RATIONAL HOMOTOPY THEORY OF FUNCTION SPACES
AND HOCHSCHILD COHOMOLOGY

Ilias Amrani

Abstract. Given a map \(f : X \to Y \) of simply connected spaces of finite type such, the space of based loops at \(f \) of the space of maps between \(X \) and \(Y \) is denoted by \(\Omega f \text{Map}(X, Y) \). For \(n > 0 \), we give a model categorical interpretation of the existence (in functorial way) of an injective map of \(\mathbb{Q} \)-vector spaces \(\pi_n \Omega f \text{Map}(X, Y) \text{Q} \to \text{HH}^{-n}(C^*(Y), C^*(X)_f) \), where \(\text{HH}^* \) is the (negative) Hochschild cohomology and \(C^*(X)_f \) is the rational cochain complex associated to \(X \) equipped with a structure of \(C^*(Y) \)-differential graded bimodule via the induced map of differential graded algebras \(f^* : C^*(Y) \to C^*(X) \). Moreover, we identify the image in precise way by using the Hodge filtration on Hochschild cohomology. In particular, when \(X = Y \), we describe the fundamental group of the identity component of the monoid of self equivalence of a (rationalization of) space \(X \) i.e., \(\pi_1 \text{Aut}(X_\mathbb{Q})_{\text{id}} \).

Introduction

Our main goal in this article is the study of the function space \(\text{Map}(X, Y) \) between two rational topological spaces from non-commutative point of view. More precisely, for a fixed map \(f : X \to Y \) we study the homotopy groups of the path connected component \(\text{Map}(X, Y)_f \). It is well known \cite{3} that rationally (under some finiteness conditions) the homotopy groups \((\pi_n, n > 1) \) of \(\text{Map}(X, Y)_f \) are given by the André-Quillen cohomology \(\text{AQ}^{-n}(C^*(Y), C^*(X)) \), where \(C^*(X) \) is seen as a module over \(C^*(Y) \) via the induced map of differential graded algebras \(f^* : C^*(Y) \to C^*(X) \). The point is that the André-Quillen cohomology is quite complicated to compute. We should notice that we are using the fact that any rational \(E_\infty \)-differential graded algebra is equivalent to a rational commutative differential graded algebra. Let \(k \) be any commutative ring, and denote the model category of \(E_\infty \)-differential graded \(k \)-algebras by \(E_\infty \text{-dgAlg}_k \) and the model category of associative differential graded \(k \)-algebras by \(\text{dgAlg}_k \). The (derived) forgetful functor \(U : E_\infty \text{-dgAlg}_k \to \text{dgAlg}_k \) induces a map of simplicial sets

\[
\alpha : \text{Map}_{E_\infty \text{-dgAlg}_k} (R, S) \to \text{Map}_{\text{dgAlg}_k} (R, S) := \text{Map}_{\text{dgAlg}_k} (UR, US).
\]

In all what follows, we will consider only the positively graded algebras with increasing differentials by degree one. A perfect example is the cochain complex associated to a topological space. The interpretation of the higher homotopy groups is quite

2000 Mathematics Subject Classification. Primary 55, Secondary 14 , 16, 18.

Key words and phrases. DGA, CDGA, Mapping Space, Rational Homotopy Theory, Hochschild Cohomology, André-Quillen Cohomology, Harrison Cohomology, Hodge Filtration.

Partially supported by the project CZ.1.07/2.3.00/20.0003 of the Operational Programme Education for Competitiveness of the Ministry of Education, Youth and Sports of the Czech Republic.
simple, in fact in \cite{2}, we have shown that for a given map \(f : R \to S \) of differential graded \(k \)-algebras we have
\[
\pi_n \text{Map}_{\text{dgAlg}}(R, S)_f \cong \text{HH}_k^{−n+1}(R, S_f) \quad \forall \ n > 1,
\]
where \(\text{HH}_k \) is the Hochschild cohomology and \(S \) is seen as \(R \)-bimodule via \(f \).

