Antibiofilm Activity of Acidic Phospholipase Isoform Isolated from Bothrops erythromelas Snake Venom

Ellynnes Nunes¹, Breno Frihling², Elizângela Barros³, Caio de Oliveira³, Newton Verbisck⁴, Taylla Flores⁵, Augusto de Freitas Júnior¹, Octávio Franco⁵, Maria de Macedo³, Ludovico Migliolo¹,²,⁵, Karla Luna¹,⁶

Abstract: Introduction: Bacterial resistance is a worldwide public health problem, requiring new therapeutic options. An alternative approach to this problem is the use of animal toxins, such as phospholipases (PLA₂) isolated from snake venom, which have important biological activities. Bothrops erythromelas is one of the snake species in the Northeast of Brazil that attracts great medical-scientific interest. Here we aimed to purify and characterize a PLA₂ from B. erythromelas, searching for heterologous activities against bacterial biofilm. Methods: Venom extraction and quantification were followed by RP-HPLC in C18 column, MALDI-ToF mass spectrometry and sequencing by Edman degradation. All experiments were monitored by specific activity using 4-nitro-3 (octanoyloxy) benzoic acid (4N³OBA) substrate. In addition, hemolytic tests and anti-bacterial tests including action against Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii, were carried out. Moreover, tests of antibiofilm action against A. baumannii were also performed. Results: PLA₂, after one purification step, presented 31 N-terminal amino acid residues, and molecular weight of 13656.4 Da with enzymatic activity confirmed in 0.06 µM concentration. Antibacterial activity against S. aureus (IC₅₀ = 30.2 µM) and antibiofilm activity against A. baumannii (IC₅₀ = 1.1 µM) were observed. Conclusions: This is the first time that PLA₂ purified from B. erythromelas venom has appeared as an alternative candidate in studies of new antibacterial medicines.

Keywords: Bacterial resistance; Animal venom; Purification; Antibacterial and antibiofilm activity

Key Contribution: Antibiofilm activity of phospholipase A₂ isolated from snake venom. PLA₂ isolated from B. erythromelas venom without hemolytic activity in murine blood.

1. Introduction

With the increase in mortality, morbidity and the rising demand for spending on diagnostic and therapeutic procedures, public health problems require attention from the scientific community.
Among the main pathologies in Brazil and worldwide, nosocomial infections, such as infections caused by bacteria, have become more potent due to the increase in bacterial resistance. These increases are characterized by natural and evolutionary processes observed in microorganisms as responses to environmental stimuli, which are intensified by the incorrect use of antibiotics, leading to bacterial resistance to the usual drugs. In the next 30 years, the number of deaths related to bacterial infections might reach 10 million people worldwide and 392,000 in Latin America alone [1, 2, 3, 4].

Bacteria can present two forms of life: the first is planktonic, characterized by independent growth that facilitates their proliferation. The second is as biofilms, which form a community involved in an extracellular matrix composed of several biopolymers, such as extracellular polysaccharides, proteins, DNA and lipids, in addition to the association of other microorganisms, such as fungi [5, 6].

The formation and adhesion of surface bacterial biofilm can be reversible or irreversible, depending on the physical-chemical forces present in the environment. It also depends on the mechanisms of regulation of cell density and collective behavior, called quorum sensing, which allow bacteria to synchronize their gene expression for the formation of biofilm [7, 8, 9, 10, 11, 12]. Biofilm formation seems to be related to gene expression and the presence of structures that alters bacterial conformation to the state of biofilm, like flagella and lashes. The absence of a gene or lack of expression may be directly related to the lack of capacity to form biofilms, even within the same species, depending on different strains [6].

Biofilms provide some benefits to bacteria, including the increased tolerance of such microorganisms to extreme environmental conditions. Furthermore, the exopolysaccharides EPS increases protection against bactericidal agents. This mechanism allows the exchange of genetic material between different species of bacteria and between organisms of the same species, thus facilitating the spread of bacterial resistance, a fact that has aroused interest in the scientific community [12, 13, 14, 15].

On the other hand, the bioprospecting of animal toxin molecules with pharmaceutical application has gained attention, since the variety of these compounds offers alternative candidate sources for the production of new antimicrobial and antitumor drugs for the treatment of viral infections, cancer and parasitic and bacterial infections [16, 17]. Among these sources, snake venoms have a wide variety of components, where about 90% of their dry weight is composed of proteins, among which are phospholipases A2 (PLA2), enzymatic proteins that generally have low molecular weight. These are responsible for catalyzing the hydrolysis of the 3-sn-phosphoglyceride-dependent calcium 2-acyl ester bond, obtaining lysophospholipids and fatty acid products. [18, 19, 20].

These enzymes play an important role in the metabolism of lipid molecules and are also related to the production and release of arachidonic acid (AA), a precursor of bioactive lipids, which participates in cellular activities, due to the release of compounds such as prostaglandins, thromboxane and leukotrienes, characterizing a perception of pain and inflammation [20, 21, 22, 23, 24]. Indeed, bites caused by snakes from the genus Bothrops show pharmacological effects characteristic of PLA2 action, such as inflammation, local pain, anticoagulant effects, and edema. The viper Bothrops erythromelas is found in the caatinga biome of Northeastern Brazil, and it is of the greatest medical pharmacological interest [25, 26].

The PLA2 of snake venoms are similar to each other, but they have different toxicological profiles, such as myotoxicity, neurotoxicity, anticoagulant activity, hemolysis, hyperalgesia, inflammation, edema, cytotoxicity, hypotension and antimicrobial activity [20, 27, 28, 29, 30, 31]. In this context, the antibacterial activity already observed for phospholipases has drawn attention to the use of these toxins as an alternative for the production of medicines. Therefore, this work aimed to purify A2 phospholipases of the venom from B. erythromelas and further evaluate their antibacterial and antibiofilm activities.

2. Results

2.1. Purification and characterization of the PLA2 from B. erythromelas
Following venom extraction and lyophilization, the crude venom was applied to a reverse phase chromatograph (RP-HPLC) using a C18 column. The crude venom exhibited a protein profile of 14 peaks, eluted along the gradient of buffer B (Figure 1a). Peak 8 showed a retention time of 29.4 and was eluted with ~40% of buffer B, corresponding to the PLA2 from B. erythromelas.

Figure 1. Phospholipase A2 (PLA2) purification from B. erythromelas venom. (a) Reverse-phase chromatographic profile, fractions 1 to 14, on a C18 column equilibrated with solvent A (0.1% TFA in water) and eluted with 5-95% solvent B [acetonitrile: solvent A, 9:1, v:v] and a flow rate of 2 mL.min⁻¹. (b) Fraction 8 (VIII) (*) analyzed by mass spectrometry; ion mass-to-charge ratios are indicated, demonstrating single (C) \([M + H]^+\) 13,656,4 Da, double (B) \([M + 2H]^{2+}\) 6,826,5 Da and triple (A) \([M + 3H]^{3+}\) 4,549,9 Da charge states for the same analyte.

