Drought of early time in growing season decreases community aboveground biomass, but increases belowground biomass in a desert steppe

Xiangyun Li
Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science

Xiaoan Zuo (zuoxa@lzb.ac.cn)
Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science

Ping Yue
Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science

Xueyong Zhao
Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science

Ya Hu
Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science

Xinxin Guo
Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science

Aixia Guo
Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science

Chong Xu
National Hulunber Grassland Ecosystem Observation and Research Station, Chinese Academy of Agricultural Sciences

Qiang Yu
National Hulunber Grassland Ecosystem Observation and Research Station, Chinese Academy of Agricultural Sciences

Research Article

Keywords: Precipitation changes, Biodiversity, Plant traits, Allocation of biomass
Abstract

Background: Increasing drought induced by global climate changes is altering the structure and function of grassland ecosystems. However, there is a lack of understanding of how drought affects the allocation and trade-off of above- and belowground biomass in desert steppe. We conducted a four-year (2015-2018) drought experiment to examine the responses of community above-and belowground biomass (AGB and BGB) to manipulated drought and natural drought in the early period of growing season (from March to June) in a desert steppe. We compared the associations of drought with species diversity (species richness and density), community-weighted means (CWM) of five traits, and soil factors (soil water, soil carbon content, and soil nitrogen content) for grass communities. Meanwhile, we used the structural equation modeling (SEM) to elucidate whether drought affects AGB and BGB by altering species diversity, functional traits and soil factors.

Results: We found that drought reduced the species richness, and species modified the CWM of traits to cope with drought. Manipulated drought had the effect on soil water content, but not on soil carbon and nitrogen content. We also found that the experimental and natural drought decreased AGB, while natural drought increased BGB. AGB was correlated with species richness, density, plant height and soil water, while BGB was correlated with CWM of plant height, CWM of specific leaf area, CWM of leaf dry matter content, CWM of leaf nitrogen content, soil water, soil carbon and nitrogen content. The SEM results indicated that the experimental and natural drought indirectly decreased AGB by reducing species richness and plant height, while natural drought and soil nitrogen content directly affected BGB.

Conclusions: These results suggest that species richness and functional traits can modulate the effects of drought on AGB, however natural drought and soil nitrogen determine BGB. Our findings demonstrate that the long-term observation and experiment are necessary to understand the underlying mechanism of the allocation and trade-off of community above-and belowground biomass.

Background

Global climatic changes are expected to increase the risk of extreme drought events during the growing season [1, 2]. Drought has pervasive impacts on ecosystem structure and function, especially in water-limited grasslands [3, 4]. Therefore, changes in rainfall may affect the allocation and trade-off of plant biomass by altering community compositions and structure [3, 4]. Several studies have reported the responses of vegetation to climatic change [5, 6]. However, the effect of drought on both aboveground and belowground biomass remain unclear. Moreover, the timing of drought occurrence would play an equally or more important role with the severity of drought itself [7]. Thus, this manipulated drought experiment of 4 years can help us to identify influences of extreme drought on the arid ecosystems, and this is feasible for adaptive management of the region.

The impact of climate change on biodiversity is greater than any other factor [8]. The control of species diversity including species richness and abundance is received the most focus [8, 9]. The relationship
between ecosystem productivity and species diversity has been debated for decades [10]. Generally speaking, higher species diversity supports higher plant productivity but remains variation in other geographic regions [8, 11]. Globally, regions with climate are either cold or arid support few species than regions where the climates are both warm and wet [12]. Most species diversity-biomass relationship studies have focused on aboveground biomass instead of underground biomass [13]. In a few studies on the relationship between belowground biomass and species diversity, it was found that there was a positive or uncorrelated relationship between them, due to the selection of diversity indexes and the research sites [14]. Plant biomass is important for ecosystem functions and services [15]. Therefore, examining the relationship between biodiversity and biomass can provide support for further understanding of ecosystem management.

