Manifestations of muscle fatigue in baseball pitchers: a systematic review

Richard Birfer 1, Michael WL Sonne 2, Michael WR Holmes Corresp. 1

1 Department of Kinesiology, Brock University, St. Catharines, Canada
2 Baseball Development Group, Toronto, Canada
Corresponding Author: Michael WR Holmes
Email address: mholmes2@brocku.ca

Background. Fatigue in baseball pitchers is a process linked to lowered physical and mental performance, injury, and changes in kinematics. Numerous studies have associated fatigue with overuse, high ball velocities, lack of rest time, poor mechanics, and degree of self-satisfaction. The aim of this study was to systematically review the literature to identify a theoretical framework for the relationship between outcomes and the manifestation of fatigue on baseball pitching. The synthesized data may identify areas requiring further research. Methodology. This protocol was registered with PROSPERO (ID: CRD42018114194). SPORTDiscus, Medline, PubMed, Cochrane Database of Systematic Reviews, and Google Scholar were searched, using keywords such as fatigue in pitchers and changes in kinematics (e.g. pitching mechanics, valgus elbow torque), performance (e.g. pitch count, pitch type), and injury (e.g. pain, elbow and shoulder soreness). Three reviewers independently screened the articles, selected relevant literature based on abstract eligibility, and assessed the methods described therein for final inclusion.

Results. 31,860 articles were screened for eligibility and 25 articles were included for the review. The selected articles included epidemiological, longitudinal, experimental, conference papers, and crossover laboratory studies. Evidence extracted from the 25 studies demonstrates a relationship between fatigue in baseball pitching, and three overarching outcomes: changes in kinematics, a decrease in performance, and an increase in injury risk. Conclusions. Findings show that a co-dependence between changes in kinematics and a decrease in performance, which stems from central and peripheral fatigue, is a contributing factor of injury in baseball pitchers. A large percentage of baseball pitchers exhibit pain or soreness in either their elbow or shoulder, or both at some point in a season. Initially, kinematic changes occur that could maintain performance, but may increase joint and tissue loading. Performance decreased with elevated pitch counts and innings thrown, and pitching further into games or the season. Evidence was found to be consistent across all studies, however, more work is needed in the area of fatigue as an
injury mechanism during pitching. With a proof of concept established, the prevention of negative outcomes associated with fatigue must be the focus of future research and performance should not be the only criteria.
Manifestations of muscle fatigue in baseball pitchers: a systematic review

Richard Birfer¹, Michael WL Sonne¹,², Michael WR Holmes¹

¹ Department of Kinesiology, Brock University, St. Catharines, Canada
² Baseball Development Group, Toronto, Canada

*Corresponding Author:
Michael W.R. Holmes, PhD
Canada Research Chair in Neuromuscular Mechanics and Ergonomics
Assistant Professor
Brock University | Department of Kinesiology
Niagara Region | 1812 Sir Isaac Brock Way | St. Catharines, ON L2S 3A1
brocku.ca | Phone: 905 688 5550 x4398 | Fax: 905 984 4851
Email: michael.holmes@brocku.ca
21 Abstract

22 **Background.** Fatigue in baseball pitchers is a process linked to lowered physical and mental performance, injury, and changes in kinematics. Numerous studies have associated fatigue with overuse, high ball velocities, lack of rest time, poor mechanics, and degree of self-satisfaction. The aim of this study was to systematically review the literature to identify a theoretical framework for the relationship between outcomes and the manifestation of fatigue on baseball pitching. The synthesized data may identify areas requiring further research.

28 **Methodology.** This protocol was registered with PROSPERO (ID: CRD42018114194). SPORTDiscus, Medline, PubMed, Cochrane Database of Systematic Reviews, and Google Scholar were searched, using keywords such as fatigue in pitchers and changes in kinematics (e.g. pitching mechanics, valgus elbow torque), performance (e.g. pitch count, pitch type), and injury (e.g. pain, elbow and shoulder soreness). Three reviewers independently screened the articles, selected relevant literature based on abstract eligibility, and assessed the methods described therein for final inclusion.

31 **Results.** 31,860 articles were screened for eligibility and 25 articles were included for the review. The selected articles included epidemiological, longitudinal, experimental, conference papers, and laboratory studies. Evidence extracted from the 25 studies demonstrates a relationship between fatigue in baseball pitching, and three overarching outcomes: changes in kinematics, a decrease in performance, and an increase in injury risk.

39 **Conclusions.** Findings show that a co-dependence between changes in kinematics and a decrease in performance, which stems from central and peripheral fatigue, is a contributing factor of injury in baseball pitchers. A large percentage of baseball pitchers exhibit pain or soreness in either their elbow or shoulder, or both at some point in a season. Initially, kinematic changes
occur that could maintain performance, but may increase joint and tissue loading. Performance
decreased with elevated pitch counts and innings thrown, and pitching further into games or the
season. Evidence was found to be consistent across all studies, however, more work is needed in
the area of fatigue as an injury mechanism during pitching. With a proof of concept established,
the prevention of negative outcomes associated with fatigue must be the focus of future research
and performance should not be the only criteria.
Introduction

The sport of baseball is commonly known as America’s pastime. With its continued growth in participation since 2011 (Outdoor Participation Report, 2018), baseball is now played year-round. Pitchers of all ages often throw a large number of pitches throughout the calendar year (Fazarale, et al., 2012), which can result in the gradual accumulation of fatigue (broadly defined as a decrease in force generating capacity), if proper rest and recovery is not considered (Lyman, et al., 2001). Developmental baseball associations have set maximum pitch count recommendations for specific age groups, although an Internet-based survey confirmed that 27% of youth baseball coaches fail to follow these guidelines (Fazarale, et al., 2012). Numerous studies have further identified overuse (Makhni, et al., 2014), high velocities (Freeston, et al., 2014), lack of rest time (Crotin, et al., 2013), and pitch type (Lyman, et al., 2002), among others, as predictors/risk factors for fatigue; all of which are seemingly linked to kinematics, performance, tissue stress and injury.

The cumulative loading caused by fatigue can result in microtrauma, which over time, can contribute to the high prevalence of injury. One of the more prevalent injuries in baseball is a strain to the ulnar collateral ligament (UCL) (Yang et al., 2016), with recovery times for complete tears ranging from 12-to-15 months (Gossett, 2012). In the 2018 season, there were 86 cases of Tommy John surgeries across professional baseball (Roegele, 2018). An epidemiological study showed that 46% of youth pitchers were encouraged to throw through arm pain, while 82% of players reported arm fatigue during games and practices (Makhni, et al., 2014). With decreased time between pitches, fatigue reduces overall elbow joint stiffness, which can theoretically lead to increased stress on the UCL (Sonne & Keir, 2016). Studies have demonstrated that maximal elbow valgus torque is produced during the arm cocked phase of
pitching, when maximum shoulder external rotation is reached (Yang, et al., 2016). At this point, a group of muscles, the flexor pronator mass, is a major contributor to providing the elbow with the stability necessary to reduce stress on the UCL (Sonne & Keir, 2016).

Muscle fatigue is a process that occurs due to central and/or peripheral mechanisms, which can emerge due to numerous decrements from motor centers to the muscle fiber (Davis, 1995) and typically manifests as a decline in maximal force production (Enoka & Duchateau, 2008). Changes in kinematics stemming from the onset of fatigue have been well documented. A repeated-measures design was conducted on 16 healthy collegiate-level pitchers in which a fatigue protocol was introduced (Tripp, Yochem & Uhl, 2007). Following the fatigue protocol, it was observed that sensorimotor system deficits recovered within four minutes for the elbow joint and seven minutes for the scapulothoracic joint (Tripp, Yochem & Uhl, 2007). The study also showed that reproducibility of the glenohumeral segment during the arm-cocked phase of a throw failed to recover within a 10-minute period. This emphasizes the importance of sensorimotor acuity, proprioception and endurance in abduction and external rotation (Tripp, Yochem & Uhl, 2007). Two studies investigating college pitchers noted a decrease in elbow flexion and an increase in hip flexion with greater season pitch count, contributing to an increased joint load at the shoulder and the elbow (Granatham, et al., 2014; Yang et al., 2014).

