Thermal decay rates for an asymmetric cusped barrier at strong friction

A V Zakharov¹, M V Chushnyakova¹, I I Gontchar²

¹ Omsk State Technical University, Omsk 644050, Russia
² Omsk State Transport University, Omsk 644046, Russia

maria.chushnyakova@gmail.com

Abstract. The thermal decay of a metastable state over an asymmetric cusped barrier in the regime of overdamping (strong friction) is considered. This seems to be of importance for the nanoscale experiments on pulling polymeric molecules. The decay process is simulated numerically through computer solving of the Langevin equation. The quasistationary rates R_D, as well as the mean lifetimes and transient times, are extracted from the numerical time-dependent rates $R_N(t)$. The impact of the backscattering on the value of R_D is discussed. The approximate analytical decay rate is derived for the asymmetric cusped barrier. The numerical results are confronted with this formula and with another analytical formula (the integral Kramers rate) available in the literature.

1. Introduction

One-dimensional Brownian motion, when a fictitious particle escapes from a potential well (metastable state) over a barrier, becomes presently a widely used model. Examples of its application range from fission of atomic nuclei [1–3] (the femtometer typical space scale) to cracks formation [4], single-molecule pulling [5,6], and optical traps [7] (the nanometer scale). Often in these experiments, the shape of the barrier is known only approximately or not known [8,9]. Most of the theoretical approaches are based on the seminal Kramers paper [10] where two sorts of barriers had been considered: the parabolic and cusped (edged) ones. In the present work, we focus on the cusped barrier which seems to be relevant for the single-molecule pulling experiments [8] and for the electron transfer reactions [11,12]. These barriers are schematically shown in Fig 1.

The physical meaning of the coordinate q is, of course, different for different physical problems. For example, in the case of nuclear fission, it is proportional to the distance between the appearing fission fragments. When one considers the molecule dissociation, q is again proportional to the distance between the centers of mass of the molecule parts. For the adhesive contact problem, q can be proportional to the radius of the contact area [13]. To make our consideration as problem-independent as possible, we use the dimensionless coordinate q.

Through the whole paper, we use two dimensionless scaling parameters: the governing parameter

$$G = \frac{U_b}{\theta}$$

and the damping parameter
\[\varphi = \frac{\eta}{m \omega_c}. \]

(2)

Here \(U_b \) is the height of the barrier separating two wells; \(\theta \) denotes the thermal energy of the particle motion; \(\eta \) and \(m \) denote the friction and inertia parameters, respectively; \(\omega_c \) is the circular frequency of the metastable state.

The purpose of the paper is to investigate quantitatively to what extent the analytical formulas for the decay rate agree with the exact numerical rates for different asymmetries of the cusped potential \(K_C \) (see Eq. (5) below). This study is performed at \(\varphi = 15 \) which corresponds to the overdamping regime [1,14,15]. We also analyze the behavior of the mean lifetimes and transient times as functions of \(K_C \).

Figure 1. Examples of the cusped potentials (normalized to the barrier height \(U_b \)) used in the present work (see Eq. (4)). They have different stiffnesses of the right parabolas and the same stiffnesses of the left parabolas. Positions of the bottom of the metastable well (left, \(q_c \)), barrier (middle, \(q_b \)), and the absorptive point (right, \(q_a \)) are also shown.

2. Numerical modeling

The modeling is performed for the generalized dimensionless coordinate \(q \). The corresponding numerical Euler scheme [16] for the reduced Langevin equation reads:

\[q^{(n+1)} = q^{(n)} + \eta^{-1} K^{(n)} \tau + g b^{(n)} \sqrt{\tau}. \]

(3)

Here \(K = -dU/dq \) is a regular (driving) force; \(g = \sqrt{\theta/\eta} \) stands for the amplitude of the random force; the superscripts \(n \) and \(n+1 \) indicate two consequent time moments separated by the time-step \(\tau \); \(b^{(n)} \) are the random numbers possessing a normal distribution with zero average and the variance equal to 2.

