Neuroinflammation and ALS: Transcriptomic Insights into Molecular Disease Mechanisms and Therapeutic Targets

Giovanna Morello, Antonio Gianmaria Spampinato and Sebastiano Cavallaro

Institute of Neurological Sciences, Italian National Research Council, Catania, Italy.

Corresponding author: Sebastiano Cavallaro, M.D., Ph.D., Institute of Neurological Sciences (ISN), CNR, Via Paolo Gaifami, 18, 95125 Catania, Italy. Phone: +39.095.7338111; Fax: +39.095.7338110; E-mail: Sebastiano.cavallaro@cnr.it

Supplementary Information

Supplementary Discussion

In the following paragraphs, we will provide a detailed analysis of inflammatory and immunological pathways affected in SALS, focusing attention on potential biomarkers and pharmacological targets for the development of more efficacious and individualized therapeutic interventions for ALS patients.

Antigen processing and presentation

Antigen processing and presentation is the process by which antigen-presenting cells (APCs), such as dendritic cells, macrophages and B cells, express antigen on their cell surface in a form recognizable by T lymphocytes and other immune-related cells. Previous evidence showed that dysregulation of genes related to the antigen-processing machinery seems to account for a number of intercellular mechanisms that are able to amplify the harmful non-autonomous cell toxicity in ALS animal models [1]. Consistent with this scenario, we observed deregulated expression of several genes encoding proteins involved in antigen processing and presentation as well as in the activation/modulation of adaptive immunity, mainly in SALS2 patients (Supplementary Figure 1).

Among these genes, we distinguish those involved in the formation and regulation of the proteasome system, the main intracellular proteolytic mechanism controlling protein turnover and the selective degradation of misfolded/abnormal proteins (Supplementary Figure 1) [2]. The accumulation of abnormal protein aggregates into damaged neurons represents a common hallmark in multiple neurodegenerative diseases, including ALS, and altered expression of multiple proteasome subunits was widely documented in both patients and animal models of ALS [3, 4]. In addition, other proteases implicated in antigen generation and/or trimming (TPP2, NPEPPS, BLMH, NRD1, THOP1, SPC, PC7 and IMPAS-1), were found deregulated in SALS patients, sustaining the involvement of a dysfunction in protein turnover and ubiquitin–proteasome pathways...
in ALS (Supplementary Figure 1). In particular, NPEPPS has been recently identified as a major peptidase acting on neurotoxic protein substrates, including SOD1, and its expression was found significantly decreased in motor neurons of both ALS transgenic mice and patients, supporting its role in the disease pathogenesis [5]. Low expression levels of the gene encoding nardilysin convertase (NRD1) in SALS2 patients (Supplementary Figure 1) are in line with the evidence that the loss of this metalloendopeptidase in neurons leads to impaired motor activities and cognitive deficits by altering axonal maturation and myelination in the CNS [6]. Overexpression of IMPAS-1 in SALS patients is supported by several studies that correlate high levels of this protease with the aberrant autophagic activity associated with numerous neurodegenerative diseases [7].

Several molecular chaperones have been already extensively implicated in the pathogenesis of ALS, playing an essential role in the folding and maturation of proteins [8]. Consistent with our results, deregulated levels of HSP70, HSP90 and their interacting protein CHIP were previously detected in the serum of FALS patients, suggesting that deregulation of this protein system may reflect the degeneration of motor neurons in both forms of the disease [9]. Interestingly, recent studies have reported that treatments with arimoclomol, a strong co-inducer of HSPs, significantly delays disease progression in ALS animal models, supporting it as a potentially efficacious therapy for ALS.

Antigen presentation is mediated by the major histocompatibility complex (MHC) class I and class II molecules that are responsible to deliver short peptides to the APC surface for recognition by CD8+ (cytotoxic) and CD4+ (helper) T cells, respectively. The main difference between these molecules is that the MHC class I pathway is usually fueled by endogenous antigen, while exogenous peptides reach the MHC class II pathway. SALS patients showed deregulated expression of genes encoding MHC class I and II molecules and different components of the peptide-loading complex (TAP1, TAP2, TPSN, PDIA3, CALR, CANX, UGCGL1, BCAP31, B2M, ENPL, COPII, BCAP31, ERAP1) (Supplementary Figure 1). Genes encoding MHC molecules were found to be differentially expressed in ALS patients, supporting previous findings that reported a dual activity of neuronal MHC in ALS-affected tissues [10]. In fact, although MHC seems to play an essential role in preserving the maximal efficiency of motor axon connectivity with target muscles, a marked activation of this molecular complex was associated with enhanced infiltration of immune cells in the CNS of ALS animal models at the onset and during disease progression [11]. Moreover, activated microglia and astrocytes, present in ALS and other neurodegenerative diseases, showed increased expression of MHC-class II molecules, promoting the release of nitric oxide and other soluble factors that enhance inflammatory response [12]. The pharmacological inhibition of MHC I expression by immunomodulatory agents, such as glatiramer acetate, has shown neuroprotective effects in several neurological conditions, including ALS [13].

T-cell-antigen recognition. The presentation of antigen in the context of MHC molecules serves as a signal to trigger T cell activation and initiate an immunogenic cascade that leads to cytolysis of the APCs. A global dysregulation of T-cell functions has been related to an increased disease progression, decreased survival as well as production of pro-inflammatory effectors in experimental ALS [14, 15]. Abnormalities in T lymphocytes were also found in the blood of ALS patients, although there are differences among studies that may be explained by the heterogeneity of the ALS cohorts and the limited numbers of patients examined [14, 16, 17]. Accordingly, we found that a significant number of membrane protein-encoding genes involved in T cell activation and proliferation (CAV1, TRIM1, TOLLIP, DPP4/CD26, CD4, MIC2, CD45, ICOS, ICOS-L) were differentially deregulated in SALS patients (increased in SALS1 and decreased in SALS2) (Supplementary Figure 1). Among these, decreased expression of CD4 is in line with previous evidence demonstrating that the genetic depletion of CD4 or, more generally, a lack of functional T cells accelerates motor neuron degeneration and diminishes the survival of ALS transgenic mice, confirming a neuroprotective role of CD4+ T cells in ALS [15]. Reduced expression of CAV1 was associated with alterations of lymphocyte trafficking and synaptic transmission in the CNS, contributing to increased risk of neurodegenerative and age-related disorders [18, 19]. SALS1
patients showed an increased expression of the gene encoding CD99 (MIC2), a leukocyte surface glycoprotein involved in several biological processes, including the regulation of T cell activation and development (Supplementary Figure 1) [20]. Pharmacological studies showed that CD99 blockade in vivo decreases the accumulation of CNS inflammatory infiltrates, supporting the role of this protein as a possible target for controlling neuroinflammatory events [21]. Another potential therapeutic target for CNS inflammation is represented by the CD45 tyrosine phosphatase, whose expression levels were increased in the spinal cord of ALS mice as well as in activated microglial cells of murine models of other neurodegenerative diseases, including Alzheimer’s (AD) [22-24].

Natural Killer-cell-antigen recognition. Natural Killer (NK) cells are activated by a range of soluble factors, including cytokines and type I interferons, but also by direct cell-to-cell contact between NK cell receptors and target cell ligands. Contrary to T cells, NK cells recognize MHC I molecules using cell inhibitory receptors (i.e., KIRs, KLRs and NKG2A), leading to inhibition of NK cell activities [25-27]. Although further investigation is required to understand the role of NK cells and their receptors in ALS, previous studies have demonstrated significant infiltrations of NK cells in the spinal cord of ALS patients and the consequent inhibition of neuroprotective T-cell responses [14, 28]. In our study, we found differential expression of some genes encoding NK inhibitory receptors (NKG2A, KIR2DS1, KIR2DS2 and KLRA1) in SALS patients, indicating the dysfunctions in NK cell-mediated functions may be implicated in the immunopathogenesis of various neurodegenerative diseases, including ALS (Supplementary Figure 1) [29, 30]. In accordance with our results, increased expression of NKG2A was previously reported in PD patients, suggesting that high levels of this receptor may induce a chronic antigen-driven stimulation and dysregulated cytokine production, contributing to inflammatory and neurodegenerative events [31].

B-cell-antigen recognition. B cells recognize a specific antigen and initiate immune response through the B cell antigen receptor (BCRs) complex consisting of an antigen-binding subunit (the membrane immunoglobulin) and a signaling subunit, which is composed of a disulfide-linked heterodimer of Ig-α (CD79A) and Ig-β (CD79B) proteins [32]. Compelling evidence supports an important role of B cells in the pathogenesis of various neurological conditions, including ALS, not only as precursors of antibody-producing cells, but also as important regulators of the T-cell activation process through their participation in antigen presentation and cytokine production [33, 34].

Our results showed differential expression of genes encoding a component of BCR complex (CD79A) and some B cell co-receptors (FcγRIIB, ITGB1, CD45, CRACM1) in SALS2 patients (Supplementary Figure 1). Low expression levels of CD79 complex and various B cell regulators were also detected in PD patients and seem to be related to aberrant protein glycosylation and folding in the endoplasmic reticulum [35]. Decreased expression of FcγRIIB or its non-functional variants was associated with the development of inflammatory autoimmune diseases and FcγRII-deficient mice showed an impaired development of Purkinje neurons and poor rotarod performance [36-38]. In accordance with our results, up-regulated expression of CRACM1 seems to be associated with excessive neuronal Ca²⁺ signaling and excitability, thus contributing to the pathogenesis of several neurological diseases, such as epilepsy, AD and Huntington's [39, 40].

Immune and inflammatory signaling cascades

Accumulating evidence indicates that many neurodegenerative diseases, including ALS, are characterized by the massive activation and proliferation of microglia and astrocytes as well as the accumulation of infiltrating blood-derived immune cells (i.e., T lymphocytes and NK cells) at the sites of neurodegeneration, playing critical functions during the disease course. Moreover, signs of activation of the innate and humoral immune response were largely described in both ALS transgenic animal models and in the spinal cord and cortex of ALS patients [41]. In accordance with these studies, we observed differential expression of multiple components of intracellular signaling pathways regulating innate and adaptive immune responses in SALS patients (Supplementary
Interestingly, the majority of these signaling cascades were increased in SALS1 and reduced in SALS2 patients, suggesting that diverse subgroups of ALS patients may respond differentially to therapies targeting innate and adaptive immune responses (Figure 4b).

Immunoreceptor signaling. Once activated, antigen receptors induce a complex series of signaling events that are fundamental for various immune functions, including cell activation, proliferation, gene transcription, cytokine secretion and clonal deletion, determining the direction of immune responses. Among neuroinflammatory DEGs in SALS patients, we distinguish the altered expression of some components of the Syk and Src family kinases (LCK, LYN, FYN, SYK and ZAP70) and their regulators (SHP1 and SHP2), which represent the first signaling molecules to be activated downstream of immune cell-specific receptors (Supplementary Figure 2). The biological functions of these inflammatory mediators are diverse and include immune cell–receptor signaling, CNS myelination, cell division and adhesion, platelet function, synaptic activity and plasticity. In accordance with our findings, lack of Syk and Src-family kinases has been associated to defects in actin polymerization and remodeling at the immune synapse [42]. In particular, decreased expression of FYN induces a reduction in brain myelination and structural defects in synapses and dendritic spines [43]. Moreover, deregulated expression of FYN and LCK was associated with AD pathology, and several drugs that aimed at maintaining the physiological functions of the Syk and Src family kinases (e.g., saracatinib or AZD0530) are currently under study for the treatment of this disease [43, 44]. Also, ZAP70 was increased in AD patients, suggesting that activated ZAP70 may induce neuronal death through calcium-induced lymphocyte apoptosis and/or aberrant immune responses [45]. In SALS2, we also observed decreased expression of SYK together with the altered expression of two protein tyrosine phosphatases, SHP-1 and SHP-2, supporting their involvement in protecting neurons from genotoxic or oxidative insults responsible for neuronal degeneration [46-49]. Together, protein kinase and phosphatase cascades impinge on multiple downstream signaling pathways which have broad effects on gene transcription (ERK/MAPK), apoptosis regulation (AKT), Ca\(^{2+}\) mobilization (PLC\(\gamma\); PKC) and cytoskeletal function modulation (Vav/Rac/Rho and AKT), representing critical events for immune activation and inflammatory cytokine/cytolytic enzyme production.

MAPK/ERK signaling. Mitogen-activated protein kinases (MAPKs) are serine-threonine kinases that are activated in response to different types of oxidative stress and inflammatory conditions, and mediate intracellular signaling associated with a variety of cellular activities, including cell proliferation, differentiation, survival and death [50]. Signal transduction via this cascade is usually initiated by activating multifunctional intracellular molecules, including guanine nucleotide exchange factors and small G proteins, which induce the sequential activation of numerous protein kinases, leading to the phosphorylation and activation of transcription factors, such as c-Jun, ATF/CREB, and p53.

In our study, we found increased mRNA expression of several components of the MAPK family (MKK4, MEK1/2, MEK3, ERK1/2, p38, and JNK) and differential expression of some of their upstream activators (Grb2, SOS, VAVs, K-RAS, H-RAS, Tiam1, CDC42, Rac1 and RhoA) in both SALS subgroups (Supplementary Figure 2). Consistent with our results, several lines of evidence demonstrated that compromised MAPK signaling pathway plays a critical role in the pathogenesis of diverse human diseases, including cancer and neurodegenerative disorders, such as ALS [51]. In fact, aberrant expression and persistent activation of p38, ERK and JNK1 have been implicated in ALS pathogenesis through various mechanisms, such as the formation of abnormal intracellular inclusions, alterations in axonal transport and cytoskeletal remodeling, and the induction of motor neuron cell death [52-54]. Interestingly, the p38 MAPK inhibitor SB203580 protects motor neurons and proximal axons from excitotoxin-induced degeneration, prolonging survival of ALS mice [55].

Dysregulation of MAPK pathway upstream regulators was reported in a variety of neuronal traumas and neurodegenerative diseases, including ALS. Among these, RHOA, a member of the Rho GTPase family, plays an important role in neuronal cell survival and death by transducing...
extracellular signals to the cytoskeleton [56]. In accordance with our data, low expression levels of RHOA were also detected in spinal cord motor neurons from SOD1-related ALS patients [57]. In addition, disruptions in Rac signaling have been identified as an underlying factor in the progression of early onset forms of ALS [58]. Differential expression of mRNA and protein levels of the adapter protein Grb2 were previously found in both pre-symptomatic and early symptomatic ALS mice, suggesting its potential role as a candidate for ALS biomarkers [59].

PI3K/AKT/mTOR pathway. In the nervous system, activation of the PI3K signaling and its downstream effectors, AKT and mTOR, is specifically involved in diverse cellular behaviors, including proliferation, survival, metabolism, trafficking, immunity and energy homeostasis [60]. Our findings showed decreased expression of genes encoding components of PI3K, AKT and mTOR signaling cascades in both SALS patient subgroups (Supplementary Figure 2). In line with this, recent studies reported a lack or a reduction of PI3K/Akt/mTOR protein levels in spinal cord motor neurons of asymptomatic ALS mice, suggesting that modifications of this signaling pathway may represent a potential risk for motor neuron cell death [59, 61]. In particular, reduced protein expression and phosphorylation of mTOR and its downstream signaling components seem to adversely affect the establishment, maintenance and functionality of neural networks, thus contributing to neuronal degeneration and abnormal neural development [62]. In this regard, recent studies have suggested that activation of PI3K/AKT/mTOR pathways may represent an effective therapeutic strategy to prevent or slow the progression of motor neuron degeneration [56].

PLC-γ/PKC signaling pathway. Calcium signaling plays an important functional role in motor neurons, and excessive calcium release from intracellular stores seems to be responsible for the selective vulnerability of motor neurons in ALS [63]. PLC signaling is one of the principal mechanisms of maintaining calcium homeostasis in neurons. Activated PLC leads to the formation of two second messengers: IP3, which causes the release of calcium ions from intracellular stores, and DAG that activates PKC, promoting the phosphorylation and activation of calcium/calmodulin-dependent protein kinases and phosphatases as well as transcription factors involved in the production of pro-inflammatory cytokines and growth factors [64].

In our study, deregulated expression of genes encoding various components of the PLC-γ/PKC signaling cascade was detected in both SALS patient subgroups (Supplementary Figure 2). These findings are corroborated by previous studies reporting an abnormal activity or expression of PLC-γ and PKC in the spinal cord of ALS patients that results in higher cytoplasmic calcium concentrations, leading to the inhibition of MAPK and cytokine/chemokine signaling and activation of ER stress response observed in ALS [65, 66]. Moreover, the pharmacological inhibition or genetic removal of PLC-γ prolongs survival of ALS animal models, indicating this signaling as a potential target for ALS therapy [67].

RAGE /TLR Signaling Pathway. Toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) are among the major components of the innate immune system. They are able to induce and/or amplify inflammatory reactions and were extensively implicated in ALS pathology [68]. TLRs initiate signaling cascades through recognition of a variety of molecules released by the injured tissue, such as endogenous HSPs and HMGB1, a potent proinflammatory cytokine-like mediator that, interacting also with RAGE receptors, coordinates cellular stress responses and plays a critical role in several cellular processes, including cell migration, neuronal growth and apoptotic cell death [69]. Activation of RAGE/TLR signaling pathways results in the sequential stimulation of several downstream effectors and transcription factors, which induce production and release of various proinflammatory mediators (i.e., cytokines, chemokines, NO and cell adhesion molecules), exacerbating the inflammatory response and subsequently leading to neuronal damage and apoptosis.

In our study, both SALS subgroups showed up-regulation of genes encoding various TLRs (TLR2, TLR4, TLR6, TLR10), while decreased expression of HMGB1/RAGE systems was specifically detected in SALS2 patients (Supplementary Figure 2). In line with this, previous studies revealed consistent up-regulation of TLRs and HMGB1/RAGE reduction in glial cells and
degenerating spinal cord motor neurons of patients and animal models of ALS [70-72]. In addition, it was shown that TLRs antagonism, as well as restoration of RAGE signals, exert neuroprotective effects in ALS pathology, significantly extending survival and improving motor functions in a mouse model of ALS [73-75]. Altogether, these results demonstrate that activation of these signaling pathways may contribute to motor neuron injury in ALS and suggest that their pharmacological inhibition may represent an effective therapeutic strategy to attenuate neurodegenerative processes.

Among various transcription factors that are activated by the TLR signaling cascade, NF-κB plays a role of fundamental importance in various cellular mechanisms, including the immune response, cytokine production, cellular responses to oxidative stress and synaptic plasticity. Decreased expression of NF-κB was found in SALS1, while increased expression of this gene was detected in SALS2 (Supplementary Figure 2). This discrepancy may be explained by the fact that, while low levels of NF-κB have been associated with a decreased neuroprotection, high levels of this protein complex might be responsible for microglial activation occurring during neuroinflammatory responses [76]. Moreover, although preclinical studies reported contrasting results, several NF-κB pharmacological inhibitors have shown neuroprotective effects in ALS, mainly by preventing apoptotic cell death, inflammation and oxidative damage as well as improving mitochondrial function [77].

Complement system

The complement system represents a bridge between innate and adaptive immune responses, participating in the recognition, trafficking and elimination of pathogenic microorganisms [78]. This enzymatic cascade consists of more than 30 different proteins, membrane-bound receptors and a series of complement regulatory proteins, such as clusterin, DAF and CD59 [79]. Depending on the activation trigger, the complement cascade can be activated through three pathways (classical, lectin or alternative) that converge into the production of bioactive peptides that can mediate a variety of pro-inflammatory responses.

Complement activation in the CNS exerts a physiological role in recognizing and eliminating apoptotic and necrotic cells, but erroneous activation or insufficient regulation of this system seems to play a role in the pathogenesis of several autoimmune and neurological diseases, including ALS [80-83]. Numerous clinical and animal studies have in fact demonstrated the presence of high mRNA and protein levels of members of the complement pathway in the serum, cerebrospinal fluid and neurological tissues (spinal cord and motor cortex) of ALS patients and animal models, suggesting that a complement-driven immune response might contribute to motor neuron injury [84].

Our analysis is largely supportive of the involvement of the complement system in ALS, revealing differential expression of numerous complement components, regulators and receptors in SALS patients (Supplementary Figure 3). In particular, when compared to controls, SALS1 patients showed increased mRNA levels of several serine proteases, constituting integral elements of the classical complement cascade (including C1s, C3/C3a-c, iC3b, C3dg and C4/C4a-b) and deregulated expression of some of their membrane receptors (CD21, CR1g and CR3 - also known as αMβ2-integrin) (Supplementary Figure 3). The lectin-induced and alternative complement pathways, instead, were mainly deregulated in SALS2, with increased mRNA levels of MASP-1 and complement factors B, D, H and I (Supplementary Figure 3). Down-regulated expression of C3 and C5 convertases was found in SALS1 patients, confirming that genetic mutations or altered assembly and activity of C3/C5 convertases can result in dysregulation of the alternative complement pathway [85]. Moreover, both SALS subgroups showed deregulated expression of complement regulatory/inhibitory molecules, including clusterin, properdin, DAF and CD59, in agreement with the observation that altered levels of these molecules could confer to neurons an increased susceptibility to complement-based lysis as well as damage from recruited immune cells (Supplementary Figure 3) [83].
It is interesting to note that increased levels of complement activation products have been detected in ALS animal models before the appearance of motor symptoms, remaining detectable at the symptomatic stage, suggesting that complement activation may precede neurodegeneration and play an early role in ALS pathogenesis. This could pave the way for new diagnostic markers as well as more personalized and targeted therapeutic approaches. In this regard, inhibition or modulation of the complement system has been recognized as a promising strategy in drug discovery for several inflammatory-related conditions, including ALS, PD and AD, even if suppressing pathogenic complement activity without compromising its defensive and immunomodulatory functions still remains a big challenge [83, 86, 87]. Further experiments are thus needed to better clarify the roles of the complement pathway in the ALS progression as well as its implication in diagnosis and targeted treatments for this disease.

Cytokine signaling

Cytokines are a class of small proteins, comprising chemokines, interferons (IFNs), interleukins (ILs), lymphokines, and growth factors (like VEGF, TGF-β, TNFs), which act as signaling molecules to regulate acute and chronic inflammation and modulate cellular activities such as growth, survival, and differentiation. Cytokines exert their functions by interacting with their receptors and activating a complex network of intracellular signaling cascades, including Rac1, MEK/ MAPK/ERK1 and PI3K/AKT/mTOR and JAK-STAT pathways. It is possible to classify cytokines, based on the nature of the immune response, in pro-inflammatory cytokines (i.e., IL-1, IL-6, IL-17, TNFα and IFN-γ), and anti-inflammatory cytokines (i.e., IL-4, IL-5) [88].

Deregulated expression of several cytokines, their receptors and downstream effectors was observed in SALS patients, primarily in SALS2 (Supplementary Figure 4).

Although the pathogenic role of cytokines in ALS is still unknown, previous studies have associated their abnormal expression to the clinical status [89-91]. In accordance with our results, a variety of proinflammatory cytokines and growth factors, such as TGF-β, IL-1, IL-2, IL-4, IL-5 and IL-15, have previously been reported to be elevated in cerebrospinal fluid of human ALS [91]. In addition, activation of EGF signaling as well as reductions in VEGF signaling pathways seem to play a role in the pathogenesis of ALS, by triggering quiescent astrocytes into reactive astrocytes and, consequently, activating the neurodegenerative process [92, 93]. In support of this hypothesis, the pharmacological inhibition of IL-1, IL-6, IL-8R/CXCR2 and EGFR/ErbB2 signaling, as well as the administration of VEGF activators, reduce inflammation, provide neuroprotection and retard the progression of ALS pathology [94-101].

One of the main mechanisms for cytokine and chemokine signal transduction is represented by the JAK-STAT pathway. Differential expression of genes encoding various components of JAK/STAT signaling was found in SALS patients (Supplementary Figure 4), in agreement with previous studies showing that the dysregulation of this pathway occurs in inflammatory and neurodegenerative diseases, such as ALS [102]. Activation of the JAK-STAT pathway is also associated with the increased expression of a series of molecules involved in cytoskeleton remodeling, cell adhesion and migration, including Fibronectin, MMPs, FAK-1, VCAM1/ICAM1 receptors as well as tight junction proteins, whose deregulated expression was found in patients affected by SALS (Supplementary Figure 4) and other neurological diseases, including AD [103, 104]. It is interesting to note that the pharmacological blockade of the JAK-STAT pathway or its downstream effectors (e.g., FAK1 and MMPs) triggers neuroprotective effects, slowing disease progression and increasing survival in ALS animal models [105-108]. Altogether, these findings suggest that deciphering the complex actions of altered cytokine and chemokine networks may help to further elucidate the neuroinflammatory processes occurring in ALS.
LIST OF ABBREVIATIONS

Nardilysin convertase (NRD1); tripeptidyl peptidase 2 (TPP2); aminopeptidase puromycin sensitive (NPEPPS); bleomycin hydrolase (BLMH); thimet oligopeptidase (THOP1); SEC11 homolog C, signal peptidase complex subunit (SPC); proprotein convertase subtilisin/kexin type 7 (PC7); histocompatibility minor 13 (Impas-1); heat shock proteins (HSPs); heat shock protein 70 gene family (HSP70); heat shock protein 90 gene family (HSP90); STIP1 homology and U-box containing protein 1 (CHIP); transporter 1, ATP binding cassette subfamily B member (TAP1); transporter 2, ATP binding cassette subfamily B member (TAP2); tapasin (TPSN); protein disulfide isomerase family A member 3 (PDIA3); calreticulin (CALR); calnexin (CANX); UDP-glucose glycoprotein glucosyltransferase 1 (UGCGL1); B-cell receptor-associated protein 31 (BCAP31); beta-2-microglobulin (B2M), endoplasmin (ENPL), coat protein complex II (COPII); endoplasmic reticulum aminopeptidase 1 (ERAP1); caveolin 1 (CAV1); T cell receptor associated transmembrane adaptor 1 (TRIM1); toll interacting protein (TOLLIP); dipeptidyl peptidase 4 (DPP4); T-cell surface glycoprotein CD4 (CD4); T-cell surface antigen CD99 (MIC2); protein tyrosine phosphatase, receptor type C (CD45); inducible T-cell costimulator (ICOS); inducible T-cell costimulator ligand (ICOS-L); killer cell immunoglobulin like receptors (KIRs); killer cell lectin like receptors (KLRs); killer cell lectin like receptor C1 (NK2CA); killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 1 (KIR2DS1); killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 2 (KIR2DS2); killer cell lectin like receptor A1, pseudogene (KLR-A1); B-cell antigen receptor complex-associated protein alpha chain (CD79A); low affinity immunoglobulin gamma Fc region receptor II (FcγRIIB), integrin subunit beta 1 (ITGB1); ORAI calcium release-activated calcium modulator 1 (CRACM1); leukocyte C-terminal Src kinase (LCK); Lck/Yes-related novel protein tyrosine kinase (LYN); tyrosine-protein kinase Fyn (FYN); spleen associated tyrosine kinase (SYK); zeta chain of T cell receptor associated protein kinase 70 (ZAP70); protein tyrosine phosphatase, non-receptor type 6 (SHP1); protein tyrosine phosphatase, non-receptor type 11 (SHP2); mitogen-activated protein kinase kinase 4 (MKK4); MAP kinase kinase (MEK); extracellular signal-regulated kinase (ERK); c-Jun N-terminal kinases (JNK); growth factor receptor bound protein 2 (Grb2); SOS Ras/Rho guanine nucleotide exchange factor (SOS); vav guanine nucleotide exchange factors (VAVs); V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-RAS); Harvey rat sarcoma viral oncogene homolog (H-RAS); T-cell lymphoma invasion and metastasis 1 (Tiam1); cell division cycle 42 (CDC42); ras-related C3 botulinum toxin substrate 1 (Rac1); ras homolog family member A (RhoA); phosphoinositide-3-kinase (PI3K); serine/threonine kinase (AKT); mechanistic target of rapamycin (mTOR); phospholipase C (PLC); inositol 1,4,5-trisphosphate (IP3); 1,2-diacylglycerol (DAG); protein kinase C (PKC); high mobility group box 1 (HMGB1); nuclear factor kappa B subunit 1 (NF-kB); activator protein 1 (AP-1); cAMP responsive element binding protein (CREB1); Jun proto-oncogene, AP-1 transcription factor subunit (c-Jun); decay accelerating factor (DAF/CD55); V-set and immunoglobulin domain containing 4 (CRIg); complement C3d receptor 2 (CD21); mannan binding lectin serine peptidase 1 (MASP-1); transforming growth factor beta (TGF-β); Janus kinase (JAK); signal transducer and activator of transcription (STAT); epidermal growth factor (EGF); epidermal growth factor receptor (EGFR); erb-b2 receptor tyrosine kinase 2 (ErbB2); C-X-C motif chemokine receptor 2 (IL-8R/CXCR2); matrix metallopeptidases (MMPs); focal adhesion kinase 1 (FAK-1); vascular cell adhesion molecule 1 (VCAM1); intercellular adhesion molecule 1 (ICAM1).
Supplementary References List

1. de Oliveira, G. P.; Alves, C. J.; Chadi, G., Early gene expression changes in spinal cord from SOD1(G93A) Amyotrophic Lateral Sclerosis animal model. *Frontiers in cellular neuroscience* 2013, 7, 216.

