A Differentiation-dependent Splice Variant of Myosin Light Chain Kinase, MLCK1, Regulates Epithelial Tight Junction Permeability*

Received for publication, August 3, 2004, and in revised form, October 13, 2004
Published, JBC Papers in Press, October 26, 2004, DOI 10.1074/jbc.M408822200

Daniel R. Clayburgh‡‡, Shari Rosen‡, Edwina D. Witkowski‡, Fengjun Wang‡‡, Stephanie Blair‡, Steven Dudeki†, Joe G. N. Garcia‖, John C. Alverdy**, and Jerrold R. Turner††‡‡

From the ‡Department of Pathology, The University of Chicago, Chicago, Illinois 60637, the ††Department of Surgery, The University of Chicago, Chicago, Illinois 60637, the ‡‡Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongquig 400038, China, and the ‖Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland 21224

Activation of Na⁺-nutrient cotransport leads to increased tight junction permeability in intestinal absorptive (villus) enterocytes. This regulation requires myosin II regulatory light chain (MLC) phosphorylation mediated by MLCK kinase (MLCK). We examined the spatiotemporal segregation of MLCK isoform function and expression along the crypt-villus axis and found that long MLCK, which is expressed as two alternatively spliced isoforms, accounts for 97 ± 4% of MLC kinase activity in interphase intestinal epithelial cells. Expression of the MLCK1 isoform is limited to well differentiated enterocytes, both in vitro and in vivo, and this expression correlates closely with development of Na⁺-nutrient cotransport-dependent tight junction regulation. Consistent with this role, MLCK1 is localized to the perijunctional actomyosin ring. Furthermore, specific knockdown of MLCK1 using siRNA reduced tight junction permeability in monolayers with active Na⁺-glucose cotransport, confirming a functional role for MLCK1. These results demonstrate unique physiologically relevant patterns of expression and subcellular localization for long MLCK isoforms and show that MLCK1 is the isoform responsible for tight junction regulation in absorptive enterocytes.

The intestinal epithelial barrier, composed of the cell membranes and tight junctions that seal the paracellular space between adjacent cells, is critical for protecting the interstitium from the harsh luminal environment. However, this barrier is not static; its permeability characteristics change over the course of minutes, in response to luminal Na⁺ and glucose (1) or bacteria (2), or days, as enterocytes differentiate and migrate from crypt to villus (3, 4). The crypt-villus axis exhibits a large gradient in tight junction permeability; the secretory crypt area contains large pores (50–60Å), whereas the absorbing tip of the villus contains small pores (<5 Å) (4). These small pores at the villus tip also exhibit added functionality, because they are able to increase in number and thus increase the permeability of the epithelial barrier in response to Na⁺ and glucose (4–6). This acute regulation of paracellular permeability at the villus tip in response to Na⁺ and glucose is controlled by activation of the Na⁺-glucose cotransporter SGLT1, triggering a signaling pathway that leads to myosin II regulatory light chain (MLC) phosphorylation, contraction of the perijunctional actomyosin ring, and increased tight junction permeability (1, 7). Numerous kinases are known to phosphorylate MLC and thus have the potential to regulate this process, including myosin light chain kinase (MLCK) (8), Rho kinase (9), ZIP kinase (10), and citron kinase (11). Of these kinases, only specific inhibition of MLCK has been shown to block SGLT1-mediated tight junction regulation (1, 12).

The MLCK gene expressed in smooth muscle and nonmuscle cells gives rise to multiple mRNA species, using three different transcriptional promoters as well as alternative splicing. In smooth muscle, the 130-kDa smooth muscle MLCK (short MLCK) and a carboxyl-terminal fragment of MLCK, telokin, are produced as separate mRNA transcripts. In contrast, a 220-kDa MLCK (long MLCK) containing a 922-amino acid amino-terminal extension is expressed in many nonmuscle cells, including embryonic tissues and endothelium (13, 14). Long MLCK is expressed as at least five different splice variants that all contain the amino-terminal extension; these variants are distinguished by the presence or absence of short (<70 amino acids) regions as a result of alternative mRNA splicing (15). Long MLCK isoform 2, or MLCK2, is the predominant isoform expressed and differs from the full-length long MLCK isoform, MLCK1, by the absence of a 207-base pair sequence from nucleotides 1428–1634 (15). The corresponding 69-amino acid region contains Src kinase phosphorylation sites and a potential SH2-binding domain (15). In vitro enzymatic assays have shown that phosphorylation by Src kinase increases the V_{max} of MLCK1, whereas the activity of unphosphorylated MLCK1 is similar to MLCK2 (16).

