Primary union with external fix in open bothbone leg fracture as definitive management

Dr. Ravish VN, Dr. Bharat Raju and Dr. Ram Khemka

DOI: https://doi.org/10.22271/ortho.2021.v7.i1a.2455

Abstract
These days RTA and violence are on the rise and accounting for more cases of trauma in which bony injuries are common. Fracture of tibial shaft is due to its subcutaneous location is very often involved in these kind of injuries. This study was done to evaluate the effectiveness of external fixator as primary and definitive treatment for open tibia fractures, fractures with severe soft tissues injuries, threatened compartment syndrome, and in multiply injured patients [1]. Intramedullary nailing is considered the method of choice for treatment of closed diaphyseal fractures of long bones. However, there is controversy in the literature regarding the best way of managing open type II and type III fractures, tibial shaft fractures with severe soft tissue injuries or compartment syndrome, multiply injured patients.

Material and Methods: A total of 16 patients who satisfied our inclusion and exclusion criteria were taken and were treated with AO external fixator as primary or secondary to failed Intramedullary nailing. patients were assessed radiologically and clinically.

Results: as per clinical parameters of Karlstrom and Olerud 37% patients had excellent outcome 31% had good outcome 18% had fair outcome and 12% had poor outcome.

Conclusion: Meticulously primary wound debridement at earliest is an absolute. Which augments prognosis and prevents complication. External fixator is now accepted, reliable and convenient method to manage open Long Bones fracture.

Keywords: Primary union, open bothbone, RTA

Introduction
Diaphyseal tibial fractures are the most common long bone fracture. There are a variety of treatment options, both operative and non-operative, and satisfactory outcomes are reliant on a thorough understanding of the strengths and weaknesses of the different treatment modalities, and their most useful applications. Compartment syndrome can be a devastating complication, and must be kept in mind at all times. Insufficient blood flow and lack of soft tissues in anteromedial aspect of tibia length predisposes tibia open fracture to non-union and development of infection. Treatment of open tibial fractures has controversy among the orthopedics surgeons. Currently, non-surgical procedures like using casts, brace or interventional attempts like inserting of plate, intramedullary nailing and external fixators are used for treatment of open tibial fractures. Selection of any of the above methods are correlated with surgeon decision and economic status of patients. Intramedullary nailing is considered the method of choice for treatment of closed fractures of long bones. However, there is controversy in the literature regarding the best way of managing open type IIIa and type IIIb fractures, tibial shaft fractures with severe soft tissue injuries or compartment syndrome, and tibial fractures in multiply injured patients,primary IM nailing, primary external fixation followed by conversion to IM nailing, or external fixation as definitive treatment is the ideal surgical management for these types of long bone shaft fractures.An attempt to understand the biomechanics of external fixators and their vast use.
To evaluate outcome of open long bone fracture in relation to use of external fixator in relation with healing time, hospital stay, types and degree of different complications.
Material and Methods
The fact that open fracture of long bones is usually caused by high energy trauma makes it imperative to assess both the patient and the fracture as a whole.

Study setting: The study was conducted in dept of orthopaedics, KIMS bangalore from (2012-2019).

Subjects- Patient Attending dept of orthopaedics, KIMS bangalore from (2012-2019).

Study Population- Patients of age 18-60 were considered for the study.

Type of study design- the study was conducted in two parts.in the 1st part of the study, the retrospective data of all the patients of open long bone fracture was collected and analysed. In the 2nd part, we continued the study prospectively, to diagnose, analyse and study the patients coming to the orthopaedic department on regular opd and emergency days.

Sample size- 16 patients (by using non-randomise purposive sampling we selected 16 patients in the study).

Radiological Method: X-ray reports
Inclusion criteria
1. Failed intra medullary nailing in compound type 2, 3a &3b within 7 days of surgery
2. Primary Gastillo Anderson type 2, 3a and 3b
3. Primary closed fracture with compartment syndrome
4. patients between 18-60 years of age
5. patients unwilling for illizarov due to compliance

Exclusion criteria
1. Gustillo Anderson type 1 & type 2 with less soft tissue involvement
2. Patients below the age of 18, Patients above 60 years of age.
3. Pathological fractures

Consent: Prior to the examination of each patient, consent was taken.

Data collection procedures: All the patients coming to the department of Orthopaedics with complaints of open long bone fracture.

Plan of analysis: All patients who met the inclusion criteria were included in the study. Clinical history of each patient was recorded as per the proforma. Clinical details including risk factors, complete Haemogram and other biochemical parameters was also recorded. Diagnostic clinical tests were performed on the included patients. After the clinical and radiological diagnosis, patients were subjected to external fix. After the procedure, the patients were followed up for 6-18 months for evaluation.

Statistical analysis: The tabulation and cross tabulation was done. Results are expressed in percentage. Statistical analysis was performed on the intent-to-treat (ITT) population. For statistical analysis, data was first entered in Microsoft excel database and subsequently processed by standard statistical software: Statistica version 6.

