Data Article

Data supporting the prediction of the properties of eutectic organic phase change materials

Samer Kahwaji a, Mary Anne White a,b,*

a Department of Chemistry, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
b Clean Technologies Research Institute, Dalhousie University, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2

ARTICLE INFO

Article history:
Received 27 December 2017
Accepted 31 January 2018
Available online 3 February 2018

Keywords:
Phase change materials
PCM
Eutectic
Thermal properties
Thermal energy storage

ABSTRACT

The data presented in this article include the molar masses, melting temperatures, latent heats of fusion and temperature-dependent heat capacities of fifteen fatty acid phase change materials (PCMs). The data are used in conjunction with the thermodynamic models discussed in Kahwaji and White (2018) [1] to develop a computational tool that calculates the eutectic compositions and thermal properties of eutectic mixtures of PCMs. The computational tool is part of this article and consists of a Microsoft Excel® file available in Mendeley Data repository [2]. A description of the computational tool along with the properties of nearly 100 binary mixtures of fatty acid PCMs calculated using this tool are also included in the present article. The Excel® file is designed such that it can be easily modified or expanded by users to calculate the properties of eutectic mixtures of other classes of PCMs.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The data presented in this article include the molar masses and thermal properties of 15 fatty acid PCMs (Table 1). The thermal properties are the melting temperature, \(T_{\text{mpt}} \), the latent heat of fusion, \(\Delta_{\text{fus}}H \), and the heat capacities, \(C_p(T) \), of both the solid and liquid phases. We measured \(T_{\text{mpt}}, \Delta_{\text{fus}}H \) and \(C_p(T) \) of five fatty acids: decanoic acid (C10 thereafter), dodecanoic acid (C12), tetradecanoic acid (C14), hexadecanoic acid (C16) and octadecanoic acid (C18) by DSC [3], whereas for the other fatty acids, the values of \(T_{\text{mpt}}, \Delta_{\text{fus}}H \) and \(C_p(T) \) were obtained from the literature [4,5]. The data in Table 1 are the basis of the Excel® file, available from [2]. The Excel® file contains equations from the thermodynamic models discussed in the manuscript entitled “Prediction of the Properties of Eutectic Fatty Acid Phase Change Materials” [1] and was used to compute the eutectic compositions and thermal properties of all 105 possible binary combinations of the fatty acid PCMs. A total of 97 combinations form binary eutectic mixtures and their properties are included in Tables 2–5, presented according to the range of the eutectic temperature, \(T_{\text{eut}} \), of the mixtures.
Table 1
Thermal properties of fatty acid PCMs. The properties shown in bold were measured in our previous work [4] whereas \(T_{\text{mpt}} \) and \(\Delta_{\text{mix}} H \) of other PCMs are from [5] and references therein. The heat capacities \(C_{p,s}(T) \) and \(C_{p,l}(T) \) of the measured samples (in bold) were obtained from polynomial functions fit close to the transition point, whereas the other \(C_{p,s}(T) \) and \(C_{p,l}(T) \) are from Ref. [6], obtained from wider temperature ranges.

