ATP Synthase with Its γ Subunit Reduced to the N-terminal Helix Can Still Catalyze ATP Synthesis*

Received for publication, June 5, 2009, and in revised form, July 24, 2009. Published, JBC Papers in Press, July 27, 2009, DOI 10.1074/jbc.M109.030528

Nelli Mnatsakanyan, Jonathon A. Hook, Leah Quisenberry 1, and Joachim Weber 2

From the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430

ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. As part of the synthesis mechanism, the torque of the rotor has to be converted into conformational rearrangements of the catalytic binding sites on the stator to allow synthesis and release of ATP. The γ subunit of the rotor, which plays a central role in the energy conversion, consists of two long helices inside the central cavity of the stator cylinder plus a globular portion outside the cylinder. Here, we show that the N-terminal helix alone is able to fulfill the function of full-length γ in ATP synthesis as long as it connects to the rest of the rotor. This connection can occur via the ϵ subunit. No direct contact between γ and the c ring seems to be required. In addition, the results indicate that the ϵ subunit of the rotor exists in two different conformations during ATP synthesis and ATP hydrolysis.

F_γ-F_α-ATP synthase is responsible for the bulk of ATP synthesis from ADP and P$_i$ in most organisms. F_γ-F_α-ATP synthase consists of the membrane-embedded F_γ subcomplex with, in most bacteria, a subunit composition of $\alpha_2\beta_2\gamma_2\epsilon_2\delta$ (with $n = 10–15$) and the peripheral F_α subcomplex, with a subunit composition of $\alpha_3\beta_3\gamma\delta\epsilon$. The energy necessary for ATP synthesis is derived from an electrochemical transmembrane proton (or, in some organisms, sodium ion) gradient. Proton flow, down the gradient, through F_γ is coupled to ATP synthesis on F_α by a unique rotary mechanism. The protons flow through channels at the interface of α and c subunits, which drives rotation of the ring of c subunits. The c_α ring, together with F_γ subunits γ and ϵ, forms the rotor. Rotation of γ leads to conformational changes in the catalytic nucleotide-binding sites on the β subunits, where ADP and P$_i$ are bound. The conformational changes result in formation and release of ATP. Thus, ATP synthase converts electrochemical energy, the proton gradient, into mechanical energy in the form of subunit rotation and back into chemical energy as ATP. In bacteria, under certain physiological conditions, the process can run in reverse. ATP is hydrolyzed to generate a transmembrane proton gradient that the bacterium requires for such functions as nutrient import and locomotion (for reviews, see Refs. 1–6).

F_γ (or “F_γ-ATPase”) has three catalytic nucleotide-binding sites, located on the β subunits, at the interface with the adjacent α subunit. The catalytic sites have pronounced differences in their nucleotide-binding affinity. During rotational catalysis, the sites switch their affinities in a synchronized manner; the position of γ determines which catalytic site is the high affinity site (K_{d1} in the nanomolar range), which site is the medium affinity site (K_{d2} ~ 1 μM), and which site is the low affinity site (K_{d3} ~ 30–100 μM; see Refs. 7, 8). Only the high affinity site is catalytically active (9). In the original crystal structure of bovine mitochondrial F_γ (10), one of the three catalytic sites was filled with the ATP analog AMPPNP, a second one with ADP (plus azide; see Ref. 11), and the third site was empty. Hence, the β subunits are referred to as β_{TP}, β_{DP}, and β_{E}, respectively. The high affinity site is located on the β_{TP} subunit (12).

The coupling process between ATP synthesis or hydrolysis on β and rotation of γ is not yet fully understood on a residue level. A number of point mutations at the interfaces between α or β and γ and between γ, ϵ, and c have been described that result in varying degrees of uncoupling (13–17). Some mutations at these interfaces were found to abolish ATP synthesis or hydrolysis activity or both (18–20). Considering the pronounced effect of these point mutations, some of which were even conservative substitutions, it came as a surprise when it was recently shown that an “axle-less” γ, consisting just of the globular portion, with the portions of the N- and C-terminal helices that reach into the $\alpha_3\beta_3$ cylinder removed, displayed ATP-driven rotation in the correct direction (21).

