Bayesian Analysis of Weibull-Lindley Distribution Using Different Loss Functions

Innocent Boyle Eraikhuemen¹, Olateju Alao Bamigbala², Umar Alhaji Magaji³, Bassa Shiwaye Yakura⁴ and Kabiru Ahmed Manju⁴

¹Department of Physical Sciences, Benson Idahosa University, Benin-City, Nigeria.
²Department of Mathematics and Statistics, Federal University Wukari, Taraba State, Nigeria.
³Department of Mathematics, Jigawa State College of Education, Gumel, Jigawa State, Nigeria.
⁴Department of General Studies, School of General Education, Federal College of Education, Yola, Adamawa State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors IBE and OAB designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors BSY and KAM managed the analyses of the study. Author UAM managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJARR/2020/v8i430205

Editors:
(1) Dr. Rachid Masrour, University of Cadi Ayyad, Morocco.
(2) Pedro Luiz Ramos, University of São Paulo, Brazil.
(3) Kamaljit Kaur, Sri Guru Gobind Singh College Chandigarh, India.
(4) Xingting Wang, Howard University, USA.
(5) Airault Helene, University of Picardie Jules Verne, France.
Complete Peer review History: http://www.sciarticle4.com/review-history/54833

Received 20 December 2019
Accepted 28 February 2020
Published 07 March 2020

ABSTRACT

In the present paper, a three-parameter Weibull-Lindley distribution is considered for Bayesian analysis. The estimation of a shape parameter of Weibull-Lindley distribution is obtained with the help of both the classical and Bayesian methods. Bayesian estimators are obtained by using Jeffrey’s prior, uniform prior and Gamma prior under square error loss function, quadratic loss function and Precautionary loss function. Estimation by the method of Maximum likelihood is also discussed. These methods are compared by using mean square error through simulation study with varying parameter values and sample sizes.

*Corresponding author: Email: ieraikhuemen@biu.edu.ng;
Keywords: Weibull-Lindley distribution; Bayesian method; priors; loss functions; MLE; simulation; MSE.

1. INTRODUCTION

There are several standard probability distributions that have been used over the years for modelling real-life datasets however research has shown that most of these distributions do not adequately model some of these heavily skewed datasets and therefore creating a problem in statistical theory and applications. Recently, numerous extended or compound probability distributions have proposed in the literature for modeling real-life situations and these compound distributions are found to be skewed, flexible and more better in statistical modeling compared to their standard counterparts [1-13].

Sequel to the fact above, [14] proposed and studied a new compound distribution known as the Weibull-Lindley distribution (WeiLinD) with two shape parameters and a scale parameter. This distribution has been found to be skewed and flexible with different shapes and performed better than the Lomax-Lindley distribution [15], two-parameter Lindley distribution [16], transmuted Lindley distribution [17] and the conventional Lindley distribution [18] based on some applications of the models to four real-life datasets [14].

From [14], the probability density function (pdf), the cumulative distribution function (cdf), the survival function (sf), the hazard function (or failure rate) and quantile function (qf) of the Weibull-Lindley distribution are respectively defined as:

\[
f(x) = \frac{\alpha \beta \theta^2 (1+x) e^{-\theta x} \left\{ -\log \left[1 + \frac{\theta x}{\theta + 1} e^{-\theta x} \right] \right\}^{\beta-1} e^{-\theta x \left[1 + \frac{\theta x}{\theta + 1} e^{-\theta x} \right]} }{ (\theta + 1) \left[1 + \frac{\theta x}{\theta + 1} e^{-\theta x} \right]^{\alpha+\beta} } \tag{1}
\]

\[
F(x; \theta, \alpha, \beta) = e^{-\theta x \left[1 + \frac{\theta x}{\theta + 1} e^{-\theta x} \right]^{\beta}} \tag{2}
\]

\[
S(x) = 1 - e^{-\alpha \left[1 + \frac{\theta x}{\theta + 1} e^{-\theta x} \right]^{\beta}} \tag{3}
\]

\[
h(x) = \frac{\alpha \beta \theta^2 (1+x) e^{-\theta x} \left\{ -\log \left[1 + \frac{\theta x}{\theta + 1} e^{-\theta x} \right] \right\}^{\beta-1} e^{-\theta x \left[1 + \frac{\theta x}{\theta + 1} e^{-\theta x} \right]} }{ (\theta + 1) \left[1 + \frac{\theta x}{\theta + 1} e^{-\theta x} \right]^{\alpha+\beta} } \tag{4}
\]

and

\[
Q(u) = -1 - \frac{1}{\theta} \int_{\theta u}^{\theta (1+u)} \left(-\exp \left\{ -\left(\frac{\ln u}{\alpha} \right)^{\theta} \right\} \right) e^{-(\theta+1)} \tag{5}
\]

In which \(x > 0, \alpha, \beta, \theta > 0 \) and where \(\alpha \) and \(\beta \) are the shape parameters and \(\theta \) is the scale parameter of the Weibull-Lindley distribution.

A graphical representation of the probability density function, cumulative distribution function, survival function and hazard function of the Weibull-Lindley distribution for some selected parameter values presented in Fig. 1.
Fig. 1. Plots of the PDF, CDF, survival function and hazard function of the WeiLinD for selected parameter values

For details of the general behaviour of these functions, their properties, applications, different mathematical and statistical properties of the Weibull-Lindley distribution authors should check [14]. Due to the recorded performance of the WeiLinD in real life applications, it is deemed very important for the authors of this research to investigate and consider the most appropriate approach(s) for estimating the shape parameter of this distribution (WeiLinD) which will forever be useful during practical applications of this model.