2. Bendotti, C.; Marino, M.; Cherioni, C.; Fontana, E.; Crippa, V.; Poletti, A.; De Biasi, S., Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. *Progress in neurobiology* 2012, 97 (2), 101-26.

3. Saris, C. G.; Groen, E. J.; Koekkoek, J. A.; Veldink, J. H.; van den Berg, L. H., Meta-analysis of gene expression profiling in amyotrophic lateral sclerosis: a comparison between transgenic mouse models and human patients. *Amyotrophic lateral sclerosis & frontotemporal degeneration* 2013, 14 (3), 177-89.

4. Cherioni, C.; Marino, M.; Tortarolo, M.; Veglianelle, P.; De Biasi, S.; Fontana, E.; Zuccarello, L. V.; Maynard, C. J.; Dantuma, N. P.; Bendotti, C., Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. *Human molecular genetics* 2009, 18 (1), 82-96.

5. Ren, G.; Ma, Z.; Hui, M.; Kudo, L. C.; Hui, K. S.; Karsten, S. L., Cu, Zn-superoxide dismutase 1 (SOD1) is a novel target of Puromycin-sensitive aminopeptidase (PSA/NPEPPS): PSA/NPEPPS is a possible modifier of amyotrophic lateral sclerosis. *Molecular neurodegeneration* 2011, 6, 29.

6. Ohno, M.; Hiraoka, Y.; Matsuoka, T.; Tomimoto, H.; Takao, K.; Miyakawa, T.; Oshima, N.; Kiyonari, H.; Kimura, T.; Nishi, E., Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system. *Nature neuroscience* 2009, 12 (12), 1506-13.

7. Moliaka, Y. K.; Grigorenko, A.; Madera, D.; Rogaev, E. I., Impas 1 possesses endoproteolytic activity against multipass membrane protein substrate cleaving the presenilin 1 holoprotein. *FEBS letters* 2004, 557 (1-3), 185-92.

8. Kalmar, B.; Lu, C. H.; Greensmith, L., The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. *Pharmacology & therapeutics* 2014, 141 (1), 40-54.

9. Choi, J. S.; Cho, S.; Park, S. G.; Park, B. C.; Lee, D. H., Co-chaperone CHIP associates with mutant Cu/Zn-superoxide dismutase proteins linked to familial amyotrophic lateral sclerosis and promotes their degradation by proteasomes. *Biochemical and biophysical research communications* 2004, 321 (3), 574-83.

10. Lampson, L. A.; Kushner, P. D.; Sobel, R. A., Major histocompatibility complex antigen expression in the affected tissues in amyotrophic lateral sclerosis. *Ann Neurol* 1990, 28 (3), 365-72.

11. Nardo, G.; Trolese, M. C.; Bendotti, C., Major Histocompatibility Complex I Expression by Motor Neurons and Its Implication in Amyotrophic Lateral Sclerosis. *Frontiers in neurology* 2016, 7, 89.

12. Amor, S.; Puentes, F.; Baker, D.; van der Valk, P., Inflammation in neurodegenerative diseases. *Immunology* 2010, 129 (2), 154-69.

13. Scorisa, J. M.; Ferria, C. M.; Victorio, S. C.; Barbizan, R.; Zanon, R. G.; Oliveira, A. L., Glatiramer acetate treatment increases stability of spinal synapses and down regulates MHC I during the course of EAE. *International journal of biological sciences* 2011, 7 (8), 1188-202.

14. Rentzos, M.; Evangelopoulos, E.; Sereti, E.; Zouvelou, V.; Marmara, S.; Alexakis, T.; Evdokimidis, I., Alterations of T cell subsets in ALS: a systemic immune activation? *Acta neurologica Scandinavica* 2012, 125 (4), 260-4.

15. Beers, D. R.; Henkel, J. S.; Zhao, W.; Wang, J.; Huang, A.; Wen, S.; Liao, B.; Appel, S. H., Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and
correlate with disease progression in patients with amyotrophic lateral sclerosis. *Brain : a journal of neurology* 2011, 134 (Pt 5), 1293-314.

16. Henkel, J. S.; Beers, D. R.; Wen, S.; Rivera, A. L.; Toennis, K. M.; Appel, J. E.; Zhao, W.; Moore, D. H.; Powell, S. Z.; Appel, S. H., Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. *EMBO molecular medicine* 2013, 5 (1), 64-79.

17. Mantovani, S.; Garbelli, S.; Pasini, A.; Alimonti, D.; Perotti, C.; Melazzini, M.; Bendotti, C.; Mora, G., Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. *Journal of neuroimmunology* 2009, 210 (1-2), 73-9.

18. Liu, Y.; Liang, Z.; Liu, J.; Zou, W.; Li, X.; Wang, Y.; An, L., Downregulation of caveolin-1 contributes to the synaptic plasticity deficit in the hippocampus of aged rats. *Neural regeneration research* 2013, 8 (29), 2725-33.

19. Head, B. P.; Peart, J. N.; Panneerselvam, M.; Yokoyama, T.; Pearn, M. L.; Niesman, I. R.; Bonds, J. A.; Schilling, J. M.; Miyanohara, A.; Headrick, J.; Ali, S. S.; Roth, D. M.; Patel, P. M.; Patel, H. H., Loss of caveolin-1 accelerates neurodegeneration and aging. *PloS one* 2010, 5 (12), e15697.

20. Sohn, H. W.; Choi, E. Y.; Kim, S. H.; Lee, I. S.; Chung, D. H.; Sung, U. A.; Hwang, D. H.; Cho, S. S.; Jun, B. H.; Jang, J. J.; Chi, J. G.; Park, S. H., Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing's sarcoma cells. *The American journal of pathology* 1998, 153 (6), 1937-45.

21. Winger, R. C.; Harp, C. T.; Chiang, M. Y.; Sullivan, D. P.; Watson, R. L.; Weber, E. W.; Podojil, J. R.; Miller, S. D.; Muller, W. A., Cutting Edge: CD99 Is a Novel Therapeutic Target for Control of T Cell-Mediated Central Nervous System Autoimmune Disease. *Journal of immunology* 2016, 196 (4), 1443-8.

22. Rathke-Hartlieb, S.; Schmidt, V. C.; Jockusch, H.; Schmitt-John, T.; Bartsch, J. W., Spatiotemporal progression of neurodegeneration and glia activation in the wobbler neuropathy of the mouse. *Neuroreport* 1999, 10 (16), 3411-6.

23. Townsend, K. P.; Vendrame, M.; Ehrhart, J.; Faza, B.; Zeng, J.; Town, T.; Tan, J., CD45 isoform RB as a molecular target to oppose lipopolysaccharide-induced microglial activation in mice. *Neuroscience letters* 2004, 362 (1), 26-30.

24. Tan, J.; Town, T.; Mullan, M., CD45 inhibits CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK pathway. *The Journal of biological chemistry* 2000, 275 (47), 37224-31.

25. Borrego, F.; Kabat, J.; Kim, D. K.; Litto, L.; Maasho, K.; Pen, J.; Solana, R.; Coligan, J. E., Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. *Molecular immunology* 2002, 38 (9), 637-60.

26. Maghazachi, A. A., Role of chemokines in the biology of natural killer cells. *Current topics in microbiology and immunology* 2010, 341, 37-58.

27. Malhotra, A.; Shanker, A., NK cells: immune cross-talk and therapeutic implications. *Immunotherapy* 2011, 3 (10), 1143-66.

28. Phillips, T.; Rothstein, J. D., Glial cells in amyotrophic lateral sclerosis. *Experimental neurology* 2014, 262 Pt B, 111-20.

29.Pool, M.; Rambaldi, I.; Darlington, P. J.; Wright, M. C.; Fournier, A. E.; Bar-Or, A., Neurite outgrowth is differentially impacted by distinct immune cell subsets. *Molecular and cellular neurosciences* 2012, 49 (1), 68-76.

30. Jadidi-Niaragh, F.; Shegarfi, H.; Naddafi, F.; Mirshafiey, A., The role of natural killer cells in Alzheimer's disease. *Scandinavian journal of immunology* 2012, 76 (5), 451-6.

31. Poli, A.; Kmiecik, J.; Domingues, O.; Hentges, F.; Bley, M.; Chekenya, M.; Boucrat, J.; Zimmer, J., NK cells in central nervous system disorders. *Journal of immunology* 2013, 190 (11), 5355-62.

32. Pieper, K.; Grimbacher, B.; Eibel, H., B-cell biology and development. *The Journal of allergy and clinical immunology* 2013, 131 (4), 959-71.
33. McCombe, P. A.; Henderson, R. D., The Role of immune and inflammatory mechanisms in ALS. *Current molecular medicine* **2011, 11**(3), 246-54.
34. Kedmi, M.; Bar-Shira, A.; Gurevich, T.; Giladi, N.; Orr-Urtreger, A., Decreased expression of B cell related genes in leukocytes of women with Parkinson's disease. *Molecular neurodegeneration* **2011, 6**, 66.
35. McCombe, P. A.; Henderson, R. D., The Role of immune and inflammatory mechanisms in ALS. *Current molecular medicine* **2011, 11**(3), 246-54.
50. Kim, E. K.; Choi, E. J., Pathological roles of MAPK signaling pathways in human diseases. Biochimica et biophysica acta 2010, 1802 (4), 396-405.
51. Kim, E. K.; Choi, E. J., Compromised MAPK signaling in human diseases: an update. Archives of toxicology 2015, 89 (6), 867-82.
52. Gurney, M. E.; Pu, H.; Chiu, A. Y.; Dal Canto, M. C.; Polchow, C. Y.; Alexander, D. D.; Caliendo, J.; Hentati, A.; Kwon, Y. W.; Deng, H. X.; et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994, 264 (5166), 1772-5.
53. Holasek, S. S.; Wengenack, T. M.; Kandimalla, K. K.; Montano, C.; Gregor, D. M.; Curran, G. L.; Poduslo, J. F., Activation of the stress-activated MAP kinase, p38, but not JNK in cortical motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in transgenic mice. Brain research 2005, 1045 (1-2), 185-98.
54. Bendotti, C.; Atzori, C.; Piva, R.; Tortarolo, M.; Strong, M. J.; DeBiasi, S.; Migheli, A., Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice. Journal of neuropathology and experimental neurology 2004, 63 (2), 113-9.
55. Dewil, M.; delia Cruz, V. F.; Van Den Bosch, L.; Robberecht, W., Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1(G93A)-induced motor neuron death. Neurobiology of disease 2007, 26 (2), 332-41.
56. Kirby, J.; Ning, K.; Ferraiuolo, L.; Heath, P. R.; Ismail, A.; Kuo, S. W.; Valori, C. F.; Cox, L.; Sharrack, B.; Wharton, S. B.; Ince, P. G.; Shaw, P. J.; Azzouz, M., Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain : a journal of neurology 2011, 134 (Pt 2), 506-17.
57. Linseman, D. A.; Loucks, F. A., Diverse roles of Rho family GTPases in neuronal development, survival, and death. Frontiers in bioscience : a journal and virtual library 2008, 13, 657-76.
58. Kanekura, K.; Hashimoto, Y.; Kita, Y.; Sasabe, J.; Aiso, S.; Nishimoto, I.; Matsuoka, M., A Rac1/phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. The Journal of biological chemistry 2005, 280 (6), 4532-43.
59. de Oliveira, G. P.; Maximino, J. R.; Maschietto, M.; Zanoteli, E.; Puga, R. D.; Lima, L.; Carraro, D. M.; Chadi, G., Early gene expression changes in skeletal muscle from SOD1(G93A) amyotrophic lateral sclerosis animal model. Cellular and molecular neurobiology 2014, 34 (3), 451-62.
60. Brunet, A.; Datta, S. R.; Greenberg, M. E., Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Current opinion in neurobiology 2001, 11 (3), 297-305.
61. Yin, X.; Ren, M.; Jiang, H.; Cui, S.; Wang, S.; Jiang, H.; Qi, Y.; Wang, J.; Wang, X.; Dong, G.; Leeds, P.; Chuang, D. M.; Feng, H., Downregulated AEG-1 together with inhibited PI3K/Akt pathway is associated with reduced viability of motor neurons in an ALS model. Molecular and cellular neurosciences 2015, 68, 303-13.
62. Nicolini, C.; Ahn, Y.; Michalski, B.; Rho, J. M.; Fahnestock, M., Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid. Acta neuropathologica communications 2015, 3, 3.
63. Grosskreutz, J.; Van Den Bosch, L.; Keller, B. U., Calcium dysregulation in amyotrophic lateral sclerosis. Cell calcium 2010, 47 (2), 165-74.
64. Kopec, A.; Panaszek, B.; Fal, A. M., Intracellular signaling pathways in IgE-dependent mast cell activation. Archivum immunologiae et therapiae experimentalis 2006, 54 (6), 393-401.
65. Hu, J. H.; Zhang, H.; Wagey, R.; Krieger, C.; Pelech, S. L., Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. Journal of neurochemistry 2003, 85 (2), 432-442.
66. Tadic, V.; Prell, T.; Lautenschlaeger, J.; Grosskreutz, J., The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. *Frontiers in cellular neuroscience* **2014**, *8*, 147.

67. Staats, K. A.; Van Helleputte, L.; Jones, A. R.; Bento-Abreu, A.; Van Hoecke, A.; Shatunov, A.; Simpson, C. L.; Lemmens, R.; Jaspers, T.; Fukami, K.; Nakamura, Y.; Brown, R. H., Jr.; Van Damme, P.; Liston, A.; Robberecht, W.; Al-Chalabi, A.; Van Den Bosch, L., Genetic ablation of phospholipase C delta 1 increases survival in SOD1(G93A) mice. *Neurobiology of disease* **2013**, *60*, 11-7.

68. Casula, M.; Iyer, A. M.; Spliet, W. G.; Anink, J. J.; Steentjes, K.; Sta, M.; Troost, D.; Aronica, E., Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. *Neuroscience* **2011**, *179*, 233-43.

69. Ray, R.; Juranek, J. K.; Rai, V., RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. *Neuroscience and biobehavioral reviews* **2016**, *62*, 48-55.

70. Letiembre, M.; Liu, Y.; Walter, S.; Hao, W.; Pfander, T.; Wrede, A.; Schulz-Schaeffer, W.; Fassbender, K., Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. *Neurobiol Aging* **2009**, *30* (5), 759-68.

71. Liu, Y.; Hao, W.; Dawson, A.; Liu, S.; Fassbender, K., Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. *The Journal of biological chemistry* **2009**, *284* (6), 3691-9.

72. Lo Coco, D.; Vegliansese, P.; Allievi, E.; Bendotti, C., Distribution and cellular localization of high mobility group box protein 1 (HMGB1) in the spinal cord of a transgenic mouse model of ALS. *Neuroscience letters* **2007**, *412* (1), 73-7.

73. De Paola, M.; Mariani, A.; Bigini, P.; Peviani, M.; Ferrara, G.; Molteni, M.; Gemma, S.; Vegliansese, P.; Castellaneta, V.; Boldrin, V.; Rossetti, C.; Chiabrando, C.; Forloni, G.; Mennini, T.; Fanelli, R., Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration. *Molecular medicine* **2012**, *18*, 971-81.

74. Zhao, W.; Beers, D. R.; Henkel, J. S.; Zhang, W.; Urushitani, M.; Julien, J. P.; Appel, S. H., Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. *Glia* **2010**, *58* (2), 231-43.

75. Zhao, W.; Beers, D. R.; Appel, S. H., Immune-mediated mechanisms in the pathogenesis of amyotrophic lateral sclerosis. *Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology* **2013**, *8* (4), 888-99.

76. Camandola, S.; Mattson, M. P., NF-kappa B as a therapeutic target in neurodegenerative diseases. *Expert opinion on therapeutic targets* **2007**, *11* (2), 123-32.

77. Feng, X. H.; Yuan, W.; Peng, Y.; Liu, M. S.; Cui, L. Y., Therapeutic effects of dl-3-n-butylphthalide in a transgenic mouse model of amyotrophic lateral sclerosis. *Chinese medical journal* **2012**, *125* (10), 1760-6.

78. Morley, B. J.; Walport, M. J., 2 - The Complement System. In *The Complement FactsBook*, Academic Press: London, 2000; pp 7-22.

79. Guo, R. F.; Ward, P. A., Role of C5a in inflammatory responses. *Annual review of immunology* **2005**, *23*, 821-52.

80. Bonifati, D. M.; Kishore, U., Role of complement in neurodegeneration and neuroinflammation. *Molecular immunology* **2007**, *44* (5), 999-1010.

81. Morgan, B. P., The role of complement in neurological and neuropsychiatric diseases. *Expert review of clinical immunology* **2015**, *11* (10), 1109-19.

82. Lee, J. D.; Kamaruzaman, N. A.; Fung, J. N.; Taylor, S. M.; Turner, B. J.; Atkin, J. D.; Woodruff, T. M.; Noakes, P. G., Dysregulation of the complement cascade in the hSOD1G93A transgenic mouse model of amyotrophic lateral sclerosis. *Journal of neuroinflammation* **2013**, *10*, 119.
83. Orsini, F.; De Blasio, D.; Ramaglia, V.; Aronica, E.; Baas, F.; Troost, D., Complement activation at the motor end-plates in amyotrophic lateral sclerosis. Journal of neuroinflammation 2016, 13 (1), 72.

85. Bahia El Idrissi, N.; Bosch, S.; Ramaglia, V.; Aronica, E.; Baas, F.; Troost, D., Complement activation at the motor end-plates in amyotrophic lateral sclerosis. Journal of neuroinflammation 2016, 13 (1), 72.

87. Melis, J. P.; Strumane, K.; Ruuls, S. R.; Beurskens, F. J.; Schuurman, J.; Parren, P. W., Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics. Molecular immunology 2015, 67 (2 Pt A), 117-30.

88. Turner, M. D.; Nedjai, B.; Hurst, T.; Pennington, D. J., Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et biophysica acta 2014, 1843 (11), 2563-2582.

90. Malaspina, A.; Puentes, F.; Amor, S., Disease origin and progression in amyotrophic lateral sclerosis: an immunology perspective. International immunology 2015, 27 (3), 117-29.

91. Tateishi, T.; Yamasaki, R.; Tanaka, M.; Matsushita, T.; Kikuchi, H.; Isobe, N.; Ohyagi, Y.; Kira, J., CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis. Journal of neuroimmunology 2010, 222 (1-2), 76-81.

92. Liu, B.; Chen, H.; Johns, T. G.; Neufeld, A. H., Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. J Neurosci 2006, 26 (28), 7532-40.

93. Brockington, A.; Wharton, S. B.; Fernando, M.; Gelsthorpe, C. H.; Baxter, L.; Ince, P. G.; Lewis, C. E.; Shaw, P. J., Expression of vascular endothelial growth factor and its receptors in the central nervous system in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006, 65 (1), 26-36.

94. Maier, A.; Deigendesch, N.; Muller, K.; Weishaupt, J. H.; Krannich, A.; Rohle, R.; Meissner, F.; Molawi, K.; Munch, C.; Holm, T.; Meyer, R.; Meyer, T.; Zychlinsky, A., Interleukin-1 Antagonist Anakinra in Amyotrophic Lateral Sclerosis--A Pilot Study. PloS one 2015, 10 (10), e0139684.

95. Miezwicki, M. T.; Fiala, M.; Magpantay, L.; Aziz, N.; Sayre, J.; Liu, G.; Siani, A.; Chan, D.; Martinez-Maza, O.; Chattopadhyay, M.; La Cava, A., Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. American journal of neurodegenerative disease 2012, 1 (3), 305-15.

96. Boston-Howes, W.; Williams, E. O.; Bogush, A.; Scolere, M.; Pasinelli, P.; Trott, D., Nordihydroguaiaretic acid increases glutamate uptake in vitro and in vivo: therapeutic implications for amyotrophic lateral sclerosis. Exp Neurol 2008, 213 (1), 229-37.

97. Trieu, V. N.; Uckun, F. M., Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem Biophys Res Commun 1999, 258 (3), 685-8.

99. Zheng, C.; Nennesmo, I.; Fadeel, B.; Henter, J. I., Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 2004, 56 (4), 564-7.
100. Nefussy, B.; Drory, V. E., Moving toward a predictive and personalized clinical approach in amyotrophic lateral sclerosis: novel developments and future directions in diagnosis, genetics, pathogenesis and therapies. The EPMA journal 2010, 1 (2), 329-41.

101. Gordon, P. H.; Cheung, Y. K.; Levin, B.; Andrews, H.; Doorish, C.; Macarthur, R. B.; Montes, J.; Bednarz, K.; Florence, J.; Rowin, J.; Boylan, K.; Mozaffar, T.; Tandan, R.; Mitsumoto, H.; Kelvin, E. A.; Chapin, J.; Bedlack, R.; Rivner, M.; McCluskey, L. F.; Pestronk, A.; Graves, M.; Sorenson, E. J.; Barohn, R. J.; Belsh, J. M.; Lou, J. S.; Levine, T.; Saperstein, D.; Miller, R. G.; Scelsa, S. N.; Combination Drug Selection Trial Study, G., A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Amyotroph Lateral Scler 2008, 9 (4), 212-22.

102. Nicolas, C. S.; Amici, M.; Bortolotto, Z. A.; Doherty, A.; Csaba, Z.; Fafouri, A.; Dournaud, P.; Gressens, P.; Collingridge, G. L.; Peineau, S., The role of JAK-STAT signaling within the CNS. Jak-Stat 2013, 2 (1), e22925.

103. Grace, E. A.; Busciglio, J., Aberrant activation of focal adhesion proteins mediates fibrillar amyloid beta-induced neuronal dystrophy. J Neurosci 2003, 23 (2), 493-502.

104. Niebroj-Dobosz, I.; Janik, P.; Sokolowska, B.; Kwiecinski, H., Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. European journal of neurology 2010, 17 (2), 226-31.

105. Trieu, V. N.; Liu, R.; Liu, X. P.; Uckun, F. M., A specific inhibitor of janus kinase-3 increases survival in a transgenic mouse model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2000, 267 (1), 22-5.

106. Qin, H.; Buckley, J. A.; Li, X.; Liu, Y.; Fox, T. H., 3rd; Meares, G. P.; Yu, H.; Yan, Z.; Harms, A. S.; Li, Y.; Standaert, D. G.; Benveniste, E. N., Inhibition of the JAK/STAT Pathway Protects Against alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience 2016, 36 (18), 5144-59.

107. Kiaei, M.; Petri, S.; Kipiani, K.; Gardian, G.; Choi, D. K.; Chen, J.; Calingasan, N. Y.; Schafer, P.; Muller, G. W.; Stewart, C.; Hensley, K.; Beal, M. F., Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 2006, 26 (9), 2467-73.

108. Kiaei, M.; Kipiani, K.; Petri, S.; Choi, D. K.; Chen, J.; Calingasan, N. Y.; Beal, M. F., Integrative role of cPLA with COX-2 and the effect of non-steriodal anti-inflammatory drugs in a transgenic mouse model of amyotrophic lateral sclerosis. Journal of neurochemistry 2005, 93 (2), 403-11.
Supplementary Figure and Table Legends

Supplementary Figure 1. Alterations in the antigen processing and presentation pathway associated with SALS patients.
This figure illustrates genes differentially expressed in SALS patients that are involved in the antigen processing and presentation process. Each encoded protein is labeled with two thermometers (1) or (2) that indicate expression levels in SALS cluster 1 and 2, respectively. Upward thermometers have red color and indicate up-regulated signals in SALS patients, down-ward (blue) ones indicate down-regulated signals. Colored hexagons on the vectors between objects describe the type of interaction where B = binding, C = cleavage, CM = covalent modification, Cn = competition, CS = complex subunit, GR = group relation, IE = influence on expression, P = phosphorylation, T = transformation, TR = transcriptional regulation, Tn = transport and CR indicates that an object belongs to a group of related proteins. Lines indicate activation (green), inhibition (red) or unspecified (grey) interactions between the molecules. The object shapes correspond to molecule type and are described in the Supplementary Figure 5.

Supplementary Figure 2. Alterations in immune and inflammatory signaling observed in SALS patients.
Genes involved in immune and inflammatory signaling that were differentially expressed in SALS patients versus controls were mapped on pathway. Thermometers labeled with (1) or (2) indicate expression levels in SALS cluster 1 and 2, respectively. Upward thermometers have red color and indicate up-regulated signals in SALS patients, down-ward (blue) ones indicate down-regulated signals. Colored hexagons on the vectors between objects describe the type of interaction where B = binding, C = cleavage, CM = covalent modification, Cn = competition, CS = complex subunit, GR = group relation, IE = influence on expression, P = phosphorylation, T = transformation, TR = transcriptional regulation, Tn = transport and CR indicates that an object belongs to a group of related proteins. Lines indicate activation (green), inhibition (red) or unspecified (grey) interactions between the molecules. The object shapes correspond to molecule type and are described in the Supplementary Figure 5.

