An elementary recursive bound for effective Positivstellensatz and Hilbert 17-th problem

Henri Lombardi∗
Daniel Perrucci †
Marie-Françoise Roy‡

version: December 9, 2014

Abstract

We prove an elementary recursive bound on the degrees for Hilbert 17-th problem, which is the expression of a nonnegative polynomial as a sum of squares of rational functions. More precisely, we obtain the following tower of five exponentials

\[ 2^{2d^k} \]

where \( d \) is the degree and \( k \) is the number of variables of the input polynomial. Our method is based on the proof of an elementary recursive bound on the degrees for Stengle’s Positivstellensatz, which is an algebraic certificate of the emptiness of the realization of a system of sign conditions. We also obtain a tower of five exponentials, namely

\[ 2^{2\max\{2,d\}^k + 2^k + \max\{2,d\}16^k\log(d)} \]

where \( d \) is a bound on the degrees, \( s \) is the number of polynomials and \( k \) is the number of variables of the input polynomials.

Contents

1 Introduction 2
1.1 Hilbert 17-th problem ......................................................... 2
1.2 Positivstellensatz ................................................................. 2
1.3 Historical background on constructive proofs and degree bounds .................. 5
1.4 Our results .................................................................. 5
1.5 Organization of the paper ...................................................... 7

2 Weak inference and weak existence 7
2.1 Weak inference ................................................................. 7
  2.1.1 Basic rules ................................................................ 8
  2.1.2 Sums of squares ......................................................... 12
  2.1.3 Case by case reasoning .............................................. 13
2.2 Weak existence ............................................................... 15
2.3 Complex numbers ............................................................ 17
2.4 Identical polynomials ....................................................... 20
2.5 Matrices .................................................................. 22

3 Intermediate Value Theorem 22
3.1 Intermediate Value Theorem ................................................ 22
3.2 Real root of a polynomial of odd degree ................................. 25
1 Introduction

Throughout this paper, we denote by \( \mathbb{N} \) the set of nonnegative integers, by \( \mathbb{N}_* \) the set of positive integers, by \( \mathbb{R} \) the field of real numbers, by \( \mathbb{K} \) an ordered field and by \( \mathbb{R} \) a real closed extension of \( \mathbb{K} \).

1.1 Hilbert 17-th problem

Hilbert 17-th problem asks whether a real multivariate polynomial taking only nonnegative values is a sum of squares of rational functions ([26], [27], [28]). E. Artin gave a positive answer proving the following statement [1].

Theorem 1.1.1 (Hilbert 17-th problem) Let \( P \in \mathbb{R}[x_1, \ldots, x_k] \). If \( P \) takes only nonnegative values in \( \mathbb{R}^k \), then \( P \) is a sum of squares in \( \mathbb{R}(x_1, \ldots, x_k) \).

1.2 Positivstellensatz

In order to give the statement of the Positivstellensatz, we will deal with finite conjunctions of equalities, strict inequalities and nonstrict inequalities on polynomials in \( \mathbb{K}[x] \), where \( x = (x_1, \ldots, x_k) \) is a set of variables.

Definition 1.2.1 A system of sign conditions \( \mathcal{F} \) in \( \mathbb{K}[x] \) is a list of three finite (possibly empty) sets \([\mathcal{F}_\neq, \mathcal{F}_\geq, \mathcal{F}_=]\) in \( \mathbb{K}[x] \), representing the conjunction

\[
\begin{aligned}
P(x) \neq 0 & \quad \text{for } P \in \mathcal{F}_\neq, \\
P(x) \geq 0 & \quad \text{for } P \in \mathcal{F}_\geq, \\
P(x) = 0 & \quad \text{for } P \in \mathcal{F}_=.
\end{aligned}
\]

Since the condition \( P(x) \leq 0 \) is equivalent to \( -P(x) \geq 0 \), the condition \( P(x) > 0 \) is equivalent to \( P(x) \neq 0 \land P(x) \geq 0 \) and the condition \( P(x) < 0 \) is equivalent to \( P(x) \neq 0 \land -P(x) \geq 0 \), any finite conjunction of equalities, strict inequalities and nonstrict inequalities can be represented by a system of sign conditions as in Definition 1.2.1. Throughout this paper, we freely speak of a system of sign conditions to indicate such a general conjunction, but this is a slight abuse of language to mean the associated system of sign conditions, presented as in Definition 1.2.1.

Definition 1.2.2 For an ordered extension \( \mathbb{L} \) of \( \mathbb{K} \), the realization of a system of sign conditions \( \mathcal{F} \) in \( \mathbb{L} \) is the set

\[
\text{Real}(\mathcal{F}, \mathbb{L}) = \{ \xi \in \mathbb{L}^k \mid \bigwedge_{P \in \mathcal{F}_\neq} P(\xi) \neq 0, \bigwedge_{P \in \mathcal{F}_\geq} P(\xi) \geq 0, \bigwedge_{P \in \mathcal{F}_=} P(\xi) = 0 \}.
\]

If \( \text{Real}(\mathcal{F}, \mathbb{L}) \) is the empty set, we say that \( \mathcal{F} \) is unrealizable in \( \mathbb{L} \).
Stengle’s Positivstellensatz, to which we will refer from now on simply as the Positivstellensatz, states that if a system \( \mathcal{F} \) is unrealizable in \( \mathbb{R} \), there is an algebraic identity which certifies this fact. To describe such an identity, we introduce the following notation and definitions.

**Notation 1.2.3** Let \( \mathcal{P} \) be a finite set in \( \mathbb{K}[x] \). We denote by

- \( \mathcal{P}^2 \) the set of squares of elements of \( \mathcal{P} \),
- \( \mathcal{M}(\mathcal{P}) \) the multiplicative monoid generated by \( \mathcal{P} \),
- \( \mathcal{N}(\mathcal{P}) \) the nonnegative cone generated by \( \mathcal{P} \) in \( \mathbb{K}[x] \), which is the set of elements of type \( \sum_{1 \leq i \leq m} \omega_i V_i^2 \), \( N_i \) with \( \omega_i \in \mathbb{K}, \omega_i > 0, V_i \in \mathbb{K}[x] \) and \( N_i \in \mathcal{M}(\mathcal{P}) \) for \( 1 \leq i \leq m \),
- \( \mathcal{Z}(\mathcal{P}) \) the ideal generated by \( \mathcal{P} \) in \( \mathbb{K}[x] \).

When the ring \( \mathbb{K}[x] \) is clear from the context, we simply write \( \mathcal{N}(\mathcal{P}) \) for \( \mathcal{N}(\mathcal{P})_{\mathbb{K}[x]} \) and \( \mathcal{Z}(\mathcal{P}) \) for \( \mathcal{Z}(\mathcal{P})_{\mathbb{K}[x]} \).

**Definition 1.2.4** A system of sign conditions \( \mathcal{F} \) in \( \mathbb{K}[x] \) is incompatible if there is an algebraic identity

\[
S + N + Z = 0 \tag{1}
\]

with \( S \in \mathcal{M}(\mathcal{F}_d^2), N \in \mathcal{N}(\mathcal{F}_{\geq})_{\mathbb{K}[x]} \) and \( Z \in \mathcal{Z}(\mathcal{F}_=)_{\mathbb{K}[x]} \). The identity (1) is called an incompatibility of \( \mathcal{F} \). We use the notation

\[
\downarrow \mathcal{F} \downarrow_{\mathbb{K}[x]}
\]

to mean that an incompatibility of \( \mathcal{F} \) is provided. We denote simply

\[
\downarrow \mathcal{F} \downarrow
\]

when the ring \( \mathbb{K}[x] \) is clear from the context. The polynomials \( S, N \) and \( Z \) are called the monoid, cone and ideal part of the incompatibility.

An incompatibility of \( \mathcal{F} \) as (1) is a certificate that \( \mathcal{F} \) is unrealizable in any ordered extension \( \mathcal{L} \) of \( \mathbb{K} \). Indeed, suppose that there exists \( \xi \in \text{Real}(\mathcal{F}, \mathcal{L}) \). Then

\[
S(\xi) > 0, \quad N(\xi) \geq 0, \quad \text{and} \quad Z(\xi) = 0,
\]

which is impossible since \( S + N + Z = 0 \).

**Example 1.2.5** The identity

\[
p^2 - p^2 = 0 \tag{2}
\]

is an incompatibility of \( \mathcal{F} = \{\{P\}, \emptyset, \{P\}\} \), since \( p^2 \in \mathcal{M}(\{P\})^2 \), \( 0 \in \mathcal{N}(\emptyset) \) and \( -p^2 \in \mathcal{Z}(\{P\}) \). For simplicity we write

\[
\downarrow P \neq 0, P = 0 \downarrow
\]

to mean \( \downarrow \mathcal{F} \downarrow \).

The identity (2) also shows that

\[
\downarrow P > 0, P \leq 0 \downarrow
\]

since \( p^2 \in \mathcal{M}(\{P\})^2 \), \( -p^2 \in \mathcal{N}(\{P, \neg P\}) \) and \( 0 \in \mathcal{Z}(\emptyset) \).

Similarly, the identity (2) also shows that

\[
\downarrow P > 0, P = 0 \downarrow, \quad \downarrow P < 0, P = 0 \downarrow, \quad \downarrow P < 0, P \geq 0 \downarrow \quad \text{and} \quad \downarrow P > 0, P < 0 \downarrow.
\]

**Notation 1.2.6** Let \( \mathcal{F} = [\mathcal{F}_d, \mathcal{F}_{\geq}, \mathcal{F}_=] \) and \( \mathcal{F}' = [\mathcal{F}'_d, \mathcal{F}'_{\geq}, \mathcal{F}'_=] \) be systems of sign conditions in \( \mathbb{K}[x] \). We denote by \( \mathcal{F}, \mathcal{F}' \) the system \( [\mathcal{F}_d \cup \mathcal{F}'_d, \mathcal{F}_{\geq} \cup \mathcal{F}'_{\geq}, \mathcal{F}_= \cup \mathcal{F}'_=} \).

Note that \( \downarrow \mathcal{F} \downarrow \) implies \( \uparrow \mathcal{F}, \mathcal{F}' \downarrow \).

A major concern in this paper is the degree of the incompatibilities in the Positivstellensatz. To deal with them, we introduce below the following definitions.

**Definition 1.2.7** Let \( \mathcal{P} \) be a finite set in \( \mathbb{K}[x] \).

- For \( N = \sum_{1 \leq i \leq m} \omega_i V_i^2 \cdot N_i \in \mathcal{N}(\mathcal{P}) \), with \( \omega_i \in \mathbb{K}, \omega_i > 0, V_i \in \mathbb{K}[x] \) and \( N_i \in \mathcal{M}(\mathcal{P}) \) for \( 1 \leq i \leq m \), we say that \( \omega_i V_i^2 \cdot N_i \) are the components of \( N \) in \( \mathcal{N}(\mathcal{P}) \).
1 INTRODUCTION

• For $Z = \sum_{1 \leq i \leq m} W_i \cdot P_i \in \mathcal{Z}(P)$ with $W_i \in K[x]$ and $P_i \in P$ for $1 \leq i \leq m$, we say that $W_i \cdot P_i$ are the components of $Z$ in $\mathcal{Z}(P)$.

Note that $N \in \mathcal{N}(P)$ and $Z \in \mathcal{Z}(P)$ can be written as a sum of components in many different ways. So, when we talk of the components of $N$ or $Z$, the ones we refer to should be clear from the context.

Definition 1.2.8 Let $F$ be a system of sign conditions in $K[x]$. The degree of the incompatibility

$$S + N + Z = 0 \tag{3}$$

with $S \in \mathcal{M}(F_\neq)$, $N = \sum_{1 \leq i \leq m} \omega_i V_i^2 \cdot N_i \in \mathcal{N}(P)$, and $Z = \sum_{1 \leq i \leq m} W_i \cdot P_i \in \mathcal{Z}(F_\neq)$ is the maximum of the degrees of $S$, the components of $N$ and the components of $Z$. For a subset of variables $w \subset x$, the degree in $w$ of the incompatibility (3) is the maximum of the degrees in $w$ of $S$, the components of $N$, and the components of $Z$.

Contrary to the common convention, we consider the degree of the zero polynomial as 0. In this way, we have for instance the incompatibility $0 = 0$ of degree 0 which proves $\downarrow 0 \neq 0 \downarrow$.

The Positivstellensatz is the following theorem.

Theorem 1.2.9 (Positivstellensatz) Let $F$ be a system of sign conditions in $K[x]$. The following are equivalent:

1. $F$ is unrealizable in $R$,
2. $F$ is unrealizable in every ordered extension of $K$,
3. $F$ is incompatible.

3. $\Rightarrow$ 2. and 2. $\Rightarrow$ 1. are clear, the difficult part is to prove 1. $\Rightarrow$ 3.

This statement comes from [49] (see also [6, 17, 18, 34, 46]). As a consequence, we have an improved version of Hilbert 17-th problem due to Stengle [49].

Theorem 1.2.10 (Improved Hilbert 17-th problem) Let $P \in K[x]$. If $P$ is nonnegative in $R^k$, then $P$ is a sum of squares of elements in $K(x)$ multiplied by positive elements in $K$, with denominators vanishing only at points where $P$ vanishes.

Proof. Since $P$ is nonnegative in $R^k$, by Theorem 1.2.9 (Positivstellensatz) applied to the system with only one sign condition $P < 0$, we have an identity

$$P^{2e} + N_1 - N_2 \cdot P = 0$$

with $e \in \mathbb{N}$ and $N_1, N_2 \in \mathcal{N}(0)_{K[x]}$. Therefore

$$P = \frac{N_2 \cdot P^2}{P^{2e} + N_1} = \frac{N_2 \cdot P^2}{(P^{2e} + N_1)^2} \cdot \left(\frac{P^{2e}}{P^{2e} + N_1}\right) \tag{4}$$

The result follows by expanding the numerator of the last expression in (4). $\square$

Another consequence of the Positivstellensatz 1.2.9 is the Real Nullstellensatz.

Theorem 1.2.11 (Real Nullstellensatz) Let $P, P_1, \ldots, P_s \in K[x_1, \ldots, x_k]$. If $P$ vanishes on the zero set of $P_1, \ldots, P_s$ in $R^k$, the sum of an even power of $P$ and an element in $\mathcal{N}(0)_{K[x]}$ belongs to the ideal generated by $P_1, \ldots, P_s$ in $K[x_1, \ldots, x_k]$.

Proof. Apply Theorem 1.2.9 (Positivstellensatz) to the system of sign conditions $P \neq 0, P_1 = 0, \ldots, P_s = 0$. $\square$
1.3 Historical background on constructive proofs and degree bounds

With respect to Hilbert 17-th problem, Artin’s proof of Theorem 1.1.1 is non constructive and uses Zorn’s lemma. Kreisel and Daykin provided then the first constructive proofs \[32, 33, 13, 15\] of this result, providing primitive recursive degree bounds.

For the Positivstellensatz, also the original proofs were non constructive and used Zorn’s lemma. The first constructive proof was given in \[38, 39, 40\], and it is based on the translation into algebraic identities of Cohen-Hörmander’s quantifier elimination algorithm \[10, 29, 6\]. Following this construction, primitive recursive degree estimates for the incompatibility of the input system were obtained in \[42\]. In order to state this result precisely, we introduce the following notation.

**Notation 1.3.1** Let \( \mathcal{F} = [\mathcal{F}_d, \mathcal{F}_\geq, \mathcal{F}_=] \) be a system of sign conditions in \( K[x] \). We denote by \( |\mathcal{F}| \) a subset of \( \mathcal{F}_d \cup \mathcal{F}_\geq \cup \mathcal{F}_= \) such that for every \( P \in \mathcal{F}_d \cup \mathcal{F}_\geq \cup \mathcal{F}_= \) one and only one element of \( \{P, -P\} \) is in \( |\mathcal{F}| \).

The first known degree bound for the Positivstellensatz is the following result (see \[42, Théorème 26\]), which is, in fact, still the only known degree bound up to now.

**Theorem 1.3.2 (Positivstellensatz with primitive recursive degree estimates)** Let \( \mathcal{F} \) be a system of sign conditions in \( K[x_1, \ldots, x_k] \), such that \( \#|\mathcal{F}| = s \) and the degree of every polynomial in \( \mathcal{F} \) is bounded by \( d \). If \( \text{Real}(\mathcal{F}, \mathbb{R}) \) is empty, one can compute an incompatibility \( \downarrow \mathcal{F} \downarrow \) with degree bounded by

\[
2^{2 \max \{2d, d\} \log(d) + \log \log(s) + c}
\]

where \( c \) is a universal constant and the height of the exponential tower is \( k + 4 \).

A different constructive proof for the Real Nullstellensatz and Hilbert 17-th problem was given in \[47\], providing also primitive recursive degree bounds for the incompatibility it produces.

On the other hand, lower degree bounds for the Positivstellensatz are given in \[23\], where for \( k \geq 2 \), an example of an incompatible system \( \mathcal{F} \) in \( K[x_1, \ldots, x_k] \) with \( |\mathcal{F}| = k \) and the degree of every polynomial in \( \mathcal{F} \) bounded by 2, such that every incompatibility of the system has degree at least \( 2^{k-2} \) is provided. Concerning Hilbert 17-th problem, an example of a nonnegative polynomial of degree 4 in \( k \) variables, such that in any decomposition as a sum of squares of rational functions, the degree of some denominator is bounded from below by a linear function in \( k \), appears in \[5\].

The huge gap between the best known lower degree bound for the Positivstellensatz, which is single exponential, and the best upper degree bound known up to now, which is primitive recursive, is in strong contrast with the state of the art for Hilbert Nullstellensatz. For this result, elementary recursive upper degree bounds are already known since \[24\]. Indeed, it is easy using resultants to obtain a double exponential bound on the degree of a Nullstellensatz identity \[51, 3\]. More recent and sophisticated results give single exponential degree estimates \[7, 8, 31, 30\], which are known to be optimal.

1.4 Our results

The aim of this paper is to provide elementary recursive estimates on the degrees of the polynomials involved in the Positivstellensatz and Hilbert 17th problem.

**Notation 1.4.1** We denote by \( \text{bit}(d) \) the number of bits of the natural number \( d \), defined by

\[
\text{bit}(d) = \begin{cases} 
1 & \text{if } d = 0, \\
k & \text{if } d \neq 0 \text{ and } 2^{k-1} \leq d < 2^k.
\end{cases}
\]

We can state now the main results of this paper.

**Theorem 1.4.2 (Positivstellensatz with elementary recursive degree estimates)** Let \( \mathcal{F} \) be a system of sign conditions in \( K[x_1, \ldots, x_k] \), such that \( \#|\mathcal{F}| = s \) and the degree of every polynomial in \( \mathcal{F} \) is bounded by \( d \). If \( \text{Real}(\mathcal{F}, \mathbb{R}) \) is empty, one can compute an incompatibility \( \downarrow \mathcal{F} \downarrow \) with degree bounded by

\[
2^{k \max \{2, d\} + 2^k \max \{2, d\} \text{bit}(d)}.
\]

As a particular case of Theorem 1.4.2 we also get the following result.
Theorem 1.4.3 (Real Nullstellensatz with elementary recursive degree estimates) Let \( P, P_1, \ldots, P_s \in K[x_1, \ldots, x_k] \) with degree bounded by \( d \). If \( P \) vanishes on the zero set of \( P_1, \ldots, P_s \) in \( R^k \), there is an identity
\[
P^{2e} + N + Z = 0
\]
with \( N \) a sum of squares in \( K[x_1, \ldots, x_k] \) multiplied by positive elements of \( K \) and \( Z \) in the ideal generated by \( P_1, \ldots, P_s \) in \( K[x_1, \ldots, x_k] \), with degree bounded by
\[
2^{2 \max \{2d, d\}^4 + (s+1)2d \max \{2d, d\}^2 \log(d)}.
\]

The final main theorem of this paper is the following result.

Theorem 1.4.4 (Hilbert 17-th problem with elementary recursive degree estimates) Let \( P \in K[x_1, \ldots, x_k] \) be a polynomial of degree \( d \). If \( P \) is nonnegative in \( R^k \), then
\[
P = \sum_i \omega_i P_i^2 Q_i^2
\]
with \( \omega_i \in K, \omega_i > 0, P_i \in K[x], Q \in K[x], Q \) vanishing only at points where \( P \) vanishes and \( \deg P_i^2 \) for every \( i \) and \( \deg Q_i^2 \) bounded by
\[
2^{2 \max \{2d, d\}^4 + (s+1)2d \max \{2d, d\}^2 \log(d)}.
\]

We sketch now a very brief description of the strategy we follow in our proof of Theorem 1.4.2 and Theorem 1.4.4. If a system of sign conditions \( F \) in \( K[x] \) is unrealizable in \( R \), we want to construct an incompatibility of \( F \). The idea is to transform a proof of the fact that \( F \) is unrealizable into a construction of an incompatibility. This was already the method used by [39, 42]. The proof that \( F \) is unrealizable was using Cohen-Hörmander quantifier elimination method [10, 29, 6] and was giving primitive recursive bounds for the final incompatibility.

In the current paper, the proof that \( F \) is unrealizable has to remain very simple and algebraic, in order to provide a construction of an incompatibility. It has also to be based on tools more powerful than Cohen-Hörmander quantifier elimination method to obtain elementary degree bounds.

The first proofs of quantifier elimination for the reals by Tarski, Seidenberg, Cohen or Hormander [50, 48, 10, 29] were all providing primitive recursive algorithms. The situation changed with the Cylindrical Algebraic Decomposition method [9, 37, 6] and elementary recursive algorithms where obtained [43]. Cylindrical Algebraic Decomposition, being based on repeated projections, is in fact doubly exponential (see for example [3]). Deciding emptiness for the realization of a system of sign conditions does not require the full strength of quantifier elimination and only requires the existential theory of the reals, when all the quantifiers are existential. Single exponential degree bounds, using the critical point method to project in one step a block of variables, have been obtained for the existential theory of the reals [21, 22, 45, 2, 14, 3]. But these results are based on methods which seem too geometric to be translated into algebraic identities, and this is why we choose to use the technique of Cylindrical Algebraic Decomposition.

Our proof translates into constructions of incompatibilities several main ingredients, inspired by classical mathematical proofs as well as more recent results from computer algebra, namely

- the Intermediate Value Theorem for polynomials,
- Laplace’s proof of the Fundamental Theorem of Algebra,
- Hermite’s quadratic form, for real root counting with polynomial constraints,
- subresultants whose signs are determining the signature of Hermite’s quadratic form,
- Sylvester’s inertia law,
- Thom’s lemma characterizing real algebraic numbers by sign conditions, and the determination of these nonempty sign conditions,
- a variant of Cylindrical Algebraic Decomposition, reducing one by one the number of variables to consider.

Each of these main ingredients corresponds roughly to one section in the paper.

In order to construct incompatibilities, we first need to add to a well-chosen existing proof of the preceding results, some specific algebraic identities. Then, using the key notions of weak inference and weak existence
coming from [42], the main part of our work is to translate these modified proofs into constructions of incompatibilities. For each specific result, this translation is far from straightforward and relies heavily on the selected proof and the added algebraic identities.

Finally, for any unrealizable system of sign conditions we are able to construct an explicit incompatibility and prove that the degree bound of this incompatibility is elementary recursive. More precisely the five level of exponentials in Theorem 1.4.2 and Theorem 1.4.4 comes from the following facts

- CAD is based on repeated subresultants and produces univariate polynomials of doubly exponential degree,
- Laplace’s proof of the Fundamental Theorem of Algebra introduces a polynomial of exponential odd degree,
- the construction of incompatibilities for the Intermediate Value Theorem produces algebraic identities of doubly exponential degrees.

The tower of five exponents finally comes from the fact that applying Laplace’s proof of the Fundamental Theorem of Algebra to a univariate polynomial of doubly exponential degree, coming from CAD, produces an odd degree polynomial of triple exponential degree, and the Intermediate Value Theorem adds two more exponents to the degree of the final incompatibility. And we are lucky enough that the other ingredients of our construction do not increase the height of the tower above five exponentials. Full details will be provided in the paper.

1.5 Organization of the paper

This paper is organized as follows. In Section 2 we describe the concepts of weak inference and weak existence and we show several examples of them, with degree estimates, which will be useful later on in the paper. In Section 3 we give a weak inference version of the Intermediate Value Theorem for polynomials. In Section 4 we give a weak inference version of the classical Laplace’s proof of the Fundamental Theorem of Algebra and finally get a weak inference version of the factorization of a real polynomial into factors of degree one and two. In Section 5, which is independent from Section 3 and Section 4, we obtain incompatibilities expressing the impossibility for a polynomial to have a number of real roots in conflict with the rank and signature of its Hermite’s quadratic form, through an incompatibility version of Sylvester’s Inertia Law. In Section 6 we show how to eliminate a variable in a family of polynomials under weak inference form. Finally, in Section 7 we prove Theorem 1.4.2 and Theorem 1.4.4. An annex provides the details of the proofs of technical lemmas comparing the values of numerical functions which we use in our degree estimates.

Since the paper is very long, we indicate at the begining of Section 3, Section 4, Section 5 and Section 6 the final theorem of the section, which is the only result to be used out of the section.

2 Weak inference and weak existence

In this section we describe the concepts of weak inference (Definition 2.1.1) and weak existence (Definition 2.2.1) introduced in [42], improving and making more precise results from [41] (see also [11]). These are mechanisms to construct new incompatibilities from other ones already available. Most of the work we do in the paper is to develope weak inference and weak existence versions of known mathematical and algorithmical results, and perform the corresponding degree estimates; therefore, these notions are central to our work. Several examples of the use of these notions, which play a role in the other sections of the paper, are provided, the most important being the case by case reasoning (see Subsection 2.1.3).

2.1 Weak inference

The idea behind the concept of weak inference is the following: let \( \mathcal{F}, \mathcal{F}_1, \ldots, \mathcal{F}_m \) be systems of sign conditions in \( K[u] = K[u_1, \ldots, u_n] \). Suppose that we know that for every \( v = (v_1, \ldots, v_n) \in \mathbb{R}^n \) if the system \( \mathcal{F} \) is satisfied at \( v \), then at least one of the systems \( \mathcal{F}_1, \ldots, \mathcal{F}_m \) is also satisfied at \( v \). If we are given initial incompatibilities \( \downarrow \mathcal{F}_1, \mathcal{H} \downarrow_{K[u]} \), \( \downarrow \mathcal{F}_m, \mathcal{H} \downarrow_{K[u]} \), \( v \supset u \), this means that all the systems \( [\mathcal{F}_1, \mathcal{H}], \ldots, [\mathcal{F}_m, \mathcal{H}] \) are unrealizable.

Then we can conclude that the system \([ \mathcal{F}, \mathcal{H}]\) is also unrealizable in \( \mathbb{R} \) and we would like an incompatibility \( \downarrow \mathcal{F}, \mathcal{H} \downarrow_{K[u]} \) to certify this fact. A weak inference is an explicit way to construct this final incompatibility from the given initial ones.

**Definition 2.1.1 (Weak Inference)** Let \( \mathcal{F}, \mathcal{F}_1, \ldots, \mathcal{F}_m \) be systems of sign conditions in \( K[u] \). A weak inference

\[
\mathcal{F} \vdash \bigvee_{1 \leq j \leq m} \mathcal{F}_j
\]
is a construction that, for any system of sign conditions $\mathcal{H}$ in $K[v]$ with $v \supset u$, and any incompatibilities
\[ \downarrow F_1, \mathcal{H} \downarrow_{K[v]} \cdots, \downarrow F_m, \mathcal{H} \downarrow_{K[v]} \]
called the initial incompatibilities, produces an incompatibility
\[ \downarrow F, \mathcal{H} \downarrow_{K[v]} \]
called the final incompatibility.

Whenever we prove a weak inference, we also provide a description of the monoid part and a bound for the degree in the final incompatibility. This information is necessary to obtain the degree bound in our main results.

### 2.1.1 Basic rules

In the following lemmas we give some simple examples of weak inferences, most of them involving no disjunction to the right (this is to say, $m = 1$ in Definition 2.1.1).

**Lemma 2.1.2** Let $P_1, P_2, \ldots, P_m \in K[u]$. Then

\[
\begin{align*}
P_1 > 0 \vdash P_1 \geq 0, \\
P_1 > 0 \vdash P_1 \neq 0, \\
P_1 > 0 \vdash P_1^2 \geq 0, \\
P_1 \neq 0 \vdash P_2^2 > 0, \\
P_1 = 0 \vdash P_1 \cdot P_2 = 0, \\
\bigwedge_{1 \leq j \leq m} P_j \neq 0 \vdash \prod_{1 \leq j \leq m} P_j \neq 0, \\
\bigwedge_{1 \leq j \leq m} P_j \geq 0 \vdash \prod_{1 \leq j \leq m} P_j \geq 0, \\
\bigwedge_{1 \leq j \leq m} P_j > 0 \vdash \prod_{1 \leq j \leq m} P_j > 0.
\end{align*}
\]

Moreover, in all cases, the initial incompatibility serves as the final incompatibility.

**Proof.** Since the proof of all the items is very similar, we only prove (8) which appears as the less obvious one. Consider the initial incompatibility
\[
S \cdot \left( \prod_{1 \leq j \leq m} P_j \right)^{2e} + N_0 + N_1 \cdot \prod_{1 \leq j \leq m} P_j + Z = 0
\]
with $S \in \mathcal{M}(\mathcal{H}_x^2)$, $N_0, N_1 \in \mathcal{N}(\mathcal{H}_x)$ and $Z \in \mathcal{Z}(\mathcal{H}_x)$, where $\mathcal{H} = [\mathcal{H}_x, \mathcal{H}_z, \mathcal{H}_w]$ is a system of sign conditions in $K[v]$ with $v \supset u$. This proves the claim since
\[
S \cdot \left( \prod_{1 \leq j \leq m} P_j \right)^{2e} = S \cdot \prod_{1 \leq j \leq m} P_j^{2e} \in \mathcal{M}(\mathcal{H}_x \cup \{P_1, \ldots, P_m\})^2,
\]

$N_0 + N_1 \cdot \prod_{1 \leq i \leq m} P_i \in \mathcal{N}(\mathcal{H}_x \cup \{P_1, \ldots, P_m\})$ and $Z \in \mathcal{Z}(\mathcal{H}_x)$. \(\square\)

**Lemma 2.1.3** Let $\alpha \in K, P \in K[u]$.

If $\alpha > 0$,

\[
\begin{align*}
P \geq 0 \vdash \alpha P \geq 0, \\
P > 0 \vdash \alpha P > 0.
\end{align*}
\]

If $\alpha < 0$,

\[
\begin{align*}
P \geq 0 \vdash \alpha P \leq 0, \\
P > 0 \vdash \alpha P < 0.
\end{align*}
\]
For any \( \alpha \),
\[
P = 0 \vdash \alpha P = 0.
\]

Moreover, in all cases, up to a division by a positive element of \( K \), the initial incompatibility serves as the final incompatibility.

**Proof.** Immediate. \( \square \)

**Lemma 2.1.4** Let \( P \in K[u] \). Then
\[
P \geq 0, \ P \leq 0 \vdash P = 0.
\]

If we have an initial incompatibility in \( K[v] \) where \( v \supset u \) with monoid part \( S \) and degree in \( w \subset v \) bounded by \( \delta_w \), the final incompatibility has the same monoid part and degree in \( w \) bounded by \( \delta_w + \max\{\delta_w - \deg_w P, 0\} \).

**Proof.** Consider the initial incompatibility
\[
S + N + Z + W \cdot P = 0
\]
with \( S \in \mathcal{M}(\mathcal{H}_2^2), N \in \mathcal{N}(\mathcal{H}_2), Z \in \mathcal{Z}(\mathcal{H}_2) \) and \( W \in K[v] \), where \( \mathcal{H} = [\mathcal{H}_\neq, \mathcal{H}_\geq, \mathcal{H}_=] \) is a system of sign conditions in \( K[v] \). If \( W \) is the zero polynomial there is nothing to do; otherwise we rewrite the initial incompatibility as
\[
S + N + \frac{1}{2}(1 + W)^2 \cdot P + \frac{1}{2}(1 - W)^2 \cdot (-P) + Z = 0.
\]
This proves the claim since \( S \in \mathcal{M}(\mathcal{H}_2^2), N + \frac{1}{4}(1 + W)^2 \cdot P + \frac{1}{4}(1 - W)^2 \cdot (-P) \in \mathcal{N}(\mathcal{H}_2 \cup \{P, -P\}) \) and \( Z \in \mathcal{Z}(\mathcal{H}_2) \). The degree bound follows easily. \( \square \)

**Lemma 2.1.5** Let \( P_1, \ldots, P_m \in K[u] \). Then
\[
\bigwedge_{1 \leq j \leq m} P_j = 0 \vdash \sum_{1 \leq j \leq m} P_j = 0, \tag{13}
\]
\[
\bigwedge_{1 \leq j \leq m} P_j \geq 0, \bigwedge_{m' + 1 \leq j \leq m} P_j = 0 \vdash \sum_{1 \leq j \leq m} P_j \geq 0. \tag{14}
\]

In both cases, if we have an initial incompatibility in \( K[v] \) where \( v \supset u \) with monoid part \( S \) and degree in \( w \subset v \) bounded by \( \delta_w \), the final incompatibility has the same monoid part and degree in \( w \) bounded by \( \delta_w + \max\{\deg_w P_j \mid 1 \leq j \leq m \} - \deg_w \sum_{1 \leq j \leq m} P_j \).

**Proof.** We first prove item 14. Consider the initial incompatibility
\[
S + N + Z + W \cdot \sum_{1 \leq j \leq m} P_j = 0
\]
with \( S \in \mathcal{M}(\mathcal{H}_2^2), N \in \mathcal{N}(\mathcal{H}_2), Z \in \mathcal{Z}(\mathcal{H}_2) \) and \( W \in K[v] \), where \( \mathcal{H} = [\mathcal{H}_\neq, \mathcal{H}_\geq, \mathcal{H}_=] \) is a system of sign conditions in \( K[v] \). We rewrite this equation as
\[
S + N + Z + \sum_{1 \leq j \leq m} W \cdot P_j = 0.
\]
This proves the claim since \( S \in \mathcal{M}(\mathcal{H}_2^2), N \in \mathcal{N}(\mathcal{H}_2) \) and \( Z + \sum_{1 \leq j \leq m} W \cdot P_j \in \mathcal{Z}(\mathcal{H}_2 \cup \{P_1, \ldots, P_m\}) \). The degree bound follows easily.

Now we prove item 15. Consider the initial incompatibility
\[
S + N_0 + N_1 \cdot \sum_{1 \leq j \leq m} P_j + Z = 0
\]
with \( S \in \mathcal{M}(\mathcal{H}_2^2), N_0, N_1 \in \mathcal{N}(\mathcal{H}_2) \) and \( Z \in \mathcal{Z}(\mathcal{H}_2) \), where \( \mathcal{H} = [\mathcal{H}_\neq, \mathcal{H}_\geq, \mathcal{H}_=] \) is a system of sign conditions in \( K[v] \). We rewrite this equation as
\[
S + N_0 + \sum_{1 \leq j \leq m'} N_1 \cdot P_j + Z + \sum_{m'+1 \leq j \leq m} N_1 \cdot P_j = 0.
\]
This proves the claim since \( S \in \mathcal{M}(\mathcal{H}_2^2), N_0 + \sum_{1 \leq j \leq m'} N_1 \cdot P_j \in \mathcal{N}(\mathcal{H}_2 \cup \{P_1, \ldots, P_m\}) \) and \( Z + \sum_{m'+1 \leq j \leq m} N_1 \cdot P_j \in \mathcal{Z}(\mathcal{H}_2 \cup \{P_{m'+1}, \ldots, P_m\}) \). The degree bound follows easily. \( \square \)
Lemma 2.1.6 Let $P_1, \ldots, P_m \in K[u]$. Then
\[
P_1 \neq 0, \quad \bigwedge_{2 \leq j \leq m} P_j = 0 \quad \vdash \quad \sum_{1 \leq j \leq m} P_j \neq 0.
\]
If we have an initial incompatibility in $K[v]$ where $v \supset u$ with monomial part $S(\sum_{1 \leq j \leq m} P_j)^{2e}$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has monomial part $S \cdot P_1^{2e}$ and degree in $w$ bounded by $\delta_w + 2e \left( \max \{ \deg_w P_j \mid 1 \leq j \leq m \} - \deg_w \sum_{1 \leq j \leq m} P_j \right)$.

Proof. Consider the initial incompatibility
\[
S \cdot \left( \sum_{1 \leq j \leq m} P_j \right)^{2e} + N + Z = 0
\]
with $S \in \mathcal{M}(H_2), N \in \mathcal{N}(H_2)$ and $Z \in \mathcal{Z}(H_w)$, where $H = [H_\neq, H_\geq, H_w]$ is a system of sign conditions in $K[v]$. We rewrite this equation as
\[
S \cdot P_1^{2e} + N + Z + Z_2 = 0
\]
where $Z_2 \in \mathcal{Z}([\{P_1, \ldots, P_m\}])$ is the sum of all the terms in the expansion of $S \cdot (\sum_{1 \leq j \leq m} P_j)^{2e}$ which involve at least one of $P_2, \ldots, P_m$. This proves the claim since $S \cdot P_1^{2e} \in \mathcal{M}((H_\neq \cup \{P_1\})^2), N \in \mathcal{N}(H_\geq)$ and $Z + Z_2 \in \mathcal{Z}(H_w \cup \{P_1, \ldots, P_m\})$. The degree bound follows easily.

Lemma 2.1.7 Let $P_1, \ldots, P_m \in K[u]$. Then
\[
P_1 > 0, \quad \bigwedge_{2 \leq j \leq m'} P_j \geq 0, \quad \bigwedge_{m' + 1 \leq j \leq m} P_j = 0 \quad \vdash \quad \sum_{1 \leq j \leq m} P_j > 0.
\]
If we have an initial incompatibility in $K[v]$ where $v \supset u$ with monomial part $S \cdot (\sum_{1 \leq j \leq m} P_j)^{2e}$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has monomial part $S \cdot P_1^{2e}$ and degree in $w$ bounded by $\delta_w + \max\{1, 2e\} \left( \max \{ \deg_w P_j \mid 1 \leq j \leq m \} - \deg_w \sum_{1 \leq j \leq m} P_j \right)$.

Proof. Consider the initial incompatibility
\[
S \cdot \left( \sum_{1 \leq j \leq m} P_j \right)^{2e} + N_0 + N_1 \cdot \sum_{1 \leq j \leq m} P_j + Z = 0
\]
with $S \in \mathcal{M}(H_2), N_0, N_1 \in \mathcal{N}(H_2)$ and $Z \in \mathcal{Z}(H_w)$, where $H = [H_\neq, H_\geq, H_w]$ is a system of sign conditions in $K[v]$. We rewrite this equation as
\[
S \cdot P_1^{2e} + N_0 + N_2 + \sum_{1 \leq j \leq m'} N_1 \cdot P_j + Z + Z_2 + \sum_{m' + 1 \leq j \leq m} N_1 \cdot P_j = 0,
\]
where $N_2 \in \mathcal{N}(\{P_1, \ldots, P_m\})$ is the sum of all the terms in the expansion of $S \cdot (\sum_{1 \leq j \leq m} P_j)^{2e}$ which do not involve any of $P_{m'+1}, \ldots, P_m$ with exception of the term $S \cdot P_1^{2e}$ and $Z_2 \in \mathcal{Z}(\{P_{m'+1}, \ldots, P_m\})$ is the sum of all the terms in the expansion of $S \cdot (\sum_{1 \leq j \leq m} P_j)^{2e}$ which involve at least one of $P_{m'+1}, \ldots, P_m$. This proves the claim since $S \cdot P_1^{2e} \in \mathcal{M}((H_\neq \cup \{P_1\})^2), N_0 + N_2 + \sum_{1 \leq j \leq m'} N_1 \cdot P_j \in \mathcal{N}(H_\geq \cup \{P_1, \ldots, P_m\})$ and $Z + Z_2 + \sum_{m'+1 \leq j \leq m} N_1 \cdot P_j \in \mathcal{Z}(H_w \cup \{P_{m'+1}, \ldots, P_m\})$. The degree bound follows easily.

Lemma 2.1.8 Let $m_1, \ldots, m_n \in \mathbb{N}_+$ and $P_{j,k}, Q_{j,k} \in K[u]$ for $1 \leq j \leq m_k, 1 \leq k \leq n$. Then
\[
\bigwedge_{1 \leq k \leq n} P_{j,k} = 0 \quad \vdash \quad \bigwedge_{1 \leq k \leq n} \sum_{1 \leq j \leq m_k} P_{j,k} \cdot Q_{j,k} = 0.
\]
If we have an initial incompatibility in $K[v]$ where $v \supset u$ with monomial part $S$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has the same monomial part and degree in $w$ bounded by
\[
\delta_w + \max \left\{ \max \{ \deg_w P_{j,k} \cdot Q_{j,k} \mid 1 \leq j \leq m_k \} - \deg_w \sum_{1 \leq j \leq m_k} P_{j,k} \cdot Q_{j,k} \mid 1 \leq k \leq n \right\}.
\]

Proof. Follows from Lemmas 2.1.2 (item 5) and an easy adaptation of the proof of Lemma 2.1.5 (item 14).
Lemma 2.1.9 Let $P_1, P_2 \in \mathbf{K}[u]$. Then

$$P_1 \cdot P_2 \geq 0, \ P_2 > 0 \quad \Downarrow \quad P_1 \geq 0.$$  

If we have an initial incompatibility in $\mathbf{K}[v]$ where $v \supset u$ with monoid part $S$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has monoid part $S \cdot P_2^2$ and degree in $w$ bounded by $\delta_w + 2\deg_w P_2$.

**Proof.** Consider the initial incompatibility

$$S + N_0 + N_1 \cdot P_1 + Z = 0$$

with $S \in \mathcal{M}(\mathcal{H}_2^2)$, $N_0, N_1 \in \mathcal{N}(\mathcal{H}_2)$ and $Z \in \mathcal{Z}(\mathcal{H}_2)$, where $\mathcal{H} = [\mathcal{H}_\Sigma, \mathcal{H}_2, \mathcal{H}_2]$ is a system of sign conditions in $\mathbf{K}[v]$. We multiply this equation by $P_2^2$ and we obtain

$$S \cdot P_2^2 + N_0 \cdot P_2^2 + N_1 \cdot P_1 \cdot P_2^2 + Z \cdot P_2^2 = 0.$$  

This proves the claim since $S \cdot P_2^2 \in \mathcal{M}(\mathcal{H}_2 \cup \{P_2\})^2$, $N_0 \cdot P_2^2 + N_1 \cdot P_1 \cdot P_2^2 \in \mathcal{N}(\mathcal{H}_2 \cup \{P_1 \cdot P_2, P_2\})$ and $Z \cdot P_2^2 \in \mathcal{Z}(\mathcal{H}_2)$. The degree bound follows easily.  

Lemma 2.1.10 Let $P_1, P_2 \in \mathbf{K}[u]$. Then

$$P_1 \cdot P_2 > 0, \ P_2 > 0 \quad \Downarrow \quad P_1 > 0.$$  

If we have an initial incompatibility in $\mathbf{K}[v]$ where $v \supset u$ with monoid part $S \cdot P_2^{2e}$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has monoid part $S \cdot P_2^2$ if $e = 0$ and $S \cdot (P_1 \cdot P_2)^{2e}$ if $e \geq 1$ and degree in $w$ bounded by $\delta_w + 2\max\{1, e\} \deg_w P_2$ in both cases.

**Proof.** Consider the initial incompatibility

$$S \cdot P_2^{2e} + N_0 + N_1 \cdot P_1 + Z = 0$$

with $S \in \mathcal{M}(\mathcal{H}_2^2)$, $N_0, N_1 \in \mathcal{N}(\mathcal{H}_2)$ and $Z \in \mathcal{Z}(\mathcal{H}_2)$, where $\mathcal{H} = [\mathcal{H}_\Sigma, \mathcal{H}_2, \mathcal{H}_2]$ is a system of sign conditions in $\mathbf{K}[v]$. If $e = 0$, we proceed as in Lemma 2.1.9. If $e \geq 1$, we multiply this equation by $P_2^{2e}$ and we obtain

$$S \cdot (P_1 \cdot P_2)^{2e} + N_0 \cdot P_2^{2e} + N_1 \cdot P_1 \cdot P_2^{2e} + Z \cdot P_2^{2e} = 0.$$  

This proves the claim since $S \cdot (P_1 \cdot P_2)^{2e} \in \mathcal{M}(\mathcal{H}_2 \cup \{P_1 \cdot P_2, P_2\})^2$, $N_0 \cdot P_2^{2e} + N_1 \cdot P_1 \cdot P_2^{2e} \in \mathcal{N}(\mathcal{H}_2 \cup \{P_1 \cdot P_2, P_2\})$ and $Z \cdot P_2^{2e} \in \mathcal{Z}(\mathcal{H}_2)$. The degree bound follows easily.  

Lemma 2.1.11 Let $P_1, P_2 \in \mathbf{K}[u]$. Then

$$P_1 + P_2 > 0, \ P_1 \cdot P_2 \geq 0 \quad \Downarrow \quad P_1 \geq 0, \ P_2 \geq 0.$$  

If we have an initial incompatibility in $\mathbf{K}[v]$ where $v \supset u$ with monoid part $S$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has monoid part $S \cdot (P_1 + P_2)^2$ and degree in $w$ bounded by $\delta_w + 2\max\{\deg_w P_1, \deg_w P_2\}$.

**Proof.** Consider the initial incompatibility

$$S + N_0 + N_1 \cdot P_1 + N_2 \cdot P_2 + N_3 \cdot P_1 \cdot P_2 + Z = 0$$

with $S \in \mathcal{M}(\mathcal{H}_2^2)$, $N_0, N_1, N_2, N_3 \in \mathcal{N}(\mathcal{H}_2)$ and $Z \in \mathcal{Z}(\mathcal{H}_2)$, where $\mathcal{H} = [\mathcal{H}_\Sigma, \mathcal{H}_2, \mathcal{H}_2]$ is a system of sign conditions in $\mathbf{K}[v]$. We multiply this equation by $(P_1 + P_2)^2$ and we rewrite it as

$$S \cdot (P_1 + P_2)^2 + N_0 \cdot (P_1 + P_2)^2 + N_1 \cdot P_1^2 \cdot (P_1 + P_2) + N_2 \cdot P_2^2 \cdot (P_1 + P_2) +$$

$$(N_1 + N_2) \cdot (P_1 + P_2) \cdot P_1 \cdot P_2 + N_3 \cdot (P_1 + P_2)^2 \cdot P_1 \cdot P_2 + Z \cdot (P_1 + P_2)^2 = 0.$$  

This proves the claim since $S \cdot (P_1 + P_2)^2 \in \mathcal{M}(\mathcal{H}_2 \cup \{P_1 + P_2\})^2$, $N_0 \cdot (P_1 + P_2)^2 + N_1 \cdot P_1^2 \cdot (P_1 + P_2) + N_2 \cdot P_2^2 \cdot (P_1 + P_2) + (N_1 + N_2) \cdot (P_1 + P_2) \cdot P_1 \cdot P_2 + N_3 \cdot (P_1 + P_2)^2 \cdot P_1 \cdot P_2 \in \mathcal{N}(\mathcal{H}_2 \cup \{P_1 + P_2, P_1 \cdot P_2\})$ and $Z \cdot (P_1 + P_2)^2 \in \mathcal{Z}(\mathcal{H}_2)$. The degree bound follows easily.  

Lemma 2.1.12 Let $P_1, \ldots, P_m \in \mathbf{K}[u]$. Then

$$\prod_{1 \leq j \leq m} P_j = 0 \quad \Downarrow \quad \bigvee_{1 \leq j \leq m} P_j = 0.$$  

If we have initial incompatibilities in $\mathbf{K}[v]$ where $v \supset u$ with monoid part $S_j$ and degree in $w \subset v$ bounded by $\delta_{w,j}$, the final incompatibility has monoid part $\prod_{1 \leq j \leq m} S_j$ and degree in $w$ bounded by $\sum_{1 \leq j \leq m} \delta_{w,j}$.  

Proof. Consider for $1 \leq j \leq m$ the initial incompatibility
\[ S_j + N_j + Z_j + W_j \cdot P_j = 0 \]
with $S_j \in \mathcal{M}(H_2^2)$, $N_j \in \mathcal{M}(H_2)$, $Z_j \in \mathcal{Z}(H_\omega)$ and $W_j \in K[v]$, where $\mathcal{H} = [H_\neq, H_\geq, H_\omega]$ is a system of sign conditions in $K[v]$. We pass $W_j \cdot P_j$ to the right hand side in the initial incompatibility, we multiply all the results, we pass $(-1)^m \prod_{1 \leq j \leq m} W_j \cdot P_j$ to the left hand side and we obtain
\[
\prod_{1 \leq j \leq m} S_j + N + Z + (-1)^{m+1} \prod_{1 \leq j \leq m} W_j \cdot P_j = 0
\]
where $N \in \mathcal{M}(H_\geq)$ is the sum of all the terms in the expansion of $\prod_{1 \leq j \leq m} (S_j + N_j)$ with exception of the term $\prod_{1 \leq j \leq m} S_j$ and $Z \in \mathcal{Z}(H_\omega)$ is the sum of all the terms in the expansion of $\prod_{1 \leq j \leq m} (S_j + N_j + Z_j)$ which involve at least one of $Z_1, \ldots, Z_m$. This proves the claim since $\prod_{1 \leq j \leq m} S_j \in \mathcal{M}(H_2^2)$, $N \in \mathcal{M}(H_\geq)$ and $Z + (-1)^{m+1} \prod_{1 \leq j \leq m} W_j \cdot P_j \in \mathcal{Z}(H_\omega \cup \{\prod_{1 \leq j \leq m} P_j\})$. The degree bound follows easily.

2.1.2 Sums of squares

The following remark states a very useful algebraic identity.

Remark 2.1.13 Let $A$ be a commutative ring and $A_1, \ldots, A_m, B_1, \ldots, B_m \in A$. Consider the sum of squares
\[
N(A_1, \ldots, A_m, B_1, \ldots, B_m) = \sum_{\sigma \in \{-1,1\}^m, \sigma \neq (1, \ldots, 1)} \left( \sum_{1 \leq j \leq m} \sigma(j) A_j B_j \right)^2 + 2^m \sum_{1 \leq j \leq m} (A_j B_j)^2.
\]
Then
\[
\left( \sum_{1 \leq j \leq m} A_j B_j \right)^2 + N(A_1, \ldots, A_m, B_1, \ldots, B_m) = 2^m \sum_{1 \leq j \leq m} A_j^2 \cdot \sum_{1 \leq j \leq m} B_j^2.
\]

We can prove now some more weak inferences.

Lemma 2.1.14 Let $P_1, \ldots, P_m \in K[u]$. Then
\[
\sum_{1 \leq j \leq m} P_j^2 = 0 \quad \models \quad \bigwedge_{1 \leq j \leq m} P_j = 0.
\]
If we have an initial incompatibility in $K[v]$ where $v \supset u$ with monoid part $S$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has monoid part $S^2$ and degree in $w$ bounded by
\[
2 \left( \delta_w + \max\{\deg_w P_j \mid 1 \leq j \leq m\} - \min\{\deg_w P_j \mid 1 \leq j \leq m\} \right).
\]

Proof. Consider the initial incompatibility
\[ S + N + Z + \sum_{1 \leq j \leq m} W_j \cdot P_j = 0 \]
with $S \in \mathcal{M}(H_2^2)$, $N \in \mathcal{M}(H_2)$, $Z \in \mathcal{Z}(H_\omega)$ and $W_j \in K[v]$ for $1 \leq j \leq m$, where $\mathcal{H} = [H_\neq, H_\geq, H_\omega]$ is a system of sign conditions in $K[v]$. We pass $\sum W_j \cdot P_j$ to the right hand side, we raise to the square, we add $N(W_1, \ldots, W_m, P_1, \ldots, P_m)$ defined as in Remark 2.1.13, we substitute using (16), we pass $2^m \sum W_j^2 \cdot \sum P_j^2$ to the left hand side and we obtain
\[ S^2 + N_1 + N(W_1, \ldots, W_m, P_1, \ldots, P_m) + Z_1 - 2^m \sum_{1 \leq j \leq m} W_j^2 \cdot \sum_{1 \leq j \leq m} P_j^2 = 0 \]
where $N_1 = 2N \cdot S + N^2$ and $Z_1 = 2Z \cdot S + 2Z \cdot N + Z^2$. This proves the claim since $S^2 \in \mathcal{M}(H_2^2)$, $N_1 + N(W_1, \ldots, W_m, P_1, \ldots, P_m) \in \mathcal{N}(H_\geq)$ and $Z_1 - 2^m \sum W_j^2 \cdot \sum P_j^2 \in \mathcal{Z}(H_\omega \cup \{\sum P_j^2\})$. The degree bound follows easily taking into account that $\deg_w \sum P_j^2 = 2 \max\{\deg_w P_j\}$. 

Lemma 2.1.15 Let $P_1, \ldots, P_m, Q_1, \ldots, Q_m \in K[u]$. Then
\[
\sum_{1 \leq j \leq m} P_j \cdot Q_j \neq 0 \quad \models \quad \bigwedge_{1 \leq j \leq m} P_j^2 \neq 0.
\]
If we have an initial incompatibility in $K[v]$ where $v \supset u$ with monoid part $S \cdot (\sum_{1 \leq j \leq m} P_j^2)^{2e}$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has monoid part $S \cdot (\sum_{1 \leq j \leq m} P_j \cdot Q_j)^{2e}$ and degree in $w$ bounded by $\delta_w + 4e \max\{\deg_w Q_j \mid 1 \leq j \leq m\}$. 

Proof. Consider the initial incompatibility

\[ S \cdot \left( \sum_{1 \leq j \leq m} P_j^2 \right)^{2e} + N + Z = 0 \]

with \( S \in \mathcal{M}(\mathcal{H}^2_\neq), N \in \mathcal{M}(\mathcal{H}_\geq) \) and \( Z \in \mathcal{Z}(\mathcal{H}_=) \), where \( \mathcal{H} = [\mathcal{H}_\neq, \mathcal{H}_\geq, \mathcal{H}_=] \) is a system of sign conditions in \( K[v] \). We multiply this equation by \( 2^{2me} (\sum Q_j^2)^{2e} \), substitute using (16) and we obtain

\[
S \cdot \left( \sum_{1 \leq j \leq m} P_j Q_j \right)^{4e} + N_1 + 2^{2me}N \cdot \left( \sum_{1 \leq j \leq m} Q_j^2 \right)^{2e} + 2^{2me}Z \cdot \left( \sum_{1 \leq j \leq m} Q_j^2 \right)^{2e} = 0
\]

where \( N_1 \) is the sum of all the terms in the expansion of \( S \cdot ((\sum_{1 \leq j \leq m} P_j Q_j)^2 + N(P_1, \ldots, P_m, Q_1, \ldots, Q_m))^{2e} \). This proves the claim since \( S \cdot (\sum_{1 \leq j \leq m} P_j Q_j)^{4e} \in \mathcal{M}(\mathcal{H} \cup (\sum_{1 \leq j \leq m} P_j Q_j)^2) \), \( N_1 + 2^{2me}N \cdot (\sum_{1 \leq j \leq m} Q_j^2)^{2e} \in \mathcal{M}(\mathcal{H}_\geq) \) and \( 2^{2me}Z \cdot (\sum Q_j^2)^{2e} \in \mathcal{Z}(\mathcal{H}_=) \). The degree bound follows easily. \( \square \)

2.1.3 Case by case reasoning

We call case by case reasoning the weak inferences in the following lemmas, which enable us to consider separately the different possible sign conditions in each case.