Although many of these observed changes are indicators of fatigue, these kinematic changes may not place additional tissue stress or joint loading on all pitchers, but act as protective mechanisms.

Not all studies note changes in kinematics with fatigue. A controlled lab study directed ten collegiate baseball pitchers to throw 15 pitches per inning in a seven to nine inning simulated indoor game (Escamilla, 2007). The trunk moved significantly closer to a vertical position,
however, pitching biomechanics remained very similar with the onset of fatigue, which was inferred by a significant decrease in ball velocity (Escamilla, 2007). Two other studies identified a decrease in velocity with accumulation of fatigue (Crotin, et al., 2016; Whiteside, et al., 2016), but minimal changes in kinematics. The literature independently supports that changes in kinematics and/or performance are likely to result from fatigue while pitching. The exact mechanisms of how these changes translate to injury is not entirely clear and the literature has mixed findings on the topic. Therefore, the purpose of this study was to systematically review available literature in an attempt to establish a link between kinematics, performance and injury during the manifestation of muscle fatigue in baseball pitching.

Methodology

The review was conducted according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (Moher, et al., 2009) (Figure 1) and the protocol was registered with PROSPERO (ID: CRD42018114194).

Search Strategy

Searches were conducted using four primary online databases, including SPORTDiscus, Medline, PubMed, and Cochrane Database of Systematic Reviews. Google Scholar was a secondary database used to acquire additional literature. Searches were designed with the help of a librarian at Brock University. Articles were discovered using keywords including ‘fatigue in pitchers’ and aspects describing ‘kinematics’ (pitching mechanics, throwing mechanics, valgus elbow torque, joint stiffness, pitching kinematics), ‘performance’ (ball velocity, pitch count,
pitch type, spin rate, overhead throwing, fatigue and performance), and ‘injury’ (elbow pain, shoulder soreness, pitching injuries, fatigue and injuries, muscle fatigue, long-term injuries).

Given the nature of this review, an operational definition of fatigue was required to help guide article selection and inclusion. For this work, fatigue was operationally defined as an exercise induced loss in muscle force generating capacity. This can result in decreased strength (Enoka & Stuart, 1992; Fitts, 1994, Vollestad, 1997), joint stability (Webster & Nussbaum, 2016), postural control (Gribble & Hertel, 2004, Bizid, et al., 2009), and altered kinematics (Apriantono, et al., 2006; Becker et al., 2017; Niederer, et al., 2016).

Eligibility Criteria

Studies were included if: they were published in the English language; they were peer reviewed articles published in journals; they included baseball pitchers of various levels (junior, high school, collegiate, or professional) and were gender specific towards males only. The studies analyzed original research conducted within a laboratory or field-study setting. Longitudinal, epidemiological, retrospective, experimental, conference papers, and crossover laboratory studies were included (i.e., case reports, reviews, editorials, and letters were all excluded). Articles were excluded if the study did not include baseball pitchers, therefore studies examining a population of softball players or other overhead throwing athletes were not included in the review.

Methodological Approach

After an initial screening for our inclusion and exclusion criteria and the removal of duplicates (RB), three reviewers independently assessed the articles by screening abstracts (RB,
Next, the full text of each article was obtained and screened against the exclusion criteria. Each reviewer independently indicated the article as either “relevant”, “irrelevant” or “possibly relevant”. Any disagreements were resolved through a consensus meeting between the three reviewers, such that all remaining articles had complete agreement as “relevant”.

Data Extraction

The relevant data was extracted from the included articles and the methods described therein were assessed independently by three reviewers. All extracted results found in the accompanying tables were performed by one reviewer (RB) and two reviewers (MS, MH) cross-referenced and check the extracted data. The included data was extracted based on the category of the article (3 categories were established, see below) and included: first author, year of publication, study setting, number of pitchers included in the study, and outcome measure (e.g. kinematic data, performance data, injury data).

Assessment of Methodological Quality

Methodological Quality was assessed using quality scores from the Downs and Black Index (Downs & Black, 1998). Data from the included articles were extracted from the following categories: authors, year of publication, study purpose, design, population, statistical analysis, and results. A criteria list was compiled, incorporating all of the selected articles used in this systematic review, outlining each study. The Downs and Black assessment was chosen as it has been validated and the original checklist could be modified for the needs of our systematic review (Downs and Black, 1998). For this work, 13 items from the original checklist were identified as relevant to this work. Each item was scored as either “yes” = 1, “no” = 0, “unable to
The scores from all 13 items were totaled to provide the quality score (Table 1).

Table 1

Risk of Bias Assessment

An assessment of risk bias was determined based on the work of Lopes, et al. (2012) and adapted by Ceyssens, et al. (2019). The criteria used by Lopes, et al. (2012) was adapted for our work, with the scoring system based on the same 10 items: (1) definition of injury clearly described, (2) prospective design that presents incidence or prevalence data, (3) description of level of pitchers (e.g., recreational or professional level), (4) the process of inclusion of athletes in the study was random (i.e., not by convenience) or the data collection was performed with the entire target population; (5) data analysis performed with at least 80% of the athletes included in the study; (6) injury data reported by pitchers; (7) same mode of injury data collection used; (8) injury diagnosis conducted by a medical professional; (9) follow-up period of at least 6 months; (10) incidence or prevalence rates of injury expressed by a ratio that represents both the number of injuries as well as the exposure to pitching (Table 2).
Results

Search Results

From the extensive database search, eligibility assessment was conducted on 31,860 articles based on their titles, abstracts, and if necessary, full-texts (Figure 1). Following the initial screening process (based on title and abstract), 71 articles remained after which 6 duplicate articles were removed, leaving 65 articles. After the completion of the secondary screening process (agreement between all authors), a total of 29 articles were selected to be included for the review. Of the 29 articles, four were removed because: 1) not a baseball study, 2) full-text written in a foreign language, 3) full-text of the study (only abstract viewable) was not accessible to the reviewers and 4) was a systematic review. The remaining 25 articles were included in this review and were binned into three categories based on the studies focus – kinematics (n=10), performance (n=13), and injury (n=7). Note, some articles crossed into more than one category.

Given the timeline of our search, the earliest, most relevant study included within the review was published in 2001 (Murray, et al., 2001), whereas the latest came from 2016 (Yang, et al., 2016).

*** Figure 1 ***

Methodological Quality and Bias Assessment

The scores from the modified Downs and Black checklist for each included article is provided in Table 1. Quality scores ranged from 5 to 11 out of 13 (38-85%). None of our included articles were excluded on the basis of methodological quality. Scores on the modified risk bias scale from Lopes, et al. (2012) ranged from 3 to 9 out of 10. Of the included articles in this systematic review, two received a score less than 5, which can be considered a high risk of
bias (Ceyssens, et al., 2019). The remaining 23 articles received a low risk of bias score. Item 9 related to a follow-up period of at least 6 months received the lowest score, whereas item 2 relating to design received the highest score. All scores retrieved from the included articles can be found in Table 2.

