Differential proMMP-2 and proMMP-9 secretion in human pre-implantation embryos at day 5 of development

Fela Vanesa Morales-Hernández1, Gerardo Bautista-Bautista2, Ricardo Josué Acuña-González3, Paola Vázquez-Cárdenas4, Jorge Skidol López-Canahales4,5, Jair Lozano-Cuenca4, Mauricio Osorio-Caballero6 and Héctor Flores-Herrera2✉

1Departamento de Biología de la Reproducción, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerER Ciudad de México, México; 2Departamento de Inmunobiología, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerER Ciudad de México, México; 3Centro de Innovación Médica Aplicada, Hospital General “Dr. Manuel Gea González”. Ciudad de México, México; 4Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerER Ciudad de México, México; 5Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México; 6Departamento de Salud Sexual y Reproductiva, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” INPerER Ciudad de México, México

Morphological development is the most common non-invasive criterion used to select in vitro human embryos for implantation. With this criterion, however, embryos in cellular arrest go unnoticed. A more accurate criterion is needed to improve the success rate of implantation. Extracellular matrix metalloproteinases type 2 (MMP-2) and MMP-9 are key markers of embryonic development and the implantation process, according to various animal studies. The first objective of this study was to examine proMMP-2 and proMMP-9 activity in the culture media of human embryos with good morphological development. Secondly, the results of proMMP-2 and proMMP-9 activity in the culture media were compared between pregnant and non-pregnant. Forty-two patients were approved by the Ethics and Research Committee of the Instituto Nacional de Perinatología in México City hospital, based on institutional inclusion criteria for in vitro fertilization. On day 5 of development, embryos were transferred to patients, and the culture media secretion profile of proMMP-2 and proMMP-9 activity was determined by substrate gel zymography. After analysis of embryonic sac development, each patient was assigned to the pregnant (n=17) or non-pregnant (n=25) group. Our results demonstrate that proMMP-2 was active in the culture media corresponding to 11 of these women achieving full-term pregnancy and proMMP-9 in the media corresponding to 11 of these women. Contrarily proMMP-2 and proMMP-9 were active in the culture media corresponding to 3 and 11 of the 25 non-pregnant patients, respectively. The clinical implications of this study suggest the activity evaluation of proMMP-2 and proMMP-9 in embryonic culture media on day 5 of development appears to be a reliable indicator of the quality of embryos and their capacity to establish a pregnancy.

Keywords: embryonic development, implantation, in vitro fertilization, matrix metalloproteinases, pregnancy

Received: 26 June, 2022; revised: 11 July, 2022; accepted: 05 September, 2022; available on-line: 16 September, 2022

✉e-mail: h.flores@inper.gob.mx

Acknowledgments of Financial Support: The current study was supported by a grant (212250-22661 assigned to HF-H) from the Instituto Nacional de Perinatología “Isidro Espinosa de lo Reyes” of the Ciudad de México, México. The authors FSM-H, RJA-G, JSL-C, JL-C, MO-C and HF-H paid for the publication of the article. The present study is part of the experimental work of Fela Vanesa Morales-Hernández for obtaining the Master Science degree (506212420) from the Programa de Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM). We thank CONACyT for supporting his studies.

Abbreviations: proMMP, matrix metalloproteinases; IL-1β, interleukin-1-beta; P4, progesterone; E2, estradiol; T4, testosterone

INTRODUCTION

Regarding the evaluation of embryo quality prior to implantation, there is as yet no quantitative method. Embryonic morphology is the criterion employed in clinical practice as a qualitative marker of the viability of embryos to be transferred to patients (Capalbo et al., 2014; Minasi et al., 2016).

The successful growth and implantation of blastocysts is a complex event involving maternal and embryonic signals (Fritz et al., 2014; Matsumoto et al., 2016). Related to such, cytokines (Krussel et al., 1998; Prutsch et al., 2012), growth factors (Paria et al., 1999; Zeng et al., 2016), and matrix metalloproteinases (MMPs) (Sternlicht & Werb, 2001; Nissinen & Kahan, 2014) are associated with an adequate interaction between the blastocyst and uterine endometrium after implantation (Tazuke & Giudice, 1996; Massimiani et al., 2019). Taskin et al. (2012) detected the secretion of interleukin (IL)-1β in the culture media of human embryos at distinct stages of development (Taskin et al., 2012).

