Laplace operators on Sasaki-Einstein manifolds

Johannes Schmude

Department of Physics, Universidad de Oviedo, 33007, Oviedo, Spain
RIKEN Nishina Center, Saitama 351-0198, Japan

We decompose the de Rham Laplacian on Sasaki-Einstein manifolds as a sum over mostly positive definite terms. An immediate consequence are lower bounds on its spectrum. These bounds constitute a supergravity equivalent of the unitarity bounds in dual superconformal field theories. The proof uses a generalization of Kähler identities to the Sasaki-Einstein case.

A textbook result in Kähler geometry relates the de Rham with the Dolbeault Laplacian, \(\Delta = 2\Delta_{\bar{\partial}} \). The main result of this note is a similar identity for Sasaki-Einstein manifolds:

\[
\Delta = 2\Delta_{\bar{\partial}} - L_{\bar{\partial}}^2 - 2i(n-d)\partial_L \xi + 2L_{A} + 2(n-d)^2L_{\bar{\partial}}A_{\bar{\partial}} + 2i(L_{\bar{\partial}}\bar{\partial}B - \bar{\partial}B\partial_A).
\]

The right hand side of equation (1) features the Lefschetz operator, the action of the Reeb vector, the tangential Cauchy-Riemann operator as well as their adjoints. Full definitions will be given in section \(\text{I} \). The equation \(\Delta = 2\Delta_{\bar{\partial}} \) can be derived from the Kähler identities, commutators between the Dolbeault and Lefschetz operators and their adjoints \(\text{I, II} \). Our proof of (1) will follow a similar route; we will obtain Kähler-like identities that are valid on Sasaki-Einstein manifolds. These are summarized in appendix \(\text{A} \).

This note is written with two audiences in mind: physicists working in gauge/string duality or supergravity and mathematicians interested in Sasaki-Einstein geometry. Therefore we split the discussion into two separate parts, giving a proof of both \(\text{I} \) and the identities in section \(\text{II} \) while discussing their motivation by and relevance to physics in section \(\text{III} \). Readers who want to focus on the mathematical aspects can ignore section \(\text{II} \) and summarized in section \(\text{A} \). Note that we will refer to transverse forms as horizontal.

In what follows, we will give a full proof of \(\text{II} \) after setting the stage by giving all necessary definitions. Since the proof is based on the equivalent considerations in the Kähler case, our discussion will follow \(\text{I, II} \) very closely.

A. Exterior calculus on Sasaki-Einstein manifolds

Consider a \(d = 2n + 1 \) dimensional Sasaki-Einstein manifold \(S \). Given the Reeb vector \(\xi \) and the contact form \(\eta \), the tangent bundle splits as \(TS = D \oplus L_{\xi} \). Furthermore, there is a two-form \(J = \frac{1}{2}d\eta \) with \(i_{\xi}J = 0 \). \(J \) defines an endomorphism on \(TS \) which satisfies \(J^2 = -1 + \xi \otimes \eta \). Since \(\eta(D) = 0 \), one can decompose the complexified tangent bundle as \(T_{\mathbb{C}}S = (\mathbb{C} \otimes D)^{1,0} \oplus (\mathbb{C} \otimes D)^{0,1} \oplus (\mathbb{C} \otimes \xi) \). This in turn induces a corresponding decomposition on the complexified cotangent bundle

\[
T_{\mathbb{C}}^{\ast}S = \Omega_{\mathbb{C}}^{1,0} \oplus \Omega_{\mathbb{C}}^{0,1} \oplus (\mathbb{C} \otimes \eta),
\]

which also extends to the exterior algebra

\[
\Omega_{\mathbb{C}}^{\ast} \cong \bigoplus_{p,q} \Omega^{p,q} \wedge (1 \oplus \eta).
\]

1. Our notation is non-standard. The basic differential is often denoted as \(\partial_{\bar{\partial}} \), with the tangential Cauchy-Riemann operator being \(\partial_{\bar{\partial}} \).

