Osteoblastic and anti-osteoclastic activities of strontium-substituted
silicocarnotite ceramics: In vitro and in vivo studies

Junkai Zenga,1, Jingshu Guo1, Zhenyu Sun1, Fanyan Dengb,Congqin Ningb,∗∗, Youzhuan Xiea,∗∗

1 Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

ARTICLE INFO

Keywords:
Strontium
Bioceramics
Osteoblastic
Osteoclastic
Silicocarnotite

ABSTRACT

Osteoporosis bone defect is a refractory orthopaedic disease which characterized by impaired bone quality and bone regeneration capacity. Current therapies, including anti-osteoporosis drugs and artificial bone grafts, are not always satisfactory. Herein, a strontium-substituted calcium phosphate silicate bioactive ceramic (Sr-CPS) was fabricated. In the present study, the extracts of Sr-CPS were prepared for in vitro study and Sr-CPS scaffolds were used for in vivo study. The cytocompatibility, osteogenic and osteoclastogenic properties of Sr-CPS extracts were characterized in comparison to CPS. Molecular mechanisms were also evaluated by Western blot. Sr-CPS extracts were found to promote osteogenesis by upregulating Wnt/β-catenin signal pathways and inhibit osteoclastogenesis through downregulating NF-κB signal pathway. In vivo, micro-CT, histological and histomorphometric observation were conducted after 8 weeks of implantation to evaluate the bone formation using calvarial defects model in ovariectomized rats. Compared with CPS, Sr-CPS significantly promoted critical sized ovariectomy (OVX) calvarial defects healing. Among all the samples, Sr-10 showed the best performance due to a perfect match of bone formation and scaffold degradation rates. Overall, the present study demonstrated that Sr-CPS ceramic can dually modulate both bone formation and resorption, which might be a promising candidate for the reconstruction of osteoporotic bone defect.

1. Introduction

Osteoporosis, which commonly happened in elderly people, is characterized by low bone mineral density (BMD), degeneration of bone microstructure and increased bone fragility [1]. Osteoporosis is closely related to the decrease in bone quality, which further leads to an increased risk in fragility fractures and bone defect. These complications result in lower life quality, higher mortality and health-care costs [2]. Additionally, it is estimated that more than 450 million people in the world will be over 65 years of age in the next 20 years [3]. With an ageing population, the prevalence of osteoporosis, especially post-menopausal osteoporosis, will be further expanded and its medical and socioeconomic effects have drawn great attentions.

Compared with usual fractures, the treatment of osteoporotic fractures is more complicated. Firstly, the patient population is characterized by advanced age and usually accompanied by impaired physical and immune function, resulting in poor compensatory function and longer recovery process [4]. Secondly, osteoporosis has a negative impact on healing capacity of bone because of weakened osteoblast activity and hyperfunctioning of osteoclasts [5]. When bone resorption predominates over bone formation, endochondral bone formation is inhibited and the mechanical property of the fractured callus is impaired, leading to a delayed healing of fractures or defects [6]. Thirdly, impaired bone quality often leads to comminution at the fracture site, and the difficulty of reduction and fixation is further increased during the surgery [7]. Long period of bed rest not only costs a lot of time and money, but also leads to rapid bone loss, and then generates a vicious circle, which results in re-fracture, seriously damaging the life quality of patients and even causing disability and death [8]. Therefore, the treatment of osteoporotic fracture is still a challenging task in orthopaedics.

Bone grafting materials are usually necessary for repairing
osteoporotic bone defects. Autologous bone is still considered the clinical “gold standard” and the most effective method for bone regeneration [9]. Autograft could significantly induce direct bone bonding and stem cells osteogenic differentiation without any immune response [10]. However, there are unavoidable complications for patients after auto-transplantation, such as excessive pain and blood loss, destruction of normal structure at the donor site, risk of bacterial infection, etc. Additionally, due to the limitation of natural bone supply, artificial bone substitutes are increasingly being used in the treatment of bone defects to overcome the disadvantages of using autologous or allogenic bone grafts.

Calcium phosphate ceramics (CaP), one of the most popular implantable materials, have been widely used in orthopaedics due to their excellent biocompatibility [11]. However, their bioactivity and osteogenic capacity are limited [12]. The above drawbacks have limited its application in segmental bone defect. Silicon (Si) is a vital trace element for bone development and silicon-based biomaterials have been proved to possess great bioactivity [13,14]. To combine the advantages of calcium phosphate ceramics and silicon element, we synthesized silicon-containing calcium phosphates ceramics with a silicocarnotite structure \(\text{Ca}_5(\text{PO}_4)\text{SiO}_4 \) (CPS) by a sol-gel method in the previous study [15]. As a promising material for bone regeneration applications, CPS showed a superior cyotocompatibility and promoted the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSC) [11].

For osteoporotic fractures and bone defects, antosteoporosis drugs are usually administered as an adjunctive therapy for surgery to promote new bone formation and reduce the risk of re-fractures. At present, antosteoporosis drugs mainly include selective estrogen receptor modulators (SERMs), estrogen, bisphosphonates, calcitriol, etc [16]. The main role of the antosteoporosis drugs is to regulate hyperactive bone resorption. However, they are arduous to reach the defect area and promote local bone regeneration. Clinically, bioinert materials such as metal and polyethylene (PEMMA) were commonly used as internal fixation. But they lack bioactivity and only serve as temporary fixation to provide temporary mechanical support. Regulating osteoblast and osteoclast activity at the defect site by bioactive materials is a new idea to accelerate osteoporosis bone defect healing.

