ECCO 2 R therapy in the ICU: consensus of a European round table meeting

Combes, Alain ; Auzinger, Georg ; Capellier, Gilles ; du Cheyron, Damien ; Clement, Ian ; Consales, Guglielmo ; Dabrowski, Wojciech ; De Bels, David ; de Molina Ortiz, Francisco Javier González ; Gottschalk, Antje ; Hilty, Matthias P ; Pestaña, David ; Sousa, Eduardo ; Tully, Redmond ; Goldstein, Jacques ; Harenski, Kai

Abstract: BACKGROUND With recent advances in technology, patients with acute respiratory distress syndrome (ARDS) and severe acute exacerbations of chronic obstructive pulmonary disease (ae-COPD) could benefit from extracorporeal CO\textsubscript{2} removal (ECCO\textsubscript{2}R). However, current evidence in these indications is limited. A European ECCO\textsubscript{2}R Expert Round Table Meeting was convened to further explore the potential for this treatment approach. METHODS A modified Delphi-based method was used to collate European experts’ views to better understand how ECCO\textsubscript{2}R therapy is applied, identify how patients are selected and how treatment decisions are made, as well as to identify any points of consensus. RESULTS Fourteen participants were selected based on known clinical expertise in critical care and in providing respiratory support with ECCO\textsubscript{2}R or extracorporeal membrane oxygenation. ARDS was considered the primary indication for ECCO\textsubscript{2}R therapy (n = 7), while 3 participants considered ae-COPD the primary indication. The group agreed that the primary treatment goal of ECCO\textsubscript{2}R therapy in patients with ARDS was to apply ultra-protective lung ventilation via managing CO\textsubscript{2} levels. Driving pressure (14 cmH\textsubscript{2}O) followed by plateau pressure (P\textsubscript{plat}; 25 cmH\textsubscript{2}O) was considered the most important criteria for ECCO\textsubscript{2}R initiation. Key treatment targets for patients with ARDS undergoing ECCO\textsubscript{2}R included pH (> 7.30), respiratory rate (< 25 or < 20 breaths/min), driving pressure (< 14 cmH\textsubscript{2}O) and P\textsubscript{plat} (< 25 cmH\textsubscript{2}O). In ae-COPD, there was consensus that, in patients at risk of non-invasive ventilation (NIV) failure, no decrease in PaCO\textsubscript{2} and no decrease in respiratory rate were key criteria for initiating ECCO\textsubscript{2}R therapy. Key treatment targets in ae-COPD were patient comfort, pH (> 7.30-7.35), respiratory rate (< 20-25 breaths/min), decrease of PaCO\textsubscript{2} (by 10-20%), weaning from NIV, decrease in HCO\textsubscript{3}– and maintaining haemodynamic stability. Consensus was reached on weaning protocols for both indications. Anticoagulation with intravenous unfractionated heparin was the strategy preferred by the group. CONCLUSIONS Insights from this group of experienced physicians suggest that ECCO\textsubscript{2}R therapy may be an effective supportive treatment for adults with ARDS or ae-COPD. Further evidence from randomised clinical trials and/or high-quality prospective studies is needed to better guide decision making.

DOI: https://doi.org/10.1186/s13054-020-03210-z
ECCO$_2$R therapy in the ICU: consensus of a European round table meeting

Alain Combes1,2*, Georg Auzinger3,4†, Gilles Capellier5,6†, Damien du Cheyron7†, Ian Clement8†, Guglielmo Consales9†, Wojciech Dabrowski10†, David De Bels11†, Francisco Javier González de Molina Ortiz12,13†, Antje Gottschalk14†, Matthias P. Hilty15†, David Pestaña16,17†, Eduardo Sousa18†, Redmond Tully19†, Jacques Goldstein20 and Kai Harenski21

Abstract

Background: With recent advances in technology, patients with acute respiratory distress syndrome (ARDS) and severe acute exacerbations of chronic obstructive pulmonary disease (ae-COPD) could benefit from extracorporeal CO$_2$ removal (ECCO$_2$R). However, current evidence in these indications is limited. A European ECCO$_2$R Expert Round Table Meeting was convened to further explore the potential for this treatment approach.

Methods: A modified Delphi-based method was used to collate European experts’ views to better understand how ECCO$_2$R therapy is applied, identify how patients are selected and how treatment decisions are made, as well as to identify any points of consensus.

(Continued on next page)
Results: Fourteen participants were selected based on known clinical expertise in critical care and in providing respiratory support with ECCO$_2$R or extracorporeal membrane oxygenation. ARDS was considered the primary indication for ECCO$_2$R therapy ($n = 7$), while 3 participants considered ae-COPD the primary indication. The group agreed that the primary treatment goal of ECCO$_2$R therapy in patients with ARDS was to apply ultra-protective lung ventilation via managing CO$_2$ levels. Driving pressure (≥ 14 cmH$_2$O) followed by plateau pressure (P_{plat}; ≥ 25 cmH$_2$O) was considered the most important criteria for ECCO$_2$R initiation. Key treatment targets for patients with ARDS undergoing ECCO$_2$R included pH (> 7.30), respiratory rate (< 25 or < 20 breaths/min), driving pressure (< 14 cmH$_2$O) and P_{plat} (< 25 cmH$_2$O). In ae-COPD, there was consensus that, in patients at risk of non-invasive ventilation (NIV) failure, no decrease in PaCO$_2$ and no decrease in respiratory rate were key criteria for initiating ECCO$_2$R therapy. Key treatment targets in ae-COPD were patient comfort, pH (> 7.30–7.35), respiratory rate (< 20–25 breaths/min), decrease of PaCO$_2$ (by 10–20%), weaning from NIV, decrease in HCO$_3^-$ and maintaining haemodynamic stability. Consensus was reached on weaning protocols for both indications. Anticoagulation with intravenous unfractionated heparin was the strategy preferred by the group.

