Impact of Nickel Chloride on Wistar Rat Epididymis: A Biochemical Study

ABSTRACT

Nickel, a ubiquitous environmental contaminant, poses a risk to human health. The present study evaluates the effect of nickel chloride as nickel on epididymides of Wistar rats. The rats were provided NiCl₂ below LD₅₀ (250,500 and 1000 ppm) ad libitum for 2- and 4-weeks. Animals were sacrificed after 2- and 4-weeks under light ether anaesthesia. Organ viz. caput and cauda epididymides were excised, trimmed off of extraneous tissues, stored at -70 º C until the assays were performed. A dose dependent increase (P < 0.05) in lipid peroxidation (MDA) and hydroperoxides concentration as well as catalase activity in caput and cauda epididymides was observed. However, total superoxide dismutase, Cu-Zn superoxide dismutase and Mn- superoxide dismutase activities decreased. Further, the total zinc decreased while total copper concentration increased in the epididymides at all doses. The results indicate that epididymides after NiCl₂ intake are vulnerable to oxidative stress which could cause dysfunction and may impair fertility.

Dr Neena Nair
Associate Professor, Cell Biology Laboratory, Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur - 302055, India

Materials and Methods

Male Wistar rats (180-185g) were housed in polypropylene cages with stainless steel grills, maintained in a well ventilated animal room (12h:12h:: light: dark) and provided standard rat feed (Aashirwad Ltd., Chandigarh) and tap water ad libitum. Forty animals were randomly divided into 4 groups of 10 each: control (group1), group 2, group 3 and group 4.

Nickel Chloride hexahydrate (NiCl₂, 6H₂O) (CAS registry no. 7718-54-9, Hi-Media) was dissolved in distilled water. Control group animals were given distilled water (vehicle) ad libitum while groups 2, 3 and 4 animals were given NiCl₂ (250,500 and 1000 ppm) for a period of 2- and 4-weeks in drinking water. The doses were selected below LD₅₀ ~ 112 mg Ni/kg b.wt. It was approved by the Departmental Animal Ethics Committee, Department of Zoology, University of Rajasthan, Jaipur, India. Animals were sacrificed after 2- and 4-weeks under light ether anaesthesia. Organ viz. caput and cauda epididymides were excised, trimmed off of extraneous tissues, stored at -70 º C until the assays were performed.

Biochemical analysis

Materials and Methods

Male Wistar rats (180-185g) were housed in polypropylene cages with stainless steel grills, maintained in a well ventilated animal room (12h:12h:: light: dark) and provided standard rat feed (Aashirwad Ltd., Chandigarh) and tap water ad libitum. Forty animals were randomly divided into 4 groups of 10 each: control (group1), group 2, group 3 and group 4.

Nickel Chloride hexahydrate (NiCl₂, 6H₂O) (CAS registry no. 7718-54-9, Hi-Media) was dissolved in distilled water. Control group animals were given distilled water (vehicle) ad libitum while groups 2, 3 and 4 animals were given NiCl₂ (250,500 and 1000 ppm) for a period of 2- and 4-weeks in drinking water. The doses were selected below LD₅₀ ~ 112 mg Ni/kg b.wt. It was approved by the Departmental Animal Ethics Committee, Department of Zoology, University of Rajasthan, Jaipur, India. Animals were sacrificed after 2- and 4-weeks under light ether anaesthesia. Organ viz. caput and cauda epididymides were excised, trimmed off of extraneous tissues, stored at -70 º C until the assays were performed.

Biochemical analysis

Estimation of lipid peroxidation (Okhawa et al. 1979), hydroperoxides (Jiang et al. 1992), total superoxide dismutase (Geller and Winge, 1984), Cu-Zn superoxide dismutase (Marklund and Marklund, 1974) and catalase (Sinka, 1972) were carried out spectrophotometrically using UV-VIS 911 GBC spectrophotometer (Australia). Biological trace elements- zinc and copper was estimated using GBC-902 double beam atomic absorption spectrophotometer (Australia).

Statistical Analysis: Data were expressed as mean ± SEM. One Way Analysis of Variance (ANOVA) was performed and if the test were found significant (P<.05) then post-hoc test (Duncan’s test) was carried out using Systat software, Bangalore (www.systat.com).

