SOME INEQUALITIES FOR THE MATRIX HERON MEAN

DINH TRUNG HOA

Abstract. Let A, B be positive definite matrices, $p = 1, 2$ and $r \geq 0$. It is shown that

$$||A + B + r(A^t_1 B + A_{1-t}^t B)||_p \leq ||A + B + r(A^{1/2} B^{1/2} + A^{1/2} B^{1/2})||_p.$$

We also prove that for positive definite matrices A and B

$$\det(P_t(A, B)) \leq \det(Q_t(A, B))$$

where $Q_t(A, B) = (A^{1/2} B^{1/2})^{1/t}$ and $P_t(A, B)$ is the t-power mean of A and B. As a consequence, we obtain the determinant inequality for the matrix Heron mean: for any positive definite matrices A and B,

$$\det(A + B + 2(A\sharp B)) \leq \det(A + B + A^{1/2} B^{1/2} + A^{1/2} B^{1/2}).$$

These results complement those obtained by Bhatia, Lim and Yamazaki (LAA, 501 (2016) 112-122).

1. Introduction

Let M_n be the space of $n \times n$ complex matrices and M_n^+ the positive part of M_n. Denote by I the identity element of M_n. For self-adjoint matrices $A, B \in M_n$ the notation $A \preceq B$ means that $B - A \in M_n^+$. For a real-valued function f of a real variable and a self-adjoint matrix $A \in M_n$, the value $f(A)$ is understood by means of the functional calculus.

For $0 \leq t \leq 1$ the t-geometric mean of A and B is defined as

$$A_t \sharp B = A^{1/2} (A^{-1/2} B A^{-1/2})^{t} A^{1/2}.$$

The geometric mean $A^{\sharp 2} := A^{\sharp 1/2} B$ is the midpoint of the unique geodesic $A_t \sharp B$ connecting two points A and B in the Riemannian manifold of positive matrices.

Recently, Bhatia et al. [1] proved that for any positive definite matrices A and B and for $p = 1, 2$

$$||A + B + 2r A\sharp B||_p \leq ||A + B + r(A^{1/2} B^{1/2} + B^{1/2} A^{1/2})||_p. \quad (1)$$

When $r = 1$, inequality holds for $p = \infty$.

For the case $p = 2$ the proof of (1) is based on the following fact: for any positive definite A and $B,$

$$\lambda(A^{1/2} (A^{\sharp 2} B) A^{1/2}) \prec_{\log} \lambda(A^{3/4} B^{1/2} A^{3/4}), \quad (2)$$

2000 Mathematics Subject Classification. 46L50, 15A45, 15B57.

Key words and phrases. operator (r, s)-convex functions, operator Jensen type inequality, operator Hansen-Pedersen type inequality, operator Popoviciu inequality.
where the notation λ is used for the n-tuple of eigenvalues of a matrix A in decent order and $\lambda(A) \prec_{\log} \lambda(B)$ means that
\[
\prod_{j=1}^{k} \lambda_i(A) \leq \prod_{j=1}^{k} \lambda_i(B), \quad 1 \leq k \leq n
\]
and inequality holds when $k = n$.

For $p = \infty$ inequality (11) was proved by using a result of Lim and Yamazaki [3, Theorem 4.1]
\[
||P_t(A_1, A_2, \cdots, A_n)||_{\infty} \leq ||Q_t(A_1, A_2, \cdots, A_n)||_{\infty},
\]
where the power mean $P_t(A_1, A_2, \cdots, A_n)$ of A_1, A_2, \cdots, A_n [2] and is the unique solution of the matrix equation
\[
X = \frac{1}{m} \sum_{i=1}^{m} X_{i}^{\ast} A_i
\]
and
\[
Q_t(A_1, A_2, \cdots, A_n) = \left(\frac{1}{m} \sum_{i=1}^{m} A_i^{\ast} \right)^{1/t}.
\]
For $m = 2$ Lim and Pálfia [2, Remark 3.10] show that
\[
P_t(A, B) = A_{1/2}^{\ast} \left(\frac{1}{2} (A + A_{1/2}^{\ast} B) \right) = A^{1/2} \left(I + \frac{(A^{-1/2} B A^{-1/2})^t}{2} \right)^{1/2} A^{1/2}.
\]
Hopefully, for $t = 1/2,$
\[
P_{1/2}(A, B) = \frac{1}{4} (A + B + A_{1/2}^{\ast} B), \quad Q_{1/2}(A, B) = \frac{1}{4} (A + B + A^{1/2} B^{1/2} + B^{1/2} A^{1/2}).
\]
And so, the inequality (11) for $p = \infty$ is obtained from (13) choosing $m = 2$ and $t = 1/2.$