Functional traits are measurable characteristics of plants after long-term response and adaptation to the external environment [16, 17]. According to the dominance/mass ratio hypothesis, the functional trait of dominant species can directly affect ecosystem functions [18, 19]. Some traits at a community-level are the predictors of plant community responses to precipitation changes [20, 21]. Shifts in precipitation patterns can lead to changes in traits and species abundance, thereby shaping plant distributions or compositions [22]. The key plant traits, such as plant height, specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC) and leaf nitrogen content (LNC), reflect plant strategies for coping with changing climate conditions [23]. For example, drought or drought in the growing season causes a decrease in plant height and an increase in SLA and LDMC [24]. The plant functional traits as potential covariates may lead to the allocation of biomass under drought according to the optimal partitioning theory [25, 26]. However, the link between the allocation of biomass and plant functional traits remains poorly known [26]. Therefore, understanding the relationship is important to understand the consequences of a precipitation pattern change in arid and semi-arid areas.

Precipitation manipulation experiment is a direct way to study shifts in community compositions and ecosystem functions following short-term precipitation change [27, 28]. Over the two decades, the studies on experimentally reducing precipitation have greatly increased to investigate how increased aridity might influence the ecosystems [29, 30]. However, community responses to extreme drought vary geographically [31, 32]. The semiarid grassland region of northern China is desirable for investigating the effects of extreme drought on structure and function of grassland ecosystems, and the predicted effects can guide semiarid grassland to cope with future climate change. Here, we conducted a four-year experiment that imposed extreme growing season drought, including two types: (1) a 66% reduction of rainfall from May to August (-66%) and (2) a 100% reduction of rainfall from June to July (-60 Days). This allowed us to examine the changes in the desert steppe under manipulative drought experiment. We asked the following questions: (1) How species diversity, community-level trait and soil property respond to the experimental drought in desert steppe? (2) How does the above- and belowground biomass allocation change in the four consecutive years of drought treatments? (3) Which indexes of vegetation and soil property mediate the allocation of biomass response to drought in desert steppe.
Results

The species richness and AGB were significantly affected by drought, year and their interaction ($p < 0.05$, Additional file 1 Table S4, Fig. 1a and 1c). Specifically, drought treatment significantly reduced AGB and species richness excluded species richness in 2015(Fig. 1a and 1c). The density was positively corrected with drought and year, and the BGB was significantly affected by year and the interaction of drought and year ($p < 0.05$, Additional file 1 Table S4, Fig. 1b and 1d). Surprisingly, BGB was increased with years, regardless of drought treatment ($p < 0.05$, Fig. 1d).

The CWM of height in desert steppe was significantly affected by drought, year and their interaction (Additional file 1 Table S4, Fig. 2a). The CWM of height in 2018 was significantly lower than that in 2015-2016 under extreme drought (-66% and -60 Days) ($p < 0.05$; Fig. 2a). However, CWM of SLA, LDMC and LNC were only affected by years (Additional file 1 Table S4, Fig. 2b-c and 2e). CWM of SLA and LNC increased following the time and reached their maximum in 2018 (Fig. 2b and 2e). In contrast, CWM of LDMC were decreased following the time and reached their minimum in 2018 (Fig. 2c). CWM of LCC had significant differences only under the drought treatment of 60 days in 2015-2016 (Fig. 2d).

Drought, year and their interaction had a significant influence on soil water content ($p < 0.05$, Additional file 1 Table S4, Fig. 3c). There were significant differences in soil water content between 2015-2016 and 2018 under different drought treatments ($p < 0.05$; Fig. 3c). The soil water content in 2015 and 2017 was significantly lower than that in 2016 and 2018 under CONT, while significantly higher in 2018 than that in 2015 under -66% and -60 Days drought treatment ($p < 0.05$; Fig. 3c). The soil carbon content and soil nitrogen content are only affected by years ($p < 0.01$, Additional file 1 Table S4, Fig. 3a-b). Under -66% treatment, the soil carbon content in 2017 was significantly higher than that in 2015-2016 and 2018, and soil nitrogen content in 2015 was significantly higher than that in 2016-2018 ($p < 0.05$; Fig. 3a-b).

Across the four years, AGB was positive correlated with species diversity (species richness and density) ($p < 0.001$; Fig. 4 a-b), CWM of plant height ($p < 0.001$; Fig. 4c) and soil water ($p < 0.01$; Fig. 5a). BGB was positive correlated with CWM of SLA ($p < 0.001$; Fig. 4d), LNC ($p < 0.001$; Fig. 4f), soil water ($p < 0.01$; Fig. 5b) and soil carbon ($p < 0.01$; Fig. 5c). However, we found significant negative relationships between BGB and CWM of LDMC ($p < 0.001$; Fig. 4e), plant height ($p < 0.05$; Fig. 4g) and soil nitrogen ($p < 0.05$; Fig. 5d).

