(Not to be taken) with a grain of salt: Enhancing perceived saltiness by 3D-printed surface textures

Thomas van Rompay a,*, Iris van Ooijen b, Sara Groothedde a, Daniel Saakes c

a University of Twente, Enschede, The Netherlands
b Behavioral Science Institute, Radboud University, Nijmegen, The Netherlands
c KAIST, Republic of Korea

ARTICLE INFO

Keywords:
3D-printing
Surface texture design
Food experience
Embodied cognition
Health promotion

ABSTRACT

Seeking to promote healthy food options through design, this study investigates whether food saltiness perception can be enhanced through the design of the surface texture of the container from which the product is sampled, using 3D-printing. An experimental study was conducted at a supermarket in which shoppers (N = 270) participated in a taste test. A full-factorial 3 (surface texture: smooth, rough, rough and irregular) × 3 (salt content: low, medium and high salt content) between-subject design was employed. Participants in each condition were asked to try the product and assess saltiness perception, taste intensity, taste liking and willingness to try. Results testify to the feasibility of enhancing saltiness impressions through both rough and irregular 3D-printed surface textures, but only for the medium-salt and high-salt variants. Findings on taste liking and willingness to try likewise testify to the importance of considering the interaction between surface texture and saltiness. These findings qualify previous research on cross-modal correspondences by showing that applications of surface textures may backfire when the gap between expectations triggered by tactile sensations and actual food contents becomes too large. Implications for initiatives aimed at promoting healthy food choices are discussed.

1. Introduction

Although dietary sodium intake (commonly referred to as salt) may vary across populations, nearly all populations around the world consume more than twice the recommended daily amount of sodium (i.e., salt; Kloss, Meyer, Graeve, & Vetter, 2015). Excessive consumption of salt is associated with negative health conditions, including high blood pressure and cardiovascular diseases (Kloss et al., 2015). Additionally, it can adversely affect target organs, including the blood vessels, heart, kidneys, and brain (Parquhar, Edwards, Kurkovitz, & Weintraub, 2015).

Consumer selection and consumption of salty food options is partly motivated by a ‘health-pleasure trade off’ which reflects the belief that healthy foods and beverages are less tasty than their unhealthy, full-salt, counterparts. Hence, when at the supermarket, consumers feel that they are faced with a choice between healthy and tasty, and too often (at least from a health promotion perspective) ‘tasty’ prevails (Raghunathan, Naylor, & Hoyer, 2006; Jo & Jayson, 2018). In addition to such hard-wired heuristics, and of particular relevance to the present undertaking, consumers readily experience reduced-salt foods and beverages as bland or tasteless (Stein, Cowart, & Beauchamp, 2012).

To counteract excessive salt consumption, various initiatives have been developed which either seek to raise consumer awareness of the negative consequences of salt intake (e.g., by means of a traffic light system used in the UK to indicate, amongst others, salt contents), or reduce salt contents in (processed) foods by means of food reformulation. A third (complementary) strategy, which is receiving increasing attention in recent years, seeks to enhance tastiness of healthy food options through design factors of food packaging (e.g., Tijssen, Zandstra, de Graaf, & Jager, 2017; Van Rompay, van Hoof, Rorink, & Folsche, 2019), and tableware (e.g., sample cups and plates; see Van Rompay & Fennis [2019] for a review).

Recent studies underscore the potential of tactile design elements in particular (Barnett-Cowan, 2010; Biggs, Juravle, & Spence, 2016; Carvalho, Moksunova, & Spence, 2020; Krishna & Morrin, 2008; Piqueras-Fiszman & Spence, 2012; Van Rompay & Groothedde, 2019). For instance, in Carvalho et al. (2020), experts and amateurs consumers evaluated specialty coffee served in either a smooth or a rough ceramic cup. Findings showed that experts rated (identical) coffee as more acidic.
when sampled from the rough cup, whereas amateurs’ sweetness ratings were higher when coffee was tasted from the smooth cup. In line with these findings, and of particular relevance to the current research, Van Rompay and Groothedde (2019) showed that potato chips were evaluated as saltier when sampled from a bowl with a rough (as opposed to a smooth) texture. Importantly however, this effect did not surface for zero-salt chips, suggesting that it is important to consider the gap between expectations triggered by tactile sensations and the nature of the food itself (i.e., actual food contents; Ruenzel et al., 2011).

