The distribution of BRAF gene fusions in solid tumors and response to targeted therapy

Jeffrey S. Ross1,2*, Kai Wang1*, Juliann Chmielecki1, Laurie Gay1, Adrienne Johnson1, Jacob Chudnovsky1, Roman Yelensky1, Doron Lipson1, Siraj M Ali1, Julia A. Elvin1, Jo-Anne Vergilio1, Steven Roels1, Vincent A Miller1, Brooke N. Nakamura1, Adam Gray3, Michael K Wong3 and Philip J Stephens1

1 Foundation Medicine, Inc., Cambridge, MA
2 Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY
3 Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA

Although the BRAF V600E base substitution is an approved target for the BRAF inhibitors in melanoma, BRAF gene fusions have not been investigated as anticancer drug targets. In our study, a wide variety of tumors underwent comprehensive genomic profiling for hundreds of known cancer genes using the FoundationOneTM or FoundationOne HemeTM comprehensive genomic profiling assays. BRAF fusions involving the intact in-frame BRAF kinase domain were observed in 55 (0.3%) of 20,573 tumors, across 12 distinct tumor types, including 20 novel BRAF fusions. These comprised 29 unique fusion partners, of which 31% (9) were known and 69% (20) were novel. BRAF fusions included 3% (14/531) of melanomas; 2% (15/701) of gliomas; 1.0% (3/294) of thyroid cancers; 0.3% (3/1,062) pancreatic carcinomas; 0.2% (8/4,013) nonsmall-cell lung cancers and 0.2% (4/2,154) of colorectal cancers, and were enriched in pilocytic (30%) vs. nonpilocytic gliomas (1%; p < 0.0001), Spitzoid (75%) vs. nonSpitzoid melanomas (1%; p = 0.0001), acinar (67%) vs. nonacinar pancreatic cancers (<1%; p < 0.0001) and papillary (3%) vs. nonpapillary thyroid cancers (0%; p < 0.03). Clinical responses to trametinib and sorafenib are presented. In conclusion, BRAF fusions are rare driver alterations in a wide variety of malignant neoplasms, but enriched in Spitzoid melanoma, pilocytic astrocytomas, pancreatic acinar and papillary thyroid cancers.

BRAF encodes a RAF kinase, which signal downstream of RAS and activate the MAPK pathway, and has emerged as a major oncogenic driver and a potential therapy target in a wide variety of solid tumors and hematologic malignancies.1-4 BRAF signaling is critical for cell division and differentiation and activating BRAF mutations result in uncontrolled growth and tumorigene-

Key words: cancer, solid tumors, BRAF fusions, pilocytic astrocytoma, pancreatic acinar carcinoma, Spitzoid melanoma, comprehensive genomic profiling, NGS, targeted therapy

Additional Supporting Information may be found in the online version of this article.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

*J.S.R. and K.W. are co-first authors.

COI Disclosure: J.S.R., K.W., J.C., L.G., A.J., J.C., R.Y., D.L., S.M.A., J.A.E., J.-A.V., S.R., V.A.M. and P.J.S. all disclose that they have employment and equity positions in Foundation Medicine, Inc.

DOI: 10.1002/ijc.29825

History: Received 25 Apr 2015; Accepted 19 Aug 2015; Online 27 Aug 2015

Correspondence to: Jeffrey S. Ross, Department of Pathology, Albany Medical College, Mail Code 81, 47 New Scotland Avenue, Albany, NY 12208, USA. Tel.: +1-518-262-5461, Fax: +1-518-262-8092, E-mail: rossj@mail.amc.edu

Material and Methods

A database of 20,573 consecutive clinical samples of primarily relapsed and refractory solid tumors and hematologic malignancies was evaluated retrospectively to search for BRAF