Rational homotopy theory. When \(k = \mathbb{Q} \), Sullivan has proven that there is an \(\infty \)-equivalence between the category of simply connected rational spaces (finite type) and a subcategory of simply connected commutative differential graded \(k \)-algebras (of finite type) \cite{12}. The \(\infty \)-equivalence is given by the cochain functor \(C^*(-, k) \) after strictification. For any \(n > 0 \), \(\text{Map}(\pi_n, \pi_{n+1}) \) is an injective map of abelian groups. Mandell’s fundamental theorem \cite{11} says that the \(\infty \)-category of \(p \)-complete spaces (with some finiteness conditions) is \(\infty \)-equivalent to a full \(\infty \)-subcategory of \(\mathbb{E}_\infty \)-differential graded \(k \)-algebras via the cochain functor \(C^*(-, \mathbb{F}_p) \). Suppose that \(f : X \to Y \) is a map of simply connected spaces (with some finiteness conditions), then the forgetful functor \(U \) induces the following map of \(k \)-vector spaces
\[
\pi_{n+1} \alpha : \pi_{n+1} \text{Map}(X, Y)_f \to \text{HH}_k^{−n}(C^*(Y), C^*(X)_f).
\]
In \cite{3} Theorem 3.8, Block and Lazarev give an explicit formula when \(f \) is homotopy equivalent to a constant map. They (re)proved that (under the convention that the cohomology is negatively graded)
\[
\pi_n \text{Map}(X, Y)_f \cong \prod_{i=1}^{\infty} \pi_i(Y) \otimes H^{−n}(X, \mathbb{Q}).
\]

\(p \)-Adic homotopy theory. When \(p \) is a prime number and \(k = \mathbb{F}_p \), the algebraic closure of the field with \(p \)-elements, the forgetful functor \(U \) is the Hochschild cohomology and \(S \) is seen as \(R \)-bimodule via \(f \).

Theorem 0.1 \cite{22} : Suppose that \(k = \mathbb{Q} \). Let \(f : X \to Y \) be a map of simply connected spaces of (finite type), then the forgetful functor
\[
U : \text{Map}_{\mathbb{E}_\infty \text{-dgAlg}}(C^*(Y), C^*(X)) \to \text{Map}_{\text{dgAlg}}(C^*(Y), C^*(X))
\]
induces a map of \(k \)-vector spaces such that:

1. \([X, Y] = \pi_0 \text{Map}_{\mathbb{E}_\infty \text{-dgAlg}}(C^*(Y), C^*(X)) \to \pi_0 \text{Map}_{\text{dgAlg}}(C^*(Y), C^*(X)) \) is injective.
2. \(\pi_1 \text{Map}(X, Y)_f = \pi_1 \text{Map}_{\mathbb{E}_\infty \text{-dgAlg}}(C^*(Y), C^*(X))_f \to \pi_1 \text{Map}_{\text{dgAlg}}(C^*(Y), C^*(X))_f \) is injective map of groups.
3. \(\forall n > 0 \), the induced map
\[
\pi_{n+1} \text{Map}(X, Y)_f = \pi_{n+1} \text{Map}_{\mathbb{E}_\infty \text{-dgAlg}}(C^*(Y), C^*(X))_f \to \text{HH}_k^{−n}(C^*(Y), C^*(X)_f),
\]
is injective map of \(Q \)-vector spaces.
4. If \(X = Y \) and \(f = id \), then \(\pi_1 \text{Aut}(X)_{id} \to \text{HH}_k^{0, \infty}(C^*(X), C^*(X)) \) is an injective map of abelian groups.

The space \(X_\mathbb{Q} \) is the rationalization of \(X \), \(\text{Aut}(X) \) is the monoid of self equivalences, and \(\text{HH}_k^{0, \infty}(C^*(X), C^*(X)) \) is the group of invertible elements of the \(k \)-algebra \(\text{HH}_k^{0}(C^*(X), C^*(X)) \).
Warning 0.2. When \(k = \mathbb{F}_p \), the induced maps \(\pi_n \alpha \) are far to be injective in general.

Theorem 0.3 (Hodge filtration).

With the same assumption as in precedent Theorem, we have the following isomorphism

\[
\pi_{n+1} \text{Map}(X, Y_Q)_f \cong HH_{(1)}(C^*(Y), C^*(X)_f), \quad \forall \ n > 0, \forall \ f.
\]

1. **General framework**

For what follows we fixe \(k = \mathbb{Q} \). Notice that \(\mathbb{E}_\infty \text{-dgAlg}_k \cong \text{dgCAlg}_k \). In the abstract we described only the applications. In order to prove them we pass by the model category of differential graded algebras (commutative and non-commutative).

