Edge modes in 2D electromagnetic slab waveguides: analogues of acoustic plasmons

Daniel Leykam,1,2 Konstantin Y. Bliokh,3 and Franco Nori3,4
1Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Korea
2Basic Science Program, Korea University of Science and Technology, Daejeon 34113, Korea
3Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
4Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

We analyze planar electromagnetic waves confined by a slab waveguide formed by two perfect electrical conductors. Remarkably, 2D Maxwell equations describing transverse electromagnetic modes in such waveguides are exactly mapped onto equations for acoustic waves in fluids or gases. We show that interfaces between two slab waveguides with opposite-sign permeabilities support 1D edge modes, analogous to surface acoustic plasmons at interfaces with opposite-sign mass densities. We analyze this novel type of edge modes for the cases of isotropic media and anisotropic media with tensor permeabilities (including hyperbolic media). We also take into account ‘non-Hermitian’ edge modes with imaginary frequencies or/and propagation constants. Our theoretical predictions are feasible for optical and microwave experiments involving 2D metamaterials.

I. INTRODUCTION

Surface wave modes play crucial roles in metamaterials and topological wave systems [1–7]. Such systems are intensively studied in both electromagnetism (optics) [1, 3, 6–11] and acoustics [12–20]. Surface electromagnetic waves between continuous isotropic media are also known as surface plasmon-polaritons, which appear at interfaces where the permeability or/and permittivity of the medium change their signs [2–4, 21–23]. Similar modes can also appear at acoustic interfaces [24–26], but these are rather exotic, because the effective mass density must change its sign across the interface. Up to now there were very few studies of such acoustic surface plasmons.

In this work we describe a novel type of surface electromagnetic modes, namely 1D edge modes at interfaces between two 2D slab waveguides (formed by perfect electric conductors) with different signs of permeability. Such modes have a three-fold interest. First, these can be generated in 2D metamaterials, which have a number of advantages as compared to bulk 3D metamaterials: more compact design, smaller losses, etc. Second, we show that Maxwell equations for waves in 2D slab waveguide are entirely analogous to the equations of acoustics, and the new electromagnetic modes we describe are analogues of acoustic plasmons at interfaces with different signs of the mass density [24–26]. Third, by considering anisotropic (uniaxial) permeability tensors we demonstrate the persistence of the edge modes in anisotropic media with elliptic or hyperbolic dispersion.

We first describe the general mapping between the equations of 2D electromagnetism and acoustics (Section II). Then, we consider edge modes at interfaces between two slab waveguides with different parameters (Section III). We consider both isotropic media and uniaxial anisotropic media, where permeabilities parallel and normal to the interface differ from each other. The latter case also includes hyperbolic media [27–28]. Following recent ‘non-Hermitian’ approach to surface waves between continuous electromagnetic and acoustic media [23–29], we take into account edge modes with real and imaginary frequency and propagation constant.

We argue that the system we describe is quite feasible for optical and microwave experiments, so that it can be used as a convenient platform for experimental studies (and possibly applications) of exotic surface/edge modes in wave systems.

II. 2D ELECTROMAGNETISM VERSUS ACOUSTICS

We consider light propagation in a slab waveguide formed by two perfect electrical conductor (PEC) plates, shown in Fig. 1. We allow the medium between the plates to be anisotropic, described by lossless (i.e., Hermitian) permittivity and permeability tensors \((\hat{\varepsilon}, \hat{\mu})\). Maxwell’s
equations for monochromatic light at frequency \(\omega \) are:
\[
\nabla \times \mathbf{E} = i \omega \varepsilon \mathbf{H}, \quad \nabla \times \mathbf{H} = -i \omega \varepsilon \mathbf{E},
\]
\[
\nabla \cdot (\hat{\mu} \mathbf{H}) = \nabla \cdot (\hat{\varepsilon} \mathbf{E}) = 0. \tag{1}
\]
We take PEC boundary conditions at the \(z = 0 \) and \(z = d \) planes, \((E_z, E_y, B_z)|_{z=0} = (E_z, E_y, B_z)|_{z=d} = 0\), and seek transverse electromagnetic (TEM) modes with field components independent of \(z \), i.e., \((E_z, E_y, B_z) \equiv 0\). Then the two curl equations \([1]\) become
\[
(\partial_y E_z - \partial_z E_y, 0)^T = i \omega \hat{\mu} \mathbf{H},
\]
\[
(\partial_y H_z - \partial_z H_y, \partial_z E_y - \partial_y E_z)^T = -i \omega \hat{\varepsilon} \mathbf{E}. \tag{2}
\]
Note that for \(\omega \neq 0 \), the solutions of these two equations, if they exist, automatically satisfy the boundary condition \(\hat{\mu} \mathbf{H}_z = 0 \) (from the first equation) and the divergence equations \([1]\): \(\nabla \cdot (\hat{\mu} \mathbf{H}) = \nabla \cdot (\hat{\varepsilon} \mathbf{E}) = 0 \) (by taking the divergence of the two equations and assuming \(z \)-independent fields).