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
gene fusions. Local site permissions to use clinical samples were obtained for our study. Comprehensive genomic profiling (CGP) was performed on all formalin fixed paraffin embedded tissues using a hybrid capture-based next generation sequencing platform (FoundationOne™) on the Illumina HiSeq2500 instrument. Extracted DNA was adaptors- ligated and capture was performed for all coding exons of 182 cancer-related genes and 37 introns of 14 genes frequently rearranged in cancer (earlier version of the test) or all coding exons from 236 cancer-related and 47 introns of 19 genes frequently rearranged in cancer (current version of the test). Captured libraries were sequenced to a median exon coverage depth of >600×, and resultant sequences were analyzed for base substitutions, insertions, deletions, copy number alterations (focal amplifications and homozygous deletions) and gene fusions, as previously described. The sequence analysis methods and validation of the comprehensive genomic profiling platform used in our study included extensive comparisons to orthogonal methodologies. Base substitution detection is performed using a Bayesian methodology, which allows detection of novel somatic mutations at low mutant allele frequency (MAF) and increased sensitivity for mutations at hotspot sites through the incorporation of tissue-specific prior expectations. Reads with mapping quality <25 are discarded, as are base calls with quality ≤2. Final calls are made at MAF ≥5% (MAF ≥1% at hotspots) after filtering for strand bias (Fisher’s test, p < 1e–6), read location bias (KS test, p < 1e–6), and presence in two or more normal controls. To detect indels, de novo local assembly in each targeted exon is performed using the de-Bruijn approach. After read pairs are collected and decomposed, the statistical support for competing haplotypes is evaluated and candidate indels are aligned against the reference genome. Filtering of indel candidates is carried out as described for base substitutions. Gene amplifications and homozygous deletions are detected by comparing complete chromosomal copy number maps to reference process-matched normal control samples. Finally, gene fusions and rearrangements are detected by analysis of chimeric read pairs as follows. Genomic rearrangements are identified by analyzing chimeric read pairs (read pairs for which reads map to separate chromosomes, or at a distance of over 10 kbp). Pairs are clustered by genomic coordinate of the pairs, and clusters containing at least five chimeric pairs (three for known fusions) are identified as rearrangement candidates. Filtering of candidates is performed by mapping quality (MQ >30) and distribution of alignment positions (standard deviation >10). Rearrangements are annotated for predicted function (e.g. creation of fusion gene).

Clinically relevant alterations were defined as those that could be targeted using anticancer therapies currently on the market for any tumor type with known primary site or alterations required for entry in a mechanism-driven registered clinical trial. Local site permissions to utilize clinical samples and approval by the Albany Medical College IRB to analyze and report patient data were obtained for our study. The frequencies of BRAF fusions in the various tumor types were evaluated for significance using the Fisher’s exact test.

What’s new?

New results may help target a rare genetic alteration that promotes cancer. Activation of the BRAF gene is already known to spur tumor growth, and usually that activation results from a single amino acid substitution. BRAF-inhibiting treatments, then, target that mutation. However, in some cases, BRAF gets revved up by a gene fusion. In our study, the authors tested 20,000 tumors and identified 55 BRAF gene fusions in 12 different tumor types. They found the gene fusions occurred more frequently in certain histologic subtypes, information which will help guide treatment strategies for patients with these tumor subtypes.
Table 1. Fifty-five cases of solid tumors with *BRAF* gene fusions