Lemma 2.1.16 Let \( P \in K[u] \). Then

\[ \vdash P \neq 0 \lor P = 0. \]

If we have initial incompatibilities in \( K[v] \) where \( v \supset u \) with monoid part \( S_1 \cdot P^{2e} \) and \( S_2 \) and degree in \( w \) bounded by \( \delta_{w,1} \) and \( \delta_{w,2} \), the final incompatibility has monoid part \( S_1 \cdot S_2^{2e} \) and degree in \( w \) bounded by \( \delta_{w,1} + 2e(\delta_{w,2} - \deg_w P) \).

Proof. Consider the initial incompatibilities

\[ S_1 \cdot P^{2e} + N_1 + Z_1 = 0 \] (17)

and

\[ S_2 + N_2 + Z_2 + W \cdot P = 0 \] (18)

with \( S_1, S_2 \in \mathcal{M}(\mathcal{H}^2_\neq), N_1, N_2 \in \mathcal{M}(\mathcal{H}_\geq), Z_1, Z_2 \in \mathcal{Z}(\mathcal{H}_=) \) and \( W \in K[v] \), where \( \mathcal{H} = [\mathcal{H}_\neq, \mathcal{H}_\geq, \mathcal{H}_=] \) is a system of sign conditions in \( K[v] \). If \( e = 0 \) we take (17) as the final incompatibility. If \( e \neq 0 \) we proceed as follows. We pass \( W \cdot P \) to the right hand side in (18), we raise both sides to the \( (2e) \)-th power, we multiply the result by \( S_1 \) and we obtain

\[ S_1 \cdot S_2^{2e} + N_3 + Z_3 = S_1 \cdot W^{2e} \cdot P^{2e} \] (19)

where \( N_3 \in \mathcal{M}(\mathcal{H}_\geq) \) is the sum of all the terms in the expansion of \( S_1 \cdot (S_2 + N_2 + Z_2)^{2e} \) which do not involve \( Z_2 \) with exception of the term \( S_1 \cdot S_2^{2e} \) and \( Z_3 \in \mathcal{Z}(\mathcal{H}_=) \) is the sum of all the terms in the expansion of \( S_1 \cdot (S_2 + N_2 + Z_2)^{2e} \) which involve \( Z_2 \). If \( W \) is the zero polynomial, we take (19) as the final incompatibility. Otherwise, we multiply (17) by \( W^{2e} \), we substitute \( S_1 \cdot W^{2e} \cdot P^{2e} \) using (19) and we obtain

\[ S_1 \cdot S_2^{2e} + N_1 \cdot W^{2e} + N_3 + Z_1 \cdot W^{2e} + Z_3 = 0. \]

This proves the claim since \( S_1 \cdot S_2^{2e} \in \mathcal{M}(\mathcal{H}^2_\neq), N_1 \cdot W^{2e} + N_3 \in \mathcal{M}(\mathcal{H}_\geq) \) and \( Z_1 \cdot W^{2e} + Z_3 \in \mathcal{Z}(\mathcal{H}_=) \). The degree bound follows easily. \( \square \)

Lemma 2.1.17 Let \( P \in K[u] \). Then

\[ P \neq 0 \vdash P > 0 \lor P < 0. \]

If we have initial incompatibilities in \( K[v] \) where \( v \supset u \) with monoid part \( S_1 \cdot P^{2e_1} \) and \( S_2 \cdot P^{2e_2} \) and degree in \( w \) bounded by \( \delta_{w,1} \) and \( \delta_{w,2} \), the final incompatibility has monoid part \( S_1 \cdot S_2 \cdot P^{2(e_1+e_2)} \) and degree in \( w \) bounded by \( \delta_{w,1} + \delta_{w,2} \).

Proof. Consider the initial incompatibilities

\[ S_1 \cdot P^{2e_1} + N_1 + N'_1 \cdot P + Z_1 = 0 \] (20)
and
\[ S_2 \cdot P^{2e_2} + N_2 - N'_2 \cdot P + Z_2 = 0 \] (21)
with \( S_1, S_2 \in \mathcal{M}(\mathcal{H}_2) \), \( N_1, N'_1, N_2, N'_2 \in \mathcal{N}(\mathcal{H}_2) \) and \( Z_1, Z_2 \in \mathcal{Z}(\mathcal{H}_2) \), where \( \mathcal{H} = [\mathcal{H}_{\neq}, \mathcal{H}_2, \mathcal{H}_w] \) is a system of sign conditions in \( K[v] \). We pass \( N'_2 \cdot P \) and \( -N'_2 \cdot P \) to the right hand side in (20) and (21), we multiply the results and we pass \( -N'_1 \cdot N'_2 \cdot P^2 \) to the left hand side and we obtain
\[ S_1 \cdot S_2 \cdot P^{2(e_1+e_2)} + N_3 + N'_1 \cdot N'_2 \cdot P^2 + Z_3 = 0 \]
where \( N_3 = N_1 \cdot S_2 \cdot P^{2e_2} + N_2 \cdot S_1 \cdot P^{2e_1} + N_1 \cdot N_2 \) and \( Z_3 = Z_1 \cdot S_2 \cdot P^{2e_2} + Z_2 \cdot S_1 \cdot P^{2e_1} + Z_1 \cdot N_2 + Z_2 \cdot N_1 + Z_1 \cdot Z_2 \). This proves the claim since \( S_1 \cdot S_2 \cdot P^{2(e_1+e_2)} \in \mathcal{M}(\mathcal{H}_2) \), \( N_3 + N'_1 \cdot N'_2 \cdot P^2 \in \mathcal{N}(\mathcal{H}_2) \) and \( Z_3 \in \mathcal{Z}(\mathcal{H}_2) \). The degree bound follows easily. □

**Lemma 2.1.18** Let \( P \in K[u] \). Then
\[ \vdash P > 0 \lor P < 0 \lor P = 0. \]
If we have initial incompatibilities in \( K[v] \) where \( v \supset u \) with monoid part \( S_j \cdot P^{2e_j} \), degree in \( w \subset v \) bounded by \( \delta_{w,1} \), \( \delta_{w,2} \) and \( \delta_{w,3} \), the final incompatibility has monoid part \( S_j \cdot S'_j \cdot S^{2e_j} \) and degree in \( w \) bounded by \( \delta_{w,1} + \delta_{w,2} + 2(e_1 + e_2)(\delta_{w,3} - \deg_w P) \).

**Proof.** Follows from Lemmas 2.1.16 and 2.1.17. □

**Lemma 2.1.19** Let \( P_1, \ldots, P_m \in K[u] \). Then
\[ \vdash \bigvee_{J \subset \{1, \ldots, m\}} \left( \bigwedge_{j \notin J} P_j \neq 0, \bigwedge_{j \in J} P_j = 0 \right). \]
If we have initial incompatibilities in \( K[v] \) where \( v \supset u \) with monoid part \( S_j \cdot \prod_{j \notin J} P_j^{2e_j} \), degree in \( w \subset v \) bounded by \( \delta_w \), and \( e_{i,j} \leq e \in \mathbb{N}_* \), the final incompatibility has monoid part
\[ \prod_{J \subset \{1, \ldots, m\}} S^e_j \]
with \( e_j \leq 2^{m+1-m-2}e^{m-1} \) and degree in \( w \) bounded by \( 2^{2m+1-2}e^{2m-1} \delta_w \).

**Proof.** The proof can be easily done by induction on \( m \) using Lemma 2.1.16. □

**Lemma 2.1.20** Let \( P_1, \ldots, P_m \in K[u] \). Then
\[ \bigwedge_{1 \leq j \leq m} P_j \neq 0 \vdash \bigvee_{J \subset \{1, \ldots, m\}} \left( \bigwedge_{j \notin J} P_j > 0, \bigwedge_{j \in J} P_j < 0 \right). \]
If we have initial incompatibilities in \( K[v] \) where \( v \supset u \) with monoid part \( S_j \cdot \prod_{j \notin J} P_j^{2e_j} \), degree in \( w \subset v \) bounded by \( \delta_w \), and \( e_{i,j} \leq e \in \mathbb{N}_* \), the final incompatibility has monoid part
\[ \prod_{J \subset \{1, \ldots, m\}} S_j \cdot \prod_{1 \leq j \leq m} P_j^{2e_j} \]
with \( e' \leq 2^{m}e \) and degree in \( w \) bounded by \( 2^{m} \delta_w \).

**Proof.** The proof can be easily done by induction on \( m \) using Lemma 2.1.17. □

**Lemma 2.1.21** Let \( P_1, \ldots, P_m \in K[u] \). Then
\[ \vdash \bigvee_{J \subset \{1, \ldots, m\} \setminus j} \left( \bigwedge_{j \notin J} P_j > 0, \bigwedge_{j \in J} P_j < 0, \bigwedge_{j \in J} P_j = 0 \right). \]
If we have initial incompatibilities in \( K[v] \) where \( v \supset u \) with monoid part \( S_{i,j} \cdot \prod_{j \notin J} P_j^{2e_{i,j}'} \), degree in \( w \subset v \) bounded by \( \delta_w \), and \( e_{i,j} \leq e \in \mathbb{N}_* \), the final incompatibility has monoid part
\[ \prod_{J \subset \{1, \ldots, m\} \setminus j} S^{e_{i,j}'}_{i,j} \]
with \( e'_{i,j} \leq 2^{m+1}+2m^{2m-2}e^{2m-1} \) and degree in \( w \) bounded by \( 2^{2m+1}+2m^{2m-2}e^{2m-1} \delta_w \).

**Proof.** Follows from Lemmas 2.1.19 and 2.1.20. □
2.2 Weak existence

Weak inferences are constructions to obtain new incompatibilities from other incompatibilities already known. It will be useful sometimes to introduce in the new incompatibilities, new sets of auxiliary variables, which should be eliminated later on. Weak existence is a generalization of weak inference which enables us to do so.

**Definition 2.2.1 (Weak Existence)** Consider disjoint sets of variables \( u = (u_1, \ldots, u_n), \ t_0 = (t_0, 1, \ldots, t_0, r_0), t_1 = (t_1, 1, \ldots, t_1, r_1), \ldots, t_m = (t_m, 1, \ldots, t_m, r_m) \). Let \( F(u, t_0) \) be a system of sign conditions in \( K[u, t_0] \) and \( F_1(u, t_1), \ldots, F_m(u, t_m) \) systems of sign conditions in \( K[u, t_1], \ldots, K[u, t_m] \). A weak existence

\[
\exists t_0 \ [ F(u, t_0) ] \vdash \bigvee_{1 \leq j \leq m} \exists t_j \ [ F_j(u, t_j) ]
\]

is a construction that, given any system of sign conditions \( H(v) \) in \( K[v] \) with \( v \supset u, v \) disjoint from \( t_0, t_1, \ldots, t_m \), and initial incompatibilities

\[
\downarrow F_1(u, t_1), H(v) \downarrow K[v, t_1], \ldots, \downarrow F_m(u, t_m), H(v) \downarrow K[v, t_m]
\]

produces an incompatibility

\[
\downarrow F(u, t_0), H(v) \downarrow K[v, t_0]
\]

called the final incompatibility.

Note that the sets of variables \( t_1, \ldots, t_m \) which appear in the initial incompatibilities have been eliminated in the final incompatibility and also the set of variables \( t_0 \) which do not appear in the initial incompatibilities has been introduced in the final incompatibility.

Most of the times, it will not be the case that we want to introduce and eliminate sets of variables simultaneously. So, for instance, we write

\[
F(u) \vdash \bigvee_{1 \leq j \leq m} \exists t_j \ [ F_j(u, t_j) ]
\]

for a weak existence in which the sets of variables \( t_1, \ldots, t_m \) have been eliminated but no new set of variables has been introduced.

We illustrate the concept of weak existence with a few lemmas. In general, we need to make a careful analysis of the degree bounds considering also the auxiliary variables.

**Lemma 2.2.2** Let \( P \in K[u] \). Then

\[
P \neq 0 \vdash \exists t \ [ t \neq 0, \ P \cdot t = 1 ].
\]

Suppose we have an initial incompatibility in \( K[v, t] \) where \( v \supset u \) and \( t \notin v \), with monoid part \( S \cdot t^{2e} \), degree in \( w \subset v \) bounded by \( \delta_w \) and degree in \( t \) bounded by \( \delta_t \). Let \( \delta_t \) be the smallest even number greater than or equal to \( \delta_t \). Then, the final incompatibility has monoid part \( S \cdot P^\delta_t \cdot t^{-2e} \) and degree in \( w \) bounded by \( \delta_w + \delta_t \deg_{\delta_w} P \).

**Proof.** Consider the initial incompatibility in \( K[v, t] \)

\[
S \cdot t^{2e} + \sum_i \omega_i V_i^2(t) \cdot N_i + \sum_j W_j(t) \cdot Z_j + W(t) \cdot (P \cdot t - 1) = 0
\]

with \( S \in \mathcal{M}(\mathcal{H}_z), \omega_i \in K, \omega_i > 0, V_i(t) \in K[v, t] \) and \( N_i \in \mathcal{M}(\mathcal{H}_z) \) for every \( i \), \( W_j(t) \in K[v, t] \) and \( Z_j \in \mathcal{H}_z \) for every \( j \) and \( W(t) \in K[v, t] \), where \( \mathcal{H} = [\mathcal{H}_z, \mathcal{H}_z, \mathcal{H}_z] \) is a system of sign conditions in \( K[v] \).

For every \( i \), let \( V_{i0} \) be the reminder of \( P^\delta_t \cdot V_i(t) \) in the division by \( P \cdot t - 1 \) considering \( t \) as the main variable; note that \( \deg_{\delta_w} V_{i0} \leq \deg_{\delta_w} V_i(t) + \frac{1}{2} \delta_t \deg_{\delta_w} P \). Similarly, for every \( j \), let \( W_{j0} \) be the reminder of \( P^\delta_t \cdot W_j(t) \) in the division by \( P \cdot t - 1 \) considering \( t \) as the main variable; note that \( \deg_{\delta_w} W_{j0} \leq \deg_{\delta_w} W_j(t) + \delta_t \deg_{\delta_w} P \).

We multiply (22) by \( P^\delta_t \) and we deduce that exists \( W'(t) \in K[v, t] \) such that

\[
S \cdot P^\delta_t \cdot t^{-2e} + \sum_i \omega_i V_{i0}^2 \cdot N_i + \sum_j W_{j0} \cdot Z_j + W'(t) \cdot (P \cdot t - 1) = 0.
\]

Looking at the degree in \( t \), we have that \( W'(t) \) is the zero polynomial. This proves the claim since \( S \cdot P^\delta_t \cdot t^{-2e} \in \mathcal{M}((\mathcal{H}_z \cup P)^2), \sum \omega_i V_{i0}^2 \cdot N_i \in \mathcal{M}(\mathcal{H}_z) \) and \( \sum W_{j0} \cdot Z_j \in \mathcal{H}_z \). The degree bound follows easily.
Lemma 2.2.3 Let \( P \in K[u] \). Then

\[
P \geq 0 \quad \vdash \quad \exists t \ [ t^2 = P ].
\]

If we have an initial incompatibility in \( K[v, t] \) where \( v \supseteq u \) and \( t \not\in v \), with monoid part \( S \), degree in \( w \subset v \) bounded by \( \delta_w \) and degree in \( t \) bounded by \( \delta_t \), the final incompatibility has the same monoid part and degree in \( w \) bounded by \( \delta_w + \frac{1}{2} \delta_t \deg_w P \).

Proof. Consider the initial incompatibility in \( K[v, t] \)

\[
S + \sum_i \omega_i V_i^2(t) \cdot N_i + \sum_j W_j(t) \cdot Z_j + W(t) \cdot (t^2 - P) = 0
\]  

(23)

with \( S \in \mathcal{M}(\mathcal{H}_Z^2) \), \( \omega_i \in K \), \( \omega_i > 0 \), \( V_i(t) \in K[v, t] \) and \( N_i \in \mathcal{M}(\mathcal{H}_Z) \) for every \( i \), \( W_j(t) \in K[v, t] \) and \( Z_j \in \mathcal{H}_Z \) for every \( j \) and \( W(t) \in K[v, t] \), where \( \mathcal{H} = \mathcal{H}_Z \cup \mathcal{H}_Z^2 \) is a system of sign conditions in \( K[v] \).

For every \( i \), let \( V_{i1} \cdot t + V_{i0} \) be the reminder of \( V_i(t) \) in the division by \( t^2 - P \) considering \( t \) as the main variable; note that \( \deg_w V_{i0} \leq \deg_w V_i(t) + \frac{1}{2} \delta_t \deg_w P \) and \( \deg_w V_{i1} \leq \deg_w V_i(t) + \frac{1}{2} (\delta_t - 2) \deg_w P \). Similarly, for every \( j \), let \( W_{j1} \cdot t + W_{j0} \) be the reminder of \( W_j(t) \) in the division by \( t^2 - P \) considering \( t \) as the main variable; note that \( \deg_w W_{j0} \leq \deg_w W_j(t) + \frac{1}{2} \delta_t \deg_w P \).

Looking at the degree in \( t \), we have that \( W''(t) \) is the zero polynomial; and looking again at the degree in \( t \), we have that they also \( W'' \) is the zero polynomial. This proves the claim since \( S \in \mathcal{M}(\mathcal{H}_Z^2) \), \( \sum_i \omega_i (V_{i1}^2 \cdot P + V_{i0}^2) \cdot N_i \in \mathcal{M}(\mathcal{H}_Z \cup \{P\}) \) and \( \sum_j W_{j0} \cdot Z_j \in \mathcal{F}(\mathcal{H}_Z) \). The degree bound follows easily. \( \square \)

Lemma 2.2.4 Let \( P \in K[u] \). Then

\[
P > 0 \quad \vdash \quad \exists t \ [ t > 0, \ t^2 = P ].
\]

If we have an initial incompatibility in \( K[v, t] \) where \( v \supseteq u \) and \( t \not\in v \), with monoid part \( S \cdot t^{2^c} \), degree in \( w \subset v \) bounded by \( \delta_w \) and degree in \( t \) bounded by \( \delta_t \), the final incompatibility has monoid part \( S^2 \cdot t^{2^{c+1}} \) and degree in \( w \) bounded by \( 2\delta_w + (\max\{1, 2c\} + 1) \delta_t \deg_w P \).

Proof. Consider the initial incompatibility in \( K[v, t] \)

\[
S \cdot t^{2^c} + N_1(t) + N_2(t) t + Z(t) + W(t) \cdot (t^2 - P) = 0
\]

(24)

with \( S \in \mathcal{M}(\mathcal{H}_Z^2) \), \( N_1(t), N_2(t) \in \mathcal{M}(\mathcal{H}_Z) \), \( Z(t) \in \mathcal{F}(\mathcal{H}_Z) K[v, t] \) and \( W(t) \in K[v, t] \), where \( \mathcal{H} \) is a system of sign conditions in \( K[v] \).

We substitute \( t = -t \) in (24) and we obtain

\[
\downarrow \ t < 0, \ t^2 = P, \ \mathcal{H} \downarrow_K[v, t]
\]

(25)

with the same monoid part and degree bounds.

Then we apply to (24) and (25) the weak inference

\[
t \not= 0 \quad \vdash \quad t > 0 \lor t < 0.
\]

By Lemma 2.1.17, we obtain

\[
\downarrow \ t \not= 0, \ t^2 = P, \ \mathcal{H} \downarrow_K[v, t]
\]

(26)

with monoid part \( S^2 \cdot t^{4^c} \), degree in \( w \) bounded by \( 2\delta_w \) and degree in \( t \) bounded by \( 2\delta_t \). Since the exponent of \( t \) in the monoid part is a multiple of 4, this incompatibility is also an incompatibility

\[
\downarrow \ t^2 > 0, \ t^2 = P, \ \mathcal{H} \downarrow_K[v, t].
\]
Then we apply to (26) the weak inference
\[ P > 0, \ t^2 = P \quad \vdash \quad t^2 > 0. \]

By Lemma 2.1.7, we obtain
\[ \Downarrow P > 0, \ t^2 = P, \ H \Downarrow_{K,v,t} \]
with monoid part \( S^2 \cdot P^{2e} \), degree in \( w \) bounded by \( 2\delta_w + \max\{1, 2e\} \deg_w P \) and degree in \( t \) bounded by \( 2\delta_t \).

Finally we apply to (27) the weak inference
\[ P \geq 0 \quad \vdash \quad \exists t \ [t^2 = P]. \]

By Lemma 2.2.3, we obtain
\[ \Downarrow P > 0, \ H \Downarrow_{K,v} \]
with the same monoid part and degree bounds.

**Remark 2.2.5** In the preceding lemmas, we have no case of a weak existence with an existential variable to the left. The first example of such a situation appears later in the paper, when we deal with the intermediate value theorem in Section 3.

### 2.3 Complex numbers

We introduce the conventions we follow to use complex variables in the weak inference context.

**Notation 2.3.1 (Complex Variables)** A complex variable, always named \( z \), represents two variables corresponding to its real and imaginary parts, always named \( a \) and \( b \), so that \( z = a + ib \). We also use \( z \) to denote a set of complex variables and \( a \) and \( b \) to denote the set of real and imaginary parts of \( z \).

Let \( z = (z_1, \ldots, z_n) \) and \( P \in K[u, z] \). We denote by \( P_{\text{Re}} \in K[u, a, b] \) and \( P_{\text{Im}} \in K[u, a, b] \) the real and imaginary parts of \( P \). The expression \( P = 0 \) is an abbreviation for
\[ P_{\text{Re}} = 0, \quad P_{\text{Im}} = 0, \]
and the expression \( P \neq 0 \) is an abbreviation for
\[ P_{\text{Re}}^2 + P_{\text{Im}}^2 \neq 0. \]

We illustrate the use of complex variables with some lemmas.

**Lemma 2.3.2** Let \( C, D \in K[u] \). Then
\[ C + iD \neq 0 \quad \vdash \quad \exists z \ [z \neq 0, \ z^2 = C + iD]. \]

If we have an initial incompatibility in \( K[v, a, b] \) where \( v \supset u \) and \( a, b \notin v \), with monoid part \( S \cdot (a^2 + b^2)^{2e} \), degree in \( w \supset u \) bounded by \( \delta_w \) and degree in \( (a, b) \) bounded by \( \delta_z \), the final incompatibility has monoid part \( S^4 \cdot (C^2 + D^2)^{2(2e+1)} \) and degree in \( w \) bounded by \( 4\delta_w + (20 + 24e + 8\delta_z) \max\{\deg_w C, \deg_w D\} \).

**Proof.** Consider the initial incompatibility in \( K[v, a, b] \)
\[ S \cdot (a^2 + b^2)^{2e} + N(a, b) + Z(a, b) + W_1(a, b) \cdot (a^2 - b^2 - C) + W_2(a, b) \cdot (2a \cdot b - D) = 0 \]
with \( S \in \mathcal{M}(H^2_{\geq}), N(a, b) \in \mathcal{N}(H_{\geq})_{K[v,a,b]}, Z(a, b) \in \mathcal{Z}(H_{=})_{K[v,a,b]} \) and \( W_1(a, b), W_2(a, b) \in K[v, a, b] \), where \( H \) is a system of sign conditions in \( K[v] \).

We substitute \( b = -b \) in (28) and we obtain
\[ \Downarrow z \neq 0, \ z^2 = C - iD, \ H \Downarrow_{K[v,a,b]} \]
with the same monoid part and degree bounds.

Then we apply to (28) and (29) the weak inference
\[ (2a \cdot b)^2 = D^2 \quad \vdash \quad 2a \cdot b = D \lor 2a \cdot b = -D. \]
By Lemma 2.1.12, we obtain
\[
\downarrow z \neq 0, \ a^2 - b^2 = C, \ (2a \cdot b)^2 = D^2, \ \mathcal{H} \downarrow_{K[v,a,b]}
\]
with monoid part \(S^2 \cdot (a^2 + b^2)^4\), degree in \(w\) bounded by \(2\delta_w\) and degree in \((a,b)\) bounded by \(2\delta_z\).

We consider a new auxiliary variable \(t\). Taking into account the identities
\[
a^2 - b^2 - C = \left(a^2 - \frac{1}{2}(t + C)\right) - \left(b^2 - \frac{1}{2}(t - C)\right),
\]
\[
(2a \cdot b)^2 - D^2 = \left(a^2 - \frac{1}{2}(t + C)\right) \cdot 4b^2 + \left(b^2 - \frac{1}{2}(t - C)\right) \cdot 2(t + C) + (t^2 - C^2 - D^2),
\]
we apply to (30) the weak inference
\[
a^2 = \frac{1}{2}(t + C), \ b^2 = \frac{1}{2}(t - C), \ t^2 = C^2 + D^2 \quad \vdash \quad a^2 - b^2 = C, \ (2a \cdot b)^2 = D^2.
\]

By Lemma 2.1.6, we obtain
\[
\downarrow t \neq 0, \ a^2 = \frac{1}{2}(t + C), \ b^2 = \frac{1}{2}(t - C), \ t^2 = C^2 + D^2, \ \mathcal{H} \downarrow_{K[v,a,b,t]}
\]
with monoid part \(S^2 \cdot (a^2 + b^2)^4\), degree in \(w\) bounded by \(2\delta_w + 2 \deg_w C\), degree in \((a,b)\) bounded by \(2\delta_z\) and degree in \(t\) bounded by \(2\).

Then we apply to (31) the weak inference
\[
t \neq 0, \ a^2 = \frac{1}{2}(t + C), \ b^2 = \frac{1}{2}(t - C) \quad \vdash \quad z \neq 0.
\]

By Lemma 2.1.6 we obtain
\[
\downarrow t \neq 0, \ a^2 = \frac{1}{2}(t + C), \ b^2 = \frac{1}{2}(t - C), \ t^2 = C^2 + D^2, \ \mathcal{H} \downarrow_{K[v,a,b,t]}
\]
with monoid part \(S^2 \cdot t^4\), degree in \(w\) bounded by \(2\delta_w + (2 + 4e) \deg_w C\), degree in \((a,b)\) bounded by \(2\delta_z\) and degree in \(t\) bounded by \(2 + 4e\).

Then we successively apply to (32) the weak inferences
\[
t + C \geq 0 \quad \vdash \quad \exists a \ [ a^2 = \frac{1}{2}(t + C) ],
\]
\[
t - C \geq 0 \quad \vdash \quad \exists b \ [ b^2 = \frac{1}{2}(t - C) ].
\]

By Lemma 2.2.3, we obtain
\[
\downarrow t \neq 0, \ t + C \geq 0, \ t - C \geq 0, \ t^2 = C^2 + D^2, \ \mathcal{H} \downarrow_{K[v,t]}
\]
with monoid part \(S^2 \cdot t^4\), degree in \(w\) bounded by \(2\delta_w + (2 + 4e + 2\delta_z) \deg_w C\), and degree in \(t\) bounded by \(2 + 4e + 2\delta_z\).

Finally we successively apply to (33) the weak inferences
\[
t > 0, \ t^2 - C^2 \geq 0 \quad \vdash \quad t + C \geq 0, \ t - C \geq 0,
\]
\[
D^2 \geq 0, \ t^2 = C^2 + D^2 \quad \vdash \quad t^2 - C^2 \geq 0,
\]
\[
\vdash \quad D^2 \geq 0,
\]
\[
D^2 \geq 0, \ C^2 + D^2 > 0 \quad \vdash \quad \exists t \ [ t > 0, \ t^2 = C^2 + D^2 ].
\]

By Lemmas 2.1.11, 2.1.5 (item 15), 2.1.2 (item 3) and 2.2.4, we obtain an incompatibility in \(K[v]\)
\[
\downarrow C^2 + D^2 > 0, \ \mathcal{H} \downarrow_{K[v]}
\]
with monoid part \(S^4 \cdot (C^2 + D^2)^2((2e+1)\) and degree in \(w\) bounded by \(4\delta_w + (20 + 24e + 8\delta_z) \max\{\deg_w C, \deg_w D\}\).

Note that this incompatibility is also an incompatibility
\[
\downarrow C^2 + D^2 \neq 0, \ \mathcal{H} \downarrow_{K[v]}
\]
with the same degree bound, which serves as the final incompatibility.
\[\square\]
Lemma 2.3.3 Let $C, D \in \mathbf{K}[u]$. Then
\[ \vdash \exists z \ [ z^2 = C + iD ] \]
If we have an initial incompatibility in $\mathbf{K}[v, a, b]$ where $v \supset u$ and $a, b \not\in v$, with monoid part $S$, degree in $w \subset v$ bounded by $\delta_w$ and degree in $(a, b)$ bounded by $\delta_z$, the final incompatibility has monoid part $S^8$ and degree in $w$ bounded by $8\delta_w + (20 + 8\delta_z) \max\{ \deg_w C, \deg_w D \}$.

**Proof.** Consider the initial incompatibility in $\mathbf{K}[v, a, b]$
\[ S + N(a, b) + Z(a, b) + W_1(a, b) \cdot (a^2 - b^2 - C) + W_2(a, b) \cdot (2a \cdot b - D) = 0 \]
with $S \in \mathcal{M}(\mathcal{H}_w^2)$), $N(a, b) \in \mathcal{N}(\mathcal{H}_w^2) \mathbf{K}[v, a, b]$, $Z(a, b) \in \mathcal{Z}(\mathcal{H}_w^2) \mathbf{K}[v, a, b]$ and $W_1(a, b), W_2(a, b) \in \mathbf{K}[v, a, b]$, where $\mathcal{H}$ is a system of sign conditions in $\mathbf{K}[v]$.
We proceed by case by case reasoning. First we consider the case $C^2 + D^2 \neq 0$. We apply to (35) the weak inference

\[ C^2 + D^2 \neq 0 \quad \vdash \exists z \ [ z \neq 0, \ z^2 = C + iD ] \]

By Lemma 2.3.2 we obtain
\[ \downarrow C^2 + D^2 \neq 0, \ \mathcal{H} \downarrow \mathbf{K}[v] \]
with monoid part $S^4 \cdot (C^2 + D^2)^2$ and degree in $w$ bounded by $4\delta_w + (20 + 8\delta_z) \max\{ \deg_w C, \deg_w D \}$.

We consider then the case $C^2 + D^2 = 0$. We evaluate $a = b = 0$ in (35) and we apply the weak inference

\[ C^2 + D^2 = 0 \quad \vdash \ C = 0, \ D = 0. \]

By Lemma 2.1.14, we obtain
\[ \downarrow C^2 + D^2 = 0, \ \mathcal{H} \downarrow \mathbf{K}[v] \]
with monoid part $S^2$ and degree in $w$ bounded by $2\delta_w + 2\max\{ \deg_w C, \deg_w D \}$.

Finally we apply to (36) and (37) the weak inference
\[ C^2 + D^2 \neq 0 \quad \lor \quad C^2 + D^2 = 0. \]

By Lemma 2.1.16, we obtain
\[ \downarrow \mathcal{H} \downarrow \mathbf{K}[v] \]
with monoid part $S^8$ and degree in $w$ bounded by $8\delta_w + (20 + 8\delta_z) \max\{ \deg_w C, \deg_w D \}$, which serves as the final incompatibility.

**Lemma 2.3.4** Let $E(y) = y^2 + G \cdot y + H = 0 \in \mathbf{K}[u, y]$. Then
\[ \vdash \exists z \ [ E(z) = 0 ] \]
If we have an initial incompatibility in $\mathbf{K}[v, a, b]$ where $v \supset u$ and $a, b \not\in v$, with monoid part $S$, degree in $w \subset v$ bounded by $\delta_w$ and degree in $(a, b)$ bounded by $\delta_z$, the final incompatibility has monoid part $S^8$ and degree in $w$ bounded by $8\delta_w + (40 + 24\delta_z) \max\{ \deg_w G, \deg_w H \}$.

**Proof.** Consider the initial incompatibility in $\mathbf{K}[v, a, b]$
\[ S + N(a, b) + Z(a, b) + W_1(a, b) \cdot E_{\text{Re}}(a, b) + W_2(a, b) \cdot E_{\text{Im}}(a, b) = 0 \]
with $S \in \mathcal{M}(\mathcal{H}_w^2)$, $N(a, b) \in \mathcal{N}(\mathcal{H}_w^2) \mathbf{K}[v, a, b]$, $Z(a, b) \in \mathcal{Z}(\mathcal{H}_w^2) \mathbf{K}[v, a, b]$ and $W_1(a, b), W_2(a, b) \in \mathbf{K}[v, a, b]$, where $\mathcal{H}$ is a system of sign conditions in $\mathbf{K}[v]$.
Let $C = \frac{1}{4} G_{\text{Re}}^2 - \frac{1}{4} G_{\text{Im}}^2 - H_{\text{Re}} \in \mathbf{K}[u]$ and $D = \frac{1}{2} G_{\text{Re}} G_{\text{Im}} - H_{\text{Im}} \in \mathbf{K}[u]$. Then we have
\[ E_{\text{Re}}(a, b) = a^2 - b^2 + G_{\text{Re}} \cdot a - G_{\text{Im}} \cdot b + H_{\text{Re}} = \left(a + \frac{1}{2} G_{\text{Re}}\right)^2 - \left(b + \frac{1}{2} G_{\text{Im}}\right)^2 - C, \]
\[ E_{\text{Im}}(a, b) = 2a \cdot b + G_{\text{Im}} \cdot a + G_{\text{Re}} \cdot b + H_{\text{Im}} = 2 \left(a + \frac{1}{2} G_{\text{Re}}\right) \cdot \left(b + \frac{1}{2} G_{\text{Im}}\right) - D. \]
We substitute $a = a - \frac{1}{2} G_{\text{Re}}$ and $b = b - \frac{1}{2} G_{\text{Im}}$ in (38) and we obtain
\[ \downarrow z^2 = C + iD, \ \mathcal{H} \downarrow \mathbf{K}[v, a, b] \]
with monoid part $S$, degree in $w$ bounded by $\delta_w + \delta_z \deg_w G$ and degree in $(a, b)$ bounded by $\delta_z$.

Finally we apply to (39) the weak inference
\[ \vdash \exists z [ z^2 = C + iD ] \]
By Lemma 2.3.3, we obtain
\[ \downarrow \mathcal{H} \downarrow \mathbf{K}[v] \]
with monoid part $S^8$ and degree in $w$ bounded by $8\delta_w + (40 + 24\delta_z) \max\{ \deg_w G, \deg_w H \}$, which serves as the final incompatibility.
2.4 Identical polynomials

We introduce the notation we use to deal with polynomial identities in the weak inference context.

**Notation 2.4.1 (Identical Polynomials)** Let \( P(y) = \sum_{0 \leq h \leq p} C_h \cdot y^h, Q(y) = \sum_{0 \leq h \leq p} D_h \cdot y^h \in K[u, y]. \)

The expression \( P(y) \equiv Q(y) \) is an abbreviation for

\[
\bigwedge_{0 \leq h \leq p} C_h = D_h.
\]

Note that \( P(y) \equiv Q(y) \) is a conjunction of polynomial equalities in \( K[u] \).

We illustrate the use of this notation with a few lemmas.

**Lemma 2.4.2** Let \( P(y), Q(y) \in K[u, y] \) with \( \deg_y P = \deg_y Q \). Then

\[
P(y) \equiv Q(y), \quad Q(y) > 0 \quad \Rightarrow \quad P(y) > 0.
\]

If we have an initial incompatibility in \( K[v] \) where \( v \supset (u, y) \), with monoid part \( S \cdot P(y)^{2e} \) and degree in \( w \subset v \) bounded by \( \delta_w \), the final incompatibility has monoid part \( S \cdot Q(y)^{2e} \) and degree in \( w \) bounded by

\[
\delta_w + \max\{1, 2e\} \{ \max\{\deg_w P(y), \deg_w Q(y)\} - \deg_w P(y)\}.
\]

**Proof.** Follows from Lemmas 2.1.2 (item 5) and 2.1.7. \( \square \)

**Lemma 2.4.3** Let \( P(y) \in K[u, y] \) with \( \deg_y P \geq 2 \). Then

\[
P(t_1) = 0, \quad \text{Quot}(P, y - t_1)(t_2) = 0 \quad \Rightarrow \quad P(y) \equiv (y - t_1) \cdot (y - t_2) \cdot \text{Quot}(P, y - t_1)(y - t_2)).
\]

If we have an initial incompatibility in \( K[v] \) where \( v \supset (u, t_1, t_2) \) with monoid part \( S \) and degree in \( w \subset v \) bounded by \( \delta_w \), the final incompatibility has the same monoid part and degree in \( w \) bounded by

\[
\delta_w + \max\{\deg_w t_1 \cdot \text{Quot}(P, y - t_1)(t_2), \deg_w P(t_1)\} - \deg_w (-t_1 \cdot \text{Quot}(P, y - t_1)(t_2) + P(t_1)).
\]

**Proof.** Because of the identity in \( K[u, t_1, t_2, y] \)

\[
P(y) = (y - t_1) \cdot (y - t_2) \cdot \text{Quot}(P, y - t_1)(y - t_2) + \text{Quot}(P, y - t_1)(t_2) \cdot y - t_1 \cdot \text{Quot}(P, y - t_1)(t_2) + P(t_1),
\]

the lemma follows from Lemma 2.1.8. \( \square \)

**Lemma 2.4.4** Let \( P(y) \in K[u, y] \) with \( \deg_y P \geq 2 \). Then

\[
P(z) = 0, \quad b \neq 0 \quad \Rightarrow \quad P(y) \equiv ((y - a)^2 + b^2) \cdot \text{Quot}(P, (y - a)^2 + b^2).
\]

If we have an initial incompatibility in \( K[v] \) where \( v \supset (u, a, b) \) with monoid part \( S \) and degree in \( w \subset v \) bounded by \( \delta_w + \deg_w b^2 \) and degree in \( w \) bounded by \( \delta_w + \deg_w P \).

**Proof.** Because of the identity in \( K[u, a, b, y] \)

\[
P(y) = ((y - a)^2 + b^2) \cdot \text{Quot}(P, (y - a)^2 + b^2) + \frac{P_{\text{Im}}(a, b)}{b} y + \frac{b \cdot P_{\text{Re}}(a, b) - a \cdot P_{\text{Im}}(a, b)}{b},
\]

the initial incompatibility is of type

\[
S + N + Z + W_1 \frac{P_{\text{Im}}(a, b)}{b} + W_2 \frac{b \cdot P_{\text{Re}}(a, b) - a \cdot b \cdot P_{\text{Im}}(a, b)}{b} = 0
\]

with \( S \in M(\mathbb{H}_2), N \in M(\mathbb{H}_2), Z \in 2(\mathbb{H}_2) \) and \( W_1, W_2 \in K[v], \) where \( \mathbb{H} \) is a system of sign conditions in \( K[v] \).

We multiply (40) by \( b^2 \) and we obtain an incompatibility

\[
\downarrow b \neq 0, \quad b \cdot P_{\text{Im}}(a, b) = 0, \quad b^2 \cdot P_{\text{Re}}(a, b) - a \cdot b \cdot P_{\text{Im}}(a, b) = 0, \quad \mathbb{H} \downarrow_{K[v]} \]

(41)

with monoid part \( S \cdot b^2 \) and degree in \( w \) bounded by \( \delta_w + \deg_w b^2 \).

Finally we apply to (41) the weak inference

\[
P(z) = 0 \quad \Rightarrow \quad b \cdot P_{\text{Im}}(a, b) = 0, \quad b^2 \cdot P_{\text{Re}}(a, b) - a \cdot b \cdot P_{\text{Im}}(a, b) = 0.
\]

By Lemma 2.1.8, we obtain an incompatibility

\[
\downarrow P(z) = 0, \quad b \neq 0, \quad \mathbb{H} \downarrow_{K[v]} \]

with the same monoid part and, after some analysis, degree in \( w \) bounded by \( \delta_2 + \deg_w b^2 + \deg_w P \), which serves as the final incompatibility.
Notation 2.4.5 We denote
\[ R(z, z') = \text{Res}_y((y - a)^2 + b^2, (y - a')^2 + b'^2) \]
where \( \text{Res}_y \) is the resultant polynomial in the variable \( y \). Note that
\[ R(z, z') = ((a - a')^2 + (b - b')^2) \cdot ((a - a')^2 + (b + b')^2). \]

Lemma 2.4.6
\[ R(z, z') = 0 \vdash (y - a)^2 + b^2 \equiv (y - a')^2 + b'^2. \]
If we have an initial incompatibility in \( \mathbf{K}[v] \) where \( v \supset (a, b, a', b') \) with monoid part \( S \) and degree in \( w \subset v \) bounded by \( \delta_w \), the final incompatibility has monoid part \( S^4 \) and degree in \( w \) bounded by
\[ 4\left(\delta_w + \max\{\deg w a - a', \deg w b - b'\} - \min\{\deg w a - a', \deg w b - b'\}\right). \]

Proof. Consider the initial incompatibility
\[ \downarrow a - a' = 0, a^2 + b^2 - a'^2 - b'^2 = 0, \mathcal{H} \downarrow_{\mathbf{K}[v]} \quad (42) \]
where \( \mathcal{H} \) is a system of sign conditions in \( \mathbf{K}[v] \). On the one hand, we successively apply to (42) the weak inferences
\[ a^2 - a'^2 = 0, b^2 - b'^2 = 0 \vdash a^2 + b^2 - a'^2 - b'^2 = 0, \]
\[ a - a' = 0 \vdash a^2 - a'^2 = 0, \]
\[ b - b' = 0 \vdash b^2 - b'^2 = 0, \]
\[ (a - a')^2 + (b - b')^2 = 0 \vdash a - a' = 0, b - b' = 0. \]

By Lemmas 2.1.5 (item 14), 2.1.2 (item 5) and 2.1.14 we obtain an incompatibility
\[ \downarrow (a - a')^2 + (b - b')^2 = 0, \mathcal{H} \downarrow_{\mathbf{K}[v]} \quad (43) \]
with monoid part \( S^2 \) and degree in \( w \) bounded by \( 2(\delta_w + \max\{\deg w a - a', \deg w b - b'\} - \min\{\deg w a - a', \deg w b - b'\}) \). On the other hand, in a similar way we obtain from (42) an incompatibility
\[ \downarrow (a - a')^2 + (b + b')^2 = 0, \mathcal{H} \downarrow_{\mathbf{K}[v]} \quad (44) \]
with the same monoid part and degree bound. Since
\[ R(z, z') = ((a - a')^2 + (b - b')^2) \cdot ((a - a')^2 + (b + b')^2), \]
the proof is finished by applying to (43) and (44) the weak inference
\[ R(z, z') = 0 \vdash (a - a')^2 + (b - b')^2 = 0 \lor (a - a')^2 + (b + b')^2 = 0. \]

By Lemma 2.1.12, we obtain an incompatibility
\[ \downarrow R(z, z') = 0, \mathcal{H} \downarrow_{\mathbf{K}[v]} \]
with monoid part \( S^4 \) and degree in \( w \) bounded by
\[ 4\left(\delta_w + \max\{\deg w a - a', \deg w b - b'\} - \min\{\deg w a - a', \deg w b - b'\}\right), \]
which serves as the final incompatibility. \( \square \)
2.5 Matrices

We introduce the notation we use to deal with matrix identities in the weak inference context.

Notation 2.5.1 (Identical Matrices) Let $A = (A_{ij})_{1 \leq i,j \leq p}$, $B = (B_{ij})_{1 \leq i,j \leq p} \in K[u]^{p \times p}$. The expression $A \equiv B$ is an abbreviation for

$$\bigwedge_{1 \leq i,j \leq p} A_{ij} = B_{ij}.$$  

We denote by $\mathbf{0}$ the matrix with all its entries equal to 0.

We illustrate the use of this notation with two lemmas.

Lemma 2.5.2 Let $A, B \in K[u]^{p \times p}$. Then

$$A \equiv 0, \ B \equiv 0 \quad \vdash \quad A + B \equiv 0.$$  

If we have an initial incompatibility in $K[v]$ where $v \supset u$ with monoid part $S$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has the same monoid part and degree in $w$ bounded by

$$\delta_w + \max \left\{ \max \{ \deg_w A_{ij}, \deg_w B_{ij} \} - \deg_w A_{ij} + B_{ij} \mid 1 \leq i \leq p, 1 \leq j \leq p \right\}.$$  

Proof. Follows from Lemma 2.1.8.

Lemma 2.5.3 Let $A, B, C \in K[u]^{p \times p}$. Then

$$A \equiv 0 \quad \vdash \quad B \cdot A \cdot C \equiv 0.$$  

If we have an initial incompatibility in $K[v]$ where $v \supset u$ with monoid part $S$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has the same monoid part and degree in $w$ bounded by $\delta_w + \deg_w B + \deg_w A + \deg_w C$.

Proof. Follows from Lemma 2.1.8.

3 Intermediate Value Theorem

In this section we prove a weak existence version of the Intermediate Value Theorem for polynomials (Theorem 3.1.3) and we apply it to prove the weak existence of a real root for a polynomial of odd degree (Theorem 3.2.1).

The only result extracted from Section 3 used in the rest of the paper is Theorem 3.2.1 (Real Root of an Odd Degree Polynomial as a weak existence), which is used only in Section 4.

3.1 Intermediate Value Theorem

We define the following auxiliary function, which plays a key role in the estimates of the growth of degrees in the construction of incompatibilities related to the Intermediate Value Theorem.

Definition 3.1.1 Let $g_1 : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$,

$$g_1\{k,p\} = 2^{3 \cdot 2^k} p^{k+1}.$$  

We extend the definition of $g_1$ with $g_1\{-1,0\} = 2$.

Technical Lemma 3.1.2 For every $(k,p) \in \mathbb{N} \times \mathbb{N}$,

$$4pg_1\{k-1,k\} g_1\{k,p\} \leq g_1\{k+1,p\}.$$  

Proof. Easy.

Theorem 3.1.3 (Intermediate Value Theorem as a weak existence) Let $P(y) = \sum_{0 \leq h \leq p} C_h \cdot y^h \in K[u,y]$. Then

$$\exists (t_1,t_2) \ [ C_p \neq 0, \ P(t_1) \cdot P(t_2) \leq 0 ] \quad \vdash \quad \exists t \ [ P(t) = 0 ].$$  

If we have an initial incompatibility in $K[v,t]$ where $v \supset u$ and $t,t_1,t_2 \not\in v$, with monoid part $S$, degree in $w \subset v$ bounded by $\delta_w$ and degree in $t$ bounded by $\delta_t$, the final incompatibility has monoid part $S_e \cdot C_p^{2f}$ with $e \leq g_1\{p-1,p\}$, $f \leq g_1\{p-1,p\} \delta_t$, degree in $w$ bounded by $g_1\{p-1,p\} (\delta_w + \delta_t \deg_w P)$ and the degree in $(t_1,t_2)$ bounded by $g_1\{p-1,p\} \delta_t$. 

Note that the degree estimates obtained are doubly exponential in the degree of $P(y)$ with respect to $y$.

The proof is based on an induction on the degree of $P(y)$ with respect to $y$, which is an adaptation of the proof by Artin [1] that if a field is real (i.e. -1 is not a sum of squares) its extension by an irreducible polynomial of odd degree is also real.

**Proof:** Consider the initial incompatibility in $K[v, t]$

\[ S + \sum_i \omega_i V_i^2(t) \cdot N_i + \sum_j W_j(t) \cdot Z_j + Q(t) \cdot P(t) = 0 \]  

(1)

with $S \in \mathcal{M}(H_2^v), \omega_i \in K, \omega_i > 0, V_i(t) \in K[v, t]$ and $N_i \in \mathcal{M}(H_2)$ for every $i$, $W_j(t) \in K[v, t]$ and $Z_j \in H_z$ for every $j$ and $Q(t) \in K[v, t]$, where $H = [H_\mathfrak{p}, H_\mathfrak{g}, H_w]$ is a system of sign conditions in $K[v]$.

The proof is done by induction on $p$. For $p = 0$, $P(t) = C_0$ and $P(t_1) \cdot P(t_2) = C_0^2$. We evaluate $t = 0$ in (1), we pass the term $Q(0) \cdot C_0$ to the right hand side, we square both sides and we pass $Q^2(0) \cdot C_0^2$ back to the left hand side. We take the result as the final incompatibility.

Suppose now $p \geq 1$. If $Q(t)$ is the zero polynomial, we evaluate $t = 0$ in (1) and we take the result as the final incompatibility. From now, we suppose that $Q(t)$ is not the zero polynomial and therefore, $\delta_t \geq p$. We denote by $\delta_t$ the smallest even number greater than or equal to $\delta_t$. For every $i$, let $V_i(t) \in K[v, t]$ be the remainder of $C_p^{\delta_t} \cdot V_i(t)$ in the division by $P(t)$ considering $t$ as the main variable; then $\deg w V_i(t) \leq \deg w V_i(t) + \frac{1}{2} \delta_t \deg w P$.

Similarly, for every $j$, let $W_j(t) \in K[v, t]$ be the remainder of $C_p^{\delta_t} \cdot W_j(t)$ in the division by $P(t)$ considering $t$ as the main variable; then $\deg w W_j(t) \leq \deg w W_j(t) + \delta_t \deg w P$.

We multiply (1) by $C_p^{\delta_t}$ and we deduce that exists $Q'(t) \in K[v, t]$ such that

\[ S \cdot C_p^{\delta_t} + \sum_i \omega_i V_i^2(t) \cdot N_i + \sum_j W_j(t) \cdot Z_j + Q'(t) \cdot P(t) = 0. \]  

(2)

Since the degree in $w$ of $S \cdot C_p^{\delta_t} \cdot V^2(t) \cdot N_i$ for every $i$ and $W_j(t) \cdot Z_j$ for every $j$ is bounded by $\delta_w + \delta_t \deg w P$, the degree in $w$ of $Q'(t) \cdot P(t)$ is also bounded by the same quantity.

If $Q'(t)$ is the zero polynomial, we evaluate $t = 0$ in (2) and take the result as the final incompatibility. In particular, for $p = 1$, $\deg w V_i(t) = 0$ for every $i$ and $\deg w W_j(t) = 0$ for every $j$; looking at the degree in $t$ in (2), we deduce that $Q'(t)$ is the zero polynomial and we are done.

From now on, we suppose $p \geq 2$ and that $Q'(t)$ is not the zero polynomial. Let $q = \deg q Q'(t)$; looking again at the degree in $t$ in (2) we have $q \leq p - 2$. Let $Q'(t) = \sum_{0 \leq \ell \leq q} D_\ell \cdot t^\ell$ and, for $0 \leq k \leq q + 1$, $Q_{k-1}(t) = \sum_{0 \leq \ell \leq k-1} D_\ell \cdot t^\ell$. We will prove, by a new induction on $k$, that for $0 \leq k \leq q + 1$, we have

\[ C_p \neq 0, \ Q_{k-1}^p(1) \cdot Q_{k-1}^p(2) \leq 0, \ \bigwedge_{0 \leq \ell \leq q} D_\ell = 0, \ H_{K[v, t_1, t_2]} \]  

of type

\[ S^{ek} \cdot C_p^{2\ell_k} + N_{k, 1}(t_1, t_2) - N_{k, 2}(t_1, t_2) \cdot Q_{k-1}(t_1) \cdot Q_{k-1}(t_2) + Z_{k}(t_1, t_2) + \sum_{0 \leq \ell \leq q} D_\ell \cdot R_{k, \ell}(t_1, t_2) = 0 \]  

(3)

with $N_{k, 1}(t_1, t_2), N_{k, 2}(t_1, t_2) \in \mathcal{N}(H_2)_{K[v, t_1, t_2]}$, $Z_{k}(t_1, t_2) \in \mathcal{P}(H_w)_{K[v, t_1, t_2]}$, $R_{k, \ell}(t_1, t_2) \in K[v, t_1, t_2]$ for every $\ell$, $\epsilon_k \leq \ell_k \{k, p\} - 2$, $f_k \leq \{g_1(k, p) - 4 \delta_t\}$, degree in $w$ bounded by $(g_1(k, p) - 4)(\delta_w + \delta_t \deg w P)$ and degree in $(t_1, t_2)$ bounded by $(g_1(k, p) - 4) \delta_t$.

For $k = 0$, we simply evaluate $t = 0$ in (2). Suppose now that we have an equation like (3) for some $0 \leq k \leq q$. We will obtain an equation like (3) for $k + 1$.

- We rewrite (2) in this way:

\[ S \cdot C_p^{\delta_t} + \sum_i \omega_i V_i(t)^2 \cdot N_i + \sum_j W_j(t) \cdot Z_j + P(t) \cdot \sum_{k+1 \leq \ell \leq q} D_\ell \cdot t^\ell + P(t) \cdot Q_{k}^p(t) = 0 \]

to obtain

\[ C_p \neq 0, \ \bigwedge_{k+1 \leq \ell \leq q} D_\ell = 0, \ Q_{k}^p(t) = 0, \ H_{K[v, t]} \]  

(4)
with degree in $w$ bounded by $\delta_w + \delta t \deg_w P$ and degree in $t$ bounded by $2(p - 1)$. Since $k < p$, by the inductive hypothesis on $p$, we have a procedure to obtain from (4) an incompatibility

\[
\begin{array}{c}
C_p \neq 0, \quad D_k \neq 0, \quad Q'_k(t_1) \cdot Q'_k(t_2) \leq 0, \quad \bigwedge_{k+1 \leq \ell \leq q} D_\ell = 0, \quad \mathcal{H}
\end{array}
\]

with monoid part $S^e \cdot C^e_y \cdot D^2_k$ with $e' \leq g_1\{k - 1, k\}$, $f' \leq 2g_1\{k - 1, k\}(p - 1)$, degree in $w$ bounded by $g_1\{k - 1, k\}(\delta_w + \delta t \deg_w P + 2(p - 1)(\delta_w + \delta t \deg_w P)) = g_1\{k - 1, k\}(2p - 1)(\delta_w + \delta t \deg_w P)$ and degree in $(t_1, t_2)$ bounded by $2g_1\{k - 1, k\}(p - 1)$.

- On the other hand, we substitute

\[
Q'_{k-1}(t_1) \cdot Q'_{k-1}(t_2) = Q'_k(t_2) \cdot Q'_k(t_2) + D_k \cdot (-t'_1 \cdot Q'_k(t_2) - t'_2 \cdot Q'_k(t_1) + D_k \cdot t'_1 \cdot t'_2)
\]

in (3) and we obtain

\[
\begin{array}{c}
C_p \neq 0, \quad Q'_k(t_1) \cdot Q'_k(t_2) \leq 0, \quad \bigwedge_{k \leq \ell \leq q} D_\ell = 0, \quad \mathcal{H}
\end{array}
\]

with monoid part $S^e \cdot C^e_y \cdot D^2_k$, degree in $w$ bounded by $g_1\{k, p\}(\delta_w + \delta t \deg_w P)$ and degree in $(t_1, t_2)$ bounded by $(g_1\{k, p\} - 4)\delta_t + 2k$.

