ARTÍCULO ORIGINAL

ROL ANTIOXIDANTE DE LA L-CARNITINA
EN UN MODELO EXPERIMENTAL DE ESTRÉS
OXIDATIVO INDUCIDO POR CONSUMO
ELEVADO DE FRUCTOSA

Marilin Maguíña-Alfaro1,a, Silvia Suárez-Cunza1,b, Luis Salcedo-Valdez1,c, María Soberón-Lozano1,d, Kelly Carbonel-Villanueva1,e, Rosa Carrera-Palao2,f

1 Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Centro de Investigación de Bioquímica y Nutrición, Lima, Perú.
2 Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Instituto de Patología, Lima, Perú.

Objetivos: Evaluar el rol de la L-carnitina (LC) sobre el estrés oxidativo inducido por fructosa en ratas Holtzman. Materiales y métodos: Se realizó un estudio experimental durante 56 días, con cuatro grupos: control, control+LC, fructosa y fructosa+LC. Los grupos con fructosa recibieron el tratamiento durante los 56 días, y los grupos con LC lo recibieron en los últimos 28 días. La fructosa se dio a libre demanda y la LC se administró por vía oral a una dosis de 500 g/kg/24 h. En el hígado se midió la lipoperoxidación (MDA), la actividad de superóxido dismutasa, las proteínas mitocondriales y posmitocondriales, y la LC libre. En el plasma se midió la glicemia, el índice de modelo homeostático, magúter para evaluar la resistencia a la insulina (HOMA-IR) e insulina. En el páncreas se midió la insulina y se realizó la histología. Resultados: El tratamiento con LC en el hígado mostró disminución (p < 0.05) de MDA frente al grupo control (21,73 ± 5,36 nmol/g tejido vs. 64,46 ± 7,87 nmol/g tejido). Las proteínas mitocondriales y posmitocondriales aumentaron (p < 0.05) frente al grupo control. La insulina pancreática también aumentó frente al control (341,8 ± 42,3 μUI/ml vs. 70,1 ± 9,6 μUI/ml, p<0,05). El rol de LC frente al estrés oxidativo inducido por fructosa no mostró disminución de MDA, pero produjo disminución (p < 0.05) en la actividad de SOD Cu/Zn (9,39 ± 1,5 USOD/mg proteína vs. 13,52 ± 1,5 USOD/mg proteína). En el plasma, se observó que la LC mejoró el valor de la HOMA-IR, Histológicamente, la presencia de LC aumentó el número y tamaño de islotes de Langerhans. Conclusiones: La LC favorece los cambios del metabolismo oxidativo y ante el consumo de fructosa contribuye con la homeostasis glicémica.

Palabras clave: Carnitina; Estrés Oxidativo; Fructosa; Antioxidantes; Insulina; Malondialdehído, Superoxido Dismutasa; Glicemia (Fuente: DeCS BIREME).

RESUMEN

Objetivos: Evaluar el rol de la L-carnitina (LC) sobre el estrés oxidativo inducido por fructosa en ratas Holtzman. Materiales y métodos: Se realizó un estudio experimental durante 56 días, con cuatro grupos: control, control+LC, fructosa y fructosa+LC. Los grupos con fructosa recibieron el tratamiento durante los 56 días, y los grupos con LC lo recibieron en los últimos 28 días. La fructosa se dio a libre demanda y la LC se administró por vía oral a una dosis de 500 g/kg/24 h. En el hígado se midió la lipoperoxidación (MDA), la actividad de superóxido dismutasa, las proteínas mitocondriales y posmitocondriales, y la LC libre. En el plasma se midió la glicemia, el índice de modelo homeostático, magúter para evaluar la resistencia a la insulina (HOMA-IR) e insulina. En el páncreas se midió la insulina y se realizó la histología. Resultados: El tratamiento con LC en el hígado mostró disminución (p < 0.05) de MDA frente al grupo control (21,73 ± 5,36 nmol/g tejido vs. 64,46 ± 7,87 nmol/g tejido). Las proteínas mitocondriales y posmitocondriales aumentaron (p < 0.05) frente al grupo control. La insulina pancreática también aumentó frente al control (341,8 ± 42,3 μUI/ml vs. 70,1 ± 9,6 μUI/ml, p<0,05). El rol de LC frente al estrés oxidativo inducido por fructosa no mostró disminución de MDA, pero produjo disminución (p < 0.05) en la actividad de SOD Cu/Zn (9,39 ± 1,5 USOD/mg proteína vs. 13,52 ± 1,5 USOD/mg proteína). En el plasma, se observó que la LC mejoró el valor de la HOMA-IR, Histológicamente, la presencia de LC aumentó el número y tamaño de islotes de Langerhans. Conclusiones: La LC favorece los cambios del metabolismo oxidativo y ante el consumo de fructosa contribuye con la homeostasis glicémica.

Palabras clave: Carnitina; Estrés Oxidativo; Fructosa; Antioxidantes; Insulina; Malondialdehído, Superoxido Dismutasa; Glicemia (Fuente: DeCS BIREME).

