Damage spreading for one-dimensional, non-equilibrium models with parity conserving phase transitions

Géza Ódor
Research Institute for Materials Science, H-1525 Budapest, P.O.Box 49, Hungary

Nóra Menyhárd
Research Institute for Solid State Physics, H-1525 Budapest, P.O.Box 49, Hungary

The damage spreading (DS) transitions of two one-dimensional stochastic cellular automata suggested by Grassberger (A and B) and the kinetic Ising model of Menyhárd (NEKIM) have been investigated. These non-equilibrium models exhibit non-directed percolation universality class continuous phase transition to absorbing states, exhibit parity conservation (PC) law of kinks and have chaotic to non-chaotic DS phase transitions, too. The relation of the critical point and the damage spreading point has been explored with numerical simulations. For model B the two transition points are well separated and directed percolation universality was found both for spin damage and kink damages in spite of the conservation of damage variables modulo 2 in the latter case. For model A and NEKIM the two transition points coincide with drastic effects on the damage of spin and kink variables showing different time dependent behaviours. While the kink DS transition of these two models shows regular PC class universality, the spin damage of them exhibits a discontinuous phase transition with compact clusters and PC-like spreading exponents. In the latter case the static exponents determined by finite size scaling are consistent with that of the spins of the NEKIM model at the PC transition point. The generalised hyper-scaling law is satisfied. Detailed discussion is given concerning the dependence of DS on initial conditions especially for the A model case, where extremely long relaxation time was found.

I. INTRODUCTION

While damage spreading (DS) was first introduced in biology it has become an interesting topic in physics as well. The main question is if a damage introduced in a dynamical system survives or disappears. To investigate this the usual technique is to make replica(s) of the original system and let them evolving with the same dynamics and external noise. This method has been found to be very useful to measure accurately dynamical exponents of equilibrium systems. It has turned out however, that the DS properties do depend on the applied dynamics. An example is the case of the two-dimensional Ising model with heat-bath algorithm versus Glauber dynamics.

To avoid the dependences on dynamics Hinrichsen et al. suggested a definition of "physical" family of DS dynamics according to which the active phase may be divided to a sub-phase within which DS occurs for every member of the family, another sub-phase where the damage heals for every member of the family, and a third possible sub-phase where DS is possible for some members and the damage disappears for other members. The family of possible DS dynamics is defined such that it is to be consistent with the physics of the single replicas (symmetries, interaction ranges etc.).

The universality of continuous DS transitions is an other open question. There is a hypothesis raised by Grassberger that damage spreading transitions generically belong to the universality class of directed percolation (DP) if they are separated from the ordinary critical point. This claim is based on the DP hypothesis applied for the absorbing type DS transition since we can consider the difference of the replicas as an other dynamical system evolving by a complex rule. According to the DP hypothesis – conjectured first in the early eighties – in the absence of conservation laws every continuous phase transition of a system with scalar order parameter and local interactions to a single absorbing phase would belong the universality class of the DP. There are other more complex models like those with several absorbing states and multi-component systems, which exhibit DP transition too. During the years the DP universality class has been proven to be extremely robust. For a long time only a few number of exceptions has been found, which don’t belong to the DP class. These are the parity conservation (PC) models and the multiplicative noise systems.

The first examples of the PC models were Grassberger’s (A and B) stochastic cellular automata (SCA). The kinks (‘00’ and ‘11’-s) of these models exhibit mod 2 parity conservation and the absorbing state is doubly degenerated. Following that a series of models in the same universality class have been discovered. In case of the branching annihilating random walk with even number of offsprings (BAWe) the parity of the "particles" is conserved and there is a single absorbing state. In the non-equilibrium Ising model with combined spin-flip
and spin exchange dynamics (NEKIM) [19,20], the kinks have local parity conserving symmetry as well as the absorbing state is symmetrically doubly degenerated. The three species monomer-monomer (3MM) and the interacting monomer-dimer (IMD) models [23,24] are multi component models with parity conservations and symmetric absorbing phases.

The common feature of these models that force them in a non-DP universality class was first conjectured to be the parity conservation (the PC class name comes from here). However this had to be refined, because models were found with global parity conservation but DP class phase transition (see example ref. 22 (ISCA)). Field theoretical investigations of the BAW models showed that the BAWe parity conservation dynamics in one-dimension results in a new non-DP fixed point possessing the PC class universality, while for for odd number of offsprings (BAWo) the transition is in the DP class [25,26]. Furthermore, among the multiple absorbing state models one can have DP behaviour and BAWe parity conservation dynamics together if the symmetry of the absorbing states is broken (see [24] in case of IMD, [27] in case of the NEKIM model and [31] in case of the Generalized Domany-Kinzel SCA (GDK)). This implies that for multi-absorbing state models the BAWe parity conservation is not a sufficient condition to have non-DP universality class but the symmetry of the ground state is necessary too.