- Finally we apply to (5) and (6) the weak inference

\[\vdash D_k \neq 0 \lor D_k = 0.\]

By Lemma 2.1.16, we obtain

\[
\begin{array}{c}
C_p \neq 0, \quad Q'_k(t_1) \cdot Q'_k(t_2) \leq 0, \quad \bigwedge_{k+1 \leq \ell \leq q} D_\ell = 0, \quad \mathcal{H}
\end{array}
\]

with monoid part $S^{e_k+1} \cdot C^{2f_k} \cdot C^2_{k+1}$ with $e_{k+1} = e' + 2e_k f'$ and $f_{k+1} = \frac{1}{2} \delta t e' + 2f_k f'$, degree in $w$ bounded by $g_1\{k - 1, k\}(2p - 1)(\delta_w + \delta t \deg_w P) + 2f' g_1\{k, p\}(\delta_w + \delta t \deg_w P)$ and degree in $(t_1, t_2)$ bounded by $2g_1\{k - 1, k\}(p - 1) + 2f'((g_1\{k, p\} - 4)\delta_t + 2k)$. The bounds $e_{k+1} \leq g_1\{k + 1, p\} - 2$ and $f_{k+1} \leq (g_1\{k + 1, p\} - 2)\delta_t$ follow using Lemma 3.1.2 since

\[g_1\{k - 1, k\} + 4(g_1\{k, p\} - 2)g_1\{k - 1, k\}(p - 1) \leq 4pg_1\{k - 1, k\}g_1\{k, p\} - 2 \leq g_1\{k + 1, p\} - 2.
\]

The degree bounds also follow using Lemma 3.1.2 since

\[2g_1\{k - 1, k\}(2p - 1) + 4g_1\{k - 1, k\}g_1\{k, p\}(p - 1) \leq 4pg_1\{k - 1, k\}g_1\{k, p\} - 4 \leq g_1\{k + 1, p\} - 4
\]

and

\[2g_1\{k - 1, k\}(p - 1) + 4g_1\{k - 1, k\}((g_1\{k, p\} - 4)\delta_t + 2k)(p - 1) \leq
\]

\[4pg_1\{k - 1, k\}g_1\{k, p\} - 4)\delta_t \leq
\]

\[(g_1\{k + 1, p\} - 4)\delta_t.
\]

So, for $k = q + 1$, we have

\[S^{e_{q+1}} \cdot C^{2f_{q+1}} \cdot N_{q+1,1}(t_1, t_2) + Z_{q+1}(t_1, t_2) = N_{q+1,2}(t_1, t_2) \cdot Q'(t_1) \cdot Q'(t_2).
\]

On the other hand, substituting $t = t_1$ and $t = t_2$ in (2) we have

\[S \cdot C^\delta_p + \sum_i \omega_i \tilde{V}_i(t_1)^2 \cdot N_i + \sum_j \tilde{W}_j(t_1) \cdot Z_j = -Q'(t_1) \cdot P(t_1)
\]

and

\[S \cdot C^\delta_p + \sum_i \omega_i \tilde{V}_i(t_2)^2 \cdot N_i + \sum_j \tilde{W}_j(t_2) \cdot Z_j = -Q'(t_2) \cdot P(t_2).
\]
Multiplying (7), (8) and (9) and passing terms to the left hand side we obtain

\[ S_{q+1+\gamma}^2 \cdot C_p^2(t_{i+1}^2 + \delta_t) + N(t_1, t_2) - N_{q+1,2}(t_1, t_2) \cdot Q^2(t_1) \cdot Q^2(t_2) \cdot P(t_2) \cdot P(t_2) + Z(t_1, t_2) = 0 \]  

(10)

for some \( N(t_1, t_2) \in \mathcal{N}(H_{\gamma})_{K[v, t_1, t_2]} \) and \( Z(t_1, t_2) \in \mathcal{F}(H_{\gamma})_{K[v, t_1, t_2]} \). Equation (10) serves as the final incompatibility, taking into account that \( e_{q+1} + 2 \leq g_1\{q + 1, p\} \), \( f_{q+1} + \delta_t \leq g_1\{q + 1, p\} \delta_t \), the degree in \( w \) is bounded by \( (g_1\{q + 1, p\} - 4) (\delta_w + \delta_t \deg_w P) + 2(\delta_w + \delta_t \deg_w P) \leq g_1\{q + 1, p\} (\delta_w + \delta_t \deg_w P) \), the degree in \( (t_1, t_2) \) is bounded by \( (g_1\{q + 1, p\} - 4) \delta_t + 4p - 4 \leq g_1\{q + 1, p\} \delta_t \) and \( g_1\{q + 1, p\} \leq g_1\{p - 1, p\} \).

3.2 Real root of a polynomial of odd degree

Now we prove the weak existence of a real root for a monic polynomial of odd degree as a consequence of Theorem 3.1.3.

**Theorem 3.2.1 (Real Root of an Odd Degree Polynomial as a weak existence)** Let \( p \) be an odd number and \( P(y) = y^p + \sum_{0 \leq h \leq p - 1} C_h \cdot y^h \in K[u, y] \). Then

\[ \vdash \exists t \ [ P(t) = 0 ] \]

If we have an initial incompatibility in \( K[v, t] \) where \( v \subseteq u \) and \( t \notin v \), with monoid part \( S \), degree in \( w \subset v \) bounded by \( \delta_w \) and degree in \( t \) bounded by \( \delta_t \), the final incompatibility has monoid part \( S^e \) with \( e \leq g_1\{p - 1, p\} \) and degree in \( w \) bounded by \( 3g_1\{p - 1, p\} (\delta_w + \delta_t \deg_w P) \) (see Definition 3.1.1).

To prove Theorem 3.2.1 we first give in Lemma 3.2.2, for a monic polynomial of odd degree, a real value where it is positive and a real value where it is negative. Then, we apply the weak existence version of the Intermediate Value Theorem from Theorem 3.1.3.

**Lemma 3.2.2** Let \( p \) be an odd number, \( P(y) = y^p + \sum_{0 \leq h \leq p - 1} C_h \cdot y^h \in K[u, y] \) and \( E = p + \sum_{0 \leq h \leq p - 1} C_h^2 \in K[u] \). Then both \( P(E) \) and \(-P(−E)\) are sums of squares in \( K[u] \) multiplied by positive elements in \( K \) plus a positive element in \( K \).

**Proof.** We only prove the claim for \( P(E) \) and the respective claim for \(-P(−E)\) follows by considering the polynomial \(-P(−y)\).

We consider the Horner polynomials of \( P \), Hor_0(P) = 1, Hor_i(P) = C_{p−i} + y \cdot Hor_{i−1}(P) \) for \( 1 \leq i \leq p \). We will prove by induction on \( i \) that for \( 1 \leq i \leq p \),

\[ \text{Hor}_i(P)(E) = p - i + \sum_{0 \leq h \leq p−i−1} C_h^2 + N_i + \omega_i \]

(11)

with \( N_i \in \mathcal{N}(\emptyset) \) and \( \omega_i \) a positive element in \( K \).

For \( i = 1 \) we have

\[ \text{Hor}_1(P)(E) = C_{p−1} + p + \sum_{0 \leq h \leq p−1} C_h^2 = p - 1 + \sum_{0 \leq h \leq p−2} C_h^2 + \left( C_{p−1} + \frac{1}{2} \right)^2 + \frac{3}{4}. \]

Suppose now that we have an equation like (11) for some \( 1 \leq i - 1 \leq p - 1 \). Then we have

\[ \text{Hor}_i(P)(E) = C_{p−i} + \left( p + \sum_{0 \leq h \leq p−i} C_h^2 \right) \cdot \left( p - i + 1 + \sum_{0 \leq h \leq p−i} C_h^2 + N_{i−1} + \omega_{i−1} \right) = p - i + \sum_{0 \leq h \leq p−i−1} C_h^2 + N_i + \omega_i \]

by taking

\[ N_i = \left( p - 1 + \sum_{0 \leq h \leq p} C_h^2 \right) \cdot \left( p - i + 1 + \sum_{0 \leq h \leq p−i} C_h^2 + N_{i−1} + \omega_{i−1} \right) + N_{i−1} + \left( C_{p−i} + \frac{1}{2} \right)^2 \]

and \( \omega_i = \omega_{i−1} + \frac{3}{4} \).

Finally, since \( \text{Hor}_p(P) = P \), the claim follows by considering equation (11) for \( i = p \).\[\square\]

**Proof of Theorem 3.2.1**: We apply to the initial incompatibility the weak inference

\[ \exists(t_1, t_2) [ P(t_1) \cdot P(t_2) \leq 0 ] \vdash \exists t [ P(t) = 0 ] \]

By Theorem 3.1.3, we obtain an incompatibility with monoid part \( S^e \) with \( e \leq g_1\{p - 1, p\} \), degree in \( w \) bounded by \( g_1\{p - 1, p\} (\delta_w + \delta_t \deg_w P) \) and degree in \( (t_1, t_2) \) bounded by \( g_1\{p - 1, p\} \delta_t \). Then we simply substitute \( t_1 = E \) and \( t_2 = -E \) where \( E \) is defined as in Lemma 3.2.2. The degree bound follows easily.\[\square\]
4 Fundamental Theorem of Algebra

In this section, we follow the approach of a famous algebraic proof of the Fundamental Theorem of Algebra due to Laplace’s, which is based on an induction on the power of 2 appearing in the degree of the polynomial, and we give a weak existence form of the result (Theorem 4.1.8).

We apply Theorem 4.1.8 to obtain a weak disjunction on the possible decompositions of a polynomial in irreducible real factors according to the number of real and complex roots (Theorem 4.2.4). Finally we obtain a weak disjunction on the possible decompositions of a polynomial in irreducible real factors taking into account multiplicities (Theorem 4.3.5).

The only result extracted from Section 4 used in the rest of the paper is Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a weak existence), which is used only in Section 6.

4.1 Fundamental Theorem of Algebra

In order to prove a weak existence version of the Fundamental Theorem of Algebra in Theorem 4.1.8, we need some auxiliary notation, definitions and results.

Notation 4.1.1 For \( p \in \mathbb{N}_+ \), we denote by \( r(p) \) the biggest nonnegative integer \( r \) such that \( 2^r \) divides \( p \) and by \( n(p) \) the combinatorial number \( \binom{p}{2} \).

Laplace’s proof of the Fundamental Theorem of Algebra [36] is very well known (see for example [4]). It is based on an inductive reasoning on \( r(p) \), where \( p \) is the degree of the polynomial \( P \in \mathbb{R}[X] \) for which the existence of a complex root is being proved. The result is true for a polynomials of odd degree for which \( r(p) = 0 \). An auxiliary polynomials of degree \( n(p) \) is constructed, and has a complex root by induction, taking into account that \( r(n(p)) = r(p) - 1 \). A complex root of \( P \) is then produced by solving a quadratic equation.

Following Laplace’s approach, we define auxiliary polynomials.

Definition 4.1.2 Let \( p \geq 1 \), \( c = (c_0, \ldots, c_{p-1}) \), \( y' = (y'_{0}, \ldots, y'_{n(p)}) \) and \( y'' = (y''_{0}, \ldots, y''_{n,2}, \ldots, y''_{1,n(p)}, \ldots, y''_{n(p)-1,n(p)}) \) be vectors of variables. We denote by \( \mathbb{K}(c) \) the algebraic closure of \( \mathbb{K}(c) \). We consider

- \( P(c,y) = y^p + \sum_{0 \leq h \leq p-1} c_h \cdot y^h \in \mathbb{K}[c,y] \),
- \( Q_k(c,y_k) = \prod_{1 \leq i < j \leq p} (y_k^i - k(t_i + t_j) - t_i t_j) \in \mathbb{K}[c,y_k] \)

where \( t_1, \ldots, t_p \in \mathbb{K}(c) \) are the roots of \( P(c,y) \) considering \( y \) as the main variable,

- \( R_{k,\ell}(y_{k}, y_{\ell}, y_{k,\ell}) = y_{\ell}^2 - y_{k}^2 - k y_{k} y_{\ell} + \frac{\ell y_{k}^\ell - k y_{\ell}^k}{\ell - k} \in \mathbb{K}[y_{k}, y_{\ell}, y_{k,\ell}] \).

Remark 4.1.3 For \( 0 \leq k \leq n(p) \), \( p - 1 \) of the factors in the definition of \( Q_k \) have degree in \( t_1 \) equal to 1 and the remaining factors have degree in \( t_1 \) equal to 0. From this, it can be deduced that \( \deg_{c} Q_k \leq p - 1 \) and also that \( \deg_{c} Q_{k} = n(p) \) (see [3, Section 2.1]).

Lemma 4.1.4 We denote by \( \mathbb{K} \) the algebraic closure of \( \mathbb{K} \). For any \( \gamma \in \mathbb{K}^p, \psi' \in \mathbb{K}^{n(p)+1} \) and \( \psi'' \in \mathbb{K}^{n(p)+1} \), if \( Q_k(\gamma, \psi_k') = 0 \) for \( 0 \leq k \leq n(p) \) and \( R_{k,\ell}(\psi_k', \psi_\ell', \psi_{k,\ell}') = 0 \) for \( 0 \leq k < \ell \leq n(p) \), then

\[
\prod_{0 \leq k < \ell \leq n(p)} P(\gamma, \psi_{k,\ell}') = 0.
\]

Proof. For every \( 0 \leq k \leq n(p) \), the condition \( Q_k(\gamma, \psi_k') = 0 \) implies that there exists a pair of roots \( \tau_k, \tau_k' \in \mathbb{K} \) of \( P(\gamma, y) \) such that \( \psi_k' = k(\tau_k + \tau_k') + \tau_k \tau_k' \). Since there are at most \( n(p) \) different pairs of roots of \( P(\gamma, y) \), by the pigeon hole principle there exist indices \( (k, \ell) \), \( 0 \leq k < \ell \leq n(p) \) and roots \( \tau, \tau' \in \mathbb{K} \) of \( P(\gamma, y) \) such that \( \psi_k' = k(\tau + \tau') + \tau \tau' \) and \( \psi_j' = \ell(\tau + \tau') + \tau \tau' \). Then, we have

\[
\tau + \tau' = \frac{\psi_k' - \psi_j'}{\ell - k}, \quad \tau \tau' = \frac{\ell \psi_k' - k \psi_j'}{\ell - k},
\]

so that the two roots of \( R_{k,\ell}(\psi_k', \psi_\ell', \psi_{k,\ell}') = \tau \) and \( \tau' \) and therefore \( \psi_{k,\ell}' \) is a root of \( P(\gamma, y) \), what proves the claim. \( \square \)
The preceding statement is transformed into an algebraic identity using Effective Nullstellensatz ([30, Theorem 1.3]).

**Lemma 4.1.5** There is an identity in $\mathbb{K}[c, y', y'']$

\[
\prod_{0 \leq k < \ell \leq n(p)} P(c, y''_{k, \ell})^m = \sum_{0 \leq k < \ell \leq n(p)} W_k(c, y', y'') \cdot Q_k(c, y'_k) + \sum_{0 \leq k < \ell \leq n(p)} W_{k, \ell}(c, y', y'') \cdot R_{k, \ell}(y'_k, y''_\ell, y''_{k, \ell})
\]

such that all the terms have degree in $(c, y', y'')$ bounded by $n(p)^{n(p)+1}2^{(n(p)+1)/2} + (n(p)+1)p$.

**Proof.** Consider an auxiliary variable $\bar{y}$ and the polynomials $P^{[h]}(c, y, \bar{y}), Q^{[h]}(c, y'_k, \bar{y})$ and $R^{[h]}(y'_k, y''_\ell, y''_{k, \ell}, \bar{y})$ obtained respectively from $P(c, y), Q(c, y'_k)$ and $R(y'_k, y''_\ell, y''_{k, \ell})$ by homogenization.

It is clear from Lemma 4.1.4 that for any $\gamma \in \overline{\mathbb{K}}^p$, $\psi' \in \overline{\mathbb{K}}^{(n(p)+1)}$, $\psi'' \in \overline{\mathbb{K}}^{(n(p)+1)}$ and $\bar{\psi} \in \overline{\mathbb{K}}$, if $Q^{[h]}(\gamma, \psi'_k, \bar{\psi}) = 0$ for $0 \leq k \leq n(p)$ and $R^{[h]}(\psi'_k, \psi''_\ell, \psi''_{k, \ell}, \bar{\psi}) = 0$ for $0 \leq k < \ell \leq n(p)$, then

\[
\bar{\psi} \prod_{0 \leq k < \ell \leq n(p)} P^{[h]}(\gamma, \psi''_k, \bar{\psi}) = 0.
\]

Following [30, Theorem 1.3], we have an identity

\[
\bar{y}^m \prod_{0 \leq k < \ell \leq n(p)} P^{[h]}(c, y''_{k, \ell}, \bar{y})^m = \sum_{0 \leq k < \ell \leq n(p)} W^{[h]}(c, y', y'', \bar{y}) \cdot Q^{[h]}(c, y'_k, \bar{y}) + \sum_{0 \leq k < \ell \leq n(p)} W^{[h]}(c, y', y'', y'') \cdot R^{[h]}(y'_k, y''_\ell, y''_{k, \ell}, \bar{y})
\]

with $m = n(p)^{n(p)+1}2^{(n(p)+1)/2}$ and $W^{[h]}$ and $W^{[h]}$ homogeneous polynomials such that all the terms in (1) have degree in $(c, y', y'', \bar{y})$ equal to $m(1 + ((n(p)+1)/2)p)$. The lemma follows by evaluating $\bar{y} = 1$ in (1).

The following function plays a key role in the estimates of the degrees in the weak inference version of the Fundamental Theorem of Algebra.

**Definition 4.1.6** Using Notation 4.1.1, let $g_2 : \mathbb{N} \to \mathbb{R}, g_2(p) = 2^{2^{\bar{\gamma}(p)/2^{\gamma(p)}}}$.

**Technical Lemma 4.1.7** Let $p \in \mathbb{N}$. .

1. If $p \geq 3$ is an odd number, then $3g_1(p-1, p) \leq g_2(p)$.

2. If $p \geq 4$ is an even number, then $3\frac{1}{16}p^9m8^{(n(p)+1)/2}g_2^{n(p)+1} \{n(p)\} \leq g_2(p)$, where $m = n(p)^{n(p)+1}2^{(n(p)+1)/2}$.

**Proof.** See Section 8.

**Theorem 4.1.8** (Fundamental Theorem of Algebra as a weak existence) Let $p \geq 1$ and $P(y) = y^p + \sum_{0 \leq h \leq p-1} \delta_h \cdot y^h \in \mathbb{K}[u, y]$. Then

\[
\exists z \text{ s.t. } P(z) = 0
\]

where $z = a + ib$ is a complex variable, with $a, b$ a couple of variables. If we have an initial incompatibility in $\mathbb{K}[v, a, b]$ where $v \supset u$ and $a, b \notin v$, with monoid part $S$, degree in $w \subset v$ bounded by $\delta_w$ and degree in $(a, b)$ bounded by $\delta_z$, the final incompatibility has monoid part $S'$ with $e \leq g_2\{p\}$, and degree in $w$ bounded by $g_2\{p\}^2(\delta_w + \delta_e \cdot \deg_w P)$.

**Proof.** Consider the initial incompatibility in $\mathbb{K}[v, a, b]$

\[
S + N(a, b) + Z(a, b) + W_1(a, b) \cdot P_{Re}(a, b) + W_2(a, b) \cdot P_{Im}(a, b) = 0
\]

with $S \in \mathcal{M}(\mathcal{H}^2_z), N(a, b) \in \mathcal{N}(\mathcal{H}_z)_{\mathbb{K}[v, a, b]}$, $Z(a, b) \in \mathcal{Z}(\mathcal{H}_z)_{\mathbb{K}[v, a, b]}$ and $W_1(a, b), W_2(a, b) \in \mathbb{K}[v, a, b]$, where $\mathcal{H}$ is a system of sign conditions in $\mathbb{K}[v]$.

The proof is done by induction on $r\{p\}$. For $r\{p\} = 0$, i.e. $p$ is odd, we evaluate $b = 0$ in (2) and, since $P_{Im}(a, b)$ is a multiple of $b$ and $P_{Re}(a, 0) = P(a)$, we obtain an incompatibility of type

\[
S + N'(a) + Z'(a) + W'(a) \cdot P(a) = 0
\]
with \(N'(a) \in \mathcal{N}(\mathcal{H}_2)\), \(Z'(a) \in \mathcal{Z}(\mathcal{H}_-\mathcal{H}_2)\) and \(W'(a) \in \mathcal{K}_v\). For \(p = 1\), we substitute \(a = -C_0\) and we take the result as the final incompatibility. For odd \(p \geq 3\), we apply to (3) the weak inference

\[\vdash \exists a \; [\; P(a) = 0 \;].\]

By Theorem 3.2.1 we obtain an incompatibility with monoid part \(S\) with \(e \leq g_1\{p-1,p\}\) and degree in \(w\) bounded by \(3g_1\{p-1,p\}\left(\delta_w + \delta_z \deg w \right)\), which serves as the final incompatibility taking into account Lemma 4.1.7 (item 1).

Suppose now \(r[p] \geq 1\), then \(p\) is even. If \(W_1(a, b)\) and \(W_2(a, b)\) in (2) are both the zero polynomial, we evaluate \(a = 0\) and \(b = 0\) in (2) and we take the result as the final incompatibility. From now, we suppose that \(W_1(a, b)\) and \(W_2(a, b)\) are not both the zero polynomial and therefore, \(\delta_z \geq p\).

For \(p = 2\), the result follows from Lemma 2.3.4.

So we suppose \(p \geq 4\) and, from now on, we denote \(n = n\{p\}\), and \(m = n^{n+2}(\frac{n}{2})\).

For \(0 \leq k < \ell \leq n\), we substitute \(a = a''_{k,\ell}, b = b''_{k,\ell}\) in (2) and we apply the weak inference

\[P_{\Re}^2(a''_{k,\ell}, b''_{k,\ell}) + P_{\Im}^2(a''_{k,\ell}, b''_{k,\ell}) = 0 \quad \vdash P(z''_{k,\ell}) = 0.\]

By Lemma 2.1.14, we obtain

\[\downarrow P_{\Re}^2(a''_{k,\ell}, b''_{k,\ell}) + P_{\Im}^2(a''_{k,\ell}, b''_{k,\ell}) = 0, \quad \mathcal{H} \downarrow \mathcal{K}_{[0, a'_{k,\ell}, b'_{k,\ell}]}\]

with monoid part \(S_2\), degree in \(w\) bounded by \(2(\delta_w + \delta_z C_0)\) and degree in \(a''_{k,\ell}, b''_{k,\ell}\) bounded by \(2\delta_z\).

Then we apply to the incompatibilities (4) for \(0 \leq k < \ell \leq n\), each one repeated \(m\) times, the weak inference

\[\prod_{0 \leq k < \ell \leq n} \left( P_{\Re}^2(a''_{k,\ell}, b''_{k,\ell}) + P_{\Im}^2(a''_{k,\ell}, b''_{k,\ell}) \right)^m = 0 \quad \vdash \bigvee_{0 \leq k < \ell \leq n} P_{\Re}^2(a''_{k,\ell}, b''_{k,\ell}) + P_{\Im}^2(a''_{k,\ell}, b''_{k,\ell}) = 0.\]

By Lemma 2.1.12, we obtain

\[\downarrow \prod_{0 \leq k < \ell \leq n} \left( P_{\Re}^2(a''_{k,\ell}, b''_{k,\ell}) + P_{\Im}^2(a''_{k,\ell}, b''_{k,\ell}) \right)^m = 0, \quad \mathcal{H} \downarrow \mathcal{K}_{[0, a''_{k,\ell}, b'_{k,\ell}]}\]

with monoid part \(S^{2m(\frac{n}{2})}\), degree in \(w\) bounded by \(2m\left(\frac{n}{2}\right)(\delta_w + \deg_w C_0)\) and degree in \(a''_{k,\ell}, b''_{k,\ell}\) bounded by \(2m\delta_z\) for \(0 \leq k < \ell \leq n\).

By Lemma 4.1.5, we have an identity

\[\prod_{0 \leq k < \ell \leq n} \left( P_{\Re}^2(a''_{k,\ell}, b''_{k,\ell}) + P_{\Im}^2(a''_{k,\ell}, b''_{k,\ell}) \right)^m = \left( \sum_{0 \leq k \leq n} (W_{k,\ell})_{\Re} \cdot (Q_{k,\ell})_{\Re} - (W_{k,\ell})_{\Im} \cdot (Q_{k,\ell})_{\Im} + \sum_{0 \leq k < \ell \leq n} (W_{k,\ell})_{\Re} \cdot (R_{k,\ell})_{\Re} - (W_{k,\ell})_{\Im} \cdot (R_{k,\ell})_{\Im} \right)^2 + \left( \sum_{0 \leq k \leq n} (W_{k,\ell})_{\Re} \cdot (Q_{k,\ell})_{\Im} + (W_{k,\ell})_{\Im} \cdot (Q_{k,\ell})_{\Re} + \sum_{0 \leq k < \ell \leq n} (W_{k,\ell})_{\Re} \cdot (R_{k,\ell})_{\Im} + (W_{k,\ell})_{\Im} \cdot (R_{k,\ell})_{\Re} \right)^2\]

and then we apply to (5) the weak inference

\[\bigwedge_{0 \leq k \leq n} Q_k(C, z''_k) = 0, \quad \bigwedge_{0 \leq k < \ell \leq n} R_{k,\ell}(z''_k, z'_{k,\ell}, z''_{k,\ell}) = 0 \quad \vdash \prod_{0 \leq k \leq n} \left( P_{\Re}^2(a''_{k,\ell}, b''_{k,\ell}) + P_{\Im}^2(a''_{k,\ell}, b''_{k,\ell}) \right)^m = 0.\]

By Lemma 2.1.8, we obtain

\[\bigwedge_{0 \leq k \leq n} Q_k(C, z''_k) = 0, \quad \bigwedge_{0 \leq k < \ell \leq n} R_{k,\ell}(z''_k, z'_{k,\ell}, z''_{k,\ell}) = 0, \quad \mathcal{H} \bigwedge_{\mathcal{K}_{[0, a''_{k,\ell}, b'_{k,\ell}]}\}

with the same monoid part, degree in \(w\) bounded by

\[2m\left(\frac{n+1}{2}\right)\delta_w + \left(1 + \frac{n+1}{2}\right)p \deg_w P \leq m\left(\frac{1}{4} p^4 \delta_w + \frac{1}{4} p^5 \deg_w P \right),\]

degree in \(a''_{k,\ell}, b''_{k,\ell}\) bounded by \(2m(1 + \frac{n+1}{2})p \leq \frac{1}{4} mp^5\) for \(0 \leq k \leq n\) and degree in \(a''_{k,\ell}, b''_{k,\ell}\) bounded by \(2m(1 + \frac{n+1}{2})p + \delta_z \leq m\left(\frac{1}{4} p^5 + 2\delta_z \right)\) for \(0 \leq k < \ell \leq n\).
Then we fix an arbitrary order \((k_1, \ell_1), \ldots, (k_{\binom{n+1}{2}}, \ell_{\binom{n+1}{2}})\) of all the pairs \((k, \ell)\) with \(0 \leq k < \ell \leq n\) and we successively apply to (6) for \(1 \leq h \leq \binom{n+1}{2}\) the weak inference
\[ \vdash \exists z''_{k_h, \ell_h} \mid R_{k_h, \ell_h}(z'_{k_h, \ell_h}, z''_{k_h, \ell_h}) = 0. \]
By Lemma 2.3.4, we obtain
\[ \bigwedge_{0 \leq k \leq n} Q_k(C, z'_k) = 0, \quad H \bigwedge_{K[v, a', b']} \]
with monoid part \(S^{2m(n+1)}g^{\binom{n+1}{2}}\) and degree in \(w\) bounded by
\[ \delta'_w := m \left( \frac{1}{4} p^4 \delta_w + \frac{1}{4} p^5 \deg_w P \right) g^{\binom{n+1}{2}}. \]
In order to obtain a bound for the degree in \((a'_k, b'_k)\) of (7) for \(0 \leq k \leq n\), we do the following analysis. Consider a fixed \(0 \leq k_0 \leq n\). For \(1 \leq h \leq \binom{n+1}{2}\), \(\deg(a'_{k_0}, b'_{k_0}) R_{k_0, \ell_0} = 0\) if \(k_0 \neq k_0, \ell_0\) and \(\deg(a'_{k_0}, b'_{k_0}) R_{k_0, \ell_0} = 1\) otherwise. Again by Lemma 2.3.4, there will be \(\binom{n}{2}\) values of \(h\) for which the bound for the degree in \((a'_{k_0}, b'_{k_0})\) is multiplied by 8 and \(n\) values of \(h\) for which the bound for the degree in \((a'_{k_0}, b'_{k_0})\) is multiplied by 8 and then increased by \(40 + n(6p^5 + 48\delta_z)8^{h-1}\). It is easy to see that the worst case for the degree bound in \((a'_{k_0}, b'_{k_0})\) is when these \(n\) values of \(h\) are 1, \ldots, \(n\), and that, in this case, after the application of the first \(h \leq n\) weak inferences, the degree in \((a'_{k_0}, b'_{k_0})\) of the incompatibility we obtain is bounded by
\[ \frac{1}{4} mp^5 8^h + 40 \left( \sum_{0 \leq j \leq h-1} 8^j \right) + m(6p^5 + 48\delta_z)8^{h-1}. \]
From this, we conclude that the degree in \((a'_k, b'_k)\) of (7) is bounded by
\[ \frac{1}{4} mp^5 8^{\binom{n+1}{2}} + 40 \left( \sum_{0 \leq j \leq n-1} 8^j \right) g^{\binom{n+1}{2}} + m(6p^5 + 48\delta_z)8^{\binom{n+1}{2}-1} \leq m \left( \frac{3}{8} p^7 + 3p^2 \delta_z \right) g^{\binom{n+1}{2}} := \delta'_w. \]
for \(0 \leq k \leq n\).
Finally we successively apply to (7) for every \(0 \leq k \leq n\) the weak inference
\[ \vdash \exists z'_k \mid Q_k(C, z'_k) = 0. \]
Since \(r\{n\} = r\{p\} - 1\), by the inductive hypothesis, we obtain
\[ \downarrow H \downarrow_{K[e]} \]
with monoid part \(S^{2m(n+1)}g^{\binom{n+1}{2}}e'^{n+1}\) with \(e' \leq g_2\{n\}\). Also, when applying the weak inference corresponding to the index \(k\), the bound for the degree in \(w\) is increased by \(g_2\{n\} \delta'_w(p - 1) \deg_w P\) and then multiplied by \(g_2\{n\}\) (see Remark 4.1.3). It is easy to see that, after the application of this weak inference, the degree in \(w\) of the incompatibility we obtain is bounded by
\[ g_2^{k+1}\{n\}(\delta'_w + (k + 1)\delta'_w(p - 1) \deg_w P). \]
Therefore, the degree in \(w\) of (8) is bounded by
\[ g_2^{n+1}\{n\}(\delta'_w + (n + 1)\delta'_w(p - 1) \deg_w P) \leq g_2^{n+1}\{n\} m \left( \frac{1}{4} p^4 \delta_w + \frac{3}{16} p^9 \delta_z \deg_w P \right) g^{\binom{n+1}{2}}. \]
The incompatibility (8) serves as the final incompatibility since
\[ 2m \left( \binom{n+1}{2} \right) g^{\binom{n+1}{2}} g_2^{n+1}\{n\} \leq \frac{1}{4} p^4 m g^{\binom{n+1}{2}} g_2^{n+1}\{n\} \leq \frac{3}{16} p^9 m g^{\binom{n+1}{2}} g_2^{n+1}\{n\} \leq g_2\{p\} \]
and
\[ g_2^{n+1}\{n\} m \left( \frac{1}{4} p^4 \delta_w + \frac{3}{16} p^9 \delta_z \deg_w P \right) g^{\binom{n+1}{2}} \leq g_2^{n+1}\{n\} \frac{3}{16} p^9 m(\delta_w + \delta_z \deg_w P) g^{\binom{n+1}{2}} \leq g_2\{p\} (\delta_w + \delta_z \deg_w P) \]
using Lemma 4.1.7 (item 2). □
4.2 Decomposition of a polynomial in irreducible real factors

We obtain now a weak disjunction on the possible decompositions of a polynomial in irreducible real factors. We prove first an auxiliary lemma.

Lemma 4.2.1. Let $p \geq 2$ be an even number and $P(y) = y^p + \sum_{0 \leq h \leq p - 1} C_h \cdot y^h \in \mathbf{K}[u, y]$. Then

$$
\vdash \exists(t_1, t_2) \left[ P(y) \equiv (y - t_1) \cdot (y - t_2) \cdot \text{Quot}(P,(y-t_1)(y-t_2)) \right] \lor
$$

$$
\lor \exists z [ P(y) \equiv ((y - a)^2 + b^2) \cdot \text{Quot}(P, (y-a)^2 + b^2), \ b \neq 0 ],
$$

where $z = a + ib$ is a complex variable, with $a, b$ a couple of variables. Suppose we have initial incompatibilities in $\mathbf{K}[v, t_1, t_2]$ and $\mathbf{K}[v, a, b]$ where $v \supseteq u$ and $t_1, t_2, a, b \notin v$, with monoid part $S_1$ and $S_2 \cdot b^{2e}$ and degree in $w \subseteq v$ bounded by $\delta_w$. Suppose also that the first initial incompatibility has degree in $t_1$ and degree in $t_2$ bounded by $\delta_t$ and the second initial incompatibility has degree in $(a, b)$ bounded by $\delta_{z}$. Then, the final incompatibility has monoid part $S_1^{2(e+1)}f \cdot S_2'$, with $f \leq g_1 \{ p - 2, p - 1 \} g_2 \{ p \}$ and $f' \leq g_2 \{ p \}$ and degree in $w$ bounded by

$$g_2 \{ p \} \left( (1 + 6g_1 \{ p - 2, p - 1 \} (e + 1)) \delta_w + (3 + \delta_z + 6g_1 \{ p - 2, p - 1 \} (e + 1) (2 + (p + 1) \delta_t) \right) \deg_w P. $$

Proof. Consider the initial incompatibilities,

$$
\downarrow P(y) \equiv (y - t_1) \cdot (y - t_2) \cdot \text{Quot}(P,(y-t_1)(y-t_2)), \ H \downarrow \mathbf{K}[v, t_1, t_2] \tag{9}
$$

and

$$
\downarrow P(y) \equiv ((y - a)^2 + b^2) \cdot \text{Quot}(P, (y-a)^2 + b^2), \ b \neq 0, \ H \downarrow \mathbf{K}[v, a, b], \tag{10}
$$

where $H$ is a system of sign conditions in $\mathbf{K}[v]$.

We successively apply to (9) the weak inferences

$$P(t_1) = 0, \ Quot(P; y - t_1)(t_2) = 0 \quad \vdash \quad P(y) \equiv (y - t_1) \cdot (y - t_2) \cdot \text{Quot}(P,(y-t_1)(y-t_2)), \tag{11}
$$

$$\vdash \exists t_2 [ \text{Quot}(P, y - t_1)(t_2) = 0 ].
$$

By Lemma 2.4.3 and Theorem 3.2.1, we obtain

$$
\downarrow P(t_1) = 0, \ H \downarrow \mathbf{K}[v, t_1] \tag{11}
$$

with monoid part $S_1'$ with $e' \leq g_1 \{ p - 2, p - 1 \}$ and, after some analysis, degree in $w$ bounded by $3g_1 \{ p - 2, p - 1 \} (\delta_w + (1 + \delta_t) \deg_w P)$ and degree in $t_1$ bounded by $3g_1 \{ p - 2, p - 1 \} (1 + p \delta_t)$.

Then we substitute $t_1 = a$ in (11) and, taking into account that $P_{\text{re}}(a, b) - P(a)$ is a multiple of $b$, we apply the weak inference

$$P(z) = 0, \ b = 0 \quad \vdash \quad P(a) = 0. \tag{12}
$$

By Lemma 2.1.8, we obtain

$$
\downarrow P(z) = 0, \ b = 0, \ H \downarrow \mathbf{K}[v, a, b] \tag{12}
$$

with the same monoid part and bound for the degree in $w$ and degree in $(a, b)$ bounded by $3g_1 \{ p - 2, p - 1 \} (1 + p \delta_t)$.

On the other hand, we apply to (10) the weak inference

$$P(z) = 0, \ b \neq 0 \quad \vdash \quad P(y) \equiv ((y - a)^2 + b^2) \cdot \text{Quot}(P, (y-a)^2 + b^2). \tag{13}
$$

By Lemma 2.4.4, we obtain

$$
\downarrow P(z) = 0, \ b \neq 0, \ H \downarrow \mathbf{K}[v, a, b] \tag{13}
$$

with monoid part $S_2 \cdot b^{2(e+1)}$, degree in $w$ bounded by $\delta_w + \deg_w P$ and degree in $(a, b)$ bounded by $\delta_z + 2$.

Then we apply to (13) and (12) the weak inference

$$\vdash \ b \neq 0 \lor \ b = 0. \tag{14}
$$

By Lemma 2.1.16, we obtain

$$
\downarrow P(z) = 0, \ H \downarrow \mathbf{K}[v, a, b] \tag{14}
$$

with monoid part $S_1^{2(e+1)}e' \cdot S_2$, degree in $w$ bounded by

$$\delta_w + \deg_w P + 6g_1 \{ p - 2, p - 1 \} (e + 1) (\delta_w + (1 + \delta_t) \deg_w P).$$
and degree in \((a, b)\) bounded by
\[
\delta_z + 2 + 6g_1\{p - 2, p - 1\}(e + 1)(1 + p\delta_1).
\]

Finally we apply to (14) the weak inference
\[
\vdash \exists z \ [ P(z) = 0 ].
\]

By Theorem 4.1.8, we obtain
\[
\downarrow \mathcal{H} \downarrow K[v]
\]
with monoid part \(S_1^{2(e+1)c'}f' \cdot S_2^r\) with \(f' \leq g_2\{p\}\) and degree in \(w\) bounded by
\[
g_2\{p\}\left((1 + 6g_1\{p - 2, p - 1\}(e + 1))\delta_w + \left(3 + \delta_z + 6g_1\{p - 2, p - 1\}(e + 1)(2 + (p + 1)\delta_1)\right)\deg_w P\right),
\]
which serves as the final incompatibility.

We define a new auxiliary function.

**Definition 4.2.2** Let \(g_3 : \mathbb{N} \to \mathbb{R}, g_3\{p\} = 2^{2^{2^{2^{p+2}}}+1}.\)

**Technical Lemma 4.2.3** Let \(p \in \mathbb{N}_+.\)

1. If \(p \geq 3\) is an odd number, then \(3(2p + 1)g_1\{p - 1, p\}g_3\{p - 1\} \leq g_3\{p\}.\)
2. If \(p \geq 4\) is an even number, then \(6p^2g_1\{p - 2, p - 1\}g_2\{p\}g_3\{p - 2\} \leq g_3\{p\}.\)

**Proof.** See Section 8.

We prove now the weak disjunction on the possible decompositions taking into account only the number of real and complex roots.

**Theorem 4.2.4 (Real Irreducible Factors as a weak existence)** Let \(p \geq 1\) and \(P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in K[u, y].\) Then
\[
\vdash \bigvee_{m+2n=p} \exists (t_m, z_n) \left[ P(y) = \prod_{1 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((1 - a_{n,k})^2 + b_{n,k}^2), \bigwedge_{1 \leq k \leq n} b_{n,k} \neq 0 \right].
\]

where \(t_m = (t_{m,1}, \ldots, t_{m,m})\) is a set of variables and \(z_n = (z_{n,1}, \ldots, z_{n,n})\) is set of complex variables with \(z_{n,k} = a_{n,k} + ib_{n,k}\) disjoint from \(v, \) with monoid part \(S_{m,n} \cdot \prod_{1 \leq k \leq n} e_{n,k}^2\) with \(e_{n,k} \leq e,\) degree in \(w \subset v\) bounded by \(\delta_w,\) degree in \(t_{m,j}\) bounded by \(\delta_t\) for \(1 \leq j \leq m\) and degree in \((a_{n,k}, b_{n,k})\) bounded by \(\delta_z\) for \(1 \leq k \leq n.\) Then, the final incompatibility has monoid part \(\prod_{m+2n=p} S_{m,n}^{f_{m,n}}\) with \(f_{m,n} \leq (e + 1)^{2^{2^{2^{2^{p+2}}+1}}} - 1\) and degree in \(w\) bounded by \((e + 1)^{2^{2^{2^{2^{p+2}}+1}}} - 1)g_3\{p\}\) and degree in \(w\) bounded by \((e + 1)^{2^{2^{2^{2^{p+2}}+1}}} - 1)g_3\{p\} + \max\{\delta_t, \delta_z\} \deg_w P\).

**Proof.** Consider for \(m, n \in \mathbb{N}\) such that \(m + 2n = p\) the initial incompatibility
\[
P(y) = \prod_{1 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n,k})^2 + b_{n,k}^2), \bigwedge_{1 \leq k \leq n} b_{n,k} \neq 0, \mathcal{H} \quad \left| K[v, t_m, a_n, b_n]\right|
\]

where \(\mathcal{H}\) is a system of sign conditions in \(K[v]\). If \(\max\{\delta_t, \delta_z\} = 0,\) the result follows by simply taking any of the initial incompatibilities as the final incompatibility. So from now we suppose \(\max\{\delta_t, \delta_z\} \geq 1.\)

We first prove the result for even \(p\) by induction. For \(p = 2\) the result follows from Lemma 4.2.1. Suppose now \(p \geq 4.\)

For \(m, n \in \mathbb{N}\) such that \(m + 2n = p\) with \(m \geq 2,\) we apply to (15) the weak inference
\[
P(y) = (y - t_{m,1}) \cdot (y - t_{m,2}) \cdot \text{Quot}(P, (y - t_{m,1})(y - t_{m,2})),
\]
\[
\text{Quot}(P, (y - t_{m,1}) \cdot (y - t_{m,2})) = \prod_{3 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n,k})^2 + b_{n,k}^2) \quad \vdash
\]
\[ \vdash P(y) \equiv \prod_{1 \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n,k})^2 + b_{n,k}^2). \]

which is a particular case of the weak inference in Lemma 2.1.8. After a careful analysis, we obtain

\[ \vdash P(y) \equiv (y - t_{m,1}) \cdot (y - t_{m,2}) \cdot \text{Quot}(P, (y - t_{m,1}) \cdot (y - t_{m,2})), \]

\[
\text{Quot}(P, (y - t_{m,1}) \cdot (y - t_{m,2})) \equiv \prod_{3 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n,k})^2 + b_{n,k}^2),
\]

with the same monoid part, degree in \( w \) bounded by \( \delta_w + \deg_w P, \) degree in \( t_{m,1} \) and in \( t_{m,2} \) bounded by \( \delta_t + p - 2, \) degree in \( t_{m,j} \) bounded by \( \delta_j \) for \( 3 \leq j \leq m \) and degree in \( (a_{n,k}, b_{n,k}) \) bounded by \( \delta_z \) for \( 1 \leq k \leq n \).

Then we substitute \( t_{m,1} = t_1 \) and \( t_{m,2} = t_2 \) in the incompatibilities (16) and we apply to these incompatibilities the weak inference

\[ \vdash \bigvee_{\frac{m + 2n = p}{m \geq 2}} \exists (t'_m, z_n) \left[ \text{Quot}(P, (y - t_1) \cdot (y - t_2)) \equiv \prod_{3 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n,k})^2 + b_{n,k}^2), \bigwedge_{1 \leq k \leq n} b_{n,k} \neq 0 \right] \]

where \( t'_m = (t_{m,3}, \ldots, t_{m,n}). \) Since \( \deg_y \text{Quot}(P, (y - t_1) \cdot (y - t_2)) = p - 2, \) by the inductive hypothesis we obtain

\[ \vdash P(y) \equiv (y - t_1) \cdot (y - t_2) \cdot \text{Quot}(P, (y - t_1)(y - t_2)), \ H \downarrow K_{[v, t_1, t_2]} \]

with monoid part

\[ \prod_{\frac{m + 2n = p}{m \geq 2}} \prod_{\frac{m + 2n = p}{n \geq 1}} S_{f_{m,n} - 2,n} \]

with \( f_{m-2,n} \leq (e + 1)^{\frac{p-2}{n}} g_3(p - 2), \) degree in \( w \) bounded by

\[ \delta'_w := (e + 1)^{\frac{p-2}{n}} g_3(p - 2) + (1 + \max\{\delta_t, \delta_z\}) \deg_w P, \]

and degree in \( t_1 \) and degree in \( t_2 \) bounded by

\[ \delta'_t := (e + 1)^{\frac{p-2}{n}} g_3(p - 2) + (1 + \max\{\delta_t, \delta_z\})(p - 2)). \]

On the other hand, we obtain in a similar way, from the initial incompatibilities (15) for \( m, n \in \mathbb{N} \) such that \( m + 2n = p \) with \( n \geq 1, \)

\[ \vdash P(y) \equiv ((y - a)^2 + b^2) \cdot \text{Quot}(P, (y - a)^2 + b^2), \ b \neq 0, \ H \downarrow K_{[v, a, b]} \]

with, defining \( E = \sum_{m + 2n = p, n \geq 1} c_{n,1} f_{m,n-1}, \) monoid part

\[ \prod_{\frac{m + 2n = p}{m \geq 2}} \prod_{\frac{m + 2n = p}{n \geq 1}} S_{f_{m,n} - 1,n} \cdot y^{2E} \]

with \( f_{m,n-1} \leq (e + 1)^{\frac{p-2}{n}} g_3(p - 2), \) degree in \( w \) bounded by \( \delta'_w \) and degree in \( (a, b) \) bounded by

\[ \delta'_z := (e + 1)^{\frac{p-2}{n}} g_3(p - 2) + (1 + \max\{\delta_t, \delta_z\})(p - 2)). \]

Finally, we apply to (17) and (18) the weak inference

\[ \vdash \exists (t_1, t_2) \left[ P(y) \equiv (y - t_1) \cdot (y - t_2) \cdot \text{Quot}(P, (y - t_1) \cdot (y - t_2)) \right] \lor \]

\[ \lor \exists z \left[ P(y) \equiv ((y - a)^2 + b^2) \cdot \text{Quot}(P, (y - a)^2 + b^2), \ b \neq 0 \right]. \]

By Lemma 4.2.1, we obtain

\[ H \downarrow K_{[v]} \]

with monoid part

\[ \left( \prod_{\frac{m + 2n = p}{m \geq 2}} S_{f_{m,n} - 2,n} \right)^{2(E+1)f}, \left( \prod_{\frac{m + 2n = p}{n \geq 1}} S_{f_{m,n} - 1,n} \right)^{f'}, \]
with \( f \leq g_1 \{ p - 2, p - 1 \} g_2 \{ p \} \) and \( f' \leq g_2 \{ p \} \). Therefore, for \( m \geq 2 \) and \( n \geq 1 \), we take
\[
f_{m, n} = 2f_{m-2, n}(E + 1)f + f_{m, n-1}f' \leq (e + 1)^{\frac{m}{2}}g_1 \{ p - 2, p - 1 \} g_2 \{ p \} g_3^2 \{ p - 2 \} \leq (e + 1)^{\frac{m}{2}} g_3 \{ p \}
\]
using Lemma 4.2.3 (item 2). Also we take \( f_0, \delta = f_{0, \frac{m}{2}} f'$ \leq (e + 1)^{\frac{m}{2}} g_3 \{ p \} \) and \( f_{p, 0} = 2f_{p-2, 0}(E + 1)f \leq (e + 1)^{\frac{m}{2}} g_3 \{ p \} \) in a similar way. Again by Lemma 4.2.1, the degree in \( w \) of (19) is bounded by
\[
g_2 \{ p \} \left( (1 + 6g_1 \{ p - 2, p - 1 \}(E + 1))\delta_w' + \left( 3 + \delta_z' + 6g_1 \{ p - 2, p - 1 \}(E + 1)(2 + (p + 1)\delta_i') \right) \deg_w P \right) \leq
\]
\[
( e + 1)^{\frac{m}{2}} - 6g_1 \{ p - 2, p - 1 \} g_2 \{ p \} g_3^2 \{ p - 2 \} \delta_w + \max \{ \delta_t, \delta_z \} \deg_w P \leq
\]
\[
( e + 1)^{\frac{m}{2}} - 1 g_3 \{ p \} \delta_w + \max \{ \delta_t, \delta_z \} \deg_w P
\]
using Lemma 4.2.3 (item 2). Therefore (19) serves as the final incompatibility.

Now we prove the result for odd \( p \). For \( p = 1 \) note that we only have to consider \( m = 1 \) and \( n = 0 \); therefore we can take \( e = 0 \). We simply substitute \( t_{1, 1} = -C_1 \) in (15) and take the result as the final incompatibility. Suppose now \( p \geq 3 \).

For \( m, n \in \mathbb{N} \) such that \( m + 2n = p \) we apply to (15) the weak inference
\[
P(y) \equiv (y - t_{m, 1}) \cdot \text{Quot}(P, y - t_{m, 1}),
\]
\[
\text{Quot}(P, y - t_{m, 1}) = \prod_{2 \leq j \leq m} (y - t_{m, j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n, k})^2 + b_{n, k}^2) \upharpoonright \]
\[
\upharpoonright P(y) = \prod_{1 \leq j \leq m} (y - t_{m, j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n, k})^2 + b_{n, k}^2).
\]
which is a particular case of the weak inference in Lemma 2.1.8. After a careful analysis, we obtain
\[
\downarrow P(t_{m, 1}) = 0,
\]
\[
\downarrow \text{Quot}(P, y - t_{m, 1}) = \prod_{2 \leq j \leq m} (y - t_{m, j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n, k})^2 + b_{n, k}^2),
\]
\[
\text{with the same monoid part, degree in } w \text{ bounded by } \delta_w + \deg_w P, \text{ degree in } t_{m, 1} \text{ bounded by } \delta_t + p - 1, \text{ degree in } t_{m, j} \text{ bounded by } \delta_t \text{ for } 2 \leq j \leq m \text{ and degree in } (a_{n, k}, b_{n, k}) \text{ bounded by } \delta_z \text{ for } 1 \leq k \leq n.
\]

Then we substitute \( t_{m, 1} = t \) in the incompatibilities (20) and we apply to these incompatibilities the weak inference
\[
\upharpoonright \bigvee_{m + 2n = p} \exists (t', z_n) \left( \text{Quot}(P, y - t) = \prod_{2 \leq j \leq m} (y - t_{m, j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n, k})^2 + b_{n, k}^2), \bigwedge_{1 \leq k \leq n} b_{n, k} \neq 0 \right)
\]
where \( t' = (t_{m, 2}, \ldots , t_{m, m}) \). Since \( \deg_y \text{Quot}(P, y - t) \) is an even number greater than or equal to 2, we obtain
\[
\downarrow P(t) = 0, \quad \text{by } \bigvee_{K[v, t]}
\]
with monoid part \( \prod_{m + 2n = p} S_{m, n}^{-1} \) with \( f_{m-1, n} \leq (e + 1)^{\frac{m}{2}} g_3 \{ p - 1 \} \), degree in \( w \) bounded by
\[
\delta_w' := (e + 1)^{\frac{m}{2}} g_3 \{ p - 1 \}(\delta_w + (1 + \max \{ \delta_t, \delta_z \}) \deg_w P)
\]
and degree in \( t \) bounded by
\[
\delta_t' := (e + 1)^{\frac{m}{2}} g_3 \{ p - 1 \}(\delta_t + (1 + \max \{ \delta_t, \delta_z \})(p - 1)).
\]

Finally, since \( p \) is odd, we apply to (21) the weak inference
\[
\upharpoonright \exists t [ P(t) = 0]
\]
By Theorem 3.2.1 we obtain
\[
\downarrow H \downarrow_{K[v]} \quad (22)
\]
with monoid part \((\prod_{m+n=p} S^{(m-1,n)} P_{m,n}) e'\) with \(e' \leq g_1(p-1, p)\). Therefore, for every \(m\) and \(n\), we take \(f_{m,n} = f_{m-1,n} e' \leq (e+1)^2 g_1(p-1, p) g_3(p-1) \leq (e+1)^{2\frac{m+n}{2}} g_3(p)\) using Lemma 4.2.3 (item 1). Again by Theorem 3.2.1, the degree in \(w\) of (22) is bounded by

\[
3g_1\{p-1, p\}(\delta_w' + \delta_i^t \deg_w P) \leq (e+1)^{2\frac{m+n}{2}} 3(2p+1) g_1\{p-1, p\} g_3\{p-1\}(\delta_w + \max\{\delta_i, \delta_z\} \deg_w P) \leq (e+1)^{2\frac{m+n}{2}} g_3\{p\}(\delta_w + \max\{\delta_i, \delta_z\} \deg_w P).
\]

using Lemma 4.2.3 (item 1). Therefore (22) serves as the final incompatibility.

4.3 Decomposition of a polynomial in irreducible real factors with multiplicities

In order to prove the weak inference of the decomposition in irreducible factors taking multiplicities into account, we introduce some notation and definitions.

**Notation 4.3.1** Let \(m \in \mathbb{N}\). We consider the following notation:

- For \(m \in \mathbb{N}\), \(\Lambda_m = \{\mu = (\mu_1 \geq \cdots \geq \mu_{\#\mu}) \mid \mu_i \in \mathbb{N}_* \text{ for } 1 \leq i \leq \#\mu, \#\mu = \sum_{1 \leq i \leq \#\mu} \mu_i = m\}; \Lambda_0\) is the set with a single element equal to an empty vector.
- To \(J \subset \{j, j'\} \mid 1 \leq j < j' \leq m\), we associate the smallest equivalence relation \(\equiv_J\) on \(\{1, \ldots, m\}\) such that \((j, j') \in J\) implies \(j \equiv_J j'\), and we define \(\mu_J \in \Lambda_m\) as the non-increasing vector of cardinalities of the equivalence classes for \(\equiv_J\).

**Definition 4.3.2** Let \(p \geq 1\), \(P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in K[u, y]\), \((\mu, \nu) \in \Lambda_m \times \Lambda_m\) with \(m + 2n = p\), \(t = (t_1, \ldots, t_{\#\mu})\) and \(z = (z_1, \ldots, z_{\#\nu})\). We define

\[
F^{\mu, \nu}(t, z, y) = y^p + \sum_{0 \leq h \leq p-1} F_h^{\mu, \nu}(t, z) \cdot y^h = \prod_{1 \leq j \leq \#\mu} (y_t\cdot \prod_{1 \leq k \leq \#\nu} ((y - a_k)^2 + b_k^2)^{\nu_k}) \in \mathbb{Z}[t, z, y].
\]

Using Notation 2.4.5, we define the system of sign conditions

\[
\text{Fact}(P)^{\mu, \nu}(t, z)
\]

in \(K[u, t, a, b]\) describing the decomposition of \(P\) into irreducible real factors:

\[
P(y) \equiv F^{\mu, \nu}(y), \quad \bigwedge_{1 \leq j < j' \leq \#\mu} t_j \neq t_{j'}, \quad \bigwedge_{1 \leq k \leq \#\nu} b_k \neq 0, \quad \bigwedge_{1 \leq k < k' \leq \#\nu} R(z_{k}, z_{k'}) \neq 0.
\]

Before proving the weak disjunction on the possible decompositions taking multiplicities into account, we define a new auxiliary function.

**Definition 4.3.3** Let \(g_4 : \mathbb{N} \rightarrow \mathbb{R}\), \(g_4\{p\} = 2^{2\left(\frac{p}{2}\right)^p + 2}\).

**Technical Lemma 4.3.4** For every \(p \in \mathbb{N}_*\), \(2^{(p^2 - p + 2)2^{\frac{p}{2} + 2}} g_3\{p\} \leq g_4\{p\}\).

