Incidence, prediction, and the long-term outcome of solid pseudopapillary tumor of the pancreas with malignant behaviors: a pooled-analysis

Yifei Li
Xiamen University and Fujian Medical University Affiliated First Hospital

Shijie Wang
Xiamen University and Fujian Medical University Affiliated First Hospital

Yifan Li
The First Affiliated Hospital of Henan University of CM

YanMing Zhou (✉ 785290022@qq.com)
Xiamen University and Fujian Medical University Affiliated First Hospital

Research

Keywords: Solid pseudopapillary tumor of Pancreas, Malignant behaviors, Survival, Prognosis, Pooled-analysis

DOI: https://doi.org/10.21203/rs.3.rs-34896/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

**Background:** Microscopic malignancy or gross metastasis of solid pseudopapillary tumor of the pancreas were considered to be malignant behaviors. The clinical status of solid pseudopapillary tumors of the pancreas with malignant behaviors (SPTM) are unclear. This study was to perform a review and pooled-analysis to determine the incidence and predictors of SPTM, and explore the survival and prognostic factors.

**Methods:** A registered meta-analysis (PROSPERO: CRD42020163788) was performed. Studies reporting on SPTM and follow-up information were identified between 1960 and 2020 by searching PubMed, Scopus, and Embase. The search process followed the PRISMA guidelines.

**Results:** A total of 98 articles were included in this study, including 22 articles reporting the incidence of SPTM, and 159 SPTM cases containing survival information in 77 articles. Pooled estimates showed that the incidence of SPTM in solid pseudopapillary tumors of the pancreas was 22% [95% CI:19~24%], and tumor size $\geq 5$ cm (OR: 2.03; 95%CI: 1.28~3.22) was the only risk factor for predicting the occurrence of SPTM. The 5-, and 10-year survival rates of SPTM patients after complete surgical resection were 92% and 77%, respectively. Larger tumors (diameter $\geq 5$cm) (p=0.046), lymphovascular invasion (p=0.005), lymph node metastasis (p=0.02), cellular atypia (0.018), Ki67 index $\geq 5$% (p=0.001), tumor recurrence (p=0.004), recurrent time <5 years (p=0.005) and positive margin (p=0.003) were prognosis unfavorable factors for survival. Additionaly, lymphovascular invasion (OR:8.25, 95% CI:2.26-30.1), lymph node metastasis (OR:25.28, 95% CI:3.01-211.74), extrapancreatic invasion (OR:9.07, 95% CI:2.36-34.84), cellular atypia (OR:16, 95% CI:3-85.3), and Ki67 $\geq 5$% (OR: 7.88, 95%CI: 1.53~40.51) increased the risk of recurrences of resected SPTM.

**Conclusion:** Tumor size is an important factor in predicting the occurrence of SPTM before operation, and complete surgical resection can provide SPTM patients a expected long-term survival. Proved clinicopathological factors by current research will help to determine prognosis and recurrence, and close follow-up of five years or more after operation is essential.

Introduction

In 1959 Frantz first described a rare pathological entity of the pancreas, which was officially named as solid pseudopapillary tumor of the pancreas by the World Health Organization (WHO) in 1996\(^1\). Since 2000, the number of reported related cases of solid pseudopapillary tumor of the pancreas has apprently increased, hence this entity has been more recognized\(^2\). This tumor usually presents benign behavior, however potential malignancy such as lymphatic vascular invasion, neurological invasion, invasion of peripancreatic tissue, metastasis and recurrence and all that, happened occasionally with unpredictable prognosis\(^3\). In patients with malignancy, some died in a short time due to the rapid progression of the disease, while certain peoples survived for long-term despite repeated postoperative relapses\(^4,5\). Unfortunately, the biological behavior and clinical course of solid pseudopapillary tumor of the pancreas
with malignant behaviors (SPTM) have not been well studied due to the low incidence. Although some studies have pay attention to the prediction and prognosis of SPTM, no consistent and reliable conclusions have been reached, and these investigations are almostly small samples and single center[6, 7]. This research aimed to conduct a large sample analysis of the incidence and predictors with focusing on the survival and prognostic factors of SPTM through available articles in database.

Methods

Literature search

We registered meta-analysis (PROSPERO: CRD42020163788) berfore search. Databases of PubMed, Scopus, and Embase were searching from January 1960 to January 2020 using the following search terms: (solid pseudopapillary tumor) AND (pancreas). Only articles published in English were included. Because the various names of the tumor were using previously such as ‘solid cystic tumor’, ‘papillary cystic tumor’, ‘solid and papillary epithelial neoplasia’, ‘Frantz’s tumor and the like, these terms were included in the backward search from the bibliographies of relevant articles. The study was carried out on the basis of the PRISMA statement[8].

Selection criteria

solid pseudopapillary tumors of the pancreas with capsule invasion, lymphovascular invasion, perineural invasion, lymph node metastasis, parenchyma invasion, extrapancreatic invasion, cellular atypia, mitosis, elevated Ki67, synchronous metastasis and postoperative recurrence were defined as SPTM. Inclusion criteria (1). investigated the incidence of SPTM; (2). discussed the association between risk factors and prediction of SPTM; (3). these case reports providing survival information of SPTM patients; (4). full text available would be included. Excluded criteria (1). review articles/letters, abstracts, comments; (2). duplicate publications; (3). patients with other primary tumor; In case of overlapping cohorts, the publication with the most relevant and comprehensive data was considered.

Data extraction

Data extraction was independently performed by two investigators (Li YF and Wang SJ). Extracted data included the incidence and predictors along with relevant event number and total number, and available individual clinicopathological information such as age, sex, tumor size, symptoms, tumor location, treatment, capsule, malignant behaviors, resection margin status, recurret time, survival time and status.

Statistical analysis

R software was performed to complete the meta-analysis of incidence and predictors of SPTM. The command ‘metaprop’ was utilized for calculation of pooled incidence rates. Odds ratios (OR) with 95% confidence intervals (CI) of predictive factor were computed using ‘meta’ command. A random-effects model was used for more reliable results. Heterogeneity was evaluated by $I^2$, with $I^2<50\%$ or $P<0.1$ was
considered to be low heterogeneity. Publication bias was explored using funnel plots and Egger's tests if more than ten articles are analyzed\(^9\). For available individual data, categorical and continuous variables were reported as number with percentages and median with ranges, respectively. Survival was calculated using the Kaplan-Meier method, and were compared by log-rank test. Univariable and multivariate analysis was performed to identify prognostic factors with Cox's proportional hazard model. Chi-squared test or Fisher's exact test were used to evaluate risk factors associated with recurrence. A two-sided \(P < 0.05\) was considered statistically significant. Statistical analyses were completed using SPSS software.

**Results**

The detailed search strategy is depicted in Fig 1. A total of 98 studies were identified\(^4-7, 10-103\). All studies were retrospective in nature.

**Incidence and predictive factors of SPTM**

The incidence of SPTM was reported in 22 articles\(^6, 7, 10-29\). Meta-analysis results suggested that the incidence of SPTM in solid pseudopapillary tumors of the pancreas was 22\% [95\%CI: 19-24\%] (Fig 2). As shown in Fig 3-Fig 9, the OR value of clinicopathological data was calculated, and only tumor size \(\geq 5\) cm (OR: 2.03, 95\% CI: 1.28-3.22, \(P>0.05\)) was potential predictor of SPTM. Sex (OR: 1.25, 95\% CI: 0.86-1.82), calcification (OR: 1.07, 95\% CI: 0.72-1.60), symptoms (OR: 1.25, 95\% CI: 0.89-1.74), tumor location (OR: 0.95, 95\% CI: 0.69-1.31), composition (OR: 1.46, 95\% CI: 0.89-2.38), necrosis (OR: 0.67, 95\% CI: 0.31-1.43), were not significant associated with the prediction of SPTM. No significant heterogeneity and publication bias (All Egger's test, \(P>0.05\)) was found in above analysis (Supplementary material).