Case number	Tumor group	Histologic diagnosis	Gender	Age	Sample source	Fusion
1	Breast carcinoma	Breast invasive ductal carcinoma (IDC)	F	62	Metastasis	KIAA1549-BRAF
5	Breast carcinoma	Breast carcinoma (NOS)	F	61	Metastasis	KIAA1549-BRAF
4	Colorectal carcinoma	Colon adenocarcinoma (CRC)	M	56	Primary	MKRN1-BRAF
2	Colorectal carcinoma	Colon adenocarcinoma (CRC)	F	71	Metastasis	TRIM24-BRAF
6	Colorectal carcinoma	Colon adenocarcinoma (CRC)	F	52	Metastasis	TRIM24-BRAF
3	Colorectal carcinoma	Colon adenocarcinoma (CRC)	F	59	Primary	AGAP3-BRAF
7	Esophageal carcinoma	Esophagus adenocarcinoma	M	61	Primary	ZC3HAV1-BRAF
18	Glioma	Brain desmoplastic infantile ganglioglioma	F	5	Primary	KIAA1549-BRAF
12	Glioma	Brain pilocytic astrocytoma	M	17	Primary	KIAA1549-BRAF
19	Glioma	Brain pleomorphic xanthoastrocytoma	F	64	Primary	KIAA1549-BRAF
20	Glioma	Spinal cord low-grade glioma (NOS)	M	4	Primary	KIAA1549-BRAF
14	Glioma	Brain pilocytic astrocytoma	M	31	Primary	AKAP9-BRAF
8	Glioma	Brain pleomorphic xanthoastrocytoma	M	2	Primary	CCDC6-BRAF
17	Glioma	Brain pilocytic astrocytoma	F	2	Primary	KIAA1549-BRAF
21	Glioma	Spinal cord low-grade glioma (NOS)	M	8	Primary	KIAA1549-BRAF
11	Glioma	Brain pilocytic astrocytoma	M	6	Primary	KIAA1549-BRAF
15	Glioma	Brain pilocytic astrocytoma	M	8	Primary	KIAA1549-BRAF
13	Glioma	Brain pleomorphic xanthoastrocytoma	M	21	Primary	AGK-BRAF
9	Glioma	Not pilocytic. Anaplastic oligodendroglioma	M	20	Primary	AGK-BRAF
16	Glioma	Brain pilocytic astrocytoma	F	2	Primary	KIAA1549-BRAF
43	Glioma	Brain pilocytic astrocytoma	M	1	Primary	KIAA1549-BRAF
10	Glioma	Not pilocytic. Anaplastic ganglioglioma	F	47	Primary	KIAA1549-BRAF
22	Head & Neck Carcinoma	Head and neck neuroendocrine carcinoma	F	53	Primary	MKRN1-BRAF
23	Lung Carcinoma	Lung adenocarcinoma	F	60	Metastasis	EPS15-BRAF
29	Lung Carcinoma	Lung nonsmall-cell lung carcinoma (NOS)	M	69	Primary	NUP214-BRAF
26	Lung Carcinoma	Lung adenocarcinoma	F	69	Primary	ARMC10-BRAF
28	Lung Carcinoma	Lung adenocarcinoma	M	70	Primary	BTFL4-BRAF
27	Lung Carcinoma	Lung adenocarcinoma	F	83	Primary	AGK-BRAF
24	Lung Carcinoma	Lung adenocarcinoma	M	68	Metastasis	GHR-BRAF
25	Lung Carcinoma	Lung adenocarcinoma	F	66	Primary	ZC3HAV1-BRAF
30	Lung Carcinoma	Lung nonsmall-cell lung carcinoma (NOS)	M	73	Primary	TRIM24-BRAF
35	Melanoma	Cutaneous melanoma Spitzoid	F	62	Primary	TRIM24-BRAF
39	Melanoma	Mucosal melanoma non-Spitzoid	F	56	Metastasis	ZNF767-BRAF
49	Melanoma	Cutaneous melanoma non-Spitzoid	M	63	Metastasis	CCD91-BRAF
34	Melanoma	Cutaneous melanoma Spitzoid	F	25	Primary	DYNC112-BRAF
32	Melanoma	Cutaneous melanoma Spitzoid	F	60	Metastasis	AKAP9-BRAF
38	Melanoma	Cutaneous melanoma Spitzoid	F	46	Metastasis	ZKSCAN1-BRAF
51	Melanoma	Unknown primary melanoma	M	N/A	Metastasis	GTF2I-BRAF
42	Melanoma	Cutaneous melanoma non-Spitzoid	M	54	Metastasis	AGAP3-BRAF
37	Melanoma	Cutaneous melanoma Spitzoid	F	44	Metastasis	AGK-BRAF
41	Melanoma	Cutaneous melanoma Spitzoid	M	27	Metastasis	MZT1-BRAF
31	Melanoma	Cutaneous melanoma Spitzoid	F	52	Metastasis	AGK-BRAF
33	Melanoma	Cutaneous melanoma non-Spitzoid	F	1	Primary	RAD18-BRAF
40	Melanoma	Cutaneous melanoma Spitzoid	F	60	Metastasis	CUX1-BRAF
Melanomas
The 14 melanomas harbored BRAF fusions and 9 (64%) featured an epithelioid and spindle cell histology characteristic of the so-called Spitzoid melanoma (Fig. 2a). For the 531 melanomas evaluated, the enrichment of BRAF fusions in Spitzoid melanomas (9/12, 75%) compared to non-Sptizoid tumors (5/519, 1%) was highly significant (p < 0.0001). BRAF base substitution alterations were identified in 191/531 (36%) melanomas analyzed.

Gliomas
Of the 15 gliomas with BRAF fusions detected in our study, 7 (47%) were pilocytic astrocytomas (Fig. 2b). Of the 701 gliomas analyzed, the enrichment of BRAF fusion in pilocytic astrocytomas (7/23; 30%) compared to the nonpilocytic gliomas (8/678; 1%) was highly significant (p < 0.0001). In addition, 3 (38%) of the 8 nonpilocytic gliomas harboring BRAF fusions featured high grade anaplastic astrocytoma histology with large histiocytic-like giant cells in the pattern of the pleomorphic xanthoastrocytoma. Of the entire set of gliomas evaluated, 28 (4%) featured base substitution alterations in BRAF.

