ARTICLE

Comprehensive targeted next-generation sequencing in patients with slow-flow vascular malformations

Akifumi Nozawa1,2, Akihiro Fujino3, Shunsuke Yuzurihara5, Souichi Suenobu5,6, Aiko Kato7, Fumiaki Shimizu7, Noriko Aramaki-Hattori8, Kanako Kuniyeda9, Kazuya Sakaguchi10, Hidenori Ohnishi1,11, Yoko Aoki2 and Michio Ozeki1,11

© The Author(s), under exclusive licence to The Japan Society of Human Genetics 2022

Recent studies have shown that the PI3K signaling pathway plays an important role in the pathogenesis of slow-flow vascular malformations (SFVMs). Analysis of genetic mutations has advanced our understanding of the mechanisms involved in SFVM pathogenesis and may identify new therapeutic targets. We screened for somatic variants in a cohort of patients with SFVMs using targeted next-generation sequencing. Targeted next-generation sequencing of 29 candidate genes associated with vascular anomalies or with the PI3K signaling pathway was performed on affected tissues from patients with SFVMs. Fifty-nine patients with SFVMs (venous malformations n = 21, lymphatic malformations n = 27, lymphatic venous malformations n = 1, and Klippel–Trenaunay syndrome n = 10) were included in the study. TEK and PIK3CA were the most commonly mutated genes in the study. We detected eight TEK pathogenic variants in 10 samples (16.9%) and three PIK3CA pathogenic variants in 28 samples (47.5%). In total, 37 of 59 patients (62.7%) with SFVMs harbored pathogenic variants in these three genes involved in the PI3K signaling pathway. Inhibitors of this pathway may prove useful as molecular targeted therapies for SFVMs.

Journal of Human Genetics (2022) 67:721–728; https://doi.org/10.1038/s10038-022-01081-6

INTRODUCTION

Vascular anomalies comprise both malformations and tumors. [1] Vascular malformations have conventionally been classified as slow flow or high flow according to the affected blood flow characteristics. [1] Slow-flow vascular malformations (SFVMs) include venous and lymphatic malformations as well as combined malformations, such as Klippel–Trenaunay syndrome (KTS). [2] SFVMs often cause deformity, pain, chronic anemia, coagulation abnormalities, and functional impairment. [2] Conventional treatments, such as surgery and/or sclerotherapy, are rarely curative, underscoring the urgent need for new therapeutic modalities. [3]

A number of genetic changes have been identified in patients with vascular anomalies, the majority of which occur within two of the major intracellular signaling pathways; namely, the RAS/mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. [4–6] Recent studies have shown that the PI3K/AKT/mTOR pathway is typically mutated in patients with SFVMs, raising the possibility that targeted therapy could be a useful treatment strategy. [4–6] Indeed, sirolimus, also known as rapamycin, is an allosteric inhibitor of mTOR [7] that has been tested in a monocentric prospective phase II clinical trial for patients with SFVMs that were refractory to standard treatments. [3] Sirolimus was found to be highly effective, resulting in a partial response in all patients, reducing symptoms and increasing quality of life. [3] Genetic analysis has thus advanced our understanding of the mechanisms involved in SFVM pathogenesis and may also suggest new targets for molecular targeted therapies.

In this study, we performed targeted next-generation sequencing (NGS) of 29 candidate genes associated with vascular anomalies or with the PI3K signaling pathway in affected tissue samples from a cohort of patients with SFVMs.

MATERIALS AND METHODS

Patients and tissue samples

Patients diagnosed with SFVMs at six academic hospitals in Japan were enrolled in this study. Sample acquisition and genetic analyses were approved by the institutional review board at each institution, and written informed consent was obtained from all patients or their guardians. Tissue samples were collected during clinically indicated surgical procedures (surgical excision, punch biopsy, and needle biopsy) for therapeutic or diagnostic purposes. Areas of necrosis or hemorrhage on gross inspection

Received: 18 April 2022 Revised: 23 August 2022 Accepted: 2 September 2022 Published online: 29 September 2022
were removed from the fresh specimens. Tissues were rapidly frozen in liquid nitrogen until analyzed.

DNA extraction and next-generation sequencing

Genomic DNA was extracted from frozen tissues using a DNeasy Blood and Tissue kit (Qiagen, Valencia, CA, USA) or NucleoSpin® Tissue kit (Macherey-Nagel, Duren, Germany) according to the manufacturers’ protocols. For NGS, primer pairs were designed to amplify the exonic regions of 29 candidate genes associated with vascular anomalies or the PI3K signaling pathway (listed in Table 1) using the Ion AmpliSeq Designer (v7.24, Thermo Fisher Scientific, Waltham, MA, USA). [5, 6, 8–10] A total of 1297 primer pairs with 125 to the manufacturer Kit Plus (Thermo Fisher Scientific) and the indicated primer pairs, according to the manufacturer’s protocol. The libraries were subsequently sequenced on an Ion Proton™ Sequencer (Thermo Fisher Scientific) using the Ion PI™ Chip v3 (Thermo Fisher Scientific) with 15–16 samples per chip.

