Evaluation of Integrals Representing Correlations in XXX Heisenberg Spin Chain

H.E. Boos
Institute for High Energy Physics
Protvino, 142284, Russia

V.E. Korepin
C.N. Yang Institute for Theoretical Physics
State University of New York at Stony Brook
Stony Brook, NY 11794–3840, USA

Abstract

We study XXX Heisenberg spin 1/2 anti-ferromagnet. We evaluate a probability of formation of a ferromagnetic string in the anti-ferromagnetic ground state in thermodynamics limit. We prove that for short strings the probability can be expressed in terms of Riemann zeta function with odd arguments.
1. Introduction

Riemann zeta function for $\text{Re}(s) > 1$ can be defined as follows:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \quad (1.1)$$

It also can be represented as a product with respect to all prime numbers p

$$\zeta(s) = \prod_{p} (1 - p^{-s})^{-1} \quad (1.2)$$

It can be analytically continued in the whole complex plane of s. It has only one pole, at $s = 1$. Riemann zeta function satisfies a functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin(s\pi/2)\Gamma(1-s)\zeta(1-s) \quad (1.3)$$

It has ‘trivial’ zeros at $s = -2n$ ($n > 1$ is an integer). The famous Riemann hypothesis [15] states that nontrivial zeros belong to the straight line $\text{Re}(s) = 1/2$. Recently Montgomery and Odlyzko conjectured that for large values of imaginary part of s the distribution of zeros can be described by GUE of random matrices, see [25] and [24]. Forrester and Odlyzko related the problem of distribution of zeros to Painleve differential equation and integrable integral operators [21]. Riemann zeta function is useful for study of distribution of prime numbers on the real axis [14]. The values of Riemann zeta function at special points were studied in [17], [18]. At even values of its argument zeta function can be expressed in terms of powers of π and Bernoulli’s numbers

$$\zeta(2n) = (-1)^{n+1}2^{2n-1}\pi^{2n}B_{2n}/(2n)! \quad (1.4)$$

The values of Riemann zeta function at odd arguments provide infinitely many different irrational numbers [16]. Riemann zeta function plays an important role, not only in pure mathematics but also theoretical physics. Some Feynman diagrams in quantum field theory can be expressed in terms of $\zeta(n)$, see, for example, [1]. In statistical mechanics Riemann zeta function was used for the description of chaotic systems [19]. One can find more information and citation on the following web-cite http://www.maths.ex.ac.uk/ m watkins/.

We argue that $\zeta(n)$ is also important for exactly solvable models. The most famous integrable models is the Heisenberg XXX spin chain. This model was first suggested by Heisenberg [3] in 1928 and solved by Bethe [4] in 1931. Since that time it found multiple applications in solid state physics and statistical mechanics.

The Hamiltonian of the XXX spin chain can be written like this

$$H = \sum_{i=1}^{N} (\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \sigma_i^z \sigma_{i+1}^z - 1) \quad (1.5)$$

Here N is the length of the lattice and $\sigma_i^x, \sigma_i^y, \sigma_i^z$ are Pauli matrices. We consider thermodynamics limit , when N goes to infinity. The sign in front of the Hamiltonian indicates that we are considering the anti-ferromagnetic case. We consider periodic boundary conditions. Notice that this Hamiltonian annihilates the ferromagnetic state [all spins up].
The construction of the anti-ferromagnetic ground state wave function \(|AFM> \) can be credited to Hulthén [5]. An important correlation function was defined in [8]. It was called the emptiness formation probability

\[
P(n) = \langle AFM | \prod_{j=1}^{n} P_j | AFM \rangle
\]

where \(P_j = (1 + \sigma_j^z)/2 \) is a projector on the state with spin up in \(j \)th lattice site. Averaging is over the anti-ferromagnetic ground state. It describes the probability of formation of a ferromagnetic string of the length \(n \) in the anti-ferromagnetic background \(|AFM> \). In this paper we shall first study short strings (\(n \) is small), in the end we shall discuss long distance asymptotic (at finite temperature). The four first values of the emptiness-formation probability look as follows:

\[
P(1) = \frac{1}{2} = 0.5,
\]

\[
P(2) = \frac{1}{3}(1 - \ln 2) = 0.102284273,
\]

\[
P(3) = \frac{1}{4} - \ln 2 + \frac{3}{8} \zeta(3) = 0.007624158,
\]

\[
P(4) = \frac{1}{5} - 2 \ln 2 + \frac{173}{60} \zeta(3) - \frac{11}{6} \zeta(3) \ln 2 - \frac{51}{80} \zeta^2(3) - \frac{55}{24} \zeta(5) + \frac{85}{24} \zeta(5) \ln 2 = 0.000206270
\]

Let us comment. The value of \(P(1) \) is evident from the symmetry, \(P(2) \) can be extracted from the explicit expression of the ground state energy [5]. \(P(3) \) can be extracted from the results of M.Takahashi [9] on the calculation of the nearest neighbor correlation. It was confirmed in paper [10]. One should also mention independent calculation of \(P(3) \) in [11]. One can express \(P(3) \) in terms of next to the nearest neighbor correlation

\[
\langle S_i^z S_{i+2}^z \rangle = 2P(3) - 2P(2) + \frac{1}{2}P(1)
\]

The calculation of \(P(3) \) and \(P(4) \) is discussed in this paper.

The expression above for \(P(4) \) is our main result here.

We briefly announced our results in [2], here we provide the detailed derivation. The plan of the paper is as follows. In the next section we discuss a general procedure of the calculation of \(P(n) \). We also show how this scheme works for \(P(2) \). In the Appendices A and B we describe in detail the calculation of \(P(3) \) and \(P(4) \) respectively by means of the technique elaborated in the Section 2. The main results are summarized in the conclusion.

2. General discussion of the calculation of \(P(n) \)

There are several different approaches to investigate \(P(n) \):

- **Representation of correlation functions as determinants of Fredholm integral operators**. This approach is based on following steps:
i. Quantum correlation function should be represented as a determinant of a Fredholm integral operators of a special type. We call these operators \textit{integrable} integral operators.

ii. The determinant can be described by completely integrable equation of Painleve type.

iii. Asymptotic of correlation function [and the determinant] can be described by Riemann-Hilbert problem.

This approach was discovered in [23], it is described in detail in the book [6].

It is interesting to mention that this approach was successfully applied also to matrix models [22].

- **Vertex operator approach** was developed in Kyoto by Foda, Jimbo, Miki, Miwa and Nakayashiki. This approach is based on study of representations of infinite dimensional quantum group $U_q\hat{SL}(2)$, see [7].

We shall use the integral representation obtained in [8]

$$ P(n) = \int_C \frac{d\lambda_1}{2\pi i\lambda_1} \int_C \frac{d\lambda_2}{2\pi i\lambda_2} \ldots \int_C \frac{d\lambda_n}{2\pi i\lambda_n} \frac{n}{\prod_{a=1}^{n} (1 + \frac{i}{\lambda_a})^{n-a} (\frac{\pi \lambda_a}{\sinh \pi \lambda_a})^n} \prod_{1 \leq k < j \leq n} \frac{\sinh \pi (\lambda_j - \lambda_k)}{\pi (\lambda_j - \lambda_k - i)} \quad (2.1) $$

The contour C in each integral goes parallel to the real axis with the imaginary part between 0 and $-i$. In the frame of algebraic Bethe Ansatz this formula was derived in [20]. Recently such formula was generalized in paper [12] to the case, where averaging is done over arbitrary Bethe state [with no strings] instead of anti-ferromagnetic state.

Let us describe in general a strategy that may be used for the calculation of $P(n)$. The integral formula (2.1) can be easily represented as follows:

$$ P(n) = \prod_{j=1}^{n} \int_C \frac{d\lambda_j}{2\pi i} U_n(\lambda_1, \ldots, \lambda_n) T_n(\lambda_1, \ldots, \lambda_n) \quad (2.2) $$

where

$$ U_n(\lambda_1, \ldots, \lambda_n) = \frac{\pi^{n(n+1)/2}}{\prod_{1 \leq k < j \leq n} \sinh \pi (\lambda_j - \lambda_k)} \quad (2.3) $$

and

$$ T_n(\lambda_1, \ldots, \lambda_n) = \frac{\prod_{j=1}^{n} \lambda_j^{-1} (\lambda_j + i)^{n-j}}{\prod_{1 \leq k < j \leq n} (\lambda_j - \lambda_k - i)} \quad (2.4) $$

First of all, let us note that in principle the contour C can be chosen between 0 and $-i$ arbitrary. Let us denote C_α the contour that goes from $i\alpha - \infty$ to $i\alpha + \infty$. In what follows it will be convenient to choose $\alpha = -1/2$ i.e. to integrate over the contour $C_{-1/2}$.

As appeared we can make a lot of simplifications without taking integrals but using some simple observations and properties of the function in the r.h.s. of (2.2) which has to be integrated.

Let us define a ”weak” equality \sim. Namely, let us say that two functions $F_n(\lambda_1, \ldots, \lambda_n)$ and $G_n(\lambda_1, \ldots, \lambda_n)$ are ”weakly” equivalent

$$ F_n(\lambda_1, \ldots, \lambda_n) \sim G_n(\lambda_1, \ldots, \lambda_n) \quad (2.5) $$
if
\[
\prod_{j=1}^{n} \int_{C_{-\frac{1}{2}}} \frac{d\lambda_j}{2\pi i} U_n(\lambda_1, \ldots, \lambda_n) \left(F_n(\lambda_1, \ldots, \lambda_n) - G_n(\lambda_1, \ldots, \lambda_n)\right) = 0. \tag{2.6}
\]

Let us also introduce a "canonical" form of the function by the following formula
\[
T_n^c(\lambda_1, \ldots, \lambda_n) = \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} P_j^{(n)} \prod_{k=1}^{j} \frac{1}{\lambda_{2k} - \lambda_{2k-1}} \tag{2.7}
\]
where \(P_j^{(n)}\) are some polynomials of the form
\[
P_j^{(n)} = P_j^{(n)}(\lambda_1, \lambda_3, \ldots, \lambda_{2j-1} | \lambda_{2j+1}, \lambda_{2j+2}, \ldots, \lambda_n) = \sum_{0 \leq i_1, i_3, \ldots, i_{2j-1} \leq n-2} \sum_{0 \leq i_{2j+1} < i_{2j+2} < \ldots < i_n \leq n-1} C_{i_1, i_3, \ldots, i_{2j-1}}^i \lambda_1^{i_1} \lambda_3^{i_3} \ldots \lambda_{2j-1}^{i_{2j-1}} \lambda_{2j+1}^{i_{2j+1}} \lambda_{2j+2}^{i_{2j+2}} \ldots \lambda_n^{i_n} \tag{2.8}
\]
where
\[
\hat{C}_{i_1, i_3, \ldots, i_{2j-1}}^{i_2j+1, i_{2j+2}, \ldots, i_n} = i^{\beta} \hat{C}_{i_1, i_3, \ldots, i_{2j-1}}^{i_2j+1, i_{2j+2}, \ldots, i_n}
\]
with \(\beta = 0\) or \(1\) in accordance with the equality
\[
\beta + i_1 + i_3 + \ldots + i_{2j-1} + i_{2j+1} + i_{2j+2} + \ldots + i_n \equiv j + n \mod 2
\]
and some rational numbers \(\hat{C}_{i_1, i_3, \ldots, i_{2j-1}}^{i_2j+1, i_{2j+2}, \ldots, i_n}\).

This form has some arbitrariness because if we substitute \(\lambda_j = x_j - i/2\) where all \(x_j\) are real then it is easy to see that the function \(\tilde{U}_n(x_1, \ldots, x_n) = U_n(x_1 - i/2, \ldots, x_n - i/2)\) transforms when \(\{x_1, \ldots, x_n\} \to \{-x_1, \ldots, -x_n\}\) as follows
\[
\tilde{U}_n(-x_1, \ldots, -x_n) = (-1)^{\frac{n(n-1)}{2}} \tilde{U}_n(x_1, \ldots, x_n). \tag{2.9}
\]

Therefore any function \(\tilde{F}_n(x_1, \ldots, x_n)\) that satisfies
\[
\tilde{F}_n(-x_1, \ldots, -x_n) = (-1)^{\frac{n(n-1)}{2} + 1} \tilde{F}_n(x_1, \ldots, x_n) \tag{2.10}
\]
being integrated makes zero contribution
\[
\prod_{j=1}^{n} \int_{-\infty}^{\infty} \frac{dx_j}{2\pi i} \tilde{U}_n(x_1, \ldots, x_n) \tilde{F}_n(x_1, \ldots, x_n) = 0.
\]

It means that in order to get a nonzero result one should have the function \(\tilde{F}_n(x_1, \ldots, x_n)\) of the same parity as of the function \(\tilde{U}_n(x_1, \ldots, x_n)\). Then if we re-expand the form (2.7) in terms of variables \(x_j\) instead of \(\lambda_j\) we can fix the arbitrariness by imposing some additional constraints, namely,
\[
\tilde{P}_j^{(n)}(x_1, x_3, \ldots, x_{2j-1} | x_{2j+1}, x_{2j+2}, \ldots, x_n) = P_j^{(n)}(x_1 - i/2, x_3 - i/2, \ldots, x_{2j-1} - i/2 | x_{2j+1} - i/2, x_{2j+2} - i/2, \ldots, x_n - i/2).
\]
In comparison with the coefficients \(C^{i_{2j+1},i_{2j+2},...,i_n}_{i_1,i_3,...,i_{2j-1}} \) which can be pure imaginary all the coefficients \(\tilde{C}^{i_{2j+1},i_{2j+2},...,i_n}_{i_1,i_3,...,i_{2j-1}} \) are real and rational numbers.

So we can expect that the function

\[
\tilde{T}_n^c(x_1,\ldots,x_n) \equiv T_n^c(x_1-i/2,\ldots,x_n-i/2)
\]

should satisfy the following property

\[
\tilde{T}_n^c(-x_1,\ldots,-x_n) = (-1)^{\frac{n(n-1)}{2}} \tilde{T}_n^c(x_1,\ldots,x_n)
\]

Below the property (2.13) will be implied when we will speak about the "canonical" form (2.7-2.8). Besides, one can note that the function \(\tilde{T}_n^c(x_1,\ldots,x_n) \) should be real for real variables \(x_j \).

Our hypothesis is that for any \(n \) one can reduce the function \(T_n \) defined by (2.4) to the canonical form i.e. there exist polynomials \(P_j \) in (2.7) such that

\[
T_n(\lambda_1,\ldots,\lambda_n) \sim T_n^c(\lambda_1,\ldots,\lambda_n).
\]

Unfortunately, for the moment we do not have a proof of this statement for any \(n \) but we will demonstrate below how it works for \(n = 2, 3, 4 \).

In fact, the problem of the calculation of \(P(n) \) given by the integral (2.2) can be reduced to the two steps. The first step corresponds to the obtaining of the "canonical" form for \(T_n \). The second step is the calculation of the integral by means of this "canonical" form.