2. \(L_{\xi} \) is the line tangent to \(\xi \). In what follows we will set \(L_{\xi} = \xi \) and \(L_{\xi}^\ast = \eta \). See section 1 of [10] for a review of Sasaki-Einstein geometry.
Elements of Ω^c that vanish under the action of i_ξ are called horizontal, while those annihilated by $\eta \wedge$ are vertical.

The decomposition \[d = \partial B + \bar{\partial} B + \mathcal{L}_\xi \eta \wedge . \] (4)\] induces a decomposition of the exterior derivative, ∂B is the tangential Cauchy-Riemann operator. \(\partial B \) and \(\bar{\partial} B \) satisfy \(\{ \partial B, \bar{\partial} B \} = -2 J \wedge \mathcal{L}_\xi \) as well as \(\partial^2 B = \bar{\partial}^2 B = 0 \). The sequence
\[
\ldots \partial B \Omega^{p,q+1} \Omega^{p,q} \partial B \Omega^{p,q-1} \partial B \ldots
\]
gives rise to the Kohn-Rossi cohomology groups $H^{p,q}_c(S)$. Continuing with the theme of generalizing concepts from Kähler geometry to Sasaki-Einstein manifolds, we define the Lefschetz operator $L : \Omega^k_c \to \Omega^{k+2}_c$ via $\alpha \mapsto J \wedge \alpha$ and the Reeb operator $L_\eta : \Omega^k_c \to \Omega^{k+1}_c$ as $\alpha \mapsto \eta \wedge \alpha$.

Introducing the Hodge star \star:
\[
\star \alpha \wedge \beta = \frac{1}{p!} \alpha^{m_1 \ldots m_p} \beta_{m_1 \ldots m_p} \text{vol} = \langle \alpha, \beta \rangle \text{vol},
\]
allows us to define adjoints for the above operators when acting on Ω^c:
\[
d^* = (-1)^k \star d \star,
\]
\[
\partial^*_B = (-1)^k \star \partial B \star,
\]
\[
\bar{\partial}^*_B = (-1)^k \star \bar{\partial} B \star,
\]
\[
\Lambda = L^* = \star L \star = J \mathcal{L},
\]
\[
\Lambda_\eta = L^*_\eta = (-1)^{k+1} \star L_\eta \star = i_\xi,
\]
\[
(L_\eta \mathcal{L})^* = -L_\eta \mathcal{L} \xi.
\]
Recall that on odd-dimensional manifolds \star satisfies $\star^2 = 1$.

When restricted to D^*, the action of J becomes that of an almost complex structure \mathcal{I} which acts as $\mathcal{I}(\alpha) = J m \alpha dx^m$ and $\mathcal{I}(X) = X m J m \partial_n$. Of course $\Omega^{1,0} = \{ \alpha \in \Omega^1 | \mathcal{I}(\alpha) = 0 \}$. We also define
\[
\mathcal{I} = \sum_{p,q} (-1)^{p-q} P^p q,
\]
which makes use of the projection $\mathcal{P}^{p,q} : \Omega^c \to \Omega^{p,q}$.

It will turn out useful to distinguish between the rank of a form on Ω^c and on $\wedge^k D^*$. Hence we define the operator d^0 on Ω^c via
\[
d^0 |_{\wedge^k D^* \wedge (1 \oplus \eta)} = k \cdot \text{id}.
\]

By definition, d^0 commutes with L_η. A first example of the uses of d^0 is given by the notion of primitive forms. $\alpha \in \Omega^c$, with $d^0 \alpha = \eta$ is primitive if and only if $\Lambda_\eta = 0$. Essentially, the idea of primitivity on $\wedge^k D^*$ is the same as on Kähler manifolds, the contact one-form just comes along for the ride and there is in no difference between horizontal and vertical forms. We define P^k as the set of primitive elements of $\wedge^k D^*$.

