Plant and Fungal Diversity in Gut Microbiota as Revealed by Molecular and Culture Investigations

Nina Gouba, Didier Raoult, Michel Drancourt*
Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France

Introduction

The human gut contains a wide variety of microorganisms known as the microbiota [1]. At birth, the human gut is sterile and is then colonized by bacteria originating from the mother, environment and diet [2,3]. Several studies have revealed the importance of gut microbiota in host health and the contribution of these microbes to diverse functions, including metabolism, immune function and gene expression [4]. Gut microbes produce a large arsenal of enzymes that are naturally absent from humans, which contribute to food digestion, energy harvesting and storage [5,6]. Two bacterial phyla, *Firmicutes* and *Bacteroidetes*, dominate in the gut microbiota. Some studies have shown a reduction in the relative proportion of *Bacteroidetes* in obese individuals compared to lean individuals [5,7]. Additionally, it has been observed that the microbiota of obese individuals extract more energy from the diet than the microbiota of lean individuals [1].

The gut microbiota is comprised of Viruses, Bacteria, Archaea and Eukaryotes [8]. Accordingly, there are much data available about the bacterial community. However, few studies have investigated eukaryotic communities in the human gut, resulting in a dearth of information about these communities. Previous studies that have used molecular methods to explore the eukaryotic community in the guts of healthy individuals detected only *Galactomyces* and *Candida* fungi and *Blastocystis hominis* as prevalent species [9,10]. Additional studies have reported increased fungal diversity in ill patients compared to healthy individuals [11–13].

Thus, our study aimed to examine the repertoire of plants and fungi in the gut of an obese human using both PCR-sequencing and culturing techniques.

Results

Molecular Detection

Mixing *Acanthamoeba castellanii* DNA and stool DNA yielded a positive amplification using specific primer pair for *Acanthamoeba* (JPD1/JDP2). Among the 25 primers pairs, 17 yielded an exact sequence with an appropriate positive control, whereas no positive control was available for 8 primer pairs (Table 1 & Table 2). Only 5 of these 25 eukaryotic PCRs yielded amplification product with the stool specimen, while the negative controls exhibited no amplification. The analysis of a total of 408 clones identified 7...
fungal species, 18 plant species and one Diatoms (Blastocystis sp.) species (Table 3). GenBank reference number of the best hit similarly to our sequences for each organism were: Galactomyces geotrichum (AY903644.1), Penicillium camemberti (GQ458039.1), Malassezia globosa (AY743604.1), Malassezia pachydermatis (AB18940.1), Malassezia restricta (AY743607.1), uncultured Chytridiomycota (GQ995333.1) Candida tropicalis (DQ513959.1).

Fungi Isolated Using Culture Media

In all experiments, the negative control plates remained sterile. A total 16 different fungal species were isolated (Table 4). Nine species of fungi (M. globosa, M. restricta, M. pachydermatis, Penicillium allii, Penicillium dipodomyicola, G. geotrichum, Cladosporidium sp., Climacocystis sp. and C. tropicalis) were cultured on Dixon agar medium. Three species of fungi (Penicillium sp./P. commune/P. camemberti, Aspergillus versicolor, Beauveria bassiana) were cultured on Potato Dextrose media. Two species of fungi (Aspergillus flavipes, Isaria farinosa) were cultured on CZAPEK medium. Two species of fungi (Hypocreales/Isaria chrysogenum, Penicillium brevicompactum) were cultured on both PDA and CZAPEK media, and C. tropicalis was cultured on both Dixon agar and PDA media. Five of the cultured species of fungi (G. geotrichum, C. tropicalis, M. pachydermatis, M. globosa, and M. restricta) were also identified by clone sequencing, while 11 fungi were detected only by culture (Figure 1). Penicillium, Aspergillus, Galactomyces, Beauveria, Candida, Cladosporidium, and Isaria are members of the Ascomycota phylum and Malassezia and Climacocystis are members of the Basidiomycota phylum.

Table 1. Eukaryotic and fungi primers selected in this study.

