Gene Duplications in the Genomes of Staphylococci and Enterococci

José Francisco Sanchez-Herrero1,2,3, Manuel Bernabeu1, Alejandro Prieto1, Mário Hüttener1 and Antonio Juárez1,4*

1 Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain, 2 Biodiversity Research Institute (IRBio), University of Barcelona, Barcelona, Spain, 3 High Content Genomics and Bioinformatics Unit, Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Spain, 4 Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain

Gene duplications are a feature of bacterial genomes. In the present work we analyze the extent of gene duplications in the genomes of three microorganisms that belong to the Firmicutes phylum and that are etiologic agents of several nosocomial infections: Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis. In all three groups, there is an irregular distribution of duplications in the genomes of the strains analyzed. Whereas in some of the strains duplications are scarce, hundreds of duplications are present in others. In all three species, mobile DNA accounts for a large percentage of the duplicated genes: phage DNA in S. aureus, and plasmid DNA in the enterococci. Duplicates also include core genes. In all three species, a reduced group of genes is duplicated in all strains analyzed. Duplication of the deoC and rpmG genes is a hallmark of S. aureus genomes. Duplication of the gene encoding the PTS IIB subunit is detected in all enterococci genomes. In E. faecalis it is remarkable that the genomes of some strains encode duplicates of the prgB and prgU genes. They belong to the prgABCU cluster, which responds to the presence of the peptide pheromone cCF10 by expressing the surface adhesins PrgA, PrgB, and PrgC.

Keywords: gene duplication, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, bacterial genomics

INTRODUCTION

Gene duplication is an event in which one gene gives rise to two genes that cannot be operationally distinguished from each other. The duplicated genes remain in the same genome. Gene duplications are among the oldest and perhaps the most frequent of mutation types (Lynch et al., 2008; Lipinski et al., 2011). A duplicated gene provides a greater chance for natural selection to shape a novel function (Long et al., 2003). Gene duplication occurs both in eukaryotes and prokaryotes, and significantly impact their gene repertoires, generating functional diversity and increasing the genome complexity (Zhang, 2003; Conant and Wolfe, 2008; Serres et al., 2009; Innan and Kondrashov, 2010; Gao et al., 2017). Duplication events are highly relevant from a biological point of view because, whenever cellular growth is restricted, escape from these growth restrictions can occur by duplication events that resolve the selective problem. In turn, novel duplication events may facilitate subsequent genetic change by allowing cells to proliferate, hence increasing the probability for subsequent adaptive mutations to occur either in the amplified genes or in unrelated ones (Andersson and Hughes, 2009).
In the bacterial kingdom, gene duplication has been associated with survival in extreme or fluctuating conditions, including exposure to antimicrobial compounds or growth on poor nutrient sources, and may have a role in the coevolution between host and pathogens (Romero and Palacios, 1997; Riehle et al., 2001; Duvernay et al., 2011; Kondrashov, 2012; Sun et al., 2012; Toussaint et al., 2017). Several examples correlating gene duplication with bacterial adaptation to the environment are available. For instance, when high gene dosage confers selective benefits, bacteria maintain tandem arrays of duplicated genes (as previously reviewed Romero and Palacios, 1997; Andersson and Hughes, 2009). There is a high natural frequency of bacterial gene duplication, which exceeds the rate of spontaneous point mutation by several orders of magnitude (Andersson and Hughes, 2009). Recent studies indicate that more than 20% of cells in a population contain duplications in some genomic region despite the absence of any evident selection for such duplications (Anderson and Roth, 1981; Hooper and Berg, 2003; Treangen and Rocha, 2011; Elliott et al., 2013).

In most studies the presence of gene duplications is restricted to specific genes or genomic regions, and a global view of the impact of gene duplications in the bacterial genomes is missing. Escherichia coli is an example. Previous studies in E. coli had shown that some genes such as flu, which encodes the adhesin Ag43, can be present in several copies in different strains (van der Woude and Henderson, 2008; Elliott et al., 2013; Arun et al., 2016), but until recently the extent of gene duplications in the genomes of commensal strains, their gene products likely play a role in virulence.

In the present report we have undertaken a whole-genome analysis of gene duplications in the genomes of some of the most clinically relevant Gram-positive cocci, namely Staphylococcus aureus, Enterococcus faecium, and Enterococcus faealis. S. aureus and E. faecium are the Gram-positive representatives of the ESKAPE group, which includes microorganisms that are frequent causes of life-threatening nosocomial infections and display multiple antibiotic resistance phenotypes (Murray, 2000; Naimi et al., 2001; Torell et al., 2005). Staphylococcal and enterococcal bacteremia are prevalent in hospitalized patients, and are associated with significant morbidity and mortality (Bartash and Nori, 2017). The emergence of S. aureus strains resistant to many antibiotics, including methicillin-resistance (MRSA), poses a serious threat to human health even in countries with well-developed health surveillance systems. Some E. faecium and E. faecalis isolates account for about 15% of hospital acquired infections in Europe and the US (Werner et al., 2008; Zarb et al., 2012). E. faecium infections are nowadays of major concern because of their multidrug resistance phenotypes, including resistance to vancomycin (VRE) and ampicillin. Strains of E. faecalis are commensals of the gut microbiota, but under some circumstances they can be pathogenic. Pathogenic strains of E. faecalis are increasingly recognized as serious clinical threats due to both the acquisition of multiple antibiotic resistance determinants and to their capacity to disseminate resistance and virulence features by horizontal gene transfer (HGT) mechanisms (Kao and Kline, 2019). Coinfection of MRSA with VRE can occur, being VRE able to transfer VR to the staphylococci (Kos et al., 2012; McGuinness et al., 2017; Cong et al., 2020).

The genomic analysis performed in this work highlights the importance of some genes in the physiology of staphylococci and enterococci. Some of the identified duplicates likely play a role in virulence and hence can be considered as targets of antimicrobial therapies designed to combat infections caused by these pathogens.

MATERIALS AND METHODS

Bacterial Strains and Data Retrieval
We retrieved and analyzed data (genomic fasta, genbank format file, and the translated coding sequences) of all S. aureus (n = 473), E. faecium (n = 133), and E. faecalis (n = 40) complete assembled genomes from NCBI Refseq (Supplementary Table S1).