Supplementary Figure 3. Alterations in complement system signaling pathways (classical, lectin and alternative) observed in SALS patients.
Thermometers labeled with (1) or (2) indicate expression levels in SALS cluster 1 and 2, respectively. Upward thermometers have red color and indicate up-regulated signals in SALS patients, down-ward (blue) ones indicate down-regulated signals. Colored hexagons on the vectors between objects describe the type of interaction where B = binding, C = cleavage, CM = covalent modification, Cn = competition, CS = complex subunit, GR = group relation, IE = influence on
expression, P = phosphorylation, T = transformation, TR = transcriptional regulation, Tn = transport and CR indicates that an object belongs to a group of related proteins. Lines indicate activation (green), inhibition (red) or unspecified (grey) interactions between the molecules. The object shapes correspond to molecule type and are described in the Supplementary Figure 5.

Supplementary Figure 4. Alterations in cytokine signaling observed in SALS patients. Thermometers labeled with (1) or (2) indicate expression levels in SALS cluster 1 and 2, respectively. Upward thermometers have red color and indicate up-regulated signals in SALS patients, downward (blue) ones indicate down-regulated signals. Colored hexagons on the vectors between objects describe the type of interaction where B = binding, C = cleavage, CM = covalent modification, Cn = competition, CS = complex subunit, GR = group relation, IE = influence on expression, P = phosphorylation, T = transformation, TR = transcriptional regulation, Tn = transport and CR indicates that an object belongs to a group of related proteins. Lines indicate activation (green), inhibition (red) or unspecified (grey) interactions between the molecules. The object shapes correspond to molecule type and are described in the Supplementary Figure 5.

Supplementary Figure 5. Legend describing symbols used in MetaCore pathway.

Supplementary Table 1. Pathway enrichment analysis on the entire list of statistically deregulated genes in SALS patients versus controls.

Supplementary Table 2. Pathway enrichment analysis on the entire list of statistically deregulated genes in SALS1 and SALS2 patients compared to controls.

Supplementary Table 3. Neuroinflammatory genes differentially expressed in SALS1.

Supplementary Table 4. Neuroinflammatory genes differentially expressed in SALS2.

Supplementary Table 5. Neuroinflammatory genes differentially expressed in SALS1 and SALS2.

Supplementary Table 6. List of genes included in the SALS1-related PPI network.

Supplementary Table 7. List of genes included in the SALS2-related PPI network.

Supplementary Table 8. Pathway enrichment analyses on the list of statistically deregulated neuroinflammatory genes in SALS patients.
Supplementary Table 1. Pathway enrichment analysis on the entire list of statistically deregulated genes in SALS patients versus controls.

#	Maps	pValue	FDR	Ratio	
1	Thrombopoietin signaling via JAK-STAT pathway	2.591E-04	3.388E-02	3/22	
2	Huntingtin-depended transcription deregulation in Huntington's Disease	3.378E-04	3.388E-02	3/24	
3	Immune response_IL-4-induced regulators of cell growth, survival, differentiation and metabolism	4.600E-04	3.388E-02	4/63	
4	Signal transduction_JNK pathway	2.463E-03	1.361E-01	3/47	
5	Prolactin receptor signaling	4.483E-03	1.781E-01	3/58	
6	Cytokines and Chemokines signaling	6.075E-03	1.781E-01	4/127	
7	Immune response_Oncostatin M signaling via JAK-Stat	7.008E-03	1.781E-01	2/22	
8	Prolactin receptor signaling	4.483E-03	1.781E-01	3/58	
9	Immune response_IL-6 signaling pathway	4.600E-04	3.388E-02	4/63	
10	Role of Parkin in the Ubiquitin-Proteasomal Pathway	4.31E-03	1.781E-01	2/24	
11	Glucocorticoid receptor signaling	9.001E-03	1.781E-01	2/25	
12	Signal transduction_JNK pathway	2.463E-03	1.361E-01	3/47	
13	Prolactin receptor signaling	4.483E-03	1.781E-01	3/58	
14	Role of Diethylhexyl Phthalate and Tributyltin in fat cell differentiation	1.200E-02	1.781E-01	2/29	
15	Immune response_IL-13 signaling via JAK-STAT	1.200E-02	1.781E-01	2/29	
16	Apoptosis and survival_FAS signaling cascades	2.85E-02	1.781E-01	2/29	
17	Development_Transcription regulation of granulocyte development	1.450E-02	1.781E-01	2/29	
18	Development_Regulation of G1/S transition (part 1)	3.731E-02	1.781E-01	2/29	
19	Development_Differentiation of white adipocytes	4.125E-02	1.781E-01	2/29	
20	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
21	Development_Aspiration	4.125E-02	1.781E-01	2/29	
22	Development_Transcription regulation of granulocyte development	4.125E-02	1.781E-01	2/29	
23	Development_Regulation of G1/S transition (part 1)	4.125E-02	1.781E-01	2/29	
24	Development_Differentiation of white adipocytes	4.125E-02	1.781E-01	2/29	
25	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
26	Development_Aspiration	4.125E-02	1.781E-01	2/29	
27	Development_Differentiation of white adipocytes	4.125E-02	1.781E-01	2/29	
28	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
29	Development_Aspiration	4.125E-02	1.781E-01	2/29	
30	Development_Differentiation of white adipocytes	4.125E-02	1.781E-01	2/29	
31	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
32	Development_Aspiration	4.125E-02	1.781E-01	2/29	
33	Development_Differentiation of white adipocytes	4.125E-02	1.781E-01	2/29	
34	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
35	Development_Aspiration	4.125E-02	1.781E-01	2/29	
36	Development_Differentiation of white adipocytes	4.125E-02	1.781E-01	2/29	
37	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
38	Development_Differentiation of white adipocytes	4.125E-02	1.781E-01	2/29	
39	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
40	Development_Differentiation of white adipocytes	4.125E-02	1.781E-01	2/29	
41	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
42	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
43	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
44	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
45	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
46	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
47	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
48	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
49	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
50	Development_Keratinocyte differentiation	4.125E-02	1.781E-01	2/29	
Rank	Pathway Description	pValue	min(pvalue)	FDR	Ratio
------	--	--------	-------------	------	-------
1	Cytoplasm remodeling, GTP-binding and cytoskeletal remodeling	2.54E-09	3.15E-13	3.7E-07	37/111
2	Cytoskeleton remodeling, cytoskeleton remodeling	3.15E-13	3.54E-11	72/111	
3	Transport_ClinProphicoated vesicle cycle	1.70E-06	9.52E-05	30/102	
4	Transport_Kinin-coated vesicle cycle	3.63E-12	3.63E-12	66/102	
5	Signal transduction of mTORC1 downstream signaling	1.82E-09	1.82E-09	33/111	
6	Normal and pathological TGF-beta-mediated regulation of cell proliferation	1.10E-08	3.05E-09	9.62E-03	14/33
7	Development_Postive regulation of STK34 (Hippo) pathway and negative regulation of YAP/TAZ function	1.17E-03	3.26E-09	9.87E-03	18/70
8	Neurogenesis_NGF/TrkA MAPK-mediated signaling	4.23E-02	3.79E-09	1.13E-01	19/105
9	Development_Regulation of cytoskeleton proteins in oligodendrocyte differentiation and myelinization	2.55E-05	4.13E-09	6.75E-04	19/58
10	Neurophysiological process Dynein-dynactin motor complex in axonal transport in neurons	3.86E-07	3.77E-05	2.12E-07	40/58
11	Immune response_M-CSF-Receptor signaling pathway	9.98E-02	4.24E-09	2.08E-07	14/18
12	Immune response_Granulocyte-Macrophage signaling pathway	2.42E-01	1.24E-07	5.81E-07	27/34
13	Development_WNT signaling pathway. Part 1. Degradation of beta-catenin in the absence WNT signaling	5.13E-04	1.04E-08	2.55E-02	10/34
14	Development_WNT signaling pathway. Part 2. Degradation of beta-catenin in the absence WNT signaling	1.12E-08	1.12E-08	4.56E-07	18/19
15	Apoptosis and survival_NGF/TrkA PI3K-mediated signaling	1.10E-07	1.94E-08	1.21E-05	27/77
16	Development_Prolaktin receptor signaling	9.96E-02	1.96E-08	7.35E-07	39/85
17	Immune response_IL-3 signaling via ERK and PI3K	1.84E-03	2.60E-08	9.17E-07	59/102
18	LRRK2 in neurons in Parkinson’s disease	1.74E-06	2.65E-08	9.52E-05	15/33
19	Cell adhesion_Chemokin and adhesion	1.07E-08	2.98E-08	9.94E-07	89/100
20	Immune response_ONcostatin M signaling via MAPK	1.47E-01	3.65E-08	2.73E-08	73/77
21	Immune response_IL-6 signaling pathway via JAK/STAT	4.20E-08	2.24E-02	1.77E-08	28/32
22	Signal transduction of mTORC2 downstream signaling	4.79E-08	4.79E-08	1.49E-07	45/72
23	Transcription_Transcription regulation of aminoacid metabolism	5.80E-03	5.80E-08	2.69E-02	16/68
24	Transcription_Transcription regulation of aminoacid metabolism	1.72E-01	7.82E-08	2.99E-02	32/78
25	Immune response_Antigen presentation by MHC class I, classical pathway	1.27E-03	9.68E-08	1.05E-02	16/64
26	Immune response_Activation of PKC via G-Protein coupled receptor	8.30E-04	1.01E-07	8.54E-03	15/52
27	Tau pathology in Alzheimer disease	1.83E-07	1.83E-07	3.83E-06	40/110
28	Immune response_HMBG1/RAGE signaling pathway	2.71E-02	1.96E-07	8.30E-12	12/255
29	IL-6 signaling in multiple myeloma	3.01E-03	3.01E-08	3.60E-03	13/33
30	Regulation of degradation of deltaF508-CFTR in CF	2.09E-07	2.09E-07	5.21E-03	35/53
31	Immune response_IL-2 signaling via JAK/STAT, p38, JNK and NF-kB	2.10E-05	2.10E-05	6.12E-04	15/39
32	Aberrant presentation of IL-2 and IL-17 in SLE T cells	7.21E-04	2.95E-04	2.95E-04	17/93
33	Immune response_Role of PKR in stress-induced antiviral cell response	2.58E-07	2.58E-07	5.94E-06	53/93
34	Immune response_IL-4 signaling pathway	6.96E-01	3.57E-07	8.24E-01	22/24
35	Immune response_IL-2 signaling pathway	5.7E-06	5.7E-06	8.20E-06	39/54
36	Development_TGF-beta-dependent induction of EMT via RhoA, PI3K and ILK	4.58E-08	4.58E-09	0.00E-05	9/86
37	Signal transduction of ERK1/2 signaling pathway	4.19E-02	4.19E-07	2.25E-02	21/46
38	Development_Adrenosine A2B receptor signaling	1.68E-03	1.68E-03	4.25E-02	14/50
39	Immune response_Antigen presentation by MHC class I, cross-presentation	4.97E-04	4.82E-07	6.26E-03	24/99
40	Immune response_Epigenetic and transcriptional regulation of oligodendrocyte precursor cell differentiation and myelination	1.45E-03	1.45E-03	1.11E-02	11/34
41	Immune response_IL-6 signaling pathway via MEK/ERK and PI3K/AKT cascades	1.56E-03	1.56E-03	9.81E-06	25/04
42	Development_EPO-induced Jak-STAT pathway	5.90E-02	5.90E-04	1.40E-01	9/86
43	K-RAS signaling in pancreatic cancer	1.34E-02	1.34E-02	9.81E-06	26/06
44	GSK3 beta in bipolar disorder	5.85E-07	5.85E-07	9.88E-06	19/23
45	Some pathways of EMT in cancer cells	6.25E-07	6.25E-07	4.97E-05	29/15

Supplementary Table 2. Pathway enrichment analysis on the entire list of statistically deregulated genes in SALS1 (n=4485) and SALS2 (16144) patients compared to controls.
Pathway	p-value	r-value	FDR	
Neurophysiological process_GABA-A receptor life cycle	1.34E-05	1.57E-05	31/51	
Development_Regulation of epithelial-to-mesenchymal transition (EMT)	3.57E-02	9.04E-07	7/27	
Development_Regulation of epithelial-to-mesenchymal transition (EMT)	9.38E-06	9.63E-07	3.38E-04	21/64
Development_Regulation of epithelial-to-mesenchymal transition (EMT)	9.63E-07	9.63E-07	1.64E-05	39/64
Development_Regulation of epithelial-to-mesenchymal transition (EMT)	7.90E-03	1.08E-06	3.48E-02	12/47
Development_Regulation of epithelial-to-mesenchymal transition (EMT)	1.08E-06	1.80E-05	33/47	
Signal transduction_JNK pathway	1.79E-03	1.15E-06	1.38E-02	39/46
Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity	3.64E-03	2.04E-02	12/43	
Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity	1.20E-06	1.95E-05	28/43	
Cytoskeleton remodeling_Hyaluronic acid/ CD44 signaling pathways	9.63E-07	3.48E-02	12/47	
Cytoskeleton remodeling_Hyaluronic acid/ CD44 signaling pathways	9.63E-07	1.80E-05	33/47	
Cytoskeleton remodeling_Hyaluronic acid/ CD44 signaling pathways	7.90E-03	1.08E-06	3.48E-02	12/47
Cytoskeleton remodeling_Hyaluronic acid/ CD44 signaling pathways	1.08E-06	1.80E-05	33/47	
Cytoskeleton remodeling_Hyaluronic acid/ CD44 signaling pathways	3.64E-03	2.04E-02	12/43	
Cytoskeleton remodeling_Hyaluronic acid/ CD44 signaling pathways	1.20E-06	1.95E-05	28/43	
Probe ID	p Value (Corr)	p Value (SALS1/CTRL)	Fold Change (SALS1/CTRL)	GENE_SYMBOL
------------	----------------	----------------------	--------------------------	-------------
A_23_P166051	2.08E-02	1.18E-02	1.47	RBCK1
A_23_P329573	3.22E-02	1.93E-02	2.17	ITGB2
A_24_P343233	1.44E-05	1.23E-06	2.20	HLA-DRB1
A_23_P89249	7.67E-04	2.59E-04	1.99	ERBB2
A_23_P135769	6.60E-05	1.21E-05	3.04	ACTB
A_23_P24870	3.85E-02	2.38E-02	2.05	CD44
A_23_P309739	2.75E-02	1.61E-02	-1.46	ESR1
A_24_P362193	2.48E-05	2.98E-06	-3.52	CD84
A_23_P158725	5.34E-05	9.11E-06	1.76	SLC16A3
A_23_P145089	1.26E-06	9.38E-09	3.55	HSP90AB1
A_24_P50759	4.10E-06	1.22E-07	-1.40	TNF
A_23_P75283	1.02E-04	2.16E-05	1.93	RBP4
A_23_P4223	2.99E-06	5.79E-08	2.02	CALCOCO2
A_23_P79591	2.15E-06	3.16E-08	-2.16	APOB
A_23_P29495	3.09E-05	4.13E-06	2.02	CTNNB1
A_24_P161933	7.60E-04	2.56E-04	3.87	HLA-B
A_23_P315571	6.84E-05	1.27E-05	2.10	RFTN1
A_23_P120947	7.38E-06	3.33E-07	3.05	XRCC6
A_23_P369237	2.37E-02	1.37E-02	-1.39	ADIPOQ
A_23_P213114	1.46E-03	5.55E-04	-4.41	TEC
A_24_P281101	8.16E-06	4.17E-07	-1.91	ABL1
A_23_P70095	1.39E-02	7.41E-03	1.69	CD74
A_23_P101992	3.31E-02	1.99E-02	2.44	MARCO
A_23_P147875	2.88E-05	3.72E-06	2.12	CHID1
A_23_P156788	1.16E-02	6.02E-03	-1.59	STX11
A_24_P123616	3.81E-06	1.01E-07	4.67	HSPA1A
A_23_P70539	2.05E-02	1.16E-02	2.42	HLA-C
A_24_P7887	2.54E-04	6.75E-05	-1.79	EP300
A_23_P103361	1.17E-02	6.08E-03	-1.48	LCK
A_24_P943283	1.43E-03	5.37E-04	-1.64	DENND1B
A_23_P60387	3.63E-02	2.23E-02	-1.37	NOTCH1
A_23_P206510	9.25E-06	5.80E-07	1.80	GLG1
A_23_P202156	4.66E-02	2.99E-02	-1.47	NFKB2
A_23_P61646	2.05E-02	1.16E-02	1.81	STX4
A_23_P29036	5.59E-05	9.69E-06	1.71	IFNGR2
A_24_P390495	1.27E-02	6.69E-03	1.62	CX3CL1
A_24_P254079	6.81E-03	3.31E-03	2.10	ICAM5
A_23_P215913	1.03E-05	6.92E-07	3.90	CLU
A_23_P98183	1.68E-03	6.55E-04	2.13	HRAS
A_24_P360674	8.53E-06	4.75E-07	-4.42	CDKN2B
A_23_P81912	5.03E-06	1.64E-07	2.33	TUBB
A_23_P151294	1.01E-06	3.77E-09	-1.80	IFNG
A_23_P92499	1.86E-03	7.38E-04	2.06	TLR2
A_24_P287043	8.52E-05	1.70E-05	2.49	IFITM2
A_23_P99452	5.88E-06	2.02E-07	-1.75	BRCA2
A_32_P139894	1.91E-05	1.93E-06	1.74	ABL2

Supplementary Table 3. Neuroinflammatory genes differentially expressed in SALS1.
Gene	Log2FoldChange	p-value	q-value	Description	
IRF9	1.86	7.26E-05	1.97	RABGAP1L	
ATG5	1.48	6.57E-04	1.10E-04	GLG1	
RAB5B	2.34	2.60E-02	1.52E-02	TUBB	
ANG	1.56	3.46E-03	1.52E-03	HYAL2	
RBPJ	2.08	8.12E-06	4.08E-07	BCR	
CIAPIN1	2.00	2.72E-03	1.16E-03	IP6K2	
NUP85	-1.32	1.16E-03	4.21E-04	FOXL1	
BRAF	1.59	4.24E-06	1.30E-07	TUBB	
HYAL2	1.64	8.16E-06	4.15E-07	SEC13	
BCAP31	3.38	1.44E-04	3.29E-05	TUBB	
CIAPIN1	2.00	2.72E-03	1.16E-03	IP6K2	
NUP85	-1.32	1.16E-03	4.21E-04	FOXL1	
BRAF	1.59	4.24E-06	1.30E-07	TUBB	
HYAL2	1.64	8.16E-06	4.15E-07	SEC13	
BCAP31	3.38	1.44E-04	3.29E-05	TUBB	
CIAPIN1	2.00	2.72E-03	1.16E-03	IP6K2	
NUP85	-1.32	1.16E-03	4.21E-04	FOXL1	
BRAF	1.59	4.24E-06	1.30E-07	TUBB	
HYAL2	1.64	8.16E-06	4.15E-07	SEC13	
BCAP31	3.38	1.44E-04	3.29E-05	TUBB	
CIAPIN1	2.00	2.72E-03	1.16E-03	IP6K2	
NUP85	-1.32	1.16E-03	4.21E-04	FOXL1	
BRAF	1.59	4.24E-06	1.30E-07	TUBB	
HYAL2	1.64	8.16E-06	4.15E-07	SEC13	
BCAP31	3.38	1.44E-04	3.29E-05	TUBB	
CIAPIN1	2.00	2.72E-03	1.16E-03	IP6K2	
NUP85	-1.32	1.16E-03	4.21E-04	FOXL1	
BRAF	1.59	4.24E-06	1.30E-07	TUBB	
HYAL2	1.64	8.16E-06	4.15E-07	SEC13	
BCAP31	3.38	1.44E-04	3.29E-05	TUBB	
CIAPIN1	2.00	2.72E-03	1.16E-03	IP6K2	
NUP85	-1.32	1.16E-03	4.21E-04	FOXL1	
BRAF	1.59	4.24E-06	1.30E-07	TUBB	
HYAL2	1.64	8.16E-06	4.15E-07	SEC13	
BCAP31	3.38	1.44E-04	3.29E-05	TUBB	
CIAPIN1	2.00	2.72E-03	1.16E-03	IP6K2	
NUP85	-1.32	1.16E-03	4.21E-04	FOXL1	
Gene Symbol	Log2 Fold Change	p-Value	Significance		
-------------	-----------------	---------	--------------		
CMKLR1	2.55E-02	1.48E-02	1.72		
RABGEP1	5.40E-03	1.69E-03	1.56		
SERPINA3	1.30E-02	6.90E-03	3.29		
CXCL10	8.31E-05	2.99E-07	-3.23		
BCL6	1.10E-04	2.38E-05	2.09		
CHD2	2.43E-05	2.84E-06	2.05		
UBE2D3	1.67E-06	1.73E-08	2.37		
LST1	4.54E-03	2.08E-03	1.98		
SYNCRIP	1.66E-05	1.58E-06	1.93		
EDN1	1.17E-05	8.44E-07	2.69		
MAEA	7.10E-04	2.37E-04	3.82		
PSMC5	6.76E-03	3.28E-03	3.14		
BCR	6.68E-07	8.25E-10	1.69		
SNX27	1.19E-05	8.67E-07	2.27		
PRMT1	3.77E-04	1.10E-04	1.96		
FGFR2	1.71E-04	4.10E-05	1.83		
DAPK1	2.93E-02	1.74E-02	1.67		
PRKAR1A	3.96E-03	1.77E-03	2.39		
PRELID1	3.88E-06	1.11E-07	1.54		
ITGB5	1.22E-05	9.06E-07	1.86		
EE2F	1.60E-04	3.77E-05	3.16		
ELMO2	1.93E-03	7.74E-04	2.20		
PDE2A	1.67E-03	6.49E-04	2.46		
CD80	3.65E-03	1.62E-03	-2.86		
VAMP8	3.87E-04	1.14E-04	1.94		
DDIT4	3.67E-05	5.37E-06	1.98		
CCNB2	4.25E-05	6.53E-06	-2.65		
RARRES2	1.09E-03	3.95E-04	2.77		
ZFP36L2	4.41E-03	2.01E-03	2.72		
UBAS2	6.68E-07	1.26E-09	1.58		
SERINC3	9.88E-05	2.07E-05	2.16		
FLOT2	3.77E-04	1.10E-04	1.67		
NCAM1	2.04E-03	8.20E-04	1.70		
IL2	4.59E-06	1.48E-07	-1.83		
SUMO1	1.79E-02	9.93E-03	2.06		
SRF	1.45E-04	3.32E-05	1.90		
ST6GAL1	1.49E-05	1.31E-06	-1.83		
TRAF2	1.37E-02	7.28E-03	1.78		
PSMD9	1.66E-06	1.49E-08	1.99		
NR1H3	2.97E-05	3.88E-06	1.97		
C3D7	1.22E-02	6.39E-03	2.86		
C1QA	1.03E-02	5.29E-03	2.90		
LILRB3	2.52E-02	1.46E-02	2.70		
ARNT	2.87E-02	1.70E-02	1.90		
RAC1	4.24E-06	1.29E-07	2.37		
HIPK1	1.44E-05	1.22E-06	2.03		
PSME1	5.97E-03	2.84E-03	-3.00		
Gene Symbol	Log2 (Fold Change)	p-Value	Fold Change	Gene Symbol	
-------------	--------------------	---------	-------------	-------------	
ITGA2	-5.15	8.83E-06			
PHB	2.30	1.62E-04			
ARF1	1.94	1.45E-03			
PSMC4	2.27	2.28E-05			
HSP90AB1	2.31	4.51E-05			
BECN1	2.03	3.88E-06			
NCAPh2	2.01	1.13E-03			
NFATC1	1.88	1.24E-03			
PSMD3	2.62	5.90E-04			
TCF3	1.81	3.88E-06			
SQSTM1	2.94	3.88E-06			
ATG7	1.53	1.81E-02			
CYP19A1	-3.27	2.16E-02			
MS4A1	-5.29	4.99E-02			
IKKbeta	1.83	2.05E-05			
TFK2	1.74	2.03E-03			
ASS1	2.69	8.68E-06			
C4B	2.77	4.35E-03			
LAT2	-1.69	4.49E-03			
ARF1	3.31	6.68E-07			
AQP8	1.79	2.14E-03			
AQP4	3.73	2.05E-05			
PSMD4	2.88	1.26E-06			
ATG12	1.78	5.14E-04			
SECl4L1	1.66	7.26E-05			
Gf11	3.12	5.55E-03			
Fcrl4	-4.34	9.67E-04			
Psmf1	2.14	1.23E-05			
Ankhd1-Ef4ebp3	2.09	1.88E-04			
C1s	2.59	9.50E-05			
Inpps5d	1.73	2.19E-03			
Havcr2	1.91	6.47E-04			
ClqB	3.82	2.67E-04			
Psmd13	2.11	2.43E-05			
Relb	1.82	3.40E-06			
Ppp4r2	2.10	4.99E-02			
Ddx41	2.17	1.44E-02			
Bpgm	1.85	2.31E-05			
Prx7	1.84	8.30E-03			
Tcf7	-1.59	4.25E-05			
Bcr	1.91	3.52E-04			
Wipf2	1.62	6.22E-03			
Anxa2	2.82	3.35E-05			
Slfn13	-5.21	6.00E-06			
Tmem102	2.38	4.21E-03			
Pdia3	2.03	8.68E-06			
Hcls1	2.13	1.49E-05			
Vsig4	2.09	1.58E-03			
Gene Symbol	Fold Change	p-Value	Gene Symbol	Fold Change	p-Value
-------------	-------------	---------	-------------	-------------	---------
SART3	1.61	0.001	CXCL12	-4.66	0.001
AP2M1	2.48	0.001	L3MBTL3	1.40	0.001
MAPK10	2.38	0.001	LIG1	2.14	0.001
CR1	-2.68	0.001	MELK	-3.71	0.001
SMAD3	1.73	0.001	KLF2	2.14	0.001
PAF1	2.21	0.001	TGF3B	2.05	0.001
TAP1	1.89	0.001	TSC1	2.12	0.001
MMP7	-2.65	0.001	FGA	-5.31	0.001
C3	2.74	0.001	ABL1	1.67	0.001
TCF3	1.96	0.001	SIRPA	2.13	0.001
BTN2A2	1.61	0.001	PPP1R14B	2.30	0.001
RUNX2	-1.81	0.001	CCDC88B	-4.17	0.001
MYO1G	-1.83	0.001	GPNMB	3.08	0.001
FOXO3	1.97	0.001	ANXA1	2.40	0.001
HSD3B7	-4.59	0.001	TMEM173	1.70	0.001
CEBPA	2.63	0.001	PILRB	4.52	0.001
SH2D1A	-4.11	0.001	LILR1A	-3.63	0.001
ACTN1	2.13	0.001	BCL2A1	1.57	0.001
GON4L	1.69	0.001	POLR3E	1.72	0.001
GADD45G	2.09	0.001	NTRK1	-2.27	0.001
RPL22	1.75	0.001	PSMC1	1.94	0.001
IGBP1	1.98	0.001			
Gene Symbol	log2FoldChange	Log10(p-value)			
-------------	---------------	----------------	-----------------	-----------------	
KIF3B	3.32	2.90E-03	1.93	3.32	
ZBTB16	2.69	3.75E-06	2.34	2.08	
SRF	1.98	2.59E-06	1.98	2.00	
POLR3H	1.75	1.46E-07	1.75	1.75	
CFD	2.46	5.97E-03	2.66	2.46	
PSME1	2.42	5.99E-04	2.64	2.42	
HDAC4	2.00	2.23E-06	2.00	2.00	
SFXN1	-2.60	1.97E-02	-2.60	2.00	
ITGA2B	-3.51	1.07E-04	-3.65	2.00	
IL3	-3.65	1.14E-03	-3.65	2.00	
HMG3B2	2.33	3.93E-07	2.33	2.00	
FKBP1B	1.92	1.33E-08	1.92	2.00	
PML	1.69	5.21E-06	1.69	2.00	
ADAMDEC1	-2.21	2.06E-02	-2.21	2.00	
ACTN1	2.66	4.83E-05	2.66	2.00	
HLA-DRB3	2.53	1.72E-02	2.53	2.00	
CD59	1.95	5.10E-05	1.95	2.00	
SIPA1L3	2.48	6.73E-05	2.48	2.00	
ACTR1A	2.00	1.97E-02	2.00	2.00	
DCTN3	2.45	2.11E-07	2.45	2.00	
ATP6V1H	2.51	1.12E-02	2.51	2.00	
JAK3	1.66	2.44E-06	1.66	2.00	
CTR9	2.10	4.01E-07	2.10	2.00	
IPO7	-1.63	8.12E-03	-1.63	2.00	
DNM2	2.07	1.98E-03	2.07	2.00	
AP2A2	2.10	2.27E-05	2.10	2.00	
IRF5	1.66	5.70E-03	1.66	2.00	
MSN	1.80	1.32E-02	1.80	2.00	
THR4	2.40	3.19E-04	2.40	2.00	
AP2S1	2.46	2.11E-07	2.46	2.00	
HS1BP3	1.77	3.17E-04	1.77	2.00	
SERPINA3	11.17	5.32E-05	11.17	2.00	
RRAS	1.60	9.03E-06	1.60	2.00	
EZR	2.55	8.93E-08	2.55	2.00	
DEFA6	-4.49	6.30E-05	-4.49	2.00	
TLX1	-2.81	2.11E-02	-2.81	2.00	
HP	3.10	2.30E-04	3.10	2.00	
DPP4	-2.55	5.44E-04	-2.55	2.00	
DCTN3	2.33	2.48E-07	2.33	2.00	
SLC3A2	2.55	6.68E-05	2.55	2.00	
MTHFD1	2.16	4.00E-09	2.16	2.00	
ARG2	1.93	6.51E-04	1.93	2.00	
HLA-E	3.04	1.86E-03	3.04	2.00	
IFNA10	-2.78	1.09E-02	-2.78	2.00	
CASP9	1.49	9.77E-07	1.49	2.00	
Gene Symbol	P Value	Odds Ratio	log2 Ratio	Description	
-------------	---------	------------	------------	-------------	
IGBP1	1.74E-04	4.18E-05	1.78		
ANGPT2	4.18E-05	1.74E-04	-2.74		
HLA-DRB5	3.40E-03	1.49E-03	3.01		
CIB1	3.13E-06	6.38E-08	2.06		
GALNT2	4.32E-04	1.31E-04	2.05		
HLA-DPB1	1.76E-04	4.24E-05	2.63		
BDKRB1	2.73E-02	1.60E-02	-2.15		
IFITM3	2.59E-05	3.49E-06	2.59		
HLA-DRB5	3.40E-03	1.49E-03	3.01		
TREM2	3.94E-02	2.45E-02	2.20		
SLC25A6	7.09E-06	2.98E-07	2.12		
ACTR1A	3.18E-06	6.65E-08	3.15		
ITGAD	2.15E-05	2.31E-06	-4.91		
AP3D1	2.70E-02	1.58E-02	2.39		
CXCL1	5.04E-04	1.59E-04	2.02		
CDB3	4.59E-06	1.48E-07	2.26		
DYNClI1	2.66E-05	3.30E-06	2.27		
BCL3	5.75E-03	2.73E-03	1.71		
HSPA1A	6.08E-05	1.08E-05	3.53		
TRIM27	1.91E-03	7.63E-04	1.66		
FAM111A	8.21E-06	4.22E-07	1.59		
ACTB	3.53E-06	8.86E-08	2.64		
HLA-DOA	1.12E-04	2.44E-05	1.75		
IK	1.26E-06	9.57E-09	2.60		
C2	2.07E-03	8.33E-04	-4.47		
EIF2AK4	8.16E-03	4.04E-03	1.89		
DyrR3	1.00E-03	3.58E-04	1.70		
MSN	3.53E-06	8.63E-08	2.35		
TUSC2	4.24E-04	1.27E-04	1.51		
RPS19	6.00E-06	2.16E-07	2.20		
IK	3.40E-06	7.96E-08	1.95		
PSMD11	6.10E-06	2.30E-07	2.17		
PSMC3	2.48E-03	1.03E-03	3.07		
CUEeD2	4.04E-05	6.15E-06	2.20		
SNRK	8.64E-03	4.33E-03	1.87		
MEIS2	1.24E-02	6.50E-03	1.59		
PIR	3.22E-05	4.41E-06	1.89		
RNF125	4.59E-03	2.11E-03	-2.14		
CD47	4.78E-04	1.49E-04	2.11		
LAT2	1.41E-03	5.31E-04	1.83		
HLA-DRB4	1.53E-02	8.35E-03	2.68		
VPREB3	8.92E-03	4.48E-03	-1.99		
KRAS	2.68E-02	1.57E-02	1.84		
NCF2	6.66E-04	2.20E-04	2.04		
PAX5	1.97E-02	1.11E-02	-2.18		
PHB	7.08E-05	1.32E-05	1.88		
KLF1	2.24E-05	2.48E-06	-4.02		
PTK2	1.34E-06	1.08E-08	2.16		
FOX1	1.25E-02	6.55E-03	1.91		
AIF1	8.72E-04	3.00E-04	2.23		
HLA-B	8.89E-06	5.35E-07	3.32		
Gene Code	Genotype 1	Genotype 2	Genotype 3	Label	
--------------	-----------	-----------	-----------	--------	
A_24_P388528	1.02E-04	2.15E-05	1.85	ST6GAL1	
A_23_P381979	9.50E-05	1.98E-05	2.00	OGT	
A_23_P37497	1.96E-04	4.81E-05	1.77	MYO1E	
A_32_P156963	9.21E-06	5.73E-07	2.33	ACTG1	
A_23_P217688	1.81E-05	1.80E-06	1.81	TSC22D3	
A_23_P38959	8.64E-03	4.33E-03	1.66	VAV1	
A_23_P48088	3.02E-04	8.42E-05	-1.64	CD27	
A_24_P74753	2.23E-03	9.11E-04	2.40	ATP6AP1	
A_24_P244356	9.26E-06	5.92E-07	1.81	NLRX1	
A_23_P500676	2.10E-02	1.20E-02	-3.03	IL5RA	
A_23_P38959	8.61E-03	4.33E-03	2.85	SCG2	
A_24_P86993	1.74E-04	4.19E-05	2.19	JAM3	
A_23_P133245	7.74E-06	3.70E-07	1.99	IK	
A_24_P166443	1.49E-05	1.30E-06	2.99	HLA-DPB1	
A_23_P361773	2.65E-02	1.54E-02	1.69	CCND3	
A_32_P234459	2.53E-04	6.70E-05	4.30	HLA-H	
A_24_P113674	7.30E-06	3.24E-07	2.57	HLA-B	
A_24_P373174	3.68E-02	2.27E-02	-2.58	RAB27A	
A_24_P226108	2.11E-04	5.30E-05	-6.01	RBM47	
A_23_P39465	1.12E-04	2.43E-05	2.00	BST2	
A_23_P200767	3.41E-04	9.71E-05	1.68	TROVE2	
A_24_P224727	8.89E-05	1.81E-05	2.14	CEBPA	
A_23_P63798	5.98E-06	2.09E-07	2.30	KLF6	
A_24_P216165	2.09E-04	5.23E-05	-2.49	CEBPA	
A_23_P111662	2.10E-05	2.23E-06	-5.16	ABCB5	
A_24_P166042	3.79E-04	1.10E-04	1.99	IMPDH2	
A_32_P186921	3.29E-04	4.59E-06	-1.42	ZNF616	
A_23_P64525	7.95E-05	1.54E-05	-4.00	RAG2	
A_23_P337242	1.26E-06	8.32E-09	-1.75	TGFB2R	
A_24_P94916	1.78E-02	9.88E-03	1.88	LST1	
A_23_P32404	1.79E-06	1.93E-08	1.87	ISG20	
A_23_P31323	2.70E-06	4.61E-08	2.60	ACTB	
A_24_P141688	1.10E-04	2.38E-05	1.59	PCBP2	
A_23_P413641	6.00E-06	2.20E-07	1.78	PREX1	
A_23_P163347	3.98E-04	1.17E-04	1.57	PIAS1	
A_23_P390518	4.20E-04	1.26E-04	-2.06	TNFRSF11A	
A_23_P312132	4.63E-02	2.94E-02	1.77	ITGAX	
A_23_P158239	2.34E-02	1.35E-02	1.75	SHMT2	
A_23_P112798	3.05E-03	1.31E-03	2.41	CRIP2	
A_23_P501538	7.30E-06	3.22E-07	-2.04	HOXA3	
A_23_P146644	5.59E-05	9.67E-06	3.00	ANXA2	
A_23_P28279	2.25E-04	5.75E-05	2.26	ACTR1B	
A_23_P368805	1.22E-05	9.06E-07	-1.79	HHLA2	

