The checklist includes tree, shrub, dwarf shrub, woody liana and epiphyte species that occur or have occurred in Hungary except the settlements and other intensively utilised objects. 437 dendrotaxa were included and evaluated in this list. This means 281 species, 22 subspecies, 128 nothospecies and 6 nothosubspecies. Based on the indigenat, 260 native, 92 alien and 9 cryptogenic dendrotaxa live in Hungary, furthermore 54 cultivated dendrotaxa and 22 dendrotaxa with questionable occurrence. Analysing the invasive status of alien species, 19 invasive or being in the early stages of invasion, 12 naturalised and 61 casual dendrotaxa can be distinguished. According to residence time status, the number of archaeophytes is 16 and that of neophytes is 76. Of the 260 native dendrotaxa, 9 were extinct or presumably extinct. 44 dendrotaxa are considered to be proven endemic, and there are 8 subendemic. Of the 134 nothotaxa on the list, 14 are artificial and 120 are of natural origin.

Key words: alien plants, dendrotaxa, Hungary, hybrids, native plants, nomenclature, species list

INTRODUCTION

The purpose of species lists, flora lists, or according to current terminology standard lists and checklists, is to provide an account of the members of the flora of a given area, taking into account new knowledge of nomenclature, taxonomy, biogeography and ecology to utilise in basic and applied research, education, and practice (e.g. forestry, agriculture, nature conservation). This study undertakes to process the dendroflora of Hungary in such an approach.

In the last quarter of a century, checklists discussing the vascular flora have already been made in the surrounding countries of Hungary and in the neighbouring countries of Central and Southern Europe, such as: Albania (Barina et al. 2018), Austria (Gilli et al. 2019), Croatia (Nikolić 1994, 1997, 2000), Czech republic (Danihelka et al. 2012, Pyšek et al. 2012), Germany (Buttler and Hand 2008, Buttler et al. 2018, Wisskirchen and Haeupler 1998), Greece (Dimopoulos et al. 2013), Italy (Bartolucci et al. 2018, Galasso et al. 2018), Poland (Mirek et al. 2002), Romania (Oprea 2005), Serbia (Niketić and Tomović 2018), Slovakia (Marhold and Hindák 1998), Slovenia (Trpin and Vreš 1995), Switzerland (Juillerat et al. 2017), Ukraine (Mosyakin and Fedoronchuk 1999).
The first checklist in Hungary in the current sense, processing vascular flora and covering the entire territory of the country, was compiled by Rezső Soó (Soó 1980), which is based on his detailed, multi-volume work on the processing of Hungarian flora (Soó 1964–1973). An abbreviated and improved version of this was later published by Szaniszló Priszter (Priszter 1985). A list of taxa supplemented with several attributes (e.g. floristic, coenological, ecological, nature conservation) was published a decade later by Horváth et al. (1995). After the turn of the millennium, Róbert Vidéki and Viktor Virók prepared a checklist (Vídeki and Virók 2004) to help the Hungarian flora mapping and the compilation of the plant identification book, but their publication was unfortunately not used in the compilation of the mentioned works. A list of taxa for archaeophytes (Terpó et al. 1999) and neophytes (Balogh et al. 2004) was also prepared based on a set of criteria.

The checklist containing only dendrotaxa was first published in Hungary a good quarter of a century ago (Bartha 1992–93), which was later followed by improved versions (Bartha 1999a, b). The list of adventive taxa of dendroflora has been published in several updated studies (Bartha 1999c, 2000, Bartha and Csiszár 2004). A special checklist containing only Rosa taxa was published by Kerényi-Nagy (2010). A recent list-like compilation was made of some degree endangered, and of invasive or potentially invasive alien tree and shrub species (Bartha 2019, 2020). The purpose of this list of dendrotaxa is to appear as an updated version of the previous lists compiled in a similar way, to draw attention to the changes, and to provide an incentive effect on the potential compilers of the long-missing list of vascular plant species in Hungary.

MATERIAL AND METHODS

Range of dendrotaxa and study area: The list includes tree, shrub, dwarf shrub, woody liana and epiphyte species that occur or have occurred in Hungary, but do not include semi-shrubs. The list does not take into account the woody plant species planted in Hungarian settlements (urban areas) or they only established there, due to their large number and the temporality of establishment (these can be studied in Bartha’s (2020) work), and also the intensively utilised objects of the urban suburbs (e.g. Christmas tree plantations, seed orchards, castle parks, arboretums, motorways).

Systematic and taxonomy: The checklist lists dendrotaxa in alphabetical order, and the valid family names are given in each genus based on modern molecular genetic knowledge, established by the Angiosperm Phylogeny Group (APG IV. 2016, Stevens 2001 onwards, WCSP 2021) for angiosperms and Christenhusz et al. (2011) for gymnosperms. Within genera, the list includes species aggregates in the original interpretation of Manton (1958), species, specioids in the interpretation of Jirásek (1964), and subspecies. The delimitation of the
latter – which has caused many misunderstandings so far – was based on Go-
vaerts’ conception (WCSP 2021): “Distribution range separate (so that non-
overlapping rings can be drawn round them on a map) or nearly so, gene flow
absent or very restricted between the infraspecific populations and differing in
characters that are significant for taxonomic species differentiation within the
genus.” The previously used s. l. (sensu lato) and s. str. (sensu stricto) taxon
conceptions were discarded due to their difficult interpretation, and the hi-
erarchical species aggregate and species or species and subspecies categories
were used instead. In addition, the list includes hybrid nothospecies aggre-
gate, hybrid species (nothospecies), and hybrid subspecies (nothosubspecies).
Interpretation of nothotaxa is based on the work of Stace et al. (2016).

Nomenclature: The scientific names were given on the basis of interna-
tional databases (Euro + Med 2006 onwards, ILDIS 2010 onwards, IPNI 2004
onwards, TPL 2013 onwards, POWO 2021), and in case of any discrepancies,
individual consideration and decision was made. Application of nomencla-
ture rules were applied to natural taxa according to ICN (= International Code
of Nomenclature for Algae, Fungi, and Plants) (Turland et al. 2018, Shenzhen
Code; Wiersema et al. 2018+ continuously updated, Appendices I–VII), for cul-
tivated taxa according to the ICNCP (= International Code of Nomenclature
for Cultivated Plants) (Brickel et al. 2016). Abbreviations of author names fol-
low Brummit and Powell (1992) as incorporated in and further developed by
the IPNI (IPNI 2004 onwards).

Valid taxon names are printed in bold italics, except for family names,
species aggregate, nothospecies aggregate, and auctor names. Family names
and auctor names are published in normal letters, species and nothospecies
aggregate names in italics, not bold letters. If there is a new name combination
for the taxon, or the name is validated at a different rank than in the original
protologue, the basionym is always given. In the case of synonym names only
the more frequently used in Hungary were indicated, a complete list of them
is impossible and meaningless due to space limitations. In the case of hybrids,
the hybrid parents are also listed in alphabetical order. Basionym, synonym,
and hybrid parent names are in italics, not in bold.

The nomenclature notations and abbreviations used and their resolution
are as follows: agg. = aggregatus (aggregate, a group of closely related species
within a genus); auct. = auctorum (of author(s), of various authors but not the
original one); bas. = basionymon (basionym); comb. nov. = combinatio nova
(new combination); cv. = cultivarietas (cultivar, a cultivated variety); em. =
emendatus (amended), emendavit (an by); et = et (and, &); et al. = et alii (and
others); ex = from; excl. = exclusus (excluded); f. = forma (form); gen. fem.
cons. = genus femininum conservandum (feminine gender to be conserved);
gen. masc. cons. = genus masculinum conservandum (masculine gender to be
conserved); hort. = hortorum (invalid horticultural name); in = in (to connect

Acta Bot. Hung. 63, 2021
the names of two persons); incl. = inclusus (included); microsp., microspp. = microspecies (a unit of a species aggregate); nom. cons. = nomen conservandum (conserved name); nom. cons. prop. = nomen conservandum propositum (a name proposed for conservation); nom. illeg. = nomen illegitimum (illegitimate name); nom. inval. = nomen invalidum (name invalid for some other reason); nom. nov. = nomen novum (replacement name); nom. nud. = nomen nudum (name invalid since without description); nom. rej. = nomen rejiciendum (rejected name); nom. rej. prop. = nomen rejiciendum propositum (a name proposed for rejection); nom. utique rej. = nomen utique rejiciendum (suppressed name); non = not; nothosubsp. = nothosubspecies (nothospecies); ortho. = versio orthographiam (orthographic variant, spelling variant); orth. cons. = orthographia conservanda (orthography conserved); p. p. = pro parte (partly, in part); s. l. = sensu lato (in a broad sense); s. n. = sine nomine (without name); sp. = species (species); s. str. = sensu stricto (in a narrow sense); sensu [author] = according to [author]; subsp. = subspecies (subspecies); stat. nov. = status novus (name at new rank); syn. = synonymon (synonym); var. = varietas (variety); vel = or.

Life forms: Life forms are given based on detailed categories developed by Bartha (1999d) based on the Raunkiaer system, but only the main groups are reported here, which are: T = tree, S = shrub, DS = dwarf shrub, L = liana, E = epiphyte. Transitional types (T–S, S–L) are possible.

Status: Status is given based on several criteria, for example groups according to indigenat, invasion status, residence time status, cultivation, endemity, origin of hybrid taxa are indicated.

a. Indigenat (origin) and invasion status: The categories and definitions follow the work of Lambdon et al. (2008), which are slightly modified as follows: N = native plants (indigenous) are taxa that have originated in a given area without human involvement or that have arrived there without intentional or unintentional intervention of humans from an area in which they are native. The definition excludes products of hybridisation involving alien taxa since human involvement in this case includes the introduction of an alien parent. A = alien plants (exotic, introduced, non-native, non-indigenous) are taxa in a given area whose presence there is due to intentional or unintentional human involvement, or which have arrived there without the help of people from an area in which they are alien. Taxa can be alien to any definable area, e.g. continents, islands, bio- or ecoregions, or any political entity (e.g., countries, states, provinces). Within this category, the following can be distinguished: Cas = casual alien plants are taxa that may reproduce occasionally outside cultivation in an area, but that eventually die out because they do not form self-replacing populations, and rely on repeated introductions for their persistence. Nat = naturalised alien plants are taxa that sustain self-replacing populations for a period of time long enough to experience extreme climatic events in the
area, and reproduce without direct intervention by people (or in spite of human intervention) by recruitment from seed or vegetative parts capable of independent growth. Inv = invasive alien plants are a subset of naturalised plants that produce reproductive offspring, often in very large numbers, at considerable distances from the parent plants and thus have the potential to spread over a large area. The definition is not bound to a type of habitat, hence a species may be invasive in natural or human-made habitats.

In addition to the above two main categories (N and A), Carlton’s (1996) interpretation also distinguishes the following category: C = cryptogenic plants are those in which it cannot be with certainty decided whether they are native or alien to a region.

The indigenate is determined by Bartha et al. (2015), taking into account the special literature on the taxon, the invasion status was granted according to Bartha (2020).

b. Residence time status: The categories and definitions follow the work of Lambdon et al. (2008), which are slightly modified as follows: Arch = archaeophytes are alien species introduced to the region during the period since the beginning of Neolithic agriculture and the end of Medieval (discovery of Americas, approximately the year 1500 AD). Neo = neophytes are alien species introduced to the region after the year 1500 AD. Residence time status was determined on the basis of Gyulai (2001) and the literature on taxa.

c. Other categories: Cult = cultivated plants are taxa or nothotaxa that, regardless of their indigenat and origin, are propagated and maintained by humans for some purpose. Hung.? = taxa and nothotaxa have been given this category whose occurrence in Hungary is uncertain and needs to be confirmed.

It should be emphasised that the above categories may be combined for individual taxa and nothotaxa. Some important combinations are interpreted as follows: N / Nat or Cas = native in one part of Hungary and naturalised or casual in another (e.g. Fraxinus ornus, Alnus incana); N / Cult = native in Hungary and also cultivated at the same time (e.g. Prunus avium); N / Cult / Cas = native and cultivated in Hungary, but escaped from cultivation and casual in appearance outside the native area (e.g. Taxus baccata); Cult / Inv or Nat or Cas = cultivated in Hungary, escaped from cultivation and became invasive, naturalised or casual (e.g. Acer negundo, Juglans regia, Platycladus orientalis); Cult / Arch or Neo = only cultivated archaeophyte or neophyte in Hungary, no escape can be experienced (e.g. Prunus persica, Taxodium distichum).

d. Endemity: In its own interpretation, End = endemic (“Hungarian endemic”) is a taxon that occurs or has occurred only within the area of Hungary, and SubE = subendemic is a taxon that occurs or has occurred in Hungary and in a neighbouring country (Austria, Slovakia, Ukraine, Romania, Serbia, Croatia or Slovenia), regardless of its area size. The definition of endemity is based on the work of Bartha (2019).
e. **Origin of hybrid taxa:** Ntl = natural (spontaneous) hybrid is a taxon whose development human has no direct, at most only indirect role, Art = artificial (anthropogenic) hybrid is a taxon whose development human has direct role. The origin of hybrid taxa was determined based on the literature reported for nothotaxa.

**Symbols:** ? = questionable (e.g. taxonomically doubtful, records from Hungary need confirmation, doubtful status), † = extinct or possibly extinct, × = hybrid formula.

**Literature:** The literature on the genera discusses the current interpretation and division of the genus, the literature on the lower taxa of the genera deals with taxonomic and nomenclatural problems, its occurrence in Hungary, and the status of the taxon. For the most part, only the relevant literature of the last quarter of a century has been considered.

**RESULTS**

The current list of dendroflora in Hungary, the indicators assigned to the taxa and the literature are given in Appendix 1. A total of 437 dendrotaxa (species and subspecies, nothospecies and nothosubspecies) were included and evaluated in this list. This means 281 species with no or only one subspecies living in Hungary (including the autonyme subspecies), 4 species (Acer tataricum, Daphne cneorum, Prunus mahaleb, Ulmus minor) with 2–2 subspecies living in Hungary and 4 more species (Cornus sanguinea, Crataegus monogyna, Quercus robur, Viscum album) whose 3–3 subspecies live in Hungary. Number of subspecies analysed is 22. For hybrid taxa (nothotaxa), there are 128 nothospecies where there are no nothosubspecies or only one nothosubspecies, for another 1–1 nothospecies (Crataegus ×subsphaerica, C. ×media) 2 and 3 nothosubspecies were listed. Number of nothosubspecies analysed is 6. There is one another species (Vitis vinifera) within which 2 subspecies and 1 nothosubspecies have been added to the list. In addition, 6 species aggregate (Crataegus rhipidophylla agg., Prunus domestica agg., Pyrus communis agg., Quercus petraea agg., Q. pubescens agg., Vaccinium oxycocos agg.) and 2 nothospecies aggregate (Crataegus ×macrocarpa agg., C. ×subsphaerica agg.) have also been set up for better placement and interpretation of certain critical taxa. The microspecies included here were evaluated by species rank.

Based on the indigenat, 260 native, 92 alien and 9 cryptogenic dendrotaxa live in Hungary, furthermore 54 cultivated dendrotaxa and 22 dendrotaxa with questionable occurrence. Their distribution based on taxonomic ranks (species, subspecies, nothospecies, nothosubspecies) is shown in Table 1. Analysing the invasive status of alien species, 19 invasive or being in the early stages of invasion, 12 naturalised and 61 casual dendrotaxa can be distinguished.
According to residence time status, the number of archaeophytes is 16 and that of neophytes is 76. It should be noted that Terpó et al. (1999) report only two archaeophytes (Prunus cerasifera, Lycium barbarum) from Hungary, the latter, moreover, erroneously (see Priszter 2004). The differentiation of invasion status and residence time status based on taxonomic ranks is shown in Table 1, the distinction according to lifeform groups is shown in Table 2, and the comparison based on their relationship is shown in Table 3. There are 210 dendrotaxa that are cultivated in Hungary. Of these, 54 taxa occur only in cultivation, the classification of which by taxonomic rank can be studied in Table 1, and their classification by lifeform in Table 2.

### Table 1

Distribution of taxa and nothotaxa of dendroflora in Hungary according to their status (invasion status: Inv = invasive, Nat = naturalised, Cas = casual; residence time status: Arch = archaeophyte, Neo = neophyte; Hung.? = records from Hungary need confirmation; endemity: End = endemic, SubE = subendemic, ? = questionable)

| Taxonomic rank | Native | Invasion status | Alien | Residence time status | Cryptogenic | Cultivated only | Hung.? | Total | Endemity |
|----------------|--------|-----------------|-------|-----------------------|-------------|-----------------|--------|-------|----------|
|                |        | Inv  | Nat | Cas | Arch | Neo | Subtotal |        |       |          |
| Taxa           |        |      |     |     |      |     |          |        |       |          |
| – species      | 174    | 19   | 9   | 38  | 6    | 60  | 66       | 9      | 33    | 282      |
| – subspecies   | 14     | 2    | 1   | 1   | 1    | 2   |          | 3      | 3     | 22       |
| Subtotal       | 188    | 19   | 9   | 40  | 7    | 61  | 68       | 9      | 36    | 304      |
| Nothotaxa      |        |      |     |     |      |     |          |        |       |          |
| – nothospecies | 67     | 3    | 20  | 8   | 15   | 23  |          | 18     | 19    | 127      |
| – nothosubspecies | 5  | 1    | 1   | 1   |      |     |          | 1      |       | 6        |
| Subtotal       | 72     | 3    | 21  | 9   | 15   | 24  |          | 18     | 19    | 133      |
| Total          | 260    | 19   | 12  | 61  | 16   | 76  | 92       | 9      | 54    | 437      |

There are 210 dendrotaxa that are cultivated in Hungary. Of these, 54 taxa occur only in cultivation, the classification of which by taxonomic rank can be studied in Table 1, and their classification by lifeform in Table 2.
Table 2
Distribution of dendroflora members in Hungary according to their lifeform and status (life form: T = tree, S = shrub, DS = dwarf shrub, L = liana, E = epiphyte, T–S and S–L = transitional types; Invasion status: Inv = invasive, Nat = naturalised, Cas = casual; Hung.? = records from Hungary need confirmation)

| Life form | Indigenat | Alien | Crypto-genic | Cultivated only | Hung.? | Total |
|-----------|-----------|-------|--------------|-----------------|--------|-------|
|           | Native Inv| Alien Nat| Cas |                  |        |       |
| T         | 113       | 10    | 6 | 36 | 7 | 44 | 4 | 220 |
| T–S       | 10        | 2     | 3 | 4 | 19 |
| S         | 118       | 4     | 4 | 11 | 2 | 6 | 11 | 156 |
| S–L       | 2         |       |       |        |       |        |       | 2 |
| DS        | 10        | 2     |       | 13 |       |       | |
| E         | 4         |       |       |       |       |        | 4 |
| L         | 4         | 3     | 11 | 4 | 2 | 24 |
| Total     | 261       | 19    | 12 | 61 | 9 | 54 | 22 | 438 |

Table 3
Distribution of alien members of the Hungarian dendroflora by invasion status and residence time status

| Residence time status | Invasion status | Total |
|-----------------------|-----------------|-------|
|                       | Invasive | Naturalised | Casual |       |
| Archaeophyte          | –        | 3          | 11     | 14    |
| Archaeophyte?         | –        | –          | 2      | 2     |
| Neophyte              | 19       | 9          | 48     | 76    |
| Total                 | 19       | 12         | 61     | 92    |

Table 4
Distribution of endemic and subendemic members of the Hungarian dendroflora

| Endemity | Native | Native† | Cryptogenic |
|----------|--------|---------|-------------|
| Endemic  | 43     | 1       | –           |
| Endemic? | –      | –       | 2           |
| Endemic? or subendemic? | 2      | –       | –           |
| Subendemic | 8      | –       | –           |
| Subendemic? | 1      | –       | –           |
| Not endemic or subendemic | 197    | 8       | 7           |
| Total     | 251    | 9       | 9           |
vated taxa. 22 nothotaxa are cultivated in Hungary, the distribution of the parents indigenat, and invasive and residence time status in the case of alien parents are shown in Table 5.

Of the 260 native dendrotaxa, 9 were extinct (Andromeda polifolia subsp. polifolia, Ostrya carpinifolia, Ribes petraeum, Rosa glauca, R. stylosa, Salix myrsinifolia subsp. myrsinifolia – the latter’s planted stand elsewhere has become established) or presumably extinct (s. n. [Alnus incana subsp. incana × A. alnobetula subsp. alnobetula], A. ×pseudoglutinosa, Rosa ×budensis). 44 dendro-taxa are considered to be proven endemic (of which Sorbus s. l. includes 5 species of Aria, 34 species of Karpatiosorbus, and from the genus Rosa the Rosa ×barthae, R. ×borhidiana, R. ×budensis, R. ×pomazensis, R. ×victoria-hungarorum), in the case of 2 cryptogenic dendrotaxa (Acer acuminatilobum, Pyrus magyarica) the endemity is questionable, 2 dendrotaxa (Aria zolyomii, Hedlundia buckensis) has not yet been proved to be endemic or subendemic, and there are 8 subendemic (Aria javorkana, A. subdanubialis, Crataegus ×degenii, C. nigra, Rosa ×braunii, R. facsarii, R. kmetiana, R. zalana) and 1 questionable subendemic (Hed-
*lundia hazslinszkyana* taxa. It should be noted that the *Aria thaiszii* (Soó) Sennikov et Kurtto described from Hungary – in contrast to the previous data Mikoláš et al. (2017) – is not found in Hungary, only in Slovakia. The distribution of native and cryptogenic dendrotaxa by endemic categories is shown in Table 4, and the distribution by taxonomic categories is shown in Table 1.

Of the 134 nothotaxa on the list, 14 are artificial and 120 are of natural origin. Nothotaxa where all parents are native are considered native, their number is 89. Non-native are nothotaxa where at least one of the parents is an alien, their number is 40. In 5 cases, the status of the parents could not be clearly determined, and the occurrence of 19 nothotaxa in Hungary has yet to be proven. The indigenat of the parents, and invasive and residence time status in the case of alien parents are shown in Table 5.

**Acknowledgements** – This project was supported by Institute of Botany and Nature Conservation, University of Sopron, Hungary.

**REFERENCES**

Adams, R. P., Arnold, M. A., King, A. R., Denny, G. C. and Creech, D. (2012): Taxodium (Cupressaceae): one, two or three species? Evidence from DNA sequences and terpenoids. – *Phytologia* 94: 159–168.

Ahrendt, L. W. A. (1961): Berberis and Mahonia. – *J. Linn. Soc.* London (Botany) 57(369): 1–410.

Andrés-Hernández, A. R., Terrazas, T., Salazar, G. and Ochoterena, H. (2014): Phylogenetic analysis based on structural and combined analysis of Rhus s.s. (Anacardiaceae). – *Bot. J. Linn. Soc.* 176(4): 452–468. https://doi.org/10.1111/boj.12222

APG IV. (2016): An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. – *Bot. J. Linn. Soc.* 181: 1–20. https://doi.org/10.1111/j.1095-8339.2009.00996.x.

Ardenghi, N. M. G., Banfi, E. and Galasso, G. (2015): A taxonomic survey of the genus Vitis L. (Vitaceae) in Italy, part II: the ‘Euro-American’ hybrids. – *Phytotaxa* 224(3): 163–198. https://doi.org/10.11646/phytotaxa.224.3.2

Ardenghi, N. M. G., Galasso, G., Banfi, E., Zoccola, A., Foggi, B. and Lastrucci, L. (2014): A taxonomic survey of the genus Vitis L. (Vitaceae) in Italy, with special reference to Elba Island (Tuscan Archipelago). – *Phytotaxa* 166(3): 232–246. https://doi.org/10.11646/phytotaxa.166.3.1

Ashburner, K. and McAllister, H. A. (2013): *The genus Betula: a taxonomic revision of birches*. – Royal Botanic Gardens, Kew, 431 pp.