Strategy Used for the Analysis of Duplicates
For each of the strains studied, irrespective of the species, we downloaded the data and analyzed the extent of gene duplications within its genome. Once each strain was analyzed, we summarized the results obtained and generated the corresponding analysis at the level of species. For each of the three species analyzed we selected a reference strain and only for these we created visual representations of their duplicates. Then we analyzed the gene duplications shared with other strains of the same species. We also analyzed further specific characteristics of each of the species analyzed for further interpretation of the data.

Gene Duplication Within Strain
For the analysis of gene duplications we performed an all-vs.-all BLASTp (Altschul et al., 1990) protein similarity search using the translated coding sequence regions and filtering the results with a similarity cutoff >85%, an alignment length between pairs >85%, bit-score >50, and an e-value <10-10. We discarded auto hits and grouped duplicates accordingly.

Analysis of Inserted Phages
We analyzed the putative insertion of phages in the bacterial genomic sequences by using the PhiSpy tool (Akhter et al., 2012) and the genbank format file (gbk) for each of the strains. We used the appropriate training set for each strain according to their species and additional default parameters.
Phylogenetic Reconstruction
We generated a phylogenetic and clusterization analysis using all strains for each of the species analyzed. We used Mash (Ondov et al., 2016) and Sourmash (Titus and Irber, 2016) as they extend a dimensionality-reduction technique to include a pairwise mutation distance enabling the efficient clustering of massive sequence collections. We employed the genomic FASTA files downloaded for each strain and default parameters. For each species, the order of the strains in the different tables follows its phylogenetic relationship.

Exploratory Analysis
We summarized and plotted using R^1 the duplicated count of groups and genes identified and the number of proteins encoding for transposases, selected within the functional annotation associated. We also analyzed the correlation between the amount of duplicated genes and some variables of interest: phages inserted and duplicated proteins annotated as transposases, hypothetical proteins or proteins of unknown function.

Duplicate Coordinates Visualization
For the visualization of duplicates in the corresponding genomes we retrieved, for each duplicate, genomic features such as the start and end coordinates and strand harboring the coding sequence [either from the genomic feature format file (gff) or from the genomic features within the fasta sequence header]. By using R package BioCircos (Cui et al., 2016) we created a circular representation of the duplicate coordinates along the main chromosome and plasmid sequences if any.

Gene Duplications Shared Between Strains
For the analysis of gene duplications shared with other strains of the same species, we selected a single sequence within each duplicated group and we employed BLASTp with filtering parameters as above (similarity >85%, alignment >85%, bit-score >50, and e-value <10-10).

Analysis of the Genes Associated to the Generation of Small Colony Variants (SCV)
The analysis of the presence of SCV-associated genes (deoC, sstD, plyY, and eap) was done in several staphylococcal strains both coagulase + (S. aureus) and coagulase - (S. epidermidis, S. carnivus, and S. xylosus). We downloaded from NCBI Refseq the complete assembled genomes for S. epidermidis (n = 29) and any available genome for S. carnivus (n = 10) and S. xylosus (n = 57) (Supplementary Table S2). Homology search was done by using BLASTp and the translated coding sequences of these selected genes (Supplementary Table S3) and Staphylococcus spp. proteomes. In this case, we used less stringent filtering parameters, a similarity cutoff >50%, following protein homology guidelines (Pearson, 2013), and other parameters as above (alignment >85%, bit-score >50, and e-value <10-10).

Analysis of Methicillin and Vancomycin Resistance
Methicillin and vancomycin resistance determinants were searched for each strain by using the Comprehensive Antibiotic Resistance Database (CARD) (Alcock et al., 2020). They were clustered in operons as previously reported (Courvalin, 2006; Shore and Coleman, 2013). We also used BLASTp to identify the presence of each determinant (similarity >80%, alignment >85%, bit-score >50, and e-value <10-10) and manually curated the results. The presence of mecA or mecc genes in S. aureus (CARD IDs ARO: 3000617 and 3001209, respectively) was considered to confer the methicillin resistance phenotype (MR) and the presence in Enterococcus of vanA, vanB, and/or vanG genes (CARD IDs ARO: 3000010, 3000013, and 3002909, respectively) was considered to confer the vancomycin resistance phenotype (VRE).

Code Availability
The bioinformatics scripts employed for the analysis were deposited and are available at the github website: https://github.com/molevol-ub/BacterialDuplicates.

RESULTS
Gene Duplications in Staphylococcus and Enterococcus Genomes
We searched first for the presence of duplications in the overall number of 473 S. aureus genomes available at the Refseq NCBI database (Supplementary Table S1) performing an all-vs.-all protein search by BLASTp for each strain (Figure 1A and Supplementary Table S4). We also looked for the presence of methicillin resistance determinants and the putative insertion of phages within each genome. From the 473 genomes analyzed, some contain more than 50 groups of duplicates, with up to 190 duplicates. Duplications range from 6 to 84 groups, with more than 50% of the strains encoding more than 26 groups of duplicates. No clear correlation was identified between the total number of duplicates and the number of duplicated transposases annotated (R^2 = 0.332, pval-adj = 1.894e-43). On the other hand, a slight correlation was identified between the total number of duplicates and duplicated hypothetical or proteins of unknown function (R^2 = 0.8, pval-adj = 4.735e-167 and R^2 = 0.532, pval-adj = 7.439e-80, respectively). We also explored the distribution of duplicates under a cutoff of phages inserted. Those strains with > 2 phages inserted contain, on average, more duplicates (pval = 0.024).

With regard to E. faecium, we searched for the presence of gene duplications within each strain in all 133 genomes available at the NCBI Refseq database (Supplementary Table S1) by using the same BLAST strategy described above (Figure 1B and Supplementary Table S5). From the 133 genomes analyzed some contain more than 50 groups of duplicates, with up to

1R-project.org
FIGURE 1 | Number of gene duplications identified at the complete assembled genomes for NCBI Refseq entries for S. aureus (A), E. faecalis (B), and E. faecium (C). The Y-axis contains the number of counts for the number of duplicated groups (yellow), the number of gene duplications (blue), and the duplicated transposases (gray). Results are ordered by duplicated groups in increasing order for each strain (axis X).
429 duplicates. Duplications range from 6 to 152 groups, with more than 50% of the strains encoding more than 66 groups of duplicates. A half correlation was identified between the total number of duplicates and the number of duplicated transposases annotated ($R^2 = 0.708$, pval-adj = 4.828e-37) and with the duplicated hypothetical proteins annotated ($R^2 = 0.721$, pval-adj = 2.0439e-38). We also explored the distribution of duplicates under a cutoff of phages inserted. Those strains with >4 phages inserted contain, on average, more duplicates (p-val = 0.0017).