ARTÍCULO ORIGINAL

ROL ANTIOXIDANTE DE LA L-CARNITINA
EN UN MODELO EXPERIMENTAL DE ESTRÉS
OXIDATIVO INDUCIDO POR CONSUMO
ELEVADO DE FRUCTOSA

Marilin Maguíña-Alfaro1,a, Silvia Suárez-Cunza1,b, Luis Salcedo-Valdez1,c, María Soberón-Lozano1,d, Kelly Carbonel-Villanueva1,e, Rosa Carrera-Palao2,f

1 Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Centro de Investigación de Bioquímica y Nutrición, Lima, Perú.
2 Universidad Nacional Mayor de San Marcos, Facultad de Medicina, Instituto de Patología, Lima, Perú.

Objetivos: Evaluar el rol de la L-carnitina (LC) sobre el estrés oxidativo inducido por fructosa en ratas Holtzman. Materiales y métodos: Se realizó un estudio experimental durante 56 días, con cuatro grupos: control, control+LC, fructosa y fructosa+LC. Los grupos con fructosa recibieron el tratamiento durante los 56 días, y los grupos con LC lo recibieron en los últimos 28 días. La fructosa se dio a libre demanda y la LC se administró por vía oral a una dosis de 500 g/kg/24 h. En el hígado se midió la lipoperoxidación (MDA), la actividad de superóxido dismutasa, las proteínas mitocondriales y posmitocondriales, y la LC libre. En el plasma se midió la glicemia, el índice de modelo homeostático, magúter para evaluar la resistencia a la insulina (HOMA-IR) e insulina. En el páncreas se midió la insulina y se realizó la histología. Resultados: El tratamiento con LC en el hígado mostró disminución (p < 0.05) de MDA frente al grupo control (21,73 ± 5,36 nmol/g tejido vs. 64,46 ± 7,87 nmol/g tejido). Las proteínas mitocondriales y posmitocondriales aumentaron (p < 0.05) frente al grupo control. La insulina pancreática también aumentó frente al control (341,8 ± 42,3 μUI/ml vs. 70,1 ± 9,6 μUI/ml, p<0,05). El rol de LC frente al estrés oxidativo inducido por fructosa no mostró disminución de MDA, pero produjo disminución (p < 0.05) en la actividad de SOD Cu/Zn (9,39 ± 1,5 USOD/mg proteína vs. 13,52 ± 1,5 USOD/mg proteína). En el plasma, se observó que la LC mejoró el valor de la HOMA-IR, Histológicamente, la presencia de LC aumentó el número y tamaño de islotes de Langerhans. Conclusiones: La LC favorece los cambios del metabolismo oxidativo y ante el consumo de fructosa contribuye con la homeostasis glicémica.

Palabras clave: Carnitina; Estrés Oxidativo; Fructosa; Antioxidantes; Insulina; Malondialdehído, Superoxido Dismutasa; Glicemia (Fuente: DeCS BIREME).

ANTIOXIDANT ROLE OF L-CARNITINE IN AN EXPERIMENTAL MODEL OF OXIDATIVE STRESS INDUCED BY INCREASED FRUCTOSE CONSUMPTION

ABSTRACT

Objectives: To evaluate the role of L-carnitine (LC) on fructose-induced oxidative stress in Holtzman rats. Materials and methods: An experimental study was carried out during 56 days, in patients assigned to 4 groups: control, control+LC, fructose and fructose+LC. Patients in the fructose group received treatment during 56 days, and those in the LC groups were treated during the last 28 days. Fructose was given on demand and LC was administered orally at a dose of 500 g/kg/24 h. Lipid peroxidation (MDA), superoxide dismutase activity, free LC and mitochondrial and post-mitochondrial proteins were measured in liver tissue. Glycemia, insulin and the homeostasis model assessment of insulin resistance (HOMA-IR) were measured in blood plasma. We measured insulin concentration and studied the histology of pancreatic tissue. Results: LC treatment showed a decrease (p < 0.05) of MDA when compared to the control group (21.73 ± 5.36 nmol/g tissue vs. 64.46 ± 7.87 nmol/g tissue). Mitochondrial and post-mitochondrial proteins increased (p < 0.05) in comparison to the control group; pancreatic insulin also increased when compared to the control (341.8 ± 42.3 μU/ml vs. 70.1 ± 9.6 μU/ml, p<0.05). The role of LC against fructose-induced oxidative stress did not show any decrease of MDA, but decreased (p < 0.05) SOD Cu/Zn activity (9.39 ± 1.5 USOD/mg protein vs. 13.52 ± 1.5 USOD/mg protein). We observed that LC improves HOMA-IR in blood plasma. Histological analysis of the pancreas showed that the presence of LC increased the number and size of the islets of Langerhans. Conclusion: LC favors changes in the oxidative metabolism and it also contributes to glycemic homeostasis when fructose is consumed.

Keywords: L-carnitine; Oxidative stress; Fructose; Antioxidants; Insulin; Malondialdehyde Superoxide Dismutase; Glycemia (Source: MeSH NLM).
INTRODUCCIÓN

En el Perú, en los últimos años, se ha incrementado el número de pacientes con enfermedades crónicas no transmisibles, como las cardiovasculares y respiratorias, el cáncer y la diabetes mellitus tipo 2, relacionadas con una alimentación inadecuada. En investigaciones con animales de experimentación se ha evidenciado que una dieta rica en fructosa provoca inflamación crónica, lo que puede conducir a la obesidad, resistencia a la insulina y al síndrome metabólico. Esta situación, con el tiempo, puede generar diabetes mellitus tipo 2 (1,2).

