Modification on Design Equation of Facultative Stabilization Ponds Due to Egyptian Circumstances

El Nadi, M.H., El Sergany, F.A.G., Nasr, N.A.H., El Hosseiny, O.M.

Abstract: Stabilization ponds are established in various cities and villages in Egypt. There are about 38 ponds covering almost all the regions of the country. Some of these ponds are working with low efficiency. Some are under designed. One of the main problems is that the plants are not fenced properly which maximizes the wind effect and causes disturbance in the pond performance. Some ponds are designed to receive a certain flow but actually, it receives much less flow which increases the retention time.

In this study, eight working WSPs in different locations all over Egypt were monitored and their performances were evaluated with respect to ponds retention time and prevailing climate conditions. These locations had covered regions presented in (Al Beheira, Fayoum, New Valley, Luxor, Hurghada, Sharm El Sheikh, Areeesh & Abu Radies). Each location had been visited during season’s winter, spring, summer & autumn to obtain the different weather conditions and several samples were collected during the day over three days in each season.

It was found that reduced pond retention time could work perfectly with climate conditions in Egypt. Conclusions were drawn to suggest a modification on the design equation of the facultative stabilization ponds to meet Egyptian circumstances that minimize the required area for such technology in Egypt application.

Key Words: Wastewater treatment, Stabilization ponds, Design of stabilization ponds & Affecting Parameters.

I. INTRODUCTION

Waste stabilization pond (WSP) technology is considered the most economic wastewater treatment technology for its simplicity for construction and operation and its high removal efficiency even for the pathogenic micro-organisms. The working theory of (WSP) is treating raw sewage completely by just allowing sewage to stay in the ponds for the retention time needed depending on the Sun light, algae and bacterial actions. It is particularly well suited for tropical and subtropical countries because the intensity of sunlight and temperature are key factors for (WSP) removal efficiency of the pollutants which is suitable to climatic conditions in Egypt. Depending on natural biological action it doesn’t need highly trained operators for operation and maintenance [1].

Arthur [2] reviewed the design methods and performance of WSP in six developing countries. He reported that WSP have been grossly over-designed and the designs are not responsive to the growth encountered in developing countries.

This represents an uneconomic use of the land needed for a WSP system. Procurement of land is often the major capital investment for a WSP scheme.

Mara et al. [3] presented the status and performance of existing WSP in eastern Africa and its design and operational problems, resulting from poor process design, physical design and unsatisfactory operation and maintenance.

The US Environmental Protection Agency [4]. Reed et al. [5] and Shilton and Harrison [6] concluded that the performance of a WSP system depends on robust process and physical design methods. The process design should assume a realistic hydraulic flow regime that can be achieved by the physical design.

The design of facultative ponds focused on BOD removal. Modeling of the biochemical processes within facultative ponds has been attempted in an effort to provide accurate estimates of the surface BOD loading rate, so that the satisfactory performance of the ponds can be ensured. More recently, it has been considered that hydraulic transport processes also have an important influence on BOD removal in facultative ponds.

Mara [7] and Marconcio do Monte and Mara [8] described how the design of facultative ponds is currently based on rational and empirical approaches. The empirical design approach is based on correlating performance data of existing WSP. The empirical method fails in WSP design in different climate and environmental conditions than the empirical relationships have been established. The rational design method fails to determine confidently the first order BOD kinetics, which had been observed to vary widely.

Also, to determine dispersion numbers accurately requires tracer studies to be done in existing WSP. It has been suggested that dispersion numbers vary significantly from zero to infinity depending on environmental conditions, the mode of pond mixing and the hydrodynamics of the incoming flow [9].

Arceivala [10], Polprasert & Bhattachai [11] and Mara et al. [3] have suggested that secondary facultative ponds should be constructed in a rectangular shape with a high length-to-width (4:10:1). Such a geometric design of facultative ponds is thought to approximate a plug-flow regime. Design of facultative ponds assuming a complete-mix hydraulic flow regime is unrealistic and leads to over design.

The complete-mix hydraulic flow model proposed by Marais & Shaw [12] assumes that wind mixing and temperature are responsible for complete mixing in facultative ponds.

Reed et al. [5] proposed a plug hydraulic flow regime to design primary facultative ponds that depending on the BOD surface loading rate. The plug-flow model is used to calculate the retention time required for specified BOD removal requirements. The limitation of the application of this proposed model in warm
climate regions is the limited surface organic BOD loading rate range proposed. The plug hydraulic flow regime is considered unrealistic WSP because zero longitudinal mixing is impossible to achieve [13], [9], [8], [14].

