INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset disorder characterized by hyperactivity/impulsivity (HI) and inattention (IN) that negatively impacts one’s ability to function and fulfill social and personal obligations. ADHD persists into adolescence and adulthood in more than half of the cases and due to their symptoms individuals with ADHD experience more difficulties while coping with problems throughout their life and they become more vulnerable to use substance, thus may develop substance use disorder (SUD). Thus, ADHD is often diagnosed in SUD patients. In a large cross-sectional international study, the prevalence of adult ADHD was 13.9% in treatment seeking SUD population, whereas according to a meta-analysis the prevalence for possible ADHD was 23.1% among individuals with SUD. Individuals with ADHD and SUD comorbidity are at greater risk for more negative outcomes and poor treatment outcomes for both SUD and ADHD.

If we specifically focus on opioid use disorder (OUD), few studies reported the effect of ADHD on patients receiving methadone maintenance treatment (MMT) in western countries, in Israel and in Taiwan. King et al. found a 16.7% prevalence of adult ADHD in a group of 125 patients entering MMT. The ADHD patients were characterised by greater psychiatric comorbidity and a greater number of personality disorders, es-
especially antisocial personality disorders. In the second study, among admissions to a Midwestern MMT program 396 (58%) patients self-reported experiencing one or more ADHD symptoms during the two weeks prior to admission, and 131 (19%) patients reported ADHD symptoms that significantly interfered with functioning in daily activities. At nine months post-admission, the patients who reported significant symptoms of ADHD were less likely to have achieved abstinence than those who did not report significant symptoms. In the third study conducted among 193 patients in long-term MMT, Carpenter et al. found that 48 (24.9%) had persisting ADHD in adulthood, and these patients had significantly higher problem severity scores, lower quality of life scores, more comorbid SUD and more psychiatric comorbidity (independent of conduct disorder). Study conducted in Israel found that 51 patients (33.1%) had childhood ADHD [33 of whom (62.7%) were also found to have adult ADHD (15 possible and 17 definite)], and more of this group currently had clinical obsessive compulsive disorder (OCD) compared to patients who did not have childhood ADHD (55.3% vs. 30.1%), and both conditions were highly prevalent among MMT patients. According to a recent study conducted in Taiwan, among patients with OUD in MMT 7.8% (n=35) scored 24 (which is a high cut-off score) or higher of ASRS indicating highly likely adult ADHD. They were comorbid with regard to depression, greater SUD severity, and poorer quality of life. As far as we know there is no study regarding prevalence of probable ADHD in patients with OUD in Turkey. Also only approved opioid maintenance treatment in Turkey is buprenorphine/naloxone combination, and our clinic do follow most of the patients who receive this treatment in Istanbul.

Treatment-seeking SUD patients with ADHD are at a very high risk for additional psychiatric disorders; 75% of ADHD patients had at least one additional comorbid disorder compared with 37% of SUD patients without ADHD. Previous studies conducted among patients receiving MMT showed that the risk of psychiatric comorbidity and the severity of psychopathology are increased among those with ADHD.

Previous studies have shown that patients with current OUD have higher levels of impulsivity than non-SUDs do on measures of impulsivity, while impulsivity measured with the Barratt Impulsiveness Scale (BIS-11) distinguishes OUDs from non-SUDs. Even the patients receiving MMT and buprenorphine maintenance treatment (BMT) scored higher on the BIS-11 subscales than did normal volunteers with no history of SUD. In our previous 12-month follow-up study conducted among patients receiving BMT, impulsivity, particularly motor impulsiveness, discriminated the relapsed group from the maintenance group. The continuous intake of opioid increases levels of impulsivity that return to baseline (preopioid) levels throughout abstinence; in subjects with OUD, impulsivity therefore becomes more intense as a result of chronic opioid exposure, rather than being a vulnerability trait. Subjects with OUD may prefer this substance because of the self-medication dynamics, which have positive effects in managing the preexisting aggressiveness that is usually supported by impulsiveness. It may therefore be true that individuals who become opioid users are more likely to show impulsiveness, not because of the drug itself, but because of a preexisting premorbid impulsive disposition that leads them to form ties selectively with opioid. Consistent with this, study conducted among patients in MMT suggested that ADHD during childhood (one third of the sample) may have led them to self-medicate with opioid and thus to OUD.