Recall that the family of Heron mean [6] for nonnegative number a, b is defined as
\[
H_t(a, b) = (1 - t) \left(\frac{a + b}{2} \right) + t \sqrt{ab}, \quad 0 \leq t \leq 1.
\]
The Kubo-Ando extension of this to matrices is
\[
(1 - t) \frac{A + B}{2} + t (A_{1/2}^{\ast} B)
\]
that connects the arithmetic mean and the geometric mean, and a naive extension is
\[
(1 - t) \frac{A + B}{2} + t A^{1/2} B^{1/2} + B^{1/2} A^{1/2}
\]
that connects the arithmetic mean and the midpoint of the Heinz mean $\frac{A^{1/2} B^{1/2} + B^{1/2} A^{1/2}}{2}.$

So, inequality (11) is a special case of the following
\[
|| (1 - t) \frac{A + B}{2} + t (A_{1/2}^{\ast} B) ||_p \leq || (1 - t) \frac{A + B}{2} + t A^{1/2} B^{1/2} + B^{1/2} A^{1/2} ||_p
\]
with $t = 1/2.$

Notice that another naive extension of the Heron mean for positive definite matrices A and B is defined as
\[
(1 - t) \frac{A + B}{2} + t A^{1/2} B^{1/2} + A^{1/2} B^{1/2} - A^{1/2} B^{1/2}.
\]
In this paper, we extend the inequality [2] to t-geometric means. More precisely, we prove that for any positive definite matrices A, B and for any $t \in [0, 1]$

$$\lambda(A^{1/2}(A_t^*B)A^{1/2}) \prec_{\log} \lambda(A^{1-t}B^tA^{1-t}).$$

Using this extension, we prove the following result:

Theorem 1.1. Let A, B be positive definite matrices and $p = 1, 2$ and $r \geq 0$. Then

$$||A + B + r(A_t^*B + A_{1-t}^*B)||_p \leq ||A + B + r(A^tB^{1-t} + A^{1-t}B^t)||_p.$$ \hspace{1cm} (5)

Also, using the approach in [4] we show that for positive definite matrices A, B and for any z in the strips $S_{1/4} = \{z \in \mathbb{C} : \text{Re}(z) \in [1/4, 3/4]\}$,

$$|\text{Tr}(A^{1/2}BzA^{1/2}B^{1-z})| \leq \text{Tr}(AB).$$

2. Inequalities

Proposition 2.1. Let A, B be positive definite matrices. Then for any $t \in [0, 1]$

$$\lambda(A^{1/2}(A_t^*B)A^{1/2}) \prec_{\log} \lambda(A^{1-t/2}B^tA^{1-t/2}).$$ \hspace{1cm} (6)

Proof. Firstly, let’s prove

$$\lambda_1(A^{1/2}(A_t^*B)A^{1/2}) \leq \lambda_1(A^{1-t/2}B^tA^{1-t/2}).$$ \hspace{1cm} (7)

This inequality is equivalent to the statement

$$A^{1-t/2}B^tA^{1-t/2} \leq I \implies A^{1/2}(A_t^*B)A^{1/2} \leq I,$$

which in turn is equivalent to

$$B^t \leq A^{t-2} \implies (A^{-1/2}BA^{-1/2})^t \leq A^{-2}.$$ \hspace{1cm} (8)

That can be proved by using the Furuta inequality which states that if $0 \leq Y \leq X$, then for all $p \geq 1$ and $r \geq 0$ we have

$$(X^rY^pX^r)^{1/2} \leq (X^{p+2r})^{1/p}.$$ \hspace{1cm} (9)

Let apply (9) to $X = A^{t-2}$, $Y = B^t$, $p = \frac{1}{7}$ and $r = -\frac{1}{2(t-2)}$, we get (8), and hence (7).

