RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

Kyounghee Lee¹, Ok-Sun Park², and Pil Joon Seo¹²*

Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the cellular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.

INTRODUCTION

Plant somatic cells can undergo dedifferentiation processes to give rise to pluripotent cell masses, called calli. The dedifferentiated cells are able to regenerate new organs or whole plants (Sugimoto et al., 2010). The remarkable plasticity of cellular differentiation allows plants to optimize their growth and development in response to environmental stimuli and thus overcome their sessile nature (Grail and Barak, 2015).

Several genetic pathways are associated with the cellular dedifferentiation process. Consistent with the observations that two growth promoting hormones, auxin and cytokinin, stimulate callus formation (Ikeuchi et al., 2013), hormone signaling pathways are implicated in cellular dedifferentiation. In particular, the AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 proteins regulate several members of the LATERAL ORGAN BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES2-LIKE proteins, including LBD16, LBD17, LBD18, and LBD29, to promote auxin-induced callus formation (Fan et al., 2012; Okushima et al., 2007). In parallel with auxin signaling, cytokinin-responsive type-B ARABIDOPSIS RESPONSE REGULATORS (ARRs) also positively regulate callus formation (Mason et al., 2005).

Reacquisition of cell proliferative activity is an important feature of callus formation, and the hormone signaling pathways are consistently integrated into the cell cycle program. LBD proteins control the E2 PROMOTER BINDING FACTOR a (E2Fa) transcription factor that promotes DNA replication together with DIMERIZATION PARTNER (DP) (Berckmans et al., 2011). Accordingly, overexpression of E2Fa contributes to callus formation in some plant species (Kosugi and Ohashi, 2003). Furthermore, auxin-regulated PROPRORZ1 (PRZ1) suppresses KIP-RELATED PROTEIN (KRP) genes encoding cyclin-dependent kinase (CDK) inhibitors (Sieberer et al., 2003), influencing callus formation. In addition to the auxin signaling pathways, type-B ARRs may also promote the cell cycle by activating cyclins, such as CYCD3;1 (Argyros et al., 2008). Two APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factors, ENHANCED SHOOT REGENERATION 1 (ESR1) and ESR2, are involved in cytokinin-dependent callus formation by activating CYCD1;1 and CYCD3;1 (Ikeda et al., 2006; Ikeuchi et al., 2013).

Embryonic or meristematic regulators are also involved in callus formation. Ectopic expression of a transcriptional activator of embryogenesis, such as LEAFY COTYLEDON 1 (LEC1), LEC2, or AGAMOUS-LIKE 15 (AGL15), results in embryonic callus formation from somatic cells even on a hormone-free medium (Gaj et al., 2005; Guo et al., 2013; Harding et al., 2003; Thakare et al., 2008). AP2/ERF transcription factors involved in embryo development, including BABY BOOM (BBM) and EMBRYOMAKER (EMK)/AINTEGUMENTA-LIKE5 (AIL5)/PLETHORA5 (PLT5), also participate in cellular dedifferentiation (Boutilier et al., 2002; Tsuwan moto et al., 2010). In addition, the homeodomain-containing transcription factor WUSCHEL (WUS), a key regulator of meristem homeostasis, plays a role in callus induction (Zuo et al., 2002).
Notably, the callus has organized structures that resemble lateral root primordia (Sugimoto et al., 2010). Transcriptome analysis indicates that gene expression profiles of the callus tissues are similar to those of lateral root meristem (Sugimoto et al., 2010). Although root developmental pathways are unequivocally associated with cellular dedifferentiation, leaf explants can be used for in vitro callus formation. Therefore, genome-wide massive reprogramming of gene expression is required for callus formation from leaf explants (He et al., 2012), although the molecular basis of the acquisition of pluripotency in leaves remains to be fully elucidated. Here, we performed transcriptional profiling using high-throughput next-generation sequencing (RNA-Seq) to highlight genes that are differentially regulated in leaves and leaf explant-derived calli. Multiple pathways were massively interconnected in the cellular dedifferentiation process, and we confirmed the biological relevance of selected biological processes. Our study provides biological insight into the intricate molecular signaling networks underlying the cellular dedifferentiation process in Arabidopsis.

MATERIALS AND METHODS

Plant materials and growth conditions

Arabidopsis thaliana (Columbia-0) seeds were germinated on Murashige and Skoog (MS) medium at 22-23°C with a 16-h light/8-h dark photoperiod. The toc1-3 (SALK_203853) (Lee et al., 2016) and Qhai1-1 and Qabi2-2 (Rodrigues et al., 2013) mutants were previously reported.

For callus induction, leaf explants of two-week-old plants were placed on callus-inducing medium (CIM) (B5 medium supplemented with 0.5 μg/ml 2,4-dichlorophenoxyacetic acid [2,4-D] and 0.05 μg/ml kinetin), followed by incubation at 22°C in the dark for 2 weeks (Fan et al., 2012). To determine the effects of paclobutrazol (PAC) and brassinolide (BL) on callus formation, the cellular dedifferentiation process in Arabidopsis.

Quantitative real-time RT-PCR analysis

Total RNA was extracted using TRI agent (TAKARA Bio, Japan) according to the manufacturer’s recommendations. Reverse transcription (RT) was performed using Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase (Dr. Protein, Korea) with oligo (dT18) to synthesize first-strand cDNA from 2 μg of total RNA. Total RNA samples were pretreated with an RNase-free DNase. CDNs were diluted to 100 μl with TE buffer, and 1 μl of diluted cDNA was used for PCR amplification.