The present study hypothesizes that there is a relationship between probable ADHD and certain psychopathology among male inpatients with OUD, and the severity of impulsivity may have effect on this relationship. To our knowledge, this is the first study to evaluate the relationship between psychopathology and probable ADHD among male subjects with OUD, which is an important phenomenon in clinical settings.

METHODS

Subjects

The study was conducted in Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Alcohol and Drug Research, Treatment and Training Center in Istanbul between September 2014 and April 2015. It is a specialized center for substance use disorders with 84 inpatient beds (48 beds for SUD other than alcohol) and accepts patients from all over Turkey. The study was approved by the Ethical Committee of the institution and was in accordance with the Helsinki Declaration (1975, revised 1983). Patients’ written informed consent was obtained after the study protocol was thoroughly explained.

Consecutively admitted 234 male patients (115 inpatients and 119 outpatients) with OUD were considered for participation in the study. All participants meet the DSM-5 diagnostic criteria for OUD. Interviews with the study group were conducted after a stabilization period, that is, 1 to 2 weeks after the last day of heroin use.

Measures

Adult ADHD Self-Report Scale

In conjunction with the World Health Organization (WHO) developed a self-report scale for the screening of ADHD in adults (ASRS-v1.1; 10). The scale they propose is a short, 18-item scale (9 item for IN and 9 items for HI) which relates di-
rectly to the DSM IV TR diagnostic criteria. This 18 statements
describing aspects of ADHD that are rated on a 5-point Likert
scale from “0-never” to “4-very often.”

ASRS is also a short 6-item screening instrument, the ques-
tions in which were extracted, using stepwise logistic regres-
sion, from a larger survey of 18 questions comprising the Adult
Self-Report Survey that taps the 18 specific “Criterion A” symp-
toms defining the disorder in DSM-IV. The ASRS 6-item screen
was developed for community based studies and exhibits strong
concordance with clinician diagnoses as well as sound psy-
chometric properties.25

The 5-point Likert-type scale ranges from “0” (never) to “4”
(very often). Thus, the possible range of scores on the ASRS
screening version is 0 to 24, with higher scores indicating more
ADHD symptomology. Each response of sometimes or great-
er (2 or more) on screening items 1–3 equated to 1 point; each
response of ten or greater (3 or more) on screening items 4–6
resulted in a point. A total score of 4 or more indicated proba-
ble ADHD. We therefore used this recommended definition
to identify highly likely ADHD cases in our sample and named
as “probable ADHD.” Previous data suggest that this approach
was developed for community based studies and exhibits strong
concordance with clinician diagnoses as well as sound psy-
chometric properties.25

The scale was validated in Turkish in a sample of university
students previously.26 Specifically, in a sample of patients with
AUD, psychometric characteristics of Turkish version have
been analyzed,27 in which satisfactory properties have been
found. In the present study, other than 6-item version, 18-
item version was also used in order to evaluate the severity of
IN and HI symptoms. The severity of these dimensions was
measured by summing the scores of each 9 items per subscale.
ASRS-18 evaluates the symptoms of ADHD for over the past
6 months. Nevertheless the result of the test does not replace
clinical diagnosis and the clinician must take false positives
into consideration by evaluating ASRS positives with gold
standart scales.

