Debatendo a noção de metacontingência a partir da revisão e produção de dados experimentais
Debatendo a noção de metacontingência a partir da revisão e produção de dados experimentais

Tese apresentada ao Instituto de Psicologia da Universidade de São Paulo, como parte dos requisitos para obtenção do grau de Doutor em Psicologia.

Área de concentração: Psicologia Experimental.

Orientador: Professor Dr. Marcelo Frota Lobato Benvenuti.

São Paulo
2015
Debatendo a noção de metacontingência a partir da revisão e produção de dados experimentais / Thaís Ferro Nogara de Toledo; orientador Marcelo Frota Lobato Benvenuti. -- São Paulo, 2015. 120 f.

Tese (Doutorado – Programa de Pós-Graduação em Psicologia. Área de Concentração: Psicologia Experimental) – Instituto de Psicologia da Universidade de São Paulo.

1. Condicionamento operante 2. Comportamento de grupo 3. Esquemas de reforço 4. Transmissão cultural 5. Metacontingência I. Título.
Nome: Toledo, Thaís Ferro Nogara de
Título: Debatendo a noção de metacontingência a partir da revisão e produção de dados experimentais.

Tese apresentada ao Instituto de Psicologia da Universidade de São Paulo para obtenção do título de Doutor em Psicologia.

Aprovado em:

Banca Examinadora

Prof. Dr. ___

Instituição: _________________________________ Assinatura: ______________________

Prof. Dr. ___

Instituição: _________________________________ Assinatura: ______________________
AGRADECIMENTOS

Agradeço ao Professor Marcelo, que aceitou orientar este trabalho desde o primeiro contato, por toda a dedicação, confiança e compreensão durante esta jornada.

À Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT), pela concessão da bolsa de doutorado.

Angelo e Natália, obrigada por me levarem para participar das nossas reuniões, pelas leituras atentas aos textos, pelo apoio e carinho de sempre. Carla, obrigada por estar sempre pronta a ajudar. Foi muito bom ter vocês por perto!

Agradeço à Dona Vera por me acolher em sua casa.

À Professora Maria Amália por ter aceito participar da minha qualificação e defesa. Sempre foi uma inspiração para mim, desde os tempos da graduação.

Aos Professores Carlos Eduardo, Saulo e Deisy, por gentilmente aceitarem participar da banca de defesa.

Ao professor Gerson, pelas importantes contribuições durante a qualificação.

Agradeço aos programadores, Leandro Machado e Leandro Rodrigues por terem aceito o desafio de elaborar o software.

Aos professores, dirigentes e técnicos administrativos da UFMT, campus de Rondonópolis, que, de alguma maneira, contribuíram com a realização da pesquisa.

Aos estudantes de Graduação que aceitaram participar da pesquisa, comparecendo por várias sessões, sem se queixarem.

Por fim, agradeço à minha família pelo amor incondicional. Pai, mãe, Mô e Neto, obrigada por estarem sempre por perto, mesmo estando tão longe... amo vocês!

Ao Bruno e ao Breno eu dedico este trabalho. Não há palavras para agradecer a paciência, a compreensão e o amor de vocês, nestes quase quatro anos. Vocês são a razão da minha vida!
Comportamento é um objeto de estudo difícil, não porque é inacessível, mas porque é extremamente complexo. Uma vez que é um processo, e não uma coisa, não pode facilmente ser imobilizado para observação. É mutável, fluido e evanescente e por esta razão coloca enormes exigências sobre a engenhosidade e energia do cientista.

Burrus Frederic Skinner (1953)
RESUMO

Toledo, T. F N. de (2015). Debatendo a noção de metacontingência a partir da revisão e produção de dados experimentais. Tese de Doutorado, Instituto de Psicologia, Universidade de São Paulo, São Paulo.

O presente trabalho é composto por dois estudos. O primeiro estudo revisa a literatura da área de metacontingências com o objetivo de analisar seus elementos constitutivos, à luz de dados experimentais. O outro estudo, empírico, empregou um procedimento análogo ao de operante livre para investigar os efeitos da manipulação de uma relação condicional entre contingências comportamentais entrelaçadas (CCEs) e alterações ambientais sobre a seleção e transmissão de CCEs e sobre os desempenhos operantes em dois esquemas de reforço (VI e VR). Os resultados da revisão conceitual evidenciaram elementos comuns aos processos de seleção operante e cultural: o comportamento, como o conjunto de ações de uma ou várias pessoas, seus produtos e variáveis selecionadoras. Os resultados do experimento mostraram que os processos de aquisição, extinção e reaquisição de uma unidade que engloba os comportamentos de três participantes, os culturantes, se assemelham aos processos de aquisição, extinção e reaquisição de operantes. A interação entre seleção operante e cultural dependeu dos desempenhos dos participantes durante a linha de base. Operantes e culturantes foram socialmente transmitidos. A revisão conceitual e os resultados do experimento fortalecem a noção de metacontingência, tanto como uma ferramenta teórica quanto como um procedimento para lidar com fenômenos no terceiro nível de seleção por consequências. Os dados de pesquisas dão consistência ao conceito e este organiza e sistematiza as manipulações experimentais.

Palavras-chave: Seleção operante. Seleção cultural. Metacontingência. Esquemas de reforço. Transmissão cultural.
ABSTRACT

Toledo, T. F N. de (2015). *Debating the metacontingency notion from the review and production of experimental data*. Tese de Doutorado, Instituto de Psicologia, Universidade de São Paulo, São Paulo.

This work consists of two studies. The first study review the metacontingencies literature in order to analyze the constituent elements in the light of experimental data. The other study, empirical, employed a free-operant-analogous procedure to investigate the effects of manipulating conditional relationship between interlocking behavioral contingencies (IBCs) and environmental changes over the selection and transmission of CCEs and on operant performance in two reinforcement schedules (VI and VR). The results of the conceptual review showed common elements to operant and cultural selection processes: the behavior, as the set of actions of one or several individuals, its products and variables of selection. The results of the experiment showed that the processes of acquisition, extinction and reacquisition of a unit that includes the behavior of three participants, the culturants, are similar to the processes of acquisition, extinction and reacquisition of operants. The interaction between operant and cultural selection depended on the participants’ performances at baseline. Operants and culturants were socially transmitted. The conceptual review and experimental results support the metacontingency notion, both as a theoretical tool and as a procedure for dealing with phenomena on the third level of selection by consequences. Research data give consistency to the concept and it organizes and systematizes the experimental manipulations.

Keywords: Operant selection. Cultural selection. Metacontingency. Reinforcement schedules. Cultural transmission.
A publicação de “Selection by Consequences” (Skinner, 1981) parece ter sido um marco na investigação de fenômenos culturais pela Análise do Comportamento. Embora desde cedo em sua obra, Skinner já tivesse uma preocupação especial com questões sociais (e.g., 1948, 1953, 1971), em “Selection by Consequences” houve uma extensão do princípio de seleção por consequências para o nível cultural. Essa proposta abriu espaço para a compreensão de fenômenos sociais em um nível de análise diferente do ontogenético, que havia sido priorizado até então (Andery, Micheletto, & Sério, 2005). De maneira análoga ao que ocorre com o comportamento no nível operante, a cultura evolui na medida em que as consequências de suas práticas aumentam a probabilidade de sucesso do grupo.

Um dos conceitos que tem sido propostos para lidar com processos de seleção por consequências no nível cultural é o conceito de metacontingência (Glenn, 1986, 2004). O conceito aborda evolução por seleção quando o que é selecionado não são respostas de indivíduos, mas sim contingências comportamentais entrelaçadas (CCEs) que funcionam como uma unidade integrada e geram alterações no ambiente, que afetam a probabilidade de recorrências futuras dessas CCEs (Glenn, 2004).

A demonstração de seleção de uma unidade que engloba os comportamentos de dois ou mais organismos e funciona como uma unidade, pode ser observada em experimentos sobre comportamento social (e.g., Azrin & Lindsley, 1956; Schmit & Marwell, 1968) e práticas de grupo (e.g., Wiggins, 1969). No entanto, a proposição do conceito de metacontingência têm favorecido o avanço das discussões sobre o terceiro nível de seleção, principalmente porque contribuiu para o debate integrado sobre fenômenos culturais e porque levou ao desenvolvimento de práticas de pesquisa mais sistematizadas, que têm fornecido subsídios para a elaboração conceitual (Andery, 2011).
Tendo em vista as diversas pesquisas que se propuseram a investigar relações de metacontingência, o presente trabalho representa uma tentativa de contribuir para o avanço na compreensão de processos que ocorrem no terceiro nível de seleção por consequências, o cultural. O primeiro produto desta tentativa foi o desenvolvimento de um programa computadorizado que possibilita o estudo dos comportamentos inter-relacionados de dois ou mais participantes (CCEs), sem restringi-los a períodos isolados de observação. Por tratar da seleção de uma unidade que engloba os comportamentos de mais de um indivíduo, o software foi chamado de Culturante Livre e encontra-se em processo de registro pela Agência de Inovação da Universidade de São Paulo. A descrição completa do software e de um estudo piloto estão publicados no último volume da Psychology & Neurosciences (Toledo et al., 2015, ANEXO A).

O software de pesquisa foi pensado a partir de questões suscitadas pela revisão de trabalhos experimentais que buscavam investigar a noção de metacontingência. Parte das reflexões que surgiram a partir dessa revisão foram sistematizadas no primeiro capítulo desta tese, redigido em forma de manuscrito para ser submetido a um periódico especializado. O segundo capítulo, também redigido em forma de manuscrito, compreende o relato de um experimento, cujo objetivo foi investigar os efeitos da manipulação de uma metacontingência sobre a seleção e transmissão de uma unidade que envolve a coordenação dos desempenhos de diferentes participantes. Ao final, discutiu-se as contribuições desses dois trabalhos, em conjunto, para o estudo de fenômenos culturais.
Contingências e Metacontingências na Análise do Comportamento: Revisão de Conceitos à Luz de Estudos Experimentais

Contingencies and Metacontingencies in Behavior Analysis: Review of Concepts in Light of Experimental Studies
Resumo

A noção de contingência é central para um debate sobre o modelo explicativo de seleção pelas consequências. Contingências envolvem relações condicionais entre eventos do ambiente (S-S) ou entre comportamento e eventos do ambiente (R-S). Metacontingências descrevem relações condicionais que envolvem os comportamentos inter-relacionados de dois ou mais organismos e eventos do ambiente. Diferentes protocolos de pesquisa foram empregados no estudo experimental de metacontingências. Os dados acumulados tem contribuído para o debate de questões conceituais e empíricas. O objetivo do presente trabalho foi analisar os elementos constitutivos de uma metacontingência à luz dos estudos experimentais realizados na última década. Tal análise levou à revisão de algumas noções comportamentais básicas, presentes nos diferentes níveis de seleção. O resultado dessa revisão aproxima a noção de seleção operante e seleção cultural com base nos elementos comuns: o comportamento, como o conjunto de ações de uma ou várias pessoas, seus produtos e variáveis selecionadoras.

Palavras-chave: contingências; metacontingências; dados experimentais.
Abstract

The notion of contingency is central to the debate on the explanatory model of selection by consequences. Contingencies involve conditional relations between environmental events (S-S) or between behavior and environmental events (R-S). Metacontingencies describe conditional relations involving interlocking behaviors of two or more organisms and environmental events. Different research protocols were employed in experimental study of metacontingencies. The accumulated data has contributed to the discussion of conceptual and empirical issues. The aim of this study was to analyze the constituent elements of a metacontingency in light of experimental studies conducted over the past decade. This analysis led to the revision of some basic behavioral notions, present in different levels of selection. The result of this review approximates the notion of operant selection and cultural selection based on common elements: the behavior, as the set of actions of one or more individuals, its products and selection variables.

Keywords: contingencies; metacontingencies; experimental data.
O conceito de contingência é central na análise do comportamento (e.g., De Souza, 2000; Donahoe, 2006; Skinner, 1969). Além de uma importante ferramenta conceitual, constitui a principal variável independente na análise experimental do comportamento (Todorov, 1991). Em um sentido mais amplo, contingências descrevem relações entre eventos (estímulos e/ou respostas). Em um sentido mais específico, “as contingências são as propriedades condicionais que relacionam alguns eventos (e.g., as respostas) a outros (e.g., os estímulos).” (Catania, 1999, p. 394). Nesse sentido, uma relação de contingência é definida por duas probabilidades condicionais: a probabilidade de um evento X dado outro e a probabilidade do evento X na ausência do outro.

O exame experimental do efeito de diferentes contingências sobre o comportamento tem sido importante para o desenvolvimento, avaliação crítica e contraposição de diferentes perspectivas sobre comportamento e aprendizagem. A noção de condicionamento pavloviano (Pavlov, 1927/1960), por exemplo, foi bastante enriquecida com base em uma especificação rigorosa da noção de probabilidades condicionais entre estímulos. Rescorla (1967) destacou que a aprendizagem observada nas demonstrações iniciais de Pavlov depende da contingência entre estímulos condicionais e incondicionais (uma contingência S-S): a “força associativa” de um estímulo de início neutro (e.g., tom) aumenta a cada vez que precede confiavelmente a apresentação de outro estímulo (e.g., alimento). Ao longo de tentativas, o aumento da força de um CS pode ser descrito por uma função com aceleração negativa.

Contingências diferentes são manipuladas para o estudo da aprendizagem instrumental ou operante. Nos experimentos de Skinner (1938), animais eram colocados em uma caixa contendo barra de metal em uma das paredes. Ao ser deslocada para baixo, acionava um mecanismo que liberava alimento (evento ambiental) em uma abertura que dava acesso a um comedouro. A ausência de restrições sobre a emissão do comportamento dos organismos, nessas condições, possibilitou o uso da frequência de respostas como medida da mudança.
comportamental. O registro cumulativo permitiu avaliar os efeitos de contingências R-S sobre mudanças no comportamento. Essa estratégia de investigação tornou possível, por exemplo, o desenvolvimento de uma importante área de pesquisas na análise experimental do comportamento: a área de pesquisas em esquemas de reforço (Ferster & Skinner, 1957). Uma das principais contribuições dessa área foi mostrar que as curvas de aprendizagem obtidas em um dado experimento dependem das relações condicionais entre respostas e reforço planejadas (da exigência de um número de respostas ou de um intervalo entre respostas, da distribuição temporal do reforço, etc.). As curvas resultantes poderiam ser negativamente aceleradas, positivamente aceleradas ou mesmo mostrarem alterações desses padrões a depender da contingência planejada ou do que estava sendo analisado (se a mudança na frequência ao longo da sessão, se a mudança na frequência no intervalo entre reforços, etc.).

O estudo do efeito de contingências R-S contribuiu para afirmar e debater a extensão da noção de comportamento operante e o papel da consequência para a determinação do comportamento (e.g., Skinner, 1935, 1938, 1953, 1969). A noção de operante e o trabalho experimental que embasa essa noção é central para um debate sobre o modelo explicativo de seleção pelas consequências (Skinner, 1981), que tem sido discutido, questionado e ampliado em publicações dos últimos 20 anos em análise do comportamento e na psicologia de modo geral (ver, e.g., Baum, 2012; Burgos, & Donahoe, 2000; Donahoe, Burgos, & Palmer, 1993; Donahoe & Palmer, 1994; Tounneau & Sokolowski, 2000).

Outro tipo de relação que tem sido alvo de debates na análise do comportamento envolve o entrelaçamento das contingências comportamentais de dois ou mais organismos e eventos ambientais (Andery, Micheletto, & Sério, 2005; Todorov, 2012). Contingências comportamentais entrelaçadas (CCEs) descrevem a unidade para análise do comportamento social (Skinner, 1953), quando comportamento de um indivíduo é afetado por mudanças no comportamento de outro. Essas mudanças no comportamento do outro podem funcionar como
estímulo discriminativo ou reforço social. A análise do comportamento social a partir da noção de contingências de reforço permitiu que analistas do comportamento pudessem analisar fenômenos comportamentais como cooperação (Hake, Donaldson, & Hyten, 1983; Hake, Olvera, & Bell, 1975; Hake & Schmid, 1981; Hake & Vukelick, 1972, 1973; Hake, Vukelich, & Kaplan, 1973; Hake, Vukelich, & Olvera, 1975; Marwell & Schmitt, 1975; Schmid & Hake, 1983; Schmitt, 1976, 1984, 1987), competição (Buskist, Barry, Morgan, & Rossi 1984; Buskist & Morgan, 1987; Dougherty & Cherek, 1994; Hake et al., 1975; Lindsley, 1966) e empatia (Watanabe & Ono, 1986).

O estudo da cooperação, por exemplo, abriu espaço para novas perguntas na análise do comportamento. Azrin e Lindsley (1956) conduziram um experimento no qual manipularam a apresentação de um único reforçador contingente ao entrelaçamento dos comportamentos de duas crianças, o que os autores chamaram de “reposta cooperativa”. As duas crianças sentavam-se frente a frente em uma mesa. Cada uma tinha três orifícios e um bastão a sua frente. Cada vez que os bastões eram colocados em orifícios opostos, dentro de um intervalo de 0.04 s (resposta cooperativa), uma bala (estímulo reforçador) era depositada em um recipiente no centro da mesa. O delineamento envolveu uma condição inicial de reforçamento contínuo, seguida de extinção e nova condição de reforçamento. Os resultados mostraram que a taxa de respostas cooperativas variou em função da apresentação do reforçador de forma muito semelhante ao que ocorre com uma resposta individual. Neste estudo, pode-se dizer que as respostas das duas crianças, sob o controle discriminativo umas das outras, funcionaram como uma unidade e esta unidade foi selecionada, i.e., teve sua probabilidade de ocorrência alterada em função de uma consequência que só era possível de ser produzida diante do entrelaçamento das contingências comportamentais dos dois participantes.
Quando contingências comportamentais entrelaçadas produzem alterações no ambiente e, em função de tais alterações, têm sua frequência modificada, novas questões e novas possibilidades de investigação se apresentam. Para lidar com os efeitos dessa relação condicional entre CCEs e mudanças no ambiente, uma das noções que tem sido propostas é a de metacontingência (Glenn, 1986, 1991, 2004). Metacontingência é definida como uma relação contingente entre contingências comportamentais entrelaçadas recorrentes, tendo um produto agregado, e um ambiente selecionador (Todorov et al., 2015). Por ser contingente a CCEs (e seus produtos), a ação do ambiente pode ser chamada de consequência cultural (Vichi, Andery & Glenn, 2009). A consequência cultural seria o evento ambiental responsável pela seleção e manutenção de uma classe CCEs. Enquanto contingências do tipo R-S são as contingências do segundo nível de seleção por consequências, i.e., seleção operante, contingências dos tipo CCEs – S, ou metacontingências, são contingências de seleção cultural (Glenn, 2004).

É possível supor que estudos sobre comportamento social, assim como o de Azrin e Lindsley (1956), envolveram arranjos que podem ser considerados arranjos de metacontingências. Todorov et al. (2015) destacaram o duplo papel do reforço neste tipo de arranjo: a bala, por exemplo, funciona como o reforço para o comportamento individual das crianças e, ao mesmo tempo, como o seletor das CCEs requeridas para a sua liberação. De acordo com essa análise, em uma sociedade complexa, muitas metacontingências podem incluir este tipo de redundância, i.e., um mesmo evento funcionar como reforço, na contingência individual, e consequência cultural, na metacontingência.

Hunter (2012) empregou o termo culturante para identificar a unidade no nível cultural análoga ao operante no nível ontogenético, ou seja, a unidade que é selecionada e que evolui a partir de sua interação com o ambiente selecionador. Um culturante, assim, engloba todas as CCEs que atendem ao critério para a produção de uma dada consequência cultural.
Assim como na definição de um operante, um culturante não é definido topograficamente. As CCEs, em uma metacontingência, assim como as respostas em uma contingência operante, podem variar amplamente. O culturante descreve todas as CCEs funcionalmente relacionadas a uma dada consequência cultural. Portanto, o termo culturante será empregado no presente texto para se referir a uma classe de CCEs, funcionalmente relacionada a uma dada consequência. O termo CCE será empregado para se referir a uma unidade que é análoga a uma “resposta”, em uma classe operante. Essa distinção é importante especialmente em condições nas quais a consequência cultural não é programada contingente às CCEs (em condições de linha de base, extinção ou mesmo condições nas quais há apenas a remoção da relação de dependência entre esses eventos).

A proposição do conceito de metacontingência tem promovido e/ou ampliado o debate sobre os diferentes níveis de seleção por consequências. Mas a sua validade enquanto um conceito que descreve um processo em outro nível de análise, o cultural, deve ser embasada em dados empíricos. Como afirma Andery (2011), ainda que muitos autores tenham proposto interessantes interpretações de práticas culturais na perspectiva da análise do comportamento, o debate sobre a descrição e o estudo da cultura deve conduzir ao desenvolvimento de práticas de pesquisa que contribuam para a elaboração conceitual.

Ao discorrer sobre o material a ser analisado por uma ciência do comportamento, Skinner (1953) defende que há muitas fontes importantes de informação que podem gerar discussão e conhecimento para a área e mostrar regularidades no comportamento. Dentre essas, o método experimental é o que permite analisar com maior precisão as variáveis das quais o comportamento é função. O método experimental permite descobrir quais são as variáveis críticas que definem/ constituem um dado fenômeno e/ou estabelecer uma relação sistemática entre as variáveis de interesse.
Os debates em torno do conceito de metacontingência impulsionaram o desenvolvimento de um conjunto de procedimentos experimentais para o estudo de fenômenos culturais na análise do comportamento. Estes estudos ampliam nossos conhecimentos acerca de processos que ocorrem no terceiro nível de seleção por consequência, mas também suscitam diversas questões conceituais e metodológicas. O objetivo do presente trabalho foi retomar os dados experimentais produzidos na última década a fim de, a partir da análise dos elementos constitutivos de uma metacontingência, avaliar a generalidade e a necessidade deste conceito para o estudo de fenômenos culturais. A revisão se inicia com uma descrição geral das pesquisas revisadas. Nas seções seguintes, serão exploradas, à luz dos experimentos, diversas questões da área, organizadas nos seguintes tópicos: É possível a seleção por metacontingências?; O que é selecionado pela consequência cultural?; Como garantir que o comportamento de um participante está sob o controle do comportamento do outro?; Separação funcional entre consequências individuais e culturais; A questão da natureza das consequências manipuladas; Substituição de Participantes.

Experimentos que manipularam relações condicionais entre CCEs e eventos ambientais

Todorov et al. (2015) destacaram que, enquanto procedimento, um arranjo de metacontingência envolve a manipulação de relações condicionais entre CCEs e eventos ambientais. Vichi et al. (2009) realizaram o primeiro estudo experimental empregando sistematicamente as noções de CCEs e metacontingência. O procedimento consistiu em apresentar uma consequência comum para o grupo contingente a um determinado tipo de distribuição de ganhos. Grupos de quatro participantes escolhiam, consensualmente e a cada tentativa, uma linha em uma matriz 8x8. A intersecção entre linhas e colunas poderia gerar acerto ou erro (ganho ou perda de fichas trocáveis por dinheiro), o que dependia de como os participantes haviam distribuído entre si os ganhos obtidos na tentativa anterior. Duas
condições foram planejadas em um delineamento de reversão: uma condição requeria distribuição igualitária dos ganhos para que a consequência cultural fosse liberada e a outra, distribuição desigual. As decisões sobre a divisão de ganhos, resultando em um produto (distribuição igual ou desigual) constituíam as CCEs às quais uma dada consequência (consequência cultural) era contingente. Padrões distintos de distribuição dos ganhos (igual ou desigual) foram selecionados por uma exigência do experimentador de certa coordenação dos comportamentos dos participantes. A recorrência de um padrão particular de distribuição de ganhos (produto do entrelaçamento dos comportamentos dos participantes) em função de uma dada consequência, i.e., a recorrência de culturantes, caracteriza o processo de seleção cultural. A relação funcional entre CCEs e a consequência selecionadora, é o que chamamos de metacontingência.

Desde o estudo de Vichi et al. (2009), diferentes protocolos de pesquisa foram desenvolvidos com o objetivo de estudar experimentalmente as relações descritas a partir do conceito de metacontingência. Um desses protocolos envolve uma tarefa na qual participantes, em diades, triades ou tétrades, inserem números em espaços designados na tela de um computador e a apresentação da consequência cultural depende de uma dada relação entre as somas produzidas pelos participantes (e.g., Amorim, 2010; Bulerjhan, 2009; Caldas, 2009; Pereira, 2008; Saconatto & Andery, 2013). Outras pesquisas empregaram tarefas baseadas no dilema dos prisioneiros, derivado da teoria dos jogos (e.g., Costa, Nogueira, & Vasconcelos, 2012; Hunter, 2012; Morford & Cihon, 2013; Ortu, Becker, Woelz, & Glenn, 2012). Nesta tarefa, a resposta consiste em escolher uma dentre duas letras (e.g., X ou Y) ou cores. A consequência cultural é contingente a uma determinada combinação das escolhas dos participantes (e.g., XXXX ou YYYY). Outro protocolo de pesquisa envolve uma adaptação de um jogo de xadrez. Dois participantes movem a única peça que possuem através de um tabuleiro e a consequência cultural é liberada quando as peças se encontram em células
adjacentes (Azevedo, 2015; Vasconcelos & Todorov, no prelo). Ainda, outras diferentes tarefas foram utilizadas por Sampaio et al., (2013), Smith, Houmanfar and Louis (2011) e Toledo et al. (2015). No estudo de Sampaio et al., participantes escolhiam uma entre 24 figuras de comparação, após a apresentação de uma figura modelo. A consequência cultural era contingente a uma dada relação entre as figuras escolhidas pelos integrantes de uma têtrade. Em Smith et al., dois participantes escolhiam alternadamente as cores e os tamanhos de um círculo e um retângulo. Combinações específicas de cores e tamanhos resultavam em uma dada consequência. Na tarefa de Toledo et al., a resposta consistia em clicar sobre a figura de uma torneira, na tela do computador. A apresentação da consequência cultural requeria um intervalo de x s entre as respostas de três participantes.