We denote the pointed model category of augmented (resp. commutative and \(\mathbb{E}_\infty \)) differential graded \(k \)-algebras by \(\text{dgAlg}_k^+ \) (resp. \(\text{dgCAlg}_k^+ \) and \(\mathbb{E}_\infty \text{-dgAlg}_k^+ \)). Notice that the model structure in the commutative case make sense when \(k \) is of characteristic 0. For some technical reasons, we define the functor of cochain complexes \(C^*(-, k) = C^*(-) : \text{sSet}^{op} \to \mathbb{E}_\infty \text{-dgAlg}_k \). In this section, a space means a simplicial set.

Notation 1.1. All differential graded algebras are non-negatively graded and the differentials increase the degree by +1. Consider the map of operads (in the differential graded context) \(\text{Ass} \to \text{Com} \), since the category of operad is a model category we have the factorization \(\text{Ass} \to \mathbb{E}_\infty \to \text{Com} \), where the first map is a cofibration and the second map is a trivial fibration. We have shown in [1, Lemma 1.1], that \(\mathbb{E}_\infty \) is admissible and the forgetful functor \(U : \mathbb{E}_\infty \text{-dgAlg}_k^+ \to \text{dgAlg}_k^+ \) preserves cofibrant objects and cofibration between cofibrant objects. That is the reason why we work with \(\mathbb{E}_\infty \)-operad instead of the operad \(\text{Com} \).

Recall that we have a following diagram of (Quillen) adjunctions:

\[
\begin{array}{ccc}
\text{dgAlg}_k & \xrightarrow{F} & \mathbb{E}_\infty \text{-dgAlg}_k \\
\downarrow \oplus k & & \downarrow U \\
\text{dgAlg}_k^+ & \xrightarrow{F} & \mathbb{E}_\infty \text{-dgAlg}_k^+
\end{array}
\]

where, \(F \) and \(U \) are left adjoints and \(U, \oplus k \) are right adjoints.

Warning 1.2. In what follows, we took the liberty to not denote the forgetful functors i.e., when \(R \) is an (augmented) \(\mathbb{E}_\infty \)-differential graded algebra we consider it also as an (augmented) associative differential graded algebra without mentioning the forgetful functor.

Theorem 1.3. [1 Theorem 3.1] Let \(k = \mathbb{Q} \), for any \(R \) and \(S \) augmented commutative differential graded \(k \)-algebras, the forgetful functor \(U : \mathbb{E}_\infty \text{-dgAlg}_k^+ \to \text{dgAlg}_k^+ \) induces a map \(\alpha : \text{Map}_{\mathbb{E}_\infty \text{-dgAlg}_k^+}(R, S) \to \text{Map}_{\text{dgAlg}_k^+}(R, S) \) such that

\[
\pi_n \text{Map}_{\mathbb{E}_\infty \text{-dgAlg}_k^+}(R, S) \to \pi_n \text{Map}_{\text{dgAlg}_k^+}(R, S)
\]

is injective map of groups for \(n > 0 \). Moreover, the map \(\Omega \text{Map}_{\mathbb{E}_\infty \text{-dgAlg}_k^+}(R, S) \to \Omega \text{Map}_{\text{dgAlg}_k^+}(R, S) \) has a functorial retract with respect to the target argument \(S \).
Lemma 1.4. Let k be any field. The (derived) functor $C^*(-) : sSet^{op} \rightarrow \mathcal{E}_\infty \text{dgAlg}_k^*$ commutes with homotopy limits.

Proof. The functor C^* has a left adjoint (cf [11, Proposition 4.2]), they form a Quillen pair. The homotopy limits in $sSet^{op}$ are the homotopy colimits in $sSet$, it follows that for any diagram $J \rightarrow sSet$ we have an isomorphism $C^*(\text{hocolim}_{j \in J} X_j) \cong \text{holim}_{j \in J} C^*(X_j)$ in the homotopy category $\text{Ho}(sSet)$. □

Notation 1.5. We denote the simplicial sphere of dimension n by S^n.

Definition 1.6. Let R be an augmented E_∞-differential graded k-algebra, we say that R connected if $\pi_0 \text{Map}_{\text{dgAlg}_k^*}(R, k \oplus k) = \pi_0 \text{Map}_{\mathcal{E}_\infty \text{dgAlg}_k^*}(R, k \oplus k) = \ast$.

