A simple method for estimating the convection-dispersion equation parameters of solute transport in agricultural ecosystem

H. Shi\textsuperscript{1,2}, J.Y.Zheng\textsuperscript{3}, H.B.Shao\textsuperscript{2,5*}, H.X.Wang\textsuperscript{1} and F.Q. Chen\textsuperscript{1,4}

\textsuperscript{1}School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China.
\textsuperscript{2}The CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences(CAS), Yantai 264003, China.
\textsuperscript{3}State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences(CAS), Northwest A and F University, Yangling 712100, China.
\textsuperscript{4}Academy of Water Conservancy Research of Shandong Province, Ji’nan 250013, China.
\textsuperscript{5}Institute of Life Sciences, Qingdao University of Science and Technology, Qingdao266042, China.

Accepted 6 June, 2011

The convection-dispersion equation (CDE) is the classical approach for modeling solute transport in porous media. So, estimating parameters became a key problem in CDE. For statistical method, some problems such as parameter uniqueness are still unsolved because of more factors. Due to the advantage of clear physical concept and unique parameter values, the simple deterministic method became very useful alternatives. In this paper, a simple method was proposed to estimate both D and R, and the validity was verified by experiment, which can be applied in agriculture and environmental fields for predicting soil quality property.

Key words: Convection-dispersion equation (CDE), parameters estimation, agricultural system.

INTRODUCTION

The disadvantage is that only one data point of BTC is used. Elprince et al. (1977) modified this method by using two parameters, dispersion coefficient and retardation factor (D, R), but there is still a shortage of few data used. When the Paecele number is larger than 5, the BTC can be approximated by a normal distribution (Levenspiell and Smith, 1957; Fried and Combarnous, 1971) or a lognormal distribution (Rose and Passioura, 1971), and the parameters can be estimated by the method of probability property. Yamaguchi (1989) had
modified Rifai’s method (1956) using four points different to the estimated parameters. But the change of slope of BTC is more intensive; the estimation parameters are more different with other method (Li, 1999). BTC is a time-consuming method. Shao et al. (1998) presented an approximate method to estimate parameters by boundary-layer theory not needed to make BTC, but it is difficult to detect the boundary layer in practice. The objective of this study was to propose simple method to estimate both D and R of CDE simultaneously under the condition which the BTC were made or not. The results could be useful for applying CDE to predict the agri-chemicals transport in soils.

THEORY AND ERROR ANALYSIS

One-dimensional transient solute transport through a homogeneous medium during steady-state water flow is traditionally described by CDE:

\[ R \frac{\partial c_r}{\partial t} = D_0 \frac{\partial^2 c_r}{\partial x^2} + u_0 \frac{\partial c_r}{\partial x} \]  
(1)

Where, \( c_r(x,t) \) is the volume-averaged resident concentration of the solution in the liquid phase, \( u_0 \) is the mean velocity and assumed constant, \( D_0 \) is the dispersion coefficient and supposed constant, \( R \) is retardation factor, \( t \) is time and \( x \) is the distance.

The boundary and initial conditions for a semi-infinite column experiment are:

\[ c(x,0) = 0 \]  
(2a)

\[ -D \frac{\partial c_r}{\partial x} + uc_r \bigg|_{x=0} = uc_0 \]  
(2b)

Where, the initial solute concentration in the soil column is 0, and the concentration of solute supplied at the soil column inlet is \( c_0 \). The solution of Equation (1) under the condition of Equation (2) is (van Genuchten and Parker, 1984):

\[ \frac{c_r}{c_0} = \frac{1}{2} \text{erfc} \left( \frac{x - ut}{2 \sqrt{Dt}} \right) + \frac{1}{2} \exp \left[ \frac{ux}{D} \right] \text{erf} \left[ \frac{x + ut}{2 \sqrt{Dt}} \right] \]  
(3)

Where,

\[ D = \frac{D_0}{R} \quad u = \frac{u_0}{R} \]  
(4)

For Equation (3), the second term can be negligible at the high Brenner number (\( B = uL/D \)). So, we can neglete the second term:

\[ \frac{c_r}{c_0} = \frac{1}{2} \text{erfc} \left( \frac{x - ut}{2 \sqrt{Dt}} \right) \]  
(5)

