Research Article

Avula Venkateswarlu, Sangapatnam Suneetha, Macherla Jayachandra Babu, Jorige Girish Kumar, Chakravarthula Siva Krishnam Raju, and Qasem Al-Mdallal*

Significance of magnetic field and chemical reaction on the natural convective flow of hybrid nanofluid by a sphere with viscous dissipation: A statistical approach

https://doi.org/10.1515/nleng-2021-0047
Received Oct 05, 2021; accepted Dec 11, 2021

Abstract: Hybrid nanofluid, which is a combination of Propylene Glycol (PG) – Water (H₂O) admixture and paraffin wax and sand, may be utilized as a standby for PG and (H₂O) blend in solar thermal framework. Objective of this article is the exploration of the dissipative flow propylene-glycol and water mixture based hybrid nanofluid by a sphere with chemical reaction and heat source parameters. MATLAB in-built solver bvp4c is utilized to exhibit the impacts of various parameters on regular profiles including temperature. Correlation coefficient is utilized to elucidate the impact of pertinent parameters on engineering parameters of concern, such as, surface friction factor. Main findings of this work are magnetic field is having a negative association with friction factor and chemical reaction is consuming a significant positive relationship with Sherwood number. It is witnessed that heat source and Eckert number are useful to meliorate the fluid temperature. Furthermore, validation is performed among our results and earlier published outcomes. Good agreement is detected.

Keywords: Hybrid nanofluid, sphere, bvp4c, correlation coefficient, magnetic field, chemical reaction, viscous dissipation

Nomenclature

Symbol	Description
µ	Dynamic viscosity [Kg/ms]
ρ	Density of the fluid [Kg m⁻³]
βₜ	Volumetric coefficient of thermal expansion
a	Radius of the sphere
β₈	Volumetric coefficient of diffusion expansion
g	Acceleration of gravity
v	Kinematic viscosity [m² s⁻¹]
T	Dimensional temperature of fluid [K]
k	Thermal conductivity [W m⁻¹K⁻¹]
C	Dimensional concentration of fluid [mol m⁻³]
f'	Dimensionless velocity
θ	Dimensionless temperature of fluid
pCp	Heat capacity
ψ	Dimensional stream function
u, v	Velocity components in x, y directions [m s⁻¹]
η	Similarity variable
f	Dimensionless Stream function
Φ	Dimensionless concentration of fluid
Gr	Local thermal Grashoff number
Gc	Local diffusion Grashoff number
λ	Buoyancy ratio parameter
Pr	Prandtl number
Ec	Eckert number
Sc	Schmidt number
Kr	Chemical reaction parameter
Dm	Molecular diffusivity [m² s⁻¹]
M	Magnetic field parameter
Q₀	Volumetric rate of heat source parameter
k₀	Chemical reaction parameter (dimensional)
ξ	Dimensionless coordinate

*Corresponding Author: Qasem Al-Mdallal: Department of Mathematical Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates; Email: q.almdallal@uaeu.ac.ae

Avula Venkateswarlu, Sangapatnam Suneetha: Department of Applied Mathematics, Yogi Vemana University, Kadapa – 516005, Andhra Pradesh, India

Macherla Jayachandra Babu, Jorige Girish Kumar: Department of Mathematics, S.V.A. Government College, Srikalahasti – 517644, Andhra Pradesh, India

Chakravarthula Siva Krishnam Raju: Department of Mathematics, GITAM School of Science, GITAM University, Bangalore-Campus, Karnataka

Open Access. © 2021 A. Venkateswarlu et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License
1 Introduction