Adults who have ADHD need not have been formally diag-
nosed in childhood. Evidence of early-appearing and long-
standing problems with attention or self-control in patient’s
history should be evaluated. Some significant symptoms should
have been present in childhood, but full symptomology is not
necessary.28

Short Form Barratt Impulsiveness Scale

The latest form of BIS-11 was developed in 1995, which was
a 30 item scale.31 Reliability and validity study for Turkish ver-
sion of this scale was conducted by Gulec et al.32 A 15-item
short form of the BIS (BIS-11-SF) that retains the 3-factor struc-
ture (nonplanning impulsivity, motor impulsivity, and atten-
tion impulsivity), and maintained good reliability and validity
was presented by Spinella,33 whereas adaptation of Turkish ver-

tion of this scale was conducted by Tamam et al.34

90-Item Symptom Checklist-Revised

SCL-90-R is a self-report measure35 used to assess psycho-
pathologic symptoms. It has 90 items rated with a 5-point
Likert scale (1, no problem to 5, very serious) to assess the ex-
tent to which individuals have experienced the listed symp-
toms in the last 7 days. These 90 items were grouped into nine
subscales, namely, somatization, obsessive compulsive, inter-
personal sensitivity, depression, anxiety, hostility, phobic anx-
xiety, paranoid ideation and psychoticism. It was suggested
that the higher the scores on SCL-90-R is, the higher the psy-
chological distress that the individual has experienced. In the
present study, the Turkish version of SCL-90-R was used.36

Data analysis

The statistical package SPSS 17.0 for Windows (SPSS Inc.,
Chicago, IL, USA) was used for all the analyses. Student t test
was used to compare groups according to current age, dura-
tion of education and scale scores. Categorical sociodemo-
graphic variables were compared by means of the χ² statistics.
Taken the presence of probable ADHD as a dependent vari-
able, hierarchical (dimensions of psychopathology and di-

densions of impulsivity) logistic regression models were
performed. For all statistical analysis, p values were 2 tailed,
and differences were considered significant at p<0.05.

RESULTS

Age, age at first heroin use, duration of heroin use, marital,
educational, employment status and type of the treatment (in-
patient/outpatient) did not differed between those with the
probable ADHD (n=54, 23.1%) and those without (n=180,
76.9%). While the severity of withdrawal symptoms did not
differed between the groups, severity of craving was higher
among those with the probable ADHD. Psychopathology and
impulsivity scores were higher among those with the probable
ADHD (Table 1).

ADHD scores were midly to moderately correlated with im-

pulsivity and psychopathology scores (Table 2).

In the first logistic regression analysis, severity of general psy-
chopathology was related with the probable ADHD in the
first step, whereas when severity of impulsivity was entered
in the analysis as a independent variable in the second step
severity of both general psychopathology and impulsivity
were related with probable ADHD (Table 3). In the second
Model when subdimensions of SCL-90-R were entered in the
OC was mildly correlated with non-planning (r=0.33, p<0.001), motor (r=0.34, p<0.001), attentional (r=0.38, p<0.001) and total score of BIS-11-SF (r=0.45, p<0.001) (not shown). In linear regression analysis all the impulsivity subscales (non-planning, motor and attentional) predicted OC (B=0.049, 0.053, and 0.065 respectively, S.E.=0.017, 0.021, and 0.022 respectively, Beta=0.186, 0.170, and 0.213 respectively, t=2.844, 2.464, and 2.926 respectively, p=0.005, 0.014, and 0.004 respectively, F=19.369, df=3, 232, p<0.001, Adjusted R²=0.19)

Table 1. Sociodemographic and scale scores according to the presence of probable ADHD