Conclusions: Insights from this group of experienced physicians suggest that ECCO$_2$R therapy may be an effective supportive treatment for adults with ARDS or ae-COPD. Further evidence from randomised clinical trials and/or high-quality prospective studies is needed to better guide decision making.

Keywords: Acute respiratory distress syndrome, Chronic obstructive pulmonary disease, CO$_2$ removal, Consensus, Driving pressure, ECCO$_2$R, Gas exchange, Lung protective ventilation, Tidal volume, Therapy experience

Background
Advances in technology to deliver extracorporeal carbon dioxide removal (ECCO$_2$R) therapy have simplified this approach, making it easier to deploy for the management of adults with both hypoxaemic and hypercapnic acute respiratory failure (ARF) [1–4]. In patients with acute respiratory distress syndrome (ARDS), ECCO$_2$R therapy may be used to allow ultra-protective lung ventilation (UPLV) and reduce ventilator-induced lung injury (VILI) by decreasing tidal volume (V_T), both plateau (P_{plat}) and driving pressures and respiratory rate, while also controlling respiratory acidosis [5–14]. In patients with acute exacerbations of chronic obstructive pulmonary disease (ae-COPD) with severe respiratory acidosis and hypercapnic respiratory failure, ECCO$_2$R therapy may be applied to prevent intubation in patients at risk of non-invasive ventilation (NIV) failure [15]. It may also be used to hasten weaning from mechanical ventilation (MV) and early extubation in those who require invasive ventilation [10, 15–17].

However, there is currently limited evidence regarding the use of ECCO$_2$R therapy in these indications, with available data limited to the description of single cases or to case series that include a small number of patients [16, 18–21], as well as a few retrospective matched cohort studies [15, 22]. Additionally, questions remain on how best to implement a therapy that might be associated with serious side-effects [1]. Ongoing and published trials such as VENT-AVOID (NCT03255057), REST (NCT02654327) [2] and SUPERNOVA (NCT02282657) [11, 12, 23] are expected to provide valuable evidence to support decision making.

Given the potential of ECCO$_2$R therapy to provide effective supportive treatment for a wide range of patient groups, we convened a European ECCO$_2$R therapy Expert Round Table Meeting to better understand how ECCO$_2$R therapy is applied in key diagnostic groups, e.g. patients with ARDS or ae-COPD, identify how patients are selected, understand how treatment decisions are made and delineate areas of consensus in the group.

Methods
Research questions and objectives
The ECCO$_2$R therapy Expert Round Table Meeting was held in Brussels in July 2019 and was attended by 14 clinicians who regularly provide ECCO$_2$R therapy in hospitals across Europe in order to provide a European perspective on ECCO$_2$R therapy. Each attendee was a senior clinician/intensivist invited based on their experience delivering ECCO$_2$R therapy, with and without continuous renal replacement therapy, using different devices. The attendees had direct clinical experience with a wide range of ECCO$_2$R devices, including ALung, iLA, Prismalung and PALP (the later had been removed from the market at the time of the meeting due to loss of the distribution agreement). In addition, several of the attendees are principal investigators in recently completed or ongoing clinical trials, including randomised controlled trials such as REST and SUPERNOVA.
Conflict of interest declarations for the attendees can be found at the end of the manuscript.

The meeting objectives were to better define and understand the application of ECCO$_2$R therapy in key indications (ARDS and ae-COPD), to identify patient selection criteria and when to initiate and stop/wean patients from treatment and to determine points of consensus and differences in clinical practice in those centres represented at the meeting. A non-systematic search of MEDLINE, ClinicalTrials.gov and other sites was performed to identify key studies and trials to support the development of the questions and the content of the meeting.

Data collection and analysis

A modified Delphi-based method (Fig. 1) was used to collate the clinicians’ views in three rounds of questioning [24]. The meeting questions as well as the pre-meeting and post-meeting questionnaires were developed by JG and KH before being reviewed and approved by AC. JG and KH were present as Baxter employees and moderators, but were not permitted to provide answers or responses, either to the survey questions or during the meeting. Round 1 data were collected via an interactive PDF questionnaire circulated in advance of the meeting, and results were analysed anonymously. Round 2 data were collected during the meeting, attendees were divided into 4 subgroups and the questions were presented by an independent facilitator. Open questions were used to encourage freedom of response, and the meeting was designed to allow the attendees adequate time to consider and respond to the questions based on their experience. Attendees could respond to the questions either through anonymous electronic voting or by inputting responses into a microcomputer, with responses collected and discussed openly by the group. Round 3 was a second interactive PDF questionnaire, circulated post-meeting, designed to follow up on discussion points raised at the face-to-face meeting, with results analysed anonymously. Details on the process for information gathering and the questions are provided in Additional file 1.