Despite the functional specialization of MLCK1, there have been no reports of differential subcellular or tissue distributions of long MLCK isoforms 1 and 2 that may explain the functional significance, at the cellular level, of the biochemical differences between these splice variants. Moreover, no studies have examined MLCK isoforms in intestinal epithelium, where

* This work was supported by National Institutes of Health Grant R01DK61931 (to J. R. T.), a Senior Investigator Award from the Crohn’s and Colitis Foundation of America (to J. R. T.), and resources provided by The University of Chicago Digestive Disease Center P30 DK42086 and University of Chicago Cancer Center P30 CA14599. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Predoctoral fellow of the National Institutes of Health (The University of Chicago Medical Scientist Training Program Grant T32 GM07281).

‡‡ To whom correspondence should be addressed: Dept. of Pathology, The University of Chicago, 5841 South Maryland Ave., MC 1089, Chicago, IL 60637. Tel.: 773-702-2433; Fax: 773-834-5251; E-mail: jturner@bsd.uchicago.edu.

†† To whom correspondence should be addressed: Dept. of Pathology, The University of Chicago, 5841 South Maryland Ave., MC 1089, Chicago, IL 60637. Tel.: 773-702-2433; Fax: 773-834-5251; E-mail: jturner@bsd.uchicago.edu.

‡‡‡ To whom correspondence should be addressed: Dept. of Pathology, The University of Chicago, 5841 South Maryland Ave., MC 1089, Chicago, IL 60637. Tel.: 773-702-2433; Fax: 773-834-5251; E-mail: jturner@bsd.uchicago.edu.

††† To whom correspondence should be addressed: Dept. of Pathology, The University of Chicago, 5841 South Maryland Ave., MC 1089, Chicago, IL 60637. Tel.: 773-702-2433; Fax: 773-834-5251; E-mail: jturner@bsd.uchicago.edu.

1 The abbreviations used are: MLC, myosin II regulatory light chain; MLCK, myosin light chain kinase; TER, transepithelial resistance; PIK, membrane permeant inhibitor of myosin light chain kinase; RT, reverse transcriptase; MOPS, 3-(N-morpholino)propanesulfonic acid.
there is spatial segregation of MLCK-dependent processes such as Na\(^+\)-nutrient cotransport-dependent barrier regulation. Analysis of MLCK isoforms in differentiating human intestinal epithelium using laser capture microdissection and immunofluorescence microscopy with MLCK isoform-specific antisera as well as in vitro functional analyses have allowed us to document spatiotemporal regulation of MLCK isoform expression. The data show that long MLCK represents the principal myosin light chain kinase of intestinal enterocytes and is responsible for Na\(^+\)-nutrient cotransport-dependent tight junction regulation. Within the intestinal epithelium, only MLCK1 and MLCK2 isoforms are expressed, and MLCK1 expression is limited to villus enterocytes, where it is concentrated within the perijunctional actomyosin ring. MLCK1 expression correlates with the development of the ability to increase tight junction permeability in response to Na\(^+\)-glucose cotransport, and selective knockdown of MLCK1 decreases tight junction permeability. These data demonstrate a unique function and localization for a single splice variant of MLCK within the intestinal epithelium, implying that the short sequences unique to individual MLCK splice variants confer these distinct functional and spatial properties.

MATERIALS AND METHODS

Cell Culture—Caco-2 BE cells (17) expressing the intestinal Na\(^+\)-glucose cotransporter SGLT1 (18) were plated on Transwell semipermeable supports (Corning-Costar, Acton, MA) as described previously (1). For RT-PCR, monolayers were scraped into TRIzol (Invitrogen). RNA was extracted with chloroform, precipitated with isopropanol, and resuspended in diethyl pyrocarbonate-treated water.