On the one hand, there were no differences in above- and belowground biomass, species density, CWM of traits and soil factors between -66% and -60 Days; on the other hand, only the precipitation in the early growing season (March to June) was correlated with the above- and belowground biomass (Additional file 1 Table S2), so we combined the two treatments as a variable to represent drought and selected the precipitation in the early growing season (March to June) in structural equation model (SEM). The SEM was performed to quantify the direct vs indirect effects of how drought, precipitation in the early growing season (March to June), soil factors and CWM of plant traits on AGB or BGB. The model including the drought, precipitation, species richness, plant height and soil N was the best fit ($\chi^2 = 16.936$, $P = 0.110$; RMSEA = 0.087; GFI = 0.911) to explain 60% variance of AGB and 56% variance of BGB (Fig. 6).
The SEM models showed that increasing precipitation in the early growing season directly increased AGB and indirectly increased AGB through its positive impact on plant height (Table 1). The increasing plant height directly increased AGB and BGB (Table 1). The drought had a negative direct impact on AGB, also, the indirect impact of drought on AGB was through its negative impact on species richness and plant height (Table 1). The increasing species richness directly increased AGB (Table 1). Increasing soil N content and precipitation in the early growing season directly decreased BGB (Table 1).

Discussion

The response of ecosystems to changing precipitation is driven in part by species diversity and plant community functional traits. Thus, elucidating the variation of species diversity and CWM of traits under drought of an early time in the growing season is critically important for improving predictions of ecosystem responses to changing precipitation. In semiarid grasslands of northern China, water is the limiting constraint to ecosystem development [33]. Here, we conducted an extreme drought experiment of four years to determine how desert steppe ecosystem modify plant community in response to the drought.

Our findings demonstrated that the species diversity was sensitive to extreme drought. We found that extreme drought, compared with the control, significantly reduced species richness in 2016-2018 (Fig. 1). Experimental drought changed biodiversity that can be explained by species turnover/re-ordering caused by the cumulative effect of extreme drought (Additional file 1 Table S1). Experimental drought can modify species either through shifts in genotypic abundance and phenotypic plasticity by acting as an environment filter [34, 35]. On a temporal scale, there was no significant difference in species richness under extreme drought, which is contrary to other findings that suggested that plant species richness is more sensitive to drought in the arid ecosystem [34, 36]. One possible explanation for this difference could be the low soil moisture caused by extreme drought reduced the number of reproductive buds in more species [37, 38].

The relationship between functional traits of plants reflects the adaptation strategies of plants to the environment [34]. Plants usually adopt combinations of functional traits to adapt to changing environments [39]. In this study, we found that CWM of traits experimental drought had no response to experimental drought but had a significant response to natural drought (Fig. 1), which might be attributed to changes in species composition (Additional file 1 Table S1). We observed CWM of SLA and LNC increased, while CWM of plant height and LDMC decreased year by year. Previous studies respectively showed that plant height was significantly positively correlated with LDMC [39, 40], SLA was significantly negatively correlated with LDMC [41, 42], and SLA was significantly positively correlated with LNC [43, 44]. Our results are consistent with previous studies that showed that plants adapted to drought by changing leaf morphology and nutrient distribution. Plant nutrient contents usually reflect soil nutrient availability [45], however, we do not observe a match between plant nutrient concentrations and soil nutrient supply which also have been reported by other findings [46, 47]. This mismatch may be due to
the lower soil moisture content, which results in limited nutrient flow and nutrient uptake by plants [48, 49].

