Travel and the emergence of high-level drug resistance in *Plasmodium falciparum* in southwest Uganda: results from a population-based study

Caroline A. Lynch1*, Richard Pearce2, Hirva Pota2, Connie Egwang3, Thomas Egwang3, Amit Bhasin2, Jonathan Cox2, Tarekegn A. Abeku4 and Cally Roper2

**Abstract**

**Background:** The I164L mutation on the *dhfr* gene confers high level resistance to sulfadoxine–pyrimethamine (SP) but it is rare in Africa except in a cluster of reports where prevalence >10% in highland areas of southwest Uganda and eastern Rwanda. The occurrence of the *dhfr* I164L mutation was investigated in community surveys in this area and examined the relationship to migration.

**Methods:** A cross-sectional prevalence survey was undertaken in among villages within the catchment areas of two health facilities in a highland site (Kabale) and a highland fringe site (Rukungiri) in 2007. Sociodemographic details, including recent migration, were collected for each person included in the study. A total of 206 *Plasmodium falciparum* positive subjects were detected by rapid diagnostic test; 203 in Rukungiri and 3 in Kabale. Bloodspot samples were taken and were screened for *dhfr* I164L.

**Results:** Sequence analysis confirmed the presence of the I164L mutations in twelve *P. falciparum* positive samples giving an estimated prevalence of 8.6% in Rukungiri. Of the three parasite positive samples in Kabale, none had I164L mutations. Among the twelve I164L positives three were male, ages ranged from 5 to 90 years of age. None of those with the I164L mutation had travelled in the 8 weeks prior to the survey, although three were from households from which at least one household member had travelled during that period. Haplotypes were determined in non-mixed infections and showed the *dhfr* I164L mutation occurs in both as a N51I+S108N+I164L haplotype (n = 2) and N51I+C59R+S108N+I164L haplotype (n = 5). Genotyping of flanking microsatellite markers showed that the I164L occurred independently on the triple mutant (N51I, C59R+S108N) and double mutant (N51I+S108N) background.

**Conclusions:** There is sustained local transmission of parasites with the *dhfr* I164L mutation in Rukungiri and no evidence to indicate its occurrence is associated with recent travel to highly resistant neighbouring areas. The emergence of a regional cluster of I164L in SW Uganda and Rwanda indicates that transmission of I164L is facilitated by strong drug pressure in low transmission areas potentially catalysed in those areas by travel and the importation of parasites from relatively higher transmission settings.

**Keywords:** Malaria, dhfr, Sulfadoxine–pyrimethamine (SP), Migration, Travel, Drug resistance

*Correspondence:* Caroline.Lynch@lshtm.ac.uk

1 Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK

Full list of author information is available at the end of the article

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
The antifolate sulfadoxine–pyrimethamine (SP) is widely used for intermittent preventive treatment of malaria in pregnant women (IPTp) and was recently recommended for intermittent preventive treatment in children and infants (IPTi) [1]. In addition, another antifolate, co-trimoxazole (trimethoprim–sulfamethoxazole), is recommended by the World Health Organization (WHO) for treatment of childhood febrile diseases and for prophylaxis against opportunistic infections in HIV-infected patients in Africa. Commonly occurring mutations at codons 51, 59, 108 and 164 of the \textit{dhfr} gene of malaria parasite \textit{Plasmodium falciparum} are associated with resistance to SP, and cumulatively they confer increasingly high levels of resistance. The triple mutant haplotype N51I, C59R and S108 N has been long established in Africa, but the combination of all 4 mutations remains rare despite the fact that it confers a higher level of resistance and became established in Southeast Asia as early as 1997 [2].

A review of published literature in 2012, identified 183 surveys in 114 unique geographical localities in Africa, where \textit{P. falciparum} isolates were tested for mutations at codon 164 of \textit{dhfr}. Of 19,597 isolates tested, just 130 (0.7%) were positive for I164L [3]. The mutation occurs at low level in multiple locations; 3% prevalence in western Kenya [4, 5]; 4% in Blantyre, Malawi [6]; 0.6% in the Central African Republic [7]; 1.1% in Comoros [8]; 1.0% in southern Madagascar [8] and 2% in Angola [9]. So far, it only occurs in significant numbers in Uganda [10, 11] and Rwanda.

