JORDAN GROUPS, CONIC BUNDLES AND ABELIAN VARIETIES

TATIANA BANDMAN AND YURI G. ZARHIN

Abstract. A group G is called Jordan if there is a positive integer $J = J_G$ such that every finite subgroup B of G contains a commutative subgroup $A \subset B$ such that A is normal in B and the index $[B : A] \leq J$ (V.L. Popov). In this paper we deal with Jordaness properties of the groups $\operatorname{Bir}(X)$ of birational automorphisms of irreducible smooth projective varieties X over an algebraically closed field of characteristic zero. It is known (Yu. Prokhorov - C. Shramov) that $\operatorname{Bir}(X)$ is Jordan if X is non-uniruled. On the other hand, the second named author proved that $\operatorname{Bir}(X)$ is not Jordan if X is birational to a product of the projective line \mathbb{P}^1 and a positive-dimensional abelian variety.

We prove that $\operatorname{Bir}(X)$ is Jordan if (uniruled) X is a conic bundle over a non-uniruled variety Y but is not birational to $Y \times \mathbb{P}^1$. (Such a conic bundle exists if and only if $\dim(Y) \geq 2$.) When Y is an abelian surface, this Jordaness property result gives an answer to a question of Prokhorov and Shramov.

1. Introduction

In this paper we deal with the groups of birational and biregular automorphisms of algebraic varieties in characteristic zero.

If X is an irreducible algebraic variety over a field K of characteristic zero then we write \mathcal{O}_X for the structure sheaf of X, $\operatorname{Aut}(X) = \operatorname{Aut}_K(X)$ (resp. $\operatorname{Bir}(X) = \operatorname{Bir}_K(X)$) for the group of its biregular (resp. birational) automorphisms and $K(X)$ for the field of rational functions on X. We have

$$\operatorname{Aut}(X) \subset \operatorname{Bir}(X) = \operatorname{Aut}_K(K(X))$$

where $\operatorname{Aut}_K(K(X))$ is the group of K-linear field automorphisms of $K(X)$. We write id_X for the identity automorphism of X, which is the identity element of the groups $\operatorname{Aut}(X)$ and $\operatorname{Bir}(X)$. If n is a positive integer then we write \mathbb{P}_K^n (or just \mathbb{P}^n when it does not cause a confusion) for the n-dimensional projective space over K.

If X is smooth projective then we write $q(X)$ for its irregularity. For example, if X is an abelian variety then $q(X) = \dim(X)$.

In what follows we write k for an algebraically closed field of characteristic zero. We write \cong and \sim for an isomorphism and birational isomorphism of algebraic varieties respectively. If A is a finite commutative group then we call its rank the smallest
possible number of its generators and denote it by \(\text{rk}(A) \). If \(B \) is a finite group then we write \(|B| \) for its order.

1.1. **Jordan groups.** Recall (Popov [21, 22]) the following definitions that were motivated by the classical theorem of Jordan about finite subgroups of the complex matrix group \(\text{GL}(n, \mathbb{C}) \) [3, §36].

Definition 1.1. Let \(G \) be a group.
- \(G \) is called *Jordan* if there is a positive integer \(J = J_G \) such that every finite subgroup \(B \) of \(G \) contains a commutative subgroup \(A \subset B \) such that \(A \) is normal in \(B \) and the index \([B : A] \leq J \).
- We say that \(G \) has *finite subgroups of bounded rank* if there is a positive integer \(m = m_G \) such that any finite abelian subgroup \(A \) of \(G \) can be generated by at most \(m \) elements [20, 23].
- We call a Jordan group \(G \) *strongly Jordan* if there is a positive integer \(m = m_G \) such that any finite abelian subgroup \(A \) of \(G \) can be generated by, at most, \(m \) elements [20]. In other words, \(G \) is strongly Jordan if it is Jordan and has finite abelian subgroups of bounded rank.
- We say that \(G \) is *bounded* [22, 23] if there is a positive integer \(C = C_G \) such that the order of every finite subgroup of \(G \) does not exceed \(C \). (A bounded group is Jordan and even strongly Jordan.)

One may introduce similar definitions for families of groups [21, 23].

Definition 1.2. Let \(\mathcal{G} \) be a family of groups.
- We say that \(\mathcal{G} \) is *uniformly Jordan* (resp. *uniformly strongly Jordan*) if there is a positive integer \(J = J_\mathcal{G} \) such that each \(G \in \mathcal{G} \) enjoys Jordan property (resp. strong Jordan property) with \(J_G = J \) (resp. with \(J_G = J \) and \(m_G = M \)).
- We say that \(\mathcal{G} \) is *uniformly bounded* if there is a positive integer \(C = C_\mathcal{G} \) such that the order of every finite subgroup of every \(G \) from \(\mathcal{G} \) does not exceed \(C \). (See [23, Remark 2.9 on p. 2058].)

Remark 1.1. In the terminology of [23, p. 2067], a family \(\mathcal{G} \) is uniformly strongly Jordan if and only if it is uniformly Jordan and has finite subgroups of uniformly bounded rank.

1.2. **Jordan properties of \(\text{Bir}(X) \) and \(\text{Aut}(X) \).** Let \(X \) be an irreducible quasiprojective variety over \(k \). There is the natural group embedding

\[
\text{Aut}(X) \hookrightarrow \text{Bir}(X)
\]

that allows us to view \(\text{Aut}(X) \) as a subgroup of \(\text{Bir}(X) \). In particular, the Jordan property (resp. the strong Jordan property) for \(\text{Bir}(X) \) implies the same property for \(\text{Aut}(X) \). However, the converse is not necessarily true. More precisely:
- It is known that \(\text{Aut}(X) \) is Jordan if \(\dim(X) \leq 2 \) [21, 29, 1].
• It is also known (Popov [21]) that Bir(X) is Jordan if \(\dim(X) \leq 2 \) and \(X \) is not birational to a product \(E \times \mathbb{P}^1 \) of an elliptic curve \(E \) and the projective line \(\mathbb{P}^1 \). (The Jordan property of the two-dimensional Cremona group Bir(\(\mathbb{P}^2 \)) was established earlier by J.-P. Serre [27].)

• In the remaining case Bir(\(E \times \mathbb{P}^1 \)) is not Jordan. More generally, if \(A \) is an abelian variety of positive dimension over \(k \) and \(n \) is a positive integer, then Bir(\(A \times \mathbb{P}^n \)) is not Jordan [28].

Notice that Bir(\(A \)) coincides with Aut(\(A \)) and is strongly Jordan [21]. Actually, if \(A_d \) is the family of groups Bir(\(A \)) when \(A \) runs through the set of all \(d \)-dimensional abelian varieties over \(k \) then \(A_d \) is uniformly strongly Jordan [23, Corollary 2.15 on p. 2058].

• In higher dimensions, a recent result of Meng and Zhang [16] asserts that Aut(\(X \)) is Jordan if \(X \) is projective.

For groups of birational automorphisms in higher dimensions Prokhorov and Shramov [23] proved the following strong result [23, Th. 1.8].

Theorem 1.2. (1) If \(X \) is non-uniruled then Bir(\(X \)) is Jordan.

(2) If \(X \) is non-uniruled and \(q(X) = 0 \) then Bir(\(X \)) is bounded.

Remark 1.3. Prokhorov and Shramov [23, Remark 6.9 on p. 2065] noticed that if \(X \) is non-uniruled then Bir(\(X \)) has finite subgroups of bounded rank. This means that in the non-uniruled case Bir(\(X \)) is strongly Jordan.

In addition, in dimension 3 Prokhorov and Shramov proved [23] that:

• If \(q(X) = 0 \) then Bir(\(X \)) is Jordan.

• If \(X \) is rationally connected then Bir(\(X \)) is strongly Jordan. Even better, if \(X \) varies in the set of rationally connected threefolds then the corresponding family of groups Bir(\(X \)) is uniformly strongly Jordan [24, Th. 1.7 and 1.10].