É possível a seleção por metacontingências?

Ortu et al. (2012) conduziram cinco experimentos para avaliar os efeitos de manipulações de metacontingências sobre as escolhas de uma têtrade. A tarefa dos participantes consistia em escolher uma de duas teclas (X ou Y), em um programa de computador. A quantidade de dinheiro que cada um poderia ganhar individualmente dependia das escolhas dos demais jogadores: escolher X produzia 4.n centavos, escolher Y produzia 4.n+7 centavos, onde n representa o número de pessoas escolhendo X. Da forma como foi programada essa distribuição de ganhos, era sempre mais vantajoso para cada participante escolher Y, mas o grupo como um todo ganharia um valor maior se todos escolhessem X. A consequência cultural, chamada de feedback de mercado, era contingente a uma dada combinação das escolhas dos participantes (XXXX ou YYYY, dependendo da condição em vigor). Essa consequência também consistia em um valor em dinheiro que era, posteriormente, dividido entre os participantes. Os cinco experimentos diferiram quanto ao valor da consequência cultural e quanto à presença de condições de controle experimental. De
um modo geral, os experimentos de Ortu et al. (2012) demonstraram que a consequência cultural manipulada foi efetiva em controlar a ocorrência da combinação de escolhas à qual era contingente. Isso ocorreu mesmo quando a magnitude de consequência cultural era mínima e quando atender à metacontingência gerava um resultado desvantajoso do ponto de vista individual (Experimento 5).

Nos estudos mais recentes que empregaram uma tarefa semelhante à de Vichi et al. (2009), a consequência cultural era contingente a uma dada combinação de cores das linhas de uma matriz, escolhidas pelos participantes (e.g., Borba, 2013; Cavalcanti et al., 2014; Marques, 2012; Pavanelli et al., 2014; Vichi, 2012). Esses estudos utilizaram uma matriz 10x10, composta por cinco cores (amarelo, verde, vermelho, azul e rosa). Cada cor preenchia uma linha par e uma ímpar. A tarefa dos participantes consistia em escolher, a cada tentativa, uma linha da matriz. Cavalcanti et al. (2015) e Pavanelli et al. (2014) investigaram os efeitos de um procedimento análogo ao de modelagem por aproximações sucessivas sobre a seleção de uma combinação de cores que tinha baixa probabilidade de ocorrência ao nível do acaso, se comparado com outros estudos que utilizaram o mesmo protocolo. O procedimento envolveu o aumento gradual no número de critérios relacionados às combinações às quais a consequência cultural era contingente. Cada estudo envolveu duas tétrades. A consequência individual (fichas-dinheiro) era contingente a escolhas de linhas ímpares. A consequência cultural (carimbos posteriormente trocados por itens escolares) era contingente a combinações progressivamente mais complexas entre as cores das linhas escolhidas por cada membro da tétrade. A metacontingência final exigia que cada participante escolhesse linhas de 2 ou três cores previamente especificadas, sendo que estas deveriam ser diferentes das cores escolhidas pelos demais participantes, naquela tentativa. O delineamento envolveu uma condição de linha de base, na qual vigorava a metacontingência final, seguida pela condição de modelagem, composta de quatro fases (na primeira fase, apenas o atendimento do critério
relativo às escolhas do primeiro participante era requerido para a apresentação da consequência cultural; na segunda, era requerido o atendimento dos critérios relativos às escolhas do primeiro e do segundo participante; na terceira fase, o atendimento dos critérios relativos às escolhas do primeiro, do segundo e do terceiro participante; na quarta e última fase, a metacontingência final era reintroduzida). Os resultados mostraram que, para todas as tetrades, a escolha individual de linhas ímpares foi rapidamente selecionada e se manteve durante todo o experimento. A combinação de escolhas exigida pela metacontingência final ocorreu muito poucas vezes durante a linha de base. Na condição de modelagem, uma tetrade em cada estudo demonstrou a aquisição e manutenção da combinação de escolhas requerida pela metacontingência final, em grupo fechado (Cavalcanti et al.) e ao longo de substituições de participantes (Pavanelli et al.). Com as outras duas tetrades, o experimento foi encerrado após longo período de exposição à tarefa, sem que tivesse chegado à fase final da modelagem.

Nos estudos que empregaram o protocolo dos números (e.g., Amorim, 2010; Baia, 2013; Bullerjham, 2009; Caldas, 2009; Caldas, 2013; Pereira, 2008; Magalhães, 2013; Saconatto & Andery, 2013) a consequência cultural era contingente a uma relação específica entre as somas dos números inseridos pelos participantes de uma diade, triade ou tetrade. Caldas (2009) e Bullerjham (2009) investigaram seleção por metacontingências com dois a quatro participantes trabalhando simultaneamente na tarefa. O experimento era iniciado por um único participante, e apenas uma contingência operante em vigor: o número inserido pelo participante em cada uma de quatro caselas, somado ao número apresentado pelo computador na casela imediatamente acima, deveria ser ímpar, para que a consequência individual – pontos posteriormente trocados por dinheiro – fosse apresentada. Na condição seguinte, o segundo participante era adicionado à tarefa e a metacontingência entrava em vigor, concomitantemente à contingência operante. A metacontingência exigia que a soma dos quatro números inseridos pelo participante da esquerda fosse menor ou igual à soma
produzida pelas respostas do participante da direita ($\Sigma P_E \leq \Sigma P_D$), para que a consequência cultural (bônus posteriormente trocados por dinheiro) fosse apresentada. No estudo de Bullerjhann, outros dois participantes foram adicionados à tarefa em momentos diferentes, composto uma tétrade. Por fim, havia a substituição gradual de participantes até o término dos experimentos: o participante mais antigo na tarefa era substituído por um ingênuo, que ocupava a mesma posição na tarefa, constituindo o que foi chamado de uma nova geração. De um modo geral, os resultados mostraram a seleção, em termos da recorrência, da relação à qual a consequência cultural era contingente, mesmo ao longo das substituições de participantes. Utilizando o mesmo protocolo, Saconatto e Andery (2013), investigaram os efeitos de uma metacontingência envolvendo reforçamento negativo. No procedimento, a ocorrência da relação $\Sigma P_1 < \Sigma P_2 < \Sigma P_3$ evitava a perda de créditos de bônus (programado para cada tentativa em que essa relação não fosse apresentada). Embora a seleção dessa relação entre as somas tenha sido mais lenta do que nos outros estudos que utilizaram o mesmo protocolo, os efeitos da suspensão da consequência cultural foi mais pronunciado, com uma redução significativa no número de ocorrências, comparado à condição na qual a metacontingência estava em vigor.

Todos os estudos descritos e aqueles que empregaram tarefas semelhantes mostraram a recorrência de determinadas interações entre os comportamentos de diferentes participantes, em função da apresentação de uma consequência contingente a tais interações. Os dados fornecem evidências de seleção cultural a partir da manipulação de procedimentos de metacontingência. Mas uma questão recorrente nos diversos estudos é: o que é o selecionado pela consequência cultural, em uma relação de metacontingência?
O que é selecionado pela consequência cultural?

As pesquisas citadas foram delineadas para avaliar os efeitos de manipulações de consequências culturais sobre contingências comportamentais entrelaçadas, medidas a partir de seus efeitos/produtos (e.g., Amorim, 2010; Azevedo, 2015; Borba, 2013; Bulerjhan, 2009; Caldas, 2009; Cavalcanti et al., 2014; Costa et al., 2012; Marques, 2012; Morford & Cihon, 2013; Ortu et al., 2012; Pereira, 2008; Saconatto & Andery, 2013; Pavanelli et al., 2014; Vichi, 2012). Esses produtos, resultados de CCEs, foram chamados de Produtos Agregados (PAs) (Todorov et al., 2015). A utilização de PAs como uma medida da unidade cultural (ou culturantes), é análoga a usar o fechamento de circuito como uma medida da resposta de pressionar a barra (Ortu et al., 2012; Vichi et al., 2009). Mas o que são esses PAs? São estes necessários a uma definição de metacontingência?

Propositalmente, descrevemos as pesquisas apresentadas na seção anterior sem empregar os termos CCEs e PAs. Em todas elas, a principal manipulação foi a metacontingência: a relação condicional entre uma consequência cultural e uma dada relação ou combinação entre as respostas dos integrantes de um grupo. Nestes estudos, assim como nos que empregaram tarefas semelhantes, os efeitos da manipulação foram avaliados sobre a frequência de ocorrência das relações/combinações requeridas (e.g., XXXX, ΣP1<ΣP2<ΣP3). Os resultados das combinações das escolhas/respostas dos participantes de uma diade, triade ou tétrade, sob o controle dos comportamentos uns dos outros, constituem o que tem sido chamado de produto agregado (PA). Mas o que é selecionado em uma metacontingência? A que a consequência cultural é contingente? Aos PAs? Às CCEs?

O estudo de Vasconcelos e Todorov (no prelo) exemplifica claramente esse debate. O objetivo dos autores foi encontrar uma variável dependente e um procedimento propício para a análise dos efeitos de uma metacontingência na qual “consequências positivas eram produzidas com base em determinadas características do produto de agregado”. Cada
participante de uma diade movia uma peça através de um tabuleiro de xadrez. Quando as duas peças se encontravam em células adjacentes, a diade recebia um feedback de acerto (consequência cultural). O encontro das peças, resultado do entrelaçamento dos comportamentos dos dois participantes, era o PA. O experimento envolveu três condições: linha de base (A), modelagem (B) e extinção (C), em um delineamento ABCB, no Experimento 1 e ABAB, no 2. Nas condições A, nenhum feedback seguia os encontros das peças. Durante a modelagem, a consequência cultural era contingente ao encontro das peças dentro de uma determinada área do tabuleiro, que variou ao longo da condição. Na condição C, os participantes recebiam feedbacks de erro, a cada tentativa. Os resultados mostraram a seleção dos diferentes produtos requeridos durante a modelagem, em função de mudanças nas exigências da metacontingência. Durante as condições de linha de base e extinção, houve maior variabilidade na localização dos encontros das peças no tabuleiro. Os autores concluíram que as consequências programadas pela metacontingência afetaram a variabilidade da localização do produto agregado.

Com base nestes resultados, parece claro que o que é selecionado pela consequência cultural, em uma relação de metacontingência, é o PA. No entanto, certo impasse ainda permanece. Para ajudar a discutir essa questão, será retomada a definição de comportamento operante, que é a unidade de seleção em uma contingência operante.

Catania (1999) descreve duas maneiras de definir um operante, enquanto classe de respostas. Uma é descritiva e a outra, funcional. Na primeira, a classe é definida em termos de seu efeito ambiental, quando, por exemplo, se define uma resposta de pressão a barra pelo fechamento do circuito (ou acionamento de um interruptor). Neste caso, cada resposta da classe deve ter certa força e/ou topografia. “O efeito que define um operante, neste caso, pode ser diferente das consequências programadas para as respostas” (p. 412). Segundo Catania, este tipo de definição é geralmente utilizada no planejamento experimental, com a finalidade...
de registro das respostas. Cada fechamento de circuito, por exemplo, é contado como uma resposta. Na definição funcional, um operante é uma classe de respostas modificável por suas consequências. Neste caso, o operante é definido pela relação entre as consequências e o responder subsequente. “(...) uma classe de respostas não é um operante até que sua modificabilidade tenha sido demonstrada” (p. 412).

Fazendo um paralelo entre os processos de seleção operante e cultural, o PA, em uma metacontingência, é análogo aos efeitos diretos das respostas em uma contingência operante. Neste sentido, os PAs podem ser necessários, e frequentemente o são, a uma definição descritiva de culturantes (especialmente para fins de registro e planejamento experimental), mas não necessariamente a uma definição funcional. A definição funcional deveria levar em conta a modificação de uma classe de CCEs em função da apresentação de consequências chamadas de culturais. Note que no estudo de Vasconcelos e Todorov (no prelo), do ponto de vista da programação experimental, a clara especificação do produto agregado é decisiva para a apresentação da consequência cultural. No entanto, os próprios autores afirmaram que contingências comportamentais entrelaçadas eram as responsáveis pelos movimentos das peças ao longo do tabuleiro, resultando em um dado PA. O PA é o que define topograficamente as CCEs, analogamente ao fechamento do circuito, que define uma resposta de pressão a barra. Mas são as interações entre as respostas dos participantes, funcionando como uma unidade, que são modificadas pela apresentação da consequência cultural. Se há um paralelo nas relações estudadas nos diferentes níveis de seleção, podemos supor que em metacontingências, assim como ocorre em contingências operantes, consequências afetam comportamentos: respostas de um indivíduo, no nível operante, e respostas entrelaçadas de dois ou mais indivíduos, no nível cultural. Os resultados são operantes e culturantes. O culturante seria, assim, a unidade de seleção em uma metacontingência.
Como garantir que o comportamento de um participante está sob o controle do comportamento do outro?

Se uma metacongingência especifica uma relação condicional entre uma classe de CCEs e uma consequência cultural, é de suma importância garantir que as CCEs de fato ocorram. O que caracteriza uma CCE é o controle pelo comportamento do outro. Mas como garantir que o que está sendo selecionado não são respostas individuais, i.e., respostas que não estão sob o controle dos comportamentos dos outros participantes?

No primeiro estudo descrito (Vichi et al., 2009), as CCEs não podiam ser topograficamente descritas. Os trabalhos que se seguiram (e.g., Caldas, 2009; Pavanelli et al., 2014; Saconatto & Andery, 2013) avançaram nessa questão por meio da clara especificação das CCEs às quais a consequência cultural era contingente. Ainda assim, como garantir que o que estava sendo selecionado não eram respostas tais como, escolher sempre X, escolher uma linha de uma dada cor, inserir números cuja soma resultasse em valores altos ou baixos?.

A demonstração de que o comportamento de um indivíduo é parte relevante do ambiente em que outro se comporta é desafiadora do ponto de vista metodológico e passível de gerar “falsos positivos”. Para o estudo da cooperação, por exemplo, Cohen e Lindsley (1964) desenvolveram um aparato em que, em cômodos separados, dois participantes sentavam-se em frente a um painel contendo um êmbolo. Uma resposta cooperativa era registrada quando as respostas de puxar os êmbolos dos dois participantes ocorressem em um intervalo de tempo de até 0.5 s uma da outra. A resposta de um participante era indicada para o seu parceiro por meio de uma luz. No entanto, Schmitt e Marwell (1968) mostraram que com o procedimento de Cohen e Lindsley, altas taxas de cooperação ocorriam mesmo quando o comportamento de um participante não estava sob o controle discriminativo do comportamento do outro. Schmitt e Marwell propuseram uma alteração na exigência para o reforçamento, adicionando um atraso entre as respostas dos participantes. Na tarefa
modificada, era preciso um intervalo maior do que 3 s e menor do que 3,5 s entre as respostas dos dois participantes. A resposta do primeiro participante acendia a luz de resposta no painel do outro participante por um período de 3 s, o reforço ocorria se o segundo participante puxasse o êmbolo em até 0,5 s após a luz ter sido apagada. Com este procedimento, altas taxas de respostas cooperativas só foram obtidas na presença das luzes que sinalizavam as respostas do outro participante. Na ausência das luzes, a taxa foi zero ou próxima de zero. Os autores concluíram que a alteração se mostrou efetiva em garantir que os participantes estivessem respondendo sob o controle discriminativo do comportamento do outro.

Toledo et al. (2015) empregaram uma manipulação semelhante a de Schmitt e Marwell (1968), com o objetivo de tentar garantir que as respostas dos participantes estivessem sob o controle discriminativo das respostas uns dos outros, em um arranjo de metacontingência. Cada participante de uma tríade tinha a sua frente um computador, cuja tela era dividida em três quadrantes. Em cada quadrante havia uma torneira e um galão. Acima dos quadrantes havia uma área comum, com uma caixa d’água. Clicar com o mouse sobre a respectiva torneira produzia uma porção de água no galão de acordo com um dado esquema de reforço. A metacontingência, quando programada, requeria que os participantes respondessem de forma espaçada em relação às respostas uns dos outros. Qualquer participante poderia responder primeiro, mas, para que a consequência cultural fosse liberada, o segundo participante deveria esperar pelo menos x s desde a resposta do primeiro, e o terceiro, x s desde a resposta do segundo. Toda vez que os participantes coordenavam seus desempenhos de modo a atender esse critério, uma porção de água era acrescida na caixa d’água e a palavra “Bônus” aparecia na interseção dos quadrantes dos participantes. Galões e bônus eram, posteriormente, trocados por dinheiro. Duas tríades foram expostas a diferentes condições experimentais. Para uma delas, a contingência operante consistiu em um esquema de razão variável (VR 2) e para a outra, intervalo variável 10 s (VI 10 s). O espaçamento
requerido na metacontingência variou de 1 a 2 s. O delineamento envolveu uma condição de linha de base, na qual apenas a contingência operante vigorava, seguida de uma condição com contingência operante e metacontingência e uma condição com a suspensão da metacontingência. Para as duas tríades, a CCE requerida só ocorreu com uma taxa relativamente alta e constante quando a metacontingência estava em vigor. Embora ainda incipientes, os resultados da tríade com esquema individual em VI, durante a suspensão da metacontingência, mostraram que mesmo quando os participantes respondiam de forma espaçada em relação a eles mesmos (baixa taxa de respostas), atendendo à contingência individual, a CCE ocorreu a uma frequência próxima de zero. Esses dados podem ser indicativos do controle discriminativo pelo comportamento do outro: não bastava responder de forma espaçada, era necessário responder de forma espaçada em relação à resposta de outro participante.

Um ponto importante a ser discutido é: o que define “controle pelo comportamento do outro” nas CCEs, em uma relação de metacontingência? Alguns autores (e.g., Morford & Cihon, 2013; Schmitt & Marwell, 1968) parecem sugerir que só há entrelaçamento (CCE) quando há o controle antecedente pelo comportamento do outro, ou seja, quando o comportamento do outro funciona como estímulo discriminativo. Na definição de comportamento social proposta por Skinner (1953), o comportamento do outro pode participar das condições antecedentes ou consequentes. Se o comportamento de um organismo afeta a consequência para o comportamento de outro, mesmo que este não tenha acesso àquele comportamento, isso já configura um tipo entrelaçamento. Esse tipo de entrelaçamento, pela consequência, seria passível de seleção, em um arranjo de metacontingência? Novas pesquisas poderão responder a esse tipo de questão.
Separação funcional entre consequências individuais e culturais

Outra questão recorrente nos trabalhos experimentais sobre metacontingências refere-se à separação funcional entre consequências individuais e culturais (e.g., Vichi 2012, Borba, 2013, Magalhães, 2013). Vichi et al. (2009), Azevedo (2015) e Vasconcelos e Todorov (no prelo), por exemplo, manipularam apenas a consequência cultural, contingente a uma determinada classe de CCEs. A metacontingência era, portanto, a única relação de dependência programada em vigor e a única forma de produzir ganhos era se adequando às suas exigências.

Hunter (2012), Pereira (2008) e Vichi (2012) argumentaram que a programação concomitante de contingências operantes e metacontingências, funcionalmente independentes, ou até incompatíveis (e.g., Hunter), possibilitaria uma avaliação mais precisa dos efeitos da consequência cultural sobre a seleção de CCEs. Esse tipo de preparação promoveria um maior controle experimental para avaliar os efeitos da variável independente sobre a variável dependente.

Muitos estudos manipularam a separação funcional entre consequências individuais e culturais, por meio do planejamento de contingências específicas para o comportamento individual e contingências específicas para CCEs (e.g., Bullerjann, 2009, Caldas, 2009; Cavalcanti et al., 2014; Pavanelli et al., 2014; Pereira, 2008; Saconatto & Andery, 2013; Vichi, 2012). Os resultados mostraram sistematicamente a seleção de operantes, em função de uma relação condicional com uma dada consequência (individual), bem como a seleção de culturantes, em função de uma relação condicional com a consequência cultural. Mostraram dois processos distintos ocorrendo simultaneamente, em função de arranjos diferentes.

A revisão dos diferentes estudos e o acúmulo dos dados de pesquisas na área mostram que a decisão de planejar contingências operantes, concomitante ao planejamento de metacontingências, está relacionada ao problema de pesquisa investigado. Se o pesquisador
estiver interessado na interação entre os processos que ocorrem nos dois níveis de seleção, ou na concorrência entre respostas que produzam reforços individuais e CCEs que produzam reforços para o grupo como um todo, será imprescindível a programação de contingências operantes e metacontingências.

Borba (2013), por exemplo, investigou os efeitos de consequências culturais sobre a seleção de CCEs, em uma situação de conflito entre contingência operante e metacontingência. Segundo Tourinho e Vichi (2012), esse conflito ocorre quando o entrelaçamento que produz uma consequência cultural reforçadora para o grupo implica na emissão de respostas que produzem consequências aversivas ou reforçadores de menor magnitude para o indivíduo. A tarefa utilizada por Borba (2013) foi semelhante à de Cavalcanti et al. (2014) e Pavanelli et al. (2014): participantes, em tríades, escolhiam, a cada tentativa, uma linha de uma matriz colorida. A contingência para o comportamento individual especificava que a escolha por uma linha ímpar produzia três fichas, posteriormente trocáveis por dinheiro. A escolha por uma linha par produzia uma ficha. A metacontingência, quando programada, especificava que a combinação formada por escolhas de três linhas pares de cores diferentes produzia itens escolares, posteriormente doados a escolas públicas. Os resultados mostraram que, mesmo produzindo consequências individuais de menor magnitude, as CCEs que atendiam às exigências da metacontingência ocorreram sistematicamente nas condições em que esta estava em vigor.

Circunstâncias nas quais contingências comportamentais conflitam com as culturais são muito comuns nas sociedades modernas (Tourinho & Vichi, 2012) e o tipo de manipulação empregada por Borba (2013) permite explorá-las experimentalmente.
A questão da natureza das consequências manipuladas

Os trabalhos mais recentes que utilizaram a tarefa da Matriz planejaram, em seu procedimento, consequências individuais e culturais de naturezas distintas (fichas trocáveis por dinheiro e carimbos trocáveis por itens escolares a serem doados, respectivamente). Tal estratégia parte do argumento de que, fora do laboratório, em culturas mais complexas, as consequências que mantêm os comportamentos dos indivíduos raramente são as mesmas que mantém a prática cultural (Borba, 2013; Vichi, 2012). Outros estudos (e.g., Bullerjhan, 2009; Costa et al., 2012; Pereira, 2008; Ortu et al., 2012) utilizaram pontos ou bônus, sempre trocáveis por uma quantia em dinheiro, tanto para a contingência individual como para a metacontingência.

O estudo de Sampaio et al. (2014) empregou apenas reforçadores sociais generalizados. Os autores utilizaram uma tarefa na qual cada participante de uma triade tinha que escolher, a cada tentativa, uma entre 24 figuras de comparação, após a apresentação de uma figura modelo. Todas as figuras eram compostas por uma, duas, três ou quatro setas, cujas posições variavam em relação ao grau de inclinação e direção. A contingência operante especificava que o participante deveria escolher uma comparação que tivesse uma seta a menos que o modelo, o que resultava na produção de pontos. A metacontingência requeria uma dada relação entre as figuras escolhidas por dois ou três membros da tríade (e.g. sentido horário ou anti-horário). A metacontingência entrava em vigor após uma condição de linha de base (apenas contingência operante). Pontos e bônus não foram trocados por outros reforçadores. Os resultados mostraram uma seleção bastante rápida de respostas individuais, sob o controle da contingência operante. A introdução da metacontingência produziu o aumento nas frequências das CCEs alvo, que mantiveram-se estáveis até o final do experimento, para duas das quatro tríades. O estudo demonstrou, portanto, a seleção de
operantes e culturantes a partir da manipulação de consequências que não eram trocadas por qualquer item consumível pelos participantes ou por outrem.

Para Vichi (2012), o emprego de consequências de diferentes naturezas nas contingências operantes e culturais contribui para uma melhor diferenciação dos efeitos das duas contingências. Mas algumas questões podem ser levantadas: será que fora do laboratório, as consequências culturais, embora diferentes das consequências individuais, não seriam, em última instância, reforçadoras para o indivíduo? Consequências reforçadoras generalizadas, como o sorriso de uma criança ao receber um item escolar, não seriam reforçadoras para o indivíduo? Os dados dos diferentes estudos sugerem que é mais importante definir os eventos culturais em termos da relação que mantêm com os comportamentos, i.e., da relação condicional, do que pela natureza e/ou propriedades dos eventos produzidos.

Substituição de Participantes

A cultura, definida como “padrões de comportamento aprendido transmitido socialmente, bem como os produtos deste comportamento” (Glenn, 2004, p. 139), começa com a transmissão do conteúdo comportamental aprendido por um organismo para novos membros de um grupo, por meio de mecanismos de aprendizagem social (imitação, modelação, instrução). Nesse sentido, Glenn afirma que o lócus do fenômeno cultural é supraorganísmico. No caso de uma metacontingência, os indivíduos que compõem a prática podem ser substituídos, mas os culturantes continuam sendo repetidos ao longo do tempo, dando origem ao que pode ser chamado de linhagem cultural.

A produção de linhagens culturais tem sido estudada experimentalmente a partir do planejamento de um procedimento de substituição de participantes. Neste procedimento, de tempos em tempos, um participante experiente na tarefa é substituído por um participante
ingênuo, que deve ser instruído pelos remanescentes (e.g., Baum, Richerson, Efferson, & Paciotti, 2004). O procedimento simula a mudança de gerações em uma cultura.