In order to confirm the purity of the collected PLA2, the sample was subjected to analysis in a mass spectrometer (Figure 1b), which generated a spectrum with a mass of 13,656,4 Da and the presence of double \([M + 2H]^{2+}\) (6,826,5 Da) and triple \([M + 3H]^{3+}\) (4,549,9 Da) charge, confirming the purity of fraction collected from RP-HPLC.

Figure 2 demonstrates that the PLA2 isoform of B. erythromelas venom in a concentration of 0.06 µM showed enzymatic activity that was three times more powerful than commercial phospholipase (bovine pancreas phospholipase A2 - P9913 Sigma) and the crude venom of the snake, compared to the synthetic substrate acid 4-nitro-3 (octanoyloxy) benzoic acid (4N3OBA).
Figure 2. Comparison between phospholipase activity of the crude venom, the purified fraction of the venom of B. erythromelas, a commercial phospholipase and the BSA of the substrate 4N-OBA in concentration of 0.06 µM. Legend colors: black: PLA₂ isoform; blue: PLA₂ commercial; red: crude venom; green: BSA.

Edman’s degradation provided an amino acid sequence with 31 N-terminal amino acid residues, with 13 hydrophobic residues and no charge. Subsequently, the sequence was submitted to BLAST, where 96% homology was observed for three acidic PLA₂: BpPLA₂-TXI from B. pauloensis, sPLA₂-II from B. diporus and BE-I-PLA₂ from B. erythromelas. To compare the sequences, alignment was performed using ClustalW, where it was possible to observe that only the amino acids Trp₁ and Asp₂⁵ in the sequence of our sample are different from the compared sequences, and the PLA₂ isoform has one hydrophobic residue more than other sequences, configuring a more hydrophobic property for the isoform PLA₂ (Table 1) [32, 33, 34].

Table 1. Sequence alignment of the phospholipase A₂ isoform with phospholipase activity with BpPLA₂-TXI, sPLA₂-II and BE-I-PLA₂, using the ClustalW tool. Legend: asterisk = identity.

Species	Access number	PLA₂	Alignment	Homology (%)	Charge
B. erythromelas	-	PLA₂	WLVQFETLIMKIAGRSGWYYSYDCYGSG		0
B. pauloensis	D0UG0J.1	PL A₂-	NLQVFETLIMKIAGRSGWYYSYDCYGSG	96	+1
B. diporus	AF79208.1	sPL A₂-	NLQVFETLIMKIAGRSGWYYSYDCYGSG	96	+1
B. erythromelas	Q2HZ28.1	BE-I-PLA₂	SLQVFETLIMKIAGRSGWYYSYDCYGSG	96	+1

The similarity observed in the purified fraction with the phospholipases BpPLA₂-TXI, sPLA₂-II and BE-I-PLA₂ offers reliable indications of an acidic characteristic in our sample.

2.2. Hemolytic Activity Assays

Once purified, we investigated the hemolytic activity of PLA₂ from B. erythromelas against murine blood, since the absence of hemolysis is a prerequisite for further biochemical and pharmacological assays. The PLA₂ from B. erythromelas showed no hemolysis when incubated, even at the maximum concentration assayed, from 1.17 to 37.5 µM. This result shows the feasibility for carrying out biological tests with the purified fraction.

2.3. Antibacterial and Antibiofilm activity

The tests showed that the purified PLA₂ isoform exerts activity in Gram-positive strains. In the first tests with Staphylococcus aureus ATCC 7133623, there was activity at all concentrations tested, with the best concentration being 37.49 µM, representing 62 ± 17% of activity, whereas for Escherichia Coli ATCC 25922, low activity was observed at the concentration of 37.49 µM, representing only 12 ± 2% of activity (Table 2).

Table 2. Antibacterial and antibiofilm activity and IC₅₀ in vitro evaluation for PLA₂ against E. coli ATCC 25922, A. baumannii 00332126 and S. aureus ATCC 7133623.

Bacteria	Concentration (µM)	Activity (%)	IC₅₀ (µM)
E. coli ATCC 25922	37.4	12 ± 20	-
S. aureus ATCC 7133623	37.4	62 ± 17	30.2
A. baumannii 00332126	37.4	37 ± 10	-

Table 2. Antibacterial and antibiofilm activity and IC₅₀ in vitro evaluation for PLA₂ against E. coli ATCC 25922, A. baumannii 00332126 and S. aureus ATCC 7133623.
The isolated clinical strain of *Acinetobacter baumannii* 00332126 was then tested. Although it showed greater growth, it also showed better anti-bacterial activity at concentrations of 37.49 µM, representing 37 ± 10% of activity. As *S. aureus* ATCC 7133623 strain did not present biofilm growth, antibiofilm activity was also tested in *A. baumannii* 00332126. The test showed activity at all concentrations through the PLA2 isoform. The best concentration was 1.17 µM, with 53 ± 11% of activity (Table 2). In all strains, the antibiotic inhibited the growth of the bacteria at all concentrations tested.

3. Discussion

Our results present a PLA2 with acidic characteristics that showed a homology of 96% with the only PLA2 already described, so far, for *B. erythromelas* venom (BE-I-PLA2). The main difference in the purification of our PLA2 was in the steps used, because in our work we sought to optimize time by applying only one chromatographic step, RP-HPLC, in a C18 column. In this way, a PLA2 was obtained with a molecular mass of 13,656.4 Da, whereas for the purification of BE-I-PLA2, four steps were applied with different buffers for elution, and column C4 in RP-HPLC, obtaining a PLA2 with a molecular mass of 13,649.57 Da [34].

The use of several steps during the purification of PLA2 from snake venom has been common for a long time. Some studies report the use of at least two stages, such as PLA2 isolated from the venom of *B. alternatius*, *B. asper* and *B. neuwiedi*, using two chromatographic stages, where in the RP-HPLC stages, like us, they used column C18 [35, 36, 37].

Other reports show the use of up to three stages, such as studies involving the species *B. atrox* and *B. jararaca*, which were submitted to different stages and buffers. The other purifications mentioned were the use of a C18 column in the RP-HPLC stage, differing only from BE-I-PLA2 isolated from *B. erythromelas* [34, 38, 39].

More recent studies point to a reduction in the chromatographic steps during the purification of PLA2, as in our work. Using the same methodology applied in the present study, a study involving the species *B. pauloensis* showed the purification of a PLA2 (BpPLA2-TXI), with 96% homology with our isoform. Confirming that the use of only one step is satisfactory during purification, another study was done with the species *B. cotiara*, which used a methodology similar to ours and managed to purify a basic PLA2 with a mass of 13,716 ± 3Da [32, 40].

Therefore, the type of solvent involved in the dilution of the lyophilized sample, as well as the methodology applied, in relation to the linear gradient and the separation column, proved to be important factors for the possible purity of the sample in just one chromatographic step. Thus, it is important to establish the best method of purification, optimizing the time spent on research.

