AN ISOMORPHISM BETWEEN THE COMPLETION OF AN ALGEBRA AND ITS CARATHEODORY EXTENSION

JUN TANAKA

Abstract. Let Ω denote an algebra of sets and μ a σ-finite measure. We then prove that the completion of Ω under the pseudometric $d(A,B) = \mu^*(A \triangle B)$ is σ-algebra isomorphic and isometric to the Caratheodory Extension of Ω.

1. Introduction

This paper shows a new result by combining two papers authored by P.F. Mcloughlin and myself ([4], [5]).

Let μ be a σ-finite measure and let Ω denote an algebra of sets; i.e., Ω is closed under unions and complements. Let (X, Ω, μ) denote a measure space where $\mu(X)$ is finite from the σ-finite property. Let μ^* denote the outer measure defined by $\mu^*(A) = \inf\{\sum \mu(A_i) \mid E \subseteq \cup A_i \text{ and } A_i \in \Omega \text{ for all } i \geq 1\}$, for any $A \in \mathcal{P}(X)$ where $\mathcal{P}(X)$ is the power set of X. Clearly, $d(A, B) = \mu^*(A \triangle B)$ is a pseudometric, where \triangle is the symmetric difference of sets. In addition, d is a metric on $\mathcal{P}(X)/\sim$, where $A \sim B$ iff $\mu^*(A \triangle B) = 0$. From [1], pg 292, $\mu^*|_{\Omega} = \mu$.

In [5], we defined a μ-Cauchy sequence $\{B_n\}$, $B_n \in \Omega$, if $\lim \mu(B_n \triangle B_m) \to 0$ as $n, m \to \infty$. Let $\tilde{\Sigma} = \{S \in \mathcal{P}(X) \mid \exists \mu$-Cauchy sequence $\{B_n\}$ s.t. $\lim \mu^*(B_n \triangle S) = 0\}$. In the first joint paper [5], we proved that $\tilde{\Sigma}$ is a σ-algebra where, for any μ-Cauchy sequence $\{B_n\}$ such that $\lim \mu^*(B_n \triangle S) = 0$, the measure $\bar{\mu}(S)$ on $\tilde{\Sigma}$ is defined as $\bar{\mu}(S) = \lim \mu(B_n)$. In addition, we proved that $\bar{\mu}$ is a countably additive measure on $\tilde{\Sigma}$. Thus, $(\bar{\mu}, \tilde{\Sigma})$ is a measure space. We showed that the Carathéodory Extension of Ω can be expressed as the set of limit points of μ-Cauchy sequences under the pseudometric $d(A, B) = \mu^*(A \triangle B)$. Moreover, when the measure is a sigma finite measure, we obtained an equivalent expression of the Carathéodory Extension, $\{S \in \mathcal{P}(X) \mid \exists \mu$-Cauchy sequence $\{B_n\}$ s.t. $\lim \mu^*(B_n \triangle S) = 0\}$.

Theorem 2 in [5] shows that E is a measurable set iff E is in $\tilde{\Sigma}$. Thus, the measure space $(\bar{\mu}, \tilde{\Sigma})$ agrees with the Carathéodory Extension when μ is a finite measure. Moreover, it shows that measurable sets are exactly limit points of μ-Cauchy sequences. The σ-finite case follows from the finite case.

From the second joint paper [4], we denoted by $(\tilde{d}, \tilde{\Omega})$ the completion of $(d, \Omega_{/\triangle})$. Let S be the set of all μ-Cauchy sequences in $(d, \Omega_{/\triangle})$. By the completion procedures, we know $\{B_n^\mu\} \sim \{B_n^\bar{\mu}\}$ iff $\lim d(B_n^\mu, B_n^\bar{\mu}) = 0$ defines an equivalence relation on S. Moreover, $\tilde{\Omega} = S_{/\sim}$ and $\tilde{d}(\{B_n^\mu\}, \{B_n^\bar{\mu}\}) = \lim d(\{B_n^\mu\}, \{B_n^\bar{\mu}\})$, where

Date: January 10, 2008.

2000 Mathematics Subject Classification. Primary: 28A12, 28B20.

Key words and phrases. Measure Theory, Carathéodory Extension Theorem, Metric.