Strontium (Sr) is an alkaline earth metal, which normally exists in the human bone [17]. Sr\(^{2+}\) ions can enhance the density of the bone tissue via improving osteoblast activity and inhibiting osteoclast function [18]. Furthermore, Sr\(^{2+}\) has been widely applied in the osteoporosis therapy since 1950’s and oral administration is the most common way [19]. However, the bioavailability of the Sr\(^{2+}\) is only about 25% by oral medication [20]. For osteoporosis bone defect, local administration of Sr\(^{2+}\) with a bioactive implant is more advantageous by oral medication [20]. For osteoporosis bone defect, local administration of Sr\(^{2+}\) with a bioactive implant is more advantageous.
When the cells reached approximately 80% confluence, they were washed with PBS three times and then trypsinized to subculture. rBMSCs from the third passage were used for further studies.

2.5.2. rBMSCs proliferation assay
To evaluate the cytotoxic effects of the sample extracts, rBMSCs were seeded at 5 × 10^3 cells/well in 96-well plates. After 24 h, the culture medium was replaced with different concentrations of sample extracts. And cells were incubated at 37 °C in 5% CO2 for 1, 4 and 7 days for the cell proliferation assay. At each time point, Cell Counting Kit-8 (CCK-8; Dojindo Molecular Technology, Japan) was used to detect the cell viability following the manufacturer’s protocol. Briefly, 10% CCK-8 solution was added to each well and incubated at 37 °C for 2 h. Then, the optical density (OD) was measured at a wavelength of 450 nm using a microplate reader (Bio-Rad, Hercules, CA).

2.5.3. In vitro osteogenic differentiation assay
rBMSCs were seeded at 6 × 10^4 cells/well in 24-well plates at 37 °C in 5% CO2. After 24 h of attachment, various sample extracts supplemented with 50 mM ascorbic acid, 10 mM b-glycerophosphate, and 100 mM dexamethasone (Sigma-Aldrich, USA) were used to replace the culture medium. And the media was refreshed every 2 days.

After 7 days of culture, alkaline phosphatase (ALP) staining was performed qualitatively and quantitatively to evaluate the early differentiation of rBMSCs stimulated by the sample extracts. According to the manufacturer’s protocol, cells were fixed with 4% paraformaldehyde and stained by making use of an ALP microplate test kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Briefly, after being lysing with 1% TritonX-100 (Beyotime, China), the lysates of the samples were transferred to a centrifuge tube and centrifuged for 10 min at 4 °C (12 000 rpm) to obtain the supernatants. The total protein was measured by a Bicinchoninic acid (BCA) Protein Assay Kit (Thermo Scientific, USA) and the results were normalized to the total protein.

After 21 days of culture, alizarin red staining was performed to determine the extracellular matrix mineralization of rBMSCs stimulated by different sample extracts. In brief, after fixing with 4% paraformaldehyde for 20 min at 37 °C, cells were stained with 1% alizarin red solution (Sigma-Aldrich, USA) for 30 min at room temperature. Ultrapure water was used to remove uncombined dyes totally. For quantitative analysis of Alizarin Red staining, 10% cetylpyridinium chloride (C9002-25G; Sigma-Aldrich, USA) was used to elute mineralized nodules. The absorbance of the resulting solution at 562 nm was determined by a microplate reader (Bio-Rad, Hercules, CA).

After incubated with osteogenic-inducing medium containing CPS or Sr-CPS extracts for 4 and 7 days, Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to evaluate osteogenic gene expression (RUNX2, OCN, OPN, BSP) of rBMSCs. Total RNA was extracted using Trizol reagent (Invitrogen, U.S.A.). Following the manufacturer’s protocols, the isolated RNA was reverse transcribed into cDNA by using a Prime-Script™ RT reagent kit (Takara Bio, Shiga, Japan). Transcription-PCR was performed with real-time PCR (ABI 7500; Applied Biosystems, Foster City, CA) and the relative gene expressions were calculated by the 2^-ΔΔCt method.

2.6. Bone marrow monocytes (BMMs) culture and assays
2.6.1. BMMs isolation, culture and proliferation assay
BMMs were obtained from bilateral femurs and tibias of 6-week-old C57/BL6 mice. The bone marrow was flushed by complete α-MEM containing 30 ng/mL macrophage colony-stimulating factor (M-CSF, Pepro Tech, Rocky Hill, NJ). BMMs were cultured in a 5% CO2 incubator at 37 °C and the culture medium were changed every day. As described above, CCK-8 was also used to evaluate the cytotoxic effects of the sample extracts on BMMs.

2.6.2. In vitro osteoclastogenesis assays
BMMs (1.5 × 10^4 cells/well) were plated and incubated in 96-well plates in triplicate. After 24 h, the medium was replaced by complete α-MEM supplemented with 30 ng/mL macrophage colony-stimulating factor (M-CSF, Pepro Tech, Rocky Hill, NJ), 50 ng/mL recombinant mouse receptor activator of nuclear factor-κB ligand (RANKL, R&D) and different sample extracts for osteoclast differentiation. The culture medium was changed every day and the cells were fixed by 4% paraformaldehyde for tartrate-resistant acid phosphatase (TRAP) staining using the TRAP staining kit (387A-1 KT; Sigma-Aldrich) at day 7. The numbers and the size of TRAP-positive cells in each well were calculated by Image-Pro Plus software (Media Cybernetics, Bethesda, MD).