**Proof.** Easy.

**Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a weak existence)** Let \(p \geq 1\) and \(P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in K[u, y]\). Then

\[
\not\supseteq \bigvee_{m+n=p} \exists (t_\mu, z_\nu) \left[ \text{Fact}(P)^{\mu, \nu}(t_\mu, z_\nu) \right],
\]

where \(t_\mu = (t_{\mu,1}, \ldots, t_{\mu,\#\mu})\) is a set of variables and \(z_\nu = (z_{\nu,1}, \ldots, z_{\nu,\#\nu})\) is a set of complex variables with \(z_{\nu,k} = a_{\nu,k} + ib_{\nu,k}\). Suppose we have initial incompatibilities in \(K[v, t_\mu, a_\nu, b_\nu]\) where \(v \supset u\), and \(t_\mu, a_\nu, b_\nu\) are disjoint from \(v\), with monoid part

\[
S_{\mu, \nu} \cdot \prod_{1 \leq j < j' \leq \#\mu} (t_{\mu,j} - t_{\mu,j'})^{2^{\mu_{j,j'}}} \cdot \prod_{1 \leq k \leq \#\nu} b_{\nu,k}^{2^{\mu_{k,k}}} \cdot \prod_{1 \leq k < k' \leq \#\nu} R(z_{\nu, k}, z_{\nu, k'})^{2^{\mu_{k,k'}}},
\]
with $e_{j,j'}^{\mu,\nu} \leq e \in \mathbb{N}_*$ for $1 \leq j < j' \leq \#\mu$, \( f_k^{\mu,\nu} \leq f \in \mathbb{N}_* \) for $1 \leq k \leq \#\nu$ and $g_{k,k'}^{\mu,\nu} \leq g \in \mathbb{N}_*$ for $1 \leq k < k' \leq \#\nu$, degree in $w \subset v$ bounded by $\delta_w$, degree in $t_{\mu,j}$ bounded by $\delta_1 \geq p$ for $1 \leq j \leq \#\mu$, and degree in $(a_k^{j'}, b_k^{j'})$ bounded by $\delta_2 \geq p$ for $1 \leq k \leq \#\nu$. Then, the final incompatibility has monoid part

$$
\prod_{(\mu,\nu) \in \mathbb{N}_* \times \mathbb{N}_*} S_{\mu,\nu}^{h_{\mu,\nu}}
$$

with $h_{\mu,\nu} \leq \max\{e, g\} 2^{4\nu^2} 2^{\frac{1}{2} \nu^2} g_4(p)$ and degree in $w$ bounded by $\max\{e, g\} 2^{4\nu^2} 2^{\frac{1}{2} \nu^2} g_4(p)(\delta_w + \max\{\delta_1, \delta_2\} \deg_w P)$.

We prove an auxiliary lemma.

**Lemma 4.3.6** Let $p \geq 1$, $P(y) = y^p + \sum_{0 \leq k \leq p-1} C_k \cdot y^h \in \mathbb{K}[u, y]$, $m, n \in \mathbb{N}$ with $m+2n = p$, $J \subset \{ (j, j') \mid 1 \leq j < j' \leq m \}$ and $K \subset \{ (k, k') \mid 1 \leq k < k' \leq n \}$. Then

$$
\exists (t', z') \mid P(y) = \prod_{1 \leq j < j' \leq m} (y - t'_{j'}) \cdot \prod_{1 \leq k \leq n} ((y - a_k^{j'})^2 + b_k^{j'}), \quad \bigwedge_{1 \leq j < j' \leq m} t'_{j'} = t'_{j''}, \quad \bigwedge_{1 \leq k < k'} \sum_{\nu_k} R(z'_k, z''_k) \neq 0 \quad \vdash \exists (t, z) \mid \text{Fact}(P)^{J,\nu_K}(t, z),
$$

where $t' = (t'_1, \ldots, t'_m)$, $z' = (z'_1, \ldots, z'_n)$, $t = (t_1, \ldots, t_{\#\mu})$ and $z = (z_1, \ldots, z_{\#\nu})$. Suppose we have an initial incompatibility in $\mathbb{K}[v, t, a, b]$ where $v \supset u$ and $t, a, b$ are disjoint from $v$, with monoid part

$$
\prod_{1 \leq j < j' \leq \#\mu} \prod_{1 \leq k \leq \#\nu_K} (t_j - t_{j'})^{2e_{j,j'}}, \prod_{1 \leq k \leq \#\nu_K} b_k^{2f_k}, \prod_{1 \leq k < k'} \sum_{\nu_k} R(z_k, z''_k)^{2g_k^{j',j''}},
$$

with $e_{j,j'} \leq e$ for $1 \leq j < j' \leq \#\mu_j$, $f_k \leq f$ for $1 \leq k \leq \#\nu_K$ and $g_{k,k'} \leq g$ for $1 \leq k < k' \leq \#\nu_K$, degree in $w \subset v$ bounded by $\delta_w$, degree in $t_j$ bounded by $\delta_1 \geq p$ for $1 \leq j \leq \#\mu_j$, and degree in $(a_k, b_k)$ bounded by $\delta_2 \geq p$ for $1 \leq k \leq \#\nu_K$. Then, the final incompatibility has monoid part

$$
\prod_{1 \leq j < j' \leq m} (t'_{j'} - t'_{j''})^{2e_{j,j''}}, \prod_{1 \leq k \leq n} b_k^{2f_k}, \prod_{1 \leq k < k'} \sum_{\nu_k} R(z'_k, z''_k)^{2g_{j',j''}},
$$

with $h \leq 2^{n(n-1)} e_{j',j''} \leq 2^{n(n-1)} e$ for $1 \leq j' < j'' \leq m, (j'_1, j''_2) \notin J$, $f_{k'} \leq 2^{n(n-1)} f$ for $1 \leq k' \leq n$ and $g_{k_1', k_2'} \leq 2^{n(n-1)} g$ for $1 \leq k_1' < k_2' \leq n, (k'_1, k'_2) \notin K$, degree in $w$ bounded by $2^{n(n-1)} \delta_w$, degree in $t'_{j'}$ bounded by $2^{n(n-1)} \delta_1$ for $1 \leq j' \leq m$, and degree in $(a_{k'}, b_{k'})$ bounded by $2^{n(n-1)} \delta_2$ for $1 \leq k' \leq n$.

Note that when at least one of $J$ and $K$ does not define itself an equivalence relation, the mathematical statement behind the weak infeasibility in Lemma 4.3.6 is obviously true, since from the absurd anything follows. The translation into the context of weak inferences of this fact is that, if this is indeed the case, we can obtain a final incompatibility even dropping the initial incompatibility and starting from nothing. Anyway, the proof we give here works in every case.

**Proof of Lemma 4.3.6.** Consider the initial incompatibility

$$
\downarrow \text{Fact}(P)^{J,\nu_K}(t, z), \quad \mathcal{H} \downarrow_{\mathbb{K}[v, t, a, b]}
$$

(23)

where $\mathcal{H}$ is a system of sign conditions in $\mathbb{K}[v]$.

Let $C_1, \ldots, C_{\#\mu_j}$ be the equivalence classes defined by $\equiv_J$ and $C_1', \ldots, C_{\#\nu_K}'$ the equivalence classes defined by $\equiv_K$. First, for $1 \leq j \leq \#\mu_j$ and $1 \leq k \leq \#\nu_K$, we choose $\alpha(j) \in C_j$ and $\beta(k) \in C_k'$ and we substitute $t_j = t'_{\alpha(j)}$ and $(a_k, b_k) = (a_{\beta(k)}, b_{\beta(k)})$ in (23). Then we apply the weak inference

$$
P(y) \equiv \prod_{1 \leq j' \leq m} (y - t'_{j'}), \prod_{1 \leq k \leq n} ((y - a_k^{j'})^2 + b_k^{j'}), \bigwedge_{1 \leq j < j' \leq m} t'_{j'} = t'_{j''}, \bigwedge_{1 \leq k < k'} \sum_{\nu_k} (y - a_k^{j'})^2 + b_k^{j'} \equiv (y - a_k^{j''})^2 + b_k^{j''} \vdash P(y) \equiv \text{Fact}(P)^{J,\nu_K}(y).
$$

\[\text{(23)}\]
By Lemma 2.1.8, we obtain

$$P(y) = \prod_{1 \leq j' \leq m} (y - t_{j'}) \cdot \prod_{1 \leq k' \leq n} ((y - a_{k'})^2 + b_{k'}^2) \quad \text{and} \quad t_{j'}' = t_{j'^{2}}''$$

with monoid part

$$S' \cdot \prod_{1 \leq j' \leq \#\mu_j} (t_{j'}' - t_{j(j')}')^2 e_{j,j'}' \cdot \prod_{1 \leq k' \leq \#\nu_K} b_{k'}^2 \cdot \prod_{1 \leq k' < k \leq \#\nu_K} R(z_{k'}', z_{k(k')}')^{2 g_{j,k,k'}}$$

and, after some analysis, degree in \( w \) bounded by \( \delta_w \), degree in \( t_{j'}' \) bounded by \( \delta_t \) for \( 1 \leq j' \leq m \), and degree in \( (a_{k'}, b_{k'}) \) bounded by \( \delta_2 \) for \( 1 \leq k' \leq n \) (using \( \delta_t \geq p \) and \( \delta_2 \geq p \)). Note that for \( 1 \leq j < j' \leq \#\mu_j \), if \( \alpha(j) < \alpha(j') \) then \((\alpha(j), \alpha(j')) \notin J \) and if \( \alpha(j') < \alpha(j) \) then \((\alpha(j'), \alpha(j)) \notin J \), and a similar fact holds for \( 1 \leq k < k' \leq \#\nu_K \).

Finally, we successively apply to (24) for \((k_1', k_2') \in K \) the weak inference

$$R(z_{k_1'}, z_{k_2'}) = 0 \quad \vdash \quad (y - a_{k_1'})^2 + b_{k_1'}^2 \equiv (y - a_{k_2'})^2 + b_{k_2'}^2.$$  

The proof is easily finished using Lemma 2.4.6.

\[\Box\]

**Proof of Theorem 4.3.5.** Consider for \((\mu, \nu) \in \Lambda_m \times \Lambda_n \) the initial incompatibility

$$\Downarrow \text{Fact}(P)^{\mu,\nu}(t_{\mu, z_{\nu}}), \mathcal{H} \Downarrow K_{[v,t_{\mu,a_{\nu}}, b_{\nu}]}$$

where \( \mathcal{H} \) is a system of sign conditions in \( K_{[v]} \).

For each \( m \) and \( n \), for each \( J \subset \{(j, j') | 1 \leq j < j' \leq m \} \) and \( K \subset \{(k, k') | 1 \leq k < k' \leq n \} \), we apply to the incompatibility (25) corresponding to \((\mu, \nu) \) the weak inference

$$\exists(t_m, z_n) \; | \; P : \prod_{1 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{k})^2 + b_{n,k}^2) \quad \text{and} \quad t_{m,j} = t_{m,j'}, \quad \text{and} \quad t_{m,j} \neq t_{m,j'},$$

$$\bigwedge_{1 \leq k \leq n} b_{n,k} \neq 0, \quad \bigwedge_{1 \leq k < k' \leq n, \ (k, k') \notin K} R(z_{n,k}, z_{n,k'}) = 0, \quad \bigwedge_{1 \leq j < j' \leq m, \ (j, j') \notin J} R(z_{j,k}, z_{j,k'}) \neq 0 \quad \vdash \quad \exists(t_{\mu, z_{\nu}}) \; | \; \text{Fact}(P)^{\mu, \nu, K}(t_{\mu, z_{\nu}}),$$

where \( t_m = (t_{m,1}, \ldots, t_{m,m}) \) and \( z_n = (z_{n,1}, \ldots, z_{n,n}) \). By Lemma 4.3.6 we obtain

$$\Downarrow P \equiv \prod_{1 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{k})^2 + b_{n,k}^2) \quad \text{and} \quad t_{m,j} = t_{m,j'}, \quad \text{and} \quad t_{m,j} \neq t_{m,j'},$$

$$\bigwedge_{1 \leq k \leq n} b_{n,k} \neq 0, \quad \bigwedge_{1 \leq k < k' \leq n, \ (k, k') \notin K} R(z_{n,k}, z_{n,k'}) = 0, \quad \bigwedge_{1 \leq j < j' \leq m, \ (j, j') \notin J} R(z_{j,k}, z_{j,k'}) \neq 0, \mathcal{H} \Downarrow K_{[v, t_{m, a_{\nu}}, b_{\nu}]}$$

with monoid part

$$S_{h_{j,k}, K'} \cdot \prod_{1 \leq j < j' \leq m, \ (j, j') \notin J} (t_{m,j} - t_{m,j'})^{2 g_{j,j', K,j'}} \cdot \prod_{1 \leq k \leq n} b_{n,k}^2 \cdot \prod_{1 \leq k < k' \leq n, \ (k, k') \notin K} R(z_{k,k'}, z_{k,k'})^{2 g_{j,k,k'}}$$

with \( h_{j,k} \leq 2^{n(n-1)} \), \( g_{j,k,k'} \leq 2^{n(n-1)} \) for \( 1 \leq j < j' \leq m, (j, j') \notin J \), \( f_{j,k,k'} \leq 2^{n(1)n} \), degree in \( w \) bounded by \( 2^{n(n-1)} \), degree in \( t_{m,j} \) bounded by \( 2^{n(n-1)} \delta_w \), degree in \( b_{n,k} \) bounded by \( 2^{n(n-1)} \delta_s \). Then, for each \( m \) and \( n \), we apply to incompatibilities (26) for every \( J \subset \{(j, j') | 1 \leq j < j' \leq m \} \) and \( K \subset \{(k, k') | 1 \leq k < k' \leq n \} \), the weak inference

$$P \equiv \prod_{1 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n,k})^2 + b_{n,k}^2) \quad \text{and} \quad b_{n,k} \neq 0 \quad \vdash \quad \exists(t_{\mu, z_{\nu}}) \; | \; \text{Fact}(P)^{\mu, \nu, K}(t_{\mu, z_{\nu}}),$$

where \( \mathcal{H} \) is a system of sign conditions in \( K_{[v]} \).
By Lemma 2.1.19 and taking into account that there are at most \(2\frac{1}{2}n^{p-1}\) pairs of subsets \((J, K)\) and many different pairs may lead to the same pair of vectors \((\mu, \nu)\), we obtain
\[
P \equiv \prod_{1 \leq j \leq m} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n,k})^2 + b_{n,k}^2), \quad \bigwedge_{1 \leq j \leq n} t_{m,j} = t_{m,j'}, \quad \bigwedge_{1 \leq j \leq m} t_{m,j} \neq t_{m,j'},
\]
with monoid part
\[
\prod_{(\mu, \nu) \in \Lambda_n} S_{\mu, \nu}^{h_{\mu, \nu}} \cdot \prod_{1 \leq k \leq n} b_{n,k}^{2f'_{n,k}},
\]
with \(h_{\mu, \nu} \leq \max\{e, g\}2^{\frac{1}{2}p-1} - 22^{\frac{1}{2}p-1} - 2\) and \(f'_{n,k} \leq \max\{e, g\}2^{\frac{1}{2}p-1} - 122^{\frac{1}{2}p-1} - 2\delta_w\) for \(1 \leq k \leq n\), degree in \(w\) bounded by \(\max\{e, g\}2^{\frac{1}{2}p-1} - 122^{\frac{1}{2}p-1} - 2\delta_w\) for \(1 \leq j \leq m\) and degree in \((a_{n,k}, b_{n,k})\) bounded by \(\max\{e, g\}2^{\frac{1}{2}p-1} - 122^{\frac{1}{2}p-1} - 2\delta_z\).

Finally, we apply to incompatibilities (27) for every \(m\) and \(n\) such that \(m + 2n = p\) the weak inference
\[
\exists (t_m, z_n) \left[ \bigvee_{m+2n=p} (y - t_{m,j}) \cdot \prod_{1 \leq k \leq n} ((y - a_{n,k})^2 + b_{n,k}^2), \quad \bigwedge_{1 \leq k \leq n} b_{n,k} \neq 0 \right].
\]
By Theorem 4.2.4 and using Lemma 4.3.4, we obtain
\[
\downarrow \mathcal{H} \downarrow K[v]
\]
with monoid part
\[
\prod_{m+2n=p} S_{\mu, \nu}^{h_{\mu, \nu}}
\]
with \(h_{\mu, \nu} \leq \max\{e, g\}2^{\frac{1}{2}p-1} - 22^{\frac{1}{2}p-1} - 2\delta_w\) and degree in \(w\) bounded by \(\max\{e, g\}2^{\frac{1}{2}p-1} - 122^{\frac{1}{2}p-1} - 2\delta_w\) and degree in \((a_{n,k}, b_{n,k})\) bounded by \(\max\{e, g\}2^{\frac{1}{2}p-1} - 122^{\frac{1}{2}p-1} - 2\delta_z\), which serves as the final incompatibility. \(\square\)

## 5 Hermite’s Theory

In this section, which is independent from the results of Section 3 and Section 4, we study Hermite’s theory and Sylvester’s inertia law in the context of weak inferences and incompatibilities. Hermite’s theory has two aspects: on one hand, the rank and signature of Hermite’s quadratic form determine the number of real roots, and on the other hand, sign conditions on the principal minors of Hermite’s quadratic form also determine its rank and signature.

In Subsection 5.1, we explain how the rank and signature of Hermite’s quadratic form is related to real root counting (Theorem 5.1.3) and we transform this statement into a weak inference of a diagonalization formula (Theorem 5.1.11). In Subsection 5.2, we explain that the rank and signature of Hermite’s quadratic form are also determined by sign conditions on principal minors, which are closely related to subresultants (Theorem 5.2.2) and we transform this statement into a weak inference of a different diagonalization formula (Theorem 5.2.15). In Subsection 5.3, we produce incompatibilities for Sylvester’s inertia law, expressing the impossibility for a quadratic form to have two diagonal forms with distinct rank and signature (Theorem 5.3.6). Finally in Subsection 5.4, combining results from the preceding subsections, we produce incompatibilities expressing the impossibility for a polynomial to have a number of real roots in conflict with the rank and signature of its Hermite’s quadratic form predicted by the signs of its principal minors (Theorem 5.4.3).

The only result extracted from Section 5 used in the rest of the paper is Theorem 5.4.3 (Hermite’s Theory as an incompatibility), which produces incompatibilities used only in Section 6.

In this section, \(K\) is as usual an ordered field and \(R\) is a real closed field containing \(K\). Moreover, \(D\) is a domain and \(F\) is a field of characteristic 0 containing \(D\). A typical example of this situation is the following: \(K\) is the field of rational numbers, \(R\) the field of real algebraic numbers, \(D = K[c]\) the polynomials in a finite number of variables with coefficients in \(K\) and \(F\) the corresponding field of fractions.
5.1 Hermite’s quadratic form and real root counting

We now recall the definition of Hermite’s quadratic form [25, 3] and its role in real root counting.

**Notation 5.1.1** For a symmetric matrix \( A \in \mathbb{K}^{p \times p} \), we denote by \( \text{Si}(A) \) and \( \text{Rk}(A) \) the signature and rank of \( A \) respectively.

**Definition 5.1.2 (Hermite Quadratic Form)** Let \( P(y), Q(y) \in D[y] \) with \( \deg P(y) = p \geq 1 \) and \( P(y) \) monic. The Hermite’s matrix \( \text{Her}(P; Q) \in D^{p \times p} \) is the matrix defined for \( 1 \leq j_1, j_2 \leq p \) by

\[
\text{Her}(P; Q)_{j_1, j_2} = \text{Tra}(Q(y) \cdot y^{j_1 + j_2 - 2})
\]

where \( \text{Tra}(A(y)) \) is the trace of the linear mapping of multiplication by \( A(y) \in F[y] \) in the \( F \)-vector space \( F[y]/P(y) \).

**Theorem 5.1.3 (Hermite’s Theory (1))** Let \( P(y), Q(y) \in K[y] \) with \( = p \geq 1, P \) monic. Then

\[
\begin{align*}
\text{Rk}(	ext{Her}(P; Q)) &= \#\{\alpha + i\beta \in R[i] \mid P(\alpha + i\beta) = 0, Q(\alpha + i\beta) \neq 0\}, \\
\text{Si}(	ext{Her}(P; Q)) &= \#\{\theta \in R \mid P(\theta) = 0, Q(\theta) > 0\} - \#\{\theta \in R \mid P(\theta) = 0, Q(\theta) < 0\}.
\end{align*}
\]

We give here a proof of Theorem 5.1.3 which we will follow later on to obtain a weak inference counterpart of it. Before, we introduce some more auxiliary notations and definitions. First, we define the sign of an element of \( R \).

**Definition 5.1.4** For \( \alpha \in R \), its sign is defined as follows:

\[
\begin{align*}
\text{sign}(\alpha) &= 0 \quad \text{if } \alpha = 0, \\
\text{sign}(\alpha) &= 1 \quad \text{if } \alpha > 0, \\
\text{sign}(\alpha) &= -1 \quad \text{if } \alpha < 0.
\end{align*}
\]

From now on, for \( P \in K[v], \tau \in \{-1, 0, 1\} \), we freely use \( \text{sign}(P) = \tau \), to mean

\[
\begin{align*}
P &= 0 \quad \text{if } \tau = 0, \\
P &> 0 \quad \text{if } \tau = 1, \\
P &< 0 \quad \text{if } \tau = -1.
\end{align*}
\]

Similarly we define the invertibility of an element of \( R[i] \).

**Definition 5.1.5** For \( \alpha + i\beta \in R[i] \), its invertibility is defined as follows:

\[
\begin{align*}
\text{inv}(\alpha + i\beta) &= 0 \quad \text{if } \alpha = 0, \beta = 0, \\
\text{inv}(\alpha + i\beta) &= 1 \quad \text{if } \alpha^2 + \beta^2 \neq 0.
\end{align*}
\]

From now on, for \( P(z) = P_{\text{Re}}(a, b) + iP_{\text{Im}}(a, b) \in K[i][v, z], k \in \{0, 1\} \), we freely use \( \text{inv}(P) = k \), to mean

\[
\begin{align*}
P_{\text{Re}}(a, b) &= 0, P_{\text{Im}}(a, b) = 0 \quad \text{if } k = 0, \\
P_{\text{Re}}(a, b)^2 + P_{\text{Im}}(a, b)^2 &\neq 0 \quad \text{if } k = 1.
\end{align*}
\]

**Remark 5.1.6** If \( D \in K^{p \times p} \) is a diagonal matrix, with diagonal elements \( D_1, \ldots, D_p \),

\[
\begin{align*}
\text{Rk}(D) &= \sum_{1 \leq i \leq p} \text{inv}(D_i), \\
\text{Si}(D) &= \sum_{1 \leq i \leq p} \text{sign}(D_i).
\end{align*}
\]

**Notation 5.1.7** *For \( p \in \mathbb{N}_* \) and \( j \in \mathbb{N} \) we denote by \( A_{p, j} \in Z[c_0, \ldots, c_{p-1}] \) the unique polynomial such that

\[
A_{p, j}\left( \text{Cof}(y_1, \ldots, y_p) \right) = \sum_{1 \leq k \leq p} y_k^j \in Z[y_1, \ldots, y_p],
\]

where \( \text{Cof}(y_1, \ldots, y_p) \) is the vector whose \( j \)-th entry, \( j = 0, \ldots, p - 1 \), is

\[
\text{Cof}_j(y_1, \ldots, y_p) = (-1)^{p-j} \sum_{K \subseteq \{1, \ldots, p\} \mid |K| = p-j} \prod_{k \in K} y_k.
\]

Note that \( \deg A_{p, j} = j \) (see [3, Section 2.1]).
• For \(j \in \mathbb{N}\) and \((\mu, \nu) \in \Lambda_m \times \Lambda_n\), we denote by \(N_j^{\mu, \nu}(t, z)\) the polynomial
  \[
  N_j^{\mu, \nu}(t, z) = \sum_{1 \leq i \leq \# \mu} \mu_i t_i^j + \sum_{1 \leq k \leq \# \nu} 2^k \gamma_k^j(z_k^j)_{\mu, \nu}.
  \]

Remark 5.1.8 • Let \(p \in \mathbb{N}_*\), \((\mu, \nu) \in \Lambda_m \times \Lambda_n\) with \(m + 2n = p\), \(t = (t_1, \ldots, t_{\# \mu})\) and \(z = (z_1, \ldots, z_{\# \nu})\).

Following Definition 4.3.2, for \(j \in \mathbb{N}\) we have
  \[
  A_p, j(F_0^{\mu, \nu}(t, z), \ldots , F_{p-1}^{\mu, \nu}(t, z)) = N_j^{\mu, \nu}(t, z)
  \]
in \(\mathbb{Z}[t, a, b]\).

• Let \(p \in \mathbb{N}_*\), \(P(y) = y^p + \sum_{0 \leq h \leq p-1} \gamma_h y^h\), \(Q(y) = \sum_{0 \leq h \leq q} \gamma_h^0 y^h \in D[y]\). For \(1 \leq j_1, j_2 \leq p\),
  \[
  \text{Her}(P; Q)_{j_1, j_2} = \sum_{0 \leq h \leq q} \gamma_h^j A_{p, h+j_1+j_2-2} (\gamma_0, \ldots, \gamma_{p-1})
  \]
(see [3, Section 4.3.2]).

Notation 5.1.9 Let \(p \in \mathbb{N}_*\), \((\mu, \nu) \in \Lambda_m \times \Lambda_n\) with \(m + 2n = p\), \(t = (t_1, \ldots, t_{\# \mu})\) and \(z = (z_1, \ldots, z_{\# \nu})\).

• For \(\kappa \in \{0, 1\}^{1, \ldots, \# \mu}\), we denote \(D_{Q, \mu, \kappa}^{\nu}(t)\) the diagonal matrix with entries
  \[
  (\mu_1 Q(t_1), \ldots, \mu_{\# \mu} Q(t_{\# \mu}), \nu_{1, \kappa_1}, \ldots, \nu_{\# \nu, \kappa_{\# \nu}}, \nu_{\# \nu, \# \nu}, 0, \ldots, 0).
  \]

• We denote by \(V(t, z)\) the \(p \times p\) matrix
  \[
  \begin{pmatrix}
  1 & \ldots & 1 & 0 & \ldots & \ldots & 1 & 0 & 0 & \ldots & 0 \\
  t_1 & \ldots & t_{\# \mu} & a_1 & b_1 & \ldots & a_{\# \nu} & b_{\# \nu} & 0 & \ldots & 0 \\
  \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
  \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
  \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
  \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
  t_{1, \# \mu + 2 \# \nu} & \ldots & t_{\# \mu, \# \nu} & (z_{1, \# \mu + 2 \# \nu})_{\text{Re}} & (z_{1, \# \mu + 2 \# \nu})_{\text{Im}} & \ldots & (z_{\# \mu, \# \nu})_{\text{Re}} & (z_{\# \nu})_{\text{Im}} & 1 & \ldots & 0 \\
  \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
  \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
  \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
  \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\
  t_{1, \# \mu + 2 \# \nu} & \ldots & t_{\# \mu, \# \nu} & (z_{1, \# \mu + 2 \# \nu})_{\text{Re}} & (z_{1, \# \mu + 2 \# \nu})_{\text{Im}} & \ldots & (z_{\# \mu, \# \nu})_{\text{Re}} & (z_{\# \nu})_{\text{Im}} & 0 & \ldots & 1 \\
  \end{pmatrix}
  \]

• For \(\kappa \in \{0, 1\}^{1, \ldots, \# \mu}\) and \(z' = (z'_k)_{\kappa_k = 1}\) we denote by \(S_{\kappa}^{\mu, \nu}(z')\) the \(p \times p\) block diagonal matrix having the first \#\nu diagonal elements equal 1, the next \#\nu diagonal blocks of size 2 equal to
  \[
  \begin{pmatrix}
  a_k' & b_k' \\
  -b_k' & a_k'
  \end{pmatrix}
  \]
  if \(\kappa_k = 1\),
  \[
  \text{the identity matrix of size } 2 \text{ if } \kappa_k = 0,
  \]
  and the last \(p - \# \nu - 2 \# \mu\) diagonal elements equal to 1.

• We denote by \(B_{\kappa}(t, z, z')\) the matrix \(V(t, z) \cdot S_{\kappa}(z')\).

Lemma 5.1.10
  \[
  \det(V(t, z)) = \prod_{1 \leq j < j' \leq \# \mu} (t_{j'} - t_j) \cdot \prod_{1 \leq j < j' \leq \# \mu} ((a_k - t_j)^2 + b_k^2) \cdot \prod_{1 \leq k \leq \# \nu} b_k \cdot \prod_{1 \leq k < k' \leq \# \nu} R(z_k, z_{k'}).
  \]

Proof. Easy computation from the formula for the usual Vandermonde determinant. \(\square\)
We can now give a proof of Theorem 5.1.3.

**Proof of Theorem 5.1.3.** Consider the decomposition of $P$ in irreducible factors in $R[y]$

$$P(y) = \prod_{1 \leq j \leq \#\mu} (y - \theta_j)^{\mu_j} \cdot \prod_{1 \leq k \leq \#\nu} ((y - \alpha_k)^2 + \beta_k^2)^{\nu_k},$$

with $\theta = (\theta_1, \ldots, \theta_{\#\mu}) \in R^{\#\mu}$, $\alpha = (\alpha_1, \ldots, \alpha_{\#\nu}) \in R^{\#\nu}$ and $\beta = (\beta_1, \ldots, \beta_{\#\nu}) \in R^{\#\nu}$ and $\kappa \in \{0, 1\}^{1, \ldots, \#\nu}$ defined by $\kappa_k = 1$ if $i(t_k + \beta_k) \neq 0$ and $\kappa_k = 0$ otherwise.

For $1 \leq k \leq \#\nu$ with $\kappa_k = 1$, we consider a square root $\alpha_k' + i\beta_k'$ of $2Q(\alpha_k + i\beta_k)$. Since $\det(V(\theta, \alpha + i\beta)) \neq 0$ by Lemma 5.1.10 and $\det(S_{\kappa}(\alpha' + i\beta')) \neq 0$ by an easy computation, we have that $\det(B_{\kappa}(\theta, \alpha + i\beta, \alpha' + i\beta')) \neq 0$.

Using Remark 5.1.8, it can be checked that

$$\text{Her}(P; Q) = B_{\kappa}(\theta, \alpha + i\beta, \alpha' + i\beta') \cdot D_{Q}^{\mu, \nu, \kappa}(\theta) \cdot B_{\kappa}(\theta, \alpha + i\beta, \alpha' + i\beta').$$

The proof concludes then by simply noting that, by Remark 5.1.6,

$$\begin{align*}
\text{Rk}(D_{Q}^{\mu, \nu, \kappa}(\theta)) & = \#\{\alpha + i\beta \in R[\nu] \mid P(\alpha + i\beta) = 0, Q(\alpha + i\beta) \neq 0\}, \\
\text{Si}(D_{Q}^{\mu, \nu, \kappa}(\theta)) & = \#\{\theta \in R \mid P(\theta) = 0, Q(\theta) > 0\} - \#\{\theta \in R \mid P(\theta) = 0, Q(\theta) < 0\}.
\end{align*}$$

Now we give a weak inference version of Theorem 5.1.3, using Definition 4.3.2. Note that for the first time in this paper, the set of variables $w$ in the statement of the theorem is not an arbitrary set of variables included in $v$. This is enough for our purposes and enables us to obtain a more precise result. In fact, many times from here we will make a similar distinction on the set of variables $w$.

**Theorem 5.1.11 (Hermite’s Theory (1) as a weak existence)** Let $p \geq 1$, $P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in K[u, y]$, $m, n \in \mathbb{N}$ with $m + 2n = p$, $\mu, \nu \in \Lambda_m \times \Lambda_n$, $t = (t_1, \ldots, t_{\#\mu})$, $z = (z_1, \ldots, z_{\#\nu})$, $Q(y) = \sum_{0 \leq h \leq q} D_h \cdot y^h \in K[u, y]$, $\kappa \in \{0, 1\}^{1, \ldots, \#\nu}$ and $s(\kappa) = \#\{k \mid 1 \leq k \leq \#\nu, \kappa_k = 1\}$. Then

$$\text{Fact}(P^{\mu, \nu}(t, z), \bigwedge_{1 \leq k \leq \#\nu} \text{inv}(Q(z_k)) = \kappa_k) \vdash$$

$$\exists z' \big[ \text{Her}(P; Q) \equiv B_{\kappa}(t, z, z') \cdot D_{Q}^{\mu, \nu, \kappa}(t) \cdot B_{\kappa}(t, z, z')^t, \ \det(B_{\kappa}(t, z, z')) \neq 0 \big].$$

where $z' = (z_k')_{k=1}^{\#\nu}$. Suppose we have an initial incompatibility in variables $(v, a', b')$ where $v \supset (u, t, a, b)$ and $(a', b')$ are disjoint from $v$, with monoid part $S \cdot \det(B_{\kappa}(t, z, z'))^{2e}$, degree in $w$ bounded by $\delta_w$ for some subset of variables $w \subset v$ disjoint from $(t, a, b)$, degree in $t$, degree in $\delta$, degree in $(a_k, b_k)$ bounded by $\delta_z$ and degree in $(a_k', b_k')$ bounded by $\delta_z'$. Then the final incompatibility has monoid part

$$S^{2^{2s(\kappa)}} \cdot \prod_{1 \leq j \neq j' \leq \#\mu} (t_{j'} - t_j)^{2^{2s(\kappa)+1}e} \cdot \prod_{1 \leq k \leq \#\nu} b_k^{2^{2s(\kappa)+1}(2\#\mu+1)e} \cdot \prod_{1 \leq k \leq \#\nu} R(z_k, z_k')^{2^{2s(\kappa)+1}e} \cdot \prod_{1 \leq k \leq \#\nu, \kappa_k = 1} (Q_{\kappa_k}^{2s}(z_k) + Q_{\kappa_k}^2(z_k))^{2\delta_e'}$$

with $e' \leq 2^{2s(\kappa)-2(2e+1)}$, degree in $w$ bounded by

$$2^{2s(\kappa)} \left( \delta_w + (2s(\kappa)(3e + 2\delta_z) + q + 2p + 6) \max\{\deg_w P, \deg_w Q\} \right),$$

degree in $t_j$ bounded by $2^{2s(\kappa)(\delta_t+q+2p-2)}$ and degree in $(a_k, b_k)$ bounded by $2^{2s(\kappa)(\delta_z+(6+2(3e+\delta_z))q+2p-2)}$.

**Proof.** We apply to the initial incompatibility the weak inference

$$\text{Fact}(P^{\mu, \nu}(t, z), \bigwedge_{1 \leq k \leq \#\mu} (a_k - t_j)^2 + b_k^2 \neq 0, \bigwedge_{1 \leq k \leq \#\nu} z_k' \neq 0 \vdash \det(B_{\kappa}(t, z, z')) \neq 0).$$

By Lemma 2.1.2 (item 6) according to Lemma 5.1.10, we obtain an incompatibility with monoid part

$$S \cdot \left( \prod_{1 \leq j \neq j' \leq \#\mu} (t_{j'} - t_j) \cdot \prod_{1 \leq k \leq \#\nu} ((a_k - t_j)^2 + b_k^2) \cdot \prod_{1 \leq k \leq \#\nu} b_k \cdot \prod_{1 \leq k \leq \#\nu, \kappa_k = 1} (a_k'^2 + b_k'^2)^{2e} \right) \cdot R(z_k, z_k').$$
and the same degree bounds.

Then we successively apply for $1 \leq j \leq \# \mu$ and $1 \leq k \leq \# \nu$ the weak inferences
\[(a_k - t_j)^2 + b_k^2 > 0 \quad \vdash \quad (a_k - t_j)^2 + b_k^2 \neq 0, \]
\[(a_k - t_j)^2 \geq 0, \quad b_k^2 > 0 \quad \vdash \quad (a_k - t_j)^2 + b_k^2 > 0, \]
\[b_k \neq 0 \quad \vdash \quad b_k^2 > 0. \]

By Lemmas 2.1.2 (items 2, 3 and 4) and 2.1.7, we obtain an incompatibility with monoid part
\[S \cdot \prod_{1 \leq j < j' \leq \# \mu} (t_{j'} - t_j)^{2s} \cdot \prod_{1 \leq k \leq \# \nu} b_k^{2(2\# \mu + 1)e} \cdot \prod_{1 \leq k < k' \leq \# \nu} R(z_k, z_{k'})^{2s} \cdot \prod_{1 \leq k \leq \# \nu} (a_k^2 + b_k^2)^{2se} \]
and the same degree bounds.

For $1 \leq j_1, j_2 \leq p$, by Remark 5.1.8, we have
\[\text{Her}(P; Q)_{j_1, j_2} = \text{Di}_{\mu, \nu}(t, z, z') \cdot B_{k_1}(t, z, z'). \]

By Lemma 2.1.8, after some analysis, we obtain an incompatibility with the same monoid part, degree in $w$ bounded by $\delta_w + \text{deg}_w Q + (q + 2p - 2) \cdot \text{deg}_w P$, degree in $t_j$ bounded by $\delta_i + q + 2p - 2$, degree in $(a_k, b_k)$ bounded by $\delta_i + q + 2p - 2$ and degree in $(a_k, b_k')$ bounded by $\delta_{i'}$.

Suppose that $\{k \mid 1 \leq k \leq \# \nu, k \neq 1\} = \{k_1, \ldots, k_{s(k)}\}$. Finally we apply for $1 \leq s \leq s(k)$ the weak inference
\[Q(z_{k_s}) \neq 0 \quad \vdash \quad \exists \epsilon'_{k_s} [ \epsilon'_{k_s} \neq 0, \quad z_{k_s}^2 = 2Q(z_{k_s})]. \]

Using Lemma 2.3.2, it is easy to prove by induction on $s$ that, for $1 \leq s \leq s(k)$, after the application of the weak inference corresponding to index $s$, we obtain an incompatibility with monoid part
\[S^{2s} \cdot \prod_{1 \leq j < j' \leq \# \mu} (t_{j'} - t_j)^{2s+1} \cdot \prod_{1 \leq k \leq \# \nu} b_k^{2s+1(2\# \mu + 1)e} \cdot \prod_{1 \leq k < k' \leq \# \nu} R(z_k, z_{k'})^{2s+1e} \cdot \prod_{s+1 \leq s \leq s(k)} (a^{'k_1}_s + b^{'k_1}_s)^{2s+1e}, \]
degree in $w$ bounded by $2^{2s}(\delta_w + \text{deg}_w Q + (q + 2p - 2) \cdot \text{deg}_w P) + (2^{2s-1})2^{2s+1(3e + \delta_{i'})}) \cdot \text{deg}_w Q$, degree in $t_j$ bounded by $2^{2s}(\delta_i + q + 2p - 2)$, degree in $(a_k, b_k)$ bounded by $2^{2s}(\delta_i + q + 2p - 2) + 2^{2s+1}(2^{2s+1}(3e + \delta_{i'})q$ for $1 \leq i \leq s$, degree in $(a_k, b_k')$ bounded by $2^{2s}(\delta_i + q + 2p - 2)$ for $s + 1 \leq i \leq s(k)$ and degree in $(a^{'k_1}_s, b^{'k_1}_s)$ bounded by $2^{2s+1}(3e + \delta_{i'})$ for $s + 1 \leq i \leq s(k)$.

Therefore, the incompatibility we obtain after the application of the $s(k)$ weak inferences serves as the final incompatibility.

5.2 Hermite’s quadratic form and Subresultants

The preceeding method to compute the signature of the Hermite’s quadratic form is based on the factorization of $P$ over a real closed field; therefore, it involves algebraic numbers. We explain now another way to compute this signature using only operations in the ring of coefficients of $P$ and $Q$, through the principal minors of the Hermite’s matrix. Most of these results are classical [19, 3] but we need them under precise algebraic identity form.
Notation 5.2.1 • Let $P(y), Q(y) \in D[y]$ with $\deg P(y) = p \geq 1$ and $P(y)$ monic. For $0 \leq j \leq p - 1$, we denote by $\text{HM}_j(P; Q)$ the $(p - j)$-th principal minor of $\text{Her}(P; Q)$ and by $\text{HM}(P; Q)$ the list $[\text{HM}_0(P; Q), \ldots, \text{HM}_{p-1}(P; Q)]$ in $D$. We additionally define $\text{HM}_p(P; Q) = 1$.

• Given a sign condition $\tau \in \{-1, 0, 1\}^{0,\ldots,p-1}$ we denote by $d(\tau)$ the strictly decreasing sequence $(d_0, \ldots, d_s)$ of natural numbers defined by $d_0 = p$ and $\{d_1, \ldots, d_s\} = \{j \mid 0 \leq j \leq p - 1, \tau(j) \neq 0\}$.

• For $k \in \mathbb{N}, \varepsilon_k = (-1)^{(k-1)/2}$.

Theorem 5.2.2 (Hermite’s Theory (2)) Let $P(y), Q(y) \in K[y]$ with $\deg P(y) = p \geq 1$, $P(y)$ monic, $\tau \in \{-1, 0, 1\}^{0,\ldots,p-1}$ the sign condition defined by $\tau(i) = \text{sign}(\text{HM}_i(P; Q))$ and $d(\tau) = (d_0, \ldots, d_s)$. Then

\[
\text{Rk}(\text{Her}(P; Q)) = p - d_s, \\
\text{Si}(\text{Her}(P; Q)) = \sum_{1 \leq i < s, d_{i-1} - d_i} \varepsilon_{d_{i-1} - d_i} \tau(d_{i-1}) \tau(d_i).
\]

Before proving Theorem 5.2.2, we introduce some more definitions and notation, in order to make a link between Hermite’s matrix and subresultants.

Definition 5.2.3 (Subresultants) Let $P(y), R(y) \in D[y]$ with $\deg P(y) = p \geq 1$, $P(y)$ monic and $\deg R(y) = r < p$.

• For $0 \leq j \leq r$, the Sylvester-Habicht matrix $\text{SyHa}_j(P, R) \in D^{(p+r-2j) \times (p+r-j)}$ is the matrix whose rows are the polynomials

\[
y^{r-j-1} \cdot P, \ldots, P, R, \ldots, y^{p-j-1} \cdot R,
\]

expressed in the monomial basis $y^{p+r-j-1}, \ldots, y, 1$.

• For $0 \leq j \leq r$, the $j$-th subresultant polynomial of $P, R$, $\text{sRes}_j(P, R) \in D[y]$ is the polynomial determinant of $\text{SyHa}_j(P, R)$, i.e.

\[
\text{sRes}_j(P, R) = \sum_{0 \leq i \leq j} \det(\text{SyHa}_{j,i}(P, R)) \cdot y^i
\]

where $\text{SyHa}_{j,i}(P, R) \in D^{(p+r-2j) \times (p+r-j)}$ is the matrix obtained by taking the $p+r-2j-1$ first columns and the $(p+r-j-i)$-th column of $\text{SyHa}_j(P, R)$.

By convention, we extend these definitions with

\[
\text{sRes}_p(P, R) = P, \\
\text{sRes}_{p-1}(P, R) = R, \\
\text{sRes}_j(P, R) = 0 \quad \text{for} \quad r < j < p - 1.
\]

• For $0 \leq j \leq p$, the $j$-th signed subresultant coefficient of $P$ and $R$, $\text{sRes}_j(P, R) \in D$ is the coefficient of $y^j$ in $\text{sRes}_j(P, R)$.

• For $0 \leq j \leq p$, $\text{sRes}_j(P, R)$ is said to be defective if $\deg \text{sRes}_j(P, R) < j$ or, equivalently, if $\text{sRes}_j(P, R) = 0$.

• For $0 \leq j \leq r$, the $j$-th subresultant cofactors of $P, R$, $\text{sResU}_j(P, R), \text{sResV}_j(P, R) \in D[y]$ are the determinants of the matrices obtained by taking the first $p+r-2j-1$ first columns of $\text{SyHa}_j(P, R)$ and a last column equal to $(y^{r-j-1}, \ldots, 1, 0, \ldots, 0)$ and equal to $(0, \ldots, 0, 1, \ldots, y^{p-j-1})$, respectively.

By convention we extend these definitions with

\[
\text{sResU}_p(P, R) = 1, \\
\text{sResU}_{p-1}(P, R) = 0, \\
\text{sRes}_{j-1}(P, R) = -\text{sRes}_j(P, R) \cdot R, \\
\text{sResV}_{p-1}(P, R) = 1, \\
\text{sRes}_j(P, R) = 0 \quad \text{for} \quad r < j < p - 1, \\
\text{sResV}_{j-1}(P, R) = \text{sRes}_j(P, R) \cdot R.
\]

Remark 5.2.4 Since $P(y)$ is monic, the definitions of subresultant polynomials, signed subresultant coefficients and subresultant cofactors, are independent of the degree $r$ of $R(y)$ (see for instance [20]). Therefore, we can artificially consider the degree of $R(y)$ as $p - 1$, specialize its first $p-r-1$ coefficients as 0 and obtain the same result.
The connection between the subresultant coefficients and the Hermite’s matrix is the following.

**Proposition 5.2.5** Let $P(y), Q(y) \in \mathbb{D}[y]$ with $\deg P(y) = p \geq 1$, $P(y)$ monic and let $R(y)$ be the remainder of $P'(y) \cdot Q(y)$ in the division by $P(y)$. Then for $0 \leq j \leq p$

$$\text{HM}_{ij}(P; Q) = \text{sRes}_{j}(P, R).$$

**Proof.** See [4, Remark 9.24 and Lemma 9.29].

We now explain how to diagonalize Hermite’s matrix in a second manner. The first step is to transform it into a block Hankel triangular matrix, using subresultants.

**Notation 5.2.6**

- Given $\alpha = (\alpha_1, \ldots, \alpha_p) \in \mathbb{D}^p$, we denote by $\text{HanT}_p(\alpha) \in \mathbb{D}^{p \times p}$ the Hankel triangular matrix defined for $1 \leq i, j \leq p$ by $\text{HanT}_p(\alpha)_{ij} = 0$ if $i + j \leq p$ and $\text{HanT}_p(\alpha)_{ij} = \alpha_{2p+1-i-j}$ if $i + j \geq p+1$.

- Given $S(y) = \sum_{0 \leq h \leq p} \alpha_h y^h \in \mathbb{D}[y]$, we denote by $\text{HanT}_p(S) \in \mathbb{D}^{p \times p}$ the Hankel triangular matrix $\text{HanT}_p(\alpha_1, \ldots, \alpha_p)$.

**Notation 5.2.7** Let $P(y) = y^p + \sum_{0 \leq h \leq p-1} \gamma_h y^h \in \mathbb{D}[y]$ with $p \geq 1$ and $Q(y) \in \mathbb{D}[y]$. Let $R(y) \in \mathbb{D}[y]$ be the remainder of $P'(y) \cdot Q(y)$ in the division by $P(y)$, $d = (d_0, \ldots, d_s)$ be the sequence of non-defective subresultant polynomials of $P$ and $R$ and $d_{-1} = p+1$.

- For $1 \leq i \leq s$, let $R_i(y) = \text{sRes}_{d_{i-1}}(P, R) \in \mathbb{D}[y]$. By the Structure Theorem of Subresultants ([3, Theorem 8.30]), $\deg R_i(y) = d_i$.

- Let $M_{P, Q} \in \mathbb{D}^{p \times p}$ be the matrix of the basis

$$\{y^{d_0-d_1-1}, R_1, \ldots, R_s, y^{d_{s-1}-d_s-1}, R_s, \ldots, R_s, y^{d_s-1}, \ldots, 1\}$$

of the subspace of $\mathbb{F}[y]$ of polynomials of degree less than $p$, in the Horner basis of $P$, $\{y^{p-1} + \sum_{0 \leq h \leq p-2} \gamma_h y^h, \ldots, 1\}$.

- For $0 \leq i \leq s$,

$$\text{sR}_{d_i} = \text{sRes}_{d_i}(P, R), \quad \text{T}_{d_{i-1}} = \text{coeff}(\text{sRes}_{d_{i-1}}(P, R)) \in \mathbb{D}.$$ 

- For $1 \leq i \leq s$

$$\bar{F}_{d_{i-1}}(y) = \text{sRes}_{d_{i-2}}(P, R) \cdot \text{sRes}_{d_{i-1}}(P, R) - \text{sRes}_{d_{i-2}}(P, R) \cdot \text{sRes}_{d_{i-1}}(P, R), \quad \bar{F}_{d_{i-1}}(y) \in \mathbb{F}[y].$$

By [3, Proposition 8.38], $\bar{F}_{d_{i-1}}$ is the quotient of $T_{d_{i-1}} \cdot \text{sR}_{d_i} \cdot \text{sRes}_{d_{i-2}}(P, R)$ in the division by $\text{sRes}_{d_{i-1}}(P, R)$; therefore, $1 \leq i \leq s$, 

$$\text{deg}_{y} \bar{F}_{d_{i-1}} = \text{deg}_{y} F_{d_{i-1}} = d_{i-1} - d_i, \quad \text{coeff}(\bar{F}_{d_{i-1}}) = \frac{1}{\text{sR}_{d_i} \cdot T_{d_{i-1}} \cdot \text{coeff}(F_{d_{i-1}})}.$$ 

- Let $\text{HanB}_{P, Q} \in \mathbb{F}^{p \times p}$ be the block Hankel triangular matrix composed by $s$ or $s+1$ blocks according to $d_s = 0$ or $d_s > 0$. For $1 \leq i \leq s$, the $i$-th block of size $d_{i-1} - d_i$ is $\text{HanT}_{d_{i-1} - d_i}(\bar{F}_{d_{i-1}})$ and, if $d_s > 0$, there is a final 0 block of size $d_s$.

**Lemma 5.2.8** Following Notation 5.2.7,

$$\text{Her}(P; Q) = M_{P, Q} \cdot \text{HanB}_{P, Q} \cdot M_{P, Q}^t.$$ 

**Proof.** See [4, Proposition 9.12 and Remark 9.24].

We introduce some more definitions to transform the preceeding block Hankel form into a diagonal form.

**Definition 5.2.9** For $p \in \mathbb{N}_+$ and a variable $c$, we define the diagonal matrix $D_p(c) \in \mathbb{Q}[c]^{p \times p}$ as follows:

- If $p$ is odd, $D_p(c)$ has $c$ in the first $\frac{1}{2}(p-1)$ diagonal entries, $\frac{1}{2}c$ in the next diagonal entry and $-c$ in the last $\frac{1}{2}(p-1)$ diagonal entries.

- If $p$ is even, $D_p(c)$ has $c$ in the first $\frac{1}{2}p$ diagonal entries and $-c$ in last $\frac{1}{2}p$ diagonal entries.
We also define for \( c = (c_1, \ldots, c_p) \) the matrix \( E_p(c) \in \mathbb{Q}[c]^{p \times p} \) as follows:

- \( E_1(c) = (2) \),
- \( E_2(c) = \left( \begin{array}{cc} c_2 & 0 \\ \frac{1}{2} c_1 & c_2 \end{array} \right) \left( \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \),
- For odd \( p \geq 3 \), \( E_p(c) = \)
  \[
  \begin{pmatrix}
  c_p & 0 & 0 \\
  c_{p-1} & \vdots & c_p \cdot \text{Id} & 0 \\
  \frac{1}{2} c_1 & 0 & c_p \\
  
  \end{pmatrix}
  \begin{pmatrix}
  1 & 0 & 1 \\
  0 & \text{Id} & 0 \\
  1 & 0 & -1 \\
  
  \end{pmatrix}
  \begin{pmatrix}
  c_p^{\frac{1}{2}(p-3)} & 0 & 0 \\
  0 & E_{p-2}(c') & 0 \\
  0 & 0 & c_p^{\frac{1}{2}(p-3)} \\
  
  \end{pmatrix}
  
  
  
  
  
  with \( c' = (c_3, \ldots, c_p) \).
- For even \( p \geq 4 \), \( E_p(c) = \)
  \[
  \begin{pmatrix}
  c_p & 0 & 0 \\
  c_{p-1} & \vdots & c_p \cdot \text{Id} & 0 \\
  \frac{1}{2} c_1 & 0 & c_p \\
  
  \end{pmatrix}
  \begin{pmatrix}
  1 & 0 & 1 \\
  0 & \text{Id} & 0 \\
  1 & 0 & -1 \\
  
  \end{pmatrix}
  \begin{pmatrix}
  c_p^{\frac{1}{2}(p-2)} & 0 & 0 \\
  0 & E_{p-2}(c') & 0 \\
  0 & 0 & c_p^{\frac{1}{2}(p-2)} \\
  
  \end{pmatrix}
  
  
  
  
  
  with \( c' = (c_3, \ldots, c_p) \).

Finally, for \( S(y) = \sum_{0 \leq h \leq p} c_h \cdot y^h \in \mathbb{Q}[c_0, \ldots, c_p, y] \), we denote by \( E_p(S) \in \mathbb{Q}[c]^{p \times p} \) the matrix \( E_p(c) = E_p(c_1, \ldots, c_p) \).

**Lemma 5.2.10**

- For odd \( p \in \mathbb{N}_* \) the degree of the entries of the matrix \( E_p(c) \) is \( \frac{1}{2}(p-1) \), \( \det(E_p(c)) = (-1)^{\frac{1}{2}(p-1)} 2^{\frac{1}{2}(p+1)} c_p^{\frac{1}{2}p(p-1)} \) and
  \[
  \text{HanT}_p(c) = E_p(c) \cdot \text{Di}_p(\frac{1}{2} c_p^{2-p}) \cdot E_p(c)^t. \]
- For even \( p \in \mathbb{N}_* \) the degree of the entries of the matrix \( E_p(c) \) is \( \frac{1}{2}p \), \( \det(E_p(c)) = (-2)^{\frac{1}{2}p} c_p^{\frac{1}{2}p^2} \) and
  \[
  \text{HanT}_p(c) = E_p(c) \cdot \text{Di}_p(\frac{1}{2} c_p^{1-p}) \cdot E_p(c)^t. \]

**Proof.** The proof is easily done by induction on \( p \).

We can prove now Theorem 5.2.2.

**Proof of Theorem 5.2.2.** Following Notation 5.2.7, by Lemmas 5.2.8 and 5.2.10, it is clear that

\[
\begin{align*}
\text{Rk}(\text{Her}(P; Q)) &= p - d_s, \\
\text{Si}(\text{Her}(P; Q)) &= \sum_{1 \leq i \leq s} \text{sign}(sR_{d_{i-1}} \cdot T_{d_{i-1}-1}).
\end{align*}
\]

By the Structure Theorem of subresultants from [3], for \( 1 \leq i \leq s \),

\[
sR_{d_i} = \varepsilon_{d_{i-1} - d_i} \frac{T_{d_{i-1} - 1}}{sR_{d_{i-1}} \cdot T_{d_{i-1} - 1}}.
\]

Therefore, for \( 1 \leq i \leq s \) such that \( d_{i-1} - d_i \) is odd, \( \text{sign}(T_{d_{i-1} - 1}) = \varepsilon_{d_{i-1} - d_i} \text{sign}(sR_{d_i}) \). The conclusion follows by Proposition 5.2.5.

Before proving a related weak inference in Theorem 5.2.15, we give some auxiliary definitions.
Let \( p, q \in \mathbb{N}, p \geq 1 \). Let \( c = (c_0, \ldots, c_{p-1}) \) be variables representing the coefficients of \( P \), \( c' = (c'_0, \ldots, c'_q) \) be variables representing the coefficients of \( Q \). In the following definitions, we always consider \( y \) as the main variable.