Nanofluids have been introduced as a new interesting kind of heat transfer fluids to replace the use of regular fluids in industrial processes. They may diminish erosion and corrosion significantly owing to their small size. They have a broad range of applications including refrigeration, heat exchangers and cooling of electronic devices. Raju et al. [1] considered stretching cylinder and examined the Maxwell fluid flow with Cattaneo-Christov heat flux. Later, various researchers [2–5] assumed stretching sheet as a geometry and theoretically analysed distinct nanofluid flows with different parameters including viscous dissipation. Later, Upadhya et al. [6–8] scrutinized various nanofluid (including water + iron oxide) flows over various geometries including moving surface. They detected that the heat transfer rate is high in the presence of ferrous oxide nanoparticles compared to the presence of aluminium oxide nanoparticles in the base fluid. Saba et al. [9] discussed the nanofluid (CNT based) flow by a curled elongating surface with heat absorption/generation and detected that the curvature parameter minimizes the friction factor. Duragaprasad et al. [10–12] inspected distinct three dimensional nanofluid flows, for instance, water and graphene mixture, across various geometries with different parameters including non-uniform heat source/sink. Sreedevi et al. [13] used FEM to solve the mathematical model related to nanofluid (water + Al2O3 / water + TiO2) flow by a wedge with thermal radiation. They observed that there is a reduction in the heat transfer rate for bigger values of radiation parameter. Upadhya et al. [14] used the combination of Runge-Kutta and Newton-Raphson procedures to numerically investigate the nanofluid flow among the stationary and porous disks with suction/injection. Eid [15] considered the Riga surface and scrutinized a Darcy-Forchheimer flow of Cu/CMC – Al2O3 with heat sink/source. Newly, several researchers [16–18] applied different methods to analyze the various nanofluid flows through distinct geometries. They noticed that the chemical reaction parameter raises the rate of mass transfer and heat transfer rate is high in the absence of magnetic field when compared to its presence. Hybrid nanofluid is a modified version of mono nanofluid, which contains more than one nanoparticle. So, hybrid fluids are having better heat transfer features compared to mono fluids. These are having applications in many areas including solar collectors and military equipment. Ghadikolaee et al. [19] studied the shape factor of the nanoparticles in HNF (TiO2 – Cu/water) flow by an elongating sheet with magnetic field and emphasized that the nanoparticles with platelet shape are more efficient. Tassaddiq et al. [20] elucidated the features of mass and heat transfer on the HNF (Cu – Fe3O4/H2O) by a revolving disk with magnetic field and noticed the amelioration in the fluid temperature with the raise in disk rotation. Abbas et al. [21] explained a HNF (Ag + Ni/water) flow of two models (Yamada-Ota and Xue) by an elongating cylinder with the aid of bvp4c technique. They observed that the Xue model has less heat transfer rate when compare to other model for temperature gradient. Ahmad and Nadeem [22] considered the upper part of horizontal surface and performed irreversibility analysis in the HNF (MWCNT + SWCNT/water) flow by using the same technique. They noticed that there is an escalation in the entropy with the raise in nanoparticle volume fraction. Later, with the aid of suction and injection, Nadeem et al. [23] provided a comparative analysis for the HNF (Cu – Al2O3/water) by an exponential curved sheet. Freshly, several researchers [24–28] made contribution to the analysis of hybrid nanofluid flows by considering various geometries.

Fluid flow by a sphere has practical applications in numerous areas of technology, for instance, mineralogy, food engineering and oilfield drilling. Yih [29] inspected the features of heat transfer on the non-Darcy dissipative flow of MHD fluid flow by a sphere immersed in a porous medium. He detected that the heat transfer rate shrinks with bigger Eckert number. Later, Molla et al. [30] and Alam et al. [31] considered sphere and elucidated the dissipative flow of MHD fluid with heat source. They noticed that the magnetic field parameter minimizes the friction coefficient and Nusselt number minimizes with larger heat source parameter. Chamkha et al. [32] applied finite difference method to present the analysis of convective flow of a nanofluid through sphere with Brownian motion. Tham et al. [33] observed that bioconvection parameters have no significance on temperature in their investigation on the bioconvective flow of nanofluid (water based) through a sphere with thermoderesis. Amanulla et al. [34] considered the same geometry and theoretically explained the Darcy-Forchheimer flow of Prandtl-Eyring fluid with slip parameters. Later, Mahdy et al. [35] and Alwawi et al. [36] scrutinized the nanofluid flow (combined with the Casson fluid) by a sphere with magnetic field. They discovered that the Casson parameter minimizes the fluid velocity and magnetic field parameter enhances the entropy generation. Newly, several researchers [37–42] applied different strategies to examine the features of mass and heat transfer in various nanofluid flows through the sphere.

After cautious perception of the previously mentioned writing, we aim to discuss the significance of the viscous dissipation on the chemically reactive HNF (Propylene glycol – Water mixture + Paraffin Wax + Sand) flow with Ohmic
heating. Results are explicated through plots and a statistical tool named correlation coefficient. Further, validation is performed among the current results and former outcomes and observed a decent accord.