Actually, they proved all these assertions in arbitrary dimension \(d \), assuming that the well-known conjecture of A. Borisov, V. Alexeev and L. Borisov (BAB conjecture [2]) about the boundedness of families of \(d \)-dimensional Fano varieties with terminal singularities is valid in dimension \(d \).

In light of their results it remains to investigate Jordaness properties of Bir(\(X \)) when \(X \) is uniruled with \(q(X) > 0 \). According to Prokhorov and Shramov [23, p. 2069], it is natural to start with a conic bundle \(X \) over an abelian surface \(A \) when \(X \) is not birational to a product \(A \times \mathbb{P}^1 \).

In this work we prove that in this case Bir(\(X \)) is Jordan. Actually, we prove the following more general statement.

Theorem 1.4. Let \(X \) be an irreducible smooth projective variety of dimension \(d \geq 3 \) over \(k \) and \(f : X \to Y \) be a surjective morphism over \(k \) from \(X \) to a \((d-1) \)-dimensional abelian variety \(Y \) over \(k \). Let us assume that the generic fiber of \(f \) is a genus zero smooth projective irreducible curve \(X_f \) over \(k(Y) \) without \(k(Y) \)-points. Then Bir(\(X \)) is strongly Jordan.
We deduce Theorem 1.4 from the following more general statement.

Theorem 1.5. Let \(d \geq 3 \) be a positive integer, \(X \) and \(Y \) are smooth irreducible projective varieties over \(k \) of dimension \(d \) and \(d - 1 \) respectively. Let \(f : X \to Y \) be a surjective morphism, whose generic fiber is a genus zero smooth projective irreducible curve \(X_f \) over \(k(Y) \) without \(k(Y) \)-points. Assume that \(Y \) is non-uniruled. Then \(\text{Bir}(X) \) is strongly Jordan.

The following assertion is a variant of Theorem 1.5

Theorem 1.6. Let \(d \geq 3 \) be a positive integer, \(X \) and \(Y \) are smooth irreducible projective varieties over \(k \) of dimension \(d \) and \(d - 1 \) respectively. Let \(f : X \to Y \) be a surjective morphism. Suppose that there exists a nonempty open subset \(U \) of \(X \) such that for all \(y \in U(k) \) the corresponding fiber \(X_y \) of \(f \) is \(k \)-isomorphic to the projective line over \(k \) (i.e. the general fiber \(X_y \cong \mathbb{P}_k^1 \)).

Assume that \(Y \) is non-uniruled and \(f \) does not admit a rational section \(Y \dashrightarrow X \). Then \(\text{Bir}(X) \) is strongly Jordan.

The paper is organized as follows. Section 2 deals with Jordaness of groups. In Section 3 we remind basic properties of conic bundles over non-uniruled varieties. In Section 4 we describe finite subgroups of automorphisms group of a conics without rational points. We prove main results of the paper in Section 5.

Acknowledgements. We are deeply grateful to the referee, whose comments helped to improve the exposition; especially, for the suggestions to include the discussion of automorphism groups of even-dimensional quadrics over function fields (see the end of Section 4) and the case of non-smooth varieties (see Remark 5.4).

2. Group Theory

We will need the following useful result of Anton Klyachko [23, Lemma 2.8 on p.2057]. (See also [29, Lemma 6.2].)

Lemma 2.1. Let \(\mathcal{G}_1 \) and \(\mathcal{G}_2 \) be families of groups such that \(\mathcal{G}_1 \) is uniformly bounded and \(\mathcal{G}_2 \) is uniformly strongly Jordan. Let \(\mathcal{G} \) be a family of groups \(G \) such that \(G \) sits in an exact sequence

\[
\{1\} \to G_1 \to G \to G_2 \to \{1\},
\]

where \(G_1 \in \mathcal{G}_1 \) and \(G_2 \in \mathcal{G}_2 \). Then \(\mathcal{G} \) is uniformly Jordan.

Actually, we will use the following slight refinement of Lemma 2.1.

Lemma 2.2. In the notation and assumptions of Lemma 2.1 the family \(\mathcal{G} \) is uniformly strongly Jordan.

Proof. The assertion follows readily from Lemma 2.1 combined with Lemma 2.7 of [23, p. 2057] about extensions of groups with uniformly bounded ranks. \(\square \)
Corollary 2.3. Let \(d \) be a positive integer. Let \(\mathcal{G}_1 \) be a uniformly bounded family of groups. Let \(\mathcal{A}_d \) be the family of groups \(\text{Bir}(A) \) where \(A \) runs through the set of all \(d \)-dimensional abelian varieties over \(k \). Let \(\mathcal{G} \) be a family of groups \(G \) such that there exists an exact sequence

\[
\{1\} \to G_1 \to G \to G_2 \to \{1\},
\]

where \(G_1 \in \mathcal{G}_1 \) and \(G_2 \in \mathcal{A}_d \). Then \(\mathcal{G} \) is uniformly Jordan.

Proof. One has only to recall that \(G_2 := \mathcal{A}_d \) is uniformly strongly Jordan [23, Corollary 2.15 on p. 2058] and apply Lemma 2.2. \(\square \)

Lemma 2.4. Let \(G \) be a strongly Jordan group and let \(H \) be a subgroup of \(G \). Suppose that there exists a positive integer \(N_H \) such that every periodic element in \(H \) has order that does not exceed \(N_H \).

Then \(H \) is bounded.

Proof. Let \(J_G \) be the Jordan index of \(H \). We know that there is a positive integer \(m_G \) such that every finite abelian subgroup in \(G \) is generated by, at most, \(m_G \) elements.

Let \(\mathcal{B} \) be a finite subgroup of \(H \). Clearly, \(\mathcal{B} \) is a subgroup of \(G \) as well. Then \(\mathcal{B} \) contains a finite abelian subgroup \(\mathcal{A} \) with index \([\mathcal{B} : \mathcal{A}] \leq J_G \). The abelian group \(\mathcal{A} \) is generated by, at most, \(m_G \) elements, each of which has order \(\leq N_H \). This implies that \(|\mathcal{A}| \leq N_H^{m_G} \) and therefore

\[
|\mathcal{B}| \leq J_H \cdot |\mathcal{A}| \leq J_G \cdot N_H^{m_G}.
\]

Recall [20] that the matrix group \(\text{GL}(n, \mathbb{C}) \) is strongly Jordan and its every finite abelian subgroup is generated by, at most, \(n \) elements. This implies that for any field \(K \) of characteristic zero the matrix group \(\text{GL}(n, K) \) is a strongly Jordan group with Jordan index \(J_{\text{GL}(n, \mathbb{C})} \) (see [22] Sect. 1.2.2 on p. 187); in addition, its every finite abelian subgroup is generated by, at most, \(n \) elements. Combining this observation with Lemma 2.4 and the last formula of its proof, we obtain the following assertion that may be of independent interest.

Theorem 2.5. Let \(K \) be a field of characteristic zero and \(n \) a positive integer. Suppose that \(H \) is a subgroup of \(\text{GL}(n, K) \) and \(N \) is a positive integer such that every periodic element in \(H \) has order \(\leq N \). Then there exist a positive integer \(N = N(n, N) \) that depends only on \(n \) and \(N \), and such that every finite subgroup in \(H \) has order \(\leq N \). In particular, \(H \) is bounded.