The asymmetric cusped potential \(U(q) \) reads

\[
U(q) = \begin{cases}
C_l(q - q_c)^2/2 & \text{at } q < q_b; \\
C_r(q - q_a)^2/2 & \text{at } q > q_b,
\end{cases}
\]

(4)

Here \(C_l \) (\(C_r \)) denotes the stiffness of the left (right) parabola; the subscript “c” refers to the bottom of the left well (\(q_c = 1.0 \)) whereas the subscript “b” indicates the barrier (\(q_b = 1.6 \)). The Brownian
particles start their walking at $q = q_c$. The sink (absorptive border) with the coordinate q_a is positioned at the bottom of the right parabola. We keep the stiffness of the left parabola fixed and vary the ratio (the asymmetry of the barrier)

$$K_c = \frac{C_l}{C_r}$$

and, consequently, the stiffness of the right parabola. For three different values of K_c, the cusped potential energies are presented in Fig. 1. Only for the case of symmetric potential, the position of q_a is shown in the figure. As C_r becomes smaller, the sink moves further from the barrier and the potential at $q > q_b$ becomes less steep. These two circumstances are expected to enhance rescattering [17] and thus to reduce the rate.

For each set of the parameters G and K_c, our numerical simulations result in $N_{tot} \approx 10^5$ trajectories, each trajectory terminates at $t = t_D$ provided it does not reach q_a, or earlier otherwise (t_D is the input parameter). The time-dependent numerical decay rate is calculated as follows:

$$R_n(t) = \frac{1}{N_{tot} - N_a(t)} \frac{\Delta N_a}{\Delta t}.$$ \hspace{1cm} (6)

Here $N_a(t)$ is the number of Brownian particles reaching q_a by the time moment t; ΔN_a denotes the number of the particles arriving at the sink during the time interval Δt.

Examples of $R_n(t)$ corresponding to our initial conditions can be found in many works: in [14] for six smooth potential profiles, in [18] for the symmetric cusped potential. The behavior of $R_n(t)$ is similar for all the potentials: after a transient stage, the rate reaches a quasistationary value R_D which is the principal target of our study. This value is found according to the algorithm described in [19,20]; the error of R_D is within 3%.

3. Analytical Kramers rates

In [10], Kramers obtained several analytical formulas for the quasistationary decay rate relevant for different values of the damping parameter φ and two different barrier shapes. Moreover, he proposed a general flux-over-population method for finding the rate. For the case of overdamping, the method can be written as follows

$$R_a = j_a \int_{-\infty}^{q_b} \sigma(q) dq.$$ \hspace{1cm} (7)

Here j_a is the probability flux over the point q_a and $\sigma(q)$ is the quasistationary probability density. In our case according to Kramers [10], the probability density approximately obeys the stationary Smoluchowski equation

$$0 = -\frac{dj(q)}{dq} = \frac{d}{dq} \left(\sigma(q) \frac{dU}{dq} + \frac{\theta}{\eta} \frac{d\sigma(q)}{dq} \right).$$ \hspace{1cm} (8)

The stationary flux may be written as

$$j = -\frac{\theta E}{\eta} \frac{d}{dq} \left(\frac{\sigma}{E} \right)$$ \hspace{1cm} (9)

where

$$E = \exp[-U(q)/\theta]$$ \hspace{1cm} (10)

is proportional to the equilibrium probability density. Applying Eqs. (9) and (10) Kramers transformed Eq. (8) as follows:
\[
\frac{j \eta}{\theta E} = -\frac{d}{dq}\left(\frac{\sigma}{E}\right).
\]
(11)

Considering the flux to be coordinate-independent, one integrates the left and right sides of Eq. (11) over the coordinate and obtains:

\[
j_a = \frac{\sigma}{E} \int q_a \frac{1}{E(q)} dq \left(\int_q^{q_c} \frac{1}{E(q)} dq\right)^{-1}.
\]
(12)

The population of the well standing in the denominator of Eq. (7) can be written as

\[
n = \int_{-\infty}^{q_b} \sigma(q) dq = \int_{-\infty}^{q_c} \sigma(q_c) E(q) dq.
\]
(13)

Making use of Eqs. (7), (12), and (13), one arrives at what we call integral Kramers formula for the rate:

\[
R_{KI} = \frac{\theta}{\eta} \left\{ \int_{-\infty}^{q_b} \exp\left[\frac{-U(y)}{\theta}\right] dy \int_{q_c}^{q_a} \exp\left[\frac{U(z)}{\theta}\right] dz \right\}^{-1}
\]
(14)

This formula was not written in [10] explicitly, although in fact it was derived there. One finds Eq. (14) in an explicit form in the later publications (see, e.g., Eq. (5.109) in the Risken’s book [15], Eq. (3) in [14], and Eq. (2) in [21]).