Some reports have implicated the ϵ subunit (corresponding to the δ subunit in the mitochondrial enzyme) as being involved in coupling (15, 22–25). It was shown that ϵ exists in different conformations that vary in the folding and positioning of the C-terminal domain. The x-ray structure of the mitochondrial enzyme (26) shows the two helices of the C-terminal domain folded back on each other like a hairpin and positioned close to the interface between γ and the c ring (“down” conformation). In the crystal structure of a $\gamma\epsilon$ complex from Escherichia coli the hairpin is unfolded (27); when integrated into F_γ or F_γ-F_α, the C terminus would reach “up,” coming close to the DELSEED-loop of the α and/or β subunits. While in this up conformation the angle between both helices of the C-terminal domain of ϵ is ~90°, it has been postulated that this domain might also exist in

*Supported by the Summer Accelerated Biomedical Research program of the Texas Tech University Health Sciences Center and the Laura Bush Institute for Women’s Health.

1 Supported by the Summer Accelerated Biomedical Research program of the Texas Tech University Health Sciences Center and the Laura Bush Institute for Women’s Health.

2 To whom correspondence should be addressed: Dept. of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061. Tel.: 806-742-1297; Fax: 806-742-1289; E-mail: joachim.weber@ttuhsc.edu.

3 The abbreviations used are: AMPPNP, 5'-adenylyl-β,γ-imidodiphosphate; ACMA, 9-aminoo-6-chloro-2-methoxyacridine; $A_1P_1A_1$, P_1P_5-(dif adenosine-5')pentaphosphate; TF, or TF, F_γ (instead of F_γ and F_γ, respectively) refer specifically to the enzyme from the thermophilic bacterium Bacillus PS3; γ', truncated γ subunit.
ATP Synthesis with Truncated γ Subunit

a fully extended conformation, stretching close to the N terminus of ϒ, with helical regions replacing the turn between the two helices (28). Fixing ε in either up conformation by cross-linking to γ has been shown to impair ATP hydrolysis but not synthesis. Freezing ε in the down position inhibited neither reaction (29, 30).

Here, we report a finding that is arguably just as surprising as the rotation of an axle-less ϒ. In ATP synthase from the thermophilic bacterium Bacillus PS3, enzymes with ϒ subunit constructs where the globular domain and the C-terminal helix were eliminated, consisting of just the N-terminal 35 or 42 residues, TF₁Fo(oγQ36stop) and TF₁Fo(γP43stop), were able to catalyze significant rates of ATP synthesis. According to the mutant F₁Fo the membranes was estimated via Western blot-staining with Coomassie Brilliant Blue. The relative amount of not make any contact either with c or with ϵ in the down conformation. Thus, the fact that ATP synthesis was observed suggests that ϵ in an up conformation forms a complex with the truncated γ, which is able to catalyze ATP synthesis. Indeed, when the γQ36stop truncation was combined with an ϵ truncation where the C-terminal domain was removed, ATP synthesis was abolished. The functions of the γ and ϵ subunits will be discussed in light of the new findings.

MATERIALS AND METHODS

Bacterial Strains and Plasmids—Plasmid pTR19-ASDS, which carries the genes for the F₁Fo-ATP synthase from thermophilic Bacillus PS3 (31), was used to generate the mutations γK7stop, γQ36stop, γP43stop, and ε188stop. In initial experiments to generate γ-less TF₁Fo (TF₁Fo,Δγ) by introducing the γK7stop mutation, we observed that the E. coli host produced small amounts of full-length PS3 γ, probably caused by a termination suppression mutation in a tRNA. To eliminate this problem, an NheI site was introduced downstream of the stop codon. This allowed removal of the remainder of the gene for γ on an NheI–NheI fragment (the second NheI site is between the genes for γ and β). For construction of the γQ36stop and γP43stop truncation mutants, the same strategy was used. The mutagenic oligonucleotides were designed in such a way that, in addition to the desired mutation, a restriction site would be eliminated or generated to facilitate screening. Deletions were introduced by PCR using the QuikChange II XL mutagenesis kit (Stratagene). Wild-type and mutated plasmids were transformed into E. coli strain DK8, which does not express PS3 (32).