Once purified, we submitted the PLA2 from *B. erythromelas* to enzymatic assays. The enzymatic profile observed in Figure 2 demonstrated that our purification process yielded a catalytically active PLA2, since a high consumption of the substrate by the purified fraction was observed, indicating a possible Asp residue, as in the isoform BE-I-PLA2 reported earlier [34]. Comparing the enzymatic activity of two PLA2 isolated from *B. jararacussu* (BthTx-I and BJVIII) with a commercial PLA2, and using 4N-OBA as substrate, enzymatic activity was observed. This is a basic characteristic of this type of PLA2, determining a PLA2 Lys. Likewise, the enzymatic activity of a PLA2 from *B. neuwiedi urutu*, which contains Lys, was absent when the synthetic substrate 4N-OBA was used [41, 37]. Similarly, studies using the substrate 4N-OBA compared the catalytic activity of a PLA2 (Bmaj-9) isolated from the venom of the snake *B. marajoensis* with the crude venom of the same snake. They observed that Bmaj-9 also showed catalytic activity at a concentration of 1.46 µM, higher than the snake’s crude venom [42].

The N-terminal amino acid sequencing for phospholipase showed two different amino acids when compared with another PLA2 (BpPLA2-TXI; sPLA2-II and BE-I-PLA2). However, the similarity among N-terminal sequences was maintained at 96%. The presence of a Trp indicates the greater hydrophobicity of the sample, since this amino acid has aromatic characteristics with a relatively
non-polar side chain, which also facilitates the absorption of light. The presence of an Asp indicates an increase in the acidic characteristic of our sample, since this amino acid is between the two amino acids that have the negatively charged group R at pH 7.0, thus giving it an acidic property. Asp also justifies the presence of a null charge in the isolated sequence, since the presence of this amino acid increases the positive charges, making them equal to the negative charges, which are consequently annulled [32, 33, 34, 43].

In our study, no hemolytic activity was observed for PLA from B. erythromelas. The lack of hemolytic activity for a PLA is unusual, but studies speculate that some actions of PLA are still not well described, based on the absence of toxicity for some prey. Furthermore, the actions may be related to the evolution of this enzyme, which can be present in the venom gland, but not developing its expected toxic activity. Studies with an acidic PLA (BmooPLA) isolated from B. moojeni showed a presence of hemolytic activity at 0.07 µM [44, 45, 46].

A further study carried out with an acidic PLA isolated from Porthidium nasutum (PnPLA), displayed hemolytic activity from 0.47 µM. Indirect hemolytic activities in sheep blood were also reported for PLA from B. alternatus at 47.26 µM [47, 35]. On the other hand, two PLA from Micrurus fulvius showed absence of intravascular hemolysis in a mouse model [48].

Our findings show that the isoform purified from the B. erythromelas venom showed IC for the Gram-positive strain, whereas for the Gram-negative strains no IC was reached at the assayed concentration. These data are accordance with studies where basic PLA isolated from B. marajoensis venom showed loss of inhibitory activity in all tested strains [49].

The PLA Lys from Lachesis muta venom, also belonging to the Viperidae family, showed antimicrobial activity against S. aureus ATCC 29213 at 0.9 µM. Similarly, studies of a basic PLA isolated from Daboia russelii (Viperidae), showed better antimicrobial effects for Gram-positive bacteria in comparison with Gram-negative bacteria. These data corroborate our findings [50, 51].

It is believed that the antimicrobial activity of PLA, especially those with basic properties, is related to disturbances of bacteria membrane integrity [37, 52, 53]. As Gram-negative bacteria have a cell wall with an outer membrane made up of asymmetric lipids, followed by a layer of peptidoglycans, and an inner membrane made up of phospholipids, it is well established that this conformation makes it difficult for some drugs to enter. This can also be seen in the activity of PLA, since the outer membrane is naturally resistant to the action of PLA [16].

On the other hand, Gram-positive bacteria have only one layer of peptidoglycans followed by an internal cell membrane, showing that they are more susceptible to the action of a PLA. Thus, the low bactericidal activity of some phospholipases in Gram-negative bacteria compared to the activity observed in Gram-positive bacteria is probably related to the structure of their cell wall, which makes Gram-negative bacteria more resistant to the action of toxic compounds [16, 54, 55].

Commercial polypeptide antibiotics, such as bacithramycin, act on Gram-positive bacteria, inhibiting the synthesis of the bacterial cell wall, preventing the addition of amino acids and nucleotides to the cell wall. Based on the mechanism of action observed in polypeptide antibiotics, it is believed that such proteins should act similarly to these antibiotics in the tested bacteria [56, 57].

Research involving the participation of bioactive molecules from several organisms, such as microalgae, plants and animals against biofilm, is ongoing. These molecules have several pharmacological and toxicological actions that can be used as an alternative for production of drugs that help in the treatment of infections caused by microorganisms, an emerging problem in the human population, also caused by biofilm formation [58, 59].

There are several molecular mechanisms involved in the formation of biofilms between species and between strains of bacteria. It is known that a determining factor for the formation of biofilm is the presence of a disturbance or stress caused by bacteria, as well as the presence of proteins or genes that provide for the formation of these matrices. This is observed in S. aureus strains, which have as a determinant for the formation of biofilm the presence of Operon ICA, or even the formation of a biopolymer essential for the formation of biofilm in this species, such as N-acetyl glucosamine [6, 60].
In our experiments, however, we observed that the S. aureus ATCC 7133623 strain is not capable of forming biofilm. For this reason, antibiofilm assays were carried out only with A. baumannii 00332126. Studies involving an antimicrobial peptide isolated from Naja atra (NA-CATH) showed a 50% reduction in the biofilm formation of the bacterium Burkholderia thailandensis at a concentration of 0.22 μM, indicating the proven pharmacological potential of snake venoms organic molecules, corroborating the findings, since they have identified a relevant reduction in the biofilm formation of A. baumannii 00332126 [61].

The antimicrobial peptide Cath-A, purified from Bungarus fasciatus (Elapidae), also reduced A. baumannii biofilm at ≥ 2.2 μM. At a higher concentration (≥ 17.6 μM), Cath-A destroys almost all cells adhering to the biofilm. Further studies with synthetic antimicrobial peptides showed antibiofilm activity against Pseudomonas aeruginosa and A. baumannii with IC₅₀ and IC₅₀ 4 and 8 μM, respectively [62, 63].

In antibiofilm tests with C-type lectins, isolated from B. jararacussu venom, an IC₅₀ at a concentration of 6.67 μM was observed for S. aureus and S. epidermidis, but the protein was not able to interfere in bacterial growth. Similarly, a study involving B. moojeni isolated molecules showing a reduction in biofilm formation, without influencing bacterial growth [64, 65].

In our studies, growth reduction of the biofilm was obtained from the lowest concentration tested. We observed that the achieved antibiofilm activity was about 20% more concentrated in the enzyme activity of the molecule, indicating a strong interaction between the enzyme and its specific substrate, in view of its low concentration. The reported activity, however, is unusual for acidic PLA₂, since antibacterial activity is often present in basic PLA₂, as previously reported. This may explain the activity in biofilm and bacteria at concentrations starting at 20% higher than the enzyme activity of the molecule [49].