Among the signaling pathways regulated by inflammatory cytokines is that which activates MMPs (Chen et al., 2013), a family of zine-dependent endoproteases. MMPs participate in tissue remodeling and the degradation of various proteins in the extracellular matrix, including collagen (Shekhter et al., 2019; Shin et al., 2019), elastin (Yadav et al., 2011; Van Doren, 2015), gelatin (Le et al., 2007; Zitka et al., 2010), matrix glycopolypeptides and proteoglycans (Pietraszek-Gremplewicz et al., 2019; Theocharis et al., 2019). The substrates degraded by MMPs determine the basis of classification of the latter. Commonly known MMPs are stromelysin-1 (MMP-3), -2 (MMP-10), and -3 (MMP-11), collagenase-1 (MMP-1), -2 (MMP-8), and -3 (MMP-13), gelatin-A (MMP-2) and B (MMP-9), matrilysin type I (MMP-7) and II (MMP-26) and membranal type I (MMP-14, -15, -16, and -24) and II (MMP-23) (Visse & Nagase, 2003; Brew & Nagase, 2010; Laronha & Caldeira, 2020). In addition to their role in pregnancy (Cohen & Bischof, 2007; Stojanovic et al., 2010),
MMPs promote cell proliferation (Zhang et al., 2016; Quintero-Fabian et al., 2019), migration (Bischof et al., 2002; Pollheimer et al., 2014), and differentiation (Chan et al., 2020; Gotter & Baron, 2020).

The first aim of the present study was to analyze the activity of pro-MMP-2 and pro-MMP-9 in the culture media of embryos with good morphology at day 5 of development. Secondy, the media were divided into two groups, corresponding to successfully and unsuccessfully implanted embryos, and compared to explore possible significant differences in the activity of pro-MMP-2 and pro-MMP-9.

MATERIALS AND METHODS

Ethics approval

The current protocol was reviewed and approved by the Ethics and Research Committees of the Instituto Nacional de Perinatología en México City (212250-22661). The purpose of the study was explained to all patients, and informed consent was signed by those who decided to participate.

Study design and patients

From May 2019 to May 2020, a cross-sectional study was carried out in the Department of Reproductive Biology of the Instituto Nacional de Perinatología en la Ciudad de México, México. A total of 42 patients diagnosed with infertility were admitted to the in vitro fertilization. None of the patients previously received therapeutic treatments.

Clinical definition and inclusion criteria

The following constituted the inclusion criteria: all participants were aged <37 years, had a regular menstrual cycle, a normal uterine cavity confirmed by hysteroscopy, absence of intrauterine adhesion or inflammation, an endometrial thickness in the late follicular phase ≥7 mm (measured by ultrasonography), a normal ovarian reserve (follicle-stimulating hormone <9.0 µIU/mL), a normal ovarian response to the stimulation protocols (>8 oocytes retrieved in a controlled ovary hyperstimulation cycle), and no hormone (estra
diol/progesterone) treatment – during the endometrial cycle. The exclusion criterion: was the failure of the woman to undergo an ultrasound scan within 4 weeks after a positive pregnancy test. Non-inclusion criteria: were endometrial cancer or hyperplasia, endometriosis, and having a male partner with infertility.

Patients and hormonal stimulation

The patients received controlled ovarian stimulation with a conventional dose of 150-225 IU recombinant FSH (Gonal-F; Merck Serono, Germany) according to the body weight of each patient (NyboeAndersen et al., 2008). When the follicular diameter reached 18 mm, oocyte maturation was stimulated with 10,000 IU hCG (Ovitrelle; Merck), and follicular oocytes were obtained 36 h later with ultrasound guidance.

In vitro fertilization and developing embryos

Oocytes were fertilized in vitro by exposing them to 1×10⁶ capacitated spermatozoa/mL for 18 h. This process was carried out in HTF-HEPES medium (Irvine Scientific, Santa Ana, CA, USA) supplemented with 5% BSA (Sigma Carlsbad, CA, USA) under controlled conditions (37°C with a 5% CO₂ and 95% air). Fertilization was confirmed by the presence of a second polar corpuscle body (Vanderzwalmen et al., 1997; Ziebe et al., 1997). Each one of the fertilized oocytes was incubated in 50 µL of G-1 PLUS culture medium (Vitrolife, Göteborg, Sweden) until day 3 of embryonic development, and later the embryos were transferred to 50 µL of G-2 PLUS culture medium (Vitrolife). On day 5 blastocysts were evaluated according to the scoring system (type I, II, or III quality) (Cutting et al., 2008) and transferred to women. The development embryos were cultured in an ASTEC incubator (EC6S-MD, PA, USA) at 37°C with a 5% O₂ and 6% CO₂ until being transferred to women on day 5.

Morphological development was monitored daily until day 5 at which time the culture media were retained for examination of MMPs, and two embryos were transferred to the uterine cavity of each patient whit the Soft Cook technique by using a Flexible Pass intrauterine transfer cannula. The process was assisted by abdominal ultrasound guidance and a real-time, 5-MHz sector electronic array endovaginal test (Philips Epiq CVx; MO, USA).