Lemma 1.7. Let X be a pointed connected simplicial set, and let $R \in \mathcal{E}_\infty - \text{dgAlg}_k^*$ be connected (cofibrant). Then the induced map by the forgetful functor

$$\text{Map}_{\mathcal{E}_\infty - \text{dgAlg}_k^*}(R, C^*(X)) \rightarrow \text{Map}_{\text{dgAlg}_k^*}(R, C^*(X))$$

has a functorial (depending on X) retract in $\text{Ho}(sSet_*)$.

Proof. We define two functors $\Psi, \Phi : sSet_\ast^{op} \rightarrow sSet_*$ as follows

1. $\Psi(X) = \text{Map}_{\mathcal{E}_\infty - \text{dgAlg}_k^*}(R, C^*(X))$ and
2. $\Phi(X) = \text{Map}_{\text{dgAlg}_k^*}(R, C^*(X))$.

These functors verify the following properties

1. They send a weak equivalence $X \rightarrow Y$ to a weak equivalence since the functor $C^*(-)$ preserves weak between cofibrant objects and $\text{Map}_{\mathcal{E}_\infty - \text{dgAlg}_k^*}(R, -)$, $\text{Map}_{\mathcal{E}_\infty - \text{dgAlg}_k^*}(R, -)$ preserves weak equivalence between fibrant objects since R is cofibrant as \mathcal{E}_∞-algebra and as associative algebra cf [11].
2. The functors Ψ and Φ take homotopy limits to homotopy colimits, it follows that the mapping spaces of a model category commutes with homotopy limits in the second argument and the fact that $C^*(-)$ takes homotopy colimits to homotopy limits [13]. Moreover the forgetful functor $U : \mathcal{E}_\infty - \text{dgAlg}_k^* \rightarrow \text{dgAlg}_k^*$ commutes with homotopy limits.
3. $\Psi(\ast)$ and $\Phi(\ast)$ are contractible since k is a terminal object in $\mathcal{E}_\infty - \text{dgAlg}_k^*$ and dgAlg_k^*.

It follows form [11, Theorem 16], that $\Psi(-)$ and $\Phi(-)$ are representable i.e., there exists two simplicial sets C and A such that $\Psi(-) \simeq \text{Map}_{sSet_\ast}(-, C)$ and $\Phi(-) \simeq \text{Map}_{sSet_\ast}(-, A)$ in $\text{Ho}(sSet_\ast)$, the natural transformation $\Psi(-) \rightarrow \Phi(-)$ is represented by a map $C \rightarrow A$. By theorem [13] we know that the map $\Omega \Psi(-) \rightarrow \Omega \Phi(-)$ has a functorial retract (in $\text{Ho}(sSet_\ast)$), it follows that the map $\Omega \text{Map}_{sSet_\ast}(-, C) \rightarrow \Omega \text{Map}_{sSet_\ast}(-, A)$ has a functorial retract, it implies that $\Omega C \rightarrow \Omega A$ has a retract. On another hand R is connected, it follows that A and C are connected, hence, the induced map $A \rightarrow C$ has a retract in $\text{Ho}(sSet_\ast)$. We conclude that $\text{Map}_{\mathcal{E}_\infty - \text{dgAlg}_k^*}(R, C^*(X)) \rightarrow \text{Map}_{\text{dgAlg}_k^*}(R, C^*(X))$ has a functorial retract in $\text{Ho}(sSet_\ast)$ for any simplicial set X. □

Corollary 1.8. For any connected augmented E_∞-differential graded algebra, and any pointed simplicial set X, the natural map

$$\text{Map}_{\mathcal{E}_\infty - \text{dgAlg}_k^*}(R, C^*(X)) \rightarrow \text{Map}_{\text{dgAlg}_k^*}(R, C^*(X))$$

induces an injective map on homotopy groups.
Theorem 1.9. Let R be a connected augmented E_∞-differential graded algebra, with augmentation $\nu : R \to k$. Let X be any pointed simplicial set, let $f : R \to C^*(X)$ be any map of augmented E_∞-differential graded algebras. Then the induced map by the forgetful functor
\[\alpha : \text{Map}_{E_\infty - \text{dgAlg}}(R, C^*(X)) \to \text{Map}_{\text{dgAlg}}(R, C^*(X)) \]
has a functorial retract (on the variable X), in particular $\forall f, \forall n > 0$:
- $\pi_0 \alpha : \pi_0 \text{Map}_{E_\infty - \text{dgAlg}}(R, C^*(X)) \to \pi_0 \text{Map}_{\text{dgAlg}}(R, C^*(X))$ and
- $\pi_n \alpha : \pi_n \text{Map}_{E_\infty - \text{dgAlg}}(R, C^*(X)) \to \pi_n \text{Map}_{\text{dgAlg}}(R, C^*(X))$ are injective maps.

