Abstract. We show that a complete flat pseudo-Riemannian homogeneous manifold with non-abelian linear holonomy is of dimension ≥ 14. Due to an example constructed in a previous article [2], this is a sharp bound. Also, we give a structure theory for the fundamental groups of complete flat pseudo-Riemannian manifolds in dimensions ≤ 6. Finally, we observe that every finitely generated torsion-free 2-step nilpotent group can be realized as the fundamental group of a complete flat pseudo-Riemannian manifold with abelian linear holonomy.

Contents

1. Introduction 1
2. Preliminaries 2
3. The Dimension Bound for Complete Manifolds 4
 3.1. Properties of the Matrix Representation 4
 3.2. Criteria for Fixed Points 5
 3.3. The Dimension Bound 8
4. Low Dimensions 10
 4.1. Signature $(n - 2, 2)$ 10
 4.2. Dimension ≤ 5 13
 4.3. Dimension 6 13
5. Fundamental Groups of Complete Flat Pseudo-Riemannian Homogeneous Spaces 17
Acknowledgments 18
References 18

1. Introduction

The study of pseudo-Riemannian homogeneous space forms was pioneered by Joseph A. Wolf in the 1960s. In the flat case, he proved that the fundamental group Γ of such a space M is 2-step nilpotent. For M with abelian linear holonomy group he derived a representation by unipotent affine transformations [9]. The linear holonomy group $\text{Hol}(\Gamma)$ of M is the group consisting of the linear parts of Γ. Wolf further proved that for $\dim M \leq 4$ and Lorentz signatures, Γ is a group of pure translations, and that Γ is free abelian for signatures $(n - 2, 2)$. It was unclear whether or not non-abelian Γ could exist for other signatures, until Oliver Baues gave a first example in [1] of a compact flat pseudo-Riemannian homogeneous
space with signature \((3, 3)\) having non-abelian fundamental group and abelian linear holonomy group.

In an article \([2]\) by Oliver Baues and the author, Wolf’s unipotent representations for fundamental groups with abelian \(\text{Hol}(\Gamma)\) were generalized for groups with non-abelian linear holonomy. Also, it was shown that a (possibly incomplete) flat pseudo-Riemannian homogeneous manifold \(M\) with non-abelian linear holonomy group is of dimension \(\dim M \geq 8\). In chapter 2 we review the main results about the algebraic structure of the fundamental and holonomy groups of such \(M\).

It was asserted in \([2]\) that if \(M\) is (geodesically) complete, then \(\dim M \geq 14\) holds. This assertion is proved in chapter 3 of the present article. More precisely, we prove the following:

Theorem. If \(M\) is a complete flat homogeneous pseudo-Riemannian manifold such that its fundamental group \(\Gamma\) has non-abelian linear holonomy group, then

\[
\dim M \geq 14
\]

and the signature \((n - s, s)\) of \(M\) satisfies \(n - s \geq s \geq 7\).

This estimate is sharp by an example given in \([2]\), which is repeated in Example 3.12 for the reader’s convenience.

In chapter 4 we give a complete description of the fundamental groups of flat pseudo-Riemannian homogeneous spaces up to dimension 6. Although non-abelian fundamental groups may occur in dimension 6, their holonomy groups are abelian as a consequence of the dimension bound in the above theorem.

Further, we will see in chapter 5 how any finitely generated torsion-free 2-step nilpotent group can be realized as the fundamental group of a complete flat pseudo-Riemannian homogeneous manifold with abelian holonomy:

Theorem. Let \(\Gamma\) be a finitely generated torsion-free 2-step nilpotent group of rank \(n\). Then there exists a faithful representation \(\varphi : \Gamma \to \text{Iso}(\mathbb{R}^{2n}_n)\) such that \(M = \mathbb{R}^{2n}_n/\varphi(\Gamma)\) a complete flat pseudo-Riemannian homogeneous manifold \(M\) of signature \((n, n)\) with abelian linear holonomy group.

2. Preliminaries

Let \(\mathbb{R}^n\) be the space \(\mathbb{R}^n\) endowed with a non-degenerate symmetric bilinear form of signature \((n - s, s)\) and \(\text{Iso}(\mathbb{R}^n_s)\) its group of isometries. We assume \(n - s \geq s\) throughout. The number \(s\) is called the Witt index. For a vector space \(V\) endowed with a non-degenerate symmetric bilinear form let \(\text{wi}(V)\) denote its Witt index. Affine maps of \(\mathbb{R}^n\) are written as \(\gamma = (I + A, v)\), where \(I + A\) is the linear part \((I\) the identity matrix), and \(v\) the translation part. Let \(\text{im} A\) denote the image of \(A\).

Let \(M\) denote a complete flat pseudo-Riemannian homogeneous manifold. Then \(M\) is of the form \(M = \mathbb{R}^{2n}_n/\Gamma\) with fundamental group \(\Gamma \subset \text{Iso}(\mathbb{R}^{2n}_n)\). Homogeneity is determined by the action of the centralizer \(Z_{\text{Iso}(\mathbb{R}^{2n}_n)}(\Gamma)\) of \(\Gamma\) in \(\text{Iso}(\mathbb{R}^{2n}_n)\) (see \([8, \text{Theorem 2.4.17}]\)):

Theorem 2.1. Let \(\tilde{M} \to M\) be the universal pseudo-Riemannian covering of \(M\) and let \(\Gamma\) be the group of deck transformations. Then \(M\) is homogeneous if and only if \(Z_{\text{Iso}(\mathbb{R}^{2n}_n)}(\Gamma)\) acts transitively on \(\tilde{M}\).

This condition further implies that \(\Gamma\) acts without fixed points on \(\mathbb{R}^{2n}_s\). This constraint on \(\Gamma\) is the main difference to the more general case where \(M\) is not required to be geodesically complete.
Now assume \(\Gamma \subset \text{Iso}(\mathbb{R}^n) \) has transitive centralizer in \(\text{Iso}(\mathbb{R}^n) \). We sum up some properties of \(\Gamma \) for later reference (these are originally due to [9], see also [5, 3] for reference).

Lemma 2.2. \(\Gamma \) consists of affine transformations \(\gamma = (I + A, v) \), where \(A^2 = 0 \), \(v \perp \text{im} A \) and \(\text{im} A \) is totally isotropic.

Lemma 2.3. For \(\gamma_i = (I + A_i, v_i) \in \Gamma \), \(i = 1, 2, 3 \), we have \(A_1 A_2 v_1 = 0 = A_2 A_1 v_2 \), \(A_1 A_2 A_3 = 0 \) and \([\gamma_1, \gamma_2] = (I + 2A_1 A_2, 2A_1 v_2) \).

Lemma 2.4. If \(\gamma = (I + A, v) \in \Gamma \), then \(\langle Ax, y \rangle = -\langle x, Ay \rangle \), \(\text{im} A = (\text{ker} A)^\perp \), \(\text{ker} A = (\text{im} A)^\perp \) and \(Av = 0 \).

Theorem 2.5. \(\Gamma \) is 2-step nilpotent (meaning \([\Gamma, [\Gamma, \Gamma]] = \{ \text{id} \} \)).

For \(\gamma = (I + A, v) \in \Gamma \), set \(\text{Hol}(\gamma) = I + A \) (the linear component of \(\gamma \)). We write \(A = \log(\text{Hol}(\gamma)) \).

Definition 2.6. The linear holonomy group of \(\Gamma \) is \(\text{Hol}(\Gamma) = \{ \text{Hol}(\gamma) \mid \gamma \in \Gamma \} \).

Let \(x \in M \) and \(\gamma \in \pi_1(M, x) \) be a loop. Then \(\text{Hol}(\gamma) \) corresponds to the parallel transport \(\tau_x(\gamma) : T_x M \to T_x M \) in a natural way, see [8, Lemma 3.4.4]. This justifies the naming.

Proposition 2.7. The following are equivalent:

1. \(\text{Hol}(\Gamma) \) is abelian.
2. If \((I + A_1, v_1), (I + A_2, v_2) \in \Gamma \), then \(A_1 A_2 = 0 \).
3. The space \(U_\Gamma = \sum_{\gamma \in \Gamma} \text{im} A \) is totally isotropic.