To do this one needs the following simple facts:

I. Since the function \(U_n(\lambda_1,\ldots,\lambda_n) \) is antisymmetric with respect to transposition of any pair of integration variables, say, \(\lambda_j \) and \(\lambda_k \) the following integral

\[
\prod_{j=1}^n \int_C \frac{d\lambda_j}{2\pi i} U(\lambda_1,\ldots,\lambda_n) S(\lambda_1,\ldots,\lambda_n) = 0
\]

(2.15)

if the function \(S \) is symmetric for at least one pair of \(\lambda \)-s. Therefore for an arbitrary function \(F_n(\lambda_1,\ldots,\lambda_n) \) one can transpose any pair of \(\lambda \)-s taking into consideration appearance of additional sign because of the antisymmetry of \(U_n(\lambda_1,\ldots,\lambda_n) \). For example, if one transposes \(\lambda_j \) with \(\lambda_k \) one gets

\[
F_n(\ldots,\lambda_j,\ldots,\lambda_k,\ldots) \sim -F_n(\ldots,\lambda_k,\ldots,\lambda_j,\ldots).
\]

(2.16)

II. The reduction of the power of denominator for \(T_n \) is based on two relations which can be checked directly

\[
\frac{1}{\lambda_k - \lambda_l - i} \frac{1}{\lambda_j - \lambda_l - i} \frac{1}{\lambda_j - \lambda_k - i} = \frac{1}{\lambda_k - \lambda_l - i} + \frac{1}{\lambda_j - \lambda_l - i} \frac{1}{\lambda_j - \lambda_k - i} - \frac{1}{\lambda_k - \lambda_l - i} \frac{1}{\lambda_j - \lambda_k - i}
\]

(2.17)

\[
\prod_{k=1}^{j-1} \frac{1}{\lambda_j - \lambda_k - i} = \sum_{k=1}^{j-1} \frac{1}{\lambda_j - \lambda_k - i} \prod_{l=1}^{j-1} \frac{1}{\lambda_l - \lambda_l}.
\]

(2.18)
In Appendices A and B we will show how the reduction can be performed for \(n = 3 \) and \(n = 4 \). Unfortunately, so far we have not succeeded in finding a result for general \(n \).

III. The ratio
\[
\frac{T_{n+1}(\lambda_1, \ldots, \lambda_{n+1})}{T_n(\lambda_1, \ldots, \lambda_n)} = \frac{\prod_{j=1}^n (\lambda_j + i) \lambda_{n+1}^n}{\prod_{j=1}^n (\lambda_{n+1} - \lambda_j - i)}
\]

(2.19)
is symmetric with respect to any permutation of \(\lambda_1, \ldots, \lambda_n \). Therefore the relation (2.19) allows us to use the result \(T_n \) also for derivation of \(T_{n+1} \) if this result was obtained by applying the relations (2.16-2.18) from I and II.

IV. Proposition 1
Let the function \(f(\lambda_1, \ldots, \lambda_n) \) have only poles of the form \(1/(\lambda_j - \lambda_k + i \alpha) \) with \(\alpha \) an integer i.e. the product \(U_n(\lambda_1, \ldots, \lambda_n) f(\lambda_1, \ldots, \lambda_n) \) does not have poles of that kind. Then
\[
\lambda_j^m f(\ldots, \lambda_j, \ldots) \sim - (\lambda_j + i)^m f(\ldots, \lambda_j + i, \ldots)
\]

(2.20)
where \(m \) is an integer and \(m \geq n \).

Proof
Let us suppose that all variables \(\lambda_1, \ldots, \lambda_{j-1}, \lambda_{j+1}, \ldots, \lambda_n \) are fixed. Extracting from \(U_n(\lambda_1, \ldots, \lambda_n) \) the function which depends on \(\lambda_j \) one gets
\[
\int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} \frac{\prod_{k \neq j} \sinh \pi(\lambda_j - \lambda_k)}{\sinh \pi \lambda_j} \lambda_j^m w(\lambda_j) = \int_{C_{-3/2}} \frac{d\lambda_j}{2\pi i} \frac{\prod_{k \neq j} \sinh \pi(\lambda_j - \lambda_k)}{\sinh \pi \lambda_j} (\lambda_j + i)^m w(\lambda_j + i) =
\]
\[
= -(\int_{C_{-3/2}} - \int_{C_{-1/2}} + \int_{C_{-1/2}}) \frac{d\lambda_j}{2\pi i} \frac{\prod_{k \neq j} \sinh \pi(\lambda_j - \lambda_k)}{\sinh \pi \lambda_j} (\lambda_j + i)^m w(\lambda_j + i)
\]
where \(w(\lambda_j) = f(\ldots, \lambda_j, \ldots) \). The first step here was to shift integration variable \(\lambda_j \rightarrow \lambda_j + i \) and to use the fact that \(\sinh \pi(x + i) = - \sinh \pi x \). The two first integrals in the last expression are equal to a contour integral around the point \(\lambda_j = -i \) in a complex plane of the variable \(\lambda_j \). Since, \(m \geq n \) the term \((\lambda_j + i)^m \) which is in the numerator and corresponds to a zero of order \(m \) compensates the pole from the term \(\sinh \pi \lambda_j \) in the denominator. Therefore the contribution of those two integrals is zero and we immediately come to the statement (2.20).

One can get two useful corollaries from the proposition 1.

Corollary 1
\[
\lambda_j^m g(\lambda_1, \ldots, \hat{\lambda}_j, \ldots, \lambda_n) \sim \frac{(-i)^m}{2} \sum_{k=0}^{m-1} \lambda_j^k (\lambda_j + i)^{m-1-k} g(\lambda_1, \ldots, \hat{\lambda}_j, \ldots, \lambda_n)
\]

(2.21)
where the function \(g(\lambda_1, \ldots, \hat{\lambda}_j, \ldots, \lambda_n) \) does not depend on \(\lambda_j \) and as above it is implied that \(m \geq n \).

Proof
The relation (2.21) is easy to derive using the relation \((\lambda_j^m + (\lambda_j + i)^m) g(\lambda_1, \ldots, \hat{\lambda}_j, \ldots, \lambda_n) \sim 0 \) or equivalently \(\lambda_j^m g(\lambda_1, \ldots, \hat{\lambda}_j, \ldots, \lambda_n) \sim 1/2(\lambda_j^m - (\lambda_j + i)^m) g(\lambda_1, \ldots, \hat{\lambda}_j, \ldots, \lambda_n) \).
Corollary 2

\[\frac{\lambda_j^{m-1}}{\lambda_k - \lambda_j} g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) \sim \]

\[\sim \frac{i}{m} \left(\sum_{l=2}^{m} \frac{m}{l} \lambda_j^{m-l} \right) + \sum_{l=0}^{m-1} \lambda_k^l (\lambda_j + i)^{m-1-l} g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) \quad (2.22) \]

where

\[\binom{m}{l} = \frac{m!}{l!(m-l)!} \]

is binomial coefficient and the function \(g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) \) does not depend on \(\lambda_k \) and \(\lambda_j \) and \(m \geq n \).

Proof

Using the proposition 1 we get

\[\frac{\lambda_j^m}{\lambda_k - \lambda_j} g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) \sim -\frac{(\lambda_j + i)^m}{\lambda_k - \lambda_j - i} g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) = \]

\[= (-\frac{\lambda_j^m}{\lambda_k - \lambda_j - i} + \frac{\lambda_k^m - (\lambda_j + i)^m}{\lambda_k - \lambda_j - i}) g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) \sim \]

\[\sim (\frac{(\lambda_k + i)^m}{\lambda_k - \lambda_j} + \frac{\lambda_k^m - (\lambda_j + i)^m}{\lambda_k - \lambda_j - i}) g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) \sim \]

\[\sim (\frac{(\lambda_j + i)^m}{\lambda_k - \lambda_j} + \frac{\lambda_k^m - (\lambda_j + i)^m}{\lambda_k - \lambda_j - i}) g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) \sim \]

or

\[\sim (\frac{(\lambda_j + i)^m - \lambda_j^m}{\lambda_k - \lambda_j} + \frac{\lambda_k^m - (\lambda_j + i)^m}{\lambda_k - \lambda_j - i}) g(\lambda_1, \ldots, \hat{\lambda_k}, \ldots, \hat{\lambda_j}, \ldots, \lambda_n) \sim 0. \]

Then expanding both numerators according to the formulae

\[(\lambda_j + i)^m - \lambda_j^m = \sum_{l=1}^{m} \binom{m}{l} i^l \lambda_j^{m-l} \]

\[\lambda_k^m - (\lambda_j + i)^m = (\lambda_k - \lambda_j - i) \sum_{l=0}^{m-1} \lambda_k^l (\lambda_j + i)^{m-1-l} \]

we arrive at the formula (2.22).

With the help of the corollaries 1 and 2 one can effectively reduce the power of the numerator in \(T_n \).

V. For the calculation of integrals we need the following
Proposition 2 Let the integral \(\int_{C_{-1/2}} \frac{d\lambda}{2\pi i} e^{i\delta\lambda} \frac{f(\lambda+iN)}{\sinh^n \pi\lambda} \) be convergent for any real number \(\delta \geq 0 \) and an integer \(N \). Further, let the function \(f(\lambda) \) be analytic in the whole complex plane \(\lambda \) and satisfy the following two conditions

\[
\lim_{R \to \infty} |e^{-n\pi R} f(iy - i/2 \pm R)| = 0, \quad (2.23)
\]

\[
\lim_{N \to \infty} |e^{-s'N} \frac{f(x - i/2 \pm iN)}{\cosh^n \pi x}| = 0 \quad (2.24)
\]

where the first limit is uniform in \(y \), when \(y \in [0, N] \). The second limit is uniform in \(x \) for any real \(x \). The value \(s' \) is a fixed real positive number (\(s' > 0 \)). Then

\[
\int_{C_{-1/2}} \frac{d\lambda}{2\pi i} \frac{f(\lambda)}{\sinh^n \pi\lambda} = \lim_{\delta \to 0^+} \lim_{\epsilon \to 0^+} d^{(n)}(\epsilon) \sum_{l=0}^{\infty} (-1)^l e^{-\delta l} f(i\epsilon + \epsilon) =
\]

\[
= - \lim_{\delta \to 0^+} d^{(n)}(\epsilon) \sum_{l=1}^{\infty} (-1)^l e^{-\delta l} f(-i\epsilon + \epsilon) \quad (2.26)
\]

where a differential operator \(d^{(n)}(\epsilon) \) looks as follows

\[
d^{(n)}(\epsilon) = \frac{1}{\pi^n(n-1)!} \sum_{l=0}^{n-1} \binom{n-1}{l} \left(\frac{\partial}{\partial \epsilon} \right)^{n-1-l} \left(\sum_{0 \leq 2k < n} \frac{(\pi\alpha)^{2k}}{(2k+1)!} \right)^{-n} \left(\frac{\partial}{\partial \epsilon} \right)^l. (2.27)
\]

In particular, for \(n = 2, 3, 4 \)

\[
d^{(2)}(\epsilon) = \frac{1}{\pi^2} \frac{\partial}{\partial \epsilon} \quad (2.28)
\]

\[
d^{(3)}(\epsilon) = -\frac{1}{2\pi} \left(1 - \frac{1}{\pi^2} \frac{\partial^2}{\partial \epsilon^2} \right) \quad (2.29)
\]

\[
d^{(4)}(\epsilon) = -\frac{2}{3\pi^2} \left(\frac{\partial}{\partial \epsilon} - \frac{1}{4\pi^2} \frac{\partial^3}{\partial \epsilon^3} \right) \quad (2.30)
\]

Proof Let

\[
\int_{C_N} \frac{d\lambda}{2\pi i} e^{i\delta\lambda} \frac{f(\lambda)}{\sinh^n \pi\lambda}
\]

where \(\delta > 0 \) and \(C_N \) is a rectangular contour shown in Fig. 1.

Fig. 1 The contour \(C_N \)
The contours $C_{-1/2}$ and $-C_{N-1/2}$ correspond to lower and upper horizontal parts of the contour C_N respectively (sign $-$ is because the contour $C_{N-1/2}$ should be taken in the opposite direction). The contours $C_{+\infty}$ and $C_{-\infty}$ correspond to the right and left vertical parts of the contour C_N and have real parts $+\infty$ and $-\infty$ respectively. Due to the Cauchy theorem one has

$$F(\delta, N) = F_{-1/2} - F_{N-1/2} + F_+ + F_- = d^{(n)}(\epsilon)_{\epsilon \to 0} \sum_{l=0}^{N-1} (-1)^{l} e^{-\delta l + i\delta} f(\delta + \epsilon) \quad (2.32)$$

where

$$F_{-1/2} = \int_{C_{-1/2}} \frac{d\lambda}{2\pi i} e^{i\delta\lambda} \frac{f(\lambda)}{\sinh^n \pi \lambda} \quad (2.33)$$

$$F_{N-1/2} = \int_{C_{N-1/2}} \frac{d\lambda}{2\pi i} e^{i\delta\lambda} \frac{f(\lambda)}{\sinh^n \pi \lambda} \quad (2.34)$$

$$F_{\pm} = \int_{C_{\pm\infty}} \frac{d\lambda}{2\pi i} e^{i\delta\lambda} \frac{f(\lambda)}{\sinh^n \pi \lambda} \quad (2.35)$$

The r.h.s. of the formula (2.32) is a result of the calculation of residue s corresponding to zeros of the denominator $\sinh^n \pi \lambda$ which are placed inside the contour C_N.

The first step is to prove that the integrals over the contours C_{\pm}

$$F_{\pm} = 0. \quad (2.36)$$

Actually one has

$$F_{\pm} = \lim_{R \to \infty} \int_{C_{\pm}^R} \frac{d\lambda}{2\pi i} e^{i\delta\lambda} \frac{f(\lambda)}{\sinh^n \pi \lambda} = \frac{1}{2\pi i} \lim_{R \to \infty} \pm \int_0^N \frac{dy}{(\pm R + iy)} e^{i\delta(\pm R + iy - i/2)} f(\pm R + iy - i/2) \quad (2.37)$$

where vertical contours C_{\pm}^R are defined as follows: $\lambda = \pm R + iy - i/2; \quad y \in [0, N]$. Then

$$|F_{\pm}| \leq \frac{1}{2\pi} \lim_{R \to \infty} \int_0^N \frac{dy}{\sinh^2 \pi R} e^{-\delta y} |f(\pm R + iy - i/2)| = \frac{2^{n-1}}{\pi} \lim_{R \to \infty} \int_0^N \frac{dy e^{-\delta y}}{(1 - e^{-2\pi R})^n} e^{-n\pi R} |f(\pm R + iy - i/2)| \quad (2.38)$$

where we have used a simple fact that for $R > 0$

$$|\cosh \pi(\pm R + iy)| \geq \sinh \pi R.$$

The uniform character of the limit (2.23) allows to interchange the order of the integration over y and the limiting procedure $R \to \infty$. Indeed, the condition (2.23) means that for any small real number ϵ there exists a real R_ϵ which is independent of y such that for any $R > R_\epsilon$

$$e^{-n\pi R} |f(\pm R + iy - i/2)| < \epsilon.$$

Therefore for $R > R_\epsilon$

$$\int_0^N \frac{dy e^{-\delta y}}{(1 - e^{-2\pi R})^n} e^{-n\pi R} |f(\pm R + iy - i/2)| < \frac{\epsilon}{(1 - e^{-2\pi R})^n} \int_0^N dy e^{-\delta y} =$$
\[
\lim_{R \to \infty} \int_0^N \frac{dy e^{-\delta y}}{1 - e^{-2\pi R})^n} e^{-n\pi R} |f(\pm R + iy - i/2)| = 0
\]
and we come to the statement (2.36).

