Highlights

Allocation of spinning reserves for autonomous grids subject to frequency stability constraints and short-term solar power variations

Erick Fernando Alves, Louis Polleux, Gilles Guerassimoff, Magnus Korpås, Elisabetta Tedeschi

- We propose constraints for contingency and intermittence resilience in renewable power
- We integrate frequency constraints in a sizing problem, through using MILP
- We consider limited ramp capacity and different frequency control schemes
- We use solar ramp worst-case scenarios to calculate primary storage requirements
Allocation of spinning reserves for autonomous grids subject to frequency stability constraints and short-term solar power variations

Erick Fernando Alvesa, Louis Polleuxb,c, Gilles Guerassimoffb, Magnus Korpåsa, Elisabetta Tedeschia,d

aDepartment of Electric Power Engineering, Norwegian University of Science and Technology, O.S. Bragstads Plass 2E, Trondheim, 7034, Norway
bCenter for Applied Mathematics, Mines ParisTech PSL, 1 Rue Claude Daunesse, Sophia Antipolis, 06904, France
cResearch and Development, TotalEnergies, 2 Place Jean Millier, Courbevoie, 92400, France
dDepartment of Industrial Engineering, University of Trento, Via Sommarive, 9, Povo, 38123, Trento, Italy

Abstract

Low-inertia, isolated power systems face the problem of resiliency to power variations. The integration of renewable energy sources, such as wind and solar photovoltaic, pushes the boundaries of this issue further. Higher shares of renewables requires better evaluations of electrical system stability, to avoid severe safety and economic consequences. Accounting for frequency stability requirements and allocating proper spinning reserves, therefore becomes a topic of pivotal importance in the long-term planning and operational management of power systems. In this paper, dynamic frequency constraints are proposed to ensure resiliency during short-term power variations due to, for example, wind gusts or cloud passage. The use of the proposed constraints is exemplified in a case study, the constraints being integrated into a mixed-integer linear programming algorithm for sizing the optimal capacities of solar photovoltaic and battery energy storage resources in an isolated industrial plant. Outcomes of this case study show that reductions in the levelized cost of energy and carbon emissions can be overestimated by 8.0% and 10.8% respectively, where frequency constraints are neglected. The proposed optimal sizing is validated using time-domain simulations of the case study. The results indicate that this optimal system is frequency stable under the worst-case contingency.
1. Glossary

Abbreviations

APS autonomous power systems
CAPEX capital expenditure
EMS energy management system
ESS energy storage system
FCR frequency containment reserves
FFR fast frequency reserves
FRR frequency restoration reserves
GHG greenhouse gases
GT gas turbine
LCOE levelized cost of energy
MILP mixed integer linear programming
O&G oil and gas
pu per unit
PV photovoltaic
RES renewable energy source
UC unit commitment
Symbols

a_m variable fuel consumption for generator m

$A_{PV,h}$ available solar PV area at time step h

B equivalent damping

β_m P-f droop of generator m

b_m fixed fuel consumption for generator m

c_{bat} cost of installed battery capacity

c_f cost of fuel

c_{PV} cost of installed solar PV capacity

D normalized damping

D_{min} minimum controlled damping

e discount rate of the project

$FC_{m,h}$ fuel cost for generator m at time step h

\tilde{f} frequency deviation from its rated value

I_h solar irradiance at time step h

$\Delta I_{r,h}$ solar irradiance drop for ramp r at time step h

J equivalent moment of inertia

M normalized inertia

ω angular speed

ω_s synchronous or rated angular speed

P_b boundary for power imbalance

P_{bat}^{inst} installed battery capacity

$P_{b,h}$ boundary for power imbalance at time step h
\(P_{PV_{b,h}} \) boundary for power imbalance due to solar PV short-term variation at time step \(h \)

\(P_{sud_{b,h}} \) boundary for power imbalance due to sudden load variation or generation loss at time step \(h \)

\(P_{FCR_{bat,h}} \) required battery capacity for FCR at time step \(h \)

\(P_{FCR_{m,h}} \) allocated FCR for generator \(m \) at time step \(h \)

\(P_G \) total active power generation in Watts

\(p_{G,h} \) total power generation at time step \(h \)

\(p_G \) total power generation in pu

\(P_L \) total active power consumption in Watts

\(p_L \) total power consumption in pu

\(p_{L,h} \) total power consumption at time step \(h \)

\(P_{max_{m}} \) maximum dispatch for generator \(m \)

\(P_{m,h} \) dispatch for generator \(m \) at time step \(h \)

\(P_{min_{m}} \) minimum dispatch for generator \(m \)

\(P_{PV_{inj,h}} \) injected solar PV power at time step \(h \)

\(P_{PV_{inst}} \) installed solar PV capacity

\(\Delta P_{PV_{r,h}} \) solar PV power drop for ramp \(r \) at time step \(h \)

\(\rho_{m,h} \) on/off status of generator \(m \) at time step \(h \)

\(r_{FFR_{m}} \) ramp rate of FRR for generator \(m \)

\(r_{RES} \) ramp rate of RES variation

\(r_{RES_{h}} \) ramp rate of RES variation at time \(h \)

\(r_{ss} \) boundary for frequency deviation in steady-state
\(r_{tr} \) boundary for frequency deviation during large transients
\(S_m \) total apparent power of generators
\(T_G \) generator torque
\(T_L \) load torque
\(T_{m}^{dn} \) minimum down-time of generator \(m \)
\(T_{m}^{up} \) minimum up-time of generator \(m \)
\(\Delta T_{RES} \) duration of RES variation
\(\Delta T_{h}^{RES} \) duration of RES variation at time \(h \)
\(\Delta T_{r,h} \) duration of ramp \(r \) at time \(h \)
\(u_{m,h} \) start-up decision of generator \(m \) at time step \(h \)
\(v_{m,h} \) shut-down decision of generator \(m \) at time step \(h \)

2. Introduction

The depletion of mature oil and gas (O&G) fields reduces the energy return on investment of the field and increases the emission of nitrogen oxides and greenhouse gases (GHG) [1]. The use of renewable energy sources (RESs) in O&G operations has therefore become an active research area in recent years. Groups have analyzed this challenge from a broad range of perspectives [2, 3, 4, 5, 6, 7, 8, 9]. It is, however, widely accepted that the planning or operation of hybrid energy systems in the O&G industry requires the solution of an optimization problem. The objective of such optimization can differ considerably. The power balance of the energy system is, however, a physical constraint that must always be satisfied.

Most O&G plants, platforms and vessels are supplied ac power by low-inertia, isolated systems [10]. Large active power variations in and considerable deviations from the system rated frequency can, however, occur where the penetration of RESs in such systems is high. This is a problem that is also found in other autonomous power systems (APS), such as islands [11, 12] and community microgrids [13]. Frequency stability constraints and the proper sizing of spinning reserves, such as frequency containment reserves (FCR) and
frequency restoration reserves (FRR), are therefore important dimensioning aspects and should therefore be given special attention in optimization algorithms [14].

Short-term variations caused by cloud passage across solar photovoltaic (PV) parks or wind gusts at wind farms can furthermore saturate the ramping capabilities of other generators. The relationship between RESs penetration and variability, size of energy storage systems (ESSs), scheduling decisions and frequency stability should therefore be investigated in more detail. Large interconnected and meshed electricity networks also are progressively behaving more as low-inertia systems, as the green shift progresses worldwide and penetration of RESs continues [15, 16]. Interest in the topic of this paper therefore is wide.