Nonsmall-cell lung carcinomas
BRAF fusions were identified in <1% of NSCLC samples. In contrast, 270/4,013 (7%) NSCLC harbored BRAF base substitution alterations. All NSCLC with BRAF fusions were adenocarcinomas or NSCLC with adenocarcinoma features. BRAF fusions were not seen in squamous or small cell lung cancers.

Colorectal carcinomas
Less than 1% of the 2,154 CRC tumors evaluated harbored BRAF fusions, in contrast to the 284 (13%) of the CRC that featured BRAF base substitution alterations. There were no distinctive morphologic features in the CRC tumors with BRAF fusions.

Pancreatic carcinomas
Of 1,062 pancreatic cancers, 3 featured BRAF fusions; this subset comprised 2 (67%) acinar carcinomas (Fig. 2c) and 1 (33%) ductal adenocarcinoma. The cohort of pancreatic tumors analyzed featured only three acinar carcinomas, and the enrichment of BRAF fusions in acinar carcinomas (2/3; 67%) compared to nonacinar carcinomas (1; <0.1%) was significant (p < 0.0001).

Thyroid carcinomas
The three thyroid carcinomas with BRAF fusions identified in our study were papillary thyroid carcinomas (3/94; 3%), with no fusions identified in nonpapillary thyroid carcinomas (0/200; 0%) (p = 0.03). In contrast, BRAF base substitutions were found in 82 (28%) of the total thyroid tumors with 65 (79%) of these mutations identified in papillary thyroid carcinomas and 17 (21%) in nonpapillary thyroid tumors. Information pertaining to radiation exposure in the thyroid cancer patients was not available for our study.

Figure 1 summarizes the exon composition of the BRAF fusions identified in our study, all 55 of which preserved an intact BRAF kinase domain, encoded by exons 11–18, and are considered activating. Fusions between KIAA1549 and BRAF

Table 1. Fifty-five cases of solid tumors with BRAF gene fusions (Continued)

Case number	Tumor group	Histologic diagnosis	Gender	Age	Sample source	Fusion
36	Melanoma	Cutaneous melanoma Spitzoid	F	30	Metastasis	SLC12A7-BRAF
47	Pancreatic carcinoma	Pancreas ductal adenocarcinoma	M	63	Primary	MYRIP-BRAF
46	Pancreatic carcinoma	Pancreas acinar cell carcinoma	F	75	Primary	SND1-BRAF
45	Pancreatic carcinoma	Pancreas acinar cell carcinoma	M	67	Metastasis	SND1-BRAF
48	Prostatic carcinoma	Prostate acinar adenocarcinoma	M	57	Metastasis	NUB1-BRAF
50	Sarcoma	Malignant solid fibrous tumor	F	56	Primary	KIAA1549-BRAF
53	Thyroid carcinoma	Thyroid papillary carcinoma	M	61	Primary	KLHL7-BRAF
54	Thyroid carcinoma	Thyroid papillary carcinoma	M	67	Primary	TANK-BRAF
52	Thyroid carcinoma	Thyroid papillary carcinoma	F	64	Metastasis	RBMS3-BRAF
44	Unknown primary carcinoma	Unknown primary, adenocarcinoma	F	N/A	Metastasis	STRN3-BRAF
55	Unknown primary carcinoma	Unknown primary, carcinoma (NOS)	M	65	Metastasis	SND1-BRAF
51	Pleura mesothelioma	Pleura mesothelioma	F	48	Primary	STK35-BRAF
52	Rectum adenocarcinoma	Rectum adenocarcinoma	M	56	Metastasis	ETFA-BRAF
53	Uterus endometrial carcinoma	Uterus endometrial adenocarcinoma (NOS)	F	74	Metastasis	SVOPL-BRAF
54	Ovary serous carcinoma	Ovary serous carcinoma	F	62	Metastasis	JHDM1D-BRAF

