Managing Unbounded-Length Keys in
Comparison-Driven Data Structures with Applications
to On-Line Indexing

Amihood Amir
Department of Computer Science
Bar-Ilan University, Israel
and
Department of Computer Science
John Hopkins University, Baltimore MD

Gianni Franceschini
Dipartimento di Informatica
Università di Pisa, Italy

Roberto Grossi
Dipartimento di Informatica
Università di Pisa, Italy

Tsvi Kopelowitz
Department of Computer Science
Bar-Ilan University, Israel

Moshe Lewenstein
Department of Computer Science
Bar-Ilan University, Israel

Noa Lewenstein
Department of Computer Science
Netanya College, Israel

*Parts of this paper appeared as extended abstracts in [3] [20].
Abstract

This paper presents a general technique for optimally transforming any dynamic data structure that operates on atomic and indivisible keys by constant-time comparisons, into a data structure that handles unbounded-length keys whose comparison cost is not a constant. Examples of these keys are strings, multi-dimensional points, multiple-precision numbers, multi-key data (e.g. records), XML paths, URL addresses, etc. The technique is more general than what has been done in previous work as no particular exploitation of the underlying structure of is required. The only requirement is that the insertion of a key must identify its predecessor or its successor.

Using the proposed technique, online suffix tree construction can be done in worst case time $O(\log n)$ per input symbol (as opposed to amortized $O(\log n)$ time per symbol, achieved by previously known algorithms). To our knowledge, our algorithm is the first that achieves $O(\log n)$ worst case time per input symbol. Searching for a pattern of length m in the resulting suffix tree takes $O(\min(m \log |\Sigma|, m + \log n) + tocc)$ time, where $tocc$ is the number of occurrences of the pattern. The paper also describes more applications and show how to obtain alternative methods for dealing with suffix sorting, dynamic lowest common ancestors and order maintenance.

The technical features of the proposed technique for a given data structure D are the following ones. The new data structure D' is obtained from D by augmenting the latter with an oracle for strings, extending the functionalities of the Dietz-Sleator list for order maintenance [16,47]. The space complexity of D' is $\mathcal{S}(n) + O(n)$ memory cells for storing n keys, where $\mathcal{S}(n)$ denotes the space complexity of D. Then, each operation involving $O(1)$ keys taken from D' requires $O(\mathcal{T}(n))$ time, where $\mathcal{T}(n)$ denotes the time complexity of the corresponding operation originally supported in D. Each operation involving a key y not stored in D' takes $O(\mathcal{T}(n) + |y|)$ time, where $|y|$ denotes the length of y. For the special case where the oracle handles suffixes of a string, the achieved insertion time is $O(\mathcal{T}(n))$.
1 Introduction

Many applications manage keys that are arbitrarily long, such as strings, multi-dimensional points, multi-precision numbers, multi-key data, URL addresses, IP addresses, XML path strings and that are modeled either as k-dimensional keys for a given positive integer $k > 1$, or as variable-length keys. In response to the increasing variety of these applications, the keys need to be maintained in sophisticated data structures. The comparison of any two keys is more realistically modeled as taking time proportional to their length, introducing an undesirable slowdown factor in the complexity of the operations thus supported by the known data structures.

More efficient ad hoc data structures have been designed to tackle this drawback. A first version of lexicographic or ternary search trees [9] dates back to [29] and is an alternative to tries. Each node contains the ith symbol of a k-dimensional key along with three branching pointers [left, middle, right] for the three possible comparison outcomes [$<, =, >$] against that element. The dynamic balancing of ternary search trees was investigated with lexicographic D-trees [35], multi-dimensional B-trees [24], lexicographic globally biased trees [8], lexicographic splay trees [44], k-dimensional balanced binary search trees [21], and balanced binary search trees or kBB-trees [49]. Most of these data structures make use of sophisticated and involved techniques to support search, insert, and delete of a key of length k in a given set of n keys, in $O(k + \log n)$ time [8, 21]. Some others support also split and concatenate operations in $O(k + \log n)$ time [24, 35, 44, 49]. Moreover, other data structures allow for weighted keys (e.g. access frequencies) and the $\log n$ term in their time complexity is replaced by the logarithm of the ratio between the total weights and the weight of the key at hand [8, 35, 44, 49].

This multitude of ad hoc data structures stems from the lack of a general data structural transformation from indivisible (i.e. constant-time comparable) keys to strings. Many useful search data structures, such as AVL-trees, red-black trees [46], (a, b)-trees [27], weight-balanced BB[\alpha]-trees [38], self-adjusting trees [44], and random search trees [42], to name a few, are currently available. They exhibit interesting combinatorial properties that make them attractive both from the theoretical and from the practical point of view. They are defined on a set of indivisible keys supporting a total order relation $<$. Searching and updating is driven by constant-time comparisons against the keys stored in them. Data structuring designers successfully employ these data structures in many applications (e.g. the C++ Standard Template Library [43] or the LEDA package [37]). When dealing with keys of length k, it is natural to see if they can reuse their well-suited data organizations without incurring in the slowdown factor of $O(k)$ in the time cost for these solutions.

A first step for exploiting the body of knowledge mentioned above, thus obtaining new data structures for managing strings, has been presented theoretically in [22] and validated experimentally in [15]. This general technique exploits the underlying structure of the data structures by considering the nodes along the access paths to keys, each node augmented with a pair of integers. In order to apply it to one’s favorite data structures, the designer must know the combinatorial properties and the invariants that are used to search and update those data structures, so as to deal with all possible access paths to the same node. This depends on how the underlying (graph) structure is maintained through the creation and destruction of nodes and the updates of some internal pointers. (For example, we may think of the elementary operations that are performed by the classical insertion or deletion algorithm for binary search trees, in terms of the access paths from the root towards internal nodes or leaves.) While a general scheme is described for searching under this requirement, updating is discussed on an individual basis for the above reason. A random access path, for example, cannot be managed unless the possible access paths are limited in number. Also, adding an internal link may create many access paths to a given node. Related techniques, although not as general as that in [22], have been explored in [28, 40] for specific data structures being extended to manage strings.
In this paper, we proceed differently. We completely drop any topological dependence on the underlying data structures and still obtain the asymptotic bounds of previous results. The goal is to show that a more general transformation is indeed possible. We present a general technique that is capable of reusing many kinds of (heterogeneous) data structures so that they can operate on strings and unbounded-length keys. It is essentially a black-box technique that just requires that each such data structure, say D, is driven by constant-time comparisons among the keys (i.e. no hashing or bit manipulation of the keys) and that the insertion of a key into D identifies the predecessor or the successor of that key in D. We are then able to transform D into a new data structure, D', storing n strings as keys while preserving all the nice features of D.

Asymptotically speaking, this transformation is costless. First, the space complexity of D' is $\mathcal{O}(n)$, where $\mathcal{O}(n)$ denotes the space complexity of D and the additional $\mathcal{O}(n)$ is for the (pointers to the) strings. (We note that the input strings actually occupy memory, but we prefer to view them as external to the data structure as they are not amenable to changes. Hence, we just store the pointers to strings, not the strings themselves). Second, each operation involving $O(1)$ strings taken from D' requires $O(\mathcal{O}(n))$ time, where $\mathcal{O}(n)$ denotes the time complexity of the corresponding operation originally supported in D. Third, each operation involving a string y not stored in D' takes $O(\mathcal{O}(n) + |y|)$ time, where $|y|$ denotes the length of y.

We also consider the special case where the strings are suffixes of a given string. In this special case if we insert the strings in reverse ordering then all the previously claimed results hold, and, on top of that, we can implement the insertion operation of a suffix in $O(\mathcal{O}(n))$ time.

Our technique exploits the many properties of one-dimensional searching, and combines techniques from data structures and string algorithms in a variety of ways. Formally, we manage input strings x_1, x_2, \ldots, x_n of total length $M = \sum_{i=1}^{n} |x_i|$. Each string x_i is a sequence of $|x_i|$ symbols drawn from a potentially unbounded alphabet Σ, and the last symbol of x_i is a special endmarker less than any symbol in Σ. In order to compare two strings x and y, it is useful to employ the length of their longest common prefix, defined as $lcp(x, y) = \max\{\ell \geq 0 \mid x[1..\ell] = y[1..\ell]\}$ (here, $\ell = 0$ denotes empty prefixes). Given that length, we can compare x and y in constant time by simply comparing their first mismatching symbol, which is at position $1 + lcp(x, y)$ in both x and y.

Keeping this fact in mind, we can use the underlying data structure D as a black box. We use simple properties of strings and introduce a powerful oracle for string comparisons that extends the functionalities of the Dietz–Sleator list $[16, 47]$, which is able to maintain order information in a dynamic list. We call the resulting structure a DS_{lcp} list. This data structure stores the sorted input strings in $O(n)$ memory cells of space and allows us to find the length of the longest common prefix of any two strings stored in the DS_{lcp} list, in constant time. We can maintain a dynamic DS_{lcp} list in constant time per operation (see Section 3 for the operations thus supported) by using a simple but key idea in a restricted dynamic version of the range minimum query algorithm $[6]$. We cannot achieve constant time per operation in the fully dynamic version of this problem because we would get the contradiction of comparison-based sorting in $o(n \log n)$ time by using range minima data structures as priority queues.