2 Formulation

Natural convective dissipative flow of hybrid nanofluid (Water based Propylene glycol + Sand + Paraffin Wax) flow by a sphere with Joule heating and chemical reaction is considered. Assumed that the flow is nearby the lower stagnation point of the sphere. Values of the thermophysical attributes of base liquefied and nanomaterials are exhibited in Table 1. Presumptions for this formulation are

(i) Magnetic field of intensiveness \(B_0 \) is opposite to flow (\(y \)-direction) (see Figure 1).
(ii) \(r(x) = a \sin \left(\frac{x}{a} \right) \) is the radial length from symmetric axis to the surface.
(iii) Nanoparticles and base fluid are supposed to be in equilibrium and no slip arises amongst them.
(iv) \(q_w \) and \(s_w \) are the uniform heat and mass fluxes of the sphere surface.
(v) \(T_\infty, T_w \) and \(C_\infty, C_w \) are the surface and ambient fluid temperature and concentrations of the sphere respectively.
(vi) Neglected induced magnetic field.

Flow controlling equations for this problem are characterised as (Alam et al. [18]):

\[
\frac{\partial (ru)}{\partial x} = - \frac{\partial (rv)}{\partial y}, \tag{1}
\]

\[
\begin{align*}
 u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - g \beta_f (T - T_\infty) \sin \left(\frac{x}{a} \right) \\
 = \mu_{hnf} \frac{\partial^2 u}{\partial y^2} + \frac{\sigma B_0^2 u}{\rho_{hnf}} + g \beta_f (C - C_\infty) \sin \left(\frac{x}{a} \right),
\end{align*}
\]

\[
(\rho C_p)_{hnf} \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k_{hnf} \frac{\partial^2 T}{\partial y^2} + \mu_{hnf} \left(\frac{\partial u}{\partial y} \right)^2 \\
+ Q_0 (T - T_\infty) + a \sigma B_0^2 u^2,
\]

\[
\begin{align*}
 u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} &= D_{hnf} \frac{\partial^2 C}{\partial y^2} - k_0 (C - C_\infty),
\end{align*}
\]

and the conditions are specified as

\[
\begin{align*}
 y = 0 : u(y) &= 0, \quad v(y) = 0, \quad T(y) = T_w, \quad C(y) = C_w \text{ as } y \to \infty : u(y) \to 0, \quad T(y) \to T_\infty, \quad C(y) \to C_\infty.
\end{align*}
\]

2.1 Thermo physical characteristics of HNF

\[
\begin{align*}
 (\rho C_p)_{hnf} &= \left[(1 - \phi_1) (\rho C_p)_f \right] + \phi_1 (\rho C_p)_{ss1} (1 - \phi_2) + (\rho C_p)_{ss2} \phi_2, \\
 \mu_{hnf} &= \mu_f \left(1 - \phi_1 \right)^5 \left(1 - \phi_2 \right)^5, \\
 \rho_{hnf} &= \left[(1 - \phi_1) \rho_f + \phi_1 \rho_{ss1} \right] (1 - \phi_2) + \rho_{ss2} \phi_2, \\
 k_{hnf} &= k_f \frac{k_{ss} + 2k_f - 2k_f \phi_2 + 2k_{ss1} \phi_2}{k_{ss} + 2k_f - 2k_f \phi_2 - 2k_{ss1} \phi_2}, \\
 k_{hnf} &= k_f \frac{k_{ss} + 2k_f - 2k_f \phi_1 + 2k_{ss1} \phi_1}{k_{ss1} + 2k_f + k_f \phi_1 - k_{ss1} \phi_1}.
\end{align*}
\]

Following similarity transmutations are used to metamorphose the flow driven equations as a set of ODEs (Alam et al. [18]):

\[
\begin{align*}
 \xi &= \frac{x}{a}, \quad \eta = \frac{y}{a} Gr^{0.25}, \\
 \Psi &= u \xi Gr^{0.25} f(\xi, \eta), \\
 \frac{T - T_\infty}{(T_w - T_\infty)} &= \theta(\xi, \eta), \\
 \frac{C - C_\infty}{(C_w - C_\infty)} &= \Phi(\xi, \eta).
\end{align*}
\]

Here \(\Psi \) is the stream function, \(u, v \) are the constituents of velocity specified by

\[
\begin{align*}
 u &= r^{-1} \frac{\partial \Psi}{\partial \eta}, \\
 v &= -r^{-1} \frac{\partial \Psi}{\partial \xi},
\end{align*}
\]
in order to satisfy the continuity Eq. (1).