Equation (5) can be transferred:

\[ 1 - 2 \frac{c_r}{c_0} = \text{erf} \left( \frac{x - ut}{2 \sqrt{Dt}} \right) \]  
(6)

Equation (6) was inverse operated:

\[ \text{arcerf} \left( 1 - 2 \frac{c_r}{c_0} \right) = \frac{x - ut}{2 \sqrt{Dt}} \]  
(7a)

\[ \sqrt{t} \text{arcerf} \left( 1 - 2 \frac{c_r}{c_0} \right) = \frac{x - ut}{2 \sqrt{D}} \]  
(7b)

Where, \( \text{arcerf} \) is the inverse operation of the error function, the values can be obtained from tables (Tables of the Error Function and Its Derivative, 1954) through inverse checking. If \( x \) equal fixed \( L \), setting \( \xi \) equal to:

\[ \xi = \sqrt{t} \text{arcerf} \left( 1 - 2 \frac{c_r}{c_0} \right) \]  
(8)

Equation 7b can change the relationship between BTC and time \( t \):

\[ \xi = \frac{L}{2 \sqrt{D}} - \frac{u}{2 \sqrt{D}} t \]  
(9)

Similarly, there is similar solution for effluent curve:

\[ \frac{c_f}{c_0} = \frac{1}{2} \text{erfc} \left( \frac{x - ut}{2 \sqrt{Dt}} \right) + \frac{1}{2} \exp \left[ \frac{ux}{D} \right] \text{erf} \left[ \frac{x + ut}{2 \sqrt{Dt}} \right] \]  
(10)

Where, the \( C_f \) is the effluent concentration. Using same method, the Equation (10) can be transfered to the style of Equation (9). But the \( \xi \) equal \( \sqrt{t} \text{arcerf} \left( 1 - 2 \frac{c_f}{c_0} \right) \) not \( \sqrt{t} \text{arcerf} \left( 1 - 2 \frac{c_r}{c_0} \right) \).

Thus, Equation (9) shows there exist a linear relationship between \( \xi \) and \( t \). The intercept and slope are functions of \( D \) and \( u \), and can be used to fit these
parameters, and this was named intercept method. Because BTC is time-consuming, the parameters were hoped to be estimated not through BTC. Equation (5) can be transferred to be:

$$D \frac{u}{t} \frac{D}{x} = 2 \left( \frac{1 - 2 \frac{c}{c_0}}{\sqrt{t}} \right) = \frac{x}{2 \sqrt{Dt}} - \frac{u}{2 \sqrt{D}} \quad (10)$$

The setting of \( Y \) and \( X \) equal to:

$$Y = \frac{\text{arcerf} \left( 1 - 2 \frac{c}{c_0} \right)}{\sqrt{t}}, \quad X = \frac{x}{t} \quad (11)$$

Equation (10) changes a linear relationship between \( Y \) and \( X \):

$$Y = \frac{1}{2 \sqrt{D}} X - \frac{u}{2 \sqrt{D}} \quad (12)$$

If a series \( \frac{c}{c_0} \) at different point \((x_i, t_j)\) was measured for homogenous column, the parameters can be calculated by Equation (12) not through BTC, and named position-time method.

The main error source is negligibility of the second term of the analytical solution of Equation (3). The percentage contribution of the second term in Equation (3) to the total \( \frac{c}{c_0} \) is shown as a function of \( B \) and \( \tau \) in Figure 1, where, \( B \) is the Brenner number \((B = \frac{uL}{D})\) and \( \tau \) is the number of pore volumes. When Brenner number is larger than 100, the percentage of the second term was less than 2. This showed that the second term of the analytical solution can be neglected under Brenner number more than 100 (Yamaguchi, 1989).
Figure 2. Dependence of relative error (log scale) on Brenner number (log scale) in estimating convective velocity, u and the hydrodynamic dispersion coefficient, D, under negligible second term of analytical solution (line is real value, the dash is estimated value). This showed that the estimated parameter values were consistent with the real values under Brenner number more than 100 (Yamaguchi, 1989).

the percentage contribution of the second term is less than 2% (Figure 1). This showed there was reason to neglect the second term of analytical solution under Brenner number more than 100. The relationship between relative error in estimating u and D using complete and negligibility of the second term analytical solution and Brenner number is shown in Figure 2. When Brenner number is more than 100, there are no difference between the parameters estimation without the second term and real parameter values.