Electrophysiology—Electrophysiological measurements were made with agar bridges and Ag-AgCl1 cm electrode tips as previously described (1). Briefly, monolayers were transferred from culture medium to Hank's balanced salt solution (HBSS) and incubated at 37°C in Ussing chamber apparatus (World Precision Instruments). Potentials were measured relative to a saturated calomel electrode. Short-circuit current, and the transepithelial resistance (TER) was determined using Ohm's law. TER values are expressed as percentage change from control. Epithelia were grown to confluence on 0.2-μm polycarbonate filters (Nuclepore Corp., Pleasanton, CA). Basolateral media were exchanged three times with fresh media 24 h before application of a 50-μM amiloride (Calbiochem) was also included. Potential differences were measured before and after application of a 50-μM amiloride and a 10 μM forskolin.

Immunofluorescent Microscopy—Immunostaining was performed as previously described (20). Briefly, 5-μm frozen sections were collected on coated slides, fixed in 1% paraformaldehyde, washed thrice with phosphate-buffered saline, and cells were immunostained using affinity-purified anti-MCK and appropriate secondary antibodies. The specific antibody titers. The anti-peptide antiserum was purified through an affinity gel (Affi-Gel 10; Bio-Rad) coupling with the peptide-keyhole limpet hemocyanin conjugate emulsified in complete Freund's adjuvant and boosted with the same peptide-keyhole limpet hemocyanin conjugate emulsified in incomplete Freund's adjuvant at 3-week intervals (Zymed Laboratories Inc., South San Francisco, CA). A peptide-specific enzyme-linked immunosorbent assay was used to test bleed serum for specific antibody titers. The anti-antibody antiserum was purified using an affinity gel (Affi-Gel 10; Bio-Rad) coupled with the peptide and the antibodies bound specifically to the peptides were eluted with 3 M KSCN and dialyzed exhaustively against phosphate-buffered saline.

Immunoblotting—Human endothelial cell MLCK1 and MLCK2 were prepared using the Bac-to-Bac baculovirus expression system (Invitrogen) as described previously (16). For large scale expression and purification, SF9 cells were infected with baculovirus (multiplicity of infection = 1), and the cells producing human endothelial MLCK1 and MLCK2 were harvested. The recombinant long MLCK1 or MLCK2 proteins, 0.5 μg each, or Caco-2 extracts, 10 μg, were separated by SDS-PAGE and transferred to polyvinylidene difluoride membranes. Duplicate blots were probed with affinity-purified anti-MLCK1-specific rabbit antibody (10 μg/ml) or K36 pan-MLCK monoclonal antibody (10 μg/ml). These were detected with appropriate horseradish peroxidase-conjugated secondary antisera (Cell Signaling, Beverly, MA), and the blot was visualized by enhanced chemiluminescence as described previously (1). The bands were analyzed using the University of Chicago DNA Sequencing Facility using primers 1–10. Long MLCK from normal human intestine was amplified by a human intestinal epithelial cDNA library generated by cloning poly(DT) primed cDNA into the HybZIP bacteriophage vector followed by amplification and in vivo mass excision to generate a two-hybrid library in PAD-GAL4 (19). Amplification used primers sets 1 + 2, 3 + 4, 5 + 6, 7 + 8, and 9 + 10 as described above. Primers 4–6 were used for sequencing to generate a 1-kb fragment of long MLCK sequence, which was used for BLAST searches.

Laser Capture Microdissection—Surprisingly excised portions of normal human jejunum were embedded in optimal cutting temperature media and snap frozen within minutes of resection. The protocol for use of human tissues was approved by the Institutional Review Board of The University of Chicago. Frozen sections of normal human jejunum (10 μm) were cut on membrane-based laser microdissection slides (Leica Microsystems, Wetzlar, Germany) and jejunal epithelial cells from villus tip, crypt, and crypt were harvested onto a slide, and the cells were cut and delivered to a microdissection system (Leica). mRNA was isolated from the samples using a Quick Prep micro mRNA purification kit (Amersham Biosciences).

