CONGRUENCES AND TRAJECTORIES IN PLANAR SEMIMODULAR LATTICES

G. GRÄTZER

Abstract. A 1955 result of J. Jakubík states that for the prime intervals \(p \) and \(q \) of a finite lattice, \(\text{con}(p) \geq \text{con}(q) \) iff \(p \) is congruence-projective to \(q \) (via intervals of arbitrary size). The problem is how to determine whether \(\text{con}(p) \geq \text{con}(q) \) involving only prime intervals.

Two recent papers approached this problem in different ways. G. Czédli's used trajectories for slim rectangular lattices—a special subclass of slim, planar, semimodular lattices. I used the concept of prime-projectivity for arbitrary finite lattices. In this note I show how my approach can be used to reprove Czédli's result and generalize it to arbitrary slim, planar, semimodular lattices.

1. Introduction

To describe the congruence lattice, \(\text{Con}L \), of a finite lattice \(L \), note that a prime interval \(p \) of \(L \) generates a join-irreducible congruence \(\text{con}(p) \), and conversely; see the discussion on pages 213 and 214 of LTF (reference [11]). So if we can determine when \(\text{con}(p) \geq \text{con}(q) \) holds for the prime intervals \(p \) and \(q \) of \(L \), then we know the lattice \(\text{Con}L \) up to isomorphism.

This is determination is accomplished by the following result of J. Jakubík [25], (see Lemma 238 in LTF; we state only the special case we need here), where \(\Rightarrow \) is congruence-projectivity—see Section 2.

Lemma 1. Let \(L \) be a finite lattice and let \(p \) and \(q \) be prime intervals in \(L \). Then \(\text{con}(p) \geq \text{con}(q) \) iff \(p \Rightarrow q \).

Jakubík's condition is easy to visualize; see Figure [1]. Even though \(p \) and \(q \) are prime intervals, congruence-projectivity goes through arbitrary large intervals.

A rectangular lattice is a planar semimodular lattice \(L \) with exactly two doubly-irreducible elements on the boundary of \(L \) that are complementary and distinct from 0 and 1, see G. Grätzer and E. Knapp [20]. Although rectangular lattices are very special, from the point of view of congruence lattices they are quite general. Every finite distributive lattice can be represented as the congruence lattice of a rectangular lattice, see G. Grätzer and E. Knapp [20].

A rectangular lattice is slim if it contains no \(M_3 \) as a sublattice.

For slim rectangular lattices, G. Czédli [1] approached the problem of having to use arbitrary large intervals through the use of trajectories.
Figure 1. Illustrating Jakubík’s condition for $\text{con}(p) \geq \text{con}(q)$

In a planar semimodular lattice L, two prime intervals of L are consecutive if they are opposite sides of a 4-cell (a covering C_2^2 sublattice with no interior element). As in G. Czédli and E. T. Schmidt [7], maximal sequences of consecutive prime intervals form a trajectory, see Section 4. Any prime interval p in a trajectory \mathcal{T} defines the same congruence $\text{con}(p) = \text{con}(\mathcal{T})$, but not all prime interval p with $\text{con}(p) = \text{con}(\mathcal{T})$ are necessarily in \mathcal{T}. So Czédli defines a quasi-ordering \leq_C of the trajectories utilizing only prime intervals, see Section 4.

The reflexive and transitive extension of \leq_C defines equivalence classes of trajectories of \leq_C defines an ordering \leq. For a trajectory \mathcal{T}, let \mathcal{F} denote the equivalence class containing \mathcal{T}. By definition, \mathcal{T} and \mathcal{T}' are in the same equivalence class, $\mathcal{F} = \mathcal{F}'$, iff $\mathcal{T} \leq_C \mathcal{T}'$ and $\mathcal{T}' \leq_C \mathcal{T}$. Let $\mathcal{Traj}(L)$ denote the set of equivalence classes of trajectories of L. The set $\mathcal{Traj}(L)$ under the ordering \leq_C forms an ordered set.