Denote by $C_k(X)$ the k-th compound of $X \in M_n$, $k = 1, \ldots, n$. Note that for any positive definite matrices X, Y,

$$C_k(A^{1/2}(A_t^*B)A^{1/2}) = C_k(A(A^{-1/2}BA^{-1/2})^tA)$$

$$= C_k(A)C_k((A^{-1/2}BA^{-1/2})^t)C_k(A)$$

$$= C_k^{1/2}(A)(C_k^{1/2}(A)(C_k^{-1/2}(A)C_k(B)C_k^{-1/2}(A))^tC_k^{1/2}(A))C_k^{1/2}(A)$$

$$= C_k^{1/2}(A)(C_k(A)^{t}C_k(B))C_k^{1/2}(A).$$ \hspace{1cm} (10)
In the other hand,
\[\lambda_1(C_k(A^{1/2}(A^{1/2}_t B)A^{1/2})) = \prod_{i=1}^k \lambda_i(A^{1/2}(A^{1/2}_t B)A^{1/2}), \quad k = 1, \ldots, n - 1, \quad (11) \]

On account of (7) and (11) for \(1 \leq k \leq n \) we have
\[
\prod_{i=1}^k \lambda_i(A^{1/2}(A^{1/2}_t B)A^{1/2}) = \lambda_1(C_k(A^{1/2}(A^{1/2}_t B)A^{1/2})) \\
\leq \lambda_1(C_k(A)^{1-t}C_k(B)^tC_k(A)^{1-t}) \\
= \prod_{i=1}^k \lambda_i(A^{1-t}B^tA^{1-t}).
\]

The equality holds for \(k = n \), since \(\text{det}(A^{1/2}(A^{1/2}_t B)A^{1/2}) = \text{det}(A^{1-t}B^tA^{1-t}) \).

Thus, we have proved (8). \(\square \)

The following special case of Proposition will be used in the proof of the main result.

Corollary 2.2. For any positive definite matrices \(A \) and \(B \),
\[\text{Tr}(A(A^{1/2}_t B)) \leq \text{Tr}(A^{2-t}B^t), \quad t \in [0, 1]. \]

In order to prove the next result, let’s recall the generalized Hölder inequality for trace [5, Theorem 2.8]: let \(\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1 \) for \(p, q, r \geq 1 \) and \(X, Y, Z \) be matrices in \(M_n \), then
\[\text{Tr}(XYZ) \leq ||XYZ||_1 \leq ||X||_p||Y||_q||Z||_r. \]

We also need the famous Lieb-Thirring inequality: \(\text{Tr}((AB)^m) \leq \text{Tr}(A^m B^m) \).

Theorem 2.3. Let \(X, Y \) be positive definite matrices and \(z \in S_{1/4} = \{ z \in \mathbb{C} : \text{Re}(z) \in \left[\frac{1}{4}, \frac{3}{4}\right]\} \). Then
\[|\text{Tr}(X^{1/2}Y^{1/2}Z^{1/2}Y^{-1/2}Y^{-1})| \leq \text{Tr}(XY). \quad (12) \]

Proof. Let \(z = \frac{1}{2} + iy, y \in \mathbb{R} \) denote any point in the vertical line of the complex plane passing \(x = 1/2 \). Then we have
\[
|\text{Tr}(X^{1/2}Y^{1/2}Z^{1/2}X^{1/2}Y^{1/2}Y^{-1-z})| = |\text{Tr}(X^{1/2}Y^{1/2}Y^{iy}X^{1/2}Y^{1/2}Y^{iy-1})| \\
\leq \text{Tr}(|X^{1/2}Y^{1/2}Y^{iy}X^{1/2}Y^{1/2}Y^{iy-1}|) \\
\leq ||X^{1/2}Y^{1/2}Y^{iy}||_2||X^{1/2}Y^{1/2}Y^{iy-1}||_2 \\
= ||X^{1/2}Y^{1/2}||_2^2 \\
= \text{Tr}(XY).
\]