Isolation of Inverted Membrane Vesicles, Determination of F₁Fo Content in E. coli Membranes—E. coli strain DK8, harboring wild-type or mutated pTR19-ASDS plasmids, was aerobi-cally cultivated at 37 °C for 18 h in 2X YT medium containing 100 μg/ml ampicillin. Inverted membrane vesicles from E. coli cells expressing thermophilic F₁Fo were prepared as described (31, 33). The amount of wild-type F₁Fo in E. coli membrane preparations was determined by SDS-PAGE, as visualized by staining with Coomassie Brilliant Blue. The relative amount of mutant F₁Fo, the membranes were estimated via Western blotting, using an anti-β antibody (Agrisera, Vännäs, Sweden) or an anti-α/anti-β antibody (a kind gift from Bill Brusilow, Wayne State University, Detroit, MI). The staining intensity was quantified using a Photodyne imaging system and Image) acquisition software (National Institutes of Health). The antibody against the globular portion of γ, used to confirm the absence of this portion of the protein in the truncation mutants, was a kind gift from Toshiharu Suzuki and Masasuke Yoshida (Japan Science and Technology Agency, Tokyo).

Functional Analysis of Mutant Strains and Enzymes—Growth of strains expressing wild-type or mutant PS3 ATP synthase in limiting glucose was determined as described previously (34). ATPase activities were measured as described previously (35). ATP synthesis activity in vitro was measured as follows. The batch assay used to obtain the data in Table 1 allowed running of the assay at a different temperature (42 °C) than the luciferase/luciferase reaction (room temperature) because the luciferase turned out to be very unstable at 42 °C. For this assay, inverted membrane vesicles were suspended in a solution containing 20 mM HEPES/KOH, 100 mM KCl, 5 mM MgCl₂, 2 mM ADP, 5 mM KPi, 2 mM Ap5A, and 10% glycerol (pH 7.5) and incubated at 42 °C; Ap5A was included to suppress adenylate kinase activity of the membranes (36). The reaction was initiated by the addition of 2 mM NADH. After 10, 40, and 70 s, aliquots of the reaction mixture (each containing 20 μg of membrane protein) were transferred into boiling buffer of 100 mM Tris/H₃SO₄, 4 mM EDTA (pH 7.75) for heat denaturation. The samples were incubated at 100 °C for 2 min, cooled on ice, and centrifuged for 1 min at 1000 x g. The amount of ATP produced was determined by the luciferin/luciferase method (CLS II ATP bioluminescence kit, Roche Applied Science). Light emission was measured at 562 nm in a spectrofluorometer type Fluorolog 3 (HORIBA Jovin Yvon, Edison, NY). In control experiments in the presence of the inhibitor oligomycin (20 μg/ml), no ATP synthesis was observed (Table 1).

Table 1	Oxidative phosphorylation in vivo and ATP synthesis activities in vitro			
Strain/mutation	Growth yields in limiting glucose	Amount of F₁Fo on membranes	NADH-driven ATP synthesis activity	Turnover rate k_cat
Wild-type	100 ± 4	20 ± 5	60 ± 22	2.7
+ oligomycin	101 ± 4	21 ± 6	1.35 ± 0.50	<0.1
ε188stop	65 ± 2	9 ± 4	0.17 ± 0.08	0.7
γQ36stop	75 ± 2	9 ± 2	0.13 ± 0.03	<0.1
+ oligomycin	62 ± 2	10 ± 2	1.03 ± 0.06	<0.1
γQ36stop/ε188stop	76 ± 3	13 ± 4	1.41 ± 3.4	1.0
+ oligomycin	62 ± 2	10 ± 2	1.05 ± 1.26	<0.1
γP43stop/ε188stop	71 ± 2	12 ± 4	9.5 ± 4.5	<0.1
+ oligomycin	71 ± 2	12 ± 4	0.04 ± 0.90	<0.1

4 Bacillus PS3 numbering is used throughout.
The real time ATP synthesis assay was performed in a buffer containing 20 mM HEPES/KOH, 100 mM potassium acetate, 5 mM magnesium acetate, 2 mM ADP, 5 mM KPi, and 10% glycerol (pH 7.5) at 37 °C. Membrane vesicles (containing 100 μg of membrane protein/ml) and 1/20 volume of the luciferin/luciferase mix were added. The reaction was initiated by the addition of 5 mM succinate. The slow but steady decrease in the signal of the negative control is caused by instability of the luciferase at 37 °C.

NADH- and ATP-driven H⁺-pumping in membrane vesicles was measured via fluorescence quenching of ACMA at 42 °C. To a buffer of 10 mM HEPES/KOH, 100 mM KCl, 5 mM MgCl₂ (pH 7.5), 0.5 mg/ml membrane vesicles and 0.3 μg/ml ACMA were added. Proton pumping was initiated by adding NADH or ATP to a final concentration of 1 mM and terminated by adding carbonyl cyanide m-chlorophenylhydrazone (final concentration 1 μM). The excitation wavelength was 410 nm, and the emission wavelength was 480 nm. Protein concentrations of membrane vesicles were determined by the Lowry method (37) using bovine serum albumin as standard.