Wehner & Wilhelm [15] argue that plug flow conditions could only be achieved if the length of liquid traveling in a reactor is close to infinity. The length of most facultative ponds is limited by practical considerations. Efforts have been made to use baffles to increase the length of liquid travel in facultative and maturation ponds [16], [17], [5]. However, an infinite length of liquid travel cannot be attained in practice and the proposed model by Reed et al. [5] cannot be realized in practice.

Thirumurthi [13] recommended that ponds be designed as dispersed flow reactors since they are neither plug flow nor completely mixed. He proposed the use of pond dispersion numbers (d_i) and the first order equation of Wehner & Wilhelm [15]. His equation was very difficult to be applied for the difficulty of determining the value of the dispersion number (d_f) and the first order reaction rate for BOD removal.

Polprasert & Bhattarai [11] proposed an equation for a dispersed hydraulic flow model in facultative pond design which with Thirumurthi [13] equation can be used to design a facultative pond by trial and error.

Arceivala [10] suggested that the dispersion numbers could be solved simultaneously with the dispersed flow model of Reed et al. [5] equation to determine the hydraulic retention time.

The surface BOD loading method is the recommended approach for designing facultative ponds according to the US Environmental Protection Agency [17] and Reed et al. [5], for every climate there is an appropriate value of surface BOD loading (kg BOD/ha/day) which can be applied to a pond for a given removal efficiency before failure. McGarry & Pescod [18] found that surface loading values give a closer correlation with performance data than volumetric loading values. They correlated data from ponds under 143 different climatic conditions and reported that BOD removal in primary facultative ponds was between 70 - 90%. Their statistical modeling of the data found that pond performance was related to surface BOD loadings, with a high correlation coefficient of 0.995. Mara [19] adapted the McGarry & Pescod [20] failure model by incorporating a factor of safety to ensure the safe design of facultative ponds. Experience of the surface BOD loading rate in Brazil and Europe enabled Mara to propose a global surface loading rate equation.

The surface BOD loading rate is the recommended empirical design approach that has been used in traditional process design methods. The calculation for the area of a facultative pond is determined by trial and error. The first order equation of BOD removal in primary facultative ponds was between 90%. Their statistical correlation coefficient of 0.995. Earlier studies of WSP by Mara [7] and Arthur [2] recognized the variability of some of these input design parameters as such as per capita BOD and per capita water requirement.

Surface BOD loading rate has been found to be a function of temperature. The traditional process design method uses the mean temperature in the coldest month as the design temperature. It has been suggested that this approach provides a factor of safety [7]; [2]. However, this approach requires more assessment as the temperature changes continuously from the cold season to the hot season each year. The author is of the opinion that surface loading rate should be manipulated to vary from 100kg/haday to 350kg/haday as proposed by Mara [19] to follow the pattern depicted by the temperature variation. The traditional design process method for facultative ponds is conservative and can result in the uneconomic use of the available land. It is more realistic for the designer to input a range of parameters which can be set with confidence upon a given level of uncertainty. This is a cost-effective and safe approach [20].

El Nadi & Abdel Azeem [21] performed a study which was applied on the stabilization pond in Abu-Rudies, South Sinai, Egypt and concluded that since the climate in Egypt may maintain highest temperature up to 30 - 40°C, the SLR may be higher and surface area may be reduced accordingly. A correct factor may be applied to the SLR equation of about 3.0 to make the equation. But, since only this data were collected from one site and it should be verified from other stabilization ponds plants. The proposed factor of safety may be applied could be only a correction factor of 2.0. This was confirmed by Ismail [22] during his work on other seven sites around Egypt.

II. MATERIALS & METHODS

Stabilization ponds are established in various cities and villages in Egypt there are about 38 ponds covering almost all the regions of the country some of these ponds are working with low efficiency some of them are overflow designed and some are under designed.

Several locations had been chosen for the study to cover the different climate conditions (Temperature, wind, humidity) all over Egypt. These locations covered both the north regions presented in: Waked village in Al Behera , Qouta Village in Al Fayoum and Al Areeesh city in North Sinai and the south regions presented in: Mout city in New Valley, Luxor city in Upper Egypt, Hurghada city in Red Sea and Sharm El Sheikh city in South Sinai as illustrated in figure (1).