Those \(\Gamma \) with possibly non-abelian \(\text{Hol}(\Gamma) \) were studied in [2]: If \(\text{Hol}(\Gamma) \) is not abelian, the space \(U_\Gamma \) is not totally isotropic. So we replace \(U_\Gamma \) by the totally isotropic subspace

\[
U_0 = U_\Gamma \cap U_\Gamma^\perp = \sum_{\gamma \in \Gamma} \text{im} A \cap \bigcap_{\gamma \in \Gamma} \text{ker} A.
\]

We can find a Witt basis for \(\mathbb{R}^n \) with respect to \(U_0 \), that is a basis with the following properties: If \(k = \dim U_0 \), there exists a basis for \(\mathbb{R}^n \),

\[
\{ u_1, \ldots, u_k, \ u_1, \ldots, w_{n-2k}, \ u_1^*, \ldots, u_k^* \},
\]

such that \(\{ u_1, \ldots, u_k \} \) is a basis of \(U_0 \), \(\{ w_1, \ldots, w_{n-2k} \} \) is a basis of a non-degenerate subspace \(W \) such that \(U_0^* = U_0 \oplus W \), and \(\{ u_1^*, \ldots, u_k^* \} \) is a basis of a space \(U_0^* \) such that \(\langle u_i, u_j^* \rangle = \delta_{ij} \) (then \(U_0^* \) is called a dual space for \(U_0 \)). Then

\[
\mathbb{R}_s^n = U_0 \oplus W \oplus U_0^*
\]

is called a Witt decomposition of \(\mathbb{R}^n \). Let \(\tilde{I} \) denote the signature matrix representing the restriction of \(\langle , \rangle \) to \(W \) with respect to the chosen basis of \(W \).

In [2, Theorem 4.4] we derived the following representation for \(\Gamma \):

Theorem 2.8. Let \(\gamma = (I + A, v) \in \Gamma \) and fix a Witt basis with respect to \(U_0 \). Then the matrix representation of \(A \) in this basis is

\[
A = \begin{pmatrix}
0 & -B^\top \tilde{I} & C \\
0 & 0 & B \\
0 & 0 & 0
\end{pmatrix},
\]

with \(B \in \mathbb{R}^{(n-2k) \times k} \) and \(C \in s_0^k \) (where \(k = \dim U_0 \)). The columns of \(B \) are isotropic and mutually orthogonal with respect to \(\tilde{I} \).
3. The Dimension Bound for Complete Manifolds

In this section we derive further properties of the matrix representation in (2.4).

3.1. Properties of the Matrix Representation. We fix a Witt basis for U_0 as in the previous section. Let $\gamma_i \in \Gamma$ with $\gamma_i = (I + A_i, v_i)$, $i = 1, 2$. Then B_i and C_i refer to the respective matrix blocks of A_i in (2.4). Set $[\gamma_1, \gamma_2] = \gamma_3 = (I + A_3, v_3)$.

Lemma 3.1. We have $\langle v_3, 2A_1v_2 - 2A_2v_1 \rangle \in U_0$. Further, if $\gamma_3 \neq I$ and Γ acts freely, then $v_3 \neq 0$.

Proof. By Lemma (2.3), $v_3 = 2A_1v_2 - 2A_2v_1 \in \text{im } A_1$. Because Γ is 2-step nilpotent, γ_3 is central. Again by Lemma (2.3), $v_3 \in \bigcap_{i \in I} \ker A_i$. Hence $v_3 \in U_0$.

If Γ acts freely and $\langle v_3 \rangle \neq I$, then $v_3 \neq 0$ because otherwise 0 would be a fixed point for γ_3. \square

Lemma 3.2. If u_1^*, u_2^* denote the respective U_0^*-components of the translation parts v_1, v_2, then $u_1^*, u_2^* \in \ker B_1 \cap \ker B_2$.

Proof. Let $v_3 = u_3 + u_3^* + u_3^*$ be the Witt decomposition of v_3. By Lemma (3.1), $u_3 = 0$, $u_3^* = 0$. Writing out the equation $v_3 = A_1v_2 - A_2v_1$ with (2.4) it follows that $B_1u_2^* = 0 = B_2u_1^*$. By Lemma (2.4), $B_1u_1^* = 0 = B_2u_2^*$. \square

The following rules were already used in [2, Theorem 5.1] to derive the general dimension bound for (possibly incomplete) flat pseudo-Riemannian homogeneous manifolds:

1. **Isotropy rule:** The columns of B_i are isotropic and mutually orthogonal with respect to \tilde{I} (Theorem 2.5).
2. **Crossover rule:** Given A_1 and A_2, let b_i^j be a column of B_i and b_i^k a column of B_i. Then $\langle b_i^j, b_i^k \rangle = -\langle b_i^k, b_i^j \rangle$. In particular, $\langle b_1^i, b_2^i \rangle = 0$, and $\langle b_1^i, b_1^i \rangle \neq 0$. If $\langle b_1^i, b_2^i \rangle \neq 0$ then $b_1^i, b_1^j, b_2^i, b_2^j$ are linearly independent. (The product of A_1A_2 contains $-B_1^1IB_2$ as the skew-symmetric upper right block, so its entries are the values $-\langle b_1^i, b_2^j \rangle$.)
3. **Duality rule:** Assume A_1 is not central (that is $A_1A_2 \neq 0$ for some A_2).

Then B_2 contains a column b_2^j and B_1 a column b_1^j such that $\langle b_1^j, b_2^j \rangle \neq 0$.

Lemma 3.3. Assume $A_1A_2 \neq 0$ and that the columns b_1^j in B_1 and b_2^j in B_2 satisfy $\langle b_1^j, b_2^j \rangle \neq 0$. The subspace W in (2.3) has a Witt decomposition

$$(3.1) \quad W = W_{ij} \oplus W' \oplus W_{ij}^*,$$

where $W_{ij} = \mathbb{R}b_1^j \oplus \mathbb{R}b_2^j$, $W_{ij}^* = \mathbb{R}b_2^j \oplus \mathbb{R}b_1^j$, $W' \perp W_{ij}$, $W' \perp W_{ij}^*$, and $\langle \cdot, \cdot \rangle$ is non-degenerate on W'. Furthermore,

$$(3.2) \quad \text{wi}(W) \geq \text{rk } B_1 \geq 2 \quad \text{and} \quad \dim W \geq \text{rk } B_1 \geq 4.$$

Proof. $\mathbb{R}b_1^j \oplus \mathbb{R}b_2^j$ is totally isotropic because $\text{im } B_1$ is. By the crossover rule, $\{b_2^j, b_2^j\}$ is a dual basis to $\{b_1^j, b_1^j\}$ (after scaling, if necessary).

W contains $\text{im } B_1$ as a totally isotropic subspace, so it also contains a dual space. Hence $\text{wi}(W) \geq \text{rk } B_1 \geq \dim W_{ij} \geq 2$ and $\dim W \geq \text{rk } B_1 \geq 2 \dim W_{ij} = 4$. \square
3.2. Criteria for Fixed Points. In this subsection, assume the centralizer of \(\Gamma \subset \text{Iso}(\mathbb{R}^n) \) has an open orbit in \(\mathbb{R}^n \), but does not necessarily act transitively.

Remark 3.4. If the centralizer does act transitively on \(\mathbb{R}^n \), then \(\Gamma \) acts freely: Assume \(\gamma, p = p \) for some \(\gamma \in \Gamma, p \in \mathbb{R}^n \). For every \(q \in \mathbb{R}^n \) there is \(z \in \text{Z}_{\text{iso}(\mathbb{R}^n)}(\Gamma) \) such that \(z.p = q \). So \(\gamma, q = \gamma(z.p) = z.(\gamma, p) = z.p = q \) for all \(q \in \mathbb{R}^n \). Hence \(\gamma = I \).

We will deduce some criteria for \(\Gamma \) to have a fixed point, which allows us to exclude such groups \(\Gamma \) as fundamental groups for complete flat pseudo-Riemannian homogeneous manifolds.

Let \(\Gamma, U_0, \gamma_1, \gamma_2, \gamma_3 = [\gamma_1, \gamma_2], A_1, B_1, C_1 \) be as in the previous sections. For any \(v \in \mathbb{R}^n \) let \(v = u + w + u^* \) denote the Witt decomposition with respect to \(U_0 \). From (2.4) we get the following two coordinate expressions which we use repeatedly:

\[
(3.3) \quad A_1 A_2 = \begin{pmatrix} 0 & -B_1^T \tilde{I} & C_1 \\ 0 & 0 & B_1 \end{pmatrix} \begin{pmatrix} 0 & -B_2^T \tilde{I} & C_2 \\ 0 & 0 & B_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -B_1^T \tilde{I} B_2 \\ 0 & 0 & 0 \end{pmatrix}
\]

(note that \(A_3 = 2A_1 A_2 \) as a consequence of Lemma 2.3), and for \(v \in \mathbb{R}_s \)

\[
(3.4) \quad A_1 v = \begin{pmatrix} 0 & -B_1^T \tilde{I} & C_1 \\ 0 & 0 & B_1 \end{pmatrix} \begin{pmatrix} u \\ w \\ u^* \end{pmatrix} = \begin{pmatrix} -B_1^T \tilde{I} w + C_1 u^* \\ B_1 u^* \end{pmatrix}.
\]

In the following we assume that the linear parts of \(\gamma_1, \gamma_2 \) do not commute, that is \(A_1 A_2 \neq 0 \). In particular, \(A_1 v_2 \neq 0 \).

Lemma 3.5. If \(u_3 \in \text{im} B_1^T \tilde{I} B_2 \), then \(\gamma_3 \) has a fixed point.