PCMs	Molar mass (g mol\(^{-1}\))	\(T_{\text{mpt}} \) (°C)	\(\Delta_{\text{mix}} H \) (J g\(^{-1}\))	\(C_{p,s}(T) \)	\(C_{p,l}(T) \)
Heptanoic (enanthic) acid	130.18	7.4	107	164.213 – 1.19T + 6.15 \times 10^{-3} T^2	72.739 + 1.36T – 3.30 \times 10^{-3} T^2 + 3.33 \times 10^{-6} T^3
Nonanoic (pelargonic) acid	156.24	12.3	127	19 + 1.4T	184.223 + 1.21T – 2.92 \times 10^{-3} T^2 + 3.22 \times 10^{-6} T^3
Oleic (elanic) acid	282.47	13.5	140	77.434 + 1.66T	278.686 + 2.54T – 5.44 \times 10^{-3} T^2 + 4.92 \times 10^{-6} T^3
Octanoic (caprylic) acid	144.21	16.5	148	241.472 – 1.61T + 6.49 \times 10^{-3} T^2	184.525 + 9.97 \times 10^{-3} T – 2.42 \times 10^{-3} T^2 + 2.70 \times 10^{-6} T^3
Undecanoic (undecylic) acid	186.29	28.4	139	11 + 1.46T	73.094 + 2.34T – 5.29 \times 10^{-3} T^2 + 4.80 \times 10^{-6} T^3
Decanoic (capric) acid	**172.26**	**32.0**	**145**	**4694.26 – 33.20 T + 6.28 \times 10^{-2} T^2**	**37041.70 – 335.91 T + 1.023 T^2 – 1.04 \times 10^{-3} T^3**
Tridecanoic (tridecylic) acid	214.34	41.8	157	13 + 1.47T	22.393 + 3.05T – 6.67 \times 10^{-3} T^2 + 5.72 \times 10^{-6} T^3
Dodecanoic (lauric) acid	**200.32**	**43.6**	**176**	**4463.56 – 31.40 T + 5.94 \times 10^{-2} T^2**	**208668.96 – 1877.0 T + 5.64 T^2 – 5.65 \times 10^{-3} T^3**
Pentadecanoic (pentadecylic) acid	242.40	52.5	165	164.349 – 0.283 T + 4.37 \times 10^{-3} T^2	– 88.671 + 4.08 T – 8.64 \times 10^{-3} T^2 + 7.08 \times 10^{-6} T^3
Tetradecanoic (myristic) acid	**228.37**	**54.7**	**186**	**10509.23 – 70.04 T + 1.22 \times 10^{-1} T^2**	**93410.37 – 798.097 T + 2.28 T^2 – 2.17 \times 10^{-3} T^3**
Hexadecanoic (palmitic) acid	256.43	61.7	206	13440.42 – 87.3 T + 1.47 \times 10^{-1} T^2	59987.38 – 491.627 + 1.35 T^2 – 1.24 \times 10^{-3} T^3
Heptadecanoic (heptadecylic) acid	270.45	62.8	193	17 + 1.57T	– 93.243 + 4.467 – 9.20 \times 10^{-3} T^2 + 7.21 \times 10^{-6} T^3
Nonadecanoic (nonadecylic) acid	298.50	68.0	193	190.219 – 0.201T + 4.82 \times 10^{-3} T^2	– 172.759 + 5.25 T – 1.05 \times 10^{-3} T^2 + 7.99 \times 10^{-6} T^3
Octadecanoic (stearic) acid	284.48	68.4	211	8670.10 – 55.96 T + 9.62 \times 10^{-3} T^2	97806.94 – 7767.7 T + 2.13 T^2 – 1.98 \times 10^{-4} T^3
Eicosanoic (arachidic) acid	312.53	75.0	227	20 + 1.77T	– 169.969 + 5.35 T – 1.06 \times 10^{-2} T^2 + 7.84 \times 10^{-6} T^3
Table 2
The eutectic compositions, \(x_{A,E} \), eutectic temperatures, \(T_E \), and eutectic latent heats of fusion \(\Delta_{\text{fus}} H_E \) of binary mixtures of fatty acids calculated using the computational tool described in the text and the data of Table 1. Each eutectic composition is given in terms of the mole fraction of “Component A” and values of \(T_E \) have been rounded to 1°. Data in this table include mixtures with \(-22 < T_E < 0 \) °C.

Component A	Component B	\(x_{A,E} \)	\(T_E \) (°C)	\(\Delta_{\text{fus}} H_E \) (kJ mol\(^{-1}\))
Heptanoic (enanthic) acid	Nonanoic (pelargonic) acid	0.685	−22	16.1
Heptanoic (enanthic) acid	Octanoic (caprylic) acid	0.725	−20	15.6
Heptanoic (enanthic) acid	Undecanoic (undecylic) acid	0.825	−15	16.1
Heptanoic (enanthic) acid	Decanoic (capric) acid	0.835	−15	15.5
Heptanoic (enanthic) acid	Oleic (elainic) acid	0.835	−15	16.9
Heptanoic (enanthic) acid	Tridecanoic (tridecylic) acid	0.925	−11	15.3
Heptanoic (enanthic) acid	Dodecanoic (lauric) acid	0.935	−10	13.6
Heptanoic (enanthic) acid	Pentadecanoic (pentadeicylic)acid	0.965	−9	14.7
Nonanoic (pelargonic) acid	Octanoic (caprylic) acid	0.545	−7	20.5
Nonanoic (pelargonic) acid	Oleic (elainic) acid	0.630	−3	25.8
Nonanoic (pelargonic) acid	Undecanoic (undecylic) acid	0.670	−1	22.2
Oleic (elainic) acid	Octanoic (caprylic) acid	0.425	−1	27.1
Nonanoic (pelargonic) acid	Decanoic (capric) acid	0.685	0	22.1

