Note on the truncated generalizations of Gauss’ square exponent theorem

Shane Chern

Abstract. In this note, we investigate J.-C. Liu’s work on truncated Gauss’ square exponent theorem and obtain more truncations. We also discuss some possible multiple summation extensions of Liu’s results.

Keywords. Gauss’ square exponent theorem, truncated identities, multiple summations, \(q \)-binomial coefficients.

2010 MSC. 11B65, 33D15.

1. Introduction

One major topic of \(q \)-series deals with various \(q \)-identities, most of which can be treated as the \(q \)-analogue of combinatorial identities. Some celebrated examples include Euler’s pentagonal number theorem [1, Corollary 1.7]

\[
\prod_{n \geq 1} (1 - q^n) = \sum_{k = -\infty}^{\infty} (-1)^k q^{(3k+1)/2}
\]

(1.1)

and Gauss’ square exponent theorem [1, Corollary 2.10]

\[
\prod_{n \geq 1} \frac{1 - q^n}{1 + q^n} = \sum_{k = -\infty}^{\infty} (-1)^k q^{k^2}.
\]

(1.2)

Interestingly, some \(q \)-identities involving infinite sums and/or products also have the corresponding truncated version. Before presenting such truncations, we introduce some standard \(q \)-series notation:

\[
(a; q)_n := \prod_{k=0}^{n-1} (1 - aq^k),
\]

\[
(a; q)_\infty := \prod_{k \geq 0} (1 - aq^k).
\]

We also adopt the \(q \)-binomial coefficient

\[
\binom{n}{m}_q = \left\{ \begin{array}{ll}
\frac{(aq)_n}{(q)_n(q)_n-a_{n-m}} & \text{if } 0 \leq m \leq n, \\
0 & \text{otherwise}.
\end{array} \right.
\]

In [4], Berkovich and Garvan combinatorially proved the following finite \(q \)-identity

\[
\sum_{k = -L}^{L} (-1)^k q^{k(3k+1)/2} \left[\frac{2L - k}{L} \right] = 1.
\]

(1.3)
If we let \(L \to \infty \), then (1.3) becomes (1.1). In fact, (1.3) is a direct consequence of
\[
\sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r q^{(2) n - r} \begin{bmatrix} n - r \cr r \end{bmatrix} = \begin{cases} (-1)^{n/3} q^{n(n-1)/6} & \text{if } n \not\equiv 2 \pmod{3}, \\ 0 & \text{if } n \equiv 2 \pmod{3}, \end{cases} \tag{1.4}
\]
which first appears in [6]. To see this, we only need to replace \(n \) by \(3L, r \) by \(L + k \) and \(q \) by \(1/q \) in (1.4). On the other hand, Warnaar [16] observed that if one replaces \(n \) by \(3L + 1, r \) by \(L + k \) and \(q \) by \(1/q \) in (1.4), another truncated generalization of Euler’s pentagonal number theorem can be derived
\[
\sum_{k=-L}^{L} (-1)^k q^{k(3k-1)/2} \begin{bmatrix} 2L - k + 1 \cr L + k \end{bmatrix} = 1. \tag{1.5}
\]
Recently, Liu [12] obtained more truncated versions of (1.1) with a surprisingly elementary proof.