With the aid of (6) and (7), Eqs (2–4) are transmuted to:

\[
\frac{1}{G_1 G_2} f''' - \left(\frac{f'}{f''} \frac{\partial f'}{\partial \xi} - f'' \frac{\partial f}{\partial \xi} \right) - ff'' (1 + \xi \cot \xi) = 0,
\]

\[
+ f' \left(\frac{\partial f'}{\partial \xi} + \frac{\theta}{G_2} G_2 \frac{\partial f}{\partial \xi} + \lambda \phi \frac{\partial \sin \xi}{\partial f} \right) = 0,
\]

\[
\frac{G_1 G_3}{G_4} \frac{1}{\Pr} \frac{\partial \theta'}{\partial \xi} + \frac{1}{G_4} E_c f'^2 + \frac{\theta G_4}{G_4} + ME_c f'^2 = 0,
\]

\[
\frac{1}{Sc} \phi'' - \left(\frac{f'}{f} \frac{\partial f}{\partial \xi} - \frac{\phi'}{f} \frac{\partial f}{\partial \xi} \right) - \phi' (1 + \xi \cot \xi) = 0,
\]

\[
- K_r \phi = 0.
\]

Since flow is near the stagnation point of the sphere, \(\xi = 0 \), Eqs (8–10) can be rewritten as:

\[
\frac{1}{G_1 G_2} f''' + 2f'' - \frac{M}{G_2} f' - f'^2 + \theta + \lambda \phi = 0,
\]

\[
\frac{G_1 G_3}{G_4} \frac{1}{Pr} \frac{\partial \theta'}{\partial \xi} + \frac{1}{G_4} E_c f'^2 + H \frac{\theta}{G_4} + \frac{1}{G_4} ME_c f'^2 = 0,
\]

\[
\frac{1}{Sc} \phi'' + 2 \phi' f' - K_r = 0.
\]

On the other hand, conditions in (5) can be rewritten as:

\[
\text{at } \eta = 0: f(\eta) = 0, \quad f'(\eta) = 0, \quad \Phi(\eta) = 1, \quad \theta(\eta) = 1, \\
\text{as } \eta \to \infty: f'(\eta) \to 0, \quad \Phi(\eta) \to 0, \quad \theta(\eta) \to 0,
\]

where

\[
G_1 = (1 - \phi_2) \left[(1 - \phi_1) + \phi_1 \frac{\rho_1}{\rho_f} \right] + \phi_2 \frac{\rho_2}{\rho_f},
\]

\[
G_2 = (1 - \phi_1)^{2.5} (1 - \phi_2)^{2.5},
\]

\[
G_3 = \frac{k_1 + 2k_f - 2 \phi_1 (k_f - k_1)}{k_1 + 2k_f + \phi_1 (k_f - k_1)},
\]

\[
G_4 = \frac{k_2 + 2G_3 k_f - 2 \phi_2 (G_3 k_f - k_2)}{k_2 + 2G_3 k_f + \phi_2 (G_3 k_f - k_2)},
\]

\[
G_5 = \frac{1}{G_1 G_2} \left[(1 - \phi_1) + \phi_1 \frac{\rho C_p}{\rho_f} \right] + \phi_2 \frac{\rho C_p}{\rho_f},
\]

\[
G_6 = (1 - \phi_2) \left[(1 - \phi_1) + \phi_1 \frac{\rho C_p \eta}{\rho_f} \right] + \phi_2 \frac{\rho C_p \eta}{\rho_f}.
\]

and

\[
M = \frac{a^2 \sigma B_0^2}{\rho v Gr^{0.5}}, \quad \lambda = \frac{G_c}{Gr},
\]

\[
G_c = \frac{g \beta_c (T_w - T_{\infty}) a^3}{\nu^2}, \quad \Pr = \frac{\mu C_p}{k},
\]

\[
E_c = \frac{(\nu^2 Gr)^2}{a^2 C_p (T_w - T_{\infty})}, \quad S_c = \frac{\nu}{D_m},
\]

\[
K_r = \frac{k_0 a^2}{\nu Gr^{0.5}}, \quad H = \frac{Q_0 a^2}{\nu C_p Gr^{0.5}}.
\]