RESULTS

Overview of γ and ε Truncation Mutants—The γQ36stop and γP43stop truncation mutants remove the globular portion of γ and the C-terminal helix, leaving just a large fragment of the N-terminal helix (Fig. 1). With γP43stop, the contact site between the truncated γ (abbreviated γ’ in the following) and the N-terminal domain of ε would be reduced to a small patch; with γQ36stop, there would be no interaction between γ’ and the N-terminal domain of ε (Fig. 1, B–E). Neither γ truncation mutant should be able to reach the ring of c subunits (which would be located directly below γ and ε in Fig. 1A). To obtain an ε subunit consisting of just the N-terminal domain, the C-terminal domain was removed using an ε88stop mutation.

Expression and Purification of Truncation Mutants—E. coli membrane vesicles containing TF₁Fo, TF₁FoΔγ, TF₁Fo(γQ36stop), TF₁Fo(γP43stop), TF₁Fo(ε88stop), TF₁Fo(γQ36stop/ε88stop), and TF₁Fo(γP43stop/ε88stop) were prepared as described under “Materials and Methods.” Western blotting using an anti-γ antibody raised against a peptide from the globular domain of γ confirmed that this domain was absent from the γ deletion and truncation mutants (for TF₁FoΔγ, see Fig. 2). Western blotting using an anti-β or an anti-α/anti-β antibody was used to quantify the amount of TF₁Fo in the membranes; the results are included in Table 1. The data (Fig. 2) show that it is possible to generate a γ-less ATP synthase. In contrast, it has been reported, based on in vitro experiments, that δ and ε subunits are required for binding of TF₁ to TF₂ (38).

Oxidative Phosphorylation in Vivo and ATP Synthesis in Vitro—To analyze the ability of the truncation mutants to catalyze ATP synthesis in vivo, we measured growth yields on limiting glucose of E. coli cultures containing strain pTR19-ASDS/DK8 with the desired mutation. As expected, growth of the strain expressing a γ-less enzyme was the same as that of the negative control strain, pUC118/DK8, which does not express ATP synthase. In contrast, very surprisingly, TF₁Fo containing either truncation mutant, γQ36stop or γP43stop, supported significantly higher growth than the negative control (Table 1), demonstrating that γ requires only its N-terminal helix to effect the conformational changes in β (and perhaps α) required to catalyze ATP synthesis. To confirm these findings, we measured ATP synthesis by membrane vesicles in vitro. Again, although the γ-less enzyme did not show any synthesis activity, both γ truncation mutants displayed significant ATP synthesis rates, corresponding to 25–35% of the activity of the wild-type enzyme (Table 1; for γQ36stop, see also Fig. 3).

Given the small size of the contact area between ε in the down conformation and γ’ in the γP43stop mutant, and the complete absence of any interaction with γ’ in the γQ36stop mutant, it seemed possible that a complex between γ’ and the C-terminal domain of ε in the up conformation might be responsible for the observed ATP synthesis in the truncation mutants. To test this possibility, we combined the γ truncation mutants with a truncation of the C-terminal domain of ε, using an ε88stop mutation. As shown before (25), in wild-type enzyme with full-length γ the C-terminal domain of ε is not necessary for ATP synthesis; actually, removal of the domain in the ε88stop mutant resulted in increased ATP synthesis rates (Table 1). TF₁Fo(γP43stop/ε88stop) was able to catalyze ATP synthesis, demonstrating that in this case the interaction between γ’ and the N-terminal domain of ε is sufficiently strong to couple proton flux-driven rotation of the c ring to ATP synthesis. In contrast, TF₁Fo(γQ36stop/ε88stop) had lost the ability to catalyze ATP synthesis (Table 1 and Fig. 3). The fact that the TF₁Fo(γQ36stop) single mutant catalyzed ATP synthesis showed that, in the absence of any direct interaction between γ’ and the N-terminal domain of ε, the C-terminal domain of ε can connect the N-terminal domain and γ’ so that γ’ can perform its functional role in ATP synthesis.