To complete our survey of duplications, we searched for the presence of duplications in all 40 E. faecalis genomes available (Supplementary Table S1) by using the same strategy described above (Figure 1C and Supplementary Table S6). From the 40 genomes analyzed, some contain more than 50 groups of duplicates, with up to 159 duplicates. Duplications range from 14 to 69 groups, with more than 50% of the strains encoding more than 26 groups of duplicates. No clear correlation was identified between the total number of duplicates and the number of duplicated transposases annotated ($R^2 = 0.320$, pval-adj = 8.465e-05). A medium correlation was identified with the duplicated hypothetical proteins annotated ($R^2 = 0.787$, pval-adj = 1.435e-14). We also explored the distribution of duplicates under a cutoff of phages inserted. Those strains with >4 phages inserted contain, on average, more duplicates (p-val = 0.0014).

Duplications in S. aureus Strain Newman

To further study the gene duplications in S. aureus genomes, we decided to analyze them in a well-characterized strain such as S. aureus Newman. It was isolated in 1952 from a human infection (Duthie and Lorenz, 1952) and has been commonly used as a model strain both for studying S. aureus pathogenesis (Richardson et al., 2008; Alonzo et al., 2013) and for the assessment of the therapeutic efficacy of antimicrobial compounds designed to threat S. aureus infections (Thammavongsa et al., 2013; Zhang et al., 2014). Its genome sequence has been available since 2008 (Baba et al., 2008).

We analyzed the extent of gene duplications in strain Newman (GCA_000010465.1) and mapped along the Newman genome those genes that are present in two or more copies (Figure 2 and Supplementary Table S7). A total number of 78 genes are duplicated in that strain. Most of the duplicated genes are located in two main regions (Supplementary Table S7). The insertion phage analysis identified five putative phages within the chromosome of this strain. Four of this phage coordinates match quite well with four prophages previously described in the Newman strain (Bae et al., 2006; Baba et al., 2008). Many of the genes that are duplicated in this strain are in the same coordinates as these phages (Figure 2). Specifically, several duplicates correspond to genes of phages ΦMN4, ΦMN2, and ΦMN1. Some ΦMN4 genes are present in both ΦMN2 and ΦMN1 and hence are present as triplicates. Other ΦMN2 genes are also present in ΦMN1, and are therefore present as duplicates (Supplementary Table S7). A small percentage of the duplicates maps outside the phage genomes (Figure 2).

With regard to the gene functions of the duplicated genes, 33% correspond to hypothetical proteins, 20% of proteins of unknown function, 19% to phage proteins, and the rest of proteins display miscellaneous functions (Supplementary Table S7).

Duplicated Genes From Strain Newman That Are Also Duplicated in Other S. aureus Strains

We addressed next the question as to whether the existing duplicates in this S. aureus strain are strain-specific or, on the contrary, they were generated in some putative ancestor and are also present in many other S. aureus strains. We used the 473 S. aureus genomes to check the shared duplicated genes (see Material and Methods for details). A representative summary of the results obtained is presented in Figure 3. The complete analysis is detailed in Supplementary Table S8.

As expected, other sequenced Newman strains [strains 412 (GCA_002310435.1), 414 (GCA_002310395.1), and 415 (GCA_900092595.1)] show the same duplication pattern that than obtained with the strain used for the analysis of duplications in the genome [strain 413 (GCA_000010465.1)]. It is also remarkable that strain NCTC13140 [strain 411 (GCA_900474725.1)] shows a gene duplication pattern quite similar to that of the Newman strain. This suggests a close phylogenetic relationship between this strain and the different Newman strains.
The analysis performed also shows that two of the duplicates in strain Newman are also duplicated in most of the strains analyzed (Table 1). These genes are deoC (group 2) and rpmG (group 72). Mutations in deoC (codes for the enzyme deoxyribose phosphate aldolase), prkC (codes for the serine/threonine-protein kinase PrkC), plsY (codes for the enzyme glycerol-3-phosphate acyltransferase), eap (codes for an extracellular adherence protein), and sstD (codes for an iron-binding protein belonging to an ABC uptake transporter) have been shown to result in the generation of small colony variants (SCV) of S. aureus (Chen et al., 2018). We analyzed therefore whether there also existed duplicates of other genes related to the formation of SCVs in all staphylococci (Supplementary Table S2). For this analysis, a lower similarity cutoff (>50%) was used in order to detect duplicates with lower similarity (Supplementary Table S9). Out of deoC, the rest of the genes that have been associated to the generation of SCVs are not duplicated in the genus Staphylococcus. Interestingly, deoC is duplicated in all S. aureus strains analyzed, but not in other catalase negative staphylococci.

The rpmG gene codes for the ribosomal protein L33. The existence of duplicates of the genes coding, among other ribosomal proteins, for the ribosomal protein L33 was already reported in some Gram-positive microorganisms (i.e., Bacillus subtilis, B. anthracis, and Lactococcus lactis) as well as in some mycoplasma (Makarova et al., 2001; R Development Core Team, 2008; Kandari et al., 2018).

Out of deoC and rpmG, another set of genes are duplicated in a group of about 250 strains that are phylogenetically related (Figure 3 and Supplementary Table S8). From these genes, (groups 1, 3, 4, 5, 8, 18–23, 28, 44, 46, 73–78; Supplementary Table S7) eight are phage genes (groups: 8, 18–23, 28). From the rest, the function of some is known (Table 1). They code, respectively, for a lipoprotein (group 1, gene csa1A), for the M subunit of a restriction/modification system (group 44, gene hsdM), for the SpLF serine protease (group 74, gene splF), for a lantibiotic of the gallidemin/nisin family (group 75, gene bsaA2), and for a gene belonging to the vraDEH operon (group 78, gene vraH), associated to the S. aureus resistance to antimicrobial peptides and to cells survival in an infection model (Popella et al., 2016). S. aureus Spl proteases are believed to induce allergic reactions (Stentzel et al., 2017).
Sanchez-Herrero et al. Duplications in Gram-Positive Cocci

FIGURE 4 | Genes duplicated in the E. faecium 6E6 strain. A circular map of the genome of the E. faecium 6E6 strain showing the duplicates in the chromosome and in two plasmids is shown. From the outside in, the outer circle represents the chromosome (red) and the plasmids (blue). The second circle includes the position of the identified phages that are inserted in the chromosome (green). Next circle shows the duplicated genes in the (+) strand at each coordinate (purple). The innermost circle shows the duplicated genes in the (−) strand at each coordinate (turquoise). The orange color shows the connection between duplicates. The size is shown in Mb.

and Supplementary Table S10). A total number of 111 gene groups are duplicated in that strain. Some of them (23%) correspond to transposases, which are present in three or more copies (Supplementary Table S10). Several of the duplicates contain at least one of the copies in a plasmid (Figure 4). With regard to the gene functions of the duplicated genes, 41% code for hypothetical proteins, 4.5% code for proteins of unknown function, and the rest for proteins with varying functions (Supplementary Table S10). The high percentage of duplicates that code for proteins of unknown function can be correlated with the HGT origin of these genes.

