Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential

Tracey Immanuel¹, Jixia Li¹,², Taryn N. Green¹, Anna Bogdanova³,⁴ and Maggie L. Kalev-Zylinska¹,⁵*

¹Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand, ²Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China, ³Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland, ⁴Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland, ⁵Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand

Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca²⁺) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca²⁺ signaling are outlined in the introduction. We describe different Ca²⁺-toolkit components and summarize the unique relationship between extracellular Ca²⁺ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca²⁺ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca²⁺ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca²⁺ channels, ER Ca²⁺ channels, Ca²⁺ pumps and exchangers, as well as Ca²⁺ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca²⁺-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca²⁺ homeostatic mechanisms and Ca²⁺ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca²⁺-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation.
To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.

KEYWORDS
Calcium signaling, calcium homeostasis, blood cells, lymphoma, myeloproliferative neoplasms, red cell abnormalities, leukaemia, cancer biological pathways

1 Introduction

The deregulation of signaling by calcium ions (Ca^{2+}) has been extensively studied in solid tumors (1, 2). Changes to Ca^{2+} channels and effectors via mutations or changes in expression affect many functional capabilities responsible for cancer growth, invasion, and metastasis (2–5). The function of the endoplasmic reticulum (ER), the main site of Ca^{2+} storage in a cell, and Ca^{2+} transfer from the ER to mitochondria, the main regulation point for apoptotic cell death, are often deregulated in solid tumors (6, 7). Our review presents the rapidly accumulating data that this deregulation appears similar in many types of blood cancer. Therapeutic opportunities targeting Ca^{2+} signaling are emerging for disorders such as leukemia, lymphoma, and myeloproliferative neoplasms (MPN) (8–11), but this information is not yet widely known. Therefore, to increase awareness, we provide an outline of core findings that demonstrate deregulation of Ca^{2+} signaling in blood cancer. Research in this field has accelerated enormously in recent years, therefore, despite our great efforts, this review is unlikely to be complete. Nevertheless, we hope our compilation of data makes the subject of abnormal Ca^{2+} signaling in blood cancer more widely known. To our knowledge, this is the first review of this type in the published literature.

1.1 Unique relationship between extracellular Ca^{2+} and hematopoietic stem cells

Ca^{2+} signaling regulates many cellular processes, including gene expression, cell proliferation, motility, apoptosis, enzyme activity, and cytoskeletal dynamics, all of which are crucial to supporting normal cell differentiation including hematopoietic stem cells (HSCs) (12–14). Specific effects of Ca^{2+} signaling are achieved through a tight control of intracellular Ca^{2+} homeostasis. At the resting state, cytosolic Ca^{2+} concentrations are maintained at very low levels: ~50–100 nM in most cells and reported to be as low as 20–30 nM in HSCs (15). This contrasts with high extracellular Ca^{2+} concentrations of ~1.5 mM in most fluids, including in blood plasma and bone marrow interstitial space (16). On the background of this high extracellular-intracellular Ca^{2+} gradient, precisely regulated spatio-temporal increases in cytosolic Ca^{2+} levels trigger signaling events (17).

The bone marrow environment provides a unique extracellular context for Ca^{2+} signaling. High Ca^{2+} levels in the endosteal niche have been shown to assist homing of HSCs through their calcium-sensing receptor (18). Nevertheless, it remains unclear if low or high Ca^{2+} concentrations are required to support HSC quiescence, both were shown to apply (14, 15, 19, 20). A recent study demonstrates that there is heterogeneity in Ca^{2+} levels between bone marrow cavities, depending on the level of bone resorption, but unexpectedly, no sharp gradient towards the endosteal niche was observed (16). HSCs reside in locations with higher extracellular Ca^{2+} levels compared to the serum and to the overall Ca^{2+} levels in the bone marrow. With aging, there is a significant increase in extracellular Ca^{2+} levels in the bone marrow associated with clonal expansion of activated HSCs. It has been proposed that deregulated Ca^{2+} homeostasis may be involved in leukemic transformation of HSCs, but experimental validation is required (21). In support, changes in Ca^{2+} homeostasis influence cancer stem cell properties in other cancer types (22).

1.2 Principles of intracellular calcium signaling

Cytoplasmic free Ca^{2+} levels are maintained by Ca^{2+} buffer systems (23) and modulated by a system of molecules re-distributing Ca^{2+} between the intracellular stores (the ER, mitochondria, Golgi apparatus and lysosomes), taking Ca^{2+} in from the extracellular space, or extruding it from the cell (12). Various channels, exchangers and pumps regulate Ca^{2+} levels in cells, including in blood cells. The collective involvement of these molecules, often referred to as a "Ca^{2+} -signaling toolkit" (13, 24), is shown in Figure 1 (with molecular details described in the figure legend).

In this review, we wish to highlight the role of ER as the main site of Ca^{2+} storage in almost any cell, as this functionality is
FIGURE 1
Overview of intracellular calcium homeostasis. Calcium homeostasis is maintained by the influx and efflux of Ca\(^{2+}\) through calcium channels and pumps located on the plasma membrane, as well as membranes of organelles such as the endoplasmic reticulum (ER), the Golgi apparatus, mitochondria, and endo-lysosomes. The cytoplasm, extracellular space, and each organelle have unique resting Ca\(^{2+}\) concentrations that have been indicated. Extracellular Ca\(^{2+}\) is transported into the cytosol through different channels such as transient receptor potential (TRP) channels, purinergic receptor (P2X) channels, nicotinic acetylcholine receptor (nAChR) channels, Piezo mechanosensitive channels, ionotropic glutamate receptor channels (e.g. N-methyl-D-aspartate receptors, NMDARs), and voltage-gated calcium (Ca\(_\text{v}\)) channels. Ca\(^{2+}\) is removed from the cytosol to the extracellular space by plasma membrane calcium ATPase (PMCA) efflux pumps and sodium-calcium exchangers (NCX). Activation of cell surface transmembrane receptors with tyrosine-based activation motifs (RTK e.g. B-cell and T-cell receptor) or G-protein coupled receptors (GPCR e.g. neurokinin-1 receptor) activate phospholipase C (PLC). PLC hydrolyses phosphatidylinositol-4,5-bisphosphate (PIP2) located in the plasma membrane which generates two second messengers inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG). IP3 binds to IP3 receptors (IP3Rs) located on the ER membrane leading to the release of Ca\(^{2+}\) from the ER and DAG activates protein kinase C (PKC). Depletion of ER Ca\(^{2+}\) activates stromal interaction molecules STIM1-STIM2 (located in the ER membrane), which then activates Orai1-Orai3 channels (located in the plasma membrane) to induce Ca\(^{2+}\) influx into the cytosol. This mechanism is called store-operated calcium entry (SOCE). Ryanodine receptors (RYRs) represent an alternative pathway for Ca\(^{2+}\) release from the ER regulated by Ca\(^{2+}\), Mg\(^{2+}\) and other molecules including ATP, calmodulin and CaMKII. The Ca\(^{2+}\) concentration in the ER is replenished via sarco-endoplasmic reticulum calcium ATPase 2b (SERCA2b) pump. The influx of Ca\(^{2+}\) from the ER to mitochondria occurs through voltage-dependent anion channels (VDAC) and mitochondrial calcium uniport (MCU) located in high numbers within mitochondria-associated ER membranes (MAMs) (insert a). Ca\(^{2+}\) leaves mitochondria mostly through Na\(^+\)/Ca\(^{2+}\) exchanger (NCX1). Ca\(^{2+}\) stored in the endo-lysosomes is mobilized mostly by two-pore channels (TPCs) and transient receptor potential mucolipin (TRPML) channels in response to nicotinic acid adenine dinucleotide phosphate (NAADP), TRPML is involved in the mitochondria-lysosomal contact sites (Mit-Lys), facilitating Ca\(^{2+}\) transfer to mitochondria through VDAC and MCU (insert b). Multiple effector molecules mediate effects of Ca\(^{2+}\) signaling including PKC, Raf-MAPK (mitogen-activated protein kinase)-ERK (extracellular signal-regulated kinase), calmodulin, calcium/calmodulin-dependent protein kinases (e.g. CaMKII), and calcineurin. These signaling molecules influence gene expression through transcription factors such as nuclear factor kappa B (NF-kB), cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), and nuclear factor of activated T-cells (NFAT).
often deregulated in cancer including blood cancer (25). The concentration of free Ca\(^{2+}\) in the ER is \(-500\ \mu M\) and \(-2\ nM\) for total ER Ca\(^{2+}\), most of which is bound to Ca\(^{2+}\)-binding proteins such as calreticulin (CALR) (26). Many pathways of cell activation converge on the efflux of Ca\(^{2+}\) from the ER that occurs through channels called inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) (27) (Figure 1). IP3Rs induce the release of Ca\(^{2+}\) from the ER upon binding of IP3 generated by phospholipase C (PLC) (28). PLC operates downstream of G-protein coupled receptors (GPCRs) and tyrosine kinase receptors located in the plasma membrane (29, 30). When ER Ca\(^{2+}\) becomes depleted, extracellular Ca\(^{2+}\) influx is initiated to maintain signaling. In non-neuronal cells most extracellular Ca\(^{2+}\) enters the cell through the mechanism called store-operated calcium entry (SOCE) (31, 32). SOCE is triggered by stromal interaction molecules (STIM1–STIM2) located in the ER membrane. Upon sensing ER Ca\(^{2+}\) depletion, STIM proteins oligomerize and redistribute to the plasma membrane where they interact with Orai1–Orai3 channels to activate Ca\(^{2+}\) influx into the cytosol (26, 32) STIM2 has low affinity for Ca\(^{2+}\) and activates when ER Ca\(^{2+}\) stores are \(<500\ \mu M\). In contrast, STIM1 has high affinity for Ca\(^{2+}\) and only activates when Ca\(^{2+}\) stores are \(<300\ \mu M\) (33). Loss of STIM2 occuring in certain cancers is thought to reduce ER Ca\(^{2+}\) content (7). PLC also generates 1,2-diacylglycerol (DAG) that performs its signaling functions by binding and activating other proteins, including protein kinases C (PKC) and certain transient receptor potential (TRP) canonical (TRPC) channels, in particular TRPML1, that can interact with Orai1 and STIM1 to support SOCE (29, 34) (Figure 1).

Ca\(^{2+}\) transfer from the ER to mitochondria is another important mechanism often hijacked in solid tumors and of emerging importance in blood cancer (21, 35). ER and mitochondria interact through specialized ER-mitochondrial contact sites called mitochondria-associated ER membranes (MAMs) (36) (Figure 1, insert a). Within MAMs, IP3Rs on the ER interact with voltage-dependent anion channels (VDACs) located in the outer mitochondrial membrane allowing unrestricted Ca\(^{2+}\) entry into the inter-membrane space (37). The passage of Ca\(^{2+}\) through the inner mitochondrial membrane is restricted by the mitochondrial calcium uniport (MCU) and the membrane potential (\(\Delta\Psi m \sim -150\ nV\)) (38). Small amounts of mitochondrial Ca\(^{2+}\) support mitochondrial metabolism, providing a mechanism that couples cellular activity with the generation of adenosine triphosphate (ATP). Ca\(^{2+}\) uptake into mitochondria activates pyruvate dehydrogenase, \(\alpha\)-ketoglutarate dehydrogenase, and isocitrate dehydrogenase, thereby stimulating the tricarboxylic acid cycle and energy generation (39, 40). In contrast, high levels of Ca\(^{2+}\) in the mitochondria induce apoptosis (41, 42). Prolonged accumulation of Ca\(^{2+}\) in the mitochondria leads to the opening of the mitochondrial permeability transition pore (mPTP) formed when VDAC1 clusters with adenine nucleotide translocase (on the inner mitochondrial membrane) and cyclophilin D (in the mitochondrial matrix). The mPTP opening causes depolarization of the inner mitochondrial membrane, which uncouples the respiratory chain leading to increased mitochondrial membrane permeability and the release of cytochrome c (21, 35, 36).

Oncogenic effects have also been shown for certain endolysosomal Ca\(^{2+}\) storage and release mechanisms (43). Endolysosomes are heterogeneous and dynamic acidic organelles that in addition to other roles, act as intracellular Ca\(^{2+}\) stores (44, 45). Endo-lysosomes sequester and release Ca\(^{2+}\) to the cytosol mainly through two-pore channels (TPPC1–TPC2) and TRP mucolipin channels (TRPML1–TRPML3) activated by second messengers such as nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca\(^{2+}\)-mobilizing second messenger known (46, 47). Effects of endo-lysosomal Ca\(^{2+}\) release may be both local and global. The latter occur when endo-lysosomal mechanisms act in conjunction with the ER to induce or inhibit ER Ca\(^{2+}\) release (48). Endo-lysosomal Ca\(^{2+}\) signaling regulates processes such as membrane trafficking, vesicle fusion and secretion which impacts a range of cellular behaviors e.g. immune responses, autophagy, cell proliferation, and migration (43, 49). In analogy to MAMs, mitochondrial membrane contact sites have also been shown to involve lysosomes (50, 51) (Figure 1, insert b). The release of lysosomal Ca\(^{2+}\) through TRPML1 supports Ca\(^{2+}\) transfer to mitochondria, providing an additional mechanism through which intracellular Ca\(^{2+}\) signaling, mitochondrial bioenergetics and lysosomal effects can be regulated (51).

This review emphasizes importance of abnormal Ca\(^{2+}\) signaling in hematologic cancers. We begin by presenting the long-standing foundational data on Ca\(^{2+}\) homeostasis in red blood cells (RBCs) as historically, this work provided guidance for research into Ca\(^{2+}\) signaling in selected blood cancers. We then focus on the neoplastic impact of deregulated Ca\(^{2+}\) in and around endolysosomal Ca\(^{2+}\) storage and release mechanisms (43). Endo-lysosomal Ca\(^{2+}\) signaling regulates processes such as membrane trafficking, vesicle fusion and secretion which impacts a range of cellular behaviors e.g. immune responses, autophagy, cell proliferation, and migration (43, 49). In analogy to MAMs, mitochondrial membrane contact sites have also been shown to involve lysosomes (50, 51) (Figure 1, insert b). The release of lysosomal Ca\(^{2+}\) through TRPML1 supports Ca\(^{2+}\) transfer to mitochondria, providing an additional mechanism through which intracellular Ca\(^{2+}\) signaling, mitochondrial bioenergetics and lysosomal effects can be regulated (51).

2 Foundational research into calcium signaling in red cells with an outline of the toolkit components

Research into Ca\(^{2+}\) homeostasis in RBCs has a long history and has been regularly reviewed (52–54). While reticulocytes and immature RBCs of patients with sickle cell disease retain some of the mitochondria (55), normal mammalian RBCs do not have true Ca\(^{2+}\) storage organelles. However, RBCs often contain inside-out vesicles that are formed in response to
increased Ca\(^{2+}\) uptake. These vesicles contain plasma membrane calcium ATPases (PMCA) that pump Ca\(^{2+}\) from the cytosol into vesicles and thus protect the cytosolic and membrane proteins from Ca\(^{2+}\)-induced damage (oxidation, proteolysis, irreversible dehydration) (see Figure 2A and the corresponding legend for molecular details). Some of these Ca\(^{2+}\)-filled vesicles are extruded, other inside-out endosomes are retained inside the cells (56–58). The resting concentration of cytosolic Ca\(^{2+}\) in RBCs are similar to nucleated cells, ranging from 30–60 nM in normal RBCs to the pathological 300 nM levels in patients with certain hereditary anemias (59). This compares with 1.2-1.8 mM in blood plasma (52, 53). Cytosolic Ca\(^{2+}\) concentrations in RBCs affect many aspects of red cell physiology including cell hydration, metabolic activity, redox state, and proteolysis. Regulation of Ca\(^{2+}\) concentrations translates into the control over the remodeling of the cytoskeletal elements and concomitant changes in cell shape, cell volume, rheological properties and ultimately, RBC longevity and clearance (52) (Figure 2A).

Multiple types of channels permeable for Ca\(^{2+}\) are present in the RBC membrane supporting versatility and plasticity of intracellular Ca\(^{2+}\) signaling (53) (Figure 2A). These channels are present in RBCs in very low copy numbers to keep the basal Ca\(^{2+}\) permeability of the plasma membrane low. Each channel type responds to its own stimulus (e.g. mechanical, electrical or chemical) to induce Ca\(^{2+}\) oscillations under specific conditions. Due to the broad variance in channel copy number per cell, there is variation in RBC responses to stimulation, and the numbers of “responding cells” typically range from 10% to 30% (60–62).