ATPase Activity and ATP- and NADH-driven Proton Pumping—Compared with their ATP synthase activity, the ATP hydrolysis activity of the truncation mutants was low. In membrane vesicles the ATPase activity was less than 10% of that of the wild-type control. Still, at least in the case of the γP43stop mutant, this was somewhat higher than found for the γ-less enzyme (Table 2). Membrane vesicles containing the truncation mutants did not exhibit any ATP-driven proton pumping (data not shown). The ATPase activity is too low to build up a proton gradient against the natural leak rate of the membranes. NADH-driven proton pumping in vesicles containing mutant ATP synthase resulted in the same degree of quenching as observed for the wild-type enzyme, indicating that truncation or elimination of the γ subunit and/or truncation of the ε subunit does not cause assembly problems associated with increased proton leak rates of the membranes.

DISCUSSION

The results of the present study demonstrate that the globular portion and the C-terminal helix of γ, together accounting for about 80% of the molecular mass of γ, are not required for ATP synthesis activity. The N-terminal domain of γ alone is sufficient to generate the conformational changes in the catalytic sites necessary for ATP synthesis and release. If γ is completely absent, in TF₁FoΔγ, ATP synthesis is abolished.

Recently it was shown that another radically reduced γ construct, one consisting of just the globular portion, thus...
missing both the N-terminal and the C-terminal helix inside the \(\alpha_3\beta_3\) cylinder (\(\gamma\)-\(\Delta N22C43\)), did indeed rotate in the correct direction upon ATP hydrolysis (21). ATPase activity of \(\alpha_3\beta_3\gamma\) subcomplex containing \(\gamma\)-\(\Delta N22C43\) was not higher than that of \(\alpha_3\beta_3\) (21), and the torque generated by ATP hydrolysis seemed rather low. When a small portion of both helices inside the \(\alpha_3\beta_3\) cylinder was preserved, in the \(\gamma\)-\(\Delta N11C32\) construct, the torque reached 50% of that of wild-type (39). This prompted the authors to conclude that “neither helix in the coiled-coil region of the axle of \(F_1\)-ATPase plays a significant role in torque production” (39). The results presented here contradict this conclusion because a significant amount of torque is required to
most involved in coupling of catalysis and rotation is the stretch of the N-terminal helix between residues ~20 and ~40.

According to the x-ray structures (10, 26, 40), the contacts of the N-terminal helix of γ with the αβε ring are with the DELSEED-loop, a helix-turn-helix structure named after the conserved DELSEED motif, in the C-terminal domains of βTP and βε, as well as with the αε subunit. The finding that the γ truncation mutants catalyze ATP synthesis underlines the importance of the DELSEED-loop for mechanochemical coupling of rotation and catalysis. There is very little, if any, contact between the N-terminal helix of γ and βTP, which carries the catalytically active high affinity nucleotide-binding site (9, 12, 41). In some models of the enzyme mechanism (5, 42, 43), a major function of the γ subunit in ATP synthesis is to convert the torque produced by proton gradient-driven rotation to force the βTP subunit open, to release the newly formed ATP. Our results offer strong support for this hypothesis. Rotation of the N-terminal helix of γ by 120° in ATP synthesis direction will bring the convex portion of the helix in contact with the βTP subunit and press against it (Fig. 1F). This should rotate the DELSEED-loop and push it downward, to open the subunit and bring it into βε conformation, thereby releasing product ATP. No other parts of γ except for the N-terminal helix seem to be required for this step, just as observed here.

Another important outcome of the present study concerns the role of the ε subunit. It had been shown before that the C-terminal domain of ε can assume different conformations, with different properties (see the Introduction). Transition between the different conformations was found to be regulated by nucleotides (44). Here, we present evidence that ε is indeed in an up position during ATP synthesis. γ in the γQ36stop truncation mutant makes no contact with the N-terminal domain of ε (Fig. 1, C–E). Still, the TF1Fa(γQ36stop) enzyme can synthesize ATP, suggesting that the C-terminal domain of ε in the up conformation might connect γ to the rest of the rotor. Indeed, removal of the C-terminal domain of ε abolished ATP synthesis. Of the two up conformations of the C-terminal domain of ε observed or postulated, the half-extended conformation seen by x-ray structure analysis (27) is less likely to form a complex with γ. Unless the N-terminal domain of γ by itself assumes a different position than in the presence of the rest of γ, it seems to have very little contact with the C-terminal domain of ε in this conformation. In contrast, cross-linking experiments (30) support the notion that the C terminus of ε in a fully extended conformation comes close to the extreme N terminus of γ. Very recently, an antiparallel coiled-coil between the C-terminal helix of ε and the N-terminal helix of γ has been detected in the E. coli enzyme (45). As mentioned above, the experiments with TF1Fa(γQ36stop) enzyme indicate that ε alone, in the absence of any portion of γ, cannot catalyze ATP synthesis.

