A FIRST-ORDER THEORY OF ULM TYPE

MATTHEW HARRISON-TRAINOR

Abstract. The class of abelian p-groups are an example of some very interesting phenomena in computable structure theory. We will give an elementary first-order theory T_p whose models are each bi-interpretable with the disjoint union of an abelian p-group and a pure set (and so that every abelian p-group is bi-interpretable with a model of T_p) using computable infinitary formulas. This answers a question of Knight by giving an example of an elementary first-order theory of “Ulm type”: Any two models, low for ω_1^{CK}, and with the same computable infinitary theory, are isomorphic. It also gives a new example of an elementary first-order theory whose isomorphism problem is Σ_1^1-complete but not Borel complete.

1. Introduction

The class of abelian p-groups is a well-studied example in computable structure theory. A simple compactness argument shows that abelian p-groups are not axiomatizable by an elementary first-order theory, but they are definable by the conjunction of the axioms for abelian p-groups (which are first-order $\forall \exists$ sentences) and the infinitary Π^0_2 sentence which says that every element is torsion of order some power of p.

Abelian p-groups are classifiable by their Ulm sequences [Ulm33]. Due to this classification, abelian p-groups are examples of some very interesting phenomena in computable structure theory and descriptive set theory. We will define a theory T_p whose models behave like the class of abelian p-groups, giving a first-order example of these phenomena. In particular, Theorem 1.6 below answers a question of Knight.

1.1. Infinitary Formulas. The infinitary logic $L_{\omega_1 \omega}$ is the logic which allows countably infinite conjunctions and disjunctions but only finite quantification. If the conjunctions and disjunctions of a formula φ are all over computable sets of indices for formulas, then we say that φ is computable. We use Σ^m_α and Π^m_α to denote the classes of all infinitary Σ_α and Π_α formulas respectively. We will also use Σ^c_α and Π^c_α to denote the classes of computable Σ_α and Π_α formulas, where $\alpha < \omega_1^{CK}$ the least non-computable ordinal. See Chapter 6 of [AK00] for a more complete description of computable formulas.

1.2. Bi-Interpretability. One way in which we will see that the models of T_p are essentially the same as abelian p-group is using bi-interpretations using infinitary formulas [Mon, HTMMM, HTMM]. A structure A is infinitary interpretable in a structure B if there is an interpretation of A in B where the domain of the interpretation is allowed to be a subset of $B^{<\omega}$ and where all of the sets in the interpretation are definable using infinitary formulas. This differs from the classical notion of interpretation, as in model theory [Mar02, Definition 1.3.9], where the
domain is required to be a subset of B^n for some n, and the sets in the interpretation are first-order definable.

Definition 1.1. We say that a structure $A = (A; P^A_0, P^A_1, \ldots)$ (where $P^A_i \subseteq A^{n(i)}$) is infinitary interpretable in B if there exists a sequence of relations $(\text{Dom}_A^B, \sim, R_0, R_1, \ldots)$, definable using infinitary formulas (in the language of B, without parameters), such that

1. $\text{Dom}_A^B \subseteq B^{\omega}$,
2. \sim is an equivalence relation on Dom_A^B,
3. $R_i \subseteq (B^{\omega})^{a(i)}$ is closed under \sim within Dom_A^B.

and there exists a function $f_A^B : \text{Dom}_A^B \to A$ which induces an isomorphism:

$$(\text{Dom}_A^B / \sim; R_0 / \sim, R_1 / \sim, \ldots) \cong (A; P^A_0, P^A_1, \ldots),$$

where R_i / \sim stands for the \sim-collapse of R_i.

Two structures A and B are infinitary bi-interpretable if they are each effectively interpretable in the other, and moreover, the composition of the interpretations—i.e., the isomorphisms which map A to the copy of A inside the copy of B inside A, and B to the copy of B inside the copy of A inside B—are definable.

Definition 1.2. Two structures A and B are infinitary bi-interpretable if there are infinitary interpretations of each structure in the other as in Definition 1.1 such that the compositions

$$f_A^B \circ f_B^A : \text{Dom}_B^{\text{Dom}_A^B} \to A$$

and

$$f_A^B \circ f_B^A : \text{Dom}_A^{\text{Dom}_B^B} \to A$$

are definable in B and A respectively. (Here, we have $\text{Dom}_B^{\text{Dom}_A^B} \subseteq (\text{Dom}_A^B)^{\omega}$, and $f_A^B : (\text{Dom}_B^B)^{\omega} \to A^{\omega}$ is the obvious extension of $f_A^B : \text{Dom}_A^B \to A$ mapping $\text{Dom}_B^{\text{Dom}_A^B}$ to Dom_B^B.)

If we ask that the sets and relations in the interpretation (or bi-interpretation) be (uniformly) relatively intrinsically computable, i.e., definable by both a Σ^0_1 formula and a Π^0_1 formula, then we say that the interpretation (or bi-interpretation) is effective. Any two structures which are effectively bi-interpretable have all of the same computability-theoretic properties; for example, they have the same degree spectra and the same Scott rank. See [Mon, Lemma 5.3].

Here, we will use interpretations which use (lightface) Δ^0_2 formulas. It is no longer true that any two structures which are Δ^0_2-bi-interpretable have all of the same computability-theoretic properties, but it is true, for example, that any two such structures either both have computable, or both have non-computable, Scott rank.

Theorem 1.3. Each abelian p-group is effectively bi-interpretable with a model of T_p. Each model of T_p is Δ^0_2-bi-interpretable with the disjoint union of an abelian p-group and a pure set.

This theorem will follow from the constructions in Sections 3 and 4. Given a model \mathcal{M} of T_p, \mathcal{M} is bi-interpretable with an abelian p-group G and a pure set. The domain of the copy of G inside of \mathcal{M} is definable by a Σ^0_1 formula but not by a Π^0_1 formula. This is the only part of the bi-interpretation which is not effective.
1.3. Classification via Ulm Sequences. Let G be an abelian group. For any ordinal α, we can define $p^\alpha G$ by transfinite induction:

- $p^0 G = G$;
- $p^{\alpha+1} G = p(p^\alpha G)$;
- $p^{\beta} G = \bigcap_{\alpha < \beta} p^\alpha G$ if β is a limit ordinal.

