The circumstellar disc around the Herbig AeBe star HD169142

W. R. F. Dent1, J. M. Torrelles2,3, M. Osorio4, N. Calvet5, G. Anglada4

1 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
2 Instituto de Ciencias del Espacio (CSIC)-IEEC, C/ Gran Capità, 2-4, 08034 Barcelona, Spain
3 On sabbatical leave at the UK Astronomy Technology Centre, Royal Observatory Edinburgh, UK
4 Instituto de Astrofísica de Andalucía (CSIC), Apdo. Postal 3004, 18080 Granada, Spain
5 Dept. of Astronomy, University of Michigan, 825 Dennison Building, 500 Church St., Ann Arbor, MI 48109, USA

Received ..., Accepted ...

ABSTRACT

We present 7 mm and 3.5 cm wavelength continuum observations toward the Herbig AeBe star HD169142 performed with the Very Large Array (VLA) with an angular resolution of $\simeq 1''$. We find that this object exhibits strong ($\simeq 4.4$ mJy), unresolved ($\lesssim 1''$) 7 mm continuum emission, being one of the brightest isolated Herbig AeBe stars ever detected with the VLA at this wavelength. No emission is detected at 3.5 cm continuum, with a 3σ upper limit of $\simeq 0.08$ mJy. From these values, we obtain a spectral index $\alpha \gtrsim 2.5$ in the 3.5 cm to 7 mm wavelength range, indicating that the observed flux density at 7 mm is most likely dominated by thermal dust emission coming from a circumstellar disc. We use available photometric data from the literature to model the spectral energy distribution (SED) of this object from radio to near-ultraviolet frequencies. The observed SED can be understood in terms of an irradiated accretion disc with low mass accretion rate, $\dot{M}_{\text{acc}} \simeq 10^{-8} M_\odot \text{ yr}^{-1}$, surrounding a star with an age of $\simeq 10$ Myr. We infer that the mass of the disc is $\simeq 0.04 M_\odot$, and is populated by dust grains that have grown to a maximum size of 1 mm everywhere, consistent with the lack of silicate 10 μm emission. These features, as well as indications of settling in the wall at the dust destruction radius, led us to speculate the disc of HD169142 is in an advanced stage of dust evolution, particularly in its inner regions.
1 INTRODUCTION

Herbig Ae/Be (HAeBe) stars are young stellar objects (YSOs) of intermediate mass, characterized by large infrared excesses due to the presence of circumstellar discs, and are believed to be the more massive analogues of T Tauri stars (Herbig 1960, Strom et al. 1972). The presence of discs around isolated HAeBe stars has been mainly inferred by modeling their spectral energy distribution (SED) at millimetre, submillimetre, infrared, and optical wavelengths (e.g., Dullemond, Dominik & Natta 2001; Natta et al. 2001, 2004; Meeus et al. 2001; Dominik et al. 2003; Dullemond & Dominik 2004; Acke, van den Ancker & Dullemond 2005; Hernández et al. 2005). However only a few of these dust/gas structures have been (marginally) spatially resolved (sizes $\lesssim 2 \times$ beam; eg., Mannings & Sargent 1997).

As a continuation of a survey program to study the circumstellar dust/gas around isolated HAeBe stars (including submillimetre wavelength CO observations) performed by Dent, Greaves & Coulson (2005), we have searched at the VLA archive for centimetre/millimetre wavelength continuum observations toward those stars where submillimetre CO emission was detected. The main goal of that search was to identify dust disc candidates which may be resolvable through future high angular continuum observations. By reducing and analyzing the available VLA archive data on these sources, we have found in particular that the HAeBe star HD169142 is associated with strong 7 mm continuum emission (data presented in this paper).

