CONCRETE REPRESENTATION OF ATOMIC \((F_4)\) FILTRATIONS

MACIEJ RZESZUT AND BARTOSZ TROJAN

Abstract. We prove that for any sequence of functions adapted to a biparameter atomic filtration satisfying \((F_4)\) condition there is a sequence having the same joint distribution but adapted to the canonical \((F_4)\) filtration. Even in one parameter case our result is an improvement of the theorem due to Montgomery-Smith, since the construction gives a morphism of filtrations and does not depend on underlying sequence.

1. Introduction

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space, i.e. \(\Omega\) is a sample space with a \(\sigma\)-field \(\mathcal{F}\) and a probability measure \(\mathbb{P}\). A sequence of \(\sigma\)-fields \((\mathcal{F}_i : i \in \mathbb{N}_0)\) is called filtration if
\[
\mathcal{F}_i \subset \mathcal{F}_{i+1}, \quad \text{for all } i \in \mathbb{N}_0.
\]
A model example of a filtration can be obtained by considering a product space
\[
(S, S, \mu) = \bigotimes_{i=0}^{\infty} (S_i, S_i, \mu_i)
\]
where each \((S_i, S_i, \mu_i)\) is a probability space. Then \(\mathcal{F}_i\) we set to be \(\sigma\)-field generated by the projection onto the first \(i\) coordinates. The resulting sequence \((\mathcal{F}_i : i \in \mathbb{N}_0)\) will be called the canonical filtration on \((S, S, \mu)\).

Suppose that \((\mathcal{F}_i : i \in \mathbb{N}_0)\) is a filtration in a probability space \((\Omega, \mathcal{F}, \mathbb{P})\). A theorem due to Montgomery-Smith (see [2, Theorem 3.1]) asserts that: For any sequence of random variables \((f_n : 0 \leq n \leq N)\) on \((\Omega, \mathcal{F}, \mathbb{P})\) adapted to \((\mathcal{F}_n : 0 \leq n \leq N)\), i.e. each \(f_n\) is \(\mathcal{F}_n\)-measurable, there is \((f_n : 0 \leq n \leq N)\) a sequence of functions on \([0, 1]^N\) adapted to the canonical filtration and having the same joint distribution as \((f_n : 0 \leq n \leq N)\). The construction is clever, but tailored to a given sequence \((f_n : 0 \leq n \leq N)\). One of the goals of the present article is to remove this disadvantage, provided that \(\Omega\) is discrete. To achieve this we use the following observation: Suppose that there are two probability spaces \((S, S, \mu)\) and \((T, \mathcal{T}, \nu)\) equipped with family of \(\sigma\)-fields \((\mathcal{F}_i : i \in \mathcal{I})\) and \((\mathcal{G}_i : i \in \mathcal{I})\), respectively. Assume that there is a mapping
\[
\pi : (S, S, \mu) \to (T, \mathcal{T}, \nu)
\]
so that
\[
\pi^{-1}(U) \in \mathcal{G}_j \text{ for all } U \in \mathcal{F}_i \text{ and } i \in \mathcal{I},
\]
and
\[
\mu(\pi^{-1}(U)) = \nu(U), \text{ for all } U \in \mathcal{T}.
\]
Then \(\pi\) induces a mapping \(^1\)
\[
\pi^* : L^0(\Omega, \mathcal{F}, \mathbb{P}) \to L^0(S, S, \mu)
\]
\[
f \mapsto f \circ \pi
\]
that maps \(\mathcal{F}_n\)-measurable function to \(\mathcal{G}_n\)-measurable function preserving distributions, that is
\[
\mu(\pi^*(f) > \lambda) = \nu(f > \lambda)
\]
for all \(\lambda > 0\) and \(f \in L^0(\Omega, \mathcal{F}, \mathbb{P})\). The main theorem for one parameter case is the following.

\(^1\) By \(L^0(\Omega, \mathcal{F}, \mathbb{P})\) we denote the space of equivalence classes of \(\mathcal{F}\)-measurable functions.

\(2010\) Mathematics Subject Classification. Primary: 60G42.