Taxon	Primer	Target	PCR product size (bp)	Annealing temperature and number of cycles	Reference
Amoeba	AmiF1/Ami9R	18S rRNA	670	55˚C 30 s 40cycles	[47]
Acanthamoeba	JDP1/JDP2	18S rRNA	460–470	60˚C 40 s 40cycles	[48]
Entamoeba	JVF/DSPR2	18S rRNA	662–667	55˚C 60 s 40cycles	[49]
Hartmanella	HV1227F/HV1728R	18S rRNA	502	56˚C 30 s 40cycles	[50]
Naegleria	F/R	ITS	376–388	55˚C 30 s 15 cycles	[51]
Ciliophora	121F/1147R	18S	750–1000	55˚C 60 s 30 cycles	[52]
Chlorophyta	UCP1F/UCP1R	Rps11-rpl2	384	54˚C 60 s 30 cycles	[53]
Didymos	18S/28R	18S rRNA	391	56˚C 60 s 30 cycles	[54]
Dinoflagellate	18Scmoff1/Dino185R	18S rRNA	700–900	60˚C 30 s 30 cycles	[55]
Diplomonads	DimA/DimB	18S rRNA	650	58˚C 60 s 40 cycles	[56]
Euglenophyta	EAF/EAF3	18S rRNA	1000	62˚C 90 s 25cycles	[57]
Kinetoplastidia	Kinokin1/knotokin2	18S rRNA	600–650	56˚C 30 s 30 cycles	[58]
Microsporidia	V1/PMP2	18S rRNA	250–279	55˚C 30 s 30 cycles	[59]
Rodophyta	URP1_F/URP1_R	rps10-dnA	464	52˚C 60 s 30 cycles	[60]
Trichomonads	TF31/TFR2	5,8SrRNA, ITS	338–391	60˚C 30 s 30 cycles	[61]
Fungi	MaF/MALR	26S	580	55˚C 45 s 40cycles	[62]
Fungi	NS1/FR1	18S rRNA	1650	48˚C 45 s 30 cycles	[63]
Fungi	ITS1F/ITS4R	ITS	Variable	50 45 s 40cycles	[64]
Universal	Euk1A/EUK516r	18S	500	50˚C 30 s 30 cycles	[65]
eukaryote	EUK528/1391R	18S	1000–1300	55˚C 60 s 30 cycles	[66]
Plant	rbcLZ1/rbcL19b	Chloroplast	157	40˚C 30 s 40 cycles	[67]

Discussion

The PCR-based and culture-based results obtained here are validated by the fact that all the negative controls remained negative, precluding the possibility of cross contamination from the laboratory. Also, we ensured the absence of potential PCR inhibitors in the stool specimen. At last, the PCR systems yielded expected result with appropriate positive controls including Fungi which have been shown to be difficult to lyse [14]. Accordingly, we combined mechanical and enzymatic lysis to optimize recovery of DNA from Fungi as previously reported [9,14-15]. These data allowed to interpret negative results as true negatives. The 18S rRNA, ITS and chloroplast genes amplified in this study are molecular markers commonly used for eukaryotic screening [11,16-22]. These genes are conserved in all eukaryotes and contain variable regions suitable for primer design.

However, this is the first study to use a multiple set of primers for molecular approach to screen eukaryotic communities in a stool sample from an obese person. The combination of culture-dependent and culture-independent cloning and sequencing revealed a previously unsuspected diversity of eukaryotes among the human intestinal microbiota. Indeed, we detected a total of 37 eukaryotic species; only 16 of these species had been previously...
reported to be present in the gut microbiota. Interestingly, the culturing of the sample in using only three different culture media identified more than twice the fungal species than did the different PCR-based molecular methods (Table 5). Accordingly, culturing yielded A. flavipes, P. brevicompactum, B. bassiana, P. dipodomyicola, M. restricta, Climacocystis sp. and I. farisona, which have not been previously detected in human stool samples. This result differs from previous studies that cultured only one or two Candida spp. and Saccharomyces spp. from healthy individuals [9–12]. Our culture conditions were different from those used by Scanlan and Chen [9,12], as we incubated our cultures at 25°C for two weeks. We also did not use the same medium as Khait [23]. Our use of Dixon medium allowed us to isolate a wide variety of fungi (9 species). Our results can be explained by our subject’s obese status; it is possible that obese individuals harbor more fungi. Most of the fungi (11 species) identified in our study are known to be associated with cereal grains [29–31]. To the best of our knowledge, we are the first to report the presence of this species in a stool sample from an obese individual using a culture-dependent method. The A. versicolor species found in this stool sample is an environmental airborne fungal species [32]. A. versicolor and P. chrysogenum have also been previously isolated from dry cured meat products [33]. Accordingly, previous studies have detected these species in human stool samples [11,12]. The C. tropicalis sp. isolated from our subject’s stool sample is often found on fruit, such as grapes [34], and has been previously reported in stool samples [11].