- \( P(c, y) = y^p + \sum_{0 \leq h \leq p-1} c_h \cdot y^h \in K[c, y] \),
- \( Q(c', y) = \sum_{0 \leq h \leq q} c'_h \cdot y^h \in K[c', y] \),
- \( R(c, c', y) \in K[c, c', y] \) is the remainder of \( P' \cdot Q \) in the division by \( P \),
- for \( 0 \leq j \leq p \), \( \text{sRes}_j(c, c', y) \in K[c, c', y] \) is the \( j \)-th subresultant polynomial of \( P(c, y) \) and \( R(c, c', y) \),
- for \( 0 \leq j \leq p \), \( \text{sRes}_j(c, c') \in K[c, c'] \) is the \( j \)-th signed subresultant coefficient of \( P(c, y) \) and \( R(c, c', y) \),
- for \( -1 \leq j \leq p \), \( \text{sRes}_{U_j}(c, c', y) \in K[c, c', y] \) and \( \text{sRes}_{V_j}(c, c', y) \in K[c, c', y] \) are the \( j \)-th subresultant cofactors of \( P(c, y) \) and \( R(c, c', y) \).

Let now \( \tau \in \{-1, 0, 1\}^{0,\ldots,p-1} \) be a sign condition, \( d(\tau) = (d_0, \ldots, d_s) \) and \( d_{-1} = p + 1 \).

- for \( 0 \leq i \leq s \), \( T^\tau_{d_{i+1}}(c, c') \in K[c, c'] \) is the coefficient of degree \( d_i \) in \( \text{sRes}_{P_{d_{i+1}}}(c, c', y) \),
- for \( 1 \leq i \leq s \), \( R_i^\tau(c, c', y) \in K[c, c', y] \) is the remainder of \( \text{sRes}_{P_{d_{i+1}}}(c, c', y) \) in the division by \( y^{d_i+1} \),
- \( M_{P,Q}^\tau(c, c') \in K[c, c']^{p \times p} \) is the matrix of

\[
\{y^{d_0-d_{-1}} \cdot R_{i_1}^\tau, \ldots, R_{i_s}^\tau, y^{d_1-d_0-d_{-1}} \cdot R_{i_1}^\tau, \ldots, R_{i_s}^\tau, \ldots, y^{d_{s-1}-d_1-d_{-1}} \cdot R_{i_1}^\tau, \ldots, R_{i_s}^\tau, y^{d_s-d_{-1}} \cdot R_{i_1}^\tau, \ldots, R_{i_s}^\tau, 1\}
\]

in the Horner basis of \( P \), \( \{y^{p-1} + \sum_{0 \leq h \leq p-2} c_h \cdot y^h, 1\} \),

- for \( 1 \leq i \leq s \), \( \tilde{F}_{d_{i+1}}^\tau(c, c', y) = \sum_j \tilde{F}_{d_{i+1},j}^\tau(c, c') \cdot y^j \in K[c, c', y] \) is

\[
\text{sRes}_{U_{d_{i+1}}}(c, c', y) \cdot \text{sRes}_{V_{d_{i+1}}}(c, c', y) - \text{sRes}_{U_{d_{i+1}}}(c, c', y) \cdot \text{sRes}_{V_{d_{i+1}}}(c, c', y).
\]

In order to avoid dealing with rational functions, we consider variables \( \ell = (\ell_1, \ldots, \ell_s) \) representing the inverses of \( (\text{sRes}_i(c, c'))_{1 \leq i \leq s} \) and \( \ell' = (\ell'_1, \ldots, \ell'_s) \) variables representing the inverses of \( (T^\tau_{d_{i+1}}(c, c'))_{1 \leq i \leq s} \). We additionally define \( \ell'_0 = 1 \). We also consider \( z = (z_i)_{1 \leq i \leq s, d_{i+1} - d_i \text{ even}} \) complex variables, which only purpose is to fix the sign of the diagonal elements in the even size blocks in the diagonal matrix \( D_{P,Q}^\tau \) defined below.

- for \( 1 \leq i \leq s \), \( F^\tau_{d_{i+1}}(c, c', \ell, \ell', y) \in K[c, c', \ell, \ell', y] \) is

\[
\ell_{i-1} \cdot \ell'_i \cdot y^{d_i-d_{i-1}} + \ell_i \cdot \ell_{i-1} \cdot \ell'_i \cdot \ell'_{i-1} \left( \sum_{0 \leq j \leq d_{i+1} - d_i - 1} \tilde{F}_{d_{i+1},j}^\tau(c, c') \cdot y^j \right).
\]

- \( E_{P,Q}^\tau(c, c', \ell, \ell') \in K[c, c', \ell, \ell']^{p \times p} \) is the block diagonal matrix composed by \( s \) or \( s + 1 \) blocks according to \( d_s = 0 \) or \( d_s > 0 \); for \( 1 \leq i \leq s \) the \( i \)-th block is the matrix \( E_{d_{i+1} - d_i}(F^\tau_{d_{i+1}}) \), if \( d_s > 0 \) the last block is the identity matrix of size \( d_s \).

- \( E^\tau(z) \in K[z]^{p \times p} \) is the block diagonal matrix composed by \( s \) or \( s + 1 \) blocks according to \( d_s = 0 \) or \( d_s > 0 \); for \( 1 \leq i \leq s \), the \( i \)-th block is the identity matrix of size \( d_{i+1} - d_i \) if \( d_{i+1} - d_i \) is odd and the matrix

\[
\begin{pmatrix}
  a_i & 0 & \ldots & \ldots & 0 & b_i \\
  0 & \ddots & & & & 0 \\
  \vdots & & a_i & b_i & & \\
  \vdots & & -b_i & a_i & & \\
  0 & \ddots & & & & \ddots \\
 -b_i & 0 & \ldots & \ldots & 0 & a_i
\end{pmatrix}
\]

of size \( d_{i+1} - d_i \) if \( d_{i+1} - d_i \) is even, if \( d_s > 0 \) the last block is the identity matrix of size \( d_s \).

- \( B_{P,Q}^\tau(c, c', \ell, \ell', z) = M_{P,Q}^\tau(c, c') \cdot E_{P,Q}^\tau(c, c', \ell, \ell') \cdot E^\tau(z) \in K[c, c', \ell, \ell', z]^{p \times p} \).
Proof. Let Lemma 5.2.13 (Hermite’s Theory as an incompatibility). The claim follows from a similar use of \([30, \text{Theorem 1.3}]\) as in the proof of Lemma 4.1.5.

\[
\text{Di}_{d_i-1} \cdot \left( \frac{1}{2} \text{Di}_{d_i-1} \cdot \ell_i^{2} \cdot \text{sR}_{d_i}^{(d_i-1)}(c, c') \cdot \text{sR}_d(c, c') \right)
\]

if \(d_i-1 - d_i\) is odd and the matrix

\[
\text{Di}_{d_i-1} \cdot \left( \frac{1}{2} \right)
\]

if \(d_i-1 - d_i\) is even, if \(d_s > 0\) the last block is the zero block of size \(d_s\).

**Remark 5.2.12** Following Definition 5.2.3 and Definition 5.2.11 and taking into account Remark 5.1.8, it can be proved that:

- \(\deg_{c, c'} \text{Her}(P; Q)(c, c') \leq q + 2p - 2\), \(\deg_{c, c'} \text{Her}(P; Q)(c, c') \leq 1\), then \(\deg_{(c, c')} \text{Her}(P; Q)(c, c') \leq q + 2p - 1\),
- \(\deg_{(c, c')} R(c, c', y) \leq q + 2\),
- \(\text{for } 0 \leq j \leq p - 1\), \(\deg_{(c, c')} \text{sR}_j(c, c') \leq (p - j)(q + 3) - 1\), \(\deg_{(c, c')} \text{sR}_p(c, c') = 0\),
- \(\text{for } 1 \leq i \leq s\), \(\deg_{(c, c')} \text{R}_i(c, c', y) \leq (p - d_i + 1)(q + 3) - 1\),
- \(\deg_{(c, c')} \text{M}_{P, Q}(c, c') \leq p(q + 3) - 1\),
- \(\text{for } 1 \leq i \leq s\), \(\deg_{(c, c', \ell, c', \ell)} \text{E}_{P, Q}(c, c', \ell, \ell', y) \leq (2p - d_i - d_i - 2 + 1)(q + 3) + 2 \leq (2p - 1)(q + 3) + 2\),
- \(\deg_{(c, c', \ell, c', \ell)} \text{E}_{P, Q}(c, c', \ell, \ell') \leq \frac{1}{2}p((2p - 1)(q + 3) + 2)\),
- \(\deg_{(a, b)} \text{E}_{P, Q}(a, b) \leq 1\),
- \(\deg_{(c, c', \ell, c', \ell)} \text{Di}_{P, Q}(c, c', \ell, \ell') \leq 4 + 2p(p + q - 3)\).

We will use these degree bounds in Lemmas 5.2.13 and 5.2.14; but, in fact, a separate degree analysis on the set of variables \((c, c')\) and each variable \(\ell_i\) and \(\ell'_i\), which can be easily done, will be needed in Theorem 5.4.3 (Hermite’s Theory as an incompatibility).

We prove two auxiliary algebraic identities, using Effective Nullstellensatz ([30, Theorem 1.3]).

**Lemma 5.2.13** Let \(p, q \in \mathbb{N}, p \geq 1\), \(\tau \in \{-1, 0, 1\}^{0:p-1}\) a sign condition, \(d(\tau) = (d_0, \ldots, d_s)\), \(c = (c_0, \ldots, c_{p-1}), c' = (c'_0, \ldots, c'_{q})\), \(1 \leq i \leq s\) and \(c = (p(q + 3) - 1)^{d_i-1-d_i}\). Following Definition 5.2.11, there is an identity in \(K[c, c']\)

\[
(s_\text{R}_{d_i-1}(c, c') \cdot s_\text{R}_d(c, c'))^c = \sum_{d_i+1 \leq j \leq d_i-1} s_\text{R}_j(c, c') \cdot W_j(c, c') + T_{d_i-1}(c, c') \cdot W(c, c')
\]

such that all the terms have degree in \((c, c')\) bounded by \(2ep(q + 3)\).

**Proof.** We denote by \(\bar{K}\) the algebraic closure of \(K\). By the Structure Theorem of Subresultants ([3, Theorem 8.30]), for any \(\gamma, \gamma' \in \bar{K}^p, \gamma' \in \bar{K}^{q+1}\), such that

\[
\text{sR}_{d_i-1}(\gamma, \gamma') \neq 0, \bigwedge_{d_i-1 < j < d_i} \text{sR}_j(\gamma, \gamma') = 0, \text{sR}_d(\gamma, \gamma') = 0
\]

we have

\[
T_{d_i-1}(\gamma, \gamma') \neq 0.
\]

The claim follows from a similar use of [30, Theorem 1.3] as in the proof of Lemma 4.1.5. \(\square\)
Lemma 5.2.14 Let \( p, q \in \mathbb{N}, p \geq 1, \tau \in \{-1, 0, 1\}^{\{0,\ldots,p-1\}} \) a sign condition, \( d(\tau) = (d_0, \ldots, d_s) \), \( c = (c_0, \ldots, c_{p-1}), c' = (c'_0, \ldots, c'_{q}), \ell = (\ell_1, \ldots, \ell_s), \ell' = (\ell'_1, \ldots, \ell'_s), z = (z_i)_{1 \leq i \leq s}, d_i, d_{i-1} \) even and \( e = 2^{2p}p^{3p}(q + 3)^{3p} \). Following Definition 5.2.11, for \( 1 \leq j_1, j_2 \leq p \), there is an identity in \( K[c, c', \ell, \ell', z] \)

\[
\left( \text{Her}(P; Q)_{j_1,j_2}(c, c', \ell, \ell', z) \right) =
\sum_{0 \leq j < p-1, j > 0} sR_j(c, c') \cdot W_j(c, c', \ell, \ell', a, b) + \sum_{1 \leq i \leq s} (\ell_i \cdot sR_{d_i}(c, c') - 1) \cdot W_i'(c, c', \ell, \ell', a, b) +
+ \sum_{1 \leq i \leq s} (a_i^2 - b_i^2) \cdot \left( sR_{d_i}(c, c') \cdot T_{d_i-1}(c, c') \right)^{d_i-1} \cdot W_i''(c, c', \ell, \ell', a, b) +
+ \sum_{1 \leq i \leq s, d_i \text{ even}} a_i \cdot b_i \cdot W_i'''(c, c', \ell, \ell', a, b)
\]

such that all the terms have degree in \((c, c', \ell, \ell', a, b)\) bounded by \( e(4p^2(q + 3) + p(q + 3) + 5) \).

**Proof.** We denote by \( K' \) the algebraic closure of \( K \). By the Structure Theorem of Subresultants ([3, Theorem 8.30]), Lemma 5.2.8 and Lemma 5.2.10, for any \( \gamma \in K^{p+q}, \gamma' \in K^{q+1}, \lambda, \lambda' \in K^s, \alpha, \beta \in K^{\#\{1 \leq i \leq s, d_i \text{ even}\}} \) such that

\[
\bigwedge_{0 \leq i < p-1} \text{inv}(sR_i(\gamma, \gamma')) = \tau(j)^2, \bigwedge_{1 \leq i \leq s} \lambda_i \cdot sR_{d_i}(\gamma, \gamma') = 1, \bigwedge_{1 \leq i \leq s} \lambda_i \cdot T_{d_i-1}(\gamma, \gamma') = 1,
\]

\[
\bigwedge_{1 \leq i \leq s, d_i \text{ even}} \alpha_i^2 - \beta_i^2 = \left( sR_{d_i}(\gamma, \gamma') \cdot T_{d_i-1}(\gamma, \gamma') \right)^{d_i-1} \bigwedge_{1 \leq i \leq s, d_i \text{ even}} \alpha_i \cdot \beta_i = 0,
\]

we have \( \text{Her}(P; Q)(\gamma, \gamma') = B_{P,Q}^* \cdot D_{P,Q}^* \cdot B_{P,Q}^*(\gamma, \gamma') \). Moreover, for \( 1 \leq i \leq s \), the condition \( \lambda_i \cdot sR_{d_i}(\gamma, \gamma') = 1 \) clearly implies \( \text{inv}(sR_{d_i}(\gamma, \gamma')) = 1 \). The claim follows from a similar use of [30, Theorem 1.3] as in the proof of Lemma 4.1.5. \( \square \)

We prove now the following related weak existence.

**Theorem 5.2.15 (Hermite’s Theory (2) as a weak existence)** Let \( p \geq 1, P(y) = y^p + \sum_{0 \leq h < p-1} c_h \cdot y^h \in K[u, y], Q(y) = \sum_{0 \leq h \leq q} D_h \cdot y^h \in K[u, y], \tau \in \{-1, 0, 1\}^{\{0,\ldots,p-1\}} \) a sign condition, \( d(\tau) = (d_0, \ldots, d_s) \), and \( d_i = d_{i-1} - d_i \) for \( i = 1, \ldots, s \). Then

\[
\bigwedge_{0 \leq i < p-1} \text{sign}(\text{HMI}_i(P; Q)) = \tau(i) \vdash
\]

\[
\vdash \exists(\ell, \ell', z) \left[ \text{Her}(P; Q) \equiv B_{P,Q}^* \cdot D_{P,Q}^* \cdot B_{P,Q}^*(\ell, \ell', z), \det(B_{P,Q}^*(\ell, \ell', z)) \neq 0, \right.
\]

\[
\bigwedge_{1 \leq i \leq s} \text{sign}(\ell_i^2 \cdot \ell_i^{2d_i} \cdot \text{HMI}_{d_i-1}(P; Q) \cdot \text{HMI}_{d_i}(P; Q) = \tau_{d_i-1} \tau_{d_i} \big]
\]

where \( \ell = (\ell_1, \ldots, \ell_s), \ell' = (\ell'_1, \ldots, \ell'_s), z = (z_i)_{1 \leq i \leq s}, d_i, d_{i-1} \) even. Suppose we have an initial incompatibility in \( K[v, \ell, \ell', a, b] \) where \( v \supset u \) and \( (\ell, \ell', a, b) \) are disjoint from \( v \), with monoid part

\[
S \cdot \det(B_{P,Q}^*(\ell, \ell', z)) \cdot 2e \cdot \prod_{1 \leq i \leq e, d_i \text{ odd}} (\ell_i^2 - \ell_i^{2d_i} \cdot \text{HMI}_{d_i-1}(P; Q) \cdot \text{HMI}_{d_i}(P; Q))^{2e_i},
\]

with \( e \in \mathbb{N}, e_i \leq e' \in \mathbb{N}, \) degree in \( w \subset v \) bounded by \( \delta_w \), degree in \( \ell_i \) bounded by an even number \( \delta_{\ell_i} \), degree in \( \ell_i' \) bounded by an even number \( \delta_{\ell_i'} \) and degree in \( (a_i, b_i) \) bounded by \( \delta_z \). Then the final incompatibility has monoid part

\[
S^f \cdot \prod_{1 \leq i \leq s} \text{HMI}_{d_i}(P; Q)^{2f_i},
\]

with \( f \leq 2^{2p}p^{4p+2}(q + 3)^{3p} \),

\[
f_i \leq 2^{3p-1}p^{4p+2}(q + 3)^{3p}(\delta_{\ell_i} + p^p(q + 3)^p \delta_{\ell_i'} + 10p^{p+2}(q + 3)^{p+1}e + 4pe)
\]
and degree in \( w \) bounded by
\[
2^{3p}p^{4p+2}(q+3)^{3p}\left(\delta_w + \left(p^2(q+3)\delta_t + 3p^{p+1}(q+3)^{p+1}\delta_{e} + 4p^2(q+3)\delta_z + 31p^{p+3}(q+3)^{p+2}\delta_e \right) \max\{\deg_w P, \deg_w Q\}\right).
\]

Note that in the weak inference in Theorem 5.2.15, the elements \( \ell_{i-1}^2 \cdot \ell_i^2 \cdot \text{HMi}_{i-1}(P; Q) \cdot 2d_i - 1 \cdot \text{HMi}_i(P; Q) \) for \( 1 \leq i \leq s, d_i \) odd, are, up to scalars, the only non-constant terms in the diagonal matrix \( \text{Di}_{P,Q}(\ell, \ell') \).

**Proof.** Consider the initial incompatibility
\[
\begin{align*}
\downarrow \quad \text{Her}(P; Q) & \equiv \text{B}_{\overline{P},Q}(\ell, \ell', z) \cdot \text{Di}_{\overline{P},Q}(\ell, \ell') \cdot \text{B}_{\overline{P},Q}^{-1}(\ell, \ell', z), & \det(\text{B}_{\overline{P},Q}(\ell, \ell', z)) \neq 0, \\
\bigwedge_{1 \leq i \leq s, \ d_i \text{ odd}} \text{sign}(\ell_{i-1}^2 \cdot \ell_i^2 \cdot \text{HMi}_{i-1}(P; Q) \cdot 2d_i - 1 \cdot \text{HMi}_i(P; Q)) & = \tau(d_{i-1})\tau(d_i), & \mathcal{H} \downarrow \mathbb{K}[v, \ell', \alpha, \beta] \\
\text{det}(\text{B}_{\overline{P},Q}(\ell, \ell', z)) & \neq 0.
\end{align*}
\]

where \( \mathcal{H} \) is a system of sign conditions in \( \mathbb{K}[v] \). By Proposition 5.2.5, for \( 0 \leq j \leq p \), \( \text{HMi}_j(P; Q) = sR_j(C_0, \ldots, C_{p-1}, D_0, \ldots, D_q) \).

Following Lemma 5.2.10, \( \det(\text{B}_{\overline{P},Q}(\ell, \ell', z)) \) is equal to
\[
\prod_{1 \leq i \leq s} \left((-1)^{\frac{1}{2}(d'_i-1)+d'_i} \prod_{1 \leq s, \ a_i \text{ even}} \right) \left(\prod_{1 \leq i \leq s, \ a_i \text{ even}} \right) \prod_{1 \leq i \leq s, \ a_i \text{ odd}} \left(-2\right)^{\frac{1}{2}(d'_i-1)\cdot d'_i} \cdot (a_i^2 + b_i^2)^{\frac{1}{2}d'_i}.
\]

Then we apply to (1) the weak inference
\[
\begin{align*}
\bigwedge_{1 \leq i \leq s} T_{d_{i-1} - 1} & \neq 0, & \bigwedge_{1 \leq i \leq s} \ell_i & \neq 0, & \bigwedge_{1 \leq i \leq s} \ell'_i & \neq 0, & \bigwedge_{1 \leq i \leq s} z_i & \neq 0, & \mathcal{H} \downarrow \mathbb{K}[v, \ell', \alpha, \beta] \\
\text{det}(\text{B}_{\overline{P},Q}(\ell, \ell', z)) & \neq 0.
\end{align*}
\]

By Lemma 2.1.2 (item 6) we obtain an incompatibility
\[
\downarrow \quad \text{Her}(P; Q) & \equiv \text{B}_{\overline{P},Q}(\ell, \ell', z) \cdot \text{Di}_{\overline{P},Q}(\ell, \ell') \cdot \text{B}_{\overline{P},Q}^{-1}(\ell, \ell', z), \\
\bigwedge_{1 \leq i \leq s} T_{d_{i-1} - 1} & \neq 0, & \bigwedge_{1 \leq i \leq s} \ell_i & \neq 0, & \bigwedge_{1 \leq i \leq s} \ell'_i & \neq 0, & \bigwedge_{1 \leq i \leq s} z_i & \neq 0, & \mathcal{H} \downarrow \mathbb{K}[v, \ell', \alpha, \beta] \\
\bigwedge_{1 \leq i \leq s, \ a_i \text{ even}} \text{sign}(\ell_{i-1}^2 \cdot \ell_i^2 \cdot sR_{d_{i-1} - 1} \cdot sR_{d_i}) & = \tau(d_{i-1})\tau(d_i), & \mathcal{H} \downarrow \mathbb{K}[v, \ell', \alpha, \beta] \\
\text{det}(\text{B}_{\overline{P},Q}(\ell, \ell', z)) & \neq 0.
\end{align*}
\]

with monoid part
\[
S \cdot \prod_{1 \leq i \leq s} T_{d_{i-1} - 1} \cdot \prod_{1 \leq i \leq s, \ a_i \text{ odd}} \left(\ell_{i-1} \cdot \ell_i \right)^{d'_i(d'_i-1)+e_i} \cdot (sR_{d_{i-1} - 1} \cdot sR_{d_i})^{2e_i} \cdot \prod_{1 \leq i \leq s, \ a_i \text{ even}} \left(\ell_{i-1} \cdot \ell_i \right)^{d'_i(e_i+4e_i)} \cdot (a_i^2 + b_i^2)^{d'_i e}
\]

and the same degree bounds.

Let \( \tilde{\epsilon} = 2^{3p}p^{4p}(q+3)^{3p} \). We pass in (2) all the terms in the ideal generated by \{((\text{Her}(P; Q) - \text{B}_{\overline{P},Q} \cdot \text{Di}_{\overline{P},Q} \cdot \text{B}_{\overline{P},Q}^{-1})_{j_1, j_2} | 1 \leq j_1 \leq j_2 \leq p)\} to the right hand side, we raise both sides to the \( \left(\frac{1}{3}p + 1\right)\) power and we pass all the terms back to the left hand side. It is easy to see that what we obtain is an incompatibility
\[
\begin{align*}
\downarrow \bigwedge_{1 \leq j_1 \leq j_2 \leq p} \left(\text{Her}(P; Q)_{j_1, j_2} - (\text{B}_{\overline{P},Q}(\ell, \ell', z) \cdot \text{Di}_{\overline{P},Q}(\ell, \ell') \cdot \text{B}_{\overline{P},Q}^{-1}(\ell, \ell', z))_{j_1, j_2}\right)^{\tilde{\epsilon}} & = 0, \\
\bigwedge_{1 \leq i \leq s} T_{d_{i-1} - 1} & \neq 0, & \bigwedge_{1 \leq i \leq s} \ell_i & \neq 0, & \bigwedge_{1 \leq i \leq s} \ell'_i & \neq 0, & \bigwedge_{1 \leq i \leq s} z_i & \neq 0, & \mathcal{H} \downarrow \mathbb{K}[v, \ell', \alpha, \beta] \\
\bigwedge_{1 \leq i \leq s, \ a_i \text{ odd}} \text{sign}(\ell_{i-1}^2 \cdot \ell_i^2 \cdot sR_{d_{i-1} - 1} \cdot sR_{d_i}) & = \tau(d_{i-1})\tau(d_i), & \mathcal{H} \downarrow \mathbb{K}[v, \ell', \alpha, \beta] \\
\text{det}(\text{B}_{\overline{P},Q}(\ell, \ell', z)) & \neq 0.
\end{align*}
\]
Following Lemma 5.2.14 and applying Lemma 2.1.8, we obtain an incompatibility

\[
\prod_{1 \leq j \leq p, \tau(j)=0} sR_j = 0, \quad \prod_{1 \leq i \leq s} \ell_i, sR_{d_i} = 1, \quad \prod_{1 \leq i \leq s} \ell_i', T_{d_{i-1}} = 1, \quad \prod_{1 \leq i \leq s} z_i^2 = (sR_{d_{i-1}} \cdot T_{d_{i-1}})^{d_i-1},
\]

\[
\prod_{1 \leq i \leq s} T_{d_{i-1}} \neq 0, \quad \prod_{1 \leq i \leq s} \ell_i \neq 0, \quad \prod_{1 \leq i \leq s} \ell_i' \neq 0, \quad \prod_{1 \leq i \leq s} z_i \neq 0,
\]

\[
\bigwedge_{1 \leq i \leq s, d_i \text{ even}} \text{sign}(\ell_{i-1}^2 \cdot \ell_i^2 \cdot sR_{d_{i-1}} \cdot sR_{d_i}) = \tau(d_{i-1})\tau(d_i), \quad H \downarrow \mathbb{K}_{[w, \ell, \ell', a, b]}
\]

with monoid part

\[
S^2 p(p+1)\tilde{e} \cdot \prod_{1 \leq i \leq s} (\ell_{i-1} \cdot \ell_i)^{\frac{1}{2} p(p-1)(d_i' - 1)d_i e + 4d_i e} \cdot (sR_{d_{i-1}} \cdot sR_{d_i})^{p(p+1)e \tilde{e}}.
\]

degree in \(w\) bounded by

\[
\delta_w' := \tilde{e} \left( \frac{1}{2} p(p+1)\delta_w + (4p^2(q+3) + p(q+3) + 5) \max\{\deg_w P, \deg_w Q\} \right),
\]

degree in \(\ell_i\) bounded by

\[
\delta_i' := \tilde{e} \left( \frac{1}{2} p(p+1)\delta_i + 4p^2(q+3) + p(q+3) + 5 \right)
\]

degree in \(\ell_i'\) bounded by

\[
\delta_i'' := \tilde{e} \left( \frac{1}{2} p(p+1)\delta_i' + 4p^2(q+3) + p(q+3) + 5 \right)
\]

and degree in \((a_i, b_i)\) bounded by

\[
\delta_i := \tilde{e} \left( \frac{1}{2} p(p+1)\delta_i + 4p^2(q+3) + p(q+3) + 5 \right).
\]

Then we successively apply to (3) for \(1 \leq i \leq s\) with \(d_i'\) odd the weak inference

\[
\text{sign}(sR_{d_i}) = \tau(i), \quad \text{sign}(sR_{d_{i-1}}) = \tau(i-1), \quad \ell_{i-1}^2 > 0, \quad \ell_i^2 > 0 \quad \Rightarrow \quad \text{sign}(\ell_{i-1}^2 \cdot \ell_i^2 \cdot sR_{d_{i-1}} \cdot sR_{d_i}) = \tau(i)\tau(i-1).
\]

By Lemma 2.1.2 (item 8) we obtain an incompatibility with the same monoid part and degree bounds.

Then we successively apply for \(1 \leq i \leq s\) with \(d_i'\) even the weak inferences

\[
(sR_{d_{i-1}} \cdot T_{d_{i-1}})^{d_i-1} \neq 0 \quad \Rightarrow \quad \exists z_i \ [ z_i \neq 0, \ z_i^2 = (sR_{d_{i-1}} \cdot T_{d_{i-1}})^{d_i-1} ],
\]

\[
sR_{d_{i-1}} \neq 0, \quad T_{d_{i-1}} \neq 0 \quad \Rightarrow \quad (sR_{d_{i-1}} \cdot T_{d_{i-1}})^{d_i-1} \neq 0.
\]

Let \(\{1 \leq i \leq s \mid d_i' \text{ even}\} = \{i_1 < \cdots < i_s\} \) and \(i_0 = 0\). Using Lemmas 2.3.2 and 2.1.2 (item 6), it can be proved by induction in \(r\) that, for \(0 \leq r \leq s'\), after the application of the weak inferences corresponding to index \(r\), we obtain an incompatibility with monoid part

\[
S_{r+1} \cdot \prod_{r+1 \leq j \leq s'} (a_{i_j}^2 + b_{i_j}^2)^{\frac{1}{2} 4^r(p+1)d_i e} \cdot \prod_{1 \leq j \leq s} (sR_{d_{i_{j-1}}} \cdot T_{d_{i_j-1}})^{4^r-j+1(\frac{1}{2} 4^{r-1}p(p+1)d_i e + 1)(d_i' - 1)},
\]

degree in \(w\) bounded by

\[
4^r \left( \delta_w' + (10 + 3p^2(p+1)\tilde{e} + 4\delta_i')p(q+3)(p-d_i') \max\{\deg_w P, \deg_w Q\} \right),
\]

degree in \(\ell_i\) bounded by \(4^r\delta_i'\) and degree in \(\ell_i'\) bounded by \(4^r\delta_i''\) and degree in \((a_i, b_i)\) bounded by \(4^r\delta_i\) for \(r+1 \leq j \leq s'\). At the end we obtain an incompatibility with monoid part

\[
S^\frac{1}{2} 4^{s'} p(p+1)\tilde{e} \cdot \prod_{1 \leq i \leq s} (a_{i_1}^{2h_i}, b_{i_1}^{2h_i}) \cdot (sR_{d_i}^{2h_i} \cdot T_{d_{i-1}}^{2h_i})
\]
with 
\[ h_i \leq \frac{1}{2} 4^{s'} \left( 2p^2(p+1)e' + \frac{1}{2} p^3(p+1)e \right) \bar{e}, \quad h_i' \leq 4^{s'-1} p^2(p+1)(p+2)e\bar{e}, \]
degree in \( w \) bounded by 
\[ \delta''_w := 4^{s'} \left( \delta'_w + (10 + 3p^2(p+1)e\bar{e} + 4\delta'_e)p^2(q+3) \max\{\deg_w P, \deg_w Q\} \right), \]
degree in \( \ell_i \) bounded by \( 4^{s'} \delta'_e \) and degree in \( \ell_i' \) bounded by \( 4^{s'} \delta'_e' \). An explicit bound for \( g_i \) and \( g_i' \) will not be necessary.

Then we successively apply for \( 1 \leq i \leq s \) the weak inferences
\[
\begin{align*}
\text{sign}(sR_{d_i}) &= \tau(i) \quad \vdash \quad sR_{d_i} \neq 0, \\
\ell'_i &\neq 0 \quad \vdash \quad \ell'_i > 0, \\
\ell_i &\neq 0 \quad \vdash \quad \ell_i > 0, \\
T_{d_{i-1}} &\neq 0 \quad \vdash \quad \exists \ell'_i \left[ \ell'_i \neq 0, \ell'_i \cdot T_{d_{i-1}} = 1 \right].
\end{align*}
\]

By Lemmas 2.1.2 (items 2 and 4) and 2.2.2 we obtain an incompatibility
\[
\begin{align*}
\bigwedge_{0 \leq i \leq p-1} \text{sign}(\text{HMi}_i(P; Q)) = (i), \quad \bigwedge_{1 \leq i \leq s} \ell_i \cdot sR_{d_i} = 1, \quad \bigwedge_{1 \leq i \leq s} \ell_i \neq 0, \quad \bigwedge_{1 \leq i \leq s} T_{d_{i-1}} \neq 0, \quad \mathcal{H}
\end{align*}
\]
with monoid part
\[
S^{\frac{1}{2} 4^{s'} (p+1)\bar{e}} \cdot \prod_{1 \leq i \leq s} \ell_i^{2g_i} \cdot sR_{d_i}^{2h_i} \cdot T_{d_{i-1}}^{2h_i + 4^{s'} \delta'_e - 2g_i},
\]
degree in \( w \) bounded by \( \delta''_w + 4^{s'} p(q+3)\delta'_e \max\{\deg_w P, \deg_w Q\} \) and degree in \( \ell_i \) bounded by \( 4^{s'} \delta'_e \).

For \( 1 \leq i \leq s \), we successively multiply (4) by the polynomial \( W(C, D)^{2h_i + 4^{s'} \delta'_e - 2g_i} \), where \( W(C, D) \) is the polynomial from Lemma 5.2.13, and we substitute \( T_{d_{i-1}} \cdot W \) in the monoid part of the result using the identity from this lemma. We obtain
\[
\begin{align*}
\bigwedge_{0 \leq i \leq p-1} \text{sign}(\text{HMi}_i(P; Q)) = (i), \quad \bigwedge_{1 \leq i \leq s} \ell_i \cdot sR_{d_i} = 1, \quad \bigwedge_{1 \leq i \leq s} \ell_i \neq 0, \quad \mathcal{H}
\end{align*}
\]
with monoid part
\[
S^{\frac{1}{2} 4^{s'} (p+1)\bar{e}} \cdot \prod_{1 \leq i \leq s} \ell_i^{2g_i} \cdot sR_{d_i}^{2h_i},
\]
with
\[
h_i'' \leq h_i + p^p(q+3)^p4^{s'-1}(p^2(p+1)(p+2)e\bar{e} + 2\delta'_e),
\]
degree in \( w \) bounded by
\[
\delta''_w + 4^{s'} \left( sp(q+3)\delta'_e + p^{p+1}(q+3)^p(p^2(p+1)(p+2)e\bar{e} + 2\delta'_e) \right) \max\{\deg_w P, \deg_w Q\}
\]
and degree in \( \ell_i \) bounded by \( 4^{s'} \delta'_e \).

Finally we successively apply to (5) for \( 1 \leq i \leq s \) the weak inferences
\[
\begin{align*}
sR_{d_i} \neq 0 \quad \vdash \quad \exists \ell_i \left[ \ell_i \neq 0, \ell_i \cdot sR_{d_i} = 1 \right], \\
\text{sign}(sR_{d_i}) = \tau(d_i) \quad \vdash \quad sR_{d_i} \neq 0.
\end{align*}
\]
By Lemmas 2.2.2 and 2.1.2 (item 2) we obtain
\[
\begin{align*}
\bigwedge_{0 \leq i \leq p-1} \text{sign}(\text{HMi}_i(P; Q)) = \tau(i), \quad \mathcal{H}
\end{align*}
\]
with monoid part

$$S_{1/2}^{\frac{1}{2}}(p(p+1))\prod_{1\leq i\leq s} sR_{d_i}^{2h_i+4s' \delta_i - 2g_i}$$

and degree in $w$ bounded by

$$\delta''_w + 4s' \left( sp(q+3)(\delta'_e + \delta'_e') + p^{p+1}(q+3)p^{p+1}(p^2(p+1)(p+2)e'e + 2\delta'_e') \right) \max\{\deg_w P, \deg_w Q\}$$

which serves as the final incompatibility, taking into account that $s' \leq \frac{p}{2}$.

\[ \square \]

### 5.3 Sylvester Inertia Law

Sylvester Inertia Law states that two diagonal reductions of a quadratic form in an ordered field have the same number of positive, negative and null coefficients. In order to obtain Sylvester Inertia Law as an incompatibility, we use linear algebra à la Gram. First, we introduce some definitions, notation and properties. We refer to [16] and [35] for further details and proofs.

**Definition 5.3.1** Let $A$ be a commutative ring, $A \in A^{m \times n}$ and $k \in \mathbb{N}$.

1. The Gram’s coefficient $\text{Gram}_k(A)$ is the coefficient $g_k$ of the polynomial

$$\det(I_m + y \cdot A \cdot A^\dagger) = g_0 + g_1 \cdot y + \cdots + g_n \cdot y^n,$$

where $y$ is an indeterminate over $A$.

2. The matrix $A^{\dagger k} \in A^{n \times m}$ is the matrix

$$A^{\dagger k} = \left( \sum_{0 \leq i \leq k-1} (-1)^i \text{Gram}_{k-1-i}(A) \cdot (A^\dagger \cdot A)^i \right) \cdot A^\dagger.$$

Note that $\text{Gram}_k(A)$ is an homogeneous polynomial of degree $2k$ in the entries of $A$ and the entries of $A^{\dagger k}$ are homogeneous polynomials of degree $2k - 1$ in the entries of $A$. Note also that $\text{Gram}_k(A) = 1$ and $\text{Gram}_k(A) = 0$ for $k > m$. For $1 \leq k \leq m$, $\text{Gram}_k(A)$ is equal to the sum of the squares of all the $k$-minors of $A$.

**Notation 5.3.2** Let $A$ be a commutative ring, $A \in A^{m \times n}$ and $k \in \mathbb{N}$. We denote by $D_k(A)$ the ideal generated by all the $k$-minors of the matrix $A$.

**Proposition 5.3.3** Let $A$ be a commutative ring, $A \in A^{m \times n}$, $v \in A^m$, $k \in \mathbb{N}$ and let $A|v$ be the matrix in $A^{m \times (n+1)}$ obtained by adding $v$ as a last column to $A$. Then

$$\text{Gram}_k(A) \cdot v = A \cdot A^{\dagger k} \cdot v \mod D_{k+1}(A|v).$$

Moreover, this equation is given by homogeneous identities of degree $2k$ in the entries of $A$ and of degree 1 in the entries of $v$.

The following proposition plays a fundamental role to express Sylvester Inertia Law as an incompatibility.

**Proposition 5.3.4** Let $v_1, \ldots, v_s, w_1, \ldots, w_{t+1} \in K[u]^p$ with $s \in \mathbb{N}_s$, $t \in \mathbb{N}$, $s+t = p$, $A \in K[u]^{p \times p}$ a symmetric matrix, and let $V \in K[u]^{p \times s}$ be the matrix having $v_1, \ldots, v_s$ as columns. Then, there is an incompatibility

$$\downarrow \text{Gram}_s(V) \neq 0, \bigwedge_{1 \leq i \leq s} v_i^\dagger \cdot A \cdot v_i \geq 0, \bigwedge_{1 \leq i < p \leq s} v_i^\dagger \cdot A \cdot v_p = 0, \bigwedge_{1 \leq j \leq t+1} w_j^\dagger \cdot A \cdot w_j < 0, \bigwedge_{1 \leq j < j' \leq t+1} w_j^\dagger \cdot A \cdot w_{j'} = 0$$

with monoid part

$$\text{Gram}_s(V)^{2^s(1+1)} \cdot \prod_{1 \leq j \leq t+1} (w_j^\dagger \cdot A \cdot w_j)^{2^s(1)}$$

and degree in $w \subset u$ bounded by

$$\frac{2}{3}(2^{s(1+1)} - 1) \deg_w A + \frac{4}{3}(2^{t+1}(3s + 2) - 1) \max\{\deg_w v_i \mid 1 \leq i \leq s\} \cup \{\deg_w w_i \mid 1 \leq j \leq t + 1\}.$$
**Proof.** Let $\mathcal{H}$ be the system of sign conditions whose incomputability we want to obtain. Let $\delta_w = \text{deg}_{w} A$ and $\delta'_w = \max\{\text{deg}_{w} v_i \mid 1 \leq i \leq s\} \cup \{\text{deg}_{w} w_i \mid 1 \leq j \leq t+1\}$. For $0 \leq j \leq t+1$, we consider the matrix $V_{s+j} \in \mathbb{A}^{p \times (s+j)}$ having the vectors $v_1, \ldots, v_s, w_1, \ldots, w_j$ as columns. We denote by $G_{s+j}$ the Gram's coefficient $\text{Gram}_{s+j}(V_{s+j}) \in K[u]$.

For $1 \leq j \leq t+1$, we apply Proposition 5.3.3 to the matrix $V_{s+j-1}$, the vector $w_j$ and the number $s+j-1$. If for $1 \leq k \leq s+j-1$ we note $H_{s+j-1,k}$ the $k$-th coordinate of the vector $V_{s+j-1}^t \cdot w_j$, we obtain

$$G_{s+j-1} \cdot w_j = \sum_{1 \leq k \leq s+j-1} H_{s+j-1,s+j,k} \cdot w_k = \sum_{1 \leq i \leq s} H_{s+j-1,i} \cdot v_i \mod D_{s+j}(V_{s+j}).$$

Next we apply to (6) the quadratic form associated to $A$. After passing some terms to the left hand side, we obtain for $1 \leq j \leq t+1$,

$$G_{s+j-1}^2 \cdot w_j \cdot A \cdot w_j + \sum_{1 \leq k \leq s+j-1} H_{s+j-1,s+j,k} \cdot w_k \cdot A \cdot w_k - \sum_{1 \leq i \leq s} H_{s+j-1,i} \cdot v_i \cdot A \cdot v_i + Z_j = D_{s+j}$$

with $Z_j \in \mathcal{X}(\mathcal{H}_z)$ and $D_{s+j} \in D_{s+j}(V_{s+j})$. The degree in $w$ of the first three terms of (7) and the components of $Z_j$ and $D_{s+j}$ is bounded by $\delta_w + (4(s+j) - 2)\delta'_w$.

Raising (7) to the square, we obtain

$$G_{s+j-1}^4 \cdot (w_j \cdot A \cdot w_j)^2 + N_j + Z_j = D_{s+j}^2$$

with $N_j \in \mathcal{X}(\mathcal{H}_z)$ and $D_{s+j} \in D_{s+j}(V_{s+j})$. Let $M_1, \ldots, M_t \in K[u]$ be all the $(s+j)$-minors of the matrix $V_{s+j}$ and consider $Q_{1}, \ldots, Q_{t} \in K[u]$ such that $D_{s+j} = \sum_{1 \leq \ell \leq t} M_{\ell} \cdot Q_{\ell}$. Note that for $1 \leq \ell \leq t$, $\text{deg}_{w} M_{\ell} \leq (s+j)\delta'_w$. Adding to both sides of (8) the sum of squares $N(M_1, \ldots, M_t, Q_1, \ldots, Q_t)$ defined in Remark 2.1.13, we obtain for $1 \leq j \leq t+1$,

$$G_{s+j-1}^4 \cdot (w_j \cdot A \cdot w_j)^2 + N_j + Z_j = G_{s+j} \cdot R_{s+j}$$

with $N_j \in \mathcal{X}(\mathcal{H}_z)$ and $D_{s+j} \in D_{s+j}(V_{s+j})$. Let $M_1, \ldots, M_t \in K[u]$ be all the $(s+j)$-minors of the matrix $V_{s+j}$ and consider $Q_{1}, \ldots, Q_{t} \in K[u]$ such that $D_{s+j} = \sum_{1 \leq \ell \leq t} M_{\ell} \cdot Q_{\ell}$. Note that for $1 \leq \ell \leq t$, $\text{deg}_{w} M_{\ell} \leq (s+j)\delta'_w$. Adding to both sides of (8) the sum of squares $N(M_1, \ldots, M_t, Q_1, \ldots, Q_t)$ defined in Remark 2.1.13, we obtain for $1 \leq j \leq t+1$,

$$G_{s+j-1}^4 \cdot (w_j \cdot A \cdot w_j)^2 + N_j + Z_j = G_{s+j} \cdot R_{s+j}$$

with $N_j \in \mathcal{X}(\mathcal{H}_z)$ and $D_{s+j} \in D_{s+j}(V_{s+j})$. The degree in $w$ of the first term of (9) and the components of $N_j$ and $Z_j$ is bounded by $2\delta_w + (8(s+j) - 4)\delta'_w$.

We will prove by induction on $h$ that for $1 \leq h \leq t+1$ we have an identity

$$G_{s+j}^4 \cdot \prod_{1 \leq j \leq h} (w_j \cdot A \cdot w_j)^{2-4\delta'_j} + N''_h + Z''_h = G_{s+h} \cdot \prod_{1 \leq j \leq h} R''_{s+j}$$

with $N''_h \in \mathcal{X}(\mathcal{H}_z)$, $Z''_h \in \mathcal{X}(\mathcal{H}_z)$ and degree in $w$ of the first term of (10) and the components of $N''_h$ and $Z''_h$ bounded by

$$\frac{2}{3}(4^h - 1)\delta_w + \frac{2}{3}(4^h(3s + 2) - 2)\delta'_w.$$

For $h = 1$, we take equation (9) for $j = 1$. Suppose now we have an equation like (10) for some $1 \leq h \leq t$. We raise it to the 4-th power and we multiply the result by $(w_{h+1} \cdot A \cdot w_{h+1})^2$. We obtain

$$G_{s+j}^4 \cdot \prod_{1 \leq j \leq h+1} (w_j \cdot A \cdot w_j)^{2-4\delta'_j} + N''_h + Z''_h = G_{s+h} \cdot (w_{h+1} \cdot A \cdot w_{h+1})^2 \cdot \prod_{1 \leq j \leq h} R''_{s+j}$$

with $N''_h \in \mathcal{X}(\mathcal{H}_z)$ and $Z''_h \in \mathcal{X}(\mathcal{H}_z)$ and degree in $w$ of the first term of (11) and the components of $N''_h$ and $Z''_h$ bounded by

$$\frac{2}{3}(4^{h+1} - 1)\delta_w + \frac{2}{3}(4^{h+1}(3s + 2) - 2)\delta'_w.$$

Finally, by adding equations (11) and (12) and simplifying equal terms at both sides, we obtain an equation like (10) for $h+1$. The degree bound follows easily.

Taking into account that $G_s = \text{Gram}_s(V)$ and $G_{s+1} = 0$ since $V_{s+1}$ has only $p = s + t$ rows, the proposition follows by considering the incompatibility $\mathcal{H}$ obtained taking $h = t+1$ in equation (10).

**Lemma 5.3.5** Let $C \in K[u]^{p \times p}$, $1 \leq s \leq p$, $1 \leq i_1 < \cdots < i_s \leq p$ and $v_1, \ldots, v_s \in K[u]$ the columns $i_1, \ldots, i_s$ of $C$. Then

$$\det(C) \neq 0 \iff \text{Gram}_s([v_1 \ldots | v_s]) \neq 0,$$

where $[v_1 \ldots | v_s]$ is the matrix in $K[u]^{p \times s}$ formed by the vectors $v_1, \ldots, v_s$ as columns. If we have an initial incompatibility in variables $v \supset u$ with monomial part $S \cdot \text{Gram}_s([v_1 \ldots | v_s])^2$ and degree in $w \subset v$ bounded by $\delta_w$, the final incompatibility has monomial part $S \cdot \det(C)^4 \delta_w$ and degree in $w$ bounded by $\delta_w + 4(s-p)\delta'_w$. 


Proof. By the Generalized Laplace Expansion Theorem, \( \det(C) \) is a linear combination of the \( s \) minors of \( [v_1|...|v_s] \), where the coefficients are, up to sign, \( p-s \) minors of the matrix formed with the remaining columns of \( C \). Then, the lemma follows from Lemma 2.1.15.

We can prove now an incompatibility version of Sylvester Inertia Law.

**Theorem 5.3.6 (Sylvester Inertia Law as an incompatibility)** Let \( A \in K[u]^{p \times p} \) be a symmetric matrix, \( B, B' \in K[u]^{p \times p} \), \( D, D' \in K[u]^{p \times p} \) diagonal matrices with \( (D)_{ii} = D_i \) for \( 1 \leq i \leq p \) and \( (D')_{jj} = D'_j \) for \( 1 \leq j \leq p \) and \( \eta, \eta' \in \{-1,0,1\}^p \). If the number of coordinates in \( \eta \) and \( \eta' \) equal to \(-1, 0 \) and \( 1 \) is not respectively the same, there is an incompatibility

\[
\begin{aligned}
\downarrow & A \equiv B \cdot D \cdot B^t, \quad A \equiv B' \cdot D' \cdot B'^t, \quad \det(B) \neq 0, \quad \det(B') \neq 0, \\
& \prod_{1 \leq i \leq p} \det(D_i) = \eta(i), \quad \prod_{1 \leq j \leq p} \det(D'_j) = \eta'(j)
\end{aligned}
\]

with monoid part

\[
\det(B)^{2e} \cdot \det(B')^{2e'} \cdot \prod_{\eta(i) \neq 0} D_i^{2f_i} \cdot \prod_{\eta'(j) \neq 0} D'_j^{2f'_j}
\]

with \( e, e' \leq p2^{2p} \), \( f_i, f'_j \leq 2^{2(p-1)} \) and degree in \( w \in u \) bounded by

\[
2^{2p} \deg_w A + p2^{2p+1} \max\{\deg_w B, \deg_w B'\} + 2^{p+1} \max\{\deg_w D, \deg_w D'\}.
\]

**Proof.** Let \( \delta_w = \deg_w A, \delta'_w = \max\{\deg_w B, \deg_w B'\} \) and \( \delta''_w = \max\{\deg_w D, \deg_w D'\} \). Without loss of generality, we suppose that there are at least \( s \) coordinates \( 1 \leq k_1 < \cdots < k_s \leq p \) in \( \eta \) equal to 0 or 1 and at least \( t+1 \) coordinates \( 1 \leq k'_1 < \cdots < k'_{t+1} \leq p \) in \( \eta' \) equal to \(-1, 0 \), with \( s \in \mathbb{N}_t, t \in \mathbb{N} \) and \( s + t = p \). We take \( v_1, \ldots, v_s \), as the columns \( k_1, \ldots, k_s \) of \( \text{Adj}(B)^t \) and \( w_1, \ldots, w_{t+1} \) as the columns \( k'_1, \ldots, k'_{t+1} \) of \( \text{Adj}(B')^t \).

We successively apply to the incompatibility from Proposition 5.3.4 the weak inferences

\[
\det(\text{Adj}(B)^t) \neq 0 \quad \Rightarrow \quad \text{Gram}_s(V) \neq 0, \\
\det(B) \neq 0 \quad \Rightarrow \quad \det(\text{Adj}(B)^t) \neq 0.
\]

Since \( \det(\text{Adj}(B)^t) = \det(B)^{p-1} \), by Lemmas 5.3.5 and 2.1.2 (item 6), we obtain an incompatibility with monoid part

\[
\det(B)^{(p-1)2^{2t+3}} \cdot \prod_{1 \leq j \leq t+1} (w_j^\prime \cdot A \cdot w_j)^{2^{2(t-j)+3}}
\]

and degree in \( w \) bounded by

\[
\frac{2}{3}(2^{2(t+1)} - 1)\delta_w + (p - 1)\left(2^{2t+3}\left(p + \frac{2}{3}\right) - \frac{4}{3}\right)\delta''_w.
\]

Then we successively apply for \( 1 \leq i \leq s \) and for \( 1 \leq j \leq t+1 \) the weak inferences

\[
\begin{aligned}
\quad v_i^t \cdot A \cdot v_i = \det(B)^2 \cdot D_{k_i}, \quad \det(B)^2 \cdot D_{k_i} \geq 0 \quad \Rightarrow \quad v_i^t \cdot A \cdot v_i \geq 0, \\
\quad \det(B)^2 \geq 0, \quad D_{k_i} \geq 0 \quad \Rightarrow \quad \det(B)^2 \cdot D_{k_i} \geq 0, \\
\quad \det(B)^2 \geq 0, \\
\quad w_j^t \cdot A \cdot w_j = \det(B')^2 \cdot D'_{k'_j}, \quad \det(B')^2 \cdot D'_{k'_j} < 0 \quad \Rightarrow \quad w_j^t \cdot A \cdot w_j < 0, \\
\quad \det(B')^2 \geq 0, \quad D'_{k'_j} < 0 \quad \Rightarrow \quad \det(B')^2 \cdot D'_{k'_j} < 0, \\
\quad \det(B') \neq 0 \quad \Rightarrow \quad \det(B')^2 > 0.
\end{aligned}
\]

By Lemmas 2.1.2 (items 3, 4, 7 and 8) 2.1.5 (item 15), and 2.1.7, we obtain an incompatibility with monoid part

\[
\det(B)^{(p-1)2^{2t+3}} \cdot \det(B')^{\frac{1}{4}(2^{2(t+1)} - 1)} \cdot \prod_{1 \leq j \leq t+1} D'_{k'_j}^{2^{2(t-j)+3}}
\]

and degree in \( w \) bounded by

\[
\frac{2}{3}(2^{2(t+1)} - 1)\delta_w + \left(p2^{2t+3} - \frac{1}{3}p2^{2t+3} - \frac{1}{3}2^{2t+4} + 2ps - \frac{8}{3}p + \frac{4}{3}\right)\delta''_w + \left(s + \frac{2}{3}(2^{2(t+1)} - 1)\right)\delta''_w.
\]
Finally, we successively apply the weak inferences

\[ A \equiv B \cdot D \cdot B^k \quad \Rightarrow \quad \text{Adj}(B) \cdot A \cdot \text{Adj}(B)^k \equiv \det(B)^2 \cdot D, \]

\[ A \equiv B' \cdot D' \cdot B'^k \quad \Rightarrow \quad \text{Adj}(B') \cdot A \cdot \text{Adj}(B')^k \equiv \det(B')^2 \cdot D'. \]

By Lemma 2.5.3, we obtain an incompatibility with the same monoid part and degree in \( w \) bounded by

\[ \frac{4}{3} (2^{2r+1} + 1) \delta_w + \left( p^2 2^{2r+3} - \frac{1}{3} p^2 2^{2r+3} - \frac{1}{3} 2^{2r+4} + 2ps + \frac{4}{3} p + \frac{4}{3} \right) \delta'_w + \left( s + \frac{4}{3} (2^{2r+1} + 1) \right) \delta''_w. \]

which is the incompatibility we wanted to obtain. \( \square \)

## 5.4 Hermite’s quadratic form and Sylvester Inertia Law

In order to obtain the main result of this section, we combine now Sylvester Inertia Law with the two methods we have considered to compute the signature of the Hermite’s quadratic form.

**Notation 5.4.1** Let \( p \in \mathbb{N}_* \).

- For \( \tau \in \{ -1, 0, 1 \}^{0, \ldots, p-1} \) and \( d(\tau) = (d_0, \ldots, d_s) \), we denote by
  \[ \text{Rk}_{\text{HMI}}(\tau) = p - d_s, \]
  \[ \text{Si}_{\text{HMI}}(\tau) = \sum_{1 \leq j < s, d_j - d_{j-1} \text{ odd}} \varepsilon_{d_j - d_{j-1}} \tau(d_j - 1) \tau(d_i). \]

- For \( m, n \in \mathbb{N} \) with \( m + 2n = p \), \( \eta \in \{ -1, 0, 1 \}^m \) and \( \kappa \in \{ 0, 1 \}^n \), we denote by
  \[ \text{Rk}_{\text{Fact}}(\eta, \kappa) \text{ the addition of the number of coordinates in } \eta \text{ equal to } -1 \text{ or } 1 \text{ and twice the number of coordinates in } \kappa \text{ equal to } 0, \]
  \[ \text{Si}_{\text{Fact}}(\eta) \text{ the number of coordinates in } \eta \text{ equal to } 1 \text{ minus the number of coordinates in } \eta \text{ equal to } -1. \]

Note that \( \text{Rk}_{\text{HMI}}(\tau) \) and \( \text{Si}_{\text{HMI}}(\tau) \) are respectively the rank and signature of the matrix \( \text{Her}(P; Q) \) if \( \tau \) is the sign condition satisfied by \( \text{HMI}(P; Q) \). Similarly, \( \text{Rk}_{\text{Fact}}(\eta, \kappa) \) and \( \text{Si}_{\text{Fact}}(\eta) \) are respectively the rank and signature of the matrix \( \text{Her}(P; Q) \) if in the decomposition in real irreducible factors of \( P \), \( \eta \) is the sign condition satisfied by the real roots of \( P \) at \( Q \) and \( \kappa \) is the invertibility condition satisfied by the complex non-real roots of \( P \) at \( Q \).