Participants and Study Design

The majority of the included studies assessed athletes at the junior (Freeston, et al., 2014; Lyman, et al., 2001; Lyman, et al., 2002; Makhni, et al., 2014; Oliver, Weimar & Henning, 2016; Yang, et al., 2014), high school (Chou, et al., 2015; Crotin, et al., 2016; Erickson, et al., 2016; Oliver & Plummer, 2010; Yang, et al., 2014; Yang, et al., 2016), or collegiate level (Crotin, et al., 2016; Dale, et al., 2007; Escamilla, et al., 2007; Grantham, et al., 2014; Keeley, Barber & Oliver, 2010; Mullaney, et al., 2005; Tripp, Yochem & Uhl, 2007; Wang, et al., 2016; Warren, Szymanski & Landers, 2015) with reported mean age ranges from 8 to 23 years old. Five of the 25 studies included professional baseball players (Bradbury & Forman, 2012; Crotin, et al., 2013; Mullaney, et al., 2005; Murray, et al., 2001; Sonne & Keir, 2016; Whiteside, et al., 2016), but an age range was only reported from one.

The prospective cohorts and longitudinal studies (Bradbury & Forman, 2012; Lyman, et al., 2001; Lyman et al., 2002) examined outcomes of workload across multiple seasons and the decline in performance associated with the onset of fatigue. The epidemiological study used a survey of youth baseball players to investigate arm pain (Makhni, et al., 2014). A cross-sectional study (Yang et al., 2014), included a national survey of youth pitchers who self-reported risk-prone activities. Furthermore, these studies assessed the effects of pitch type, pitching through pain, and rest time on the manifestation of fatigue in baseball pitchers. Retrospective studies
included analysis of pitching records in minor league pitchers (Crotin et al, 2013) and publicly available data on professional pitchers (Sonne & Keir, 2016). Descriptive/controlled laboratory studies analyzed kinematic changes in a pitcher’s delivery with the accumulation of fatigue (Chou, et al., 2015; Dale, et al., 2007; Erickson, et al., 2016; Escamilla, et al., 2007; Grantham, et al., 2014; Keeley, et al., 2017; Mullaney, et al., 2005; Murray, et al., 2001; Oliver & Plummer, 2010; Oliver, Weimar & Henning, 2016; Tripp, Yochem & Uhl, 2007; Wang, et al., 2016; Warren, Szymanski & Landers, 2015; Whiteside, et al., 2016). Randomized crossover studies (Crotin, et al., 2014; Yang et al., 2016; Freeston, et al., 2014) included comparing the effects of throwing exercises and identifying markers for arm fatigue (Freeston, et al., 2014), kinematic analysis while altering stride length over multiple sessions (Crotin et al., 2014) and examining the effects of rest intervals during a simulated game (Yang et al., 2016).

Main Findings

Evidence extracted from the 25 studies demonstrates a relationship between fatigue in baseball pitching, and three overarching outcomes: changes in kinematics, a decrease in performance, and an increase in injury risk. Each is discussed in more detail below.

Kinematic Changes

For this review, 10 of the 25 articles primarily assessed the relationship between kinematic changes and fatigue in baseball pitching, mainly in the arm cocking and acceleration phase. These changes are summarized in Table 3. As fatigue accumulated in pitchers, significant differences were seen in maximum shoulder external rotation (Erickson, et al., 2016; Mullaney,
et al., 2005; Murray, et al., 2001), knee angle at ball release (Murray, et al., 2001) and hip-to-
shoulder separation (Erickson, et al., 2016), as well as, other changes highlighted in table 3.

*** Table 3 ***

Performance Changes

Pitching is an activity involving dynamic and high intensity muscle contractions, separated by periods of rest in between pitches (Dale, et al., 2007). Pitch count, pitch type, ball velocity, and rest time are among the main components that could either positively or negatively impact performance on the mound. Table 4 summarizes the 13 studies that were identified as the fatigue and performance changes category. A study associated decreased stride length with reduced mean pitching heart rate, decreased pitching intensity, improved recovery capacity, and lowered salivary cortisol from baseline (Crotin, et al., 2016). Accumulation of fatigue also accompanied decreases in throwing accuracy (Wang, et al. 2016; Yang, et al., 2016) and future performance (Bradbury & Forman, 2012).

***Table 4 ***

Fatigue linked to pain and injury

Pitching with discomfort, pitching through pain, and pitching with tiredness are three primary cues or precursors to injury. Table 5 summarizes the 7 articles that were included in the fatigue and pain/injury/discomfort category. A prospective cohort study found that elbow pain increased significantly with slider usage, while shoulder pain increased significantly with curveball usage.
Furthermore, multiple studies reported elbow and shoulder tiredness and pain throughout a season (Lyman, et al., 2001; Lyman, et al., 2002; Yang, et al., 2014), which were identified to be associated with decreased self-satisfaction and elevated pitch count (Lyman, et al., 2001; Makhni, et al., 2014). A randomized crossover trial compared ball velocity post-throwing and post-running programs, and while each program led to a significant increase in arm soreness, there was a larger increase in ball velocity following the throwing program (Freeston, et al. 2014).

Table 5

Discussion

Following an extensive screening process, evidence was drawn from longitudinal, retrospective, epidemiological, experimental and laboratory studies. To our knowledge, this is the first review to extract evidence from available literature and systematically identify a relationship between kinematics, performance, and injury during the manifestation of muscle fatigue in baseball pitchers. The main findings of this systematic review identified a co-dependence between changes in kinematics to delay a decrease in performance, which could result in an increased risk of musculoskeletal injury (Figure 2).

This work suggests that changes in performance likely decay at a lesser rate than changes in kinematics, suggesting that modifications to a pitcher’s kinematics are made to limit the decrements of fatigue. The compromise for maintaining performance is the adaptation of
mechanics which could increase the risk of musculoskeletal injury, particularly with respect to the elbow and shoulder joints. Many of the studies examined in this review also included measures of muscle activity via electromyography (EMG). While EMG can be loosely used as a surrogate indicator of force (Roberts & Gabaldon, 2008) it is also an indicator of muscle fatigue (typically represented by increases in EMG amplitude and decreases in mean and median power frequency). Surface electromyography is the recording of electrical signals transmitted from the brain to the neuromuscular junction, resulting in the contraction of the muscle, and the production of a force at the end effector (Dowling, 1997; De Luca, 1997). While consideration must be made surrounding factors of movement, fatigue, skin impedance, and a variety of other physiological and environmental factors related to the interpretation of EMG, the use of surface EMG in sports is a non-invasive method of predicting internal forces as a result of human movement (Clarys, et al., 2010). There are challenges with inferring the results from EMG during pitching, particularly with changes in kinematics. During such a dynamic activity, the EMG signal must be interpreted with caution of the potential limitations, such as the electrode position over the muscle belly changing during rapid, ballistic movements – particularly when a change in kinematics results in different limb position identified during a specific position during the throwing motion. As a result, it is difficult to identify if these studies have seen an increase in EMG activity as a result of increased motor unit recruitment due to fatigue, a requirement for increased muscle force, or due to the nature of EMG limitations during dynamic movements. Muscle fatigue reduces the force generating capacity of the elbow and shoulder muscles, thus compromising the potential to maintain joint stability, and thus, injury risk increases. This work summarizes the changes in kinematics, performance and injury risk as a result of fatigue, while acknowledging the difficulty of direct fatigue measures.
Kinematic Changes

Changes in kinematics are a primary outcome of pitching-induced muscle fatigue (Table 3). With the accumulation of muscle fatigue, trunk flexion is altered during the arm cocking and acceleration phase (from 34 ± 12° to 29 ± 11°), as well as observed changes in shoulder and elbow kinetics, all of which can increase the risk of injury in pitchers (Escamilla, et al., 2007).

