Charged Axially Symmetric Solution and Energy in Teleparallel Theory Equivalent to General Relativity

Gamal G.L. Nashed

Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt

e-mail: nasshed@asunet.shams.edu.eg

An exact charged solution with axial symmetry is obtained in the teleparallel equivalent of general relativity (TEGR). The associated metric has the structure function $G(\xi) = 1 - \xi^2 - 2mA\xi^3 - q^2A^2\xi^4$. The fourth order nature of the structure function can make calculations cumbersome. Using a coordinate transformation we get a tetrad whose metric has the structure function in a factorisable form $(1 - \xi^2)(1 + r_+A\xi)(1 + r_-A\xi)$ with r_\pm as the horizons of Reissner-Nordström space-time. This new form has the advantage that its roots are now trivial to write down. Then, we study the singularities of this space-time. Using another coordinate transformation, we obtain a tetrad field. Its associated metric yields the Reissner-Nordström black hole. In Calculating the energy content of this tetrad field using the gravitational energy-momentum, we find that the resulting form depends on the radial coordinate! Using the regularized expression of the gravitational energy-momentum in the teleparallel equivalent of general relativity we get a consistent value for the energy.

*PACS numbers: 04.20.Cv,04.50.+h,04.20-q.
Keywords: Teleparallel equivalent of general relativity, Reissner-Nordström, Regularized expression of the gravitational energy-momentum.
1. Introduction

The charged C-metric line element and electromagnetic potential are given by [1]

\[ds^2 = \frac{1}{A^2(x - y)^2} \left[G(y)dt^2 - \frac{dy^2}{G(y)} + \frac{dx^2}{G(x)} + G(x)d\phi^2 \right], \quad A = Qydt, \quad (1) \]

where \(A \) is the electromagnetic vector potential, \(Q \) is the charge parameter and the structure function \(G \) is defined by

\[G(\xi) \overset{\text{def.}}{=} 1 - \xi^2 - 2mA\xi^3 - q^2A^2\xi^4. \quad (2) \]

Here \(m \) and \(A \) are positive parameters related to the mass and acceleration of the black hole, such that \(mA < 1/\sqrt{27} \). The fact that \(G \) is a fourth order polynomial in \(\xi \) means that one cannot in general write down simple expression for its roots. Since these roots play an important role in almost every analysis of the charged C-metric, most results have to be expressed implicitly in terms of them. Any calculation which requires their explicit forms would naturally be very tedious if not impossible to carry out [2, 3, 4].

At present, teleparallel theory seems to be popular again. There is a trend of analyzing the basic solutions of general relativity with teleparallel theory and comparing the results. It is considered as an essential part of generalized non-Riemannian theories such as the Poincaré gauge theory [5] ~ [12] or metric-affine gravity [13]. Physics relevant to geometry may be related to the teleparallel description of gravity [14, 15]. Within the framework of metric-affine gravity, a stationary axially symmetric exact solution of the vacuum field equations is obtained for a specific gravitational Lagrangian by using prolongation techniques ([16] and references therein). Teleparallel approach is used for positive-gravitational-energy proof [17]. A relation between spinor Lagrangian and teleparallel theory is established [18]. In metric-affine generalization of teleparallelism, Obukhov et al. [19] have shown that there is an inconsistency in the coupling of spinors. Mielke [20] demonstrated the consistency of the coupling of the Dirac fields to the TEGR. However, Obukhov and Pereira [19] have shown that this demonstration is not correct. They also [19] have studied the general teleparallel gravity model within the framework of the metric affine gravity theory. Nester et al. [21] have considered the quasilocal center-of mass (COM) in tetrad-teleparallel gravity. They have used the covariant Hamiltonian formalism, in which quasilocal quantities are given by the Hamiltonian boundary term, along with the covariant asymptotic Hamiltonian boundary expressions. Consideration of the COM not only gives the most restrictive asymptotic conditions on the variables but also gives strong constraints on the acceptable expressions [21].

For a satisfactory description of the total energy of an isolated system it is necessary that the energy-density of the gravitational field is given in terms of first- and/or second-order derivatives of the gravitational field variables. It is well-known that there exists no covariant, nontrivial expression constructed out of the metric tensor. However, covariant expressions that contain a quadratic form of first-order derivatives of the tetrad field are feasible. Thus
it is legitimate to conjecture that the difficulties regarding the problem of defining the gravitational energy-momentum are related to the geometrical description of the gravitational field rather than are an intrinsic drawback of the theory [22, 23]. Møller has shown that the problem of energy-momentum complex has no solution in the framework of gravitational field theories based on Riemannian space-time [24]. In a series of papers, [24]∼[27] he was able to obtain a general expression for a satisfactory energy-momentum complex in the teleparallel space-time. Xu and Jing derived the field equation with a cosmological term and studied the energy of the general 4-dimensional stationary axisymmetric space-time in the context of the Hamiltonian formulation of the TEGR [28].

It is well known that TEGR [14]∼[23] provides an alternative description of Einstein’s general relativity. In this theory the gravitational field is described by the tetrad field e^a_{μ}. In fact the first attempt to construct a theory of the gravitational field in terms of a set of four linearly independent vector fields in the Weitzenböck geometry is due to Einstein [29, 30].