Table 1. Genes analyzed in this study

Gene	Related disorders/diseases
AGGF1	KTS
AKT1	Proteus syndrome
AKT2	VM
AKT3	VM
BRAF	AVM
EPHB4	CM-AVM
GNA11	CH, CM with bone and/or soft tissue hyperplasia, diffuse CM with overgrowth
GNAQ	CH, CM “port–wine” stain, nonsyndromic CM, CM of Sturge–Weber syndrome
HRAS	AVM
IDH1	MS, SCH
IDH2	MS, SCH
IGFR1	see PIK3CA
KRAS	AVM
MAP2K1	AVM
MAP3K3	Verrucous VM
MTOR	see PIK3CA
NF1	see PIK3CA
NRAS	Pyogenic granuloma
PIK3CA	Common (cystic) lymphatic malformation, common VM, KTS
PIK3CB	see PIK3CA
PIK3R1	see PIK3CA
PIK3R2	see PIK3CA
PIK3R3	see PIK3CA
PTEN	Bannayan–Riley–Ruvalcaba syndrome, hamartoma of soft tissue/angiomatosis of soft tissue
RASA1	CM-AVM, Parkes Weber syndrome
RICTOR	see PIK3CA
RPTOR	see PIK3CA
STAMBP	Microcephaly-capillary malformation syndrome
TEK	Common VM, familial cutaneomucosal VM, blue rubber bleb nevus syndrome
AVM	arteriovenous malformation, CH congenital hemangioma, CM capillary malformation, KTS Klippel–Trenaunay syndrome, MS Maffucci syndrome, SCH spindle cell hemangioma, VM venous malformation

*Gene located upstream of the PI3K signaling pathway

*Gene located within the PI3K signaling pathway

Sequencing data analysis and variant annotation

The sequencing data were processed using a standard procedure with Ion Torrent Suite Software, and mutations were called using the Torrent Variant Caller plug-in. Called mutations were annotated with SnpEff [11], SnpSift [12], and ClinVar [13]. To remove error mutations from called sites and to identify somatic variants, mutations were selected to satisfy the following criteria: sequencing depths of 1000 or more, variant allele frequencies (VAFs) of ≥1% and <45%, and base qualities of ≥30. Mutations resulting in peptide alterations were annotated with dbNSFP [14] to identify single nucleotide variants or with ClinVar [13] to find insertion/deletions and were selected as the functional candidates. Candidate mutations were manually reviewed using Integrative Genomics Viewer [15]. Likely if they were excluded if they were reported as benign or likely benign in ClinVar [13] or IntVar [16] and their CADD Phred scores [17] were ≤20, as previously reported. [18] Then, as previously described [19], variants were denoted as pathogenic if one or more of the following criteria was satisfied: (i) the nucleotide sequence change (or affected amino acid residue) had previously been documented to be pathogenic, (ii) the change resulted in a shift of the transcript open reading frame, (iii) the change introduced a premature stop codon, (iv) the change altered the canonical splice-site sequence, and (v) the change was a start- or stop-loss mutation. In addition, new missense variants having a minor allele frequency of <0.01 in the 1000 Genomes Project database [20] and having deleterious effects predicted by at least two of three in silico pathogenicity prediction tools (SIFT [21], PolyPhen-2 [22], and MutationTaster [23]) were considered potentially pathogenic variants. Fisher’s exact test was used to compare frequencies of somatic variants in SFVMs with those in Genome Aggregation Database (gnomAD [24]; version 2.1.1) controls or the Catalog of Somatic Mutations in Cancer (COSMIC [25]; v96) pan-cancer cohort. Values of P < 0.05 were considered to indicate statistical significance. GraphPad Prism 7 software (GraphPad Inc., San Diego, CA, USA) was used for this analysis.

Cis versus trans evaluation of double somatic activating variants in the TEK gene

PCR amplification was performed of fragments containing double somatic activating variants in TEK from tissue DNA (Patients VM7 and VM9). PCR fragments were subcloned using a TOPO TA Cloning kit (Invitrogen, Carlsbad, CA, USA), and individual clones were sequenced to evaluate whether the variants occurred in cis (clones carrying both variants or neither) or trans (clones carrying one or the other variant alone).

RESULTS

Patient characteristics and variant identification

Fifty-nine Japanese patients with SFVMs (31 males and 28 females) were included in the study. The patient characteristics are shown in Table 2. Their ages ranged from 0 to 72 years with a median age of 7.5 years. Of the 59 subjects, 21 were diagnosed with venous malformation (VM), 27 with lymphatic malformation (LM), 1 with lymphatic venous malformation (LVM), and 10 with KTS. The diagnosis of VM, LM, LVM, and KTS was based on clinical presentation and radiologic findings and was confirmed by histopathologic examination. Affected tissue samples from all 59 subjects were analyzable. Tissue acquisition methods consisted of surgical excision (n = 46), punch biopsy (n = 12), and needle biopsy (n = 1). Pathogenic variants were identified in tissues from 37 patients (62.7%) (Table 3). Genes encoding the endothelial receptor tyrosine kinase TIE2 (TEK) and the PI3K catalytic subunit (PIK3CA) were the most commonly mutated genes in the study. Eight pathogenic variants in TEK and three in PIK3CA were identified in 10 samples (16.9%) and 28 samples (47.5%), respectively (Fig. 1). Single variants of unknown significance were detected in genes encoding RAS p21 protein activator 1 (RASA1 in c.1772G > A; p.Arg591His) in one patient with LM, MAPK kinase kinase 3 (MAP3K3 in c.1416 C > G; p.Ile472Met) in one in VM, and Ehrin type-B receptor 4 (EPHB4 in c.52 G > A; p.Glu18Lys) and mTOR (MTOR in c.5490_5501del; p.Ala1831_Thr1834-del) in one patient with KTS each. The frequency of variants identified in patients with SFVMs is shown in Table 4. TEK (c.921 C > G; p.Tyr307*) and PIK3CA (c.1633G > A; p.Glu544Lys), and