Todas as pesquisas que empregaram o protocolo dos números incluíram o procedimento de substituição de participantes. Nos estudos que utilizaram variações do jogo do dilema do prisioneiro não houve substituição de participantes. Entre os que utilizaram a tarefa da Matriz, alguns incluíram mudanças de gerações (e.g., Marques, 2012; Pavanelli et al., 2014; Vichi, 2012) e outros, não (e.g., Cavalcanti et al., 2013; Esmeraldo, 2012; Vichi et al., 2009). Também não incluíram procedimento de substituição de participantes os estudos de Azevedo (2015) Sampaio et al., (2013), Smith et al. (2011), Toledo et al. (2015) e Vasconcelos e Todorov (no prelo). Entre os estudos que manipularam esse procedimento, alguns o fizerem durante o processo de “aquisição” (e.g., Saconatto & Andery, 2013) e outros, depois que havia forte evidência da seleção (e.g., Vichi, 2012).

Os resultados dos diferentes estudos sugerem que seleção e transmissão são dois fenômenos distintos, passíveis de serem investigados separadamente. Os estudos experimentais com grupos fechados mostram a seleção de culturantes em função do arranjo de metacontingências. O procedimento de substituição de participantes, por sua vez, possibilita a investigação da transmissão de culturantes, via mecanismos de aprendizagem social, e aproxima os estudos de um modelo mais abrangente de cultura. Novamente, a questão sobre a inclusão ou não deste tipo de procedimento está relacionada ao problema de pesquisa que se pretende responder. Essas distinções e suas implicações para as discussões sobre cultura, na análise do comportamento, podem ser colocadas mais claramente com uma definição de metacontingência que prioriza a especificação rigorosa de probabilidades condicionais entre eventos.
Considerações finais

Segundo Todorov (2012), o conceito de metacontingência tem sido empregado inadvertidamente para se referir tanto a procedimentos quanto a diferentes processos. Esta questão foi recentemente abordada por Todorov et al. (2015), em um trabalho que busca oferecer consistência terminológica à análise do comportamento e da cultura. O autores definiram metacontingência como uma relação contingente entre dois elementos: CCEs (e seus produtos) e eventos do ambiente. Portanto, analogamente ao conceito de contingência, o termo especifica uma relação organismo(s)-ambiente. Enquanto procedimento, metacontingência descreve a manipulação de eventos ambientais em relação aos comportamentos de dois ou mais indivíduos (CCEs). As mudanças na frequência das CCEs em função desta manipulação caracterizam um processo cultural análogo ao condicionamento operante (Todorov et al., 2015).

Os estudos experimentais revisados no presente trabalho manipularam sistematicamente relações entre CCEs (e seus produtos) e uma variável independente contingente a esta unidade. Empregaram, portanto, procedimentos de metacontingência. Alguns manipularam adicionalmente contingências operantes (e.g., Cavalcanti et al., 2014; Pavanelli et al., 2014; Saconatto & Andery, 2013; Sampaio et al., 2013; Toledo et al., 2015). Os comportamentos envolvidos nas diversas preparações, bem como a natureza das consequências empregadas variaram amplamente nos protocolos descritos. Mas, em alguma medida, todos eles demonstraram a seleção, em termos de recorrência, de uma unidade que engloba os comportamentos de dois ou mais participantes, os culturantes, por uma consequência externa. E na medida em que tenham distinguido experimentalmente entre seleção operante (para os comportamentos que compõem as CCEs) e seleção cultural (por consequências contingentes às CCEs), pode-se dizer que demonstraram, ao mesmo tempo, os processos de seleção nos níveis comportamental e cultural (Todorov et al., 2015).
Em relação à grande variedade de procedimentos desenvolvidos para o estudo das relações descritas a partir do conceito de metacontingência, a conclusão principal do presente artigo é a de que todos os procedimentos podem ser bons e apropriados, a depender do problema de pesquisa. Não há um procedimento que seja, a priori, melhor do que outro. Tampouco é necessário escolher um procedimento que seja “o procedimento de metacontingência”. Os diferentes protocolos de pesquisa descritos têm se mostrado efetivos no estudo de processos tais como: aquisição de culturantes (e.g., Caldas, 2009; Cavalcanti et al. 2014; Ortu et al., 2012; Vasconcelos & Todorov, no prelo); controle de culturantes por antecedentes (Azevedo, 2015; Smith et al., 2011; Vieira, 2010); manutenção de culturantes em análogos de esquemas de razão (Amorim, 2010; Vichi, 2012); produção de variabilidade em culturantes (Santos, 2011); conflito entre contingências operantes e metacontingências (e.g., Borba, 2013; Hunter, 2012), entre outros, com ou sem substituição de participantes. O protocolo do Culturante Livre (Toledo et al., 2015), por sua vez, pode contribuir para o avanço das investigações nesta área de pesquisa. Neste protocolo, os participantes podem emitir respostas a qualquer tempo e o experimentador pode planejar diferentes critérios para a apresentação de consequências individuais e culturais. O procedimento possibilita novas manipulações e tratamentos para a investigação experimental da seleção cultural. Uma dessas possibilidades é o estudo do processo de manutenção de culturantes em esquemas de intervalo. Outra possível linha de investigação consiste em utilizar a taxa de respostas obtida em esquemas de reforço como linha de base para testar os efeitos da manipulação de metacontingências. Portanto, o desenvolvimento de diferentes protocolos de pesquisa parece ampliar as possibilidades de investigação, além de conferir generalidade aos processos estudados.

A análise dos elementos constitutivos de contingências operantes e metacontingências, manipulados e mensurados nos diversos experimentos relatados, tornou possível rever
algumas noções comportamentais básicas, presentes nos diferentes níveis de seleção. O resultado dessa revisão aproxima a noção de seleção operante e cultural com base em elementos comuns: o comportamento, como o conjunto de ações de uma ou várias pessoas, seus produtos e variáveis selecionadoras. A presente revisão contribui para reafirmar que seleção operante e cultural se diferenciam pela variável dependente, ou o que é requerido na relação condicional com o ambiente selecionador, e não pelas propriedades/natureza das variáveis de seleção, ou as variáveis independentes. Os dados de pesquisa acumulados até o presente momento levam à defesa do conceito de metacontingência, como um conceito que confere unidade a um conjunto de manipulações e seus resultados. Embora a possibilidade de seleção de uma unidade que engloba os comportamentos de dois ou mais indivíduos, constituindo o que chamamos de CCEs, já tivesse sido sugerida em estudos como os de Azrin e Lindsley (1956) e Schmitt e Marwell (1968), a proposição do conceito de metacontingência, como aquilo que explica/descreve a recorrência das CCEs, oferece sistematicidade aos procedimentos de pesquisa e coesão a uma teoria que pretende dar conta de processos que ocorrem no terceiro nível de seleção por consequências de Skinner (1981), o nível cultural.

Por fim, os diferentes estudos descritos têm permitido mostrar que a análise do comportamento pode contribuir para o debate multidisciplinar sobre evolução cultural (Mesoudi, Whiten, & Laland, 2006; Richerson & Boyd, 2005). A clara especificação das relações entre seleção comportamental e seleção cultural pode conduzir à produção de sínteses envolvendo as ciências comportamentais e culturais, a exemplo da síntese possível entre análise do comportamento e materialismo cultural, proposta por Glenn (1988).
Referências

Amorim, V. C. (2010). *Análogos experimentais de metacontingências: efeitos da intermitência da consequência cultural.* [Experimental analog of metacontingencies: effects of cultural consequence intermittence] Unpublished master’s thesis, Pontificia Universidade Católica de São Paulo, São Paulo, Brazil.

Andery, M. A. P. A. (2010). Métodos de pesquisa em análise do comportamento. *Psicologia USP, 21,* 313-342.

Andery, M. A. P. A. (2011). Comportamento e cultura na perspectiva da análise do comportamento. *Revista Perspectivas, 2,* 203-217.

Andery, M. A. P. A., Micheleto, N., & Sério, T. M. (2005). A análise de fenômenos sociais: esboçando uma proposta par a identificação de contingências entrelaçadas metacontingências. *Revista Brasileira de Análise do Comportamento, 1,* 149-165.

Azevedo, R. M. F. (2015). *Controle discriminativo em metacontingência.* [Stimulus control in metacontingencies]. Unpublished master’s thesis, Universidade de Brasília, Brasília, DF, Brasil.

Azrin, N. H. & Lindsley, O. R. (1956). The reinforcement of cooperation between children. *Journal of Abnormal and Social Psychology, 52,* 100-102.

Baum, W. M. (2012) Rethinking reinforcement: allocation, induction, and contingency. *Journal of the Experimental Analysis of Behavior, 97* (1), 101-124.

Baum, W. M., Richerson, P. J., Efferson, C. M., & Paciotti, B. M. (2004). Cultural evolution in laboratory microsocieties including traditions of rule giving and rule following. *Evolution and Human Behavior, 25,* 305-326.

Borba, A. (2013). *Efeitos da exposição a macrocontingências e metacontingências na produção e manutenção de respostas de autocontrole ético.* [Effects of exposure to macrocontingencies and metacontingencies in the production and maintenance of
ethical self-control responses]. Unpublished doctoral dissertation, Universidade Federal do Pará, Belém, Brazil.

Bullerjhann, P. B. (2009). Análogos experimentais de evolução cultural: o efeito das consequências culturais. [Experimental analogues of social phenomena: Effects of cultural consequences]. Unpublished Master’s Degree Thesis, Pontificia Universidade Católica de São Paulo, São Paulo, Brazil.

Burgos, J. E., & Donahoe, J. W. (2000). Structure and function in selectionism: implications for complex behavior. In J. C. Leslie & D. Blackman (Eds.), Experimental and Applied Analysis of Human Behavior (pp. 39-57). Reno: Context Press.

Buskist, W. F. & Morgan, D. (1987). Competitive fixed-interval performance in humans. Journal of the Experimental Analysis of Behavior, 47, 145-158.

Buskist, W. F., Barry, A., Morgan, D., & Rossi, M. (1984). Competitive fixed interval performance in humans: role of “orienting” instructions. Psychological Record, 34, 241-257.

Caldas, R. A. (2009). Análogos experimentais de seleção e extinção de metacontingências. [Experimental analogues of selection and extinction of metacontingencies]. Unpublished master’s thesis, Pontificia Universidade Católica de São Paulo, São Paulo, Brazil.

Caldas, R. A. (2013). Unidades de seleção em três níveis de análise: diferenças entre unidades comportamentais e culturais. [Selection units on three levels of analysis: differences between behavioral and cultural units]. Unpublished doctoral dissertation, Pontificia Universidade Católica de São Paulo, São Paulo, Brazil.

Catania, A. C. (1999). Aprendizagem: comportamento linguagem e cognição. 4 ed. Porto Alegre, BR: Artmed.
Cavalcanti, D. E., Leite, F. L. & Tourinho, E. Z. (2014). Seleção de práticas culturais complexas: avaliação experimental de um análogo de procedimento de aproximação sucessiva. *Psicologia e Saber Social, 3*, 2-21.

Cohen, D. & Lindsley, O. R. (1964). Catalysis of controlled leadership in cooperation by human stimulation. *Journal of Child Psychological Psychiatry and Allied Disciplines, 5*, 119-137.

Costa, D., Nogueira, C., & Vasconcelos, L. A. (2012). Effects of communication and cultural consequences on choices combinations in INPDG with four participants. *Revista Latinoamericana de Psicologia, 44*, 121-131.

De Souza, D. G. (2000). O conceito de contingência: um enfoque histórico. *Temas em Psicologia da SBP, 8*, 125-136.

Donahoe, J. W. (2006). Contingency: Its meaning in the experimental analysis of behavior. *European Journal of Behavior Analysis, 7*, 111-114.

Donahoe, J. W., & Palmer, D. C. (1994). *Learning and complex behavior*. Boston, MA: Allyn and Bacon.

Donahoe, J. W., Burgos, J. E., & Palmer, D. C. (1993). A selectionist approach to reinforcement. *Journal of the Experimental Analysis of Behavior, 60*, 17-40.

Dougherty, D. M. & Cherek, D. R. (1994). Effects of social context, reinforcer probability, and reinforcer magnitude on humans’ choices to compete or not to compete. *Journal of the Experimental Analysis of Behavior, 62*, 133-148.

Esmeraldo, D. C. (2012). *Efeitos de dois procedimentos de aproximação sucessiva sobre a seleção de uma prática cultural complexa*. [Effects of two successive approximation procedures on the selection of a complex cultural practice]. Unpublished Master’s Degree Thesis, Universidade Federal do Pará, Belém, Brazil.
Ferster, C. B. (1953). The use of the free operant in the analysis of behavior. *Psychological Bulletin, 50*, 263-274.

Ferster, C. B., & Skinner, B. F. (1957). *Schedules of reinforcement*. New York: Appleton-Century-Crofts.

Glenn, S. S. (1986). Metacontingencies in Walden Two. *Behavior Analysis and Social Action, 5*, 2-8.

Glenn, S. S. (1988). Contingencies and metacontingencies: Toward a synthesis of behavior analysis and cultural materialism. *The Behavior Analyst, 11*, 161-179.

Glenn, S. S. (1991). Contingencies and metacontingencies: relations among behavioral, cultural, and biological evolution. In P. A. Lamal (Ed.), *Behavior analysis of societies and cultural practices* (pp. 39-73). New York: Hemisphere.

Glenn, S. (2003). Operant contingencies and the origin of cultures. In K. A. Lattal & P. N. Chase (Eds.), *Behavior theory and philosophy* (pp. 223-242). New York: Kluwer Academic.

Glenn, S. S. (2004). Individual behavior, culture, and social change. *Behavior Analyst, 27*, 133-151.

Hake, D. F., Donaldson, T., & Hyten, C. (1983). Analysis of discriminative control by social behavioral stimuli. *Journal of the Experimental Analysis of Behavior, 39*, 7-23.

Hake, D. F., Olvera, D., & Bell, J. C. (1975). Switching from competition to sharing or cooperation at large response requirements: competition requires more responding. *Journal of the Experimental Analysis of Behavior, 24*, 343-354.

Hake, D. F. & Schmid, T. L. (1981). Acquisition and maintenance of trusting behavior. *Journal of the Experimental Analysis of Behavior, 35*, 109-124.

Hake, D. F. & Vukelich, R. (1972). A classification and review of cooperation procedures. *Journal of the Experimental Analysis of Behavior, 18*, 333-343.
Hake, D. F. & Vukelich, R. (1973). Analysis of the control exerted by a complex cooperation procedure. *Journal of the Experimental Analysis of Behavior, 19*, 3-16.

Hake, D. F., Vukelich, R., & Kaplan, S. J. (1973). Audit responses: responses maintained by access to existing self or coactor scores during non-social, parallel work, and cooperation procedures. *Journal of the Experimental Analysis of Behavior, 19*, 409-423.

Hake, D. F., Vukelich, R., & Olvera, D. (1975). The measurement of sharing and cooperation as equity effects and some relationships between them. *Journal of the Experimental Analysis of Behavior, 23*, 63-79.

Hunter, C. S. (2012). Analyzing behavioral and cultural selection contingencies. *Revista Latinoamericana de Psicologia, 44*, 43-54.

Magalhães, F. G. (2013). *Efeitos da incompatibilidade entre consequências individuais e culturais em análogos experimentais de metacontingências*. [Effects of incompatibility between individual and cultural consequences in experimental analogs of metacontingencies]. Unpublished doctoral dissertation. Pontifícia Universidade Católica de São Paulo. São Paulo, Brazil.

Marques, N. S. (2012). *Efeitos da incontrolabilidade do evento cultural na aquisição e manutenção de práticas culturais: um modelo experimental de superstição*. [Effects of uncontrollable cultural event in the acquisition and maintenance of cultural practices: an experimental model of superstition]. Unpublished Master’s Degree Thesis. Universidade Federal do Pará, Belém, Brazil.

Marwell, G. & Schmitt, D. R. (1975). *Cooperation: an experimental analysis*. New York: Academic Press.
Morford, Z. H. & Cihon, T. M. (2013). Developing an experimental analysis of
metacontingencies: considerations regarding cooperation in a four-person prisoner’s
dilemma game. Behavior and Social Issues, 22, 5-20.

Ortu, D., Becker, A. M., Woelz, T. A., & Glenn, S. S. (2012). An iterated four-player
prisoner’s dilemma game with an external selecting agent: a metacontingency
experiment. Revista Latinoamericana de Psicología, 44, 111-120.

Pavanelli, S. Leite, F. L. & Tourinho, E. Z. (2014). A “modelagem” de contingências
comportamentais complexas. [The shaping of complex interlocking behavioral
contingencies]. Acta Comportamentalia, 22, 425-440.

Pavlov, I. P. (1960). Conditioned reflex: An investigation of the physiological activity of the
cerebral cortex. Oxford, England: Dover Publications. (Originally published in 1927)

Pereira, J. M. C. (2008). Investigação experimental de metacontingências: separação do
produto agregado e da consequência individual. [Experimental investigation of
metacontingencies: Separating aggregate product and individual consequences].
Unpublished master’s thesis, Pontifícia Universidade Católica de São Paulo, São
Paulo, Brazil.

Perone, M. (1991). Experimental design in the analysis of free-operant behavior. In I. H.
Iversen & K. A. Lattal (Eds.), Experimental analysis of behavior, (pp. 135-171).
Amsterdam: Elsevier.

Rescorla, R. A. (1967). Pavlovian conditioning and its proper control procedures.
Psychological Review, 74, 71-80.

Saconatto, A. T. & Andery, M.A.P.A. (2013). Seleção por metacontingências: um análogo
experimental de reforçamento negative. Interação em Psicologia, 17, 1-10.

Sampaio, A. A. S., Araújo, L. A. S., Gonçalo, M. E., Ferraz, J. C., Alves-Filho, A. P., Brito, I.
S., Barros, N. M., & Calado, J. I. F. (2013). Exploring the role of verbal behavior in a
new experimental task for the study of metacontingencies. *Behavior and Social Issues*, 22, 87-101.

Santos, P. M. dos (2011). *É possível produzir variabilidade em metacontingência?* [Is it possible to produce variability in a metacontingency?]. Unpublished Master’s Degree Thesis, Pontificia Universidade Católica de São Paulo, São Paulo, Brazil.

Schmid, T. L. & Hake, D. F. (1983). Fast acquisition of cooperation and trust: a two-stage view of trusting behavior. *Journal of the Experimental Analysis of Behavior, 40*, 179-192.

Schmitt, D. R. (1976). Some conditions affecting the choice to cooperate or compete. *Journal of the Experimental Analysis of Behavior, 25*, 165-178.

Schmitt, D. R. (1984). Interpersonal relations: cooperation and competition. *Journal of the Experimental Analysis of Behavior, 42*, 377-383.

Schmitt, D. R. (1987). Interpersonal contingencies: performance differences and cost-effectiveness. *Journal of the Experimental Analysis of Behavior, 48*, 221-334.

Schmitt, D. R. & Marwell, G. (1968). Stimulus control in the experimental study of cooperation. *Journal of the Experimental Analysis of Behavior, 11*, 571-574.

Skinner, B. F. (1935). Two types of conditioned reflex and a pseudo type. *Journal of General Psychology, 12*, 66-77.

Skinner, B. F. (1938). *The behavior of organisms: An experimental analysis*. New York: Appleton- Century-Crofts.

Skinner, B. F. (1953). *Science and human behavior*. New York: Macmillan.

Skinner, B. F. (1969). *Contingencies of reinforcement: a theoretical analysis*. New York: Appleton-Century-Crofts.

Skinner, B. F. (1981). Selection by consequences. *Science, 213*, 501-504.
Smith, G. S., Houmanfar, R., & Louis, S. J. (2011). The participatory role of verbal behavior in an elaborated account of metacontingency: From conceptualization to investigation. *Behavior and Social Issues, 20*, 122-146.

Todorov, J. C. (1991). O conceito de contingência na psicologia experimental. *Psicologia: Teoria e Pesquisa, 7*, 59-70.

Todorov, J. C. (2012). Metacontingências e a análise comportamental de práticas culturais. *Clínica & Cultura, 1*, 36-45.

Todorov, J. C., Benvenuti, M. F., Glenn, S. S., Mallot, M., Houmanfar, R., Andery, ... Vasconcelos, L. (2015). Behavior and Cultural Analysis: Toward Consistent Terminology. Manuscrito em preparação.

Toledo, T. F. N., Benvenuti, M. F. L., Sampaio, A. A. S., ... Moreira, L. R. (2015). Free culturant: a software for the experimental study of behavioral and Cultural Selection. *Psychology & Neuroscience, 8*, 366-384.

Tonneau, F., & Sokolowski, M. B. C. (2000). Pitfalls of behavioral selectionism. In F. Tonneau & N. S. Thompson (Eds.), *Perspectives in ethology: Vol. 13. Evolution, culture, and behavior* (pp. 155-180). New York: Kluwer/Plenum.

Vasconcelos, I. G. & Todorov, J. C. (no prelo). Experimental analysis of the behavior of persons in groups: Selection of an aggregate product in a metacontingency. *Behavior and Social Issues*.

Vichi. C. (2012). *Efeitos da apresentação intermitente de consequências culturais sobre contingências comportamentais entrelaçadas e seus produtos agregados*. [Effects of intermittent presentation of cultural consequences on interlocking behavioral contingencies and their aggregate products]. Unpublished doctoral dissertation, Universidade Federal do Pará, Belém, Brazil.
Vichi, C., Andery, M. A. P. A., & Glenn, S. S. (2009). A metacontingency experiment: the effects of contingent consequences on patterns of interlocking contingencies reinforcement. *Behavior and Social Issues, 18*, 1-17.

Vieira, A. C. (2010). *Condições antecedentes participam de metacontingências?* [Do antecedent conditions take part in metacontingencies?]. Unpublished Master’s Degree Thesis, Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.

Watanabe, S. & Ono, K. (1986). An experimental analysis of “empathetic” response: effects of pain reactions of pigeons upon other pigeon's operant behavior. *Behavioural Processes, 13*, 269-277.

Wiggins, J. A. (1969). Status differentiation, external consequences and alternative reward distributions. In R. L Burgess & D. Bussell Jr. (Eds), *Behavioral Sociology: The experimental foundations of social process*. (pp. 109-126). New York: Columbia University Press.
Selection and Transmission of Operants and Culturants in a Free-Operante-Analogous Procedure
Resumo

Investigou-se os efeitos da manipulação de uma relação condicional entre contingências comportamentais entrelaçadas (CCEs) e alterações ambientais sobre a seleção e transmissão de CCEs e sobre os desempenhos operantes em dois esquemas de reforço. A tarefa de universitários, em triades, era clicar com o mouse sobre a imagem de uma torneira, na tela do computador. Contingência operante: respostas eram reforçadas de acordo com um esquema de Razão Variável 2 (4 triades) e Intervalo Variável 6 s (5 triades). Contingência cultural: requeria um atraso de x s entre as respostas dos três participantes. Fase 1: duas condições programadas (ABAB). Condição A: apenas contingência operante. Condição B: contingências operante e cultural. Fase 2: a cada 12 min, um participante experiente era substituído por um ingênuo. Resultados: a) aquisição, extinção e reaquisição de culturantes se assemelham à aquisição, extinção e reaquisição de operantes; b) a interação entre seleção operante e cultural depende dos desempenhos dos participantes durante a linha de base; c) operantes e culturantes foram socialmente transmitidos. Discutiu-se as possíveis contribuições deste estudo para a área de pesquisas sobre seleção cultural.

Palavras-chave: metacontingência; culturantes; operantes; transmissão cultural.
Abstract

We investigated the effects of manipulating a conditional relationship between interlocking behavioral contingencies (IBCs) and environmental changes over the selection and transmission of CCEs and on operant performances in two schedules of reinforcement. The task of undergraduate students, in triads, was to click with the mouse on the figure of a tap on the computer screen. Operant contingency: responses were reinforced according to a variable ratio 2 (4 triads) and variable interval 6 s schedules (5 triads). Cultural contingency: required a x s delay between the responses of the three participants. Phase 1: two conditions programmed (ABAB). Condition A: only operant contingency. Condition B: operant and cultural contingencies. Phase 2: every 12 min, an experienced participant was replaced. Results: a) acquisition, extinction and reacquisition of culturants resemble the acquisition, extinction and reacquisition of operants; b) the interaction between operant and cultural selection depends on the participants’ performances during the baseline; c) operants and culturants were socially transmitted. We discussed the possible contributions of this study to the area of research on cultural selection.

Keywords: metacontingency; culturants; operants; cultural transmission.
O comportamento social pode ser caracterizado como comportamento operante (Guerin, 1994; Keller & Shoenfeld, 1950; Skinner, 1953). No comportamento social, a resposta de um indivíduo produz consequências para si mesmo (compondo a sua própria contingência operante) e também funciona como parte da contingência que envolve o comportamento de outro indivíduo. Essas contingências operantes inter-relacionadas podem ser chamadas de sistemas entrelaçados (Skinner, 1953, 1957) ou contingências comportamentais entrelaçadas (CCEs) (Glenn, 1991, 2004). A manipulação deste tipo de contingência permite investigação empírica de cooperação (Hake, Donaldson, & Hyten, 1983; Hake, Olvera, & Bell, 1975; Hake & Schmid, 1981; Hake & Vukelick, 1972, 1973; Hake, Vukelich, & Kaplan, 1973; Hake, Vukelich, & Olvera, 1975; Schmid & Hake, 1983; Schmitt, 1976, 1984, 1987; Schmitt & Marwell, 1968, 1971a, 1971b), competição (Buskist, Barry, Morgan, & Rossi 1984; Buskist & Morgan, 1987; Dougherty & Cherek, 1994; Hake, Olvera, & Bell, 1975; Lindsley, 1966), empatia (Watanabe & Ono, 1986) e altruismo (Weiner, 1977).