Early surveys for the I164L mutant in Uganda in 2002–2004, found just a single I164L mutation among 480 isolates from six sites across Uganda [12]. The I164L mutant was 1 among 80 pre-treatment samples (mutation prevalence, 1.25%) from a clinic in Kanungu in southwest Uganda was increasing. Lynch et al. looked at I164L among malaria patients attending health facilities in highland and fringe highland areas of southwest Uganda in 2005 [13]. The I164L mutation was found at 14% prevalence in Kabale (highland) and 4.2% prevalence in Rukungiri (fringe highland) [13]. In the same year malaria patients attending a clinic in Rukara in neighboring Rwanda were found to have 11.4% prevalence of I164L [14]. Rukara is just 120 km from Kabale and 200 km from Rukungiri suggesting a common source of I164L. Patients in Mabeshwa, western Rwanda which is 400 km from Kabale, Uganda were screened in the same study, and no I164L was present [14] (see Fig. 1) supporting the view that 164L had a restricted focal distribution. More recent surveys in clinics 2015 in Mubuga in western Rwanda (0% prevalence) and Ruhuha in Eastern Rwanda (10.2% prevalence) confirm that this is still the case [15] (see Fig. 2). This cluster of reports of elevated prevalence of I164L in clinical isolates from SW Uganda [13] and bordering Eastern Rwanda [14] supports the view that focal transmission of highly resistant malaria occurs in the region. However, in each of these studies the reported prevalence of I164L was among patients attending clinics with confirmed cases of symptomatic malaria and these may have been home treated with SP.

To know the extent of the mutation in the parasite reservoir in SW Uganda, cross sectional community surveys were carried out to detect and screen asymptomatic infections for I164L and determine the baseline prevalence of this mutation. Surveys had previously been conducted in 2007 among communities in the catchment area of the health facilities where malaria patients were originally screened in 2005 [13]. The prevalence of the I164L mutation was measured among asymptomatic infections, and looked at the number of \textit{dhfr} resistance lineages from which these were derived. The travel histories of parasite positive cases with I164L and without I164L mutation were recorded to examine the extent to which migration or travel outside the study areas may explain the occurrence of infections with I164L.

Methods

Study sites
A cross-sectional prevalence survey was undertaken in villages within the catchment areas of two health facilities in Kabale and Rukungiri districts in 2007. Four villages in each district were randomly chosen and surveyed in their entirety. The primary sampling unit for the study was the household. All households in the selected village who had members present, and/or consented to the study were surveyed. Study sites are described elsewhere [16]. Kabale is a highland area (mean altitude 2200 m) where only three parasite positive samples were detected out of 911 sampled at the time of the study. Rukungiri is a fringe highland (mean altitude 1500 m) area in Uganda where the mean parasite positivity rate based on cross-sectional community surveys for \textit{P. falciparum} was 12.1% (95% CI 10.0–14.2) at the time of the study [16].

Collection of travel data
A structured household questionnaire was used to capture information on household residents and visitors’ sociodemographic, travel and malaria control and prevention in the household. Specific to mobility, participants were asked details of their travel outside their sub-county of residence during the 8 weeks prior to the survey. As well as information on whether the participant travelled, they were also asked their dates of departure and return to estimate duration of exposure, their
Fig. 1 Percentage prevalence of I164L mutation detected in Uganda 2003–2015 shown (black and white circles) with place name, year of sampling, study reference, roads (white lines) and estimated transmission risk [28].
Fig. 2 a–c Malaria rapid diagnostic test results, MSP119 seroprevalence and I164L prevalence in Rukungiri district, Uganda
destination sub-county and district, their reason for travel and whether they used an insecticide-treated net when travelling.

