Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
CLINICAL RESEARCH

A Cross-sectional Survey on the Impact of Coronavirus Disease 2019 on the Clinical Practice of Endodontists across the United States

ABSTRACT

This survey investigated the effect of the coronavirus disease 2019 (COVID-19) pandemic on the clinical practice of endodontics among the American Association of Endodontists (AAE) members by evaluating the impact on clinical activities, patient screening, infection control measurements, potential transmission, clinical protocols, as well as psychological concerns. A descriptive, cross-sectional survey was developed to query AAE members from all 7 districts. The survey consisted of 24 questions, 8 demographic questions and 16 questions related to the COVID-19 pandemic impact on the clinical practice. A total of 454 AAE members participated in the survey. As of July 2020, most endodontists were active in front-line treatment of dental patients (82%). N95 respirator face mask was described by 83.1% of the participants as special measures beyond the regular personal protective equipment. Rubber dam isolation was recognized by the majority of the participants at some level to reduce the chance of COVID-19 cross infection. Most of the endodontist participants acknowledged trauma followed by swelling, pain, and postoperative complication to be emergencies. The majority of respondents reported being concerned about the effect of COVID-19 on their practice. No differences in worries about COVID-19 infection were related to demographics (P > .05). The majority of the endodontists are aware of the COVID-19 pandemic, are taking special precautions, and are concerned about contracting and spreading the virus. Despite the conflict between their roles as health care providers and family members with the potential risk of exposing their families, most of them remain on duty providing front-line care for dental treatment. (J Endod 2021;47:28–38.)

KEY WORDS

COVID-19; dental; endodontics; root canal; SARS-CoV-2

From the Division of Endodontics and Post Graduate Endodontic Education, Department of Advanced Oral Sciences and Therapeutics, University of Maryland, School of Dentistry, Baltimore, Maryland

Address requests for reprints to Dr Frederico C. Martinho, Division of Endodontics, Department of Advanced Oral Sciences and Therapeutics, University of Maryland, School of Dentistry, 650 West Baltimore Street, Baltimore, MD 21201. E-mail address: fmartinho@umaryland.edu

0099-2399/$ - see front matter

Copyright © 2020 American Association of Endodontists.

https://doi.org/10.1016/j.joen.2020.10.002

There was an outbreak of coronavirus disease 2019 (COVID-19) in late December 2019. The World Health Organization (WHO) declared a public health emergency of international concern over this pandemic outbreak on January 30, 2020. Since then, the number of cases and confirmed deaths has increased globally, as indicated by the weekly operational update COVID-19 provided by WHO.

As of now (August 21, 2020), there have been 21,294,845 cases confirmed and 761,779 deaths. There is an interactive map of the global cases of COVID-19 by the Center for Systems Science and Engineering at Johns Hopkins University, which is continually updated.

The COVID-19 disease is caused by the novel coronavirus severe acute respiratory syndrome–associated coronavirus 2 (SARS-CoV-2, formerly known as 2019-nCoV). The most commonly reported routes of SARS-CoV-2 transmission are inhalation or direct inoculation. The inhalation may occur from respiratory droplets or aerosols from infected individuals within a 6-foot radius. In addition, the direct inoculation of SARS-CoV-2 infected particles occurs by touching surfaces contaminated with infected respiratory droplets as transmission via an inanimate vector.

Because of the dual risk of high aerosol-generating procedures in dentistry plus saliva-borne SARS-CoV-2 in both symptomatic and asymptomatic individuals, dental societies/associations immediately responded to the COVID-19 disease. The response of dental associations to curb the
clinic-associated nosocomial transmission of SARS-CoV-2 varied at that time. At the early stage of the pandemic, the Public Health England under the guidance of the Chief Dental Officer recommended not providing aerosol-generating procedures. Instead, they were screening and sending true emergencies to a central location where dentists were carrying out aerosol-generating procedures. In contrast, the American Dental Association guidelines at that time restricted dental treatment to only addressing emergencies and reducing the number of routine check-ups and follow-up appointments. Despite the guidance, practitioners were still reluctant and felt fearful of treating patients in such a situation.

Endodontists are in a unique situation because they manage odontogenic pain, swelling, and dental alveolar trauma. Because of the chances to encounter patients suspected or confirmed with SARS-CoV-2, they had to act diligently to provide care and at the same time prevent nosocomial spread of the infection. For that, endodontists had to adopt special measurements to screen their patients, enhance infection control measurements, and follow specific dental treatment recommendations.