Target values for ventilation parameters of interest—criteria for initiation of ECCO$_2$R therapy and treatment targets for ECCO$_2$R therapy in both ARDS and ae-COPD—were collected during the three rounds of questioning. These values were subsequently evaluated for consensus. To facilitate the analysis of the responses for certain questions, a scoring system was employed. Participants were asked to score their responses in order of importance, giving them a score (e.g. from 1 to 8, depending on the number of variables). Scores were then combined to give a total score for each parameter, with higher scores indicating a higher perceived importance. To determine whether a consensus was reached or not based on participant responses to the questions, a threshold of \geq 80% of participants in agreement was used to define if consensus was reached, a level that has been used in previous analyses [25]. Majority agreement indicates that \geq 50% of participants agreed, but consensus level was not reached, and no agreement means that $< 50\%$ of participants agreed. The report was drafted by an independent medical writing company (SciMentum, Nucleus Global) and paid for by Baxter in line with Good Publication Practice 3. The various drafts were reviewed and approved by AC before being reviewed by the full author team. All authors provided their approval to submit and meet the ICMJE criteria for authorship.

Results

Attendee clinical experience

Twelve clinicians completed the pre-meeting survey: eight worked in Combined Surgical and Medical intensive care units (ICUs), while the others were employed...
in Medical ICUs ($n = 2$), Surgical ICUs ($n = 2$) and Cardiac Surgery ICUs ($n = 2$); respondents could be employed at more than one type of centre. ICUs had a median of 20 beds/unit and 400–2000 admissions/year. Extracorporeal membrane oxygenation (ECMO) experience of participants ranged from 0 to 80 veno-venous ECMO procedures/year and 0 to 220 veno-arterial ECMO procedures/year.

Indications and rationale for ECCO$_2$R based on pre-meeting survey

Analysis of the Round 1 pre-meeting survey responses revealed that ARDS was considered the primary indication for ECCO$_2$R therapy by 7 participants, while 3 participants considered ac-e-COPD to be the primary indication. Severe asthma was also mentioned as another potential ECCO$_2$R indication, although less frequently. The median number of ARDS admissions (as per the Berlin definition [26]) was 60 patients per centre per year, with some centres admitting up to 500 patients per year. While the most common criteria stated in the pre-meeting responses for initiating ECCO$_2$R therapy in patients with ARDS were to manage hypercapnia with acidosis, although specific criteria varied across the ICUs, likewise, weaning criteria shared at Round 1 varied significantly, with no clearly consistent management pattern being identified between centres. However, most participants (92%) indicated that they would place patients with ARDS in the prone position when using ECCO$_2$R therapy. The number of ac-e-COPD admissions ranged from 0 to 250 patients per centre per year (median 50). Participants indicated that ECCO$_2$R therapy was predominantly initiated to prevent intubation in patients at risk of NIV failure or to facilitate extubation in patients who had been intubated after NIV failure.

Use of ECCO$_2$R therapy in patients with ARDS

During the Expert Round Table Meeting and post-meeting survey (Rounds 2 and 3, respectively), the group considered the ventilation parameters for implementation of a lung protective ventilation (LPV) strategy in all patients with ARDS and agreed upon the following targets: driving pressure, 10–14 cmH$_2$O; positive end-expiratory pressure (PEEP), 10–14 cmH$_2$O; P_{plat} 25–29 cmH$_2$O; and respiratory rate either 20–25 or 25–30 breaths/min, although most of the group would target a respiratory rate of 25 breaths/min. There was some variation in responses among the group when asked about target pH, with half of participants opting for a target pH value of 7.25–7.30, while others indicated the target should be > 7.30 ($n = 4$), < 7.25–7.30 ($n = 2$) or < 7.20 ($n = 1$). Finally, the panelists thought V_T should be set at 6.0 mL/kg of predicted body weight (PBW), although 6.1–7.0 or 7.1–8.0 mL/kg PBW were also considered to be reasonable targets. When asked in the post-meeting survey (Round 3) about the preferred ventilation mode used for patients with ARDS undergoing LPV, the group were split with respect to pressure control (pressure assist) ($n = 8$) and flow control (volume assist) ($n = 6$) modes of ventilation. These recommendations agreed with the most recent guidelines for the ventilation management of patients with ARDS [27, 28].

There was consensus among the group (91% [2 participants were unavailable for this question, 11 of $n = 12/14$ voted in favour]) that the primary treatment goal of ECCO$_2$R therapy for patients with ARDS was to apply UPLV via managing CO$_2$ levels. For initiating ECCO$_2$R therapy in patients with ARDS, driving pressure (≥ 14 cmH$_2$O) followed by P_{plat} (≥ 25 cmH$_2$O) was considered the most important criteria, and this was confirmed in the post-meeting survey (Tables 1 and 2). Additional key parameters included pH (< 7.25), reducing V_T to < 6 mL/kg PBW, PaCO$_2$ (> 60–80 mmHg), respiratory rate (≥ 25 to > 30 breaths/min), PaO$_2$/FiO$_2$ (100–200) and PEEP (combined findings from Rounds 2 and 3).