Auvray, G. and Malécot, V. (2013): A revision of Cytisus sections Alburnoides, Sartoropsis and Verzinum (Genistean, Fabaceae). – *Edinb. J. Bot.* 70(1): 71–120. https://doi.org/10.1017/S0960428612000352

Babos, K. and Bertin, P. (1998): Is common walnut (*Juglans regia*) native to Hungary? – *Acta Bot. Hung.* 41(1–4): 11–16.
Bailey, V. L. (1962): Revision of the genus Ptelea (Rutaceae). – *Brittonia* 14(1): 1–45. https://doi.org/10.2307/2805316

Balogh, L. (2012): *Illytos nyáriorgona* (Buddleja davidii Franchet). – In: Csiszár, Á. (ed.): Invasziós növényfajok Magyarországon. [Invasive alien plant species in Hungary.] Nyugat-magyarországi Egyetem Kiadó, Sopron, pp. 189–193.

Balogh, L., Dancza, I. and Király, G. (2004): A magyarországi neofitonok időszervű jegyzéke, és besorolásuk inváziós szempontból. [Timely list of neophytes in Hungary and their classification from the point of view of invasion.] – In: Mihály, B. and Botta-Dukát, Z. (eds): Biológiai inváziók Magyarországon. [Biological invasions in Hungary. Invasive plant species.] A KvVM tanulmánykötetei 9, Természettől Búvár Alapítvány Kiadó, Budapest, pp. 61–92.

Barabits, E. (2007): A *Sorbus bakonyensis* (Jáv.) Kárp. taxonómiai revíziója – új berkenye fajok a magyar flórában. [New apomictic taxa of Sorbus from the Bakony Mountains.] – *Tilia* 13: 5–48.

Baráth, Z. (1956): Hazai Euonymusainkról. [The Euonymus taxa in Hungary.] – *Bot. Közl. 46*: 235–249.

Baráth, Z. (1999a): Annotated checklist of the Hungarian dendrotaxa. – *Tilia* 7(Suppl.): 31–44.

Baráth, Z. (1999b): Floristical, cenological, ecological and nature conservation indexes of the Hungarian dendrotaxa. – *Tilia* 7(Suppl.): 3–30.

Baráth, D. (1996): Der Speierling (*Sorbus domestica* L.) in Ungarn. – *Corinmaria 6*: 5–6.

Baráth, D. (2004): A Magyarországon előforduló nyár (*Populus* L.) taxonok határozókulcsa és rövid jellemzése. [Short description and key to the poplar taxa (*Populus* L.) existing in Hungary.] – *Flora Pann. 2*(2): 85–101.

Bartha, D. (2011): Bastarde zwischen Kirschenarten (*Cerasus* Mill.; Rosaceae) in Mitteleuropa. – *Mitt. Deutsch. Dendrol. Gesell. 96*: 57–65.

*Acta Bot. Hung.* 63, 2021
Bartha, D. (2015): Eine wenig bekannte Esche: die Ungarische Esche Fraxinus angustifolia Vahl. subsp. danubialis Pouzar. Teil I. – Mitt. Deutsch. Dendrol. Gesell. 100: 197–204.

Bartha, D. (2016): Eine wenig bekannte Esche: die Ungarische Esche Fraxinus angustifolia Vahl. subsp. danubialis Pouzar. Teil II. – Mitt. Deutsch. Dendrol. Gesell. 101: 55–68.

Bartha, D. (2019): Vörös Lista. Magyarország veszélyeztetett fa- és cserjefajai. / Red List. Threatened tree and shrub species of Hungary. – Soproni Egyetem Kiadó / University of Sopron Press, Sopron, 59 pp.

Bartha, D. (2020): Fekete Lista. Magyarország inváziós fa- és cserjefajai. / Black List. Invasive tree and shrub species of Hungary. * Szürke Lista. Magyarország potenciálisan inváziós fa- és cserjefajai. / Grey List. Potentially invasive tree and shrub species of Hungary. – Soproni Egyetem Kiadó / University of Sopron Press, Sopron, 84 pp.

Bartha, D. and Bőhm, É. I. (2010): Vastaggallyú körte és rokonai (Pyrus nivalis Jacq. agg.). – Tilia 15: 158–190.

Bartha, D. and Csiszár, Á. (2004): Adventive Taxa in der ungarischen Dendroflora. – Mitt. Deutsch. Dendrol. Gesell. 89: 149–162.

Bartha, D. and Csiszár, Á. (2008a): Common hackberry (Celtis occidentalis L.). – In: Botta-Dukát, Z. and Balogh, L. (eds): The most important invasive plants in Hungary. Institute of Ecology and Botany. Hungarian Academy of Sciences, Vácraitót, pp. 95–102.

Bartha, D. and Csiszár, Á. (2008b): Russian olive (Elaeagnus angustifolia L.). – In: Botta-Dukát, Z. and Balogh, L. (eds): The most important invasive plants in Hungary. Institute of Ecology and Botany. Hungarian Academy of Sciences, Vácraitót, pp. 85–93.

Bartha, D. and Kerényi-Nagy, V. (2010a): Fekete galagonya (Crataegus nigra Waldst. et Kit.). – Tilia 15: 54–74.

Bartha, D. and Kerényi-Nagy, V. (2010b): A magyar vagy fekete galagonya (Crataegus nigra Waldst. et Kit.) infraspecifikus taxonómiaja és aktuális elterjedése. [Infraspecific taxonomy and current distribution of the Hungarian or Black Hawthorn (Crataegus nigra Waldst. et Kit.).] – Magyar Biológiai Társaság XXVIII. Vándorgyűlés előadásainak összefoglalói, Budapest, pp. 117–122.

Bartha, D. and Király, G. (1999): Bérci ribiszke (Ribes petraeum Wulf.). – Tilia 7: 152–153.

Bartha, D. and Markovics, T. (2010): Havasi éger (Alnus viridis (Chaix) DC.). – Tilia 15: 7–20.

Bartha, D. and Raisz, Á. (2004): Untersuchungen zur Variabilität von Blattmerkmalen in-nerhalb der Krone bei Fagus sylvatica und Fagus orientalis. – Beitr. Forstwirtsch. und Landschaftsökolog. 38(4): 169–178.

Bartha, D., Csiszár, Á. and Zsigmond, V. (2008): Black locust (Robinia pseudoacacia L.). – In: Botta-Dukát, Z. and Balogh, L. (eds): The most important invasive plants in Hungary. Institute of Ecology and Botany. Hungarian Academy of Sciences, Vácraitót, pp. 63–76.

Bartha, D., Kerényi-Nagy, V. and Molnár, Cs. (2011): Acer acuminatilobum J. Papp (1958) – Matra-ancient-maple. – Maple Soc. Newsl. 21(2): 5–9.

Bartha, D., Kevey, B. and Tiborcz, V. (2012): Current and 20th century distributions of Vitis sylvestris in Hungary. – Folia Oecol. 39(2): 99–106.

Bartha, D., Király, G., Schmidt, D., Tiborcz, V., Barina, Z., Csiky, J., Jakab, G., Lesku, B., Schmotzer, A., Vidéki, R., Vojtkó, A. and Zólyomi, Sz. (2015): Magyarország edényes növényfajainak elterjedési atlasza / Distribution atlas of vascular plants of Hungary. – Nyugat-magyarországi Egyetem Kiadó / University of West Hungary Press, Sopron, 329 pp.

Bartha, D., Vidéki, R. and Máté, A. (2004): A csipkés gyöngyvessző (Spiraea crenata L.) magyarországi előfordulása. [The occurrence of crenated spirea (Spiraea crenata L.) in Hungary.] – Flora Pannon. 2(2): 119–127.
Acta Bot. Hung. 63, 2021

Bartolucci, F. and Galasso, G. (2019): Nomenclatural novelties. Ulmus minor L. subsp. canescens Bartolucci & Galasso, subsp. nov. – *Italian Botanist* 7: 138–139. https://doi.org/10.3897/italianbotanist.7.36148

Bartolucci, F., Peruzzi, L., Galasso, G., Albano, A., Alessandri, A., Ardenghi, N. M. G., Astuti, G., Bacchetta, G., Ballelli, S., Banfi, E., Barberis, G., Bernardo, L., Bouvet, D., Bovio, M., Cecchi, L., Di Pietro, R., Domina, G., Fascetti, S., Fenu, G., Festi, F., Foggì, B., Gallo, L., Gottschlich, G., Gubellini, L., Iamonico, D., Iberite, M., Jiménez-Mejías, P., Lattanzi, E., Marchetti, D., Martinetto, E., Masin, R. R., Medagli, P., Passalacqua, N. G., Peccenini, S., Pennesi, R., Pierini, B., Poldini, L., Prosser, F., Raimondo, F. M., Roma-Marzio, F., Rosati, L., Santangelo, A., Scortegagna, S., Selvaggi, A., Selvi, F., Soldano, A., Stinca, A., Wagensommer, R. P., Wilhalm, T. and Conti, F. (2018): An updated checklist of the vascular flora native to Italy. – *Plant Biosyst.* 152(2): 179–303. https://doi.org/10.1080/11263504.2017.1419996

Batiz, E. (2000): A körte (Pyrus) nemzetség morfológiai és növényföldrajzi feldolgozása. [Morphological and phytogeographical processing of the genus Pyrus.] – *Tilia* 9: 163–216.

Bauer, N. (2015): Sorbus udvardyana Somlyay & Sennikov a Balaton-felvidék keleti dolomitterületén. [Sorbus udvardyana Somlyay & Sennikov in the eastern part of the Balaton Uplands.] – *Kitaibelia* 20(1): 55–58. https://doi.org/10.17542/kit.20.55

Becker, H. (2000): *European mistletoe* – taxonomy, host trees, parts used, physiology. – In: Bussing, A. (ed.): *Mistletoe: The Genus Viscum.* Harwood Academic Publishers, pp. 31–41.

Belyaeva, I. V. (2009): Nomenclature of Salix fragilis L. and a new species, S. euxina (Salicaceae). – *Taxon* 58: 1344–1348. https://doi.org/10.1002/tax.584021

Belyaeva, I. V., Epanchtintseva, O. V., Govaerts, R. H. A., McGinn, K., Hunnex, J. and Kuzovkina, Y. A. (2018): The application of scientific names to plants in cultivation: Salix vitellina L. and related taxa (Salicaceae). – *Skvortsovia* 4: 42–70.

Bényei-Himmer, M., Tóth, E. Gy., Lengyel, Sz., Pintér, I., Bisztray, Gy. D. and Höhn, M. (2017): Hedera crebrescens (Araliaceae) a newly identified diploid taxon and triploid ivies from Hungary. – *Studia Bot. Hung.* 48(2): 225–252. https://doi.org/10.17110/StudBot.2017.48.2.225

Bodonczi, L. and Havas, M. (1999): Füles fűz (Salix aurita L.). – *Tilia* 7: 63–68.

Boon, B. K. (1957): *Populus canadensis* Moench versus *P. euramericana* Guinier. – *Acta Bot. Neerl.* 6(1): 54–59. https://doi.org/10.1111/j.1438-8677.1957.tb00572.x

Borovics, A., Kézdy, P. and Szmorad, F. (1999): Magyar tölgy (Quercus frainetto Ten.). – *Tilia* 7: 48–54.

Bőhm, É. I. (2007): Fokozottan védett növényfajunk, a magyar vadkörte (Pyrus magyarica Terpó), valamint alakkörének kutatása Magyarországon. [Research of our highly protected plant species, Pyrus magyarica Terpó and its forms in Hungary.] – *Tilia* 13: 95–104.

Bőhm, É. I. (2010): Magyar vadkörte (Pyrus magyarica Terpó). – *Tilia* 15: 149–157.

Bölöni, J. (1999a): Madárbirs fajok (Cotoneaster spp.). – *Tilia* 7: 193–232.

Bölöni, J. (1999b): Bokros koronafürt (Coronilla emereus L.). – *Tilia* 7: 254–260.

Bölöni, J. and Horváth, A. (1999): Törpe mandula (Amygdalus nana L.). – *Tilia* 7: 243–253.

Bölöni, J. and Nagy, J. (1999): Szirti gyöngyvessző (Spiraea media Fr. Schm.). – *Tilia* 7: 170–181.

Börcsök, Z. (2004): Vezérfonal a Magyarországon előforduló szilek (Ulmus spp.) meghatározásához. [Guide to the identification of elm species existing in Hungary.] – *Flora Pann.* 2(2): 141–152.

Acta Bot. Hung. 63, 2021
BARTHA, D.

Brickel, C. D., Alexander, C., Cubey, J. J. David, J. C., Hoffman, M. H. A., Leslie, A. C., Malécot, V. and Xiaobai, Jin (eds) (2016): International code of nomenclature for cultivated plants, 9th edition. – Scripta Horticult. 18: 1–190.

Browicz, K. (1963): The genus Colutea L. A monograph. – Monogr. Bot. 14: 1–136.

Brummit, R. K. and Powell, C. E. (1992): Authors of plant names. A list of authors of scientific names of plants, with recommended standard form of their names including abbreviations. – Royal Botanic Gardens, Kew, 732 pp.

Brunet, J., Zalapa, J. E., Pecori, F. and Santini, A. (2013): Hybridization and introgression between the exotic Siberian elm, Ulmus pumila, and the native Field elm, U. minor, in Italy. – Biol. Invasions 15: 2717–2730. https://doi.org/10.1007/s10530-013-0486-z

Browicz, K. (1963): The genus Colutea L. A monograph. – Monogr. Bot. 14: 1–136.

Brummit, R. K. and Powell, C. E. (1992): Authors of plant names. A list of authors of scientific names of plants, with recommended standard form of their names including abbreviations. – Royal Botanic Gardens, Kew, 732 pp.

Buttler, K. P. and Hand, R. (2008): Liste der Gefäßpflanzen Deutschlands. – Kochia 1: 1–107.

Botti-Dukát, Z. and Mihály, B. (eds): Biológiai inváziók Magyarországon. Özönnövények II. [Biological invasions in Hungary. Invasive plant species II.] A KvVM tanulmánykötetei 10, TermészetBúvár Alapítvány Kiadó, Budapest, pp. 27–35.

Csiszár, Á. and Bartha, D. (2008): Green ash (Fraxinus pennsylvanica Marsh.). – In: Bottai-Dukát, Z. and Balogh, L. (eds): The most important invasive plants in Hungary. Institute of Ecology and Botany. Hungarian Academy of Sciences, Vácrátót, pp. 161–166.

Danihelka, J., Chrtek, Jr., J. and Kaplan, Z. (2012): Checklist of vascular plants of the Czech Republic. – Preslia 84: 647–811.

Dimopoulos, P., Raus, T., Bergmeier, E., Constantinidis, T., Iatrou, G., Kokkini, S., Strid, A. and Tzanoudakis, D. (2013): Vascular plants of Greece. An annotated checklist. Botanic Garden and Botanical Museum Berlin-Dahlem, Berlin & Hellenic Botanical Society, Athens. – Englera 31: 1–372.

Dobay, P. (1999): Čsikófark (Ephedra distachya L.). – Tilia 7: 7–15.
Domokos, J. (1941): Mégegyszer: terem-e Cotoneaster integerrima az Ősmátrában? [Prevalence of Cotoneaster integerrima in Central Hungary.] – A m. kir. Kert. Akad. Közlem. 7: 47–51.

Euro+Med (2006 onwards): Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. http://ww2.bgbm.org/EuroPlusMed/ (accessed January to December 2020).

Facsar, G. (1981): A Rosa gallica L. magyarországi populációi. [Populations of Rosa gallica L. in Hungary.] – Publ. Univ. Horticult. 45: 121–129.

Facsar, G. (1982): Az elliptikus levelű rózsa (Rosa elliptica Tausch) Magyarországon. [Rose of ellipsoidal leaves (Rosa elliptica Tausch) in Hungary.] – Publ. Univ. Horticult. 46: 161–173.

Facsar, G. (1986): A zalai rózsa (Rosa zalana Wiesb.) Magyarországon. [The rose of Zala (Rosa zalana Wiesb.) in Hungary.] – Publ. Univ. Horticult. 50: 215–226.

Facsar, G. and Udvardy, L. (2008): Adventive grapevine species (Vitis-hybrids). – In: Botta-Dukát, Z. and Balogh, L. (eds): The most important invasive plants in Hungary. Institute of Ecology and Botany. Hungarian Academy of Sciences, Vác-rátót, pp. 47–54.

Farjon, A. (2001): World checklist and bibliography of conifers, ed. 2. – The Royal Botanic Gardens, Kew, 309 pp.

Ferrer-Gallego, P. P., Ferrer-Gallego, R., Laguna, E. and Pipia, I. (2019): Proposal to conserve the name Vitis sylvestris C. C. Gmel. (Vitaceae) against V. sylvestris W. Bartram. – Taxon 68(2): 409–410. https://doi.org/10.1002/tax.12043

Forster, E. and Bölöni, J. (1999): Szirti fanyarka (Amelanchier ovalis Medik.). – Tilia 7: 233–242.

Gaál, Gy. (1999): Keleti gyertyán (Carpinus orientalis Mill.). – Tilia 7: 37–42.

Galasso, G., Conti, F., Peruzzi, L., Ardenghi, N. M. G., Banfi, E., Celesti-Grapow, L., Albano, A., Alessandrini, A., Bacchetta, G., Ballelli, S. et al. (2018): An updated checklist of the vascular flora alien to Italy. – Plant Biosyst. 152(3): 556–592. https://doi.org/10.1080/11263504.2018.1441197

Gilli, Ch., Gutermann, W., Billensteiner, A. and Niklfeld, H. (2019): Liste der Gefäßpflanzen Österreichs. Version 1.0. – https://plantbiogeography.univie.ac.at/research/annotated-checklists/

Goeuriaux, R. and Frodin, D. G. (1998): World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Tidoeudraceae). – The Royal Botanic Gardens, Kew, 456 pp.

Green, A. F., Ramsey, T. S. and Ramsey, J. (2011): Phylogeny and biogeography of Ivies (Hedera spp., Araliaceae), a polyphyletic complex of woody vines. – Syst. Bot. 36: 1114–1127. https://doi.org/10.1600/036364411X605100

Green, P. S. (1964): Registration of cultivar names in Ulmus. – Arnoldia 24(6–8): 41–80.

Grimm, G. W. and Denk, T. (2010): The reticulate origin of modern plane trees (Platanus, Platanaceae): a nuclear marker puzzle. – Taxon 59: 134–147. https://doi.org/10.1002/tax.591014

Gutermann, W. (2011): Notulae nomenclatoriae 41–45. – Phyton (Horn) 51(1): 95–102.

Gyulai, F. (2001): Archeobotanika [Archaeobotany]. – Jószöveg Műhely Kiadó, Budapest, 221 pp.
Gyulai, F. and Gyulai, G. (2009): Középkori szőlőkultúra és előzményei (magok és tanulságok). [Medieval viticulture and its antecedents (seeds and lessons learned.)] – In: “ad vinum dersi...”. Pannonhalmi Bencés Főapátság Levéltára & Magyar Bortörténeti Társaság, Budapest, pp. 27–40.

Hegedűs, Á., Kosma, P. and Németh, M. (1966): A szőlő Vitis vinifera L. Magyarország Kultúrfiórája IV/1. – Akadémiai Kiadó, Budapest, 325 pp.

Holub, J. (1971): Fallopia Adans. 1763 instead of Bilderdykia Dum. 1827. – Folia Geobot. Phytotax. 6(2): 171–177. https://doi.org/10.1007/BF02851760

Horváth, F., Dobolyi, Z. K., Morschhauser, T., Lőkös, L., Karas, L. and Szerdahelyi, T. (1995): Flóra adatbázis 1.2. Taxon-lista és attribútum-állomány. [Flora database 1.2. Taxon list and attribute file.] – MTA Ökológiai és Botanikai Kutatóintézet, Vácrátót, 268 pp.

Hulják, P. (1999a): Vörös áfonya (Vaccinium vitis-idaea L.). – Tilia 7: 78–86.

Hulják, P. (1999b): Fekete lonc (Lonicera nigra L.). – Tilia 7: 277–280.

Hulják, P. and Kökény, I. (1999): Fűzlevelű gyöngyvessző (Spiraea salicifolia L.). – Tilia 7: 166–169.

Hulják, P. and Vojtkó, A. (2010): Havasi iszalag (Clematis alpina (L.) Mill.). – Tilia 15: 43–53.

ILDIS (2010 onwards): International Legume Database and Information Service. – http://www.ildis.org/ (accessed May to December 2020).

IPNI (2004 onwards): International Plant Names Index. – The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens. Published on the Internet. http://www.ipni.org (accessed January to December 2020).

Jávorka, S. and Maliga, P. (eds) (1969): A gesztenye Castanea sativa Mill. Magyarország kultúrfiórája VII/16. – Akadémiai Kiadó, Budapest, 123 pp.

Juillerat, P., Bäumler, B., Bornand, C., Gygax, A., Jutzi, M., Möhl, A., Nyffeler, R., Sager, L., Santiago, H. and Eggenberg S. (2017): Checklist 2017 der Gefäßpflanzenflora der Schweiz / de la flore vasculaire de la Suisse / della flora vascolare della Svizzera. – Info Flora: Daten- und Informationszentrum der Schweizer Flora / Centre de données et d’informations sur la flore de Suisse / Centro dei dati e d’informazioni sulla flora della Svizzera, 380 pp. https://doi.org/10.5167/uzh-165877

Juhász, M. (2008): Black cherry (Prunus serotina Ehrh.). – In: Botta-Dukát, Z. and Balogh, L. (eds): The most important invasive plants in Hungary. Institute of Ecology and Botany. Hungarian Academy of Sciences, Vácrátót, pp. 77–84.

Kakutani, N., Minegishi, M., Ikeda-Saito, M., Maier-Stolte, M. and Freitag, H. (2011): A molecular phylogenetic study of the Ephedra distachya / E. sinica complex in Eurasia. – Willdenowia 41: 203–215. https://doi.org/10.3372/wi.41.41201

Kárpáti, Z. (1932): Rhamnus cathartica × saxatilis (Vorläufige Mitteilung). – Ann. Sabar.: Folia Mus. 1: 15.

Kárpáti, Z. (1934): Egy új Rhamnus-hybrid. [A new Rhamnus hybrid.] – Index Horti Bot. Univ. Budapest. 2: 1–10.

Kárpáti, Z. (1949): Hazai Cornus-aink vadontermő és kertészeti változatai. [Wild and horticultural taxa of Cornus species in Hungary.] – Agrártud. Egy. Kert- és Szőlőgazdaságtud. Kar. Közlem. 13: 114–126.

Kárpáti, Z. (1952): A vesszős fagyal (Ligustrum vulgare L.) vadontermő és kerti alakjai. [Wild and garden forms of Ligustrum vulgare L.] – Kert. Kut. Int. Évk. 1: 103–114.

Acta Bot. Hung. 63, 2021
Kárpáti, Z. (1958): Die Variabilität der Manna-Esche (Fraxinus ornus L.). – Acta Bot. Acad. Sci. Hung. 4: 93–112.

Kárpáti, Z. (1967): Taxonomische Betrachtungen am Genus Prunus. – Feddes Repert. 75(1–2): 47–53. https://doi.org/10.1002/fedr.19670750103

Kárpáti, Z. (1970): Eine kritisch-taxonomische Übersicht der in Europa wildwachsenden Eschen-Arten und deren Unterarten. – Feddes Repert. 81(1–5): 171–186. https://doi.org/10.1002/fedr.19700810114

Keller, J. (1999): Babérboroszlán (Daphne laureola L.). – Tilia 7: 97–110.

Kerényi-Nagy, V. (2010): A Történelmi Magyarország vadon termő és kultur-reliktum rózsáinak listája. [The checklist of the Historical Hungary’s wild and kultur-relict roses.] – In: Penksza, K., Surányi, D., and Urbányi, B. (eds): Magyar Biológiai Társaság XXVIII. vándorgyűlés előadásainak összefoglalói. Magyar Biológiai Társaság, Budapest, pp. 65–73.