These subgroups $p^\alpha G$ form a filtration of G. This filtration stabilizes, and we call the smallest ordinal α such that $p^\alpha G = p^{\alpha+1} G$ the length of G. We call the intersection $p^\infty G$ of these subgroups, which is a p-divisible group, the p-divisible part of G. Any countable p-divisible group is isomorphic to some direct product of the Pr"ufer group

$$\mathbb{Z}(p^\infty) = \mathbb{Z}[1/p, 1/p^2, 1/p^3, \ldots]/\mathbb{Z}.$$

Denote by $G[p]$ the subgroup of G consisting of the p-torsion elements. The αth Ulm invariant $u_\alpha(G)$ of G is the dimension of the quotient

$$\left(p^\alpha G\right)[p] / \left(p^{\alpha+1} G\right)[p]$$

as a vector space over $\mathbb{Z}/p\mathbb{Z}$.

Theorem 1.4 (Ulm’s Theorem, see [Fuc70]). Let G and H be countable abelian p-groups such that for every ordinal α their αth Ulm invariants are equal, and the p-divisible parts of G and H are isomorphic. Then G and H are isomorphic.

1.4. Scott Rank and Computable Infinitary Theories. Scott [Sco65] showed that if M is a countable structure, then there is a sentence φ of $L_{\omega_1\omega}$ such that M is, up to isomorphism, the only countable model of φ. We call such a sentence a Scott sentence for M. There are many different definitions [AK00, Sections 6.6 and 6.7] of the Scott rank of M, which differ only slightly in the ranks they assign. The one we will use, which comes from [Mon15], defines the Scott rank of A to be the least ordinal α such that A has a $\Pi^0_{\alpha+1}$ Scott sentence. We denote the Scott rank of a structure A by $\text{SR}(A)$. It is always the case that $\text{SR}(A) \leq \omega^A_1 + 1$ [Nad74]. We could just as easily use any of the other definitions of Scott rank; for all of these definitions, given a computable structure A:

1. A has computable Scott rank if and only if there is a computable ordinal α such that for all tuples \bar{a} in A, the orbit of \bar{a} is defined by a computable Σ_α formula.
2. A has Scott rank $\omega^A_1 C^K$ if and only if for each tuple \bar{a}, the orbit is defined by a computable infinitary formula, but for each computable ordinal α, there is a tuple \bar{a} whose orbit is not defined by a computable Σ_α formula.
3. A has Scott rank $\omega^A_1 C^K + 1$ if and only if there is a tuple \bar{a} whose orbit is not defined by a computable infinitary formula.

Given a structure M, define the computable infinitary theory of M, $\text{Th}_\infty(M)$, to be collection of computable $L_{\omega_1\omega}$ sentences true of M. We can ask, for a given structure M, whether $\text{Th}_\infty(M)$ is \aleph_0-categorical, or whether there are other countable models of $\text{Th}_\infty(M)$. For M a hyperarithmetic structure:

1. If $\text{SR}(M) < \omega^M_1 C^K$, then $\text{Th}_\infty(M)$ is \aleph_0-categorical. Indeed, M has a computable Scott sentence [Nad74].
2. If $\text{SR}(M) = \omega^M_1 C^K$, then $\text{Th}_\infty(M)$ may or may not be \aleph_0-categorical [HTIK].
3. If $\text{SR}(M) = \omega^M_1 C^K + 1$, then $\text{Th}_\infty(M)$ is not \aleph_0-categorical as M has a non-principal type which may be omitted.
In the case of abelian p-groups, we can say something even when we replace the assumption that \mathcal{M} is hyperarithmetic with the assumption that $\omega_1^G = \omega_1^{CK}$.

Definition 1.5 (Definition 6 of [FKM’11]). A class of countable structures has *Ulm type* if for any two structures A and B in the class, if $\omega_1^A = \omega_1^B = \omega_1^{CK}$ and $\text{Th}_\infty(A) = \text{Th}_\infty(B)$, then A and B are isomorphic.

It is well-known that abelian p-groups are of Ulm type; however, we do not know of a good reference with a complete proof, so we will give one in Section 2. We also note that there are indeed non-hyperarithmetic abelian p-groups G with $\text{SR}(G) < \omega_1^{CK}$.

Knight asked whether there was a (non-trivial) first-order theory of Ulm type. By a non-trivial example, we mean that the elementary first-order theory should have non-hyperarithmetic models which are low for ω_1^{CK}. Our theory T_p is such an example.

Theorem 1.6. The models of T_p are of Ulm type. Moreover, given $\mathcal{M} \models T_p$ with $\omega_1^{CK} = \omega_1^M$ and $\text{SR}(\mathcal{M}) < \omega_1^{CK} = \omega_1^M$, $\text{Th}_\infty(\mathcal{M})$ is \aleph_0-categorical.

Proof. Let \mathcal{M} be a model of T_p. Now \mathcal{M} is bi-interpretable, using computable infinitary formulas, with the disjoint union of an abelian p-group G and a pure set. Thus \mathcal{M} inherits these properties from G (see Theorem 2.1). □

Of course, there will be non-hyperarithmetic models of T_p with Scott rank below ω_1^{CK}.

Borel Incompleteness

In their influential paper [FS89], Friedman and Stanley introduced Borel reductions between invariant Borel classes of structures with universe ω in a countable language. Such classes are of the form $\text{Mod}(\varphi)$, the set of models of φ with universe ω, for some $\varphi \in L_{\omega_1\omega}$. A Borel reduction from $\text{Mod}(\varphi)$ to $\text{Mod}(\psi)$ is a Borel map $\Phi : \text{Mod}(\varphi) \to \text{Mod}(\psi)$ such that $\mathcal{M} \cong \mathcal{N} \iff \Phi(\mathcal{M}) \cong \Phi(\mathcal{N})$.