2.2 Physical parameters

Surface drag force is defined as:

\[
C_{f} = \frac{Gr^{\frac{1}{2}} a^2}{\mu v} \tau_w,
\]

where \(\tau_w = \mu h_{nf} \left(\frac{\partial u}{\partial y} \right) \bigg|_{y=0} \). By using (6) and (7), we may rewrite (15) as:

\[
C_{f} = \frac{1}{G_1} \xi \phi'' (\xi, 0).
\]

Formulae to find transfer rates (heat and mass) are chosen as:

\[
Nu = \frac{a Gr^{\frac{1}{2}}}{k_f (T_w - T_{\infty})} q_w, \quad Sh = \frac{a Gr^{\frac{1}{2}}}{D_m (C_w - C_{\infty})} S_w,
\]

where (wall heat flux) \(q_w = -k_{nf} \frac{\partial T}{\partial y} \bigg|_{y=0} \) (wall mass flux)

\[
s_w = -D_m \frac{\frac{\partial C}{\partial y}}{\nu} \bigg|_{y=0}.
\]

With the aid of (6) and (7), formulae in (16) are rewritten as:

\[
Nu = -G_3 G_1 \hat{\phi}' (\xi, 0), \quad \text{and} \quad Sh = -\hat{\Phi}' (\xi, 0).
\]

3 Numerical Procedure

MATLAB built-in function bvp4c is used to resolve the altered Eqs (11–13) with the conditions (14). Since bvp4c solver is built-in function, it is simple to use this function.

As a pre-process to write the code, first we need to adopt the following assumptions (Waini et al. [31]):

\[
z_1 = f, \quad z_2 = f'', \quad z_3 = f', \quad z_4 = \theta, \quad z_5 = \theta', \quad z_6 = \phi, \quad z_7 = \phi'.
\]
Then, using the Eqs (11–13) with conditions (14), we can develop a subsequent system of ODEs of first order:

\[
\begin{align*}
z_1' &= z_2, \\
z_2' &= z_3, \\
z_3' &= -G_1 G_2 \left(2z_1 z_2 - \frac{M}{G_3} z_2 - z_2^2 + z_4 + \lambda z_6 \right), \\
z_4' &= z_5, \\
z_5' &= -\frac{G_4}{G_3 G_31} \cdot \Pr \left(2z_1 z_5 + \frac{1}{G_3 G_4} E_c z_3^2 + H z_4 + \frac{1}{G_4} M E_c z_2^2 \right), \\
z_6' &= z_7, \\
z_7' &= -S_c (2z_1 z_7 - K_r)
\end{align*}
\]

with the conditions:

\[
\begin{align*}
za(1) &= 0, \\
z(a)(2) &= 0, \\
z(a)(4) &= 1, \\
z(a)(6) &= 1, \\
z(b)(2) &= 0, \\
z(b)(4) &= 0, \\
z(b)(6) &= 0
\end{align*}
\]

After converting the above system as a MATLAB code, we can execute it to get the required outcomes in the form of graphs.

4 Interpretation of results

In this study, outcomes are offered for two cases i.e., PG–Water + Paraffin Wax + Sand and PG–Water + Paraffin Wax.

4.1 Velocity profiles

When we raise the volume fraction of nanoparticle, there is an escalation in the viscosity of the fluid, which obstructs the fluid flow. So, velocity minifies with the larger ϕ_1 (Figure 2). Fluid particles try to change their direction within the sight of magnetic field. Consequently, fluid velocity diminishes (Figure 3). Figure 4 exhibits the natural behaviour (increment) of buoyancy ratio parameter on velocity profile.

4.2 Temperature profiles

When E_c increases, there is a change of increment in internal friction of the fluid. Due to that reason, fluid temperature upsurges (Figure 5). Figure 6 elucidated the impact of ϕ_1 on temperature field. It is perceived that temperature ameliorates with the raise in ϕ_1. This may be due to
the reason that larger ϕ_1 adds more viscosity to the fluid, which in turn, enhances the friction between the particles. Raise in magnetic field parameter ameliorates the rate at which linear momentum is transferred from the electromagnetic field to the fluid particle. That means, there is an increase in the energy transfer from electromagnetic field to the fluid particle. So, enrichment in temperature observes with larger magnetic field parameter (Figure 7). Figure 8 displays the fact that the larger H raises the temperature profile. Usually, larger heat source parameter causes proliferation of additional heat within the fluid and in turn, assists to enhance the wideness of the thermal boundary.