We now assume that the anisotropy can only occur in the in-plane constitutive parameters, i.e.,
\[
\varepsilon_{xj} = \varepsilon_{yj} = \mu_{xj} = \mu_{yj} = 0,
\]
where \(j = x, y \). Then, valid solutions must have \(H_z = 0 \) (because \(\hat{\mu} \mathbf{H}_z = 0 \), these are independent of \(\mu_{zj} \), and only one component \(\varepsilon_{zj} \equiv \varepsilon_\zeta \) of \(\hat{\varepsilon} \) is relevant.

Introducing the “wavefunction” \(\Psi = (E_z, H_z, H_y)^T \), we can write the curl equations \([2]\) compactly as
\[
\begin{pmatrix}
0 & -\partial_y & \partial_x \\
-\partial_y & 0 & 0 \\
\partial_x & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\varepsilon_\zeta \\
\mu_x \\
\mu_{xy}
\end{pmatrix}
\Psi = -i \omega
\begin{pmatrix}
\varepsilon \zeta \\
0 \\
\mu_x \\
\mu_{xy} \\
\mu_y
\end{pmatrix}
\Psi, \tag{3}
\]
where \(\mu_{xx} \equiv \mu_x \) and \(\mu_{yy} \equiv \mu_y \).

Remarkably, Eq. \((3)\) is equivalent to acoustic equations for sound waves in fluids or gases \([30]\) in \((2+1)\)-D space-time. Indeed, introducing the “pressure” field \(P = E_z \), “velocity” field \(\mathbf{v} \equiv (v_x, v_y) = \hat{z} \times \mathbf{H} = (-H_y, H_z) \) (where \(\hat{z} \) is the unit vector along the \(z \)-axis), as well as the “compressibility” \(\beta = \varepsilon_\zeta \) and “mass density” \(\hat{\rho} = \begin{pmatrix} \mu_y & -\mu_{yx} \\ -\mu_{xy} & \mu_x \end{pmatrix} \) of the medium, we write Eq. \((3)\) as follows (cf. \([24, 26, 29]\)):
\[
\beta \partial_t \mathbf{P} = -\nabla \cdot \mathbf{v}, \quad \hat{\rho} \partial_t \mathbf{v} = -\nabla \mathbf{P}. \tag{4}
\]

Here we substituted \(-i \omega \to \partial_t \) for monochromatic waves. Thus, one can use TEM slab waveguides to emulate wave propagation in 2D acoustic media with arbitrary parameters \(\beta \) and \(\hat{\rho} \). Note that filling the waveguide with 2D metamaterial structures, one can provide any desired parameters \(\varepsilon_\zeta \) and \(\mu_{jl}, (j,l) = \{x,y\} \), both positive and negative, at a given frequency \(\omega \). This allows efficient electromagnetic emulation of acoustic metamaterials, including anisotropic ones with the tensor mass density \(\hat{\rho} \).

Notably, the above 2D electromagnetic-to-acoustic mapping includes the main dynamical properties of the waves. In particular, the energy density \(W \) and energy flux (Poynting vector) \(\mathbf{P} \) are consistent with both electromagnetic and acoustic theories \([26, 30, 32]\):
\[
W = \frac{1}{4} (\mathbf{E}^\ast \hat{\varepsilon} \mathbf{E} + \mathbf{H}^\ast \hat{\mu} \mathbf{H}) = \frac{1}{4} (\beta |\mathbf{P}|^2 + \nu^\ast \hat{\rho} \mathbf{v}) ,
\]
\[
\mathbf{P} = \frac{1}{2} \text{Re}(\mathbf{E}^\ast \times \mathbf{H}) = \frac{1}{2} \text{Re}(\mathbf{P}^\ast \mathbf{v}). \tag{5}
\]
Here we neglected, for the sake of simplicity, possible dispersion of the medium parameters.