If such a Borel reduction exists, we say that $\text{Mod}(\varphi)$ is Borel reducible to $\text{Mod}(\psi)$ and write $\varphi \preceq_B \psi$. If $\varphi \preceq_B \psi$ and $\psi \preceq_B \varphi$, then we say that $\text{Mod}(\varphi)$ and $\text{Mod}(\psi)$ are Borel equivalent and write $\varphi \equiv_B \psi$. Friedman and Stanley showed that graphs, fields, linear orders, trees, and groups are all Borel equivalent, and form a maximal class under Borel reduction.

If $\text{Mod}(\varphi)$ is Borel complete, then the isomorphism relation on $\text{Mod}(\varphi) \times \text{Mod}(\varphi)$ is Σ^1_1-complete. The converse is not true, and the most well-known example is abelian p-groups, whose isomorphism relation is Σ^1_1-complete but not Borel complete. Until very recently, they were one of the few such examples, and there were no known examples of elementary first-order theories with similar properties. Recently, Laskowski, Rast, and Ulrich [URL] gave an example of a first-order theory which is not Borel complete, but whose isomorphism relation is not Borel. Our theory T_p is another such example.

Theorem 1.7. The class of models of T_p is Borel equivalent to abelian p-groups.

Because abelian p-groups are not Borel complete, but their isomorphism relation is Σ^1_1-complete, we get:

Corollary 1.8. The class of models of T_p is not Borel complete but the isomorphism relation is Σ^1_1-complete.
Theorem 1.7 is a specific instance of the following general question asked by Friedman:

Question 1.9. Is it true that for every \(L_{\omega_1 \omega} \) sentence there is a Borel equivalent first-order theory?

2. Abelian \(p \)-groups are of Ulm type

In this section we will describe a proof of the following well-known theorem, which shows that abelian \(p \)-groups are of Ulm type.

Theorem 2.1. Let \(G \) be an abelian \(p \)-group with \(\omega_1^{CK} = \omega_1^G \). Then:

1. \(G \) is the only countable model of Th\(_\infty(G) \) with \(\omega_1^G = \omega_1^{CK} \), and
2. if SR\(_\infty(G) \) \(< \omega_1^{CK} = \omega_1^G \), then Th\(_\infty(G) \) is \(\aleph_0 \)-categorical.

The proof of Theorem 2.1 consists essentially of expressing the Ulm invariants via computable infinitary formulas.

Definition 2.2. Let \(G \) be an abelian \(p \)-group. For each ordinal \(\alpha < \omega_1^{CK} \), there is a computable infinitary sentence \(\psi_\alpha(x) \) which defines \(p^n G \) inside of \(G \):

- \(\psi_\alpha(x) \) is just \(x = x \);
- \(\psi_{\alpha+1}(x) \) is \((\exists y)[\psi_\alpha(y) \land py = x] \);
- \(\psi_\beta(x) \) is \(\bigwedge_{\alpha < \beta} \psi_\alpha(x) \) for limit ordinals \(\beta \).

Definition 2.3. For each ordinal \(\alpha < \omega_1^{CK} \) and \(n \in \omega \cup \{ \omega \} \), there is a computable infinitary sentence \(\varphi_{\alpha,n} \) such that, for \(G \) an abelian \(p \)-group,

\[
G \models \varphi_{\alpha,n} \leftrightarrow u_\alpha(G) = n.
\]

For \(n \in \omega \), define \(\varphi_{\alpha,\geq n} \) to say that there are \(x_1, \ldots, x_n \) such that:

- \(\psi_\alpha(x_1) \land \cdots \land \psi_\alpha(x_n) \),
- \(px_1 = \cdots = px_n = 0 \), and
- for all \(c_1, \ldots, c_n \in \mathbb{Z}/p\mathbb{Z} \) not all zero, \(\neg \psi_{\alpha+1}(c_1x_1 + \cdots + c_nx_n) \).

Then for \(n \in \omega \), \(\varphi_{\alpha,n} \) is \(\varphi_{\alpha,\geq n} \land \neg \varphi_{\alpha,\geq n+1} \), and \(\varphi_{\alpha,\omega} \) is \(\bigwedge_{n \in \omega} \varphi_{\alpha,\geq n} \).

Lemma 2.4 (Theorem 8.17 of [AK00]). Let \(G \) be an abelian \(p \)-group. Then:

1. the length of \(G \) is at most \(\omega_1^G \), and
2. if \(G \) has length \(\omega_1^G \) then \(G \) is not reduced (in fact, its \(p \)-divisible part has infinite rank) and SR\(_\infty(G) = \omega_1^G + 1 \).

We are now ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Since \(\omega_1^{CK} = \omega_1^G \), \(G \) has length at most \(\omega_1^{CK} \). Note that Th\(_\infty(G) \) contains the sentences \(\varphi_{\alpha,u_\alpha(G)} \) for \(\alpha < \omega_1^{CK} \). Thus any model of Th\(_\infty(G) \) has the same Ulm invariants as \(G \), for ordinals below \(\omega_1^{CK} \).