The A5Ve star HD169142 is a relatively nearby ($d = 145$ pc) example of an isolated HAeBe star (Dunkin, Barlow & Ryan 1997, van den Ancker 1999, Meeus et al. 2001). It has significant far-infrared emission as well as a mid-infrared excess (Malfait, Bogaert & Waelkens 1998), and is one of the brightest such objects at submillimetre wavelengths (Sylvester et al. 1996). The absence of large-scale nebulosity or extended molecular gas in the region suggests no nearby on-going star formation and that HD169142 is a relatively evolved HAeBe star. HD169142 also shows a bright and narrow submillimetre emission CO line (Greaves, Mannings & Holland 2000; Dent, Greaves & Coulson 2005), as well as a narrow optical OI line profile (Acke, van den Ancker & Dullemond 2005). These results indicate that any circumstellar disc around the star must be close to face-on, with an inclination an-
gle of $\simeq 10^\circ$ (Dent, Greaves & Coulson 2005). Attempts to resolve the continuum emission have resulted in an upper limit to the mid-infrared disc radius of 150 Astronomical Units (AU) (Jayawardhana et al. 2001), although there is evidence of polarized near-infrared emission extending to $\simeq 200$ AU (Kuhn, Potter & Parise 2001). An unpublished Submillimetre Common-User Bolometer Array (SCUBA) map from the James Clerk Maxwell Telescope (JCMT) archive shows unresolved emission at 850 and 450 μm, with a deconvolved upper limit to the size of $\simeq 4''$ (FWHM) (or a radius of $\simeq 300$ AU) in the dust continuum at 450 μm. Finally, observations of the 3.3 μm feature of Polycyclic Aromatic Hydrocarbons (PAHs) show that this emission arises from an extended region, with a size of $\simeq 0''3$, or 43 AU (Habart, Natta & Krugel 2004).

In this paper we present 3.5 cm and 7 mm continuum observations carried out with the VLA toward the source HD169142. We discuss in § 2.1 the nature of its continuum emission at cm/mm wavelengths. In addition to the VLA data, in § 2.2 we compile data from the literature to construct the SED of HD169142 over a wide range of wavelengths, from radio to near-ultraviolet. In § 3 we compare the SED with a grid of self-consistent irradiated accretion disc models from D’Alessio et al. (2005). Our studies imply that a disc with mass $\simeq 0.04$ M_\odot and a population of grains grown to a maximum radius of $\simeq 1$ mm surrounding a star with an age of 10 Myr can reasonably explain the main characteristics of the observed SED.

2 OBSERVATIONS

2.1 VLA observations and results

The 3.5 cm and 7 mm wavelength continuum observations were carried out with the VLA of the National Radio Astronomy Observatory (NRAO)\(^6\) in the B (2005 May 15) and CnB (2002 September 22-23) configurations, respectively. For both wavelengths, a bandwidth of 100 MHz and two circular polarizations were used. All data were reduced with the Astronomical Image Processing System (AIPS) of NRAO using standard VLA procedures. The absolute amplitude calibrator was 3C286, with assumed flux densities of 5.2 Jy ($\lambda=3.5$ cm) and 1.5 Jy ($\lambda=7$ mm), while the phase calibrators were 1911$-$201 (for the $\lambda=3.5$ cm observations, with a bootstrapped flux density of 2.4 Jy) and 18210$-$25282 (for the $\lambda=7$ mm observations, with a bootstrapped flux density of 0.6 Jy). Cleaned maps were made by Fourier transforming the

\(^6\) The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
Table 1. Summary of the VLA observations of HD169142

λ (cm)	Date	Array Configuration	Phase Calibrator Name	Phase Calibrator Fν (Jy)	Beam Size (µJy beam−1)	Phase PA (°)	rms (µJy beam−1)	HD169142 Fν (mJy)
0.7	2002 Sep 22-23	CnB	18210–25282	0.6	0′9 × 0′4	−35°	300	4.4
3.5	2005 May 15	B	1911–201	2.4	1′7 × 0′7	+8°	≲ 0.08	

*a Bootstrapped flux density of the phase calibrator.
b For natural weight maps.
c Flux density of the source.
d 3σ upper limit.

(u,v) data with natural weighting using the IMAGR task of AIPS. The resulting synthesized beam sizes and rms sensitivities of the maps were ∼ 1″7 × 0″7 (PA = 8°) and ∼ 25 µJy beam−1 at 3.5 cm wavelength, and ∼ 0″9 × 0″4 (PA = −35°) and ∼ 300 µJy beam−1 at 7 mm wavelength, respectively (Table 1).

