CLASS-PRESERVING AUTOMORPHISMS
OF UNIVERSAL HYPERLINEAR GROUPS

MARTINO LUPINI

Abstract. We show that the group of class-preserving automorphisms of a
universal hyperlinear group has index 2 inside the group of all automorphisms.

1. Introduction

Suppose that \(G \) is a group. An automorphism \(\alpha \) of \(G \) is class-preserving if
for every \(g \in G \) the elements \(g \) and \(\alpha(g) \) of \(G \) belong to the same conjugacy
class. It is easily observed that class-preserving automorphisms of \(G \) form a normal
subgroup of the group of automorphisms of \(G \). It is shown in [13] that if \(\mathcal{U} \) is a
nonprincipal ultrafilter over \(\mathbb{N} \), then every automorphism of the ultraproduct \(\prod_{\mathcal{U}} S_n \)
of the finite symmetric groups endowed with the normalized Hamming metric (as
defined in [14, Section 2.4]) is class-preserving. The groups \(\prod_{\mathcal{U}} S_n \) are sometimes
called universal sofic groups, since they contain any countable discrete sofic group
as a subgroup, see [14, Section 3].

In this note we consider universal hyperlinear groups, i.e. ultraproducts \(\prod_{\mathcal{U}} U_n \)
of the finite rank unitary groups endowed with the normalized Hilbert-Schmidt
metric, as defined in [14, Section 2.4]. We show that for any nonprincipal ultrafilter \(\mathcal{U} \) over \(\mathbb{N} \) the group of class-preserving automorphism of \(\prod_{\mathcal{U}} U_n \) has index 2 in
the automorphism group of \(\prod_{\mathcal{U}} U_n \). The same statement holds when one replaces
\(\prod_{\mathcal{U}} U_n \) with the unitary group \(U(\mathcal{R}^{\mathcal{U}}) \) of the ultrapower \(\mathcal{R}^{\mathcal{U}} \) of the separable hyperfinite \(\Pi_1 \) factor (an introduction to \(\Pi_1 \) factors and a definition of the hyperfinite \(\Pi_1 \)
factor can be found in [2, Section III.1]). It is worth observing that by [4, Proposition 2.4.6]
if the Continuum Hypothesis holds, then \(U(\mathcal{R}^{\mathcal{U}}) \) and \(\prod_{\mathcal{U}} U_n \) have outer
automorphisms (and in fact \(2^{\aleph_1} \) many of them).

The rest of this note is divided into two sections: In Section 2 we recall a fact
about automorphisms of countably saturated \(\Pi_1 \) factors whose proof is essentially
contained in [13]; In Section 3 we present a proof of the main theorem, based
on Theorem 2 from [6]. In the following \(\mathcal{U} \) will always be assumed to be a fixed
nonprincipal ultrafilter over \(\mathbb{N} \). The separable hyperfinite \(\Pi_1 \) factor will be denoted
as customary by \(\mathcal{R} \). The set of natural numbers \(\mathbb{N} \) will be assumed not to contain
0, and a positive real number will be assumed to be strictly greater than zero. A
natural number \(n \) will be regarded as a finite ordinal and hence identified with the
set \(\{0, 1, \ldots, n-1\} \) of its predecessors.

2010 Mathematics Subject Classification. Primary 03C20 46L40; Secondary 20F69.
Key words and phrases. Automorphisms, ultrapowers, hyperfinite \(\Pi_1 \) factor, logic for metric
structures.

The author was supported by the York University Elia Scholars Program.
2. AUTOMORPHISMS OF COUNTABLY SATURATED II$_1$ FACTORS

In this section we make use of terminology and results from the logic for metric structures. (An introduction to this subject can be found in [1].) In particular we consider II$_1$ factors as structures in the language of tracial von Neumann algebras, as described in [8, Section 2.3.2].