Because in a wide range Peclet number $1 < \frac{ud}{D_m} < 10^6$ (where d is mean diameter of the soil particles, $D_m$ is the molecular diffusion coefficient), $D \equiv ud$ (Bear, 1979); the Brenner number was changed:

$$B = \frac{uL}{D} = \frac{ud}{D} \frac{L}{d} \equiv \frac{L}{d}$$  \hspace{1cm} (13)

So, the condition of the negligibility of the second term of the analytical solution can be satisfied through adjusting the length of soil column L and soil particle diameters. The relative error in estimating u and D is < 1% and < 0.5%, respectively, when the Brenner number is $B \equiv \frac{L}{d} > 100$ (Figure 2). In experience, the soil was sieved with 2 mm mesh and if the length of soil column is more than 20 cm, the condition of $B > 100$ can be satisfied; the above method can be used to estimate the parameters of CDE.

MATERIALS AND METHODS

The experimental soil samples were loam soil. The pH and organic matter of soil were 8.12 and 1.27% respectively. The contents of different particles of $> 0.25$, 0.25 to 0.05, 0.05 to 0.01, 0.01 to 0.005, 0.0005 to 0.001 mm, < 0.001 were 1.1, 5.6, 47.8, 15.0, 17.9 and 12.8% respectively. The experimental setup is schematically shown in Figures 1 and 2. The soil column was a plexiglass cylinder, 10 cm in diameter and 40 cm long, and perforated at 20 and 30 cm from the top. The air-dried soils sieved with 2 mm mesh were uniformly packed in layers and made the average dry density in the column (1.3 g/cm$^3$). The holes were used to insert the selective Cl$^-$ iron electrode and to get the Cl$^-$ concentration in different times. A 0.16 N solution of CaCl$_2$ was applied with a positive displacement after the soil column had been saturated with Mariotte bottle under 3 cm high water head. The mean water velocity was $u_0 = 1.03 cm/h$, and the porosity was 0.51. Under the basis, the leaching solution was collected and the Cl$^-$ concentration of the effluent solution was measured by titration with AgNO$_3$ solution.

RESULTS AND DISCUSSION

Parameters estimated by intercept method

Based on Equations 8 and 9, $\xi$ of the three different
positions was significantly linearly related with t (Figure 4). The parameters D and R can be calculated by the intercept and slope of $\xi$ and t. The parameters R estimated by intercept method were similar with that by CXTFIT and parameters D was more than 17% by CXTFIT (Table 1). After the second term was neglected, all contribution to the analytical solution was formed by first term; the parameters were amplified to meet these requirements, this maybe a reason for the parameters by the intercept method than the CXTFIT. No matter which method, the parameters D increased along with the length of soil column; this reason maybe that the soil porosity was more complex with the stretching; hydro-dispersion is more intensive. In order to compare the precision of the estimated parameters, the simulated breakthrough curve for three positions by three methods were compared; the simulated results were no obvious different with the measured one although the simulated one was higher than others (Figures 5 and 6). Especially for the first term approximate method (neglect of the second term of the analytical solution) and intercept method, the simulated results were as same as the results by the measured CXTFIT. This showed that intercept method can be used to estimate parameters of CDE equation and had high precision to predict the solute transport in soils.

Parameters estimated by position-time method

Compared with the intercept method, the position-time method needs to measure the BTC. Figure 6 is the linear relationship between Y and X for a series C/C0 at different time at 20 and 30 cm positions. The parameters D and R calculated were 0.645 and 0.97 according to Equation 12, respectively; these approximated the mean values by the intercept method at these 2 points. This showed the parameters by position-time method were an average condition. Figure 7 is the results predicted by the effluent BTC at 40 cm by parameters through 20 and 30 cm positions. The difference between the predicted and measured values was little. The position-time method can be used to estimate the parameters of CDE not through the making of BTC.

Figure 3. The schematic diagram about Cl$^-$ transport in a soil column experiment.
4. The linear relationship between $\xi$ and time, $\xi = \sqrt{\text{arccosh}(1 - 2 \frac{c}{c_0})}$.