It is more difficult to assess whether the C-terminal domain of ε also stabilizes the interaction between γ and the N-terminal domain of ε in the γQ43stop mutant. TF1Fa(γP43stop/εI88stop) synthesizes ATP at rates slightly lower than those for TF1Fa(γP43stop). However, it should be taken into account that for the wild-type enzyme removal of the C-terminal domain of ε actually accelerates ATP synthesis, at least in the in

TABLE 2

Strain/mutation	Membrane ATPase activity	Turnover rate kcat
	units/mg	s⁻¹
Wild type	2.4 ± 0.6	102
εI88stop	2.5 ± 0.3	106
Δγ	0.051 ± 0.020	5
pUC118/DK8 (unc)	0.012 ± 0.011	5
γQ36stop	0.075 ± 0.052	7
γQ36stop/εI88stop	0.076 ± 0.043	7
γP43stop	0.102 ± 0.020	7
γP43stop/εI88stop	0.106 ± 0.012	8

FIGURE 2. Quantification of γ in TF1Fa. E. coli membrane preparations containing wild-type TF1Fa (lanes 1–5), TF1FaΔγ (lane 7), and no TF1Fa (pUC118/DK8; lane 8) were run on an SDS gel and developed by Western blotting using an antibody against the globular portion of γ. The amount of wild-type TF1Fa in the membranes loaded into lanes 1–5 was as follows: lane 1, 40 ng; lane 2, 100 ng; lane 3, 200 ng; lane 4, 400 ng; lane 5, 1 μg. Lane 6 was empty. Lane 7 contained membranes with 1 μg of TF1FaΔγ. Lane 8 contained the same amount of total membrane protein as lane 7 but without any TF1Fa. The nature of the two faint bands below γ that are visible at the highest concentration of wild-type TF1Fa is not known.

FIGURE 3. Time course of ATP synthesis. The light output at 562 nm from the luciferin/luciferase reaction is shown as a function of time. The reaction was started at t = 0 s (indicated by the arrow) by the addition of succinate, a wild-type TF1Fa, 2 nmol ATP standard. Details of the reaction conditions are described under “Materials and Methods.” The given values represent the average of at least three independent measurements ± S.D. The positive control was strain pTR19-ASDS/DK8, which expresses Bacillus PS3 ATP synthase in E. coli; this strain served as the background for the deletions. The negative control was strain pUC118/DK8, which expresses neither PS3 ATP synthase nor the endogenous E. coli enzyme. Turnover rates were calculated as described in the legend to Table 1.
ATP Synthesis with Truncated γ Subunit

vitro assay. While TF, F0(γP43stop) has about 35% of the synthesis activity of the wild-type enzyme, TF, F0(γP43stop/εI88stop) has ~10% of the activity of TF, F0(εI88stop). Thus, one could argue that in this case as well the C-terminal domain of ε contributes to the stability of the rotor construct. Based on the crystal structure of the E. coli γε complex (28), direct contacts between γ and the N-terminal domain of ε might involve residues γN37, γS40, γF41, εP11, εD12, and εP14. Formation of hydrogen bonds appears possible between the hydroxyl group of γS40 and the main chain oxygen of εD12, and between the amide nitrogen of γN37 and the carboxyl group of εD12. It should be noted that the γ truncations remove two residues, εF205 and εE206, which were identified as important for high affinity binding of γ to the c ring (46). As noted before for other protein-protein interactions in ATP synthase (47), the high binding affinity between full-length γ and the c ring appears to be not absolutely necessary, but an example of “overengineering.”

ATP stabilizes the down conformation of ε, probably by direct binding to ε (28). Fixating ε in this position by cross-linking eliminates inhibition of the ATPase activity by ε (29). Thus, the down conformation appears to be the one that ε assumes during ATP hydrolysis. Having two different structures of ε for ATP synthesis and hydrolysis has far reaching consequences. Above all, it means that the pathways for ATP synthesis and hydrolysis do not necessary have to be the exact reversal of each other (48, 49). Among others, this could solve one of the main problems encountered during ATP synthesis, the necessity to bind ADP in the presence of an excess of ATP (2, 50). Under ATP hydrolysis conditions, there is no catalytic site that binds ADP with a higher affinity than ATP, at least in the absence of P(O) (51). ε in the up position might change the affinities for nucleotides, generating a site that preferentially binds ADP with a higher affinity than ATP, at least in vivo.