**Clinicopathologic feature of available cases**

Data on the survival of SPTM was available for 159 patients in 77 articles\(^4-6, 30-103\). Among these patients, 131 (86\%) were female, predominantly in adult (73\%) with a median age of 31 years (rang, 9-78 years). These tumors are relatively large (median size, 8.0 cm), occurring frequently in the pancreatic body and tail (65\%). 86 (90\%) cases present symptoms. Of the 159 patients, complete resection surgery of removing all lesions (primary lesion, and metastasis if present) was performed in 136 cases, palliative operation in six cases, surgery plus radiotherapy or chemotherapy in eleven cases, and only chemoradiotherapy in 6 cases. Among patients who reported the resection margin status, 90\% underwent R0 resection. The rates of vascular encasement, capsule invasion, lymphovascular invasion, perineural invasion, lymph node metastasis, parenchyma invasion, extrapancreatic invasion, cellular atypia, and mitosis were 34\%, 79\%, 35\%, 39\%, 11\%, 46\%, 36\%, 46\%, and 43\%, respectively. Ki-67 index was recorded in 33 cases, of which 11 (33\%) were more than 5 percent. Synchronous metastasis occurred in 40 (31\%) cases, with 35 case in the liver and 61 (38\%) cases suffered from postoperative recurrence, with 53 cases in liver. 70\% of relapses occurred within five years with the median recurrent time of 36 months (2-192 months). The median survival time was 50 months (rang, 2-284 months), 26 patients died of disease (Table 2). The 3-, 5-, and 10-year disease-specific survival were 88\%, 84\%, and 76\% (Fig 10). The 5-
10-year survival rates of 136 SPTM patients after complete surgical resection were 92% and 77%, respectively (Fig 11).

Factors affecting the survival and recurrence of SPTM

By univariate analyses, larger tumors (diameter ≥5cm) (p=0.046), lymphovascular invasion (p=0.005), lymph node metastasis (p=0.02), cellular atypia (0.018), Ki67 index ≥5% (p=0.001), recurrence (p=0.004), recurrent time <5 years (p=0.005) and positive margin (p=0.003) were unfavorable factors for survival, but not age, gender, symptoms, tumor location, vascular encasement, capsule, capsule invasion, perineural invasion, parenchymal invasion, extrapancreatic invasion, mitosis, and synchronous metastasis (Table 2). In addition, lymphovascular invasion (OR:8.25, 95% CI:2.26-30.1), lymph node metastasis (OR:25.28, 95% CI:3.01-211.74), extrapancreatic invasion (OR:9.07, 95% CI:2.36-34.84), cellular atypia (OR:16, 95% CI:3-85.3), and Ki67 ≥5% (OR:7.88, 95% CI:1.53-40.51) were associated with the relapses of resected SPTM (Table 3).

Discussion

Solid pseudopapillary tumor of pancreas is an uncommon neoplasms with a low malignant potential, and it is estimated that the overall mortality rate of the disease is about 2%[2]. However, The natural history and biological behavior of SPTM are difficult to determine given its relatively rare appearance. Astonishing, the mortality rate of SPTM patients is as high as 16% in our analysis. Therefore, It is very meaningful to explore the clinical process of SPTM in oder to improve survival of these patients.

The present study conclude that the incidence of SPTM is 22%, which ranged form 8–44% in previus small sample study[6,25]. The pooled incidence indicated that clinicians should manage the disease with caution not treating lightly, although it is usually benign. Tumor size ≥ 5 cm was the only risk factor for the prediction of SPTM. Relatively large tumors will increase the chance of surrounding tissue invasion, even tumor metastasis, which may be the reason that it predicts malignancy successfully. In our cohort, most tumors harbor indeed larger size than 5 cm. Whether the continuous growth of tumors will lead to changes in tumor biological behavior has not been reported, which's still an enigma. Preoperative evaluation of tumor size is helpful to identify patients with SPTM, and provide a planning for surgical resection of surrounding potentially invasive tissue.

Surgery is considered to be the most effective treatment for SPTM. These tumors are usually large, possibly with local extrapancreatic invasion into adjacent organs and vessels, but surgical resection is usually feasible and curable. In our series, 136 cases undertaked complete resection surgery, of which 4 cases received resection and reconstruction of portal vein, and the 5- and 10-year survival rates of were 92%, and 77%,respectively. Even in 25 patients with liver simultaneous metastasis, the 5- and 10-year survival rate reached 90% and 64% after complete aggressive resection, respectively. Therefore, the surgeon should always aim for complete, en bloc resection includingmetastases because the survival of SPTM patients with complete resection is satisfactory, even if the liver metastases. In recurrent series, 20
patients died, but the majority were alive (41/61). Among these 41 patients, reoperation was performed in 25 cases, surgery plus chemotherapy in 8 cases, and only chemotherapy in two cases, and the remaining 6 cases were unknown. Obviously, Aggressive comprehensive management can benefit patients with postoperative recurrence. For unresectable tumor (including major blood vessels invasion or multiple liver metastasis), the effect of non-operative treatment is conflicting\textsuperscript{[30,32,46,60]} Due to the limited number of cases and the diversity of treatment strategies, it is not possible to come to a consistent conclusion for the role of these modalities in SPTM treatment. Noteworthily, Nicholas reported that one SPTM patient with unresectable liver metastasis receiving a short course of tamoxifen, survived for 12 years with stable disease\textsuperscript{[42]}. A previous article described a similar patient who was treated with tamoxifen and the disease was stable\textsuperscript{[104]}. Moreover, recent foundational research provided the direct evidence that oestrogenic molecules can affect proliferation of solid pseudopapillary tumors expressing oestrogen and progesterone receptors\textsuperscript{[105]}. Therefore, a possible therapeutic role of tamoxifen is worth studying for unresectable SPTM with the presence of estrogen receptors. Liver transplantation has been used in some cases and there was no liver recurrence during the follow-up period of 2 to 5 years\textsuperscript{[63,66,76,102]}. However, the experience of this procedure is quite restrictive, and its use is limited by surgical techniques and liver donor resources.

The results of our univariate analysis indicated that many factors like larger tumors (diameter $\geq$ 5 cm), lymphovascular invasion, lymph node metastasis, cellular atypia, Ki67 index $\geq$ 5%, postoperative recurrence, recurrent time $<5$ years and positive margin were associated with the poor prognosis. Furthermore, patients with lymphovascular invasion, lymph node metastasis, extrapancreatic invasion, cellular atypia, Ki67 $\geq$ 5%, and positive margin were associated with a significantly (all $p < 0.05$) increased risk of recurrence. Previous many retrospective studies have not obtained such plump result. The reason why we can get these findings in our study is that we have significantly fewer II class errors Statistically due to all 159 patients harboring malignant characteristics in our study compared only a few or dozens of SPTM patients in other studies. A recent meta analysis assessing the risk factors associated with the postoperative recurrences of solid pseudopapillary tumor identified larger tumors (diameter $>5$ cm), lymphovascular invasion, lymph node metastasis, synchronous metastasis and positive margin were prone to surfer from the recurrences of SPTs\textsuperscript{[106]}. The results of this meta analysis are comparable to ours. Our findings of this study will provide a more reliable basis for clinicians to comprehensively understand and manage the lesions.