A bright (∼ 4.4 mJy beam−1), unresolved (∼ 1″) 7 mm continuum source is detected toward HD169142 (see Figure 1), with its peak position at α(J2000) = 18h 24m 29s.78, δ(J2000) = −29° 46′ 49″.4 (±0″1), coinciding with the optical position of the star (Hog et al. 1998). To our knowledge, this is one of the brightest 7 mm continuum sources ever detected with the VLA toward a HAeBe star (from the literature we see that only HD163296, with a flux density of 6 mJy at 7 mm, is brighter; Natta et al. 2004).

No 3.5 cm continuum emission is detected toward HD163296, with an upper limit of ∼ 0.08 mJy beam−1 (3σ level). From these values, we obtain a spectral index α ≳ 2.5 (Fν ∝ να) in the 3.5 cm to 7 mm wavelength range. This high value of the spectral index indicates that free-free emission cannot account for the observed flux density at 7 mm, and that thermal dust emission from a circumstellar disc is most likely the main contribution to the observed flux density at this wavelength (see also § 3).

2.2 Spectral Energy Distribution

In Table 2, we list the flux density values of HD169142 from near-ultraviolet to radio wavelengths used for modeling the SED (§ 3). The magnitudes UBV and JHK measured by Malfait, Bogaert & Waelkens (1998) and Sylvester et al. (1996) have been dereddened using a value of the extinction to the star of AV ≈ 0.5, which is obtained from the standard extinction law with RV ≈ 3.1 and a spectral type A5. Magnitudes have been converted into flux densities using zero points from Johnson (1966) and Bessell & Brett (1988). We also use Infrared Space Observatory (ISO) Short Wavelength Spectrometer (SWS) data obtained toward HD169142 (Meeus et al. 2001).
Figure 1. Contour map of the $\lambda=7$ mm continuum emission of HD169142 observed with the VLA. Contour levels are $-3, 3, 6, 9,$ and 12×0.3 mJy beam$^{-1}$, the rms of the map. The beam (size=0$''$.9 \times 0$''$.4, PA $=-35^\circ$) is shown in the lower left corner of the map. This bright (≈ 4.4 mJy beam$^{-1}$) unresolved ($\lesssim 1''$) 7 mm continuum source is most likely originated from dust emission in a circumstellar disc around HD169142 (see §3).

3 DISCUSSION AND CONCLUSIONS

HD169142 is considered a relatively evolved Herbig Ae/Be star with an A5Ve spectral type (Dunkin, Barlow & Ryan 1997). Therefore, its circumstellar envelope is likely gone and only the disc is responsible for the dust emission at all wavelengths. At present, HD169142 is one of the few intermediate-mass stars where emission at wavelengths as long as 7 mm has
Table 2. Flux density values of HD169142

λ (µm)	F_{ν} (Jy)	Reference
0.36(U)	2.0	1
0.45(B)	5.38	2
0.55(V)	4.56	2
0.90(I)	1.79	2
1.22(J)	2.0	2
1.65(H)	1.78	2
2.20(K)	1.58	2
3.45(L)	1.61	1
3.80(L')	1.29	1
4.8(M)	0.96	1
10.8(N)	2.37±0.2	3
12	2.95±0.3	4
18.2(IHW)	7.86±0.8	3
25	18.4±1.8	4
60	29.6±3.0	4
100	23.4±2.3	4
450	3.34±0.115	5
800	0.554±0.034	2
850	0.565±0.1	5
1100	0.287±0.013	2
1300	0.197±0.015	2
2000	0.070±0.019	2
7000	0.0044±0.0009	6
35000	\(<0.00008	6

References: (1) Malfait, Bogaert & Waelkens (1998); (2) Sylvester et al. (1996); (3) Jayawardhana et al. (2001); (4) IRAS PSC; (5) Sandell & Weintraub (2005); (6) This work.

a In addition to the values listed in this table we also use ISO short-wavelength spectrometer data obtained toward HD169142 by Meeus et al. (2001).

b Uncertainties in the near-ultraviolet through near-infrared flux densities are less than 10%.

been detected. Consequently, the good wavelength coverage of the SED of HD169142, with observational data ranging from near-ultraviolet to radio frequencies (Table 2 and Figure 2), makes this object a good candidate to find a self-consistent irradiated accretion disc model, with parameters reasonably well constrained.