Extending findings on the impact of design and capitalizing on opportunities provided by 3D-printing (Van Rompay, Finger, Saakes, & Fenko, 2017; Van Rompay, Kramer, & Saakes, 2018), this study seeks to investigate the impact of 3D-printed cups varying in terms of roughness and irregularity on taste evaluation of bouillons with different salt contents. Before elaborating on the details of this study, first we will elaborate on the key constructs involved.

1.1. The influence of tactile design on taste evaluation

When considering the impact of tactile cues on taste evaluation, of key importance are cross-modal correspondences, defined as tendencies for certain sensory features or dimensions from one sensory modality (e.g., touch) to be associated with sensory features or dimensions in another modality (e.g., taste; see Velasco et al., 2016 for a review). In other words, impressions derived from holding a package or cup generate expectations regarding the taste of its contents, which can influence subsequent taste experiences. For instance, in Van Rompay et al. (2018), clientele at an ice cream saloon evaluated lemon ice cream as saltier when sampled from a rough (rather than a smooth) 3D-printed surface texture. Reversely, a smooth (rather than a sharp) texture enhanced perception of (vanilla) ice cream sweetness. These findings indicate that expectations generated by surface textures influence subsequent taste evaluations.

Although occurrences of cross-modal correspondences are common throughout daily experience, accounting for them is less straightforward (Deroy, Crisinel, & Spence, 2013). Previous research underscores the relevance of the embodied cognition framework for explaining correspondences between design factors and food experience (Van Rompay & Fennis, 2019; Van Rompay & Ludden, 2015). However, understanding of associations between saltiness and specific surface textures is very limited. Inspired by research addressing correspondences between music and basic taste sensations (showing that musical representations to be associated with sensory features or dimensions from one sensory modality (e.g., drink color, sample cup or package) is discounted (Shankar et al., 2010; Wang, Reinoso Carvalho, Persoon & Spence, 2017), and taste evaluations shift in the opposite direction (Hovland, Harvey, & Sherif, 1957; Schifferstein, 2001). However, as of yet, there is no research systematically varying tactile design features and (corresponding) levels of saltiness. That is, in Van Rompay and Groothedde (2019), a rough and irregular surface texture design was created by painting over a smooth sample bowl with plaster paint. Furthermore, existing potato chips brands were used which not only differed in salt contents, but also in terms of food structure and taste.

Using a 3D printing procedure in the current research, the present study aimed to disentangle roughness from irregularity (by distinguishing between a 1] smooth texture, 2] a rough texture, and 3] a rough and irregular texture) in order to further pinpoint which design aspect is primarily responsible for heightening saltiness impressions (explorative research question). Furthermore, rather than using existing branded products (Van Rompay & Groothedde, 2019), we selected bouillon soup in the current study in order to systematically vary salt contents, resulting in a low-salt, medium-salt, and high-salt bouillon variant.

Based on the foregoing, it is expected that saltiness impressions are enhanced (i.e., demonstrative of ‘assimilation’) for the medium-salt and high-salt variants sampled from the ‘rough’ and ‘rough and irregular’ cups. However, for the low-salt variant, it is expected that sampling from the ‘rough’ and ‘rough and irregular’ cups does not enhance saltiness impressions and may even backfire as the gap between saltiness expectations and actual salt contents becomes too large (resulting in a ‘contrast’ effect). Furthermore, we expect that a texture which enhances saltiness perceptions also boosts taste intensity (a measure closely related to saltiness perception; Van Rompay & Groothedde, 2019). Additionally, considering consumers’ preferences for salty foods (and corresponding dislike for a ‘bland’ flavor; Stein et al., 2012), a texture that enhances saltiness perceptions should positively influence taste liking and willingness to try as well.