Las enfermedades crónicas no transmisibles están asociadas a situaciones de estrés oxidativo, así como al consumo de fructosa. El estrés oxidativo es el desequilibrio entre la producción de especies reactivas de oxígeno (ROS, por sus siglas en inglés) y el mecanismo de defensa, lo que condiciona la patogénesis de diversas enfermedades (3).

La L-carnitina (L-3-hidroxi-4-N,N,N-trimetilaminobutirato) facilita el ingreso de ácidos grasos de cadena larga a la mitocondria, para la oxidación y producción de adenosín trifosfato (ATP) en diferentes tejidos (3). La L-carnitina (LC) es un nutriente esencial; el 75% se obtiene de la dieta y el 25% se sintetiza endógenamente (3,4). Diversos estudios han demostrado el efecto antioxidante de la LC en diferentes enfermedades, ya sea como un scavenger (secuestrador) o mediante el incremento de la actividad de las enzimas antioxidantes (5,6).

Existen pocos estudios sobre el efecto de la LC sobre el estrés oxidativo en modelos experimentales con dieta rica en fructosa. El objetivo de esta investigación es evaluar el efecto de la LC sobre el estrés oxidativo asociado al consumo excesivo de fructosa en un modelo experimental con ratas de la cepa Holtzman.

MATERIALES Y MÉTODOS

Población y muestra
El estudio experimental se realizó con cuatro grupos, dos de los cuales recibieron alimentación con y sin LC y agua a libre demanda, y dos grupos recibieron alimentación con y sin LC y fructosa al 40% a libre demanda.

Animales y dieta
Se emplearon 24 ratas Holtzman machos de dos meses de edad con un peso aproximado de 217 ± 40 g, adquiridas en el Instituto Nacional de Salud (Lima, Perú). Se las colocaron en jaulas de policarbonato con tapas de metal inoxidable durante todo el estudio. Se mantuvieron por siete días en aclimatación con alimento a base de un concentrado comercial obtenido de la Universidad Nacional Agraria La Molina.

Preparación de la fructosa y L-carnitina
Las soluciones se prepararon diariamente. Se usó D-fructosa >99% (Omnichem S.A.C, procedente de Wuxi, China). El agua potable de grifería con fructosa al 40% se basó en la fórmula peso/volumen. También, se preparó la LC al 10% (Omnichem S.A.C, Ningbo, China).

MENSAJES CLAVE

Motivación para realizar el estudio: La L-carnitina (LC) producida en tejidos ejerce funciones en el metabolismo lipídico. Su función antioxidante en un modelo de estrés oxidativo inducido por fructosa no ha sido totalmente evaluada. Este azúcar es altamente consumido sobre todo en los alimentos procesados.

Principales hallazgos: La administración de LC a ratas Holtzman disminuyó la lipoperoxidación hepática e incrementó la producción de insulin. Administrada en el modelo de estrés oxidativo incrementó la actividad de la enzima superóxido dismutasa mitocondrial (SOD Mn) y mejoró marcadamente la HOMA-IR.

Implicancias: La LC muestra protección en sistemas antioxidantes bajo este modelo. Además, este estudio realizado en un laboratorio nacional contribuye con nueva evidencia.
Preparación de los homogeneizados
El hígado se lavó por perfusión con KCl 0,154 M. Los homogeneizados se prepararon al 10% en buffer fosfato salino (PBS, por sus siglas en inglés) empleando un homogeneizador de vidrio tipo Potter-Elvehjem. Se realizaron tres centrifugaciones a 4 °C (centrífuga refrigerada modelo MPW380R, MPW Med instruments); de la primera, a 700 g por cinco minutos, se descartó el precipitado; la segunda, con el sobrenadante, se llevó a 9500 g durante 15 minutos, este sobrenadante correspondía a la fracción posmitocondrial, y el precipitado a la fracción mitocondrial. Se lavó dos veces el precipitado con el buffer PBS a la misma velocidad y tiempo de la obtención de las mitocondrias. Luego fue resuspendido con 2 mL del mismo buffer. De la misma manera, se preparó el homogeneizado pancreático; solo se hizo una centrifugación a 700 g durante cinco minutos y se obtuvo el sobrenadante denominado homogeneizado de páncreas.

Medición de la carnitina libre, glucosa, insulina y HOMA-IR
La muestra de sangre se obtuvo de la vena de la cola. La glucemia se determinó con un glucómetro basado en el método conductimétrico (Accu-chek Instant) el día 28 y el día 57. La medición de insulina en plasma y en el homogeneizado pancreático se realizó con el kit de ELISA el día 57 (Sigma-Aldrich, Estados Unidos). La resistencia a la insulina se evaluó con el modelo de homeostasis de resistencia a la insulina HOMA-IR= [glucosa (mg/dL) × insulina (mUI/mL)] /405. La medición de la LC-libre en el homogeneizado hepático se realizó con el kit de ELISA (Sigma-Aldrich, Estados Unidos).