Figure (1) Locations of the Studied Ponds

Several problems facing the study as the absence of fencing which maximize the wind effect and cause disturbance in the pond performance, the receiving of very low flow than designed flow which increases the retention time and the receiving of higher flows than designed one and these problems are taken into consideration in the evaluation study.
The intervals were chosen to cover the different climate conditions in Egypt as the weather conditions is an important factor in the design of the stabilization pond. The parameters were measured during three intervals in January 2014 for winter weather, in April 2014 for spring and autumn weather and in July 2014 for summer weather.

Samples were collected from the influent and the effluent of the facultative pond in order to determine the efficiency of this pond. Sampling was performed twice a week through each season for each site to ensure the coverage of different climate conditions. The investigated parameters were Total suspended solids (TSS), Chemical oxygen demand (COD), Biochemical oxygen demand (BOD), pH value, air temperature, Humidity and Wind intensity.

III. RESULTS

The samples were collected from different plants all over Egypt in order to cover and take into account the different climate conditions. Each location had been visited during season's winter, spring & summer seasons.

Tables (3), (4) & (5) show the average wastewater analyses readings of six days for winter, spring & summer seasons samples in the studied plants all over Egypt to take the climatic variations effects according to location and time.

Table (1) Facultative Pond Size Data for all Locations

Facultative Pond Size Data	Waked - Al Behiera	Qouta - Al Fayoum	Mout - New Valley	Luxor - Luxor	Hurghada -Red Sea	Sharm ElSheikh - South Sinai	Abu Rudais - South Sinai	Al Arish -North Sinai
Length m	160	2x120	3x150	2x399	2x385	2x166	2x35	2x530
Width m	60	50	90	227	175	113	30	230
Depth m	4	2	2.5	2.8	1.5	2	1.5	2
Volume m³	38400	24000	101250	507209	202125	75032	3150	487600
Q_actual m³/d	3000	100	6600	22000	9000	15000	472	50000
Q_design m³/d	5200	900	4770	30000	8352	45000	944	38000

Table (2) Climatic Conditions During all Study Seasons for all Locations

Season	Climatic parameter	Waked - Al Behiera	Qouta - AlFayoum	Mout - New Valley	Luxor - Luxor	Hurghada -Red Sea	Sharm ElSheikh - South Sinai	Abu Rudais - South Sinai	Al Arish -North Sinai
Winter	Temp. C°	12	17	26	26	27	26	23	13
Humidity %	26	60	23	29	34	32	34	30	20
Wind speed km/h	9	4	6	4	12	2	16	12	
Spring	Temp. C°	19	23	30	33	34	34	30	20
Humidity %	22	49	32	44	42	36	46	46	63
Wind speed km/h	2	5	5	5	10	6	13	8	
Summer	Temp. C°	26	27	41	39	40	39	35	30
Humidity %	26	59	44	31	56	49	44	44	74
Wind speed km/h	6	2	2	6	10	10	11	6	

Table (3) Winter Season Average Readings for all Locations

plant	Time	location	pH	BOD	COD	TSS
Waked - Al Behiera	morning	Inf.	7.74	348	676	422
		Eff.	8.08	53	134	42
	Night	Inf.	5.89	315	611	382
		Eff.	6.14	48	121	38
	average	Inf.	6.9	330	640	400
		Eff.	7.2	50	127	40
Qouta - Al Fayoum	morning	Inf.	8.00	495	606	312
		Eff.	8.98	104	67	74
	Night	Inf.	6.27	478	573	291
		Eff.	6.83	94	60	67
	average	Inf.	7.21	488	588	300
		Eff.	8.00	98	63	70
El Sheikh - NW Val	morning	Inf.	7.60	499	650	1460
		Eff.	8.80	110	140	1320
Modification on Design Equation of Facultative Stabilization Ponds Due to Egyptian Circumstances