One of the first Ca\(^{2+}\) signaling processes identified in RBCs was the function of the G\(\text{\textregistered}\)ardos channel (potassium calcium-activated channel subfamily N member 4, KCNN4) (63) (Figure 2A). KCNN4 is activated by Ca\(^{2+}\) that enters through any of the non-selective cation channels [e.g. piezo type mechanosensitive ion channel component 1 (Piezo1)] (64, 65). Piezo channels are the largest plasma membrane Ca\(^{2+}\) channels known containing a three-bladed propeller-shaped structure that spans the lipid bilayer sensing membrane stretch (65–67). The activation of Piezo links mechanical forces applied to RBCs with the control of cell volume and lifespan (64, 68). The KCNN4 activation leads to K\(^{+}\) efflux and water loss (69), which reduces RBC volume and facilitates cell shape change. Activation of KCNN4 in RBCs of healthy people most likely enables better passage of RBCs through narrow capillaries (70), while its overactivation causes Ca\(^{2+}\)-overload and RBC dehydration (71) (Figure 2A). Hereditary stomatocytosis/xerocytosis are caused by gain of function mutations in genes encoding either KCNN4 (58, 72, 73) or Piezo channels (74–76). Different mutations cause distinctive clinical phenotypes, including some with syndromic features (72). The increasing use of next-generation-sequencing will help characterize the scope of genetic variants that are clinically relevant.

Other Ca\(^{2+}\) channels in RBCs include selected TRP and voltage-gated Ca\(^{2+}\) channels (Ca\(_v\)), N-methyl-D-aspartate (NMDA) receptors, and VDACs (52, 53). The TRP channels are a large family of approximately 30 structurally related but diverse members, the majority of which function as non-selective cation channels with variable Ca\(^{2+}\) permeability (77, 78). TRP channels can be activated by multiple external ligands including inflammatory and pain mediators, certain spices (e.g. garlic, mint, camphor and chilli), metabolites, or physical stimuli such as temperature and stretch. TRP channels act as environmental sensors and transduction channels that regulate intracellular Ca\(^{2+}\) levels in response to the depletion of internal Ca\(^{2+}\) stores with or without simultaneous activation by PLC (79–81). The importance of TRP and Piezo channels in human physiology and pathology is underscored by the award of the Nobel Prize in Physiology or Medicine in 2021 to David Julius and Ardem Patapoutian “for their discoveries of receptors for temperature and touch” (82–84). Based on the amino acid sequence homology, activation mode and function, TRP channels are divided into six subfamilies: TRPC (canonical, TRPC1-TRPC7), TRPV (vanilloid, TRPV1-TRPV6), TRPM (melastatin, TRPM1-TRPM8), TRPA (ankyrin, TRPA1), TRPML (mucolipin, TRPML1-TRPML3), and TRPP (polycystin, TRPP1-TRPP2) (77). All TRP channel types are tetrameric assemblies of subunits containing six transmembrane domains arranged around a central ion permeation pore (79).

All TRP channels mediate receptor-operated Ca\(^{2+}\) entry but some also function as components or regulators of SOCE (85, 86). The latter applies mostly to TRPC1 and TRPC4 as they can interact with and be activated by STIM1 upon depletion of the ER Ca\(^{2+}\) stores; in turn, TRPC1, TRPC3 and TRPC6 can interact and activate Orai1 channels to support ER Ca\(^{2+}\) store refilling (87). Other TRPC channels do not interact with STIM1 directly, however heteromeric assemblies combining TRPC1 with TRPC4/5 or TRPC3 with TRPC6/7 contribute to SOCE, implying single TRPC components can provide SOCE regulation (88). Other TRP channel types (e.g. TRPV4 and TRPV6) and other proteins also interact with TRPC channels, which influences diversity of their functioning (89).

TRPC6 is abundant in human RBCs and contributes to stress-stimulated Ca\(^{2+}\) entry but its specific function in RBCs remains elusive (90). The discovery of TRPV2 in RBCs is relatively recent (91). Similar to Piezo1, TRPV2 mediates Ca\(^{2+}\) influx into RBCs in response to mechanical activation, which modulates RBC osmotic fragility and may contribute to the RBC storage lesion (92).

NMDA receptors are ligand-gated non-specific cation channels with high Ca\(^{2+}\) permeability activated by glutamate and glycine (93). NMDA receptors play critical functions in the brain but are also expressed in non-neuronal cells, including all types of blood cells: red cells (60, 94, 95), platelets (96–98), neutrophils (99), monocytes (60), and lymphocytes (100, 101). In RBCs, NMDA receptor regulates hemoglobin oxygen affinity, nitric oxide production, cell hydration status, and proliferation of...
FIGURE 2 (Continued)
Mechanisms and consequences of deregulated calcium signaling in red cells and erythroid precursors. (A) In hereditary stomatocytosis/xerocytosis, heterogenous gain-of-function mutations in the Piezo1 or Gârdos channels cause excessive Caâ²⁺ entry into red blood cells (RBCs). In sickle cell disease, there is an abnormally high abundance and activity of NMDA receptor channels, and probably other Caâ²⁺-transporting ion channels contributing to the increased permeability of the RBC membrane to Caâ²⁺. A layer of aggregated hemoglobin S (HbS) interferes with the shedding of NMDA receptor channels from the cell surface. Reduced levels of adenosine triphosphate (ATP) impair the function of the plasma membrane calcium pump (PMCA); as a result, Caâ²⁺ uptake exceeds its efflux. Excess intracellular Caâ²⁺ can be sequestered into vesicles and extruded, protecting the cystolic and membrane proteins from Caâ²⁺-induced damage. However, over time, increased cytosolic Caâ²⁺ overactivates the Gârdos channel leading to cell dehydration. Membrane and cytoskeletal instability are induced by the overactive calcium/calmodulin (CaM) complexes, calpain, or scramblase (Scr). This leads to premature RBC clearance, hemorrhosis, and anemia. The exact contribution of these mechanisms to different types of anemia remains under investigation. (B) Effects of high intracellular Caâ²⁺ in polycythemia vera (PV). Hyperactive JAK2 V617F mutation increases Caâ²⁺ levels in erythroid precursors. Caâ²⁺ overload impairs the nuclear export function of calreticulin (CALR), which results in nuclear retention of the glucocorticoid receptor α (GRα) responsible for stress response and erythroid proliferation. Defective organelle sorting and extrusion from erythroblasts leaves organellar remnants in reticulocytes.

Overall, Caâ²⁺ channels play important roles in RBC membrane transport, metabolism, volume, shape and lifespan regulation, although many specific functions remain unknown (33). It has been proposed that increased Caâ²⁺ levels in RBCs due to abnormal function of Caâ²⁺ channels represents a common mechanism underlying an accelerated clearance of RBCs from the bloodstream and pathological hemolysis in a range of anemias, which is a new area for investigation (59).

3 Calcium signaling in normal and neoplastic erythropoiesis
The role of intracellular Caâ²⁺ signaling during erythropoiesis has been recently reviewed (54). Caâ²⁺ signaling regulates erythroid progenitor proliferation, differentiation, survival, and terminal enucleation. Changes in Caâ²⁺ homeostasis are seen in reactive ineffective erythrocytosis (e.g. in β-thalassemia) (109) or in neoplastic erythrocytosis driven by Janus kinase 2 (JAK2) V617F mutation in polycythemia vera (PV) (110, 111). CALR is an ER-resident protein that regulates functions of other proteins by chaperoning them to their active sites in response to changing intracellular Caâ²⁺ levels (112). In normal erythroid precursors, CALR promotes the nuclear export of glucocorticoid receptor α, which resets precursor proliferation to differentiation (110). In contrast, hyperactive JAK2 signaling in PV increases free intracellular Caâ²⁺ levels, which impairs the nuclear export function of CALR (Figure 2B). Glucocorticoid receptor α is retained in the nucleus maintaining the expression of stress genes that increase proliferation of erythroblasts (110). Elevated levels of Caâ²⁺ may also impair actin reorganization required to extrude organelles during enucleation (111). Consequently, PV reticulocytes have a high content of organellar remnants e.g. mitochondria, ER and ER-associated proteins including CALR. In mature RBCs from PV patients, high Caâ²⁺ levels increase the activity of the Gârdos channel leading to cell dehydration (111) (Figure 2B).

Increased levels of cytoplasmic Caâ²⁺, cell dehydration and the presence of organell remnants in RBCs have the potential to promote thrombosis in PV (111). Dehydrated RBCs are more rigid, thus less amenable to shape changes required to pass through narrow capillaries, and also more susceptible to hemolysis under high-shear rates that occur in arterial circulation (113, 114). Higher cytoplasmic Caâ²⁺ levels are known to increase adhesion between RBCs (115), and of RBCs to the endothelium (116, 117). Most previous work into PV-associated thrombosis focused on the role of a high hematocrit, white cell and platelet activation, coagulation factors and inflammation (118). However, a recent study used a laser-assisted optical rotational red cell analyzer to demonstrate abnormal RBC morphodynamics in 48 patients with PV (119). The deformability and stability of RBCs were reduced and RBC aggregation was increased. These alterations correlated with the incidence of ischemic stroke in 13 of these patients, suggesting a link between abnormal RBC morphodynamics and the increased risk of arterial thrombosis in PV, although this requires confirmation in larger studies (119).
Collectively, emerging data highlight a possible connection between the JAK2 V617F mutation and deregulated Ca²⁺ signaling in PV RBCs and precursors, with the potential to contribute to autonomous erythropoiesis and thrombosis. Therefore, strategies to modulate Ca²⁺ signaling may be useful for PV treatment.

4 Calcium signaling deregulation in blood cancer

Similar to solid tumors (3, 120), many blood cancers remodel Ca²⁺ signaling to promote their cancerous properties. Altered expression or activity of Ca²⁺ channels, pumps, and effectors can lead to the activation of transcription factors involved in the control of cell survival and proliferation.

4.1 Plasma membrane calcium-permeable channels

A number of Ca²⁺ influx channels located on the plasma membrane have been reported to impact on leukemic cells. These include the non-selective cation channels such as the TRP family, purinoreceptors (P2X7), nicotinic acetylcholine receptor (nAChR), Piezo1, NMDA receptor, and the Ca²⁺ selective Orai channels (Figure 1). Table 1 provides a summary of such changes in different blood cancers, and an explanation of their functional effects follows.

4.1.1 Transient receptor potential channels

It is thought that the primary physiological roles of TRP channels are perception of various sensations ranging from pain, pressure, temperature, taste and vision. However, evidence accumulates that TRP channels also regulate proliferation, differentiation, invasion, metastasis, autophagy and apoptosis of malignant cells (80, 81, 166–170). TRP channels have been shown to contribute crucial oncogenic functions in a number of hematologic malignancies (166, 167). Leukemia, lymphoma, myeloma and Waldenström macroglobulinaemia patient cells and cell lines have altered expression of TRP channels that has been linked with changes in cell proliferation, cell death and cell migration (165–167) (Table 1).

TRPM2 is overexpressed in cells from patients with acute myeloid leukemia (AML) and in AML cell lines (e.g. Kasumi-1, U937, KG-1, MV-4-11, SKNO1, THP-1, MonoMac-6, AML-193, MOLM13 and SHSY5Y) (129). TRPM2 depletion in AML cells and xenograft mouse models has anti-leukemic effects. TRPV2, TRPM7 and TRPC1 have been studied in chronic myeloid leukemia (CML) cell lines (K-562, KU812, MOLM-6 and 32D-p210) (127, 146, 147, 171). The silencing of TRPV2 induces significant apoptosis in K-562 cells (127), while inhibition of TRPM7 reduces cell proliferation and increases

Cancer type	Molecule	Change in disease	Functional effects	References
AML	P2X7	↑ expression	↑ Ca²⁺ influx (C,M), ↑ proliferation (C,M), ↓ proliferation (P,S), ↓ remission rate (P), ↓ overall survival (P,M), altered sensitivity to chemotherapy (P,M), ↑ migration (M)	(121–126)
	TRPV2	↑ expression	↑ proliferation (C), ↓ apoptosis (C)	(127)
	↓ expression (P)			(128)
	TRPM2	↑ expression	↑ proliferation (C), ↑ autophagy (C), ↑ mitochondrial Ca²⁺ influx (C), ↓ ROS production (S)	(129, 130)
	TRPM4	↑ expression	↑ proliferation (C), cell cycle progression (C)	(133)
	Orai1	↑ expression	↑ proliferation (C), ↑ migration (C), ↑ cell cycle progression (C)	(132–134)
	IP3R2	↑ expression	↑ overall survival (P), ↑ event-free survival (P)	(135)
	CaV1.1	↑ expression (P)		(136, 137)
	CaV1.2	↑ expression		(138)
	CaV1.4	↑ expression		(139)
	CaV1.5	↑ expression		(140–142)
	CaV1.6	↑ expression		(143)
	CaV1.7	↑ expression		(144)
	CaV2.1	↑ expression		(145)
ALL	P2X7	↑ expression	↑ Ca²⁺ influx (C), ↑ relapse (P)	(121, 123)
	↓ expression (P)			(124)
	TRPC4/5	↑ expression (C)		(139)
	TRPV1/V6	↑ expression	cell cycle progression (C), endocytosis (C), cell migration (C)	(140–142)
	TRPM2	↑ expression	↑ Ca²⁺ influx (C), ↓ ROS production (C)	(130, 143)

(Continued)
TRPC1 expression is reduced and may be one of the factors associated with SOCE reduction in these cells (171).

TRPV1, TRPV6 and TRPM2 contribute to the growth of cells derived from acute lymphoblastic leukemia (ALL) (142, 172). TRPV1 activation by resiniferatoxin (an analog of capsaicin, a vanilloid agonist) induces apoptosis, interferes with cell cycle progression and decreases proliferation in both Jurkat T-cells and patient-derived T-ALL lymphoblasts; however, the affect of resiniferatoxin on non-leukemic cells was not tested (172). TRPV6 is one of the necessary elements for migration and oncogenic signaling in Jurkat T-cells (142).

TRPM2 is crucial for cell cycle arrest and decreases apoptosis of

Cancer type	Molecule	Change in disease	Functional effects	References
CML	TRP4	↑ expression (P)	abnormal Ca\(^{2+}\) oscillation pattern (C), ↓ cytokine secretion (C)	(144)
	Orai1	↑ expression (P)	↓ remission rate (P)	(121)
	NMDAR	mutations in GRIN2C	↑ expression (P)	(134)
	Ca\(_{a,1}\) (CACNA1S)	↑ expression (P)	↑ proliferation (P), ↓ apoptosis (C)	(136, 137)
	Ca\(_{a,2}\) (CACNA1C)	↑ expression (P)	↓ relapse in high-risk pediatric patients (P), effects on expression and functional consequences are unknown	(145)
	P2X7	↑ expression (C)	↓ proliferation (C), ↓ apoptosis (C)	(125)
	TRPV2	↑ expression	↑ Ca\(^{2+}\) influx (C), ↑ proliferation (C), differentiation (C)	(146)
	TRPM2	↑ expression (P)		(130)
	TRPM4	↑ expression (P)		(147)
	Piezo1	↑ expression (C)		(148)
	Orai1	↑ expression (C)		(134)
CLL	P2X7	↑ expression (P)	↑ Ca\(^{2+}\) influx (P), ↑ proliferation (P)	(149)
	TRPC1	↑ expression	↑ cytokine secretion (P)	(150)
	α\(7\)-nAChR	↑ expression	↑ proliferation (P), ↑ migration (P,C)	(151)
	Orai1	↑ expression		(156)
	Ca\(_{a,1}\) (CACNA1S)	↑ expression of CACNA1D in ABC-DLBCL and of CACNA 1S, 1D and 1F in GCB-DLBCL (P)	(156)	
	Ca\(_{a,2}\) (CACNA1C)	↑ expression (P)	↑ overall survival (P), ↑ progression-free survival (P)	(152)
	Ca\(_{a,3}\) (CACNA1D)	↑ expression (P)	↑ sensitivity to BIRC-2-mediated cell killing (C)	(153–155)
	Ca\(_{a,4}\) (CACNA1F)	↑ expression (P)		(156)
DLBCL	Orai1	↑ expression (P)		(134, 156)
	TRP4	↑ expression	↑ proliferation (P), ↑ cell survival (P), ↑ drug resistance (C)	(157, 158)
	IP3R2	↑ expression	↑ overall survival (P), ↑ event-free survival (P), ↑ bone lesions (P), ↑ cytokine secretion (P)	(159, 160)
	Ca\(_{a,1}\) (CACNA1S)	↑ expression of CACNA1D in ABC-DLBCL and of CACNA 1S, 1D and 1F in GCB-DLBCL (P)	(156)	
	Ca\(_{a,2}\) (CACNA1C)	↑ expression (P)		(134, 156)
	Ca\(_{a,3}\) (CACNA1D)	↑ expression (P)		(156)
	Ca\(_{a,4}\) (CACNA1F)	↑ expression (P)		(156)
	Orai1	↑ expression (P)		(134, 156)
	TRP1	↑ expression	↑ proliferation (P), ↑ cell survival (P), ↑ drug resistance (C)	(157, 158)
	TRP2	↑ expression		(159, 160)
	TRPM2	↑ expression (P)		(161)
	TRPM3	↑ expression (P)	↑ migration (C)	(162)
	TRPM4	↑ expression		(163)
	TRPM5	↑ expression		(164)
	TRPM6	↑ expression		(165)
	TRPM7	↑ expression		(165)
	TRPM8	↑ expression		(165)
	TRPML1	↑ expression		(165)
	TRPC1	↑ expression (P)		(165)
Plasma cell	TRP4	↑ expression		(134, 156)
myeloma	Orai1	↑ expression (P)		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRPM2	↑ expression		(134, 156)
	TRPM3	↑ expression		(134, 156)
	TRPM4	↑ expression		(134, 156)
	TRPM5	↑ expression		(134, 156)
	TRPM6	↑ expression		(134, 156)
	TRPML1	↑ expression		(134, 156)
	TRPC1	↑ expression (P)		(165)
Waldenstrom	TRP4	↑ expression		(134, 156)
macroglobulinaemia	Orai1	↑ expression (P)		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
	TRP4	↑ expression		(134, 156)
irradiated Jurkat T-cells and Bcl-2-overexpressing T-lymphoblasts (143).