The truncations of Gauss’ square exponent theorem (1.2), however, mainly come from a different direction. For example, in [8], Guo and Zeng showed that for \(L \geq 1 \)
\[
\frac{(-q; q)_\infty}{(q; q)_\infty} \sum_{k=-L}^{L} (-1)^k q^{k^2} = 1 + (-1)^L \sum_{n=L+1}^{\infty} \frac{q^{(L+1)n}(q)_L(-q)_n}{(q)_n} \begin{bmatrix} n-1 \cr L \end{bmatrix}. \tag{1.6}
\]
The origin of this type of truncations comes from Andrews and Merca’s work [2] on Euler’s pentagonal number theorem. For other similar truncated theta series, the interested readers may refer to [3, 5, 9, 11, 14, 17]. Nonetheless, one should admit that (1.6) is complicated especially comparing with (1.3) and (1.5). Hence we would expect truncated generalization of Gauss’ square exponent theorem as neat as (1.3) and (1.5). In [13], Liu provided such truncations
\[
\sum_{k=-L}^{L} (-1)^k q^{k^2} (-q; q)_{L-k} \begin{bmatrix} 3L - k + 1 \cr L + k \end{bmatrix} = 1, \tag{1.7}
\]
\[
\sum_{k=-L}^{L} (-1)^k q^{k^2} (-q; q)_{L-k} \begin{bmatrix} 3L - k \cr L + k \end{bmatrix} \frac{1 - q^{2L}}{1 - q^{3L-k}} = 1, \tag{1.8}
\]
\[
\sum_{k=-L}^{L} (-1)^k q^{k^2} (-q; q)_{L-k} \begin{bmatrix} 3L - k - 1 \cr L + k - 1 \end{bmatrix} = 1. \tag{1.9}
\]
All the three identities are respectively direct consequences of identities analogous to (1.4)
\[
\sum_{r=0}^{n} (-1)^r q^{(2) n - r} \begin{bmatrix} 2n - r + 1 \cr r \end{bmatrix} = \begin{cases} 0 & \text{if } n = 2m - 1, \\ (-1)^m q^{m(3m+1)} & \text{if } n = 2m, \end{cases} \tag{1.10}
\]
\[
\sum_{r=0}^{n} (-1)^r q^{(2) n - r} \begin{bmatrix} 2n - r \cr r \end{bmatrix} \frac{1 - q^n}{1 - q^{2n-r}} = \begin{cases} 0 & \text{if } n = 2m - 1, \\ (-1)^m q^{m(3m-1)} & \text{if } n = 2m, \end{cases} \tag{1.11}
\]
\[
\sum_{r=0}^{n} (-1)^r q^{(2) n - r} \begin{bmatrix} 2n - r \cr r \end{bmatrix} = \begin{cases} (-1)^{m-1} q^{3m^2-3m+1} & \text{if } n = 2m - 1, \\ (-1)^m q^{m(3m-1)} & \text{if } n = 2m. \end{cases} \tag{1.12}
\]
For example, (1.7) is deduced by replacing \(n \) by \(2L \), \(r \) by \(L + k \) and \(q \) by \(1/q \) in (1.10). We remark that (1.10) appears in an early paper of Jouhet [10, Eq. (2.7)].

We have two purposes in this note. The first purpose is to further investigate Liu’s results. We then discuss some possible multiple summation extensions of (1.10) and (1.12), whose idea originates from [7].

2. Further investigation of Liu’s results

We start with the following identity deduced from (1.10).

Theorem 2.1. For \(n \geq 1 \),

\[
\sum_{r=0}^{n} (-1)^r q^{\binom{r}{2}} (-q; q)_{n-r} \left[\frac{2n - r + 1}{r} \right] \frac{1 - q^{2n+1}}{1 - q^{2n-r+1}} = \begin{cases} (-1)^m q^{m(3m-1)} & \text{if } n = 2m - 1, \\ (-1)^m q^{m(3m+1)} & \text{if } n = 2m. \end{cases}
\]

(2.1)

Proof. Following Liu’s notation, we write the left-hand side of (1.10) as \(U_n \). Namely,

\[
U_n = \sum_{r=0}^{n} (-1)^r q^{\binom{r}{2}} (-q; q)_{n-r} \left[\frac{2n - r + 1}{r} \right].
\]