Suppose that M is a II$_1$ factor, β is an automorphism of M, and a is a normal element in the unit ball of M. Approximating a by normal elements with finite spectrum, it is easy to see that there is a sequence $(u_n)_{n\in\mathbb{N}}$ of unitary elements of M such that

$$\lim_{n \to +\infty} \|\beta(a) - u_n au_n^*\|_2 = 0$$

where $\|\cdot\|_2$ is the Hilbert-Schmidt norm associated with the unique trace of M. Thus the formula (with parameters)

$$\psi(z) \equiv \|\beta(a) - zaz^*\|_2 + \|zz^* - 1\|_2 + \|zz^* - 1\|_2$$

is approximately realized in M, i.e. for every positive real number ε there is an element u in the unit ball of M such that $\psi(u) < \varepsilon$. If moreover M is countably saturated as in [8, Section 4.4], then the formula ψ is actually realized in M, i.e. there is a (necessarily unitary) element u of M such that $\psi(u) = 0$ and hence

$$uau^* = \beta(a).$$

This concludes the proof of Proposition 1.

Proposition 1. Suppose that M is a countably saturated II$_1$ factor, and β is an automorphism of M. If a is a normal element of M, then a and $\beta(a)$ are conjugate by a unitary element of M.

Recall that by [8, Proposition 4.11] an ultraproduct of a sequence of tracial von Neumann algebras with respect to a nonprincipal ultrafilter is countably saturated.

Proposition 1 can also be proved using methods and results from [15]. In fact it is not difficult to see that the same proof as in [15] shows that Theorem 3.1 and Corollary 3.6 from [15] hold not only for ultrapowers of II$_1$ factors, but also more generally for any countably saturated II$_1$ factor. If now a is a normal element of M, and A is the C*-subalgebra of M generated by a, then A is abelian and, in particular, nuclear. It therefore follows from the described generalization of [15, Corollary 3.6] that the restriction of β to A coincides with the restriction of some inner automorphism of M. In particular a and $\beta(a)$ are conjugate by a unitary element of M.

3. AUTOMORPHISMS OF U(Rd)

The main result of this section is Theorem 1. Recall that an automorphism α of a group G is class-preserving if for every $x \in G$ the elements x and $\alpha(x)$ of G are conjugate. The class-preserving automorphisms of G form a normal subgroup of the automorphisms group of G.

Theorem 1. The group of class-preserving automorphisms of $U(R^d)$ has index 2 in the automorphisms group of $U(R^d)$. Moreover if α is any automorphism of $U(R^d)$ then α is an isometry with respect to the distance induced by the Hilbert-Schmidt norm on R^d. The same statement holds for automorphisms of the ultraproduct $\prod U_n$ of the sequence of unitary groups endowed with the normalized Hilbert-Schmidt metric.
Identify \mathcal{R} with the von Neumann algebra tensor product of infinitely many copies of M_2. If $a \in M_n$ define \overline{a} the element of M_2 obtained replacing every entry of a with the corresponding complex conjugate. It is immediate to verify that the function $a \mapsto \overline{a}$ is a conjugate linear automorphism of M_2. Moreover the function $a_0 \otimes \cdots \otimes a_{n-1} \mapsto \overline{a}_0 \cdot \cdots \cdot \overline{a}_{n-1}$ induces a conjugate linear automorphism of \mathcal{R}. Passing to the ultrapower one obtains a conjugate linear automorphism γ of \mathcal{R}^U preserving the Hilbert-Schmidt norm. The restriction of γ to $U(\mathcal{R}^U)$ defines an automorphism of $U(\mathcal{R}^U)$ that is not class-preserving but it is an isometry with respect to the distance induced by the Hilbert-Schmidt norm on \mathcal{R}^U. We will show in the following that if α is any automorphism of $U(\mathcal{R}^U)$, then either α or $\gamma \circ \alpha$ is class-preserving. This in particular will show that α is an isometry with respect to the distance induced by the Hilbert-Schmidt norm on \mathcal{R}^U.

