Original Article

Evaluation of Anti-hyperlipidemic Activity of Ethanolic Extract of Crossandra infundibuliformis Leaves and Stems on High Fat Diet Induced Hyperlipidemia

Galanki Vasantha1*, Allenki Venkatesham2, Chitturi H. Dayakar3

1Jawaharlal Nehru Technological University, Kukatpally-500072, Telangana, India
2Department of Pharmacology and Clinical Pharmacy, SVS Group of Institutions, School of Pharmacy, Bheemaram, Warangal-506015, Telangana, India
3Department of Pharmacognosy, Dhanvanthari Institute of Pharmaceutical Sciences, Sujathanagar, Khammam-507120, Telangana, India

ARTICLE INFO

Article history:
Received: 08 January, 2020
Revised: 06 March, 2020
Accepted: 13 March, 2020
Published: 30 March, 2020

Keywords:
Crossandra infundibuliformis, ECILS, Hyperlipidemia, Sprague Dawley rats.

DOI:
10.25004/IJPSDR.2020.120207

ABSTRACT

Hypercholesterolaemia is the state been depicted by an expanded greasy substance called lipids, a rise in plasma treacher collins syndrome (TCs), and Triglycerides (TGs) levels; it is additionally called hyperlipoproteinemia. The present study was designed to investigate the hypolipidemic effect of ethanolic extract of Crossandra infundibuliformis leaves and stems (ECILS) in the high-fat diet (cholesterol 2%, sodium cholate 1%, sucrose 48%, peanut oil, methionine 4%, and 47% normal laboratory feed). The rats fed with high-fat diet containing (cholesterol 2%, sodium cholate 1%, sucrose 48%, peanut oil, methionine 4%, and 47% normal standard laboratory feed) for 1-month. Then they are checked for the blood parameter levels like TC, TGs, low-density lipoproteins (LDL), very-low-density lipoprotein (VLDL), and low-density lipoproteins (HDL). Ethanolic extracts at a low dose (100 mg/kg), significantly reduced the levels of TC, TGL, LDL, VLDL, and increased the levels of HDL and reduced the body weights on 30th day, and at medium, high doses it reduced the levels of TC, TGL, LDL, VLDL and increased the levels of HDL and reduced the body weights.

INTRODUCTION

Hyperlipidemia is the state of increased levels of TC, TG, LDLs, and VLDL.1[1] Hyperlipidemia is a human lifestyle disease. It seriously affects the human health due to its various complications like cardiovascular disorders such as myocardial infarction (MI), Congestive heart failure (CHF), hypertension and atherosclerosis. Hyperlipidemia also is correlative with diabetics mellitus (DM). Atherosclerosis is the most common cause of mortality and morbidity worldwide. Although several factors, such as a diet high in saturated fats and cholesterol, age, family history, hypertension, and lifestyle, play a significant role in causing heart failure, the high levels of cholesterol, particularly TC, TG, and LDL cholesterol is mainly responsible for the onset of CHDs. A 20% reduction of blood cholesterol level can decrease by about 31% of CHD incidence, and 33% of its mortality rate.2[2–6]

Lipids play out some significant capacities in the body. Also, hyperlipidemia is induced by the secondary effect of diabetes. Therefore, the agents having some antioxidant and anti-diabetic effect also shows a favorable effect on hyperlipidemia. β-Hydroxy β-methylglutaryl-CoA (HMG CoA) reductase inhibitor has been used in the treatment of hyperlipidemia, and Atorvastatin is one of the most prevalently used HMG CoA, reductase inhibitors.7[7–10]

A literature survey explains that flavonoid-rich sources are potential for the treatment of hyperlipidemia.11[11,12]

Based on the extensive literature survey, Crossandra
Crossandra infundibuliformis is found to be a good source of flavonoids. Therefore, we have selected the plant Crossandra infundibuliformis leaves and stems for a screening of hypolipidemic activity against high-fat diet-induced hyperlipidemia in male rats.[11, 12]

Crossandra infundibuliformis (Acanthaceae) is an enduring herb local to India and Sri Lanka and other Asian nations and it is ordinarily developed as a blooming plant; it is the evergreen sub bush with polished and wavy margined leaves and fan-molded blossoms which may show up whenever consistently.[13,14] This bloom hue runs from the regular orange shading to a salmon-orange coral to the red shading and even green turquoise. These plant parts are utilized since old times in treating different sorts of turmoil like aggravation, and it is likewise known for its injury mending action. This plant is additionally notable for its sexual enhancer action, and for its mitigating movement, it is otherwise called sparkler since when the dried case of the plant interacts with water, it tears open as a sparkler subsequently these plants were granted with this name.[15,16] The present investigation is directed to the exploration of the antihyperlipidemic activity of the ethanol extract of leaves and stems of Crossandra infundibuliformis.