After the implementation of fatigue protocols in laboratory settings, recovery time varied for the scapulothoracic, wrist, elbow, and glenohumeral joints wherein the latter took an extended amount of time to recover (Tripp, Yochem & Uhl, 2007). Moreover, these kinematic changes may partly be explained by decreases in triceps muscle activity, and an increase in activity for the biceps and deltoids as pitchers reached fatigue (Oliver & Plummer, 2010). Other noted signs of kinematic changes with the onset of fatigue are small, yet potentially significant, increases in knee flexion (from 53.6 ± 21.5° to 56.1 ± 22.2°) and forward trunk tilt at the instant of ball release (Chou, et al., 2015). With the accumulation of innings, significant decreases in maximal shoulder external rotation, knee angle at ball release, and elbow flexion have been observed as a pitcher becomes fatigued (Grantham, et al., 2014; Murray, et al., 2001). A controlled laboratory study of a simulated baseball game suggested that collegiate pitchers maintain their kinematics throughout the duration of a game, despite fatigue (Escamilla et al. 2007). Escamilla et al. (2007) found that trunk kinematics changed, yet other kinematic and kinetic variables were unaffected. The authors did note that a more rigorous fatigue protocol may provide additional insight. However, even slight deviations from a pitcher’s optimal kinematic patterns, due to the manifestation of fatigue, or pitching in a fatigued state for a longer period of time, may increase the risk of injury in pitchers (Chalmers, et al., 2017; Escamilla et al. 2007). These kinematic changes may serve as a precursor to changes in performance, and eventual injury risk.
Kinetic Changes

Changes in kinematics would in turn lead to changes in kinetics, as the body attempts to compensate for the negative effects instigated by the accumulation of muscular fatigue. After videotaping seven major league pitchers for multiple innings, changes in kinematics led to decreases in maximum distraction forces at both the shoulder (from 97% of body weight in the first inning to 88% of body weight in the last) and elbow (from 85% of body weight in the first and 72% of body weight in the last), and horizontal adduction torque at ball release and maximum horizontal abduction torque (from 5% and 11% of body weight, respectively in the first inning, down to 4% and 8% of body weight in the last inning), but ball velocity did ultimately decrease by 5 mph (Murray, et al., 2001). A study assessing the contribution of forearm flexor muscles during pitching noted that peak flexor carpi ulnaris muscle activity was significantly greater during fastballs post a fatigue protocol during the acceleration phase of the pitching motion to provide more stability for the wrist joint (confidence interval: 0.49-2.05; p = 0.02; d = 1.27) (Wang, et al, 2016). A separate study examined the importance of stabilizing the wrist, identifying peak flexor carpi ulnaris muscle activity to be significantly greater for the fastball post-fatigue protocol during the acceleration phase of the pitch. Since both the flexor carpi ulnaris and radialis muscles attach to the medial side of the elbow, the accumulation of fatigue may negatively affect the ulnar nerve (Wang, et al., 2016). In addition to the noted work that highlighted wrist flexor muscle fatigue, a retrospective analysis identified that the greatest muscle fatigue during a game occurs in the extensor carpi radialis (Sonne & Keir, 2016). However, the authors also acknowledged that elevated fatigue in the wrist flexors (predominantly flexor digitorum superficialis and pronator teres), are noteworthy, given their large contribution to stabilize the elbow and counter valgus torque. With an increase in muscle
fatigue, there will be a reduction in overall elbow joint stiffness, which can ultimately increase
the likelihood of an UCL injury (Sonne & Keir, 2016). While this review aimed to evaluate
directly measurable outcomes in kinematics and performance, it is acknowledged that a more in-
depth evaluation of kinetics (which are typically more difficult to quantify than kinematics and
even more challenging to quantify in a fatigued state), in relation to changes in kinematics, is a
valuable next step.

Performance Changes

Numerous studies have noted that changes in kinematics during a baseball game (due to
fatigue) can lead to a significant decrease in ball velocity and therefore can impact performance
(Whiteside, et al., 2016). Furthermore, retrospective analysis studies have not only confirmed a
decrease in ball velocity due to fatigue, but have also provided evidence that with each pitch
thrown in the preceding game, there is a significant increase in earned run average (ERA) and
the home run rate with each pitch thrown (Crotin, et al., 2013; Bradbury & Forman, 2012).
Alternatively, Keeley, et al. (2017) identified the effect of fatigue on throwing accuracy (Table
4). After a sample of 14 youth pitchers were recruited for the study, results showed that both
total strike percentage and first pitch strike percentage decreased at a perceived fatigue level of
‘moderate’ (52.4% and 49.8%) and further at the ‘severely’ fatigued (45.3% and 40.0%)
perceived level (Keeley, et al., 2017).

A separate study showed the proportion of hard-thrown (fastball type) pitches in the
seventh inning decreased compared to the first inning and pitchers threw more off-speed and
breaking pitches later in games (Whiteside, et al., 2016). These findings are supported further by
Whiteside (2016), which showed that pitchers tend to compensate for fatigue in later innings, by
throwing fewer hard pitches and more offspeed and breaking pitches. Pitchers with a wider
repertoire of pitches see more changes in muscle activity patterns with different pitch types, therefore lowering risk of elbow injury due to overuse and fatigue (Whiteside, et al., 2016).

Alternating task types and increasing the variability of biomechanical exposures to the human body has been hypothesized as an injury prevention intervention in ergonomics research (Srinivasan & Mathiassen, 2012), and may serve as an explanation for the protective effect of having more pitch types. Nevertheless, these findings are important for attempting to not only quantify effects of fatigue on performance, but how changes in kinematics due to the manifestation of fatigue can influence overall performance.

Fatigue linked to injury

Fatigue has been related to changes in full body kinematics, in particular to the elbow and shoulder, which, when combined with poor recovery, can decrease tissue tolerance and increase the risk of injury in baseball pitchers (Oliver & Plummer, 2010). Current literature has derived evidence that the accumulation of fatigue during pitching can lead to elbow and shoulder discomfort, pain, and/or injury. Risk of injury is known to increase with age and level of competition, because of microtrauma, insufficient rest, and overuse associated with continuous throwing. In fact, one longitudinal study reported 23% of little league players have identified prior overuse injuries (Lyman, et al., 2001). Risk of injury has also been linked to pitch type, as multiple studies have shown the use of curveballs and sliders contributes to an increased risk of shoulder and elbow injuries (Lyman, et al., 2001; Yang, et al., 2014). Moreover, pitchers have reported being encouraged to pitch through arm fatigue and pain/discomfort on several occasions during the span of a season, which increases the likelihood of an eventual injury (Lyman, et al., 2001). A limitation of available studies is the prevalence of bias due to the use of self-report
criteria. Interviews were conducted and questionnaires were asked to be completed independently, which led to subjective responses amongst the population. In experimental and laboratory studies, the Borg scale was incorporated to allow the subjects to subjectively rate their perceived level of exertion, while follow-up questionnaires and telephone interview were conducted following competition in on-field case studies (Lyman, et al., 2001; Makhni, et al., 2014; Lyman, et al., 2002; Yang, et al., 2014). While survey and subjective fatigue measures must be met with caution when distinguishing a definitive link between fatigue and injury risk in pitchers, our work suggests evidence of such. This is in agreement with a review by Bruce and Andrews (2014) who identified fatigue as a mechanism for injury of the UCL, as well as work by Fleisig, et al. (2009) who reported that pitchers who threw with regular arm fatigue were 36 times more likely to sustain an injury.