Then

\[
\sum_{r=0}^{n} (-1)^r q^{\binom{r}{2}} (-q; q)_{n-r} \left[\frac{2n - r + 1}{r} \right] \frac{1 - q^{2n+1}}{1 - q^{2n-r+1}} = \sum_{r=0}^{n} (-1)^r q^{\binom{r}{2}} (-q; q)_{n-r} \left[\frac{2n - r + 1}{r} \right] \left(1 + q^{2n-r+1} \frac{1 - q^r}{1 - q^{2n-r+1}} \right)
\]

\[
= U_n - q^{2n} \sum_{r=1}^{n} (-1)^{r-1} q^{\binom{r-1}{2}} (-q; q)_{n-r} \left[\frac{2n - r}{r - 1} \right]
\]

\[
= U_n - q^{2n} \sum_{r=0}^{n-1} (-1)^r q^{\binom{r}{2}} (-q; q)_{n-r} \left[\frac{2n - r - 1}{r} \right]
\]

\[
= U_n - q^{2n} U_{n-1}.
\]

The desired result follows from (1.10). \(\square \)

If we replace \(n \) by \(2L - 1 \) and \(r \) by \(L + k \) in (2.1), then

\[
\sum_{k=-L}^{L-1} (-1)^L q^{\binom{L+k}{2}} (-q; q)_{L-k-1} \left[\frac{3L - k - 1}{L + k} \right] \frac{1 - q^{4L-1}}{1 - q^{3L-k-1}} = (-1)^L q^{L(3L-1)}.
\]

We then replace \(q \) by \(1/q \) and notice that

\[
\genfrac{[}{]}{0pt}{}{n}{m}_{q^{-1}} = q^{m(n-m)} \genfrac{[}{]}{0pt}{}{n}{m}_q
\]

and

\[
(-q^{-1}; q^{-1})_n = q^{-\binom{n+1}{2}} (-q; q)_n.
\]
Theorem 2.2. This leads to a new truncation of Gauss’ square exponent theorem

\[(-1)^L q^{-L(3L-1)} = \sum_{k=-L}^{L-1} (-1)^k q^{-(L+1)k} q^{-\binom{L-k}{2}} (-q; q)_{L-k} \times q^{(L+k)(-2L+2k+1)} \left[\frac{3L - k + 1}{L + k} \right] \frac{1 - q^{-4L-1}}{1 - q^{-3(3L-k)-1}}. \]

This leads to a new truncation of Gauss’ square exponent theorem

Theorem 2.2. For \(L \geq 1 \),

\[\sum_{k=-L}^{L-1} (-1)^k q^k (-q; q)_{L-k-1} \left[3L - k - 1 \right] \frac{1 - q^{4L-1}}{1 - q^{3L-k-1}} = 1. \] (2.2)

We next observe that

\[\frac{2n - r + 1}{r} \frac{1 - q^{2n+1}}{1 - q^{2n-r+1}} = \frac{2n - r}{r - 1} \frac{1 - q^{2n+1}}{1 - q^r} = \frac{2n - r}{r - 1} \left(1 + \frac{q^r (1 - q^{2n-r+1})}{1 - q^r} \right) = \frac{2n - r}{r - 1} + q^r \left[\frac{2n - r + 1}{r} \right]. \] (2.3)

On the one hand, we have

Theorem 2.3. For \(n \geq 1 \),

\[\sum_{r=0}^{n} (-1)^r q^{\binom{r-1}{2}} (-q; q)_{n-r} \left[2n - r + 1 \right] \frac{1 - q^{2n+1}}{1 - q^{2n-r+1}} \]

\[= \begin{cases} (-1)^m q^{m-1)(3m-2)} & \text{if } n = 2m-1, \\ (-1)^m q^{m+1)}+1 & \text{if } n = 2m. \end{cases} \] (2.4)