The first inequality is obvious, the second one follows from the Cauchy-Schwarz inequality for trace, and the second equality is from the fact that \(Y^{iy} \) and \(Y^{-iy} \) are unitary operators.
Now let consider $z = \frac{1}{4} + iy, y \in \mathbb{R}$, a generic point in the vertical line over $x = 1/4$, then by using the Hölder inequality with $\frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1$ and the Araki-Lieb-Thirring inequality we have

\[
|\text{Tr}(X^{1/2}Y^2X^{1/2}Y^{1-z})| = |\text{Tr}(X^{1/2}Y^{1/4}Y^{iy}X^{1/2}Y^{-1/2}Y^{iy}Y^{-1/4})| \\
= |\text{Tr}(Y^{1/4}X^{1/4}Y^{iy}X^{1/2}Y^{-1/2}Y^{iy}Y^{-1/2})| \\
\leq ||Y^{1/4}X^{1/4}||_1^{2/4}||X^{1/2}Y^{-1/2}||_2 \\
\leq ||Y^{1/2}X^{1/2}||_2 ||X^{1/2}Y^{-1/2}||_2 \\
= \text{Tr}(XY).
\]

Mention that the map $x \mapsto A^x = e^{x\ln A} = \sum_k z^k \frac{\ln A^k}{k!}$ is analytic for $A > 0$, the product of matrices is also analytic and the trace is complex linear, the function $f(z) = \text{Tr}(X^{1/2}Y^2X^{1/2}Y^{1-z})$ is entire. Moreover, by the similar above argument for $z = x + iy$ it is easy to see that if $0 \leq x \leq 1$ then the function is bounded. By the Hadamard three-lines theorem the supremum $M(x) = \sup\{|f(x + iy)| : y \in \mathbb{R}\}$ of the function $\text{Tr}(X^{1/2}Y^2X^{1/2}Y^{1-z})$ is log-convex, that means, for any $\lambda \in [0, 1]$,

\[
M(\lambda x_1 + (1 - \lambda)x_2) \leq M(x_1)^\lambda M(x_2)^{1-\lambda} \leq \text{Tr}(XY)^\lambda \text{Tr}(XY)^{1-\lambda} = \text{Tr}(XY).
\]

Therefore, the bound $\text{Tr}(XY)$ is valid in the vertical strip $1/4 \leq \text{Re}(z) \leq 1/2$. Invoking the symmetry $z \mapsto 1 - z$ and exchanging the roles of A and B give the desired bound on the full strip $S_{1/4} = \{1/4 \leq \text{Re}(z) \leq 3/4\}$.

As a consequence, we have the following inequality (see [11, Inequality (39)]):

Corollary 2.4. For any positive definite matrices and for $t \in [0, 1]$,

\[
\text{Tr}((A^{2t}_x B)(A^{2t}_{1-t} B)) \leq \text{Tr}(AB).
\]

Now we are ready to prove the main result in this paper.

Theorem 2.5. Let A, B be positive definite matrices, $p = 1, 2$ and $r \geq 0$. Then

\[
||A + B + r(A^{2t}_x B + A^{2t}_{1-t} B)||_p \leq ||A + B + r(A^t B^{1-t} + A^{1-t} B^t)||_p. \tag{13}
\]

Proof. Since $A + B + r(A^{2t}_x B + A^{2t}_{1-t} B) \geq 0$, the left hand side of (13) is $\text{Tr}(A + B + r(A^{2t}_x B + A^{2t}_{1-t} B))$. It is well-known that $\text{Tr}(A^{2t}_x B) \leq \text{Tr}(A^{1-t} B^t)$ and $\text{Tr}(A^{2t}_{1-t} B) \leq \text{Tr}(A^t B^{1-t})$. We have

\[
\text{Tr}(A + B + r(A^{2t}_x B + A^{2t}_{1-t} B)) \leq \text{Tr}(A + B + r(A^t B^{1-t} + A^{1-t} B^t)) \\
\leq \text{Tr}(|A + B + r(A^t B^{1-t} + A^{1-t} B^t)|).
\]