Kerényi-Nagy, V. (2010a): Piros álttermésű ritka galagonya fajok (Crataegus spp.). [Rare hawthorn species (Crataegus spp.) with red fruit.] – Tilia 15: 75–111. https://doi.org/10.2478/aslh-2014-0002

Kerényi-Nagy, V. (2010b): Ritka rózsafajok és hibridek (Rosa spp.). [Rare rose species and hybrids (Rosa spp.).] – Tilia 15: 191–270.

Kerényi-Nagy, V. (2011a): A szentendrei rózsa (Rosa sancti-andreae) nevezéktani és taxonómiai problémái. [Nomenclatural and taxonomical problems related to the Rosa sancti-andreae.] – Kanitzia 18: 13–28.

Kerényi-Nagy, V. (2011b): A zágrábi rózsa (Rosa zagabianiis Vukotinovics et H. Braun) és a szentendrei rózsa (Rosa sancti-andreae Degen et Trautm.) taxonómiai helyzete és védelme. [The taxonomy status and protection of Rosa zagabianiis Vukotinovics et H. Braun and Rosa sancti-andreae Degen et Trautm.] – In: Penksza, K. (ed.): VII. Kárpát-medencei Biológiai Szimpozium. Magyar Biológiai Társaság, Budapest, pp. 79–84.

Kerényi-Nagy, V. (2012a): A Történelmi Magyarország területén élő őshonos, idegenhonos és kultur-reliktus rózsák kismonográfia. [A small monograph of autochton, allochton and cultur-relict roses of Historical Hungary.] – Nyugat-magyarországi Egyetem Kiadó, Sopron, 430 pp.

Kerényi-Nagy, V. (2012b): A szentendrei rózsa (Rosa ciliato-petala Besser) nevezéktani, taxonómiai és növényföldrajzi helyzete. [Taxonomy, phytogeography and nomenclature of the Szentendre-Rose (Rosa ciliato-petala Besser).] – In: Kézdy, P. (ed.): Természetvédelem és kultúr-reliktus rózsák kismonográfia. [Nature conservation and research in Mt Sás-hegy.] Rosalia 8: 281–292.

Kerényi-Nagy, V. (2012c): Miért nem lehet kultúr-reliktum a szentendrei rózsa (Rosa ciliato-petala Besser)? [Why can not the Rosa ciliato-petala Besser a cultur-relict?] – Kanitzia 19: 59–70.

Kerényi-Nagy, V. (2014): Nomenclature, taxonomy and distribution of Crataegus lindmanii. – Acta Bot. Hung. 56(3–4): 331–341. https://doi.org/10.1556/ABot.56.2014.3–4.9

Kerényi-Nagy, V. (2015): A Kárpát–Pannon és Illír régió vádon termő galagonyáinak monográfiaja. [A monograph of hawthorns of Carpat–Pannon and Illyr regions.] – Szent István Egyetem Mezőgazdaság- és Környezettudományi Kar, Gödöllő, 323 pp.

Kerényi-Nagy, V., Baranec, T. and Bartha, D. (2011): A Lindman-galagonya (Crataegus lindmanii Hrab.-Uhr.) és a szálkás egybibés galagonya (Crataegus curvisepala Lindm.) Magyarországon. – In: Penksza, K. (ed.): VII. Kárpát-medencei Biológiai Szimpozium. Magyar Biológiai Társaság, Budapest, pp. 91–96.

Kerényi-Nagy, V., Deák, T., Kósa, G. and Bartha, D. (2014): Genetic Studies of Selected “Black-Fruit” Hawthorns: Crataegus nigra Waldst. et Kit., C. pentagyna

Acta Bot. Hung. 63, 2021
BARTHA, D. 2021. Waldst. et Kit. and C. chlorosarca Maxim. – *Acta Silv. Lign. Hung.* 10(1): 23–29. [https://doi.org/10.2478/aslh-2014-0002](https://doi.org/10.2478/aslh-2014-0002)

Kerényi-Nagy, V., Nagy, V. A. and Vers, J. (2011): Adatok a soktüskés rózsa (*Rosa polyantha* (Borbás) H. Braun) elterjedéséhez és taxonómijájhoz. [Data to the *Rosa polyantha* (Borbás) H. Braun) localities and taxonomy.] – In: Penksza, K. (ed.): VII. Kárpát-medencei Botanikai és Zoologikai Szingó. Magyar Botanikai és Zoologikai Szövetség, Budapest, pp. 145–152.

Kevey, B. and Bartha, D. (2010a): Jerikói lonc (*Lonicera caprifolium* L.). – *Tilia* 15: 112–138.

Kevey, B. and Bartha, D. (2010b): Szúrós csodabogyó (*Ruscus aculeatus* L.). – *Tilia* 15: 271–301.

Kevey, B. and Bartha, D. (2010c): Ligeti szőlő (*Vitis sylvestris* Gmel.). – *Tilia* 15: 342–369.

Kézdy, P. (1999): Lisztesfonákú berkenyék (*Sorbus* spp.). – *Tilia* 7: 182–192.

Kézdy, P. and Timár, G. (1999): Henye boroszlán (*Daphne cneorum* L.). – *Tilia* 7: 111–125.

Király, G. (1999a): Köszméte (*Ribes uva-crispa* L.). – *Tilia* 7: 126–131.

Király, G. (1999b): Vörös ribiszke (*Ribes rubrum* agg.). – *Tilia* 7: 132–143.

Király, G. (2016): Taxonomical and chorological notes 3. (31) *Carpinus orientalis* Mill. (Betulaceae). – *Studia bot. hung.* 47(2): 348–350. [https://doi.org/10.17110/StudBot.2016.47.2.345](https://doi.org/10.17110/StudBot.2016.47.2.345)

Király, G. and Bölöni, J. (2004): A feketető fűz (*Salix myrsinifolia* Salisb.) újrafelfedezése Magyarországon. [Rediscovery of *Salix myrsinifolia* Salisb. in Hungary.] – *Flora Pannon.* 2(2): 103–117.

Király, G. and Kevey, B. (1999a): Hamvas éger (*Alnus incana* (L.) Moench). – *Tilia* 7: 24–36.

Király, G. and Kevey, B. (1999b): Fekete ribiszke (*Ribes nigrum* L.). – *Tilia* 7: 154–162.

Király, G. and Király, A. (2010): Molyhos nyír (*Betula pubescens* Ehrb.). – *Tilia* 15: 21–42.

Király, G. and Király, A. (2018): Adatok és kiegészítések a magyar flóra ismeretéhez III. [Chorological, ecological and taxonomic notes on the vascular flora of Hungary III.] – *Bot. Közlém.* 105(1): 27–96. [spec. *Myricaria* pp. 49–52.] [https://doi.org/10.17716/BotKozlem.2018.105.1.27](https://doi.org/10.17716/BotKozlem.2018.105.1.27)

Korda, M. (2010a): Csermelyciprus (*Myricaria germanica* (L.) Desv.). – *Tilia* 15: 139–148.

Korda, M. (2010b): Parti fűz (*Salix elaeagnos* Scop.). – *Tilia* 15: 302–315.

Korda, M. (2012): *Ecetszömnörce* (*Rhus typhina* L.). – In: Csiszár, Á. (ed.): Inváziós növényfajok Magyarországon. [Invasive alien plant species in Hungary.] Nyugat-magyarországi Egyetem Kiadó, Sopron, pp. 139–143.

Korda, M. (2014): Újabb adat a magyar adventív flóra ismeretéhez: az *Acer opalus* Mill. subsp. obtusatum (Waldst. et Kit. ex Willd.) Gams 1925 Magyarországon. [New data on the Hungarian adventive flora: *Acer opalus* Mill. subsp. obtusatum (Waldst. et Kit. ex Willd.) Gams 1925 in Hungary.] – *Kitaibelia* 19(2): 229–238.

Kučera, P. (2018): New name for Central Europeean oak formerly labelled as *Quercus dale-champii*. – *Biologia* 73: 313–317. [https://doi.org/10.2478/s11756-018-0048-z](https://doi.org/10.2478/s11756-018-0048-z)

Kuzovkina, Y. A. (2015): *Checklist for cultivars of Salix L.* (willow), 1st version. – International Salix Cultivar Registration Authority, FAO-International Poplar Commission, 163 pp. [https://doi.org/10.21273/HORTSCI.50.11.1608](https://doi.org/10.21273/HORTSCI.50.11.1608)

Lambdon, P. W., Pyšek, P., Basnou, C., Hejda, M., Arianoutsou, M., Essl, F., Jarosík, V., Pergl, J., Winter, M., Anastasiu, P., Andriopoulos, P., Basoz, I., Brandu, G., Celestigrapow, L., Chassot, P., Delipetrou, P., Josefsson, M., Kark, S., Klotz, S., Kokkoris, Y., Kühn, I., Marchante, H., Perglová, I., Pino, J., Vilà, M., Zikos, A., Roy, D. and Hulme, P. E. (2008): Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. – *Preslia* 80: 101–149.

Lavin, M. and Sousa, M. (1995): Phylogenetic systematics and biogeography of the tribe Rosineae (Leguminosae). – *Syst. Bot. Monogr.* 45: 1–165. [https://doi.org/10.2307/25027850](https://doi.org/10.2307/25027850)
Lelkes, A. (1999): Lónyelvű csodabogyó (Ruscus hypoglossum L.). – *Tilia* 7: 281–285.
Lepší, M., Lepší, P., Koutecký, P., Bíla, J. and Vit, P. (2015): Taxonomic revision of Sorbus subgenus Aria occurring in the Czech Republic. – *Preslia* 87: 109–162.
Lewis, G., Schrire, B., Mackinder, B. and Lock, M. (eds) (2005): *Legumes of the World*. – Royal Botanic Gardens, Kew, 577 pp. https://doi.org/10.1017/S0960428606190198
Lim, G. S., Carvalho, M., and Réveil, J. L. (2013): A reconsideration of the typification of Rafinesque generic names allied to *Salix*. – *Rhodora* 115: 170–190. https://doi.org/10.3119/12-11
Manos, P. S. and Stone, D. E. (2001): Evolution, phylogeny, and systematics of the Juglandaceae. – *Ann. Missouri Bot. Gard.* 88(2): 231–239.
Manton, I. (1958): The concept of aggregate species. – *Uppsala Univ. Årsskr.* 1958/6: 104–112.
Marhold, K. and Hindák, F. (eds) (1998): *Zoznam nižších a vyšších rastlín Slovenska*. [Checklist of non-vascular and vascular plants of Slovakia.] – VEDA, Bratislava, 687 pp.
Mátyás, V. (1970a): Taxa nova Quercuum Hungariae. – *Acta Bot. Hung.* 16: 329–361.
Mátyás, V. (1970b): Einführung in die Kenntnis der Eichenarten Ungarns. [Contributions to the knowledge of oaks in Hungary.] – *Erd. Kut.* 66(2): 61–68.
Mátyás, V. (1970c): A cser alakváltozatossága Magyarországon. [The form variability of Turkey oak in Hungary.] – *Erd. Kut.* 66(1): 179–211.
Mátyás, V. (1971a): A magyarországi kocsánytalan tölgyfajok alakkörének kritikai elemzése. [A critical analysis of intraspecific taxa of sessile oak in Hungary.] – *Erd. Kut.* 67(1): 43–96.
Mátyás, V. (1971b): Short taxonomic review of the oaks of Hungary. – *Erd. Kut.* 67(2): 55–68.
Mátyás, V. (1972): A szlavón tölgy (Quercus robur ssp. slavonica (Gáy.) Máty.) erdészeti jelentősége Magyarországon. [Significance of the Slavonian oak (Quercus robur ssp. slavonica (Gáy.) Máty.) in forestry in Hungary.] – *Erd. Kut.* 68(1): 63–77.
Mátyás, V. (1973a): Magyarország kocsányos tölgyeinek alakjai. [Pedunculate oak forms in Hungary.] – *Erd. Kut.* 69(1): 223–249.
Mátyás, V. (1973b): The Italian pubescent oak (Quercus virgiliana Ten. 1836) in the Carpathian basin and its outer fringes. – *Erd. Kut.* 69(2): 47–91.
Mátyás, V. (1975): Magyarország molyhos tölgyei. [Pubescent oaks of Hungary.] – *Erd. Kut.* 71(1): 125–147.
McAllister, H. A. and Marshall, R. H. (2017): *Hedera: the complete guide*. – The Royal Horticultural Society, London, 401 pp.
McVaugh, R. (1951): A revision of the North American black cherries (Prunus serotina Ehrh., and relatives). – *Brittonia* 7(4): 279–315. https://doi.org/10.2307/2804698
Mikoláš, V., Sennikov, A., Beech, E. and Rivers, M. C. (2017): Sorbus thaiszii. – The IUCN Red List of Threatened Species 2017: e.T95414735A95414738.
Mirek, Z., Piękoś-Mirkowa, H., Zając, A. and Zając, M. (2002): *Flowering plants and pteridophytes of Poland. A checklist*. – In: Mirek, Z. (ed.): Biodiversity of Poland 1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 442 pp.
Molnár, V. A., Lőki, V., Máthé, A., Molnár, A., Takács, A., Nagy, T., Lovas-Kiss, Á., Sramkó, G. and Tökőyi, J. (2017): The occurrence of Spiraea crenata and other rare steppe plants in Pannonian graveyards. – *Biologia* 72: 500–509. https://doi.org/10.1515/biolog-2017-0060
Mosyakin, S. L. and Fedoronchuk, M. M. (1999): *Vascular plants of Ukraine. A nomenclatural checklist*. – National Academy of Sciences of Ukraine M. G. Kholodny Institute of Botany, Kiev, 345 pp. https://doi.org/10.13140/2.1.2985.0409
Nagy, J. Gy., Zsinta, B., Verbélyi, V., Zorkóczy, O. K. and Tyler, T. (2017): A Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh. Magyarországon. [Vaccinium mi-
Acta Bot. Hung. 63, 2021

BARTHA, D. crocarpum (Turcz. ex Rupr.) Schmalh. in Hungary. – Kitaibel.ia 22(1): 71–76. https://doi.org/10.17542/kit.22.71

Nagy, L. (1999): Kövi benge (Rhamnus saxatilis Jacq.). – Til.ia 7: 261–268.

Nelson, E. C. (1980): What is the correct name for the Dunkeld Hybrid Larch (Larix decidua × L. leptolepis)? – Irish Forestry 37: 112–118.

Németh, Cs. (2006): Híbrid eredetű, bennszülött Sorbus taxonok elterjedése a Vértesben és környékén. [Distribution of hybridigenous, endemic Sorbus taxa in Vértes Mountains, Central Hungary.] – Flora Pann. 4: 17–33.

Németh, Cs. (2007): Új berkenye kisfaj a magyar flórában: Sorbus tobani Németh. [Sorbus tobani Németh, a new hybridogenous species of the genus Sorbus L. emend. Cr. from the Bakony Mountains, Hungary.] – Flora Pann. 5: 175–186.

Németh, Cs. (2009): Új berkenye (Sorbus) kisfajok a Vértesből. [Three new Sorbus microspecies from the Vértes Mountains (W-Hungary).] – Kitaibelia 14(1): 89–103.

Németh, Cs. (2010): Taxonomic revision, typification and validation of Sorbus (Rosaceae) taxa in the herbarium Carpato-Pannonicum in Budapest I. – Acta Bot. Hung. 52(3–4): 377–397. https://doi.org/10.1556/ABot.52.2010.3-4.14

Németh, Cs. (2012): Two new Sorbus (Rosaceae) species from the Bakony Mts, Hungary. – Acta Bot. Hung. 54(1–2): 131–144. https://doi.org/10.1556/ABot.54.2012.1-2.15

Németh, Cs. (2013): Híbrid eredetű, bennszülött Sorbus aria s. l. × Sorbus terminalis taxonok (nothosubgenus Tormaria, S. latifolia agg.) elterjedése a Bakonyban. [Distribution of hybridigenous endemic Sorbus aria s. l. × Sorbus terminalis taxa (nothosubgenus Tormaria, S. latifolia agg.) in the Bakony Mts, Hungary.] – Kitaibel.ia 18(1–2): 89–104.

Németh, Cs. (2015a): Sorbus pelsoensis (Sorbus subgenus Tormaria), a new species from the surroundings of Lake Balaton, Hungary. – Studia bot. hung. 46(1): 49–60. https://doi.org/10.17110/StudBot.2015.46.1.49

Németh, Cs. (2015b): Taxonomical revision of Sorbus pseudosemiincisa (Rosaceae), a stenoendemic whitebeam from the Vértes Mts (Hungary), with the description of a new species, Sorbus pyricarpa. – Studia bot. hung. 46(2): 157–174. https://doi.org/10.17110/StudBot.2015.46.2.157

Németh, Cs., Barabits, E. and Bílá, J. (2016): New Sorbus subg. Tormaria (S. latifolia agg.) species from southwestern part of the Transdanubian Mountain Range (Keszthely Mts, Hungary). – Studia bot. hung. 47(2): 297–318. https://doi.org/10.17110/StudBot.2016.47.2.297

Niketić, M. and Tomović, G. (2018): An annotated checklist of vascular flora of Serbia 1. – Serbian Academy of Sciences and Arts, Belgrade, pp. 101–180. https://doi.org/10.5937/bnhmb1811101N

Nikolić, T. (ed.) (1994, 1997, 2000): Flora Croatica. Index Flora Croaticae, Pars 1–3. – Nat. Croat. 3(Suppl. 2): 1–116, 6(Suppl. 1): 1–232, 9(Suppl. 1): 1–324.

Oprea, A. (2005): Lista critică a plantelor vasculare din România. – Univ. “Alexandru Ioan Cuza”, Iaşi, 668 pp.

Pennington, R. T., Stiriton, C. H. and Schrire, B. D. (2005): Tribe Sophoreae. – In: Lewis, G., Schrire, B. D., Mackinder, B. and Lock, M. (eds): Legumes of the World. Royal Botanic Gardens, Kew, pp. 227–249.

Pénzes, A. (1941): Egy új Lycium-fajról (Lycium diószegii Pénzes nova spec.). – Borbásia 3(8–10): 136–139.

Pénzes, A. (1950): Kökény-szilva (Prunus) tanulmányok. (Prunus sect. Prunophora). [Study on the genus Prunus.] – Agrár tud. Egy. Kert. Kar. Közlö. 13: 66–74.

Pénzes, A. (1958): Data to the ecology and taxonomy of the Cotinus genus. – Acta Bot. Sinica 7(3): 165–169.

Acta Bot. Hung. 63, 2021
Pigott, C. D., Sell, P. (1995): Nomenclature of the European species of Tilia. I. Tilia europaea L. – Kew Bull. 50: 135–139. https://doi.org/10.2307/4114618

Pilotti, M., Brunetti, A., Tizzani, L. and Marani, O. (2009): Platanus acerifolia genotypes surviving in inoculation with Ceratocystis platanii (the agent of canker stain): first screening and molecular characterization. – Euphytica 169: 1–17. https://doi.org/10.1007/s10681-009-9884-9

POWO (2021): Plants of the World Online. – Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ (accessed January to December 2020).

Priszer, Sz. (1985): Catalogus cormophytorum Hungariae. – In: Priszer, Sz. (ed.): Synopsis systematico-geobotanica florae vegetationisque Hungariae VII. Akadémiai Kiadó, Budapest, pp. 120–254.

Priszer, Sz. (2004): A lícium (Lycium barbarum L., syn.: L. halimifolium Mill.) magyarországi története. [History of spiny boxthorn in Hungary.] – Kitabelia 9(1): 25–30.

Priszer, Sz. (ed) (1990): A húsos som Cornus mas L. Magyarország kultúrflórája VII/16. – Akadémiai Kiadó, Budapest, 114 pp.

Priszer, Sz. and Borhidi, A. (1967): A Mecseki flórajáras (Sopianicum) flórájhoz I. [To the flora of the Mecsek (Sopianicum, S-Hungary).] – Bot. Közlem. 54(3): 149–164. (Ruscus spec. pp. 156–157.

Pyšek, P., Danihelka, J., Sádlo, J., Chrtek, J. Jr., Chytrý, M., Jarošík, V., Kaplan, Z., Krahulec, F., Moravcová, L., Pergl, J., Štajerová, K. and Tichý, L. (2012): Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. – Preslia 84: 155–255.

Qian, G.-Z., Liu, L.-F. and Geng-Guo Tang, G.-G. (2010): Proposal to conserve the name Malus domestica against M. pumila, M. communis, M. frutescens, and Pyrus dioica (Rosaceae). – Taxon 59(2): 650–652. https://doi.org/10.1002/tax.592038

Qin, X. K. (2009): A new system of Ligustrum (Oleaceae). – Acta Bot. Yunnan. 31: 97–116. https://doi.org/10.3724 SP.J.1143.2009.08131

Richens, R. H. (1977): New designations in Ulmus minor Mill. – Taxon 26(5/6): 583–584.

Robinson, J. P., Harris, S. A. and Juniper, B. E. (2001): Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. – Plant Syst. Evol. 226(1–2): 35–58. https://doi.org/10.1007/s006060170072

Schmidt, P. A. (2017): Wild species and hybrids of Crataegus L. (Rosaceae) in W-, N- and Middle Europe. – Belg. Dendrol. Belge pp. 67–82.

Sennikov, A. N. and Kurtto, A. (2017): A phylogenetic checklist of Sorbus s. l. (Rosaceae) in Europe. – Mem. Soc. Fauna Flora Fennica 93: 1–78.

Sennikov, A. N. and Somlyay, L. (2011): Atlas Flora Europaeae notes 17: Typification of Cotoneaster tomentosus (Rosaceae) and its synonyms. – Taxon 60(2): 579–584. https://doi.org/10.1002/tax.60206

Skvortsov, A. K. (2010): Taxonomical synopsis of the genus Populus L. in East Europe, North and Central Asia. – Byull. Glavn. Bot. Sada 196: 62–73.

Somlyay, L. and Sennikov, A. N. (2014): Atlas Flora Europaeae Notes 23. The typification – revised taxonomic circumscription of Sorbus bakonyensis (Rosaceae), with a description of Sorbus uvvardyana, a new apomictic species endemic to Hungary. – Phytotaxa 164(4): 265–275. https://doi.org/10.11646/phytotaxa.164.4.5

Somlyay, L. and Sennikov, A. N. (2015): Atlas Flora Europaeae Notes 24. Taxonomic interpretation – typification of Sorbus pannonica (Rosaceae), a presumed intermediate between S. aria – S. graeca from Hungary. – Ann. Bot. Fenn. 52(3–4): 274–287. https://doi.org/10.5735/085.052.0322
Somlyay, L. and Sennikov, A. N. (2016): Atlas Florae Europaeae Notes 25. Taxonomic circumscription – nomenclature of Sorbus danubialis (Rosaceae). – Nord. J. Bot. 34: 75–86. https://doi.org/10.1111/njb.00914

Somlyay, L., Lisztes-Szabó, Zs. and Sennikov, A. N. (2016a): Atlas Florae Europaeae Notes 28. Disentangling the taxonomic circumscription of Sorbus subdanubialis (Rosaceae). – Ann. Bot. Fenn. 53: 345–360. https://doi.org/10.5735/085.053.0607

Somlyay, L., Lisztes-Szabó, Zs. and Sennikov, A. N. (2016b): Atlas Florae Europaeae Notes 29. Two new species of Sorbus (Rosaceae) endemic to Hungary, previously confused with S. subdanubialis. – Ann. Bot. Fenn. 53: 361–372. https://doi.org/10.5735/085.053.0608

Somlyay, L., Lisztes-Szabó, Zs., Vojtkó, A. and Sennikov, A. N. (2017): Atlas Florae Europaeae notes 31. Sorbus javorkana (Rosaceae), a redescribed apomictic species from the Gömör–Torna (Gemer–Turňa) Karst in Hungary – Slovakia. – Ann. Bot. Fenn. 54: 229–237. https://doi.org/10.5735/085.054.0605

Soó, R. (1933): Referate. – Bot. Centralbl. 23: 119–120.

Soó, R. (1964–1973): Synopsis systematico-geobotanica florae vegetationisque Hungariae I–V. – Akadémiai Kiadó, Budapest, 589 pp., 655 pp., 506 pp., 614 pp., 724 pp.