2. Method

2.1. 3D-printed cups

A series of sample cups with either a smooth, rough, or rough and irregular surface texture were 3D-printed. The cups were 3D-printed on an Ultimaker 2, with a durable, black PLA material in an FDM process (with 0.1-millimeter precision). The printed models were designed to fit
as a sleeve around a heat-resistant, paper cup (to be replaced per subject for hygienic purposes). As for measurements, the cups are 60 mm high with a top radius of 60 mm, bottom radius of 30 mm, and wall thickness of 1 mm (see Fig. 1).

The rough cup has a surface texture procedurally generated with a noise pattern. The rough/irregular cup resembles carved out rock or wood. The texture is procedurally generated using a random pattern of points as input for a Voronoi diagram. The surface is protruded along the normal vector following a curve from seed towards the edge of each Voronoi cell.

2.2. Pretest 1

A pre-test was conducted to investigate whether the 3D-printed cups were perceived as realistic and whether the ‘tactile feel’ of the sample cups was correctly identified. To this end, 15 participants (7 male and 8 female) looked at, and touched, the three different cups (i.e., empty cups without paper cup and contents inside). Using a 7-point Likert scale (1 = totally disagree/ 7 = totally agree), the extent to which the cups were perceived as realistic was measured with the items ‘This cup is suitable for drinking’, ‘This cup feels nice’, ‘It is realistic to drink from this cup’ and ‘This cup fits the product type’ (Cronbach’s alpha = 0.83). Item scores were summarized and averaged to arrive at an overall score for perceived realism. Results show that the cup with the smooth surface texture (M = 4.90, SD = 0.12) was perceived as smoother than the cup with the rough surface texture (M = 3.89, SD = 0.34, p < 0.01), and the latter was in turn perceived as smoother than the cup with the rough/irregular surface texture (M = 2.27, SD = 0.24, p < 0.01). These combined results testify to the suitability of the 3D-printed cups (See Fig. 2 for finalized materials).

2.3. Pretest 2

A second pre-test was conducted to select three bouillon variants with respectively a low, medium and high salt level. To this end, we used a regular bouillon and a reduced-salt bouillon of the same brand (i.e., ‘Maggi vegetable bouillon’ and ‘Maggi vegetable bouillon less salt’ [Nestlé]; 0.6 g. per 100 ml and 0.1 g. per 100 ml respectively). Apart from these two variants, three other variants were created by adding salt to the two aforementioned bouillons, resulting in five different bouillon variants (0.1 g. per 100 ml, 0.3 g. per 100 ml, 0.5 g. per 100 ml, 0.6 g. per 100 ml, and 0.8 g. per 100 ml). Next, 15 participants (the same participants as in Pretest 1) tasted all five bouillons (which were presented in a random order). Salt perception was measured (using a 7-point Likert scale; 1 = totally disagree/ 7 = totally agree) with the statement ‘This product tastes salty’. To control for direct effects of saltiness levels on tastiness, participants also indicated to what extent they perceived the bouillon as tasty (i.e., ‘This product is tasty’).

Table 1 presents the average saltiness and tastiness scores. As the maximum salt variant (‘level 5’) differed markedly from the other variants in terms of tastiness, ‘level 4’ was selected as the high-salt variant in addition to ‘level 2 (medium-salt variant) and ‘level 1 (low-salt variant).

In sum, results from both pretests crystalize in a full-factorial 3 (surface texture: smooth, rough, rough and irregular) X 3 (product type:...
Food Quality and Preference 93 (2021) 104279

4

Participant demographics per condition.