In bold are highlighted candidate genes already known to contribute to ALS susceptibility. *Gene expression fold-changes are given on a linear scale.*
Supplementary Table 4. Neuroinflammatory genes differentially expressed in SALS2.

Probe ID	p Value (Corr)	p Value (SALS2/CTRL)	Fold Change (SALS2/CTRL)	GENE_SYMBOL													
A_23_P126540	3.37E-03	1.47E-03	2.20	ADORA3													
A_23_P426292	1.03E-04	2.20E-05	-1.82	MAPK14													
A_23_P48936	2.22E-05	2.44E-06	-1.70	SMAD3													
A_23_P119478	3.66E-05	5.33E-06	-1.68	EBI3													
A_23_P202522	1.56E-05	1.41E-06	-2.78	AQP4													
A_23_P169629	3.49E-05	5.00E-06	-2.04	SHMT2													
A_24_P129277	3.04E-03	1.30E-03	1.94	NOD1													
A_23_P87973	1.53E-05	1.38E-06	-3.79	TRIM13													
A_23_P7325	2.23E-05	2.45E-06	2.03	BST1													
A_24_P295999	1.49E-04	3.45E-05	-3.87	CD4													
A_32_P186474	2.55E-03	1.07E-03	-2.46	RACGAP1													
A_24_P337700	1.10E-02	5.64E-03	-2.45	VNN1													
A_32_P154830	8.21E-06	4.24E-07	-1.69	OSTM1													
A_23_P89249	7.67E-04	2.59E-04	1.62	ERBB2													
A_24_P139191	2.31E-05	2.62E-06	-3.19	ITCH													
A_23_P54373	7.35E-05	1.39E-05	-2.96	RAB27A													
A_24_P83615	4.47E-04	2.04E-03	-2.73	NLRP1													
A_23_P308603	3.22E-05	4.41E-06	-4.30	SRC													
A_23_P309739	2.75E-02	1.61E-02	-1.56	ESR1													
A_24_P308096	1.63E-04	3.86E-05	-2.76	JAK3													
A_23_P138760	2.44E-03	1.01E-03	1.57	CLCF1													
A_23_P2990	3.94E-03	1.76E-03	3.17	CEBPE													
A_32_P61757	2.49E-05	3.00E-06	-4.24	PTPN11													
A_32_P530933	1.08E-02	5.53E-03	-3.37	PYGO1													
A_23_P35456	1.11E-04	2.41E-05	-3.13	SH3PXD2A													
A_23_P31945	1.42E-05	1.18E-06	-3.07	IL33													
A_23_P84705	1.27E-05	9.92E-07	9.01	TNFRSF13B													
A_23_P68740	1.71E-03	6.72E-04	-1.75	AIRE													
A_23_P68155	7.93E-04	2.70E-04	-1.60	IFIH1													
A_23_P208706	8.45E-05	1.68E-05	-2.51	BAX													
A_23_P99985	2.04E-06	2.85E-08	-2.28	HMGB1													
A_23_P35916	7.95E-05	1.55E-05	3.99	ATM													
A_23_P135248	5.08E-04	1.61E-04	1.81	CCL27													
A_23_P168836	7.40E-03	3.62E-03	2.30	PTK2B													
A_23_P70688	6.08E-05	1.08E-05	-2.66	LY86													
A_23_P167096	2.18E-04	5.51E-05	-2.00	VEGFC													
A_24_P354800	2.43E-05	2.84E-06	-3.57	HLA-DOA													
A_23_P343799	4.00E-04	1.18E-04	3.56	SOX6													
A_23_P29885	2.56E-05	3.12E-06	-2.63	MAEA													
A_23_P23303	6.68E-07	5.52E-10	4.12	EXO1													
A_24_P134074	5.90E-05	1.03E-05	-2.88	RPS19													
A_23_P1691	4.39E-06	1.36E-07	2.79	MMP1													
A_23_P50907	1.61E-04	3.80E-05	-2.37	ITGA1													
A_24_P142118	2.99E-03	1.28E-03	-1.81	THBS1													
A_23_P70095	1.39E-02	7.41E-03	2.10	CD74													
A_23_P101992	3.31E-02	1.99E-02	2.98	MARCO													
Gene ID	Gene Symbol	Log2FoldChange	p-value 1	p-value 2	Degree												
-----------	-------------	----------------	-----------	-----------	--------												
A_23_P40174	MMP9	4.13E-05	6.31E-06	-3.17	PBX1												
A_23_P134454	CAV1	8.55E-05	1.72E-05	-2.65	TRIM26												
A_23_P29939	SNCA	1.94E-05	1.98E-06	-3.64	F2												
A_23_P94879	F2	6.68E-07	1.99E-10	3.82													
A_24_P151464	SOD1	1.60E-05	1.48E-06	-4.52													
A_23_P62953	P8X1	1.25E-02	6.59E-03	5.61													
A_23_P162874	HSP90AA1	1.59E-03	6.16E-04	-3.86													
A_23_P70020	PFDN1	8.55E-05	1.72E-05	-2.80													
A_24_P898583	TRIM26	1.64E-05	1.54E-06	-1.89													
A_23_P29939	SNCA	1.94E-05	1.98E-06	-3.64													
A_23_P205686	PSEN1	6.64E-06	2.63E-07	-2.28													
A_23_P203191	APOA1	5.23E-05	8.83E-06	1.81													
A_24_P343695	RET	3.89E-06	1.13E-07	2.19													
A_23_P107073	RPA1	1.49E-05	1.31E-06	-2.42													
A_23_P212617	TFRC	4.51E-04	7.29E-06	-2.04													
A_24_P227927	IL21R	1.56E-04	3.65E-04	-2.32													
A_23_P63668	IFIT5	7.62E-06	3.58E-07	-1.75													
A_23_P140967	MEFV	1.20E-03	4.40E-04	-3.13													
A_23_P111571	HOXA3	7.97E-05	1.55E-05	-7.00													
A_24_P92683	IGHG1	2.91E-03	1.24E-03	-1.91													
A_23_P213706	IL4	1.96E-06	2.39E-08	6.64													
A_23_P207596	CDC42	6.84E-04	2.27E-04	-3.35													
A_23_P106024	JAG2	4.36E-05	6.82E-06	-1.53													
A_23_P43049	DCTN6	1.18E-05	8.55E-07	-3.65													
A_32_P115015	NF1	6.84E-05	1.26E-05	-2.23													
A_23_P7313	SPP1	3.02E-04	8.43E-05	-2.80													
A_23_P6272	ICOSLG	9.09E-05	1.87E-05	-2.15													
A_23_P103361	LCK	1.17E-02	6.08E-03	-1.66													
A_24_P184535	C12orf4	8.52E-05	1.70E-05	-1.91													
A_23_P117546	SOS2	1.02E-02	5.22E-03	-1.66													
A_24_P943283	DENND1B	1.43E-03	5.37E-04	-2.34													
A_24_P274270	STAT1	1.26E-06	9.85E-09	-2.00													
A_23_P77847	GRB2	8.52E-05	1.71E-05	-2.87													
A_23_P72096	IL1A	3.33E-05	4.70E-06	2.08													
A_24_P291016	ABL1	1.88E-06	7.48E-04	1.80													
A_32_P151102	MSN	3.39E-05	4.83E-06	2.10													
A_23_P83277	IL11RA	1.02E-02	2.15E-05	-1.81													
A_24_P158089	SERPINE1	2.45E-05	2.89E-06	-2.46													
A_24_P93948	KIF5A	1.26E-05	9.74E-07	-2.71													
A_24_P916496	PRKCA	3.48E-04	9.97E-05	-3.11													
A_24_P100742	ADD1	1.22E-04	2.73E-05	2.80													
A_24_P929754	MKNK2	5.12E-03	2.38E-03	-2.10													
A_24_P852756	HLA-DQA2	9.26E-04	3.24E-04	-3.29													
A_23_P215406	RAC1	8.71E-06	5.05E-07	-3.88													
A_24_P260443	THBS4	7.44E-06	3.38E-07	-2.49													
A_23_P57036	CD40	1.28E-03	4.73E-04	1.43													
A_23_P10291	CTSE	1.24E-04	2.78E-05	-1.91													
A_23_P153616	MADCAM1	6.60E-05	1.20E-05	-2.36													
Gene Symbol	log2 Fold Change	q-value	P-value	Description													
-------------	-----------------	---------	---------	-------------													
SEC24A	2.48E-02	1.44E-02	-1.72														
SERPINB9	4.04E-05	6.13E-06	-4.85														
PCBP2	9.76E-03	4.96E-03	2.27														
SP100	4.49E-03	2.05E-03	-2.03														
L1CAM	3.30E-05	4.61E-06	2.86														
SEC31A	3.00E-05	3.70E-06	-1.82														
HIF1A	3.00E-05	3.70E-06	-1.82														
CD97	4.04E-05	6.13E-06	-4.85														
RAB8B	9.76E-03	4.96E-03	2.27														
DCTN6	4.49E-03	2.05E-03	-2.03														
TET2	3.30E-05	4.61E-06	2.86														
I6L	3.00E-05	3.70E-06	-1.82														
I6	3.00E-05	3.70E-06	-1.82														
RHOA	4.04E-05	6.13E-06	-4.85														
CENPE	9.76E-03	4.96E-03	2.27														
MAPK1	4.49E-03	2.05E-03	-2.03														
ICAM5	3.30E-05	4.61E-06	2.86														
CEBPB	3.00E-05	3.70E-06	-1.82														
DCTN3	4.04E-05	6.13E-06	-4.85														
IL6	9.76E-03	4.96E-03	2.27														
IL10	4.49E-03	2.05E-03	-2.03														
MPL	3.30E-05	4.61E-06	2.86														
TANK	3.00E-05	3.70E-06	-1.82														
CD24	4.49E-03	2.05E-03	-2.03														
CTSF	3.30E-05	4.61E-06	2.86														
IFNG	3.00E-05	3.70E-06	-1.82														
TP53	4.49E-03	2.05E-03	-2.03														
PSME4	3.30E-05	4.61E-06	2.86														
AKT1	3.00E-05	3.70E-06	-1.82														
PPM1B	4.49E-03	2.05E-03	-2.03														
IL6ST	3.30E-05	4.61E-06	2.86														
PTX3	3.00E-05	3.70E-06	-1.82														
PDGFRA	4.49E-03	2.05E-03	-2.03														
ITPKB	3.30E-05	4.61E-06	2.86														
PRKCD	3.00E-05	3.70E-06	-1.82														
CYP27B1	4.49E-03	2.05E-03	-2.03														
ZFP36L1	3.30E-05	4.61E-06	2.86														
HORMD7	3.00E-05	3.70E-06	-1.82														
TROAP1	4.49E-03	2.05E-03	-2.03														
MIF	3.30E-05	4.61E-06	2.86														
ATP6A1	3.00E-05	3.70E-06	-1.82														
KIF11	4.49E-03	2.05E-03	-2.03														
Gene Symbol	Log2 Fold Change	P-Value 1st Group	P-Value 2nd Group	Log2 Fold Change	P-Value 1st Group	P-Value 2nd Group											
------------	-----------------	------------------	------------------	-----------------	-----------------	------------------											
PTK2	2.22E-06	3.47E-08	-2.20														
HLA-DOB	3.76E-03	1.67E-03	-2.77														
PPARG	1.82E-03	7.19E-04	2.02														
ARPC3	1.98E-05	2.04E-06	-2.06														
FLVCR1	1.68E-03	6.56E-04	5.01														
SEC23A	2.61E-04	6.98E-05	-2.18														
TRIM59	3.63E-02	2.23E-02	-1.62														
SLC3A2	3.03E-05	4.61E-06	-2.95														
ATG12	3.18E-06	6.67E-08	-2.10														
HLA-DOB	1.46E-05	1.26E-06	-3.54														
CRTC3	4.22E-05	6.47E-06	-1.54														
FLVCR1	1.82E-03	6.98E-05	-2.18														
SEC23A	1.73E-02	9.54E-03	-2.12														
TLR1	2.52E-04	6.62E-05	-3.24														
EPAS1	4.24E-05	1.28E-04	-2.62														
FAU	3.03E-05	4.01E-06	-2.95														
RPS14	9.66E-06	6.26E-07	-2.78														
RABGEC1	5.21E-05	8.77E-06	-1.69														
FCN2	1.16E-03	4.23E-04	3.22														
TBK1	3.95E-05	5.90E-06	-2.30														
PSMD8	1.04E-05	7.07E-07	-2.49														
POLR3D	6.31E-05	1.14E-05	-1.97														
RAC2	1.56E-03	6.02E-04	-1.59														
NUDECD1	8.34E-04	2.85E-04	-1.55														
TMEM143	2.79E-05	3.52E-06	-4.16														
GLG1	4.24E-06	1.30E-07	-2.04														
SELL	2.81E-03	1.20E-03	4.96														
FGF10	4.10E-04	1.22E-04	4.17														
NKX2-5	8.80E-03	4.42E-03	-2.07														
UBE2D2	6.90E-06	2.80E-07	-1.98														
PTPRO	3.73E-03	1.66E-03	-1.76														
SYK	3.62E-05	5.27E-06	-2.60														
COLEC11	8.97E-03	4.51E-03	2.13														
KDR	1.45E-04	3.32E-05	-2.12														
JMJD6	1.72E-03	6.76E-04	2.35														
RBPJ	8.12E-06	4.08E-07	-2.15														
TRIM62	1.52E-05	1.37E-06	-1.91														
RUNX3	1.81E-03	7.18E-04	4.30														
PSMA3	2.22E-05	2.44E-06	-2.48														
SLC11A2	8.42E-05	1.67E-05	-2.86														
PTPN6	4.25E-05	6.56E-06	1.78														
THBS1	7.90E-07	1.70E-09	3.12														
HIST1H2BE	3.70E-03	1.64E-03	4.23														
FASLG	2.61E-04	7.02E-05	2.20														
KITLG	3.11E-03	1.34E-03	-1.79														
IL21	1.46E-03	5.53E-04	2.30														
ARHGEF7	1.33E-04	3.00E-05	-3.35														
CYBB	7.27E-05	1.38E-05	-2.94														
SEC24A	3.98E-03	1.79E-03	-2.00														
KIF2C	9.14E-04	3.19E-04	-2.08														
Gene Symbol	Fold Change	q Value	p Value	Gene Symbol	Fold Change	q Value	p Value										
-------------	-------------	---------	---------	-------------	-------------	---------	---------										
TBK1	3.11	1.59	0.04	PDIA3	-3.04	1.59	0.04										
FCN1	4.45	1.59	0.04	APOI	5.45	1.59	0.04										
BRAF	-1.45	1.59	0.04	STXBP2	5.00	1.59	0.04										
ADRM1	-1.72	1.59	0.04	SNAP23	-2.50	1.59	0.04										
PDIA3	2.67	1.59	0.04	PREDI1	-1.68	1.59	0.04										
APOL1	7.30	1.59	0.04	IL1R1	-1.94	1.59	0.04										
SERINC5	1.07	1.59	0.04	BCAP31	-1.95	1.59	0.04										
RAB17	2.63	1.59	0.04	TRPV1	-2.28	1.59	0.04										
PSEN1	2.67	1.59	0.04	FYN	-2.23	1.59	0.04										
CCL13	6.23	1.59	0.04	RAB17	3.64	1.59	0.04										
CLC2D	2.67	1.59	0.04	Dync1LI2	-2.10	1.59	0.04										
CLEC2D	1.59	1.59	0.04	PSEN1	-2.35	1.59	0.04										
RARG	1.70	1.59	0.04	MAPK1	-1.87	1.59	0.04										
RPS17	1.56	1.59	0.04	TRAF3	-2.92	1.59	0.04										
DYNC1LI2	2.96	1.59	0.04	PSEN1	-3.36	1.59	0.04										
CCL13	2.62	1.59	0.04	ACTR3	3.21	1.59	0.04										
RUNX1	1.96	1.59	0.04	TRAF3	-2.16	1.59	0.04										
HOXB6	3.68	1.59	0.04	PSEN1	-1.96	1.59	0.04										
IL12R1	1.28	1.59	0.04	TRAF3	-2.92	1.59	0.04										
ILF3	5.52	1.59	0.04	PSEN1	-2.93	1.59	0.04										
OSBPL1A	1.17	1.59	0.04	C2	2.71	1.59	0.04										
PRKCE	4.47	1.59	0.04	IP6K2	-3.96	1.59	0.04										
TNFSF10	8.57	1.59	0.04	IL12R1	-2.53	1.59	0.04										
C2	8.57	1.59	0.04	OSBPL1A	2.35	1.59	0.04										
VEGFA	7.80	1.59	0.04	C2	-2.71	1.59	0.04										
PPP4R2	4.37	1.59	0.04	Tnfsf10	-3.96	1.59	0.04										
GAPDH	1.45	1.59	0.04	VEGFA	1.85	1.59	0.04										
SENG1	7.53	1.59	0.04	PPP4R2	-3.20	1.59	0.04										
SIRT2	9.44	1.59	0.04	SIRT2	4.31	1.59	0.04										
STX4	2.97	1.59	0.04	STX4	-2.63	1.59	0.04										
RORC	9.65	1.59	0.04	RORC	-2.92	1.59	0.04										
GNL1	1.52	1.59	0.04	GNL1	-3.92	1.59	0.04										
HSP90AA1	2.97	1.59	0.04	GNL1	5.35	1.59	0.04										
ICAM2	5.90	1.59	0.04	GNL1	-1.92	1.59	0.04										
LYM6D	5.43	1.59	0.04	ICAM2	1.68	1.59	0.04										
CEACAM6	2.18	1.59	0.04	LYM6D	-4.19	1.59	0.04										
VAMP7	8.49	1.59	0.04	CEACAM6	-2.48	1.59	0.04										
ERCC2	6.96	1.59	0.04	VAMP7	-2.31	1.59	0.04										
AP2A1	3.92	1.59	0.04	ERCC2	1.54	1.59	0.04										
SOCS6	3.33	1.59	0.04	AP2A1	4.34	1.59	0.04										
Gene Symbol	Fold Change	log2 Fold Change	p-value	Description													
---------------	-------------	------------------	---------	-------------													
Gene Symbol	Fold Change	log2 Fold Change	p-value	Description													
A_23_P347198	1.86E-03	7.38E-04	-1.89	SP3													
A_23_P168928	5.75E-04	1.85E-04	-2.10	CYP11B1													
A_24_P322756	1.04E-02	5.33E-03	3.58	TRPM2													
A_23_P258340	1.24E-05	9.43E-07	-4.60	PPIA													
A_23_P75056	1.14E-05	8.08E-07	2.66	GATA3													
A_23_P212844	2.68E-03	1.13E-03	5.93	TACC3													
A_23_P253317	2.67E-04	7.20E-05	-1.96	GPR171													
A_23_P4286	6.12E-04	1.98E-04	-2.26	XAF1													
A_23_P300224	6.58E-06	2.57E-07	-2.71	NFKB1													
A_23_P34888	1.47E-04	3.40E-05	-2.28	CHIA													
A_32_P226149	5.89E-06	2.04E-07	-2.75	YWHAZ													