Here we assess endodontists’ knowledge and awareness about COVID-19 disease. In addition, we evaluate the impact of COVID-19 on clinical activities, patient screening, infection control measurements, potential transmission, clinical protocols, and psychological concerns on the clinical practice of endodontists across the United States.

MATERIALS AND METHODS

This survey was approved by the Institutional Review Board at the University of Maryland, Baltimore (IRB # 000392103). A descriptive, cross-sectional survey was generated through Qualtrics (http://umaryland.qualtrics.com). The study population consisted of 5191 selected members of the American Association of Endodontists (AAE) from all 7 districts (II–VII) in the United States listed in the AAE directory website (2019–2020 membership directory). Invitations to participate in the study were emailed to each participant in June 2020. The invitations were sent 2 times, with 2 weeks apart. The survey remained open for 1 month, and afterward, data were collected. The data were collected in July 2020. The questions for this questionnaire were developed mostly on the basis of COVID-19 guidelines published by the Centers for Disease Control and Prevention, WHO, American Dental Association, and Journal of Endodontics. The survey instruments consisted of 2 sections with a total of 24 questions. The first section of the questionnaire comprised 8 demographic questions and 16 questions regarding the COVID-19 pandemic impact in the clinical practice of endodontists (Table 1).

Data Analysis

All data were transferred from the Qualtrics forms into Microsoft Excel (Microsoft Corp, Redmond, WA) and analyzed with the Statistical Package of the Social Sciences (SPSS, Version 25; IBM Corp, Armonk, NY). Descriptive statistics were used for the analysis. The generalized linear model with binary logistic regression was performed to explore the factors associated with the effect of COVID-19 on the clinical practice of endodontists and the independent variables including gender, years of experience, type of practice, location, nature of practice, participation in education, board certification, and practicing district. A P value less than .05 was considered significant (P < .05).

RESULTS

From the 5191 invited to take the survey from all 7 AAE districts, 454 participated in the survey. Despite efforts through the survey design to prevent skipping questions, some respondents did not answer all the questions. A total of 324 men and 120 women participated in this survey (Table 1). A total of 324 respondents had practiced for more than 10 years. A greater number of respondents belonged to AAE District VI (70/395, 17.7%), I (65/395, 16.5%), followed by IV (59/454, 14.9%), and III (58/395, 14.7%) (Table 1). The 4 states with a greater number of participants were California, New York, followed by Maryland and North Carolina (Table 1). Most respondents have their practice located in the suburban (245/446, 54.9%) and urban (168/ 446, 37.7%) areas (Table 1). All participants were endodontists (454, 100%). Most of the respondents described their practice setting as a group of endodontists (182/443, 41.1%), and solo endodontist (170/443, 38.4%) (Table 1). The demographic information of participants is detailed in Table 1.

As of July 2020, 299/397 participants (75.3%) had fully resumed their practice, and 75/397 (19.9%) had partially returned to their practice. Only 19/397 (4.8%) had not returned to their practice (Table 1). From the practitioners who resumed their practice, 284/395 (72%) reported that the number of patients decreased compared with the same time a year ago. In comparison, only 17/454 (4%) reported no effect or an increase in the number of patients (Fig. 1A). As of July 2020, most endodontists took part in endodontic care in the front-line treatment of dental patients (322/397, 82%) (Fig. 1B). Most of the participants acknowledged trauma (326/397, 82.1%) followed by swelling (325/397, 81.9%), pain (302/397, 76.1%), and postoperative complication (237/397, 59.7%) to be emergencies. Thirty-five percent of the participants reported all of the above emergencies (139/397, 35%) (Table 1).