Duplicated Genes From Strain 6E6 That Are Also Duplicated in Other E. faecium Strains

Once we determined the gene duplications in the E. faecium 6E6 genome, we analyzed whether the existing duplicates are also present in other E. faecium strains. We used the 133 E. faecium genomes to check the shared duplicated genes. Among the genes that are duplicated in strain 6E6 (Supplementary Table S10), a set of 26 genes are also duplicated in most if not all of the strains. A summary of representative data is presented in Figure 5 (see Supplementary Table S11 for the complete analysis). These duplicates can be divided in two groups. The first group (18 genes) includes either transposases or transposon-associated genes. At least one of the corresponding copies maps in a plasmid. The second group (eight genes) comprises four other genes that code either for phage proteins or for hypothetical proteins (groups 105–108), and four genes that code for proteins, which display well-characterized physiological functions (Table 2). They code, respectively, for a GlsB-like protein (group 103), for a LysM-like protein (group 104), and for two proteins of the PTS

FIGURE 5 | Distribution of some of the detected groups of duplicated genes of strain 6E6 in 20 selected E. faecium strains. BLASTp analysis was used for the study. The white, gray, and black colors indicate, respectively, gene absent; gene present in a single copy; gene present in two or more copies. Purple color corresponds to genes with at least one copy in the chromosome and one copy in a plasmid. The gold color corresponds to plasmid genes. The numbers show the copy number of each gene. The order of the strains follows its phylogenetic relationship. Analysis of the whole set of 133 genomes together with their phylogenetic relationship is shown in the Supplementary Table S11. Details of the duplicated groups are shown in Supplementary Table S10.
TABLE 2 | Details of the selected duplicated genes of the strain Enterococcus faecium 6E6 that are also duplicated in other E. faecium strains.

Group	Locus Tag 1	Description	Percentage
103	AWJ25_RS06350	GlsB/YeaQ/YmgE family stress response membrane protein	99.25%
104	AWJ25_RS07455	LysM peptidoglycan binding domain containing protein	99.25%
109	AWJ25_RS09645	PTS lactose/cellobiose transporter subunit IIA	95.49%
110	AWJ25_RS09650	PTS sugar transporter subunit IIB	78.20%

Percentage of the analyzed strains that contain the duplicated gene is showed.

system: the lactose/cellobiose IIA and IIB subunits (groups 109 and 110, respectively).

Duplications in the E. faecalis Strain V583

We selected for this study as a reference strain E. faecalis V583 (GCA_000007785.1), a VanB-type vancomycin-resistant virulent isolate that is a model strain for E. faecalis studies (Paulsen et al., 2003).

We analyzed the gene duplications in strain V583 (see Materials and Methods for details), and mapped along the V583 genome those genes that are present in two or more copies (Figure 6 and Supplementary Table S12). A total number of 52 gene groups are duplicated in that strain. Some of them (5.7%) correspond to transposases (Supplementary Table S12). As it happened with E. faecium strain 6E6, a large number of duplicates (50.9%) are plasmid genes. With regard to the gene functions of the duplicated genes, 18 duplicated genes code for hypothetical proteins (35%), and the rest code for proteins with different functions (Supplementary Table S12).

Duplicated Genes From Strain V583 That Are Also Duplicated in Other E. faecalis Strains

We also analyzed if the existing duplicates in strain V583 are also present in many other E. faecalis strains. We used the 40 E. faecalis genomes (Supplementary Table S1) to check the shared duplicated genes with strain V583 (see Material and Methods for details) (Figure 7 and Supplementary Table S13). In contrast to E. faecium, only a small group of duplicates (five) is present in almost all the strains analyzed. All of them are chromosomal duplicates. The dgaEF genes (groups 41 and 42) are required for microbial growth on glucose aminoate (Miller et al., 2013). The genes from group 43 code for the subunit IIB of the PTS system. This gene is also duplicated in E. faecium. The genes from group 44 (galE) code for the UDP glucose 4 epimerase that catalyzes the last step of the Leloir pathway for the assimilation of galactose. The genes from Group 52 code for a protein containing a LPXTG cell wall anchor domain (Table 3).

Two other groups of duplicates are present in a significant number of the strains analyzed: groups 1–9, encoded in plasmids, and groups 36–40, encoded in the chromosome. From groups 1–9, it is relevant to mention here the prgB and prgU genes (groups 4 and 8, respectively). E. faecalis strains harboring plasmid pCF10 respond to the presence of the peptide pheromone cCF10 by expressing three surface adhesins: PrgA, PrgB, and PrgC. They play a relevant role in host tissue attachment and biofilm formation (Gilmore et al., 2014). Overexpression of PrgB can be highly toxic to E. faecalis cells, and PrgU mitigates toxicity by downregulating PrgB synthesis (Bhatty et al., 2017). It was already reported that strain V583 contains several copies of the prgU gene (Bhatty et al., 2017). We show here that this duplication is present in several other E. faecalis strains.

With respect to groups 36–40, they code, respectively, for a holin, for a protein containing a LysM peptide-binding domain, for a transposase, for a protein that participates in pectin degradation (the kdu gene product) and for the cold shock protein CspA (Table 3).
Sanchez-Herrero et al. Duplications in Gram-Positive Cocci

Figure 7 Distribution of the detected groups of duplicated genes of strain V583 in 20 selected *E. faecalis* strains. BLASTp analysis was used for the study. The white, gray, and black colors indicate, respectively, gene absent; gene present in a single copy; gene present in two or more copies. Purple color corresponds to genes with at least one copy in the chromosome and one copy in a plasmid. The gold color corresponds to genes with all copies in plasmids. The numbers show the copy number of each gene. The order of the strains follows its phylogenetic relationship. Analysis of the whole set of 40 genomes together with their phylogenetic relationship is shown in Supplementary Table S13. Details of the duplicated groups are shown in Supplementary Table S12.