Soó, R. (1980): Conspectus florae vegetationisque Hungariae. – In: Soó, R.: Synopsis systematico-geobotanica florae vegetationisque Hungariae VI. Akadémiai Kiadó, Budapest, pp. 261–524.

Soó, R. and Simon, T. (1960): Bemerkungen über Südosteuropäischen Fraxinus- und Dianthus-Arten. – Acta Bot. Acad. Sci. Hung. 6(1–2): 143–153.

Sousa, S. M. and Rudd, V. E. (1993): Revision del genero Styphnolobium. – Ann. Missouri Bot. Gard. 80: 270–283. https://doi.org/10.2307/2399827

Stace, C. A., Preston, C. D. and Pearman, D. A. (2016): Hybrid flora of the British Isles. – Botanical Society of Britain and Ireland, Bristol, 501 pp. https://doi.org/10.1111/boj.12455

Stevens, P. F. (2001 onwards): Angiosperm Phylogeny Website. – Version 11, 2011 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb (accessed January to December 2020).

Surányi, D. (2014): A birs elterjedése Magyarországon. [Dissemination of quince in Hungary.] – Tájökol. Lapok 12(1): 221–243.

Surányi, D. (ed.) (2011): A sárgabarack Armeniaca vulgaris Lam. Magyarország kultúrflórája II/9. – Szent István Egyetemi Kiadó, Gödöllő, 303 pp.

Surányi, D. (ed.) (2019): A házi szilva Prunus domestica L. és rokonfajai. Magyarország kultúrflórája II/13. – Szent István Egyetemi Kiadó, Gödöllő, 416 pp.

Szász, S. (2006): Vadszőlőfajok (Parthenocissus spp.). – In: Botta-Dukát, Z. and Mihály, B. (eds): Biológiai inváziók Magyarországon. Özönövények II. [Biological invasions in Hungary. Invasive plant species II.] A KvVM tanulmánykötetei 10, TermészetBúvár Alapítvány Kiadó, Budapest, pp. 131–142.

Szigetvári, Cs. and Tóth, T. (2008): False indigo (Amorpha fruticosa L.). – In: Botta-Dukát, Z. and Balogh, L. (eds): The most important invasive plants in Hungary. Institute of Ecology and Botany. Hungarian Academy of Sciences, Vácrátót, pp. 55–61.

Szmorad, F. (2010): Fürtös bodza (Sambucus racemosa L.). – Tilia 15: 316–341.

Szmorad, F. and Barabás, S. (1999): Tőzegáfonya (Vaccinium oxyccocos L.). – Tilia 7: 69–77.

Tavaud, M., Zanetto, A., David, J. L., Laigret, F. and Dirlewanger, E. (2004): Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus × gondouinii and Prunus cerasus). – Heredity 93: 631–638.

Terpó, A. (1962a): A Ribes vulgare Lam. magyarországi előfordulásáról. [On the occurrence of Ribes vulgare Lam. in Hungary.] – Kert. Szől. Főisk. Évk. 26: 123–143.
Terpó, A. (1962b): Adatok a hazai vadontermő Vitis-ek ismeretéhez. [Data for the knowledge of the wild Vitis taxa in Hungary.] – Kert. Szől. Főisk. Évk. 26: 147–161.

Terpó, A. (1968): A sajmeggy (Cerasus mahaleb (L.) Mill.) taxonómiai problémái és a gyakorlat. [Taxonomic problems of Cerasus mahaleb (L.) Mill. and the practice.] – Szőlő- és Gyümölcstermesztés 4: 103–131.

Terpó, A. (1988): A pannóniai területek természetes előfordulású szőlő (Vitis) populációinak eredete, taxonómiaja és gyakorlati jelentősége. [Origin, taxonomy and practical significance of naturally occurring grape (Vitis) populations in the Pannonian areas.] – MTA Doktori Örökbekezdés tézisei [HAS Doctoral Theses], Budapest, 22 pp.

Terpó, A. (1992): Pyrus taxa in Hungary and their practical importance. – Thaiszia 2: 41–57.

Teski, A., Kerényi-Nagy, V., Penksza, K., Penksza, P. and Wichmann, B. (2017): A Rosa × belgradensis Pancic származásának igazolása morfometriai módszerrel. [Verification of the origin of Rosa × belgradensis Pancic by morphometric method.] – In: Kerényi-Nagy, V. et al. (eds): II. Rózsa- és galagonyakutatás a Kárpát-medencében. Konferencia-könyt. [2nd Rose- and hawthorn research in Carpathian Basin. Proceedings-book.] Szent István Egyetem Egyetemi Kiadó, Gödöllő, pp. 282–283.

Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kubitzki, M., Li, D.-Z., Marhold, K., May, T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J. and Smith, G. F. (eds) (2018): International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. – Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. https://doi.org/10.12705/Code.2018.

Ufimov, R. A. and Dickinson, T. A. (2020): Infrafamilial nomenclature adjustments in Cra-tesegus L. (Maleae, Rosaceae). – Phytologia 102(3): 177–199.
Varga, I., Poczaï, P., Tiborcz, V., Aranyi, R. N., Baltazar, T., Bartha, D., Pejchal, M. and Hyvönen, J. (2014): Changes in the distribution of the European mistletoe (Viscum album) in Hungary. – Folia Geobot. 49: 559–577. https://doi.org/10.1007/s12224-014-9193-5

Vidéki, R. and Virók, V. (eds) (2004): Magyarország edényes flórájának katalógusa. [Catalog of the vascular flora of Hungary] – Saját kiadás [Own edition], Sopron–Aggtelek, 185 pp.

Vigouroux, A., Besnard, G., Sossey-Alaoui, K., Tersac, M. and Bervillé, A. (1997): Hybrid origin of Platanus acerifolia confirmed and the one of P. densicoma revealed with genetic markers: consequences. – Acta Bot. Gallica 144(2): 243–251. https://doi.org/10.1051/12538078.1997.10515772

Wallander, E. (2008): Systematics of Fraxinus (Oleaceae) and evolution of Dioecy. – Plant Syst. Evol. 273: 25–49. https://doi.org/10.1007/s00606-008-0005-3

Wannan, B. S. (2006): Analysis of generic relationships in Anacardiaceae. – Blumea 51: 165–195. https://doi.org/10.3767/000651906X6224277

WCSP (2021): World checklist of selected plant families. – Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://wcsp.science.kew.org/ (accessed January to December 2020).

Wiersema, J. H., Turland, N. J., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J. and Smith, G. F. (eds) (2018+ continuously updated): International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017: Appendices I–VII. – http://naturalhistory2.si.edu/botany/codes-proposals/ [accessed January to December 2020]

Wisskirchen, R. and Haeupler, H. (1998): Standardliste der Farn- und Blütenpflanzen Deutschlands. – Verlag Eugen Ulmer, Stuttgart, 765 pp. https://doi.org/10.1002/fedr.19991100520

Yang, W. J., Li, L. Q. and Xie, L. (2009): A revision of Clematis sect. Atragene (Ranunculaceae). – J. Syst. Evol. 47: 552–580. https://doi.org/10.1111/j.1759-6831.2009.00057.x

Zagyvai, G. (2012): Közönséges orgona (Syringa vulgaris L.). – In: Csiszár, Á. (ed.): Inváziós növényfajok Magyarországon. [Invasive alien plant species in Hungary.] Nyugat-magyarországi Egyetem Kiadó, Sopron, pp. 201–205.

Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated. (SID_1)
**Appendix 1.** Checklist of dendrotaxa of Hungary (life form (LF): T = tree, S = shrub, DS = dwarf shrub, L = liana, E = epiphyte, T-S and S-L = transitional types; indigenat: N = native, A = alien, C = cryptogenic; invasion status: Inv = invasive, Nat = naturalised, Cas = casual; Residence time status: Arch = archaeophyte, Neo = neophyte; Cult = cultivated; Hung.? = records from Hungary need confirmation; endemity: End = endemic, SubE = subendemic; origin of hybrids: Ntl = natural, Art = artificial; symbols: ? = questionable, † = extinct or possibly extinct, × = hybrid formula; nomenclatural abbreviations see in the text)

| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|----------------------------------------|----|--------|------------|
| Abies Mill. (Pinaceae) | | | | Farjon (2001) |
| Abies alba Mill. | Syn.: *A. pectinata* (Lam.) DC. nom. illeg. | T | C / Cult / Cas | |
| | Abies cephalonica Loudon | T | Cult / Cas / Neo | |
| Abies nordmanniana (Steven) Spach | Bas.: *Pinus nordmanniana* Steven / Syn.: *A. leioclada* Steven ex Gordon | T | Cult / Cas / Neo | |
| subsp. nordmanniana | | | | |
| Acer L. (Sapindaceae) | ? Acer acuminatilobum J. Papp | T | C / End? | Bartha et al. (2011) |
| Acer campestre L. | Syn.: *A. bedoei* Borbás (Ortho.: *A. bedői* Borbás) | T | N | |
| Acer negundo L. subsp. negundo | Syn.: *A. fraxinifolium* Nutt., *Negundo aceroides* Moench | T | Cult / Inv / Neo | Udvardy (2008a) |
| Acer opalus Mill. subsp. obtusatum (Waldst. et Kit. ex Wild.) Gams | Bas.: *A. obtusatum* Waldst. et Kit. ex Wild.; Syn.: *A. aetnense* hort. ex K. Koch, *A. neapolitanum* Ten. | T | Cas / Neo | Korda (2014) |
| Acer platanoides L. subsp. platanoides | | T | N / Cult / Cas | |
| Acer pseudoplatanus L. | | T | N / Cult / Cas | |
| Acer saccharinum L. | Syn.: *A. dasycarpum* Ehrh. | T | Cult / Inv / Neo | |
| Acer tataricum L. | | T | | |
| subsp. tatricum | | N / Nat | |
| subsp. ginnala (Maxim.) Wesm. | Bas.: *A. ginnala* Maxim. | T | Cult / Neo | |
| Aesculus L. (Sapindaceae) | | | | |
| Aesculus hippocastanum L. | | T | Cult / Neo | |
| Aesculus ×carnea Zeyh. | Syn.: *Ae. ×rubicunda* Loisel. / *Ae. hippocastanum* L. × *Ae. parviflora* L. | T | Cult / Neo / Art | |
| Taxon                  | Basionymy / Synonymy / Hybrid parentage                                                                 | LF | Status     | References                        |
|-----------------------|----------------------------------------------------------------------------------------------------------|----|------------|-----------------------------------|
| Ailanthus Desf. nom. cons., gen. masc. cons. (Sima-raubaceae) |                                                                                                           |    |            |                                   |
| Ailanthus altissimus (Mill.) Swingle | Bas.: Toxicodendron altissimum Mill. / Syn.: A. glandulosus Desf., A. peregrinus (Buc'hoz) F. A. Barkley | T  | Cult / Inv / Neo | Udvardy (2008)                    |
| Alnus Mill. (Betulaceae) |                                                                                                           |    |            |                                   |
| Alnus alnobetula (Ehrh.) K. Koch | Bas.: Betula alnobetula Ehrh. / Syn.: Duschekia alnobetula (Ehrh.) Pouzar Syn.: A. viridis (Chaix) DC., D. viridis (Chaix) Opiz | S  | N          | Govaerts and Frodin (1998)        |
| subsp. alnobetula     |                                                                                                           |    |            |                                   |
| Alnus glutinosa (L.) Gaertn. subsp. glutinosa | Bas.: Betula alnus L. var. glutinosa L. | T  | N          | Bartha and Markovics (2010)       |
| Alnus incana (L.) Moench subsp. incana | Bas.: Betula alnus L. var. incana L. | T  | N / Cas    | Király and Kevey (1999a)          |
| Sine nomine           |                                                                                                           |    |            |                                   |
| A. incana (L.) Moench subsp. incana × A. alnobetula (Ehrh.) K. Koch subsp. alnobetula | T–S | N†? / Ntl |                                   |
| Alnus ×pseudoglutinosa Dostál | A. glutinosa (L.) Gaertn. subsp. glutinosa × A. alnobetula (Ehrh.) K. Koch subsp. alnobetula | T–S | N†? / Ntl |                                   |
| Alnus ×pubescens Tausch | Syn.: A. ×hybrida A. Braun ex Rchb., A. ×montana Brügger / A. glutinosa (L.) Gaertn. subsp. glutinosa × A. incana (L.) Moench subsp. incana | T  | N / Ntl    |                                   |
| Amelanchier Medik. (Rosaceae) |                                                                                                           |    |            |                                   |
| Amelanchier ovalis Medik. subsp. ovalis | Syn.: Mespilus amelanchier L. | S  | N          | Forster and Bölöni (1999)         |
| Amorpha L. (Fabaceae) |                                                                                                           |    |            |                                   |
| Amorpha fruticosa L. | Syn.: Mespilus amelanchier L. | S  | Inv / Neo  | Lewis et al. (2005)               |
| Andromeda L. (Ericaceae) |                                                                                                           |    |            |                                   |
| Andromeda polifolia L. subsp. polifolia |                                                                                                           |    |            |                                   |
| Aria (Pers.) Host (Rosaceae) |                                                                                                           |    |            |                                   |
| Aria collina (M. Lepši, P. Lepši et N. Meyer) Sennikov et Kurtto | Bas.: Sorbus collina M. Lepši, P. Lepši et N. Meyer / Syn.: A. graeca (Spach) M. Roem. × S. graeca (Spach) Schauer, S. cretica (LindL.) Frisch in Kern | T  | N          | Kézdy (1999), Lepši et al. (2015) |
| Taxon                             | Basionymy / Synonymy / Hybrid parentage                                                                 | LF | Status | References                     |
|----------------------------------|----------------------------------------------------------------------------------------------------------|----|--------|--------------------------------|
| *Aria danubialis* (Jáv.) Sennikov et Kurtto | Bas.: *Sorbus cretica* (Lindl.) Fritsch in Kerner f. *danubialis* Jáv. / Syn.: *S. danubialis* (Jáv.) Prodan, *S. javorkae* (Soó) Kárpáti, *S. pseudodanubialis* Kárpáti in Németh, *S. sooi* (Soó) Soó in Jávorka et Soó | T  | N      | Kézdy (1999), Németh (2010), Somlyay and Sennikov (2016), Somlyay *et al.* (2016a), Somlyay *et al.* (2017) |
| *Aria edulis* (Willd.) M. Roem.   | Bas.: *Pyrus edulis* Wild. / Syn.: *Sorbus aria* (L.) Crantz, *S. budaiana* Kárpáti in Németh, *S. huljakii* Kárpáti in Németh | T  | N      | Kézdy (1999), Németh (2010) |
| *Aria javorkana* (Somlyay, Sennikov et Vojtkó) Sennikov et Kurtto | Bas.: *Sorbus javorkana* Somlyay, Sennikov et Vojtkó | T  | N / SubE | Somlyay and Sennikov (2016), Somlyay *et al.* (2017) |
| *Aria keszthelyensis* (Somlyay et Sennikov) Sennikov et Kurtto | Bas.: *Sorbus keszthelyensis* Somlyay et Sennikov | T  | N / End | Somlyay *et al.* (2016a, b) |
| *Aria pannonica* (Kárpáti) Sennikov et Kurtto | Bas.: *Sorbus pannonica* Kárpáti | T  | N / End | Kézdy (1999), Somlyay and Sennikov (2015) |
| *Aria subdanubialis* (Soó) Sennikov et Kurtto | Bas.: *Sorbus aria* (L.) Crantz f. *subdanubialis* Soó / Syn.: *S. subdanubialis* (Soó) Kárpáti | T  | N / SubE | Somlyay *et al.* (2016a) |
| *Aria ujheylvii* (Somlyay et Sennikov) Sennikov et Kurtto | Bas.: *Sorbus ujheylvii* Somlyay et Sennikov | T  | N / End | Somlyay *et al.* (2016a, b) |
| *Aria ulmifolia* (Kárpáti) Sennikov et Kurtto | Bas.: *Sorbus ulmifolia* Kárpáti in Németh | T  | N / End | Németh (2010), Somlyay *et al.* (2016a) |
| *Aria vajdae* (Boros) Sennikov et Kurtto | Bas.: *Sorbus vajdae* Boros | T  | N / End | Németh (2010) |
| *Aria zolyomii* (Soó) Sennikov et Kurtto | Bas.: *Sorbus aria* (L.) Crantz f. *zolyomii* Soó / Syn.: *S. zolyomii* (Soó) Kárpáti | T  | N / End? vel SubE? |
| *Berberis* L. (Berberidaceae)   | Syn.: *Mahonia aquifolium* (Pursh) Nutt. | S  | Cult / Nat / Neo | Terpó and Grusz (1976) |
| *Berberis aquifolium* Pursh       | Syn.: *Mahonia pinnata* Lag. (Lag.) Fedde | S  | Cult / Cas / Neo | Terpó and Grusz (1976) |
| *Berberis repens* Lindl.         | Syn.: *B. aquifolium* Pursh subsp. *repens* (Lindl.) Brayshaw, *Mahonia repens* (Lindl.) G. Don | S  | Cult / Cas / Neo | Terpó and Grusz (1976) |
| *Berberis vulgaris* L. subsp. *vulgaris* |                                              | S  | N      | Ahrendt (1961) |
| *Berberis ×decumbens* (Stace) Verloove et Lambinon | Bas.: *Mahonia ×decumbens* Stace / *B. aquifolium* Pursh × *B. repens* Lindl. | S  | Nat / Neo / Ntl | |
| *Berberis ×wagneri* Jouin         | Syn.: *Mahonia ×wagneri* (Jouin) Rehder / *B. aquifolium* Pursh × *B. pinnata* Lag. | S  | Cas / Neo / Ntl | |
| Taxon                                      | Basionymy / Synonymy / Hybrid parentage | LF  | Status | References                                      |
|-------------------------------------------|-----------------------------------------|-----|--------|------------------------------------------------|
| *Betula* L. (Betulaceae)                  |                                         |     |        | Govaerts and Frodin (1998), Ashburner and McAllister (2013) |
| *Betula pendula* Roth subsp. *pendula*    | Syn.: *B. verrucosa* Ehrh.              | T   | N / Cult |                                               |
| *Betula pubescens* Ehrh.                  | Syn.: *B. alba* L. subsp. *pubescens* (Ehrh.) Regel | T   | N     | Király and Király (2010)                      |
| *Betula ×aurata* Borkh.                   | Syn.: *B. ×rhombifolia* Tausch. / *B. pendula* Roth subsp. *pendula* × *B. pubescens* Ehrh. | T   | N / Ntl |                                               |
| *Broussonetia* L’Hér. ex Vent. nom. cons. (Moraceae) |                                         |     |        |                                               |
| *Broussonetia papyrifera* (L.) L’Hér. ex Vent. | Syn.: *Morus papyrifera* L.            | T   | Cult / Cas / Neo |                                               |
| *Buddleja* L. (Scrophulariaceae)          |                                         |     |        |                                               |
| *Buddleja davidii* Franch.                | Syn.: *B. variabilis* Hemsl.            | S   | Cult / Cas / Neo | Balogh (2012)                                  |
| *Calluna* Salisb. (Ericaceae)             |                                         |     |        |                                               |
| *Calluna vulgaris* (L.) Hull.             | Bas.: *Erica vulgaris* L.               | DS  | N     |                                               |
| *Carpinus* L. (Betulaceae)                |                                         |     |        |                                               |
| *Carpinus betulus* L.                     |                                         | T   | N     |                                               |
| *Carpinus orientalis* Mill. subsp. *orientalis* | Syn.: *C. duinensis* Scop.           | T   | N     | Gaál (1999), Király (2016)                     |
| *Castanea* Mill. (Fagaceae)               |                                         |     |        | Govaerts and Frodin (1998)                     |
| *Castanea sativa* Mill.                   | Syn.: *C. resea* Gaertn., *C. vulgaris* Lam. nom. inval., *Fagus castanea* L. nom. inval. | T   | C / Cult | Jávorka and Maliga (1969), Csapody (2007)       |
| *Catalpa* Scop. (Bignoniaceae)            |                                         |     |        |                                               |
| *Catalpa bignonioides* Walter             | Syn.: *Bignonia catalpa* L.             | T   | Cult / Neo |                                               |
| *Cedrus* Trew nom. cons. (Pinaceae)       |                                         |     |        | Farjon (2001)                                  |
| *Cedrus atlantica* (Endl.) G. Manetti ex Carrière | Bas.: *Pinus atlantica* Endl.       | T   | Cult / Neo |                                               |
| *Celtis* L. (Cannabaceae)                 |                                         |     |        |                                               |
| *Celtis australis* L.                     |                                         | T   | Cult / Neo | Bartha and Csiszár (2008a)                     |
| *Celtis occidentalis* L.                  |                                         | T   | Inv / Neo |                                               |
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|----------------------------------------|----|--------|------------|
| *Chamaecyparis* Spach (Cupressaceae) | Bas.: *Cupressus lawsoniana* A. Murray bis | T | Cult / Cas / Neo | Yang *et al.* (2009) |
| *Chamaecyparis lawsoniana* (A. Murray bis) Parl. | Bas.: *Cupressus lawsoniana* A. Murray bis | T | Cult / Cas / Neo | Yang *et al.* (2009) |
| *Clematis* L. (Ranunculaceae) | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Clematis alpina* (L.) Mill. subsp. *alpina* | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Clematis vitalba* L. | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Colutea* L. (Fabaceae) | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Colutea arborescens* L. subsp. *arborescens* | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Corylus* L. (Betulaceae) | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Corylus avellana* L. | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Corylus colurna* L. | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Cotinus* Mill. (Anacardiaceae) | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Cotinus coggygria* Scop. | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Cotoneaster* Medik. nom. cons. (Rosaceae) | Bas.: *Atragene alpina* L. | L | N | Hulják and Vojtkó (2010) |
| *Cotoneaster divaricatus* Rehder et E. H. Wilson | Bas.: *Pyrus divaricata* (Rehder et E. H. Wilson) M. F. Fay et Christenh. | S | Cult / Cas / Neo | Dickoré and Kasperek (2010) |
| *Cotoneaster horizontalis* Decne. | Bas.: *Pyrus divaricata* (Rehder et E. H. Wilson) M. F. Fay et Christenh. | S | Cult / Cas / Neo | Dickoré and Kasperek (2010) |