The observed SED (Figure 2) exhibits three remarkable characteristics: strong millimetre emission, a shallow dependence of the long wavelength dust opacity on wavelength ($\kappa \propto \lambda^{-0.5}$, as indicated by the spectral index in the submillimetre and millimetre ranges, assuming the total flux density is dominated by optically thin emission), and absence of a detectable silicate feature at 10 µm (Meeus et al. 2001). To account for the observed strong millimetre emission, either a massive disc or a dust mixture with large grains is required. If the disc is assumed to have interstellar-like grains, characterized by a small emissivity at millimetre wavelengths, then it is required a disc more massive than if the grains have a maximum size around 1 mm (D’Alessio, Calvet & Hartmann 2001); in this last case, the grains have the largest possible emissivity at millimetre wavelengths and then the required mass of the
Figure 2. Observed and model SEDs for the source HD169142. The dotted line corresponds to the emission from the stellar photosphere of an A2 star with an age of 10 Myr. The dotted-dashed line is the emission arising from the inner cylindrical surface where the disc is truncated by dust sublimation (the “wall” with a height of 0.018 AU). The solid-line represents the total emission that includes the disc (whose physical parameters are $i = 30^\circ$, $\dot{M}_{\text{acc}} = 10^{-8} M_\odot$ yr$^{-1}$, $R_{\text{disc}} \simeq 300$ AU and $a_{\text{max}} = 1$ mm), the stellar photosphere and the “wall” contributions (see § 3 and Table 3). Thin gray lines indicate ISO short-wavelength spectrometer values obtained by Meeus et al. (2001).
disc is the minimum possible. In an accretion α-disc irradiated by the central star, the surface density Σ scales as $\dot{M}_{\text{acc}}/\alpha$ (D'Alessio et al. 1999), where \dot{M}_{acc} is the disc mass accretion rate and α is the viscosity parameter (Shakura & Sunyaev 1973). Therefore, for a given disc radius, the increase in the disc mass resulting from increasing \dot{M}_{acc} is equivalent to that produced by decreasing α by the same amount. If the value of the disc radius is constrained from observations, a massive disc can be obtained either with high values of $\dot{M}_{\text{acc}} (> 10^{-6} M_\odot \text{ yr}^{-1})$, or by assuming small values of α. However a massive disc would probably imply a mid-infrared emission higher than observed. A mixture including large grains is also favoured instead of a massive disc, because of the shallow dependence of the dust opacity with wavelength in the submillimetre and millimetre ranges (implying $\beta = 0.5$, where $\kappa \propto \lambda^{-\beta}$, while smaller grains have typically $\beta = 1.5$-2; see for example the dependence of the millimetre flux densities and slope on the grain size in Figure 8 of Osorio et al. 2003), the lack of silicate emission (see Fig. 1 in D'Alessio, Calvet & Hartmann 2001), and the fact that massive discs may become gravitationally unstable (see below).

In order to derive the physical parameters of HD169142, we compare the observed SED with the database of structural parameters and synthetic SEDs of irradiated disc models published by D'Alessio et al. (2005)7. The SEDs in this catalog include the contribution of an irradiated accretion disc, the contribution of the stellar photosphere (relevant in the optical regime) calculated using Kurucz (1993) models, and the contribution of the inner cylindrical surface that faces the star, where the dust disc is truncated by dust sublimation at $T \simeq 1400$ K (i.e., the “wall” at the dust destruction radius, R_{wall}, whose emission is important in the near-IR range; Natta et al. 2001).

