Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with \textit{Plasmodium falciparum} and \textit{Plasmodium vivax} malaria: an open-label phase 2 trial

Aung Pyae Phyo1, Podjanee Jittamala*, François H Nosten, Sasithon Pukrittayakamee, Mallika Imwong, Nicholas J White, Stephan Duparc, Fiona Macintyre, Mark Baker, Jörg J Möhrle

Summary

Background Artefenomel (OZ439) is a novel synthetic trioxolane with improved pharmacokinetic properties compared with other antimalarial drugs with the artemisinin pharmacophore. Artefenomel has been generally well tolerated in volunteers at doses up to 1600 mg and is being developed as a partner drug in an antimalarial combination treatment. We investigated the efficacy, tolerability, and pharmacokinetics of artefenomel at different doses in patients with \textit{Plasmodium falciparum} or \textit{Plasmodium vivax} malaria.

Methods This phase 2a exploratory, open-label trial was done at the Hospital for Tropical Diseases, Bangkok, and the Shoklo Malaria Research Unit in Thailand. Adult patients with acute, uncomplicated \textit{P falciparum} or \textit{P vivax} malaria received artefenomel in a single oral dose (200 mg, 400 mg, 800 mg, or 1200 mg). The first cohort received 800 mg. Testing of a new dose of artefenomel in a patient cohort was decided on after safety and efficacy assessment of the preceding cohort. The primary endpoint was the natural log parasite reduction per 24 h. Definitive oral treatment was given at 36 h. This trial is registered with ClinicalTrials.gov, number NCT01213966.

Findings Between Oct 24, 2010, and May 25, 2012, 82 patients were enrolled (20 in each of the 200 mg, 400 mg, and 800 mg cohorts, and 21 in the 1200 mg cohort). One patient withdrew consent (before the administration of artefenomel) but there were no further dropouts. The parasite reduction rates per 24 h ranged from 0·90 to 1·88 for \textit{P falciparum}, and 2·09 to 2·53 for \textit{P vivax}. All doses were equally effective in both \textit{P falciparum} and \textit{P vivax} malaria, with median parasite clearance half-lives of 4·1 h (range 1·3–6·7) to 5·6 h (2·0–8·5) for \textit{P falciparum} and 2·3 h (1·2–3·9) to 3·2 h (0·9–15·0) for \textit{P vivax}. Maximum plasma concentrations, dose-proportional to 800 mg, occurred at 4 h (median). The estimated elimination half-life was 46–62 h. No serious drug-related adverse effects were reported; other adverse effects were generally mild and reversible, with the highest number in the 1200 mg cohort (17 [81%] patients with at least one adverse event). The most frequently reported adverse effect was an asymptomatic increase in plasma creatine phosphokinase concentration (200 mg, n=5; 400 mg, n=3; 800 mg, n=1; 1200 mg, n=3).

Interpretation Artefenomel is a new synthetic antimalarial peroxide with a good safety profile that clears parasitaemia rapidly in both \textit{P falciparum} and \textit{P vivax} malaria. Its long half-life suggests a possible use in a single-dose treatment in combination with other drugs.

Funding Bill & Melinda Gates Foundation, Wellcome Trust, and UK Department for International Development.

Copyright © Phyo et al. Open Access article distributed under the terms of CC BY-NC-ND.

Introduction

Malaria is the most important parasitic disease in people, and a major cause of morbidity and mortality in tropical regions. WHO has declared malaria control a global development priority and has changed its focus from containment and control to elimination.1 Drug resistance in \textit{Plasmodium} species poses a major obstacle. Resistance in \textit{Plasmodium falciparum}, the main cause of malarial death, has rendered several first-line antimalarial drugs (first chloroquine, then sulfadoxine-pyrimethamine, and in some areas amodiaquine) largely ineffective. Since 2005, WHO has recommended artemisinin-based combination therapy as the first-line treatment for falciparum malaria.2 Artemisinin and its derivatives are the most potent and rapidly acting antimalarial drugs available.3 The peroxidic pharmacophore is essential for their activity.4 The antimalarial activities of artemisinin derivatives are characterised by high parasite killing rates and broad-stage specificity of antimalarial action. These antimalarial drugs produce more rapid clinical and parasitological responses than other classes of available drugs.5 However, they are eliminated rapidly (half-lives <1 h), which necessitated a treatment course of 7 days when they were given alone for falciparum malaria. Combination with a more slowly eliminated partner drug has allowed for 3-day courses of artemisinin-based...
Artefenomel is a new, fast-acting inhibitor of all asexual erythrocytic \textit{Plasmodium falciparum} stages associated with malaria, and has an in-vitro potency that is similar to clinically used artemisinin derivatives. Its intrinsically unstable peroxide pharmacophore was optimised, resulting in slower elimination compared with artemisinin derivatives and the first-generation ozonide arterolane (OZ277). Two phase 1 human volunteer studies have shown that oral doses of 50 mg, 100 mg, 200 mg, 400 mg, 800 mg, 1200 mg, and 1600 mg artefenomel are well tolerated, and suggest a good safety profile for the compound.