Summary of PC related models.
The notation "k" refers to kink, "s" refers to spin, "h" means external field as variable of the model.

Model	Abs. state	Dynamics	Univ.	Ref. no.
A-k	Z_2 symm.	BAWe	PC	16
B-k	Z_2 symm.	BAWe	PC	16
BAWe-s	singlet	BAWe	PC	17,18,25,26
BAWo-s	singlet	BAWo	DP	17,18,25,26
NEKIM-k	Z_2 symm.	BAWe	PC	19,27,38
3MM-s	Z_2 symm.	BAWe	PC	21
IMD-s	Z_2 symm.	BAWe	PC	23,24
GDK-s	Z_2 symm.	BAWe	PC	31
ISCA-s	singlet	Global-PC	DP	22
IMD-s+h	Z_2 broken	BAWe	DP	24
NEKIM-k+h	Z_2 broken	BAWe	DP	27
GDK-s+h	Z_2 broken	BAWe	DP	31

A very recent study has shown that DS transition is possible in a one-dimensional non-equilibrium kinetic Ising model [22] too, and the universality class of the transition is not always in the DP class. The dynamics was engineered as the combination of two subrules such that it creates Z_2 symmetric passive states, the kink damage variables follow BAWe parity preserving dynamics and a PC universality class DS transition emerges.

In this work we have investigated the damage spreading behaviour of some one-dimensional PC models: Grassberger’s A and B stochastic cellular automata (SCA) [1] with synchronous dynamics and the NEKIM model [19]. The 'kink' variables of these models possess parity conservation and continuous PC class phase transition.

In case of the NEKIM model the '01' and '10' pairs act as kinks and follow the basic (BAWe) elementary reactions:

- left-right diffusion,
- $X \rightarrow 3X$ reproduction,
- $2X \rightarrow 0$ annihilation.

Since at damage spreading problems we follow the evolution of two or more replicas, we can consider it as a special, multi-component dynamical problem (here with multiple absorbing states too). Furthermore, when the DS point is inside the active phase there is a passive state of the damage variables with fluctuating replicas in the background. Therefore the simple DP universality hypothesis can not be applied here (although this does not exclude a DP class phase transition).

We also studied here the DS properties of spins of these systems, which can be regarded as the "dual" variables of kinks but they don’t obey the parity conservation. The combined observation of spin and kink damage variables sheds light on the interplay of parity conservation, absorbing state symmetry and universality. In this paper we shall show by numerical simulations that the universality here is determined by not only the dynamics but the symmetry of the absorbing state is a necessary condition again like in cases of [24,27].

If the critical point and the DS point coincide interesting things happen. While the kink damage exponents will belong to the PC universality class, in case of the spin damage the static exponents determined by finite size scaling are in agreement with that of the the pure NEKIM model at the PC transition point on the spin level [27]. Detailed discussion on this is forthcoming [33].

The dependence of the DS results on the initial states of the replicas is discussed because for model-A a very slow relaxation makes it an important point.

II. THE DAMAGE SPREADING SIMULATION METHODS

The time dependent simulation is a well established method to locate critical points and to measure dynamical critical exponents at the same time [28]. Here we applied it for kink and spin damage variables for system sizes $L = 4096 - 16384$ with periodic boundary conditions. A single spin-flip difference is introduced between two identical replicas at the beginning of each simulation runs. The difference of spin and kink variables is measured during a time evolution with identical rules and
random numbers for both replica. The maximum num-
ber of simulation steps was chosen to be \(t_{\text{MAX}} = L/2 \),
and so the damage variables can not reach the boundaries
and one can avoid finite size effects of them. However
simulating near the critical point causes long transients hindering to see the true scaling behaviour within reach-
able times.

The role of initial states of the replicas is not discussed
in DS simulation literature. If the DS transition point is
not in the neighbourhood of a critical point an exponential-
ly quick transient to the steady state is expected, but
if they coincide – as in case of the Grassberger A model –
the evolution to steady state slows down to power law
time dependence and we can expect finite time effects.
First random states have been chosen with equal and
uniform distribution of 0-s and 1-s. In case of model A
SCA this resulted in very confusing results. Then we
investigated the effects from starting with steady state
configurations i.e. replicas were driven to steady state
before the DS measurements.

