Outcomes of kidney transplantation in patients with hepatitis B virus infection: A systematic review and meta-analysis

Charat Thongprayoon, Wisit Kaewput, Konika Sharma, Karn Wijarnpreecha, Napat Leeaphorn, Patompong Ungprasert, Ankit Sakhuja, Franco H Cabeza Rivera, Wisit Cheungpasitporn

AIM
To assess outcomes of kidney transplantation including patient and allograft outcomes in recipients with hepatitis B virus (HBV) infection, and the trends of patient’s outcomes overtime.

METHODS
A literature search was conducted using MEDLINE, EMBASE and Cochrane Database from inception through October 2017. Studies that reported odds ratios (OR) of mortality or renal allograft failure after...
Hepatitis B; Kidney transplant; Kidney; February

Hepatitis B is one of the most common infectious diseases and major health problems worldwide[1-3]. In 2017, approximately 257 million people have chronic hepatitis B virus infection[4]. Despite advances in medicine which have resulted in a cure for hepatitis C infection in recent years[5], chronic HBV infection is still currently considered as an incurable disease[2,3,5], leading to significant mortality (887000 death in 2015) and morbidities including cirrhosis and hepatocellular carcinoma[2,3,5].

Advances in immunosuppression and kidney transplant techniques have led to significant improvements in short-term survival of the renal allograft[6]. Long-term graft survival, however, has remained relatively lagged behind and has now become one of the main problems in kidney transplantation[7-9]. Although HBV is preventable disease by HBV vaccine, HBV infection remains a challenge issue in patients with end-stage renal disease on dialysis, affecting from 1.3% up to 14.6% of chronic dialysis patients [hepatitis B surface antigen (HBsAg) – positive] depending on geographical regions[10-12], and, consequently leading to chronic HBV infection kidney transplant patients[13-31]. Among renal transplant patients with HBV (HBsAg positive), there have been reported cases of HBV reactivation[32], massive liver necrosis due to fulminant hepatitis, and severe cholestatic hepatitis after kidney transplantation[10,16,33-36]. In addition, chronic HBV infection may result in HBV-related membranous nephropathy after kidney transplantation[37-40].

Even though HBV is incurable, current more available antiviral agents against HBV effectively suppress viral replication[10]. Thus, these agents can prevent hepatic fibrosis[10] and potentially reduce significant hepatic and extra-hepatic complications related to chronic HBV. In spite of improvement of HBV care, outcomes of kidney transplantation including patient and allograft outcomes in recipients with HBV infection remain unclear. Thus, we conducted this meta-analysis to (1) Assess the risks of mortality and allograft failure in kidney transplant recipients with HBsAg-positive status; and (2) evaluate trends of patient’s outcomes overtime.

INTRODUCTION

Hepatitis B virus (HBV) infection is one of the most common infectious diseases and major health problems worldwide[1-3]. In 2017, approximately 257 million people have chronic hepatitis B virus infection[4]. Despite advances in medicine which have resulted in a cure for hepatitis C infection in recent years[5], chronic HBV infection is still currently considered as an incurable disease[2,3,5], leading to significant mortality (887000 death in 2015) and morbidities including cirrhosis and hepatocellular carcinoma[2,3].

Advances in immunosuppression and kidney transplant techniques have led to significant improvements in short-term survival of the renal allograft[6]. Long-term graft survival, however, has remained relatively lagged behind and has now become one of the main problems in kidney transplantation[7-9]. Although HBV is preventable disease by HBV vaccine, HBV infection remains a challenge issue in patients with end-stage renal disease on dialysis, affecting from 1.3% up to 14.6% of chronic dialysis patients [hepatitis B surface antigen (HBsAg) – positive] depending on geographical regions[10-12], and, consequently leading to chronic HBV infection kidney transplant patients[13-31]. Among renal transplant patients with HBV (HBsAg positive), there have been reported cases of HBV reactivation[32], massive liver necrosis due to fulminant hepatitis, and severe cholestatic hepatitis after kidney transplantation[10,16,33-36]. In addition, chronic HBV infection may result in HBV-related membranous nephropathy after kidney transplantation[37-40].

Even though HBV is incurable, current more available antiviral agents against HBV effectively suppress viral replication[10]. Thus, these agents can prevent hepatic fibrosis[10] and potentially reduce significant hepatic and extra-hepatic complications related to chronic HBV. In spite of improvement of HBV care, outcomes of kidney transplantation including patient and allograft outcomes in recipients with HBV infection remain unclear. Thus, we conducted this meta-analysis to (1) Assess the risks of mortality and allograft failure in kidney transplant recipients with HBsAg-positive status; and (2) evaluate trends of patient’s outcomes overtime.