This is the first report of an isoform of PLA₂ that exhibits anti-biofilm activity in the literature, demonstrating how molecules from iological sources can contribute to research regarding bacterial infections, acting as an important source of molecules capable of reducing or eradicating biofilms. The PLA₂ from B. erythromelas, purified by our group, is safe for further biological assays, since no hemolytic activity was noticed against murine erythrocytes. These findings emphasize the importance of bioprospection studies with molecules from animal toxins, especially snakes, to control bacterial biofilms, contributing to advances in the control of infections caused by these microorganisms.

4. Conclusions

The purification of the PLA₂ isoform from B. erythromelas venom using a single chromatographic step was reported, resulting in protein with 13,656.4 Da. The amino-terminal portion of the PLA₂ isoform showed 96% of identity with another PLA₂ previously described. Beyond the high enzymatic activity, no hemolytic activity was observed against murine erythrocytes. Notable antibiofilm activity was seen against A. baumannii clinical isolates at a low concentration. These findings confirm that purified molecules from snake venoms possess several biological and pharmacological properties. It is therefore necessary to develop basic research around these components, aiming to develop new drugs for the treatment of various diseases that affect human health.

5. Material and Methods

5.1. Ethics Committee

All experiments developed in this research, using blood and molecules from animals, were submitted to the ethics committee and approved. Venom samples are registered with the Genetic Heritage Management Council (SisGen) under registration: A883C5B. Mus musculus erythrocytes were approved by the ethics committee of Universidade Católica Dom Bosco (UCDB) under registration nº. 014/2018.

5.2 B. erythromelas venom extraction
B. erythromelas venom was collected from 5 adult specimens in captivity at the Zoo for Reptiles of the Caatinga, located in the municipality of Puxinanã, metropolitan region of Campina Grande, state of Paraíba. After lyophilization, the venom was kept at -20°C until use.

5.3 Quantification of venom proteins

After diluting the lyophilized sample in ultrapure water, the Bradford method (1976), was carried out to quantify the proteins present in the purified fraction. Serial dilutions of the sample were used. As standard for these concentrations, Bovine Serum Albumin (BSA) was used in the same concentration as the purified sample. All samples were tested in triplicate [66].

5.4 Purification of venom proteins

The crude venom was subjected to high performance liquid chromatography (Waters and 2695 Separations Module) in a C18 column (Xterra MS 5 µm - 4.6 x 250 mm column). The solvent system was composed of 0.1% trifluoroacetic acid (TFA) in H2O (Solvent A) and 0.1% TFA in acetonitrile (Solvent B) in a flow of 2 mL.min⁻¹ and a linear gradient of 5-95% acetonitrile, for 60 min. Protein peaks were monitored at 216 and 280 nm. The fractions presented in the graphical representation were collected and lyophilized. Subsequently, the fraction with phospholipase activity was selected to be subjected to the mass spectrometer.

5.5 Phospholipase activity

To analyze the phospholipase activity of B. erythromelas venom, the methodology described by Holzer and Mackessy (1996) was used, with changes made by Serino-Silva et. al. (2014) [67, 68]. The substrate for reaction, 4-nitro-3-octanoyloxybenzoic acid (4N₃OBA, Enzy Life Science, USA) was used. As a positive control, a commercial phospholipase with a concentration of 0.06 µM (1mg.mL⁻¹) (bovine pancreas phospholipase A2 - P9913 Sigma) was prepared and BSA was used as negative protein control, at the same concentration.

5.6 Mass spectrometry

To measure the molecular mass of the selected fraction, a matrix-assisted ionization time-of-flight (MALDI-ToF) mass spectrometer (AutoFlex III Smartbeam (Bruker Daltonics, Bremen, Germany)) controlled by Flex Control 3.0 software was used (Bruker Daltonics, Bremen, Germany). A 0.37 µM sample was solubilized in Ultrapure water, mixed (1:1 v:v) in a saturated solution of siapinic acid, as matrix, and applied to the target plate (Bruker Daltonics, Bremen, Germany) to dry at room temperature. The compound had its molecular mass obtained in the positive linear mode after external calibration, with Protein Calibration Standard (Bruker Daltonics, Bremen, Germany). The MALDI-ToF spectra were processed with Flex Analysis 3.0 software (Bruker Daltonics, Bremen, Germany).

5.7 Amino-terminal sequencing of PLA₂ from B. erythromelas

The amino-terminal sequencing was obtained through Edman’s degradation, using an automatic Shimadzu PPSQ-31B/33B, initially calibrated with the PTH-amino acid mixture standard. A sample of the purified PLA₂ was resuspended in 37% acetonitrile and applied onto a nitrocellulose membrane (PVDF) and dried under nitrogen flow. According to the manufacturer’s recommendations, phenyl thiodyantoin amino acids were detected after separation on an RP-HPLC C18 column (4.6 × 250 mm). The resulting sequences were applied to the NCAST protein BLAST search (BLASTP 2.8.0+) and the significant sequences were aligned using ClustalW 1.2.4.

5.8 Hemolysis test

Erythrocytes of Mus musculus were used for the tests. The collected blood was stored at 4 °C until use. The cells were washed three times with 50 mM phosphate buffer, pH 7.4. To the
erythrocyte suspension was added the fraction of B. erythromelas venom referring to phospholipase at a concentration of 0.07 μM, in serial dilution of 1.17 to 37.49 μM in a final volume of 100 mL. The samples were incubated at room temperature for 60 min. After centrifugation at 3000 rpm, hemoglobin release was monitored by reading the absorbance of the supernatant at 425 nm in a Spectramax microplate maker. To control hemolysis, erythrocytes suspended in 5x10^4 μM phosphate buffer, pH 7.4 were used; as a positive control (100% erythrocyte lysis), a 1% (by volume) solution of triton X-100 dissolved in distilled water was used to replace the venom fraction. The tests were performed in triplicate [69].

5.9 Antibacterial activity

Strains of E. coli ATCC 25922, S. aureus ATCC 7133623 and A. baumannii 00332126 (a resistant clinical isolate) were used. For the antibacterial tests, a purified fraction of the venom of the snake B. erythromelas with phospholipase activity was used. The tests to observe the antibacterial activity were performed according to the protocol described by CLSI, using the 96-well microplate dilution method. Three technical replicates were organized on the microplates at a final bacterial concentration of 2.5 x 10^7 UFC.mL^-1. The samples were tested in concentrations ranging from 1.17 to 37.49 μM. For positive control, the antibiotic ciprofloxacin was used in the same concentrations as the samples, while the bacterial suspension in MHB was used as a negative control [70].

5.10 Antibiofilm Activity

Basal Medium 2 (BM2) was used to analyze the biofilm formation. Bacterial cultures of A. baumannii 00332126, proven to be clinical isolate resistant, were used. As bacterial suspensions, they were inoculated into 96-well round-bottom plates, including samples from serial dilutions from 1.17 to 37.49 μM. As negative control, only bacteria were used in the BM2 medium, and as a positive control, the antibiotic ciprofloxacin was used in the same concentrations as the sample. To analyze the growth of planktonic cells, an absorbance of 600 nm was used [71, 72].