The quantities characterising damage evolution show
power like behaviour in the \(t \rightarrow \infty \) limit at the damage
spreading point (\(p_d \)) separating chaotic and non-chaotic
phases. The Hamming distance will be the order param-
eter of this paper:

\[
D(t) = \left\langle \frac{1}{T} \sum_{i=1}^{L} |s(i) - s'(i)| \right\rangle
\]

(1)

where \(s(i) \) may denote now spin or kink variables. Kink
variables for these models are the '00' and '11' pairs in
case of the A,B SCA and '01' and '10' pairs for the
NEKIM model. If there is a phase transition point, the
Hamming distance behaves in a power law manner at
that point:

\[
D(t) \propto t^\gamma ,
\]

(2)

Similarly the survival probability of damage variables be-
haves as:

\[
P_s(t) \propto t^{-\delta}
\]

(3)

and the average mean square distance of damage spread-
ing from the center scales as:

\[
R^2(t) \propto t^z .
\]

(4)

The evolution runs were averaged over \(N_s \) independent
runs for each different value of \(p \) in the vicinity of \(p_d \) (but for \(R^2(t) \) only over the surviving runs).

To estimate the critical exponents and the transition
points together we determined the local slopes of the scal-
ing variables. For example in case of the survival prob-
ability:

\[
-\delta_p(t) = \frac{\ln[P_s(t)/P_s(t/m)]}{\ln(m)}
\]

(5)

and we have used \(m = 4 \). In the case of power-law
behaviour we should see a horizontal straight line as
\(1/t \rightarrow 0 \), when \(p = p_d \). The off-critical curves should poss-

s\(s \)e curvature. Curves corresponding to \(p > p_d \) should
veer upward, curves with \(p < p_d \) should veer downward.

The damage spreading measurement of the order pa-
rameter time scale can be very effectively parallelised
in a multi-spin code manner [14], since one needs only one
random number for each site of the different replicas and
so one can follow the evolution of \(N_r = \frac{32 \times 32}{L} \) replicas in
a simple 32-bit computer vector of length \(L \). However
this method is not applicable to measure the survival
probability scaling and \(z \), since the healing of differ-
ces among all the \(N_r \) replicas takes a very long time and one
can not introduce a single initial damage for each pair at
the center of the lattice. For the simulation of survival
probability a very effective code has been implemented
for a special, associative string processor [14].

To determine static exponents finite-size scaling (FSS)
simulations were performed as well. As it was shown
by Aukrust et. al. [22] and [23], FSS is applicable to
continuous, non-equilibrium phase transitions. At the
critical point the order parameter steady state density
(\(D \)) and the fluctuation \(\chi = L^d(<D^2> - <D>)^2 \)
scale with the system size as :

\[
D(L) \propto L^{-\beta/\nu_z},
\]

(6)

\[
\chi(L) \propto L^{\gamma/\nu_z},
\]

(7)

where \(\nu_z \) is the correlation length exponent in the space
direction:

\[
\xi(p) \propto |p - p_c|^{-\nu_z} ,
\]

(8)

\(\beta \) is the order parameter exponent in the steady state:

\[
D(p) \propto |p - p_c|^\beta ,
\]

(9)

and \(\gamma \) describes the fluctuation of it:

\[
\chi(p) \propto |p - p_c|^{-\gamma} .
\]

(10)

Simulations were done in one dimension for lattice sizes :
\(L = 64, 128, ..., 2048 \). The necessary time steps to reach
steady state were determined experimentally. The time
evolution of the concentration was plotted, and the nec-

essary time steps was fixed for a given \(L \) such as \(200 - 500 \)
time values following the level off. Averaging was done
for these \(200 - 500 \) values times the number of surviv-
ing samples (500). The \(p_d \) values were taken from the
time-dependent MC calculations.

The dynamic exponent \(Z = \nu_z/\nu_z \) can be determined
from the FSS of the characteristic time \(\tau(p, L) \). In this
study we measured the time necessary to reach half of the
steady state concentration starting from a single damage
state. The characteristic time obeys the finite size scaling
law :
\[\tau(p, L) \propto L^Z h((p - p_c)L^{1/\nu_\perp}) , \]

(11)

where \(Z = \nu_\parallel / \nu_\perp \). For this measurement we used the same damage concentration time evolutions as in case of the static runs above.