A demonstração de que o comportamento de um indivíduo é parte relevante do ambiente em que outro se comporta é desafiadora do ponto de vista metodológico. Azrin e Lindsley (1956) conduziram um experimento para investigar a possibilidade de aquisição, manutenção e extinção de cooperação entre crianças, por meio da manipulação de um único reforçador. Duas crianças sentavam-se frente a frente em uma mesa, com três orifícios e um bastão de cada lado. Cada vez que os bastões eram colocados em orifícios opostos, dentro de um intervalo de 0.04 s (resposta cooperativa), uma bala (estímulo reforçador) era depositada em um recipiente no centro da mesa. Os resultados mostraram que a taxa da resposta cooperativa variou em função da apresentação do reforçador de forma muito semelhante ao que ocorre com uma resposta individual. Cohen e Lindsley (1964) também desenvolveram um procedimento para o estudo de cooperação. Dois participantes, em cômodos separados, sentavam-se em frente a um painel contendo um êmbolo. Neste estudo, uma resposta
cooperativa era registrada quando os dois participantes puxavam o êmbolo dentro de um intervalo de 0.5 s. As respostas de um participante eram sinalizadas para o outro por meio de uma luz. Altas taxas de respostas cooperativas foram obtidas a partir deste procedimento. Schmitt e Marwell (1968) chamaram a atenção para o fato de que essas altas taxas de “respostas cooperativas” não eram necessariamente indicativas de que o comportamento de um participante estava sob o controle discriminativo do comportamento do outro. Os autores propuseram uma alteração na exigência para o reforçamento, adicionando um atraso entre as respostas. Na tarefa modificada, a resposta do primeiro participante acendia uma luz no painel do outro participante por um período de 3 s, o reforço ocorria se o segundo participante puxasse o êmbolo em até 0.5 s após a luz ter sido apagada. Com este procedimento, altas taxas de respostas cooperativas só foram obtidas na presença das luzes que sinalizavam as respostas do outro participante. Na ausência das luzes, a taxa foi zero ou próxima de zero. Os autores concluíram que a alteração se mostrou efetiva em garantir que os participantes estivessem respondendo sob o controle discriminativo dos comportamentos uns dos outros.

Estudos como os de Azrin e Lindsley (1956), Cohen e Lindsley (1964) e Schmitt e Marwell (1964) sugerem a possibilidade de seleção de uma unidade que engloba os comportamentos entrelaçados de dois ou mais indivíduos, funcionando como um todo integrado. Essa unidade tem sua probabilidade de ocorrência alterada em função de uma dada consequência, que só é possível de ser produzida diante do entrelaçamento das contingências comportamentais dos participantes. Como apontam Vichi, Andery e Glenn (2009), os efeitos da apresentação de consequências externas sobre o desempenho de um grupo como um todo também foram investigados em áreas como a psicologia social experimental e sociologia experimental (e.g., Elliot & Meeker, 1984; Gray, Griffith, Von Broembsen, & Sullivan, 1982; Gray, Judson & Duran-Aydintug, 1993; Griffith & Gray, 1978; Judson & Gray, 1990; Wiggins, 1969).
Inspirado na tarefa de Wiggins (1969), Vichi et al. (2009) realizaram um experimento para avaliar recorrência de interações entre participantes em função de consequências contingentes a estas interações. O procedimento consistiu em apresentar uma consequência comum para o grupo contingente a um determinado tipo de distribuição de ganhos. Grupos de quatro participantes escolhiam, consensualmente e a cada tentativa, uma linha em uma matriz 8x8. A intersecção entre linhas e colunas poderia gerar acerto ou erro (ganho ou perda de fichas trocáveis por dinheiro), o que dependia de como os participantes haviam distribuído entre si os ganhos obtidos na tentativa anterior. Duas condições foram planejadas: uma requeria distribuição igualitária dos ganhos para que uma consequência fosse liberada e a outra exigia distribuição desigual. As decisões sobre a divisão de ganhos, resultando em um produto (distribuição igual ou desigual) constituíam as CCEs às quais uma dada consequência, chamada de consequência cultural, era contingente. A recorrência de um padrão particular de distribuição de ganhos (CCEs), em função de uma dada consequência, caracteriza a seleção no nível cultural.

Hunter (2012) empregou o termo *culturante* para identificar a unidade no nível cultural análoga ao operante no nível ontogenético, ou seja, a unidade que é selecionada e que evolui a partir de sua interação com o ambiente selecionador. Um culturante, assim, engloba todas as CCEs que atendem ao critério para a produção de uma dada consequência. A relação funcional entre culturantes e a consequência selecionadora, é o que tem sido chamado de metacontingência (e.g., Glenn, 2004). Embora dados de pesquisas já tivessem apontado para a possibilidade de seleção de uma unidade que envolve os comportamentos de dois ou mais indivíduos, a proposição do conceito de metacontingência para lidar com esse tipo de fenômeno foi importante para a área por que fomentou o debate sobre os processos de seleção no nível cultural e conduziu ao desenvolvimento de práticas de pesquisa (Andery, 2011).
Desde o trabalho de Vichi et al. (2009), muitos pesquisadores têm se dedicado ao desenvolvimento de protocolos de pesquisa para o estudo de relações condicionais entre CCEs e alterações ambientais, i.e., metacontingências. Um desses protocolos utiliza uma tarefa inspirada em Vichi et al. (2009), na qual participantes escolhem linhas de uma matriz colorida (e.g., Cavalcanti, Leite, & Tourinho, 2014; Pavanelli, Leite, & Tourinho, 2014; Vichi, 2012). A consequência cultural é contingente a uma dada combinação entre as cores das linhas escolhidas pelos participantes. Outro protocolo envolve uma tarefa computadorizada, na qual os participantes inserem números em espaços designados na tela. A consequência cultural é contingente a determinadas relações entre as somas dos números inseridos pelos participantes (e.g., Amorim, 2010; Caldas, 2009; Pereira, 2008; Saconatto & Andery, 2013). O protocolo do dilema envolve tarefas baseadas no Jogo Dilema do Prisioneiro, derivado da Teoria dos Jogos. Os participantes têm que escolher, a cada tentativa, uma, dentre duas possibilidades de letra (X ou Y) ou cor (Vermelho e Verde). A consequência cultural é contingente a determinadas combinações de escolhas (e.g., XXXX ou YYYY) (e.g. Costa, Nogueira, & Vasconcelos, 2012; Morford & Cihon, 2013; Ortu, Becker, Woelz, & Glenn, 2012). Outro protocolo envolve um jogo de xadrez adaptado. Dois participantes movem uma peça através do tabuleiro e a consequência cultural é liberada quando as duas peças se encontram em células adjacentes (Azevedo, 2015; Vasconcelos & Todorov, no prelo). Ainda outras diferentes tarefas foram utilizadas por Sampaio et al., (2013) e Smith, Houmanfar and Louis (2011).

Todas as pesquisas realizadas com o protocolo dos números e algumas que empregaram o protocolo da matriz (e.g. Pavanelli et al., 2014; Vichi, 2012) incluíram um procedimento de substituição de participantes, no qual participantes experientes na tarefa eram gradualmente substituídos por participantes ingênuos (Baum, Richerson, Efferson, & Paciotti, 2004). Esse procedimento possibilita a produção de linhagens culturais (Glenn, 2004;
Todorov et al., 2015), quando as CCEs passam a recorrer independentemente dos participantes originais. Possibilita, portanto, o estudo de um processo que é distinto da seleção cultural, a transmissão cultural.

Outra diferença entre os experimentos foi a programação adicional de contingências operantes (e.g., Borba, 2013; Cavalcanti et al., 2014; Magalhães, 2013; Pavanelli et al., 2014; Saconatto & Andery, 2013; Sampaio et al., 2013). Na maioria das pesquisas que incluíram esta manipulação, contingências operantes e metacontingências requeriam respostas e CCEs independentes entre si, i.e., era possível atender, ao mesmo tempo, às exigências de ambas. Já as contingências operantes e metacontingências programadas por Borba (2013) e Magalhães (2013) podem ser descritas, de acordo com Tourinho e Vichi (2012), como conflitantes: a ocorrência das CCEs que produzem uma consequência cultural para o grupo implica na emissão de respostas que produzem consequências aversivas ou reforçadores de menor magnitude para o indivíduo.

Toledo et al. (2015) desenvolveram um software no qual a única resposta requerida consiste em pressionar o botão do mouse. Essa resposta é livre para ocorrer e o experimentador pode planejar diferentes critérios para a apresentação de consequências individuais e culturais. O software foi chamado de Culturante Livre. Na tela do computador ficam visíveis até quatro quadrantes, a depender do número de participantes. Em cada quadrante há uma torneira e um galão. A tarefa dos participantes consiste em clicar com o botão esquerdo do mouse sobre sua respectiva torneira. O programa possibilita que diferentes contingências operantes e metacontingências sejam programadas simultaneamente. A contingência programada para o comportamento individual especifica que pressões ao botão produzem reforço de acordo com um dado esquema (VI, FI, VR, FR ou CRF). A metacontingência requer alguma coordenação entre as respostas dos participantes para que uma consequência para o grupo seja liberada. Os autores conduziram um estudo piloto para
testar parte das ferramentas do software. Duas tríades foram expostas a diferentes condições experimentais. Para uma delas, a contingência operante consistiu em um esquema de razão variável (VR 2) e para a outra, intervalo variável 10 s (VI 10 s). A metacontingência, quando programada, requeria um intervalo de tempo entre as respostas dos participantes (espaçamento), que variou de 1 a 2 s. A introdução da metacontingência afetou tanto as taxas de respostas como as taxas de CCEs. Embora os resultados sejam sugestivos de seleção cultural, o fato de o estudo ter empregado apenas duas tríades, expostas a condições e delineamentos diferentes e não ter planejado um critério de estabilidade para mudanças de condições, torna-os ainda muito incipientes.

Tendo em vista a possibilidade de utilizar a taxa de respostas obtida em esquemas de reforço como linha de base para testar os efeitos da exigência de um padrão que envolve coordenação dos desempenhos de diferentes participantes, os objetivos do presente trabalho foram: (1) investigar os efeitos da manipulação de uma relação condicional entre CCEs e alterações ambientais em um procedimento análogo ao de operante livre, comparando os efeitos da metacontingência sobre a seleção de CCEs e sobre os desempenhos operantes em dois esquemas de reforço; (2) investigar os efeitos de um procedimento de substituição de participantes sobre a transmissão de operantes e culturantes.

Método

Participantes

Participaram do experimento 54 estudantes universitários, com idades entre 18 e 45 anos, sendo 10 do sexo masculino e 44 do sexo feminino. O recrutamento foi realizado por meio de contato pessoal da pesquisadora, nas salas de aula de uma universidade. Todos os participantes assinaram o Termo de Consentimento Livre e Esclarecido. A pesquisa foi
aprovada no comitê de ética em pesquisa do Instituto de Psicologia da Universidade de São Paulo (Parecer 471.795) e no comitê de ética em pesquisa da Universidade Federal de Mato Grosso (Parecer 488.187).

Equipamentos e Setting experimental

O software Culturante Livre (Toledo et al., 2015), foi utilizado para: (1) controlar a apresentação da tarefa, (2) arranjar as contingências envolvendo desempenho individual e efeitos programados para o desempenho entrelaçado dos participantes; (3) registrar os dados do experimento.

As sessões experimentais ocorreram em uma sala com uma mesa retangular grande, três computadores-clientes (com mouse e sem teclado), dispostos lado a lado, e outra mesa com o computador servidor (ver Figura 1).

![Figura 1](image)

Figura 1. Representação esquemática da sala Experimental. P1, P2 e P3 indicam as posições de cada participante na tarefa (Posição 1, Posição 2 e Posição 3); EXP indica a localização do experimentador.

Procedimento

O experimento foi composto de duas fases: seleção de culturantes e transmissão de culturantes. Vinte e sete participantes foram incluídos apenas na segunda fase. Na primeira fase, 27 participantes formaram 9 tríades. Quando cada participante de uma tríade estava...
sentado diante de seu computador, o experimentador ativava o programa e lia com eles as instruções, impressas em uma folha (foi utilizado um cartão contendo o layout do jogo impresso, para auxiliar na compreensão das instruções):

A atividade que vocês irão realizar consiste num jogo, por meio do qual vocês poderão acumular dinheiro. Vocês devem descobrir a melhor maneira de produzir ganhos. Neste jogo, a função de vocês é ajudar moradores de uma pequena cidade, que estão há 5 dias sem água. Vocês podem contribuir enchendo galões de água. Na tela do computador existem três quadrantes, cada um designado a um jogador. Cada quadrante aparece com uma cor de fundo para o seu respectivo jogador (verde para o participante da esquerda, cor-de-rosa para o participante do meio e amarelo para o participante da direita). Em cada quadrante, há uma torneira e um galão (abaixo da torneira), você pode encher galões pressionando o botão do mouse sobre a sua respectiva torneira (não adianta clicar nas torneiras dos outros participantes ou em qualquer outra parte da tela). Cada vez que um participante clica sobre a sua torneira, o seu quadrante pisca para os demais. Sua ajuda será recompensada com uma quantia em dinheiro. Cada galão completo lhe renderá R$ 0,01. Acima dos quadrantes, há um espaço que representa uma área comum, onde há uma caixa d’água. Em alguns períodos, também será possível produzir um bônus que faz com que a caixa d’água da cidade seja preenchida mais rapidamente. Para isso, o grupo terá que trabalhar em conjunto e tentar descobrir qual é a estratégia que produz bônus. Os bônus produzidos ficam registrados no hidrômetro, ao lado da caixa d’água. Cada bônus acumulado renderá ao grupo R$ 0,10. Tentem produzir a maior quantidade de água que conseguirem. Vocês podem conversar sobre a tarefa o quanto quiserem, fiquem à vontade. Bom trabalho!
Durante a primeira fase do experimento, as folhas contendo as instruções impressas ficaram disponíveis ao lado dos computadores dos participantes.

A Figura 2 mostra a tela do computador de um participante na Posição 1 (verde), em dois diferentes momentos: quando um participante na Posição 3 (amarelo) emite uma resposta (à esquerda) e quando um sinal de bônus é apresentado (à direita).

Os eventos programados para ocorrer após as respostas dos participantes eram de dois tipos: porções de água, que enchiam o galão (os galões acumulados ficavam registrados no ícone de galão em miniatura, localizado em cada quadrante) e bônus, que enchiam a caixa d’água e ficavam registrados no ícone de um hidrômetro, localizado na área comum, acima dos quadrantes dos participantes. Tanto os galões, quanto os bônus acumulados eram posteriormente trocados por uma quantia em dinheiro, ao final do experimento. A quantia acumulada por meio de bônus era entregue para a tríade, que podia dividir como quisesse.

Contingências operantes. Para quatro tríades, a contingência operante foi programada da seguinte maneira: pressionar o botão sobre a torneira produzia uma porção de água em um esquema de Intervalo Variável 6 s (VI 6 s). Dez porções de água enchiam um galão, o que resultava na apresentação de um som (Som 1) e a adição de 01 galão no visor situado no canto superior direito do quadrante. Neste momento, um novo galão vazio aparecia abaixo da torneira. Portanto, do ponto de vista do comportamento individual, pressionar o botão produzia reforço (uma porção de água) em média a cada 6 s. Para as outras 5 tríades, foi programado um esquema de Razão Variável 2 (VR 2) na contingência operante. Neste caso, em média, a cada duas respostas, uma porção de água era liberada.

Metacontingência. A metacontingência, quando programada, especificava que: quando o intervalo entre as respostas dos três participantes era maior do que x s, a palavra “Bônus” aparecia acompanhada de um som específico. Adicionalmente, uma porção de água era acrescentada à caixa d’água. Qualquer um dos participantes poderia responder primeiro,
mas para que o bônus fosse apresentado, o segundo participante a clicar tinha que esperar, pelo menos, \(x \) s desde a resposta do primeiro, e o terceiro, mais \(x \) s em relação à do segundo. Portanto, cada participante tinha que clicar uma única vez e de modo espaçado em relação à resposta do outro. Dois cliques, ou um clique antes do cumprimento do intervalo, zerava a sequência. O elemento chave aqui, como sugerido por Schmitt e Marwell (1968), foi a adição de um atraso entre as respostas dos participantes, com o objetivo de tentar garantir que as respostas dos participantes estivessem sob o controle discriminativo umas das outras.

Figura 2. Tela do computador de P1 (com fundo verde) em dois momentos: no momento em que P3 clica sobre sua torneira (esquerda) e no momento em que um bônus é apresentado (direita).

O intervalo entre respostas exigido inicialmente foi de 1000 ms (CCE alvo 1000). Quando a CCE alvo era emitida de maneira estável por seis minutos consecutivos, o espaçamento aumentava em 250 ms. A estabilidade foi definida da seguinte maneira: quando taxa da CCE alvo era de até 5 ocorrências por minuto, aceitava-se uma variação de até 2
ocorrências por minuto (e.g. ocorrência de 3 a 5 CCEs ao longo de seis minutos consecutivos); quando a taxa era superior a 5 e inferior a 10, aceitava-se uma variação de até 3 ocorrências por minuto; e quando a taxa era maior ou igual a 10, aceitava-se uma variação de até 4 por minuto. Caso a exigência de um dado intervalo de espaçamento produzisse a ocorrência de três minutos consecutivos com uma taxa de CCEs semelhante à apresentada nos três minutos finais da linha de base, o valor do intervalo era reduzido. O objetivo era estabelecer um espaçamento que tivesse sido pouco frequente durante a linha de base, mas que fosse passível de ser mantido a uma taxa relativamente alta e estável. Ao final do experimento, o intervalo exigido na metacontingência variou entre 500 e 1250 ms.

Como um dos objetivos do estudo era investigar os efeitos da metacontingência sobre o desempenho operante em esquemas de reforço, optou-se por dois esquemas bastante diferentes entre si. O esquema de intervalo variável foi escolhido por duas razões: (1) a contingência para o comportamento individual não deveria interferir ou concorrer com a metacontingência (assim como ocorre na maioria dos estudos experimentais sobre metacontingências, e.g., Amorim, 2010; Caldas, 2009; Costa et al., 2012; Morford & Cihon, 2012; Vichi, 2012); (2) o esquema não deveria favorecer a ocorrência de pausas, o que dificultaria a análise posterior do espaçamento entre as respostas dos participantes. Com o esquema individual em VI, os participantes poderiam produzir todos os reforçadores individuais programados e, ao mesmo tempo, as consequências culturais. Ou seja, era possível cumprir simultaneamente as exigências da contingência operante e da metacontingência. Já com o esquema de VR, o cumprimento das exigências de uma contingência conflita com o cumprimento da outra, de modo que os participantes têm que escolher qual delas priorizar. Para cumprir as exigências da metacontingência, os participantes têm que responder espaçadamente em relação às respostas uns dos outros, como em esquemas de razão a taxa de
reforços é diretamente proporcional à taxa de respostas, atender à metacontingência implica na obtenção de um número menor de reforçadores.

Delineamento Experimental

Durante a primeira fase, seleção de culturantes, duas condições foram conduzidas em um delineamento de reversão ABAB: na Condição A – “Operante”, foi programada apenas a contingência para o comportamento individual; na condição B – “Culturante” – foram programadas concomitantemente contingência operante e metacontingência.

O objetivo da Condição A foi fornecer uma linha de base para avaliar os efeitos da manipulação da consequência cultural (a variável independente do estudo) sobre a ocorrência das CCEs requeridas (a variável dependente do estudo), na Condição B.

O critério para o encerramento da primeira exposição à Condição A foi de pelo menos 12 min, com estabilidade na frequência da CCE alvo nos últimos 3 min. A segunda exposição foi encerrada quando a CCE alvo ocorreu com uma frequência semelhante à apresentada durante os 3 min finais da primeira exposição (linha de base), por 3 min consecutivos e desde que tivessem transcorridos, pelo menos, 12 min.

Os critérios para o encerramento da Condição B foram os seguintes: (a) 12 min consecutivos com emissão da CCE alvo; (b) estabilidade na frequência da CCE nos últimos 6 min.

A segunda fase do experimento, transmissão de culturantes, começava com dois participantes experientes (que passaram pela Fase 1) e um novo integrante. Antes de iniciarem a atividade, o experimentador avisava que os participantes experientes deveriam instruir o recém-chegado. Nenhuma instrução era dada pelo experimentador e a folha de instruções era retirada. As contingências programadas na Condição B antecedente permaneceram inalteradas durante toda a fase. O procedimento de substituição de participantes baseou-se no estudo de
Baum et al. (2004): a cada 12 min, um participante antigo era substituído por um novo. A substituição se deu pela posição: o participante da Posição 1 era o primeiro a deixar o experimento, em seguida, o da Posição 2 e, por fim, o da Posição 3. O procedimento de substituição de participantes foi repetido até que o grupo composto por três participantes novos (P4, P5 e P6) tivessem trabalhado por 12 min na tarefa. A Tabela 1 apresenta o delineamento experimental e as relações de dependência programadas no experimento.

Tabela 1

Delineamento experimental.

Fase	Participantes	Condição	Contingência operante	Metacontingência
Seleção de Culturantes	P1, P2, P3	A	Clicar produz reforço	RPX > x s; RPY > x s; RPZ ↔ CC
		B	em VI 6 s ou	
		A	VR 2	
Transmissão de Culturantes	P4, P2, P3	B	Clicar produz reforço	RPX > x s; RPY > x s; RPZ ↔ CC
	P4, P5, P3		em VI 6 s ou	
	P4, P5, P6		VR 2	

*O intervalo de x s foi definido após um procedimento de modelagem.

Resultados

O número de sessões realizadas variou entre as tríades – entre três e sete sessões, de aproximadamente 40 min. Para as Triades 1, 2, 3 e 4 foi programado um esquema de reforço em intervalo variável (VI 6 s), na contingência operante. Para as Triades 5, 6, 7, 8 e 9, o esquema de reforço foi o VR 2.
Seleção de Culturantes

A Figura 3 apresenta o número de respostas (Rs) e número acumulado de CCEs, por minuto, ao longo da Fase 1, obtidos com as Triades 6 e 4. Esta figura permite observar as mudanças momento-a-momento nos processos de seleção operante e cultural, em função da manipulação da metacontingência. As Triades 6 (VR) e 4 (VI) foram escolhidas por serem representativas dos dois tipos de relação entre frequência de respostas e frequência de CCEs que ocorreram no experimento. As curvas de respostas e de CCEs obtidas com as Triades 1, 2 e 3, em VI, e 5, 8 e 9, em VR, foram parecidas com as da Triade 6. De um modo geral, durante a linha de base, há uma alta taxa de respostas, com bastante variação entre os participantes da tríade. A taxa de CCEs é zero ou próxima de zero. A introdução da metacontingência produz uma redução nas taxas de respostas e à medida em que as CCEs passam a ocorrer de forma mais frequentes, as taxas de respostas dos participantes tornam-se cada vez mais próximas entre si. Nos períodos finais das Condições B (em cinza), os pontos dos três participantes praticamente se sobrepõem. A suspensão da metacontingência produz uma desaceleração na curva de CCEs e um aumento na variabilidade entre as taxas de respostas emitidas pelos participantes, que, de um modo geral, alternam períodos e alta e baixa taxa, ao longo da condição. Com a reintrodução da metacontingência, as taxas de respostas e de CCEs retornam quase imediatamente ao padrão apresentado nos minutos finais da Condição B anterior. As curvas da Triade 7, em VR, se parecem com as da Triade 4, em VI. Para essas duas Triades, a curva acumulada de CCEs se assemelha às obtidas com as outras tríades, com aceleração positiva nas Condições B e negativa nas Condições A. No entanto, as taxas de respostas dos três participantes permanece praticamente inalterada desde os minutos finais da linha de base até o final do experimento (com exceção de alguns picos de respostas). O Apêndice A apresenta os gráficos das outras sete tríades, ao longo da Fase 1.
Figura 3. Número de Respostas e número acumulado de CCEs (eixo secundário), por minuto, apresentados pelos participantes das Tríades 6 (painel superior) e 4 (painel inferior), ao longo da Fase 1. As linhas tracejadas indicam mudanças na exigência de espaçamento. As linhas contínuas sinalizam mudanças de condições. As áreas em cinza indicam os períodos de estabilidade na taxa de CCEs.
A Tabela 2 apresenta as taxas de respostas (Rs) e as taxas de CCEs obtidas nos três minutos finais (período de estabilidade) de cada uma das condições experimentais, para todas as nove tríades. Durante a primeira Condição A, quando a contingência operante era a única em vigor, houve bastante variação nas taxas de respostas entre as tríades. Por exemplo, as Triades 4, em VI e 7, em VR, terminaram a linha de base emitindo uma baixa taxa de respostas (6,9 e 14/min, respectivamente). As Triades 5 e 9 (VR) e 2 e 3 (VI) terminaram a primeira Condição A emitindo mais do que 250 respostas por minuto. As Triades 1 (VI), 6 e 8 (VR) emitiram entre 95 e 173 respostas/min, no final desta condição. A introdução da metacontingência, na primeira Condição B, resultou em uma redução acentuada (em torno de 90%) nas taxas de respostas de 7 das 9 tríades. Para a Triade 7, a redução foi de 57% e para a Triade 4 (VI), a taxa de respostas permaneceu inalterada. Para as Triades 6, 7, 8, em VR, e 4, em VI, as taxas de Rs e de CCEs praticamente se igualaram no final desta condição. Isso significa que cada resposta emitida contribuiu para a produção de um bônus. As Triades 1 (VI) e 9 (VR) emitiram cerca de 1,5 resposta para cada CCE. Para as triades 5 (VR) e 2 e 3 (VI), a taxa de Rs foi pelo menos duas vezes maior do que a taxa de CCEs. A suspensão da consequência cultural, durante a segunda Condição A, resultou em um retorno da taxa de respostas aos níveis de linha de base, para as Triades 8 e 9, ambas em VR 2. Para as Triades 1 (VI) e 7 (VR) houve um aumento na taxa de Rs em relação a linha de base. As Triades 2 (VI) e 6 (VR) apresentaram uma taxa de Rs muito maior do que no final da condição B anterior, mas menor do que no final da Linha de base. A taxa de Rs da Triade 5 (VR), nos três minutos finais da segunda condição A, ficou próxima à taxa apresentada nos minutos finais da Condição B anterior. De um modo geral, com exceção das triades 4 e 7, houve muita variação nas taxas de respostas ao longo do período de extinção, com taxas muito altas em alguns minutos e muito baixas ou nulas em outros. Com a reintrodução da metacontingência, na segunda Condição B, as taxas de Rs de todas as Triades retornam aos níveis apresentados no
final da primeira exposição à Condição B. As taxas de Rs e de CCEs praticamente se igualaram para seis das nove tríades. Apenas as tríades 5 (VR), 2 e 3 (VI) continuaram a emitir um número maior de Rs/min em relação ao número de CCEs/min. O Teste t mostrou não houve diferenças significativas entre as tríades, em função do esquema individual, tanto para taxas de Respostas, \(t(160) = -0.225, p = .822, CI (95\%)\: [-29.09, 23.08] \), como para taxas de CCEs, \(t(160) = -1.466, p = .145, CI (95\%)\: [-2.92, 0.36] \).

