On the Least counterexample to Robin hypothesis

Xiaolong Wu

Ex. Institute of Mathematics, Chinese Academy of Sciences

xwu622@comcast.net

Jun 1, 2020

Abstract

Let $G(n) = \frac{\sigma(n)}{n \log \log n}$. Robin made hypothesis that $G(n) < e^\gamma$ for all integer $n > 5040$. If Robin hypothesis fails, there will be a least counterexample. This article collects the requirements the least counterexample should satisfy.

Introduction and notations

Robin made a hypothesis [Robin 1984] that the Robin’s inequality

$$\sigma(n) < e^\gamma n \log \log n,$$

holds for all integers $n > 5040$. Here $\sigma(n) = \sum_{d|n} d$ is the divisor sum function, γ is the Euler-Mascheroni constant, \log is the nature logarithm.

For calculation convenience, we define

$$\rho(n) := \frac{\sigma(n)}{n}, \quad G(n) := \frac{\rho(n)}{\log \log n}.$$ (1)
Then Robin inequality can also be written as

\[\rho(n) < e^{\gamma \log \log n}, \quad n > 5040. \]

(RI)

and as

\[G(n) < e^{\gamma}, \quad n > 5040. \]

(RI)

If Robin hypothesis fails, there will be a least counterexample. This article collects the conditions the least counterexample should satisfy. Theorems A - F are known properties of the least counterexample.

Let \(n > 5040 \) be an integer. Write the factorization of \(n \) as

\[n = \prod_{i=1}^{r} p_i^{a_i}, \]

(2)

where \(p_i \) is the \(i \)-th prime, \(p_r \) is the largest prime divisor of \(n \). Theorems 1 and 2 prove that for the least counterexample \(n \), we have

\[p_r < \log n < p_r \left(1 + \frac{0.005589}{\log p_r} \right). \]

(3)

Theorems 3 and 4 show that for the least counterexample \(n \), we have

\[\left\lfloor \frac{\log p_r}{\log p_i} \right\rfloor \leq a_i \leq \left\lfloor \frac{\log(a_i \log n)}{\log p_i} \right\rfloor. \]

(4)

Theorem A. Let \(n \) be the least counterexample to Robin hypothesis. Then \(n \) is superabundant.

Proof. See [AF 2009] Theorem 3.

Theorem B. The following properties of superabundant numbers are satisfied by the least counterexample to Robin hypothesis. Notations as in (2).

1) \(a_i \geq a_j \) if \(i < j \).
2) \(\left| a_j - \left[a_j \frac{\log p_j}{\log p_i} \right] \right| \leq 1 \) if \(i < j \).
3) \(a_r = 1 \) except for \(n = 4 \) and \(n = 36 \) in which cases we have \(a_r = 2 \).
4) \(p_i^{a_i} < 2^{a_i+2} \) for \(2 \leq i \leq r \).
5) \(a_i \geq \left\lfloor \frac{\log p_r}{\log p_i} \right\rfloor \) for \(2 \leq i \leq r \).
6) Define $\epsilon(x) := \frac{1}{\log x} \left(1 + \frac{3}{2 \log x} \right)$ and write $\phi(n)$ for Euler totient function. Then

$$\frac{\sigma(n)}{n} > (1 - \epsilon(p_r)) \frac{n}{\phi(n)}.$$

Proof. See [Broughan 2017] Section 6.2.

Theorem C. Let n, $5040 < n \leq 10^{(10^{13.099})}$, be an integer. Then n satisfies (RI). Hence the least counterexample to (RI) must be greater than $10^{(10^{13.099})}$.

Proof. See [MP 2018] Theorem 5.

Theorem D. Let n be the least counterexample to (RI). Define

$$M(k) := e^{-\gamma} f(N_k) - \log N_k,$$

where N_k is the product of first k primes and $f(n) = \prod_{p \mid n} \frac{p}{p-1}$. Then

1) $r > 969672728$,
2) $\# \{i \leq r; a_i \neq 1\} < \frac{r}{14}$,
3) $e^{-1/\log p_r} < \frac{p_r}{\log n} < 1$,
4) for all $1 < i \leq r$,

$$p_i^{a_i} < \min \left(2^{a_i + 2}, p_i e^{M(r)} \right).$$

Proof. See [Vojak 2020] Theorem 1.6.

Theorem E. Let $n = \prod_{i=1}^{r} p_i^{a_i}$ be the least counterexample to (RI). Then $a_1 > 19$, $a_2 > 12$, $a_3 > 7$, $a_4 > 6$ and $a_5 > 5$.