RT-PCR Quantitation of mRNA Levels—Quantitation of MLCK1 and MLCK2 mRNA levels from Caco-2 cells was performed using primers 3 and 4 as described above. cDNA obtained from laser microdissection was used for the amplification of MLCK1, MLCK2, BRK, and keratin 8. For amplification of MLCK1 and keratin 8 primers, 10 cycles of amplification were used within the linear range of amplification for each of the primer sets under the conditions used. MLCK2 was amplified with primers 3 and 4 using an annealing temperature of 66 °C. MLCK1 was amplified with primers ACCCCCGTGGAGGACAGC and ACTTCAGGGGTTGAGTT and an annealing temperature of 58 °C. BRK was amplified with primers ACAGGCCCTAAGGACAGC and TTGGATGAAATCTCAGCACC and an annealing temperature of 64 °C. All of the reactions were separated on a 1% agarose gel and photographed with a FluorChem 8800 (AlphaInnotech, San Leandro, CA), and band intensity was measured using ImageQuant software (Amersham Biosciences).
Regulation and Function of MLCK1

RESULTS

Na⁺-Glucose Cotransport-dependent Tight Junction Regulation

Na⁺-Glucose Cotransport-dependent Tight Junction Regulation—Na⁺-glucose cotransport-dependent tight junction regulation requires MLCK phosphorylation, which is enhanced after activation of Na⁺-glucose cotransport (1). Several kinases can phosphorylate MLC, including MLCK (8), Rho kinase (9), citron kinase (11), and ZIP kinase (10). Of these, only MLCK and Rho kinase have been implicated in tight junction regulation (1, 12, 23–25). MLCK phosphorylation is also regulated by MLCK phosphatase, which can be controlled by Rho kinase (26). To determine the contribution of these regulators of MLCK phosphorylation to Na⁺-glucose cotransport-dependent tight junction regulation, we measured the effect of MLCK, Rho kinase, and phosphatase inhibitors on TER in monolayers with active Na⁺-glucose cotransport (Fig. 2A). In control monolayers with active Na⁺-glucose cotransport, TER was 30 ± 4% less than that of monolayers with inactive Na⁺-glucose cotransport. PIK, a membrane permeant peptide inhibitor of MLCK (1, 12), raised the TER of monolayers with active Na⁺-glucose cotransport to that of monolayers with inactive Na⁺-glucose cotransport, confirming the critical role of MLCK in this regulatory pathway. In contrast, neither the Rho kinase inhibitor Y27632 nor the phosphatase inhibitor calyculin A significantly altered the TER of monolayers with active Na⁺-glucose cotransport, suggesting that neither Rho kinase nor myosin phosphatase are critically involved in Na⁺-glucose cotransport-dependent tight junction regulation.

A 215-kDa MLCK Is the Principal Caco-2 Cell MLC Kinase—As we have shown previously (27), immunoblot of Caco-2 cell lysates with a monoclonal antibody that reacts broadly with myosin light chain kinases detected only a single ~215-kDa protein consistent with long MLCK (Fig. 2B). To determine whether this was the principal MLCK kinase expressed in Caco-2 cells, this protein was removed from Caco-2 lysates by immunodepletion. This removed 97 ± 4% of MLCK kinase activity from the lysates (Fig. 2C). Thus, the 215-kDa MLCK is the principal enzyme responsible for MLCK phosphorylation in Caco-2 intestinal epithelial cells.

Splice Variants 1 and 2 of Long MLCK Are Expressed in the Intestinal Epithelium—Two primary isoforms of MLCK are transcribed from the smooth muscle MLCK gene using separate promoters: a 130-kDa short MLCK and a 210-kDa long MLCK (14). Based on the size of the MLCK detected in Fig. 2B, we hypothesized that long MLCK is the 215-kDa MLCK found in Caco-2 intestinal epithelial cells. To determine whether the 215-kDa Caco-2 MLCK is long MLCK, we cloned and sequenced long MLCK from Caco-2 cell mRNA. A full-length 5.8-kb transcript was detected, consistent with long MLCK (Fig. 3A). Previous analysis of endothelial long MLCK has identified at least five splice variants of long MLCK as a result of 207-, 204-, and 153-base pair in-frame deletions (15). These variations in length are too small to be detectable by agarose gel electrophoresis of the full-length 5.8-kb transcript; thus we amplified and sequenced smaller portions of long MLCK cDNA.
FIG. 2. Long MLCK is found in intestinal epithelium and is primarily responsible for Na+-glucose cotransport-induced tight junction regulation. A, Caco-2 monolayers were incubated in Hank’s balanced salt solution with 25 mM glucose (active Na+-glucose cotransport) or 5 mM glucose, 20 mM mannitol, and 2 mM phloridzin (inactive Na+-glucose cotransport), as in Fig. 1, or with 25 mM glucose and the MLCK inhibitor PIK (250 μM), the Rho kinase inhibitor Y27632 (10 μM), or the phosphatase 1 and 2A inhibitor calyculin A (10 nM). TER after 2 h, at which time TER had stabilized, is shown. Activation of Na+-glucose cotransport reduced TER by 30 ± 4%. The addition of PIK elevated TER to that of monolayers with inactive Na+-glucose cotransport. Y27632 and calyculin A had no effect on TER, indicating that MLCK is primarily responsible for Na+-glucose cotransport-dependent tight junction regulation. B, analysis of Caco-2 cell lysates by SDS-PAGE and immunoblot with broadly reactive anti-MLCK monoclonal antibody detects a single band of ~215 kDa. C, immunodepletion of Caco-2 lysates using the same anti-MLCK monoclonal antibody removed 97 ± 4% of MLCK kinase activity.