Note that for general strings in the case when $\mathcal{O}(n) = \Omega(\log n)$ one can use the following alternative technique. Use a compaction trie with special handling of access to children (with weight balanced trees), see e.g. $[14]$, in $O(|y| + \log n)$ time in the worst case. This absorbs the $O(\mathcal{O}(n) + |y|)$ cost of insertion. Then

1Our technique applies to the classical comparison-based RAM model adopted in many algorithms for sorting and searching. Assuming that Σ is unbounded is not a limitation. When Σ is small, adjacent symbols can be packed into the same word of memory. The lexicographic order is preserved by considering the words as individual symbols in a larger alphabet, with shorter strings consequently. We do not treat here the case of RAM with word size bounded by w bits.
on the nodes one can use the dynamic lowest common ancestor queries [12] as the powerful oracle needed. Then it is sufficient to follow Section 2.2, the section in which one exploits lcp values in comparison-driven data structures.

Field of interests for our technique include the following scenarios.

1. Operations with sub-logarithmic costs, when $T(n) = o(\log n)$\footnote{Note that deletions have no such restrictions as insertions.} This happens:
 - in the worst case (e.g. D is a finger search tree [25]).
 - in an amortized sense (e.g. D is a self-adjusting tree [44]).
 - with high probability (e.g. D is a treap [42]), when considering access frequencies in the analysis.

2. One desires to use a simpler data structure than the intensive dynamic lca data structure of [12].

3. For the technique for suffixes. Here the running time of the insertion operation is $O(T(n))$ instead of $O(T(n) + |y|)$ and, hence, the above-described method does not hold. Section 7 is dedicated to such an application.

We also remark that we do not claim that our technique is as amenable to implementation in a practical setting. (We suggest to use the techniques devised in [22] and experimented in [15] for this purpose.) Nevertheless, we believe that our general technique may be helpful in the theoretical setting for providing an immediate benchmark to the data structuring designer. When inventing a new data structure for strings, the designer can easily realize whether it compares favorably to the known data structures, whose functionalities can be smoothly extended to strings without giving up their structural and topological properties.

Using our general technique, we obtain previous theoretical bounds in an even simpler way. We also obtain new results on searching and sorting strings. For example, we can perform suffix sorting, a crucial step in text indexing [33] and in block sorting compression based on the Burrows-Wheeler transform, in $O(n + \sum_{i=1}^{n} T(i))$ time, also for unbounded alphabet Σ. This result is a simple consequence of our result, when applied to the techniques for one-dimensional keys given, for example, in [36]. Another example of use is that of storing implicitly the root-to-nodes paths in a tree as strings, so that we can support dynamic lowest common ancestor (lca) queries in constant time, where the update operations involve adding/removing leaves. In previous work, this result has been obtained with a special data structure based upon a more sophisticated solution treating also insertions that split arcs [12]. We obtain a simple method for a restricted version of the problem.

We present another major contribution of the paper, using our framework for online indexing. Indexing is one of the most important paradigms in searching. The idea is to preprocess the text and construct a mechanism that will later provide answer to queries of the form “does a pattern P occur in the text” in time proportional to the size of the pattern rather than the text. The suffix tree [7,13,16,17] and suffix array [11,12] have proven to be invaluable data structures for indexing.

One of the intriguing questions of the algorithms community is whether there exists a real-time indexing algorithm. An algorithm is online if it accomplishes its task for the ith input without needing the $i + 1$st input. It is real-time if, in addition, the time it operates between inputs is a constant. While not all suffix trees algorithms are online (e.g. McCreight [34], Farach [17]) some certainly are (e.g. Weiner [50], Ukkonen [48]). Nevertheless, the quest for a real-time indexing algorithm is over 30 years old [45]. It should be remarked that Weiner basically constructs an online reverse prefix tree. In other words, to use Weiner's
algorithm for online indexing queries, one would need to reverse the pattern. For real-time construction there is some intuition for constructing prefix, rather than suffix trees, since the addition of a single symbol in a suffix tree may cause $\Omega(n)$ changes, whereas this is never the case in a prefix tree.

It should be remarked that for unbounded alphabets, no real-time algorithm is possible since the suffix tree can be used for sorting. All known comparison-based online suffix tree construction algorithms for suffix tree or suffix array construction run in amortized $O(\log n)$ time per symbol and answer search queries in $O(m \log n + tocc)$, e.g. suffix trees, or $O(m + \log n + tocc)$, e.g. suffix arrays. The latter uses non-trivial pre-processing for LCP (longest common prefix) queries. However, the best that can be hoped for (but not hitherto achieved) is an algorithm that pays $\Theta(\log n)$ time for every single input symbol.

The problem of dynamic indexing, where changes can be made anywhere in the text has been addressed as well [23][18]. Real-time and online indexing can be viewed as a special case of dynamic indexing, where the changes made are insertions and deletions at the end (or, symmetrically, the beginning) of the text. Sahinalp and Vishkin [41] provide a dynamic indexing where updates are done in time $O(\log^3 n)$. This result was improved by Alstrup, Brodal and Rauhe [1] to an $O(\log^2 n \log \log n \log^* n)$ update time and $O(m + \log n \log \log n + tocc)$ search time. The motivation for real-time indexing is the case where the data arrives in a constant stream and indexing queries are asked while the data stream is still arriving. Clearly a real-time suffix tree construction answers this need.

Our contribution is the first algorithm for online suffix tree construction over unbounded alphabets. Our construction has worst case $O(\log n)$ time processing per input symbol, where n is the length of the text input so far. Furthermore, the search time for a pattern of length m is $O(\min\{m \log |\Sigma|, m + \log n\})$, where Σ is the alphabet. This matches the best times of the amortized algorithms in the comparison model. We do so by using a balanced search tree on the suffixes of our text using our proposed technique. This enables insertions (and deletions) in time $O(\log n)$ and query time of $O(m + \log n + tocc)$. Aside from the balanced search tree itself, the innovative part of the online indexing is the way we maintain and insert incoming symbols into a suffix tree in time $O(\log n)$ per symbol. We employ interesting observations that enable a binary search on the path when a new node needs to be added to the suffix tree. Note that deletions of characters from the beginning of the text can also be handled within the same bounds. We note that in the meantime there has been some progress on the problem. Amir and Nor [4] showed a method achieving real-time pattern matching, i.e. $O(1)$ per character addition, in the case where the alphabet size is of constant size. However, the result (1) does not seem to scale up to a non-constant sized alphabet and (2) does not find the matches of a pattern (rather it announces whether there exists a match of the pattern somewhere in the text when queried). Very recently, new algorithms have been proposed in [10][31].

The paper is organized as follows. In Section 2, we describe our general technique, assuming that the DS_{lcp} list is given. We detail the implementation of the DS_{lcp} list in Section 3. We discuss an interesting application in Section 4. In Section 5 we present the technique for suffixes and in Section 6 we give a couple of applications. Finally, we discuss our solutions for online suffix tree construction in Section 7.

2 The General Technique for Strings

We begin with the description of our technique, which relies on an oracle for strings called the DS_{lcp} list. As previously mentioned, each string x is a sequence of symbols drawn from a potentially unbounded alphabet Σ, and the last symbol in x is a special endmarker smaller than any symbol in Σ. In order to compare any two strings x and y, we exploit the length $\ell = lcp(x, y) = \max\{\ell \geq 0 \mid x[1..\ell] = y[1..\ell]\}$ of their longest common prefix. Since we use endmarkers, if $\ell = |x|$, then $\ell = |y|$ and so $x = y$. Otherwise, it is $x < y$ in lexicographic order if and only if $x[\ell + 1] < y[\ell + 1]$. Hence, given $lcp(x, y)$, we can check $x \leq y$ in
constant time. This is why we center our discussion around the efficient computation of the \(lcp \) values.

Formally, the \(DS_{lcp} \) list stores a sorted sequence of strings \(x_1, x_2, \ldots, x_n \) in non-decreasing lexicographic order, where each string is of unbounded length and is referenced by a pointer stored in a memory cell (e.g. \texttt{char *} \texttt{p} in C language). A \(DS_{lcp} \) list \(L \) supports the following operations:

- Query \(DS_{lcp}(x_p, x_q) \) in \(L \). It returns the value of \(lcp(x_p, x_q) \), for any pair of strings \(x_p \) and \(x_q \) stored in \(L \).
- Insert \(y \) into \(L \). It assigns to \(y \) the position between two consecutive keys \(x_{k-1} \) and \(x_k \). Requirements: \(x_{k-1} \leq y \leq x_k \) holds, and \(lcp(x_{k-1}, y) \) and \(lcp(y, x_k) \) are given along with \(y \) and \(x_{k-1} \) (or, alternatively, \(y \) and \(x_k \)).
- Remove string \(x_i \) from its position in \(L \).

We show in Section 3 how to implement the \(DS_{lcp} \) list with the bounds stated below.

Theorem 1 A \(DS_{lcp} \) list \(L \) can be implemented using \(O(n) \) memory cells of space, so that querying for \(lcp \) values, inserting keys into \(L \) and deleting keys from \(L \) can be supported in \(O(1) \) time per operation, in the worst case.

We devote the rest of this section on how to apply Theorem 1 to a comparison-driven data structure. The \(DS_{lcp} \) list \(L \) is a valid tool for dynamically computing \(lcp \) values for the strings stored in \(L \). It is a natural question to see if we can also exploit \(L \) to compare against an arbitrary string \(y \not\in L \), which we call computation on the fly of the \(lcp \) values since they are not stored in \(L \), nor can be inferred by accessing \(L \). Note that this operation does not immediately follow from the aforementioned operations, and we describe in Section 2.1 how to perform them.

After that, we introduce our general technique for data structures in Section 2.2, where we prove the main result of this section (Theorem 2), which allows us to reuse a large corpus of existing data structures as black boxes.