Next we introduce an orthonormal frame e^i on D^*. Defining $z^i = e^{2i-1} + ie^{2i}$ and imposing $\mathcal{I}(z^i) = 1$, consistency requires that $\mathcal{I}(e^{2i-1}) = -e^{2i}$ and $\mathcal{I}(e^{2i}) = e^{2i-1}$. Then
\[
J = \sum_i e^{2i-1} \wedge e^{2i} = \frac{i}{2} \sum_i z^i \wedge \bar{z}^i.
\]

Defining $e^{2n+1} = \eta$, one finds vol $= \text{vol}_D \wedge e^{2n+1} = \frac{1}{n!} J^n \wedge \eta$.

In what follows, we will make use of two results concerning the Hodge star. To begin, assume that $(\langle \cdot, \cdot \rangle)$ is a Euclidean vector space admitting a decomposition $V = W_1 \oplus W_2$ that is compatible with the metric $\langle \cdot, \cdot \rangle$. For simplicity we assume that $\dim \text{dim}_R W_i = 2 \mathbb{Z}$. The metrics $\langle \cdot, \cdot \rangle_i$ induce Hodge star operators $\star_i, i = 1, 2$. Then $\wedge^k V^* = \wedge^k W_1^* \otimes \wedge^k W_2^*$, and for $\alpha_i \in \wedge^k W_i^*$, the Hodge dual on $\wedge^k V^*$, \star, threads as
\[
\star (\alpha_1 \otimes \alpha_2) = (-1)^{k_1 k_2} \alpha_1 \alpha_2 \tan 2, (6)
\]
since $\beta_i \in W_i$.

One can use identical considerations to decompose the action of \star on Ω^c into separate operations on D^* and η. Introducing a Hodge dual \star on D^*, one finds
\[
\star |_{\wedge^k D^* \wedge (1 \oplus \eta)} = \star |_{\wedge^k D^* \wedge \eta} = \star |_{\wedge^k D^* \wedge (1 \oplus \eta)} = (-1) \Lambda \eta.
\]

B. Lefschetz decomposition

The starting point for our discussion of Lefschetz decomposition is the commutator
\[
[L, \Lambda] = (d^0 - n).
\]

The proof is via induction in n. Consider $d = 3, n = 1$. Then Ω^c is spanned by $\{ \eta, \mu_1, J, J \wedge \eta \}$ where $\mu_i \in \Omega^{1,0} \oplus \Omega^{0,1}$ and both μ_i are annihilated by L and Λ. Then $\Lambda J = 1$ and thus $[L, \Lambda]|_{\Omega^2} = -1$, $[L, \Lambda]|_{\eta} = -1$, $[L, \Lambda]|_{D^* = 0}$, $[L, \Lambda]|_{\Omega^{1,1}} = 1$, and $[L, \Lambda]|_{\Omega^c} = 1$. Hence
\[
[L, \Lambda]|_{\wedge^k D^* \wedge (1 \oplus \eta)} = (k - 1), \quad k = 0, 1, 2,
\]
as claimed. The induction then proceeds as if it
\[
(L^i, \Lambda)|_{\wedge^k D^* \wedge (1 \oplus \eta)} = i(k - n + i - 1) L^{i-1}.
\]
Again the proof is a copy of that in [1].

To proceed we follow [2]. Restricting to $\bigwedge^k D^*$ one can copy all results from proposition 6.20 to lemma 6.24. The most important of these results is Lefschetz decomposition. Given $\alpha \in \bigwedge^k D^*$, there is a unique decomposition

$$\alpha = \sum_r L^r \alpha_r, \quad \alpha \in P^{k-2r}.$$

The decomposition is compatible with the bidigree decomposition and with the decomposition into horizontal and vertical components. Moreover,

$$L^{n-k} : \bigwedge^k D^* \to \bigwedge^{2n-k} D^*$$

is an isomorphism and the primitivity condition is equivalent to $L^{n-k+1} \alpha = 0$.