III. THE GRASSBERGER B MODEL

A (BAWe) parity conserving dynamics can be realized on the kinks (or 'particles') of the following SCA (we show the configurations at \(t - 1 \) and the probability of getting ‘1’ at time \(t \)):

\[
\begin{align*}
t-1: & \quad 100 \ 001 \ 101 \ 110 \ 011 \ 111 \ 000 \ 010 \\
t: & \quad 1 \ 1 \ 1 \ \ p \ p \ 0 \ 0 \ 0
\end{align*}
\]

The '00' and '11' pairs are the simplest kinks of the model. The time evolution pattern for \(p = 0 \) is a regular chess-board in \(1 + 1 \) dimension (Rule-50 with double degeneration), i.e., the absorbing states are period-two antiferromagnetic. For \(p < p_c(= 0.539(1)) \) kinks disappear exponentially, while for \(p > p_c \) they survive with a finite concentration. In the \(p = 1 \) limit we get the deterministic Rule-122, which is known to be chaotic. So there is damage spreading phase transition besides the absorbing phase transition of PC universality.

A. Kink damage results

First the simulations were started from two replicas of lattices with identical random initial states but with a 2-kink initial difference. The parity of the lattice forces even or (odd) number of initial kinks, therefore it is not possible to create odd numbered kink differences. The parity of kinks is conserved. The parity of kink differences (even) is conserved too.

Still we see a DP like universality of the damage variables (Fig. 1). The location of the damage spreading point \((p_d = 0.632(1)) \) is far from the PC critical point \((p_c = 0.539(1)) \), therefore the active phase is divided to a chaotic and non-chaotic sub-phase similarly to the case of the Domany-Kinzel SCA [29,30,10].

B. Spin damage

Following the damage (difference) of the spins, instead of the kinks, we obtained the same DP like results. The universality was insensitive to the parity of the damage variables, it is DP for both cases.

C. Finite size scaling for both cases

Finite size scaling simulations were performed at the DS transition point \((p_d = 0.633) \) for system sizes \(L = 64, 128, \ldots 1024 \). The necessary time steps to reach steady state were \(t = 40000, 80000, \ldots \) respectively. The results can be seen on Figure 3. As on can observe both the kink and spin damage concentration show a scaling with
while the fluctuations have a slope \(\gamma/\nu_{\perp} = 0.5\), all agreeing with the corresponding exponents in the DP universality class. For the critical dynamical exponent \(Z = \nu_{\parallel}/\nu_{\perp}\), DP-like scaling has been found for both the spin and kink damage cases. Fitting can be done with \(L^{1.5798}\) (DP value) in both cases.

![FIG. 3](image3.png)

FIG. 3. Finite size scaling results for the spin and kink damage for the B model. The diamonds correspond to the kink damage concentration, the squares to the fluctuations of it. The crosses correspond to the spin damage concentration, the "x"-s to the fluctuations of it. Triangles and stars denote characteristic times \(\tau\) of the spin and the kink damage cases. Averaging was done over 500 surviving samples.

IV. THE GRASSBERGER A MODEL

Another very similar model exhibiting parity conservation of kinks is the Grassberger A stochastic cellular automaton:

\[
t-1: 100 001 101 110 011 111 000 010
t: 1 1 0 \quad 1-p \quad 1-p \quad 0 \quad 0 \quad 1
\]

The time evolution pattern in 1 + 1 dimension, for small \(p\) evolves towards a stripe-like ordered steady state (with double degeneration), while for \(p > p_c(0.1245(5))\) the kinks (the '00' and '11' pairs survive. For \(p = 0\) we have the Rule-94, class 1 CA, while the \(p = 1\) limit is the chaotic Rule-22 deterministic CA. Therefore we can expect a damage spreading phase transition between \(p = p_c\) and \(p = 1\) (damages always heal or survive in the ordered steady states).

A. Kink damage results

First two replicas of lattices of the same random initial distributions but a single spin-flips difference condition were followed. As the local slope figure (Fig. 4) of the \(D(t)\) shows the DS transition point \((p_d = 0.133(1))\) seems to be slightly off the critical point \((p_c = 0.1242(5))\). The simulations were started from random initial state. Statistical averaging was done over \(6 \times 10^5\) samples.

One can read off \(\eta = 0.31(1)\), which is close to the DP universality class value \((\eta_{DP} = 0.314(3))\), but for the survival probability we got nearly zero exponent (Fig. 5).

![FIG. 4](image4.png)

FIG. 4. Local slopes of the Hamming distance \((\eta)\) in the A model, for \(p = 0.130, 0.132, 0.134\) (curves from bottom to top). The simulations were started from random initial state. Statistical averaging was done over \(6 \times 10^5\) samples.

The survival probability scaling with \(\delta \sim 0\) contradicts the DP scaling and one may speculate, that we can see a finite time effect. We extended the same time dependent simulations up to \(t_{max} = 28000\) for certain \(p\) values, but there were no sign of change in the above results.