Participants were evenly split during the meeting on the primary rationale for ECCO$_2$R therapy, being rescue therapy in patients with ARDS undergoing injurious MV, i.e. those with very high plateau and driving pressures despite reduced V_T and PEEP ($n = 7$), or to facilitate UPLV to prevent the deleterious effects of MV in patients already undergoing LPV ($n = 7$). Based on the results of the post-meeting survey, a consensus was reached among the group (12/14, 86% of participants) that ECCO$_2$R was a strategy they would consider selecting for rescue in patients with ARDS. Typical characteristics for initiating ECCO$_2$R in a rescue situation obtained as part of the post-meeting survey are summarised in Table 2. A majority (10/14, 71% of participants) indicated that they would select ECCO$_2$R as a means of facilitating UPLV for patients with ARDS, and typical characteristics for selecting patients are summarised in Table 2.

For both potential indications, patients would not be considered suitable for an ECCO$_2$R strategy if they met the indications for ECMO, such as severe or refractory ARDS [29] and presence of severe right heart failure (ECMO may be a more adequate treatment for these patients), in cases where anticoagulation is contraindicated and for those with major comorbidities and/or predicted survival of < 1 year.

The group considered treatment targets for their patients with ARDS undergoing ECCO$_2$R. A consensus was reached regarding driving pressure (< 14 cmH$_2$O) and respiratory rate (< 25 or < 20 breaths/min). There was majority agreement with respect to targets for P_{plat}
Table 1 ECCO₂R treatment criteria for patients with ARDS

Parameter	Target	Score	Note
Driving pressure	≥14 cmH₂O		Consensus
Pplat	≥25 cmH₂O	22	Consensus
PaCO₂	>60–80 mmHg	21	Majority agreement
pH	<7.25	20	Majority agreement
Reduce Vₜ to	<6 mL/PBW		Majority agreement
Respiratory rate	≥25 to >30	14	Majority agreement
PEEP	–	10	Majority agreement

*Based on the post-meeting survey. †Note, for Pplat, a consensus threshold of 80% was not reached in the meeting; in the post-meeting survey, it was rated as the second most important target

Table 2 Typical characteristics for initiating ECCO₂R for rescue therapy and to facilitate ultra-protective ventilation in ARDS

Parameter	Target for initiation in: Rescue	Target for initiation in: Ultra-protective ventilation
Driving pressure	>15 to 20 cmH₂O	>13 to 15 cmH₂O
Pplat	>30 to 35 cmH₂O	≥25 cmH₂O
PaCO₂	≥60 mmHg	≥60 mmHg
pH	<7.25–7.30	<7.25–7.30
Respiratory rate	>20 to 30 breaths/min	>20 breaths/min
PaO₂/FIO₂	<150	<150
PEEP	>8 to 15	≥8

Responses were captured during the post-meeting survey (Round 3) and general themes were identified

Use of ECCO₂R therapy in patients with ae-COPD

There was consensus during the meeting that patients with ae-COPD who should receive ECCO₂R therapy were those at risk of NIV failure, as well as patients recently initiated on MV after NIV failure to allow for early extubation within 24h of initiating ECCO₂R therapy. Other patient groups would be considered (e.g. patients on prolonged MV who require weaning from invasive ventilation and patients who are refusing intubation), but a consensus was not reached.

The group agreed that for patients with ae-COPD at risk of NIV failure, ‘no decrease in PaCO₂’ and ‘no

Table 3 ECCO₂R weaning protocol for patients with ARDS

Weaning criteria and steps for weaning for ECCO₂R in ARDS*
ECCO₂R will be applied for at least 48h
PaO₂/FIO₂ > 200 mmHg before testing weaning possibility
Set Vₜ at 6 mL/PBW and PEEP 5–10 cmH₂O
Driving pressure should be <14 cmH₂O
Respiratory rate should be 20–30 breaths/min
Reduce gas flow to zero, using 2 L/min decremental steps
While weaning, pH should remain >7.30 and respiratory rate <25 breaths/min
Patient will be weaned off ECCO₂R therapy after a minimum of 12h of stability under these settings (including pH > 7.30 and respiratory rate < 25 breaths/min)

*A consensus was reached for all of these criteria and steps
decrease in respiratory rate' while on NIV were both key initiation criteria for ECCO\textsubscript{2}R therapy (Table 4). These criteria were considered indicative of NIV failure. Clinical signs of respiratory failure and pH (< 7.25 [n = 5] or 7.25–7.30 [n = 6]) would be considered as initiation criteria by most of the participants. Baseline PaCO\textsubscript{2} and respiratory rate as main triggers were favoured by less than half of participants. For patients with ae-COPD who had already been intubated, criteria for initiating ECCO\textsubscript{2}R therapy varied (Table 4).

Factors for excluding patients with ae-COPD from ECCO\textsubscript{2}R typically included patients with end-stage disease (the group highlighted that markers for this include severe functional limitation and cachexia); contraindications to anticoagulation; problems with vascular access; patient's wishes, e.g. refusal to be intubated, except in cases where ECCO\textsubscript{2}R therapy represented the last resource accepted by the patient; poor quality of life; and the patient not being a candidate for MV.

Treatment targets for patients with ae-COPD receiving ECCO\textsubscript{2}R therapy were, in order of perceived importance (Table 5), comfortable patient, pH (> 7.35/7.30; no consensus on specific pH), respiratory rate (< 20–25 breaths/min), decrease of PaCO\textsubscript{2} by 10–20%, weaning from NIV, decrease in HCO\textsubscript{3} and maintaining haemodynamic stability. Consensus on a weaning protocol for patients with ae-COPD was reached during the meeting (Table 5).