Proof. We have \(C_3 = -B_1^T \tilde{I} B_2 \) by Lemma 2.3 and (2.4). By Lemma 3.1 \(v_3 = u_3 \in U_0 \). If there exists \(u^* \in U_0^* \) such that \(C_3 u^* = u_3 \), then \(\gamma_3(-u^*) = (I + A_3, v_3)(-u^*) = -u^* - C_3 u^* + u_3 = -u^* \). So \(-u^* \) is fixed by \(\gamma_3 \).

Lemma 3.6. If \(\text{rk} B_1^T \tilde{I} B_2 = \text{rk} B_1 \) and the \(\Gamma \)-action is free, then \(u_1^* \neq 0, u_2^* \neq 0 \).

Proof. From (3.3) we get \(u_3 = -B_1^T \tilde{I} w_2 + C_1 u_2^* \). Also, \(\text{im} B_1^T \tilde{I} B_2 \subset \text{im} B_1^T \). But by our rank assumption, \(\text{im} B_1^T \tilde{I} B_2 = \text{im} B_1^T \).

So, if \(u_2^* = 0 \), then \(u_3 \in \text{im} B_1^T = \text{im} B_1^T \tilde{I} B_2 \), which implies the existence of a fixed point by Lemma 3.5. So \(u_2^* \neq 0 \) if the action is free. Using \(v_3 = A_1 v_2 = -A_2 v_1 \), we can conclude \(u_1^* \neq 0 \) in a similar manner.

Corollary 3.7. If \(\dim U_0 = 2 \), then the \(\Gamma \)-action is not free.

Proof. By Lemma 3.5 \(2 \leq \text{rk} B_1 \leq \dim U_0 = 2 \), so \(B_1 \) is of full rank. Now \(A_1 v_1 = 0 \) and (3.4) imply \(u_1^* = 0 \), so by Lemma 3.0 the \(\Gamma \)-action is not free.

Lemma 3.8. If \(\dim U_0 = 3 \) and \(\dim(\text{im} B_1 + \text{im} B_2) \leq 5 \), then \(\gamma_3 \) has a fixed point.

Proof. By Lemma 3.5 \(\text{rk} B_1, \text{rk} B_2 \geq 2 \). We distinguish two cases:

(i) Assume \(\text{rk} B_1 = 2 \) (or \(\text{rk} B_2 = 2 \)). Because \(C_3 = -B_1^T \tilde{I} B_2 \neq 0 \) is skew, it is also of rank 2. Then \(\text{im} B_1^T \tilde{I} B_2 = \text{im} B_1^T \). \(\ker B_1 \) is a 1-dimensional subspace due to \(\dim U_0^* = 3 \). Because \(u_1^*, u_2^* \in \ker B_1 \), we have \(u_1^* = \lambda u_2^* \) for some number \(\lambda \neq 0 \).
From (3.4) and $A_1 v_1 = 0$ we get
\[
\lambda u_3 = -B_1^T \tilde{I} \lambda w_2 + C_1 \lambda u_2 = -B_1^T \tilde{I} \lambda w_2 + C_1 u_1^*,
\]
\[
0 = -B_1^T \tilde{I} w_1 + C_1 u_1^*.
\]
So $\lambda u_3 = \lambda u_3 - 0 = B_1^T \tilde{I} (w_1 - \lambda w_2)$. In other words, $u_3 \in \text{im} B_1^T = \text{im} B_1^T \tilde{I} B_2$, and γ_3 has a fixed point by Lemma 3.5.

(ii) Assume $\text{rk} B_1 = \text{rk} B_2 = 3$. As $[A_1, A_2] \neq 0$, the duality rule and the crossover rule imply the existence of a pair of columns b_1^i, b_1^j in B_1 and a pair of columns b_2^i, b_2^j in B_2 such that $\alpha = \langle b_1^i, b_2^j \rangle = -\langle b_1^i, b_2^j \rangle \neq 0$. For simplicity say $i = 1$, $j = 2$. As $\text{rk} B_1 = 3$, the column b_1^i is linearly independent of b_1^j, b_2^i, and these columns span the totally isotropic subspace $\text{im} B_1$ of W.

- Assume $b_1^3 \in \text{im} B_1$ (or $b_1^3 \in \text{im} B_2$). Then b_1^3 is a multiple of b_1^j. In fact, let $b_1^3 = \lambda_1 b_1^i + \lambda_2 b_1^j + \lambda_3 b_1^k$. Then $\langle b_1^3, b_1^i \rangle = 0$ because $\text{im} B_1$ is totally isotropic. Since $\text{im} B_2$ is totally isotropic and by the crossover rule,
 \[
 0 = \langle b_1^3, b_1^j \rangle = \lambda_1 \langle b_1^i, b_1^j \rangle + \lambda_2 \langle b_1^j, b_1^j \rangle + \lambda_3 \langle b_1^k, b_1^j \rangle = \lambda_2 \alpha - \lambda_3 (b_2^3, b_1^j).
 \]
 Because $\alpha \neq 0$, this implies $\lambda_2 = 0$ and in the same way $\lambda_1 = 0$. So $b_1^3 = \lambda_3 b_1^j$. Now $b_1^3 \perp b_1^j, b_2^j$ for all i, j. We have $u_3^* = 0$ because $B_2 u_2^* = 0$ and B_2 is of maximal rank. Then $\langle b_1^i, w_2 \rangle = \langle b_2^i, w_2 \rangle = 0$, because $0 = B_1^T \tilde{I} w_2 + C_2 u_2^* = B_2^T \tilde{I} w_2$. Hence C_3 and u_3 take the form

\[
C_3 = -B_1^T \tilde{I} B_2 = \begin{pmatrix}
0 & -2 & 0 \\
\alpha & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
\]

$u_3 = -B_1^T \tilde{I} w_2 = \begin{pmatrix}
-\langle b_1^1, w_2 \rangle \\
-\langle b_2^1, w_2 \rangle \\
0
\end{pmatrix}.$

It follows that $u_3 \in \text{im} C_3$, so in this case γ_3 has a fixed point by Lemma 3.5.

- Assume $b_1^3 \notin \text{im} B_1$ and $b_1^j \notin \text{im} B_2$. This means b_1^3 and b_1^j are linearly independent. If $b_1^3 \perp \text{im} B_1$, then $b_1^j \perp \text{im} B_2$ by the crossover rule. With respect to the Witt decomposition $W = W_{12} \oplus W' \oplus W_{12}$ (Lemma 3.3), this means b_1^j, b_2^j span a 2-dimensional subspace of $(W_{12} \oplus W_{12})^\perp = W'$. But then $\dim(\text{im} B_1 + \text{im} B_2) = 6$, contradicting the lemma's assumption that this dimension should be ≤ 5.

So $b_1^3 \not\perp \text{im} B_1$ and $b_1^j \not\perp \text{im} B_2$ hold. Because further $b_1^j \perp \text{im} B_1$, $b_2^3 \perp \text{im} B_2$ and $\dim(\text{im} B_1 + \text{im} B_2) \leq 5$, there exists a $b \in W'$ (with W' from the Witt decomposition above) such that

\[
b_1^j = \lambda_1 b_1^j + \lambda_2 b_1^j + \lambda_3 b,
\]
\[
b_2^3 = \mu_1 b_1^3 + \mu_2 b_2^3 + \mu_3 b.
\]

Because B_1, B_2 are of maximal rank, we have $u_1^* = 0 = u_2^*$ as a consequence of $A_i v_i = 0$. Then

\[
0 = B_1^T \tilde{I} w_2 = \begin{pmatrix}
\langle b_1^1, w_2 \rangle \\
\langle b_2^1, w_2 \rangle \\
\langle b_3^2, w_2 \rangle
\end{pmatrix}.
\]
and this implies $\langle b, w_2 \rangle = 0$. Put $\xi = \langle b_1^1, w_2 \rangle$, $\eta = \langle b_1^2, w_2 \rangle$. Then

$$u_3 = -B_1^\top \tilde{I} w_2 = - \begin{pmatrix} \xi \\ \eta \\ \lambda_1 \xi + \lambda_2 \eta \end{pmatrix}$$

and (recall $\alpha = \langle b_1^1, b_1^2 \rangle = -\langle b_1^2, b_1^1 \rangle$)

$$C_3 = B_2^\top \tilde{I} B_1 = \begin{pmatrix} 0 & -\alpha & -\lambda_2 \alpha \\ \alpha & 0 & \lambda_1 \alpha \\ \lambda_2 \alpha & -\lambda_1 \alpha & 0 \end{pmatrix}.$$

So

$$C_3 \cdot \frac{1}{\alpha} \begin{pmatrix} -\eta \\ \xi \\ \lambda_1 \xi + \lambda_2 \eta \end{pmatrix} = - \begin{pmatrix} \xi \\ \eta \\ \lambda_1 \xi + \lambda_2 \eta \end{pmatrix} = u_3.$$

By Lemma 3.5, γ_3 has a fixed point.

So in any case γ_3 has a fixed point. \qed

Lemma 3.9. If $\dim U_0 = 4$ and $\text{rk } B_1^\top \tilde{I} B_2 = \text{rk } B_1 = \text{rk } B_2$, then γ_3 has a fixed point.