Theorem 2 (Trajectory Theorem for Slim Rectangular Lattices, G. Czédli [1]). Let L be a slim rectangular lattice. The ordered set $\mathcal{Traj}(L)$ is isomorphic to $\mathcal{J}(\text{Con} L)$, the ordered set of join-irreducible congruences of L, under the isomorphism $\mathcal{F} \mapsto \text{con}(\mathcal{F})$.

Since \leq_C deals with prime intervals only, this resolves the problem for slim rectangular lattices of determining when $\text{con}(p) \geq \text{con}(q)$ holds using prime intervals only.

My paper [15] took a more elementary and shorter approach. For the prime intervals p and q, it introduces the concept of prime-perspectivity, involving only the two prime intervals. Prime-projectivity is the transitive extension of prime-perspectivity. The Prime-projectivity Lemma in [15] states that $\text{con}(p) \geq \text{con}(q)$ iff p is prime-projective to q, which involves only prime intervals. A stronger forms of this lemma for slim, planar, semimodular lattices is also proved in [15].

In this paper, I show how the Swing Lemma can be used to verify Theorem 2 and generalize it to slim, planar, semimodular lattices.

1.1. **References.** G. Grätzer and E. Knapp [18]-[21] started the theory of slim planar semimodular lattices; it was continued in G. Czédli and E. T. Schmidt [8] and [9]. There has been a lot of activity in this field, see an overview in G. Czédli
and G. Grätzer [6] (Chapter 4 of the volume [24], G. Grätzer and F. Wehrung eds.)
and G. Grätzer [13] (Chapter 5 of the volume [24]).

In the Bibliography we list the most recent contributions to this topic that did not make it into [24].

We use the concepts and notation of LTF. My book [10] provides the background for congruence lattices of finite lattices.

1.2. Outline. In Section 2, we introduce and illustrate the basic concepts. Then we define the swing relation and state the Swing Lemma. In Section 3, we analyze the Swing Lemma, making a number of easy observations and deriving some elementary consequences. We introduce trajectories in Section 4. The Trajectory Theorem is proved for slim, planar, semimodular lattices in Section 5.

2. The Swing Lemma

2.1. Notation and terminology. We define an SPS lattice as a slim, planar, semimodular lattice.

For an ideal I, we use the notation \(I = [0_I, 1_I] \).

We recall that \([a, b] \sim [c, d]\) denotes perspectivity, \([a, b] \uparrow \sim [c, d]\) and \([a, b] \dn \sim [c, d]\) perspectivity up and down, see Figure 2; \([a, b] \approx [c, d]\) denotes projectivity, the transitive closure of perspectivity.

\([a, b] \rightarrow [c, d]\) denotes congruence-perspectivity, \([a, b] \uparrow \rightarrow [c, d]\) and \([a, b] \dn \rightarrow [c, d]\) denote congruence-perspectivity up and down, see Figure 3; \([a, b] \Rightarrow [c, d]\) denotes congruence-projectivity, the transitive closure of congruence-perspectivity.

A planar semimodular lattice is called slim if it contains no \(M_3 \) as a sublattice (G. Grätzer and E. Knapp [17]–[21] and G. Czédli and E. T. Schmidt [7]). An SPS lattice is a slim, planar, semimodular lattice.

Let \(L \) be an SPS lattice. For an element \(a \in L \), the multifork at \(a \) is the set of all prime intervals \(p \) with \(1_p = a \), at least three in number. The prime intervals in the multifork on the left and right are the exterior prime intervals; the others are the interior prime intervals. Note that if \(p \) and \(q \) are interior prime intervals of a multifork, then \(\text{con}(p) = \text{con}(q) \).

2.2. The swing relation. Let \(L \) be an SPS lattice. For the prime intervals \(p, q \) of \(L \), we define a binary relation: \(p \) swings to \(q \), in formula, \(p \swings q \), if \(p \) and \(q \) are in a multifork and \(q \) is an interior prime interval. See Figure 4 for two examples.

Let \(p \swings q \); if \(p \) is an exterior prime interval of the multifork, we write \(p \swings q \) — external swing — and if \(p \) is an interior prime interval of the multifork, we write \(p \swings q \) — interior swing.

Observation 3. If \(p \swings q \), then \(q \swings p \).

For the following result, see G. Grätzer [15] Lemma 15.