So for $p = 1$ the inequality (13) follows.
Next consider the case $p = 2$. Notice again that $\text{Tr}((A^2 tB)^2) \leq \text{Tr}(B^2 t A^2(1-t))$ (see [1], pape 121). Similarly, we also have $\text{Tr}((A^2 t_{1-t}B)^2) \leq \text{Tr}(A^2 B^2(1-t))$. Then

$$\text{Tr}((A^2 tB)^2) + (A^2 t_{1-t}B)^2) \leq \text{Tr}(A^2 B^2(1-t) + B^2 A^2(1-t)). \quad (14)$$

By Proposition 2.1 we have

$$\text{Tr}((A + B)(A^2 t B + A^2 t_{1-t}B)) \leq \text{Tr}(A^{t_1} B^{1-t} + A^{2-t} B^t + A^t B^{2-t} + A^{1-t} B^{1+t}). \quad (15)$$

Now, squaring both sides of (13), we need to show

$$\text{Tr}((A + B)^2 + r^2(A^2 tB)^2 + s^2(A^2 t_{1-t}B)^2 + 2r(A + B)(A^2 t B + A^2 t_{1-t}B) + 2r^2(A^2 t B)(A^2 t_{1-t}B)) \leq \text{Tr}((A + B)^2 + 2r(A^{t_1} B^{1-t} + A^{2-t} B^t + A^t B^{2-t} + A^{1-t} B^{1+t}) + r^2 A^2 B^2(1-t) + r^2 B^2 A^2(1-t) + 2r^2 \text{Tr}(AB)).$$

The last inequality follows from (13), (15) and Corollary 2.4.

Remark 2.6. From Theorem 2.5 for $s \in [0, 1]$ we

$$|| (1-s)(A + B) + s(A^2 t B + A^2 t_{1-t}B)||_p \leq ||(1-s)(A + B) + s(A^t B^{1-t} + A^{1-t} B^t)||_p.$$

When $t = 1/2$ we obtain one kind of inequality for the matrix Heron mean

$$|| \frac{1-s}{2}(A + B) + s(A^2 B)||_p \leq || \frac{1-s}{2}(A + B) + s A^{1/2} B^{1/2}||_p.$$

Remark 2.7. By the same arguments, one can show that

$$||A + B + A^2 t B + A^2 t_{1-t}B||_p \leq ||A + B + A^t B^{1-t} + A^{1-t} B^t||_p.$$

But is we use another version of the Heinz mean $(A^t B^{1-t} + B^t A^{1-t})/2$ and realize the same proof in Theorem 2.5 the inequality in Corollary 2.4 could be as follows

$$\text{Tr}((A^2 t B)(B^2 t A)) \leq \text{Re} \text{Tr}(A^t B^t A^{1-t} B^{1-t}). \quad (16)$$

Notice that both sides are bounded by $\text{Tr}(AB)$ but it is not clear that (16) is true or not.

From the proof of the main theorem, it is natural to ask the following question: Is it true that for $0 \leq X, Y \leq Z$ such that $X \prec_{\log} Y$

$$Z^{1/2} X Z^{1/2} \prec_{\log} Z^{1/2} Y Z^{1/2}? \quad (17)$$

Unfortunately, the answer is negative. Indeed, let

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}.$$

Now $s(X) = s(Y) = (1, 1)$ but $s(Z^{1/2} X Z^{1/2}) = (1, 2) \not\prec_w (\sqrt{2}, \sqrt{2}) = s(Z^{1/2} Y Z^{1/2})$. So it is not even true for diagonal positive definite matrices.
3. Determinant Inequality for the Heron mean

Let’s recall a recent result of Audeanert [9]: for any positive semidefinite matrices A and B

$$\det(I + A^* B) \leq \det(I + A^{1/2} B^{1/2}).$$ \hspace{1cm} (18)

The author used the well-known fact that $\lambda(A^* B) \prec_{\log} \lambda(A^{1/2} B^{1/2})$ and the function $\Phi(X) = \sum_{i=1}^n \log(1 + e^{x_i}) (X = (x_1, x_2, \cdots, x_n))$ is isotone (i.e. the function preserving weak majorization: $x \prec y \Rightarrow \Phi(x) \prec_w \Phi(y)$.)