**MATERIALS AND METHODS**

**Procurement and Authentication of Plant**

The leaves and stems of Crossandra infundibuliformis were collected from Guntur, Andhra Pradesh. The plant material was identified and authenticated by Dr. P.V. Prasanna, Plant Taxologist, Scientist-F and HOD, Professor, Ministry of Environment, Botanical Survey of India, Hyderabad, Telangana.

**Preparation of Plants Extract**

The leaves and stems of Crossandra infundibuliformis were collected and washed thoroughly with distilled water to make sure the leaves and stems are free of dust and are shade-dried. The dried leaves and stems are then powdered finely using a mechanical grinder. And then, the required quantity of the powder is subjected to solvent extraction with ethanol. The obtained extract is dried completely using desiccators.[17-19]

**Animals and Treatment**

**Animals**

Healthy male Sprague Dawley rats weighing between 250 and 300 g were procured and maintained in polypropylene cages at an ambient temperature of 22 ± 1°C and relative humidity of 50–60% with a 12 hours light/dark cycle in registered animal house. The animal experiments were carried out as per the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals approved under the number (1048/a/07/ CPCSEA). India and approved by the Institutional Animal Ethics Committee (IAEC). Throughout the experimental period, the animals were fed with standard pellet diet and water *ad libitum.*

**Experimental Design**

Animals were randomly divided into six groups containing six (*n = 6*) animals each and treated as explained in Table 1.

**Body weights** were recorded once a week throughout the experimental study. At the end of each week, blood samples were collected from the retro-orbital plexus. Blood samples were kept aside for approximately 1-hour at room temperature and centrifuged at 2500 rpm at 4°C for 15 minutes to separate the serum from blood. The serum samples were used for the estimation of biochemical parameters such as TC, HDL, LDL, VLDL, and TGs.

At the end of the study, animals were sacrificed by cervical dislocation and cut open to isolate the liver and weighed immediately. Then the liver was fixed in 10% formalin and was used for histopathological study.

**Table 1:** Treatment Groups

| S. No. | Name of the group               | Treatment                                                                 |
|-------|--------------------------------|--------------------------------------------------------------------------|
| 1     | Normal                         | Received standard pellet diet for 30 days                                |
| 2     | HFD                            | Received high-fat diet for 30 days                                      |
| 3     | HFD + Standard atorvastatin    | Received high fat diet + Standard Atorvastatin (20 mg/kg b.wt, p.o) for 30 days |
| 4     | HFD + Test dose 100 mg/kg      | Received high fat diet + 100 mg/kg b.wt, p.o of plant extract for 30 days |
| 5     | HFD + Test dose 200 mg/kg      | Received high fat diet + 200 mg/kg b.wt, p.o of plant extract for 30 days |
| 6     | HFD + Test dose 400 mg/kg      | Received high fat diet + 400 mg/kg b.wt, p.o of plant extract for 30 days |

**Table 2:** Blood parameters (TC, TGs, HDL, LDL, and VLDL), Bodyweight, before disease-induced hyperlipidemia in experimental rats

| S. No. | Group                        | Body weight | TC     | TG     | HDL   | LDL   | VLDL  |
|-------|-------------------------------|-------------|--------|--------|-------|-------|-------|
| 1     | Normal                        | 152 ± 0.12  | 61.12 ± 2.8 | 72.25 ± 1.9 | 29.66 ± 2.6 | 17.02 ± 2.4 | 16.08 ± 3.7 |
| 2     | HFD                           | 150 ± 1.12** | 65.59 ± 1.5** | 72.12 ± 1.0** | 32.30 ± 1.3** | 18.88 ± 3.2** | 16.12 ± 1.2** |
| 3     | HFD + Atorvastatin 20 mg/kg   | 156 ± 0.36* | 62.32 ± 3.8* | 72.12 ± 1.9* | 45.25 ± 2.3* | 30.36 ± 1.5** | 24.23 ± 1.5* |
| 4     | HFD + Test dose 100 mg/kg     | 160 ± 2.35* | 62.32 ± 1.6* | 84.32 ± 3.5* | 29.68 ± 1.9* | 15.77 ± 2.3 | 23.03 ± 2.6** |
| 5     | HFD + Test dose 200 mg/kg     | 158 ± 1.22* | 72.23 ± 1.5* | 70.1 ± 2.3* | 30.25 ± 1.5* | 27.96 ± 2.9 | 22.6 ± 2.06* |
| 6     | HFD + Test dose 400 mg/kg     | 162 ± 0.66* | 65.75 ± 1.2* | 72.8 ± 2.6* | 36.2 ± 2.1* | 15.31 ± 1.8* | 27.1 ± 2.3* |
**Statistical Analysis**

