Global Strong Solution of a 2D coupled Parabolic-Hyperbolic Magnetohydrodynamic System

Ruikuan Liu* Jiayan Yang†

*†Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P.R.China
†Department of Mathematics, Southwest Medical University, Luzhou, Sichuan 646000, P.R.China

Abstract

The main objective of this paper is to study the global strong solution of the parabolic-hyperbolic incompressible magnetohydrodynamic (MHD) model in two dimensional space. Based on Agmon, Douglis and Nirenberg’s estimates for the stationary Stokes equation and the Solonnikov’s theorem of L^p-L^q-estimates for the evolution Stokes equation, it is shown that the mixed-type MHD equations exist a global strong solution.

keywords

Global strong solution, Magnetohydrodynamics, Stokes equation, L^p-L^q-estimates.

1 Introduction

We consider the following 2-D incompressible magnetohydrodynamic (MHD) model, which describes the interaction between moving conductive fluids and electromagnetic fields in [10],

\[
\begin{aligned}
\frac{\partial u}{\partial t} + (u \cdot \nabla) u &= \nu \Delta u - \frac{1}{\rho_0} \nabla p + \frac{\rho_e}{\rho_0} u \times \text{rot} A + f(x), \quad \text{in } \Omega \times [0,T), \\
\frac{\partial^2 A}{\partial t^2} &= \frac{1}{\epsilon_0 \mu_0} \Delta A + \frac{\rho_e}{\epsilon_0} u - \nabla \Phi, \quad \text{in } \Omega \times [0,T), \quad (1.1) \\
\nabla \cdot u &= 0, \quad \text{in } \Omega \times [0,T), \\
\nabla \cdot A &= 0, \quad \text{in } \Omega \times [0,T).
\end{aligned}
\]

*Email: liuruikuan2008@163.com. Supported by NSFC(11401479)
†Corresponding author: jiayan_1985@163.com;
Here $\Omega \subset \mathbb{R}^2$ is a bounded smooth domain, T is any fixed time. $u(x,t)$, $A(x,t)$, $p(x,t)$ are the velocity field, the magnetic potential and the pressure function, respectively. $\Phi = \partial A_0 / \partial t$ represents the magnetic pressure with the scalar electromagnetic potential A_0. The constants ν, ρ_0, ρ_e, ϵ_0, μ_0 denote kinetic viscosity, mass density, equivalent charge density, electric permittivity and magnetic permeability of free space.

In this paper, we focus on the system (1.1) with the initial-boundary conditions

$$u(0,x) = \phi(x), \quad A(0,x) = \psi(x), \quad A_t(0,x) = \eta(x), \quad \text{in } \Omega,$$

$$u(t,x) = 0, \quad A(t,x) = 0, \quad \text{on } \partial \Omega \times [0,T].$$

Note that the MHD model (1.1) is established based on the the Newton’s second law and the Maxwell equations for the electromagnetic fields in [10]. In addition, the global weak solutions of the corresponding 3-D MHD model (1.1) with (1.2)-(1.3) has been obtained by using the Galerkin technique and standard energy estimates in [10]. In this paper, what we are concerned is the global strong solution of the 2-D MHD model (1.1) with the initial-boundary conditions (1.2)–(1.3).

It is known that there have been huge mathematical studies on the existence of solutions to the N-dimension ($N \geq 2$) classical MHD model established by Chandrasekhar [4]. In particular, Duvaut and Lions [5] constructed a global weak solution and the local strong solution to the 3-D classical MHD equations the initial boundary value problem, and properties of such solutions have been investigated by Sermange and Temam in [15]. Furthermore, some sufficient conditions for smoothness were presented for the weak solution to the 3-D classical MHD equations in [7] and some sufficient conditions of local regularity of suitable weak solutions to the 3-D classical MHD system for the points belonging to a C^3-smooth part of the boundary were obtained in [18]. Also, the global strong solutions for heat conducting 3-D classical magnetohydrodynamic flows with non-negative density were proved in [21].