Table 3
The eutectic properties of fatty acid binary mixtures with \(0 < T_E < 20 \) °C.

Component A	Component B	\(x_{A,E} \)	\(T_E \) (°C)	\(\Delta_{\text{fus}} H_E \) (kJ mol\(^{-1}\))
Octanoic (caprylic) acid	Undecanoic (undecylic) acid	0.630	2	22.9
Octanoic (caprylic) acid	Decanoic (capric) acid	0.645	3	22.9
Oleic (elainic) acid	Undecanoic (undecylic) acid	0.585	5	32.5
Oleic (elainic) acid	Decanoic (capric) acid	0.610	5	33.0
Nonanoic (pelargonic) acid	Tridecanoic (tridecylic) acid	0.815	5	22.4
Nonanoic (pelargonic) acid	Dodecanoic (lauric) acid	0.835	6	21.6
Octanoic (caprylic) acid	Tridecanoic (tridecylic) acid	0.780	9	23.6
Nonanoic (pelargonic) acid	Pentadecanoic (pentadeicylic)acid	0.900	9	21.7
oleic (elainic) acid	Tridecanoic (tridecylic) acid	0.775	9	37.0
Octanoic (caprylic) acid	Dodecanoic (lauric) acid	0.800	9	23.3
Octanoic (caprylic) acid	Tetradecanoic (myristic) acid	0.920	9	20.8
Oleic (elainic) acid	Dodecanoic (lauric) acid	0.800	10	37.1
Undecanoic (undecylic) acid	Dodecanoic (capric) acid	0.525	11	26.4
Nonanoic (pelargonic) acid	Hexadecanoic (palmitic) acid	0.965	11	20.7
Nonanoic (pelargonic) acid	Heptadecanoic (heptadeicylic)acid	0.965	11	20.8
Oleic (elainic) acid	Pentadecanoic (pentadeicylic)acid	0.880	11	38.7
Nonanoic (pelargonic) acid	Nonadecanoic (nonadeicylic) acid	0.980	12	20.5
Nonanoic (pelargonic) acid	Octadecanoic (stearic) acid	0.985	12	20.1
Oleic (elainic) acid	Tetradecanoic (myristic) acid	0.905	12	38.4
Octanoic (caprylic) acid	Pentadecanoic (pentadeicylic)acid	0.875	12	23.3
Oleic (elainic) acid	Hexadecanoic (palmitic) acid	0.960	13	39.5
Oleic (elainic) acid	Heptadecanoic (heptadeicylic)acid	0.960	13	39.6
Octanoic (caprylic) acid	Tetradecanoic (myristic) acid	0.895	13	22.5
Oleic (elainic) acid	Nonadecanoic (nonadeicylic) acid	0.980	13	39.7
Oleic (elainic) acid	Octadecanoic (stearic) acid	0.985	13	39.4
Octanoic (caprylic) acid	Hexadecanoic (palmitic) acid	0.955	15	22.3
Octanoic (caprylic) acid	Heptadecanoic (heptadeicylic)acid	0.955	15	22.5
Octanoic (caprylic) acid	Nonadecanoic (nonadeicylic) acid	0.975	16	22.1
Octanoic (caprylic) acid	Octadecanoic (stearic) acid	0.980	16	21.7
Undecanoic (undecylic) acid	Tridecanoic (tridecylic) acid	0.665	17	28.3
Undecanoic (undecylic) acid	Dodecanoic (lauric) acid	0.690	18	29.0
Decanoic (capric) acid	Tridecanoic (tridecylic) acid	0.640	19	28.8
Decanoic (capric) acid	Dodecanoic (lauric) acid	0.665	20	29.6
Table 4
The eutectic properties of fatty acid binary mixtures with $20 < T_E < 40 \degree C$.