It must be noted that pain and discomfort does not always suggest injury and biomechanical damage to a tissue does not always suggest that an individual will experience pain. Our work highlights that fatigue may increase the risk of injury, but is not necessarily a direct link to injury for all individuals. The work by Lyman et al. (2001 and 2002) are some of the only studies to establish a link between fatigue and pain, with inferences to injury. Our search criteria mostly included work from junior and collegiate athletes, rather than professional athletes (although some papers did include this data) and this should be noted as a confounding variable when linking fatigue to injury. Clearly, more work is needed in the area of fatigue as an injury mechanism during pitching. Despite the differences in biomechanical reporting of kinematic and kinetic data during pitching studies, a meta-analysis would help determine true effects of kinematic and kinetic changes due to fatigue and would aid in the establishment of a proper fatigue-injury paradigm.
Conclusions

This review has extracted evidence from longitudinal, retrospective, epidemiological, experimental and laboratory studies, deducing a co-dependence between changes in kinematics and a decrease in performance, stemming from the manifestation of fatigue. This can indirectly suggest, despite the few longitudinal studies that have directly investigated it, that there is a relationship between fatigue and increased risk of injury. To our knowledge, this is the first review of its kind to holistically explore and summarize the literature on the multi-faceted impact of muscle fatigue as it relates to pitching. With a proof of concept now established, the prevention of the negative outcomes of fatigue must be the focus of future research as it is imperative to protect pitchers at all age levels. This work provides insight into how the physical demands of pitching can influence kinematics, performance and potential injury. Specific markers have been identified (kinematic and performance based) that might suggest overloading and additional recovery would be required.
References

Apriantono T, Nunome H, Ikegami Y, Sano S. 2006. The Effect of Muscle Fatigue on Instep Kicking Kinetics and Kinematics in Association Football. *Journal of Sports Sciences*. 24:951-60.

Becker S, Frohlich M, Kelm JM, Ludwig O. 2017. Change of Muscle Activity as Well as Kinematic and Kinetic Parameters During Headers After Core Muscle Fatigue. *Sports*, 5:10.

Bizid R, Margnes E, Francois Y, Jully JL, Gonzalez GZ, Dupui P, Paillard T. 2008. Effects of Knee and Ankle Muscle Fatigue on Postural Control in the Unipedal Stance. *European Journal of Applied Physiology*, 106:375-380.

Bradbury JC, Forman SL. 2012. The Impact of Pitch Counts and Days of Rest on Performance Among Major-League Baseball Pitchers. *The Journal of Strength and Conditioning Research*, 26:1181–1187, DOI: 10.1519/JSC.0b013e31824e16fe.

Bruce JR & Andrews JR. 2014. Ulnar Collateral Ligament Injuries in the Throwing Athlete. *Journal of the American Academy of Orthopaedic Surgeons*, 22:315-25.

Ceyssens L, Vanelderen R, Barton C, Malliaras P, Dingenen B. 2019. Biomechanical Risk Factors Associated With Running-Related Injuries: A Systematic Review. *Journal of Sports Medicine*. 1-21. DOI: 10.1007/s40279-019-01110-z.

Chalmers PN, Wimmer MA, Verma NN, Cole BJ, Romeo AA, Cvetanovich GL, Pearl ML. 2017. The Relationship Between Pitching Mechanics and Injury: A Review of Current Concepts. *Sports Health*, 9:216-221.

Chou P, Huang YP, Gu YH, Liu C, Chen SK, Hsu KC, Wang RT, Huang MJ, Lin HT. 2015. Change in Pitching Biomechanics in the Late-Inning in Taiwanese High School Baseball Pitchers. *The Journal of Strength and Conditioning Research*, 29:1500–08, DOI: 10.1519/JSC.0000000000000791.
Clarys JP, Scafoglieri A, Tresignie J, Reilly T, Roy PV. 2010. Critical Appraisal and Hazards of Surface Electromyography Data Acquisition in Sport and Exercise. *Asian Journal of Sports Medicine*. 2:69-80.

Crotin RL, Bhan S, Karakolis T, Ramsey DK. 2013. Fastball Velocity Trends in Short-Season Minor League Baseball. *The Journal of Strength and Conditioning Research*, 27:2206–2212, DOI: 10.1519/JSC.0b013e31827e1509.

Crotin RL, Kozlowski K, Horvath P, Ramsey DK. 2014. Altered Stride Length in Response to Increasing Exertion among Baseball Pitchers. *Medicine and Science in Sports and Exercise*, 46:565–571, DOI: 10.1249/MSS.0b013e3182a79cd9.

Dale BR, Kovaleski JE, Ogletree T, Heitman RJ, Norrell PM. 2007. The Effects of Repetitive Overhead Throwing on Shoulder Rotator Isokinetic Work-Fatigue. *North American Journal of Sports Physical Therapy*, 2:74–80.

Davis MJ. 1995. Central and Peripheral Factors in Fatigue. *Journal of Sports Sciences*. 13:49-53, DOI: 10.1080/02640419508732277

De Luca CJ. 1997. The Use of Surface Electromyography in Biomechanics. *Journal of Applied Biomechanics*. 13:135-163.

Dowling JJ. 1997. The Use of Electromyography for the Noninvasive Prediction of Muscle Forces. *Sports Medicine*. 24:82-96.

Downs SH, Black N. 1998. The Feasibility of Creating a Checklist for the Assessment of the Methodological Quality both of Randomised and Non-Randomised Studies of Health Care Intervention. *Journal of Epidemiology Community Health*, 52:377-84.

Erickson BJ, Sgori T, Chalmers PN, Vignona P, Lesniak M, Bush-Joseph CA, Verma NN, Romeo AA. 2016. The Impact of Fatigue on Baseball Pitching Mechanics in Adolescent Male
Pitchers. *Arthroscopy: The Journal of Arthroscopic and Related Surgery*, 32-762-771. DOI: 10.1016/j.arthro.2015.11.051.

Escamilla RF, Barrentine SW, Fleisig GS, Zheng H, Takada Y, Kingsley D, Andrews JR. 2007. Pitching Biomechanics as a Pitcher Approaches Muscular Fatigue During a Simulated Baseball Game. *The American Journal of Sport Medicine*, 35:23–33, DOI: 10.1177/0363546506293025.

Enoka RM, Duchateau J. 2008. Muscle Fatigue: What, Why, and How It Influences Muscle Function. *The Journal of Physiology*. 586:11-23.

Enoka RM, Stuart DG. 1992. Neurobiology of Muscle Fatigue. *Journal of Applied Physiological*. 72:1631-48.

Fazarale JJ, Magnussen RA, Pedroza AD, Kaeding CC. 2012. Knowledge of Compliance with Pitch Count Recommendations: A Survey of Youth Baseball Coaches. *Sports Health*, 4:202-20, DOI: 10.1177/1941738111435632.

Fitts RH. 1994. Cellular Mechanisms of Muscle Fatigue. *Physiological Reviews*. 74:49-94.

Fleisig GS, et al. 2009. Prevention of Elbow Injuries in Youth Baseball Pitchers. *Current Sports Medicine*, 8:250-54.

Freeston J, Adams R, Ferdinands RE, Rooney K. 2014. Indicators of Throwing Arm Fatigue in Elite Adolescent Male Baseball Players: A Randomized Crossover Trial. *The Journal of Strength and Conditioning Research*, 28:2115–2120, DOI: 10.1519/JSC.0000000000000395.

Gossett W. 2012. Tommy John Surgery Rehabilitation to Take a Year. *Times Free Press*.

Freeston J, Adams R, Ferdinands RE, Rooney K. 2014. Indicators of Throwing Arm Fatigue in Elite Adolescent Male Baseball Players: A Randomized Crossover Trial. *The Journal of Strength and Conditioning Research*, 28:2115–2120, DOI: 10.1519/JSC.0000000000000395.

Gossett W. 2012. Tommy John Surgery Rehabilitation to Take a Year. *Times Free Press*.

Retrieved from Georgia Sports Orthopedic Specialists Centre.

Grantham JW, Byram IR, Meadows MC, Ahmad CS. 2014. The Impact of Fatigue on the Kinematics of Collegiate Baseball Pitchers. *The Orthopaedic Journal of Sports Medicine*, 2:1–10, DOI: 10.1177/2325967114537032.
Gribble PA, Hertel J. 2004. Effect of Lower-Extremity Muscle Fatigue on Postural Control. *Archives of Physical Medicine and Rehabilitation*. 85:589-92.

Holmes M, Sonne M, Birfer R. Changes in kinematics and performance due to fatigue in baseball pitching: a systematic review. PROSPERO: International prospective register of systematic reviews. ID: CRD42018114194. 2018.