In chronic lymphocytic leukemia (CLL) cells, patient-derived and the Jok-1 cell line, TRPC1 plays a role in promoting cell survival. It does so by contributing to the production of anti-inflammatory cytokines and the activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways triggered by CD5 activation (150, 168). TRPML2 expression is associated with the sensitivity of plasma cell myeloma cell lines to ibrutinib and/or bortezomib treatment. TRPML2 expression is low in ibrutinib-resistant U266 cells but high in ibrutinib-sensitive RPMI8226 cells (163). Upon TRPML2 RNA-silencing, RPMI8226 cells show worse response to ibrutinib than controls (163). These data raise the possibility that TRPML2 expression levels may help predict ibrutinib sensitivity in patients with myeloma (163).

Most recently, somatic mutations and copy number variations in TRP genes have been reported in 33 cancer types including hematologic malignancies, in particular diffuse large B-cell lymphoma (DLBCL) and AML cells (173). TRP mutations in the transmembrane regions were concluded to be likely deleterious and these genetic alterations were possibly linked to transcriptional deregulation of TRP genes and the consequent change in expression of TRP channels (173). The frequency of mutations in TRP channels was higher in DLBCL than in AML cells, with TRPM2, TRPM3 and TRPM6 showing the greatest mutation frequency (173). However, it is not clear what significance these genetic alterations have in the pathogenesis of cancer. Further work is required to uncover how these mutations contribute to cancer initiation and progression, and whether they can serve as markers for diagnosis, prognosis, or as treatment targets (173). Ex vivo studies with patient-derived cells demonstrate that targeting of TRP channels offers potential to inhibit malignant cell proliferation and improve chemotherapy effects (129, 172).

4.1.2 Purinoreceptor channels

P2X receptors are a family of ATP-dependent cation channels that have seven members (P2X1–7). An increase in extracellular ATP, often due to damage to the plasma membrane or exocytosis of ATP-containing granules, is the principal physiological stimulus for P2X receptor activation (174). Altered expression or function of P2X7 has been reported in a number of hematologic cancers (175). P2X7 is upregulated in cells from patients with AML and CLL and downregulated in B-ALL (124). Reports have differed on whether P2X7 in CML cells is up- or down-regulated (121, 124). When P2X7 activation is prolonged, and the receptor is exposed to high ATP levels, P2X7 opens an unselective membrane macropore and can trigger cell death (175, 176). P2X7RA is a splice variant that is unable to form this macropore (176). Both full-length P2X7RA and truncated variant P2X7RB are overexpressed in AML cells; whereas in relapsed AML patients, P2X7RB is increased and P2X7RA is decreased (126). AML blasts with high levels of P2X7RB have higher viability and much lower Ca2+ uptake than those expressing high levels of P2X7RA (126). AML development is slower and overall survival is extended in mice transplanted with P2X7-null AML cells compared to mice transplanted with control AML cells (125). Ca2+ influx is decreased in murine P2X7-null leukemia-initiating cells (LICs) and bulk AML cells compared to wild-type. The transcription factor cAMP-response element binding protein (CREB), which is involved in calcium signaling, is decreased in P2X7-null LICs and upregulated in AML patients. When CREB is overexpressed in P2X7-null AML cells, the development of leukemia is similar to wild-type AML cells (125). These results suggest that CREB-mediated Ca2+ signaling is required for the leukemogenic activities of P2X7.

4.1.3 Nicotinic acetylcholine receptor

Upon binding acetylcholine, nAChR channels assist the movement of cations into the cell, which causes membrane depolarization (177) and triggers the opening of voltage-gated Ca2+ channels leading to Ca2+ influx (151). Homomeric α7-nAChRs are more permeable to Ca2+ and desensitize faster than heteromeric nAChRs (177). Primary CLL cells express α7-nAChR at a higher level than normal B-cells, and inhibiting α7-nAChRs in a range of leukemic cell lines reduces cell migration (151). Conversely, protein expression levels of α7-nAChRs in AML, CML and ALL patient peripheral blood or bone marrow-derived mononuclear cells was lower than in healthy subjects (178). Acetylcholine causes an increase in intracellular Ca2+ levels in CML-derived K-562 cells, and the α7-nAChR antagonist methyllycaconitine citrate inhibits K-562 cell proliferation as well as reduces the intracellular Ca2+ levels (177). The opposite was observed in Jurkat T-ALL cells, with methyllycaconitine causing intracellular Ca2+ levels to rise but this did not require extracellular Ca2+ (179).

4.1.4 N-methyl-D-aspartate receptor

Typical neuronal NMDA receptors are ligand-gated non-specific cation channels with high Ca2+ permeability activated by glutamate and glycine (93). In non-neuronal cells, including in megakaryocytes, NMDA receptors may also function in a metabotropic-like (i.e. flux independent) manner (97, 98, 180, 181) (see Figure 3A and the corresponding legend for molecular details). In leukemic cell lines with megakaryocytic features Meg-01, K-562, and Set-2, NMDA receptor supports cell proliferation (182). Deletion of NMDA receptor in Meg-01 cells shifts cell differentiation toward the erythroid lineage, suggesting NMDA receptor function at the level of a bipotential megakaryocyte-erythroid progenitor (183). NMDA receptor inhibitor memantine enhances cytotoxic effects of cytarabine in Meg-01 cells, thus this drug combination warrants testing on patient cells (183). In non-leukemic mice, the NMDA receptor regulates platelet formation through a
FIGURE 3 (Continued)
mechanism that involves megakaryocyte interaction with the extracellular matrix and cytoskeletal reorganization (180). NMDA receptor exerts these effects by influencing Ca2+ and adenosine diphosphate (ADP) signaling, and the expression of transcripts involved in extracellular matrix remodeling (180) (Figure 3B). These mechanisms are relevant to the pathophysiology of primary myelofibrosis (PMF); therefore, NMDA receptor inhibitors should be tested in PMF models.

In a random survival forest model, variants in the GRIN2C gene encoding the GluN2C subunit of NMDA receptor were part of a group of 7 variant genes found to predict shorter event-free survival in high-risk pediatric patients with B-ALL (145). The mutated GRIN2C region in ALL covers an intron/exon boundary located in the GluN2C protein’s N-terminal domain (see Figures 3C, D for further details). The presence of GRIN2C mutations was associated with accelerated relapse in children with high-risk B-ALL, but their functional impact is not known. These findings call for experimental studies to determine the NMDA receptor role in normal and leukemic B-cell precursors.

4.1.5 Voltage-dependent anion channels

VDAC has three isoforms in mammals with VDAC1 being the most abundant (37, 104). VDAC1 is a key regulator of metabolite transfer between the mitochondria and cytosol including of ATP, ADP, and of small ions such as Ca2+ and Na+. These functions are crucial for normal mitochondrial bioenergetics (37, 184). In its open state, VDAC1 facilitates metabolite exchange but is lowly permeable to Ca2+. In contrast, in the “closed” state VDAC1 is highly permeable to Ca2+ providing a proapoptotic signal (37, 185).

VDAC1 is overexpressed in U266 myeloma cells, which together with CD45 expression enhances the cells sensitivity to apoptosis via mitochondrial pathways (186). VDAC1 is also overexpressed in CLL patient cells compared to healthy controls (187). VDAC1-derived decoy sequences (Antp-LP4 and N-terminal-Antp) induce cell death in peripheral blood mononuclear cells from patients with CLL but not from healthy donors (187). Similarly, in a large panel of leukemic cell lines including from CLL (MEC-1, MO1043, and CLL), T-ALL (MOLT4, Jurkat), and AML (U-937, THP-1, K-562), VDAC1-targeting peptides induce cell death (188).

VDAC1 associating with Bcl-2, Bcl-xL or hexokinase prevents apoptosis in cancer cells. VDAC1 peptides disrupt this association leading to VDAC1 oligomerization, mitochondrial Ca2+ overload, cytochrome c release and apoptosis (187, 188). Combined treatment of acute promyelocytic leukemia (APL) cell line HL-60 with melatonin and retinoic acid decreases VDAC1 expression, suggesting its leukemia-promoting role (189). In B-ALL cell lines, VDAC1 was upregulated after prednisolone treatment in three steroid-sensitive cell lines (697, Sup-B15, RS4;11) but unchanged in the steroid-resistant cell line (REH), suggesting that VDAC1 has a role in steroid-induced apoptosis (190). Similar was seen in T-ALL cells. Cell death occurred in Jurkat T-cells when either rice or human VDAC proteins were overexpressed, and the effect was blocked by ectopically expressed Bcl-2 (191). Overall, VDAC1 interactions with pro-survival proteins support anabolic metabolism and inhibit apoptosis thus maintaining leukemia growth. Strategies that target these interactions are being explored for treatment of leukemia, with T-ALL cells emerging as the most vulnerable to this form of manipulation (192, 193).

4.1.6 Voltage-gated ion channels (Ca\textsubscript{V} channels)

Voltage-gated Ca2+ channels are coded by CACNA genes (calcium voltage-gated channel subunit alpha) and are subdivided into three families Cα\textsubscript{1}, Cα\textsubscript{2} and Cα\textsubscript{3} (194). Cα\textsubscript{1} and Cα\textsubscript{3} channels are expressed in many cell types while Cα\textsubscript{2} are mostly expressed in neurons (106). Cα\textsubscript{V} channels mediate Ca2+ influx in response to plasma membrane depolarization, influencing muscle contraction and neurotransmission, as well as secretion and gene expression in may cell types (137). Cα\textsubscript{1} channels are activated by high voltage (> ~40 mV with a peak at 0 mV) and mediate long-lasting (L-type) currents with slow inactivation. In contrast, Cα\textsubscript{3} channels are activated by low voltage (around ~60 mV with a peak at ~20 mV) and mediate transient currents (T-type) with faster kinetics than the L-type currents. Cα\textsubscript{2} channels are activated by high voltage and mediate P/Q-type, N-type and R-type Ca2+ currents (106).

Bioinformatic analysis of Oncomine, a web-based cancer microarray database of patient tissue revealed increased expression of CACNA transcripts in diverse cancer types
including of CACNA1S and CACNA1C (coding for CaV-1.1 and CaV-1.2 channels respectively) in AML and B-ALL samples and of CACNA1A (coding for CaV-2.1) in samples from patients with CLL, marginal zone lymphoma and monoclonal gammopathy of unknown significance (136, 137). On the other hand, downregulation of CACNA1C transcripts (coding for CaV-1.2) was seen in centroblastic lymphoma, CACNA1F (coding for CaV-1.4) in anaplastic large cell lymphoma, and CACNA1G (coding for CaV-3.1) in mantle cell lymphoma (195). A recent study confirmed distinct expression of CaV-1 channels in a range of lymphoma cell lines and patient-derived samples (156).

Cav1.2 (CACNA1C) expression was increased in classical Hodgkin lymphoma cell lines when compared to other B-cell lymphoma cell lines. Cav1.3 (CACNA1D) showed higher expression in samples from patients with activated B-cell-like DLBCL (ABC-DLBCL), whereas expression of Cav1.1 (CACNA1S), Cav1.2 (CACNA1C), and Cav1.4 (CACNA1F) were higher in germinal centre B-cell like DLBCL (GCB-DLBCL) (156). Therapeutic potential of inhibiting Cav1.2 channel in AML was revealed in an elegant 3D-culture model that mimicked the human bone marrow niche and utilized AML-derived mesenchymal stromal cells (AML-MSCs) from pediatric patients (138). Inhibition of Cav1.2 channel in AML-MSCs using lercanidipine (an anti-hypertensive drug) interfered with leukemia growth ex vivo and in vivo, with no toxic effects on normal MSCs or healthy CD34-positive HSCs (138). Further work is required to determine the mechanism through which Cav channels influence blood cancer growth.

4.1.7 Orai1 channels

Multimers of Orai1 proteins form an ion pore in the plasma membrane that is highly selective for Ca2+. SOCE is triggered when Orai1 and STIM1/STIM2 proteins interact in response to ER Ca2+ store depletion. Increased expression of Orai1 or STIM1/STIM2 has been recorded in cell lines derived from AML (132, 133), T-ALL (134), CLL (11) and various lymphoma cell lines (134, 156). Mantle cell lymphoma Rec-1 cell line does not have high expression of Orai1 and STIM1 but Rec-1 and patient cells have significantly higher cytoplasmic Ca2+ concentrations under physiological conditions compared to normal cells suggesting “leaky SOCE” (196). High expression of Orai1 and STIM1 in CLL patients is associated with worse treatment- and progression-free survival (11). In mice models of T-ALL, deletion of STIM1 and STIM2 abolishes SOCE and results in prolonged survival (134). The underlying mechanism is intriguing, as the absence of SOCE does not change leukemic cells proliferation; instead, prolonged survival is associated with reduced inflammation in organs infiltrated by leukemia (134). In the HL-60 APL cell line, silencing of Orai1 and Orai2 reduces cell migration and proliferation (132). In the KG-1 and U937 AML cell lines, Orai1 contributes to cell proliferation and cell cycle progression (133). ORAI1 gene expression was increased in peripheral blood mononuclear cells from 9 patients with AML compared with normal cells and correlated with adverse risk in the cohort of 439 AML patients (133).

Orai1 and STIM1 function is also linked with the CD20 molecule in B-cells and required for the efficacy of anti-CD20 antibody therapy in B-cell cancers. CD20 (MS4A1) is part of the membrane-spanning 4-domain family, subfamily A (MS4A) (197). The exact biological role of CD20 is unknown but it may act as an amplifier of Ca2+ signals transmitted through the B-cell receptor (BCR) in immature and mature B-cells to modulate cell proliferation and differentiation (198). CD20 has been reported to be physically coupled to or affect the phosphorylation of BCR and BCR-associated kinases; which are upstream regulators of the signaling cascade that activates SOCE (199–201).

Monoclonal anti-CD20 antibodies such as rituximab and obinutuzumab activate Ca2+ influx in patient CLL cells and cell lines such as SUDHL-4, BL2, Ramos, BL60, Raji, Daudi, and normal B-cells (202–206). Using genetically encoded Ca2+ indicator GCaMP-CD20 as a precise method to measure Ca2+ concentration changes around CD20, it was determined that anti-CD20 antibodies do not cause Ca2+ influx through or near CD20 (207). Instead, obinutuzumab activates intracellular Ca2+ efflux from either lysosomes or the ER into the cytosol (206) (see Figure 4A and the corresponding legend for molecular details). Inhibition of this intracellular Ca2+ movement reduces obinutuzumab-induced cell death (206, 207). Binding of rituximab to CD20 induces co-clustering of CD20 with Orai1 and STIM1 in SUDHL-4 cells, leading to extracellular Ca2+ influx and internal Ca2+ store release (205). CD20 overexpression in HEK293 cells increases Ca2+ influx, which is abolished when Orai1 and STIM1 are knocked down (205, 206). CD20 strongly interacts with STIM1 but only when Orai1 is present (207). Influx of Ca2+ induced by rituximab or obinutuzumab is significantly reduced in Orai1 knockdown cells (205, 206). In B-CLL cells expressing high levels of STIM1, a combination of an anti-STIM1 monoclonal antibody and rituximab significantly reduces cell viability compared to rituximab alone (11). Thus, CD20 interactions with Orai1/STIM1 are important for the therapeutic efficacy of anti-CD20 antibodies. Manipulation of these interactions may help develop more effective therapeutic combinations for B-cell malignancies (Figure 4A).