The participants best described their current patient COVID-19 screening techniques as taking patient body temperature (373/396, 94.2%), and/or oral questions (349/ 396, 88%), and/or written questionnaire (307/ 396, 77.5%). Only a few participants (6/396, 2%) reported using reverse transcriptase polymerase chain reaction (RT-PCR) for COVID-19 screening. No respondent reported having requested chest x-ray for COVID-19 screening in dental practice. Most participants identified flu-like symptoms (376/397, 94.7%), body temperature > 100°F (371/397, 93.5%), cough (352/397, 88.7%), loss of smell (349/ 397, 87.9%), shortness of breath (339/397, 85.4%), being around someone diagnosed with COVID-19 (327/397, 82.4%), travel history (298/397, 75.1%), sore throat (281/ 397, 70.8%), as well as vomiting, diarrhea, and stomach pain (234/397, 58.9%) to be a positive response in their current patient screening technique (Table 1). Only 2% of the participants (6/454) reported uncooperative patients for the COVID-19 screening measurement adopted in their practice (Fig. 1C). In addition to the regular personal protective equipment (PPE), 100% of the participants reported having taken special protective measures for routine root canal therapy, with the most common ones being the N95 respirator face mask (330/397, 83.1%), face shield (234/397, 58.9%), and head cover (219/397, 55.2%) (Table 1). In addition, some respondents (168/397, 42.3%) reported implementing an air-purifying unit in their operatory (Table 1). Other protective measurements were also reported by the respondents (Table 1).

Most participants agreed at some level to be concerned with contracting/spreading the COVID-19 virus. Rubber dam isolation was recognized by the majority of the participants at some level to reduce the chance of COVID-19 cross infection from routine endodontic procedures. Two hundred ninety-eight participants (298/374, 80%) reported being worried about the effect of COVID-19 on their practice (Fig. 1D). The reasons behind their worries were mostly common staff and/or family becoming infected (Table 1). The majority of the participants agreed at different levels with the COVID-19 phase in their state. As of July 2020, most of the states were in phases 2 and 3 (Table 1). Most of the
Section 1: Demographic questions
Q1 What is your gender?
Q2 How many years have you been in practice?
Q3 What best describes the nature of your practice?
Q4 Which best describes the nature of your practice?
Q5 How would you describe the location of your practice?
Section 1: Demographic questions

Q6 In which state do you currently reside?

State Abbreviation	Count	Percentage
AL (n = 2), AK (n = 1), AZ (n = 13), AR (n = 3), CA (n = 48), CO (n = 12), CT (n = 4)	134	34.5%
DE (n = 0), DC (n = 2), FL (n = 14), GA (n = 6), HI (n = 2), ID (n = 5), IL (n = 15)	20	5.1%
IN (n = 8), IA (n = 1), KS (n = 2), KY (n = 2), LA (n = 3), ME (n = 1), MD (n = 19)	16	4.1%
MA (n = 10), MI (n = 10), MN (n = 10), MS (n = 1), MO (n = 10), MT (n = 1), NE (n = 0)	34	8.6%
NV (n = 4), NH (n = 2), NJ (n = 9), NM (n = 3), NY (n = 21), NC (n = 19), ND (n = 7)	22	5.6%
OH (n = 14), OK (n = 1), OR (n = 10), PA (n = 18), PR (n = 1), RI (n = 0), SC (n = 7)	43	11.0%
SD (n = 0), TN (n = 7), TX (n = 23), UT (n = 2), VT (n = 1), VA (n = 12), WA (n = 7)	30	7.6%
WV (n = 0), WI (n = 0), WY (n = 2)	6	1.5%

Q7 In which AAE district do you currently reside?

District Abbreviation	Count	Percentage
I (DE, DC, MA, MD, ME, NH, PA, VT, VA)	65	16.5%
II (CT, NJ, NY, RI)	37	9.4%
III (FL, GA, NC, SC, TN)	58	14.7%
IV (IL, IN, KY, MI, OH, WV, IN)	59	14.9%
V (AL, AR, AZ, LA, MS, NM, OK, PR, TX, VI)	54	13.7%
United States Armed Services, Veteran’s Administration	70	17.7%
Army, Navy, Veterans Administration, Virgin Islands	52	13.2%
VI (AK, CO, Guam, HI, ID, IA, KS, MN, MO, MT, NE)	148	37.5%
NV, ND, OR, SD, UT, WA, WY	173	43.8%
VII (CA)	74	18.7%

Q8 Are you Board Certified?

Certification Status	Count	Percentage
Yes	148	37.5%
Eligible	173	43.8%
None	74	18.7%

Section 2: COVID-19 pandemic-related questions

Q9 Have you returned to your practice?