Our results indicated that the aboveground biomass was significantly reduced by drought treatment every year which has been shown in several studies [50, 51]. However, the significant increase in underground biomass due to drought treatment occurred only in 2017. This difference from the optimal distribution theory may be due to the extreme drought alters in root distribution rather than the total amount of root biomass [52, 53]. Meanwhile, our findings demonstrated that AGB tended to decrease year by year and belowground biomass to increase, which in agreement with previous findings that have shown consecutive precipitation treatments can cause cumulative influence on ecosystem productivity [53, 54]. The SEM results showed that CWM of plant height controlled by drought treatments and precipitation in the early growing season (March to June) exerted a direct effect on AGB. This is consistent with that CWM of traits determine the ecosystem function, which supports the mass ratio hypothesis [55, 56]. And it also proves that plant height is an important and comprehensive trait to reflect the ability of plants to adapt to changes in the environment [57]. Not surprisingly, drought and rainfall in March-June had direct impacts on AGB, confirming that in the previous findings [58, 59]. Our findings were consistent with others that precipitation and soil N had direct effects on belowground biomass [60]. These results suggest that precipitation in the early growing season has an important effect on biomass allocation. In our study, species richness was affected by drought treatment and has a positive correlation, which is consistent with the findings that the positive linear relationship is one of the common forms of the species richness–biomass relationship patterns [61, 62].

Conclusion

This study showed that natural drought of early time in growing season can reduce the aboveground biomass and increased the belowground biomass, suggesting that the rainfall of early time in growing season plays an important role in maintaining ecosystem structure and function in desert steppe. Community-level plant height is an important predictor for AGB in desert steppe. Plant investment in root system is a strategy for plants to adapt to soil nutrient reduction and drought of the early time in growing season, which provides deep insight into the mechanism of the above- and belowground biomass allocation of plants.

Methods

Experimental site

This study was conducted in the Urat Desert-grassland Ecosystem Research Station (106°58'E, 41°25'N, 1,650 m above sea level) located in western Inner Mongolia, China. The region has a temperate continental monsoon climate, and the mean annual precipitation is 139.5 mm, about 70% occurring during the growing season [63]. Main soil type in the study area is brown calcium, and the dominant
species in the desert steppe are *Stipa glareosa*, *Peganum harmala* and *Allium polyrhizum* (Additional file 1 Table S1).

Experimental treatments

The extreme drought experiment was established in 2014 and was conducted from 2015 to 2018. This experiment involved three treatments: (1) a control (ambient precipitation, without shelters), (2) a -66% drought treatment (66% reduction from May 1 to August 31, with shelters), (3) and a -60 Days drought treatment (100% reduction from June 1 to July 31, with shelters). There are eighteen 6 × 6 m plots in total, which are randomly distributed in location and organized into six blocks. Each plot was located at least 2 m from the nearest neighboring plot and established a 1-m external buffer to minimize the edge effects. To prevent hydrological exchange with the surrounding soil, a 1 m deep sheet of plastic ashing was established in each plot. The roofs consisted of strips of clear polycarbonate plastic was situated 2 m above the ground at the highest point, which allowed for the circulation of air and avoided microclimatic changes. Polycarbonate plastic has been confirmed to have minimal influence on photosynthetically active radiation [64].

Sampling and analysis

During the peak of each growing season from 2015-2018, a quadrat (1 × 1 m) was set up in each experimental plot for vegetation investigation and sampling. Quadrat was marked to prevent subsequent resampling in the next year. We measured the number and the maximum height of each species within quadrat. Besides, we harvested all aboveground biomass (AGB) by species in each quadrat. Finally, we estimated belowground biomass (BGB) using a root auger (8 cm diameter) to measure root mass at a depth of 0-20 cm. The roots samples were taken back to the laboratory and then were washed free of soil over a mesh sieve (mesh size of 0.25 mm). All above- and belowground biomasses were dried at 65 °C in an oven for 48 h and weighed in the lab.

We determined five key functional traits to reflect the plant morphology and growth investment [65, 66]: plant height, specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC) and leaf nitrogen content (LNC). These traits were measured for the dominant species making up 90% of the total plant cover in each plot. The five traits on 10 individuals per species in each plot were obtained by using the standard methodologies [67]. We calculated community-weighted means (CWM) of single-trait by multiplying the trait value of each species by its relative biomass in the community [68]. CWM can reflect the characteristics of community functional traits [69]. In each plot, three soil samples (0–10 cm depth) were collected to determine soil water, and one mixed soil sample from three random replicates was collected to measure soil organic carbon and total nitrogen content. Leaf carbon and nitrogen content (%), as well as soil organic carbon and total nitrogen content (g Kg⁻¹), were measured by using an Elemental Analyzer [24] (Costech ECS 4010, Italy) with a reduction temperature of 650°C and a combustion temperature of 980°C.