Keeley D, Barber K, Oliver GD. 2010. Comparison of Pelvis Kinematics During the Baseball Pitch: Fatigued and Non-Fatigued Conditions. Available at https://ojs.ub.uni-konstanz.de/cpa/article/view/4598/4285. 28th International Conference on Biomechanics in Sports (2010).

Keeley D, Oliver DG, Torry M, Wicke J. 2017. Validity of Pitch Velocity and Strike Percentage to Assess Fatigue in Young Baseball Pitchers. *International Journal of Performance Analysis in Sport*, 29:355-366. DOI: 10.1080/24748668.2014.11868727.

Lopes AD, Hespanhol LC, Yeung SSM, Costa LOP. 2012. What are the Main Running-Related Musculoskeletal Injuries? A Systematic Review. *Journal of Sport Medicine*. 42:891-905.

Lyman S, Fleisig GS, Waterbor JW, Funkhouser EM, Pulley L, Andrews JR, Osinski ED, Roseman JM. 2001. Longitudinal Study of Elbow and Shoulder Pain in Youth Baseball Pitchers. *The American Journal of Sport Medicine*, 30:463–468, DOI: 10.1177/03635465020300040201.

Makhni EC, Morrow ZS, Luchetti TJ, Mishra-Kalyani PS, Gualtieri AP, Lee RW, Ahmad CS. 2014. Arm Pain in Youth Baseball Players a Survey of Healthy Players. *The American Journal of Sport Medicine*, 43:41–46, DOI: 10.1177/0363546514555506.
Moher D, Liberati A, Tetzlaff J, Altman DG. 2009. Preferred Reporting Items for Systematic Reviews and Meta-analyses: The PRISMA Statement. *PLOS Medicine*. 6.

Mullaney MJ, McHugh MP, Donofrio TM, Nicholas SJ. 2005. Upper and Lower Extremity Muscle Fatigue After a Baseball Pitching Performance. *The American Journal of Sport Medicine*, 33:108–13, DOI: 10.1177/0363546504266071.

Murray TA, Cook TD, Werner SL, Schlegel TF, Hawkins RJ. 2001. The Effects of Extended Play on Professional Baseball Pitchers. *The American Journal of Sport Medicine*, 29:137–42.

Oliver GD, Plummer H. 2010. Quantifying SEMG in Pre-Fatigue and Fatigue States During the Fastball Baseball Pitch. Available at https://ojs.ub.uni-konstanz.de/cpa/article/view/4500. 28th International Conference on Biomechanics in Sports (2010).

Niederer SA, et al. 2016. Local Muscle Fatigue and 3D Kinematics of the Cervical Spine in Healthy Subjects. *The Journal of Motor Behavior*. 48:491-497.

Oliver GD, Weimar WH, Henning LE. 2016. Effects of a Simulated Game on Muscle Activation in Youth Baseball Pitchers. *The Journal of Strength and Conditioning Research*, 30:415–420, DOI: 10.1519/JSC.0000000000001130.

Outdoor Participation Report. 2018. Number of Participants in Baseball in the United States from 2006 to 2017 (in Millions). https://www.statista.com/statistics/191626/participants-in-baseball-in-the-us-since-2006/ (accessed 5 August 2018).

Passan, J. 2016. The Arm: Inside the Billion-Dollar Mystery of the Most Valuable Commodity in Sports. Retrieved from MLBTradeRumours.

Roberts TJ, Gabaldon AM. 2008. Interpreting Muscle Function from EMG: Lessons Learned from Direct Measurements of Muscle Force. *Oxford Journals*. 48:312-320.

Roegele, J. 2018. Tommy John Surgery List. *Hardball Times*.
Sonne MWL, Keir PJ. 2016. Major League Baseball Pace-of-Play Rules and Their Influence on Predicted Muscle Fatigue During Simulated Baseball Games. *Journal of Sport Sciences*, 34:2054-2062, DOI: 10.1080/02640414.2016.1150600.

Srinivasan D, Mathiassen SE. 2012. Motor variability in occupational health and performance. *Clinical biomechanics*, 27:979-993.

Tripp BL, Yochem EM, Uhl TL. 2007. Functional Fatigue and Upper Extremity Sensorimotor System Acuity in Baseball Athletes. *Journal of Athletic Training*, 42:90–98.

Vollestad NK. 1997. Measurement of Human Muscle Fatigue. *Journal of Neuroscience Methods*, 74:219-27.

Wang L-H, Lo KC, Jou IM, Kuo LC, Tai TW, Su FC. 2016. The Effects of Forearm Fatigue on Baseball Fastball Pitching, With Implications About Elbow Injury. *Journal of Sports Sciences*, 34:1182–1189, DOI: 10.1080/02640414.2015.1101481.

Warren CD, Szymanski DJ, Landers MR. 2015. Effects of Three Recovery Protocols on Range of Motion, Heart Rate, Rating of Perceived Exertion, and Blood Lactate in Baseball Pitchers During a Simulated Game. *The Journal of Strength and Conditioning Research*, 29:3015–3025, DOI: 10.1519/JSC.0000000000000487.

Webster CA, Nussbaum, MA. 2016. Localized Ankle Fatigue Development and Fatigue Perception in Adults With or Without Chronic Ankle Instability. *Journal of Athletic Training*, 51:491-97.

Whiteside D, Martini DN, Zernicke RF, Goulet GC. 2016. Changes in a Starting Pitcher’s Performance Characteristics Across the Duration of a Major League Baseball Game. *International Journal of Sports Physiology and Performance*, 11:247-254, DOI: 10.1123/ijspp.2015-0121.
Yang J, Mann BJ, Guettler JH, Dugas JR, Irrgang JJ, Fleisig GS, Albright JP. 2014. Risk-Prone Pitching Activities and Injuries in Youth Baseball: Findings from a National Sample. The American Journal of Sport Medicine, 42:1456–1463, DOI: 10.1177/0363546514524699.

Yang S-C, Wang CC, Lee SD, Lee YU, Chan KH, Chen YL, Fogt DL, Kuo CH. 2016. Impact of 12-s Rule on Performance and Muscle Damage of Baseball Pitchers. Medicine and Science in Sports and Exercise, 48:2512–2516, DOI: 10.1249/MSS.0000000000001048.
Figure 1

PRISMA flow chart for search and article screening process.

Advanced Search Results
- Literature retrieved through primary database search (n=31,860).
 [14,727 from SPORTDiscus; 4,679 Medline; 3,752 from PubMed; 482 Cochrane Database of Systematic Reviews; 8,220 Google Scholar*].

Initial Screening Process
- Literature retrieved through primary screening process (n=72)
 [38 from SPORTDiscus, 10 Medline, 11 from PubMed, 6 Cochrane Database of Systematic Reviews, 6 Google Scholars*]

Secondary Screening Process and Eligibility
- Removal of duplicates (n = 65)
- Literature Excluded (n = 36)
 - Articles Excluded (n = 4)
 - Other sport (1)
 - No full-text access (1)
 - Foreign language (1)
 - Systematic review (1)
- Screened for eligibility (n = 29)

Included Articles
- Studies included in systematic review (n = 25)
Figure 2

Theoretical framework summary

Theoretical framework representing the relationship between fatigue and our three identified outcomes.
Fatigue

Kinematic changes

Kinetic changes

Delayed performance changes

Increased risk of injury
Table 1 (on next page)

Methodological quality assessment

Methodological quality assessment via Modified Downs and Black quality index.
Table 1. Methodological quality assessment via Modified Downs and Black quality index