Quantitative RT-qPCR reactions were performed in 96-well blocks using the Step-One Plus Real-Time PCR System (Applied Biosystems). The PCR primers used are listed in Supplementary Table 1. The values for each set of primers were normalized relative to EUKARYOTIC TRANSLATION INITIATION FACTOR 4A1 (eIF4A) (At4g19390) levels. All RT-qPCR reactions were performed in triplicate using total RNA samples extracted from three independent biological replicates. A comparative ∆∆CT method was employed to evaluate relative quantities of each amplified product in the samples. The threshold cycle (Ct) was automatically determined for each reaction using the instrument software with default parameters. The specificity of each RT-qPCR reaction was determined by melting curve analysis of the amplified products using the standard method installed in the system.

mRNA-Seq data

To construct RNA libraries with the TruSeq RNA library kit, 1 μg of total RNA was used. The procedure included polyA-selected RNA extraction, RNA fragmentation, random hexamer primed reverse transcription, and 100-nt paired-end sequencing by Illumina HiSeq2000. Libraries were quantified using qPCR according to the qPCR Quantification Protocol Guide and qualified using an Agilent Technologies 2100 Bioanalyzer.

To estimate expression levels, the RNA-Seq reads were mapped to the Arabidopsis reference genome (ftp://ftp.arabidopsis.org/home/tair) using TopHat (Trapnell et al., 2009), which is capable of reporting split-read alignments across splice junctions. Transcript counts were calculated, and the relative transcript abundances were measured in FPKM (Fragment Per Kilobase of exon per Million fragments mapped) using Cufflinks.

Statistical analysis of gene expression levels

Raw data were calculated as the FPKM of each transcript in each sample using cufflinks software. We excluded transcripts with zeroed FPKM values of more than one for total samples. We added 1 to FPKM values of filtered transcripts to facilitate log2 transformation. Filtered data were transformed logarithmically and normalized using a quantile normalization method. For each transcript, we calculated fold change between case and control. Differentially expressed transcripts were determined by adjusting fold change ≥2 of more than at least one of total comparisons.

Gene ontology (GO) term enrichment analysis

Gene functional annotation analysis for DEG list was performed using the DAVID tool (http://david.abcc.ncifcrf.gov/) (Huang et al., 2009) to understand the biological meanings behind a large list of genes. The DAVID tool provides functional annotation in over 40 annotation categories, including GO terms, protein-protein interactions, protein functional domains, disease associations, bio-pathways, sequence general features, homologies, gene functional summaries, gene tissue expressions, and literature. In the DAVID annotation system, a modified Fisher Exact p value (EASE score) is adopted to measure gene enrichment in annotation terms. If the EASE Score is lower than 0.05 for the specific GO-term, we interpret that the given gene list is specifically associated with the GO term rather than being due to random chance. All data analysis and visualization of differentially expressed genes were conducted using R 3.1.2 software (www.r-project.org).

Immunoblot analysis

Harvested plant materials were ground in liquid nitrogen, and total cellular extracts were suspended in sodium dodecyl sulfate-polycrylamide gel electrophoresis (SDS-PAGE) sample loading buffer. Protein samples were analyzed using SDS-PAGE (10% gels) and blotted onto Hybond-P membranes (Amersham-Pharmacia). Proteins were immunologically detected using anti-H3K4me3 or anti- H3K36me3 antibodies (Millipore, USA).

RESULTS AND DISCUSSION

Validation of RNA-Seq analysis

To identify the transcriptional networks controlled during the cellular dedifferentiation process, we compared the transcriptomic profiles of 3° leaves of two-week-old wild-type plants and leaf explant-derived calli using genome-wide RNA sequencing (RNA-Seq) (Fig. 1A). RNA was isolated from a pooled callus sample rather than from biological replicates, which is similar to the
We found 5,708 up-regulated and 4,697 down-regulated genes in calli relative to leave tissues (> two-fold change in expression) (Supplementary Tables 3 and 4). These genes were divided into two groups using a hierarchical clustering algorithm (Fig. 1B). Among the genes differentially expressed, well-known positive regulators of callus formation, such as AGL15, ARF19, EMK/AIL5/PLT5, LBD18 and RESPONSE REGULATOR 1 (RR1) (Fan et al., 2012; Sakai et al., 2001; Thakare et al., 2008; Tsuwamoto et al., 2010), were included (Supplementary Table 5), supporting the reliability of our analysis.

To validate the gene expression profiles revealed by RNA-Seq analysis, we performed quantitative real-time RT-PCR (RT-qPCR) analysis and examined transcript accumulation of 10 randomly selected genes: AT1G01060, AT2G43010, AT2G45420, AT2G46830, AT3G20810, AT4G20400, AT4G25470, AT4G33470, AT4G37650, and AT5G13790 (Supplementary Tables 3 and 4). As expected, all genes examined were significantly and differentially expressed in calli (Supplementary Fig. 1), which is highly consistent with our estimates using RNA-Seq data.

Various biological processes involved in callus formation

The global transcriptome changes in callus samples were further categorized based on their GO that suggest predicted or experimentally defined biological processes, molecular functions, and cellular components. Functional categorization of differentially regulated genes revealed that a wide variety of biological processes are associated with cellular reprogramming. In particular, functional annotations were highly enriched for functions related to protein metabolism and plant responses to biotic and abiotic stresses (Fig. 2A). Molecular functions were also widely distributed with particular enrichment related to biological macromolecule binding and transferase activity (Fig. 2B). While cellular component is largely a prediction, enriched cellular component terms included categories related to nucleus and chloroplast (Fig. 2C). Since leaf characteristics disappear during callus formation, it seems supportive of our analysis. Because biological process categories are typically derived empirically and thus tend to be more stringent, we focused on biological functions enriched in calli to understand the molecular mechanism underlying cellular dedifferentiation.

Leaf development

Although callus formation is known to follow lateral root developmental programs (Sugimoto et al., 2010), pluripotent cells can also be produced from aerial explants. Reactivation of root developmental pathways and/or genetic elimination of aerial features may accompany cellular dedifferentiation from leaf somatic cells. In support of this, the core components of Polycomb Repressive Complex 2 (PRC2), including CURLY LEAF (CLF) and SWINGER (SWN) that catalyze histone H3 lysine 27 trimethylation (H3K27me3) during callus formation, seem to be involved in suppressing leaf characteristics, contribute to stimulating callus formation from leaf explants (He et al., 2012).