To assess for biofilm formation, performed as described by Naves et al, 2019, the biofilm formation was read at an absorbance of 595 nm. All absorbance readings were performed with the Multiskan Go microplate reader (Thermo Scientific). All tests were performed in triplicates [73].

Author Contributions: Ellynes Nunes contributed to the work by carrying out all experiments and writing the article; Breno Frihling contributed to the work by teaching techniques such as Bradford, RP-HPLC and Phospholipase Activity, following the experiments with the lead author; Elizângela Barros contributed to the research by assisting in the anti-film tests; Taylla Flores contributed by helping with the antibacterial test; Caio Oliveira assisted by carrying out the amino acid sequencing by the Edman Degradation method; Newton Verbisk contributed with MALD-ToF; Augusto de Freitas Júnior contributed by evaluating writing and supervising students; Octávio L. Franco contributed by evaluating writing and supervising students; Maria Lígia de Mâcedo contributed with the Edman Degradation method; Ludovico Migliolo, contributes as a co-advisor, providing space at the S-Inova Laboratory of the Catholic University Dom Bosco, and following the tests performed, as well as correcting the writing of this article; Karla Luna, as a work advisor, contributed in helping with the formation of the objectives and in the development of the experimental design of the research, as well as supervising the writing of this article, making the necessary contributions.

Funding: This research was funded by the agency CAPES (Coordination for the Improvement of Higher Education Personnel). https://https://www.capes.gov.br/.

Acknowledgments: To the research funding agency CAPES (Coordination for the Improvement of Higher Education Personnel) for the scholarship during the period of this work. To the Federal University of Paraíba and the Catholic University Don Bosco for welcoming the first author as a student during this research.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. LIVERMORE DM. Minimizing antibiotic resistance. Lancet Infect Dis 2005, Volume 10, pages 18-22. DOI: 10.1016/S1473-3099(05)70166-3.
2. LOUREIRO, R. J.; ROQUE, F.; RODRIGUES, A.T.; HERDEIRO, M.T.; RAMALHEIRA, E. O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Revista Portuguesa de Saúde Pública 2016, Volume 34, pages 77-84. DOI: 10.1016/j.rpsp.2015.11.003.

3. World Health Organization. Containing antimicrobial resistance. Geneva, Switzerland: WHO; 2018. Available in: <https://www.who.int/antimicrobial-resistance/en/> Accessed in: 06.23.2019.

4. Prevenção e Controle de Infecções e de Resistência aos Antimicrobianos– 2017: Programa de Prevenção e Controle de Infeções e de Resistência aos Antimicrobianos 45. Available in: <https://www.sns.gov.pt/wp-content/uploads/2017/12/DGS_PCIRA_V8.pdf> Accessed in: 01.15.2019.

5. COSTERTON, J.W.; IRVIN, R.T.; CHENG, K.J. The Bacterial Glocalyx in Nature and Disease. Annu Rev Microbiol 1981, Volume 35, pages 299-304. DOI:10.1146/annurev.mi.35.100181.001503.

6. LÓPEZ, D.; VLAMAKIS, H.; KOLTER, R. Biofilms. Cold Spring Harbor Perspectives in Biology 2010, Volume 2 (2), pages: 1-11. DOI: 10.1101/cshperspect.a000398.

7. DONLAN, R.M.; COSTERTON, J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews 2015, Volume 18, pages 157-193. DOI: 10.1128/cmr.15.2.167-193.2002.

8. OLIVEIRA, M.M.M.; BRUGNERA D.F.; PICCOLI, R.H. Biofilmes microbianos na indústria de alimentos: uma revisão. Rev Inst Adolfo Lutz 2010, Volume 69(3), pages :277-284.

9. RENNER, L.D.; WEIBEL, D.B. Physicochemical regulation of biofilm formation. MRS Bull 2011, Volume 36(5), pages: 347-355. DOI: 10.1557/mrs.2011.65.

10. WEST, S.A.; WINZER, K.; GARDNER, A.; DIGGLE, S.P. Quorum sensing and the confusion about diffusion. Trends Microbial 2012, Volume 20(12), pages: 586–594. DOI: 10.1016/j.tim.2012.09.004.

11. TRENTIN, D.; GIORDANI, R.; MACEDO, ALEXANDRE. Biofilmes bacterianos patogênicos: Aspectos gerais, importancia clínica e estratégias de combate. Revista Liberato 2013, Volume 14 (22), page 213. DOI: 14.213. 10.31514/htmler.2013v14n22.p213.

12. RABIN, N.; ZHENG, Y.; OPOKU-TEMENG, C.; DU, Y.; BONSU, E.; SINTIM, H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015, Volume 4, pages: 493-512. DOI: 10.4155/fmc.15.6.

13. COSTERTON, L.W.; LEWANDOWSKI, Z.; DEEBER, D.; CALDWELL, D.; KORBER, D.; JAMES, G. Biofilms, the customized microniche. J Bacterial 1994, Volume 176(8), pages: 2137–2142. DOI: 0021-9193/94/$04.00+0.

14. DONLAN, R.M. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002, Volume 8(9), pages 881-890. DOI: 10.3201/eid0809.020063.

15. CHANDRA J.; MUKHERJEE, P.K. Candida Biofilms: Development, Architecture, and Resistance. Microbial Spectr 2015, Volume3(4), pages 1-24. DOI: 10:1128/microbiolspec. MB-0020-2015.

16. NEVALAINEN, T. J.; GRAHAM, G. G.; SCOTT, K. F. Antibacterial actions of secreted phospholipases A2. Review. Biochimical and Biophysical Acta (BBA)-Molecular and Cell Biology of Lipids 2008, Volume 1781 (1-2), pages 1-9. DOI: 10.1016/j.bbalip.2007.12.001.

17. SAMY, R.P.; GOPALAKRISHNAKONE, P.; CHOW, V.T.K.; HO, B. Viper metalloproteinase (Agkistrodon halyspallas) with antimicrobial activity against multi-drug resistant human pathogens. Journal of cellular physiology 2008, Volume 216(1), pages 54-68. DOI:10.1002/jcp.21373.

18. MOREIRA, V.; DE CASTRO SOUTO, P.C.; RAMIREZ VINOLO, M.A.; LOMONTE, B.; GUTIÉRREZ, J. M.; CURI, R.; TEIXEIRA, C. A catalytically-inactive snake venom Lys49 phospholipase A2 homolog induces expression of cyclooxygenase-2 and production of prostaglandins through selected signaling pathways in macrophages. Eur J Pharmacol 2013, Volume 708(1-3), pages 68-79. DOI: 10.1016/j.ejphar.2013.01.061.

19. DIAS, R. G.; SAMPAIO, S.C.; SANT’ANNA, M.B.; CUNHA, F.Q.; GUTIÉRREZ, J.M.; LOMONTE, B.; CURY, Y.; PICOLO, G. Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A2: activation of endogenous phospholipases contributes to the pronociceptive effect. Biomed Central 2017, Volume 23(18), pages 1-13. DOI: 10.1186/s40409-017-0104-0.