2.1. Literature review

Reliability-constrained unit commitment (UC) is described, for example, in [17, 18, 19], and addresses the UC problem during unexpected events such as the severe loss of load, generation or transmission capacity. The strategies applied to mitigate this include n+1 redundancy, and spinning reserve for frequency containment and restoration. [20] for example proposed a two-stage stochastic mixed integer linear programming (MILP) formulation for the calculation of UC and reserve scheduling, at frequency deviations of 0 and ±10 mHz. [21, 22] also discuss formulations for addressing wind power variations and the correct allocation from ESSs of spinning reserves. Generator contingency was, in this, considered to be the largest wind power fluctuation from one optimization time-step to another. Power balances were handled before and after contingencies in these works, and without generator transient period dynamics or ramping capacities being taken into account.

[23] have proposed frequency-constrained UC problem implementation alternatives to circumvent these limitations. [24, 25] thoroughly discuss the challenges of a frequency-constrained model. Options such as the use of maximum ramping capacity or minimum value of inertia were evaluated, but can lead to a nonlinear problem. This can, however, be handled by a Benders decomposition. [26] introduced a nonlinear model that includes frequency security constraints and the dynamics of the transient period. This, however, requires the use of a genetic algorithm to solve the optimization problem. [26] also use a genetic algorithm to optimally size the energy system of an offshore platform interconnected with a wind farm. The maximum ramping capacity
of generators and frequency stability limits were furthermore evaluated using time-domain simulations of worst-case scenarios for each candidate solution.

[27] integrated the power drops observed in solar PV, within 15-minute time windows, into the constraints of an optimal planning problem, this accounting for the stochastic variation of solar irradiance. A recent work [28], however, highlights the varying duration and magnitude of the short-term variability of PV plants, and also that maximum perturbation may rise to 60% of the plant’s rated power in less than 30 s. These short-term variations must be taken into account if realistic decisions on storage investment or unit scheduling in optimization algorithms are to be achieved. [14] furthermore provide an updated review of the frequency-constrained UC problem, a classification of the different approaches documented in the literature, and a discussion of their many shortcomings. They also proposed a linear model that includes frequency constraints directly in a MILP algorithm, and that therefore does not require the use of external time-domain simulations in the assessment of solution security. They did not, however, consider the effect of fast short-term variations in RESs, combined with generator ramping restrictions and use of ESSs on frequency stability.

Challenges therefore still remain in the efficient sizing, planning and operation of autonomous, low-inertia power systems with high RESs penetration, especially wind and solar PV.

2.2. Paper contributions

This paper addresses some of the modeling challenges and shortcomings described above, and introduces a set of algebraic frequency stability constraints that can be directly applied to linear optimization formulations of the UC problem in low-inertia APS with high RESs penetration. Practical issues such as limited generator ramping capacities and variability of RESs are taken into consideration. Short-term frequency variations are also used to reduce the conservatism of a UC under uncertainty, which permits complementary FCR and FRR action and a reduction in the power required from ESSs.

These ideas are exemplified in a case study of the integration of a solar PV plant and a battery ESS into an existing isolated industrial installation fed by gas turbines (GTs). A MILP algorithm is used to solve a rolling frequency-constrained UC problem, and to optimally size the installed capacity of solar PV and battery ESS. The RES short-term variability is evaluated by using a method recently published in [28], that identifies equivalent solar ramping
scenarios during cloud passage. The novel proposal, described in detail in section 3.3, are linear constraints for frequency stability that model tolerated frequency dynamics and the complementary FCR and FRR action taking place during short-term power variations, such as cloud passage events in solar PV installations or wind gusts in wind farms. This allows a significant reduction in the amount of FCR and consequently the rated power of an ESS designed to support the grid in such events, as demonstrated by the results of the case study in section 4.2. The frequency-stability results for the constrained and non-constrained implementation were compared, and major differences were highlighted, being the solution data obtained from this also used in a time-domain simulation to validate the results under the worst-case scenario.

3. Addressing frequency stability with linear constraints

This section reviews the equations that describe the frequency dynamics of a power system, and the types of spinning reserves required to ensure frequency stability. The rationale for determining spinning reserves by obtaining a set of algebraic expressions from the dynamic equations, and applying these as constraints to the linear optimization problem, is also introduced. The first proposed formulation treats the sudden disconnection of loads or generators. The next formulation addresses the problem of the short-term variation of loads or RESs, this requiring gradual compensation by dispatchable generators with limited ramping capacity.

3.1. Frequency stability and spinning reserves

The simplified model of a flywheel spinning at angular speed ω_s can be used to express the dynamics of frequency in a power system. The rotating masses of all synchronous generators and motors are represented by an equivalent moment of inertia J. Generators deliver, at one end of the shaft, energy to the flywheel via torque T_G. Load removes energy through T_L at the other shaft end. The natural and controlled damping of the system is represented by coefficient B. Applying Newton’s second law of motion to this simplified model, and multiplying both sides by the angular speed ω, therefore gives the following equation [29]:

$$\omega J \dot{\omega} = P_G - P_L - B(\omega - \omega_s)$$ \hspace{1cm} (1)
where P_G, P_L are respectively the active power delivered by generators and consumed by loads.

Eq. 1, which is also known as the Swing Equation, represents the power balance that is required to maintain this system at its rated angular speed ω_s. The frequency deviation $\tilde{f} = \frac{\omega - \omega_s}{\omega_s}$ can, after this equation has been normalized by ω_s and by the total apparent power of the generators S_n, be estimated by \cite{29}:

$$\begin{align*}
(1 + \tilde{f}) M \dot{\tilde{f}} &= p_G - p_L - D \tilde{f} \\
\end{align*} \quad (2)$$

where M, D, p_G, p_L are respectively the normalized inertia, damping, and active powers delivered by generators and consumed by loads.

The system is considered to be frequency stable \cite{30} where any power imbalance \tilde{f} remains within intervals $\pm r_{tr}$ during transient conditions and $\pm r_{ss}$ during steady-state conditions. These intervals are often defined in grid codes or industry standards. In Europe, $r_{ss} = \pm 1\%$ and $r_{tr} = \pm 3\%$ are specified for generators connected to transmission \cite{31} or distribution systems \cite{32, 33}. Wider limits are normally specified for low-inertia, autonomous systems, for example r_{ss} between 2 and 5\%, and r_{tr} between 5 and 10\% for fixed and mobile offshore units \cite{34}.

The minimum controlled damping D_{\min} that generators must provide when assuming a steady-state in Eq. 2 ($\dot{\tilde{f}} = 0$), and $\tilde{f} < 1\%$ and null natural damping from loads, can be approximated by:

$$D_{\min} r_{ss} \geq P_b \quad (3)$$

where $P_b = (p_G - p_L)$ represents the maximum continuous imbalance that the power system can withstand and still maintain frequency stability. P_b also defines the minimum level of spinning reserves that are required for frequency variations to be kept within the permitted range of $\pm r_{ss}$. This is therefore referred to as frequency containment reserves (FCR) \cite{35}. The assumptions used to derive Eq. 3 may underestimate D_{\min} when \tilde{f} values of more than 1\% are possible \cite{36}. A more robust approximation must therefore be given:

$$D_{\min} r_{ss} (1 - r_{tr}) \geq P_b \quad (4)$$

Note that the FCR strategy (proportional control) cannot restore frequency to its rated value. Achieving the zero steady-state error ($\tilde{f} = 0$) therefore requires p_G and p_L to be matched by generator re-dispatching,
through integral control [37, 29]. This requires additional spinning reserves, which are referred to as frequency restoration reserves (FRR) [35]. The action of FRR, FCR constraining frequency during disturbances to defined bands, therefore can be slow. This is desirable, not just to avoid new disturbances, but also to accommodate the ramping limitations of generators.

A single generator can provide both FCR and FRR. This may not, however, be the optimal solution from a technical or an economic perspective. GTs can, for example, usually provide both types of reserves simultaneously. Excessive activation of FCR on GTs can, however, increase actuator wear and tear and increase maintenance costs. A more suitable FCR could be batteries designed to supply large amounts of power for short periods of time. Their participation in FRR will, however, usually require large energy storage capacity, which will increase investment costs and space requirements.

