Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Vaccines for preventing enterotoxigenic *Escherichia coli* infections in farm animals

Harley W. Moon*† and Thomas O. Bunn†

Fimbrial vaccines are routinely given parenterally to pregnant cattle, sheep and swine to protect suckling newborn calves, lambs and pigs against enterotoxigenic *Escherichia coli* (ETEC) infections. Such vaccines are practical and effective because: (1) most fatal ETEC infections in farm animals occur in the early neonatal period when the antibody titres in colostrum and milk are highest; (2) more than 90% of the ETEC in farm animals belong to a small family of fimbrial antigen types; (3) fimbriae consist of good protein antigens on the bacterial surface where they are readily accessible to antibody; (4) fimbriae are required for a critical step (adhesion-colonization) early in the pathogenesis of the disease. ETEC infections continue to be a significant clinical problem in farm animals in spite of extensive use of fimbriae-based vaccines. Definitive data on the efficacy of the commercial vaccines in field use are not available. The prevailing perception among animal health professionals is that the vaccines are effective, that the problem occurs chiefly among non-vaccinated animals, and that in some herds vaccination moves peak prevalence of disease from the first to the second or third week after birth, when mortality is lower. It has been suggested that extensive use of vaccines will rapidly select for the emergence of novel or previously low prevalence fimbrial antigen types. There is no evidence that this has happened after a decade of routine vaccine use in the United States. However, there is no active direct surveillance for such emergence. In contrast to the rational development of vaccines to provide passive lacteal protection against ETEC in suckling neonates, comparatively little progress has been made in providing the knowledge required for development of vaccines to protect against postweaning ETEC infections in swine.

Keywords: Vaccines; enterotoxigenic *E. coli*; fimbrial; animals; United States

INTRODUCTION

Research conducted in animal and human health laboratories around the world from 1960–1980 established the rationale for vaccines to control enterotoxigenic *Escherichia coli* (ETEC) infections in neonatal farm animals. Comprehensive reviews of that research are available. The research confirmed the long-held hypothesis that certain strains of *E. coli* caused a diarrhoeal disease (colibacillosis) which occurred commonly among neonatal calves, pigs, and lambs. It establishes the concepts that:

- the pathogenesis of diarrhoea caused by ETEC is similar to human cholera (bacteria adhere to small intestinal epithelium and stimulate local secretion of electrolytes and water)
- *E. coli* enterotoxins and specific types of fimbriae (pili) are required virulence attributes of ETEC which act, respectively, as intestinal secretagogues and adhesins (colonization factors)
- host species specificity of ETEC depends largely on the ligand-receptor fit among various types of fimbriae and receptors on the intestinal epithelial cells of the host
- more than 90% of the ETEC associated with disease in animals belong to a small family of fimbriae and enterotoxin types
- most fatal ETEC infections in farm animals occur in the early neonatal or suckling period
- neonates suckling dams vaccinated with ETEC fimbriae are protected against challenge by ETEC bearing fimbrial antigens homologous to the vaccine strain.

General acceptance of these concepts led to the commercial development of fimbriae based vaccines to control ETEC infections in farm animals. Most of the vaccines are designed for parenteral administration to pregnant dams to increase the content of fimbrial antibody in colostrum and milk. Suckling establishes and maintains a level of fimbrial antibody in the small intestine to prevent intensive colonization by ETEC during the highly susceptible neonatal period.
COMMERCIAL VACCINES IN THE UNITED STATES

The first fimbriae-based ETEC vaccine (bacterin) for commercial use in US livestock was licensed by the United States Department of Agriculture (USDA) in 1980. Such vaccines (bacterins) have now been in routine use in the US for about ten years. We describe here some aspects of the use of ETEC vaccines in the US. We will also attempt to assess what impact, if any, this decade of routine use of fimbriae based vaccines has had on the disease in the US.

Data on USDA licensed biologicals produced for the prevention of *E. coli* infections in livestock during 1990 and 1991 are summarized in Table 1. In 1991, 32 distinct commercial vaccines (bacterins) were produced for the parenteral vaccination of pregnant cattle, sheep, and swine. The vaccines for use in cattle all included fimbrial antigen F5 (K99), while those for swine all included F4 (K88), F5 and F6 (987P). Twenty-one of the vaccines and 1991 are summarized in

The prevalence and severity of clinical ETEC infections is greatest under intensive management systems (close confinement of large numbers of animals). Most beef cows in the US are managed extensively, while intensive management systems are common in dairy and swine production. Thus, we think that the vaccines are probably used in a greater proportion of dairy than beef cows. It has been recommended that the vaccines be used strategically rather than universally in cattle. A cost:benefit ratio of 5.9 was achieved in a study of the economic aspects of such strategic use.