20. VINDAS, J. CARRERA, Y.; LOMONTE, B.; GUTIÉRREZ, J.M.; CALVETE, J.J.; SANZ, L.; FERNÁNDEZ, J. A novel pentameric phospholipase A2 myotoxin (PophPLA2) from the venom of the pit viper Porthidium ophryomegas. Int J Biol Macromol 2018, Volume 118, Part A, pages 1-8. DOI: 10.1016/j.ijbiomac.2018.06.028.

21. SCOTT, D.L., WHITE, S.P.; OTWINOWSKI, Z.; YUAN, W.; GELB, M.H.; SINGLER, P.B. Interfacial catalysis: the mechanism of phospholipase A2. Science 1990, Volume 250, pages 1541-1546. DOI: 10.1126/science.2274785.
22. SCHALOSKE, R. H.; DENNIS, E. A. The phospholipase A2 superfamily and its group numbering system. Biochimica et Biophysica Acta (BBA) 2006, Volume 1761(11), pages 1246-1259. DOI: 10.1016/j.bbalip.2006.07.011.

23. DE MARIA, L.; VIND, J.; OXENBOLL, K.M.; SVENDSEN, A.; PATKAR, S. Phospholipases and their industrial applications. Appl Microbiol Biotechnol 2007, Volume 74(2), pages 290-300. DOI: 10.1007/s00253-006-0775-x.

24. GUTIÉRREZ, J.M.; RUCAVADO, A.; CHAVES, F.; DÍAZ, C. ESCALANTE, T. Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon 2009, Volume 54(7), pages 958-975. DOI: 10.1016/j.toxicon.2009.01.038.

25. JORGE R.J.B., MONTEIRO, H.S., GONÇALVES-MACHADO, L., GUARNIERI, M.C., XIMENES, R.M.; BORGES-NOJOSA, D.M.; LUNA, K.P.; ZINGALI, R.B.; CORRÉA-NETTO, C.; GUTIÉRREZ, J.M.; SANZ, L.; CALVETE, J.J.; PLA, D. Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. J Proteomics 2015, Volume 30(114), pages 93-114. DOI: 10.1016/j.jprot.2014.11.011.

26. NERY, N.M.; LUNA, K.P.O.; FERNANDES, C.F.C.; ZULIANI, J.P. An overview of Bothrops erythromelas venom. Rev Soc Bras Med Trop 2016, Volume 49(6), pages 680-686. DOI: 10.1590/0037-8682-2016-10.1590/0037-8682-2016-0195.

27. KINI, R.M.; EVANS, H.J. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 1989, Volume 27(6), pages 613-635. DOI: 10.1016/0041-0101(89)90013-5.

28. KINI, R.M. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003, Volume 42 (8), pages 827-840. DOI: 10.1016/j.toxicon.2003.11.002.

29. SOARES, A.; FONTES, M.; GIGLIO, J. Phospholipase A2 Myotoxins from Bothrops Snake Venoms: Structure - Function Relationship. Curr. Org. Chem 2004, Volume 8, pages 1677-1690. DOI: 10.2174/138920730469610.

30. MONTECUCCO, C.O.; ROSSETTO, O.; CACCIN, P.; RIGONI, M.; CARLI, L.; MORBIATO, L.; MURARO, L.; PAOLI, M. Different mechanisms of inhibition of nerve terminals by botulinum and snake presynaptic neurotoxins. Toxicon 2009, Volume 54 (5), pages 561-564. DOI: 10.1016/j.toxicon.2008.12.012.

31. GUTIÉRREZ, J.M.; LOMONTE, B. Phospholipases A2: Unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon 2013, Volume 62, pages 27-39. DOI: 10.1016/j.toxicon.2012.09.006.

32. RODRIGUES, R. S., BOLDRINI-FRANÇA, J.; FONSECA, F.P.; DE LA TORRE, P.; HENRIQUE-SILVA, F.; SANZ, L.; CALVETE, J.J.; RODRIGUES, V.M. Combined snake venomics and venom gland transcriptomic analysis of Bothropoides pauloensis. Journal of Proteomics 2012, Volume 75(9), pages 2707–2720. DOI: 10.1016/j.jprot.2012.03.028.

33. YUNES QUARTINO, P. J.; BARRA, J. L., & FIDELIO, G. D. Cloning and functional expression of secreted phospholipases A2 from Bothrops diporus (Yarará Chica). Biochemical and Biophysical Research Communications 2012, Volume 427(2), pages 321–325. DOI: 10.1016/j.bbrc.2012.09.051.

34. MODESTO, J.C.A.; SPENCER, P. J.; Fritzen, M.; VALENÇA, R.C.; OLIVIA, M.L.V.; SILVA, M.B.; CHUDZINSKI-TAVASSI, A.M.; GUARNIERI, M.C. BE-I-PLA2, a novel acidic phospholipase A2 from Bothrops erythromelas venom: Isolation, cloning and characterization as potent anti-platelet and inducer of prostaglandin E2 release by endothelial cells. Biochemical pharmacology 2006, Volume 72(3), pages 377-384. DOI: 10.1016/j.bcp.2006.04.032.

35. GARCIA DENEGRI, M.E.; ACOSTA, O.C.; HUANCAHUIRE-VEJA, S.; MARTINS-DE-SOUZA, D.; MARANGONI, S.; MARUÑAK, S.L.; TEIBLER, G.P.; LEIVA, L.C.; PONCE-SOTO, L.A. Isolation and functional characterization of a new acidic PLA2: Ba SpII RP4 of the Bothrops alternatus snake venom from Argentina. Toxicon 2010, Volume 56(1), pages 64-74. DOI: 10.1016/j.toxicon.2010.02.031.

36. PEREANEZ, J.A.; QUINTANA, J.C.; ALARCÓN, J.C.; NÚÑEZ, V. Isolation and functional characterization of a basic phospholipase A2 from Colombian Bothrops asper venom. Vitae, Revista de la Facultad de Química Farmacéutica 2014, Volume 21 (1), pages 38-48. ISSN 0121-4004.

37. CORRÉA, E.A.; KAYANO, A. M.; DINIZ-SOUZA, R.; SETÚBAL, S.S.; ZANCHI, F.B.; ZULIANI, J.P.; MATOS, N.B.; ALMEIDA, J.R.; RESENDE, L.M.; MARANGONI, S.; SILVA, S.L.; SOARES, A. M.; CALDERON, L.A. Isolation, structural and functional characterization of a new Lysα phospholipase A2 homologue from Bothrops neuwiedii irutu with bactericidal potential. Toxicon 2016, Volume 115, pages 13-21. DOI: 10.1016/j.toxicon.2016.02.021.