The recruitment of TRAP6 caused by interaction between RANKL and RANK (receptor activator of nuclear factor-κB) leads to the activation of multiple critical signaling pathways [23]. These signaling pathways induce NFATC1, a key transcription factor which plays an important role in osteoclastogenesis. Furthermore, NFATC can promote the expression of a variety of osteoclastogenesis-related genes, including TRAP, MMP 9, Cfos, Cathepsin K [24]. The expressions of these genes were determined by qRT-PCR. Briefly, BMMs were seeded in a six-well plate at a density of 2 × 10^6 cells/well. After BMMs were incubated with osteoclast-inducing medium containing CPS or Sr-CPS extracts for 4 and 7 days, qRT-PCR assay was performed to evaluate osteoclastogenesis-related gene expression (TRAP, TRAP6, MMP 9, Cfos, NFATC1, Cathepsin K) as described previously.

2.7. Molecular mechanism evaluation
Western blot (WB) analysis was performed to study the molecular mechanism regulated by CPS or Sr-CPS extracts. Sr-20 was selected as the typical material to represent the Sr-CPS.

For the osteogenic mechanism, rBMSCs were seeded in a six-well plate at a density of 2 × 10^5 cells/well and cultured in osteogenic-inducing medium containing CPS or Sr-CPS extracts for 7 days. For the osteoclastic mechanism, BMMs were seeded in a six-well plate at a density of 4 × 10^5 cells/well and cultured in osteoclastic-inducing medium containing CPS or Sr-CPS extracts for 30 min. At each time point, total protein was extracted from rBMSCs and BMMs using RIPA (Beyotime) lysis buffer and concentrations of the total protein were analyzed by a BCA protein assay kit (Thermo Scientific). Twenty μg of proteins from each group were separated using 10% SDS-PAGE gel electrophoresis and then transferred to PVDF membranes. Then the membranes were blocked by 5% dried nonfat milk for 2 h at room temperature and incubated overnight at 4 °C with each primary antibody (CST, U.S.A.). Furthermore, the membranes were incubated with HRP-conjugated secondary antibody (CST, U.S.A.) for 1 h. The protein bands were visualized by Odyssey imaging system (Li-Cor, Lincoln, NE) and quantitative analysis was carried out by ImageJ software.

2.8. In vivo experiments
2.8.1. Animal and surgical procedure
All the animal experiment procedures were performed under the authorization of the Animal Care and Experiment Committee of the Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Shanghai, China). Thirty-six female Sprague-Dawley rats, aged 6 months (SLAC Laboratory Animal Co., Ltd., Shanghai, China), were used in this study to build osteoporotic bone defect model. Firstly, ovariectomy (OVX) was performed to generate animal models for postmenopausal osteoporosis. Then, three months after ovariectomy, bilateral bone defects were made on calvarium. Briefly, rats were anesthetized by intraperitoneal injection of 1% pentobarbital sodium (100 mg/kg). A 1.5 cm sagittal incision was made on the scalp and the skull was exposed slowly. Furthermore, a 5-mm
diameter trephine bur was applied to make bilateral critical-sized defects. CPS and Sr-CPS ceramic scaffolds were used to randomly fill the defects. The incisions were closed in layers, and prophylactic antibiotic was administered to avoid infections. At eight weeks post-operation, the rats were sacrificed by the lethal dose of pentobarbital sodium.

2.8.2. Micro-computed tomography (Micro-CT) measurement
To compare the osteogenic capacity between CPS and Sr-CPS scaffolds, Micro-CT (μCT 80; SCANCO Medical AG, Bassersdorf, Switzerland) were performed to evaluate bone defect healing and scaffolds degradation. Firstly, rat calvariums were harvested and fixed in 4% neutral-buffered formalin for 48 h. Secondly, the specimens were scanned with following parameters: voltage, 70 kV; electric current, 114 μA, and resolution of 10 μm per pixel. After scanning, three-dimensional (3D) image was reconstructed. Bone mineral density (BMD), bone volume/total tissue volume (BV/TV), trabecular number (Tb.N) and trabecular thickness (Tb.Th) in the bone defect were analyzed by using its auxiliary software (Scanco Medical AG, Switzerland).

2.8.3. Histological staining and histomorphometric analysis
After micro-CT scanning, the calvarial samples were decalcified in 10% EDTA (pH = 7.4) for 3 weeks and then embedded in paraffin. For microstructure observation, four longitudinal sections (150 mm thick) of each specimen were prepared for hematoxylin and eosin (H&E), TRAP, Masson-trichrome and Immunohistochemical (IHC) stainings. IHC staining was accomplished with antibodies against ALP and RUNX-2 (USA, Affinity; dilution 1:100). The images were obtained using a high-quality microscope (Leica DM4000B).