In addition to the vaccines, nearly 8 million doses of *E. coli* antiserum were produced during 1991 (Table 1). These products are designed for oral or parenteral administration to newborn calves, lambs, piglets, or foals. Some of these products are designed to protect against *E. coli* bacteremia and septicaemia in hypogammaglobulinaemic neonates. Hypogammaglobulinaemia is common because there is normally no passive Ig transfer in utero, and transfer under farm or ranch conditions is frequently inadequate. Several of the orally administered products contain antibody against fimbriae and are designed to prevent ETEC infections. This approach is rational because a high proportion of fatal ETEC infections occur during the first few days after birth. This is particularly so in calves because nearly all calf ETEC produce F5 fimbriae, and calves are only susceptible to colonization by F5 ⁺ ETEC during the first one or two days after birth. ¹ Thus, a few hours of local protection delivered to the intestine by a single oral dose of F5 monoclonal antibody can provide effective protection.

VACCINE EFFICACY

The efficacy of vaccinating dams with fimbriae to protect suckling neonates against ETEC infection, via passive lacteal immunity, was first convincingly demonstrated by Rutter and Jones, using F4 fimbriae in swine. ²⁰ Subsequent work confirmed the efficacy of the approach and generalized the concept by extending it to other ETEC fimbriae and other animal species. ²¹⁻²⁵ It also demonstrated that ETEC fimbriae apparently do not have cross-protective epitopes and, therefore, vaccines are most useful if they contain the fimbrial antigens prevalent in the target host species. ²² Most of the vaccines in current use probably achieve this by including F5 in vaccines for cattle or by combining F4, F5 and F6 in those for pregnant swine.

Although F1 and F41 fimbriae are prevalent among animal ETEC, their efficacy as protective antigens in vaccines for cattle and swine is less well defined than is that for F4, F5 and F6. ²⁵⁻²⁸ Most animal ETEC which produce F1 or F41 also produce F4, F5 or F6. Vaccination of dams with F5 protects calves and pigs against ETEC strains bearing both F5 and F41 (^{F5} ^{F41}) ^{28,29} In a series of experiments utilizing a challenge strain (ETEC strain 431) which produces three fimbriae (^{F1}, ^{F5} and ^{F6})
F41+), it was found that the strain produced F5 and F41, but not F1, in the small intestine of pigs during disease. Vaccination with F5 protected against challenge with the strain, but vaccination with either F1 or F41 did not. However, vaccination with F41 did protect piglets against challenge with an F5-F41+ ETEC strain, and F41 vaccines are apparently more effective than F5 vaccines in protecting mice against F5-F41+ ETEC. The controversy as to the role, if any, of F1 fimbriae in the pathogenesis of ETEC infections and their efficacy as protective antigens in vaccines to prevent the disease has been discussed.

There is convincing evidence that vaccination of pregnant swine with antigens directed against the heat labile enterotoxin (procholeragenoid or LTb) protects piglets (born to and suckling the vaccines) against challenge with LT+ ETEC. The principal barrier to more general development of antitoxic vaccines is the fact that many porcine ETEC strains produce one or both of the heat stable E. coli enterotoxins (STa and STb) in addition to or instead of LT. Most bovine ETEC produce STa only. In contrast to LT, neither STb nor STa are antigenic and both are rapidly excreted from the bacterial cell, rather than concentrated near the bacterial surface (periplasmic space) like LT. Furthermore, STa has not been an effective protective antigen when used as a hapten in vaccines which stimulated the production of STa neutralizing antitoxin. Most porcine ETEC which produce LT also produce STb. Vaccination with procholeragenoid or LTb protects against such LT+ STb+ ETEC. The mechanism of such LT induced protection against the antigenically unrelated STb enterotoxin has not been defined. It could reside in the apparent antibacterial or anticolonizing effect of such LT vaccines.

Some vaccines include polysaccharide O (cell wall) and K (capsular) antigens representing some of those most common among porcine or bovine ETEC. There is conflicting evidence regarding the efficacy of O antigen based vaccines. In one series of experiments, O antigens were not effective, but a true capsular polysaccharide K antigen of the A (mucoid, heat stable) variety did appear to be effective. Regardless of their efficacy, the practical value of O or polysaccharide K antigens is limited by the multiplicity of O and K antigens that commonly occur among ETEC, i.e. vaccines of reasonably limited valency would not be expected to provide broad efficacy. Furthermore, many ETEC lack true polysaccharide (A variety) capsules.

The USDA licensure policy recognizes the proprietary nature of efficacy data on specific commercial products. Publication of efficacy data related to vaccines licensed in the US is not required. Field trials indicating efficacy of a fimbriae based vaccine in swine, and lack of efficacy of a combined F5, rotavirus, and coronavirus vaccine in dairy cattle, have been published. Field trial data demonstrating the efficacy of most of the products in commercial use in the US are not available. The USDA does receive and investigate consumer reports concerning the safety or efficacy of licensed vaccines in commercial use. A total of 32 such reports were received by the USDA, Animal and Plant Health Inspection Service, Veterinary Biologics Field Operations, for all products of the type listed in Table 1 during the period from October 1983 to January 1992. Five of the 32 reports concerned efficacy. We assume that most complaints are directed to the manufacturers rather than to the USDA, and that the total number of complaints received is much higher than those reported to the USDA. Nevertheless, the low number of reports received by the USDA during more than eight years of use is consistent with the anecdotal reports, as well as the prevailing opinion of animal health professionals and livestock producers, that the vaccines are effective in commercial use.