- A. Nozawa et al.
PIK3CA (c.3140 A > G; p.His1047Arg) showed a significant difference in frequency between SFVMs and gnomAD. TEK (c.2743 C > T; p.Arg915Cys), TEK (c.2752 C > T; p.Arg918Cys), TEK (c.2753 G > T; p.Arg918Leu), PIK3CA (c.1633G > A; p.Glu545Lys), PIK3CA (c.1624G > A; p.Glu542Lys), and PIK3CA (c.3140 A > G; p.His1047Arg) showed a significant difference in frequency between SFVMs and COSMIC. PIK3CA (c.3140 A > G; p.His1047Arg) and TEK (c.2690 A > G; p.Tyr897Cys, c.2689 T > C; p.Tyr897His, c.2740 C > T; p.Leu914Phe, c.2743 C > T; p.Arg915Cys, c.2752 C > T; p.Arg918Cys, c.2753 G > T; p.Arg918Leu, and c.3295 C > T; p.Arg1099*) were not detected in gnomAD. TEK (c.2740 C > T; p.Leu914Phe), TEK (c.3295 C > T; p.Arg1099*), TEK (c.2690 A > G; p.Tyr897Cys), TEK (c.2689 T > C; p.Tyr897His), and TEK (c.921 C > G; p.Tyr307*) were not detected in COSMIC.

Genetic variants associated with VM

Of the 21 patients with VMs, 14 (66.7%) harbored pathogenic genetic variants (Table 3). The maximum diameter of the lesions ranged from 1.0 to 15.0 cm. Six of the 14 patients showed evidence of multiple lesions. Pathogenic variants in TEK were identified in 10 patients, of whom 6 harbored variants in the mutational hotspot Leu914. [5] Although the TEK nonsense variant (c.921 C > G; p.Tyr307*) identified in patient VM9 was shown to result in a premature stop codon, the VAF of this variant (4.0%) was lower than that of other activating variants (8.6% and 9.0%) observed in the same patient, suggesting that c.921 C > G; p.Tyr307* is not a major cause of SFVM in this patient. Two of the 14 patients with VMs possessed double somatic activating variants in TEK (c.2690 A > G; p.Tyr897Cys + c.2752 C > T; p.Arg918Cys, and c.2689 T > C; p.Tyr897His + c.2753 G > T; p.Arg918Leu). TA cloning analysis showed that the double somatic activating variants were in cis in these patients (Fig. 2).

Five patients with VMs harbored pathogenic variants in PIK3CA, all of which were hotspot variants: one c.1624G > A; p.Glu542Lys, three c.1633G > A; p.Glu545Lys, and one c.3140 A > G; p.His1047Arg. [26] One patient had a pathogenic variant in both TEK (c. 2740 C > T; p.Leu914Phe) and PIK3CA (c.1633G > A; p.Glu545Lys). Allele frequencies of pathogenic variants in patients with VMs ranged from 3.7% to 13.6%, with 64.3% and 35.7% of individuals having VAFs of <10% and <5%, respectively.

Genetic variants associated with LM

Of the 27 patients with LMs, 14 (51.9%) harbored pathogenic genetic variants (Table 3). The maximum diameter of the lesions ranged from 1.0 to 15.0 cm. One patient showed evidence of multiple lesions. Pathogenic variants in PIK3CA were identified in 14 patients with LMs, all of which were hotspot mutations: five c.1624G > A; p.Glu542Lys, four c.1633G > A; p.Glu545Lys, and five c.3140 A > G; p.His1047Arg. [6] One patient had a RASA1 c.1772G > A; p.Arg591His variant. To our knowledge, this variant has not previously been reported in patients with vascular anomalies. RASA1 c.1772G > A; p.Arg591His is listed in COSMIC [25] as a mutation in angiosarcoma and stomach cancer, although it is indicated to be of uncertain significance in ClinVar [13] and InterVar [15]. In silico analyses predicted this variant to be tolerated by SIFT [21], probably damaging by PolyPhen-2 [22], and disease causing by MutationTaster [23], and was considered as potentially pathogenic. Allele frequencies of pathogenic variants in patients with LMs ranged from 3.5% to 10.3%, with 92.9% and 57.1% of individuals having VAFs of <10% and <5%, respectively.

