Visibility of mandibular anatomical landmarks in panoramic radiography: A retrospective study

Tejavathi Nagaraj, I. Keerthi, Leena James, R. Shruthi, Lakshmi Balraj, T. V. Bhavana

Department of Oral Medicine and Radiology, Sri Rajiv Gandhi College of Dental Sciences & Hospital, Cholanagar, Bengaluru, Karnataka, India

Abstract

Aims: To determine the frequency, visibility and gender variations of mental foramen (foramen mentale), incisive canal, anterior loop of mental nerve, and mandibular canal (canal mandibulaire) in different age groups.

Materials and Methods: The study was done in 179 orthopantomograms (OPG) which were taken using Digital Orthophos XG machine. The anatomical landmarks such as mandibular canal, mental foramen, anterior loop of mental nerve, and incisive canal were analyzed in the radiographs and scores were recorded.

Results: According to a sample size of 179, the mandibular canal was visible in 98%. In 16% of the cases, with 14% poor perceptibility anterior looping of the mental nerve was visible. The mental foramen showed good visibility in 51%. In 23% of the cases, the incisive canal was observed. Chi-square test was done which showed the statistical difference with a \(P < 0.05 \) existed between appearance of mandibular canal and age and difference in \(P \) values in males and females in their visibility based on the sample size.

Conclusion: Panoramic radiographs provided sufficient information for mental foramen and mandibular canal. But for better visualization, detection of structures in between foramen region and for performing surgery for implant placement in this region it may require to be replaced with three-dimensional imaging like cone-beam computed tomography.

Keywords: Anterior loop of mental nerve, cone-beam computed tomography, implants, orthopantomogram

Introduction

Panoramic radiography is the frequently used radiographic technique in dentistry.\(^1\) The word panoramic radiography is extracted from panorama which means an unimpeded view of an area in every required direction.\(^2\) It is utilized to estimate the anatomical and structural relationship of mandibular canal, anterior loop of mental nerve, incisive canal, and mental foramen.\(^3\) It can be presumed that there may be large variations in the interforaminal region. It is crucial to locate the mandibular canal and other associated anatomical key structures for implant surgery.

A review of variations in morphology and anatomy related to mandibular canal and other necessary structures are very essential in implant placement as inferior dental nerve bundle exists in varying locations and possesses many differences. Individual, gender, race, age, assessing technique used and the amount of edentulous alveolar ridge resorption largely affects these variations.\(^4\)

Aims and objectives

1. To assess the visibility of mandibular anatomical structures on digital radiographs
2. To determine how frequently these structures are seen on digital orthopantomograms (OPG)
3. To figure out whether any association of age and gender on the visibility of these structure on digital radiographs

Materials and Methods

This study consisted of 179 randomized digital OPG which was stored as soft copies in the extraoral radiographic machine in the Department of Oral Medicine and Maxillofacial Radiology. The radiographs were selected based on the following criteria.

Inclusion criteria

- Images of good quality with respect to contrast
- Devoid of any jaw lesions and traumatic injuries in the mandible
Images without radiographic exposure or processing artifacts.

Exclusion criteria

- Poor quality radiographs
- Presence of processing artifacts
- Presence of jaw fracture in mandible
- Presence of any pathology in the mandible.

The radiographs were randomly selected between the age of 10 and 80 years. All radiographs were taken with a digital machine, SIRONA Orthophos XG 5 Ceph with the following parameters:

- Kilovoltage of 62-73 kVp
- Tube current 8-15 mA
- Time for 15 s.

The mandibular anatomical structures such as mandibular canal, anterior loop of mental nerve, mental foramen, and incisive canal were analyzed. A four-point grading scale was used to note the visibility of these landmarks.\(^5\)

- Good (Above average)
- Moderate (Average)
- Poor (Below average)
- No visibility (not seen).

Statistical analysis

Observed data were recorded and analyzed using statistical software. The observations were blinded by single and double observers and calculated using statistics which showed good agreement with both the observers. Chi-square test was done to note the relationship of age and gender with visibility.

Results

Out of 179 cases, mandibular canal was visible in 98% [Graph 1 and Table 1] with good perceptability in 34% of the cases [Graph 1 and Figure 1]. In 84% of the cases, anterior loop of the mental nerve was not seen [Graph 1 and Table 1] showing 2% moderate visibility [Figure 1]. In 99% cases [Table 1], foramen mentale was moderately seen [Figure 1]. In 24% of the cases, an incisive canal was observed showing only 1% good visibility [Graph 2 and Figure 2]. Based on sample size and using Chi-square test, gender does not exert effect on the appearance of the anatomical structures in the interforaminal region and also revealed, significant statistical difference existed between visibility and age of mandibular canal and mental foramen with a \(P < 0.05\).