2.9. Statistical analysis
All data are presented as the mean ± standard deviation (SD). Differences between the experimental and control groups were evaluated by Student’s t-test. One-way analysis of variance (ANOVA) was used for multifactorial comparisons in this study. A P value < 0.05 was considered as statistically significant. * and # indicate P < 0.05, ** and ## indicate P < 0.01. All data analysis was conducted using SPSS 22.0 analysis software (SPSS Inc, Chicago, IL).

3. Results

3.1. Scaffolds characterization
The cross-section view of CPS and Sr-CPS samples was shown in Fig. 1A. It could be seen that all the CPS and Sr-CPS scaffolds have ultratine microstructure. In addition, it could also be noted that there were many nano pores existed in the scaffolds which might be caused by the decomposition of residual organic phase in CPS. Fig. 1B showed the XRD patterns of CPS and Sr-CPS samples sintered at 1100 °C. It could be seen that the diffraction pattern of CPS powders was coincided well with the data of PDF #40–393, indicating a crystallized silicocarnotite phase. It seemed no extra Sr compounds were detected. With an increase of Sr substitution, the diffraction peaks of CPS shifted to lower 2 theta values, which indicated the substitution of Ca ions by Sr ions, since Sr^{2+} (0.118 nm) has a larger radius than Ca^{2+} (0.1 nm). Furthermore, the diffraction intensity of Sr-CPS samples decreased and the peaks broadened with an increase of Sr content, which was due to the expansion of CPS network caused by the solid solution of Sr.

The EDS analyses of CPS and Sr-CPS samples were shown in Table 1. It was evident to see that with the increase of Sr, the content of Sr decreased. The content of other elements (O, P and Si) in Sr-5 and Sr-10 samples had no great difference compared to CPS sample. Combined with XRD and EDS results, it could be confirmed that Sr ions were doped into the CPS structure.

The Raman spectra of CPS and Sr-CPS scaffolds were showed Fig. 1C. As a general observation, the spectra seemed quite similar, indicating the structure of the CPS and Sr-CPS was not changing greatly with strontium substitution for calcium. The asymmetric band in (Fig. 1C) around 847 cm$^{-1}$ was due to the vibrations of inter-tetrahedral Si–O–Si while the orthophosphate vibration at around 950 cm$^{-1}$ could be seen which corresponded to the symmetric stretch of P–O [25]. The band position and line shape changed slightly with strontium substitution. This was likely due to the influence of strontium, which expanded the CPS network, and would change the Si–O and P–O band distances and angles [26]. The position of the peak shifted to lower wavenumbers with increasing Sr addition to CPS sample. This was consistent with the observation in a series of Sr–Ca-hydroxyapatites previously reported in the literature indicating a red-shift in frequency with increased association of the orthophosphate groups with a heavier ion (Sr) [27]. In summary, the Raman spectroscopic data agreed with the XRD analysis; the CPS structure did not change significantly after adding strontium, even at a substitution of 20 mol % for calcium.

3.2. In vitro degradation
The residual mass of different scaffolds after different cultivation time is presented in Fig. 2C. All the scaffold degraded gradually during the experiment period. After a 21-day experiment, the residual mass of CPS, Sr-5, Sr-10 and Sr-20 scaffold were 74.7 ± 0.4%, 69.4 ± 3.3%, 65.3 ± 1.3% and 54.4 ± 4.2%. Sr-CPS scaffolds showed a significantly increased degradation rate. Furthermore, with the increase of Sr content, the scaffold degradation rate gradually increased.

3.3. Effect of CPS and Sr-CPS extracts on rBMSCs proliferation
Cell proliferation is important in evaluating the scaffolds bio-compatibility. According to CCK-8 results (Fig. 2A), rBMSCs showed robust proliferation in different concentrations of CPS or Sr-CPS extracts throughout the assay period. In general, the addition of Sr ion in Sr-CPS extracts significantly enhanced rBMSCs growth at day 4 and day 7 compared with CPS and rBMSCs exhibited highest vitality in 1/16 group. At day 4, 1/16 and 1/32 group showed higher OD values. At day 7, compared with 1/32 group, 1/16 group showed a stronger stimulatory effect on cell proliferation. Therefore, the 1/16 group was used in the following study due to its highest proliferation.

The concentration of Ca, Si and Sr ions of CPS and Sr-CPS samples from 1/16 dilution was shown in Fig. 2B. The Ca ions concentration was increased with the adding of Sr content except Sr-20 sample, while Sr ion concentration was decreased with the existence of Sr ions. There was no doubt that with an increase of Sr content, the Sr ions concentration was increased. It could be concluded that the presence of Sr ions in the CPS structure hindered the release of Si ions.

3.4. The stimulation of sample extracts on osteogenic differentiation of rBMSCs
ALP activity is widely used as an early marker of early osteogenic differentiation. rBMSCs cultured in different sample extracts and osteogenic medium alone were fixed and stained. As shown in Fig. 3A, CPS and Sr-CPS both enhanced the ALP activity at day 7. Sr-CPS showed more intensive ALP staining. The quantitative analysis (Fig. 3B) indicated Sr-5, Sr-10 and Sr-20 enhanced the activity of ALP compared with that of CPS. Both Sr-10 and Sr-20 showed significantly higher activity than Sr-5 but there was no statistically significant difference between these two groups. At day 21, semi-quantitative analysis of alizarin red staining (Fig. 3C) also prove Sr-20 group had the strongest osteogenic capacity. The quantitative results of ALP expression coincided well with the alizarin red staining results.