4.3 Concentration profiles

Mass diffusivity minifies with larger Schmidt number. So, concentration minifies with larger Schmidt number (Figure 9). Typically, with the step-up in chemical reaction parameter, concentration decreases (Figure 10). More entropy generation may be the reason for this behaviour.

4.4 Study of surface drag force and transfer rates (heat, mass)

Figures 11–12 emphasized that M minifies the surface drag force and ϕ_1 escalates the same. Larger values of E_c and H led to the lessening in the thermal boundary layer thinness. That means, they minify the heat transfer rate (Figures 13–14). From Figures 15–16, it is detected that Sc, Γ ameliorate the mass transfer rate. This may be due to reason that Sc, Γ minimize the concentration boundary layer thickness.
Figure 9: Effect of S_c on $\Phi(\eta)$

Figure 10: Effect of K_r on $\Phi(\eta)$

Figure 11: Impression of M on surface drag force (C_f)

Figure 12: Impression of ϕ_1 on C_f

Figure 13: Impression of E_c on Nusselt number (Nu)

Figure 14: Impression of H on Nu
4.5 Correlation coefficient and its significance

We have done a statistical analysis by using correlation coefficient to confirm the results related to physical parameters, such as, surface drag force.

The Coefficient is a numerical quantity of relationship in the midst of two elements. Worth of the measurement lies among +1 and −1 where former represents positive affiliation and latter represents negative affiliation.

\[
ryz = \frac{p \left(\sum_{i=1}^{p} y_i z_i \right) - \left(\sum_{i=1}^{p} y_i \right) \left(\sum_{i=1}^{p} z_i \right)}{\sqrt{p \sum_{i=1}^{p} y_i - \left(\sum_{i=1}^{p} y_i \right)^2} \sqrt{p \sum_{i=1}^{p} z_i - \left(\sum_{i=1}^{p} z_i \right)^2}}
\]

is the expression to assess the correlation coefficient for two variables \(y \) and \(z \).

P.E (Probable Error) of correlation coefficient helps with choosing the exactness and reliability of the coefficient value. Correlation between \(y \) and \(z \) is significant if \(\frac{|ryz|}{P_E} > 6 \) (or \(|ryz| > 6P_E \)) and unimportant otherwise.

\[
P_E = 0.6745 \frac{1-ryz^2}{\sqrt{p}}
\]

is the expression to assess the Probable Error.

From Table 2, it is clear that magnetic field parameter is consuming a noteworthy negative relationship with surface drag force and the volume fraction parameter of nanoparticle is consuming a positive affiliation with the same parameter. Table 3 revealed the fact that there is a negative association between \(E_c \) and heat transfer rate. And also, it is clear that the impact of \(M \) is same as \(E_c \) on the Nusselt number. Further, it is detected that there is a substantial positive affiliation between Sherwood number and Schmidt number (Table 4).

Table 2: Association among parameters and surface drag force

| CIF | PG – Water + Paraffin Wax + Sand | ryz | \(P_E \) | \(\frac{|ryz|}{P_E} \) |
|-----|---------------------------------|-----|---------|-----------------|
| M | -0.9956 | 0.001292 | 770.59 |
| \(\phi_1 \) | 0.9983 | 0.000500 | 1996 |

| CIF | PG – Water + Paraffin Wax | ryz | \(P_E \) | \(\frac{|ryz|}{P_E} \) |
|-----|---------------------------|-----|---------|-----------------|
| M | -0.9950 | 0.001468 | 677.79 |
| \(\phi_1 \) | 0.9990 | 0.000294 | 3397.96 |

Table 3: Association among parameters and heat transfer rate

| NU | PG – Water + Paraffin Wax + Sand | ryz | \(P_E \) | \(\frac{|ryz|}{P_E} \) |
|----|---------------------------------|-----|---------|-----------------|
| \(E_c \) | -0.9999 | 0.000029 | 34479.31 |
| \(H \) | -0.9986 | 0.000412 | 2423.79 |

| NU | PG – Water + Paraffin Wax | ryz | \(P_E \) | \(\frac{|ryz|}{P_E} \) |
|----|---------------------------|-----|---------|-----------------|
| \(E_c \) | -0.9999 | 0.000029 | 34479.31 |
| \(H \) | -0.9986 | 0.000412 | 2423.79 |
4.6 Validation

Validation is performed among our results and formerly published outcomes. We saw an acceptable concord (See Table 5).