Table 2

Condition	N	Age	Gender %	
		Mn	Male	Female
1	30	45.0	53.3	46.7
2	30	42.0	46.7	53.3
3	30	43.5	46.7	53.3
4	30	45.5	53.3	46.7
5	30	39.0	50.0	50.0
6	30	49.5	46.7	53.3
7	30	41.5	50.0	50.0
8	30	40.0	56.7	43.3
9	30	44.0	50.0	50.0

Note: Means with different superscript letters (a–e) differ from each other significantly (p < .05).

low-salt, medium-salt, high-salt) between-subjects design.

2.4. Participants

A total of 270 participants (49.6% female; mean age: 46.0 years; age range: 18–92 years) participated in the main study. They were approached at a local supermarket in a medium-sized Dutch city and asked to participate in a taste test. Participants were asked whether they were allergic to salt or whether they were on a low-salt diet. If this was the case, they were excluded from the study. Age (F < 1, ns) and gender (X² [1, N = 270] = 479.14, p = .90) were equally distributed across the conditions (see Table 2). Prior to data collection, this study was approved by the ethics committee of the University of Twente (request number: 190099).

2.5. Procedure

Upon agreement, participants received a brief introduction about the study (stating that the study revolved around first impressions of a new bouillon variant). Subsequently, they were handed a 2/3 cup (containing one of the three bouillon variants poured in the paper cup) and were asked to taste the product. After tasting, they filled out the (paper-based) questionnaire comprising the dependent measures. After completing the questionnaire, the participants were thanked for their participation.

Considering the research context (i.e., a supermarket rather than a lab setting) and the importance of keeping bouillon temperature constant (bouillon was prepared at home and transported in a vacuum flask), each afternoon taste session lasted between 90 and 120 min in which all participants tasted the same bouillon from the same cup. Each of the nine conditions (involving 30 participants) was run on a separate day.

3. Measures

In order to assess perceived saltiness, participants were requested to indicate to what extent their agreed with the statement ‘This product tastes salty’, using a 7-point Likert scale (1 = totally disagree/ 7 = totally agree). Likewise, for taste intensity participants were requested to indicate to what extent they agreed with the statement ‘This bouillon tastes intense’.

Taste liking was measured with the statements ‘This product is delicious’, ‘I like the taste of this product’, ‘The taste of this product is just right’ and ‘The taste of this product appeals to me to’ (Cronbach’s alpha = 0.98). Again, participants were asked to indicate to what extent they agreed with the statements using a 7-point Likert scale (1 = totally disagree/ 7 = totally agree).

Finally, willingness to try was measured (using a 7-point Likert scale; 1 = totally disagree/ 7 = totally agree) with the statements ‘When at the supermarket, I would consider buying this bouillon’, ‘When available at the supermarket, I would like to try this bouillon’ and ‘After tasting, I am interested in this bouillon’ (Cronbach’s alpha = 0.98). We used a ‘willingness to try’ (rather than a more conventional ‘purchase intention’ construct) as raising awareness and interest may be considered a first step (preceding the formation of purchase intentions) in promoting health behaviour change (Prochaska & Velicer, 1997).

3.1. Data analysis

For all constructs, items were summarized and averaged to arrive at a total score for each outcome measure. Univariate analyses of variance (ANOVA) were used to analyze main and interaction effects of surface texture and salt level on the outcome measures. In case of significant interaction effects, pairwise comparisons were used to determine which group differences were statistically significant.

4. Results

We discuss the effects of salt perception and cup texture, as well as their interaction effects on the dependent variables. For a concise overview of the main and interaction effects, see Table 3. For a detailed overview of the interaction effects (including within condition effects) see Figs. 3–5.
4.1. Salt perception

An ANOVA with salt level and cup texture as between-subject factors and salt perception as dependent variable showed a main effect of salt level (F(2, 261) = 881.57, p < .001, η² = 0.87). Specifically, the high-salt bouillon (M = 5.84, SD = 0.83) was perceived as saltier than the low-salt bouillon (M = 1.90, SD = 0.69, p < .001) and the medium-salt bouillon (M = 4.74, SD = 1.00, p < .001). In addition, the medium-salt bouillon (M = 4.74, SD = 1.00) was perceived as significantly saltier than the low-salt bouillon (M = 1.90, SD = 0.69, p < .001).