Cases S1–S4 are supplemental, have not been fully characterized and were not included in the data analysis.
were the most frequent **BRAF** fusions identified in the study and involved 14 (25%) of the 55 **BRAF** fusion positive tumors. Eleven (20%) of the **KIAA1549-BRAF** fusions were identified in brain tumors. The **AGK-BRAF**, **TRIM24-BRAF** and **SND1-BRAF** fusions were the next most frequent, identified in 5, 4 and 3 tumors, respectively. A total of 20 novel fusion partners not previously reported in public databases (COSMIC and TCGA) or the published literature (PubMed) were identified across 20 samples (36%). The remaining 25 fusions have been previously reported (Table 1).18–26 All 55 **BRAF** fusions were in-frame with breakpoints on the **BRAF** hotspot introns 7, 8, 9 and 10. One fusion **MKRN1-BRAF** (Case 22) was found in a head and neck carcinoma with breakpoint on **MKRN1** Exon 4 and **BRAF** intron 9, which is predicted as in-frame with **MKRN1** exons 1–3, partial exon4 and **BRAF** exons 11-18. **MKRN1-BRAF** was identified in another colorectal carcinoma with a known structure of **MKRN1** (exons 1–4)–**BRAF** (exons 11–18).24 Most fusions retained **BRAF** exons 9–18 (24/55, 44%). In the 55 tumors harboring **BRAF** fusions, 207 additional genomic alterations involving the targeted genes of the

Figure 1. Structure of 55 **BRAF** fusions discovered from 20,573 solid tumors detected by comprehensive genomic profiling. Novel fusions were in pink, and known fusions were in green.
sequencing panel were identified in genes such as CDKN2A/B (29%), TP53 (22%), PTEN (11%), PIK3CA (9%), PBRM1, APC and EGFR (each at 7%). The long tail of additional alterations found in fewer than three tumors included clinically relevant alterations affecting, MET, PDGFRA, RET and TSC2 (Fig. 3). In 54/55 (98%), tumors the BRAF fusion was the only BRAF alteration identified, although a single case of metastatic non-Spitzoid melanoma in a 54-year-old man (Case 42) featured both a BRAF V600E base substitution and an AGAP3-BRAF fusion.

Clinical outcomes are available for only two patients included in our study. A Spitzoid melanoma from a 46-year-old Caucasian woman that harbored a ZKSCAN1-BRAF fusion responded to treatment with the MEK inhibitor trametinib given at full dose (2 mg/day orally) (Case 38) (Fig. 4). Subcutaneous tumor nodules exhibited overt clinical responses within 14 days of therapy, and her dominant bulky right lung metastases showed significant response by Day 45 such that she subsequently underwent robotic-assisted lobectomy. This previously unresectable tumor was removed with clean surgical margins, and without any of the 16 recovered lymph nodes involved with melanoma. Similarly, in a recent study, significant clinical activity was demonstrated when trametinib was used in the treatment of a patient with metastatic melanoma harboring a BRAF fusion.27

A malignant spindle cell tumor of the chest wall treated as a soft tissue sarcoma featured a KIAA1549-BRAF fusion (Fig. 5) and responded to treatment with the pan-kinase inhibitor sorafenib in combination with bevacizumab and temsirolimus (Case 50).

Discussion

The above data represent the most diverse series of BRAF gene fusions described to date. Although BRAF fusions are infrequent in advanced solid tumors, both the present data and the published literature demonstrate enrichment in certain histologic subsets including pilocytic astrocytoma,14,21,28–30 Spitzoid melanoma,18,20,31,32 pancreatic acinar carcinoma33 and papillary thyroid cancer.2 Other datasets including the COSMIC database accessed in December 2014...
for our study report even fewer examples of tumors driven by BRAF fusions which are restricted to fewer tumor types.\(^\text{17}\) However, it should be noted that the public databases such as COSMIC likely include tumors that were evaluated for BRAF base substitutions only and may not have included a sequencing assay capable of detecting gene fusions. Thus,
such discrepancies may be explained by the limitations of analyses not optimized or designed to identify gene fusions. For example, of 4,299 gliomas studied for \textit{BRAF} sequence in COSMIC, 268 (6\%) featured an alteration with a 106 (2\%) incidence of \textit{BRAF} fusions limited to pilocytic astrocytomas. Similarly, in the melanomas listed in COSMIC, 16,403 tumors included \textit{BRAF} sequencing and 7,110 (43\%) had \textit{BRAF} alterations, but no \textit{BRAF} fusions were listed in the entire group or in the 53 Spitzoid melanomas in the database. Of 2,533 pancreatic cancers sequenced for \textit{BRAF} at COSMIC, 27 (1\%) featured \textit{BRAF} alterations with 0 \textit{BRAF} fusions. Interestingly, in an expanded study of 44 pancreatic acinar carcinomas, we identified recurrent rearrangements involving \textit{BRAF} and \textit{RAF1 (CRAF)} in 23\% of the tumors.33 Of the 46,463 thyroid tumors sequenced for \textit{BRAF} at COSMIC, 19,297 (42\%) had \textit{BRAF} alterations with three (<0.1\%) \textit{BRAF} fusions identified all restricted to the papillary carcinoma subtype.