Proof. See [Hertlein 2016] Theorems 1 and 2.

Theorem F. If $n > 5040$ is a sum of two squares, then n satisfies (RI).

Proof. See [BHMN 2008] Theorem 2.

Theorem 1. Let n be the least counterexample to (RI). Then $\log n > p_r$.

Proof. Write $p := p_r$. By Theorem A, we know n is superabundant, so the exponent of p in n is 1. Assume, to the contrary, $\log n \leq p$, we have

$$\frac{G(n)}{G(n/p)} = \frac{\rho(n) \log \log (n/p)}{\rho(n/p) \log \log n}$$

$$= \left(1 + \frac{1}{p}\right) \frac{\log (\log n - \log p)}{\log \log n}$$

$$= \left(1 + \frac{1}{p}\right) \frac{\log \log n + \log \left(1 - \frac{\log p}{\log n}\right)}{\log \log n}$$

$$< \left(1 + \frac{1}{p}\right) \left(1 - \frac{\log p}{\log n \log \log n}\right)$$

$$= 1 + \frac{\log n \log \log n - p \log p - \log p}{p \log n \log \log n} < 1.$$ \hfill (1.1)

That is, $G(n) < G(n/p)$, which means n/p is also a counterexample of (RI). This contradicts to the minimality of n. \hfill \Box

Theorem 2. let $N > 10^{10^{13}}$ be an integer. If

$$p_r \leq (\log N) \left(1 - \frac{0.005587}{\log \log N}\right),$$ \hfill (2.1)

or Conversely,

$$\log N > p_r \left(1 + \frac{0.005589}{\log p_r}\right).$$ \hfill (2.2)

Then N satisfies (RI).

Hence the least counterexample n of (RI) satisfies $\log n \leq p_r \left(1 + \frac{0.005589}{\log p_r}\right)$.

Proof. The proof is almost identical to Theorem 9 of [Wu 2019]. \hfill \Box

Definition 1. Let n be the least counterexample of (RI). Define

$$x_k = (k \log n)^{1/k}, \quad k = 1, 2, \ldots, \text{until } x_k < 2$$ \hfill (D1.1)

Then define a function

$$U_n(p_i) := \left\lfloor \frac{\log (k \log n)}{\log p_i} \right\rfloor, \quad \text{when } x_{k+1} < p_i \leq x_k.$$ \hfill (D1.2)

Since $p_r < \log n$, $U_n(p_i)$ is well defined for all primes $p_i \leq p_r$.

Lemma 1. For $x_{k+1} < p_i \leq x_k$, we have $U_n(p_i) = k$.

Proof. Since $x_{k+1} < p_i \leq x_k$, we have $\log x_{k+1} < \log p_i \leq \log x_k$. By (D1.1)
\[
\frac{\log((k+1) \log n)}{k+1} < \log p_i \leq \frac{\log(k \log n)}{k},
\]
(L1.1)
The left inequality means
\[
k + 1 > \frac{\log((k+1) \log n)}{\log p_i} \geq \left\lfloor \frac{\log(k \log n)}{\log p_i} \right\rfloor = U_n(p_i).\]
(L1.2)
The right inequality means
\[
k \leq \frac{\log(k \log n)}{\log p_i} \implies k \leq \left\lfloor \frac{\log(k \log n)}{\log p_i} \right\rfloor = U_n(p_i).\]
(L1.3)
So, we must have $k = U_n(p_i)$.

Theorem 3. Let $n = \prod_{i=1}^{r} p_i^{a_i} > 10^{10^3}$ be an integer. Assume $p_s > U_n(p_s)$ for some index s. Then $G(n) < G(n/p_s)$.
This means that if n is the least counterexample of (RI), then $a_i \leq U_n(p_i)$ for all i, $1 \leq i \leq r$.