Theorem 2 Let \(D \) be a comparison-driven data structure such that the insertion of a key into \(D \) identifies the predecessor or the successor of that key in \(D \). Then, \(D \) can be transformed into a data structure \(D' \) for strings such that

- the space complexity of \(D' \) is \(\mathcal{I}(n) + O(n) \) for storing \(n \) strings as keys (just store the references to strings, not the strings themselves), where \(\mathcal{I}(n) \) denotes the native space complexity of \(D \) in the number of memory cells occupied;
- each operation involving \(O(1) \) strings in \(D' \) takes \(O(\mathcal{I}(n)) \) time, where \(\mathcal{I}(n) \) denotes the time complexity of the corresponding operation originally supported in \(D \);
- each operation involving a string \(y \) not stored in \(D' \) takes \(O(\mathcal{I}(n) + |y|) \) time, where \(|y| \) denotes the length of \(y \).

2.1 Computing the \(lcp \) values on the fly

We now examine the situation in which we have to compare any given string \(y \) against an arbitrary sequence of strings \(x \in L \) (with some of the latter ones possibly repeated inside the sequence). If \(y \) has to be
Compute \(lcp(x, y) \) on the fly:

1: \(m \leftarrow DS_{\text{lcp}}(\text{best_friend}, x) \)
2: IF \(m \geq \text{best_lcp} \) THEN
3: \(m \leftarrow \text{best_lcp} \)
4: WHILE \(x[m + 1] = y[m + 1] \) DO \(m \leftarrow m + 1 \)
5: \(\text{best_friend} \leftarrow x \)
6: \(\text{best_lcp} \leftarrow m \)
7: RETURN \(m \)

Figure 1: Code for computing \(lcp(x, y) \) values on the fly, where \(x \in L \) and \(y \notin L \).

Compared \(g \) times against strings in \(L \), it follows a simple lower bound of \(\Omega(g + |y|) \) in the worst case time complexity, since \(y \)'s symbols have to be read and we have to produce \(g \) answers. We show how to produce a matching upper bound. We figure out ourselves in the worst case situation, namely, the choice of \(x \in L \) is unpredictable from our perspective. Even in this case, we show how to compute \(lcp(x, y) \) efficiently. We assume that the empty string is implicitly kept in \(L \) as the smallest string.

We employ two global variables, \(\text{best_friend} \) and \(\text{best_lcp} \), which are initialized to the empty string and to 0, respectively. During the computation, the variables satisfy the invariant that, among all the strings in \(L \) compared so far against \(y \), the one pointed to by \(\text{best_friend} \) gives the maximum \(lcp \) value, and that value is \(\text{best_lcp} \). We now have to compare \(y \) against \(x \), following the simple algorithm\(^3\) shown in Figure 1. Specifically, using \(L \), we compute \(m = DS_{\text{lcp}}(\text{best_friend}, x) \), since both strings are in \(L \). If \(m < \text{best_lcp} \), we can infer that \(lcp(x, y) = m \) and return that value. Otherwise, we may possibly extend the number of matched characters in \(y \) storing it into \(\text{best_lcp} \), thus finding a new \(\text{best_friend} \). It is a straightforward task to prove the correctness of the invariant (note that it works also in the border case when \(x = \text{best_friend} \)). It is worth noting that the algorithm reported in Figure 1 is a computation of a simplification of a combinatorial property that has been indirectly rediscovered many times for several string data structures.

We now analyze the cost of a sequence of \(g \) calls to the code in Figure 1, where \(y \) is always the same string while \(x \) may change at any different call. Let us assume that the instances of \(x \) in the calls are \(x_1', x_2', \ldots, x_g' \in L \), where the latter strings are not necessarily distinct and/or sorted. For the given string \(y \notin L \), the total cost of computing \(lcp(x_1', y) \), \(lcp(x_2', y) \), \ldots, \(lcp(x_g', y) \) on the fly with the code shown in Figure 1 can be accounted as follows. The cost of invoking the function is constant unless we enter the body of the while loop at line 4, to match further characters while increasing the value of \(m \). We can therefore restrict our analysis to the strings \(x_i' \in L \) that cause the execution of the body of that while loop. Let us take the \(k \)th such string, and let \(m_k \) be the value of \(m \) at line 6. Note that the body of the while loop at line 4 is executed \(m_k - m_{k-1} \) times (precisely, this is true since \(\text{best_lcp} = m_{k-1}, \text{where } m_0 = 0 \)). Thus the cost of computing the \(lcp \) value for such a string is \(O(1 + m_k - m_{k-1}) \).

We can sum up all the costs. The strings not entering the while loop contribute each for a constant number of steps; the others contribute more, namely, the \(k \)th of them requires \(O(1 + m_k - m_{k-1}) \) steps. As a result, we obtain a total cost of \(O(g + \sum_k (m_k - m_{k-1})) = O(g + |y|) \) time, since \(m_k \geq m_{k-1} \) and \(\sum_k (m_k - m_{k-1}) \) is upper bounded by the length of the longest matched prefix of \(y \), which is in turn at most \(|y| \).

Lemma 1 The computation on the fly of any sequence of \(g \) \(lcp \) values involving a given string \(y \notin L \) and some strings in \(L \) can be done in \(\Theta(g + |y|) \) time in the worst case.

\(^3\)Although the code in Figure 1 can be improved by splitting the case \(m \geq \text{best_lcp} \) of line 2 into two subcases, it does not improve the asymptotic complexity.
Note that if it was the case that \(y \in L \) we could easily obtain a bound of \(O(g) \) in Lemma 1 using Theorem 1. However, we assumed that \(y \notin L \). Nevertheless, Lemma 1 allows us to reduce the cost from \(O(g \times |y|) \) to \(O(g + |y|) \). Finally, letting \(\ell = \max_{1 \leq i \leq g} \text{lcp}(y, x') \leq |y| \), we can refine the upper and lower bounds of Lemma 1, obtaining an analysis of \(\Theta(g + \ell) \) time in the worst case.

2.2 Exploiting lcp values in comparison-driven data structures

We can now finalize the description of our general technique, proving Theorem 2. The new data structure \(\mathcal{D}' \) is made up of the original data structure \(\mathcal{D} \) along with the \(DS_{lcp} \) list \(L \) mentioned in Theorem 1, and uses the on the fly computation described in Section 2.1. The additional space is that of \(L \), namely, \(O(n) \) words of memory.

For the cost of the operations, let us assume first that the generic operation requiring \(\mathcal{F}(n) \) time does not change the set of keys stored in the original \(\mathcal{D} \). When this operation requires to compare two atomic keys \(x \) and \(x' \) in \(\mathcal{D} \), we compare the homologous strings \(x \) and \(x' \) in \(\mathcal{D}' \) by using \(DS_{lcp}(x, x') \) to infer whether \(x < x' \), \(x = x' \), or \(x > x' \) holds, in constant time by Theorem 1. Since there are at most \(\mathcal{F}(n) \) such comparisons, it takes \(O(\mathcal{F}(n)) \) time.

On the other hand, an operation can also employ a string that is not stored in \(\mathcal{D}' \). When it compares such a string, say \(y \), with a string \(x \) already in \(\mathcal{D}' \), we proceed as in Section 2.1 to infer the outcome of comparisons, where \(g \leq \mathcal{F}(n) \). By Lemma 1 the computation takes \(O(\mathcal{F}(n) + |y|) \) time.\(^4\)

It remains to discuss the case of operations insertion or deletion of a string \(y \) into (or out of) \(\mathcal{D}' \). Let us consider the insertion of \(y \). While simulating the insertion of \(y \) into \(\mathcal{D} \), at most \(\mathcal{F}(n) \) keys already in \(\mathcal{D}' \) have to be compared to \(y \), which takes \(O(\mathcal{F}(n)) \) overall time. In the end, we obtain the successor or predecessor of \(y \) in \(\mathcal{D} \), by the hypothesis of Theorem 2. Using \(L \), we know both and, therefore, we can compute their \(lcp \) values with \(y \) in \(O(|y|) \) time by scanning their first \(|y| \) symbols at most, thus, computing the \(lcp \)'s with their predecessor and successor, satisfying the requirement for inserting \(y \) into \(L \) in \(O(1) \) time. The final cost is upper bounded by Lemma 1 where \(g \leq \mathcal{F}(n) \). The deletion of a string \(x \) is much simpler, involving its removal from \(L \) in \(O(1) \) time by Theorem 1. In summary, the original cost of the operations in \(\mathcal{D} \) preserve their asymptotical complexity in \(\mathcal{D}' \) except when new strings \(y \) are considered. In that case there is an additive term of \(|y| \) in the time complexity. However, this is optimal.

3 Implementation of the \(DS_{lcp} \) List

We describe how to prove Theorem 1 implementing the \(DS_{lcp} \) list \(L \) introduced in Section 2. Recall that the strings \(x_1, x_2, \ldots, x_n \) in \(L \) are in lexicographic order. We will use the following well known observation.

Lemma 2 \[^3\] For \(p < q \) we have \(\text{lcp}(x_p, x_q) = \min\{\text{lcp}(x_k, x_{k+1}) \mid p \leq k < q \} \).

In other words, storing only the \(lcp \) value between each key \(x_k \) and its successor \(x_{k+1} \) in \(L \), for \(1 \leq k < n \), we can answer arbitrary \(lcp \) queries using the so-called range minimum queries \([6] \).

We are interested in discussing the dynamic version of the problem. In its general form, this is equivalent to sorting since it can implement a priority queue. Fortunately, we can attain constant time per operation

\[^4\]Actually, as observed at the end of Section 2.1, it takes \(O(\mathcal{F}(n) + \text{best} lcp_p - \text{best} lcp_1) \) time, where \(\text{best} lcp_1 \) is the initial value of \(\text{best} lcp \) and \(\text{best} lcp_p \) is its final value. This observation is useful when accounting for the complexity of a sequence of correlated insertions (as in Theorem 5), since it yields a telescopic sum.
in our case. We consider a special form of insertion and deletion and, more importantly, we impose the additional constraint that the set of entries can only vary \textit{monotonically}, which we define shortly.