The next our step is to prove that for a fixed real \(\delta > 0 \)
\[
\lim_{N \to \infty} F_{N-1/2} = 0 \quad (2.39)
\]
Indeed,
\[
|F_{N-1/2}| = | \int_{C_{N-1/2}} \frac{d\lambda}{2\pi i} e^{i\delta \lambda} \frac{f(\lambda)}{\sinh^n \pi \lambda} | = |(-1)^N \int_{C_{-1/2}} \frac{d\lambda}{2\pi i} e^{i\delta (\lambda + iN)} \frac{f(\lambda + iN)}{\sinh^n \pi \lambda} |
\]
\[
= \frac{e^{-\delta N}}{2\pi} \left| \int_{C_{-1/2}} \frac{d\lambda}{\sinh^n \pi \lambda} e^{i\delta \lambda} f(\lambda + iN) \right| \leq \frac{e^{-\delta N}}{2\pi} \int_{-\infty}^{\infty} \frac{dx}{\cosh^n \pi x} |f(x - i/2 + iN)| \quad (2.40)
\]
As above due to the uniform character of the limit (2.24) one can interchange the integration over \(x \) and the limit \(N \to \infty \). Therefore the last expression in (2.40) tends to zero when \(N \to \infty \) and we come to the statement (2.39).

So for a fixed \(\delta > 0 \) we conclude from (2.32) that
\[
\lim_{N \to \infty} F(\delta, N) = \int_{C_{-1/2}} \frac{d\lambda}{2\pi i} e^{i\delta \lambda} \frac{f(\lambda)}{\sinh^n \pi \lambda} = d^{(n)}(\epsilon)_{\epsilon \to 0} \sum_{l=0}^{\infty} (-1)^n e^{-\delta l + i\delta \epsilon} f(il + \epsilon).
\]
The convergence of the sum in r.h.s. of the last expression is guaranteed by the convergence of the integral in the l.h.s. Finally, after taking the limit \(\lim_{\delta \to 0^+} \) we come to the formula (2.25). Let us note that generally speaking we can not interchange the order of the limits \(N \to \infty \) and \(\delta \to 0^+ \).

Another form (2.26) can be proved in a similar way if considering a contour which is analogous to \(C_N \) but placed in a lower half-plane and a real number \(\delta \) should be taken negative. It completes the proof of the proposition 2.

Using the proposition 2 we can get the following

Proposition 3

\[
\prod_{j=1}^{n} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} U_n(\lambda_1, \ldots, \lambda_n) F_n(\lambda_1, \ldots, \lambda_n) = D^{(n)}(\epsilon_1, \ldots, \epsilon_n) \quad (2.41)
\]
where the multiple integral is convergent and the product \(U_n(\lambda_1, \ldots, \lambda_n) F_n(\lambda_1, \ldots, \lambda_n) \) does not have any other poles besides the poles of the denominator \(\prod_{j=1}^{n} \sinh^n \pi \lambda_j \) of the function \(U_n(\lambda_1, \ldots, \lambda_n) \). The function
\[
C_n^{(j)}(\lambda_1, \ldots, \lambda_n) = \frac{\prod_{1 \leq k < i \leq n} \sinh \pi (\lambda_i - \lambda_k)}{\prod_{k \neq j} \sinh^n \pi \lambda_k} F_n(\lambda_1, \ldots, \lambda_n) \quad (2.42)
\]
should satisfy conditions which generalize (2.23) and (2.24)
\[
\lim_{R \to \infty} \left| e^{-n \pi R} G_n^{(j)}(\lambda_1, \ldots, \lambda_{j-1}, ix_j - i/2 \pm R, \lambda_{j+1}, \ldots, \lambda_n) \right| = 0, \quad j = 1, \ldots, n \tag{2.43}
\]
\[
\lim_{N \to \infty} \left| e^{-\delta N} G_n^{(j)}(\lambda_1, \ldots, \lambda_{j-1}, x_j - i/2 \pm iN, \lambda_{j+1}, \ldots, \lambda_n) \right|/\cosh^n \pi x_j = 0, \quad j = 1, \ldots, n \tag{2.44}
\]
where for each \(j\) both limits are uniform on real numbers \(x_1, \ldots, x_n\) with \(\lambda_k = x_k + im_k/2, \quad k \neq j\)
and some integers \(m_k\). For the first limit \(x_j \in [0, N]\) while for the second one \(x_j\) is any real number.

\(D^{(n)}\) is a differential operator
\[
D^{(n)} = \pi \frac{n(n+1)}{2} \prod_{j=1}^{n} d^{(n)}(\epsilon_j)_{\epsilon_j \to 0} \prod_{1 \leq k < j \leq n} \sinh \pi (\epsilon_j - \epsilon_k) \tag{2.45}
\]
and
\[
\tilde{F}_n(\epsilon_1, \ldots, \epsilon_n) = \lim_{\delta_1 \to 0^+} \sum_{l_1=0}^{\infty} (-1)^{l_1} e^{-\delta_1 l_1} \ldots \lim_{\delta_n \to 0^+} \sum_{l_n=0}^{\infty} (-1)^{l_n} e^{-\delta_n l_n} F_n(i l_1 + \epsilon_1, \ldots, i l_n + \epsilon_n) \tag{2.46}
\]
where each sum \(\sum_{l_j=0}^{\infty} (-1)^{l_j} e^{-\delta_j l_j} F_n(\lambda_1, \ldots, \lambda_{j-1}, i l_j + \epsilon_j, \lambda_{j+1}, \ldots, \lambda_n)\) should be convergent uniformly in other arguments \(\lambda_1, \ldots, \lambda_{j-1}, \lambda_{j+1}, \ldots, \lambda_n\) \((\lambda_k = x_k + im_k/2, \quad k \neq j)\).

Proof The formula (2.41) can be got by the recursive application of the formula (2.25) to each integral in the l.h.s. of (2.41) and by taking into account the manifest form (2.3) of the function \(U_n(\lambda_1, \ldots, \lambda_n)\). After \(j - 1\)-th application one can interchange the integration over \(\lambda_j\) with the sums over \(l_1, \ldots, l_{j-1}\) due to the uniform convergence of these sums. Due to the conditions (2.43) and (2.44) one can apply the proposition 2 when integrating over the variable \(\lambda_j\).

Let us note that each sum \(\sum_{l_j=0}^{\infty} (-1)^{l_j} e^{-\delta_j l_j} F_n(\lambda_1, \ldots, \lambda_{j-1}, i l_j + \epsilon_j, \lambda_{j+1}, \ldots, \lambda_n)\) in the formula (2.46) can be substituted by \(-\sum_{l_j=1}^{\infty} (-1)^{l_j} e^{-\delta_j l_j} F_n(\ldots, -i \lambda_j + \epsilon_j, \ldots)\) corresponding to the choice of the contour in the lower half-plane. In what follows we will use this fact depending on a convenience.

Let us consider a special class of functions \(\tilde{F}_n(\epsilon_1, \ldots, \epsilon_n)\) that does not have a singularity when \(\epsilon_j \to 0\) for \(j = 1, \ldots, n\). In this case one can expand \(\tilde{F}_n(\epsilon_1, \ldots, \epsilon_n)\) into the infinite series on powers of \(\epsilon\)'s. We have checked that for \(n \leq 4\) the differential operator \(D^{(n)}\) given by (2.45) when acting on some monomial \(\epsilon_1^{l_1} \ldots \epsilon_n^{l_n}\) makes non-zero contribution only for monomial of the form \(\epsilon_{\sigma(1)}^{l_1} \epsilon_{\sigma(2)}^{l_2} \ldots \epsilon_{\sigma(n)}^{l_n}\) where \(\sigma\) is some element of the permutation group \(S_n\) of \(n\) elements. More precisely, we can write
\[
D^{(n)} = \frac{1}{\prod_{j=1}^{n-1} j!} \prod_{1 \leq k < j \leq n} \left(\frac{\partial}{\partial \epsilon_k} - \frac{\partial}{\partial \epsilon_j} \right)_{\epsilon \to 0} \tag{2.47}
\]
We proved it for \(n \leq 4\) and we use this formula only in this case. We believe that this relation is valid for any \(n\) but this fact is still to be proven.

VI. Now let us discuss the integrals of a special form, namely, when the function \(F_n(\lambda_1, \ldots, \lambda_n)\) from the proposition 3 is rational on it's arguments and the function
\[
\prod_{1 \leq k < j \leq n} \sinh \pi (\lambda_j - \lambda_k) F_n(\lambda_1, \ldots, \lambda_n)
\]
is analytic. It means that the function \(F_n(\lambda_1, \ldots, \lambda_n)\) can have only simple poles when \(\lambda_j \to \lambda_k + m i\) with an integer \(m\). As it is seen from the definitions (2.4), (2.7) both the function \(T_n(\lambda_1, \ldots, \lambda_n)\) and the function \(T_n^{\pm}(\lambda_1, \ldots, \lambda_n)\) are of that form.
Let us show that the conditions of applicability of the propositions 2 and 3 are fulfilled for such a function $F_n(\lambda_1, \ldots, \lambda_n)$. To show that the first condition (2.43) is satisfied let us fix without loss of generality $j = 1$ and take into account that $0 \leq x_1 \leq N$. First let us consider the case when the rational function F_n does not have poles at all. Then if m_2, \ldots, m_n have the same parity

$$e^{-n \pi R} |G_n^{(1)}(ix_1 - i/2 \pm R, x_2 + im_2/2, \ldots, x_n + im_n/2)| =$$

$$= e^{-n \pi R} \prod_{k=2}^{n} |\sinh \pi(x_k \mp R - ix_1)| \prod_{1 < k < l \leq n}^{n} |\sinh \pi(x_l - x_k)| \prod_{k=2}^{n} \cosh^n \pi x_k$$

$$|F_n(ix_1 - i/2 \pm R, x_2 + im_2/2, \ldots, x_n + im_n/2)| \leq$$

$$\leq e^{-n \pi R} 2^{(n-2)(n-1)} \prod_{k=2}^{n} \cosh \pi(x_k \mp R) |F_n(ix_1 - i/2 \pm R, x_2 + im_2/2, \ldots, x_n + im_n/2)| \leq$$

$$\leq e^{-n \pi R} 2^{(n-2)(n-1)} (\cosh \pi R + \sinh \pi R)^{n-1} \prod_{k=2}^{n} \frac{1}{\cosh \pi x_k}$$

$$|F_n(ix_1 - i/2 \pm R, x_2 + im_2/2, \ldots, x_n + im_n/2)| =$$

$$= 2^{(n-2)(n-1)} e^{-\pi R} |F_n(ix_1 - i/2 \pm R, x_2 + im_2/2, \ldots, x_n + im_n/2)| \quad (2.48)$$

where we have used an inequality

$$\prod_{1 < k < l \leq n}^{n} |\sinh \pi(x_l - x_k)| \prod_{k=2}^{n} \cosh^n \pi x_k \leq 2^{(n-2)(n-1)} \prod_{k=2}^{n} \frac{1}{\cosh \pi x_k} \quad (2.49)$$

which can be checked directly. For a set of arbitrary integers $m_k, k = 2, \ldots, n$ one can repeat the derivation above also.

Since $0 \leq x_1 \leq N$ and F_n is rational without poles one can find real numbers R^* and $M(N) > 0$ which is independent of R such that for $R > R^*$

$$\prod_{k=2}^{n} \frac{1}{\cosh \pi x_k} |F_n(ix_1 - i/2 \pm R, x_2 + im_2/2, \ldots, x_n + im_n/2)| \leq R^* M(N)$$

with some power s. Hence, we get that the expression (2.48) can not exceed

$$2^{(n-2)(n-1)} e^{-\pi R} R^* M(N)$$

which tends to zero when $R \to \infty$ independently of the variables x_1, \ldots, x_n and we get the uniform character of the limit (2.43) on these variables.

Let us prove the validity of the second limit (2.44). Indeed, for a given integer $j = 1, \ldots n$ and $\lambda_k = x_k + im_k/2, \ k \neq j$ with integers m_k of the same parity the function

$$|e^{-\delta N} G_n^{(j)}(\lambda_1, \ldots, \lambda_{j-1}, x_j - i/2 \pm iN, \lambda_{j+1}, \ldots, \lambda_n)|/\cosh^n \pi x_j$$
is bounded for any real numbers $x_k \in (-\infty, \infty)$ and a positive integer N. Therefore one can use again the inequality (2.49) in order to get

$$\prod_{k=2}^{n} \left| \sinh \pi(x_k - x_1 - iN) \right| \prod_{1 \leq k < l \leq n} \left| \sinh \pi(x_l - x_k) \right| \leq \prod_{1 \leq k < l \leq n} \left| \sinh \pi(x_l - x_k) \right| \leq 2^{\frac{n(n-1)}{2}} \prod_{k=1}^{n} \cosh \pi x_k$$

Again one can repeat this for arbitrary integers m_2, \ldots, m_n.

Since F_n is rational the maximum over the real variables x_1, \ldots, x_n of the function

$$\frac{1}{\prod_{k=1}^{n} \cosh \pi x_k} |F_n(x_1 - i/2 + iN, x_2 + im_2/2, \ldots, x_n + im_n/2)|$$

can be some power of N, say, $N^{s'}$ multiplied with some constant which is independent of N when $N > N^*$ with N^* is a big enough integer. Therefore we get the limit

$$\lim_{N \to \infty} e^{-\delta N N^{s'}} = 0$$

for any real $\delta > 0$ independently of variables x_1, \ldots, x_n and we come to the uniform limit (2.44).

Suppose the function $F_n(\lambda_1, \ldots, \lambda_n)$ has a simple pole of a type $1/(\lambda_k - \lambda_l + ia_{kl})$ with an integer a_{kl}. Let us restrict ourselves only with the case $a_{kl} = 0$ because only such poles can appear in the expression for a canonical form (2.7). Then we can write

$$\left| \frac{\sinh \pi(\lambda_k - \lambda_l)}{\lambda_k - \lambda_l} \right| \leq \begin{cases} \frac{\pi \sinh \gamma_1}{\lambda_k - \lambda_l} & \text{if } |\lambda_k - \lambda_l| \leq \frac{1}{\pi} \\
\frac{\pi |\sinh \pi(\lambda_k - \lambda_l)|}{\lambda_k - \lambda_l} & \text{if } |\lambda_k - \lambda_l| > \frac{1}{\pi} \end{cases}$$

and use again the technique described above.