Unauthenticated | Downloaded 11/02/21 08:11 AM UTC
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|----------------------------------------|----|--------|------------|
| Cotoneaster integerrimus Medik. | Syn.: C. vulgaris Lindl. nom. illeg., Mespilus cotoneaster L. | S | N | Bölöni (1999a) |
| Cotoneaster laxiflorus J. Jacq. ex Lindl. | Syn.: C. matrensii Domokos, C. melano carpus Lodd., C. niger (Wallich) Fr. | S | N | Bölöni (1999a), Domokos (1941), Dickoré and Kasperek (2010) |
| Cotoneaster tomentosus (Aiton) Lindl. | Bas.: Mespilus tomentosa Aiton / Syn.: C. coccineus (Roth) Steud., M. coccinea Waldst. et Kit. nom. illeg. | S | N | Bölöni (1999a), Sennikov and Somlyay (2011) |
| Crataegus L. nom. cons. (Rosaceae) | | | | |
| Crataegus germanica (L.) Kuntze | Bas.: Mespilus germanica L. | T | Cult / Cas / Arch | Ufimov and Dickinson (2020) |
| Crataegus laevigata (Poir.) DC. | Bas.: Mespilus laevigata Poir. / Syn.: C. oxyacantha auct. | S | N | Kerényi-Nagy (2015) |
| Crataegus monogyna Jacq. | Syn.: C. aelenannnensis Činovskis, C. subborealis Činovskis | S | | Kerényi-Nagy (2015) |
| subsp. monogyna | | | | |
| subsp. acutiloba (J. Kern.) Baranec | Bas.: C. monogyna Jacq. var. acutiloba J. Kern. | N | | |
| subsp. nordica Franco | | | Hung.? | |
| Crataegus nigra Waldst. et Kit. | | T-S | N / SubE | Bartha and Kerényi-Nagy (2010a, b), Kerényi-Nagy et al. (2014) |
| Crataegus rhipidophylla agg. | Syn.: C. curvisepala agg. | | | |
| Crataegus lindmanii Hrabětová | Syn.: C. curvisepala Lindm. nom. illeg., C. praemonticola Holub, C. rosiformis (“rosiformis”) Janka | S | N | Kerényi-Nagy (2010a, 2014, 2015), Kerényi-Nagy et al. (2011) |
| Crataegus rhipidophylla Gand. | Syn.: C. ×lambertiana hort. ex Lange / C. nigra Waldst. et Kit. × C. monogyna Jacq. | S | N | Kerényi-Nagy (2010a, 2015), Kerényi-Nagy et al. (2011) |
| Crataegus ×degenii Zsák | Syn.: C. ×lambertiana hort. ex Lange / C. nigra Waldst. et Kit. × C. monogyna Jacq. | T-S | N / SubE / Ntl | Bartha and Kerényi-Nagy (2010a), Kerényi-Nagy (2015) |
| Crataegus ×macrocarpa agg. | Syn.: C. ×calycina agg. / C. laevigata (Poir.) DC. × C. rhipidophylla agg. | | | |
| Crataegus ×calycina Peterm. | Syn.: C. ×calycina Hrabětová / C. laevigata (Poir.) DC. × C. lindmanii Hrabětová | S | N / Ntl | Kerényi-Nagy (2010a, 2015) |
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|----------------------------------------|----|--------|------------|
| **Crataegus ×macrocarpa** Hegetschw.\(^{14}\) | Syn.: C. ×ovalis Kit., C. ×pseudoxyacantha Cinovs-kis, C. ×schumacheri Raunk., C. ×uhrovae Soó / C. laevigata (Poir.) DC. × C. rhipidophylla Gand.\(^{16}\) | S | N / Ntl | Kerényi-Nagy (2010a, 2015) |
| **Crataegus ×media** Bechst. | Syn.: C. ×intemixta (Wenz.) Beck / C. monogyna Jacq. × C. laevigata (Poir.) DC. | S | Kerényi-Nagy (2010a, 2015) |
| nothosubsp. media | | | N / Ntl | |
| nothosubsp. *deltoxyacantha* (Pénzes) Ker.-Nagy | | | N / Ntl | |
| nothosubsp. *intermixta* (Wenzig) Ker.-Nagy | | | N / Ntl | |
| **Crataegus ×subsphaerica** agg. | Syn.: C. ×kyrtostyla auct. agg., C. ×heterodonta agg. / C. monogyna Jacq. × C. rhipidophylla agg. | | | |
| **Crataegus ×kyrtostyla** Fingerh.\(^{16}\) | Syn.: C. ×domicensis Hrabětová, C. ×plagiosepalum Pojark. / C. lindmanii Hrabětová × C. monogyna Jacq. | S | N / Ntl | Kerényi-Nagy (2010a, 2015) |
| **Crataegus ×subsphaerica** Gand. | Syn.: C. ×fallacina Klokov, C. ×heterodonta Pojark., C. ×kyrtostyla auct. non Fingerh., C. ×rarvalensis Raunk. / C. monogyna Jacq. × C. rhipidophylla Gand. | S | Kerényi-Nagy (2010a, 2015) |
| nothosubsp. *jacquinii* (A. Kern. ex Pénzes) Ker.-Nagy | | | N / Ntl | |
| nothosubsp. *szepesfalvyi* (Pénzes) Ker.-Nagy | | | N / Ntl | |
| **Cydonia** Mill. (Rosaceae) | | | | |
| **Cydonia oblonga** Mill. | Syn.: Pyrus cydonia L. | T | Cult / Cas / Arch | Surányi (2014) |
| **Cytisus** Desf. nom. cons. (Fabaceae) | | | | Lewis *et al.* (2005) |
| **Cytisus scoparius** (L.) Link | Bas.: Spartium scoparium L. / Syn.: Sarothamnus scoparius (L.) Wimm. ex W. D. J. Koch | S | Nat / Neo | Auvray and Malécot (2013) |
| subsp. *scoparius* | | | | |
| **Daphne L. (Thymelaeaceae)** | | | | |
| **Daphne cneorum** L. | | | | Kézdy and Timár (1999) |
| subsp. *cneorum* | | | N | |
| subsp. *arbusculoides* (Tuzson) Soó | Bas.: D. cneorum L. f. arbusculoides Tuzson | N | Tuzson (1911) |
| **Daphne laureola** L. subsp. *laureola* | | S | N | Keller (1999) |
| Taxon                                      | Basionymy / Synonymy / Hybrid parentage | LF | Status | References                     |
|-------------------------------------------|----------------------------------------|----|--------|---------------------------------|
| *Daphne mezereum* L. subsp. mezereum     |                                        | S  | N      | Timár (1999b)                   |
| *Elaeagnus* L. (Elaeagnaceae)             |                                        |    |        |                                 |
| *Elaeagnus angustifolia* L.               |                                        |    |        |                                 |
| *Elaeagnus commutata* Bernh. ex Rydb.     | Syn.: *E. argentea* Pursh nom. illeg.,  | T  | Cult / Inv / Neo | Bartha and Csiszár (2008b)     |
|                                           | *E. argentea* Nutt. nom. illeg.        |    |        |                                 |
| *Ephedra* L. (Ephedraceae)                |                                        |    |        |                                 |
| *Ephedra distachya* L. subsp. distachhya  | Syn.: *E. vulgaria* Rich. nom. illeg.  | DS | N      | Dobay (1999)                    |
| *Euonymus* L. nom. et orth. cons. (Celastraceae) |                          |    |        |                                 |
| *Euonymus europaeus* L.                   | Syn.: *E. vulgaria* Mill.              | S  | N      | Baráth (1956)                   |
| *Euonymus fortunei* (Turcz.) Hand.-Mazz. nom. cons. | Bas.: *Elaeodendron fortunei* Turcz. / Syn.: *Euonymus ralicans* (Miq.) Siebold ex Miq. | S  | Cult / Cas / Neo | Kakiuchi et al. (2011) |
| *Euonymus verrucosus* Scop.              |                                        |    |        |                                 |
| *Fagus* L. (Fagaceae)                     |                                        |    |        |                                 |
| *Fagus sylvestris* L.                     | Syn.: *F. ×moesiaca* (K. Malý) Czeczott, *F. sylvestris* subsp. *moesiaca* (K. Malý) Szater / *F. orientalis* Lipsky × *F. sylvestris* L. | T  | Hung.? / Ntl | Bartha and Raisz (2004)        |
| *Fallopia* Adans. (Polygonaceae)          |                                        |    |        | Holub (1971)                    |
| *Fallopia aubertii* (L. Henry) Holub³     | Bas.: *Polygonum aubertii* L. Henry / Syn.: *Bildderbychia aubertii* (L. Henry) Moldenke, *Reynoutria aubertii* (L. Henry) Moldenke | L  | Cult / Cas / Neo |                                 |
|                                           |                                        |    |        |                                 |
| *Fallopia baldschuanica* (Regel) Holub³   | Bas.: *Polygonum baldschuanicum* Regel / Syn.: *Bildderbychia baldschuanica* (Regel) D. A. Webb, *Fago-pyrum baldschuanicum* (Regel) Gross, *Reynoutria baldschuanica* (Regel) Moldenke | L  | Cult / Cas / Neo |                                 |
| *Frangula* Mill. (Rhamnaceae)             |                                        |    |        |                                 |
| *Frangula alnus* Mill. subsp. alnus       | Syn.: *Rhamnus frangula* L.            | S  | N      | Kárpáti (1970), Wallander (2008) |
| *Fraxinus* L. (Oleaceae)                  |                                        |    |        |                                 |
| Taxon                          | Basionym / Synonymy / Hybrid parentage                                           | LF  | Status | References                     |
|-------------------------------|----------------------------------------------------------------------------------|-----|--------|---------------------------------|
| Fraxinus angustifolia Vahl nom. cons. subsp. danubialis Pouzar                  | Syn.: F. angustifolia Vahl subsp. panonica Soó et T. Simon                        | T   | N      | Soó and Simon (1960), Bartha (2015–2016) |
| Fraxinus excelsior L. subsp. excelsior                                        | T                                               | N   | N      |                                  |
| Fraxinus ornus L. subsp. ornus                                               | Syn.: Ornus europeae Pers.                                                           | T   | N / Nat| Kárpáti (1958)                   |
| Fraxinus pennsylvanica Marshall                                              | Syn.: F. pubescens Lam.                                                             | T   | Cult / Inv / Neo                 | Csiszár and Bartha (2008) |
| Fraxinus ×veltheimii Dieck ex Bean²                                          | F. angustifolia Vahl subsp. panonica Pouzar × F. excelsior L. subsp. excelsior    | T   | N / Ntl |                                  |
| Gleditsia J. Clayton² (Fabaceae)                                              |                                                  |     |        | Lewis et al. (2005)              |
| Gleditsia triacanthos L.                                                      |                                                  | T   | Cult / Cas / Neo                 | Green et al. (2011), McAllister and Marshall (2017) |
| Hedera L. (Araliaceae)                                                       |                                                  | L   | Cult / Inv² / Neo                | Bényei-Himmer et al. (2017) |
| Hedera helix L.                                                               |                                                  | L   | N      |                                  |
| Hellundia Sennikov et Kurtto (Rosaceae)                                       | Aria × Sorbus                                                                      |     |        | Sennikov and Kurtto (2017)       |
| Hellundia buckensis (Soó) Sennikov et Kurtto                                  | Bas.: Sorbus aria (L.) Crantz subsp. buckensis Soó / Syn.: S. buckensis (Soó) Soó | T   | N / End? vel SubE?               | Kézdy (1999) |
| Hellundia hszuliskzkyana (Soó) Sennikov et Kurtto                            | Bas.: Sorbus aria (L.) Crantz var. hszuliskzkyana Soó / Syn.: S. hszuliskzkyana (Soó) Boros | T   | N / SubE? |                                  |
| Hellundia ×thuringiaca (Nyman) Sennikov et Kurtto                            | Bas.: Pyrus thuringiaca Nyman / Syn.: Aria thuringiaca (Nyman) Beck, Sorbus thuringiaca (Nyman) Fritsch / Aria edulis (Willd.) M. Roem. × Sorbus aucuparia L. | T   | N / Ntl |                                  |
| Hippocrepis L. (Fabaceae)                                                     |                                                  |     |        | Lewis et al. (2005)              |
| Hippocrepis emerus (L.) Lassen subsp. emerus                                  | Bas.: Coronilla emerus L.                                                            | S   | N      | Bölöni (1996)                    |
| Hippophae L. (Elaeagnaceae)                                                   | Orth.: Hippophae                                                                   |     |        |                                  |
| Hippophae rhamnoides L. subsp. carpatica Rouši                               | Syn.: Elaeagnus rhamnoides (L.) A. Nelson                                               | S   | N / Cult² | Gadó (1999) |
| Juglans L. (Juglandaceae)                                                     |                                                  |     |        | Manos and Stone (2001)           |
| Juglans nigra L.                                                              |                                                  | T   | Cult / Cas / Neo                 |                                  |
| Taxon                                                                 | Basionymy / Synonymy / Hybrid parentage | LF | Status       | References                          |
|----------------------------------------------------------------------|----------------------------------------|----|--------------|-------------------------------------|
| *Juglans regia* L.                                                   |                                        | T  | Cult / Nat / Arch | Babos and Bertin (1998)             |
| *Juglans × intermedia* Carrière                                      | *J. nigra* L. × *J. regia* L.          | T  | Cult / Neo / Art |                                     |
| *Juniperus* L. (Cupressaceae)                                        |                                        |    |               |                                     |
| *Juniperus communis* L.²                                               |                                        | T–S| N             | Sennikov and Kurtto (2017)          |
| *Juniperus virginiana* L.                                             |                                        | T  | Cult / Neo    |                                     |
| *Karpatiosorbus* Sennikov et Kurtto (Rosaceae)                        | *Aria × Tormindis*                     |    |               |                                     |
| *Karpatiosorbus acutiserrata* (C. Németh) Sennikov et Kurtto          | Bas.: *Sorbus acutiserrata* C. Németh | T  | N / End      | Németh (2009)                       |
| *Karpatiosorbus adamii* (Kárpáti) Sennikov et Kurtto                 | Bas.: *Sorbus adamii* Kárpáti          | T  | N / End      | Kézdy (1999), Németh (2006, 2010)   |
| *Karpatiosorbus andreanszkyana* (Kárpáti) Sennikov et Kurtto          | Bas.: *Sorbus andreanszkyana* Kárpáti / *S. latissima* Kárpáti | T  | N / End      | Németh (2010), Sennikov and Kurtto (2017) |
| *Karpatiosorbus bakonyensis* (Jáv.) Sennikov et Kurtto               | Bas.: *Sorbus franconica* Bornm. f. *bakonyensis* Jáv. / *S. bakonyensis* (Jáv.) Jáv., *S. majeri* Barabits | T  | N / End      | Kézdy (1999), Barabits (2007), Németh (2010, 2013), Somlyay and Sennikov (2014, 2015) |
| *Karpatiosorbus balatonica* (Kárpáti) Sennikov et Kurtto             | Bas.: *Sorbus balatonica* Kárpáti      | T  | N / End      | Kézdy (1999), Németh (2010, 2013)   |
| *Karpatiosorbus barabitsii* (C. Németh) Sennikov et Kurtto           | Bas.: *Sorbus barabitsii* C. Németh    | T  | N / End      | Németh (2012)                       |
| *Karpatiosorbus barthae* (Kárpáti) Sennikov et Kurtto                | Bas.: *Sorbus barthae* Kárpáti         | T  | N / End      | Kézdy (1999), Németh (2010, 2013)   |
| *Karpatiosorbus bodajkensis* (Barabits) Sennikov et Kurtto           | Bas.: *Sorbus bodajkensis* Barabits    | T  | N / End      | Barabits (2007), Németh (2013)      |
| *Karpatiosorbus borosiana* (Kárpáti) Sennikov et Kurtto              | Bas.: *Sorbus borosiana* Kárpáti       | T  | N / End      | Kézdy (1999), Németh (2006, 2010)   |
| *Karpatiosorbus concavifolia* (C. Németh) Sennikov et Kurtto         | Bas.: *Sorbus concavifolia* C. Németh  | T  | N / End      | Németh *et al.* (2016)              |
| *Karpatiosorbus decipientiformis* (Kárpáti) Sennikov et Kurtto        | Bas.: *Sorbus decipientiformis* Kárpáti | T  | N / End      | Németh (2010, 2015a)                |
| Taxon                             | Basionymy / Synonymy / Hybrid parentage | LF | Status | References                      |
|----------------------------------|----------------------------------------|----|--------|---------------------------------|
| *Karpatiosorbus degenii* (Jáv.) Sennikov et Kurtto | *Sorbus degenii* Jáv.                  | T  | N / End | Kézdy (1999), Németh (2006, 2010, 2013) |
| *Karpatiosorbus dracofolia* (C. Németh) Sennikov et Kurtto | *Sorbus dracofolia* C. Németh          | T  | N / End | Németh (2009)                   |
| *Karpatiosorbus eugenii-kelleri* (Kárpáti) Sennikov et Kurtto | *Sorbus eugenii-kelleri* Kárpáti       | T  | N / End | Kézdy (1999), Németh (2006, 2010) |
| *Karpatiosorbus gayeriana* (Kárpáti) Sennikov et Kurtto | *Sorbus gayeriana* Kárpáti             | T  | N / End | Németh (2010, 2013)             |
| *Karpatiosorbus geregseensis* (Boros et Kárpáti) Sennikov et Kurtto | *Sorbus geregseensis* Boros et Kárpáti | T  | N / End | Németh (2010)                   |
| *Karpatiosorbus karpatii* (Boros) Sennikov et Kurtto | *Sorbus karpatii* Boros                | T  | N / End | Kézdy (1999), Németh (2006, 2010) |
| *Karpatiosorbus pelsoensis* (C. Németh) Sennikov et Kurtto | *Sorbus pelsoensis* C. Németh          | T  | N / End | Bauer (2015), Németh (2015)      |
| *Karpatiosorbus polgariana* (C. Németh) Sennikov et Kurtto | *Sorbus polgariana* C. Németh          | T  | N / End | Németh (2012)                   |
| *Karpatiosorbus pseudobakonyensis* (Kárpáti) Sennikov et Kurtto | *Sorbus pseudobakonyensis* Kárpáti    | T  | N / End | Kézdy (1999), Németh (2006, 2010) |
| *Karpatiosorbus pseudolatifolia* (Boros) Sennikov et Kurtto | *Sorbus pseudolatifolia* Boros         | T  | N / End | Kézdy (1999), Németh (2006, 2010) |
| *Karpatiosorbus pseudosemiincisa* (Boros) Sennikov et Kurtto | *Sorbus pseudosemiincisa* Boros        | T  | N / End | Kézdy (1999), Németh (2006, 2010, 2015) |
| *Karpatiosorbus pseudovertesensis* (Boros) Sennikov et Kurtto | *Sorbus pseudovertesensis* Boros      | T  | N / End | Kézdy (1999), Németh (2006, 2010) |
| *Karpatiosorbus pyricarpa* (C. Németh) Sennikov et Kurtto | *Sorbus pyricarpa* C. Németh           | T  | N / End | Németh (2015)                   |
| *Karpatiosorbus redliana* (Kárpáti) Sennikov et Kurtto | *Sorbus redliana* Kárpáti              | T  | N / End | Kézdy (1999), Németh (2010, 2013) |
| *Karpatiosorbus rhombiformis* (Barabits et C. Németh) Sennikov et Kurtto | *Sorbus rhombiformis* Barabits et C. Németh | T  | N / End | Németh et al. (2016)             |
| *Karpatiosorbus semiincisa* (Borbás) Sennikov et Kurtto | *Sorbus aria* (L.) Crantz f. semiincisa Borbás / Syn.: *S. semiincisa* (Borbás) Borbás | T  | N / End | Kézdy (1999)                   |
| Taxon                                      | Basionymy / Synonymy / Hybrid parentage | LF | Status | References                                      |
|-------------------------------------------|----------------------------------------|----|--------|------------------------------------------------|
| Karpatiosorbus simonkaiana (Kárpáti) Sennikov et Kurtto | Bas.: Sorbus simonkaiana Kárpáti | T  | N / End | Kézdy (1999), Németh (2006, 2010)                |
| Karpatiosorbus tobani (C. Németh) Sennikov et Kurtto | Bas.: Sorbus tobani C. Németh | T  | N / End | Németh (2007, 2013)                              |
| Karpatiosorbus udvardyana (Somlyay et Sennikov) Sennikov et Kurtto | Bas.: Sorbus udvardyana Somlyay et Sennikov | T  | N / End | Barabits (2007), Németh (2010, 2013), Somlyay and Sennikov (2014) |
| Karpatiosorbus vallerubusensis (C. Németh) Sennikov et Kurtto | Bas.: Sorbus vallerubusensis C. Németh | T  | N / End | Németh (2009)                                    |
| Karpatiosorbus vallusensis (Boros) Sennikov et Kurtto | Bas.: Sorbus vallusensis Boros | T  | N / End | Kézdy (1999), Németh (2006, 2010)                |
| Karpatiosorbus veszpremensis (Barabits) Sennikov et Kurtto | Bas.: Sorbus veszpremensis Barabits | T  | N / End | Barabits (2007), Németh (2013)                    |
| Karpatiosorbus ×hybrida (Borkh.) Sennikov et Kurtto²⁶ | Bas.: Azarolus hybrida Borkh. / Syn.: Sorbus decipiens (Bechst.) Petz. et G. Kirchn., S. rotundifolia (M. Roem.) Hedl. / Aria edulis (Willd.) M. Roem. × Torminalis glaberrima (Gand.) Sennikov et Kurtto | T  | N / Ntl |                                                  |
| Koelreuteria Laxm. (Sapindaceae)           |                                        |    |        |                                                 |
| Koelreuteria paniculata Laxm.              |                                        | T  | Cult / Cas / Neo | Lewis et al. (2005)                                |
| Laburnum Fabr. (Fabaceae)                  |                                        |    |        |                                                 |
| Laburnum anagyroides Medik.                | Syn.: Cytisus laburnum L.              | T–S| Cult / Cas / Neo | Farjon (2001)                                      |
| ? subsp. alschingeri (Vis.) Hayek²⁶        | Bas.: C. alschingeri Vis.              |    |        |                                                 |
| Larix Mill. (Pinaceae)                     |                                        |    |        |                                                 |
| Larix decidua Mill.²⁸                      | Syn.: L. europaea DC. nom. illeg., Pinus larix L. | T  | Cult / Cas / Neo | Nelson (1980)                                      |
| Larix kaempferi (Lamb.) Carrière           | Bas.: Pinus kaempferi Lamb. / Syn.: L. leptolepis (Siebold et Zucc.) Gordon et Glend. | T  | Cult / Neo | Qin (2009)                                         |
| Larix ×marschlinksi Coaz²⁹                 | Syn.: L. ×eurolepis A. Henry nom. illeg., L. decidua Mill. × L. kaempferi (Lamb.) Carrière | T  | Cult / Neo / Art |                                               |
| Ligustrum L. (Oleaceae)                    |                                        |    |        |                                                 |
| Taxon                                | Basionymy / Synonymy / Hybrid parentage | LF | Status | References                  |
|--------------------------------------|----------------------------------------|----|--------|-----------------------------|
| **Ligustrum vulgare** L.             |                                        | S  | N      | Kárpáti (1952)              |
| **Lonicera** L. (Caprifoliaceae)     |                                        |    |        |                             |
| **Lonicera caprifolium** L.          | Syn.: *L. pallida* Host                | S–L| N / Cult / Cas | Kevev and Bartha (2010)     |
| **Lonicera nigra** L.                | Syn.: *L. carpathica* Kit.             | S  | N      | Hulják (1999)               |
| **Lonicera xylosteum** L.            | Syn.: *L. leiophylla* A. Kern.         | S  | N      |                             |
| **Loranthus** Jacq. nom. cons. (Loranthaceae) |                        |    |        |                             |
| **Loranthus europaeus** Jacq.        |                                        | E  | N      |                             |
| **Lycium** L. (Solanaceae)           |                                        |    |        |                             |
| **Lycium barbarum** L.               | Syn.: *L. halimifolium* Mill.          | S  | Inv / Neo | Pénzes (1941), Priszter (2004) |
| **Lycium chinense** Mill.            | Syn.: *L. leiophylla* A. Kern.         | S  | Cas / Neo | Pénzes (1941), Priszter (2004) |
| **Maclura** Nutt. (Moraceae)         |                                        |    |        |                             |
| **Maclura pomifera** (Raf.) C. K. Schneid. | Bas.: *laxylon pomiferum* Raf. / Syn.: *M. aurantiaca* Nutt. | T  | Cult / Neo | Robinson et al. (2001)      |
| **Malus** Mill. (Rosaceae)           | Syn.: *M. communis* Lam. subsp. *dasphylla* (Borkh.) | T  | N      |                             |
| **Malus dasyphylla** Borkh.          | (Borkh.) Dippel, *M. sylvestris* (L.) Mill. var. *dasphylla* (Borkh.) Ponomar., *Pyrus paris* M. F. Fay et Christenh. | T  | N      |                             |
| **Malus domestica** (Suckow) Borkh. nom. cons. | Bas.: *Pyrus malus* L. var. *domestica* Suckow / Syn.: *M. communis* Desf. nom. illeg., *M. pumila* Mill. | T  | Cult / Cas / Arch | Qian et al. (2010)          |
| **Malus sylvestris** (L.) Mill. subsp. **sylvestris** | Bas.: *Pyrus malus* L. var. *sylvestris* L. / Syn.: *M. acerba* Mérat, *P. pumila* M. F. Fay et Christenh. | T  | N      |                             |
| **Malus ×oxysepala** A. Czarna nom. inval. | *M. domestica* (Suckow) Borkh. × *M. sylvestris* (L.) Mill. | T  | Cas / Arch? / Ntl | Czarna et al. (2013)       |
| **Morus** L. (Moraceae)              |                                        | T  | Cult / Cas / Neo | Jeszenszky (1972)          |
| **Morus alba** L.                    |                                        | T  | Cult / Cas / Neo | Jeszenszky (1972)          |
| **Myricaria** Desv. (Tamaricaceae)   |                                        | T  | Cult / Cas / Neo | Jeszenszky (1972)          |
| Taxon                       | Basionymy / Synonymy / Hybrid parentage | LF | Status | References                  |
|----------------------------|-----------------------------------------|----|--------|-----------------------------|
| Myricaria germanica (L.) Desv. | Bas.: Tamarix germanica L.  | S  |        | Korda (2010a), Király and Király (2018) |
| subsp. germanica           |                                        |    |        |                             |
| Ostrya Scop. (Betulaceae)  |                                        |    |        | Govaerts and Frodin (1998)  |
| Ostrya carpinifolia Scop.  | Syn.: Ostrya italica Spach             | T  | N†     | Bartha (1999f)              |
| Parthenocissus             |                                        |    |        |                             |
| Parthenocissus inserta (A. Kern.) Fritsch | Bas.: Vitis inserta A. Kern. / Syn.: P. vitacea (Knerr) Hitchc. | L  | Cult / Inv / Neo | Szász (2006) |
| Parthenocissus quinquefolia (L.) Planch. | Bas.: Hedera quinquefolia L. / Syn.: Vitis quinquefolia (L.) Lam. | L  | Cult / Cas / Neo | Szász (2006) |
| Sine nomine                |                                        |    |        |                             |
| Paulownia Siebold et Zucc. (Paulowniaceae) | Bas.: Bignonia tomentosa Thunb. / Syn.: P. imperialis Siebold et Zucc. | T  | Cult / Cas / Neo | Farjon (2001) |
| Paulownia elongata S. Y. Hu |                                        |    |        |                             |
| Paulownia tomentosa (Thunb.) Steud. | Bas.: Bignonia tomentosa Thunb. / Syn.: P. imperialis Siebold et Zucc. | T  | Cult / Cas / Neo | Farjon (2001) |
| Picea A. Dietr. (Pinaceae) |                                        |    |        |                             |
| Picea abies (L.) H. Karst.  | Bas.: Pinus abies L. / Syn.: Picea excelsa (Lam.) Link | T  | C / Cult / Cas |                             |
| Pinus L. (Pinaceae)        |                                        |    |        |                             |
| Pinus banksiana Lamb.      | Syn.: P. divaricata (Aiton) Dum.Cours. | T  | Cult / Neo |                             |
| Pinus nigra J. F. Arnold subsp. nigra | T  | Cult / Cas / Neo |                             |
| Pinus ponderosa Douglas ex C. Lawson | T  | Cult / Neo |                             |
| Pinus strobus L.           | T  | Cult / Neo |                             |
| Pinus sylvestris L.        | T  | N / Cult / Cas |                             |
| Platanus L. (Platanaceae)  |                                        |    |        |                             |
| Platanus ×hispanica Mill. ex Münchh. | Syn.: P. ×acerifolia (Aiton) Willd., P. ×hybrida Brot. / P. occidentalis L. × P. orientalis L. | T  | Cult / Cas / Neo | Grimm and Denk (2010), Geerinck (1979), Stace et al. (2016) |
| Taxon                                | Basionymy / Synonymy / Hybrid parentage | LF | Status          | References               |
|--------------------------------------|----------------------------------------|----|-----------------|--------------------------|
| *Platycladus* Spach (Cupressaceae)   |                                        | T  | Cult / Cas / Neo| Skvortsov (2010)         |
| *Platycladus orientalis* (L.) Franco | Bas.: *Thuja orientalis* L. / Syn.: *Biota orientalis* (L.) Endl. | T  | N               | Bartha (2004)            |
| *Populus* L. (Salicaceae)            |                                        | T  | N               | Bartha (2004)            |
| *Populus alba* L.                    |                                        | T  | N               | Bartha (2004)            |
| *Populus deltoides* W. Bartram ex Marshall⁷⁷ | Syn.: *P. angulata* Aiton, *P. carolinensis* Moench | T  | N / Cult⁷⁷ / Neo| Bartha (2004)            |
| *Populus nigra* L.                   |                                        | T  | N / Cult⁷⁷ / Neo| Bartha (2004)            |
| *Populus simonii* Carrière           |                                        | T  | Cult / Neo      | Bartha (2004)            |
| *Populus tremula* L.                 |                                        | T  | N               | Bartha (2004)            |
| Siné nomine                          | *P. maximowiczii* Henry × *P. trichocarpa* Torr. et A. Gray ex Hook.⁴⁰ | T  | Cult / Neo / Art| Bartha (2004)            |
| *Populus ×canadensis* Moench          | Syn.: *P. ×euramerica* (Dode) Guinier⁴¹ / *P. deltoides* W. Bartram ex Marshall × *P. nigra* L. | T  | Cult / Nat / Neo / Art | Boom (1957), Bartha (2004) |
| *Populus ×canescens* (Aiton) Sm.      | Bas.: *P. alba* L. var. *canescens* Aiton / *P. alba* L. × *P. tremula* L. | T  | N / Ntl         | Bartha (2004, 2005)      |
| *Populus ×generosa* A. Henry          | Syn.: *P. ×interamericana* Brockh.⁵² / *P. deltoides* W. Bartram ex Marshall × *P. trichocarpa* Torr. et A. Gray ex Hook. | T  | Cult / Neo / Art| Bartha (2004)            |
| *Populus ×rouleauiana* B. Boivin      | *P. alba* L. × *P. grandidentata* Michx.⁴⁵ | T  | Cult / Neo / Art| Bartha (2004)            |
| *Prunus* L. (Rosaceae)               |                                        | T  | N               | Bartha (2004)            |
| *Prunus amygdalus* Batsch             | Syn.: *P. dulcis* (Mill.) D. A. Webb, *Amygdalus communis* L., *A. dulcis* Mill. | T  | N               | Tavaud *et al.* (2004)   |
| *Prunus armeniaca* L.                | Syn.: *Armeniaca vulgaris* Lam.        | T  | N               | Surányi (2011)           |
| *Prunus avium* (L.) L.               | Bas.: *P. cerasus* L. var. *avium* L. / Syn.: *Cerasus avium* (L.) Moench | T  | N / Cult        | Tavaud *et al.* (2004)   |
| *Prunus cerasifera* Ehrh.             | Syn.: *P. divaricata* Lede., *P. myrobalana* (L.) Loisel. | T  | Cult / Nat / Arch| Tavaud *et al.* (2004)   |
| *Prunus cerasus* L.⁴⁴                 | Syn.: *P. acida* Ehrh., *Cerasus acida* (Ehrh.) Borkh., *C. vulgaris* Mill. | T  | Cult / Nat / Arch| Surányi (2019)           |
| *Prunus domestica* agg.               |                                        | T  | N               | Bartha (2004)            |
| Taxon                          | Basionymy / Synonymy / Hybrid parentage | LF | Status       | References                  |
|-------------------------------|----------------------------------------|----|--------------|-----------------------------|
| Prunus domestica L.           | Syn.: P. communis Huds. nom. illeg.     | T  | Cult / Arch  | Pénzes (1950), Kárpáti (1967) |
| Prunus insititia L.           | Syn.: P. domestica L. subsp. insititia (L.) Bonnier et Layens, P. italica Borkh. | T  | Cult / Arch  | Pénzes (1950), Kárpáti (1967) |
| Prunus fruticosa Pall.        | Syn.: P. chamaecearsus Jacq., Cerasus fruticosa (Pall.) Woronow | S  | N            | Bartha (2007, 2011)          |
| Prunus mahaleb L.             | Syn.: Cerasus mahaleb (L.) Mill.        | T  |              | Terpó (1968)                |
| subsp. mahaleb                | Syn.: C. mahaleb (L.) Mill. subsp. simonkaii (Pénzes) |    |              |                            |
| Prunus padus L. subsp. padus  | Syn.: Padus avium Mill.                | T  | N            |                            |
| Prunus persica (L.) Batsch    | Bas.: Amygdalus persica L. / Syn.: Persica vulgaris Mill. | T  | Cult / Arch  |                            |
| Prunus serotina Ehrh.         | Syn.: Padus serotina (Ehrh.) Borkh.    | T  | Cult / Inv / Neo | McVaugh (1951), Juhász (2008) |
| Prunus spinosa L.             | Syn.: Amygdalus nana L., Prunus nana (L.) Stokes | S  | N            | Pénzes (1950)               |
| Prunus tenella Batsch         | Syn.: Cerasus ×eminens (Beck) Buia / P. cerasus L. × P. fruticosa Pall. | S  | Cas / Arch / Ntl | Bartha (2007, 2011)         |
| Prunus ×fontanesiana (Spach) C. K. Schneid. | Bas.: C. ×fontanesiana Spach / P. avium (L.) L. × P. mahaleb L. | T  | Cult / Art / Ntl | Bartha (2007, 2011)         |
| Prunus ×fruticans Weihe       | P. domestica L. × P. spinosa L.        | S  | Cas / Arch / Ntl | Pénzes (1950)             |
| Prunus ×gondouinii (Poit. et Turpin) Rehder | Bas.: Cerasus ×gondouinii Poit. et Turpin / P. avium (L.) L. × P. cerasus L. | T  | Cult / Art | Bartha (2007, 2011), Tavaud et al. (2004) |
| Prunus ×javorkae Kárpáti      | Syn.: Cerasus ×javorkae (Kárpáti) Soó / P. fruticosa Pall. × P. mahaleb L. | T–S | N / Ntl   | Bartha (2007, 2011)         |
| Prunus ×molacsyana Kárpáti    | Syn.: Cerasus ×molacsyana (Kárpáti) Janch. / P. avium (L.) L. × P. fruticosa Pall. | T–S | N / Ntl   | Bartha (2007, 2011)         |
| Prunus ×simmleri Palez.       | P. cerasifera Ehrh. × P. spinosa L.    | T–S | Cas / Arch / Ntl |                            |
| Prunus ×stacei Wójcicki       | Syn.: Cerasus ×stacei (Wójcicki) Wójcicki et Marhold / P. avium (L.) L. × P. cerasus L. × P. fruticosa Pall. | T–S | Hung.? / Ntl |                            |
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF Status | References |
|-------|----------------------------------------|-----------|------------|
| Prunus × syriaca Borkh. | Syn.: P. domestica L. subsp. syriaca (Borkh.) Janch. / P. cerasifera Ehrh. × P. domestica L. | T | Cult / Cas / Arch / Ntl | Kárptal (1967) |
| Pseudotsuga Carrière (Pinaceae) | | | | Farjon (2001) |
| Pseudotsuga menziesii (Mirb.) Franco | Bas.: Abies menziesii Mirb. / Syn.: P. douglasii (Sabine ex D. Don) Carrière | T | Cult / Neo | |
| Ptelea L. (Rutaceae) | | | | |
| Ptelea trifoliata L. | | | | Bailey (1962) |
| Pterocarya Kunth (Juglandaceae) | Bas.: Juglans fraxinifolia Lam. / Syn.: P. pterocarpa (Michx.) Delchev. | T | Cult / Neo | Manos and Stone (2001) |
| Pyrus L. (Rosaceae) | | | | Batiz (2000) |
| Pyrus communis agg. | | | | |
| Pyrus communis L. | Bas.: P. communis L. var. pyraster L. / Syn.: P. achrasi Gaertn. nom. illeg., P. communis L. subsp. pyraster (L.) Ehrh. | T | Cult / Arch | |
| Pyrus pyraster (L.) Burgsd. | | | | |
| Pyrus magyariaca Terpó | | | | Terpó (1992), Böhm (2007, 2010), Barina and Király (2014) |
| Pyrus nivalis Jacq. | Syn.: P. austriaica A. Kern., P. communis L. subsp. nivalis (Jacq.) Gams, P. salicifolia DC. | T | C / End? | Bartha and Böhm (2010), Terpó (1992) |
| subsp. orientalis (Terpó) Terpó | | | | |
| Pyrus spinosa Forsk. | | | | |
| Pyrus × amphigenea Domin ex Dostálek | P. communis L. × P. pyraster (L.) Burgsd. | T | Cas / Arch / Ntl | Böhm (2007) |
| Pyrus × karpatiana Terpó | P. magyariaca Terpó × P. pyraster (L.) Burgsd. | T | N / Ntl | Bartha and Böhm (2010) |
| Pyrus × mohacsyana Terpó | P. nivalis Jacq. × P. pyraster (L.) Burgsd. × P. syriaca Boiss. | T | Cas / Arch? / Ntl | Bartha and Böhm (2010) |
| Pyrus × pannonica Terpó | P. nivalis Jacq. × P. pyraster (L.) Burgsd. | T | Cult / Cas / Arch / Ntl | Bartha and Böhm (2010) |
| Pyrus × pomazensis Terpó | P. nivalis Jacq. × P. spinosa Forsk. | T | Cult / Arch? / Ntl | Bartha and Böhm (2010) |
| Taxon                        | Basionymy / Synonymy / Hybrid parentage                                                                 | LF | Status       | References                        |
|-----------------------------|----------------------------------------------------------------------------------------------------------|----|--------------|-----------------------------------|
| *Pyrus×velenovskyi* Dostálek | Syn.: *P. ×mecsekensis* Terpó / *P. pyraster* (L.) Burgsd. × *P. spinosa* Forssk.                      | T  | Cult / Arch? / Nil | Bartha and Bőhm (2010)            |
| *Quercus* L. (Fagaceae)     |                                                                                                          |    |              | Govaerts and Frodin (1998), Mátyás (1970b, 1971b) |
| *Quercus cerris* L.         |                                                                                                          |    |              | Mátyás (1970c)                    |
| *Quercus frainetto* Ten.    | Syn.: *Q. conferta* Kit., *Q. farinett* Ten., *Q. hungarica* Hubeny                                      | T  | Cult / Neo   | Borovics et al. (1999)            |
| *Quercus palustris* Münchh. |                                                                                                          |    |              |                                   |
| *Quercus petraea* agg.      |                                                                                                          |    |              |                                   |
| *Quercus aurea* (Wierzob.) Kotschy |                                                                                        | T  | N            | Di Pietro et al. (2012), Kučera (2018) |
| *Quercus petraea* (Matt.) Liebl. subsp. *petraea* |                                                                                                 | T  | N            |                                   |
| *Quercus polycarpa* Schur   | Syn.: *Q. petraea* (Matt.) Liebl. subsp. *polycarpa* (Schurr) *Soó*, *Q. petraea* (Matt.) Liebl. subsp. *iberica* (Steven ex M. Bieb.) Krassiln. | T  | N            |                                   |
| *Quercus pubescens* agg.    |                                                                                                          |    |              |                                   |
| *Quercus pubescens* Willd.  |                                                                                                          |    |              |                                   |
| subsp. *pubescens*          | Syn.: *Q. humilis* Mill. nom. rej., *Q. lanuginosa* (Lam.) Thuill. nom. illeg.                             |    | N            |                                   |
| *Quercus virgiliana* (Ten.) Ten. |                                                                                           | T  | N            | Mátyás (1973b)                    |
| *Quercus robur* L.          |                                                                                                          |    |              |                                   |
| subsp. *robur*              | Syn.: *Q. pedunculata* Hoffm.                                                                           | T  | N            | Mátyás (1970a, 1973a)             |
| subsp. *pedunculiflora* (K. Koch) Menitsky |                                                                                               |    |              | Mátyás (1970a, 1972, 1973a)       |
| subsp. *slavonica* (Gáyer) Mátyás |                                                                                              |    |              |                                   |
| *Quercus rubra* L.          |                                                                                                          |    |              |                                   |
| *Quercus ×barnova* Georgescu et Dobrescu |                                                                                               | T  | Cult / Cas / Neo | Mátyás (1971a, b)     |
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|----------------------------------------|----|--------|------------|
| *Quercus ×benkoei* Mátyás | Ortho.: *Quercus ×benkői* Mátyás, *Q. benkői* Mátyás / *Q. aurea* (Wierzb.) Kotschy × *Q. petraea* (Matt.) Liebl. | T | N / Ntl | Mátyás (1970a, 1971a, b) |
| *Quercus ×borosii* Mátyás | *Q. frainetto* Ten. × *Q. virgiliana* (Ten.) Ten. | T | Cas / Neo / Ntl | Mátyás (1971b, 1973b) |
| *Quercus ×budensis* Borbás | *Q. pubescens* Willd. × *Q. virgiliana* (Ten.) Ten. | T | N / Ntl | Mátyás (1971b, 1973b) |
| *Quercus ×cazanensis* Pasc. | *Q. aurea* (Wierzb.) Kotschy × *Q. virgiliana* (Ten.) Ten. | T | N / Ntl | Mátyás (1971b, 1973b) |
| *Quercus ×chrysopoda* Borbás | *Q. aurea* (Wierzb.) Kotschy × *Q. frainetto* Ten. | T | Cas / Neo / Ntl | Mátyás (1971b) |
| *Quercus ×csatoi* Borbás | Ortho.: *Q. ×csatói* Borbás / *Q. polycarpa* Schur × *Q. robur* L. | T | N / Ntl | Mátyás (1971b) |
| *Quercus ×dacica* Borbás | Syn.: *Q. ×bedoei* Simonk. et Fekete (Ortho.: *Q. ×bedői* Simonk. et Fekete), *Q. ×tiszai* Simonk. et Fekete / *Q. polycarpa* Schur × *Q. pubescens* Willd. | T | N / Ntl | Mátyás (1971b) |
| *Quercus ×diversifrons* Borbás | *Q. petraea* (Matt.) Liebl. × *Q. virgiliana* (Ten.) Ten. | T | N / Ntl | Mátyás (1971b, 1973b) |
| *Quercus ×haynaldiana* Simonk. | Syn.: *Q. ×budenziana* Borbás, *Q. ×heuffelii* Simonk., *Q. ×neohueffelii* Borbás / *Q. frainetto* Ten. × *Q. robur* L. | T | Cas / Neo / Ntl | Mátyás (1971b) |
| *Quercus ×illesiana* Mátyás | Ortho.: *Q. ×illesiana* Mátyás / *Q. polycarpa* Schur × *Q. virgiliana* (Ten.) Ten. | T | N / Ntl | Mátyás (1971b, 1973b) |
| *Quercus ×kerneri* Simonk. nothosubsp. *kerneri* | Syn.: *Q. ×bedoei* Borbás (Ortho.: *Q. ×bedői* Borbás), *Q. ×devensis* Simonk. (Ortho.: *Q. ×devensis* Simonk.), *Q. ×labrescens* A. Kern., *Q. ×lamitziana* J. Wagner, *Q. ×sublanuginosa* Borbás / *Q. polycarpa* Schur × *Q. pubescens* Willd. × *Q. robur* L. | T | N / Ntl | Mátyás (1971b) |
| *Quercus ×pendulina* Kit. ex Schult. em. Mátyás | *Q. robur* L. × *Q. virgiliana* (Ten.) Ten. | T | N / Ntl | Mátyás (1970a, 1971b, 1973b) |
| *Quercus ×polycarpoïdes* Georgescu et Ciobanu | Syn.: *Q. ×soci Mátyás* (Ortho.: *Q. soci Mátyás*) / *Q. petraea* (Matt.) Liebl. × *Q. polycarpa* Schur | T | N / Ntl | Mátyás (1970a, 1971a, b) |
| *Quercus ×pseudodalechampii* Cretz. | *Q. aurea* (Wierzb.) Kotschy × *Q. robur* L. | T | N / Ntl | Mátyás (1971b) |
| *Quercus ×pseudopubescens* Dobrescu et Beldie | *Q. aurea* (Wierzb.) Kotschy × *Q. pubescens* Willd. | T | N / Ntl | Mátyás (1971b) |
| Taxon                                      | Basionymy / Synonymy / Hybrid parentage                                                                 | LF  | Status | References         |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------|-----|--------|---------------------|
| Quercus ×rosacea Bechst.                  | Syn.: Q. ×fekete Simonk., Q. ×jalnhii Simonk., Q. ×superflata Borbás / Q. petraea (Matt.) Liebl. × Q.   | T   | N / Ntl| Mátyás (1971b)     |
|                                           | rebur L.                                                                                               |     |        |                     |
| Quercus ×streimii (Heuff.) Heuff. ex Freyn | Syn.: Q. ×baetensis Beck, Q. ×calvescens Vuk. / Q. petraea (Matt.) Liebl. × Q. pubescens Willd.       | T   | N / Ntl| Mátyás (1971b)     |
| Quercus ×szechenyiana Borbás 29           | Orth.: Q. ×széchenyiiana Borbás / Syn.: Q. ×braunii Borbás, Q. ×herculis Borbás, Q. ×moesiac Borbás,     | T   | Cas /  | Mátyás (1971b)     |
|                                           | Q. ×topaliă A. Camus / Q. frainetto Ten. × Q. pubescens Willd.                                         |     | Neo / Ntl|                     |
| Quercus ×tobajiáiana Simonk.              | Q. frainetto Ten. × Q. polycarpa Schur                                                                  | T   | Cas /  | Mátyás (1971b)     |
|                                           |                                                                                                          |     | Neo / Ntl|                     |
| Quercus ×tufoe Simonk.                    | Syn.: Q. ×subgluludulosa Borbás / Q. frainetto Ten. × Q. petraea (Matt.) Liebl.                         | T   | Cas /  | Mátyás (1971b)     |
|                                           |                                                                                                          |     | Neo / Ntl|                     |
| Rhamnus L. gen. fem. cons. 60 (Rhamnaceae) |                                                                                                          |     |        |                     |
| Rhamnus cathartica L.                     |                                                                                                          | S   | N      |                     |
| Rhamnus saxatilis Jacq. subsp. saxatilis  |                                                                                                          | S   | N      | Nagy (1999)         |
| Rhamnus ×gayeri Kárpáti ex Soó 61         | R. cathartica L. × R. saxatilis Jacq. subsp. saxatilis                                                  | S   | N / Ntl| Nagy (1999)         |
| Rhus L. (Anacardiaceae)                   |                                                                                                          |     |        |                     |
| Rhus typhina L. 62                        | Syn.: R. hirta (L.) Sudw. nom. rej.                                                                    | T   | Cult / Cas / Neo | Korda (2012) |
| Ribes L. (Grossulariaceae)                |                                                                                                          |     |        |                     |
| Ribes alpinum L.                          | Syn.: R. lucidum Kit.                                                                                   | S   | N      | Király *et al.* (1999) |
| Ribes aureum Pursh                        |                                                                                                          | S   | Cult / Inv / Neo | Cseserits and Rédei (2006) |
| Ribes nigrum L.                           |                                                                                                          | S   | C / Cult / Nat | Király and Kevey (1999b) |
| Ribes petraeum Wullien                    | Syn.: R. carpathicum Kit. ex Schult.                                                                   | S   | N†     | Bartha and Király (1999) |
| Ribes rubrum L.                           | Syn.: R. pubescens (Hartm.) Hedl., R. schlechten-daliı Lange                                             | S   | Cult / Nat / Neo | Terpó (1962a), Király (1999b) |
| Ribes spicatum E. Robson subsp. spicatum  |                                                                                                          | S   | Cult / Cas 60 / Neo | Király (1999b) |
| Ribes uva-crispa L.                       |                                                                                                          | S   | N / Cult / Cas | Király (1999a)     |