Discussion

Extraoral radiography like panoramic radiography (also called pantomography) is a technique used for producing a single tomographic image of facial structures, which includes the maxillary and mandibular arches and their supporting structures.\(^1\) However, a OPG is a two-dimensional image,

Table 1: Males and females - Sample size (179)

Anatomical structures visualized	No visibility (A)	Poor visibility (B)	Moderate visibility (C)	Good visibility (D)	Total visibility (E=B+C+D)
Mandibular canal	4 (2)	9 (5)	106 (59)	60 (34)	175 (98)
Anterior looping	150 (84)	25 (14)	4 (2)	0 (0)	29 (16)
Mental foramen	2 (1)	7 (4)	79 (44)	91 (51)	177 (99)
Incisive canal	138 (77)	28 (16)	12 (7)	1 (1)	41 (23)

Graph 1: Males and females
The mental nerve slants in an upward direction and enters the foramen mentale. In a study by Solar et al. categorized into two groups, loop and non-loop types depending on the occurrence of loop. Hun et al. in their cadaver study divided the loops into linear (straight) and upright (vertical). The straight pattern was visible as a mild slope of mental canal entering instantly into the foramen mentale and vertical (upright) pattern was visible when it is curved at right angles into the foramen. Literature showed no further radiographic studies on the above-mentioned pattern.

An anterior loop of mental nerve emerges as the mental canal, which begins from the mandibular canal and passes in outer, upper, and backside directions to summit at the foramen mentale. In a study by Kamrun et al. noted that the visibility of the superior border was very poorly seen in panoramic images and should be supplemented by three-dimensional computed tomography (CT) images for good visualization. The possible reason could be because as the age advances visibility decreases due to osteoporotic changes in the alveolar bone which reduces the perceptability of mandibular canal.

In this current article, OPGs were checked for the appearance of anatomical structures in the mandibular region for implant planning. In 98% of the cases, mandibular canal was visible showing 59% moderate visibility. Jacob et al. also noted mandibular canal in 99% of their cases in their study.

In a study by Iyengar et al. a visible anterior loop unilaterally in only 21% of the total images viewed and similarly only 10% appeared in the present study.

Different studies have shown that OPGs are considered as unreliable tool in determining the foramen mentale region due to intrinsic drawbacks of imaging plane to record the complete region accurately. Inappropriate postures of persons whom to be exposed also can contribute to the poor visibility. Direct radiographs have proven that panoramic radiographic studies are unpredictable in locating the loop. Iyengar et al. in a study noticed a visible anterior loop unilaterally in only 21% of the total images viewed and similarly only 10% appeared in the present study.

Different studies have shown that OPGs are considered as unreliable tool in determining the foramen mentale region due to intrinsic drawbacks of imaging plane to record the complete region accurately. Inappropriate postures of persons whom to be exposed also can contribute to the poor visibility.

Mandibular anterior region is considered as a relatively safer zone for implant placement and length of implant may reach up to the lower cortical border of the lower jaw. However, recent reviews signifies probability of occurrence of complications such as subglossal hemorrhage formation, profuse bleeding, and breathing difficulty in this region.

Conclusion

This study revealed that due to superimposition of various anatomical structures and incorrect patient positioning the visibility of interforamina structures became difficult in the
mental region in panoramic images. So for, the better visibility of this mental region and for identification of foramen anatomy precisely for planning implant surgery it may need to be substituted with other imaging modalities such as CT, cone-beam computed tomography.

Clinical Significance

1. In this study, the predictability of the anatomical landmarks in the lower jaw is well noted which varied with different degree of probability which helps for detection of nerve and sensory problems like anesthesia or paresthesia in the chin and lower lip and also to reduce the accidental issues that have found to happen during implant insertion in the lower bicuspide region.