The B. bassiana and I. farisona detected in this study are entomopathogenic fungi that are used as biocontrol agents in agriculture [35], which can explain their presence in the human gut. C. tropicalis, which was also isolated from our subject’s stool sample, has commonly been reported in human stool [23], in the intestine of normal individuals (up to 30%) and in the oral microbiome of healthy individuals [36]. The C. tropicalis sp. detected here is an edible fungus, which explains the detection of this fungus in this stool sample. This fungus was not found to be present in stool in previous studies.

The Malassezia species isolated from our subject’s stool sample are normal flora found on the skin of 77–80% of healthy adults [37]. These species were also found in scalp skin from healthy

Table 2. Results of PCR testing with positive control. NA non available.

Taxon	Primers	Positive control	PCR	Blast coverage%	Blast identity %	GenBank reference number
Amoeba	AmF1/AmI9R	Acanthamoeba castellanii	Positive	100	99	A.castellanii (GU001160.1)
Hartmannella	Hartmannella vermiciformis	Positive	100	99	H. vermiciformis (DQ123623.2)	
Acanthamoeba	JDP1/JDP2	Acanthamoeba castellanii	Positive	100	99	A. castellanii (GU001160.1)
Entamoeba	JVF/DSPR2	NA	NA	NA	NA	NA
Hartmannella	Hv1227F/Hv1728R	Hartmannella vermiciformis	Positive	100	99	H. vermiciformis (HM363627)
Naegleria	F/R	NA	NA	NA	NA	NA
Ciliophora	121 F/1147R	Colpoda steinii	Positive	100	99	C. steinii (DQ388599.1)
Chlorophyta	UCP1F/UCP1R	Chlorella vulgaris	Positive	95	93	C. vulgaris (AB001684.1)
Chlorophyta	UCP2F/UCP2R	Chlorella vulgaris	Positive	95	93	C. vulgaris (AB001684.1)
Diatoms	185/28R	NA	NA	NA	NA	NA
Dinoflagellates	DinocomF1/Dino18SR1	Poterioochromonas malhamensis	Positive	100	98	P. malhamensis (FN662745.1)
Diplomonads	DimA/DimB	NA	NA	NA	NA	NA
Euglenophyta	EAF/EAF3	NA	NA	NA	NA	NA
Kinetoplastidia	Kinetokin1/kinetokin2	Leshmania major	Positive	99	99	L. major (FN677342.1)
Kinetoplastidia	KinSSUF1/KinSSUR1	Leshmania major	Positive	99	99	L. major (FN677342.1)
Microsporidia	V1/PMP2	Encephalitozoon hellem	Positive	100	99	E. hellem (AF039229.1)
Rhodophyta	URP1F/URP1R	NA	NA	NA	NA	NA
Rhodophyta	URP2F/URP2R	NA	NA	NA	NA	NA
Trichomonads	TRF1/TRF2	NA	NA	NA	NA	NA
Fungi	Malf/MalR	Malassezia restricta	Positive	100	98	M. restricta (JN980105)
Fungi	ITS1F/ITS4R	Candida albicans	Positive	100	99	C. albicans (L28817.1)
Fungi	NS1R/FR1	Candida albicans	Positive	100	99	C. albicans (JN940588.1)
Fungi	FunF/FunR	Candida albicans	Positive	100	99	C. albicans (JN940588.1)
Universal Eukaryotes	euk528F/1391R	Acanthamoeba castellanii	Positive	98	99	A. castellanii (GU001160.1)
Chloroplast Plant	rbcZ1/rbcL19b	Solanum sp.	Positive	98	94	S. physalifolium (HQ23562)

doi:10.1371/journal.pone.0059474.t002
volunteers [38]. However, *M. pachydermatis* and *M. globosa* were previously found in stool from healthy and ill subjects [12,13] by culture-independent methods. We report for the first time the detection of *M. restricta* in stool by molecular methods. The Malassezia species that were detected by culture-independent methods in this study were confirmed by culture. The presence of these fungi in our subject’s stool sample could be either a contaminant from the subject’s skin or a part of human gut flora, so more investigation is needed to confirm these results. The uncultured Chytridiomycota detected in this stool sample is a member of the Chytridiomycota family (Figure 2). Some Chytridiomycota species infect potatoes and tomatoes [39], which could explain the incidence of these fungi in the human gut. To the best of our knowledge, we are the first to report this species in a stool sample from an obese subject.

