A new frontier in atherosclerotic coronary imaging

Gregory S. Thomas
University of California - Irvine

Et al.

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs

Part of the [Cardiology Commons](https://escholarship.umassmed.edu/cardiology), [Cardiovascular Diseases Commons](https://escholarship.umassmed.edu/cardiovascular-diseases), and the [Radiology Commons](https://escholarship.umassmed.edu/radiology)

Repository Citation

Thomas GS, Haraszti RA. (2014). A new frontier in atherosclerotic coronary imaging. University of Massachusetts Medical School Faculty Publications. https://doi.org/10.1016/S0140-6736(13)61911-X. Retrieved from https://escholarship.umassmed.edu/faculty_pubs/799

Creative Commons License

This work is licensed under a [Creative Commons Attribution 3.0 License](https://creativecommons.org/licenses/by/3.0/). This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in University of Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Ischaemic heart disease resulting from rupture of atherosclerotic plaques is a major cause of death worldwide. Precisely why a plaque ruptures remains a mystery. However, in The Lancet, Nikhil Joshi and colleagues' findings suggest that we are close to being able to detect when rupture is about to occur.

The simple and inexpensive 18F-sodium fluoride (18F-NaF) PET radioisotope, used for 30 years to image bone formation, was found to signify metabolically active calcification in the aorta by Derlin and colleagues and in the coronary arteries by Beheshti, Dweck, and Li, and their colleagues. In their landmark article, Joshi and coworkers move this nascent field much farther forward. They prospectively studied 40 patients with recent myocardial infarction (mean 8 days earlier) with invasive coronary angiography, CT coronary angiography, coronary calcium scoring, and cardiac gated PET-CT with 18F-NaF and 18F-fluorodeoxyglucose (18F-FDG). Using invasive coronary angiography as the gold standard for determining the culprit plaque, the area of greatest 18F-NaF uptake in the coronary arteries localised the plaque in 37 of 40 patients (maximum tissue-to-background ratio in the culprit plaque 1.66 [1.40–2.25] vs highest non-culprit plaque 1.24 [1.06–1.38]). By contrast, interpretation of 18F-FDG PET-CT images in the same cohort was technically difficult because of the frequent overlap of myocardial 18F-FDG uptake with the adjacent coronary arteries. Of the 55% of vascular territories that were interpretable by 18F-FDG, only a weak correlation was seen with culprit plaque identification.

A second cohort of 40 patients with stable angina underwent the same imaging tests and an intracoronary ultrasound. 18 patients had one or more plaques with high 18F-NaF uptake, defined as at least 25% greater than a proximal reference lesion. Intracoronary ultrasound identified that microcalcification, necrotic core size, and positive remodelling correlated strongly with plaques of high 18F-NaF activity.

Histological correlation was assessed in a third cohort of nine patients who underwent carotid endarterectomy at a mean of 17 days after clinical symptoms. Ex-vivo PET-CT was done on the removed carotid atherosclerotic tissue. Macroscopic plaque rupture was present in each patient, all localised to areas of high 18F-NaF uptake. Plaques with increased 18F-NaF uptake had substantially larger necrotic cores, more cell death and macrophage infiltration, and, as measured by alkaline phosphatase and osteocalcin staining, more active calcification than those that did not.

With the strong in-vivo correlates of coronary plaque rupture seen on intracoronary ultrasound in patients with stable angina, and histological confirmation of...
plaque rupture in atherosclerotic carotid tissue with high \(^{18}\text{F}-\text{NaF}\) activity, the authors can indeed state that of 40 patients with recent myocardial infarction (37 men, three women), plaque rupture can be detected non-invasively.