According to the results of qRT-PCR (Fig. 4A), osteogenesis-related gene expression such as RUNX2, OCN, OPN and BSP were upregulated in Sr-CPS and CPS in comparison with the control group at days 4 and 7.
Furthermore, the Sr−CPS groups had a markedly increased effect of osteogenesis compared with the CPS group at each time point. These four gene expression profiles showed the similar tendency. The ALP staining, alizarin red staining and qRT-PCR experiments showed that both CPS and Sr-CPS promoted rBMSCs osteogenic differentiation, while Sr-CPS exhibited stronger stimulatory effect especially Sr-20.

Table 1

The element composition (%) of CPS and Sr-CPS sample.

Element composition (%)	O	P	Ca	Si	Sr
CPS	53.6	19.5	20.4	5.8	0.4
Sr-5	55.9	18.3	18.9	5.3	1.6
Sr-10	55.3	18.3	18.1	5.7	3.3
Sr-20	56.7	18.1	14.7	4.5	6.0

Fig. 1. (A) Cross-section view of CPS and Sr-CPS scaffold; (B) XRD patterns of CPS and Sr-CPS samples; (C) Raman spectra of CPS and Sr-CPS scaffold.

Fig. 2. (A) rBMSCs cultured with different concentrations of ceramics extracts; (B) Ca, Si, Sr concentration of CPS and Sr-CPS samples from 1/16 dilution; (C) In vitro degradation of CPS and Sr-CPS scaffolds.
3.5. Sr-CPS enhanced osteoblastogenesis through the Wnt/\(\beta\)-catenin pathway

Wnt/\(\beta\)-catenin signaling pathway was reported to play an important role in bone development and homeostasis [28]. The canonical Wnt signaling is closely related to rBMSCs osteogenic differentiation [29]. The stability of \(\beta\)-catenin is regulated by glycogen synthase accumulation of \(\beta\)-catenin in the cytoplasm [30]. Therefore, Wnt/\(\beta\)-catenin Signaling Pathway could be activated by inhibition of GSK3\(\beta\). As indicated in Fig. 4B and C, western blotting analysis showed that CPS and Sr-CPS extracts drastically induced upregulation of GSK3\(\beta\) phosphorylation and \(\beta\)-catenin. And the expression of the critical osteoblast transcription factor RUNX2 was also promoted in osteoprogenitor cells. Furthermore, Sr-CPS showed a significant increase in phosphor-GSK3\(\beta\) expression in comparison with CPS.

3.6. The inhibition of sample extracts on cells osteoclastic differentiation

First, according to CCK-8 assays (Fig. 5B), both CPS and Sr-CPS extracts were not cytotoxic to BMMs compared with osteoclastic-inducing medium. The effect of Sr-CPS on RANKL-induced osteoclastic differentiation in vitro was studied firstly. The number and size of TRAP-positive multinucleate cells are signs to evaluate the extent of osteoclast differentiation. As shown in Fig. 5A, numerous TRAP-positive multinucleate osteoclasts were found in the control group and CPS group. No significant difference was found between these two groups. However, Sr ions suppressed osteoclast formation in a dose-dependent manner. As the concentration of Sr ions increased, the inhibition effect on osteoclast activity also gradually enhanced, and significant differences between adjacent groups were found. These results indicated that the supplementation of Sr ions provided CPS scaffold with the ability to inhibit the osteoclastic differentiation of BMMs.

Specific signaling pathways affect cell osteoclast differentiation and alter their gene expression. Osteoclast-related genes expression, including TRAF6, TRAP, NFATc1, c-Fos, Cathepsin K, and MMP9, was evaluated using qRT-PCR to further study the mechanism behind the inhibitory effect of Sr-CPS on osteoclasts. From results of qRT-PCR (Fig. 6A), it was found that the supplementation of Sr ions remarkably suppressed NFATc1 and thus down-regulated related genes. This effect was dose-dependently and the results were consistent with the TRAP staining. As a comparison, no significant difference was found between CPS and the control, which indicated that CPS had no obvious effect on osteoclastogenesis.

3.7. Sr-CPS inhibited osteoclastogenesis through the NF-\(\kappa\)B pathway

When RANKL binds to its receptor RANK, tumor-necrosis factor (TNF) receptor-associated factor 6 (TRAF6) will be activated thus stimulating the NF-\(\kappa\)B pathway [31,32]. NF-\(\kappa\)B is reported to be important for osteoclast development, function and survival [33]. Hence, NF-\(\kappa\)B pathway related protein expression was detected through western bolt assay. The quantitative results (Fig. 6C) showed that I\(\kappa\)B\(\alpha\) of Sr-CPS group was significantly up-regulated in comparison with CPS samples. And a down-regulation of phosphorylation-P65 was also found. It confirmed that Sr-CPS acted on I\(\kappa\)B\(\alpha\) and decreased the downstream phosphorylation of P65. Noticeable, no significant difference was found between the CPS and control group, which was consistent with the previous osteoclast assays and further demonstrated that the addition of Sr ions in CPS made it possible to inhibit osteoclast activity by suppressing the NF-\(\kappa\)B pathway.