Let us comment on a question of uniform convergence of a sum

$$\sum_{l_j=0}^{\infty} (-1)^{l_j} e^{-\delta_1 l_j} F_n(\lambda_1, \ldots, \lambda_{j-1}, i l_j + \epsilon_j, \lambda_{j+1}, \ldots, \lambda_n)$$

as well as how to proceed further by considering two typical examples. Let us take for simplicity $n = 2$. The integral we need looks as follows

$$J_2 = \int_{C_{-1/2}}^{C_{1/2}} \frac{d\lambda_2}{2\pi i} \int_{C_{-1/2}}^{C_{1/2}} \frac{d\lambda_1}{2\pi i} \frac{\sinh \pi(\lambda_2 - \lambda_1)}{\pi \lambda_1 \sinh \pi \lambda_2} F_2(\lambda_1, \lambda_2)$$

(2.50)

As a first example let us consider again the case when F_2 does not have poles at all i.e. $F_2(\lambda_1, \lambda_2)$ is some polynomial on λ_1 and λ_2. First let us integrate over λ_1 using the formula (2.25)

$$J_2 = \int_{C_{-1/2}}^{C_{1/2}} \frac{d\lambda_2}{2\pi i \sinh^2 \pi \lambda_2} \lim_{\delta_1 \to 0^+} \int_{d_1}^{d_1} \frac{d(2)(\epsilon_1)e_1}{\delta_1} \sinh \pi(\lambda_2 - \epsilon_1) \sum_{l_1=0}^{\infty} (-1)^{l_1} e^{-\delta_1 l_1} F_2(il_1 + \epsilon, \lambda_2)$$

(2.51)

Since $F_2(\lambda_1, \lambda_2)$ is a polynomial then $F_2(il_1 + \epsilon, \lambda_2)$ is a polynomial on l_1 as well. Let us pick out some monomial on l_1 from it, say,

$$l_1^t F_1(\lambda_2)$$

(2.52)
where \(a \) is a non-negative integer and \(F_1(\lambda_2) \) is a polynomial on \(\lambda_2 \). Actually it has a factorized form. Therefore in this case we do not have any problems with the uniform convergence and the corresponding contribution into \(J_2 \) is as follows

\[
\int_{C_{1/2}} \frac{d\lambda_2}{2\pi i \sinh^2 \pi \lambda_2} F_1(\lambda_2) \lim_{\delta_1 \to 0^+} d^{(2)}(\epsilon_1)_{\epsilon_1 \to 0} \sinh \pi (\lambda_2 - \epsilon_1) \sum_{l_1=0}^{\infty} (-1)^{l_1} e^{-\delta_1 l_1} l_1^a =
\]

\[
= \int_{C_{1/2}} \frac{d\lambda_2}{2\pi i \sinh^2 \pi \lambda_2} F_1(\lambda_2)d^{(2)}(\epsilon_1)_{\epsilon_1 \to 0} \sinh \pi (\lambda_2 - \epsilon_1) \rho(a)
\]

(2.53)

where

\[
\rho(a) = \lim_{\delta \to 0^+} \sum_{l_1=0}^{\infty} (-e^{-\delta})^{l_1} l_1^a
\]

(2.54)

Let us adduce a number of first values of \(\rho(a) \)

\[
\rho(0) = \frac{1}{2}, \quad \rho(1) = -\frac{1}{4}, \quad \rho(2) = 0, \quad \rho(3) = \frac{1}{8}, \quad \rho(4) = 0, \quad \rho(5) = -\frac{1}{4}
\]

(2.55)

Since \(F_1(\lambda_2) \) is a polynomial we can treat the integral in (2.53) in a similar way as the integral over \(\lambda_1 \). In the very end we should calculate the limits \(\epsilon_1 \to 0 \) and \(\epsilon_2 \to 0 \) and get the final answer for \(J_2 \).

ii The second example corresponds to an existing of a simple pole, namely, when

\[
F_2(\lambda_1, \lambda_2) = \frac{Q(\lambda_1, \lambda_2)}{\lambda_2 - \lambda_1 - ia_{12}}
\]

(2.56)

where \(Q(\lambda_1, \lambda_2) \) is a polynomial on \(\lambda_1, \lambda_2 \). As above we shall consider only the case \(a_{12} = 0 \). So in this case doing the first integration one gets

\[
J_2 = \int_{C_{1/2}} \frac{d\lambda_2}{2\pi i \sinh^2 \pi \lambda_2} \lim_{\delta_1 \to 0^+} d^{(2)}(\epsilon_1)_{\epsilon_1 \to 0} \sinh \pi (\lambda_2 - \epsilon_1) \sum_{l_1=0}^{\infty} (-1)^{l_1} e^{-\delta_1 l_1} \frac{Q(il_1 + \epsilon_1, \lambda_2)}{\lambda_2 - il_1 - \epsilon_1}
\]

(2.57)

Since \(Q(il_1 + \epsilon_1, \lambda_2) \) is a polynomial on \(l_1 \) also again let us pick out some monomial from it

\[
l_1^a' Q' (\lambda_2)
\]

with an integer \(a' \geq 0 \) and a polynomial \(Q'(\lambda_2) \). Then the corresponding contribution into the expression (2.57) for \(J_2 \) looks as follows

\[
\int_{C_{1/2}} \frac{d\lambda_2}{2\pi i \sinh^2 \pi \lambda_2} Q'(\lambda_2) \lim_{\delta_1 \to 0^+} d^{(2)}(\epsilon_1)_{\epsilon_1 \to 0} \sinh \pi (\lambda_2 - \epsilon_1) \sum_{l_1=0}^{\infty} (-1)^{l_1} e^{-\delta_1 l_1} \frac{l_1^a'}{\lambda_2 - il_1 - \epsilon_1}
\]

(2.58)

Since \(\lambda_2 = x_2 - i/2 \) with a real number \(x_2 \in (-\infty, \infty) \) the denominator

\[
\frac{1}{\lambda_2 - il_1 - \epsilon_1} = \frac{i}{l_1 + 1/2 + ix_2 - i\epsilon_1}
\]

and \(\text{Re}(l_1 + 1/2 + ix_2 - i\epsilon_1) \geq 1/2 \) because \(l_1 \geq 0 \). Therefore one can use an evident integral representation

\[
\frac{1}{\alpha} = \int_0^1 \frac{ds}{s^\alpha}
\]

(2.59)
which is valid if $\text{Re}(\alpha) > 0$. Hence the sum in the expression (2.58) is

$$
i \sum_{l_1=0}^{\infty} (-1)^{l_1} e^{-\delta_1 l_1} \int_0^1 \frac{ds}{s} s^{l_1+1/2+i\epsilon_2-i\epsilon_1}$$

Since for $\delta_1 > 0$ the sum

$$
\sum_{l_1=0}^{N'} (-1)^{l_1} e^{-\delta_1 l_1} l_1^{s l_1} = (-\frac{\partial}{\partial \delta_1})^{a'} \frac{1 - (-e^{-\delta_1} s)^{N'+1}}{1 + e^{-\delta_1} s}
$$

where N' is a positive integer converges uniformly in $s \in [0,1]$ when $N' \to \infty$ then one can interchange the sum over l_1 and the integration over s. The result for (2.60) is as follows

$$
i \int_0^1 \frac{ds}{s} s^{i\lambda_2-i\epsilon_1} (-\frac{\partial}{\partial \delta_1})^{a'} \frac{1}{1 + e^{-\delta_1} s} = i \int_0^1 \frac{ds}{s} s^{i\lambda_2-i\epsilon_1} \sum_{k=1}^{a'+1} C(a',k) \frac{1}{(1 + e^{-\delta_1} s)^k}
$$

where $C(a',k)$ are some rational coefficients. So the contribution of k-th term into the expression (2.58) is

$$
\int_{C_{-1/2}} \frac{d\lambda_2}{2\pi i \sinh^2 \pi \lambda_2} Q'(\lambda_2) \lim_{\delta_1 \to 0^+} d^{(2)}(\epsilon_1)_{l_1 \to 0} i \int_0^1 \frac{ds}{s} s^{i\lambda_2-i\epsilon_1} C(a',k) \frac{1}{(1 + e^{-\delta_1} s)^k}
$$

It is not very difficult to check that the function

$$Q'(\lambda_2) \sinh \pi (\lambda_2 - \epsilon_1) s^{i\lambda_2}
$$

satisfies the conditions (2.23) and (2.24) of the proposition 2 with $n = 2$. Moreover the integral

$$
\int_{C_{-1/2}} \frac{d\lambda_2}{2\pi i \sinh^2 \pi \lambda_2} Q'(\lambda_2) s^{i\lambda_2}
$$

converges uniformly in $s \in [0,1]$. Since it, actually, does not depend on δ_1 also and $d^{(2)}(\epsilon_1)$ given by (2.28) is the second derivative on ϵ_1 one can calculate the integral over λ_2 first using the formulae (2.25-2.26) of the proposition 2 and then calculate the integral over s and take the limits on ϵ_1 and δ_1.

Therefore we have shown that the formula (2.41) is correct for $n = 2$. Below we will use this formula for the concrete calculation of $P(2)$.

A generalization of our discussion to the arbitrary n is straightforward and we will not do it here.

The most efficient way of taking the integrals is as follows. Fist we apply the formula (2.41) using either (2.25) or (2.26) in such a way that the denominators like

$$
\frac{1}{\lambda_2 - \lambda_1}
$$

becomes

$$
i \frac{i}{l_1 + l_2 + i(\epsilon_2 - \epsilon_1)}
$$

with $l_1 \geq 0$ and $l_2 \geq 1$. In this case we shall not face a singularities like $1/(\epsilon_2 - \epsilon_1)$ and the whole expression will be analytic on $\epsilon_1, \ldots, \epsilon_n$. Hence, we can use the differential operator (2.47). Then after using the formula like (2.59) one can get rid of all such denominators and expand over ϵ-s
Then using the formula (2.22) of the corollary 2 for m where we have used the property I and the formula (2.20) from the proposition 1 of the item IV. Integrals on auxiliary variables like s (2.47). It can be applied after taking all summations in (2.46). As the last step one should take until the order which still makes a non-zero contribution after applying the differential operator (2.47). It can be applied after taking all summations in (2.46). As the last step one should take integrals on auxiliary variables like s appeared above.

Below we shall also take all $\delta_1, \ldots, \delta_n$ to be zero at once implying the limiting procedure $\lim_{\delta_j \to 0^+}$ described above.

Now let us illustrate how the whole procedure works for a simple case $P(2)$

$$P(2) = \pi^3 \int_{C_{-1/2}} \frac{d\lambda_1}{2\pi i} \int_{C_{-1/2}} \frac{d\lambda_2}{2\pi i} \frac{\sinh \pi (\lambda_2 - \lambda_1)}{\sinh^2 \pi \lambda_1 \sinh^2 \pi \lambda_2} T_2(\lambda_1, \lambda_2)$$

(2.63)

In this case it is very simple to perform the first step, namely, to get the "canonical" form (2.7) described in the beginning of the Section because we do not need to reduce a power of denominator in this case. Indeed,

$$T_2(\lambda_1, \lambda_2) = \frac{(\lambda_1 + i)\lambda_2}{\lambda_2 - \lambda_1 - i} = \lambda_1 + i + \frac{(\lambda_1 + i)^2}{\lambda_2 - \lambda_1 - i} \sim \lambda_1 - \frac{\lambda_1^2}{\lambda_2 - \lambda_1}$$

(2.64)

where we have used the property I and the formula (2.20) from the proposition 1 of the item IV. Then using the formula (2.22) of the corollary 2 for $m = 2, 3$ one gets

$$-\frac{\lambda_2^2}{\lambda_2 - \lambda_1} \sim -\frac{i}{3} \left(3i^2 \lambda_1 + i^3 \right) + \lambda_2^2 + \lambda_2(\lambda_1 + i) + (\lambda_1 + i)^2 \sim$$

$$\sim \frac{i\lambda_1}{\lambda_2 - \lambda_1} - \frac{1}{3} \frac{1}{\lambda_2 - \lambda_1} - \frac{i}{3} (i\lambda_1) \sim \frac{1}{2} \frac{1}{\lambda_2 - \lambda_1} - \frac{1}{3} \frac{1}{\lambda_2 - \lambda_1} + \frac{1}{3} \lambda_1 = \frac{1}{3} \lambda_1 + \frac{1}{6} \frac{1}{\lambda_2 - \lambda_1}$$

Substituting it to the formula (2.64) we get

$$T_2(\lambda_1, \lambda_2) \sim T_2^*(\lambda_1, \lambda_2)$$

(2.65)

where

$$T_2^*(\lambda_1, \lambda_2) = \frac{4}{3} \lambda_1 + \frac{1}{6} \frac{1}{\lambda_2 - \lambda_1}$$

(2.66)

and this is the "canonical" form for T_2 i.e. the polynomials $P_0^{(2)}$ and $P_1^{(2)}$ from (2.7-2.8) are equal to $4/3\lambda_1$ and $1/6$ respectively.

Let us take the integral from the first term using the formula (2.46), our comments about the limiting procedure like in the formulae (2.25-2.26) of the proposition 2

$$J_0^{(2)} = \pi^3 \int_{C_{-1/2}} \frac{d\lambda_1}{2\pi i} \int_{C_{-1/2}} \frac{d\lambda_2}{2\pi i} \frac{\sinh \pi (\lambda_2 - \lambda_1)}{\sinh^2 \pi \lambda_1 \sinh^2 \pi \lambda_2} \frac{4}{3} \lambda_1 = D^{(2)} \frac{4}{3} \sum_{l=0}^{\infty} (-1)^l (i\lambda_1 + \epsilon_1) \frac{2}{3} \sum_{l=0}^{\infty} (-1)^l =$$

$$= D^{(2)} \frac{4}{3} (i\rho(1) + \epsilon_1 \rho(0)) \rho(0) = D^{(2)} \frac{4}{3} \left(-\frac{i}{4} + \frac{\epsilon_1}{2} \right) \frac{1}{2} \left(\frac{\partial}{\partial \epsilon_1} - \frac{\partial}{\partial \epsilon_2} \right) \frac{2}{3} \left(-\frac{i}{4} + \frac{\epsilon_1}{2} \right) = \frac{1}{3}$$

(2.67)

where we have used the formulae (2.55) for $\rho(b)$ given by (2.54) implying the limiting procedure as it was explained above.
The second integral is treated as it was described in item VI with the help of the integral representation (2.59)

\[J^{(2)}_1 = \pi^3 \int_{C_{-1/2}} \frac{d\lambda_1}{2\pi i} \int_{C_{-1/2}} \frac{d\lambda_2}{2\pi i} \frac{\sinh \pi (\lambda_2 - \lambda_1)}{\sinh^2 \pi \lambda_1 \sinh^2 \pi \lambda_2} \frac{1}{6} \frac{1}{\lambda_2 - \lambda_1} = \]

\[= D^{(2)} \left(\frac{-1}{6} \sum_{l_1=1}^{\infty} \sum_{l_2=0}^{\infty} \frac{(-1)^{l_1+l_2}}{l_2 + il_1 + \epsilon_2 - \epsilon_1} \right) = D^{(2)} \left(\frac{i}{6} \sum_{l_1=1}^{\infty} \sum_{l_2=0}^{\infty} \frac{(-1)^{l_1+l_2}}{l_1 + l_2 + i(\epsilon_1 - \epsilon_2)} \right) = \]

\[= D^{(2)} \left(\frac{i}{6} \int_0^1 ds \sum_{l_1=1}^{\infty} \sum_{l_2=0}^{\infty} (-1)^{l_1+l_2} s^{l_1+l_2+i(\epsilon_1 - \epsilon_2)} \right) = D^{(2)} \left(\frac{-i}{6} \int_0^1 ds \frac{s^{i(\epsilon_1 - \epsilon_2)}}{(1+s)^2} \right) = \]

\[= \left(\frac{\partial}{\partial \epsilon_1} - \frac{\partial}{\partial \epsilon_2} \right) \frac{(-i)}{6} \int_0^1 ds \frac{s^{i(\epsilon_1 - \epsilon_2)}}{(1+s)^2} = \frac{1}{3} \int_0^1 ds \frac{\ln s}{(1+s)^2} = -\ln 2 \quad \text{(2.68)} \]

Summing up two answers (2.67) and (2.68) we get the result

\[P^{(2)} = J^{(2)}_0 + J^{(2)}_1 = \frac{1}{3} - \frac{\ln(2)}{3}. \quad (2.69) \]

which coincides with the formula (1.7).

In the Appendices A and B we shall derive the formulae (1.8) and (1.9) for \(P^{(3)} \) and \(P^{(4)} \) respectively. In the end of this Section let us note that both results (1.8) and (1.9) are expressed in terms of the logarithmic function and the Riemann zeta function of odd arguments and do not depend on polylogarithms like, for example, \(\text{Li}_4(1/2) \). All coefficients before those functions in (1.6-1.9) are rational. Also they do not contain any powers of \(\pi \) which could be considered as Riemann zeta functions of even arguments, see the formula (1.4) from the Introduction.

Our conjecture is that the final answer for any \(P^{(n)} \) will also be expressed in terms of logarithm \(\ln 2 \) and Riemann zeta functions \(\zeta(k) \) with odd integers \(k \) and with rational coefficients.