The type of insertion and deletion that we discuss is as follows. Let \(L \) be a list of integers. An insertion is the replacement of an element of entry \(e \) in the list with two new (adjacent) elements \(e' \) and \(e'' \). A deletion is the replacement of two (adjacent) elements \(e' \) and \(e'' \) with an element \(e \).

\textbf{Monotonicity:} We say that an insertion or deletion is \textit{monotone} if \(e = \min\{e', e''\} \).

In our setting the monotonicity constraint is not artificial, being dictated by the requirements listed in Section \ref{sec:range-minima} when inserting (or deleting) string \(y \) between \(x_k \) and \(x_{k+1} \). A moment of reflection shows that both \(e' = \lcp(x_k, y) \) and \(e'' = \lcp(y, x_{k+1}) \) are greater than or equal to \(e = \lcp(x_k, x_{k+1}) \), and at least one of them equals \(e \).

We can therefore reduce our implementation of the \(DS_{\lcp} \) list to the following problem. We are given a dynamic sequence of \(m \) values \(e_1, e_2, \ldots, e_m \), and want to maintain the range minima \(\text{rmq}(i, j) = \min\{e_i, e_{i+1}, \ldots, e_j\} \), for \(1 \leq i, j \leq n \), under \textit{monotone} insertions and deletions. A monotone insertion of \(e' \) and \(e'' \) instead of \(e_k \) satisfies \(e_k = \min\{e', e''\} \); a monotone deletion of \(e_{k-1} \) and \(e_k \) replaced by \(e \) satisfies \(e = \min\{e_{k-1}, e_k\} \) (where we assume \(e_0 = e_{m+1} = -\infty \)). To implement our \(DS_{\lcp} \) list \(L \), we observe that \(m = n - 1 \) and \(e_k = \lcp(x_k, x_{k+1}) \), for \(1 \leq k \leq n - 1 \), and that insertions and deletions in \(L \) correspond to monotone insertions and deletions of values in our range minima. Note that the insertion of \(y \) can be viewed as either the insertion of entry \(e' \) to the left of entry \(e \) (when \(e' \geq e'' = e \)) or the insertion of \(e'' \) to the right of \(e \) (when \(e'' \geq e' = e \)).

For some intuition on why monotonicity in a dynamic setting helps consider the following. Suppose we want to build some kind of tree, whose leaves store the elements \(e_1, e_2, \ldots, e_m \) in left-to-right order. Pick an internal node \(u \) that spans, say, elements \(e_i, e_{i+1}, \ldots, e_j \), in its descendant leaves. We maintain prefix minima \(p_k = \min\{e_i, e_{i+1}, \ldots, e_k\} \) and also suffix minima \(q_k = \min\{e_k, e_{k+1}, \ldots, e_j\} \) for \(i \leq k \leq j \). When inserting \(e' \) and \(e'' \) instead of \(e_k \) monotonically, each can change \textit{just two} prefix minima, whereas, in general, the prefix minima \(p_k, p_{k+1}, \ldots, p_j \) and the suffix minima \(q_i, \ldots, q_k \) can all change without our assumption on the monotonicity. However, with our monotonic assumption, if we insert say \(e' \) first between \(e_{k-1} \) and \(e_{k+1} \), then we insert a new prefix minimum \(p = \min\{p_{k-1}, e'\} \) and \(q = \min\{e', q_{k+1}\} \). The same holds for \(e'' \). We use this fact as a key observation to obtain constant-time complexity.

For implementing the \(DS_{\lcp} \) list we adopt a two-level scheme. We introduce the upper level consisting of the \textit{main tree} in Section \ref{sec:main-tree} and the lower level populated by \textit{micro trees} in Section \ref{sec:micro-trees}. We sketch the method for combining the two levels in Section \ref{sec:combining}. The net result is a generalization of the structure of Dietz and Sleator that works for multi-dimensional keys, without relying on the well-known algorithm of Willard \cite{willard1986data} to maintain order in a dense file (avoiding Willard’s data structures for the amortized case has been suggested in \cite{landau1987new}). We focus on insertions since deletions are simpler and can be treated with partial rebuilding techniques, see e.g. \cite{thorup2001simpler}, since deletions replace two consecutive entries with the smallest of the two and so do not change the range minima of the remaining entries. When treating information that can be represented with \(O(\log n) \) bits, we will make use of table lookups in \(O(1) \) time. The table lookup idea is explained below. The reader may verify that we also use basic ideas from previous work \cite{dietz1985amortized,sleator1985self,landau1987new}.

\section{Main tree}

For the basic shape of the main tree we follow the approach of weight-balanced trees \cite{dietz1985amortized}. The main tree has \(m \) leaves (for now we assume \(m = n + 1 \), all the \(\lcp \)'s including the two at either end, later we will have a smaller main tree and \(m \) will be smaller, see Section \ref{sec:main-tree}), all on the same level (identified as level 0), each leaf containing one entry of our range minima problem. The weight \(w(v) \) of a node \(v \) is (i) the number of
its children (leaves), if \(v \) is on level 1 (ii) the sum of the weights of its children, if \(v \) is on a level \(l > 1 \). Let \(b > 4 \) be the branching parameter, so that \(b = O(1) \). We maintain the following constraints on the weight of a node \(v \) on a level \(l \).

1. If \(l = 1 \), \(b \leq w(v) \leq 2b - 1 \).
2. If \(l > 1 \), \(w(v) < 2b^l \).
3. If \(l > 1 \) and \(v \) is not the root of the tree, \(w(v) > \frac{1}{2}b^l \).

From the above constraints it follows that each node on a level \(l > 1 \) in the main tree has between \(b/4 \) and \(4b \) children (with the exception of the root that can have a minimum of two children). From this we can easily conclude that the height of the main tree is \(h = O(\log_b m) = O(\log m) \).

When a new entry is inserted as a new leaf \(v \) in the main tree, any ancestor \(u \) of \(v \) that does not respect the weight constraint is split into two new nodes and the new child is inserted in the parent of \(u \)(unless \(u \) is the root, in which case a new root is created). That rebalancing method has an important property.

Lemma 3 ([5]) After splitting a node \(u \) on level \(l > 1 \) into nodes \(u' \) and \(u'' \), at least \(b/l/2 \) inserts have to be performed below \(u' \) (or \(u'' \)) before splitting again.

The nodes of the main tree are augmented with two secondary structures.

The first secondary structure is devoted to \(\text{lca} \) queries. Each internal node \(u \) is associated with a numeric identifier \(\text{sid}(u) \) representing its position among its siblings; since the maximum number of children of a node is a constant, we need only a constant number of bits, say \(c_b \), to store each identifier. Each leaf \(v \) has two vectors associated, \(\mathcal{P}_v \) and \(\mathcal{A}_v \). Let \(u_i \) be the \(i \)'th ancestor of \(v \) (starting from the root): the \(i \)'th location of \(\mathcal{P}_v \) contains the identifier \(\text{sid}(u_i) \), and the \(i \)'th location of \(\mathcal{A}_v \) contains a pointer to \(u_i \). Note that \(\mathcal{P}_v \) occupies \(h \times c_b = O(\log m) \) bits and so we can use table lookup, which we will shortly explain. These auxiliary vectors are used to find the \(\text{lca} \) between any two leaves \(v', v'' \) of the main tree in constant time. First, we find \(j = \text{lcp}(\mathcal{P}_{v'}, \mathcal{P}_{v''}) \) by table lookups; then, we use the pointer in \(\mathcal{A}_v[j] \) to access the node.

The table lookup method, in our case to find the \(\text{lcp} \) of strings that are of \(O(\log m) \) length is done as follows. First recall that \(m \leq n \) and hence the string length of \(\mathcal{P}_v \) is also \(O(\log n) \) and fits into a constant number of words. Now, let us represent \(\mathcal{P}_v \) in a few consecutive words, \(\mathcal{P}_v^1, \mathcal{P}_v^2, \ldots, \mathcal{P}_v^c \) so that we use exactly \((\log n)/3 \) bits of each word (we could have chosen a different small constant to divide \(\log n \)). This still keeps the representation in a constant number of words. Now, to find the \(\text{lcp} \) between \(\mathcal{P}_{v'} \) and \(\mathcal{P}_{v''} \) we compare \(\mathcal{P}_{v'}^1 \) with \(\mathcal{P}_{v''}^1 \), etc. till we find \(\mathcal{P}_{v'}^i \neq \mathcal{P}_{v''}^i \). Now, if we can find the \(\text{lcp} \) between \(\mathcal{P}_{v'}^i \) and \(\mathcal{P}_{v''}^i \), the \(\text{lcp} \) between \(\mathcal{P}_{v'} \) and \(\mathcal{P}_{v''} \) will be computable. However, there are only \((\log n)/3 \) bits used in \(\mathcal{P}_{v'}^i \) and \(\mathcal{P}_{v''}^i \). So, we can precompute an \(\text{lcp} \) table for all the \((2^{(\log n)/3} = n^{1/3}) \times (2^{(\log n)/3} = n^{1/3}) \) possible pairs of strings that we may have. This table will be of size \(n^{2/3} \) and, hence, can be precomputed in a straightforward manner. Now all we need to do is to directly access the correct table value by addressing it with \(\mathcal{P}_{v'}^i \) and \(\mathcal{P}_{v''}^i \) and we are done.\(^5\)

The second secondary structure is devoted to maintain some range minima. Each internal node \(u \) has an associated a doubly linked list \(\mathcal{E}_u \) that contains a copy of all the entries in the descendant leaves of \(u \). The order in \(\mathcal{E}_u \) is identical to that in the leaves (i.e. the lexicographical order in which the strings are maintained). As previously mentioned, we maintain the prefix minima and the suffix minima in \(\mathcal{E}_u \). We also keep the minimum entry of \(\mathcal{E}_u \). Its purpose is to perform the following query in \(O(b) = O(1) \) time: given any two siblings \(u' \) and \(u'' \), compute the minimum of the entries stored in the \(\mathcal{E}s \) of the siblings between \(u'

\(^5\)Alternatively, we can perform the exclusive bitwise or and find the most significant bit set to 1.
and \(u'' \) (excluded). Finally, we associate with each leaf \(v \) a vector \(\mathcal{E}_v \) containing pointers to all the copies of the entry in \(v \), each copy stored in the doubly linked lists \(\mathcal{E}' \)’s of \(v \)’s ancestors.