* Orth.: Orthotypos. * Syn.: Synonym. * LF: Linnaean formal. * Status: Cult: cultivated, Inv: invader, Neo: neophyte, Ntl: native. * References: Mátyás (1971b), Andrés-Hernández *et al.* (2014), Király *et al.* (1999), Cseserits and Rédei (2006), Király and Kevey (1999).
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|----------------------------------------|----|--------|------------|
| Robinia L. (Fabaceae) | | | | |
| Robinia pseudoacacia L. | | T | Cult / Inv / Neo | Bartha et al. (2008) |
| Robinia viscosa Michx. ex Vent. | Syn.: R. glutinosa Sims | T | Cult / Cas / Neo | |
| Robinia ×ambigua Poir. | R. pseudoacacia L. × R. viscosa Michx. ex Vent. | T | Cult / Neo / Art | |
| Rosa L. nom. cons. (Rosaceae) | | | | |
| Rosa agrestis Savi | Syn.: R. albilora Opiz, R. beytei Borbás, R. gizella Borbás, R. sepium Thuill. | S | N | Kerényi-Nagy (2010b, 2012a) |
| Rosa arvensis Huds. | | S–L | N | Kerényi-Nagy (2012a) |
| Rosa balsamica Besser | Syn.: R. tomentella Léman | S | N | Kerényi-Nagy (2012a) |
| Rosa caesia Sm. ex Sow. subsp. caesia | Syn.: R. corifolia Fr. | S | N | Kerényi-Nagy (2010b, 2012a) |
| Rosa canina L. | | S | N | Kerényi-Nagy (2010b, 2012a) |
| Rosa ciliato-petala Besser | Syn.: R. sancti-andreae Degen et Trautm. | S | Cult / Arch? | Kerényi-Nagy (2010b, 2011a,b, 2012a,b,c) |
| Rosa corymbifera Borkh. | Syn.: R. obtusifolia Desv. | S | N | Kerényi-Nagy (2010b, 2012a) |
| Rosa dumalis Bechst. | | S | N / SubE | Kerényi-Nagy (2010b, 2012a) |
| Rosa fascarii Ker.-Nagy | | S | N | Kerényi-Nagy (2010b, 2012a) |
| Rosa gallica L. | | S | N | Kerényi-Nagy (2010b, 2012a) |
| Rosa glauca Pourr. | Syn.: R. rubrifolia Vill. | S | N† | Kerényi-Nagy (2010b, 2012a) |
| Rosa inodora Fr. | Syn.: R. elliptica Tausch ex Tratt., R. szaboi Borbás | S | N | Kerényi-Nagy (2012b, 2012a) |
| Rosa kmetiana Borbás | | S | N / SubE | Kerényi-Nagy (2010b, 2012a) |
| Rosa marginata Wallr. | Syn.: R. junctillii Besser | S | N | Kerényi-Nagy (2010b, 2012a) |
| Rosa micrantha Borrer ex Sm. | Syn.: R. hungarica A. Kern., R. polyacantha (Borbás) Heinr. Braun | S | N | Kerényi-Nagy (2010b, 2012a), Kerényi et al. (2011) |
| Rosa pendulina L. | Syn.: R. alpina L. | S | N | Kerényi-Nagy (2010b, 2012a) |
| Rosa pocsii Ker.-Nagy | | S | N | Kerényi-Nagy (2012a) |
| Taxon                | Basionymy / Synonymy / Hybrid parentage | LF | Status | References                          |
|---------------------|-----------------------------------------|----|--------|-------------------------------------|
| *Rosa rubiginosa* L.|                                         | S  | N      | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa rugosa* Thunb.|                                         | S  | Cult / Neo | Kerényi-Nagy (2010b, 2012a)      |
| *Rosa sherardii* Davies |                                      | S  | N      | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa spinosissima* L. |                                       | Syn.: *R. pimpinellifolia* L. | S  | N      | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa stylosa* Desv.|                                        | Syn.: *R. brevistyla* DC., *R. systyla* Bastard | S  | N†     | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa subcanina* (H. Christ) Vuk. |                                      | Bas.: *R. reuteri* Godet f. *subcanina* H. Christ / Syn.: *R. dumalis* Bechst. subsp. *subcanina* (H. Christ) Soó | S  | N      | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa subcollina* (H. Christ) Vuk. |                                      | Bas.: *R. corisifolia* Fr. f. *subcollina* H. Christ / Syn.: *R. caesia* Sm. ex Sow. subsp. *subcollina* (H. Christ) Hesl.-Harr. | S  | N      | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa tomentosa* Sm.|                                         | Syn.: *R. floccida* Déségl. | S  | N      | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa zagrabiensis* Vuk. et Heirn. Braun ex A. Kern. |                                      | Syn.: *R. caryophyllacea* Besser | S  | N / SubE | Kerényi-Nagy (2010b, 2012a), Facsar (1986), Kerényi-Nagy (2010b, 2012a) |
| *Rosa ×barthae* Ker.-Nagy |                                      | *R. zagrabiensis* Vuk. et Heirn. Braun ex A. Kern. × *R. zalana* Wiesb. | S  | N / End / Ntl | Kerényi-Nagy (2012a) |
| *Rosa ×belhensis* Ozanon |                                      | Syn.: *R. ×belgradensis* Pančić / *R. agrestis* Savi × *R. caesia* L. | S  | N / Ntl | Kerényi-Nagy (2012a), Teski et al. (2017) |
| *Rosa ×bigerensis* Duffort ex Rouy |                                      | Syn.: *R. ×dubia* Wolley-Dod / *R. micrantha* Borrer ex Sm. × *R. rubiginosa* L. | S  | N / Ntl | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa ×borhidiana* Ker.-Nagy |                                      | *R. canina* L. × *R. zalana* Wiesb. | S  | N / End / Ntl | Kerényi-Nagy (2012a) |
| *Rosa ×braunii* J. B. Keller |                                      | *R. spinosissima* L. × *R. tomentosa* Sm. | S  | N / SubE / Ntl | Kerényi-Nagy (2012a) |
| *Rosa ×budensis* Borbás |                                      | *R. caesia* Sm. × *R. marginata* Wallr. | S  | N†? / End / Ntl | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa ×collina* Jacq. |                                         | *R. corymbifera* Borkh. × *R. gallica* L. | S  | N / Ntl | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa ×infesta* Kmeť ex A. Kern. |                                      | *R. gallica* L. × *R. inodora* Fr. | S  | N / Ntl | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa ×kosinsciana* Besser |                                      | Ortho.: *R. kosinskiana* Besser / *R. canina* L. × *R. gallica* L. | S  | N / Ntl | Kerényi-Nagy (2010b, 2012a)        |
| *Rosa ×matraensis* Borbás |                                      | *R. arvensis* Huds. × *R. dumalis* Bechst. | S  | N / Ntl | Kerényi-Nagy (2010b, 2012a)        |
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|----------------------------------------|----|--------|------------|
| **Rosa ×polliniana** Spreng. | *R. arvensis* Huds. × *R. gallica* L. | S | N / Ntl | Kerényi-Nagy (2010b, 2012a) |
| **Rosa ×pomazensis** Degen ex Ker.-Nagy | *R. gallica* L. × *R. zalana* Wiesb. | S | N / End / Ntl | Kerényi-Nagy (2010b, 2012a) |
| **Rosa ×reversa** Waldst. et Kit. | *R. pendulina* L. × *R. spinosissima* L. | S | N / Ntl | Kerényi-Nagy (2010b, 2012a) |
| **Rosa ×speciosa** Déségl. | *R. gallica* L. × *R. marginata* Wallr. | S | N / Ntl | Kerényi-Nagy (2010b, 2012a) |
| **Rosa ×spinulifolia** Dematra | *R. pendulina* L. × *R. tomentosa* Sm. | S | N / Ntl | Kerényi-Nagy (2010b, 2012a) |
| **Rosa ×terebinthinacea** Déségl. | *R. gallica* L. × *R. tomentosa* Sm. | S | N / Ntl | Kerényi-Nagy (2010b, 2012a) |
| **Rosa ×victoria-hungarorum** Borbás | *R. dumalis* Bechst. × *R. gallica* L. | S | N / End / Ntl | Kerényi-Nagy (2010b, 2012a) |
| **Ruscus L.** (Asparagaceae) | | | | |
| **Ruscus aculeatus** L. | | DS | N | Prisztner and Borhidi (1967), Kevey and Bartha (2010b) |
| **Ruscus hypoglossum** L. | | DS | N | Lelkes (1999) |
| **Salix L.** nom. cons. (Salicaceae) | | | | |
| **Salix alba** L. subsp. *alba* | | T | N / Cult | Lim *et al.* (2013) |
| **Salix aurita** L. | | S | N | Bodonczi and Havas (1999) |
| **Salix babylonica** L. var. *matsudana* (Koidz.) H. Ohashi et Yonek. | Bas.: *S. matsudana* Koidz. | T | Cult / Neo | |
| **Salix caprea** L. | | T–S | N | |
| **Salix cinerea** L. | | T | N | |
| **Salix eleagnos** Scop. subsp. *eleagnos* | Ortho.: *S. elaegnos* Scop. | S | N | Korda (2010b) |
| *Salix euxina* I. V. Belyaeva | Syn.: *S. incana* Schrank | | | |
| **Salix myrsinifolia** Salisb. subsp. *myrsinifolia* | | S | N† / Nat | Christensen and Jonsell (2005), Belyaeva (2009) |
| **Salix pentandra** L. | | T | N | Bartha (1999g), Király and Bölöni (2004) |
| **Salix purpurea** L. subsp. *purpurea* | | T | N | Gencsi (1999) |
| **Salix rosmarinifolia** L. subsp. *rosmarinifolia* | Syn.: *S. repens* L. var. *angustifolia* Neir. | S | N | |
| **Salix triandra** L. | | T–S | | |
| Taxon                                      | Basionymy / Synonymy / Hybrid parentage | LF | Status | References   |
|-------------------------------------------|----------------------------------------|----|--------|--------------|
| subsp. triandra                          | Syn.: *S. amgdalina* L.                |    | N      |              |
| *Salix viminalis* L.                      |                                        |    | N      |              |
| *Salix xalopecuroides* Tausch             | Syn.: *S. *speciosa* Host / *S. alba* L. × *S. euxina* L. V. Belyaeva × *S. triandra* L. | T-S | Cas / Neo / Ntl |              |
| *Salix xbeckii* Scó                       | *S. rosmarinifolia* L. × *S. viminalis* L. | S   | N / Ntl |              |
| *Salix xbilida* Wulfen                    | Syn.: *S. *xwichurae* A. Kern ex Andersson / *S. eleagnos* Scop. × *S. purpurea* L. | S   | N / Ntl |              |
| *Salix xbolayi* F. Gérard                 | *S. euxina* I. V. Belyaeva × *S. viminalis* L. | T-S | Hung.? / Ntl |              |
| *Salix xcapnoides* A. Kern. et Jos. Kern. ex Beck | *S. cinerea* L. × *S. eleagnos* Scop. | S   | Hung.? / Ntl |              |
| *Salix xcapreola* Jos. Kern. ex Andersson | *S. aurita* L. × *S. caprea* L. | S   | N / Ntl |              |
| *Salix xdichroa* Döll                      | *S. aurita* L. × *S. purpurea* L. | S   | N / Ntl |              |
| *Salix xparviiflora* Host                 | *S. purpurea* L. × *S. rosmarinifolia* L. | S   | N / Ntl |              |
| *Salix xehhartiana* Sm.                   | *S. alba* L. × *S. pentandra* L. | T   | Hung.? / Ntl |              |
| *Salix xerdingeri* A. Kern.              | Syn.: *S. hungarica* A. Kern. / *S. caprea* L. × *S. rosmarinifolia* L. | S   | N / Ntl |              |
| *Salix xerophora* Borbás                  | *S. cinerea* L. × *S. triandra* L. | S   | N / Ntl |              |
| *Salix xerythroclados* Simonk.            | *S. alba* L. × *S. triandra* L. | T-S | N / Ntl |              |
| *Salix xfragilis* L.                      | Syn.: *S. decipiens* Hoffm., *S. *xrubens* Schrank / *S. alba* L. × *S. euxina* I. V. Belyaeva | T   | Cult / Nat / Neo / Ntl | Belyaeva (2009) |
| *Salix xfruticosa* Döll                    | *S. aurita* L. × *S. viminalis* L. | S   | Hung.? / Ntl |              |
| *Salix xgayeri* Polgár                    | Ortho.: *S. *xgayeri* Polgár / *S. purpurea* L. × *S. triandra* L. × *S. viminalis* L. | S   | N / Ntl |              |
| *Salix xholosericea* Willd.               | Syn.: *S. *xsmithiana* auct., non Willd., *S. *xgeninata* J. Forbes / *S. cinerea* L. × *S. viminalis* L. | S   | N / Ntl |              |
| *Salix xirreflexa* Borbás                 | *S. cinerea* L. × *S. rosmarinifolia* L. | S   | N / Ntl |              |
| *Salix xkernerii* Blocki                  | *S. eleagnos* Scop. × *S. viminalis* L. | S   | Hung.? / Ntl |              |
| *Salix xkrausei* Andersson                | *S. aurita* L. × *S. triandra* L. | S   | Hung.? / Ntl |              |
| *Salix xleiophylla* auct., non E. G. et A. Camus | *S. purpurea* L. × *S. triandra* L. | S   | Hung.? / Ntl |              |
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|---------------------------------------|----|--------|------------|
| *Salix ×liegnitzensis* A. Camus et E. G. Camus | *S. caprea* L. × *S. triandra* L. | S | Hung.? / Ntl |  |
| *Salix ×margaretae* Seemen | *S. euxina* I. V. Belyaeva × *S. purpurea* L. | T-S | Hung.? / Ntl |  |
| *Salix ×meyeriana* Rostk. ex Willd. | Syn.: *S. ×tinctoria* Sm. / *S. euxina* I. V. Belyaeva × *S. pentandra* L. | T | Cas / Neo / Ntl |  |
| *Salix ×molliissima* Hoffm. ex Elwert | Syn.: *S. ×sundulata* Ehrh. / *S. triandra* L. × *S. viminalis* L. | S | N / Ntl |  |
| *Salix ×multinervis* Döll | *S. aurita* L. × *S. cinerea* L. | S | N / Ntl |  |
| *Salix ×soleifolia* Vill. | Syn.: *S. ×patula* A. Kern. ex Andersson / *S. caprea* L. × *S. eleagnos* Scop. | S | Hung.? / Ntl |  |
| *Salix ×pendulina* Wender. | Syn.: *S. ×blanda* Andersson, *S. ×elegantissima* K. Koch, *S. ×epulcralis* Simonk. / *S. alba* L. × *S. babylonica* L. × *S. euxina* I. V. Belyaeva | T | Cult / Neo / Ntl | Belyaeva et al. (2018), Kuzovkina (2015) |
| *Salix ×polgari* Soó | Ortho.: *S. ×polgári* Soó / *S. eleagnos* Scop. × *S. rosmarinifolia* L. | S | N / Ntl |  |
| *Salix ×spontederiana* Willd. | Syn.: *S. ×sordida* A. Kern. / *S. cinerea* L. × *S. purpurea* L. | S | N / Ntl |  |
| *Salix ×reichardtii* A. Kern. | *S. caprea* L. × *S. cinerea* L. | S | N / Ntl |  |
| *Salix ×rubra* Huds. | *S. purpurea* L. × *S. viminalis* L. | S | N / Ntl |  |
| *Salix ×schumanniana* Seemen | *S. pentandra* L. × *S. triandra* L. | T-S | Hung.? / Ntl |  |
| *Salix ×smithiana* Willd. | Syn.: *S. ×sericans* Tausch ex A. Kern. / *S. caprea* L. × *S. viminalis* L. | S | N / Ntl |  |
| *Salix ×sonderiana* Junge | *S. aurita* L. × *S. rosmarinifolia* L. | S | Hung.? / Ntl |  |
| *Salix ×velekovskyi* Servit | *S. alba* L. × *S. purpurea* L. | S | Hung.? / Ntl |  |
| *Salix ×wimmeriana* Gren. et Godr. nom. illeg. | *S. caprea* L. × *S. purpurea* L. | S | N / Ntl |  |