MATERIALS AND METHODS

Literature review and search strategy

The protocol for this meta-analysis is registered
with PROSPERO (International Prospective Register of Systematic Reviews; no. CRD42017080657). A systematic literature search of MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews from database inception to October 2017 was conducted to identify studies assessing outcomes of kidney transplantation including patient and allograft outcomes in patients with HBV. The systematic literature review was undertaken independently by two investigators (C.T. and W.C.) applying the search approach that incorporated the terms of “hepatitis B” or “HBV”, or “viral hepatitis” and “kidney transplantation” which is provided in online supplementary data 1. No language limitation was applied. A manual search for conceivably relevant studies using references of the included articles was also performed. This study was conducted by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) statement[49] and previously published guidelines[44,45,46].

Selection criteria
Eligible studies must be randomized controlled trials or observational studies including cohort studies, case-control, or cross-sectional that assessed the risks of mortality and/or allograft loss after kidney transplantation in patients with HBV (HBsAg-positive). They must provide the effect estimates odds ratios (OR), relative risks (RR), or hazard ratios (HR) with 95% CI. The comparison group consisted of HBsAg-negative kidney transplant recipients. Retrieved articles were individually reviewed for their eligibility by the two investigators (C.T. and W.C.) noted previously. Discrepancies were discussed and resolved by mutual consensus. Newcastle-Ottawa quality assessment scale was used to appraise the quality of study for case-control study and outcome of interest for cohort study[47]. The modified Newcastle-Ottawa scale was used for cross-sectional study[48], as shown in Table 1.

Data abstraction
A structured data collecting form was used to derive the following information from each study including title, year of the study, name of the first author, publication year, country where the study was conducted, demographic and characteristic data, mean age, patient’s sex, donor type, % of patients with HBeAg, % of patients with coexist patients infected with hepatitis C virus, and adjusted effect estimates with 95% CI and covariates that were adjusted in the multivariable analysis.

Statistical analysis
Comprehensive Meta-analysis (version 3; Biostat Inc) was used to analyze the data. Adjusted point estimates from each study were consolidated by the generic inverse variance approach of DerSimonian and Laird, which designated the weight of each study based on its variance[49]. Given the likelihood of increased inter-observation variance; a random-effect model was utilized to assess the pooled prevalence and pooled OR with 95% CI for the risks of atrial fibrillation with sleep duration, insomnia, and frequent awakening. Cochran’s Q test and I² statistic were applied to determine the between-study heterogeneity. A value of I² of 0-25% represents insignificant heterogeneity, 26%-50% represents low heterogeneity, 51%-75% represents moderate heterogeneity, and > 75% represents high heterogeneity[50]. The presence of publication bias was evaluated via the Egger test[51].

RESULTS
A total of 1673 potentially eligible articles were identified using our search strategy. After the exclusion of 1639 articles based on the title and abstract for clearly not fulfilling inclusion criteria on the basis of the type of article, study design, population or outcome of interest, leaving 34 articles for full-length review. Eighteen of them were excluded from the full-length review as they did not report the outcome of interest while six articles were excluded because they were descriptive studies without comparative analysis. Thus, the final analysis included 10 cohort studies[18,21,31,36,52-57] with 87623 kidney transplant patients. The literature retrieval, review, and selection process are demonstrated in Figure 1. The characteristics and quality assessment of the included studies are presented in Table 1. Patients in most included studies used calcineurin inhibitor-based immunosuppression. Mean age was between the ages of 32-49.

Mortality after kidney transplantation in patients with HBsAg-positive vs HBsAg-negative status
Ten studies assessed the mortality risk after kidney transplantation in patients with HBV as shown in Table 1. Compared to HBsAg-negative patients, HBsAg-positive status was significantly associated with increased risk of mortality after kidney transplantation (pooled OR = 2.48; 95% CI: 1.61-3.83, I² = 82, Figure 2). When meta-analysis was limited only to non-HCV patient population, the pooled OR of mortality was 2.98 (95% CI: 1.47-6.07, I² = 89). When meta-analysis was limited only to studies with adjusted analysis for confounders[34,53,54], the pooled OR of mortality was 1.27 (95% CI: 1.06-1.51, I² = 85). Meta-regression showed significant negative correlations between mortality risk after kidney transplantation in HBsAg-positive patients and year of study (slopes = -0.062, P = 0.001, Figure 3). Meta-regression showed no significant impact of donor type on the association between HBsAg-positive status and increased risk of mortality after kidney transplantation (P = 0.11).