Data analysis
The annual precipitation gradually decreased from 2015 to 2017, and increased in 2018 due to increased precipitation in July and August (Additional file 1 Figure S1). The precipitation in the early time of 2015-2018 growing season (March to June) was 56.2mm, 77.9mm, 28.8mm and 21.4 mm, respectively (Additional file 1 Figure S1), which decreased in an inter-annual timescale. Thus, we assess how experimental drought and natural drought in the early period of growing season affected structure and function of grassland ecosystems.

We analyzed the response of each variable to extreme drought using separate repeated measures mixed model ANOVAs with year, treatment, and their interaction as fixed factor and block as a random factor (Additional file 1 Table S4). One-way ANOVA was conducted to assess the significant differences of species richness, Density, AGB, BGB, CWM of Height, CWM of SLA, CWM of LDMC, CWM of LCC, CWM of LNC, Soil Carbon, Soil Nitrogen, and Soil Water over to extreme drought among years. A level of P < 0.05 was considered significant. Data are presented as mean ± standard error throughout.

Then, the simple regression models with a standard 95% confidence range were used to assess whether CWM of traits and soil factors could explain AGB and BGB. Based on the simple regression and the Correlation coefficients of each variable (Additional file 1 Table S3), a structural equation modeling (SEM) was performed, in which drought treatment and the precipitation in the early time were treated as exogenous variables; species diversity, CWM of trait, and soil factors were considered as endogenous variables; AGB and BGB were regarded as the response variable. We assessed the best fitting model using a Chi-square test, root mean square error of approximation and goodness-of-fit index [19], which was performed by AMOS 20.0 (Amos Development, Spring House, PA, USA).

Data analysis and plotting were run with the SPSS16.0 and SigmaPlot12.0 for Windows statistics program, respectively. The simple regression models were performed using the trendline function in the basic Trendline package of R software (v4.0.0, R Core Team, 2020).

List Of Abbreviations

AGB: aboveground biomass

BGB: belowground biomass

CWM: community-weighted means

SLA: specific leaf area

LDMC: leaf dry matter content

LCC: leaf carbon content

LNC: leaf nitrogen content

Soil N: soil nitrogen content
Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests

Funding
This study was supported by the Second Tibetan Plateau Scientific Expedition and Research program (2019QZKK0305), National Natural Science Foundation of China (42071140 and 41622103) and Youth Innovation Promotion Association CAS (1100000036).

Authors' contributions
Xiaoan Zuo and Qiang Yu designed this experiment;

Ping Yue, Ya Hu, Xinxin Guo, Aixia Guo, and Chong Xu contributed significantly to analysis and manuscript preparation;

Xiangyun Li performed the data analyses and wrote the manuscript;

Xiaoan Zuo, Ping Yue, and Xueyong Zhao helped perform the analysis with constructive discussions.

Acknowledgements
We are very grateful to Dr. Julio Di Rienzo for the support of F Diversity software.

References

1. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mears LO: Climate extremes: Observations, modeling, and impacts. Science 2000, 289(5487):2068-2074.

2. Smith MD: An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 2011, 99(3):656-663.
3. Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo YQ, Sala OE, Smith MD: Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. *Global Change Biol* 2015, 21(7):2624-2633.

4. Copeland SM, On SPH, Latimer AM, Damschen EI, Eskelinen AM, Fernandez-Going B, Spasojevic MJ, Anacker BL, Thorne JH: Ecological effects of extreme drought on Californian herbaceous plant communities. *Ecol Monogr* 2016, 86(3):295-311.

5. Franklin J, Serra-Diaz JM, Syphard AD, Regan HM: Global change and terrestrial plant community dynamics. *P Natl Acad Sci USA* 2016, 113(14):3725-3734.

6. Ma MJ, Collins SL, Du GZ: Direct and indirect effects of temperature and precipitation on alpine seed banks in the Tibetan Plateau. *Ecol Appl* 2020, 30(5).

7. Zhang H, Yu H, Zhou CT, Zhao HT, Qian XQ: Aboveground net primary productivity not CO2 exchange remain stable under three timing of extreme drought in a semi-arid steppe. *Plos One* 2019, 14(3).

