Rotor-Routing Induces the Only Consistent Sandpile Torsor Structure on Plane Graphs

FPSAC 2022

Alex McDonough (UC Davis)

Joint work with Ankan Ganguly (Brown University)

Full paper: arXiv:2203.15079

Animations: https://youtu.be/2StIAfnONMs

July 18, 2022
A *ribbon graph* G (also called a *combinatorial map*) is a graph along with a choice of cyclic order of edges around each vertex (clockwise for this talk). Ribbon graphs are used to represent graph embeddings.

A *plane graph* is a ribbon graph with no edge crossings (a planar embedding). Of the ribbon graphs above, only the middle is a plane graph.
Single-Chip Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G, a spanning tree T, a *sink* vertex s, and a *chip* c on any non-sink vertex.

1. Orient the edges of T toward s. Every vertex $v \in V(G) \setminus s$ has a single outgoing edge called the *rotor at* v.

2. Rotate the rotor at c and then move c along it.

3. Repeat step 2 until c reaches the sink, then remove c.

4. Forget the orientation of the rotors and let T' be their edges.

Output: T'
Facts about Rotor-Routing

- Rotor-routing was introduced under the name “Eulerian Walkers Model” by Priezzhev, D. Dhar, A. Dhar, and Krishnamurthy in 1996. The following lemmas are implied by their results:

Lemma

The output T' is always a spanning tree.

Lemma

If the single-chip rotor-routing algorithm is performed multiple times, the order of chips does not affect the final tree.

- The 2008 paper “Chip Firing and Rotor-Routing on Directed Graphs” by Holroyd, Levine, Mészáros, Peres, Propp, and Wilson is an excellent survey of rotor-routing and sandpile ideas.
Multiple-Chip Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G, a spanning tree T, a *sink* vertex s, and a collection C of *chips* on non-sink vertices.

1. Orient the edges of T toward s. Every vertex $v \in V(G) \setminus s$ has a single outgoing edge called the *rotor at* v.

2. Choose any $c \in C$. Rotate the rotor at c and then move c along it. If c reaches the sink, remove it from C.

3. Repeat step 2 until $C = \emptyset$.

4. Forget the orientation of the rotors and let T' be their edges.

Output: T'
Let G be a finite connected graph with vertices $V(G)$.

A *degree 0 divisor* is an assignment of an integral number of “chips” to each vertex (allowing negative chips) so that there are 0 total chips.

The degree 0 divisors under pointwise addition form a group called $\text{Div}^0(G)$.

The *Laplacian matrix* Δ is $D - A$, where D is the *degree matrix* of G and A is the *adjacency matrix* of G.

Definition

The *sandpile group* $S(G)$ is $\text{Div}^0(G)/\text{im}\mathbb{Z}(\Delta)$.

See Clip 3
The Sandpile Group of a Graph

- Let \(G \) be a finite connected graph with vertices \(V(G) \).
- A *degree 0 divisor* is an assignment of an integral number of “chips” to each vertex (allowing negative chips) so that there are 0 total chips.
- The degree 0 divisors under pointwise addition form a group called \(\text{Div}^0(G) \).
- The *Laplacian matrix* \(\Delta \) is \(D - A \), where \(D \) is the *degree matrix* of \(G \) and \(A \) is the *adjacency matrix* of \(G \).

Definition

The *sandpile group* \(S(G) \) is \(\text{Div}^0(G)/\text{im}_\mathbb{Z}(\Delta) \).

Theorem (sandpile matrix-tree theorem for graphs, Biggs 1999)

The size of \(S(G) \) is the number of spanning trees of \(G \).
Sandpile Rotor-Routing Algorithm (With Sink)

Input: a ribbon graph G, a spanning tree T, a *sink* vertex s, and an element of the sandpile group $S \in S(G)$.

1. Orient the edges of T toward s. Every vertex $v \in V(G) \setminus s$ has a single outgoing edge called the *rotor at* v. Let D be any representative of S such that $D(v) \geq 0$ for $v \neq s$. Let C be a set of $D(v)$ chips at each $v \neq s$.

2. Choose any $c \in C$. Rotate the rotor at c and then move c along it. If c reaches the sink, remove it from C.

3. Repeat step 2 until $C = \emptyset$

4. Forget the orientation of the rotors and let T' be their edges.

Output: T'
Theorem (HLMPPW, 2008)

The algorithm in the previous slide is well defined.
Theorem (HLMPPW, 2008)

The algorithm in the previous slide is well defined. Furthermore, for any spanning trees T and T', there is exactly one $S \in S(G)$ that maps T to T'.