Impact of antiviral treatments on patient survival after kidney transplantation in patients with HBsAg-positive
Of 10 studies[18,21,31,36,52-57], 3 studies[18,21,54] provided data on prophylactic antiviral treatment for HBV. When meta-analysis was limited only to studies with HBsAg-positive
Table 1 Main characteristics of the studies assessing outcomes of kidney transplantation in patients with hepatitis B virus

Study	Lee et al\[54\]	Breitenfeldt et al\[56\]	Chan et al\[21\]	Morales et al\[57\]	Ridruejo et al\[52\]	Aroldi et al\[53\]	Yap et al\[54\]	Reddy et al\[36\]	Grenha et al\[31\]	Lee et al\[54\]
Country	Taiwan	Germany	Hong Kong	Spain	Argentina	Italy	Hong Kong	USA	Portugal	Korea
Study design	Cohort study									
Year	2001	2002	2004	2004	2004	2005	2005	2011	2015	2016
Total number	477	927	509	3365	231	541	126	75681	2284	3482
Age (yr)	38.6 ± 11.5	41.7	45.6 ± 13.0	38	31.7	49.2	N/A	4.50 ± 1.29	4.43	4.06 ± 1.29
Male	200 (68.7%)	595 (64.2%)	N/A	1219 (36.9%)	62 (31.5%)	41 (32.5%)	90 (71.4%)	45249 (59.8%)	1524 (66.7%)	2084 (59.9%)
Living donor	N/A	80 (3.5%)	2571 (73.8%)	2571 (73.8%)						
HBsAg	62 (13.0%)	37 (4.0%)	67 (13.2%)	62 (13.5%)	62 (13.5%)	41 (32.5%)	63 (50%)	1346 (1.8%)	76 (3.3%)	160 (4.6%)
HBV treatment	N/A	N/A	Lamivudine							
Follow-up after KTx	6.0 ± 7.0 yr	9.2 ± 4.4 yr	8.2 ± 8.3 mo	11 yr	1.07 (0.88-1.31)	1.33 (0.78-2.29)	1.02 (0.54-1.94)	1.38 (0.55-3.50)	1.57 (0.99-2.49)	1.65 (0.98-2.71)
Mortality	2.72 (1.48-4.99)	4.08 (2.10-7.93)	8.07 (3.65-17.86)	2.06 (1.24-3.40)	2.20 (1.07-3.84)	2.36 (1.50-3.70)	1.10 (0.82-1.47)	1.09 (0.88-1.36)	1.02 (0.54-1.94)	1.09 (0.88-1.36)
Anti-HCV	151 (31.7%)	130 (29.7%)	N/A	106 (45.9%)	244 (45.3%)	161 (50%)	113 (4.9%)	113 (4.9%)	113 (4.9%)	113 (4.9%)
Immunosuppression	Cyclosporine,	N/A	Cyclosporine,	Cyclosporine,	Cyclosporine,	Cyclosporine/	Cyclosporine/	Cyclosporine/	Cyclosporine/	Cyclosporine/
	steroid,	N/A	steriod,	steriod,	steroid,	tacrolimus,	tacrolimus,	tacrolimus,	tacrolimus,	tacrolimus,
	azathioprine,	azathioprine	azathioprine	azathioprine	azathioprine	steroid, MMF	steroid, MMF	steroid, MMF	steroid, MMF	MMF
	MMF									
New Castle-Ottawa score	S 4	S 4	S 4	S 4	S 4	S 4	S 4	S 4	S 4	S 4
	C 0	C 0	C 0	C 0	C 0	C 1	C 0	C 2	C 0	C 0
	O 3	O 3	O 3	O 3	O 3	O 3	O 3	O 3	O 3	O 3

FKS06: Tacrolimus; HBsAg: Hepatitis B surface antigen; HBeAg: Hepatitis B e antigen; HCV: Hepatitis C virus; KTx: Kidney transplantation; MMF: Mycophenolate mofetil; S, C, O: Selection, comparability, and outcome.

FKS06: Tacrolimus; HBsAg: Hepatitis B surface antigen; HBeAg: Hepatitis B e antigen; HCV: Hepatitis C virus; KTx: Kidney transplantation; MMF: Mycophenolate mofetil; S, C, O: Selection, comparability, and outcome.

Confounding adjustment: None, None, None, None, None, None, None, None, None, None.
recipients (> 50%) treated with prophylactic antiviral treatment for HBV, the pooled OR of mortality was 3.85 (95%CI: 0.91-16.23, \(I^2 \) = 50%). In a recent study by Lee et al\[54\], which 81% of HBs Ag-positive recipients were treated with prophylactic antiviral treatment, HBsAg-positive status was significantly associated with increased risk of mortality after kidney transplantation with adjusted HR of 2.37 (95%CI: 1.16-4.87).

Yap et al\[18\] demonstrated that recipients treated with nucleoside/nucleotide analogues had significantly better patient survival, when compared to those who were not on treatment (83% vs 34% at 20 years, \(P = 0.006 \)). In patients who had lamivudine-resistant HBV, the investigators showed that treatment with adeovir or entecavir was effective with a three-log reduction in HBV DNA by 6 mo. When compared to patients who were treated with lamivudine or adeovir, Lee et al\[54\] demonstrated that those treated with new generation antiviral agent entecavir had better patient survival (log-rank, \(P = 0.050 \)).