Because of the redundancy of information, \(O(m \log m) \) words of memory is the total space occupied by the main tree, but now we are able to answer a general range minimum query \(rmq(i, j) \) for an interval \([i \ldots j]\) in constant time. We first find the lowest common ancestor \(u \) of the leaves \(v_i \) and \(v_j \) corresponding to the \(i \)th and the \(j \)th entries, respectively. Let \(u_i \) be the child of \(u \) leading to \(v_i \) and \(u_j \) the child of \(u \) leading to \(v_j \) (they must exist and we can use \(\mathcal{P}_{u_i} \) and \(\mathcal{P}_{u_j} \) for this task). We access the copies of the entries of \(i \) and \(j \) in \(\mathcal{E}_{u_i} \) and \(\mathcal{E}_{u_j} \), respectively, using \(\mathcal{C}_{u_i} \) and \(\mathcal{C}_{u_j} \). We then take the suffix minimum anchored in \(i \) for \(\mathcal{E}_{u_i} \), and the prefix minimum anchored in \(j \) for \(\mathcal{E}_{u_j} \). We also take the minima in the siblings between \(u_i \) and \(u_j \) (excluded). The minimum among these \(O(1) \) minima is then the answer to our query for interval \([i \ldots j]\).

Lemma 4 The main tree for \(m \) entries occupies \(O(m \log m) \) space, and support range minima queries in \(O(1) \) time and monotone updates in \(O(\log m) \) time.

In order to complete the proof of Lemma 4 it remains to see how the tree can be updated. We are going to give a “big picture” of the techniques used, leaving the standard details to the reader. We already said that deletions can be treated lazily with the standard partial rebuilding technique. We follow the same approach for treating the growth of the height \(h \) of the main tree and the subsequent variations of its two secondary structures, \(\mathcal{P} \), \(\mathcal{A} \), \(\mathcal{E} \), and \(\mathcal{C} \). From now on, let us assume w.l.o.g. that the insertions do not increase the height of the main tree.

When a new element \(e \) is inserted, we know by hypothesis a pointer to its predecessor \(e_k \) (or successor \(e_{k+1} \)) and the pointer to the leaf \(v \) of the main tree that receives a new sibling \(v' \) and contains the \((lcp) \) value to be changed. The creation and initialization of the vectors associated with the new leaf \(v' \) can be obviously done in \(O(\log m) \) time. Then we must propagate the insertion of the new entry in \(v' \) to its ancestors. Let \(u \) be one of these ancestors. We insert the entry into its position in \(\mathcal{E}_u \), using \(\mathcal{C}_v \), which is correctly set (and useful for setting \(\mathcal{E}'_v \)). As emphasized at the beginning of Section 3 the monotonicity guarantees that the only prefix minima changing are constant in number and near to the new entry (an analogous situation holds for the suffix minima). As long as we do not need to split an ancestor, we can therefore perform this update in constant time per ancestor.

If an ancestor \(u \) at level \(l \) needs to split in two new nodes \(u' \) and \(u'' \) so as to maintain the invariants on the weights, there may be many \(\mathcal{P}_v \), \(\mathcal{A}_v \) that need to be changed. However, a careful check verifies that there are \(O(b') \) such values that need to be changed. Moreover, we need to recalculate \(O(|\mathcal{E}_u|) = O(b') \) values of prefix and suffix minima. By Lemma 3 we can immediately conclude that the time needed to split \(u \) is \(O(1) \) in an amortized sense. A lazy approach to the construction of the lists \(\mathcal{E}_u \) and \(\mathcal{E}_{u''} \) and then to the \(O(b') \mathcal{P}_v \)’s and \(\mathcal{A}_v \)’s that need to be changed will lead to the desired worst case constant time complexity for the splitting of an internal node. This construction is fairly technical but follows closely what has been introduced in [5].

3.2 Micro trees for indirection

We now want to reduce the update time of Lemma 4 to \(O(1) \) in the worst case and the space to \(O(m) = O(n) \) words of memory. We use indirection by storing \(O(m/\log^2 n) \) lists of entries, each of size \(O(\log^2 n) \), so that their concatenation provides the list of entries stored in the leaves of the main tree described in Section 3.1. We call buckets these small lists and use the following result as in [16].

Lemma 5 If the largest bucket is split after every other \(k \) insertions into any buckets, then the size of any bucket is always \(O(k \log n) \).
Using Lemma\cite{5} with $k = \log n$, we can guarantee that the small lists will always be of size $O(\log^2 n)$. We now focus on how to store one of them in $O(\log^2 n)$ space, such that the overall space is $O(m) = O(n)$ words (plus $o(n)$ for some shared lookup tables) and the following constant-time operations are supported: insertion, deletion, split, merge, range minima (thus solving also prefix minima and suffix minima).

Each small list is implemented using one micro tree and $O(\log n)$ succinct Cartesian trees plus $O(1)$ lookup tables of size $o(n)$ that are shared among all the small lists, thus preserving asymptotically the $O(n)$ overall space bound.

A micro tree satisfies the invariants\cite{1,2,3} of the main tree in Section\cite{3.1} except that each node contains $O(\log n / \log \log n)$ entries and the fan-out is now $\Theta(\log n / \log \log n)$ instead of $O(1)$. Within each node, we also store a sorted array of $O(\log n / \log \log n)$ pointers to the entries in that node: since each pointer requires $O(\log \log n)$ bits, we can fit this array in a single word and keep it sorted under operation insertion, deletion, merge and split, in $O(1)$ time each (still table lookups).

We guarantee that a micro tree stores the $O(\log^2 n)$ entries in $O(1)$ levels, since its height is $h = O(1)$. To see why we partition these entries into sublists of size $O(\log n / \log \log n)$, which form the leaves of the micro tree. Then, we take the first and the last entry in each sublist, and copy these two entries into a new sublist of size $O(\log n / \log \log n)$, and so on, until we form the root. Note that a micro tree occupies $O(\log^2 n)$ words of memory.

Each node of the micro tree has associated a succinct Cartesian tree\cite{6,26,19}, which locally supports range minima, split, merge, insert and delete in $O(1)$ time for the $O(\log n)$ keys. The root of the Cartesian tree is the minimum entry and its (right) subtree recursively represents the entries to the left (right). The base case corresponds to the empty set which is represented by the null pointer. The observation in\cite{6} is that the range minimum from entry i to entry j is given by the entry represented by $lca(i,j)$ in the Cartesian tree. The most relevant feature is that the range minimum can be computed without probing any of the $O(\log n / \log \log n)$ entries of the micro-tree node u. Indeed, by solely looking at the tree topology of that Cartesian tree for u\cite{19}, the preorder number of the lca gives the position of the entry in u. Since the Cartesian tree has size $O(\log n / \log \log n)$, we can succinctly store it in a single word using only $O(\log n / \log \log n)$ bits. Using a set of $O(1)$ lookup tables and the Four Russian trick, it is now a standard task to locate a range minima, split into or merge two succinct Cartesian trees, insert or delete a node in it, in $O(1)$ time each.

Note that the succinct Cartesian tree gives us a position r of an entry in the micro-tree node u. We therefore need to access, in constant time, the rth entry in u after that, and the sorted array of $O(\log n / \log \log n)$ pointers inside u is aimed at this goal.

3.3 Implementing the operations (Theorem\cite{1})

In order to prove Theorem\cite{1} we adopt a high-level scheme similar to that of Dietz-Sleator lists\cite{16}. The main tree has $m = O(n / \log^2 n)$ leaves. Each leaf is associated with a distinct bucket (see Section\cite{3.2}), so that the concatenation of these buckets gives the order kept in the DS_{lcp} list. Each bucket contributes to the main tree with its leftmost and rightmost entries (actually, the range minima of its two extremal entries). To split the largest bucket every other $\log n$ insertions, we keep pointers to the buckets in a queue sorted by bucket size. We take the largest such bucket, split it in $O(1)$ time and insert two new entries in the main tree. Fortunately, we can perform incrementally and lazily the $O(\log n)$ steps for the insertion (Lemma\cite{4}) of these two entries before another bucket split occur. At any time only one update is pending in the main tree by an argument similar to that in\cite{16}.

13
4 An Application of the Technique

We now describe an application of Theorems 1 and 2 in other areas.

4.1 Dynamic lowest common ancestor (lca)

The lowest common ancestor problem for a tree is at the heart of several algorithms [6, 26]. We consider here the dynamic version in which insertions add new leaves as children to existing nodes and deletions remove leaves. The more general (and complicated) case of splitting an arc by inserting a node in the middle of the arc is treated in [12].

