Intuitionistic fuzzy semi d-ideal spectrum

Habeeb Kareem Abdullah1 and Ali Khalid Hasan2

1Department of Mathematics, Faculty of Education for Girls, Kufa University, Najaf, Iraq .
2Directorate General of Education in Karbala province Ministry of Education, Iraq
E-mail: 1habeebk.abdullah@uokufa.edu.iq . and 2alimathfruit@gmail.com

Abstract. The main purpose of this paper is to study the spectrum of intuitionistic fuzzy semi d-ideal in d-algebra, and the relationship between the topological properties and the algebraic properties of the Spectrum of d-algebra \(X\) with respecting to connectedness and separation axioms .

1. Introduction

BCK-algebra is a classe of abstract algebras introduced by Y. Imai and K. Iseki [9,15] . A d-algebra is a useful generalization of BCK-algebra was introduced by J. Negger and H. S. Kim [7]. J. Negger , Y. B. Jun and H. S. Kim [8] discussed ideal theory in d-algebra. After the introduction of intuitionistic fuzzy set by Atanassov in 1986 [10], there was a number of generalizations of this concept. This concept was generalizations for fuzzy set concept which was introduced by Zadeh in 1965 [11]. In [14] Y. B. Jun, J. Neggars and H. S. Kim apply the ideal theory in fuzzy d-ideals of d-algebras . H. K. Abdullah and A. K. Hasan introduce the notation of semi d-ideal of d-algebra in [5]. Y. B. Jun , H. S. Kim and D.S. Yoo in [13] introduced the notion of intuitionistic fuzzy d-algebra. A. K. Hasan introduce the notion of intuitionistic fuzzy semi d-ideals of d-algebra in [1] . Ali K. Hasan and Osamah A. Shaheed introduce the notion of intuitionistic fuzzy prime semi d-ideals of d-algebra in [2], and in this paper we study the spectrum of intuitionistic fuzzy semi d-ideal in d-algebra, and the relationship between the topological properties and the algebraic properties of the d-algebra \(X\). Also we consider strongly connected and separated properties .

2. Background

This section contains some basic about intuitionistic fuzzy set and the ordinary and intuitionistic fuzzy concepts about semi d-ideal and prime semi d-ideal in d-algebra, with some theorems and propositions.

Definition (2.1) : [7] A d-algebra is any non-empty set \(X\) with a binary operation \(\ast\) and a constant \(0\) which satisfies that:
I. \(a \ast a = 0\)
II. \(0 \ast a = 0\)
III. If \(a \ast b = b \ast a = 0\) then \(a = b\ \forall a, b \in X\).

We will refer to \(a \ast b\) by \(ab\), and it is said to be commutative if \(a(ab) = b(ba)\) for all \(a, b \in X\), and \(b(ba)\) is denoted by \((a \land b)\). Every set \(X\) in the following is a d-algebra

Definition (2.2) :[5] A semi d-ideal of a d-algebra \(X\) is a non empty subset \(J\) of \(X\) satisfies i) \(a, b \in J\) imply \(ab \in J\) , ii) \(ab \in J\) and \(b \in J\) imply \(a \in J\) , for all \(a, b \in X\)

Definition(2.3) : [4] In a commutative d-algebra \(X\), a semi d-ideal \(I\) is said to be prime if \(a \land b \in I\) implies \(a \in I\) or \(b \in I\) , for all \(a, b \in X\).

Definition (2.4) [10] : An IFS " intuitionistic fuzzy set " \(A\) in a set \(X\) is an object having the form \(A = \{< a, \alpha_A(a), \beta_A(a) >: a \in X\}\) , such that \(\alpha_A: X \rightarrow [0,1]\) and \(\beta_A: X \rightarrow [0,1]\) denoted the degree of
membership (namely \(\alpha_A(a)\)) and the degree of non membership (namely \(\beta_A(a)\)) for any elements \(a \in X\) to the set \(A\), and \(0 \leq \alpha_A(a) + \beta_A(a) \leq 1\), for all \(a \in X\). To simplicity, we shall use \(A = \{ < a, \alpha_A(a), \beta_A(a) > : a \in X \}\).