Tabela 2

Taxas de Respostas e Taxas de CCEs obtidas nos três minutos finais de cada condição experimental (A1, B1, A2 e B2), para as nove tríades.

Triâdes (esquema individual)	Taxa de Rs	Taxa de CCEs						
	A1	B1	A2	B2	A1	B1	A2	B2
Triade 1 (VI 6 s)	95.78	14.56	181.89	14.61	0.33	9.83	0.00	12.17
Triade 2 (VI 6 s)	283.78	21.78	129.67	25.56	0.00	6.67	0.00	6.50
Triade 3 (VI 6 s)	255.78	17.78	83.11	18.67	0.00	8.5	0.00	10.17
Triade 4 (VI 6 s)	6.89	6.61	25.89	7.28	3.67	6.17	1.00	6.83
Triade 5 (VR 2)	320.22	27.22	26.44	25.72	0.00	3.5	0.33	5.50
Triade 6 (VR 2)	173.56	14.45	52.00	15.22	0.00	13.67	0.00	13.83
Triade 7 (VR 2)	14.00	6.00	19.78	5.50	0.33	5.50	0.33	5.50
Triade 8 (VR 2)	155.66	17.55	172.11	18.17	0.00	16.83	0.00	16.17
Triade 9 (VR 2)	266.89	13.89	216.33	15.67	0.00	10.67	0.00	14.17

A Figura 4, inspirada na Figura 2 de Azrin e Lindsley (1956), mostra os registros cumulativos de CCEs, ao longo de todas as condições experimentais, obtidos com três tríades: a Triade 6, que apresentou uma alta taxa de culturantes, ao final do experimento; a Triade 3,
que apresentou uma taxa intermediária; e a Tríade 5, que apresentou uma baixa taxa de culturantes. Os traços oblíquos, nas curvas, indicam as mudanças de condições.

Figura 4. Número acumulado de CCEs apresentado pelas Tríades 6, 3 e 5, ao longo da Fase 1. Os traços oblíquos sinalizam as mudanças de condições (ABAB). Foram plotadas apenas as CCEs finais que, para as três tríades, requeriam um espaçamento de 750 ms entre as respostas dos três participantes.

As curvas da Figura 4 ilustram a variabilidade entre tríades obtida no experimento, ao longo dos processos de aquisição, extinção e reaquisição de culturantes. Embora todas as tríades tenham atingido os critérios para mudanças/encerramento de condições, o processo de seleção foi mais lento e menos evidente para algumas delas e mais rápido e evidente para outras, assim como no estudo de Azrin e Lindsley (1956). No entanto, é claro o efeito da apresentação da consequência cultural sobre a recorrência de CCEs.
A aquisição da CCE alvo, durante a primeira exposição à Condição B, ocorreu de forma bastante variada entre as tríades. Para todas elas, o intervalo de espaçamento requerido na metacontingência foi definido por um procedimento de modelagem. Esse procedimento ocorreu em 6 etapas para as Triades 5 (1000, 750, 1000, 800, 900, 750 ms) e 1 (1000, 500, 750, 1000, 850, 1000 ms); 5 etapas para a Triade 2 (1000, 500, 750, 850, 750 ms); 4 etapas para as Triades 6 (1000, 750, 500, 750 ms) e 7 (1000, 1250, 1000, 1250 ms); três etapas para as Triades 3 (1000, 500, 750 ms) e 9 (1000, 500, 750 ms); e duas etapas para as Triades 4 (1000, 1250 ms) e 8 (1000, 500 ms). A decisão sobre o intervalo final exigido na metacontingência baseou-se na frequência com que CCEs com diferentes intervalos ocorreram durante a linha base. Por exemplo, CCEs com intervalo de 1000 ms foram muito frequentes durante a linha de base da Triade 7 (5/min), enquanto CCEs com intervalo de 1250 ms tiveram uma frequência de 0,3/min. Por isso, quando o critério de estabilidade na emissão de CCEs com intervalo de 1000 ms foi atingido, na primeira Condição B, a exigência aumentou de 1000 para 1250 ms. Mas o retorno da frequência desta CCE aos níveis de linha de base, fez com que o intervalo anterior (de 1000 ms) fosse reintroduzido. O procedimento de modelagem prosseguiu até que se conseguisse obter uma taxa relativamente alta e constante de CCEs com espaçamento de 1250 ms. Com a Triade 8, nenhuma CCE com espaçamento de 500 ms foi registrada durante a linha de base. Mesmo com a exigência deste intervalo curto entre respostas, a primeira CCE só ocorreu após 21 minutos de exposição à Condição B e o critério de estabilidade foi alcançado 60 min depois da produção do primeiro bônus. Apesar da metacontingência requerer diferentes intervalos entre as respostas dos participantes, para todas as nove tríades, quando a metacontingência foi introduzida, as CCEs requeridas passaram gradualmente a ocorrer a uma taxa significativamente mais alta, em relação a linha de base ($d = 2.82$, $p < .01$), e estável. O tempo para cumprimento do critério de seleção de culturantes, na primeira exposição à Condição B variou de 58 a 152 minutos.
A suspensão da consequência cultural produziu uma maior variação e redução na taxa de CCEs. Todas as tríades atingiram o critério para o encerramento da segunda Condição A (extinção), ou seja, as CCEs passaram a ser emitidas a uma taxa igual (ou menor, no caso da Triade 4) à apresentada nos três minutos finais da linha de base. O processo de extinção ocorreu de forma mais lenta para algumas tríades (e.g., Triades 2 e 5, com 36 e 44 min) e mais rápida para outras (e.g., Triades 8 e 9, com 12 e 13 min), mas para todas elas a curva de CCEs foi uma função com aceleração negativa.

Quando a metacontingência foi reintroduzida, na segunda Condição B, após a obtenção do primeiro bônus, as CCEs rapidamente voltaram a ser emitidas a uma taxa muito próxima à registrada nos minutos finais da Condição B anterior. A duração da segunda exposição à Condição B variou de 14 a 59 minutos, entre todas as tríades. O critério de estabilidade/encerramento foi atingido em um tempo muito mais curto (entre duas e dez vezes menor) do que o requerido na primeira Condição B.

Os resultados da Fase 1 mostraram, portanto, que a taxa de ocorrência de CCEs muda em função da apresentação ou não de uma dada consequência cultural. Esta manipulação afetou também as taxas de respostas dos diferentes participantes sob dois esquemas de reforço. Os efeitos sobre o desempenho operante dependeram do padrão de respostas com o qual os participantes terminaram a condição de linha de base, a despeito de o esquema programado na contingência individual ter sido um VI ou um VR.

Transmissão de Culturantes

Na segunda fase do experimento os participantes de cada uma das nove Triades foram gradualmente substituídos por participantes ingênuos na tarefa. Coube aos participantes antigos, instruírem os recém-chegados. Esta foi a única manipulação efetuada nesta fase do
experimento, todas as demais variáveis, presentes no final da Fase 1, permaneceram inalteradas. A Fase 2 teve a duração 36 minutos para todas as tríades.

Como resultado, três padrões distintos de transmissão puderam ser identificados. A Figura 5 mostra as curvas acumuladas de CCEs e as taxas de respostas dos participantes de três tríades que ilustram esses diferentes padrões de transmissão. Para as Triades 5 (VR) e 2 (VI), as taxas de CCEs aumentaram ao longo das substituições de participantes, enquanto as taxas de respostas tornaram-se gradualmente mais próximas entre si e menores. Com as Triades 3 e 4 (VI) e 7 e 8 (VR), as taxas de CCEs e de respostas permaneceram praticamente inalteradas ao longo das substituições de participantes. Para as Triades 1 (VI), 6 e 9 (VR), houve redução na taxa de CCEs e aumento nas taxas de respostas, com maior variação entre os participantes. Para a Triade 6, isso aconteceu na segunda substituição, com a entrada de P5 no lugar de P2. Para as Triades 1 e 9, apenas na última substituição, com a entrada de P6, no lugar de P3. O Apêndice B apresenta os resultados da Fase 2 para as outras seis tríades.
Figura 5: Número de respostas e número acumulado de CCEs, por minuto, ao longo das substituições de participantes, na Fase 2, para as Triades 2, 8 e 9.
As diferenças entre as taxas de CCEs e de Rs, ao longo da Fase 2, não podem ser atribuídas aos esquemas programados na contingência operante, visto que há triades em VI e em VR nos três tipos de padrões observados. Essas diferenças parecem estar relacionadas às taxas de CCEs apresentadas no final Fase 1. As Triades 2, 4, 5 e 7 terminaram a primeira fase emitindo uma baixa taxa de CCEs, em média 6/min, se comparadas com as demais triades. Entre essas quatro triades, duas apresentaram um aumento na taxa de CCEs ao longo das substituições de participantes: Triades 2 e 5. Para as Triades 4 e 7, as taxas de CCEs permaneceram muito próximas às apresentadas no final da Fase 1. A Triade 3 terminou a Fase 1 com uma taxa intermediária de CCEs, em torno de 10/min, e esta taxa manteve-se durante a Fase 2. As Triades 1, 6, 8 e 9 terminaram a primeira fase com as maiores taxas de CCEs: entre 12 e 16 CCEs/min. Para três delas (Triades 1, 6 e 9), houve redução na taxa de CCEs, em algum momento da Fase 2. Portanto, a entrada de novos participantes em triades que apresentavam baixas taxas de CCEs, no final da primeira fase, parece ter favorecido o aumento na eficácia da produção bônus. Por outro lado, quando as tríades já apresentavam taxas muito altas de CCEs, a entrada de novos participantes tendeu reduzir a eficácia da tríade em obter bônus.

Outra variável que poderia ajudar a explicar pelo menos parte das diferenças entre as tríades, durante a Fase 2, é a interação verbal entre os participantes. O tipo de instrução fornecida pelos participantes experientes e/ou outros mecanismos de controle social (reforço social, punição social) podem ter contribuído para o aumento, manutenção ou redução nas taxas de culturantes, ao longo das substituições de participantes. Essas variáveis não foram mensuradas no presente estudo.

Não obstante, os resultados da Fase 2 mostraram a transmissão de operantes e de culturantes, via mecanismos de aprendizagem social (instrução, imitação), ao longo da substituição dos participantes de uma tríade. Mesmo para as tríades que tiveram as taxas de
CCEs reduzidas, essas taxas ainda foram muito maiores e mais estáveis do que as taxas apresentadas pela tríade durante o período de aquisição de culturantes (início da primeira Condição B).

A Figura 6 reúne os dados das duas fases do experimento. Ela mostra a distribuição das variáveis dependentes (taxa de CCEs e taxa de respostas), obtidas nos períodos de estabilidade das Condições A e B, na Fase 1, e ao longo das substituições de participantes, na Fase 2, entre todas as tríades.

Figura 6. Distribuição das taxas de CCEs e taxas de respostas, para as nove tríades do experimento, nos períodos de estabilidade das condições A e B da Fase 1 e ao longo da substituição de participantes, na Fase 2.

É possível observar claramente na Figura 6 os efeitos das manipulações experimentais durante as fases em que houve seleção e transmissão de operantes e culturantes. As linhas horizontais centrais indicam a mediana. Os comprimentos das caixas e a amplitude das barras superiores e inferiores mostram a variação nas taxas de Rs e de CCEs durante as condições da Fase 1 e durante as três etapas de substituição de participantes da Fase 2. Nas condições A, as taxas de CCEs são baixas e as taxas de respostas, altas. Nas condições B e na Fase 2, o padrão claramente se inverte. Considerando a taxa de respostas, o padrão é simetricamente oposto.
nas condições A, as taxas de respostas são altas; nas condições B e Fase 2, as taxas de respostas são baixas.

A ANOVA mostrou que houve diferenças estatisticamente significativas entre as condições da Fase 1, tanto para taxa de CCEs, $F(3, 158) = 89.13, p < .001, \eta^2 = .63$, quanto para taxa de respostas, $F(3, 158) = 60.01, p < .001, \eta^2 = .53$. O *post hoc* de Tukey mostrou que as diferenças se deram apenas entre as condições A e B ($p < .001$, para todas as comparações). Não houve diferença estatisticamente significativa entre as duas Condições B e entre as duas condições A. Esse resultado confirma o forte efeito da variável manipulada, presente nas condições B e ausente nas condições A, sobre as variáveis mensuradas. Ou seja, as mudanças nas taxas de CCEs e de Rs, ao longo das condições experimentais, muito provavelmente se deveram à consequência cultural.

Na Fase 2, não houve diferenças significativas entre os dados de taxa de respostas, $F(2, 328) = 1,808, p = 0,166, \eta^2 = .01$, e taxa de CCEs, $F(2, 328) = 2,689, p = 0,069, \eta^2 = .01$, obtidos nas três etapas de substituição de participantes. A ANOVA e o *post hoc* de Tukey mostraram ainda que houve diferenças significativas entre as taxas de respostas, $F(6, 486) = 117.25, p < .001, \eta^2 = .59$, e as taxas de CCEs $F(6, 486) = 40.21, p < .001, \eta^2 = .332$, obtidas nas Condições A da Fase 1 e as obtidas nas três etapas da Fase 2 ($p < .001$, para todas as comparações). Não houve diferenças entre as duas Condições B, da Fase 1, e as três etapas da Fase 2, para ambas as medidas. Essas análises mostram que os resultados das três etapas de substituição de participantes são parecidos com os resultados das Condições B, da Fase 1. Fortalecem, portanto, a conclusão de que houve a transmissão dos padrões anteriormente aprendidos.

O teste de correlação de *pearson* mostrou uma correlação negativa e estatisticamente significativa entre taxa de respostas e taxa de CCEs ($r = -0,404, p < .001$). Isso significa que
quando as taxas de Rs foram altas as taxas de CCEs foram baixas e vice-versa. Esse dado pôde ser claramente observado na Figura 6.

Discussão

O primeiro objetivo do presente trabalho foi investigar os efeitos da programação de uma relação de dependência entre um padrão coordenado de espaçamento entre as respostas de três participantes e um efeito programado no ambiente – um bônus e um efeito visual na tela do computador (água em uma caixa d’água coletiva). Essa manipulação foi sobreposta a uma linha de base que consistia em responder mantido sob esquema VI ou VR. Os esquemas de VI e de VR foram escolhidos na tentativa de gerar ou não conflito entre aquilo que era exigido pelo esquema de reforço (individual) e aquilo que era exigido em termos de coordenação do grupo. Nesse sentido, buscou-se reproduzir dois tipos de relações entre contingências operantes e metacontingências encontradas na literatura da área: um no qual é possível atender ambas as exigências, sem prejuízos para o grupo ou para os participantes (e.g. Cavalcanti et al., 2014; Saconatto & Andery, 2013; Sampaio et al., 2013; Vichi, 2012); e outro no qual contingências operantes e metacontingências conflitam (e.g., Borba, 2013; Hunter, 2012; Magalhães, 2013).

Os resultados mostraram claramente que a manipulação da metacontingência foi efetiva em controlar um dado padrão de coordenação entre as respostas dos participantes. Para todas as nove tríades, a introdução e suspensão da metacontingência mostraram que a ocorrência das CCEs requeridas, a uma taxa relativamente alta e estável, dependeu da apresentação da consequência cultural contingente. Esses resultados são consistentes com a noção de metacontingência (Glenn, 2004) e fortalecem a ideia de que contingências comportamentais entrelaçadas e produtos agregados podem recorrer em função da apresentação de consequências culturais (Todorov et al., 2015).
Os resultados mostraram ainda que o processo de seleção de uma unidade que engloba os comportamentos de dois ou três participantes (culturante) é semelhante ao processo de seleção de operantes: a curva de aquisição é positivamente acelerada, mas a inclinação é bastante gradual; a curva de extinção é negativamente acelerada, com períodos alternados de altas e baixas taxas de respostas; a reaquisição é frequentemente abrupta, após o primeiro reforçamento (Catania, 1999). Esses dados são semelhantes aos apresentados por Azrin e Lindsley (1956). No experimento, a liberação do reforço requeria que duas crianças emíssem respostas de forma coordenada, em relação ao comportamento uma da outra. O que foi medido, a resposta chamada “cooperative”, envolvia necessariamente as respostas das duas crianças. Embora não tenham empregado qualquer termo novo na interpretação dos resultados, os autores trataram a resposta cooperativa como uma unidade e a distinguiram de respostas individuais. “The rate of a cooperative response change in much the same way as a function of single reinforcements as does an individual response” (Azrin & Lindsley, 1965, p. 102). Essa afirmação evidencia uma clara diferenciação entre o processo de condicionamento operante e um outro processo, em termos daquilo que muda em função da relação com o ambiente. Essas evidências, somadas aos resultados do presente trabalho e aos apresentados pelos diferentes protocolos de pesquisa citados (e.g., Cavalcanti et al., 2014; Ortu et al., 2012; Saconato & Andery, 2013; Sampaio et al., 2014; Vasconcelos & Todorov, no prelo; Vichi et al., 2009) mostram claramente um processo de seleção distinto do processo de seleção operante. São distintos por que envolvem mudanças nas frequências de unidades que são diferentes: respostas coordenadas de dois ou mais participantes, no primeiro caso, e respostas individuais, no caso do condicionamento operante. Tomados em conjunto, os dados da presente pesquisa e dos trabalhos citados, contribuem para fortalecer a noção de metacontingência como uma importante ferramenta, tanto conceitual como metodológica. Não se trata de encaixar um fenômeno em um conceito. O fenômeno foi demonstrado
empiricamente e antes mesmo da proposição do conceito, como no estudo de Azrin e Linsley. O conceito de metacontingência, enquanto ferramenta conceitual, preenche uma lacuna na área, ao possibilitar um tratamento apropriado a um processo de seleção que ocorre no nível cultural de análise. Enquanto procedimento, o conceito dá unidade ao conjunto de manipulações experimentais que envolvem relações condicionais entre CCEs e uma variável independente, contingente a essas CCEs.

No presente estudo, a manipulação de um arranjo de metacontingência afetou não apenas as taxas de ocorrência das CCEs requeridas, mas também as taxas individuais de respostas. Para sete das nove tríades, as taxas de respostas obtidas ao longo do experimento foram inversamente proporcionais às taxas de CCEs. Para as tríades em VR, isso já era esperado, uma vez que atender à metacontingência implicava em emitir muito menos respostas do que seria esperado sob esse esquema de reforço. Para os participantes das tríades em VI, as taxas de respostas poderiam ter permanecido baixas e constantes ao longo de todo o experimento, independente de mudanças nas taxas de CCEs (como ocorreu com a Triade 4). As tríades 1, 2 e 3, sob um esquema de VI 6 s, apresentaram taxas muito altas de respostas nas duas condições em que esta era a única contingência em vigor (Condições A). As curvas de respostas dessas tríades foram muito semelhantes às das tríades 6, 8 e 9, que estavam sob um esquema individual em VR. Por outro lado, os participantes da Triade 7, sob um esquema de reforço em VR 2, emitiram uma baixa taxa de respostas desde os últimos minutos da linha de base até o final do experimento. Os efeitos da manipulação da exigência de coordenação sobre os desempenhos individuais foram diretamente relacionados às taxas de respostas apresentadas no final da linha de base. Para as tríades que terminaram a condição emitindo alta taxa de respostas, aumentos e reduções nas taxas de CCEs foram acompanhados, respectivamente, por reduções e aumentos nas taxas de respostas. Para as tríades que terminaram a linha de base emitindo baixa taxa de respostas, aumentos e reduções nas taxas
de CCEs não afetaram as taxas de respostas, ou seja, as taxas de respostas permaneceram baixas ao longo de todas as condições experimentais, a despeito das mudanças nas taxas de CCEs.

Embora com procedimentos muito distintos do empregado neste trabalho, outros estudos que planejaram, simultaneamente, contingências operantes e metacontingências de forma não conflitante mostraram que a manipulação da consequência cultural não afetou as escolhas individuais dos participantes de diades, triades ou tétrades (e.g., Amorim, 2010; Caldas, 2009; Cavalcanti et al., 2014; Saconatto & Andery, 2013; Sampaio et al., 2013; Vichi, 2012). Ou seja, uma vez estabelecido um padrão de escolhas individuais (somas ímpares, linhas pares, etc.), este permanecia praticamente inalterado durante todo o experimento, independente da introdução ou suspensão de uma metacontingência que requeria uma dada combinação entre as escolhas dos participantes. Em estudos nos quais contingência operante e metacontingência conflitavam entre si, a metacontingência afetou tanto a ocorrência das CCEs como as escolhas individuais (e.g. Borba, 2013; Hunter, 2012). Esses últimos experimentos mostraram padrões muito distintos de respostas na presença e na ausência da metacontingência, mesmo a contingência operante permanecendo inalterada. Portanto, na presente pesquisa, a despeito do esquema de reforço individual programado, os resultados de sete, das nove tríades, se assemelham aos resultados de estudos que manipularam uma condição de conflito entre contingências operantes e culturais. Os resultados das Tríades 4 (VI) e 7 (VR) são mais parecidos com os de estudos que não incluíram uma condição de conflito entre estas contingências.

Uma das principais contribuições do presente estudo foi mostrar, simultaneamente, mudanças momento-a-momento nos processos de seleção operante e cultural. Muitos estudos demonstraram, ao mesmo tempo, os processos de seleção nos níveis comportamental e cultural (e.g., Cavalcanti et al., 2014; Saconatto & Andery, 2013; Pavanelli et al., 2014; Vichi,
No presente estudo, com um procedimento no qual as CCEs eram livres para ocorrer, foi possível observar características adicionais dinâmicas envolvendo os processos de seleção e extinção para operantes e culturantes. Com procedimentos de tentativas, por exemplo, a exposição a uma condição de suspensão das consequências culturais (extinção) raramente produz uma curva característica de extinção (ver Borba, 2013; Caldas, 2009; Vichi, 2012). Nestes procedimentos, independente da condição em vigor, a cada tentativa, os participantes têm que emitir respostas, caso contrário, o experimento não avança. Assim, mesmo quando a consequência cultural é suspensa, o grupo tem que, a cada tentativa, escolher uma linha ou inserir números ou selecionar um cartão (ou tecla), não sendo possível deixar de responder. No Culturante livre, os participantes podem não apenas deixar de coordenar suas respostas, como deixar de emitir respostas. Como esse procedimento é análogo ao de operante livre, empregado nos estudos sobre condicionamento operante, foi possível observar muitas semelhanças entre os registros cumulativos de CCEs e os de respostas, em função da manipulação de relações condicionais entre CCEs e eventos ambientais.

O segundo objetivo do presente trabalho foi investigar a transmissão de operantes e culturantes a partir de um procedimento de substituição de participantes. De um modo geral, os resultados mostraram que tanto padrões de Rs como de CCEs foram transmitidos, via mecanismos de aprendizagem social (instrução, imitação), ao longo das substituições dos integrantes das tríades. No entanto, houve variação nos padrões de transmissão: para duas tríades, as taxas de CCEs aumentaram e as taxas de Rs diminuíram; para quatro, ambas as taxas se mantiveram constantes; e para as outras três, as taxas de CCEs decresceram enquanto as taxas de Rs aumentaram, em relação à fase anterior. Os resultados de outros estudos que incluíram um procedimento de substituição de participantes (e.g., Amorim, 2010; Borba, 2013; Caldas, 2009; Pavanelli et al., 2014; Vichi, 2012) também mostraram variação nos padrões de ocorrência dos culturantes tanto ao longo das mudanças de participantes, quanto
entre tríades ou tétrades. Assim como ocorreu no presente experimento, algumas vezes, a entrada de um novo integrante resultava em redução na frequência de culturantes; outras vezes, o padrão não se alterava, ou havia um aumento na frequência. De um modo geral, os autores apontam a interação verbal como uma das principais variáveis responsáveis por tornar os grupos mais ou menos eficazes na produção de consequências culturais, ao longo de mudanças sucessivas de participantes. Baum et al. (2004) também mostraram que a transmissão de determinadas práticas de um grupo está relacionada ao tipo de instrução e/ou interação verbal estabelecida entre os seus membros. O presente estudo mostrou que a história de aquisição de culturantes também pode ser uma variável relevante no processo de transmissão.