In fact, this conjecture is intimately connected with our hypothesis from the beginning of this Section that the function \(T_n \) (2.4) can be reduced to the ”canonical” form. Looking at the ”canonical” form (2.7) one can conclude that only Riemann zeta functions and their products can enter into the final answer because all the denominators in the r.h.s. of (2.7) are split out. It means that after applying the formula (2.46) the multiple summation can be performed by pairs, say, \(\sum_{l_2k-1} \) and \(\sum_{l_2k} \). Each pair of these summations results in some combination of zeta functions.

3. Conclusion

We want to emphasize an interesting connection between integrable and disordered models. In order to describe correlations in integrable models one can use integrable integral operators [23]. On the other hand Tracy and Widom showed that in matrix models the distribution of eigenvalues and level spacing can be described by the integral operators, belonging to the same integrable class [22].

Our current work supports this link between integrable models and chaotic models. Riemann zeta function appears in the description of both kind of models.
Let us repeat that the main result of this paper is the calculation of \(P(3) \) and \(P(4) \) (1.8-1.9) by means of the multi-integral representation (2.1). The fact that only the logarithm \(\ln 2 \) and Riemann zeta function with odd arguments participate in the answers for \(P(1), \ldots, P(4) \) and with rational coefficients before these functions allows us to suppose that this is the general property of \(P(n) \). One could compare the calculation of \(P(n) \) with the many-loop calculation of the self-energy diagrams in the renormalizable quantum field theory which can also be expressed in terms of \(\zeta \) functions of odd arguments [1].

Unfortunately, so far we have not got even a conjecture for \(P(n) \) but we believe that it is not an unsolvable problem. May be already after calculation of \(P(5) \) one could guess the right formula for a generic case \(P(n) \). It would give an answer to the question discussed in the previous section, namely, the question about the law of decay of \(P(n) \) when \(n \) tends to infinity.

Also it would be interesting to generalize above results to the XXZ spin chain. Some interesting conjectures were recently invented by Razumov and Stroganov [13] for the special case of the XXZ model with \(\Delta = -1/2\). These conjectures would be supported if it were possible to get \(P(n) \) from the general integral representation obtained by the RIMS group [7].

4. Acknowledgements

The authors would like to thank B. McCoy, A. Razumov, M. Shiroishi, Yu. Stroganov, M. Takahashi, L. Takhtajan for useful discussions. This research has been supported by the NSF grant PHY-9988566 and by INTAS Grant no. 01-561.

5. Appendix A

Here we discuss in detail the calculation of \(P(3) \) performed by means of the general procedure described above.

As was pointed out in the beginning of Section 2 the first step should be a reduction of the function \(T_3(\lambda_1, \lambda_2, \lambda_3) \) to the form (2.7) which we have called the "canonical" form. In comparison with the case \(P(2) \) here we should reduce the power of the denominator in \(T_3(\lambda_1, \lambda_2, \lambda_3) \). To do this we will use the formula (2.17) from the item II. Namely,

\[
T_3(\lambda_1, \lambda_2, \lambda_3) = \frac{(\lambda_1 + i)^2(\lambda_2 + i)\lambda_2\lambda_3^2}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)} = I_1^{(3)} + I_2^{(3)} + I_3^{(3)} \tag{5.1}
\]

where

\[
I_1^{(3)} = i\frac{(\lambda_1 + i)^2(\lambda_2 + i)\lambda_2\lambda_3^2}{(\lambda_3 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)}, \tag{5.2}
\]

\[
I_2^{(3)} = i\frac{(\lambda_1 + i)^2(\lambda_2 + i)\lambda_2\lambda_3^2}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)}, \tag{5.3}
\]

\[
I_3^{(3)} = -i\frac{(\lambda_1 + i)^2(\lambda_2 + i)\lambda_2\lambda_3^2}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)}. \tag{5.4}
\]

Due to the \(1 \leftrightarrow 2 \) symmetry of the denominator the first term \(I_1^{(3)} \) can be simplified as follows

\[
I_1^{(3)} \sim -\frac{(\lambda_1 + i)(\lambda_2 + i)\lambda_2\lambda_3^2}{(\lambda_3 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)} \sim \frac{(\lambda_1 + i)(\lambda_2 + i)\lambda_3^2}{\lambda_3 - \lambda_1 - i} = \]

19
\[(\lambda_1 + i)(\lambda_2 + i)(\lambda_1 + \lambda_3 + i) + \frac{(\lambda_1 + i)^3(\lambda_2 + i)}{\lambda_3 - \lambda_1 - i} \sim \lambda_1^2\lambda_2 - \frac{(\lambda_1 + i)^3(\lambda_3 + i)}{\lambda_2 - \lambda_1 - i} \quad (5.5)\]

The denominator of the second term (5.3) has the symmetry under the transposition 2 ↔ 3. Therefore it can also be simplified

\[I_2^{(3)} \sim -\frac{(\lambda_1 + i)^2\lambda_2\lambda_3^2}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)} \sim \frac{(\lambda_1 + i)^2\lambda_2\lambda_3}{\lambda_2 - \lambda_1 - i} = \]

\[-(\lambda_1 + i)^2\lambda_3 - \frac{(\lambda_1 + i)^3\lambda_3}{\lambda_2 - \lambda_1 - i} \sim \lambda_1^2\lambda_2 - \frac{(\lambda_1 + i)^3\lambda_3}{\lambda_2 - \lambda_1 - i} \quad (5.6)\]

The third term (5.4) is treated as follows

\[I_3^{(3)} = -i(\lambda_1 + i)^2(\lambda_2 + i)(\lambda_3 + \lambda_2 + i) - \]

\[-i \frac{(\lambda_1 + i)^2(\lambda_2 + i)^3}{\lambda_3 - \lambda_2 - i} + i \frac{(\lambda_1 + i)^3\lambda_2^2}{\lambda_2 - \lambda_1 - i} - i \frac{(\lambda_1 + i)^3\lambda_3^2}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)} \sim \]

\[\sim -\lambda_1^2\lambda_2 - \frac{(\lambda_1 + i)^3(\lambda_3 + i)^2}{\lambda_2 - \lambda_1 - i} + i \frac{(\lambda_1 + i)^3\lambda_2^2}{\lambda_2 - \lambda_1 - i} - i \frac{(\lambda_1 + i)^3\lambda_3^2}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)} \quad (5.7)\]

Now adding up all the three terms together we get

\[T_3(\lambda_1, \lambda_2, \lambda_3) \sim \lambda_1^2\lambda_2 - i \frac{(\lambda_1 + i)^3\lambda_3^2}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)} \sim -\lambda_2\lambda_3^2 - i \frac{(\lambda_1 + i)^3\lambda_3^2}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)} \quad (5.8)\]

Let us note that up to this moment we have used only the symmetry property (2.16) from the item I, the formula (2.17) from the item II and a simple algebra.

Now we would like to use the formula (2.20) of the proposition 1 for \(m = 3\) and again apply the transposition formula (2.16)

\[T_3(\lambda_1, \lambda_2, \lambda_3) \sim -\lambda_2\lambda_3^2 - i \frac{\lambda_1^3(\lambda_3 + i)^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_2)} \sim \]

\[-\lambda_2\lambda_3^2 + i \frac{(\lambda_1 + i)^3\lambda_3^2}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_2)} = -\lambda_2\lambda_3^2 + i \frac{\lambda_1^3\lambda_3^3 + 3i\lambda_1^2\lambda_3^3 - 3\lambda_1\lambda_3^3 - i\lambda_3^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_2)} \sim \]

\[-\lambda_2\lambda_3^2 - \frac{3\lambda_1^2\lambda_3^2 + 3i\lambda_1\lambda_3(\lambda_3 + \lambda_2) - \lambda_3^2 - \lambda_3\lambda_2 - \lambda_2^2}{\lambda_2 - \lambda_1} \sim \]

\[-\lambda_2\lambda_3^2 - \frac{3\lambda_1^2\lambda_3^2 + 3i\lambda_1\lambda_3^3 + 3i\lambda_1^2\lambda_3^2 - \lambda_3^2 - \lambda_3\lambda_1 - \lambda_1^2}{\lambda_2 - \lambda_1} \quad (5.9)\]

Now we can reduce the power of \(\lambda_1\) in the numerator of the second term (5.9) by applying the formula (2.22) of the corollary 2 from the item IV. Doing this we finally get the ”canonical form” (2.7-2.8) of \(T_3\)

\[T_3(\lambda_1, \lambda_2, \lambda_3) \sim T_3^c(\lambda_1, \lambda_2, \lambda_3) = P_0^{(3)} + \frac{P_1^{(3)}}{\lambda_2 - \lambda_1} \quad (5.10)\]
where the polynomials $P_0^{(3)}$ and $P_1^{(3)}$ are as follows

$$
P_0^{(3)} = -2\lambda_2\lambda_3^2, \quad P_1^{(3)} = \frac{1}{3} - i\lambda_1 - i\lambda_3 - 2\lambda_1\lambda_3
$$

(5.11)

Let us note that if we express variables λ_j through the real variables x_j via $\lambda_j = x_j - i/2$ in order to get the polynomials $P_j^{(3)}$ (see the formula (2.11)) we get especially simple formulae, namely,

$$
P_0^{(3)} = -2x_2x_3^2, \quad P_1^{(3)} = -\frac{1}{6} - 2x_1x_3.
$$

(5.12)

So, the function

$$
\tilde{T}_3(x_1, x_2, x_3) = \tilde{P}_0^{(3)} + \frac{\tilde{P}_1^{(3)}}{x_2 - x_1}
$$

(5.13)

is odd i.e.

$$
\tilde{T}_3(-x_1, -x_2, -x_3) = -\tilde{T}_3(x_1, x_2, x_3)
$$

as it should be according to the formula (2.12) from the beginning of Section 2.

Now we are ready to calculate the integral in order to get the result for $P(3)$

$$
P(3) = \prod_{j=1}^{3} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} \ U_3(\lambda_1, \lambda_2, \lambda_3) \ T_3(\lambda_1, \lambda_2, \lambda_3) = J_0^{(3)} + J_1^{(3)}
$$

(5.14)

where

$$
J_0^{(3)} = \prod_{j=1}^{3} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} \ U_3(\lambda_1, \lambda_2, \lambda_3) \ P_0^{(3)}, \quad J_1^{(3)} = \prod_{j=1}^{3} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} \ U_3(\lambda_1, \lambda_2, \lambda_3) \ P_1^{(3)} \frac{1}{\lambda_2 - \lambda_1}
$$

(5.15)

Using the formulae (5.11), (2.46), (2.47), (2.55) we get

$$
J_0^{(3)} = \prod_{j=1}^{3} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} \ U_3(\lambda_1, \lambda_2, \lambda_3) (-2)\lambda_2\lambda_3^2 = \nonumber
$$

$$
= D^{(3)} \sum_{l_1=0}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \sum_{l_3=0}^{\infty} (-1)^{l_3} (-2)(il_2 + \epsilon_2)(il_3 + \epsilon_3)^2 = \nonumber
$$

$$
= D^{(3)} \sum_{l_1=0}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \sum_{l_3=0}^{\infty} (-1)^{l_3} (-2)e_2\epsilon_3^2 = \frac{1}{8} \prod_{1 \leq k < j \leq 3} \frac{\partial}{\partial \epsilon_k} - \frac{\partial}{\partial \epsilon_j} \varepsilon \to 0 (2)\epsilon_2\epsilon_3 = \frac{1}{4}
$$

(5.16)

To calculate the second term $J_1^{(3)}$ we should also use the integral representation (2.59)

$$
J_1^{(3)} = \prod_{j=1}^{3} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} \ U_3(\lambda_1, \lambda_2, \lambda_3) \left(\frac{1}{3} - i\lambda_1 - i\lambda_3 - 2\lambda_1\lambda_3 \right) \frac{1}{\lambda_2 - \lambda_1}
$$

$$
= -D^{(3)} \sum_{l_1=1}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \sum_{l_3=0}^{\infty} (-1)^{l_3} \left(\frac{1}{3} - i(-il_1 + \epsilon_1) - i(il_3 + \epsilon_3) - 2(-il_1 + \epsilon_1)(il_3 + \epsilon_3) \right) \frac{1}{il_2 + il_1 + \epsilon_2 - \epsilon_1}
$$
\[i D^{(3)} \sum_{l_1=1}^{\infty} (-1)^{l_1} \sum_{l_2=1}^{\infty} (-1)^{l_2} \sum_{l_3=0}^{\infty} (-1)^{l_3} \frac{\lambda^3}{\lambda_2 - \lambda_1} - \frac{l_1 + l_3 - i \epsilon_1 - i \epsilon_3 - 2(l_1 + i \epsilon_1)(l_3 - i \epsilon_3)}{l_1 + l_2 + i(\epsilon_1 - \epsilon_2)} = \]

\[= i D^{(3)} \sum_{l_1=1}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \frac{\lambda^3}{l_2 + i(\epsilon_1 - \epsilon_2)} = \]

\[= i D^{(3)} \int_0^1 \frac{ds}{s} s^{i(\epsilon_1 - \epsilon_2)} \sum_{l_1=1}^{\infty} \sum_{l_2=0}^{\infty} \left(-\frac{1}{12} - i \epsilon_3/2 + l_1 i \epsilon_3 - \epsilon_1 \epsilon_3 \right) (-s)^{l_1 + l_2} = \]

\[= i D^{(3)} \int_0^1 \frac{ds}{s} s^{i(\epsilon_1 - \epsilon_2)} \left(\frac{(-s)}{(1 + s)^2} \left(-\frac{1}{12} - i \epsilon_3/2 - \epsilon_1 \epsilon_3 \right) + \frac{(-s)}{(1 + s)^3} i \epsilon_3 \right) = \]

\[= \frac{i}{2} \prod_{1 \leq k < j \leq 3} \left(\frac{\partial}{\partial \epsilon_k} - \frac{\partial}{\partial \epsilon_j} \right) \epsilon \to 0 \int_0^1 \frac{ds}{(1 + s)^2} \left(\frac{1}{12} (-3 \epsilon_1^2 \epsilon_2 + 3 \epsilon_1 \epsilon_2^2) (-i) \ln^3 s \right) + i \ln s \epsilon_2 \epsilon_3) = \]

\[= \int_0^1 ds \frac{\ln s}{(1 + s)^2} - \frac{1}{12} \int_0^1 ds \frac{\ln^3 s}{(1 + s)^2} = -\ln 2 + \frac{3}{8} \zeta(3) \quad (5.17) \]

Summing up \(J_0^{(3)} \) and \(J_1^{(3)} \) we get the final answer (1.8)

\[P(3) = J_0^{(3)} + J_1^{(3)} = \frac{1}{4} - \ln 2 + \frac{3}{8} \zeta(3). \quad (5.18) \]

6. Appendix B

Here we will calculate \(P(4) \). This case is much more complicated than the previous ones. But using our general technique we will try to simplify our discussion as much as possible.

As above the first step of our scheme is to get the "canonical" form for the function \(T_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \).