Definition (2.5): [3] Let \(X, Y\) be d-algebra and let \(f : X \rightarrow Y\) be a homomorphism mapping, and \(C\) be IFS in \(X\) we define IFS, \(f(C)\) in \(Y\), by

\[
\begin{align*}
 & f(C)_y = \{ \alpha_{f(C)}(b), \beta_{f(C)}(b) \} \quad \text{where} \quad \alpha_{f(C)}(b) = \\
 & \sup \{ \alpha_C(a) \mid a \in X, f(a) = b \} \quad \text{if} \quad f^{-1}(b) \neq \emptyset , \quad \text{and} \\
 & 0 \quad \text{otherwise}, \\
 & \beta_{f(C)}(b) = \begin{cases}
 \inf \beta_C(a) & a \in X, f(a) = b \\
 0 & \text{otherwise}
 \end{cases} \quad \text{if} \quad f^{-1}(b) \neq \emptyset \quad \text{for each} \quad b \in Y.
\end{align*}
\]

Definition (2.6): [6] Let \(\mu, \nu \in [0,1]\) such that \(\mu + \nu \leq 1\). An intuitionistic fuzzy point \(x_{(\mu,\nu)}\) is defined to be an IFS in \(X\), define by \(x_{(\mu,\nu)}(y) = \begin{cases}
 (\mu, \nu) & \text{if} \quad y = x \\
 (0,1) & \text{if} \quad y \neq x
 \end{cases} \quad \text{for all} \quad y \in X\), and \(x_{(\mu,\nu)} \in A\) if and only if \(\alpha \leq \mu(x)\) and \(\beta \geq \nu(x)\).

Notation (2.7): Let \(A\) be an IFS of a d-algebra \(X\). We denote a level cut set \(A_\alpha\), by \(A_\alpha = \{ x \in X : \alpha_A(x) = \alpha_0\} \).

Definition (2.8): [3] The IFS \(\bar{0}\) and \(\bar{1}\) in \(X\) are define as \(\overline{0} = \{ (x, 0.1), x \in X \}\) and \(\overline{1} = \{ (x, 1.0), x \in X \}\), where \(1\) and \(0\) represent the constant maps sending every element of \(X\) to \(1\) and \(0\), respectively.

Definition (2.9): [1] An intuitionistic fuzzy semi d-ideal of \(X\), "shortly IFSd – ideal", is an IFS \(D = \{ \alpha_D, \beta_D \} \) in \(X\) satisfies the following inequalities:

\[
\begin{align*}
 & (\text{IFSd}_1) \quad \alpha_D(a) \geq \min(\alpha_D(ab), \alpha_D(b)), \quad (\text{IFSd}_2) \quad \beta_D(a) \leq \max(\beta_D(ab), \beta_D(b)) \\
 & (\text{IFSd}_3) \quad \alpha_D(ab) \geq \min(\alpha_D(a), \alpha_D(b)), \quad \text{and } (\text{IFSd}_4) \quad \beta_D(ab) \leq \max(\beta_D(a), \beta_D(b)), \quad \text{for all} \quad a, b \in X.
\end{align*}
\]

Definition (2.10): [2] An IFSd – ideal \(D = \{ \alpha_D, \beta_D \} \) of \(X\) is an intuitionistic fuzzy prime semi d-ideal "shortly IFSd – ideal " in \(X\) if it is satisfies \((\text{IFSd}_1) \) \(\alpha_D(a, b) \leq \max(\alpha_D(a), \alpha_D(b))\) \((\text{IFSd}_2)\) \(\beta_D(a \land b) \geq \min(\beta_D(a), \beta_D(b))\), for all \(a, b \in X\).

Theorem (2.11): [2] If \(D = \{ \alpha_D, \beta_D \} \) is an IFSd – ideal, then the set \(A_\alpha = \{ a \in X : \alpha_D(a) = \alpha_D(0) \text{ and } \beta_D(a) = \beta_D(0) \}\) is a prime semi d-ideals.