Blood samples and quantification of sex hormone level

Peripheral blood samples (5 mL) were obtained from the patients by puncturing the cephalic vein on day 14 after the embryo transfer. Samples were placed in EDTA-K2 tubes (BD Vacutainer) and centrifuged at 14,000 rpm for 10 min. Serum was collected in Eppendorf tubes and stored at −70°C to await the hormone quantification assay, which was performed in the central laboratory of the Instituto Nacional de Perinatología on a cobas e411 modular analytical apparatus (Roche, USA). The serum levels of progesterone (P₄), estradiol (E₂), testosterone (T₄), follicle-stimulating hormone (FSH), luteinizing hormone (LH), Anti-Müllerian hormone (AMH), and human chorionic gonadotropin (hCG) were measured with a commercial assay kit (Roche system, USA), according to the manufacturer’s recommendations and as previously described (Acuña-González et al., 2021). The lower limit of detection for these hormones was 0.4 ng/mL, 5.0 pg/mL, 0.025 pg/mL, 0.100 mIU/mL, 0.100 mIU/mL, 0.2 ng/mL, and 0.1 mIU/mL, respectively. The intra-assay coefficient of variation was 3%, 5%, 5%, 3%, 2%, 3%, and 5% respectively.

In the case of an apparently successful implantation of the embryo and good endometrial receptivity, embryonic sac development was examined with an ultrasound probe. The results of this probe led to the final identification of pregnant (n=17) and non-pregnant patients (n=25).

Protein quantification and matrix metalloproteinase activity

The total concentration of proteins in the culture media of the embryo on the fifth day was determined by the colorimetric Bradford method (Bradford, 1976). The activity of the two MMPs was examined by using SDS-polyacrylamide gels with porcine gelatin (1 mg/mL), as described previously (Flores-Herrera et al., 2012). A culture medium from U937 promyelocyte cells (ATCC, Manassas, VA, USA) served as the internal control of electrophoretic mobility. Each sample was loaded with 0.75 µg of protein and the activity band was captured with the EpiChemi Darkroom gel.
Differential metalloproteinase secretion in human embryos

documentation system (UVP, CA, USA). Optical densitometry was measured on the NIH ImageJ program.

Statistical analysis

The difference between the proMMP-2 and proMMP-9 optical density values detected in the culture media of the two groups of embryos (pregnant patients vs non-pregnant patients) was examined with the Student’s t-test. All values are expressed as the mean ± standard deviation (S.D.), and statistical significance was considered at \(p \leq 0.05 \). Statistical analysis was performed on GraphPad Prism version 8.0 (GraphPad Software, San Diego, CA, USA). STATA software was used to plot the receiver operating characteristic (ROC) curves and calculate the area under the curve (AUC-ROC) (StataCorp LLC; v16, TX, USA). The cutoff value selected (based on the ROC curve) was that at which the sensitivity and specificity were best and the distance to the top-left corner of the ROC curve was the least. Sensitivity, specificity, and positive and negative predictive values were determined on STATA software.

RESULTS

Patient characteristics

The initial characteristics prior to hormonal stimulation of the 42 patients (pregnant, \(n=17 \) and non-pregnant, \(n=25 \)) are compared in Table 1. No significant differences existed regarding to age (\(p=0.23 \)), body mass index (\(p=0.43 \)), years of infertility (\(p=0.39 \)), and the concentration of hCG (\(p=0.70 \), E2 (\(p=0.71 \)), and P4 (\(p=0.90 \)) were determined, and we did not find statistically significant differences between both groups (Table 1).

Hormone profiling

Fourteen days after the embryos were transferred, the concentration of hormones was compared between the pregnant and non-pregnant patients (Table 2). No significant differences existed with respect to P4 on the day of final oocyte maturation (\(p=0.664 \)), E2 in the non-follicular phase (\(p=0.326 \)), T4 (\(p=0.336 \)), LH (\(p=0.095 \)), or AMH (\(p=0.263 \)). How-

Table 1. Clinical data on the patients participating in the study.