The optimal allocation of spinning reserves can, even for small power systems, therefore quickly become a complex process. An optimization algorithm is therefore often used in sizing and operational decisions. The following sections present the proposed algebraic constraints. These are based on the frequency dynamics of a power system, and can help in the determination of the optimal allocation of FCR and FRR.

3.2. Formulation 1: constraints for sudden load or generation loss

The following constraints must be met when considering the assumptions and conditions imposed by Eq. 3 for generators participating in FCR:

\[\forall m, \forall h, \quad P_{FCR}^{m,h} \leq D_{m,ss} \quad (5) \]

\[\forall m, \forall h, \quad P_{m,h}^{min} + P_{FCR}^{m,h} \leq P_{m,h} \leq P_{m,h}^{max} - P_{FCR}^{m,h} \quad (6) \]

where \(P_{FCR}^{m,h}, P_{m,h}^{min}, P_{m,h}^{max}, P_{m,h} \) are respectively the assigned FCR contribution, the minimum, the maximum and the current commitment of generator \(m \) in time step \(h \).

The sum of FCR provided by all generators is to also, at each time step \(h \), be greater than the worst-case power disturbance \(P_{b,h} \):

\[\forall h, \sum_{m} P_{m,h}^{FCR} \geq P_{b,h} \quad (7) \]

\(P_{b,h} \) varies with time, because it depends on the worst expected sudden load or generation loss for the current state of the power system. This value is normally, in a security assessment, obtained from the evaluation of possible
contingencies. This complex topic is, however, beyond the scope of this work, a simplified approach however being presented in section 4.1.1 and used in this paper. A deeper discussion of this can be found in [38]. Note that Eq. 5 can be rewritten based on the assumptions and conditions imposed by Eq. 4, where \tilde{f} values of more than 1% are permitted.

3.3. Formulation 2: constraints for short-term power variations

In this paper, short-term power variations are considered to be variations that can be compensated for by generators that provide FRR without infringing their permitted ramping rates, and by generators that provide FCR without infringing the permitted frequency variations in steady-state. Examples of these variations in plants fed by RES include cloud passage across solar PV parks or wind gusts at wind farms.

This formulation requires the following assumptions:

1. A power system in balance and in steady-state before RES variations at $t = t_0$. In other words, in Eq. 2 $\dot{f}(t_0) = 0$, $\ddot{f}(t_0) = 0$ and $p_G(t_0) = p_L(t_0)$.

2. Worst-case short-term variations can be approximated by a maximum amplitude Δp_{RES}, a minimum duration ΔT_{RES}, and a constant rate of change $rr_{RES} = \Delta p_{RES}/\Delta T_{RES}$. This assumption has been corroborated by recently published analysis of short-term wind [39] and solar [28] variability, the determination of these parameters from high-resolution wind speed and solar irradiance measurements also being discussed in detail in these papers.

3. Δp_{RES} is compensated for without infringing the maximum ramping rate rr_{FRR} of the generators participating in FRR.

4. Short-term RES power variations are sufficiently smooth. It is therefore reasonable to assume minimal influence of system inertia ($M\dot{f} \approx 0$) during interval ΔT_{RES}.

Assumption 1 implies that any power variation in the system can be arbitrarily attributed to either p_L or p_G in Eq. 2. Eq. 8 is obtained based on the assumption that RES variations affect p_L and on assumption 2 Eq. 9 also accounts for the contributions of all generators that provide FRR in
term p_G, on assumption 3 being here applied.

\[\forall h, \quad p_{L,h} \leq r r_{h}^{RES} \Delta T_{h}^{RES} \quad (8) \]

\[\forall h, \quad p_{G,h} \leq \sum_{m} r r_{m}^{FRR} \Delta T_{h}^{RES} \quad (9) \]

Substituting Eqs. 8 and 9 into Eq. 2 and using assumption 4 gives Eq. 10.

\[\forall h, \sum_{m} r r_{m}^{FRR} \Delta T_{h}^{RES} \geq r r_{h}^{RES} \Delta T_{h}^{RES} + D \tilde{f} \quad (10) \]

An algebraic constraint that allocates FCR and FRR for short-term RES power variations compensation, is finally obtained based on $D = \sum_{m} D_{m}$ and that the \tilde{f} range in steady state is $\pm r_{ss}$:

\[\forall h, \sum_{m} r r_{m}^{FRR} \Delta T_{h}^{RES} - \sum_{m} D_{m} r_{ss} \geq r r_{h}^{RES} \Delta T_{h}^{RES} \quad (11) \]

Note that the constraint in Eq. 11 implies that FCR and FRR are, when $rr_{h}^{RES} > \sum_{m} r r_{m}^{FRR}$, activated concurrently. It is therefore implicitly assumed that sudden load variations and simultaneous worst-case RES power variations were taken into consideration when determining $P_{b,h}$ in FCR sizing. This leads to additional constraints, i.e. that generators m participating in FRR have a total available up and down capacity of $P_{b,h}$ at each time step h:

\[\forall h, \quad \sum_{m} (P_{m}^{max} - P_{m,h}) \geq P_{b,h} \quad (12) \]

\[\forall h, \quad \sum_{m} (P_{m,h} - P_{m}^{min}) \geq P_{b,h} \quad (13) \]

$P_{b,h}$ may eventually become asymmetrical, the positive worst-case power variation being different from the negative worst-case power variation. The up and down-ramping capacities of generators can also be distinct, FCR and FRR being asymmetrical in this situation. Separate parameter sets $r_{ss}, r_{tr}, P_{b,h}, D_{m}, r r_{m}^{FRR}, r r_{h}^{RES}, \Delta T_{h}^{RES}$ should then be considered for up and down reserves. The formulations proposed in this and the previous section can be developed further for this general case but will not, in the interests of brevity, be presented in this paper.
Figure 1: Idealized response of an autonomous power systems to a cloud-passage event.

Regarding Assumption 4, note that short-term power variations of renewables typically occur in ramp, as described later in section 4.1.1 and detailed in Appendix A and [28] for solar PV and [39] for wind power. A cloud passage would likely take many seconds to complete shade the total area of a MW-scale plant, meaning that the power output would drop approximately in a ramp. Where such ramps are smooth enough, the contribution of the GTs inertia for the power balance represented in eq. (2) would indeed be minimal, as turbine governors would have enough time to react to the grid frequency changes and compensate the power imbalance. This is exactly what is being assumed in this formulation.

This concept is better understood in fig. 1 which sketches what happens when a cloud passage occurs in an APS and where P_1, P_2, P_{max} represent respectively the power delivered by two GTs and their maximum limit, P_{PV} and P_{bat} are the power delivered by a solar PV farm and a battery ESS, and the superscripts DC and PC indicates respectively the power variations during and post cloud passage.

The dynamics of short-term power variations are, in summary, different from sudden load or generation loss, the latter being addressed by the constraints proposed in section 3.2. The GTs inertia will, in the latter case, be very important to guarantee the power balance represented in eq. (2) and
avoid extreme frequency variations, a topic well explored in [40], for instance.

4. Case study of an industrial installation

The case study of an isolated O&G installation with a peak electric power demand of 160 MW is presented in this section, to exemplify the use of the proposed formulations. This plant is currently equipped with four GTs each of 45 MW. 30 MW of the total load is considered to be non-essential, and can therefore be shed during an extreme contingency. This design therefore allows the critical power demand of 130 MW to be supplied, and a n+1 redundancy for GTs. The operator would like to integrate a solar PV farm and a battery ESS into this plant, to reduce emissions of nitrogen oxides and GHG. FCR and FRR should be supplied by the existing GTs, the battery ESS being sized to provide only FCR. Figure 2 presents the proposed architecture and Table 1 the main technical parameters.