There are two basic approaches to parameter estimation and these are the classical and the non-classical methods. The classical theory of estimation involves a situation where the parameters are considered to be constant but unknown whereas the parameters are considered to be unknown and random just like variables under non classical approach. The most widely used method in classical theory is the method of maximum likelihood estimation while the Bayesian estimation method is used in the non-classical theory. However, in most real life problems described by lifetime distributions, the parameters cannot be considered as constants in all the life testing period [19-21]. Following this narrative, it becomes obvious that the classical (frequentist) approach can no longer handle adequately problems of parameter estimation in life time models and therefore the need for non-classical or Bayesian estimation in life time models.

Estimation of parameters in a distribution differs by method from one parameter of the distribution to another and therefore this study aims at estimating one shape parameter of the Weibull-Lindley distribution using Bayesian approach and making a comparison between the Bayesian approach and the method of maximum likelihood estimation.
The aim of this article is to estimate a shape parameter of the WeiLinD using Bayesian approach assuming a uniform prior, Jeffreys's prior and gamma prior distributions with three loss functions. Next to this introductory section are the remaining contents of this article presented as follows: In Section 2, maximum likelihood estimator (MLE) for the shape parameter is obtained. In Section 3, Bayesian estimators based on different loss functions by assuming a uniform, Jeffreys's and gamma prior distributions are derived. The proposed estimators are compared in relation of their distributions are derived. The proposed estimators are compared in relation of their mean squared error (MSE) in Section 4. Lastly, the conclusions is provided in Section 5.

\[L(x | \alpha, \beta, \theta) = P(x_{1}, x_{2}, \ldots, x_{n} | \alpha, \beta, \theta) = \prod_{i=1}^{n} P(x_{i} | \alpha, \beta, \theta) \]

The likelihood function, \(L(x | \alpha, \beta, \theta) \) based on the pdf of WeiLinD is defined to be the joint density of the random variables \(x_{1}, x_{2}, \ldots, x_{n} \) and it is given as:

\[
L(\bar{x} | \alpha, \beta, \theta) = \frac{\left(\alpha \beta \theta \alpha^{2}\right)^{n}}{(\theta+1)^{n}} \prod_{i=1}^{n} \left\{1+\frac{\theta x_{i}}{\theta+1}e^{-\theta x_{i}}\right\}^{-\beta} e^{-\alpha \sum_{i=1}^{n} \left[-\log\left[1+\frac{\theta x_{i}}{\theta+1}e^{-\theta x_{i}}\right]\right]^{\beta}}
\]

(7)

For the shape parameter of the WeiLinD \(\alpha \), the likelihood function is given by:

\[
L(x | \alpha) \propto e^{-\alpha \sum_{i=1}^{n} \left[-\log\left[1+\frac{\theta x_{i}}{\theta+1}e^{-\theta x_{i}}\right]\right]^{\beta}}
\]

(8)

\[
L(x | \alpha) = K \alpha^{\beta} e^{-\alpha \sum_{i=1}^{n} \left[-\log\left[1+\frac{\theta x_{i}}{\theta+1}e^{-\theta x_{i}}\right]\right]^{\beta}}
\]

Where \(K = \frac{\prod_{i=1}^{n} \left\{(1+x_{i})e^{-\theta x_{i}}\right\}^{\beta}}{\prod_{i=1}^{n} \left\{1+\frac{\theta x_{i}}{\theta+1}e^{-\theta x_{i}}\right\}^{\beta}} \) is a constant which is independent of the shape parameter, \(\alpha \).

Let the log-likelihood function, \(l = \log L(x | \alpha) \), therefore

\[
\log L(x | \alpha) = n \log \alpha - \alpha \sum_{i=1}^{n} \left[-\log\left[1+\frac{\theta x_{i}}{\theta+1}e^{-\theta x_{i}}\right]\right]^{\beta}
\]

(9)

Differentiating \(l \) partially with respect to \(\alpha, \beta \) and \(\theta \) respectively gives:
\[
\frac{\partial \log L \left(x \mid \alpha \right)}{\partial \alpha} = \frac{n}{\alpha} - \sum_{i=1}^{n} \left\{- \log \left[1 - \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right] \right\}^\beta = 0
\]

And solving for \(\hat{\alpha} \) gives;

\[
\hat{\alpha} = \frac{n}{\sum_{i=1}^{n} \left\{- \log \left[1 - \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right] \right\}^\beta}
\]

where \(\hat{\alpha} \) is the maximum likelihood estimator of the shape parameter, \(\alpha \). Details concerning the maximum likelihood estimators of the other two parameters of the WeiLinD can be found in [14].

3. BAYESIAN ESTIMATION

The Bayesian inference requires the appropriate choice of prior(s) for the parameter(s). From the Bayesian viewpoint, there is no clear cut way from which one can conclude that one prior is better than the other. Nevertheless, very often priors are chosen according to one's subjective knowledge and beliefs. However, if one has adequate information about the parameter(s), it is better to choose informative prior(s); otherwise, it is preferable to use non-informative prior(s).