Table 4 ECCO\textsubscript{2}R treatment initiation criteria for patients with ae-COPD

Initiation criteria for patients at risk of NIV failure	Parameter	Parameter
Consensus	No decrease in PaCO\textsubscript{2} while on NIV	
Consensus	No decrease in respiratory rate while on NIV	
Majority agreement	Clinical signs of respiratory failure	
Majority agreement	pH 7.25–7.30	
No agreement	Baseline PaCO\textsubscript{2}	
No agreement	Baseline respiratory rate	

Table 4 ECCO\textsubscript{2}R treatment initiation criteria for patients with ae-COPD

Initiation criteria for patients who are already intubated	Parameter
- Patients who look like they will not be extubated early without ECCO\textsubscript{2}R	- Previous intubation for ae-COPD
- Previous intubation for ae-COPD	- Has failed a spontaneous breathing trial due to increased dyspnoea
- Has failed a spontaneous breathing trial due to increased dyspnoea	- Reintubation after first extubation attempt despite NIV
- Reintubation after first extubation attempt despite NIV	- Patients with severe bronchospasm who are difficult/impossible to ventilate adequately or otherwise not responding to medical treatment
- Patients with severe bronchospasm who are difficult/impossible to ventilate adequately or otherwise not responding to medical treatment	- Patients who remain hypercapnic and not improving with MV
- Patients who remain hypercapnic and not improving with MV	- No hypoxemia preventing extubation
- No hypoxemia preventing extubation	- MV < 72 h
- MV < 72 h	- Patients with home NIV and good quality of life

Anticoagulation strategy for patients receiving ECCO\textsubscript{2}R

Responses obtained during Round 1 (pre-meeting survey) showed that heparin was the preferred choice of anticoagulant used during ECCO\textsubscript{2}R therapy (~80% of participants stated that heparin was their anticoagulant of choice). This was confirmed in the post-meeting survey, in which unfractionated heparin was the anticoagulant of choice for the majority (~90% of participants). The proposed heparin anticoagulation protocol agreed by the group is shown in Table 6. Lastly, argatroban was the group's preferred anticoagulant in case of proven heparin-induced thrombocytopenia (HIT).

Discussion

The responses obtained from the Expert Round Table Meeting and accompanying pre- and post-meeting surveys have provided further insights into the use of ECCO\textsubscript{2}R therapy across Europe. During a typical Delphi process [24], 100% agreement is rare, and any consensus is the result of multiple rounds of voting and discussion that lead to a convergence of opinion. However, in areas where clinical evidence is limited, as is the case for ECCO\textsubscript{2}R therapy in patients with ARDS and ae-COPD, using a modified Delphi method may offer insight into the current practice of experienced users, which could help inform decision making in local clinical practice. Additionally, the use of the Delphi method to guide these discussions and reach points of consensus will be of potential benefit for the design of future trials. Specifically, the discussions provide insight relevant to inclusion criteria, guidance on the management of patients while receiving ECCO\textsubscript{2}R therapy and possible primary and secondary endpoints.

Key areas of consensus for the use of ECCO\textsubscript{2}R therapy in the treatment of patients with ARDS or ae-COPD were identified. There was consensus among the group that the primary treatment goal of ECCO\textsubscript{2}R therapy for patients with ARDS was to apply UPLV via managing CO\textsubscript{2} levels; this is in agreement with the findings of a systematic literature review [30]. The group reached a consensus that, when initiating ECCO\textsubscript{2}R therapy in patients with ARDS, driving pressure (≥ 14 cmH\textsubscript{2}O) followed by P_{plat} (≥ 25 cmH\textsubscript{2}O) was the most important criteria to consider. Higher PEEP, lower peak and plateau pressures and lower respiratory rate have been shown to correlate with improved survival in patients with ARDS [7, 11, 31]. However, only the driving
pressure was associated with increased mortality using a multilevel mediation analysis in a large retrospective cohort study of patients with ARDS [32]. It is therefore perhaps not surprising that the key treatment targets for ECCO2R in ARDS identified by the group were reductions in driving pressure and respiratory rate. A pH of < 7.25 was also considered by most of the group to be a criterion for initiation of ECCO2R therapy in this patient group. Indeed, a lower pH was recently shown to be independently associated with ICU mortality in the large prospective LUNG SAFE registry [31]. Most of the group also agreed that ECCO2R should be initiated at PaCO\textsubscript{2} levels > 60–80 mmHg. While it was suggested that permissive hypercapnia provided protection against lung injury in terms of lung permeability, oxygenation and lung mechanics [33], more recent data have shown a positive correlation between hypercapnic acidosis and mortality [34, 35]. Raising pH (> 7.30 or > 7.25) and decreasing PaCO\textsubscript{2} levels were considered important treatment targets, indicating that there is a perception that ECCO2R is an important therapy for the management of respiratory acidosis.

The experts were evenly split on the primary rationale for ECCO2R therapy, either as a rescue therapy in patients with ARDS undergoing injurious MV, or to facilitate UPLV to prevent VILI. The results from the post-meeting survey highlighted that the group agreed that they would at least consider selecting ECCO2R as a strategy in both settings. Ongoing (NCT02654327) [11] randomised trials may help clarify the role of ECCO2R, allowing UPLV in patients with acute hypoxemic respiratory failure.