To check the transients the evolution of the kink concentration starting from a disordered state have been followed on a \(L = 8192\) lattice. As the Figure 6 shows there is a very long relaxation in this model, and the steady state has been reached following \(2 \times 10^6\) MC time steps only.

Therefore time dependent simulations from steady state initial conditions have been performed. The initial states now were chosen to be the outcomes of runs following \(5 \times 10^6\) time steps for different \(p\)-s, with the usual single spin-flip difference. Now we can see dramat-
ical changes. First, the DS point moves to the critical point \(p_d = 0.1242(1) \) (see Fig. 7).

![FIG. 6. The evolution of the kink concentration in the A model (L = 8192) started from random initial state at \(p = 0.124 \).](image)

The corresponding \(\eta_k \) exponent is around zero, which agrees with that of the PC universality class. In case of the survival probability we could use the conventional non-multi-spin coding algorithm with much less statistics. Still one can read off the same transition point with the value \(\delta \sim 0.285(8) \) (Fig. 8), which is again in the PC class.

![FIG. 7. Local slopes of the Hamming distance (\(\eta_{kink} \)) in the A model, for \(p = 0.123, 0.124, 0.125, 0.126 \) (curves from bottom to top) in case of steady state initial condition. Averaging was done over \(3 \times 10^5 \) independent samples.](image)

Thus we can see the emergence of PC behaviour, which is in accordance with the BAWe conservation of kink-damage variables and the \(Z_2 \) degeneration of the absorbing state arises from the fact that \(p_c \) and \(p_d \) coincided. Note, that the statistical errors are larger now than in the B model case, when the DS simulations were carried out not in the immediate neighbourhood of the critical point.

![FIG. 8. Local slopes of the survival probability (\(\delta \)) in the A model, for \(p = 0.123, 0.124, 0.125, 0.125 \) (curves from bottom to top) in case of steady state initial condition. Averaging was done over 50000 independent samples.](image)

B. Spin damage results

The parity of the spin damage variables is not conserved in this case. When the simulations were started from random initial states we obtained the same DS transition point as in case of the kink-damage case, but with neither DP nor PC universality class values. The simulations have been done both with conventional and multi-spin code algorithm. These resulted in the following results for the spin damage Hamming distance as shown on figure Fig. 9:

![FIG. 9. Local slopes of the Hamming distance (\(\eta \)) in the A model, for \(p = 0.125, 0.127, 0.130, 0.132, 0.134 \) (curves from bottom to top). The simulations were started from random state. Statistics over \(100000 \) to \(500000 \) samples.](image)

For the survival probability we obtained a nearly zero \(\delta \) exponent, as in case of kink damage; see Fig. 10.
These results are quite confusing again, especially the exponent $\eta = 0.52(1)$, which does not belong to the 1+1 dimensional DP or to the PC class. We cannot give better explanation for this, that the very long transients prevented the healing of damages and the possibility to see the “true” scaling behaviour. Indeed, if the simulations were started from near steady state the results became very different. The DS transition point seems to coincide with the critical point ($p_c = 0.1242(5)$) and we could get a spin-damage concentration exponent: $\eta_s = 0.29(2)$ which is close to the $\eta = 0.285(5)$ of the PC scaling (Fig. 11).

FIG. 10. The same as above for the survival probability.

FIG. 11. Local slopes of the Hamming distance (η_s) in the A model, for $p = 0, 0.124, 0.125, 0.126$ (curves from bottom to top). The simulations were started from steady state. Averaging was over 3×10^5 samples.

The results for the survival probability (δ_s) and z_s coincided with that of the kink-damage case, which can be understood by the following reasons. Although theoretically to each spin-damage absorbing state can correspond two kink-damage absorbing state (by flipping all spins of one replica), simulations showed the kink and the spin damage died out always at the same time. In case of the spreading one can easily check that the R^2 measurements should give the same results for both kink and spin damage cases, because the beginning and the end of the perturbed region is almost the same. Indeed the simulations resulted in the same PC-like z ($z = 1.14(1)$) exponent in both cases (Fig. 12).

FIG. 12. Local slopes of $R^2(t)$ (z) in the A model, for $p = 0.124, 0.125, 0.126$ (curves from bottom to top). The simulations were started from steady state. Averaging was done over 5×10^4 independent run.

C. Finite size scaling for both cases

The finite size scaling simulations were performed at the DS transition point ($p_d = 0.1242$) for system sizes $L = 64, 128, ... 1024$. The necessary time steps to reach steady state were $t = 10000, 20000, ...$ respectively. The results can be seen on Figure 13.

