Reconstrução fisiológica do ventrículo esquerdo: o conceito de máxima redução ventricular e mínima resposta inflamatória

Physiologic left ventricular reconstruction: the concept of maximum ventricular reduction and minimum inflammatory reaction

Walter J. GOMES, Jaime I. JARAMILLO, Fernando ASANUMA, Francisco A. ALVES

Resumo

Introdução: A sobrevida em pacientes com insuficiência cardíaca, assim como após a cirurgia de reconstrução do ventrículo esquerdo (VE), está relacionada ao tamanho da cavidade ventricular esquerda. Também o uso de materiais sintéticos na reconstrução ventricular poderia induzir uma reação inflamatória crônica. Relatamos a modificação da técnica de reconstrução ventricular que elimina a necessidade de retalhos intra-cavitários e de uso de material sintético no fechamento do VE.

Método: Onze pacientes consecutivos com aneurisma de VE, evoluindo em classe funcional (CF) III e IV da New York Heart Association foram submetidos à cirurgia de reconstrução ventricular direta sem utilização de retalhos intra-cavitários ou materiais protéticos no fechamento da incisão ventricular.

Resultados: Não houve mortalidade cirúrgica ou necessidade de suporte circulatório mecânico. A permanência hospitalar pós-operatória variou de 4 a 7 dias (média de 5,3 ± 1,1 dias). O ecocardiograma de controle, realizado em média 4,6 ± 1,5 meses após a operação, evidenciou redução do diâmetro diastólico de VE de 69,0 ± 7,5 mm, no pré-operatório, para 62,6 ± 5,1 mm, no pós-operatório. A fração de ejeção do VE mostrou aumento de 47,3% ± 6,6% para 56,3% ±10,5%. Com um ano de seguimento, 8 pacientes encontram-se em CF I e 3 em CF II.

Conclusão: Esta técnica, com eliminação de uso de material sintético, pode contribuir para a melhora dos resultados clinicos de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

Descritores: Aneurisma cardíaco, cirurgia. Ventrículos cardíacos, cirurgia. Disfunção ventricular esquerda. Revascularização miocárdica.
INTRODUÇÃO

As bases cirúrgicas da reconstrução do ventrículo esquerdo (VE) no aneurisma de parede anterior foram assentadas com os conceitos previamente estabelecidos por JATENE[1] e DOR et al. [2].

Estudos atuais demonstram que a sobrevida dos pacientes evoluindo com insuficiência cardíaca, assim como a sobrevida após a cirurgia de reconstrução do VE, está relacionada ao tamanho da câmara ventricular esquerda, isto é, aos volumes sistólico e diastólico finais [3-5]. Portanto, prescindir do uso de retalhos na reconstrução do VE poderia contribuir para redução adicional da câmara ventricular esquerda.

Também o uso de materiais sintéticos na reconstrução do VE pode estar relacionado à indução de processos inflamatórios crônicos do miocárdio, que hoje são reconhecidos como a base da fisiopatologia da insuficiência cardíaca [6].

O objetivo do presente trabalho é relatar a modificação da técnica de reconstrução ventricular que elimina a necessidade de uso de retalhos intra-cavitários e de material sintético, com virtual eliminação das áreas acinéticas em casos de aneurisma de ventrículo esquerdo e potencialmente diminuindo, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

MÉTODO

Pacientes

Entre setembro de 2002 e abril de 2003, onze pacientes com aneurisma de parede anterior de ventrículo esquerdo, evoluindo com quadro de insuficiência cardíaca (seis pacientes em classe funcional III e cinco em classe IV da New York Heart Association) foram submetidos à cirurgia de reconstrução do ventrículo esquerdo, com a técnica descrita a seguir. A idade dos pacientes variou de 30 a 77 anos, com média de 56,4 ± 14,2 anos. Todos os pacientes formam submetidos a cinecoronariografia e ecocardiograma transtorácico, previamente à operação.

Técnica

A circulação extracorpórea foi estabelecida de maneira convencional, com cânula única em átrio direito e retorno do sangue arterial na aorta ascendente, as operações foram realizadas em normotermia e com o coração batendo vazio, sem pinçamento aórtico. O átrio esquerdo foi drenado com colocação de cateter através da veia pulmonar superior direita e locado no ventrículo esquerdo através da valva mitral. A seguir, o ventrículo esquerdo foi aberto na região do aneurisma de parede anterior e os trombos existentes retirados.