Moreover, let’s recall some known results for the 2-D classical and generalized MHD equations. It is noticed that the 2D classical MHD equations admits a unique global strong solution in [5, 15]. Furthermore, Ren, Wu, et.al [14] have proved the global existence and the decay estimates of small smooth solution for the 2-D classical MHD equations without magnetic diffusion and Cao, Regmi and Wu [3] have obtained the global regularity for the 2-D classical MHD equations with mixed partial dissipation and magnetic diffusion. Besides, Regmi [13] established the global weak solution for 2-D classical MHD equations with partial dissipation and vertical diffusion. There are also very interesting investigations about the existence of strong solutions to the 2-D classical and generalized MHD equations, see [8, 9, 12, 15, 19, 20, 22] and references therein.
However, it is worth pointing out that the incompressible MHD system (1.1) is a mixed-type differential difference equation, which is combined with the parabolic equation (1.1)$_1$ and the hyperbolic equation (1.1)$_2$. The main challenge in obtaining global strong solution of 2-D MHD model (1.1) with (1.2)-(1.3) is the estimate for $||u \times \text{rot} A||_{L^\infty(0,T;L^2)}$ and $||(u \cdot \nabla)u||_{L^\infty(0,T;L^2)}$. The difficulty is overcome by applying the Solonnikov’s theorem [6, 11, 16] of $L^p - L^q$-estimates for the non-stationary Stokes equations and Agmon, Douglis and Nirenberg’s estimates [1, 2, 11] for the stationary Stokes equations. As is known, Solonnikov [16] first gave the proof of Maximal L^p-L^q-estimates for the Stokes equation (2.4) using potential theoretic arguments. Recently, Geissert, Hess, Hieber et.al [6] provided a short proof of the corresponding Solonnikov’s theorem in [16].

The rest of this article is organized as follows. In Section 2, we introduce some elementary function spaces, a vital embedding theorem and some regularity results of both the non-stationary Stokes equations and stationary Stokes equations. Section 3 is mainly devoted to the proof of global strong solution of (1.1)—(1.3).

2 Preliminaries
2.1 Notations and definitions
First, we introduce some notations and conventions used throughout this paper.

Let $\Omega \subset \mathbb{R}^2$ be a bounded sufficiently smooth domain. Let $H^r(\Omega)(r = 1, 2)$ be the general Sobolev space on Ω with the norm $|| \cdot ||_{H^r}$ and $L^2(\Omega)$ be the Hilbert space with the usual norm $|| \cdot ||$. The space $H^r_0(\Omega)$ we mean that the completion of $C_0^\infty(\Omega)$ under the norm $|| \cdot ||_{H^r}$. If F is a Banach space, we denote by $L^p(0,T;F)(1 < p < \infty)$ the Banach space of the F-valued functions defined in the interval $(0,T)$ that are L^p-integrable.

We also consider the following spaces of divergence-free functions (see Temam [17])

$X = \{ u \in C_0^\infty(\Omega, \mathbb{R}^2) \mid \text{div} u = 0 \text{ in } \Omega \},$

$Y = \text{the closure of } X \text{ in } L^2(\Omega, \mathbb{R}^2)$

$= \{ u \in L^2(\Omega, \mathbb{R}^2) \mid \text{div} u = 0 \text{ in } \Omega \},$

$Z = \text{the closure of } X \text{ in } H^1(\Omega, \mathbb{R}^2)$

$= \{ u \in H^1_0(\Omega, \mathbb{R}^2) \mid \text{div} u = 0 \text{ in } \Omega \}.$

Definition 2.1. Suppose that $\phi, \eta \in Y$, $\psi \in Z$. For any $T > 0$, a vector function (u, A) is called a global weak solution of problem (1.1)—(1.3) on $(0, T) \times \Omega$ if it satisfies the following conditions:
1. \(u \in L^2(0, T; Z) \cap L^\infty(0, T; Y) \),

2. \(A \in L^\infty(0, T; Z), \ A_t \in L^\infty(0, T; Y) \),

3. For any function \(v \in X \), there hold

\[
\int_\Omega u \cdot v \, dx + \int_0^t \int_\Omega (u \cdot \nabla) u \cdot v + \nu \nabla u \cdot \nabla v - \frac{\rho_e}{\rho_0} (u \times \text{rot} A) \cdot v \, dx \, dt = \int_0^t \int_\Omega f \cdot v \, dx \, dt + \int_\Omega \phi \cdot v \, dx.
\]

and

\[
\int_\Omega \partial A \cdot v \, dx + \frac{1}{\epsilon_0 \mu_0} \nabla u \cdot \nabla v + \frac{\rho_e}{\epsilon_0} u \cdot v \, dx \, dt = \int_\Omega \eta v \, dx.
\]

Now, we define strong solution of the problem (1.1)–(1.3).