In addition to fungi, we detected 11 plant species, all of which are known to be associated with human food and traditional medicines. We identified the dietary plants *Solanum lycopersicum* (tomato), *Allium victorialis* (onion family), *Solanum tuberosum* (potato), *Citrus aurantium* (orange), *Cicer arietinum*, *Musa acuminata*/Ensete ventricosum* (banana), *Lactuca sativa*, *Humulus lupulus* (hops), *Pinus wallichiana*, *Helianthus annuus* (sunflowers) and *Brassica napus*. The sequences of *Nicotiana tabacum* and *C. arietinum* that we identified might be linked to the consumption of cigarettes by the patient. A previous study has also reported the presence of *N. tabacum* and *C. arietinum* in human stool [40].

The diversity of the plant species found in the stool sample can be explained by the patient’s diet. Because of her obesity, she may have a diet rich in plants. Some of the plant sequences found in this stool sample, such as *Atractylodes japonica*, *Fibraurea tinctoria*, *Angelica anomala* and *Mitella nuda*, are used as medicinal plants [41]. The genus *Atractylodes* has been found in the oral microbiome of healthy individuals [26]. The plants that we identified in this study are similar to those found in Nam’s study, which detected different plants from 10 Korean individuals [10]. We did not find the same plant species as those identified from Korean subjects because our obese subject did not have the same diet and lived in a different environment.

Finally, the *Blastocytis* sp. that we detected is commonly found in healthy microbiota [9,10] and is associated with irritable bowel syndrome.

| Table 3. Sequencing results on PCR products from clones. |

Primers	clones	Sequences of Species	Blast Identity% and coverage%	Kingdom
ITS1F/ITS4R	75	96% Galactomyces geotrichum	99 and 99	Fungi
MalFMalR	57	28.07% Malassezia pachydermatis	92 and 100	Fungi
		17.54% Malassezia restricta	100 and 99	Fungi
		54.4% Malassezia globosa	99 and 99	Fungi
EUK1A/EUKS16r	104	20.4% Blastocytis sp.	99 and 99	Protist
		0.96% Uncultured Chytridiomycota	95 and 99	Fungi
		0.96% Fibraurea tinctoria	98 and 100	Plant
		1.9% Allium victorialis	98 and 100	Plant
		3% Nicotiana tabacum	99 and 99	Plant
		0.96% Helianthus annuus	96 and 100	Plant
		0.96% Caprifoliaceae environmental	98 and 99	Plant
		0.96% Petrophile canescens	98 and 99	Plant
		60% Solanum lycopersicum	99 and 99	Plant
		5% Humulus lupulus	98 and 100	Plant
		3% Cicer arietinum	99 and 98	Plant
		0.96% Pinus wallichiana	100 and 98	Plant
		0.96% Mitella nuda	100 and 98	Plant
JV/DSPR2	141	94.32% Galactomyces geotrichum	98 and 99	Fungi
		0.71% Candida tropicalis	98 and 99	Fungi
		0.71% Citrus aurantium	99 and 100	Plant
		4.25% Atractylodes Japonica	98 and 99	Plant
		0.71% Pinus wallichiana	99 and 100	Plant
		78% Nicotiana undulate	98 and 99	Plant
rbcLZ1/rbcL19b	31	3% Musa acuminata/Ensete ventricosum	99 and 99	Plant
		6.25% Lactuca sativa	99 and 99	Plant
		3% Solanum tuberosum	100 and 99	Plant
		3% Brassica napus/Arabidopsis lyrata	100 and 99	Plant
		6.25% Angelica anomala/Davidia involucrata/Aucuba japonica	100 and 99	Plant