	No ADHD N=180, 76.9%	Probable ADHD N=54, 23.1%	t	p
Age	27.07 7.39	27.83 8.53	-0.640	0.523
Duration of education	9.03 2.77	9.80 2.60	0.656	0.513
First age of opioid use	20.26 5.16	19.19 5.76	1.302	0.194
Duration of opioid use	6.82 5.96	6.70 7.10	-1.892	0.060
Severity of withdrawal	13.28 7.88	13.02 7.70	0.218	0.828
Severity of craving	13.82 7.76	17.43 7.32	-3.032	0.003
SCL-90				
Somatic complaints	1.34 0.72	1.84 0.77	-4.363	<0.001
Obsessive compulsive	1.43 0.82	2.18 0.84	-5.889	<0.001
Interpersonal sensivity	1.43 0.92	2.01 0.83	-4.167	<0.001
Depression	1.56 0.89	2.31 0.94	-5.428	<0.001
Anxiety	1.23 0.84	1.87 0.93	-4.755	<0.001
Hostility	1.27 0.97	2.02 1.03	-4.945	<0.001
Phobias	0.63 0.67	1.15 0.70	-4.914	<0.001
Paranoid ideation	1.23 0.86	1.77 0.84	-4.103	<0.001
Psychotic	0.89 0.75	1.41 0.73	-4.521	<0.001
SCL-90 total score	12.71 7.16	18.95 7.34	-5.580	<0.001
BIS-11-SF				
Non-planning	11.61 3.26	14.39 2.84	-5.661	<0.001
Motor	9.68 2.63	12.00 2.66	-5.679	<0.001
Attentional	9.27 2.73	11.85 2.51	-6.192	<0.001

	N %	N %	χ²	p
Marital status			0.807	0.668
Single	140 77.8	45 83.3		
Married	28 15.6	6 11.1		
Divorced	12 6.7	3 5.6		
Employment status			2.079	0.354
Not working	117 65.0	40 74.1		
Employed	43 23.9	8 14.8		
Type of the treatment			0.584	0.445
Inpatient	86 47.8	29 53.7		
Outpatient	94 52.2	25 46.3		

Independent Samples t-test, chi-Square test, significance at p<0.05. SD: standard deviation, ADHD: attention-deficit/hyperactivity disorder, SCL-90: 90-Item Symptom Checklist-Revised, BIS-11-SF: Short Form Barratt Impulsiveness Scale
DISCUSSION

The rate of probable ADHD found among patients with OUD in this study (23.1%) was consistent with the previous study conducted among patients receiving MMT (24.9%)\(^1\) and was same as with the rate reported in meta-analysis for patients with SUD.\(^6\) One of the main findings of the present study is that the probable ADHD is related with the severity of psychopathology, particularly OC dimension, while the severity of impulsivity may have an partial mediator (particularly non-planning and motor impulsivity) effect on this relationship among patients with OUD.

While “impulsivity” may be defined as a part of the ADHD construct, the term may also be applied to characteristics that are conceptually and psychometrically distinct. The BIS-11-SF measures three subtypes of impulsiveness: cognitive (attentional) impulsiveness (IN and cognitive instability), motor impulsiveness (motor disinhibition), and non-planning impulsiveness (lack of self-control and intolerance of cognitive complexity).\(^{31}\) Thus, although impulsivity sub-dimensions measured with BIS-11-SF may overlap with ADHD symptoms,\(^{37}\) they are different constructs. Impulsivity and consequent risk-taking are associated with both ADHD and SUD. Impulsivity is a core diagnostic feature of HI and combined presentations of ADHD, and may be a determining factor in the initiation and maintenance of substance use\(^{38,39}\) with increased levels of impulsivity consistently found among those with SUD.\(^{38,40}\) Additionally, SUD may facilitate impulsive acts by interfering with normal inhibitory controls.\(^{38}\)

The concept of comorbidity between ADHD and OCD has been discussed for two decades.\(^{41}\) Both disorders seem to lie on opposite ends of a clinical impulsive-compulsive continu-

![Table 2. Correlations between the scale scores](image)

	IN	HI	ASRS
Somatic complaints	0.474	0.340	0.451
Obsessive compulsive	0.488	0.395	0.487
Interpersonal sensitivity	0.379	0.328	0.389
Depression	0.437	0.346	0.433
Anxiety	0.490	0.347	0.464
Hostility	0.431	0.401	0.457
Phobias	0.433	0.265	0.389
Paranoid ideation	0.403	0.323	0.401
Psychotic	0.406	0.327	0.405
SCL-90	0.501	0.392	0.494
Non-planning	0.383	0.319	0.387
Motor	0.391	0.417	0.442
Attentional	0.384	0.468	0.463
BIS-11-SF	0.494	0.508	0.549

Pearson correlation test, all correlations were significant at \(p<0.001\).