Renal allograft failure in patients with HBsAg-positive vs HBsAg-negative

There were 9 studies assessed renal allograft outcomes in HBsAg-positive patients (Table 1). HBsAg-positive status was significantly associated with increased risk of renal allograft loss with pooled OR of 1.46 (95%CI: 1.08-1.96, \(I^2 = 69 \), Figure 4). When meta-analysis was performed, the pooled OR of renal allograft loss was 1.46 (95%CI: 1.08-1.96, \(I^2 = 69 \), Figure 4)
Cyclosporine may also enhance HBV replication, leading that activates transcription of HBV genes genome contains glucocorticoid responsive element agents after kidney transplantation may also put carcinoma fibrosing cholestatic hepatitis, and hepatocellular complications including chronic hepatitis, liver failure, positive recipients carry a higher risk of hepatic Compared to the HBsAg-negative recipients, HBsAg- the clinical outcomes of kidney allograft recipients.

In this systematic review, we demonstrated that HBsAg-positive patients and year of study.

limited only to non-HCV patient population, the pooled OR of allograft failure was 1.33 (95%CI: 1.00-1.77, $I^2 = 80$). When meta-analysis was limited only to studies with adjusted analysis for confounders, the pooled OR of allograft failure was 1.25 (95%CI: 0.90-1.73, $I^2 = 54$). There was also a significant negative correlation between year of study and risk of allograft failure (slopes $= -0.018$, $P =0.002$, Figure 5). Meta-regression showed no significant impact of donor type on the association between HBsAg-positive status and increased risk of renal allograft loss ($P =0.52$).

Evaluation for publication bias

We found no publication bias as assessed by the funnel plots (Supplementary Figures 1 and 2) and Egger’s regression asymmetry test with $P = 0.18$ and 0.13 for the risks of mortality and allograft failure after kidney transplantation in HBV infected patients, respectively.

DISCUSSION

In this systematic review, we demonstrated that HBsAg-positive status in kidney transplant recipients was significantly associated with poor outcomes after transplantation including a 2.5-fold increased risk of mortality and 1.5-fold increased risk of allograft loss. Theses associations existed in overall analysis as well as in limited cohort of hepatitis C virus-negative patients. Chronic HBV infection can negatively impact the clinical outcomes of kidney allograft recipients. Compared to the HBsAg-negative recipients, HBsAg-positive recipients carry a higher risk of hepatic complications including chronic hepatitis, liver failure, fibrosing cholestatic hepatitis, and hepatocellular carcinoma. In addition, some immunosuppressive agents after kidney transplantation may also put patients at higher risks of HBV reactivation. HBV genome contains glucocorticoid responsive element that activates transcription of HBV genes. Moreover, cyclosporine may also enhance HBV replication, leading to higher risks of HBV-related complications in kidney transplant recipients. Previously, in 2005, Fabrizi et al conducted a meta-analysis of six observational studies and demonstrated a significant association between HBsAg seropositive status and increased mortality after kidney transplantation. Since then, although hepatitis B is still incurable, there have been significant advancements in antiviral agents including the United States Food and Drug Administration approvals of entecavir in 2005 and telbivudine in 2006 resulting in reasonably sustained suppression of HBV replication after kidney transplantation. Our meta-analysis with a new era of medicine also demonstrated a 2.7-fold increased risk of mortality in kidney transplant recipients with HBsAg positivity, when compared to HBsAg-negative recipients. In addition, our meta-analysis is the first to demonstrate a significant negative correlation between the mortality risk and year of study, which potentially represents improvements in patient care and management for chronic HBV in kidney transplant patients. Although antiviral treatment has been shown to reduce mortality after kidney transplantation due to decrease in liver complications, in the era of antiviral therapies, Lee et al recently showed that deaths from liver complications remained a significant problem accounting for 40% of deaths in HBsAg patients and 22.2% of all mortalities that occurred in recipients treated with antiviral agents.

There are several plausible explanations for the increased risk of renal allograft failure in recipients with HBsAg-positivity. Firstly, it is known that chronic HBV infection can result in HBV-related membranous nephropathy, not only in patients with native kidneys but also in kidney transplant recipients. Secondly, due to a concern of HBV reactivation, physicians may avoid or limit the use particular immunosuppression or Rituximab in HBsAg-positive patients when it is indicated such as for recurrent glomerulonephritis post-transplantation. Lastly, treatment of chronic HBV infection itself such as tenofovir could affect renal function. Thus, the findings from our meta-analysis confirm an increased risk of allograft failure in HBsAg seropositive patients, when compared to HBsAg-negative recipients. Also, we found a significant negative correlation between the risk of allograft failure in HBsAg positive patients and year of study. Recently, data analysis from the Organ Procurement Transplant Network/United Network for Organ Sharing database (OPTN/UNOS) suggested no increased risk for allograft failure or death in HBV-infected kidney transplant patients in a recent era (between 2001 and 2007). Although follow-up time was limited to only 3 years post-transplant, these data along with the findings from our study suggest potential improvements in patient and graft survivals in HBsAg-positive recipients overtime.