Location	Day	pH	BOD	COD	TSS
Luxor - Luxor	Night	5.80	366	540	1450
	Eff.	6.70	87	107	1350
	Average	6.80	402	590	1455
	Eff.	7.80	94	116	1340
	Morning	8.13	186.9	250	203
	Eff.	9.12	21	29	62
	Average	6.17	177.8	228	187
	Eff.	6.92	18	26	57
	Night	7.26	178	240	197
	Eff.	7.14	19	27	60
Hurghada - Red Sea	Morning	7.60	299	650	1660
	Eff.	8.80	110	140	1520
	Night	5.80	266	540	1450
	Eff.	6.70	57	77	1350
	Average	6.80	282	590	1520
	Eff.	7.80	67	86	1460
	Morning	7.65	291	604	1605
	Eff.	8.83	137	238	1530
	Night	5.82	264	546	1452
	Eff.	6.72	124	216	1385
	Average	6.82	276	572	1520
	Eff.	7.87	130	226	1450
	Morning	7.66	410	890	461
	Eff.	7.16	40	97	48
	Average	7.23	330	870	419
	Eff.	7.7	40	91	45
	Night	7.44	370	880	440
	Eff.	7.43	40	94	46.5
	Morning	7.77	254	430	1330
	Eff.	8.00	55	78	1570
	Night	6.66	167	334	1180
	Eff.	6.90	34	50	1400
	Average	7.00	209	380	1240
	Eff.	7.90	45	65	1470

Table (4) Spring Season Average Readings for all Locations

plant	Time	location	pH	BOD	COD	TSS
Wad el - Al Behiera	morning	Inf.	7.33	290	718	313
	Eff.	8.44	51	180	43	
	Night	Inf.	5.57	263	650	284
	Eff.	6.42	46	163	39	
	Average	Inf.	6.53	275	680	297
	Eff.	7.52	48	171	41	
Qena - Al Fayyum	morning	Inf.	7.8	215	457	216
	Eff.	8.30	51	76	58	
	Night	Inf.	5.93	195	414	196
	Eff.	6.31	46	69	53	
	Average	Inf.	6.95	204	433	205
	Eff.	7.40	48	72	55	
Mout - New Valley	morning	Inf.	7.90	395	592	1526
	Eff.	8.80	89	106	1268	
	Night	Inf.	5.90	362	536	1322
	Eff.	6.20	56	75	1190	
	Average	Inf.	6.90	378	564	1414
	Eff.	7.50	62	90	1229	
Luxor - Luxor	morning	Inf.	7.12	241	345	225
plant	Time	location	pH	BOD	COD	TSS
---------------------------	--------------	----------	------	------	-------	------
Waked - Al Behira	morning	Inf.	8.09	211	317	413
	Eff.	8.87	40	53	91	
	Night	Inf.	6.15	191	286	374
	Eff.	6.74	36	48	82	
	average	Inf.	7.21	200	300	391
	Eff.	7.9	38	50	86	
Qouta - Al Fayoun	morning	Inf.	8.25	242	539	259
	Eff.	8.80	44	65	56	
	Night	Inf.	6.27	219	489	234
	Eff.	6.69	40	59	51	
	average	Inf.	7.35	229	512	245
	Eff.	7.84	42	62	53	
Mout - New Valley	morning	Inf.	8.00	273	560	1210
	Eff.	8.90	74	98	1180	
	Night	Inf.	6.10	259	505	1050
	Eff.	6.80	47	78	1000	
	average	Inf.	7.20	264	530	1150
	Eff.	8.00	54	88	1100	
Luxor - Luxor	morning	Inf.	7.94	303	491	239
	Eff.	9.16	60	96	53	
	Night	Inf.	6.03	277	445	220
	Eff.	6.95	54	87	48	
	average	Inf.	7.09	289	469	232
	Eff.	8.18	57	92	51	
Modification on Design Equation of Facultative Stabilization Ponds Due to Egyptian Circumstances

Location	Morning	Night	Average			
Hurghada - Red Sea	Inf. 8.00	Eff. 8.90	Inf. 6.10	Eff. 6.80	Inf. 7.20	Eff. 8.00
	253 101	229 75	240 68	200 78	580 1182	1100 1070
Sharm El Sheikh	Inf. 8.08	Eff. 8.98	Inf. 6.14	Eff. 6.83	Inf. 7.20	Eff. 8.00
	253 101	229 75	118 118	67 118	580 1182	1100 1070
Abu Rudeis - South Sinai	Inf. 6.9	Eff. 7.8	Inf. 6.96	Eff. 7.9	Inf. 6.93	Eff. 7.85
	300 80	32 30	260 30	35 30	820.5 374	77.5 34
Al Arish - North Sinai	Inf. 7.81	Eff. 8.89	Inf. 5.94	Eff. 6.83	Inf. 6.96	Eff. 8.00
	203 58	183 52	192 55	36 55	401 1072	55 1476