We maintain the tree as an Euler tour, which induces an implicit lexicographic order on the nodes. Namely, if a node is the i-th child of its parent, the implicit label of the node is i. The root has label 0. (These labels are mentioned only for the purpose of presentation.) The implicit string associated with a node is the sequence of implicit labels obtained in the path from the root to that node plus an endmarker that is different for each string (also when the string is duplicated; see the discussion below on insertion). Given any two nodes, the lcp value of their implicit strings gives the string implicitly represented by their lca. We maintain the Euler tour with a DS_lcp list in \(O(n) \) space (see Section 2), where \(n \) is the number of nodes (the strings are implicit and thus do not need to be stored). We also maintain the dynamic data structure in [2] to find the level ancestor of a node in constant time.

Given any two nodes \(u \) and \(v \), we compute \(lca(u, v) \) in constant time as follows. We first find \(d = lcp(s_u, s_v) \) using \(L \), where \(s_u \) and \(s_v \) are the implicit strings associated with \(u \) and \(v \), respectively. We then identify their ancestor at depth \(d \) using a level ancestor query.

Inserting a new leaf duplicates the implicit string \(s \) of the leaf’s parent, and puts the implicit string of the leaf between the two copies of \(s \) thus produced in the Euler tour. Note that we satisfy the requirements described in Section 2 for the insert, as we know their lcp values. By Theorem 1 this takes \(O(1) \) time. For a richer repertoire of supported operations in constant time, we refer to [12].

Theorem 3 The dynamic lowest common ancestor problem for a tree, in which leaves are inserted or removed, can be solved in \(O(1) \) time per operation in the worst case, using a DS_lcp list and the constant-time dynamic level ancestor.

5 The General Technique for Suffixes

We now consider a special case of Theorem 2 when the strings are limited to be the suffixes of the same string.

Theorem 4 Let \(D \) be a comparison-driven data structure such that the insertion of a key into \(D \) identifies the predecessor or the successor of that key in \(D \). Then, \(D \) can be transformed into a data structure \(D' \) for suffixes of a string \(s \) of length \(n \) such that

- the space complexity of \(D' \) is \(\mathcal{S}(n) + O(n) \) for storing \(n \) suffixes as keys (just store the references to the suffixes, not the suffixes themselves), where \(\mathcal{S}(n) \) denotes the native space complexity of \(D \) in the number of memory cells occupied;
- each operation involving \(O(1) \) suffixes in \(D' \) takes \(O(\mathcal{T}(n)) \) time, where \(\mathcal{T}(n) \) denotes the time complexity of the corresponding operation originally supported in \(D \);
• an insertion operation of suffix \(ay \), not stored in \(D' \), where \(a \) is a character and all the suffixes of \(y \) are stored in \(D' \) takes \(O(\mathcal{F}(n)) \) time.

• each operation (other than the insertion mentioned) involving a string \(y \) not stored in \(D' \) takes \(O(\mathcal{F}(n) + |y|) \) time, where \(|y|\) denotes the length of \(y \).

Theorem 4 is very similar to Theorem 2. Hence, the correctness is as well. The difference between the two is the claimed running time for the insertion operation. We now turn to showing that the claimed running time of the insertion operation of Theorem 4 can indeed be implemented.

Note the special requirement of the insertion operation; when inserting \(ay \) into \(L \) all suffixes of \(y \) must already be in \(L \). In other words, a careful insertion of suffixes in reverse order is required. This will be used to achieve the desired time bound.

To do so, we first augment the \(DS_{lcp} \) list \(L \) of Theorem 2 with suffix links. A suffix link \(sl(ay) \) points to the position of \(y \) inside \(L \). For sake of completeness we assume that the empty string, \(\epsilon \), is always in \(L \) and that \(sl(\sigma) \) points to \(\epsilon \), where \(\sigma \) is the suffix of length one.

Before inserting \(ay \) into \(D' \), the suffix links are defined for every suffix of \(y \) (including \(y \) itself). The current entry in \(L \) is \(y \). So, it is immediate to set up \(sl(ay) \). The predecessor \(p_{ay} \) and the successor \(s_{ay} \) of \(ay \) will be found using the algorithm of \(D \). However, we desire to achieve time \(O(\mathcal{F}(n)) \) for this insertion. Hence, the challenge is to implement the algorithm in \(O(1) \) time per comparison. Also, the \(lcp \) \(lcp(p_{ay}, ay) \) and \(lcp(ay, s_{ay}) \) need to be computed.

Each time \(ay \) is compared to a suffix \(x \) we can directly evaluate whether \(x \) begins with an \(a \) (in constant time). If it begins with \(\sigma \) different from \(a \) then we immediately know (from the comparison) the lexicographical ordering between \(x \) and \(ay \) (and that \(lcp(x, ay) = 0 \)). If \(x \) begins with \(a \), i.e. \(x = az \), then \(sl(x) \) points to \(z \). Since both \(y \) and \(z \) are suffixes in \(D' \) then by Theorem 5 in \(O(1) \) time we can compute \(lcp(y, z) \), which implies that we can compute \(lcp(ay, x) = lcp(y, z) + 1 \) in \(O(1) \) time. The characters at location \(lcp(ay, x) + 1 \) of the suffixes \(ay \) and \(x \) are sufficient to determine the lexicographic ordering of the two strings. Hence, the lexicographic ordering and the \(lcp \) of \(ay \) with any other suffix in \(L \) can be computed in \(O(1) \) time.

6 Suffix Technique Applications

We now describe a couple of applications of Theorems 1 and 5.

6.1 Suffix sorting

Suffix sorting is very useful in data compression, e.g. Burrows-Wheeler transform [11], and in text indexing (suffix arrays [33]). The computational problem is, given an input string \(T \) of length \(n \), how to sort lexicographically the suffixes of \(T \) efficiently. Let \(s_1, s_2, \ldots, s_n \) denote the suffixes of \(T \), where \(s_i = T[i \ldots n] \) corresponds to the \(i \)th suffix in \(T \).

Theorem 5 Let \(D' \) be a data structure for managing suffixes obtained following Theorem 5. Then, all the suffixes of an input string of length \(n \) can be inserted into \(D' \), in space \(O(n) + \mathcal{F}(n) \) and time

\[
O \left(n + \sum_{i=1}^{n} \mathcal{F}(i) \right),
\]
where \(\mathcal{T}(\cdot) \) denotes the time complexity of the insert operation in the original data structure \(\mathcal{D} \) from which \(\mathcal{D}' \) has been obtained. The suffixes can be retrieved in lexicographic order in linear time.

Proof: The proof follows directly from Theorem 4.

6.2 Balanced indexing structure

Following Theorem 4, we define the *balanced indexing structure*, shorthanded to BIS. The BIS handles strings and the underlying structure is a balanced search tree, i.e. \(\mathcal{D} \) is a standard balanced search tree (of your choice) and \(\mathcal{D}' \) now is a binary search tree, where the elements are suffixes of an input string. However, since we may continue inserting suffixes dynamically, the scenario is of a balanced search tree over an online text \(T \). We do point out that the data structure assumes that the text is received from right to left (however, this has no bearings on the online setting as we can always virtually flip the text and query patterns). In fact, the correct way of viewing this scenario is that of an online indexing scenario, see next subsection. The BIS has proven to be instrumental in some other indexing data structures such as the Suffix Trists [13] and various heaps of strings [30].

6.2.1 BIS as an Online Indexing Data Structure

Given a pattern \(P = p_1 p_2 \cdots p_m \) one desires to find all occurrences of \(P \) in \(T \) using the BIS of \(T \). Using Theorem 4 one can use the balanced search tree to find \(P \) in \(O(m + \mathcal{T}(n)) \) time. In the case of (most) balanced search trees \(\mathcal{T}(n) = \log n \). Moreover, using the balanced search tree one can find the predecessor and successor of \(P \) in the same time. The two suffixes returned define the interval in the \(DS_{lcp} \) list of all of the appearances of \(P \). This sublist can be scanned in \(O(tocc) \) time using the \(DS_{lcp} \) list. Hence,

Theorem 6 A BIS can be implemented in \(O(n) \) memory cells, so that Addition and Delete operations take \(O(\log n) \) time each, and Query\((P)\) takes \(O(|P| + \log n) \) time plus \(O(1 + tocc) \) time for reporting all the tocc occurrences of \(P \).

This gives an online indexing scheme with times equivalent to the static suffix array [33].

7 Online Construction of Suffix Trees

In this section we will show a major application of the results described above. Specifically, we will be using the BIS to achieve the results of this section.

Our goal will be to achieve online suffix trees with quick worst case update time. We do so in \(O(\log n) \) worst case time per insertion or deletion of a character to or from the beginning of the text.

7.1 Suffix tree data

We will first describe the relevant information maintained within each inner node in the suffix tree. Later we will show how to maintain this data over insertions and deletions. For a static text, each node in the suffix tree has a maximum outdegree of \(|\Sigma| \), where \(\Sigma \) is the size of the alphabet of the text string \(T \) (each outgoing edge represents a character from \(\Sigma \), and each two outgoing edges represent different characters).
An array of size $|\Sigma|$ for each node can be maintained to represent the outgoing edges (a non-existing edge can be represented by NIL), and then, a traversal of the suffix tree with a pattern spends constant time at each node searching for the correct outgoing edge. However, the suffix tree would have size $O(n|\Sigma|)$ which is not linear. Moreover, for an online construction, we cannot guarantee that the alphabet of the text will remain the same (in fact, the alphabet of the text can change significantly with time). Therefore, we use a balanced search tree for each node in the suffix tree (not to be confused with the BIS). Each such balanced search tree contains only nodes corresponding to characters of outgoing edges. The space is now linear, but it costs $O(\log |\Sigma|)$ time to locate the outgoing edge of a node. Nevertheless, in the on-line scenario, we use this solution as balanced search trees allow us to insert and delete edges dynamically (in $O(\log |\Sigma|)$ time). Therefore, the cost of adding or deleting an outgoing edge is $O(\log |\Sigma|)$ where $|\Sigma|$ is the size of the alphabet of the string at hand. The time for locating an outgoing edge is also $O(\log |\Sigma|)$. Note that we always have $|\Sigma| \leq n$. Hence, if during the process of an addition or a deletion we insert or remove a constant number of outgoing edges in the suffix tree (as is the case), the cost of insertion and removal is $O(\log |\Sigma|)$ which is within our $O(\log n)$ bound. In addition, for each node u in the suffix tree we maintain the length of the string corresponding to the path from the root to u. We denote this length by $\text{length}(u)$.