The research was partially supported by the National Science Centre, Poland, Grant 2016/23/B/ST1/01665.
Theorem A. Let \((F_n : 1 \leq n \leq N)\) be a filtration in a discrete probability space \((\Omega,F,\mathbb{P})\). Then there is a sequence of probability spaces \(((S_i, S_i, \mu_i) : i \in \mathbb{N}_0)\) such that for any sequence of random variables \((f_n : 1 \leq n \leq N)\) on \((\Omega,F,\mathbb{P})\) adapted to \((F_n : 1 \leq n \leq N)\) there is a sequence of functions \((\tilde{f}_n : 1 \leq n \leq N)\) adapted to the canonical filtration of

\[(S, S, \mu) = \bigotimes_{i=0}^{\infty} (S_i, S_i, \mu_i) \]

having the same joint distribution as \((f_n : 1 \leq n \leq N)\).

The advantage of our construction is the ability to extend it to biparameter case which is the main result of the present paper. Let us recall that double-indexed sequence of \(\sigma\)-fields \(((F_{i,j} : i, j \in \mathbb{N}_0)\) is a biparameter filtration if for all \(i, j \in \mathbb{N}_0,\)

\[F_{i,j} \subset F_{i,j+1}, \quad F_{i,j} \subset F_{i+1,j}. \]

The following condition was introduced in [1], \(^2\)

\[(F_4) \quad \mathbb{E}(\mathbb{E}(f | F_{i,j}) | F_{i',j'}) = \mathbb{E}(f | F_{i \wedge i', j \wedge j'}), \]

or, equivalently, \(F_{i,j+1}\) and \(F_{i+1,j}\) are conditionally independent given \(F_{i,j}\). The condition \((F_4)\) looks quite restrictive, however it allows maintaining a relatively rich structure, see e.g. the monographs [4, 5] and references therein. The simplest example of biparameter filtrations satisfying \((F_4)\) is a tensor of product filtrations. Namely, let \(((S_i, S_i, \mu_i) : i \in \mathbb{N}_0)\) and \(((T_j, T_j, \nu_j) : j \in \mathbb{N}_0)\), be two sequences of probability spaces. In the product space

\[(S, S, \mu) \otimes (T, T, \nu) \]

where

\[(S, S, \mu) = \bigotimes_{i=0}^{\infty} (S_i, S_i, \mu_i), \quad \text{and} \quad (T, T, \nu) = \bigotimes_{j=0}^{\infty} (T_j, T_j, \nu_j), \]

we define \(F_{i,j}\) to be the \(\sigma\)-field generated by the projections

\[(s, t) \mapsto \left((s' : 0 \leq i' \leq i), (t' : 0 \leq j' \leq j) \right) \]

which is the product of canonical filtrations on \((S, S, \mu)\) and \((T, T, \nu)\). However, this is not a universal model and is characterized by the property that \(F_{i,j} = F_{i,j}^-\), where

\[F_{i,j}^- = \sigma \left(A \cup B : A \in F_{i-1,j} \text{ and } B \in F_{i,j-1} \right) \]

\[= F_{i-1,j} \vee F_{i,j-1}. \]

A more general one is constructed from a double-indexed sequence of probability spaces \(((S_{i,j}, S_{i,j}, \mu_{i,j}) : i, j \in \mathbb{N}_0)\). Namely, in the tensor product

\[\bigotimes_{i=0}^{\infty} \bigotimes_{j=0}^{\infty} (S_{i,j}, S_{i,j}, \mu_{i,j}), \]

we set \(F_{i,j}\) to be the \(\sigma\)-field generated by the projection

\[s \mapsto (s_{i'j'} : 0 \leq i' \leq i, 0 \leq j' \leq j). \]

Heuristically, the whole space is generated by the surplus of \(F_{i,j}\) over \(F_{i,j}^-\), and this will be the main idea of the proof of the fact that for any probability space equipped with an \((F_4)\) filtration one can find a map \(\pi\) from a product as \((1.3)\) having the desired properties \((1.1a)\) and \((1.1b)\).

\(^2\) \(i \wedge j = \min\{i, j\}\)
Theorem B. Let \((\mathcal{F}_{i,j} : 1 \leq i \leq N, 1 \leq j \leq N)\) be a biparameter \((F_4)\)-filtration in a discrete probability space \((\Omega, \mathcal{F}, \mathbb{P})\). Then there is a double-indexed sequence of probability spaces \((S_{i,j}, S_{k,j}, \mu_{i,j})\) so that for any double-indexed sequence of random variables \((\tilde{f}_{i,j} : 1 \leq i \leq N, 1 \leq j \leq M)\) adapted to the filtration \((\mathcal{F}_{i,j} : 1 \leq i \leq N, 1 \leq j \leq M)\) there is a sequence of \((\tilde{f}_{i,j} : 1 \leq i \leq N, 1 \leq j \leq M)\) adapted to the canonical filtration of

\[
(S, S, \mu) = \bigotimes_{i=1}^{N} \bigotimes_{j=1}^{M} (S_{i,j}, S_{k,j}, \mu_{i,j}),
\]

having the same distribution as \((f_{i,j} : 1 \leq i \leq N, 1 \leq j \leq M)\).