**Sample collection and laboratory analysis**

Bloodspots for samples were taken on Whatman® 3MM filter paper, dried and stored with silica gel. Out of 2125 samples collected in both sites, 206 subjects found Paracheck® positive. Samples were analysed for the 1164L mutation on dhfr using methods described in Lynch et al. [13]. DNA was prepared from bloodspots using a Chelex extraction method and PCR amplification of dhfr carried out as previously described [17]. Amplified PCR products were screened for dhfr sequence variants at five loci where single nucleotide polymorphisms (SNPs) are known; dhfr codons 50, 51, 59, 108, 164. PCR products were spotted in a 12 by 8-grid and cross-linked onto nylon membranes and probed for sequence polymorphisms by hybridization to specific oligonucleotide probes as described previously [17]. Probed blots were visualized using ECF substrate and detection using a phosphoimager (GE Healthcare, Buckinghamshire, UK). Output was recorded through viewing of digitally captured images of chemiluminescent signal.

The presence, absence, and relative abundance of hybridization signal was recorded for every probe at each locus. A sample was considered to have a single haplotype when only one sequence variant was found at each locus. Blood samples were categorized as having a single, a majority or mixed form of sequence at every SNP locus. Majority and mixed genotype infections were differentiated according to the relative intensity of signal.

Polymorphic microsatellite repeats were studied in the flanking region of dhfr on chromosome 4. Microsatellite markers located 0.3, 4.4 and 5.3 kb upstream from codon 108 were analysed, amplifying each locus by PCR then measuring fragment size on an ABI 3730 sequencer and using the software Genemapper (Applied Biosystems, Warrington, Cheshire, UK). A semi-nested PCR design was used and the primer sequences and PCR reaction conditions are described elsewhere [18].

**Results**

**Prevalence of molecular markers for drug resistance at community level**

Only three parasite positive samples were found in Kabale and none of these had the 1164L mutation. The prevalence of point mutations in the Rukungiri samples is shown in Table 1.

Sequence analysis confirmed the presence of the 1164L mutations in 12 of the 139 P. falciparum positive samples from Rukungiri from which DNA was successfully amplified, giving an estimated 1164L prevalence of 8.6% (n = 12/139).

Haplotypes could be confidently determined in isolates which did not have mixed signal in any of the codons. The haplotype frequencies among this subset of samples are shown in Table 2. There was a predominance of the triple mutant haplotype IRNI (N51I, C59R + S108N) a small number of double mutant haplotypes (S108N + N51I), and zero sensitive/non-mutant haplotypes. Seven haplotypes containing the 1164L could be confidently determined. In two cases the 1164L was on an ICNL haplotype (S108N + N51I + 1164L) and in five cases on an IRNL (S108N + C59R + N51I + 1164L).

Polymorphism at the three flanking microsatellite loci is shown in Table 3. Dhfr mutations from the 2007

**Table 1** Prevalence of wild-type and mutant codons in the dhfr genes of *Plasmodium falciparum* among subjects sampled during cross-sectional community survey, 2007 [16]

| Gene, codon | Amino acid | Prevalence (%) Rukungiri |
|------------|------------|-------------------------|
| Wild-type  |            |                         |
| 51         | N          | 0/139 (0)               |
| 59         | C          | 5/139 (4)               |
| 108        | S          | 0/139 (0)               |
| 164        | I          | 131/139 (94)            |
| Mutant     |            |                         |
| 51         | I          | 139/139 (100)           |
| 59         | R          | 134/139 (96)            |
| 108        | N          | 139/139 (100)           |
| 164        | L          | 12/139 (8.6)            |

**Table 2** Point mutation haplotype frequencies in the dhfr genes [proportion (%) of positive subjects], 2007

| Haplotype | Rukungiri |
|-----------|-----------|
| NC5I      | 0/128 (0) |
| IIR      | 120/128 (94.5) |
| IIN      | 1/128 (1.6) |
| IINL     | 2/128 (2.3) |
| IRNL     | 5/128 (1.6) |
Table 3 Microsatellite haplotypes associated with the *dhfr* mutant alleles found in 2005 and 2007