FIG. 13. Finite size scaling results for the spin and kink damage for the A model. The diamonds correspond to the spin damage concentration, the squares to the fluctuations of it. The crosses correspond to the kink damage concentration, the "x"-s to the fluctuations of it. Triangles and stars denote characteristic times τ of the spin and the kink damage cases. Averaging was done over 500 surviving samples.

In case of the kink damage one can see regular PC-like scaling for the concentration: $-\beta_k/\nu_\perp = -0.5$, the fluctuations of it: $\gamma_k/\nu_\perp = 0$ and for the critical dynamical
exponent $Z_k = \nu / \nu_\perp = 1.75$. In case of the spin damage we can see a constant 0.5 steady state concentration for all system sizes, resulting in $\beta / \nu_\perp = 0$ as in case of the pure Glauber Ising model at $T = 0$ and the NEKIM model at the PC transition point. In agreement with this and Fisher’s static scaling law:
\[
\gamma = d\nu_\perp - 2\beta
\]
the fluctuations of it exhibit a linear scaling law ($\gamma / \nu_\perp = 1$. Whereas the scaling of the characteristic time is described by the as was found in case of the pure NEKIM model at the PC transition point for the spin variables [27].

V. THE NEKIM MODEL

The PC universality appears in a class of non-equilibrium dynamic Ising models, where the kinks corresponding to '01' and '10' domain walls evolve according to the BAWr rules [14]. The dynamics is composed of the alternating application of

- a zero temperature spin flip lattice update:
\[
w_i = \frac{\Gamma}{2} \left(1 + \delta s_{i-1}s_{i+1} \right) \left(1 - \frac{\gamma}{2} s_i(s_{i-1} + s_{i+1}) \right)
\]
where $\gamma = \tanh 2J/kT$ (J denoting the coupling constant in the Ising Hamiltonian), Γ and δ are further parameters resulting in random walk, annihilation of kinks;
- and a spin-exchange lattice update:
\[
w_{i+1} = \frac{1}{2} p_{\text{ex}}[1 - s_i s_{i+1}],
\]
where p_{ex} is the probability of spin exchange, resulting in kink \rightarrow 3 kink creation.

The spin-flip part has been applied using two-sub-lattice updating, while L MC spin-exchange attempts has been done randomly using the outcome state of the spin-flip part. All these together has been counted as one time-step of exchange updating. (Usual MC update in this last step enhances the effect of p_{ex} and leads to $\delta_c = -0.362(1)$). In [19, 27] we have started from a random initial state and determined the phase boundary in the (δ, p_{ex}) plane. The phase space is composed of an active phase with free kinks and an absorbing, ordered phase without kinks provided the initial state has an even number of kinks. They are separated by a second order phase transition line of PC universality. To investigate the damage spreading properties we have chosen to fix $\Gamma = 0.35, p_{\text{ex}} = 0.3$ and change δ (that will play the role of p now). The PC critical point has been determined precisely [38]: $\delta_c = -0.395(2)$.

A. Time dependent simulations

Time dependent simulations up to $t_{\text{MAX}} = 8192$ were performed and we found that the DS transition point coincides with δ_c within statistical errors. The simulation results now were less sensitive whether we started from random initial state or from steady state. For the spin damage density we obtained $\eta_s = 0.29(1)$ when we started from steady state, as in case of the A model. (If we started from random initial state $\eta_s = 0.38(2)$ scaling appeared at the δ_c point). This is shown on Fig. [14].

![Fig. 14. Local slopes of the spin damage concentration (η), for $p = 0.385, 0.39, 0.392, 0.395, 0.4$ (curves from bottom to top). Statistical averaging was done over 20000-40000 samples.](image1)

The Hamming distance measurements for kinks resulted in $\eta \sim 0$ in accordance with the PC universality class value (Fig. [15]).

![Fig. 15. Local slopes of the kink damage concentration (η), for $p = 0.385, 0.39, 0.392, 0.395, 0.4$ (curves from bottom to top). Statistical averaging was done over 100000 samples.](image2)
FIG. 16. Local slopes of the damage spin and kink survival probability (δ), for $p = 0.385, 0.39, 0.395, 0.4, 0.405$ (curves from bottom to top). Statistical averaging was done over 100000 samples.

As in case of the A model the simulations resulted in the same PC-like z ($z = 1.14(1)$) (see Fig. 17) exponent in both cases, because the spin and kink damage regions start and stop approximately at the same sites.

FIG. 17. Local slopes of R^2 of spin damage (z), for $p = 0.39, 0.395, 0.4$ (curves from bottom to top). Statistical averaging was done over 100000 samples.