O colo do aneurisma, ou seja, a região de transição entre tecido fibrótico e músculo normal, foi delimitado tanto no seio como na parede ântero-lateral; foi realizada dupla sutura circular em bolsa, a primeira utilizando fio de polipropileno 3-0 e, a segunda, com fio de poliéster 2-0; as suturas foram amarradas, refazendo portanto o ápice do ventrículo esquerdo. As zonas de transição de músculo sadio das paredes lateral e septal, ou seja, o orifício residual do colo do aneurisma, foram aproximadas borda-a-borda com sutura contínua do próprio fio de polipropileno 3-0 utilizado na sutura circular em bolsa. Esse mesmo fio foi usado para sutura das paredes remanescentes do aneurisma, com fechamento de ponto contínuo em jaquetão (overlapping), reforçando a hemostasia cirúrgica. Houve, portanto, eliminação de uso de qualquer material sintético no fechamento (Figura 1).

Method: Eleven consecutive patients presenting with left ventricular aneurysms, evolving to functional class III and IV of the New York Heart Association, underwent direct left ventricular reconstruction surgery without the use of intraventricular patches or prosthetic strips.

Results: There was no operative mortality or need of mechanical circulatory support. The postoperative hospital stay ranged from 4 to 7 days (average 5.3 ± 1.1 days). The serial echocardiogram control showed reduction of the left ventricular diastolic diameter (from 69.0± 7.5 mm preoperatively to 62.6 ± 5.1 mm postoperatively). The left ventricular ejection fraction increased from 47.3% ± 6.6% to 56.3% ± 10.5%. One-year follow-up revealed eight patients in functional class I and three in class II.

Conclusion: This technique, with elimination of prosthetic materials, could contribute to an improvement of the clinical results in patients who undergo left ventricular reconstruction, providing virtual elimination of left ventricular akinetic areas and potentially attenuating the long-term myocardial chronic inflammatory reaction.

Descriptors: Heart aneurysm, surgery. Heart ventricles, surgery. Left ventricular dysfunction. Myocardial revascularization.
O protocolo do estudo foi aprovado pelo Comitê de Ética Institucional.

RESULTADOS

Não houve mortalidade cirúrgica, tampouco necessidade de suporte circulatório mecânico (balão intra-aórtico). Na saída de circulação extracorpórea, três pacientes tiveram necessidade de auxílio inotrópico temporário com dobutamina (média de 2,3 horas nestes pacientes), os outros necessitaram somente de nitroprussiato de sódio.

Todos os pacientes foram submetidos à revascularização miocárdica simultaneamente (média de 2,4 enxertos/paciente). A artéria torácica interna esquerda foi utilizada em todos os pacientes para revascularizar a artéria coronária descendente anterior. A permanência hospitalar pós-operatória variou de 4 a 7 dias, com média de 5,3 ± 1,1 dias.

Ecocardiograma de controle, realizado em média 4,6 ± 1,5 meses após a operação, evidenciou redução do diâmetro diastólico de VE de 69,0 ± 7,5mm, no pré-operatório, para 62,6 ± 5,1mm, no pós-operatório. A fração de ejeção do VE mostrou aumento de 47,3% ± 6,6% para 56,3% ±10,5%.

No seguimento de um ano não houve óbitos, com oito pacientes encontrando-se em classe funcional I e 3 em classe II.

COMENTÁRIOS

A emergência de novos conceitos de reconstrução cirúrgica do ventrículo esquerdo mostrou que a eliminação das áreas acinéticas, além das discinéticas do VE, poderia potentialmente proporcionar melhor restauração da forma e função (estudo SAVER) [5].

O tamanho da cavidade ventricular esquerda, assim como o índice cardíaco e a fração de ejeção, têm demonstrado correlação com sobrevida em pacientes com insuficiência cardíaca [3,4]. Quanto maior o tamanho da cavidade ventricular esquerda, menor a sobrevida esperada [7,8]. A dilatação progressiva do coração conduz à elevação da tensão de parede do VE, que é necessária para gerar a pressão sistólica intracavitária (lei de Laplace). Além disso, tem sido demonstrado que quando a progressão da dilatação ventricular esquerda é atenuada, este fato é associado com risco diminuído de eventos cardiovasculares [9,10].

No estudo SAVER, o tamanho da cavidade ventricular esquerda remanescente, após a cirurgia de correção do aneurisma de parede anterior, também foi fator determinante.
o conceito de máxima redução ventricular e mínima resposta inflamatória

Conceito de máxima redução ventricular e mínima resposta inflamatória

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.