If \(\text{SR}(G) \) \(< \omega_1^{CK} \), let \(\lambda \) be the length of \(G \). Then Th\(_\infty(G) \) includes the computable formula \((\forall x)[\psi_\lambda(x) \leftrightarrow \psi_{\lambda+1}(x)] \), so that any countable model of Th\(_\infty(G) \) has length at most \(\lambda \). Note that in such a model, \(\psi_\lambda \) defines the \(p \)-divisible part. Let \(n \in \omega \cup \{ \omega \} \) be such that \(p^n G \) is isomorphic to \(\mathbb{Z}(p^n)^n \). Then, if \(n \in \omega \), Th\(_\infty(G) \) contains the formula which says that there are \(x_1, \ldots, x_n \) such that:

- \(\psi_\lambda(x_1) \land \cdots \land \psi_\lambda(x_n) \),
- for all \(c_1, \ldots, c_n < p \) not all zero and \(k_1, \ldots, k_n \in \omega \),

\[
\frac{c_1}{p^{k_1}}x_1 + \cdots + \frac{c_n}{p^{k_n}}x_n \neq 0,
\]
• for all y with $\psi(\lambda(y))$, there are $c_1, \ldots, c_n < p$ and $k_1, \ldots, k_n \in \omega$ such that
 \[y = \frac{c_1}{p^{k_1}} x_1 + \cdots + \frac{c_n}{p^{k_n}} x_n. \]

If $n = \omega$, then $\text{Th}_\omega(G)$ contains the formula which says that for each $m \in \omega$, there are x_1, \ldots, x_m such that
• $\psi(x_1) \land \cdots \land \psi(x_m)$, and
• for all $c_1, \ldots, c_n < p$ not all zero and $k_1, \ldots, k_m \in \omega$,
 \[\frac{c_1}{p^{k_1}} x_1 + \cdots + \frac{c_m}{p^{k_m}} x_m \neq 0. \]

Any countable model of $\text{Th}_\omega(G)$ has p-divisible part isomorphic to $\mathbb{Z}(p^{\infty})^n$. So any countable model of $\text{Th}_\omega(G)$ has the same Ulm invariants and p-divisible part as G, and hence is isomorphic to $\text{Th}_\omega(G)$. Hence $\text{Th}_\omega(G)$ is \aleph_0-categorical. This gives (2), and (1) for the case where $\text{SR}(G) < \omega_1^{CK}$.

If $\text{SR}(G) = \omega_1^{CK} + 1$, let H be any other countable model of $\text{Th}_\omega(G)$ with $\omega_1^H = \omega_1^G = \omega_1^{CK}$. Thus G and H both have length ω_1^{CK} and their p-divisible parts have infinite rank. As remarked before, they have the same Ulm invariants, and so they must be isomorphic. This completes the proof of (1).

3. The Theory T_p

Fix a prime p. The language \mathcal{L}_p of T_p will consist of a constant 0, unary relations R_n for $n \in \omega$, and ternary relations $P_{\ell,m}^n$ for $\ell, m \in \omega$ and $n \leq \max(\ell, m)$. The following transformation of an abelian p-group into an \mathcal{L}_p-structure will illustrate the intended meaning of the symbols.

Definition 3.1. Let G be an abelian p-group. Define $\mathfrak{M}(G)$ to be an \mathcal{L}_p-structure obtained as follows, with the same domain as G, and the symbols of \mathcal{L}_p interpreted as follows:

- Set $0^{\mathfrak{M}(G)}$ to be the identity element of G.
- For each n, let $R_n^{\mathfrak{M}(G)}$ be the elements which are torsion of order p^n.
- For each $\ell, m \in \omega$ and $n \leq \max(\ell, m)$, and $x, y, z \in G$, set $P_{\ell,m}^{n,\mathfrak{M}(G)}(x, y, z)$ if and only if $x + y = z$, $x \in R_\ell^{\mathfrak{M}(G)}$, $y \in R_m^{\mathfrak{M}(G)}$, and $z \in R_n^{\mathfrak{M}(G)}$.

One should think of such \mathcal{L}_p-structures as the canonical models of T_p. The theory T_p will consist of following axiom schemata:

(A1) For all $\ell, m, n \in \omega$:

\[
(\forall x)(\forall y, z) \left[P_{\ell,m}^n(x, y, z) \rightarrow (R_\ell(x) \land R_m(x) \land R_n(z)) \right].
\]

(A2) $(R_n$ contains the elements which are torsion of order $p^n.)$

\[
(\forall x)[R_0(x) \leftrightarrow x = 0].
\]

and, for all $n \geq 1$:

\[
(\forall x) \left[x \in R_n \leftrightarrow (\exists x_2 \cdot \exists x_{p-1}) \left[P_{n,n}^n(x, x_2) \land P_{n,n}^n(x, x_3) \land \cdots \land P_{n,n}^n(x, x_{p-1}, x_p) \right] \right].
\]

(A3) $(P$ defines a partial function.) For all $\ell, m, n, n' \in \omega$:

\[
(\forall x)(\forall y)(\forall z)(\forall z') \left[(P_{\ell,m}^n(x, y, z) \land P_{\ell,m}^{n'}(x, y, z')) \rightarrow z = z' \right].
\]
(A4) (P is total.) For all \(\ell, m \in \omega \):
\[
(\forall x, y) \left[\left(R_\ell(x) \land R_m(y) \right) \rightarrow \bigvee_{n \leq \max(\ell, m)} (\exists z) P_{\ell, m}^n(x, y, z) \right].
\]

(A5) (Identity.) For all \(\ell \in \omega \):
\[
(\forall x) [R_\ell(x) \rightarrow [P_{\ell, \ell}^0(0, x, x) \land P_{\ell, 0}^0(x, 0, x)]].
\]

(A6) (Inverses.) For all \(\ell \in \omega \):
\[
(\forall x) (\exists y) [R_\ell(x) \rightarrow [P_{\ell, \ell}^0(x, y, 0) \land P_{\ell, 0}^0(y, x, 0)]].
\]

(A7) (Associativity.) For all \(\ell, m, n \in \omega \):
\[
(\forall x, y, z) [[R_{\ell, m}(x) \land R_m(y) \land R_n(z)] \rightarrow \\
\left(\bigvee_{r \leq \max(\ell, m), \ell \leq \max(m, n), s \leq \max(r, n), t \leq \max(\ell, s)} (3u3v3w) \right) \left[P_{\ell, m, n}^r(x, y, u) \land P_{\ell, n}^s(u, z, v) \land P_{\ell, s}^t(v, w) \right].
\]

(A8) (Abelian.) For all \(\ell, m \in \omega \) and \(n \leq \max(\ell, m) \):
\[
(\forall x, y, z) \left[R_{\ell, m}(x) \land R_m(y) \land R_n(z) \land P_{\ell, m, n}^x(x, y, z) \right] \rightarrow P_{\ell, m, n}^n(y, x, z).
\]

We must now check that the definition of \(T_p \) works as desired, that is, that if \(G \) is an abelian \(p \)-group, then \(\mathfrak{M}(G) \) is a model of \(T_p \).