Included Studies	Modified Downs and Black checklist number	Total												
	1	2	3	6	7	9	10	11	12	16	18	20	26	
Bradbury & Forman (2012)	1	1	1	1	1	0	0	1	1	U	1	1	0	9
Chou et al. (2015)	1	1	1	1	1	0	1	0	0	U	1	1	0	8
Crotin et al. (2013)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Crotin et al. (2014)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Dale et al. (2007)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Erickson et al. (2016)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Escamilla et al. (2007)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Freeston et al. (2014)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Grantham et al. (2014)	1	1	1	1	0	1	0	0	U	1	0	0	6	
Keeley, Barber & Oliver (2010)	1	1	1	1	0	1	0	0	U	U	1	0	6	
Keeley et al. (2017)	1	1	1	1	0	1	0	0	U	U	1	0	7	
Lyman et al. (2001)	1	1	1	1	1	1	1	1	U	1	1	0	11	
Lyman et al. (2002)	1	1	1	1	0	1	1	1	U	1	1	0	10	
Makhni et al. (2014)	1	1	1	1	0	1	1	1	U	1	1	0	10	
Mullaney et al. (2005)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Murray et al. (2001)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Oliver & Plummer (2010)	1	0	1	0	1	0	1	0	U	1	0	0	5	
Oliver, Wiemar & Henning (2016)	1	0	1	0	1	0	1	0	0	U	1	0	0	5
Sonne & Keir (2016)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Trip, Yochem & Uhl (2007)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Wang et al. (2016)	1	1	1	1	0	1	0	0	U	1	1	0	8	
Warren, Szymanski & Landers (2015)	1	1	1	1	0	1	U	U	U	1	1	0	8	
Whiteside et al. (2016)	1	1	1	1	0	0	0	0	U	1	1	0	7	
Yang et al. (2014)	1	1	1	1	0	1	1	1	U	1	1	0	10	
Yang et al. (2016)	1	1	1	1	0	1	0	0	U	1	1	0	8	

3 Scoring: “yes” = 1, “no” = 0, “unable to determine” = U (scored as 0)
4 Criteria: (1) Clear aim/hypothesis, (2) main outcome measures clearly described, (3) patient characteristics clearly described, (6) main findings clearly described,
(7) random variability of main outcomes provided, (9) characteristics of patients lost to follow-up described, (10) actual probability values reported, (11) subjects asked to participate representative of entire population, (12) subjects prepared to participate representative of entire population, (16) clear mentioning of data dredging (unplanned analysis), (18) appropriate statistical analysis, (20) valid and reliable outcome measures, (26) patients lost to follow-up taken into account.

Note: Only the Downs and Black questions that applied to this work were assessed.
Table 2 (on next page)

Risk of bias

Risk of bias assessment related to included studies (modified from Lopes et al. 2012).
Table 2. Risk of bias assessment related to included studies (modified from Lopes et al. 2012).

Included Studies	Criteria	Total
Bradbury & Forman (2012)	0 1 1 1	4
Chou et al. (2015)	1 1 1 1	5
Croin et al. (2013)	1 1 1 U	4
Croin et al. (2014)	0 1 1 1	4
Dale et al. (2007)	0 1 1 0	3
Erickson et al. (2016)	1 1 1 1	5
Escamilla et al. (2007)	1 1 1 0	4
Freeston et al. (2014)	0 1 1 U	3
Grantham et al. (2014)	0 1 0 1	3
Keeley, Barber & Oliver (2010)	0 1 1 1	4
Keeley et al. (2017)	0 1 1 1	4
Lyman et al. (2001)	0 1 1 U	6
Lyman et al. (2002)	1 1 1 U	6
Makhni et al. (2014)	1 1 1 U	7
Mullaney et al. (2005)	0 1 1 0	3
Murray et al. (2001)	0 1 1 1	3
Oliver & Plummer (2010)	0 1 1 0	3
Oliver, Wiemar & Henning (2016)	0 1 1 U	3
Sonne & Keir (2016)	1 1 1 0	4
Trip, Yochem & Uhl (2007)	0 1 1 0	3
Wang et al. (2016)	1 1 0 U	3
Warren, Szymanski & Landers (2015)	0 1 1 U	3
Whiteside et al. (2016)	1 1 1 1	5
Yang et al. (2014)	1 1 1 1	9
Yang et al. (2016)	0 1 1 1	4
Scoring: “low risk of bias” = 1, “high risk of bias” = 0, “unable to determine” = U (scored as 0)
Table 3 (on next page)

Kinematic changes with fatigue

A summary of selected pitching kinematic changes following various fatigue protocols.
Table 3. A summary of selected pitching kinematic changes following various fatigue protocols.

Study	Sample Size	Fatigue Protocol	Changes in Kinematics due to Fatigue	Pre-Post Fatigue Change
Escamilla et al. (2007)	10 collegiate pitchers	15 pitches per inning for 7-9 innings	- Change in trunk flexion during the arm cocking and acceleration phase (from 34 ± 12° to 29 ± 11°)	- 5° change in trunk flexion
Murray et al. (2001)	7 major league pitchers	No protocol, collection during games	- Decreased maximum shoulder external rotation (181° in the first inning to 172° in the last)	- 9° change in maximum external rotation
			- Decreased knee angle at ball release (140° in first inning to 132° in the last)	- 8° change in knee angle
Erickson et al. (2016)	28 adolescent pitchers	Warmup followed by 15 pitches per inning for 6 innings	- Hip-to-shoulder separation decreased as pitch count increased (from 90% ± 40% at pitch 15 to 40% ± 50% at pitch 90; $p < 0.001$)	- 50% change in hip-to-shoulder separation
			- Knee flexion increased with pitch number (from 49 ± 15° to 53 ± 15°, $p = 0.008$)	- 4° change in knee flexion
			- Increased shoulder external rotation and total range of motion post pitching	
			- Lower half muscles fatigued before changes in upper extremity kinematics occurred	
Mullaney et al. (2005)	13 university pitchers	99 pitches over 7 innings	- Postgame results showed selective fatigue of 15% in shoulder flexion ($p = 0.02$); 18% in shoulder internal rotation ($p = 0.03$); and 11% in shoulder adduction ($p = 0.01$)	- N/A
Study	Participants	Protocol	Changes	Notes
-------------------------------	--------------	---	---	-------
Keeley et al (2010)	10 collegiate pitchers	Five pitches for strikes followed by 2 kg ball throws until maximum perceived fatigue	- Changes in lateral pelvis tilt at maximum external rotation (from $-10.8 \pm 11.8^\circ$ to $-14.8 \pm 11.3^\circ$) and ball release (from $-3.36 \pm 5.24^\circ$ to $-6.82 \pm 3.87^\circ$) between non-fatigued and fatigued conditions ($p < 0.05$) (negative represents tilt to left)	- 4° change in lateral pelvis tilt at maximum external rotation - 3.5° change in lateral pelvis tilt at ball release
Chou et al. (2015)	16 high school pitchers	10 maximum effort fastball warmups, 100 pitches, 10 pitches post throwing session	- Increased knee flexion (from $53.6 \pm 21.5^\circ$ to $56.1 \pm 22.2^\circ$; $p = 0.01$) and trunk flexion (from $21.4^\circ \pm 5.4^\circ$ to $24.2^\circ \pm 6.6^\circ$; $p = 0.01$) at instant of ball release - Shoulder horizontal abduction decreased at the instant of front foot strike (from $21.1 \pm 11.0^\circ$ to $18.7 \pm 10.1^\circ$; $p = 0.01$) - Maximum forearm pronation decreased during the acceleration phase (from 27.4 ± 12.3 to $22.4 \pm 10.6^\circ$; $p=0.01$) - Elbow valgus ($8.8 \pm 3.3^\circ$ to $6.9 \pm 3.9^\circ$; $P = 0.01$) and forearm pronation ($24.9 \pm 11.2^\circ$ to $20.1 \pm 8.9^\circ$; $p = 0.01$) decreased at ball release as fatigue accumulated	- 2.5° change in knee flexion at ball release - 2.8° change in trunk flexion at ball release - 2.4° change in horizontal abduction at front foot strike - 5° change in forearm pronation during acceleration - 1.9° change in elbow valgus angle at ball release - 4.8° change in forearm pronation at ball release
Oliver & Plummer (2010)	14 high school pitchers	Five pitches for strikes followed by 2 kg ball throws until maximum	- Kinematic data was collected, but results were not shown within the study’s results	- N/A
Study	Participants	Pitching Protocol	Results	
-------	--------------	------------------	---------	
Oliver, Weimar & Henning (2016)	23 youth pitchers	75 pitch limit	- Kinematic data was collected, but results were not shown within the study’s results	
Tripp et al. (2007)	16 collegiate pitchers	3-5 warmup pitches, throwing every 5 seconds until maximum perceived fatigue	- Arm cocked position changed from 12.4 mm pre-fatigue to 24.1 mm post-fatigue (decreased acuity)	
- Ball release position changed from 20.8 mm pre-fatigue to 41.7 mm post-fatigue (decreased acuity) |
| Grantham et al. (2014) | 11 collegiate pitchers | No protocol, collection during games | - Increased hip flexion at hand separation ($p = 0.022$)
- Increased hip flexion ($p = 0.002$) and shoulder lateral tilt ($p = 0.048$) at maximum external rotation was observed in innings in which the pitcher threw over 15 pitches |