| Haplotype | 0.3 kb | 4.4 kb | 5.3 kb | 2005 | 2007 |
|-----------|--------|--------|--------|------|------|
| 1         | 87     | 172    | 205    | 1    | 2 ICNL² |
| 2         | 87     | 176    | 193    | 1 ICNI | 1 IRNL¹ |
| 3         | 87     | 176    | 203    | 1 ICNI | 1 ICNI |
| 4         | 87     | 176    | 210    | 1 ICNI | 1 ICNI |
| 5         | 87     | 178    | 193    | 1 ICNI, 1 ICNL² | 1 ICNI |
| 6         | 108    | 176    | 193    | 1 IRNL¹ | 2 IRNL |
| 7         | 108    | 176    | 199    | 1 IRNL¹ | 1 IRNL |
| 8         | 108    | 176    | 201    | 1 IRNL¹ | 1 IRNL |
| 9         | 108    | 176    | 203    | 1 IRNL¹ | 1 IRNL |
| 10        | 108    | 176    | 209    | 1 IRNL¹ | 1 IRNL |
| 11        | 108    | 176    | 193    | 1 IRNL¹ | 1 IRNL |
| 12        | 108    | 176    | 203    | 1 IRNL¹ | 1 IRNL |
| 13        | 108    | 176    | 203    | 1 IRNL¹ | 1 IRNL |
| 14        | 110    | 176    | 201    | 1 IRNL¹ | 1 IRNL |
| 15        | 110    | 176    | 203    | 1 IRNL¹ | 1 IRNL |
| 16        | 110    | 176    | 203    | 1 IRNL¹ | 1 IRNL |
| 17        | 112    | 176    | 203    | 1 IRNL¹ | 2 IRNL |

Fragment sizes are shown in base pairs and are standardised across the 2 years by running fragments on the same machine with identical size standard

¹ ICNI mutations

community survey are shown with their associated microsatellite flanking haplotypes and they are compared *dhfr* mutant alleles in clinical isolates from 2005 (13). Allele sizes at the microsatellite loci show the triple mutant IRNI haplotype is associated with microsatellite 0.3/4.4/5.3 kb flanking haplotype 108/176/203. This was true in both 2005 and 2007 and is confirmation that this mutant allele derives from the common triple mutant lineage found throughout Africa. The IRNL haplotype was associated with the same microsatellite flanking haplotype 108/176/203 indicating that the I164L was additionally acquired onto the triple mutant lineage. Interestingly the double mutant ICNI has several independent, local origins each different from the triple mutant.

In 2007, the ICNL mutant haplotype was found in association with microsatellite haplotype 87/172/205 while in 2005 it was linked to haplotype 87/178/193. A number of microsatellite haplotypes are commonly associated with the ICNI double mutant in East Africa and the I164L mutation has clearly been acquired independently on at least two of these lineages.

Travel data was available for all 12 subjects with the I164L mutations; none had travelled in the 8 weeks prior to the survey. Two of the four villages surveyed were where most of the I164L mutations were found with five people from one village living within 600 m of each other (which was identified as a cluster for *P. falciparum* positive subjects). In the second village, three subjects lived within 550 m distance of each other while another I164L positive person lived approximately 1.8 km away (Fig. 2a–c). The two remaining villages surveyed each had one person with positive for I164L. Four of those surveyed were from households in which there were other parasite positive individuals (Table 4). Nine were female, three were male and ages ranged from 5 to 90 year of age.

**Discussion**

The I164L mutation on the *dhfr* gene is known to confer high level resistance to SP but it is rare in African *P. falciparum* except in southwest Uganda and bordering areas of eastern Rwanda. Previously all the I164L mutation prevalence reports from this geographical area had been measured in patient isolates collected at health facilities. One possible explanation for the higher rate of I164L among symptomatic infections is that there was prior selection by home or community treatment before attendance at the clinic. In Uganda, at the time of the study, there was a policy of home treatment with chloroquine-SP (CQ + SP) branded as ‘Homapak’ which could have pre-selected resistance mutations prior to clinic attendance. Although home treatment via ‘homapak’ was not policy in Rwanda, CQ + SP was national first-line treatment between 2001 and 2005 and widely available through both public and private sector facilities [19].