A_24_P178011	3.18E-05	4.30E-06	-4.31	MYC													
A_24_P930276	1.67E-03	6.51E-04	-3.34	NFE2L1													
A_23_P315651	1.70E-04	4.07E-05	-4.77	CYBA													
A_23_P26890	1.44E-03	5.44E-04	-2.50	MMP28													
A_23_P126716	1.05E-04	2.25E-05	-4.90	ATPF1													
A_23_P11739	4.78E-05	7.84E-06	1.95	MIXL1													
A_23_P133432	3.28E-06	7.31E-08	-4.35	SKP1													
A_24_P8371	3.20E-05	4.33E-06	-2.68	SPNS2													
A_23_P251945	2.15E-05	2.30E-06	-2.25	DCTN4													
A_23_P79836	3.21E-06	6.91E-08	-3.32	SERINC3													
A_24_P933908	3.91E-03	1.75E-03	2.95	GPNMB													
A_23_P500282	4.45E-04	1.36E-04	-1.94	PACS1													
A_23_P19543	2.43E-05	2.85E-06	-2.63	SRPK1													
A_23_P136347	2.57E-03	1.08E-03	-2.99	EPS8													
A_32_P11499	8.78E-07	2.12E-09	-2.61	UBE2N													
A_23_P502464	7.60E-06	3.51E-07	-2.27	NOS2													
A_23_P414855	3.23E-03	1.40E-03	1.80	PURB													
A_24_P32935	7.47E-03	3.66E-03	-1.92	FOLR2													
A_32_P68459	3.31E-05	4.64E-06	-5.00	PPIA													
A_32_P517749	6.84E-03	3.33E-03	-1.86	RPS6KA3													
A_24_P50245	2.36E-05	2.71E-06	-3.31	HLA-DMA													
A_23_P146943	1.92E-04	4.69E-05	-4.56	ATP1B1													
A_23_P126278	1.22E-02	6.39E-03	2.46	CHIT1													
A_32_P175934	9.35E-05	1.94E-05	10.02	CD48													
A_23_P113716	7.07E-06	2.91E-07	-2.38	HLA-C													
A_24_P150361	1.66E-06	1.51E-08	-3.09	HSP90B1													
A_24_P393711	1.82E-03	7.22E-04	4.24	ABL1													
A_23_P201238	1.43E-04	3.25E-05	-2.24	SNX27													
A_23_P145301	8.96E-04	3.12E-04	3.31	NFKB1													
A_23_P11372	8.02E-05	1.57E-05	-2.51	HPRT1													
A_23_P102471	9.29E-06	5.97E-07	-3.31	MSH2													
A_23_P55828	2.45E-05	2.88E-06	2.16	CCL25													
A_24_P389218	6.39E-03	3.08E-03	3.43	ARHGEF5													
A_23_P204702	9.94E-07	3.21E-09	-3.43	TMIM8													
A_23_P32463	2.88E-05	3.71E-06	-2.23	EXOSC4													
A_23_P342009	2.83E-04	7.77E-05	-2.28	HFE													
A_23_P210176	5.04E-05	8.35E-06	-2.23	ITGA6													
A_23_P158481	1.53E-04	3.58E-05	3.21	CYP2C19													
A_23_P376060	2.73E-05	3.44E-06	-3.48	IKZF3													
Gene Symbol	Fold Change	p-value	Log2 Fold Change	Description													
-------------	-------------	---------	------------------	-------------													
COL4A3BP	8.19E-05	1.61E-05	-2.45														
APOA4	2.57E-06	4.28E-08	2.82														
IFNB1	1.33E-02	7.03E-03	2.12														
ITGAX	3.49E-04	9.99E-05	6.06														
B2M	1.14E-05	8.06E-07	-4.39														
PARP1	5.52E-05	9.49E-06	-2.60														
APOA4	2.57E-06	4.28E-08	2.82														
APOA4	1.33E-02	7.03E-03	2.12														
ITGAX	3.49E-04	9.99E-05	6.06														
B2M	1.14E-05	8.06E-07	-4.39														
PARP1	5.52E-05	9.49E-06	-2.60														
APOA4	2.57E-06	4.28E-08	2.82														
APOA4	1.33E-02	7.03E-03	2.12														
ITGAX	3.49E-04	9.99E-05	6.06														
B2M	1.14E-05	8.06E-07	-4.39														
PARP1	5.52E-05	9.49E-06	-2.60														
Gene	p-value 1	p-value 2	log2 Fold Change	Description													
--------	-----------	-----------	-----------------	-------------													
A_23_P252697	2.89E-05	3.76E-06	-2.02	CD248													
A_24_P389517	9.84E-06	6.45E-07	-2.07	HNRNPK													
A_24_P41850	3.69E-04	1.07E-04	3.48	MASP1													
A_23_P314202	3.93E-03	1.75E-03	4.13	PAPD4													
A_23_P207582	7.09E-06	2.99E-07	3.23	CCL16													
A_23_P212179	2.24E-03	9.14E-04	3.72	HRH1													
A_24_P403732	4.26E-05	6.60E-06	-2.36	ZNF385A													
A_23_P314202	3.93E-03	1.75E-03	4.13	PAPD4													
A_23_P41850	3.69E-04	1.07E-04	3.48	MASP1													
A_23_P314202	3.93E-03	1.75E-03	4.13	PAPD4													
A_23_P403732	4.26E-05	6.60E-06	-2.36	ZNF385A													
A_23_P314202	3.93E-03	1.75E-03	4.13	PAPD4													
A_23_P41850	3.69E-04	1.07E-04	3.48	MASP1													
A_23_P314202	3.93E-03	1.75E-03	4.13	PAPD4													
A_23_P403732	4.26E-05	6.60E-06	-2.36	ZNF385A													
A_23_P314202	3.93E-03	1.75E-03	4.13	PAPD4													
Gene Symbol	Fold Change\(\Delta F\)	p-Value\(\Delta F\)	Fold Change\(\Delta F\)	p-Value\(\Delta F\)													
-------------	-----------------	-----------------	-----------------	-----------------													
HNRNPK	5.10E-05	8.54E-06	-2.22														
PRKCB	6.08E-05	1.08E-05	-4.04														
CYP2C19	1.77E-05	1.75E-06	9.51														
PSMB5	3.13E-06	6.39E-08	-3.28														
I5L	7.59E-04	2.56E-04	6.03														
PGC	1.48E-03	5.66E-04	-3.21														
CHST3	1.54E-02	8.41E-03	3.00														
FCER2	1.17E-05	8.46E-07	2.57														
PGM3	2.50E-05	3.03E-06	-1.56														
PPP3R1	5.24E-05	8.86E-06	-4.56														
CUL1	6.00E-06	2.19E-07	-2.43														
LSM14A	7.30E-06	5.07E-08	-1.69														
SYNCRIP	3.81E-06	1.01E-07	-3.48														
FGFR2	1.66E-05	1.59E-06	-3.71														
AHCY	3.51E-02	2.14E-02	3.49														
LAT	8.96E-05	1.83E-05	-1.90														
POU1F1	3.32E-04	9.40E-05	2.15														
ITGB1	1.55E-04	3.62E-05	-1.70														
PAG1	1.26E-06	6.41E-09	-2.71														
SLC39A10	7.30E-06	3.22E-07	-2.00														
TRIM14	1.65E-03	6.40E-04	3.75														
ITGAM	4.69E-03	2.16E-03	2.20														
PCID2	2.78E-04	7.58E-05	-3.13														
TRIM11	9.26E-06	5.90E-07	-4.02														
PPP3CB	5.93E-05	1.04E-05	-4.28														
HDAC4	4.00E-05	6.06E-06	-3.35														
HOXB6	1.03E-04	2.19E-05	-2.21														
CHRNA7	4.45E-04	1.36E-04	-3.10														
HTRA1	4.11E-03	1.85E-03	2.49														
PRKCE	1.41E-05	1.14E-06	-3.59														
YWHAZ	6.51E-04	2.13E-04	7.60														
VTCN1	3.23E-03	1.40E-03	-2.13														
GAPT	2.95E-05	3.86E-06	-2.66														
MX1	6.68E-07	1.26E-09	-2.21														
UBA52	4.00E-05	6.06E-06	-3.35														
NCF1	1.03E-04	2.19E-05	-2.21														
CAMK1D	8.32E-03	4.35E-07	-2.08														
TGFβ3	5.99E-05	9.70E-06	3.92														
OGT	9.03E-03	4.55E-03	-2.34														
SMAP1	3.40E-02	2.06E-02	-1.47														
UBQLN1	1.41E-05	1.17E-06	-2.02														
PIK3R2	8.96E-04	3.11E-04	3.11														
ID2	7.51E-04	2.52E-04	-3.14														
NCAM1	2.04E-03	8.20E-04	2.21														
IL1B	2.05E-02	1.16E-02	-1.64														
KLK3	1.47E-03	5.60E-04	-3.72														
CEBPΔG	3.14E-05	4.20E-06	-1.91														
RAB4A	2.73E-06	5.14E-08	-3.28														
IL2	4.59E-06	1.48E-07	2.11														
FAU	2.04E-06	2.80E-08	-3.59														
Gene Symbol	Fold Change	Log2 Fold Change	p-value	Function													
-------------	-------------	-----------------	----------	----------													
PKNOX1	7.72E-05	1.49E-05	-3.09														
PPIA	1.30E-05	1.03E-06	-4.31														
ITGB7	5.26E-03	2.46E-03	-1.97														
FIGF	4.63E-03	2.13E-03	-1.90														
CX3CL1	1.16E-02	6.00E-03	-2.14														
TRAF2	1.37E-02	7.28E-03	1.56														
PRKACB	3.07E-04	8.61E-05	-3.75														
FOLR2	1.30E-05	1.03E-06	-4.31														
ITGB7	5.26E-03	2.46E-03	-1.97														
FIGF	4.63E-03	2.13E-03	-1.90														
CX3CL1	1.16E-02	6.00E-03	-2.14														
TRAF2	1.37E-02	7.28E-03	1.56														
PRKACB	3.07E-04	8.61E-05	-3.75														
FOLR2	1.30E-05	1.03E-06	-4.31														
ITGB7	5.26E-03	2.46E-03	-1.97														
FIGF	4.63E-03	2.13E-03	-1.90														
CX3CL1	1.16E-02	6.00E-03	-2.14														
TRAF2	1.37E-02	7.28E-03	1.56														
PRKACB	3.07E-04	8.61E-05	-3.75														
FOLR2	1.30E-05	1.03E-06	-4.31														
ITGB7	5.26E-03	2.46E-03	-1.97														
FIGF	4.63E-03	2.13E-03	-1.90														
CX3CL1	1.16E-02	6.00E-03	-2.14														
TRAF2	1.37E-02	7.28E-03	1.56														
PRKACB	3.07E-04	8.61E-05	-3.75														
FOLR2	1.30E-05	1.03E-06	-4.31														
ITGB7	5.26E-03	2.46E-03	-1.97														
FIGF	4.63E-03	2.13E-03	-1.90														
CX3CL1	1.16E-02	6.00E-03	-2.14														
TRAF2	1.37E-02	7.28E-03	1.56														
Gene	P-value 1	P-value 2	Log2FoldChange	Description													
--------	-----------	-----------	----------------	-------------													
LGALS8	5.71E-03	2.71E-03	2.35														
ATP1B3	1.91E-05	1.93E-06	-2.38														
CD200	1.17E-04	2.57E-05	-2.85														
PTAFR	1.32E-02	7.01E-03	1.74														
IFIT2	4.46E-02	2.83E-02	2.74														
UBQLN1	5.74E-06	1.94E-07	-3.68														
ITPR1	1.90E-05	4.05E-05	4.39														
CD200	9.09E-05	1.87E-05	-3.40														
RPS6KA5	1.17E-04	2.57E-05	-2.85														
RAB33A	2.15E-02	1.23E-02	4.24														
MMP21	7.19E-03	3.51E-03	4.18														
NFKBIA	2.08E-03	8.37E-04	2.73														
ABCB4	5.24E-04	1.67E-04	-2.19														
NMI	5.53E-06	1.86E-07	-2.58														
CCL26	2.15E-02	1.23E-02	4.24														
MLF1	5.17E-03	2.41E-03	-1.74														
EFNB2	3.90E-05	5.80E-06	-1.87														
CCR8	6.52E-05	1.18E-05	3.11														
THY1	7.57E-05	1.44E-05	-4.72														
IGF1R	1.43E-03	5.41E-04	-3.15														
PROS1	7.19E-03	3.51E-03	4.18														
BLM	1.68E-05	1.62E-06	-2.64														
PLCB1	2.94E-04	8.15E-05	-4.01														
PRKACA	1.27E-03	4.71E-04	1.64														
ANKHDA	6.12E-05	1.09E-05	-1.99														
C9	4.10E-03	1.85E-03	-2.81														
CX3CR1	3.54E-04	1.02E-04	-3.21														
TDGF1	8.89E-06	5.32E-07	3.38														
HRG	5.04E-03	2.34E-03	-3.09														
BTK	2.82E-02	1.66E-02	2.26														
CALM1	1.56E-05	1.42E-06	-5.84														
UBQLN1	8.69E-05	1.75E-05	4.89														
TXNRD2	7.99E-04	2.72E-04	7.14														
STAT5B	2.56E-04	6.84E-05	-2.94														
PSMD3	2.21E-04	5.60E-05	-4.09														
GPLD1	6.32E-03	3.04E-03	1.69														
CCL13	2.90E-04	8.03E-05	-3.80														
WIPF2	5.34E-03	2.51E-03	-2.66														
RAB33A	7.85E-05	1.52E-05	-3.80														
TRIM38	3.18E-04	8.98E-05	7.10														
DHX58	8.68E-06	4.99E-07	-2.07														
HDAC4	4.38E-05	6.86E-06	2.73														
ASS1	4.35E-03	1.98E-03	3.27														
SNX4	2.62E-05	3.24E-06	-3.77														
VAV2	1.19E-02	6.20E-03	-2.34														
ITGB1	1.33E-05	1.07E-06	-2.66														
Gene Symbol	Unrest	Co rx	Fold Change	P Value	Description												
-------------	--------	-------	-------------	---------	-------------												
NOTCH4	7.55E-04	2.54E-04	-1.83	NOTCH4													
PDCD1LG2	4.80E-03	2.22E-03	3.19	PDCD1LG2													
OAS3	7.91E-04	2.68E-04	3.58	OAS3													
PSF1M1	1.17E-03	4.28E-04	6.59	DOCK2													
OAS3	4.52E-04	1.39E-04	-1.99	IFI35													
PDCD1LG2	1.08E-06	4.91E-09	-3.23	DYNClI2													
PSF1M1	1.21E-02	7.90E-03	-2.36	RC3H1													
ADD2	8.40E-03	4.46E-07	-2.36	COL4A3BP													
KIF13B	2.50E-05	3.02E-06	2.86	KIF13B													
SLAMF1	2.45E-02	1.42E-02	2.73	SLAMF1													
RPS24	2.46E-05	2.92E-06	-3.17	RPS24													
CALM1	8.53E-06	4.70E-07	4.31	CALM1													
TLR5	4.90E-02	3.16E-02	1.61	TLR5													
MYD88	1.60E-05	1.49E-06	-2.59	MYD88													
TINAGL1	2.48E-05	2.95E-06	4.08	TINAGL1													
RPS17	1.52E-05	1.35E-06	2.65	RPS17													
AKAP8	6.68E-07	9.44E-10	-1.81	AKAP8													
PSMC1	1.13E-04	2.47E-05	3.35	PSMC1													
RPL39	2.62E-03	1.11E-03	2.72	RPL39													
FGR	9.36E-04	3.29E-04	1.83	FGR													
SPP1L2A	2.22E-03	9.08E-04	-1.93	SPP1L2A													
CTNBNIP1	5.37E-05	9.20E-06	2.43	CTNBNIP1													
TIPARP	9.21E-06	5.71E-07	-2.93	TIPARP													
SIN3A	2.69E-02	1.57E-02	2.45	SIN3A													
DLG1	5.10E-05	8.54E-06	-3.75	DLG1													
CD20OR1	2.36E-04	6.05E-05	2.86	CD20OR1													
PIP5K1C	7.93E-03	3.91E-03	2.11	PIP5K1C													
PPIL2	2.05E-04	5.09E-05	6.09	PPIL2													
JAK3	1.07E-03	3.83E-04	1.75	JAK3													
PSM12D1	6.68E-07	1.08E-09	-2.48	PSM12D1													
RAB3B	1.02E-04	2.16E-05	-3.92	RAB3B													
SEC13	1.62E-04	3.82E-05	-2.83	SEC13													
XBP1	1.65E-02	9.06E-03	2.26	XBP1													
PSMA5	1.67E-06	1.75E-08	-3.15	PSMA5													
EIF2AK1	9.94E-07	2.70E-09	-2.95	EIF2AK1													
EFNB3	2.93E-04	8.12E-05	-5.57	EFNB3													
SATB1	4.78E-04	1.49E-04	-4.31	SATB1													
ASH2L	3.40E-06	7.90E-08	-2.81	ASH2L													
IL11RA	2.04E-06	2.81E-08	-1.78	IL11RA													
BVES	6.37E-04	2.08E-04	-3.93	BVES													
ATG7	1.30E-02	6.85E-03	-2.12	ATG7													
SLC11A2	2.81E-05	3.60E-06	-2.21	SLC11A2													
CXCR5	1.81E-02	1.01E-02	-1.72	CXCR5													
GIF	7.63E-05	1.46E-05	-3.93	GIF													
CANX	8.40E-06	4.55E-07	-2.40	CANX													
Gene Symbol	A_24_P56467	A_24_P20607	A_23_P420209	A_24_P257539	A_23_P217236	A_23_P163079	A_24_P944519	A_23_P217282	A_23_P164022	A_23_P257539	A_23_P57497	A_23_P214208	A_24_P143120	A_23_P141405	A_23_P163079	A_23_P200598	A_24_P404822
-------------	-------------	-------------	--------------	--------------	--------------	--------------	-------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------
	3.35E-05	3.64E-04	1.82E-04	1.57E-02	2.60E-05	2.87E-02	1.52E-02	1.89E-04	6.19E-05	1.10E-02	7.62E-04	1.81E-05	1.22E-02	1.94E-04	6.10E-03	3.28E-05	
	4.75E-06	1.05E-04	4.42E-05	8.59E-03	3.21E-06	1.70E-02	8.26E-03	4.60E-05	1.12E-05	5.66E-03	2.57E-04	1.81E-06	9.03E-07	4.75E-05	2.91E-03	4.56E-06	
	-2.64	2.91	3.92	-1.83	-1.84	4.61	-2.47	-1.77	-3.54	2.26	3.92	-2.34	-2.83	-4.25	-1.79	-2.05	
	GMPR2	CXCL11	GCNT3	FBXW11	HMGB3	GCH1	PDE4D	IGF1R	MYO1C	LILRB4	GCNT3	AP2A2	NME1	LIRL4	CD55	SLC7A6OS	