Definition 2.2. Suppose that \(\phi, \psi \in H^2(\Omega, \mathbb{R}^2) \cap Z, \eta \in Z, \Phi \in L^2(0, T; H^1_0(\Omega)) \). \((u, A)\) is called a global strong solution to (1.1)–(1.3), if \((u, A)\) satisfy

\[
u_{\infty}(\Omega) \cap Z, \quad u_t \in L^\infty_\text{loc}(0, T; \nabla u \text{ in } L^2) \cap L^2_\text{loc}(0, T; Z), \quad A_t \in L^\infty_\text{loc}(0, T; Y),
\]

Furthermore, both (1.1) and (1.3) hold almost everywhere in \(\Omega \times (0, T) \).

2.2 Lemmas

Some more lemmas will be frequently used later. One is the following embedding result in [11].

Lemma 2.3. For any \(k \geq 0 \), the following hold

\[
L^p((0, T), W^{k+1,p}(\Omega)) \cap L^\infty((0, T); W^{k,q}(\Omega)) \subset L^q(0, T; W^{k,q}(\Omega)),
\]

where \(q = (r(k + 1)p + np)/(rk + n) \). In the special case of \(k = 0 \), (2.1) equals to

\[
L^p(0, T; W^{1,p}(\Omega)) \cap L^\infty((0, T); W^{1,q}(\Omega)) \subset L^q(\Omega \times (0, T))
\]

provided that \(q = (n + r)p/n \).

Proof. From Gagliardo-Nirenberg interpolation inequality, we have

\[
\|u\|_{W^{k,q}} \leq C\|u\|_{W^{m,p}}^{\theta} \|u\|_{W^{2,r}}^{1-\theta}, \quad 0 \leq \theta \leq 1,
\]
provided that
\[
\theta \left(m - \frac{n}{p} \right) + (1 - \theta) \left(j - \frac{n}{r} \right) \geq k - \frac{n}{q},
\]
where \(C \) is a constant independent of \(u \).

Inserting \(j = 0, \quad q \geq p, \quad m = k + 1 \) and \(\theta = \frac{p}{q} \) into (2.3), it is easy to see that
\[
\left(\int_{\Omega} |D^k u|^q \, dx \right)^{\frac{1}{q}} \leq C \left(\int_{\Omega} |D^{k+1} u|^p \, dx \right)^{\frac{1}{p}} \left(\int_{\Omega} |u|^r \, dx \right)^{\frac{1}{r}(1-p/q)},
\]
where \(q = \frac{(r(k+1)p+np)}{rk+n} \).

Then we get
\[
\int_0^T \int_{\Omega} |D^k u|^q \, dx \, dt \leq C \sup_{0 \leq t \leq T} \|u\|_{L^p(\Omega)}^{(q-p)r} \int_0^T \int_{\Omega} |D^{k+1} u|^p \, dx \, dt,
\]
which implies (2.1) and (2.2).

The other lemma is responsible for the estimates for \(u, p, u_t \) and follows from the \(L^r-L^q \)-estimates \([6, 16] \) for non-stationary Stokes equations. For its proof, refer to \([6, 16] \).

Let us consider the following Stokes equations
\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \nu \Delta u - \nabla p + f(x, t), \\
\nabla \cdot u &= 0, \\
u|_{\partial \Omega} &= 0, \\
|u(0)| &= u_0,
\end{aligned}
\tag{2.4}
\]
where \(\nu > 0 \) is a constant.

Lemma 2.4. Let \(\Omega \subset \mathbb{R}^n(n = 2, 3) \) be a domain with compact \(C^3 \)-boundary, \(1 < r, p < \infty, \quad 0 < T < \infty \). Then for any \(f \in L^r(0, T; L^q(\Omega, \mathbb{R}^n)) \) and \(u_0 \in W^{2,q}(\Omega, \mathbb{R}^n) \) there exists a unique solution \((u, p)\) of (2.4) satisfying
\[
\begin{aligned}
|u|_{L^r(0, T; W^{2,q})} + |u_t|_{L^r(0, T; L^q)} + |p|_{L^r(0, T; W^{1,q})} \\ \leq C(|f|_{L^r(0, T; L^q)} + |u_0|_{W^{2,q}}),
\end{aligned}
\]
where \(C > 0 \) is a constant.
Finally, we give some regularity results for the stationary Stokes system. For its proof, refer to [1, 2, 11].