Proof. By assumption

$$\text{im } B_1^\top \tilde{I} B_2 = \text{im } B_1^\top = \text{im } B_2^\top.$$

First, assume $u_1^* = \lambda u_2^*$ for some number $\lambda \neq 0$. Writing out $A_1 v_2 = v_3$ and $A_1 v_1 = 0$ with (3.3), we get

$$\lambda u_3 = -B_1^\top \tilde{I} \lambda w_2 + C_1 \lambda u_2^* = -B_1^\top \tilde{I} \lambda w_2 + C_1 u_1^*,$$

$$0 = -B_1^\top \tilde{I} w_1 + C_1 u_1^*.$$

So

$$\lambda u_3 = \lambda u_3 - 0 = B_1^\top \tilde{I} (w_1 - \lambda w_2).$$

In other words, $u_3 \in \text{im } B_1^\top = \text{im } B_1^\top \tilde{I} B_2$, and γ_3 has a fixed point by Lemma 3.5.

Now, assume u_1^* and u_2^* are linearly independent. Lemma 3.2 can be reformulated as

$$\text{im } B_1^\top = \text{im } B_2^\top \subseteq \ker u_1^* \cap \ker u_2^*.$$

ker u_1^*, ker u_2^* are 3-dimensional subspaces of the 4-dimensional space U_0^*, and their intersection is of dimension 2 (because u_1^*, u_2^* are linearly independent). By Lemma 3.3 $\text{rk } B_1 \geq 2$, so it follows that

$$\text{im } B_1^\top = \text{im } B_2^\top = \ker u_1^* \cap \ker u_2^*.$$

With $A_1 v_1 = 0$ and (3.4) we conclude $C_1 u_1^* = b$ for some $b \in \text{im } B_1^\top$. Thus, by the skew-symmetry of C_1,

$$0 = (u_2^T C_1 u_1^*)^T = -u_1^T C_1 u_2^*.$$

So $C_1 u_2^* \in \ker u_1^*$. In the same way $C_2 u_1^* \in \ker u_2^*$. But $u_3 = C_1 u_2^* + b_1 = -C_2 u_1^* + b_2$ for some $b_1, b_2 \in \text{im } B_1^\top$. Hence

$$u_1^T u_3 = u_1^T C_1 u_2^* + u_1^T b_1 = 0,$$

$$u_2^T u_3 = -u_2^T C_2 u_1^* + u_2^T b_2 = 0.$$
So \(u_3 \in \ker u_1^T \cap \ker u_2^T = \text{im} B_1^T = \text{im} B_1^T \bar{I} B_2 \). With Lemma 3.3 we conclude that there exists a fixed point for \(\gamma_3 \).

3.3. The Dimension Bound

Let \(\Gamma, \gamma_1, \gamma_2, \gamma_3 = [\gamma_1, \gamma_2] \) be as in the previous subsection, let \(\mathbb{R}^n = U_0 \oplus W \oplus U'_n \) be the Witt decomposition (2.3), and let \(A_i, B_i, C_i \) refer to the matrix representation (2.4) of \(\gamma_i \). We will assume that the linear parts \(A_1, A_2 \) of \(\gamma_1, \gamma_2 \) do not commute, that is, \(\text{Hol}(\Gamma) \) is not abelian.

Theorem 3.10. Let \(\Gamma \subset \text{Iso}(\mathbb{R}^n) \) and assume the centralizer \(Z_{\text{Iso}(\mathbb{R}^n)}(\Gamma) \) acts transitively on \(\mathbb{R}^n \). If \(\text{Hol}(\Gamma) \) is non-abelian, then

\[
\begin{align*}
&\quad s \geq 7 \quad \text{and} \quad n \geq 14. \\
\end{align*}
\]

As Example 3.12 shows, this is a sharp lower bound.

Proof. We will show \(s \geq 7 \), then it follows immediately from \(n - s \geq s \) that

\[
\begin{align*}
&\quad n \geq 2s \geq 14. \\
\end{align*}
\]

If the centralizer is transitive, then \(\Gamma \) acts freely. From Corollary 3.7, we know that \(\dim U_0 \geq 3 \). By Lemma 3.3, \(\text{wi}(W) \geq 2 \), and if \(\dim U_0 \geq 5 \), then

\[
\begin{align*}
&\quad s = \dim U_0 + \text{wi}(W) \geq 5 + 2 = 7, \\
\end{align*}
\]

and we are done. So let \(2 < \dim U_0 < 5 \).

(i) First, let \(\dim U_0 = 4 \). Assume \(\text{rk} B_1 = \text{rk} B_2 = 2 \). Because \(C_3 = -B_1^T \bar{I} B_2 \neq 0 \) is skew, it is of rank 2. So \(\text{rk} B_1 = \text{rk} B_2 = 2 = \text{rk} B_1^T \bar{I} B_2 \). By Lemma 3.3, the action of \(\Gamma \) is not free.

Now assume \(\text{rk} B_1 \geq 3 \). It follows from Lemma 3.3, that \(\text{wi}(W) \geq 3 \) and \(\dim W \geq 6 \), so once more

\[
\begin{align*}
&\quad s = \dim U_0 + \text{wi}(W) \geq 4 + 3 = 7. \\
\end{align*}
\]

So the theorem holds for \(\dim U_0 = 4 \).

(ii) Let \(\dim U_0 = 3 \). If \(\dim(\text{im} B_1 + \text{im} B_2) \leq 5 \), there exists a fixed point by Lemma 3.8 so \(\Gamma \) would not act freely. So let \(\dim(\text{im} B_1 + \text{im} B_2) = 6 \). As \([A_1, A_2] \neq 0 \), the crossover rule implies the existence of a pair of columns \(b_1^i, b_2^i \) in \(B_1 \) and a pair of columns \(b_2^i, b_2^j \) in \(B_2 \) such that \(\alpha = \langle b_1^i, b_2^j \rangle = -\langle b_2^j, b_1^i \rangle \neq 0 \). For simplicity say \(i = 1, j = 2 \). The columns \(b_1^1, b_2^1, b_2^2 \) span the totally isotropic subspace \(\text{im} B_1 \) of \(W \), and \(b_1^2, b_2^1, b_2^2 \) span \(\text{im} B_2 \). We have a Witt decomposition with respect to \(W_1 = \mathbb{R} b_1^1 \oplus \mathbb{R} b_2^1 \) (Lemma 3.3),

\[
W = W_1 \oplus W' \oplus W_{12}^*,
\]

where \(W_{12}^* = \mathbb{R} b_2^2 \oplus \mathbb{R} b_2^3 \). Because \(b_1^3 \perp \text{im} B_1 \) and \(b_2^3 \perp \text{im} B_2 \),

\[
\begin{align*}
&\quad b_1^3 = \lambda_1 b_1^1 + \lambda_2 b_2^1 + b', \\
&\quad b_2^3 = \mu_1 b_2^1 + \mu_2 b_2^2 + b'',
\end{align*}
\]

where \(b', b'' \in W' \) are linearly independent because \(\dim(\text{im} B_1 + \text{im} B_2) = 6 \). From \(0 = \langle b_1^1, b_1^2 \rangle \) it follows that \(\langle b', b' \rangle = 0 \), and similarly \(\langle b'', b'' \rangle = 0 \). The crossover rule then implies

\[
\begin{align*}
&\lambda_1 \langle b_2^2, b_1^1 \rangle = -\langle b_2^3, b_2^1 \rangle = -\mu_1 \langle b_2^1, b_2^1 \rangle = \mu_1 \langle b_2^3, b_2^1 \rangle, \\
&\lambda_2 \langle b_2^1, b_2^1 \rangle = -\langle b_2^3, b_1^1 \rangle = -\mu_2 \langle b_2^3, b_1^1 \rangle = \mu_2 \langle b_2^1, b_2^1 \rangle.
\end{align*}
\]
As the inner products are $\neq 0$, it follows that $\lambda_1 = \mu_1$, $\lambda_2 = \mu_2$. Then, by the duality rule,
\[
0 = \langle b_1^3, b_2^3 \rangle = (\lambda_1 \mu_2 - \lambda_2 \mu_1) \langle b_2^2, b_1^1 \rangle + \langle b', b'' \rangle = \langle b', b'' \rangle.
\]
So b' and b'' span a 2-dimensional totally isotropic subspace in the non-degenerate space W', so this subspace has a 2-dimensional dual in W' and $\dim W' \geq 4$, $\text{wi}(W') \geq 2$, follows. Hence
\[
\text{wi}(W) = \dim W_{12} + \text{wi}(W') \geq 2 + 2 = 4,
\]
and again
\[
s = \dim U_0 + \text{wi}(W) \geq 3 + 4 = 7.
\]
In any case $s \geq 7$ and $n \geq 14$. \qed

Corollary 3.11. If M is a complete flat homogeneous pseudo-Riemannian manifold such that its fundamental group Γ has non-abelian linear holonomy group $\text{Hol}(\Gamma)$, then
\[
\dim M \geq 14
\]
and the signature $(n - s, s)$ of M satisfies $n - s \geq s \geq 7$.