There are several limitations in this meta-analysis that bear mentioning. First, there was low to moderate statistical heterogeneity between studies in meta-
Thongprayoon C et al. Hepatitis B and kidney transplant outcomes

Study name	Odds ratio	Lower limit	Upper limit	P-value	Odds ratio and 95%CI	Relative weight
Lee et al[36]	1.84	1.08	3.14	0.03		11.54
Breitenfeldt et al[54]	2.07	1.06	4.05	0.03		9.52
Chan et al[54]	1.61	0.86	3.02	0.14		10.09
Morales et al[52]	0.62	0.37	1.03	0.06		12.00
Ridruejo et al[55]	5.45	1.95	15.23	0.00		5.76
Aroldi et al[56]	1.55	1.12	2.14	0.01		15.11
Reddy et al[57]	1.02	0.81	1.28	0.87		16.60
Grenha et al[58]	1.57	0.99	2.49	0.06		12.76
Lee et al[59]	1.38	0.55	3.48	0.50		6.62
	1.46	1.08	1.96	0.01		

Figure 4 Forest plots of included studies evaluating renal allograft failure in patients with hepatitis B surface antigen-positive vs hepatitis B surface antigen-negative.

Figure 5 Graphical display of a significant negative correlation between year of study and risk of allograft failure.

In summary, our study reveals an association between HBsAg-positive status in kidney transplant recipients and higher risks of mortality and allograft failure after kidney transplantation. However, there are also significant negative correlations between the risks of mortality and allograft failure and year of study, representing potential improvements in patient and graft survivals overtime.

ARTICLE HIGHLIGHTS

Research background
Among renal transplant patients with hepatitis B virus (HBV) (HBsAg positive), there have been reported cases of HBV reactivation, massive liver necrosis due to fulminant hepatitis, and severe cholestatic hepatitis after kidney transplantation. In spite of improvement of HBV care, the outcomes of kidney transplantation including patient and allograft outcomes in recipients with HBV infection remain unclear.

Research motivation
Although hepatitis B is still incurable, there have been significant advancements in antiviral agents resulting in reasonably sustained suppression of HBV replication after kidney transplantation. The results of studies on kidney transplant outcomes in patients with renal transplant patients with HBV (HBsAg positive) were inconsistent. To further investigate outcomes of renal transplant patients with HBsAg positivity, the authors conducted this systematic review and meta-analysis reporting the association between HBsAg positivity in kidney transplant recipients and higher risks of mortality and allograft failure after kidney transplantation.

Analysis assessing the risks of mortality and allograft failure in HBsAg-positive recipients. The possible source of this heterogeneity includes the difference in population, type of donor, number of patients with positive HBeAg, immunosuppression regimens, and difference in confounder adjustments. In addition, the data on the graft quality (e.g., Kidney Donor Profile Index) and surgical technique in HBsAg-positive recipients were limited. Second, despite the associations of HBsAg-positive status with poor kidney transplant outcomes, there is limited evidence whether the treatment with antiviral drugs for chronic HBV helps improve patient and allograft survival. However, with potential improvements in patient and graft survivals overtime demonstrated in our meta-analysis, future studies are required to evaluate if advancement in patient care for chronic HBV plays an important role. Also, additional studies are required to identify optimal antiviral treatment regimens and duration of suppressive therapy for HBV after kidney transplantation, since outcomes after withdrawal of antiviral treatment in kidney transplant recipients with chronic HBV infection remain unknown. While cautious withdrawal of antiviral therapy post kidney transplantation has been described especially in those with stable renal allograft function, low immunological risk for rejection and no evidence for HBV activity[10,23], fatal hepatitis flares in several kidney transplant recipients have been reported after withdrawal of antiviral therapy[54]. Lastly, this is a meta-analysis of observational studies. Thus, it can at best identify only associations of HBsAg-positive status with poor kidney transplant outcomes, but not a causal relationship.
Research objectives
We conducted this meta-analysis to assess the outcomes of kidney transplantation including patient and allograft outcomes in recipients with HBV infection, and the trends of patient’s outcomes overtime.

Research methods
A literature search was conducted using databases (MEDLINE, EMBASE and Cochrane Database) from inception through October 2017. These studies reported odds ratios (OR) of mortality or renal allograft failure after kidney transplantation in HBV patients (defined as HBsAg-positive) were included. HBsAg-negative kidney transplant recipients are the comparison group. The effect estimates from the individual study were extracted and combined.

Research results
The authors demonstrated that HBsAg-positive status in kidney transplant recipients was significantly associated with poor outcomes after transplantation. These associations existed in overall analysis as well as in limited cohort of hepatitis C virus-negative patients.

Research conclusions
The authors found significant associations of HBsAg positive status with poor outcomes after transplantation. Significant negative correlations between the risks of mortality and allograft failure and year of study, representing potential improvements in patient and graft survivals overtime were found.