Trioxolanes are synthetic antimalarial drugs with a similar peroxide pharmacophore to the artemisinins. The first trioxolane, arterolane (RBx11160/OZ277), proved to be well tolerated in people. Arterolane has been developed and registered in India in combination with piperaquine and was recently approved in seven African countries. The combination has proved highly effective in a limited number of clinical trials.

Artefenomel (OZ439) is the second synthetic trioxolane to advance to clinical candidate selection (appendix p 14). In a phase 1 study, oral artefenomel (given at doses of 50, 100, 200, 400, 800, 1200, and 1600 mg) was generally well tolerated. The good oral bioavailability, slow clearance, and increased metabolic stability of artefenomel might allow for single-dose cure in combination with a suitable partner drug. A separate phase 1 study found that piperaquine, a potential partner drug, but not artefenomel, prolonged the QTc interval in volunteers. We undertook a dose evaluation of artefenomel in adult patients with acute un-complicated \textit{P falciparum} or \textit{P vivax} malaria was done at the Hospital for Tropical Diseases, Bangkok, Thailand, and the Shoklo Malaria Research Unit (SMRU) on the northwestern border of Thailand. Five single oral doses of artefenomel were planned or in progress.

Research in context

Evidence before this study

Despite progress made during the past few decades, WHO reported in 2014 that malaria kills more than half a million patients per year (2013 data), and parasite resistance against the latest class of antimalarial drugs, the artemisinins, is spreading. New antimalarial drugs are needed to drive the elimination of malaria.

We searched MEDLINE, the Medicines for Malaria Venture website (http://www.mmv.org), the US National Institutes of Health and Australian/New Zealand (ANZCTR) trial registries, and the Cortellis (Thomson Reuters) database for earlier work on artefenomel (OZ439) and similar compounds, with the keywords “artefenomel”, “OZ277”, “arterolane”, “Synriam”, “ozonides”, “trioxolane”, and “synthetic endoperoxides” to search for publications, trial registrations, and other activities by mid-July 2015.

Artefenomel is a new, fast-acting inhibitor of all asexual \textit{Plasmodium falciparum} and \textit{P vivax} symptomatic malaria (figure 1). Cohort sizes allowed for adequate measurement of treatment responses. Adult male or non-pregnant female febrile patients aged 18–60 years and weighing 40–90 kg who presented with symptomatic malaria (\textit{P falciparum} or \textit{P vivax} infections) and 5000–50000 parasites per \text{μL} of blood (microscopy confirmed) were eligible, provided that they gave fully informed consent. The study was undertaken at the Hospital for Tropical Diseases, Bangkok, Thailand, and the Shoklo Malaria Research Unit (SMRU), northwestern border of Thailand. Two parallel groups of ten patients with \textit{P falciparum} and ten patients with \textit{P vivax} were treated with artefenomel plus either piperaquine, ferroquine (SSR97193), or DSM265.

Added value of this study

To our knowledge, this study is the first to assess the antimalarial activity of artefenomel in patients with malaria. Our study assessed the safety and efficacy of artefenomel before administration of the definitive oral antimalarial treatment. Our findings show that this synthetic peroxide provides rapid parasite clearance in both \textit{falciparum} and \textit{vivax} malaria. We have established the pharmacokinetic parameters that will guide optimum dosing and the choice of appropriate partner drugs for antimalarial combination therapy. A retrospective genetic analysis of the malaria parasites in this study suggests that artefenomel-mediated clearance is not substantially affected by mutations known to confer partial resistance against artemisinins.

Implications of all the available evidence

Our data show that artefenomel has a good pharmacokinetic and safety profile, with antimalarial efficacy against both \textit{P falciparum} and \textit{Plasmodium vivax}, clearing the path for further (ongoing) clinical studies. Artefenomel has a longer half-life than other antimalarial endoperoxides, with potential for a single-dose malaria cure when used with a partner drug. Clinical trials in which artefenomel is combined with ferroquine (SSR97193), piperaquine, or DSM265 are being planned or in progress.

Methods

Study design and participants

This phase 2a exploratory, open-label assessment of single-dose artefenomel in adult patients with acute uncomplicated \textit{P falciparum} or \textit{Plasmodium vivax} malaria was done at the Hospital for Tropical Diseases, Bangkok, Thailand, and the Shoklo Malaria Research Unit (SMRU) on the northwestern border of Thailand. Five single oral doses of artefenomel were planned over the range 100 mg to 1600 mg in cohorts of 20 patients each; two parallel groups of ten patients with \textit{P falciparum} and ten patients with \textit{P vivax} malaria (figure 1). Cohort sizes allowed for adequate measurement of treatment responses.

Adult male or non-pregnant female febrile patients aged 18–60 years and weighing 40–90 kg who presented with symptomatic malaria (\textit{P falciparum} or \textit{P vivax} infections) and 5000–50000 parasites per \text{μL} of blood (microscopy confirmed) were eligible, provided that they gave fully informed consent. The study was undertaken at the Hospital for Tropical Diseases, Bangkok, Thailand, and the Shoklo Malaria Research Unit (SMRU), northwestern border of Thailand. Two parallel groups of ten patients with \textit{P falciparum} and ten patients with \textit{P vivax} were treated with artefenomel plus either piperaquine, ferroquine (SSR97193), or DSM265.