Em suma, a pesquisa demonstrou a seleção (em termos de recorrência) e transmissão de uma unidade que engloba os comportamentos de três indivíduos, sob o controle dos comportamentos uns dos outros. Os resultados obtidos durante a primeira fase do experimento mostraram que as mudanças na frequência de emissão das CCEs foram função da manipulação da relação condicional entre estas CCEs e uma consequência cultural, em uma relação de metacontingência. Foram chamadas de culturantes as CCEs funcionalmente relacionadas à consequência cultural. A recorrência desses culturantes ao longo de substituições dos participantes das tríades demonstrou o processo de transmissão cultural, via mecanismos de aprendizagem social. Portanto, o experimento demonstrou a seleção e transmissão de culturantes com um procedimento análogo ao de operante livre. Estes resultados, somados aos apresentados pelos protocolos de pesquisas citados ao longo do trabalho (e.g., Ortu et al., 2012; Saconato & Andery, 2013; Sampaio et al., 2014; Vasconcelos & Todorov, no prelo; Vichi et al., 2009) fortalecem a noção de metacontingência como uma importante ferramenta, tanto conceitual como metodológica, para o estudo de fenômenos no terceiro nível de seleção por consequências, o cultural.
Um demonstração mais clara do efeito da metacontingência sobre a linha de base em esquemas de reforço foi limitada pelo fato de, durante a linha de base, não terem sido obtidos desempenhos típicos dos esquemas empregados. O fato das diferenças nos desempenhos em linha de base não poderem ser atribuídas aos esquemas de reforço programados aponta para a necessidade de um maior controle experimental em relação à contingência operante. Uma manipulação importante seria empregar, na linha de base, um critério de estabilidade que levasse em conta os desempenhos individuais. A linha de base deveria ser estendida até que os desempenhos individuais se adequassem às exigências dos esquemas de reforço (e.g., baixa taxa de Rs em VI e alta taxa em VR). Isso poderia requerer mudanças nos parâmetros dos esquemas, por exemplo, o emprego de um intervalo maior no VI. Se os comportamentos dos participantes estivessem adequados às exigências dos diferentes esquemas individuais, antes da manipulação da metacontingência, teríamos como avaliar com maior grau de controle, os efeitos dessa manipulação sobre padrões de respostas típicos desses esquemas. Futuras pesquisas devem investir nesse tipo de controle experimental.

De modo geral, o programa Culturante Livre (Toledo et al., 2015) abre caminho para novas perguntas e novas manipulações na investigação experimental de seleção e transmissão cultural. Entre elas estão: as múltiplas combinações entre diferentes esquemas de reforço e metacontingências que podem ser programados; a manipulação da intermitência da consequência cultural em esquemas de intervalo; a manipulação de diferentes histórias de reforço para metacontingência. Além disso, pode contribuir com diversas áreas de pesquisa que abordam fenômenos sociais, tais como cooperação, competição, altruísmo, e diversas formas de organizações de grupos.
Referências

Amorim, V. C. (2010). Análogos experimentais de metacontingências: efeitos da intermitência da consequência cultural. [Experimental analog of metacontingencies: effects of cultural consequence intermittence] Unpublished master’s thesis, Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.

Andery, M. A. P. A. (2011). Comportamento e cultura na perspectiva da análise do comportamento. Revista Perspectivas, 2, 203-217.

Azevedo, R. M. F. (2015). Controle discriminativo em metacontingência. [Stimulus control in metacontingencies] Unpublished master’s thesis, Universidade de Brasília, Brasília, DF, Brasil.

Azrin, N. H. & Lindsley, O. R. (1956). The reinforcement of cooperation between children. Journal of Abnormal and Social Psychology, 52, 100-102.

Baum, W. M., Richerson, P. J., Efferson, C. M., & Paciotti, B. M. (2004). Cultural evolution in laboratory microsocieties including traditions of rule giving and rule following. Evolution and Human Behavior, 25, 305-326.

Borba, A. (2013). Efeitos da exposição a macrocontingências e metacontingências na produção e manutenção de respostas de autocontrole ético. [Effects of exposure to macrocontingencies and metacontingencies in the production and maintenance of ethical self-control responses]. Unpublished doctoral dissertation, Universidade Federal do Pará, Belém, Brazil.

Buskist, W. F., Barry, A., Morgan, D., & Rossi, M. (1984). Competitive fixed interval performance in humans: role of “orienting” instructions. Psychological Record, 34, 241-257.

Buskist, W. F. & Morgan, D. (1987). Competitive fixed-interval performance in humans. Journal of the Experimental Analysis of Behavior, 47, 145-158.
Caldas, R. A. (2009). *Análogos experimentais de seleção e extinção de metacontingências*. [Experimental analogues of selection and extinction of metacontingencies]. Unpublished master’s thesis, Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.

Cavalcanti, D. E., Leite, F. L. & Tourinho, E. Z. (2014). Seleção de práticas culturais complexas: avaliação experimental de um análogo de procedimento de aproximação sucessiva. *Psicologia e Saber Social*, 3, 2-21.

Cohen, D. & Lindsley, O. R. (1964). Catalysis of controlled leadership in cooperation by human stimulation. *Journal of Child Psychological Psychiatry and Allied Disciplines*, 5, 119-137.

Costa, D., Nogueira, C., & Vasconcelos, L. A. (2012). Effects of communication and cultural consequences on choices combinations in INPDG with four participants. *Revista Latinoamericana de Psicologia*, 44, 121-131.

Dougherty, D. M. & Cherek, D. R. (1994). Effects of social context, reinforcer probability, and reinforcer magnitude on humans’ choices to compete or not to compete. *Journal of the Experimental Analysis of Behavior*, 62, 133-148.

Elliot, G. C., & Meeker, B. F. (1984). Modifiers of the equity effect: Group outcome and causes for individual performance. *Journal of Personality and Social Psychology*, 46, 586-597.

Glenn, S. S. (1991). Contingencies and metacontingencies: relations among behavioral, cultural, and biological evolution. In P. A. Lamal (Ed.), *Behavior analysis of societies and cultural practices* (pp. 39-73). New York: Hemisphere.

Glenn, S. S. (2004). Individual behavior, culture, and social change. *Behavior Analyst*, 27, 133-151.
Gray, L. N., Griffith, W. I., von Broembsen, M. H., & Sullivan, M. J. (1982). Social matching over multiple reinforcement domains: An explanation of local exchange imbalance. *Social Forces, 61*, 156-182.

Gray, L. N., Judson, D. H., & Duran-Aydintug, C. (1993) Altering the interaction structure of extant couples: Structural implications of varying external reinforcement and punishment probabilities. *Small Group Research, 64*, 44-59.

Griffith, W. L., & Gray, L. N. (1978). The effects of external reinforcement on power structure in task oriented groups. *Social Forces, 57*, 222-235.

Guerin, B. (1994). *Analyzing social behavior: Behavior analysis and the social sciences*. Reno: Context Press.

Hake, D. F., Donaldson, T., & Hyten, C. (1983). Analysis of discriminative control by social behavioral stimuli. *Journal of the Experimental Analysis of Behavior, 39*, 7-23.

Hake, D. F., Olvera, D., & Bell, J. C. (1975). Switching from competition to sharing or cooperation at large response requirements: competition requires more responding. *Journal of the Experimental Analysis of Behavior, 24*, 343-354.

Hake, D. F. & Schmid, T. L. (1981). Acquisition and maintenance of trusting behavior. *Journal of the Experimental Analysis of Behavior, 35*, 109-124.

Hake, D. F. & Vukelich, R. (1972). A classification and review of cooperation procedures. *Journal of the Experimental Analysis of Behavior, 18*, 333-343.

Hake, D. F. & Vukelich, R. (1973). Analysis of the control exerted by a complex cooperation procedure. *Journal of the Experimental Analysis of Behavior, 19*, 3-16.

Hake, D. F., Vukelich, R., & Kaplan, S. J. (1973). Audit responses: responses maintained by access to existing self or coactor scores during non-social, parallel work, and cooperation procedures. *Journal of the Experimental Analysis of Behavior, 19*, 409-423.
Hake, D. F., Vukelich, R., & Olvera, D. (1975). The measurement of sharing and cooperation as equity effects and some relationships between them. *Journal of the Experimental Analysis of Behavior, 23*, 63-79.

Hunter, C. S. (2012). Analyzing behavioral and cultural selection contingencies. *Revista Latinoamericana de Psicologia, 44*, 43-54.

Judson, D. H., & Gray, L. N. (1990). Modifying power asymmetry in dyads via environmental reinforcement contingencies. *Small Group Research, 21*, 492-506.

Keller, F. S., & Schoenfeld, W. N. (1950). *Principles of Psychology: A systematic text in the science of behavior*. New York, NY: Appleton-Century-Crofts.

Lindsley, O. R. (1966). Experimental analysis of cooperation and competition. In T. Verhave (Ed.), *The experimental analysis of behavior: selected readings* (pp. 470-501). New York: Appleton-Century-Crofts.

Magalhães, F. G. (2013). *Efeitos da incompatibilidade entre consequências individuais e culturais em análogos experimentais de metacontingências*. (Effects of incompatibility between individual and cultural consequences in experimental analogs of metacontingencies). Unpublished doctoral dissertation. Pontifícia Universidade Católica de São Paulo. São Paulo, Brazil.

Morford, Z. H. & Cihon, T. M. (2013). Developing an experimental analysis of metacontingencies: considerations regarding cooperation in a four-person prisoner’s dilemma game. *Behavior and Social Issues, 22*, 5-20.

Ortu, D., Becker, A. M., Woelz, T. A., & Glenn, S. S. (2012). An iterated four-player prisoner’s dilemma game with an external selecting agent: a metacontingency experiment. *Revista Latinoamericana de Psicologia, 44*, 111-120.
Pavanelli, S. Leite, F. L. & Tourinho, E. Z. (2014). A “modelagem” de contingências comportamentais complexas. [The shaping of complex interlocking behavioral contingencies]. *Acta Comportamentalia, 22*, 425-440.

Pereira, J. M. C. (2008). *Investigação experimental de metacontingências: separação do produto agregado e da consequência individual*. [Experimental investigation of metacontingencies: Separating aggregate product and individual consequences]. Unpublished master’s thesis, Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.

Saconatto, A. T. & Andery, M.A.P.A. (2013). Seleção por metacontingências: um análogo experimental de reforçamento negativo [Selection by metacontingencies: an experimental analog of negative reinforcement]. *Interação em Psicologia, 17*, 1-10.

Sampaio, A. A. S., Araújo, L. A. S., Gonçalo, M. E., Ferraz, J. C., Alves-Filho, A. P., Brito, I. S., Barros, N. M., & Calado, J. I. F. (2013). Exploring the role of verbal behavior in a new experimental task for the study of metacontingencies. *Behavior and Social Issues, 22*, 87-101.

Schmid, T. L. & Hake, D. F. (1983). Fast acquisition of cooperation and trust: a two-stage view of trusting behavior. *Journal of the Experimental Analysis of Behavior, 40*, 179-192.

Schmitt, D. R. (1976). Some conditions affecting the choice to cooperate or compete. *Journal of the Experimental Analysis of Behavior, 25*, 165-178.

Schmitt, D. R. (1984). Interpersonal relations: cooperation and competition. *Journal of the Experimental Analysis of Behavior, 42*, 377-383.

Schmitt, D. R. (1987). Interpersonal contingencies: performance differences and cost-effectiveness. *Journal of the Experimental Analysis of Behavior, 48*, 221-334.
Schmitt, D. R. & Marwell, G. (1968). Stimulus control in the experimental study of cooperation. *Journal of the Experimental Analysis of Behavior, 11*, 571-574.

Schmitt, D. R., & Marwell, G. (1971a). Avoidance of risk as a determinant of cooperation. *Journal of the Experimental Analysis of Behavior, 16*, 367-374.

Schmitt, D. R., & Marwell, G. (1971b). Taking and the disruption of cooperation. *Journal of the Experimental Analysis of Behavior, 15*, 405-412.

Skinner, B.F. (1953). *Science and human behavior*. New York: Macmillan.

Skinner, B. F. (1957). *Verbal behavior*. Englewood Cliffs: Prentice Hall.

Smith, G. S., Houmanfar, R., & Louis, S. J. (2011). The participatory role of verbal behavior in an elaborated account of metacontingency: From conceptualization to investigation. *Behavior and Social Issues, 20*, 122-146.

Todorov, J. C., Benvenuti, M. F., Glenn, S. S., Mallot, M., Houmanfar, R., Andery,… Vasconcelos, L. (2015). *Behavior and Cultural Analysis: Toward Consistent Terminology*. Manuscrito em preparação.

Toledo, T. F. N., Benvenuti, M. F. L., Sampaio, A. A. S., Marques, N. S., Cabral, P. A., Araújo, L. A. S., Machado, L. R., & Moreira, L. R. Free culturant: a software for the experimental study of behavioral and Cultural Selection. *Psychology & Neuroscience, 8*, 366-384.

Tourinho, E. Z., & Vichi, C. (2012). Behavioral-analytic research of cultural selection and the complexity of cultural phenomena. *Revista Latinoamericana de Psicologia, 44*, 169-179.

Vasconcelos, I. G. & Todorov, J. C. (no prelo). Experimental analysis of the behavior of persons in groups: Selection of an aggregate product in a metacontingency. *Behavior and Social Issues*.
Vichi, C. (2012). *Efeitos da apresentação intermitente de consequências culturais sobre contingências comportamentais entrelaçadas e seus produtos agregados*. [Effects of intermittent presentation of cultural consequences on interlocking behavioral contingencies and their aggregate products]. Unpublished doctoral dissertation, Universidade Federal do Pará, Belém, Brazil.

Vichi, C., Andery, M. A. P. A., & Glenn, S. S. (2009). A metacontingency experiment: the effects of contingent consequences on patterns of interlocking contingencies reinforcement. *Behavior and Social Issues, 18*, 1-17.

Watanabe, S. & Ono, K. (1986). An experimental analysis of “empathetic” response: effects of pain reactions of pigeons upon other pigeon's operant behavior. *Behavioural Processes, 13*, 269-277.

Weiner, H. (1977). An operant analysis of human altruistic responding. *Journal Experimental Analysis of Behavior, 27*, 515-528.

Wiggins, J. A. (1969). Status differentiation, external consequences and alternative reward distributions. In R. L Burgess & D. Bussell Jr. (Eds), *Behavioral Sociology: The experimental foundations of social process*. (pp. 109-126). New York: Columbia University Press.
APÊNDICE A

Número de Respostas e número acumulado de CCEs (eixo secundário), por minuto, apresentados pelos participantes das Triades 1, 2, 3, 5, 7, 8 e 9, ao longo da Fase 1. As linhas tracejadas indicam mudanças na exigência de espaçamento. As linhas continuas sinalizam mudanças de condições. As áreas em cinza indicam os períodos de estabilidade na taxa de CCEs.

Triade 1 (VI)
Triade 5 (VR)

Triade 7 (VR)
Tritade 8 (VR)

Tritade 9 (VR)
APÊNDICE B

Número de respostas e número acumulado de CCEs (eixo secundário), por minuto, ao longo das substituições de participantes, na Fase 2, para as Triades 1, 3, 4, 5, 6, e 7.

Triade 1 (VI)

Triade 3 (VI)
Triade 4 (VI)

Triade 5 (VR)
Triade 6 (VR)

Triade 7 (VR)
CONCLUSÃO

A Tese foi composta por dois manuscritos. No primeiro, foram discutidas diversas questões conceituais e metodológicas recorrentes em estudos sobre metacontingências, a partir da análise de dados de pesquisas experimentais, realizadas na última década. No segundo, foi relatado um experimento que investigou os efeitos da manipulação de uma relação condicional entre contingências comportamentais entrelaçadas (CCEs) e alterações ambientais sobre a seleção e transmissão de CCEs e sobre os desempenhos operantes em dois esquemas de reforço.

Tomados em conjunto, os dois trabalhos que compõem esta Tese aproximam os processos de seleção operante e cultural, tanto conceitualmente, quanto empiricamente. A análise dos elementos constitutivos de contingências operantes e metacontingências, manipulados e mensurados em diversos experimentos da área evidenciou os elementos comuns a esses processos, a saber: o comportamento, como o conjunto de ações de uma ou de várias pessoas, seus produtos e variáveis selecionadoras. O emprego de um procedimento análogo ao de operante livre possibilitou observar muitas semelhanças nos processos de aquisição, extinção e reaquisição de operantes e culturantes.

Por outro lado, a revisão conceitual e os resultados do experimento fortalecem a noção de metacontingência, tanto como uma ferramenta conceitual quanto como um procedimento para lidar com fenômenos no terceiro nível de seleção por consequências. Embora a possibilidade de seleção de CCEs, funcionando como uma unidade, já tivesse sido demonstrada em estudos como os de Azrin e Lindsley (1956) e Schmitt e Marwell (1968), a proposição do conceito de metacontingência, como o que explica a recorrência dessas CCEs, oferece coesão a uma teoria que pretende dar conta de processos de seleção cultural e fornece maior organização e sistematicidade às manipulações experimentais.
Os dois manuscritos apresentados podem contribuir para o avanço nas discussões sobre fenômenos culturais na análise do comportamento. O software Culturante Livre abre novos caminhos para o estudo de fenômenos sociais tais como, cooperação, competição, altruísmo, e diversas formas de organizações de grupos, além de possibilitar novas manipulações para a investigação experimental de seleção e transmissão cultural.
REFERÊNCIAS

Andery, M. A. P. A. (2011). Comportamento e cultura na perspectiva da análise do comportamento. *Revista Perspectivas, 2*, 203-217.

Andery, M. A. P. A., Micheleto, N., & Sério, T. M. (2005). A análise de fenômenos sociais: esboçando uma proposta para a identificação de contingências entrelaçadas metacontingências. *Revista Brasileira de Análise do Comportamento, 1*, 149-165.

Azrin, N. H. & Lindsley, O. R. (1956). The reinforcement of cooperation between children. *Journal of Abnormal and Social Psychology, 52*, 100-102.

Glenn, S. S. (1986). Metacontingencies in Walden Two. *Behavior Analysis and Social Action, 5*, 2-8.

Glenn, S. S. (2004). Individual behavior, culture, and social change. *Behavior Analyst, 27*, 133-151.

Schmitt, D. R. & Marwell, G. (1968). Stimulus control in the experimental study of cooperation. *Journal of the Experimental Analysis of Behavior, 11*, 571-574.

Skinner, B. F. (1948). *Walden Two*. New York, NY: Macmillan.

Skinner, B.F. (1953). *Science and human behavior*. New York, NY: Free Press.

Skinner, B. F. (1971). *Beyond freedom and dignity*. New York: Knopf.

Skinner, B. F. (1981). Selection by consequences. *Science, 213*, 501-504.

Toledo, T. F. N., Benvenuti, M. F. L., Sampaio, A. A. S., ... Moreira, L. R. (2015). Free culturant: a software for the experimental study of behavioral and Cultural Selection. *Psychology & Neuroscience, 8*, 366-384.

Wiggins, J. A. (1969). Status differentiation, external consequences and alternative reward distributions. In R. L Burgess & D. Bussell Jr. (Eds), *Behavioral Sociology: The experimental foundations of social process*. (pp. 109-126). New York: Columbia University Press.
Toledo, T. F. N., Benvenuti, M. F. L., Sampaio, A. A. S., Marques, N. S., Cabral, P. A.,
Araújo, L. A. S., Machado, L. R., & Moreira, L. R. Free culturant: a software for the
experimental study of behavioral and Cultural Selection. Psychology & Neuroscience, 8, 366-
384.
Free Culturant: A Software for the Experimental Study of Behavioral and Cultural Selection

Thais Ferro Nogara de Toledo
Universidade Federal de Mato Grosso, Rondonópolis, and Universidade de São Paulo

Marcelo Frota Lobato Benvenuti
Universidade de São Paulo

Angelo A. S. Sampaio
Universidade Federal do Vale do São Francisco and Universidade de São Paulo

Natália Santos Marques, Pedro Augusto dos Anjos Cabral, and Lorena Alves de Souza Araújo
Universidade de São Paulo

Leandro Reis Machado and Leandro Rodrigues Moreira
Universidade de Cuiabá

We describe a software program that was developed to study cultural selection using a procedure that is analogous to the free operant. The experimental manipulations allow the use of individual behavioral patterns that are produced by classic schedules of reinforcement to be used as a baseline for experimental demands that are related to social behavior. Two to 4 participants can work simultaneously on the experimental task. Responses on a single manipulandum can lead to different consequences for individual behavior and for participants’ coordinated, interlocking behaviors. The software is called “Free Culturant” because participants can emit responses at any time, without intervention from the apparatus or experimenter, and it can assess the selection of cultural units that are composed of sets of interlocking behavioral contingencies that generate a common consequence. We present a pilot study and discuss the software’s contributions to advancements in cultural evolution research.

Keywords: computerized system, cultural selection, free culturant, metacontingency

This paper presents a computerized system that was developed to study social behavior (i.e., the behavior of one participant relative to another) and group (or cultural) organization. The basic idea is to use individual behavior patterns that are produced by classic schedules...
of reinforcement as a baseline for experimental demands that are related to social behavior. All possible experimental arrangements are consistent with the view that behavior and culture evolve through environmental selection mechanisms. To illustrate the research questions that can be addressed using the present system, we explore how the experimental analysis of behavior can account for social behavior and culture (Glenn, 2004; Skinner, 1953) and discuss the possible contributions to multidisciplinary areas of research on cultural evolution (Mesoudi, Whiten, & Laland, 2006; Richerson & Boyd, 2005). We then present the software itself and a pilot study.

Experimental Analysis of Operant Behavior, Social Behavior, and Culture

In biology, since Darwin’s time, the evolution of species has been attributed to processes of variation, selection, and inheritance. In psychology, Darwin’s ideas influenced Skinner (1981), who proposed that behavior can be explained in an analogous manner. According to Skinner, similar processes that account for behavior can be found in three interrelated levels of selection by consequences: phylogenetic, ontogenetic, and cultural (also see Glenn, 2003; Hull, Langman, & Glenn, 2001; Skinner, 1984). From this perspective:

Human behavior is the joint product of (i) the contingencies of survival responsible for the natural selection of the species and (ii) the contingencies of reinforcement responsible for the repertoires acquired by its members, including (iii) the special contingencies maintained by an evolved cultural environment. (Ultimately, of course, it is all a matter of natural selection, since operant conditioning is an evolved process, of which cultural practices are special applications.). (Skinner, 1981, p. 502)

The contingencies of reinforcement that are responsible for operant (or instrumental) behavior repertoires can be programmed in the laboratory by arranging consequences for behavior in certain contexts. Increases in the frequency of behavior indicate that consequences act as reinforcements, or, in other words, that consequences select behavior. Operants are the units that are created and maintained by this selection process (reinforcement).

Interest in the study of operant behavior has increased since the demonstration of characteristic patterns of behavior that are generated by basic schedules of reinforcement (Ferster & Skinner, 1957). Schedules of reinforcement are arrangements that specify which responses within a response class (e.g., a button press) will be reinforced. The most basic schedules of reinforcement are: (a) those that allow a response to be reinforced after some number of responses (ratio schedules), and (b) those that allow a response to be reinforced after an elapsed time since a previous event (interval schedules). Additionally, a given schedule can be fixed, or it can vary according to a plan. These possibilities yield four basic schedules: fixed-interval (FI), variable-interval (VI), fixed-ratio (FR), and variable-ratio (VR).

Investigations of schedules of reinforcement have provided support for the general notion that behavior is selected by consequences, an important step in the experimental analysis of operant behavior. Especially important to the area was the discovery that different basic schedules produce different behavior patterns that can be evaluated by cumulative frequencies of operant responses. FR schedules typically produce a break-and-run pattern. FI schedules produce scalloping. VR schedules produce high rates of responding without stops. VI schedules produce moderate stable rates of responding. Ultimately, this knowledge culminated in analyses that are used to understand the effects of interresponse times (e.g., Zeiler, 1977), conditions for the establishment of stimulus control (e.g., Terrace, 1966), interactions among drugs and behavior (e.g., Dew, 1978), choice and preference behavior (e.g., Herrnstein, 1961), avoidance (e.g., Sidman, 1953), anxiety (e.g., Estes & Skinner, 1941), and psychophysics (e.g., Blough, 1958).

The tradition of research on schedules of reinforcement allows one to address the general aspects of operant behavior, namely, behavior that is selected and maintained by its consequences. There has also been growing interest in the behavioral analysis of social phenomena and culture, which constitute the third (cultural) level of selection. Behavior analysts have started using concepts and methods that are employed for studying operant behavior to investigate interactions between more than one individual. Sometimes, an individual’s behavior produces consequences for himself in a specific context (i.e., an operant contingency) and also
functions as part of the environment of the operant contingency regarding another individual’s behavior. These interlocking contingencies (Glenn, 1991, 2004; Skinner, 1957) account for social behavior. Demonstrating that the behavior of one person is a relevant part of the environment of another in experimental contexts allows the description of social behavior from a natural science perspective. Early examples of this attempt include studies on cooperation (Hake, Donaldson, & Hyten, 1983; Hake, Olvera, & Bell, 1975; Hake & Schmid, 1981; Hake & Vukelich, 1972, 1973; Hake, Vukelich, & Kaplan, 1973; Hake, Vukelich, & Olvera, 1975; Marwell & Schmitt, 1975; Schmid & Hake, 1983; Schmitt, 1976, 1984, 1987), competition (Buskist, Barry, Morgan, & Rossi, 1984; Buskist & Morgan, 1987; Dougherty & Cherek, 1994; Hake, Olvera, & Bell, 1975; Lindsley, 1966), empathy (Watanabe & Ono, 1986), and altruism (Weiner, 1977).

More recently, the proposition of the concept of metacounting has enabled a step forward in dealing with the behavior of a group as an organized whole or as a unit itself. The concept proposes to account for the “evolved cultural environment” that was mentioned by Skinner (1981) and is analogous to the operant contingency. Metacounting involves arrangements between the joint behaviors of two or more individuals and a common consequence that is relevant to them. In more technical terms, recurring interlocking contingencies produce aggregate effects on which a cultural consequence is contingent (Glenn, 2004, 2010; Vichi, Andery, & Glenn, 2009). The cultural consequence depends on the interlocking behaviors of two or more individuals, as opposed to individual consequences, which only depend on the response of one individual (Glenn, 1991). The concept of metacounting implies the recurrence of social interactions that produce a common result and a relevant consequence for one or all of the people who are involved (cultural consequence). The interlocking contingencies that result in certain “positive” cultural consequences will tend to increase in frequency, be selected. In this sense, a metacounting can be viewed as a contingency of cultural selection (Glenn, 2004).