38. MENALDO, D.L.; JACOB-FERREIRA, A.L.; BERNARDES, C.P.; CINTRA, A.C.O.; SAMPAIO, S.V. Purification procedure for the isolation of a P-I metalllopeptase and an acidic phospholipase A2 from
Bothrops atrox snake venom. Journal of Venomous Animals and Toxins including Tropical Diseases 2015, Volume 21(28), pages 1-14. DOI: 10.1186/s40409-015-0027-6.

39. CEDRO, R.C.A.; MENALDO, D.L.; COSTA, T.R.; ZOCCAL, K.F.; SARTIM, M.A.; SANTOS-FILHO, N.A.; FACCIOLI, S.H.; SAMPAIO, S.V. Cytotoxic and inflammatory potential of a phospholipase A2 from Bothrops jararaca snake venom. Journal of Venomous Animals and Toxins including Tropical Diseases 2018, Volume 24(33), pages 1-14. DOI: 10.1186/s40409-018-0170-y.

40. DE ROODT, A.; FERNÁNDEZ, J.; SOLANO, D.; LOMONTE, B. A myotoxic Lysα phospholipase A2 homologue is the major component of the venom of Bothrops cotiara from Misiones, Argentine. Toxicon 2018, Volume 148, pages 143-148. DOI: 10.1016/j.toxicon.2018.04.026.

41. FAGUNDES, F.H.R.; APARICIO, R.; DOS SANTOS, M.L.; DIZ, E.B.S.; OLIVEIRA, S.C.B.; TOYAMA, D.O.; TOYAMA, M.H. A Catalytically Inactive Lysα PLA: Isoform from Bothrops jararacussu venom that Stimulates Insulin Secretion in Pancreatic Beta Cells. Protein & Peptide Letters 2011, Volume 18(11), pages 1133-1139. DOI: 10.2174/092986611797200940.

42. GALBIATTI, C.; ROCHA, T.; RANDAZZO-MOURA, P.; PONCE-SOTO, L.A.; MARANGONI, S.; CRUZ-HÖFLING, M.A.; RODRIGUES-SIMIONI, L. Pharmacological and partial biochemical characterization of Bmaj-9 isolated from Bothrops marajoensis snake venom. The Journal of Venomous Animals and Toxins including Tropical Diseases 2012, Volume 18, pages 62-72. DOI: 10.1590/S1678-9199201200100008.

43. FERNANDES, C.A.H.; BORGES, R.J.; LOMONTE, B.; FONTES, M.R.M. A structural-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. Biochimica et Biophysica Acta 2014, Volume 1844, pages 2265-2276.

44. FERNÁNDEZ, J.; GUTIÉRREZ, J.M.; ÁNGULO, Y.; SANZ, L.; JUÁREZ, P.; CALVETE, J.J.; LOMONTE, B. Isolation of an acidic phospholipase A2 from the venom of the snake Bothrops asper of Costa Rica: Biochemical and toxicological characterization. Biochimie 2010, Volume 92, pages 273-283. DOI: 10.1016/j.bioch.2009.12.006.

45. VAN DER LAAT, M.; FERNÁNDEZ, J.; DURBAN, J.; VILLALOBOS, E.; CAMACHO, E.; CALVETE, J.J.; LOMONTE, B. Amino acid sequence and biological characterization of BlatPLA2, a non-toxic acidic phospholipase A2 from the venom of the arboreal snake Bothriechis lateralis from Costa Rica. Toxicon 2013, Volume 73, pages 71-80. DOI: 10.1016/j.toxicon.2013.07.008.

46. SILVEIRA, L.B.; MARCHI-SALVADOR, D.P.; SANTOS-FILHO, N.A.; SILVA, F.P.; MARCUELI, S.; FULY, A.L.; NOMIZO, A.; DA SILVA, S.L.; STÁBEL, R.G.; ARANTEES, E.C.; SOARES, A.M. Isolation and expression of a hypotensive and anti-platelet acidic phospholipase A2 from Bothrops moojeni snake venom. Journal of Pharmaceutical and Biomedical Analysis 2013, Volume 73, pages 35-43. DOI: 10.1016/j.jpba.2012.04.008.

47. VARGAS, L.J.; LONDOÑO, M.; QUINTANA, J.C.; RUA, C.; SEGURA, C.; LOMONTE, B.; NÚÑEZ, V. An acidic phospholipase A2 with antibacterial activity from Porphyridium nasutum snake venom. Comparative Biochemistry and Physiology 2012, Volume 161, pages 341–347. DOI: 10.1016/j.cbpb.2011.12.010.

48. FERNÁNDEZ, M.L.; QUARTINO, P.Y.; ARCE-BEJARANO, R.; FERNÁDEZ, J.; CAMACHO, L.F.; GUTIÉRREZ, J.M.; KUEMMEL, D.; FIDELIO, G.; LOMONTE, B. Intravascular hemolysis induced by phospholipase A2 from the venom of the Eastern coral snake, Micruroides fulvius: functional profiles of hemolytic and non-hemolytic isoforms. Toxicology Letters 2018, Volume 286, pages 39-47. DOI: 10.1016/j.toxlet.2017.11.037.

49. COSTA-TORRES, A.F.; DANTAS, R.T.; TOYAMA, M.H.; DIZ FILHO, E.; ZARA, F.J.; RODRIGUES DE QUEIROZ, M.G.; PINTO NOGUEIRA, N.A.; ROSA DE OLIVEIRA, M.; DE OLIVEIRA TOYAMA, D.; MONTEIRO, H.S.; MARTINS, A.M. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and L-aminoacid oxidase. Toxinicon 2010, Volume 55, pages 795–804. DOI: 10.1016/j.toxicon.2009.11.013.

50. DINIZ-SOUZA, R.; CALDEIRA, C.A.S.; KAYANO, A.M.; PALOSCHI, M.V.; PIMENTA, D.C.; SIMÕES-SILVA, R.; FERREIRA, A.S.; ZANCHI, F.B.; MATOS, N.B.; GRABNER, F.P.; CALDERON, L.A.; ZULIANI,J.P.; SOARES, A.M. Identification of the Molecular Determinants of the Antibacterial Activity of LmutTX, a Lysα Phospholipase A2 Homologue Isolated from Lachesis muta muta Snake Venom (Linnaeus, 1766). Basic & Clinical Pharmacology & Toxicology 2018, Volume 122(4), pages 413-423. DOI: 10.1111/bcpt.12921.
51. SUDHARSHAN, S.; DHANANJAYA, B.L. Antibacterial potential of a basic phospholipase A2 (VRV-PL-VILA) from Daboia russelli pulchella (Russell’s viper) venom. Journal of Venomous Animals and Toxins including Tropical Diseases 2015, Volume 21, pages 1-8. DOI 10.1186/s40409-015-0014-y

52. YAN, X.M., ZHANG, S.Q., CHANG, Q., LIU, P., XU, J.S. Antibacterial and antifungal effects of Agkistrodon halys Pallas: purification of its antibacterial protein-LAO. Shiyan sheng wuxue bao 2000, Volume 33, pages 309-316. PMID: 12549069

53. SOARES, A.M., GUERRA-SIA, R., BORJA-OLIVEIRA, C.R., RODRIGUES, V.M., RODRIGUES-SIMIONI, L., RODRIGUES, V., FONTES, M.R.M., LOMONTE, B., GUTIERREZ, J.M., GIGLIO, J.R. Structural and functional characterization of BnSP-7, a Lys49 myotoxophilic phospholipase A2 homologue from Bothrops neuwiedi pauloensis venom. Arch. Biochim. Biophys 2000, Volume 378, pages 201-209. DOI: 10.1006/abbi.2000.1790

54. FURTADO, M.F.D. Biological and immunological properties of the venom of Bothrops alcatraz, and endemic species of pitviper from Brazil. Comparative Biochemistry and Physiology 2005, Volume 141(2), pages 117-123. DOI: 10.1016/j.cca.2004.09.016.