More importantly, cup texture significantly influenced perceived saltiness (F(2, 261) = 37.31, p < .001, η² = 0.22). When the product was sampled from the cup with the rough/irregular cup (M = 4.56, SD = 2.27), perceived saltiness was higher compared to the cup with the smooth texture (M = 3.72, SD = 1.45, p < .001) and the rough texture (M = 4.21, SD = 1.72, p = .001). In addition, the cup with the rough texture (M = 4.21, SD = 1.72) resulted in a higher salt perception than the smooth texture (M = 3.72, SD = 1.45, p < .001).

In line with our predictions, there was a significant interaction effect between cup texture and salt level on perceived saltiness (F(4, 261) = 1241.46, p < .001). Surprisingly, however, the main effect of cup texture was non-significant (p = .04). Moreover, sampling from the cup with the rough texture resulted in a significantly higher salt perception than the cup with the rough/irregular texture (M = 4.77, SD = 0.73, p = .001). Furthermore, the cup with the rough texture (M = 4.77, SD = 0.73) resulted in a significantly higher salt perception than the cup with the smooth texture (M = 3.83, SD = 0.79, p < .001).

When high-salt bouillon was sampled, cup texture influenced perceived saltiness in a similar way. Sampling from the cup with the rough/irregular texture resulted in a higher salt perception (M = 6.53, SD = 0.49) compared to the cup with the smooth texture (M = 5.20, SD = 0.66, p < .001). Moreover, sampling from the cup with the rough texture resulted in a higher salt perception compared to the cup with a smooth texture (M = 5.20, SD = 0.71, p < .001). These findings are clearly indicative of assimilation effects in which saltiness perceptions follow expectations triggered by surface texture.

However, for the low-salt variant, the direction of the effect reverses, demonstrating contrast rather than assimilation. Specifically, the cup with the smooth texture (M = 2.13, SD = 0.68) triggered a higher salt perception than the rough/irregular texture (M = 1.50, SD = 0.57, p < .001). However, there was no difference between the cup with the smooth texture (M = 2.13, SD = 0.68) and the cup with the rough texture (M = 2.07, SD = 0.64; p = .692).

4.2. Taste intensity

An ANOVA with salt level and cup texture as between-subject factors and taste intensity as dependent variable revealed a main effect of salt level (F(2, 261) = 1241.46, p < .000, η² = 0.91). The high-salt bouillon (M = 6.22, SD = 0.73) resulted in a significantly higher taste intensity than the medium-salt bouillon (M = 5.09, SD = 0.77, p < .001), which in turn had a higher taste intensity than the low-salt bouillon (M = 1.41, SD = 0.49, p < .001). Surprisingly, however, the main effect of cup texture on taste intensity was not significant (F(2, 261) = 1.39, p = .251). Likewise, the interaction effect between cup texture and salt level was non-significant (F(4, 261) = 0.90, p = .462).
4.3. Taste liking

An ANOVA with salt level and cup texture as between-subject factors and taste liking as dependent variable yielded a significant main effect of salt level ($F(2, 261) = 401.81, p < .001, \eta^2 = 0.76$). The high-salt bouillon ($M = 5.73, SD = 0.89$) resulted in a higher taste liking than the medium-salt bouillon ($M = 4.71, SD = 0.70, p < .001$), which in turn resulted in a higher taste liking than the low-salt bouillon ($M = 2.12, SD = 1.11, p < 0.001$). The main effect of surface texture on taste liking was not significant ($F(2, 261) = 1.81, p = .165$).

