Dataset on the distribution location and biological traits of freshwater fishes in the Yangtze River Basin

Bin Kanga,*, Xiaoxia Huangb, Yunzhi Yanc, Yunrong Yand, Hungdu Lind

a College of Fisheries, Ocean University of China, Qingdao 266003, China
b Key Laboratory of Atmospheric Environment and Processes in the Boundary Layer Over the Low-latitude Plateau Region, School of Earth Science, Yunnan University, Kunming 650091, China
c College of Life Sciences, Anhui Normal University, Wuhu 241002, China
d College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China

\begin{abstract}
In this data article, we provide the scientific and theoretical data on fish taxonomy including class, order, family, and genus in the Yangtze River. The Yangtze basin is divided into 56 units, and their geological information including latitude, longitude, latitude, and channel length is recorded. Fish presence/absence data at the unit scale are reported. Biological traits including morphological, physiological, and ecological characters of each fish species are also described, numeralized, and reported. These data are the foundation of the analyses and results in the article “Continental-scale analysis of taxonomic and functional fish diversity in the Yangtze River” (Kang et al., 2018).

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
\end{abstract}
Specifications table

Subject area	Biology
More specific subject area	Biodiversity and conservation
Type of data	Table, Excel
How data was acquired	Collection and revision of available literatures, Surveys, GIS
Data format	Raw
Experimental factors	Brief description of any pretreatment of samples
Experimental features	Very brief experimental description
Data source location	The Yangtze Basin
Data accessibility	Data are with this article

Value of the data

- Fish lists of the Yangtze fishes were collected from available materials and revised according to the latest version of Fishbase for taxonomic criterion.
- Fish distribution data can be incorporated into other biogeographical studies concerning the environmental pollution, climate change, and human activities.
- Surveyed biological traits of fishes in the whole basin can provide insights in species interaction, ecosystem function, and conservational decision-making.

1. Data

The Yangtze River, covering multiple types of landforms and climatic zones, supports abundant fish diversity and resources. In this data article, based on the natural river system and discharge, we divided the basin into 56 units [2] and extracted their geological data (Table 1, see Figure 1 in Ref. [1]), including longitude, latitude, altitude, and channel length of each unit. On the basis of available literatures, we reviewed and updated the freshwater fish species and their distribution at unit scale (Appendix A) to determine the species richness. According to their phylum (class, order, family, and genus; Table S2), taxonomic diversity of each unit was calculated. Biological traits were used to determine functional diversity. The data catalogs include body shape, feeding habit, trophic level, water zone, water column position, and water temperature (Table 2), and the details of each species were determined (Appendix B). We quantified the dissimilarities of species richness, taxonomic, and functional diversity among all the units, and traced the process of species turnover and nestedness.

2. Experimental design, materials, and methods

The Yangtze Basin was dived into geographic 56 units (sub-basins) according to the natural river system and discharge, each unit with annual discharge larger than 300×10^8 m2. Then the maximum, minimum, and mean values of longitude, latitude, and altitude were extracted; the channel length of each unit was calculated.

To clarify the fish fauna in the basin, we collected available literatures including monographs, published papers, investigative reports, and additional records. The compiled data were revised following Fishbase [3] to avoid invalid species, as well as synonyms and homonyms.

At the unit scale, the records of species locality were identified for constructing the species distributional data matrix. The presence/absence data were scored ‘1’ for the presence of a species in a unit, and ‘0’ for its absence. An aggravate data matrix on species taxonomy was compiled with order, family, and genus as columns, and species as rows.

We constructed a functional traits matrix regarding morphological, physiological, and ecological characters. Morphological parameters (the shape of body, head, eye, fin, etc.) were directly measured
Table 1
Units of the Yangtze Basin and corresponding geological information