In this study, two non-informative priors (uniform and Jeffrey) and an informative prior (gamma) will be considered for estimating the shape parameter of the WeiLinD. These assumed prior distributions have been used widely by several authors including [22-29]. This study also considers three loss functions including square error, quadratic and precautionary loss functions which have also been used previously by some researchers such as [30-40] etc. The stated prior distributions and loss functions are defined as follows:

a. The uniform prior is defined as:

\[
p(\alpha) \propto 1; \ 0 < \alpha < \infty
\]

b. Also, the Jeffrey’s prior is defined as:

\[
p(\alpha) \propto \frac{1}{\alpha}; \ 0 < \alpha < \infty
\]

c. Also, the gamma prior is defined as:

\[
P(\alpha) = \frac{a^b}{\Gamma(b)} \alpha^{b-1} e^{-\alpha a}
\]

i. Squared Error Loss Function (SELF)

The squared error loss function relating to the shape parameter \(\alpha \) is defined as:

\[
L(\alpha, \alpha_{\text{SELF}}) = (\alpha - \alpha_{\text{SELF}})^2
\]

where \(\alpha_{\text{SELF}} \) is the estimator of the parameter \(\alpha \) under SELF.

ii. Quadratic Loss Function (QLF)

The quadratic loss function is defined from [41] as
where α_{QLF} is the estimator of the parameter α under QLF.

iii. Precautionary Loss Function (PLF)

The precautionary loss function (PLF) introduced by [42] is an asymmetric loss function and is defined as

$$L(\alpha_{PLF}, \alpha) = \frac{(\alpha_{PLF} - \alpha)^2}{\alpha_{PLF}}$$

(16)

where α_{PLF} is the estimator of the shape parameter α under PLF.

The posterior distribution of a parameter is the distribution of the parameter after observing the available data and it is obtained by using Bayes’ theorem in relation to the shape parameter α, likelihood function and prior distribution as follows:

$$P(\alpha | x) = \frac{P(\alpha, x)}{P(x)} = \frac{P(x | \alpha) P(\alpha)}{\int P(x | \alpha) P(\alpha) d\alpha} = \frac{L(x | \alpha) P(\alpha)}{\int L(x | \alpha) P(\alpha) d\alpha}$$

(17)

where $P(x)$ is the marginal distribution of X and $P(x) = \sum_{\alpha} p(\alpha) L(x | \alpha)$ when the prior distribution of α is discrete and $P(x) = \int_{-\infty}^{\infty} p(\alpha) L(x | \alpha) d\alpha$ when the prior distribution of α is continuous.

Also note that $p(\alpha)$ and $L(x | \alpha)$ are the prior distribution and the Likelihood function respectively.

3.1 Bayesian Analysis under Uniform Prior with Three Loss Functions

The posterior distribution of the shape parameter α assuming a uniform prior distribution is obtained from equation (17) using integration by substitution method as:

$$P(\alpha | x) = \frac{\left(\sum_{i=1}^{n} \left[-\log \left(\frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right] \right)^{n+1}}{\Gamma(n+1) \alpha^{-n} e^{-\sum_{i=1}^{n} \left[-\log \left(\frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right]^{n+1}}}$$

(18)

Now the Bayes estimators under uniform prior using SELF, QLF and PLF are given respectively as:

$$\alpha_{SELF} = E(\alpha) = E(\alpha | x) = \int_{0}^{\infty} \alpha P(\alpha | x) d\alpha = \frac{n+1}{\sum_{i=1}^{n} \left[-\log \left(\frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right]^{n+1}}$$

(19)

$$\alpha_{QLF} = E(\alpha^{-1} | x) = \int_{0}^{\infty} \alpha^{-1} P(\alpha | x) d\alpha = \frac{(n-1)}{\sum_{i=1}^{n} \left[-\log \left(\frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right]^{n+1}}$$

(20)
and
\[
\alpha_{PLF} = \left\{ E(\alpha^2 | x) \right\}^{\frac{1}{2}} = \left\{ \int_0^\infty \alpha^2 P(\alpha | x) d\alpha \right\}^{\frac{1}{2}} = \frac{\left[(n+1)(n+2) \right]^{0.5}}{\sum_{j=1}^n \left\{ -\log \left[1 - \left[\frac{\theta x_j}{\theta + 1} \right] e^{-\theta x_j} \right] \right\}^\beta}
\] (21)

3.2 Bayesian Analysis under Jeffrey’s Prior with Three Loss Functions

The posterior distribution of the shape parameter α for a given data assuming a Jeffrey’s prior distribution is obtained from equation (17) using integration by substitution method as:

\[
P(\alpha | x) = \frac{\left\{ \sum_{i=1}^n \left\{ -\log \left[1 - \left[\frac{\theta x_i}{\theta + 1} \right] e^{-\theta x_i} \right] \right\} \right\}^{\alpha \cdot \beta}}{\Gamma(n) \alpha^{-\alpha} \beta^{\alpha \cdot \beta}}
\] (22)

Again the Bayes estimators under Jeffrey’s prior using SELF, QLF and PLF are given respectively as:

\[
\alpha_{SELF} = E(\alpha) = E(\alpha | x) = \int_0^\infty \alpha P(\alpha | x) d\alpha = \frac{n}{\sum_{i=1}^n \left\{ -\log \left[1 - \left[\frac{\theta x_i}{\theta + 1} \right] e^{-\theta x_i} \right] \right\}^\beta}
\] (23)

\[
\alpha_{QLF} = \frac{E(\alpha^{-1} | x)}{E(\alpha^{-2} | x)} = \frac{\int_0^\infty \alpha^{-1} P(\alpha | x) d\alpha}{\int_0^\infty \alpha^{-2} P(\alpha | x) d\alpha} = \frac{(n-2)}{\sum_{i=1}^n \left\{ -\log \left[1 - \left[\frac{\theta x_i}{\theta + 1} \right] e^{-\theta x_i} \right] \right\}^\beta}
\] (24)

and

\[
\alpha_{PLF} = \left\{ E(\alpha^2 | x) \right\}^{\frac{1}{2}} = \left\{ \int_0^\infty \alpha^2 P(\alpha | x) d\alpha \right\}^{\frac{1}{2}} = \frac{\left[n(n+1) \right]^{0.5}}{\sum_{i=1}^n \left\{ -\log \left[1 - \left[\frac{\theta x_i}{\theta + 1} \right] e^{-\theta x_i} \right] \right\}^\beta}
\] (25)