Actividad de la superóxido dismutasa
Se midió en tejido hepático, según Marklund y Marklund (7). La inhibición de la autooxidación del pirogalol en medio alcalino fue la misma para la actividad de la superóxido dismutasa (SOD) en la fracción mitocondrial (SOD-Mn) y para la fracción posmitocondrial (SOD-Cu/Zn). La cinética se siguió durante tres minutos a 420 nm en un espectrofotómetro (Thermo Fisher Scientific, modelo G10S UV-Vis). Para reportar la actividad enzimática se tomó como definición de la unidad de la SOD: 1U SOD= Δ de absorbancia 0,02/2 × min (±10%).

Medición de la lipoperoxidación
En el homogeneizado hepático, previa precipitación con ácido tricloroaцético al 20%, se midió la reacción entre el ácido tiobar-
bitúrico y los productos de la descomposición de especies lipoperoxidadas, como el malondialdehido (MDA) formando un complejo coloreado que se leyó a 535 nm. El coeficiente de extinción molar (ε) fue de 1,56 × 10^5 M^-1 cm^-1[9].

Medición de proteínas totales
Las proteínas totales se cuantificaron mediante el método de Biuret [9]. Se leyó a los cinco minutos a 540 nm. Se usó como estándar una solución de albúmina al 2%. La determinación se realizó en las fracciones mitocondrial y posmitocondrial obtenido del homogeneizado de hígado [9].

Análisis estadístico
Para evaluar la normalidad se aplicó la prueba de Shapiro Wilk y para la homogeneidad de varianzas se usó la prueba de Bartlett. Se utilizó la prueba paramétrica de análisis de varianza (ANOVA) y la de Scheffé como prueba post hoc para las comparaciones múltiples. Se asumió significancia estadística cuando en valor fue de p < 0,05. Se usó el programa estadístico Stata versión 13.

Aspectos éticos
Para el cuidado de los animales se siguieron los principios de las normas éticas para animales de laboratorio, según la Guía de Manejo y Cuidado de Animales de Laboratorio del Ministerio de Salud-Instituto Nacional de Salud. La eutanasia elegida está considerada en la Ley 30407, Ley de Protección y Bienestar Animal.

RESULTADOS
Los resultados de la glicemia en ayunas y los valores de la HOMA-IR no mostraron variaciones significativas. Sin embargo, en los valores de la HOMA-IR, el consumo de fructosa produjo un aumento de 28,3% frente al grupo C. En el grupo F+LC disminuyó en 25,8% frente al grupo F (Tabla 1).

En el hígado, la LC libre, proteínas totales mitocondriales y posmitocondriales mostraron diferencia grupal significativa. Siendo la única diferencia significativa en evaluación por pares, la que se encontró en la LC libre, con un incremento de 21,5% en el grupo F+LC comparado con el grupo C (Tabla 1).

La administración de LC estimuló la producción de la insulina en el tejido pancreático, el incremento de los niveles de insulina en el grupo C+LC fue altamente significativo (p < 0,001) en comparación con el grupo C, llevando un aumento en 387% (341,8 ± 42,5 vs. 70,1 ± 9,6 µUI/mL). El consumo de fructosa produjo una disminución significativa (p < 0,01) de la insulina pancreática (12,6 ± 4,2 µUI/mL). La administración de LC con consumo de fructosa al 40% produjo una recuperación del 100% (25,8 ± 12,7 vs. 12,6 ± 4,2 µUI/mL) pero este valor no se iguala al grupo C (Figura 2).

En la evaluación macroscópica, se observó que la fructosa aumentó la grasa abdominal en el grupo F y grupo F+LC. La masa grasa incrementada incluyó el mesenterio y el retroperitoneo comparado con el grupo C y el grupo C+LC.

En la evaluación histológica del tejido pancreático, se observó que la presencia de LC (grupo C+LC) incrementó el número y el tamaño de los islotes de Langerhans, incluso el número fue mayor que los acinos pancreáticos, comparado con los otros grupos. En el grupo F y en el grupo F+LC, se incrementaron el tamaño de los islotes de Langerhans en algunas regiones cerca de los vasos sanguíneos en comparación con el grupo C (Figura 3).

En la evaluación del efecto antioxidante, se observó disminución significativa en 30,5% de la actividad de la SOD Cu/Zn en el grupo F+LC comparado con el grupo C (9,4 ± 1,5 vs. 13,5 ± 1,5 USOD/mg de proteína, p < 0,05) (Figura 4). Sin embargo, fue notorio el cambio compensatorio de las actividades en ambas fracciones, mientras se produce la disminución de la actividad a nivel posmitocondrial se observa un incremento en la actividad mitocondrial.

Tabla 1. Parámetros plasmáticos y hepáticos.