Genetic variants associated with KTS

Eight of the 10 patients with KTS harbored pathogenic variants in PIK3CA (Table 3). All of these were hotspot variants and consisted of two c.1624G > A; p.Glu542Lys, five c.1633G > A; p.Glu545Lys, and one c.3140 A > G; p.His1047Arg. Allele frequencies of pathogenic variants in patients with KTS ranged from 6.0% to 17.7%, with 75% and 0% of individuals having VAFs of <10% and <5%, respectively.

DISCUSSION

We report the results of NGS of 29 candidate genes in affected tissues from 59 patients with SFVMs. Consistent with the results of previous studies [4–6], we identified three somatic PIK3CA variants (c.1624G > A; p.Glu542Lys, c.1633G > A; p.Glu545Lys, and c.3140 A > G; p.His1047Arg) in patients with VM, LM, LVM, and KTS, and seven somatic activating TEK variants (c.2690 A > G; p.Tyr897Cys, c.2689 T > C; p.Tyr897His, c.2740 C > T; p.Leu914Phe, c.2743 C > T; p.Arg915Cys, c.2752 C > T; p.Arg918Cys, c.2753 G > T; p.Arg918Leu, c.3295 C > T; p.Arg1099*) in patients with VM. VMs are painful and deforming lesions caused by dilated vascular channels. [27] Somatic activating variants in TEK have previously been identified in about 60% of VMs. [27] More recently, somatic activating variants in PIK3CA have been identified in about 25% of VM cases. [26] In patients with wild-type TEK and PIK3CA genes, the VMs are likely caused by infrequent variants in other genes connected to the PI3K/AKT/mTOR and RAS/MAPK pathways, as suggested by Castel et al. [8] TEK and PIK3CA variants drive constitutive activation of the PI3K/AKT/mTOR pathway, resulting in increased proliferation and survival of endothelial cells, which could account for the increased

Table 2. Clinicopathological features of patients with SFVM subtypes

Gender, n (%)	Total (n = 59)	VM (n = 21)	LM (n = 27)	LVM (n = 1)	KTS (n = 10)
Male	31 (52.5)	8 (38.1)	18 (66.7)	1 (100)	4 (40)
Female	28 (47.5)	13 (61.9)	9 (33.3)	0 (0)	6 (60)
Age, median (range), years	7.5 (0–72)*	12 (0–56)*	4 (0–72)*	66	5 (1–19)

Surgical procedure, n (%)

Procedure	Total (n = 59)	VM (n = 21)	LM (n = 27)	LVM (n = 1)	KTS (n = 10)
Surgical excision	46 (78)	18 (85.7)	24 (88.9)	4 (40)	
Punch biopsy	12 (20.3)	3 (14.3)	3 (11.1)	6 (60)	
Needle biopsy	1 (1.7)	1 (100)			

KTS Klippel–Trenaunay syndrome, LM lymphatic malformation, LVM lymphatic venous malformation, SFVM slow-flow vascular malformation, VM venous malformation.