Lemma 2.5. Assume that \((v, p) \in W^{2,p}(\Omega, \mathbb{R}^n) \times W^{1,p}(\Omega) (1 < p < \infty)\) is a weak solution of the stationary Stokes equations

\[
\begin{cases}
- \nu \Delta v - \nabla p = F(x), & \text{in } \Omega, \\
\nabla \cdot v = 0, & \text{in } \Omega, \\
v|_{\partial \Omega} = 0, & \text{on } \partial \Omega,
\end{cases}
\]

and \(F \in W^{k,q}(\Omega, \mathbb{R}^n)(k \geq 0, 1 < q < \infty)\). Then it holds that

\[(v, p) \in W^{k+2,q}(\Omega, \mathbb{R}^n) \times W^{k+1,q}(\Omega)\]

and

\[||v||_{W^{k+2,q}} + ||p||_{W^{k+1,q}} \leq C(||F||_{W^{k,q}} + ||(u, p)||_{L^q})\]

with some constant \(C\) depending on \(n, \Omega\) and \(q\).

3 Main Results

In this section, we state the global weak solution existence theorem and the global strong solution existence one for the problem (1.1)–(1.3), and also prove them.

Theorem 3.1. Let the initial value \(\phi, \eta \in Y, \psi \in Z\). If \(f \in Y, \Phi \in L^2(0, T; H^1_0(\Omega))\), then there exists a global weak solution for the problem (1.1)–(1.3).

Proof. By the standard Galerkin method and the similar estimates in [10], the existence of global weak solution of (1.1)–(1.3) is also valid, we omit it. \(\square\)

Theorem 3.2. Let \(\Omega\) be a bounded domain with compact \(C^3\)-boundary. If \(\phi, \psi \in H^2(\Omega, \mathbb{R}^2) \cap Z, \eta \in Z\), for any \(f \in Y, \Phi \in L^2(0, T; H^1_0(\Omega))\), then there exists a global strong solution for the problem (1.1)–(1.3), i.e., for any \(0 < T < \infty\)

\[
\begin{align*}
u & \in L^\infty(0, T; H^2(\Omega, \mathbb{R}^2) \cap Z), \quad u_t \in L^\infty(0, T; Y) \cap L^2(0, T; Z) \\
p & \in L^\infty(0, T; H^1(\Omega)), \\
A & \in L^\infty(0, T; H^2(\Omega, \mathbb{R}^2) \cap Z), \quad A_t \in L^\infty(0, T; Z), \quad A_{tt} \in L^\infty(0, T; Y).
\end{align*}
\]

Proof. The proof can be divided into 3 steps. We will use the same generic constant \(C\) to denote various constants that depend on \(\mu_0, \rho_0, \rho_e, \epsilon_0\) and \(T\) only.

Step 1 The estimates and regularity for \(A\).
From Theorem 3.1, for any $0 < T < \infty$, we get the global weak solution
\begin{equation}
\begin{aligned}
u &\in L^2(0, T; Z) \cap L^\infty(0, T; Y), \\
A &\in L^\infty(0, T; Z), \ A_t \in L^\infty(0, T; Y).
\end{aligned}
\tag{3.1}
\end{equation}

Multiplying both sides of (1.1) by $-\Delta A_t$ and integrating over Ω, we have
\begin{equation}
\begin{aligned}
\frac{1}{2} \frac{d}{dt} \left(\int_\Omega |\nabla A_t|^2 + \frac{1}{\epsilon_0 \mu_0} |\Delta A|^2 \right) &= \frac{\rho_0}{\epsilon_0} \int_\Omega \nabla u \nabla A_t dx \tag{3.2}
\end{aligned}
\end{equation}

since $\text{div} A = 0$ and (1.3).

Using the Hölder inequality, it is easy to see that
\begin{equation}
\begin{aligned}
\frac{d}{dt} \left(||\nabla A_t||^2_{L^2} + \frac{1}{\epsilon_0 \mu_0} ||\Delta A||^2_{L^2} \right) &\leq 2 \left(||\nabla A_t||^2_{L^2} + \frac{1}{\epsilon_0 \mu_0} ||\Delta A||^2_{L^2} + \frac{\rho_0^2}{\epsilon_0^2} ||\nabla u||^2_{L^2} \right).
\end{aligned}
\tag{3.3}
\end{equation}

Then, by the Gronwall inequality, (3.3) implies
\begin{equation}
\begin{aligned}
||\nabla A_t||^2_{L^2} + ||\Delta A||^2_{L^2} &\leq e^{2T} \left(||\Delta \psi||_{L^2} + ||\nabla \eta||_{L^2} + 2 \frac{\rho_0^2}{\epsilon_0^2} \int_0^T ||\nabla u||^2_{L^2} ds \right),
\end{aligned}
\tag{3.4}
\end{equation}

for $\forall \ 0 < T < \infty$.