Note: The numbers represent fold changes or other measurements for each gene.
Gene Symbol	Effect Size	P-Value 1	P-Value 2	Effect Size 1	Effect Size 2
A_23_P45871	8.84E-06	5.20E-07	-2.53	IFI44L	
A_23_P500601	1.26E-06	6.64E-09	-2.10	TRIM4	
A_23_P246173	8.68E-06	4.92E-07	-3.22	MYO9B	
A_23_P51187	2.41E-04	6.22E-05	-3.27	PRKCZ	
A_23_P74278	1.24E-05	9.55E-07	-2.25	PDE4B	
A_32_P460973	5.83E-05	1.02E-05	-2.79	HLA-E	
A_23_P37727	4.47E-04	1.37E-04	-3.72	CX3CL1	
A_23_P360167	1.44E-05	2.58E-07	-1.94	PSMB2	
A_32_P460973	5.83E-05	1.02E-05	-2.79	HLA-E	
A_23_P51187	2.41E-04	6.22E-05	-3.27	PRKCZ	
A_23_P74278	1.24E-05	9.55E-07	-2.25	PDE4B	
A_32_P460973	5.83E-05	1.02E-05	-2.79	HLA-E	
A_23_P37727	4.47E-04	1.37E-04	-3.72	CX3CL1	
A_23_P360167	1.44E-05	2.58E-07	-1.94	PSMB2	
A_32_P460973	5.83E-05	1.02E-05	-2.79	HLA-E	
Gene symbol	Fold change	p-value	q-value	Symbol	
-------------	-------------	---------	---------	---------	
RNASE7	3.14	3.83E-03	1.71E-03	DNAJA3	
CD160	3.01	2.94E-04	4.26E-06	ICOSLG	
L3MBTL3	-1.48	6.00E-06	2.15E-07	CFB	
IL10RB	-2.48	1.32E-03	4.91E-04	PSMB1	
DOCK1	-2.14	2.33E-05	2.66E-06	TRIB1	
GIMAP1	-2.14	3.10E-04	8.71E-05	TRIB1	
JAM2	-2.34	4.77E-05	7.78E-06	CHD2	
SNX10	-2.70	8.18E-04	2.80E-04	SNX10	
PSMB1	-2.34	4.38E-05	6.86E-06	CFB	
S100B	-2.32	3.21E-06	6.82E-08	S100B	
SNX10	-2.27	3.39E-03	1.48E-03	TRIB1	
RASSF2	-3.54	3.16E-05	4.26E-06	CFB	
LRRK1	-3.29	8.71E-06	5.04E-07	DOCK1	
TMBIM6	-3.16	4.87E-05	8.17E-05	DOCK1	
UBE2D1	-3.16	6.00E-06	5.04E-07	DOCK1	
UBE2V1	-3.16	2.33E-05	2.66E-06	DOCK1	
JAM2	-3.14	4.77E-05	7.78E-06	CHD2	
ITGA9	-3.63	3.16E-06	1.25E-05	ITGA9	
MINK1	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-2.91	9.78E-04	3.47E-04	NFE2L2	
RASGRP1	-2.91	9.78E-04	3.47E-04	NFE2L2	
ARPC4	-2.91	9.78E-04	3.47E-04	NFE2L2	
SRPK2	-2.91	9.78E-04	3.47E-04	NFE2L2	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
VAV3	-3.63	3.16E-06	1.25E-05	ITGA9	
NFE2L2	-3.63	3.16E-06	1.25E-05	ITGA9	
RASGRP1	-3.63	3.16E-06	1.25E-05	ITGA9	
ARPC4	-3.63	3.16E-06	1.25E-05	ITGA9	
SRPK2	-3.63	3.16E-06	1.25E-05	ITGA9	
Gene Symbol	Fold Change (EB1 vs. EB2)	p-Value (EB1 vs. EB2)	z-Value	Gene Symbol	
-------------	---------------------------	-----------------------	---------	-------------	
A_23_P54006	3.11E-06	6.10E-08	-2.60	HECTD1	
A_23_P26847	2.37E-04	6.12E-05	-2.09	SOX9	
A_23_P370005	2.44E-03	1.01E-03	2.27	RIPK1	
A_23_P69058	1.67E-06	1.73E-08	-3.14	MLH1	
A_23_P359091	5.39E-03	2.53E-03	1.67	SMAD3	
A_23_P55251	7.38E-03	3.61E-03	2.74	ITGA3	
A_24_P72420	3.26E-03	1.41E-03	-1.98	ELMO1	
A_23_P19352	1.87E-04	4.54E-05	2.54	CNPY3	
A_23_P148047	4.51E-03	2.07E-03	2.27	PTGER4	
A_23_P500300	7.42E-05	1.41E-05	4.11	TRIM15	
A_24_P48403	7.98E-06	3.92E-07	-3.60	YES1	
A_23_P372874	1.87E-04	4.54E-05	-2.40	S100A13	
A_23_P70867	1.71E-03	6.69E-04	-2.01	SBDS	
A_24_P334445	3.83E-05	5.69E-06	-2.91	MAEA	
A_23_P92623	4.32E-04	1.31E-04	-3.55	PPP3CA	
A_23_P59005	1.64E-06	1.41E-08	-2.03	TAP1	
A_24_P29876	6.78E-06	2.71E-07	-2.55	AGPAT5	
A_23_P369960	3.84E-04	1.12E-04	3.58	NCAPH2	
A_23_P97265	6.60E-05	1.20E-05	-2.88	GPATCH4	
A_24_P89708	4.41E-04	1.34E-04	3.77	IMPDH1	
A_23_P132444	3.81E-05	5.63E-06	-3.25	TCEA1	
A_32_P820503	5.35E-06	1.77E-07	-3.28	FTH1	
A_24_P148762	3.66E-04	1.06E-04	5.26	IL1RAP	
A_24_P169234	2.30E-03	9.45E-04	2.13	ZAP70	
A_24_P941824	2.12E-06	3.01E-08	-2.66	KIF3B	
A_23_P154840	8.45E-05	1.68E-05	-4.56	SOD1	
A_24_P418809	8.56E-06	4.83E-07	-3.04	GNAS	
A_24_P100419	2.68E-04	7.23E-05	10.63	EDA	
A_32_P197489	6.92E-05	1.29E-05	-3.40	KLF13	
A_24_P116017	1.49E-03	5.71E-04	3.86	PSMD9	
A_24_P146892	2.68E-03	1.13E-03	-2.53	ORAI1	
A_24_P173823	7.98E-06	3.88E-07	-2.58	PBX1	
A_23_P125423	2.56E-04	6.80E-05	-2.19	C1R	
A_24_P13230	8.79E-05	1.78E-05	-2.54	RAB6A	
A_23_P113311	4.29E-05	6.67E-06	-3.74	P4HTM	
A_23_P140807	8.53E-06	4.68E-07	-2.86	PSMB10	
A_23_P364517	8.71E-05	1.76E-05	-3.32	SELK	
A_23_P3993425	1.21E-03	4.46E-04	-2.01	PAPD4	
A_23_P75921	6.72E-04	2.22E-04	-1.59	TRAF6	
A_23_P55649	2.55E-02	1.49E-02	-2.46	FPR2	
A_32_P71118	8.12E-06	4.07E-07	-2.88	PSMC6	
A_24_P337592	9.84E-03	5.01E-03	1.81	BTN2A2	
A_23_P67669	1.57E-05	1.44E-06	2.44	PGLYRP2	
A_24_P381962	7.93E-05	1.54E-05	-2.94	API1G1	
A_23_P35906	3.22E-05	4.41E-06	-1.95	CASP4	
A_23_P55477	4.54E-03	2.08E-03	-1.98	ADORA2B	
A_24_P299507	3.03E-04	8.48E-05	3.02	REST	
A_24_P326082	1.17E-05	8.46E-07	-2.43	HLA-E	
A_23_P49021	1.02E-05	6.72E-07	-3.21	WDR61	
A_24_P286465	1.17E-04	2.58E-05	-2.78	PURB	
Gene Name	p-value	Adjusted p-value	log2 Fold Change	Description	
-----------	---------	-----------------	-----------------	-------------	
DYNC2LI1	1.50E-02	7.67E-07	2.61		
SKIL	8.13E-03	3.18	-2.40	ABI1	
TXLNA	2.61E-04	2.94	9.47	PSMD12	
HLA-C	7.79E-07	7.79	2.08	FCGR2B	
ENPP3	1.70E-04	6.66	5.75	VAV2	
TRIM6	1.30E-04	8.46	-2.86	ADAMTS13	
PPP4R2	1.68E-03	3.34	-3.70		
STK11	3.02E-07	3.27	9.48		
ATP1B2	1.15E-06	3.57	6.16		
TLR8	1.78E-06	3.04	6.16		
UB2K	3.72E-04	3.57	6.16		
UBB	3.10E-03	3.34	-2.86		
WNT3A	1.19E-02	1.30	-2.40		
SLAMF7	2.72E-05	2.90	2.08		
ITGAL	9.78E-05	3.34	-2.86		
CHRN2B	2.72E-05	2.90	2.08		
TLR8	1.78E-06	3.57	6.16		
ACTR1A	5.87E-06	3.57	6.16		
KLC2	1.09E-02	2.90	2.08		
GSDMD	7.06E-04	3.57	6.16		
THOC5	1.30E-05	3.57	6.16		
KIF13B	1.02E-06	3.57	6.16		
CAMK2D	2.16E-03	3.57	6.16		
UBA52	2.46E-08	3.57	6.16		
RPL22	4.08E-09	3.57	6.16		
PSMC1	3.82E-08	3.57	6.16		
TRIM35	3.48E-04	3.57	6.16		
TBC1D10C	2.31E-04	3.57	6.16		
SH2B2	2.05E-06	3.57	6.16		
CTSK	3.72E-08	3.57	6.16		
NNX2-3	1.37E-04	3.57	6.16		
GNAS	3.47E-04	3.57	6.16		
LMO4	4.27E-06	3.57	6.16		
STAR	2.58E-02	3.57	6.16		
IGBP1	1.69E-08	3.57	6.16		
Gene Symbol	Fold Change	Adj. P Value	FDR P Value	Description	
-------------	-------------	--------------	-------------	-------------	
KIF3B	6.07E-03	2.90E-03	6.29		
ATP1B1	4.10E-04	1.22E-04	-4.28		
SNX10	3.82E-05	5.65E-06	-4.92		
PSMB7	2.40E-05	2.76E-06	-2.78		
CUL4A	4.59E-06	1.47E-07	-1.99		
SRF	7.30E-06	3.15E-07	-2.09		
PSMB1	3.28E-06	7.15E-08	-3.58		
GAL	2.05E-04	5.09E-05	-2.80		
IL17C	3.26E-03	1.41E-03	-3.02		
DMBT1	1.80E-02	1.00E-02	-1.92		
SHPK	2.25E-04	5.74E-05	-1.82		
SIAE	2.44E-04	6.34E-05	-3.48		
ALOX15	5.15E-04	1.63E-04	-4.70		
TNFRSF21	3.60E-05	1.42E-06	-3.33		
FGF3	6.14E-05	1.10E-05	-4.34		
CCDC88B	4.82E-02	3.10E-02	-3.01		
POI3R3D	5.59E-05	9.69E-06	-2.95		
HDAC4	4.59E-06	1.46E-07	-1.77		
PLEKHA1	2.30E-04	5.88E-05	-2.37		
CFD	1.15E-02	5.97E-03	1.98		
CBFB	9.31E-04	3.26E-04	-2.12		
BPI	6.21E-05	1.12E-05	5.20		
CD47	3.96E-05	5.94E-06	-2.43		
PSME1	1.26E-06	7.59E-09	-1.90		
CD200R1	1.43E-03	5.38E-04	3.46		
UBE2N	3.41E-06	8.07E-08	-2.38		
PPP1R14B	3.51E-05	5.06E-06	-2.58		
SLC11A2	1.09E-02	5.61E-03	-2.45		
BSG	1.36E-03	5.07E-04	-2.60		
KIR3DL2	2.86E-03	1.22E-03	4.26		
FAM20C	3.55E-05	5.13E-06	-2.35		
FKB1P1B	1.60E-06	1.33E-08	-2.36		
AP3B1	3.81E-06	1.00E-07	-3.63		
DAPK3	1.19E-02	6.20E-03	2.03		
MYH9	8.40E-06	4.56E-07	-1.90		
POLM	1.79E-03	7.06E-04	-2.38		
ADAR	8.53E-06	4.79E-07	-2.34		
OSBPL1A	3.88E-06	1.10E-07	-4.01		
PLA2G2F	3.40E-03	1.49E-03	5.70		
GAB2	1.11E-05	7.77E-07	-1.80		
KYNZ	1.09E-03	3.92E-04	5.70		
HLA-DRB3	2.90E-02	1.72E-02	2.29		
TF	2.44E-04	6.34E-05	-4.30		
APOBEC1	1.89E-03	7.51E-04	4.41		
AP1S1	1.85E-02	1.03E-02	6.42		
GPRC5B	2.33E-05	2.66E-06	-2.84		
UBB	9.09E-05	1.87E-05	-3.98		
Gene Symbol	Fold Change	P-value	Gene Symbol	Fold Change	P-value
-------------	-------------	---------	-------------	-------------	---------
A_23_P349928	1.52E-05	-3.30	SP100	1.37E-06	-3.75
A_23_P402588	4.64E-05	-3.23	SOCS1	2.14E-05	-3.46
A_23_P420196	3.08E-03	-3.91	SH3GL2	1.60E-04	-2.29
A_23_P138157	3.08E-03	-3.23	CST9L	3.06E-05	-2.29
A_23_P143365	5.08E-04	-3.75	BCL11A	7.46E-06	-2.91
A_23_P169351	1.01E-04	-4.46	OTUD7B	1.35E-04	-2.29
A_23_P167081	4.60E-04	-2.75	RPS14	1.37E-04	-3.54
A_23_P143365	5.08E-04	-3.75	PSMA4	1.37E-05	-2.44
A_23_P150286	1.32E-05	-2.83	PPIA	1.67E-05	-16.04
A_23_P350467	8.42E-05	-2.85	AKIRIN2	4.48E-04	-3.67
A_23_P428819	2.70E-06	-2.45	RICTOR	4.64E-08	-3.06
A_23_P214554	2.53E-04	-2.01	WDR7	6.65E-08	-3.06
A_23_P350467	8.42E-05	-4.17	PPIA	1.67E-05	-3.06
A_23_P115998	1.22E-03	-2.82	SPON2	4.48E-04	-3.06
A_23_P214554	2.53E-04	-2.44	REST	6.65E-08	-3.06
A_23_P150286	1.32E-05	-2.44	MAPKAP2	1.06E-06	-3.06
A_23_P350467	8.42E-05	-2.44	CAMK1D	1.67E-05	-3.06
A_23_P500621	2.02E-03	-2.44	HIPK2	8.09E-04	-3.06
A_23_P143365	5.08E-04	-2.44	ITPG1	1.37E-05	-3.06
A_23_P208120	3.48E-04	-2.44	CAMK1D	9.95E-05	-3.06
A_23_P350467	8.42E-05	-2.44	MAPKAP2	1.67E-05	-3.06
A_23_P350467	8.42E-05	-2.44	CAMK1D	1.67E-05	-3.06
A_23_P500621	2.02E-03	-2.44	HIPK2	8.09E-04	-3.06
A_23_P143365	5.08E-04	-2.44	ITPG1	1.37E-05	-3.06
A_23_P208120	3.48E-04	-2.44	CAMK1D	9.95E-05	-3.06
A_23_P350467	8.42E-05	-2.44	MAPKAP2	1.67E-05	-3.06
A_23_P500621	2.02E-03	-2.44	HIPK2	8.09E-04	-3.06
A_23_P143365	5.08E-04	-2.44	ITPG1	1.37E-05	-3.06
A_23_P208120	3.48E-04	-2.44	CAMK1D	9.95E-05	-3.06
A_23_P350467	8.42E-05	-2.44	MAPKAP2	1.67E-05	-3.06
A_23_P500621	2.02E-03	-2.44	HIPK2	8.09E-04	-3.06
A_23_P143365	5.08E-04	-2.44	ITPG1	1.37E-05	-3.06
A_23_P208120	3.48E-04	-2.44	CAMK1D	9.95E-05	-3.06
A_23_P350467	8.42E-05	-2.44	MAPKAP2	1.67E-05	-3.06
A_23_P500621	2.02E-03	-2.44	HIPK2	8.09E-04	-3.06
A_23_P143365	5.08E-04	-2.44	ITPG1	1.37E-05	-3.06
A_23_P208120	3.48E-04	-2.44	CAMK1D	9.95E-05	-3.06
A_23_P350467	8.42E-05	-2.44	MAPKAP2	1.67E-05	-3.06
Accession	FPKM	FPKM	Log2 Fold Change	Gene Symbol	
-------------	--------	--------	-----------------	-------------	
A_23_P55936	1.01E-04	2.14E-05	-2.42	FCGRT	
A_23_P208482	1.03E-04	2.20E-05	-4.14	CLEC4M	
A_23_P70968	1.78E-02	9.88E-03	2.98	HOXA7	
A_23_P26771	4.62E-04	1.43E-04	2.82	CD300C	
A_23_P210763	4.20E-02	2.63E-02	1.81	JAG1	
A_23_P126803	2.14E-04	5.37E-05	-4.28	ARPC5	
A_24_P931443	7.62E-06	3.56E-07	-3.42	GRP68	
A_24_P353794	4.32E-04	1.31E-04	1.73	GALNT2	
A_23_P5550	3.69E-05	5.41E-06	-3.48	PUM2	
A_24_P210763	4.20E-02	2.63E-02	-2.87	CD276	
A_23_P26771	4.62E-04	1.43E-04	2.82	CD300C	
A_24_P210763	4.20E-02	2.63E-02	1.81	JAG1	
A_23_P126803	2.14E-04	5.37E-05	-4.28	ARPC5	
A_24_P931443	7.62E-06	3.56E-07	-3.42	GRP68	
A_24_P353794	4.32E-04	1.31E-04	1.73	GALNT2	
A_23_P5550	3.69E-05	5.41E-06	-3.48	PUM2	
A_24_P210763	4.20E-02	2.63E-02	-2.87	CD276	
A_23_P26771	4.62E-04	1.43E-04	2.82	CD300C	
A_24_P210763	4.20E-02	2.63E-02	1.81	JAG1	
A_23_P126803	2.14E-04	5.37E-05	-4.28	ARPC5	
A_24_P931443	7.62E-06	3.56E-07	-3.42	GRP68	
A_24_P353794	4.32E-04	1.31E-04	1.73	GALNT2	
A_23_P5550	3.69E-05	5.41E-06	-3.48	PUM2	
A_24_P210763	4.20E-02	2.63E-02	-2.87	CD276	
A_23_P26771	4.62E-04	1.43E-04	2.82	CD300C	
A_24_P210763	4.20E-02	2.63E-02	1.81	JAG1	
A_23_P126803	2.14E-04	5.37E-05	-4.28	ARPC5	
A_24_P931443	7.62E-06	3.56E-07	-3.42	GRP68	
A_24_P353794	4.32E-04	1.31E-04	1.73	GALNT2	
A_23_P5550	3.69E-05	5.41E-06	-3.48	PUM2	
A_24_P210763	4.20E-02	2.63E-02	-2.87	CD276	
A_23_P26771	4.62E-04	1.43E-04	2.82	CD300C	
A_24_P210763	4.20E-02	2.63E-02	1.81	JAG1	
A_23_P126803	2.14E-04	5.37E-05	-4.28	ARPC5	
A_24_P931443	7.62E-06	3.56E-07	-3.42	GRP68	
A_24_P353794	4.32E-04	1.31E-04	1.73	GALNT2	
A_23_P5550	3.69E-05	5.41E-06	-3.48	PUM2	
A_24_P210763	4.20E-02	2.63E-02	-2.87	CD276	
A_23_P26771	4.62E-04	1.43E-04	2.82	CD300C	
A_24_P210763	4.20E-02	2.63E-02	1.81	JAG1	
A_23_P126803	2.14E-04	5.37E-05	-4.28	ARPC5	
A_24_P931443	7.62E-06	3.56E-07	-3.42	GRP68	
A_24_P353794	4.32E-04	1.31E-04	1.73	GALNT2	
A_23_P5550	3.69E-05	5.41E-06	-3.48	PUM2	
A_24_P210763	4.20E-02	2.63E-02	-2.87	CD276	
A_23_P26771	4.62E-04	1.43E-04	2.82	CD300C	
A_24_P210763	4.20E-02	2.63E-02	1.81	JAG1	
A_23_P126803	2.14E-04	5.37E-05	-4.28	ARPC5	
A_24_P931443	7.62E-06	3.56E-07	-3.42	GRP68	
A_24_P270814	4.45E-04	1.36E-04	-2.71	CRK	
-------------	----------	----------	------	------	
A_24_P673786	1.09E-05	7.43E-07	-2.76	PIP4K2A	
A_23_P123503	8.87E-04	3.07E-04	6.08	TRIB1	
A_23_P212768	6.94E-05	1.29E-05	-2.92	ADD1	
A_24_P682285	6.08E-05	1.08E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
A_24_P682285	6.94E-05	1.29E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
A_24_P682285	6.94E-05	1.29E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
A_24_P682285	6.94E-05	1.29E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
A_24_P682285	6.94E-05	1.29E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
A_24_P682285	6.94E-05	1.29E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
A_24_P682285	6.94E-05	1.29E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
A_24_P682285	6.94E-05	1.29E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
A_24_P682285	6.94E-05	1.29E-05	1.87	HSPA1A	
A_24_P29401	3.47E-03	1.52E-03	-2.39	PIK3R1	
A_24_P344307	3.82E-04	1.12E-04	-1.78	PSME3	
A_23_P146990	2.20E-05	2.35E-02	-2.67	C6orf25	
A_23_P212768	3.73E-02	2.03E-02	-1.61	SMAP1	
Gene ID	Fold Change	P-Value	Gene ID	Fold Change	P-Value
------------	-------------	-----------	------------	-------------	-----------
A_24_P231513	1.24E-05	9.54E-07	-2.16	ACTR3	
A_24_P936758	3.60E-03	1.59E-03	-3.76	IGF2	
A_23_P211985	8.64E-03	4.33E-03	2.07	SNRK	
A_23_P166219	3.36E-02	2.03E-02	4.46	GABPA	
A_32_P57870	1.50E-04	3.49E-05	-3.47	PSMC1	
A_24_P82200	1.24E-02	6.50E-03	1.88	MEI52	
A_24_P53595	1.43E-03	5.40E-04	6.05	GNAS	
A_23_P167674	7.39E-05	1.40E-05	-2.10	F12	
A_23_P9688	5.91E-05	3.84E-04	-2.10	DYNC1LI2	
A_24_P938293	4.65E-05	7.51E-06	-2.00	HES1	
A_23_P82929	7.74E-06	3.68E-07	-2.97	NOV	
A_23_P65031	2.06E-05	2.01E-06	-4.25	DYNLL1	
A_23_P65370	1.04E-05	7.04E-07	-3.50	GLRX5	
A_23_P472055	4.59E-03	2.11E-03	-2.75	RNF125	
A_23_P213204	1.26E-06	6.76E-09	-1.79	WHSC1	
A_23_P76538	9.98E-05	2.09E-05	-3.56	TESC	
A_23_P166371	8.92E-03	4.48E-03	-2.19	VPREB3	
A_23_P111381	5.74E-06	1.96E-07	-2.66	ATG5	
A_32_P170003	3.87E-04	1.14E-04	-2.19	TRAF3IP1	
A_32_P162726	1.77E-03	6.96E-04	-2.82	EXOSC6	
A_23_P122174	4.21E-02	2.64E-02	-2.09	XRCC4	
A_23_P99980	6.90E-05	1.28E-05	-3.15	HMGB1	
A_23_P153372	2.63E-04	7.07E-05	-2.57	HSH2D	
A_23_P97632	7.19E-06	3.05E-07	-2.88	EPRS	
A_24_P236949	3.87E-02	2.40E-02	2.43	C19orf66	
A_23_P159956	2.90E-02	1.72E-02	1.53	MID2	
A_23_P254120	1.40E-04	3.19E-05	-3.65	FBXO9	
A_23_P120002	4.65E-05	7.49E-06	2.41	SP110	
A_23_P71624	1.97E-02	1.11E-02	-1.86	PAX5	
A_23_P205929	9.39E-05	1.95E-05	-2.97	DPP8	
A_32_P210252	4.59E-05	7.34E-06	-2.83	RPL22	
A_23_P75453	2.32E-04	5.96E-05	-2.49	MEN1	
A_24_P916522	4.40E-02	2.78E-02	-2.03	PAX5	
A_23_P637237	2.67E-05	3.32E-06	-2.99	FOXP1	
A_23_P134851	2.46E-04	6.42E-05	2.45	DOK2	
A_23_P107351	1.34E-04	3.03E-05	-3.31	NLRP1	
A_24_P13381	1.16E-03	4.21E-04	2.51	TRPV4	
A_23_P59426	8.87E-04	3.07E-04	-1.72	PAXIP1	
A_24_P935026	1.51E-04	3.52E-05	-2.95	STK4	
A_32_P342064	1.14E-04	2.49E-05	-5.33	FTH1	
A_23_P8281	1.14E-05	8.08E-07	-2.52	IFNGR1	
A_23_P55273	7.32E-04	2.45E-04	4.97	SBNO2	
A_23_P348636	1.25E-02	6.55E-03	1.76	FOXJ1	
A_23_P140648	2.81E-04	7.69E-05	-2.03	CYFIP1	
Gene Symbol	Log2 Fold Change	p-value	Description		
-------------	------------------	---------	-------------		
LAMP3	4.68E-02	3.00E-02	-2.01		
COL3A1	4.70E-05	7.65E-06	3.34		
GATA1	5.91E-03	2.81E-03	3.68		
HERC6	8.52E-03	4.25E-03	6.15		
FADD	1.27E-02	6.68E-03	4.10		
YWHAZ	4.00E-05	6.02E-06	-2.22		
PSMA6	5.11E-05	8.59E-06	-4.01		
HIST1H2BK	8.65E-04	2.97E-04	-2.52		
POLR3C	9.04E-03	3.14E-04	2.94		
LAX1	5.91E-03	2.81E-03	3.34		
KIF3C	1.29E-04	2.90E-05	-3.24		
TGFBR2	9.15E-04	3.19E-04	-2.06		
MYLPF	9.52E-04	3.35E-04	2.60		
SLC11A1	2.76E-02	1.62E-02	-1.87		
BCR	2.11E-04	5.27E-05	-4.01		
PLD2	5.55E-04	1.78E-04	2.06		
DEFB118	2.54E-04	6.72E-05	4.16		
GOLPH3	1.21E-04	2.69E-05	-2.81		
IFIT1	1.44E-05	1.20E-06	-3.18		
PPP3CA	2.51E-05	3.06E-06	-3.53		
FARPA	1.64E-04	3.90E-05	2.62		
OLR1	2.72E-03	1.16E-03	-1.83		
MRGPRX4	1.34E-02	7.10E-03	-2.35		
SPTA1	1.75E-02	9.71E-03	4.71		
ZFPM1	1.03E-03	3.70E-04	-3.95		
CDC42	3.61E-05	5.25E-06	-2.76		
DCTN2	1.08E-05	7.32E-07	-2.35		
UBA52	1.44E-05	1.22E-06	-3.50		
PSMA6	9.05E-05	1.86E-05	-1.93		
HSP90B1	2.36E-05	2.71E-06	-3.43		
BTN3A1	5.10E-05	8.54E-06	3.19		
SPTB	3.08E-05	4.10E-06	1.78		
THPO	8.52E-05	1.71E-05	12.88		
HLA-DOA	6.19E-04	2.00E-04	3.75		
SPG21	1.26E-06	9.54E-09	-2.53		
A2M	4.12E-04	1.23E-04	-2.89		
ILF2	2.46E-05	2.92E-06	-2.91		
SLAMF6	1.91E-04	4.66E-05	3.97		
CXCR5	2.32E-03	9.56E-04	5.95		
TYK2	2.45E-03	1.02E-03	3.44		
RIPK2	4.59E-06	1.45E-07	-2.22		
NLRC5	3.50E-02	2.13E-02	-2.21		
VAV1	8.64E-03	4.33E-03	2.12		
PSMA6	7.62E-06	3.57E-07	-3.50		
MSH6	3.40E-06	7.88E-08	-1.88		
ISG15	1.44E-03	5.44E-04	-1.88		
CD27	3.02E-04	8.42E-05	-2.52		
PLA2G2D	1.10E-03	3.99E-04	2.29		
HCST	1.41E-03	5.29E-04	-2.61		
Gene ID	Log2 Fold Change	p Value	Adjusted p Value	Gene Name	
----------	-----------------	---------	------------------	-----------	
A_23_P219060	1.65E-02	9.04E-03	-2.23	GPSM3	
A_23_P356684	5.29E-06	1.73E-07	-3.51	ANLN	
A_32_P111565	1.43E-05	1.19E-06	-3.02	FTH1	
A_32_P880454	3.26E-05	4.50E-06	-4.18	APLF	
A_23_P162866	4.21E-06	1.27E-07	-3.31	HSP90AA1	
A_32_P24581	6.58E-04	2.17E-04	2.03	PDGFB	
A_23_P137806	3.88E-03	1.73E-03	-2.61	MPL	
A_23_P118544	3.49E-05	5.01E-06	-3.90	CLTC	
A_32_P199252	4.45E-04	1.36E-04	-3.43	HSP90AA1	
A_23_P339944	6.58E-04	2.17E-04	2.03	PDGFB	
A_23_P171074	5.31E-05	5.07E-06	-4.27	ITM2A	
A_23_P127842	3.53E-06	8.79E-08	-5.02	RARA	
A_23_P103398	2.24E-04	5.69E-05	-2.65	PSEN2	
A_23_P1119943	4.74E-04	1.48E-04	-2.56	IGFBP2	
A_24_P141332	6.61E-05	1.21E-05	-2.87	CAMK2G	
A_32_P175198	1.57E-04	3.69E-05	-3.25	ACTG1	
A_24_P275984	1.87E-03	7.41E-04	7.87	ZNF616	
A_23_P138635	2.48E-05	2.98E-06	-5.72	BNIP3	
A_23_P88201	2.15E-06	3.18E-08	-2.69	PPP2R3C	
A_23_P133245	7.74E-06	3.70E-07	-2.10	IK	
A_24_P311917	6.56E-04	2.16E-04	2.28	BTN3A3	
A_23_P256473	3.12E-04	8.76E-05	-2.41	SEMA3C	
A_24_P63019	2.60E-03	1.09E-03	4.54	IL1R2	
A_23_P210100	4.29E-05	6.66E-06	-2.64	CYP26B1	
A_23_P502174	3.28E-05	4.56E-06	-3.57	DYNC2L1	
A_23_P79732	1.35E-04	3.06E-05	-5.38	RPS27A	
A_23_P38894	2.19E-05	2.36E-06	-2.43	C19orf66	
A_23_P163814	3.35E-04	9.50E-05	-3.83	ATXN1L	
A_23_P20814	6.17E-04	2.00E-04	1.61	DDX58	
A_24_P340679	9.05E-06	5.55E-07	-3.65	PPIA	
A_23_P35970	2.68E-04	7.24E-05	-1.67	SLC37A4	
A_23_P389919	1.44E-02	7.76E-03	-1.81	WHSC1	
A_24_P82106	5.89E-04	1.89E-04	4.73	MMP14	
A_23_P367995	7.57E-03	3.72E-03	3.52	PSM8	
A_23_P146922	1.43E-02	7.72E-03	1.94	GAS6	
A_23_P22444	2.55E-02	1.48E-02	1.68	CFP	
A_23_P22378	1.33E-04	3.01E-05	2.96	SOX11	
A_23_P115223	1.81E-05	1.82E-06	-3.07	HAX1	
A_24_P373976	3.14E-04	8.84E-05	14.21	SDC4	
A_23_P99771	7.53E-05	1.44E-05	-3.81	PNMA1	
A_24_P166431	1.71E-03	6.72E-04	-2.70	TRIM10	
A_24_P216165	2.09E-04	5.23E-05	-4.75	CEBPA	
A_23_P10815	9.43E-06	6.09E-07	-3.60	PUM1	
A_32_P186921	3.29E-05	4.59E-06	-1.98	ZNF616	
A_23_P29993	1.71E-05	1.68E-06	-11.09	IL15	
A_23_P218369	2.87E-06	5.47E-08	7.86	CCL15	
A_24_P154037	1.41E-05	1.16E-06	-2.23	IRS2	
Gene Symbol	Standardized T-value	Fold Change	Regulation		
------------	---------------------	-------------	------------		
CREB1	4.12E-04	1.23E-04	9.19		
PRR5	9.50E-05	1.97E-05	-3.61		
PRKD1	2.56E-04	6.84E-05	-2.34		
UBQLN1	1.09E-03	3.95E-04	-2.10		
TGFBR2	1.26E-06	8.32E-09	1.92		
LST1	1.78E-02	9.88E-03	1.90		
HDAC9	1.57E-02	8.56E-03	-3.41		
PPI1	1.68E-05	1.62E-06	1.91		
C12orf29	4.41E-05	6.93E-05	-4.23		
PRR5	1.78E-02	9.88E-03	1.90		
PRKD1	2.34E-03	9.62E-04	-2.29		
CD6	4.33E-02	2.72E-02	-1.86		
CD177	1.79E-02	9.96E-03	-4.14		
ACTB	2.70E-06	4.61E-08	-2.25		
ARHGEF7	6.99E-04	2.33E-04	-2.35		
RAB10	2.49E-05	2.99E-06	-2.47		
ADAM9	6.14E-03	8.67E-06	-3.73		
PSMB4	8.40E-06	4.55E-07	-4.94		
SOCS6	4.85E-02	3.12E-02	-2.55		
JARID2	6.14E-05	1.10E-05	-1.87		
ERAP1	1.01E-04	2.12E-05	4.13		
SIVA1	1.52E-05	1.36E-06	-2.75		
TCF12	9.09E-03	4.58E-03	-2.13		
RILP	8.42E-05	1.67E-05	-3.00		
AP1S2	6.57E-05	1.19E-05	-2.36		
HLA-DPA1	1.65E-05	1.56E-06	-2.93		
ARF1	8.89E-06	5.32E-07	-3.28		
PREX1	6.00E-06	2.20E-07	-1.89		
AXIN1	6.21E-04	2.01E-04	2.78		
PSMD5	5.55E-04	1.78E-04	-2.48		
SPTB	1.34E-03	4.98E-04	-3.06		
TPD52	2.25E-05	2.50E-06	-3.74		
CCL24	6.56E-03	3.17E-03	-3.02		
UBA52	3.35E-05	4.76E-06	-3.73		
PSMD10	1.96E-06	2.30E-08	-3.92		
APOBEC3D	2.28E-05	2.54E-06	3.36		
LAM1P1	1.93E-04	4.73E-05	-3.16		
RPL22	9.85E-05	2.06E-05	-2.28		
RNF41	3.40E-03	1.49E-03	-2.63		
CRHR1	4.28E-04	1.29E-04	-3.28		
PRKACA	5.08E-04	1.60E-04	-2.14		
PTMS	7.06E-06	2.89E-07	-5.82		
PTPRO	1.31E-05	1.04E-06	-3.76		
SHMT2	2.34E-02	1.35E-02	1.84		
KRAS	9.83E-06	6.42E-07	-3.10		
IFI6	2.14E-03	8.63E-04	-2.03		
ATP6V1H	6.90E-05	1.28E-05	-2.98		
HIST1H2BC	3.29E-03	1.43E-03	2.02		
BNIP3L	1.33E-05	1.07E-06	-2.45		
REL	2.16E-02	1.24E-02	2.57		
Gene ID	Expression 1	Expression 2	Fold Change	Gene Name	
----------	--------------	--------------	-------------	-----------	
A_23_P501538	7.30E-06	3.22E-07	1.97	HOXA3	
A_23_P69493	3.88E-06	1.11E-07	-3.42	RHOA	
A_24_P39759	1.41E-05	1.17E-06	1.64	RNF135	
A_24_P277456	1.02E-04	2.17E-05	-3.50	UBE2K	
A_24_P935437	4.77E-05	7.81E-06	1.92	MBP	
A_23_P2097	5.73E-04	1.84E-04	-1.79	TRIM68	
A_23_P256561	2.05E-04	5.13E-05	1.64	TLR6	
A_23_P207940	5.57E-05	9.61E-06	-1.79	PTPN2	

In bold are highlighted candidate genes already known to contribute to ALS susceptibility.
Gene expression fold-changes are given on a linear scale.
Supplementary Table 5. Neuroinflammatory genes differentially expressed in SALS1 and SALS2.