individuals (Fig. 3, B and C). Two splice variants corresponding to long MLCK isoforms MLCK1 and MLCK2 were identified by RT-PCR, but mRNA transcripts corresponding to other splice variants were not present. The sequence data obtained (GenBank™ accession numbers AY424269 and AY424270) were nearly identical to the published sequence of endothelial long MLCK (GenBank™ accession number NM053025). A third band that migrated just ahead of the MLCK1 PCR product in agarose gels was also present in PCR products of Caco-2 cells. Despite multiple attempts, we could not obtain sequence data for this band, whose intensity on ethidium bromide-stained gels correlated with that of MLCK1. This band was only present in PCRs using Caco-2-derived cDNA and was not detected in the products of PCRs using cDNA derived from native human intestinal epithelium. This band was therefore excluded from further analyses. Thus, intestinal epithelial cells produce mRNA transcripts for MLCK1 and MLCK2 but not other MLCK isoforms.

MLCK1 mRNA Transcription Is Increased during Differentiation and Correlates with the Ability to Regulate Tight Junction Permeability in Response to Na+-Glucose Cotransport—Given that Na+-glucose cotransport-dependent tight junction regulation correlates with differentiation state (Fig. 1) and requires MLCK activity (Fig. 2), we considered the hypothesis that MLCK isoform expression might correlate with differentiation state. Thus, we measured the relative abundance of MLCK1 and MLCK2 mRNA during Caco-2 monolayer differentiation. Semi-quantitative RT-PCR analysis of mRNA from monolayers harvested during differentiation, i.e. at intervals before and after confluence, showed that MLCK2 mRNA represented the majority of long MLCK transcripts in subconfluent and newly post-confluent monolayers but that MLCK1 mRNA content began to increase progressively at 3 days post-confluence (Fig. 4). By 6 days post-confluence MLCK1 mRNA was more abundant than MLCK2 mRNA. Thus, an inversion of long MLCK isoform predominance occurs during Caco-2 cell differentiation, with MLCK2 predominating in undifferentiated cells and MLCK1 predominating in differentiated cells.

Our data show that both MLCK1 expression and tight junc-
FIG. 5. Phosphorylated MLC and MLCK1 mRNA are concentrated at the villus tip. A, long MLCK1 RNA expression is greatest at the villus tip, whereas MLCK2 expression is constant along the crypt-villus axis as detected by RT-PCR. As controls, mRNA content of BRK and keratin 8 (K8) are also shown. BRK is known to be expressed preferentially at the villus tip, and keratin 8 is known to be expressed uniformly along the crypt-villus axis (28). B, densitometric analysis demonstrates MLCK1 enhancement at the villus tip. MLCK1 (blue), MLCK2 (red), and BRK (black) mRNA content was normalized to keratin 8 content. These ratios were then normalized to crypt mRNA content. Both BRK and MLCK1 show a gradient of increasing expression from crypt to villus, although MLCK1 mRNA is more restricted to the villus tip. C, phosphorylated MLC (red) is predominantly seen in villus enterocytes. The inset shows that phosphorylated MLC is specifically enhanced at areas of intercellular junctions. The scale bar is 20 μm (5 μm in the inset). D, when merged with F-actin (green), phosphorylated MLC colocalizes with the perijunctional actomyosin ring, producing a yellow color. The inset shows that phosphorylated MLC is specifically enhanced at areas of intercellular junctions within the perijunctional actomyosin ring. The scale bar is 20 μm (5 μm in the inset).