The dimension bound in Corollary 3.11 is sharp, as the following example from [2] shows:

Example 3.12. Let $\Gamma \subset \text{Iso}(\mathbb{R}^{14})$ be the group generated by
\[
\gamma_1 = \begin{pmatrix} I_5 & -B_1^1 \bar{I} & C_1 \end{pmatrix}, \quad \gamma_2 = \begin{pmatrix} I_5 & -B_2^1 \bar{I} & C_2 \end{pmatrix},
\]
in the basis representation (2.4). Here,
\[
B_1 = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad C_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad u_1^* = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix},
\]
\[
B_2 = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}, \quad C_2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad u_2^* = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix},
\]
and $\bar{I} = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}$. Their commutator is
\[
\gamma_3 = [\gamma_1, \gamma_2] = \begin{pmatrix} I_5 & 0 & C_3 \\ 0 & I_4 & 0 \\ 0 & 0 & I_5 \end{pmatrix}, \quad u_3^* = \begin{pmatrix} u_3 \\ 0 \\ 0 \end{pmatrix},
\]
with

\[C_3 = \begin{pmatrix} 0 & -4 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{pmatrix}. \]

The group \(\Gamma \) is isomorphic to a discrete Heisenberg group, and the linear parts of \(\gamma_1, \gamma_2 \) do not commute. In [2] Example 6.4 it was shown that \(\Gamma \) has transitive centralizer in \(\text{Iso}(\mathbb{R}^{14}_3) \) and acts properly discontinuously and freely on \(\mathbb{R}^{14}_3 \). Hence \(M = \mathbb{R}^{14}/\Gamma \) is a complete flat pseudo-Riemannian homogeneous manifold of dimension 14 with non-abelian linear holonomy.

4. Low Dimensions

In this section, we determine the structure of the fundamental groups of complete flat pseudo-Riemannian homogeneous spaces \(M \) of dimensions \(\leq 6 \) and of those with signature \((n-2,2)\). The signatures \((n,0),(n-1,1)\) and \((n-2,2)\) were already studied by Wolf [8, Corollary 3.7.13]. In particular, he derived the following:

Proposition 4.1 (Wolf). If \(M \) is a complete homogeneous flat Riemannian or Lorentzian manifold, then the fundamental group of \(M \) is an abelian group consisting of pure translations.

Let \(\Gamma \subset \text{Iso}(\mathbb{R}^n) \) denote the fundamental group of \(M \) and \(G \subset \text{Iso}(\mathbb{R}^n) \) its real Zariski closure with Lie algebra \(g \). Let \(U_\Gamma \) be as in Proposition 2.7.

We start by collecting some general facts about \(\Gamma \) and \(G \).

Remark 4.2. \(G \subset \text{Iso}(\mathbb{R}^n) \) is unipotent, hence simply connected. Then \(\Gamma \) is finitely generated and torsion-free by [7, Theorem 2.10], as it is a discrete subgroup of \(G \). Further, \(\text{rk} \Gamma = \dim G \).

The fundamental theorem for finitely generated abelian groups states:

Lemma 4.3. If \(\Gamma \) is abelian and torsion-free, then \(\Gamma \) is free abelian.

By [4] Theorem 5.1.6], there exists a Malcev basis of \(G \) which generates \(\Gamma \). We shall call it a Malcev basis of \(\Gamma \).

Lemma 4.4. Let \(\gamma_1, \ldots, \gamma_k \) denote a Malcev basis of \(\Gamma \). If \(M \) is complete, then the translation parts \(v_1, \ldots, v_k \) of the \(\gamma_i = (I + A_i, v_i) \) are linearly independent.

Proof. \(\Gamma \) has transitive centralizer in \(\text{Iso}(\mathbb{R}^n) \). By continuity, so does \(G \). Hence \(G \) acts freely on \(\mathbb{R}^n \). Then the orbit map \(G \to \mathbb{R}^n, g \mapsto g.0 \), at the point 0 is a diffeomorphism onto the orbit \(G.0 \). Because \(G \) acts by affine transformations, \(G.0 \) is the span of the translation parts of the \(\gamma_i \). So

\[k = \text{rk} \Gamma = \dim G = \dim G.0 = \dim \text{span}\{v_1, \ldots, v_k\}. \]

So the \(v_i \) are linearly independent. \(\Box \)

4.1. **Signature \((n-2,2)\).** As always, we assume \(n-2 \geq 2 \).

Proposition 4.5 (Wolf). Let \(M = \mathbb{R}^n_2/\Gamma \) be a flat pseudo-Riemannian homogeneous manifold. Then \(\Gamma \) is a free abelian group. In particular, the fundamental group of every flat pseudo-Riemannian homogeneous manifold \(M \) of dimension \(\dim M \leq 5 \) is free abelian.
Proof: It follows from Corollary 3.11 that Γ has abelian holonomy. Consequently, if $\gamma = (I + A, v) \in \Gamma$ such that $A \neq 0$, then

$$A = \begin{pmatrix} 0 & 0 & C \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

in a Witt basis with respect to U_Γ. Here, $C \neq 0$ is a skew-symmetric 2×2-matrix, so we have $\text{rk} A = 2$. Because $A \subseteq U_\Gamma$ and both these spaces are totally isotropic, we have $\dim \text{im} A = \dim U_\Gamma = 2$. Because $Av = 0$ we get $v \in \ker A = (\text{im} A)^{\perp} = U_\Gamma^{\perp}$. But then $Bv = 0$ for any $(I + B, w) \in \Gamma$, and as also $BA = 0$, it follows that $[(I + B, w), (I + A, v)] = (I + 2BA, 2Bv) = (I, 0)$. Hence Γ is abelian. It is free abelian by Lemma 4.4.

In the remainder of this section, the group Γ is always abelian, so the space $U_\Gamma = \sum_A \text{im} A$ is totally isotropic (in particular, $U_0 = U_\Gamma$). We fix a Witt decomposition with respect to U_Γ,

$$R^n_2 = U_\Gamma \oplus W \oplus U_\Gamma^*$$

and any $v \in R^n_2$ decomposes into $v = u + w + u^*$ with $u \in U_\Gamma$, $w \in W$, $u^* \in U_\Gamma^*$.

Remark 4.6. As seen in the proof of Proposition 4.7 if $\dim U_\Gamma = 2$, then $U_\Gamma = \text{im} A$ for any $\gamma = (I + A, v)$ with $A \neq 0$.

We can give a more precise description of the elements of Γ:

Proposition 4.7. Let $M = R^3_2/\Gamma$ be a complete flat pseudo-Riemannian homogeneous manifold. Then:

1. Γ is generated by elements $\gamma_i = (I + A_i, v_i)$, $i = 1, \ldots, k$, with linearly independent translation parts v_1, \ldots, v_k.
2. If there exists $(I + A, v) \in \Gamma$ with $A \neq 0$, then in a Witt basis with respect to U_Γ,

 $$\gamma_i = (I + A_i, v_i) = \left(\begin{array}{ccc} I_2 & 0 & C_i \\ 0 & I_{n-4} & 0 \\ 0 & 0 & I_2 \end{array} \right) \left(\begin{array}{c} u_i \\ w_i \\ 0 \end{array} \right)$$

 with $C_i = \left(\begin{array}{cc} 0 & c_i \\ -c_i & 0 \end{array} \right)$, $c_i \in R$, $u_i \in R^2$, $w_i \in R^{n-4}$.
3. $\sum \lambda_i u_i = 0$ implies $\sum \lambda_i C_i = 0$ (equivalently $\sum \lambda_i A_i = 0$) for all $\lambda_1, \ldots, \lambda_k \in R$.

Proof. We know from Proposition 4.4 that Γ is free abelian. Let $\gamma_1, \ldots, \gamma_k$ denote a minimal set of generators with $\gamma_i = (I + A_i, v_i)$.

1. Lemma 4.4
2. If $A \neq 0$ exists, then $U_\Gamma = \text{im} A$ is a 2-dimensional totally isotropic subspace. The matrix representation (4.1) is known from the proof of Proposition 4.5. As Γ is abelian, we have $A_i v_j = 0$ for all i, j. So $v_j \in \bigcap_i \ker A_i = U_\Gamma^\perp$ for all j.
3. Assume $\sum \lambda_i u_i = 0$ and set $C = \sum \lambda_i C_i$. Then $\sum \lambda_i (A_i, v_i) = (A, u)$, where $u \in U_\Gamma$. If $A \neq 0$, then G would have a fixed point (see Corollary 4.7). So $A = 0$, which implies $C = 0$.

Conversely, every group of the form described in the previous proposition defines a homogeneous space:
Proposition 4.8. Let U be a 2-dimensional totally isotropic subspace of \mathbb{R}^2_2, and let $\Gamma \subset \text{Iso}(\mathbb{R}^2_2)$ be a subgroup generated by affine transformations $\gamma_1, \ldots, \gamma_k$ of the form (4.1) with linearly independent translation parts. Further, assume that $\sum_i \lambda_i w_i = 0$ implies $\sum_i \lambda_i C_i = 0$ (equivalently $\sum_i \lambda_i A_i = 0$) for all $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$. Then \mathbb{R}^2_2/Γ is a complete flat pseudo-Riemannian homogeneous manifold.