The main characteristics of these disc models are described in D'Alessio et al. (1998, 1999, and 2001). In summary, these discs are assumed to be in steady state (with a constant \dot{M}_{acc}) and geometrically thin (i.e., the gas scale height along the disc is smaller than the radial distance). They are heated by stellar radiation, viscous dissipation, and ionization by energetic particles. The viscosity parameter α is calculated following the prescription from Shakura & Sunyaev (1973), where the usual value $\alpha = 0.01$ is adopted for all the models in the database, except for the models with 4000 K and 1 Myr where values $\alpha = 0.1$, 0.01, and 0.001 were used. The opacity is mainly due to dust, whose grains are assumed to have a size distribution $n(a) \propto a^{-3.5}$ between a minimum size a_{min} (fixed at 0.005 μm) and a maximum

7 http://www.astrosmo.unam.mx/~dalessio/
size a_{max} (taken as a free parameter). In the models of D’Alessio and collaborators the vertical structure and emission properties of the disc are calculated self-consistently with the stellar parameters, instead of using simple power-law descriptions for the dust temperature and the surface density.

In the case of HD169142, we have a priori constraints for some of the parameters. For instance, the spectral type of the star is A5Ve (Dunkin, Barlow & Ryan 1997), the disc radius should be of the order of 100 AU (a value suggested by the mid and near-infrared wavelength observations, see §1, as well as the 7 mm continuum observations presented in this paper), and the inclination angle of the disc with respect to the line-of-sight is $\simeq 10^\circ$ (constrained by CO observations carried out by Dent, Greaves & Coulson 2005). Thus, we have searched among the models of the D’Alessio et al. (2005) database those having this set of parameters closer to the actual values of HD169142. In this way, we have selected an A2 star (whose mass $M_*=2 \, M_\odot$ corresponds to a stellar luminosity $L_* = 17 \, L_\odot$ and radius $R_* = 1.7 \, R_\odot$, according to pre-main sequence tracks from Siess, Dufour & Forestini 2000), a disc radius $R_{\text{disc}} \simeq 300$ AU, and an inclination angle $i \simeq 30^\circ$. We have estimated the values of the remaining parameters by fitting the observed SED. We obtain a reasonable fit by assuming a central star with an age of 10 Myr, surrounded by a disc with a mass accretion rate $\dot{M}_{\text{acc}} \simeq 10^{-8} \, M_\odot \, \text{yr}^{-1}$, a mass $M_{\text{disc}} \simeq 0.04 \, M_\odot$ (calculated by integrating the surface density in the disc, Σ, from the dust destruction radius, $R_{\text{wall}} = 0.35$ AU, to the outer radius, $R_{\text{disc}} = 300$ AU), and where dust grains have grown up to millimetre sizes ($a_{\text{max}} = 1$ mm). We have modified the nominal value of the height of the “wall” at the dust destruction radius used in the database, in order to obtain a better fit to the observed near-infrared emission. We obtained the best fit for a height of the dust wall $z_{\text{wall}} = 0.018$ AU. The gas scale height at R_{wall} can be calculated assuming that there the disc is vertically isothermal with a temperature of 1400 K. Using equation (13) of Dullemond et al. (2001) we obtain a value of ~ 0.01 AU for the gas scale height, implying a ratio of ~ 2 between the height of the dust wall and the gas scale height. This low value of the ratio between the height of the dust wall and the gas scale height (as compared with the value of ~ 4 usually found in HAeBe stars; Dullemond et al. 2001) may imply that the dust in the inner disc has grown and is settling towards the equatorial disc plane, consistent with the large grains required to explain the 7 mm continuum emission. Figure 2 shows the total emission of this model (solid-line) that includes the disc contribution, the stellar photospheric contribution (dotted-line) and the “wall” emission (dotted-dashed line).
Table 3. Adopted parameters of the circumstellar disc around HD169142

Age (Myr)	M_{acc} (M_\odot yr$^{-1}$)	L_{acc} (L_\odot)	R_{wall} (AU)	R_{disc} (AU)	M_{disc} (M_\odot)	i (deg)	a_{max} (mm)	z_{wall} (AU)
10	10$^{-8}$	0.37	0.35	300	0.04	30	1	0.018

aObtained by modeling the observed SED (see § 3).