Metastasis or recurrence of liver is the main factor affecting the survival of patients with SPTM. In our study cohort, 26 patients died of uncontrollable liver metastasis, including 6 simultaneous metastasis and 20 postoperative relapses. At present, there is no reliable treatment strategy for unresectable metastatic lesions. Therefore, the early detection of liver metastasis for surgical resection is particularly important; Additionally, majority of relapses occurred within five years, which leads to poor prognosis, hence early regular follow-up is considered necessary; In our results, factors affecting recurrence such as lymphovascular invasion, lymph node metastasis, extrapancreatic invasion, and cellular atypia, Ki67 $\geq$ 5% also decrease the survival of SPTM patients. Therefore, it is strongly recommended that patients with
such high-risk features should be closely followed up for at least five years in order to detect early liver metastasis.

Our research has the following some limitations. 1. In most of the included cases, the lack of complete data made it impossible to carry out multivariate analysis, so as to provide more accurate evidence. 2. Case reports are inherently flawed with significant selection and publication bias, causing possibly result bias. 3. It is possible that some literatures are not included despite searching multiple databases and performing extensive backward search, moreover articles published in non-English language are not included. 4. We did not analyze the immunohistochemical results due to the limitations of available literature 5. We did not discuss the scope of the operation, because most operations are decided by the operator according to the patient's condition and the doctor's surgical technique. 6. Although our research results are of reference value, more rigorous studies are needed to confirm them in the future. Despite the limitations, this is the first pooled-analysis on the clinical situation of solid pseudopapillary tumor of the pancreas with malignant behaviors.

Conclusion

Tumor size is an important factor in predicting SPTM before operation, which is beneficial to optimize the surgical planning. Whenever feasible, complete resection surgery should be performed. Long-term follow-up, especially close follow-up in the first 5 years after operation, is essential for patients with SPTM.

Abbreviations

SPTM
solid pseudopapillary tumors of the pancreas with malignant behaviors

Declarations

Ethics approval and consent to participate
The current pooled-analysis was performed on the base of previous studies. Thus, it is not necessary for a formal ethical approval because the data are not individualized.

Consent for publication
Not applicable.

Availability of data and materials
Input data for the analyses are available from the corresponding author on request.

Competing interest
The authors declare that they have no competing interests.

**Funding:**

The authors have no support or funding to report.

**Author contributions**

Conceptualization: Yifei Li, Yanming Zhou

Methodology and project conduct: Yifei Li, Shijie Wang, Yifan Li, Yanming Zhou

Supervision: Yanming Zhou

Writing – original draft: Yifei Li

Writing – review & editing: Yanming Zhou

Yanming Zhou orcid: 0000-0002-8684-7485.

Yifei Li orcid: 0000-0001-9055-6034.

**Acknowledgements**

We thank Doctor Yanfang Zhao (Department of Health Statistics, Second Military Medical University, Shanghai, China) for her critical revision of the pooled-analysis section.

**Corresponding author**

Correspondence to Yanming Zhou

**References**

1. Klöppel G, Heitz PU, Capella C, Solcia E. Pathology and nomenclature of human gastrointestinal neuroendocrine (carcinoid) tumors and related lesions. World journal of surgery. 1996;20:132–41. https://doi.org/10.1007/s002689900021. PMID:8661808.

2. Law JK, Ahmed A, Singh VK, Akshintala VS, Olson MT, Raman SP, et al. A systematic review of solid-pseudopapillary neoplasms: are these rare lesions? Pancreas. 2014;43:331–7. https://doi.org/10.1097/mpa.0000000000000061. PMID:24622060.

3. You L, Yang F, Fu DL. Prediction of malignancy and adverse outcome of solid pseudopapillary tumor of the pancreas. World J Gastrointest Oncol. 2018;10:184–93. https://doi.org/10.4251/wjgo.v10.i7.184. PMID:30079144.

4. Tang LH, Aydin H, Brennan MF, Klimstra DS. Clinically aggressive solid pseudopapillary tumors of the pancreas: a report of two cases with components of undifferentiated carcinoma and a comparative
clinicopathologic analysis of 34 conventional cases. Am J Surg Pathol. 2005;29:512–9. https://doi.org/10.1097/01.pas.0000155159.28530.88. PMID:15767807.

Krug S, Bartsch DK, Schober M, Librizzi D, Pfeffrost A, Burbelko M, et al. Successful selective internal radiotherapy (SIRT) in a patient with a malignant solid pseudopapillary pancreatic neoplasm (SPN). Pancreatology: official journal of the International Association of Pancreatology (IAP) ... et al.[. 2012;12:423–7. https://doi.org/10.1016/j.pan.2012.07.014. PMID:23127531.

Beltrame V, Pozza G, Dalla Bona E, Fantin A, Valmasoni M, Sperti C. Solid-Pseudopapillary Tumor of the Pancreas: A Single Center Experience. Gastroenterology research and practice. 2016; 2016:4289736–4289736. https://doi.org/10.1155/2016/4289736. PMID:28119738.

One Hundred Twenty-One Resected Solid Pseudopapillary Tumors of the Pancreas: An 8-Year Single-Institution Experience at Zhongshan Hospital, Shanghai, China
https://doi.org/10.1097/MPA.0000000000000885
PMID:28742543

Xu Y, Zhao G, Pu N, Nuerxiati A, Ji Y, Zhang L, et al. One Hundred Twenty-One Resected Solid Pseudopapillary Tumors of the Pancreas: An 8-Year Single-Institution Experience at Zhongshan Hospital, Shanghai, China. Pancreas. 2017; 46:1023–8. https://doi.org/10.1097/MPA.0000000000000885. PMID:28742543.

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12. https://doi.org/10.1016/j.jclinepi.2009.06.005. PMID:19631508.

Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ (Clinical research ed.). 2011; 343:d4002-d4002. https://doi.org/10.1136/bmj.d4002. PMID:21784880.

Kang CM, Kim KS, Choi JS, Kim H, Lee WJ, Kim BR. Solid pseudopapillary tumor of the pancreas suggesting malignant potential. Pancreas. 2006;32:276–80. https://doi.org/10.1097/01.mpa.0000202956.41106.8a. PMID:16628083.

Lee SE, Jang J-Y, Hwang DW, Park K-W, Kim S-W. Clinical features and outcome of solid pseudopapillary neoplasm: differences between adults and children. Archives of surgery (Chicago, Ill.: 1960). 2008; 143:1218–1221. https://doi.org/10.1001/archsurg.143.12.1218. PMID:19075175.

Chung YE, Kim M-J, Choi J-Y, Lim JS, Hong H-S, Kim YC, et al. Differentiation of benign and malignant solid pseudopapillary neoplasms of the pancreas. J Comput Assist Tomogr. 2009;33:689–94. https://doi.org/10.1097/RCT.0b013e31818f2a74. PMID:19820493.

Butte JM, Brennan MF, Gönen M, Tang LH, D'Angelica MI, Fong Y, et al. Solid pseudopapillary tumors of the pancreas. Clinical features, surgical outcomes, and long-term survival in 45 consecutive patients from a single center. Journal of gastrointestinal surgery: official journal of the Society for...
14. Kim CW, Han DJ, Kim J, Kim YH, Park JB, Kim SC. Solid pseudopapillary tumor of the pancreas: can malignancy be predicted? Surgery. 2011;149:625–34. https://doi.org/10.1016/j.surg.2010.11.005. PMID:21300390.

15. Kim HH, Yun SK, Kim JC, Park EK, Seoung JS, Hur YH, et al. Clinical features and surgical outcome of solid pseudopapillary tumor of the pancreas: 30 consecutive clinical cases. Hepato-gastroenterology. 2011;58:1002–8. PMID:21830432.