Table 5 ECCO2R treatment targets and weaning protocol for patients with ae-COPD

Parameter	Target	Score
Comfortable patient	–	27
pH	> 7.35/7.30, no consensus on specific pH	23
Respiratory rate	< 20–25 breaths/min	19
Decrease of PaCO\textsubscript{2} by 10–20%	–	18
Weaning from NIV	–	9
Decrease in HCO\textsubscript{3}−	–	9
Maintaining haemodynamic stability	–	7

ECCO2R weaning protocol for patients with ae-COPD

1. Patient weaned from NIV for > 6 h
 a. Excluding patients on home NIV or candidates for long-term NIV
2. Intubated patients weaned from MV for > 6 h
3. SpO\textsubscript{2} ≥ 88% with supplemental O\textsubscript{2} if needed
4. Reduce sweep gas flow rate by 1–3 L/min; check arterial blood gas after 1 h for:
 a. pH ≥ 7.35 with respiratory rate < 25 breaths/min
 b. PaO\textsubscript{2} > 55 mmHg
 c. SpO\textsubscript{2} > 88%
 d. FiO\textsubscript{2} < 40%
5. Repeat sweep gas reduction until zero gas flow reached, while arterial blood gas targets maintained
6. Remove ECCO2R after 6 h of stability of the aforementioned criteria

Table 6 Heparin anticoagulation strategy

1. Anticoagulation with intravenous unfractionated heparin, preferably applied to the extracorporeal circuit
2. Monitor aPTT or anti-Xa or both
 a. To obtain an aPTT of 1.5–2.0 times normal baseline (45–70 s), or anti-Xa activity of 0.3–0.5 U/mL
3. Initial bolus of heparin
 a. 40–80 units/kg PBW
 b. Bolus will not be performed in patients already on full anticoagulation
 c. Bolus routinely performed when guidewires have been inserted/or after catheter insertion
4. Patients with proven HIT-2
 a. Argatroban protocol, e.g. 0.5–2.0 μg/kg/min
To the best of our knowledge, this is the first publication of a proposed weaning strategy for ECCO₂R in patients with ARDS. The group reached a consensus regarding a strategy for weaning patients from ECCO₂R in this setting. It was agreed that ECCO₂R therapy should be applied for at least 48 h in patients with ARDS, and that a test for PaO₂/FiO₂ > 200 mmHg while maintaining a driving pressure < 14 cmH₂O should be carried out to determine weaning possibility. It was also agreed that patients should be stable for a minimum of 12 h at the ventilation parameters outlined (see Table 3) before any weaning attempt takes place [11].

In a randomised study exploring the role of helium/oxygen in ae-COPD, the rate of patients failing on NIV and requiring MV was 15% [36]. Identifying the subgroup of patients with ae-COPD at high risk of NIV failure is indeed crucial to improve their outcomes by deploying effective preventive strategies. The panel identified ‘lack of decrease in PaCO₂’ and ‘respiratory rate during NIV’ as important indicators of increased risk of NIV failure and an indication for ECCO₂R initiation. The group also felt that it was important to allow enough time to show that NIV was ineffective before initiating ECCO₂R therapy. Furthermore, there are numerous factors involved in NIV failure, and the benefit of ECCO₂R for this patient group is still a matter of debate due to lack of data from randomised clinical trials [15, 22].

For patients with ae-COPD who are already intubated, the intended use of ECCO₂R therapy is to rapidly allow extubation, to facilitate oral nutrition and early physiotherapy and to prevent muscle deconditioning [3]. Treatment targets identified by the group clearly fit in with the strategy of reducing the duration of MV and are in line with published data and wider views on the use of ECCO₂R therapy [1, 19]. The VENT-AVOID trial (NCT03255057) is currently randomising patients to further investigate the benefits of ECCO₂R therapy in patients at risk of NIV failure who already have been intubated after NIV failure.

Anticoagulation with intravenous unfractionated heparin was the preferred strategy of the group. This reflects recent studies in the literature in which unfractionated heparin appears to be the anticoagulant most frequently used in this setting [10, 11]. The post-meeting survey highlighted that anticoagulant activity should be monitored using activated partial thromboplastin time (aPTT) and/or anti-Xa; the monitoring approach remains dependent on local practice. For patients with proven HIT, argatroban was the group’s preferred anticoagulant [37, 38].

Limitations
The findings presented here relate to the experiences of a relatively small number of physicians from centres across Europe; evidence from a larger group of intensivists from multiple regions of the world may be required to support these observations. Certain topics were not covered due to the scope of the meeting. Firstly, the questions covered current practice and did not explore if practices, e.g. inclusion policies of the respective centres, had changed over time. Secondly, certain rarer indications, e.g. lung transplant, were not covered, as the meeting focussed on the broader population of patients requiring ECCO₂R therapy, e.g. patients with ARDS or ae-COPD. These questions could be covered as part of a follow-up meeting. Additionally, while the authors took every opportunity to ensure all relevant major articles were cited, the purpose of the meeting was to understand current practice as opposed to conducting a comprehensive literature analysis. Finally, the experiences outlined are the physicians’ respective personal experiences and are not a replacement for formal guidelines. The reader should consider their patients’ needs and local guidelines when performing ECCO₂R therapy.

Conclusions
The insights from this group of experienced physicians suggested that ECCO₂R therapy may be a useful and effective supportive treatment for adults in the ICU with both ARDS and ae-COPD. They have however highlighted an urgent need for further evidence in the form of randomised clinical trials and/or high-quality prospective studies to help guide decision making. Ongoing and published trials such as VENT-AVOID (NCT03255057), REST (NCT02654327) [2] and SUPERNOVA (NCT02282657) [11, 12, 23] should provide the data to support these guidelines.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13054-020-03210-z.