doi:10.1371/journal.pone.0059474.t003
Conclusions

Of 40 phyla of protists described in literature, eight phyla (Diatoms, Apicomplexa, Ciliate, Parabasalids, Fornicata, Amoeboza, Microsporidia, Fungi) have been previously detected in human gut [42]. However, most species including *Gardia intestinalis* (Parabasalids), *Blastocystis hominis* (Diatoms), *Cryptosporidium parvum* (Apicomplexa), *Balantidium coli* (Ciliates), *Dientamoeba fragilis* (Fornicata), *Entameba histolytica* (Archamoeba), *Encephalitozoon intestinalis* (Microsporidia) and *Candida tropicalis* (Fungi) have been reported in patients with digestive tract disease [42–44]. Here, we showed that representatives of two of these eight phyla (Fungi and Blastocystis) can be also detected in one individual without digestive tract disease. Among 19 micro-eukaryotes found in this individual, five fungal species were detected using PCR-based and culture approaches, 16 fungal species were detected by culture and eight species including seven different fungi and one *Blastocystis* were detected by molecular methods. Accordingly, a total of 13 plants species and eight fungi including *Aspergillus flavipes*, *Beauveria bassiana*, *Laria farinosa*, *Penicillium brevicompactum*, *Penicillium dipodomyicola*, *Penicillium camemberti*, *Climacocystis sp.* and *Malassezia restricta* were detected for the first time in the human gut microbiota. These data illustrate that eukaryotes have to be searched in the digestive tract using a combined approach and that culture must be kept as a key approach. As a single stool sample was used herein, results here reported constitute a baseline for further studies to assess eukaryotic diversity in healthy and diseased individuals from various geographical origins.
Materials and Methods

Fecal Sample Collection

One stool specimen was collected in a sterile plastic container from a 27-year-old Caucasian woman, who weighed 120 kg with a body mass index (BMI) of 48.9 and lived in Marseille, France. After collecting the stool sample, 1 g aliquots were preserved in sterile microtubes stored at -80°C until use. The patient provided her written consent to participate in the study, and the agreement of the local ethics committee of the IFR48 was obtained (agreement number 09-022, Marseille, France). The subject did not take antibiotic or antifungal treatments in the month prior to the stool collection, but we were not given information about her diet.

DNA Extraction

DNA was extracted using the Qiamp® stool mini kit (Qiagen, Courtaboeuf, France) as has been previously described [9]. Briefly, 200 mg of stool was placed in a 2-mL tube containing a 200 mg mixture of 0.1–0.5 mm glass beads and 1.5-mL of lysis buffer.

Table 4. Fungi cultured using different culture media.

PCR ITS from cultured fungi	% Coverage and % Identity	Media for culture
Penicillium sp./P. camemberti	99 and 100	PDA
Hypocre Augusta/Paracutis camemberti	99 and 98	PDA/CZAPEK
Penicillium brevicompactum	95 and 97	PDA/CZAPEK
Penicillium allii	99 and 99	Dixon agar
Penicillium dipodomyicola	99 and 100	Dixon agar
Aspergillus flavipes	100 and 99	CZAPEK
Aspergillus versicolor	100 and 99	PDA
Beauveria bassiana	99 and 99	PDA
Isaria farinosa	97 and 98	CZAPEK
Galactomyces geotrichum	100 and 100	Dixon agar
Malassezia globosa	100 and 99	Dixon agar
Malassezia restricta	100 and 99	Dixon agar
Malassezia pachydermatis	100 and 93	Dixon agar
Candida tropicalis	99 and 100	Dixon agar/PDA
Cladosporium sp.	100 and 99	Dixon agar
Climacocystis sp.	98 and 96	Dixon agar

Table 5. Fungi cultured using different culture media.

Cultured fungi	PCR cloning sequencing-detected fungi
Galactomyces geotrichum	Galactomyces geotrichum
Malassezia globosa	Malassezia globosa
Malassezia restricta	Malassezia restricta
Malassezia pachydermatis	Malassezia pachydermatis
Candida tropicalis	Candida tropicalis
Cladosporium sp.	
Climacocystis sp.	
Penicillium sp./P. camemberti	P. camemberti
Hypocre Augusta/Paracutis camemberti	
Penicillium brevicompactum	
Penicillium allii	
Penicillium dipodomyicola	
Aspergillus flavipes	
Aspergillus versicolor	
Beauveria bassiana	
Isaria farinosa	