In this current study, community surveys were carried out to identify the reservoir of *P. falciparum* infection and test these parasites *in vitro* for I164L. It was confirmed that the parasite reservoir around Rukungiri clinic the I164L mutation occurs at a prevalence rate of 8.6%. This is in fact higher than was recorded among patients attending

Table 4 Demographic and travel history for twelve subjects for which an I164L *Plasmodium falciparum* mutant was recovered

| Altitude | Age | Sex | Travel < 8 weeks | HH member travel last 8 weeks | Total HH members +ve out of those sampled |
|----------|-----|-----|-----------------|-----------------------------|-----------------------------------------|
| 1551–1600 | 5   | M   | N               | N                           | 1/4                                     |
| 1551–1600 | 10  | F   | N               | N                           | 1/5                                     |
| 1500–1550 | 9   | F   | N               | Y                           | 3/7                                     |
| 1500–1550 | 10  | F   | N               | Y                           | 1/5                                     |
| 1450–1499 | 5   | F   | N               | N                           | 1/4                                     |
| 1450–1499 | 6   | M   | N               | Y                           | 1/3                                     |
| 1450–1499 | 13  | F   | N               | N                           | 1/7                                     |
| 1400–1450 | 5   | F   | N               | N                           | 1/1                                     |
| 1400–1450 | 29  | F   | N               | N                           | 3/7                                     |
| 1400–1450 | 90  | F   | N               | N                           | 2/5                                     |
| 1350–1399 | 7   | M   | N               | N                           | 1/7                                     |
Rukungiri clinic in 2005 among whom the prevalence of I164L was 4.2%. Based on these findings, conclusions are that the I164L mutations in Rukungiri malaria infection reservoir has been sustained or has slightly increased over the 2 years between sampling in 2005 and 2007.

A higher prevalence of I164L was found among patients in Kabale in 2005, but the community survey of 2007 managed to identify only 3 infections because transmission intensity is very low. There are previous reports of an association between malaria infection in Kabale residents with recent travel to higher transmission areas particularly to the region north of Kabale [20, 21] where the tea estates around Fort Portal in western Uganda draw a significant seasonal labour workforce (see Fig. 2). It is possible that the I164L mutation was imported to Kabale by seasonal migrants returning from that region. A prevalence of 36% dhfr I164L was recorded in 2013 among pregnant women (n = 55) receiving SP-IPTp [11]. This indicates that I164L is abundant in the parasite population there, although clearly the prevalence estimates will be elevated among populations receiving SP prophylaxis.

Microsatellite analysis from 2007 samples in the study sites indicate similar results to the 2005 analysis (12) in that the I164L mutation has occurred on the triple mutant ‘IRNI’ (N51I + C59R + S108N) background as well as on at least 2 dhfr double mutant lineages ICNI (N51I + S108N). Strong drug pressure is the most likely explanation for the high occurrence of I164L, and its repeated de novo emergence in this area. A further possibility however is the emergence of adaptations in other genes in the same pathway, which can compensate for deleterious effect of the 164L mutation in these populations. Increased copy number of the GTP cyclohydrolase (gch1) gene is strongly associated with the I164L cluster.

Findings in 2005 and in this currently reported 2007 work demonstrate the prevalence of I164L in demographically different populations from those normally tested for I164L. In our 2005 study, patients presenting were men between 18 and 30 years who had travelled <6 weeks previously, while in the community survey presented here those with I164L mutations were aged between 5 and 90 years and were both male and female and had not travelled recently (Table 4). In further investigations aiming to define the limits of the sub-region affected by the
highly SP resistant parasites it will be necessary to survey at population level, with particular attention to seasonal or circular migrants. Not just on the more commonly undertaken studies screening pregnant women on IPTp or children <5 years recruited to anti-malarial efficacy studies.

The sustained presence of, and even increase in, I164L mutations in the sub-region even after the introduction of ACT, strongly indicates the need for a targeted approach to the control of malaria in pregnancy. Given the likely presence of I164L, screening and treating confirmed malaria cases in pregnancy would be more appropriate than SP-IPTp in the affected region.

The emergence of a regional cluster of I164L in SW Uganda and Rwanda indicates that transmission of I164L is facilitated by strong drug pressure in low transmission areas and potentially catalyzed in some areas by travel between relatively higher to lower transmission settings. Attention to treatment policy on the fringes of malaria distribution is particularly important in the context of malaria elimination zones on the African continent.

Abbreviations
Dhfr: dihydrofolate reductase; Kb: kilobytes; SP: sulfadoxine–pyrimethamine; CQ: chloroquine; ACT: artemisinin-based combination therapy.