However, the interaction effect between cup texture and salt level on taste liking was significant ($F(4, 261) = 5.30, p < .001, \eta^2 = 0.08$). Specifically, for low-salt bouillon, taste liking was higher when sampled from the smooth-textured cup ($M = 2.71, SD = 1.43$) compared to the rough-textured cup ($M = 2.00, SD = 0.83, p = 0.02$) and the rough/irregular textured cup ($M = 1.64, SD = 0.64, p < .001$). The difference between the rough and the rough/irregular-textured cups was not significant ($p = .117$). Within the medium and high-salt conditions, the differences between the surface textures were non-significant ($p’s > 0.25$, see Fig. 4).

4.4. Willingness to try

An ANOVA with salt level and cup texture as between-subject factors and willingness to try as dependent variable yielded a significant main effect of salt level ($F(2, 261) = 328.64, p < .001, \eta^2 = 0.72$). The high-salt variant resulted in a significantly higher willingness to try ($M = 5.69, SD = 0.97$) than the medium-salt product ($M = 4.92, SD = 0.98, p < .001$) and the low-salt variant ($M = 2.13, SD = 1.12, p < .001$). Furthermore, the medium-salt variant ($M = 4.92, SD = 0.98$) resulted in a higher willingness to try than the low-salt variant ($M = 2.13, SD = 1.12, p < .001$).

The main effect of cup texture was also significant ($F(2, 261) = 4.83, p = .009, \eta^2 = 0.04$). The smooth texture ($M = 3.99, SD = 1.79$) resulted in a lower willingness to try than the rough texture ($M = 4.39, SD = 1.80, p = .007$) and the rough/irregular texture ($M = 4.37, SD = 1.93, p = .009$). There was no significant difference between the rough and the rough/irregular condition, $p = .919$.

Furthermore, the interaction between the cup texture and salt level was significant ($F(4, 261) = 5.97, p < .001, \eta^2 = 0.084$; see Fig. 5). In the medium-salt condition, the smooth texture ($M = 4.18, SD = 1.07$) resulted in a lower willingness to try than the rough texture ($M = 5.28, SD = 0.76, p < .001$) and the rough/irregular texture ($M = 5.30, SD = 0.63, p < .001$). There was no significant difference between the rough and the rough/irregular structure, $p = .148$.

In the high-salt condition, there was no difference in willingness to try between the smooth texture and the rough texture, $p = .429$, and between the rough texture and the rough/irregular texture, $p = .236$. However, the smooth texture ($M = 5.46, SD = 1.09$) resulted in a lower willingness to try than the rough/irregular texture ($M = 5.96, SD = 0.58, p = .049$).

In the low-salt condition, there was no difference in willingness to try between the smooth texture and the rough texture, $p = .693$, and the rough texture and the rough/irregular texture, $p = .148$. However, the smooth texture ($M = 2.32, SD = 1.54$) resulted in a marginally higher willingness to try than the rough/irregular texture ($M = 1.86, SD = 0.79, p = .066$).

5. Discussion

The results of this study underscore the potential of surface textures for influencing saltiness perceptions, and for stimulating taste liking and healthy behaviors (i.e., willingness to try healthy product variants). Importantly, this means that negative evaluations frequently voiced in relation to reduced-salt foods can be counteracted through surface texture design.
cannot fully rule out that minor differences in food composition may variants of the same brand (i.e., a regular and a reduced-salt variant), we cues are usually conflated. Finally, although we used two bouillon packaging, do effects transpire after multiple purchases, also taking into Biggs, L., Juravle, G., & Spence, C. (2016). Haptic exploration of plateware alters the Barnett-Cowan, M. (2010). An illusion you can sink your teeth into: haptic cues modulate design for promoting healthy food choices while at the same under studies could increase sample size which was admittedly relatively small Shankar, M., Simons, C., Shiv, B., McClure, S., Levitan, C. A., & Spence, C. (2010). An contrast expectations-based approach to explaining the cross-modal influence of color on orthonasal olfactory identification: The influence of the degree of discrepancy. Stein, L. J., Cowart, B. J., & Beauchamp, G. K. (2012). The development of salty taste perceiving. Yeomans, M. R., Chambers, L., Blumenthal, H., & Blake, A. (2008). The role of expectancy in sensory and hedonic evaluation: The case of smoked salmon ice-cream. Food Quality and Preference, 19(6), 565–572.