A well posed and mathematically consistence expression for the gravitational energy has been developed [23]. It arises in the realm of the Hamiltonian formulation of the TEGR [31] and satisfies several crucial requirements for any acceptable definition of gravitational energy. The gravitational energy-momentum P^a [23, 32] obtained in the framework of the TEGR has been investigated in the context of several distinct configuration of the gravitational filed. For asymptotically flat space-times P^0 yields the ADM energy [33]. In the context of tetrad theories of gravity, asymptotically flat space-times may be characterized by the asymptotic boundary condition

$$e_{\alpha\mu} \approx \eta_{\alpha\mu} + \frac{1}{2} h_{\alpha\mu}(1/r),$$

and by the condition $\partial_{\mu} e^a_{\mu} = O(1/r^2)$ in the asymptotic limit $r \to \infty$, with $\eta_{ab} = (-1, +1, +1, +1)$ is the metric of Minkowski space-time. An important property of tetrad fields that satisfy Eq. (3) is that in the flat space-time limit one has $e^a_{\mu}(t, x, y, z) = \delta^a_{\mu}$, and therefore the torsion tensor $T^a_{\mu\nu} = 0$. Maluf [34] has extended the definition P^a for the gravitational energy-momentum [23, 31] to any arbitrary tetrad fields, i.e., for the tetrad fields that satisfy $T^a_{\mu\nu} \neq 0$ for the flat space-time. The redefinition is the only possible consistent extension of P^a, valid for the tetrad fields that do not satisfy Eq. (3).

It is the aim of the present work to derive a charged axially symmetric solution in TEGR. In §2 we give brief review of the TEGR of the coupled gravitational and electromagnetic fields. A tetrad having axial symmetry with six unknown functions in x & y is applied to the field equations and a solution of charged axial symmetry is obtained in §3. A coordinate transformation is applied to the tetrad obtained in §3, to put the structure function in a factorisable form. The advantage of this transformation is that it makes the roots of the original solution be factorisable. Also in §3, the singularities of tetrad (15) (see below) are studied. In §4, another coordinate transformation is applied to tetrad (15) and a tetrad that its associated metric gives the Reissner-Nordström black hole is obtained. The energy content of tetrad (20) (also see below) is calculated in §4 using the gravitational energy-momentum [23, 34] and unsatisfactory value of energy is obtained. In §5 we use the regularized expression for the gravitational energy-momentum to calculate the energy. Discussion and conclusion of the obtained results are given in the final section*.

*Computer algebra system Maple 6 is used in some calculations.
2. The TEGR for gravitation and electromagnetism

In a space-time with absolute parallelism the parallel vector fields e_a^μ define the non-symmetric affine connection
\begin{equation}
\Gamma^\lambda_{\mu\nu} \overset{\text{def}}{=} e_a^\lambda e^a_{\mu\nu},
\end{equation}
where $e_{a\mu,\nu} = \partial_\nu e_{a\mu}$. The curvature tensor defined by $\Gamma^\lambda_{\mu\nu}$ is identically vanishing, however. The metric tensor $g_{\mu\nu}$ is given by
\begin{equation}
g_{\mu\nu} = \eta_{ab} e^a_\mu e^b_\nu.
\end{equation}

The metric tensor $g_{\mu\nu}$ is given by
\begin{equation}
g_{\mu\nu} = \eta_{ab} e^a_\mu e^b_\nu.
\end{equation}

The Lagrangian density for the gravitational field in the TEGR, in the presence of matter fields, is given by\[^{\dagger}\] [23, 35]
\begin{equation}
L_G = e L_G = -\frac{e}{16\pi} \left(\frac{T^{abc}T_{abc}}{4} + \frac{T^{abc}T_{bac}}{2} - T^a T_a \right) - L_m = -\frac{e}{16\pi} \Sigma^{abc} T_{abc} - L_m,
\end{equation}
where $e = \text{det}(e^a_\mu)$. The tensor Σ^{abc} is defined by
\begin{equation}
\Sigma^{abc} \overset{\text{def}}{=} \frac{1}{4} \left(T^{abc} + T^{bac} - T^{cab} \right) + \frac{1}{2} \left(\eta^{ac} T^b - \eta^{ab} T^c \right).
\end{equation}

The quadratic combination $\Sigma^{abc} T^{abc}$ is proportional to the scalar curvature $R(e)$, except for a total divergence term \[^{22}\]. L_m represents the Lagrangian density for matter fields. The electromagnetic Lagrangian density $L_{e.m.}$ is given by \[^{37}\]
\begin{equation}
L_{e.m.} = -\frac{e}{4} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma},
\end{equation}
where $F_{\mu\nu}$ being given by\[^{\dagger\dagger}\] $F_{\mu\nu} \overset{\text{def}}{=} \partial_\mu A_\nu - \partial_\nu A_\mu$ and A_μ being the electromagnetic potential.