3. Conic bundles

Let \(f : X \to Y \) be a surjective morphism of smooth irreducible projective varieties of positive dimension over \(k \). Since \(X \) and \(Y \) are projective, \(f \) is a projective morphism. It is well known [9, Ch. III, Sect. 10, Cor. 10.7] that there is an open Zariski dense subset \(U = U(f) \) of \(Y \) such that the restriction \(f^{-1}(U) \to U \) is smooth ([9] Ch.
III, Sect. 10, Cor. 10.7]) and flat ([13, Lect. 8, 2°], [7, Theorem 6.9.1]). Thus the generic fiber $\mathcal{X} := \mathcal{X}_f$ is a smooth projective variety over $k(Y)$ and all its irreducible components have dimension $\dim(X) - \dim(Y)$. ([9, Ch. III, Sect. 9, Corollary 9.6]), ([9, Ch. III, Sect. 10, Prop. 10.1]). In addition, if y is a closed point of U then the corresponding fiber X_y of f is a smooth projective variety over the field $k(y) = k$ and all its irreducible components have dimension $\dim(X) - \dim(Y)$.

Notice that dominant f defines the field embedding

$$f^* : k(Y) \hookrightarrow k(X)$$

that is the identity map on k. Further we will identify $k(Y)$ with its image in $k(X)$. The field of rational functions of \mathcal{X}_f coincides with $k(X)$ and the group of birational automorphisms $\text{Bir}_{k(Y)}(\mathcal{X}_f)$ coincides with (sub)group

$$(1) \quad \text{Aut}(k(X)/k(Y)) \subset \text{Aut}(k(X)/k) = \text{Bir}_k(X)$$

that consists of all automorphisms of the field $k(X)$ leaving invariant every element of $k(Y)$.

We say that X is a conic bundle over Y if the generic fiber $\mathcal{X} := \mathcal{X}_f$ is an absolutely irreducible genus 0 curve over $k(Y)$. (See [22, 26].) In particular, $\dim(X) - \dim(Y) = 1$ and therefore the general fiber of f is a (smooth projective) curve.

Remark 3.1. As usual, by the general fiber of f we mean the fiber X_y of f over a point y from some nonempty open subset of Y. If the generic fiber is an irreducible smooth projective curve then there is an open nonempty subset U of Y such that for all closed points $y \in U$ the corresponding (closed) fibers X_y are irreducible smooth projective curves over $k(y) = k$ as well ([8, Corollary 9.5.6, Proposition 9.7.8]). Semi-continuity Theorem ([8, Ch III, Theorem 12.8], [17, Corollary, p.47] implies that the general fiber has genus zero if and only if the same is true for the generic fiber. Thus, the condition that the generic fiber is a smooth irreducible curve of genus zero is in our setting equivalent to the same condition for the general fiber.

Remark 3.2. If the genus 0 curve \mathcal{X}_f has a $k(Y)$-rational point then it is birational to the projective line over $k(Y)$ ([10, Th. A.4.3.1 on p. 75]). This implies that X is k-birational to $Y \times \mathbb{P}_1$. It follows from [28] that if Y is an abelian variety (of positive dimension) then $\text{Bir}(X)$ is not Jordan.

Example 3.3. Let us consider a smooth projective plane quadric

$$\mathcal{X}_q = \{a_1T_1^2 + a_2T_2^2 + a_3T_3^2 = 0\} \subset \mathbb{P}_2^k(Y)$$

over the field $K := k(Y)$ where all a_i are nonzero elements of $k(Y)$ such that the nondegenerate ternary quadratic form

$$q(T) = a_1T_1^2 + a_2T_2^2 + a_3T_3^2$$

in $T = (T_1, T_2, T_3)$ is anisotropic over $k(Y)$, i.e., $q(T) \neq 0$ if all $T_i \in k(Y)$ and, at least, one of them is not 0 in $k(Y)$. (It follows from [12, Th. 1 on p. 155] that such a form exists if and only if $2^{\dim(Y)} \geq 3$, i.e., if and only if $\dim(Y) \geq 2$.) Clearly, \mathcal{X}_q
JORDAN GROUPS

is an absolutely irreducible smooth projective curve of genus 0 over K that does not have K-points.

We want to construct a conic bundle with generic fiber X_q without K-rational point. First, let us consider the field $K(X_q)$ of the rational functions on X_q. It is finitely generated over K and has transcendence degree 1 over it. This implies that $K(X_q)$ is finitely generated over k and has transcendence degree $\dim(Y)+1$ over it. Since X_q is absolutely irreducible over K, the latter is algebraically closed in $K(X_q)$.

By Hironaka’s results, there is an irreducible smooth projective variety X over k of dimension $\dim(Y)+1$ with $k(X) = K(X_q)$ such that the dominant rational map $f : X \to Y$ induced by the field embedding $k(Y) = K \subset K(X_q) = k(X)$ is actually a morphism. Clearly, the generic fiber X_f is a smooth projective variety, all whose irreducible components have dimension 1. Since K is algebraically closed in $K(X_q)$, the latter is algebraically closed in $K(X_q) = k(X_q)$. By the very definition of the generic fiber. Since $K(X_f) = k(X) = K(X_q)$, the K-curves X_f and X_q are birational. Taking into account that both curves are smooth projective and absolutely irreducible over K, we conclude that X_f and X_q are biregularly isomorphic over K. This implies that X_f has genus zero and has no $k(Y)$-rational points. Thus $f : X \to Y$ is the conic bundle we wanted to construct.

Lemma 3.4. Let X and Y be smooth irreducible projective varieties of positive dimension over k, $f : X \to Y$ be a surjective morphism, such that the general fiber $F_y = f^{-1}(y)$ is isomorphic to \mathbb{P}^1_k. Let us identify $k(Y)$ with its image in $k(X)$. Assume additionally that Y is non-uniruled. (E.g., Y is an abelian variety.)

Then every k-linear automorphism σ of the field $k(X)$ leaves invariant $k(Y)$, i.e.,

$$\sigma(k(Y)) = k(Y), \ \forall \sigma \in \text{Aut}(k(X)).$$

In addition, there is exactly one birational automorphism u_Y of Y, whose action on $k(Y)$ coincides with σ.

Proof. There is a birational automorphism u_X of X that induces σ on $k(X)$. Let $\tilde{X} \xrightarrow{\pi} X$ be a resolution of indeterminancy of u_X, i.e., we consider a smooth irreducible projective k–variety \tilde{X}, and birational morphisms

$$\pi, \tilde{u}_X : \tilde{X} \to X$$

that enjoy the following properties.

- $\pi^{-1} : X \dashrightarrow \tilde{X}$ is an isomorphism outside the indeterminancy locus of u_X;
- the following diagram commutes:
Consider morphisms $\tilde{f} = f \circ \pi : \tilde{X} \to Y$ and $g = f \circ \tilde{u}_X : \tilde{X} \to Y$.

Let $\Sigma_1 \subset X$, $\Sigma_2 \subset X$ be the loci of indeterminancy of π^{-1} and \tilde{u}_X^{-1} respectively.

Since $\text{codim}_X(\Sigma_1) \geq 2$ and $\text{codim}_X(\Sigma_2) \geq 2$, we obtain that $\text{codim}_Y(f(\Sigma_1)) \geq 1$ and $\text{codim}_Y(f(\Sigma_2)) \geq 1$. (Recall that $\dim(X) = \dim(Y) + 1$.)

This implies that there is a nonempty open subset $U \subset Y \setminus (f(\Sigma_1) \cup f(\Sigma_2))$ such that

$$\tilde{F}_y := \tilde{f}^{-1}(y) = \pi^{-1}(F_y) \cong F_y \cong \mathbb{P}^1$$

and

$$G_y := g^{-1}(y) = u_X^{-1}(F_y) \cong F_y \cong \mathbb{P}^1$$

for all $y \in U(k)$.

Since Y is non-uniruled, $g(\tilde{F}_y)$ and $\tilde{f}(G_y)$ are points for every $y \in U(k)$ (see, e.g. [14, Chapter IV, Proposition 1.3, (1.3.4), p. 183]).