Of interest is the fact that \textit{BRAF} fusions are similar to other kinase fusions in occurring in a mutually exclusive pattern with other activating mutations in the MAP kinase signaling pathway. Only one (2\%) \textit{BRAF} V600E base substitution was identified in the 55 cases of \textit{BRAF} fusions which occurred in a case of cutaneous melanoma (Case 42). No \textit{KRAS} mutations were identified in the 55 cases. In contrast, there were the alterations in \textit{GNAS} (3 cases; 5\%), \textit{IDH1} (2 cases; 4\%) and \textit{EGFR} (4 cases; 7\%) in the 55 \textit{BRAF} fusion-positive tumors.

The greater frequency and wider tumor-type distribution of \textit{BRAF} fusions presented in the current study in comparison with COSMIC database is most likely the result of differing techniques used in the tumor analysis. The COSMIC database includes tumors sequenced by nonhybrid capture-based technologies either not optimized to identify or unable to detect gene fusions. The current assay utilized a DNA bait set only.15 A small series of \textit{BRAF} rearrangements was also uncovered in this cohort of >20,000 clinical tumor samples, but these alterations could not be completely characterized using DNA sequencing alone. It is possible that, with RNA sequencing, these rearrangements could be more precisely characterized as \textit{BRAF} fusions.

Figure 1 shows the exon composition of the \textit{BRAF} fusions identified in this cohort, which includes both a series of previously described fusions and a set of novel fusions described here for the first time. Although direct \textit{in vitro} assays were not conducted as part of our study, based on the published studies for the known \textit{BRAF} fusions and using published models for confirming activation and prediction of the protein amino acid sequences, we expect that the novel fusions identified to be similarly oncogenic. Several \textit{BRAF} fusions, including many identified here, have been previously characterized as activating and oncogenic.18–22 Modeling and protein domain analysis shows that these fusions, as well as the 20 novel fusions described in Figure 1, all maintain the kinase domain of \textit{BRAF}, suggesting a universal mechanism of \textit{BRAF} activation, irrespective of the 5′ fusion partner. Previous studies have shown that loss of the autoinhibitory region upstream of the \textit{BRAF} kinase domain, which is predicted for all of the fusions described here, leads to activation of \textit{BRAF} signaling.34 Although the adverse prognostic significance of \textit{BRAF} base substitution, such as V600E, is widely described for a variety of solid tumors,35–37 given their rarity, the significance of \textit{BRAF} fusions for clinical outcome is unknown.

Evidence supporting the treatment of solid tumors harboring \textit{BRAF} fusions with therapies targeting this kinase has
started to emerge. As shown in Figures 4 and 5, tumor responses to kinase inhibitors in combination with nontargeted cytotoxic agents indicate that RAF kinases or downstream signaling pathways can be targeted when activated by BRAF fusion. Sorafenib, a multikinase inhibitor that inhibits RAF, has had limited efficacy as an anticancer drug in patients with BRAF activating point mutations. In Figure 5, sorafenib was used to treat the soft tissue sarcoma with a KIAA1549-BRAF fusion, but the MTOR inhibitor temsirolimus and the antiangiogenic antibody therapeutic bevacizumab were also given to the patient, and these latter therapies may well have provided the primary tumor response shown in the tumor images. In a study of low-grade astrocytomas, the impact of sorafenib therapy was mixed with both deleterious effects and stabilized disease seen. Studies on melanoma, in contrast, have shown evidence of significant benefit from sorafenib treatment. Thus, the sensitivity of BRAF fusion-driven malignancies to sorafenib remains unclear and controversial. In addition, the major tumor response in the patient with the Spitzoid metastatic melanoma featuring a ZKSCAN1-BRAF fusion shown in Figure 4 responded to the MEK inhibitor trametinib rather than to a RAF kinase inhibitor. Unfortunately, the extremely low frequency of BRAF fusions in solid tumors precludes a prospective randomized clinical trial evaluating the efficacy of treatment with RAF kinase and MEK inhibitors. However, the expanded clinical use of next-generation DNA sequencing and comprehensive genomic profiling in oncology practice may provide data from Phase I trials and published case reports that will validate the use of agents targeting BRAF fusions and bring significant clinical improvement for patients with disease driven by this rare but distinctive genomic alteration.