We found 149 genes involved in leaf development were down-regulated in calli compared with leaves (Supplementary Table 6). In particular, predominant members of key transcription factor families involved in leaf development were included, including TEOSINTE BRANCHED1, CYCLOIDEA, AND PCF (TCP), BEL1-LIKE HOMEO DOMAIN (BLH), and NGATHA (NGA) (Kumar et al., 2007; Nag et al., 2009; Trigueros et al., 2009). The Arabidopsis genome contains 13 class I and 11 class II TCP genes (Koyama et al., 2010; Tao et al., 2013). Consistent with the fact that the class II members have been characterized as major regulators of leaf development (Tao et al., 2013), expression levels of TCP2, TCP3, TCP4, and TCP10 genes were reduced in calli (Table 1 and Supplementary Table 6). In addition, BLH2/SAWTOOTH1 (SAW1) and BLH4/SAW2, which establish shoot architecture together with SHOOTERISTERLESS (STM) and BREVIPEDICELLUS (BP) (Kumar et al., 2007), were also down-regulated (Table 1 and Supplementary Table 6). NGA transcription factors are also implicated in leaf development, as shown in quadruple nga1 nga2 nga3 nga4 mutants that display abnormal leaf development (Trigueros et al., 2009), and accordingly, the NGA2 and NGA3 genes were significantly repressed in calli (Table 1 and Supplementary Table 6).
Transcriptional Profiling of Arabidopsis Calli
Kyounghee Lee et al.

Fig. 2. GO plant term enrichment. Genes differentially expressed in calli were categorized and annotated based on biological processes (A), molecular functions (B), and cellular components (C).

Supplementary Table 6).

In addition, a significant portion of genes related to leaf identity, lateral organ meristem establishment, chloroplast development, and photosynthesis was substantially repressed in calli (Supplementary Table 6). These results indicate that genetic components establishing leaf identity are suppressed during callus formation to turn off differentiated cell identity.

Circadian clock
The circadian clock generates the biological rhythm with a period of ~24 h, synchronizing internal processes with environmental cycles. Correct matching of the circadian period with external cues ensures plant fitness, and consistently, nearly all stages of plant development are under the control of the circadian clock (Yakir et al., 2007). Previous findings have shown that a biological rhythm retains in dedifferentiated Arabidopsis protoplast cells (Nakamichi et al., 2004), suggesting a possible role of the circadian clock in cellular differentiation and dedifferentiation.

We found that at least 138 circadian-related genes were differentially regulated in calli (Supplementary Table 7). Notably, many core clock oscillator components in multiple-interlocked circadian feedback loops, including CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1/ PSEUDO-RESPONSE REGULATOR 1 (TOC1/PRR1), EARLY FLOWERING 3 (ELF3), and ELF4, were included in the lists (Table 1 and Supplementary Table 7), supporting the requirements of endogenous circadian networks in the establishment and maintenance of pluripotency.

To estimate the relevance of circadian functions in cellular dedifferentiation, we employed a genetic mutant that harbors a defect in the core clock oscillator TOC1, the toc1-3 mutant, and compared its callus formation rate with wild-type. Callus formation was reduced when derived from toc1-3 mutant leaves (Fig. 3). Fresh weight measurements revealed that the toc1-3 mutant showed a 1.2-fold reduction in callus formation capability (Fig. 3). Considering that leaf explants were placed in darkness for 2 weeks to induce calli, it is unlikely that circadian oscillation persists over the period of cellular reprogramming. Instead of circadian fluctuations, clock-controlled signaling networks might be associated with robust callus formation.

Plant responses to biotic stress
Since plants are sessile organisms, they have evolved elaborate dedifferentiation abilities to ensure developmental plasticity. Biotic stress occasionally stimulates cell fate reprogramming. For instance, Agrobacterium tumefaciens causes crown gall tumor in a wide-range of host plants (Gohike and Deeken, 2014). Infection with Rhizobium meliloti also leads to cellular dedifferentiation in Medicago root cortical cells (Charon et al., 1997). A few genetic components responsible for biotic stress-induced cellular dedifferentiation have been identified. The wound-responsive AP2/ERF transcription factor WOUND-INDUCED DEDifferentiation 1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, are possible candidates for...
Table 1. Transcript profiles of key genes involved in selected biological processes. Genes differentially expressed in calli were functionally categorized according to gene ontology (GO) at Arabidopsis Information Resource. The key components of selected biological processes were shown to estimate their biological relevance. Genes were rank ordered in each category by fold change (FC) in expression.