Data to indicate if the incidence of morbidity or mortality due to ETEC infections has changed since the introduction of commercial vaccines are not available. The national survey of US swine health found that 15% (1.5 pigs/litter) of the piglets born alive during the period from December 1989 to January 1991 died before they reached one month of age. Diarrhoea was reported as the most common illness observed, and nearly 11% of all deaths during the first month after birth were attributed to diarrhoea (Table 2). Forty-seven per cent of the producers in the survey reported routine vaccination of dams to prevent ETEC infection of the piglets (Table 3). It was not determined if the percentage of illnesses or deaths attributed to diarrhoea in herds reporting routine vaccination was different from that in

Table 2 National Swine Survey: pigs (< one month old)

Illness/condition	Cases	Deaths
Diarrhoea	58	11
Crushed	-	44
Starvation	-	19
Deformities	2	1
Lameness	3	1
Respiratory	2	1
Other	35	23

*NAHMS; USDA, APHIS, 1991, included 712 farms and 313,576 piglets

Table 3 National Swine Survey: routine vaccination reported

Agent/disease	Dams	Piglets
Leptospiriosis	70	-
Parvovirus	65	-
Erysipelasia	61	47
Escherichia coli	47	12
Atrophic rhinitis	38	42
Transmissible gastroenteritis	24	4
Clostridium perfringens	22	8
Pseudorabies	22	2
Rotavirus	16	-

*NAHMS; USDA, APHIS; 1991

Table 4 National Swine Survey: number of piglet illnesses and deaths attributed to diarrhoea

Age in weeks	1	2	3	4	4+
Illness	9805	3475	161	303	119
Death	2505	529	297	101	41

*NAHMS; USDA, APHIS; 1991
Vaccines against enterotoxigenic E. coli infections: H.W. Moon and T.O. Bunn

Table 5 Agents associated with piglet and calf diarrhoea, 1991

Agent	Number examined	Percentage positive	Number examined	Percentage positive
Enterotoxigenic E. coli	630	23	2096	26
Coccidia	370	16	1389	5
Rotavirus	589	11	2463	24
Coronavirus	609	8	2296	20
Clostridium perfringens	340	3	75	15
Cryptosporidia	-	-	2054	28
Salmonella	-	-	2925	9

*NAHMS: USDA, APHIS; DxMonitor*42

**15* laboratories - 6 months

herds that did not. The survey did not report the causes of diarrhoea in the herds surveyed. However, most of the illnesses and deaths attributed to diarrhoea occurred during the first week after birth (Table 4), which is the period when most fatal ETEC infections occur. Furthermore, the combined results from several veterinary diagnostic laboratories in the US indicate that ETEC were a common cause of piglet diarrhoea during 1991 (Table 5)42.

National survey data on cattle health in the US are not yet available. However, results from veterinary diagnostic laboratories also indicate that ETEC infections were a common cause of calf diarrhoea in the US during 1991 (Table 5)42. Thus ETEC infections continue to be a significant clinical problem among calves and piglets in the US in spite of extensive vaccination. The proportion of the problem that occurs in the offspring of properly vaccinated dams is not known. The prevailing perception among animal health professionals is that the vaccines are effective in the field and that the disease occurs principally among non-vaccinated or inadequately vaccinated animals. Some veterinarians also have the perception that in some swine herds vaccination moves the peak prevalence of clinical disease from the first to the second or third week after birth, thereby significantly reducing mortality but not morbidity (J. McKean, personal communication).

It should be possible to extend passive protection beyond the first week into the later suckling period, through the use of oral vaccines or by using combined oral and parenteral vaccination43.

ANTIGEN DRIFT

It is rational to hypothesize that extensive use of fimbrial based vaccines will select against the prevailing fimbrial antigen types as reflected in the vaccines and for the emergence of new or previously low prevalence fimbrial antigens. Fimbriae antigenically distinct from F1, F4, F5, F6 and F41 occur among animal ETEC 2s'44. The high prevalence of F4 + ETEC infections could be somehow a reflection of vaccination. It suggests that since the advent of vaccination, F5 + and F6 + ETEC infections are controlled more effectively than those due to F4 + ETEC. It may reflect a shift of peak disease prevalence from the first to the second, third and fourth weeks after birth. F4 + ETEC cause disease through that age span, while F5 + and F6 + ETEC infections are confined principally to the first few days of age, when vaccine induced milk (colostral) antibody titres are highest and vaccines would be expected to be most effective. This age shift would be consistent with the perception of some US veterinarians cited earlier and with the effects of extensive use of F4 + vaccines in Europe, reported by Söderlind et al., a decade ago40. It is not possible to determine whether the apparent shift in prevalence is due to a decreased incidence of disease during the first week after birth, to an increased incidence of disease during the second and later weeks, or both.