Therefore, we conclude that
\begin{equation}
\begin{aligned}
\nabla A_t &\in L^\infty(0, T; Y), \ \Delta A \in L^\infty(0, T; Y).
\end{aligned}
\tag{3.5}
\end{equation}

Next, we need to derive an estimate on $||A_{tt}||_{L^\infty(0, T; Y)}$.

Multiplying both sides of Eqs. (1.1) by A_{tt} integrating over Ω lead to
\begin{equation}
\begin{aligned}
\int_\Omega |A_{tt}|^2 dx &= \frac{1}{\epsilon_0 \mu_0} \int_\Omega \Delta AA_{tt} dx + \frac{\rho_0}{\epsilon_0} \int_\Omega uA_{tt} dx \tag{3.6}
\end{aligned}
\end{equation}

since $-\int_\Omega \nabla \Phi A_{tt} dx = \int_\Omega \Phi \text{div} A_{tt} dx = 0$.

Using the Hölder inequality and Young inequality, we deduce from (3.6) that
\begin{equation}
\begin{aligned}
\int_\Omega |A_{tt}|^2 dx &\leq \frac{1}{\epsilon_0^2 \mu_0^2} \int_\Omega |\Delta A|^2 dx + \frac{\rho_0^2}{\epsilon_0^2} \int_\Omega |u|^2 dx + \frac{1}{2} \int_\Omega |A_{tt}|^2 dx.
\end{aligned}
\tag{3.7}
\end{equation}

It is easy to see that
\begin{equation}
\begin{aligned}
\text{ess sup}_{0 \leq t \leq T} \int_\Omega |A_{tt}|^2 dx &\leq \text{sup}_{0 \leq t \leq T} \frac{2 \rho_0^2}{\epsilon_0^2 \mu_0^2} \int_\Omega |\Delta A|^2 dx + \text{sup}_{0 \leq t \leq T} \frac{2 \rho_0^2}{\epsilon_0^2} \int_\Omega |u|^2 dx.
\end{aligned}
\tag{3.8}
\end{equation}

Putting the estimates (3.1), (3.5) and (3.8) together, we have
\begin{equation}
A_{tt} \in L^\infty(0, T; Y).
\tag{3.9}
\end{equation}

Hence, (3.5) and (3.9) imply the regularity for A.

\textbf{Step 2} The L^3_σ-$L^{\frac{3}{2}}$-estimates for $u \cdot \nabla u$ and $u \times A$.
From (3.1) and Lemma 2.3 (the case that \(k=0 \)), it is easy to check that
\[u \in L^4((0, T) \times \Omega). \]
(3.10)

Note that
\[\int_0^T \int_\Omega |Du|^4 \frac{1}{3} |u|^4 \, dx \, dt \leq \left(\int_0^T \int_\Omega |Du|^2 \, dx \, dt \right)^{\frac{3}{2}} \left(\int_0^T \int_\Omega |u|^4 \, dx \, dt \right)^{\frac{1}{2}}, \]
which implies that
\[u \cdot \nabla u \in L^{\frac{4}{3}}(0, T; W^{1, \frac{4}{3}}(\Omega, \mathbb{R}^2)). \]
(3.12)

Combining (3.1) and (3.10), we get
\[\int_0^T \int_\Omega |u \times \text{rot} A|^4 \frac{1}{3} |u|^4 \, dx \, dt \leq \left(\int_0^T \int_\Omega |u|^4 \, dx \, dt \right)^{\frac{3}{4}} \left(\int_0^T \int_\Omega |\text{rot} A|^2 \, dx \, dt \right)^{\frac{1}{4}} \]
\[\leq C \left(\int_0^T \int_\Omega |u|^4 \, dx \, dt \right)^{\frac{1}{2}} \left(\int_0^T \int_\Omega |\nabla A|^2 \, dx \, dt \right)^{\frac{1}{2}} < \infty, \]
(3.13)

which in turn implies
\[u \times \text{rot} A \in L^{\frac{4}{3}}(0, T; L^{\frac{4}{3}}(\Omega, \mathbb{R}^2)). \]
(3.14)