Now that we can detect plaque rupture, should we? Although the radiisotope \(^{18}\text{F}-\text{NaF}\) and PET-CT equipment are readily available in the developed world, much research needs to be done before the technique can become a viable clinical option. Just because a plaque at risk for rupture can be identified does not mean that we know what to do with this information. Prospective trials are needed to establish the frequency with which high \(^{18}\text{F}-\text{NaF}\) plaques rupture, and the timing of rupture. Also, does plaque rupture result in events or simply the rupture and healing cycle believed to result in a stepwise increase in plaque stenosis? If such trials are possible, what will we do with the information? Of Joshi and colleagues’ 40 patients with stable angina, nearly all were on antiplatelet agents and 36 were taking statins. Despite this therapy, 18 patients had at least one plaque with high \(^{18}\text{F}-\text{NaF}\) uptake. However, the ability to assess and potentially quantitatively measure plaque at high risk of rupture as a continuous variable (by maximum standard uptake value) creates a new world of opportunity for the investigation of pharmacological and device therapy.

The technique holds greater promise in populations with myocardial infarction and acute coronary syndrome than in more stable patients. Earlier work by Joshi and colleagues, for example, found a strong correlation between patients with high NaF plaques and those with the more easily and inexpensively obtained total Agatston coronary calcium score.\(^4\)

The technique also creates the opportunity to better assess the commonly accepted belief that most myocardial infarctions are caused by rupture of previously non-obstructive plaques. The underpinnings of this theory are derived from coronary angiography that is done distant from the index myocardial infarction.\(^6,7\) Narula and colleagues\(^8\) and others have questioned this assumption. The predictive value for increasing non-fatal myocardial infarction and cardiac death consistently seen in studies of increasing ischaemia, as assessed by myocardial perfusion imaging,\(^9\) and worsening obstructive disease by coronary CT\(^10\) and invasive angiography, are also inconsistent with this assumption.

Questions to be answered include: how best to use information derived from an assessment of inflammation by \(^{18}\text{F-FDG}\) and active calcification by \(^{18}\text{F-NaF}\). In large vessels without adjacent areas of intense \(^{18}\text{F-FDG}\) activity, \(^{18}\text{F-FDG}\) assessment is much less handicapped by overlapping structures compared with the coronary arteries. How do Joshi and colleagues’ findings apply to women, in whom plaque erosion is a much more common mechanism of myocardial infarction than in men? How do the findings apply to patients with diabetes? Does coronary artery bypass graft biology differ with respect to \(^{18}\text{F-NaF}\) activity? Do high \(^{18}\text{F-NaF}\) plaques in the carotid and other cerebrovascular vessels predict stroke and transient ischaemic attack? Joshi and colleagues and earlier pioneers have identified a new and hopefully fruitful frontier in nuclear cardiology and atherosclerotic coronary imaging.

*Gregory S Thomas, Reka A Haraszti
Long Beach Memorial Medical Center, Long Beach and University of California, Irvine, CA 90806, USA (GST); and Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA, USA (RAH)
gthomas1@memorialcare.org

We declare that we have no conflicts of interest.

1. Joshi NV, Vessey AT, Williams MC, et al. \(^{18}\text{F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet} 2013; published online Nov 13. http://dx.doi.org/10.1016/S0140-6736(13)61754-7
2. Derlin T, Richter U, Bannas P, et al. Feasibility of \(^{18}\text{F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med} 2010; 51: 862–65.
3. Beheshti M, Saboury B, Mehta NN, et al. Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomography—a novel concept. Hell J Nucl Med 2011; 14: 114–20.
4. Dweck MR, Chow MW, Joshi NV, et al. Coronary arterial \(^{18}\text{F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol} 2012; 59: 1539–48.
5. Li Y, Berejny GR, Shaba WF, Tafti B, Yevdavye E, Dadparvar S. Association of vascular fluoride uptake with vascular calcification and coronary artery disease. Nucl Med Commun 2012; 33: 14–20.
6. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12: 56–62.
7. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988; 78: 1155–66.
8. Narula J, Masatakia NM, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 2013; 61: 1041–51.
9. Thomas GS, Miyamoto MI, Morello AP, et al. Technetium199m based myocardial perfusion imaging predicts clinical outcome in the community outpatient setting: the Nuclear Utility in the Community (NUC) study. J Am Coll Cardiol 2008; 42: 213–23.
10. Min JK, Dunning A, Lin FY, et al. Age and sex-related differences in all-cause mortality risk based on coronary computerized tomography angiography findings. J Am Coll Cardiol 2011; 58: 849–60.