The results were expressed as mean ± S.D. [Standard error of the mean (SEM)]. Statistical analysis was calculated using one-way ANOVA followed by post hoc Dunnett’s test for multiple comparisons, and statistical significance was set at \( p < 0.05 \). Values are represented as mean ± SEM; \( a (***) - p < 0.0001 \), \( b (**) - p < 0.01 \), \( c (*) - p < 0.05 \).

**RESULTS**

**Estimation of Serum Biochemical Parameters**

The estimated values of biochemical parameters in all the experimental rats before and after the treatment period are summarized in Tables 2 and 3, Figs. 1 and 2.

**Histopathological Findings**

Histopathological changes in the liver of high-fat diet-induced hyperlipidemia after 30 days treatment is shown in Fig. 3.

**DISCUSSION**

It has been well established that nutrition plays an important role in the etiology of hyperlipidemia and atherosclerosis. In our study, we choose cholesterol diet, which contains the common ingredients in our daily food. Cholesterol feeding has been often used to elevate serum or tissue cholesterol levels to assess the hypercholesterolemia related metabolic disturbances in animals. Cholesterol feeding alone, however, does not affect the serum TG level. It is assumed that a high level of saturated fat, in addition to cholesterol, is required to elevate serum TG levels in a rat model significantly\(^{[20-25]}\). The extract exhibited a significant control of serum lipid profiles in rats. From the obtained result, it was observed that keeping the animal on HFD significantly increased the TC, TG, LDL-C level in serum \( (p < 0.05) \) as compared to rats on normal diet. When high functioning depression HFD was co-administered with ECILS, the elevated levels of TC, TG, and LDL-C conditions have shown a considerable decline. It was noted that TC, TG, and LDL-C lowering activity of ECILS \( (400 \text{ mg/kg}) \) was more significant as compared to the other two lower doses. There was a significant elevation in plasma HDL-C in ECILS treated rats as compared to HFD rats, thus indicating the efficacy of ECILS in preventing the elevation seen in various components of lipid profile under experimentally-induced hyperlipidemia. Ample of evidence exists with respect to the fact that HDL cholesterol is inversely related to the total body cholesterol and a reduction of plasma HDL cholesterol concentration may accelerate the development of atherosclerosis leading to ischaemic heart diseases, by impairing the clearing of cholesterol from the arterial wall\(^{[26-29]}\). Flavonoids are reported to increase HDL-C concentration and decrease in LDL and VLDL levels in hypercholesteremic rats\(^{[30, 31]}\). Flavonoids and polyphenols found in our ECILS

---

**Table 3:** Effect of ethanolic extracts of *Crossandra infundibuliformis* on various blood parameters (TC, TGs, HDL, LDL and VLDL), after 30th day of treatment

| S.NO | Group                  | TC      | TG       | HDL     | LDL     | VLDL    |
|------|------------------------|---------|----------|---------|---------|---------|
| 1    | Normal                 | 61.09 + 1.0 | 187.02 + 2.4 | 28.03 + 1.6 | 31.23 + 1.8 | 16.09 + 1.2 |
| 2    | HFD                    | 138.01 + 01*** | 70.03 + 2.6*** | 12.11 + 0.6*** | 97.32 + 3.4*** | 52.09 + 0.3*** |
| 3    | HFD + Atorvastatin (20 mg/kg) | 110.0 + 6.3** | 122.0 + 0.9** | 32.08 + 3.0** | 44.24 + 1.2** | 26.0 + 2.4** |
| 4    | HFD + Test dose 100 mg/kg | 114.03 + 0.2* | 161.08 + 0.9* | 21.06 + 1.6* | 93.33 + 1.8 | 19.04 + 1.6* |
| 5    | HFD + Test dose 200 mg/kg | 102.04 + 2.8* | 122.04 + 2.8* | 25.52 + 1.8* | 63.01 + 1.4 | 35.02 + 0.8* |
| 6    | HFD + Test dose 400 mg/kg | 98.02 + 1.0* | 93.03 + 2.1* | 29.04 + 0.6* | 52.23 + 1.0 | 31.06 + 1.0* |