Our purpose for developing Theorem B was to gain an understanding of biparameter decoupling analogous to that presented in [2] in the one parameter case, ultimately leading to a proof of one side of the Davis inequality for \((F_4)\) filtrations which is to appear in a forthcoming paper [3].

Notation. Given atomic \(\sigma\)-field \(\mathcal{F}\) by at \(\mathcal{F}\) we denote the set of atoms of \(\mathcal{F}\). Let \(\mathbb{N}\) denote the set of positive integers and \(\mathbb{N}_0 = \mathbb{N} \cup \{0\}\).

2. One Parameter Case

In this section we want to prove Theorem A. To do so, we construct a sequences of discrete probability spaces \(((S, S_i, \mu_i) : i \in \mathbb{N}_0)\) and a mapping

\[
\pi : (\Omega, \mathcal{F}, \mathbb{P}) \to (S, S, \mu)
\]
satisfying (1.1a) and (1.1b).

Suppose we are dealing with the simplest nontrivial case, that is \((\Omega, \mathcal{B}, \mathbb{P})\), and \(\mathcal{A} \subset \mathcal{B}\). Over each atom \(A\) of \(\mathcal{A}\), there is a different structure of \(\mathcal{B}\), that can be viewed as an individual probability space \((A, \mathcal{B} \cap A, \mathbb{P}_A)\) where

\[
\mathbb{P}_A(U) = \frac{\mathbb{P}(A \cap U)}{\mathbb{P}(A)},
\]

for any \(U \in \mathcal{B} \cap A\). An atom of \(\mathcal{B}\) is in one-to-one correspondence with the choice of an atom of \(\mathcal{A}\) and an element of \((A, \mathcal{B} \cap A, \mathbb{P}_A)\). Moreover, an atom of \(\mathcal{B}\) can be recovered if we redundantly include a choice of an element of \((A', \mathcal{B} \cap A', \mathbb{P}_A')\) for all other atoms \(A'\) of \(\mathcal{A}\). Next, we identify an element of

\[
\bigotimes_{A \in \mathcal{A}} (A, \mathcal{B} \cap A, \mathbb{P}_A)
\]

with a mapping \(\varphi : \text{at } \mathcal{A} \to \text{at } \mathcal{B}\) such that for an atom \(A \in \mathcal{A}\), \(\varphi(A)\) is an atom of \(\mathcal{B}\). That being said, let us define

\[
\pi : (\Omega, \mathcal{A}, \mathbb{P}) \otimes \bigotimes_{A \in \mathcal{A}} (A, \mathcal{B} \cap A, \mathbb{P}_A) \to (\Omega, \mathcal{B}, \mathbb{P})
\]

\[
(A, \varphi) \mapsto \varphi(A).
\]

Now, the condition (1.1a) is obvious. To check (1.1b) we consider each \(A \in \mathcal{A}\) separately. If \(U = \bigcup_k B_k\), where \(B_k \subset A\) are disjoint atoms of \(\mathcal{B}\), then

\[
\pi^{-1}(U) = A \times \{\varphi : \varphi(A) \subset U\}.
\]

By definition of \(\varphi\), the second factor is just a condition on the \(A\)-th coordinate of \(\varphi\) and its measure equals to

\[
\mathbb{P}_A(U) = \frac{\mathbb{P}(U)}{\mathbb{P}(A)}
\]