The gravitational and electromagnetic field equations for the system described by $L_G + L_{e.m.}$ are the following
\begin{equation}
e_{a\lambda} e_{b\mu} \partial_\nu \left(e^\Sigma^{b\lambda\nu} \right) - e \left(\Sigma^{b\mu}_a T_{b\nu\mu} - \frac{1}{4} e_{a\mu} T_{bcd} \Sigma^{bcd} \right) = \frac{1}{2} \kappa e T_{a\mu},
\end{equation}
\begin{equation}
\partial_\nu \left(e F^{\mu\nu} \right) = 0,
\end{equation}

\[^{*}\text{space-time indices } \mu, \nu, \cdots \text{ and } \text{SO(3,1) indices } a, b \cdots \text{ run from } 0 \text{ to } 3. \text{ Time and space indices are indicated to } \mu = 0, i, \text{ and } a = (0), (i).\]
\[^{\dagger}\text{Throughout this paper we use the relativistic units } c = G = 1 \text{ and } \kappa = 8\pi.\]
\[^{\dagger\dagger}\text{Heaviside-Lorentz rationalized units will be used throughout this paper.}\]
where
\[\frac{\delta L_m}{\delta e_{\alpha\mu}} \equiv e T_{\alpha\mu}. \]

It is possible to prove by explicit calculations that the left hand side of the symmetric field equations of Eq. (10) is exactly given by [23]
\[\frac{e}{2} \left[R_{\alpha\mu}(e) - \frac{1}{2} e_{\alpha\mu} R(e) \right]. \]

3. Charged Axially symmetric solution

In this section we will assume the parallel vector fields to have the form

\[(e^a_\mu) = \begin{pmatrix}
A_1(x, y) & 0 & 0 & 0 \\
0 & B_1(x, y) \cos \phi & 0 & -B_2(x, y) \sin \phi \\
0 & 0 & C_1(x, y) & 0 \\
0 & D_1(x, y) \sin \phi & 0 & D_2(x, y) \cos \phi
\end{pmatrix}, \tag{11} \]

where \(A_1(x, y), B_1(x, y), B_2(x, y), C_1(x, y), D_1(x, y) \) and \(D_2(x, y) \) are unknown functions. We use a non-diagonal form of the tetrad given in Eq. (11) in spite that the metric reproduced is in a diagonal form. This is due to the fact that there are a non-diagonal tetrads reproduced a diagonal metric however, a more physics are needed to explain the obtained results [38, 39].

Applying (11) to the field equations (10) we obtain the unknown functions in the form

\[A_1(x, y) = \frac{\sqrt{G(y)}}{A(x-y)}, \quad B_1(x, y) = \frac{1}{A(x-y) \sqrt{G(x)}}, \]
\[B_2(x, y) = \frac{\sqrt{G(x)}}{A(x-y)}, \quad C_1(x, y) = \frac{1}{A(x-y) \sqrt{G(y)}}, \]
\[D_1(x, y) = \frac{1}{A(x-y) \sqrt{G(x)}}, \quad D_2(x, y) = \frac{\sqrt{G(x)}}{A(x-y)}, \tag{12} \]

where \(G(\xi) = 1 - \xi^2 - 2mA \xi^3 - Q^2 A^2 \xi^4 \), and the electromagnetic potential is given by \(A = Qydt \), with \(Q = \frac{q}{2 \sqrt{\pi}} \) [36, 37] is the charge parameter. The associated metric of solution (12) has the form (1) which is the charged C-metric. As we see in the introduction that in general one can not easily write down simple expression of the roots of \(G \). Therefore, one must find some coordinate transformation which makes the roots of \(G \) written explicitly and this would in turn simplify certain analysis of the charged C-metric. This coordinate transformation has the form [40]
\begin{align*}
x &= B(x - c_1), \quad y = B(y - c_1), \quad \phi = B_1 \bar{\phi}, \quad t = B_1 \bar{t},
B &= \left(\frac{1 - \bar{A}^2 \bar{Q}^2 + 6\bar{m}\bar{A} c_1 + 6\bar{Q}^2 \bar{A}^2 c_1^2}{1 + (1 - \bar{Q}^2 \bar{A}^2) c_1^2 + 4\bar{m}\bar{A} c_1^3 + 3\bar{Q}^2 \bar{A}^2 c_1^4} \right)^{1/2},
B_1 &= \sqrt{1 - \bar{A}^2 \bar{Q}^2 + 6\bar{m}\bar{A} c_1 + 6\bar{Q}^2 \bar{A}^2 c_1^2} \sqrt{1 + (1 - \bar{Q}^2 \bar{A}^2) c_1^2 + 4\bar{m}\bar{A} c_1^3 + 3\bar{Q}^2 \bar{A}^2 c_1^4},
\end{align*}

with \(\bar{x}, \bar{y}, \bar{\phi}, \bar{t}\) are the new coordinate and

\[
Q = \frac{\bar{Q}}{1 - \bar{A}^2 \bar{Q}^2 + 6\bar{m}\bar{A} c_1 + 6\bar{Q}^2 \bar{A}^2 c_1^2}, \quad m = \frac{\bar{m} + 2\bar{Q}^2 \bar{A} c_1}{(1 - \bar{A}^2 \bar{Q}^2 + 6\bar{m}\bar{A} c_1 + 6\bar{Q}^2 \bar{A}^2 c_1^2)^{3/2}},
\]

\[
A = \sqrt{1 + (1 - \bar{Q}^2 \bar{A}^2) c_1^2 + 4\bar{m}\bar{A} c_1^3 + 3\bar{Q}^2 \bar{A}^2 c_1^4},
\]

\[
4\bar{Q}^2 \bar{A}^2 c_1^3 + 6\bar{m}\bar{A} c_1^2 + 2(1 - \bar{Q}^2 \bar{A}^2) c_1 = 2\bar{m}\bar{A}.
\]