Values are mean ± SEM, \( n = 6 \); **p < 0.01, when compared with control Group* p < 0.01, when compared with standard group
Liver of rat from normal control group showing the normal histopathological structure of hepatocytes (H & E x 200)

Liver of rat from disease control group showing the fat deposits in histopathological structure hepatocytes (H & E x 200)

Liver of rat from standard control group showing an almost normal histopathological structure of hepatocytes treated with standard drug Atorvastatin (20 mg/kg) (H & E x 200)

Photomicrograph of a liver section of rat subjected showing the hyperlipidemia and treated with low dose (100 mg/kg) of ECILS for 30 days showing necrosis & fat deposits (100 mg/kg) (H & E x 200)

Photomicrograph of a liver section of rat subjected showing the hyperlipidemia and treated with medium dose (200 mg/kg) of ECILS for 30 days showing very few effects of necrosis and fat deposits.

Photomicrograph of a liver section of rat subjected showing the hyperlipidemia and treated with high dose (400 mg/kg) of ECILS for 30 days showing significant effect with almost normal hepatocytes but with necrosis.

Fig. 3: Effect of ECILS and other treatment groups on histopathology of the liver after 30th day of treatment
could, therefore, be considered favorable in increasing HDL and decreasing LDL and VLDL in ECILS treated rats. The findings in the study in this context with the previous studies are quite comparable.\(^{30,31}\)

### Conclusion

The result of this present study revealed that the ethanolic extract of *Crossandra infundibuliformis* leaves and stems improved the serum lipid profile in rats by decreasing serum TC, TG, LDL-C, and increasing serum HDL-C. This further, studies are required to gain more insight into the possible mechanism of action.