Component A	Component B	x_{AE}	$T_E \degree C$	$\Delta_{fus-H_E} (kJ \text{ mol}^{-1})$
Undecanoic (undecylic) acid	Pentadecanoic (pentadecylic) acid	0.790	22	28.6
Undecanoic (undecylic) acid	Tetradecanoic (myristic) acid	0.815	23	28.1
Decanoic (capric) acid	Pentadecanoic (pentadecylic) acid	0.760	24	29.0
Decanoic (capric) acid	Tetradecanoic (myristic) acid	0.790	25	28.5
Undecanoic (undecylic) acid	Hexadecanoic (palmitic) acid	0.900	25	28.2
Undecanoic (undecylic) acid	Heptadecanoic (heptadecylic) acid	0.905	26	28.0
Undecanoic (undecylic) acid	Nonadecanoic (nonadecylic) acid	0.940	27	27.7
Undecanoic (undecylic) acid	Octadecanoic (stearic) acid	0.945	27	27.2
Tridecanoic (tridecylic) acid	Dodecanoic (lauric) acid	0.525	27	35.0
Undecanoic (undecylic) acid	Eicosanoic (arachidic) acid	0.980	28	26.7
Decanoic (capric) acid	Hexadecanoic (palmitic) acid	0.880	28	28.4
Decanoic (capric) acid	Heptadecanoic (heptadecylic) acid	0.885	28	28.1
Decanoic (capric) acid	Nonadecanoic (nonadecylic) acid	0.925	30	27.6
Decanoic (capric) acid	Octadecanoic (stearic) acid	0.930	30	27.1
Decanoic (capric) acid	Eicosanoic (arachidic) acid	0.970	31	26.3
Tridecanoic (tridecylic) acid	Dodecanoic (lauric) acid	0.640	31	35.3
Tridecanoic (tridecylic) acid	Tetradecanoic (myristic) acid	0.675	32	35.7
Dodecanoic (lauric) acid	Pentadecanoic (pentadecylic) acid	0.620	33	37.8
Dodecanoic (lauric) acid	Tetradecanoic (myristic) acid	0.655	34	38.3
Tridecanoic (tridecylic) acid	Hexadecanoic (palmitic) acid	0.790	36	37.3
Tridecanoic (tridecylic) acid	Heptadecanoic (heptadecylic) acid	0.795	36	36.7
Dodecanoic (lauric) acid	Hexadecanoic (palmitic) acid	0.770	38	40.0
Tridecanoic (tridecylic) acid	Nonadecanoic (nonadecylic) acid	0.860	38	36.7
Tridecanoic (tridecylic) acid	Octadecanoic (stearic) acid	0.870	38	36.3
Pentadecanoic (pentadecylic) acid	Eicosanoic (arachidic) acid	0.895	40	40.5
Dodecanoic (lauric) acid	Nonadecanoic (nonadecylic) acid	0.840	40	39.3
Dodecanoic (lauric) acid	Octadecanoic (stearic) acid	0.855	40	38.9
Tridecanoic (tridecylic) acid	Eicosanoic (arachidic) acid	0.935	40	35.8

Table 5
The eutectic properties of fatty acid binary mixtures with $40 < T_E < 70 \degree C$.

