Supplemental information

Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records

Kendra Albert and Maggie Delano
A LIST OF MEDICAL MACHINE LEARNING PAPERS REVIEWED

Ancochea, J., Izquierdo, J. L., and Soriano, J. B. (2021). Evidence of Gender Differences in the Diagnosis and Management of Coronavirus Disease 2019 Patients: An Analysis of Electronic Health Records Using Natural Language Processing and Machine Learning. *Journal of Women’s Health*, 30(3):393–404.

Anderson, J. P., Parikh, J. R., Shenfeld, D. K., Ivanov, V., Marks, C., Church, B. W., Laramie, J. M., Mardekin, J., Piper, B. A., Willke, R. J., and Rublee, D. A. (2016). Reverse Engineering and Evaluation of Prediction Models for Progression to Type 2 Diabetes: An Application of Machine Learning Using Electronic Health Records. *Journal of Diabetes Science and Technology*, 10(1):6–18.

Barak-Corren, Y., Castro, V. M., Javitt, S., Hoffnagle, A. G., Dai, Y., Perlis, R. H., Nock, M. K., Smoller, J. W., and Reis, B. Y. (2017). Predicting Suicidal Behavior From Longitudinal Electronic Health Records. *American Journal of Psychiatry*, 174(2):154–162.

Carson, N. J., Mullin, B., Sanchez, M. J., Lu, F., Yang, K., Menezes, M., and Cook, B. L. (2016). Identification of suicidal behavior among psychiatically hospitalized adolescents using natural language processing and machine learning of electronic health records. *PLOS ONE*, 14(2):e0211116.

Davoudi, A., Ozrazgat-Baslanti, T., Ebadi, A., Bursian, A. C., Bihorac, A., and Rashidi, P. (2017). Delirium Prediction using Machine Learning Models on Predictive Electronic Health Records Data. In *2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)*, pages 568–573.

Desautels, T., Calvert, J., Hoffman, J., Jay, M., Kerem, Y., Shieh, L., Shimabukuro, D., Chettipally, U., Feldman, M. D., Barton, C., Wales, D. J., and Das, R. (2016). Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach. *JMIR Medical Informatics*, 4(3):e28.

Edgcomb, J. B., Thiruvalluru, R., Pathak, J., and Brooks, J. O. (2021). Machine Learning to Differentiate Risk of Suicide Attempt and Self-harm After General Medical Hospitalization of Women With Mental Illness. *Medical Care*, 59:S58–S64.

Eugene, A. R., Masiak, J., and Eugene, B. (2018). Predicting lithium treatment response in bipolar patients using gender-specific gene expression biomarkers and machine learning. *F1000Research*, 7:474.

Feller, D. J., Zucker, J., Yin, M. T., Gordon, P., and Elhadad, N. (2018). Using Clinical Notes and Natural Language Processing for Automated HIV Risk Assessment. *Journal of Acquired Immune Deficiency Syndromes (1999)*, 77(2):160–166.

Golas, S. B., Shibahara, T., Agboola, S., Otaki, H., Sato, J., Nakae, T., Hisamitsu, T., Kojima, G., Felsted, J., Kakarmath, S., Kvedar, J., and Jethwani, K. (2018). A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: A retrospective analysis of electronic medical records data. *BMC Medical Informatics and Decision Making*, 18(1):44.

Gruber, S., Krakower, D., Menchaca, J. T., Hsu, K., Hawrusik, R., Maro, J. C., Cocoros, N. M., Kruskal, B. A., Wilson, I. B., Mayer, K. H., and Klompas, M. (2020). Using electronic health records to identify candidates for human immunodeficiency virus pre-exposure prophylaxis: An application of super learning to risk prediction when the outcome is rare. *Statistics in medicine*, 39(23):3059–3073.

Hoogendoorn, M., Szolovits, P., Moons, L. M., and Numans, M. E. (2016). Utilizing uncoded consultation notes from electronic medical records for predictive modeling of colorectal cancer. *Artificial intelligence in medicine*, 69:53–61.

Hornbrook, M. C., Goshen, R., Choman, E., O’Keeffe-Rosetti, M., Kinar, Y., Liles, E. G., and Rust, K. C. (2017). Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age, and Complete Blood Count Data. *Digestive Diseases and Sciences*, 62(10):2719–2727.

Jorge, A., Castro, V. M., Barnado, A., Gainer, V., Hong, C., Cai, T., Cai, T., Carroll, R., Denny, J. C., Crofford, L., Costenbader, K. H., Liao, K. P., Karlson, E. W., and Feldman, C. H. (2019). Identifying lupus patients in electronic health records: Development and validation of machine learning algorithms and application of rule-based algorithms. *Seminars in Arthritis and Rheumatism*, 49(1):84–90.