IV. DISCUSSIONS

The study conducted to stand upon the current situation of the visited plant, to check the actual removal efficiency. Then compare results against the design criteria and compare it with the theoretical removal ratio, so the comparison was conducted in four steps by applying four different conditions:

1. The first was applying Mara equation (depending on pond sizing) with respect to the actual flow to calculate the SLR for the current situation and was called “current”.
2. The second was applying Mara equation (depending on pond sizing) with respect to the designed flow, and this was to check the SLR for the studied plant as per designed and was called “designed”.
3. The third was applying Mara equation (depending on temperature) with respect to the designed flow, and this was to check the SLR for the studied plant and show the effect of the temperature on the plant efficiency and SLR and was called “Mara”.
4. The fourth was applying ElNadi & Abd El Azim (NA) equation with respect to the designed flow, and this was to check the SLR for the studied plant and show the effect of the NA equation on the plant efficiency and SLR and examines the validity of this equation and was called “NA”.

Mainly, the main point that could illustrate this is the climatic conditions of Egypt that differs than the other countries which the design equations for such system depends on its weather conditions.

This leads to change the design equation for the system according to the country climatic conditions (mainly average air temperature and may be humidity) in addition to the main design parameters as organic load and hydraulic load.

The effect of country weather seems to be high in all the studied sites that raises the need to investigate the possibility to have a special design equation for Egypt. This could be also leads to divide Egypt to north zone weather and south zone weather. But our trials will concentrate to produce one equation could be applied for the whole Egypt weather and similar areas as Arab countries.

The NA equation is the only equation produced from Egyptian experiment and applications. So, it was the start for our trials for all sites producing results shown in table (6). For the NA equation was built on one site data so it can not be suitable for all Egyptian sites but it will be a good start. This what made Ismail [22] to investigate other sites around Egypt and confirm the applicability of NA equation with error varied between +17% & -23% which is good as a start but not sufficient to be Egyptian equation.

To produce an Egyptian Equation simulates the effects of climatic conditions of Egypt on the facultative stabilization ponds design, a comparing between the SLR that produced from the applied NA equation of 2(20T-60), where T is the average temperature all over the year, was made with SLR that obtained from the traditional optimum equation of current step, that achieved very close values. These comparison shown in table (6) as follows.
The difference was slightly small and move on range with limited margin. This indicates that the NA constant could be modified to be a variable called K varied between 1.5 and 3.2 to simulate the results happened under Egyptian conditions for all studied sites around Egypt.

A revision with the plants efficiency and loadings in each site was made to determine K variable value affected parameters.

The results produce that the equation variable K is affected by the BOD removal ratio and its influent concentration. This could be simulated by a variable called organic load factor (K) calculated as follows:

\[K = \frac{\text{BOD influent in ppm}}{\text{BOD Removal efficiency as } \%} \]

And used instead of NA constant number as a variable depends on the site and loading in the equation. Accordingly the Egyptian equation for facultative WSP design could be presented as follows:

\[\text{SLR} = K \times (20T - 60) \]

Where

- \(K \) is Organic Load factor = 1.5 – 3.2
- \(T \) is the average temperature all over the year.

It was found that reduced pond retention could work perfectly with climate conditions in Egypt. Conclusions were drawn to suggest a modification on the design equation of the facultative stabilization ponds to meet Egyptian circumstances. This leads to the use either minimum retention period or higher limit of volumetric organic loading that will benefit the minimization of area needed for such treatment plant on increasing the capacity of existing plants.

CONCLUSIONS

The study covered eight WSP treatment plants in different locations covering all Egypt climate conditions. They were monitored and evaluated with respect to ponds retention time and prevailing climate temperature and humidity conditions.

The main conclusions drawn from these results and discussions were:

1. Reduced pond retention time could work perfectly with operating climate conditions in Egyptian circumstances.
2. Hot climate may allow for better environment and operation condition for the behavior and performance of the stabilization ponds.
3. Surface loading rate of the facultative pond may be calculated by a modified equation that applied the average temperature with a correction factor ranging between 1.5 to 3.2 that making the equation:

\[\text{SLR} = K \times (20T - 60). \]

Where

- \(K \) is Organic Load factor = \(\frac{\text{BOD influent}}{\text{Removal efficiency}} \) = 1.5-3.2
- \(T \) is the average temperature all over the year.