*0 refers to children less than 1 year of age.
Patient	SFVM type	Gender	Age (years)	Site	Maximum diameter (cm)	Number of lesions	Specimen type	Gene	Variant	VAF (%)
VM1	VM	Male	2	Femur	4.5	Single	Excision	TEK	c.2740 C > T; p.Leu914Phe	9.4
VM2	VM	Male	12	Neck	1.0	Multiple	Excision	TEK	c.2740 C > T; p.Leu914Phe	10.3
VM3	VM	Male	16	Back	10.0	Single	Punch biopsy	TEK	c.2740 C > T; p.Leu914Phe	9.1
VM4	VM	Male	54	Lip	4.0	Multiple	Excision	TEK	c.2740 C > T; p.Leu914Phe	4.2
VM5	VM	Female	43	Neck	4.0	Multiple	Excision	TEK	c.2743 C > T; p.Arg915Cys	12.6
VM6	VM	Female	8	Pelvis	5.0	Multiple	Excision	TEK	c.3295 C > T; p.Arg1099*	3.7
VM7	VM	Female	2	Leg	4.0	Single	Excision	TEK	c.2690 A > G; p.Tyr897Cys	4.1
VM8	VM	Female	12	Leg	1.0	Single	Punch biopsy	TEK	c.2740 C > T; p.Leu914Phe	13.6
VM9	VM	Male	5	Head	3.0	Single	Excision	TEK	c.2689 T > C; p.Tyr897His	8.6
VM10	VM	Male	50	Arm	5.0	Single	Excision	TEK	c.1633G > A; p.Glu545Lys	3.8
VM11	VM	Female	17	Clavicle	4.0	Single	Excision	PK3CA	c.1624G > A; p.Glu542Lys	5.3
VM12	VM	Female	20	Femur	4.0	Multiple	Excision	PK3CA	c.1633G > A; p.Glu545Lys	11.8
VM13	VM	Male	5	Axilla	15.0	Multiple	Excision	PK3CA	c.1633G > A; p.Glu545Lys	13.0
VM14	VM	Female	11	Femur	12.8	Single	Excision	PK3CA	c.3140 A > G; p.His1047Arg	9.2
LM1	LM	Female	1	Buttock	15.0	Single	Excision	PK3CA	c.1624G > A; p.Glu542Lys	10.3
LM2	LM	Male	1	Auricle	3.0	Single	Excision	PK3CA	c.1624G > A; p.Glu542Lys	7.9
LM3	LM	Male	0	Neck	15.0	Single	Excision	PK3CA	c.1624G > A; p.Glu542Lys	4.6
LM4	LM	Female	2	Neck	10.0	Single	Excision	PK3CA	c.1624G > A; p.Glu542Lys	4.6
LM5	LM	Male	8	Wrist	2.0	Multiple	Excision	PK3CA	c.1624G > A; p.Glu542Lys	3.5
LM6	LM	Female	1	Leg	5.0	Single	Excision	PK3CA	c.1633G > A; p.Glu545Lys	4.2
LM7	LM	Female	19	Mesentery	5.0	Single	Excision	PK3CA	c.1633G > A; p.Glu545Lys	6.7
LM8	LM	Male	5	Cheek	8.0	Single	Excision	PK3CA	c.1633G > A; p.Glu545Lys	3.8
LM9	LM	Male	1	Cheek	10.0	Single	Excision	PK3CA	c.1633G > A; p.Glu545Lys	4.0
LM10	LM	Male	6	Tongue	1.0	Single	Excision	PK3CA	c.3140 A > G; p.His1047Arg	8.4
LM11	LM	Female	0	Neck	2.0	Single	Excision	PK3CA	c.3140 A > G; p.His1047Arg	4.1
LM12	LM	Male	16	Cheek	5.0	Single	Excision	PK3CA	c.3140 A > G; p.His1047Arg	4.2
LM13	LM	Male	5	Neck	10.0	Single	Excision	PK3CA	c.3140 A > G; p.His1047Arg	8.8
LM14	LM	Female	1	Finger	2.0	Single	Excision	PK3CA	c.3140 A > G; p.His1047Arg	6.2
VM15	LM	Male	66	Waist	23.0	Single	Needle biopsy	PK3CA	c.1624G > A; p.Glu542Lys	17.7
KT1	KTS	Female	17	Buttock	–	–	Punch biopsy	PK3CA	c.1624G > A; p.Glu542Lys	6.0
KT2	KTS	Female	5	Leg	–	–	Excision	PK3CA	c.1624G > A; p.Glu542Lys	8.9
KT3	KTS	Female	19	Abdomen	–	–	Punch biopsy	PK3CA	c.1633G > A; p.Glu545Lys	7.4
KT4	KTS	Male	4	Femur	–	–	Punch biopsy	PK3CA	c.1633G > A; p.Glu545Lys	7.8
KT5	KTS	Male	1	Leg	–	–	Punch biopsy	PK3CA	c.1633G > A; p.Glu545Lys	17.7
KT6	KTS	Female	1	Leg	–	–	Excision	PK3CA	c.1633G > A; p.Glu545Lys	7.4
KT7	KTS	Female	4	Abdomen	–	–	Excision	PK3CA	c.1633G > A; p.Glu545Lys	8.1
KT8	KTS	Female	1	Leg	–	–	Excision	PK3CA	c.3140 A > G; p.His1047Arg	10.5

KTS Klippel–Trenaunay syndrome, LM lymphatic malformation, LVM lymphatic venous malformation, SFVM slow-flow vascular malformation, VAF variant allele frequency, VM venous malformation
accumulation of endothelial cells observed in VMs. [8] In two patients with VMs, we detected double somatic activating variants in \textit{TEK}. The ratio of single/double \textit{TEK} variants in our study (80%/20%) was similar to that (85.7%/14.3%) reported by Limaye et al. [28] Double somatic activating variants in \textit{TEK} found in our study were present in \textit{cis}. Although there have been several reports of VMs with double \textit{TEK} variants on the same allele [28–30], the clinical implications of this are unclear. Double \textit{TEK} variants show a stronger phosphorylation of TIE2 compared with single variants [31]; however, no correlation between disease severity, the number or location of lesions, or the TIE2 activation state has been observed. [28, 32] \textit{TEK} and \textit{PIK3CA} variants are typically mutually exclusive but both occur in some patients with VMs [8, 33, 34], as was the case for one patient with hotspot variants of both \textit{TEK} and \textit{PIK3CA} in the present study. It is likely that this can be explained by the presence of two related events in the same cells, because the VAFs of both variants were similar in our case. Another possibility is that variants in \textit{TEK} and \textit{PIK3CA} do not co-exist in the same cell. Further studies are needed to clarify the roles of simultaneous pathogenic variants in \textit{TEK} and \textit{PIK3CA} in the development of VM.