4.2 IP3 signaling cascade and Ca2+ release from the ER

IP3 is a major regulator of Ca2+ signaling; it binds to IP3Rs on the ER to release Ca2+ into the cytosol (27, 28) (Figure 1). IP3 and another second messenger DAG are generated when PLC, activated downstream of G-protein coupled or tyrosine kinase receptors, hydrolyses PIP2 located in the plasma membrane (26).
4.2.1 Phospholipase C

PLC has six isoforms; β, γ, δ, ε, ζ, and η. PLC-β operates downstream of GPCRs and PLC-γ downstream of tyrosine kinase receptors (29, 30). Important activators of PLC-γ in hematologic cells are BCR and T-cell receptors (TCR), which are transmembrane tyrosine kinase receptors (208). T-cells mainly express the PLC-γ1 isoform, and B-cells mainly express the PLC-γ2 isoform. PLC-γ1 is essential for IP3 production and Ca2+ release in normal T-cells, whereas PLC-β3 is the main regulator of these responses in Jurkat T-cells and patient-derived T-ALL blasts (209).

Leukemic stem cells (LSCs) are multipotent, proliferative, and self-renewing cells that propagate leukemia (210). In AML LSCs, oxysterol-binding protein-related protein 4L (ORP4L) acts as a scaffold protein that facilitates PLCβ2 presentation to PLC-β3 for cleavage into IP3 (211). ORP4L is expressed in LSCs, but not in normal HSCs (211). Knocking down or inhibiting ORP4L decreases the survival of T-ALL cells and AML LSCs and reduces spontaneous cytosolic and mitochondrial Ca2+ oscillations (209, 211, 212). In T-ALL cells, ORP4L also interacts with PLC-β and IP3R1, which enhances Ca2+ release from the ER by facilitating the binding of IP3 to IP3R1 (212). Overall, the ORP4L regulated Ca2+ release into the mitochondria helps sustain mitochondrial oxidative respiration required for survival of T-ALL cells and AML LSCs (209, 211, 212).

BCR and TCR recruit kinases such as SYK (spleen tyrosine kinase), BTK (Bruton’s tyrosine kinase), and ZAP70 (zeta-chain associated protein kinase 7) to phosphorylate and activate PLC-γ. PLC-γ2 plays a role in CLL, DLBCL, Hodgkin lymphoma, endemic Burkitt lymphoma, MALT-associated gastric lymphoma, and plasma cell myeloma (208). For example, B-CLL cells showing high responsiveness after BCR engagement have higher PLC-γ2 activity and calcium signaling compared to non-responding cells (213). Patients with such hyperresponsive B-cells have a poorer prognosis than non-responders (213). Ibrutinib, which inhibits BTK and thus blocks PLC-γ2 signaling, has become an important and effective treatment for CLL and other B-cell lymphomas (208).

4.2.2 Inositol 1,4,5-trisphosphate receptors

Three isoforms of IP3Rs exist and most cell types express more than one isoform (214). Mice with all three IP3R isoforms deleted develop T-cell malignancies throughout the body that resemble T-ALL (215). Cytogenetically normal AML cells have higher expression of IP3R2 than healthy progenitors and patients with high IP3R2 expression have shorter overall and event-free survival (135). DLBCL SU-DHL-4 cells also have high levels of IP3R2 and constitutive IP3 signaling, which leads to elevated basal levels of cytoplasmic Ca2+ and increased cell survival (154). Inhibition of IP3 production via inhibiting PLC reverses the prosurvival effect and increases cell death in SU-DHL-4 cells (154).

Several oncogenes and tumor suppressors directly interact with IP3Rs and regulate their activities to control Ca2+ influx into the mitochondria. Among such IP3R regulators are the Bcl-2 family proteins, which consist of different anti-apoptotic members (e.g. Bcl-2, Bcl-xL, Mcl-1, and Bcl-10) and pro-apoptotic members (e.g. BIM, BID, BAX, and BAK) (216) (Figure 4B). Bcl-2 overexpression is common in blood cancer, including in DLBCL, AML and CLL (154, 217, 218). Bcl-2 binds to and prevents the activation of pro-apoptotic proteins through their BH3 domains (219, 220). To overcome Bcl-2 effects in cancer cells, BH3 mimetics like venetoclax were developed that target the hydrophobic BH3-binding groove of Bcl-2 (Figure 4B). Venetoclax binding to Bcl-2 liberates BIM, which activates BAX or BAK, leading to apoptosis (221) (Figure 4C).

In addition to the canonical BAX/BAK-dependent pathway of apoptosis, Bcl-2 also directly binds to IP3Rs on the ER through its BH4 domain. The binding of Bcl-2 to IP3R inhibits Ca2+ release from the ER and prevents cell apoptosis triggered by mitochondrial Ca2+ overload (222). Venetoclax does not interfere with this BH4-dependent mechanism of cell death (223). In contrast, a designer peptide Bcl-2 IP3R Disruptor-2 (BIRD-2) targets the BH4 domain of Bcl-2 (224) (Figure 4B). BIRD-2 binding to Bcl-2 unleashes IP3R activation and cytotoxic Ca2+ levels are released from the ER (155, 225) (Figure 4D).

BIRD-2 induces apoptosis in multiple blood cancer cell lines and/or patient-derived cells, including from DLBCL, CLL, plasma cell myeloma, and follicular lymphoma (153, 226, 227). DLBCL cells with high levels of IP3R2 and constitutive IP3 signaling are particularly sensitive to BIRD-2 (154). In DLBCL cell lines, BIRD-2 induces cell death in a caspase-dependent manner, however in contrast to venetoclax, BIRD-2-induced cell

FIGURE 4 (Continued)

Therapeutic potential of pro-apoptotic calcium signaling at the ER and mitochondria. (A) Mechanism of BCR activated Ca2+ influx in response to rituximab and obinutuzumab. The membrane-spanning 4-domain protein CD20 is physically-coupled to the BCR. Rituximab and obinutuzumab induce phosphorylation of several proteins involved in BCR signaling, including BLNK (B-cell linker kinase), BTK (Bruton’s tyrosine kinase), and PLC-γ (phospholipase C-γ). CD20 binds STIM1 and this binding is dependent on the presence of Orai1. Upon binding of rituximab/obinutuzumab, Ca2+ is released from lysosomes, the ER, and/or extracellularly via activation of store-operated calcium entry, which assists cell killing. (B) Schematic showing the four Bcl-2 homology (BH) domains. Venetoclax binds to the hydrophobic cleft located in the BH3 domain, and BIRD-2 binds to the BH4 domain. Transmembrane domain (TM), N- and C- termini are indicated. (C) Canonical BAX and BAK dependent pathway of apoptosis and the mechanism through which venetoclax inhibits this pathway. (D) Non-canonical ER Ca2+-dependent pathway of apoptosis and the mechanism through which BIRD-2 inhibits this pathway.
death is independent of BAX/BAK (228). In both DLBCL cell lines and primary CLL patient samples, BIRD-2 triggers mitochondrial Ca\(^{2+}\) overload to induce caspase-dependent cell death. Cyclosorine A, which desensitizes mPTP to excessive Ca\(^{2+}\)-induced opening, and ruthenium265 (Ru265), which inhibits mitochondrial Ca\(^{2+}\) uptake, both counteract BIRD-2-induced cell death (228). Combining venetoclax with BIRD-2 enhances cell death of DLBCL cell lines, however DLBCL cells with acquired resistance to venetoclax were not sensitized to BIRD-2 (155, 229). BIRD-2 may be useful in combination with venetoclax as a therapeutic strategy in DLBCL, however the clinical relevance of these approaches remains to be determined.

Another therapeutic target that can induce mitochondrial Ca\(^{2+}\) overload is the GPCR neurokinin-1 receptor (NK-R1), expression of which is elevated in patient-derived AML cells and cell lines (230). Targeting NK-R1 with the antagonists SR140333 or aprepitant in AML and CML cell lines increases cytosolic and mitochondrial Ca\(^{2+}\) concentrations, resulting in increased production of reactive oxygen species (ROS) and apoptosis (230). When IP3R or VDAC1 are inhibited, ROS production and apoptosis are decreased (230), but neither antagonist inhibits proliferation of normal CD34-positive HSCs. Aprepitant has been approved by the US Food and Drug Administration for the treatment of chemotherapy-induced nausea and vomiting (230). Therefore, this and other NK-R1 antagonists could be repurposed for testing efficacy in AML (230).

4.3 Endo-lysosomal Ca\(^{2+}\) channels

The role of endo-lysosomal Ca\(^{2+}\) signaling in blood cancer has not been systematically studied but there are a number of observations pointing towards its importance. TRPML3, TPC1 and TPC2 endo-lysosomal Ca\(^{2+}\) efflux channels are expressed in the megakaryoblastic cell line Meg-01 (231). NAADP releases Ca\(^{2+}\) from the lysosomal-like Ca\(^{2+}\) stores in Meg-01 cells and TPC knockdown reduces this response (231). TPC2 is localized to platelet dense granules that are lysosome-related organelles and is involved in their maturation and function (232). TPC2 mediates Ca\(^{2+}\) release and formation of perigranular Ca\(^{2+}\) nanodomains in Meg-01 cells that mark “kiss-and-run” events mediating material transfer between different granules (232). Upon genetic deletion of NMDA receptors in Meg-01 cells, accumulation of lysosomal organelles and upregulation of MCOLN3 transcripts (coding for TRPML3) were observed. This suggests a link between lysosomal biogenesis, NMDA receptor function and Meg-01 cell proliferation (183). TPC1 and TPC2 inhibitor tetrindrine suppresses growth and increases cell death in several AML cell lines (U937, NB4, K-562, HL-60 and THP-1) (233–236). A recent study also demonstrates that TPC2 inhibition and its genetic deletion sensitizes ALL cells (cell lines and patient-derived) to cytotoxic drugs (237). Upon TPC2 deletion, leukemic cells are not able to sequester cytotoxic drugs within lysosomes, which increases drug concentration in the cytoplasm and enhances its cytotoxic effectiveness. Therefore, targeting lysosomal TPC2 may help overcome chemoresistance in ALL cells (237). Similar may apply in AML, although different mechanisms may contribute to lysosomal deregulation in different types of leukemia (238–240).

4.4 Calcium ATPases and secondary-active Ca\(^{2+}\) transporters

Several types of Ca\(^{2+}\) ATPases are involved in the maintenance of transmembrane Ca\(^{2+}\) gradients between the cytosol and the blood plasma as well as between the cytosol and the inner compartments of the organelles. Plasma membranes are equipped with several isoforms of the plasma membrane calcium ATPases (PMCA) (241, 242) (Figure 1). Human monocytes and macrophages express plasma membrane Na*/Ca\(^{2+}\) exchanger NCX that actively extrudes Ca\(^{2+}\) while taking in Na\(^{+}\) transported passively using the energy of transmembrane Na\(^{+}\) gradient generated by the Na*/K* ATPase (243). Mitochondrial membrane contains its own Na*(Li+)/Ca\(^{2+}\) exchanger (NCLX) that controls Ca\(^{2+}\) levels in the mitochondria (244). Cells also pump Ca\(^{2+}\) out of the cytoplasm into the Golgi apparatus through secretory pathway Ca\(^{2+}\) ATPases (SPCA), and to the ER through SERCA (245) (Figure 1). The activity of SERCA reflects the activation state of T-cells (246), B-cells (247), Th1 and Th2 lymphocytes (248). Of these molecules, SERCA has been reported to be dysregulated in a number of hematologic malignancies.

4.4.1 Sarco-endoplasmic reticulum calcium ATPase

There are three SERCA genes in humans and alternative splicing can give rise to many isoforms (10). In response to differentiation, SERCA3 expression changes in leukemic megakaryocytic cell line Meg-01, precursor B-ALL cell lines (Kasumi-2 and RCH-ACV), and APL cell lines (NB4 and HL-60) (249–251). All-trans retinoic acid-induced differentiation of APL cells results in increasing SERCA3 expression and SERCA3-dependent Ca\(^{2+}\) accumulation (249). When SERCA activity is inhibited, lower concentrations of retinoic acid can induce differentiation of NB4 and HL-60 cell lines (252).

In a human T-ALL xenograft mouse model, SERCA inhibition with thapsigargin reduces tumor growth (253). Thapsigargin prevents the activation of the transmembrane receptor, NOTCH1, which often contains activating mutations in T-ALL, CLL, mantle cell lymphoma, and a subset of DLBCL (10, 253). The reduction of Ca\(^{2+}\) entering the ER upon SERCA inhibition changes the folding and trafficking of NOTCH1 (10, 253). As reviewed by
Pagliaro et al, other SERCA inhibitors have been developed that induce apoptosis in a range of leukemic cell lines and xenograft models including T-ALL, B-ALL, mantle cell lymphoma, and AML (10). In contrast, when SERCA expression is reduced or its activity is inhibited by oncogenes such as Bcl-2 and Ras, the decrease in ER Ca\(^{2+}\) concentrations reduces the potential for a Ca\(^{2+}\) overload and initiation of apoptosis in response to ER stress (219, 254).

4.5 Calcium sensor and effector proteins

Some of the downstream Ca\(^{2+}\) sensor proteins implicated in blood cancer include the S100 family, calcium/calmodulin-stimulated protein kinases (CaMKs), calcineurin, CALR, and PKC. Dysregulation of these Ca\(^{2+}\) sensors alters gene regulation associated with cell apoptosis, proliferation, and migration (Table 2).

Table 2: The differential expression of calcium sensor and effector proteins and their relative contribution to the malignant phenotype of different blood cancers.

Cancer type	Molecule	Change in disease	Functional effects	References	
AML	S100-A4	† expression	↓ overall survival (P), ↑ cell proliferation (C), ↑ migration (C), ↑ drug resistance (C), ↓ drug resistance (C), ↓ apoptosis (C), ↓ differentiation (C), ↓ overall survival (P)	(255–259)	
	S100-A8 or A9	↑ expression	↓ overall survival (P,M), ↑ event free survival (P), ↑ drug resistance (C), ↓ apoptosis (C), ↓ overall survival (P)	(255, 260–263)	
	S100-P	↑ expression	↑ overall survival (P), differentiation (C)	(259, 266–268)	
	CAMKI	↑ expression	↑ cell proliferation (C,M), ↓ overall survival (P)	(269)	
	CAMKII	↑ activation	↓ differentiation (C), ↑ cell proliferation (C)	(270)	
	CAMKIV	↑ expression	↑ cell proliferation (C,M), ↓ overall survival (P)	(269)	
	PKC\(_\alpha\)	↑ expression and activation	↑ Bcl-2 phosphorylation (P), ↑ overall survival (P)	(271–273)	
ALL	S100-A4	† expression (C,P)			
	S100-A6	↓ expression	↓ overall survival (M), ↓ cell proliferation (M), ↓ apoptosis (C)	(274–278)	
	S100-A8 or A9	↓ expression	↓ event free survival (P), ↓ Ca\(^{2+}\) influx (C), ↓ drug resistance (C,P), ↓ relapse (P)	(274, 279)	
	PKC\(_\alpha\)	↑ activation	↑ cell proliferation (C,M), ↓ apoptosis (C), ↓ disease progression (M)	(280, 281)	
	S100-A4	↑ expression	↑ drug resistance (C)	(282)	
	S100-A8 or A9	↑ expression	↑ drug resistance (C), ↓ apoptosis (C), ↓ disease progression (M)	(266, 283)	
	CAMKII	↑ activation	↑ cell proliferation (C)	(270)	
	CAMKII	↑ expression	↑ drug resistance (P)	(284)	
	PKC\(_\alpha\)	↓ expression	↑ association with cell membrane (P)	(285)	
	PKC\(_\beta\)	↑ expression (P)			
	FKBP5	↑ expression in megakaryocytes	↑ cell survival (P), ↓ calcineurin activity (P), ↑ STAT5 activation (C,P)	(288, 289)	
	CALR	mutations, predicted loss of Ca\(^{2+}\) binding	↑ Ca\(^{2+}\) influx (P), ↑ proliferation of megakaryocytes (P)	(9, 290, 291)	
CML	S100-A8	↑ expression	↑ disease progression (P), ↑ need for early treatment (P)	(292)	
	PKC\(_\alpha\)	↑ expression (P)			
	PKC\(_\beta\)	↑ expression, ↑ activation	↑ Ca\(^{2+}\) influx (P), ↑ cell survival (P,M), ↓ apoptosis (P)	(286, 289, 294)	
MPN	S100-A4	↑ expression	↑ inflammation (P)	(287)	
	S100-A8 or A9	↑ expression	↑ inflammation (P), ↓ cell proliferation (P)	(287)	
	FKBP5	↑ expression in megakaryocytes			
	CALR	mutations, predicted loss of Ca\(^{2+}\) binding	↑ Ca\(^{2+}\) influx (P), ↑ proliferation of megakaryocytes (P)	(9, 290, 291)	
CLL	S100-A8	↑ expression	↑ disease progression (P), ↑ need for early treatment (P)	(292)	
	PKC\(_\alpha\)	↑ expression (P)			
	PKC\(_\beta\)	↑ expression, ↑ activation	↑ Ca\(^{2+}\) influx (P), ↑ cell survival (P,M), ↓ apoptosis (P)	(286, 289, 294)	
DLBCL	S100-A4	↑ expression	↑ drug resistance (P)	(295)	
	S100-A8 or A9	↑ expression	↑ drug resistance (P)	(295)	
	Calcineurin	↑ activation	↑ cell proliferation (C), ↓ apoptosis (C)	(288, 296)	
T-cell lymphoma	S100-A9	↑ expression	↑ drug resistance (P), ↓ overall survival (P), ↓ progression free survival (P), ↓ early reoccurrence rate (P)	(297, 298)	
Plasma cell myeloma	CAMKII	↑ expression	↑ disease progression (P), ↓ overall survival (P), ↑ cell proliferation (C), ↓ apoptosis (C)	(299)	