In fact, for matrices A and B such that $\lambda(A) \prec_{\log} \lambda(B)$ we have

$$\det(I + A) \leq \det(I + B).$$ \hspace{1cm} (19)

A useful characterization of isotone functions in the case $m = 1$ is as follows:

Lemma 3.1. A differentiable function $\Phi : \mathbb{R}^n \to \mathbb{R}$ is isotope if and only if it satisfy

1. Φ is permutation invariant;
2. for all $X \in \mathbb{R}^n$ and for all i, j:

$$ (x_i - x_j) \left(\frac{\partial \Phi}{\partial x_i}(x) - \frac{\partial \Phi}{\partial x_j}(x) \right) \geq 0. $$

Do the similar argument as in [9] one can prove the following

$$\det(I + A^* t B) \leq \det(I + A^{1-t} B^t).$$ \hspace{1cm} (20)

Now we can use this fact to obtain some inequality for the Heron mean.

Theorem 3.2. For any positive definite matrices A and B

$$\det(P_t(A, B)) \leq \det(Q_t(A, B)).$$ \hspace{1cm} (21)

Proof. The inequality (21) is equivalent to the following

$$\det^{1/t}(A^t + B^t) = \det(A) \det^{1/t}(I + A^{-t/2} B^t A^{-t/2})$$

$$\geq \det(A^{1/t}(A + A^* t B))$$

$$= \det(A) \cdot \det^{1/t}(I + (A^{-1/2} B A^{-1/2})^t)$$

or

$$\det(I + A^{-t/2} B^t A^{-t/2}) \geq \det(I + (A^{-1/2} B A^{-1/2})^t).$$ \hspace{1cm} (22)

By the Araki-Lieb-Thirring inequality we have

$$\lambda(I + (A^{-1/2} B A^{-1/2})^t) \prec_{\log} \lambda(I + A^{-t/2} B^t A^{-t/2}).$$

Therefore, the inequality (22) follows from the last inequality and (19). \Box

As a consequence, we obtain a determinant inequality for the Heron mean.
Corollary 3.3. For any positive definite matrices A and B,

$$\det(A + B + 2(A^*B)) \leq \det(A + B + A^{1/2}B^{1/2} + A^{1/2}B^{1/2}).$$

References

[1] R.Bhatia, Y.Lim, T.Yamazaki. Some norm inequalities for matrix means. Linear Algebra Appl. 501 (2016) 112-122.

[2] Y.Lim, M.Pálfi, The matrix power means and the Karcher mean. J. Funct. Anal. 262 (2012) 1498-1514.

[3] Y.Lim, T.Yamazaki. On some inequalities for the matrix power and Karcher means. Linear Algebra Appl. 438 (2013) 325-346.

[4] T.Bottazzi, R.Elencwajg, G.Larotonda, A.Varela. Inequalities related to Bourin and Heinz means with a complex parameter. J. Math. Anal. Appl. 426 (2015) 765-773.

[5] B. Simon. Trace Ideals and Their Applications. Second edition, Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005.

[6] R.Bhatia, Interpolating the arithmetic-geometric mean inequality and its operator version. LAA 413 (2006) 355-363.

[7] R. Bhatia. Positive Definite Matrices. Princeton University Press, New Jersey, 2007.

[8] K.Kubo, T.Ando. Means of positive linear operators. Math. Ann. 246 (1979/80) 205-224.

[9] K.M.R. Audenaert. A Determinantal Inequality for the Geometric Mean with an Application in Diffusion Tensor Imaging.

Division of Computational Mathematics and Engineering (CME), Institute for Computational Science (INCOS), Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Civil Engineering, Ton Duc Thang University, Vietnam.

E-mail address: dinhtrunghoa@tdt.edu.vn