Characteristics	Pregnant (\(n=17 \))	Non-pregnant (\(n=25 \))	\(p \)-value
Age (years)	35.7±2.4	36.8±3.1	0.23
BMI (kg/m²)	27.2±3.7	26.3±3.2	0.43
Years of infertility	4.8±3.0	5.4±3.2	0.39
Number of embryos transferred			
1, \(n \) (%)	0 (0.0)	5 (20.0)	0.085
2, \(n \) (%)	17 (100)	20 (80.0)	
Quality of the transferred embryos			
I, \(n \) (%)	7 (22.0)	5 (11.1)	0.137
II, \(n \) (%)	25 (71.0)	26 (57.8)	0.04
III, \(n \) (%)	2 (7.0)	14 (31.1)	0.001
Serum hormone concentration			
hCG (mIU/mL)	2088.2±2300.4	1254.0±1149.2	0.70
E2 (pg/mL)	1496.7±793.9	1674±513.3	0.71
P4 (ng/mL)	0.65±0.4	0.55±0.3	0.90

BMI, body mass index; hCG, human chorionic gonadotropin; E2, estradiol; P4, progesterone. The criterion for assigning patients to the groups was embryo sac development (or lack thereof). Data are reported as the mean ± standard deviation.

Table 2. Comparison of the hormonal concentration between women with implanted versus non-implanted embryos.

Variable	Pregnancy (\(n=17 \))	Non-pregnancy (\(n=25 \))	\(p \)-value
P4 on day of final oocyte maturation (ng/mL)	0.49±0.20	0.45±0.28	0.664
E2, non-follicular phase (pg/mL)	60.7±16.4	63.7±2710	0.684
E2, follicular phase (pg/mL)	1368.0±582.1	1889.0±849.3	0.326
T4, follicular phase (pg/mL)	50.4±20.5	46.2±7.8	0.336
FSH, follicular phase (mIU/mL)	4.6±1.3	6.3±2.5	0.011
LH, follicular phase (mIU/mL)	4.9±1.2	5.8±1.6	0.095
AMH (ng/mL)	1.56±0.61	1.39±0.37	0.263
hCG (mIU/mL)	61.8±32.7	2.7±1.4	<0.0001

P4, progesterone; E2, estradiol; T4, testosterone; FSH, follicle-stimulating hormone; LH, luteinizing hormone; AMH, Anti-Müllerian hormone; hCG, human chorionic gonadotropin. Data are expressed as the mean ± standard deviation.
ever, significant differences were indeed found for FSH ($p=0.011$) and hCG ($p=0.0001$; Table 2).

Activity of proMMP-2 and proMMP-9 in the culture media of the embryos

On day 5 of development, the embryos were transferred to the patients and the secretion profile of proMMP-2 and proMMP-9 was later determined in the culture media (Fig. 1). The presence of proMMP-2 was detected in the culture media corresponding to 82% of the pregnant patients (14 of 17; lane 1 to 17) and in 12% of the non-pregnant patients (3 of 25; lane 18 to 42; Fig. 1A). The latter group included three women who became pregnant and underwent a spontaneous abortion (P29, P30, and P38; Fig. 1A). The optical density of proMMP-2 was quantified for each of the activity bands (Fig. 1B), showing a significant 1.4-fold lower value in the three non-pregnant patients with proMMP-2 activity than in the pregnant women ($p=0.045$; Fig. 1B).

On the other hand, proMMP-9 activity was found in the culture media corresponding to 11 of 17 (64.7%) pregnant and 11 of 25 (44%) non-pregnant patients. The optical density of the bands of proMMP-9 displayed a significant 1.2-fold lower value in the culture media corresponding to the 11 non-pregnant patients with proMMP-9 activity versus the media corresponding to the 11 pregnant women with proMMP-9 activity ($p=0.002$; Fig. 1C).

Predictive values of proMMP-2 and proMMP-9 in the culture media corresponding to embryos producing pregnancy

The ROC curve was used to evaluate whether the sensitivity and specificity of proMMP-2 and proMMP-9 are adequate for determining the capacity of transferred embryos to produce pregnancy (Fig. 2). For proMMP-2, the optical density of 423 was taken as the cutoff value, resulting in statistical significance ($p=0.0262$) with a sensitivity of 100% and a specificity of 100%. For proMMP-9, the optical density of 550 was adopted as the cutoff value, rendering statistical significance ($p=0.0035$) with a sensitivity of 81.8% and a specificity of 72.7%.

DISCUSSION

MMPs play an important role in the remodeling of different structural and support components during ovulation (Smith et al., 2002; Rosewell et al., 2015), decidualization (Jones et al., 2006; Sharma et al., 2016), and implantation (Wang et al., 2003; Shokry et al., 2009; Clark et al., 2013). The main findings of the current study in relation to the activity of proMMP-2 and proMMP-9 in the culture media at day 5 of embryonic development can be summarized in five points. Firstly, the activity of proMMP-2 was detected in 14 of 17 culture media corresponding to the patients who achieved a full-term pregnancy and in 3 of 25 culture media associated with women without this outcome. It was 1.4-fold greater in the former group. Secondly, the activity of proMMP-9 was observed in 11 of 17 culture media corresponding to the patients who carried their pregnancy to term and in 11 of 25 culture media associated with women without this outcome. It was 1.2-fold greater in the former group (Fig. 1). Thirdly, in the three patients who did not carry their pregnancy to term, only proMMP-9 activity was found. Fourthly, the activity of both proMMP-2 and proMMP-9 was identified in three non-pregnant patients who had some pre-pregnancy complications (Fig. 1). Finally, there were no significant differences in the concentration of the hormones hCG, E2, or P4 between pregnant and non-pregnant patients (Table 1).