Transcript	Description	Calli/Leaves (FC)
Leaf development		
AT4G18390.1	TEOSINTE BRANCHED 1, CYCLOIDEA AND PCF TRANSCRIPTION FACTOR 2 (TCP2)	-2.39
AT3G61970.1	NGATHA2 (NGA2)	-3.88
AT1G32320.1	TCP FAMILY TRANSCRIPTION FACTOR 3 (TCP3)	-4.28
AT1G01030.1	NGATHA3 (NGA3)	-5.29
AT3G15030.1	TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4)	-7.81
AT2G23760.1	BEL1-LIKE HOMEODOMAIN 4 (BLH4)	-10.58
AT4G88870.1	BEL1-LIKE HOMEODOMAIN 2 (BLH2)	-14.27
AT2G31070.1	TCP DOMAIN PROTEIN 10 (TCP10)	-30.50
Circadian clock		
AT5G61380.1	TIMING OF CAB EXPRESSION 1 (TOC1)	9.16
AT2G25930.1	EARLY FLOWERING 3 (ELF3)	3.64
AT2G40080.1	EARLY FLOWERING 4 (ELF4)	3.23
AT2G46830.1	CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1)	-18.11
AT1G01060.1	LATE ELONGATED HYPOCOTYL (LHY)	-25.42
Response to virus		
AT3G03300.2	DICER-LIKE 2 (DCL2)	2.67
AT2G27040.1	ARGONAUTE 4 (AGO4)	2.13
AT1G48410.2	ARGONAUTE 1 (AGO1)	2.12
Response to bacterium		
AT3G52430.1	PHYTOALEXIN DEFICIENT 4 (PAD4)	11.79
AT3G48090.1	ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)	8.15
AT4G31800.1	WRKY DNA-BINDING PROTEIN 18 (WRKY18)	7.14
AT5G45110.1	NPR1-LIKE PROTEIN 3 (NPR3)	7.03
AT3G56400.1	WRKY DNA-BINDING PROTEIN 70 (WRKY70)	4.23
AT5G65210.1	TGACG SEQUENCE-SPECIFIC BINDING PROTEIN 1 (TGA1)	3.05
AT2G25000.1	WRKY DNA-BINDING PROTEIN 60 (WRKY60)	2.55
AT4G31550.2	WRKY DNA-BINDING PROTEIN 11 (WRKY11)	2.29
AT2G24570.1	WRKY DNA-BINDING PROTEIN 17 (WRKY17)	2.24
AT4G23810.1	WRKY DNA-BINDING PROTEIN 53 (WRKY53)	2.20
AT1G22070.1	TGA1A-RELATED GENE 3 (TGA3)	2.02
Response to osmotic stress		
AT5G63650.1	SNF1-RELATED PROTEIN KINASE 2.5 (SNRK2.5)	37.84
AT5G66880.1	SNF1-RELATED PROTEIN KINASE 2.3 (SNRK2.3)	11.29
AT3G50500.1	SNF1-RELATED PROTEIN KINASE 2.2 (SNRK2.2)	7.84
AT1G49720.1	ABSICIC ACID RESPONSIVE ELEMENT-BINDING FACTOR 1 (ABF1)	5.19
AT5G59220.1	HIGHLY ABA-INDUCED PP2C GENE 1 (HA1)	3.58
AT4G33950.2	OPEN STOMATA 1 (OST1)	3.32
AT4G26080.1	ABA INSENSITIVE 1 (ABI1)	2.05
Response to oxidative stress		
AT1G08830.1	COPPER/ZINC SUPEROXIDE DISMUTASE 1 (CSD1)	4.97
AT2G48150.1	GLUTATHIONE PEROXIDASE 4 (GPX4)	4.74
AT2G43350.1	GLUTATHIONE PEROXIDASE 3 (GPX3)	3.88
AT1G20630.1	CATALASE 1 (CAT1)	3.72
AT1G63460.1	GLUTATHIONE PEROXIDASE 8 (GPX8)	3.57
AT4G11600.1	GLUTATHIONE PEROXIDASE 6 (GPX6)	2.38
AT3G10920.2	MANGANESE SUPEROXIDE DISMUTASE 1 (MSD1)	-2.00
AT4G35000.1	ASCORBATE PEROXIDASE 3 (APX3)	-2.17
AT2G23310.1	FE SUPEROXIDE DISMUTASE 3 (FSD3)	-2.20
AT4G32320.1	ASCORBATE PEROXIDASE 6 (APX6)	-3.13
AT1G07890.6	ASCORBATE PEROXIDASE 1 (APX1)	-3.19
AT5G18100.2	COPPER/ZINC SUPEROXIDE DISMUTASE 3 (CSD3)	-5.36
AT2G31570.1	GLUTATHIONE PEROXIDASE 2 (GPX2)	-6.78
AT4G25100.1	FE SUPEROXIDE DISMUTASE 1 (FSD1)	-7.89
AT2G25080.1	GLUTATHIONE PEROXIDASE 1 (GPX1)	-16.83
AT4G31870.1	GLUTATHIONE PEROXIDASE 7 (GPX7)	-17.40
AT4G35090.2	CATALASE 2 (CAT2)	-42.58
AT4G09010.1	ASCORBATE PEROXIDASE 4 (APX4)	-177.58

(continued)
the regulation of callus formation upon exposure to pathogens or herbivory (Iwase et al., 2011).

In addition to the biotic stress-stimulated cellular dedifferentiation process (Grafi, 2004), calli are known to retain a high protective ability against various microbial invaders, suggesting intimate bidirectional regulation. Our RNA-Seq analysis showed that pivotal defense genes were up-regulated in calli. RNA silencing is a representative antiviral defense mechanism in plants. DICER-LIKE (DCL) RNase III enzymes are primarily responsible for catalyzing RNA processing (Henderson et al., 2005). Small RNA duplexes are then incorporated into RNA-induced silencing complex (RISC) to target viral RNA for processing (Pumpholin and Voinnet, 2013). A central component of RISC complex is the ARGONAUTE (AGO) protein, and in Arabidopsis, ten AGO proteins (AGO1-AGO10) are possible candidates for RISC formation (Garcia-Ruiz et al., 2015). Our RNA-Seq analysis revealed that 60 virus-responsive genes, including DCL2, AGO1 and AGO4, showed higher expression in calli than in leaves (Table 1 and Supplementary Table 8).

Plants have also developed strong innate immunity against bacterial pathogens. As a first layer of defense, plants activate pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) upon recognition of PAMPs by the plant pattern recognition receptor (PPR) (Kim et al., 2008; Nicaise et al., 2009). Signaling cascades built-up with MITOGEN-ACTIVATED PROTEIN KINASEs (MAPKs), CALCIUM-DEPENDENT PROTEIN KINASEs (CDPKs), and WRKY transcription factors are subsequently activated (Eulgem and Somssich, 2007; Rasmussen et al., 2012). In addition, plants have a second barrier to pathogen invasion, which stimulates effector-triggered immunity (ETI). Pathogen effector molecules are sensed by various plant resistance (R) proteins, and the recognition triggers hypersensitive response (HR) and systemic acquired resistance (SAR) mediated by SA biosynthesis (Dempsey et al., 2011). Notably, 76 bacterial-responsive genes that mediate PTI and/or ETI, such as WRKY11, WRKY17, WRKY18, WRKY35, WRKY60, WRKY70, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), and PHYTOALEXIN DEFICIENT 4 (PAD4), were up-regulated in calli (Table 1 and Supplementary Table 9). Accordingly, SA signaling genes, such as TGACG SEQUENCE-SPECIFIC BINDING PROTEIN 1 (TGA1), TGA3, and NPR1-LIKE PROTEIN 3 (NPR3), were also influenced (Table 1 and Supplementary Table 9), possibly contributing to maintaining disease-free dedifferentiated cells.