Table 3 Details of the selected duplicated genes of the strain *Enterococcus faecalis* V583 that are also duplicated in other *E. faecalis* strains.

Group	Locus Tag 1	Symbol	Description	Percentage
4	EF_RS00670	prgB	LPXTG anchored aggregation substance	32.50%
8	EF_RS02380	prgU	Pheromone response system. RNA binding regulator	30.00%
21	EF_RS02400	prgC	Cell wall surface anchor family protein	7.50%
26	EF_RS00665	sea1/prgA	Surface exclusion protein	5.00%
37	EF_RS01780	LysM peptidoglycan binding domain containing protein	35.00%	
39	EF_RS02105	kduI	5-dehydro-4-deoxy-D-glucuronate isomerase	17.50%
40	EF_RS03725	cspA	Cold shock protein	55.00%
41	EF_RS03995	dgaE	Pyridoxal phosphate dependent ammonia lyase family protein	100.00%
42	EF_RS04000	dgaF	KDGP aldolase family protein	97.50%
43	EF_RS04815	celA	PTS sugar transporter subunit IIb	100.00%
44	EF_RS05170	galE	UDP glucose-4-epimerase	100.00%

Percentage of the analyzed strains that contain the duplicated gene is showed.

Strains V583, VE18379, VE14089, and VE18395 that appear to share a set of duplicates, are closely related. Strain VE14089 is plasmid-free V583. Strains VE18379 and VE18395 are derivatives from strain VE14089.

Genomic Context of Some Core Genes That Are Duplicated in These Species

A relevant question to be addressed is whether the identified duplicated genes that code for core functions result either from ancient duplications and are located in fixed points of the chromosome, or have been generated because of some of these genes being flanked by IS elements and jumping to different positions in the chromosome. To assess this, we analyzed the genomic context of both copies of the *deoC* gene in representative strains of *S. aureus*, and of the *celA* gene in representative strains of *E. faecium* and *E. faecalis* (Figure 8). The genomic context of the two alleles of the *deoC* and *celA* genes is the same in the different strains analyzed. They are not surrounded by IS elements, but by other core genes.

DISCUSSION

It is apparent that in the Gram-positive cocci studied in this work, mobile DNA elements encode a significant part of the duplicates present in their genomes. The statistical analysis performed correlates duplicates both with phages inserted in the chromosome and with genes encoding either hypothetical or proteins of unknown function (much more common in mobile DNA than in the core genome). In *S. aureus*, most of the duplicated genes are of phage origin. This is not surprising because of the relevant role that phages have in the biology of this microorganism (Xia and Wolz, 2014; Ingmer et al., 2019). In contrast, plasmids are the predominant mobile elements, which encode a significant part of the duplicates in the enterococci. In *E. faecium* there exists a significant correlation between duplicates and transposases. This is also shown when the existing duplicates are identified by BLAST analysis. The question to be addressed is the biological significance of the duplication of genes encoded in mobile DNA in these microorganisms.
Although duplicates located in mobile DNA predominate in the microorganisms studied here, others are located in the chromosome. Some of these latter duplicates are widespread among all the strains of the same species analyzed. In S. aureus, two duplicates are present in almost all strains analyzed: the rpmG and the deoC genes. The former codes for the ribosomal protein L33. Duplications of the gene encoding the L33 protein appear to be a hallmark of several Gram-positive genera. As a general rule, one of the rpmG paralogs codes for a protein that contains a Zn-binding motif comprising a two pair of conserved CXXC stretch (CC form), which is absent in the other (C-form). In strain Newman, two copies are C- (NWMN_RS07040, and NWMN_RS08205, respectively), and the third is CC [NWMN_0496.1 (this latter shows less than 85% identity)]. In addition to their role in translation, ribosomes also serve as reservoirs for zinc in the cell (Moore and Helmann, 2005). The zinc-responsive regulator Zur has been shown to repress the C- form (Akanuma et al., 2006; Gabriel and Helmann, 2009). Under zinc-depleted conditions, the Zur mediated repression of the genes encoding the C- forms of the ribosomal proteins is alleviated. These C- forms then replace the corresponding CC forms from the ribosomes, resulting in exoneration of zinc, which can then be used by other metalloproteins. This enables the bacterial cell to survive in zinc limiting environments (Moore et al., 2005; Akanuma et al., 2006).

The deoC gene product is the deoxyribose phosphate aldolase, which enables bacterial cells to grow on deoxyribonucleosides as the carbon source. As commented above, mutations in the S. aureus deoC gene have been associated with the generation of SCVs (Chen et al., 2018). Interestingly, deoC mutations were associated with alterations in the response to extracellular signaling in E. coli (Joloba and Rather, 2003). It can be hypothesized that, as the deoC gene is duplicated in S. aureus but not in other catalase negative cocci, its gene product can play a role in S. aureus virulence.

In addition to these widespread duplicates, another group of duplicates is present in a subset of the S. aureus genomes. The strains containing these duplicates are phylogenetically related. The reported functions for these genes (i.e., vraH, splF) are also related to virulence, and they can be considered as virulence markers of that group of S. aureus strains. A question to be addressed is whether the duplication of these genes confers specific virulence features to S. aureus.

In E. faecium genomes, a significant part of the duplicates (58%) are located (at least one of the copies) in plasmids. Several of these duplicates code either for transposases or for hypothetical proteins. Some of them are shared by most of the strains analyzed. In addition to these genes of plasmid origin, four chromosomal genes are also duplicated in most of the E. faecium strains analyzed. Expression of GlsB proteins has been associated with virulence and bile salt stress (Choudhury et al., 2011; Zhang et al., 2013a). Proteins containing a LysM domain have been shown to be induced under infection conditions of a mammalian host (Cacaci et al., 2018). Although the proteins of the lactose/cellobiose PTS system IIA and IIB have not been hitherto described as relevant elements in E. faecium virulence, the relevance of the PTS system for the ability of E. faecium to colonize the host has been previously reported. Deletion of the
DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

JS-H, MB, and AJ designed this study. JS-H and MB performed the *in silico* work. JS-H, MB, AP, MH, and AJ wrote the manuscript. MH and AJ did the final version of the manuscript. All authors analyzed and discussed the results, read and approved the final manuscript.