16. El Nakeeb A, Abdel Wahab M, Elkashef WF, Azer M, Kandil T. Solid pseudopapillary tumour of the pancreas: Incidence, prognosis and outcome of surgery (single center experience). International journal of surgery (London, England). 2013;11:447–457. https://doi.org/10.1016/j.ijsu.2013.04.009. PMID:23619333.

17. Park JK, Cho EJ, Ryu JK, Kim Y-T, Yoon Y-B. Natural history and malignant risk factors of solid pseudopapillary tumors of the pancreas. Postgraduate medicine. 2013;125:92–9. https://doi.org/10.3810/pgm.2013.03.2634. PMID:23816775.

18. Cai Y-Q, Xie S-M, Ran X, Wang X, Mai G, Liu X-B. Solid pseudopapillary tumor of the pancreas in male patients: report of 16 cases. World journal of gastroenterology. 2014;20:6939–45. https://doi.org/10.3748/wjg.v20.i22.6939. PMID:24944486.

19. Hwang J, Kim DY, Kim SC, Namgoong J-M, Hong S-M. Solid-pseudopapillary neoplasm of the pancreas in children: can we predict malignancy? Journal of pediatric surgery. 2014;49:1730–3. https://doi.org/10.1016/j.jpedsurg.2014.09.011. PMID:25487471.

20. Dai G, Huang L, Du Y, Yang L, Yu P. Solid pseudopapillary neoplasms of the pancreas: clinical analysis of 45 cases. Int J Clin Exp Pathol. 2015;8:11400–6. PMID:26617866.

21. Tang X, Zhang J, Che X, Chen Y, Wang C. Peripancreatic lymphadenopathy on preoperative radiologic images predicts malignancy in pancreatic solid pseudopapillary neoplasm. Int J Clin Exp Med. 2015;8:16315–21. PMID:26629150.

22. Yu P, Cheng X, Du Y, Yang L, Xu Z, Yin W, et al. Solid Pseudopapillary Neoplasms of the Pancreas: a 19-Year Multicenter Experience in China. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract. 2015;19:1433–40. https://doi.org/10.1007/s11605-015-2862-8. PMID:26001371.

23. Yang F, Yu X, Bao Y, Du Z, Jin C, Fu D. Prognostic value of Ki-67 in solid pseudopapillary tumor of the pancreas: Huashan experience and systematic review of the literature. Surgery. 2016;159:1023–31. https://doi.org/10.1016/j.surg.2015.10.018. PMID:26619927.

24. Song H, Dong M, Zhou J, Sheng W, Zhong B, Gao W. Solid Pseudopapillary Neoplasm of the Pancreas: Clinicopathologic Feature, Risk Factors of Malignancy, and Survival Analysis of 53 Cases.
25. https://doi.org/10.1016/j.pan.2019.06.008. PMID:31227367.
26. Wang J, Chen X, Wang C, Cui W, Ren S, Wang Z, et al. Differentiation of aggressive from non-aggressive pancreatic solid pseudopapillary neoplasms using computed tomography. Abdominal radiology (New York). 2019;44:2448–58. https://doi.org/10.1007/s00261-019-01969-6. PMID:30850890.
27. Wu J-H, Tian X-Y, Liu B-N, Li C-P, Zhao M, Hao C-Y. Clinicopathological features and prognostic factors of solid pseudopapillary neoplasms of pancreas. Pakistan journal of pharmaceutical sciences. 2019;32:459–64. PMID:30852485.
28. Yu C-C, Tseng J-H, Yeh C-N, Hwang T-L, Jan Y-Y. Clinicopathological study of solid and pseudopapillary tumor of pancreas: emphasis on magnetic resonance imaging findings. World journal of gastroenterology. 2007;13:1811–5. https://doi.org/10.3748/wjg.v13.i12.1811. PMID:17465471.
29. Yang F, Bao Y, Zhou Z, Jin C, Fu D. Preoperative neutrophil-to-lymphocyte ratio predicts malignancy and recurrence-free survival of solid pseudopapillary tumor of the pancreas. Journal of surgical oncology. 2019;120:241–8. https://doi.org/10.1002/jso.25484. PMID:31041808.
30. Fried P, Cooper J, Balthazar E, Fazzini E, Newall J. A role for radiotherapy in the treatment of solid and papillary neoplasms of the pancreas. Cancer. 1985; 56:2783–2785. https://doi.org/10.1002/1097-0142(19851215)56:12<2783::aid-cncr2820561211>3.0.co;2-q. PMID:4052952.
31. Matsuda Y, Imai Y, Kawata S, Nishikawa M, Miyoshi S, Saito R, et al. Papillary-cystic neoplasm of the pancreas with multiple hepatic metastases: a case report. Gastroenterologia Japonica. 1987;22:379–84. https://doi.org/10.1007/bf02774265. PMID:2442059.
32. Matsunou H, Konishi F. Papillary-cystic neoplasm of the pancreas. A clinicopathologic study concerning the tumor aging and malignancy of nine cases. Cancer. 1990; 65:283–291. https://doi.org/10.1002/1097-0142(19900115)65:2<283::aid-cncr2820650217>3.0.co;2-x. PMID:2295051.
33. Stömmer P, Kraus J, Stolte M, Giedl J. Solid and cystic pancreatic tumors. Clinical, histochemical, and electron microscopic features in ten cases. Cancer. 1991; 67:1635–1641. https://doi.org/10.1002/1097-0142(19910315)67:6<1635::aid-cncr2820670627>3.0.co;2-m. PMID:1900454.
34. Jaksic T, Yaman M, Thörner P, Wesson DK, Filler RM, Shandling B. A 20-year review of pediatric pancreatic tumors. Journal of pediatric surgery. 1992;27:1315–7. https://doi.org/10.1016/0022-3468(92)90284-e. PMID:1328584.
35. Horisawa M, Niinomi N, Sato T, Yokoi S, Oda K, Ichikawa M, et al. Frantz's tumor (solid and cystic tumor of the pancreas) with liver metastasis: successful treatment and long-term follow-up. Journal
of pediatric surgery. 1995;30:724–6. https://doi.org/10.1016/0022-3468(95)90701-7. PMID:7623239.

36. Ky A, Shilyansky J, Gerstle J, Taylor G, Filler RM, Grace N, et al. Experience with papillary and solid epithelial neoplasms of the pancreas in children. Journal of pediatric surgery. 1998;33:42–4. https://doi.org/10.1016/s0022-3468(98)90358-x. PMID:9473097.

37. Shimizu M, Matsumoto T, Hirokawa M, Monobe Y, Iwamoto S, Tsunoda T, et al. Solid-pseudopapillary carcinoma of the pancreas. Pathology international. 1999;49:231–4. https://doi.org/10.1046/j.1440-1827.1999.00852.x. PMID:10338079.

38. Takahashi H, Hashimoto K, Hayakawa H, Kusakawa M, Okamura K, Kosaka A, et al. Solid cystic tumor of the pancreas in elderly men: report of a case. Surg Today. 1999;29:1264–7. https://doi.org/10.1007/BF02482220. PMID:10639709.

39. Nakamura S, Okayama Y, Imai H, Aoki S, Kobayashi S, Hattori T, et al. A solid cystic tumor of the pancreas with ossification and possible malignancy, coexisting nonfuson of the pancreatic ducts. Journal of clinical gastroenterology. 2001;33:333–6. https://doi.org/10.1097/00004836-200110000-00017. PMID:11588552.

40. Rebhandl W, Felberbauer FX, Puig S, Paya K, Hochschorner S, Barlan M, et al. Solid-pseudopapillary tumor of the pancreas (Frantz tumor) in children: report of four cases and review of the literature. Journal of surgical oncology. 2001;76:289–96. https://doi.org/10.1002/jso.1048. PMID:11320522.