Proof. (i) From the matrix form (4.1) it follows that Γ is free abelian, and the linear independence of the translation parts implies that it is a discrete subgroup of $\text{Iso}(\mathbb{R}^2_2)$.

(ii) We check that the centralizer of Γ in $\text{Iso}(\mathbb{R}^2_2)$ acts transitively: Let $\text{iso}(\mathbb{R}^2_2)$ denote the Lie algebra of $\text{Iso}(\mathbb{R}^2_2)$. In the given Witt basis, the following are elements of $\text{iso}(\mathbb{R}^2_2)$:

$$S = \begin{pmatrix} 0 & -B^T & 0 \\ 0 & 0 & B \\ 0 & 0 & 0 \end{pmatrix}, \quad x, z \in \mathbb{R}^2, y \in \mathbb{R}^{n-2}.$$

Now assume arbitrary x, y, z are given. We will show that we can determine B such that S centralises $\log(\Gamma)$. Writing out the commutator equation $[S, (A_i, v_i)]$ blockwise, we see that $[S, (A_i, v_i)] = 0$ is equivalent to $-B^T w_i = C_i z$.

For simplicity, assume that w_1, \ldots, w_j form a maximal linearly independent subset of w_1, \ldots, w_k ($j \leq k$). As $-B^T$ is a $2 \times (n-2)$-matrix, the linear system

$$-B^T w_1 = C_1 z$$

$$\vdots$$

$$-B^T w_j = C_j z$$

consists of $2j$ linearly independent equations and $2(n-2)$ variables (the entries of B). As $\dim W = n - 2 \geq j$, this system is always solvable.

So S can be determined such that it commutes with $\gamma_1, \ldots, \gamma_j$. It remains to check that S also commutes with $\gamma_{j+1}, \ldots, \gamma_k$. By assumption, each w_l ($l > j$) is a linear combination $w_l = \sum_{i=1}^j \lambda_i w_i$. Now $w_l - \sum_{i=1}^j \lambda_i w_i = 0$ implies $C_l - \sum_{i=1}^j \lambda_i C_i = 0$. But this means

$$-B^T w_l = \sum_{i=1}^j \lambda_i (-B^T w_i) = (\sum_{i=1}^j \lambda_i C_i) z = C_l z,$$

so $[(A_l, w_l), S] = 0$.

The elements $\exp(S)$ generate a unipotent subgroup of the centralizer of Γ, so its open orbit at 0 is closed by [3 Proposition 4.10]. As x, y, z can be chosen arbitrarily, its tangent space at 0 is \mathbb{R}^2_2. Hence the orbit of the centralizer at 0 is open and closed, and therefore it is all of \mathbb{R}^2_2. Consequently, Γ has transitive centralizer.

(iii) Because the centralizer is transitive, the action free everywhere. It follows from [2 Proposition 7.2] that Γ acts properly discontinuously.
Now \mathbb{R}^n_2/Γ is a complete homogeneous manifold due to the transitive action of the centralizer on \mathbb{R}^n_2. □

4.2. Dimension ≤ 5.

Proposition 4.9 (Wolf). Let $M = \mathbb{R}^n_2/\Gamma$ be a complete homogeneous flat pseudo-Riemannian manifold of dimension ≤ 4. Then Γ is a free abelian group consisting of pure translations.

For a proof, see [5, Corollary 3.7.11].

Proposition 4.10. Let $M = \mathbb{R}^5_2/\Gamma$ be a complete homogeneous flat pseudo-Riemannian manifold of dimension 5. Then Γ is a free abelian group. Depending on the signature of M, we have the following possibilities:

1. Signature $(5,0)$ or $(4,1)$: Γ is a group of pure translations.
2. Signature $(3,2)$: Γ is either a group of pure translations, or there exists $\gamma_1 = (I + A_1, v_1) \in \Gamma$ with $A_1 \neq 0$. In the latter case, $\text{rk} \Gamma \leq 3$, and if $\gamma_1, \ldots, \gamma_k$ ($k = 1, 2, 3$) are generators of Γ, then v_1, \ldots, v_k are linearly independent, and $w_i = \frac{c_i}{c_1}v_1$ in the notation of (4.7) ($i = 1, \ldots, k$).

Proof. Γ is free abelian by Proposition 4.5. The statement for signatures $(5,0)$ and $(4,1)$ follows from Proposition 4.1.

Let the signature be $(3,2)$ and assume Γ is not a group of pure translations. Then $U^\perp = \text{im} A$ is 2-dimensional (where $(I + A, v) \in \Gamma$, $A \neq 0$). By Lemma 4.4, the translation parts of the generators of Γ are linearly independent elements of U^\perp, which is 3-dimensional. So $\text{rk} \Gamma \leq 3$. Now, $U^\perp = U^\perp \oplus W$ with $\dim W = 1$. So the W-components of the translation parts are multiples of each other, and it follows from part (c) of Proposition 4.7 that $w_1 \neq 0$ and $w_i = \frac{c_i}{c_1}w_1$. □

4.3. Dimension 6. In dimension 6, both abelian and non-abelian Γ exist.

We introduce the following notation: For $x \in \mathbb{R}^3$, let

$$T(x) = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}.$$ \tag{4.2}

Then for any $y \in \mathbb{R}^3$,

$$T(x)y = x \times y,$$

where \times denotes the vector cross product on \mathbb{R}^3.

Lemma 4.11. Let $\Gamma \in \text{Iso}(\mathbb{R}^6_3)$ be a group with transitive centralizer in $\text{Iso}(\mathbb{R}^6_3)$. An element $X \in \log(\Gamma)$ has the form

$$X = \left(\begin{array}{cc} 0 & C \\ 0 & 0 \end{array} \right), \left(\begin{array}{c} u \\ u^* \end{array} \right)$$ \tag{4.2}

with respect to the Witt decomposition $\mathbb{R}^6_3 = U \oplus U^\perp$. Furthermore,

$$C = \alpha_X T(u^*)$$

for some $\alpha_X \in \mathbb{R}$. If $[X_1, X_2] \neq 0$ for $X_1, X_2 \in \log(\Gamma)$, then $\alpha_{X_1} = \alpha_{X_2} \neq 0$.

Proof. The holonomy is abelian by Corollary 3.11 so (4.2) follows.

For $X \in \log(\Gamma)$ we have $Cu^* = 0$, that is, for any $\alpha \in \mathbb{R}$,

$$Cu^* = \alpha u^* \times u^* = 0.$$
If X is non-central, then $C \neq 0$ and $u^* \neq 0$. Now let $x, y \in \mathbb{R}^3$ such that u^*, x, y form a basis of \mathbb{R}^3. Because C is skew,

$$u^* C x = -u^* C^T x = -(Cu^*)^T x = 0.$$

Also,

$$x^T C x = -x^T C^T x \quad \text{and} \quad x^T C x = (x^T C x)^T = x^T C^T x,$$

hence $x^T C x = 0$. So Cx is perpendicular to the span of x, u^* in the Euclidean sense. This means there is a $\alpha \in \mathbb{R}$ such that

$$Cx = \alpha u^* \times x.$$

In the same way we get $Cy = \beta u^* \times y$ for some $\beta \in \mathbb{R}$. As neither x nor y is in the kernel of C (which is spanned by u^*), $\alpha, \beta \neq 0$.

As y is not in the span of u^*, x, we have

$$0 \neq x^T C y = \beta x^T (u^* \times y)$$

$$= -y^T C x = -\alpha y^T (u^* \times x) = -\alpha x^T (y \times u^*) = \alpha x^T (u^* \times y),$$

where the last line uses standard identities for the vector product. So $\alpha = \beta$, and C and $\alpha T(u^*)$ coincide on a basis of \mathbb{R}^3.

Now assume $[X_1, X_2] \neq 0$. Then

$$\alpha_2 u_2^* \times u_1^* = C_2 u_1^* = -C_1 u_2^* = -\alpha_1 u_1^* \times u_2^* = \alpha_1 u_2^* \times u_1^*,$$

and this expression is $\neq 0$ because $C_1 u_2^*$ is the translation part of $(\frac{1}{2}[X_1, X_2]) \neq 0$. So $\alpha_1 = \alpha_2$.

Proposition 4.12. Let $M = \mathbb{R}^n / \Gamma$ be a complete homogeneous flat pseudo-Riemannian manifold of dimension 6, and assume Γ is abelian. Then Γ is free abelian. Depending on the signature of M, we have the following possibilities:

1. Signature $(6, 0)$ or $(5, 1)$: Γ is a group of pure translations.
2. Signature $(4, 2)$: Γ is either a group of pure translations, or Γ contains elements $\gamma = (I + A, v)$ with $A \neq 0$ subject to the constraints of Proposition 4.7. Further, $\text{rk} \Gamma \leq 4$.
3. Signature $(3, 3)$: If $\dim U_\Gamma < 3$, then Γ is one of the groups that may appear for signature $(4, 2)$. There is no abelian Γ with $\dim U_\Gamma = 3$.