This can be observed on Figures 18 and 19 where we plotted the time evolution patterns of spin and kink damages of the same run. One can see that the boundaries of the perturbed regions are the same, but the spin-damage pattern is compact, causing the higher η_s exponent.

B. Finite size scaling

Finite size scaling simulations were performed at the DS transition point ($p_d = 0.395$) for system sizes $L = 64, 128, ..., 2048$. The necessary time steps to reach steady state were $t = 7000, 14000, ..., 200000$ respectively. Figure 20 summarises the results.

FIG. 18. Time evolution of the spin damage in the NEKIM model near the DS transition point.

FIG. 19. Time evolution of the kink damage in the NEKIM model near the DS transition point.

FIG. 20. Finite size scaling results for the NEKIM model. The crosses correspond to kink damage concentration, the squares to the fluctuations of it. The stars correspond to spin damage concentration, diamonds to the fluctuations of it. The triangles and the x-s correspond to the kink and spin damage characteristic times (τ). Averaging was done over 500 surviving samples. The intermediate dotted line shows DP like scaling law for τ.
VI. CONCLUSIONS

The damage spreading behaviour of three one-dimensional, non-equilibrium models, exhibiting parity conserving phase transition has been investigated numerically. The A SCA model of Grassberger has been found to be very sensitive on the initial conditions of the DS simulations. Acceptable results – which are in good agreement with that of the NEKIM model – can be found only when the DS simulations are started from steady state.

When the DS transition point coincided (within statistical error) with the ordinary critical point of the model (NEKIM, A model) interesting things have happened on both the spin and the kink damage level.

In case of the B model the DS transition point was found to be far away from the critical point and all exponents (on spin and kink damage level equally) show DP universality class behaviour independently of the parity conservation of damage variables.

The following tables summarise the simulation results for the transition points and DS exponents of the models investigated as well as DP and PC critical exponent estimates from refs. [18,27].

Kink damage results

	NEKIM	GR-A	GR-B	DP	PC
\(p_c\)	0.395(5)	0.1242(5)	0.539(1)		
\(p_d\)	0.395(5)	0.1242(5)	0.633(1)		
\(\eta\)	0.03(3)	0.03(3)	0.31(2)	0.3137(1)	0.0000(1)
\(\delta\)	0.28(1)	0.285(8)	0.160(2)	0.1596(4)	0.285(2)
\(z\)	1.14(1)	1.14(1)	-	1.2660(1)	1.141(2)
\(Z\)	1.74(3)	1.75(8)	1.59(4)	1.5798(2)	1.750(5)
\(\beta/\nu\)	0.500(6)	0.48(2)	0.27(2)	0.2522(6)	0.500(5)
\(\gamma/\nu\)	0.07(1)	0.1(1)	0.5	0.4956(2)	0.00(5)
univ.	PC	PC	DP		

Spin damage results

	NEKIM	GR-A	GR-B	DP	PC
\(p_c\)	0.395(5)	0.1242(5)	0.539(1)		
\(p_d\)	0.395(5)	0.1242(5)	0.633(1)		
\(\eta\)	0.29(1)	0.29(2)	0.32(2)	0.3137(1)	0.285(2)
\(\delta\)	0.28(1)	0.285(8)	0.160(2)	0.1596(4)	0.285(2)
\(z\)	1.14(1)	1.14(1)	-	1.2660(1)	1.141(2)
\(Z\)	1.75(1)	1.79(5)	1.48(9)	1.5798(2)	1.750(5)
\(\beta/\nu\)	0.0001(1)	0.001(1)	0.26(2)	0.2522(6)	0.500(5)
\(\gamma/\nu\)	1.00(7)	0.98(6)	0.46(4)	0.4956(2)	0.00(5)
univ.	CPC	CPC	DP		

The \(\eta\) is the PC exponent when the BAWe process is started from odd number of particles. The CPC notation denotes the compact version PC universality class in analogy with the CDP in case of DP universality. The conclusions of this paper are in agreement with previous works concerning PC to DP universality changes (example [24,27,31]). It is also in agreement with the recent DS study of Hinrichsen et. al [32], because when they obtained PC class DS transition in case of the one-dimensional kinetic Ising model they created a mixed dynamics, which satisfies both the BAWe parity conservation (i.e. they followed the kinks) and the symmetric ground state condition (i.e. they generated passive states by "switching" between two dynamics that results in double degeneration: no-damage versus full-damage). In our case that has never happened that one replica would become completely reflection symmetric to the other. The simple dynamical rules always have driven the states to the same sector, where spin and kink damages died out simultaneously.