8. Harrison S, Spasojevic MJ, Li DJ: Climate and plant community diversity in space and time. *P Natl Acad Sci USA* 2020, 117(9):4464-4470.

9. Chen YX, Huang YY, Niklaus PA, Castro-Izaguirre N, Clark AT, Bruelheide H, Ma KP, Schmid B: Directed species loss reduces community productivity in a subtropical forest biodiversity experiment (Mar, 10.1038/s41559-020-1127-4, 2020). *Nat Ecol Evol* 2020, 4(4):660-660.

10. Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Partel M et al: Integrative modelling reveals mechanisms linking productivity and plant species richness. *Nature* 2016, 529(7586):390-+.

11. Rabosky DL, Hurlbert AH: Species Richness at Continental Scales Is Dominated by Ecological Limits. *Am Nat* 2015, 185(5):572-583.

12. Harrison S, Spasojevic MJ, Li D: Climate and plant community diversity in space and time. *Proc Natl Acad Sci U S A* 2020, 117(9):4464-4470.

13. Wu GL, Zhang ZN, Wang D, Shi ZH, Zhu YJ: Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the Loess Plateau of China. *J Hydrol* 2014, 519:1362-1367.

14. Li Y, Dong S, Liu S, Su X, Wang X, Zhang Y, Zhao Z, Gao X, Li S, Tang L: Relationships between plant diversity and biomass production of alpine grasslands are dependent on the spatial scale and the dimension of biodiversity. *Ecol Eng* 2019, 127:375-382.

15. Wu GL, Liu Y, Tian FP, Shi ZH: Legumes Functional Group Promotes Soil Organic Carbon and Nitrogen Storage by Increasing Plant Diversity. *Land Degrad Dev* 2017, 28(4):1336-1344.

16. Kimball S, Funk JL, Spasojevic MJ, Suding KN, Parker S, Goulden ML: Can functional traits predict plant community response to global change? *Ecosphere* 2016, 7(12).

17. Costa DS, Gerschlauer F, Pabst H, Kuhnel A, Huwe B, Kiese R, Kuzyakov Y, Kleyer M: Community-weighted means and functional dispersion of plant functional traits along environmental gradients on Mount Kilimanjaro. *J Veg Sci* 2017, 28(4):684-695.
18. Bruelheide H, Dengler J, Purschke O, Lenoir J, Jimenez-Alfaro B, Hennekens SM, Botta-Dukat Z, Chytry M, Field R, Jansen F et al: Global trait-environment relationships of plant communities. Nat Ecol Evol 2018, 2(12):1906-1917.

19. Zuo XA, Zhang J, Lv P, Zhou X, Li YL, Luo YY, Luo YQ, Lian J, Yue XY: Plant functional diversity mediates the effects of vegetation and soil properties on community-level plant nitrogen use in the restoration of semiarid sandy grassland. Ecol Indic 2016, 64:272-280.

20. Sandel B, Goldstein LJ, Kraft NJ, Okie JG, Shuldman MI, Ackerly DD, Cleland EE, Suding KN: Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytol 2010, 188(2):565-575.

21. Le Bagoussé-Pinguet Y, Gross N, Maestre FT, Maire V, de Bello F, Fonseca CR, Kattge J, Valencia E, Leps J, Liancourt P: Testing the environmental filtering concept in global drylands. J Ecol 2017, 105(4):1058-1069.

22. Griffin-Nolan RJ, Bushey JA, Carroll CJW, Challis A, Chieppa J, Garbowsk M, Hoffman AM, Post AK, Slette IJ, Spitzer D et al: Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Funct Ecol 2018, 32(7):1746-1756.

23. Forrestel EJ, Donoghue MJ, Edwards EJ, Jetz W, du Toit JCO, Smith MD: Different clades and traits yield similar grassland functional responses. P Natl Acad Sci USA 2017, 114(4):705-710.

24. Yue XY, Zuo XA, Yu Q, Xu C, Lv P, Zhang J, Knapp AK, Smith MD: Response of plant functional traits of Leymus chinensis to extreme drought in Inner Mongolia grasslands. Plant Ecol 2019, 220(2):141-149.