6. Note

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Barrett-Cowan, M. (2010). An illusion you can sink your teeth into: haptic cues modulate the perceived freshness and crispiness of pretzels. Perception, 39(12), 1684–1686. Biggs, L., Juravle, G., & Spence, C. (2016). Haptic exploration of plateware alters the perceived pattern and taste of food. Food Quality and Preference, 50, 129–134. Carvalho, F. M., Mokonova, V., & Spence, C. (2020). Cup texture influences taste and tactile judgments in the evaluation of specialty coffee. Food Quality and Preference, 81, 103841. Davidenko, O., Delcar, J., Marsset-Baglioni, A., Fromentin, G., Tomé, D., Nadkarni, N., & Darcel, N. (2015). Asimulation and contrast are on the same scale of food anticipated-experience pleasant divergence. Appetite, 90, 160–167. Deryo, O., Crisinel, A.-S., & Spence, C. (2013). Crossmodal correspondences between odors and contingent features: Odors, musical notes, and geometrical shapes. Psychonomic Bulletin & Review, 20(5), 878–896.

Farquhar, W. B., Edwards, D. G., Jurkovicz, C. T., & Weintraub, W. S. (2015). Dietary sodium and health: More than just blood pressure. Journal of the American College of Cardiology, 65(10), 1042–1052. Gawronski, B., & Bodenhausen, G. V. (2006). Associative and propositional processes in evaluation: An integrative review of implicit and explicit attitude change. Psychological Bulletin, 132(5), 692–731. Hartley, L., Russell, C. G., & Lien, G. (2021). Addition of a visual cue to rice increases perceived flavour intensity but not liking. Food Research International, 139, 109922. Hovland, C. I., Harvey, O. J., & Sherif, M. (1957). Asimulation and contrast effects in reactions to communication and attitude change. Journal of Abnormal Social Psychology, 55(2), 244–252. Jo, J., & Jayson, L. L. (2018). If it’s healthy, it’s tasty and expensive: Effects of nutritional labels on price and taste expectations. Food Quality and Preference, 68, 332–341. Kloss, K., Meyer, J. D., Graeven, L., & Veile, W. (2015) Sodium intake and its reduction by food reformulation in the European Union – A review. NFS Journal, 1, 9–19. Krishna, A., & Morr, M. (2008). Does touch affect taste? The perceptual transfer of product container haptic cues. Journal of Consumer Research, 34(6), 807–818. Kuegel, J., Zandstra, E. H., Deredy, W. E., Blanchette, L., & Thomas, A. (2011). Expecting yoghurt drinks to taste sweet or pleasant increases liking. Appetite, 56(1), 122–127. Mesz, B., Trevisan, M. A., & Sigman, M. (2011). The taste of music. Perception, 40(2), 209–219. Piqueras-Fiszman, B., & Spence, C. (2012). The influence of the feel of product packaging on the perception of the oral-somatosensory texture of food. Food Quality and Preference, 26(1), 67–73. Prochaska, J. O., & Velicer, W. F. (1997). The transtheoretical model of health behavior change. American Journal of Health Promotion, 12(1), 38–48. Raghunathan, R., Naylor, R. W., & Hoyer, W. D. (2006). The unhealthy – tasty intuition and its effects on taste inferences, enjoyment, and choice of food products. Journal of Marketing, 70(4), 170–183. Schiffner, H. N. J. (2001). Effects of product beliefs on product perception and liking. In L. Frewer, E. Rivili, & H. Schiffner (Eds.), Food, people and society: A European perspective of consumers’ food choices (pp. 73–96). Berlin: Springer Verlag. Shang, M., Simons, C., Shalit, Y., Levin, C. A., & Spence, C. (2010). An expectations-based approach to explaining the cross-modal