Response	Count	Percentage
No	19	4.8%
25%	9	2.3%
50%	25	6.3%
75%	41	10.3%
100%	299	75.3%
Emergency only	4	1%

(continued on next page)
Section 2: COVID-19 pandemic-related questions

Q10	Has the COVID-19 pandemic affected the number of patients in your practice when compared with the same time a year ago?	
	No effect	94 (24%)
	Decrease	284 (72%)
	Increase	17 (4%)

| Q11 | Are you taking part in endodontic care in front-line treatment of dental patients? | Yes 322 (82%) |
| | | No 69 (18%) |

Q12	What do you classify as an emergency? Please select all that apply	Swelling 325 (81.9%)
		Trauma 326 (82.1%)
		Pain 302 (76.1%)
		Postoperative complication 237 (59.7%)
		Loss of crown or temporary filling 79 (19.9%)
		All of the above 139 (35%)

Q13	Which best describe your current patient COVID-19 screening techniques? Please select all that apply	Written questionnaire 307 (77.5%)
		Oral questions 349 (88%)
		Taking patient body temperature 373 (94.2%)
		RT-PCR 8 (2%)
		Another paid COVID-19 test 3 (0.7%)
		Chest x-ray 0

Q14	Which of the following do you identify as a positive response in your current patient screening techniques?	Body temperature higher than 100°F (38°C) 371 (93.5%)
		Cough 352 (88.7%)
		Sore throat 281 (70.8%)
		Shortness of breath 339 (85.4%)
		Flu-like symptoms 376 (94.7%)
		Muscle pain 207 (52.1%)
		Red or painful eyes, itching, or scratchy eyes 102 (25.7%)
		Vomiting, diarrhea, stomach pain 234 (58.9%)
		Loss of smell 349 (87.9%)
		Runny nose 162 (40.8%)
		Changes in toe or new toe condition 78 (19.6%)
	Other specified	COVID-19 test ordered all aerosol-generating procedures 1 (0.3%)
		Temperature 100.4°F 2 (0.5%)
		Temperature over 101°F 1 (0.3%)
		COVID or no COVID, I would not want to see patients with any symptoms 1 (0.3%)
		Diagnosis within the last 2 weeks of COVID-19 1 (0.3%)

(continued on next page)
Section 2: COVID-19 pandemic-related questions

Question	n	Percentage	Description
Are patients cooperative with added screening measures?	391		Yes 385 (98%), No 6 (2%)
Which of the following best describe the special measures you are now taking beyond regular PPE? Please select all that apply	397		N95 respirator face mask 330 (83.1%), Other specified (9.8%)
	Face shield 234 (58.9%), Plastic shield from the microscope 1		
	Protective suit 146 (36.8%), Retired 1		
	Head cover 219 (55.2%), Closed eye goggles 1		
	Shoe covers 62 (15.6%), Respirator mask 1		
	Oral aerosol vacuum 67 (16.9%), Level 3 surgical mask 1		
	Plexiglass aerosol shield for microscope 114 (28.7%), Just go fogger 1		
	Cold fogging 38 (9.6%), Window fan exhausting outdoors 1		
	Negative pressure operatory for treating COVID-19 13 (3.3%), Goggles 1		
	Air purifying unit 168 (42.3%), Air purifier in building central air 1		
	Nothing special 23 (5.8%), K95 1		
	Other 39 (9.8%), UVC light for OP disinfection 1		
	Other special 1		
	K95 mask due to lack of N95 availability 1		
	Ventilation units 1		
	Oral pre-rinse, bath the tooth with rubbing alcohol and sodium hypochlorite after placing dental can and before using high speed UV light in between patients 1		
Are you concerned about contracting or spreading SARS-CoV-2?	374		Strongly agree 147 (39.3%), Agree 92 (24.6%), Somewhat agree 65 (17.4%)
	Neither agree nor disagree 23 (6.1%), Neither agree nor disagree 14 (3.7%)		
	Disagree 19 (5.1%), Disagree 14 (3.7%)		
Do you believe the rubber dam reduces the chance of COVID-19 cross infection from routine endodontic procedure?	373		n = 373
Section 2: COVID-19 pandemic-related questions