Probe ID	p Value (Corr)	p Value	Fold Change (SALS1/CTRL)*	Fold Change (SALS2/CTRL)*	GENE_SYMBOL
A_23_P89249	7.67E-04	2.59E-04	1.99	1.6245594	ERBB2
A_23_P309739	2.75E-02	1.61E-02	-1.46	-1.5552287	ESR1
A_23_P70095	1.39E-02	7.41E-03	1.69	2.1040883	CD74
A_23_P101992	3.31E-02	1.99E-02	2.44	2.9789243	MARCO
A_23_P103361	1.17E-02	6.08E-03	-1.48	-1.6601439	LCK
A_24_P943283	1.43E-03	5.37E-04	-1.64	-2.3417015	DENND1B
A_24_P254079	6.81E-03	3.31E-03	2.10	2.963726	ICAM5
A_23_P81912	1.39E-02	7.41E-03	1.69	2.1040883	ERBB2
A_23_P151294	8.17E-03	4.15E-04	1.64	-1.6825967	BRAF
A_23_P140916	4.24E-06	1.30E-07	2.17	-2.0372417	GLG1
A_23_P29994	8.12E-02	4.08E-07	2.08	-2.1532817	RBPJ
A_24_P42935	1.17E-02	6.08E-03	2.10	-2.1532817	TUBB
A_32_P120977	8.16E-06	1.5E-07	1.64	-1.6825967	PRELID1
A_23_P121253	1.57E-02	8.57E-03	-1.40	-1.5319853	TNFSF10
A_23_P113716	7.07E-06	2.91E-07	2.11	-2.3847184	HLA-C
A_23_P130815	3.40E-03	1.49E-03	-1.84	-1.9945887	KIR2DS2
A_24_P276853	1.29E-02	4.79E-04	2.01	2.162412	GON4L
A_24_P252078	1.81E-02	1.01E-02	1.63	1.7563841	BTN3A2
A_24_P766716	2.55E-02	1.48E-02	1.72	1.8776253	CMKL1R1
A_23_P207582	7.09E-06	2.99E-07	-3.23	3.2294095	CCL16
A_24_P103469	4.54E-03	2.08E-03	1.98	2.8276353	LST1
A_32_P232865	6.76E-03	3.28E-03	3.14	3.7766464	BCR
A_23_P25644	6.68E-07	8.25E-10	1.69	-2.291853	PCID2
A_23_P79161	3.88E-06	1.11E-07	1.54	-1.6402473	PRELID1
A_23_P56195	6.68E-07	1.26E-09	1.58	-2.210804	UBA52
A_23_P203053	2.04E-03	8.20E-04	1.70	2.2072346	NCAM1
A_23_P30122	4.59E-06	1.48E-07	-1.83	2.1090114	IL2
A_23_P169331	1.37E-02	7.28E-03	1.78	1.5586059	TRAF2
A_24_P222655	1.03E-02	5.29E-03	2.90	2.3396752	C1QA
A_32_P217709	4.24E-06	1.29E-07	2.37	-2.239976	RAC1
A_23_P38346	8.68E-06	4.99E-07	1.98	-2.0749657	DDX58
A_23_P31921	4.35E-03	1.98E-03	2.69	3.2652416	ASS1
A_23_P142380	6.68E-07	9.44E-10	1.79	-1.8057177	AKAP8
A_23_P136325	6.22E-03	2.98E-03	1.62	2.1003823	WIPF2
A_32_P67533	6.00E-06	2.15E-07	1.40	-1.482858	L3MBTL3
A_23_P71268	1.55E-03	5.97E-04	2.25	3.2261822	AZGP1
A_24_P184031	8.21E-06	4.26E-07	2.08	-2.0806754	PHPT1
A_23_P350991	5.39E-03	2.53E-03	1.73	1.6670423	SMAD3
A_23_P59005	1.64E-06	1.41E-08	2.05	-2.0266466	TAP1
A_24_P337592	9.84E-03	5.01E-03	1.61	1.8112911	BTN2A2
A_23_P115460	1.01E-06	4.08E-09	1.75	-1.9200194	RPL22
A_32_P9700	2.37E-06	3.82E-08	1.94	-2.1930177	PSMC1
A_23_P171249	1.67E-06	1.69E-08	1.98	-1.8409251	IGBP1
A_23_P17560	6.07E-03	2.90E-03	3.32	6.287112	KIF3B
A_24_P346277	7.30E-06	3.15E-07	1.93	-2.093793	SRF
A_24_P8892	4.59E-06	1.46E-07	1.75	-1.7740107	HDAC4
A_23_P119562	1.15E-02	5.97E-03	2.46	1.9826583	CFD
Gene symbol	log2FoldChange	p-value	q-value	geneM	description
-------------	----------------	---------	---------	-------	-------------
PSME1	1.26E-06	7.59E-09	2.42	-1.9032911	A_23_P151610
FKBP1B	1.60E-06	1.72E-02	2.53	2.2931263	A_24_P402222
GALNT2	4.32E-04	1.31E-04	2.05	1.7299206	A_24_P353794
BDKRB1	2.73E-02	1.60E-02	-2.15	-2.1131637	A_23_P128744
SLC25A6	7.09E-06	2.98E-07	2.12	-2.0164661	A_24_P682285
HSPA1A	6.08E-05	1.08E-05	3.53	1.874959	A_24_P226554
ACTB	8.64E-03	8.86E-08	2.64	-2.288506	A_23_P211985
SNRK	8.64E-03	4.33E-03	1.87	2.0685003	A_24_P022000
MEIS2	4.59E-03	2.11E-03	-2.14	-2.749359	A_24_P472055
RNF125	8.92E-03	4.48E-03	-1.99	-2.1929023	A_23_P166371
PAX5	1.24E-02	6.50E-03	1.59	1.8813595	A_24_P822000
FOXJ1	8.64E-03	4.33E-03	1.66	2.119077	A_23_P38959
VAV1	3.02E-04	8.42E-05	-1.64	-2.5189831	A_23_P48088
CD27	7.74E-06	3.70E-07	1.99	-2.1024985	A_23_P133245
IK	2.09E-04	5.23E-05	-2.49	-4.746586	A_24_P216165
CEBPA	3.29E-05	4.59E-06	-1.42	-1.9837334	A_32_P186921
ZNF616	1.26E-06	8.32E-09	-1.75	1.9213755	A_23_P337242
TGFBR2	1.78E-02	9.88E-03	1.88	1.896965	A_24_P94916
LST1	2.70E-06	4.61E-08	2.60	-2.473917	A_23_P31323
ACTB	6.00E-06	2.20E-07	1.78	-1.890054	A_23_P43641
PREX1	2.34E-02	1.35E-02	1.75	1.8354497	A_23_P158239
SHMT2	7.30E-06	3.22E-07	-2.04	1.9682595	A_23_P501538

*Gene expression fold-changes are given on a linear scale.
Supplementary Table 6. List of genes included in the SALS1-related PPI network.

Degree	Node	Gene name
157	UBC	ubiquitin C
84	TPS3	tumor protein p53
79	AKT1	v-akt murine thymoma viral oncogene homolog 1
66	MYC	v-myc myelocytomatosis viral oncogene homolog (avian)
64	CCND1	cyclin D1
63	HSPA8	heat shock protein 90kDa alpha (cytosolic), class A member 1
62	JUN	jun proto-oncogene
61	EGFR	epidermal growth factor receptor
56	FO5	FBJ murine osteosarcoma viral oncogene homolog
56	MAPK14	mitogen-activated protein kinase 14
54	RAC1	ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)
49	RHOA	ras homolog family member A
47	MAPK1	mitogen-activated protein kinase 1
47	PIK3R3	phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
46	MAPK8	mitogen-activated protein kinase 8
45	NFkB1	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
45	CTNNB1	catenin (cadherin-associated protein), beta 1, 88kDa
45	PTEN	protein tyrosine phosphatase, non-receptor type 11
44	EP300	E1A binding protein p300
44	CREBBP	CREB binding protein
43	HRAS	v-Ha-ras Harvey rat sarcoma viral oncogene homolog
43	UBB	ubiquitin B
43	EP300	E1A binding protein p300
41	ESR2	erb-2 erythroblast leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian)
40	MTOR	mechanistic target of rapamycin (serine/threonine kinase)
40	AR	androgen receptor
39	RELA	v-rel reticuloendotheliosis viral oncogene homolog A (avian)
39	VEGFA	vascular endothelial growth factor A
39	UBA52	ubiquitin A-52 residue ribosomal protein fusion product 1
38	CHD1	cadherin 1, type 1, E-cadherin (epithelial)
38	GRB2	growth factor receptor-bound protein 2
37	HIF1A	hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)
36	CREB1	cAMP responsive element binding protein 1
36	CD44	CD44 molecule (Indian blood group)
35	NOTCH1	notch 1
34	CDKN1B	cyclin-dependent kinase inhibitor 1B (p27, Kip1)
34	SMAD3	SMAD family member 3
33	JAK2	Janus kinase 2
33	NRAS	neuroblastoma RAS viral (v-ras) oncogene homolog
33	CDC42	cell division cycle 42 (GTP binding protein, 25kDa)
33	PTK2	protein tyrosine kinase 2
32	NOTCH1	notch 1
32	BCL2L1	BCL2-like 1
32	Kras	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
32	LYK5	v-yes-1 Yamaguchi sarcoma viral oncogene homolog
30	HSPA8	heat shock 70kDa protein 8
30	CDK6	cyclin-dependent kinase inhibitor 1B (p27, Kip1)
30	SMAD3	SMAD family member 3
29	JAK1	Janus kinase 1
29	CREB1	cAMP responsive element binding protein 1
29	CD44	CD44 molecule (Indian blood group)
28	PLK1	polo-like kinase 1
28	HDAC9	histone deacetylase 9
27	KIT	v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
27	CXCL12	chemokine (C-X-C motif) ligand 12
27	APP	amyloid beta (A4) precursor protein
27	ACTB	actin, beta
26	MAPK11	mitogen-activated protein kinase 11
25	EZR	ezrin
25	NOS3	nitric oxide synthase 3 (endothelial cell)
24	GAPDH	glyceraldehyde-3-phosphate dehydrogenase
24	SUMO1	SMT3 suppressor of mif two 3 homolog 1 (S. cerevisiae)
24	TLR4	toll-like receptor 4
24	HLA-DRB1	major histocompatibility complex, class II, DR beta 1
23	IKKβ	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta
22	F2	coagulation factor II (thrombin)
21	JAK3	Janus kinase 3
21	PML	promyelocytic leukemia
20	MAPK10	mitogen-activated protein kinase 10
	Gene Symbol	Gene Name
---	-------------	---
20	ALB	albumin
19	BIRC5	baculoviral IAP repeat containing 5
19	BCR	breakpoint cluster region
19	CDK4	cyclin-dependent kinase 4
19	PSMAD4	proteasome (prosome, macropain) 26S subunit, non-ATPase, 4
18	NCAM1	neural cell adhesion molecule 1
18	PSMC5	proteasome (prosome, macropain) 26S subunit, ATPase, 5
17	INSR	insulin receptor
17	CCND3	cyclin D3
17	SMARCA4	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4
16	TRAF2	TNF receptor-associated factor 2
16	HLA-A	major histocompatibility complex, class I, A
16	PSMID13	proteasome (prosome, macropain) 26S subunit, non-ATPase, 13
16	PSMID11	proteasome (prosome, macropain) 26S subunit, non-ATPase, 11
16	PSMID9	proteasome (prosome, macropain) 26S subunit, non-ATPase, 9
16	PSMID3	proteasome (prosome, macropain) 26S subunit, non-ATPase, 3
16	ACTN1	actinin, alpha 1
16	PSMC3	proteasome (prosome, macropain) 26S subunit, ATPase, 3
16	TSPO	translocator protein (18kDa)
16	DNMT2	dynamin 2
16	PSMC1	proteasome (prosome, macropain) 26S subunit, ATPase, 1
16	PSMF1	proteasome (prosome, macropain) inhibitor subunit 1 (PI31)
16	PSMD1	proteasome (prosome, macropain) 26S subunit, non-ATPase, 1
15	CLU	clusterin
15	HLA-C	major histocompatibility complex, class I, C
15	MYH14	myosin, heavy chain 14, non-muscle
15	HLA-B	major histocompatibility complex, class I, B
15	SQSTM1	sequestosome 1
14	BECN1	beclin 1, autophagy related
14	OASL	2'-5'-oligoadenylate synthetase-like
14	OAS1	2'-5'-oligoadenylate synthetase 1, 40/46kDa
14	ANGPT2	angiopeitin 2
14	TYK2	tyrosine kinase 2
14	BCL6	B-cell CLL/lymphoma 6
13	NFATC1	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1
13	DECR1	2,4-dienoyl CoA reductase 1, mitochondrial
13	PARK2	parkinson protein 2, E3 ubiquitin protein ligase (parkin)
13	HSPA5	heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)
13	MSN	moesin
13	ARNT	aryl hydrocarbon receptor nuclear translocator
13	CDC37	cell division cycle 37 homolog (S. cerevisiae)
13	NTRK1	neurotrophic tyrosine kinase, receptor, type 1
13	DDX41	DEAD (Asp-Glu-Ala-Asp) box polypeptide 41
12	PRDM10	PR domain containing 10
12	CD80	CD80 molecule
12	TGFBR2	transforming growth factor, beta receptor II (70/80kDa)
12	BRAF	v-raf murine sarcoma viral oncogene homolog B1
12	CYLD	cylindromatosis (turban tumor syndrome)
12	ANXA2	annexin A2
12	SLC3A2	solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2
12	PDIA3	protein disulfide isomerase family A, member 3
12	TSC1	tuberous sclerosis 1
12	AP2M1	adaptor-related protein complex 2, mu 1 subunit
12	NCF2	neutrophil cytosolic factor 2
Degree	Node	Gene name
--------	--------	---
326	UBC	ubiquitin C
131	AKT1	v-akt murine thymoma viral oncogene homolog 1
130	TP53	tumor protein p53
105	EGFR	epidermal growth factor receptor
99	RAC1	ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)
98	STAT3	signal transducer and activator of transcription 3 (acute-phase response factor)
97	MAPK1	mitogen-activated protein kinase 1
95	HSP90AB1	heat shock protein 90kDa alpha (cytosolic), class A member 1
90	JUN	jun proto-oncogene
89	MYC	v-myc myelocytomatosis viral oncogene homolog (avian)
88	CCND1	cyclin D1
87	UBB	ubiquitin B
86	RPS27A	ribosomal protein 527a
81	HRAS	v-Ha-ras Harvey rat sarcoma viral oncogene homolog
81	UBAS2	ubiquitin A-52 residue ribosomal protein fusion product 1
79	MAPK14	mitogen-activated protein kinase 14
78	RHOD	ras homolog family member A
76	CTNNB1	catenin (cadherin-associated protein), beta 1, 88kDa
76	MAPK8	mitogen-activated protein kinase 8
75	PIK3R1	phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
75	MAPK3	mitogen-activated protein kinase 3
74	PTPN11	protein tyrosine phosphatase, non-receptor type 11
74	FOS	FB1 murine osteosarcoma viral oncogene homolog
72	NFE2L1	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
70	GRB2	growth factor receptor-bound protein 2
69	STAT1	signal transducer and activator of transcription 1, 91kDa
69	ABL1	c-abl oncogene 1, non-receptor tyrosine kinase
69	FYN	FYN oncogene related to SRC, FGR, YES
68	RELA	v-rel reticuloendotheliosis viral oncogene homolog A (avian)
68	JAK2	Janus kinase 2
68	CREBBP	CREB binding protein
67	CDC42	cell division cycle 42 (GTP binding protein, 25kDa)
67	VEGFA	vascular endothelial growth factor A
66	EP300	E1A binding protein p300
66	SOS1	son of sevenless homolog 1 (Drosophila)
65	HSP90A1	heat shock protein 90kDa protein B
64	SHC1	SHC (Src homology 2 domain containing)
62	AGT	angiotensinogen (serpin peptidase inhibitor, clade A, member B)
61	PTX2	PTX2 protein tyrosine kinase 2
61	HSPIB	heat shock 27kDa protein 1
60	CREB1	cAMP responsive element binding protein 1
59	PLCG1	phospholipase C, gamma 1
59	AR	androgen receptor
58	RAC3	ras-related C3 botulinum toxin substrate 3 (rho family, small GTP binding protein Rac3)
56	CDH1	cadherin 1, type 1, E-cadherin (epithelial)
56	EGFR1	early growth response 1
56	CENP1B	cyclin-dependent kinase inhibitor 1B (p27, Kip1)
55	NRR1	neuroblastoma RAS viral (v-ras) oncogene homolog
55	PRKCA	protein kinase C, alpha
55	RAF1	v-raf-1 murine leukemia viral oncogene homolog 1
55	HIF1A	hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)
53	APP	amyloid beta (A4) precursor protein
53	JAK1	Janus kinase 1
53	LYN	v-yes-1 Yamaguchi sarcoma viral related oncogene homolog
52	ACTB	actin, beta
52	NOTCH1	notch 1
51	BTRC	beta-transducin repeat containing E3 ubiquitin protein ligase
51	SMAD3	SMAD family member 3
51	IGF1	insulin-like growth factor 1 (somatomedin C)
50	PRKCD	protein kinase C, delta
50	SKP1	S-phase kinase-associated protein 1
50	MTOR	mechanistic target of rapamycin (serine/threonine kinase)
50	NOS3	nitric oxide synthase 3 (endothelial cell)
49	CUL1	cullin 1
48	ERBB2	v-erb-b2 erythroblastoid leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian)
48	KIT	v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
47	CAV1	caveolin 1, caveolae protein, 22kDa
47	PRKACA	protein kinase, cAMP-dependent, catalytic, alpha
45	IGF1R	insulin-like growth factor 1 receptor
45	PLK1	polo-like kinase 1
44	CXCL12	chemokine (C-X-C motif) ligand 12
44	HSP90AB1	heat shock protein 90kDa alpha (cytosolic), class B member 1
PXN paxillin		
NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha		
PDGFRB platelet-derived growth factor receptor, beta polypeptide		
BCL2L1 BCL2-like 1		
KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog		
PDGFB platelet-derived growth factor beta polypeptide		
SMAD4 SMAD family member 4		
MET met proto-oncogene (hepatocyte growth factor receptor)		
YES1 v-yes-1 Yamaguchi sarcoma viral oncogene homolog		
PSMA4 proteasome (prosome, macropain) subunit, alpha type, 4		
PSMB1 proteasome (prosome, macropain) subunit, beta type, 1		
PSMC2 proteasome (prosome, macropain) 26S subunit, ATPase, 2		
RAC2 ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)		
PSMD10 proteasome (prosome, macropain) 26S subunit, non-ATPase, 10		
PSMD14 proteasome (prosome, macropain) 26S subunit, non-ATPase, 14		
PSMD3 proteasome (prosome, macropain) 26S subunit, non-ATPase, 3		
MAPK11 mitogen-activated protein kinase 11		
PSMC1 proteasome (prosome, macropain) 26S subunit, ATPase, 1		
PSMD12 proteasome (prosome, macropain) 26S subunit, non-ATPase, 12		
PSMD6 proteasome (prosome, macropain) 26S subunit, non-ATPase, 6		
PSMD1 proteasome (prosome, macropain) inhibitor subunit 1 (Pxi1)		
F2 coagulation factor II (thrombin)		
PSMA5 proteasome (prosome, macropain) subunit, alpha type, 5		
PSMA6 proteasome (prosome, macropain) subunit, alpha type, 6		
PSMD2 SMAD family member 2		
PSMA1 proteasome (prosome, macropain) subunit, alpha type, 1		
PSMB4 proteasome (prosome, macropain) subunit, beta type, 4		
PSMB5 proteasome (prosome, macropain) subunit, beta type, 5		
PSMB2 proteasome (prosome, macropain) subunit, beta type, 2		
PSMB3 proteasome (prosome, macropain) subunit, beta type, 3		
PSMC6 proteasome (prosome, macropain) 26S subunit, ATPase, 6		
TLR4 toll-like receptor 4		
PTK2B protein tyrosine kinase 2 beta		
PSME3 proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; Ki)		
PSMB6 proteasome (prosome, macropain) subunit, beta type, 6		
PSMB7 proteasome (prosome, macropain) subunit, beta type, 7		
ITG1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)		
PSMD9 proteasome (prosome, macropain) 26S subunit, non-ATPase, 9		
PSME4 proteasome (prosome, macropain) activator subunit 4		
PRKCB protein kinase C, beta		
CASP3 caspase 3, apoptosis-related cysteine peptidase		
PRKACB protein kinase, cAMP-dependent, catalytic, beta		
LNPEP leucyl/cystinyl aminopeptidase		
PPARA peroxisome proliferator-activated receptor alpha		
YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide		
JAK3 Janus kinase 3		
PRKCZ protein kinase C, zeta		
SUMO1 SMT3 suppressor of mif two 3 homolog 1 (S. cerevisiae)		
GAPDH glyceraldehyde-3-phosphate dehydrogenase		
GAB2 GRB2-associated binding protein 2		
MMP2 matrix metalloptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)		
HDAC9 histone deacetylase 9		
INSR insulin receptor		
AKT2 v-akt murine thymoma viral oncogene homolog 2		
ARRB2 arrestin, beta 2		
HSPA4 heat shock 70kDa protein 4		
PLCB1 phospholipase C, beta 1 (phosphoinositide-specific)		
B2M beta-2-microglobulin		
FGR Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog		
SMARCA4 SWI/SNF-related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4		
BCR breakpoint cluster region		
TRA2 TFN receptor-associated factor 2		
CEBPB CCAAT/enhancer binding protein (C/EBP), beta		
PML promyelocytic leukemia		
DKK4 cyclin-dependent kinase 4		
MAP9 mitogen-activated protein kinase 9		
HLA-C major histocompatibility complex, class I, C		
VAV2 vav 2 guanine nucleotide exchange factor		
PRKCE protein kinase C, epsilon		
AZM alpha-2-macroglobulin		
PDGFR alpha platelet-derived growth factor receptor, alpha polypeptide		
NCA M1 neural cell adhesion molecule 1		
ALB albumin		
MYD88 myeloid differentiation primary response 88		
KITLG KIT ligand		
SH3GL2 SH3-domain GRB2-like 2		
PLD2 phospholipase D2		
BAX BCL2-associated X protein		
dynamin 2		
MAP3K5 mitogen-activated protein kinase kinase kinase 5		
HMG1B high mobility group box 1		
HSPD1 heat shock 60kDa protein 1 (chaperonin)		
PTMA2 proteasome (prosome, macropain) subunit, alpha, type 2		
PTAFR platelet-activating factor receptor		
RET ret proto-oncogene		
AB1 abl-interactor 1		
RPS6KA3 ribosomal protein S6 kinase, 90kDa, polypeptide 3		
ITCH itchy E3 ubiquitin protein ligase		
calcium/calmodulin-dependent protein kinase II delta		
IGF2 insulin-like growth factor 2 (somatomedin A)		
SPTBN2 spectrin, beta, non-erythrocytic 2		
TYK2 tyrosine kinase 2		
ARHGFE7 Rho guanine nucleotide exchange factor (GEF) 7		
IFNB1 interferon, beta 1, fibroblast		
calcium/calmodulin-dependent protein kinase II gamma		
SNCA synuclein, alpha (non A4 component of amyloid precursor)		
DECR1 2,4-dienoyl CoA reductase 1, mitochondrial		
HSPA5 heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)		
MAPK13 mitogen-activated protein kinase 13		
HS900B1 heat shock protein 90kDa beta (Grp94), member 1		
MAP2K4 mitogen-activated protein kinase kinase 4		
MITF microphthalmia-associated transcription factor		
SO2 son of sevenless homolog 2 (Drosophila)		
ADRM1 adhesion regulating molecule 1		
CALM1 calmodulin 1 (phosphorylase kinase, delta)		
CD74 CD74 molecule, major histocompatibility complex, class II invariant chain		
FGFR2 fibroblast growth factor receptor 2		
PSEN1 presenilin 1		
TSP1 translocator protein (18kDa)		
DCTN1 dynactin 1		
CSF1R colony stimulating factor 1 receptor		
SUMO2 SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae)		
RPS6KA5 ribosomal protein S6 kinase, 90kDa, polypeptide 5		
CANX calnexin		
RIPK1 receptor (TNFRSF)-interacting serine-threonine kinase 1		
ZAP70 zeta-chain (TCR) associated protein kinase 70kDa		
GNA5 GNAS complex locus		
MYH14 myosin, heavy chain 14, non-muscle		
OAS1 2'-5'-oligoadenylate synthetase 1, 40/46kDa		
DYNL1 dynein, light chain, LCB-type 1		
NCB1 neutrophil cytosolic factor 1		
UBEZD2 ubiquitin-conjugating enzyme E2D 2		
WWP1 WW domain containing E3 ubiquitin protein ligase 1		
ACT3 ARP3 actin-related protein 3 homolog (yeast)		
ITGA6 integrin, alpha 6		
SIN3A SIR3 transcription regulator homolog A (yeast)		
syndecan 4		
calreticulin		
ACT1A ARP1 actin-related protein 1 homolog A, centrinactin alpha (yeast)		
PARP1 poly (ADP-ribose) polymerase 1		
OASL 2'-5'-oligoadenylate synthetase-like		
transforming growth factor, beta receptor II (70/80kDa)		
OAS3 2'-5'-oligoadenylate synthetase 3, 100kDa		
PARK2 parkinson protein 2, E3 ubiquitin protein ligase (parkin)		
MAP7 mitogen-activated protein kinase 7		
BRAF v-raf murine sarcoma viral oncogene homolog B1		
PAFAH1B1 platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 (45kDa)		
STK11 serine/threonine kinase 11		
ARPC2 actin related protein 2/3 complex, subunit 5, 16kDa		
ARPC2 actin related protein 2/3 complex, subunit 2, 34kDa		
ARPC3 actin related protein 2/3 complex, subunit 3, 21kDa		
ITPR1 inositol 1,4,5-trisphosphate receptor, type 1		
BECN1 beclin 1, autophagy related		
TRAF3 TNF receptor-associated factor 3		
EPAS1 endothelial PAS domain protein 1		
PSEN2 presenilin 2 (Alzheimer disease 4)		
DCTN2 dynactin 2 (p50)		
CYP2P cytoplasmic FMR1 interacting protein 2		
NCKAP1 NCK-associated protein 1		
HNRNPK heterogeneous nuclear ribonucleoprotein K		
RNF41 ring finger protein 41		
SOX9 SRY (sex determining region Y)-box 9		
KLL3 kallikrein-related peptidase 3		
ATM ataxia telangiectasia mutated		
DYNCI2 dynein, cytoplasmic 1, intermediate chain 2		
GBP2 guanylate binding protein 2, interferon-inducible		
TFRC transferrin receptor (p90, CD71)		
DCTN3 dynactin 3 (p22)		
APOE apolipoprotein E		
RARA retinoic acid receptor, alpha		
Gene Symbol	Gene Name	
---	---	---
RPS14	ribosomal protein S14	
RPS19	ribosomal protein S19	
GNRH1	gonadotropin-releasing hormone 1 (luteinizing-releasing hormone)	
RPS24	ribosomal protein S24	
IFI6	interferon, alpha-inducible protein 6	
ELMO1	engulfment and cell motility 1	
EFNB2	ephrin-B2	
FGF10	fibroblast growth factor 10	
SLC3A2	solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2	
MX2	myxovirus (influenza virus) resistance 2 (mouse)	
SOD2	superoxide dismutase 2, mitochondrial	
SAR1B	SAR1 homolog B (S. cerevisiae)	
EPRS	glutamyl-prolyl-tRNA synthetase	
PLA2G6	phospholipase A2, group VI (cytosolic, calcium-independent)	
JAG1	jagged 1	
DUSP3	dual specificity phosphatase 3	
CLTA	clathrin, light chain A	
UBE203	ubiquitin-conjugating enzyme E2D 3	
TICAM1	toll-like receptor adaptor molecule 1	
OGT	O-linked N-acetylglucosamine (GlcNAc) transferase	
AP1G1	adaptor-related protein complex 1, gamma 1 subunit	
UBQLN1	ubiquilin 1	
RPS17	ribosomal protein S17	
FTH1	ferritin, heavy polypeptide 1	
SEC31A	SEC31 homolog A (S. cerevisiae)	
GAL	galanin/GMAP prepropeptide	
SCARB1	scavenger receptor class B, member 1	
THPO	thrombopoietin	
UBE2V1	ubiquitin-conjugating enzyme E2 variant 1	
EPS8	epidermal growth factor receptor pathway substrate 8	
API1S2	adaptor-related protein complex 1, sigma 2 subunit	
RICTOR	RPTOR independent companion of MTOR, complex 2	
ADORA3	adenosine A3 receptor	
#	Maps	SALS1/CTRL+
-------	--	-------------
1	Immune response_Classical complement pathway	1.384E-17
2	Immune response_Role of FPR in stress-induced antiviral cell response	8.973E-17
3	Immune response инвестиции complement pathway	9.264E-14
4	Immune response_HMGBl/RAGE signaling pathway	1.427E-15
5	SLE genetic marker-specific pathways in T cells	2.990E-15
6	Oxidative stress_Activation of NADPH oxidase	3.036E-15
7	PDE4 regulation of cyto/chemokine expression in inflammatory skin diseases	3.221E-15
8	Immune response_B cell antigen receptor (BCR) pathway	8.304E-15
9	Development_VEGF signaling via VEGFR2 - generic cascades	2.129E-14
10	Immune response_Antigen presentation by MHC class I, classical pathway	2.835E-14
11	Immune response_Platelet activating factor/ PAFR pathway signaling	4.701E-14
12	Immune response_T cell receptor signaling path	4.701E-14
13	Development_EGFR signaling path	7.271E-14
14	Role of Tissue factor in cancer independent of coagulation proteinases signaling	1.408E-13
15	Aberrant production of IL-2 and IL-17 in SLE T cells	1.978E-13
16	Immune response_CD16 signaling in NK cells	2.733E-12
17	Development_c-Kit ligand signaling pathway during hemopoiesis	7.479E-13
18	Immune response_IL-3 signaling via ERK and PI3K	1.157E-12
19	Development_Cytokine-mediated regulation of megakaryopoiesis	1.199E-12
20	Immune response_ICOS signaling protein in T helper cell	1.722E-12
21	Signal transduction_Additional pathways of NF-kB activation (in the cytoplasm)	1.873E-13
22	Immune response_CCL2 signaling	2.954E-12
23	Immune response_Role of DAP12 receptors in NK cells	4.601E-12
24	Immune response_TLR2 and TLR4 signaling pathways	1.078E-11
25	Immune response_IL-15 signaling	1.415E-11
26	Cell adhesion_Chemokines and adhesion	2.272E-11
27	SLE genetic marker-specific pathways in B cells	2.272E-11
28	Immune response_IL-4 signaling pathway	2.480E-11
29	Immune response_HSP60 and HSP70/TLR signaling pathway	2.692E-11
30	Immune response_IL-18 signaling	3.571E-11
31	Apoptosis and survival_NSF/TrkA PI3K-mediated signaling	3.605E-11
32	Immune response_IL-5 signaling via PI3K, MAPK and NF-kB	3.605E-11
33	Cytoskeleton remodeling_Cytoskeleton remodeling	3.888E-11
34	Development_Non-genomic action of Retinoic acid in cell differentiation	4.070E-11
35	Immune response_P-3 epsilon RI pathway	4.070E-11
36	Development_Adenosine A2B receptor signaling	4.361E-11
37	Immune response_IL-6 signaling pathway via JAK/STAT	4.751E-11
38	Development_PDGF signaling via STATs and NF-kB	6.419E-11
39	Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling	7.224E-11
40	Signal transduction_mTORC2 downstream signaling	8.608E-11

