New Method for Synthesis of Substituted N-Borylated Dipeptides
Based on Acetonitrile Derivative of the \textit{closo}-Dodecaborate Anion

A. V. Nelyubina, N. A. Selivanova, I. N. Klyukina, A. Yu. Bykova,
A. P. Zhdanova, *, K. Yu. Zhizhina, and N. T. Kuznetsova

a Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia
*e-mail: zhdanov@igic.ras.ru

Received April 13, 2021; revised April 26, 2021; accepted April 27, 2021

Abstract—A new multistage synthesis of the N-borylated dipeptide B\textsubscript{12}PheGlyOH has been proposed. The approach is based on the reaction of nucleophilic addition of amino acid derivatives to the \([\text{B}_{12}\text{H}_{11}\text{NCCH}_{3}]^-\) anion. The products of each stage have been characterized by multinuclear NMR spectroscopy, IR absorption spectroscopy, and ESI mass spectrometry.

Keywords: nitrile derivatives, nucleophilic addition, dipeptides

INTRODUCTION

Neutron capture therapy (NCT) is a binary method of non-invasive treatment of malignant tumors [1]; however, the development of this method is directly related with the search for new effective therapeutic agents [2]. An important requirement for compounds used for \(^{10}\text{B}\)-NCT is a high selectivity of accumulation in tumor tissues and a high content of boron in molecules to create the required therapeutic concentration [3]. \textit{closo}-Dodecaborate anion \([\text{B}_{12}\text{H}_{12}]^2-\) attracts close attention of researchers when creating new agents for \(^{10}\text{B}\)-NCT due to its low toxicity and high boron content [4–6].

The effectiveness of drugs for \(^{10}\text{B}\)-NCT depends on the selectivity of the accumulation of boron compounds in tumor cells, which requires the introduction of vector groups into the cluster cage. Amino acids and peptides are important transport groups due to their ability to bind selectively to various receptors, mainly expressed by tumor cells [7–11].

It was previously shown that the addition of nucleophilic reagents of various natures to nitrile functional groups in anionic boron clusters can be considered as a convenient way of directed synthesis of their substituted derivatives [12–24], including those based on biologically active substances [6, 25] and biomimetic systems [26, 27]. It was found that the addition of tert-butylation esters of proteinogenic amino acids to nitrile derivatives of the \textit{closo}-decaborate anion and their subsequent selective hydrolysis is a convenient method for the preparation of N-borylated peptides [28]. tert-Butyl esters of amino acids are used due to the stability of amidine-\textit{closo}-borates under the conditions of their hydrolysis [29].

The development of methods for the preparation of nitrile derivatives of the \textit{closo}-dodecaborate anion [30, 31] will expand the possibilities for the creation of new promising preparations for \(^{10}\text{B}\)-NCT on their basis.

The aim of this work is to obtain conjugates of the nitrile derivative of the \textit{closo}-dodecaborate anion as a starting compound for the synthesis of borylated peptides with phenylalanine for use in \(^{10}\text{B}\)-NCT.

EXPERIMENTAL

Elemental analysis for carbon, hydrogen, and nitrogen was performed on a CHNS-3 FA 1108 Elemental Analyzer (Carlo Erba). Boron was determined by ICP MS on an iCAP 6300 Duo inductively coupled plasma atomic emission spectrometer at the Center for Collective Use of the Scientific Analytical Center of the Federal State Unitary Enterprise IREA of the National Research Center “Kurchatov Institute.”

\textbf{IR spectra} of compounds were recorded on an InfraLum FT-08 IR Fourier spectrophotometer (NPF AP Lumex) in the range 4000–400 cm\(^{-1}\) with a resolution of 1 cm\(^{-1}\). Samples were prepared as chloroform solutions.
1H, 11B, and 13C NMR spectra of solutions of the investigated compounds in CD3CN were recorded on a Bruker MSL-300-pulsed Fourier spectrometer (Germany) at frequencies of 300.3, 96.32, and 75.49 MHz, respectively, with internal deuterium stabilization. Tetramethylsilane or boron trifluoride etherate were used as external standards.1

Preparative high performance liquid chromatography (HPLC) was performed on a STAVERY isocratic HPLC system (NPKF Akvilon) with a spectrophotometric detector (UVV 104 with a variable wavelength of 200–360 nm) on a Knauer Eurospher 110 Si column.

Solvents of special quality grade (Russian State Standard) were used without further purification. Esters of amino acids in the form of hydrochlorides GlyO–Bu and PheOMe were also used without further purification.