4.1. MILP algorithm formulation

A MILP algorithm was developed to support the operator’s investment decision. The objective of optimization was to find the best performing pair of solar PV (installed capacity P_{PV}^{inst}) and battery ESS (installed capacity P_{bat}^{inst}) for the plant. Eq. 14 shows the objective function, c_{PV}, c_{bat} being the installation costs for solar PV and battery ESS in $/kW$, e denoting the discount rate of the project and c_f aggregated fuel costs including CO$_2$ and
\begin{tabular}{lll}
Parameter & Unit & Value \\
Rated frequency & Hz & 50 \\
\(r_{ss}\) & Hz & 0.5 \\
Load & & \\
- Peak & MW & 160 \\
- Critical & MW & 130 \\
- Non-essential & MW & 30 \\
GTs & & \\
- Number & 4 \\
- Rated power & MW & 45 \\
- Droop & \% & 10 \\
- Inertia & s & 5.51 \\
\end{tabular}

Table 1: Case study parameters

\(NO_x\) penalties. Operational costs across the plant’s lifetime \(Y_{\text{inst}}\) in years take into consideration the fuel consumption \(FC_{m,h}\) of each generator \(m\) at each time step \(h\), as defined in Eq. 15.

\[
\begin{align*}
\min P_{\text{inst}}^{PV} + P_{\text{bat}}^{inst} + \sum_{y=0}^{Y_{\text{inst}}} \sum_{h=1}^{8760} \sum_{m} FC_{m,h} c_f \frac{(1 + e)^y}{(1 + e)^y} & \\
\forall m, \forall h, FC_{m,h} = a_m P_{m,h} + b_m & \\
\end{align*}
\] (14)

Eqs. 16-25 express the system operational constraints. Eq. 16 ensures that system power is in balance at each time step \(h\). Note that the ESS does not take part in permanent load balancing as it is used only for FCR, that is ensuring frequency stability in case of short-term PV drop or large contingency. The energy flows related to charge and discharge therefore are considered negligible compared to the industrial load. The injected solar PV power \(P_{\text{inj}}^{PV,h}\) is calculated in Eq. 17 using the available PV area \(A_{PV,h}\), the average irradiance \(I_h\) in time step \(h\), and derating factor \(d_{PV}\). Eq. 18 integrates \(P_{PV}^{inst}\) into the objective function of Eq. 14.

\[
\forall h, \sum_{m} P_{m,h} \geq P_{L,h} - P_{\text{inj}}^{PV,h} & \\
\forall h, P_{\text{inj}}^{PV,h} \leq d_{PV} I_h A_{PV,h} & \\
\forall h, P_{PV}^{inst} \geq I_h A_{PV,h} & \\
\] (16)

15
Eqs. 19 to 25 express the operational constraints of each generator m at each time step h, $\rho_{m,h}$ representing the generator on/off status, $u_{m,h}$ and $v_{m,h}$ start-up and shut down decisions, and T_{m}^{up} and T_{m}^{dn} minimum up and down-time.

\begin{align*}
\forall m, \forall h, & \quad P_{m,h}^{FCR} \leq \rho_{m,h}D_{m}^{rs} \quad (19) \\
\forall m, \forall h, & \quad P_{m,h} \leq \rho_{m,h}P_{m}^{\max} - P_{m,h}^{FCR} \quad (20) \\
\forall m, \forall h, & \quad P_{m,h} \geq \rho_{m,h}P_{m}^{\min} + P_{m,h}^{FCR} \quad (21) \\
\forall m, \forall h, & \quad u_{m,h} - v_{m,h} \geq \rho_{m,h} - \rho_{m,h-1} \quad (22) \\
\forall m, \forall h, & \quad u_{m,h} + v_{m,h} \leq 1 \quad (23) \\
\forall m, h \geq T_{m}^{up}, & \quad \sum_{k=h-T_{m}^{up}}^{h-1} \rho_{m,k} \geq T_{m}^{up}v_{m,h} \quad (24) \\
\forall m, h \geq T_{m}^{dn}, & \quad \sum_{k=h-T_{m}^{dn}}^{h-1} \rho_{m,k} \leq T_{m}^{dn}(1 - u_{m,h}) \quad (25)
\end{align*}

Note that Eqs. 20 and 21 allocate the FCR for each generator m defined in Eqs. 5 and 6 according to a predefined damping D_{m}, calculated based on Table 1 data. $D_{m} = P_{m}^{\max}/(\beta_{m}P_{\text{base}})$. β_{m} is therefore the GT droop, $P_{\text{base}} = 45$ MW is an arbitrary value adopted for normalization. The total damping of the GTs $D_{GT} = \sum_{m} D_{m}$ may not, however, be sufficient to comply with Eq. 7, battery ESS power $P_{\text{inst}}^{\text{bat}}$ in this case being sized to provide the remaining FCR. The constraints necessary for this are discussed in the next section, which are based on the formulations proposed in sections 3.2 and 3.3.

4.1.1. Battery sizing

The first step in sizing spinning reserves is to apply sudden load or generation loss constraints, a simplified security assessment in this study being used. The loss of a GT in operation was therefore considered to be the worst contingency of this type. The system was therefore designed for $n+1$ redundancy of the GTs, the sudden power disturbance term $P_{b,h}^{\text{sud}}$ therefore being defined by Eqs. 26 and 27.

\begin{align*}
\forall m, \forall h, & \quad P_{b,h}^{\text{sud}} \leq P_{m}^{\max} \quad (26) \\
\forall m, \forall h, & \quad P_{b,h}^{\text{sud}} \geq P_{m,h} \quad (27)
\end{align*}
Table 2: The first 4 elements of the convex hull H_{11}^{max}

Ramp r	Durat. $\Delta T_{h,r}$	Irr. drop $\Delta I_{h,r}$
	[s]	[kW m$^{-2}$]
r_1	2	0.061
r_2	19	0.613
r_3	36	0.778
r_4	48	0.878

Cloud passage events at the solar PV farm should also be taken into consideration. Integration of these into the MILP formulation is however, in this study, based on the assumption that the optimization algorithm has access to a compact set H^{max} of worst-case solar irradiance ramp events. Appendix A summarizes a procedure for building H^{max} from high-resolution irradiance time series. Solar irradiance data provided by NREL [41] was used. The wavelet variability model [42] was also employed to take into account the geographical smoothing effect, using Sandia’s PV_LIB Toolbox for Matlab [43]. The datasets used to build H^{max} in this study are available in [44], being H^{max} for $h = 11$ presented in Table 2. The duration and irradiance drop associated with ramp event r in time step h are denoted $\Delta T_{h,r}$ and $\Delta I_{h,r}^{\text{PV}}$.