**Figure** A, B, C were the measured points at 20cm, 30cm, and effluent, respectively.

| Parameter | Intercept method | CXTFIT method |
|-----------|------------------|---------------|
|           | 20 cm | 30 cm | effluent | Average | 20 cm | 30 cm | effluent | Average |
| D         | 0.507 | 0.728 | 0.818 | 0.684 | 0.554 | 0.587 | 0.612 | 0.584 |
| R         | 0.97  | 0.96  | 0.99  | 0.97  | 1.03  | 1.03  | 1.01  | 1.02  |

Because the intercept method and position-time method are derived from the basic solution of Convection-Dispersion Equation, they have clear physical concept, and is fast and easy to calculate. The simulated result by the calculated and measured parameters coincided. These can provide a simple method to approximate parameters in CDE.

**ACKNOWLEDGEMENTS**

This research was supported by the National Natural
Figure 5. Comparison of the measured BTC simulated at 3 different positions. The simulated 1 was a result that the parameters estimated by the intercept method and the simulated whole analytical solution. The simulated 2 was a result that the parameters estimated by intercept method and the simulated approximate analytical solution that neglected the second term. The simulated 3 was a result by CXTFIT program. A, B, C were the measured points at 20 cm, 30 cm, and effluent, respectively.

Science Foundation of China (40471078), Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT) (IRT0853), Shaanxi Provincial Office Education special Project (05JK241), One hundred-Talent Plan of Chinese Academy of Sciences (CAS) and the CAS/SAFEA International Partnership Program for Creative Research Teams.

REFERENCES

Bear J (1979). Hydraulics of groundwater. McGraw Hill, Inc., New York.
Bresler E, Naor A (1987). Estimating transport parameters in soils by a maximum likelihood approach. Soil Sci. Soc. Am. J. 51:870-875
Buchter B, Hinze C, Flury M, Fluher H (1995). Heterogeneous flow and solute transport in an unsaturated stony soil monolith. Soil Sci. Soc. Am. J. 59:14-21
Elprince AM, Day PR (1977). Fitting solute breakthrough data using two adjustable parameters. Soil Sci. Soc. Am. J. 41:39-41
Fried JJ, Combarnous MA (1971). Dispersion in porous media. In Advance in Hydrosci. Vol. 7, Academic Press, Orlando, FL.
Jury WA, Sposito G (1985). Field calibration and validation of solute transport models for the unsaturated zone. Soil Sci. Soc. Am. J. 49:1331-1341
Kool JB, Parker JC, Van Genuchten MTh (1987). Parameter estimation for unsaturated flow and transport models - A Review. J. Hydrol. 91:255-293
Levenspiel O, Smith WK (1957). Notes on the diffusion-type model for longitudinal mixing of fluids in flow. Chem. Eng. Sci. 6:227-233
Parker, Van Genuchten MTh (1984). Determining transport parameters from laboratory and field tracers experiments. Virginia Agric. Exp. Stn. Bull. 84-3
Ren Li, Li Baoguo, Zeng Fan, Xing Weiling (1999). Application of two new methods for determining the parameters of solute transport in soils. SHUILI XUEBAO (11):1-6 (In Chinese)
Riﬁ MNE, Kaufman WJ, Todd DK (1956). Dispersion phenomena in laminar ﬂow through porous media. Inst. Of Eng. Res. Ser. 93(2).
Salinity Eng. Res. Lab, Univ. of Cali. Berkeley.
Rose DA, Passioura JB (1971). The analysis of experiments on hydrodynamic dispersion. Soil Sci. 111:252-257
Shao M, Horton R, Miller RK (1998). An approximate solution to the Convection-Dispersion Equation of solute transport in soil. Soil Sci. 163:339-345
Toride NF, Leij, Van Genuchten MTh (1995). The CXTFIT Code for Estimating transport parameters from laboratory and field tracers experiments. U.S. Salinity Laboratory. Res. Report No.137
Yamaguchi T, Moldrup P, Yokosi S (1989). Using breakthrough curves for parameter estimation in the Convection-Dispersion Model of solute transport. Soil Sci. Soc. Am. J. 53:1635-1641