(NBu4)2[B12H11(NCCH3)] (1) was obtained according to the method described [31]. Trifluoroacetic acid (1 mL) was added to a solution of (NBu4)2[B12H12] (0.94 g, 1.5 mmol) in acetonitrile (20 mL). The reaction mixture was heated in an autoclave at a temperature of 100°C for 30 min. The solution was distilled off on a rotary evaporator; the solid residue was dissolved in CH2CN (30 mL) and CF3COOH (1 mL) was added. The solution was heated to 100 W for 1 h. The solution cooled to room temperature was concentrated on a rotary evaporator and diluted with distilled water and acidified to pH 2. The reaction mixture was stirred at room temperature for 30 min. The solvent was distilled off on a rotary evaporator; the solid residue was dissolved in methanol (30 mL). 0.1 N NaOH solution (0.9 mL) was added dropwise under vigorous stirring. The reaction mixture was stirred at room temperature for 5 h. Then the resulting reaction solution was diluted with distilled water and acidified to pH 2. The target product was extracted with dichloromethane and recrystallized from ethyl alcohol. Yield, 75% (0.398 g).

For 2 anal. calcd. (%): C, 55.72; H, 10.52; B, 21.5; N, 6.96. Found (%): C, 55.21; H, 11.56; B, 21.2; N, 6.88.

(NBu4)2[B12H11NC(CH3)2HNCH(CH2C6H5)2COOCH3] (3). A weighed portion of compound 2 (0.573 g) was dissolved in methanol (30 mL). 0.1 N NaOH solution (0.9 mL) was added dropwise under vigorous stirring. The reaction mixture was stirred at room temperature for 5 h. Then the resulting reaction solution was diluted with distilled water and acidified to pH 2. The target product was extracted with dichloromethane and recrystallized from ethyl alcohol. Yield, 75% (0.398 g).
For 3 anal. calcd. (%): C, 55.00; H, 10.42; B, 22.0; N, 7.12. Found (%): C, 54.69; H, 10.23; B, 22.7; N, 7.17.

\[(\text{NBu}_4)[\text{B}_2\text{H}_11\text{NHC}(\text{CH}_3)\text{HNCH}(\text{CH}_2\text{C}_6\text{H}_5)\text{COH}]\] (4). Derivative 4 (0.100 g, 0.2 mmol) was dissolved in acetonitrile (5 mL); concentrated hydrochloric acid (2 mL) was added dropwise, and the mixture was refluxed for 2 h. After cooling, the reaction mixture was extracted three times with 10 mL portions of dichloromethane. The obtained extracts were combined and evaporated on a rotary evaporator. The target product was recrystallized from ethyl alcohol and dried in a desiccator over P$_2$O$_5$. Yield, 85% (0.110 g).

IR spectrum (CHCl$_3$, v, cm$^{-1}$): 3503 (v(O–H)), 3404, 3356, 3308, 3242 (v(N–H)), 2493 (v(B–H)), 1717 (v(C=O)), 1682 (v(C=O)), 1643 (v(S=N)), 1050 (v(B–H)).

RESULTS AND DISCUSSION

At the first stage of the work, the reaction of nucleophilic addition of tert-butyl esters of amino acids to nitrile derivatives of the closo-dodecaborate anion was studied. In contrast to the nitrile derivatives of the closo-dodecaborate anion, this reaction does not proceed. As a result, a number of products with unknown structures are formed.

As an alternative approach, the reaction between nitrile derivatives of the closo-dodecaborate anion with methyl esters of amino acids was investigated. This process is shown in Scheme 1a.

The progress of the reaction was monitored and the structure of the target compound was determined using multinuclear 1H, 11B, and 13C NMR spectroscopy. In the 11B NMR spectra of the obtained derivative, a signal from the boron atom bound to the nitrogen atom of the nitrile substituent is observed in the region of −7.8 ppm [B(1), I = 1] and a complex signal from unsubstituted boron atoms are observed at −16.5 ppm [B(2–12), I = 11]. In the 1H NMR spectrum of compound 2, the fragment of the nitrile substituent is represented by signals at 6.56 ppm assigned to the hydrogen atom bonded to the nitrogen atom of the benzene ring in the range 7.38–7.25 ppm, signals of protons bound to nitrogen atoms at 8.25 ppm, with hydrogen atoms of the benzene ring in the range 7.38–7.25 ppm, signals of protons bound to the α-carbon atom at 4.36 ppm, protons of the methyl group at 3.78 ppm, and two complex signals of nonequivalent protons of the methylene group at 3.27 and 2.93 ppm. The tetra-
butylammonium cation is represented by four signals at 3.10, 1.59, 1.35, and 0.96 ppm. In the 13C NMR spectrum of the obtained product, the nitrile fragment is represented by the signals of the carbon atom bonded to the nitrogen of the imino group at 165.2 ppm, and the signal of the carbon atom of the methyl group at 18.9 ppm. The amino acid residue is represented by signals from the ester group at 171.9, 52.4 ppm, signals from the α-carbon atom at 55.1 ppm, β-carbon atom at 40.3 ppm, and four signals of nonequivalent carbon atoms of the benzene ring at 137.3, 130.9, 129.6, and 128.0 ppm.