Research perspectives
This study demonstrated significantly increased risks of mortality and allograft failure in HBsAg-positive kidney transplant recipients. This finding suggests that HBsAg positive status may be an independent potential risk factor for poor outcomes after transplantation. However, there are also potential improvements in patient and graft survivals with HBV infection overtime.

REFERENCES
1 World Health Organization. Global hepatitis report 2017. Available from: URL: http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/
2 Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH; American Association for the Study of Liver Diseases. AASLD guidelines for treatment of chronic hepatitis B. Hepatology 2016; 63: 261-283 [PMID: 25666604 DOI: 10.1002/hep.28156]
3 Sarin SK, Kumar M, Lau GK, Abbas Z, Chan HL, Chen CJ, Chen DS, Chen HL, Chen PJ, Chen RN, Dokmeci AK, Gane E, Hou JL, Jafari W, Jia K, Kim JH, Lai CL, Lee HC, Lim SG, Liu CJ, Locarnini S, Al Mahtab M, Mohamed R, Omata M, Park J, Piratvisuth T, Sharma BC, Sollano J, Wang FS, Wei L, Yuen MF, Zheng SS, Kao JH. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int 2016; 10: 1-98 [PMID: 26536120 DOI: 10.1007/s12072-015-9675-4]
4 AASLD/IDSA HCV Guidance Panel. Hepatitis C guidance. AASLD/IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. Hepatology 2015; 62: 932-954 [PMID: 26111063 DOI: 10.1002/hep.27950]
5 Lok AS, McMahon BJ, Brown RS Jr, Wong JB, Ahmed AT, Farah W, Almasri J, Alahdab F, Benkharda K, Mouchli MA, Singh S, Mohamed EA, Abu Dabrh AM, Prokop LJ, Wang Z, Murad MH, Mohamed K. Antiviral therapy for chronic hepatitis B viral infection in adults: A systematic review and meta-analysis. Hepatology 2016; 63: 284-306 [PMID: 2566246 DOI: 10.1002/hep.28280]
6 Harirahan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stabein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 2000; 342: 605-612 [PMID: 10699159 DOI: 10.1056/nejm2000030223420901]
7 Meier-Kriesche HU, Schold JD, Kaplan B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant 2004; 4: 1289-1295 [PMID: 15268730 DOI: 10.1111/j.1600-6143.2004.00515.x]
8 Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant 2011; 11: 450-462 [PMID: 20973913 DOI: 10.1111/j.1600-6143.2010.03283.x]
9 Schinstock CA, Stegall M, Cosio F. New insights regarding chronic antibody-mediated rejection and its progression to transplant glomerulopathy. Curr Opin Nephrol Hypertens 2014; 23: 611-618 [PMID: 25295960 DOI: 10.1097/mnh.0b013e3182800070]
10 Mariani S, Kolovou K, Sakellariou S, Boletis JN, Dendrassos IK. Hepatitis B in renal transplant patients. World J Hepatol 2017; 9: 1054-1063 [PMID: 28951777 DOI: 10.4245/wjh.v9.i25.1054]
11 Finelli L, Miller JT, Tokars JI, Alter MJ, Arndt MJ. National surveillance of dialysis-associated diseases in the United States, 2002. Semin Dial 2005; 18: 52-61 [PMID: 15663766 DOI: 10.1111/j.1525-139X.2005.18108.x]
12 Johnson DW, Dent H, Yao Q, Traaneus A, Huang CC, Han DS, Jha V, Wang T, Kawaguchi Y, Qian J. Frequencies of hepatitis B and C infections among haemodialysis and peritoneal dialysis patients in Asia-Pacific countries: analysis of registry data. Nephrol Dial Transplant 2009; 24: 1598-1603 [PMID: 1906083 DOI: 10.1093/ndt/gfn684]
13 Filip L, Karakayali H, Moray G, Dalgic A, Emiroglu R, Ozdemir N, Colak T, Guir G, Yilmaz U, Haberal M. Lamivudine therapy in kidney allograft recipients who are seropositive for hepatitis B surface antigen. Transplant Proc 2006; 38: 496-498 [PMID: 16549158 DOI: 10.1016/j.transproceed.2005.12.047]
14 Lai HW, Chang CC, Chen TH, Tsai MC, Chen TY, Lin CC. Safety and efficacy of adefovir therapy for lamivudine-resistant hepatitis B virus infection in renal transplant recipients. J Formos Med Assoc 2012; 111: 439-444 [PMID: 22939662 DOI: 10.1016/j.jfma.2011.05.010]
15 Fontaine H, Vallet-Pichard A, Chaix ML, Currie G, Serpaggi J, Verkarre V, Veratt A, Morales E, Nalpas B, Broschart C, Pol S. Efficacy and safety of adefovir dipivoxil in kidney recipients, hemodialysis patients, and patients with renal insufficiency. Transplantation 2005; 80: 1086-1092 [PMID: 16278590 DOI: 10.1097/01.tp.0000178305.39231.a2]
16 Chopra B, Sureshkrumar KK. Outcomes of Kidney Transplantation in Patients Exposed to Hepatitis B Virus: Analysis by Phase of Infection. Transplant Proc 2017; 49: 278-280 [PMID: 28219584 DOI: 10.1016/j.transproceed.2016.11.042]
17 Kamar N, Milioti O, Alric L, El Kahwaji L, Cointault O, Lavayssière L, Saune K, Izzetp J, Rostaing L. Entecavir therapy for adefovir-resistant hepatitis B virus infection in kidney and liver allograft recipients. Transplantation 2008; 86: 611-614 [PMID: 18724232 DOI: 10.1097/TP.0b013e3181806ec6]
18 Yap DY, Tang CS, Yung S, Choy BY, Yuen MF, Chan TM. Long-term outcome of renal transplant recipients with chronic hepatitis B infection-impact of antiviral treatments. Transplantation 2010; 90: 325-330 [PMID: 20562676 DOI: 10.1097/TP.0b013e3181e58811]
19 Daudé M, Rostaing L, Saune K, Lavayssière L, Basse G, Esposito L, Guitard J, Izzetp J, Alric L, Kamar N. Tenofovir therapy in hepatitis B virus-positive solid-organ transplant recipients. Transplantation 2011; 91: 916-920 [PMID: 21325995 DOI: 10.1097/TP.0b013e3182100559]
20 Nho KW, Kim YH, Han DJ, Park SK, Kim SB. Kidney transplantation alone in end-stage renal disease patients with hepatitis B liver cirrhosis: a single-center experience. Transplantation 2015; 99: 133-138 [PMID: 24983308 DOI: 10.1097/TP.000000000000234]
21 Chan TM, Fang GX, Tang CS, Cheng IK, Lai KN, Ho SK. Preemptive lamivudine therapy based on HBV DNA level in HBsAg-positive kidney allograft recipients. Hepatology 2002; 36: 1246-1252 [PMID: 12395336 DOI: 10.1053/hep.2002.36156]
22 Chan TM, Tse KC, Tang CS, Lai KN, Ho SK. Prospective study on lamivudine-resistant hepatitis B in renal allograft recipients. Am J Transplant 2004; 4: 1103-1109 [PMID: 15196068 DOI: 10.1111/j.1600-6143.2004.00467.x]
in hepatitis-B virus-associated PLA2R-positive membranous nephropathy. Kidney Int Rep 2017; In Press [DOI: 10.1016/j.ekir.2017.09.009]