The Lefschetz decomposition becomes incredibly useful when used together with the Bidigree decomposition, equation (7) and the identity

$$\forall \alpha \in P^k, \quad \cdot L\alpha = F(n, j, k) L^{n-k-j} I(\alpha), \quad F(n, j, k) = (-1)^{k(k-1)/2-j!/(n-k-j)!}$$

Since no differential operators are involved and $\alpha \in \bigwedge^k D^*$, one can copy the proof in [1] after adjusting for conventions. Once the dust settles, the only difference is in the k-dependent prefactor.

C. Kähler-like identities

We are finally in a position to make use of the previous results and calculate the (anti-) commutators. The results are in summarized in table 1. A number of identities are fairly obvious:

$$0 = [\partial_B, L] = [\partial_B, \Lambda] = [\partial_B^*, \Lambda] = [\partial_B^*, \Lambda] = [L, \Lambda] = [\Lambda, \Lambda] = [L, \Lambda].$$

One finds $\{L_\eta, \Lambda_\eta\} = 1$ by direct calculation using the decomposition $\alpha = \alpha_H + \Lambda_\eta \alpha_V$. Finally, $[\partial^0, \partial_B] = \partial_B + L_\eta \Lambda_\eta$.

The most involved calculation is that of the commutator

$$[\Lambda, \partial_B] = -i\partial_B^* + iL_\eta \Lambda + (n - d^0) \Lambda_\eta.$$

Before we turn to the proof, let us try to interpret this result as a generalization of the Kähler case $[\Lambda, \partial] = -i\partial^\ast$. The naive guess $[\Lambda, \partial_B] = -i\partial_B^\ast$ cannot be correct since the left hand side maps $[\Lambda, \partial_B] : \bigwedge^{r} D^* \to \bigwedge^{r} D^*$ while $\partial_B^* : \bigwedge^{r} D^* \to \bigwedge^{r} D^\ast \wedge (1 \oplus \eta)$. Similarly, the right hand side annihilates η while the left hand side does not. One can guess the correct result by considering the action of both sides on J and η, adding suitable terms on the right hand side to achieve equality.

The proof of (12) is once again an elaboration on the proof for Kähler manifolds in [1]. Let us first consider horizontal forms. Here, it is sufficient to explicitly evaluate the action of (12) $L\alpha$ for $\alpha \in P^k$: the result will generalize for generic elements of $\bigwedge^k D^*$ due to Lefschetz decomposition. Furthermore one applies Lefschetz decomposition to $\partial \alpha = \alpha_0 + L_\alpha \Lambda_0 + L_2 \alpha_2 + \ldots$. We have $\alpha \in P^k$ and thus $0 = \sum_j L^{n-k+1+j} \alpha_j$ and finally $L^{n-k+1+j} \alpha_j = 0$. Using equation (10) it follows that most of the α_j vanish and $\partial \alpha = \alpha_0 + L_\alpha$. Using (9) one finds

$$[\Lambda, \partial_B] L\alpha = -(i-1)^{k} \alpha_0 - (k + i - n - 1) L\alpha_1.$$

Similarly, using $\partial_B \alpha = iI(\partial_B \alpha)$ and $I^2(\bigwedge^k D^*) = (-1)^k$ as well as (7) and (11)

$$\ast \partial_B \ast L\alpha = i(-1)^k [\Lambda, \partial_B] L\alpha - (-1)^k L_\eta \bigwedge L^1, \Lambda \alpha.$$

Finally,

$$[\Lambda, \partial_B] \bigwedge^k D^* = -i\partial_B^* + iL_\eta \Lambda.$$

To study vertical forms, we consider $L_\eta L\alpha$. Again $\alpha \in P^k$ and $\partial_B \alpha = \alpha_0 + L_\alpha$. Then

$$[\Lambda, \partial_B] L_\eta L\alpha = iL_\eta L\alpha_0 + (k + i - n - 1) L_\eta L\alpha_1 + [n - (2i + k)] L\alpha_1.$$

Note that $2i + k$ is the degree of $L\alpha$. Furthermore,

$$\ast \partial_B \ast L_\eta L\alpha = (1)^{k^2+1} \times [iL_\eta L\alpha_0 + (k + i - n - 1) L_\eta L\alpha_1].$$

In total,

$$[\Lambda, \partial_B] (L_\eta L\alpha) = \{ -i\partial_B^* + [n - (2i + k)] \Lambda_\eta \}(L_\eta L\alpha).$$

Since $L_\eta \Lambda(L_\eta L\alpha) = 0$, we can add or subtract $iL_\eta \Lambda$.