With modern software and computers, it is easy to evaluate the integral Kramers rate \(R_{KI}\). However, some authors still prefer approximate estimates of integrals [8,9] for the asymmetric cusped potential. Following this manner, we estimate the integrals in Eq. (14). Extending the limit of integration \(q_b\) to the plus infinity, we reduce the left integral to the Poisson’s one and obtain

\[
\int_{-\infty}^{+\infty} \exp\left[\frac{-U(y)}{\theta}\right] dy = \frac{2\pi \theta}{\sqrt{C_l}}.
\]
(15)

The second integral in Eq. (14) is convenient to be represented as the sum of two integrals (from \(q_c\) up to \(q_b\) and from \(q_b\) up to \(q_a\)). Each of these integrals is evaluated using the Laplace method and keeping in mind that the integrands reach their maximum values at \(q_b\). Thus, the second integral becomes

\[
\int_{q_c}^{q_a} \exp\left[\frac{U(z)}{\theta}\right] dz = \frac{\theta \exp(G)}{\sqrt{2U_b}} \left(\frac{1}{\sqrt{C_l} + 1}\right).
\]
(16)

Finally, the approximate Kramers rate for the asymmetric cusped barrier reads

\[
R_{K0} = \frac{\omega_e \exp(-G)}{2\pi} \frac{2\sqrt{U\pi}}{\varphi(\sqrt{K_C} + 1)}.
\]
(17)

Clearly, this rate depends only upon the dimensionless universal parameters \(G\) and \(\varphi\) and scales with \(\omega_e\) as has been shown for the case of the two-parabolas harmonic barrier [22]. The first multiplier in Eq. (17) is just the Arrhenius transition state rate [23,24]. Next, the rate is inverse proportional to \(\varphi\) as for the two-parabolas harmonic barrier in the overdamped regime [10]. Finally, when \(K_C = 1\), Eq. (17) goes over to the formula obtained by Kramers in [10] for the case of the symmetric cusped barrier.
4. Numerical results and analysis
The modeling is performed in the space diffusion regime ($\varphi = 15$) for three values of the governing parameter ($G = 1.5, 2.4, 3.0$). We know that the effect of the right well (in other words, of the slope beyond the barrier, see Fig. 1) is most pronounced at $\varphi \gg 1$ and completely absent in the energy diffusion regime ($\varphi \ll 1$) [17].

To deal with the dimensionless quantities, we present in Fig. 2 the quasistationary rate R_D divided by the frequency ω_c of the left well. The decrease of the rates $R_D(K_C)$ with the potential asymmetry is due to the backscattering effect. The larger K_C, the softer the right parabola. As the result, the Brownian particles have more chances to return to the left well (i) due to the larger coordinate of the sink q_a and (ii) due to the less steep descent from the barrier. The decrease of R_D with G at fixed K_C is purely statistical and follows qualitatively Eq. (17).

![Figure 2. The quasistationary dynamical rates R_D (divided by the frequency ω_c of the left well) versus the potential asymmetry parameter K_C for the three values of the governing parameter G indicated in the figure. The statistical errors are within 3% (i.e. within symbols).](image)

In Fig. 3, the analytical rates R_{KI} (Eq. (14)) and R_{K0} (Eq. (17)) are compared with the numerical quasistationary rate R_D for the values of G under consideration. From the left column of panels, one gets a qualitative impression that R_{KI} seems to provide a better approximation for R_D at any value of the governing parameter and at any value of the barrier asymmetry.

The quantitative comparison is provided through the fractional differences

\[
\xi_I = \frac{R_{KI} - R_D}{R_D},
\]

\[
\xi_0 = \frac{R_{K0} - R_D}{R_D}
\]

(right column of panels). Clearly, the integral Kramers rate R_{KI} almost always agree with R_D within 10%. Thus, results obtained earlier for smooth barriers [14,25] hold for the cusped asymmetric barriers, too. The character of $\xi_I(K_C)$-dependence seems to be universal, i.e. G-independent. Therefore, one can hope to invent a correction for R_{KI} enabling to restore a correct value of R_D. The approximate Kramers rate R_{K0} agrees with R_D significantly worse: the absolute value of the fractional difference ξ_0 sometimes exceeds 30%.