We note that many of the operations on suffix trees (assuming linear space is desired) use various pointers to the text in order to save space for labeling the edges. We will later show how to maintain such pointers, called text links, within our time and space constraints. We also note that a copy of the text saved in array format may be necessary for various operations, requiring direct addressing. As mentioned before, this can be done with constant time update by standard de-amortization techniques.

7.2 Finding the entry point

We now proceed to the online construction of the suffix tree. Assume we have already constructed the suffix tree for string T of size n, and we are interested in updating the suffix tree so it will be the suffix tree of string aT where a is some character. It is a known fact that a depth first search (DFS) on the suffix tree encounters the leaves, which correspond to suffixes, in lexicographic order of the suffixes. Hence, the leaves of the suffix tree in the order encountered by the DFS form the lexicographic ordering of suffixes, which is in fact maintained by the BIS in the DS_{lcp} list (see Section 6.2). So, upon inserting suffix aT into the tree, $\text{node}(aT)$ needs to be inserted as a leaf. We know between which two leaves of the suffix tree $\text{node}(aT)$ will be inserted according to the lexicographic ordering of the suffixes.

The insertion of the new suffix is implemented by either adding a new leaf as a child of an existent inner node in the suffix tree, or by splitting an edge, adding a new node u on the edge, and then the new leaf is a child of u. We define the entry point of $\text{node}(aT)$ as follows. If $\text{node}(aT)$ is inserted as a child of an already existing node u, then u is the entry point of $\text{node}(aT)$. If $\text{node}(aT)$ is inserted as a child of a new node that is inserted while splitting an edge e, then e is the entry point of $\text{node}(aT)$.

We assume without loss of generality that $\text{node}(aT)$ is inserted between $\text{node}(T')$ and $\text{node}(T'')$, where aT is lexicographically bigger than T' (hence $\text{node}(aT)$ appears directly after $\text{node}(T')$ in the DS_{lcp} list), and aT is lexicographically smaller than T'' (hence $\text{node}(aT)$ appears directly before $\text{node}(aT)$ in the DS_{lcp} list). We denote by x the lowest common ancestor of $\text{node}(T')$ and $\text{node}(T'')$ in the suffix tree of T. Consider the two paths $P_{T'}$ and $P_{T''}$ from x to $\text{node}(T')$ and $\text{node}(T'')$ respectively. Clearly these two paths, aside from x, are disjoint. We now prove the following lemma that will later assist us in finding the entry point for $\text{node}(aT)$.

Lemma 6 The entry point of $\text{node}(aT)$ is on $P_{T'} \cup P_{T''}$. Furthermore, we can decide in constant time which of the following is correct:
1. **x is the entry point.**

2. The entry point is in $P_{T'} - \{x\}$.

3. The entry point is in $P_{T''} - \{x\}$.

Proof: It follows from lcp properties that $lcp(aT, T') \geq lcp(T', T'')$, and that $lcp(aT, T'') \geq lcp(T', T'')$. Thus, from the connection between the lowest common ancestor of two leaves in the suffix tree, and the longest common prefix of the suffixes corresponding to those two leaves, we conclude that the entry point must be in the subtree of x in the suffix tree, as $\text{label}(x)$ is a prefix of aT. If the entry point is not in $P_{T'} \cup P_{T''}$, then the entry node is on some path P branching out of $P_{T'} \cup P_{T''}$ ending in some leaf ℓ. However, this would imply that the suffix corresponding to ℓ is lexicographically between T' and T'', contradicting the fact that they are neighboring suffixes in the suffix tree prior to the insertion.

Hence:

1. If $lcp(aT, T') = lcp(aT, T'')$ then x is the entry point.
2. If $lcp(aT, T') > lcp(aT, T'')$ then the entry point is in $P_{T'} - \{x\}$.
3. If $lcp(aT, T') < lcp(aT, T'')$ then the entry point is in $P_{T''} - \{x\}$.

The comparison can be performed in constant time using the DS_{lcp} list. Note that even if aT is not yet in the DS_{lcp} list we can compute $lcp(aT, T')$, by comparing the first character of T' with a. If they are different then the lcp value is 0. Otherwise, we compare the lcp of T, which is accessible as the last suffix inserted, and $sl(T')$ (both are in the list). Then $lcp(aT, T') = lcp(T, sl(T')) + 1$. \[\square\]

If x is the entry point, then we can easily insert $node(aT)$ as a new child, with the edge labeled starting with the symbol corresponding to the kth character of aT where $k = lcp(T', T'') + 1$. The insertion requires $O(\log |\Sigma|)$ time.

The other two cases ($lcp(aT, T') > lcp(aT, T'')$ and $lcp(aT, T') < lcp(aT, T'')$) are symmetric. Hence, without loss of generality we assume that $lcp(aT, T') > lcp(aT, T'')$. In this case, $node(aT)$ and $node(T')$ share a common path from the root of the suffix tree until the entry point, and this path corresponds to $lcp(aT, T')$, as it is the length of the labels on the joint path. So, our goal is to find a node $v \in P_{T''}$ such that $|\text{label}(v)| \leq lcp(aT, T')$ of maximal depth in the suffix tree. This is discussed next.

Note that once we find v there is not much work left to be done. Specifically, the only nodes or edges which might change are v and its outgoing edges. This is because $node(aT)$ will enter either as a child of v (in which case v is the entry point of the new suffix), or one of v’s outgoing edges will have to break into two as described in the previous subsection (in which case that edge is the entry point). We can easily distinguish between the two options by noting that if $k = lcp(T', aT)$ (we can calculate this in constant time through the DS_{lcp} list, as in the end of the proof of Lemma[2] then v will be the parent of $node(aT)$, and if there is an inequality, then we must break an edge for the parent of $node(aT)$). Each of these cases will take at most $O(\log |\Sigma|)$ time. So we are left with the task of finding v.

The following is derived directly from Lemma[2]

Corollary 1 Let T be a string of n symbols. Let T_i, T_k and T_j be three lexicographically ordered suffixes of T, i.e. $T_i <_L T_k <_L T_j$, where $<_L$ is the lexicographic comparison. Then,

$$lcp(T_i, T_k) \geq lcp(T_i, T_j)$$
Using Corollary 1 one can now use the BIS in order to locate v as follows. Begin with the node w corresponding to the lexicographically smallest suffix in the BIS. From the properties of balanced search trees, this node is a leaf. Consider the list of suffixes on which the BIS is constructed (in the off-line sense). If this list is traversed from w towards $node(T')$, and for each node z with corresponding suffix $S \ lcp(S, T')$ is computed, then the values will increase until the last node z' for which $lcp(S, T') \leq k$ is reached. However, such a traversal can take linear time.

Instead, one may use the BIS in order to find z' in $O(\log n)$ time. It should be noted that the reason node z' is the node being searched for follows directly from the properties and ordering of binary search trees (basically the lexicographical ordering in the BIS can be substituted with the ordering defined by Corollary 1).

Traverse upwards from w in the BIS until a node z is reached where z is the last node which is an ancestor of w in the BIS whose corresponding suffix is S, such that $lcp(S, T') \leq k$. This means that either z is the root of the BIS, or the parent of z in the BIS has suffix S' such that $lcp(S', T') > k$.

Consider the relationship between z and z'. z' cannot be in the subtree of the left child of z in the BIS, as $lcp(suffix(z), T') \leq lcp(suffix(z'), T')$ and Corollary 1. Also, z' has to be in the subtree rooted by z in the BIS as $lcp(suffix(parent(z)), T') > lcp(S', T') > k \geq lcp(suffix(z'), T')$ and, hence, this follows from Corollary 1. Thus z' is either z, or in the subtree of the right child of z in the BIS.

Begin a recursive traversal down the BIS starting from z where at each node \hat{z} with corresponding suffix \hat{S} do the following. Compute $k = \ lcp(S, T')$. If $k > k$ then z' has been passed in the list of suffixes, and the traversal moves into the left subtree of \hat{z}. If $k' = k$ then z' has been found (it does not matter if there are other nodes for which the lcp is also exactly k as this is sufficient in order to find the entry point). If $k < k$ then mark z' as the current candidate, and continue to traverse down the right subtree of z'. If a leaf is reached, then z' is the last candidate that has been marked.

This gives us the following:

Lemma 7 It is possible to find the entry point in $O(\log n)$ time.

Proof: Once z' is found, the lca of z' and $node(T')$ can be located in constant time, which as explained above suffices for finding the entry point. The traversal on the BIS that was used in order to find z' takes $O(\log n)$ time as a simple traversal is used up and down the BIS, spending constant time at each node traversed. \qed

7.3 Text Links

As noted, many applications of the suffix tree use various pointers to the text in order to save space for labeling the edges. To implement these applications one utilizes the fact that each edge label is a substring of the text. Specifically one can maintain two pointers per edge, one to the location of the first character in the substring in the text, and one pointer to the location of the last character of the substring. Note that if the text contains more than one appearance of this substring, one may pick an arbitrary appearance. Such pointers are called text links, and can still be maintained in the on-line scenario as follows.