Lemma 3.2. If \(G \) is an abelian \(p \)-group, then \(\mathfrak{M}(G) \models T_p \).

Proof. We must check that each instance of the axiom schemata of \(T_p \) holds in \(\mathfrak{M}(G) \).

(A1) Suppose that \(x, y, \) and \(z \) are elements of \(G \) with \(P_{m, \ell}^{n, \mathfrak{M}(G)}(x, y, z) \). Then, by definition, \(x + y = z, x \in R_{\ell}^{\mathfrak{M}(G)}, y \in R_{m}^{\mathfrak{M}(G)}, \) and \(z \in R_{n}^{\mathfrak{M}(G)} \).

(A2) \(R_{0}^{\mathfrak{M}(G)} \) contains the elements of \(G \) which are torsion of order \(p^0 = 1 \), so \(R_0 \) contains just the identity. For each \(n > 0 \), \(F_{n}^{\mathfrak{M}(G)} \) contains the elements of order \(p^n \). An element \(x \) has order \(p^n \) if and only if \(px \) has order \(p^{n-1} \). It remains only to note that if \(x \) has order \(p^n \), then \(x, 2x, 3x, \ldots, (p-1)x \) all have order \(p^n \) as well. The existential quantifier is witnessed by \(x_2 = 2x, x_3 = 3x, \) and so on.

(A3) If, for some \(x, y, z, \) and \(z' \), \(P_{\ell, m}^{n, \mathfrak{M}(G)}(x, y, z) \) and \(P_{\ell, m}^{n', \mathfrak{M}(G)}(x, y, z') \), then \(x + y = z \) and \(x + y = z' \), so that \(z = z' \).

(A4) Given \(x \) and \(y \) in \(G \) which are of order \(p^m \) and \(p^\ell \) respectively, \(x + y \) is of order \(p^n \) for some \(n \leq \max(m, \ell) \), and so we have \(P_{m, \ell}^{n, \mathfrak{M}(G)}(x, y, x + y) \).

(A5) If \(x \in G \) is of order \(p^\ell \), then \(x + 0 = 0 + x = x \) and so we have \(P_{\ell, 0}^{0, \mathfrak{M}(G)}(x, 0, x) \).

(A6) If \(x \in G \) is of order \(p^\ell \), then \(-x \) is also of order \(p^\ell \), and \(x + (-x) = 0 = (-x) + x \). So we have \(P_{\ell, \ell}^{0, \mathfrak{M}(G)}(x, -x, 0) \).

(A7) Given \(x, y, z \in G \) of order \(p^\ell, p^m \), and \(p^n \) respectively, there are \(r \leq \max(\ell, m) \) and \(s \leq \max(m, n) \) such that \(x + y \) and \(y + z \) are of order \(p^r \) and \(p^s \) respectively. Then there is \(t \) such that \(x + y + z \) is of order \(p^t \); \(t \leq \max(r, n) \) and \(t \leq \max(\ell, s) \).
(A8) Given \(x, y, z \in G \) of order \(p^\ell, p^m, \) and \(p^n \) respectively, \(n \leq \max(\ell, m), \) and with \(x + y = z, \) we have \(y + x = z \) as \(G \) is abelian.

Thus we have shown that \(\mathfrak{M}(G) \) is a model of \(T_p. \)

\[\square \]

Note that \(G \) and \(\mathfrak{M}(G) \) are effectively bi-interpretable, proving one half of Theorem 4.3.

4. FROM A MODEL OF \(T_p \) TO AN ABELIAN \(p \)-GROUP

Given an abelian \(p \)-group \(G, \) we have already described how to turn \(G \) into a model of \(T_p. \) In this section we will do the reverse by turning a model of \(T_p \) into an abelian \(p \)-group.

Definition 4.1. Let \(\mathcal{M} \) be a model of \(T_p. \) Define \(\mathfrak{S}(\mathcal{M}) \) to be the group obtained as follows.

- The domain of \(\mathfrak{S}(\mathcal{M}) \) will be the subset of the domain of \(\mathcal{M} \) given by \(\bigcup_{n\in\omega} R^\mathcal{M}_n. \)
- The identity element of \(\mathfrak{S}(\mathcal{M}) \) will be \(0^\mathcal{M}. \)
- We will have \(x + y = z \) in \(\mathfrak{S}(\mathcal{M}) \) if and only if, for some \(\ell, m, \) and \(n, P^\mathcal{M}_{\ell,m}(x,y,z). \)

We will now check that \(\mathfrak{S}(\mathcal{M}) \) is always an abelian \(p \)-group.

Lemma 4.2. If \(\mathcal{M} \) is a model of \(T_p, \) then \(\mathfrak{S}(\mathcal{M}) \) is an abelian \(p \)-group.

Proof. First we check that the operation \(+ \) on \(\mathfrak{S}(\mathcal{M}) \) defines a total function. Given \(x, y \in \mathfrak{S}(\mathcal{M}), \) choose \(\ell \) and \(m \) such that \(x \in R^\mathcal{M}_\ell \) and \(y \in R^\mathcal{M}_m. \) Then by (A3) and (A4), there is a unique \(n \leq \max(\ell, m) \) and a unique \(z \) such that \(P^\mathcal{M}_{\ell,m}(x,y,z). \) Thus \(x + y = z, \) and \(z \) is unique.