Applying the coordinate transformation (13) to the tetrad (11) with solution (12) we obtain

\[
(e^a)_\mu = \begin{pmatrix}
\frac{H(y)}{A(x - y)} & 0 & 0 & 0 \\
0 & \cos \bar{\phi}^* & 0 & -\frac{H(x) \sin \bar{\phi}^*}{A(x - y)} \\
0 & 0 & 1 & 0 \\
0 & \sin \bar{\phi}^* & 0 & \frac{\cos \bar{\phi}^* H(x)}{A(x - y)}
\end{pmatrix},
\]

where

\[
\bar{\phi}^* = B_1 \bar{\phi}
\]

with \(B_1\) given in Eq. (13) and

\[
H(\xi) = \sqrt{1 - \xi^2 + \bar{Q}^2 \bar{A}^2 \xi^2 + 2\bar{m}\bar{A}\xi - 2\bar{m}\bar{A}\xi^3 - \bar{Q}^2 \bar{A}^2 \xi^4}.
\]

The associated metric of the tetrad field given by Eq. (15) is given by

\[
ds^2 = \frac{1}{A^2(x - y)^2} \left[G_1(y) dt^2 - \frac{dy^2}{G_1(y)} + \frac{dx^2}{G_1(x)} + G_1(x) d\phi^2 \right], \quad \text{where} \ G_1(\xi) \ \text{is defined by}
\]

\[
G_1(\xi) \overset{\text{def}}{=} (1 - \xi^2)(1 + r_+ A\xi)(1 + r_- A\xi) = H^2(\xi), \quad \text{with} \quad r_+ = \bar{m} + \sqrt{\bar{m}^2 - \bar{Q}^2},
\]

and \(0 \leq r_- A \leq r_+ A < 1\) \cite{40} and the electromagnetic potential has the form

\[
\mathcal{A} = \bar{Q}(x - c_1) dt.
\]
It is clear from (16) that one can get the roots easily which has the form

\[
x_1,2 = -\frac{1}{r \pm A}, \quad x_{3,4} = \mp 1 \quad \text{which obey} \quad x_1 \leq x_2 < x_3 < x_4.
\]

(17)

Now we are going to study the singularities of tetrad (15).

In teleparallel theories of gravity we mean by singularity of space-time [37] the singularity of the scalar concomitants of the curvature and torsion tensors.

Using the definitions of the Riemann Christoffel, Ricci tensors, Ricci scalar, torsion tensor and basic vector Eq. (8), [41] we obtain for solution (15)

\[
R^{\mu\nu\lambda\sigma} R_{\mu\nu\lambda\sigma} = F_1(\bar{x}, \bar{y}), \quad R^{\mu\nu} R_{\mu\nu} = F_2(\bar{x}, \bar{y}), \quad R = F_3(\bar{x}, \bar{y}),
\]

\[
T^{abc} T_{abc} = \frac{F_4(\bar{x}, \bar{y})}{(1 - \bar{x}^2)(1 - \bar{y}^2)(1 + 2\bar{x}\bar{m}A + Q^2\bar{x}^2A^2)(1 + 2\bar{y}\bar{m}A + Q^2\bar{y}^2A^2)}.
\]

\[
T^a T_a = \frac{F_5(\bar{x}, \bar{y})}{(1 - \bar{x}^2)(1 - \bar{y}^2)(1 + 2\bar{x}\bar{m}A + Q^2\bar{x}^2A^2)(1 + 2\bar{y}\bar{m}A + Q^2\bar{y}^2A^2)}.
\]

(18)

where \(F_i, \ i = 1 \cdots 5 \) are too lengthy functions of \(\bar{x} \) and \(\bar{y} \). It is clear from (18) that the scalars of torsion and basic vector have the same singularities as the dominator of both are the same. Let us discuss these singularities.

1) When \(\bar{x} = \bar{y} = x_3 \) then all the scalars of (18) have a singularities which is called \textit{asymptotic infinity} [40].

2) When \(\bar{y} = x_2 \), there is a singularity which is called \textit{black hole event horizon} [40].

3) When \(\bar{y} = x_3 \) there is also a singularity which is \textit{acceleration horizon}.

4) When \(\bar{x} = x_4 \) there is a singularity which makes \textit{symmetry axis between event and acceleration horizons}.

5) When \(\bar{x} = x_3 \) there is a singularity which makes a \textit{symmetry axis joining between event horizon with asymptotic horizon}.

6) When \(\bar{x} = x_3 \) and \(\bar{y} = x_4 \) there will be a \textit{conical singularity} [40].