Fornarion S, Pol S, Legendre C, Carnot F, Manzzer-Bruneel ME, Brechet C, Kreis H. The long-term virologic and pathologic impact of renal transplantation on chronic hepatitis B virus infection. Transplantation 1996; 62: 297-299 [PMID: 8755832 DOI: 10.1097/00007890-199607270-00025]

Hu TH, Tsai MC, Chien YS, Chen YT, Chen TC, Lin MT, Chang KC, Chiu KW. A novel experience of antiviral therapy for chronic hepatitis B in renal transplant recipients. Antivir Ther 2012; 17: 745-753 [PMID: 22522918 DOI: 10.3851/imsp2097]

Harnett JD, Zeldis JB, Parfrey PS, Kennedy M, Sircar R, Steinmann TI, Guttmann RD. Hepatitis B disease in dialysis and transplant patients. Further epidemiologic and serologic studies. Transplantation 1987; 44: 369-376 [PMID: 2820093 DOI: 10.1097/00007890-198709000-00009]

Fontaine H, Thiers V, Chretien Y, Zylberberg H, Poupan RE, Bréchot C, Legendre C, Kreis H, Pol S. HBV genotypic resistance to lamivudine in kidney recipients and hemodialyzed patients. Transplantation 2000; 69: 2090-2094 [PMID: 10852602 DOI: 10.1097/00007890-200005270-00020]

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535 [PMID: 19622551 DOI: 10.1136/bmj.b2535]

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2088-2092 [PMID: 10789670 DOI: 10.1001/jama.283.15.2008]

STROBE statement--checklist of items that should be included in reports of observational studies (STROBE initiative). Int J Public Health 2008; 53: 3-4 [PMID: 18522360 DOI: 10.1007/s00038-007-0239-9]

Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-605 [PMID: 20652370 DOI: 10.1007/s10654-010-9491-z]

Hergoz R, Alvarez-Pasquin MJ, Diaz C, Del Barrio JL, Estrada JM, Gil A. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health 2013; 13: 154 [PMID: 23421987 DOI: 10.1186/1471-2458-13-154]

DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-188 [PMID: 3802833 DOI: 10.1016/0197-2456(86)90046-2]