Question	Option	Yes	No	Total			
Q19	Are you worried about the effect of COVID-19 on your practice of endodontics?	Strongly agree	110 (29.5%)	124 (33.2%)	100 (26.8%)	12 (3.2%)	4 (1.1%)
		Agree					
		Somewhat agree					
		Neither agree nor disagree					
		Disagree					
		Strongly disagree					
Q20	What is the reason behind your worries?				n = 374		
	Please select all that apply						
		I will become infected	243 (23.7%)				
		My family will become infected	262 (25.5%)				
		My staff will become infected	287 (28%)				
		My patients will become infected	234 (22.8%)				
Q21	Do you agree with the COVID-19 phase in your state?				n = 374		
		Strongly agree	59 (15.8%)				
		Agree	142 (38%)				
		Somewhat agree	79 (21.1%)				
		Neither agree nor disagree	25 (6.7%)				
		Somewhat disagree	17 (4.5%)				
		Disagree	30 (8%)				
		Strongly disagree	22 (5.9%)				
Q22	In what phase of COVID-19 recovery is your state?				n = 354		
		1	26 (7.3%)				
		2	124 (35%)				
		3	110 (31.1%)				
		4	45 (12.7%)				
		5	2 (0.6%)				
		6	1 (0.3%)				
		Other	46 (13%)				
Q23	Are staff worried about chronic effects of COVID-19?				n = 374		
		Strongly agree	69 (18.4%)				
		Agree	113 (30.2%)				
		Somewhat agree	78 (20.9%)				
		Other specified (0.5%)					
		My staff enjoys being on unemployment and will not return. I have sold my practice and am now retired.	1				

(continued on next page)
respondents agreed at some level that most of their staff worry about the chronic effects of COVID-19 (Table 1). The great majority of respondents ranked the order of most to least important protection measures against COVID-19 as an N95 mask, hand wash, and hand sanitizer (200/369, 54.2%) (Table 1). Our results indicated no significant differences in worries about COVID-19 infection related to gender, years of experience, type of practice, location, nature of the practice, and practicing district (P > .05).

In this survey, endodontists who resumed their activities at some level as well as those who discontinued their practices shared that they were afraid of becoming infected, carrying infection from their dental practice to their families, staff becoming infected, as well as patient cross infection. Our results indicated no differences in worries about COVID-19 infection related to gender, years of experience, type of practice, location, nature of the practice, and practicing district (P > .05). Psychological distress, including the fear of becoming infected while treating a patient or passing the infection on to family, is one of the most common fears shared among practitioners 8–10. Recently, Tysia et al reported a higher level of anxiety in those who suspended their clinical work than a dentist who continued their practice. The fear and anxiety are powerful emotions associated with the overwhelming reports on the COVID-19 pandemic by social, electronic, and print media.

From the endodontists who resumed their practice by July 2020, 72% of them reported that the number of patients decreased compared with the same time a year ago, whereas 24% of the endodontists said that the number of patients attending their practice by July 2020 was the same as a year ago. However, 4% of the respondents reported that the number of patients attending their practice by July 2020 was higher than a year ago. The reduction in the number of admitted patients is reported in the literature 10.

The participants best described their patient COVID-19 screening techniques as taking patient body temperature, oral questions, and/or written questionnaires. During the COVID-19 pandemic, several screening questionnaires have been released by different dental associations and journals. Recently, Ather et al 11 released a screening questionnaire in which respondents were asked to rate the order of importance of the following protection measures against COVID-19.

Q24	Please rate the order of importance of the following protection measures against COVID-19.	
	N95 respirator face mask, hand wash, hand sanitizer	200 (54.2%)
	Hand wash, hand sanitizer, N95 respirator face mask	74 (20.1%)
	Hand sanitizer, N95 respirator face mask, hand wash	10 (2.7%)
	Hand sanitizer, hand wash, N95 respirator face mask	5 (1.4%)
	Hand wash, N95 respirator face mask, hand sanitizer	65 (17.6%)
	N95 respirator face mask, hand sanitizer, hand wash	15 (4.1%)

Table 1 (Continued)

Section 2: COVID-19 pandemic-related questions

Neither agree nor disagree | 61 (16.3%) |
Somewhat disagree | 14 (3.7%) |
Disagree | 30 (8.2%) |
Strongly disagree | 7 (1.9%) |
Other | 2 (0.5%) |

Table 1 (Continued)
published in the Journal of Endodontics a COVID-19 screening questionnaire with 6 short questions. The authors also emphasized to the endodontic community the need to measure the patient’s body temperature by using a non-contact forehead thermometer or with cameras having infrared thermal sensors.

Although the diagnosis of COVID-19 relies on the detection of the SARS-CoV-2 RNA by real-time RT-PCR, here only a few endodontists were using it as their patient screening technique. No endodontist participant requested chest x-ray for COVID-19 screening in their dental practice, although chest x-ray might show patchy shadows and ground-glass opacity in the lung. It is worth pointing out that only a few participants reported uncooperative patients for the COVID-19 screening measurements adopted in their practice.