Fig. 3. (A) ALP staining of rBMSCs at day 7; (B) Quantification of the ALP staining; (C) Semi-quantitative analysis of the alizarin red staining at 21 days. * Compared with the control group; # compared with CPS group.
3.8. In vivo studies

3.8.1. Micro-CT results

In vivo, Micro-CT and histology analyses further approved that Sr incorporated CPS scaffolds had significantly positive effects for bone defect healing in an osteoporotic animal model. As shown in Fig. 7A, the cross-sectional images showed the morphology of the newly formed bone calluses in Sr-CPS groups were much larger compared with those in the CPS group at 8 weeks post-operation. The 3D-reconstructed micro-CT (Fig. 7B) at 8 weeks post-operation revealed that Sr-CPS...
scaffolds were covered by more new bones and achieved higher new bone colonization compared with the CPS scaffold. Furthermore, the degradation rate of the scaffold gradually accelerated as the content of strontium increased. In Fig. 7D, Sr-20 showed the fastest degradation rate and the volume of un-degraded scaffold was 42.9%. Three-dimensional reconstructed images of 8 weeks after surgery showed more space became available for new bone ingrowth as the Sr-20 and Sr-10 scaffolds degraded.

Histomorphometry analysis of the callus tissue revealed that the order of values of bone volume/total volume ratio (BV/TV) and bone mineral density (BMD) was: Sr-10 > Sr-20 > Sr-5 > CPS. Implantation of the Sr-CPS led to significantly improved BV/TV and BMD in comparison with the CPS group (Fig. 7D). Significant differences of BMD and BV/TV were found between Sr-5 and CPS group. In addition, Sr-10 showed the best bone healing with the highest BMD, BV/TV, trabecular number (Tb.N) and trabecular thickness (Tb.Th).

3.8.2. Histological analysis

An osteogenic histological assessment of the Sr-CPS and CPS samples was carried out 8 weeks after the rat calvarial defect operation. H&E and Masson staining were conducted in bone sections to assess the healing of bone defects. In Fig. 8A, CPS had more residual scaffold than Sr-CPS. In CPS group, less new bone was found and the defect was occupied mainly by fibrous tissue at 8 weeks post-operation. On the contrary, the addition of Sr ions greatly improved the bone formation, especially the Sr-10 sample. From the region of the interface between bone and scaffold (Fig. 8B), it was found that Sr-CPS promoted the formation of mature bone, as well as induced new bone formation in the defect. In Masson staining (Fig. 9A.), the red color indicates host bone or newly formed bone and osteoid tissues while the blue represents fibrous tissue or freshly formed bone [34]. Compared with CPS group, more blue tissues were found inside the scaffolds in Sr-CPS groups which indicated better bone ingrowth. More blue tissue was also found at the interface between bone and Sr-CPS scaffolds, indicating that the addition of Sr ions obviously improved the tissue compatibility of the CPS. Additionally, at week 8, the ALP and RUNX-2 immunohistochemical (IHC) staining (Fig. 9C&D) also demonstrated the osteogenic capacity of Sr-CPS. Consistent with the previous assays, more ALP or RUNX-2 positive cells were found in Sr-CPS groups. Sr-10 group showed more positive cells than other groups, however, no significant difference was found between it and Sr-20.

The TRAP staining was used for osteoclastic histological evaluation. As shown in Fig. 9B, more osteoclasts were found in the CPS group, while the trap-positive cells decreased dose-dependently after implanted with Sr-CPS. This result indicated that the addition of Sr ions was also effective in inhibiting osteoclast activity in vivo.

3.9. Discussions

The balance between the bone-forming osteoblasts and bone-resorbing osteoclasts is critical for bone homeostasis [35]. In osteoporosis, this balance is destroyed by overactivation of osteoclasts and defective osteoblast activity [36]. Therefore, treatments for osteoporosis aim to reverse this imbalance. However, it is difficult to
enhance osteogenesis and inhibit osteoclastogenesis at the same time due to the couple effects of these two processes. For example, bisphosphonates, a class of drugs for bone disorders, can target bone degradation by disrupting protein prenylation via inhibition farnesyl pyrophosphate synthase (FDPS), but also impair osteoblast activity [37]. Similarly, a parathyroid-hormone-related peptide (PTHrP)-analogue, approved by the FDA in April 2017, is effective on promoting bone formation, but also strengthen osteoclast activity [38]. Moreover, when the drug administered systemically, it is difficult for them to achieve effective local concentration at the fracture or defect site and they may be insufficient for stimulating bone regeneration. Hence, dual action therapeutic biomaterials which can suppress bone resorption and enhance bone formation simultaneously are urgently needed for osteoporosis bone defect. In recent years, CPS, a novel bioceramic, has attracted much attention for its superior cytocompatibility and osteogenic activity [11].