4. Energy content

To write the tetrad field given in Eq. (15) into a spherical polar coordinate, we will use the following coordinate transformation [40]

\[
\bar{x} = \cos \theta, \quad \bar{y} = -\frac{1}{A r}, \quad \bar{\phi}^* = \bar{\phi}^*, \quad \bar{t} = \bar{A} t_1,
\]

(19)

where \(r, \theta, t_1 \) are the new coordinate. Applying transformation (19) to the tetrad field (15)
we get

\[
(e^a_\mu) = \begin{pmatrix}
\sqrt{r^2 - 2\bar{m}r + \bar{Q}^2} H_1 \\
r G_2 \\
0 \\
r G_2 \\
0 \\
\sqrt{r^2 - 2\bar{m}r + \bar{Q}^2} G_2 H_1 \\
0 \\
r \frac{\bar{m}}{F G_2} \\
r \frac{\bar{m}}{F G_2} \\
0 \\
r \frac{\bar{m}}{F G_2} \sin \phi^* \\
-r \frac{\bar{m}}{F G_2} \sin \phi^* \\
0 \\
\frac{\bar{m}}{G_2} \cos \phi^* \\
-r \frac{\bar{m}}{G_2} \cos \phi^*
\end{pmatrix},
\]

where

\[
F = \sqrt{1 + 2\bar{m}A \cos \theta + \bar{Q}^2 A^2 \cos^2 \theta}, \quad G_2 = (\bar{A} r \cos \theta + 1), \quad H_1 = \sqrt{A^2 r^2 - 1}.
\]

Taking the limit \(\bar{A} \to 0 \) in (20), the associate metric will have the Reissner-Nordström spacetime. Now we are going to calculate the energy content of Eq. (20). Before this let us give a brief review of the derivation of the gravitational energy-momentum.

Multiplication of the symmetric part of Eq. (10) by the appropriate inverse tetrad fields yields it to have the form \([23, 34]\)

\[
\partial_\nu \left(-e \Sigma^{a\nu} \right) = -\frac{e e^a_\mu}{4} \left(4\Sigma^{b\lambda\nu} T_{b\lambda\mu} - \delta^{\lambda}_{\mu} \Sigma^{bcd} T_{bcd} \right) - 4\pi e^a_\mu T^{\lambda\mu}.
\]

By restricting the space-time index \(\lambda \) to assume only spatial values then Eq. (21) takes the form \([23]\)

\[
\partial_0 \left(e \Sigma^{a0j} \right) + \partial_k \left(e \Sigma^{akj} \right) = -\frac{e e^a_\mu}{4} \left(4\Sigma^{bcj} T_{bc\mu} - \delta^{j}_{\mu} \Sigma^{bcd} T_{bcd} \right) - 4\pi e^a_\mu T^{ij\mu}.
\]

Note that the last two indices of \(\Sigma^{abc} \) and \(T^{abc} \) are anti-symmetric. Taking the divergence of Eq. (22) with respect to \(j \) yields

\[
-\partial_0 \partial_j \left(-\frac{1}{4\pi} e \Sigma^{a0j} \right) = -\frac{1}{16\pi} \partial_j \left[e e^a_\mu \left(4\Sigma^{bcj} T_{bc\mu} - \delta^{j}_{\mu} \Sigma^{bcd} T_{bcd} \right) \right] - 16\pi \left(e e^a_\mu T^{ij\mu} \right).
\]

In the Hamiltonian formulation of the TEGR \([11, 31]\) the momentum canonically conjugated to the tetrad components \(e_{aj} \) is given by

\[
\Pi^{aj} = -\frac{1}{4\pi} e \Sigma^{a0j},
\]

and that the gravitational energy-momentum \(P^a \) contained within a volume \(V \) of the three-dimensional spacelike hypersurface is defined by \([23]\)

\[
P^a = -\int_V d^3 x \partial_j \Pi^{aj}.
\]
If no condition is imposed on the tetrad field, P^a transforms as a vector under the global $SO(3,1)$ group. It describes the gravitational energy-momentum with respect to observers adapted to e^a_μ. This observers are characterized by the velocity field $u^\mu = e_{(0)}^\mu$ and by the acceleration f^μ

$$f^\mu = \frac{D u^\mu}{ds} = \frac{D e_{(0)}^\mu}{ds} = u^a \nabla_a e_{(0)}^\mu.$$

Let us assume that the space-time is asymptotically flat. The total gravitational energy-momentum is given by

$$P^a = -\oint_{S \to \infty} dS k^{ak}.$$

(25)

The field quantities are evaluated on a surface S in the limit $r \to \infty$.

Now we are going to apply Eq. (25) to the tetrad field (20) to calculate the energy content. We perform the calculations in the Cartesian coordinate. Eqs. (24) and (25) assumed that the reference space is determined by a set of tetrad fields e^a_μ for the flat space-time such that the condition $T^a_{\mu\nu} = 0$ is satisfied. It is clear from (22) that the only components which contributes to the energy is Σ^{00a}. Thus substituting from solution (20) into (7), we obtain the following non-vanishing value

$$\Pi^{0a} \approx \frac{x^a}{\kappa r^3 (x^2 + y^2) \left(1 - \frac{2\bar{m}}{r} + \frac{q^2}{r^2}\right)} \left(r^3 + \left\{r - 6\bar{m} + \frac{3\bar{Q}^2}{r}\right\} (x^2 + y^2)\right), \quad a = 1, 2,$$

$$\Pi^{03} \approx \frac{z}{\kappa r^3 \left(1 - \frac{2\bar{m}}{r} + \frac{Q^2}{r^2}\right)} \left(r - 6\bar{m} + \frac{3\bar{Q}^2}{r}\right).$$