We define a new auxiliary function.

**Definition 5.4.2** Let \( g_H : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \) \( g_H(p, q) = 39 \cdot 27^p 5^{p+6}(q + 3)^{4p+2} \).

In the following theorem, we combine Sylvester Inertia Law with Hermite’s Theory as an incompatibility. To do so, we use many previously given definitions and notation, namely Notation 2.4.5, Notation 4.3.1, Definition 4.3.2, Definition 5.1.4, Definition 5.1.5, Notation 5.2.1 and Notation 5.4.1.

**Theorem 5.4.3** (Hermite’s Theory as an incompatibility) Let \( P(y), Q(y) \in \mathbb{K}[u, y] \) with \( \deg_y P = p \geq 1 \), \( \deg_y Q = q \) and \( P \) monic with respect to \( y \). For \( \tau \in \{ -1, 0, 1 \}^{0, \ldots, p-1} \), \( d(\tau) = (d_0, \ldots, d_s) \), \( m + 2n = p \), \( (\mu, \nu) \in \Lambda_m \times \Lambda_n \), \( \eta \in \{ -1, 0, 1 \}^{\#\mu, \#\nu} \), \( \kappa \in \{ 0, 1 \}^{\#\nu} \) such that \( (\text{Rk}_{\text{HMI}}(\tau), \text{Si}_{\text{HMI}}(\tau)) \neq (\text{Rk}_{\text{Fact}}(\eta, \kappa), \text{Si}_{\text{Fact}}(\eta)) \), \( t = (t_1, \ldots, t_{\#\mu}) \) and \( z = (z_1, \ldots, z_{\#\nu}) \), we have

\[ \left| \bigwedge_{0 \leq i \leq p-1} \text{sign}(\text{HMI}(P; Q)) = \tau(i), \text{Fact}(P)^{\#\mu, \#\nu}(t, z), \bigwedge_{1 \leq j \leq \#\mu} \text{sign}(Q(t_j)) = \eta_j, \bigwedge_{1 \leq k \leq \#\nu} \text{inv}(Q(z_k)) = \kappa_k \right| \cdot \mathbb{K}[u, t, a, b] \]

with monoid part

\[ \prod_{1 \leq j \leq \#\mu} \text{HMI}_{t_j}(P; Q)^{2g_{t_j}} \cdot \prod_{1 \leq j \leq \#\mu} (t_j - t_{j'})^{2e_{j,j'}} \cdot \prod_{1 \leq k \leq \#\nu} b_k^{2f_k}. \]

\[ \prod_{1 \leq k < k' \leq \#\nu} \text{R}(z_k, z_{k'})^{2g_{k,k'}}, \prod_{1 \leq j \leq \#\mu} Q(t_j)^{2e_j}, \prod_{1 \leq k \leq \#\nu} (Q^2_{r_0}(z_k) + Q^2_{i_0}(z_k))^{2f_k} \]

with \( g_t, e_{j,j'}, f_k, g_{k,k'}, e_{j,j'}, f_k \leq g_H(p, q) \), degree in \( w \subset u \) bounded by \( g_H(p, q) \max\{\deg_w P, \deg_w Q\} \) and degree in \( t_j \) and degree in \( (a_k, b_k) \) bounded by \( g_H(p, q) \).
Proof. We evaluate

\[ A = \text{Her}(P; Q), \quad B = B_\kappa(t, z, z'), \quad D = D_{i_Q}^{\mu, \nu, \kappa}(t), \quad B' = B_{P'_Q}(\ell, \ell', z''), \quad D' = D_{i'P'_Q}(\ell, \ell') \]

in the incompatibility from Theorem 5.3.6, where \( z' = (z'_k)_{k=1}^s, \ell = (\ell_1, \ldots, \ell_s), \ell' = (\ell'_1, \ldots, \ell'_s) \) and \( z'' = (z''_{d-1})_{d-1, d, \text{even}} \), and we obtain

\[ \text{Her}(P; Q) \equiv B_\kappa(t, z, z') \cdot D_{i_Q}^{\mu, \nu, \kappa}(t) \cdot B'(t, z, z'), \quad \det(B_\kappa(t, z, z')) \neq 0, \]

\[ \text{Her}(P; Q) \equiv B_{P'_Q}(\ell, \ell', z'') \cdot D_{i'P'_Q}(\ell, \ell') \cdot B_{P'_Q}^t(\ell, \ell', z''), \quad \det(B_{P'_Q}(\ell, \ell', z'')) \neq 0, \quad \bigwedge_{1 \leq j \leq \# \mu} \text{sign}(Q(t_j)) = \eta_j, \]

\[ \bigwedge_{1 \leq j \leq \# \mu, \eta_j \neq 0} \text{sign}(\ell^2_{i-1} \cdot \ell^2_i \cdot \text{HMi}_{d-1}(P; Q)^{2(d_i-d_i-1)} \cdot \text{HMi}_d(P; Q)) = \tau(d_i-1) \tau(d_i) \bigwedge_{K[a, t, a, b', a', \ell, \ell', a'', b'']} \]

with monoid part

\[ \det(B_\kappa(t, z, z'))^{2e_1} \cdot \det(B_{P'_Q}(\ell, \ell', z''))^{2e_2} \cdot \prod_{1 \leq j \leq \# \mu, \eta_j \neq 0} Q(t_j)^{2f_{j-1}}. \]

with \( e_1, e_2 \leq p^{2(p-1)} \) and \( f_{j-1} \leq p^{2(p-1)} \), degree in \( w \) bounded by \( 9p^4(q + 3)^{2p} \) max\{deg_w P, deg_w Q\}, degree in \( t_j \) and degree in \( (a_k, b_k) \) bounded by \( p^32^{p+1} \), degree in \( (a'_k, b'_k) \) bounded by \( p^22^{2p+1} \), degree in \( \ell_i \) bounded by \( 5p^32^{2p} \) and degree in \( (a''_k, b''_k) \) bounded by \( p^22^{2p+1} \).

Then we apply to (13) the weak inference from Theorem 5.1.11 and we obtain

\[ \text{Fact}(P; Q), \quad \bigwedge_{1 \leq j \leq \# \nu} \text{sign}(Q(t_j)) = \eta_j, \quad \bigwedge_{1 \leq k \leq \# \nu} \text{inv}(Q(z_k)) = \kappa_k, B_{P'_Q}(\ell, \ell', z'') \]

\[ \bigwedge_{1 \leq j \leq \# \nu, \eta_j \neq 0} \text{sign}(\ell^2_{i-1} \cdot \ell^2_i \cdot \text{HMi}_{d-1}(P; Q)^{2(d_i-d_i-1)} \cdot \text{HMi}_d(P; Q)) = \tau(d_i-1) \tau(d_i) \bigwedge_{K[a, t, a, b', a', \ell, \ell', a'', b'']} \]

with monoid part

\[ \det(B_{P'_Q}(\ell, \ell', z''))^{2s(\kappa)+1} e_2 \cdot \prod_{1 \leq j \leq \# \nu, \eta_j \neq 0} (t_j - t_j)^{2s(\kappa)+1} e_1 \cdot \prod_{1 \leq k \leq \# \nu} b^2_{k} (2\# \mu + 1) e_1 \cdot \prod_{1 \leq k < k' \leq \# \nu} R(z_k, z_{k'})^{2s(\kappa)+1} e_1, \]

\[ \quad \cdot \prod_{1 \leq k < k' \leq \# \nu} Q(t_j)^{2s(\kappa)+1} f_{j-1} \cdot \prod_{1 \leq \eta_j \leq \# \nu, \eta_k \neq 0} (Q_{R_k}(z_k) + Q_{I_k}(z_k))^{2f_{k''}} \]

with \( f_{k''} \leq 2^{2s(\kappa)} - 2(2e_1 + 1) \), degree in \( w \) bounded by

\[ 2^{2s(\kappa)} \left( 2^{2p}(9p^4(q + 3) + 2s(\kappa)(3p + 2p^2)) + q + 2 + 6 \right) \max\{\text{deg}_w P, \text{deg}_w Q\}, \]

degree in \( t_j \) bounded by

\[ 2^{2s(\kappa)} \left( p^32^{2p+1} + q + 2p - 2 \right) \]

degree in \( (a_k, b_k) \) bounded by

\[ 2^{2s(\kappa)} \left( p^32^{2p+1} + q + 2p - 2 \right) \]

degree in \( \ell_i \) and degree in \( \ell_i' \) bounded by \( 5 \cdot 2^{2s(\kappa)} p^{32p} \), and degree in \( (a''_k, b''_k) \) bounded by \( 2^{2s(\kappa)} p^{22p+1} \), where \( s(\kappa) = \# \{k \mid 1 \leq k \leq \# \nu, \nu_k = 1\} \).
Finally, we apply to (14) the weak inference from Theorem 5.2.15 and we obtain

\[
\left( \bigwedge_{0 \leq i \leq p-1} \text{sign}(\text{HMI}_i(P;Q)) = \tau(i) \right), \quad \text{Fact}(P)_{\mu,\nu}(t, z), \quad \bigwedge_{1 \leq j \leq \# \mu} \text{sign}(Q(t_j)) = \eta_j, \quad \bigwedge_{1 \leq k \leq \# \nu} \text{inv}(Q(z_k)) = \kappa_k
\]

with monoid part

\[
\prod_{1 \leq i \leq s} \text{HMI}_{id}(P;Q)^{2g_i} \cdot \prod_{1 \leq j \neq j' \leq \# \mu} (t_j - t_{j'})^{2^{2s(\kappa) + 1} + 1} \cdot \prod_{1 \leq k \leq \# \nu} b_k^{2^{2s(\kappa) + 1}(2^{\# \mu + 1}) + f}
\]

\[
\cdot \prod_{1 \leq k < k' \leq \# \nu} R(z_k, z_{k'})^{2^{2s(\kappa) + 1} + 1} \cdot \prod_{1 \leq l \leq \# \nu, \eta_l \neq 0} Q(t_l)^{2^{2s(\kappa) + 1} + 1} \cdot \prod_{1 \leq k \leq \# \nu, \kappa_k = 1} (Q_{\nu_k}(z_k) + Q_{\nu_k}^2(z_k))^{2^{f_k + 1} + f}
\]

with

\[
g_i \leq 2^{5p + 2s(\kappa) - 1} p^{4p + 4}(q + 3)^{3p}(5p + 5p^{p + 1}(q + 3)p + 10p^{p + 1}(q + 3)^{p + 1} + 1),
\]

\[
f \leq 2^{3p} p^{4p + 2}(q + 3)^{3p},
\]

degree in \( w \) bounded by

\[
2^{3p + 2s(\kappa)} p^{4p + 2}(q + 3)^{3p} \left( 2^{2p} (2s(\kappa)(3p + 2p^3) + 17p^4(q + 3) + 5p^5(q + 3) + 15p^{p + 4}(q + 3)^{p + 1} + 31p^{p + 4}(q + 3)^{p + 2} + q + 2p + 6) \right) \max\{\deg_w P, \deg_w Q\},
\]

degree in \( t_j \) bounded by

\[
2^{3p + 2s(\kappa)} p^{4p + 2}(q + 3)^{3p} (p^{3 + 22p + 1} + q + 2p - 2),
\]

and degree in \( (a_k, b_k) \) bounded by

\[
2^{3p + 2s(\kappa)} p^{4p + 2}(q + 3)^{3p} \left( 2^{2p + 1}(p^3 + (3p + 2p^2)q) + 6q + 2p - 2 \right).
\]

It can be easily seen that this incompatibility satisfies the required bounds to be the final incompatibility. \( \square \)

6 Elimination of one variable

The purpose of this section is, given a family \( Q \) of univariate polynomials depending on parameters, to define an eliminating family \( \text{Elim}(Q) \) of polynomials in the parameters, whose sign determine the realizable sign conditions on \( Q \) and to translate this statement under weak inference form.

Classical Cylindrical Algebraic Decomposition (CAD) is a well known method for constructing an eliminating family, containing subresultants of pairs of polynomials of \( Q \) (in the case where the polynomials are all monic with respect to the main variable). However in classical CAD the properties of the eliminating family are proved using semi-algebraically connected components of realization of sign conditions and semi-algebraically connectivity is not available in our context.

So we need to provide a variant of CAD. The main idea is that real roots of polynomials are characterized by the signs they give to their derivatives. The eliminating family will consist of principal minors of Hermite matrices of pairs of polynomials \( Q_1, Q_2 \) where \( Q_1 \) belongs to \( Q \) and \( Q_2 \) is the product of (a small number of) derivatives of \( Q_1 \) and at most one polynomial in \( Q \). Since minors of Hermite matrices coincide with subresultants (see Proposition 5.2.5), the main difference between classical CAD and the variant presented here is that it is not sufficient to consider pairs of polynomials in the initial family.

In order to design our variant of CAD, we proceed in several steps.

In Subsection 6.1 we first recall the Thom encodings, which characterize the real roots of a univariate polynomial by sign conditions on the derivatives and we prove some weak inferences related to them. In Subsection 6.2 we consider a univariate polynomial \( P \) depending on parameters and define a family of eliminating polynomials in the parameters whose signs determine the Thom encodings of the real roots of \( P \) (and the sign of another polynomial at these roots), using in a crucial way Theorem 5.4.3 (Hermite’s Theory as an incompatibility) and Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a weak existence). In Subsection 6.3, we consider a whole family \( Q \) of univariate polynomials depending on parameters and define the family \( \text{Elim}(Q) \) whose signs determine the ordered list of real roots of all the polynomials in \( Q \). Finally, in Subsection 6.4, we deduce that the signs of \( \text{Elim}(Q) \) determine the realizable sign conditions on the family.
Q. All the result in this section are first explained in usual mathematical terms, then translated into weak inferences.

The main result of the section is Theorem 6.4.4 (Elimination of One Variable as a weak inference) which describes under weak inference form that the signs of Elim(Q) determine the realizable sign conditions on Q. It will be the only result from the rest of the paper used in Section 7.

6.1 Thom encoding of real algebraic numbers

We start this section with a general definition.

**Definition 6.1.1** Let \( Q \subset K[u] \) with \( u = (u_1, \ldots, u_k) \). A sign condition on a set \( Q \) is an element of \( \{-1, 0, 1\}^Q \). The realization of a sign condition \( \tau \) on \( Q \) is defined by

\[
\text{Real}(\tau, R) = \{ v \in R^k \mid \bigwedge_{Q \in \tau} \text{sign}(Q) = \tau(Q) \}.
\]

We use

\[
\text{sign}(Q) = \tau
\]

to mean

\[
\bigwedge_{Q \in \tau} \text{sign}(Q) = \tau(Q).
\]

It will be convenient many times to use the following abuse of notation.

**Notation 6.1.2** If \( \tau \in \{1, 0, -1\}^Q \) is a sign condition on \( Q \) and \( Q' \subset Q \), we denote again by \( \tau \) the restriction \( \tau |_{Q'} \) of \( \tau \) to \( Q' \).

Now we recall the Thom encoding of real algebraic numbers [12] and explaining its main properties. We refer to [3] for proofs.

**Definition 6.1.3** Let \( P(y) = \sum_{0 \leq h \leq p} \gamma_h y^h \in K[y] \) with \( \gamma_p \neq 0 \). We denote Der(P) the list formed by the first \( p - 1 \) derivatives of \( P \) and Der\(_+\)(P) the list formed by \( P \) and Der(P). A real root \( \theta \) of \( P \) is uniquely determined by the sign condition on Der(P) evaluated at \( \theta \), i.e. the list of signs of Der(P)(\( \theta \)), which is called the Thom encoding of \( \theta \) with respect to \( P \).

By a slight abuse of notation, we identify sign conditions on Der(P) (resp. Der\(_+\)(P)), i.e. elements of \( \{1, 0, -1\}^{\text{Der}(P)} \) (resp. \( \{1, 0, -1\}^{\text{Der}_+(P)} \)) with \( \{-1, 0, 1\}^{\{1, \ldots, p-1\}} \) (resp. \( \{-1, 0, 1\}^{\{0, \ldots, p-1\}} \)). For any sign condition \( \eta \) on Der(P) or Der\(_+\)(P), we extend its definition with \( \eta(p) = \text{sign}(\gamma_p) \) if needed.

Thom encoding not only determines the real roots of a polynomial, it can also be used to order real numbers as follows.

**Notation 6.1.4** Let \( P(y) = \sum_{0 \leq h \leq p} \gamma_h y^h \in K[y] \). For \( \eta_1, \eta_2 \) sign conditions on Der\(_+\)(P), we use the notation \( \eta_1 \prec_P \eta_2 \) to indicate that \( \eta_1 \neq \eta_2 \) and, if \( q \) is the biggest value of \( k \) such that \( \eta_1(k) \neq \eta_2(k) \), then

- \( \eta_1(q) < \eta_2(q) \) and \( \eta_1(q+1) = 1 \) or
- \( \eta_1(q) > \eta_2(q) \) and \( \eta_1(q+1) = -1 \).

We use the notation \( \eta_1 \preceq_P \eta_2 \) to indicate that either \( \eta_1 = \eta_2 \) or \( \eta_1 \prec_P \eta_2 \).

**Proposition 6.1.5** Let \( P(y) = \sum_{0 \leq h \leq p} \gamma_h y^h \in K[y] \) with \( \gamma_p \neq 0 \) and \( \theta_1, \theta_2 \in R \). If sign(Der\(_+\)(P)(\( \theta_1 \))) \prec_P \text{sign}(\text{Der}_+(P)(\theta_2)) \) then \( \theta_1 < \theta_2 \).

Let \( \theta_1, \theta_2 \in R \), \( \eta_1 = \text{sign}(\text{Der}_+(P)(\theta_1)) \) and \( \eta_2 = \text{sign}(\text{Der}_+(P)(\theta_2)) \) with \( \eta_1 \neq \eta_2 \), and let \( q \) as in Notation 6.1.4. Note that it is not possible that there exists \( k \) such that \( q < k < p \) and \( \eta_1(k) = \eta_2(k) = 0 \). Otherwise, \( \theta_1 \) and \( \theta_2 \) would be roots of \( P(k) \) with the same Thom encoding with respect to this polynomial, and therefore \( \theta_1 = \theta_2 \), which is impossible since \( \eta_1 \neq \eta_2 \).

Next we recall the mixed Taylor formulas, which play a central role in proving the weak inference version of these results.
Proposition 6.1.6 (Mixed Taylor Formulas) Let \( P(y) = y^p + \sum_{0 \leq h \leq p-1} \gamma_h y^h \in \mathbb{K}[y] \). For every \( \varepsilon \in \{1, -1\}^{1, \ldots, p} \) with \( \varepsilon(1) = 1 \), there exist \( N_{\varepsilon,1}, \ldots, N_{\varepsilon,p} \in \mathbb{N}_e \) such that

\[
P(t_2) = P(t_1) + \sum_{1 \leq k \leq p} \varepsilon(k) \frac{N_{\varepsilon,k}}{k!} P^{(k)}(a_k) \cdot (t_2 - t_1)^k
\]  

(1)

where, for \( 1 \leq k \leq p-1 \), \( a_k = t_1 \) if \( \varepsilon(k) = \varepsilon(k+1) \) and \( a_k = t_2 \) otherwise.

Note that \( a_p \) is not defined in (1), but this is not important since \( P^{(p)} \) is a constant. A proof of Proposition 6.1.6 can be found in [39] and also in [52].

We prove now the weak inference version of the main properties of Thom encoding.

Proposition 6.1.7 Let \( p \geq 1 \), \( P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in \mathbb{K}[u, y] \), \( \eta_1, \eta_2 \) sign conditions on \( \text{Der}_+(P) \) such that exists \( q, 0 \leq q \leq p - 1 \), with \( \eta_1(q) = \eta_2(q) = 0 \) and \( \eta_1(k) = \eta_2(k) \neq 0 \) for \( q + 1 \leq k \leq p - 1 \). Then

\[
\text{sign}(\text{Der}_+(P)(t_1)) = \eta_1, \quad \text{sign}(\text{Der}_+(P)(t_2)) = \eta_2 \quad \vdash \quad t_1 = t_2.
\]

If we have an initial incompatibility in variables \( v \supset (u, t_1, t_2) \) with monoid part \( S \), degree in \( w \) bounded by \( \delta_w \) for some subset of variables \( w \subset v \) disjoint from \((t_1, t_2)\), degree in \( t_1 \) and degree in \( t_2 \) bounded by \( \delta_t \), the final incompatibility has monoid part

\[
S \cdot P^{(q+1)}(t_1)^2, \quad P^{(q+1)}(t_2)^2,
\]

degree in \( w \) bounded by \( 2\delta_w + 14\deg_w P \) and degree in \( t_1 \) and degree in \( t_2 \) bounded by \( 2\delta_t + 14(p - q) - 8 \).

In order to prove Proposition 6.1.7, we will prove first an auxiliary lemma.

Lemma 6.1.8 Let \( p \geq 1 \), \( P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in \mathbb{K}[u, y] \), \( \eta_1, \eta_2 \) sign conditions on \( \text{Der}_+(P) \) such that exists \( q, 0 \leq q \leq p - 1 \), with \( \eta_1(q) = \eta_2(q) = 0 \) and \( \eta_1(k) = \eta_2(k) \neq 0 \) for \( q + 1 \leq k \leq p - 1 \). Then

\[
\text{sign}(\text{Der}_+(P)(t_1)) = \eta_1, \quad \text{sign}(\text{Der}_+(P)(t_2)) = \eta_2 \quad \vdash \quad t_1 \leq t_2.
\]

If we have an initial incompatibility in variables \( v \supset (u, t_1, t_2) \) with monoid part \( S \), degree in \( w \) bounded by \( \delta_w \) for some subset of variables \( w \subset v \) disjoint from \((t_1, t_2)\), degree in \( t_1 \) and degree in \( t_2 \) bounded by \( \delta_t \), the final incompatibility has monoid part

\[
S \cdot P^{(q+1)}(a_1)^2
\]

where \( a_1 = t_1 \) if \( q < p - 1 \) and \( \eta_1(q+1)\eta_1(q+2) = -1 \) and \( a = t_2 \) otherwise, degree in \( w \) bounded by \( \delta_w + 7\deg_w P \), and degree in \( t_1 \) and degree in \( t_2 \) bounded by \( \delta_t + 7(p - q) - 4 \).

Proof. Consider the initial incompatibility

\[
\downarrow t_1 \leq t_2, \quad \mathcal{H} \downarrow
\]

(2)

where \( \mathcal{H} \) is a system of sign conditions in \( \mathbb{K}[v] \). For \( q \leq k \leq p \) we denote \( \eta(k) = \eta_1(k) = \eta_2(k) \). If \( \eta(q+1) = -1 \), we change \( P \) by \(-P\), \( \eta_1 \) by \(-\eta_1 \) and \( \eta_2 \) by \(-\eta_2 \); so without loss of generality we suppose \( \eta(q+1) = 1 \).

The mixed Taylor formula (Proposition 6.1.6) for \( P^{(q)} \) and \( \varepsilon = [\eta(q+1), -\eta(q+2), \ldots, (-1)^{p-q-1}\eta(p)] \) provides us the identity

\[
P^{(q)}(t_2) - P^{(q)}(t_1) = (t_2 - t_1) \cdot S_o - S_e
\]

(3)

where

\[
S_o = N_{\varepsilon,1} P^{(q+1)}(a_1) + \sum_{\substack{3 \leq k \leq p-q, \ k \text{ odd}}} N_{\varepsilon,k} \eta(q+k) P^{(q+k)}(a_k) \cdot (t_2 - t_1)^k - 1,
\]

\[
S_e = \sum_{\substack{2 \leq k \leq p-q, \ k \text{ even}}} N_{\varepsilon,k} \eta(q+k) P^{(q+k)}(a_k) \cdot (t_2 - t_1)^k.
\]

We successively apply to (2) the weak inferences

\[
(t_2 - t_1) \cdot S_o \geq 0, \quad S_o > 0 \quad \vdash \quad t_1 \leq t_2,
\]

\[
(t_2 - t_1) \cdot S_o - S_e = 0, \quad S_e \geq 0 \quad \vdash \quad (t_2 - t_1) \cdot S_o \geq 0,
\]

\[
P^{(q)}(t_1) = 0, \quad P^{(q)}(t_2) = 0 \quad \vdash \quad (t_2 - t_1) \cdot S_o - S_e = 0.
\]

By Lemmas 2.1.9 and 2.1.5 (items 14 and 15) using (3), we obtain

\[
\downarrow S_o > 0, \quad S_e \geq 0, \quad P^{(q)}(t_1) = 0, \quad P^{(q)}(t_2) = 0, \quad \mathcal{H} \downarrow
\]

(4)
with monoid part $S \cdot S^2_\delta$, degree in $w$ bounded by $\delta_w + 4 \deg_w P$ and degree in $t_1$ and degree in $t_2$ bounded by $\delta_t + 4(p-q) - 2$.

Then we successively apply to (4) the weak inferences

$$P^{(q+1)}(a_1) > 0, \quad \bigwedge_{3 \leq k \leq p-q, \ k \text{ odd}} \eta(q + k)P^{(q+k)}(a_k) \cdot (t_2 - t_1)^{k-1} \geq 0 \quad \vdash \quad S_\delta > 0,$$

$$\bigwedge_{2 \leq k \leq p-q, \ k \text{ even}} \eta(q + k)P^{(q+k)}(a_k) \cdot (t_2 - t_1)^{k} \geq 0 \quad \vdash \quad S_\epsilon > 0.$$

By Lemmas 2.1.7 and 2.1.5 (item 15) we obtain an incompatibility

$$\downarrow P^{(q+1)}(a_1) > 0, \quad \bigwedge_{3 \leq k \leq p-q, \ k \text{ odd}} \eta(q + k)P^{(q+k)}(a_k) \cdot (t_2 - t_1)^{k-1} \geq 0,$$

$$\bigwedge_{2 \leq k \leq p-q, \ k \text{ even}} \eta(q + k)P^{(q+k)}(a_k) \cdot (t_2 - t_1)^{k} \geq 0, \quad P^{(q)}(t_1) = 0, \quad P^{(q)}(t_2) = 0, \quad \mathcal{H} \downarrow$$

with monoid part $S \cdot P^{(q+1)}(a_1)^2$, degree in $w$ bounded by $\delta_w + 7 \deg_w P$ and degree in $t_1$ and degree in $t_2$ bounded by $\delta_t + 7(p-q) - 4$.

Then we successively apply to (5) for odd $k$, $3 \leq k \leq p-q$, the weak inferences

$$\eta(q + k)P^{(q+k)}(a_k) \geq 0, \quad (t_2 - t_1)^{k-1} \geq 0 \quad \vdash \quad \eta(q + k)P^{(q+k)}(a_k) \cdot (t_2 - t_1)^{k-1} \geq 0,$$

$$\text{sign}(P^{(q+k)}(a_k)) = \eta(q + k) \quad \vdash \quad \eta(q + k)P^{(q+k)}(a_k) \geq 0,$$

$$\vdash \quad (t_2 - t_1)^{k-1} \geq 0,$$

and for even $k$, $2 \leq k \leq p-q$, the weak inference

$$\eta(q + k)P^{(q+k)}(a_k) \geq 0, \quad (t_2 - t_1)^{k} \geq 0 \quad \vdash \quad \eta(q + k)P^{(q+k)}(a_k) \cdot (t_2 - t_1)^{k} \geq 0,$$

$$\text{sign}(P^{(q+k)}(a_k)) = \eta(q + k) \quad \vdash \quad \eta(q + k)P^{(q+k)}(a_k) \geq 0,$$

$$\vdash \quad (t_2 - t_1)^{k} \geq 0.$$

By Lemma 2.1.2 (items 1, 3 and 7) we obtain

$$\downarrow \text{sign}(\text{Der}_+(P)(t_1)) = \eta_1, \quad \text{sign}(\text{Der}_+(P)(t_2)) = \eta_2, \quad \mathcal{H} \downarrow$$

with the same monoid part and degree bounds.

We can prove now Proposition 6.1.7.

**Proof of Proposition 6.1.7.** Consider the initial incompatibility

$$\downarrow t_1 = t_2, \quad \mathcal{H} \downarrow$$

(6)

where $\mathcal{H}$ is a system of sign conditions in $\mathbf{K}[v]$.

We successively apply to (6) the weak inferences

$$t_1 \geq t_2, \quad t_1 \leq t_2 \quad \vdash \quad t_1 = t_2,$$

$$\text{sign}(\text{Der}_+(P)(t_1)) = \eta_1, \quad \text{sign}(\text{Der}_+(P)(t_2)) = \eta_2 \quad \vdash \quad t_1 \leq t_2,$$

$$\text{sign}(\text{Der}_+(P)(t_2)) = \eta_2, \quad \text{sign}(\text{Der}_+(P)(t_1)) = \eta_1 \quad \vdash \quad t_2 \leq t_1.$$

By Lemmas 2.1.4 and 6.1.8, we obtain

$$\downarrow \text{sign}(\text{Der}_+(P)(t_1)) = \eta_1, \quad \text{sign}(\text{Der}_+(P)(t_2)) = \eta_2, \quad \mathcal{H} \downarrow$$

with monoid part $S \cdot P^{(q+1)}(t_1)^2 \cdot P^{(q+1)}(t_2)^2$, degree in $w$ bounded by $2\delta_w + 14 \deg_w P$ and degree in $t_1$ and degree in $t_2$ bounded by $2\delta_t + 14(p-q) - 8$, which serves as the final incompatibility.

$\square$
Proposition 6.1.9 Let $p \geq 1$, $P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in K[u, y]$, $\eta_1, \eta_2$ sign conditions on $\text{Der}_+(P)$ such that exists $q$, $0 \leq q \leq p - 1$, with $\eta_1(q) \neq \eta_2(q)$ and $\eta_1(k) = \eta_2(k) \neq 0$ for $q + 1 \leq k \leq p - 1$, and $\eta_1 \prec_p \eta_2$. Then

$$\text{sign}(\text{Der}_+(P)(t_1)) = \eta_1, \quad \text{sign}(\text{Der}_+(P)(t_2)) = \eta_2 \quad \Rightarrow \quad t_1 < t_2.$$ 

If we have an initial incompatibility in variables $v \supset (u, t_1, t_2)$ with monoid part $S \cdot (t_2 - t_1)^{2e}$ with $e \geq 1$, degree in $w$ bounded by $\delta_w$ for some subset of variables $w \subset v$ disjoint from $(t_1, t_2)$, degree in $t_1$ and degree in $t_2$ bounded by $\delta_t$, the final incompatibility has monoid part

$$S \cdot P^{(q)}(b)^{2e}$$

with $b = t_2$ if $\eta_2(q) \neq 0$ and $b = t_1$ otherwise, degree in $w$ bounded by $\delta_w + (6e + 2)\deg_w P$ and degree in $t_1$ and degree in $t_2$ bounded by $\delta_t + (6e + 2)p$.

Proof. The proof is an adaptation of the proof of Lemma 6.1.8. For $q + 1 \leq k \leq p$ we denote $\eta(k) = \eta_1(k) = \eta_2(k)$. If $q + 1 = 1$, we change $P$ by $-P$, $\eta_1$ by $-\eta_1$ and $\eta_2$ by $-\eta_2$; so without loss of generality we suppose $\eta(q + 1) = 1$. We replace the first three weak inferences in the proof of Lemma 6.1.8 by

$$(t_2 - t_1)S_o > 0, \quad S_o > 0 \quad \Rightarrow \quad t_1 < t_2,$$

$$(t_2 - t_1)S_o - S_c > 0, \quad S_c \geq 0 \quad \Rightarrow \quad (t_2 - t_1)S_o > 0,$$

$$\text{sign}(P^{(q)}(t_1)) = \eta_1(q), \quad \text{sign}(P^{(q)}(t_2)) = \eta_2(q) \quad \Rightarrow \quad (t_2 - t_1)S_o - S_c > 0.$$ 

In fact, just for the case $\eta_1(q) = -1$ and $\eta_2(q) = 1$, also the weak inference

$$P^{(q)}(t_1) < 0 \quad \Rightarrow \quad P^{(q)}(t_1) \leq 0$$

from Lemma 2.1.2 (item 1) is also needed between the second and third weak inference above. By Lemmas 2.1.10, 2.1.7 and possibly 2.1.2 (item 1), we obtain

$$\downarrow \quad S_o > 0, \quad S_c \geq 0, \quad \text{sign}(P^{(q)}(t_1)) = \eta_1(q), \quad \text{sign}(P^{(q)}(t_2)) = \eta_2(q), \quad \mathcal{H} \downarrow$$

with monoid part $S \cdot P^{(q)}(b)^{2e}$ with $b = t_2$ if $\eta_2(q) = 1$ and $b = t_1$ otherwise, degree in $w$ bounded by $\delta_w + 6\deg_w P$ and degree in $t_1$ and degree in $t_2$ bounded by $\delta_t + 2e(3(p - q) - 1)$.

The rest of the proof is as in the proof of Lemma 6.1.8. \hfill \square

6.2 Conditions on the parameters fixing the Thom encoding

Given $P(u, y), Q(u, y) \in K[u, y]$, with $P(u, y)$ monic in $y$ and $u = (u_1, \ldots, u_k)$, our goal is to define a family of polynomials in $K[u]$ whose signs fix the Thom encoding of the real roots of $P(u, y)$ and the signs of $Q(u, y)$ at these roots; the family composed by the principal minors of Hermite matrices of $P$ and products of some of its derivatives with $Q$ has this property (see [44, Theorem 27]).

We introduce some notation and definitions.

Notation 6.2.1 Let $P(u, y) \in K[u, y]$ monic in $y$ with $\text{deg}_y P = p \geq 1$.

For $\eta \in \{-1, 0, 1\}^{\text{Der}(P)}$, we denote by $\eta_\rightarrow \in \{-1, 0, 1\}^{\text{Der}_+(P)}$ the extension of $\eta$ to $\text{Der}_+(P)$ given by $\eta_\rightarrow(0) = 0$.

For $\eta \in \{-1, 0, 1\}^{\text{Der}_+(P)}$, the multiplicity $\mu(\eta, P)$ is the smallest index $i$, $0 \leq i \leq p$, such that $\eta(i) \neq 0$.

For $\eta \in \{-1, 0, 1\}^{\text{Der}_+(P)}$, the multiplicity $\mu(\eta, P)$ is $\nu(\eta, P)$.

For a list of distinct sign conditions $\eta = [\eta_1, \ldots, \eta_n]$ on $\text{Der}(P)$, the vector of multiplicities $\text{vmu}(\eta)$ is the list $\mu(\eta_1, P), \ldots, \mu(\eta_n, P)$ in non-increasing order.

We define the order $\prec^\mu_P$ on $\{-1, 0, 1\}^{\text{Der}(P)}$, given by $\eta_1 \prec^\mu_P \eta_2$ if $\mu(\eta_1, P) > \mu(\eta_2, P)$ or $\mu(\eta_1, P) = \mu(\eta_2, P)$ and $\nu\eta_1 \prec \nu\eta_2$.

Definition 6.2.2 Let $p \geq 1$, $P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in K[u, y]$, $(\mu, \nu) \in \Lambda_m \times \Lambda_n$ with $m + 2n = p$, $\eta = [\eta_1, \ldots, \eta_n]$ a list of distinct sign conditions on $\text{Der}(P)$ with $\#\mu = \#\eta$, $t = (t_1, \ldots, t_\#\mu)$ and $z = (z_1, \ldots, z_\#\nu)$. We define the system of sign conditions

$$\text{Th}(P)^{\mu, \nu, \eta}(t, z)$$

in $K[u, t, a, b]$ as

$$\text{Fact}(P)^{\mu, \nu}(t, z), \quad \bigwedge_{1 \leq j \leq \#\mu} \text{sign}(\text{Der}(P)(t_j)) = \eta_j.$$
Note that in Definition 6.2.2, since the multiplicity of the real roots of $P$ can be read both from $\mu$ and $\eta$, there should be some restrictions on $\mu$ and $\eta$ in order that the system $\text{Th}(P)^{\mu,\eta}(t,z)$ admits a real solution. Nevertheless, we will still need the definition in the general case, with the only restriction on $\mu$ and $\eta$ given by $\#\mu = \#\eta$.

**Definition 6.2.3** Let $p \geq 1$, $P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in K[u,y]$, $Q(y) \in K[u,y]$ and $i \in \mathbb{N}$. We define

\[
P\text{Der}_i(P) = \left\{ \prod_{1 \leq h \leq p-1} P(h)(y)^{\alpha_h} \mid \alpha \in \{0,1,2\}^{\{1,\ldots,p-1\}}, \#\{h \mid \alpha_h \neq 0\} \leq i \right\} \subset K[u,y],
\]

\[
P\text{Der}_i(P;Q) = \{ AB \mid A \in \text{PDer}_i(P), B \in \{Q,Q^2\} \} \subset K[u,y],
\]

\[
\text{ThElim}(P) = \bigcup_{A \in \text{PDer}_{\text{bit}(p)}(P)} \text{HMi}(P; A) \subset K[u],
\]

\[
\text{ThElim}(P;Q) = \bigcup_{A \in \text{PDer}_{\text{bit}(p)-1}(P;Q)} \text{HMi}(P; A) \subset K[u].
\]

The following two results show the connection between signs conditions on the sets $\text{ThElim}(P)$ and $\text{ThElim}(P;Q)$ and the Thom encodings of the real roots of $P$ and the sign of $Q$ at these roots.

**Theorem 6.2.4 (Fixing the Thom encodings)** Let $p \geq 1$, $P(y) = y^p + \sum_{0 \leq h \leq p-1} C_h \cdot y^h \in K[u,y]$. For every realizable sign condition $\tau$ on $\text{ThElim}(P)$, there exist unique $(\mu(\tau), \nu(\tau)) \in \Lambda_m \times \Lambda_n$ with $m + 2n = p$, and a unique list $\eta(\tau)$ of distinct sign conditions on $\text{Der}(P)$ ordered with respect to $\prec_{\mu}$ such that for every $v \in \text{Real}(\tau, R)$ there exist $\theta \in R^{\#\mu(\tau)}, \alpha \in R^{\#\nu(\tau)}, \beta \in R^{\#\nu(\tau)}$ such that

\[
\text{Th}(P(v,y))^{\mu(\tau),\nu(\tau),\eta(\tau)}(\theta, \alpha + i\beta).
\]

**Proof:** According to Theorem 5.2.2, a sign condition $\tau$ on $\text{ThElim}(P)$ determines the rank and signature of $\text{Her}(P;A)$ for every $A \in \text{PDer}_{\text{bit}(p)}(P)$. By [44, Theorem 27], this is enough to determine the decomposition of $P$ into irreducible real factors and the Thom encodings of the real roots of $P$. \qed

**Theorem 6.2.5 (Fixing the Thom encodings with a Sign)** Following the notation of Theorem 6.2.4, for every realizable sign condition $(\tau, \tau')$ on $\text{ThElim}(P) \cup \text{ThElim}(P;Q)$, there exists a unique list $\epsilon(\tau, \tau') = [\epsilon_1(\tau, \tau'), \ldots, \epsilon_{\#\mu(\tau)}(\tau, \tau')]$ of signs such that for every $v \in \text{Real}((\tau, \tau'), R)$ there exist $\theta \in R^{\#\mu(\tau)}, \alpha \in R^{\#\nu(\tau)}, \beta \in R^{\#\nu(\tau)}$ such that

\[
\text{Th}(P(v,y))^{\mu(\tau),\nu(\tau),\eta(\tau)}(\theta, \alpha + i\beta), \bigwedge_{1 \leq j \leq \#\mu(\tau)} \text{sign}(Q(\theta_j)) = \epsilon_j(\tau, \tau').
\]

**Proof:** The claim follows using Theorem 6.2.4 and the fact that a sign condition $\tau'$ on $\text{ThElim}(P;Q)$ additionally determines the rank and signature of $\text{Her}(P;A)$ for every $A \in \text{PDer}_{\text{bit}(p)-1}(P;Q)$, and therefore, by [44, Theorem 27], the signs of $Q$ at the real roots of $P$. \qed

Before giving the weak inference versions of Theorems 6.2.4 and 6.2.5, we define new auxiliary functions (see Definitions 4.3.3 and 5.4.2).

**Definition 6.2.6** 1. Let $g_{H,1} : N_+ \to N$, $g_{H,1}(p) = g_{H}(p,2\text{bit}(p)(p-1))$.

2. Let $\tilde{g}_{H,1} : N_+ \to N$, $\tilde{g}_{H,1}(p) = \text{bit}(p)2^{2^p(p-1)p+2^p-2}g_{H,1}(p)2^{2^p(p-1)p-1}(g_{H,1}(p) + 2)$.

3. Let $g_{H,2} : N_+ \times N \to N$, $g_{H,2}(p,q) = g_{H}(p, 2 \text{bit}(p) - 1)(p-1) + 2q)$.

4. Let $\tilde{g}_{H,2} : N_+ \times N \to \mathbb{R}$, $\tilde{g}_{H,2}(p,q) = \text{bit}(p)2^{2^p(p-1)p+2^p-2}g_{H,2}(p,q)2^{2^p(p-1)p-1}(g_{H,2}(p,q) + 2)$.

5. Let $g_{5} : N \times N \times N \times N \times N \to \mathbb{R}$,

\[
g_{5}(p,e,f,g,e') = g_{4}(p) \max\{e', \tilde{g}_{H,1}(p)\}2^{2^p} \max\{e, g, \tilde{g}_{H,1}(p)\}2^{2^p} \max\{f, \tilde{g}_{H,1}(p)\}2^{2^p}.
\]

**Technical Lemma 6.2.7** For every $(p, e, f, g, e') \in N_+ \times N \times N \times N \times N,$

\[
2^{p+((p-1)p+2)^2(p-1)p+2^p+1)} \max\{e', \tilde{g}_{H,1}(p)\}2^{2(p-1)p+2^p-1}(2^{2^p+2^p+1}) \max\{e, g, \tilde{g}_{H,1}(p)\}2^{2p} \leq g_{5}(p,e,f,g,e').
\]
Proof. See Section 8.

Now, we first give weak inference versions of Theorems 6.2.4 and 6.2.5, and then the proofs of them.

Theorem 6.2.8 (Fixing the Thom encodings as a weak existence) Let \( p \geq 1 \), \( P(y) = y^p + \sum_{0 \leq h \leq -1} C_h \cdot y^h \in \mathbf{K}[u, y] \) and \( \tau \) a realizable sign condition on \( \text{ThElim}(P) \). Then, using the notation of Theorem 6.2.4,

\[
\text{sign}(\text{ThElim}(P)) = \tau \quad \vdash \quad \exists (t, z) \left[ \text{Th}(P)^{\mu(\tau), \nu(\tau), \eta(\tau)}(t, z) \right]
\]

where \( t = (t_1, \ldots, t_{\#\mu(\tau)} \) and \( z = (z_1, \ldots, z_{\#\nu(\tau)}) \). Suppose we have an initial incompatibility in \( \mathbf{K}[v, t, a, b] \), where \( v \supset u \), and \( t, a, b \) are disjoint from \( v \), with monoid part

\[
S \cdot \prod_{1 \leq j < j' \leq \#(\tau)} (t_j - t_{j'})^{2e_{j,j'}} \cdot \prod_{1 \leq k \leq \#(\nu)} b_k^{2f_k} \cdot \prod_{1 \leq k < k' \leq \#(\nu)} R(z_k, z_{k'})^{2g_{k,k'}} \cdot \prod_{1 \leq j \leq \#(\tau), 1 \leq h \leq -1} \mathbf{P}(h)(t_j)^{2e_{j,h}}
\]

with \( e_{j,j'} \leq e \), \( f_k \leq f \), \( g_{k,k'} \leq g \), \( e_{j,h} \leq e' \), degree in \( w \) bounded by \( \delta_w \) for some subset of variables \( w \subset v \), degree in \( t_j \) bounded by \( \delta_t \) and degree in \( (a_k, b_k) \) bounded by \( \delta_z \). Then the final incompatibility has monoid part

\[
S^h \cdot \prod_{H \in \text{ThElim}(P), \tau(H) \neq 0} H^{2k_H^t}
\]

with \( h, h'_t \leq g_v\{p, e, f, g, e'\} \), and degree in \( w \) bounded by

\[
g_v\{p, e, f, g, e'\} \left( \max\{\delta_w, \bar{g}_{H,1}(p) \text{ deg}_w P\} + \max\{\delta_t, \delta_z, \bar{g}_{H,1}(p) \text{ deg}_w P\} \right).
\]

Theorem 6.2.9 (Fixing the Thom encodings with a Sign as a weak existence) Let \( p \geq 1 \), \( P(y) = y^p + \sum_{0 \leq h \leq -1} C_h \cdot y^h \in \mathbf{K}[u, y] \), \( Q(y) \in \mathbf{K}[u, y] \) with \( \text{deg}_y Q = q \) and \( \tau \) and \( \tau' \) signs conditions on \( \text{ThElim}(P) \) and \( \text{ThElim}(P; Q) \) respectively such that \( (\tau, \tau') \) is a realizable sign condition on \( \text{ThElim}(P) \cup \text{ThElim}(P; Q) \). Then using the notation of Theorem 6.2.5,

\[
\text{sign}(\text{ThElim}(P; Q)) = \tau', \text{Th}(P)^{\mu(\tau'), \nu(\tau), \eta(\tau)}(t, z) \quad \vdash \quad \bigwedge_{1 \leq j \leq \#(\tau)} \text{sign}(Q(t_j)) = e_j(\tau, \tau')
\]

where \( t = (t_1, \ldots, t_{\#\mu(\tau)} \) and \( z = (z_1, \ldots, z_{\#\nu(\tau)}) \). Suppose we have an initial incompatibility in \( \mathbf{K}[v] \), where \( v \supset (u, t, a, b) \), with monoid part

\[
S \cdot \prod_{1 \leq j \leq \#(\tau), \tau_j \neq 0} Q(t_j)^{2k_j}
\]

with \( h_j \leq h \), degree in \( w \) bounded by \( \delta_w \) for some subset of variables \( w \subset v \) disjoint from \( (t, a, b) \), degree in \( t_j \) bounded by \( \delta_t \) and degree in \( (a_k, b_k) \) bounded by \( \delta_z \). Then, the final incompatibility has monoid part

\[
S^h \cdot \prod_{H \in \text{ThElim}(P; Q), \tau'(H) \neq 0} H^{2k_H}\cdot \prod_{1 \leq j < j' \leq \#(\tau)} (t_j - t_{j'})^{2e_{j,j'}} \cdot \prod_{1 \leq k \leq \#(\nu)} b_k^{2f_k} \cdot \prod_{1 \leq k < k' \leq \#(\nu)} R(z_k, z_{k'})^{2g_{k,k'}} \cdot \prod_{1 \leq j \leq \#(\mu(\tau) \cup \#(\nu(\tau)))) \leq p \} H^{2k_H}\cdot P(h)(t_j)^{2e_{j,h}}
\]

with \( h' \leq 2(p+2)^p - 2p - 2 \max\{h, g_{H,2}(p, q)\}^{2p-1}, h'_t, e_{j,j'}, f_k, g_{k,k'} \leq 2(p+2)^p - 2 \max\{h, g_{H,2}(p, q)\}^{2p-1} g_{H,2}(p, q), \) degree in \( w \) bounded by

\[
2(p+2)^p - 2 \max\{h, g_{H,2}(p, q)\}^{2p-1} \max\{\delta_w, g_{H,2}(p, q) \text{ deg}_w Q\},
\]

degree in \( t_j \) bounded by

\[
2(p+2)^p - 2 \max\{h, g_{H,2}(p, q)\}^{2p-1} \max\{\delta_t, g_{H,2}(p, q)\}
\]

and degree in \( (a_k, b_k) \) bounded by

\[
2(p+2)^p - 2 \max\{h, g_{H,2}(p, q)\}^{2p-1} \max\{\delta_z, g_{H,2}(p, q)\}.
\]
Proof of Theorem 6.2.8. Consider the initial incompatibility

\[ \text{Th}(P)^{\mu(\tau),\nu(\tau),\eta(\tau)}(t,z), H \downarrow_{K[v,t,a,b]} \]  

(7)

where \( H \) is a system of sign conditions in \( K[v] \).

In order to proceed by case by case reasoning, our first aim is to obtain incomparabilities

\[ \downarrow \text{sign(ThElim}(P)) = \tau, \text{Th}(P)^{\mu(\tau),\nu(\tau),\eta}, H \downarrow_{K[v,t,a,b]} \]

for every list of sign condition \( \eta = [\eta_1, \ldots, \eta_{\#\mu(\tau)}] \) on \( \text{Der}(P) \), including those \( \eta \) such that the system \( \text{Th}(P)^{\mu(\tau),\nu(\tau),\eta}(t,z) \) has obviously no solution because of some real root of \( P \) having two different multiplicities according to \( \mu(\tau) \) and \( \eta \).

We consider first the case that \( \eta \) can be obtained from \( \eta(\tau) \) through permutations of elements corresponding to real roots with the same multiplicity. In this case, by simply renaming variables within the set of variables \( t \) in (7), we obtain

\[ \downarrow \text{Th}(P)^{\mu(\tau),\nu(\tau),\eta(t,z)}, H \downarrow_{K[v,t,a,b]} \]  

(8)

with the same monoid part up to permutations within \( t \) and the same degree bounds.

We consider now the case that \( \eta \) cannot be obtained from \( \eta(\tau) \) through permutations as above. Let \( \kappa = [\kappa_1, \ldots, \kappa_{\#\nu(\tau)}] \) be a list of invertibility conditions on \( \text{Der}(P) \). By Theorem 6.2.4 there exists \( \alpha \in \{0,1,2\}^{1,\ldots, p-1} \) with \( \# \{ h \mid \alpha_h \neq 0 \} \leq \text{bit}(p) \) such that \( Q = \prod_{1 \leq h \leq p-1} (P^{(h)})^{\alpha_h} \in \text{PDer}_{\text{bit}(p)}(P) \) verifies

\[ (\text{Rk}_{\text{HMI}}(\tau), \text{Si}_{\text{HMI}}(\tau)) \neq (\text{Rk}_{\text{Fact}}(\eta^\alpha), \text{Si}_{\text{Fact}}(\eta^\alpha)) \]

where \( \eta^\alpha \) is the list of sign conditions satisfied by \( Q \) on \( t \) when \( \eta \) is the list of sign conditions satisfied by \( \text{Der}(P) \) on \( t \) and \( \kappa^\alpha \) is defined analogously. By Theorem 5.4.3 (Hermite’s Theory as an incompatibility) there is an incompatibility

\[ \downarrow \text{sign(ThElim}(P)) = \tau, \text{Fact}(P)^{\mu(\tau),\nu(\tau)}(t,z), \]

\[ \bigwedge_{1 \leq j \leq \#\mu(\tau)} \text{sign}(Q(t_j)) = \eta^\alpha_j, \bigwedge_{1 \leq k \leq \#\nu(\tau)} \text{inv}(Q(z_k)) = \kappa^\alpha_k \downarrow_{K[u,t,a,b]} \]  

(9)

with monoid part

\[ \prod_{H \in \text{HMI}(P,Q), \tau(H) \neq 0} H^{2\tilde{g}_H} \cdot \prod_{1 \leq j < j' \leq \#\mu(\tau)} (t_j - t_{j'})^{2\tilde{e}_{j,j'}} \cdot \prod_{1 \leq k \leq \#\nu(\tau)} b_k^{2\tilde{f}_k} \cdot \]

\[ \cdot \prod_{1 \leq k < k' \leq \#\mu(\tau)} \text{R}(z_k, z_{k'})^{2\tilde{g}_{k,k'}} \cdot \prod_{1 \leq j \leq \#\mu(\tau)} \text{Q}(t_j)^{2\tilde{e}_{j,j'}} \cdot \prod_{1 \leq k \leq \#\nu(\tau)} (\text{Q}_{k,w}(z_k) + \text{Q}_{k,w}^{*}(z_k))^2 \tilde{f}_k' \]

with \( \tilde{g}_H, \tilde{e}_{j,j'}, \tilde{f}_k, \tilde{g}_{k,k'}, \tilde{e}_{j,j}' \leq \text{g}_{H,1}(p) \), degree in \( w \) bounded by \( 2\text{bit}(p)\text{g}_{H,1}(p) \) \( \text{deg}_w \) \( P \) and degree in \( t_j \) and degree in \( (a_k, b_k) \) bounded by \( \text{g}_{H,1}(p) \).

Since the sign and invertibility of a product is determined by the sign and invertibility of each factor, by applying to (9) the weak inferences in Lemmas 2.1.2 (items 5, 6 and 8) and 2.1.8, we obtain

\[ \downarrow \text{sign(ThElim}(P)) = \tau, \text{Th}(P)^{\mu(\tau),\nu(\tau),\eta}(t,z), \bigwedge_{1 \leq k \leq \#\nu(\tau)} \text{inv}(\text{Der}(P)(z_k)) = \kappa_k \downarrow_{K[u,t,a,b]} \]  

(10)

with monoid part

\[ \prod_{H \in \text{HMI}(P,Q), \tau(H) \neq 0} H^{2\tilde{g}_H} \cdot \prod_{1 \leq j < j' \leq \#\mu(\tau)} (t_j - t_{j'})^{2\tilde{e}_{j,j'}} \cdot \prod_{1 \leq k \leq \#\nu(\tau)} b_k^{2\tilde{f}_k} \cdot \]

\[ \cdot \prod_{1 \leq j \leq \#\mu(\tau)} P^{(h)}(t_j)^{2\alpha_h \tilde{e}_j} \cdot \prod_{1 \leq k \leq \#\nu(\tau)} (P^{(h)}_{k,w}(z_k)^2 + P^{(h)}_{k,w}^{*}(z_k)^2)^2 \tilde{f}_k' \]

degree in \( w \) bounded by \( 2\text{bit}(p)\text{g}_{H,1}(p) + 1 \) \( \text{deg}_w \) \( P \), and degree in \( t_j \) and degree in \( (a_k, b_k) \) bounded by \( \text{g}_{H,1}(p) \).