*Sambucus* L. (Viburnaceae)  
*Sambucus nigra* L.  
*Sambucus racemosa* L. subsp. *racemosa*  
*Sorbus* L. (Rosaceae)  
*Sorbus aucuparia* L. subsp. *aucuparia*
| Taxon                  | Basionymy / Synonymy / Hybrid parentage | LF | Status     | References                                      |
|-----------------------|----------------------------------------|----|------------|------------------------------------------------|
| *Spiraea* L. (Rosaceae) |                                        |    |            | Bartha (1999h), Bartha et al. (2004), Molnár et al. (2017) |
| *Spiraea crenata* L. subsp. *crenata* | Syn.: *S. crenifolia* C. A. Mey. | S  | N<sup>®</sup> |                                                |
| *Spiraea media* Schmidt subsp. *media* | Syn.: *S. oblongifolia* Waldst. et Kit. | S  | N          | Bölöni and Nagy (1999)                        |
| *Spiraea salicifolia* L. | Syn.: *S. sibirica* Raf. | S  | C / Cult   | Hulják and Kökény (1999)                     |
| *Staphylea* L. (Staphyleaceae) |                                        |    |            |                                                |
| *Staphylea pinnata* L. |                                        | S  | N          |                                                |
| *Staphnolobium* Schott (Fabaceae) |                                        |    |            |                                                |
| *Staphnolobium japonicum* (L.) Schott | Bas.: *Sophora japonica* L. | T  | Cult / Neo | Sousa and Rudd (1993), Pennington et al. (2005) |
| *Syringa* L. (Oleaceae) |                                        |    |            |                                                |
| *Syringa vulgaris* L. |                                        | S  | Cult / Inv / Neo | Zagyvai (2012)                                        |
| *Tamarix* L. (Tamaricaceae) |                                        |    |            |                                                |
| *Tamarix gallica* L. |                                        | S  | Cult / Neo |                                                |
| *Tamarix ramosissima* Ledeb. | Syn.: *T. odessana* Steven ex Bunge, *T. pentandra* Pall. nom. rej. prop. | S  | Cult / Neo |                                                |
| *Tamarix tetrandra* Pall. ex M. Bieb. |                                        | S  | Cult / Neo | Adams et al. (2012)                                |
| *Taxodium* Rich. (Cupressaceae) |                                        |    |            |                                                |
| *Taxodium distichum* (L.) Rich. | Bas.: *Cupressus disticha* L. | T  | Cult / Neo |                                                |
| *Taxus* L. (Taxaceae) |                                        |    |            |                                                |
| *Taxus baccata* L. |                                        | T  | N / Cult / Cas | Timár (1999a)                                      |
| *Thuja* L. (Cupressaceae) |                                        |    |            |                                                |
| *Thuja occidentalis* L. |                                        | T  | Cult / Cas / Neo |                                                |
| *Tilia* L. (Malvaceae) |                                        |    |            |                                                |
| *Tilia cordata* Mill. | Syn.: *T. parvifolia* Ehrh. ex Hoffm., *T. ulmifolia* Scop. | T  | N          |                                                |
| *Tilia platyphyllos* Scop. nom. cons. | Syn.: *T. officinarum* auct. | T  |            |                                                |
| Taxon                  | Basionym / Synonymy / Hybrid parentage                                                                 | Status | LF | References                                      |
|-----------------------|--------------------------------------------------------------------------------------------------------|--------|----|------------------------------------------------|
| *Tilia tomentosa* Moench. | Syn: *T. argentea* DC., *T. petiolaris* Hayne / *T. platyphyllos* subsp. tomentosa *T. tomentosa* Moench. | Cult / Neo / Nil | T  | Pigott and Sell (1995)                        |
| *Tilia* × *europaea* L. | Syn: *T. ×intermedia* DC., *T. ×vulgaris* Hayne / *T. cordata* × *T. platyphyllos* subsp. tomentosa *T. tomentosa* Moench. | Cult / Neo / Nil | T  | Senkov and Kurto (2017)                        |
| *Tilia* × *haynaldiana* Simonk. | Syn: *T. ×fueredensis* Simonk. / *T. platyphyllos* subsp. tomentosa × *T. tomentosa* Moench. | Cult / Neo / Nil | T  | Senkov and Kurto (2017)                        |
| *Tilia* × *juranyiana* Simonk. | Syn: *T. ×hegyesensis* Simonk. / *T. cordata* × *T. tomentosa* Moench. | Cult / Neo / Nil | T  | Senkov and Kurto (2017)                        |
| *Tilmann's *Medik. (Rosaceae) | Bas: *Sorbus glaberrima* Canad. / Syn: *S. terminalis* (L.) Crantz | Neo / Cult / Inv / Neo | T  | Senkov and Kurto (2017)                        |
| *Tilia* sylvestris Simonk. | Syn: *U. effusa* Willd., *U. pedunculata* Foug. / *U. effusa* Willd., *U. pedunculata* Foug. | Cult / Neo / Nil | T  | Senkov and Kurto (2017)                        |
| *Tomlinth's* (Canad.) Semkov et Kurto | Syn: *U. leucpeta* Willd., *U. pedunculata* Foug. nom. inval. / *U. minor* Mill. × *U. carpinifolia* Gled., *U. foliacea* Crantz nom. inval. | Cult / Neo / Inv | T  | Senkov and Kurto (2017)                        |
| *Tomlinth's* (Canad.) Semkov et Kurto | Syn: *U. leucpeta* Willd., *U. pedunculata* Foug. nom. inval. / *U. minor* Mill. × *U. carpinifolia* Gled., *U. foliacea* Crantz nom. inval. | Cult / Neo / Inv | T  | Senkov and Kurto (2017)                        |
| *Tomlinth's* (Canad.) Semkov et Kurto | Syn: *U. leucpeta* Willd., *U. pedunculata* Foug. nom. inval. / *U. minor* Mill. × *U. carpinifolia* Gled., *U. foliacea* Crantz nom. inval. | Cult / Neo / Inv | T  | Senkov and Kurto (2017)                        |
| *Umbus* L. (Ulmaceae) | Subsp. minor / *U. minor* Mill. × *U. carpinifolia* Gled., *U. foliacea* Crantz nom. inval. | Cult / Neo / Inv | T  | Senkov and Kurto (2017)                        |
| *Vaccinium* L. (Ericaceae) | Syn: *U. expensa* (Loudon) Ley / *U. glabra* Huds. × *U. minor* Mill. | Cult / Neo / Inv | T  | Senkov and Kurto (2017)                        |
| *Vaccinium* myrtillus L. | Syn: *U. expensa* (Loudon) Ley / *U. glabra* Huds. × *U. minor* Mill. | Cult / Neo / Inv | T  | Senkov and Kurto (2017)                        |
| Taxon | Basionym / Synonymy / Hybrid parentage | LF | Status | References |
|-------|---------------------------------------|----|--------|------------|
| Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh. | Syn.: Oxycoccus microcarpus Turcz. ex Rupr. | DS | Nat / Neo | Nagy et al. (2017) |
| Vaccinium oxyccocus L. subsp. oxyccocus | Syn.: Oxycoccus palustris Pers., O. quadripetalus Schinz et Thell. | DS | N | Szmorad and Barabás (1999) |
| Vaccinium vitis-idaea L. subsp. vitis-idaea | | DS | N | Hulják (1999a) |
| Vaccinium ×intermedium Ruthe | V. myrtillus L. × V. vitis-idaea L. subsp. vitis-idaea | DS | Hung.? / Ntl | |
| Viburnum L. (Viburnaceae) | | | | |
| Viburnum lantana L. | | S | N | |
| Viburnum opulus L. subsp. opulus | | S | N | |
| Viscum L. (Santalaceae) | | | | |
| Viscum album L. | | E | | Becker (2000) |
| | subsp. album | | N | |
| | subsp. abietis (Wiesb.) Abrom. | Bas.: V. austricum Wiesb. var. abietis Wiesb. / Syn.: V. laxum Boiss. et Reut. subsp. abietis O. Schwarz | N | |
| | subsp. austriacum (Wiesb.) Vollm. | Bas.: V. austricum Wiesb. | | |
| Vitis L. (Vitaceae) | | | | |
| Vitis aestivalis Michx. | Syn.: V. labrusca L. var. aestivalis (Michx.) Regel | L | Cult / Cas / Neo | Facsar and Udvardy (2008) |
| Vitis berlandieri Planch. | | L | Cult / Cas / Neo | Terpó (1962b), Facsar and Udvardy (2008) |
| Vitis cinerea (Engelm.) Millardet | Bas.: V. aestivalis Michx. var. cinerea Engelm. | L | Cult / Cas / Neo | Terpó (1962b), Facsar and Udvardy (2008) |
| Vitis labrusca L. | | L | Cult / Cas / Neo | Terpó (1962b), Facsar and Udvardy (2008), Hegedűs et al. (1966), Terpó (1962b, 1988) |
| Vitis riparia Michx. | Syn.: V. vulpina L. subsp. riparia (Michx.) R. T. Clausen, V. vulpina auct., non L. | L | Cult / Inv / Neo | |
| Vitis rupestris Scheele | | L | Cult / Cas / Neo | |
| Vitis vinifera L. | | L | | |
| Taxon | Basionymy / Synonymy / Hybrid parentage | LF | Status | References |
|-------|----------------------------------------|----|--------|------------|
| subsp. *sylvestris* (Willd.) Hegi<sup>®</sup> | Bas.: *V. vinifera* L. var. *sylvestris* Willd. / Syn.: *V. sylvestris* C. C. Gmel.<sup>®</sup> nom. illeg., nom. cons. prop. | LF | N | Terpó (1962b, 1988), Hagedús et al. (1966), Keye and Bartha (2010c), Bartha et al. (2012) |
| subsp. *vinifera* | Bas.: *V. ×kozmae* Terpó / *V. vinifera* L. subsp. *sylvestris* (Willd.) Hegi × *V. vinifera* L. subsp. *vinifera* | Cult / Cas / Arch | | |
| nothosubsp. *kozmae* (Terpó) Bartha<sup>®</sup> | Bas.: *V. ×kozmae* Terpó / *V. vinifera* L. subsp. *sylvestris* (Willd.) Hegi × *V. vinifera* L. subsp. *vinifera* | Cas / Arch / Nil | | |
| *Vitis* ×*andrasovszkyana* Terpó | Syn.: *V. ×bacoi* Ardenghi, Galasso et Banfi / *V. riparia* Michx. × *V. vinifera* L. subsp. *vinifera* | L | Cult / Neo / Art | Ardenghi et al. (2015), Terpó (1988) |
| *Vitis* ×*instabilis* Ardenghi, Galasso, Banfi et Lastrucci | *V. riparia* Michx. × *V. rupestris* Scheele | L | Cult / Neo / Art | Ardenghi et al. (2014) |
| *Vitis* ×*skoberi* Ardenghi, Galasso, Banfi et Lastrucci | *V. berlandieri* Planch. × *V. riparia* Michx. | L | Cult / Neo / Art | Ardenghi et al. (2014) |
| *Vitis* ×*novae-angliae* Fernald<sup>®</sup> | *V. labrusca* L. × *V. riparia* Michx. | L | Hung.? / Nil | |
| *Vitis* ×*rathayana* Terpó | *V. riparia* Michx. × *V. vinifera* L. subsp. *sylvestris* (Willd.) Hegi | L | Cas / Neo / Nil | Terpó (1988) |
| *Vitis* ×*ruggeri* Ardenghi, Galasso, Banfi et Lastrucci | *V. berlandieri* Planch. × *V. rupestris* Scheele | L | Cult / Neo / Art | Ardenghi et al. (2014) |
| *Yucca* L. (Asparagaceae) | | | | |
| *Yucca filamentosa* L. | DS | Cult / Nat / Neo | | |