3.3 Bayesian Analysis under Gamma Prior with Three Loss Functions

The posterior distribution of the shape parameter α for a given data assuming a gamma prior distribution is obtained from equation (17) using integration by substitution method as

\[
P(\alpha | x) = \frac{\left\{ a + \sum_{i=1}^n \left\{ -\log \left[1 - \left[\frac{\theta x_i}{\theta + 1} \right] e^{-\theta x_i} \right] \right\} \right\}^{\alpha + b}}{\Gamma(n+b) \alpha^{\alpha \cdot \beta} \beta^{\alpha \cdot \beta}}
\] (26)
Table 1. Estimates and mean squared errors (within parenthesis) for $\hat{\alpha}$ under uniform prior

Sample size (n)	Parameter (True value)	Methods of estimation							
	α	β	θ	α	b	$\hat{\alpha}_{MLE}$	$\hat{\alpha}_{SELF}$	$\hat{\alpha}_{QLF}$	$\hat{\alpha}_{PLF}$
25	0.5	0.5	0.5	1.0	2.0	0.6728	0.6997	0.6459	0.7130
	(1.1980)	(1.3033)	(1.0978)	(1.3574)					
	0.5	1.0	0.5	1.0	1.0	0.5202	0.5410	0.4994	0.5513
	(0.0123)	(0.0146)	(0.0110)	(0.0160)					
	1.0	1.0	1.0	1.0	1.0	1.0457	1.0875	1.0039	1.1082
	(0.0505)	(0.0600)	(0.0446)	(0.0661)					
	2.0	1.0	1.0	1.0	1.0	2.0914	2.1750	2.0077	2.2165
	(0.2021)	(0.2401)	(0.1786)	(0.2644)					
	1.0	1.0	2.0	1.5	1.0	1.0457	1.0875	1.0039	1.1082
	(0.0505)	(0.0600)	(0.0446)	(0.0661)					
50	0.5	0.5	0.5	1.0	2.0	0.2594	0.2646	0.2542	0.2672
	(0.8420)	(0.8712)	(0.8135)	(0.8860)					
	0.5	1.0	0.5	1.0	1.0	0.5095	0.5197	0.4993	0.5248
	(0.0055)	(0.0060)	(0.0052)	(0.0063)					
	1.0	1.0	1.0	1.0	1.0	1.0235	1.0440	1.0030	1.0542
	(0.0220)	(0.0242)	(0.0206)	(0.0257)					
	2.0	1.0	1.0	1.0	1.0	2.047	2.088	2.0061	2.1083
	(0.0880)	(0.0970)	(0.0824)	(0.1027)					
	1.0	1.0	2.0	1.5	1.0	1.0235	1.0440	1.0030	1.0542
	(0.0220)	(0.0242)	(0.0206)	(0.0257)					
100	0.5	0.5	0.5	1.0	2.0	0.0263	0.0266	0.0261	0.0267
	(0.3439)	(0.3460)	(0.3417)	(0.3471)					
	0.5	1.0	0.5	1.0	1.0	0.5046	0.5096	0.4996	0.5122
	(0.0026)	(0.0028)	(0.0026)	(0.0029)					
	1.0	1.0	1.0	1.0	1.0	1.0079	1.0180	0.9979	1.0231
	(0.0102)	(0.0106)	(0.0099)	(0.0109)					
	2.0	1.0	1.0	1.0	1.0	2.0159	2.0361	1.9957	2.0461
	(0.0407)	(0.0425)	(0.0396)	(0.0438)					
	1.0	1.0	2.0	1.5	1.0	1.0079	1.0180	0.9979	1.0231
	(0.0102)	(0.0106)	(0.0099)	(0.0109)					
150	0.5	0.5	0.5	1.0	2.0	0.0083	0.0084	0.0083	0.0084
	(0.2882)	(0.2888)	(0.2876)	(0.2890)					
	0.5	1.0	0.5	1.0	1.0	0.5030	0.5064	0.4996	0.5080
	(0.0017)	(0.0018)	(0.0017)	(0.0018)					
	1.0	1.0	1.0	1.0	1.0	1.0066	1.0133	0.9999	1.0166
	(0.0068)	(0.0071)	(0.0067)	(0.0072)					
	2.0	1.0	1.0	1.0	1.0	2.0132	2.0266	1.9997	2.0333
	(0.0273)	(0.0282)	(0.0268)	(0.0288)					
	1.0	1.0	2.0	1.5	1.0	1.0066	1.0133	0.9999	1.0166
	(6.8e-3)	(7.1e-3)	(6.7e-3)	(7.2e-3)					
200	0.5	0.5	0.5	1.0	2.0	0.00 (0.25)	0.00 (0.25)	0.00 (0.25)	0.00 (0.25)
	(1.3e-3)	(1.3e-3)	(1.3e-3)	(1.3e-3)					
	0.5	1.0	0.5	1.0	1.0	0.5028	0.5054	0.5003	0.5066
	(5.3e-3)	(5.4e-3)	(5.2e-3)	(5.5e-3)					
	1.0	1.0	1.0	1.0	1.0	1.0057	1.0107	1.0006	1.0132
	(0.0211)	(0.0217)	(0.0208)	(0.0220)					
	2.0	1.0	1.0	1.0	1.0	2.011	2.0214	2.0013	2.0264
	(0.0211)	(0.0217)	(0.0208)	(0.0220)					
	1.0	1.0	2.0	1.5	1.0	1.0057	1.0107	1.0006	1.0132
	(5.3e-3)	(5.4e-3)	(5.2e-3)	(5.5e-3)					