Gu and others (Gu et al., 2015) reported the concentration of the active form of MMP-9 at 0.698±0.022 ng/mL in the culture media of developing human embryos, which resulted in pregnancy for 77.0% of the participating patients (Woessner, 1991; Huang et al., 1998; Gu et al., 2015). According to the present study, the activity of proMMP-2 and proMMP-9 (Fig. 1B, C) was significantly more robust in the culture media of the embryos yield-

Figure 1. Activity of proMMP-2 and proMMP-9 in the culture media of human embryos on day 5 of development. (A) The culture media from both implanted embryos (pregnant patients; lanes 1–17) and non-implanted embryos (non-pregnant patients; lanes 18–42) were analyzed using gel. The activity of proMMP-2 (62 KDa) and proMMP-9 (92 KDa) was identified with respect to the electrophoretic mobility of the culture medium of the promyelocyte cell line (ATCC, U937), as previously reported by our research group (Flores-Herrera et al., 2012). Optical density (OD) of proMMP-2 (B) and proMMP-9 (C) in the culture media (CM). The points indicate the values of the activity band corresponding to the transferred embryos leading to pregnancy (n=14) and non-pregnancy (n=28). Optical density (OD) was determined using the NIH ImageJ program (USA).

Figure 2. Predictive values of the ROC curves.

Based on the cutoff value that showed the best sensitivity and specificity for proMMP-2 and proMMP-9 as biomarkers of the success of implantation. We confirm that proMMP-2 and proMMP-9 are significantly elevated in pregnancy (n=14) and non-pregnancy (n=28), with an AUC=1 (p=0.0262) and AUC=0.867 (p=0.0035) respectively.
Differential metalloproteinase secretion in human embryos

Figure 3. Model of active proMMP-2 and proMMP-9 secreted from embryos into the culture media.
(A) The developing embryos secrete interleukin type 1-beta (IL-1β) (Librach et al., 1994), tumor necrosis factor-alpha (TNFα) (Zhu et al., 2012) and epidermal growth factor (EGF) (Maia-Filho et al., 2015), promoting the expression of the collagenolytic protein extracellular matrix (Kitanaka et al., 2019; Wang et al., 2003). The activeMMP-2 protein has been shown to remove propeptides associated with the catalytic site of proMMP-9, leading to activation of its degradative function (Kitanaka et al., 2019; Maia-Filho et al., 2015). (B) Although an embryo has the capacity to secrete IL-1β into the culture medium (Librach, et al., 1991), there is a decrease in the signaling pathways for the activation of MMPs. Cytotrophoblast cells incubated with 5 nM recombinant tissue inhibitor of MMP (reTIMP-2) reduces the percentage of invasiveness (Busa et al., 2018). Different polymorphisms found in the promoter regions have been associated with recurrent abortions (Bischof & Campa, 2000).

The collagenolytic activity of MMPs is regulated by specific tissue inhibitors of these proteinases (Woessner, 1991; Zhu et al., 2012). Cytotrophoblast cells, treated with 50 nM of their tissue inhibitor, known as tissue inhibitor of metalloproteinase-2 (TIMP-2), exhibit a reduction (up to 40%) in invasiveness (Librach et al., 1991; Bischof & Campa, 2000). The current results show a 1.4-fold and 1.2-fold decrease in proMMP-2 and proMMP-9 activity, respectively (Fig. 1B, C), in the culture media corresponding to the patients who were pregnant but did not carry to term. However, the expression of TIMPs was not presently evaluated in the culture media of developing embryos. It would be interesting to determine whether the MMP/TIMP relationship is involved in the mechanism responsible for regulating the progress of implantation and pregnancy.

Recently, polymorphisms localized in the promoter region of MMP-2 (−1306 C/T; rs 243865) and MMP-9 (−1562 C/T; rs 3918242) were found to induce changes in the levels of transcription and or expression of the respective protein. These mutations have been proposed as a risk factor for spontaneous abortion (Barisic et al., 2018; Basu et al., 2018). Regarding the three patients of the present investigation that spontaneously aborted prior to the 6th week of pregnancy, the role of MMPs in the development by using in vitro models (Liu et al., 2006) and in vivo studies (Zhang et al., 2013), the epithelial cadherin-like binding protein (E-cadherin) enables the embryo to adhere to the endometrial epithelium, which is degraded by MMP-9 (Maia-Filho et al., 2015). Hence, previous reports evidence a key role played by MMP-2 and MMP-9 in embryonic development. The present results suggest that a successful implantation may be predicted by an assessment of the culture media of developing embryos based on the cutoff points of the ROC curve herein set for these two proteinases.