Proof. First of all, notice that we have an obvious cofiber sequence of pointed simplicial sets
\[S^0 \xrightarrow{i} X_+ \xrightarrow{p} X \]
where X_+ is the pointed simplicial set $X \coprod_* X$. It is enough to notice that
\[\text{Map}_{E_\infty - \text{dgAlg}}(R, C^*(X_+)) \simeq \text{Map}_{E_\infty - \text{dgAlg}}(R, C^*(X)) \]
and
\[\text{Map}_{\text{dgAlg}}(R, C^*(X_+)) \simeq \text{Map}_{\text{dgAlg}}(R, C^*(X)), \]
then the result follows from [1.7].

\[\square \]

2. Main Theorems and Applications

Proposition 2.1. Suppose that $k = \mathbb{Q}$. Let R be an augmented E_∞-differential graded k-algebra of finite type (i.e. dim$_k H^i(R) < \infty \ \forall i$) such that $H^0(R) = k$ and $H^1(R) = 0$ then R is connected in the sense of [1.6].

Proof. First of all, by adjunction $\text{Map}_{E_\infty - \text{dgAlg}}(R, k \oplus k) \simeq \text{Map}_{E_\infty - \text{dgAlg}}(R, k)$. Without losing generality we can suppose that R is cofibrant as $E_\infty - \text{dgAlg}$, hence R is cofibrant as dgAlg_k (by construction of the operad E_∞ cf [11]). By Sullivan Theorem $\pi_0 \text{Map}_{E_\infty - \text{dgAlg}}(R, k) = \ast$. It follows that for any maps $\nu : R \to k$ and $\mu : R \to k$ are homotopic in $E_\infty - \text{dgAlg}_k$. According to [8], we have a commutative diagram in $E_\infty - \text{dgAlg}_k$

\[\begin{array}{ccc}
R & \xrightarrow{\mu} & P(R) \\
\downarrow{\nu} & & \downarrow{\nu} \\
k & & k
\end{array} \]

where $P(R)$ is a path object associated to R. Notice that the path object is the same for graded differential associative algebras if we consider $R \in \text{dgAlg}_k$. Since $H^0(R) = k$ any map $R \to k$ in dgAlg_k is actually a map in $E_\infty - \text{dgAlg}_k$. We conclude that $\pi_0 \text{Map}_{\text{dgAlg}}(R, k) = \ast = \pi_0 \text{Map}_{\text{dgAlg}}(R, k \oplus k)$.

\[\square \]
Theorem 2.2 (Main Theorem). Suppose that $k = \mathbb{Q}$. Let $f : X \to Y$ be a map of simply connected spaces of (finite type), then the forgetful functor

$$U : \text{Map}_{E_\infty \text{-dgAlg}}(C^*(Y), C^*(X)) \to \text{Map}_{\text{dgAlg}}(C^*(Y), C^*(X))$$

induces a map of k-vector spaces such that:

1. $[X, Y] = \pi_0 \text{Map}_{E_\infty \text{-dgAlg}}(C^*(Y), C^*(X)) \to \pi_0 \text{Map}_{\text{dgAlg}}(C^*(Y), C^*(X))$ is injective.
2. $\pi_1 \text{Map}(X, Y)_f = \pi_1 \text{Map}_{E_\infty \text{-dgAlg}}(C^*(Y), C^*(X))f \to \pi_1 \text{Map}_{\text{dgAlg}}(C^*(Y), C^*(X))f$ is injective.
3. $\forall n > 0$,

$$\pi_{n+1} \text{Map}(X, Y)_f = \pi_{n+1} \text{Map}_{E_\infty \text{-dgAlg}}(C^*(Y), C^*(X))f = \text{AQ}^{-n-1}(C^*(Y), C^*(X))f$$

and the induced map

$$\pi_{n+1} \text{Map}(X, Y)_f \to \pi_{n+1} \text{Map}_{E_\infty \text{-dgAlg}}(C^*(Y), C^*(X))f = \text{HH}^{-n}_k(C^*(Y), C^*(X))f$$

is an injective map of Q-vector spaces.
4. If $X = Y$ and $f = \text{id}$, then $\pi_1 \text{Aut}(X)_\text{id} \to \text{HH}^{0, \infty}(C^*(X), C^*(X))$ is an injective map of abelian groups.