ADHD: attention-deficit/hyperactivity disorder, HI: hyperactivity/impulsivity, IN: inattention, ASRS: Adult ADHD Self-Report Scale, SCL-90: 90-Item Symptom Checklist-Revised, BIS-11-SF: Short Form Barratt Impulsiveness Scale

Table 3. Predictors of probable ADHD in a logistic regression

	B	SE	Wald	df	p	Exp (B)	95% CI for EXP (B)	
							Lower	Upper
Model 1\(^a\)								
SCL-90 total score	0.113	0.023	24.097	1	<0.001	1.120	1.070	1.172
Model 1\(^b\)								
SCL-90 total score	0.067	0.026	7.001	1	0.008	1.070	1.018	1.125
BIS-11-SF total score	0.167	0.033	25.980	1	<0.001	1.181	1.108	1.260
Model 2\(^c\)								
Obsessive compulsive	1.051	0.205	26.386	1	<0.001	2.861	1.916	4.273
Model 2\(^d\)								
Obsessive compulsive	0.638	0.226	7.942	1	0.005	1.893	1.215	2.951
BIS-11-SF total score	0.163	0.033	24.831	1	<0.001	1.177	1.104	1.255
Model 2\(^e\)								
Obsessive compulsive	0.643	0.227	8.056	1	0.005	1.902	1.220	2.965
Non-planning	0.180	0.063	8.145	1	0.004	1.198	1.058	1.355
Motor	0.172	0.075	5.305	1	0.021	1.188	1.026	1.375
Attentional	0.138	0.076	3.309	1	0.069	1.148	0.989	1.332

Nagelkerke R\(^2\): 1\(^a\)=0.171, 1\(^b\)=0.348, 2\(^a\)=0.189, 2\(^b\)=0.353, 2\(^c\)=0.354, significance at \(p<0.05\). CI: confidence Interval, SCL-90: 90-Item Symptom Checklist-Revised, BIS-11-SF: Short Form Barratt Impulsiveness Scale
um. Reported co-occurrence rates are highly inconsistent in the literature, comorbidity rate of ADHD among adults with OCD ranged between 2.0% to 22.9%, whereas the prevalence of OCD among adult patients with ADHD was reported to be between 1% to 13%. The findings of the previous studies suggest that a subset of patients with childhood ADHD may be at elevated risk of developing OCD, including patients in MMT [odds ratio (OR) 3.8, 95% confidence interval (CI) 1.6–8.8]. Nevertheless, a recent review suggested that clinicians are encouraged to consider the possibility that ADHD-like symptoms resulting from OCD-specific symptomatology may be misdiagnosed as ADHD particularly in adults.

In addition to the high co-occurrence of OCD and ADHD, several studies have shown elevated levels of subclinical OC symptoms (SOCS) among those with ADHD. SOCS refers to OC symptoms that are not severe or frequent enough to warrant a diagnosis of OCD. Among adults with ADHD, the highest elevation on the SCL-90-R has been found on the OC subscale regardless of whether they exhibited the inattentive or combined type of ADHD. A study conducted among 1015 undergraduate students found that SOCS, especially checking and detailed oriented characteristics, were significantly correlated with self-reported ADHD symptoms. Another study found that young adults with ADHD and no prior diagnosis of OCD had significantly more intrusive and worrisome thoughts than healthy controls. The authors of this last study suggested that difficulties inhibiting and pushing away unwanted thoughts may be a manifestation of problems with response inhibition. Finally, a more recent study suggested that SOCS were the most commonly reported psychological symptom on the SCL-90-R in adults with ADHD, and only the OC subscale had a mean score approaching the clinically relevant range even though those with OCD were excluded. Being consistent with results of the present study, these findings supported the hypothesis that individuals with ADHD with response inhibition difficulties tend to report more SOCS.