Furthermore, the quadratic forms, which describe the spin angular momentum density \(\mathbf{S} \) in isotropic electromagnetic and acoustic media \([26, 32, 36]\), are also equivalent:
\[
\mathbf{S} = \frac{1}{4 \omega} \text{Im}(\mathbf{E}^\ast \times \hat{\varepsilon} \mathbf{E} + \mathbf{H}^\ast \times \hat{\mu} \mathbf{H}) = \frac{1}{4 \omega} \text{Im}(\mathbf{P}^\ast \times \hat{\rho} \mathbf{v}). \tag{6}
\]
Note that in the system under consideration, the spin has purely magnetic origin (i.e., only the magnetic field can rotate), and it is purely transverse (i.e. orthogonal to the propagation \((x,y)\)-plane): \(\mathbf{S} \parallel \hat{z} \) \([31, 37, 39]\).

III. 1D EDGE MODES AT ISOTROPIC AND ANISOTROPIC INTERFACES

We now consider an interface at \(x = 0 \) between two slabs with different parameters \((\varepsilon_{1,2}, \mu_{1,2}) \) and seek solutions localized to the interface with localization lengths \(\kappa_{1,2} > 0 \),
\[
\Psi \propto \exp(i k_y y - |x| \kappa_{1,2}). \tag{7}
\]
Ref. \([24, 26, 29]\) previously showed that interfaces between *isotropic* acoustic media where the sign of \(\rho \) (i.e., \(\mu \) is our system) changes exhibit surface modes analogous to electromagnetic surface plasmons, protected by a novel non-Hermitian bulk-boundary correspondence \([23, 29]\). While negative individual components of \(\hat{\rho} \) can be readily implemented using microwave metamaterials such as split ring resonators, achieving isotropic negative \(\hat{\rho} \) is much more challenging. Therefore we will consider the most general form of \(\hat{\rho} \) to determine the conditions under which these edge modes persist in anisotropic media.

Substituting Eq. \((7)\) into Eq. \((3)\) and obtaining its eigenvectors yields the modal components
\[
\Psi = \begin{pmatrix}
\omega (\mu_{xy,m} \mu_{yx,m} - \mu_{x,m} \mu_{y,m}) \\
-\kappa_y \mu_{y,m} \mp i \mu_{xy,m} \kappa_m \\
\kappa_y \mu_{x,m} \mp i \mu_{yx,m} \kappa_m
\end{pmatrix} \exp(i k_y y - \kappa_m |x|). \tag{8}
\]
Here \(m = 1, 2 \) denotes the medium, and the frequency satisfies
\[
\omega^2 = -\mu_{x,m} \kappa_m^2 + \mu_{y,m} \kappa_m^2 \pm i \kappa_m \kappa_y (\mu_{xy,m} + \mu_{yx,m}), \tag{9}
\]
where the upper sign (+) should be taken for medium 1 (\(\kappa_1 \)), and lower sign (−) for medium 2 (\(\kappa_2 \)). Continuity
of the tangential field components E_z and H_y at $x = 0$ requires

$$\frac{\varepsilon_{xy,1} \mu_{yx,1} - \mu_{x,1} \varepsilon_{y,1}}{\mu_{xy,1} \mu_{yx,2} - \mu_{x,2} \mu_{y,2}} = \frac{k_y \mu_{yx,1} + i \mu_{x,1} \kappa_1}{k_y \mu_{yx,2} - i \mu_{x,2} \kappa_2},$$

or

$$\frac{\varepsilon_{xy,1} \mu_{yx,1} - \mu_{x,1} \varepsilon_{y,1}}{\mu_{xy,1} \mu_{yx,2} - \mu_{x,2} \mu_{y,2}} = \frac{\mu_{y,1} \mu_{x,2}^2 - \mu_{x,1} \mu_{y,2}^2}{\mu_{xy,1} \mu_{yx,2} - \mu_{x,2} \mu_{y,2}} = \frac{k_y}{\kappa_2}.$$ (10)