In conclusion, the current findings demonstrate the feasibility of detecting proMMP-2 and proMMP-9 activity in the culture media of embryos on day 5 of development by using in gel zymography. Additionally, such activity was associated with the implantation capacity of the embryos. Therefore, an evaluation of this activity could serve as a non-invasive method for determining the viability of human embryos developed in vitro.

Declarations

Conflicts of Interest. The authors declare no conflict of interest.

Authors contribution. FVM-H performed in vitro fertilization and obtained the culture medium for the developmental embryos of the embryos. FVM-H and GB-B conducted the tests to evaluate the activity of the MMPs. FVM-H, RJA-G, and MO-C participated in the analysis and discussion of the results. FVM-H, GB-B, RJA-G, MO-C, JSL-C, and JL-C participated in the discussion of the results. PV-C performed the statistical analysis of the ROC curve and participated in the discussion of results and writing of the manuscript. FVM-H and MO-C performed the analysis of MMP activity and participated in the writing of the manuscript. HF-H par-
participated in the design of the study, analysis of results, and writing of the manuscript, as well as obtaining financial and material support for the study.

REFERENCES

Acuña-Gonzalez RJ, Olvera-Valencia M, Lopez-Canales JS, Lozano-Cuenca J, Osorio-Caballero M, Flores-Herrera H (2021) MiR-191-5p is upregulated in culture media of implanted human embryo on day five of development. Reprod Biol Endocrinol 19: 109. https://doi.org/10.1186/s12951-021-00786-1

Bartsic A, Devic Pavlic S, Stojacic S, Perezca N (2018) Matrix metalloproteinase and tissue inhibitors of metalloproteinases gene polymorphisms in disorders that influence fertility and pregnancy complications: a systematic review and meta-analysis. Gene 647: 48-60. https://doi.org/10.1016/j.gene.2018.01.010

Basu J, Agamasu E, Bendek B, Salafia CM, Mishra A, Lopez J, Kroes J, Dragich SC, Thakur A, Mikhail M (2018) Correlation between placental matrix metalloproteinase 9 and tumor necrosis factor alpha protein expression throughout gestation in normal. Human Reproduction 23: 621–627. https://doi.org/10.1093/humrep/dey359

Bischof P, Meisser A, Campana A (2000) A putative role for oncogenes in trophoblast invasion. J Reprod Immunol 46: 1–10. https://doi.org/10.1016/S0364-3106(00)00027-0

Fritz R, Jain C, Armant, DR (2014) Cell signaling in trophoblast-stromal interactions: A systematic review and meta-analysis. J Reprod Immunol 103: 229–238. https://doi.org/10.1016/j.jri.2014.04.009

Hayes JD, Chinetti P, Pertierra F, Spinella F, Fiorentino F, Varricchio MT, Greco E (2016) Correlation between high trophoblast GP130 expression and implantation failure. Hum Reprod 22: 1261–1267. https://doi.org/10.1093/humrep/dev051

Huang HY, Wen Y, Irwin JC, Kruessel JS, Soong YK, Polan ML (1998) Expression of interleukin-1 system mRNA in single blastomeres from human embryos. Hum Reprod 13: 2206–2211. https://doi.org/10.1093/humrep/13.8.2206

Iwahashi M, Muragaki Y, Ooshima A, Yamoto M, Nakano R (1996) Matrix metalloproteinase 9 is a distal-less 3 target-gene in placental formation and remodeling. Mol Biol Cell 7: 1715–1731. https://doi.org/10.1091/mbc.7.11.1715

Kusuhara K, Fujii K, Namba S, Konno T, Nakayama Y, Sugiyama H (1991) ERK1/2-ATF-2 signaling axis contributes to interleukin-1beta-induced MMP-3 expression in dental fibroblasts. PLoS One 14: e0228869. https://doi.org/10.1371/journal.pone.0228869

Le NT, Xue M, Castanello IA, Jackson CJ (2007) The dual personalities of matrix metalloproteinases in inflammation. Front Biosci 12: 1475–1487. https://doi.org/10.2741/2161

Liaconi A, Sylvestre J, Li WQ, Huang W, Delnade F, Ahmad M, Zandarlah M (2008) Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappab transcription factors in articular chondrocytes. Exp Cell Res 314: 208–217. https://doi.org/10.1016/j.yexcr.2007.10.002