FUNDING

JS-H was beneficiary of a contract by the Instituto de Salud Carlos III through the Accion Estrategica en Salud 2018 (Co-funded by the European Regional Development Fund/European Social Fund; “A way to make Europe”/“Investing in your future”). MB was the recipient of a FI Fellowship from the Generalitat de Catalunya. This work was supported by grant BIO2016-76412-C2-1-R (AEI/FEDER, UE) from the Ministerio de Economía, Industria y Competitividad, Fundació La Marató TV3, Spain (Project ref. 201818 10), and the CERCA Programme/Generalitat de Catalunya to AJ.

ACKNOWLEDGMENTS

We thank the IGTP High Content Genomics & Bioinformatics Unit Core Facility and staff (Dr. Lauro Sumoy) for their contribution to this publication. We additionally thank the Evolutionary Genomics and Bioinformatics Group and Dr. Julio Rozas particularly at the University Barcelona for providing us with computational resources for this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmolb.2020.00160/full#supplementary-material

TABLES

S1 List of the complete assembled genomes corresponding to NCBI Refseq entries for *S. aureus*, *E. faecalis*, and *E. faecium* used for the gene duplication analysis.

S2 List of the NCBI Refseq entries for *S. epidermidis*, *S. camosus*, and *S. xylosus* used for the analysis of the duplications of genes involved in the generation of small colony variants (SCV).

S3 Details of the genes involved in the generation of SCVs used for the duplication analysis.

S4 Gene duplication data obtained for the *S. aureus* strains analyzed. Indicated are: (i) Phylogeny order: according to the clustering analysis using mash and sourmash tools. (ii) Groups: counts of groups of duplicated genes. (ii) Dups: total count of duplicated genes. (iii) Transpo: counts of genes within duplicates annotated as “transposase”. (iv) Hypo: counts of gene names within duplications annotated or containing “hypothetical” functions. (v) Phages: Number of phages...
of putative phages identified with PhiSpy inserted in the genome. (vii) MRSA: presence of meticillin resistance determinants mecA and/or mecC. The order of the strains follows its phylogenetic relationship.

TABLE S5 | Gene duplication data obtained for the *E. faecium* strains analyzed. Indicated are: (i) Phylogeny order: according to the clustering analysis using mash and sourmash tools. (ii) Groups: counts of groups of duplicated genes. (iii) Dups: total count of duplicated genes. (iv) Transpo: counts of genes within duplicates annotated as “transposase”. (v) Hypo: counts of gene names within duplications annotated or containing “hypothetical” functions. (vi) Pfages: Number of putative phages identified with PhiSpy inserted in the genome. (vii) VRE: presence of vancomycin resistance determinants *vanA* (blue), *vanB* (yellow), *vanA*/*vanB* (green), or *vanC* (red). The order of the strains follows its phylogenetic relationship.

TABLE S6 | Gene duplication data obtained for the *E. faecalis* strains analyzed. Indicated are: (i) Phylogeny order: according to the clustering analysis using mash and sourmash tools. (ii) Groups: counts of groups of duplicated genes. (iii) Dups: total count of duplicated genes. (iv) Transpo: counts of genes within duplicates annotated as “transposase”. (v) Hypo: counts of gene names within duplications annotated or containing “hypothetical” functions. (vi) Pfages: Number of putative phages identified with PhiSpy inserted in the genome. (vii) VRE: presence of vancomycin resistance determinants *vanA* (blue) or *vanB* (yellow). The order of the strains follows its phylogenetic relationship.

TABLE S7 | Locus tag and description of the duplicates identified in *S. aureus* strain Newman. Red, blue and green colors correspond to genes located in the *ΦMN4*, *ΦMN2*, and *ΦMN1* phages, respectively.

TABLE S8 | Distribution of the detected duplicated genes of strain Newman in the genomes of the other 472 *S. aureus* strains analyzed. BLASTp analysis was used for the study. The white, gray, and black colors indicate, respectively: gene absent; gene present in a single copy; gene present in two or more copies. The numbers show the copy number of each gene. The order of the strains follows its phylogenetic relationship.

REFERENCES

Akanuma, G., Nanamiya, H., Natori, Y., Nomura, N., and Kawamura, F. (2006). Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtIA, in *Bacillus subtilis*. *J. Bacteriol.* 188, 2715–2720. doi: 10.1128/JB.188.7.2715–2720.2006

Alkhier, S., Aziz, R. K., and Edwards, R. A. (2012). PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. *Nucleic Acids Res.* 40, e126. doi: 10.1093/nar/gks406

Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., et al. (2020). CARD 2020: antibiotic resistance surveillance with the comprehensive antibiotic resistance database. *Nucleic Acids Res.* 48, D517–D525. doi: 10.1093/nar/gkaa935

Alfonzo, F., Kozhaya, L., Rawlings, S. A., Reyes-Robles, T., DuMont, A. L., Myska, D. G., et al. (2013). CCr5 is a receptor for *Staphylococcus aureus* leukotoxin ED. *Nature* 493, 51–55. doi: 10.1038/nature11724

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2

Anderson, P. B. and Rath, J. (1981). Spontaneous tandem genetic duplications in *Salmonella* Typhimurium arise by unequal recombination between rRNA (rrn) cistrons. *Proc. Natl. Acad. Sci. U.S.A.* 78, 3113–3117. doi: 10.1073/pnas.78.5.3113

Andersson, I. S., and Hughes, D. (2009). Gene amplification and adaptive evolution in bacteria. *Annu. Rev. Genet.* 43, 167–195. doi: 10.1146/annurev-genet-102108-134805

Arumugam, M., Raes, J., Pelletier, E., Le Chatelier, E., Kuczynski, J., Tap, T., et al. (2011). Enterotypes of the human gut microbiome. *Nature* 473, 185–188. doi: 10.1038/nature10253

Arumugam, M., Raes, J., Pelletier, E., Le Chatelier, E., Kuczynski, J., Tap, T., et al. (2011). Enterotypes of the human gut microbiome. *Nature* 473, 185–188. doi: 10.1038/nature10253

Arumugam, M., Raes, J., Pelletier, E., Le Chatelier, E., Kuczynski, J., Tap, T., et al. (2011). Enterotypes of the human gut microbiome. *Nature* 473, 185–188. doi: 10.1038/nature10253