$MLE = \text{Maximum likelihood estimator}, \quad SELF = \text{Square error loss function}, \quad QLF = \text{Quadratic loss function}, \quad PLF = \text{Precautionary loss function}$
Table 2. Estimates and mean squared errors (within parenthesis) for $\hat{\alpha}$ under Jeffrey’s prior

Sample size (n)	Parameter (True value)	Methods of estimation							
α	β	θ	a	b	$\hat{\alpha}_{MLE}$	$\hat{\alpha}_{SELF}$	$\hat{\alpha}_{QLF}$	$\hat{\alpha}_{PLF}$	
25	0.5	0.5	0.5	1.0	2.0	0.6728 (1.1980)	0.6728 (1.1980)	0.6190 (1.0028)	0.6861 (1.2495)
	0.5	1.0	0.5	1.0	1.0	0.5202 (0.0123)	0.5202 (0.0123)	0.4786 (0.0105)	0.5305 (0.0133)
	1.0	1.0	1.0	1.0	1.0	1.0457 (0.0505)	1.0457 (0.0505)	0.9620 (0.0424)	1.0664 (0.0548)
	2.0	1.0	1.0	1.0	1.0	2.0914 (0.2021)	2.0914 (0.2021)	1.9241 (0.1697)	2.1328 (0.2191)
	1.0	1.0	2.0	1.5	1.0	1.0457 (0.0505)	1.0457 (0.0505)	0.9620 (0.0424)	1.0664 (0.0548)
50	0.5	0.5	0.5	1.0	2.0	0.2594 (0.8420)	0.2594 (0.8420)	0.2491 (0.7856)	0.2620 (0.8565)
	0.5	1.0	0.5	1.0	1.0	0.5095 (0.0055)	0.5095 (0.0055)	0.4891 (0.0051)	0.5146 (0.0057)
	1.0	1.0	1.0	1.0	1.0	1.0235 (0.0220)	1.0235 (0.0220)	0.9826 (0.0201)	1.0337 (0.0230)
	2.0	1.0	1.0	1.0	1.0	2.047 (0.088)	2.047 (0.088)	1.9651 (0.0803)	2.0674 (0.0920)
	1.0	1.0	2.0	1.5	1.0	1.0235 (0.0220)	1.0235 (0.0220)	0.9826 (0.0201)	1.0337 (0.0230)
100	0.5	0.5	0.5	1.0	2.0	0.0263 (0.3439)	0.0263 (0.3439)	0.0258 (0.3396)	0.0265 (0.3449)
	0.5	1.0	0.5	1.0	1.0	0.5046 (0.0026)	0.5046 (0.0026)	0.4945 (0.0026)	0.5071 (0.0027)
	1.0	1.0	1.0	1.0	1.0	1.0079 (0.0102)	1.0079 (0.0102)	0.9878 (0.0099)	1.0130 (0.0104)
	2.0	1.0	1.0	1.0	1.0	2.0159 (0.0407)	2.0159 (0.0407)	1.9756 (0.0394)	2.0259 (0.0415)
	1.0	1.0	2.0	1.5	1.0	1.0079 (0.0102)	1.0079 (0.0102)	0.9878 (0.0099)	1.0130 (0.0104)
150	0.5	0.5	0.5	1.0	2.0	0.0083 (0.2882)	0.0083 (0.2882)	0.0082 (0.2871)	0.0084 (0.2885)
	0.5	1.0	0.5	1.0	1.0	0.5030 (0.0017)	0.5030 (0.0017)	0.4963 (0.0017)	0.5047 (0.0017)
	1.0	1.0	1.0	1.0	1.0	1.0066 (0.0068)	1.0066 (0.0068)	0.9932 (0.0067)	1.0099 (0.0069)
	2.0	1.0	1.0	1.0	1.0	2.0132 (0.0273)	2.0132 (0.0273)	1.9863 (0.0266)	2.0199 (0.0277)
	1.0	1.0	2.0	1.5	1.0	1.0066 (6.8e-3)	1.0066 (6.8e-3)	0.9932 (6.7e-3)	1.0099 (6.9e-3)
200	0.5	0.5	0.5	1.0	2.0	0.00 (0.25)	0.00 (0.25)	0.00 (0.25)	0.00 (0.25)
	0.5	1.0	0.5	1.0	1.0	0.5028 (1.3e-3)	0.5028 (1.3e-3)	0.4978 (1.2e-3)	0.5041 (1.3e-3)
	1.0	1.0	1.0	1.0	1.0	1.0057 (5.3e-3)	1.0057 (5.3e-3)	0.9956 (5.2e-3)	1.0082 (5.3e-3)
	2.0	1.0	1.0	1.0	1.0	2.0114 (0.0211)	2.0114 (0.0211)	1.9912 (0.0206)	2.0164 (0.0214)
	1.0	1.0	2.0	1.5	1.0	1.0057 (5.3e-3)	1.0057 (5.3e-3)	0.9956 (5.2e-3)	1.0082 (5.3e-3)

$MLE = \text{Maximum likelihood estimator, } SELF = \text{Square error loss function, } QLF = \text{Quadratic loss function,}$

$PLF = \text{Precautionary loss function}$
Table 3. Estimates and mean squared errors (within parenthesis) for $\hat{\alpha}$ under gamma prior