41. Martin RCG, Klimstra DS, Brennan MF, Conlon KC. Solid-pseudopapillary tumor of the pancreas: a surgical enigma? Annals of surgical oncology. 2002; 9:35–40. https://doi.org/10.1245/aso.2002.9.1.35. PMID:11833495.

42. Shorter NA, Glick RD, Klimstra DS, Brennan MF, Laquaglia MP. Malignant pancreatic tumors in childhood and adolescence: The Memorial Sloan-Kettering experience, 1967 to present. Journal of pediatric surgery. 2002;37:887–92. https://doi.org/10.1053/jpsu.2002.32897. PMID:12037756.

43. Potrc S, Kavalar R, Horvat M, Gadzijev EM. Urgent Whipple resection for solid pseudopapillary tumor of the pancreas. Journal of hepato-biliary-pancreatic surgery. 2003;10:386–389. https://doi.org/10.1007/s00534-002-0836-1. PMID:14598141.

44. Vollmer CM Jr, Dixon E, Grant DR. Management of a solid pseudopapillary tumor of the pancreas with liver metastases. HPB: the official journal of the International Hepato Pancreato Biliary Association. 2003;5:264–7. https://doi.org/10.1080/13651820310001397. PMID:18333000.

45. Zeytunlu M, Firat O, Nart D, Coker A, Yüzer Y, Tekesin O, et al. Solid and cystic papillary neoplasms of the pancreas: report of four cases. The Turkish journal of gastroenterology: the official journal of Turkish Society of Gastroenterology. 2004;15:178–82. PMID:15492918.

46. Alexandrescu DT, O'Boyle K, Feliz A, Fueg A, Wiernik PH. Metastatic solid-pseudopapillary tumour of the pancreas: clinico-biological correlates and management. Clinical oncology (Royal College of Radiologists (Great Britain)). 2005; 17:358–363. https://doi.org/10.1016/j.clon.2004.11.015. PMID:16097567.

47. https://doi.org/10.1159/000085285. PMID:15855828.
48. Huang H-L, Shih S-C, Chang W-H, Wang T-E, Chen M-J, Chan Y-J. Solid-pseudopapillary tumor of the pancreas: clinical experience and literature review. World journal of gastroenterology. 2005;11:1403–9. https://doi.org/10.3748/wjg.v11.i9.1403. PMID:15761986.

49. Takahashi Y, Fukusato T, Aita K, Toida S, Fukushima J-I, Imamura T, et al. Solid pseudopapillary tumor of the pancreas with metastases to the lung and liver. Pathology international. 2005;55:792–6. https://doi.org/10.1111/j.1440-1827.2005.01908.x. PMID:16287495.

50. Adamthwaite JA, Verbeke CS, Stringer MD, Guillou PJ, Menon KV. Solid pseudopapillary tumour of the pancreas: diverse presentation, outcome and histology. JOP: Journal of the pancreas. 2006;7:635–42. PMID:17095844.

51. Asano T, Seya T, Tanaka N, Ooaki Y, Fujino O. A 13-year-old girl with a preoperatively diagnosed solid cystic tumor of the pancreas. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi. 2006;73:231–4. https://doi.org/10.1272/jnms.73.231. PMID:16936450.

52. Cao D, Antonescu C, Wong G, Winter J, Maitra A, Adsay NV, et al. Positive immunohistochemical staining of KIT in solid-pseudopapillary neoplasms of the pancreas is not associated with KIT/PDGFRA mutations. Modern pathology: an official journal of the United States Canadian Academy of Pathology Inc. 2006;19:1157–63. https://doi.org/10.1038/modpathol.3800647. PMID:16778826.

53. Casadei R, Santini D, Calcutti L, Pezzilli R, Zanini N, Minni F. Pancreatic solid-cystic papillary tumor: clinical features, imaging findings and operative management. JOP: Journal of the pancreas. 2006;7:137–44. PMID:16407636.

54. Gedaly R, Toledano A, Millan G, Essenfeld H, Zambrano VJ. Treatment of liver metastases from a solid pseudopapillary tumor of the pancreas. Journal of hepato-biliary-pancreatic surgery. 2006;13:587–590. https://doi.org/10.1007/s00534-006-1122-4. PMID:17139438.

55. Karagülle E, Yildirim E, Türk E, Kiyici H, Karakayali H. Solid pseudopapillary tumor of the pancreas: a case report. The Turkish journal of gastroenterology: the official journal of Turkish Society of Gastroenterology. 2006;17:316–9. PMID:17205415.

56. Karatag O, Yenice G, Ozkurt H, Basak M, Basaran C, Yilmaz B. A case of solid pseudopapillary tumor of the pancreas. World journal of gastroenterology. 2006;12:6239–43. https://doi.org/10.3748/wjg.v12.i8.6239. PMID:17036405.

57. Park SE, Park NS, Chun JM, Park NW, Yang YJ, Yun GW, et al. A case of recurrent solid pseudopapillary tumor of the pancreas with involvement of the spleen and kidney. Cancer research treatment: official journal of Korean Cancer Association. 2006;38:118–20. https://doi.org/10.4143/crt.2006.38.2.118. PMID:19771270.

58. Seo H-E, Lee M-K, Lee Y-D, Jeon S-W, Cho C-M, Tak W-Y, et al. Solid-pseudopapillary tumor of the pancreas. Journal of clinical gastroenterology. 2006;40:919–22. https://doi.org/10.1097/01.mcg.0000225671.91722.10. PMID:17063112.

59. Vargas-Serrano B, Domínguez-Ferreras E, Chinchón-Espino D. Four cases of solid pseudopapillary tumors of pancreas: imaging findings and pathological correlations. Eur J Radiol. 2006;58:132–9.
60. Zauls JA, Dragun AE, Sharma AK. Intensity-modulated radiation therapy for unresectable solid pseudopapillary tumor of the pancreas. Am J Clin Oncol. 2006;29:639–40. https://doi.org/10.1097/01.coc.0000190457.43060.fd. PMID:17149006.

61. Hah JO, Park WK, Lee NH, Choi JH. Preoperative chemotherapy and intraoperative radiofrequency ablation for unresectable solid pseudopapillary tumor of the pancreas. Journal of pediatric hematology/oncology. 2007;29:851–3. https://doi.org/10.1097/MPH.0b013e318158159c. PMID:18090937.

62. Nagri S, Abdu A, Anand S, Krishnaiah M, Arya V. Liver metastasis four years after Whipple's resection for solid-pseudopapillary tumor of the pancreas. JOP: Journal of the pancreas. 2007;8:223–7. PMID:17356247.

63. Sumida W, Kaneko K, Tainaka T, Ono Y, Kiuchi T, Ando H. Liver transplantation for multiple liver metastases from solid pseudopapillary tumor of the pancreas. Journal of pediatric surgery. 2007;42:e27-e31. https://doi.org/10.1016/j.jpedsurg.2007.08.056. PMID:18082688.

64. Sperti C, Berselli M, Pasquali C, Pastorelli D, Pedrazzoli S. Aggressive behaviour of solid-pseudopapillary tumor of the pancreas in adults: a case report and review of the literature. World journal of gastroenterology. 2008;14:960–5. https://doi.org/10.3748/wjg.14.960. PMID:18240360.

65. Fais PO, Carricaburu E, Sarnacki S, Berrebi D, Orbach D, Baudoin V, et al. Is laparoscopic management suitable for solid pseudo-papillary tumors of the pancreas? Pediatric surgery international. 2009;25:617–621. https://doi.org/10.1007/s00383-009-2388-9. PMID:19479267.