influence of color on orthonasal olfactory identification: The influence of the degree of discrepancy. Attention, Perception, & Psychophysics, 72(7), 1961–1992. Slocombe, B. G., Carmichael, D. A., & Simner, J. (2016). Cross-modal tactile–taste interactions in food evaluations. Neuropsychologia, 88, 58–64. Stein, L. J., Cowart, B. J., & Beauchamp, G. K. (2012). The development of salty taste appreciation is related to dietary experience in human infants: A prospective study. The American Journal of Clinical Nutrition, 95(1), 123–129. Strack, F., Werth, L., & Deutsch, R. (2006). Reflective and impulsive determinants of consumer behavior. Journal of Consumer Psychology, 16(3), 205–216. Trjosen, L., Zandstra, E. H., de Graaf, C., & Jager, G. (2017). Why a ‘light’ product package should not be light blue: Effects of package colour on perceived healthiness and attractiveness of sugar- and fat-reduced products. Food Quality and Preference, 59, 46–58. van Ooijen, L., Fransen, M. L., Verloop, P. W. J., & Smit, E. G. (2017). Signalling product healthiness through symbolic package cues: Effects of package shape and goal congruence on consumer behaviour. Appetite, 109, 73–82. Van ROMPAY, T. J. L., & Fennis, B. M. (2019). Full-bodied taste: On the embodied origins of product perception and sensory evaluation. In G. Velasco, & C. Spence (Eds.), Multisensory Packaging (pp. 163–190). Cham: Palgrave McMillan. Van ROMPAY, T. J. L., Finger, F., Saakse, D., & Fenlo, A. (2017). “See me, feel me”: Effects of 3D-printed surface patterns on beverage evaluation. Food Quality and Preference, 57, 131–139. Van ROMPAY, T. J. L., & Groothedde, S. (2019). The taste of touch: Enhancing saltiness impressions through surface texture design. Food quality and preference, 73, 248–254. Van ROMPAY, T. J. L., Kramer, L. M., & Saakse, D. (2018). The sweetest punch: Effects of 3D printed surface textures and graphic design on ice-cream evaluation. Food Quality and Preference, 68, 198–204. Van ROMPAY, T. J. L., & Ludden, G. D. S. (2015). Types of embodiment in design: The embodied foundations of meaning and affect in product design. International Journal of Design, 9, 1–11. van ROMPAY, T. J. L., van Hoof, J. J., Rorink, J., & Folchse, M. (2019). Served straight up: Effects of verticuity cues on taste evaluations and luxury perceptions. Appetite, 135, 72–78. Van Wymelbeke, V., Sulmont-Rossi, C., Feyer, V., Issanchou, S., Manckoundia, P., & Malrieu, I. (2020). Optimizing sensory quality and variety: An effective strategy for increasing meal enjoyment and food intake in older nursing home residents. Appetite, 153, Article 104749. Velasco, G., Woods, A. T., Petit, O., Cheok, A. D., & Spence, C. (2016). Crossmodal correspondences between taste and shape, and their implications for product packaging: A review. Food Quality and Preference, 52, 17–26. Verategui-Tena, L., Van Trijp, H., & Piqueras-Fiszman, B. (2019). Heart rate, skin conductance, and explicit reactions to juice samples with varying levels of expectations (dis)confirmation. Food Quality and Preference, 71, 320–331. Wang, Q. J., Reninos Carvalho, F., Persone, D., & Spence, C. (2017). Assessing the effect of shape on the evaluation of expected and actual chocolate flavour. Flavour, 6(1). https://doi.org/10.1186/s13411-017-0052-1 Yeomans, M. R., Chambers, L., Blumenthal, H., & Blake, A. (2008). The role of expectancy in sensory and hedonic evaluation: The case of smoked salmon ice-cream. Food Quality and Preference, 19(6), 565–572.