Results

Lipid peroxidation (in terms of malondialdehyde) increased significantly (P<0.05) in caput and cauda epididymis at all dose levels after 2-and 4-weeks of nickel chloride intake. Similar increase in hydroperoxide generation and catalase activity was observed. However, total superoxide dismutase, Cu-Zn superoxide dismutase and Mn superoxide dismutase activities declined which was dose dependent. Biological trace element –zinc decreased significantly (P<0.05) after oral intake of nickel. Concurrently, the concentration of copper increased (P<0.05) in the epididymis at all dose levels (Tables 1 and 2).

Discussion

Extensive use of nickel in modern industries leads to environmental pollution. Coogan, Latta, Snow, and Costa (1989) reported that most of the intake of Ni and Ni compounds are via food and drinking water. Nausea, vomiting, abdominal pain, diarrhea, headache, shortness of breath and giddiness were reported from workers of an electroplating plant who drank water contaminated with nickel chloride and nickel sulfate (1.63g/L) (Sunderman Jr et al. 1988). Aboua, du
Pleiss, and Brooks (2009) studied in vivo effect of i.p. administration of organic hydroperoxides (t-butyl hydroperoxides and cumene hydroperoxides) on rat testes and epididymal sperm and reported increased lipid peroxidation and decreased sperm motility. Similar results were obtained leading to ROS generation (Kaur et al. 2006; Kumar et al. 2002) reflecting a correlation between high levels of ROS and sperm motility (Agrawal et al. 2003; Bilodeau et al. 2002). Lipid peroxidation results in the formation of aldehyde products (MDA) leading to generation of free radicals (Shi et al. 1998).

Similar induction of lipid peroxidation was observed in mice testes with multiple doses of nickel (Doreswamy et al. 2004) as well as rat erythrocytes, human platelets and lymphocytes (Chen et al. 1999; Chen and Lin 2001). Lipid peroxidation affects the membrane-bound proteins, most susceptible are those that have exposed tryptophan and cysteine residue in which the sulfhydryl groups react with aldehydes and MDA leading to both intra-and inter-molecular cross links (Riley and Behrman, 1991).

Huang et al. (1993) reported that nickel increased the level of oxidants in cells which is probably responsible for the ability of the ligand bound Ni⁶⁺ to be oxidized to Ni⁷⁺, followed by the generation of ROS in the cell as Ni⁷⁺/Ni⁶⁺ oxidation/reduction are not chemically favorable (Cotton and Wilkinson, 1980). Chakrabarti and Bai (1999) reported that lipid peroxidation is caused by the induction of Fenton reaction generating hydroxyl radical. The production of superoxide anion, hydroxyl radical and singlet oxygen is probably from H₂O₂ reacting with Ni (II) complex of glycyglycyl-L-histidine (Inoue and Kawanishi, 1989). The study revealed an increase in lipid peroxidation (MDA) and hydroperoxide concentration in caput and cauda epididymides due to its effect on membrane proteins and subsequent generation of H₂O₂ as indicated by increased catalase activity.

Superoxide dismutate function as antilipoprotective defense system (Dacheux et al. 2003; Holland et al. 2003) as spermatogonia transits in the epididymides and dismutates superoxide anion to H₂O₂ and O₂ (Nehru and Anand, 2005). The decreased level of SOD in the present study reflects high level of ROS generation which overwhelmed the antioxidation capacity of total SOD, Cu-Zn SOD and Mn-SOD indicating susceptibility of epididymides to NiCl₂ at the selected doses. Several nickel compounds (NiS, Ni₃S₂, NiO and NiCl₂) have been shown to increase oxidation of 2′-7′-dichlorofluorescein (DCFH) suggesting that nickel compounds increased the concentration of oxidants in cultured Hamster Ovary (CHO) cells as only strong oxidants such as H₂O₂ and organic hydroperoxides can oxidize DCFH (Huang et al. 1994). H₂O₂ acts as a suicide substrate at high concentration (>100 μM) leading to an irreversible inactivation of catalase (Lardinois et al. 1996). In presence of H₂O₂, Nickel (II) ions produce oxidative damage in isolated DNA and chromatin (Lloyd and Philips, 1999). Oxidative stress caused by generation of reactive oxygen species would lead to apoptosis effecting DNA of the sperm (Atken and DeLulii, 2010) with subsequent release of DNA base adducts (Atken et al. 2013).