(P) = Patient cells, (C) = Cell lines, (M) = Mouse model. † = increased, = decreased. Expression changes are often found in particular cell lines or leukemic subtypes and not in others. Empty cells indicate there is no data. AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; DLBCL, diffuse large B-cell lymphoma; MPN, myeloproliferative neoplasms (classical Philadelphia chromosome-negative).
4.5.1 S100 family

The S100 family are Ca\(^{2+}\) binding proteins of which many have been reported to be dysregulated in AML, ALL, CLL, MPN, and lymphomas (292, 295, 300, 301). S100-A8 and A9 are the most well-studied members of the S100 family in leukemia. Dysregulation of their expression, and changes in plasma levels, or secretion levels in the bone marrow microenvironment have been reported in AML (300, 301). S100-A8 and A9 are dose-dependent regulators of myeloid differentiation and leukemic cell proliferation and can play contradictory roles, depending on their expression levels as monomers, homodimers, or heterodimers (300, 301). S100-A8 and A9 are expressed constitutively in the cytoplasm of myeloid cells, including myeloid precursors, but are absent from lymphocytes (301). Increased activity of multiple S100 family members is associated with increased drug resistance in hematologic malignancies including AML, CML, ALL, and B-cell lymphomas (302, 303). For example, S100-A8/A9 contribute to gilteritinib resistance in FLT3-internal tandem duplications- (FLT3-ITD)-positive AML primary cells and cell lines (304). Particularly, S100-A9 expression has been found to be more consistently and remarkably altered than S100-A8 in human FLT3-ITD-positive AML cell lines (MOLM13 and MOLM13-RES) after gilteritinib treatment. The potential mechanism is gilteritinib promotes Bcl-6 dissociation from the S100-A9 promoter, which leads to upregulation of S100-A9 (304).

4.5.2 Calcium/calmodulin-stimulated protein kinase family

Calmodulin is a Ca\(^{2+}\)-binding protein that regulates a wide variety of cellular processes via interaction with multiple target proteins (305). The CaMK family members are activated when bound to Ca\(^{2+}\)-saturated calmodulin (306). CaMK family members are overexpressed or aberrantly activated in CML, AML, and plasma cell myeloma (269, 270, 284, 299, 307). Inhibition or knockdown of CaMKI, CaMKII, or CaMKIV reduces proliferation in different myeloid leukemia cells and multiple CAMK or calmodulin antagonists have been used to inhibit leukemic cell growth and proliferation (269, 270, 305–307). High expression of CaMKs is associated with a poor overall survival probability in patients with plasma cell myeloma or AML (269, 299). Deletion of CaMKII suppresses T-cell lymphomagenesis in mice, and T-cell lymphoma cell line growth (comprising H9, JB6, Jurkat, and SU-DHL-1) is suppressed when CaMKII activity is inhibited (308). CaMKII is also activated by the constitutively active tyrosine kinase BCR::ABL1 in CML cells. The tyrosine kinase inhibitor (TKI) imatinib, inhibits proliferation of BCR::ABL1 expressing cells and is accompanied by a rapid decrease in activated (autophosphorylated) CaMKII (270). In an inducible BCR::ABL1 cell line (TonB210.1), decreased BCR::ABL1 expression is also accompanied by a reduction of autophosphorylated CaMKII, and inducing BCR::ABL1 expression restores CaMKII autophosphorylation (270). CAMKII-γ is highly activated in CML LSCs and its aberrant activation accelerates CML proliferation (309). In a mouse xenograft model of patient-derived CML cells, LSCs were eliminated by an ATP-competitive CAMKII-γ inhibitor berbamine (310).

4.5.3 Calcineurin

Calcineurin is a calcium-calmodulin-dependent phosphatase, that when activated by Ca\(^{2+}\) and calmodulin, dephosphorylates its substrates including nuclear factor of activated T-cells (NFAT) (311). Dephosphorylated NFAT proteins translocate into the nucleus to regulate the transcription of genes important for cell proliferation, growth, migration, differentiation, and survival (311). The calcineurin-NFAT pathway negatively regulates megakaryopoiesis (312). Inappropriate inhibition of this pathway may contribute to the pathological expansion of megakaryocytes and their precursors, in particular in the context of Down syndrome (313, 314) (see Figure 5A and the corresponding legend for molecular details). The calcineurin inhibitor FKBP5 (FK506 binding protein) is overexpressed in megakaryocytes from patients with PMF. FKBP5 overexpression in UT-7 cells (a factor-dependent human cell line with a megakaryocytic phenotype) promotes cell survival after cytokine deprivation, suggesting a pathway to disease development through the inhibition of calcineurin (288).

Calcineurin and NFAT have also been implicated in other hematologic malignancies, including Burkitt lymphoma, T-cell lymphoma, T-ALL, DLBCL, CML, CLL, and AML (311, 315, 316). The calcineurin inhibitors, cyclosporin A, and tacrolimus (FK506), have anti-leukemic effects in mice T-ALL models, and deletion of calcineurin specifically in T-ALL leukemic cells results in impaired leukemia progression (280, 281). Inhibition of calcineurin by cyclosporin A or FK506 is also selectively cytotoxic against the ABC-DLBCL (296). This response to calcineurin inhibitors is associated with reduced NFAT-mediated expression of critical genes, including c-Jun, signal transducer and activator of transcription 3 (STAT3), interleukin-6 and interleukin-10 that are crucial for survival of ABC-DLBCL cells (296).

4.5.4 Calreticulin

CALR, amongst its other functions, is an ER-resident Ca\(^{2+}\)-buffering protein that helps maintain intracellular Ca\(^{2+}\) homeostasis and assists the folding of proteins destined for secretion or insertion into the plasma membrane (317). CALR is mutated in approximately one-quarter of the Philadelphia chromosome-negative MPNs, PMF and essential thrombocythemia (290, 318). The mutations in CALR, as well as JAK2 and MPL (Figure 5B, left), converge to constitutively activate JAK2-STAT signaling, which drives deregulated expansion of HSCs and megakaryocytes (317, 318). CALR mutations have two main variants, type 1 and type 2. Type 1 or type 1-like mutations are mostly large deletions of which a 52-bp deletion is the most common; while type 2 or type 2-like are mostly small insertions of which a 5-bp insertion is the
most common. Type 1 mutations are predicted to impair the Ca\(^{2+}\)-binding activity of CALR more than type 2 (319). Congruently, type 1 mutations associate with higher ER Ca\(^{2+}\) release, higher SOCE, and spontaneous cytosolic Ca\(^{2+}\) oscillations in cultured megakaryocytes.

CALR assists the folding of STIM1, and whilst they are bound, STIM1 is in an inactive configuration on the ER membrane inhibiting SOCE (9). Megakaryocytes with mutated CALR have a decreased association between CALR and STIM1 (Figure 5B, right), and the CALR type 1 variant has the highest level of dissociation from STIM1. Defective interaction between mutant CALR and STIM1 activates SOCE and generates spontaneous cytosolic Ca\(^{2+}\) influx. This, in turn, increases megakaryocyte proliferation, which can be reversed using a specific SOCE inhibitor (9). Thus, the impact of mutated CALR on Ca\(^{2+}\) homeostasis may be influencing the course of MPN in combination with its aberrant activation of JAK2-STAT signaling. Further elucidation of these mechanisms may inform the development of new drugs to improve the effects of JAK2 inhibition.

4.5.5 Protein kinase C

PKC is activated by the second messenger DAG, which is hydrolyzed from PIP2 following receptor engagement and PLC activation (320, 321). The PKC family has many isoforms that can be categorized into three groups: conventional PKC isoforms, novel PKC isoforms, and atypical PKC isoforms (320, 321). A range of PKC isoforms are up- or down-regulated which can affect cell growth and survival in AML, CML, CLL, and plasma cell myeloma (286, 322, 323). Only the conventional PKC isoforms (α, β, and γ) are activated by Ca\(^{2+}\) as well as DAG (320, 321). In CML, the BCR:ABL1 phosphorylates a range of PKC isoforms leading to altered activity (323). ER Ca\(^{2+}\) release and SOCE are reduced in cell lines that express BCR:ABL1 (171, 324). These abnormal Ca\(^{2+}\) responses are Bcl-2 independent but PKC dependent. PKC-β overexpression is significantly associated with resistance to TKIs such as imatinib (323, 325). Suppressing PKC-β activity or expression in TKI-resistant CML patient cells and cell lines increases the sensitivity to imatinib (325). Inhibition of PKC-β increases the effect of imatinib on reducing leukemic cell proliferation in a CML mouse model and also prolongs survival (325). Outside of CML, PKC-β was found to be essential for CLL development in a mouse model and promotes cell growth and survival of CLL cells (294, 322, 326).

5 Mutational landscape in the calcium-toolkit encoding genes recorded in publically accessible blood cancers databases

We reviewed publically available genetic cancer databases for mutations affecting molecules described in this review across the main blood cancer types. Figure 6 demonstrates the mutational landscape in lymphoid cancers and Figure 7 in myeloid cancers. We obtained this data using cBioPortal for Cancer Genomics platform (https://www.cbioportal.org/) (354, 355). The Ca\(^{2+}\)-toolkit encoding genes were queried as gene sets grouped according to function (see Supplementary Table S1). Results are observational only and require validation but are useful to generate hypotheses for future research and to assist discussion. The datasets available for interrogation and the samples reviewed are listed in Supplementary Tables S2 and S3. The lymphoid neoplasms reviewed included B-ALL (n = 234-269 patients depending on the gene), DLBCL (n = 1288), low-grade B-cell neoplasms (n = 1542), primary cutaneous CD8/CD30 positive lymphomas (n = 14), monoclonal B-cell lymphocytosis (n = 54), mantle cell lymphoma (n = 29), plasma cell myeloma (n = 205) and low-grade T-cell neoplasms (n = 43) including Sezary syndrome (n = 26), primary cutaneous CD8/CD30 positive lymphomas (n = 14) and mycosis fungoides (n = 3) (Figure 6, Table 3 and Supplementary Table 2). Of these lymphoid cancers, patients with B-ALL had the lowest frequency of variants in the Ca\(^{2+}\)-toolkit encoding genes (5.9%) and patients with low-grade T-cell neoplasms had the highest frequency (48.8%), most carrying
multiple variants (Figure 6 and Table 3). The **GRIN** genes encoding NMDA receptor subunits and the **ITPR** genes encoding IP3Rs were mutated in 1.3% of B-ALL patients each, other variants were present in <1% of B-ALL patients. The cBioPortal data did not yet contain results of Bohannan et al. published earlier this year that reported the presence of **GRIN2C** mutations in high-risk B-ALL patients (145) (Figure 3C). It would be interesting to review these data when it becomes publically available, and pursue similar analysis in larger studies in the future.

In mature T-cell neoplasms, the most affected genes were those coding for PLC (16.3%), **Ca**^2+^/Na+/K+ exchangers (14.0%), **TRPC** and **TRPM** channels (11.6% each), **CaV** and **NMDA** receptor channels (9.3% each), ryanodine receptors (RYR) (7.0%), and a few others at 4.7% each (TRPV, **P2RX**, and **SERCA**) (Figure 6 and Table 3). This particularly high frequency of variants in cutaneous T-cell neoplasms requires confirmation in larger cohorts. Unfortunately, no other mature or precursor T-cell malignancies could be reliably reviewed. Less than 10 T-ALL samples with mutational data were identified and

FIGURE 6

Calcium-toolkit mutations in lymphoid neoplasms. Oncoprints are shown generated using cBioportal for Cancer Genomics platform [https://www.cbioportal.org/]. Events were analyzed per patient, frequencies are listed. Unaltered columns and whitespaces between columns are not shown. The **Ca**^2+^-toolkit genes were grouped according to function (see Supplemental Table 1). The molecular profiles queried included mutations but excluded copy number variations and structural variants as these were not available for most patients. The databases analyzed are indicated in the figure and referenced below: 1) For B-ALL: Acute Lymphoblastic Leukemia databases St Jude Nat Genet 2015 (327), St Jude Nat Genet 2016 (328) and Pediatric Acute Lymphoid Leukemia Phase II TARGET 2018. TARGET data was generated by the Therapeutically Applicable Research to Generate Effective Treatments initiative and is available at https://portal.gdc.cancer.gov/projects. The St Jude database also contained 8 T-ALL, 10 AML, and 5 unspecified leukemias - none had relevant mutations and these cases were excluded from the total. There were no other T-ALL cases with mutational data available for analysis so this cancer type could not be analyzed further. 2) For DLBCL: Diffuse large B-cell Lymphoma databases DFCI Nat Med 2018 (329), Duke Cell 2017 (330), Broad PNAS 2012 (331), TCGA PanCancer Atlas (332–340), and BCGSC Blood 2013 (341). 3) For low-grade B-cell neoplasms: Chronic Lymphocytic Leukemia databases Broad Cell 2013 (342), Broad Nature 2015 (343), ICGC Nature Genetics 2011 (345), Mantle Cell Lymphoma database IDIBIPS PNAS 2013 (346), and Multiple Myeloma database Broad Cancer Cell 2014 (347). 4) For low-grade T-cell neoplasms: Cutaneous T Cell Lymphoma database Colombia U Nat Genet 2015 (348). Only patients with the appropriate diagnoses were selected. Specific cases analyzed are listed in Supplemental Table 2. The cBioPortal queries can be retrieved at the following links: B-ALL https://bit.ly/3Q9ZG7v, DLBC https://bit.ly/3C31p4q8, low-grade B-cell neoplasms https://bit.ly/3APB7Xx, low-grade T-cell neoplasms https://bit.ly/3TvDZsT. Specific genetic variants can be found through these links, all were of unknown significance. *Numbers of patients analyzed and disease groups are clarified in Table 3.*
none had relevant mutations. Ca^{2+} signaling is critical for T-cell activation downstream of TCR and linked closely with the regulation of T-cell metabolism (356). Multiple studies highlighted the role of Orai, CaV, TRP, NMDA receptors and other Ca^{2+} regulators in normal and malignant T-cells (134, 192, 357–361). Further studies are required to examine potential contribution of these changes in T-cell cancers.

In mature B-cell neoplasms, mutated genes were broadly similar between the low-grade and high-grade cancers (Figure 6 and Table 3). The frequency of variants was higher in patients with low-grade B-cell neoplasms, 23.0% compared with 13.9% in DLBCL, but many patients with DLBCL had multiple variants. The types of variants were similar between patients with CLL, monoclonal B-cell lymphocytosis, mantle cell lymphoma and plasma cell myeloma. In low-grade B-cell lymphoproliferative disorders, variants in RYR1-3 were the most common (4.5%), followed by PLC (3.2%), CACNA (2.8%), TRPM (2.6%) and TRPC genes (2.1%), with others present in <2% of patients. Some of these mutations appeared exclusive between each other. In DLBCL, RYR mutations were less common (2.5%) but CACNA variants were more common (3.8%) (Figure 6 and Table 3). One could hypothesize that the acquisition of multiple mutations associates with a higher grade. Further bioinformatics analysis and laboratory studies to determine the role of gene variants in lymphoid cancers appears warranted. For example, experimental studies to examine the contribution of mutations in plasma membrane Ca^{2+} channels and RYRs would be of interest. The existing literature in this area is limited. RYRs facilitate the
release of Ca2+ from the ER in addition to IP3Rs (362) (Figure 1). They are the largest ion channels known regulated by CaV1.1/CaV1.2-mediated Ca2+ entry, as well as other small molecules including ATP, calmodulin, calsequestrin and CaMKII (363). RYR1 is primarily expressed in skeletal muscles but is also present in B-lymphocytes (364, 365) and Burkitt lymphoma-derived Namalwa cells (366). The RYR role in B-cell function remains unclear but its activity downregulates CD38 expression (366). High levels of CD38 associate with poor risk CLL (367). Studies to determine the mechanism of the RYR contribution to the regulation of CD38 and the impact of RYR mutations on CD38 expression and B-cell activation may be helpful.