We estimate the accretion luminosity as $L_{\text{acc}} \simeq GM_\ast \dot{M}/R_\ast = 0.37\, L_\odot$, which is considerably lower than the derived stellar luminosity ($L_\ast = 17\, L_\odot$); irradiation is therefore the main heating agent of the disc upper layers. We note that some regions of the disc could be unstable to axisymmetric gravitational perturbations if the Toomre Q-parameter ($Q = (c_s/\pi \Sigma)(M_\ast/GR^3)^{0.5}$, where c_s is the sound speed) is less than unity (Toomre 1964). Since the most unstable regions are expected to occur at large radii, we evaluated the Toomre Q-parameter at the disc radius ($R_{\text{disc}} = 300$ AU, where the surface density is 0.6 g cm$^{-2}$ and the mid-plane temperature is 20 K, implying $c_s = 0.3$ km s$^{-1}$) and we obtained a value of $Q \simeq 13$, implying that the disc is gravitationally stable. A disc \sim10 times more massive will be \sim10 times denser, and would start to become gravitationally unstable. A summary of the main parameters of the circumstellar disc around HD169142 is given in Table 3.

The SED of HD169142 has been modeled by Dominik et al. (2003) using a passive disc and dust grains with size $\simeq 0.1\, \mu$m. To fit the SED, Dominik et al. used a power-law radial distribution of surface density, with a very steep dependence, R^{-2}; in contrast, in the model outlined above the surface density is calculated self-consistently assuming an α-disc model and goes to a R^{-1} dependence at large radii (D’Alessio et al. 1999). In addition, Dominik et al. had to adopt a λ^{-1} dependence for the opacity in the millimetre range, which in our case arises naturally from the grain size distribution. Moreover, their predicted SED had significant silicate emission, while the large value of the grain maximum size of our adopted dust mixture consistently predict no emission in this feature. In fact, the large grain sizes, lack of silicate emission, and the low height of the wall at the dust destruction radius, all seem to suggest a large degree of grain coagulation and settling has occurred in the inner disc of HD169142. This is generally consistent with the predictions from models of the distribution of solids in proto-planetary discs (Weidenschilling 1997; Dullemond & Dominik 2004, 2005). Grains are shown to grow and settle very rapidly, possibly leaving a disc atmosphere dominated by smaller dust. The small grains can be replenished through mutual collisions. However, in the case of HD169142, the absence of silicate feature suggests that few grains smaller than $\sim 3\, \mu$m exist in the disc atmosphere. The maintenance of relatively...
large grains in the atmosphere would require an efficient stirring mechanism; alternatively the dust could be depleted in silicate for some reason. Why the mm-sized grains have not settled further in such an old disc is unclear. However, the results of Dullemond & Dominik (2004) suggest that it is possible for a thin disc of relatively large grains to reach a semi-equilibrium state, given a suitably efficient stirring mechanism.

Finally, it is important to mention that the current model for HD169142 may not be unique, and that a model with a lower accretion rate ($\dot{M}_{\text{acc}} \approx 10^{-9} M_\odot \text{yr}^{-1}$) and a smaller value of the viscosity parameter ($\alpha \approx 0.001$) might be also feasible. In this sense, we also note that the slope of the model SED in the far-IR to submm range is somewhat steeper than observed, suggesting that the power-law index of the dust grain size distribution is shallower than the value of -3.5 adopted here. Nevertheless, as pointed out by D’Alessio et al. (2005), to find an unique model, additional observational constraints such as spatial distribution profiles at various wavelengths are needed. In fact, the strong 7 mm dust continuum emission reported in this paper makes this source an excellent candidate to resolve its dust disc contents both at that particular wavelength with the VLA in its A configuration (angular resolution $\approx 0\farcs1$), as well as with the Expanded Submillimeter Array (eSMA = JCMT+SMA) at submillimetre wavelengths.