verifying (1.1b).
In a general case, we have a filtration \((\mathcal{F}_n : 1 \leq n \leq N) \) in a probability space \((\Omega, \mathcal{F}, \mathbb{P})\). We define a map
\[
\pi : (\Omega, \mathcal{F}_0, \mathbb{P}) \otimes \bigotimes_{n=1}^N \bigotimes_{A \in at \mathcal{F}_{n-1}} (A, \mathcal{F}_n \cap A, \mathbb{P}_A) \rightarrow (\Omega, \mathcal{F}_N, \mathbb{P})
\]
where, as previously, an atom of \(\bigotimes_{A \in at \mathcal{F}_{n-1}} (A, \mathcal{F}_n \cap A, \mathbb{P}_A) \) we treat as a function \(\varphi_n : at \mathcal{F}_{n-1} \rightarrow at \mathcal{F}_n \) satisfying \(\varphi_n (A_{n-1}) \subset A_n \). From definition of \(\pi \) it is obvious that for an atom \(B_n \) of \(\mathcal{F}_n \), the condition \(\pi (A, \varphi_1, \ldots, \varphi_N) = B_n \) is equivalent to \(\varphi_n \circ \varphi_{n-1} \circ \ldots \circ \varphi_1 (A) = B_n \), so it depends only on \(A \) and \(\varphi_i \) for \(i \leq n \) proving (1.1a). The condition (1.1b) can be check on atoms of \(\mathcal{F}_N \). If \(A_N \in at \mathcal{F}_N \), then, denoting its ancestors by \(A_n \in at \mathcal{F}_n \), we have
\[
\pi (A, \varphi_1, \ldots, \varphi_N) = A_N
\]
if and only if \(A = A_0 \), and
\[
\varphi_n (A_{n-1}) = A_n, \quad \text{for all } 1 \leq n \leq N.
\]
The probability of this event equals to
\[
\mathbb{P} (A_0) \prod_{n=1}^N \frac{\mathbb{P} (A_n)}{\mathbb{P} (A_{n-1})} = \mathbb{P} (A_N)
\]
which concludes the proof of Theorem \(A \).

3. Two parameter case

In this section we prove Theorem \(B \). In the two parameter case it is convenient to use the following variant of mathematical induction.

Lemma 3.1. Suppose that a set \(X \subset \mathbb{N}^2 \) satisfies

1. \((1, 1) \in X, \)
2. if \((i, 1) \in X, \) then \((i + 1, 1) \in X, \)
3. if \((1, j) \in X, \) then \((1, j + 1) \in X, \)
4. if \((i + 1, j), (i, j + 1), (i, j) \in X, \) then \((i + 1, j + 1) \in X, \)
then \(X = \mathbb{N}^2. \)

Again, our aim is to construct a double-indexed sequence of probability spaces \((S_{i,j}, S_{i,j}, \mu_{i,j})\), and a mapping
\[
\pi : \bigotimes_{i=1}^N \bigotimes_{j=1}^M (S_{i,j}, S_{i,j}, \mu_{i,j}) \rightarrow (\Omega, \mathcal{F}_{N,M}, \mathbb{P})
\]
satisfying (1.1a) and (1.1b). We use similar idea as in the one parameter case. For \(1 \leq i \leq N \) and \(1 \leq j \leq M \), we set
\[
(S_{i,j}, S_{i,j}, \mu_{i,j}) = \bigotimes_{A \in at \mathcal{F}_{i,j}} (A, \mathcal{F}_{i,j} \cap A, \mathbb{P}_A)
\]
where
\[
\mathcal{F}_{i,j} = \mathcal{F}_{i-1,j} \lor \mathcal{F}_{i,j-1}
\]
with
\[
\mathcal{F}_{i,0} = \{ \emptyset, \Omega \}, \quad \text{and} \quad \mathcal{F}_{0,j} = \{ \emptyset, \Omega \}.
\]
Hence, the atoms in \(S_{i,j} \) are sequences having a form \((B_A : A \in at \mathcal{F}_{i,j}) \) where \(B_A \) denotes an atom of \(\mathcal{F}_{i,j} \) contained in \(A \). Observe that for such an atom we have
\[
\mu_{i,j} \left(B_A : A \in at \mathcal{F}_{i,j} \right) = \prod_{A \in at \mathcal{F}_{i,j}} \mathbb{P}_A (B_A).
\]
Consequently, atoms of the domain of π are

\[(3.1) \quad \mathbf{B} = \left(B_{A}^{i,j} : A \in \mathcal{F}_{i,j}^{-} \right) : 1 \leq i \leq N, 1 \leq j \leq M \].