Recall that \((u, p)\) satisfying the following Stokes system
\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \nu \Delta u - \frac{1}{\rho_0} \nabla p + F(x, t), \\
\nabla \cdot u &= 0, \\
u|\partial \Omega &= 0, \\
u(0) &= \phi,
\end{aligned}
\]
(3.15)

where \(F(x, t) = f - (u \cdot \nabla)u + \frac{\rho_0}{\rho_0}(u \times \text{rot} A). \)

By (3.12) and (3.14), we get \(F \in L^{\frac{4}{3}}(0, T; L^{\frac{4}{3}}(\Omega, \mathbb{R}^2)) \). Applying this into Lemma 2.4, we obtain that
\[
\begin{aligned}
u \in L^{\frac{4}{3}}(0, T; W^{2, \frac{4}{3}}(\Omega, \mathbb{R}^2)), & \quad u_t \in L^{\frac{4}{3}}(0, T; L^{\frac{4}{3}}(\Omega, \mathbb{R}^2)), \\
p \in L^{\frac{4}{3}}(0, T; W^{1, \frac{4}{3}}(\Omega)).
\end{aligned}
\]
(3.16)

In the next step, the Lemma 2.5 will be used, since (3.15) can be rewritten as the following stationary Stokes equations
\[
\begin{aligned}
- \nu \Delta u + \frac{1}{\rho_0} \nabla p &= \tilde{F}(x, t), \\
\nabla \cdot u &= 0, \\
u|\partial \Omega &= 0, \\
u(0) &= \phi,
\end{aligned}
\]
(3.17)
where \(\tilde{F}(x, t) = f - (u \cdot \nabla)u + \frac{\rho_e}{\rho_0}(u \times \text{rot}A) - u_t \).

Step 3 The estimate for \(||\tilde{F}||_{L^\infty(\Omega, L^2(\Omega, \mathbb{R}^2))} \).

(i) **The estimate for \(||\nabla u||_{L^\infty(0, T; L^2)} \).**

Multiplying Eq. (1.1) by \(u_t \) and integrating over \(\Omega \), we have

\[
\frac{\mu}{2} \frac{d}{dt} \int_\Omega |\nabla u|^2 dx + \int_\Omega |u_t|^2 dx = \int_\Omega -(u \cdot \nabla)u \cdot u_t + \frac{\rho_e}{\rho_0}(u \times \text{rot}A)u_t dx. \tag{3.18}
\]

Note that the following continuous embeddings

\[
W^{2, \frac{4}{3}}(\Omega, \mathbb{R}^2) \hookrightarrow W^{1, 4}(\Omega, \mathbb{R}^2) \hookrightarrow C^{1, 2}_0(\Omega, \mathbb{R}^2) \hookrightarrow C^0(\Omega, \mathbb{R}^2). \tag{3.19}
\]

Combining (3.19), Hölder inequality and \(\epsilon \)-Young inequality, we derive that

\[
\int_\Omega |(u \cdot \nabla)u \cdot u_t| dx \leq C||u_t||_{L^2}||u||_{C^0}||\nabla u||_{L^2} \leq \frac{1}{4}||u_t||_{L^2}^2 + C^2||u||_{C^0}^2||\nabla u||_{L^2}^2 \tag{3.20}
\]

and

\[
\frac{\rho_e}{\rho_0} \int_\Omega |(u \times \text{rot}A)u_t| dx \leq C||u||_{C^0}||\nabla A||_{L^2}||u_t||_{L^2} \leq \frac{1}{4}||u_t||_{L^2}^2 + C^2||u||_{C^0}^2||\nabla A||_{L^2}^2, \tag{3.21}
\]

which together with Gronwall’s inequality implies

\[
\text{ess sup}_{0 < t < T} ||\nabla u||_{L^2} < \infty. \tag{3.22}
\]

(ii) **The estimate for \(||u_t||_{L^\infty(0, T; L^2)} \).**

Taking \(t \)-derivative of Eq. (1.1), then one gets that

\[
u_{tt} - \mu \Delta u_t = -(u_t \cdot \nabla)u - (u \cdot \nabla)u_t - \frac{1}{\rho_0} \nabla p_t + \frac{\rho_e}{\rho_0} u_t \times \text{rot}A + \frac{\rho_e}{\rho_0} u \times \text{rot}A_t. \tag{3.23}
\]