25. van Wijk MT: Understanding plant rooting patterns in semi-arid systems: an integrated model analysis of climate, soil type and plant biomass. Global Ecol Biogeogr 2011, 20(2):331-342.

26. Yin QL, Tian TT, Han XH, Xu JS, Chai YF, Mo J, Lei ML, Wang L, Yue M: The relationships between biomass allocation and plant functional trait. Ecol Indic 2019, 102:302-308.

27. Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Korner C, de Boeck HJ, Christensen JH, Leuzinger S, Janssens IA et al: Precipitation manipulation experiments - challenges and recommendations for the future. Ecol Lett 2012, 15(8):899-911.

28. Sardans J, Penuelas J: Potassium: a neglected nutrient in global change. Global Ecol Biogeogr 2015, 24(3):261-275.

29. He MZ, Dijkstra FA: Drought effect on plant nitrogen and phosphorus: a metaanalysis. New Phytol 2014, 204(4):924-931.

30. Gessler A, Schaub M, McDowell NG: The role of nutrients in drought-induced tree mortality and recovery. New Phytol 2017, 214(2):513-520.

31. Griffin-Nolan RJ, Carroll CJW, Denton EM, Johnston MK, Collins SL, Smith MD, Knapp AK: Legacy effects of a regional drought on aboveground net primary production in six central US grasslands. Plant Ecol 2018, 219(5):505-515.

32. Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, Askew AP, Corker D, Kielty JP: The response of two contrasting limestone grasslands to simulated climate change. Science 2000,
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG: Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 2008, 89(8):2140-2153.

Luo WT, Zuo XA, Griffin-Nolan RJ, Xu C, Ma W, Song L, Helsen K, Lin YC, Cai JP, Yu Q et al: Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant Soil 2019, 442(1-2):343-353.

Cornwell WK, Ackerly DD: Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 2009, 79(1):109-126.

Cleland EE, Collins SL, Dickson TL, Farrer EC, Gross KL, Gherardi LA, Hallett LM, Hobbs RJ, Hsu JS, Turnbull L et al: Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 2013, 94(8):1687-1696.

Stampfli A, Zeiter M: Mechanisms of structural change derived from patterns of seedling emergence and mortality in a semi-natural meadow. J Veg Sci 2008, 19(4):563-U516.

Zeiter M, Scharrer S, Zweifel R, Newbery DM, Stampfli A: Timing of extreme drought modifies reproductive output in semi-natural grassland. J Veg Sci 2016, 27(2):238-248.

Muscarella R, Uriarte M: Do community-weighted mean functional traits reflect optimal strategies? Proc Biol Sci 2016, 283(1827):20152434.

Mudrak O, de Bello F, Dolezal J, Leps J: Changes in the functional trait composition and diversity of meadow communities induced by Rhinanthus minor L. Folia Geobot 2016, 51(1):1-11.

Al Haj Khaled R, Duru M, Theau JP, Plantureux S, Cruz P: Variation in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species. J Veg Sci 2005, 16(4):391-398.

Li YL, Johnson DA, Su YZ, Cui JY, Zhang TH: Specific leaf area and leaf dry matter content of plants growing in sand dunes. Bot Bull Acad Sinica 2005, 46(2):127-134.

He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY: A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytol 2006, 170(4):835-848.

Wright IJ, Reich PB, Westoby M: Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 2001, 15(4):423-434.

Reich PB, Oleksyn J: Global patterns of plant leaf N and P in relation to temperature and latitude. P Natl Acad Sci USA 2004, 101(30):11001-11006.

Luo W, Elser JJ, Lü XT, Wang Z, Bai E, Yan C, Wang C, Li MH, Zimmermann NE, Han X et al: Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochemical Cycles 2015, 29(8):1298-1308.

de la Riva EG, Perez-Ramos IM, Tosto A, Navarro-Fernandez CM, Olmo M, Maranon T, Villar R: Disentangling the relative importance of species occurrence, abundance and intraspecific variability
in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos 2016, 125(3):354-363.

48. Luo W, Zuo X, Ma W, Xu C, Li A, Yu Q, Knapp AK, Tognetti R, Dijkstra FA, Li MH et al: Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology 2018, 99(10):2230-2239.