- In other words, rotor routing defines a free transitive action of $S(G)$ on the spanning trees of G.
The algorithm in the previous slide is well defined. Furthermore, for any spanning trees T and T', there is exactly one $S \in S(G)$ that maps T to T'.

- In other words, rotor routing defines a free transitive action of $S(G)$ on the spanning trees of G.

Question (Ellenberg, 2012)
When is the rotor-routing action preserved after changing the sink vertex?
Theorem (HLMPPW, 2008)

The algorithm in the previous slide is well defined. Furthermore, for any spanning trees T and T', there is exactly one $S \in S(G)$ that maps T to T'.

- In other words, rotor routing defines a free transitive action of $S(G)$ on the spanning trees of G.

Question (Ellenberg, 2012)

When is the rotor-routing action preserved after changing the sink vertex?

Theorem (Chan-Church-Grochow, 2013)

The rotor-routing action is preserved regardless of sink vertex if and only if G is a plane graph.
Sink-Free Rotor-Routing Algorithm

Input: a plane graph G, a spanning tree T, and an element of the sandpile group $S \in S(G)$.

1. Choose any $s \in V(G)$. Orient the edges of T toward s. Every vertex $v \in V(G) \setminus s$ has a single outgoing edge called the *rotor at v*. Let D be any representative of S such that $D(v) \geq 0$ for $v \neq s$. Let C be a set of $D(v)$ chips at each $v \neq s$.

2. Choose any $c \in C$. Rotate the rotor at c and then move c along it. If c reaches the sink, remove it from C.

3. Repeat step 2 until $C = \emptyset$

4. Forget the orientation of the rotors and let T' be their edges.

Output: T'. We write that $r_G([D], T) = T'$.

Alex McDonough (UC Davis) (UC Davis)
Definition

A *sandpile torsor action* on a plane graph G is a free transitive action of $S(G)$ on the spanning trees of G.
A sandpile torsor action on a plane graph G is a free transitive action of $S(G)$ on the spanning trees of G.

A sandpile torsor algorithm is a function which assigns a sandpile torsor action to every plane graph.
Definition

A sandpile torsor action on a plane graph G is a free transitive action of $S(G)$ on the spanning trees of G.

Definition

A sandpile torsor algorithm is a function which assigns a sandpile torsor action to every plane graph.

- We saw that rotor-routing induces a sandpile torsor algorithm, but are there other natural algorithms?
in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.
in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)

On plane graphs, the rotor-routing algorithm and Bernardi algorithm are equivalent.
in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)

On plane graphs, the rotor-routing algorithm and Bernardi algorithm are equivalent.

Other descriptions were found for this algorithm (see Yuen 2017 and Kálmán-Lee-Tóthmérsz 2022+), but these are still identical to rotor-routing.
“Other” Sandpile Torsor Algorithms

- in 2012, Baker and Wang used the \textit{Bernardi process} to define another sandpile torsor algorithm.

\textbf{Theorem (Baker-Wang, 2012)}

\textit{On plane graphs, the rotor-routing algorithm and Bernardi algorithm are equivalent.}

- Other descriptions were found for this algorithm (see Yuen 2017 and Kálmán-Lee-Tóthmérész 2022+), but these are still identical to rotor-routing.

\textbf{Conjecture (Klivans, 2018)}

For plane graphs, there is only one sandpile torsor structure.
in 2012, Baker and Wang used the *Bernardi process* to define another sandpile torsor algorithm.

Theorem (Baker-Wang, 2012)

On plane graphs, the rotor-routing algorithm and Bernardi algorithm are equivalent.

Other descriptions were found for this algorithm (see Yuen 2017 and Kálmán-Lee-Tóthmérész 2022+), but these are still identical to rotor-routing.

Conjecture (Klivans, 2018)

For plane graphs, there is only one sandpile torsor structure.
Proposition (Ganguly-M., 2022+)

Rotor-routing produces 4 closely related sandpile torsor algorithms:

- clockwise rotor-routing,
- counterclockwise rotor-routing,
- inverse clockwise rotor-routing, and
- inverse counterclockwise rotor-routing.
Proposition (Ganguly-M., 2022+)

Rotor-routing produces 4 closely related sandpile torsor algorithms:
- clockwise rotor-routing,
- counterclockwise rotor-routing,
- inverse clockwise rotor-routing, and
- inverse counterclockwise rotor-routing.