The worst-case solar PV disturbance term $P_{b,h}^{\text{PV}}$ at each time step h can, where this framework is assumed, be specified using Eqs. [28] and [29].

$$\forall h, \forall r, \quad P_{b,h}^{\text{PV}} \geq d_{\text{PV}} \Delta I_{h,r} A_{\text{PV},h}$$

(28)

$$\forall h, \quad P_{b,h}^{\text{PV}} \leq P_{\text{inj}}^{\text{PV},h}$$

(29)

Spinning reserves can be specified where both $P_{b,h}^{\text{sud}}$ and $P_{b,h}^{\text{PV}}$ have been defined and the formulations proposed in sections 3.2 and 3.3 are applied. FRR is sized using Eqs. [30] and [31] which are obtained when the constraints in Eqs. [12] and [13] are used.

$$\forall h, \quad \sum_m (\rho_{m,h} P_{m,h}^{\text{max}} - P_{m,h}) \geq P_{b,h}^{\text{sud}} + P_{b,h}^{\text{PV}}$$

(30)

$$\forall h, \quad \sum_m (P_{m,h} - \rho_{m,h} P_{m}^{\text{min}}) \geq P_{b,h}^{\text{sud}} + P_{b,h}^{\text{PV}}$$

(31)
Table 3: Techno-economic input parameters

Parameter	Unit	Value
Y_{inst}	year	20
rr_{m}	MW s$^{-1}$	0.208
T_{up}^m	h	6
T_{dn}^m	h	6
a	m3h$^{-1}$kW$^{-1}$	13782
b	m3h$^{-1}$	5523
c_{fuel}	$$/m^3$	1.01
c_{CO2}	$$/t$	120
$c_{inst_{PV}}$	$$/kW$	400
d_{PV}	%	80
$c_{inst_{bat}}$	$$/kW$	250
e	%	3

FCR is then calculated by combining the minimum damping requirements defined in Eq. [7] and the constraint in Eq. [11] which assumes that ΔP_{PV}^{PV} is partially compensated for by FRR during a cloud passage. The battery ESS is therefore sized, at each time step h, to simultaneously compensate for any power deficit between a) P_{sud}^{sud}, FCR provided by GTs; and b) ΔP_{PV}^{PV}, FRR provided by GTs for all ramp events in H_{max}. Eqs. [32] and [33] describe these requirements. Finally, P_{bat}^{inst} is integrated into the objective function of Eq. [14] via Eq. [34]. Note that the proposed sizing is only addressing the maximum power of the ESS, not its energy capacity. To calculate the energy flows demanded by FCR, it is necessary to simulate the grid using more detailed models at sub-second time steps, which cannot be performed using the methodology here proposed. This limitation is later exemplified and further discussed in section 5.

\[
\forall h, \forall r, \\
P_{bat,h}^{FCR} \geq P_{sud,b,h}^{sud} - P_{m,h}^{FCR} \\
+ \Delta P_{PV}^{PV} - \sum_m (\rho_{m,h} r R_{m,FRR} T_{h,r}) \tag{32}
\]

\[
\forall h, \\
P_{bat,h}^{FCR} \geq 0 \tag{33}
\]

\[
\forall h, \\
P_{bat}^{inst} \geq P_{bat,h}^{FCR} \tag{34}
\]
4.2. Optimal sizing with static and dynamic frequency constraints

The MILP algorithm described in section 4.1 was implemented in Gurobi 9.1, using an optimality gap tolerance of 1%. Table 3 lists the techno-economic parameters used in the optimization. Four scenarios were considered, these being selected to highlight the importance of frequency stability constraints:

1. **Baseline** is the current operation of the case study plant, power generation being based on 4 GTs.
2. **No FC** includes the integration of the solar PV farm, but without any frequency stability conditions. The constraints in section 4.1.1 are therefore omitted.
3. **Static FC** is the full implementation given in section 4.1. It adopts $P_{m,h}^{FCR} = 0$ in Eq. 32, which means that the frequency dynamics and the FCR contribution during cloud passage are ignored.
4. **Dynamic FC** includes the FCR contribution in Eq. 32.

The results are given in Table 4. The highest total costs are in the **Baseline** case, minimum costs being in the **No FC** case at a discount of 8.9% on **Baseline**. This can be explained by the installed capacity of the largest solar PV being 129.76 MW and the decrease of CO_2 emissions being 14.3% of **Baseline**. These factors also lead to the lowest levelized cost of energy (LCOE) and highest capital expenditure (CAPEX) for all cases. The **No FC** case is, however, unrealistic, as it ignores frequency stability constraints and the need for energy storage. It does, however, provide useful references for maximum theoretical reductions in CO_2 emissions and LCOE.

Adding spinning reserve constraints limits the potential of PV integration, and requires battery ESS capacity, this influencing the CAPEX in opposite directions. The reduction of PV installation costs is, however, bolder for the
Table 5: Required battery ESS capacity for the first 4 elements of the convex hull H_{11}^{max}

Ramp	St. FC $P_{\text{FCR bat,}r}^{\text{FCR}}$ [MW]	Dyn. FC $P_{\text{FCR bat,}r}^{\text{FCR}}$ [MW]	No FC $P_{\text{FCR bat,}r}^{\text{FCR}}$ [MW]
r_1	25.7	3.2	11.3
r_2	**33.3**	**10.8**	**50.2**
r_3	23.2	0.7	50.2
r_4	15.3	0	48.1

parameters of this case study. CAPEX is reduced by 36.2% in the Static FC and by 47.0% in the Dynamic FC case, in relation to the No FC case. No significant differences are observed in fuel consumption, and therefore CO_2 emissions, between the two frequency constraints cases. Their LCOE and total costs therefore remain similar. LCOE is reduced by 13.5% in No FC, 4.6% in Static FC and 4.7% in Dynamic FC (on Baseline).

It can be argued that the difference between Static FC and Dynamic FC is marginal for most indicators. Note, however, that the battery ESS capacity in Dynamic FC is reduced by 67.6% in relation to Static FC. This shows that ESS capacity can be reduced significantly where the tolerated frequency dynamics and complementary contribution of FCR and FRR modeled in eq. (32) are taken into consideration during a cloud passage event.

Figure 3 shows the hourly profiles on Jan 1st of available PV power $P_{\text{PV,}h}$, injected PV power $P_{\text{inj,}h}$, and the calculated battery contribution during a worst-case PV power drop $P_{\text{FCR bat,}h}^{\text{FCR}}$, and exemplifies what takes place at a more granular level. Injected PV power reaches 92.6 MW at 11:00 in the No FC case. The injection is, however, curtailed to around 54 MW in the Static FC and Dynamic FC cases, the difference between these cases being explained by frequency stability constraints being neglected. This allows the MILP algorithm to turn off one GT and creates the opportunity for additional PV capacity.

The infeasibility of the No FC solution is shown by Table 5, the table specifying the power deficit between FCR, FRR, $P_{\text{inj,}h}^{\text{inj}}$ and $P_{\text{PV,}h}$ given by Eq. (32) for the PV ramps stated in Table 2. Remember that it is assumed that $P_{\text{inj,}h}^{\text{FCR}} = 0$ in No FC and Static FC, in Eq. (32). This assumption is also used in Eqs. (20) and (21) in No FC. The system may, in No FC, face a power deficit of 50.2 MW. Critical PV ramps are r_2 and r_3, which would undoubtedly lead to a grid blackout. $P_{\text{FCR bat,}r}^{\text{FCR}}$ is obtained, in the Static FC case, by adding
22.5 MW of one GT loss to 10.8 MW for the imbalance between FRR and PV ramp rate. The generator loss is fully compensated for in the *Dynamic FC* case, by the damping of the remaining GTs. This shows the importance of taking into consideration the damping capabilities of generators participating in FCR and the tolerated frequency deviations.

4.3. Validation with time-domain simulations

Time-domain simulations implemented in Matlab/Simulink (2021b) were used to validate the battery sizing by the proposed MILP algorithm. Fig. B.6 presents a schematic diagram of this simulation model. The dynamics of the electricity grid are reduced into active power flows, Eq. 2 being used to calculate grid frequency deviation. Battery and solar PV models consist of ideal active power sources, battery ESS adopting a droop control strategy including saturation and only providing FCR. GTs and their governors are represented by a droop model that contain a first-order filter to represent the delay of the actuator, being a time constant of 0.5 s employed. Ramp-rate saturation is added for the FRR component. Other relevant parameter values are given in Tables 1-4.