66. Dovigo AG, Díaz MB, Gutiérrez MG, Selles CF, Grobas JP, Valladares M, et al. Liver transplantation as treatment in a massive metastasis from Gruber-Frantz pancreatic tumor: a case report. Transplantation proceedings. 2011;43:2272–2273. https://doi.org/10.1016/j.transproceed.2011.05.029. PMID:21839254.

67. Nam WS, Won YS, You DD, Yang JM, Jung JH. Solid pseudopapillary tumor with hepatic metastasis. Journal of the Korean Surgical Society. 2011; 81 Suppl 1:S55-S58. https://doi.org/10.4174/jkss.2011.81.Suppl1.S55. PMID:22319740.

68. Tajima K, Kawaguchi Y, Ito H, Ogawa M, Toriumi K, Hirabayashi K, et al. A case of pancreatic solid-pseudopapillary neoplasm with marked ossification. Clinical journal of gastroenterology. 2011;4:112–7. https://doi.org/10.1007/s12328-011-0202-4. PMID:26190717.

69. Gomez P, Yorke R, Ayala AG, Ro JY. Solid-pseudopapillary neoplasm of pancreas with long delayed liver metastasis. Annals of diagnostic pathology. 2012;16:380–4. https://doi.org/10.1016/j.anndiagpath.2011.02.008. PMID:21641841.

70. Honore C, Goere D, Dartigues P, Burtin P, Dumont F, Elias D. Peritoneal carcinomatosis from solid pseudopapillary neoplasm (Frantz's tumour) of the pancreas treated with HIPEC. Anticancer research. 2012;32:1069–73. PMID:22399634.
71. Ji S, Xu J, Zhang B, Xu Y, Liu C, Long J, et al. Management of a malignant case of solid pseudopapillary tumor of pancreas: a case report and literature review. Pancreas. 2012;41:1336–40. https://doi.org/10.1097/MPA.0b013e31824d52c7. PMID:22699200.

72. Li J-X, Wu H, Huang J-W, Prasoon P, Zeng Y. Synchronous intraoperative radiofrequency ablation for multiple liver metastasis and resection of giant solid pseudopapillary tumors of the pancreas. Chin Med J. 2012;125:1661–3. PMID:22800840.

73. 10.1136/bcr-2012-006495 Mat Zin AA, Shakir KAR, Aminuddin AR, Mahedzan MR, Irnawati WAR, Andee DZ, et al. Solid-pseudopapillary carcinoma: a case study and literature review. BMJ case reports. 2012;2012:bcr2012006495. https://doi.org/10.1136/bcr-2012-006495. PMID:22927280.

74. Tajima Y, Kohara N, Maeda J, Inoue K, Kitasato A, Natsuda K, et al. Peritoneal and nodal recurrence 7 years after the excision of a ruptured solid pseudopapillary neoplasm of the pancreas: report of a case. Surg Today. 2012;42:776–80. https://doi.org/10.1007/s00595-012-0208-7. PMID:22706721.

75. Fakhry H, Abdelhady H. Solid and cystic papillary neoplasm of the pancreas in a 18-year-old female: a case report. JOP: Journal of the pancreas. 2013;14:642–5. https://doi.org/10.6092/1590-8577/1410. PMID:24216551.

76. Łągiewska B, Pacholczyk M, Lisik W, Cichocki A, Nawrocki G, Trzebicki J, et al. Liver transplantation for nonresectable metastatic solid pseudopapillary pancreatic cancer. Annals of transplantation. 2013;18:651–3. https://doi.org/10.12659/AOT.889979. PMID:24280737.

77. Li H-X, Zhang Y, Du Z-G, Tang F, Qi X-Q, Yin B, et al. Multi-centric solid-pseudopapillary neoplasm of the pancreas. Medical oncology (Northwood, London, England). 2013; 30:330–330. https://doi.org/10.1007/s12032-012-0330-9. PMID:23263846.

78. 10.5114/wo.2013.37225 Liu T, He J, Cao D, Huang Y. Successful treatment of liver metastasis from solid pseudopapillary tumor of the pancreas: a case report. Contemporary oncology (Poznan, Poland). 2013; 17:400–403. https://doi.org/10.5114/wo.2013.37225. PMID:24592130.

79. Vassos N, Agaimy A, Klein P, Hohenberger W, Croner RS. Solid-pseudopapillary neoplasm (SPN) of the pancreas: case series and literature review on an enigmatic entity. Int J Clin Exp Pathol. 2013;6:1051–9. PMID:23696922.

80. Yagcı A, Yakan S, Coskun A, Erkan N, Yıldırım M, Yalcın E, et al. Diagnosis and treatment of solid pseudopapillary tumor of the pancreas: experience of one single institution from Turkey. World J Surg Oncol. 2013;11:308–8. https://doi.org/10.1186/1477-7819-11-308. PMID:24289652.

81. Estrella JS, Li L, Rashid A, Wang H, Katz MH, Fleming JB, et al. Solid pseudopapillary neoplasm of the pancreas: clinicopathologic and survival analyses of 64 cases from a single institution. Am J Surg Pathol. 2014;38:147–57. https://doi.org/10.1097/PAS.0000000000000141. PMID:24418850.

82. Hosokawa I, Shimizu H, Ohtsuka M, Kato A, Yoshitomi H, Furukawa K, et al. Preoperative diagnosis and surgical management for solid pseudopapillary neoplasm of the pancreas. J Hepato-Biliary-Pancreat Sci. 2014;21:573–8. https://doi.org/10.1002/jhbp.96. PMID:24535774.
83. Kang CM, Choi SH, Kim SC, Lee WJ, Choi DW, Kim SW, et al. Predicting recurrence of pancreatic solid pseudopapillary tumors after surgical resection: a multicenter analysis in Korea. Annals of surgery. 2014;260:348–55. https://doi.org/10.1097/SLA.0000000000000583. PMID:24743622.

84. 10.1089/lap.2013.0511
Petrosyan M, Franklin AL, Jackson HT, McGue S, Reyes CA, Kane TD. Solid pancreatic pseudopapillary tumor managed laparoscopically in adolescents: a case series and review of the literature. Journal of laparoendoscopic & advanced surgical techniques. Part A. 2014; 24:440–444. https://doi.org/10.1089/lap.2013.0511. PMID:24746104.

85. Reindl BA, Lynch DW, Jassim AD. Aggressive variant of a solid pseudopapillary neoplasm: a case report and literature review. Arch Pathol Lab Med. 2014;138:974–8. https://doi.org/10.5858/arpa.2013-0184-CR. PMID:24978926.

86. Serrano PE, Serra S, Al-Ali H, Gallinger S, Greig PD, McGilvray ID, et al. Risk factors associated with recurrence in patients with solid pseudopapillary tumors of the pancreas. JOP: Journal of the pancreas. 2014;15:561–8. https://doi.org/10.6092/1590-8577/2423. PMID:25435571.

87. Wang W-B, Zhang T-P, Sun M-Q, Peng Z, Chen G, Zhao Y-P. Solid pseudopapillary tumor of the pancreas with liver metastasis: Clinical features and management. European journal of surgical oncology: the journal of the European Society of Surgical Oncology the British Association of Surgical Oncology. 2014;40:1572–7. https://doi.org/10.1016/j.ejso.2014.05.012. PMID:24961631.

88. Yener AN, Manukyan M, Midi A, Cubuk R. Solid pseudopapillary neoplasm of the pancreas: report of a rare case and review of the literature. Turk patoloji dergisi. 2014;30:228–32. https://doi.org/10.5146/tjpath.2013.01192. PMID:24101358.