Parámetro	Control (C)	Control + L-carnitina (C+ LC)	Fructosa (F)	Fructosa + L-carnitina (F + LC)	Valor de p	p < 0,05
Parámetros plasmáticos						
Glucosa en ayunas - día 28 (mg/dL)	85,1 ± 8,6	82,5 ± 3,9	85,5 ± 6,3	81,8 ± 16,4	0,912	
Glucosa en ayunas - día 57 (mg/dL)	76,5 ± 12,9	85,3 ± 5,2	78,8 ± 10,6	77,6 ± 4,33	0,689	
HOMA-IR	2,4 ± 0,4	2,8 ± 0,6	3,1 ± 0,1	2,3 ± 0,30	0,131	
Parámetros hepáticos						
Nivel de la L-carnitina libre (mmol/g de tejido)	553,9 ± 96,8	659,3 ± 42,3	602,8 ± 48,1	673,9 ± 64,6	0,037	
Proteínas totales mitocondriales (mg/dL)	50,5 ± 11,1	76,3 ± 14,7	62,0 ± 12,6	65,7 ± 10,2	0,018	
Proteínas totales posmitocondriales (mg/dL)	27,8 ± 6,7	41,1 ± 5,8	32,2 ± 1,4	36,5 ± 6,9	0,008	

Valores expresados en media ± desviación estándar

p Prueba de ANOVA. a estadísticamente significativo en comparación con el grupo control
La administración de LC produjo una disminución significativa en los niveles de MDA (p < 0,01) comparado con el grupo C. El consumo de la fructosa al 40% (grupo F) produjo un incremento significativo de 21% (p=0,03) comparado con el grupo C. La administración de LC con consumo de fructosa no muestra una disminución significativa (Figura 5).

DISCUSIÓN

En el presente estudio, podemos observar que la administración de LC cumple un papel antioxidante, en relación con el consumo excesivo de fructosa en ratas de la cepa Holtzman.

En la actualidad, la fructosa es un azúcar que se añade a los alimentos procesados y el consumo de esta se ha incrementado en diversas sociedades. La ingesta excesiva de fructosa se relaciona con resistencia a la insulina, obesidad, dislipidemia y síndrome metabólico (1,2,10,11). La L-carnitina es un aminoácido endógeno asociado con el metabolismo lipídico; también se ha reportado con actividad antioxidante.

El modelo de estrés oxidativo inducido por fructosa se utiliza por los cambios metabólicos que produce a nivel tisular y a nivel sérico. La fructosa es capaz de generar ROS tanto in vivo como in vitro, como lo hace la glucosa (1,2,10,11). En este estudio, la fructosa al 40% en la bebida a libre demanda no modificó los niveles de glucosa plasmática en ayunas durante ocho semanas. Resultado similar fue reportado por Andrade et al. (11) en un tratamiento con fructosa al 10% a libre demanda durante 18 semanas. Sin embargo, Mamiukity et al. (1) demostraron el incremento de glicemia usando fructosa al 20% y al 25% en ratas Wistar durante ocho semanas. Asimismo, Bulboacă et al. (2) informaron el incremento de glicemia administrando fructosa al 10% en ratas Wistar durante 12 semanas. Es importante mencionar que existen diferencias genéticas que expresan variaciones metabólicas según la cepa de la rata (12).

Sobre el proceso de absorción de la fructosa, existe una diferencia sustancial con la glucosa. La fructosa se absorbe mediante el transportador GLUT 5, independientemente de la absorción de la glucosa. Luego de diversos procesos, puede ingresar a la glucólisis, evitando los puntos de regulación de la hexoquinasa y fosfofructoquinasa-1 (10). El ingreso a la glucólisis aporta metabolitos para la lipogénesis e inhibe el proceso de beta-oxidación. En nuestro estudio, se observó macroscópicamente un aumento de grasa visceral en el grupo F y el grupo F+LC y esto podría ser explicado por este proceso. Por otro lado, la fructosa no constituye un sensor importante a nivel pancreático, pues las células beta-pancreáticas no tienen transportadores GLUT 5 (1,10), por lo que el metabolismo de la fructosa es independiente de la insulina y no incrementaría la glicemia (10), lo cual explicaría los
resultados, en cuanto a la conservación de esta. Asimismo, se relaciona con la conservación de la insulina plasmática, expresada como HOMA-IR, donde no se observaron diferencías significativas en los grupos. Aunque la HOMA-IR, como parámetro de resistencia a la insulina, mostró un incremento de 28,3% entre el grupo F comparado con el grupo C, este moderado incremento sugeriría el uso de fructosa en un tiempo mayor podría generar resistencia a la insulina, como se ha descrito en otras investigaciones (1,2,10,13). Además, se mostró una disminución de 25,8% en el grupo F+LC comparado con el grupo F. Por ejemplo, Ringseir et al. (14) revisaron seis estudios en ratas en los que la LC disminuyó la glicemia y la HOMA-IR.

En el páncreas, el consumo de fructosa produjo una marcada disminución del nivel de insulina. Este resultado en el grupo F puede relacionarse con el incremento del número y tamaño de los adipocitos, lo cual provoca la liberación de MCP-1, que lleva al reclutamiento de macrófagos-M1 con liberación de citocinas como TNF-α, IL1 e IL6, generando un estado de inflamación crónica (15). Asimismo, el TNF-α se une a su receptor muerte activando la vía extrínseca y posteriormente la vía intrínseca de la apoptosis y produciendo la muerte de las células beta-pancreáticas (16). Además, Maiztegui et al. (17) demostraron la disminución del número de células beta-pancreáticas debido al incremento de apoptosis; en su estudio usaron fructosa al 10% a libre demanda durante tres semanas. Contrariamente, se observa en la histología un aumento del tamaño de los islotes de Langerhans en el grupo F, lo que podría deberse a que las otras células de los islotes (células alfa, delta, F y G) se encontrarían estimuladas como efecto compensatorio.