Definition (2.12): [2] A non-constant intuitionistic fuzzy ideal \(A\) of a d-algebra \(X\) is called an intuitionistic fuzzy maximal semi d-ideal if for any intuitionistic fuzzy semi d-ideal \(B\) of \(X\), if \(\text{if } A \subseteq B\), then either \(B_\alpha = A_\alpha\) or \(B_\beta = X\).

Theorem (2.13): [2] Let \(A\) be an intuitionistic fuzzy maximal semi d-ideal of a d-algebra \(X\), then \(A_\alpha\) is a maximal semi d-ideal of \(X\).

Definition (2.14): [2] Let \(A\) be an IFS of \(X\). Then the least IFSd – ideal of \(X\) containing \(A\) is called the IFSd – ideal of \(X\) generated by \(A\) and is denoted by \(\langle A \rangle\).

3. Topological spectrum

In this section we introduce the spectrum of d-algebra and we discuss the relationship between some algebraic and topological properties of d-algebra.

Notation (3.1):

(i) \(\chi = \{ P, P \text{ is IFSd} – \text{ideal of } X \}\).

(ii) \(V(A) = \{ P \in \chi, A \subseteq P, \text{wher } A \text{ is an IFSd} – \text{ideal of } X \}\).

(iii) \(\chi(A) = \chi \setminus V(A) \text{ the complement of } V(A) \text{ in } X\).

Lemma (3.2): Let \(A\) and \(B\) be IFSd – ideal. If \(A \subseteq B\), then \(V(B) \subseteq V(A)\).

proof: Let \(P \in V(B)\) that implies \(B \subseteq P\), and so \(A \subseteq B \subseteq P\) that mean \(P \in V(A)\).

proposition (3.3): If \(P\) is a smallest IFSd – ideal containing \(A\), then \(V(A) = V(P)\).

proof: It is clear that \(V(P) \subseteq V(A)\) by lemma (3.2). Now let \(P_1 \in V(A)\), so \(A \subseteq P_1\), but \(P\) is a smallest IFSd – ideal containing \(A\), so \(P \subseteq P_1\), then \(P_1 \in V(A)\). Thus \(V(A) = V(P)\).

Proposition (3.4): Let \(A\) be an IFSd – ideal, then \(V(A) = V(A)\).

proof: Let \(P \in V(A)\) that implies \(A \subseteq P\), and so \(\langle A \rangle \subseteq P\). Hence \(P \in V(A)\).
Conversely, let \(P \in V(A) \), then \((A) \subseteq P\), note that so \(A \subseteq (A) \subseteq P\), we get \(P \in V(A) \). Therefore \(V((A)) = V(A) \).

Proposition (3.5): Let \(A \) and \(B \) be two \(IFSd - ideal \), then \(V(A \cup B) \subseteq V(A) \cup V(B) \).

Proof: Since \(A \subseteq A \cup B \) and \(B \subseteq A \cup B \), so \(V(A \cup B) \subseteq V(A) \) and \(V(A \cup B) \subseteq V(B) \). Thus \(V(A \cup B) \subseteq V(A) \cup V(B) \).

Definition (3.6): For an \(IFSd - ideal \) \(A \) of \(X \). The prime radical \(rad(A) \) of \(A \) is the intersection of all \(IFSd - ideals \) of \(X \) containing \(A \). In case there is no such \(IFSd - ideal \), then \(rad(A) = \emptyset \).

Proposition (3.7): Let \(A \) be an \(IFSd - ideal \), then
- \(i) \) \(A \subseteq rad(A) \)
- \(ii) \) \(rad(rad(A)) = rad(A) \)
- \(iii) \) If \(A \) \(IFSd - ideal \), then \(rad(A) = A \)
- \(iv) \) If \(A \subseteq B \), then \(rad(A) \subseteq rad(B) \).