See Online for appendix
informed written consent. Exclusion criteria were clinical or laboratory signs of severe malaria, inability to tolerate oral drugs, or having received any other antimalarial treatment within 14 days before admission. The protocol, protocol amendments, written study patient information, informed consent forms, and other appropriate study-related information were reviewed and approved by the ethics committee of the Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. The study was done in accordance with Good Clinical Practice as required by the International Conference on Harmonisation guidelines and in accordance with country-specific laws and regulations governing clinical studies of investigational products. Written, informed consent was obtained from all participants.

Procedures
On admission, patients were examined fully, blood samples were taken for full blood count and routine biochemistry, and the diagnosis of malaria was confirmed by microscopy. The patients were treated with a single oral dose of artefenomel after a small full-fat milk drink, because food has been reported to affect exposure. Patients were monitored closely for the next 36 h. Definitive oral antimalarial treatment was given at 36 h, or earlier if parasitaemia showed no reduction after 12 h, or if the reduction after 24 h was lower than 75% (compared with baseline). Definitive treatment for patients with P. falciparum malaria was mefloquine 8 mg/kg (base) plus 4 mg/kg artesunate given once daily for 3 days. Patients with P. vivax malaria received as definitive treatment 25 mg base/kg chloroquine; primaquine (0.5 mg base/kg per day for 14 days) was given for radical cure of vivax malaria, apart from in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency, who instead received 0.75 mg primaquine once weekly for 8 weeks. Drugs for definitive treatment were sourced locally by the study sites. Patients were considered to have completed the study at day 7, but were reviewed again on day 30 (±2 days) to ensure cure without complications, and in case any adverse event had not resolved.

Patients were recruited sequentially to each dose cohort. The first cohort received a dose of 800 mg. The decision to decrease or increase the dose (within the 100 mg to 1600 mg range) for sequential cohorts was made after a review of the safety data, drug exposure levels, and parasite clearance data for the current cohort. Parasite genotyping for P. falciparum kelch mutations was done as described elsewhere. G6PD deficiency was assessed with the fluorescent spot test.

![Study flow diagram](image-url)

Figure 1: Study flow diagram
A new dose (cohort) was initiated after review of the findings from the preceding cohort. During the 36 h study period, parasitaemia, artefenomel exposure, and other variables were assessed. Definitive treatment to cure malaria involved standard drugs (mefloquine plus artesunate or chloroquine plus primaquine) and was given to avoid recrudescence. Patients infected with Plasmodium falciparum and Plasmodium vivax followed the same clinical protocols.
Artefenomel was manufactured by Unimark, India, and supplied by Penn Pharmaceuticals in glass vials containing 200 mg or 100 mg artefenomel mesylate salt stored at 2–8°C. It was administered as aqueous dispersion.

Blood samples for the assay of artefenomel and its metabolites were obtained before dosing and at 0·5, 1, 2, 3, 4, 6, 8, 12, 18, 24, 36, 48, 72, 96, and 168 h after dosing. An additional blood sample was withdrawn 4 h after starting definitive antimalarial treatment (ie, typically 40 h or 76 h after artefenomel administration). Blood samples (3 mL) were collected into glass tubes containing EDTA (edetic acid) as anticoagulant. Plasma was separated within 30 min of sample collection by centrifugation at 4°C at 1500 rpm for 15 min, and transferred into four polypropylene tubes (three replicates of about 500 mL each). The tubes were stored frozen at –70°C to –80°C until shipment to the laboratory where the analysis was done for the content of artefenomel and its metabolites by liquid chromatography–mass spectrometry.27 The limit of quantification was 1 ng/mL for all analytes.

Outcomes

The primary endpoint was the natural log parasite reduction rate per 24 h. Secondary endpoints were the first-order parasite clearance rate constant and derived half-life (estimated with the online Worldwide Antimalarial Resistance Network [WWARN] toolkit), parasitaemia reduction times (50%, 80%, 90%, and 99%), parasite clearance time,26–28 gametocytaemia reduction, and fever clearance time. Safety endpoints were incidence, severity, drug-relatedness, and seriousness of adverse events and of laboratory abnormalities. Additionally, clinically significant electrocardiogram (ECG) abnormalities were assessed including prolonged QTcF (>450 ms).

The parasite reduction per 24 h was estimated separately for each patient from a regression model. The relation between parasite counts and time was analysed by fitting a variable lag phase then a linear decline to the natural logarithm of parasite count versus time relation. The slope of this log-linear relation was the primary endpoint, and all secondary variables related to parasite reduction were derived from this best fit. The WWARN analytical procedures have been described previously.26

Fever clearance time was defined as the time from artefenomel administration to the first of at least two consecutive normal body temperature measurements (by axillary temperature ≤37.5°C or oral, rectal, or tympanic temperature ≤38°C) obtained within an interval of 6–24 h after artefenomel administration. Incidence of all adverse events was scored with the MedRA (latest version) primary system organ class and preferred term.19 12-lead ECGs were performed on day 0 pre-dose and after dosing, 2–4 h post-dose, and around 24 h after dosing, and were repeated if clinically indicated.