When a new leaf u is inserted as a new child of a node v together with the new edge $e = (v, u)$, two text links are created to denote the substring in the text corresponding to e. To do this we note that at this time the suffix corresponding to u is the text itself, and hence $\text{label}(u, v)$ is simply the last $n - |\text{label}(v)| + 1$ characters in the text. Thus, the first text link is to location $|\text{label}(v)|$ in the text, and the second text link is to the last location of the text.
When breaking an edge $e = (v, u)$ into two by adding a new node w, creating edges $e_1 = (v, w)$ and $e_2 = (w, u)$, we note that the first text link of e_1 is the same as the first text link of e, and the second text link of e_2 is the same as the second text link of e. The second text link of e_1 is to the location which is $|\text{label}(w)| - |\text{label}(v)| - 1$ away from the first text link, and the first text link of e_2 is to the location $|\text{label}(w)| - |\text{label}(v)|$.

7.4 Deletions

Assume we built the suffix tree for the string aT where a is a character and T is a text of size n. We now wish to support deletion the first character a, hence removing the suffix aT from the suffix tree. This is done by removing $\text{node}(aT)$ and possibly its parent from the suffix tree, and also removing $\text{node}(aT)$ from the BIS. Clearly, this can all be done in $O(\log n)$ time.

Note that we chose each text link to point to the substring in the text which created the edge originally. Therefore, even if we added many nodes that broke edges within the original edge and then deleted them, we will still always have the appropriate substring in the correct location. This is because of the stack-like behavior of adding and removing characters to or from the beginning of the text.

Finally we conclude the following:

Theorem 7 It is possible to construct a suffix tree in the online text scenario where the cost of an addition of a character or a deletion of a character in $O(\log n)$ worst case time, where n is the size of the text seen so far. Furthermore, at any point in time, an indexing query can be answered in time $O(m + \log |\Sigma| + \text{tocc})$ where m is the size of the pattern, Σ is the alphabet consisting only of characters seen in the text, and tocc is the number of occurrences of the pattern in the text.

References

[1] S. Alstrup, G.S. Brodal, and T. Rauhe. Pattern matching in dynamic texts. In Symposium on Discrete Algorithms (SODA), pages 819–828, 2000.

[2] S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in dynamic trees. In Proc. of the International Colloquium on Automata, Languages and Programming (ICALP), pages 365–372, 2000.

[3] A. Amir, T. Kopelowitz, M. Lewenstein, and N. Lewenstein. Towards real-time suffix tree construction. In Symposium on String Processing and Information Retrieval (SPIRE), pages 67–78, 2005.

[4] A. Amir and I. Nor. Real-time indexing over fixed finite alphabets. In SODA, pages 1086–1095, 2008.

[5] Lars Arge and Jeffrey S. Vitter. Optimal external memory interval management. SIAM J. on Computing, 32:1488–1508, 2003.

[6] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. of Symposium of Latin American Theoretical INformatics (LATIN), pages 88–94, 2000.

[7] M.A. Bender, R. Cole, E.M. Demaine, M. Farach-Colton, and J. Zito. Two simplified algorithms for maintaining order in a list. In Proc. of the European Symposium on Algorithms (ESA), pages 152–164, 2002.
[8] S.W. Bent, D.D. Sleator, and R.E. Tarjan. Biased search trees. *SIAM J. on Computing*, 14(3):545–568, 1985.

[9] J.L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In *Proc. of the Symposium on Discrete Algorithms (SODA)*, pages 360–369, 1997.

[10] Dany Breslauer and Giuseppe F. Italiano. Near real-time suffix tree construction via the fringe marked ancestor problem. In Roberto Grossi, Fabrizio Sebastiani, and Fabrizio Silvestri, editors, *String Processing and Information Retrieval, 18th International Symposium, SPIRE 2011, Pisa, Italy, October 17-21, 2011. Proceedings*, volume 7024 of *Lecture Notes in Computer Science*, pages 156–167. Springer, 2011.

[11] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm. In *Technical Report 124, Digital Equipment Corporation*, 1994.

[12] R. Cole and R. Hariharan. Dynamic LCA queries on trees. In *Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 235–244, 1999.

[13] R. Cole, T. Kopelowitz, and M. Lewenstein. Suffix trays and suffix trists: Structures for faster text indexing. In *Proc. of the International Colloquium on Automata, Languages and Programming (ICALP)*, pages 358–369, 2006.

[14] R. Cole and M. Lewenstein. Multidimensional matching and fast search in suffix trees. In *SODA*, pages 851–852, 2003.

[15] P. Crescenzi, R. Grossi, and G.F. Italiano. Search data structures for skewed strings. In *Proc. of the International Workshop on Experimental and Efficient Algorithms (WEA)*, pages 81–96, 2003.

[16] P.F. Dietz and D.D. Sleator. Two algorithms for maintaining order in a list. In *Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing (STOC)*, pages 365–372, 1987.

[17] M. Farach. Optimal suffix tree construction with large alphabets. In *38th Annual Symposium on Foundations of Computer Science*, pages 137–143, Miami Beach, Florida, 20–22 October 1997. IEEE.

[18] Paolo Ferragina and Roberto Grossi. Optimal on-line search and sublinear time update in string matching. *SIAM Journal on Computing*, 27(3):713–736, June 1998.

[19] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum queries on static arrays. *SIAM Journal on Computing*, 40(2):465–492, 2011.

[20] G. Franceschini and R. Grossi. A general technique for managing strings in comparison-driven data structures. In *Proc. of International Colloquium of Automata, Language and Programming (ICALP)*, pages 606–617, 2004.

[21] T.F. Gonzalez. The on-line d-dimensional dictionary problem. In *Proc. of the Symposium on Discrete Algorithms (SODA)*, pages 376–385, 1992.

[22] R. Grossi and G.F. Italiano. Efficient techniques for maintaining multidimensional keys in linked data structures. In *Proc. of International Colloquium on Automata, Languages and Programming (ICALP)*, pages 372–383, 1999.

[23] Ming Gu, Martin Farach, and Richard Beigel. An efficient algorithm for dynamic text indexing. In *Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 697–704, Arlington, Virginia, 23–25 January 1994.
[24] R.H. Gueting and H.P. Kriegel. Multidimensional B-tree: An efficient dynamic file structure for exact match queries. In GI Jahrestagung, pages 375–388, 1980.

[25] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233, 1987.

[26] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. of Computing, 13:338–355, 1984.

[27] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists. Acta Informatica, 17:157–184, 1982.

[28] R.W. Irving and L.M. Love. The suffix binary search tree and suffix AVL tree. Journal of Discrete Algorithms, 1:387–408, 2003.

[29] H.A. Clampett Jr. Randomized binary searching with tree structures. Commun. ACM, 7(3):163–165, 1964.

[30] Carmel Kent, Moshe Lewenstein, and Dafna Sheinwald. On demand string sorting over unbounded alphabets. In CPM, pages 16–27, 2007.

[31] Tsvi Kopelowitz. On-line indexing for general alphabets via predecessor queries on subsets of an ordered list. In Foundations of Computer Science, IEEE Annual Symposium on, pages 283–292, Los Alamitos, CA, USA, 2012. IEEE Computer Society.

[32] Christos Levcopoulos and Mark H. Overmars. A balanced search tree with $O(1)$ worst-case update time. Acta Informatica, 26(3):269–277, 1988.

[33] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM J. on Computing, 22(5):935–948, 1993.

[34] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM, 23(2):262–272, 1976.

[35] K. Mehlhorn. Dynamic binary search. SIAM J. on Computing, 8(2):175–198, 1979.

[36] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer, 1984.

[37] K. Mehlhorn and S. Näher. Library of Efficient Data Types and Algorithms. http://www.algorithmicsolutions.com/leda/.

[38] J. Nievergelt and E.M. Reingold. Binary search trees of bounded balance. SIAM J. on Computing, 2(1):33–43, 1973.

[39] Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in Computer Science. Springer, 1983.

[40] S. Roura. Digital access to comparison-based tree data structures and algorithms. J. Algorithms, 40(1):1–23, 2001.

[41] S.C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of patterns using a labeling paradigm (extended abstract). In Proc. of the 37th Symposium on Foundations of Computer Science, pages 320–328, 1996.
[42] R. Seidel and C.R. Aragon. Randomized search trees. *Algorithmica*, 16(4/5):464–497, 1996.

[43] SGI. *Standard Template Library Programmer’s Guide*. http://www.sgi.com/tech/stl/index.html.

[44] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. *Journal of the ACM*, 32(3):652–686, 1985.

[45] A. O. Slisenko. String-matching in real time: Some properties of the data structure. In *Symposium on Mathematical Foundations of Computer Science (MFCS)*, pages 493–496, 1978.

[46] R.E. Tarjan. *Data Structures and Network Algorithms*. SIAM, 1983.

[47] A. Tsakalidis. Maintaining order in a generalized linked list. *Acta Informatica*, 21:101–112, 1984.

[48] E. Ukkonen. On-line construction of suffix trees. *Algorithmica*, 14(3):249–260, September 1995.

[49] V.K. Vaishnavi. On k-dimensional balanced binary trees. *J. Comput. Syst. Sci.*, 52(2):328–348, 1996.

[50] Peter Weiner. Linear pattern matching algorithm. *Proc. 14th IEEE Symposium on Switching and Automata Theory*, pages 1–11, 1973.

[51] D.E. Willard. A density control algorithm for doing insertions and deletions in a sequentially ordered file in good worst-case time. *Information and Computation*, 97(2):150–204, 1992.