H₂O₂ can penetrate plasma membrane and cause protein oxidation (Ong et al. 2002). The increase in catalase activity in this present study is indicative of the fact that the H₂O₂ generated by NiCl₂ doses must have activated some toxic metabolic pathway leading to activation / inhibition of antioxidant enzymes taken into consideration. Further, there has been a concomitant decrease in organ zinc concentration at all dose levels after 2- and 4-weeks. Zinc has numerous functions which includes its association to finger domains, ~300 enzymes having catalytic and regulatory domains, membrane stabilization etc (Maret, 2009). The decrease can be due to (i) alteration of oxidant-antioxidant status as indicative of increased lipid peroxidation and catalase with decreased superoxide dismutate or (ii) hampering of metallothionein (MT)-trafficking protein which maintains release of labile zinc or (iii) nitrosative or oxidative stress depleting zinc due to its release from Zn ²⁺ thiolate bonds (Berendji et al. 1997). The decreased zinc concentration would destabilize the membrane and other structures affecting the function of the cell. Copper with iron functions as catalyst for Fenton reactions and catalyzes the peroxidation of membrane lipids (Chan et al. 1982). The present study revealed an increase in copprer concentration which exhibited dose and duration relationship and is indicative of OH- formation leading to oxidative stress. Metallothionein may contribute Cu to key cellular copper level with decreased Cu-Zn SOD demonstrating impairment of copper homeostasis. Thus, the accumulation of lipid peroxidation product (MDA) and hydroperoxides would cause membrane instability, loss in membrane permeability with concomitant effect on antioxidant enzymes and biologiical trace elements zinc and copper leading to impairment of epididymal function which may affect fertility.

Acknowledgement: Dr Neena Nair thanks University Grants Commission, New Delhi for providing financial assistance (D.No 33-474/2-7-project). Thanks are also due to the Head, Department of Zoology and Coordinator, Center for Advanced Studies, University of Rajasthan for providing the necessary facilities.

TABLE 1 : Biochemical estimations of caput epididymides of Wistar rats after 2- and 4-weeks of NiCl₂ intake (Mean ± SEM)
2 Weeks
Lipid Peroxidation (nm MDA/mg)
4.422 ± 0.145
Hydroperoxides (nm hydroperoxides/g)
Total Superoxide Dismutase (Units/mg protein/hr)
Cu-Zn Superoxide Dismutase (Units/mg protein/hr)
Mn Superoxide Dismutase (Units/mg protein/hr)
Catalase (Kat/l)
Zinc (mg/g protein)
Copper (mg/g protein)

* P < 0.05 Significant

Note: Multiple comparisons of means were performed separately for 2 weeks and 4 weeks sub groups
TABLE 2: Biochemical estimations of cauda epididymides of Wistar rats after 2- and 4-weeks of NiCl₂ intake (Mean ± SEM)

Parameter	Control 250 ppm	500 ppm	1000 ppm	Control 250 ppm	500 ppm	1000 ppm	
Lipid Peroxidation (mmol MDHA/mg)	0.083±0.025	0.094±0.028	0.105±0.029	2.175±0.001	9.307±0.048	12.767±1.122	17.172±0.202
Hydroperoxides (mm hydroperoxides/g)	137.247±1.302	102.875±1.502	110.547±1.602	141.933±0.349	155.167±0.359	168.877±0.369	189.580±0.401
Total Superoxides Dismutase (Units/mg protein/hr)	19.837±0.013	19.487±0.023	19.347±0.033	16.473±0.053	15.973±0.053	14.987±0.053	13.487±0.053
Cu-Zn Superoxides Dismutase (Units/mg protein/hr)	16.720±0.015	16.282±0.013	16.024±0.024	16.134±0.019	16.977±0.046	17.908±0.023	4.010±0.181
Mn Superoxides Dismutase (Units/mg protein/hr)	8.527±0.224	1.627±0.133	1.870±0.049	1.607±0.048	1.785±0.056	1.472±0.029	0.833±0.050
Catalase (Kat/l)	0.173±0.003	0.235±0.003	0.356±0.003	0.187±0.003	0.293±0.003	0.505±0.003	0.185±0.003
Zinc (mg/g protein)	4.333±0.00033	3.821±0.0009	3.253±0.0003	4.713±0.0003	3.503±0.0005	3.510±0.0005	3.755±0.005
Copper (mg/g protein)	0.267±0.000667	0.346±0.000431	0.461±0.000926	0.337±0.00030	0.398±0.00115	0.532±0.00115	0.632±0.00141

*P < 0.05 Significant

Note: Multiple comparisons of means were performed separately for 2 weeks and 4 weeks sub groups