Proof. By hypothesis X and Y are of finite type, we deduce by \cite{12} that

$$\text{Map}_{E_\infty \text{-dgAlg}}(C^*(Y), C^*(X))$$

is equivalent to $\text{Map}(X, Y)_\mathbb{Q}$, on the other hand by Theorem 1.9 the forgetful functor $U : E_\infty \to \text{dgAlg}_k$ induces an injective map

$$\alpha : \pi_i \text{Map}_{E_\infty \text{-dgAlg}}(C^*(Y), C^*(X))f \to \pi_i \text{Map}_{\text{dgAlg}}(C^*(Y), C^*(X))f$$

for all $i \geq 0$. Moreover if $i > 1$, Block-Lazarev theorem gives us the isomorphism

$$\pi_i \text{Map}_{E_\infty \text{-dgAlg}}(C^*(Y), C^*(X))f \cong \text{AQ}^{-i}(C^*(Y), C^*(X))f,$$

and by \cite{2},

$$\pi_i \text{Map}_{\text{dgAlg}}(C^*(Y), C^*(X))f \cong \text{HH}^{-i+1}_k(C^*(Y), C^*(X))f.$$

Hence, the induced map α is exactly $\text{AQ}^{-i}(C^*(Y), C^*(X))f \to \text{HH}^{-i+1}_k(C^*(Y), C^*(X))f$, which is injective map of Q-vector spaces. Applying Sullivan theorem we deduce that $\pi_1 \text{Map}(X, Y)_f \cong \text{AQ}^{-i}(C^*(Y), C^*(X))f$ for $i > 1$. In particular, when $X = Y$ and $f = \text{id}$, $\text{Map}(X, X)_\text{id} = \text{Aut}(X)_\text{id}$ and

$$\text{Map}(X, X)_\text{id} = \text{Aut}(X)_\text{id}.$$

Therefore, $\pi_1 \text{Aut}(X)_\text{id} \cong \pi_1 \text{Map}_{E_\infty \text{-dgAlg}}(C^*(X), C^*(X))_\text{id}$. In \cite{2} Corollary 3.6], we have shown that $\pi_1 \text{Map}_{\text{dgAlg}}(C^*(X), C^*(X))_\text{id}$ is isomorphic to the kernel of the natural map of (abelian) groups $\text{HH}^{0, \infty}_k(C^*(X), C^*(X)) \to H^{0, \infty}(C^*(X)) = \mathbb{Q}^\times$. The result follows for Theorem 1.9.

\hfill \Box

Corollary 2.3. Let M be a simply connected orientable closed manifold of dimension d, for all $i > 0$, we have an injective map of Q vector spaces

$$\pi_1 Q_\text{id Aut}(M) \otimes Q \to H_{i+d}(\mathcal{L}M, \mathbb{Q}),$$

where $\mathcal{L}M$ is the space of free loops on M, i.e., $\text{Map}(S^1, M)$.

Proof. Since M is a finite CW-complex, it is a direct consequence of Theorem 2.2 and the fact that $\text{HH}^*_k(C^*(M), C^*(M)) \cong H_{i+d}(\mathcal{L}M, \mathbb{Q})$ \cite{4}.

\hfill \Box
Remark 2.4. Corollary 2.3 was also proven in [5, Theorem 2 (1)] using a different method.