Considering the similarities between operant behavior and the processes that are described by the concept of metacounting, Hunter (2012) suggested the notion of the culturant to identify the cultural unit that is analogous to the operant at the ontogenetic level (i.e., the unit that is selected and evolves from its interaction with the selecting environment). Thus, a culturant involves the set of all recurring interlocking contingencies that are a function of a cultural consequence. Glenn (1991, 2004) stressed that metacontingencies can account for the permanence of at least some organized social interactions through time and even over generations. Frequently, once a culturant has been selected, it may recur even when the original members of the group are replaced.

Glenn and Malott (2004) applied the metacounting concept to analyze how for-profit organizations change over time. In a restaurant, for example, interlocking contingencies that involve waiters, managers, chefs, and cooks result in the food that is served. The restaurant’s customers are responsible for the relevant cultural consequence: monthly monetary revenue. The restaurant, as an organization, will survive as long as revenues are positive and consistent. The restaurant’s food will change as customers’ preferences change. In other words, the restaurant’s food preparation (culturant) is selected by the cultural consequence that comprises revenues. Many other social phenomena have also been interpreted as involving metacontingencies: superstition (Marques, Leite, & Benvenuti, 2012), absenteeism (Camden & Ludwig, 2013), social reform (Bortoloti & D’Agostino, 2007; Lamal, 1991), and practices in correctional settings (Ellis, 1991), among others.

Inspired by the work of behavioral sociologist James Wiggins (1969), Vichi et al. (2009) conducted the first experiment of cultural selection that employed the notion of metacontingency. In each trial, a set of four participants had to consensually choose one row in an 8×8 matrix. The experimenter then selected a column in the matrix, and the intersection between a row and column indicated a hit or a miss (i.e., a gain or loss of tokens that were exchangeable for money) for the set of participants as a whole. At the end of each trial, the participants had to distribute the gains among themselves. Hits or misses in each trial depended on how the participants distributed gains that were obtained in the previous trial. Two conditions were arranged in a reversal design. One condition required an equal distribution of gains in one trial...
for the production of a hit in the next trial. The other condition required an unequal distribution. The two sets of four participants in the study both adjusted their distribution of gains according to the requirements of the experimental conditions (i.e., they distributed their gains equally or unequally). The interlocking behavioral contingencies that led to an announcement regarding equal or unequal distributions constituted the culturants on which the consequence was contingent. Because this consequence (i.e., the gain or loss of tokens) was contingent on the product of the interlocking behavior of the participants, it was called a cultural consequence. The recurrence of a particular pattern of distribution of gains as a function of a cultural consequence is what characterizes cultural selection. The functional relationship between culturants and the selecting cultural consequence is the metacontingency.

Since the study of Vichi et al. (2009), research protocols have been developed to study metacontingencies. In addition to tasks that are similar to the one used by Vichi et al. (2009); e.g., Borba, 2013; Franceschini, Samelo, Xavier, & Hunziker, 2012; Marques, 2012; Pavanello, Leite, & Tourinho, 2014; Tadaiesky & Tourinho, 2012; Vichi, 2012), other protocols have been proposed. One of them involves a computerized task, in which participants insert numbers into designated spaces on the screen, below numbers that are presented by the computer (Amorim, 2010; Caldas, 2009; Pereira, 2008; Saconatto & Andery, 2013). In this case, two contingencies can be programmed. One contingency can be programmed for the individual operant behavior (e.g., numerical digits can be inserted, which when added to the number that is presented by the computer result in an odd number, thus producing a given individual consequence). Another contingency can be programmed for the culturant (e.g., the sum of the numbers that are inserted by one participant must be lower than the sum of the numbers that are inserted by another participant for a cultural consequence to be produced). Another experimental protocol that is used to study metacontingencies employs a task that is based on the prisoner’s dilemma game, derived from game theory (Costa, Nogueira, & Vasconcelos, 2012; Morford & Cihon, 2013; Ortu, Becker, Woelz, & Glenn, 2012). Different but conjugated contingencies for the operant behavior and culturants are programmed. The response is always a choice of one of two possible letters (X or Y) or colors (red or green). The participants must form a determined combination of choices (e.g., all choose X, or all choose Y) to produce a cultural consequence. Another research strategy uses an adaptation of a chess game. Two participants move the only piece they have across the chessboard, and each trial ends when both pieces meet in adjacent cells, resulting in a cultural consequence for the dyad (Azevedo, 2015; de Carvalho, Couto, Sandaker, & Todorov, 2015; Henriques, Souza, Navarini, & Todorov, 2015; Vasconcelos, 2014). Still other different protocols were used by Hunter (2012), Sampaio et al., (2013), and Smith, Houmanfar, and Louis (2011).

Metacontingency is a unit of analysis that aims to describe cultural changes and, at the same time, the behavioral change of the individuals who comprise the culture. In the aforementioned studies, operant behavior occurred only in trials; therefore, moment-to-moment changes in the frequency of behavior could not be tracked (Ferster, 1953). The analysis of changes in the frequency of behavior, such as those that are possible in typical analyses of schedules of reinforcement, can help us understand interactions between the ontogenetic and cultural levels of selection by consequences. Currently, experimental and conceptual interest in cultural selection in behavior analysis interacts only incipiently with the experimental contribution of schedules of reinforcement. Studies of schedules of reinforcement have shown the course of selection at the ontogenetic level. Studies such as those by Vichi et al. (2009) show that selection occurs at another level of analysis, namely the cultural level. If we can observe these two selection processes that are underway at the same time, then we could program arrangements that are redundant or conflict with each other. Hence, there is a clear demand for the development of experimental models that allow analyses of moment-to-moment interactions between behavioral- and cultural-level selection processes.

Multidisciplinary Study of Cultural Evolution

Social behavior, social learning, and culture are topics that intersect within several academic
disciplines, including anthropology, psychology, sociology, and biology. As can be expected of a multidisciplinary subject, these topics have been studied from different theoretical and methodological perspectives. The experimental analysis of behavior is one such perspective. A different, but compatible, view stems from the work of Boyd and Richerson (1985; Richerson & Boyd, 2005). These authors defined culture as knowledge, beliefs, and values that are inherited through social learning and expressed in behavior and artifacts. They also assume that culture evolves according to basic Darwinian principles, similar to those by which biological species evolve (also see Cavalli-Sforza & Feldman, 1981; Mesoudi, 2011; Mesoudi et al., 2006). These principles are variation, differential fitness, and inheritance. Cultural traits (e.g., beliefs, behaviors, skills, knowledge, etc.) vary among and within individuals and groups; are differentially preserved and reproduced because of competition for expression, attention, and memory; and are inherited or transmitted through mechanisms of social learning (Mesoudi & Whiten, 2008).

Accounts of social behavior and culture that were inspired by Darwinian theory have existed since the time of Darwin himself (Laland & Brown, 2011), and many important scholars from different fields have developed this idea. Mesoudi (2007, 2011) suggested that Darwinian theory is the most useful model for a theory of cultural evolution and the one that is most likely to facilitate an evolutionary synthesis for the study of culture. In the same integrative direction, Heyes (2012a, 2012b) stressed the need for an approach between social learning studies that are performed by researchers from the biological sciences and researchers with a background in psychology. This trend has already begun with collaborations between experimental psychologists, anthropologists, and biologists who are interested in cultural evolution (Baum, Paciotti, Richerson, Lubell, & McElreath, 2012; Baum, Richerson, Efferson, & Paciotti, 2004; Efferson et al., 2007; McElreath et al., 2005). Heyes’ recent position, however, suggests that this integration has not yet been fully achieved, and it is necessary to use knowledge about behavioral principles to deal with cultural selection. Smaldino (2014) claimed that “the development of a cultural evolutionary theory . . . has suffered from an overemphasis on the experiences and behaviors of individuals at the expense of acknowledging complex group organization and behavior” (p. 243).

Our software is called Free Culturant. It attempts to account for individual behavior and, at the same time, the behaviors of more than two individuals relative to each other, acting as an organized group. The software allows moment-to-moment measurements of the frequency of both individual behavior and interrelated behaviors.

Free Culturant Software

Free Culturant was developed in Delphi XE2 for the Windows operating system and is approved in extensions of Windows XP and Windows 7 with at least 512 MB of RAM and 100 MB of hard disk space. It has two executables: “client” (for availability of the task for participants) and “server” (for the configuration of sessions, control of programmed contingencies, and recording of data by the experimenter). Components of the Jedi Visual Component Library were used to establish networking among computers. The network may be isolated from the external environment through a wireless router that provides its own Dynamic Host Configuration Protocol (DHCP) service. With this network established, it is possible to transmit the action order to start or end a session, present programmed consequences, and so on.

Experimental Task: General Properties

The software allows up to four participants to simultaneously work on the experimental task, which resembles a virtual game. Depending on the number of participants in the session, up to four quadrants can be seen on each of the client computer screens (Figure 1). Each quadrant has a water tap (the manipulandum, which can be operated with the left mouse button or keyboard) and a jug. The software layout for the participants was initially designed with the aim to instruct participants that the activity would consist of a game in which they would be able to earn money. The game would be about a hypothetical situation, in which residents of a small city have gone several days without water, and the participants can contribute by filling water jugs for them. The participants are instructed that they should use the active manipu-
landum to find the best way to produce gains. The software, however, permits different instructions to be presented before beginning the task. The main feature of Free Culturant is that it allows the simultaneous programming of a contingency for operant behavior and a metac contingency for culturants.

Programming Operant Contingencies

Operant contingencies specify that pressing the button (or key) produces a portion of water in the jug, accompanied by a specific sound according to a given schedule of reinforcement. The arrangements that can be programmed are: continuous reinforcement (CRF), in which every response in the operant class produces reinforcement; the four basic schedules of reinforcement (FR, VR, FI, and VI); and two schedules based exclusively on the time between presentations of reinforcers. In these cases, the participant does not need to emit a response; the reinforcers are delivered independently of behavior according to a specified interval that can be fixed (fixed-time [FT]) or variable (variable-time [VT]). In addition to these arrangements, the software offers the option of extinction, which consists of suspending reinforcement for individual behavior.

Programming Metacontingencies

In the Free Culturant software, every time the participants emit a culturant that is specified by the experimenter, a portion of water is added to a water tank that is located in a common area above the participants’ quadrants, and the word “Bonus” appears at the intersection of the quadrants, accompanied by a specific sound (see Figure 1). The bonus can function as a cultural consequence because it is contingent on culturants and not on individual behavior. Bonuses that are accumulated during the session are recorded on the hydrometer that is located in the common area beside the water tank.

The procedure that is proposed herein to study the selection of culturants in a metacontingency resembles, in many respects, those that are used in studies of cooperation (see Schmitt, 1998). Cohen and Lindsley (1964), for example, developed an experimental apparatus in which, in separate rooms, two subjects sat in front of a panel with a plunger. A “cooperative response” was recorded when the two participants’ responses of pulling the plunger occurred within an interval of up to .5 s from each other. A participant’s response was indicated to his counterpart through a cue light. Despite the fact that this can be viewed as social behavior, Schmitt and Marwell (1968) suggested that the high rates of cooperation in Cohen and Lindsley’s procedure could have occurred even when the behavior of one participant was not relevant to the behavior of the other participant. Schmitt and Marwell proposed an alternative to the reinforcement requirements, adding a delay between the responses of the participants. Their modified task required an interval that was longer than 3 s but smaller than 3.5 s between the two participants’ responses. A response of the first participant turned on a light in the panel of the other participant for 3 s, and reinforcement occurred if the second participant pulled the plunger up to .5 s after the light turned off. Such an alteration effectively ensured that the participants were responding under the control of the other participant’s behavior.

Considering the results of Schmitt and Marwell (1968), Free Culturant allows six different arrangements for culturants. The first option is designated as “Same Time” and very similar to the cooperation response that was specified by Cohen and Lindsley (1964). This metacontin-
gency requires every participant to emit a response on the manipulandum within an interval that is specified by the experimenter. For example, the researcher can program the cultural consequence to be presented only if all participants press the button within an interval of .3 s. The second option is designated as “Spaced Responses” and similar to the cooperation response in the study by Schmitt and Marwell. This metacontingency requires the participants to emit responses in a spaced manner. For example, if the researcher stipulates a spacing of 3 s, then a cultural consequence will be presented only when the response of one participant occurs after an interval of at least 3 s, following the last response of the other participant. Any participant can respond first. If the criterion is reached, then the programmed consequence is immediately presented. The third metacontingency option is designated as “Sequence” and requires an order of responses among the participants, with or without the requirement of an interval between responses. For example, the experimenter can distinguish within the program that the cultural consequence will be presented only if the four participants respond in the order P2, P4, P1, and P3. In two other arrangements, bonuses are released independently of culturants, based solely on the passage of time (analogous to FT and VT schedules of reinforcement). Independent schedules (VT and FT) were included to allow the study of superstition at the individual and cultural levels (see Marques et al., 2012). The last metacontingency that can be programmed is extinction (i.e., the cultural consequence is suspended).

Therefore, Free Culturant allows the programming of eight different operant contingencies (schedules of reinforcement) and six different metacontingencies, each permitting the specification of innumerous values (e.g., FR1, FR2, FR3, and so on; “Spaced Response” 1 s, 2 s, 3 s, and so on). Given these options, the experimenter can plan 48 general arrangements. Some arrangements enable the participants to obtain all or most of the reinforcers and cultural consequences that are programmed. In these cases, operant contingency and metacontingency do not conflict. In other arrangements, meeting the operant contingency criterion may imply not producing or producing very few cultural consequences that are specified by the metacontingency. Conversely, meeting the metacontingency criterion may result in receiving fewer individual reinforcers than would be possible from the scheduled operant contingency. In these cases, we say that there is a conflict between the operant contingency and metacontingency. Table 1 shows all of the possible combinations between operant contingencies and metacontingencies, and whether the arrangements do or do not conflict.

Importantly, a greater or lesser degree of conflict will depend on the parameters that are specified in the operant contingency (e.g., interval range, number of responses in the ratio, etc.) and metacontingency (e.g., spacing length, range limits within which participants must respond, etc.). However, the combinations between schedules that do not require responses (VT and FT) and the conditions under which the reinforcement or cultural consequences are suspended (extinction) never result in conflict.

Many other parameters, besides the ones that are embedded in the software, can be manipulated to study different research questions. For instance, the relative values of individual sequences (filled jugs) and cultural consequences (portions of water in the common tank) may be experimentally varied by exchanging each of them for different quantities of money. The way the cultural consequence is distributed between participants (e.g., equally or unequally) is yet another variable that is susceptible to analysis.

Configuring Experimental Sessions

The Free Culturant user interface does not require knowledge of programming language, only knowledge of the parameters that are necessary to configure operant contingencies and metacontingencies. A session in Free Culturant is set up in a single window with three tabs. Figure 2 shows the first tab (“Configuration”) where the experimenter selects all of the contingency parameters to be programmed for individual behavior and culturants. These parameters include (a) the manipulandum (the left mouse button or a key on the keyboard, chosen by the experimenter), (b) the reinforcement schedule for the individual behavior (the eight possibilities described previously), (c) the type of culturant that will produce the cultural consequence (the six options described previously), and (d) the duration of the session, which may
Concerning operant contingencies, when the experimenter opts for FR, FI, and FT schedules, the interval length or ratio associated with the schedule of reinforcement needs to be specified. By selecting a variable schedule (VR, VI, or VT), the experimenter has to choose the method for generating the values of interval/time or ratio. Figure 2 shows the window with the options to generate the values in a VI schedule. The experimenter can choose “Shuffle values automatically” or “Enter values manually.” Automatic shuffle is based on the method that was proposed by Pessôa and Buffara (2005). The experimenter needs to indicate the value of the schedule (e.g., 15 for a VI 15 s), the range of values that must be considered in the shuffling (e.g., varying from 1–60), and the number of elements that must be randomized. The values are used in the order they appear and come back to the first value when the last number is used. The software allows the experimenter to change the order in which values should appear. To enter values manually, the experimenter simply types the value for each element of the interval or ratio.

If the experimenter chooses VT or FT for metacontingencies, then he has to specify the interval length between presentations of cultural consequences, following the same logic that was described for operant contingency. By choosing the options “Same Time” and “Spaced Responses,” the experimenter has to specify the interval range within which participants must respond and the minimum interval between responses, respectively. In the “Sequence” option, the experimenter may or may not require spacing between responses. The sequence of responses that are required will be defined by the order in which the participants are linked (i.e., the first to be linked should be the first to respond and so on; see the next subsection).

Linking Participants

After setting up the session, the experimenter needs to select the client computers that will be active during the session. Figure 3 shows the software tab “Participants.” All of the computers that are connected to the server will appear in this tab and can be linked as participants. By selecting a computer, the experimenter can en-

Table 1

Operant contingency	Metacontingency	Conflict
Fixed ratio (FR)	Same time	No
	Spaced responses	Yes
	Sequence	Yes
	VT	No
	FT	No
	Extinction	No
Variable ratio (VR)	Same time	No
	Spaced responses	Yes
	Sequence	Yes
	VT	No
	FT	No
	Extinction	No
Fixed interval (FI)	Same time	No
	Spaced responses	Possiblea
	Sequence	No
	VT	No
	FT	No
	Extinction	No
Variable interval (VI)	Same time	No
	Spaced responses	Possiblea
	Sequence	No
	VT	No
	FT	No
	Extinction	No
Continuous reinforcement (CRF)	Same time	No
	Spaced responses	Yes
	Sequence	Yes
	VT	No
	FT	No
	Extinction	No
Variable time (VT)	Same time	No
	Spaced responses	No
	Sequence	No
	VT	No
	FT	No
	Extinction	No
Fixed time (FT)	Same time	No
	Spaced responses	No
	Sequence	No
	VT	No
	FT	No
	Extinction	No
Extinction	Same time	No
	Spaced responses	No
	Sequence	No
	VT	No
	FT	No
	Extinction	No

*Note. VT = variable time; FT = fixed time.
a If the spacing required by the metacontingency is greater than the scheduled interval, then there is conflict.*
After the participant’s name and add individual instructions that only this participant can access at the beginning of his or her participation, before the presentation of the general instructions (described below). Up to four participants can be linked.

Adding General Instructions

The last step in programming an experimental session with Free Culturant consists of adding general instructions that are presented simultaneously to all of the participants after the individual instructions are given (if such individual instructions were programmed, as shown in Figure 4).

Running an Experimental Session

After reading the instructions, each participant needs to click on a command that initiates the task. The task is initiated after all of the participants have clicked the command. Each participant sees his or her quadrant (the only one that is active for him/her) with a different color in the background (green, pink, yellow, and gray) while the other quadrants appear to him/her with a white background. However, whenever a participant responds, his or her quadrant flashes to the others (Figure 1, left). In the upper right corner of each quadrant is a field where individual gains are recorded, signaled by a small figure of a water jug. The bonuses are registered in the hydrometer that is located at the right of the water tank in the common area. Free Culturant allows all of the participants to observe the actions and consequences that are presented for each participant and the group as a whole. When the session ends, a “Thank You” message appears on the screen.

The software chronologically records all events of the session, including all of the participants’ responses and individual and cultural consequences. These data are exported to a Microsoft Excel spreadsheet.

Pilot Study

A pilot study was conducted to evaluate whether the Free Culturant software can produce an experimental model of cultural selection. The more specific experimental question was to compare cultural selection under conditions in which the production of cultural consequences would involve the production of fewer...
individual reinforcers (i.e., conflict), with a further condition in which meeting both the operant contingency and metacontingency was possible (i.e., no conflict).

Method

Participants

Six undergraduate students, five women and one man (age range, 18–22 years), were randomly distributed into two triads.

Setting and Apparatus

Experimental sessions were conducted in an approximately 20 m² room. We used four computers (one was the server, and three were the clients), each connected to a mouse (the keyboard was removed during the experimental task) and programmed with Free Culturant software. The computers were networked through a router and arranged side by side (except the server) on a rectangular table (approximately 3 m in length).

Procedure

The two triads were exposed to different experimental conditions. For Triad 1 (conflict), a VR2 schedule was programmed for the presentation of individual consequences. In this schedule, an average of every two responses produced a portion of water in the jug. Ten portions of water filled a jug, and a new one was presented. The number of filled jugs was shown in the upper right corner of each quadrant (see Figure 1). The operant contingency remained unaltered throughout the experiment. The metacontingency, when programmed, required an interval of time between the participants’ responses (spacing), which varied from 1 to 2 s.

Two sessions, approximately 40 min each, were conducted with Triad 1. At the beginning of each session, the participants were instructed to fill the water jugs by clicking the left button of the mouse on the water tap. They were told that it sometimes would be possible to produce a bonus, which would result in the water tank being filled; for this to happen, the participants would have to work together. They were not told what kind of interaction would produce bonuses. Each filled jug yielded one Brazilian cent for the participant, and each bonus yielded 10 Brazilian cents for the triad. At the end of the session, each participant received his or her individual amount, and the triad could discuss

![Figure 3. Participant selection interface in Free Culturant. See the online article for the color version of this figure.](image-url)
how to distribute the total accumulated bonuses; the triad was free to decide (i.e., there were no criteria, rules, or other types of intervention on the part of the experimenter). In Session 1, the experimental design involved a baseline condition in which only the operant contingency was in effect, followed by a metacontingency condition with a spacing of 1 s (Meta 1 s) and a return to the baseline condition. Session 2 was initiated with a Meta 1 s condition that progressed to Meta 2 s, Meta 1.5 s, and Meta 2 s.

For Triad 2 (no conflict), the operant contingency was a VI 10 s schedule. The first response after an average of 10 s since the last reinforcement produced a portion of water. Ten portions of water filled the jug. The metacontingency was the same as for Triad 1 (i.e., spacing between responses), and the interval that was required between responses was changed during the experiment. Three 40 min sessions were performed. The instructions and procedures were the same as for Triad 1. The experimental design involved a baseline condition, followed by Meta 1 s in the first session, Meta 1 s and Meta 1.5 s in the second session, and Meta 1.5 s, Meta 2 s, and a return to the baseline in the third session.

Results and Discussion

Figures 5 and 6 show the number of responses per minute and a cumulative record of culturants that reached the criterion for the production of cultural consequences in each of the experimental conditions for Triad 1 and Triad 2, respectively. During baseline conditions, although no cultural consequences were presented, all of the culturants that would meet the criterion of Meta 1 s were recorded (except for the second baseline of Triad 2, in which the criterion of Meta 2 s was used).

During the first baseline condition, the participants in the two triads emitted an average of 200 responses/min. The culturant that would produce cultural consequences (if the Meta 1 s condition was in effect) occurred five times (.4/min) for Triad 1 and did not occur for Triad 2. For both triads, the overlapping of a metacontingency resulted in a sharp change in response rates. After production of the first bonus, the participants in Triad 1 began to emit an average of 48 responses/min, and the participants in Triad 2 emitted between 11 and 25 responses/min. Because the metacontingency specified that spacing was necessary between the participants’ responses, reaching this crite-
rion implied a reduction of response frequency. Once a bonus was produced, both triads adapted their behaviors to the requirements of the meta-contingency and systematically produced the cultural consequence. However, both triads produced far fewer bonuses than would be possible given perfect coordination. With a spacing of 1 s, approximately 12 bonuses could be produced per minute, but Triad 1 produced only an average of four to seven bonuses per minute in the

Figure 5. Number of responses emitted per minute by each participant and cumulative culturants in Triad 1. The solid line indicates session changes, and the dashed lines indicate changes in conditions.

Figure 6. Number of responses emitted per minute by each participant and cumulative culturants in Triad 2. The solid lines indicate session changes, and the dashed lines indicate changing conditions.
Meta 1 s and Meta 1.5 s conditions (considering the production from the first bonus until the end of each condition). For Triad 2, the average was approximately two to three bonuses per minute.

When the metacontingency was suspended in the return to baseline, Triad 1 responded again with a high frequency near the baseline, whereas Triad 2 continued to emit a low response rate. These data are partly explained by considering the schedules that were used for individual behavior. In a VR schedule, more responses result in more reinforcers. The VI schedule does not require a minimum number of responses but only one response at the correct time. Therefore, in this latter schedule, a high response rate does not imply a loss of reinforcement. Because the VI schedule interval was short (10 s), high-frequency responding in the first baseline resulted in obtaining virtually all of the available reinforcements, without the response cost being too high. The metacontingency condition and the emission of spaced responding could have caused the participants in Triad 2 to contact the operant contingency more accurately. Thus, when the metacontingency was suspended in the second baseline, the response rate remained low, despite the loss of coordination (i.e., in the final 6 min, no culturant occurred). Importantly, however, Triad 2 had longer exposure to the metacontingency condition before returning to baseline. This history may also have contributed to the maintenance of the low frequency of responses in this condition.

The schedule that was programmed for individual behavior can also help explain why producing a spacing of 2 s between responses was only achieved by Triad 2. In Triad 1, the increase in spacing from 1.5 to 2 s caused an effect that was similar to an extinction condition. The requirement of spacing between responses is less conflicting with an interval schedule than with a ratio schedule. In the latter case, more reinforcers are lost when more spacing is required.

Despite differences in programmed contingencies for individual behavior and in the order of exposure to the experimental conditions, the results clearly showed the selection of a given pattern of coordination of the participants’ behaviors (culturants) when the production of a common consequence (i.e., a consequence for the triad as a whole) depended on its occurrence. The frequency of the target culturant was zero or near zero in the first baseline, but when the cultural consequence was introduced (i.e., contingent on that culturant in a metacontingency arrangement), they began to occur at a constant frequency. The recurrence of target culturants characterizes selection at the cultural level. The suspension of the metacontingency in both triads showed that the occurrence of culturants depended on the cultural consequence. When it was suspended, the frequency of culturants dropped. Therefore, the present study demonstrated the selection (i.e., recurrence) of a unit that exceeded individual behavior and involved the behavior of three individuals, each under the control of the others, thus comprising a culturant. In summary, this experiment can be taken as an experimental model of cultural selection.