Impulsivity, particularly non-planning and motor impulsivity, had a partial mediator effect on the relationship between OC and probable ADHD in the present study among patients with OUD. A recent study conducted among Turkish patients with OCD suggested that total, attentional, and motor subscale mean scores of BIS-11 were higher among the patients with ADHD comorbidity, and BIS-11 score predicted the presence of ADHD among OCD patients. They have found that mean number of obsession and compulsions were more frequent in the ADHD-OCD group compared with the OCD group. This finding might indicate that the presence of ADHD could lead to a reduced resistance against obsessions and compulsions, as Walitza et al. suggested. Another recent study conducted among Turkish patients with OCD suggested that childhood ADHD symptoms are associated with an earlier age of OCD, higher impulsivity, particularly motor impulsivity. While some studies found significant correlations between the attentional subscores of BIS-11 and OCD symptoms (obsession and compulsion), there are also studies that found higher motor impulsiveness in OCD patients than in controls.

In the present study all the impulsivity subscales were mildly correlated with OC and they all predicted OC in a linear regression model.

The present study also has some limitations. First, because this study is cross-sectional, its findings cannot indicate the causal relationships among the primary constructs of interest. Second, female patients may have a different profile concerning ADHD, psychopathology and impulsivity. Third, actually we evaluated the probable ADHD rather than diagnosis of ADHD, and it is suggested that the severity of ADHD symptoms may change according to the sample, the scale that is used to measure ADHD symptoms, and design of the study. Fourth, although all the scales used in the present study were validated in Turkish, since they are self-rating screening scales, they may only indicate the individuals with a high probability of ADHD or psychopathology, rather than the diagnosis. Finally, the generalizability of the findings of the present study to the wider, non-treatment-seeking, mixed-sex population with OUD requires further study.

These findings suggest the importance of screening for and management of ADHD symptoms in BMT programs and related constructs such as OC and impulsivity, may be helpful in improving outcome of these patients receiving BMT in Turkey.

REFERENCES

1. Ivanov I, Yehuda R. Optimizing fitness for duty and post-combat clinical services for military personnel and combat veterans with ADHD—a systematic review of the current literature. Eur J Psychotherapy 2014;5.
2. Klein RG, Mannuzza S, Olazagasti MAR, Roizen E, Hutchison JA, Lashua EC, et al. Clinical and functional outcome of childhood attention-deficit/hyperactivity disorder 33 years later. Arch Gen Psychiatry 2012;69:1295-1303.
3. Charach A, Yeung E, Climans T, Lillie E. Childhood attention-deficit/hyperactivity disorder and future substance use disorders: comparative meta-analyses. J Am Acad Child Adolesc Psychiatry 2011;50:9-21.
4. Baker L, Prevatt F, Proctor B. Drug and alcohol use in college students with and without ADHD. J Atten Disord 2012;16:253-263.
5. van Emmerik-van Oortmerssen K, van de Gind G, Koeter MW, Allsop S, Auriacombe M, Barta C, et al. Psychiatric comorbidity in treatment-seeking substance use disorder patients with and without attention deficit/hyperactivity disorder: results of the IASP study. Addiction 2014;109:262-272.
6. van Emmerik-van Oortmerssen K, van de Gind G, van den Brink W, Smit F, Cruinelle CL, Swets M, et al. Prevalence of attention-deficit hyperactivity disorder in substance use disorder patients: a meta-analysis and meta-regression analysis. Drug Alcohol Depend 2012;122:11-19.
7. Barkley R, Murphy K, Fischer M. ADHD in Adults: What the Science Says. New York: Guilford Press; 2008.
8. Arias A, Geelen T, Chan G, Weiss RD, Brady KT, Farrer L, et al. Cor-
ADHD and Psychopathology in Opioid Use Disorder

relates of co-occurring ADHD in drug-dependent subjects: prevalence and features of substance dependence and psychiatric disorders. Addict Behav 2008;33:1199-1207.