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560 [PMID: 12958120 DOI: 10.1136/bmj.327.7414.557]

Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research. Lancet 1991; 337: 867-872 [PMID: 1867966 DOI: 10.1016/0140-6736(91)90201-Y]

Ridruejo E, Brunet Mdrl D, Casumano A, Diaz C, Michel MD, Jost L, Jost L Jr, Mando OG, Vilches A. HBsAg as predictor of outcome in renal transplant patients. Medicina (B Aires) 2004; 64: 429-432 [PMID: 15560544]

Aroldi A, Lampertico P, Montaginio G, Passerini P, Villa M, Campise MR, Lughri G, Tarantino A, Cesana BM, Messa P, Ponticelli C. Natural history of hepatitis B and C in renal allograft recipients. Transplantation 2005; 79: 1132-1136 [PMID: 15880056 DOI: 10.1097/01.TP.0000161250.83392.73]

Lee J, Cho JH, Lee JS, Ahn DW, Kim CD, Ahn C, Jung JM, Han DJ, Lim CS, Kim YS, Kim YH, Lee JP. Pretransplant Hepatitis B Viral Infection Increases Risk of Death After Kidney Transplantation: A Multicenter Cohort Study in Korea. Medicine (Baltimore) 2016; 95: e3671 [PMID: 27272972 DOI: 10.1097/ md.0000000000003671]

Lee WC, Shu KH, Cheng CH, Wu MJ, Chen CH, Lian JC.
Long-term impact of hepatitis B, C virus infection on renal transplantation. *Am J Nephrol* 2001; 21: 300-306 [PMID: 11509802 DOI: 10.1159/000046265]

56 Breitenfeldt MK, Rasenack J, Berthold H, Olschewski M, Schroff J, Strey C, Grotz WH. Impact of hepatitis B and C on graft loss and mortality of patients after kidney transplantation. *Clin Transplant* 2002; 16: 130-136 [PMID: 11966783 DOI: 10.1034/j.1399-0012.2002.10034.x]

57 Morales JM, Dominguez-Gil B, Sanz-Guajardo D, Fernández J, Escuin F. The influence of hepatitis B and hepatitis C virus infection in the recipient on late renal allograft failure. *Nephrol Dial Transplant* 2004; 19 Suppl 3: iii72-iii76 [PMID: 15192141 DOI: 10.1093/ndt/gfh1020]

58 Kanaan N, Raggi C, Goffin E, De Meyer M, Mourad M, Jadoul M, Beguin C, Kabamba B, Borbath I, Pirson Y, Hassoun Z. Outcome of hepatitis B and C virus-associated hepatocellular carcinoma occurring after renal transplantation. *J Viral Hepat* 2017; 24: 430-435 [PMID: 27917563 DOI: 10.1111/jvh.12655]

59 Kau A, Vermehren J, Sarrazin C. Treatment predictors of a sustained virologic response in hepatitis B and C. *J Hepatol* 2008; 49: 634-651 [PMID: 18715665 DOI: 10.1016/j.jhep.2008.07.013]

60 Lin KH, Chen YL, Lin PY, Hsieh CE, Ko CJ, Lin CC, Ming YZ. A Follow-Up Study on the Renal Protective Efficacy of Telbivudine for Hepatitis B Virus-Infected Taiwanese Patients After Living Donor Liver Transplant. *Exp Clin Transplant* 2017; 15: 65-68 [PMID: 28004999 DOI: 10.6002/ecct.2015.0362]

61 Masutani K, Onoto K, Okumi M, Okabe Y, Shimizu T, Tsuruya K, Kitzazono T, Nakamura M, Ishida H, Tanabe K. Japan Academic Consortium of Kidney Transplantation (JACK) Investigators. Incidence of Hepatitis B Viral Reactivation After Kidney Transplantation With Low-Dose Rituximab Administration. *Transplantation* 2018; 102: 140-145 [PMID: 28665891 DOI: 10.1097/tp.0000000000001870]

62 Lee J, Park JY, Huh KH, Kim BS, Kim SI, Ahn SH, Kim YS. Rituximab and hepatitis B reactivation in HBsAg-negative/anti-HBc-positive kidney transplant recipients. *Nephrol Dial Transplant* 2017; 32: 722-729 [PMID: 28339910 DOI: 10.1093/ndt/gfw455]

63 Battaglia Y, Cojocara E, Forcellini S, Russo L, Russo D. Tenofovir and kidney transplantation: case report. *Clin Nephrol Case Stud* 2016; 4: 18-23 [PMID: 29043137 DOI: 10.5414/cncs108929]

64 Miao B, Lao XM, Lin GL. Post-transplant withdrawal of lamivudine results in fatal hepatitis flares in kidney transplant recipients, under immune suppression, with inactive hepatitis B infection. *Afr Health Sci* 2016; 16: 1094-1100 [PMID: 28479903 DOI: 10.4314/ahs.v16i4.27]