Authors’ contributions
CAL designed and undertook fieldwork and drafted the manuscript. CR designed the molecular genetic studies and drafted the manuscript. TE and CE participated in molecular genetic studies and analysis. RP and HP conducted the laboratory analysis of samples. AB supported fieldwork in Uganda and inputted into the manuscript. JC and TA participated in the design of the study. All authors read and approved the final manuscript.

Author details
1 Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK. 2 Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK. 3 Medical Biotechnology Laboratories, Kampala, Uganda. 4 Malaria Consortium, London, UK.

Acknowledgements
We would like to acknowledge the fieldwork teams from the University of Mbarara for their invaluable help for the household survey. Dr. JB Rwakimari for his assistance and facilitation in Uganda. District Medical officers in Kabale and Mbarara for their invaluable help for the household survey. Dr. JB Rwakimari for his assistance and facilitation in Uganda. District Medical officers in Kabale and Mbarara for their invaluable help for the household survey.

Author details
1 Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK. 2 Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK. 3 Medical Biotechnology Laboratories, Kampala, Uganda. 4 Malaria Consortium, London, UK.

Acknowledgements
We would like to acknowledge the fieldwork teams from the University of Mbarara for their invaluable help for the household survey. Dr. JB Rwakimari for his assistance and facilitation in Uganda. District Medical officers in Kabale and Mbarara for their patience and assistance in facilitating study teams access to community leaders and health facilities.

Funding was provided by Bill and Melinda Gates Foundation (Grant No. 636).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 November 2016   Accepted: 8 April 2017
Published online: 17 April 2017