There are two characteristics of $R_n(t)$: its quasistationary value R_D, which has been already discussed, and the transient time T_n, i.e. the time interval during which the rate $R_n(t)$ reaches half of its
Figure 3. The rates R_D, R_{K0}, R_{KI} divided by the frequency ω_c (left column) and the fractional differences ξ_0, ξ_I (right column) versus the potential asymmetry K_C for three values of the governing parameter G indicated in the figure.

quasistationary value. It is natural to consider now the $T_n(K_C)$-dependence which is presented in Fig. 4. We find the value of T_n in two stages. As long as R_D is known, our code finds T_n using the mesh with the timestep $0.01t_D$. The error of the resulting T_n is rather large: it is of the order of this timestep. In the second stage, we make the upper limit for the $R_n(t_f)$-array equal to $2T_n$ found in the first stage and repeat the search procedure. Thus, the error, which is equal to the half of the timestep, over T_n becomes equal to 1%.

Coming back to Fig. 4, one notices the increase of T_n with K_C. This seems to be explained by the elongation of the way the Brownian particles have to overcome while going to the sink because as C_r decreases the sink q_a moves further from the barrier.
Figure 4. The transient times multiplied by the frequency ω_c versus the potential asymmetry K_C for three values of the governing parameter G indicated in the figure.

Figure 5. The numerical mean lifetimes multiplied by the frequency ω_c versus the potential asymmetry K_C for three values of the governing parameter G indicated in the figure.

In the nanoscale experiments, besides the decay rates, they often are interested in the mean lifetime of the metastable state. That is why we present in Fig. 5 these numerical mean lifetimes τ_{nm} evaluated as described in [26,27]:

$$\tau_{nm} = N_{tot}^{-1} \sum_{i=1}^{N_{ad}} \left(t_{ai} + (N_{tot} - N_{ad})(t_D + R_D^{-1}) \right).$$

(20)
Here the sum goes over all N_{ab} trajectories attaining q_a during the numerical modeling. The times τ_{nm}, quite naturally, increase with K_C, i.e. as the absorptive point q_a troops off from the barrier. The increase of τ_{nm} with the governing parameter is of statistical nature: every now and again one uses inverse Eq. (17) for a rough estimation of τ_{nm}.

5. Conclusions
In the present work, the numerical modeling of the thermal decay via an asymmetric cusped barrier in the overdamped regime has been performed. This seems to be timely, for instance, for the reactions of electron or proton transfer. The process has been modeled through the stochastic (Langevin) equation. Altogether about 30 cases corresponding to the three values of the governing parameter ($G = 1.5$, 2.4, and 3.0) and to the barrier asymmetry K_C ranging from 0.1 up to 30 have been considered. The following quantities characterizing the decay process have been obtained (the relative accuracy in the brackets): the quasistationary rates R_D (3%), transient times T_n (1%), mean lifetimes τ_{nm} (3%). The dependence of these quantities upon K_C resulting from the numerical modeling has been interpreted qualitatively.

Two analytical results have been compared with R_D. This comparison has shown that the integral Kramers rate R_{KI} (Eq. (14)) agrees with R_D typically within 5% for the cases of high barrier ($G = 2.4$ and 3.0) whereas the approximate Kramers rate R_{K0} (derived in the present work, Eq. (17)) overestimates R_D typically by 20%. For the low barrier situation, neither R_{KI} nor R_{K0} agrees with R_D within 10% at $K_C > 10$.