Table 5: Validation of present results with earlier outcomes for C_f and Nu

ξ	$H = 0.10$	Alam et al. [18]	Present Results	
	C_f	Nu	C_f	Nu
0	0.00000	0.84401	0.000000	0.844055
$\pi/18$	0.16143	0.62483	0.161447	0.624855
$\pi/9$	0.31993	0.61026	0.319918	0.610279
$\pi/6$	0.47266	0.59539	0.472573	0.595446
$2\pi/9$	0.61686	0.57701	0.616897	0.577045

5 Conclusion

Hybrid nanofluid, which is a combination of Propylene Glycol (PG) – Water (H$_2$O) admixture and paraffin wax and sand, may be utilized as a standby for PG and H$_2$O blend in solar thermal framework. With these things in mind, investigation is done on the dissipative flow propylene-glycol and water mixture based hybrid nanofluid by a sphere with chemical reaction and heat source parameters. MATLAB inbuilt simulator bvp4c is enforced to solve the transmuted classification of equations. Correlation coefficient is utilized to elucidate the impact of pertinent parameters on engineering parameters of concern, such as, surface friction factor. Additionally, we have verified the current results with the earlier outcomes and saw a decent concord. Primary conclusions of this study are displayed underneath:

- Velocity minifies with bigger ϕ_1.
- Buoyancy ratio parameter meliorates the fluid velocity.
- minimizes the friction factor.
- E_c and H are useful to enhance the thermal boundary thickness. So, Nusselt number minifies with the raise in those parameters.
- Sherwood Number is consuming a generous positive affiliation with Schmidt number.

Funding information: The authors state no funding involved.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

[1] Raju CS, Kumar RK, Varma SV, Madaki AG, Prasad PD. Transpiration effects on MHD flow over a stretched cylinder with Cattaneo–Christov heat flux with suction or injection. Arab J Sci Eng. 2018;43(5):2273–80.
[2] Sivakumar N, Prasad PD, Raju CS, Varma SV, Shehzad SA. Partial slip and dissipation on MHD radiative ferro-fluid over a non-linear permeable convectively heated stretching sheet. Results Phys. 2017;7:1940–9.
[3] Upadhay MS, Raju CS. Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions. Inform Med Unlocked. 2017;9:76–85. https://doi.org/10.1016/j.imu.2017.06.001.
[4] Nagendramma V, Kumar RK, Prasad PD, Leelaratnam A, Varma SV. Thermomdiffusion effects on MHD boundary layer slip flow of nanofluid over a nonlinear stretching sheet through a porous medium. J Porous Media. 2017;20(11):961–70.
[5] Prasad PD, Raju CS, Varma SV, Shehzad SA, Madaki AG. Cross diffusion and multiple slips on MHD Carreau fluid in a suspension of microorganisms over a variable thickness sheet. J Braz Soc Mech Sci Eng. 2018;40(5):1–3.
[6] Upadhya SM, Raju CS, Shehzad SA, Abbasi FM. Flow of Eyring-Powell dusty fluid in a deaferent of aluminum and ferrous oxide nanoparticles with Cattaneo-Christov heat flux. Powder Technol. 2018;340:68–76.
[7] Upadhya SM, Raju CS, Saleem S. Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux.
Results Phys. 2018;9:779–86.

[8] Upadhya SM, Raju RR, Ali HM. Magnetohydrodynamic non-linear thermal convection flow over a radiated porous rotating disk with internal heating. J Therm Anal Calorim. 2021;143(3):1973–84.

[9] Eid MR. Thermal characteristics of 3D nanofluid flow over a convectively heated Riga surface in a Darcy–Forchheimer porous material with linear thermal radiation: an optimal analysis. Arab J Sci Eng. 2020;45(11):9803–14.