Therefore it is consistent to combine the results on horizontal and vertical forms into the overall result (12). An identical calculation or complex conjugation give $[\Lambda, \partial_B]$. This completes the proof.

We can compute the commutator of the adjoints ($\alpha \in P^k$):

$$[L, \partial_B^\ast] \alpha = (-1)^p \ast [-i \ast \partial_B^\ast \ast + i \ast L_\eta \Lambda \ast \ast \ast (n - d^0) \Lambda_\eta \ast] \alpha_p.$$

With $\ast (n - d^0) \ast = (d^0 - n)$, $\ast \partial_B^\ast \ast \ast = (-1)^{p+1} \partial_B \alpha$, and $\ast L_\eta \Lambda \ast \ast = (-1)^{p+1} L_\eta \Lambda$ one finds

$$[L, \partial_B^\ast] = i\partial_B - \Lambda_\eta L + (d^0 - n) L_\eta,$$

$$[L, \partial_B^\ast] = -i\partial_B + \Lambda_\eta L + (d^0 - n) L_\eta.$$

The calculation of the anticommutator $\{ \Lambda_\eta, \partial_B \}$ is considerably simpler. Consider again $\alpha \in P^k$ with $\partial_0 \alpha = \alpha_0 + L_\alpha$. Then $\Lambda_\eta \partial_B \alpha = 0$ and $\partial_B \Lambda_\eta \alpha = 0$. The next step is only slightly more complicated: $\Lambda_\eta \partial_B L_\eta \alpha =$
This concludes the calculation of the identities. The (anti-) commutators allow us to express $\Delta = d^* d + dd^*$ in terms of $\Delta_{\partial B} = \bar{\partial} B \bar{\partial} B + \bar{\partial} B^2$. The decomposition yields

$$\Delta = \Delta_{\partial B} + \Delta_{\bar{\partial} B} + \{\partial B, \bar{\partial} B\} + \{\bar{\partial} B, \partial B\} = -\mathcal{L}_{\xi}^2.$$

Then, using $\{\partial B, \bar{\partial} B\} = \{\partial B, L_\eta \Lambda\} + i\omega B \Lambda$, one finds that

$$\Delta_{\partial B} = \Delta_{\bar{\partial} B} = 2i(n-d^0)\mathcal{L}_{\xi} + \{\partial B, L_\eta \Lambda\} - i(\partial B + \bar{\partial} B) \Lambda,$$

which leads to

$$\Delta = 2\Delta_{\partial B} - 2i(n-d^0)\mathcal{L}_{\xi} - \mathcal{L}_{\xi}^2 + 2\{\partial B, L_\eta \Lambda\} - 2i\bar{\partial} B \Lambda.$$

Application of $\{\partial B, L_\eta \Lambda\} = iL_\eta \bar{\partial} B + (n-d^0)L_\eta \Lambda + L \Lambda$ completes the proof.