Strontium is a mineral that is absorbed in the body like calcium. Sr in the form of strontium ranelate (SrR) was proved to have the ability to increase bone formation while inhibiting osteoclast differentiation and has been used for the treatment of osteoporosis for decades [39]. Because of the positive effects of Sr ions on bone regeneration, Sr-containing biomaterials have gained interests among researchers. Lin et al. has proved Sr-substituted calcium silicate ceramic scaffolds dramatically stimulated bone regeneration and angiogenesis in an osteoporosis rat model [40]. In another novel research, Naruphontjirakul et al. successfully fabricated a novel strontium containing bioactive glass nanoparticles, and found their ionic release products had the potential to promote bone formation [41]. Based on the hypothesis that the addition of Sr may endow CPS with anti-osteoclast ability and enhanced osteogenic effect, a biodegradable Sr-CPS scaffold was designed and

Fig. 7. (A) Micro-CT evaluation of the repaired skull after 8 weeks of implantation, (B) 3d-reconstruction images of Micro-CT. The blue part was the new bone and the white was the scaffold, (C) 3d-reconstruction images of residual scaffolds (scale bar = 1.5 mm), (D) Morphometric analysis of Micro-CT, including BMD, Tb.N, Tb.Th, BV/TV and the residual volume of scaffolds.* Compared with Sham group; # compared with CPS group.
fabricated in the present work, which was expected to have specific effects for osteoporotic bone defect repair.

As a bone regeneration implant, favorable biocompatibility is the basic requirement. In vitro, a proper concentration of Sr-CPS was chosen according to CCK-8 assays. In different concentration groups, rBMSCs proliferated apparently over time throughout the 7-day period, indicating that CPS and Sr-CPS extracts had no negative effect on cell proliferation. Previous study has confirmed that Sr ions could promote rBMSCs proliferation as well as the osteogenic differentiation [42]. However, a study indicated that excessive strontium content of implants could negatively affect the osteoblast proliferation [43]. In this study, the results indicated 1/16 extract concentrations had a remarkably positive effect on rBMSCs proliferation and 1/16 was chosen for in vitro assays in the present work. The ALP staining, AR staining and qRT-PCR experiments showed that both CPS and Sr-CPS promoted rBMSCs osteogenic differentiation, while Sr-CPS exhibited stronger stimulatory effect especially Sr-20. Moreover, Sr-CPS dramatically inhibited osteoclastogenesis. In general, Sr-CPS demonstrated excellent promoting osteogenesis and anti-osteoclastogenesis functions in vitro, and these effects were dose-dependent with Sr ion concentration.

In vivo, Micro-CT and histology analyses further approved that Sr incorporated CPS scaffolds had significantly positive effects for bone defect healing in an osteoporotic animal model. An ideal scaffold must own a proper degradation rate to provide a space and a long-term structure support for new bone formation [44]. Few studies have focused on the degradation of strontium-containing bioceermics in osteoporotic animals. As shown in Figs. 2C & 7C, the supplementation of Sr ions accelerated the degradation of CPS. Additionally, the degradation rate increased monotonically with the increase of strontium content. On the other hand, Tb.TH, Tb.N, TV/BV and BMD had similar trends: gradual increase with the addition of Sr ions but a sharp reduction in Sr-20 group. It could be seen that the CPS and Sr-5 scaffolds showed a limited bone formation ability, while, Sr-20 exhibited a faster degradation rate than bone formation rate although the in vitro extract results showed the best performance. The previous work has also verified that too much osteoclast inhibition may have a negative effect on bone remodeling and tissue regeneration [18]. Sr-10 sample showed a perfect match of bone formation and degradation rates.

In CPS group, the degradation of scaffold was retarded and there was no enough space for bone ingrowth. Bone reconstruction was also limited due to the insufficient bioactivity. Sr-20 degraded fastest, however, premature degradation also led to insufficient mechanical support for bone reconstruction. In comparison, Sr-10 exhibited a relatively appropriate degradation rate to induce bone regeneration within the defective area at 8 weeks post-operation. The in vivo results were inconsistent with those observed in vitro: Sr-10 replaced Sr-20 as the best performing scaffold. Therefore, the moderate amount of Sr incorporated in Sr-10 helped it find a balance between bone formation and bone resorption, leading to its outstanding performance in an osteoporotic animal model.

Several signaling pathways have been shown to be related to bone formation. Many studies have confirmed that Wnt/β-catenin signaling pathway plays a significant role in promoting osteoblast differentiation [45]. When this signaling is activated, Wnt proteins bind to frizzle and co-activate with co-receptors and the cytoplasmic GSK3β complex is destroyed. Subsequently, degradation of β-catenin is prevented and the accumulated β-catenin enters the nucleus as well as activates target genes. In our study, CPS was found to stimulate the phosphorylation of GSK3β. Thereafter, the nuclear translocation of β-catenin and nuclear expression of RUNX2 was also promoted. The results of WB demonstrated that CPS effectively promoted osteogenesis through the activation of Wnt/β-catenin signaling pathway. Furthermore, the addition of Sr ions amplified this effect. In osteoporosis, overactive osteoclastogenesis is closely associated with delayed healing of bone defect. The classical NF-κB pathway regulates the expression of osteoclastogenesis related genes [46]. Our study found that Sr-CPS had significant inhibitory effect on the phosphorylation of NF-κB subunit P65 by promoting the expression of IκBα. NFATc1 is a key transcription factor which can regulate the expression of many genes related to osteoclast differentiation and function [24]. From results of qRT-PCR, it was found that the supplementation of Sr ions remarkably suppressed NFATc1 and thus down-regulated related genes, such as c-FOS, TRAP, MMP-9, Cathepsin K and TRAF6. As a comparison, no significant difference was found between CPS and the control, which indicated that CPS has no obvious effect on osteoclastogenesis. In general, in vitro and in vivo assays indicated that accelerated healing of osteoporosis bone defect could be achieved with the Sr-CPS scaffold due to the combination of promoting osteogenesis and anti-osteoclastogenesis functions.