Baba, T., Baba, T., Schneewind, O., Takeuchi, F., and Hiramatsu, K. (2008). Genome sequence of *Staphylococcus aureus* strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. *J. Bacteriol.* 190, 300–310. doi: 10.1128/jb.01000-07

Bae, T., Baba, T., Hiramatsu, K., and Schneewind, O. (2006). Prophages of *Staphylococcus aureus* Newman and their contribution to virulence. *Mol. Microbiol.* 62, 1035–1047. doi: 10.1111/j.1365-2958.2006.05441.x

Bartosh, R., and Nori, P. (2017). Beta-lactam combination therapy for the treatment of *Staphylococcus aureus* and *Enterococcus* species bacteremia: a summary and appraisal of the evidence. *Int. J. Infect. Dis.* 63, 7–12. doi: 10.1016/j.ijid.2017.07.019

Bernaube, M., Sánchez-Herrero, J. F., Huedo, P., Prieto, A., Hüttemer, M., Rozas, J., et al. (2019). Gene duplications in the *E. coli* genome: common themes among pathotypes. *BMC Genomics* 20:313. doi: 10.1186/s12864-019-5683-4

Bhatty, M., Camacho, M. I., Gonzalez-Rivera, C., Frank, K. L., Dale, J. L., Manias, D. A., et al. (2017). PrugA: a suppressor of sex pheromone toxicity in *Enterococcus faecalis*. *Mol. Microbiol.* 103, 398–412. doi: 10.1111/mmi.13563

Cacaci, M., Giraud, C., Leger, L., Torelli, R., Martini, C., Posteraro, B., et al. (2018). Expression profiling in a mammalian host reveals the strong induction of genes encoding LysM domain-containing proteins in *Enterococcus faecium*. *Sci. Rep.* 8:12412. doi: 10.1038/s41598-018-30882-z

Chen, H., Wang, Q., Yin, Y., Li, S., Niu, D.-K., and Wang, H. (2018). Genotypic variations between wild-type and small colony variant of *Staphylococcus aureus* in prosthetic valve infectious endocarditis: a comparative genomic and transcriptomic analysis. *Int. J. Antimicrob. Agents* 51, 655–658. doi: 10.1016/j.ijantimicag.2017.12.006

Choudhury, T., Singh, K. V., Sillanpää, J., Nallaparedy, S. R., and Murray, B. E. (2011). Importance of two *Enterococcus faecium* loci encoding Gls-like proteins for in vitro bile salts stress response and virulence. *J. Infect. Dis.* 203, 1147–1154. doi: 10.1093/infdis/jiq160

Conant, G. C., and Wolfe, K. H. (2008). Turning a hobby into a job: how duplicated genes find new functions. *Nat. Rev. Genet.* 9, 938–950. doi: 10.1038/nrg2482

Cong, Y., Yang, S., and Rao, X. (2020). Vancomycin resistant *Staphylococcus aureus* infections: a review of case updating and clinical features. *J. Adv. Res.* 21, 169–176. doi: 10.1016/j.jare.2019.10.005
Sánchez-Herrero et al.
Duplications in Gram-Positive Cocci

Curvolain, P. (2006). Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis. 42(Suppl. 1), S25–S34. doi: 10.1086/491711

Cui, Y., Chen, X., Luo, H., Fan, Z., Luo, J., He, S., et al. (2016). BioCircos.js: an interactive Circos JavaScript library for biological data visualization on web applications. Bioinformatics 32, 1740–1742. doi: 10.1093/bioinformatics/btw266

Dutheil, E., S. E. Grand, M. Aubourg, M., Pikis, A., Thompson, J., Deutscher, J., Hartke, A., et al. (2015). Duplication of the chromosomal blaSHV-11 gene in a clinical hypermutable strain of Klebsiella pneumoniae. Microbiology (Reading, Engl.) 157, 496–503. doi: 10.1099/mic.0.34388-0

Elliott, K. T., Cuff, L. E., and Neidle, E. L. (2013). Copy number change: evolving views on gene amplification. Future Microbiol. 8, 887–899. doi: 10.2217/fmb.13.53

Gabriel, S. E., and Helmann, J. D. (2009). Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. J. Bacteriol. 191, 6116–6122. doi: 10.1128/jb.00802-09

Gao, Y., Zhao, H., Jin, Y., Xu, X., and Han, G.-Z. (2017). Extent and evolution of gene duplication in DNA viruses. Virus Res. 240, 161–165. doi: 10.1016/j.viruses.2017.08.005

Geldart, K., and Kaznessis, Y. N. (2017). Characterization of class ii bacteriocin resistance in enterococcus faecium. Antimicrob. Agents Chemother. 61: e2033-16.

Gilmore, M. S., Clewell, D. B., Ike, Y., Shankar, N., Clewell, D. B., Weaver, K. E., et al. (2014). Extrachromosomal and Mobile Elements in Enterococci: Transmission, Maintenance, and Epidemiology. Boston, MA: Massachusetts Eye and Ear Infirmary.

Grand, M., Aubourg, M., Pikis, A., Thompson, J., Deutscher, J., Hartke, A., et al. (2019). Characterization of the gen locus involved in β-1,6-oligosaccharide utilization by Enterococcus faecalis. Mol. Microbiol. 112, 1742–1756. doi: 10.1111/mmi.14390

Hooper, S. D., and Berg, O. G. (2003). Duplication is more common among laterally transferred genes than among indigenous genes. Genome Biol. 4:R48. doi: 10.1186/gb-2003-4-8-r48

Ingmer, H., Gerlach, D., and Wozel, C. (2019). Temperate phages of Staphylococcus aureus. Microbiol Spectr 7:G3P-3-0058-2018.

Innan, H., and Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97–108. doi: 10.1038/nrg2689

Joloba, M. L., and Rather, P. N. (2003). Mutations in deoB and deoC alter antibiotic resistance in enterococcus faecium. Antimicrob. Agents Chemother. 47, 887–899. doi: 10.1128/AAC.47.3.887-899.2003

Kandari, D., Gopalani, M., Gupta, M., Joshi, H., Bhatnagar, S., and Bhatnagar, R. (2011). Duplication of the chromosomal blaSHV-11 gene in a clinical methicillin-resistant Staphylococcus aureus. MBio 2:RESEARCH0033. doi: 10.1128/mBio.00301-12

Kos, V. N., Desjardins, C. A., Griggs, A., Cerqueira, G., Van Tonder, A., Bhatnagar, S., et al. (2012). Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States. MBio 3:e0043. doi: 10.1128/mBio.0043.