D. Beyond Kähler identities?

Since we found Sasaki-Einstein equivalents of both $\Delta = 2\Delta_{\partial B}$ and the Kähler identities, it is tempting to ask how much more of Kähler geometry can be generalized. For example, since $\Delta_{\partial B}$ is self-adjoint and elliptic, one can show that $\Omega^k_{\partial B} = H^k \oplus \Delta(\Omega^k_{\partial B})$ which implies Hodge’s theorem. Similarly, the relation between the de Rham and Hodge Laplacians allows for an isomorphism between the respective spaces of harmonic forms. However, it turns out that $\Delta_{\partial B}$ is not elliptic. We will sketch the calculation leading to this result. Recall that $\Delta_{\partial B}$ is elliptic if the symbol $\sigma_{\Delta_{\partial B}} \in \text{Hom}(\Omega^k_{\partial B}, \Omega^k_{\partial B}) \otimes S^2(T^* S)$ maps any non-zero $\omega \in T^* S$ to an automorphism on $\Omega^k_{\partial B}$. When calculating the symbol one essentially keeps only those terms of $\Delta_{\partial B}$ that are of highest order in derivatives. In the context of the tangential Cauchy-Riemann operator, this means that ∂B and $\bar{\partial} B$ can be taken to be anti-commuting and that the overall result is essentially the same as for the symbol of the Dolbeault Laplacian on a Kähler manifold, provided one substitutes $\partial \omega \mapsto \partial \omega - \eta(\partial \omega) \mathcal{L}_{\xi}$. Therefore, $\sigma_{\Delta_{\partial B}}(\xi) = 0$ and $\Delta_{\partial B}$ is not elliptic. Tievsky’s discussion of a transverse Laplacian Δ_T arrives at a similar result. In that case, it turns out that $\Delta_T - (\Lambda_\eta d^0)^2$ is elliptic. A similar result should hold here, possibly after replacing $\Lambda_\eta d^0$ with \mathcal{L}_{ξ}^2. El Kacimi-Alaoui has studied elliptic operators acting on basic forms.

II. MOTIVATION AND APPLICATIONS

Both equation 11 as well as the identities in appendix A find application in the AdS/CFT correspondence. Freund-Rubin compactification on Sasaki-Einstein manifolds yields supergravity duals of superconformal field theories 12,13. The AdS/CFT dictionary links the conformal energy of SCFT operators to the spectrum of Δ, their R-charge to that of the Lie-derivative along the Reeb vector, \mathcal{L}_ξ. The conformal energy, R-charge, and spin of any SCFT operator have to satisfy the unitarity bounds 14, which should be reflected on the supergravity side in the spectrum of Δ. We will argue shortly that equation 11 allows us to re-derive the unitarity bounds from supergravity when considered in conjunction with the calculations in 18,19.

First, note that the Kähler-like identities allow for a study of the eigenmodes of Δ. In the case where the Sasaki-Einstein manifold has a coset structure, this has been done using harmonic analysis 20. 18,19 obtained the structure of the Kaluza-Klein spectrum of generic Sasaki-Einstein manifolds using a construction similar to that in 21, which can be nicely summarized in terms of the identities in appendix A. Given any eigen k-form ω of Δ, one diagonalizes the action of Δ on the $k+1$-forms $\{\partial B \omega, \bar{\partial} B \omega, \Lambda \omega, L_\eta \omega, \partial B \Lambda \omega, \ldots\}$. The resulting eigenstates fill out representations of the superconformal algebra, equivalence classes in Kohn-Rossi cohomology groups $H^p_q(S\text{E})$ correspond to short multiplets. Whereas the original calculations were based on a rather tiresome direct approach, the methods developed in this note are expected to simplify that kind of analysis considerably.

With this in mind, we turn to the spectral problem for Δ. Consider a k-form ω with $L_\eta \omega = q \omega$, $q \geq 0$, and $d^0 \leq n$. All terms on the right hand side of 11 are positive definite except for the mixed term $M = i(\partial B \partial B - \bar{\partial} B \Lambda_\eta) = N + N^*$. M is self-adjoint and its spectrum is real. Moreover, $N^2 = 0$ and $N(\Lambda^* D^*) \subset \Lambda^* D^* \Lambda$ and $N(\Lambda^* D^* \eta) = 0$. That is, N maps horizontal to vertical forms and annihilates the latter. N^* behaves accordingly and it follows that $\langle \omega, M \omega \rangle$ vanishes if ω is horizontal or vertical. This is also the case if ω is neither horizontal nor vertical yet holomorphic.4 As long as we restrict to one of these cases, 11 takes the form of a bound on the spectrum of Δ.