55. RAEITZ, C.R.H.; WHITFIELD, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem 2002, Volume 71, pages 635–700. DOI: 10.1146/annurev.biochem.71.110601.135414.

56. DELCOUR, A.H. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 2009, Volume 1794(5), pages 808-16. DOI: 10.1016/j.bbabap.2008.11.005.

57. BULA DE NEMACETIN-ANVISA. Disponível em: <http://www.anvisa.gov.br/datavisa/frmVisualizarBula.asp?pNuTransacao=21331052016&pIdAnexo=3776379> Acessado em: 09.10.2019.

58. VILLA, F.; CAPPITELLI, F. Plant-derived bioactive compounds at sub-lethal concentrations towards smart biocide-free antibiofilm strategies. Phytochemistry Reviews 2013, Volume 12(1), pages 245-254. DOI: 10,1007/s11101-013-9286-4.

59. LAURITANO, C.; ANDERSEN, J.H.; HANSEN, E.; ALBRIGSTEN, M.; ESCALERA, L.; ESPO, F.; HELLELAND, K.; HANNSSEN, K.; ROMANO, G.; IANORA, A. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Front. Mar. Sci 2016, Volume 3, pages 68. DOI: 10.3389/fmars.2016.00068.

60. O’GARA, J.P. Ica and beyond: Biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 2007, Volume 270, pages 179–188. DOI: 10.1111/j.1574-6968.2007.00688.x.

61. BLOWER, R.J.; BARKSDALE, S.M.; VAN HOEK, M.L. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis. PLoS Negl Trop Dis 2015, Volume 9(7), pages 1-16. DOI: 10.1371/journal.pntd.0003862.

62. TAJBAKHSI, M.; AKHAVAN, M.M; FALLAH, F.; KARIMI, A. A Recombinant Snake Cathelicidin Derivative Peptide: Antibiofilm Properties and Expression in Escherichia coli. Biomolecules 2018, Volume 8, pages 118. DOI: 10.3390/biom8040118.

63. MOHAMED, F.M.; BREZDEN, A.; MOHAMMAD, H.; CHMIELEWSKI, J.; SELEEM, M.N. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Scientific Reports 2017, Volume 7(6953), pages 1-13. DOI: 10.1038/s41598-017-07440-0.

64. KLEIN R.C.; FABRES-KLEIN, M.H.; DE OLIVEIRA, L.L.; FEIO, R.N.; MALOUIN, F.; RIBON A.D.O.B. A C-Type Lectin from Bothrops jararacussu Venom Disrupts Staphylococcal Biofilms. PLoS ONE 2015, Volume 10(3), pages 1-16. DOI: 10.1371/journal.pone.0120514.

65. CANHAS, I.N.; HENEINE, L.G.D.; FRAGA, T.; ASSIS, D.C.S.; BORGES, M.H.; CHARTONE-SOUZA, E.; NASCIMENTO, A.M.A. Antibacterial activity of different types of snake venom from the Viperidae family against Staphylococcus aureus. Acta Scientiarum Biological Sciences 2017, Volume 39(3), pages 309-319. DOI: 10.4025/actascibiolsci.v39i3.33826.

66. BRADFORD, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. And Biochem. 1976, Volume 72, pages 248-254. DOI: 10.1016/0003-2697(76)90527-3.

67. HOLZER M, MACKESSY, S. An aqueous endpoint assay of snake venom phospholipase A2. Toxicon 1996, Volume 34, pages 1149-1155. DOI: 10.1016/0041-0101(96)00057-8.
68. SERINO-SILVA, C.; MORAIS-ZANI, K.; TOYAMA, M.H.; TOYAMA, D.O.; GAETA, H.H.; RODRIGUES, C.F.B.; AGUIAR, W.S.; TASHIMA, A.K.; GREGO, K.F.; TANAKA-AZEVÊDO, A.M. Purification and characterization of the first γ- phospholipase inhibitor (γPLI) from Bothrops jararaca snake serum. *PLoS ONE* 2018, Volume 13(3), pages 1-16. DOI: 10.1371/journal.pone.0193105.

69. CARDOSO, M.H; RIBEIRO, S.M.; NOLASCO, D.O.; DE LA FUENTE-NÚÑEZ, C. FELÍCIO, M.R.; GONÇALVES, S. MATTOS, O. C.; LIAO, L.M.; SANTOS, N.C.; HANCOCK, R.E.W.; FRANCO, O.L.; MIGLIOLO, L.A polyalanine peptide derived from polar fish with anti-infectious activities. *Sci. Rep.* 2016, Volume 6, pages 1-15. DOI: 10.1038/srep21385.

70. HECHT, D.W; CITRON, D.M.; DZINK-FOX, J.; GREGORY, W.W.; JACOBUS, N.V.; JENKINS, S.G.; ROSENBLATT, J.E.; SCHUETZ, A.N.; WEXLER, H. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard, 5 ed.; Eighth Edition, EUA, 2012, 1-39.

71. DE LA FUENTE-NÚÑEZ, C.; REFFUVEILLE, F.; HANEY, E.F.; STRAUS, S.K.; HANCOCK, R.E.W. Broad-Spectrum Anti-biofilm Peptide That Targets a Cellular Stress Response. *PLoSPathog.* 2014, Volume 10(5), pages 1-12. DOI: 10.1371/journal.ppat.1004152.

72. DE LA FUENTE-NÚÑEZ, C.; REFFUVEILLE, F.; MANSOUR, S.C.; RECKSEIDLER-ZENTENO, S.L.; HERNÁNDEZ, D.; BRACKMAN, G.; COENYE, T.; HANCOCK. R. E. D-enantiomeric peptides that eradicate wild-type and multi-drug resistant biofilms and protect against lethal *Pseudomonas aeruginosa* infections. *Chem Biol*. 2015, Volume 19; 22(2), pages 196–205. DOI: 10.1016/j.chembiol.2015.01.002.

73. NAVES, P.; DEL PRADO, G.; HUELVES, L.; GRACIA, M.; RUIZ, V.; BLANCO, J.; SORIANO, F. Correlation between virulence factors and in vitro biofilm formation by *Escherichia coli* strains. *Microbial pathogenesis* 2008, Volume 43 (2), pages 86-91. DOI: 10.1016/j.micpath.2008.03.003.