Proof. It follows from (2.3) that

\[\sum_{r=0}^{n} (-1)^r q^{\binom{r-1}{2}} (-q; q)_{n-r} \left[2n - r + 1 \right] \frac{1 - q^{2n+1}}{1 - q^{2n-r+1}} \]

\[= \sum_{r=0}^{n} (-1)^r q^{\binom{r-1}{2}} (-q; q)_{n-r} \left[\frac{2n - r}{r - 1} + q^r \left[2n - r + 1 \right] \right] \]

\[= - \sum_{r=1}^{n} (-1)^{r-1} q^{\binom{r-1}{2}} (-q; q)_{n-r} \left[\frac{2n - r}{r - 1} \right] + qU_n \]

\[= - \sum_{r=0}^{n-1} (-1)^{r} q^{\binom{r}{2}} (-q; q)_{n-r-1} \left[\frac{2n - r - 1}{r} \right] + qU_n \]

\[= -U_{n-1} + qU_n. \]

The desired result follows from (1.10). \(\square \)

If we replace \(n \) by \(2L \), \(r \) by \(L + k \) and \(q \) by \(1/q \) in (2.4), we obtain another new truncation of Gauss’ square exponent theorem.
Theorem 2.4. For $L \geq 1$,
\[
\sum_{k=-L}^{L} (-1)^k q^{n^2} (-q; q)_{L-k} \left[\frac{3L - k + 1}{L + k} \right] \frac{1 - q^{4L+1}}{1 - q^{4L+k+1}} = 1. \tag{2.5}
\]

We also obtain from (2.3)

Theorem 2.5. For $n \geq 1$,
\[
\sum_{r=0}^{n} (-1)^r q^{r \left(\frac{r+1}{2} \right)} (-q; q)_{n-r} \left\lfloor \frac{2n - r + 1}{r} \right\rfloor = \sum_{m=\left[\frac{n}{2}\right]}^{\lfloor (n+1)/2 \rfloor} (-1)^m q^m (3m-1). \tag{2.6}
\]

Proof. For convenience, we write
\[
\tilde{U}_n = \sum_{r=0}^{n} (-1)^r q^{r \left(\frac{r+1}{2} \right)} (-q; q)_{n-r} \left\lfloor \frac{2n - r + 1}{r} \right\rfloor .
\]

It follows from (2.3) that
\[
\sum_{r=0}^{n} (-1)^r q^{r \left(\frac{r+1}{2} \right)} (-q; q)_{n-r} \left\lfloor \frac{2n - r + 1}{r} \right\rfloor \frac{1 - q^{2n+1}}{1 - q^{2n-r+1}} \\
= \sum_{r=0}^{n} (-1)^r q^{r \left(\frac{r+1}{2} \right)} (-q; q)_{n-r} \left(\left\lfloor \frac{2n - r + 1}{2n-r+1} \right\rfloor + q^r \left\lfloor \frac{2n - r + 1}{r} \right\rfloor \right) \\
= - \sum_{r=1}^{n} (-1)^{r-1} q^{r \left(\frac{r+1}{2} \right)} (-q; q)_{n-r} \left\lfloor \frac{2n - r + 1}{r} \right\rfloor + \tilde{U}_n \\
= - \sum_{r=0}^{n-1} (-1)^r q^{r \left(\frac{r+1}{2} \right)} (-q; q)_{n-r-1} \left\lfloor \frac{2n - r + 1}{r} \right\rfloor + \tilde{U}_n \\
= - \tilde{U}_{n-1} + \tilde{U}_n.
\]

From this telescoping identity along with (2.1) and the fact that $\tilde{U}_0 = 1$, we arrive at the desired result. \hfill \square

Remark 2.1. Letting $n \to \infty$ in (2.6) reduces it to
\[
(-q; q)_{\infty} \sum_{r=0}^{\infty} \frac{(-1)^r q^{r \left(\frac{r+1}{2} \right)}}{(q; q)_r} = \sum_{m=-\infty}^{\infty} (-1)^m q^m (3m-1).
\]

We further deduce from Euler’s pentagonal number theorem (1.1) that
\[
\sum_{r=0}^{\infty} \frac{(-1)^r q^{r \left(\frac{r+1}{2} \right)}}{(q; q)_r} = \frac{(q^2; q^2)_{\infty}}{(-q; q)_{\infty}} = (q; q)_{\infty}.
\]