Proof:
- \(i) \) It is clear that \(A \subseteq \cap \{ P_i, P \in A, \forall i \in \Lambda \} \).
- \(ii) \) We can easily show that \(\cap \{ P_i, rad(A) \subseteq P \} = \cap \{ P_i, P \subseteq \hat{P} \} \) for all \(i \in \Lambda \), so \(A \subseteq P \), then \(rad(rad(A)) = rad(A) \).
- \(iii) \) Since \(A \) is an \(IFSd - ideal \), then \(\cap P_i = A \) for all \(i \in \Lambda \) this mean \(rad(A) = A \).
- \(iv) \) It is clear.

Proposition (3.8): For any \(IFSd - ideal \) \(A \) and \(B \) the following are hold
- \(i) \) \(V(A) = V(rad(A)) \)
- \(ii) \) \(V(A) = V(B) \) if and only if \(rad(A) = rad(B) \).

Proof:
- \(i) \) Since \(A \subseteq rad(A) \), then \(V(rad(A)) \subseteq V(A) \). Now let \(P \in V(A) \), thus \(A \subseteq P \), so \(rad(A) \cap \{ \hat{P} \in Spec(X): A \subseteq \hat{P} \} \), this imply that \(rad(A) \subseteq P \). Thus \(P \in V(rad(A)) \), then \(V(A) \subseteq V(rad(A)) \). Hence \(V(A) = V(rad(A)) \).
- \(ii) \) It is clear.

Proposition (3.9): If \(f \) is a \(d \)-morphism from \(X \) to \(\hat{X} \), then \(f(x_{(\mu,\nu)}) = (f(x))_{(\mu,\nu)} \), for all \(x \in X \) and for all \(\mu, \nu \in \{ 0, 1 \} \) such that \(\mu + \nu \leq 1 \).

Proof: Let \(y \in \hat{X} \) be any element, then \(f(x_{(\mu,\nu)})(y) = \{ \alpha_f(x_{(\mu,\nu)})(y), \beta_f(x_{(\mu,\nu)})(y) \} \), where
\[
\alpha_f(x_{(\mu,\nu)})(y) = \sup \{ \alpha_{x_{(\mu,\nu)}}(p), f(p) = y \} = \begin{cases} \mu ; & \text{if } p = x, y = f(x) \\ 0 ; & \text{otherwise} \end{cases} = \alpha_{(f(x))_{(\mu,\nu)}}(y),
\]
\[
\beta_f(x_{(\mu,\nu)})(y) = \inf \{ \beta_{x_{(\mu,\nu)}}(p), f(p) = y \} = \begin{cases} \nu ; & \text{if } p = x, y = f(x) \\ 0 ; & \text{otherwise} \end{cases} = \beta_{(f(x))_{(\mu,\nu)}}(y).
\]

Hence \(f(x_{(\mu,\nu)}) = (f(x))_{(\mu,\nu)} \).

Definition (3.10): Let \(A \) and \(B \) are \(IFS \) we will define \(A.B = \{ \langle a, \alpha_{A,B}(a), \beta_{A,B}(a) \rangle : a \in X \} =< \alpha_A, \alpha_B, \beta_A, \beta_B > \).

Theorem (3.11): Let \(T = \{ \chi(A), A \ is \ IFSd - ideal \ in \ X \} \). Then \(T \) is a topology on \(X \).

Proof: Since \(V(\emptyset) = X \) and \(V(\overline{X}) = \emptyset \), so that \(\chi(\emptyset) = \emptyset \) and \(\chi(\overline{X}) = X \), and that implies \(\emptyset, X \in T \).