Second, we check that \(\mathfrak{S}(\mathcal{M}) \) is in fact a group. To see that \(0^\mathcal{M} \) is the identity, given \(x \in \mathfrak{S}(\mathcal{M}), \) there is \(\ell \) such that \(x \in R^\mathcal{M}_\ell. \) By (A5), \(P^\mathcal{M}_0(x,0^\mathcal{M},x) \) and \(P^\mathcal{M}_0(0^\mathcal{M},x,0^\mathcal{M}). \) Thus \(x + 0^\mathcal{M} = 0^\mathcal{M} + x = x, \) and \(0^\mathcal{M} \) is the identity of \(\mathfrak{S}(\mathcal{M}). \)

To see that \(\mathfrak{S}(\mathcal{M}) \) has inverses, given \(x \in \mathfrak{S}(\mathcal{M}), \) there is \(\ell \) such that \(x \in R^\mathcal{M}_\ell, \) and by (A6) there is \(y \in R^\mathcal{M}_\ell \) such that \(P^\mathcal{M}_\ell(x,y,0^\mathcal{M}) \) and \(P^\mathcal{M}_\ell(y,x,0^\mathcal{M}). \) Thus \(x + y = y + x = 0^\mathcal{M}, \) and \(y \) is the inverse of \(x. \) Finally, to see that \(\mathfrak{S}(\mathcal{M}) \) is associative, given \(x, y, z \in \mathfrak{S}(\mathcal{M}), \) there are \(\ell, m, \) and \(n \) such that \(x \in R^\mathcal{M}_\ell, y \in R^\mathcal{M}_m, \) and \(z \in R^\mathcal{M}_n. \) Then by (A7) there are \(r, s, \) and \(t, u, v, \) and \(w, \) such that \(P^\mathcal{M}_{r,m}(x,y,u), P^\mathcal{M}_{r,n}(u,z,w), P^\mathcal{M}_{s,n}(y,z,v), \) and \(P^\mathcal{M}_{s,t}(x,v,w). \) Thus \(x + y = u, \)

\[u + z = w, \]

\[y + z = v, \]

\[x + v = w. \]

So \((x + y) + z = x + (y + z). \) Thus \(\mathfrak{S}(\mathcal{M}) \) is associative.

Third, to see that \(\mathfrak{S}(\mathcal{M}) \) is abelian, let \(x, y \in \mathfrak{S}(\mathcal{M}). \) There are \(\ell \) and \(m \) such that \(x \in R^\mathcal{M}_\ell \) and \(y \in R^\mathcal{M}_m. \) Let \(n \leq \max(\ell, m) \) be such that \(z = x + y \in R^\mathcal{M}_n. \) (Such an \(n \) and \(z \) exist by the arguments above that \(+ \) is total, via (A3) and (A4).) Then \(P^\mathcal{M}_{n,m}(x,y,z), \) and so by (A8), \(P^\mathcal{M}_{n,\ell}(y,x,z). \) Thus \(y + x = z \) and \(\mathfrak{S}(\mathcal{M}) \) is abelian.

Finally, we need to see that \(\mathfrak{S}(\mathcal{M}) \) is a \(p \)-group. We claim, by induction on \(n \geq 0, \)

that \(R^\mathcal{M}_n \) consists of the elements of \(\mathfrak{S}(\mathcal{M}) \) which are of order \(p^n. \) From this claim, it follows that \(\mathfrak{S}(\mathcal{M}) \) is a \(p \)-group. For \(n = 0, \) the claim follows directly from (A2). Given \(n > 0, \) suppose that \(x \in R^\mathcal{M}_n. \) Then the witnesses \(x_2, x_3, \ldots, x_p \) to (A2) must be \(2x, 3x, \ldots, px. \) Note that since \(P^{n-1,\mathcal{M}}(p,0) \) \(\in R^\mathcal{M}_{n-1}. \) Thus \(px \) is of
order p^{n-1}, and so x is of order p^n. On the other hand, if x is of order p^n, then px is of order p^{n-1} and so $px \in R_{n-1}^M$. Moreover, $x_2 = 2x, x_3 = 3x, \ldots, x_{p-1} = (p-1)x$ are all of order p^n. So we have $P_{n,n}^M(x, x, x_2), P_{n,n}^M(x, x_2, x_3), \ldots, P_{n,n}^M(x, x_{p-1}, x_p)$. By (A2), $x \in R_n^M$. This completes the inductive proof.

We now have two operations, one which turns an abelian p-group into a model of T_p, and another which turns a model of T_p into an abelian p-group. These two operations are almost inverses to each other. If we begin with an abelian p-group, turn it into a model of T_p, and then that model into an abelian p-group, we will obtain the original group. However, if we start with a M model of T_p, turn it into an abelian p-group, and then turn that abelian p-group into a model of T_p, we may obtain a different model of T_p. The problem is that the of elements of M which are not in any of the sets R_n^M are discarded when we transform M into an abelian p-group. However, these elements form a pure set, and so the only pertinent information is their size.

Definition 4.3. Given a model M of T_p, the size of M, $\#M \in \omega \cup \{\infty\}$, is the number of elements of M not in any relation R_n.

Lemma 4.4. Given an abelian p-group G, $\mathfrak{S}(\mathfrak{M}(G)) = G$.

Proof. Since $\#\mathfrak{M}(G) = 0$, we see that G, $\mathfrak{M}(G)$, and $\mathfrak{S}(\mathfrak{M}(G))$ all have the same domain. The identity of $\mathfrak{S}(\mathfrak{M}(G))$ is $0^{\mathfrak{M}(G)}$ which is the identity of G. If $x + y = z$ in G, then, for some $\ell, m, n \in \omega$, we have $P_{\ell,m}^{\mathfrak{M}(G)}(x, y, z)$. Thus, in $\mathfrak{S}(\mathfrak{M}(G))$, we have $x + y = z$. So $\mathfrak{S}(\mathfrak{M}(G)) = G$. □

We make a simple extension to \mathfrak{M} as follows.

Definition 4.5. Let G be an abelian p-group and $m \in \omega \cup \{\infty\}$. Define $\mathfrak{M}(G, m)$ to be \mathcal{L}_p-structure with domain $G \cup \{a_1, \ldots, a_m\}$ with the relations interpreted as in $\mathfrak{M}(G)$. Thus, no relations hold of any of the elements a_1, \ldots, a_m.