This identity, which is a special case of the q-binomial theorem (cf. [1, Theorem 2.1]), is another pioneer work of q-identities due to Euler; see [1, Corollary 2.2]. The interested readers may refer to [12, Theorem 1.1] for the following different truncation of this identity
\[
\sum_{r=0}^{n/2} (-1)^r q^{r \left(\frac{r+1}{2} \right)} \left\lfloor \frac{n - r}{r} \right\rfloor = \sum_{m=\left\lfloor (n+1)/3 \right\rfloor}^{n/3} (-1)^m q^m (3m+1)/2.
\]
3. Multiple summations

In [7], Guo and Zeng obtained the multiple summation extensions of (1.3) and (1.5)
\[
\sum_{j_1,\ldots,j_m=-L}^{2L} \prod_{k=1}^{m} (-1)^{j_k} q^{j_k j_{k+1} + \binom{j_k}{2} + \frac{1}{2}} \left[\frac{2L - j_k}{L + j_{k+1}} \right]
= \begin{cases}
1 & \text{if } m \not\equiv 0 \pmod{3}, \\
3L + 1 & \text{if } m \equiv 0 \pmod{3},
\end{cases}
\]
(3.1)

\[
\sum_{j_1,\ldots,j_m=-L}^{2L+1} \prod_{k=1}^{m} (-1)^{j_k} q^{j_k j_{k+1} + \binom{j_k}{2} + \frac{1}{2}} \left[\frac{2L - j_k + 1}{L + j_{k+1}} \right]
= \begin{cases}
(-1)^{\left\lfloor m^2/3 \right\rfloor} & \text{if } m \not\equiv 0 \pmod{3}, \\
(-1)^{m/3(3L + 2)} & \text{if } m \equiv 0 \pmod{3}.
\end{cases}
\]
(3.2)

Here we assume that \(j_{m+1} = j_1 \). The two multiple summations come from a multiple extension of (1.4). Motivated by their work, we study some possible multiple extensions of (1.10) and (1.12).

Parallel to Liu’s notation in [13], for positive integer \(m \), we put
\[
U_m(n) = \sum_{r_1,\ldots,r_m=0}^{2n+1} \prod_{k=1}^{m} (-1)^{r_k} q^{\binom{r_k}{2}} (-q; q)_{n-r_k} \left[\frac{2n - r_{k+1}}{r_{k+1}} \right], \\
W_m(n) = \sum_{r_1,\ldots,r_m=0}^{2n} \prod_{k=1}^{m} (-1)^{r_k} q^{\binom{r_k}{2}} (-q; q)_{n-r_k} \left[\frac{2n - r_{k+1}}{r_{k+1}} \right],
\]
where again we assume that \(r_{m+1} = r_1 \). Hence \(U_1(n) \) and \(W_1(n) \) reduce to Liu’s \(U_n \) and \(W_n \), respectively.

We shall show

Theorem 3.1. For \(n \geq 1 \),
\[
U_2(n) = 0, \\
U_3(n) = \begin{cases}
0 & \text{if } n = 2k - 1, \\
\frac{(-1)^{k-1}}{2} q^{9k^2 + 3k} & \text{if } n = 2k,
\end{cases} \\
W_2(n) = (-1)^{n} q^{2n(n-1)/2}, \\
W_3(n) = \begin{cases}
\frac{(-1)^{k}}{2} \left(q^{9k^2 - 9k + 3} - 3q^{9k^2 - 11k + 3} \right) & \text{if } n = 2k - 1, \\
\frac{(-1)^{k-1}}{2} \left(q^{9k^2 - 3k} - 3q^{9k^2 - k} \right) & \text{if } n = 2k.
\end{cases}
\]
(3.7)

Instead of using the traditional \(q \)-series approach, we turn to a computer-assisted proof of Theorem 3.1. We recall that Riese implemented a powerful Mathematica package \texttt{qMultiSum}, whose main function is generating recurrence relations for multiple summation \(q \)-identities. We refer to [15] or the following url

http://www.risc.jku.at/research/combinat/software/ergosum/RISC/qMultiSum.html

for an introduction to this package.