2.1. Hodge filtration on Hochschild cohomology over a field of characteristic zero. In our main Theorem 2.2 we have identified the higher homotopy groups of $\text{Map}(X, Y \mathbb{Q})_f$ based at some continuous map $f : X \to Y$ as a sub \mathbb{Q}-vector space of the (negative) Hochschild cohomology. According to [6, Theorem 3.1], there exists a Hodge decomposition on the Hochschild cohomology $\text{HH}^*_{(1)}(R, S)$ for any differential graded \mathbb{Q}-algebra R and any differential graded R-bimodule S. More precisely Ginot has proved in [6], the following formula in the rational case:

$$\text{HH}^*(R, S) \cong \prod_{n \geq 0} \text{HH}^*_{(n)}(R, S),$$

where the \mathbb{Q}-vector spaces $\text{HH}^*_{(n)}(R, S)$ are eigenspaces for an iterated power of some operator.

Theorem 2.5. With the same assempion as in Theorem 2.2 we have the following isomorphism

$$\pi_{n+1}\text{Map}(X, Y \mathbb{Q})_f \cong \text{HH}^*_{(1)}(C^*(Y), C^*(X)_f), \forall n > 0, \forall f.$$

Proof. First of all, we notice that $\pi_n\text{Map}(X, Y \mathbb{Q})_f \cong \text{AQ}^*_{n-1}(C^*(Y), C^*(X)_f)$ for all $n > 1$ (cf. [3]), where AQ^* is the André-Quillen cohomology. On another hand $\text{HH}^*_{(1)}(C^*(Y), C^*(X)_f) = \text{Harr}^*_{-n}(C^*(Y), C^*(X)_f)$, where Harr^* is the Harrison cohomology, cf. [6, Theorem 3.1]. Since we work in characteristic zero, Harrison cohomology and André-Quillen cohomology agree up to a shift, more precisely $\text{AQ}^{n-1} = \text{Harr}^n$. It follows that

$$\pi_{n+1}\text{Map}(X, Y \mathbb{Q})_f \cong \text{AQ}^{n-1}_{-1}(C^*(Y), C^*(X)_f)$$

$$\cong \text{Harr}^n_{-1}(C^*(Y), C^*(X)_f)$$

$$\cong \text{HH}^*_{(1)}(C^*(Y), C^*(X)_f), \forall n > 0, \forall f.$$

\[\square\]

Remark 2.6. Theorem 2.5 is a generalization of [5, Theorem 2 (2)].

APPENDIX

There is a class of model categories called simplicial model categories [7], roughly speaking a simplicial model category is tensored, cotensored and enriched over the model category of simplicial sets in a compatible way (adjunction compatibility, and model structure compatibility). In general a model category \mathcal{C} do not need to be simplicial model category. Moreover, a Quillen adjunction between simplicial model categories

$$\mathcal{C} \xrightarrow{F} \mathcal{D},$$

is not a simplicial adjunction in general. In [9, Chapter 5, 6], Hovey introduced a notion of module category. We will need a more richer structure and we will call it **enriched module structure**. In the classical context any ordinary category with product and coproduct is an enriched Set-module. More precisely, suppose that \mathcal{D} is an ordinary category with products and coproducts, we can define the following functors:
1. \(- \otimes - : \text{Set} \times D \to D\) such that for any set \(X\) and any object \(D \in D\) we have \(X \otimes D = \bigsqcup_{x \in X} D\).
2. \(A(-, -) : \text{Set}^{op} \times D \to D\) such that for any set \(X\) and for any \(D \in D\) we define \(A(X, D) = \prod_{x \in X} D\).

Definition 2.7. An enriched \(\text{Set}\)-module \(D\) is a category with all products and coproducts such that we have natural isomorphism for any \(X, Y \in \text{Set}\) and any \(C, D \in D\):

\[
\begin{align*}
\bullet & \quad (X \times Y) \otimes D \cong X \otimes (Y \otimes D). \\
\bullet & \quad \text{hom}_D(C, A(X, D)) \cong \text{hom}_D(X \otimes C, D).
\end{align*}
\]

A simplicial category \(D\) in the sense of [7] is an enriched \(\text{sSet}\)-module in the sense of 2.7, where we replace \(\text{hom}_D\) by the natural enrichment of \(D\) denoted by \(\text{Map}_D\) (simplicial set).

Theorem 2.8. Let \(D\) be any (pointed) model category, then the homotopy category \(\text{Ho}(D)\) is an enriched \(\text{Ho}(\text{sSet})\)-module (enriched \(\text{Ho}(\text{sSet}^\ast)\)-module).