Frente a este modelo de estrés inducido por fructosa al 40%, consumida a libre demanda, la administración de LC (grupo F+LC) indujo una recuperación del 100% de la insu-
L-carnitina y consumo elevado de fructosa

Rev Peru Med Exp Salud Publica. 2020;37(4):662-71.
https://doi.org/10.17843/rpmesp.2020.374.4733

Línea tisular frente al consumo de F (grupo F), este resultado, aunque no significativo es importante porque es evidencia del rol de LC en el tejido pancreatico. En cambio, el grupo C+LC tuvo un comportamiento diferente, pues se observó incremento en 387% en el nivel de insulina, además hay mayor número y tamaño de los islotes de Langerhans (incluso por regiones hubo más islotes) que los acinos pancreáticos comparado con el grupo C.

Diversos estudios demuestran que la administración de LC inhibe la apoptosis. Bonomini et al. revisaron diferentes estudios y sugirieron la posible acción de inhibir a la caspasa 3. Un resultado similar fue reportado por Agarwal et al. después analizar varias investigaciones, donde la LC inhibe la caspasa 3, 7 y 8, además de regular las proteínas supresoras de tumores, lo que favorece la supervivencia del ovocito. Asimismo, Cao et al. reportaron en su estudio in vitro que el uso de LC favorece la disminución de la relación Bax/Bcl-2 y la producción de ROS. En términos metabólicos, según el estudio de Jiang et al., la presencia de LC favorece la expresión de CPT1 mediada por el PPARγ, lo que incrementa el proceso de beta-oxidación. Los resultados de nuestro estudio nos llevan a creer que la LC podría inhibir la apoptosis de las células beta-pancreáticas, por lo que el nivel de insulina pancreática aumentó significativamente en el grupo C+LC, mientras que en el grupo fructosa+LC no sería tan elevado, debido al daño previo que sufrió por la fructosa. Por lo tanto, la administración de LC (grupo C+LC) demostró la capacidad de estimular significativamente (p < 0.01) la producción de insulina a nivel tisular (Figura 2) sin afectar los niveles plasmáticos de la hormona.

En el hígado, los niveles de LC libre aumentaron significativamente en 21,5% cuando esta se administró como tratamiento al grupo F frente al grupo C. Además, se observó que en la administración de LC no se evidenció un incremento significativo con sus pares, esto podría deberse a que la LC puede actuar como scavenger. Según Gülçin, la LC in vitro actúa como scavenger del anión superóxido y del peróxido de hidrógeno, además favorece la quelación del ion ferroso, debido a su grupo carbonilo, que puede estabilizar los radicales libres en el carbono alfa mediante conjugación. También puede plantearse que en situaciones fisiológicas los niveles de la LC libre son estables, pero su participación en situaciones fisiopatológicas cambia, como en el consumo de fructosa a través de diversos mecanismos, como el reportado por Chang et al., quienes refieren que el incremento de ROS podría disminuir la expresión y función de OCTN-2 (transportador de carnitina en la membrana plasmática de los tejidos).

C: grupo control, C+LC: grupo control + L-carnitina, F: grupo fructosa, F+LC: grupo fructosa + L-carnitina
Valores expresados en media ± desviación estándar.
SOD Mn: superóxido dismutasa en la fracción mitocondrial
SOD Cu/Zn: superóxido dismutasa en la fracción posmitocondrial
a Estadísticamente significativo en comparación con el grupo control,
b prueba de ANOVA

Figura 4. Actividad de la superóxido dismutasa (SOD) en el tejido hepático en los grupos estudiados.

	Valor de p
C	5,4 ± 1,5
C + LC	6,0 ± 1,2
F	6,7 ± 0,8
F + LC	7,7 ± 1,6
C	13,5 ± 1,5
C + LC	12,6 ± 1,6
F	10,8 ± 3,1
F + LC	9,4 ± 1,5

C: grupo control, C+LC: grupo control + L-carnitina, F: grupo fructosa, F+LC: grupo fructosa + L-carnitina
Valores expresados en media ± desviación estándar.
SOD Mn: superóxido dismutasa en la fracción mitocondrial
SOD Cu/Zn: superóxido dismutasa en la fracción posmitocondrial
a Estadísticamente significativo en comparación con el grupo control, b prueba de ANOVA
En diferentes estudios, el consumo de fructosa por largo tiempo incrementó la producción de ROS (2,21). Si la fructosa continúa hacia la glucólisis y el ciclo de Krebs, se produce NADH y FADH$_2$, estos en la mitocondria van a la cadena transportadora de electrones, donde hay gran producción de anión superóxido. Si se forman ácidos grasos, estos pueden ser metabolizados por el proceso de beta-oxidación, con generación de ROS, además se produce acetil-CoA, a partir del cual se puede formar más NADH y FADH$_2$ (22). En este sentido, Furukawa et al. (16) reportaron que en los adipocitos de las personas obesas había mayor actividad de NAPDH-oxidasa y disminución en la expresión de enzimas antioxidantes, lo cual genera fácilmente estrés oxidativo.