Statistical analysis

Efficacy and safety analyses were done by Datamap GmbH (Freiburg, Germany) for all patients who received the study drug. The primary efficacy endpoint (parasite reduction rate per 24 h) was derived from linear regression fitting log10-transformed parasitaemia data against their observed times (hours). Only data up to 36 h after dosing and before or equal to the start of definitive treatment were used. The timepoints chosen for the regression were those that yield the highest degree of significance when assessing the regression when the number of timepoints are greater than or equal to three. Parasite reduction rate per 24 h and slope were reported with 95% CIs and summarised when the regression fit had a p value less than or equal to 0·01 and a corresponding R2 greater than or equal 0·85. Graphical displays of the Kaplan-Meier estimates for parasite clearance time and fever clearance
time by treatment group were provided. The relation between artefenomel exposure (area under the plasma concentration-time curve [AUC\textsubscript{0–\infty}]) and selected efficacy endpoints was explored graphically; for each group the endpoint was plotted versus AUC\textsubscript{0–\infty}, additionally showing a LOESS (local regression) fit, if feasible. This analysis was done for parasite reduction rate per 24 h, the slope, and 36 h ratio, all with linear and log-linear exposure. The WWARN Parasite Clearance Estimator calculator is described elsewhere.26

Pharmacokinetic analysis was done by Swiss BioQuant AG (Reinach, Switzerland). All pharmacokinetic variables (normally and log-normally distributed) were summarised by arithmetic and geometric means, minimum, median, maximum, SD, and coefficient of variation of arithmetic and geometric means. A non-linear power model was used to assess dose proportionality based on AUC\textsubscript{0–\infty} (defined as area under the concentration-time curve from 0 h to infinity) and C\textsubscript{\text{max}} (defined as maximum or peak plasma concentration) values for artefenomel. AUCs were calculated by the linear trapezoidal method.

The assessment of dose proportionality was done with SAS/STAT software in a UNIX environment. Mean plots were generated with GraphPad Prism version 5.00. Individual plasma concentration-time profiles and non-compartmental pharmacokinetic analysis were done with Professional WinNonlin version 5.2.1. This trial is registered with ClinicalTrials.gov, number NCT01213966.

Role of the funding source
The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results
82 patients of Thai, Karen, or Burman origin with acute uncomplicated malaria were enrolled sequentially: 20 in the 200 mg and 800 mg cohorts, and 21 in the 400 and 1200 mg cohorts (figure 1). The study took place between Oct 24, 2010 (first patient enrolled), and May 25, 2012. The first cohort was given a dose of 800 mg. The decisions on dose escalation or dose reduction for the subsequent cohorts were taken after a review of the parasite reduction, adverse event, and clinical laboratory data after each dosing cohort. The order that doses were given to cohorts was 800 mg, 400 mg, 200 mg, and finally 1200 mg. The proportions of patients with \textit{P falciparum} or \textit{P vivax} malaria differed between the two study sites; 15% of patients (four of 26) presenting in Bangkok were infected with \textit{P falciparum} compared with 67% of patients (37 of 55) at the SMRU site; another SMRU patient carried a mixed infection (\textit{P falciparum} plus \textit{P vivax}).

One patient (400 mg cohort) withdrew consent and was not treated with artefenomel. Thus, there were

Figure 2: Parasite counts after treatment start per protocol set
Patients with (A) \textit{Plasmodium falciparum} and (B) \textit{Plasmodium vivax}. Blue lines show individual patient curves before rescue treatment (one patient in 200 mg cohort). The red line represents the median.
Maximum plasma concentrations of artefenomel were reached about 4 h after administration (table 3, appendix p 15), followed by a multiphasic decline. The C_{max} values were 339 ng/mL, 732 ng/mL, 1710 ng/mL, and 1200 mg, respectively. The estimated geometric mean terminal phase $t_{\text{1/2}}$ for the parent compound ranged from 339 to 1200 mg, respectively.