Multiplying (3.23) by \(u_t \) and integrating over \(\Omega \), we obtain

\[
\frac{1}{2} \frac{d}{dt} \int_\Omega |u_t|^2 dx + \mu \int_\Omega |\nabla u_t|^2 dx = \int_\Omega -(u_t \cdot \nabla)u \cdot u_t + \frac{\rho_e}{\rho_0}(u \times \text{rot}A_t)u_t dx. \tag{3.24}
\]

since

\[(u_t \times \text{rot}A) \cdot u_t = 0, \int_\Omega (u \cdot \nabla)u_t \cdot u_t dx = -\int_\Omega \frac{1}{2} u_t^2 \text{div}u dx = 0.\]
Next, we estimate the two terms on the right hand of (3.24). By (3.19) and integrating by parts yield

\[- \int_{\Omega} (u_t \cdot \nabla)u \cdot u_t \, dx = \int_{\Omega} u_i^j w^j \partial_t u_i^j - u_i^j \partial_t (w^j u_i^j) \, dx\]

(3.25)

And similarly,

\[\frac{\rho_e}{\rho_0} \int_{\Omega} |(u \times \text{rot}A_t)u_t| \, dx \leq \frac{C \rho_e}{\rho_0} \int_{\Omega} |u u_t \nabla A_t| \, dx \leq \frac{C \rho_e}{\rho_0} \|u\|_{C^0} \left(\|u_t\|_{L^2}^2 + \|\nabla u_t\|_{L^2}^2 \right).\]

(3.26)

Hence, by (3.24), (3.25) and (3.26), we get that

\[\frac{1}{2} \frac{d}{dt} \int_{\Omega} |u_t|^2 \, dx + \mu \int_{\Omega} |\nabla u_t|^2 \, dx \leq \|u\|_{C^0} \left(1 + C \rho_e / \rho_0\right) \|u_t\|_{L^2}^2 + \|\nabla u_t\|_{L^2}^2 \]

(3.27)

which together with Gronwall’s inequality completes the estimate

\[\text{ess sup}_{0 < t < T} \|u_t(t)\|_{L^2} < \infty.\]

(3.28)

(iii) **The estimates for** \[\|u \cdot \nabla u\|_{L^\infty(0,T;L^2)}\] **and** \[\|u \times A\|_{L^\infty(0,T;L^2)}.\]

From (3.22), it is easy to see that

\[\nabla u \in L^\infty(0,T;Y).\]

(3.29)

Hence

\[u \in L^\infty(0,T;H^1).\]

It is known that \[H^1 \hookrightarrow L^q(1 < q < \infty)\] when \(n = 2\). Note that

\[\left(\int_{\Omega} |(u \cdot \nabla)u|^r \, dx \right)^{\frac{1}{r}} \leq \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\Omega} |u|^{\frac{2r}{r-2}} \, dx \right)^{\frac{r-2}{2r}} < \infty\]

(3.30)

provided that \(1 < r < 2\). Hence

\[(u \cdot \nabla)u \in L^\infty(0,T;L^r(\Omega,\mathbb{R}^2)).\]

(3.31)

By using the Hölder inequality and the Sobolev embedding theorem, it follows that

\[\int_{\Omega} |u \times \text{rot}A|^2 \, dx \leq C \int_{\Omega} |u|^2 |\nabla A|^2 \, dx \]

\[\leq C \left(\int_{\Omega} |u|^4 \, dx + \int_{\Omega} |\nabla A|^4 \, dx \right)\]

(3.32)

\[\leq C \left(\int_{\Omega} |\nabla u|^2 \, dx + \int_{\Omega} |\Delta A|^2 \, dx \right).\]
Together (3.5) with (3.32), we have
\[u \times \text{rot} A \in L^\infty(0, T; L^2(\Omega, \mathbb{R}^2)). \]
(3.33)

According to (3.28), (3.31), (3.33) and the assumption, \(\tilde{F} \) in (3.17) satisfies
\[\tilde{F} \in L^r(\Omega, \mathbb{R}^2)(1 < r < 2) \quad \text{for any } 0 < T < \infty. \]
(3.34)