The validation consists of simulating the worst-case cloud passage event and the simultaneous loss of one GT, as presented in Table 2, a check of whether frequency deviation is lower than or equal to \(r_{ss} \) then being carried out. Remark that all other cases will produce smaller frequency drops or lower FRR setpoint rate of change. The power perturbation is generated by applying a load step that corresponds to \(P_{sud}^{b,h} = 22.5 \text{ MW} \) at \(t = 10 \text{ s} \), and by simultaneously applying a negative power ramp corresponding to \(r_2 \). The system inertia \(M \) is equivalent to three GTs. Figure 4 shows the results of this simulation, including the battery ESS, the GTs power and the grid frequency. Battery support means the frequency drops to 49.5 Hz after the worst-case event, meeting the target of up to 0.5 Hz deviation. The grid frequency has also an oscillatory behavior after the sudden loss of one GT due to the time delay of the turbine governors, which is compensated by the fast action of the battery ESS. A further discussion of this topic is beyond the scope of this paper, but the interested reader can more information in [45].
Figure 3: Hourly available and injected PV profile and battery requirements on Jan 1st
5. Discussion

Optimal solar PV and battery ESS capacities were calculated for an industrial plant, by using the formulation of linear frequency constraints and their integration in a MILP sizing problem. Economic and environmental performance is reduced (at +10.8% of CO₂ emissions and +8.0% of total costs) in relation to optimization results without frequency constraints. It was, however, shown that the solution without frequency constraint is not resilient to worst-case events, such as a simultaneous cloud passage and loss of a GT. Taking frequency reserves into consideration in sizing optimization therefore avoids the over-estimation of the benefits of solar power integration, and provides a more robust architecture in terms of power supply security.

The battery ESS capacity requirement was reduced by 67.6% of the static calculation value that neglects the FCR contribution. This was achieved by taking into consideration the frequency deviation tolerance \(r_{ss} = 0.5Hz \) in the *Dynamic FC* scenario. Considering simultaneous PV drop and genera-
tor loss allows a robust approach, but also leads to conservative and costly ESS sizing. The problem of battery ESS capacity allocation might, in less sensitive applications, take into consideration the highest value of the worst-case PV ramp event and generator contingency, but not both simultaneously. The impact of this on overall costs and CO₂ savings would, however, still be relatively small, primarily due to the marginal effect that the proposed constraints would have on the fuel consumption of GTs, which is the main cost driver in this case study.

The battery energy storage capacity in MW h for FCR is not a dominant cost driver in this problem, and the cost function of eq. (14), as consequence, do not consider it. The actuation time of FRR is usually less than 30 s in a typical energy management system for APS, meaning that, if full FCR capacity (i.e. 10.8 MW) is delivered for 10 events every hour (i.e. 5 minutes in total), the required energy will be 0.9 MW h for the selected battery ESS in the case study. Typical losses of ESSs in the MW-range varies between 1 and 2%, the required FCR energy therefore being in the same order of magnitude of the battery ESS losses. Remark that FCR required energy represents only 0.56% of the load demand in the case study (160 MW h) and can be assumed negligible when taking into consideration the accuracy of the model employed in the UC problem and the optimality gap tolerance adopted. Including the battery energy storage capacity in the problem formulation would however be extremely relevant if the ESS was designed to provide FRR, or if the proposed constraints were employed in an operational UC problem designed to provide dispatch setpoints for the GTs and ESS in real-time.

The attentive reader may have noticed that the fuel and CO₂ costs presented in Table 3 are well above current market prices. The reader may have also noticed that the project discount rate and installation costs for solar PV and battery ESS are lower than the prevailing values in the industry. This was to allow a high penetration of solar PV in the case study installation, to highlight the impact of frequency stability constraints in this scenario. The results of the MILP algorithm are, of course, sensitive to the economic parameters. For example, if the discount rate is doubled, then the installed solar PV capacity will drop to below 9 MW in the Static FC and Dynamic FC scenarios. The presentation of a sensitivity analysis in the case study is, however, beyond the scope of this work.

Just considering Eqs. 20, 21, 30 and 31 is, in terms of spinning reserves allocation, equivalent to the formulations proposed in [27, 14]. Introducing Eq. 34, however, contributes to security sizing problems, as it draws in both
formulations. FCR modeling during short-term power variations therefore improves the optimal solution. The validation of the use of a time-domain model that only considers active power flows, shows that this frequency stability proposal can produce valid results. The power management of larger systems is, however, a multi-objective optimization problem with coupled variables, and one in which not only active power flows, but also voltages and reactive power flows, are optimized as discussed in [19]. The inclusion of frequency constraints in such problems, to deal with short-term power variations, is however a topic for future research.

Note as well that a droop with a fixed value of 10% for all GTs was considered in the case study. As briefly discussed in Section 4.1, the droop value directly affects total system damping. It would therefore also affect the size of the battery ESS. This observation suggests that this value should also be used as a decision variable in the optimization problem. This does, however, lead to a non-linear formulation. Further research on reserve allocation models and MILP formulation should therefore be carried out to circumvent this issue.

It is worth highlighting, at this point, that the constraints proposed in sections 3.2 and 3.3 do not control $\dot{\tilde{f}}$, only assign the correct amount of FCR given bounded values of $(p_G - p_L)$ and M. The proposed constraints, in other words, guarantee that the frequency deviation \tilde{f} remains within intervals $\pm r_{tr}$ during transient conditions and $\pm r_{ss}$ during steady-state conditions (i.e. post-disturbance), which is the definition of frequency stability given in [30] and in section 3.1.

Note that large values of \tilde{f} in the negative direction (i.e. lack of power generation) can cause magnetic over-flux in electrical machines and transformers. This situation not only increases losses and heating, but also induced voltage gradient between laminations that can break down the core insulation of these equipment and cause serious damages. This topic is discussed in depth in [46, 47, 48, 40] and can be considered a more serious issue than large values of $\dot{\tilde{f}}$ in low-inertia APS.

Despite not being explicitly mentioned in section 3.1 M influences the term r_{tr} in eq. (4), which represents the maximum value of $\dot{\tilde{f}}$ during transient conditions, also known as frequency nadir or zenith. This term can therefore be used to include constraints on M. The model from eq. (2), however, cannot capture the dynamics of the transient period, as it does not include the time delay of actuators. References [49, 50] have discussed this issue and
proposed linearizations and/or analytical solutions that can be employed to include services such as fast frequency reserves or inertia emulation in the UC problem. The constraints proposed in these references can be included in the formulation proposed in section 4.3 where the dynamics of the transient period must be addressed.

In the case study case presented in section 4, however, a higher penetration of solar PV is mainly prevented by the \(\tilde{f} \) constraints post-disturbance and the installation costs of the battery ESS, as shown in table 4 and discussed in section 4.2. The authors therefore consider reasonable to ignore the dynamics of the transient period in this specific case. For a more general problem formulation, the constraints proposed in [49, 50] can be combined with those presented in section 3.3. This however will turn the problem into a nonlinear optimization, as the ratio \(\frac{D}{M} \) determines the \(\tilde{f} \) dynamics but each variable will be a decision variable in the optimization. Addressing this issue and developing a convex reformulation of the problem that can be solved by MILP is a relevant topic for future work.

6. Conclusion

The problem of spinning reserves allocation for isolated grids with high penetration of RESs is addressed in this work. Linear frequency stability constraints were first formulated, to allow integration in a frequency constrained unit commitment (UC) problem, the proposed constraints ensuring the allocation of enough reserves to compensate for short-term renewable variations and generator contingencies. This includes practical issues such as the limited ramping capacities of frequency restoration reserves (FRR). It also takes advantage of short-term frequency variations and the complementary action between frequency containment reserves (FCR) and frequency restoration reserves (FRR).