Articles

Plasma pharmacokinetic variables of artefenomel (OZ439) and its metabolites OZ567, OZ579, and OZ580, by artefenomel dose cohort

Artefenomel	C_{max} (ng/mL)	t_{max} (h)	AUC$_{\text{0-t}}$ (ng.h/mL)	AUC$_{\text{0-\infty}}$ (ng.h/mL)*	$t_{\text{1/2}}$ (h)*
200 mg	339 (90)	4.0 (2-8)	2490 (101)	3180 (37)	46.3 (54)
400 mg	732 (31)	3.0 (1-6)	6140 (33)	6450 (34)	62.3 (33)
800 mg	1710 (38)	4.0 (2-18)	19000 (50)	19700 (50)	58.0 (34)
1200 mg	1500 (90)	4.1 (0.5-12)	21700 (105)	25100 (85)	57.0 (47)

OZ567					
200 mg	15.6 (59)	4.0 (2-8)	137 (75)	NC	NC
400 mg	33.2 (39)	4.0 (2-8)	370 (37)	NC	NC
800 mg	60.1 (57)	4.0 (2-18)	828 (67)	NC	NC
1200 mg	69.2 (85)	4.0 (3-12)	1140 (94)	NC	NC

OZ579					
200 mg	30.9 (75)	4.0 (2-8)	306 (96)	NC	NC
400 mg	63.4 (46)	4.0 (2-8)	813 (44)	915 (19)	43.2 (31)
800 mg	105.7 (73)	4.0 (2-18)	1720 (72)	2100 (54)	41.1 (46)
1200 mg	122.8 (83)	4.0 (3-24)	2380 (93)	3300 (56)	40.0 (39)

OZ580					
200 mg	37.7 (109)	6.0 (4-8)	452 (133)	NC	NC
400 mg	72.7 (73)	6.0 (3-8)	1150 (76)	NC	NC
800 mg	83.0 (138)	4.0 (2-12)	1730 (107)	NC	NC
1200 mg	97.5 (105)	4.0 (3-12)	2200 (127)	NC	NC

Data are geometric means (coefficient of variation) or for t_{max} median (range). Number of patients: 20 patients each in the 200 mg, 400 mg, and 800 mg cohorts; 21 patients in the 1200 mg cohort. Patients with no assessment at 36 h (n=16) were not taken into account. C_{max}=maximum or peak plasma concentration. t_{max}=timepoint at which the maximal plasma concentration is reached. AUC$_{\text{0-t}}$=area under the concentration-time curve from 0 h to the last pharmacokinetic sample (96 h). AUC$_{\text{0-\infty}}$=area under the concentration-time curve from 0 h to infinity. $t_{\text{1/2}}$=estimated terminal phase half-life. *The number of patients may differ for the variables AUC$_{\text{0-t}}$ and t_{max}. AUC and half-lives were not calculated (NC) when fewer than 70% of patients had valid data.
46·3 h to 62·3 h. The plasma concentration-time profiles for the artefenomel metabolites followed those of the parent compound with the highest exposures for OZS80 and the lowest for OZS67 (table 3). These metabolites are not thought to contribute significant antimalarial activity.

Exposure to all metabolites was lower than for the parent drug. Inter-patient variability was generally high for exposures to artefenomel and its metabolites (appendix p 15). Exposures to artefenomel were similar between patients with *P* falciparum and *P* vivax infection and between male and female patients, and there were no apparent effects of bodyweight and age.

All patients recovered uneventfully. No patients withdrew because of adverse effects (see appendix pp 1–2 and pp 7–9 for a more detailed safety assessment). Two serious adverse effects were reported, although neither was deemed drug related.

Most of the adverse effects reported in this study were deemed mild in severity by the investigators and no particular pattern was evident. The proportion of patients with at least one moderate, drug-related event was similar between those with *P* falciparum (43%, 17 of 40 patients) and *P* vivax mono-infection (33%, 13 of 40 patients). Most changes in laboratory findings and adverse effects were mild, reversible, not dose-related, and compatible with acute malaria (appendix pp 7–9). Mild, asymptomatic increases in hepatic transaminases (alanine aminotransferase and aspartate aminotransferase) were noted, but were not dose dependent and were never accompanied by hyperbilirubinaemia. Two patients in the 200 mg cohort had a transient alanine aminotransferase reading of 83 U/L (normal range 7–40 U/L for alanine aminotransferase and aspartate aminotransferase) on days 2 and 7. The highest concentrations for aspartate aminotransferase were 82 U/L, 75 U/L, and 71 U/L for different patients in the 200 mg (2 h and 48 h) and 400 mg (24 h) cohorts, respectively. At least one adverse event was reported for 13 (65%) patients in the 200 mg cohort, for 11 (55%) patients in the 400 mg cohort, for ten (50%) patients in the 800 mg cohort, and for 17 (81%) patients in the 1200 mg cohort. The highest proportion of patients with at least one adverse event and the highest number of events were reported in the 1200 mg cohort for both *P* falciparum and *P* vivax. 12 (15%) patients had an asymptomatic rise in plasma creatine phosphokinase (maximum rise 4·9-fold), which did not correlate with dosing (appendix p 8).

Two patients had electrocardiograph QTcF intervals of 46·3 h to 62·3 h. The longest value recorded was 506 ms (pre-dose 423 ms). Both patients were in the 1200 mg cohort. In 18 patients, there were 26 instances of QTcF prolongation of more than 30 ms compared with baseline and three patients had one instance each of QTcF more than 60 ms. There was no significant correlation between QTcF prolongation and concentrations of artefenomel or any of its metabolites (appendix p 11). There were also three instances of reversible right bundle branch block, one in a patient with accompanying T-wave changes compatible with pericarditis evident at baseline, and minor non-specific T-wave changes were noted. The cardiac changes did not seem to be dose-related (one in each of the 400 mg, 800 mg, and 1200 mg cohorts) nor were they associated with cardiac-related clinical symptoms or adverse events.