Applying (3.34) into Lemma 2.5, we get
\[u \in L^\infty(0, T; W^{2,r}(\Omega, \mathbb{R}^2)), \quad p \in L^\infty(0, T; W^{1,r}(\Omega)). \]
(3.35)

Using the Sobolev embedding theorem \(W^{2,r} \hookrightarrow C^\alpha \hookrightarrow C^0(0 < \alpha < 1, n = 2, \)), we deduce from (3.29) and (3.35) that
\[(u \cdot \nabla)u \in L^2(\Omega, \mathbb{R}^2) \quad \text{for any } 0 < T < \infty. \]
(3.36)

By (3.28), (3.33) and (3.36), we get that
\[\tilde{F} = f - (u \cdot \nabla)u + \frac{\rho_e}{\rho_0}(u \times \text{rot} A) - u_t \in L^\infty(\Omega, L^2(\Omega, \mathbb{R}^2)). \]
(3.37)

Applying (3.37) into Lemma 2.5, we obtain that for any \(T > 0 \)
\[u \in L^\infty(0, T; W^{2,2}(\Omega, \mathbb{R}^2)), \quad p \in L^\infty(0, T; W^{1,2}(\Omega)). \]
(3.38)

Therefore, (3.1), (3.5), (3.9), (3.28) and (3.38) complete the proof. \(\square \)
References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math. (17) 1964, 35-92.

[2] C. Amrouche, V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44 (1994), 109-140.

[3] C. Cao, J. Wu, Global regularity for the 2-D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226 (2011), 1803-1822.

[4] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability. The International Series of Monographs on Physics Clarendon Press, Oxford, 1961.

[5] G. Duvaut, J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal. 46 (1972), 241-279.

[6] M. Geissert, M. Hess, M. Hieber, C. Schwarz, K. Stavrakidis, Maximal L^p-L^q-estimates for the Stokes equation: a short proof of Solonnikov’s theorem. J. Math. Fluid Mech. 12 (2010), 47-60.

[7] C. He, Z. Xin, On the regularity of solutions to the magnetohydrodynamic equations, J. Differential Equation 213 (2005), 235-254.

[8] X. Huang, Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system. J. Differential Equations 254 (2013), 511-527.

[9] Q. Jiu, D. Niu, J. Wu, X. Xu and H. Yu, The 2-D magnetohydrodynamic equations with magnetic diffusion. Nonlinearity 28 (2015), 3935-3955.

[10] R. Liu, J. Yang, Magneto-hydrodynamical Model for Plasma, arXiv: 1601.06339.

[11] T. Ma, Theory and method of partial differential equation. (Chineses) Beijing, Science Press, 2011.

[12] N. Masmoudi, Global well posedness for the Maxwell-Navier-Stokes system in 2D. J. Math. Pures Appl. 93 (2010), 559-571.

[13] D. Regmi, Global weak solutions for the two-dimensional magnetohydrodynamic equations with partial dissipation and diffusion. Nonlinear Anal. 144 (2016), 157-164.
[14] X. Ren, J. Wu, Z. Xiang, Z. Zhang, Global existence and decay of
smooth solution for the 2-D MHD equations without magnetic diffusion.
J. Funct. Anal. 267 (2014), 503-541.

[15] M. Sermange, R. Temam, Some mathematical questions related to the
MHD equations, Comm. Pure Appl. Math. 36(5) (1983), 635-664.

[16] V. A. Solonnikov, Estimates for solutions of nonstationary Navier-
Stokes equations, J. Soviet Math. 8 (1977), 467-529.

[17] R. Teman, Navier-Stokes equations Providence RI: AMS, 2000.

[18] V. Vialov, On the regularity of weak solutions to the MHD system near
the boundary. J. Math. Fluid Mech. 16(4) (2014), 745-769.

[19] T. Wang, A regularity criterion of strong solutions to the 2D com-
pressible magnetohydrodynamic equations. Nonlinear Anal. Real World
Appl.31 (2016), 100-118.

[20] J. Wu, Generalized MHD equations, J. Differential Equations 195
(2003), 284-312.

[21] Z. Xin, Global strong solutions for 3D viscous incompressible heat
conducting magnetohydrodynamic flows with non-negative density. J.
Math. Anal. Appl. 446 (2017), 707-729.

[22] K. Yamazaki, Global regularity of N-dimensional generalized MHD sys-
tem with anisotropic dissipation and diffusion. Nonlinear Anal. 122
(2015), 176-191.