References

1. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417:94–59.
2. El-Osta H, Falchook G, Tsimeridou A, et al. BRAF mutations in advanced cancers: clinical characteristics and outcomes. PLoS One 2011;6: e25806
3. Pakneshan S, Salajegheh A, Smith RA, et al. Clinicopathological relevance of BRAF mutations in human cancer. Pathology 2013;45: 346–56.
4. Vultur A, Villanueva J, Herlyn M. Targeting BRAF in advanced melanoma: First step toward manageable disease. Clin Cancer Res 2011;17: 1658–63.
5. Cantwell-Dorris ER, O'Leary JJ, Sheils OM. BRAF(V600E): implications for carcinogenesis and molecular therapy. Mol Cancer Ther 2011;10: 385–94.
6. Holderfield M, Decker MM, McCormick F, et al. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 2014;14: 455–67.
7. Montagut C, Settleman J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 2009;283:125–34.
8. Dada R, Shah K, Basuayi NL, et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E)-positive papillary thyroid cancer: MD Anderson Cancer Center Off Label Experience. J Clin Endocrinol Metab 2015;100:E77–E81.
9. Haroce J, Cohen-Aubart F, Emilie J-F, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood 2015;125:1207–16.
10. Haroce J, Cohen-Aubart F, Emilie J-F, et al. Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease. J Clin Oncol 2015;33:411–U52.
11. Pettrossi V, Santi A, Imperi E, et al. BRAF inhibitors reverse the unique molecular signature and phenotype of hairy cell leukemia and exert potent antileukemic activity. Blood 2015;125:1207–16.
12. Corcoran RB, Ebi H, Turke AB, et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012;2:227–35.
13. Palansiamy N, Ateev B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 2010;16:793–8.
14. Karajannis MA, Legault G, Fisher MJ, et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neurol Oncol 2014;16:408–16.
15. Frampton GM, Fichtenholz O, Otto GA, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013;31:1023+.
16. Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nat Biotechnol 2011;29:987–91.
17. Forbes SB, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res 2011;39:D945–950.
18. Botton T, Yeh I, Nelson T, et al. Recurrent BRAF kinase fusions in melanomas: an opportunity for targeted therapy. Pigm Cell Melanoma Res 2013;26:845–51.
19. Ciampi R, Knnauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK activation in thyroid cancer. J Clin Invest 2005;115:94–101.
20. Hutchinson KE, Lipson D, Stephens PJ, et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. J Invest Dermatol 2009;128:154–60.
21. Wiemer T, He J, Yelenosky R, et al. Kinase fusions are frequent in Spitz tumours and Spitzoid melanomas. Nat Commun 2014;5:3116.
22. Chmielecki J, Hutchinson KE, Frampton GM, et al. Comprehensive genomic profiling of pan-creatic acinar cell carcinoma identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov 2014;4:198–405.
23. Tran NH, Wu XC, Frost JA. BRAF and Raf-1 are regulated by distinct autoregulatory mechanisms. J Biol Chem 2005;280:16244–53.
24. Bhatia EY, Zou M, Al-Mehanna F, et al. aberrant BRAF splicing as an alternative mechanism for oncogenic B-Raf activation in thyroid carcinoma. J Pathol 2009;217:707–15.
25. Kim HS, Jung KW, Jung M, et al. Oncogenic BRAF fusion induces MAPK-pathway activation targeted by MEK inhibitor and phosphatidylinositol 3-kinase inhibitor combination treatment in murine melanoma A549 cells. Cancer Discov 2013;3:453–64.
38. Muro K, Yatabe Y. BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. *Br J Cancer* 2011;104:856–62.

39. Subbiah V, Westin SN, Wang K, et al. Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein. *J Hematol Oncol* 2014;7:8

40. Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. *Nat Rev Drug Discov* 2006;5:835–44.

41. Passeron T, Lacour JP, Allegra M, et al. Signalling and chemosensitivity assays in melanoma: is mutated status a prerequisite for targeted therapy? *Exp Dermatol* 2011;20:1030–2.