Uncultured Chytridiomycota
PCR Amplification

A total of 25 eukaryotic primer pairs for PCR were selected from the literature and used to amplify the 18S rRNA gene, internal transcribed spacer (ITS) and a chloroplast gene (Table 1). Each set of primers was blasted against corresponding taxa of each phylum (Table 1). All PCRs were performed using the 2720 thermal cycler (Applied Biosystems, Saint Aubin, France). A reaction made as described above. Purified PCR products were sequenced in both directions using the Big Dye Terminator V1.1 Cycle Sequencing Kit (Applied Biosystems, Villebon-sur-Yvette, France) with the M13 forward and M13 reverse primers. These products were run on an ABI PRISM 3130 automated sequencer (Applied Biosystems). Eukaryotes were identified by comparing our obtained sequences with the sequences in the GenBank database using BLAST. The sequence alignments were performed using the clustalw algorithm for multiple sequence alignments (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_clustalwan.html). Phylogenetic trees were constructed using the Mega version 5 bootstrap kimura2-parameter model [45].

Fungi Culture and Identification

One gram of stool was diluted in 9 mL of sterile phosphate-buffered saline (PBS), and a six-fold serial dilution from 10⁻¹ to 10⁻⁶ was prepared in PBS. Each dilution was spread in duplicate on potato dextrose agar (PDA) (Sigma-Aldrich, Saint-Quentin Fallavier, France), Czapeck dox agar (Sigma-Aldrich) supplemented with chloramphenicol (0.05 g/l) and gentamycin (0.1 g/l), and Dixon agar [46] supplemented with chloramphenicol (0.05 mg/mL) and cycloheximide (0.2 mg/mL). Dixon agar medium was prepared by adding 1 L of distilled water to a mixture of 36 g of malt extract, 6 g of peptone, 20 g of ox bile, 10 mL of Tween 40, 2 mL of glycerol, 2 mL of oleic acid and 12 g of agar (Sigma-Aldrich). The mixture was heated to boiling to dissolve all components, autoclaved (20 min at 121°C) and cooled to approximately 50°C. Agar plates made from this media were placed in plastic bags with humid gas to prevent desiccation and incubated aerobically at room temperature (~25°C) in the dark. The Dixon Agar medium plates were incubated aerobically at 30°C. Growth was observed for two weeks. The solution used for dilution of the sample was spread on the same media and

Cloning and Sequencing

PCR products were cloned separately using the pGEM®-T Easy Vector System Kit (Promega, Lyon, France) as described by the manufacturer. The presence of the insert was confirmed by PCR amplification using M13 forward (5'-GTAAACGACGCTATGAC-3') and M13 reverse (5'-AGGAAACGCTATGAC-3') primers (Eurogenetec) and an annealing temperature of 38°C. PCRs were performed as described above. Purified PCR products were sequenced using the Big Dye Terminator V1.1 Cycle Sequencing Kit (Applied Biosystems, Villebon-sur-Yvette, France) with the M13 forward and M13 reverse primers. These products were run on an ABI PRISM 3130 automated sequencer (Applied Biosystems). Eukaryotes were identified by comparing our obtained sequences with the sequences in the GenBank database using BLAST. The sequence alignments were performed using the clustalw algorithm for multiple sequence alignments (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_clustalwan.html). Phylogenetic trees were constructed using the Mega version 5 bootstrap kimura2-parameter model [45].
incubated in the same conditions as a negative control. DNA extracted from colonies as described above was amplified with the fungal primers ITS 1F/ITS 4R and MalF/Mal R. The purified PCR products were submitted to direct sequencing using the ITS1R/ITS4 and MalF/Mal R primers with the Big Dye Terminus kit V1, Cycle Sequencing Kit (Applied Biosystems) as described above. When the peaks of the sequence overlapped, the amplicons were cloned as described above.

All sequences superior to 200 base pairs are available in GenBank with reference number KC143536–KC143757.

Author Contributions
Conceived and designed the experiments: MD DR. Performed the experiments: NG. Analyzed the data: MD. Contributed reagents/materials/analysis tools: DR. Wrote the paper: NG MD DR.