89. Violari EG, Brody LA, Covey AM, Erinjeri JP, Getrajdman GI, Sofocleous CT, et al. Successful control of liver metastases from pancreatic solid-pseudopapillary neoplasm (SPN) using hepatic arterial embolization. Cardiovasc Interv Radiol. 2015;38:479–83. https://doi.org/10.1007/s00270-014-0894-1. PMID:24798134.

90. Prasad TV, Madhusudhan KS, Srivastava DN, Dash NR, Gupta AK. Transarterial chemoembolization for liver metastases from solid pseudopapillary epithelial neoplasm of pancreas: A case report. World journal of radiology. 2015;7:61–5. https://doi.org/10.4329/wjr.v7.i3.61. PMID:25825635.

91. Tajima H, Takamura H, Kitagawa H, Nakayama A, Shoji M, Watanabe T, et al. Multiple liver metastases of pancreatic solid pseudopapillary tumor treated with resection following chemotherapy and transcatheter arterial embolization: A case report. Oncology letters. 2015;9:1733–8. https://doi.org/10.3892/ol.2015.2967. PMID:25789032.

92. Yagmur Y, Yigit E, Gumus S, Babur M, Can MA. Solid cystic pseudopapillary tumor of pancreas with splenic metastasis: Case report and review of literature. International journal of surgery case reports. 2015;14:50–2. https://doi.org/10.1016/j.ijscr.2015.06.042. PMID:26225837.

93. Ersen A, Agalar AA, Ozer E, Agalar C, Unek T, Egeli T, et al. Solid-Pseudopapillary neoplasm of the pancreas: A clinicopathological review of 20 cases including rare examples. Pathol Res Pract. 2016;212:1052–8. https://doi.org/10.1016/j.prp.2016.09.006. PMID:28327291.
94. Antoniou EA, Damaskos C, Garmpis N, Salakos C, Margonis G-A, Kontzoglou K, et al. Solid Pseudopapillary Tumor of the Pancreas: A Single-center Experience and Review of the Literature. In vivo (Athens, Greece). 2017; 31:501–510. https://doi.org/10.21873/invivo.11089. PMID:28652415.

95. Bhutani N, Kajal P, Singla S, Sangwan V. Solid pseudopapillary tumor of the pancreas: Experience at a tertiary care centre of Northern India. International journal of surgery case reports. 2017;39:225–30. https://doi.org/10.1016/j.ijscr.2017.07.064. PMID:28858740.

96. Chikuie E, Fukuda S, Tazawa H, Nishida T, Sakimoto H. A solid pseudopapillary neoplasm of the pancreas in a man presenting with acute pancreatitis: A case report. International journal of surgery case reports. 2017;31:114–8. https://doi.org/10.1016/j.ijscr.2017.01.026. PMID:28131797.

97. Divarcı E, Dökümcü Z, Çetingül N, Nart D, Barbet FY, Ergün O, et al. Radical resection of the pancreas should not always be necessary in the surgical management of pancreatic solid pseudopapillary tumor in children. The Turkish journal of gastroenterology: the official journal of Turkish Society of Gastroenterology. 2017; 28:214–218. https://doi.org/10.5152/tjg.2017.16713. PMID:28336499.

98. Lee HS, Kim HK, Shin BK, Choi JH, Choi YJ, Kim HY. A Rare Case of Recurrent Metastatic Solid Pseudopapillary Neoplasm of the Pancreas. Journal of pathology translational medicine. 2017;51:87–91. https://doi.org/10.4132/jptm.2016.06.16. PMID:27498546.

99. Watanabe Y, Okamoto K, Okada K, Aikawa M, Koyama I, Yamaguchi H. A case of aggressive solid pseudopapillary neoplasm: Comparison of clinical and pathologic features with non-aggressive cases. Pathology international. 2017;67:202–7. https://doi.org/10.1111/pin.12516. PMID:28208222.

100. Yang F, Jin C, Fu D. Evolution of liver metastasis from solid pseudopapillary tumor of the pancreas. Surgery. 2017;161:1739–40. https://doi.org/10.1016/j.surg.2016.05.001. PMID:27302102.

101. Chinnakkulam Kandhasamy S, Sriram JK, Sahoo AK, Goneppanavar M, Nelamangala Ramakrishnaiah VP. Distal Pancreas and Spleen-preserving Central Pancreatectomy in a Locally Aggressive Solid Pseudopapillary Neoplasm of Pancreas: A Novel Extended Warshaw Technique. Cureus. 2018;10:e3742–2. https://doi.org/10.7759/cureus.3742. PMID:30800552.

102. Wójciak M, Gozdowska J, Pacholczyk M, Lisik W, Kosieradzki M, Cichocki A, et al. Liver Transplantation for a Metastatic Pancreatic Solid-Pseudopapillary Tumor (Frantz Tumor): A Case Report. Annals of transplantation. 2018; 23:520–523. https://doi.org/10.12659/AOT.908764. PMID:30061554.

103. Song T-L, Chen H, Wang F-R, Li Y-M. Combined treatment for solid pseudopapillary tumor of the pancreas with liver metastasis. Hepatobiliary & pancreatic diseases international. HBPD INT. 2019;18:495–7. https://doi.org/10.1016/j.hbpd.2019.04.002. PMID:30987898.

104. Mao C, Guvendi M, Domenico DR, Kim K, Thomford NR, Howard JM. Papillary cystic and solid tumors of the pancreas: a pancreatic embryonic tumor? Studies of three cases and cumulative review of the world's literature. Surgery. 1995;118:821–8. https://doi.org/10.1016/s0039-6060(05)80271-5. PMID:7482268.
105. Tognarini I, Tonelli F, Nesi G, Martineti V, Galli G, Gozzini A, et al. In vitro effects of oestrogens, antioestrogens and SERMs on pancreatic solid pseudopapillary neoplasm-derived primary cell culture. Cellular oncology: the official journal of the International Society for Cellular Oncology. 2010;32:331–43. https://doi.org/10.3233/CLO-2010-0522. PMID:20364070.

106. Gao H, Gao Y, Yin L, Wang G, Wei J, Jiang K, et al. Risk Factors of the Recurrences of Pancreatic Solid Pseudopapillary Tumors: A Systematic Review and Meta-analysis. J Cancer. 2018;9:1905–14. https://doi.org/10.7150/jca.24491. PMID:29896274.

**Tables**

Due to technical limitations, tables are only available as a download in the supplemental files section.

**Figures**

![Flow chart of literature screening](chart.png)