(26)

Substituting from (26) into (25) we get the form of energy contained within a sphere of radius R given by

$$P^{(0)} = E(R) = -R \left(1 - \frac{2\bar{m}}{R} + \frac{\bar{Q}^2}{R^2}\right)^{-3/2} \left(1 - \frac{4\bar{m}}{R} + \frac{2\bar{Q}^2}{R^2}\right) \approx - \left(R - \bar{m} + \frac{\bar{Q}^2}{2R}\right).$$

(27)

5. Regularized expression for the gravitational energy-momentum and localization of energy

An important property of the tetrad fields that satisfy the condition of Eq. (3) is that in the flat space-time limit $e^a_\mu(t, x, y, z) = \delta^a_\mu$, and therefore the torsion $T^a_{\mu\nu} = 0$. Hence for the flat space-time it is normally to consider a set of tetrad fields such that $T^a_{\mu\nu} = 0$ in any coordinate system. However, in general an arbitrary set of tetrad fields that yields the metric tensor for the asymptotically flat space-time does not satisfy the asymptotic condition given by (3). Moreover for such tetrad fields the torsion $T^a_{\mu\nu} \neq 0$ for the flat space-time [34]. It might be argued, therefore, that the expression for the gravitational energy-momentum
(24) is restricted to particular class of tetrad fields, namely, to the class of frames such that \(T^\lambda_{\mu\nu} = 0 \) if \(E^\alpha_{\mu} \) represents the flat space-time tetrad field [34]. To explain this, let us calculate the flat space-time of the tetrad field of Eq. (20) which is given by

\[
(E^\alpha_{\mu}) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & -r \cos \tilde{\phi}^* & -r \sin \theta \sin \tilde{\phi}^* \\
0 & 1 & 0 & 0 \\
0 & 0 & -r \sin \tilde{\phi}^* & r \sin \theta \cos \tilde{\phi}^*
\end{pmatrix}.
\] (28)

Expression (28) yields the following non-vanishing torsion components:

\[
T_{(1)21} = -\cos \tilde{\phi}^*, \quad T_{(1)31} = -\sin \theta \cos \tilde{\phi}^*, \quad T_{(1)23} = r \sin \tilde{\phi}^*(\cos \theta + 1),
\]
\[
T_{(3)12} = \sin \tilde{\phi}^*, \quad T_{(3)13} = -\sin \theta \sin \tilde{\phi}^*, \quad T_{(3)23} = -r \cos \tilde{\phi}^*(\cos(\theta) + 1).
\] (29)

The tetrad field (28) when written in the Cartesian coordinate will have the form

\[
(E^\alpha_{\mu}(t, x, y, z)) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{y^2 r - x^2 z}{r(x^2 + y^2)} & -\frac{y x (z + r)}{r(x^2 + y^2)} & x \\
0 & \frac{x}{r} & \frac{y}{r} & z \\
0 & -\frac{y x (z + r)}{r(x^2 + y^2)} & \frac{x^2 r - y^2 z}{r(x^2 + y^2)} & \frac{y}{r}
\end{pmatrix}.
\] (30)

In view of the geometric structure of (30), we see that, Eq. (20) does not display the asymptotic behavior required by Eq. (3). Moreover, in general the tetrad field (30) is adapted to accelerated observers [23, 31, 34]. To explain this, let us consider a boost in the x-direction of Eq. (30). We find

\[
(E^\alpha_{\mu}(t, x, y, z)) = \begin{pmatrix}
\gamma & -v \gamma & 0 & 0 \\
-v \gamma & \gamma \frac{y^2 r - x^2 z}{r(x^2 + y^2)} & -\frac{y x (z + r)}{r(x^2 + y^2)} & x \\
0 & \frac{x}{r} & \frac{y}{r} & z \\
0 & -\frac{y x (z + r)}{r(x^2 + y^2)} & \frac{x^2 r - y^2 z}{r(x^2 + y^2)} & \frac{y}{r}
\end{pmatrix},
\] (31)

where \(v \) is the speed of the observer and \(\gamma = \sqrt{1 - v^2} \). It can be shown that along an observer’s trajectory whose velocity is determined by

\[
u^u = E^\mu_{(0)} = (\gamma, -v \gamma, 0, 0), \quad \text{the quantities } \phi^{(k)}_{(j)} = u^i \left(E^{(k)}_m \partial_i E^{m}_{(j)} \right),
\] (32)
constructed out from (31) are non vanishing. This fact indicates that along the observer’s path the spatial axis $E_{(a)^\mu}$ rotate [31, 34]. In spite of the above problems discussed for the tetrad field of Eq. (20) it yields a satisfactory value for the total gravitational energy-momentum, as we will discussed.

In Eqs. (24) and (25) it is implicitly assumed that the reference space is determined by a set of tetrad fields $e^a\mu$ for flat space-time such that the condition $T^a_{\mu\nu} = 0$ is satisfied. However, in general there exist flat space-time tetrad fields for which $T^a_{\mu\nu} \neq 0$. In this case Eq. (24) may be generalized [31, 34] by adding a suitable reference space subtraction term, exactly like in the Brown-York formalism [42, 43].