Additional file 1: Expanded methods. Details on the process for information gathering and the questions.

Abbreviations
ae-COPD: Acute exacerbations of chronic obstructive pulmonary disease; aPTT: Activated partial thromboplastin time; ARDS: Acute respiratory distress syndrome; ARF: Acute respiratory failure; ECCO₂R: Extracorporeal carbon dioxide removal; ECMO: Extracorporeal membrane oxygenation; FiO₂: Fraction of inspired oxygen; HIT: Heparin-induced thrombocytopenia; ICU: Intensive care unit; LPV: Lung protective ventilation; MV: Mechanical ventilation; NIV: Non-invasive ventilation; PaCO₂: Partial pressure of carbon dioxide; PBW: Predicted body weight; PEEP: Positive end-expiratory pressure; Fle-plateau pressure; SpO₂: Oxygen saturation; UPLV: Ultra-protective lung ventilation; VILI: Ventilator-induced lung injury; V̇t: Tidal volume

Acknowledgements
Supported by Baxter Inc. Medical writing support was provided by Daniel Johnson and Ruth Brown of SciMentum Inc. (Nucleus Global), funded by Baxter Inc., under the authors’ conceptual direction and based on feedback from the authors.
Authors’ contributions
All authors participated in the discussions in the Round Table Meeting as well as the questionnaire rounds, contributed data, critically reviewed the manuscript providing interpretation of the data and their implications and provided approval for the final version to be published.

Authors’ information
FJGDM: Member of the Acute Respiratory Failure Working Group and Chair of the Nephrological Intensive Care Working Group of the Spanish Society of Critical and Intensive Care Medicine and Coronary Units (Sociedad Española de Medicina Intensiva, Críticos y Unidades Coronarias [SEMICYUC]).

Funding
The meeting and associated expenses as well as the publication of this research was supported by Baxter Inc.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All authors received financial compensation from Baxter for travel and accommodation for attending the meeting. MPH has received financial compensation from Baxter for travel and accommodation in the past.

Author details
1 Sorbonne Université, INSERM, UMR_S_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, Boulevard de l’Hôpital, F-75013 Paris, France.
2 Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Hôpital Pitié-Salpêtrière, F-75013 Paris, France.
3 Department of Critical Care, King’s College Hospital, London SE5 9RS, UK.
4 Department of Critical Care, Cleveland Clinic, London SW1Y 7AW, UK.
5 Service de Médicine Intensive-Réanimation CHRU Besançon, EA 3920 University of Franche-Comté, Besançon, France.
6 Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
7 Service de Médicine Intensive-Réanimation, Caen University Hospital, 14000 Caen, France.
8 Critical Care Unit, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK.
9 Department Emergency and Critical Care, Prato Hospital, Azienda Toscana Centro, Prato, Italy.
10 Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Jacewskiego Street 8, 20-954 Lublin, Poland.
11 Service des Soins Intensifs Médico-chirurgicaux, CHU Brugmann, 4 Place A Van Gehuchten, 1020 Brussels, Belgium.
12 Department of Critical Care, University Hospital Mútua Terrassa, Universitat de Barcelona, Terrassa, Barcelona, Spain.
13 Department of Critical Care, University Hospital Quiron Dexeus, Universitat Autònoma de Barcelona, Barcelona, Spain.
14 Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany.
15 Institute of Intensive Care Medicine, University Hospital of Zürich, Rämistrasse 100, 8091 Zürich, Switzerland.
16 Department of Anaesthesiology and Surgical Critical Care, Hospital Universitari Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo km 9, 28034 Madrid, Spain.
17 Universidad de Alcalá de Henares, Madrid, Spain.
18 Servicio de Medicina Intensiva, Centro Hospitalar e Universitário de Coimbra, Pracaeta Mota Pinto, 3000-075 Coimbra, Portugal.
19 Department of Intensive Care, Royal Oldham Hospital, Northern Care Alliance, Oldham OLI 2JH, UK.
20 Baxter World Trade SPRL, Acute Therapies Global, Braine-l’Alleud, Belgium.
21 Baxter, Baxter Deutschland GmbH, Unterschleissheim, Germany.