The high prevalence of F4 + ETEC infections could also reflect the emergence of antigenic variants of F4 as was suggested to occur in Europe49. We are not aware of recent data on the prevalence of porcine ETEC which do not produce F4, F5, F6 or F41 (4F - ETEC). We would expect vaccine induced selection pressure to increase the prevalence of 4F - ETEC above the 8% reported by Wilson and Francis27.
POSTWEANING ETEC INFECTIONS

Most ETEC vaccine development in animals has focused on the problem that occurs during the early neonatal period (first week after birth). However, in swine, a high incidence of ETEC infection also occurs immediately after weaning. In the US, piglets are usually weaned at 3–4 weeks of age. The trend is toward weaning at <3 weeks of age. Mortality rates among affected pigs are lower for the postweaning disease than for the neonatal disease. The pathogenesis of the postweaning disease is similar to the neonatal disease in that fimbriae and enterotoxin are required virulence attributes of the associated ETEC. However, the postweaning disease appears to be more complex in that multiple factors predispose to, or cause, clinical disease. Some of these apparent predisposing causes are social and physical stress, diet, increased gastric pH, concurrent rotavirus infection, and cessation of the local protection provided by the antibody ingested with milk at each suckling. Cost-effective control of the disease centres around hygiene and management to minimize predisposing causes. Antimicrobial drugs are commonly used prophylactically and therapeutically.

It is logical to extend the concept of fimbrial vaccines to include postweaning ETEC infections. Commercial vaccines prepared as killed F4+ strains of ETEC isolated from the postweaning disease are available in the US. One of the products is designed for parenteral administration to piglets prior to weaning and the other is designed to be fed for several weeks during the suckling and immediate postweaning periods. Data to support the rationale and efficacy of such vaccines are limited44–57. Parenteral vaccines tend to stimulate the systemic rather than the mucosal immune system. Inadequate delivery of systemically produced IgG from blood to the intestinal lumen limits the efficacy of parental vaccines for ETEC because these agents remain in the lumen of the intestine, on the epithelial surface. Oral vaccines stimulate the mucosal immune system to produce secretory antibodies that are efficiently transported into the intestinal lumen. Live ETEC are effective oral fimbrial vaccines but killed ETEC have generally been less effective43,55–59. Recent efforts have focused on development of live oral fimbrial based vaccines to prevent postweaning ETEC infections in swine60–62. Such a vaccine would ideally:

- temporarily colonize the small intestine of the suckling pig in spite of the antifimbrial antibody ingested with milk
- not produce enterotoxin or other substances that would adversely affect the health and productivity of the colonized piglet
- stimulate the mucosal immune system of the <3-week-old pig to secrete protective levels of antimicrobial IgA into the small intestine
- reflect the fimbrial antigens prevalent among ETEC associated with postweaning diarrhoea.

The fimbrial antigens of ETEC associated with postweaning diarrhoea of swine differ somewhat from those associated with the disease in neonates63–67. Most pigs are physiologically resistant to colonization by F5+ or F6+ ETEC by about a week of age68–71. Thus, these strains are not commonly associated with the postweaning disease60–63. Age resistance to F5+ ETEC appears to be due, at least in part, to decreased availability (with age) of receptors for F5 on epithelial cells68. On the other hand, resistance to F6 correlates with an increased availability of receptors in mucus69. Receptors in mucus apparently prevent contact of F6+ ETEC with receptors on the epithelial surface70. Receptivity of swine intestinal mucus for F4 also increases with age72. However, this increase is not adequate to protect genetically susceptible pigs from colonization, and F4+ ETEC are associated with disease in both the neonatal and postweaning periods. The fimbrial antigens (other than F4) associated with postweaning ETEC infections have not been well defined. It seems likely that additional, as yet unrecognized, fimbrial antigen types are prevalent at this age73–74. There is suggestive evidence that during the first three weeks after birth, swine intestine becomes progressively more receptive to adhesion and colonization by ETEC of these unrecognized fimbrial antigen types75.

HOST RESISTANCE AND RECEPTOR AVAILABILITY

The pattern emerging is that variations in the availability of receptors for fimbriae affect ETEC infections in several different ways. Inheritance of the trait for expression of F4 fimbrial receptors on intestinal epithelial cells is an autosomal dominant character76,77. Swine with the homozygous recessive genotype lack the required specific F4 receptors and are resistant to F4+ ETEC both as neonates and during the postweaning period78,79. Variations in F4 receptor phenotype exist and correlate with antigenic variations among F4 fimbriae80. It has been suggested that selection pressure exerted by variation in receptor availability may be an alternative to that exerted by antibody, in the evolution of antigenic variants of F4 fimbriae81. Genetic control of receptor expression may also influence resistance to E. coli of other as yet unrecognized fimbrial antigen types associated with postweaning disease in swine82,84.

On the other hand, changes with age in the availability and distribution of receptors apparently determines susceptibility and resistance to some ETEC. For example, the availability on epithelial cells of receptors for F5 decreases with age, while the availability of those for some postweaning ETEC increases68,75. The availability in intestinal mucus of receptors for F4 and F6 fimbriae increases with age69,72. Older pigs that are genetically susceptible to F4 (have F4 receptors on intestinal epithelial cells) remain susceptible to F4 through the postweaning period in spite of the receptivity of intestinal mucus72,79. However, the receptivity of the mucus in older pigs for F6 is apparently great enough to prevent interaction between F6 and receptors on intestinal epithelial cells65,70, apparently protecting older pigs against F6+ ETEC by preventing intensive colonization of the small intestine.