2. Practical applications:
 - The location of foramen mentale is influenced by age, racial related, amount of tooth loss and degree of bone resorption. The mental foramen is closer to alveolar margin before tooth eruption takes place in children. During the tooth eruption period, mental foramen moves down mid-way between the alveolar margin and the lower border of the lower jaw. It ascend toward the alveolar margin in the adults with intact teeth and alveolar bone resorption. Based on the visibility, the errors during mental nerve block and implant placement, enucleation, osteotomy cuts during orthognathic surgeries, periapical surgeries, mucosal incisions for alveoloplasties, and vestibuloplasties can be minimized.
 - Depending on the position and visibility of mandibular foramen the common errors with inferior dental nerve block that is insertion of the needle too low on the medial side of the ramus (below the mandibular foramen) and the insertion of the needle too far anteriorly on the medial side of the ramus the errors during blocks can be minimized and also for planning the horizontal osteotomies during bilateral sagittal split osteotomy surgical procedures.
 - The type of the third molar and premolar impactions can also be detected based on anatomical landmarks depending on the visibility in the panoramic radiography.

References

1. White SC, Parooh MJ. Oral Radiology Principles and Interpretation. 5th ed. Netherlands: Elsevier Publication; 2004.
2. Whaites E. Radiography and Radiology for Dental Care Professionals. 2nd ed. Netherlands: Elsevier Publication; 2009. p. 151.
3. Akcicek G, Uysal S, Avcu N, Kansu O. Comparison of different imaging techniques for the evaluation of proximity between molars and the mandibular canal. Clin Dent Res 2012;36:2-7.
4. Juodzbalys G, Wang H, Sabalys G. Anatomy of mandibular vital structures. Mandibular canal and inferior alveolar neurovascular bundle in relation with dental implantology. J Oral Maxillofac Res 2010;1:1-8.
5. Singh N, Jaju P, Jaju S, Agarwal R. Detection of anatomical variations in mandible by panoramic radiography. J Cranio-Maxillary Dis 2014;3:95-100.
6. Al-Juboori MJ, Hua CM, Yuen KY. The importance of the mental foramen: Location detection by using different radiographic technique. Int J Med Imaging 2014;2:63-8.
7. Shah PF, Parikh KK, Shah JM, Khan F. Radiographic study of mental foramen in a selected Indian population in Kheda district, Gujarat. J Indian Acad Oral Med Radiol 2013;25:13-17.
8. Agthong S, Huanmanop T, Chentanez V. Anatomical variations of the supraorbital, infraorbital, and mental foramina related to gender and side. J Oral Maxillofac Surg 2005;63:800-4.
9. Langland OE, Langlais RP, Morris CR. Principles and Practice of Panoramic Radiology. 1st ed. Philadelphia, PA: WB Saunders Company; 1982.
10. Liang X, Jacobs R, Lambrichts I, Vandewalle G. Lingual foramina on the mandibular midline revisited: a macroanatomical study. Clin Anat 2007;20:246-51.
11. Chaurasia BD. Human Anatomy: Head, Neck and Brain. 4th ed., Vol. 3. New Delhi: CBS Publishers; 2004. p. 22.
12. Romanos GE, Greenstein G. The incisive canal. Considerations during implant placement: case report and literature review. Int J Oral Maxillofac Implants 2009;24:740-5.
13. Jacob R, Mraïwa N, Van Sternbergh, Sanderink G, Quirynen M. Appearance of mandibular incisive canal on panoramic radiographs. Surg Radiol Anat 2004;26:329-33.
14. Roy PP, Ambali MP, Doshi MA, Jadhav SD. Variation in the position shape and direction of mental foramen in dry mandible. Int J Anat Res 2014;2:418-20.
15. Kuzmanovic DV, Payne AG, Kieser JA, Dias GJ. Anterior loop of the mental nerve: a morphological and radiographic study. Clin Oral Implants Res 2003;14:464-71.
16. Iyengar AR, Patil S, Nagesh KS, Mehkri S, Manchanda A. Detection of anterior loop and other patterns of entry of mental nerve into the mandible: A radiographic study in panoramic images. J Dent Implant 2013;3:21-5.
17. Ennis LM. Roentengraphic variations of the maxillary sinus and the nutrient canals of the maxilla and mandible. Int J Orthod Oral Surg 1937;23:17393.
18. Rai R, Shrestha S, Jha S. Mental foramen: A morphological and morphometrical study. Int J Healthc Biomed Res 2014;2:144-50.

How to cite this article: Nagaraj T, Keerthi I, James L, Shruthi R, Balraj L, Bhavana TV. Visibility of mandibular anatomical landmarks in panoramic radiography: A retrospective study. J Med Radiol Pathol Surg 2016;2:14-17.