Discussion

The synthetic peroxide artefenomel is being developed as a potential partner drug in an antimalarial combination treatment. The main goal of this first study of antimalarial activity in vivo was to assess the efficacy of artefenomel in clearing parasitaemia in uncomplicated malaria. The artemisinin derivatives accelerate ring-form parasite clearance providing a readily measurable pharmacodynamic endpoint for dose-finding, and this was investigated for artefenomel. Doses as low as 200 mg proved effective at eliminating ring-stage parasites rapidly and providing rapid and reliable resolution of symptoms and parasitaemia. Artefenomel is structurally dissimilar to the artemisinins and is eliminated much more slowly, yet it retains their key pharmacodynamic advantages.

The elimination half-life of artefenomel in patients with malaria ranged from 46 h to 62 h, greatly exceeding that of other peroxide antimalarial drugs (arterolane 2–4 h, artesunate 0·8–1·3 h, and dihydroartemisinin 0·9–2 h). The pharmacokinetic properties of artefenomel in acute malaria differed substantially from those reported earlier in healthy volunteers, with higher concentrations of parent drug and lower concentrations of metabolites, suggesting that acute illness affects both distribution and metabolic clearance. The fairly slow elimination and good tolerability up to single doses of 1200 mg suggest that a single-dose combination with one or more other slowly eliminated antimalarial drugs might be curative, particularly against blood-stage vivax malaria. The substantially slower elimination of artefenomel would provide much longer protection against the emergence of partner drug resistance than the protection provided by artemisinin derivatives in the artesinin-based combination therapies currently in use.

Artemisinin resistance is regarded as the main threat to our attempts to control and eliminate malaria. Artemisinin resistance in *P* falciparum manifests as slow parasite clearance, delaying clinical recovery, and increased gametocyte carriage. Resistance increases transmissibility and contributes to increased failure rates with artemisinin combination treatments. Artesunate produces clearance rates in falciparum malaria of between 0·23 and 0·39 per hour in sensitive infections and 0·10 per hour in resistant infections. These values correspond to parasite clearance half-lives of about 2–3 h and 6 h, respectively. By comparison, artefenomel provided median parasite clearance rates of 0·12 to 0·17 h for *P* falciparum.
malaria, corresponding to half-lives of 4.1–5.6 h. Thus, artefenomel provides parasite clearance rates that are slower than those of artesunate on artemisinin-sensitive parasites, and slightly faster than those of artesunate on artemisinin-resistant parasites (see appendix p 12 for a full comparison).

Despite having a similar pharmacophore, the antimalarial activity of artefenomel in infections carrying the kelch 13 propeller mutations strongly linked with artemisinin resistance was not substantially different to its activity in infections that did not have these mutations (median parasite clearance half-life 5·5 h vs 4·4 h). This finding suggests that artefenomel might be less affected by the mechanisms causing artemisinin resistance and so might have an important therapeutic role as artemisinin resistance worsens. However, this important potential advantage will need to be assessed in larger patient cohorts.

In general, artefenomel was well tolerated. This study included only 81 patients and was not powered to detect risks for wider use of the drug. There were no drug-related serious adverse effects and no significant trends in nausea and vomiting. Although, overall, drug tolerability was good, higher frequencies of adverse events and drug-related adverse events were reported in the 1200 mg cohort than at the lower doses. The most frequently reported adverse effect was an asymptomatic increase in plasma creatine phosphokinase concentration. The highest increase (4·9-fold) was seen in a patient in the 200 mg cohort, and there was no dose-correlation in the 12 readings of increased creatine phosphokinase (appendix p 10). Three instances of reversible right bundle branch block were reported, one in a patient with accompanying T-wave changes compatible with pericarditis evident at baseline. Other minor non-specific T-wave changes were reported. The observed cardiac changes did not seem to be dose-related and were not associated with cardiac-related clinical symptoms or adverse effects. Such changes may be seen in healthy individuals,\(^1\) as well as in patients with malaria,\(^2\) so the significance of these findings is unclear. Electrocardiograms showed QTcF prolongation compared with baseline, but this finding was expected because malaria is associated with QTcF shortening,\(^3\) and so there is predictable lengthening of the QT interval with recovery. There was no relation between QTcF prolongation and plasma concentrations of either parent compound or metabolites (appendix p 11). Taken together with the absence of QTc prolongation in preclinical studies in dogs, these results suggest that artefenomel does not substantially affect the QT interval in patients. Our preliminary findings suggest that artefenomel has the potential to become an important new antimalarial compound. To prevent or delay the development of parasite resistance against newly introduced drugs, it is common practice to give antimalarial drugs in combination. Potential complementary partner drugs for artefenomel are ferroquine (SSR97193),\(^4,5\) piperacarb,\(^2,6,7\) and DSM265.\(^8\) More information on efficacy and safety will be needed from additional phase 2 and phase 3 evaluation of artefenomel combination studies.