Proof: Γ is free abelian by Lemma 4.3. The statement for signatures $(6, 0)$ and $(5, 1)$ follows from Proposition 4.1.

If the signature is $(4, 2)$ and Γ is not a group of pure translations, then the statement follows from Proposition 4.1. In this case, U_Γ^\perp contains the linearly independent translation parts and is of dimension 4. So $\text{rk} \Gamma \leq 4$.

Consider signature $(3, 3)$. If $\dim U_\Gamma = 0$ or $= 2$, then Γ is a group as in the case for signature $(4, 2)$. Otherwise, $\dim U_\Gamma = 3$. We show that in the latter case the centralizer of Γ does not act with open orbit: Any $\gamma \in \Gamma$ can be written as

$$\gamma = (I + A, v) = \begin{pmatrix} I_3 & C \\ 0 & I_3 \end{pmatrix} \cdot \begin{pmatrix} u \\ u^* \end{pmatrix},$$

where $C \in \mathfrak{so}_3$ and $u, u^* \in \mathbb{R}^3$. In fact, we have $\mathbb{R}^3 = U_\Gamma \oplus U_\Gamma^*$ and $U_\Gamma^\perp = U_\Gamma$.

We will show that $u^* = 0$:

\footnote{That is, with respect to the canonical positive definite inner product on \mathbb{R}^3.}
(i) Because \(\text{rk} C = 2 \) for every \(C \in \mathfrak{so}_3 \), \(C \neq 0 \), but \(U_\Gamma = \sum \text{im} A \) is 3-dimensional, there exist \(\gamma_1, \gamma_2 \in \Gamma \) such that the skew matrices \(C_1 \) and \(C_2 \) are linearly independent. So, for every \(u^* \in U_\Gamma^* \), there is an element \(\gamma = (I + A, v) \) such that \(Au^* \neq 0 \).

(ii) \(\Gamma \) abelian implies \(A_1u^*_2 = 0 \) for every \(\gamma_1, \gamma_2 \in \Gamma \). With (i), this implies \(u^*_2 = 0 \). So the translation part of every \(\gamma = (I + A, v) \in \Gamma \) is an element \(v = u \in U_\Gamma \).

Step (ii) implies \(C_1 = \alpha_1 T(u_1^*) = 0 \) by Lemma \ref{lemma} but \(C_1 \neq 0 \) was required in step (i). Contradiction; so \(\Gamma \) cannot be abelian.

\[\Box \]

Proposition 4.13. Let \(M = \mathbb{R}^6/\Gamma \) be a complete homogeneous flat pseudo-Riemannian manifold of dimension 6, and assume \(\Gamma \) is non-abelian. Then the signature of \(M \) is \((3,3)\), and \(\Gamma \) is one of the following:

1. \(\Gamma = \Lambda \times \Theta \), where \(\Lambda \) is a discrete Heisenberg group and \(\Theta \) a discrete group of pure translations in \(U_\Gamma \). Then \(3 \leq \text{rk} \Gamma = 3 + \text{rk} \Theta \leq 5 \).
2. \(\Gamma \) is discrete group of rank 6 with center \(Z(\Gamma) = [\Gamma, \Gamma] \) of rank 3. In this case, \(M \) is compact.

\[\text{Proof.} \] If the signature was anything but \((3,3)\) or \(\dim U_0 < 3 \), then \(\Gamma \) would have to be abelian due Proposition \ref{prop} The holonomy is abelian by Corollary \ref{cor}.

For the following it is more convenient to work with the real Zariski closure \(G \) of \(\Gamma \) and its Lie algebra \(\mathfrak{g} \). As \(\mathfrak{g} \) is a 2-step nilpotent, \(\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{z}(\mathfrak{g}) \), where \(\mathfrak{v} \) is a vector subspace of \(\mathfrak{g} \) of dimension \(\geq 2 \) spanned by non-central elements. Set \(\mathfrak{v}_\Gamma = \mathfrak{v} \cap \log(\Gamma) \). We proceed in four steps:

(i) Assume there are \(X_i = (A_i, v_i) \in \mathfrak{v} \), \(\lambda_i \in \mathbb{R} \), \(v_i = u_i + u_i^* \) (for \(i = 1, \ldots, m \)), such that \(\sum \lambda_i u^*_i = 0 \). Then \(\sum \lambda_i X_i = (\sum \lambda_i A_i, \sum \lambda_i v_i) = (A, u) \in \mathfrak{v} \), where \(u \in U_\Gamma \). For all \((A', v') \in \mathfrak{g} \), the commutator with \((A, u) \) is \([(A', v'), (A, u)] = (0, 2A' u) = (0, 0) \). Thus \((A, u) \in \mathfrak{v} \cap \mathfrak{z}(\mathfrak{g}) = \{0\} \).

So if \(X_1, \ldots, X_m, u \) are linearly independent, then \(u_1^*, \ldots, u_m^* \in U_\Gamma^* \) are linearly independent (and by Lemma \ref{lemma} the \(C_1, \ldots, C_m \) are too). But \(\dim U_0^* = 3 \), so \(\dim \mathfrak{v} \leq 3 \).

(ii) If \(Z \in \mathfrak{z}(\mathfrak{g}) \), then \(C_2 = 0 \) and \(u_2^* = 0 \): As \(Z \) commutes with \(X_1, X_2 \), we have \(C_2 u_1^* = 0 = C_2 u_2^* \). By step (i), \(u_1^*, u_2^* \) are linearly independent. So \(\text{rk} C_2 < 2 \), which implies \(C_2 = 0 \) because \(C_2 \) is a skew 3 \times 3-matrix. Also, \(C_1 u_2^* = 0 = C_2 u_2^* \), so \(u_2^* = \ker C_1 \cap \ker C_2 = \{0\} \). So \(\exp(Z) = (I, u_2^*) \) is a translation by \(u_2^* \in \Gamma \).

(iii) Assume \(\dim \mathfrak{v} = 2 \). Let \(\mathfrak{v} \) be spanned by \(X_1, X_2 \), and \(Z_{12} = [X_1, X_2] \) is a pure translation by an element of \(U_\Gamma \). The elements \(X_1, X_2, Z_{12} \) span a Heisenberg algebra \(\mathfrak{h}_3 \) contained in \(\mathfrak{g} \). If \(\dim \mathfrak{g} > 3 \), then \(\mathfrak{z}(\mathfrak{g}) = \mathbb{R} Z_{12} \oplus t \), where according to step (ii) \(t \) is a subalgebra of pure translations by elements of \(U_\Gamma \). So \(\mathfrak{g} = \mathfrak{h}_3 \oplus t \) with \(0 \leq \dim t < \dim U_\Gamma = 3 \). This gives part (a) of the proposition.

(iv) Now assume \(\dim \mathfrak{v} = 3 \). We show that \(\mathfrak{z}(\mathfrak{g}) = [\mathfrak{v}, \mathfrak{v}] \) and \(\dim \mathfrak{z}(\mathfrak{g}) = 3 \): Let \(X_1 = (A_1, v_1), X_2 = (A_2, v_2) \in \mathfrak{v}_\Gamma \) such that \([X_1, X_2] \neq 0 \). By Lemma \ref{lemma} \(C_1 = \alpha T(u_1^*) \) and \(C_2 = \alpha T(u_2^*) \) for some number \(\alpha \neq 0 \). There exists \(X_3 \in \mathfrak{v}_\Gamma \) such that \(X_1, X_2, X_3 \) form basis of \(\mathfrak{v} \). By step (i), \(u_1^*, u_2^*, u_3^* \) are linearly independent. For \(i = 1, 2 \), \(\ker C_i = \mathbb{R} u_i^* \), and \(u_i^* \) is proportional to neither \(u_1^* \) nor \(u_2^* \). This means \(C_1 u_3^* \neq 0 \neq C_2 u_3^* \), which implies \([X_1, X_3] \neq 0 \neq [X_2, X_3] \). By Lemma \ref{lemma} \(C_3 = \alpha T(u_3^*) \).
Write $Z_{ij} = [X_i, X_j]$. The non-zero entries of the translation parts of the commutators Z_{12}, Z_{13} and Z_{23} are

$$C_1 u_i^* = \alpha u_i^* \times u_j^*, \quad C_1 u_j^* = \alpha u_i^* \times u_j^*, \quad C_2 u_j^* = \alpha u_i^* \times u_j^*.$$

Linear independence of u_i^*, u_j^*, u_k^* implies that these are linearly independent. Hence the commutators Z_{12}, Z_{13}, Z_{23} are linearly independent in $\mathfrak{g}(\mathfrak{g})$. Because $\dim \mathfrak{g} = \dim \mathfrak{v} + \dim \mathfrak{g}(\mathfrak{g}) \leq 6$, it follows that $\mathfrak{g}(\mathfrak{g})$ is spanned by these Z_{ij}, that is $\mathfrak{g}(\mathfrak{g}) = \langle [v, v] \rangle$. This gives part (b) of the proposition.

\[\square \]

Remark 4.14. In case (2) of Proposition 4.13 it can be shown that Γ is a lattice in a Lie group $H_3 \rtimes \text{Ad} \text{e}_4$, see [5, Section 5.3].