We will denote $T^a_{\mu\nu}(E) = \partial_\mu E^a_\nu - \partial_\nu E^a_\mu$ and $\Pi^{0j}(E)$ as the expression of Π^{0j} constructed out of the flat tetrad E^a_μ. The regularized form of the gravitational energy-momentum P^a is defined by [31, 34]

$$P^a = -\int_V d^3x \partial_k \left[\Pi^{ak}(e) - \Pi^{ak}(E) \right].$$ \hspace{1cm} (33)

This condition guarantees that the energy-momentum of the flat space-time always vanishes. The reference space-time is determined by tetrad fields E^a_μ, obtained from $e^a\mu$ by requiring the vanishing of the physical parameters like mass, angular momentum, etc. Assuming that the space-time is asymptotically flat then Eq. (33) can have the form [31, 34]

$$P^a = -\oint_{S \to \infty} dS_k \left[\Pi^{ak}(e) - \Pi^{ak}(E) \right],$$ \hspace{1cm} (34)

where the surface S is established at spacelike infinity. Eq. (34) transforms as a vector under the global SO(3,1) group. Now we are in a position to proof that the tetrad field (20) yields a satisfactory value for the total gravitational energy-momentum.

We will integrate Eq. (34) over a surface of constant radius $x^1 = r$ and require $r \to \infty$. Therefore, the index k in (34) takes the value $k = 1$. We need to calculate the quantity

$$\Sigma^{(0)01} = e^{(0)0}_\Sigma^{001} = \frac{1}{2} e^{(0)0}(T^{001} - g^{00}T^1).$$

Evaluate the above equation we find

$$-\Pi^{(0)1}(e) = \frac{1}{4\pi} e \Sigma^{(0)01} = -\frac{1}{4\pi} r \sin(\theta) \sqrt{1 - \frac{2\tilde{m}}{r}} + \frac{\tilde{Q}^2}{r},$$ \hspace{1cm} (35)

and the expression of $\Pi^{(0)1}(E)$ is obtained by just making $\tilde{m} = 0$ and $\tilde{Q} = 0$ in Eq.(35), it is given by

$$\Pi^{(0)1}(E) = \frac{1}{4\pi} r \sin(\theta).$$ \hspace{1cm} (36)

Thus the gravitational energy contained within a sphere of radius R is given by

$$P^0 \cong \int_{r \to R} d\theta d\phi \frac{1}{4\pi} \sin(\theta) \left\{ -r(1 - \frac{\tilde{m}}{r} + \frac{\tilde{Q}^2}{2r^2}) + r \right\} = \tilde{m} - \frac{\tilde{Q}^2}{2R},$$ \hspace{1cm} (37)

which is the expected result.
6. Main results and Discussion

The main results of this paper are the following:

- Simple expression of the roots of the structure function has been obtained in Eq. (16).
- The singularities of the tetrad field of Eq. (15) are shown to be related to the roots of the structure function.
- The tetrad field given in Eq. (15) with \((t, x, y, \bar{\phi}^*)\) has been transformed to spherical polar coordinate with \((t, r, \theta, \bar{\phi}^*)\).
- Setting the physical parameters equal to zero in the tetrad field given in Eq. (20), i.e. \(\bar{m} = 0\) and \(\bar{Q} = 0\), we have obtained a non Minkowskian space-time.
- It is well know that calculations of global energies and momenta in TEGR are much easier than in GR. Therefore, we have used the regularized expression of the gravitational energy-momentum given in Eq. (34) to calculate the mass-energy given by Eq. (37).

Acknowledgment

The author would like to thank the Referee for careful reading and for putting the paper in a more readable form. Also author would like to thank Professor J.G. Pereira Universidade Estadual Paulista, Brazil and Professor J.W. Maluf Instituto de Física, Universidade de Brasília Brazil.
References

[1] W. Kinnersley and M. Walker *Phys. Rev.* **D2** (1970), 1359.

[2] H. Farhoosh and R.L. Zimmerman *Phys. Rev.* **D21** (1980) 317.

[3] W.B. Bonner *Gen Rel. Grav.* **15** (1983) 535.

[4] W.B. Bonner *Gen Rel. Grav.* **16** (1984) 269.

[5] Y. Itin, *Class. Quant. Grav.* **19** (2002), 173

[6] Y. Itin, *J. Math. Phys.* **46** (2005), 012501.

[7] F.W. Hehl, Y. Neeman, J. Nitsch and P. Von der Heyde, *Phys. Lett.* **B78** (1978), 102.

[8] F.W. Hehl, *Four Lectures on Poincaré gauge theory*, in Proceedings of the 6th. school of cosmology and gravitation course on spin, Torsion rotation and supergravity, held at Eric, Italy, (1979), eds., P.G. Bergmann, V. De Sabbata (Plenum, N.Y. (1980)) P.5; F. Gronwald and F.W. Hehl, *On the gauge aspects of gravity*, in: International School of Cosmology and Gravitation: 14th. course: Quantum Gravity, Held May 1995 in Erice, Italy. Proceedings. P.G. Bergmann et al. (eds.) World Scientific, Singapore (1996) gr-qc/9602013.

[9] M. Leclerc, *Phys. Rev* **D71** (2005), 027503.

[10] T. Kawai, *Phys. Rev.* **D49**, (1994) 2862; *Phys. Rev.* **D62** (2000), 104014.