Proposition 2.9. Given any Quillen adjunction between model categories \(C \xrightarrow{F} D\), it induces the following isomorphisms:

\[
\begin{align*}
\bullet & \quad \text{Map}_C(X, U(Y)) \cong \text{Map}_D(F(X), Y) \text{ in } \text{Ho}(\text{sSet}) \\
\bullet & \quad F(X \otimes C) \cong X \otimes F(C) \text{ in } \text{Ho}(D) \text{ for any } X \in \text{sSet} \text{ and any } C \in C. \\
\bullet & \quad U(A(X, D)) \cong A(X, UD) \text{ in } \text{Ho}(\text{C}) \text{ for all } X \in \text{sSet} \text{ and any } D \in D
\end{align*}
\]

The proof of the precedent theorem and proposition can be deduced from [9]. The involved mapping spaces tensors and cotensors are defined in the derived sense, we took the liberty to not specify the derived symbols (e.g. \(\mathcal{R}\) and \(\mathcal{L}\)).

Notation 2.10. If \(D\) is a pointed model category, we denote by \(\Omega D\) the object \(\Omega S^1, D\) and \(\Sigma D\) the object \(S^1 \otimes D\).

2.2. Complement to Theorem 1.3. We explain, the cited Theorem using the previous language. Let \(R\) be cofibrant an augmented \(E_\infty\)-differential graded \(Q\)-algebras. Considering the adjunction

\[
\begin{array}{c}
\text{dgAlg}_k \xrightarrow{F} E_\infty - \text{dgAlg}_k, \\
\xrightarrow{U} \end{array}
\]

our theorem says that we have a natural map \(S^1 \otimes R \to F(S^1 \otimes UR) \simeq S^1 \otimes FUR\) which has a retract in \(\text{Ho}(E_\infty - \text{dgAlg}_k)\). In other words, suppose that \(S \in E_\infty - \text{dgAlg}_k\), we have a retract in \(\text{Ho}(\text{sSet}_\ast)\) of the map

\[
\ker \text{Map}_{E_\infty - \text{dgAlg}_k}(S^1 \otimes R, S) \to \text{Map}_{E_\infty - \text{dgAlg}_k}(S^1 \otimes FUR, S)
\]

which can be rewritten by using adjunctions as:

\[
h : \Omega \text{Map}_{E_\infty - \text{dgAlg}_k}(R, S) \to \Omega \text{Map}_{\text{dgAlg}_k}(UR, US),
\]

such that, there is an induced left inverse map \(r\), i.e., \(r \circ h = id\) and it is functorial with respect to \(S\).
REFERENCES

[1] Ilias Amrani. Comparing commutative and associative unbounded differential graded algebras over \mathbb{Q} from homotopical point of view. arXiv preprint math/1401.7285, 2013.

[2] Ilias Amrani. The mapping space of unbounded differential graded algebras. arXiv preprint arXiv:1303.6895, 2013.

[3] Jonathan Block and Andrej Lazarev. André–Quillen cohomology and rational homotopy of function spaces. Advances in Mathematics, 193(1):18–39, 2005.

[4] Ralph L Cohen and John DS Jones. A homotopy theoretic realization of string topology. Mathematische Annalen, 324(4):773–798, 2002.

[5] Yves Félix and Jean-Claude Thomas. Monoid of self-equivalences and free loop spaces. Proceedings of the American Mathematical Society, 132(1):305–312, 2004.

[6] Grégory Ginot. On the Hochschild and Harrison (co)homology of C_∞-algebras and applications to string topology. In Deformation Spaces, pages 1–51. Springer, 2010.

[7] P.G. Goerss and JF Jardine. Simplicial homotopy theory. Birkhauser, 1999.

[8] Vladimir Hinich. Homological algebra of homotopy algebras. Communications in algebra, 25(10):3291–3323, 1997.

[9] M. Hovey. Model categories. Mathematical Surveys and Monographs, 63, 1999.

[10] JF Jardine. Representability theorems for simplicial presheaves. Preprint, 2009.

[11] Michael A Mandell. E_∞-algebras and p-adic homotopy theory. Topology, 40(1):43–94, 2001.

[12] Dennis Sullivan. Infinitesimal computations in topology. Publications Mathématiques de l’IHÉS, 47(1):269–331, 1977.

Department of Mathematics, Masaryk University, Kotlarska 2, Brno, Czech Republic.

E-mail address: ilias.amranifedotov@gmail.com

E-mail address: amrani@math.muni.cz