The reserve allocation strategy is exemplified by a case study in which a mixed integer linear programming (MILP) algorithm is formulated for the optimal sizing of a solar photovoltaic (PV) farm and an energy storage system (ESS). Linear frequency stability constraints are aggregated to ensure the resiliency of the grid, in the event of cloud passage and generator contingency occurring simultaneously. The results show that this method provides an optimal and secure architecture. It also shows that neglecting stability constraints leads to an inoperable solution, and overestimates system profitability and greenhouse gases (GHG) emission savings, by 8.0 and 10.8%
1. Data decomposition in hourly timeslices
2. Detection of all solar ramp events
3. Convex hull gathering ramps of highest irradiance drop
4. Generation of hourly convex hulls of worst case solar ramps

Figure A.5: Process of worst-case ramp identification from high-resolution timeseries to convex hulls H_{t}^{max} in the lower-right figure respectively.

Appendix A. Generation of solar PV power drop scenarios

Solar variability is typically measured by irradiance sensors, which generate high-resolution time series. The measurement sampling time must be lower than 5 s if cloud passage events are to be captured. Integrating these time series into a high-level optimization is however impractical, due to time increment discrepancies. Fig. A.5 summarizes a procedure for extracting ramp scenarios from irradiance sensor time series, as was recently proposed in [28] and applied in section 4.
In step 1, high resolution data from sensors is decomposed into hourly time slices. In step 2, all ramp events within an hour slice are detected. A ramp event $r_{rPV,h,r}$ is defined by its irradiance drop $\Delta I_{h,r}$ and ramp duration $\Delta T_{h,r}$ during cloud passage. In step 3, all events are grouped in a compact set. The hourly convex hull \mathcal{H}^{max}_h is defined to gather the set of highest irradiance drops for each duration, to allow only the worst-case events to be extracted. This provides a subset of a limited number of ramps. Steps 2 and 3 are then repeated for each hour slice defined in step 1. Finally, in step 4, all \mathcal{H}^{max}_h are grouped and the global convex compact worst-case ramp set \mathcal{H}^{max} is obtained.

The solar PV power drop $\Delta P_{PV,h,r}$ is calculated using the irradiance drop according to Equation A.1, $A_{PV,h}, I_h, d_{PV}$ being the available PV area, the average irradiance, and derating factor, respectively.

$$\Delta P_{PV,h,r} = d_{PV} \Delta I_{h,r} A_{PV,h}$$ \hspace{1cm} (A.1)
Appendix B. Power system model used for validation

Figure B.6: Power system model implemented in Matlab/Simulink
References

[1] M. S. Masnadi, A. R. Brandt, Climate impacts of oil extraction increase significantly with oilfield age, Nature Clim Change 7 (8) (2017) 551–556. doi:10.1038/nclimate3347.

[2] L. Riboldi, S. Völler, M. Korpås, L. O. Nord, An Integrated Assessment of the Environmental and Economic Impact of Offshore Oil Platform Electrification, Energies 12 (11) (2019) 2114. doi:10.3390/en12112114.

[3] L. Polleux, J. Sandoval-Moreno, G. Guerassimoff, J.-P. Marmorat, Impacts of thermal generation flexibility on power quality and LCOE of industrial off-grid power plants, in: Proceedings of 11th International Conference on Applied Energy, Vol. 3, Energy Proceedings, Vasteras, Sweden, 2019, p. 6.

[4] R. Itiki, S. G. Di Santo, C. Itiki, M. Manjrekar, B. H. Chowdhury, A comprehensive review and proposed architecture for offshore power system, International Journal of Electrical Power & Energy Systems 111 (2019) 79–92. doi:10.1016/j.ijepes.2019.04.008.

[5] S. Chapaloglou, D. Varagnolo, E. Tedeschi, Techno-Economic Evaluation of the Sizing and Operation of Battery Storage for Isolated Oil and Gas Platforms with High Wind Power Penetration, in: IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, IEEE, Lisbon, Portugal, 2019, pp. 4587–4592. doi:10.1109/IECON.2019.8926739.

[6] L. Riboldi, E. F. Alves, M. Pilarczyk, E. Tedeschi, L. O. Nord, Optimal Design of a Hybrid Energy System for the Supply of Clean and Stable Energy to Offshore Installations, Front. Energy Res. 8 (2020) 326. doi:10.3389/fenrg.2020.607284.

[7] J. Z. Tee, I. L. H. Lim, K. Zhou, O. Anaya-Lara, Transient Stability Analysis of Offshore Wind With O&G Platforms and an Energy Storage System, in: 2020 IEEE Power & Energy Society General Meeting (PESGM), IEEE, Montreal, QC, Canada, 2020, pp. 1–5. doi:10.1109/PESGM41954.2020.9281706.
[8] N. Anglani, S. R. Di Salvo, G. Oriti, A. L. Julian, Renewable Energy Sources and Storage Integration in Offshore Microgrids, in: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), IEEE, Madrid, Spain, 2020, pp. 1–6. doi:10.1109/EEEIC/ICPSEurope49358.2020.9160760.

[9] K. S. Khan, I. V. M. dos Santos, G. B. dos Santos, M. B. C. Salles, R. M. Monaro, Evaluation of Deep-Water Floating Wind Turbine to Power an Isolated Water Injection System, in: ASME 2021 3rd International Offshore Wind Technical Conference, American Society of Mechanical Engineers, Virtual, Online, 2021, p. V001T01A002. doi:10.1115/IOWTC2021-3522.

[10] H. Devold, Oil and Gas Production Handbook: An Introduction to Oil and Gas Production, Transport, Refining and Petrochemical Industry, ABB, Oslo, 2013.

[11] H. Vasconcelos, C. Moreira, A. Madureira, J. P. Lopes, V. Miranda, Advanced Control Solutions for Operating Isolated Power Systems: Examining the Portuguese islands., IEEE Electrific. Mag. 3 (1) (2015) 25–35. doi:10.1109/MELE.2014.2380131.

[12] H.-K. Ringkjøb, P. M. Haugan, A. Nybø, Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard, Applied Energy 258 (2020) 114079. doi:10.1016/j.apenergy.2019.114079.

[13] N. K. Meena, J. Yang, E. Zacharis, Optimisation framework for the design and operation of open-market urban and remote community microgrids, Applied Energy 252 (2019) 113399. doi:10.1016/j.apenergy.2019.113399.

[14] D. Rebollal, M. Chinchilla, D. Santos-Martín, J. M. Guerrero, Endogenous Approach of a Frequency-Constrained Unit Commitment in Islanded Microgrid Systems, Energies 14 (19) (2021) 6290. doi:10.3390/en14196290.

[15] E. Ørum, M. Laasonen, K. Elkington, N. Modig, M. Kuivaniemi, A. I. Brusteth, E. A. Jansson, A. Danell, Future System Inertia 2, Tech. rep.,
[16] H. Holttinen, J. Kiviluoma, D. Flynn, C. Smith, A. Orths, P. B. Eriksen, N. A. Cutululis, L. Soder, M. Korpas, A. Estanqueiro, J. Macdowell, A. Tuohy, T. K. Vrana, M. O’Malley, System impact studies for near 100% renewable energy systems dominated by inverter based variable generation, IEEE Trans. Power Syst. (2020) 1–1 [doi:10.1109/TPWRS.2020.3034924].

[17] M. A. Fotouhi Ghazvini, H. Morais, Z. Vale, Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems, Applied Energy 96 (2012) 281–291. [doi:10.1016/j.apenergy.2011.11.015].

[18] S. Goleijani, T. Ghanbarzadeh, F. Sadeghi Nikoo, M. Parsa Moghaddam, Reliability constrained unit commitment in smart grid environment, Electric Power Systems Research 97 (2013) 100–108. [doi:10.1016/j.epsr.2012.12.011].

[19] S. Mashayekh, K. L. Butler-Purry, An Integrated Security-Constrained Model-Based Dynamic Power Management Approach for Isolated Microgrids in All-Electric Ships, IEEE Transactions on Power Systems 30 (6) (2015) 2934–2945. [doi:10.1109/TPWRS.2014.2377741].