Lynch, M., Sung, W., Morris, K., Coffey, N., Landry, C. R., Dopman, E. B., et al. (2008). A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc. Natl. Acad. Sci. U.S.A. 105, 9272–9277. doi: 10.1073/pnas.0803466105

Naimi, T. S., LeDell, K. H., Boxrud, D. J., Groom, A. V., Steward, C. D., Johnson, S. K., et al. (2001). Epidemiology and clonality of community-acquired methicillin-resistant Staphylococcus aureus in Minnesota, 1996–1998. Clin. Infect. Dis. 33, 990–996. doi: 10.1086/322683

Ondov, B. D., Treangen, T. J., Melsted, P., Mallon, E. A., Bergman, N. H., Koren, S., et al. (2016). MASH: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17:132. doi: 10.1186/s13059-016-0997-x

Paganelli, F. L., Huebner, J., Singh, K. V., Zhang, X., van Schaik, W., Wobser, D., et al. (2016). Genome-wide screening identifies phosphotransferase system permease BepA to be involved in Enterococcus faecalis endocarditis and biofilm formation. J. Infect. Dis. 214, 189–195. doi: 10.1093/infdis/jiw108

Pearson, W. R. (2013). An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinformat. Chapter 3(Unit3.1.1). doi: 10.1002/0471250953.bi0301s42

Poppe1, P., Krauss, S., Ebner, P., Nega, M., Deibert, J., and Götz, F. (2016). VraE is the third component of the Staphylococcus aureus VraDEH system involved in gallidermin and daptomycin resistance and pathogenicity. Antimicrob. Agents Chemother. 60, 2391–2401. doi: 10.1128/AAC.02865-15

R Development Core Team (2008). R Development Core Team R-project.org. Available online at: http://www.R-project.org.

Richardson, A. R., Libby, S. J., and Fang, F. C. (2008). A nitric oxide- inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319, 1672–1676. doi: 10.1126/science.1155207

Riehle, M. M., Bennett, A. F., and Long, A. D. (2001). Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 98, 525–530. doi: 10.1073/pnas.021448998

Romero, D., and Palacios, R. (1997). Gene amplification and genomic plasticity in prokaryotes. Annu. Rev. Genet. 31, 91–111. doi: 10.1146/annurev.genet.31.1.91

Ruiz-Cruz, S., Espinosa, M., Goldmann, O., and Bravo, A. (2015). Global regulation of gene expression by the MaR protein of Enterococcus faecalis. Front. Microbiol. 6:1521. doi: 10.3389/fmicb.2015.01521

Savageau, M., Mokhtari, A., Joyet, P., Budin-Verneuil, A., Bianco, V. S., Repizo, G. D., et al. (2017). Enterococcus faecalis uses a phosphotransferase system permease and a host colonization-related ABC transporter for maltodextrin uptake. J. Bacteriol. 199:e00878-16.

Shores, S. J., Horr, R. W., McCormack, T. J., and Riley, M. (2009). Evolution by leaps: gene duplication in bacteria. Biol. Direct. 4:46. doi: 10.1186/1745-6150-4-46

Shore, A. C., and Coleman, D. C. (2013). Staphylococcal cassette chromosome mec: recent advances and new insights. Int. J. Med. Microbiol. 303, 350–359. doi: 10.1016/j.ijmm.2013.02.002

Stentzel, S., Teufelberger, A., Nordengrön, M., Kolata, J., Schmidt, F., van Crombruggen, K., et al. (2017). Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus. Allergy Clin. Immunol. 139, 492.e–500.e. doi: 10.1016/j.jaci.2016.03.045
Sanchez-Herrero et al. Duplications in Gram-Positive Cocci

Sun, S., Ke, R., Hughes, D., Nilsson, M., and Andersson, D. I. (2012). Genome-wide detection of spontaneous chromosomal rearrangements in bacteria. PLoS ONE 7:e42639. doi: 10.1371/journal.pone.0042639

Thammavongsa, V., Missiakas, D. M., and Schneewind, O. (2013). Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342, 863–866. doi: 10.1126/science.1242255

Titus, B. C., and Irber, L. (2016). Sourmash: a library for MinHash sketching of DNA. J. Open Source Softw. 1:27. doi: 10.21105/joss.00027

Torell, E., Molin, D., Tano, E., Ehrenborg, C., and Ryden, C. (2005). Community-acquired pneumonia and bacteraemia in a healthy young woman caused by methicillin-resistant Staphylococcus aureus (MRSA) carrying the genes encoding Panton-Valentine leukocidin (PVL). Scand. J. Infect. Dis. 37, 902–904. doi: 10.1080/00365540500348945

Toussaint, J.-P., Farrell-Sherman, A., Feldman, T. P., Smalley, N. E., Schaefer, A. L., Greenberg, E. P., et al. (2017). Gene duplication in Pseudomonas aeruginosa improves growth on adenosine. J. Bacteriol. 199:e261-17.

Treangen, T. J., and Rocha, E. P. C. (2011). Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. 7:e1001284. doi: 10.1371/journal.pgen.1001284

van der Woude, M. W., and Henderson, I. R. (2008). Regulation and function of Ag43 (flu). Annu. Rev. Microbiol. 62, 153–169. doi: 10.1146/annurev.micro.62.081307.162938

Werner, G., Coque, T. M., Hammerum, A. M., Hope, R., Hryniewicz, W., Johnson, A., et al. (2008). Emergence and spread of vancomycin resistance among enterococci in Europe. Euro. Surveill. 13:19046.

Xia, G., and Wolz, C. (2014). Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. 21, 593–601. doi: 10.1016/j.meegid.2013.04.022

Zarb, P., Coignard, B., Griskeviciene, J., Muller, A., Vankerckhoven, V., Weist, K., et al. (2012). The european centre for disease prevention and control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Eur. Surveill. 17:20316. doi: 10.2807/ese.17.46.20316-en

Zhang, J. (2003). Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292–298. doi: 10.1016/s0169-5347(03)00033-8

Zhang, J., Liu, H., Zhu, K., Gong, S., Dramsi, S., Wang, Y.-T., et al. (2014). Antinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc. Natl. Acad. Sci. U.S.A. 111, 13517–13522. doi: 10.1073/pnas.1408601111

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.