Note that Lemma 2.1.8 is used for the weak inference saying that, for \( 1 \leq k \leq \#\nu(\tau) \), \( \text{inv}(Q(z_k)) = 0 \) when the invertibility of some factor of \( Q \) at \( z_k \) is 0.
Then we successively apply to (10) the weak inferences
\[
\sum_{1 \leq k \leq \#\nu(\tau)} P_{\Re}(z_k) + P_{\Im}(z_k) = 0 \quad \vdash \quad \bigwedge_{1 \leq k \leq \#\nu(\tau)} P_{\Re}(z_k) = 0, \quad P_{\Im}(z_k) = 0
\]
and
\[
\bigwedge_{1 \leq k \leq \#\nu(\tau)} P_{\Re}(z_k) + P_{\Im}(z_k) = 0 \quad \vdash \quad \sum_{1 \leq k \leq \#\nu(\tau)} (P_{\Re}(z_k))^2 + (P_{\Im}(z_k))^2 = 0.
\]
By Lemmas 2.1.14 and 2.1.5 (item 14) we obtain
\[
\downarrow \text{sign(ThElim}(P)) = \tau, \quad \text{Th}(P)\mu(\tau)\nu(\tau)\eta(t, z),
\]
(11)
with monoid part
\[
\prod_{H \in \text{Th}(P), \tau(H) \neq 0} H^{\delta^j_H} \cdot \prod_{1 \leq j < j' \leq \#\mu(\tau)} (t_j - t_{j'})^{2\delta_{j,j'}} \cdot \prod_{1 \leq k \leq \#\nu(\tau)} b_k^{4\hat{f}_k} \cdot \prod_{1 \leq k < k' \leq \#\nu(\tau)} R(z_k, z_{k'}^{2\delta_{k,k'}}).
\]
degree in \(w\) bounded by \((4\hat{g}(p)g_{H,1}(p) + 1)\) \(\delta_{\nu}(P)\), degree in \(t_j\) bounded by \(2g_{H,1}(p)\) and degree in \((a_k, b_k)\) bounded by \(2(g_{H,1}(p) + p - 1)\).

Then we fix \(\eta\) and we apply to incompatibilities (11) for \(\eta\) and every \(\kappa\), the weak inference,
\[
\vdash \bigvee_{K \in \mathcal{K}} \left( \bigwedge_{(k,h) \notin K} P_{\Re}(z_k) + P_{\Im}(z_k) \neq 0, \quad \bigwedge_{(k,h) \in K} P_{\Re}(z_k) + P_{\Im}(z_k) = 0 \right)
\]
where
\[
\mathcal{K} = \{ K \mid K \subset \{ 1 \leq k \leq \#\nu(\tau) \} \times \{ 1 \leq h \leq p - 1 \} \}.
\]
By Lemma 2.1.19 we obtain
\[
\downarrow \text{sign(ThElim}(P)) = \tau, \quad \text{Th}(P)\mu(\tau)\nu(\tau)\eta(t, z) \downarrow \mathcal{K}_{[u,t,a,b]}
\]
(12)
with monoid part
\[
\prod_{H \in \text{Th}(P), \tau(H) \neq 0} H^{\delta^j_H} \cdot \prod_{1 \leq j < j' \leq \#\mu(\tau)} (t_j - t_{j'})^{2\epsilon_{j,j'}} \cdot \prod_{1 \leq k \leq \#\nu(\tau)} b_k^{2\hat{f}_k} \cdot \prod_{1 \leq k < k' \leq \#\nu(\tau)} R(z_k, z_{k'}^{2\hat{g}_{k,k'}}).
\]
with \(\delta^j_H, \epsilon_{j,j'}, \hat{f}_k, \delta_{k,k'}, \epsilon_{j,j',h} \leq \tilde{g}_{H,1}(p)\), degree in \(w\) bounded by \(\tilde{g}_{H,1}(p)\) \(\delta_{\nu}(P)\) and degree in \(t_j\) and degree in \((a_k, b_k)\) bounded by \(\tilde{g}_{H,1}(p)\).

Now we have already obtained the necessary incompatibilities for every \(\eta\). Then we apply to incompatibilities (8) and (12) the weak inference
\[
\vdash \bigvee_{(J,J') \in \mathcal{J}} \left( \bigwedge_{(j,h) \notin J} P(h)(t_j) > 0, \quad \bigwedge_{(j,h) \notin J \cup J'} P(h)(t_j) < 0, \quad \bigwedge_{(j,h) \in J} P(h)(t_j) = 0 \right)
\]
where
\[
\mathcal{J} = \{ (J,J') \mid J \subset \{ 1 \leq j \leq \#\mu(\tau) \} \times \{ 1 \leq h \leq p - 1 \}, J' \subset \{ 1 \leq j \leq \#\mu(\tau) \} \times \{ 1 \leq h \leq p - 1 \} \setminus J \}.
\]
By Lemma 2.1.21 we obtain
\[
\downarrow \text{sign(ThElim}(P)) = \tau, \quad \text{Fact}(P)\mu(\tau)\nu(\tau)\eta(t, z), \quad \mathcal{H} \downarrow \mathcal{K}_{[v,t,a,b]}
\]
(13)
with monoid part
\[
S^h \cdot \prod_{H \in \text{ThElim}(P), \tau(H) \neq 0} H^{2g_H} \cdot \prod_{1 \leq j < j' \leq \#\mu(\tau)} (t_j - t_{j'})^{2\epsilon_{j,j'}} \cdot \prod_{1 \leq k \leq \#\nu(\tau)} \tilde{b}_k^{2f_k'} \cdot \prod_{1 \leq k < k' \leq \#\nu(\tau)} R(z_k, z_{k'})^{2\tilde{g}_{k,k'}}
\]

with \( \tilde{h}' \leq f_0, \tilde{g}_H \leq f_0(\tilde{g}_H, \{p\}), \tilde{\epsilon}_{j,j'} \leq f_0 \max\{e, \tilde{g}_H, \{p\}\}, \tilde{f}_{j,j'} \leq f_0 \max\{f, \tilde{g}_H, \{p\}\}, \tilde{g}_{k,k'} \leq f_0 \max\{g, \tilde{g}_H, \{p\}\}, \)
degree in \( w \) bounded by \( f_0 \max\{\delta_w, \tilde{g}_H, \{p\}\} \), degree in \( t_j \) bounded by \( f_0 \max\{\delta_t, \tilde{g}_H, \{p\}\} \) and degree in \( (a_k, b_k) \) bounded by \( f_0 \max\{\delta_z, \tilde{g}_H, \{p\}\} \), where
\[
f_0' = 2^{(p-1)p + 2(2^{p-1})p - 2} \max\{e', \tilde{g}_H, \{p\}\}^{2^{(p-1)p - 1}}.
\]

We rename variables \( t \) and \( z \) in (13) as \( t_{\mu(\tau)} \) and \( z_{\nu(\tau)} \) respectively.

Our next aim is to obtain incompatibilities
\[
\downarrow \text{sign(ThElim}(P) = \tau, \text{ Fact}(P)\mu,\nu(t_{\mu}, z_{\nu}), H \downarrow K[v, t_{\mu, a_{\mu}, b_{\mu}]}
\]

for every \((\mu, \nu) \in \mathbb{U}_{m+2n=p} \Lambda_m \times \Lambda_n\), where \( t_{\mu} = (t_{\mu,1}, \ldots, t_{\mu,\#\mu}) \) and \( z_{\nu} = (z_{\nu,1}, \ldots, z_{\nu,\#\nu}) \), in order to be able to apply Theorem 6.2.4 (Real Irreducible Factors with Multiplicities as a weak existence). For \((\mu(\tau), \nu(\tau))\), we already have incompatibility (13), so now we suppose \((\mu, \nu) \neq (\mu(\tau), \nu(\tau))\).

By Theorem 6.2.4 for every \( \eta \) list of sign conditions on \( \text{Der}(P) \) and \( \kappa \) list of invertibility conditions on \( \text{Der}(P) \), there exists \( \alpha \in \{0, 1, 2\}^{v \cdot p} \) with \#\( h | \alpha_h \neq 0 \) \( \leq \) \( \text{bit} \{p\} \) such that \( Q = \prod_{1 \leq h \leq p-1} (P^h)^{\alpha_h} \in \text{PDer}_{\text{bit}(p)}(P) \) verifies
\[
(R_{\text{HMI}}(\tau), S_{\text{HMI}}(\tau)) \neq (R_{\text{Fact}}(\eta^\alpha, \kappa^\alpha), S_{\text{Fact}}(\eta^\alpha)).
\]

Proceeding as before, we obtain
\[
\downarrow \text{sign(ThElim}(P) = \tau, \text{ Fact}(P)\mu,\nu(t_{\mu}, z_{\nu}), H \downarrow K[u, t_{\mu, a_{\mu}, b_{\mu}]}
\]

with monoid part
\[
\prod_{H \in \text{ThElim}(P), \tau(H) \neq 0} H^{2g_H} \cdot \prod_{1 \leq j < j' \leq m} (t_{\mu,j} - t_{\mu,j'})^{2\epsilon_{j,j'}} \cdot \prod_{1 \leq k \leq n} \tilde{b}_k^{2f_k'} \cdot \prod_{1 \leq k < k' \leq n} R(z_k, z_{k'})^{2\tilde{g}_{k,k'}}
\]

with \( \tilde{g}_{j,j'}, \tilde{f}_{j,j'}, \tilde{\epsilon}_{j,j'}, \tilde{b}_k^{2f_k'}, \tilde{g}_{k,k'} \leq f_0(\tilde{g}_H, \{p\}) \), degree in \( w \) bounded by \( f_0(\tilde{g}_H, \{p\}) \), and degree in \( t_{\mu,j} \) and degree in \((a_{\nu,k}, b_{\nu,k})\) bounded by \( f_0(\tilde{g}_H, \{p\}) \).

Finally, we apply to incompatibility (13) and incompatibilities (14) for every \((\mu, \nu) \neq (\mu(\tau), \nu(\tau))\) the weak inference
\[
\vdash \bigvee_{m+2n=p} \text{Fact}(P)\mu,\nu(t_{\mu}, z_{\nu})
\]

By Theorem 4.3.5 (Real Irreducible Factors with Multiplicities as a weak existence), taking into account that \#\( \cup_{m+2n=p} \Lambda_m \times \Lambda_n \leq 2^p \), and using Lemma 6.2.7, we obtain
\[
\downarrow \text{sign(ThElim}(P) = \tau, H \downarrow K[v]
\]

with monoid part
\[
S^h \cdot \prod_{H \in \text{ThElim}(P), \tau(H) \neq 0} H^{2g_H} \}
\]

with
\[
\begin{align*}
h & \leq g_4(\{p\}) f_0^{2^{2^3+p^2} + 2^{2^p+1}} \max\{e, g, \tilde{g}_H, \{p\}\}^{2^{2^3+p^2}} \max\{f, \tilde{g}_H, \{p\}\}^{2^{2^3+p^2}} \leq g_5(\{p, e, f, g, e'\}, \\
 h'_{\tilde{H}} & \leq 2^p g_4(\{p\}) \tilde{g}_H, \{p\} f_0^{2^{3^2+2^p} + 2^{2^p+1}} \max\{e, g, \tilde{g}_H, \{p\}\}^{2^{3^2+2^p}} \max\{f, \tilde{g}_H, \{p\}\}^{2^{3^2+2^p}} \leq g_5(\{p, e, f, g, e'\},
\end{align*}
\]

and degree in \( w \) bounded by
\[
\begin{align*}
g_4(\{p\}) f_0^{2^{3^2+2^p} + 2^{2^p+1}} \max\{e, g, \tilde{g}_H, \{p\}\}^{2^{3^2+2^p}} \max\{f, \tilde{g}_H, \{p\}\}^{2^{3^2+2^p}} \\
\left( \max\{\delta_w, \tilde{g}_H, \{p\} \text{deg}_w P\} + \max\{\delta_t, \tilde{g}_H, \{p\} \text{deg}_w P\} \right) \leq \max\{\delta_w, \tilde{g}_H, \{p\} \text{deg}_w P\} + \max\{\delta_t, \tilde{g}_H, \{p\} \text{deg}_w P\},
\end{align*}
\]

which serves as the final incompatibility. □
Proof of Theorem 6.2.9. We simplify the notation by renaming \( \mu = \mu(\tau), \nu = \nu(\tau) \) and \( \eta = \eta(\tau) \). Consider the initial incompatibility

\[
\begin{align*}
\bigwedge_{1 \leq j \leq \# \mu} \text{sign}(Q(t_j)) = \epsilon_j(\tau, \tau'), \quad \mathcal{H} \downarrow_{\mathbf{K}[\nu]} \quad (15)
\end{align*}
\]

where \( \mathcal{H} \) is a system of sign conditions in \( \mathbf{K}[\nu] \).

Once again, our aim is to proceed by case by case reasoning. Let \( \epsilon = [\epsilon_1, \ldots, \epsilon_{\# \mu}] \) be a list of sign conditions on \( Q \) with \( \epsilon \neq \epsilon(\tau, \tau') \), \( \kappa = [\kappa_1, \ldots, \kappa_{\# \nu}] \) a list of invertibility conditions on \( \text{Der}(P) \) and \( \rho = [\rho_1, \ldots, \rho_{\# \nu}] \) a list of invertibility conditions on \( Q \). By Theorem 6.2.5 there exist \( \alpha \in \{0, 1, 2\}^{1 \ldots p-1} \) with \( \#\{h | \alpha_h \neq 0\} \leq \text{bit}(p) - 1 \) and \( \beta \in \{1, 2\} \) such that \( \tilde{Q} = (\prod_{1 \leq h \leq p-1}(P(h)^{\alpha_h})Q^{\beta}) \in \text{PDer}_{\alpha}(P; Q) \) verifies

\[
(R_{\text{HMI}}(\tau, \mathcal{H}_{\text{HMI}}(\tau))) \neq (R_{\text{Fact}}(\eta^\rho \epsilon^\beta, \kappa^\alpha \rho^{\beta}), \text{Si}_{\text{Fact}}(\eta^\rho \epsilon^\beta)),
\]

where \( \eta^\rho \epsilon^\beta \) is the list of sign conditions satisfied by \( \tilde{Q} \) on \( t \) if \( \text{Th}(P)^{\mu, \nu, \eta}(t, z) \) holds and \( \epsilon \) is the list of sign conditions satisfied by \( Q \) on \( t \) and \( \kappa^\alpha \rho^{\beta} \) is defined analogously. By Theorem 5.4.3 (Hermite’s Theory as an incompatibility) there is an incompatibility

\[
\downarrow \text{sign}(\text{ThElim}(P; Q)) = \tau', \quad \text{Fact}(P)^{\mu, \nu}(t, z),
\]

\[
\bigwedge_{1 \leq j \leq \# \mu} \text{sign}(Q(t_j)) = \eta^\rho_j \epsilon^\beta_j, \quad \bigwedge_{1 \leq k \leq \# \nu} \text{inv}(Q(z_k)) = \kappa^\alpha_k \rho^{\beta}_k \downarrow_{\mathbf{K}[u, t, a, b]} \quad (16)
\]

with monoid part

\[
\prod_{H \in \text{HMI}(P, Q), \tau'(H) \neq 0} H^{2\delta H} \cdot \prod_{1 \leq j < j' \leq \# \mu} (t_j - t_{j'})^{2\epsilon_{j, j'}} \cdot \prod_{1 \leq k \leq \# \nu} b_k^{2\delta_k}.
\]

\[
\cdot \prod_{1 \leq k < k' \leq \# \nu} R(z_k, z_{k'})^{2\delta_{k, k'}} \cdot \prod_{1 \leq j \leq \# \mu} (\tilde{Q}(t_j))^{2\epsilon_j} \cdot \prod_{1 \leq k \leq \# \nu} (Q^2_{\text{Re}}(z_k) + Q^2_{\text{Im}}(z_k))^{2\delta_k}
\]

with \( \tilde{g}_H, \tilde{e}_{j, j'}, \tilde{f}_k, \tilde{g}_{k, k'}, \tilde{e}_j, \tilde{f}_k \leq g_{H, 2}\{p, q\} \), degree in \( w \) bounded by \( 2\text{bit}(p)g_{H, 2}\{p, q\} \) \text{max}\{deg}_w P, \text{deg}_w Q \} and degree in \( t_j \) and degree in \( (u_k, b_k) \) bounded by \( g_{H, 2}\{p, q\} \).

Since the sign and invertibility of a product is determined by the sign and invertibility of each factor, by applying to (16) the weak inferences in Lemmas 2.1.2 (items 5, 6 and 8) and 2.1.8 (used as in the proof of Theorem 6.2.8), we obtain

\[
\downarrow \text{sign}(\text{ThElim}(P; Q)) = \tau', \quad \text{Th}^{\mu, \nu, \eta}(t, z), \quad \bigwedge_{1 \leq j \leq \# \mu} \text{sign}(Q(t_j)) = \epsilon_j, \quad \bigwedge_{1 \leq k \leq \# \nu} \text{inv}(\text{Der}(P))(z_k) = \kappa_k, \quad \bigwedge_{1 \leq k \leq \# \nu} \text{inv}(Q(z_k)) = \rho_k \downarrow_{\mathbf{K}[u, t, a, b]} \quad (17)
\]

with monoid part

\[
\prod_{H \in \text{HMI}(P, Q), \tau'(H) \neq 0} H^{2\delta H} \cdot \prod_{1 \leq j < j' \leq \# \mu} (t_j - t_{j'})^{2\epsilon_{j, j'}} \cdot \prod_{1 \leq k \leq \# \nu} b_k^{2\delta_k} \cdot \prod_{1 \leq k < k' \leq \# \nu} R(z_k, z_{k'})^{2\delta_{k, k'}}.
\]

\[
\cdot \prod_{1 \leq j \leq \# \mu} \left( \prod_{1 \leq h \leq p-1} (P(h)^{\alpha_h}e_j)^{2\alpha_h} \right) \cdot (Q(t_j))^{2\beta_j}.
\]

\[
\cdot \prod_{1 \leq k \leq \# \nu} \left( \prod_{1 \leq h \leq p-1} (P_{\text{Re}}^{(h)}(z_k)^2 + P_{\text{Im}}^{(h)}(z_k)^2)^{2\alpha_h} \right) \cdot (Q^2_{\text{Re}}(z_k) + Q^2_{\text{Im}}(z_k))^{2\delta_k},
\]

degree in \( w \) bounded by \( 2\text{bit}(p)(g_{H, 2}\{p, q\} + 1) \text{max}\{\text{deg}_w P, \text{deg}_w Q\} \) and degree in \( t_j \) and degree in \( (u_k, b_k) \) bounded by \( g_{H, 2}\{p, q\} \).

Then we successively apply to (17) the weak inferences

\[
\sum_{1 \leq k \leq \# \nu, 1 \leq k < k' \leq \# \nu} (P_{\text{Re}}^{(h)}(z_k)^2 + P_{\text{Im}}^{(h)}(z_k)^2) + \sum_{1 \leq k \leq \# \nu, \rho_k \neq 0} (Q^2_{\text{Re}}(z_k) + Q^2_{\text{Im}}(z_k)) = 0 \quad \vdash
\]
\[ \sum_{1 \leq k \leq \#\nu, \rho_k \neq 0} (P^{(h)}(z_k) - P^{(h)}(z_k))^2 \neq 0, \quad \sum_{1 \leq k \leq \#\nu, \rho_k \neq 0} Q^{(h)}(z_k) - Q^{(h)}(z_k)^2 = 0, \]

By Lemmas 2.1.14 and 2.1.5 (item 14) we obtain

\[
\left\lfloor \text{sign}(\text{ThElim}(P; Q)) = \tau', \text{ Th}^{\mu, \nu, \eta}(t, z), \quad \bigwedge_{1 \leq j \leq \#\mu} \text{sign}(Q(t_j)) = \epsilon_j, \right\rfloor_{K[u, t, a, b]}
\]

with monoid part

\[
\prod_{H \in \text{Elim}(P; Q), \tau'(H) \neq 0} H^{4\hat{g}_H} \cdot \prod_{1 \leq j, j' \leq \#\mu} (t_j - t_{j'})^{4\hat{e}_j, j'} \cdot \prod_{1 \leq k \leq \#\nu} b_k^{4\hat{f}_k} \cdot \prod_{1 \leq k < k' \leq \#\nu} R(z_k, z_{k'})\hat{g}_{k, k'}.
\]

degree in \(w\) bounded by \(4\text{bit}[p_j]g_{H,2}\{p, q\} + 1\) max\{deg\_\mu, P, deg\_\nu, Q\}, degree in \(t_j\) bounded by \(2g_{H,2}\{p, q\}\) and degree in \((a_k, b_k)\) bounded by \(2\hat{g}_{H,2}\{p, q\} + \max\{p - 1, q\}\).

Then we fix \(\epsilon\) and we apply to incompatibilities (18) for \(\epsilon\) and every \(\kappa\) and \(\rho\), the weak inference

\[
\left\lfloor \sum_{K \in \mathcal{K}} \left( \bigwedge_{(k, h) \in K'} P^{(h)}(z_k) - P^{(h)}(z_k)^2 \neq 0, \quad \bigwedge_{(k, h) \in K'} P^{(h)}(z_k)^2 + P^{(h)}(z_k)^2 = 0, \right) \right\rfloor_{K[u, t, a, b]}
\]

where

\[
\mathcal{K} = \{ K \mid K \subset \{ 1 \leq k \leq \#\nu \} \} \quad \text{and} \quad \mathcal{K}' = \{ K' \mid K' \subset \{ 1 \leq k \leq \#\nu \} \times \{ 1, \ldots, p - 1 \} \}.
\]

By Lemma 2.1.19 we obtain

\[
\left\lfloor \text{sign}(\text{ThElim}(P; Q)) = \tau', \text{ Th}^{\mu, \nu, \eta}(t, z), \quad \bigwedge_{1 \leq j \leq \#\mu} \text{sign}(Q(t_j)) = \epsilon_j, \right\rfloor_{K[u, t, a, b]}
\]

with monoid part

\[
\prod_{H \in \text{Elim}(P; Q), \tau'(H) \neq 0} H^{2\hat{g}_H} \cdot \prod_{1 \leq j, j' \leq \#\mu} (t_j - t_{j'})^{2\hat{e}_j, j'} \cdot \prod_{1 \leq k \leq \#\nu} b_k^{2\hat{f}_k} \cdot \prod_{1 \leq k < k' \leq \#\nu} R(z_k, z_{k'})\hat{g}_{k, k'}.
\]

with \(\hat{g}_H, \hat{e}_j, j', \hat{f}_k, \hat{g}_{k, k'}, \hat{e}_{j, j}', \hat{e}_{j, j}, \hat{e}_{j, j}' \leq \hat{g}_{H,2}\{p, q\}\), degree in \(w\) bounded by \(\hat{g}_{H,2}\{p, q\}\) max\{deg\_\mu, P, deg\_\nu, Q\} and degree in \(t_j\) and degree in \((a_k, b_k)\) bounded by \(\hat{g}_{H,2}\{p, q\}\).
Finally, we apply to incompatibilities (15) and (19) for every $\epsilon \neq \epsilon(\tau, \tau')$ the weak inference

$$\vdash \bigvee_{j \in J' \subset \{1, \ldots, \mu\} \setminus J} \left( \bigwedge_{j \in J} Q(t_j) > 0, \bigwedge_{j \notin J \cup J'} Q(t_j) < 0, \bigwedge_{j \in J} Q(t_j) = 0 \right).$$

By Lemma 2.1.21 we obtain

$$\downarrow \text{sign}(\text{ThElim}(P; Q)) = \tau', \text{Th}(P)^{\mu, \nu, \eta}, H \downarrow_{K[u]}$$

with monoid part

$$S^{b'} \cdot \prod_{H \in \text{ThElim}(P; Q), \tau'(H) \neq 0} H^{2h_H} \cdot \prod_{1 \leq j < j' \leq \#\mu} (t_j - t_{j'})^{2e_{j,j'}} \cdot \prod_{1 \leq k \leq \#\nu} t_k^{2f_k},$$

$$\cdot \prod_{1 \leq k < k' \leq \#\nu} R(z_k, z_{k'})^{2g_{k,k'}}, \prod_{1 \leq j \leq \#\mu, 1 \leq k \leq p-1, \eta_j(h) \neq 0} P(h)(t_j)^{2e_{h,j}},$$

with

$$h' \leq 2^{(p+2)2p^2 - 2p - 2} \max\{h, \tilde{g}_{H,2}(p, q)\}^{2p - 1},$$

$$h'_H, e_{j,j'}, f_k, g_{k,k'}, e'_{h,j} \leq 2^{(p+2)2p^2 - 2} \max\{h, \tilde{g}_{H,2}(p, q)\}^{2p - 1} \tilde{g}_{H,2}(p, q),$$

and degree in $w$ bounded by

$$2^{(p+2)2p^2 - 2} \max\{h, \tilde{g}_{H,2}(p, q)\}^{2p - 1} \max\{\delta_w, \tilde{g}_{H,2}(p, q)\} \max\{\deg_w P, \deg_w Q\},$$

degree in $t_j$ bounded by

$$2^{(p+2)2p^2 - 2} \max\{h, \tilde{g}_{H,2}(p, q)\}^{2p - 1} \max\{\delta_t, \tilde{g}_{H,2}(p, q)\},$$

and degree in $(a_k, b_k)$ bounded by

$$2^{(p+2)2p^2 - 2} \max\{h, \tilde{g}_{H,2}(p, q)\}^{2p - 1} \max\{\delta_z, \tilde{g}_{H,2}(p, q)\},$$

which serves as the final incompatibility.

We finish this subsection with the following remark, which will be used in Subsection 6.3.

**Remark 6.2.10** Following Definition 6.2.3, there are

$$\sum_{0 \leq j \leq i} \binom{p-1}{j} 2^j \leq 2p^i$$

elements in $\text{PD}_{\tau}(P)$. Therefore, there are at most $2p^{b_{\text{bit}}(p)+1}$ elements in $\text{ThElim}(P)$ and, by Remark 5.2.12, their degree in $u$ is bounded by

$$p \left( 2(p-1)\text{bit}(P) + 2p - 2 \right) \deg_u P + 2b_{\text{bit}}(p) \deg_u P \leq 2p^2(\text{bit}(P) + 1) \deg_u P.$$

Similarly, there are at most $4p^{b_{\text{bit}}(p)}$ elements in $\text{ThElim}(P; Q)$ and, again by Remark 5.2.12, their degree in $u$ is bounded by

$$p \left( 2(p-1)(\text{bit}(p) - 1) + 2q + 2p - 2 \right) \deg_u P + 2(\text{bit}(p) - 1) \deg_u P + 2 \deg_u Q =$$

$$= p \left( 2p\text{bit}(p) + 2g - 2 \right) \deg_u P + 2 \deg_u Q.$$
Definition 6.3.1 Let $Q$ be a finite family of polynomials in $K[u,y]$ monic in the variable $y$. We denote by

$$\text{Der}_+(Q) = \bigcup_{P \in Q} \text{Der}_+(P) \subset K[u,y].$$

We define

$$\text{Elim}(Q) = \left( \bigcup_{P \in Q} \text{ThElim}(P) \right) \bigcup \left( \bigcup_{P \in Q, Q \in \text{Der}_+\left(Q \cup \text{Der}_+(P)\right)} \text{ThElim}(P; Q) \right) \subset K[u].$$

In order to prove that the family $\text{Elim}(Q)$ satisfies the required property, we introduce some notation and definitions.

Notation 6.3.2 Let $Q$ be a finite family of polynomials in $K[u,y]$ monic in the variable $y$. We define the set $H(Q)$, whose elements are meant to give a description of the total list of real roots of $Q$. An element of $H(Q)$ is a list $\eta = [\eta_1, \ldots, \eta_r]$ of distinct sign conditions on $\text{Der}_+(Q)$ such that

- for every $1 \leq j \leq r$, there exists $P \in Q$ such that $\eta_j(P) = 0$.
- for every $1 \leq j \leq r$ and every $P \in Q$ such that $\eta_j(P) = 0$, $\eta_{j'} \prec_P \eta_j$ for $1 \leq j' < j$ and $\eta_j \prec_P \eta_{j'}$ for $j < j' \leq r$.
- for every $1 \leq j < j' \leq r$ and every $P \in Q$, $\eta_j \preceq_P \eta_{j'}$.

For $\eta \in H(Q)$ and $P \in Q$ we define $\eta(P)$ as the (possibly empty) ordered sublist of $\eta |_{\text{Der}(P)}$ containing $\eta_j |_{\text{Der}(P)}$ for those $1 \leq j \leq r$ such that $\eta_j(P) = 0$.

Given $\eta \in H(Q)$, we define the set $N(Q, \eta)$, whose elements are meant to give a description of the multiplicity of the complex roots of the polynomials in $Q$, given the description $\eta$ of their real roots, by

$$N(Q, \eta) = \prod_{P \in Q} \Lambda_{\text{deg}_u P - |\text{vmu}(\eta(P))|}.$$  

(cf Notation 6.2.1).

Note that every choice of $\nu \in \mathbb{R}^k$ defines an element $\eta$ of $H(Q)$ and an element $\nu$ of $N(Q, \eta)$ by considering the list of signs of $\text{Der}_+(Q(t))$ at the roots $\theta_1, \ldots, \theta_r$ of the polynomials in $Q(t) \subset K[y]$ as well as the vectors of multiplicities of their complex roots.

Definition 6.3.3 Let $Q$ be a finite family of polynomials in $K[u,y]$ monic in the variable $y$ and $\eta \in H(Q)$, $\nu \in N(Q, \eta)$ with $\eta = [\eta_1, \ldots, \eta_r]$, $t = (t_1, \ldots, t_r)$, $t_P$ the vector formed by those $t_j$ whose indices appear in $\eta(P)$ in the order $\prec_P$, $z_P = (z_{P,1}, \ldots, z_{P,\#(\eta(P))})$ for $P \in Q$ and $z = (z_P)_{P \in Q}$. We define the system of sign conditions

$$\text{OFact}(Q)^{\eta, \nu}(t, z)$$

in $K[u, t, a, b]$ describing the decomposition into irreducible real factors and the relative order between the real roots of all polynomials in $Q$:

$$\bigwedge_{P \in Q} \text{Fact}(P)^{\nu_{\text{vmu}(\eta(P))}, \nu(P)}(t_P, z_P), \bigwedge_{1 \leq j < j' \leq r} t_j < t_{j'}.$$

The following result show the connection between a sign condition on the set $\text{Elim}(Q)$ and the order between the real roots of the family $Q$.

Theorem 6.3.4 (Fixing the Ordered List of the Roots) For every realizable sign condition $\tau$ on $\text{Elim}(Q)$, there exist $\eta(\tau) \in H(Q)$, $\nu(\tau) \in N(Q, \eta(\tau))$ such that for every $v \in \text{Real}(\tau, R)$ there exist $\theta \in R^{\#\eta(\tau)}$, $\alpha \in \mathbb{R}^s, \beta \in \mathbb{R}^s$ with $s = \sum_{P \in Q} \#(\nu(\tau))$ such that

$$\text{OFact}(Q)^{\eta(\tau), \nu(\tau)}(\theta, \alpha + i\beta).$$

Proof. By [4, Remark 10.84] and [44, Theorem 27] a sign condition $\tau$ on $\text{Elim}(Q)$ determines the decomposition into irreducible real factors and the relative order between the real roots of all polynomials in $Q$. \(\square\)

Before giving a weak inference form of Theorem 6.3.4, we define new auxiliary functions (see Definitions 4.3.3 and 6.2.6).
Definition 6.3.5 1. Let $\bar{g}_{H,3}: \mathbb{N}_* \to \mathbb{R}$, $\bar{g}_{H,3}(p) = \bar{g}_{H,2}(p,p)$.

2. Let $g_b: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{R}$,

$$g_b(p, s, e, f, g) = \left( g_4(p)g^2(\frac{f}{2})^2 \right)^{2(\frac{e}{2})^{s+2}} \cdot \max\{(ps - 1)e + s - 1, \bar{g}_{H,3}(p)\}^{2(\frac{e}{2})^{s+2}} - 1.$$ 

We now give a weak inference form of Theorem 6.3.4.

Theorem 6.3.6 (Fixing the Ordered List of the Roots as a weak existence) Let $p \geq 1$, $Q$ a family of $s$ polynomials in $K[u,y] \setminus K$, monic in the variable $y$ with $\deg_y P \leq p$ for every $P \in Q$, and $\tau$ a realizable sign condition on $\text{Elim}(Q)$. Then

$$\text{sign}(\text{Elim}(Q)) = \tau \vdash \exists (t, z) \left[ \text{OFact}(Q)^{(\tau, \nu)}(t, z) \right]$$

where $t = (t_1, \ldots, t_r)$ with $r = \# \eta(\tau)$, $z_P = (z_{P,1}, \ldots, z_{P,\# \nu\tau(P)})$ for $P \in Q$ and $z = (z_P)_{P \in Q}$. Suppose we have an initial incompatibility in variables $(v, t, a, b)$, where $v \supseteq u$, and $t, a, b$ are disjoint from $v$, with monoid part

$$S \cdot \prod_{1 \leq j < j' \leq r} (t_j - t_{j'})^{2e_{j,j'}} \cdot \prod_{1 \leq k \leq \# \nu\tau(P)} b_{P,k}^{2f_{P,k}}, \prod_{1 \leq k \leq \# \nu\tau(P)} R(z_{P,k}, z_{P,k'})^{2g_{P,k,k'}}$$

with $e_{j,j'} \leq e \in \mathbb{N}$, $f_{P,k} \leq f \in \mathbb{N}$, $g_{P,k,k'} \leq g \in \mathbb{N}$, degree in $w$ bounded by $\delta_w$ for some subsets of variables $w \subseteq v$, degree in $t_j$ bounded by $\delta_t$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $\delta_z$. Then the final incompatibility has monoid part

$$S^h \cdot \prod_{H \in \text{Erin}(Q), \tau(H) \neq 0} H^{2h_H}$$

with $h, h'_H \leq g_b(p, s, e, f, g) \max\{(ps - 1)e + s - 1, \bar{g}_{H,3}(p)\}$ and degree in $w$ bounded by

$$\max\left\{ 2^{p(s-1)}(\delta_w + (ps - 1)(3e + 1) + 14) \deg_w(Q), \bar{g}_{H,3}(p) \deg_w(Q) \right\} + \max\left\{ 2^{p(s-1)}(\delta_t + (ps - 1)(6e + 2) + 15)p - 8 + 2^{p(s-1)}\delta_z + p, \bar{g}_{H,3}(p) \right\} \deg_w(Q),$$

where $\deg_w Q = \max\{\deg_w P | P \in Q\}$.

Proof. We simplify the notation by renaming $\eta(\tau) = \eta$, and $\nu(\tau) = \nu$. Consider the initial incompatibility

$$\Downarrow \text{OFact}(Q)^{(\eta, \nu)}(t, z), \Downarrow \mathcal{H} \Downarrow K[v, t, a, b]$$ (20)

where $\mathcal{H}$ is a system of sign conditions in $K[v]$. 

For $1 \leq j < j' \leq r$ there exists a polynomial $P$ in $Q$ such that $\eta_j(P) = 0$ and $\eta_j <_P \eta_{j'}$. We successively apply to (20) for each such pair $(j, j')$ the weak inference

$$t_j < t_{j'} \vdash t_j \neq t_{j'}$$

if it is the case that exists $Q \in Q$ with $\mu(\eta_j, Q) > 0$ and $\mu(\eta_{j'}, Q) > 0$ and

$$\text{sign}(\text{Der}_+(P)(t_j)) = \eta_j, \text{sign}(\text{Der}_+(P)(t_{j'})) = \eta_{j'} \vdash t_j < t_{j'}$$

in every case. By Lemma 2.1.2 (item 2) and Proposition 6.1.9 we obtain

$$\Downarrow \bigwedge_{P \in Q} P(y) \equiv F^{\nu \mu(\eta(P))}(t_P, z_P)(y), \bigwedge_{P \in Q, 1 \leq k \leq \# \nu\tau(P)} b_{P,k} \neq 0,$$

$$\bigwedge_{P \in Q, 1 \leq k \leq \# \nu\tau(P)} R(z_k, z_{k'}) \neq 0, \bigwedge_{1 \leq j \leq r} \text{sign}(\text{Der}_+(Q)(t_j)) = \eta_j, \Downarrow \mathcal{H} \Downarrow K[v, t, a, b]$$ (21)

with monoid part

$$S \cdot \prod_{1 \leq j \leq r, \eta_j(Q) \neq 0} Q(t_j)^{2e_{Q,j}} \cdot \prod_{P \in Q, 1 \leq k \leq \# \nu\tau(P)} b_{P,k}^{2f_{P,k}}, \prod_{P \in Q, 1 \leq k \leq \# \nu\tau(P)} R(z_{P,k}, z_{P,k'})^{2g_{P,k,k'}}$$
with $e_{Q,j} \leq (r - 1)e$, degree in $w$ bounded by $\delta_w + r(r - 1)(3e + 1)\deg_w Q$, degree in $t_j$ bounded by $\delta_t + (r - 1)(6e + 2)p$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $\delta_z$.

For each $1 \leq j \leq r$, suppose that $Q_j$ is the list of polynomials $P$ in $Q$ such that $\mu(\eta_j, P) > 0$, $t_j$ is the $\alpha(j, P)$-th element in $t_P \in P \subseteq Q$ and $P_j$ the first element of $Q_j$. Conversely, suppose that for $P \in Q$ and $1 \leq j' \leq \#(P)$, the $j'$-th element in $t_P$ is $t_{\beta(P,j')}$. We consider new variables $t'_P = (t'_{P,j}, \ldots, t'_{P,\#(P)})$ for every $P \in Q$ and we substitute $t_j$ by $t'_{P_{j},\alpha(j, P_{j})}$ in (21) for $1 \leq j \leq r$. For each $P \in Q$, let $t_P$ be the result obtained in each $t_P$ after these substitutions. Then we apply the weak inference

$$
\sum_{\left(\begin{array}{c} P \in Q \\ 1 \leq i \leq \#(P) \end{array}\right)} t'_{P_{j},\alpha(j, P_{j})} = t'_{P,\alpha(j, P_{j})}, \quad \sum_{P \in Q} P(y) \equiv F^{\mu \eta(P), \nu(P)}(t'_P, z_P)(y) - \sum_{P \in Q} P(y) \equiv F^{\mu \eta(P), \nu(P)}(t'_P, z_P)(y),
$$

By Lemma 2.1.8 we obtain

$$
\sum_{\left(\begin{array}{c} P \in Q \\ 1 \leq i \leq \#(P) \end{array}\right)} t'_{P_{j},\alpha(j, P_{j})} = t'_{P,\alpha(j, P_{j})}, \quad \sum_{P \in Q} P(y) \equiv F^{\mu \eta(P), \nu(P)}(t'_P, z_P)(y), \quad \sum_{P \in Q} b_{P,k} \neq 0, \quad \sum_{P \in Q, 1 \leq k, k' \leq \#(P)} R(z_{P,k}, z_{P,k'}) \neq 0, \quad \sum_{P \in Q, 1 \leq j \leq \#(P)} \text{sign}(\text{Der}_+(Q)(t'_P)) = \eta(\beta(P), t_P) \mid_{K[t, a, b]} \tag{22}
$$

with monoid part

$$
S \cdot \prod_{P \in Q, 1 \leq i \leq \#(P)} Q(t'_{P_{j}})^{e_{P_{j}, Q,j}} \cdot \prod_{P \in Q, 1 \leq k, k' \leq \#(P)} R(z_{P,k}, z_{P,k'})^{2g_{P,k,k'}}
$$

with $e_{P,Q,j} \leq (r - 1)e$, degree in $w$ bounded by $\delta_w + r(r - 1)(3e + 1)\deg_w Q$, degree in $t'_{P_{j}}$ bounded by $\delta_t + ((r - 1)(6e + 2) + 14)p$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $\delta_z$. For simplicity we rename $t'_P$ as $t_P$ for every $P \in Q$ and $(t'_P)_{P \in Q}$ as $t$.

Then we successively apply to (22) for $1 \leq j \leq r$ and $P \in Q_j \setminus \{P_j\}$ the weak inference

$$
\text{sign}(\text{Der}_+(P_j)(t'_{P_{j},\alpha(j, P_{j})})) = \eta_j, \quad \text{sign}(\text{Der}_+(P_j)(t_{P,\alpha(j, P)})) = \eta_j \mid_{K[t, a, b]} \tag{23}
$$

with monoid part

$$
S \cdot \prod_{P \in Q, 1 \leq i \leq \#(P)} Q(t_{P_{j}})^{e_{P_{j}, Q,j}} \cdot \prod_{P \in Q, 1 \leq k, k' \leq \#(P)} R(z_{P,k}, z_{P,k'})^{2g_{P,k,k'}}
$$

with $e_{P,Q,j} \leq (r - 1)e + s - 1 =: e'$, degree in $w$ bounded by $2^{t(s - 1)}(\delta_w + r(r - 1)(3e + 1) + 14)\deg_w Q$, degree in $t_{P_{j}}$ bounded by $2^{t(s - 1)}(\delta_t + ((r - 1)(6e + 2) + 15)p - 8)$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $2^{t(s - 1)}\delta_z$.

Then we apply to (23) the weak inference

$$
\sum_{P \in Q} P(y) \equiv F^{\mu \eta(P), \nu(P)}(t'_P, z_P)(y) - \sum_{1 \leq j \leq \#(P)} P(t_{P_{j}}) = 0.
$$

By Lemma 2.1.8 we obtain

$$
\sum_{P \in Q} P(y) \equiv F^{\mu \eta(P), \nu(P)}(t'_P, z_P)(y), \quad \sum_{P \in Q} b_{P,k} \neq 0, \quad \sum_{P \in Q} R(z_{P,k}, z_{P,k'}) \neq 0, \quad \sum_{P \in Q, Q \notin \text{Der}_+(Q) \setminus \{P\}, 1 \leq j \leq \#(P)} \text{sign}(Q(t_{P_{j}})) = \eta(\beta(P), Q) \mid_{K[t, a, b]} \tag{24}
$$
with the same monoid part, degree in \( w \) bounded by \( \delta'_w := 2^r(s-1)(\delta_w + (r-1)(3e + 1) + 14) \deg_w Q \), degree in \( t_{P,j} \) bounded by \( \delta'_t := 2^r(s-1)(\delta_t + ((r-1)(6e + 2) + 15)p - 8) + p \) and degree in \( (a_{P,k}, b_{P,k}) \) bounded by \( \delta'_z := 2^r(s-1)\delta_z + p \).

Now we fix an arbitrary order \((P_1, Q_1), \ldots, (P_m, Q_m)\) in the set \( \{(P, Q) \in \mathbb{Q} \times \text{Der}_+(\mathbb{Q}) \mid Q \notin \text{Der}_+(P)\} \), note that \( m \leq s(s-1)p \). For \( 1 \leq \delta \leq m \), we successively apply to (24) the weak inference

\[
\text{sign}(\text{ThElim}(P_i, Q_i)) = \tau, \quad \text{Th}(P_i)^{\text{v}u(n(P_i)), w(P_i), \eta(P_i)}(t_{P_i}, z_{P_i}) \vdash \bigwedge_{1 \leq \delta \leq \#(P_i)} \text{sign}(Q_i(t_{P_i, \delta})) = \eta_{\beta(P_i, \delta)}.
\]

Using Theorem 6.2.9, it can be proved by induction on \( \delta \) that for \( 1 \leq \delta \leq m \), after the application of the \( \delta \)-th weak inference, we obtain an incompatibility in \( K[v, t, a, b] \) with monoid part

\[
S^h_i \cdot \prod_{H \in \text{Elm}(Q), \tau(H) \not= 0} H^{2\hat{h}_{H,i}} \cdot \prod_{1 \leq j \leq \#(P) \atop \eta_{(P,j)}(\nu(h)) \not= 0} \left( \prod_{1 \leq \delta \leq \deg_w Q_i, \eta_{(P,j)}(\nu(h)) \not= 0} P^{(h)}(t_{P,j})^{2\hat{e}_{P,j,i}} \cdot \prod_{Q \in \text{Der}_+(Q), \text{Der}_+(P), \eta_{(P,j)}(\nu(h)) \not= 0} Q^{(Q)}(t_{P,j})^{2\hat{e}_{Q,j,i}} \right) \cdot \prod_{P \in \mathbb{Q}, \eta_{(P,j)}(\nu(h)) \not= 0} (t_{P,j} - t_{P,j'})^{2\hat{e}_{P,j,i}'} \cdot \prod_{P \in \mathbb{Q}, \eta_{(P,j)}(\nu(h)) \not= 0} b^{2\hat{f}_{P,k}} \cdot \prod_{P \in \mathbb{Q}, \eta_{(P,j)}(\nu(h)) \not= 0} R(z_{P,k}, z_{P,k'})^{2\hat{g}_{P,k,k'}}
\]

with

\[
\begin{align*}
\hat{e}^P_{P, Q, j, i} & \leq 2^{((p+2)2^{p-2}-2p-2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p}, \\
\hat{h}^H_{i} & \leq 2^{((p+2)2^{p-2}-2p-2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p-1}, \\
\hat{h}^H_{i,j} & \leq 2^{((p+2)2^{p-2}-2(p+2)2^{p-2}+2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p-1} \tilde{g}_{H,3}(p), \\
\hat{e}^P_{P, j, h} & \leq 2^{((p+2)2^{p-2}-1(2(p+2)2^{p-2}+2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p} \tilde{g}_{H,3}(p), \\
\hat{f}^{P, k} & \leq 2^{((p+2)2^{p-2}-1(2(p+2)2^{p-2}+2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p-1} \tilde{g}_{H,3}(p) f, \\
\hat{g}^{P, k} & \leq 2^{((p+2)2^{p-2}-1(2(p+2)2^{p-2}+2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p-1} \tilde{g}_{H,3}(p) g,
\end{align*}
\]

degree in \( w \) bounded by \( 2^{((p+2)2^{p-2}+2p-2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p-1} \max\{\delta'_w, \tilde{g}_{H,3}(p) \deg_w \mathbb{Q}\} \), degree in \( t_{P,j} \) bounded by \( 2^{((p+2)2^{p-2}+2p-2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p-1} \max\{\delta'_t, \tilde{g}_{H,3}(p)\} \), degree in \( (a_{P,k}, b_{P,k}) \) bounded by \( 2^{((p+2)2^{p-2}+2p-2)2^{p/2-1}} \max\{e', \tilde{g}_{H,3}(p)\}2^{p-1} \max\{\delta'_z, \tilde{g}_{H,3}(p)\}\). Therefore, at the end we obtain an incompatibility

\[
\text{sign}(\text{Elim}(\mathbb{Q})) = \tau, \quad \bigwedge_{P \in \mathbb{Q}} \text{Th}(P)^{\text{v}u(n(P)), w(P), \eta(P)}(t_{P}, z_{P}, H) \vdash \text{K}[v, t, a, b]
\]

with monoid part

\[
S^h \cdot \prod_{H \in \text{Elm}(Q), \tau(H) \not= 0} H^{2\hat{h}_H} \cdot \prod_{1 \leq j < j' \leq \#(P), \eta_{(P,j)}(\nu(h)) \not= 0} \left( \prod_{1 \leq k \leq \#(P)} P^{(h)}(t_{P,j})^{2\hat{e}_{P,j,i}} \cdot \prod_{1 \leq k \leq \#(P)} b^{2\hat{f}_{P,k}} \right) \cdot \prod_{1 \leq k \leq \#(P)} R(z_{P,k}, z_{P,k'})^{2\hat{g}_{P,k,k'}}
\]

with

\[
\begin{align*}
\hat{h}, \hat{h}_H, \hat{e}_{P,j,i}, \hat{e}_{P,j,h} & \leq 2^{(p+4)(2^{p-1})^{2^{p-1}}} \max\{e', \tilde{g}_{H,3}(p)\}2^{(p-1)^2-1}, \\
\hat{f}_{P,k} & \leq 2^{(p+4)(2^{p-1})^{2^{p-1}}} \max\{e', \tilde{g}_{H,3}(p)\}2^{(p-1)^2-1} f, \\
\hat{g}_{P,k_1, k_2} & \leq 2^{(p+4)(2^{p-1})^{2^{p-1}}} \max\{e', \tilde{g}_{H,3}(p)\}2^{(p-1)^2-1} g,
\end{align*}
\]

degree in \( w \) bounded by \( 2^{(p+4)(2^{p-1})^{2^{p-1}}} \max\{e', \tilde{g}_{H,3}(p)\}2^{(p-1)^2-1} \max\{\delta'_w, \tilde{g}_{H,3}(p) \deg_w \mathbb{Q}\} \), degree in \( t_{P,j} \) bounded by \( 2^{(p+4)(2^{p-1})^{2^{p-1}}} \max\{e', \tilde{g}_{H,3}(p)\}2^{(p-1)^2-1} \max\{\delta'_t, \tilde{g}_{H,3}(p)\} \), and degree in \( (a_{P,k}, b_{P,k}) \) bounded by \( 2^{(p+4)(2^{p-1})^{2^{p-1}}} \max\{e', \tilde{g}_{H,3}(p)\}2^{(p-1)^2-1} \max\{\delta'_z, \tilde{g}_{H,3}(p)\} \).
Finally we fix an arbitrary order $P_1, \ldots, P_s$ in $Q$ and for $1 \leq i \leq s$ we successively apply to (25) the weak inference
\[ \text{sign}(\text{ThElim}(P_i)) = \tau \quad \vdash \quad \exists (t_{P_i}, z_{P_i}) \left[ \text{Thom}^{\text{vnu}(P_i)}, \nu(P_i), \eta(P_i) (t_{P_i}, z_{P_i}) \right]. \]

Using Theorem 6.2.8, it can be proved by induction on $i$ that for $1 \leq i \leq s$, after the application of the $i$-th weak inference, we obtain in incompatibility in $K[v, t_{P_{i+1}}, \ldots, t_{P_s}, a_{P_{i+1}}, b_{P_{i+1}}, \ldots, a_{P_s}, b_{P_s}]$ with monoid part
\[ S^{h_i} \cdot \prod_{H \in \text{Elim}(Q), \tau(H) \neq 0} H^{2h_i'} \cdot \prod_{1 \leq i' \leq \#H(P_i)} (t_{P_{i,j}} - t_{P_{i,j'}})^{2e_{P_{i,j},j'}} \cdot \prod_{1 \leq i' \leq \#H(P_i)} 2^{f_{P_{i',k,i}}} \cdot \prod_{1 \leq k \leq \#H(P_i)} \prod_{1 \leq k' \leq \#H(P_i)} p^{(h_i)} \left( t_{P_{i,j}} \right)^{2e_{P_{i,j},j,k,i}} \]
with, denoting
\[ G_i := \left( g_4(p) y^{2+2} f^{2+2} \right)^{2^{(4+2)^2+2} - 2^{(4+2)^2+2} - 1} \cdot \frac{2^{(4+2)^2+2} - 1}{2^{(4+2)^2+2} - 1} \cdot \frac{2^{(4+2)^2+2} - 1}{2^{(4+2)^2+2} - 1} \cdot \max\{ e', \tilde{g}_{H,3}(p) \} \cdot \frac{2^{(4+2)^2+2} - 1}{2^{(4+2)^2+2} - 1}, \]

degree in $w$ bounded by $G_i \left( \max\{ \delta_w', \tilde{g}_{H,3}(p) \} \cdot \deg_w Q \right) + \max\{ \delta_z', \tilde{g}_{H,3}(p) \} \cdot \deg_w Q$, degree in $t_{P_{i,j}}$ bounded by $G_i \max\{ \delta_z', \tilde{g}_{H,3}(p) \}$, degree in $w$ bounded by $G_i \max\{ \delta_w', \tilde{g}_{H,3}(p) \}$, degree in $t_{P_{i,j}}$ bounded by $G_i \max\{ \delta_z', \tilde{g}_{H,3}(p) \}$, and degree in $(a_{P_{i,k}}, b_{P_{i,k}})$ bounded by $G_i \max\{ \delta_z', \tilde{g}_{H,3}(p) \}$. Therefore, at the end we obtain
\[ \downarrow \text{sign}(\text{Elim}(Q)) = \tau, \ H \downarrow K[u] \]
with monoid part
\[ S^h \cdot \prod_{H \in \text{Elim}(Q), \tau(H) \neq 0} H^{2h'} \]
with the respective bounds replacing $i$ by $s$, which serves as the final incompatibility.

We finish this subsection with the following remark, which will be used in Section 7.

**Remark 6.3.7** Let $Q = \{ P_1, \ldots, P_s \} \subset K[u, y]$ with $P_i$ monic in the variable $y$ and $\deg_y P_i \leq p$ for $1 \leq i \leq s$. Following Definition 6.3.1, by Remark 6.2.10 there are at most
\[ 4s^2 p^2 \cdot \text{bit}(p) + 1 \]
elements in $\text{Elim}(Q)$ and their degree in $u$ is bounded by
\[ 2p^2 \cdot \text{bit}(p) + 1 \cdot \max\{ \deg_u P_i \mid 1 \leq i \leq s \} \leq 4p^3 \cdot \max\{ \deg_u P_i \mid 1 \leq i \leq s \}. \]

### 6.4 Realizable sign conditions on a polynomial family

From the family $\text{Elim}(Q) \subset K[u]$ defined in Subsection 6.3, we deduce now the list of realizable sign conditions on $Q$.

**Theorem 6.4.1 (Elimination of One Variable)** For every realizable sign condition $\tau$ on $\text{Elim}(Q)$, there exists a list of sign conditions on $Q$
\[ \text{SIGN}(Q | \tau) \]
such that for every $v = (v_1, \ldots, v_k) \in \text{Real}(\tau, R)$, the list of realizable sign conditions on $Q(u, y)$ when $u$ is specialized to $v$ is $\text{SIGN}(Q | \tau)$.

**Proof.** The result is immediate from Theorem 6.3.4, since once the factorization and relative order between the real roots of all the polynomial in $Q$ is fixed, the list of all realizable sign conditions on $Q$ can be determined by looking at the partition of the real line given by the set of real roots. \(\square\)
Before stating the main result of Section 6, we introduce an auxiliary function.

**Definition 6.4.2** Let \( g_7 : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R} \), \( g_7(p, s, e) = 2^{3\varepsilon^2(p^2 + r(\frac{1}{2}p^2 + 3) + 8e^2p^2s^2)} \).

**Technical Lemma 6.4.3** For every \( p, s, e \in \mathbb{N}_* \),
\[
2^{p(s-1)+2s^4p}g_6(p, s, 2ep + 8(eps)^2, (ps + 1)ep + 4e^2p^3s^2, 1) \max\{8e^2p^3s^3, g_{H,3}(p)\} \leq g_7(p, s, e).
\]

**Proof.** See Section 8. \( \Box \)

The main result of Section 6 is the following weak inference version of Theorem 6.4.1.

**Theorem 6.4.4 (Elimination of One Variable as a weak inference)** Let \( p \geq 1 \), \( Q \) a family of \( s \) polynomials in \( K[u, y] \setminus K \), monic in the variable \( y \) with \( \deg_y P \leq p \) for every \( P \in Q \), \( \tau \) a realizable sign condition on \( \text{Elim}(Q) \). Then
\[
\text{sign}(\text{Elim}(Q)) = \tau \vdash \bigvee_{\sigma \in \text{SIGN}(Q \mid \tau)} \text{sign}(Q) = \sigma.
\]

Suppose we have initial incompatibilities with monoid part
\[
S_\tau . \prod_{P \in Q \atop \sigma(p) \neq 0} P(y)^{2e_{P,\sigma}}
\]
with \( e_{P,\sigma} \leq e \in \mathbb{N}_* \) and degree in \( w \subset v \) bounded by \( \delta_w \). Then, the final incompatibility has monoid part
\[
\prod_{\sigma \in \text{SIGN}(Q \mid \tau)} S_\sigma . \prod_{H \in \text{Elim}(Q), \tau(H) \neq 0} H^{2h_H}
\]
with \( h_\sigma, h_H' \leq g_7(p, s, e) \) and degree in \( w \) bounded by \( g_7(p, s, e) \max\{\delta_w, \deg_w Q\} \).