Lemma 4 (Swing Lemma). Let \(L \) be an SPS lattice and let \(p \) and \(q \) be prime intervals in \(L \). Then \(\text{con}(p) \geq \text{con}(q) \) iff there exists a prime interval \(r \) and sequence of prime intervals

\[r = r_0, r_1, \ldots, r_n = q \]
such that \(p \) is up perspective to \(r \), and \(r_i \) is down perspective to or swings to \(r_{i+1} \) for \(i = 0, \ldots, n-1 \). In addition, the sequence (1) also satisfies

\[
1_{r_0} \geq 1_{r_1} \geq \cdots \geq 1_{r_n}.
\]

See Figure 5 for an illustration with \(n = 4 \).

3. Analyzing the Swing Lemma

We now make a number of elementary observations about the Swing Lemma.
Observation 5. We associate with the sequence (1) of prime intervals, the sequence of binary relations \(\varrho_1, \ldots, \varrho_{n-1} \) such that
\[
\tau = \tau_0 \varrho_1 \tau_1 \varrho_2 \cdots \varrho_{n-1} \tau_n = q,
\]
where each binary relation is one of \(\sim_{dn}, \sim_{ex}, \sim_{in} \), where (and in the subsequent discussions) the relations \(\sim_{in} \) and \(\sim_{in} \) are proper, that is, they relate two distinct prime intervals.

Observation 6. We can assume that down perspectivities and swings alternate. Indeed, the relations: \(\sim_{dn} \) and \(\sim_{in} \) are transitive, so \(\sim_{dn} \circ \sim_{dn} = \sim_{dn} \) and \(\sim_{in} \circ \sim_{in} = \sim_{in} \).

Observation 7. If \(\varrho_i = \sim_{dn} \) for \(i < n \), then \(\varrho_{i+1} = \sim_{ex} \).

Observation 8. \(\varrho_1 \) may be an interior swing. All the other swings in (3) are exterior swings.

The last two observations follow from the fact that there is no down perspectivity to an interior prime interval of a multifork in an SPS lattice.

If \(p \sim q \) (as in the second diagram of Figure 4), then \(\text{con}(p) = \text{con}(q) \); nevertheless, interior swings play an important role, see the example in Figure 5.

In view of these observations, we derive some simple consequences of the Swing Lemma.

Corollary 9. Let \(L \) be an SPS lattice. If \(q \) is an exterior and \(p \) is an interior prime interval of a multifork, then \(\text{con}(q) > \text{con}(p) \).
Proof. We know that \(\text{con}(q) \geq \text{con}(p) \). Let us assume that \(\text{con}(q) = \text{con}(p) \). Then \(\text{con}(p) \geq \text{con}(q) \) and by Observation 5, there is a sequence (3). We must have \(p = r \), because \(p \) is an interior prime interval. If the first step is a swing, it is to another interior prime interval. So the next step is a down perspectivity. By (2), none of the \(r_i \) can reach the height of \(q \) for \(i = 2, \ldots, n \). This proves the statement. \(\square \)

Corollary 10. Let \(p \) and \(q \) be prime intervals in an SPS lattice \(L \). If \(\text{con}(p) = \text{con}(q) \), then there is a prime interval \(r \) such that one of the following two conditions hold (see Figure 6):

(i) \(p \) is up perspective to \(q \) and \(q \) is down perspective to \(r \); in formula,

\[
\text{up}_r \sim \text{dn}_q.
\]

(ii) \(p \) swings interiorly to \(r \) and \(r \) is down perspective to \(q \); in formula,

\[
\text{in}_p \uplus \text{dn}_r \sim q.
\]

Proof. If there are no swings in (1), we get (i).

For the sequence (3), by Corollary 9, there can be no external swings. By Observation 7, a perspectivity cannot be followed by an interior swing. So we are left with (ii). \(\square \)

Corollary 11. Let \(L \) be an SPS lattice. If \(s \) is an exterior prime interval and \(t \) is an interior prime interval of a multifork, then \(\text{con}(s) > \text{con}(t) \) in the order of join-irreducible congruences of \(L \).