The \textit{TEK} nonsense mutation c.921 C $>$ G: p.Tyr307*, identified in one VM patient in the present study, has previously been associated with primary congenital glaucoma. [35] This variant is

Table 4. Comparing frequencies of somatic variants in SFVMs with those in gnomAD or COSMIC

Variant	SFVMs	gnomAD version 2.1.1	COSMIC v96			
	Allele frequency	Population frequency	Allele frequency	Population frequency	Allele frequency	Population frequency
TEK p.Leu914Phe	0.0508	0.1016	Absent	–	Absent	–
TEK p.Arg915Cys	0.0085	0.0169	Absent	–	4.65e-5	0.0041
TEK p.Arg1099*	0.0085	0.0169	Absent	–	Absent	–
TEK p.Tyr897Cys	0.0085	0.0169	Absent	–	Absent	–
TEK p.Arg918Cys	0.0085	0.0169	Absent	–	2.33e-5	0.0027
TEK p.Tyr897His	0.0085	0.0169	Absent	–	Absent	–
TEK p.Arg918Leu	0.0085	0.0169	Absent	–	2.33e-5	0.0027
TEK p.Tyr307*	0.0085	0.0169	1.99e-5	0.0028	Absent	–
PIK3CA p.Glu545Lys	0.1017	0.2034	4.03e-6	<0.0001	0.0192	<0.0001
PIK3CA p.Glu542Lys	0.0763	0.1525	Absent	–	0.0118	<0.0001
PIK3CA p.His1047Arg	0.0593	0.1186	4.03e-6	<0.0001	0.0237	0.0005

SFVMs slow-flow vascular malformations

aP value of Fisher’s exact test comparing allele frequencies of somatic variants in SFVMs with those in gnomAD version 2.1.1

bP value of Fisher’s exact test comparing population frequencies of somatic variants in SFVMs with those in COSMIC v96

Values of $P < 0.05$ were considered to indicate statistical significance.
located in the ectodomain of TEK and is reportedly loss of function. [35] This differs strikingly from TEK variants linked to hereditary and sporadic VMs [27], which are located solely in the intracellular domain and result in enhanced kinase activity. [36] Interestingly, Limaye et al. identified a somatic second hit in TEK, a loss-of-function deletion, in a VM lesion from a patient carrying the TEK R849W variant in the germline. [28] This would suggest that loss-of-function variants in TEK might potentiate the development of VMs [32] and thus also implicates the nonsense variant detected in our study might be associated with development of VMs. Further investigation will be needed to clarify the pathogenicity of this variant.

LMs are characterized by the presence of abnormal lymphatic vessels with progressive cystic dilation. [37] Upregulation of the PI3K/AKT/mTOR pathway may be a causal factor in the development of the abnormal lymphatic vessels. [38] Previous studies performed on LM specimens have identified somatic activating variants in the PIK3CA gene. [38] For example, Blesinger et al. showed that activating PIK3CA variants in patients with LM were specifically localized in lymphatic endothelial cells. [39] Using deep targeted sequencing methods with a cohort of 64 patients, Zenner et al. reported PIK3CA variants in LM tissues from 68.8% of the patients with a VAF of <5%. [40] In our study, 57.1% (8/14) of the individuals with LMs had a maximum VAF of <5%. These data highlight the need for optimization of DNA sequencing methods to enable detection of very low VAFs in LM tissues.

One of our patients harbored a variant in RASA1, which encodes p120-RasGAP protein that inhibits activity of RAS protein. [41] Variants in this gene have been reported to be associated with capillary malformation-arteriovenous malformation and Parkes Weber syndrome, a congenital vascular malformation consisting of capillary malformation, VM, LM, and arteriovenous malformation. [41, 42] Most of the RASA1 mutations responsible for capillary malformation-arteriovenous malformation and Parkes Weber syndrome are loss of function mutations and may lead to activation of RAS and increase downstream signaling via MAPK and PI3K/AKT/mTOR pathways. [41] Although the RASA1 missense variant (c.1772G > A; p.Arg591His) identified in our LM patient is classified as a variant of uncertain significance, it is potentially pathogenic according to two prediction tools. Further genetic and functional studies are needed to determine whether the variant is indeed pathogenic.

LVMs composed of combined lymphatic and venous elements are present at birth and develop due to errors in venolymphatic development. [43] Two hypotheses have been proposed for the pathogenesis of LVMs. One suggests that the condition results from malformation of lymphatic vascular pathways, while the second considers that it represents a tumor that grows by cellular (mainly endothelial) hyperplasia. [43] A somatic variant of PIK3CA was identified in affected tissues from a LVM patient in the present study; however, the cell type harboring the variant is unknown. Further research is needed to elucidate the cellular and molecular pathways driving LVM pathogenesis.

KTS is a syndrome involving capillary and venous malformations as well as limb overgrowth with or without LM. [44] KTS is caused by a mutation in primitive limb-forming cells that are destined to become blood and lymphatic vessels, fat, and bones. [38] In most cases of KTS analyzed to date, the cause is mosaic activating variants of PIK3CA. [38] In the present study, we identified pathogenic PIK3CA variants in 8 of the 10 patients with KTS.
In recent years, sirolimus has emerged as a new medical treatment option for SFVMs through inhibiting the PI3K/AKT/mTOR signaling pathway. [3] Notably, sirolimus has demonstrated substantial clinical benefit, as reflected by a decrease in the size of most lesions and an improvement in quality of life. [45] However, long-term sirolimus treatment may cause significant side effects due to immunosuppression, and the clinical studies performed thus far suggest that it does not always reduce the volume of existing SFVM lesions. [46] Direct targeting of chronically activated TIE2 and/or PIK3CA kinases using specific inhibitors may provide the best clinical response for patients with SFVMs. [46]