Sample size (n)	Parameter (True value)	Methods of estimation											
	α	β	θ	a	b	$\hat{\alpha}_{MLE}$	MLE	$\hat{\alpha}_{SELF}$	SELF	$\hat{\alpha}_{QLF}$	QLF	$\hat{\alpha}_{PLF}$	PLF
25	0.5	0.5	0.5	1.0	2.0	0.6728	(1.1980)	0.6629	(1.1529)	0.6138	(0.9787)	0.6751	
	0.5	1.0	0.5	1.0	1.0	0.5202	(0.0123)	0.5295	(0.0126)	0.4888	(0.0102)	0.5396	
	1.0	1.0	1.0	1.0	1.0	1.0457	(0.0505)	1.0421	(0.0456)	0.9619	(0.0388)	1.0619	
	2.0	1.0	1.0	1.0	1.0	2.0914	(0.2021)	2.0009	(0.1481)	1.8470	(0.1496)	2.0390	
	1.0	1.0	2.0	1.5	1.0	1.0457	(0.0505)	1.0208	(0.0407)	0.9423	(0.0376)	1.0403	
50	0.5	0.5	0.5	1.0	2.0	0.2594	(0.8420)	0.2532	(0.8068)	0.2435	(0.7554)	0.2556	
	0.5	1.0	0.5	1.0	1.0	0.5095	(0.0055)	0.5144	(0.0056)	0.4942	(0.0050)	0.5194	
	1.0	1.0	1.0	1.0	1.0	1.0235	(0.0220)	1.0226	(0.0210)	0.9825	(0.0192)	1.0326	
	2.0	1.0	1.0	1.0	1.0	2.047	(0.088)	2.0043	(0.0756)	1.9257	(0.0752)	2.0239	
	1.0	1.0	2.0	1.5	1.0	1.0235	(0.0220)	1.0123	(0.0198)	0.9726	(0.0199)	1.0222	
100	0.5	0.5	0.5	1.0	2.0	0.0263	(0.3439)	0.0257	(0.3386)	0.0252	(0.3347)	0.0258	
	0.5	1.0	0.5	1.0	1.0	0.5046	(0.0026)	0.5071	(0.0027)	0.4970	(0.0025)	0.5096	
	1.0	1.0	1.0	1.0	1.0	1.0079	(0.0102)	1.0078	(0.0100)	0.9878	(0.0097)	1.0127	
	2.0	1.0	1.0	1.0	1.0	2.0159	(0.0407)	1.9954	(0.0380)	1.9559	(0.0385)	2.0053	
	1.0	1.0	2.0	1.5	1.0	1.0079	(0.0102)	1.0027	(0.0097)	0.9829	(0.0096)	1.0077	
150	0.5	0.5	0.5	1.0	2.0	0.0083	(0.2882)	0.0081	(0.2863)	0.0080	(0.2852)	0.0082	
	0.5	1.0	0.5	1.0	1.0	0.5030	(0.0017)	0.5046	(0.0017)	0.4980	(0.0017)	0.5063	
	1.0	1.0	1.0	1.0	1.0	1.0066	(0.0068)	1.0065	(0.0067)	0.9932	(0.0066)	1.0098	
	2.0	1.0	1.0	1.0	1.0	2.0132	(0.0273)	1.9996	(0.0261)	1.9731	(0.0261)	2.0062	
	1.0	1.0	2.0	1.5	1.0	1.0066	(0.0068)	1.0031	(0.0066)	0.9898	(0.0065)	1.0064	
200	0.5	0.5	0.5	1.0	2.0	0.00	(0.25)	0.00	(0.2500)	0.00	(0.2500)	0.00	
	0.5	1.0	0.5	1.0	1.0	0.5028	(1.3e-3)	0.5041	(1.3e-3)	0.4991	(1.2e-3)	0.5053	
	1.0	1.0	1.0	1.0	1.0	1.0057	(5.3e-3)	1.0056	(5.2e-3)	0.9956	(5.1e-3)	1.0081	
	2.0	1.0	1.0	1.0	1.0	2.0114	(0.0211)	2.0012	(0.0204)	1.9813	(0.0203)	2.0062	
	1.0	1.0	2.0	1.5	1.0	1.0057	(5.3e-3)	1.0031	(5.2e-3)	0.9931	(5.1e-3)	1.0056	

MLE = Maximum likelihood estimator, SELF = Square error loss function, QLF = Quadratic loss function, PLF = Precautionary loss function
Also the Bayes estimators under gamma prior using SELF, QLF and PLF are given respectively as:

\[\alpha_{SELF} = \frac{n + b}{a + \sum_{i=1}^{k} \left\{ -\log \left[1 - \frac{\theta_i}{\theta + 1} e^{-\theta_i} \right] \right\}^\beta} \]
\[\alpha_{QLF} = \frac{n + b - 2}{a + \sum_{i=1}^{k} \left\{ -\log \left[1 - \frac{\theta_i}{\theta + 1} e^{-\theta_i} \right] \right\}^\beta} \]
\[\alpha_{PLF} = \frac{\left(n + b + 1 \right) \left(n + b \right)^{0.5}}{a + \sum_{i=1}^{k} \left\{ -\log \left[1 - \frac{\theta_i}{\theta + 1} e^{-\theta_i} \right] \right\}^\beta} \]

4. RESULTS AND DISCUSSION

In this section, Monte Carlo simulation with R software under 10,000 replications is considered to generate random samples of sizes \(n = (25, 50, 100, 150, 200) \) from Weibull-Lindley distribution using the quantile function (inverse transformation method of simulation) under the following combination of parameter values:
- \(\alpha = 0.5, \beta = 0.5, \theta = 0.5, a = 1 \) and \(b = 2 \);
- \(\alpha = 0.5, \beta = 1.0, \theta = 0.5, a = 1.0 \) and \(b = 1.0 \);
- \(\alpha = 1.0, \beta = 1.0, \theta = 1.0, a = 1.0 \) and \(b = 1.0 \),
- \(\alpha = 2.0, \beta = 1.0, \theta = 1.0, a = 1.0 \) and \(b = 1.0 \), and \(\alpha = 1.0, \beta = 1.0, \theta = 2.0, a = 1.5 \) and \(b = 1.0 \). The following tables present the results of our simulation study by listing the average estimates of the shape parameter with their respective Mean Square Errors (MSEs) under the appropriate estimation methods which include the Maximum Likelihood Estimation (MLE), Squared Error Loss Function (SELF), Quadratic Loss Function (QLF), and Precautionary Loss Function (PLF) under Uniform Jeffrey and gamma priors respectively. The criterion for evaluating the performance of the estimators in this study is the Mean Square Error (MSE): \(MSE = \frac{1}{n} \sum (\hat{\alpha} - \alpha)^2 \).