Proof. Let \(s' \) denote the other external prime interval. If \(t \) is a prime interval with \(\text{con}(t) > \text{con}(p) \), then we can take a sequence as in (3). We can assume that \(t = r \). Working our way back from \(r_n = p \), the last step cannot be a down perspectivity, because \(r_n = p \) is an interior prime interval. So it must be a swing. If it is an external swing, we get \(\text{con}(t) \geq \text{con}(q) \) or \(\text{con}(t) \geq \text{con}(q') \). This proves the statement. \(\square \)

4. Trajectories

Let \(L \) be an SPS lattice. Two prime intervals of \(L \) are consecutive if they are opposite sides of a 4-cell. As in G. Czédli and E. T. Schmidt [7], maximal sequences
of consecutive prime intervals form a trajectory. We denote by \(\text{Traj}(L) \) the set of all trajectories of \(L \).

The prime intervals \(p \) and \(q \) of \(L \) are consecutive, if they are opposite sides of a 4-cell. A maximal sequence of consecutive prime intervals form a trajectory, see, for example, the trajectories in Figure 7. This concept originated in G. Czédli and

![Figure 7. Two trajectories](image)

E. T. Schmidt [8]. See also G. Czédli and G. Grätzer [6] for an overview.

A trajectory is a straight-trajectory, which goes straight up or straight down or a hat-trajectory, which goes up and then it goes down (at least one step each). A trajectory does not branch out. Note that the left and right ends of a trajectory are on the boundary of \(L \). A trajectory \(\mathcal{T} \) has a top prime interval, \(\text{top}(\mathcal{T}) \), with the property that \(0_{\text{top}(\mathcal{T})} \geq 0_q \) and \(1_{\text{top}(\mathcal{T})} \geq 1_q \) for any \(q \in \mathcal{T} \). A trajectory \(\mathcal{P} \) swings to the trajectory \(\mathcal{Q} \), in formula \(\mathcal{P} \bowtie \mathcal{Q} \), if there is a \(p \in \mathcal{P} \) and \(q \in \mathcal{Q} \) such that \(p \) swings to \(q \).

Now we state the crucial definition of G. Czédli [1].

For the trajectories \(\mathcal{P} \neq \emptyset \), let \(\mathcal{P} \leq C \mathcal{Q} \) if \(\mathcal{P} \) is a hat trajectory, \(1_{\text{top}(\mathcal{P})} \leq 1_{\text{top}(\mathcal{Q})} \), and \(0_{\text{top}(\mathcal{P})} \neq 0_{\text{top}(\mathcal{Q})} \), see Figure 8. Czédli defines \(\leq_T \) as the reflexive and transitive closure of \(\leq_C \). (The notation in G. Czédli [1] is different.) So for a trajectory \(\mathcal{P} \), we can define the closure, \(\hat{\mathcal{P}} \), of \(\mathcal{P} \): \(\mathcal{Q} \in \hat{\mathcal{P}} \) iff \(\mathcal{P} \leq C \mathcal{Q} \) and \(\mathcal{Q} \leq C \mathcal{P} \).

Observe that if \(\mathcal{P}, \mathcal{P}' \in \mathcal{F} \), then \(\mathcal{P} \leq C \mathcal{Q} \) iff \(\mathcal{P}' \leq C \mathcal{Q} \); similarly, if \(\mathcal{Q}, \mathcal{Q}' \in \mathcal{F} \), then \(\mathcal{P} \leq C \mathcal{Q} \) iff \(\mathcal{P} \leq C \mathcal{Q}' \). It follows that, by a slight abuse of terminology, we can use \(\leq_T \) as an ordering on \(\text{Traj}(L) \).