It follows from Kawamata’s Lemma [11, Lemma 10.7 on pp. 314–315] applied (twice) to morphisms

$$\tilde{f}, g : \tilde{X} \to Y$$

that there exist rational maps $h_1, h_2 : Y \to Y$ such that

$$g = h_1 \circ \tilde{f}, \quad \tilde{f} = h_2 \circ g.$$

This implies that h_1 and h_2 are mutually inverse birational automorphisms of Y. Let us put

$$u_Y := h_1 \in \text{Bir}(Y).$$

Then u_Y may be included into the commutative digram

$$\begin{array}{ccc}
\tilde{X} & \xrightarrow{\pi} & \tilde{u}_X \\
\downarrow & \searrow & \downarrow \\
X & \xrightarrow{u_X} & X \\
\downarrow & \downarrow & \downarrow \\
f & \quad & f \\
Y & \xrightarrow{u_Y} & Y
\end{array}$$

For the corresponding embeddings $k(Y) \hookrightarrow k(X)$ of fields of rational functions we have: $f^* \circ (u_Y)^* = \sigma \circ f^*$, thus

$$\sigma(k(Y)) = k(Y).$$
Remark 3.5. Lemma 3.4 follows from the Theorem on Maximal Rational Connected Fibrations [14, Chapter IV, Theorem 5.5, p.223]. However, our particular case is much easier, so we were tempted to provide a simple proof rather than to use the powerful theory.

The next statement follows immediately from Lemma 3.4.

Corollary 3.6. Keeping the notation and assumptions of Lemma 3.4, the map
\[u_X \mapsto u_Y \]
gives rise to the group homomorphism \(\text{Bir}(X) \to \text{Bir}(Y) \), whose kernel is \(\text{Aut}(k(X)/k(X)) = \text{Bir}_{k(Y)}(\mathcal{X}_f) \) (see (1)) where \(\mathcal{X}_f \) is the generic fiber of \(f \). In particular, we get an exact sequence of groups
\[\{1\} \to \text{Bir}_{k(Y)}(\mathcal{X}_f) \to \text{Bir}(X) \to \text{Bir}(Y). \]

Remark 3.7. The special case of Corollary 3.6 when \(Y \) is an abelian surface may be deduced from [25, Cor. 1.7].

Corollary 3.8. Keeping the notation and assumptions of Lemma 3.4, suppose that \(\text{Bir}(\mathcal{X}_f) \) is bounded. Then \(\text{Bir}(X) \) is strongly Jordan.

Proof. By results of Prokhorov and Shramov (Theorem 1.2 and Remark 1.3), \(\text{Bir}(Y) \) is strongly Jordan, because \(Y \) is non-uniruled. More precisely, they proved in [23, Corollary 6.8] that group \(\text{Bir}(Y) \) is Jordan provided \(Y \) is non-uniruled. In [23, Remark 6.9] they claim that actually if \(Y \) is non-uniruled then \(\text{Bir}(Y) \) has finite subgroups of bounded rank (and therefore is strongly Jordan): the proof has to be based on the same arguments as the proof of Cor. 6.8 of [23] but is not presented. Let us provide the needed mild modifications of the proof of Cor. 6.8 of [23] in order to obtain that non-uniruledness of \(Y \) implies having finite subgroups of bounded rank. Indeed, for \(Y \) non-uniruled and for a finite commutative subgroup \(G \subset \text{Bir}(Y) \) one has (using [23, Proposition 6.2] and its notation except replacing \(X \) by \(Y \) and \(X_{nu} \) by \(Y_{nu} \)) the following.

- \(Y_{nu} \simeq Y \) (thanks to Lemma 4.4 and Remark 4.5 of [23, Lemma 4.4 on p. 2061]) and the group \(G_{nu} \) is isomorphic to \(G \). In particular, \(G_{nu} \) is also finite and commutative.
- There are short exact sequences (23, p. 2063, 6.5])
\[1 \to G_{alg} \to G \to G_N \to 1, \]
\[1 \to G_L \to G_{alg} \to G_{ab} \to 1, \]
where
1. The finite groups \(G_{alg} \) and \(G_N \) are commutative.
2. \(\text{rk}(G_{ab}) \leq m_1 \) where \(m_1 \) depends only on \(q(Y) \).
(3) \(|G_L| \leq n = n(Y)\), i.e. \(G_L \) is finite and its order is bounded from above by a number \(n \) that depends on \(Y \) but not on \(G \). (This follows from Lemma 5.2 of [23, p. 2062].)

(4) It follows from (2) and (3) combined with the exact sequence (6.5) of [23, p. 2063] that \(\text{rk}(G_{alg}) \leq n + m_1 \).

(5) \(|G_N| \leq b := b(Y) \) is bounded from above by a number \(b(Y) \) that depends only on \(Y \). (It follows from Cor. 2.14 of [23, p. 2058].)

It follows from the exact sequences that

\[
\text{rk}(G) = \text{rk}(G_{nu}) \leq \text{rk}(G_{alg}) + b(Y) \leq (n + m_1) + b(Y) =: m(Y)
\]

where the bound \(m(Y) \) depends on \(Y \) but does not depend on \(G \). This proves that Bir(\(Y \)) has finite subgroups of bounded rank.

So, we know that Bir(\(Y \)) is strongly Jordan. Now the desired result follows readily from Corollary 3.6 combined with Lemma 2.2. \(\square \)

In the next section we prove that Bir(\(X_f \)) is bounded if \(X_f \) is not the projective line over \(k(\bar{Y}) \).

4. Linear Algebra

Throughout this section \(K \) is a field of characteristic 0 that contains all roots of unity. Let \(V \) be a vector space over \(K \) of finite positive dimension \(d \). We write \(1_V \) for the identity automorphism of \(V \). As usual, End\(_K(V)\) stands for the algebra of \(K \)-linear operators in \(V \) and

\[
\text{Aut}_K(V) = \text{End}_K(V)^*\]

for the group of linear invertible operators in \(V \). We write

\[
\det = \det_V : \text{End}_K(V) \to K
\]

for the determinant map. It is well known that \(\text{Aut}_K(V) \) consists of all elements of \(\text{End}_K(V) \) with nonzero determinant and

\[
\det : \text{Aut}_K(V) \to K^*
\]

is a group homomorphism.

Since \(K \) has characteristic zero and contains all roots of unity, every periodic (\(K \)-linear) automorphism \(u \in \text{Aut}_K(V) \) of \(V \) admits a basis of \(V \) that consists of eigenvectors of \(u \), because \(u \) is semisimple and all its eigenvalues lie in \(K \).

Let

\[
\phi : V \times V \to K
\]

be a nondegenerate symmetric \(K \)-bilinear form that is anisotropic, i.e. \(\phi(v, v) \neq 0 \) for all nonzero \(v \in V \). The form \(\phi \) defines the involution of the first kind

\[
\sigma = \sigma_\phi : \text{End}_K(V) \to \text{End}_K(V)
\]
characterized by the property
\[\phi(ux, y) = \phi(x, \sigma(u)y) \forall x, y \in V \]
(see [13 Ch. 1]). It is known [13, Ch. 1, Sect. 2, Cor. 2.2 on p.14 and Prop. 2.19 on p. 24] that
\[\det(u) = \det(\sigma(u)) \forall u \in \text{End}_K(V). \]