Proof. By definition of U_n, we have $x_{k+1} < p_s \leq x_k$, for some k. $a_s > U_n(p_s)$ means that
\[
\frac{\log((k+1) \log n)}{k+1} < \log p_s \leq \frac{\log(k \log n)}{k},
\]
(3.1)
and $a_s > U_n(p_s) = k$. Hence $a_s \geq k + 1$, and
\[
\log p_s > \frac{\log((k+1) \log n)}{k+1} \geq \frac{\log(a_s \log n)}{a_s}.
\]
(3.2)
We have $p_s^{a_s} > a_s \log n$, and hence
\[
p_s > (a_s \log n)^{1/a_s}.
\]
(3.3)
Write $n_1 = n/p_s$. It is easy to verify that
\[
\frac{G(n)}{G(n_1)} = \frac{\rho(n) \log \log n_1}{\rho(n_1) \log \log n} < \left(1 + \frac{1}{p_s^{a_s}}\right) \left(1 - \frac{\log p_s}{\log n \log \log n}\right)
\leq \left(1 + \frac{1}{a_s \log n}\right) \left(1 - \frac{\log(a_s \log n)}{a_s \log n \log \log n}\right)
\]
\[
\frac{1}{a_s \log n} - \log a_s - \frac{\log(a_s \log n)}{(a_s \log n)^2 \log \log n}
\]

That is, \(G(n) < G(n/p_s) \).

Definition 2. Define

\[
L(p_i) = L_{p_r}(p_i) := \left\lfloor \frac{\log p_r}{\log p_i} \right\rfloor \text{ for } i \leq r. \quad (D2.1)
\]

Theorem 4. Let \(n > 10^{10^{13}} \) be an integer. If \(a_s < L(p_s) \) for some index \(s < r \), then \(G(n) < G(np_s/p_r) \).

Hence the least counterexample of (RI) must have \(a_i \geq L(p_i) \) for all \(i \), \(1 \leq i \leq r \).

Proof. As \(n \) being superabundant, we know \(a_r = 1 = L(p_r) \). Define \(n_1 = \frac{p_1}{p_r} n \).

Then \(n_1 < n \). \(a_s < L(p_s) = \left\lfloor \frac{\log p_r}{\log p_s} \right\rfloor \) means \(a_s + 1 \leq \left\lfloor \frac{\log p_r}{\log p_s} \right\rfloor \leq \frac{\log p_r}{\log p_s} \). Hence

\[
p_{s+1}^{a_s+1} \leq p_r \quad \text{and} \quad \log p_s \leq \frac{1}{a_s + 1} \log p_r. \quad (4.1)
\]

It is easy to deduce

\[
\frac{G(n)}{G(n_1)} = \frac{\rho(n) \log \log n_{1}}{\rho(n_1) \log \log n} \leq \left(1 + \frac{1}{p_r} \right) \left(\frac{p_s(p_s^{a_s} + \cdots + 1)}{p_{s+1}^{a_s+1} + \cdots + 1} \right) \left(\frac{\log n - \log p_r + \log p_s}{\log \log n} \right)
\]

\[
< \left(1 + \frac{1}{p_r} \right) \left(1 - \frac{1}{p_{s+1}^{a_s+1} + \cdots + 1} \right) \left(1 - \frac{\log p_r - \frac{1}{a_{s+1}} \log p_r}{\log n \log \log n} \right)
\]

\[
= \left(1 + \frac{1}{p_r} \right) \left(1 - \frac{1}{p_{s+1}^{a_s+1} + \cdots + 1} \right) \left(1 - \left(\frac{a_s}{a_s + 1} \right) \frac{\log p_r}{\log n \log \log n} \right) \quad (4.2)
\]

By Theorem 2,

\[
\log n \leq p_r \left(1 + \frac{0.005589}{\log p_r} \right).
\]
Noting \(n > 10^{10^{13}} \), we have
\[
\log n \leq c p_r, \quad c := 1 + \frac{0.005589}{\log(2.3 \times 10^{13})} = 1.000235.
\] (4.3)

Since \(\log(c p_r) < c \log p_r \), (4.2) can be simplified to
\[
\frac{G(n)}{G(n_1)} < \left(1 + \frac{1}{p_r}\right) \left(1 - \frac{1}{p_s^{a_s + 1} + \cdots + 1}\right) \left(1 - \frac{a_s}{a_s + 1}\right) \frac{\log p_r}{(c p_r) \log(c p_r)} < 1.
\] (4.4)

Now we split the proof into two cases.

Case 1) \(a_s = 1 \). We have in this case
\[
1 - \left(\frac{a_s}{a_s + 1}\right) \frac{1}{c^2 p_r} < 1 - \frac{1}{2c^2 p_r} < 1 - \frac{0.49}{p_r},
\] (4.5)
\[
1 - \frac{1}{p_s^2 + p_s + 1} \leq 1 - \frac{4}{7p_s^{a_s + 1}} < 1 - \frac{0.57}{p_r}.
\] (4.6)

Substitute (4.5) and (4.6) into (4.4), we get
\[
\frac{G(n)}{G(n_1)} < \left(1 - \frac{0.49}{p_r}\right) \left(1 - \frac{0.57}{p_r}\right) \left(1 + \frac{1}{p_r}\right) < 1.
\] (4.7)

Hence \(G(n) < G(n_1) \).