This was conjectured and partially shown in the context of the calculations of the superconformal index 22,23 in 18,19. Here, the spectrum was constructed from primitive elements of Ω^p_q. For such forms, 11 implies

$$\Delta \geq q^2 + 2q(n-d^0)$$

with equality if and only if $\partial B \omega = \bar{\partial} B \omega = 0$. In the Kähler case, the latter of these is implied by transversality — $d^0 \omega = 0$. Here however, $d^* \omega = 0$ leads only to the vanishing of the horizontal component of $\bar{\partial} B \omega$. Indeed,

$$\partial B \omega = iL_\eta \Lambda \omega, \quad \bar{\partial} B \omega = -iL_\eta \Lambda \omega.$$

4 In the remainder of this discussion, the term holomorphic is meant in respect to the tangential Cauchy-Riemann operator ∂B.
which vanishes since ω was assumed to be primitive. Assuming that every element of $H^{p,q}_{\partial_B}(S)$ has a representative closed under $\overline{\partial}_B$, the bound \([13]\) is saturated on the elements of $H^{p,q}_{\partial_B}(S)$. These are the forms that correspond to the short multiplets in the SCFT, and \([13]\) together with the expressions for the derived eigenmodes of Δ given in \([18, 19]\) allows to recover the unitarity bounds from supergravity. Note that \([13]\) and a precursor to \([11]\) were already conjectured in those references. Furthermore, the appendix of \([19]\) contains an argument that every element of $H^{p,q}_{\partial_B}(S)$ is either primitive, carrying zero charge, or both. For the cases of interest in the context of that paper it turned out that all elements are primitive.

A further application of \([11]\) is the stability analysis of Pilch-Warner solutions in \([24]\). In the absence of general theorems concerning Laplace operators on Sasaki-Einstein manifolds, the authors constructed explicitly examples of primitive, basic $(1,1)$-forms whose existence renders these solutions perturbatively unstable. Assuming that the calculations in \([24]\) generalize to generic transverse forms, our results might allow for a continuation of their analysis to manifolds where explicit constructions are not feasible.

Finally, it would be interesting to extend the results presented here beyond the Sasaki-Einstein case. As long as there is a dual SCFT, there is a unitarity bound meaning that there should be some equivalent of \([11]\) or at least \([13]\).

ACKNOWLEDGEMENTS

I would like to thank Richard Eager and Yuji Tachikawa for the collaborations and discussions that lead to the results presented here. I would also like to thank Jyotirmoy Bhattacharya for discussions and James Sparks for correspondence related to this project. Finally, I would like to thank the organizers of Strings 2013 and the joint YITP/KIAS workshop where most of this paper was written.

Appendix A: The identities

Table \([1]\) summarizes the various (anti-) commutators. The more involved ones that do not fit in the table are listed in equation \([A1]\).

\[
[\partial_B, \Lambda] = -i\overline{\partial}_B^* + i\Lambda n_\eta (n - d^0)\Lambda_\eta,
\]

\[
[\overline{\partial}_B, \Lambda] = -i\overline{\partial}_B^* - i\Lambda n_\eta (n - d^0)\Lambda_\eta,
\]

\[
[\overline{\partial}_B, L] = -i\overline{\partial}_B^* + i\Lambda n_\eta - (d^0 - n)\Lambda_\eta,
\]

\[
\{\partial_B, \overline{\partial}_B^*\} = -i(L_\eta \partial_B + \overline{\partial}_B^* \Lambda_\eta) + (n - d^0)\Lambda n_\eta + L\Lambda.
\]

\[
\{\overline{\partial}_B, \overline{\partial}_B^*\} = -i(L_\eta \overline{\partial}_B + \overline{\partial}_B^* \Lambda_\eta) + (n - d^0)\Lambda n_\eta + L\Lambda.
\]

\[
(A1)
\]