References
1. Tilg H, Moschen AR, Kaser A (2009) Obesity and the microbiota. Gastroenterology 136: 1476–1483.
2. Backhed F (2011) Programming of host metabolism by the gut microbiota. Annu Nutr Metab 58 Suppl 2: 44–52.
3. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2006) Host-bacterial mutualism in the human intestine. Science 307: 1915–1920.
4. Tsai F, Coyle WJ (2009) The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep 11: 307–313.
5. Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26: 5–11.
6. DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, et al. (2011) Improved methods for isolation and identification of fungal DNA from human fecal samples by PCR amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 43(10): 5122–5128.
7. Million M, Maraninchi M, Henry M, Armougom F, Richet H, et al. (2011) Microsatellite loci to recognize species for the cheese starter and contaminating fungi. Appl Environ Microbiol 74: 2210–2217.
8. Hersh CP, Johnson RL, Clifton GW, McFarlane L, Brown SH, et al. (2012) A method for quantifying and cloning fungal 18S rDNA amplified from human fecal samples. J Microbiol Meth 88: 1–7.
9. Ons J, Kuhlbacker T, Münchfeld M, Rosenthal P, Helling S, et al. (2008) Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand J Gastroenterol 43: 831–841.
10. Chen Y, Chen Z, Guo R, Chen N, Lu H, et al. (2011) Correlation between gastrointestinal tract microbiota revisited. Environ Microbiol 9: 2125–2139.
11. Klich MA (2009) Health effects of Aspergillus in food and air. Toxicol Ind Health 25: 657–667.
12. Million M, Maraninchi M, Henry M, Armougom F, Richet H, et al. (2011) Improved methods for isolation and identification of fungal DNA from human fecal samples by PCR amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 43(10): 5122–5128.
13. Li Q, Wang C, Zhang Q, Tang C, Li N, et al. (2012) Use of 18S ribosomal DNA polymerase chain reaction-denaturing gradient gel electrophoresis to study composition of fungal community in 2 patients with intestinal transplants. Hum Pathol 43: 1273–1281.
14. Million M, Maraninchi M, Henry M, Armougom F, Richet H, et al. (2011) Microsatellite loci to recognize species for the cheese starter and contaminating fungi. Appl Environ Microbiol 74: 2210–2217.
15. Griffiths LJ, Anyim M, Doffman SR, Wilks M, Millar MR, et al. (2006) Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers. J Biosci 37: 221–226.
16. Leeming JP, Notman FH (1987) Improved methods for isolation and identification of fungal DNA amplified from human fecal samples by PCR amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17: 1105–1109.
17. Kothari R, Riederer KM, Ramanathan J, Baran J Jr. (2001) Faecal fungal flora in healthy volunteers and infants. Mycopathol 149: 151–156.
18. Georges S, Mounier J, Rea MC, Gelsomino R, Heise V, et al. (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South german red smear cheese. Appl Environ Microbiol 74: 2210–2217.
19. Ginusard F, Girard T, Aguèla G, Fournier E, Samson R, et al. (2010) Microsatellite loci to recognize species for the cheese starter and contaminating strains associated with cheese manufacturing. Int J Food Microbiol 137: 204–213.
20. Santos HL, Bandea R, Martins LA, de Macedo HW, Peralta RH, et al. (2010) A simple method for estimating colonization rate of C. albicans and other yeasts in the oral cavity. J Microbiol Meth 83: 139–142.
21. Klich MA (2009) Health effects of Aspergillus in food and air. Toxicol Ind Health 25: 657–667.
22. Million M, Maraninchi M, Henry M, Armougom F, Richet H, et al. (2011) Improved methods for isolation and identification of fungal DNA from human fecal samples by PCR amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 43(10): 5122–5128.
23. Klich MA (2009) Health effects of Aspergillus in food and air. Toxicol Ind Health 25: 657–667.
24. Conined and designed the experiments: MD DR. Performed the experiments: NG. Analyzed the data: MD. Contributed reagents/materials/analysis tools: DR. Wrote the paper: NG MD DR.

All sequences superior to 200 base pairs are available in GenBank with reference number KC143536–KC143757.

Author Contributions
Conceived and designed the experiments: MD DR. Performed the experiments: NG. Analyzed the data: MD. Contributed reagents/materials/analysis tools: DR. Wrote the paper: NG MD DR.