These examples suggest that strategies to control the availability of receptors for fimbriae may provide alternatives to vaccination in the control of ETEC infections77,83.

CONCLUSIONS

Federally licensed vaccines to prevent ETEC infections in neonatal calves and pigs have been used extensively in the US for about a decade. Most of the vaccines are based on the prevailing fimbrial antigens required for colonization by ETEC in calves (F5) and newborn pigs.
The task of extending the concept to humans, where concept beyond passive lacteal immunity for the early the first few days after birth, when the intestine of the suckling neonate against colonization by ETEC during the highly susceptible early neonatal period. Data on the efficacy of the commercial vaccines during the decade of routine use are not available. They continue to be generally regarded as effective. However, ETEC infections continue to be a common problem among neonatal calves and pigs in the US. Data to indicate whether the problem occurs principally among animals suckling vaccinated or non-vaccinated dams are not available. There are unpublished anecdotal reports that in some swine herds vaccination has protected the peak incidence of morbidity from the first to the second or third week after birth. The high ratio of F4+, as compared to F5+ and F6+, ETEC infections, among swine submitted to a diagnostic laboratory, is consistent with such anecdotal reports, because piglets are physiologically susceptible to F5 and F6 ETEC only during the first week after birth.

There is no evidence that ETEC with novel colonization mechanisms or new fimbrial antigens have emerged under the selection pressure of vaccination. Nor is there evidence that previously 'low prevalence' fimbrial antigen type ETEC, not represented in the vaccines, have emerged as 'common pathogens' filling the ecological niche left by the fimbrial antigen types targeted by the vaccines. Admittedly there is apparently no active direct surveillance for such events, and such events could explain the continued common occurrence of neonatal ETEC infections among swine in the face of intensive vaccination. It seems unlikely, however, that such events could account for a high incidence of disease and go unrecognized, because fimbrial antigen testing for F4, F5 and F6 is routinely used in the laboratory confirmation of ETEC infections. A high incidence of disease caused by 3F ETEC would be likely to be recognized and reported.

The knowledge and technology for the general development of fimbrial vaccines to control postweanling ETEC infections in swine is not yet available. The fimbrial antigens of the ETEC prevalent at this age have not been well defined. Immunological approaches to establishing and maintaining protective levels of antifimbrial antibody in the small intestine of the pig during the first 1–2 weeks after weaning have not been developed.

From the comparative medical perspective, the experimental studies in farm animals demonstrate that fimbrial vaccines can protect against ETEC infections. Practical or cost-effective use in animals has been possible because animals are most susceptible to the disease during the first few days after birth, when the intestine of the suckling animal can be protected with colostrum and milk antibody produced by vaccinating the dam. Strategies for general (commercial) extension of the concept beyond passive lacteal immunity for the early neonatal period in animals have not yet been developed.

The task of extending the concept to humans, where protection is needed not only during the nursing period but also after weaning and throughout childhood, is clearly a much greater, but rational, challenge.

REFERENCES

1 Acres, S.D. Enterotoxigenic Escherichia coli infections in newborn calves: a review. J. Dairy Sci. 1985, 68, 229

2 Gaastr, W. and de Graaf, F.K. Host-specific fimbrial adhesins of noninvasive enterotoxigenic Escherichia coli strains. Microbiol. Rev. 1982, 46, 129

3 Gay, C.C. Escherichia coli and neonatal disease of calves. Bacterial Rev. 1965, 29, 75

4 Isaacson, R.E. Pili of enterotoxigenic Escherichia coli from pigs and calves. In: Immunobiology of Proteins and Peptides – II. Viral and Bacterial Antigens (Eds. Akesi, M.Z. and Bachrach, H.L.) Plenum Press, New York, 1965, p. 83

5 Jones, G.W. and Isaacson, R.E. Proteinaceous bacterial adhesins and their receptors. In: CRC Critical Reviews in Microbiology 10 (Ed. O’Leary, W.M.) CRC Press Inc., Boca Raton, Florida, 1982, p. 229

6 Levine, M.M., Kaper, J.B., Black, R.E. and Clements, M.L. New knowledge on pathogenesis of bacterial enteric infections as applied to vaccine development. Microbiol. Rev. 1983, 47, 510

7 Moon, H.W. Pathogenesis of enteric diseases caused by Escherichia coli. Adv. Vet. Sci. Comp. Med. 1974, 18, 179

8 Moon, H.W., Isaacson, R.E. and Pohlenz, J. Mechanisms of association of enteropathogenic Escherichia coli with intestinal epithelium. Am. J. Clin. Nutr. 1979, 32, 119

9 Moon, H.W. and Runnels, P.L. Prospects for development of a vaccine against diarrhea caused by Escherichia coli. In: Acute Enteric Infections in Children. New Prospects for Treatment and Prevention (Eds. Holme, T., Holmgren, J., Merson, M.H. and Molby, R.), Elsevier/North-Holland Biomedical Press, Amsterdam, 1981, p. 477