Regulation and Function of MLCK1

MLCK1 mRNA and MLC Phosphorylation Are Primarily Found in Well Differentiated Villus Enterocytes in Vivo—To determine whether human intestinal enterocytes express the same long MLCK isoforms in vivo that are seen in Caco-2 cells in vitro, we applied our MLCK primer sets shown in Fig. 3C to a human intestinal epithelial cDNA library (19). Again, only isoforms 1 and 2 were present. Sequencing of portions of long MLCK mRNA transcripts, including the MLCK2 splice site, demonstrated that the sequence was nearly identical to the corresponding regions of the Caco-2 sequence.

To determine whether the long MLCK isoform switch observed during Caco-2 enterocyte differentiation in vitro also occurred in native human small intestinal enterocytes in vivo, we used laser capture microdissection to isolate epithelial cells from the villus tip, mid-villus, or crypt of normal human jejunum (Fig. 5A). Semi-quantitative RT-PCR confirmed that the mRNA content of keratin 8, which is known to be expressed uniformly along the crypt-villus axis, was constant in all samples. The quality of the mRNA preparations was also established by analysis of BRK tyrosine kinase transcripts. BRK is preferentially expressed in villus epithelium (28), and, in our preparations, BRK mRNA content increased markedly from crypt to mid-villus to villus tip fractions. Normalized to keratin 8 mRNA, BRK mRNA increased 4.5 ± 0.9- and 6.8 ± 0.5-fold in mid-villus and villus tip, respectively, relative to the cryp (p < 0.02; Fig. 5B). Thus, in addition to verifying previous observations (28), these data validate the quality of these mRNA preparations. MLCK2 mRNA was relatively abundant throughout the crypt-villus axis in human jejunum and did not change from crypt to villus relative to keratin 8 mRNA. This abundance of MLCK2 mRNA relative to MLCK1 mRNA rendered the single primer set used to evaluate Caco-2 mRNA unsuitable for analysis of MLCK1 mRNA content. To circumvent this problem, a primer pair specific for MLCK1 was used to assess MLCK1 mRNA content. MLCK1 mRNA increased 1.6 ± 0.7- and 4.2 ± 0.4-fold in mid-villus and villus tip, respectively, relative to the cryp (p < 0.03) (Fig. 5B). Thus, MLCK1 mRNA is present in only small amounts in human jejunal crypt and mid-villus enterocytes but increases markedly at the villus tip.

Given that MLCK1 mRNA is found primarily in the well differentiated cells of the villus tip, we examined the crypt-villus distribution of MLC phosphorylation that is the result of MLCK activity. Immunofluorescent labeling with antisera specific for MLC phosphorylated at serine-19 (20) showed that MLC phosphorylation is enhanced at the villus tip (Fig. 5, C and D). Examination at higher magnification showed that phosphorylated MLC is concentrated within the perijunctional actomyosin ring and, as we have previously shown (20), enhanced at tight junctions. These data suggest that, similar to MLCK1 transcript content, MLCK activity is increased in terminally differentiated villus enterocytes.

MLCK1 Protein Is Localized to the Villus Tip—The data presented above show that MLCK1 mRNA content is enhanced within the well differentiated absorptive enterocytes of the villus tip. Given that MLCK2 mRNA content is unchanged from crypt to villus, the observation that MLC phosphorylation is enhanced at the same region as MLCK1 mRNA suggests that this phosphorylation may be mediated by MLCK1. However, this conclusion would first require that MLCK1 protein expression parallels mRNA content. Thus, we developed a polyclonal anti-peptide antibody to a unique 18-mer peptide derived from the MLCK1 69-amino acid region that is absent in MLCK2. The affinity-purified rabbit anti-MLCK1 was characterized by SDS-PAGE immunoblot of recombinant MLCK1 and MLCK2 proteins and Caco-2 lysates (Fig. 6A). Comparable loading of recombinant MLCK1 and MLCK2 proteins was confirmed by immunoblots with the monoclonal antibody that recognizes both isoforms. These blots show that the affinity-purified anti-MLCK1 antibody reacts with recombinant MLCK1 but not MLCK2. Immunoblots of Caco-2 cell lysates confirmed that the affinity-purified anti-MLCK1 antibody reacted with a single protein of ~215 kDa that was also detected by the monoclonal antibody.