One may assume this scheme to be valid for non-DS dynamical transitions too, if the model has multiple absorbing states (with or without \(Z_2\) symmetry). This hypothesis is strengthened by simulations of the pure NEKIM model at the PC transition point. Starting the time dependent simulations from a single seed we measured the usual \(\eta\) and \(\delta\) exponents of the spins. In accordance with the DS results we obtained PC exponents again: \(\eta = 0.285(5)\), \(\delta = 0.285(5)\). A detailed study of CPC for the spins in the framework of NEKIM and its connection to the CDP point of Domany-Kinzel CA will be published soon [33].

These exponents satisfy the generalised hyper-scaling law [13] with \(\beta = 0\):

\[
2 \left(1 + \frac{\beta}{\tilde{\beta}} \right) \delta^* + 2\eta = dz
\]

(15)

where \(\tilde{\beta}^*\) is the ultimate survival probability exponent. Note that the discontinuous phase transition, the compact clusters (see. Fig. [18]) and the form of the hyper-scaling law suggests that our case is the parity conserving version of the Compact Directed Percolation [29,33,40].
ACKNOWLEDGMENTS

The authors thank Haye Hinrichsen and J. F. Mendes for helpful discussions. Support from the Hungarian research fund OTKA (nos. 023552 and 023791) and from NATO grant CRG-970332 is acknowledged. The simulations were performed partially on the FUJITSU AP-1000, and the ASTRA2 parallel supercomputers.

[1] S. A. Kauffman, J. Theor. Biol. 22, 437 (1969).
[2] M. Creutz, Ann. Phys. 167, 62 (1986).
[3] H. Stanley, D. Stauffer, J. Kertész and H. Herrmann, Phys. Rev. Lett. 59, 2326 (1986).
[4] B. Derrida and G. Weisbuch, Europhys. Lett. 4, 657 (1987).
[5] P. Grassberger, Physica A 214, 547 (1995).
[6] A. M. Mariz, H. J. Herrmann and L. de Arcangelis, J. Stat. Phys. 59, 1043 (1990).
[7] N. Jan and L. de Arcangelis, Ann. Rev. Comp. Phys. 1, 1 (ed. D. Stauffer, World Scientific, Singapore 1994).
[8] P. Grassberger, J. Phys. A : Math. Gen. 28, L67, (1995).
[9] H. Hinrichsen, S. Weitz and E. Domany, preprint cond-mat/9611085.
[10] P. Grassberger, J. Stat. Phys. 79, 13, (1995).
[11] H. K. Janssen, Z. Phys. B 42, 151 (1981).
[12] P. Grassberger, Z. Phys. B 47, 365 (1982).
[13] I. Jensen, Int. J. Mod. Phys. B 8, 3299 (1994); J. F. F. Mendes, R. Dickman, M. Henkel and M. C. Marques, J. Phys. A 27, 3019 (1994).
[14] G. Grinstein, Z. W. Lai and D. A. Browne, Phys. Rev. A 40, 4820 (1989).
[15] G. Grinstein, M. A. Munoz, Y. Tu, Phys. Rev. Lett. 76, 4376 (1996); G. Grinstein, M. A. Munoz, Phys. Rev. Lett. 78, 274 (1997).
[16] P. Grassberger, F. Krause and T. von der Twer, J. Phys. A : Math. Gen. 17, L105 (1984); P. Grassberger, J. Phys. A : Math. Gen. 22 L1103, (1989).
[17] H. Takayasu and A. Yu. Tretyakov, Phys. Rev. Lett. 68, 3060, (1992).
[18] I. Jensen, Phys. Rev. E 50, 3623, (1994).
[19] N. Menyhárd, J. Phys. A : Math. Gen. 27 6139, (1994).
[20] M. Droz, Z. Rácz and J. Schmidt, Phys. Rev. A 39, 2141 (1989).
[21] K. E. Bassler and D. A. Browne, Phys. Rev. Lett. 77, 4094 (1996); K. E. Bassler and D. A. Browne, Phys. Rev. E 55 (1997 May 1).
[22] N. Inui, A. Yu Tretyakov and H. Takayasu, J. Phys. A 28, 1145 (1995).
[23] H. Park, M. H. Kim, and H. Park, Phys. Rev. E 52, 5664 (1995); S. Kwon and H. Park, Phys. Rev. E 52, 5995 (1995).
[24] H. Park and H. Park, Physica A 221, 97 (1995).
[25] J. Cardy, U. Tauber, Phys. Rev. Lett 77, 4780 (1996).
[26] J. Cardy, U. Tauber, preprint cond-mat/9704160.