It is sometimes stated that ε does not inhibit ATP synthesis by F0, F1(εI88stop) (28, 52), although it is difficult to find experimental data in support of this claim. As discussed above, we show here that TF, F0(εI88stop) has significantly higher ATP synthesis activity than wild-type TF, F0, suggesting that the C-terminal domain of ε, which is removed in the mutant, is indeed inhibiting ATP synthesis. In general, one difficulty in assessing the role of the ε subunit is the fact that ε from different organisms behaves differently. Even among bacterial ATP synthases, the function of ε in the enzymes from E. coli and Bacillus PS3 is not the same. For instance, in E. coli ATP synthase or F0+ATPase the degree of inhibition of ATPase activity is constant over a large range of ATP concentrations, up to millimolar (25, 53). In contrast, in the PS3 enzyme the inhibition is much more effective at low ATP concentrations (54).

Finally, it should be noted that the results presented recently (21) and here support the notion of ATP synthase being evolved from RNA helicases and RNA or protein translocases (55, 56). Both studies demonstrate that ATP synthase maintains some functionality with fragments of γ, showing that proteins of much simpler structure than full-length γ can serve as a rotor in ATP synthase.

REFERENCES

1. Noji, H., and Yoshida, M. (2001) J. Biol. Chem. 276, 1665–1668
2. Weber, J., and Senior, A. E. (2003) FEBS Lett. 545, 61–70
3. Wilkens, S. (2005) Adv. Protein Chem. 71, 345–382
4. Weber, J. (2006) Biochim. Biophys. Acta 1757, 1162–1170
5. Nakamoto, R. K., Baylis Scanlon, J. A., and Al-Shawi, M. K. (2008) Arch. Biochem. Biophys. 476, 4–50
6. Junge, W., Siefaff, H., and Engelbrecht, S. (2009) Nature 459, 364–370
7. Weber, J., Wilke-Mounts, S., Lee, R. S., Guerr, E., and Senior, A. E. (1993) J. Biol. Chem. 268, 20126–20133
8. Weber, J., and Senior, A. E. (2004) Methods Enzymol. 380, 132–152
9. Baylis Scanlon, J. A., Al-Shawi, M. K., Le, N. P., and Nakamoto, R. K. (2007) Biochemistry 46, 8785–8797
10. Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621–628
11. Miao, H. Z., and Weber, J. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 18478–18483
12. Al-Shawi, M. K., and Nakamoto, R. K. (1997) Biochemistry 36, 12954–12960
13. Ketchum, C. J., and Nakamoto, R. K. (1998) J. Biol. Chem. 273, 22222–22227
14. Peskova, Y. B., and Nakamoto, R. K. (2000) Biochemistry 39, 11830–11836
15. Andrews, S. H., Peskova, Y. B., Purl, M. K., Herlihy, V. B., and Nakamoto, R. K. (2001) Biochemistry 40, 10664–10670
16. Lowry, D. S., and Frasch, W. D. (2005) Biochemistry 44, 7275–7281
17. Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 51594–51598
18. Boltz, K. W., and Frasch, W. D. (2005) Biochemistry 44, 9497–9506
19. Boltz, K. W., and Frasch, W. D. (2006) Biochemistry 45, 11190–11199
20. Furuike, S., Hossain, M. D., Maki, Y., Adachi, K., Suzuki, T., Kohori, A., Itoh, H., Yoshida, M., and Kinosita, K. (2008) Science 319, 952–958
21. Yao, Y., Metzd, M., and Mueller, D. M. (2000) J. Biol. Chem. 275, 6963–6968
22. Duvezin-Caubet, S., Caron, M., Giraud, M. F., Velours, I., and di Rago, J. P. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 13235–13240
23. Rondel, Y., Tresset, G., Nakashima, T., Kato-Yamada, Y., Fujita, H., Takeuchi, S., and Noji, H. (2005) Nature 433, 773–777