Plant responses to abiotic stress

Environmental stress stimulates cellular dedifferentiation (Grafi et al., 2011). Transcriptome profiling has revealed that differentiated organs experiencing environmental challenges, such as drought and continuous dark, have gene expression profiles similar to those of dedifferentiated protoplast cells (Grafi et al., 2011). Consistently, stress-related genes form the molecular signature for pluripotent animal cells (Ramalho-Santos et al., 2002). These observations suggest that abiotic stress-responsive transcription factors may play a key role in cellular reprogramming. For example, the NAC DOMAIN-CONTAINING PROTEIN 2 (NAC2) transcription factor is not only responsive to abiotic stresses (Nuruzzaman et al., 2013) but also regulates meristem proliferation activity (Florentin et al., 2013). Thus, NAC2 acts with potential molecular crosstalk of abiotic stress and stem cell signaling and contributes to the reacquisition of stem cell fate in Arabidopsis somatic cells under unfavorable environmental conditions (Florentin et al., 2013).

We found that a significant number of abiotic stress- and/or abscisic acid (ABA)-responsive genes are differentially expressed in calli (Supplementary Table 10). Osmotic stress is largely dependent on ABA, and consistently, osmotic stress primarily influences genes encoding ABA sensory and up-regulation of transcriptional factors, such as NAC-domain proteins, which are involved in abiotic stress response. In addition, the regulation of callus formation upon exposure to pathogens or herbivory (Iwase et al., 2011).
stream components, such as REGULATORY COMPONENT OF ABA RECEPTORS (RCARs), Type 2C protein phosphatases (PP2Cs), SNF1-related protein kinase 2s (SnRK2s), and abscisic acid-responsive element-binding factors (ABFs) (Chan, 2012). Notably, 152 osmotic stress-response genes were up-regulated in calli (Supplementary Table 10), and most notably ABA-INSENSITIVE 1 (ABI1), ABA1, HIGHLY ABA-INDUCED1 (HAB1), and ABI1; Rodrigues et al., 2013) and Qabi2-2 (lacking ABI2, PP2CA, HAB1, and ABI1; Rodrigues et al., 2013), and induced callus formation on CIM. Both quadruple mutants exhibited decreased callus formation capability relative to wild-type plants (Fig. 4), indicating that ABA signaling homeostasis is necessary for proper callus formation. While further detailed analysis is required to unravel the underlying molecular mechanisms, ABA upstream regulators might play a role in switching cell fates under environmentally unfavorable conditions.

To address whether the ABA signaling genes are indeed involved in switching cell fates, we employed two quadruple mutants, Qha1-1 (lacking HAI1, PP2CA, HOMOLOGY TO ABI1 (HAB1), and ABI1; Rodrigues et al., 2013) and Qabi2-2 (lacking ABI2, PP2CA, HAB1, and ABI1; Rodrigues et al., 2013), and induced callus formation on CIM. Both quadruple mutants exhibited decreased callus formation capability relative to wild-type plants (Fig. 4), indicating that ABA signaling homeostasis is necessary for proper callus formation. While further detailed analysis is required to unravel the underlying molecular mechanisms, ABA upstream regulators might play a role in switching cell fates under environmentally unfavorable conditions.

Reactive oxygen species (ROS) are important signaling molecules in stress responses and cellular differentiation. In addition to their stress-responsive defense functions (Tsukagoshi et al., 2012), 152 osmotic stress-response genes were up-regulated in calli (Supplementary Table 10), and most notably ABA-INSENSITIVE 1 (ABI1), ABA1, HIGHLY ABA-INDUCED1 (HAB1), and ABI1; Rodrigues et al., 2013) and Qabi2-2 (lacking ABI2, PP2CA, HAB1, and ABI1; Rodrigues et al., 2013), and induced callus formation on CIM. Both quadruple mutants exhibited decreased callus formation capability relative to wild-type plants (Fig. 4), indicating that ABA signaling homeostasis is necessary for proper callus formation. While further detailed analysis is required to unravel the underlying molecular mechanisms, ABA upstream regulators might play a role in switching cell fates under environmentally unfavorable conditions. Furthermore, many peroxidase and reductase genes were also differentially regulated (Supplementary Table 11), supporting the importance of ROS homeostasis during cellular dedifferentiation.

While it seems clear that abiotic stress triggers cell fate changes, the molecular components responsible for the process are largely unknown. The genes that we proposed in this study might play a role as molecular linkers of stress-induced cellular dedifferentiation. Future studies will also provide biological insights as to why plants dedifferentiate in suboptimal conditions and how pluripotent cells improve plant adaptation ability to environmental challenges.

Carbohydrate metabolism

The plant cell wall is an important cellular structure that provides structural support and maintains cellular differentiation states (Keegstra, 2010). In support of this, treatments with cell wall-degrading enzymes produce dedifferentiated protoplast cells (Graf, 2004). Moreover, endo-1,4-β-d-glucanase KORRIGAN 1/TUMOROUS SHOOT DEVELOPMENT 1 (KOR1/TS1), which is involved in cellulose synthesis, also participates in the maintenance of somatic cell identity. The tsd1 loss-of-function mutants display callus-like structures with reduced cell wall formation on a hormone-free medium (Frank et al., 2002).

The plant cell wall is composed of cellulose, hemicellulose, lignin, and pectin. In particular, cellulose, a linear chain of β(1-4)-linked D-glucose, is the main component of the cell wall and comprises approximately 50% of the total cell wall mass (Endler and Persson, 2011). In Arabidopsis, 10 CELLULOSE SYNTHASE (CESA) proteins (CESA1-CESA10) are supposed to catalyze cellulose synthesis (Endler and Persson, 2011). Here, we found that 29 genes involved in polysaccharide metabolism, including CES2, CES4, and CES6, were down-regulated in calli (Table 1 and Supplementary Table 12). The genes encoding hemicellulose-metabolizing enzymes, such as xyloglucan endotransglycosylases/hydrolases (XTHs), were also included (Supplementary Table 12).