1
$\alpha \in \{ B_n^\gamma \}$ is the class of $\{ B_n^\gamma \}$. Let $E_\alpha = \{ B_n^\gamma \}$ and $E_A = \{ A \}$ when $A \in \Omega$. Let $\overline{\mu}(E_\alpha) = d(E_\alpha, E_\emptyset) = \lim d(B_n^\gamma, \emptyset) = \lim \mu(B_n^\gamma)$. Note that in [4] $d(A, B) := \mu(A \triangle B)$; the completion of Ω will remain the same due to the property $\mu^*|_\Omega = \mu$. Note that $\overline{\mu}(E_A) = \mu(A)$ when $A \in \Omega$. In [4], we defined set-theoretic notations for unions, intersections, and complements on Ω as follows: $\bigcup : \Omega \times \Omega \to \Omega$ where $\bigcup(E_\alpha \times E_\gamma) = E_\alpha \cup E_\gamma = \{ B_n^\alpha \cup B_n^\gamma \}$; similarly for intersections on Ω. $\triangle : \Omega \to \Omega$ where $((B_n^\alpha)^C) = \{ (B_n^\alpha)^C \}$ and we showed the set theoretic notations are well defined on Ω in [4].

We showed the set theoretic notations are well defined on $\overline{\Omega}$ in [4]. Note that $E_\alpha \cap E_\gamma = E_\emptyset$ if $\overline{\mu}(E_\alpha \cap E_\gamma) = 0$ iff $\lim \mu(B_n^\alpha \cap B_n^\gamma) = 0$. We say E_α and E_γ are disjoint iff $E_\alpha \cap E_\gamma = E_\emptyset$. Thus, if E_α and E_α' are disjoint, then $\overline{\mu}(E_\alpha \cup E_\alpha') = \overline{\mu}(E_\alpha) + \overline{\mu}(E_\alpha')$.

As for the infinite union on $\overline{\Omega}$; if $E_{\alpha_i} \in \overline{\Omega}$ for $i \geq 1$, there exists a unique $E := \bigcup_{i=1}^\infty E_{\alpha_i}$ in $\overline{\Omega}$ such that $\bigcup_{i=1}^n E_{\alpha_i} \subseteq E$ for all n, and $\lim \overline{\mu}(E \cap \bigcup_{i=1}^n E_{\alpha_i}) = 0$.

In addition, we showed that for any μ-Cauchy sequence $\{ B_n \}$, there exists a $f(n) > n$ such that $\lim \mu^*(B_n \triangle \liminf B_{f(n)}) = 0$.

In this paper, I define a σ-algebra isomorphism between two σ-algebras, and define a map $F : \overline{\Omega} \to \mathbf{P}(X)$ given by $F(\{ B_n \}) = \liminf B_{f(n)}$ where $f(n)$ is defined as above. We will show that F is an isometry and a σ-algebra isomorphism between the completion $\overline{\Omega}$ and the Carathéodory Extension of Ω under the equivalence relation \sim defined as $A \sim B$ iff $\mu^*(A \triangle B) = 0$.

2. Main Result

Definition 1. For A, B in $\mathbf{P}(X)$, $A = B$ a.e. iff $\mu^*(A \triangle B) = 0$.

Definition 2. Define a map $F : \overline{\Omega} \to \mathbf{P}(X)$ given by $F(\{ B_n \}) = \liminf B_{f(n)}$ where $\lim \mu^*(B_n \triangle \liminf B_{f(n)}) = 0$. Note that such $f(n)$ always exists by Lemma 20 in [4].

Remark 1. F is a map into \overline{S} by the definition of \overline{S}.

Lemma 1. F is well defined.

Proof. Suppose that $\{ A_n \} = \{ B_n \}$.

There exist $f(n)$ and $g(n)$ such that $\lim \mu^*(A_n \triangle \liminf A_{f(n)}) = 0$ and $\lim \mu^*(B_n \triangle \liminf B_{g(n)}) = 0$ by Lemma 20 in [4].

$$\mu^*(\liminf A_{f(n)} \triangle \liminf B_{g(n)}) \leq \mu^*(\liminf A_{f(n)} \triangle A_{f(n)}) + \mu^*(A_{f(n)} \triangle B_{g(n)}) + \mu^*(B_{g(n)} \triangle \liminf B_{g(n)})$$

by the triangle inequality.

By taking the limit on both sides, $\mu^*(\liminf A_{f(n)} \triangle \liminf B_{g(n)}) = 0$.

Thus, $\lim A_{f(n)} = \liminf B_{g(n)}$ a.e. Therefore, F is well-defined.

Theorem 1. F is an isometry between $\overline{\Omega}$ and \overline{S}_\sim.

Proof. First, we show F is onto \overline{S}. Let $X \in \overline{S}$. Then there exists a μ-Cauchy sequence $\{ B_n \}$ such that $\lim \mu^*(B_n \triangle X) = 0$.

Then there exist $f(n)$ such that $\lim \mu^*(B_n \triangle \liminf B_{f(n)}) = 0$. Thus $F(\{ B_n \}) = \liminf B_{f(n)} = X$ a.e. Therefore, F is onto.