Definition

Two sandpile torsor algorithms have the same *structure* if they differ by inverting the action and/or the ribbon structure.
Proposition (Ganguly-M., 2022+)

Rotor-routing produces 4 closely related sandpile torsor algorithms:
- clockwise rotor-routing,
- counterclockwise rotor-routing,
- inverse clockwise rotor-routing, and
- inverse counterclockwise rotor-routing.

Definition

Two sandpile torsor algorithms have the same *structure* if they differ by inverting the action and/or the ribbon structure.

- To prevent simple but contrived counterexamples to Klivans’ conjecture, we want our algorithm to act *consistently* across different plane graphs.
A Consistency Condition

Theorem (Ganguly-M., 2022+)

Let G be a plane graph with a spanning tree T, and incident vertices c and s. Let $T' = r_G([c - s], T)$.

1. For any $e \in E(G)$ (not incident to both c and s), if $e \in T \cap T'$, then
 \[
 r_G([c - s], T) \setminus e = r_{G/e}([c - s], T \setminus e). \]
 ![See Clip 6]

2. For any $e \in E(G)$, if $e \notin T \cup T'$, then
 \[
 r_G([c - s], T) = r_{G\setminus e}([c - s], T). \]
 ![See Clip 7]

3. For any $e \in E(G)$, if there is a cut vertex x such that all paths from e to c or s pass through x, then
 \[
 e \in T \iff e \in T'. \]
 ![See Clip 8]
Definition

A sandpile torsor algorithm is *consistent* if it satisfies the 3 properties on the previous slide.
A sandpile torsor algorithm is **consistent** if it satisfies the 3 properties on the previous slide.

Theorem (Ganguly-M., 2022+)

Every consistent sandpile torsor algorithm has the same structure as rotor-routing (i.e. it is unique up to two \mathbb{Z}_2 actions).
Definition

A sandpile torsor algorithm is consistent if it satisfies the 3 properties on the previous slide.

Theorem (Ganguly-M., 2022+)

Every consistent sandpile torsor algorithm has the same structure as rotor-routing (i.e. it is unique up to two \mathbb{Z}_2 actions).

- To prove this, we first prove that it suffices to consider a subset of situations where rotor-routing takes just one step.
- We then use induction to reduce to 4 special cases.
- Resolving these cases requires a variety of methods and a great deal of work.
In 2017, Backman, Baker, and Yuen showed how to generalize the Bernardi action to *regular matroids*.

Instead of a ribbon structure, they require *acyclic circuit and cocircuit signatures*.

The definitions of consistency and sandpile torsor structure generalize naturally to regular matroids.

Conjecture

- The Backman-Baker-Yuen algorithm is consistent.
- All consistent sandpile torsor algorithms on regular matroids have the same structure.
Thanks for Listening!
Sources

- Spencer Backman, Matthew Baker, and Chi Ho Yuen. Geometric bijections for regular matroids, zonotopes, and Ehrhart theory. In *Forum of Mathematics, Sigma*, volume 7. Cambridge University Press, 2019.

- Norman L Biggs. Chip-firing and the critical group of a graph. *Journal of Algebraic Combinatorics*, 9(1):25–45, 1999.

- Matthew Baker and Yao Wang. The Bernardi process and torsor structures on spanning trees. *International Mathematics Research Notices*, 2017.

- Melody Chan, Thomas Church, and Joshua A Grochow. Rotor-routing and spanning trees on planar graphs. *International Mathematics Research Notices*, 2015(11), 2014.

- Scott Corry and David Perkinson. *Divisors and sandpiles*, volume 114. American Mathematical Soc., 2018.
Sources II

Jordan Ellenberg.
What is the sandpile torsor?
MathOverflow, 2011.

Emeric Gioan.
Circuit-cocircuit reversing systems in regular matroids.
Annals of Combinatorics, 12:171–182, 2008.

Ankan Ganguly and Alex McDonough.
Rotor-routing induces the only consistent sandpile torsor structure on plane graphs.
arXiv preprint arXiv:2203.15079, 2022.

Alexander E Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp, and David B Wilson.
Chip-firing and rotor-routing on directed graphs.
In *In and Out of Equilibrium 2*, pages 331–364. Springer, 2008.

Caroline Klivans.
The Mathematics of Chip firing.
Chapman & Hall, 2018.
Tamás Kálmán, Seunghun Lee, and Lilla Tóthmérész.
The sandpile group of a trinity and a canonical definition for the planar bernardi action, 2019.

Itamar Landau and Lionel Levine.
The rotor–router model on regular trees.
Journal of Combinatorial Theory, Series A, 116(2):421–433, 2009.

Chi Ho Yuen.
Geometric Bijections of Graphs and Regular Matroids.
PhD thesis, Georgia Tech, 2018.