The affinity-purified anti-MLCK1 antibody was used to label normal human jejunum. As with mRNA, MLCK1 protein expression was predominantly seen within villus tip enterocytes (Fig. 6B). This staining was specific, because affinity-purified preimmune serum did not label human small intestine, and preincubation of the affinity-purified anti-MLCK1 antibody with excess of the peptide antigen prevented enterocyte staining (data not shown). MLCK1 within villus enterocytes was restricted to a subapical band corresponding to the perijunctional actomyosin ring (Fig. 6C). There was also enhancement of MLCK1 in the area of intercellular junctions, although this enhancement was not as marked as that observed for phosphorylated MLC (compare with Fig. 5, C and D). Thus, both the
FIG. 6. MLCK1 is localized to the perijunctional actomyosin ring at the villus tip in human jejunum. A, recombinant MLCK1, MLCK2, or Caco-2 lysates were blotted for total MLCK (anti-MLCK) or with the MLCK1-specific antisera (anti-MLCK1). The total MLCK antibody detects both recombinant MLCK1 and recombinant MLCK2, as well as a corresponding band in the Caco-2 lysate. The affinity-purified anti-MLCK1 antisera detects recombinant MLCK1 but not recombinant MLCK2. A 215-kDa band is detected in Caco-2 lysates. B, MLCK1 detected by the anti-MLCK1 antiserum (red) is present primarily within enterocytes at the villus tip (scale bar, 20 μm). C, MLCK1 (red) is found in a narrow band just subapical to the brush border and displays enhancement in the area of cell-cell junctions (scale bar, 5 μm). A Hoechst stain for DNA is shown for reference (blue). When merged with f-actin (green), it is apparent that MLCK1 localizes to the perijunctional actomyosin ring. D, total MLCK (green) can be found in two intracellular pools. The major pool is concentrated in the cytoplasm near the nucleus, whereas a more limited pool of MLCK is seen as a faint line near the brush border. This second pool colocalizes with MLCK1 (red; scale bar, 5 μm).

Maintenance of the intestinal epithelial barrier is a critical function of small intestinal enterocytes. Activation of the Na+-glucose cotransporter, SGLT1, initiates a signaling cascade that results in MLC phosphorylation, actomyosin contraction, and increased tight junction permeability, i.e. reduced barrier function (1, 7). The latter has been proposed to allow paracellular nutrient absorption, thereby increasing the total absorption rate beyond the saturation point of transcellular transporters when luminal nutrient loads are high (5–7). MLCK has been implicated in the control of MLC phosphorylation in this process (1, 12). Although other kinases and MLCK phosphatase can also regulate MLC phosphorylation, the data presented in this study suggest that MLCK plays the principal role in Na+-glucose cotransport-dependent tight junction regulation.

Two major isoforms of smooth muscle MLCK exist: short MLCK, found in smooth muscle, and long MLCK, first described in endothelium (14, 29). In this study we show that long MLCK accounts for the majority of MLC kinase activity in intestinal epithelia. Long MLCK is expressed as multiple splice variants; among these MLCK2 predominates, whereas the full-length transcript, MLCK1, is a minor form (15). The transcripts for these isoforms differ by only 207 base pairs, but insertion of this 69-amino acid domain can increase MLCK1 activity after phosphorylation by Src family kinases (16). This 69-amino acid region also contains a potential SH2-binding domain, raising the possibility that there are protein interac-
expression strongly correlated with Na
- cells exit the crypt compartment (31). This increased MLCK1
- mRNA at the villus tip, 3–5 days after
- at 6 days postconfluence, whereas human jejunal enterocytes
- in vivo
- is expressed in differentiated Caco-2 monolayers
- that MLCK1 is restricted to the perijunctional actomyosin ring at the
- MLCK1 is restricted to absorptive villus enterocytes, and in-
- Na1-glucose cotransport-dependent tight junction regulation, which is limited to the
- cells exit the crypt compartment (21). This increased MLCK1
- MLCK1 expression strongly correlated with Na1-glucose cotransport-
- In addition to restriction of MLCK1 expression to well dif-
- MLCK1 is restricted to the apical enterocyte cytoplasm in the area of the perijunctional actomy-
- This both crypt to villus distribution and subcellular localization are similar to those described here and previously
- MLCK1 may be responsible for perijunctional MLC phospho-
- To directly test the role of MLCK1 in tight junction regulation,
- MLCK1 knockdown increased TER, i.e. decreased tight junction permeability, in monolayers with active Na1-
- Given that MLCK-mediated barrier dysfunction has been im-
- Acknowledgments—We appreciate the expert technical assistance of