Lemma 4.6. Given a model M of T_p, $\mathfrak{M}(G(M), \#M) \cong M$.

Proof. We will show that if $\#M = 0$, then $\mathfrak{M}(\mathfrak{S}(M)) = M$. From this one can easily see that $\mathfrak{M}(G(M), \#M) \cong M$ in general.

If $\#M = 0$, then M, $\mathfrak{S}(M)$, and $\mathfrak{M}(\mathfrak{S}(M))$ all share the same domain. It is clear that $0^M = 0^{\mathfrak{S}(M)} = 0^{\mathfrak{M}(\mathfrak{S}(M))}$. From the proof of Lemma 4.2, we see that for each n, R_n^M defines the set of elements of $\mathfrak{S}(M)$ which are torsion of order p^n, and so $R_n^M = R_n^{\mathfrak{M}(\mathfrak{S}(M))}$. Given $\ell, m \in \omega$ and $n \leq \max(\ell, m)$, and x, y, z elements of the shared domain, we have $P_{\ell,m}^{\mathfrak{M}(M)}(x, y, z)$ if and only if

$$x + y = z \text{ in } \mathfrak{S}(M) \text{ and } x \in R_{\ell}^M, y \in R_{m}^M, \text{ and } z \in R_{n}^M.$$

Since $R_i^M = R_i^{\mathfrak{M}(\mathfrak{S}(M))}$ for each i, this is the case if and only if $P_{\ell,m}^{\mathfrak{M}(\mathfrak{S}(M))}(x, y, z)$. Thus we have shown that $\mathfrak{M}(\mathfrak{S}(M)) = M$. □

Note that M and the disjoint union of $\mathfrak{S}(M)$ with a pure set of size $\#M$ are bi-interpretable, using computable infinitary formulas, completing the proof of Theorem 1.3.
5. Borel Equivalence

In this section we will prove Theorem 1.7 by showing that the class of models of T_p and the class of abelian p-groups are Borel equivalent. $G \mapsto \mathfrak{G}(\mathfrak{M}(G)) = \mathfrak{G}(\mathfrak{M}(G,0))$ is a Borel reduction from isomorphism on abelian p-groups to isomorphism on models of T_p. However, $\mathcal{M} \mapsto \mathfrak{G}(\mathcal{M})$ is not a Borel reduction in the other direction, because two non-isomorphic models of T_p might be mapped to isomorphic groups. We need to find a way to turn $\mathfrak{G}(\mathcal{M})$ and $\#\mathcal{M}$ into an abelian p-group $\mathfrak{H}(\mathfrak{G}(\mathcal{M}), \#\mathcal{M})$, so that \mathcal{M} and $\#\mathcal{M}$ can be recovered from $\mathfrak{H}(\mathfrak{G}(\mathcal{M}), \#\mathcal{M})$.

We will define $\mathfrak{H}(G,m)$ for any abelian p-group H and $m \in \Omega \cup \{\infty\}$. It is helpful to think about what this reduction will do to the Ulm invariants: The first Ulm invariant of $\mathfrak{H}(G,m)$ will be m, and for each α, then $1 + \alpha$ Ulm invariant of $\mathfrak{H}(G,m)$ will be the same as the αth Ulm invariant of G.

Definition 5.1. Given an abelian p-group G, and $m \in \Omega \cup \{\infty\}$, define an abelian p-group $\mathfrak{H}(G,m)$ as follows. Let \mathcal{B} be a basis for the \mathbb{Z}_p-vector space G/pG. Let $\mathcal{B} \subseteq G$ be a set of representatives for \mathcal{B}. Let G^* be the abelian group $\langle G, a_b : b \in B | p\alpha_b = b \rangle$. Then define $\mathfrak{H}(G,m) = G^* \oplus (\mathbb{Z}_p)^m$.

To make this Borel, we can take \mathcal{B} to be the lexicographically first set of representatives for a basis. It will follow from Lemma 5.2 that the isomorphism type of $\mathfrak{H}(G,m)$ does not depend on these choices. First, we require a couple of lemmas.

Lemma 5.2. Each element of G can be written uniquely as a (finite) linear combination $h + \sum_{b \in \mathcal{B}} x_b b$ where $h \in pG$ and each $x_b < p$.

Proof. Given $g \in G$, let \hat{g} be the image of g in G/pG. Then, since \mathcal{B} is a basis for G/pG, we can write

$$\hat{g} = \sum_{b \in \mathcal{B}} x_b \hat{b}$$

with $x_b < p$, where \hat{b} is the image of b in G/pG. Thus setting

$$h = g - \sum_{b \in \mathcal{B}} x_b b \in pG$$

we get a representation of g as in the statement of the theorem.

To see that this representation is unique, suppose that

$$h + \sum_{b \in \mathcal{B}} x_b b = h' + \sum_{b \in \mathcal{B}} y_b b.$$

Then, modulo pG,

$$\sum_{b \in \mathcal{B}} x_b \hat{b} = \sum_{b \in \mathcal{B}} y_b \hat{b}.$$

Since \mathcal{B} is a basis, $x_b = y_b$ for each $b \in \mathcal{B}$. Then we get that $h = h'$ and the two representations are the same. \qed

Lemma 5.3. Each element of G^* can be written uniquely in the form $h + \sum_{b \in \mathcal{B}} x_b a_b$ where $h \in G$ and each $x_b < p$.

Proof. It is clear that each element of G^* can be written in such a way. If

$$h + \sum_{b \in \mathcal{B}} x_b a_b = h' + \sum_{b \in \mathcal{B}} y_b a_b$$

then, in G,

$$ph + \sum_{b \in \mathcal{B}} x_b b = ph' + \sum_{b \in \mathcal{B}} y_b b.$$

\qed
Lemma 5.6. H is of order pg such that \(\in \). Note that Proof. We will show that \((H)\subseteq(G)\subseteq(B)\). Hence \(pG\), \(G\). This representation is unique, so \(x_b = y_b\) for each \(b \in B\), and so \(h = h'\). □

Lemma 5.4. The isomorphism type of \(\hat{\mathcal{H}}(G,m)\) depends only on the isomorphism type of \(G\), and not on the choice of \(B\).