ACKNOWLEDGMENTS

We deeply thank the referee for her/his very stimulating comments and suggestions, that have been most useful to improve the scientific content of this paper. G.A., M.O., and J.M.T. are supported in part by Spanish AYA2005-08523 grant. G.A. and M.O. acknowledge partial support from Junta de Andalucía, Spain. M.O. acknowledges support from IAU Peter Gruber Foundation and MAE-AECI. We thank Gwendolyn Meeus for providing us the original ISO data.

REFERENCES

Acke B., van den Ancker M. E., Dullemond C. P., 2005, A&A, 436, 209
Acke B., van den Ancker M. E., Dullemond, C. P., van Boekel R., Waters, L. B. F. M., 2004, A&A, 422, 621
Bessell M. S., Brett J. M. 1988, PASP, 100, 1134
D’Alessio P., Cantó J., Calvet N., Lizano, S., 1998, ApJ, 500, 411
D’Alessio P., Calvet N., Hartmann L., Lizano S., Cantó J., 1999, ApJ, 527, 893
D’Alessio P., Calvet N., Hartmann, L., 2001, ApJ, 553, 321
D’Alessio P., Merín B., Calvet N., Hartmann L., Montesinos B., 2005, Revista Mexicana de Astronomía y Astrofísica, 41, 61
Dent W. R. F., Greaves J. S., Coulson I. M., 2005, MNRAS, 359, 663
Dominik C., Dullemond C. P., Waters L. B. F. M., Walch S., 2003, A&A, 398, 607
Dullemond C. P., Dominik C., 2004, A&A, 421, 1075
Dullemond C. P., Dominik C., 2005, A&A, 434, 971
Dullemond C. P., Dominik C., Natta A., 2001, ApJ, 560, 957
Dunkin S. K., Barlow M. J., Ryan S. G., 1997, MNRAS, 286, 604
Greaves J. S., Mannings V., Holland W. S., 2000, Icarus, 143, 155
Habart E., Natta, A., Krugel E., 2004, A&A, 427, 179
Herbig, G., 1960, ApJS, 4, 337
Hernández J., Calvet N., Hartmann L., Briceño C., Sicilia-Aguilar A., Berlind P., 2005, AJ, 129, 856
Hog E., Kuzmin A., Bastian, U., Fabricius C., Kuimov K., Lindegren L., Makarov V. V., Roeser S., 1998, A&A, 335, L65
Jayawardhana R., Fisher R. S., Telesco C. M., Piña, R. K., Barrado y Navascués D., Hartmann L. W., Fazio G. G., 2001, AJ, 122, 2047
Johnson H. L., 1966, ARA&A, 4, 193
Kuhn J. R., Potter D., Parise B., 2001, ApJ, 553, L189
Kurucz R. L., 1993, ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. CD-ROM No. 13. Cambridge, Massachusetts, Smithsonian Astrophysical Observatory.
Malfait K., Bogaert E., Waelkens C., 1998, A&A, 331, 211
Mannings V., Sargent A. 1997, ApJ, 490, 792
Meeus G., Waters, L. B. F. M., Bouwman J., van den Ancker M. E., Waelkens C., Malfait K., 2001, A&A, 365, 476
Natta A., Prusti T., Neri R., Wooden D., Grinin V. P., Mannings V., 2001, A&A, 371, 186
Natta A., Testi L., Neri R., Shepherd D. S., Wilner, D. J., 2004, A&A, 416, 179
Osorio M., D’Alessio P., Muzerolle J., Calvet N., & Hartmann, L., 2003, ApJ, 586, 1148
Sandell G., Weintraub D. A., 2005, in preparation
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Siess L., Dufour E., Forestini M., 2000, A&A, 358, 593
Sylvester R. J., Skinner C. J., Barlow M. J., Mannings V., 1996, MNRAS, 279, 915

Strom K. M., Strom S. E., Breger M., Brooke A. L., Yost J., Grasdalen, G., Carrasco, L., 1972, ApJ, 173, L65

van den Ancker M. E., 1999, Ph. D. Thesis, University of Amsterdam

Weidenschilling S. J. 1997, Icarus, 127, 290