References
1. Tilg H, Moschen AR, Kaser A (2009) Obesity and the microbiota. Gastroenterology 136: 1476–1483.
2. Backhed F (2011) Programming of host metabolism by the gut microbiota. Annu Nutr Metab 58 Suppl 2: 44–52.
3. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2006) Host-bacterial mutualism in the human intestine. Science 307: 1915–1920.
4. Tsai F, Coyle WJ (2009) The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep 11: 307–313.
5. Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26: 5–11.
6. DiBaise JK, Zhang H, Crowell MD, Krajmalnik-Brown R, Decker GA, et al. (2011) Improved methods for isolation and identification of fungal DNA from human fecal samples by PCR amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 43: 2073–2081.
7. Punder JI, Simmon KE, Barton CA, Hohmann SL, Brandt ME, et al. (2007) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 3(6): e600713.
8. Asea DT, Gjerde RO, Sulhu MS, Langsrud S, Kure CF, et al. (2009) Mould contaminants on Norwegian dry-cured meat products. Int J Food Microbiol 128: 435–439.
9. Rodriguez A, Rodriguez M, Andrade MJ, Gordoba JJ (2012) Development of a multiplex real-time PCR to quantify aflatoxin, ochratoxin A and patulin producing molds in foods. Int J Food Microbiol 155: 10–18.
10. Klich MA (2009) Health effects of Aspergillus in food and air. Toxicol Ind Health 25: 657–667.
11. Million M, Maraninchi M, Henry M, Armougom F, Richet H, et al. (2011) Improved methods for isolation and identification of fungal DNA from human fecal samples by PCR amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 43(10): 5122–5128.
50. Kuiper MW, Valster RM, Wallinga RA, Boonstra H, Smidt H, et al. (2006) Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl Environ Microbiol 72: 5750–5756.
51. Pelandakis M, Fernan P (2002) Use of multiplex PCR and PCR restriction enzyme analysis for detection and exploration of the variability in the free-living Amoeba, Naegleria in the environment. Appl Environ Microbiol 68: 2061–2065.
52. Dophhede A, Lear G, Stott R, Lewis G (2008) Molecular characterization of ciliate diversity in stream biofilms. Appl Environ Microbiol 74: 1740–1747.
53. Provan J, Murphy S, Magg CA (2004) Universal plastid primers for Chlorella and Rhodobacter. Eur J Phycol 39: 43–50.
54. Senapin S, Phivsaiya K, Kiatmetha P, Wityachumnarukul B (2010) Development of primers and a procedure for specific identification of the diatom Thalassiosira weissflogii. Aquacult Int 19: 693–704.
55. Lin S, Zhang H, Hou Y, Miranda I, Bhattacharya D (2006) Development of a dinoflagellate-oriented PCR primer set leads to detection of picoplanktonic dinoflagellates from Long Island Sound. Appl Environ Microbiol 72: 5626–5630.
56. Kolisko M, Silberman JD, Cepicka I, Yubuki N, Takishita K, et al. (2010) A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ Microbiol 12: 2700–2710.
57. Muller AN, Angeler DG, Samuel R, Linton EW, Triemer RR (2003) Phylogenetic analysis of phagotrophic, photomorphic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int J Syst Evol Microbiol 51: 783–791.
58. Desquesnes M, McLaughlin G, Zounggrana A, Davila AM (2001) Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA. Int J Parasitol 31: 610–614.
59. Callahan HA, Litaker RW, Noga EJ (2002) Molecular taxonomy of the suborder Bodonina (Order Kinetoplastida), including the important fish parasite, Ichthyophis neanthes. J Eukaryot Microbiol 49: 119–128.
60. Chabchoub N, Abdelmalek R, Mellouli F, Kanoun F, Thellier M, et al. (2009) Genetic identification of intestinal microsporidia species in immunocompromised patients in Tunisia. Am J Trop Med Hyg 80: 24–27.
61. Hayes DC, Anderson RR, Walker RL (2003) Identification of Ichthyobodo proteus from the bovine preputial cavity by polymerase chain reaction and restriction fragment length polymorphism typing. J Vet Diagn Invest 15: 390–394.
62. Mitihendi H, Makimura K, Zomorodian K, Yamada T, Sugita T, et al. (2005) A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. J Microbiol Methods 61: 281–284.
63. White T, Barns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide and applications. New York: Academic Press, Harcourt Brace Jovanovich. 315–322.
64. Stoeck T, Hayward B, Taylor GJ, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157: 31–43.