Next let \(A_1 \) and \(A_2 \) be any two \(IFSd - ideal \). Then let \(B \in V(A_1 \cup A_2) \) that mean \(A_1 \subseteq B \) or \(A_2 \subseteq B \) then \(A_1 \cap A_2 \subseteq B \), so \(B \in V(A_1 \cap A_2) \), and if \(B \in V(A_1 \cap A_2) \) we get that \(A_1 \cap A_2 \subseteq B \) and that's mean \(A_1, A_2 \subseteq B \) then \(A_1 \subseteq B \) or \(A_2 \subseteq B \) and thus \(B \in V(A_1 \cup A_2) \). Hence \(V(A_1) \cup V(A_2) = V(A_1 \cup A_2) \), so \(\chi(A_1) \cap \chi(A_2) = \chi(A_1 \cap A_2) \),
and that mean
\[\chi(A_1) \cap \chi(A_2) = \chi(A_1 \cap A_2) \]. This show that \(T \) closed under finite intersection.

Finally, let \(\{ A_i, i \in \Lambda \} \) be any family of IF5d – ideal of \(X \) it can be easily confirm that \(\bigcup \{ V(A_i), i \in \Lambda \} = V((\bigcup \{ A_i, i \in \Lambda \})) \). In other words, \(\bigcup_{i \in \Lambda} \chi(A_i) = \chi((\bigcup_{i \in \Lambda} A_i)) \). Hence \(T \) is closed under arbitrary unions. Thus \(T \) is a topology on \(X \).

Remark (3.12): The topological space \((X, T)\) defined in theorem (3.11) is called the intuitionistic fuzzy prime semi d-ideal spectrum of \(d \)-algebra and is denoted by IFPSd – Spec\((X)\) or for convenience \(\chi \).

Notations (3.13):

1. We will denoted for all \(x \in X \) and \(\mu, \nu \in [0, 1] \) such that \(\mu + \nu \leq 1 \), then
2. Let \(A \) be an IF5S of the \(X \). Put \((A) = ((\alpha_0, \beta_0), (\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)) \), where \(\alpha_i, \beta_i \in [0, 1] \) such that \(\alpha_i + \beta_i \leq 1 \) for all \(i = 0, 1, 2, \ldots, n \).

Theorem (3.14): Let \(x, y \in X \) and \(\mu, \nu \in [0, 1] \) such that \(\mu + \nu \leq 1 \), then

i) \(\chi(x(\mu, \nu)) \cap \chi(y(\mu, \nu)) = \chi(xy(\mu, \nu)) \)

ii) \(\chi(x(\mu, \nu)) = \emptyset \) if and only if \(x \) is \(\bar{x} \).

iii) \(\chi(x(\mu, \nu)) = \chi \) if and only if \(x \) is \(\bar{x} \) in \(X \).

proof:

i) If \(P \in \chi(x(\mu, \nu)) \cap \chi(y(\mu, \nu)) \) and \(P \in \chi(x(\mu, \nu)) \), then \(P \in \chi(x(\mu, \nu)) \), that means \(x(\mu, \nu) \notin P \) and \(y(\mu, \nu) \notin P \), and that implies \(\alpha_p(x) < \mu, \beta_p(x) > \nu \) and \(\alpha_p(y) < \mu, \beta_p(y) > \nu \). Thus \(\mu > \alpha_p(x) = \alpha_p(y) = \alpha_p(xy) \) and \(v = \beta_p(x) = \beta_p(y) = \beta_p(xy) \), since \(P = \{ x \in X : \mu_p(x) = 1, \beta_p(x) = 0 \} \) is a prime semi d-ideal of \(X \) and \(\bigwedge(P) = \{(0,1), (\mu, \nu)\} \) implies that \(\alpha_p(a) = \alpha_p(b) \) and \(\beta_p(a) = \beta_p(b) \) for all \(a, b \in X \setminus P \) and \(x, y, xy \notin P \). Then \(xy(\mu, \nu) \notin P \), which means that \(P \in \chi(xy(\mu, \nu)) \). The proof of (i) is complete, since all the implication can be reversed.