There are several possible reasons why genetic alterations were not detected in 21 of the 59 patients in the present study. For example, the pathogenic alterations could be located in genes other than the 29 investigated here, or they could be located in other gene regions, such as deep intronic regions, not included in our targeted NGS approach. Alternatively, the VAFs may have been below the detection limit, the changes may have been epigenetic alterations or large deletions that were undetected using the current sequencing methodology, or sampling errors may have occurred. Moreover, only four pathogenic variants in two patients (Patients VM7 and VM9) among all pathogenic variants identified by NGS in this study were verified by Sanger sequencing (see Fig. 2). However, recent studies have proven that NGS is a reliable tool for discovering somatic variants in vascular anomalies. [4–6, 30] In addition, this study identified previously reported causative genes and gene variants for patients with vascular anomalies, and the identified low-frequency pathogenic variants were in line with somatic mosaicism in vascular anomalies. [4–6]

We did not examine DNA isolated from the blood of patients enrolled in this study, so cannot exclude the existence of pathogenic germline variants. Germline variants in PIK3CA are associated with a phenotype characterized by overgrowth, severe macrocephaly, mild intellectual disability, and few dysmorphic features. [47] Germline variants in TEK are associated with a phenotype characterized by small, multifocal bluish cutaneous and/or mucosal VMs. [36] However, no patients enrolled in this study appeared to have these features, and they were not clinically suspected of having germline variants in PIK3CA and TEK. In addition, based on the very low VAFs in our PIK3CA- or TEK-positive cases (all 18% or lower), none of the identified variants was likely to be a germline variant.

In conclusion, pathogenic variants in genes involved in the PI3K signaling pathway were predominant among the 29 genes and 59 samples examined here. Inhibitors of this pathway may therefore have utility as molecular targeted treatments for SFVMs.

REFERENCES

1. Steiner JE, Drolet BA. Classification of vascular anomalies: An update. Semin Interv Radiol. 2017;34:225–32.
2. Rodriguez-Mañero M, Aguado L, Redondo P. Pulmonary arterial hypertension in patients with slow-flow vascular malformations. Arch Dermatol. 2010;146:1347–52.
3. Hammer J, Seront E, Duez S, et al. Sirolimus is efficacious in treatment for extensive and/or complex slow-flow vascular malformations: a monocentric prospective phase II study. Orphanet J Rare Dis. 2018;13:191.
4. Nguyen HL, Boon LM, Vikkula M. Vascular anomalies caused by abnormal signaling within endothelial cells: Targets for novel therapies. Semin Interv Radiol. 2017;34:233–8.
5. Paolacci S, Mattassi RE, Marceddu G, et al. Somatic variant analysis identifies targets for tailored therapies in patients with vascular malformations. J Clin Med. 2020;9:E3837.
6. Siegel DH, Cottrell CE, Streicher JL, et al. Analyzing the genetic spectrum of vascular anomalies with overgrowth via cancer genomics. J Invest Dermatol. 2018;138:957–67.
7. Tee AR, Blenis J. mTOR, translational control and human disease. Semin Cell Dev Biol. 2005;16:29–37.
8. Castel P, Carmona FI, Grego-Bessa J, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med. 2016;8:332ra42.
9. Nguyen HL, Boon LM, Vikkula M. Genetics of vascular anomalies. Semin Pediatr Surg. 2020;29:150967.
10. McDonnell LM, Mirzaa GM, Alcantara D, et al. Mutations in STAMP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet. 2013;45:556–62.
11. Cingolani P, Platts A, Wang Le L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, Snpeff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
12. Cingolani P, Patel VM, Coon M, et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, Snpsift. Front Genet. 2012;3:335.
13. Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44:D682–D688.
14. Liu X, Wu C, Li C, et al. dBiNSFP v3.0: A one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat. 2016;37:325–41.
15. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–36.
16. Li Q, Wang K. InterVar: Clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet. 2017;100:267–80.
17. Rentzsch P, Witten D, Cooper GM, et al. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D866–D894.
18. Chirita-Emandi A, Andreescu N, Zimbru CG, et al. Challenges in reporting pathogenic/potentially pathogenic variants in 94 cancer predisposing genes - in pediatric patients screened with NGS panels. Sci Rep. 2020;10:223.
19. Mattassi R, Manara E, Colombo PG, et al. Variant discovery in patients with Mendelian vascular anomalies by next-generation sequencing and their use in patient clinical management. J Vasc Surg. 2018;69:922–32.
20. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.
21. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.
22. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013; Chapter 7:Unit7.20.
23. Schwarz JM, Rödelsperger C, Schuelke M, et al. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7:575–6.
24. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.
25. Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39:D945–D950.
26. Limaye N, Kangas J, Mendola A, et al. Somatic activating PIK3CA mutations cause venous malformation. Am J Hum Genet. 2015;97:914–21.
27. Soblet J, Limaye N, Uebelhoer M, et al. Variable somatic TIE2 mutations in half of sporadic venous malformations. Mol Syndromol. 2013;4:179–83.
28. Limaye N, Wouters V, Uebelhoer M, et al. Somatic mutations in angiopoietin receptor gene TIEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41:118–24.
29. Soblet J, Kangas J, Nätynki M, et al. Blue Rubber Bleb nevus (BRBN) syndrome is caused by somatic TIE2 (TIE2) mutations. J Invest Dermatol. 2017;137:207–16.
30. Ten Broek RW, Eijkelenboom A, van der Vleuten CJM, et al. Comprehensive molecular and clinico-pathological analysis of vascular malformations: A study of 319 cases. Genes Chromosomes Cancer. 2019;58:541–50.
31. Queisser A, Seront E, Boon LM, et al. Genetic basis and therapies for vascular anomalies. Circ Res. 2021;129:155–73.
32. Nätynki M, Kangas J, Mialainalen I, et al. Common and specific effects of TIE2 mutations causing venous malformations. Hum Mol Genet. 2015;24:6374–89.
33. Goines J, Li X, Cai Y, et al. A xenograft model for venous malformations. Angiogenesis. 2010;13:175–83.
34. Castillo SD, Baselga E, Graupera M. PIK3CA mutations in vascular malformations. Curr Opin Hematol. 2019;26:170–8.
35. Souma T, Thomson SW, Thomson BR, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest. 2016;126:2575–87.
36. Vikkula M, Boon LM, Carraway KL 3rd, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell. 1996;87:1181–90.
37. Defnet AM, Bagrodia N, Hernandez SL, et al. Pediatric lymphatic malformations: Evolving understanding and therapeutic options. Pediatr Surg Int. 2016;32:425–33.
38. Luks VL, Kamitaki N, Vivero MP, et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr. 2015;166:1048–e1–e5.
39. Blesinger H, Kaulfuß S, Aung T, et al. PIK3CA mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations. PLoS One. 2018;13:e0200343.