Librach CL, Feigenbaum SI, Bass KE, Cut TY, Verastas N, Sadowsky Y, Quigley JP, French DI, Fisher SJ (1994) Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in culture. J Biol Chem 269: 17125–17131. https://doi.org/10.1074/jbc.269.28.17125

Liu G, Zhang X, Lin H, Wang H, Li Q, Ni J, Zhu C (2006) Effects of E-cadherin on mouse embryo implantation and expression of matrix metalloproteinase-2 and -9. Biochem Biophys Res Commun 343: 832–838. https://doi.org/10.1016/j.bbrc.2006.02.189

Mata-Filho VO, Rocha AM, Ferreira FP, Bonetti TC, Serafini P, Motta EL (2015) Matrix metalloproteinases 2 and 9 and ecadherin expression in the endometrium during the implantation window of infertile women before in vitro fertilization treatment. Reprod Sci 22: 416–422. https://doi.org/10.1177/1933719114529573

Massimi M, Lacciotti V, La Civita F, Ticoci C, Rago R, Campagnolo L (2019) Molecular signaling regulating endometrium-blastocyst crosstalk. J Assist Reprod Genet 36: 131–146. https://doi.org/10.1007/s10814-018-0842-2

Material support for the study.

Jones RL, Findlay JK,Farmworth PG, Robertson DM, Wallace F, Salamonson LA (2006) Activin A and inhibin A differentially regulate human uterine matrix metalloproteinases: potential interactions during decidualization and trophoblast invasion. Endocrinology 147: 724–731. https://doi.org/10.1210/en.2006-0420

Kusahara K, Fujii K, Namba S, Konno T, Nakayama Y, Sugiyama H (1991) ERK1/2-ATF-2 signaling axis contributes to interleukin-1beta-induced MMP-3 expression in dental fibroblasts. PLoS One 14: e0228869. https://doi.org/10.1371/journal.pone.0228869

Chron P, V. Morales-Hernández and others
motility. *Placenta* 33: 696–703. https://doi.org/10.1016/j.placenta.2012.05.008

Quintero-Fabian S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Arguez V, Lara-Riegos J, Ramirez-Camacho MA, Alvarez-Sanchez ME (2019) Role of matrix metalloproteinases in angiogenesis and cancer. *Front Oncol* 9: 1370. https://doi.org/10.3389/fonc.2019.01370

Rosewell KL, Al-Alem L, Zakerkish F, McComb L, Akin JW, Chaffin CL, Braunnstrom M, Curry TE. (2015) Induction of the proteinases in the human preovulatory follicle of the menstrual cycle by human chorionic gonadotropin. *Fertil Steril* 103: 826–833. https://doi.org/10.1016/j.fertnstert.2014.11.017

Sequeira K, Espejel-Nunez A, Vega-Hernandez E, Molina-Hernandez A, Grether-Gonzalez P (2015) An increase in IL-1beta concentrations in embryo culture-conditioned media obtained by *in vitro* fertilization on day 3 is related to successful implantation. *J Assist Reprod Genet* 32: 1625–1627. https://doi.org/10.1007/s10815-015-0575-4

Sharma MR, Periandhyeswar P, Shapiro BH (2003) Spurious observation of splenic cyp26p1 expression. *Drug Metab Dispos* 31: 1074–1076. https://doi.org/10.1124/dmd.31.9.1074

Sharma S, Godbole G, Modi D (2016) Deciducal control of trophoblast invasion. *Am J Reprod Immunol* 75: 341–350. https://doi.org/10.1111/aji.12466

Sheikhri AB, Balakireva AV, Kuznetsova NV, Vukolova MN, Litvinsey PF, Zamyatnin AA (2019) Collagenolytic enzymes and their application in biomedicine. *Carr Med Chem* 26: 487–505. https://doi.org/10.2174/09298673266717006124236

Shin JW, Kwon SH, Choi JY, Na JI, Huh CH, Choi HR, Park KC (2019) Molecular mechanisms of dermal aging and antiaging approaches. *Int J Mol Sci* 20: 2126. https://doi.org/10.3390/ijms20092126

Shokry M, Omran OM, Hassan HI, Elshefy GO, Hussein MR (2009) Expression of matrix metalloproteinases 2 and 9 in human trophoblasts of normal and preeclamptic placentas: preliminary findings. *Exp Mol Pathol* 87: 219–225. https://doi.org/10.1016/j.yexmp.2009.08.001

Smith MF, Rice LA, Bakke IJ, Dow MP, Smith GW (2002) Ovarian tissue remodeling: role of matrix metalloproteinases and their inhibitors. *Mol Cell Endocrinol* 191: 45–56. https://doi.org/10.1016/s0303-7207(02)00085-0