ii) Let \(J \) be any prim semi d-ideal of \(d \)-algebra \(X \) and let \(X_J \) be the intuitionistic fuzzy characteristic function of \(J \). It is follows that \(X_J \subseteq X \). Next if \(\chi(x(\mu, \nu)) \notin X \), then \(V(x(\mu, \nu)) = X \), which implies that \(x(\mu, \nu) \notin X \), and therefore \(\alpha_{x_J}(x) = 1 \) and \(\beta_{x_J}(x) = 0 \), so \(x \in J \). Thus \(x \in \bigcap\{J: J \text{ is prime semi } d- \text{ ideal in } X\} \). Hence \(x \) is \(\bar{x} \). Conversely, assume that \(x \) is \(\bar{x} \). Let \(A \in X \), then \(A \) is prim semi d-ideal of \(X \), and \(x \in A \), therefore \(\alpha_A(x) = 1, \beta_A(x) = 0 \). Hence \(\mu = \alpha_{x(\mu, \nu)}(x) \leq \alpha_A(x) \) and \(\nu = \beta_{x(\mu, \nu)}(x) \geq \beta_A(x) \), where \(x(\mu, \nu) \notin A \) for all \(A \in X \). Thus \(V(x(\mu, \nu)) = X \), i.e. \(\chi(x(\mu, \nu)) = \emptyset \).

iii) Let \(J \) be any prim semi d-ideal of \(d \)-algebra \(X \) and let \(X_J \) be the intuitionistic fuzzy characteristic function of \(J \). Now if \(\chi(x(\mu, \nu)) \notin X \), then \(V(x(\mu, \nu)) = \emptyset \), which implies that \(x(\mu, \nu) \notin X \), and therefore \(\alpha_{x_J}(x) < \mu \) and \(\beta_{x_J}(x) > \nu \), so \(x \notin J \). Thus \(x \notin \bigcap\{J: J \text{ is prime semi } d- \text{ ideal in } X\} \). Hence \(x \) is \(\bar{x} \). The converse in the conversive way.

Theorem (3.15): The sub-family \(\{\chi(x(\mu, \nu)), x \in X \) and \(\mu, \nu \in (0, 1) \) such that \(\mu + \nu \leq 1 \) of \(\chi \) is a base for \(T \).
proof: Let $\chi(A) \in T$, and let $B \in \chi(A)$, then $\alpha_{B}(x) < \alpha_{A}(x)$ and $\beta_{B}(x) > \beta_{A}(x)$ for some $x \in X$.

Let $\alpha_{A}(x) = \mu$ and $\beta_{A}(x) = v$, then $x_{(\mu,v)} \notin A$ and so $A \notin \chi(x_{(\mu,v)})$. Now $V(A) \subseteq V(x_{(\mu,v)})$.

because if $P \in V(A)$, then $\alpha_{P}(x) \geq \alpha_{A}(x) = \mu = \alpha_{x_{(\mu,v)}}(x)$, and $\beta_{P}(x) \leq \beta_{A}(x) = v = \beta_{x_{(\mu,v)}}(x)$.

So that $x_{(\mu,v)} \notin P$ and thus $P \in V(x_{(\mu,v)})$. Hence $\chi(x_{(\mu,v)}) \subseteq \chi(A)$. Thus $B \in \chi(x_{(\mu,v)}) \subseteq \chi(A)$.

And this complete the proof.

Theorem (3.16): Spec(X) is disconnected if and only if there exist two $IFSd$-ideal A, B such that $\text{rad}(A \cup B) = \text{rad}(1)$ and $\text{rad}(A \cap B) = \text{rad}(0)$.

proof: Let Spec(X) be disconnected, then there exist two $IFSd$-ideal A, B in X such that $\chi(A) \neq \emptyset$, $\chi(B) \neq \emptyset$, $\chi(A) \cap \chi(B) = \emptyset$, $\chi(A) \cup \chi(B) = \text{spec}(X)$. That is mean $\chi(A) \cap \chi(B) = \chi(\emptyset)$ and $\chi(A) \cup \chi(B) = \chi(\overline{1})$. Thus $\chi(A \cap B) = \chi(\emptyset)$ and $\chi(A \cup B) = \chi(\overline{1})$. So by proposition (3.10)(ii) we get $\text{rad}(A \cap B) = \text{rad}(\emptyset)$ and $\text{rad}(A \cup B) = \text{rad}(\overline{1})$.