Received: 1 May 2020 Accepted: 28 July 2020

Published online: 07 August 2020

References
1. Boyle AJ, Sklar MC, McNamee JJ, Brodie D, Slutsky AS, Brochard L et al. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir Med. 2018;6:674–84.
2. McNamee JJ, Giles MA, Barrett NA, Aguas AM, Beale R, Bentley A et al. Protective ventilation with veno-venous lung assist in respiratory failure: a protocol for a multicentre randomised controlled trial of extracorporeal carbon dioxide removal in patients with acute hypoxemic respiratory failure. J Intensive Care Soc. 2017;18:159–69.
3. Brodie D, Slutsky AS, Combes A. Extracorporeal life support for adults with respiratory failure and related indications: a review. JAMA. 2019;322:557–68.
4. Combes A, Pesenti A, Ranieri VM. Fifty years of research in ARDS. Is extracorporeal circulation the future of acute respiratory distress syndrome management? Am J Respir Crit Care Med. 2017;195:1161–70.
5. Needham DM, Colantuoni E, Mendez-Tellez PA, Dinglas VD, Sevransky JE, Dennison Himmelfarb CR et al. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study. BMJ. 2012;344:e2124.
6. Terragni PP, Del Sorbo L, Mascia I, Urbino R, Martin EL, Bitroco A et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anaesthesia. 2009;64:386–5.
7. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–900.
8. Fanelli V, Ranieri MV, Mancebo J, Moerer O, Quintel M, Morley S et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care. 2016;20:36.
9. Schmidt M, Jaber S, Zoghbi E, Godet T, Capellier G, Combes A. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care. 2018;22:122.
10. Augy JA, Aissaoui N, Richard C, Maury E, Farthoum M, Mekontso-Dessap A et al. A 2-year multicenter, observational, prospective, cohort study on extracorporeal CO2 removal in a large metropolitan area. J Intensive Care. 2019;7:45.
11. Combes A, Fanelli V, Pham T, Ranieri VM. European Society of Intensive Care Medicine Trials Group and the “Strategy of Ultra-Protective lung ventilation with Extracorporeal CO2 Removal for New-Onset moderate to severe ARDS’ (SUPERNOVA) investigators. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med. 2019;45:592–600.
12. Golligher EC, Combes A, Brodie D, Ferguson ND, Pesenti AM, Ranieri VM et al. Determinants of the effect of extracorporeal carbon dioxide removal in the SUPERNOVA trial: implications for trial design. Intensive Care Med. 2019;45:1219–30.
13. Bein T, Weber-Cantarsi S, Goldmann A, Müller T, Staudinger T, Brederlau J et al. Lower tidal volume strategy (4–5 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xaver-study. Intensive Care Med. 2013;39:847–56.
14. Allardet-Servent J, Castanian M, Signoret T, Soundaravelpou R, Lepidi A, Sehghbayan JM. Safety and efficacy of combined extracorporeal CO2 removal and renal replacement therapy in patients with acute respiratory distress syndrome and acute kidney injury: the pulmonary and renal support in acute respiratory distress syndrome study. Crit Care Med. 2015;43:2570–81.
15. Del Sorbo L, Pisani L, Filippini C, Fanelli V, Fasano L, Terragni P et al. Extracorporeal CO2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med. 2015;43:1207–17.
16. Winiszewski H, Aptel F, Belon F, Belin N, Chaignat C, Patry C et al. Daily use of extracorporeal CO2 removal in a critical care unit: indications and results. J Intensive Care. 2018;6:36.
17. Dehl JL, Piquilloud L, Richard JM, Mancebo J, Mercat A. Effects of extracorporeal carbon dioxide removal on work of breathing in patients with chronic obstructive pulmonary disease. Intensive Care Med. 2016;42:951–2.
18. Deniau B, Ricard JD, Messika J, Dreyfuss D, Gauduy S. Use of extracorporeal carbon dioxide removal (ECCO2R) in 239 intensive care units: results from a French national survey. Intensive Care Med. 2016;42:624–5.
19. Morelli A, Del Sorbo L, Pesenti A, Ranieri VM, Fan E. Extracorporeal carbon dioxide removal (ECCO2R) in patients with acute respiratory failure. Intensive Care Med. 2017;43:519–30.
20.Gattinoni L, Pesenti A, Rossi G, Vesconi S, Fox U, Kolobow T, et al. Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO₂. Lancet. 1980;316:292–4.

21. Hilty MP, Riva T, Cottini SR, Kleinert E-M, Maggiorini M, Maggiorini M. Low flow veno-venous extracorporeal CO₂ removal for acute hypercapnic respiratory failure. Minerva Anestesiol. 2017;83:812–23.

22. Braune S, Sieweke A, Brettnner T, Staudinger T, Joannidis M, Verbrugges S, et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med. 2016;42:1437–44.

23. Combes A, Tonetti T, Fanelli V, Pham T, Pesenti A, Mancebo J, et al. Efficacy and safety of lower versus higher CO₂ extraction devices to allow ultraprotective ventilation: secondary analysis of the SUPERNOVA study. Thorax. 2019;74:1179–81.

24. Dalkey N, Helmer O. An experimental application of the Delphi method to the use of experts. Manag Sci. 1963;9:458–67.

25. Eubank BH, Mohladi NG, Lafave MR, Wiley JP, Bois AJ, Boorman RS, et al. Using the modified Delphi method to establish clinical consensus for the diagnosis and treatment of patients with rotator cuff pathology. BMC Med Res Methodol. 2016;16:56.

26. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Callewell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–2533.

27. Tapaszto L, Aubron C, Brochard L, Chiche JD, Combes A, Dreyfuss D, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9:69.

28. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine practical guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1252–63.

29. Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378:1965–75.

30. Tacccone FS, Maffertheiner MV, Ferrari F, Di Nardo M, Swol J, Broman LM, et al. Extracorporeal CO₂ removal in critically ill patients: a systematic review. Minerva Anestesiol. 2017;83:762–72.

31. Laffey JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNGSafe study. Intensive Care Med. 2016;42:1865–76.

32. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.

33. Laffey JG, Jankov RP, Engelberts D, Tanswell AK, Post M, Lindsay T, et al. Effects of therapeutic hypercapnia on mesenteric ischemia-reperfusion injury. Am J Respir Crit Care Med. 2003;168:1383–90.

34. Nin N, Muriel A, Peñuelas O, Brochard L, Lorente JA, Ferguson ND, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43:200–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.