Kogan, E., Twyman, K., Heap, J., Milentijevic, D., Lin, J. H., and Alberts, M. (2020). Assessing stroke severity using electronic health record data: A machine learning approach. *BMC Medical Informatics and Decision Making*, 20(1):8.

Krakower, S., Gruber, S., Menchaca, J. T., Maro, J. C., Cocoros, N., Kruskal, B., Wilson, I. B., Mayer, K., and Klompas, M. (2016). Automated Identification of Potential Candidates for Human Immunodeficiency Virus Pre-exposure Prophylaxis Using Electronic Health Record Data. *Open Forum Infectious*
Diseases, 3(suppl_1):860.
Krakower, D. S., Gruber, S., Hsu, K., Menchaca, J. T., Maro, J. C., Kruskal, B. A., Wilson, I. B., Mayer, K. H., and Klompas, M. (2019). Development and validation of an automated HIV prediction algorithm to identify candidates for pre-exposure prophylaxis: A modelling study. The Lancet HIV, 6(10):e696–e704.
Li, Y., Rao, S., Solares, J. R. A., Hassaine, A., Ramakrishnan, R., Canoy, D., Zhu, Y., Rahimi, K., and Salimi-Khorshidi, G. (2020). BEHRT: Transformer for Electronic Health Records. Scientific Reports, 10(1):7155.
Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low, D. K.-W., Newman, S.-F., Kim, J., and Lee, S.-I. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2(10):749–760.
Marcus, J. L., Hurley, L. B., Krakower, D. S., Alexeeff, S., Silverberg, M. J., and Volk, J. E. (2019). Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: A modelling study. The Lancet HIV, 6(10):e688–e695.
Mohamadlou, H., Lynn-Palevsky, A., Barton, C., Chettipally, U., Shieh, L., Calvert, J., Saber, N. R., and Das, R. (2018). Prediction of Acute Kidney Injury With a Machine Learning Algorithm Using Electronic Health Record Data. Canadian Journal of Kidney Health and Disease, 5:2054358118776326.
Nestor, B., McDermott, M. B. A., Boag, W., Berner, G., Naumann, T., Hughes, M. C., Goldenberg, A., and Gassemi, M. (2019). Feature Robustness in Non-stationary Health Records: Caveats to Deployable Model Performance in Common Clinical Machine Learning Tasks. In Proceedings of the 4th Machine Learning for Healthcare Conference, pages 381–405. PMLR.
Shameer, K., Johnson, K. W., Yahi, A., Miotto, R., Li, L., Ricks, D., Jebakaran, J., Kovatch, P., Sengupta, P. P., Gelijns, S., Moskovitz, A., Darrow, B., David, D. L., Kasarskis, A., Tatonetti, N. P., Pinney, S., and Dudley, J. T. (2017). Predictive Modeling of Hospital Readmission Rates Using Electronic Medical Record-Wide Machine Learning: A Case-Study Using Mount Sinai Heart Failure Cohort. In Biocomputing 2017, pages 276–287. Kohala Coast, Hawaii, USA. World Scientific.
Vaid, A., Jaladanki, S. K., Xu, J., Teng, S., Kumar, A., Lee, S., Somani, S., Paranjpe, I., De Freitas, J. K., Wanyan, T., Johnson, K. W., Bicak, M., Klang, E., Kwon, Y. J., Costa, A., Zhao, S., Miotto, R., Charney, A. W., Böttger, E., Fayad, Z. A., Nadkarni, G. N., Wang, F., and Glicksberg, B. S. (2021). Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach. JMIR Medical Informatics, 9(1):e24207.
Walsh, C. G., Ribeiro, J. D., and Franklin, J. C. (2017). Predicting Risk of Suicide Attempts Over Time Through Machine Learning. Clinical Psychological Science, 5(3):457–469.
Weiss, J. C., Natarajan, S., Peissig, P. L., McCarty, C. A., and Page, D. (2012). Machine Learning for Personalized Medicine: Predicting Primary Myocardial Infarction from Electronic Health Records. AI Magazine, 33(4):33.
Ye, C., Fu, T., Hao, S., Zhang, Y., Wang, O., Jin, B., Xia, M., Liu, M., Zhou, X., Wu, Q., Guo, Y., Zhu, C., Li, Y.-M., Culver, D. S., Alfreds, S. T., Stearns, F., Sylvester, K. G., Widen, E., McElhinney, D., and Ling, X. (2018). Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning. Journal of Medical Internet Research, 20(1):e22.
Zhang, J., Kowsari, K., Harrison, J. H., Lobo, J. M., and Barnes, L. E. (2018). Patient2Vec: A Personalized Interpretable Deep Representation of the Longitudinal Electronic Health Record. IEEE Access, 6:65333–65346.