We write \(\text{GO}(V, \phi) \subset \text{Aut}_K(V) \) for the (sub)group of similitudes of \(\phi \). In other words, a \(K \)-linear automorphism \(u \) of \(V \) lies in \(\text{GO}(V, \phi) \) if and only if there exists \(\mu = \mu(g) \in K^* \) such that
\[\phi(ux, uy) = \mu \cdot \phi(x, y) \forall x, y \in V. \]
If this is the case then
\[\sigma(u)u = \mu \cdot 1_V. \]
Clearly,
\[K^* \cdot 1_V \subset \text{GO}(V, \phi). \]
We have
\[\text{SO}(V, \phi) \subset \text{O}(V, \phi) \subset \text{GO}(V, \phi) \]
where
\[\text{O}(V, \phi) = \{ u \in \text{Aut}_K(V) \mid \phi(ux, uy) = \phi(x, y) \forall x, y \in V \} \]
while \(\text{SO}(V, \phi) \) consists of all elements of \(\text{O}(V, \phi) \) with determinant 1. (Recall that elements of \(\text{O}(V, \phi) \) have determinant 1 or \(-1\). In particular, \(\text{SO}(V, \phi) \) is a normal subgroup of index 2 in \(\text{O}(V, \phi) \).) Clearly,
\[\text{O}(V, \phi) = \{ u \in \text{Aut}_K(V) \mid \sigma(u)u = 1_V \}. \]
It is also clear that
\[\text{GO}(V, \phi) \to K^*, \ u \mapsto \mu(u) \]
is a group homomorphism, whose kernel coincides with \(\text{O}(V, \phi) \); in particular, \(\text{O}(V, \phi) \) is a normal subgroup of \(\text{GO}(V, \phi) \). It is well known (and may be easily checked) that
\[\text{O}(V, \phi) \bigcap [K^* \cdot 1_V] = \{ \pm 1_V \}; \]
in addition, if \(d = \dim(V) \) is odd then
\[\text{SO}(V, \phi) \bigcap [K^* \cdot 1_V] = \{ 1_V \}. \]
We denote by \(\text{PGO}(V, \phi) \) the quotient group \(\text{GO}(V, \phi)/(K^* \cdot 1_V) \).

Remark 4.1. The importance of the group \(\text{PGO}(V, \phi) \) is explained by the following result [5] Sect. 69, Corollary 69.6 on p. 310]. Let
\[q(v) := \phi(v, v) \]
be the corresponding quadratic form on \(V \) and let
\[X_q \subset \mathbb{P}(V) \]
be the projective quadric defined by the equation $q(v) = 0$, which is a smooth projective irreducible $(d - 2)$-dimensional variety over K. Then the groups $\text{Aut}(X_q)$ and $\text{PGO}(V, \phi)$ are isomorphic.

Remark 4.2. Restricting the surjection
$$\text{GO}(V, \phi) \to \text{GO}(V, \phi)/(K^* \cdot 1_V) = \text{PGO}(V, \phi)$$
to the subgroup $\text{O}(V, \phi)$, we get a group homomorphism
$$\text{O}(V, \phi) \to \text{PGO}(V, \phi),$$
whose kernel is a finite subgroup $\{\pm 1_V\}$. This implies that if u is an element of $\text{O}(V, \phi)$, whose image in $\text{PGO}(V, \phi)$ has finite order then u itself has finite order.

Lemma 4.3. Let u be an element of finite order in $\text{O}(V, \phi)$. Then $u^2 = 1_V$.

Proof. Let λ be an eigenvalue of u. Then λ is a root of unity and therefore lies in K. This implies that there is a (nonzero) eigenvector $x \in V$ with $ux = \lambda x$. Since $u \in \text{O}(V, \phi)$,
$$\phi(ux, ux) = \phi(x, x).$$
Since $ux = \lambda x$,
$$\phi(ux, ux) = \phi(\lambda x, \lambda x) = \lambda^2 \phi(x, x)$$
and therefore $\lambda^2 \phi(x, x) = \phi(x, x)$. Since ϕ is anisotropic, $\phi(x, x) \neq 0$ and therefore $\lambda^2 = 1$. In other words, every eigenvalue of u^2 is 1 and therefore (semisimple) $u^2 = 1_V$. \hfill \Box

Corollary 4.4. Let G be a finite subgroup of $\text{O}(V, \phi)$. If G does not coincide with $\{1_V\}$ then it is a commutative group of exponent 2, whose order divides 2^d. If, in addition, G lies in $\text{SO}(V, \phi)$ then its order divides 2^{d-1}.

Proof. By Lemma 4.3 every $u \in G$ satisfies $u^2 = 1_V$. This implies that G is commutative. In addition, G is a 2-group, i.e., its order is a power of 2. The commutativeness of G implies that there is a basis of V such that the matrices of all elements of G become diagonal with respect to this basis. Since all the diagonal entries are either 1 or -1, the order of G does not exceed 2^d and therefore divides 2^d. If, in addition, all elements of G have determinant 1 then the order of G does not exceed 2^{d-1} and, therefore, divides 2^{d-1}. \hfill \Box

Corollary 4.5. Let u be an element of finite order in $\text{PGO}(V, \phi)$. Then $u^4 = 1$.

Proof. Choose an element u of $\text{GO}(V, \phi)$ such that its image in $\text{PGO}(V, \phi)$ coincides with u. Then there is $\mu \in K^*$ such that
$$\phi(ux, uy) = \mu \phi(x, y) \ \forall \ x, y \in V.$$
This implies that $u_2 := \mu^{-1}u^2$ lies in $\text{O}(V, \phi)$. Clearly, the image $\bar{u}_2 \in \text{PGO}(V, \phi)$ of u_2 coincides with u^2 and therefore has finite order. By Corollary 4.2, u_2 has finite order. It follows from Lemma 4.3 that $u_2^2 = 1_V$. This implies that u^2 has order 1 or 2 and therefore the order of u divides 4. \hfill \Box
Corollary 4.6. If \mathcal{B} is a finite subgroup of $\text{PGO}(V, \phi)$ then it sits in a short exact sequence

$$\{1\} \to A_1 \to \mathcal{B} \to A_2 \to \{1\}$$

where both A_1 and A_2 are finite elementary commutative 2-groups and $|A_1|$ divides 2^{d-1}. In particular, each finite subgroup \mathcal{B} of $\text{PGO}(V, \phi)$ is a finite 2-group such that $[[\mathcal{B}, \mathcal{B}], [\mathcal{B}, \mathcal{B}]] = \{1\}$.

Proof. Let A_1 be the subgroup of all elements of \mathcal{B} that are the images of elements of $\text{O}(V, \phi)$. Since $\text{O}(V, \phi)$ is normal in $\text{GO}(V, \phi)$, the subgroup A_1 is normal in \mathcal{B}. It follows from the proof of Corollary 4.5 that for each $u \in \mathcal{B}$ its square u^2 lies in A_1. This implies that all the elements of the quotient $A_2 := \mathcal{B}/A_1$ have order 1 or 2. It follows that A_2 is an elementary abelian 2-group. We get a short exact sequence $\{1\} \to A_1 \to \mathcal{B} \to A_2 \to \{1\}$.

Let \tilde{A}_1 be the preimage of A_1 in $\text{O}(V, \phi)$. Clearly, \tilde{A}_1 is a subgroup of $\text{O}(V, \phi)$ and $|\tilde{A}_1| = 2 \cdot |A_1|$. On the other hand, it follows from Corollary 4.4 that \tilde{A}_1 is an elementary abelian 2-group, whose order divides 2^d. Since \tilde{A}_1 maps onto A_1, the latter is also an elementary abelian 2-group and its order divides $\frac{1}{2}2^d = 2^{d-1}$. Since $|\mathcal{B}| = |A_1| \cdot |A_2|$, the order of \mathcal{B} is a power of 2, i.e., \mathcal{B} is a finite 2-group. On the other hand, since $\mathcal{B}_2 = \mathcal{B}/A_1$ is abelian, $[[\mathcal{B}, \mathcal{B}], [\mathcal{B}, \mathcal{B}]] \subset [\mathcal{A}_1, \mathcal{A}_1] = \{1\}$, i.e., $[[\mathcal{B}, \mathcal{B}], [\mathcal{B}, \mathcal{B}]] = \{1\}$. \hfill \square

In the case of odd d we can do better. Let us start with the following observation.