Patients with COVID-19 usually present with symptoms such as fever, cough, sore throat, fatigue, myalgia, headache, shortness of breath, and in some cases diarrhea. Here most of the endodontists identified flu-like symptoms, body temperature higher than 100°F (38°C), loss of smell, shortness of breath, and being around someone diagnosed with COVID-19 as a positive response in their current patient screening techniques. The respondents also identified other findings such as travel history, sore throat, vomiting, diarrhea, and stomach pain as a positive response in their current patient screening techniques. More recent studies have shown that the loss of taste (ageusia) or taste alteration (dysgeusia/amblygeustia) is common in COVID-19. Indeed, the U.S. Centers for Disease Control and Prevention include ageusia and dysgeusia as an early symptom of COVID-19. The salivary gland and tongue are potential targets for SARS-CoV-2 because of the expression of AC2, but AC2 is also expressed in the gastrointestinal tract, and individuals may present with diarrhea.

Despite different screening techniques, 80% of positive patients have only mild symptoms that resemble flu-like symptoms and seasonal allergies. This might lead to an increased number of undiagnosed cases. Of concern, these asymptomatic patients can act as “carriers” and also serve as a reservoir for re-emergence of the infection.

Because of the high likelihood of SARS-CoV-2 transmission in the dental care setting, PPE is discussed in almost every COVID-19 survey-based research regarding dentists during COVID-19 pandemic. Here most of the endodontists described taking special measures beyond regular PPE. The use of the N95 respirator face mask was reported by 83.1% of the participants. The percentage of practitioners who enhanced PPE utilization with the use of N95 respirator face mask varies across the surveys, ranging from 12%–90%. The lack of adherence to the N95 respirator face mask may not only be explained as a lack of willingness to implement adequate procedures but also by the shortage of PPE announced in March 2020 by the WHO. Some respondents also reported the use of other additional COVID-19 protection such as the face shield, head cover protective suit, as well as plexiglass aerosol shield for microscope and others.

According to our results, as of July 2020, most endodontists took part in endodontic care in the front-line treatment of dental patients (322/397, 82%). Most of the participants acknowledged trauma (326/397, 82.1%) followed by swelling (325/397, 81.9%), pain (302/397, 76.1%), and postoperative complication (237/397, 59.7%) to be emergencies. Thirty-five percent of the participants (139/397, 35%) reported all of the above emergencies. To help endodontists to assess a true emergency, Ather et al. provided a questionnaire for the assessment of true emergency. In addition, the authors put together a set of recommendations for the management of dental emergencies.

The majority of the respondents agreed at some level that the rubber dam is sufficient/efficient to reduce COVID-19 cross infection.
from routine endodontic procedures. For instance, the rubber dam isolation can reduce airborne particles by up to 70% within a 3-foot diameter of the operational field25,26. The American Dental Association27 recommends rubber dam isolation not only for endodontics procedures but for almost all aerosol-generating dental procedures. Because the virus load in human saliva is relatively high, preprocedural mouth rinses, despite their limited activity against SARS-CoV-2, the use of high volume saliva ejectors and oral aerosol vacuum, as well as air purifying unit, are recommended to reduce the hazard. Our survey indicated that 42.3% of the endodontists implemented an air purifying unit, and 16.9% added oral aerosol vacuum in their practice beyond regular PPE and rubber dam isolation.

One of the limitations of this study is the number of respondents who participated in the survey. The small sample size may produce a clustering effect. Although participants were assured of their anonymity, concerns about being identified may have affected their answers28.

Overall, most endodontists are aware of the COVID-19 pandemic and are concerned about contracting and spreading the virus. Despite the conflict between their roles as health care providers and family members with the potential risk of exposing their families, most of them remain on duty providing front-line care for dental treatments. In addition, this survey demonstrates endodontists’ knowledge and awareness of the need for patient screening measures for COVID-19 and special measures beyond regular PPE equipment. It is important to point out that COVID-19 conditions can change rapidly, and endodontists must comply with the guidelines released by the WHO and dental associations.

ACKNOWLEDGMENTS

The authors thank Lisa Berg for technical support.

The authors deny any conflicts of interest related to this study.

REFERENCES

1. Zhu N, Zhang D, Wang D, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–33.

2. World Health Organization. Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed August 25, 2020.

3. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available at: https://coronavirus.jhu.edu/map.html. Accessed August 25, 2020.