10 Soyka, W.J. Enteropathogenic Escherichia coli in man and farm animals. Can. J. Food. Sci. Technol. J. 1973, 6, 52

11 Smith, H.W. Neonatal Escherichia coli infections in domestic mammals: transmissibility of pathogenic characteristics. In: Acute Diarrhoea in Childhood, CIBA Foundation Symposium 42, 1976, p. 45

12 Tzaneti, S. The relative importance of enteric pathogens affecting neonates of domestic animals. Adv. Vet. Sci. Comp. Med. 1985, 29, 103

13 Lovell, R. Intestinal diseases of young calves with special reference to infection with Bacterium coli. Vet. Res. Anat. 1955, 1, 1

14 Saunders, C.N., Stevens, A.J. and Spence, J.B. Escherichia coli infection: reproduction of the disease in ‘pathogen-free’ piglets. Res. Vet. Sci. 1963, 4, 547

15 Smith, H.W. and Halls, S. Observations by the ligated intestinal segment and oral inoculation methods on Escherichia coli infections in pigs, calves, lambs and rabbits. J. Pathol. Bacteriol. 1967, 93, 499

16 Smith, T. and Little, R.B. Studies on pathogenic B. coli from bovine sources. I. The pathogenic action of culture filtrates. J. Exp. Med. 1927, 46, 123

17 United States Department of Agriculture. Agricultural Statistical 1991. US Government Printing Office, Washington DC, 1991

18 United States Department of Agriculture. National Swine Survey: Morbidity/Mortality and Management of Swine in the United States. USDA:APHIS:VS: National Animal Health Monitoring Systems, Fort Collins, Colorado, 1991

19 Sherman, D.M., Acres, S.D., Sadowski, P.L., Springer, J.A., Bray, B., Raybould, T.J.G. and Muscoplat, C.C. Protection of calves against fatal enteric colibacillosis orally administered Escherichia coli K99-specific monoclonal antibody. Infect. Immun. 1983, 42, 653

20 Rutter, J.M. and Jones, G.W. Protection against enteric disease caused by Escherichia coli – a model for vaccination with a virulence determinant? Nature 1973, 242, 531

21 Acres, S.D., Isaacson, R.E., Babiuk, L.A. and Kapilatny, R.A. Immunization of calves against enterotoxigenic colibacillosis by vaccinating dams with purified K99 antigen and whole cell bacterins. Infect. Immun. 1979, 25, 121

22 Morgan, R.L., Isaacson, R.E., Moon, H.W., Brinton, C.C. and To, C.-C. Immunization of suckling pigs against enterotoxigenic Escherichia coli-induced diarrhoeal disease by vaccinating dams with purified 987 or K99 pili: protection correlates with plus homology of vaccine and challenge. Infect. Immun. 1979, 22, 771

23 Nagy, B. Vaccination of cows with a K99 extract to protect newborn calves against experimental enterotoxigenic colibacillosis. Infect. Immun. 1980, 27, 21

24 Nagy, B., Moon, H.W., Isaacson, R.E., To, C.-C. and Brinton, C.C. Immunization of suckling pigs against enterotoxigenic Escherichia coli infection by vaccinating dams with purified pili. Infect. Immun. 1979, 21, 269

25 Jayappa, H.G., Strayer, J.G., Goodrow, R.A., Fusco, C., Wood, S.W., Haneline, T., Cho, H.J. and Brinton, C.C. Experimental infection and field trial evaluations of a multiple-pili phase-cloned bacterin for the simultaneous control of neonatal colibacillosis and mastitis in swine. In: Proceedings Fourth International Symposium on Neonatal Diarrhea 1985, Veterinary Infectious Disease Organization, University
of Saskatchewan, 1983, p. 518

26 Morris, J.A., Thorn, C., Scott, A.C., Sojka, W.J. and Wells, G.A. Adhesion in vitro and in vivo associated with an adhesive antigen (F41) produced by a K99 mutant of the reference strain Escherichia coli B41. Infect. Immun. 1982, 36, 1146

27 Wilson, R.A. and Francis, D.H. Fimbriae and enterotoxins associated with Escherichia coli serogroups isolated from pigs with colibacillosis. Am. J. Vet. Res. 1986, 47, 213

28 Moon, H.W. Colonization factor antigens of enterotoxigenic Escherichia coli in animals. Curr. Top. Microbiol. Immunol. 1990, 161, 147

29 Runnels, P.L., Moseley, S.L. and Moon, H.W. F41 pilus as protective antigens of enterotoxigenic Escherichia coli that produce F41, K99, or both pilus antigens. Infect. Immun. 1986, 55, 555

30 To, S.C.-M., Moon, H.W. and Runnels, P.L. Type 1 pilus (F1) of porcine enterotoxigenic Escherichia coli: vaccine trial and tests for production in the small intestine during disease. Infect. Immun. 1984, 43, 1