[11] M. Blagojević, *Gravitation and Gauge Symmetries* (IOP Publishing UK, 2002); M. Blagojević and I. A. Nikolić *Phys. Rev.* **D62** (2000), 024021; M. Blagojević and M. Vasilii Class. Quant. Grav. **17** (2000), 3785.

[12] W. Kopczyński, *J. Phys.* **A15** (1982), 493; *Ann. Phys. (N.Y.)* **203** (1990), 308.

[13] F.W. Hehl, J.D. MacCrea, E.W. Mielke and Y. Ne’eman, *Phys. Rep.* **258** (1995), 1.

[14] K. Haysih, *Phys. Lett.* **B69**, (1977), 441; K. Hayashi and T. Shirafuji, *Phys. Rev.* **D19** (1979), 3524.

[15] J. Nitsch and F.W. Hehl, *Phys. Lett.* **B90** (1980), 98; F. Müller-Hoissen and J. Nitsch, *Phys. Rev.* **D28** (1983) 718; *Gen. Rel. Grav.* **17** (1985), 747.

[16] P. Baekler and F. W. Hehl gr-qc/0601063.

[17] E.W. Mielke, *Phys. Rev* **D42** (1990), 3388.

[18] R.S. Tung and J.M. Nester, *Phys. Rev* **D60** (1999), 021501.

[19] V.C. de Andrade and J.G. Pereira, *Phys. Rev.* **D56** (1997), 4689; Yu.N.Obukhov and J.G. Pereira, *Phys. Rev* **D69** (2004), 128502; *Phys. Rev* **D67** (2003), 044016.

[20] E.W. Mielke, *Phys. Rev* **D69** (2004), 128501.
[21] J.M. Nester, F. H. Ho and C. M. Chen, *Quasilocal Center-of-Mass for Teleparallel Gravity*, MG10 Meeting gr-qc/0403101; J. M. Nester, *Int. J. Mod. Phys. A* (1989), 1755; *J. Math. Phys.* **33** (1992), 910.

[22] J. W. Maluf, *J. Math. Phys.* **35** (1994), 335.

[23] J. W. Maluf, J. F. da Rocha-Neto, T. M. L. Toribio and K. H. Castello-Branco, *Phys. Rev.* **D65** (2002), 124001.

[24] C. Møller, *Ann. of Phys.* **12** (1961), 118.

[25] C. Møller, *Mat. Fys. Medd. Dan. Vid. Selsk.* **1** (1961), 10.

[26] C. Møller, *Nucl. Phys.* **57** (1964), 330.

[27] C. Møller, *Mat. Fys. Medd. Dan. Vid. Selsk.* **39** (1978), 13.

[28] S. Xu and J. Jing, *Class. Quant. Grav.* **23** (2006), 4659.

[29] R. Weitzenböck, *Invarianten Theorie* (Nordhoff, Groningen, 1923).

[30] A. Einstein, *Riemannsche Geometrie unter Aufrechterhaltung des Beriefes des Fernparallelismus (Riemannian Geometry with maintaining the notion of Distant Parallelism)*, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys.-math. Klasse (June 7th., 217-221 (1928); Auf die Riemann-Metrik und den Fernparallelismus gegründete einheitliche Feldtheorie (Unified Field Theory based on Riemann Metric and Distant Parallelism), Mathematische Annalen 102, 685-697 (1930) (English translation available under www.lrz.de/~aunzicker/ael930.html).

[31] J. W. Maluf and J. F. da Rocha-neto, *Phys. Rev.* **D64** (2001), 084014.

[32] J.W. Maluf, F.F. Faria and K.H. Castello-Branco, *Class. Quantum Grav.* **20**, (2003), 4683.

[33] R Arnowitt, S. Deser and C.W. Misner, *Gravitation: An Introduction to Current Research* edited by L. Witten (Wiley, N.Y. (1962)).

[34] J. W. Maluf, M.V.O. Veiga and J. F. da Rocha-Neto, gr-qc/0507122.

[35] J. W. Maluf, *Gen. Rel. Grav.* **30** (1998), 413.

[36] N. Toma, *Prog. Theor. Phys.* **86** (1991), 659.

[37] T. Kawai and N. Toma, *Prog. Theor. Phys.* **87** (1992), 583.

[38] F.I. Mikhail, M.I. Wanas, A. Hindawi and E.I. Lashin, *Int. J. Theor. Phys.* **32** (1993), 1627.

[39] T. Shirafuji, G.G.L. Nashed, and K. Hayashi, *Prog. Theor. Phys.* **95** (1996), 665.

[40] K. Hong and E. Teo, *Class. Quantum Grav.* **20** (2003) 3269.

[41] Gamal G.L. Nashed *Chaos. Solitons & Fractel* **15** (2003) 841.
[42] P. Baeckler, R. Hecht, F.W. Hehl and T. Shirafuji, *Prog. Theor. Phys.* **78** (1987), 16.

[43] J.D. Brown and J.W. York, Jr., *Quasi-local energy in general relativity*, Proceedings of the Joint Summer Research conference on Mathematical Aspects of Classical Field Theory, edited by M.J. Gotay, J.E. Marsden and V. Moncrief (American Mathematical Society, 1991); *Phys. Rev.* **D47** (1993), 1407.