Proof. It suffices to show that if \(\mathcal{C}\) is another choice of representatives for a basis of \(G/pG\), then \(G'_B = G'_\mathcal{C}\), where the former is constructed using \(B\), and the later is constructed using \(\mathcal{C}\). Let \(f: B \to \mathcal{C}\) be an bijection.

Given \(g \in G'_B\), write \(g = g' + \sum_{b \in B} x_b a_b\) with \(g' \in G\) and \(0 \leq x_b < p\). This representation of \(g\) is unique by Lemma 5.3. Define \(\varphi(g) = g' + \sum_{b \in B} x_b a_{f(b)}\). It is not hard to check that \(\varphi\) is a homomorphism. The inverse of \(\varphi\) is the map \(\psi\) which is defined by \(\psi(h) = h' + \sum_{c \in C} y_c a_{f^{-1}(c)}\) where \(h = h' + \sum_{c \in C} y_c a_c\). □

The next two lemmas will be used to show that if \(G\) is not isomorphic to \(G'\), or if \(m\) is not equal to \(m'\), then \(\hat{\mathcal{H}}(G,m)\) will not be isomorphic to \(\hat{\mathcal{H}}(G',m')\).

Lemma 5.5. \(G = pG^*\).

Proof. Each element of \(G\) can be written as \(g + \sum_{b \in B} x_b b\) with \(g \in pG\). Let \(g' \in G\) be such that \(pg' = g\). Then
\[
p(g' + \sum_{b \in B} x_b a_b) = g + \sum_{b \in B} x_b b.
\]
Hence \(G \subseteq pG^*\). Given \(h \in G^*\), write \(h = g + \sum_{b \in B} x_b a_b\). Then \(ph = pg + \sum_{b \in B} x_b b \in G\). So \(pG^* \subseteq G\), and so \(G = pG^*\). □

If \(G\) is a group, recall that we denote by \(G[p]\) the elements of \(G\) which are torsion of order \(p\).

Lemma 5.6. \(\hat{\mathcal{H}}(G,m)[p] / (p\hat{\mathcal{H}}(G,m))[p] \cong (\mathbb{Z}_p)^m\).

Proof. Note that
\[
\hat{\mathcal{H}}(G,m)[p] / (p\hat{\mathcal{H}}(G,m))[p] \cong (G^*[p] / (pG^*)[p]) \oplus (\mathbb{Z}_p)^m[p] / (p(\mathbb{Z}_p)^m)[p]
\]
\[
\cong (G^*[p] / G[p]) \oplus (\mathbb{Z}_p)^m.
\]
We will show that \((G^*[p] / G[p])\) is the trivial group by showing that if \(g \in G^*\), \(pg = 0\), then \(g \in G\). Indeed, write \(g = g' + \sum_{b \in B} y_b a_b\) with \(g' \in G\). Then
\[
0 = pg = pg' + \sum_{b \in B} py_b a_b = pg' + \sum_{b \in B} y_b b.
\]
Since \(0 \in pG\) has a unique representation (by Lemma 5.2) \(0 = 0 + \sum_{b \in B} 0b\), we get that \(y_b = 0\) for each \(b \in B\), and so \(g = g' \in G\). □

By the previous lemma, we can recover \(m\) from \(\hat{\mathcal{H}}(G,m)\). We have
\[
p\hat{\mathcal{H}}(G,m) = pG^* \oplus p(\mathbb{Z}_p)^m \cong pG^* = G
\]
so that we can also recover \(G\).

Thus, using Lemma 4.6 \(\mathcal{M} \to \hat{\mathcal{H}}(\mathfrak{G}(\mathcal{M}), \#\mathcal{M})\) gives a Borel reduction from \(T_p\) to abelian \(p\)-groups. This completes the proof of Theorem 1.7.
References

[AK00] Chris J. Ash and Julia F. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2000.

[FKM+11] E. Fokina, J. F. Knight, A. Melnikov, S. M. Quinn, and C. Safranski. Classes of Ulm type and coding rank-homogeneous trees in other structures. J. Symbolic Logic, 76(3):846–869, 2011.

[FS89] Harvey Friedman and Lee Stanley. A Borel reducibility theory for classes of countable structures. J. Symbolic Logic, 54(3):894–914, 1989.

[Fuc70] László Fuchs. Infinite abelian groups. Vol. I. Pure and Applied Mathematics, Vol. 36. Academic Press, New York-London, 1970.

[HTIK] Matthew Harrison-Trainor, Gregory Igusa, and Julia F. Knight. Some new computable structures of high rank. Preprint.

[HTMM] Matthew Harrison-Trainor, Russell Miller, and Antonio Montalbán. Borel functors and infinitary interpretations. Preprint.

[HTMM2] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and Antonio Montalbán. Computable functors and effective interpretability. To appear in the Journal of Symbolic Logic.

[Mon] Antonio Montalbán. Computability theoretic classifications for classes of structures. To appear in the Proceedings of the ICM 2014.

[Mon15] Antonio Montalbán. A robuster Scott rank. Proc. Amer. Math. Soc., 143(12):5427–5436, 2015.

[Nad74] Mark Nadel. Scott sentences and admissible sets. Ann. Math. Logic, 7:267–294, 1974.

[Sco65] Dana Scott. Logic with denumerably long formulas and finite strings of quantifiers. In Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), pages 329–341. North-Holland, Amsterdam, 1965.

[Ulm33] Helmut Ulm. Zur Theorie der abzählbar-unendlichen Abelschen Gruppen. Math. Ann., 107(1):774–803, 1933.

[URL] Douglas Ulrich, Richard Rast, and Michael C. Laskowski. Borel complexity and potential canonical scott sentences. Preprint.

Group in Logic and the Methodology of Science, University of California, Berkeley, USA

E-mail address: matthew.h-t@berkeley.edu

URL: www.math.berkeley.edu/~matht