In the group of myeloid neoplasms, we reviewed 821 patients with AML, 151 with MPN and 31-431 patients with myelodysplastic syndrome (MDS) (depending on the gene) (Figure 7, Table 3 and Supplementary Table S3). Compared with B-ALL, AML patients carried more variants (11.9% versus 5.5% in B-ALL patients). Variants in \textit{CACNA} (1.8%) and \textit{TRP} genes (2.2% in TRPM, 1.1% in TRPC, 0.7% in TRPV) were the most common in AML but no variants exceeded 3% frequency. MDS patients had a

TABLE 3 Frequencies of genetic variants in the calcium-toolkit encoding genes documented in lymphoid and myeloid cancer databases.

Cancer type	Lymphoid		Myeloid										
	B-ALL	DLBCL	Low-grade B-cell neoplasms	T-cell	Low-grade T-cell neoplasms	AML	MDS	MPN					
Total number of patients per cancer type	234 except 1269	1288	Total 1542	CLL 1254	MBL 54	MCL 29	PCM 205	43	821	31 except 209	431	433	151
Gene sets analyzed	% of patients with gene variants in each cancer type												
CACNA	0.0	3.8	2.2	5.6	0.0	6.3	9.3	1.8	0.0	2.0			
TRPC	0.4	2.6	2.1	3.9	0.0	1.5	1.1	3.2	2.0				
TRPV	0.4	0.3	0.8	0.6	0.0	3.4	2.0	4.7	0.7	0.0	0.0		
TRPM	0.4	2.7	2.6	1.9	3.7	10.3	5.4	11.6	2.2	3.2	0.7		
VDAC	0.0	0.0	0.1	0.0	0.0	0.0	1.0	0.0	0.1	0.0	0.0		
GRIN	1.3	1.6	0.9	0.8	0.0	3.4	1.5	9.3	1.1	1.0	2.0		
P2RX	0.0	0.7	0.3	0.2	0.0	0.0	1.0	4.7	0.1	0.0	0.7		
nACsR	0.4	0.9	1.2	0.8	1.9	3.4	3.4	4.7	0.7	0.0	0.0		
PIEZO	0.0	0.4	0.5	0.5	0.0	0.0	0.5	0.0	0.2	0.0	0.0		
Orai	0.0	0.4	0.3	0.1	0.0	0.0	2.0	0.0	0.5	0.0	0.7		
STIM	0.4	0.2	0.1	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0		
ITPR	1.3	1.4	0.8	0.6	1.9	0.0	2.0	2.3	0.5	0.0	0.7		
Ryr	0.4	2.5	4.5	3.8	0.0	0.0	10.2	7.0	0.6	0.0	0.7		
SERCA	0.01	1.2	1.6	1.4	1.4	2.0	2.0	4.7	1.5	3.2	0.7		
Calcium exchangers	0.0	1.2	1.4	1.1	1.9	0.0	2.9	14.0	0.9	3.2	0.0		
Mitochondrial calcium regulators	0.0	0.5	0.6	0.8	0.0	0.0	0.0	0.0	0.1	0.0	0.0		
Endolysosomal calcium channels	0.4	0.7	0.5	0.3	0.0	3.4	1.0	2.3	0.4	0.0	0.0		
CALR	0.0	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.7	1.41	16.6		
Calcium binders	0.01	1.1	0.1	0.1	0.0	0.0	0.5	0.0	0.2	0.0	0.0		
S100 family	0.4	0.2	0.1	0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0		
PKC	0.0	0.2	0.1	0.1	0.0	0.0	0.5	0.0	0.0	0.0	0.0		
CAMK	0.0	0.2	1.0	0.9	0.0	0.0	2.4	0.0	1.0	0.0	0.0		
PLC	0.9	3.4	3.2	3.1	1.9	0.0	4.9	16.3	1.8	0.01	0.7		
Calcineurin	0.0	0.5	0.1	0.1	0.0	0.0	0.5	0.0	0.5	0.0	0.0		
Total % of patients with genetic variants5	5.91	13.9	23.0	20.3	22.2	24.1	39.0	48.8	11.9	2.31	26.5		

This table provides a summary of data displayed in Figures 6, 7. The gene sets are listed in Supplemental Table 1 and the full list of cases reviewed is provided in Supplemental Table 2 (lymphoid cases) and Supplemental Table 3 (myeloid cases).1,2,3,4 Patient numbers varied for these groups from the overall total as shown.5 Many patients had multiple genetic variants.

AML, acute myeloid leukemia; B-ALL, acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B-cell lymphoma; MCL, mantle cell lymphoma; MBL, monoclonal B-cell lymphocytosis; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasms; PCM, plasma cell myeloma.

1From Table 1.

2From Table 3.

3From Table S3.

4From Table S5.

5From Table S7.
lower frequency of variants at 2.3% overall, although data for these patients was limited. In the MPN group, 17% had CALR mutations, consistent with it being a known MPN driver (353, 368). In addition, a further 9.5% of MPN patients had variants in other Ca²⁺-toolkit genes (including 2.0% in CACNA, TRPC and GRIN genes each). It was intriguing that these variants were exclusive with CALR mutations and also appeared exclusive with each other, raising the possibility of their independent effects in MPN (Figure 7 and Table 3). Evidence slowly accumulates that Ca²⁺ signaling is aberrant in CALR-mutated MPN (9, 290, 291, 319). The
Target Compound	Functional effects	Cancer type	References	
Plasma membrane Ca2+ channel activators				
TRPV2	Cannabidiol	↑ cytoplasmic [Ca2+], ↑ ROS production, induces mitophagy, ↓ cell viability, ↓ cell proliferation, ↓ cell cycle progression	CML (C)	(147)
			Plasma cell myeloma (C)	(372)
NMDAR	Glutamate	↑ cytoplasmic [Ca2+], ↑ cell proliferation	AML (C)	(182, 183, 373)
NMDA		↑ cytoplasmic [Ca2+], ↑ cell proliferation	AML (C)	(182, 183, 373)
Plasma membrane Ca2+ channel inhibitors				
P2X7	A740003	↓ cell proliferation, ↓ self-renewal of leukemia-initiating cells, ↑ survival time	AML (C,M)	(124, 125)
	AZ10606120	↓ cytoplasmic [Ca2+] influx, ↓ leukemic growth	AML (C,M)	(126)
TRPC3	Pyr3	Pyr3 and Dex - co-treatment: ↓ Dex-mediated Ca2+signaling, ↑ cell death, ↑ cell cycle arrest, ↑ apoptosis, ↑ mitochondrial membrane potential depolarization, ↑ ROS production	ALL (P,C)	(374)
TRPV2	Tranilast	↓ cytoplasmic [Ca2+], ↓ cell growth, ↑ apoptosis, ↑ cell cycle arrest	AML (C)	(374)
			CML (C)	(374)
			Non-Hodgkin lymphoma (C)	(127)
α7-nAChR	Methyllycaconitine citrate	↑ cytoplasmic [Ca2+], ↓ proliferation	AML (C)	(127)
	NBP-14	↓ migration, ↓ α7-nAChR expression	AML (C)	(177)
			CML (C)	(151)
NMDA receptor	Memantine	↓ cytoplasmic [Ca2+], ↓ proliferation, ↓ cell viability, facilitates differentiation, inhibits proplatelet formation, alters expression of Ca2+ channels and pumps, ↑ cytarabine-mediated cell killing	AML (C)	(182, 183, 373)
	MK-801	↓ cytoplasmic [Ca2+], ↓ cell proliferation, ↓ cell viability, facilitates differentiation, inhibits proplatelet formation	AML (C)	(182, 373)
VDAC	VDAC-based (decoy) peptides	mitochondrial dysfunction, ↓ ATP production, mitochondrial Ca2+ overload, cytochrome c release and apoptosis	ALL (C)	(188, 192)
	Arvisin	as above	ALL (C)	(182, 375)
Ca\textsubscript{v}1.2	Lercanidipine	↓ Ca2+ influx into AML-MSCs, ↓ proliferation of AML-MSCs and of AML blasts, sensitizes leukemia cells to other drugs	ALL (P,M)	(138)
Ca\textsubscript{v}3	mibefradil and NNC-55-0396	↓ cytoplasmic [Ca2+], ↓ proliferation, ↓ apoptosis	ALL (C)	(376)
ER/SOCE Ca2+ channel and effector modulators				
Broad inhibitor of SOCEa	BTP-2	↓ megakaryocyte proliferation	CALR, mutated MPN	(9)
Bcl2 inhibitor	BIRD-2	Disrupts the Bcl2-IP3R interaction, ↑ cytoplasmic [Ca2+] through IP3R, ↑ apoptosis	CLL (C)	(154, 226–228)
			DBLCL (C)	(153–155, 225, 228)
			Follicular lymphoma (C)	(227)
			Plasma cell myeloma (C)	(227)
IP3R	Wogonoside – IP3R1 activator	↑ cytoplasmic [Ca2+], increases differentiation, induces cell cycle arrest, ↓ cell viability, ↓ STAT3 activation	AML (C,M)	(377, 378)
	Xestospongin – IP3R inhibitor	Inhibits Ca2+ release into cytoplasm, ↑ cell death, synergy with Dex to further ↑ cell death	ALL (C)	(379)
			ALL (C)	(380)

(Continued)
pattern of the mutational landscape revealed by our review argues that further work into Ca²⁺ signaling in MPN is warranted, including in patients without CALR mutations.

6 Concluding remarks

In all cell types, including hematopoietic, Ca²⁺ is an essential second messenger controlling a wide range of cellular functions, including activation of gene transcription, protein kinase signaling, cell cycle, cell survival, proliferation, differentiation, migration, and apoptosis (2–4). Others have reviewed deregulation of Ca²⁺ signaling in specific cancer subtypes such as AML, CLL and plasma cell myeloma, and summarized the influence of Ca²⁺ remodeling on cell proliferation and differentiation (369–371). Our review is the first one, to our knowledge, that highlights the extent and intricacies of alterations in the Ca²⁺-toolkit in a wide range of hematologic cancers. We also provide a review of blood cancer databases for genetic variants in the Ca²⁺-toolkit encoding genes.

It has been well documented that in solid tumors, cancer cells remodel Ca²⁺ signaling to enhance cancer hallmarks (1, 2). Our review emphasizes that similar alterations occur in blood cancer, driven by changes in expression, function and possibly mutations in the Ca²⁺-toolkit components. Figure 8 provides a schematic summary of the underlying mechanisms and their consequences in blood cancer cells. Normal cells in response to activation mostly use Ca²⁺ released from the ER to support signaling. However, prolonged IP3R-mediated Ca²⁺ release in chronically activated cancer cells (e.g. due to oncogenic mutations) may lead to mitochondrial Ca²⁺ overload triggering apoptosis. Therefore, to

TABLE 4 Continued

Endo-lysosomal Ca²⁺ modulators
TPC1/2 inhibitor
Tetrandrine
↓ cell proliferation, ↓ cell death
Inhibits cytotoxic drug sequestration in the lysosomes which helps overcome chemoresistance

References were prioritized that include data on the effects on calcium signaling. ↑ = increased, ↓ = decreased. *Broad inhibitors of SOCE were used in many studies. Their effects are not listed but this particular example has been included to reflect the emerging therapeutic potential for the modulation of SOCE in CALR-mutated MPN. (P) = Patient cells, (C) = Cell lines, (M) = Mouse model. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; Dex, dexamethasone; DLBCL, diffuse large B-cell lymphoma; LSCs, leukemia stem cells. MPN, myeloproliferative neoplasms.
escape apoptosis, cancer cells shift to preferentially utilize extracellular Ca2+ transferred into cells by overexpressed or overactive plasma membrane Ca2+ channels. On the other hand, mechanisms that utilize ER-derived Ca2+ may be reduced, and overactive SERCA2 pumps Ca2+ back into the ER. This remodeling of Ca2+ signaling helps cells maintain heightened oncogenic signaling while shielding mitochondria from Ca2+ overload. The examples of mechanisms providing anti-apoptotic effects include Bcl-2-mediated inhibition of IP3R in DLBCL and reduced ER Ca2+ binding by mutated CALR in MPN. In addition, intracellular mediators of Ca2+ signaling may be overexpressed or overactive e.g. PLC, PKC, ORP4L, calcineurin and CaMK. Understanding how Ca2+ signaling remodelling in cancer cells creates therapeutic opportunities, with the potential to spare normal cells and tailor therapies according to the underlying mechanism in different cancers/patients (Figure 8).

Research into Ca2+ signaling in blood cancer has become very active in recent years. Many critical discoveries have been made but multiple challenges remain. We highlighted some areas for future investigation throughout this review, including the need to characterize diverse mechanisms of Ca2+ remodeling and determine the significance of the mutational landscape affecting the Ca2+-toolkit genes in different cancer types. Such work is not easy. Ca2+ signaling is a complex network of intertwining pathways and ubiquitous for cellular functioning. It can be difficult to identify the causes and consequences of the changes found in blood cancer. Most of the previous studies focused on a specific mechanism of Ca2+ signaling in isolation and used cell lines to characterize it. Moving forward, we should consider changes to the entire Ca2+ toolkit and use multiple disease models ex vivo and in vivo to study effects of multiple gene networks in cancer cells and stromal cells. This will require innovative approaches and collaboration between experts in Ca2+ signaling, hematological sciences and clinical hematologists.

The ultimate aim of pursuing research in this area is to improve the treatment of patients. Calcium pathways are amenable to modulation and may offer novel points for therapeutic intervention. The main targets/pathways were recently summarized for AML (371). Our Table 4 provides a range of examples of compounds/drugs that have been found to exert an impact on the functional outcome in vitro or in vivo in diverse blood cancer types. Some of these compounds are in clinical use for other applications or undergo pre-clinical/clinical testing in solid tumors (394, 395). If their targets are found to be pathogenic in blood cancer, these drugs could be rapidly transitioned to hematologic applications.

In conclusion, multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis, including in MPN, B-cell and T-cell lymphoproliferative disorders, but studies are limited. Most changes in the Ca2+-toolkit do not appear to define or associate with specific cancer types but may influence variables such as grade (e.g. in mature B-cell neoplasms), prognosis including responsiveness to chemotherapy (e.g. in ALL, AML and CLL), and complications (e.g. thrombosis and bone marrow fibrosis in MPN).

Deregulation of Ca2+signaling provides an opportunity to design novel therapeutic interventions. Some options are currently investigated mostly at the pre-clinical level in various cancer models (e.g. of AML, ALL and DLBCL). Similar opportunities are being considered in solid tumours, which may facilitate faster clinical translation to blood cancer. Future research to define the role of specific Ca2+ regulatory mechanisms in different blood cancer types will be challenging but such work is likely to advance therapies.

Author contributions

MLK-Z conceived and designed the work. TI and MLK-Z wrote most of the paper. JL and TNG helped with the literature review, figure preparation, and writing of specific sections; JL wrote the TRP section, TNG wrote about VDACs and helped analyze the cBioPortal data. AB provided advice and wrote about calcium homeostasis in mature red cells. All authors contributed to the article and approved the submitted version.