References
[1] Gontchar I I 1995 Langevin fluctuation-dissipation dynamics of fission of excited atomic nuclei Phys. Elem. Part. At. Nucl. 26 394–449
[2] Adeev G D, Karpov A V, Nadtochii P N and Vanin D V 2005 Multidimensional stochastic approach to the fission dynamics of excited nuclei Phys. Elem. Part. At. Nucl. 36 378–426
[3] Ishizuka C, Usang M D, Ivanyuk F A, Maruhn J A, Nishio K and Chiba S 2017 Four-dimensional Langevin approach to low-energy nuclear fission of 236U Phys. Rev. C 96 064616
[4] Santucci S, Vanel L and Ciliberto S 2007 Slow crack growth: Models and experiments Eur. Phys. J. Spec. Top. 146 341–56
[5] Hummer G and Szabo A 2003 Kinetics from nonequilibrium single-molecule pulling experiments Biophys. J. 85 5–15
[6] Monge A M, Manosas M and Ritort F 2018 Experimental test of ensemble inequivalence and the fluctuation theorem in the force ensemble in DNA pulling experiments Phys. Rev. E 98 032146
[7] Rondin L, Gieseler J, Ricci F, Quident R, Dellago C and Novotny L 2017 Direct measurement of Kramers turnover with a levitated nanoparticle Nat. Nanotechnol. 12 1130–3
[8] Dudko O K, Hummer G and Szabo A 2006 Intrinsic rates and activation free energies from single-molecule pulling experiments Phys. Rev. Lett. 96 108101
[9] Abkenar M, Gray T H and Zaccone A 2017 Dissociation rates from single-molecule pulling experiments under large thermal fluctuations or large applied force Phys. Rev. E 95 042413
[10] Kramers H A 1940 Brownian motion in a field of force and the diffusion model of chemical reactions Physica 7 284–304
[11] Lax M 1966 Classical Noise IV: Langevin Methods Rev. Mod. Phys. 38 541–66
[12] Starobinets A, Rips I and Pollak E 1996 A numerical test of activated rate theories for cusped and smooth potentials J. Chem. Phys. 104 6547–59
[13] Chaudhury M K and Goohpattader P S 2012 Noise-activated dissociation of soft elastic contacts Eur. Phys. J. E 35 131
[14] Gontchar I I, Chushnyakova M V., Aktaev N E, Litnevsky A L and Pavlova E G 2010 Disentangling effects of potential shape in the fission rate of heated nuclei Phys. Rev. C 82 064606
[15] Risken H and Frank T 1996 The Fokker-Planck Equation (Heidelberg: Springer-Verlag)
[16] Kloeden P E and Platen E 1992 *Numerical Solution of Stochastic Differential Equations* (Heidelberg: Springer-Verlag)

[17] Chushnyakova M V. and Gontchar I I 2018 Thermal decay of a metastable state: Influence of rescattering on the quasistationary dynamical rate *Phys. Rev. E* 97 032107

[18] Chushnyakova M V., Gontchar I I, Zakharov A V. and Khmyrova N A 2020 Two ways for numerical solution of the Kramers problem for spatial diffusion over an edge-shaped barrier *J. Phys. Conf. Ser.* 1441 012135

[19] Chushnyakova M V., Gontchar I I and Semenyuk N A 2019 Automatic calculation of the quasistationary rate of the metastable state thermal decay *Proc. Vor. State Univ. Ser. Physics. Math.* 4 30–7

[20] Gontchar I I, Chushnyakova M V and Blesman A I 2019 Thermal escape from a trap over the parabolic barrier: Langevin type approach to energy diffusion regime *J. Phys. Conf. Ser.* 1260 092002

[21] Gontchar I I and Chushnyakova M V. 2018 Comment on “Temperature dependence of nuclear fission time in heavy-ion fusion-fission reactions” *Phys. Rev. C* 98 029801

[22] Gontchar I I, Chushnyakova M V and Blesman A I 2019 Dimensionless universal parameters of the Kramers problem *J. Phys. Conf. Ser.* 1210 012052

[23] Hänggi P, Talkner P and Borkovec M 1990 Reaction-rate theory: fifty years after Kramers *Rev. Mod. Phys.* 62 251–341

[24] Mel’nikov V I 1991 The Kramers problem: Fifty years of development *Phys. Rep.* 209 1–71

[25] Gontchar I I and Kuzyakin R A 2011 Integral Kramers formula for the fission rate versus dynamical modeling: The case of deformation-dependent temperature *Phys. Rev. C* 84 014617

[26] Gontchar I I and Aktaev N E 2009 Importance of the relaxation stage for adequate modeling of nuclear fission accompanied by light particle emission *Phys. Rev. C* 80 044601

[27] Chushnyakova M V and Gontchar I I 2019 Precision numerical modeling of the decay of a metastable state at high temperatures *Brazilian J. Phys.* 49 587–93