Contributors

APP (co-investigator) contributed to study design, data collection, data analysis, data interpretation, and writing of the report. P.J (co-investigator) contributed to patient recruitment, data collection, and data processing. FHN (co-investigator) supervised the study and assisted in writing and reviewing the manuscript. SP contributed to case recruitment, study design, and data collection. MF processed the samples for quantitative PCR and performed molecular analysis. NJW (co-investigator) contributed to the design, conduct, and interpretation of the study and to writing of the manuscript. SD contributed to the study design and data interpretation, and reviewed and validated the manuscript. FM was study Project Director and involved in overseeing the trial’s scientific aspects: data analysis, the statistical analysis plan, and reviewing the clinical study report. FM wrote sections of, and reviewed the manuscript. MB performed and reviewed the pharmacokinetic and pharmacodynamic analyses and wrote the relevant sections for the manuscript. JJM contributed to the study design, wrote the study protocol, conducted project management of the study, and contributed to the study analysis, results review, and writing of the clinical study report and manuscript.

Declaration of interests

We declare no competing interests.

Acknowledgments

This study was part of the Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Programme supported by the Wellcome Trust (grant number 095909/Z/11/Z). We thank T N C Wells for critical evaluation and interpretation of the data and discussions for improving the manuscript. We are grateful to the patients participating in this study, the nurses and staff of the Shoklo Malaria Research Unit and the Hospital for Tropical Diseases in Bangkok, and to Rob Hooft van Huijsduijnen for writing and editorial assistance with the manuscript. We thank David Saunders and Tran Tinh Hien for making their individual patient data available for analysis.

References

1. WHO. World malaria report. 2014. http://www.who.int/malaria/publications/world_malaria_report/en/ (accessed Sept 8, 2015).
2. WHO. Guidelines for the treatment of malaria, third edition. 2013. http://www.who.int/malaria/publications/atoz/9789241549127/en/ (accessed Sept 8, 2015).
3. Ashley EA, White NJ. Artemisinin-based combinations. *Curr Opin Infect Dis* 2005; 18: 511–16.
4. O’Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin—the debate continues. *Molecules* 2010; 15: 1705–21.
5. Krishna S, Bustamante L, Haynes RK, et al. Artemisinins: their growing importance in medicine. *Trends Pharmacol Sci* 2008; 29: 520–27.
6. Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. *Am J Trop Med Hyg* 2007; 77 (suppl): 181–92.
7. Onyango EO, Ayodo G, Watsiaah CA, et al. Factors associated with non-adherence to artemisinin-based combination therapy (ACT) to malaria in a rural population from holoendemic region of western Kenya. *BMC Infect Dis* 2012; 12: 143.
8. Lin JT, Juliano JJ, Wongrichanalai C. Drug-resistant malaria: the era of ACT. *Curr Infect Dis Rep* 2010; 12: 165–73.
9. Ashley EA, Dhorda M, Fairhurst RM, et al. Spread of artemisinin resistance in *Plasmodium falciparum* malaria. *N Engl J Med* 2014; 371: 411–23.
10. Tun KM, Irwong M, Lwin KM, et al. Spread of artemisinin-resistant *Plasmodium falciparum* in Myanmar: a cross-sectional survey of the K13 molecular marker. *Lancet Infect Dis* 2015; 15: 145–21.
11. Leang R, Taylor WR, Bouth DM, et al. Evidence of falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. *Antimicrob Agents Chemother* 2015; 59: 4719–26.
12 Wells TN, Hooft van Huijsduijnen R, Van Voorhis WC. Malaria medicines: a glass half full? Nat Rev Drug Discov 2015; 14: 424–42.

13 Haynes RK, Chua WC, Lung CM, et al. The Fe2+-mediated decomposition, PiTAP6 binding, and antimarial activities of artemisone and other artemisinins: the likelihood of C-centered radicals as bioactive intermediates. ChemMedChem 2007; 2: 1480–97.

14 Vennenbergen JL, Arbe-Barnes S, Brun R, et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Natl 2004; 430: 900–04.

15 Wells TN, Alonso PL, Gutteridge WE. New medicines to improve control and contribute to the eradication of malaria. Nat Rev Drug Discov 2015; 14: 339–46.

16 Saha N, Moehrle JJ, Zutshi A, et al. Safety, tolerability and pharmacokinetic profile of single and multiple oral doses of artemol (RBX1169) maleate in healthy subjects. J Clin Pharmacol 2014; 54: 386–93.

17 Valezka N, Loaoreesuwan S, Martensson A, et al. Artemol, a new synthetic trioxolane for treatment of uncomplicated Plasmodium falciparum malaria: a phase II, multicenter, randomized, dose-finding clinical trial. Clin Infect Dis 2010; 51: 684–91.

18 Valezka N, Krudsood S, Tangpukdee N, et al. Artemol maleate plus piperaquine phosphate for treatment of uncomplicated Plasmodium falciparum malaria: a comparative, multicenter, randomized clinical trial. Clin Infect Dis 2012; 55: 663–71.