Funding

Bone Marrow Cancer Research Trust (Christchurch) (UoA 9102-3720536) and Auckland Medical Research Foundation (Funder reference 1119009) provided salary funding to staff working on this project but had no influence over any aspects of the work or the decision to publish.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.1010506/full#supplementary-material
95. HangX P, Telerzhkin V, Kemp E, Schmugg M, Gassmann M, Goodf J, et al. Functional expression of the n-Methyl-D-Aspartate receptor in differentiating human erythroid precursor cells. Am J Physiol Cell Physiol (2015) 308(2):C993–C1007. doi: 10.1152/ajpcell.00395.2014

96. Kalev-Zylinska ML, Green TN, Mörk-Kopp MC, Sun PP, Park YE, Lasham A, et al. N-Methyl-D-Aspartate receptors amplify activation and aggregation of human platelets. Thromb Res (2014) 133(5–6):e37–47. doi: 10.1016/j.thromres.2014.02.011

97. Kalev-Zylinska ML, Mörk-Kopp MC, Ward CM, Hearn JI, Hamilton JR, Bogdanova YA. Ionotropic glutamate receptors in platelets: Opposing effects and a unifying hypothesis. Platelets (2021) 32(8):998–1008. doi: 10.1080/09537104.2021.1985242

98. Kalev-Zylinska ML, Hearn JI, Makro H, Bogdanova A, N-Methyl-D-Aspartate receptors in hematopoietic cells: What have we learned? Front Physiol (2020) 11:577. doi: 10.3389/fphys.2020.00577

99. Del Arroyo AG, Hadjiambros A, Sanchez J, Tunerovsky E, Kasyov M, Cain D, et al. Nmda receptor modulation of glutamate release in activated neutrophils. EBioMedicine (2019) 47:457–69. doi: 10.1016/j.ebiom.2019.08.004

100. Miglioli G, Varsaldi F, Lombardi G. Human T lymphocytes express n-Methyl-D-Aspartate receptors functionally active in controlling T cell activation. Biochem Biophys Res Commun (2005) 338(6):e1875–83. doi: 10.1016/j.bbrc.2005.10.164

101. Sadat-Shirazi MS, Vousooghi N, Alizadeh B, Makki SM, Zarei SZ, Nazari S, et al. Expression of nmda receptor subunits in human blood lymphocytes: A peripheral biomarker in online computer game addiction. J Behav Addict (2018) 7(2):260–8. doi: 10.1556/2006.2018.7.2.260

102. Hegemann I, Sasselli C, Valeri F, Makro H, Muller R, Bogdanova A, et al. Memriss: Results from a phase 2 pilot study on memantine treatment for sickle cell disease. Hemapheresis (2020) 4(4):e452. doi: 10.1159/000181955

103. Makro H, Hegemann I, Seller E, Simionato G, Claveria V, Bogdanov N, et al. A pilot clinical phase ii trial memriss: Acute and durable changes of red blood cells and sickle cell disease patients on memantine treatment. eha2020 (2021) 1(1):23–34. doi: 10.2002/ha2021.11

104. Najbauer EE, Becker S, Giller K, Zweckstetter M, Lange A, Steinem C, et al. Aml/Mds with 11q23/Mll amplification promotes the progression of mll-Af9 induced acute myeloid leukemia by upregulation of Phx3. Haematologica (2021) 106(5):1278–89. doi: 10.3324/haematol.2021.103430

105. Bouyer G, Cueff A, Egee S, Kmiecik J, Maksimova Y, Glogowska E, et al. Adhesion of eryptotic erythrocytes to endothelial cells mediated by high basal levels of Erk1/2 activation. Br J Haematol (2009) 146(5):651–68. doi: 10.1111/j.1365-2141.2009.07794.x

106. Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol (2011) 3(8):a003947. doi: 10.1101/cshperspect.a003947

107. Dolphin AC. Voltage-gated calcium channels: Their discovery, function and structural biology. J Physiol (2013) 591(19):5033–71. doi: 10.1113/jphysiol.2013.255577

108. He XX, Wan JB, Yang XN, Zhang ZX, Huang D, Li X, et al. Bone marrow niche apt level determines leukemia-initiating cell activity Via P2Y11 in leukemic models. J Cell Invest (2021) 131(4):e140242. doi: 10.1172/JCI140222

109. Simeon KS, Prabhu KS, Purzy AS, Merhi M, Arredouani A, Chikri M, et al. Evaluation of cationic channel TrpV2 as a novel biomarker and therapeutic target in leukemia-implications concerning the resolution of pulmonary inflammation. Sci Rep (2019) 9(1):1554. doi: 10.1038/s41598-018-37469-8

110. Pogoraro A, Orioli E, De Marchi E, Salvestrini V, Milani A, Di Vigiolo F, et al. Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2xa7 versus P2xb7 receptor expression. Cell Death Dis (2020) 11(10):876. doi: 10.1038/s41419-020-03856-9

111. Alexy T, Detterich J, Connes P, Toth K, Nader E, Kenyeres P, et al. Physical functions indicate beneficial effects of repurposed drugs as cancer therapeutics. Eur J Cancer (2022) 136:2262–9. doi: 10.1016/j.ejca.2022.106.895

112. Borst O, Abed M, Alesutan I, Towhid ST, Qadri SM, Foller M, et al. Dynamic involvement of Orai1/Soce in human aml cell lines and primary cells according to cell cycle arrest expression in mll-rearranged acute myeloid leukemia and its blockade induces cell cycle arrest and apoptosis. J Hematol (2022) 23(10):5555. doi: 10.3390/ijms23105555

113. Wenning AS, Neblung K, Strauss B, Wolfs MJ, Sappok A, Hoth M, et al. Targeting the plasticity of mesenchymal stromal cells to reroute the course of acute myeloid leukemia. Br J Haematol (2022) 189(5):764–74. doi: 10.1111/bjh.17209

114. Via Cxcl16/Sr-psox.
T-cells. *Biochim Biophys Acta (2011) 1813(3):412–23. doi: 10.1016/j.bbamcr.2010.12.002.*

40. Vasilevka IO, Tomilin VN, Marakhova II, Shatrova AN, Negulaya VA, Semenova SB. Expression of transient receptor potential vanilloid channels TRPV5 and TRPV6 in human blood lymphocytes and jurkat leukemia T-cells. *J Membr Biol (2013) 246(2):131–40. doi: 10.1007/s00232-012-9551-x.*

41. Tomilin VN, Cherezova AL, Negulaya VA, Semenova SB. TRPV5/V6 channels mediate Ca(2+)-influx in jurkat T cells under the control of extracellular ph. *J Cell Biochem* (2016) 117(1):197–206. doi: 10.1002/jcb.25264.

42. Bobkov D, Yudinetsya N, Lomert E, Shatrova A, Kever L, Semenova S. Lipid raft integrity is required for human leukemia jurkat T-cell migratory activity. *Biochim Biophys Acta Mol Cell Biol Lipids (2011) 1866(6):1599–71. doi: 10.1016/j.bbalip.2011.09.007.*

43. Klunupp D, Misovic M, Sjeyn K, Shumilla E, Rudner D, Huber SM. Targeting TRPM2 channels impairs radiation-induced cell cycle arrest and fosters cell death of T cell leukemia cells in a b-2-Dependent model. *Cell Mol Life Sci (2016) 73:8267–80. doi: 10.1007/s00018-016-1951-0.*

44. Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP. TRPM4 regulates calcium oscillations after T cell activation. *Science* (2006) 306 (5700):1374–7. doi: 10.1126/science.1109885.

45. Bohanaz ZS, Coffman F, Mitrovona A. Human survival forest model identifies novel biomarkers of event-free survival in high-risk pediatric lymphoblastic leukemia. *Comput Struct Biotechnol J* (2022) 20:583–9. doi: 10.1016/csbj.2022.01.003.

46. Takahashi K, Umezayashi C, Numata T, Honda A, Ichikawa J, Hu Y, et al. TRPM7-mediated glucose-dependent spontaneous Ca(2+) entry regulates the proliferation and differentiation of human leukemia cell line K562. *Physiol Rep* (2018) 6(4): e13796. doi:10.14814/phy2.13796.

47. Maggi F, Morelli MB, Tomassoni D, Martelli O, Aguzzi C, Zeppe L, et al. The effects of cannabidiol on extracellular ph. *Front Cell Dev Biol* (2017) 5:150. Garaud S, Taher TE, Debant M, Burgos M, Melayah S, Berthou C, et al. *Cell Death Differ* (2020) 27(1):137–48. doi: 10.1038/s41418-018-0142-3.

48. Dubron K, et al. Constitutive Ip3 signaling underlies the sensitivity of b-cell cancers to the bcl-2/IP3 receptor disruptor bird-2. *Cell Death Differ* (2013) 20(12):2101–11. doi: 10.1038/cddis.2013.140.

49. Akl H, Monaco G, La Rovere R, Welkenhuyzen K, Kiviluoto S, Vervliet T, et al. Ip3r2 levels dictate the apoptotic sensitivity of diffuse Large b-cell lymphoma. *Oncotarget* (2016) 7(43):70447. doi:10.18632/oncotarget.11111.

50. Takahashi K, Umebayashi C, Numata T, Honda A, Ichikawa J, Hu Y, et al. Terminal mitophagy in multiple myeloma, disturbing calcium homeostasis and targeting Orai1 and Stim1 mediate the majority of store-operated calcium entry in multiple myeloma and have strong implications for adverse progression. *Cell Physiol Biochem* (2018) 48(6):2273–85. doi:10.1007/s00296-018-4265-z.

51. Trojani A, Di Camillo B, Bossi LE, Leuzi R, Greco A, Tedeschi A, et al. Identification of a candidate gene set signature for the risk of progression in igm mu smoldering/symptomatic Waldenstrom macroglobulinemia (Wm) by a comparative transcriptome analysis of b cells and plasma cells. *Cancers (Basel)* (2021) 13(8):1837. doi:10.3390/cancers13081837.

52. Maggi F, Morelli MB, Nabiis M, Martelli O, Zeppe L, Aguzzi C, et al. Transient receptor potential (TRp) channels in hematological malignancies: An update. *Biomolecules* (2021) 11(5):765. doi:10.3390/biom11050765.

53. Morelli MB, Liberati S, Amanti C, Nabiis M, Santoni S, Farfariello V, et al. Expression and function of the transient receptor potential ion channel family in the hematologic malignancies. *Curr Mol Med* (2013) 13(3):147–48. doi: 10.2174/17470159114041502541.

54. Morelli MB, Amanti C. Transient receptor potential (TRp) channels: Markers and therapeutic targets for cancer? *Biomolecules* (2022) 12(4):547. doi: 10.3390/biom12040547.

55. Qi J, Xing Y, Liu Y, Wang MM, Wei X, Sun Z, et al. Mcoln1/TRPml1 finely controls oncogenic autophagy in cancer by mediating zinc influx. *Autophagy* (2021) 17(12):4401–22. doi: 10.1002/aut.2191732.

56. Du W, Gu M, Hu M, Pinhu C, Wen C, Ryan M, et al. Lysozymol m2+ release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. *Cell Rep* (2021) 37(3):10984. doi:10.1016/j.celrep.2021.109848.

57. Cabanas H, Harmois T, Magaud C, Cousin L, Constantin B, Bourmeyster N, et al. Deregelation of calcium homeostasis in bcr-abl-dependent chronic myeloid leukemia. *Oncotarget* (2018) 9(44):2639–27. doi:10.18632/oncotarget.25241.

58. Punzo F, Manzo I, Tortora C, Pota E, Angelo V, Bellingi G, et al. Effects of Ch2 and TRPV1 receptors’ stimulation in pediatric acute T-lymphoblastic leukemia. *Oncotarget* (2018) 9(30):21244–58. doi: 10.18632/oncotarget.25022.

59. Pan T, Go Y, Xa G, Zhong F, Li X, Gu D, et al. Pan-cancer analyses reveal the genetic and pharmacologic landscape of transient receptor potential channels. *NPJ Genom Med* (2022) 7(1):32. doi:10.1038/s41525-022-00340-4.

60. North RA. Molecular physiology of P2x receptors. *Phys Rev Physiol* (2002) 84(10):1013–67. doi:10.1152/physrev.00015.2002.

61. De Marchi E, Pegoraro A, Adinolfi E. P2x7 receptor in hematological malignancies. *Front Cell Dev Biol* (2021) 9:645605. doi:10.3389/fcel.2021.645605.

62. Di Virgilio F, Schmalzing G, Markwardt F. The elusive P2x7 macroprobe. *Trends Cell Biol* (2018) 28(3):392–404. doi:10.1016/j.tcb.2018.01.005.

63. Narin GO, Aydin B, Cabadak H. Studies on the role of alpha 7 nicotinic acetylcholine receptors in K562 cell proliferation and signaling. *Mol Biol Rep* (2021) 48(6):5055–55. doi:10.1007/s11033-021-04698-4.

64. Suryiyo T, Chotirat S, Auewarakul CU, Chaiyot K, Promsuvicha O, Satayavivad J. Variation of nicotinic subtype Alpha3 and muscarinic subtype M3 acetylcholine receptor expression in three main types of leukemia. *Oncol Lett* (2019) 17(1):1537–62. doi:10.3892/ol.2018.9063.

65. Razani-Boroujerdi S, Boyd RT, Davila-Garcia MI, Nands JS, Mishra NG, Singh SP, et al. T Cells express Alpha7 nicotinic acetylcholine receptor subunits that require a functional tcr and leukocyte-specific protein tyrosine kinase for nicotine induced Ca2+ response. *J Immunol* (2007) 179(5):2889–98. doi: 10.4049/jimmunol.179.5.2889.

66. Hearl JJ, Green TN, Hisey CL, Bender M, Josephson EC, Knowlton N, et al. Deletion of Grin1 in mouse megakaryocytes reveals myeloid receptor role in platelet function and platelet formation. *Blood* (2022) 139(17):2673–90. doi: 10.1182/blood.20221014800.

67. Montes de Oca Balderas P. Flux-independent mndar signaling. Molecular mediators, cellular functions, and complexities. *Int J Mol Sci* (2018) 19(12):3800. doi:10.3390/ijms19123800.
et al. Nomenclature of voltage-gated calcium channels.

therapeutics.

dependent anion channel 1 as an emerging drug target for novel anti-cancer targets for therapies against T cell acute lymphoblastic leukemia.

Cell Res of death pathways in plant and animal systems.

potential use in cancer therapy.

lymphocytic leukemia.

Identi(2018) 19(10):2873. doi:10.3390/ijms19102873

Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A, Arif T. Voltage-gated calcium channels: Novel targets for cancer therapy.

Biophys Biophys Acta (2016) 1858(7 Pt A):1411–8. doi:10.1016/bbaproc.2016.04.005

Tan W, Colombini M. Vdac closure increases calcium ion flux. Biochim Biochim Biophys Acta (2007) 1768(10):2510–5. doi:10.1016/bbaproc.2007.06.002

Liu S, Ishikawa H, Tsuchiya N, Li FJ, Abroun S, Onsylama KL, et al. Increased susceptibility to apoptosis in Cad5(+/−) myeloma cells as examined by the increased expression of Vdac1. Oncogene (2006) 25(3):49–19. doi:10.1038/sj.onc.1209892

Prezma T, Shteinfer A, Admoni L, Raviv Z, Sela I, Levi I, et al. Vdac1-based peptides: Novel pro-apoptotic agents and potential therapeutics for b-cell chronic lymphocytic leukemia. Cell Death Dis (2013) 4:e809. doi:10.3389/cdd.2013.316

Shteinfer-Kuzmine A, Amsalem Z, Arif T, Zooroavl, A, Shoshan-Barmatz V. Selective induction of cancer cell death by Vdac1-based peptides and their potential as cancer therapy. Mol Oncol (2014) 8(7):1077–116. doi:10.1016/j.molonc.2014.02.013

Krestinova O, Fadreov, R, Lomovky O, Baburina Y, Kobyrakova M, Akatov V. Melatonin can strengthen the effect of retinoic acid in hl-60 cells. Int J Mol Sci (2019) 19(10):2873. doi:10.3390/ijms19102873

Iang N, Kham SK, Koh GS, Sung Lim JY, Arif T, Chow FT, et al. Identification of prognostic protein biomarkers in childhood acute lymphoblastic leukemia (ALL). J Proteomics (2011) 74(6):843–57. doi:10.1016/j.jprot.2011.02.034

Godblole A, Varghese J, Sarin A, Mathew MK. Vdac is a conserved element of death pathways in plant and animal systems. Biochim Biophys Acta-Mol Cell Res (2013) 1842(2):87–96. doi:10.1016/j.bbamcr.2013.02.002

Olivas-Agurte M, Pottosin I, Dobrovinskaya O. Mitochondria as emerging drug targets for therapies against T cell acute lymphoblastic leukemia cell survival. Nat Commun (2016) 7:17202. doi:10.1038/ncomms12702

Marchand T, Pinho S. Leukemic stem cells: From leukemic niche biology to treatment opportunities. Front Immunol (2019) 12:775128. doi:10.3389/fimmu.2019.775128

Zhong WB, Xu MY, Li Q, Zhu BY, Cao XY, Li D, et al. Obinutuzumab and presents P2p from plasma membrane for plc beta 3 catalysis: Targeting it eradicates leukemia stem cell. Cell Rep (2019) 26(8):2166. doi:10.1016/j.celrep.2019.01.082