Component A	Component B	x_{AE}	$T_E \degree C$	$\Delta_{fus-H_E} (kJ \text{ mol}^{-1})$
Dodecanoic (lauric) acid	Eicosanoic (arachidic) acid	0.925	42	38.0
Pentadecanoic (pentadecylic) acid	Hexadecanoic (palmitic) acid	0.660	44	44.1
Pentadecanoic (pentadecylic) acid	Heptadecanoic (heptadecylic) acid	0.670	44	43.1
Tetradecanoic (myristic) acid	Heptadecanoic (heptadecylic) acid	0.640	46	45.3
Pentadecanoic (pentadecylic) acid	Nonadecanoic (nonadecylic) acid	0.750	46	43.9
Pentadecanoic (pentadecylic) acid	Octadecanoic (stearic) acid	0.765	47	44.0
Tetradecanoic (myristic) acid	Nonadecanoic (nonadecylic) acid	0.720	48	46.5
Tetradecanoic (myristic) acid	Octadecanoic (stearic) acid	0.735	48	46.7
Pentadecanoic (pentadecylic) acid	Eicosanoic (arachidic) acid	0.860	49	43.8
Hexadecanoic (palmitic) acid	Heptadecanoic (heptadecylic) acid	0.515	50	52.1
Tetradecanoic (myristic) acid	Eicosanoic (arachidic) acid	0.835	51	46.8
Hexadecanoic (palmitic) acid	Nonadecanoic (nonadecylic) acid	0.605	53	54.8
Hexadecanoic (palmitic) acid	Octadecanoic (stearic) acid	0.620	53	55.6
Heptadecanoic (heptadecylic) acid	Nonadecanoic (nonadecylic) acid	0.590	54	53.5
Heptadecanoic (heptadecylic) acid	Octadecanoic (stearic) acid	0.605	54	54.4
Hexadecanoic (palmitic) acid	Eicosanoic (arachidic) acid	0.745	57	57.2
Nonadecanoic (nonadecylic) acid	Octadecanoic (stearic) acid	0.515	57	58.4
Heptadecanoic (heptadecylic) acid	Eicosanoic (arachidic) acid	0.730	57	56.3
Nonadecanoic (nonadecylic) acid	Eicosanoic (arachidic) acid	0.645	61	61.6
Octadecanoic (stearic) acid	Eicosanoic (arachidic) acid	0.635	61	63.4
2. Experimental design, materials and methods

The melting temperatures, T_{mpt}, $\Delta_{fus}H$ and $C_p(T)$ of the fatty acids (C10, C12, C14, C16 and C18 (Table 1)) were measured with a TA Instruments Q200 DSC, as described in [3]. Each melting temperature was determined from the onset of the DSC endothermic peak, T_{onset}, measured at a rate of 2 K min$^{-1}$, whereas $\Delta_{fus}H$ was averaged from the areas of the melting peaks of five melt-freeze cycles measured at 10 K min$^{-1}$ [3,6]. The measured data were added to data from the literature [4,5] for 10 other fatty acid PCMs and included as a database in the Microsoft Excel® workbook. Equations that model the liquidus transitions of simple eutectic mixtures, and equations that calculate the change in enthalpy from the total change of entropy due to mixing, were also implemented in the workbook. The thermodynamic models from which these equations are derived are described in the research paper related to this data article.

The Excel® workbook serves as a computational tool that predicts the properties of binary eutectic mixtures, once the individual compounds of the mixtures are selected by the user. It is designed so that only basic knowledge of Excel® is needed to use the file or to modify it to compute the eutectic properties of other PCMs. A detailed description of the contents of the workbook and of the calculation procedures are presented here to guide users with the manipulation of this file.

The selection of the binary compounds of the eutectic mixture for which the properties are to be calculated, and the results of the calculations are included in the worksheet “Parameters and Results”. As a first step for the calculations of the eutectic properties, the properties of individual PCMs should be entered in the worksheet “PCM data”. The properties required are: the molar mass (in g mol$^{-1}$), T_{mpt} (°C), $\Delta_{fus}H$ (J g$^{-1}$) and $C_p(T)$ for the solid and liquid phases (J mol$^{-1}$ K$^{-1}$). The temperature-dependent heat capacities are entered as a 2nd degree polynomial for the solid phase, $C_p,s(T)$, and as a 3rd degree polynomial for the liquid phase, $C_p,l(T)$. Once the database is loaded, the user uses the worksheet “Parameters and Results” and selects Component A and Component B from the dropdown lists and the calculated properties are displayed in the highlighted cells. The details of the calculations of the eutectic temperature are included in the worksheet “Calculations”. In this worksheet, the mole fractions of components A and B, x_A and x_B, are generated and Eqs. (2) and (3) of Ref. [1] are used to calculate the melting temperatures at each x_A and x_B and establish the two liquidus lines. The corresponding mass fractions, m_A and m_B, are also calculated from the molar masses of the two components, M_A and M_B. For example, the mass fraction of component A is given by:

$$m_A = x_A \left(\frac{M_A}{x_AM_A + x_BM_B} \right)$$

(1)

When the two liquidus lines are calculated, a formula in the workbook identifies the coordinates of their intersection, that is the composition of the eutectic mixture $x_{A,E}$ and the eutectic temperature, T_E. Plots of temperature versus composition (x_A and m_A by default) are also generated in the “Calculations” worksheet.