The storage polysaccharide starch is the energy source in plants (Kötting et al., 2005). Starch is converted into simple soluble sugars by the action of hydrolytic enzymes, such as amylases (Smith et al., 2005; Streb et al., 2012). In Arabidopsis, additional proteins that stimulate starch metabolism have been identified: α-GLUCAN WATER, DIKINASE STARCH EXCESS 1 (GWD1/SEX1) and PHOSPHOGLUCAN WATER DIKINASE (PWD), which phosphorylate C6 and C3-position of glucosyl residues, respectively, catalyze starch hydrolysis (Santelia et al., 2011). Notably, ISOAMYLASE 3 (ISA3), GWD1, and...
PWD were up-regulated in calli (Table 1 and Supplementary Table 12), whereas many starch synthase genes were repressed (Supplementary Table 12). These results suggest that active cell proliferation requires a sufficient energy supply (Narbonne and Roy, 2006; Skylar et al., 2011), and simple sugar production might drive the cellular dedifferentiation process.

Hormone signaling

Two phytohormones, auxin and cytokinin, play a crucial role in cellular dedifferentiation in a variety of plant species. Since the coordinated actions of phytohormones are important for various aspects of plant growth and development (Vanstraelen and Benková, 2012), we hypothesized that additional hormones, such as ABA, gibberellin (GA), ethylene (ET), brassinosteroid (BR), jasmonic acid (JA), and salicylic acid (SA), may be implicated in callus formation.

Our RNA-Seq analysis revealed that differential expression of GA and BR signaling components in calli were noticeable. In particular, 22 GA-related genes, which encode GA metabolic enzymes, GA receptors, and DELLA proteins, were differentially regulated in calli (Table 1 and Supplementary Table 13). Considering that GA shows a functional overlap with auxin in plant growth and development (Fu and Harberd, 2003), crosstalk between GA and auxin may underlie the cellular dedifferentiation process. To prove this hypothesis, we employed a potent chemical inhibitor of GA biosynthesis, PAC, and examined its effects on callus formation capability. Treatment with PAC resulted in significant reduction in callus formation ability, which reaches up to approximately 70%, supporting a positive function of GA in cellular dedifferentiation (Fig. 5A).

The plant steroid hormone BR is closely associated with the processes of cell proliferation and differentiation (González-Garcia et al., 2011). The BR biosynthetic gene _DWARF7_ deficient _dwarf7-1_ mutant consistently displays reduced callus formation, possibly due to reduced cell division (Cheon et al., 2010). Our analysis further supported the previous reports. BR signalling genes, including _BRASSINOSTEROID INSENSITIVE 1_ (BRI1) and _BRI1-ASSOCIATED RECEPTOR KINASE1_ (BAK1), were up-regulated in calli (Table 1 and Supplementary Table 14). In addition, we also noticed that several key BR signaling genes, including _BR1-EMS-SUPPRESSOR 1_ (BES1) and _BR1 SUPPRESSOR 1_ (BRS1), were repressed in calli (Supplementary Table 14). Consistent with the controversial results, opposite effects of BR on callus formation were observed depending on BL concentrations applied. Callus formation was stimulated by low concentration of BL, but inhibited at higher concentration (Fig. 5B). Different modes of BR actions would underlie the balanced cellular reprogramming. Collectively, these results indicate that additional hormones play a supplemental role in inducing callus formation.

Chromatin organization

Chromatin structure determines gene expression by regulating the accessibility of transcriptional machinery. In higher eukaryotes, global gene expression changes facilitated by epigenetic regulation are associated with cellular differentiation status. For instance, in mammals, differentiated cells have a closed chromatin state, whereas pluripotent dedifferentiated cells have an open chromatin state (Gaspar-Maia et al., 2011).

Genome-wide reorganization of chromatin structure is also crucial for cellular dedifferentiation in plants. The PRC2 and PRC1 complexes coordinate establishment and maintenance of repressive histone mark H3K27me3 to control cellular differentiation (Lafos et al., 2011). Mutations in PRC2 or PRC1 components lead to spontaneous callus formation from root explants with ectopic expression of _LEC1, LEC2, AGL15, BBM, WUS_, and _WUSCHEL RELATED HOMEOBOX 5_ (WOX5) (Bouyer et al., 2011; Bratzel et al., 2010; Chén et al., 2010).

While H3K27 methylation is involved in callus formation, the relevance of other histone marks in this process remains to be fully elucidated. The activation histone marks, H3K4me2/3 and H3K36me2/3, are associated with higher gene expression (Guo et al., 2010; Yang et al., 2012), and the TRITHORAX GROUP (TrxG) and ABSENT, SMALL OR HOMEOPTIC DISCS 1 (ASH1) proteins are responsible for the establishment of the activation marks (He et al., 2013). The Arabidopsis genome...
A part of a Coomassie blue-stained gel (C) is shown as a loading control (left panels). Bands from three blots were quantified and averaged using Image J software. Bars indicate the standard error of the mean. Statistically significant differences between values of leaf and other vegetative tissue samples were indicated by asterisks (Student’s t-test, *P< 0.05) (right panels).

Fig. 6. Total H3K4me3 and H3K36me3 levels in calli. Leaf explants from third-leaves of two-week-old wild-type plants were used to induce calli on CIM. H3K4me3 (A) and H3K36me3 (B) levels (arrowheads in each) were detected immunologically using the corresponding antibodies. A part of a Coomassie blue-stained gel (C) is shown as a loading control (left panels). Bands from three blots were quantified and averaged using Image J software. Bars indicate the standard error of the mean. Statistically significant differences between values of leaf and other vegetative tissue samples are indicated by asterisks (Student’s t-test, *P< 0.05) (right panels).