GOMES, WJ ET AL - Reconstrução fisiológica do ventrículo esquerdo: revisão da literatura

O conceito de máxima redução ventricular e mínima resposta inflamatória

CONCLUSÃO

Portanto, com a eliminação de uso de material sintético, esta técnica pode contribuir para a melhora dos resultados clínicos imediatos e em longo-prazo de pacientes submetidos à reconstrução ventricular esquerda, proporcionando virtual eliminação das áreas acinéticas do VE, maximizando a redução da cavidade ventricular esquerda e potencialmente atenuando, no pós-operatório tardio, a reação inflamatória crônica do miocárdio.
REFERÊNCIAS BIBLIOGRÁFICAS

1. Jatene AD. Left ventricular aneurysmectomy: resection or reconstruction. J Thorac Cardiovasc Surg 1985;89:521-31.

2. Dor V, Saab M, Coste P, Kornaszewska M, Montiglio F. Left ventricular aneurysm: a new surgical approach. Thorac Cardiovasc Surg 1989;37:11-9.

3. Lee TH, Hamilton MA, Stevenson LW, Moriguchi JD, Fonarow GC, Child JS et al. Impact of left ventricular cavity size on survival in advanced heart failure. Am J Cardiol 1993;72:672-6.

4. Parameshwar J, Keegan J, Sparrow J, Sutton GC, Poole-Wilson PA. Predictors of prognosis in severe chronic heart failure. Am Heart J 1992;123:421-6.

5. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure. Eur Heart J 1992;13:448-58.

6. St John Sutton M, Pfeffer MA, Moye L, Siler W. RESTORE Group. Surgical anterior ventricular endocardial restoration (SAVER) for dilated ischemic cardiomyopathy. Semin Thorac Cardiovasc Surg 2001;13:487-98.

7. Burns RJ, Gibbons RJ, Yi Q, Roberts RS, Miller TD, Schaer GL. Inflammatory epicardial reaction to processed bovine pericardial membranes implanted subcutaneously in rats. J Craniofac Surg 2000;28:116-22.

8. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 1996;93:704-11.

9. Devaux B, Scholz D, Hirche A, Kloekorn WP, Schaper J. Uptregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J 1997;18:470-9.

10. St John Sutton M, Pfeffer MA, Ueland G, Casali G, Mazzucco A. Predicting long-term functional results after myocardial revascularization in ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2004;128:38-43.

11. Jones PT, Sawyer KB, Harwood AR, Bell M, Wright J, Boyles JW. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol 2002;39:30-6.

12. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart 2004;90:464-70.

13. Schachtrupp A, Klinge U, Junge K, Rosch R, Bhardwaj RS, Schumpelick V. Individual inflammatory response of human blood monocytes to mesh biomaterials. Br J Surg 2003;90:114-20.

14. Zhao S, Pinholm EM, Madsen JE, Donath K. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats. J Craniofac Surg 2000;28:116-22.

15. Athanasuleas CL, Stanley AW, Buckberg GD, Dor V, Di Donato J, Dagenais GR et al. Prognostic evaluation of neurohumoral plasma peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003;107:1278-83.

16. Stanek B, Frey B, Hulsmann M, Berger R, Sturm B, Strametz-Juranek J et al. Prognostic evaluation of neurohumoral plasma peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003;107:1278-83.

17. Devaux B, Scholz D, Hirche A, Kloekorn WP, Schaper J. Uptregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J 1997;18:470-9.

18. Testa M, Yeh M, Lee P, Fanelli R, Loperfido F, Berman JW et al. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996;28:964-71.

19. Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure. Eur Heart J 1992;13:448-58.

20. Schumpelick V. Individual inflammatory response of human blood monocytes to mesh biomaterials. Br J Surg 2003;90:114-20.

21. Anand IS, Fisher LD, Chiang YT, Latini R, Masson S, Maggioni AP et al. Neurohormonal response to left ventricular dysfunction. J Am Coll Cardiol 2001;38:436-42.

22. Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1999;83:376-82.

23. Stanek B, Frey B, Hulsmann M, Berger R, Sturm B, Strametz-Juranek J et al. Prognostic evaluation of neurohumoral plasma peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003;107:1278-83.

24. Schumai B, Starling RC, Horecker J, Hail MD, Ootaki Y et al. Neurohumoral plasma peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003;107:1278-83.

25. Schumai B, Starling RC, Horecker J, Hail MD, Ootaki Y et al. Neurohumoral plasma peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003;107:1278-83.

26. Schumai B, Starling RC, Horecker J, Hail MD, Ootaki Y et al. Neurohumoral plasma peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003;107:1278-83.