[1] D. Huybrechts, *Complex Geometry: An Introduction* (Springer, 2005).
[2] C. Voisin, *Hodge Theory and Complex Algebraic Geometry*, Vol. 1 (Cambridge University Press, 2008).
[3] H. Lewy, Annals of Mathematics 64, 514 (1956).
[4] J. Kohn and H. Rossi, Annals of Mathematics 81, 451 (1965).
[5] G. Folland and J. Kohn, *The Neumann Problem for the Cauchy-Riemann Complex* (Princeton University Press, 1972).
[6] S. Yau, *Annals of Mathematics* 113, 67 (1981).
[7] H. Luk and S. Yau, submitted for publication 77, 135 (2007).
[8] R. Du and S. Yau, 90, 251 (2012).
[9] A. M. Tievsky, *Analogues of Kähler Geometry on Sasaki Manifolds*, Ph.D. thesis, MIT (2008).
[10] J. Sparks, *Surveys Diff.Geom.* 16, 265 (2011), arXiv:1004.2461 [math.DG].
[11] A. El Kacimi-Alaoui, *Compositio Mathematica* 73, 57 (1990).
[12] A. Kh八卦, *Phys.Lett.* B435, 337 (1998), arXiv:hep-th/9805131 [hep-th].
[13] I. R. Klebanov and E. Witten, *Nucl.Phys.* B536, 199 (1998), arXiv:hep-th/9807080 [hep-th].
[14] B. S. Acharya, J. Figueroa-O’Farrill, C. Hull, and B. J. Spence, Adv.Theor.Math.Phys. 2, 1249 (1999), arXiv:hep-th/9810201 [hep-th].
[15] D. R. Morrison and M. R. Plesser, Adv.Theor.Math.Phys. 3, 1 (1999), arXiv:hep-th/9810201 [hep-th].
[16] D. Martelli and J. Sparks, Commun.Math.Phys. 262, 51 (2006), arXiv:hep-th/0411238 [hep-th].
[17] S. Minwalla, Adv.Theor.Math.Phys. 2, 781 (1998), arXiv:hep-th/9712074 [hep-th].
[18] R. Eager, J. Schmude, and Y. Tachikawa, (2012), arXiv:1207.0573 [hep-th].
[19] R. Eager and J. Schmude, (2013), arXiv:1305.3547 [hep-th].
[20] A. Ceresole, G. Dall’Agata, and R. D’Auria, JHEP 911, 009 (1999), arXiv:hep-th/9907216 [hep-th].
[21] C. Pope, J.Phys. A15, 2455 (1982).
[22] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, Commun.Math.Phys. 275, 209 (2007), arXiv:hep-th/0510251 [hep-th].
[23] J. Bhattacharya, S. Bhattacharyya, S. Minwalla, and S. Raju, JHEP 0802, 064 (2008), arXiv:0801.1435 [hep-th].
[24] K. Pilch and I. Yoo, (2013), arXiv:1305.0295 [hep-th].
TABLE I. The Kähler-like identities

$\bar{\partial} \{ \partial B, L \eta \}$	$\Lambda \{ \partial B, \Lambda \eta \}$	$\Lambda \{ \Lambda \eta, L \eta \}$
$L \{ \partial B, L \eta \} = 0$	$L \{ \partial B, \Lambda \eta \} = 0$	$L \{ \Lambda \eta, L \eta \} = 0$
$\partial B \{ \partial B, L \eta \} = 0$	$\partial B \{ \partial B, \Lambda \eta \} = 0$	$\partial B \{ \Lambda \eta, L \eta \} = 0$
$\Lambda \{ \partial B, L \eta \} = 0$	$\Lambda \{ \partial B, \Lambda \eta \} = 0$	$\Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$
$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \partial B, \Lambda \eta \} = 0$	$\{ \partial B, \Lambda \eta \} \Lambda \{ \Lambda \eta, L \eta \} = 0$