4. Conclusions

This study showed the beneficial effects of Sr-CPS in treating
osteoporosis bone defect. In vitro, the effects of Sr-CPS on promoting osteogenesis and inhibiting osteoclastogenesis were dose-dependent with Sr ion concentration. In vivo, Sr-10 became the best performing scaffold due to a perfect match of bone formation and scaffold degradation rates. Furthermore, Sr-CPS promoted the osteogenic differentiation of rBMSCs through Wnt/β-catenin signaling pathway and suppressed RANKL-induced osteoclastogenesis through NF-κB pathway. All the data indicated that Sr-CPS could be a superior candidate for the reconstruction of osteoporosis-related bone defect.

Author contributions

J. Zeng and J. Guo designed the research. J. Guo and F. Deng carried out the material synthesis and characterization; J. Zeng and Z. Sun conducted the cell experiments and performed the animal surgeries. J. Zeng and J. Guo drafted the manuscript. Y. Xie and C. Ning designed and supported the research. All authors read and approved the final manuscript.

5. Declaration of interest statement

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Junkai Zeng: Methodology, Investigation, Writing - original draft.
Jingshu Guo: Investigation, Writing - original draft. Zhenyu Sun: Investigation. Fanyan Deng: Validation. Congqin Ning: Conceptualization, Resources, Writing - review & editing. Youzhuan Xie: Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgements

The authors are grateful to the financial support from National Key Research and Development Program of China (Grant No. 2018YFC2002303), National Natural Science Foundation of China (Grant No. 51672304) and International Partnership Program of Chinese Academy of Science (Grant No. GJHZ1760).

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.bioactmat.2020.03.008.

References

[1] T.D. Rachner, S. Khosla, L.C. Hobbaier, Osteoporosis: now and the future, Lancet 377 (2011) 1275–1285.
[2] J.E. Compston, M.R. McClung, W.D. Leslie, Osteoporosis, Lancet 393 (2019) 364–376.
[3] K. Akesson, D. Marsh, P.J. Mitchell, A.R. McElhanin, J. Stenmark, D.D. Pierroz, C. Kyer, C. Cooper, Capture the fracture: A Best Practice Framework and global campaign to break the fragility fracture cycle, Osteoporis. Int. 24 (2013) 2135–2152 a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.
[4] N.E. Lane, Epidemiology, etiology, and diagnosis of osteoporosis, Am. J. Obstet. Gynecol. 194 (2006) S3–S11.
[5] X. Chen, X. Zhi, P. Pan, J. Cui, L. Cao, W. Weng, Q. Zhou, L. Wang, X. Zhai, Q. Zhao, H. Hu, B. Huang, J. Su, Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis, Faseb J. : Off. Publ. Feder. Am. Soc. Exp. Biol. 31 (2017) 4855–4865.
[6] D.H. Chow, K.S. Leung, L. Qin, A.H. Leung, W.H. Cheung, Low-magnitude high-frequency vibration (LMHV) enhances bone remodeling in osteoporotic rat femoral fracture healing, J. Orthop. Res. : Off. Publ. Orthop. Res. Soc. 29 (2011) 746–752.
[7] X. Cheng, H.Q. Long, J.H. Xu, Y.L. Huang, F.B. Li, Comparison of unilaterial versus bilateral percutaneous kyphoplasty for the treatment of patients with osteoporotic vertebral compression fracture (OVCF): a systematic review and meta-analysis, Eur. Spine J. : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 25 (2016) 3439–3449.
[8] A. Balasubramanian, J. Zhang, L. Chen, D. Wenkert, S.G. Daigle, A. Grauer, J.R. Curtis, Risk of subsequent fracture after prior fracture among older women, Osteoporis. Int. 30 (2019) 79–92 a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.
[9] J. Zhang, W. Liu, V. Schnitzler, F. Tancer, J.M. Bouler, Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties, Acta Biomater. 10 (2014) 1035–1049.
[10] K.A. Egel, A. Nauth, M. Lee, H.C. Pape, J. Borello Jr., biomass, sourcing, timing, strategies, and alternatives, J. Orthop. Trauma 29 (Suppl 12) (2015) S10–S14.
[11] W. Du, C. Ning, T. Tang, Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarinite, J. Biomed. Mater. Res. 101 (2013) 1955–1961.
[12] H. Yuan, H. Fernandez, P. Habibovich, J. de Boer, A.M. Barradas, A. de Ruiter, W.R. Walsh, C.A. van Blitterswijk, J.D. de Bruijn, Osteoinductive ceramics as a synthetic alternative to autologous bone grafting, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 13614–13619.
[13] M. Motaiske, G. Mestres, C.O. Reno, R.G. Carndegues, C.A.C. Zavaglia, M.P. Ginebra, Influence of Si substitution on the reactivity of alpha-tricalcium phosphate, Mater. Sci. Eng. C Mater. Biol. Appl. 75 (2017) 816–821.
[14] A.F. Khan, M. Saleem, A. Ali, A. Khan, A.R. Khan, Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration, Mater. Sci. Eng. C Mater. Biol. Appl. 35 (2014) 245–252.