[20] N. Rezaei, M. Kalantar, Economic–environmental hierarchical frequency management of a droop-controlled islanded microgrid, Energy Conversion and Management 88 (2014) 498–515. [doi:10.1016/j.enconman.2014.08.054].

[21] Y. Wen, W. Li, G. Huang, X. Liu, Frequency Dynamics Constrained Unit Commitment With Battery Energy Storage, IEEE Trans. Power Syst. 31 (6) (2016) 5115–5125. [doi:10.1109/TPWRS.2016.2521882].

[22] Y. Wen, W. Li, G. Huang, X. Liu, Frequency Dynamics Constrained Unit Commitment With Battery Energy Storage, IEEE Transactions on Power Systems 31 (6) (2016) 5115–5125. [doi:10.1109/TPWRS.2016.2521882].
[23] C. Cardozo, L. Capely, P. Dessante, Frequency constrained unit commitment, Energy Syst 8 (1) (2017) 31–56. doi:10.1007/s12667-015-0166-4

[24] C. C. Arteaga, Optimisation of power system security with high share of variable renewables: Consideration of the primary reserve deployment dynamics on a Frequency Constrained Unit Commitment model, Phd thesis, Université Paris-Saclay, Paris, France (Mar. 2016).

[25] Y. Yin, T. Liu, L. Wu, C. He, Y. Liu, Frequency-constrained multi-source power system scheduling against N-1 contingency and renewable uncertainty, Energy 216 (2021) 119296. doi:10.1016/j.energy.2020.119296

[26] N. Nguyen, S. Almasabi, A. Bera, J. Mitra, Optimal Power Flow Incorporating Frequency Security Constraint, IEEE Trans. on Ind. Applicat. 55 (6) (2019) 6508–6516. doi:10.1109/TIA.2019.2938918

[27] T. Schittekatte, M. Stadler, G. Cardoso, S. Mashayekh, N. Sankar, The Impact of Short-Term Stochastic Variability in Solar Irradiance on Optimal Microgrid Design, IEEE Transactions on Smart Grid 9 (3) (2018) 1647–1656. doi:10.1109/TSG.2016.2596709

[28] L. Polleux, T. Schuhler, G. Guerassimoff, J.-P. Marmorat, J. Sandoval-Moreno, S. Ghazouani, On the relationship between battery power capacity sizing and solar variability scenarios for industrial off-grid power plants, Applied Energy 302 (2021) 117553. doi:10.1016/j.apenergy.2021.117553

[29] E. F. Alves, D. d. S. Mota, E. Tedeschi, Sizing of Hybrid Energy Storage Systems for Inertial and Primary Frequency Control, Front. Energy Res. 9 (2021) 649200. doi:10.3389/fenrg.2021.649200

[30] N. Hatziargyriou, J. Milanovic, C. Rahmann, V. Ajjarapu, C. Canizares, I. Erlich, D. Hill, I. Hiskens, I. Kamwa, B. Pal, P. Pourbeik, J. Sanchez-Gasca, A. Stankovic, T. Van Cutsem, V. Vittal, C. Vournas, Definition and Classification of Power System Stability – Revisited & Extended, IEEE Trans. Power Syst. 36 (4) (2021) 3271–3281. doi:10.1109/TPWRS.2020.3041774
[31] Commission Regulation (EU), EU 2016/631: Network code on requirements for grid connection of generators (Apr. 2016).
URL http://data.europa.eu/eli/reg/2016/631/oj

[32] NEK EN 50549-1:2019 Requirements for generating plants to be connected in parallel with distribution networks - Part 1: Connection to a LV distribution network, NEK, Oslo, Norway, 2019.

[33] NEK EN 50549-2:2019 Requirements for generating plants to be connected in parallel with distribution networks - Part 1: Connection to a MV distribution network, NEK, Oslo, Norway, 2019.

[34] IEC 61892:2019 Mobile and fixed offshore units - Electrical installations, 3rd Edition, IEC, Geneva, Switzerland, 2019.
URL https://webstore.iec.ch/publication/64956

[35] Commission Regulation (EU), EU 2017/1485: Guideline on electricity transmission system operation (Aug. 2017).
URL http://data.europa.eu/eli/reg/2017/1485/oj

[36] E. F. Alves, G. Bergna-Diaz, D. I. Brandao, E. Tedeschi, Sufficient Conditions for Robust Frequency Stability of AC Power Systems, IEEE Trans. Power Syst. (2020) 2684–2692 doi:10.1109/TPWRS.2020.3039832

[37] P. W. Sauer, M. A. Pai, J. H. Chow, Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox, second edition Edition, Wiley, Hoboken, NJ, USA, 2017.

[38] E. Ciapessoni, D. Cirio, G. Kjolle, S. Massucco, A. Pitto, M. Sforna, Probabilistic Risk-Based Security Assessment of Power Systems Considering Incumbent Threats and Uncertainties, IEEE Trans. Smart Grid 7 (6) (2016) 2890–2903. doi:10.1109/TSG.2016.2519239

[39] Á. Hannesdóttir, M. Kelly, Detection and characterization of extreme wind speed ramps, Wind Energ. Sci. 4 (3) (2019) 385–396. doi:10.5194/wes-4-385-2019

[40] J. Machowski, J. W. Bialek, J. R. Bumby, Power System Dynamics: Stability and Control, 2nd Edition, Wiley, Chichester, U.K, 2008.
[41] M. Sengupta, A. Andreas, Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data); nrel report no. da-5500-56506, type: dataset (2010). doi:10.5439/1052451.

[42] M. Lave, J. Kleissl, J. S. Stein, A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants, IEEE Trans. Sustain. Energy 4 (2) (2013) 501–509. doi:10.1109/TSTE.2012.2205716.

[43] S. University, PV Performance Modeling Collaborative | Wavelet Variability Model (2012), URL https://pvpmc.sandia.gov/applications/wavelet-variability-model/.

[44] E. F. Alves, L. Polleux, Efantnu/drep-2021-collab-MINESParisTech-NTNU: V0.2 (Mar. 2022). doi:10.5281/ZENODO.6334827.

[45] D. d. S. Mota, E. F. Alves, S. Acevedo-Sanchez, H. G. Svendsen, E. Tedeschi, Offshore Wind Farms And Isolated Oil And Gas Platforms: Perspectives And Possibilities, in: Proc. ASME 2022 41stst Int. Conf. Ocean Offshore Arct. Eng. OMAE 2022, ASME, Hamburg, Germany, 2022.

[46] E. F. Alves, M. A. de Souza, Analysis of overexcitation relaying set up in synchronous generators for hydro power plants, in: 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), IEEE, Sao Paulo, Brazil, 2010, pp. 298–303. doi:10.1109/TDC-LA.2010.5762897.

[47] J. Pyrhonen, T. Jokinen, V. Hrabovcová, Design of Rotating Electrical Machines, 2nd Edition, Wiley, Chichester, West Sussex, United Kingdom, 2013.

[48] S. V. Kulkarni, S. A. Khaparde, Transformer Engineering: Design, Technology, and Diagnostics, 2nd Edition, CRC Press, Boca Raton, 2013.

[49] L. Badesa, F. Teng, G. Strbac, Simultaneous Scheduling of Multiple Frequency Services in Stochastic Unit Commitment, IEEE Trans. Power Syst. 34 (5) (2019) 3858–3868. doi:10.1109/TPWRS.2019.2905037.
[50] V. Trovato, A. Bialecki, A. Dallagi, Unit Commitment With Inertia-Dependent and Multispeed Allocation of Frequency Response Services, IEEE Trans. Power Syst. 34 (2) (2019) 12.