But before start doing this let us list some useful formulae which can be derived from the proposition 1 and corollary 2 in the case \(n = 4 \)

\[\frac{\lambda_1^3}{\lambda_2 - \lambda_1} \sim -\frac{3}{2} i \lambda_1^2 + \lambda_1 + \frac{i}{2} \lambda_2 + \frac{i}{2} \lambda_2 \quad (6.1) \]

\[\frac{\lambda_1^4}{\lambda_2 - \lambda_1} \sim -\frac{\lambda_1^2}{\lambda_2 - \lambda_1} + \frac{3}{10} \lambda_1^3 + \frac{3}{5} \lambda_2^3 + \frac{1}{5} \lambda_1 \lambda_2^2 + \frac{2}{5} \lambda_2 \quad (6.2) \]

\[\frac{\lambda_1^5}{\lambda_2 - \lambda_1} \sim -\frac{6}{7} i \lambda_1^2 + \frac{1}{3} \lambda_1 \lambda_2^3 - \frac{4}{3} i \lambda_2^3 + \frac{13}{6} \lambda_2^3 + \frac{4}{3} i \lambda_2 + \frac{1}{3} \quad (6.3) \]

\[\frac{\lambda_1^6}{\lambda_2 - \lambda_1} \sim -\frac{1}{7} \lambda_1^2 - \frac{1}{7} i \lambda_1 - \frac{1}{7} + \frac{1}{7} \lambda_1 \lambda_2^3 - \frac{6}{7} i \lambda_1 \lambda_2 + \frac{2}{7} \lambda_2 + \frac{10}{7} \lambda_1 \lambda_2^2 - \frac{25}{14} i \lambda_2^2 + \frac{31}{14} \lambda_2 \quad (6.4) \]

\[\frac{(\lambda_1 + i)}{\lambda_2 - \lambda_1} \sim \frac{3}{2} i \lambda_1^2 - 2 \lambda_1 - \frac{3}{2} i + \frac{1}{2} \lambda_2^2 + \frac{i}{2} \lambda_2 \quad (6.5) \]
\[
\frac{(\lambda_1 + i)^4}{\lambda_2 - \lambda_1} \sim -\lambda_1^2 - i\lambda_1 + \frac{3}{6} + \frac{3}{5} \lambda_2^2 + \frac{1}{5} \lambda_1 \lambda_2^2 + 2i\lambda_2^2 - \frac{8}{5} \lambda_2 \quad (6.6)
\]
\[
\frac{(\lambda_1 + i)^5}{\lambda_2 - \lambda_1} \sim -\frac{\lambda_1}{6} - \frac{i}{6} + \frac{1}{3} \lambda_1 \lambda_2^3 + \frac{5}{3} i\lambda_2^3 + i\lambda_1 \lambda_2^2 - \frac{17}{6} \lambda_2^2 - \frac{5}{3} i\lambda_2 - \frac{1}{3} \quad (6.7)
\]

Here we have omitted an arbitrary function \(g(\lambda_3, \lambda_4)\) that can be multiplied on the r.h.s. and l.h.s. of (6.1-6.7) as in the formula (2.22).

Now we can start our derivation. Fortunately, due to the formula (2.19) of the observation III which in this case looks as follows

\[
\frac{T_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4)}{T_3(\lambda_1, \lambda_2, \lambda_3)} = \frac{(\lambda_1 + i)(\lambda_2 + i)(\lambda_3 + i)\lambda_3^2}{(\lambda_4 - \lambda_1 - i)(\lambda_4 - \lambda_2 - i)(\lambda_4 - \lambda_3 - i)} \quad (6.8)
\]

and has a symmetry under any permutation of the variables \(\lambda_1, \lambda_2, \lambda_3\) we can use the result (5.8) that was obtained by means of the symmetry and simple algebra. So, after the application of the formulae (5.8) and (6.8) we can start with the following expression

\[
T_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \sim -\frac{(\lambda_1 + i)(\lambda_2 + i)\lambda_2(\lambda_3 + i)\lambda_3^2 \lambda_4^3}{(\lambda_4 - \lambda_1 - i)(\lambda_4 - \lambda_2 - i)(\lambda_4 - \lambda_3 - i)} - \frac{i}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_1 - i)(\lambda_4 - \lambda_2 - i)(\lambda_4 - \lambda_3 - i)} \quad (6.9)
\]

The denominator of the first term in the r.h.s. of (6.9) is symmetric under permutation of \(\lambda_1, \lambda_2, \lambda_3\). Therefore it can be simplified as follows

\[
-\frac{(\lambda_1 + i)(\lambda_2 + i)\lambda_2(\lambda_3 + i)\lambda_3^2 \lambda_4^3}{(\lambda_4 - \lambda_1 - i)(\lambda_4 - \lambda_2 - i)(\lambda_4 - \lambda_3 - i)} \sim \frac{(\lambda_1 + i)(\lambda_2 + i)\lambda_2(\lambda_3 + i)\lambda_3 + \lambda_4 + i)\lambda_4^3}{(\lambda_4 - \lambda_1 - i)(\lambda_4 - \lambda_2 - i)} \sim \frac{(\lambda_1 + i)(\lambda_2 + i)(\lambda_3 + i)\lambda_3 \lambda_4^3}{\lambda_4 - \lambda_1 - i} = \frac{(\lambda_2 + i)(\lambda_3 + i)\lambda_3 \lambda_4^3}{\lambda_4 - \lambda_1 - i} \sim \frac{\lambda_2 \lambda_3^2 \lambda_4^3}{\lambda_2 - \lambda_1} \sim \frac{\lambda_2 \lambda_3^2 \lambda_4^3}{\lambda_2 - \lambda_1} \sim \frac{\lambda_1(\lambda_3 \lambda_4^2 - i\lambda_4^2 - \lambda_4)}{\lambda_2 - \lambda_1 + i} \sim \frac{\lambda_1(\lambda_3 \lambda_4^2 + i\lambda_4^2 - \lambda_4)}{\lambda_2 - \lambda_1 + i} \sim \frac{(\lambda_1 + i)^4(\lambda_3 \lambda_4^2 + i\lambda_4^2 - \lambda_4)}{\lambda_2 - \lambda_1 + i} \sim \frac{8}{5} \frac{\lambda_2 \lambda_3^2 \lambda_4^3}{\lambda_2 - \lambda_1} \quad (6.10)
\]

The latter formula was obtained with the help of the formula (6.6). In fact, it is nothing but the "canonical" form (2.7) for the first term in (6.9).

Now let us treat the second term. Using the formulae (2.17) and (2.18) we can write it down as follows

\[
-\frac{i}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_1 - i)(\lambda_4 - \lambda_2 - i)(\lambda_4 - \lambda_3 - i)} =
\]
Let us enumerate all ten terms as they enter here and make some appropriate transformations for each of them

\[
I_1^{(4)} = -\frac{i(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{2(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_1 - i)(\lambda_4 - \lambda_3 - i)}
\]

\[
I_2^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_1 - i)}
\]

\[
I_3^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_1 - i)}
\]

\[
I_4^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_1 - i)}
\]

\[
I_5^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_3 - i)}
\]

\[
I_6^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_1 - i)(\lambda_4 - \lambda_2 - i)}
\]

\[
I_7^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 - i)}
\]

\[
I_8^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 - i)}
\]

\[
I_9^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 - i)}
\]

\[
I_{10}^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 - i)}
\]
\[I_7^{(4)} = i \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2)(\lambda_4 - \lambda_3 - i)} \sim \frac{-i(\lambda_1 + i)\lambda_3^3\lambda_4^3(\lambda_2 + i)(\lambda_3 + i)\lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_1 - i)} \quad (6.17) \]

\[I_8^{(4)} = -i \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_4 - \lambda_2 - i)(\lambda_4 - \lambda_3 - i)} \sim \frac{-i(\lambda_1 + i)\lambda_2^3\lambda_4^3(\lambda_2 + i)\lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_1 - i)} \quad (6.18) \]

\[I_9^{(4)} = -i \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_2)(\lambda_4 - \lambda_2 - i)} \sim \frac{i(\lambda_1 + i)\lambda_2^3\lambda_4^3(\lambda_2 + i)\lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_1 - i)} \quad (6.19) \]

\[I_{10}^{(4)} = -i \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_2 - i)(\lambda_4 - \lambda_2 - i)} \sim \frac{-i(\lambda_1 + i)\lambda_2^3\lambda_4^3(\lambda_2 + i)\lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_1 - i)} \quad (6.20) \]

Let us note that after these transformations \(I_j^{(4)} \) have two kinds of the denominators, namely, \(I_5^{(4)}, I_7^{(4)}, I_9^{(4)}, I_{10}^{(4)} \) have denominators of the form

\[
\frac{1}{(\lambda_2 - \lambda_1 - ia)(\lambda_3 - \lambda_1 - ib)(\lambda_4 - \lambda_1 - ic)}
\]

with a set of integers \(a, b, c \), while the denominators of the rest of them are of the form

\[
\frac{1}{(\lambda_2 - \lambda_1 - ia')(\lambda_3 - \lambda_1 - ib')(\lambda_4 - \lambda_3 - ic')}
\]

with some other set of integers \(a', b', c' \). Moreover, some of the terms \(I_j^{(4)} \) have just coinciding denominators like, for example, \(I_2^{(3)} \) and \(I_6^{(4)} \). Nevertheless sometimes it will be more convenient to treat them separately.

Let us start with the first group which is easier to treat. Since, the denominator of \(I_5^{(4)} \) has the 2 \(\leftrightarrow \) 3 symmetry we can simplify it as follows

\[I_5^{(4)} \sim i \frac{(\lambda_1 + i)^4(\lambda_2 + i)(\lambda_3 + i)(\lambda_3^2 + \lambda_3\lambda_1 + \lambda_1^2)\lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_1 - i)} \quad (6.21) \]

where we have used the trivial identity

\[\lambda_3^2 = (\lambda_3 - \lambda_1)(\lambda_3^2 + \lambda_3\lambda_1 + \lambda_1^2) + \lambda_1^2 \quad (6.22) \]

and the fact that the second term in the r.h.s. of (6.22) does not contribute into \(I_5^{(4)} \).

Then summing up (6.17) and (6.19) we get

\[I_7^{(4)} + I_9^{(4)} \sim i \frac{(\lambda_1 + i)(\lambda_2 + i)(\lambda_3 + i)\lambda_3^3\lambda_4^3}{(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_1 - i)} \sim \frac{(\lambda_1 + i)\lambda_3^3\lambda_4^3(\lambda_2 + i)(\lambda_3 + i)\lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_1 - i)} \quad (6.23) \]
\[
\sim -i \frac{(\lambda_1 + i)(\lambda_2 + i)^4(\lambda_3 + i)(\lambda_4^2 + \lambda_1\lambda_3 + \lambda_3^2\lambda_4^3)}{\lambda_2 - \lambda_1)(\lambda_4 - \lambda_1 - i)} \quad (6.23)
\]

Now adding the r.h.s. of (6.21) to (6.23) we get

\[
I_5^{(4)} + I_7^{(4)} + I_9^{(4)} \sim \quad (6.24)
\]

In fact, it is the "canonical" form. To get this expression we have used symmetries, the formula (2.20) for \(m = 4 \) and \(m = 5 \) of the proposition 1 and relations (6.6) and (6.7).

Now let us treat \(I_1^{(4)} \)

\[
I_1^{(4)} = -i \frac{(\lambda_1 + i)(\lambda_2 + i)^4(\lambda_3 + i)(\lambda_4^2 + \lambda_1\lambda_3 + \lambda_3^2\lambda_4^3)}{(\lambda_2 - \lambda_1 + i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_1 - i)} \sim -i \frac{(\lambda_1 + i)(\lambda_2 + i)^4\lambda_3\lambda_4^3}{(\lambda_2 - \lambda_1 + i)(\lambda_4 - \lambda_1 - i)} = \]

26
Here the symmetry, the formula (2.20) for \(m = 4 \) and the relation (6.1) were used.

Now we shall treat the other six terms \(I_j^{(4)} \), \(J_j^{(4)} \), \(J_3^{(4)} \), \(J_4^{(4)} \), \(J_6^{(4)} \) and \(J_8^{(4)} \) given by the expressions (6.11), (6.12), (6.13), (6.14), (6.16) and (6.18) respectively. Here we shall proceed in two steps. As a first step we will reduce all these six terms to a following form

\[
I_j^{(4)} \sim \frac{A_j}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} + \frac{B_j}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{C_j}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} + \frac{D_j}{\lambda_2 - \lambda_1}
\]

(6.26)

where \(j = 1, 2, 3, 4, 6, 8 \) and \(A_j, B_j, C_j, D_j \) are some polynomials. Then we shall sum up all the six results and get the “canonical” form for the sum obtained.

Let us start with the expression (6.11) for the term \(I_1^{(4)} \)

\[
I_1^{(4)} = -\frac{i}{2} \frac{(\lambda_1 + i)\lambda_4^3(\lambda_2 + i)\lambda_3^2(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 + i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 + i)}
\]

\[= -\frac{i}{2} \frac{(\lambda_1 + i)\lambda_4^3(\lambda_2 + i)\lambda_3^2(\lambda_4 + i)^4}{\lambda_4 - \lambda_3 + i} + \frac{i (\lambda_2 + \lambda_1(\lambda_2 + i) + (\lambda_2 + i)^2)(\lambda_2 + i)\lambda_3^2(\lambda_4 + i)^4}{(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 + i)} + \frac{i (\lambda_2 + i)\lambda_3^2(\lambda_4 + i)^3}{2 (\lambda_2 - \lambda_1 + i)} - \frac{i (\lambda_2 + i)^4\lambda_3^2(\lambda_4 + i)^3}{2 (\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 + i)} \sim
\]

\[= -\frac{i}{2} \frac{(\lambda_1 + i)\lambda_4^3(\lambda_2 + i)\lambda_3^2(\lambda_4 + i)^4}{\lambda_4 - \lambda_3 + i} + \frac{i (\lambda_2 + i)\lambda_3^2(\lambda_4 + i)^3}{2 (\lambda_2 - \lambda_1 + i)} - \frac{i (\lambda_2 + i)^4\lambda_3^2(\lambda_4 + i)^3}{2 (\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 + i)} \sim
\]

\[-\frac{i}{2} \frac{(\lambda_1 + i)\lambda_4^3(\lambda_2 + i) + (\lambda_2 + i)^2(\lambda_2 + i)(\lambda_3 + i)^2(\lambda_4 + i)^4}{\lambda_4 - \lambda_3 + i} - \frac{i (\lambda_2 + i)^4\lambda_3^2(\lambda_4 + i)^3}{(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} - \frac{i \lambda_4^3\lambda_3^2(\lambda_4 + i)^3}{2 \lambda_2 - \lambda_1} -
\]

27
where we have used symmetries and the formula (2.20) with $m = 4$.