Scheme 1. General scheme for the synthesis of N-borylated dipeptides.

Esters do not react to form peptide bonds. Thus, the next stage of our work was the hydrolysis of the methyl ester of the resulting conjugate. For this, the approach described earlier [32] (Scheme 1b) was used. The progress of the reaction was monitored and the structure of the resulting product was determined using multinuclear 1H, 11B, and 13C NMR spectroscopy. In the 1H and 13C NMR spectra, there are no signals from the protons and carbon of the methyl group of the ester, which confirms the completeness of the removal of the protective group.

The resulting conjugate containing a free carboxyl group can be used as a C-component to obtain a borylated dipeptide (Scheme 1c). Both components are readily soluble in organic solvents, which makes it possible to use standard peptide synthesis techniques.
using dicyclohexylcarbodiimide as a cross-linking reagent. Acid-labile protecting groups are preferred for the preparation of peptide conjugates with nitrile derivatives of the closo-dodecaborate anion to prevent destruction of the amidine moiety upon unblocking of the peptide’s carboxyl group.

The structure of the resulting dipeptide was established using multinuclear NMR spectroscopy. In the 1H NMR spectrum, the glycine fragment is represented by signals of amide protons at 6.90 ppm, α-atom at 3.83 ppm, and signals of methyl protons of tert-butyl ether at 1.45 ppm. In the 13C NMR spectrum, the glycine fragment is represented by signals from the carboxyl carbon atom at 170.5 ppm, and the α-carbon atom at 42.7 ppm. The tert-butoxycarbonyl fragment is represented by signals at 82.4 and 28.2 ppm.

The next step was the removal of the tert-butyl group (Scheme 1d) as described [28]. The process does not take place in a two-phase system dichloromethane—hydrochloric acid, regardless of the reaction temperature. Carrying out this reaction in a homogeneous acetonitrile–hydrochloric acid system allows the complete unblocking of the carboxyl group without the formation of by-products. The progress of the reaction was monitored and the structure of the resulting product was determined using multinuclear 1H, 1B, and 13C NMR spectra. In the 1H and 13C NMR spectra, there are no signals of protons and carbon of the tert-butyl group of the ester, which confirms the completeness of the removal of the protective group.

CONCLUSIONS

An approach to the preparation of dipeptides conjugated with nitrile derivatives of the closo-dodecaborate anion is proposed. It has been shown that to obtain conjugates of nitrile derivatives of the closo-dodecaborate and free amino acids, methyl esters of amino acids must be used as starting compounds. tert-Butyl amino acid esters to the acetonitrile derivative $[B_{12}H_{11}NCCH_3]^-$ does not lead to the formation of the amidine-closo-dodecaborates.

In the future, these conjugates can be used to obtain borylated peptides by peptide synthesis methods according to the Fmoc protocol.

FUNDING

The study was supported by the Russian Foundation for Basic Research, projects. nos. 20-33-90119 and 20-03-00763.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. Boron Science: New Technologies and Applications, Ed. by N. S. Hosmane (CRC Press, 2011).
2. C. V. T. Hey-Hawkins, Boron-Based Compounds: Potential and Emerging Applications in Medicine (John Wiley & Sons Ltd, 2018).
3. T. Tsurubuchi, M. Shirakawa, W. Kurosawa, et al., Cells 9, 5 (2020). https://doi.org/10.3390/cells9051277
4. Y. Hattori, S. Kusaka, M. Mukumoto, et al., J. Med. Chem. 55, 6980 (2012). https://doi.org/10.1021/jm300749q
5. Y. Hattori, S. Kusaka, M. Mukumoto, et al., Amino Acids 46, 2715 (2014). https://doi.org/10.1007/s00726-014-1829-5
6. K. Hu, Z. Yang, L. Zhang, et al., Coord. Chem. Rev. 405, 213139 (2020). https://doi.org/10.1016/j.ccr.2019.213139
7. J. Capala, R. F. Barth, M. Bendayan, et al., Bioconjug. Chem. 7, 7 (1996). https://doi.org/10.1021/bc950077q
8. F. Issa, M. Kassiou, and L. M. Rendina, Chem. Rev. 111, 5701 (2011). https://doi.org/10.1021/cr200086q
9. S. Hofmann, J. Lindner, A. G. Beck-Sickinger, et al., Chem. Bio. Chem. 19, 2300 (2018). https://doi.org/10.1002/cbic.201800343
10. T. He, J. C. Misuraca, and R. A. Musah, Sci. Rep. 7, 16995 (2017). https://doi.org/10.1038/s41598-017-16926-w
11. A. R. Genady, J. A. Ioppolo, M. M. Azaam, et al., Eur. J. Med. Chem. 93, 574 (2015). https://doi.org/10.1016/j.ejmech.2015.02.033
12. A. P. Zhdanov, M. V. Lisovsky, L. V. Goeva, et al., Russ. Chem. Bull. 58, 1694 (2009). https://doi.org/10.1007/s11172-009-0234-9
13. V. Sicha, J. Plesek, M. Kvícalová, et al., Dalton Trans. 5, 851 (2009). https://doi.org/10.1039/b814941k
14. M. Y. Stogniy, S. A. Erokhina, I. B. Sivaev, et al., Phosphorus Sulfur Silicon Relat. Elem. 194, 983 (2019). https://doi.org/10.1080/10426507.2019.1631312

RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 66 No. 9 2021
15. S. A. Anufriev, A. V. Shmal’ko, M. Y. Stogniy, et al., Phosphorus Sulfur Silicon Relat. Elem. 195, 901 (2020). https://doi.org/10.1080/10426507.2020.1804148

16. E. V. Bogdanova, M. Y. Stogniy, L. A. Chekulaeva, et al., New J. Chem. 44, 15836 (2020). https://doi.org/10.1039/d0nj03017a

17. A. P. Zhdanov, I. N. Polyakova, G. A. Razgonyaeva, et al., Russ. J. Inorg. Chem. 56, 847 (2011). https://doi.org/10.1134/S003602361106026X

18. A. L. Mindich, N. A. Bokach, F. M. Dolgushin, et al., Organometallics 31, 1716 (2012). https://doi.org/10.1021/om200993f

19. A. L. Mindich, N. A. Bokach, M. L. Kuznetsov, et al., Organometallics 32, 6576 (2013). https://doi.org/10.1021/om400892x

20. A. P. Zhdanov, I. N. Klyukin, A. Y. Bykov, et al., Polyhedron 123, 176 (2017). https://doi.org/10.1016/j.poly.2016.11.035

21. V. K. Burianova, D. S. Bolotin, A. S. Novikov, et al., Inorg. Chim. Acta 482, 838 (2018). https://doi.org/10.1016/j.inca.2018.07.038

22. V. K. Burianova, D. S. Bolotin, A. S. Mikherdov, et al., New J. Chem. 42, 8693 (2018). https://doi.org/10.1039/c8nj01018h

23. M. Y. Stogniy, S. A. Erokhina, K. Y. Suponitsky, et al., New J. Chem. 42, 17958 (2018). https://doi.org/10.1039/c8nj04192j

24. A. P. Zhdanov, A. V. Nelyubin, I. N. Klyukin, et al., Russ. J. Inorg. Chem. 64, 841 (2019). https://doi.org/10.1134/S0036023619070180

25. A. V. Nelyubin, I. N. Klyukin, A. S. Novikov, et al., Mendeleev Commun. 31, 201 (2021). https://doi.org/10.1016/j.mencom.2021.03.018

26. K. A. Zhdanova, A. P. Zhdanov, A. V. Ezhov, et al., Macrocycles 7, 394 (2014). https://doi.org/10.6060/mhc140494z

27. A. V. Ezhov, F. Y. Vyal’ba, I. N. Kluykin, et al., Macrocycles 10, 505 (2017). https://doi.org/10.6060/mhc171254z

28. A. V. Nelyubin, I. N. Klyukin, A. P. Zhdanov, et al., Russ. J. Inorg. Chem. 64, 1499 (2019). https://doi.org/10.1134/S003602361912012X

29. Protective Groups in Organic Chemistry, Ed. by J. F. W. McOmie (Springer US, Boston, MA, 1995). https://doi.org/10.1007/978-1-4684-7218-9

30. A. V. Nelyubin, N. A. Selivanov, A. Y. Bykov, et al., Russ. J. Inorg. Chem. 65, 795 (2020). https://doi.org/10.1134/S0036023620060133

31. A. V. Nelyubin, I. N. Klyukin, A. P. Zhdanov, et al., Russ. J. Inorg. Chem. 66, 139 (2021). https://doi.org/10.1134/S0036023621020133

32. A. K. Chakraborti, Basak, and V. Grover, J. Org. Chem. 64, 8014 (1999). https://doi.org/10.1021/jo9900351

Translated by V. Avdeeva