For a trajectory \(\mathcal{T} \), we can define \(\text{con}(\hat{\mathcal{T}}) = \text{con}(\mathcal{T}) \). Indeed, let \(\mathcal{P}, \mathcal{Q} \in \hat{\mathcal{T}} \). Then \(\mathcal{P} \leq C \mathcal{Q} \) and \(\mathcal{Q} \leq C \mathcal{P} \), therefore, \(1_{\text{top}(\mathcal{P})} \leq 1_{\text{top}(\mathcal{Q})} \) and \(1_{\text{top}(\mathcal{Q})} \leq 1_{\text{top}(\mathcal{P})} \), and so \(1_{\text{top}(\mathcal{P})} = 1_{\text{top}(\mathcal{Q})} \). Hence, \(\text{top}(\mathcal{P}) \) and \(\text{top}(\mathcal{Q}) \) are interior edges of the multifork at \(1_{\text{top}(\mathcal{P})} = 1_{\text{top}(\mathcal{Q})} \) and so \(\text{con}(\text{top}(\mathcal{P})) = \text{con}(\text{top}(\mathcal{Q})) \), from which \(\text{con}(\mathcal{P}) = \text{con}(\mathcal{Q}) \) follows.
5. The Trajectory Theorem for SPS Lattices

We have seen that $\overrightarrow{\text{Traj}}L$ is an ordered set under the ordering \leq_T and that all the prime intervals p in a trajectory $\mathcal{P} \in \overrightarrow{\text{Traj}}L$ generate the same join-irreducible congruence $\text{con}(p)$ of L. The join-irreducible congruences of L form an ordered set $J(\text{Con}L)$. It is the main result that these two ordered sets are isomorphic.

Theorem 12 (Trajectory Theorem for SPS Lattices). The ordered set $\overrightarrow{\text{Traj}}L$ is isomorphic to the ordered set $J(\text{Con}L)$ under the isomorphism $\overrightarrow{T} \mapsto \text{con}(\overrightarrow{T})$.

We are going to prove this result in this section.

First, we prove that $\mathcal{P} \leq_T \mathcal{Q}$ implies that $\text{con}(\mathcal{P}) \leq \text{con}(\mathcal{Q})$.

Since \leq_T is the reflexive and transitive closure of \leq_C, it is sufficient to prove (4) for $\mathcal{P} \leq_C \mathcal{Q}$. So assume the following: $\mathcal{P} \neq \mathcal{Q}$, \mathcal{P} is a hat trajectory, $1_{\text{top}(\mathcal{P})} \leq 1_{\text{top}(\mathcal{Q})}$, and $0_{\text{top}(\mathcal{P})} \nleq 0_{\text{top}(\mathcal{Q})}$, see Figure 8. Then

$$0_{\text{top}(\mathcal{Q})} \equiv 1_{\text{top}(\mathcal{Q})} \pmod{\text{con}(\mathcal{Q})},$$

so

$$0_{\text{top}(\mathcal{Q})} \land 1_{\text{top}(\mathcal{Q})} \equiv 1_{\text{top}(\mathcal{Q})} \land 1_{\text{top}(\mathcal{Q})} = 1_{\text{top}(\mathcal{Q})} \pmod{\text{con}(\mathcal{Q})}. $$

Let $0_{\text{top}(\mathcal{Q})} \land 1_{\text{top}(\mathcal{Q})} \leq a < 1_{\text{top}(\mathcal{Q})}$. We conclude that

$$\text{con}(\mathcal{Q}) = \text{con}(\text{top}(\mathcal{Q})) \geq \text{con}([a, 1_{\text{top}(\mathcal{Q})}]) \geq \text{con}(\text{top}(\mathcal{Q})) = \text{con}(\mathcal{P}),$$

verifying (4).

Let $a = 0_{\text{top}(\mathcal{Q})} \land 1_{\text{top}(\mathcal{P})}$, and remember that \mathcal{P} is a hat trajectory by definition. Since $a < 1_{\text{top}(\mathcal{P})}$, there is a prime interval τ in the multifork with top $1_{\text{top}(\mathcal{P})}$ such that $a \leq \tau$. Hence, $\text{top}(\mathcal{Q})$ is down-congruence perspective to τ, and we have $\text{con}(\mathcal{Q}) \geq \text{con}(\tau)$. Since top($\mathcal{P}$) is an interior member of our multifork, $\text{con}(\tau) \geq \text{con}(\text{top}(\mathcal{P})) = \text{con}(\mathcal{P})$. Thus, $\text{con}(\mathcal{Q}) \geq \text{con}(\mathcal{P})$, verifying (4).