Recall that a subset A of a topological space X is called strongly connected (s-connected) when we get for any open subset U and V of X, if $A \subseteq U \cup V$, then $A \subseteq U$ or $A \subseteq V$. [12]

Theorem (3.17): Any subset of Spec(X) is S-connected.

proof: Let \emptyset be a collection of an $IFSd$-ideal of Spec(X), and let C, D be an $IFSd$-ideal in X. Since $\emptyset \subseteq \chi(C) \cup \chi(D) \subseteq \chi(C \cup D)$. Then by proposition (3.5) we get that $\emptyset \subseteq \chi(C)$ or $\emptyset \subseteq \chi(D)$ and this complete the proof.

Theorem (3.18): Spec(X) is a T_{0} - space.

Proof: Let $A, B \in X$ and $A \neq B$. Then either $A \not\subseteq B$ or $B \not\subseteq A$. Let $A \not\subseteq B$ then $B \notin V(A)$, but $A \in V(A)$, then $B \in X(A)$, and $A \notin X(A)$. Now let $B \not\subseteq A$ similarly we can get $A \in X(B)$ but $B \notin X(B)$. It follow that Spec(X) is a T_{0}-space.

Theorem (3.19): In Spec(X), $V(A) = \overline{A}$ for all $IFSd$-ideal in X

proof: It is clear that $\overline{A} \subseteq V(A)$, since $V(A)$ is closed set containing A. Now let $B \notin \overline{A}$, then there exist an open set $X \setminus V(C)$ containing B but not A, therefore $C \not\subseteq B$, but $C \subseteq A$ and so $B \notin V(A)$. Thus $V(A) \subseteq \overline{A}$, and that complete the proof.

Corollary (3.20): $B \in \overline{A}$ if and only if $A \subseteq B$.

proof: it is follow directly from theorem (3.19).

Theorem (3.21): Let $Y = \{P \in X: \Lambda(P) = \{(0,1), (\mu, v)\}; \mu, v \in [0,1) \text{ such that } \mu + v \leq 1\}$, then Y is T_{1} if and only if every singleton element of Y is an intuitionistic fuzzy maximal semi d-ideal of X.

proof: we need to show that the semi d-ideal $A_{1} = \{x \in X, \alpha_{A}(x) = 1, \beta_{A}(x) = 0\}$ is a maximal semi d-ideal. It is sufficient to show that there is no prime semi d-ideal of X containing A_{1}. Let J is a prime semi d-ideal containing A_{1}, consider an $IFSd$-ideal B of X defined by $\alpha_{B}(x) = \{1 \text{ if } x \in J \}$ and $\mu \text{ if } x \notin J$.

\[
\beta_b(x) = \begin{cases}
0 & \text{if } x \notin J \\
1 & \text{if } x \in J
\end{cases}
\]
where \(\mu + \nu \leq 1 \). Then \(B \in Y \) and \(A \) containing in \(B \). This contradiction the fact that \(V(A) \cap Y = \{A\} \).

Conversely, let \(A \) is an IFMSd-ideal then the ideal \(A_\ast = \{x \in X, \alpha_A(x) = 1, \beta_A(x) = 0\} \) is maximal, we claim that \(V(A) \cap Y = \{A\} \). Clearly \(\{A\} \subseteq V(A) \cap Y \). Now if \(B \in V(A) \cap Y \), then \(A \subseteq B \) and \(A_\ast \subseteq B_\ast \). This means that \(A_\ast = B_\ast \), since \(A_\ast \) is a maximal semi d-ideal. Hence \(B = A \), since \(\Lambda(A) = \Lambda(B) = \{(1,0),(\mu, \nu)\} \), therefore \(V(A) \cap Y = \{A\} \), consequently \(\{A\} \) is closed subset of \(Y \).