40. Zenner K, Cheng CV, Jensen DM, et al. Genotype correlates with clinical severity in PIK3CA-associated lymphatic malformations. JCI Insight. 2019;4:e129884.

41. Wooderchak-Donahue WL, Johnson P, McDonald J, et al. Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. Eur J Hum Genet. 2018;26:1521–36.

42. Banzic I, Brankovic M, Maksimović Ž, et al. Parkes Weber syndrome-Diagnostic and management paradigms: A systematic review. Phlebology. 2017;32:371–83.

43. Sharma M, Mallya V, Khurana N, et al. Lymphovascular malformation—A report of two cases. J Clin Diagn Res. 2017;11:ED03–ED04.

44. Cohen MM Jr. Klippel-Trenaunay syndrome. Am J Med Genet. 2000;93:171–5.

45. Ozeki M, Nozawa A, Yasue S, et al. The impact of sirolimus therapy on lesion size, clinical symptoms, and quality of life of patients with lymphatic anomalies. Orphanet J Rare Dis. 2019;14:141.

46. Kangas J, Nätynki M, Eklund L. Development of molecular therapies for venous malformations. Basic Clin Pharm Toxicol. 2018;123:6–19.

47. Zollino M, Ranieri C, Grossi V, et al. Germline pathogenic variant in PIK3CA leading to symmetrical overgrowth with marked macrocephaly and mild global developmental delay. Mol Genet Genom Med. 2019;7:e845.

ACKNOWLEDGEMENTS

We are grateful to the patients and their families for their invaluable contributions to this study. We thank Drs. Shihoo Yasue, Saori Endo, and Marko Seishima of Gifu University for their assistance with data analysis. We thank Dr. Koki Nagai of Tohoku University for providing technical assistance with TA cloning analysis. We also thank the Department of Pediatrics at Gifu University for their contribution. We thank Dr. Laurence M. Boon of Saint Luc University Hospital, Dr. Milka Vikkula of University of Louvain, and Dr. Hiroshi Nagabukuro and Dr. Akira Tanaka of ARTham Therapeutics for helpful discussions and suggestions. We also thank Yuichi Arakawa and Kuniko Kikuchi of Axcelead Drug Discovery Partners, Inc., for technical assistance, and Anne M. O'Rourke, PhD, from Edanz Group (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript.

AUTHOR CONTRIBUTIONS

AN, AF, SY, SS, AK, FS, NA, KK, KS, and MO conceived and designed the study. KS performed the next-generation sequencing and AN, KK, KS, HO, YA, and MO interpreted the data. AN and MO wrote the manuscript. All authors read and approved the final manuscript.

FUNDING

This study was supported in part by a Clinical Research-Clinical Trial Promotion Research Project grant (19lk0201089h0001) from the Japan Agency for Medical Research and Development and by funding from ARTham Therapeutics, Inc.

COMPETING INTERESTS

Some of the authors declared Financial and Non-Financial Relationships and Activities, and Conflicts of Interest regarding this manuscript as indicated in the supplementary materials.

ETHICS APPROVAL

This study was conducted in accordance with the ethical principles of the Declaration of Helsinki and Good Clinical Practice guidelines and approved by the ethics committee or institutional review board of each institution.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s10038-022-01081-6.

Correspondence and requests for materials should be addressed to Michio Ozeki.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.