We are now ready to define the mapping π, namely for an atom of the form (3.1) we set

\[(3.2) \quad \pi(\mathbf{B}) = \bigcap_{i=1}^{N} \bigcap_{j=1}^{M} B_{A}^{i,j}. \]

Observe that the right hand-side of (3.2) can be written as a disjoint union of sets of the form

\[(3.3) \quad \bigcap_{i=1}^{N} \bigcap_{j=1}^{M} B_{A_{i,j}}^{i,j} \]

while $A_{i,j}$ runs over all atoms of $\mathcal{F}_{i,j}^{-}$. Suppose that there is a sequence $(A_{i,j} : 1 \leq i \leq N, 1 \leq j \leq M)$ so that $A_{i,j} \in \mathcal{F}_{i,j}^{-}$ and

\[\bigcap_{i=1}^{N} \bigcap_{j=1}^{M} B_{A_{i,j}}^{i,j} \neq \emptyset. \]

We are going to use the induction procedure given by Lemma 3.1. For $2 \leq i \leq N$ and $2 \leq j \leq M$, we have

\[B_{A_{i-1,j}}^{i-1,j} \cap B_{A_{i,j-1}}^{i,j-1} \cap B_{A_{i,j}}^{i,j} \neq \emptyset. \]

Since

\[B_{A_{i-1,j}}^{i-1,j} \cap B_{A_{i,j-1}}^{i,j-1} \in \mathcal{F}_{i-1,j}^{-} \subset \mathcal{F}_{i,j}, \]

we conclude that

\[(3.4) \quad B_{A_{i-1,j}}^{i-1,j} \cap B_{A_{i,j-1}}^{i,j-1} \supset B_{A_{i,j}}^{i,j}. \]

Moreover, $B_{A_{i-1,j}}^{i-1,j} \cap B_{A_{i,j-1}}^{i,j-1}$ is an atom of $\mathcal{F}_{i,j}^{-}$, thus

\[(3.5) \quad A_{i,j} = B_{A_{i-1,j}}^{i-1,j} \cap B_{A_{i,j-1}}^{i,j-1}. \]

Similarly, for $2 \leq i \leq N$,

\[B_{A_{i-1,1}}^{i-1,1} \cap B_{A_{i,1}}^{i,1} \neq \emptyset \]

and since $B_{A_{i-1,1}}^{i-1,1}$ and $B_{A_{i,1}}^{i,1}$ are atoms of $\mathcal{F}_{i-1,1}$ and $\mathcal{F}_{i,1}$, respectively, we obtain that

\[(3.6) \quad B_{A_{i-1,1}}^{i-1,1} \supset B_{A_{i,1}}^{i,1}. \]

Because

\[\mathcal{F}_{i-1,1} = \mathcal{F}_{i-1,1} \vee \mathcal{F}_{i,0} = \mathcal{F}_{i,1}, \]

$B_{A_{i-1,1}}^{i-1,1}$ is an atom of $\mathcal{F}_{i,1}^{-}$, thus

\[(3.7) \quad A_{i,1} = B_{A_{i-1,1}}^{i-1,1}. \]

Analogously, for $2 \leq j \leq N$, we conclude

\[(3.8) \quad B_{A_{1,j-1}}^{1,j-1} \supset B_{A_{1,j}}^{1,j}, \]

and

\[(3.9) \quad A_{1,j} = B_{A_{1,j-1}}^{1,j-1}. \]

Finally, $B_{A_{1,1}}^{1,1}$ is any atom of $\mathcal{F}_{1,1}$, thus

\[(3.10) \quad A_{1,1} = \Omega. \]
Using (3.4), (3.6) and (3.9), we obtain

\[\pi(B) = \bigcap_{i=1}^{N} \bigcap_{j=1}^{M} B^{i,j}_{A_{i,j}} = B^{N,M}_{A_{N,M}}, \]

provided that \(\pi(B) \neq \emptyset. \)

We are now in the position to verify (1.1a). If \(U \) is an atom of \(\mathcal{F}_{n,m} \), then \(B \in \pi^{-1}(U) \) is equivalent to \(B^{n,m}_{A_{n,m}} = U \). In view of (3.5), (3.7), (3.9) and (3.10), \(B^{n,m}_{A_{n,m}} \) depends only on \(A_{i,j} \) for \(1 \leq i \leq n \) and \(1 \leq j \leq m \), thus \(\pi^{-1}(U) \) belongs to \(S_{n,m}. \) To show (1.1b), it is sufficient to consider \(U \) being an atom of \(\mathcal{F}_{N,M}. \) Suppose that \(B \in \pi^{-1}(U) \). By (3.11), for each \(1 \leq i \leq N \) and \(1 \leq j \leq M, \) \(B^{i,j}_{A_{i,j}} \) is the unique atom of \(\mathcal{F}_{i,j} \) containing \(U. \) Therefore,

\[\mu(\pi^{-1}(U)) = \mu(B) = \prod_{i=1}^{N} \prod_{j=1}^{M} \mathbb{P}(B^{i,j}_{A_{i,j}}). \]