The free-operant-analogous procedure that is enabled by Free Culturant software and was used in this pilot study has advantages over procedures that have been used previously to study metacontingencies. Experimental methods of studying cultural selection and metacontingency have mostly involved trial procedures, in which participants perform a task together and, for each trial, individual reinforcers and cultural consequences are programmed (cf., Costa et al., 2012; Morford & Cihon, 2013; Ortu et al., 2012; Saconatto & Andery, 2013; Vichi et al., 2009). However, trial procedures restrict the occurrence of behavioral and cultural events to isolated periods of observation, which prevents the continuous measurement of culturants (i.e., measurements of frequency). Additionally, trial procedures do not allow investigations of aspects of the distribution of individual or cultural consequences over time, such as schedules that are based on time or interval criteria.

Free Culturant software allows the measurement of all instances of responses without the limitations that are imposed by trial procedures, such that frequency can be used as a measure of behavioral and/or cultural change. The use of a single response key enables an experimentally simple analysis of the processes of selection on a moment-to-moment basis. It also allows researchers to study the molecular properties of a culturant, such as momentary changes in rate, temporal spacing, patterns of distribution between presentations of cultural consequences,
and other properties that have been reported to differentiate performance in schedules of reinforcement (cf., Ferster & Skinner, 1957). Azrin and Lindsley (1956) conducted a study on cooperation and pointed out that the techniques of operant conditioning enable a more continuous record of the process of coordination between participants. Our software uses this classic strategy to program schedules of reinforcement to study operant behavior and simultaneously allows the programming of different consequences for culturants. The behavior that is generated by schedules of reinforcement may or may not conflict with what is demanded by metacontingencies.

Hunter (2012) and Morford and Cihon (2013) addressed the question of conflicts between operant contingencies and metacontingencies in experimental designs. The central argument was that when the operant contingency and metacontingency work together (i.e., when the same patterns of responses are selected), assessing the effects of cultural consequences separately from the effects of reinforcements can be difficult. Operant contingencies would be sufficient to explain the recurrence of culturants. However, the results of Triad 2 do not support this argument. Although there was no conflict between the operant contingency and metacontingency during the condition in which both were in effect, we could observe the selection of culturants. And we could also observe the degree to which culturants were under the control of a metacontingency because they ceased to occur when the cultural consequence was suspended. During metacontingency extinction, the response rate remained low, but the participants did not coordinate their actions to meet the metacontingency requirements that were previously in force.

Concluding Remarks

The many arrangements among contingencies for operants and culturants that are available in Free Culturant allow researchers to explore various topics that are related to social behavior and cultural evolution, such as cooperation, competition, altruism, and several forms of group organization. One advantage of the software is that it allows experimental procedures for the study of choice between working alone or being part of a group. Most importantly, Free Culturant allows the experimental study of a unit that exceeds individual behavior and involves the organization of a group of individuals who work together and produce consequences that cannot be produced without such organization (i.e., culturants).

In a recent paper, Smaldino (2014) argued that most of the current work on cultural evolution has focused solely on the transmission of individual-level traits. For this reason, the author proposed a conceptual extension of cultural evolution theory, particularly related to evolutionary competition between cultural groups. The key concept in the author’s work was the emergent group-level trait. A group-level trait is the effect of social organization that cannot be expressed by any single individual in the group. Instead, these traits emerge from a structured organization of individuals. This effect or product of an organization of individuals promotes cultural differences in fitness and is inherited via cultural transmission. Smaldino proposed that the group-level trait can be a unit of selection at the cultural level.

Smaldino’s (2014) discussion is similar, in many respects, to the one in which behavior analysts engage when studying the processes in the third (cultural) level of selection by consequences. The metacontingency concept was proposed to account for a unit of cultural selection that is different from the unit of ontogenetic selection, individual (operant) behavior. As pointed out by Glenn (2004), this concept addresses evolution by selection when what evolves is not the actions of individuals but rather recurrences of interlocking contingencies that function as an integrated unit and result in a product that affects the probability of future recurrences of these culturants (as Hunter, 2012, later termed them). The outcomes that are produced by culturants are not the cumulative effect of people who behave individually; rather they are effects of interrelated behaviors of two or more individuals who act as a group, which sounds very similar to the group-level trait concept that was proposed by Smaldino. Thus, the metacontingency concept may help explain the origin and evolution of complex cultural-level entities, such as schools, legislatures, government agencies, religions, companies, and so on (Glenn, 2004; Todorov, 2010; Vichi et al., 2009).
Following the theoretical emphasis on the transmission of ideas and practices among individuals, many experimental studies in the field of cultural evolution have investigated mechanisms of cultural transmission (Barrett & Nyhof, 2001; Baum et al., 2004; Caldwell & Millen, 2008; Griffiths, Christian, & Kalish, 2008; Kalish, Griffiths, & Lewandowsky, 2007; Mesoudi, 2008; Mesoudi & Whiton, 2004). Others are doing so using mathematical models (Boyd & Richerson, 1985; Cavalli-Sforza & Feldman, 1981; McElreath et al., 2005). However, few studies have addressed the question of how cultural practices originate. We believe that this work can contribute to this area by experimentally demonstrating the origin of a practice by means of a cultural selection mechanism called metacontingency.

Finally, the three levels of selection by consequences that comprise the explanatory model of Skinner (1981) appear to offer a between-level perspective on which groups and individuals are distinct but intrinsically connected (Smaldino, 2014) and the organization of individuals with different functions that give rise to a unit of cultural selection—exactly what, according to Smaldino, would still be missing in cultural evolution theory.

References

Amorim, V. C. (2010). Análogos experimentais de metacontingências: Efeitos da intermitência da consequência cultural [Experimental analog of metac contingencies: Effects of cultural consequence intermittence] (Unpublished master’s thesis). Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.

Azevedo, R. M. F. (2015). Controle discriminativo em metacontingência [Stimulus control in metacontingencies] (Unpublished master’s thesis). Universidade de Brasília, Brasília, DF, Brasil.

Azrin, N. H., & Lindsley, O. R. (1956). The reinforcement of cooperation between children. The Journal of Abnormal and Social Psychology, 52, 100–102. http://dx.doi.org/10.1037/h0042490

Barrett, J., & Nyhof, M. (2001). Spreading non-natural concepts: The role of intuitive conceptual structures in memory and transmission of cultural materials. Journal of Cognition and Culture, 1, 69–100. http://dx.doi.org/10.1163/156853701300063589

Baum, W. M., Paciotti, B., Richerson, P., Lubell, M., & McElreath, R. (2012). Cooperation due to cultural norms, not individual reputation. Behavioural Processes, 91, 90–93. http://dx.doi.org/10.1016/j.beproc.2012.06.001

Baum, W. M., Richerson, P. J., Efferson, C. M., & Paciotti, B. M. (2004). Cultural evolution in laboratory microsocieties including traditions of rule giving and rule following. Evolution and Human Behavior, 25, 305–326. http://dx.doi.org/10.1016/j.evolhumbehav.2004.05.003

Blough, D. S. (1958). A method for obtaining psychophysical thresholds from the pigeon. Journal of the Experimental Analysis of Behavior, 1, 31–43. http://dx.doi.org/10.1901/jeb.1958.1-31

Borba, A. (2013). Efeitos da exposição a macrocontingências e metacontingências na produção e manutenção de respostas de autocontrole ético [Effects of exposure to macrocontingencies and metac contingencies in the production and maintenance of ethical self-control responses] (Unpublished doctoral dissertation). Universidade Federal do Pará, Belém, Brazil.

Bortoloti, R., & D’Agostino, R. G. (2007). Ações pelo controle reprodutivo e posse responsável de animais domésticos interpretadas à luz do conceito de metacontingência [Actions for reproductive control and responsible ownership of domestic animals interpreted through the concept of metacontingency]. Revista Brasileira de Análise do Comportamento, 3, 17–28.

Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago, IL: University of Chicago Press.

Buskist, W. F., Barry, A., Morgan, D., & Rossi, M. (1984). Competitive fixed interval performance in humans: Role of “orienting” instructions. The Psychological Record, 34, 241–257.

Buskist, W., & Morgan, D. (1987). Competitive fixed-interval performance in humans. Journal of the Experimental Analysis of Behavior, 47, 145–158. http://dx.doi.org/10.1901/jeb.1987.47-145

Caldas, R. A. (2009). Análogos experimentais de seleção e extinção de metacontingências [Experimental analogs of selection and extinction of metacontingencies] (Unpublished master’s thesis). Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.

Caldwell, C. A., & Millen, A. E. (2008). Studying monetary reinforcement of cooperation between children. The Journal of Abnormal and Social Psychology, 100, 17–28. http://dx.doi.org/10.1098/rstb.2008.0133

Camden, M. C., & Ludvig, T. D. (2013). Absenteeism in health care: Using interlocking behavioral contingency feedback to increase attendance with certified nursing assistants. Journal of Organizational Behavior Management, 33, 165–184. http://dx.doi.org/10.1080/01608061.2013.814521

Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantita-
Glenn, S. S. (1991). Contingencies and metacontingencies. Princeton, NJ: Princeton University Press.

Cohen, D. J., & Lindsley, O. R. (1964). Catalysis of controlled leadership in cooperation by human stimulation. *Journal of Child Psychology and Psychiatry, 5*, 119–137. http://dx.doi.org/10.1111/j.1469-7610.1964.tb02134.x

Costa, D., Nogueira, C., & Vasconcelos, L. A. (2012). Effects of communication and cultural consequences on choices combinations in INPDG with four participants. *Revista Latinoamericana de Psicología, 44*, 121–131.

de Carvalho, L. C., Couto, K., Sandaker, I., & Todo, E. (2015, May). *Selection of aggregated product: A replication of a metacontingency experiment.* Poster presented at the 41st Annual Convention of the Association for Behavior Analysis International, San Antonio, TX.

Dews, P. B. (1978). Origins and future of behavioral pharmacology. *Life Sciences, 22*(13–15), 1115–1121. http://dx.doi.org/10.1016/0024-3205(78)90080-2

Dougherty, D. M., & Cherek, D. R. (1994). Effects of social context, reinforce probability, and reinforcer magnitude on humans’ choices to compete or not to compete. *Journal of the Experimental Analysis of Behavior, 62*, 133–148. http://dx.doi.org/10.1901/jeab.1994.62-133

Efferson, C., Richerson, P. J., McElreath, R., Lubell, M., Edsten, E., Waring, T. M., . . . Baum, W. (2007). Learning, productivity, and noise: An experimental study of cultural transmission on the Bolivian Altiplano. *Evolution and Human Behavior, 28*, 11–17. http://dx.doi.org/10.1016/j.evolhumbehav.2006.05.005

Ellis, J. (1991). Contingencies and metacontingencies in correctional settings. In P. A. Lamal (Ed.), *Behavioral analysis of societies and cultural practices* (pp. 201–217). New York, NY: Hemisphere.

Estes, W. K., & Skinner, B. F. (1941). Some quantitative properties of anxiety. *Journal of Experimental Psychology, 29*, 390–400. http://dx.doi.org/10.1037/h0062283

Ferster, C. B. (1953). The use of the free operant in the analysis of behavior. *Psychological Bulletin, 50*, 263–274. http://dx.doi.org/10.1037/h0055514

Ferster, C. B., & Skinner, B. F. (1957). *Schedules of reinforcement*. New York, NY: Appleton-Century-Crofts. http://dx.doi.org/10.1037/h010627-000

Franceschini, A. C. T., Samelo, M. J., Xavier, R. N., & Hunziker, M. H. L. (2012). Effects of consequences on patterns of interlocked contingencies: A replication of a metacontingency experiment. *Revista Latinoamericana de Psicología, 44*, 87–95.

Glenn, S. S. (1991). Contingencies and metacontingencies: Relations among behavioral, cultural, and biological evolution. In P. A. Lamal (Ed.), *Behavior analysis of societies and cultural practices* (pp. 39–73). New York, NY: Hemisphere.

Glenn, S. S. (2004). Individual behavior, culture, and social change. *The Behavior Analyst, 27*, 133–151.

Glenn, S. S. (2003). Operant contingencies and the origins of cultures. In K. A. Lattal & P. N. Chase (Eds.), *Behavior theory and philosophy* (pp. 223–242). New York, NY: Kluwer/Plenum Press. http://dx.doi.org/10.1007/978-1-4757-4590-0_12

Glenn, S. S. (2003). Metacontingencies, selection and OBM: Comments on “Emergence and metacounters.” *Behavior and Social Issues, 19*, 79–85. http://dx.doi.org/10.5210/bsi.v19i0.3220

Glenn, S. S., & Malott, M. E. (2004). Complexity and selection: Implications for organizational change. *Behavior and Social Issues, 13*, 89–106. http://dx.doi.org/10.5210/bsi.v13i2.378

Griffiths, T. L., Christian, B. R., & Kalish, M. L. (2008). Using category structures to test iterated learning as a method for identifying inductive biases. *Cognitive Science, 32*, 68–107. http://dx.doi.org/10.1080/03640210701801974

Hake, D. F., Donaldson, T., & Hyten, C. (1983). Analysis of discriminative control by social behavioral stimuli. *Journal of the Experimental Analysis of Behavior, 39*, 7–23. http://dx.doi.org/10.1901/jeab.1983.39-7

Hake, D. F., Olvera, D., & Bell, J. C. (1975). Switching from competition to sharing or cooperation at large response requirements: Competition requires more responding. *Journal of the Experimental Analysis of Behavior, 24*, 343–354. http://dx.doi.org/10.1901/jeab.1975.24-343

Hake, D. F., & Schmid, T. L. (1981). Acquisition and maintenance of trusting behavior. *Journal of the Experimental Analysis of Behavior, 35*, 109–124. http://dx.doi.org/10.1901/jeab.1981.35-109

Hake, D. F., & Vukelich, R. (1972). A classification and review of cooperation procedures. *Journal of the Experimental Analysis of Behavior, 18*, 333–343. http://dx.doi.org/10.1901/jeab.1972.18-333

Hake, D. F., & Vukelich, R. (1973). Analysis of the control exerted by a complex cooperation procedure. *Journal of the Experimental Analysis of Behavior, 19*, 3–16. http://dx.doi.org/10.1901/jeab.1973.19-3

Hake, D. F., Vukelich, R., & Kaplan, S. J. (1973). Audit responses: Responses maintained by access to existing self or coactor scores during non-social, parallel work, and cooperation procedures. *Journal of the Experimental Analysis of Behavior, 19*, 409–423. http://dx.doi.org/10.1901/jeab.1973.19-409

Hake, D. F., Vukelich, R., & Olvera, D. (1975). The measurement of sharing and cooperation as equity effects and some relationships between them. *Journal of the Experimental Analysis of Behavior,*
23, 63–79. http://dx.doi.org/10.1901/jeab.1975.23-63

Henriques, M. B., Souza, M. C. G., Navarini, V., & Todorov, J. C. (2015, May). Inter-aggregated-product-time distribution as a function of differential reinforcement of temporally spaced aggregated products. Poster presented at the 38th Annual Meeting of the Society for the Quantitative Analyses of Behavior, San Antonio, TX.

Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267–272. http://dx.doi.org/10.1901/jeab.1961.4-267

Heyes, C. (2012a). What’s social about social learning? Journal of Comparative Psychology, 126, 193–202. http://dx.doi.org/10.1037/a0025180

Heyes, C. (2012b). Grist and mills: On the cultural origins of cultural learning. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 367, 2181–2191. http://dx.doi.org/10.1098/rstb.2012.0120

Hull, D. L., Langman, R. E., & Glenn, S. S. (2001). A general account of selection: Biology, immunology, and behavior. Behavioral and Brain Sciences, 24, 511–528.

Hunter, C. S. (2012). Analyzing behavioral and cultural selection contingencies. Revista Latinoamericana de Psicología, 44, 43–54.

Kalish, M. L., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated learning: Intergenerational knowledge transmission reveals inductive biases. Psychonomic Bulletin & Review, 14, 288–294. http://dx.doi.org/10.3758/BF03194066

Laland, K. N., & Brown, G. R. (2011). Sense and nonsense: Evolutionary perspectives on human behaviour (2nd ed.). New York, NY: Oxford University Press.

Lamal, P. A. (1991). Three metacontingencies in the pre-perestroika Soviet Union. Behavior and Social Issues, 1, 75–90.

Lindsley, O. R. (1966). Experimental analysis of cooperation and competition. In T. Verhave (Ed.), The experimental analysis of behavior: Selected readings (pp. 470–501). New York, NY: Appleton-Century-Crofts.

Marques, N. S. (2012). Efeitos da incontrolabilidade do evento cultural na aquisição e manutenção de práticas culturais: Um modelo experimental de superestação [Effects of uncontrollable cultural event in the acquisition and maintenance of cultural practices: An experimental model of superstition] (Unpublished master’s thesis). Universidade Federal do Pará, Belém, Brazil.

Marques, N., Leite, F., & Benvenuti, M. F. L. (2012). Conceptual and experimental directions for analyzing superstition in the behavioral analysis of culture. Revista Latinoamericana de Psicología, 44, 55–63.

Marwell, G., & Schmitt, D. R. (1975). Cooperation: An experimental analysis. New York, NY: Academic Press.

McElreath, R., Lubell, M., Richerson, P. J., Waring, T. M., Baum, W., Edsten, E., . . . Paciotti, B. (2005). Applying evolutionary models to the laboratory study of social learning. Evolution and Human Behavior, 26, 483–508. http://dx.doi.org/10.1016/j.evolhumbehav.2005.04.003

Mesoudi, A. (2007). A Darwinian theory of cultural evolution can promote an evolutionary synthesis for the social sciences. Biological Theory, 2, 263–275. http://dx.doi.org/10.1162/biot.2007.2.3.263

Mesoudi, A. (2008). An experimental simulation of the “copy-successful-individuals” cultural learning strategy: Adaptive landscapes, producer-scrounger dynamics, and informational access costs. Evolution and Human Behavior, 29, 350–363. http://dx.doi.org/10.1016/j.evolhumbehav.2008.04.005

Mesoudi, A. (2011). Cultural evolution: How Darwinian theory can explain human culture and synthesize the social sciences. Chicago, IL: University of Chicago Press. http://dx.doi.org/10.7208/chicago/9780226520452.001.0001

Mesoudi, A., & Whiten, A. (2004). The hierarchical transformation of event knowledge in human cultural transmission. Journal of Cognition and Culture, 4, 1–24. http://dx.doi.org/10.1163/156853704323074732

Mesoudi, A., & Whiten, A. (2008). Review. The multiple roles of cultural transmission experiments in understanding human cultural evolution. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 3489–3501.

Mesoudi, A., Whiten, A., & Laland, K. N. (2006). Towards a unified science of cultural evolution. Behavioral and Brain Sciences, 29, 329–347. http://dx.doi.org/10.1017/S0140525X06009083

Morford, Z. H., & Cihon, T. M. (2013). Developing an experimental analysis of metacontingencies: Considerations regarding cooperation in a four-person prisoner’s dilemma game. Behavior and Social Issues, 22, 5–20. http://dx.doi.org/10.5210/bsi.v22i0.4207

Ortu, D., Becker, A. M., Woelz, T. A., & Glenn, S. S. (2012). An iterated four-player prisoner’s dilemma game with an external selecting agent: A metacontingency experiment. Revista Latinoamericana de Psicología, 44, 111–120.

Pavanelli, S., Leite, F. L., & Tourinho, E. Z. (2014). A “modelagem” de contingências comportamentais complexas [The shaping of complex interlocking behavioral contingencies]. Acta Comportamental, 22, 425–440.

Pereira, J. M. C. (2008). Investigação experimental de metacontingências: Separação do produto
agregado e da consequência individual [Experimental investigation of metacontingencies: Separating aggregate product and individual consequences] (Unpublished master’s thesis). Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil.

Pessôa, C. V. B., & Buffara, A. C. L. (2005). Construção de intervalos variáveis de reforçoamento em planilha eletrônica de cálculo [Using calculation spreadsheet to the determination of variable intervals of reinforcement]. *Revista Brasileira de Terapia Comportamental e Cognitiva, 7*, 133–136.

Richerson, P. J., & Boyd, R. (2005). *Not by genes alone: How culture transformed human evolution*. Chicago, IL: University of Chicago Press.

Saconatto, A. T., & Andery, M. A. P. A. (2013). Seleção por metacontingências: Um análogo experimental de reforçoamento negativo [Selection by metacontingencies: An experimental analog of negative reinforcement]. *Interação em Psicologia, 17*, 1–10.

Sampaio, A. A. S., Araújo, L. A. S., Gonçalo, M. E., Ferraz, J. C., Alves-Filho, A. P., Brito, I. S., . . . Calado, J. I. F. (2013). Exploring the role of verbal behavior in a new experimental task for the study of metacontingencies. *Behavior and Social Issues, 22*, 87–101. [http://dx.doi.org/10.5210/bsi.v22i0.4180]

Schmid, T. L., & Hake, D. F. (1983). Fast acquisition of cooperation and trust: A two-stage view of trusting behavior. *Journal of the Experimental Analysis of Behavior, 40*, 179–192. [http://dx.doi.org/10.1901/jeab.1983.40-179]

Schmitt, D. R. (1976). Some conditions affecting the choice to cooperate or compete. *Journal of the Experimental Analysis of Behavior, 25*, 165–178. [http://dx.doi.org/10.1901/jeab.1976.25-165]

Schmitt, D. R. (1984). Interpersonal relations: Cooperation and competition. *Journal of the Experimental Analysis of Behavior, 42*, 377–383. [http://dx.doi.org/10.1901/jeab.1984.42-377]

Schmitt, D. R. (1987). Interpersonal contingencies: Performance differences and cost-effectiveness. *Journal of the Experimental Analysis of Behavior, 48*, 221–234. [http://dx.doi.org/10.1901/jeab.1987.48-221]

Schmitt, D. R. (1998). Social behavior. In K. A. Lattal & M. Perone (Eds.), *Handbook of research methods in human operant behavior* (pp. 471–505). New York, NY: Plenum Press. [http://dx.doi.org/10.1007/978-1-4899-1947-2_15]

Schmitt, D. R., & Marwell, G. (1968). Stimulus control in the experimental study of cooperation. *Journal of the Experimental Analysis of Behavior, 11*, 571–574. [http://dx.doi.org/10.1901/jeab.1968.11-571]

Sidman, M. (1953). Two temporal parameters of the maintenance of avoidance behavior by the white rat. *Journal of Comparative and Physiological Psychology, 46*, 253–261. [http://dx.doi.org/10.1037/h0060730]

Skinner, B. F. (1953). *Science and human behavior*. New York, NY: Macmillan.

Skinner, B. F. (1957). *Verbal behavior*. Englewood Cliffs, NJ: Prentice Hall. [http://dx.doi.org/10.1037/11256-000]

Skinner, B. F. (1981). *Selection by consequences*. Chicago, IL: University of Chicago Press.

Skinner, B. F. (1984). *The evolution of behavior*. New York, NY: Macmillan, 571–574. [http://dx.doi.org/10.1037/11256-000]

Smaldino, P. E. (2014). The cultural evolution of emergent group-level traits. *Behavioral and Brain Sciences, 37*, 243–254. [http://dx.doi.org/10.1017/S0140525X13001544]

Smith, G. S., Hounamfar, R., & Louis, S. J. (2011). The participatory role of verbal behavior in an elaborated account of metacontingency: From conceptualization to investigation. *Behavior and Social Issues, 20*, 122–146.

Tadaeisky, L., & Tourinho, E. Z. (2012). Effects of support consequences and cultural consequences on the selection of interlocking behavioral contingencies. *Revista Latinoamericana de Psicologia, 44*, 133–147.

Terrace, H. S. (1966). Stimulus control. In W. K. Honig (Ed.), *Operant behavior: Areas of research and application* (pp. 271–344). New York, NY: Appleton-Century-Crofts.

Todorov, J. C. (2010). Schedules of cultural selection: Comments on “Emergence and metacontingency.” *Behavior and Social Issues, 19*, 86–89. [http://dx.doi.org/10.5210/bsi.v19i0.3221]

Vasconcelos, I. G. (2014). Um procedimento experimental de modelagem de respostas para seleção do produto agregado em metacontingências [An experimental procedure of shaping responses for aggregate product selection in metacontingencies] (Unpublished master’s thesis). Universidade de Brasília, Brasília, Brazil.

Vichi, C. (2012). *Efeitos da apresentação intermitente de consequências culturais sobre contingências comportamentais entrelaçadas e seus produtos agregados* [Effects of intermittent presentation of cultural consequences on interlocking behavioral contingencies and their aggregate products] (Unpublished doctoral dissertation). Universidade Federal do Pará, Belém, Brazil.

Vichi, C., Andery, M. A. P. A., & Glenn, S. S. (2009). A metacontingency experiment: The effects of contingent consequences on patterns of interlocking contingencies reinforcement. *Behavior and Social Issues, 18*, 41–57. [http://dx.doi.org/10.5210/bsi.v18i1.2292]
Watanabe, S., & Ono, K. (1986). An experimental analysis of “empathic” response: Effects of pain reactions of pigeon upon other pigeon’s operant behavior. *Behavioural Processes, 13*, 269–277. http://dx.doi.org/10.1016/0376-6357(86)90089-6

Weiner, H. (1977). An operant analysis of human altruistic responding. *Journal of the Experimental Analysis of Behavior, 27*, 515–528. http://dx.doi.org/10.1901/jeab.1977.27-515

Wiggins, J. A. (1969). Status differentiation, external consequences and alternative reward distributions. In R. L. Burgess & D. Bussell, Jr. (Eds.), *Behavioral Sociology: The experimental foundations of social process* (pp. 109–126). New York, NY: Columbia University Press.

Zeiler, M. D. (1977). Schedules of reinforcement. In W. K. Honig & J. E. R. Staddon (Eds.), *Handbook of operant behavior* (pp. 201–232). Englewood Cliffs, NJ: Prentice Hall.

Received March 7, 2015
Revision received June 16, 2015
Accepted June 18, 2015