Theorem (3.22): If every prime semi d-ideal in \(X \) is maximal, then the space \(IFPSd - Spec(X) \) is not Hausdorff.

proof: Let \(J \) be a prim semi d-ideal of \(X \), consider two IFPSd-ideals \(A, B \) of \(X \) defined by \(\alpha_A(x) = \begin{cases}
1 & \text{if } x \in J \\
0 & \text{if } x \notin J
\end{cases} \)
and \(\beta_A(x) = \begin{cases}
1 & \text{if } x \in J \\
0 & \text{if } x \notin J
\end{cases} \), \(\alpha_B(x) = \begin{cases}
0 & \text{if } x \in J \\
1 & \text{if } x \notin J
\end{cases} \) and \(\beta_B(x) = \begin{cases}
0 & \text{if } x \in J \\
1 & \text{if } x \notin J
\end{cases} \).
Let \(X(x_{(\mu, \nu)}) \) and \(X(y_{(\mu, \nu)}) \) be any two basic open set in \(X \) containing \(A \) and \(B \) respectively where \(x, y \in X \) and \(\mu + \nu \leq 1 \). Then \(x_{(\mu, \nu)} \subseteq A \) and \(y_{(\mu, \nu)} \subseteq B \), so \(x \notin A_\ast = J \) and \(y \notin B_\ast = J \). Since \(J \) is prime then \(xy \notin J \), then \(xy \) is not nilpotent and so by theorem "(3.14) (i) and (ii)" we have \(X(x_{(\mu, \nu)}) \cap X(y_{(\mu, \nu)}) = X(xy_{(\mu, \nu)}) \neq \emptyset \). Hence \(X \) is not Hausdorff.

References

[1] A. K. Hasan, "Intuitionistic fuzzy semi d-ideal of d-algebra ", Journal of Iraqi AL-Khwarizmi society, Vol. 1 Issue :1 December 2017, 85-91.
[2] A. K. Hasan, Osamah A. Shaheed, " Intuitionistic fuzzy prime semi d-ideal of d-algebra ", to appear.
[3] D. Coker, "An introduction to intuitionistic fuzzy topological spaces", Fuzzy Sets and Systems 88 (1997), 81–89.
[4] H. K. Abdullah , A. K. Hassan , " fuzzy filter spectrum of d-algebra ", Lambert academic publishing, 2017.
[5] H. K. Abdullah , A. K. Hassan , " semi d-ideal ", journal of Kerbala 11(2013) NO.3 Scientific 192-197.
[6] I. Bakhadach , S. Melliani, M. Oukessou and S.L. Chadli,(2016), Intuitionistic fuzzy ideal and intuitionistic fuzzy prime ideal in a ring, Notes on Intuitionistic Fuzzy Sets, Vol. 22, no. 2 pp., 59-63.
[7] J. Neggers and H. S. Kim, " on d-algebra ", Math. Slovaca . 49(1999) No.1, 19-26.
[8] J. Neggers; Y. B. Jun; H. S. Kim , " On d-ideals in d-algebras ", Mathematica Slovaca. 49 (1999), No. 3, 243–251.
[9] K. Iseki, " An algebra Relation with Propositional Calculus " Proc. Japan Acad, 42 (1966) 26-29.
[10] K. T. Atanassov,"Intuitionistic fuzzy sets ", Fuzzy sets and Systems 35 (1986), 87–96.
[11] L. A. Zadeh , " Fuzzy set ",Inform. And Control. 8(1965), 338-353.
[12] N. Levine , " Strongly connected set in topology ", , A. M. M 72(1965), 1098-1101.
[13] Y. B. Jun , H. S. Kim and D.S. Yoo , " Intuitionistic fuzzy d-algebra ", Scientiae Mathematicae Japonicae Online, e-(2006), 1289–1297.
[14] Y. B. Jun, J. Neggers, and H. S. Kim, " Fuzzy d-ideals of d-algebras ", J. Fuzzy Math. 8(2000), No. 1, 123–130.
[15] Y. Iami and K. Iseki, " On Axiom System of Propositional Calculi XIV " Proc. Japan Acad, 42 (1966) 19-20.