**Fig 1** Study selection.

**Figure 1**

Flow chart of literature screening.
### Table

| Study           | Events | Total | Proportion | 95%-CI   | Weight (fixed) | Weight (random) |
|-----------------|--------|-------|------------|----------|----------------|-----------------|
| 2006-Kang       | 11     | 33    | 0.33       | [0.18; 0.52] | 1.7%           | 2.5%            |
| 2008-Lee        | 10     | 62    | 0.16       | [0.08; 0.28] | 5.2%           | 5.3%            |
| 2009-Chuang     | 12     | 30    | 0.40       | [0.23; 0.59] | 1.4%           | 2.1%            |
| 2011-Butte      | 9      | 45    | 0.20       | [0.10; 0.35] | 3.2%           | 3.9%            |
| 2011-Kim        | 26     | 114   | 0.23       | [0.15; 0.32] | 7.3%           | 6.3%            |
| 2013-El Nakeeb  | 6      | 24    | 0.25       | [0.10; 0.47] | 1.5%           | 2.2%            |
| 2013-Park       | 9      | 60    | 0.15       | [0.07; 0.27] | 5.3%           | 5.4%            |
| 2014-Cai        | 35     | 116   | 0.30       | [0.22; 0.39] | 6.2%           | 5.9%            |
| 2014-Hwang      | 9      | 45    | 0.20       | [0.10; 0.35] | 3.2%           | 3.9%            |
| 2015-Dai        | 8      | 45    | 0.18       | [0.08; 0.32] | 3.5%           | 4.2%            |
| 2015-Tang       | 24     | 100   | 0.24       | [0.16; 0.34] | 6.2%           | 5.8%            |
| 2015-Yu         | 16     | 97    | 0.16       | [0.10; 0.25] | 8.0%           | 6.6%            |
| 2016-Beltrame   | 8      | 18    | 0.44       | [0.22; 0.69] | 0.8%           | 1.3%            |
| 2016-Yang       | 13     | 71    | 0.18       | [0.10; 0.29] | 5.4%           | 5.4%            |
| 2017-Song       | 10     | 53    | 0.19       | [0.09; 0.32] | 3.9%           | 4.5%            |
| 2017-Xu         | 35     | 121   | 0.29       | [0.21; 0.38] | 6.7%           | 6.1%            |
| 2019-Tjaden     | 7      | 52    | 0.13       | [0.06; 0.26] | 5.1%           | 5.2%            |
| 2019-Wang       | 30     | 122   | 0.25       | [0.17; 0.33] | 7.5%           | 6.4%            |
| 2019-Wu         | 12     | 54    | 0.22       | [0.12; 0.36] | 3.5%           | 4.2%            |
| 2007-Yu         | 9      | 26    | 0.35       | [0.17; 0.56] | 1.3%           | 2.0%            |
| 2019-Yang       | 16     | 113   | 0.14       | [0.08; 0.22] | 10.6%          | 7.4%            |

**Fixed effect model**

1431

0.21 [0.19; 0.23] 100.0%  --

**Random effects model**

0.22 [0.19; 0.24]  --  100.0%

---

**Heterogeneity:** $I^2 = 41\%$, $\chi^2 = 0.0017$, $p = 0.03$

---

**Figure 2**

The forest plot of pooled SPTM incidence.
Figure 3

the relationship between the prediction of SPTM and tumor size.

Figure 4

the relationship between the prediction of SPTM and sex.
Figure 5

The relationship between the prediction of SPTM and tumor calcification.

| Study          | Yes Events | Total Events | No Events | Total | Odds Ratio | OR     | 95%-CI | Weight |
|----------------|------------|--------------|-----------|-------|------------|--------|--------|--------|
| 2006-Kang      | 3          | 9            | 8         | 24    | 1.00       | 1.00   | [0.20; 5.08] | 6.0%   |
| 2008-Lee       | 3          | 18           | 7         | 44    | 1.06       | 1.06   | [0.24; 4.64] | 7.3%   |
| 2011-Kim       | 4          | 9            | 1         | 21    | 16.00      | 16.00  | [1.45; 176.45] | 2.8%   |
| 2011-Butte     | 1          | 7            | 8         | 38    | 0.62       | 0.62   | [0.07; 5.97] | 3.1%   |
| 2013-El Nakeeb | 1          | 6            | 5         | 18    | 0.52       | 0.52   | [0.05; 5.63] | 2.8%   |
| 2013-Park      | 5          | 39           | 4         | 21    | 0.62       | 0.62   | [0.15; 2.63] | 7.7%   |
| 2014-Hwang     | 1          | 3            | 8         | 42    | 2.12       | 2.12   | [0.17; 26.44] | 2.5%   |
| 2015-Dai       | 3          | 11           | 5         | 34    | 2.17       | 2.17   | [0.43; 11.12] | 6.0%   |
| 2015-Tang      | 7          | 31           | 17        | 69    | 0.89       | 0.89   | [0.33; 2.44] | 15.8%  |
| 2015-Yu        | 5          | 22           | 11        | 75    | 1.71       | 1.71   | [0.52; 5.60] | 11.3%  |
| 2017-Song      | 4          | 15           | 6         | 38    | 1.94       | 1.94   | [0.46; 8.18] | 7.7%   |
| 2019-Wang      | 10         | 46           | 20        | 76    | 0.78       | 0.78   | [0.33; 1.85] | 21.2%  |
| 2019-Wu        | 2          | 15           | 10        | 39    | 0.45       | 0.45   | [0.09; 2.33] | 5.8%   |

Random effects model: 231 / 539

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.62$
Test for overall effect: $z = 0.35$ ($p = 0.73$)

Figure 6

The relationship between the prediction of SPTM and symptoms.

| Study          | Yes Events | Total Events | No Events | Total | Odds Ratio | OR     | 95%-CI | Weight |
|----------------|------------|--------------|-----------|-------|------------|--------|--------|--------|
| 2006-Kang      | 8          | 20           | 3         | 13    | 2.22       | 2.22   | [0.46; 10.68] | 4.5%   |
| 2008-Lee       | 9          | 44           | 1         | 18    | 4.37       | 4.37   | [0.51; 37.37] | 2.4%   |
| 2011-Kim       | 3          | 24           | 2         | 6     | 0.29       | 0.29   | [0.04; 2.30] | 2.6%   |
| 2011-Butte     | 9          | 38           | 0         | 7     | 4.83       | 4.83   | [0.25; 92.72] | 1.3%   |
| 2011-Kim       | 14         | 69           | 12        | 45    | 0.70       | 0.70   | [0.29; 1.69] | 14.3%  |
| 2013-El Nakeeb | 6          | 22           | 0         | 2     | 1.97       | 1.97   | [0.08; 46.85] | 1.1%   |
| 2013-park      | 5          | 28           | 4         | 32    | 1.52       | 1.52   | [0.37; 6.33] | 5.5%   |
| 2014-Hwang     | 8          | 38           | 1         | 7     | 1.60       | 1.60   | [0.17; 15.27] | 2.2%   |
| 2015-Dai       | 7          | 41           | 1         | 4     | 0.62       | 0.62   | [0.06; 6.84] | 1.9%   |
| 2015-Tang      | 14         | 47           | 10        | 53    | 1.82       | 1.82   | [0.72; 4.62] | 12.9%  |
| 2015-Yu        | 15         | 90           | 1         | 7     | 1.20       | 1.20   | [0.13; 10.70] | 2.3%   |
| 2016-Yang      | 7          | 33           | 6         | 38    | 1.44       | 1.44   | [0.43; 4.80] | 7.7%   |
| 2017-Song      | 4          | 31           | 6         | 22    | 0.40       | 0.40   | [0.10; 1.62] | 5.6%   |
| 2017-Xu        | 12         | 35           | 23        | 86    | 1.43       | 1.43   | [0.61; 3.33] | 15.6%  |
| 2019-Wang      | 22         | 76           | 8         | 46    | 1.94       | 1.94   | [0.78; 4.80] | 13.5%  |
| 2019-Wu        | 5          | 26           | 7         | 28    | 0.71       | 0.71   | [0.20; 2.61] | 6.6%   |

Random effects model: 662 / 414

Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.70$
Test for overall effect: $z = 1.29$ ($p = 0.20$)
Figure 7

the relationship between the prediction of SPTM and tumor location.

Figure 8

the relationship between the prediction of SPTM and tumor composition.
Figure 9

the relationship between the prediction of SPTM and tumor necrosis.

Figure 10

Kaplan-Meier survival curve of 159 SPTM patients.
Figure 11

Kaplan-Meier survival curve of 136 SPTM patients after complete surgical resection.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Table1.doc
- Table2.doc
- Table3.doc
- CoverLetter.doc
- supplementarymaterial.doc