31 Duchet-Suchaux, M. Protective antigens against enterotoxigenic Escherichia coli 0111:B41,K99,F41 in the infant mouse diarrhea model. Infect. Immun. 1988, 56, 1364

32 Jayappa, H.G., Goodnow, R.A. and Geary, S.J. Role of enterotoxigenic Escherichia coli type 1 pilus in colonization of porcine ileum and its protective nature as a vaccine antigen in controlling colibacillosis. Infect. Immun. 1985, 48, 350

33 Acres, S.D., Brinton, C.C., Frantz, J.C., Isaacson, R.E., To, S.C., Wilson, R.A. et al. Discussion of Session 5. Prevention and control of enteric bacteria. In: Proceedings Fourth International Symposium on Neonatal Diarrhea 1983, Veterinary Infectious Disease Organization, University of Saskatchewan, 1983, p. 596

34 Frantz, J.C. and Mellencamp, M.W. Production and testing of Escherichia coli (LT) toxin. In: Proceedings Fourth International Symposium on Neonatal Diarrhea 1983, Veterinary Infectious Disease Organization, University of Saskatchewan, 1983, p. 500

35 Furer, E., Cryz, S.J., Dorner, F., Nicolot, J., Wanner, M. and Germanier, R. Protection against colibacillosis in neonatal piglets by immunization of dams with prochlorogeneric. Infect. Immun. 1982, 35, 887

36 Nagy, L.K., Painter, K.R. and MacKenzie, T. Evaluation of prochlorogeneric against experimental colibacillosis in piglets with the use of live vaccines. Vet. Res. 1985, 16, 123

37 Frantz, J.C., Bhatnagar, P.K., Brown, A.L., Garrett, L.K. and Hughes, J.L. Investigation of synthetic Escherichia coli heat-stable enterotoxin as an immunogen for swine and cattle. Infect. Immun. 1985, 49, 1079

38 Moon, H.W., Baetz, A.L. and Giannella, R.A. Immunization of swine with heat-stable Escherichia coli enterotoxin coupled to a carrier protein does not protect suckling pigs against an Escherichia coli strain that produces heat-stable enterotoxin. Infect. Immun. 1983, 39, 990

39 Moon, H.W. and Schneider, R.A. and Moseley, S.L. Comparative prevalence of four enterotoxin genes among Escherichia coli isolated from swine. Am. J. Vet. Res. 1986, 47, 210

40 Moon, H.W., Runnels, P.L., Trials with somatic (O) and capsular (K) polysaccharides of enterotoxigenic E. coli as protective antigens in vaccines for swine. In: Proceedings Fourth International Symposium on Neonatal Diarrhea 1983, Veterinary Infectious Disease Organization, University of Saskatchewan, 1983, 556

41 Walther-Toews, D., Martin, S.W., Meek, A.H., McMillan, I. and Crouch, C.F. A field trial to evaluate the efficacy of a combined rotavirus-coronavirus/Escherichia coli vaccine in dairy cattle. Can. J. Comp. Med. 1985, 49, 1

42 United States Department of Agriculture. DsMonitor: Animal Health Report. USDA-APHIS-VS, Fort Collins, Colorado, 1991

43 Moon, H.W., Rogers, D.G. and Rose, R. Effect of oral immunization with E. coli antigens on post weaning enteric infection in the young pig. Vet. Rec. 1974, 95, 99

44 Evans, D.G., Graham, D.Y., Evans, D.J. and Opekun, A. Administration of purified colonization factor antigens (CFA/I, CFA/II) of enterotoxigenic Escherichia coli to volunteers. Response to challenge with virulent enterotoxigenic Escherichia coli. Gastroenterology 1984, 87, 934

45 Evans, P.A., Newby, T.J., Stokes, C.R., Patel, D. and Bourne, F.J. Antibody response of the lactating sow to oral immunization with Escherichia coli. Scand. J. Immunol. 1980, 11, 419

46 Albrecht, N. and van Houten, M. Oral immunization of sow: anti-K88 antibodies in serum and milk of the sow and in serums of the piglets. Vet. Q. 1982, 4, 19

47 Levine, M.M., Ristaino, P., Marley, G., Smyth, C., Knutton, S., Bodeker, E., Black, R., Young, C., Clements, M.L., Cheney, C. and Patnaik, R. Coli surface antigens 1 and 3 of colonization factor antigen II-positive enterotoxigenic Escherichia coli: morphology, purification, and immune responses in humans. Infect. Immun. 1984, 44, 409

48 Moon, H.W. Protection against enteric colibacillosis in pigs suckling orally vaccinated: evidence for pili as protective antigens. Am. J. Vet. Res. 1981, 42, 173

49 Albrecht, N., Hackett, J., Morona, R. and Whyte, P. Towards a live oral vaccine against enterotoxigenic Escherichia coli of swine. Vaccine 1988, 6, 367

50 Francis, D.H. and Williams, J.A. Evaluation of a live avirulent Escherichia coli vaccine for K88+, LT enterotoxigenic colibacillosis in weaned pigs. Am. J. Vet. Res. 1991, 52, 1051