Supplementary Table 8. Pathway enrichment analyses on the list of statistically deregulated neuroinflammatory genes in SALS patients.
127 Th17 cells in CF
128 Immune response: Role of HMGBl in dendritic cell maturation and migration
129 B cell signaling in hematological malignancies
130 Signal transduction: PTMs in IL-17-induced CKS-dependent MAPK signaling pathways
131 Role of cell adhesion in vaso-occlusion in Sickle cell disease
132 Tissue Factor signaling in cancer via PAR1 and PAR2
133 Immune response: Bacterial infections in normal airways
134 Blood coagulation: GPVI-dependent platelet activation
135 Glucocorticoid-induced elevation of intraocular pressure as glaucoma risk factor
136 Development: EGF signaling via small GTPases
137 Immune response: Innate immune response to RNA viral infection
138 Development: Angiotensin signaling via PFK2
139 Nociception: Expression and role of Nociceptin in immune system
140 Influence of smoking on activation of EGF signaling in lung cancer cells
141 Development: GM-CSF signaling
142 Immune response: CIsa signaling
143 Immune response: Gastrin in inflammatory response
144 Apoptosis and survival: APRIL and BAFF signaling
145 Immune response: IFN alpha/beta signaling pathway
146 Immune response: TNF-R2 signaling pathways
147 Development: EPO-induced MAPK pathway
148 Signal transduction: PTMs in BAFF-induced signaling
149 Immune response: NFAT in immune response
150 Pacap (gfl B)
151 Role of B cells in SLE
152 Signal transduction: PTMs in IL-17-induced CKS-independent signaling pathways
153 Development: Role of IL-8 in angiogenesis
154 Muscle contraction: Regulation of eNOS activity in endothelial cells
155 Ovarian cancer (main signaling cascades)
156 NF-AT signaling in cardiac hypertrophy
157 Immune response: Oncostatin M signaling via MAPK in mouse cells
158 Immune response: T cell subsets: secreted signals
159 Development: Thyroid stimulating hormone binding
160 Apoptosis and survival: TNF-alpha-induced ROS-dependent Caspase-3 signaling
161 Immune response: Regulation of T cell function by CTLA-4
162 G protein signaling: RAC1 in cellular process
163 CRC12_cancer_2
164 Membrane-bound ESR1: interaction with G-proteins signaling
165 Neurophysiological process: Dynin-dynactin motor complex in axonal transport in neurons
166 Role of IL-23/ IL-17 pathogenic axis in psoriasis
167 Immune response: Neurotensin-induced activation of IL-8 in colonocytes
168 Immune response: Murine NGK2D signaling
169 Immune response: PIP3 signaling in B lymphocytes
ID	Description	Value
213	Development, Melanocyte development and pigmentation	4.315E-06
214	Th17 cells in CF (mouse model)	4.315E-06
215	Development, EPO-induced PI3K/AKT pathway and Ca2+ influx	4.743E-06
216	Chemotaxis, CCL16, CCL20, CXCL16- and CCL25-mediated cell migration	4.743E-06
217	Development, Adenosine A2A receptor signaling	4.743E-06
218	Chemotaxis, CCL2-induced chemotaxis	4.779E-06
219	Neuroprotective action of lithium	4.944E-06
220	Apoptosis and survival, hTRIL signaling	5.610E-06
221	Development, Ligand-independent activation of ESR1 and ESR2	6.303E-06
222	Development, Transcription regulation of granulocyte development	6.399E-06
223	Development, Angiotensin signaling via STATs	6.399E-06
224	Development, SDF-1 signaling in hematopoietic stem cell homing	6.545E-06
225	Apoptosis and survival, Anti-apoptotic action of membrane-bound ESR1	6.645E-06
226	Development, Gastrin in differentiation of the gastric mucosa	6.654E-06
227	Some pathways of EMT in cancer cells	7.238E-06
228	Regulation of lipid metabolism, Stimulation of Arachidonic acid production by ACM receptors	7.334E-06
229	Development, Regulation of cytoskeleton proteins in oligodendrocyte differentiation and myelination	7.662E-06
230	Immune response, PGE2 signaling in immune response	8.299E-06
231	Development, Adiponectin signaling	8.299E-06
232	Cytoskeleton remodeling, ESR1 action on cytoskeleton remodeling and cell migration	8.725E-06
233	Transcription, Receptor-mediated HIF regulation	9.002E-06
234	Development, PACAP signaling in neural cells	9.002E-06
235	G-protein signaling, Regulation of p38 and JNK signaling mediated by G-proteins	9.002E-06
236	Immune response, Antiviral actions of Interferons	9.272E-06
237	Immune response, FGf gamma R-mediated phagocytosis in macrophages	1.083E-05
238	PGF signaling in pancreatic cancer	1.083E-05
239	Cell adhesion, Integrin inside-out signaling in T cells	1.086E-05
240	Signal transduction, PTMs in IL-17-induced CIKS-dependent NF-kB signaling and mRNA stabilization	1.149E-05
241	Immune response, Cytokine receptor-mediated modulation of effector T cell and NK cell functions	1.180E-05
242	Cell cycle, Influence of Ras and Rho proteins on G1/S Transition	1.180E-05
243	Immune response, IL-17 signaling pathways	1.200E-05
244	Apoptosis and survival, NGF activation of NF-kB	1.205E-05
245	Signal transduction, Erk Interactions: Inhibition of Erk	1.246E-05
246	Immune response, CXCR4 signaling via second messenger	1.246E-05
247	Immune response, JCB-induced phagocytosis via alpha-M/beta-2 integrin	1.489E-05
248	Immune response, Immunological synapse formation	1.568E-05
249	Immune response, CD117 signaling in immune cell	1.645E-05
250	Development, Growth hormone signaling via STATs and PLC/IP3	1.702E-05
251	Immune response, C3a signaling	1.801E-05
252	Immune response, IL-16 signaling pathway	1.872E-05
253	Cell adhesion, Integrin inside-out signaling in neutrophils	1.902E-05
254	Cytoskeleton remodeling, Role of PDGFs in cell migration	2.018E-05
255	Development, Melanocyte development and pigmentation	2.018E-05
Immune response_IL-4-responsive genes in type 2 immunity

Androgen receptor activation and downstream signaling in Prostate cancer

Immune response_Differentiation of natural regulatory T cells

Development_Adenosine A3 receptor signaling

Immune response_IL-22 signaling pathway

Development_G-CSF-induced myeloid differentiation

Immune response_Substance P-stimulated expression of proinflammatory cytokines via MAPKs

Development_MEMO1 and ACM4 activation of ERK

Development_ACM2 and ACM4 activation of ERK

Immune response_IL-7 signaling in T lymphocytes

Development_Angiotensin signaling via beta-Arrestin

Development_ACM2 and ACM4 activation of ERK

Development_ACM2 and ACM4 activation of ERK

Development_ACM2 and ACM4 activation of ERK

Immune response_CD40 signaling

Signal transduction_mTORC1 upstream signaling

Immune response_HTR2A-induced activation of cPLA2

Hyaluronic acid_CD44 signaling in cancer

Cell adhesion_integrin outside-in signaling

Immune response_IL-7 signaling in T lymphocytes

Substance_P-mediated inflammation and pain in Sickle cell disease

Cell adhesion_integrin outside-out signaling

Development_Growth factors in regulation of oligodendrocyte precursor cell proliferation

Development_ERBB-family signaling

Immune response_Generation of memory CD4+ T cells

Development_Activation of Erk by ACM1, ACM3 and ACM5

Neurophysiological process_Constitutive and regulated NMDA receptor trafficking

Cytoskeleton remodeling_integrin outside-in signaling

Modulation of tumor response to cytotoxic T cells by hypoxia in tumors

TGF-beta-dependent CFTR expression

Immune response_CD40 signaling

G-protein signaling_N-RAS regulation pathway

Immune responseilla_L-1_0.jpg

Development_Role of HDAC and calcium/calmodulin-dependent kinase (CaMK) in proliferation

Development_Membrane-bound ESR1: Interaction with growth factors signaling

Immune responseILERK12 signaling pathway

Signal transduction, mTORC1 upstream signaling

Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity

Immune response_5TLP signaling

Immunoregulatory response_CD40 signaling

Immune response_CD40 signaling

Signal transduction_Erk1/2 signaling pathway

Immune response_TLR3 signaling

Translation_Regulation of Erk4F activity

Development_Role of HDAC and calcium/calmodulin-dependent kinase (CaMK) in control of skeletal myogenesis

Development_G-protein-mediated regulation of MAPK-ERK signaling

Immune response_TH1 and TH2 cell differentiation

G-protein signaling_N-RAS regulation pathway

Development_G-protein-mediated regulation of MAPK-ERK signaling

Immune response_TH1 and TH2 cell differentiation

G-protein signaling_N-RAS regulation pathway

Development_G-protein-mediated regulation of MAPK-ERK signaling

Immune response_TH1 and TH2 cell differentiation

G-protein signaling_N-RAS regulation pathway
Pathway Description	Gene Symbol	Fold Change	Log2 Fold Change	p-value	Adjusted p-value
Development_S1P1 signaling pathway		1.745E-04	4.245E-04	1.936E-01	1.745E-04
LRK2 and immune function in Parkinson’s disease		1.866E-04	2.280E-03	1.866E-04	2.830E-03
Ligand-independent activation of Androgen receptor in Prostate Cancer		1.910E-04	4.634E-04	2.748E-04	9.100E-04
Development_Activation of ERK by Kappa-type opioid receptor		1.989E-04	4.401E-04	5.494E-01	1.989E-04
Development_Transactivation of PDGFR in non-neuronal cells by Dopamine D2 Receptor		1.989E-04	4.401E-04	1.850E-02	1.989E-04
Cytoskeleton remodeling_Thyroliberin in cytoskeleton remodeling		2.137E-04	5.118E-04	3.537E-04	2.137E-04
G-protein signaling_TC21 regulation pathway		2.137E-04	5.118E-04	4.742E-01	2.137E-04
G-protein signaling_R-RAS regulation pathway		2.137E-04	5.118E-04	3.134E-01	2.137E-04
Development_Activation of ERK by Alpha-1 adrenergic receptors		2.165E-04	5.140E-04	8.595E-01	2.165E-04
Cell adhesion_Ephrin signaling		2.165E-04	5.140E-04	1.053E-01	2.165E-04
Role of alpha-6/beta-4 integrins in carcinoma progression		2.165E-04	5.140E-04	2.669E-02	2.165E-04
Development_G-protein alpha-12 signaling pathway		2.173E-04	5.140E-04	1.516E-02	2.173E-04
Signal transduction_Cyclic AMP signaling		2.173E-04	5.140E-04	6.238E-01	2.173E-04
Development_TGF-beta-dependent induction of EMT via SMADs		2.196E-04	5.292E-03	2.196E-04	9.216E-03
Nociception_Nociceptin receptor signaling		2.227E-04	5.253E-01	4.347E-02	2.227E-04
Translation_Translation regulation by Alpha-1 adrenergic receptors		2.463E-04	5.795E-01	3.904E-01	2.463E-04
Putative pathways for stimulation of fat cell differentiation by Bisphenol A		2.596E-04	6.093E-01	4.656E-02	2.596E-04
Putative pathways for stimulation of fat cell differentiation by Bisphenol A		2.596E-04	6.093E-01	4.656E-02	2.596E-04
High shear stress-induced platelet activation		2.667E-04	6.150E-04	1.066E-01	2.667E-04
Chemotaxis_Lipoxin inhibitory action on Formyl-Met-Leu-Phe-induced neutrophil chemotaxis		2.667E-04	6.150E-04	5.920E-03	2.418E-02
Development_Angiotensin inhibitory action on Formyl-Met-Leu-Phe-induced neutrophil chemotaxis		2.667E-04	6.150E-04	4.442E-01	2.667E-04
Neurophysiological process_ACM regulation of nerve impulse		2.667E-04	6.150E-04	6.939E-01	2.667E-04
Regulation of GSK3 beta in bipolar disorder		2.667E-04	6.150E-04	3.260E-01	2.667E-04
Signal transduction_Calcium signaling		2.667E-04	6.150E-04	1.066E-01	2.667E-04
Cell adhesion_PLAU signaling		2.741E-04	6.290E-04	7.553E-02	2.741E-04
Immune response_Differentiation and clonal expansion of CD8+ T cells		2.741E-04	6.290E-04	4.056E-04	2.741E-04
Development_TGF-beta-induction of EMT via ROS		2.864E-04	6.556E-04	9.024E-02	2.864E-04
G-protein signaling_Ras family GTPases in kinase cascades (schema)		2.898E-04	6.601E-04	4.289E-04	6.601E-04
Development_Hedgehog signaling		3.264E-04	7.379E-04	1.606E-01	3.264E-04
Development_Leptin signaling via PI3K-dependent pathway		3.264E-04	7.379E-04	1.606E-01	3.264E-04
Development_Angiotensin activation of ERK		3.350E-04	7.537E-04	5.721E-01	3.350E-04
Cytoskeleton remodeling_Thyroliberin in cytoskeleton remodeling		3.350E-04	7.537E-04	5.721E-01	3.350E-04
Development_Role of Activin A in cell differentiation and proliferation		3.428E-04	7.675E-04	8.019E-02	3.428E-04
Apoptosis and survival_Ceramides signaling pathway		3.428E-04	7.675E-04	2.693E-01	3.428E-04
PGE2 pathways in cancer		3.557E-04	7.945E-04	1.269E-01	3.557E-04
Transport_Cathepsin-coated vesicle cycle		3.615E-04	8.055E-04	2.075E-03	3.615E-04
Neurophysiological process_Activity-dependent synaptic AMPA receptor removal		3.658E-04	8.133E-04	2.148E-02	3.658E-04
Apoptosis and survival_Anti-apoptotic TNF/s/NF-kB/IAP pathway		3.867E-04	8.555E-04	1.489E-01	3.867E-04
HCV-dependent regulation of membrane receptors signaling in HCC		3.867E-04	8.555E-04	3.016E-02	3.867E-04
Multiple sclerosis (general schema)		4.038E-04	8.911E-04	9.813E-02	4.038E-04
Airway smooth muscle contraction in asthma		4.242E-04	9.216E-04	7.635E-01	4.242E-04
Muscle contraction_ACM regulation of smooth muscle contraction		4.242E-04	9.216E-04	7.635E-01	4.242E-04
Development_Growth hormone-releasing hormone (GH-RH) signaling		4.252E-04	9.216E-04	2.790E-01	4.252E-04
TLR2-induced platelet activation		4.252E-04	9.216E-04	2.790E-01	4.252E-04
Pathway	Expression Values				
--	-------------------				
Immune response_PGE2 common pathways	1.338E-03				
Regulation of lipid metabolism_Insulin signaling; generic cascades	1.338E-03				
Development_Beta-adrenergic receptor-induced regulation of ERK	1.338E-03				
Signal transduction_INK pathway	1.338E-03				
Development_WNT5A signaling	1.338E-03				
Development_HGF signaling pathan	1.338E-03				
Apoptosis and survival_Endoplasmic reticulum stress response pathway	1.338E-03				
Tau pathology in Alzheimer disease	1.338E-03				
Signal transduction_mTORC2 upstream signaling	1.353E-03				
Blood coagulation_Platelet microparticle generation	1.379E-03				
miRNA and delta5SO-CFTR traffic / Claudin coated vesicles formation (normal and CF)	1.421E-03				
Development_WNT signaling pathway, Part 1. Degradation of beta-catenin in the absence WNT signaling	1.461E-03				
Translation_IL-2 regulation of translation	1.461E-03				
Development_YAP/TAZ-mediated co-regulation of transcription	1.563E-03				
Development_Activation of astroglial cells proliferation by ACM3	1.660E-03				
Cell adhesion_Cadherin-mediated cell adhesion	1.676E-03				
Cal(2+)-dependent NF-AT signaling in cardiac hypertrophy	1.816E-03				
Development_Regression of lung epithelial progenitor cell differentiation	1.832E-03				
Immune response_Oncostatin M signaling via JAK-Stat in mouse cells	1.964E-03				
Immune response_Sialic-acid receptors (Siglecs) signaling	1.997E-03				
G-protein signaling_Regulation of RAC1 activity	1.999E-03				
Immune response_inflammasome in inflammatory response	2.039E-03				
G-protein signaling_Rhoa regulation pathway	2.039E-03				
Development_S1P1 receptor signaling via beta-арестин	2.039E-03				
Immune response_TLR ligands	2.039E-03				
Development_Epigenetic and transcriptional regulation of oligodendrocyte precursor cell differentiation and myelination	2.039E-03				
G-protein signaling_Rhoa regulation pathway	2.039E-03				
Apoptosis and survival_Cytoplasmal/mitochondrial transport of proapoptotic proteins Bid, Bim and Bim	2.039E-03				
Development_Role of cell-cell and ECM-cell interactions in oligodendrocyte differentiation and myelination	2.039E-03				
G-protein signaling_G-Protein alpha-i signaling cascades	2.127E-03				
Immune response_inhibitory action of lipoxins on superoxide production induced by IL-8 and Leukotriene B4 in neutrophils	2.192E-03				
Transcription_Role of the non-genomic action of Retinoic acid and phosphorylation of Retinoic acid receptors in the initiation of transcription	2.483E-03				
Oxidative stress_NOX and DUOX families of NAPDH oxidases	2.483E-03				
Cell cycle_Regulation of G1/S transition (part 1)	2.555E-03				
Chemokinin_Inhibitory action of lipoxins on IL-8- and Leukotriene B4-induced neutrophil migration	2.558E-03				
Development_Role of HGF in hematopoietic stem cell mobilization	2.588E-03				
Transcription_Role of Akt in hypoxia induced HIF1 activation	2.588E-03				
Development_S1P3 receptor signaling pathway	2.599E-03				
Chemotaxis_C5a-induced chemotaxis	2.599E-03				
Development_Notch Signaling Pathway	2.599E-03				
Development_Mu-type opioid receptor regulation of proliferation	2.667E-03				
Development_Regulation of CDK5 in CNS	2.667E-03				
Transcription_PS3 signaling pathway	2.871E-03				

Note: The expression values (column 2) are not explicitly stated in the provided text and are assumed to be placeholders for actual values. The text contains some terms not fully defined in the context provided.
Page	Section	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6
557	Neurophysiological process: Synaptic vesicle fusion and recycling in nerve terminals	2.775E-02	4.183E-02	3.814E-01	4.954E-01	2.775E-02	4.183E-02
558	Immune response: T cell subsets: cell surface markers	2.775E-02	4.183E-02	7.378E-01	7.714E-01	2.775E-02	4.183E-02
559	Cytoskeleton remodeling: Neurofilaments	2.787E-02	4.193E-02	1.314E-01	2.304E-01	2.787E-02	4.193E-02
560	Transport: cAMP/ Ca(2+) dependent insulin secretion	2.910E-02	4.372E-02	6.939E-01	7.111E-01	2.910E-02	4.372E-02
561	Chemotaxis: CCR4-induced chemotaxis of immune cells	2.946E-02	4.05E-02	5.830E-01	6.494E-01	2.946E-02	4.05E-02
562	Mechanism of action of CCR4 antagonists in asthma and atopic dermatitis	2.946E-02	4.05E-02	5.830E-01	6.494E-01	2.946E-02	4.05E-02
563	CCR4-dependent immune cell chemotaxis in asthma and atopic dermatitis	2.946E-02	4.05E-02	5.830E-01	6.494E-01	2.946E-02	4.05E-02
564	ENaC regulation in normal and CF airways	3.075E-02	4.590E-02	1.507E-01	2.567E-01	3.075E-02	4.590E-02
565	Cell adhesion: Plasmin signaling	3.351E-02	4.963E-02	2.223E-01	3.382E-01	3.351E-02	4.963E-02
566	Development: Regulation of telomere length and cellular immortalization	3.351E-02	4.963E-02	5.817E-02	1.315E-01	3.351E-02	4.963E-02
567	Neurophysiological process: EphB receptors in dendritic spine morphogenesis and synaptogenesis	3.351E-02	4.963E-02	5.817E-02	1.315E-01	3.351E-02	4.963E-02
568	Beta-adrenergic-dependent CFTR expression	3.371E-02	4.984E-02	3.704E-01	4.835E-01	3.371E-02	4.984E-02
569	Development: Regulation of telomere length and cellular immortalization	3.371E-02	4.984E-02	3.704E-01	4.835E-01	3.371E-02	4.984E-02
570	Epigenetics: Default	3.662E-02	5.388E-02	2.962E-01	4.182E-01	3.662E-02	5.388E-02
571	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
572	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
573	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
574	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
575	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
576	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
577	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
578	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
579	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
580	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
581	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
582	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
583	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
584	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02
585	DeltaF508-CFTR traffic / Sorting endosome formation in CF	4.337E-02	6.272E-02	5.133E-01	6.081E-01	4.337E-02	6.272E-02