Now it is enough to show that for each \(1 \leq n \leq N \) and \(1 \leq m \leq M, \)

\[\prod_{j=1}^{m} \prod_{j=1}^{n} \mathbb{P}(B^{i,j}_{A_{i,j}}) = \mathbb{P}(B^{n,m}_{A_{n,m}}). \]

For the proof we use the induction procedure given by Lemma 3.1. For \(n = m = 1, \) there is nothing to be proved since \(A_{1,1} = \Omega. \) For \(n > 1 \) and \(m = 1, \) by (3.7), we have

\[\prod_{i=1}^{n} \prod_{j=1}^{m} \mathbb{P}(B^{i,j}_{A_{i,j}}) = \prod_{i=1}^{n} \mathbb{P}(B^{i,1}_{A_{i,1}}) \]

\[= \mathbb{P}(B^{1,1}_{A_{1,1}}) \prod_{i=2}^{n} \mathbb{P}(B^{i,1}_{A_{i,1}}) = \mathbb{P}(B^{1,1}_{A_{1,1}}). \]

For \(n = 1 \) and \(m > 1 \) the reasoning is analogous. Now, let us suppose that (3.12) holds true for \((n-1, m-1),\) \((n-1, m),\) and \((n, m-1)\) for some \(2 \leq n \leq N \) and \(2 \leq m \leq M. \) Then

\[\prod_{i=1}^{n} \prod_{j=1}^{m} \mathbb{P}(B^{i,j}_{A_{i,j}}) \]

\[= \prod_{i=1}^{n-1} \prod_{j=1}^{m} \mathbb{P}(B^{i,j}_{A_{i,j}}) \prod_{i=1}^{n-1} \prod_{j=1}^{m-1} \mathbb{P}(B^{i,j}_{A_{i,j}}) \prod_{i=1}^{n} \prod_{j=1}^{m-1} \mathbb{P}(B^{i,j}_{A_{i,j}}) \]

\[= \prod_{i=1}^{n-1} \prod_{j=1}^{m} \mathbb{P}(B^{i,j}_{A_{i,j}}) \prod_{i=1}^{n-1} \prod_{j=1}^{m-1} \mathbb{P}(B^{i,j}_{A_{i,j}}) \prod_{i=1}^{n} \prod_{j=1}^{m} \mathbb{P}(B^{i,j}_{A_{i,j}}) \]

(3.13)

Observe that by the conditional independence

\[\frac{\mathbb{P}(B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(B^{n-1,m}_{A_{n-1,m}})}{\mathbb{P}(B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(A_{n,m})} = \mathbb{P}(B^{n-1,m}_{A_{n-1,m}} | B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(B^{n-1,m}_{A_{n-1,m}} | B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(B^{n-1,m}_{A_{n-1,m}} | B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(A_{n,m}) \]

\[= \mathbb{P}(B^{n-1,m}_{A_{n-1,m}} \cap B^{n-1,m}_{A_{n-1,m}} | B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(B^{n-1,m}_{A_{n-1,m}} | B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(A_{n,m}) \]

\[= \mathbb{P}(B^{n-1,m}_{A_{n-1,m}} \cap B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(B^{n-1,m}_{A_{n-1,m}} | B^{n-1,m}_{A_{n-1,m}}) \mathbb{P}(A_{n,m}) \]

\[= 1, \]

where the last equality is a consequence of (3.5). Therefore, by (3.13), we conclude that (3.12) holds true proving Theorem B.
References

[1] R. Cairoli and J.B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111–183
[2] S. Montgomery-Smith, Concrete representation of martingales, Electron. J. Probab. 3, (1998), 1–15
[3] M. Rzeszut, Comparison between L^1 norms of square function and maximal function of an (F_4) martingale, preprint 2019
[4] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lect. Notes Math. 1568, Springer–Verlag, 1996
[5] F. Weisz, Summability of multi-dimensional Fourier series and Hardy spaces, Math. and Its Appl. 541, Springer Netherlands, 2002

Maciej Rzeszut, Instytut Matematyczny Polskiej Akademii Nauk, ul. Śniadeckich 8, 00-696 Warszawa, Poland & Department of Mathematics, Weizmann Institute of Science, P.O. Box 26, Herzl St. 234, 7610000 Rehovot, Israel.
E-mail address: maciej.rzeszut@gmail.com

Bartosz Trojan, Instytut Matematyczny Polskiej Akademii Nauk, ul. Śniadeckich 8, 00-696 Warszawa, Poland
E-mail address: btrojan@impan.pl