For the next term $I_2^{(4)}$ we start with the expression (6.12)

$$I_2^{(4)} \sim \frac{i}{2} \frac{(\lambda_2 + i)^2(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)} =$$

$$= \frac{i}{2} \frac{(\lambda_2 + i)^4(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)} + \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)}$$

$$\sim \frac{i}{2} \frac{\lambda_1^4(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{i}{2} \frac{\lambda_1^4(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)}$$

(6.28)

The term $I_3^{(4)}$ given by (6.13) is also simple to treat

$$I_3^{(4)} = \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)} =$$

$$= \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)} + \frac{i}{2} \frac{(\lambda_1 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)}$$

$$\sim \frac{i}{2} \frac{\lambda_1^4(\lambda_2 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{i}{2} \frac{\lambda_1^4(\lambda_2 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)}$$

(6.29)

The fourth term $I_4^{(4)}$ (6.14) demands more work in order to reduce it to the form (6.26)

$$I_4^{(4)} \sim \frac{i}{2} \frac{(\lambda_1 + i)(\lambda_2 + i)(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 + i)(\lambda_3 - \lambda_1 - i)} =$$

$$= \frac{i}{2} \frac{(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 + i)(\lambda_3 - \lambda_1 - i)} + \frac{i}{2} \frac{(\lambda_1 + i)(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 + i)(\lambda_3 - \lambda_1 - i)}$$

$$= \frac{i}{2} \frac{(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 + i)(\lambda_3 - \lambda_1 - i)} + \frac{i}{2} \frac{(\lambda_1 + i)(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 + i)(\lambda_3 - \lambda_1 - i)}$$

$$+ \frac{i}{2} \frac{(\lambda_1 + i)(\lambda_2 + i)^4(\lambda_3 + i)^4(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 + i)(\lambda_4 - \lambda_3 - i)}$$

(6.27)
\[
\sim -\frac{i}{2} \frac{\lambda_3^4 (\lambda_3 + i)^4 \lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{i}{2} \frac{(\lambda_1 + i)\lambda_2^2 (\lambda_2^2 + \lambda_3 (\lambda_1 + i) + (\lambda_1 + i)^2)(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} - \\
- \frac{i}{2} \frac{\lambda_4^4 \lambda_2 (\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} \sim \\
\sim -\frac{i}{2} \frac{\lambda_2^4 (\lambda_3 + i)^4 \lambda_3^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{i}{2} \frac{(\lambda_1 + i)\lambda_2^2 (\lambda_2^2 + \lambda_3 (\lambda_1 + i) + (\lambda_1 + i)^2)(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} + \\
+ \frac{i}{2} \frac{(\lambda_1 + i)\lambda_2^2 (\lambda_2^2 + \lambda_3 (\lambda_1 + i) + (\lambda_1 + i)^2)(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{i}{2} \frac{\lambda_2^4 (\lambda_2 - i)^4 (\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} \sim \\
\sim -\frac{i}{2} \frac{\lambda_2^4 (\lambda_3 + i)^4 \lambda_3^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{i}{2} \frac{(\lambda_1 + i)\lambda_2^2 (\lambda_2^2 + \lambda_3 (\lambda_1 + i) + (\lambda_1 + i)^2)(\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} - \\
- \frac{i}{2} \frac{(\lambda_2 + i)^4 (\lambda_3 + i)^4 \lambda_3^3 + \lambda_3^3 (\lambda_4 + i) + \lambda_3 (\lambda_4 + i)^2 + (\lambda_4 + i)^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{i}{2} \frac{\lambda_2^4 (\lambda_2 - i)^4 (\lambda_4 + i)^4}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} \tag{6.30}
\]

Now we treat \(I_6^{(4)}\) given by (6.16) as follows

\[
I_6^{(4)} \sim i \frac{(\lambda_1 + i)(\lambda_2 + i)\lambda_2^3 \lambda_3^3 (\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 + i)} = \\
= i \frac{(\lambda_1 + i)(\lambda_2 + i)(\lambda_2^2 + \lambda_2 (\lambda_1 + i) + (\lambda_1 + i)^2)\lambda_3^3 (\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_4 - \lambda_3 + i)} + \\
+ i \frac{(\lambda_1 + i)^4 (\lambda_2 + i)\lambda_3^3 (\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 + i)} = \\
= -i \frac{(\lambda_2 + i)(\lambda_2^2 + \lambda_2 (\lambda_1 + i) + (\lambda_1 + i)^2)\lambda_3^3 (\lambda_4 + i)^4}{(\lambda_2 - \lambda_3 + i)(\lambda_3 - \lambda_1)} + \\
+ i \frac{(\lambda_2 + i)(\lambda_2^2 + \lambda_2 (\lambda_1 + i) + (\lambda_1 + i)^2)(\lambda_4 + i)^4}{(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} + i \frac{(\lambda_1 + i)^4 (\lambda_2 + i)\lambda_3^3 (\lambda_4 + i)^4}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 + i)} = \\
= \frac{i}{(\lambda_2 + i)(\lambda_2^2 + \lambda_2 (\lambda_1 + i) + (\lambda_1 + i)^2)\lambda_3^3 \lambda_4^3}{\lambda_4 - \lambda_3} + \\
+ i \frac{(\lambda_2 + i)(\lambda_2^2 + \lambda_2 (\lambda_1 + i) + (\lambda_1 + i)^2)(\lambda_4 + i)^4}{(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} + i \frac{(\lambda_1 + i)^4 (\lambda_2 + i)\lambda_3^3 \lambda_4^3}{(\lambda_2 - \lambda_1 - i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 + i)} \sim \\
\sim -i \frac{\lambda_3^4 \lambda_2 (\lambda_3 + i) (\lambda_2^2 + \lambda_3 (\lambda_4 + i) + (\lambda_4 + i)^2)}{\lambda_2 - \lambda_1} - \\
- i \frac{(\lambda_1 + i)^4 (\lambda_2 + i)\lambda_3^3 (\lambda_4 + i) + (\lambda_4 + i)^2)(\lambda_4 + i)}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + i \frac{\lambda_4^4 \lambda_2 (\lambda_3 + i) \lambda_3^3 \lambda_4^3}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} \tag{6.31}
\]

The last term \(I_6^{(4)}\) (6.18) is more simple

\[
I_6^{(4)} \sim -i \frac{(\lambda_1 + i)(\lambda_2 + i)\lambda_2^3 \lambda_3^3 (\lambda_4 + i)}{(\lambda_2 - \lambda_1 + i)(\lambda_3 - \lambda_1 - i)(\lambda_4 - \lambda_3 + i)} =
\]
We shall use the fact that the denominator is antisymmetric under the substitution

\[
A \rightarrow A
\]

Now we are prepared to perform the next our step. Namely, we will gather all the six results (6.27-6.32) into the form like (6.26)

\[
I_1^{(4)} + I_2^{(4)} + I_3^{(4)} + I_4^{(4)} + I_6^{(4)} + I_8^{(4)} \sim
\]

\[
\sim \frac{A}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} + \frac{B}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{C}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} + \frac{D}{\lambda_2 - \lambda_1} \tag{6.33}
\]

where

\[
A = -\frac{i}{2}(\lambda_1 + i)\lambda_1^3(\lambda_3 + i)^4(\lambda_4 + i)^3 + \frac{i}{2}\lambda_1^4(\lambda_2 + i)\lambda_2^3(\lambda_4 - i)^3 + \frac{i}{2}\lambda_1^4\lambda_2^3(\lambda_4 + 2i)(\lambda_4 + i)^4 +
\]

\[
+ \frac{i}{2}\lambda_2^4(\lambda_4 - i)(\lambda_4 - i)^4 + i\lambda_1^4(\lambda_2 + i)\lambda_2^3\lambda_4^3 - i\lambda_2^4(\lambda_3 + i)^4(\lambda_4 + i)\lambda_4^3 \tag{6.34}
\]

\[
B = \frac{i}{2}(\lambda_1 + i)^4(\lambda_2 + i)^4(\lambda_3^2 + \lambda_3(\lambda_4 + i) + (\lambda_4 + i)^2)(\lambda_4 + i) - i\lambda_2^4(\lambda_3 + i)^4(\lambda_4 + i)^3 +
\]

\[
+ \frac{i}{2}\lambda_1^4(\lambda_2 + i)(\lambda_3^2 + \lambda_3(\lambda_4 + i) + (\lambda_4 + i)^2)(\lambda_4 + i)\lambda_4^3 + i\lambda_1^4\lambda_2^3(\lambda_4 + i)\lambda_4^3 +
\]

\[
+ i(\lambda_1 + i)^4(\lambda_2 + i)^4(\lambda_2^2 + \lambda_4(\lambda_3 + i) + (\lambda_3 + i)^2)(\lambda_4 + i) \tag{6.35}
\]

\[
C = \frac{i}{2}(\lambda_1 + i)\lambda_2^4(\lambda_3^2 + \lambda_3(\lambda_4 + i) + (\lambda_4 + i)^2)(\lambda_4 + i)^4 + i\lambda_2^4(\lambda_3 + i)^4\lambda_4^3 \tag{6.36}
\]

\[
D = \frac{i}{2}\lambda_1^3\lambda_2^2(\lambda_3^2 + \lambda_3(\lambda_4 + i) + (\lambda_4 + i)^2)(\lambda_4 + i) - i\lambda_1^3\lambda_2^2\lambda_3^2(\lambda_4 + i)^3 -
\]

\[
- i\lambda_2^3\lambda_2^2(\lambda_3^2 + \lambda_3(\lambda_4 + i) + (\lambda_4 + i)^2)(\lambda_3 + i) \tag{6.37}
\]

Now we want to get the "canonical" form (2.7) for the expression (6.33). To do this we actively used the program MATHEMATICA because the calculations are straightforward but become more cumbersome. Let us outline our further actions.

It is more convenient to start with the first term in the r.h.s. of the formula (6.33)

\[
\frac{A}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} \tag{6.38}
\]

We shall use the fact that the denominator is antisymmetric under the substitution

\[
\lambda_1 \leftrightarrow \lambda_3 \quad \lambda_2 \leftrightarrow \lambda_4
\]
Since A is a polynomial given by (6.34) then the simplification procedure of the term (6.38) is as follows. If in the expression (6.34) one faces a monomial
\[
\lambda_2^i \lambda_3^j \lambda_4^k
\]
where without loss of generality $i_4 \geq i_2$ one can apply the evident identity
\[
\lambda_4^{i_4} = \lambda_4^{i_2} \lambda_4^{i_4-i_2} + \left\{ \begin{array}{ll}
(\lambda_4 - \lambda_3) \sum_{k=0}^{i_4-i_2-1} \lambda_4^{i_2+k} \lambda_4^{i_4-i_2-1-k}, & i_4 > i_2; \\
0, & i_4 = i_2
\end{array} \right.
\]
(6.40)
Therefore if $i_4 > i_2$ then
\[
\frac{\lambda_2^i \lambda_3^j \lambda_4^k \lambda_4^{i_4}}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} = \frac{\lambda_2^i \lambda_3^j \lambda_4^k \lambda_4^{i_4-i_2+i_3} \lambda_4^{i_2}}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} + \sum_{k=0}^{i_4-i_2-1} \frac{\lambda_2^i \lambda_3^j \lambda_4^k \lambda_4^{i_4-i_2+i_3-1-k} \lambda_4^{i_2+k}}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)}
\]
(6.41)
Let us note that the second term in (6.41) gives rise into the second term "B" in the r.h.s. of the formula (6.33). If $i_4 = i_2$ then only the first term in (6.41) survives. The first term in (6.41) is symmetric under the transposition $\lambda_2 \leftrightarrow \lambda_4$. If $i_1 + i_2 = i_3 + i_4$ then it is also symmetric under the transposition $\lambda_1 \leftrightarrow \lambda_3$ and the first term is "weakly" equivalent to zero according to the formula (2.15). If $i_1 + i_2 < i_3 + i_4$ the following "weak" equality is valid
\[
\frac{\lambda_2^i \lambda_3^j \lambda_4^k \lambda_4^{i_4-i_2+i_3} \lambda_4^{i_2}}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} \sim \frac{1}{2} \frac{(\lambda_2^i \lambda_3^j \lambda_4^k \lambda_4^{i_4-i_2} - \lambda_2^i \lambda_3^j \lambda_4^k \lambda_4^{i_4-i_2}) \lambda_2^i \lambda_4^{i_2}}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)} + \sum_{k=0}^{i_4-i_2-1} \frac{\lambda_2^i \lambda_3^j \lambda_4^k \lambda_4^{i_4-i_2+i_3-1-k} \lambda_4^{i_2+k}}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_4 - \lambda_3)}
\]
(6.42)
For the case $i_1 + i_2 > i_3 + i_4$ the sum in (6.42) should be substituted by
\[
-\frac{1}{2} \sum_{k=0}^{i_4-i_2-i_1-1} \frac{\lambda_2^i \lambda_3^j \lambda_4^k \lambda_4^{i_4-i_2+i_3-1-k} \lambda_4^{i_2+k}}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)}
\]
(6.43)
In both cases, namely, if $i_1 + i_2 \neq i_3 + i_4$ the sum in (6.42) or (6.43) gives rise into the third term "C" in the r.h.s. of (6.33).
Performing this procedure for all monomials of the form (6.39) participating in the polynomial A given by the formula (6.34) one can arrive at the formula
\[
I_1^{(4)} + I_2^{(4)} + I_3^{(4)} + I_4^{(4)} + I_6^{(4)} + I_8^{(4)} \sim \frac{B'}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} + \frac{C'}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} + \frac{D}{\lambda_2 - \lambda_1}
\]
(6.44)
with some other polynomials B' and C'.
Due to the $2 \leftrightarrow 3$ symmetry of the denominator of the first term in (6.44) one can treat any monomial $\lambda_2^j \lambda_3^j \lambda_4^j$ participating in B' as follows
\[
\frac{\lambda_2^j \lambda_3^j \lambda_4^j}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)} \sim \sum_{k=0}^{j_3-j_2-1} \frac{\lambda_2^j \lambda_3^j \lambda_4^{j_3-k_1-1} \lambda_4^j}{\lambda_2 - \lambda_1}
\]
(6.45)
where without loss of generality it is implied that $j_3 > j_2$ because if $j_2 = j_3$ then due to the $2 \leftrightarrow 3$ symmetry and the formula (2.15) this term would make zero contribution. So the r.h.s. of the
(6.45) gives rise into the third term in (6.44). Using this one can treat the whole first term in (6.44).

For any monomial \(\lambda_1^{k_1} \lambda_2^{k_2} \lambda_3^{k_3} \lambda_4^{k_4} \) participating in \(C' \) of the second term of the expression (6.44) one can write

\[
\frac{\lambda_1^{k_1} \lambda_2^{k_2} \lambda_3^{k_3} \lambda_4^{k_4}}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} = \sum_{l=0}^{k_2-1} \frac{\lambda_1^{k_1+l} \lambda_2^{k_2-l} \lambda_3^{k_3-1-l} \lambda_4^{k_4}}{\lambda_2 - \lambda_1} + \sum_{l=0}^{k_4-1} \frac{\lambda_1^{k_1+k_2} \lambda_3^{k_3+l} \lambda_4^{k_4-1-l}}{\lambda_2 - \lambda_1} + \frac{\lambda_1^{k_1+k_2} \lambda_3^{k_3+k_4}}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} \sim
\]

(6.46)

where for the first sum of (6.46) we have applied transformation

\[
\lambda_1 \leftrightarrow \lambda_3, \\
\lambda_2 \leftrightarrow \lambda_4
\]

So the both the first term and the second term in (6.47) give rise into the third "D" term in (6.44) while the third term in (6.47) gives rise to the second term "C" in (6.44). Proceeding this way one can treat the whole expression

\[
C' \frac{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)}.
\]

As a result of performing this scheme one can arrive at the expression

\[
I_1^{(4)} + I_2^{(4)} + I_3^{(4)} + I_4^{(4)} + I_6^{(4)} + I_8^{(4)} \sim \\
\frac{C''}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} + \frac{D'}{\lambda_2 - \lambda_1}
\]

(6.48)

where \(C'' \) is a polynomial of two variable \(\lambda_1 \) and \(\lambda_3 \).

Now with the help of the identity

\[
\lambda_1^{i_1} \lambda_2^{i_2} = \lambda_1^{i_1+i_2} + \begin{cases}
(\lambda_2 - \lambda_1) \sum_{k=0}^{i_2-1} \lambda_1^{i_1+k} \lambda_2^{i_2-1-k}, & i_2 > 0; \\
0, & i_2 = 0
\end{cases}
\]

(6.49)

one can reduce the second term in (6.48) to the form

\[
\frac{D'}{\lambda_2 - \lambda_1} \sim \frac{D''}{\lambda_2 - \lambda_1} + E
\]

where \(D'' \) is a polynomial of \(\lambda_1, \lambda_3 \) and \(\lambda_4 \) and \(E \) is some polynomial.

What is left now is to reduce the power of the polynomials \(C'', D'' \) and \(E \) with the help of the formulæ (2.20), (2.21), (2.22) or (6.1-6.4). We should also use the fact that if we do the substitution \(\lambda_j \rightarrow x_j - i/2 \) there is a restriction that the function should be even under the transformation \(\{x_1, x_2, x_3, x_4\} \rightarrow \{-x_1, -x_2, -x_3, -x_4\} \) according to the formulæ (2.9), (2.10) and (2.11).