49. He M, Dijkstra FA: Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 2014, 204(4):924-931.

50. Zhang BW, Cadotte MW, Chen SP, Tan XR, You CH, Ren TT, Chen ML, Wang SS, Li WJ, Chu CJ et al: Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 2019, 100(11).

51. Bai YF, Han XG, Wu JG, Chen ZZ, Li LH: Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 2004, 431(7005):181-184.

52. Ansley RJ, Boutton TW, Jacoby PW: Root Biomass and Distribution Patterns in a Semi-Arid Mesquite Savanna: Responses to Long-Term Rainfall Manipulation. Rangeland Ecol Manag 2014, 67(2):206-218.

53. Zhang B, Cadotte MW, Chen S, Tan X, You C, Ren T, Chen M, Wang S, Li W, Chu C et al: Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 2019, 100(11):e02828.

54. Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D: Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos T R Soc B 2012, 367(1606):3135-3144.

55. Lavorel S: Plant functional effects on ecosystem services. J Ecol 2013, 101(1):4-8.

56. Zhang Q, Buyantuev A, Li FY, Jiang L, Niu JM, Ding Y, Kang S, Ma WJ: Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol Evol 2017, 7(5):1605-1615.

57. Shi Y, Su C, Wang M, Liu X, Liang C, Zhao L, Zhang X, Minggagud H, Feng G, Ma W: Modern Climate and Soil Properties Explain Functional Structure Better Than Phylogenetic Structure of Plant Communities in Northern China. Front Ecol Evol 2020, 8.

58. Shi Z, Thomey ML, Mowll W, Litvak M, Brunsell NA, Collins SL, Pockman WT, Smith MD, Knapp AK, Luo Y: Differential effects of extreme drought on production and respiration: synthesis and modeling analysis. Biogeosciences 2014, 11(3):621-633.

59. Denton EM, Dietrich JD, Smith MD, Knapp AK: Drought timing differentially affects above- and belowground productivity in a mesic grassland. Plant Ecol 2017, 218(3):317-328.

60. Zheng SX, Ren HY, Lan ZC, Li WH, Wang KB, Bai YF: Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences 2010, 7(3):1117-1132.

61. Bai Y, Wu J, Pan Q, Huang J, Wang Q, Li F, Buyantuyev A, Han X: Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. J Appl Ecol 2007, 44(5):1023-1034.
62. Bhandari J, Zhang Y: Effect of altitude and soil properties on biomass and plant richness in the grasslands of Tibet, China, and Manang District, Nepal. Ecosphere 2019, 10.

63. Liu LX, Zhao XY, Chang XL, Lian J: Impact of Precipitation Fluctuation on Desert-Grassland ANPP. Sustainability-Basel 2016, 8(12).

64. Yahdjian L, Sala OE: A rainout shelter design for intercepting different amounts of rainfall. Oecologia 2002, 133(2):95-101.

65. Valencia E, Maestre FT, Le Bagousse-Pinguet Y, Quero JL, Tamme R, Borger L, Garcia-Gomez M, Gross N: Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol 2015, 206(2):660-671.

66. Guittar J, Goldberg D, Klanderud K, Telford RJ, Vandvik V: Can trait patterns along gradients predict plant community responses to climate change? Ecology 2016, 97(10):2791-2801.

67. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA et al: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 2003, 51(4):335-380.

68. Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT: Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol 2013, 27(5):1254-1261.

69. Debouk H, de Bello F, Sebastia MT: Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming. Plos One 2015, 10(10).

Table

Table 1 The total, direct and indirect standardized effects on above- and belowground biomass from the structural equation model.
Predictor	Pathways	Effect
Aboveground biomass		
Drought	Direct	-0.40
	Indirect	-0.24
	Total	-0.64
Precipitation	Direct	0.25
	Indirect	0.08
	Total	0.33
Height	Direct	0.20
	Indirect	NS
	Total	0.20
Species richness	Direct	0.28
	Indirect	NS
	Total	0.28
Belowground biomass		
Soil nitrogen content	Direct	-0.32
	Indirect	NS
	Total	-0.32
Precipitation	Direct	-0.71
	Indirect	0.03
	Total	-0.67
Height	Direct	0.09
	Indirect	NS
	Total	0.09

NS, non-significant relationships.