In the isotropic limit, where

$$\mu_{xy,m} = \mu_{yx,m} = 0 \quad \text{and} \quad \mu_{x,m} = \mu_{y,m} = \mu_m,$$

Eq. (10) reduces to the usual boundary condition for the TE surface mode $\tilde{\mu} \equiv \varepsilon_{z,1} / \varepsilon_{z,2} = -\kappa_2 / \kappa_1$, which yields the topological bulk-boundary existence condition $\text{sgn} (\tilde{\mu}) = -1$. (23)

In the general case of anisotropic media it does not seem possible to formulate a topological bulk-boundary correspondence because the condition for localized surface waves, $\kappa_1 / \kappa_2 > 0$, cannot be expressed simply in terms of the properties of the interface, but rather depends implicitly on the bulk dispersion relations of the two media via the appearance of k_y on the right hand side of Eq. (10). The problematic k_y terms can be eliminated if the principal axes of the media are aligned with our coordinate axes, such that $\tilde{\mu}$ becomes diagonal:

$$\mu_{xy,m} = \mu_{yx,m} = 0.$$ (11)

In this case the boundary condition (10) reduces to

$$\tilde{\mu}_y \equiv \frac{\mu_{y,2}}{\mu_{y,1}} = -\frac{\kappa_2}{\kappa_1}.$$ (12)

This yields the existence condition in the topological form $\text{sgn} (\tilde{\mu}_y) = -1$, i.e., localized edge modes can exist provided the sign of μ_y changes across the interface.

The explicit solutions for the surface wave propagation constant and frequency obtained using Eqs. (8), (9), and (11) are:

$$\frac{\mu_{y,1}}{\mu_{x,1}} k_y^2 = \frac{\tilde{\mu}_y (\varepsilon_{z,1} - \tilde{\mu}_x)}{\varepsilon_{z,1} \tilde{\mu}_x - 1} k_1^2,$$ (12)

where $\tilde{\varepsilon}_z \equiv \varepsilon_{z,2} / \varepsilon_{z,1}$ and $\tilde{\mu}_x \equiv \mu_{x,2} / \mu_{x,1}$. Expressions (11), (13) generalize the isotropic TE surface plasmon solutions discussed in Refs. (23) and their acoustic analogues (24–26). Akin to the isotropic case, the edge modes can have either real or imaginary frequency ω or propagation constant k_y. In what follows, we will focus on the modes with real ω and either real or imaginary k_y. Such modes have physical sense of propagating and evanescent surface waves and can be observed experimentally. For example, Fig. 2 shows the phase diagram for the existence of propagating and evanescent real-frequency edge modes for the simplest case of an interface between a vacuum ($\varepsilon_{z,1} = \mu_{z,1} = \mu_{y,1} = 1$) or a metal ($\varepsilon_{z,1} = -1, \mu_{x,1} = \mu_{y,1} = 1$) and an anisotropic metamaterial with $\mu_{x,2} = -1$. Lighter shading indicates propagating (real k_y) solutions, while darker shading indicates evanescent (imaginary k_y) solutions. The sign of $\tilde{\mu}_x$ determines whether the medium 2 has elliptic ($\tilde{\mu}_x < 0$) or hyperbolic ($\tilde{\mu}_x > 0$) dispersion.

Figure 3 shows the phase diagram for the edge modes for the case when medium 2 is an anisotropic metamaterial with $\mu_{x,2} = -1$. Thus, the existence condition (11) is satisfied, while the sign of $\mu_{x,2}$ determines whether the medium 2 has elliptic ($\tilde{\mu}_x < 0$) or hyperbolic ($\tilde{\mu}_x > 0$) dispersion (27–28). We observe that propagating edge modes can persist for arbitrary anisotropy in the permeability.
FIG. 4. Phase diagram of real-frequency edge waves supported by interfaces between a vacuum (blue; \(\varepsilon_{z,1} = \mu_{x,1} = \mu_{y,1} = 1\)) or metal (orange; \(\varepsilon_{z,1} = -1, \mu_{x,1} = \mu_{y,1} = 1\)) and an anisotropic metamaterial with \(\varepsilon_{z,2} = -\varepsilon_{z,1}\). Lighter shading indicates propagating (real \(k_y\)) solutions, while darker shading indicates evanescent (imaginary \(k_y\)) solutions.

tensor \(\mu\), provided the permittivity \(\varepsilon_z\) is chosen appropriately. Furthermore, interfaces between metal and hyperbolic metamaterials can also support evanescent edge modes \([23, 29]\), which have never been observed so far.