Cao X, Chen J, Li D, Xie P, Xu M, Lin W, et al. Obinutuzumab ip3 to ip3r in control of endoplasmic reticulum calcium release. FASEB J (2019) 33(12):13852–65. doi:10.1096/fj.201900933RR

Le Roy C, Deglise PA, Chevallier N, Beutier T, Eclache V, Quertier M, et al. The degree of bcr and bcr activation predicts clinical outcomes in chronic lymphocytic leukemia. Blood (2012) 120(25):3565–73. doi:10.1182/blood-2011-12-397158

Parys JR, De Smedt H. Inositol 1,4,5-trisphosphate and its receptors. Adv Exp Med Biol (2010) 724:255–79. doi:10.1007/978-0-387-78828-2_11

Ouyang K, Leandro Gomez-Amaro R, Stachura DL, Huang J, Luo Y, et al. The selective bcl-2 inhibitor venetoclax, a Bh3 mimetic, does not dysregulate intracellular Ca(2+) signals. Biochim Biophys Acta (2016) 1863(6 Pt B):1364–75. doi:10.1016/j.bbamcr.2016.11.024

Vervloessem T, Ivanova H, Luyten T, Parys JB, Bultynck G. The selective p27 inhibitor Atac2 disrupts Bcl2 homodimerization in hematological malignancies. Hematol Oncol Int (2015) 29(3):363–9. doi:10.1007/s12942-013-1029-7

Parys JR, Baltiżyk G, Buliký G. b-cell and plasma cell malignancies: Complexity beneath the surface. Oncogene (2016) 35(39):5079–92. doi:10.1038/onc.2016.31

Nagy B, Lundan T, Larramendy ML, Aalto Y, Zhu Y, Nitti T, et al. Abnormal expression of apoptotic-related genes in haematological malignancies: Overexpression of myc is poor prognostic sign in mantle cell lymphoma. Br J Haematol (2003) 120(3):434–41. doi:10.1046/j.1365-2141.2003.04112.x

Scarfo L, Gha PJ. Reprogramming cell death: Bcl2 family inhibition in hematological malignancies. Immunol Lett (2013) 155(1-2):36–9. doi:10.1016/j.imlet.2013.09.015

Bittremieux M, Parys JR, Pintor P, Buliký G. E functions of oncogenes and tumor suppressors: Modulators of intracellular Ca(2+) signaling. Biochim Biophys Acta (2016) 1864(6):968–76. doi:10.1016/j.bbamcr.2016.11.024

Baltiżyk V, Pekarky R, Zizotto L, Croce CM. Mir deregulation in skl. Adv Exp Med Biol (2013) 792:309–25. doi:10.1007/978-1-4614-8051-8_14

Perini GF, Riberio GN, Pinto Neto JV, Campos LT, Hamerschlag N. Bcl-2 as therapeutic target for hematological malignancies. J Hematol Oncol (2018) 11(1). doi:10.1186/s12388-018-0608-2

Distelhorst CW, Bootman MD. Creating a new cancer therapeutic agent by targeting the interaction between bcl-2 and ip3 receptors. Cold Spring Harb Perspect Biol (2019) 11(9):a035196. doi:10.1101/cshperspect.a035196

Vervoetsens T, Ivanova H, Luyten T, Parys JR, Buliký G. The selective bcl-2 inhibitor venetoclax, a Bh3 mimetic, does not dysregulate intracellular Ca(2+) signaling. Biochim Biophys Acta Mol Cell Res (2017) 1864(6):968–76. doi:10.1016/j.bbamcr.2016.11.024

Bittremieux M, La Rovere RM, Schuermans M, Luyten T, Mikohisa K, Vangheluwe P, et al. Extracellular and er-stored Ca(2+) contribute to bird-2-induced cell death in diffuse large b-cell lymphoma cell. Cell Death Discovery (2018) 4:101. doi:10.1038/s41420-018-0118-6

Zhong F, Harr MW, Buliký G, Monaco G, Parys JR, De Smedt H, et al. Induction of Ca(2+)-driven apoptosis in chronic lymphocytic leukemia cells by
peptide-mediated disruption of bcl-2-IAP receptor interaction. Blood. (2011) 117 (10):2924–34. doi:10.1182/blood-2010-09-307405
27. Lakov AR, Zhong F, Chang MJ, Greenberg E, Choudhary Y, Smith MR, et al. A synthetic peptide targeting the Bcl4 domain of bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the Bcl3-binding pocket of bcl-2. Oncotarget (2015) 6(29):27388–402. doi:10.18632/oncotarget.4489
28. Kerkhoff M, La Rovere R, Welkenhuysen K, Janssens A, Vandenbergh P, Madesh M, et al. Bird 2, a Bcl-4 Domain-Targeting peptide of bcl-2, provokes Bax/Bak independent cell death in b-cell cancers through mitochondrial Ca2+-dependent mpt opening. Cell (2021) 184(10):2032-33. doi:10.1016/j.cell.2020.103233
29. Ge C, Huang H, Huang F, Yang T, Zhang T, Wu H, et al. Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. Proc Natl Acad Sci U S A. (2019) 116 (11):19655–60. Epub 2019 Nov 4.
30. Dionisio N, Albaran L, Lopez JJ, Berna-Errro A, Salido GM, Bohe R, et al. Acidic naaoy-releasable Ca(2+)-compartment in the megakaryoblastic cell line Meg01. Biochim Biophys Acta (2011) 1813(8):1862–94. doi:10.1016/j.bbamcr.2011.05.005
31. Ambrosio AL, Di Pietro SM. Tpc2 mediates new mechanisms of plasteat dense granule membrane dynamics through regulation of Ca2+ release. Mol Biol Cell (2015) 26(18):3263–74. doi:10.1091/mbc.E15-01-0058
32. Jiang BC, Ling KM, KaJ, Pah JH, Cho JW, Baek WK, Sub MH, et al. Tetrandrine-induced apoptosis is mediated by activation of caspases and pkc-delta in U937 cells. Biochim Pharmacol (2004) 67(10):1819–29. doi:10.1016/j.bcp.2004.01.018
33. Liu T, Men Q, Wu G, Yu C, Huang Z, Liu X, et al. Tetrandrine induces autophagy and differentiation by activating maf and Notch1 signaling in leukemia cells. Oncotarget (2015) 6(10):7992–8006. doi:10.18632/oncotarget.3350
34. Liu T, Zhang Z, Yu C, Zeng C, Xu X, Wu G, et al. Tetrandrine antagonizes acute megakaryoblastic leukemia growth by forcing autophagy-mediated differentiation. Br J Pharmacol (2017) 174(23):4308–28. doi:10.1111/bph.14031
35. Wu G, Liu T, Ti H, Li Y, Li D, Wu W, C-myc and reactive oxygen species play roles in tetrandrine-induced leukemia differentiation. Cell Death Dis (2018) 9(3):473. doi:10.1038/s41419-018-0498-9
36. Geisslinger F, Muller M, Chao YM, Grimm C, Vollmar AM, Bartel K. Targeting Tpc2 as a potential therapeutic strategy to enhance myeloma cell sensitivity to chemotherapy by impairing lysosomal function. Cell Death Dis (2012) 3(12):e688. doi:10.1038/cddis.2011.322
37. Rahaj S, McKenna SL, Muller S, Tschan MP, Humbert M. Lysozymes in acute myeloid leukemia: Potential therapeutic targets? Leukemia (2021) 35 (10):2579–70. doi:10.1038/s41375-021-01388-x
38. Jain V, Bose A, Ayk AR, Arif T. Lysosomes in stem cell quiescence: A role in regulating autophagy. Int J Mol Med (2021) 48(1):37–47. doi:10.3892/ijmm.2020.4618
39. Raam Y, De novo acute myeloid leukemia patients. Exp Hematol Oncol (2018) 7:23. doi:10.1186/s41375-018-0056-7
40. Tsumura H, Akimoto T, Tanaka H, Ishii Y, Ishikura H, Honma Y. Expression profiling in differentiating leukemia cells induced by methyl jasmonate are similar to those of cytokinins and methyl jasmonate analogs induce the
deregulated in chronic lymphocytic leukemia.

JP, et al. Overexpression of Fkbp51 in idiopathic myelofibrosis: Possible relationship with Hkp51 overexpression. Exp Hematol (2003) 31(7):622–30. doi: 10.1016/s0014-2995(03)00783-7

Piera D, Rumi E, Ferretti VV, Di Buduo CA, Milanese C, Cavalli C, et al. Differential clinical effects of different mutation subtypes in calr-mutant prolyl-4-hydroxylase neoplasms. Leukemia (2016) 30(2):431–8. doi: 10.1038/leu.2015.277

Jaiswal A, Wang Z, Zhu X, Ju Z. Unraveling the connections between calreticulin and c-Myc/Stat3 axis: Emerging targets for cancer chemoprevention. Anticancer Res (2021) 41(2):823–37. doi: 10.21873/anticanres.17113

Kabir NN, Ronnstrand L, Kazi JU. Protein kinase c expression is required for fibrosis regulation the growth factor independence of megakaryocyte progenitors. Blood (2002) 100(8):2392–40. doi: 10.1182/blood.2002-02-1045

Komura E, Chagraoui H, Mansat de Mas V, Blanchet B, de Sepulveda P, Larbret F, et al. Spontaneous Stat5 activation induces growth factor independence in idiopathic myelofibrosis: Possible relationship with Fkbp51 overexpression. Exp Hematol (2003) 31(7):622–30. doi: 10.1016/s0014-2995(03)00783-7

Immanuel et al. 10.3389/fonc.2022.1010506

Frontiers in Oncology frontiersin.org

34
signaling and cell fate: How can Ca2+ signals contribute to wrong decisions for cells by targeting the outer mitochondrial membrane.

J Med (2013) 4:340. doi: 10.3389/fimmu.2013.00350

Pelletier L, Moreau M. CaV1 channels is also a story of non excitable cells: Application to calcium signalling in two different non related models. Biochim Biophys Acta Mol Cell Res (2021) 1866(11):189996. doi: 10.1016/j.bbamcr.2021.118996

Fenniger F, Han J, Stanwood SR, Nohara LL, Arora H, Choi KB, et al. Mutation of an 1-type calcium channel gene leads to T lymphocyte dysfunction. Front Immunol (2019) 10:2473. doi: 10.3389/fimmu.2019.02473

Nohara LL, Stanwood SR, Omišljašk JD, Jefferies WA. Tweeters, woofers and horns: The complex orchestration of calcium currents in all cells. Front Immunol (2015) 6:234. doi: 10.3389/fimmu.2015.00234

Otsu K, Willard HF, Khanna VK, Zorrato F, Green NM, MacLennan DH. Molecular cloning of cdna encoding the Ca2+ release channel (Ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem (1990) 265(23):13472–83. doi: 10.1016/S0021-9258(77)73171-7

Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harbor Perspect Biol (2011) 3(11):a003996. doi: 10.1101/cshperspect.a003996

Sei Y, Gallascher KL, Basile AS. Skeletal muscle type ryanodine receptor is involved in calcium signaling in human b lymphocytes. J Biol Chem (1999) 274(9):5989–92. doi: 10.1074/jbc.274.9.5989

Hess D, Nishinaka C, Gallascher KL, Wyrte HW, Matsuo Y, Sei Y. Expression of the ryanodine receptor isoforms in immune cells. J Immunol (2001) 167(9):4887–94. doi: 10.4049/jimmunol.167.9.4887

McCarthy TV, Datar S, Mackrill JJ. Activation of ryanodine Receptor/Ca2+ release channels downregulates G3B in the namalwa b lymphoma. FEBS Lett (2003) 554(1–2):133–7. doi: 10.1016/S0014-5793(03)01122-0

Malavasi F, Deaglio S, Danile R, Cutrona G, Ferrari M, Chiaroni N. G3B and chronic lymphocytic leukemia: A decade later. Blood (2011) 118(13):13470–8. doi: 10.1182/blood-2011-07-275610

Klampfl T, Güsslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calcium-counter-regulatory proteins. N Engl J Med (2013) 369(25):2379–90. doi: 10.1056/NEJMoa1311347

Debant M, Hemon P, Briggsau C, Renaudinaux Y, Mignen O. Calcium signaling and cell fate: How can Ca2+ signals contribute to wrong decisions for chronic lymphocytic leukemia b lymphocyte outcome? Int J Dev Biol (2015) 59(7–9):379–89. doi: 10.1515/ijdb.2015.02040

Li T, Chen J, Zeng Z. Pathophysiological role of calcium channels and transporters in the multiple myeloma. Cell Commun Signal (2021) 19:1399. doi: 10.1186/s12964-021-00781-4

Leewaconn C, Laguillaumie MO, Quebeul B, Idziorek T, Toully Y, Lemonnier L. Put in a “Ca(2+)Ll” to acute myeloid leukemia. Int J Mol Sci (2021) 19(1):99. doi: 10.3390/ijms19010099

Marchesini M, Gherli A, Montanaro A, Patriarli L, Sorrentino C, Pagliaro L, et al. Blockade of oncogenic Notch1 with the serca inhibitor Cad204520 in T cell acute lymphocytic leukemia. Cell Chem Biol (2020) 27(6):678–87+93. e13. doi: 10.1016/j.chembiol.2020.04.002

De Ford C, Heidersdorf B, Haun F, Murillo R, Friedrich T, Borner C, et al. The ceroidene diterpene casearin J induces apoptosis of T-cell cancers through serca inhibition, oxidative stress, and interference with Notch1 signaling. Cell Death Dis (2016) 7:e2070. doi: 10.1038/cddis.2015.413

De Ford C, Calderon C, Sehgal P, Fedosova SU, Murillo R, Olesen C, et al. Discovery of tricyclic ceroidene diterpenes as Sarco/Endoplasmic reticulum Ca2+ –a tsapases inhibitors and structure-activity relationships. J Nat Prod (2015) 78(6):1262–70. doi: 10.1039/c4np00562d

Bleeker NP, Correa RL, Thomas DD, Xing C. A novel serca inhibitor demonstrates synergy with classic serca inhibitors and targets multidrug-resistant aml. Mol Pharm (2013) 10(11):4588–66. doi: 10.1021/mp400458a

Akhl H, VandeBoschek I, Monaco G, Kauskot A, Luyten T, Welkenhuyzen K, et al. Ha14-I, but not the Bh3 mimetic abt-737, causes Ca2+ dysregulation in platelets and human cell lines. Haematologica (2013) 98(4):e49–51. doi: 10.3324/haematol.2012.080598

Hermanson D, Addo SN, Bajer AA, Marchant JS, Das SG, Srinivasan B, et al. Dual mechanisms of sha 1-I in inducing cell death through endoplasmic reticulum and mitochondria. Mol Cancer Ther (2009) 8(5):1373–82. doi: 10.1158/1538-7445.AM2009-8530

Tian D, Das SG, Dohil MJ, Peng J, Jin L, Xing C. Sha 1-I, a stable and ros- free antagonist against anti-apoptotic bcl-2 proteins, bypasses drug resistances and synergizes cancer therapies in human leukemia. Cancer Lett (2008) 259(2):198–206. doi: 10.1016/j.canlet.2007.10.012

Akhl H, La Rovere RM, Janssens A, Vandenboghe P, Parys JB, Bultynck G. Ha14-I potentiates apoptosis in b-cell cancer cells sensitive to a peptide disrupting sp 3 receptor / bcl-2 complexes. Int J Dev Biol (2015) 59(7–9):391–8. doi: 10.1515/ijdb.2015.02043

Roti G, Qi JI, Kitara S, Sanchez-Martin M, Saur Conway A, Varca AC, et al. Leukemia-specific delivery of mutant Notch1 targeted therapy. J Exp Med (2018) 215(1):219–216. doi: 10.1084/jem.20151778

Wang Z, Mi T, Bradley HL, Metts J, Sabnis H, Zhu W, et al. Pinosome and imipramine blue exploit mitochondrial vulnerabilities and reactive oxygen species to cooperatively target high risk acute myeloid leukemia. Antioxidants (Basel) (2021) 10(6):956. doi: 10.3390/antiox10060956

Gross S, Mallu P, Joshi H, Schultz B, Go C, Soboloff J. Ca2+ as a therapeutic target in cancer. Adv Cancer Res (2020) 148:233–317. doi: 10.1016/bs.acrr.2020.05.003

Panda S, Chatterjee O, Roy L, Chatterjee S. Targetting Ca2+ signaling: A new arsenal against cancer. Drug Discov Today (2022) 27(3):923–34. doi: 10.1016/j.drudis.2021.11.012