### References

1. Grundy SM, Vega GL. Hypertriglyceridemia: causes and relation to coronary heart disease. In Seminars in thrombosis and hemostasis 1988 Apr (Vol. 14, No. 02, pp. 149-164). Copyright© 1988 by Thieme Medical Publishers, Inc.
2. Robinson MT. Nutrition Evidence-Based Guidelines for Treating Hyperlipidemia in Children with Type 1 Diabetes. The Diabetes Educator. 2009 May;35(3):408-419.
3. Zafar Alam Mahmood, Syed WA, Mohamad S, Zafar M. Hyperlipidemia development and consequences. Int J Mol Sci. 2009;15(3).
4. Shamir R, Fisher EA. Dietary therapy for children with hypercholesterolemia. American family physician. 2000 Feb 1;61(3):675-682.
5. Brown MS, Goldstein J. Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. The Journal of clinical investigation. 1983 Sep 1;72(3):743-7.
6. Sivagamoundari R. Anti-Hyperlipidemic Activity of Aerial Parts of *Delonix elata* on High Cholesterol Diet Induced Hyperlipidemia in Rats (Doctoral dissertation, Mohamed Sathak Aj College of Pharmacy, Chennai).
7. Vinay Kumar, Abul K Abbas and Nelson F. Pathologic, basis of disease. 7th Edition. New Delhi: Elsevier. 2002. 46-49.
8. Coughlan BJ, Sorrentino MJ. Does hypertriglyceridemia increase risk for CAD? Growing evidence suggests it plays a role. Postgraduate medicine. 2000 Dec 20;108(2):641-647.
9. Kinosian B, Glick H, Garland G. Cholesterol and coronary heart disease: predicting risks by levels and ratios. Annals of internal medicine. 1994 Nov 1;121(9):641-647.
10. Fungwe TV, Cagen LM, Cook GA, Wilcox HG, Heimberg M. Dietary cholesterol stimulates hepatic biosynthesis of triglyceride and reduces oxidation of fatty acids in the rat. Journal of lipid research. 1993 Jun 1;34(6):933-941.
11. Aruna P, Rajangam J, Rani PG, Manivannan MI. Nutrient studies in crossandra (Crossandra infundibuliformis L. Nees). Asian Journal of Horticulture. 2007;2(2):169-177.
12. Elamathi R, Deepa T, Kavitha R, Kamakalakannan P, Sridhar S, Suresh Kumar J. Phytochemical screening and antimicrobial activity of leaf extracts of *Crossandra infundibuliformis* (L.) nees on common bacterial and fungal pathogens. Int J curr sci. 2011;1:72-77.
13. Gundamaraju R, Verma TM. Evaluation of wound healing activity of *Crossandra infundibuliformis* flower extract on albino rats. International Journal of Pharmaceutical Sciences and Research. 2012 Nov 1;3(11):4545.
14. Vadivel E, Sunita V. In vitro Anticancer and Insecticidal Activity of *Crossandra infundibuliformis* leaf and stem extract of *Crossandra infundibuliformis* in alloxan-induced diabetic rats and diabetic nephropathy in male rats. International Journal of Green Pharmacy (IJGP). 2020 Mar 16;4(1):79-86.
15. Huang X, Vaag A, Hansson M, Weng J, Laurila ES, Groop L. Impaired insulin-stimulated expression of the glycogen synthase gene in skeletal muscle of type 2 diabetic patients is acquired rather than inherited. The Journal of Clinical Endocrinology & Metabolism. 2000 Apr 1;85(4):1584-1590.
16. Priya SV, Saratha R. *Crossandra Infundibuliformis* Leaves as Corrosion Inhibitor for Mild Steel in 1 M HCl and 0.5 MH J. Environ. Nanotechnol.;3(1):30-36.
17. Patil KG, Jaishree V, Tejaswi HP. Evaluation of Phenolic Content and Antioxidant Property of *Crossandra Infundibuliformis* Leaves Extracts. American Journal of Plant Sciences. 2014 Apr 1;2014.
18. Prasad K. Hypocholesterolemic and antiatherosclerotic effect of flax lignan complex isolated from flaxseed. Atherosclerosis. 2005 Apr 1;179(2):269-275.
19. Grundy SM, Vega GL. Hypertriglyceridemia: causes and relation to coronary heart disease. In Seminars in thrombosis and hemostasis 1988 Apr (Vol. 14, No. 02, pp. 149-164). Copyright© 1988 by Thieme Medical Publishers, Inc.
20. Bacharach PS, Denke MA, Stein EA, Rikf kind BM. Lipid and Dyslipoproteinemia in Clinical Diagnosis and Management by Laboratory Methods. Journal of Pharmacy research. 2001;29:224-248.
21. Robinson M, Estell K. Defining Double Diabetes in Youth: Nutrition Intervention and Treatment Guidelines. Topics in Clinical Nutrition. 2012 Jul 1;27(3):277-290.
22. Ochani PC, D’Mello P. Antioxidant and antihyperlipidemic activity of Hibiscus sabdariffa Linn. leaves and calyces extracts in rats. Ind journal of Exp Bio. 2008;47:276-302.
23. Vetrivelvan S, Rajamannick V, Mathuppan M, Gnanasekaran D, Chellappan D, Shiri K, Saito Y. The enzymes related to lipoprotein metabolism (LpL, H-TGL, CAT, ACAT, HMG-CoA reductase, 7-alpha-hydroxylase). Nihon rinsho. Japanese journal of clinical medicine. 1990 Nov;48(11):2483-2491.
24. Prasad K. Hypocholesterolemic and antiatherosclerotic effect of flax lignan complex isolated from flaxseed. Atherosclerosis. 2005 Apr 1;179(2):269-275.
25. Ching Kuang Chou, Fatty acids in food and their health complications. 2nd Edn, USA: Marcel Dekker publishers; 1999: 459.
26. Brown MS, Goldstein J. Lipoprotein receptors in the liver: Control signals for plasma cholesterol traffic. The Journal of clinical investigation. 1983 Sep 1;72(3):743-747.
27. Zhang HW, Zhang YH, Lu MJ, Tong WJ, Cao GW. Comparison of hypertension, dyslipidaemia and hyperglycaemia between buckwheat seed-consuming and non-consuming Mongolian-Chinese populations in Inner Mongolia, China. Clinical and experimental pharmacology & physiology. 2007 Sep;34(9):838-844.
28. Nalrocky J, Weiss SR, Davidson MH, Sprecher DL, Schwartz SL, Lupton PJ, Jones PH, Haber HE, Black DM. Reduction of LDL-cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase in-hibitor. Arterioscler Thromb Vasc Biol. 1995;15:678482.
29. Assy N, Kaita K, Mymin D, Levy C, Rosser B, Minuk G. Fatty infiltration of liver in hyperlipidemic patients. Digestive diseases and sciences. 2000 Oct 1;45(10):1929-1934.