REFERENCES
1. Turner, J. R., Rill, B. K., Carlson, S. L., Carnes, D., Kern, R., Mrsy, R. J., and Madara, J. L. (1997) Am. J. Physiol. 273, C1378–C1385
2. Yahan, R., Koutsouris, A., Savkovic, S. D., and Hecht, G. (1997) Gastroenter-
Regulation and Function of MLCK1

1. Marcial, M. A., Carlson, S. L., and Madara, J. L. (1984) J. Membr. Biol. 80, 59–70
2. Fihn, B. M., Sjoqvist, A., and Jodal, M. (2000) Gastroenterology 119, 1029–1036
3. Madara, J. L., and Pappenheimer, J. R. (1987) J. Membr. Biol. 100, 149–164
4. Pappenheimer, J. R., and Reiss, K. Z. (1987) J. Membr. Biol. 100, 123–136
5. Turner, J. R. (2003) J. Cell Sci. 116, 725–742
6. Adelstein, R. S. (1982) Cell 30, 349–350
7. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsura, Y., and Kaibuchi, K. (1996) J. Biol. Chem. 271, 20246–20249
8. Turner, J. R., Lencer, W. I., Carlson, S., and Madara, J. L. (1996) J. Biol. Chem. 271, 7738–7744
9. Scott, R. O., Thelin, W. R., and Milgram, S. L. (2002) J. Biol. Chem. 277, 22934–22941
10. Berglund, J. J., Riegler, M., Zolotarevsky, Y., Wenzl, E., and Turner, J. R. (2001) Am. J. Physiol. 281, G1487–G1493
11. Pinto, M., Robine-Leon, S., Appay, M. D., Kedingers, N., Triandou, N., Dussaule, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., and Zweibraum, A. (1985) Biol. Cell 47, 323–330
12. Rousset, M. (1986) Biochimie (Paris) 68, 1055–1040
13. Nusrat, A., Giry, M., Turner, J. R., Colgan, S. P., Parkos, C. A., Carnes, D., Lemicher, K., Boquet, P., and Madara, J. L. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 10629–10633
14. Hopkins, A. M., Walsh, S. V., Verkade, P., Boquet, P., and Nusrat, A. (2003) J. Cell Sci. 116, 725–742
15. Jou, T. S., Schneeberger, E. E., and Nelson, W. J. (1998) J. Cell Biol. 142, 101–115
16. Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., Yamamori, B., Feng, J., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) Science 273, 245–248
17. Turner, J. R., Angle, J. M., Black, E. D., Joyal, J. L., Sacks, D. B., and Madara, J. L. (1999) Am. J. Physiol. 277, C554–C562
18. Llor, X., Serfas, M. S., Bie, W., Vasioukhin, V., Polonskaia, M., Derry, J., Abbott, C. M., and Tyner, A. L. (1999) Clin. Cancer Res. 5, 1767–1777
19. Verin, A. D., Lazar, V., Torry, R. J., Labarrere, C. A., Patterson, C. E., and Garcia, J. G. (1998) Am. J. Respir. Cell Mol. Biol. 19, 758–766
20. Jumarie, C., and Malo, C. (1991) J. Cell. Physiol. 142, 24–33
21. Shorter, R. G., Moertel, C. G., Titus, J. L., and Reitemeier, R. J. (1964) Am. J. Dig. Dis. 9, 760–763
22. Clayburgh, D. R., Shen, L., and Turner, J. R. (2004) Lab. Invest. 84, 282–291
23. Huang, Q., Xu, W., Ustinova, E., Wu, M., Childs, E., Hunter, F., and Yuan, S. (2003) Shock 20, 363–368
24. Wainwright, M. S., Rosenthal, J., Schavocky, J., Crawford, S., Steinborn, D., Velenitz, A. V., Zasadzski, M., Shirinsky, V., Jia, Y., Hsieh, J., Van Eldik, L. J., and Watterson, D. M. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 6233–6238