Case 2) \(a_s > 1 \). We have
\[
1 - \left(\frac{a_s}{a_s + 1}\right) \frac{1}{c^2 p_r} < 1 - \frac{2}{3c^2 p_r} < 1 - \frac{0.66}{p_r},
\] (4.8)
\[
1 - \frac{1}{p_s^{a_s + 1} + \cdots + 1} \leq 1 - \frac{1}{2p_s^{a_s + 1}} < 1 - \frac{0.50}{p_r}.
\] (4.9)

Substitute (4.8) and (4.9) into (4.4), we get
\[
\frac{G(n)}{G(n_1)} < \left(1 - \frac{0.66}{p_r}\right) \left(1 - \frac{0.50}{p_r}\right) \left(1 + \frac{1}{p_r}\right) < 1.
\] (4.10)

Hence \(G(n) < G(n_1) \).

\[\square \]

Theorem 5. Let \(n = \prod_{i=1}^{\ell} p_i^{a_i} > 10^{10^{13}} \) be the least counterexample of (RI). Let \(s \) be the largest index such that \(a_s \neq 1 \). Then \(p_s < 1.414342 \sqrt{p_r} \).
Proof. Since we are searching for the largest index, we may assume \(a_s = 2 \) and set \(k = 2 \) in the definition of \(U_n(p_s) \). By Theorem 3 we have

\[
2 = a_s \leq U_n(p_s) = \left\lfloor \frac{\log(2 \log n)}{\log p_s} \right\rfloor \leq \frac{\log(2 \log n)}{\log p_s}. \tag{5.1}
\]

By Theorem 2,

\[
p_s^2 \leq 2 \log n \leq 2 p_r \left(1 + \frac{0.005589}{\log p_r}\right). \tag{5.2}
\]

\[\square\]

Theorem 6. Let \(n = \prod_{i=1}^r p_i^{a_i} > 10^{(10^{13})} \) be the least counterexample of \((RI)\). Let \(s \) be the largest index such that \(a_s \neq 1 \). Then \(p_s > 0.999999 \sqrt{p_r} \).

Proof. Let integer \(t \) be the index such that \(p_t \) is the prime just below \(\sqrt{p_r} \). Then by theorem 9, we have \(a_t \geq L(p_t) = \left\lfloor \frac{\log p_r}{\log p_t} \right\rfloor = 2 \). By Corollary 5.5 of [Dusart 2018], for all \(x \geq 468991632 \), there exists a prime \(p \) such that

\[
x < p \leq x \left(1 + \frac{1/5000}{(\log x)^2}\right). \tag{6.1}
\]

Hence \(p_s \geq p_t > \left(1 - \frac{1/5000}{\log \sqrt{p_r}}\right) \sqrt{p_r} > 0.999999 \sqrt{p_r}. \tag*{\square}

References

[AF 2009] A. Akbary and Z. Friggstad. *Superabundant numbers and the Riemann hypothesis*. Amer. Math. Monthly, 116(3):273–275, 2009.

[BHMN 2008] W. Banks, D. Hart, P. Moree and W. Nevans. *The Nicolas and Robin inequalities with sums of two squares*. Monatsh Math (2009) 157:303–322.

[Briggs 2006] K. Briggs. *Abundant numbers and the Riemann hypothesis*. Experiment. Math., 15(2):251–256, 2006.

[Broughan 2017] K. Broughan, *Equivalents of the Riemann Hypothesis* Vol 1. Cambridge Univ. Press. (2017)

[Dusart 2018] P. Dusart. *Explicit estimates of some functions over primes*. Ramanujan J., 45(1):227–251, 2018.

[Hertlein 2016] A. Hertlein. *ROBIN’S INEQUALITY FOR NEW FAMILIES*
[Morrill;Platt 2018] T. Morrill, D. Platt. Robin’s inequality for 25-free integers and obstacles to analytic improvement
https://arxiv.org/abs/1809.10813

[Vojak 2020] R. Vojak. On numbers satisfying Robin’s inequality, properties of the next counterexample and improved specific bounds. 2020-05-19
https://arxiv.org/abs/2005.09307

[Wu 2019] X. Wu. Properties of counterexample to Robin hypothesis. 2019-01-16
https://arxiv.org/abs/1901.09832