[10] Prasad PD, Varma SV, Raju CS, Saleem A, Prasad PD, Varma SV, Hoque MM, Raju CS. Three dimensional slip flow of a chemically reacting Casson fluid flowing over a porous slender sheet with a non-uniform heat source or sink. J Korean Phys Soc. 2019;74(9):855–64.

[11] Sreedevi P, Reddy PS, Sheremet M. A comparative study of Al2O3 and TiO2 nanofluid flow over a wedge with a non-linear thermal radiation. Int J Numer Methods Heat Fluid Flow. 2019;30(3):1291–317.

[12] Upadhya SM, Devi RR, Raju CS, Ali HM. Magnetohydrodynamic nonlinear thermal convection flow over a radiated porous rotating disk with internal heating. J Therm Anal Calorim. 2021;143(3):1973–84.

[13] Nadeem S, Abbas N, Malik MY. Inspection of hybrid based nanofluid flow over a curved surface. Comput Methods Programs in Biomed. 2020 Jun;189:105193.

[14] Alizadeh R, Abad JM, Ameri A, Mohebbi MR, Meh dizadeh A, Zhao D, et al. A machine learning approach to the prediction of transport and thermodynamic processes in multiphysics systems–heat transfer in a hybrid nanofluid flow in porous media. J Taiwan Inst Chem Eng. 2021;124:1–17.

[15] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[16] Anuar NS, Bachok N, Pop I. Influence of buoyancy force on Ag-MgO/water hybrid nanofluid flow in an inclined permeable stretching/shrinking sheet. Int Commun Heat Mass Transf. 2021;123:105236.

[17] Jamaludin A, Nazar R, Naganthan K, Pop I. Mixed convection hybrid nanofluid flow over an exponentially accelerating surface in a porous media. Neural Comput Appl. 2021;33(22):1–1.

[18] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[19] Geridönmez BP, Öztöp HF. Effects of inlet velocity profiles of hybrid nanofluid flow on mixed convection backward facing step channel under partial magnetic field. Chem Phys. 2021;540:111010.

[20] Hadi FM, Nabwey HA. Entropy analysis and unsteady MHD mixed convection stagnation-point flow of Casson nanofluid around a rotating sphere. Case Stud Therm Eng. 2019;60.2021;123:105236.

[21] Alwawi FA, Alkasasbeh HT, Rashad AM, Idris R. MHD natural convection flow over a sphere in the presence of heat generation. Acta Mech. 2006;186(1):75–86.

[22] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[23] Multanib MM, Hossain MA, Taher MA. Magnetohydrodynamic natural convection flow on a sphere with uniform heat flux in presence of heat generation. Acta Mech. 2006;186(1):75–86.

[24] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[25] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[26] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[27] Multanib MM, Hossain MA, Taher MA. Magnetohydrodynamic natural convection flow on a sphere with uniform heat flux in presence of heat generation. Acta Mech. 2006;186(1):75–86.

[28] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[29] Multanib MM, Hossain MA, Taher MA. Magnetohydrodynamic natural convection flow on a sphere with uniform heat flux in presence of heat generation. Acta Mech. 2006;186(1):75–86.

[30] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[31] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.

[32] Al-Hossainy AF, Eid MR. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/TiO2+MgO] hybrid nanofluid flow with higher chemical rate. Surf Interfaces. 2021;23:100971.
[40] EL-Kabeir S, Rashad A, Khan W, Abdelrahman ZM. Micropolar ferrofluid flow via natural convective about a radiative isoflux sphere. Adv Mech Eng. 2021;13(2):1687814021994392.

[41] Mohamed RA, Hady FM, Mahdy A, Abo-zai OA. Laminar MHD natural convection flow due to non-Newtonian nanofluid with dust nanoparticles around an isothermal sphere: non-similar solution. Phys Scr. 2021;96(3):035215.

[42] Jenifer AS, Saikrishnan P, Lewis RW. Unsteady MHD Mixed Convection Flow of Water over a Sphere with Mass Transfer. J Appl Comput Mech. 2021;7(2):935–43.

[43] Hanif H, Khan I, Shafie S. Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study. J Therm Anal Calorim. 2020;141(5):2001–17.

[44] Manikandan S, Rajan KS. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: potential heat transfer fluid for energy management. Energy Convers Manage. 2017;137:74–85.

[45] Waini I, Ishak A, Pop I. Hybrid nanofluid flow past a permeable moving thin needle. Mathematics. 2020;8(4):612.