Second, we prove the converse of (4):

(5) $\text{con}(\mathcal{P}) \leq \text{con}(\mathcal{Q})$ implies that $\mathcal{P} \leq_T \mathcal{Q}$.

Let $\tau = \text{top}(\mathcal{P})$ and $q = \text{top}(\mathcal{Q})$. By the Swing Lemma and Observation 5 we get the sequence (3) of binary relations. Note that

(a) trajectories are closed with respect to up and down perspectivities;
(b) the equivalence class \(\hat{P} \) of a trajectory \(P \) is closed with respect to interior swings;
(c) whenever \(r_{i-1} \) externally swings to \(r_i \), then \(r_i \) is the top of a hat trajectory \(R_i \)
and (denoting the trajectory of \(r_{i-1} \) by \(R_{i-1} \)), we clearly have that \(R_{i-1} \gtrsim_C R_i \).
This completes the proof of (5).

References

[1] G. Czédli, Patch extensions and trajectory colorings of slim rectangular lattices, Algebra Universalis, to appear.
[2] __________, The asymptotic number of planar, slim, semimodular lattice diagrams, Order (submitted); arXiv:1206.3679.
[3] __________, Finite convex geometries of circles, Discrete Mathematics 330 (2014) 61–75.
[4] __________, Quasiplanar diagrams and slim semimodular lattices. Order (submitted); arXiv:1212.6904.
[5] G. Czédli, T. Dékány, L. Oszvárt, N. Szakács, B. Udvari, On the number of slim, semimodular lattices. Mathematica Slovaca, to appear; arXiv:1208.6173.
[6] G. Czédli and G. Grätzer, Planar Semimodular Lattices: Structure and Diagrams. Chapter 4 in [24], 40 pp.
[7] G. Czédli and E.T. Schmidt, The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices. Algebra Universalis 66 (2011), 69–79.
[8] __________, Slim semimodular lattices. I. A visual approach. Order 29 (2012), 481–497.
[9] __________, Slim semimodular lattices. II. A description by patchwork systems. Order 30 (2013), 689–721.
[10] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach. Birkhäuser Boston, 2006. xxiii+281 pp. ISBN: 0-8176-3224-7.
[11] G. Grätzer, Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2011. xxix+613 pp. ISBN: 978-3-0348-0017-4.
[12] G. Grätzer, Notes on planar semimodular lattices. VI. On the structure theorem of planar semimodular lattices. Algebra Universalis 69, 301–304 (2013)
[13] __________, Planar Semimodular Lattices: Congruences. Chapter 5 in [24], 32 pp. and bibliography.
[14] __________, A technical lemma for congruences of finite lattices, to appear. Algebra Universalis. arXiv: 1308.4607
[15] __________, Congruences and prime-perspectivities in finite lattices, to appear. Algebra Universalis. arXiv: 1312.2537
[16] __________, On a result of Gábor Czédli concerning congruence lattices of planar semimodular lattices. Acta Sci. Math. (Szeged), to appear.
[17] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73 (2007), 445–462.
[18] __________, A note on planar semimodular lattices. Algebra Universalis 58 (2008), 497–499.
[19] __________, Notes on planar semimodular lattices. II. Congruences. Acta Sci. Math. (Szeged) 74 (2008), 37–47.
[20] __________, Notes on planar semimodular lattices. III. Rectangular lattices. Acta Sci. Math. (Szeged) 75 (2009), 29–48.
[21] __________, Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices. Acta Sci. Math. (Szeged) 76 (2010), 3–26.
[22] G. Grätzer, H. Lakser, and E.T. Schmidt, Congruence lattices of finite semimodular lattices. Canad. Math. Bull. 41 (1998), 290–297.
[23] G. Grätzer and E.T. Schmidt, Ideals and congruence relations in lattices. Acta Math. Acad. Sci. Hungar. 9 (1958), 137–175.
[24] G. Grätzer and F. Wehrung eds., Lattice Theory: Empire. Special Topics and Applications. Volume 1. Birkhäuser Verlag, Basel, 2014.
[25] J. Jakubík, Congruence relations and weak projectivity in lattices, (Slovak) Časopis Pěst. Mat. 80 (1955), 206–216.