In our cases, the package gives us

Lemma 3.2. For \(n \geq 1 \),
\[
0 = -q^{6n+8} U_2(n) + U_2(n + 2),
\]
(3.7)
Truncated Gauss' square exponent theorem

0 = q^{3n+12}U_3(n) + U_3(n+2), \tag{3.8}
0 = -q^{9n+11}(1 + q^{n+3})W_2(n) - q^{6n+10}(1 + q^{n+3})W_2(n + 1)
\quad + q^{3n+7}(1 + q^{n+1})W_2(n + 2) + (1 + q^{n+1})W_2(n + 3), \tag{3.9}
0 = -q^{15n+24}(1 + q^{n+2})(-1 + q^{n+3})(1 + q^{n+3})(1 + q^{n+4})
\quad \times \left(-1 - 2q^{n+2} + q^{n+3} \right) W_3(n)
\quad - q^{11n+23}(1 + q^{n+3})(1 + q^{n+4})
\quad \times \left(-1 + q - 2q^{n+2} - 2q^{n+3} + 2q^{n+4} - 6q^{2n+4} + 6q^{2n+5} - 6q^{2n+6}
\quad - q^{2n+7} + 2q^{3n+7} + 3q^{3n+8} - 2q^{3n+9} - q^{3n+10} + 5q^{4n+9} - 2q^{4n+10}
\quad - 3q^{4n+11} + 2q^{4n+12} - 2q^{5n+12} + 2q^{5n+13} \right) W_3(n + 1)
\quad + q^{6n+18}(1 + q^{n+1})(1 + q^{n+4})(-1 + q^{n+5})
\quad \times \left(1 + 2q^{n+1} - q^{n+3} + 7q^{2n+3} - 6q^{2n+4} - 2q^{2n+5} + q^{2n+6}
\quad + 2q^{3n+6} - q^{3n+8} + q^{4n+10} \right) W_3(n + 2)
\quad + q^{2n+8}(1 + q^{n+1})(1 + q^{n+2})
\quad \times \left(-2 + 2q + 5q^{n+2} - 2q^{n+3} - 3q^{n+4} + 2q^{n+5} + 2q^{n+5} + 3q^{2n+6}
\quad - 2q^{2n+7} - q^{2n+8} - 6q^{3n+7} + 6q^{3n+8} - q^{3n+9} - q^{3n+10} - 2q^{4n+10}
\quad - 2q^{4n+11} + 2q^{4n+12} - 2q^{5n+13} + q^{5n+14} \right) W_3(n + 3)
\quad + (1 + q^{n+1})(-1 + q^{n+2})(1 + q^{n+2})(1 + q^{n+3})
\quad \times \left(2 - q + q^{n+3} \right) W_3(n + 4). \tag{3.10}

Proof. We prove (3.7) by calling (with the initialization "RISC"qMultiSum")

\begin{verbatim}
stru = qFindStructureSet[Binomial[2n-r1+1,r2,q]
 Binomial[2n-r2+1,r1,q] (-1)^(r1+r2) Q^(r1(r1-1)
 /2+r2(r2-1)/2) QPochhammer[-q,q,n-r1]
 QPochhammer[-q,q,n-r2], {n}, {r1,r2}, {1},
 {1,1}, {1,1}, qProtocol->True]
rec = qFindRecurrence[Binomial[2n-r1+1,r2,q]
 Binomial[2n-r2+1,r1,q] (-1)^(r1+r2) Q^(r1(r1-1)
 /2+r2(r2-1)/2) QPochhammer[-q,q,n-r1]
 QPochhammer[-q,q,n-r2], {n}, {r1,r2}, {1},
 {1,1}, {1,1}, qProtocol->True, StructSet->stru
 [[1]]]
sumrec = qSumRecurrence[rec]
\end{verbatim}