Considering the results from Tables 1-3, it is revealed that the estimators of the shape parameter using QLF under Gamma, uniform and Jeffrey priors is better than the other estimators based on the fact that it has a smaller MSE despite the changes in the samples and chosen parameter values. This consistent smaller value of the MSE for Bayesian estimators (using QLF under Uniform, Jeffrey and gamma priors) is an indication that the method is the more efficient for estimating this shape parameter compared to the Method of Maximum Likelihood estimation (MLE) and Bayesian with the other two loss functions. Also, making comparison across the prior distributions it is revealed that the QLF under the gamma prior has the smallest MSEs compared to the QLF under uniform and Jeffrey priors irrespective of the allocated parameter values and the sample sizes and this performance of the QLF is found to be consistent despite all odds.

On a general note, the results in Tables 1-3 has shown that the average estimates of the shape parameter tend to be closer to the true parameter value when sample size increases and the mean square errors (MSEs) all decrease as sample size increases which satisfies the first-order asymptotic theory. Also, Bayesian estimators and maximum likelihood estimators (MLEs) all become better when the sample size increases. In fact, for very large sample sizes the performances of these estimators are observed to be the same for both methods of estimation.

5. CONCLUSION

This study has derived Bayesian estimators for a shape parameter of Weibull-Lindley distribution by assuming Uniform, Jeffrey and gamma prior distributions with three loss functions which include Squared Error Loss Function, Quadratic Loss Function and Precautionary Loss Function.
The Posterior distributions and Bayes estimators of this parameter are derived and simplified using the priors and loss functions respectively. The performance of these estimators have been assess on the basis of their mean square errors using the inverse transformation method of Monte Carlo Simulations for different parameter values and sample sizes. The results of the simulation and comparison show that using the QLF gives estimators with the smallest MSEs under all the prior distributions (gamma, Jeffreys and uniform). Most importantly, it is revealed that Bayesian Method using Quadratic Loss Function under gamma prior produces the best estimators of the shape parameter compared to estimators using Maximum Likelihood method, Squared Error Loss Function and Precautionary Loss Function (PLF) under both Uniform and Jeffreys priors irrespective of the selected values of the parameters and the allocated sample sizes. This research also found that the variation in the values of the other two parameters of the distribution do not influence the performance of the estimators of the estimated shape parameter, however, it is suggested that since this study considers only a shape parameter of the WeilinD, upcoming research works should look at the remaining two parameters of the distribution because in practical applications of this model it will be very necessary to identify and understand the best method for estimating all the unknown parameters of the model.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Cordeiro GM, Afify AZ, Ortega EMM, Suzuki AK, Mead ME. The odd Lomax generator of distributions: Properties, estimation and applications. J. of Comp. and Appl. Math. 2019;347: 222–237.
2. Cordeiro GM, Ortega EMM, Popovic BV, Pescim RR. The Lomax generator of distributions: Properties, minification process and regression model. Appl. Math. and Comp. 2014;247:465-486.
3. Abdullahi UK, Ieren TG. On the inferences and applications of transmuted exponential Lomax distribution. Int. J. of Adv. Prob. and Stat. 2018;6(1):30-36.
4. Yahaya A, Ieren TG. On transmuted Weibull-exponential distribution: Its properties and applications. Nigerian J. of Sci. Res. 2017;16(3):289-297.
5. Afify MZ, Yousof HM, Cordeiro GM, Ortega EMM, Nofal ZM. The Weibull Frechet distribution and its applications. J. of Appl. Stat. 2016;1-22.
6. Ieren TG, Kuhe AD. On the properties and applications of Lomax-Exponential distribution. Asian J. of Prob. and Stat. 2018;1(4):1-13.
7. Tahir MH, Zubair M, Mansoor M, Cordeiro GM, Alizadeh M. A new Weibull-G family of distributions. Hacettepe Journal of Mathematics and Statistics. 2016;45(2):629-647.
8. Ieren TG, Yahaya A. The Weimal distribution: Its properties and applications. J. of the Nigeria Ass. of Math. Physics. 2017;39:135-148.
9. Bourguignon M, Silva RB, Cordeiro GM. The Weibull-G family of probability distributions. J. of Data Sci. 2014;12:53-68.
10. Gomes-Silva F, Percontini A, De Brito E, Ramos MW, Venancio R, Cordeiro GM. The odd Lindley-G family of distributions. Austrian J. of Stat. 2017;46:65-87.
11. Ieren TG, Koleoso PO, Chama AF, Eraikhuemen IB, Yakubu N. A Lomax-inverse Lindley distribution: Model, properties and applications to lifetime data. J. of Adv. in Math. and Comp. Sci. 2019;34(3-4):1-28.
12. Alzaatreh A, Famoye F, Lee C. A new method for generating families of continuous distributions. Metron. 2013;71: 63–79.