24. Cipriano, D. J., and Dunn, S. D. (2006) J. Biol. Chem. 281, 501–507
25. Gibbons, C., Montgomery, M. G., Leslie, A. G., and Walker, J. E. (2000) Nat. Struct. Biol. 7, 1055–1061
26. Rodgers, A. J., Wilce, M. C. (2000) Nat. Struct. Biol. 7, 1051–1054
27. Yagi, H., Kaijwara, N., Tanaka, H., Tsukihara, T., Kato-Yamada, Y., Yoshida, M., and Akutsu, H. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 11233–11238
28. Tsunoda, S. P., Rodgers, A. J., Aggeler, R., Wilce, M. C., Yoshida, M., and Capaldi, R. A. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 6560–6564
29. Suzuki, T., Murakami, T., Iino, R., Suzuki, J., Ono, S., Shirakihara, Y., and Yoshida, M. (2003) J. Biol. Chem. 278, 46840–46846
30. Suzuki, T., Ueno, H., Mitome, N., Suzuki, J., and Yoshida, M. (2002) J. Biol. Chem. 277, 13281–13285
31. Klionsky, D. J., Brusilow, S. W., and Simoni, R. D. (1984) J. Bacteriol. 160, 1055–1060
32. Senior, A. E., Latchney, L. R., Ferguson, A. M., and Wise, J. G. (1984) Arch. Biochem. Biophys. 228, 49–53
33. Senior, A. E., Langman, L., Cox, G. B., and Gibson, F. (1983) Biochem. J. 210, 395–403
34. Matsuakanyan, N., Krishnakumar, A. M., Suzuki, T., and Weber, J. (2009) J. Biol. Chem. 284, 11336–11345
35. Goelz, S. E., and Cronan, J. E. Jr. (1982) Biochemistry 21, 189–195
36. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193, 265–275
37. Yoshida, M., Okamoto, H., Sone, N., Hirata, H., and Kaga, Y. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 936–940
38. Furuike, S., Maki, Y., Adachi, K., Suzuki, T., Kohori, A., Itoh, H., Yoshida, M., and Kinosita, K. (2008) Biophys. J. 95, 4837–4844
39. Menz, R. I., Walker, J. E., and Leslie, A. G. (2001) Cell 106, 331–341
41. Yang, W., Gao, Y. Q., Cui, Q., Ma, J., and Karplus, M. (2003) *Proc. Natl. Acad. Sci. U.S.A.* **100**, 874–879
42. Gao, Y. Q., Yang, W., and Karplus, M. (2005) *Cell* **123**, 195–205
43. Mao, H. Z., Abraham, C. G., Krishnakumar, A. M., and Weber, J. (2008) *J. Biol. Chem.* **283**, 24781–24788
44. Iino, R., Murakami, T., Iizuka, S., Kato-Yamada, Y., Suzuki, T., and Yoshida, M. (2005) *J. Biol. Chem.* **280**, 40130–40134
45. Duncan, T. M., and Cingolani, G. (2009) *ASBMB Annual Meeting*, New Orleans, LA, April 18–22, 2009, Abstract 504.6
46. Pogoryelov, D., Nikolaev, Y., Schlattner, U., Pervushin, K., Dimroth, P., and Meier, T. (2008) *FEBS J.* **275**, 4850–4862
47. Weber, J., Wilke-Mounts, S., and Senior, A. E. (2003) *J. Biol. Chem.* **278**, 13409–13416
48. Vinogradov, A. D. (2000) *J. Exp. Biol.* **203**, 41–49
49. Feniouk, B. A., Suzuki, T., and Yoshida, M. (2006) *Biochim. Biophys. Acta* **1757**, 326–338
50. Weber, J., and Senior, A. E. (2000) *Biochim. Biophys. Acta* **1458**, 300–309
51. Mao, H. Z., Gray, W. D., and Weber, J. (2006) *FEBS Lett.* **580**, 4131–4135
52. Feniouk, B. A., Suzuki, T., and Yoshida, M. (2007) *J. Biol. Chem.* **282**, 764–772
53. Weber, J., Dunn, S. D., and Senior, A. E. (1999) *J. Biol. Chem.* **274**, 19124–19128
54. Kato-Yamada, Y., Bald, D., Koike, M., Motohashi, K., Hisabori, T., and Yoshida, M. (1999) *J. Biol. Chem.* **274**, 33991–33994
55. Walker, J. E., and Cozens, A. L. (1986) *Chem. Scr.* **268**, 263–272
56. Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y., and Koonin, E. V. (2007) *Nat. Rev. Microbiol.* **5**, 892–899