Suppose that α is an automorphism of $U(\mathcal{R}^U)$. Recall that by cornerstone results of Dixmier-Lance [5] and McDuff [12] an ultrapower of a II$_1$ factor is a II$_1$ factor (this also follows from the fact that the class of II$_1$ factors is axiomatizable, see [1] Proposition 3.4). Thus \mathcal{R}^U is a II$_1$ factor, which is moreover countably saturated by [8] Proposition 4.11. By Theorem 2 from [6] together with the result of Broise from [3] that the unitary group of a II$_1$ factor does not have characters, there is a linear or conjugate linear *-isomorphism $\beta : \mathcal{R}^U \to \mathcal{R}^U$ whose restriction to $U(\mathcal{R}^U)$ is α. If β is a linear *-isomorphism then by Proposition 1 for every $u \in U(\mathcal{R}^U)$ there is $v \in U(\mathcal{R}^U)$ such that $vuv^* = \beta(u) = \alpha(u)$.

and hence α is class-preserving. If β is a conjugate linear *-isomorphism, then $\gamma \circ \beta$ is a linear *-isomorphism whose restriction to $U(\mathcal{R}^U)$ is $\gamma \circ \alpha$. Reasoning as before one concludes that $\gamma \circ \alpha$ is class-preserving. This concludes the proof Theorem 1.

In order to prove the analogous statement for $\prod_n U_n$ observe that $\prod_n U_n$ can be identified with the unitary group of $\prod_n M_n$ by [10] Proposition 2.1, see also [11] Exercise II.9.6. One can thus run the same argument where \mathcal{R}^U is replaced by $\prod_n M_n$ which is again a countably saturated II$_1$ factor by [8] Proposition 4.11.

Acknowledgments. We would like to thank Goulnara Arzhantseva for her comments, and for pointing out a mistake in the first version of these notes; We are also grateful to Valerio Capraro, Lukasz Grabowski, and Liviu Păunescu for their remarks and suggestions.

References

[1] I. Ben Yaacov, A. Berenstein, C. W. Henson, and A. Usvyatsov. Model theory for metric structures. In Model theory with applications to algebra and analysis. Vol. 2, volume 350 of London Math. Soc. Lecture Note Ser., pages 315–427. Cambridge Univ. Press, Cambridge, 2008.

[2] B. Blackadar. Operator algebras, volume 122 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2006. Theory of C^*-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.

[3] M. Broise. Commutateurs dans le groupe unitaire d’un facteur. J. Math. Pures Appl. (9), 46:299–312, 1967.

[4] V. Capraro and M. Lupini. Introduction to sofic and hyperlinear groups and Connes’ embedding conjecture. Preprint. Available at http://arxiv.org/pdf/1309.2034v2.pdf
[5] J. Dixmier and E. C. Lance. Deux nouveaux facteurs de type II₁. *Invent. Math.*, 7:226–234, 1969.

[6] H. A. Dye. On the geometry of projections in certain operator algebras. *Ann. of Math. (2)*, 61:73–89, 1955.

[7] I. Farah, Bradd Hart, and David Sherman, Model theory of operator algebras I: Stability. To appear in *Bull. Lond. Math. Soc*.

[8] I. Farah, B. Hart, and D. Sherman. Model theory for operator algebras II: Model theory. To appear in *Israel J. Math*.

[9] I. Farah, B. Hart, and D. Sherman. Model theory for operator algebras III: Elementary equivalence and II₁ factors. Preprint. Available at http://arxiv.org/pdf/1111.0998.pdf

[10] L. Ge and D. Hadwin. Ultraproducts of C*-algebras. In *Recent advances in operator theory and related topics (Szeged, 1999)*, volume 127 of *Oper. Theory Adv. Appl.*, pages 305–326. Birkhäuser, Basel, 2001.

[11] L. Glebsky. Almost commuting matrices with respect to normalized Hilbert-Schmidt norm. Preprint. Available at http://arxiv.org/abs/1002.3082.

[12] D. McDuff. Central sequences and the hyperfinite factor. *Proc. London Math. Soc.*, 21(3):443–461, 1970.

[13] L. Paunescu. All automorphisms of the universal sofic group are class preserving. Preprint. Available at http://arxiv.org/abs/1306.3469.

[14] V. Pestov. Hyperlinear and sofic groups: a brief guide. *The Bulletin of Symbolic Logic*, 14:449–480, 2008.

[15] D. Sherman. Notes on automorphisms of ultrapowers of II₁ factors. *Studia Mathematica*, 195:201–217, 2009.