Por otro lado, la mayor producción de ROS compromete los mecanismos de defensa antioxidante; a nivel enzimático, la primera que actúa ante la reducción univalente del oxígeno es la SOD. Como se mencionó, la LC ejerce su papel principal en las mitocondrias, así que, puede explicarse el aumento en 25% de la actividad de la enzima mitocondrial sobre el grupo C que se apoya además en los niveles de LC (grupo C+CL) ligeramente incrementada. Asimismo, se muestra un comportamiento acoplado entre las isoenzimas citósólica y mitocondrial. Mientras que la actividad de la SOD Cu/Zn expresa una disminución del 30,5%, la SOD Mn exhibe un incremento del 42% en el grupo F+LC en comparación con el grupo C. Según Suzuki et al. (23), el exceso de ROS puede llevar a la inhibición de la enzima SOD Cu/Zn y al aumento de SOD Mn, lo que probablemente es una respuesta adaptativa a la producción de ROS. Se debe tener en cuenta que probablemente la SOD Mn es la más importante para la supervivencia en un ambiente oxidativo (24).

En este ambiente oxidativo, derivado de la actividad mitocondrial, la administración de LC favorece la producción de gran cantidad de acetil-CoA, a lo cual genera grupos acetilados para procesos de acetilación de proteínas o histonas, y produce cambios postraduccionales o epigenéticos (25). En su investigación, Kerner et al. (26) observaron que el tratamiento con acetil-LC incrementó la acetilación de SOD Mn. Puede asumirse que la acetilación podría favorecer una mayor actividad de esta enzima.

Por otro lado, se observó el incremento significativo de niveles de proteínas totales mitocondriales y posmitocondriales en el grupo C+LC, lo mismo se observó en el grupo F aunque no fue significativo. Estos resultados permiten presumir que la LC no solo actuaría como regulador de la actividad, sino también a nivel de la síntesis proteica, entre ellos, las enzimas antioxidantes.

La evaluación de la lipoperoxidación refleja el daño sufrido por reacciones peroxidativas de los ácidos grasos polinsaturados.
L-Carnitina y consumo elevado de fructosa

Como una limitación del presente estudio se debe mencionar la disposición de recursos, puesto que no se pudieron evaluar las concentraciones del MDA y SOD basal, además de requerir un tiempo más prolongado de tratamiento.

En conclusión, en este trabajo se observó que la fructosa no afecta la glicemia, pero favorece la lipogénesis y el ambiente oxidativo; en este escenario, la administración de LC favorece cambios metabólicos que corroboran su función antioxidante.

Agradecimientos: Los autores desean agradecer a los siguientes colaboradores: al Dr. Conrad Ortiz, por su ayuda en la revisión del artículo; al Dr. Eddy R. Segura, por su ayuda en la asesoría estadística; y a la Lic. Marta Miyashiro, por su ayuda en la corrección de estilo.

Contribuciones de los autores: MMA y SSC participaron en la concepción y diseño del artículo, en el análisis e interpretación de datos y en la redacción del artículo. Además, MMA tuvo la idea de investigación y SSC obtuvo financiamiento. LSV y RCP participaron en el análisis e interpretación de los datos. Todos los autores participaron en la recolección de datos, revisión crítica del artículo y aprobación de la versión final.

Financiamiento: Financiamiento parcial del VRIP (Vicerrectorado de Investigación y Posgrado) de la Universidad Nacional Mayor de San Marcos, proyecto A17012211.

Conflictos de interés: Los autores declaran no tener conflictos de interés.

REFERENCIAS BIBLIOGRÁFICAS

1. Mamikutty N, Thent ZG, Sapri SR, Sahruddin NN, Mohd Yusof MR, Haji Suhaimi F. The Establishment of Metabolic Syndrome Model by Induction of Fructose Drinking Water in Male Wistar Rats. Biomed Res Int. 2014;2014:263897. doi: 10.1155/2014/263897.

2. Bulboacă A, Dolboacă S, Suci S. Protective effect of curcumin in fructose-induced metabolic syndrome and in streptozotocin-induced diabetes in rats. Iran J Basic Med Sci. 2016;19(6):885–93.

3. Cao Y, Li X, Shi P, Wang L, Sui Z. Effects of L-Carnitine on High Glucose-Induced Oxidative Stress in Retinal Ganglion Cells. Pharmacology. 2014;94(3–4):123–30. doi: 10.1159/000363062.

4. Chang B, Nishikawa M, Nishiguchi S, Inoue M. L-carnitine inhibits hepatocarcinogenesis via protection of mitochondria. Int J Cancer. 2005;113(5):719–29. doi: 10.1002/ijc.20636.

5. Li J, Wang Q-Y, Luan H-Y, Kang Z-C, Wang C-B. Effects of L-carnitine against oxidative stress in human hepatocytes: involvement of peroxisome proliferator-activated receptor alpha. J Biomed Sci. 2012;19:32. doi: 10.1186/1423-0127-19-32.