19 Gautam A, Ahmed T, Sharma P, et al. Pharmacokinetics and pharmacodynamics of artemol maleate following multiple oral doses in adult patients with P falciparum malaria. J Clin Pharmacol 2011; 51: 1519–28.

20 Patil C, Katara S, Baig M, et al. Fixed dose combination of artemol and piperaquine: a newer prospect in antimalarial therapy. Ann Med Health Sci Res 2014; 4: 466–71.

21 Moehlele JJ, Duparc S, Sithoff C, et al. First-in-man safety and pharmacokinetics of synthetic ozonide drug candidate OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br J Clin Pharmacol 2013; 75: 524–37.

22 Charrman SA, Arbe-Barnes S, Bathurst IC, et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci USA 2011; 108: 4400–05.

23 Darpo B, Ferber G, Siegl P, et al. Evaluation of the QT effect of a candidate OZ439 off ers new hope for a single-dose cure of uncomplicated falciparum malaria in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob Agents Chemother 2012; 56: 997–2007.

24 Lwin KM, Imwong M, Suangkanarat P, et al. Elimination of Plasmodium falciparum in Cambodia, 2008 to 2010. Antimicrob Agents Chemother 2013; 57: 818–26.

25 Tarning J, Riemen MJ, McGready R, et al. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. PLoS Negl Trop Dis 2009; 4: e4551.

26 Denil SB, Tuyuoka R, Lim P, et al. Efficacy of artesunate-mefloquine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health 2006; 11: 3800–07.

27 Carrara VI, Zwang J, Ashley EA, et al. Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment. PLoS One 2013; 8: e57072.

28 Leang R, Ros S, Duong S, et al. Therapeutic efficacy of fixed dose artesunate-mefloquine for the treatment of acute, uncomplicated Plasmodium falciparum malaria in Kampong Speu, Cambodia. Malar J 2013; 12: 183.

29 Brown EG, Wood I, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf 1999; 20: 109–17.

30 Arsey F, Wrikowski B, Amaratunga G, et al. A molecular marker of artesinin-resistant Plasmodium falciparum malaria. Nature 2014; 505: 50–55.

31 Morris CA, Duparc S, Borghini-Fuhrer I, et al. Review of the clinical pharmacokinetics of artesunate and its active metabolite dihydroartemisinin following intravenous, intramuscular, oral or rectal administration. Malar J 2011; 10: 263.

32 Tarning J, Riemen MJ, McGready R, et al. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob Agents Chemother 2012; 56: 997–2007.

33 Hong X, Liu CH, Huang XT, et al. Pharmacokinetics of dihydroartemisinin in Artekin tablets for single and repeated dosing in Chinese healthy volunteers. Biopharm Drug Dispos 2008; 29: 237–44.

34 Carrara VI, Lwin KM, Phyo AP, et al. Malaria burden and artesinin resistance in the mobile and migrant population on the Thai-Myanmar border, 1999-2011: an observational study. PLoS Med 2013; 10: e1001398.

35 Denil SB, Tuyuoka R, Lim P, et al. Efficacy of artesunate-mefloquine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health 2006; 11: 3800–07.

36 Carrara VI, Zwang J, Ashley EA, et al. Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment. PLoS One 2013; 8: e57072.

37 Leang R, Barrette A, Boutl DM, et al. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob Agents Chemother 2013; 57: 818–26.

38 Leang R, Ros S, Duong S, et al. Therapeutic efficacy of fixed dose artesunate-mefloquine for the treatment of acute, uncomplicated Plasmodium falciparum malaria in Kampong Speu, Cambodia. Malar J 2013; 12: 183.

39 Da Costa D, Brady WJ, Edhouse J. Bradycardias and atrioventricular conduction block. BMJ 2002; 324: 533–38.

40 Beg M, Ahmad S, Tannana Z, et al. Severe malaria presenting as complete heart block. J Indian Acad Clin Med 2007; 8: 58–60.

41 White NJ. Cardiotoxicity of antimalarial drugs. Lancet Infect Dis 2007; 7: 549–58.

42iot C, Nosten F, Fraisse L, et al. The antimalarial ferroquine: from bench to clinic. Parasite 2011; 18: 207–14.

43 Wani WA, Jameel E, Baig U, et al. Ferroquine and its derivatives: new generation of antimalarial agents. Eur J Med Chem 2013; 101: 534–51.

44 Tarning J, Lindegardh N, Lwin KM, et al. Population pharmacokinetic assessment of the effect of food on piperaquine bioavailability in patients with uncomplicated malaria. Antimicrob Agents Chemother 2014; 58: 2052–58.

45 Tarning J, Thana P, Phyo AP, et al. Population pharmacokinetics and antimalarial pharmacodynamics of piperaquine in patients with Plasmodium vivax malaria in Thailand. CPT: Pharmacometrics Syst Pharmacol 2014; 3: e132.

46 Phillips MA, Lotharius J, Marsh K, et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci Transl Med 2015; 7: 296ra111.