* N/A
Table 4 (on next page)

Performance changes with fatigue

Studies examining velocity prior to, and post-fatigue protocol. Absolute velocity, pre and post fatigue, as well as the relative change in velocity. Additionally, studies related to throwing accuracy listed.
Table 4: Studies examining velocity prior to, and post-fatigue protocol. Absolute velocity, pre and post fatigue, as well as the relative change in velocity. Additionally, studies related to throwing accuracy listed.

Study	Sample Size	Fatigue Protocol	Velocity Pre-Fatigue	Velocity Post-Fatigue	Relative Change (% velocity decrease from pre-fatigue)	Throwing Accuracy/Other
Dale et al. (2007)	10 collegiate pitchers	60 maximum effort pitches, 15 each inning	82.5 ± 1.3 mph	81.5 ± 0.9 mph	-1.2 %	N/A
Crotin et al. (2014)	19 collegiate/high school pitchers	Warmup. 80 pitches (15 seconds between pitches, 9 minutes between innings)	Over-stride: 81.6 ± 5.4 mph	Over-stride: 79.8 ± 5.4 mph	Over-stride: -2.2% Under-stride: -0.6%	N/A
Keeley et al. (2010)	10 collegiate pitchers	Five pitches for strikes. 2 kg ball throws until maximum perceived fatigue	75.0 mph	72.0 mph	-4.0%	N/A
Murray et al. (2001)	7 major league pitchers	No protocol, collection during season	90.0 mph	85.0 mph	-5.6%	N/A
Erickson et al. (2016)	28 male pitchers	Warmup. 15 pitches per inning for 6 innings	73.0 ± 5.0 mph	71.0 ± 6.0 mph	-2.7%	N/A
Escamilla et al.	10 collegiate	15 pitches per inning for	77.6 ± 4.0 mph	75.4 ± 3.4 mph	-2.8%	N/A
Year	Participants	Protocol	Collection	Fielding	Outcome 1	Outcome 2
------	--------------	----------	------------	----------	--	--
(2007)	pitchers 7-9 innings	N/A	N/A	N/A	Percentage of hard-thrown pitches decreased as game progressed. Largest decrease in ball speed between 1st and 7th inning (velocity not provided)	
Whiteside et al. (2016)	129 MLB pitchers	No protocol, collection during season	N/A	N/A	Strike percentage changed from 70.1 ± 17.8% pre-fatigue to 49.3 ± 17.2% post-fatigue	Home run rate increased with each pitch
Wang et al. (2016)	15 pitchers	Six maximum effort fastballs before fatigue protocol. 8-12 reps, 3 sets, wrist ulnar deviation and flexion with dumbbell. Within 1 minute of completion, pitcher threw 6 maximum effort fastballs	N/A	N/A	With each pitch in preceding game, 5th game and 10th game, the pitcher’s Earned Run Average increased by 0.007, 0.014, and 0.022 respectively	
Study	Participants	Conditions	Results			
-----------------------	--------------	---------------------------	---			
Yang et al. (2016)	7 intercollegiate pitchers	15 pitches per inning for 7 innings	Both throwing accuracy and velocity significantly decreased below baseline following the 4th inning in the 8-second ($p = 0.05$) and 12-second ($p = 0.05$) trials			
Keeley et al. (2014)	14 youth pitchers	88 pitch simulated game	Total and first pitch strike percentage decreased at “moderate” perceived fatigue levels (52.4% and 49.8%) and further at “severely” fatigued (45.3% and 40.0%)			
Table 5 (on next page)

Injury and fatigue

A summary of findings related to pain and injury resulting from pitching.
Table 5. A summary of findings related to pain and injury resulting from pitching

Study	Sample Size	Fatigue Protocol	Data Collection Process	Findings
Lyman et al. (2001)	298 youth pitchers (aged 9-12 years)	No protocol, collection during season	Conducted over the span of two seasons, pitchers were interviewed via telephone after each game pitched	- Elbow pain was reported in 26% of pitchers, while shoulder pain was reported in 32% of pitchers
- Risk factors associated with elbow and shoulder pain included decreased self-satisfaction, increased pitch count, and in-game arm fatigue
- Increased age, weight, and lifting weights during the season linked to increased elbow pain |
| Lyman et al. (2002) | 476 youth pitchers (aged 9-14 years) | No protocol, collection during season | Questionnaires were assigned to pitchers before and after the season. Interviews were conducted during the season after each game | - Curveballs were associated with a 52% increased risk of shoulder pain, while the slider was associated with an 86% increased risk of elbow pain
- 28% of pitchers reported elbow pain and 35% of pitchers reported shoulder pain at least once during the season
- Elbow and shoulder pain increased significantly with pitch count |
| Freeston et al. (2014) | 13 elite pitchers (aged 19.6 ± 2.6 years) | 2 test days (minimum of 7 days apart), 5-10 minutes of moderate intensity running, 5-10 minutes of stretching, 10-15 minutes of throwing, throwing or running program | A throwing protocol was assigned to subjects on the first day, a running protocol was assigned on the second day | - Significant increase in velocity following the throwing program (3.5 ± 0.7 km/h vs. 1.4 ± 0.5 km/h, respectively; p ≤ 0.05)
- Throwing velocity, a sign of general fatigue, whereas throwing accuracy and arm soreness are indicators of arm fatigue |
| Yang et al. (2014) | 754 youth pitchers (aged 9-18 years) | No protocol, collection during season | A national survey was conducted | - 69.2% of pitchers reported pitching through arm tiredness multiple times throughout the season
- 37.9% of pitchers reported multiple incidences of arm pain |
| Study | Participants | Methodology | Findings |
|---|--|--|--|
| Makhni et al. (2014) | 203 youth pitchers (aged 8-18 years) | No protocol, collection during season | - 23% of pitchers reported prior overuse injury |
| | | Epidemiological study. Survey. | - 30% of players reported arm pain at decreased level of satisfaction |
| | | | - 46% of players were told on at least one occasion to pitch through arm pain |
| Sonne & Keir (2016) | 73 pitchers | No protocol, collection during season | - Reduced effectiveness of the flexor-pronator mass reduces joint rotational stiffness, which in turn increases the strain on the UCL during pitching, therefore increasing risk of injury |
| Warren, Szymanski & Landers (2015) | 21 collegiate pitchers (aged 20.4 ± 1.4 years) | 3 simulated, 5-inning games (Max 70 pitches per game) | - Study looked into injuries in pitching, but did not comment on any related findings |
| | | Evaluated the effects of 3 recovery protocols on range of motion, heart rate, rating of perceived exertion, and blood lactate | |