References
1. WHO Policy Recommendation. Seasonal Malaria Chemoprevention (SMC) for Plasmodium falciparum malaria control in highly seasonal transmission areas of the Sahel sub-region in Africa. Geneva: World Health Organization; 2012.
2. Nzila A, Ochong E, Nduti E, Gilbert K, Winstanley P, Ward S, et al. Why has the dihydrofolate reductase 164 mutation not consistently been found in Africa yet? Trans R Soc Trop Med Hyg. 2005;99:341–6.
3. Naidoo I, Roper C. Drug resistance maps to guide intermittent preventive treatment of malaria in African infants. Parasitology. 2011;138:1469–79.
4. McCollum AM, Poe AC, Hamel M, Huber C, Zhou Z, Shi YF, et al. Antifolate resistance in Plasmodium falciparum: multiple origins and identification of novel dhfr alleles. J Infect Dis. 2006;194:189–97.
5. Shah M, Omosun Y, Lal A, Odero C, Gati W, Otieno K, et al. Assessment of molecular markers for anti-malarial drug resistance after the introduction and scale-up of malaria control interventions in western Kenya. Malar J. 2015;14:75.
6. Alker AP, Mwapasa V, Purfeild A, Rogerson SJ, Molyneux ME, Kamwendo DD, et al. Mutations associated with sulfadoxine–pyrimethamine and chlorproguanil resistance in Plasmodium falciparum isolates from Blantyre, Malawi. Antimicrob Agents Chemother. 2005;49:3919–21.
7. Menard D, Djalle D, Manirakiza A, Yapou F, Siadoua V, Sana S, et al. Drug-resistant malaria in Bangui, Central African Republic: an in vitro assessment. Am J Trop Med Hyg. 2005;73:239–43.
8. Andriantsanoinina V, Ratsimbazosa A, Boucher C, Jahevitra M, Rabearimanana S, Radrianjafy R, et al. Plasmodium falciparum drug resistance in Madagascar: facing the spread of unusual pfdhfr and pfmdr-1 haplotypes and the decrease of dihydroartemisinin susceptibility. Antimicrob Agents Chemother. 2009;53:4588–97.
9. Ferreira da Cruz MF, Daniel E, Oliveira N, Daniel-Ribeiro CT, Fortes F. Efficacy of malaria intermittent preventive treatment in Angolan epidemic areas. FASEB J. 2015;29(Suppl):LB79.
10. Mbogo GW, Nkankoberanyi S, Tukwasibwe S, Baliraine FN, Nsobya SL, Conrad MD, et al. Temporal changes in prevalence of molecular markers mediating antimalarial drug resistance in a high malaria transmission setting in Uganda. Am J Trop Med Hyg. 2014;91:54–61.
11. Braun V, Rempis E, Schnack A, Decker S, Rubahayo J, Tumwesigye NM, et al. Lack of effect of intermittent preventive treatment for malaria in pregnancy and intense drug resistance in western Uganda. Malar J. 2015;14:372.
12. Francis D, Nsobya SL, Talsiusa A, Yeka A, Kamya MR, Machekano R, et al. Geographic differences in antimalarial drug efficacy in Uganda are explained by differences in endemicity and not by known molecular markers of drug resistance. J Infect Dis. 2006;193:978–86.
13. Lynch C, Pearce R, Pota H, Cox J, Abeku TA, Rwakimari J, et al. Emergence of a dhfr mutation conferring high-level drug resistance in Plasmodium falciparum populations from southwest Uganda. J Infect Dis. 2008;197:1596–1904.
14. Karembe C, Imwong M, Fanello C, Stepinwiskia K, Uwimana A, Nakeesathit S, et al. Molecular correlates of high-level antifolate resistance in Rwandan children with Plasmodium falciparum malaria. Antimicrob Agents Chemother. 2010;54:477–83.
15. Kateera F, Nsobya SL, Tukwasibwe S, Hakizimana E, Mutesa L, Mens PF, et al. Molecular surveillance of Plasmodium falciparum populations from southwest Uganda. J Infect Dis. 2008;197:1596–1904.
16. Lynch CA, Cook J, Nanyunja S, Bruce J, Bhaisri A, Drakeley C, et al. Application of serological tools and spatial analysis to investigate malaria transmission dynamics in highland areas of Southwest Uganda. Am J Trop Med Hyg. 2016;94:1251–8.
17. Roper C, Pearce R, Bredenkamp B, Gumedze J, Drakeley C, Mosha F, et al. Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet. 2003;361:1174–81.
18. Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M, Newton PN, et al. A selective sweep driven by pyrimethamine treatment in Southeast Asian malaria parasites. Mol Biol Evol. 2003;20:1526–36.
19. Karembe C, Aregawi MW, Rukundo A, Kabayiza A, Mulindahabi M, Fall IS, et al. Trends in malaria cases, hospital admissions and deaths following scale-up of anti-malarial interventions, 2000–2010, Rwanda. Malar J. 2012;11:236.
20. Lynch CA, Bruce J, Bhasin A, Roper C, Cox J, Abeku TA. Association between recent internal travel and malaria in Ugandan highland and highland fringe areas. Trop Med Int Health. 2015;20:773–80.

21. Lynch C, Roper C. The transit phase of migration: circulation of malaria and its multidrug-resistant forms in Africa. PLoS Med. 2011;8:e1001040.

22. Nair S, Miller B, Barends M, Jaidee A, Patel J, Mayxay M, et al. Adaptive copy number evolution in malaria parasites. PLoS Genet. 2008;4:e1000243.

23. Ravenhall M, Benavente ED, Mipando M, Jensen ATR, Sutherland CJ, Roper C, et al. Characterizing the impact of sustained sulfadoxine/pyrimethamine use upon the Plasmodium falciparum population in Malawi. Malar J BioMed Central. 2016;15:575.

24. Cox J, Craig M, Le Sueur D, Sharp B. Mapping malaria risk in the highlands of Africa. MARA/HIMAL Technical Report. 1999. https://idlibnrc.idrc.ca/dspace/bitstream/10625/31899/1/117291.pdf. Accessed 20 Nov 2016.

25. Nanyunja M, Nabyonga Orem J, Kato F, Kaggwa M, Katureebe C, Saweke J. Malaria treatment policy change and implementation: the case of Uganda. Malar Res Treat. 2011;2011:683167. doi:10.4061/2011/683167.

26. Otten M, Aregawi M, Were W, Karema C, Medin A, Bekele W, et al. Initial evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J. 2009;8:14.

27. NEPAD. Infrastructure development: within the context of Africa’s cooperation with new and emerging development partners. New York: Office of the Special Adviser on Africa (OSAA); 2011.

28. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.