As a result of all these actions described above we get the "canonical" form for the sum

\[
I_1^{(4)} + I_2^{(4)} + I_3^{(4)} + I_4^{(4)} + I_6^{(4)} + I_8^{(4)} \sim \frac{C''}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} + \frac{D''}{\lambda_2 - \lambda_1} + E'
\]

(6.50)
where

\[
C''' = 2\lambda_1^2 \lambda_3^2 + 4i\lambda_1 \lambda_3^2 - \frac{3}{2} \lambda_3^2 - \frac{3}{2} \lambda_1 \lambda_3 - i\lambda_3 + \frac{1}{5}
\]

(6.51)

\[
D''' = \lambda_1^2 (22\lambda_2^2 \lambda_4^3 + 22i\lambda_3 \lambda_4^3 - \frac{29}{2} \lambda_4^3 + 19\lambda_3 \lambda_4^2 - \frac{5}{4} i\lambda_4^2) + \\
+ \lambda_1 (22i\lambda_3 \lambda_4^3 - \frac{47}{2} \lambda_3 \lambda_4^3 - \frac{61}{4} i\lambda_4^3 + \frac{67}{4} i\lambda_3 \lambda_4^2 - \frac{3}{2} \lambda_4^2 + \frac{23}{4} i\lambda_4) - \\
- \frac{88}{5} \lambda_3 \lambda_4^3 - \frac{367}{20} i\lambda_3 \lambda_4^3 + \frac{427}{40} \lambda_4^3 - \frac{303}{40} \lambda_3 \lambda_4^2 + \frac{37}{40} i\lambda_4^2 - \frac{97}{20} \lambda_4)
\]

(6.52)

\[
E' = -\frac{57}{10} \lambda_2^2 \lambda_3 \lambda_4
\]

(6.53)

Now we have to sum up the four contributions (6.10), (6.24), (6.25) and (6.50) and get the "canonical" form for \(T_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \)

\[
T_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \sim P_0^{(4)} + \frac{P_1^{(4)}}{\lambda_2 - \lambda_1} + \frac{P_2^{(4)}}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)}
\]

(6.54)

where

\[
P_0^{(4)} = -\frac{34}{5} \lambda_2 \lambda_3^2 \lambda_4^3
\]

(6.55)

\[
P_1^{(4)} = \lambda_1^2 (30 \lambda_2 \lambda_3 \lambda_4^3 + 30 i\lambda_3 \lambda_4^3 - 16 \lambda_3 \lambda_4 + 8 \lambda_4) + \\
+ \lambda_1 (30 i\lambda_3 \lambda_4^3 + 30 \lambda_3 \lambda_4^3 - 16 i\lambda_4^3 + 18 i\lambda_3 \lambda_4^2 - 4 \lambda_4^2 + 4 i\lambda_4) - \\
- 20 \lambda_3 \lambda_4^3 - 20 i\lambda_3 \lambda_4^3 + \frac{54}{5} \lambda_4^3 - \frac{42}{5} \lambda_3 \lambda_4^2 - \frac{43}{10} i\lambda_4
\]

(6.56)

\[
P_2^{(4)} = 2 \lambda_1 \lambda_2 \lambda_3^2 + 4 i\lambda_1 \lambda_3 \lambda_4^2 - \frac{3}{2} \lambda_2 \lambda_3 - \frac{3}{2} \lambda_1 \lambda_3 - i\lambda_3 + \frac{1}{5}
\]

(6.57)

Let us note that in terms of the real variables \(x_j \) the polynomials \(\tilde{P}_j^{(4)} \) (see (2.11)) look a little bit simpler

\[
\tilde{P}_0^{(4)} = -\frac{34}{5} x_2 x_3^2 x_4^3
\]

(6.58)

\[
\tilde{P}_1^{(4)} = x_1^2 (30 x_2^2 x_4^3 - \frac{17}{2} x_4^3 + \frac{81}{2} x_3 x_4^2 + \frac{79}{8} x_4) - 4 x_1 x_4^2 - \\
- \frac{25}{2} x_2^2 x_4^3 + \frac{147}{40} x_4^3 - \frac{531}{40} x_3 x_4^2 - \frac{653}{160} x_4
\]

(6.59)

\[
\tilde{P}_2^{(4)} = 2 x_1^2 x_3 + \frac{1}{2} x_1 x_3 - \frac{1}{2} x_3^2 + \frac{3}{40}
\]

(6.60)

So, the function

\[
\tilde{T}_4^c(x_1, x_2, x_3, x_4) = \tilde{P}_0^{(4)} + \frac{\tilde{P}_1^{(4)}}{x_2 - x_1} + \frac{\tilde{P}_2^{(4)}}{(x_2 - x_1)(x_4 - x_3)}
\]

(6.61)

is even i.e.

\[
\tilde{T}_4^c(-x_1, -x_2, -x_3, -x_4) = \tilde{T}_4^c(x_1, x_2, x_3, x_4)
\]
as it should be according to the formula (2.13) with \(n = 4 \).

Now let us start the second step of our general scheme, namely, the performing of the integration of the "canonical" form (6.54)

\[
P(4) = \prod_{j=1}^{4} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} U_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) T_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = J_0^{(4)} + J_1^{(4)} + J_2^{(4)}
\]

where

\[
J_0^{(4)} = \prod_{j=1}^{4} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} U_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) P_0^{(4)}
\]

\[
J_1^{(4)} = \prod_{j=1}^{4} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} U_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \frac{P_1^{(4)}}{\lambda_2 - \lambda_1}
\]

\[
J_2^{(4)} = \prod_{j=1}^{4} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} U_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \frac{P_2^{(4)}}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)}
\]

Using the formulae (6.63-6.65), (6.55-6.57), (2.46), (2.47), (2.55) we get

\[
J_0^{(4)} = \prod_{j=1}^{4} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} U_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) (-\frac{34}{5}) \lambda_2 \lambda_3 \lambda_4
\]

\[
= D(4) \sum_{l_1=0}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \sum_{l_3=0}^{\infty} (-1)^{l_3} \sum_{l_4=0}^{\infty} (-\frac{34}{5})(i l_2 + \epsilon_2)(i l_3 + \epsilon_3)^2(i l_4 + \epsilon_4)^2 =
\]

\[
= D(4) \sum_{l_1=0}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \sum_{l_3=0}^{\infty} (-1)^{l_3} \sum_{l_4=0}^{\infty} (-\frac{34}{5}) \epsilon_2 \epsilon_3 \epsilon_4 =
\]

\[
= \frac{1}{12} \prod_{0 \leq k < j \leq 4} \left(\frac{\partial}{\partial \epsilon_k} - \frac{\partial}{\partial \epsilon_j} \right) \epsilon_{-0} (-\frac{34}{5}) \epsilon_2 \epsilon_3 \epsilon_4 = -\frac{17}{40}
\]

Restoring for convenience the dependence of the polynomials \(P_1^{(4)} \) and \(P_2^{(4)} \) on \(\lambda \)-s as in the formula (2.8) we can get for the term \(J_1^{(4)} \)

\[
J_1^{(4)} = \prod_{j=1}^{4} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} U_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \frac{P_1^{(4)}(\lambda_1|\lambda_3, \lambda_4)}{\lambda_2 - \lambda_1} =
\]

\[
= D(4) \sum_{l_1=1}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \sum_{l_3=0}^{\infty} (-1)^{l_3} \sum_{l_4=0}^{\infty} (-\frac{34}{5}) P_1^{(4)}(-i l_1 + \epsilon_1 - i l_3 + \epsilon_3, i l_4 + \epsilon_4) =
\]

\[
= -i D(4) \int_{0}^{1} \frac{ds}{s} \sum_{l_1=1}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \sum_{l_3=0}^{\infty} (-1)^{l_3} \sum_{l_4=0}^{\infty} (-1)^{l_4} P_1^{(4)}(-i l_1 + \epsilon_1 - i l_3 + \epsilon_3, i l_4 + \epsilon_4) s^{l_1+l_2+i(\epsilon_1-\epsilon_2)} =
\]

\[
= \int_{0}^{1} ds (-\frac{15}{2} \frac{(s-1)}{(1+s)^3} + \frac{3}{4} \frac{(7-26s+7s^2)^2}{(1+s)^4} \ln s + \frac{21}{8} \frac{(s-1)}{(1+s)^3} \ln^2 s - \frac{7}{10} \frac{(2-s+2s^2)}{(1+s)^4} \ln^3 s +
\]

34
Summing up all the three results (6.66), (6.67) and (6.68) we finally get our main formula (1.9)

\[
\frac{5}{48} (s-1) \ln^4 s + \frac{1}{240} \frac{(1+22s+s^2)}{(1+s)^4} \ln^5 s = \frac{5}{8} - 2 \ln 2 + \frac{61}{20} \zeta(3) - \frac{65}{32} \zeta(5) \quad (6.67)
\]

The last term \(J_2^{(4)} \) can be calculated as follows

\[
J_2^{(4)} = \prod_{j=1}^{4} \int_{C_{-1/2}} \frac{d\lambda_j}{2\pi i} U_4(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \frac{P_2^{(4)}(\lambda_1, \lambda_3)}{(\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)} =
\]

\[
= D^{(4)} \sum_{l_1=1}^{\infty} (-1)^{l_1} \sum_{l_2=0}^{\infty} (-1)^{l_2} \sum_{l_3=1}^{\infty} (-1)^{l_3} \sum_{l_4=0}^{\infty} (-1)^{l_4} \frac{P_2^{(4)}(-il_1 + \epsilon_1, -il_3 + \epsilon_3)}{(il_2 + il_1 + \epsilon_2 - \epsilon_1)(il_4 + il_3 + \epsilon_4 - \epsilon_3)} =
\]

\[
= \int_0^1 ds \int_0^1 dt \left\{ \frac{4 \ln s (\ln s - \ln t)}{(1+s)^2(1+t)^2} + \left(\frac{-4}{3}(3-3s + t + 3st) \ln^3 s + 4(-1+3s - 3t + st) \ln^2 s \ln t - \frac{3}{4} \right) \right. \left. \frac{1}{(1+s)^3(1+t)^3} \right. \left. - \frac{6}{12} \right. \ln s (\ln^2 s - \ln^2 t)(\ln^2 s - 5 \ln^2 t) + \right.
\]

\[
+ \left(\frac{1}{3}(3+30s - 5s^2 - 34t - 4st - 34s^2 t - 5t^2 + 30st^2 + 3s^2 t^2) \ln^3 s \ln t + \right.
\]

\[
+ \frac{1}{30}(4 - 17s + 9s^2 - 17t + 66st - 17s^2 t + 9t^2 - 17st^2 + 4s^2 t^2) \ln^5 s \ln t - \right.
\]

\[
- \frac{1}{15}(2 - 31s + 7s^2 + 14t + 33st - 21s^2 t + 2t^2 + 4st^2 + 2s^2 t^2) \ln^3 s \ln^3 t) \left. \frac{1}{(1+s)^4(1+t)^4} \right. \}
\]

Taking the integral we come to an answer for \(J_2^{(4)} \)

\[
J_2^{(4)} = -\frac{1}{6} \zeta(3) - \frac{11}{6} \zeta(3) \ln 2 - \frac{51}{80} \zeta(3)^2 - \frac{25}{96} \zeta(5) + \frac{85}{24} \zeta(5) \ln 2 \quad (6.68)
\]

Summing up all the three results (6.66), (6.67) and (6.68) we finally get our main formula (1.9)

\[
P(4) = J_0^{(4)} + J_1^{(4)} + J_2^{(4)} =
\]

\[
\frac{1}{5} - 2 \ln 2 + \frac{173}{60} \zeta(3) - \frac{11}{6} \zeta(3) \ln 2 - \frac{51}{80} \zeta^2(3) - \frac{55}{24} \zeta(5) + \frac{85}{24} \zeta(5) \ln 2 \quad (6.69)
\]
References

[1] D. Kreimer, “Knots and Feynman Diagrams”, Cambridge University Press, 2000.

[2] H.E. Boos, V.E. Korepin “Quantum Spin Chains and Riemann Zeta Function with Odd Arguments”, hep-th/0104008

[3] W. Heisenberg, Zeitschrift für Physik, vol. 49 (9-10), 619, (1928)

[4] H. Bethe, Zeitschrift für Physik, 76, 205 (1931)

[5] L. Hulthén, Ark. Mat. Astron. Fysik A 26, 1 (1939). “Thermodynamics of one-dimensional solvable models”, Cambridge University Press, 1999.

[6] V.E. Korepin, A.G. Izergin and N.M. Bogoliubov, ”Quantum inverse scattering method and correlation functions”, Cambridge Univ. Press, Cambridge, 1993.

[7] M. Jimbo, K. Miki, T. Miwa and A. Nakayashiki, Phys. Lett. A 166, 256, (1992); hep-th/9205055.

[8] V.E. Korepin, A.G. Izergin, F. Essler, D.B. Uglov, Phys. Lett. A 190, 182-184, (1994).

[9] M. Takahashi, J. Phys. C 10, 1289, (1977); cond-mat/9708087.

[10] J. Dittrich and V.I. Inozemtsev, “On the second-neighbor correlator in 1D XXX quantum anti-ferromagnetic spin chain”, cond-mat/9706263.

[11] F. Berruto, G. Grignani, G.W. Semenoff and P. Sodano, hep-th/9901142, preprint DFUPG-190-98, UBC/GS-6-98.

[12] J. de Gier and V.E. Korepin, math-ph/0101036.

[13] A.V. Razumov and Yu.G. Stroganov, cond-mat/0012141; cond-mat/0102247.

[14] E.C. Titchmarsh, “The Theory of the Riemann Zeta- Function”, Clarendon Pr, 1987.

[15] B.Riemann, “Über die Anzahl der Primzahlen unter einer gegebenen Grösse”, Monat. der Koenigl. Preuss. Akad. der Wissen. zu Berlin aus dem Jahre 1859 (1860), 671-680; also Gesammelte mat. Werke und wissensch. Nachlass, 2 Aufl. 1892, 145-155

[16] Tanguy Rivoal, C. R. Acad. Sci. Paris Sr. I Math. 331 (2000), no. 4, 267–270 and http://front.math.ucdavis.edu/math.NT/0104221

[17] Don Zagier, “Values of Zeta Functions and their Applications”, First European Congress of Mathematics, Vo.II (Paris, 1992) Prog.Math., Birkhauser, Basel-Boston, page 497, 1994

[18] J.M.Borwein, D. M.Bradley, D.J.Broadhurst and P. Lisonek, “Special values of multiple polylogarithms”, math.CA/9910045

[19] A. Knauf, Reviews in Mathematical Physics, vol. 11, 1027-1060 (1999)
[20] N. Kitanine, J.M. Maillet and V. Terras, “Correlation functions of the XXZ Heisenberg spin 1/2 chain in a magnetic field”, math-ph/9907019

[21] P.J. Forrester and A.M. Odlyzko, Phys. Rev. E vol. 54, p 4493, 1996

[22] C. A. Tracy and H. Widom, “Fredholm determinants, differential equations and matrix models”, Commun. Math. Phys. 163, p 33-72 (1994)

Toeplitz Determinants

[23] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, Int. Jour. Mod. Phys. B 4 page 1003, 1990

[24] A. M. Odlyzko, “The 10^{20} zero of the Riemann zeta function and 70 million of its neighbors”, AT&T Bell Lab preprint (1989).

[25] H. L. Montgomery, Proc. Symp. Pure Math. 24, 181–193 (1973)