The activation marks established by TrxG and ASH1 counteract, in general, polycomb group (PoG) repression. Given the roles of PoG in cellular dedifferentiation in plants (Bouyer et al., 2011; Bratzel et al., 2010; Chen et al., 2010), it seems meaningful that TrxG functions also underlie the process. In addition, considering the large number of chromatin remodeling genes differentially regulated in calli (Supplementary Table 15), epigenetic regulation is a key regulatory layer for cellular dedifferentiation.

In conclusion, by comparing RNA-Seq read count, we assessed the relative accumulation of RNAs present in the leaf and callus and studied the molecular processes controlling cellular dedifferentiation. We found and confirmed that a variety of biological processes are engaged during callus formation. In particular, molecular components related to shoot development, circadian clock regulation, biotic and abiotic stress responses, nutrient metabolism, and chromatin modification are possibly associated. These results demonstrate the complexity of cellular reprogramming and that the multiple pathways are integrated to facilitate callus formation. Here, we provide valuable initial resources for investigating cellular dedifferentiation in many crop plants and pave the way for improving crop transformation efficiency for genetic engineering.

Note: Supplementary information is available on the Molecules and Cells website (www.molcells.org).

ACKNOWLEDGMENTS
We would like to thank Dr. Elena Baena-González at Instituto Gulbenkian de Ciência (Oeiras, Portugal) for kindly providing Qhal1-1 and Qabi2-2 seeds. This work was supported by the Next-Generation BioGreen 21 Program (PJ01119204) provided by the Rural Development Administration. K.L. was supported by the BK21 PLUS program in the Department of Bioactive Material Sciences.

REFERENCES

Argyros, R.D., Mathews, D.E., Chiang, Y.H., Palmer, C.M., Thibault, D.M., Etheridge, N., Argyros, D.A., Mason, M.G., Kieber, J.J., and Schaller, G.E. (2006). Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20, 2102-2116.

Bouyer, D., Roudier, F., Heese, M., Andersen, E.D., Gey, D., Berckmans, B., Vassileva, V., Maes, S., Parizot, B., Naramoto, S., Maygar, Z., Alvim Kamei, C.L., Koncz, C., Bögre, L., et al. (2011). Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23, 3671-3683.

Berr, A., Xu, L., Gao, J., Cognat, V., Steinmetz, A., Dong, A., and Shen, W.H. (2009). SET DOMAIN GROUP26 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant Physiol. 151, 1476-1485.

Boulter, K., Offringa, R., Sharma, V.K., Kieft, H., Quetsel, T., Zhang, L., Hattori, J., Liun, C.M., van Lammeren, A.A., Miki, B.L., et al. (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 1737-1749.

Bouyer, D., Roudier, F., Heese, M., Andersen, E.D., Gey, D., Nowack, M.K., Goodrich, J., Renou, J.P., Grini, P.E., Colot, V., et al. (2011). Polycomb repressive complex 2 controls the embryo-seeding phase transition. PLoS Genet. 7, e1002014.

Bratzel, F., López-Torrejón, G., Koch, M., Del Pozo, J.C., and Calonje, M. (2010). Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr. Biol. 20, 1853-1859.

Caverzan, A., Passaia, G., Rosa, S.B., Ribeiro, C.W., Lazzarotto, F., and Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35, 1011-1019.

Chan, Z. (2012). Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100, 110-115.

Charon, C., Johansson, K., Kondorosi, E., Kondorosi, A., and Crespi, M. (1997). ENOD40 induces dedifferentiation and division of root cortical cells in legumes. Proc. Natl. Acad. Sci. USA 94, 8901-8906.

Chen, D., Molltor, A., Liu, C., and Shen, W.H. (2010). The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res. 20, 1332-1344.

Cheon, J., Park, S.Y., Schulz, B., and Choe, S. (2010). Arabidopsis brassinosteroid biosynthetic mutant dwarf-7 exhibits slower rates of cell division and shoot induction. BMC Plant Biol. 10, 270.

Cut, K., Li, J., Xing, G., Li, J., Wang, L., and Wang, Y. (2002). Effect of hydrogen peroxide on synthesis of proteins during somatic embryogenesis in Lycium barbarum. Plant Cell Tissue Organ Cult. 68, 187-193.
Dempsey, D.A., Viot, A.C., Wildermuth, M.C., and Klessig, D.F. (2011). Salicylic Acid biosynthesis and metabolism. Arabidopsis Book 9, e0156.

Endler, A., and Persson, S. (2011). Cellulose synthases and synthesis in Arabidopsis. Mol. Plant 4, 199-211.

Eulgem, T., and Somssich, I.E. (2007). Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10, 366-371.

Fan, M., Xu, C., Xu, K., and Hu, Y. (2012). LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 22, 1169-1180.

Fleming, A., Dami, M., and Grafi, G. (2013). Stress induces plant somatic cells to acquire some features of stem cells accompanied by selective chromatin reorganization. Dev. Dyn. 242, 1121-1133.

Frank, M., Guivarc'h, A., Krupková, E., Lorenz-Meyer, I., Chriqui, D., Florentin, A., Damri, M., and Grafi, G. (2013). Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant Physiol. 162, 107-114.

Ikeda, Y., Banno, H., Niu, Q.W., Howell, S.H., and Chua, N.H. (2006). The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol. 47, 1443-1451.

Ikeuchi, M., Sugimoto, K., and Iwase, A. (2013). Plant callus: mechanisms of induction and repression. Plant Cell 25, 3159-3173.

Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M., Sakakibara, H., Sugimoto, K., et al. (2011). The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 21, 508-514.

Keeegstra, K. (2010). Plant cell walls. Plant Physiol. 154, 483-486.

Kim, M.G., Kim, S.Y., Kim, W.Y., Mackay, D., and Lee, S.Y. (2008). Responses of Arabidopsis thaliana to challenge by Pseudomonas syringae. Mol. Cells 25, 323-331.