Lemma 4.7. Suppose that $d = 2\ell + 1$ is an odd integer that is greater or equal than 3. Then every $u \in \text{GO}(V, \phi)$ can be presented as

$$u = \mu_0 \cdot u_0$$

with $u_0 \in \text{SO}(V, \phi)$ and $\mu_0 \in K^*$

Example 4.8. If u is an element of $\text{O}(V, \phi)$ with determinant -1 then

$$u = (-1) \cdot (-u), \quad (-u) \in \text{SO}(V, \phi).$$

Proof of Lemma 4.7. Recall that there is $\mu \in K^*$ such that

$$\phi(u x, u y) = \mu \cdot \phi(x, y) \quad \forall x, y \in V$$

and therefore

$$\sigma(u) u = \mu \cdot 1_V.$$

Now let $\gamma \in K^*$ be the determinant of u. Since $\det(\sigma(u)) = \det(u)$, we obtain that

$$\mu^{2\ell+1} = \mu^d = \det(\mu \cdot 1_V) = \det(\sigma(u) u) = \det(\sigma(u)) \det(u) = \gamma^2.$$
This implies that
\[\gamma^2 = \mu^d = \mu^{2\ell + 1}. \]
Let us put
\[\mu_0 = \frac{\gamma}{\mu^\ell}, \quad u_0 = \mu_0^{-1} \cdot u. \]
Then
\[\mu_0^2 = \mu, \quad \gamma = \mu_0^{2\ell + 1} = \mu^d, \]
\[u = \mu_0 \cdot u_0, \quad \det(u_0) = \mu_0^{-d}, \quad \det(u) = \gamma^{-1} \gamma = 1. \]
We also have
\[\phi(u_0 x, u_0 y) = \phi(\mu_0^{-1} u x, \mu_0^{-1} u y) = \mu_0^{-2} \cdot \phi(u x, u y) = \mu^{-1} \cdot \phi(x, y) = \phi(x, y). \]
This implies that \(u_0 \in O(V, \phi) \). Since \(\det(u_0) = 1 \),
\[u_0 \in SO(V, \phi). \]

Corollary 4.9. Suppose that \(d = 2\ell + 1 \) is an odd integer that is greater or equal than 3. Then the group homomorphism
\[\text{prod} : K^*1_V \times SO(V, \phi) \to GO(V, \phi), \quad (\mu_0 \cdot 1_V, u_0) \mapsto \mu_0 \cdot u_0 \]
is a group isomorphism. In particular, the group \(PGO(V, \phi) = GO(V, \phi)/\{K^*1_V\} \) is canonically isomorphic to \(SO(V, \phi) \).

Proof. Since \(d \) is odd,
\[\text{SO}(V, \phi) \cap \{K^* \cdot 1_V\} = \{1_V\}, \]
which implies that \text{prod} is injective. Its surjectiveness follows from Lemma 4.7. \(\square \)

Theorem 4.10. Suppose that \(K \) is a field of characteristic zero that contains all roots of unity, \(d \geq 3 \) is an odd integer, \(V \) is a \(d \)-dimensional \(K \)-vector space and
\[\phi : V \times V \to K \]
a nondegenerate symmetric \(K \)-bilinear form that is anisotropic, i.e. \(\phi(v, v) \neq 0 \) for all nonzero \(v \in V \).

Let \(G \) be a finite subgroup in \(PGO(V, \phi) \). Then \(G \) is commutative, all its non-identity elements have order 2 and the order of \(G \) divides \(2^{d-1} \).

Proof. The result follows readily from Corollary 4.9 combined with Corollary 4.4. \(\square \)

Corollary 4.11. Suppose that \(K \) is a field of characteristic zero that contains all roots of unity, \(d \geq 3 \) an odd integer, \(V \) a \(d \)-dimensional \(K \)-vector space and a quadratic form such that \(q(v) \neq 0 \) for all nonzero \(v \in V \). Let us consider the projective quadric \(X_q \subset \mathbb{P}(V) \) defined by the equation \(q = 0 \), which is a smooth projective irreducible \((d - 2) \)-dimensional variety over \(K \). Let \(Aut(X_q) \) be the group of birational automorphisms of \(X_q \). Let \(G \) be a finite subgroup in \(Aut(X_q) \). Then \(G \) is commutative, all its non-identity elements have order 2 and the order of \(G \) divides \(2^{d-1} \).
Proof. Let $\phi : V \times V \to K$ be the symmetric K-bilinear form such that $\phi(v, v) = q(v) \forall v \in V$.

Namely, for all $x, y \in V$

$$\phi(x, y) := \frac{q(x + y) - q(x) - q(y)}{2}.$$

Clearly, ϕ is nondegenerate. In the notation of [5, Sect. 69, p. 310], $GO(q) = GO(V, \phi), \ PGO(q) = PGO(V, \phi)$.

By Corollary 69.6 of [5, Sect. 69], the groups $Aut(X_q)$ and $PGO(q)$ are isomorphic.

Now the result follows from Theorem 4.10. □

Corollary 4.12. Suppose that K is a field of characteristic zero that contains all roots of unity. Let C be a smooth irreducible projective genus 0 curve over K that is not biregular to \mathbb{P}^1 over K.

Let $\text{Bir}_K(C)$ be the group of birational automorphisms of C. Let G be a finite subgroup in $\text{Bir}_K(C)$. Then G is commutative, all its non-identity elements have order 2 and the order of G divides 4. In other words, if G is nontrivial then it is either a cyclic group of order 2 or is isomorphic to a product of two cyclic groups of order 2.

Proof. Since C has genus zero, it is K-biregular to a smooth projective plane quadric

$$\mathcal{X} = \{a_1T_1^2 + a_2T_2^2 + a_3T_3^2 = 0\} \subset \mathbb{P}^2$$

where all a_i are nonzero elements of K. Since C is not biregular to \mathbb{P}^1, the set $\mathcal{X}(K)$ is empty ([10, Th. A.4.3.1 on p. 75], [5, Sect. 45, Prop. 45.1 on p. 194]), which means that the nondegenerate ternary quadratic form

$$q(T) = a_1T_1^2 + a_2T_2^2 + a_3T_3^2$$

is anisotropic. We may view q as the quadratic form on the coordinate three-dimensional K-vector space $V = K^3$. Then (in the notation of Corollary 4.11) $d = 3$ and $\mathcal{X} = X_q$. Since \mathcal{X} is a smooth projective curve, its group $\text{Bir}_K(\mathcal{X})$ of birational automorphisms coincides with the group $\text{Aut}(\mathcal{X})$ of biregular automorphisms. Now the result follows from Corollary 4.11. □

The rest of this section deals with the case of even d; its results will not be used elsewhere in the paper.

Theorem 4.13. Suppose that K is a field of characteristic zero that contains all roots of unity, $d \geq 2$ is an even positive integer, V is a d-dimensional K-vector space, and $\phi : V \times V \to K$

a nondegenerate symmetric K-bilinear form that is anisotropic, i.e. $\phi(v, v) \neq 0$ for all nonzero $v \in V$. Then the group $PGO(V, \phi)$ is bounded. More precisely, there is a positive integer $n = n(d)$ that depends only on d and such that every finite subgroup of $PGO(V, \phi)$ has order dividing $2^{n(d)}$.
Proof. We deduce Theorem 4.13 from Theorem 2.5. Let $\text{Aut}_K(\text{End}_K(V))$ be the group of automorphisms of the K-algebra $\text{End}_K(V)$. We write V_2 for $\text{End}_K(V)$ viewed as the d^2-dimensional K-vector space and $\text{Aut}_K(V_2)$ for its group of K-linear automorphisms. We have

$$\text{Aut}_K(\text{End}_K(V)) \subset \text{Aut}_K(V_2).$$

Let us choose a basis $\{e_1, \ldots, e_{d^2}\}$ of V_2. Such a choice gives us a group isomorphism $\text{Aut}_K(V_2) \cong \text{GL}(d^2, K)$.