As said before, once the factorization and relative order between the real roots of all the polynomial in \( Q \) is fixed, the list of all realizable sign conditions on \( Q \) can be determined by looking at the partition of the real line given by the set of real roots. We prove now weak inference version of some auxiliary results in this direction.

**Proposition 6.4.5**
\[
\vdash y < t_1 \lor \cdots \lor y < t_r \lor (t_{r-1} < y, y < t_r) \lor y = t_r \lor \tau < y.
\]

Suppose we have initial incompatibilities in variables \( v \supset (t_1, \ldots, t_r, y) \) with monoid part
\[
S'_1(y - t_1)^{2e_1}, S_1', S'_2(y - t_1)^{2f_1}(y - t_2)^{2e_2}, \ldots, S'_r(y - t_{r-1})^{2f_{r-1}}(y - t_r)^{2e_r}, S_r, S'_{r+1}(y - t_r)^{2f_r}
\]
with \( e_j \leq e \) and \( f_j \leq e \) and degree in \( w \) bounded by \( \delta_{w,1}, \delta_{w,2}, \ldots, \delta_{w,r}, \delta_{w,r+1} \) for some subset of variables \( w \supset v \). Then, the final incompatibility has monoid part
\[
\prod_{1 \leq j \leq r+1} S'_j \cdot \prod_{1 \leq j \leq r} S_j^{2(e_j + f_j)}
\]
and degree in \( w \) bounded by \( \sum_{1 \leq j \leq r+1} \delta'_{w,j} + 4e \cdot \sum_{1 \leq j \leq r} \delta_{w,j} \).

When \( t_1, \ldots, t_r \) are not variables but elements in \( K \), similar degree estimations are due to Warou [52].

**Proof.** Consider the initial incompatibilities
\[
\downarrow y < t_1, H \downarrow, \ldots, \downarrow t_{r-1} < y, y < t_r, H \downarrow, \downarrow y = t_r, H \downarrow, \downarrow t_r < y, H \downarrow_K[u]
\]
(26)

where \( H \) is a system of sign conditions in \( K[v] \).

We proceed by induction on \( r \). If \( r = 1 \), the result follows from Lemma 2.1.18. Suppose now \( r > 1 \). We apply to the last three initial incompatibilities (26) the weak inference
\[
\vdash y < t_r \lor y = t_r \lor t_r < y.
\]

By Lemma 2.1.18 we obtain an incompatibility
\[
\downarrow t_{r-1} < y, H \downarrow_{K[u]}
\]
with monoid part
\[
S'_r \cdot S'_{r+1} \cdot S_{r+1}^{2(2e_r + f_r)} \cdot (y - t_{r-1})^{2f_{r-1}}
\]
and degree in \( w \) bounded by \( \delta'_{w,r} + \delta'_{w,r+1} + 4e \cdot \delta_{w,r} \). The result follows by applying the inductive hypothesis to the remaining initial incompatibilities (26) and (27). \( \Box \)
Lemma 6.4.6 Let $p \geq 1$, $Q$ a family of $s$ polynomials in $K[y, y] \setminus K$, monic in the variable $y$ with $\deg_y P \leq p$ for every $P \in Q$, $\tau$ a realizable sign condition on $\text{Elim}(Q)$, $\eta(\tau) = [\eta_1, \ldots, \eta_r]$, with $r \geq 1$ and $1 \leq j_0 \leq r$. Then, defining $\varepsilon_P = -1^{\sum_{j_0+1 \leq j \leq s} \mu(\eta_j, P)}$,

$$
\exists (t, z) \mid \text{OFact}(Q)\eta(\tau), \nu(\tau)(t, z), \ y = t_{j_0} \quad \vdash \quad \bigwedge_{P \in Q, \mu(\eta_j, P) > 0} P(y) = 0, \quad \bigwedge_{P \in Q, \mu(\eta_{j_0}, P) = 0} \text{sign}(P(y)) = \varepsilon_P
$$

where $t = (t_1, \ldots, t_r)$, $z = (z_P)_{P \in Q}$ and $z_P = (z_{P, 1}, \ldots, z_{P, \#\nu(\tau)(P)})$. Suppose we have an initial incompatibility in variables $v \supset (u, y)$ with monoid part

$$
S \cdot \prod_{P \in Q, \mu(\eta_j, P) = 0} P(y)^{2\varepsilon_P}
$$

with $e_P \leq e \in \mathbb{N}$, and degree in $w$ bounded by $\delta_w$ for some set of variables $w \subset v$. Then, the final incompatibility has monoid part

$$
S \cdot \prod_{1 \leq j' \leq r} (t_{j'} - t_{j_0})^{2\varepsilon_{j'}} \cdot \prod_{1 \leq k \leq \#\nu(\tau)(P)} b_{P, k}^{2\varepsilon_{j'}},
$$

with $\varepsilon_{j'} \leq \varepsilon_P, e_p, k \leq e_p$, degree in $w$ bounded by $\delta_w$, degree in $t_{j'}$ bounded by $2\varepsilon_{p, r}$ and degree in $(a_{P, k}, b_{P, k})$ bounded by $2\varepsilon_{p, 0}$.

**Proof.** We simplify the notation by renaming $\eta(\tau) = \eta$ and $\nu(\tau) = \nu$. Consider the initial incompatibility

$$
\bigwedge_{P \in Q, \mu(\eta_j, P) > 0} P(y) = 0, \quad \bigwedge_{P \in Q, \mu(\eta_{j_0}, P) = 0} \text{sign}(P(y)) = \varepsilon_P, \quad H \quad \vdash \quad K[v, t, a, b]
$$

where $H$ is a system of sign conditions in $K[y]$.

Following the notation from Definition 4.3.2 and Definition 6.3.3, we apply to (28) the weak inference

$$
\bigwedge_{P \in Q, \mu(\eta_j, P) > 0} P(y) \equiv F^{\nu(\mu(P))}(t_p, z_p, y), \ y = t_{j_0} \quad \vdash \quad \bigwedge_{P \in Q, \mu(\eta_{j_0}, P) = 0} P(y) = 0.
$$

By Lemma 2.1.8, we obtain

$$
\bigwedge_{P \in Q, \mu(\eta_j, P) > 0} P(y) \equiv F^{\nu(\mu(P))}(t_p, z_p, y), \ y = t_{j_0}, \quad \bigwedge_{P \in Q, \mu(\eta_{j_0}, P) = 0} \text{sign}(P(y)) = \varepsilon_P, \quad H \quad \vdash \quad K[v, t, a, b]
$$

with the same monoid part, degree in $w$ bounded by $\delta_w$, degree in $t_{j'}$ and degree in $(a_{P, k}, b_{P, k})$ bounded by $p$.

Then we successively apply to (29) for $P \in Q$ with $\mu(\eta_{j_0}, P) = 0$ the weak inferences

$$
P(y) \equiv F^{\nu(\mu(P))}(t_p, z_p, y), \quad \text{sign}(F^{\nu(\mu(P))}(t_p, z_p, y)) = \varepsilon_P \quad \vdash \quad \text{sign}(P(y)) = \varepsilon_P
$$

and for $P \in Q$ with $\mu(\eta_j, P) = 0$ and $1 \leq k \leq \#\nu(\tau)$ the weak inferences

$$
(y - a_{P, k})^2 \geq 0, \quad b_{P, k}^2 > 0 \quad \vdash \quad (y - a_{P, k})^2 + b_{P, k}^2 > 0
$$

and

$$
b_{P, k} \neq 0 \quad \vdash \quad b_{P, k}^2 > 0
$$

By Lemmas 2.4.2, 2.1.2 (items 8, 3 and 4) and 2.1.7 we obtain

$$
\bigwedge_{P \in Q} P(y) \equiv F^{\nu(\mu(P))}(t_p, z_p, y), \quad y = t_{j_0}, \quad \bigwedge_{P \in Q} b_{P, k} \neq 0, \quad H \quad \vdash \quad K[v, t, a, b]
$$

(30)
with monoid part

\[ S \cdot \prod_{1 \leq j' \leq r, j' \neq j_0} (y - t_{j'})^{2e_{j'}} \cdot \prod_{p \in Q, 1 \leq k \leq \#(P)} b_{p,k}^{2e_{p,k}} \]

with \( e_{j'} \leq \varepsilon_P \), \( e_{p,k} \leq \varepsilon_P \), degree in \( w \) bounded by \( \delta_w \), degree in \( t_j \) bounded by \( 2\varepsilon_P \) (taking into account that \( \mu(u_{j_0}, P_0) > 0 \) for at least one \( P_0 \in Q \)) and degree in \( (a_{p,k}, b_{p,k}) \) bounded by \( 2\varepsilon_P \) (taking into account that for each \( P \in Q \), either \( \mu(u_{j_0}, P) > 0 \) or \( \mu(u_{j_0}, P) = 0 \)).

Finally, we successively apply to (30) for \( 1 \leq j' \leq j_0 - 1 \) the weak inference

\[ t_j' < t_{j_0}, \quad t_{j_0} = y \quad \vdash \quad t_j' < y \]

and for \( j + 1 \leq j' \leq r \) the weak inference

\[ y = t_{j_0}, \quad t_{j_0} < t_{j'}, \quad \vdash \quad y < t_{j'} \]

By Lemma 2.1.7 we obtain

\[ \begin{array}{c}
\downarrow \bigwedge_{P \in Q} P(y) = \text{Fvmm}(\eta(P)), \nu(P)(t_P, z_P, y)), \\
y = t_{j_0}, \quad \bigwedge_{1 \leq j' \leq j_0 - 1} t_{j'} < t_{j_0}, \quad \bigwedge_{j_0 + 1 \leq j' \leq r} t_{j_0} < t_{j'}, \quad \bigwedge_{1 \leq k \leq \#(P)} b_{p,k} \neq 0, \quad \mathcal{H} \big|_{K[v,t,a,b]} \\
\end{array} \]

with degree in \( w \) bounded by \( \delta_w \), degree in \( t_j \) bounded by \( 2\varepsilon_P \) and degree in \( (a_{p,k}, b_{p,k}) \) bounded by \( 2\varepsilon_P \), which serves as the final incompatibility.

**Lemma 6.4.7** Let \( p \geq 1 \), \( Q \) a family of \( s \) polynomials in \( K[u, v] \setminus K \), monic in the variable \( y \) with \( \deg_y P \leq p \) for every \( P \in Q \), \( \tau \) a realizable sign condition on \( \text{Elim}(Q) \), \( \eta(\tau) = [\eta_1, \ldots, \eta_r] \) with \( r > 1 \) and \( 1 \leq j_0 \leq r - 1 \). Then, defining \( \varepsilon_P = (-1)^{2j_0 + 1 + s' \leq r} \mu(u_{j_0}, P), \)

\[ \exists (t, z) \mid \text{OFact}(Q)\eta(\tau), \nu(\tau)(t, z), \quad t_{j_0} < y, \quad y < t_{j_0 + 1} \quad \vdash \quad \bigwedge_{P \in Q} \text{sign}(P(y)) = \varepsilon_P \]

where \( t = (t_1, \ldots, t_r) \), \( z = (z_P)_{P \in Q} \) and \( z_P = (z_{P,1}, \ldots, z_{P,\#(\tau)}(P)) \). Suppose we have an initial incompatibility in variables \( v \supset (u, y) \) with monoid part

\[ S \cdot \prod_{P \in Q} P(y)^{2e_P} \]

with \( e_P \leq e \in \mathbb{N}_e \) and degree in \( w \) bounded by \( \delta_w \) for some set of variables \( w \subset v \). Then, the final incompatibility has monoid part

\[ S \cdot (y - t_{j_0})^{2e_{j_0}} \cdot (y - t_{j_0 + 1})^{2e_{j_0 + 1}} \cdot \prod_{1 \leq j' \leq j_0 - 1} (t_{j_0} - t_{j'})^{2e_{j'}} \cdot \prod_{j_0 + 2 \leq j' \leq r} (t_{j_0 + 1} - t_{j'})^{2e_{j'}} \cdot \prod_{1 \leq k \leq \#(P)} b_{p,k}^{2e_{p,k}} \]

with \( e_j \leq \varepsilon_P \), \( e_{p,k} \leq \varepsilon_P \), degree in \( w \) bounded by \( \delta_w \), degree in \( t_j \) bounded by \( 2\varepsilon_P \) and degree in \( (a_{p,k}, b_{p,k}) \) bounded by \( 2\varepsilon_P \).

**Proof.** We simplify the notation by renaming \( \eta(\tau) = \eta \) and \( \nu(\tau) = \nu \). Consider the initial incompatibility

\[ \downarrow \bigwedge_{P \in Q} \text{sign}(P(y)) = \varepsilon_P, \quad \mathcal{H} \big|_{K[v]} \]

where \( \mathcal{H} \) is a system of sign conditions in \( K[v] \).

We successively apply to (31) for \( P \in Q \) the weak inferences

\[ P(y) = \text{Fvmm}(\eta(P)), \nu(P)(t_P, z_P, y)), \quad \text{sign}\left(\text{Fvmm}(\eta(P)), \nu(P)(t_P, z_P, y))\right) = \varepsilon_P \quad \vdash \quad \text{sign}(P(y)) = \varepsilon_P, \]

\[ \bigwedge_{1 \leq j' \leq j_0} t_{j'} < y, \quad \bigwedge_{j_0 + 1 \leq j' \leq r} y < t_{j'}, \quad \bigwedge_{1 \leq k \leq \#(P)} (y - a_{p,k})^2 + b_{p,k}^2 > 0 \quad \vdash \quad \text{sign}(\text{Fvmm}(\eta(P)), \nu(P)(t_P, z_P, y))) = \varepsilon_P, \]
and for $P \in Q$ and $1 \leq k \leq \#\nu(P)$ the weak inferences

$$(y - a_{P,k})^2 \geq 0, \quad b_{P,k}^2 > 0 \quad \vdash \quad (y - a_{P,k})^2 + b_{P,k}^2 > 0,$$

$$\vdash \quad (y - a_{P,k})^2 \geq 0, \quad b_{P,k} \neq 0 \quad \vdash \quad b_{P,k}^2 > 0.$$  

By Lemmas 2.4.2, 2.1.2 (items 3 and 4) and 2.1.7 we obtain

$$\bigwedge_{P \in Q} P(y) \equiv F^{\text{min}}(\eta(P),\nu(P))(t_P, z_P, y),$$

$$\bigwedge_{1 \leq j' \leq j_0} t_{j'} < y, \quad \bigwedge_{j_0+1 \leq j' \leq r} y < t_{j'}, \quad \bigwedge_{1 \leq k \leq \#\nu(P)} b_{P,k} \neq 0, \quad \mathcal{H}_{\K[w,v,t,a,b]}$$

with monoid part

$$S \cdot \prod_{1 \leq j \leq r} (y - t_j)^{2e_j} \cdot \prod_{1 \leq k \leq \#\nu(P)} b_{P,k}^{2e_{P,k}}$$

with $e_j \leq eps, e_{P,k} \leq cp$, degree in $w$ bounded by $\delta_w$, degree in $t_j$ bounded by $2eps$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $2ep$.

Finally, we successively apply to (32) for $1 \leq j' \leq j_0 - 1$ the weak inferences

$$t_{j'} < t_{j_0}, \quad t_{j_0} \leq y \quad \vdash \quad t_{j'} < y,$$

$$t_{j_0} < y \quad \vdash \quad t_{j_0} \leq y$$

and for $j_0 + 2 \leq j' \leq r$ the weak inferences

$$y \leq t_{j_0+1}, \quad t_{j_0+1} < t_{j'} \quad \vdash \quad y < t_{j'},$$

$$y < t_{j_0+1} \quad \vdash \quad y \leq t_{j_0+1}.$$  

By Lemmas 2.1.7 and 2.1.2 (item 1) we obtain

$$\bigwedge_{P \in Q} P(y) \equiv F^{\text{min}}(\eta(P),\nu(P))(t_P, z_P, y),$$

$$t_{j_0} < y, \quad y < t_{j_0+1}, \quad \bigwedge_{1 \leq j' \leq j_0-1} t_{j'} < t_{j_0}, \quad \bigwedge_{j_0+2 \leq j' \leq r} t_{j_0+1} < t_{j'}, \quad \bigwedge_{1 \leq k \leq \#\nu(P)} b_{P,k} \neq 0, \quad \mathcal{H}_{\K[w,v,t,a,b]}$$

with monoid part

$$S \cdot (y - t_{j_0})^{2e_{j_0}} \cdot (y - t_{j_0+1})^{2e_{j_0+1}} \cdot \prod_{1 \leq j' \leq j_0-1} (t_{j_0} - t_{j'})^{2e_{j'}} \cdot \prod_{j_0+2 \leq j' \leq r} (t_{j_0+1} - t_{j'})^{2e_{j'}} \cdot \prod_{1 \leq k \leq \#\nu(P)} b_{P,k}^{2e_{P,k}},$$

degree in $w$ bounded by $\delta_w$, degree in $t_j$ bounded by $2epsr$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $2ep$, which serves as the final incompatibility.

We state below two more lemmas corresponding to the other cases needed to analyze the whole partition of the real line given by the set of roots. We omit their proofs since they are very similar to the proof of Lemma 6.4.7.

**Lemma 6.4.8** Let $p \geq 1$, $Q$ a family of $s$ polynomials in $\K[u,y] \setminus \K$, monic in the variable $y$ with $\deg_y P \leq p$ for every $P \in Q$, $r$ a realizable sign condition on $\text{Elim}(Q)$ and $\eta(\tau) = [\eta_1, \ldots, \eta_s]$ with $r \geq 1$. Then

$$\exists (t, z) \left[ \text{OFact}(Q)^{\eta(\tau),\nu(\tau)}(t, z), \quad t_r < y \right] \quad \vdash \quad \bigwedge_{P \in Q} P(y) > 0$$

where $t = (t_1, \ldots, t_r)$, $z = (z_P)_{P \in Q}$ and $z_P = (z_{P,1}, \ldots, z_{P,\#\nu(P)}(p))$. Suppose we have an initial incompatibility in variables $v \supset (u, y)$ with monoid part

$$S \cdot \prod_{P \in Q} P(y)^{2e_P}$$
with $e_P \leq e \in \mathbb{N}$ and degree in $w$ bounded by $\delta_w$ for some set of variables $w \subset v$. Then, the final incompatibility has monoid part

$$S \cdot (y - t_r)^{2e_r} \cdot \prod_{1 \leq j \leq r-1} (t_r - t_j)^{2e_j} \cdot \prod_{P \in \mathcal{Q}, 1 \leq k \leq \deg_w(P)} b_{P,k}^{2e_{P,k}},$$

with $e_j \leq e_P$, $e_{P,k} \leq e_P$, degree in $w$ bounded by $\delta_w$, degree in $t_j$ bounded by $2e_P$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $2e_P$.

**Lemma 6.4.9** Let $p \geq 1$, $\mathcal{Q}$ a family of $s$ polynomials in $K[u,y] \setminus K$, monic in the variable $y$ with $\deg_y P \leq p$ for every $P \in \mathcal{Q}$, $\tau$ a realizable sign condition on $\text{Elim}(\mathcal{Q})$ and $\eta(\tau) = [\eta_1, \ldots, \eta_r]$ with $r \geq 1$. Then

$$\exists (t, z) \mid \text{OFact}(\mathcal{Q})^{\eta(\tau),\eta(\tau)}(t, z), \ y < t_1 \} \cup \left( \bigwedge_{P \in \mathcal{Q}} \text{sign}(P(y)) = (-1)^{\Sigma_{1 \leq i \leq r} \mu(K, P)} \right)$$

where $t = (t_1, \ldots, t_r)$, $z = (z_P)_{P \in \mathcal{Q}}$ and $z_P = (z_{P,1}, \ldots, z_{P,\#(\eta(\tau)P)})$. Suppose we have an initial incompatibility in variables $v \supset (u, y)$ with monoid part

$$S \cdot \prod_{P \in \mathcal{Q}} P(y)^{2e_P}$$

with $e_P \leq e \in \mathbb{N}$ and degree in $w$ bounded by $\delta_w$ for some set of variables $w \subset v$. Then, the final incompatibility has monoid part

$$S \cdot (y - t_1)^{2e_1} \cdot \prod_{2 \leq j \leq r} (t_1 - t_j)^{2e_j} \cdot \prod_{P \in \mathcal{Q}, 1 \leq k \leq \deg_w(P)} b_{P,k}^{2e_{P,k}},$$

with $e_j \leq e_P$, $e_{P,k} \leq e_P$, degree in $w$ bounded by $\delta_w$, degree in $t_j$ bounded by $2e_P$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $2e_P$.

We introduce an auxiliary definition.

**Definition 6.4.10** Let $\tau$ be a realizable sign condition on $\text{Elim}(\mathcal{Q})$ and $\eta(\tau) = [\eta_1, \ldots, \eta_r]$. If $v \in \mathbb{R}^k$, $\theta \in \mathbb{R}^r$, $\alpha \in \mathbb{R}^s$, $\beta \in \mathbb{R}^s$ with $s = \sum_{P \in \mathcal{Q}} \#(\eta(\tau)(P))$ verifies sign($\text{Elim}(\mathcal{Q}(v)) = \tau$ and OFact($\mathcal{Q}(v))^{\eta(\tau),\eta(\tau)}(\theta, \alpha + i\beta)$, we denote $\sigma_j$ the sign condition sign($\text{Elim}(\mathcal{Q}(v, \theta))$ for $1 \leq j \leq r$ and $\sigma_{(j-1,j)}$ the sign condition sign($\text{Elim}(\mathcal{Q}(v))$) for any $i \in (\theta_{j-1}, \theta_j)$ for $1 \leq j \leq r + 1$, where $\theta_0 = -\infty$ and $\theta_{r+1} = +\infty$.

**Proposition 6.4.11** Let $p \geq 1$, $\mathcal{Q}$ a family of $s$ polynomials in $K[u,y] \setminus K$, monic in the variable $y$ with $\deg_y P \leq p$ for every $P \in \mathcal{Q}$, $\tau$ a realizable sign condition on $\text{Elim}(\mathcal{Q})$, $\eta(\tau) = [\eta_1, \ldots, \eta_r]$, $t = (t_1, \ldots, t_r)$ and $z = (z_P)_{P \in \mathcal{Q}}$ where $z_P = (z_{P,1}, \ldots, z_{P,\#(\eta(\tau)P)})$. Then

$$\exists (t, z) \mid \text{OFact}(\mathcal{Q})^{\eta(\tau),\eta(\tau)}(t, z) \} \cup \left( \bigwedge_{\sigma \in \text{SIGN}(\mathcal{Q} | \tau)} \text{sign}(\mathcal{Q}) = \sigma. \right)$$

Suppose we have for $\sigma = \sigma_{(0,1)}, \sigma_1, \ldots, \sigma_{(r-1,1)}$ an initial incompatibility in variables $v \supset (u, y)$ with monoid part

$$S_\sigma \cdot \prod_{P \in \mathcal{Q}, \sigma(P) \neq 0} P(y)^{2e_{P,\sigma}}$$

with $e_{P,\sigma} \leq e \in \mathbb{N}$ and degree in $w$ bounded by $\delta_w$ for some subset of variables $w \subset v$. Then the final incompatibility has monoid part

$$\prod_{1 \leq j \leq r+1} S_{\sigma_{(j-1,j)}} \cdot \prod_{1 \leq j \leq r} S_{\sigma_j} \cdot \prod_{1 \leq j < j' \leq r} (t_{j'} - t_j)^{2e_{j,j'}} \cdot \prod_{P \in \mathcal{Q}, 1 \leq k \leq \deg_w(P)} b_{P,k}^{2e_{P,k}},$$

with $e_j \leq 4e_P$, $e_{j,j'} \leq 2e_P + 8(e_P)²$, $e_{P,k} \leq (ps + 1)e_P + 4e_P²s²$, degree in $w$ bounded by $(ps + 1 + 4e_P²²) \delta_w$, degree in $t_j$ bounded by $2(ps + 1 + 4e_P²²e_P²²)$ and degree in $(a_{P,k}, b_{P,k})$ bounded by $2(ps + 1 + 4e_P²²)²e_P²²$.\[\Box\]
We are finally ready for the proof of the main result of the section.

**Proof of Theorem 6.4.4.** Consider the initial incompatibilities

\[ \downarrow \text{sign}(Q) = \sigma, \quad \mathcal{H} \downarrow \]

where \( \mathcal{H} \) is a system of sign conditions in \( K[v] \).

By Theorem 6.3.6 we obtain

\[ \exists (t, z) \mid \text{OFact}(Q) \eta(\tau), \nu(\tau)(t, z) \supset \bigvee_{\sigma \in \text{SIGN}(Q | \tau)} \text{sign}(Q) = \sigma. \]

By Proposition 6.4.11 we obtain

\[ \downarrow \text{OFact}(Q) \eta(\tau), \nu(\tau)(t, z), \quad \mathcal{H} \downarrow \mathbb{K}[v, t, a, b], \]

where \( \eta(\tau) = [\eta_1, \ldots, \eta_r] \), \( t = (t_1, \ldots, t_r) \), \( z = (z_p)_{p \in Q} \) with \( z_p = (z_{p,1}, \ldots, z_{p,\#(\eta(\tau))(p)}) \), with monoid part

\[ \prod_{1 \leq j \leq r+1} S_{\eta_{j-1}, j} \cdot \prod_{1 \leq j \leq r} S_{\eta_j} \cdot \prod_{1 \leq j < j' \leq r} (t_{j'} - t_j)^{2e_{j,j'}} \cdot \prod_{1 \leq k \leq \#(\eta(\tau))(p)} b_{p,k}^{2e_{p,k}} \]

with \( e_j \leq 4eps, e_{j,j'} \leq 2eps + 8(eps)^2, e_{p,k} \leq (ps + 1)ep + 4e^2p^3s^2 \), degree in \( w \) bounded by \( (ps + 1 + 4ep^2s^2)\delta_w \), degree in \( t_j \) bounded by \( 2(ps + 1 + 4ep^2s^2)ep^2s^2 \) and degree in \( (a_{p,k}, b_{p,k}) \) bounded by \( 2(ps + 1 + 4ep^2s^2)ep \).

Finally we apply to (34) the weak inference

\[ \text{sign}((\text{Elim}(Q))) = \tau \supset \exists (t, z) \mid \text{OFact}(Q) \eta(\tau), \nu(\tau)(t, z) \].

By Theorem 6.3.6 we obtain

\[ \downarrow \text{sign}((\text{Elim}(Q))) = \tau, \quad \mathcal{H} \downarrow \]

with monoid part

\[ \prod_{\sigma \in \text{SIGN}(Q | \tau)} S_{\eta_{\sigma}}^{h_{\sigma}}, \quad \prod_{\nu \in \text{Elim}(Q), \tau(\mathcal{H}) \neq 0} H^{2h_{\nu}} \]

with

\[ h_{\sigma}, h_{\nu} \leq 4eps g_0 \{ p, s, 2eps + 8(eps)^2, (ps + 1)ep + 4e^2p^3s^2, 1 \} \max \{ 8e^2p^3s^3, \tilde{g}_{H,3}(p) \}, \]

and degree in \( w \) bounded by

\[ g_0 \{ p, s, 2eps + 8(eps)^2, (ps + 1)ep + 4e^2p^3s^2, 1 \} \cdot \ \left( \max \{ 2^{ps(s-1)}(6ep^2s^2\delta_w + 24e^2p^4s^4 \deg_w Q), \tilde{g}_{H,3}(p) \deg_w Q \} + \max \{ 2^{ps(s-1)}56e^2p^4s^4, \tilde{g}_{H,3}(p) \} \deg_w Q \right) \leq \]

\[ 2^{ps(s-1)+1}e^2s^4\tilde{g}_{H,3}(p) \} g_0 \{ p, s, 2eps + 8(eps)^2, (ps + 1)ep + 4e^2p^3s^2, 1 \} \max \{ \delta_w, \deg_w Q \}, \]

which serves as the final incompatibility, using Lemma 6.4.3. \( \square \)

## 7 Proof of the main theorems

In this section we prove Theorem 1.4.2 and Theorem 1.4.4, which are the main results of this paper. The proof proceeds by successive elimination of the variables, using at each stage Theorem 6.4.4 (Elimination of One Variable as a weak inference).

First, we introduce some notation, new auxiliary functions and a final auxiliary lemma.

**Notation 7.0.1** For \( Q \subset K[x_1, \ldots, x_k] \), \( \text{SIGN}(Q) \) is the set of realizable sign conditions on \( Q \) in \( R^k \).

Note that by Theorem 6.4.1,

\[ \text{SIGN}(Q) = \bigcup_{\tau \in \text{SIGN}(\text{Elim}(Q))} \text{SIGN}(Q | \tau). \]
Definition 7.0.2  
- Let \( g_8 : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R} \),
  \[
  g_8\{d, s, k, i\} = g_7 \left\{ \frac{4^{k-1}}{3} d^{k-i}, s^{k-i}, \max\{2, d\}^{(16k-1-1)\text{bit}\{d\}}, 2^{2^{4k-2i}} \right\}.
  \]
- Let \( g_9 : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R} \),
  \[
  g_9\{d, k, i\} = g_7 \left\{ \frac{4^{k-1}}{3} d^{k-i}, \max\{2, d\}^{(16k-1-1)\text{bit}\{d\}} \right\}.
  \]

Technical Lemma 7.0.3  
1. For every \( d, s, k, i \in \mathbb{N} \) with \( 1 \leq i \leq k \),
  \[
  g_8\{d, s, k, i\} \cdot 2^{2^{4k-2i}} \leq 2 \left( 2^{4k-2i} - 2 \right).
  \]
2. For every \( d, k, i \in \mathbb{N} \) with \( 1 \leq i \leq k \) and \( d \geq 2 \),
  \[
  g_9\{d, k, i\} \cdot 2^{2^{4k-2i} - 2} \leq 2 \left( 2^{4k-2i} - 2 \right).
  \]

Proof. See Section 8.

Given a set of polynomials \( \mathcal{P} \) and a polynomial \( \ell \), we use the notation \( \mathcal{P} \circ \ell \) to mean the set obtained by making the composition between each polynomial in \( \mathcal{P} \) with \( \ell \). Similarly, if \( \mathcal{F} = [\mathcal{F}_\# \circ \ell, \mathcal{F}_\leq \circ \ell, \mathcal{F}_= \circ \ell] \) is a system of sign conditions, the notation \( \mathcal{F} \circ \ell \) is used to mean the system \( [\mathcal{F}_\# \circ \ell, \mathcal{F}_\leq \circ \ell, \mathcal{F}_= \circ \ell] \).

We are ready now for the proofs our main theorems.

Proof of Theorem 1.4.2. We define \( \mathcal{P}_k \) as \( |\mathcal{F}| \) (see Notation 1.3.1), note that without loss of generality we can assume \( \mathcal{F} \subset K[x] \setminus K \). For \( i = k, \ldots, 1 \), we define inductively finite families \( \mathcal{Q}_i \subset K[x_1, \ldots, x_i] \) and \( \mathcal{P}_{i-1} \subset K[x_1, \ldots, x_{i-1}] \). Let \( \ell_i : K[x_1, \ldots, x_i] \rightarrow K[x_1, \ldots, x_i] \) be a linear change of variables such that for every polynomial \( P \in \mathcal{P}_i \), \( P \circ \ell_i(x_1, \ldots, x_i) \) is quasimonic in the variable \( x_i \); we define

- \( \mathcal{Q}_i \) as the family obtained by dividing each polynomial \( P \circ \ell_i(x_1, \ldots, x_i) \) in \( \mathcal{P}_i \circ \ell_i \) by its leading coefficient in the variable \( x_i \),
- \( \mathcal{P}_{i-1} = \text{Elim}(\mathcal{Q}_i) \setminus K \), considering \( (x_1, \ldots, x_{i-1}) \) as parameters and \( x_i \) as the main variable.

Following Remark 6.3.7, it can be easily proved by induction that for \( i = k, \ldots, 1 \),
  \[
  \deg \mathcal{P}_i \leq 4^{k-1} d^{k-i}.
  \]

Also using Remark 6.3.7, we will prove that
  \[
  \# \mathcal{P}_i \leq s^{2k-i} \max\{2, d\}^{(16k-1-1)\text{bit}\{d\}}.
  \]

Indeed, \( \# \mathcal{P}_k = s \) and for \( i = k, \ldots, 2 \),
  \[
  \# \mathcal{P}_{i-1} \leq 4 s^{k-i+1} \max\{2, d\}^{(16k-1-1)\text{bit}\{d\}} \left( \frac{4^{k-i-1}}{3} d^{k-i} \right)^{\text{bit}\{d\}} \left( \frac{4^{k-i-1}}{3} d^{k-i} \right)^{+1} \leq \]
  \[
  \leq s^{2k-i+1} \max\{2, d\}^{2+2(16k-1-1)\text{bit}\{d\}} \leq \]
  \[
  \leq s^{2k-i-1} \max\{2, d\}^{(16k-(i-1)-1)\text{bit}\{d\}}.
  \]

For \( 1 \leq i \leq k \), we note by \( \ell_{i\ldots i} \) the polynomial \( \ell_i \circ \cdots \circ \ell_i \). Let us show by induction in \( i = k, \ldots, 0 \), that for every realizable sign condition \( \sigma \) on \( \mathcal{P}_i \) we have an incompatibility

\[
\downarrow \text{sign}(\mathcal{P}_i) = \sigma, \quad \mathcal{F} \circ \ell_{[k,i+1]} \downarrow
\]

with monoid part

\[
\prod_{H \in \mathcal{P}_i, \sigma(H) \neq 0} H^{2v_H}
\]
with $e_H$ bounded by
\[ 2^2 \left( 2^{\max\{2,d\}}^{2^k-i} + 2^{k-i} \max\{2,d\}^{16^{k-i}\text{hit}(d)} \right) \]
for $H \in \text{Elim}(P_i)$ with $\sigma(H) \neq 0$ and degree bounded by
\[ 2^2 \left( 2^{\max\{2,d\}}^{2^k-i} + 2^{k-i} \max\{2,d\}^{16^{k-i}\text{hit}(d)} \right) \].

For $i = k$, $|F|$ and $P_i$ are the same sets of polynomials. Moreover, for every strict sign condition $\sigma$ which is realizable for $|F|$, there must be a polynomial $P \in |F|$ such that $\sigma(P)$ is incompatible with the system of sign conditions $F$. It is easy to check that, in all possible cases, the algebraic identity
\[ P^2 - P^2 = 0 \]
serves as the corresponding incompatibility (see Example 1.2.5). So $e_H \leq 1$ for $H \in P_i$ with $\sigma(H) \neq 0$ and the degree of the incompatibility (1) is bounded by $2d$.

Suppose now that the induction hypothesis holds for some value of $i > 0$ and let $\tau$ be a realizable strict sign condition on $P_{i-1}$. For every realizable strict sign condition $\sigma$ on $P_i$ we compose the incompatibility we have already by induction hypothesis with $\ell_i$ to obtain an incompatibility for $\downarrow \text{sign}(P_i \circ \ell_i) = \sigma$, $F \circ \ell_{[k,i]} \downarrow$ with the same bounds for the degree and the exponents in the monoid part as (1). We note $\sigma'$ the strict sign condition on $Q_i$ obtained from a strict $\sigma$ on $P_i \circ \ell_i$ by replacing $>$ for $<$ and vice versa when the leading coefficient of the corresponding polynomial in $P_i \circ \ell_i$ is negative. It is clear that
\[ \text{SIGN}(Q_i) = \{ \sigma' \mid \sigma \in \text{SIGN}(P_i \circ \ell_i) \} \].
So, we have for every realizable strict sign condition $\sigma'$ on $Q_i$ an incompatibility
\[ \downarrow \text{sign}(Q_i) = \sigma', \ F \circ \ell_{[k,i]} \downarrow \] (2)
with the same bounds as (1). We apply to (2) for every $\sigma' \in \text{SIGN}(Q_i | \tau)$ the weak inference
\[ \text{sign}(P_{i-1}) = \tau \vdash \bigvee_{\sigma' \in \text{SIGN}(Q_i | \tau)} \text{sign}(Q_i) = \sigma' \]
of Theorem 6.4.4 (Elimination of One Variable as a weak inference). We obtain this way an incompatibility
\[ \downarrow \text{sign}(P_{i-1}) = \tau, \ F \circ \ell_{[k,i]} \downarrow \]
with monoid part
\[ \prod_{H \in P_{i-1}, \sigma(H) \neq 0} H^{2e'_H} \]
with $e'_H$ bounded by $g_s \{ d, s, k, i \}$ and degree bounded by
\[ g_s \{ d, s, k, i \} \cdot 2^2 \left( 2^{\max\{2,d\}}^{2^k-i} + 2^{k-i} \max\{2,d\}^{16^{k-i}\text{hit}(d)} \right) \].
The claim follows then by Lemma 7.0.3 (item 1).

Since $P_0 \subset K$, once finished the inductive procedure described above, we obtain a single incompatibility
\[ \downarrow F \circ \ell_{[k,1]} \downarrow \]
with degree bounded by
\[ 2^2 \left( 2^{\max\{2,d\}}^{2^k} + 2^{k} \max\{2,d\}^{16^{k}\text{hit}(d)} \right) \].
Our result follows then by composing this incompatibility with $\ell_{[k,1]}^{-1}$ which does not change the degree bound. □
**Proof of Theorem 1.4.4.** The sketch of the proof is the following: first we proceed as in the proof of Theorem 1.4.2 but obtaining a slightly better bound which holds for the particular case when the original system has only one polynomial. Then we proceed as in the proof of Theorem 1.2.10.

The initial system $F$ we consider is

$$ P < 0. $$

Note that since $P$ is nonnegative in $\mathbb{R}^k$, $d$ is even and therefore $d \geq 2$.

Proceeding as in the proof of Theorem 1.4.2 and using Lemma 7.0.3 (item 2) (instead of Lemma 7.0.3 (item 1)), we prove that for $i = k, \ldots, 0$, for every realizable strict sign condition $\sigma$ on $P_i$ we have an incompatibility

$$ \downarrow \text{sign}(P_i) = \sigma, \quad F \circ \ell_{[k,i+1]} \downarrow $$

with monoid part

$$ \prod_{H \in P_i, \sigma(H) \neq 0} H^{2e_H} $$

with $e_H$ bounded by

$$ 2 \left(2^{2^{d+k-1}} - 2\right) $$

for $H \in \text{Elim}(P_i)$ with $\sigma(H) \neq 0$ and degree bounded by

$$ 2 \left(2^{2^{d+k-1}} - 2\right). $$

Once finished the inductive procedure and making a composition with $\ell_{[k,1]}^{-1}$ as before, we obtain an incompatibility

$$ \downarrow P < 0 \downarrow $$

of type

$$ P^{2e} + N_1 - N_2 P = 0 $$

with $e \in \mathbb{N}_0$, $N_1, N_2 \in \mathcal{N}(0)$ and degree bounded by

$$ 2 \left(2^{2^{d+k}} - 2\right). $$

From this we deduce

$$ P = \frac{N_2 P^2}{P^{2e} + N_1} = \frac{N_2 P^2 (P^{2e} + N_1)}{(P^{2e} + N_1)^2}. $$

After expanding the numerator in (3) we obtain an expression

$$ P = \sum_i \omega_i \frac{P_i^2}{Q^2} $$

with $\omega_i \in K, \omega_i > 0, P_i \in K[x], Q = P^{2e} + N_1 \in K[x]$ and

$$ \deg P_i^2 \leq 2 \left(2^{2^{d+k-1}} - 1\right) + d \leq 2^{2^{d+k}} $$

for every $i$ and

$$ \deg Q^2 \leq 2 \left(2^{2^{d+k-1}} - 1\right) \leq 2^{2^{d+k}}. $$

□

8 Annexe

Here we include the proof of technical lemmas from the previous sections.
Proof of Technical Lemma 4.1.7. We first prove item 1.

\[ 3 g_1 \{ p - 1, p \} = 3 \cdot 2^{3 - 2p - 1} p^p \leq 2^{3 - 2p - 1 + p^2} \leq 2^{2 \frac{p^2}{2}} = g_2 \{ p \}. \]

Now we prove item 2. We check separately that the inequality holds for \( p = 4 \) and \( p = 6 \) and we suppose that \( p \geq 8 \). Then we have

\[ \frac{3}{16} p \{ n \} (n(p) + 1) \frac{4(n(p) + 1) \cdot \beta(p) + 1}{g_2 \{ p \}} \leq 2^{2 p^2 + \frac{p^2}{2}} 2 (\frac{p^2}{2}) (p - 1). \]

The lemma follows since

\[ \frac{1}{2} p^4 + \frac{1}{2} \left( \frac{p^2}{2} \right)^2 \leq \frac{p^2 (\frac{p^2}{2})}{2} \leq 2^{\beta(p)} \cdot \gamma(p). \]

Proof of Technical Lemma 4.2.3. We first prove item 1.

\[ 3 (2p + 1) g_1 \{ p - 1, p \} g_3 \{ p - 1 \} \leq 2^{1 + p^2 + 3 - 2p - 1 + 2 \left( \frac{p^2}{2} \right) (p - 1)} \leq 2^{2 (\frac{p^2}{2}) (p - 1)} \leq g_3 \{ p \}. \]

Now we prove item 2.

\[ 6 p^3 g_1 \{ p - 2, p - 1 \} g_2 \{ p \} g_3^2 \{ p - 2 \} \leq 2^{p^2 + 3 - 2p - 2 + 2 \left( \frac{p^2}{2} \right) (p - 2)} \leq g_3 \{ p \}. \]

Proof of Technical Lemma 6.2.7. It is easy to see that it is enough to prove that

\[ 2 (1 + (p - 1) \beta(p - 1) - 2) (2 \beta(p) + 1) \leq g_{H1} \{ p \} 2^{(p - 1) \beta(p) - 2} \left( (p + 2) \beta(p) + 1 \right). \]

Indeed, since \( 2 (1 + (p - 1) \beta(p - 1) - 2) (2 \beta(p) + 1) \leq 0 \), the lemma follows from

\[ p + (p - 1) \beta(p) - 2) (2 \beta(p) + 1) \leq (p - 1) \beta(p) - 2) (2 \beta(p) + 1) \leq 0 \]

Proof of Technical Lemma 6.4.3. First, it is easy to prove that for every \( p \in \mathbb{N} \) we have that \( g_{H3} \{ p \} \leq 2^{(9p^2 + 14p + 3) \beta(p^2 + 2) - 2} \). Then,

\[ 2^{9p^2 + 14p + 3} \beta(p^2 + 2) \leq g_{H3} \{ p \} \leq \max \{ \beta(p), 2^{9p^2 + 14p + 3} \beta(p^2 + 2) \} \leq \alpha \{ p, s \} \beta \{ p, s \} \beta \{ p, s \} \gamma \{ p, s \}, \]

where

\[ \alpha \{ p, s \} = (p + 4) 2^{8(s - 1)p^2 + s(\frac{p^2}{2} + 2)} \]

and

\[ \gamma \{ p, s \} = 2 + 2^{p + 1} \frac{2^{(\frac{p^2}{2}) + 2} - 1}{2^{p^2 + 2} - 1} \]

Then we have

\[ \left( (6p)^{\frac{1}{2}} \right)^{2^{3(\frac{p^2}{2}) + 2}} \gamma \{ p, s \} \leq 2^{\alpha} \{ p, s \} \].
and

\[ s^{\beta_1(p,s)} \leq 2^{\alpha_1(p,s)} \]

where

\[ \alpha_2(p,s) = 2(s(\frac{1}{2}p^2+2) + 2(3\frac{1}{2}p^2+2) + (p+4)2(s-1)p^2 + 2(s\frac{1}{2}p^2+2) + ((9p^2 + 14p + 3)2(s^2+2) - 2)2(s-1)p^2 + 2(s\frac{1}{2}p^2+2) \]

and

\[ \alpha_2'(p,s) = (s-1)(2^s(\frac{1}{2}p^2+2) + 3 \cdot 2^s(s-1)p^2 + s(\frac{1}{2}p^2+2)). \]

But then,

\[ \alpha_2(p,s) + \alpha_2'(p,s) \leq 2(3\frac{1}{2}p^2+2) + 2(\frac{1}{2}p^2+2) + 2(\frac{1}{2}p^2+2) + 2(s-1)p^2 + s(\frac{1}{2}p^2+3) \leq 2(s\frac{1}{2}p^2+3)+8. \]

On the other hand,

\[ \gamma_1(p,s) \leq 2(s(\frac{1}{2}p^2+2) + 2(s-1)p^2 + s(\frac{1}{2}p^2+2)+1 \leq 26s^2p^2 \]

and the lemma follows. \(\Box\)

**Proof of Technical Lemma 7.0.3.** We prove item 1 and the proof of item 2 can be done in a similar way.

\[
g_s(d, k, i) \cdot 2^{\left(2^{\max(2,d)} \cdot k-i, s \cdot k-i + s \cdot k-i + s \cdot k-i \cdot \max(d)\right)} = 2^{2^\gamma(d, s, k)} \]

where

\[
\alpha(d, k, s) = 3 \left(2^{2^{k-i}i} - 1 - d^{4k-i}\right) + s^{2^k-1} + s^k \max(2, d) 2(16k-i)\max(d) \left(\frac{3}{2}2^{4k-1}3d^{2k-i} + 3\right) + 8
\]

\[
\beta(d, k, s) = 2^{\max(2,d)4k-i} + s^{2^k-i} \max(2, d) 16k-i\max(d) + 6 \cdot 2^{4k-i}d^{2k-i} \max(2, d) 2(16k-i)\max(d),
\]

and

\[
\gamma(d, s, k) = 2^{\max(2,d)4k-i} + s^{2^k-i} \max(2, d) 16k-i\max(d). \]

The inequality holds since

\[
\alpha(d, k, s) \leq 2^{2^{k-i}i}d^{k-i} + s^{2^k-i} \max(2, d) 2(16k-i)\max(d) + 4 \cdot 2^{4k-i}d^{2k-i} + 2^k + 4
\]

\[
\beta(d, k, s) \leq 2^{\max(2,d)4k-i} + 7s^{2^k-i} \max(2, d) 4(16k-i)\max(d) + 2^k \max(2, d) + 2^{4k-i} + 2(16k-i)\max(d)
\]

and

\[
\gamma(d, s, k) \leq 2^{\max(2,d)4k-i} + s^{2^k-i} \max(2, d) 16k-i\max(d) - 2.
\]

\(\Box\)

**References**

[1] Artin E. *Über die Zerlegung definiter Funktionen in Quadrate*. Abh. Math. Sem. Hamburg, 5, 100–115 (1927). The collected papers of Emil Artin, 273–288. Reading, Addison-Wesley, 1965. 2, 23

[2] Basu S., Pollack R. and Roy M.-F. *On the Combinatorial and Algebraic Complexity of Quantifier Elimination*. Journal of the A. C. M. 43, 1002–1045, (1996). 6

[3] Basu S., Pollack R. and Roy M.-F. *Algorithms in real algebraic geometry*, volume 10 of Algorithms and Computation in Mathematics, second edition. Springer-Verlag, Berlin, 2006. 5, 6, 26, 38, 39, 41, 43, 44, 46, 47, 57
[4] Basu S., Pollack R. and Roy M.-F. *Algorithms in real algebraic geometry*, revised and completed version of 2nd edition, http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.html (2013) 26, 43, 69

[5] Blekherman G., Gouveia J. and Pfeiffer J. *Sums of Squares on the Hypercube* Manuscript. arXiv:1402.4199.

[6] Bochnak J., Coste M. and Roy M.-F. *Géométrie algébrique réelle* (Second edition in english: *Real Algebraic Geometry*), volume 12 (36) of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin, 1987 (1998). 4, 5, 6

[7] Brownawell W. D. *Local diophantine nullstellen identities*. Journal of AMS, 1, 311–322, 1988. 5

[8] Caniglia L., Galligo A. and Heintz J. *Borne simplement exponentielle pour les degrés dans le théorème des zéros sur un corps de caractéristique quelconque*. C. R. Acad. Sci. Paris, 307, 255–258, 1988. 5

[9] Collins G. *Quantifier Elimination for real closed fields by cylindric algebraic decomposition*. Second GI Conference on Automata Theory and Formal Languages. LNCS vol 33, 134–183, Springer-Verlag, Berlin (1975). 6

[10] Cohen P. J. *Decision procedures for real and p-adic fields*. Comm. in Pure and Applied Math. 22, 131–151 (1969) 5, 6

[11] Coste M., Lombardi H. and Roy M.-F. *Dynamical method in algebra: Effective Nullstellensätze* Annals of Pure and Applied Logic 111, 203–256 (2001). 7

[12] Coste M. and Roy M.-F. *Thom’s lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets*. J. Symbolic Computation, 121–129 (1988). 57

[13] Daykin D. E. *Hilbert’s 17th problem*. Ph.D. Thesis, Univ. of Reading, (1961) unpublished. 5

[14] Davenport J. H. and Heintz J. *Real quantifier elimination is doubly exponential*. Journal of Symbolic Computation 5, 29–35, 1988. 6

[15] Delzell C.N. *Kreisel’s unwinding of Artin’s proof*, 113–245 in Kreiseliana: About and Around Georg Kreisel, ed. P. Odifreddi, A K Peters, Ltd.(1996). 5

[16] Díaz-Toca G., Gonzalez-Vega G. and Lombardi H. *Generalizing Cramer’s Rule: Solving uniformly linear systems of equations*. SIAM Journal on Matrix Analysis and Applications. 27, 621–637 (2005). 51

[17] Dubois D. *A nullstellensatz for ordered fields*, Arkiv for Mat., Stockholm, 8, 111–114 (1969). 4

[18] Efroymson G. *Local reality on algebraic varieties*, J. of Algebra, 29, 113–142 (1974). 4

[19] Gantmacher F. R. *The theory of matrices*. Chelsea 1959. (english translation) 41

[20] Gonzalez L., Lombardi H., Recio T. and Roy M.-F. *Spécialisation de la suite de Sturm et sous-résultants. I*. RAIRO Informatique théorique et Applications 24, 561–588 (1990). Detailed version: CALSYF journées du GRECO de Calcul Formel 1989. 42

[21] Grigoriev D. *Complexity of deciding Tarski algebra*. J. Symbolic Comput. 5, 65–108 (1988). 6

[22] Grigoriev D. and Vorobjov N. *Solving systems of polynomial inequalities in subexponential time*. J. Symbolic Comput. 5, 37–64 (1988). 6

[23] Grigoriev D. and Vorobjov N. *Complexity of Null- and Positivstellensatz proofs*. Ann. Pure Appl. Logic 113, 153–160 (2002). 5

[24] Hermann G. *Die frage der endlich vielen schritte in der theorie der polynomialideale*. Math. Annalen 95, 736–788, (1926). 5

[25] Hermite C. *Remarques sur le théorème de sturm*. C. R. Acad. Sci. Paris, 36, 52–54, (1853). 38

[26] Hilbert D. *Sur les problèmes futurs des mathématiques*. Compte Rendu du Deuxième Congrès International des Mathématiciens, pp. 58–114, Gauthier-Villars, Paris, 1902. 2

[27] Hilbert D. *Mathematische Probleme*. Göttinger Nachrichten, (1900), 253–297, and in Archiv der Mathematik und Physik, (3) 1 (1901), 44–63 and 213–237. 2
[28] Hilbert D. *Mathematical problems*. Bull. Amer. Math. Soc. 8 (1902), no. 10, 437–479. 2
[29] Hörmander L. *The analysis of linear partial differential operators*, Berlin, Heidelberg, New-York, Springer (1983). 364–367. 5, 6
[30] Jelonek Z., *On the effective Nullstellensatz*. Invent. Math. 162 (2005), no. 1, 117. 5, 27, 46, 47
[31] Kollár J. *Effective nullstellensatz for arbitrary ideals*. J. Eur. Math. Soc. 1, 313–337, (1999). 5
[32] Kreisel G. *Hilbert’s 17-th problem*. in Summaries of talks presented at the Summer Inst. of Symbolic Logic at Cornell Univ (1957) 5
[33] Kreisel G. *Sums of squares*. Summaries of Talks Presented at the Summer Institute in Symbolic Logic in 1957 at Cornell Univ., Institute for Defense Analysis, (1960) 313–320. 5
[34] Krivine J.-L. *Anneaux préordonnés*. Journal d’analyse mathématique 12, 307–326 (1964). 4
[35] Lancaster P. and Tismenetsky, M. *The Theory of Matrices*. 2nd edition. Academic Press, 1985. 51
[36] Laplace P.-S. *Leçons de mathématiques données à l’École normale en 1795*. Document (Gallica) Œuvres complètes, tome 14, 10–177. 26
[37] Lojasiewicz S. *Ensembles semi-analytiques*. Institut des Hautes Etudes Scientifiques, 1965 - 153 pages. 6
[38] Lombardi H. *Théorème effectif des zéros réel et variantes*. Publications Mathématiques of l’Université de Besançon. 1988-89. Fascicule 1. 5, 86
[39] Lombardi H. *Effective real nullstellensatz and variants*, in: Effective Methods in Algebraic Geometry. Eds. Mora T., Traverso C. Birkhäuser (1991). Progress in Math. 94 (MEGA 90), 263–288. (abridged english version of [38]) 5, 6, 58
[40] Lombardi H. *Nullstellensatz réel effectif et variantes*. C.R.A.S. Paris, t. 310, Serie I, 635–640, (1990). 5
[41] Lombardi H. *Théorème effectif des zéros réel et variantes, avec une majoration explicite des degrés*. 1990. Mémoire d’habilitation. 7
[42] Lombardi H. *Une borne sur les degrés pour le Théorème des zéros réel effectif*. 323–345. In: Real Algebraic Geometry. Proceedings, Rennes 1991, Lecture Notes in Mathematics no 1524. Eds.: Coste, Mahe, Roy. (Springer-Verlag, 1992). 5, 6, 7
[43] Monk L. G. *Elementary-recursive decision procedures*. PhD thesis, UC Berkeley, 1975. 6
[44] Perrucci D. and Roy M.-F. *Zero-nonzero and real-nonreal sign determination*, Linear Algebra and Its Applications 439 (2013), no. 10, pp. 3016-3030. 60, 61, 69
[45] Renegar J. *On the computational complexity and geometry of the first-order theory of the reals. I-III*. J. Symbolic Comput. 13, 255–352 (1992). 6
[46] Risler J.-J. *Une caractérisation des idéaux des variétés algébriques réelles*, C.R.A.S. Paris, t. 271, 1970, serie A, 1171–1173. 4
[47] Schmid J. *On the degree complexity of Hilbert’s 17th problem and the Real Nullstellensatz*, Habilitation, University of Dortmund, n ré 70, Seminar of logic, Paris 7, (2000). 5
[48] Seidenberg A. *A new decision method for elementary algebra*. Annals of Mathematics 60, 365–374 (1954). 6
[49] Stengle G. *A Nullstellensatz and a Positivstellensatz in semialgebraic geometry*. Math. Ann. 207, 87–97 (1974) 4
[50] Tarski A. *A decision method for elementary algebra and geometry*. University of California Press, Berkeley and Los Angeles, Calif., 1951. 2nd ed. 6
[51] van der Waerden B. L. *Modern Algebra, Volume II*. F. Ungar Publishing Co., 1950. 5
[52] Warou H. *An algorithm and bounds for the real effective Nullstellensatz in one variable*, Progress in Mathematics, no 143, 373–387. Birkhäuser. Basel. 1996. 58, 74