Kosugi, S., and Ohashi, Y. (2003). Constitutive E2F expression in tobacco plants exhibits altered cell cycle control and morphological change in a cell type-specific manner. Plant Physiol. 132, 2122-2129.

Kötting, O., Pusch, K., Tiessen, A., Geigenberger, P., Steup, M., and Ritte, G. (2005). Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphogluconate, water dikinase. Plant Physiol. 137, 242-252.

Koyama, T., Mitsuda, N., Shi, Y., Shimokawa, K., and Ohme-Takagi, M. (2010). TCP transcription factors regulate the activity of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22, 3574-3588.

Kumar, R., Kushalappa, K., Gott, D., Pitchkowich, M.S., Pastorelli, S., Wespertor, S.H., and Haughn, G.W. (2007). The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. Plant Cell 19, 2710-2727.

Lafos, M., Kroll, P., Hohenstatt, M.L., Thorpe, F.L., Clarens, O., and Schubert, D. (2011). Dynamic regulation of H3K27 methylation during Arabidopsis differentiation. PLoS Genet. 7, e1002040.

Lee, H.G., Mas, P., and Seo, P.J. (2016). MYB96 shapes the circadian gating of ABA signaling in Arabidopsis. Sci. Rep. 6, 17754.

Mason, M.G., Mathews, D.E., Argyros, D.A., Maxwell, B.B., Kieber, J.J., Alonso, J.M., Ecker, J.R., and Schaller, G.E. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17, 3007-3018.

Nag, A., King, S., and Jack, T. (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 22534-22539.

Nakamichi, N., Ito, S., Oyama, T., Yamashino, T., Kondo, T., and Mizuno, T. (2004). Characterization of plant circadian rhythms by employing Arabidopsis T-DNA tagged mutants with bioluminescence reporters. Plant Cell Physiol. 45, 57-67.

Narbonne, P., and Schumaker, J.A. (2009). Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol. 150, 1638-1647.

Niederhut, C.E., Patharkar, O.R., and Walker, J.C. (2013). Transcriptional profiling of the Arabidopsis abscisic acid biosynthesis mutant hae3 by RNA-Seq. BMC Genomics 14, 37.

Nuruzzaman, M., Sharoni, A.M., and Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 4, 248.

Okushima, Y., Fukaki, H., Ohme-Takagi, M.G., Lowery, N., et al. (2015). Roles and programming of ARGONAUTE proteins during Tussip mosaic virus infection. PLoS Pathog. 11, e1004755.

Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M. (2000). Partially redundant functions of AGAMOUS-LIKE 15 and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 10, 366-371.
Melton, D.A. (2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597-600.
Rasmussen, M.W., Roux, M., Petersen, M., and Mundy, J. (2012). MAP kinase cascades in Arabidopsis innate immunity. Front. Plant Sci. 3, 169.
Rodrigues, A., Adamo, M., Crozet, P., Margalha, L., Confraria, A., Martinho, C., Elias, A., Rabissi, A., Lumbrares, V., González-Guzmán, M., et al. (2013). AB1 and PP2CA phosphatases are negative regulators of SNF1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25, 3871-3884.
Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., Tabata, S., and Oka, A. (2001). ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294, 1519-1521.
Santelia, D., Kötting, O., Seung, D., Schubert, M., Thalmann, M., Bischof, S., Meekins, D.A., Lutz, A., Patron, N., Gentry, M.S., et al. (2011). The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis. Plant Cell 23, 4096-4111.
Sieberer, T., Hauser, M.T., Seifert, G.J., and Luschnig, C. (2003). PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr. Biol. 13, 837-842.
Skylar, A., Sung, F., Hong, F., Chory, J., and Wu, X. (2011). Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev. Biol. 351, 82-89.
Smith, A.M., Zeeman, S.C., and Smith, S.M. (2005). Starch degradation. Annu. Rev. Plant Biol. 56, 73-98.
Streb, S., Eicke, S., and Zeeman, S.C. (2012). The simultaneous abolition of three starch hydrolases blocks transient starch breakdown in Arabidopsis. J. Biol. Chem. 287, 41745-41756.
Tao, Q., Guo, D., Wei, B., Zhang, F., Pang, C., Jiang, H., Zhang, J., Wei, T., Gu, H., Qu, L.J., et al. (2013). The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED coexpressers and modulates leaf development in Arabidopsis. Plant Cell 25, 421-437.
Thakare, D., Tang, W., Hill, K., and Perry SE. (2008). The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol. 146, 1663-1672.
Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111.
Trigueros, M., Navarrete-Gómez, M., Sato, S., Christensen, S.K., Pelaz, S., Weigel, D., Yanofsky, M.F., and Ferrándiz, C. (2009). The NGATHA genes direct style development in the Arabidopsis gynoeclium. Plant Cell 21, 1394-1409.
Tsuakagoshi, H., Busch, W., and Bentley, P.N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143, 606-616.
Tsurwamoto, R., Yokoi, S., and Takahata, Y. (2010). Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol. Biol. 73, 481-492.
Vanstraelen, M., and Benková, E. (2012). Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 28, 463-487.
Xing, Y., Jia, W., and Zhang, J. (2007). ATMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J. Exp. Bot. 58, 2969-2981.
Xing, Y., Cao, Q., Zhang, Q., Qin, L., Jia, W., and Zhang, J. (2013). MKK5 regulates high light-induced gene expression of Cu/Zn superoxide dismutase 1 and 2 in Arabidopsis. Plant Cell Physiol. 54, 1217-1227.
Yakir, E., Hilman, D., Harir, Y., and Green, R.M. (2007). Regulation of output from the plant circadian clock. FEBS J. 274, 335-345.
Yang, H., Mo, H., Fan, D., Cao, Y., Cui, S., and Ma, L. (2012). Overexpression of a histone H3K4 demethylase, JM15, accelerates flowering time in Arabidopsis. Plant Cell Rep. 31, 1297-1308.
Zuo, J., Niu, Q.W., Frugis, G., and Chua, N.H. (2002). The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349-359.