From Eqs. (11)–(13) and Figs. 2 and 3 we summarize the main differences of the anisotropic as compared to isotropic cases:

(i) The topological condition for the existence of the edge mode in the isotropic case, \(\text{sgn}(\tilde{\mu}) = -1\) \([23, 29]\), involves the longitudinal permeability in the anisotropic case: \(\text{sgn}(\tilde{\mu}_y) = -1\).

(ii) The sign of the refractive index of medium 1, \(n_1 = \sqrt{\varepsilon_{1,1} / \mu_1}\), which determines whether the edge mode has real or imaginary frequency \(\omega\) in the isotropic case \([23, 29]\), is replaced by the longitudinal refractive index \(n_{y,1} = \sqrt{\varepsilon_{z,1} / \mu_{y,1}}\).

(iii) The transition from elliptic to hyperbolic dispersion in the anisotropic medium, controlled by \(\tilde{\mu}_z\), swaps the propagating (real \(k_y\)) and evanescent (imaginary \(k_y\)) edge modes.

For completeness, Fig. 4 shows the phase diagram for edge modes as a function of \((\tilde{\mu}_z, \tilde{\mu}_y)\), for fixed \(\tilde{\varepsilon}_z = -1\). For this value of \(\tilde{\varepsilon}_z\) the vacuum interface supports real frequency edge modes over a narrower parameter region compared to a metallic interface. The latter also exhibits transitions between propagating and evanescent edge modes when \(\tilde{\mu}_y = \tilde{\varepsilon}_z\), which does not coincide with any change in the topology of the isofrequency surfaces of medium 2.

IV. CONCLUSIONS

We have studied monochromatic electromagnetic waves in slab waveguides formed by two perfect electrical conductors, showing that Maxwell’s equations governing transverse electromagnetic modes map exactly onto the two-dimensional acoustic equations for sound waves in fluids or gases. We derived conditions under which boundaries between two slab waveguides with different permittivities and anisotropic permeabilities support edge modes (similar to surface plasmons) protected by a topological bulk-edge correspondence.

The system considered in our work provides a simple platform to emulate ‘acoustic surface plasmons’ at interfaces where the mass density changes its sign \([23, 26, 29]\). Moreover, this system can serve as an efficient platform for experimental realization of recently-proposed non-Hermitian (evanescent) surface modes with imaginary propagation constants \([23, 26]\). Indeed, we have shown that it does not require isotropic 3D metamaterials with negative permittivity or permeability, and it is sufficient to provide the negative sign of only one component of the permeability tensor.

We focused on anisotropic metamaterials described by a real permeability tensor \(\mu\). Another interesting class of anisotropic media are gyrotropic materials described by \(\mu_x = \mu_y = \mu\) and \(\mu_{xy} = -\mu_{yx} = \mu \alpha\mu\), which can be generated by placing a ferrite material between the plates and applying a magnetic field parallel to the \(z\) axis. A similar configuration was used in the experiment of Ref. [8], which, however, focused on a photonic crystal band structure rather than the low frequency response described by an homogeneous effective medium. Refs. [10, 42] have described the unidirectional surface waves at boundaries between different classes of gyrotropic media. It will be interesting to study whether the bulk-boundary correspondence introduced in Ref. \([23, 29]\) can be extended to these gyrotropic surface waves.

ACKNOWLEDGMENTS

We thank Alexey Slobozhanyuk and Pavel Belov for fruitful discussions. This work was partially supported by NTT Research, Army Research Office (ARO) (Grant No. W911NF-18-1-0358), Japan Science and Technology Agency (JST) (via the Q-LEAP program, and the CREST Grant No. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (JSPS-RFBR Grant No. 17-52-50023, and JSPS-FWO Grant No. VS.059.18N), the Foundational Questions Institute Fund (FQXi, Grant No. FQXi-IAF19-06), a donor advised fund of the Silicon Valley Community Foundation, and the Institute for Basic Science in Korea (IBS-R024-Y1).

[1] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