Let us consider a group homomorphism $\text{Ad} : \text{GO}(V, \phi) \subset \text{Aut}_K(V) \to \text{Aut}_K(\text{End}_K(V))$, $u \mapsto \{w \mapsto uwu^{-1} \forall w \in \text{End}_K(V)\}$ for all $u \in \text{GO}(V, \phi) \subset \text{Aut}_K(V)$. Clearly,

$$\ker(\text{Ad}) = K^* \cdot 1_V.$$

This gives us an embedding

$$\text{PGO}(V, \phi) = \text{GO}(V, \phi)/\{K^* \cdot 1_V\} \hookrightarrow \text{Aut}_K(\text{End}_K(V)) \hookrightarrow \text{Aut}_K(V_2) \cong \text{GL}(d^2, K).$$

This implies that $\text{PGO}(V, \phi)$ is isomorphic to a subgroup of $\text{GL}(d^2, K)$. By Corollary 4.5, every periodic element in $\text{PGO}(V, \phi)$ has order dividing 4. This implies (thanks to First Sylow Theorem) that the order of every finite subgroup of $\text{PGO}(V, \phi)$ is a power of 2. In other words, all finite subgroups in $\text{PGO}(V, \phi)$ are 2-groups. Now the desired result follows from Theorem 2.5 (applied to $n = d^2$ and $N = 4$).

Combining Theorem 4.13, Corollary 4.6 and Remark 4.2, we obtain the following assertion.

Theorem 4.14. Suppose that K is a field of characteristic zero that contains all roots of unity, $d \geq 2$ an even integer, V a d-dimensional K-vector space. Let $q : V \to K$ be a quadratic form such that $q(v) \neq 0$ for all nonzero $v \in V$. Let us consider the projective quadric $X_q \subset \mathbb{P}(V)$ defined by the equation $q = 0$, which is a smooth projective irreducible $(d - 2)$-dimensional variety over K. Let $\text{Aut}(X_q)$ be the group of birational automorphisms of X_q.

Then:

1. $\text{Aut}(X_q)$ is bounded. More precisely, there is a positive integer $n = n(d)$ that depends only on d and such that every finite subgroup of $\text{Aut}(X_q)$ has order dividing $2^{n(d)}$.

2. If B is a finite subgroup of $\text{Aut}(X_q)$ then it is a finite 2-group that sits in a short exact sequence

$$\{1\} \to A_1 \to B \to A_2 \to \{1\}$$

where both A_1 and A_2 are finite elementary abelian 2-groups and $|A_1|$ divides 2^{d-1}. In particular,

$$[[B, B], [B, B]] = \{1\}.$$
We hope to return to a classification of finite subgroups of $\text{Aut}(X_q)$ (for even d) in a future publication.

5. Jordaness properties of Bir

Proof of Theorem 1.3. Let us put $K = k(Y)$. Then $\text{char}(K) = 0$. Since K contains algebraically closed k, it contains all roots of unity. In the notation of Corollary 4.12 let us put $C = X_f$. Since X_f has no K-points, it is not birational to \mathbb{P}^1 over K.

It follows from Corollary 4.12 that $\text{Bir}(X_f)$ is bounded. Now Corollary 3.8 implies that $\text{Bir}(X)$ is strongly Jordan.

Proof of Theorem 1.6. It follows from Remark 3.1 that $f : X \to Y$ is a conic bundle. In particular, the generic fiber $X = X_f$ is an absolutely irreducible smooth projective genus zero curve over $K := k(Y)$.

Since each K-point of X gives rise to a rational section $X \to X_f$ of f, there are no K-points on X. Now the result follows from Theorem 1.5.

Example 5.1. Let Y be a smooth irreducible projective variety over k of dimension ≥ 2. Let a_1, a_2, a_3 be nonzero elements of $k(Y)$ such that the ternary quadratic form

$$q(T) = a_1T_1^2 + a_2T_2^2 + a_3T_3^2$$

is anisotropic over $k(Y)$. Example 3.3 gives us a a smooth irreducible projective variety \tilde{X}_q and a surjective regular map $f : \tilde{X}_q \to Y$, whose generic fiber is the quadric

$$\{a_1T_1^2 + a_2T_2^2 + a_3T_3^2 = 0\} \subset \mathbb{P}^2_{k(Y)}$$

over $k(Y)$ without $k(Y)$-points. Now Theorem 1.5 tells us that $\text{Bir}(\tilde{X}_q)$ is strongly Jordan if Y is non-uniruled.

Remark 5.2. Recall (Example 3.3) that if $\text{dim}(Y) \geq 2$ then there always exists an anisotropic ternary quadratic form over $k(Y)$. (A theorem of Tsen implies that such a form does not exist if $\text{dim}(Y) = 1$.)

Proof of Theorem 1.4. Recall that an abelian variety Y does not contain rational curves; in particular, it is not uniruled. Now Theorem 1.4 follows from Theorem 1.5.

Theorem 5.3. Let $d \geq 3$ be an integer. Let \mathcal{G} be the collection of groups $\text{Bir}(X)$ where X runs through the set of smooth irreducible projective d-dimensional varieties that can be realized as conic bundles $f : X \to Y$ over a $(d - 1)$-dimensional abelian variety Y but X is not birational to $Y \times \mathbb{P}^1$. Then \mathcal{G} is uniformly strongly Jordan.

Proof. It follows from Remark 3.2 that the generic fiber X_f of f has no $k(Y)$-rational points. It follows from Corollary 4.12 that the collection of groups of the form $\text{Bir}(X_f)$ is uniformly bounded - actually, the order of every finite subgroup in $\text{Bir}(X_f)$ divides 4. Recall (Corollary 3.6) that there is an exact sequence

$$\{1\} \to \text{Bir}(X_f) \to \text{Bir}(X) \to \text{Bir}(Y).$$
Now the result follows from Corollary 2.3.

\[\square \]

Remark 5.4. The condition that \(k \)-varieties \(X, Y \) in Theorem 1.4, Theorem 1.5, and Theorem 1.6 are smooth, is non-essential. Indeed, let \(X, Y \) be irreducible projective varieties of dimensions \(d \) and \(d - 1 \), respectively, endowed with a surjective morphism \(f : X \to Y \). Let \(Y \) be non-uniruled. Due to the resolution of singularities (see, for example, [15, Chapter 3, section 3.3]) one can always find two smooth projective irreducible varieties \(\tilde{X}, \tilde{Y} \), the birational morphisms \(\pi_X : \tilde{X} \to X \), \(\pi_Y : \tilde{Y} \to Y \), and a morphism \(\tilde{f} : \tilde{X} \to \tilde{Y} \) such that the following diagram is commutative:

\[
\begin{array}{ccc}
\tilde{X} & \xrightarrow{\tilde{f}} & \tilde{Y} \\
\pi_X \downarrow & & \pi_Y \downarrow \\
X & \xrightarrow{f} & Y
\end{array}
\]

Then the following properties are valid:

1. \(\tilde{Y} \) is non-uniruled, since it is birational to the non-uniruled \(Y \) (see, for example, [3, Chapter 4, Remark 4.2]).

 Indeed, there is an open dense \(V' \subset \tilde{Y} \) such that

 \(-\pi_Y \) is an isomorphism of \(V' \) to \(\pi_Y(V') \);

 for every \(v \in V' \) the exceptional set \(S_X \) of morphism \(\pi_X \) intersects the fiber \(\tilde{F}_v \) of \(\tilde{f} \) only at an empty or a finite set of points. It is valid, because \(\dim(S_X) \leq \dim(\tilde{Y}) = d - 1 \), hence the restriction of \(\tilde{f} \) onto an irreducible component of \(S_X \) is either non-dominant, or generically finite.

 Thus, \(\tilde{F}_v \cap (\tilde{X} \setminus S_X) \) is open and dense in \(\tilde{F}_v \) for point \(v \in V' \) (because every irreducible component of \(\tilde{F}_v \) has dimension at least 1). On the other hand, \(\tilde{F}_v \cap (\tilde{X} \setminus S_X) \) is isomorphic via \(\pi_X \) to \(F_{\pi_Y(v) \cap (X \setminus \pi_X(S_X))} \), which is an open and dense subset of irreducible \(F_{\pi_Y(v)} \), if \(\pi_Y(v) \in U \). Hence, for all \(v \in V' \cap \pi_Y^{-1}(U) \) the fibers \(\tilde{F}_v \) and \(F_{\pi_Y(v)} \) are birational.