4. This show the possibility to decrease the pond retention time with no drop in the plant efficiency due to the good climate conditions this may lead to decrease in the area needed for the plant.
5. This also may raise the application of such technique in Egypt after the land & cost saving resulted from this study.

REFERENCE

1. Mara, D.D “Domestic Waste Water Treatment in hot climate” Lagoon technology International Ltd., 4th edition, Leeds, England, 2003.

2. Arthur, J.P. “Notes on the Design and Operation of Waste Stabilization Ponds in Warm Climates of Developing Countries”, Technical Paper No.7. Washington, DC: The World Bank, 1983.

3. Mara, D.D., Alabaster, G.P., Pearson, H.W., and Mills, S.W., “Waste Stabilization Ponds: A Design Manual for Eastern Africa.”, Lagoon Technology International Ltd, Leeds, England, 1992.

4. Annual Book of USA Environmental Protection Agency, USA, 1983.

5. Reed, S.C., Middle brooks, E.J. and Crites, R.W. “Natural Systems for Waste Management & Treatment” McGraw-Hill, Inc., New York, NY, 1988.

6. Shilton, A. and Harrison, J. “Guidelines for the Hydraulic Design of Waste Stabilization Ponds”, Institute of Technology and Engineering, Massey University, Palmerston North, New Zealand, 2003.

7. Mara, D.D. “Sewage Treatment in Hot Climates” Chichester, England: John Wiley and Sons, 1976.

8. Marecos do Monte, M.H.F and Mara, D.D. “The hydraulic performance of waste stabilization ponds in Portugal”, Water Science and Technology, 19 (12), 219-227, 1987.

9. Thirumurthi, D. “Design criteria for waste stabilization ponds”, Journal of the Water Pollution Control Federation, 46 (9), 2094-2106, 1974.

10. Arceivala, S.T. “Hydraulic modeling for waste stabilization ponds (discussion)”. Journal of Environmental Engineering Division, ASCE, 109 (EE1), 265-268, 1983.

11. Polprasert, C. & Bhattachar, K.K., “Dispersion model for waste stabilization ponds”. Journal of Environmental Engineering Division, ASCE, 111 (1), 1985.

12. Marais, G.V.R and Shaw, V.A. “A Rational Theory for the Design of Sewage Stabilization Ponds in Central and South Africa”, Transactions of the South African Institute of Civil Engineers, 3 205-227, 1961.

13. Thirumurthi, D. “Design principles of waste stabilization ponds”, Journal of the Sanitary Engineering Division, ASCE, 95 (SA2), 311-330, 1969.

14. Tchobanoglous, G., Burton, F. and Sense, H.D. “Wastewater Engineering: Treatment and Reuse, 4th ed”, McGraw-Hill Company, New York, 2003.

15. Wehner, J.F. and Wilhelm, R.H. “Boundary conditions of flow reactor”. Chemical Engineering Science, 6, 89-93, 1956.

16. Pearson, H.W., Mara, D.D. and Arridge, H.A. “The influence of pond geometry and configuration on facultative and maturation waste stabilization pond performance and efficiency”, Water Science and Technology, 31 (12), 129-139, 1995.

17. McGarry, M.G and Pescod, M.B. “Stabilization pond design criteria for tropical Asia”. In Proceedings of the second International Symposium on Waste Treatment Lagoons (ed. R.E. McKinney), pp. 114-132. Laurence, KS: University of Kansas, 1970.

18. Mara, D.D. “Waste stabilization ponds: problems and controversies”, Water Quality International, (1), 20-22, 1987.

19. Mara, D.D. and Pearson, H.W. “Design manual for Waste Stabilization Ponds”, Mediterranean Europe, Lagoon Technology Int. Ltd, Leedz, UK, 1998.

20. Von Sperling, M. “Design of facultative pond based on uncertainty analysis”, Water Science and Technology, 33 (7), 41-47, 1996.

21. El Nadi, M. El Hosseiny and El Bayoumy, M. A. Azem, “Climate & Retention Time Effect on Performance Improvement of Stabilization Ponds Treatment.”, Ain Shams Univ., Faculty of Eng., Scientific Bulletin, vol. 38, No. 4, December 2003.

22. Ismail, A.T.A., “Design Modifications Of Stabilization Ponds Due To Egyptian Applications -”. M.Sc. Thesis, Ain Shams University, Faculty of Eng., Cairo, Egypt, January 2013.