ID	Channel length (km)	Altitude (m)	Longitude	Latitude	
		Minimum	Maximum	Minimum	Maximum
1	24227	3336	6384	90.5478	97.7753
2	4046	2336	5328	97.3401	99.1676
3	8101	1493	5835	97.2879	100.7906
4	4775	1345	5234	98.9463	100.6859
5	14736	267	4137	100.0511	104.9484
6	5576	257	3935	100.3812	104.6528
7	24355	984	5658	96.8339	102.7022
8	13568	359	6243	99.6284	103.7501
9	2554	366	4887	102.2893	103.7487
10	9557	266	5373	102.6089	104.6859
11	5541	228	4473	103.6824	105.8272
12	8580	488	6243	104.5294	107.0649
13	7531	188	5082	104.6273	106.3228
14	5810	161	3716	105.0294	106.0649
15	7442	196	2532	105.2286	106.9098
16	7151	50	2960	105.4653	111.4596
17	7030	48	2115	105.3225	111.1789
18	2954	191	2182	105.6273	106.9917
19	2268	288	2782	106.3138	106.3228
20	5386	289	2334	105.8789	108.8045
21	2081	207	1880	107.3738	109.3705
22	2323	136	2182	106.8869	109.9408
23	18983	116	3475	110.6247	111.7460
24	6829	61	2002	111.6067	113.6475
25	12364	8	2812	110.3243	114.2781
26	2819	22	2168	108.5549	111.4458
27	2388	21	1753	110.9567	112.2133
28	5717	–46	436	111.9865	114.0741
29	3986	16	900	112.7206	114.3730
30	5260	–11	1584	114.2417	116.0750
31	7129	–35	1432	113.1247	116.0318
32	3006	18	1932	109.7017	111.9410
33	3345	206	2099	107.2797	109.5991
34	2242	164	1907	109.0253	110.5648
35	5112	103	2416	107.3883	110.8973
36	7901	28	1803	108.7045	111.8334
37	3001	169	1991	110.2306	111.8175
38	2350	27	1522	110.7214	112.3855
39	9561	48	1885	110.5363	114.0491
40	4180	24	1203	111.4690	113.1299
41	5497	19	1967	112.7549	114.2699
42	1506	31	1536	113.0758	114.1594
43	10688	9	1355	110.9241	113.2804
44	7961	79	1673	113.4955	116.6291
45	5586	29	2001	113.8132	116.0289
46	4984	8	1680	113.9645	116.1365
47	3694	19	1411	115.5999	117.1689
48	2792	19	2088	116.5294	118.6071
49	2342	16	1556	116.9279	118.2313
50	2981	15	1671	113.9876	115.8174
51	6259	–1	1359	115.4142	117.1315
52	13228	–112	1610	115.4292	119.6564
53	8589	–21	1716	116.1911	119.6600
54	5266	–7	16	119.6564	121.9232
55	284	–21	11	121.0622	122.2725
56	15671	–28	1459	119.1162	121.9261
Category	Trait Description	Type			
-------------------	--	---------------			
Morphology	Related with growth rate, as well as mortality rates, longevity and reproduction	continuous			
	The vertical distance at the top of the body	numerical			
	The head depth along the eye’s vertical axis				
	The vertical distance from the snout to the posterior margin of operculum				
	Distance from starting point to end of the pectoral fin				
	PFi/PFb, pectoral fin position, representing maneuverability of the pectoral fin				
	CFD/CPd, the caudal peduncle throttling, representing caudal propulsion efficiency through reduction of drag				
	Eh/Hd, representing the eye position				
	Mo/Hd, oral gape position, representing feeding method in the column				
Trophic adaptability					
Feeding habit	Parasitic	1			
	Detritivorous	2			
	Planktivorous	3			
	Herbivorous	4			
	Omnivorous	5			
	Invertivorous	6			
	Carnivorous	7			
	Piscivorous	8			
Habitat	The position a species occupies in a food chain	numerical			
Trophic level	Pelagic	1			
	Pelagic-neritic	2			
	Benthopelagic	3			
	Demersal	4			
	Marine	1			
	Marine, river, lake	2			
	Marine, river	3			
	River	4			
	River, Lake,	5			
	River, Lake, stream	6			
	River, stream	7			
	Lake	8			
	Lake, stream	9			
	Stream	10			
Water temperature	Tropical	1			
	Subtropical	2			
	Temperate	3			
	High altitude	4			

Table 2
Catalogs of fish species traits and detailed description for determining functional diversity.
from available formalin fixed specimens. We extracted data for feeding habit and trophic level from
the literature [4] and Appendix A. Data on water zone, water column position, and water temperature
suitable for a species were extracted by reviewing the distributional information from referential
sampling reports. When physiological and ecological knowledge of a species was not available, we
extrapolated the data for the genus to the species level. Traits in ordinal, nominal, and continuous
data were then numeralized: For the numerical data, an average value was calculated and assigned to
each individual [5] when more than one value was available for a given species; for the nominal data,
the trait status received different values based on its category.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41476149, No.
31560181). The authors give great thanks to two anonymous reviewers for their constructive
suggestions.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/
j.dib.2018.10.093.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.093.

References

[1] B. Kang, X.X. Huang, Y.Z. Yan, Y.R. Yan, H.D. Lin, Continental-scale analysis of taxonomic and functional fish diversity in the
Yangtze River, Glob. Ecol. Conserv. 15 (2018) e00442.
[2] Changjiang Water Source Committee, Atlas of the Changjiang River basin, China Cartographic Publishing House, Beijing,
China, 1999.
[3] R. Froese, D. Pauly (Eds.), FishBase, World Wide Web Electronic Publication, 2018 (www.fishbase.org).
[4] Fish laboratory of Hubei Institute of Hydrobiology, The Yangtze Fishes, Science Press, Beijing, 1976.
[5] A. Siefert, C. Ravenscroft, M.D. Weiser, N. Swenson, Functional beta-diversity patterns reveal deterministic community
assembly processes in eastern North American trees, Glob. Ecol. Biogeogr. 22 (2013) 682–691.