6. Agarwal A, Sengupta P, Dhararajayangam D. Role of L-carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr. 2012;51(1):1–18. doi: 10.1007/s00394-011-0284-2.

7. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74. doi: 10.1111/j.1432-1033.1974.tb07143.x.

8. Rhee JS, Chang HJ. The Establishment of a model for metabolic syndrome in rodents. Med Sci Monit. 2008;14(3):RA67–73. doi: 10.12659/MSM.208032.

9. Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949;177(2):749–56.

10. Tappy L, Le K-A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90(1):23–46. doi: 10.1152/physrev.00019.2009.

11. Andrade N, Andrade S, Silva C, Rodrigues I, Guardão L, Guimarães JT, et al. Chronic consumption of the dietary polyphenol chrysín attenuates metabolic disease in fructose-fed rats. Eur J Nutr. 2020;59(1):151–165. doi: 10.1007/s00394-019-01895-9.

12. Conn PM. Animal Models for the Study of Human Disease [Internet]. Elsevier; 2013 [citado el 22 de julio de 2019]. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/C20110052250.

13. Suwannaphet W, Meeprom A, Yibchok-Anun S, Adisakwattana S. Preventive effect of grape seed extract against high-fructose diet-induced insulin resistance and oxidative stress in rats. Food Chem Toxicol. 2010;48(7):1853–7. doi: 10.1016/j.fct.2010.04.021.

14. Ringseis R, Keller J, Eder K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity; evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr. 2012;51(1):1–18. doi: 10.1007/s00394-011-0284-2.

15. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(5):367–77. doi: 10.1038/nrm2391.

16. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–61. doi: 10.1172/JCI200421625.

17. Maiztegui B, Borelli MI, Madrid VG, Del Zotto H, Raschia MA, Francini F, et al. Sitagliptin prevents the development of metabolic and hormonal disturbances, increased β-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats. Clin Sci. 2011;120(2):73–80. doi: 10.1042/CS20100372.

18. Bonomini M, Zammit V, Pusey CD, De Vecchi A, Arduini A. Pharmacological use of L-carnitine in uremic anemia: has its full potential been exploited? Pharmacol Res. 2011;63(3):157–64. doi: 10.1016/j.phrs.2010.11.006.

19. Jiang F, Zhang Z, Zhang Y, Wu J, Yu L, Liu S. L-carnitine ameliorates the liver inflammatory response by regulating carnitine palmitoyltransferase I-dependent PPARα signaling. Mol Med Rep. 2016;13(2):1320–8. doi: 10.3892/mmr.2015.4639.

https://doi.org/10.17843/rpmesp.2020.374.4733
20. Gülçin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006;78(8):803–11. doi: 10.1016/j.lfs.2005.05.103.

21. Germoush MO, Elgebaly HA, Hassan S, Mahmoud AM. Anti-Diabetic Effects of Padina Pavonia in Fructose-Induced Diabetic Rats. Aljouf Sci Eng J. 2015;286(3104):1–7. doi: 10.12816/0023935.

22. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015;6(3):456–80. doi: 10.4239/wjd.v6.i3.456.

23. Suzuki K, Miyazawa N, Nakata T, Seo HG, Sugiyama T, Taniguchi N. High copper and iron levels and expression of Mn-superoxide dismutase in mutant rats displaying hereditary hepatitis and hepatoma (LEC rats). Carcinogenesis. 1993;14(9):1881–1884. doi: 10.1093/carcin/14.9.1881.

24. Case AJ. On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants (Basel) Switz. 2017;6(4):82. doi: 10.3390/antiox6040082.

25. Madiraju P, Pande SV, Prentki M, Madiraju SRM. Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics. 2009;4(6):399–403. doi: 10.4161/epi.4.6.9767.

26. Kerner J, Yohannes E, Lee K, Virmani A, Koverech A, Cavaza C, et al. Acetyl-L-carnitine increases mitochondrial protein acetylation in the aged rat heart. Mech Ageing Dev. 2015;145:39–50. doi: 10.1016/j.mad.2015.01.003.

27. Zambrano S, Blanca AI, Ruiz-Armenta MV, Miguel-Carrasco JL, Revilla E, Santa-Maria C, et al. The renoprotective effect of L-carnitine in hypertensive rats is mediated by modulation of oxidative stress-related gene expression. Eur J Nutr. 2013;52(6):1649–59. doi: 10.1007/s00394-012-0470-x.

28. Lee B-J, Lin J-S, Lin Y-C, Lin P-T. Effects of L-carnitine supplementation on oxidative stress and antioxidant enzymes activities in patients with coronary artery disease: a randomized, placebo-controlled trial. Nutr J. 2014;13:79. doi: 10.1186/1475-2891-13-79.

29. Liu X, Jang SS, An Z, Song H, Kim W-D, Yu J-R, et al. Fenofibrate decreases radiation sensitivity via peroxisome proliferator-activated receptor α-mediated superoxide dismutase induction in HeLa cells. Radiat Oncol J. 2012;30(2):88–95. doi: 10.3857/roj.2012.30.2.88.

30. Kim T, Yang Q. Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World J Cardiol. 2013;5(6):164. doi: 10.4330/wjc.v5.i6.164.

https://doi.org/10.17843/rpmesp.2020.374.4733