The values determined for $x_{A,E}$, $x_{B,E}$ and T_E are then used to calculate the changes in entropy, ΔS, and estimate the latent heat of fusion of the eutectic mixture, $\Delta_{fus}H_E$ (Eqs. (5)–(12) in [1]). In these calculations, the coefficients of the 3rd degree function $C_p,s(T)$ and those of the 2nd degree function $C_p,l(T)$ are used. Graphs that compare the calculated values of individual ΔS_i and ΔH_i ($i = 1–7$, see Fig. 1 in [1] or the figure in the Excel® file) are also included. The variations ΔH_i give an idea as to which transition contributes more to the total $\Delta_{fus}H_E$.

As discussed above, the calculations of the eutectic properties are initiated when the user selects the two components of a binary mixture. Conversely, the provided workbook is also designed to allow the user to specify a melting temperature and the computational tool predicts which binary mixtures yield that temperature. In the “Parameters and Results” worksheet, the user inputs the desired melting temperature (cell D3) and the workbook determines the five binary compositions with the closest T_E. The composition of each of the five eutectic mixtures $x_{A,E}$, along with T_E and $\Delta_{fus}H_E$ are displayed. However, these predictions require prior calculations of the properties of all possible binary combinations (included in the worksheet “Calculations” in the Excel® file). The modification of this prediction method requires a somewhat more advanced knowledge of Microsoft Excel®.
It is possible to modify the current Excel® workbook by replacing entries in the provided database with other values from the users (e.g., direct measurement or other data sources). This approach is especially recommended when estimating the properties of a eutectic mixture formed from materials that might have different purities, and hence different melting points and latent heats (Kahwaji and White, 2017) [1]. Users also can expand the current database by adding entries for compounds. For example, by adding data for an additional fatty alcohol PCM, the workbook can compute the properties of up to 15 new PCM eutectic mixtures. Moreover, although the current workbook calculates the properties of only binary mixtures, it can be expanded to ternary and higher order mixtures using the calculated properties. This can be done since a ternary mixture, for example, is assumed to be a pseudo-binary mixture consisting of an individual fatty acid and a binary eutectic mixture.

Acknowledgements

The authors acknowledge the financial support of NSERC (RGPIN-2015-04593) (Discovery grant to M.A.W., NSERC CREATE DREAMS postdoctoral fellowship to S. K.) and assistance from Michel Johnson and John Noël. This study also was supported by the Canada Foundation for Innovation, the Atlantic Innovation Fund and other partners that fund the Facilities for Materials Characterization at Dalhousie University.

References

[1] S. Kahwaji, M.A. White, Prediction of the properties of eutectic fatty acid phase change materials, Thermochim Acta 660 (2018) 94–100.
[2] S. Kahwaji, M.A. White, A computational tool to predict the compositions, latent heats of fusion and melting temperatures of eutectic mixtures of organic phase change materials (PCMs), Mendeley Data, v1, (2018), http://dx.doi.org/10.17632/243d6r4z26.
[3] S. Kahwaji, M.B. Johnson, A.C. Kheirabadi, D. Groulx, M.A. White, Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures, Sol. Energy Mater. Sol. Cells 167 (2017) 109–120.
[4] M.M. Kenisarin, Thermophysical properties of some organic phase change materials for latent heat storage. A review, Sol. Energy 107 (2014) 553–575.
[5] C.L. Yaws, Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel. Online version available at: https://app.knovel.com/hotlink/toc/id:kpYHTPPCC4/yaws-handbook-thermodynamic/yaws-handbook-thermodynamic, 2003.
[6] M.B. Johnson, M.A. White, Thermal methods, in: D.W. Bruce, D. O’Hare, R.I. Walton (Eds.), Multi Length-Scale Charact, John Wiley & Sons, Ltd, Chichester, UK., 2014.