For the remaining three recurrence relations, apart from the corresponding summand, we may set other parameters as follows:

\{n\}, \{r1, \ldots, rm\}, \{1\}, \{1, \ldots, 1\}, \{1, \ldots, 1\}
We remark that it costs over five hours to obtain the recurrence relation for $W_3(n)$. □

Proof of Theorem 3.1. Theorem 3.1 is a direct consequence of Lemma 3.2 and several initial values. □

Of course, traditional q-series proofs of identities in Theorem 3.1 are cried out. We also notice from Theorem 3.1 that the multiple extensions of Gauss’ square exponent theorem are not as neat as Guo and Zeng’s multiple extensions of Euler’s pentagonal number theorem (cf. Corollary 2.3 and Theorem 2.4 of [7]). However, it would be appealing to see if there exist closed forms of $U_m(n)$ and $W_m(n)$ for arbitrary m.

Acknowledgements. I would like to thank George Andrews for helpful discussions.

References

1. G. E. Andrews, The theory of partitions, Reprint of the 1976 original. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. xvi+255 pp.
2. G. E. Andrews and M. Merca, The truncated pentagonal number theorem, J. Combin. Theory Ser. A 119 (2012), no. 8, 1639–1643.
3. G. E. Andrews and M. Merca, Truncated theta series and a problem of Guo and Zeng, J. Combin. Theory Ser. A 154 (2018), 610–619.
4. A. Berkovich and F. G. Garvan, Some observations on Dyson’s new symmetries of partitions, J. Combin. Theory Ser. A 100 (2002), no. 1, 61–93.
5. S. H. Chan, T. P. N. Ho, and R. Mao, Renrong, Truncated series from the quintuple product identity, J. Number Theory 169 (2016), 420–438.
6. S. B. Ekhad and D. Zeilberger, The number of solutions of $X^2 = 0$ in triangular matrices over $GF(q)$, Electron. J. Combin. 3 (1996), no. 1, Research Paper 2, approx. 2 pp.
7. V. J. W. Guo and J. Zeng, Multiple extensions of a finite Euler’s pentagonal number theorem and the Lucas formulas, Discrete Math. 308 (2008), no. 18, 4069–4078.
8. V. J. W. Guo and J. Zeng, Two truncated identities of Gauss, J. Combin. Theory Ser. A 120 (2013), no. 3, 700–707.
9. T. Y. He, K. Q. Ji, and W. J. T. Zang, Bilateral truncated Jacobi’s identity, European J. Combin. 51 (2016), 255–267.
10. F. Jouhet, Shifted versions of the Bailey and well-poised Bailey lemmas, Ramanujan J. 23 (2010), no. 1-3, 315–331.
11. J. C. Liu, Some finite generalizations of Euler’s pentagonal number theorem, J. Number Theory 11 (2015), no. 5, 1563–1569.
12. J. C. Liu, Some finite generalizations of Euler’s pentagonal number theorem, Czechoslovak Math. J. 67(142) (2017), no. 2, 525–531.
13. J. C. Liu, Some finite generalizations of Gauss’s square exponent identity, Rocky Mountain J. Math. 47 (2017), no. 8, 2723–2730.
14. R. Mao, Proofs of two conjectures on truncated series, J. Combin. Theory Ser. A 130 (2015), 15–25.
15. A. Riese, qMultiSum—a package for proving q-hypergeometric multiple summation identities, J. Symbolic Comput. 35 (2003), no. 3, 349–376.
16. S. O. Warnaar, q-Hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue’s identity and Euler’s pentagonal number theorem, Ramanujan J. 8 (2004), no. 4, 467–474.
17. A. J. Yee, A truncated Jacobi triple product theorem, J. Combin. Theory Ser. A 130 (2015), 1–14.

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

E-mail address: shanechern@psu.edu