Sondergaard BC, Schulz N, Madsen SH, Bay-Jensen AC, Kassern M, Krudop MA (2010) MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation—degeneration in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. *Osteoarthr Cartil* 18: 279–288. https://doi.org/10.1016/j.joca.2009.11.005

Sternlicht MD, Werb Z. (2001) How matrix metalloproteinases regulate cell behavior. *Annu Rev Cell Dev Biol* 17: 463–516. https://doi.org/10.1146/annurev.cellbio.17.1.463

Stojanovic N, Lewandowski J, Slat, I, Biekniewicz M, Tuck S, Prel-tevic G, Press M (2010) Serum levels of matrix metalloproteinases MMP-2 and MMP-9 and their inhibitors in women with glucose intolerance in pregnancy and normal pregnancies. *Gynecol Endocrinol* 26: 201–207. https://doi.org/10.1080/09513590902972026

Taskin EA, Bahaei V, Cagiran G, Ayteke R (2012) Detection of IL-7bta in culture media supernatants of pre-implantation human embryos; its relation with embryo grades and development. *Gynecol Endocrinol* 28: 296–298. https://doi.org/10.3109/09513590.2011.631627

Tazuke SI, Giudice LC (1996) Growth factors and cytokines in endometrium, embryonic development, and maternal: embryonic interactions. *Semin Reprod Endocrinol* 14: 231–248. https://doi.org/10.1055/s-2007-1016330

Theocharis AD, Manou D, Karamanos NK (2019) The extracellular matrix as a multitasking player in disease. *FEBS J* 286: 2830–2869. https://doi.org/10.1111/febs.14818

Van Doren, S.R., 2015. Matrix metalloproteinase interactions with collagen and elastin. *Matrix Biol* 44–46: 224–231. https://doi.org/10.1016/j.matbio.2015.01.008

Vanderzwalmen P, Zeich H, Birkenfeld A, Yemini M, Berin G, Lejeune B, Njis M, Segal I, Stecher A, Vandamme B, van Roosendaal E, Schoysman R (1997) Intracytoplasmic injection of spermatids retrieved from testicular tissue: influence of testicular pathology, type of selected spermatids and oocyte activation. *Hum Reprod* 12: 1203–1213. https://doi.org/10.1093/humrep/12.6.1203

Vincenti MP, Brinkerhoff CE (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integrative analysis of gene-specific transcription factors. *Arthritis Res* 4: 157–164. https://doi.org/10.1186/ar601

Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. *Circ Res* 92: 827–839. https://doi.org/10.1161/01.RES.0000070712.80711.3D

Wang H, Wen Y, Mooney S, Li H, Behr B, Polan ML (2003) Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human preimplantation embryos. *Fertil Steril* 80: 736–742. https://doi.org/10.1016/s0016-6365(03)00782-9

Woensmen JF (1991) Matrix metalloproteinases and tissue inhibitors. *Adv Exp Med Biol* 318: 279–288. https://doi.org/10.1007/978-1-4613-9132-0

Zeng F, Kloepper LA, Finney C, Diedrich A, Harris RC (2016) Specific endothelial hepatin-binding EGF-like growth factor deletion ameliorates renal injury induced by chronic angiotensin II infusion. *Am J Physiol Renal Physiol* 311: 695–707. https://doi.org/10.1152/ajprenal.00377.2015

Zhang X, Huang S, Guo J, Zhou L, You L, Zhang T, Zhao Y (2016) Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics. *Int J Oncol* 48: 1783–1793. https://doi.org/10.3892/ijo.2016.3400

Zhang Z, Zhang L, Jia C, Shi Y, Chang A, Zeng X, Wang P (2013) AP-2alpha suppresses invasion in BeWo cells by repression of matrix metalloproteinase-2 and -9 and up-regulation of E-cadherin. *Med Cell Biochem* 381: 31–39. https://doi.org/10.1007/s10110-013-1658-8

Zhu JY, Pang ZJ, Yu YH (2012) Regulation of trophoblast invasion: the role of matrix metalloproteinases. *Reprod Sci* 3: 137–143

Ziecbe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN (1997) Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. *Hum Reprod* 12: 1545–1549. https://doi.org/10.1093/humrep/12.7.1545

Zitka O, Kukacka J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R, Kizek R (2010) Matrix metalloproteinases. *Int J Mol Sci* 11: 2063–2089. https://doi.org/10.3390/ijms11052063

Zolotik A, Kukaeva J, Krizkova S, Huska D, Adam V, Masarik M, Prusa R, Kizek R (2010) Matrix metalloproteinases. *Curr Med Chem* 17: 3751–3768. https://doi.org/10.2174/092986710793215724