4. Chau CH, Strope JD, Figg WD. COVID-19 clinical diagnostics and testing technology. Pharmacotherapy 2020.

5. Centers for Disease Control and Prevention. Transmission of coronavirus disease 2019 (COVID-19). Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/faq.html#Transmission. Accessed August 24, 2020.

6. England NHS. Available at: https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/issue-3 preparedness-letter-for-primary-dental-care-25-march-2020.pdf. Accessed August 21, 2020.

7. American Dental Association. ADA interim guidance for management of emergency and urgent dental care. Available at: https://www.coronavirus.kdheks.gov/DocumentCenter/View/853/ADA-Interim-Guidance-for-Management-of-Emergency-and-Urgent-Dental-Care-PDF—4-15-20. Accessed August 25, 2020.

8. British Dental Association. Coronavirus: your FAQs. Available at: https://bda.org/advice/Coronavirus/Pages/faqs.aspx. Accessed August 21, 2020.

9. Duruk G, Gümüşbağ Z, Çolak C. Investigation of Turkish dentists’ clinical attitudes and behaviors towards the COVID-19 pandemic: a survey study. Braz Oral Res 2020;34:14703.

10. Tysiac-Miśta M, Dziedzic A. The attitudes and professional approaches of dental practitioners during the COVID-19 outbreak in Poland: a cross-sectional survey. Int J Environ Res Public Health 2020;17:4703.

11. Ather A, Patel B, Ruparel NB, et al. Coronavirus disease 19 (COVID-19): implications for clinical dental care. J Endod 2020;46:584–95.

12. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020;25:2000045.

13. Pfefferle S, Reucher S, Nüsch D, Lüthi-Hehmann M. Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system. Euro Surveill 2020;25:2000152.

14. Yu Z, Li X, Sun H, et al. Rapid identification of COVID-19 severity in CT scans through classification of deep features. Biomed Eng Online 2020;19:63.

JOE Volume 47, Number 1, January 2021 Impact of COVID-19 on Clinical Practice of Endodontists 37
15. Jamal M, Shah M, Almarzoogi SH, et al. Overview of transnational recommendations for COVID-19 transmission control in dental care settings. Oral Dis 2020:10.

16. Chen L, Zhao J, Peng J, et al. Detection of 2019-nCoV in saliva and characterization of oral symptoms in COVID-19 patients. Available at: https://asrm.com/abstract~3557140. Accessed August 25, 2020.

17. American Dental Association. ADA interim guidance for management of emergency and urgent dental care. Available at: https://www.ada.org/~/media/CPS/Files/COVID/ADA_Int_Guidance_Mgmt_Emerg-Urg_Dental_COVID19.pdf. Accessed August 25, 2020.

18. Cano IP, Dionisio TJ, Cestari TM, et al. Losartan and isoproterenol promote alterations in the local renin-angiotensin system of rat salivary glands. PLoS One 2019;14:0217030.

19. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J Pathol 2004;203:631–7.

20. Guan WJ, Ni ZY, Hu TU, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20.

21. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020.

22. Ahmed MA, Jouhar R, Ahmed N, et al. Fear and practice modifications among dentists to combat novel coronavirus disease (COVID-19) outbreak. Int J Environ Res Public Health 2020;17:2821.

23. Cagetti MG, Cairoli JL, Senna A, Campus G. COVID-19 outbreak in North Italy: an overview on dentistry—a questionnaire survey. Int J Environ Res Public Health 2020;17:3835.

24. World Health Organization. Shortage of personal protective equipment endangering health workers worldwide. Available at: https://www.who.int/news-room/detail/03-03-2020-shortage-of-personal-protective-equipment-endangering-health-workers-worldwide. Accessed August 25, 2020.

25. Peng X, Xu X, Li Y, et al. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 2020;12:9.

26. Samaranayake LP, Reid J, Evans D. The efficacy of rubber dam isolation in reducing atmospheric bacterial contamination. ASDC J Dent Child 1989;56:442–4.

27. American Dental Association. ADA adds frequently asked questions from dentists to coronavirus resources. 2020. Available at: https://www.ada.org/en/publications/ada-news/2020-archive/march/ada-adds-frequently-asked-questions-from-dentists-to-coronavirus-resources. Accessed August 25, 2020.

28. Yu J, Hua F, Shen Y, et al. Resumption of endodontic practices in COVID-19 hardest-hit area of China: a Web-based survey. J Endod 2020;46:1577–1583.e2.