Second, we will show F preserves the metric. Let $\{ A_n \}, \{ B_n \} \in \overline{\Omega}$. Then we have $f(n)$ and $g(n)$ as before.
\[\mu(A_{f(n)} \triangle B_{g(n)}) = \mu^*(A_{f(n)} \triangle B_{g(n)}) \]
\[\leq \mu^*(A_{f(n)} \triangle \lim A_{f(n)}) + \mu^*(\lim A_{f(n)} \triangle \lim B_{g(n)}) + \mu^*(\lim B_{g(n)} \triangle B_{g(n)}) \]

By taking the limit on both sides,
\[\lim \mu(A_n \triangle B_n) = \lim \mu(A_{f(n)} \triangle B_{g(n)}) \leq \mu^*(\lim A_{f(n)} \triangle \lim B_{g(n)}). \]

In addition,
\[\mu^*(\lim A_{f(n)} \triangle \lim B_{g(n)}) \]
\[\leq \mu^*(A_{f(n)} \triangle \lim A_{f(n)}) + \mu^*(A_{f(n)} \triangle B_{g(n)}) + \mu^*(\lim B_{g(n)} \triangle B_{g(n)}). \]

By taking the limit on both sides,
\[\mu^*(\lim A_{f(n)} \triangle \lim B_{g(n)}) \leq \lim \mu(A_{f(n)} \triangle B_{g(n)}). \]

Therefore, \[d(\{A_n\}, \{B_n\}) = \lim \mu(A_n \triangle B_n) = \mu^*(\lim A_{f(n)} \triangle \lim B_{g(n)}) \]
\[= \mu^*(F(\{A_n\}) \triangle F(\{B_n\})) = d(F(\{A_n\}), F(\{B_n\})). \]

Lastly, we will show that \(F \) is one to one. Let \(F(\{A_n\}), F(\{B_n\}) \in \hat{S} \) such that \(F(\{A_n\}) = F(\{B_n\}) \) a.e..

Then \(\lim A_{f(n)} = \lim B_{g(n)} \) a.e. implies \(\mu^*(\lim A_{f(n)} \triangle \lim B_{g(n)}) = 0 \). Then, as in the proof of \(F \) being onto, \(\lim A_n \triangle B_n = \mu^*(\lim A_{f(n)} \triangle \lim B_{g(n)}) \). Thus \(\{A_n\} = \{B_n\} \). Thus, \(F \) is one to one. Therefore, \(F \) is an isometry between \(\overline{\Omega} \) and \(\overline{S} \).

Definition 3. Suppose \(X \) and \(Y \) are \(\sigma \)-algebras, and \(F: X \rightarrow Y \) is a one to one, onto well defined map. Then \(F \) is called a \(\sigma \)-algebra isomorphism if
\[F(\bigcup_{i=1}^{\infty} E_i) = F(\cdot \cup \cdot) = \bigcup_{i=1}^{\infty} F(E_i), \]
\[F(\bigcap_{i=1}^{n} E_i) = F(\cdot \cap \cdot) = \bigcap_{i=1}^{n} F(E_i), \]
\[F(\cdot C) = F(\cdot)^C. \]

Lemma 2. Let \(E_i = \{B_{n_i}^k \} \in \overline{\Omega} \) for \(i \geq 1 \) and by following Lemma 8 in [5], construct \(Y_L = \bigcup_{i=1}^{\infty} B_{K_L}^i \) for each \(L \) such that
\[\mu^*(\bigcup_{i=1}^{\infty} S_i \triangle \bigcup_{i=1}^{N_L} B_{K_L}^i) \leq \mu^*(\bigcup_{i=1}^{N_L} S_i \triangle \bigcup_{i=1}^{N_L} B_{K_L}^i) + \frac{1}{L}. \]

Then \(\bigcup_{i=1}^{\infty} E_i \).

Proof. Note that \(E_i = \{B_{n_i}^L \} = \{B_{K_L}^L \} \).
\((\bigcup_{i=1}^{n} E_i) \bigcap \{Y_L\} = \bigcup_{i=1}^{n} B_{K_L}^i \bigcap Y_L = \bigcup_{i=1}^{n} B_{K_L}^i = \bigcup_{i=1}^{n} E_i \) for any \(n \).
Let \(N_L > n \).
\[\mu(\bigcup_{i=1}^{N_L} B_{K_L}^i \bigcap (\bigcup_{i=1}^{n} B_{K_L}^i)^C) = \mu(\bigcup_{i=1}^{N_L} B_{K_L}^i \bigcap \bigcup_{i=1}^{n} B_{K_L}^i) + \mu(\bigcup_{i=1}^{N_L} B_{K_L} \bigcup \bigcup_{i=1}^{n} B_{K_L}^i) \]
\[\leq \mu(\bigcup_{i=1}^{N_L} S_i \triangle \bigcup_{i=1}^{N_L} B_{K_L}^i) + \mu(\bigcup_{i=1}^{N_L} S_i \bigcup \bigcup_{i=1}^{n} B_{K_L}^i) + \frac{1}{L}. \]