We have a converse statement to Proposition 4.13.

Proposition 4.15. Let Γ be a subgroup of $\text{Iso}(\mathbb{R}_6^3)$. Then $M = \mathbb{R}_6^3/\Gamma$ is a complete flat pseudo-Riemannian homogeneous manifold if there exists a 3-dimensional totally isotropic subspace U and Γ is a group of type (1) or (2) in Proposition 4.13 (with U_T replaced by U).

Proof. Both cases can be treated simultaneously.

Let $X_1, X_2, X_3 \in \log(\Gamma)$ such that the $\exp(X_i)$ generate Γ. The number $\alpha \neq 0$ from Lemma 4.11 is necessarily the same for X_1, X_2, X_3.

(i) The group Γ is discrete because the translation parts of the generators $\exp(X_i)$ and those of the generators of $Z(\Gamma)$ form a linearly independent set.

(ii) We show that the centralizer of Γ is transitive. Consider the following elements

$$S = \left(\begin{array}{cc} 0 & -\alpha T(z) \\ 0 & 0 \end{array} \right), \quad \left(\begin{array}{c} x \\ z \end{array} \right) \in \text{iso}(\mathbb{R}_6^3)$$

with $x, z \in \mathbb{R}^3$ arbitrary. Then $[X_i, S] = 0$ for $i = 1, 2, 3$, because

$$C_i z = \alpha u^*_i \times z = -\alpha z \times u^*_i = -\alpha T(z) u^*_i.$$

Clearly, S also commutes with any translation by a vector from U. So in both cases (1) and (2), Γ has a centralizer with an open orbit at 0. The exponentials of the elements of S clearly generate a unipotent subgroup of $\text{Iso}(\mathbb{R}_6^3)$, hence the open orbit is also closed and thus all of \mathbb{R}_6^3.

(iii) From the transitivity of the centralizer, it also follows that the action is free and thus properly discontinuous (2 Proposition 7.2).

So \mathbb{R}_6^3/Γ is a complete homogeneous manifold.

\[\square \]

In the situation of Proposition 4.13 it is natural to ask whether the statement can be simplified by claiming that Γ is always a subgroup of a group of type (2) in Proposition 4.13. But this is not always the case:

Example 4.16. We choose the generators $\gamma_i = (I + A_i, v_i), i = 1, 2$, of a discrete Heisenberg group Λ as follows: If we decompose $v_i = u_i + u_i^*$ where $u_i \in U_T$, $u_i^* \in U_T^*$, let $u_1 = 0, u_2 = e_1^*, \alpha = 1$ (with α as in the proof of Proposition 4.13) and e_1^* refers to the ith unit vector taken as an element of U_T^*. Then $\gamma_3 = [\gamma_1, \gamma_2] = (I, v_3)^2$, where $u_3 = e_3, u_3^* = 0$. Let $\gamma_4 = (I, u_4)$ be the translation by $u_4 = \sqrt{2} e_1 + \sqrt{5} e_2 \in U_T$. Let $\Theta = \langle \gamma_4 \rangle$ and $\Gamma = \Lambda \cdot \Theta \cong \Lambda \times \Theta$.

\[\square \]
Assume there exists $X = (A, v)$ of the form (1.2) not commuting with X_1, X_2. Then the respective translation parts of $[X_1, X]$ and $[X_2, X]$ are

$$e_1 \times u^* = \begin{pmatrix} 0 \\ -\eta_3 \\ \eta_2 \\ \eta_1 \end{pmatrix}, e_2 \times u^* = \begin{pmatrix} \eta_3 \\ 0 \\ -\eta_1 \end{pmatrix} \in U_\Gamma,$$

where η_i are the components of u^*, and $\eta_3 \neq 0$ due to the fact that X and the X_i do not commute. If Γ could be embedded into into a group of type (2), such X would have to exist. But by construction u_4 is not contained in the \mathbb{Z}-span of $e_3, e_1 \times u^*, e_2 \times u^*$. So the group generated by Γ and $\exp(X)$ is not discrete in $\text{Iso}(\mathbb{R}^6_3)$.

5. **Fundamental Groups of Complete Flat Pseudo-Riemannian Homogeneous Spaces**

In this section we will prove the following:

Theorem 5.1. Let Γ be a finitely generated torsion-free 2-step nilpotent group of rank n. Then there exists a faithful representation $\varphi : \Gamma \to \text{Iso}(\mathbb{R}^{2n}_n)$ such that $M = \mathbb{R}^{2n}_n / \varphi(\Gamma)$ a complete flat pseudo-Riemannian homogeneous manifold M of signature (n, n) with abelian linear holonomy group.

We start with a construction given in [1, Paragraph 5.3.2] to obtain nilpotent Lie groups with flat bi-invariant metrics. Let \mathfrak{g} be a real 2-step nilpotent Lie algebra of finite dimension n. Then the semidirect sum $\mathfrak{h} = \mathfrak{g} \oplus \text{ad}^* \mathfrak{g}$ is a 2-step nilpotent Lie algebra with Lie product

$$[(X, \xi), (Y, \eta)] = ([X, Y], \text{ad}^* (X) \eta - \text{ad}^* (Y) \xi),$$

where $X, Y \in \mathfrak{g}, \xi, \eta \in \mathfrak{g}^*$ and ad^* denotes the coadjoint representation. An invariant inner product on \mathfrak{h} is given by

$$\langle (X, \xi), (Y, \eta) \rangle = \xi(Y) + \eta(X).$$

Its signature is (n, n), as the subspaces \mathfrak{g} and \mathfrak{g}^* are totally isotropic and dual to each other.

If G is a simply connected 2-step nilpotent Lie group with Lie algebra \mathfrak{g}, then $H = G \rtimes \text{Ad}^* \mathfrak{g}$ (with \mathfrak{g}^* taken as a vector group) is a simply connected 2-step nilpotent Lie group with Lie algebra \mathfrak{h}, and $\langle \cdot, \cdot \rangle$ induces a bi-invariant flat pseudo-Riemannian metric on H.

Remark 5.2. For any lattice $\Gamma_H \subset H$, the space H/Γ_H is a compact flat pseudo-Riemannian homogeneous manifold. In particular, H is complete (see [6, Proposition 9.39]). By [2, Theorem 3.1], Γ_H has abelian linear holonomy.

Proof of Theorem 5.1. Let Γ be a finitely generated torsion-free 2-step nilpotent group. The real Malcev hull G of Γ is a 2-step nilpotent simply connected Lie group such that Γ is a lattice in G. In particular, $\text{rk} \Gamma = \dim G = n$. If \mathfrak{g} is the Lie algebra of G, let H be as in the construction above. We identify G with the closed subgroup $G \times \{0\}$ of H. As Γ is a discrete subgroup of H, it follows from the remark above that $M = H/\Gamma$ is a complete flat pseudo-Riemannian homogeneous manifold with abelian linear holonomy.

As H has signature (n, n), the development representation φ of the right-multiplication of G gives the representation of Γ as isometries of \mathbb{R}^{2n}_n. \qed
ACKNOWLEDGMENTS

I would like to thank Oliver Baues for many helpful remarks.

REFERENCES

[1] O. Baues, "Flat pseudo-Riemannian manifolds and prehomogeneous affine representations," in 'Handbook of Pseudo-Riemannian Geometry and Supersymmetry', EMS, IRMA Lect. Math. Theor. Phys. 16, 2010, pp. 731-817 (also arXiv:0809.0824v1)
[2] O. Baues, W. Globke, "Flat Pseudo-Riemannian Homogeneous Spaces With Non-Abelian Holonomy Group," Proc. Amer. Math. Soc. 140, 2012, pp. 2479-2488 (also arXiv:1009.3383)
[3] A. Borel, Linear Algebraic Groups, 2nd edition, Springer, 1991
[4] L. Corwin, F.P. Greenleaf, "Representations of nilpotent Lie groups and their applications," Cambridge University Press, 1990
[5] W. Globke, "Holonomy Groups of Flat Pseudo-Riemannian Homogeneous Manifolds," Dissertation, Karlsruhe Institute of Technology, 2011
[6] B. O'Neill, Semi-Riemannian Geometry, Academic Press, 1983
[7] M.S. Raghunathan, "Discrete Subgroups of Lie Groups," Springer, 1972
[8] J.A. Wolf, "Spaces of Constant Curvature," 6th edition, Amer. Math. Soc., 2011
[9] J.A. Wolf, "Homogeneous manifolds of zero curvature," Trans. Amer. Math. Soc. 104, 1962, pp. 462-469

Department of Mathematics, Institute for Algebra and Geometry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
E-mail address: globke@math.uni-karlsruhe.de