9. King VL, Brooner RK, Kidorf MS, Stoller KB, Mirsky AF. Attention deficit hyperactivity disorder and treatment outcome in opioid abusers entering treatment. J Neurol Ment Dis 1999;187:487-495.

10. Kolpe M, Carlson GA. Influence of attention-deficit/hyperactivity disorder symptoms on methadone treatment outcome. Am J Addict 2007; 16:46-48.

11. Carpentier PJ, van Gogh MT, Knappen LJ, Buiteelaar JK, De Jong CA. Influence of attention deficit hyperactivity disorder and conduct disorder on opioid dependence severity and psychiatric comorbidity in chronic methadone-maintained patients. Eur Addict Res 2011;17:10-20.

12. Peles E, Schreiber S, Sutzman A, Adelson M. Attention deficit hyperactivity disorder and obsessive-compulsive disorder among former heroin addicts currently in methadone maintenance treatment. Psychopharmacology 2012;257:327-333.

13. Liao YT, Chen CY, Ng MH, Huang KY, Shao WC, Lin TY, et al. Depression and severity of substance dependence among heroin-dependent patients with ADHD symptoms. Am J Addict 2017;26:26-33.

14. Bornovalova MA, Daughters SB, Hernandez GD, Richards JB, Lejuez CW. Differences in impulsivity and risk-taking propensity between primary users of crack cocaine and primary users of heroin in a residential substance-use program. Exp Clin Psychopharmacol 2005;13:311-318.

15. Bozurt M, Evren C, Yilmaz A, Can Y, Cetingok S. Aggression and impulsivity in different groups of alcohol and heroin dependent inpatient men. Klinik Psikofarmakoloji Bulenti-Bulletin of Clinical Psychopharmacology 2013;32:335-344.

16. Dissabandara LO, Loxton NJ, Dias SR, Dodd PR, Daglish M, Stadlin A. Validity of the World Health Organization Adult ADHD Self-Report Scale (ASRS) in a sample of inpatients with alcohol use disorder. Dusunen Adam J Psychiatry Neurol Sci 2016;29:109-119.

17. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Annual seroprevalence of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005;62: 617-627.

18. Dogan S, Oncu B, Saracoglu G, Kucukgoncu S. Validity and reliability of the Turkish version of the Adult ADHD Self-Report Scale (ASRS-v1.1). Anadolu Psikiyatri Dergisi 2009:10:77-87.

19. Evren C, Umut G, Telsin-Ural A, Agachanli R, Evren B. Psychometric properties of the Turkish version of the Adult ADHD Self-Report Scale (ASRS) in a sample of inpatients with alcohol use disorder. Dusunen Adam J Psychiatry Neurol Sci 2016:109-119.

20. Knouse LE, Saffran SA. Adult Attention-Deficit Hyperactivity Disorder. In: Baer L, Blais MA, Editors. Handbook of Clinical Rating Scales and Assessment in Psychiatry and Mental Health. New York: Humana Press, 2010, p.195-208.

21. Patton JH, Stanford MS, Barratt ES. Factor structure of the Barratt Impulsiveness scale. J Clin Psychol 1995;51:768-774.

22. Gulec H, Tamar L, Yazici Gulec M, Turhan M, Karakus G, Zengin M, et al. Psychometric properties of the Turkish version of the Barratt Impulsiveness Scale-11. Klinik Psikofarmakoloji Bulenti-Bulletin of Clinical Psychopharmacology 2008;18:251-258.

23. Spindler M. Normative data and a short form of the Barratt Impulsiveness Scale. Int J Neurosci 2007;117:359-368.

24. Tamam L, Gulec H, Karatas G. Short form of Barratt Impulsiveness Scale (BIS-11-SF) Turkish adaptation study. Arch Neuropsychiatry 2013; 50:130-134.

25. Derogatis LR. SCL-90. Administration, Scoring and Procedure Manual-II for the revised version. Towson, MD: Clinical Psychometric Research; 1983.