13. Ieren TG, Kromtit FM, Agbor BU, Eraikhuemen IB, Koleoso PO. A power Gompertz distribution: Model, properties and application to bladder cancer data. Asian Res. J. of Math. 2019;15(2):1-14.
14. Ieren TG, Oyamakin SO, Chukwu AU. Modeling lifetime data with Weibull-Lindley distribution. Biomet. and Biostat. Int. J. 2018;7(6):532–544.
15. Yahaya A, Lawal A. A study on Lomax-Lindley distribution with applications to simulated and real life data. A Paper Presented at the 2nd Int. Conf. Nig. Stat. Society, held at the CES Building, University of Calabar, Calabar, Nigeria; 2018.
16. Shanker R, Kamlesh KK, Fesshaye HA. Two parameter lindley distribution: Its properties and applications. Biostat Biometrics Open Acc J. 2017;1(4):555570. DOI: 10.19080/BBOAJ.2017.01.555570
17. Merovci C. Transmuted Lindley distribution. Int. J. Open Problems Compt. Math. 2013;6(2):63-74.
18. Lindley DV. Fiducial distributions and Bayes' theorem. J. Royal Stat. Soc. Series B. 1958;20:102-107.
19. Martz HF, Waller RA. Bayesian reliability analysis. New York, NY: John Wiley; 1982.
20. Ibrahim JG, Chen MH, Sinha D. Bayesian survival analy. New York, NY: Springer-Verlag; 2001.
21. Singpurwalla ND. Reliability and risk: A Bayesian perspective. Chichester: John Wiley; 2006.
22. Dey S. Bayesian estimation of the shape parameter of the generalized exponential distribution under different loss functions. Pakistan J. of Stat. and Operat. Res. 2010;6(2):163-174.
23. Ahmed AOM, Ibrahim NA, Arasan J, Adam MB. Extension of Jeffreys’ prior estimate for weibull censored data using Lindley’s approximation. Austr. J. of B. and Appl. Sci. 2011;5(12):884–889.
24. Pandey BN, Dwivedi N, Pulasthya B. Comparison between Bayesian and maximum likelihood estimation of the scale parameter in Weibull distribution with known shape under linear loss function. J. of Sci. Resir. 2011;55:163–172.
25. Mabur TM, Omale A, Lawal A, Dewu MM, Mohammed S. Bayesian estimation of the scale parameter of the Weimal distribution. Asian J. of Prob. and Stat. 2018;2(4):1-9.
26. Aliyu Y, Yahaya A. Bayesian estimation of the shape parameter of generalized Rayleigh distribution under non-informative prior. Int. J. of Adv. Stat. and Prob. 2016;4(1):1-10.
27. Ahmad SP, Ahmad K. Bayesian analysis of Weibull distribution using R software. Austr. J. of B. and Appl. Sc. 2013;7(9):156–164.
28. Ahmad K, Ahmad SP, Ahmed A. On parameter estimation of erlang distribution using bayesian method under different loss functions. Proc. of Int. Conf. on Adv. in Computers, Com. and Electronic Eng. 2015;200–206.
29. Ieren TG, Chama AF, Barnigbala OA, Joel J, Kromtit FM, Eraikhuemen IB. On a shape parameter of Gompertz inverse exponential distribution using classical and non classical methods of estimation. J. of Sci. Res. & Rep. 2020;25(6):1-10.
30. Ieren TG, Oguntunde PE. A comparison between maximum likelihood and bayesian estimation methods for a shape parameter of the Weibull-exponential distribution. Asian J. of Prob. and Stat. 2018;1(1):1-12.
31. Ieren TG, Chukwu AU. Bayesian estimation of a shape parameter of the Weibull-Frechet distribution. Asian J. of Prob. and Stat. 2018;2(1):1-19, 2018.
32. Krishna H, Goel N. Maximum likelihood and Bayes estimation in randomly censored geometric distribution. J. of Prob. and Stat. 2017;12.
33. Gupta PK, Singh AK. Classical and Bayesian estimation of Weibull distribution in presence of outliers. Cogent Math. 2017;4:1300975.
34. Gupta I. Estimation of parameter and reliability function of exponentiated inverted Weibull distribution using classical and bayesian approach. Int. J. of Recent Sci. Res. 2017;8(7):18117–18819.
35. Ahmad K, Ahmad SP, Ahmed A. Classical and Bayesian approach in estimation of scale parameter of Nakagami distribution. J. of Prob. and Stat; 2016. [Article ID: 7581918] Available: http://dx.doi.org/10.1155/2016/7581918
36. Preda V, Eugenia P, Alina C. Bayes estimators of modified-Weibull distribution parameters using Lindley's approximation. Wseas Transactions on Mathematics. 2010;9(7):539-549.
37. Abbas K, Abbasi NY, Ali A, Khan SA, Manzoor S, Khalil A, Khalil U, Khan DM, Hussain Z, Altaf M. Bayesian analysis of three-parameter Frechet distribution with medical applications. Comput. and Math. Meth. in Medicine. 2019;8. [Article ID: 9089856] Available: https://doi.org/10.1155/2019/9089856
38. Ramos PL, Louzada F, Ramos E. Posterior properties of the Nakagami-m distribution using noninformative priors and applications in reliability. IEEE Transactions on Reliability. 2017;67(1):105-117.
39. Ramos PL, Louzada F. Bayesian reference analysis for the generalized gamma distribution. IEEE Communications Letters. 2018;22(9):1950-1953.
40. Tomazella VLD, de Jesus SR, Louzada F, Nadarajah S, Ramos PL. Reference Bayesian analysis for the generalized lognormal distribution with application to survival data. Stat. and Its Interface. 2020;13(1):139-149.
41. Azam Z, Ahmad SA. Bayesian approach in estimation of scale parameter of Nakagami distribution. Pakistan J. of Stat. and Operat. Res. 2014;10(2):217-228.

42. Norstrom JG. The use of precautionary loss functions in risk analysis. IEEE Trans. Reliab. 1996;45(3):400–403. Available: http://dx.doi.org/10.1109/24.536992

© 2020 Eraikhuemen et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/54833