mangrove sediments (Woodroffe et al., 2016). Our study sites in Berau and the central SAL are river- and tide-dominated settings with high allochthonous inputs and hence high CARs, while SAL East and Kongsi have low allochthonous inputs, hence low CARs.

Our study, in line with other studies, demonstrates that the river- and tide-dominated mangrove settings are quantitatively most relevant in terms of carbon storage even despite the dilution with high amounts of mineral sediment. An average of global budgets estimates mangrove carbon storage to be on the order of 22 ± 6 Tg yr$^{-1}$ (Jennerjahn et al., 2017), based on an area of 138,000 km2 (Giri et al., 2011). Assuming that Indonesia’s contribution to global mangrove carbon storage is equivalent to its portion of mangrove area of 22.6% (Giri et al., 2011), its total carbon accumulation would be at minimum 5 Tg yr$^{-1}$. However, as Indonesia is located in the zone of maximum natural weathering and erosion and hence high river fluxes of suspended sediments (Milliman and Farnsworth, 2011), it could be even higher.

5. Conclusion

Blue carbon storage is presently considered one of the most important natural sinks for annual anthropogenic greenhouse gas emissions. With respect to quantifying the recent sink function of mangrove ecosystems for carbon, it is likely more important to quantify current carbon accumulation rates rather than estimating carbon stocks. Stock assessments allow to calculate the potential of CO$_2$ being released upon degradation and deforestation, but they do not allow to estimate present-day carbon storage. While stock assessments are useful and numerous respective studies have been conducted in the past years, they may be misleading in cases where dilution with mineral sediment masks the real accumulation potential as illustrated by our example from the Segara Anakan Lagoon. There, SAL East has a much higher carbon stock than SAL Central, but the latter has a threefold higher CAR, hence presently stores carbon in a much higher rate than SAL East does. Quantifying carbon accumulation in mangrove sediments is therefore a useful tool in valuing ecosystem services and it is of particular importance for PES (payments for environmental services) and REDD+ (Reducing Emissions from Deforestation and Forest Degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries) schemes.
Acknowledgements

The authors would like to thank Blue Carbon Indonesia – Ministry of Marine Affairs and Fisheries for research support, and Erwin Ardlı, M. Husein Sastranegera, Arida Fauziyyah and students from the Jenderal Soedirman University (UNSOED) for the help during fieldwork, as well as Dorothee Dasbach for assistance in the laboratory. Financial support by the German Federal Ministry of Education and Research (Grant No. 03F0644A) is gratefully acknowledged.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecss.2018.12.007. The data set for this study is published in PANGAEA (Kusumaningtyas et al., 2018), https://doi. pangaea.de/10.1594/PANGAEA.896852.

References

Adame, M.F., Kaufman, J.B., Medina, I., Gamboa, J.N., Torres, O., Caamil, J.P., Reza, M., Herrera-Silveira, J.A., 2013. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. Plátz 8 212.
Adame, M.F., Santini, N.S., Tovilla, C., Vázquez-Lule, A., Castro, L., Guevara, M., 2015. Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 12, 3805–3818.
Alongi, D.M., Wattayakorn, G., Pohlenga, I., Herbon, C.M., Nordhaus, I., 2013. Experimental determination of stable carbon and nitrogen isotope fractionation between mangrove leaves and crabs. Mar. Ecol. Prog. Ser. 490, 91–105.
Herrera-Silveira, J.A., Morales-Ojeda, S.M., 2010. Subtropical karstic coastal lagoon assessment, Southeast Mexico: the Yucatan peninsula case. In: Kemmish, M.J., Paerl, H.E. (Eds.), Coastal Lagoons - Critical Habitats of Environmental Change. CRC Press, Boca Raton, pp. 307–333.
Hinrichs, S., Nordhaus, I., Geist, S.J., 2009. Status, diversity and distribution patterns of mangrove vegetation in the Segara Anakan lagoon, Java, Indonesia. Reg. Environ. Change 9, 257–269.
Hoekstra, P., Hoitink, T., Buschman, F., Tarsya, A., Van der Bergh, G., 2010. Decomposition of mangrove roots: effects of location, nutrients, species identity and mix in a Kenyan forest. Estuar. Coast. Shelf Sci. 88, 135–142.
Jennerrjen, T.C., Itzekken, V., 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89, 23–30.
Jennerrjen, T.C., Itzekken, V., Köpper, S., Adi, S., Purwo Nugroho, S., Sudiana, N., Yusal, A., Prijhartanto, Gaye-Haake, B., 2004. Biogeochimie of a tropical river affected by human activities in its catchment: Brantas River estuary and coastal mangroves. Estuar. Coast. Shelf Sci. 60, 503–514.
Jennerrjen, T.C., Yuwono, E., 2006. Mangrove carbon stocks and ecosystem cover dynamics in southwest Madagascar and the implications for local management. Forests 8, 1–21.
Kaufman, J.B., Ree, A.V.S., Koedam, N., Dehaeirs, F., 2003. Sources of organic carbon in mangrove sediments: variability. Hydrobiologia 495, 33–39.
Kaufman, J.B., Ree, A.V.S., Koedam, N., Dehaeirs, F., 2003. Sources of organic carbon in mangrove sediments: variability. Hydrobiologia 495, 33–39.
Kaufman, J.B., Cole, T.G., 2010. Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30, 1077–1084.
Kaufman, J.B., Heider, C., Cole, T.G., Diwre, K.A., Donato, D.C., 2011. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31, 343–352.
Kaufman, J.B., Heider, C., Nordløk, P., Payton, F., 2014. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527.
Khan, N.S., Vane, C.H., Horton, B.P., 2015. Chapter 20 Stable Carbon Isotope and C/N Geochemistry of Coastal Wetland Sediments as a Sea-Level Indicator. Handbook of Level Research, pp. 295–311.
Komiyama, A., Poungsarn, S., Kato, S., 2005. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21, 471–477.
Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426, 1–24.
Kristensen, E., Bouillon, S., Dittmar, T., Marchand, C., 2008. Organic carbon dynamics in mangrove ecosystems: a review. Aquat. Bot. 89, 201–219.
Kuramoto, T., Minagawa, M., 2001. Stable carbon and nitrogen isotope characterization of organic matter in a mangrove ecosystem on the Southwestern coast of Thailand. J. Oceanogr. 57, 421–431.
Kusumaningtyas, M.A., 2017. Spatial Variation of Organic Carbon Stocks and Sources in