Operative procedure
In the operating room, under spinal anaesthesia and with tourniquet in situ (where feasible) thorough irrigation and debridement of the wound was done. External fixation and secondary debridement. After aggressive primary wound debridement a decision, in few cases where soft tissue involvement was extensive, external fixator application was delayed by 48 to 72 hours.

Wound was primarily closed when feasible with preference given to covering the bones with minimal tension. Dressing of Open wounds was done u at appropriate intervals of 12-24 hours according to need.

Results
In this study the maximum follow up was for 18 months and minimum follow up was 6 months. Majority of the cases were followed up for 10 months making an average follow up period of 7.5 months. Definition of parameters in the follow up examination.

Factors were as follows. ankle joint symptoms, aching or pain in fracture site, difficulty in walking, work and sports, skin condition, deformity, muscular atrophy and loss of knee movement. Grading A as negligible or none, B as moderate / mild symptoms, and C as sever loss of function / pain.
Table 1: Symptoms according to severity

FACTORS	A	B	C
SYMPTOMS			
1. Ankle joint symptoms	None or negligible	Moderate: some loss of function	Severe: clear loss of function
2. Aching or pain in fracture	None or slight on fracture	Moderate symptoms	Severe: pain at rest
3. Difficulty in walking	None	Mild subjective symptoms	Severe limp
4. Work and sports	Activities unchanged	Works as before incapacitated for some sport	Stopped working due to injury

Table 2: Signs according to severity

FACTORS	A	B	C
SIGNS			
1. Skin condition	Normal	Slightly discoloured	Ulcer or sinus persistent infection
2. Deformity	None	Slight or not noticeable	Considerable shortening > 1 cm
3. Muscular atrophy	0 to 1 cm	1 to 2 cm	> 2 cm
4. Loss of knee movement	0 to < 10 degrees	10 to 20 degrees	> 20 degrees

Overall evaluation of result according to Karlstrom and Olerud:

Excellent: All factors listed in table were graded A.

Good: All factors listed in table were graded B.

Acceptable: One factor was graded C and the rest were graded A or B with out significant subjective symptoms.

Poor: Here more than one factor was graded C.

- Total number of cases managed with this modality were 16. Here majority of the cases were in 3rd decade followed by 4th and 5th decade. Age is of prognostic value following chart shows the gender proportion of the study.

- 75% cases were Road traffic accidents. 25% were agriculture injury. 37% patients had shock 31% patients had associated skeletal injury.

Fig 3: Male is to female ratio

Fig 4: Mode of Injury
- Total type III fractures = 14 constituting 90% of the cases.
- In this study, type III fractures are more predominant which shows that most cases have sustained high energy trauma.
- 4 patients went for phemister grafting and 3 went for split skin grafting due to compartment syndrome.
- As per clinical parameters of Karlstrom and Olerud 37% patients had excellent outcome 31% had good outcome 18% had fair outcome and 12% had poor outcome

Meticulously primary wound debridement at earliest is an absolute. Which augments prognosis and prevents complication. External fixator is now accepted, reliable and convenient method to manage open Long Bones fracture.

Discussion
This study evaluates the result of surgical management of open long bones fractures by use of AO external fixator. The study consists of 16 cases with age ranging from 18-60 years.

The incidence of the fracture were more in male, majority of the patients mode of injury was RTA. The preliminary assessment of the patients reveal presence of shock in 6 and associated skeletal injuries in 5 patients.

For patients with severe injuries and those in uncertain or critical condition, general surgeons modified their surgical treatment strategy for multiply injured patients more than a decade ago. A temporizing approach (damage control) was developed to focus on initial hemorrhage control only, followed by definitive care of the lesion once the patient had been stabilized. The clinical course of patients undergoing the temporizing approach has been so convincing that a prospective randomized study has not been required to achieve these management changes.

![Outcome Chart](image)

Fig 5: Outcome Chart

![Image 1: Pre-op X-ray](image)

![Image 2: Post-op X-ray](image)

![Image 3: Post-op follow up X-ray](image)
Systemic support is beneficial to mitigate inflammatory reactions resulting from ischemic reperfusion, prevent organ complications, and improve the tolerance to surgery [2]. Both necrotic muscle tissues and their catabolic products could activate endogenous coagulate system and release inflammatory mediators [2]. All patients in this study had wound debridement 2–4 times to remove necrotic tissues. We speculate that these procedures largely contribute to satisfactory clinical outcomes. No systemic inflammatory response, infection or secondary organ damage was found throughout the course of treatment [3].