51 Stevenson, G. and Manning, P.A. Galactose epimerase-less (GaIE) mutant G30 of Salmonella typhimurium is a good potential live oral vaccine carrier for fimbrial antigens. FEMS Microbiol. Lett. 1985, 28, 317

52 Kennan, R.M. and Monckton, R.O. Adhesive fimbriae associated with porcine enterotoxigenic Escherichia coli of the 0141 serotype. J. Clin. Microbiol. 1990, 28, 26

53 Larson, J.L. Differences between enteropathogenic Escherichia coli strains isolated from neonatal E. coli diarrhea (N.C.D.) and post weaning diarrhoea (P.W.D.) in pigs. Nord. Vet. Med. 1978, 28, 417

54 Nakazawa, M., Sugimoto, C., Isayama, Y. and Kashiwazaki, M. Virulence factors in Escherichia coli isolated from pigs with neonatal and postweaning diarrhea in Japan. Vet. Microbiol. 1987, 13, 291

55 Riising, H.-J., Svendsen, J. and Larsen, J.L. Occurrence of K99-negative Escherichia coli serotypes in pigs with post weaning diarrhoea. Acta Pathol. Microbiol. Scand. [B] 1975, 53, 63

56 Runnels, P.L., Moon, H.W. and Schneider, R.A. Development of resistance with host age to adhesion of K99+ Escherichia coli to the mucus layer of the adult intestine. Infect. Immun. 1989, 57, 269

57 Dean, E.A. Comparison of receptors for K88 pilus of enterotoxigenic Escherichia coli in newborn and older pigs. Infect. Immun. 1986, 57, 4030

58 Dean, E.A., Whipp, S.C. and Moon, H.W. Age-specific colonization of porcine intestinal epithelium by K88+iliated enterotoxigenic Escherichia coli. Infect. Immun. 1988, 57, 82
Vaccines against enterotoxigenic E. coli infections: H.W. Moon and T.O. Bunn

71 Moon, H.W. and Runnels, P.L. The K99 adherence system in cattle. In: Attachment of Organisms to the Gut Mucosa I (Ed. Boedeker, E.C.) CRC Press Inc., Boca Raton, Florida, 1984, p. 31

72 Conway, P.L., Welin, A. and Cohen, P.S. Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infect. Immun. 1990; 58, 3178

73 Nagy, B., Arp, L.H., Moon, H.W. and Casey, T.A. Colonization of the small intestine of weaned pigs by enterotoxigenic Escherichia coli that lack known colonization factors. Vet. Pathol. 1992; 29, 239

74 Casey, T.A., Nagy, B. and Moon, H.W. Pathogenicity of porcine enterotoxigenic Escherichia coli that do not express K92, K99, F41 or 987P adhesins. Am. J. Vet. Res. 1992; 53, 1488

75 Nagy, B., Casey, T.A., Whipp, S.C. and Moon, H.W. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age. Infect. Immun. 1992; 60, 1285

76 Sellwood, R., Gibbons, R.A., Jones, G.W. and Rutter, J.M. Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders: the existence of two pig phenotypes. J. Med. Microbiol. 1975; 8, 405

77 Rutter, J.M., Burrows, M.R., Sellwood, R. and Gibbons, R.A. A genetic basis for resistance to enteric disease caused by E. coli. Nature 1975; 257, 135

78 Sellwood, R. Escherichia coli diarrhoea in pigs with or without the K88 receptor. Vet. Rec. 1973; 105, 228

79 Sarmiento, J.I., Casey, T.A. and Moon, H.W. Postweaning diarrhoea in swine: experimental model of enterotoxigenic Escherichia coli infection. Am. J. Vet. Res. 1986; 49, 1154

80 Bijlsma, I.G.W., de Nijs, A., van der Meer, C. and Frik, J.F. Different pig phenotypes affect adherence of Escherichia coli to jejunal brush borders by K88ab, K88ac, or K88ad antigen. Infect. Immun. 1982; 37, 891

81 Gaasta, W., Kimmel, P. and de Graaf, F.K. The nucleotide sequence of the K88ad protein subunit of porcine enterotoxigenic Escherichia coli. FEMS Microbiol. Lett. 1983; 18, 177

82 Smith, H.W. and Hallis, S. The production of oedema disease and diarrhoea in weaned pigs by the oral administration of Escherichia coli: factors that influence the course of the experimental disease. J. Med. Microbiol. 1969; 1, 45

83 Bertschinger, H.U., Munz-Mueller, M. and Pfister, H.P. Vererbte Resistenz gegen colienterotoxamie beim schwein. J. Anim. Breed Genet. 1986; 103, 255

84 Bertschinger, H.U., Bachmann, M., Mettlar, C., Pospischil, A., Schraner, E.M., Stamm, M. et al. Adhesive fimbriae produced in vivo by Escherichia coli 0139:K12(B):H1 associated with enterotoxaemia in pigs. Vet. Microbiol. 1990; 25, 267

85 Mouriou, M., Petit, J.M., Carias, J.R. and Julien, R. Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis. Infect. Immun. 1990; 58, 98

220 Vaccine, Vol. 11, Issue 2, 1993