26. Dag I. Reability and validity of Symptoms Check List-90-Revised among university students. Turk Psikiyatri Dergisi 1991:2-5-12.

27. Iacono WG, Malone SM, McGue M. Behavioral disinhibition and the development of early-onset addiction: common and specific influences. Annu Rev Clin Psychol 2008;4:325-348.

28. Verdejo-García A, Lawrence AJ, Clark L. Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev 2008;32:777-810.

29. de Wit H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol 2009;14:22-31.

30. Fernández-Serrano MJ, Pérez-García M, Verdejo-García A. What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neurosci Biobehav Rev 2011;35:377-406.

31. Abramovitch A, Dar R, Mittelman A, Wilhelm S. Comorbidity between attention deficit/hyperactivity disorder and obsessive-compulsive disorder across the lifespan: a systematic and critical review. Harv Rev Psychiatry 2015;23:245-262.

32. Abramovitch A, Dar R, Hermesh H, Schweiger A. Comparative neuropsychology of adult obsessive-compulsive disorder and attention deficit/hyperactivity disorder: implications for a novel executive overload model of OCD. J Neuropsychol 2012;6:161-191.

33. Mersin Kilic S, Dondu A, Memis CO, Ozdemiroglu E, Sevinok L. The clinical characteristics of ADHD and obsessive-compulsive disorder comorbidity. J Atten Disord 2016 Inpress.

34. Tan O, Metin B, Metin S. Obsessive-compulsive adults with and without childhood ADHD symptoms. ADHD Attent Deficit Hyperact Disord 2016:8:131-138.

35. Celebi F, Koyuncu A, Ertekin E, Aylanak B, Tükel R. The features of comorbidity of childhood ADHD in patients with obsessive compulsive disorder. J Atten Disord 2016 Inpress.

36. Masl G, Millepiedi S, Mucci M, Bertini N, Pfanner C, Arcangelo F. Comorbidity of obsessive-compulsive disorder and attention-deficit/hyperactivity disorder in referred children and adolescents. Compr Psychiatry 2006;47:42-47.

37. Abramovitch A, Schweiger A. Unwanted intrusive and worrisome thoughts in adults with attention deficit/hyperactivity disorder. Psy-
48. Mathews CA, Jang KL, Hami S, Stein MB. The structure of obsessionality among young adults. Depress Anxiety 2004;20:77-85.

49. Murphy KR, Barkley RA, Bush T. Young adults with attention deficit hyperactivity disorder: subtype differences in comorbidity, educational, and clinical history. J Nerv Ment Dis 2002;190:147-157.

50. Brown FC, Katz LJ, Roth RM, Beers SR. The relationship of self-reported subclinical obsessive-compulsive symptoms and impulsivity among adults with AD/HD. Psychiatry Res 2014;216:131-136.

51. Walitza S, Zellmann H, Irblich B, Lange KW, Tucha O, Hemminger U, et al. Children and adolescents with obsessive-compulsive disorder and comorbid attention-deficit/hyperactivity disorder: preliminary results of a prospective follow-up study. J Neural Transm (Vienna) 2008;115:187-190.

52. Ettelt S, Ruhrmann S, Barnow S, Buthz F, Hochrein A, Meyer K, et al. Impulsiveness in obsessive-compulsive disorder: results from a family study. Acta Psychiatr Scand 2007;115:41-47.

53. Sohn SY, Kang JJ, Namkoong K, Kim SJ. Multidimensional measures of impulsivity in obsessive-compulsive disorder: cannot wait and stop. PLoS One 2014;9:e111739.

54. van de Glind G, Konstenius M, Koeter MWJ, van Emmerik-van Oortmerssen K, Carpentier P-J, Kaye S, et al. Variability in the prevalence of adult ADHD in treatment seeking substance use disorder patients: results from an international multi-center study exploring DSM-IV and DSM-5 criteria. Drug Alcohol Depend 2014;134:158-166.