Operative treatment of the tibial shaft fractures usually leads to healing, without any consequences on life and working ability [4]. The most common methods used in treating tibial shaft fractures are intramedullary nail, conventional, AO compression plates and external fixator [5-7]. When a surgeon is to choose an operative method for the treatment of tibial shaft fractures, they have to pay attention not only to the fracture but also to the state of soft tissue of the injured extremities, including vascular status, muscles, and the state of the cutaneous cover. Attitudes of schools with regard to indications for operative treatment of closed tibial shaft fractures are different. The external fixation is an excellent method for the treatment not only open, but also closed tibial shaft fractures. Due to its subcutaneous localization, tibia is often exposed to injury, but subcutaneous localization is very suitable for the external fixation. The external fixation used for treating unstable tibial shaft fractures minimizes the possibility of the appearance of postoperative osteitis. The application of external fixator enables an almost perfect control of the fracture, owing to a possibility of intraoperative and postoperative reduction of the fracture. During the healing of the fracture treated with the external fixation method there is a possibility of adapting biomechanical condition of healing- dynamization of the external fixator. The external fixation method enables early postoperative rehabilitation and functioning of extremities which reduces the time of treatment and provides good results [8]. Shaw et al. obtained 100 per cent union in a group of 44 closed tibial shaft fractures and open fractures Gustilo type I and Gustilo type II, treated with the external fixation method [9]. Keating et al. obtained 95 per cent union rate after the external fixation of 100 tibial shaft fractures (47 closed and 53 open) with Orthofix external fixator. The same authors had 6 per cent nonunion in the same series after the external fixation, 14 per cent malunion after the external fixation of closed tibial shaft fractures, and 32 per cent malunion after the external fixation of open fractures [5]. The application of the external fixator is simple and does not require any special guidance due to clamps which allow moving along the clamp carrier. The apparatus allows three- dimensional stability simulating natural bone mechanics. The application of the external fixator lasts briefly, there is no blood loss, bone vascularization is minimally aggravated, postoperative hospitalization is short [10].

Conclusion

Open long bone fractures are common occurrence in high velocity trauma Young males in their 3rd decade are commonly affected due to their active ambulant lifestyle Meticulously primary wound debridement at earliest is an absolute. Which augments prognosis and prevents complication. External fixator is now accepted, reliable and convenient method to manage open Long Bones fracture Early and active mobilization of joints prevents deformities and stiffness Most of the open long bones fractures in our institute were treated with exfix for 6 weeks and then converted to definitive measurement with IM nailing. But these patients were treated with AO Exfix

- Due to failed IM nailing within first 7 days of surgery
- Poor skin and soft tissue conditions
- Poor compliance of the patient for illizarov ex fix.
- Poor socioeconomic status.

Note: In our institution for almost all the compound fractures we either do primary IMIL nail or 6 weeks Exfix and then conversion to IMIL nail or primary illizarov, but this study was conducted in patients who had failed IMIL nail or with non compliance to illizarov and poor socioeconomic status not willing for multiple surgical intervention.
References
1. Beltsios M, Savvidou O, Kovanis J, Alexandropoulos P, Papagelopoulos P. External fixation as a primary and definitive treatment for tibial diaphyseal fractures. Strategies Trauma Limb Reconstr. 2009;4(2):81-7. Doi: 10.1007/s11751-009-0062-3. Epub 2009 Aug 28. PMID: 19714440; PMCID: PMC2746273.
2. Togrul C, Dogan AC, Baser E, Dogan M, Albayrak A, Caglar M et al. The effects of sildenafil and tadalafil on ischemia-reperfusion injury in rat ovarian torsion model. Clin Exp Obstet Gynecol. 2017;44:535-539.
3. Reverte MM, Dimitriou R, Kanakaris NK, Giannoudis PV. What is the effect of compartment syndrome and fasciotomies on fracture healing in tibial fractures?. Injury. 2011;42(12):1402-7.
4. Trafton PG. Closed unstable fractures of the tibia. Clin Orthop 1988;230:58-67.
5. Keating JF, Gardner E, Leach WJ, Macpherson S, Abrami G. Management of tibial fractures with the orthofix dynamic external fixator. J R Coll Surg Edinb 1991;36(4):272-7.
6. Horas U, Popa RB, Kilian O, Stahl JP, Heis C, Schnettler R."Biorigid” interlocking after undreamed intramedullary nailing of tibial shaft fractures. Unfallchirurg 2002;105(9):797-803.
7. Jensen JS, Hansen FW, Johansen J. Tibial shaft fractures. A comparison of conservative treatment and internal fixation with conventional plates or AO compression plates. Acta Orthop Scand 1977;48(2):204-12.
8. Mitkovic M. New concepts in external fixation. Prosveta, Nis, 1993.
9. Shaw DL, Lawton JO. External fixation for tibial fractures: clinical results and cost effectiveness. J R Coll Surg Edinb 1995;40(5):344-6.
10. Mitkovic BM, Bumbasirevic ZM, Lesic A et al. Dynamic external fixation of comminuted intraarticular fractures of the distal tibia (type C pilon fractures). Acta Orthop Belg. 2002;68:508-514.