2. If the general fiber \(F_u := f^{-1}(u) \), \(u \in U \subset Y \) is irreducible, then so is the general fiber \(\tilde{F}_v := \tilde{f}^{-1}(v) \), \(v \in V \subset \tilde{Y} \) of \(\tilde{f} \) (here \(U, V \) are open dense subsets of \(Y, \tilde{Y} \), respectively).

Indeed, there is an open dense \(V' \subset \tilde{Y} \) such that

\(-\pi_Y \) is an isomorphism of \(V' \) to \(\pi_Y(V') \);

for every \(v \in V' \) the exceptional set \(S_X \) of morphism \(\pi_X \) intersects the fiber \(\tilde{F}_v \) of \(\tilde{f} \) only at an empty or a finite set of points. It is valid, because \(\dim(S_X) \leq \dim(\tilde{Y}) = d - 1 \), hence the restriction of \(\tilde{f} \) onto an irreducible component of \(S_X \) is either non-dominant, or generically finite.

Thus, \(\tilde{F}_v \cap (\tilde{X} \setminus S_X) \) is open and dense in \(\tilde{F}_v \) for point \(v \in V' \) (because every irreducible component of \(\tilde{F}_v \) has dimension at least 1). On the other hand, \(\tilde{F}_v \cap (\tilde{X} \setminus S_X) \) is isomorphic via \(\pi_X \) to \(F_{\pi_Y(v) \cap (X \setminus \pi_X(S_X))} \), which is an open and dense subset of irreducible \(F_{\pi_Y(v)} \), if \(\pi_Y(v) \in U \). Hence, for all \(v \in V' \cap \pi_Y^{-1}(U) \) the fibers \(\tilde{F}_v \) and \(F_{\pi_Y(v)} \) are birational.

3. If the generic fiber \(X_f \) of \(f \) is absolutely irreducible, so is generic the fiber \(X_{\tilde{f}} \) of \(\tilde{f} \). Indeed, in this case the general fiber of \(f \) is irreducible (see [8, Proposition 9.7.8]). According to property [2], the general fiber of \(\tilde{f} \) is also irreducible, and, hence, so is \(X_{\tilde{f}} \) (ibid).

4. The general and generic fibers \(\tilde{F}_v \) and \(X_{\tilde{f}} \) of \(\tilde{f} \) are smooth, since \(\tilde{f} \) is a surjective morphism between smooth projective varieties.

It follows that if the generic (respectively, general) fiber of \(f \) is a rational curve, then the generic (respectively, general) fiber of \(\tilde{f} \) is a smooth rational curve. According to Theorem 1.5 (respectively, Theorem 1.6,) \(\text{Bir}(X) = \text{Bir}(\tilde{X}) \) has to be Jordan.
References

[1] T. Bandman, Yu.G. Zarhin, *Jordan groups and algebraic surfaces*. Transformation Groups **20** (2015), no. 2, 327–334.

[2] A. Borisov, *Boundedness theorem for Fano log-threefolds*. J. Algebraic Geometry **5** (1996), 119–133.

[3] C.W. Curtis, I.Reiner, *Representation Theory of Finite Groups and Associative Algebras*, Wiley, New York, 1962.

[4] O. Debarre, *Higher-Dimensional Algebraic Geometry*, Springer-Verlag, New York, 2001.

[5] R. Elman, N. Karpenko, A. Merkurjev, *The algebraic and geometric theory of quadratic forms*. American Mathematical Society Colloquium Publications, **56**, American Mathematical Society, Providence, RI, 2008.

[6] A. Grothendieck, *Éléments de géométrie algébrique (rédigés avec la collaboration de J. Dieudonné): III, Étude cohomologique des faisceaux coherants, première partie*. Publ. Math. IHES **11** (1961).

[7] A. Grothendieck, *Éléments de géométrie algébrique (rédigés avec la collaboration de J. Dieudonné): IV, Étude locale des schémas et des morphismes de schémas, Seconde partie*. Publ. Math. IHES **24** (1965).

[8] A. Grothendieck, *Éléments de géométrie algébrique (rédigés avec la collaboration de J. Dieudonné): IV, Étude locale des schémas et des morphismes de schémas, Troisième partie*. Publ. Math. IHES **28** (1966).

[9] R. Hartshorne, *Algebraic Geometry*. GTM **52**, Springer Verlag, Berlin Heidelberg New York, 1977.

[10] M. Hindry, J.H. Silverman, *Diophantine Geometry: an Introduction*. GTM **201**, Springer-Verlag, New York, 2000.

[11] Sh. Iitaka, *Algebraic Geometry*, GTM 76. Springer-Verlag, Berlin Heidelberg New York, 1982.

[12] B. Kahn, *Quelques remarques sur le u-invariant*. Sém. Théor. Nombres Bordeaux (2) **2** (1990), no. 1, 155–161; *Erratum* **3** (1991), no. 1, 247.

[13] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, *The book of involutions*. American Mathematical Society Colloquium Publications, **44**, American Mathematical Society, Providence, RI, 1998.

[14] J. Kollar, *Rational curves on algebraic varieties*. Ergebnisse der Math. 3 Folge **32**, Springer-Verlag, Berlin Heidelberg New York, 1996.

[15] J. Kollar, *Lectures on resolution of singularities*. Princeton University Press, Princeton, NJ, 2007.

[16] Sh. Meng, D.-Q. Zhang, *Jordan property for non-linear algebraic groups and projective varieties*. arXiv: 1507.02230 [math.AG].

[17] D. Mumford, *Abelian varieties*, second edition. Oxford University Press, 1974.

[18] D. Mumford, *Lectures on curves on an algebraic surface*. Ann. of Math. Studies **39**, Princeton University Press, 1966.

[19] D. Mumford, *The Red Book of Varieties and Schemes*. Lecture Notes in Math., vol. **1358**, Springer, 1999.

[20] I. Mundet i Riera, A. Turull, *Boosting an analogue of Jordan’s theorem for finite groups*. Adv. Math. **272** (2015), 820–836.

[21] V.L. Popov, *On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties*. In: Affine Algebraic Geometry (The Russell Festschrift), CRM Proceedings and Lecture Notes **54**, American Mathematical Society, 2011, pp. 289–311.
[22] V.L. Popov, *Jordan groups and automorphism groups of algebraic varieties*. In: Automorphisms in Birational and Affine Geometry, Springer Proceedings in Mathematics and Statistics 79 (2014), 185–213.

[23] Yu. Prokhorov, C. Shramov, *Jordan Property for groups of birational Selfmaps*. Compositio Math. 150 (2014), 2054–2072.

[24] Yu. Prokhorov, C. Shramov, *Jordan Property for Cremona groups*. Amer. J. Math. 138 (2016), 403–418.

[25] V.G. Sarkisov, *Birational automorphisms of conic bundles*. Math USSR Izv. 17 (1981), 177–202.

[26] V.G. Sarkisov, *On conic bundle structures*. Math USSR Izv. 20 (1982), 355–390.

[27] J.-P. Serre, *A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field*. Moscow Math. J. 9 (2009), no. 1, 183–198.

[28] Yu.G. Zarhin, *Theta groups and products of abelian and rational varieties*. Proc. Edinburgh Math. Soc. 57, issue 1 (2014), 299–304.

[29] Yu.G. Zarhin, *Jordan groups and elliptic ruled surfaces*. Transformation Groups 20 (2015), no. 2, 557–572.

Department of Mathematics, Bar-Ilan University, 5290002, Ramat Gan, ISRAEL
E-mail address: bandman@math.biu.ac.il

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
E-mail address: zarhin@math.psu.edu