Notes

1 The taxon *Abies pectinata* Poir. (Encycl. [J. Lamarck et al.] 6(2): 523, 1805) was described by Poiret three weeks earlier (!), which is synonymous with *Tsuga canadenis* (L.) Carrière, so *A. pectinata* (Lam.) DC. (Fl. Franc. [de Candolle et Lamarck], ed. 3, 3: 276, 1805) is homonym.
2 Its taxonomic rank is questionable.
3 *Acer campestre* L. subsp. *marsicum* (Guss.) Hayek (Bas.: *A. marsicum* Guss.) has questionable infraspecific taxonomic rank and even more so *A. c. L. var. hebecarpum* (DC.) Pax (Bas.: *A. c. L. var. hebecarpum* DC.) and *A. c. L. subsp. leiocarpum* (Opiz) Schwer. (Bas.: *A. leiocarpum* Opiz) (Gelderen et al. 1994).
4 The gender of the genus name was treated as masculine in accordance with tradition (ICN Art. 62.2(c)., Turland et al. 2018).
5 Previously, subspecies of *Betula pubescens* Ehrh. were described, therefore the taxon lives in Hungary was identified as *Betula pubescens* Ehrh. subsp. *pubescens*. This taxon is now discussed at a lower rank (var. *pubescens*) (Ashburner and McAllister 2016).
6 This is a later homonym of *Mespilus coccinea* (L.) Marshall (Arbust. Amer. 87, 1875).
7 According to Gutermann (2011) the original spelling in the protologue is *Crataegus laevigata*. According to him this is not an orthographical or typographical error, therefore, the species name must not be corrected to "laevigata". However, a closer look at the original description (Poir., Encycl. [J. Lamarck et al.] 4(2): 439., 1798) shows that "laevigata" is included as "Crataegus" occurs in the text.
8 Kerényi-Nagy (2015) recognised two subspecies without occurrence data in Hungary: 1. subsp. laevigata, 2. subsp. vulgaris (H. J. Roemer) Baranec.

9 Kerényi-Nagy (2010a, 2015) also considered the taxon C. brevispina Kunze (Syn.: C. monogyna Jacq. var. brevispina (Kunze) P. D. Sell) to be an independent (micro)species within Crataegus monogyna agg., which has a few occurrences in Hungary. A hybrid with C. monogyna Jacq. referred as C. ×lavarkae (Pénzes) Ker.-Nagy, a hybrid with C. rhipidophylla Gand. (Syn.: C. rosaformis Janka) referred as C. ×monostevni Pénzes ex Ker.-Nagy, a hybrid with C. laevigata (Poir.) DC. referred as C. ×oxystevni Pénzes ex Ker.-Nagy.

10 Within this aggregate Kerényi-Nagy (2010a, 2015) also discussed the taxon Crataegus ovalis Kit. at the species rank, their hybrid with C. lindmanii Hrabětová referred as C. ×corniculata Hrabětová ex Ker.-Nagy, a hybrid with C. monogyna Jacq. referred as C. ×radnghi-gyarmatii Ker.-Nagy and a hybrid with C. laevigata (Poir.) DC. referred as C. ×sudetica (Hrabětová) Ker.-Nagy.

11 Kerényi-Nagy (2015) reported two subspecies of Crataegus rosaformis Janka from Hungary: 1. subsp. rosaformis, 2. subsp. curvisepala (Lindm.) Ker.-Nagy.

12 Presumably Crataegus nigra Waldst. et Kit. hybridises with C. laevigata (Poir.) DC., but this hybrid has not been found yet.

13 Baranec (1986) and Kerényi-Nagy (2015) developed this hybrid as Crataegus palmstruchii Lindm.

14 Nothosubsp. baranecii Ker.-Nagy. occurs in Hungary according to Kerényi-Nagy (2015).

15 According to Kerényi-Nagy (2015) it is a triple hybrid: C. rosaformis Janka × C. lindmanii Hrabětová × C. laevigata (Poir.) DC.

16 Kerényi-Nagy (2015) recognised in Hungary three nothosubspecies without specific occurrence data: 1. nothosubsp. krynstyla, 2. nothosubsp. baksagana Pénzes ex Ker.-Nagy, 3. nothosubsp. csapodyae (Pénzes) Ker.-Nagy.

17 This species is at the beginning of the invasion in Hungary (see detailed Bartha 2020).

18 It is not distinguished from the species Fallopia baldschuanica (Regel) Holub in Hungary.

19 It is not distinguished from the species Fallopia aubertii (L. Henry) Holub in Hungary.

20 Nothosubspecies need to be named and described.

21 The author of this genus is not Linnaeus (Gleditsia L., Sp. Pl. 2: 1056, 1753), because he cited one year later J. Clayton as the author of the treatment of Gleditsia (Gen. Pl. ed. 5. 476, 1754).

22 Hedera hibernica Poit. was reported as invasive species in Hungary previously (Udvardy and Bényeíné Himmer 1999).

23 This species is at the beginning of the invasion in Hungary (see detailed Bartha 2020).

24 There are other subspecies and cultivars in Hungary in cultivation.

25 The ranking of infraspecific taxa is different. If the division into subspecies is acceptable, there is a Juniperus communis L. subsp. communis in Hungary.

26 This taxon is an unstabilised hybrid and it is not considered as established species.

27 It is believed that the subspecies Laburnum anagyroides Medik. subsp. alschingeri (Vis.) Hayek (Bas.: Cytisus alschingeri Vis., Sem. Hort. Patau. 3, 1840) living in the South-Eastern Alps occurs in Hungary, but this assumption should be checked.

28 The ranking of infraspecific taxa is different. If the division into subspecies is acceptable, there is a Larix decidua Mill. subsp. decidua and L. d. Mill. subsp. carpathica (Domin) Silba (Bas.: L. d. Mill. var. carpathica Domin) in Hungary planted.
29 Nelson (1980) discussed the correct name of this hybrid.
30 When *Malus domestica* Borkh. (1803) was proposed as a replacement name for *Pyrus malus* L. (1753), it was superfluous for *Malus communis* Desf. (1798). Qian et al. (2010) proposal to treat the name *M. domestica* as a new combination and to conserve it (against *M. pumila*, *M. communis*, *M. frutescens*, and *Pyrus dioica*) was approved at the International Botanical Congress (Turland et al. 2017).
31 Czarna described this nothospecies (Czarna et al. 2013), type herbarium is stated but no details of type specimen provided (ICN Art. 40.3, Note 2, Turland et al. 2018).
32 The hybrid does not seem to be known in cultivation and the identity of the wild plants requires confirmation (Stace et al. 2016).
33 *Paulownia* hybrids of unknown origin are also planted in Hungary.
34 Previously other subspecies were introduced to Hungary, but now none of them remains.
35 The subspecies rank of *Pinus sylvestris* L. subsp. *pannonica* (Schott) Soó (Bas.: *P. s. L.* “geographical race” *pannonica* Schott, Forstw. Centralblatt 29: 212, 1907) is questionable, this taxon should be considered as *P. s. L. var. sylvestris*.
36 The origin of this taxon is controversial (see Pilotti et al. 2009, Vigouroux et al. 1997 versus Grimm and Denk 2010).
37 In the case of *P. deltoides* Marshall (Arbust. Amer. 106, 1785), Marshall referred to W. Bartram’s Catalogue (1783), which lists the name *P. deltoid* (nom. nud.).
38 This species is at the beginning of the invasion in Hungary (see detailed Bartha 2020).
39 In Hungary cv. Pyramidalis and cv. Thevestina cultivars are also planted.
40 In Hungary cv. Meggylevelű cultivar is planted.
41 The valid name is *Populus × canadensis* Moench but in the 1950s the International Poplar Committee of the F.A.O. has substituted this name by *P. ×euramericana* (Dode) Guinier (Boom 1956), which is still used in Hungary to this day. (It should be noted that this specioid has nothing to do with Canada, but the species name “euramericana” is a good expression of the place of origin of the two parent species.)
42 The valid name is *Populus ×generosa* A. Henry but in the 1950s the International Poplar Committee of the F.A.O. has substituted this name by *P. ×interamericana* Brockh., which is still used in Hungary to this day. (The species name “interamericana” is a good expression of the place of origin of the two parent species, while generosus = noble species name is misleading because not only this specioid is considered a “noble poplar”.)
43 In Hungary cv. Favorit cultivar is planted.
44 The taxon is no longer divided into subspecies. The previously accepted subspecies *Prunus cerasus* L. subsp. *acida* (Ehrh.) Schübl. et G. Martens (Bas.: *P. acida* Ehrh., Beitr. Naturk. [Ehrhart] 5: 162, 1790) corresponds to the hybrid form *P. ×gondouinii* (Poit. et Turpin) Rehder (Tavaud et al. 2004).
45 Previously several subspecies have been discussed, which today can only be evaluated at the variety rank. In Hungary *Prunus serotina* Ehrh. var. *serotina* occurs.
46 The *Prunus spinosa* L. subsp. *dasyphylla* (Schur) Domín taxon should be discussed in its original rank: *P. s. L. var. dasyphylla* Schur.
47 It needs to be clarified which subspecies occurs in Hungary.
48 This species is at the beginning of the invasion in Hungary (see detailed Bartha 2020).
BARTHA, D.

49 Barina and Király (2014) raises doubts about taxonomical status of Pyrus magyarica Terpó. The terminological status of Pyrus magyarica as it has no doubt, the lack of type material. According to them, P. magyarica cannot be clearly defined and re-described; thus they propose to leave off the use of the name P. magyarica as it has no clear content. It should be noted that the herbaria contain only leafy shoot specimens, without fruits (drawn at most), although the most important species character is the deciduous calyx. It is necessary to investigate whether P. magyarica Terpó is different from P. cordata Desv.

50 In addition to Pyrus nivalis Jacq. Terpó (1960), the taxon Pyrus salviifolia DC. was recognised as an independent species and hypothesised that P. × austriaca A. Kern. of hybrid origin (P. nivalis Jacq. × P. pyraster (L.) Burgsd. or P. communis L.). Other hybrids described by him: P. × hazslinszkyana Terpó (Pyrus pyraster (L.) Burgsd. × P. salviifolia DC.), P. × praenorica Terpó (Pyrus × austriaca Kern. × P. pyraster (L.) Burgsd.), P. × transdanubica Terpó (P. pyraster (L.) Burgsd. × P. × austriaca A. Kern.). The fate of the Pyrus holo-types of Terpó is unknown.

51 It should be examined whether subsp. nivalis and subsp. slavonica (Kit.) Bartha occurs in Hungary.

52 The Pyrus taxa described by Terpó are without type material.

53 By Terpó (1960) as P. amygdaliformis Vill.

54 Quercus dalechampii Ten. (Ind. Sem. Hort. Neap. 15, 1830) is an oak species recognised by numerous authors, but it has an inconsistent taxonomical use depending on any particular author’s concept.Typification of Quercus dalechampii from Di Pietro et al. (2012) made this name applicable for Central European populations traditionally rooted as Q. dalechampii (Wenzel) J. et K. 2012), the valid name is therefore Q. area (Wenzel) J. et K. (Eich. Eur. Orient. t. 4, 1858).

55 Mátyás (1973) distinguished five subspecies: 1. subsp. robur, 2. subsp. slavonica (Gáyer) Mátyás, 3. subsp. cuneifolia (Vukot.) Jáv., 4. subsp. asterotricha (Borbás et Csató) Mátyás, subsp. pilosa (Schur) Jáv. The last three taxa are distinguished on the hairiness of the leaves, they do not have an independent distribution area, and therefore, they can only be recognised at a lower rank than the subspecies.

56 The placement of Mátyás (1970, 1973) to a subspecies rank is disputed, but it has an independent area of distribution between the Drava and the Savo, and its different morphological characters apply to the trunk, bark, branches, and twigs.

57 In Hungary the var. maxima Marshall taxon is planted.

58 Incorrect spelling for TPL.

59 IPNI, TPL and POWO incorrectly refer to it as "szechenyana", originally used in the protologue (Borbás, Erdész. Lapok 25(12): 993, 1886) "széchenyiana".

60 Although Linnaeus (Sp. Pl. 1: 193, 1753) treated Rhamnus as masculine and the genus name has -us case ending, its gender is feminine (ICN Art. 62.1. Ex. 1., Turland et al. 2018).

61 The hybrid – without nothoname – was first published by Zoltán Kárpáti (Kárpáti 1932), then his short communication was presented by Rezső Soó (Soó 1933) with the ex type of the hybrid from Kárpáti. Later, Kárpáti (1934) presented the hybrid in detail together with the name and infraspecific units.

62 Balsamopteris L. Cent. Pl. II. 14, 1756 has to be reinstated as the correct name, R. balsamopteris L. (Bals. Torrey Bot. Club 190(3): 81, 1892) (Bas. Datisca balsamopteris L. Sp. Pl. 107, 1753)
66 kerényi-nagy (2010b, 2012a) recognised it as a valid name.

67 kerényi (2012c) considers this taxon to be native.

68 previously, two subspecies [rosa gallica l. subsp. gallica and r. g. l. subsp. leiostyla (gelmi) sóó (bas.: r. leiostyla gelmi)] were reported from hungary, which are to be discussed at a lower rank today.

69 kerényi-nagy (2010b, 2012a) recognised it as a valid name.

70 kerényi-nagy (2010b, 2012a) recognised it as a valid name.

71 kerényi-nagy (2010b, 2012a) reported two subspecies [rosa spinosissima l. subsp. spinosissima and r. s. l. subsp. pimpinellifolia (l.) sóó] whose taxonomic ranks are questionable.

72 kerényi-nagy (2010b, 2012a) recognised it as a valid name.

73 priszter and borhidi (1967) distinguished a subspecies ruscus aculeatus l. subsp. angustifolius (boiss.) borhidi et priszter (bas.: r. a. l. var. angustifolius boiss.) whose taxonomic rank is questionable due to the lack of an independent distribution area.

74 several cultivars are grown in hungary (see kuzovkina 2015).

75 in hungary the cv. tortuosa is planted.

76 the name salix fragilis l. has been used for a species distributed from british isles throughout europe to transcaucasia and northern turkey for quite a long time. in much of this area it has been introduced by cultivation and subsequently naturalised (christensen and jonsell2005). because s. fragilis l. is a rejected name (nom. utique rej.), belyaeva (2009) described a willow taxon with breaking branchlets, greenish branches, glabrous buds and above glabrous juvenile leaves as s. euxina l. v. belyaeva and reported as native only to the mountains of asia minor and southern georgia. s. euxina l. v. belyaeva can only be considered as established in europe, which often hybridises with s. alba l. (see s. ×fragilis l.).

77 the subspecies previously indicated for hungary [salix triandra l. subsp. discolor arcang, (syn.: s. t. l. subsp. amygdaLina) l. schübl. et g. martens] is now considered only as a synonym.

78 non salix ×friesiana andersson (s. repens l. × s. viminalis l.).

79 non salix ×doniana sm. (s. purpurea l. × s. repens l.).

80 non salix ×kischiana zahn (s. caprea l. × s. repens l.).

81 salix fragilis l. (sp. pl. 2: 1017a, 1753) is a superfluous name. the specimen in the linnaeus herbarium, to which linnaeus linked his description is original material but is a specimen of salix pentandra l. christensen and jonsell (2005) proposed to conserve the name salix fragilis l. (nom. cons.) with a conserved type, and a hybrid of salix alba l. and s. fragilis l. using the name s. ×rubens schrank (baier. fl. 1: 226–227, 1789). belyaeva (2009) lectotypified salix ×fragilis l., therefore s. decipiens hoffm. (hist. salic. ill. 2: 9, 1791) and s. ×rubens schrank are confirmed as synonyms of s. ×fragilis l. so salix ×fragilis l. is a hybrid of s. alba l. and s. euxina l. v. belyaeva (see below).

82 non salix ×subsericea döll (s. cinerea l. × s. repens l.).

83 many cultivars of nothospecies “weeping willow” are grown in hungary (see detailed in belyaeva et al. 2018).

84 non salix ×subalpina forbes (s. elaagnos scop. × s. repens l.).

85 non salix ×ambigua ehrh. (syn.: s. ×spathula willd.) (s. aurita l. × s. repens l.).
Possibly a later homonym of the fossil name *Salix winnemiana* Goepf. (Tert. Fl. Schossnitz 26, 1855), the date of publication is no exact.

87 The genus *Sorbus* s.l. was divided into several genera (e.g. *Aria*, *Cormus*, *Hedlundia*, *Karpatiosorbus*, *Tornialis*) by Sennikov and Kurtto (2017), which is also followed by this checklist.

88 In the last twenty years, surviving specimens have been found in several cemeteries of the Hungarian Great Plain (Molnár et al. 2017).

89 Previously reported subspecies (*Tilia platyphyllos* Scop. subsp. *pseudorubra* C. K. Schneid., *T. p.* Scop. subsp. *cordifolia* (Besser) C. K. Schneid., *T. p.* Scop. subsp. *rubra* (DC.) Soó in Soó et Jáv. (Bas.: *T. rubra* DC.), *T. p.* Scop. subsp. *caucasica* (Rupr.) V. Engl. (Bas.: *T. caucasica* Rupr.)) do not have an independent distribution area and should therefore be assessed at a lower taxonomic rank. The last two taxa were only planted in Hungary.

90 IPNI, TPL and POWO erroneously include *furedensis* instead of *fueredensis* (Ortho.: *füredensis*).

91 IPNI, TPL and POWO erroneously include *heggesensis* instead of *hegyesensis*.

92 English elm (*Ulmus procera* Salisb., Prodr. Stirp. Chap. Allerton 391, 1796) contrary to previous data (e.g. Börcsök 2004) does not occur in Hungary (Gil et al. 2004), the taxon believed to be this species is *U. minor* Mill. var. *vulgaris* (Aiton) R. H. Richens (Taxon 26(5–6): 583, 1977) (Bas.: *U. campestris* L. var. *vulgaris* Aiton, Hort. Kew. 1: 319, 1789) (Richens 1977).

93 The name *Ulmus canescens* Melville was not validly published by Melville (Kew Bull. 12(3): 499, 1958), because three gatherings, from the same place but on different dates, were cited as holotype (ICN Arts. 8. and 40, Turland et al. 2018). Currently, *Ulmus canescens* Melville is treated at subspecific rank under the invalid combination *U. minor* Mill. subsp. *canescens* (Melville) Browicz et Ziel. (Arbor. Kórnickie 22: 320, 1977). Bartolucci and Galasso (2019) proposed a new subspecies based on Melville's description and designated a single specimen as holotype within the original material cited by Melville (ICN Art. 46.4, Turland et al. 2018).

94 In Hungary the tree shape variety (var. *arborea* Litw.) is planted. Green (1964) discarded this variety name, and nowadays they do not distinguish infraspecific units within this species.

95 The name *Vitis sylvestris* C. C. Gmel. (Fl. Bad. 1: 543, 1805) is illegitimate, being a later homonym of *V. sylvestris* W. Bartram (Med. Repos. ser. 2, 1: 21, 23, 1804) (ICN Art. 53.1, Turland et al. 2018). [W. Bartram published *V. americana*, *V. occidentalis* and *V. sylvestris* as alternative names for what then known as common blue grape or bunch grape. *Vitis sylvestris* W. Bartram should be considered a synonym for *V. vulpina* L. (Sp. Pl. 1: 203, 1753)]. Therefore, the name of Hegi (*V. vinifera* L. subsp. *sylvestris* Hegi, Ill. Fl. Mitt.-Eur. 5(1): 364; 1925) has to be regarded not as a new combination but as a new name at a new rank (ICN Art. 58.1, Turland et al. 2018). Nowadays Ferrer-Gallego et al. (2019) proposed to conserve the name *Vitis sylvestris* C. C. Gmel. against *V. sylvestris* W. Bartram, and a neotype has been selected according to Art. 9.8 of the ICN (Turland et al. 2018). It is questionable that according to Ardenghi et al. (2014) the spelling of Hegi (as subsp. *silvestris*) should be accepted. It would be more fortunate to regard *V. vinifera* L. (Sp. Pl. 1: 202, 1753) as a specioid, *V. sylvestris* C. C. Gmel. as a species, and to consider the latter not as a wild subspecies (variety) of the former, but as an independent species. The occurrence of *V. sylvestris* in the Carpathian Basin can be traced back to the Neolithic, based on archeobotanical evidence (Gyulai and Gyulai 2009).

Designated here, comb. et stat. nov. While Terpó (1988, p. 11) discussed *Vitis sylvestris* C. C. Gmel. and *V. vinifera* L. at the species rank, due to their current perception as a subspecies, it is necessary to give their hybrid a new name combination and taxonomic rank (ICN Arts. 58.1, H.2.1. and H.3.1, Turland et al. 2018).

97 Terpó (1988, p. 13) recognised three subspecies of *Vitis sylvestris* C. C. Gmel. based on shoot hairiness: 1. subsp. *sylvestris*, 2. subsp. *trichophylla* (Kolen.) Vassilcz., 3. subsp. *pontii* (Iw. Kow.) Terpó, which taxonomic rank is highly questionable.

98 This nothospecies is presumed hybrid between *Vitis labrusca* L. and *V. riparia* Michx.