This implies that \(\lim \mu(\overline{\{Y_L\} \bigcap (\bigcup_{i=1}^{n} E_{\alpha_i})^C}) = 0 \). Therefore by the uniqueness of \(\bigcup_{i=1}^{\infty} E_i, \bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} E_i. \)

Theorem 2. \(F \) is a \(\sigma \)-algebra isomorphism between \(\overline{\Omega} \) and \(\overline{S} \).
Proof. We already showed that F is a one to one, onto map in Theorem 1. Since, in general, \(\lim A_n \cup B_n = \lim A_n \cup \lim B_n \), \(F(\cdot \cup \cdot) = F(\cdot) \cup F(\cdot) \) follows immediately.

Let \(\{B_n\} \in \Omega \).

Then,

\[
F(\{B_n\}^c) = F(\{(B_n)^c\}) = \lim(B_{f(n)})^c = (\lim B_{f(n)})^c \text{ a.e.}
\]

Note: by the construction of \(f(n) \), \(\lim B_{f(n)}^c \) a.e. Thus, \(F(\cdot)^c = F(\cdot)^c \) in \(\tilde{S} \).

Similarly, \(F(\cdot \cap \cdot) = F((\cdot \cup \cdot)^c) = [F(\cdot) \cup F(\cdot)]^c = F(\cdot) \cap F(\cdot) \).

Let \(E_{\alpha_i} \in \Omega \) for \(i \geq 1 \) and \(E_{\alpha_i} = \{(B_{\alpha_i})^c\} \).

Then for each \(i \), there exists a \(S_i = \lim B_{f(n)}^\alpha \in \tilde{S} \) such that \(\lim \mu^*(B_{f(n)}^\alpha \triangle S_i) = 0 \).

Now suppose we have \(\{Y_L\} \) in the same manner as Lemma 2. By design, \(\{Y_L\} \) converges to \(\cup_{i=1}^\infty S_i \). Then \(\{Y_L\} = \bigcup_{i=1}^\infty E_{\alpha_i} \) by Lemma 2. Now we have

\[
F(\bigcup_{i=1}^\infty E_{\alpha_i}) = F(\bigcup_{i=1}^\infty (B_{\alpha_i}^c)) = F(\bigcup_{i=1}^\infty Y_L) = \lim Y_{f(L)}.
\]

Since \(\lim \mu^*(Y_L \triangle \lim Y_{f(L)}) = 0 \) and \(\lim \mu^*(Y_L \triangle \cup_{i=1}^\infty S_i) = 0 \), we have \(\lim Y_{f(L)} = \cup_{i=1}^\infty S_i \text{ a.e.} \). In addition, \(\cup_{i=1}^\infty S_i = \cup_{i=1}^\infty F(\{B_{\alpha_i}^c\}) \).

Thus,

\[
F(\bigcup_{i=1}^\infty E_{\alpha_i}) = \cup_{i=1}^\infty F(E_{\alpha_i}).
\]

Therefore, the claim follows.

\[\square\]

3. Conclusion

Theorem 1 and 2 show that the completion of \(\Omega \) is isometric and \(\sigma \)-algebra isomorphic to \(\tilde{S} \). Thus the completion of \(\Omega \) is isometric and \(\sigma \)-algebra isomorphic to the Caratheodory Extension under the equivalence relation \(\sim \) by the conclusion in [5].

4. Acknowledgement

I would like to thank my grandfather Waichi Tanaka for his inspiration and financial assistance and Andrew Aames for encouraging him to progress through the graduate program. With the kind support of both, I have progressed further than I ever thought possible. In addition, I would like to thank my friends Richard Han and Eli Depalma for their editing assistance and Vincent Davis, Aaron Hudson, Mark Tseselsky for representing me and for their professional advice.

References

1. H. L. Royden, Real Analysis Third Edition, Prentice-Hall Inc. 1988.
2. N. Dunford and J. T. Schwartz, Linear Operators Part 1 General Theory, Willy Interscience Publication, 1988.
3. Walter Rudin, Real and Complex Analysis McGraw-Hill Publishing Co, 1987.
4. P. F. McLaughlin and J. Tanaka, A Relationship Between the Completion of a Metric Space and the Caratheodory Extension, will be submitted soon.
5. J. Tanaka and P. F. McLaughlin, A realization of measurable sets as limit points, submitted.
University of California, Riverside, USA

E-mail address: juntanaka@math.ucr.edu, yonigeninnin@gmail.com, junextension@hotmail.com