Test Investigation on Glass Fiber Reinforced Concrete as Crack Arrester

M Tholkapiyan* and R Veeramanikandan
Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai, Tamil Nadu, India
E-mail: *tholkapiyanm.sse@saveetha.com

Abstract. The main aim of this research is to investigate the properties of glass fibers as admixtures in the concrete to attain very high strength and durability achievement for a long period. Glass fibers are extremely very fine fiber glasses, and it is one of the types of Fiber Reinforced Concrete (FRC). This usage of glass fibers in a very small amount will give high strength and strain hardening behavior. Even though glass fibers are not so strong as polymer and carbon fibers, but it is cheaper also more brittle when compared to other fibers.

Keywords: Glass Fiber; Reinforced Concrete; Cement; water; Glass fibers

1. Introduction
Fiber Reinforced concrete (FRC) is getting exceptionally well known in the [1] present development. The expansive assessment has been this field also still. There is a huge load of augmentations to do headway on Fiber Reinforced Concrete advancement. Glass fiber was generally utilized in now daily's in Fiber [2] Reinforced Concrete (FRC) for the most recent many years. Notwithstanding, different strands (normal and fake) like glass, plastic, nylon, squander elastic, jute, bamboo, and so on are additionally discovered extremely helpful in Fiber Reinforced Concrete (FRC).

Throughout the [3] most recent couple of years’ new glass fiber fortified cement classes was created everywhere in the world. Thus, Glass Fiber Reinforced (GFR) at the boondocks of these lessons incorporates exceptionally High Strength Concrete (VHSC) with compressive strength of 100 to 200 Mpa also Engineered Cementations Composite (ECC) with pliable flexibility of 3-6%, also, multi-breaking qualities. The improvement of these two lessons of Fiber Reinforced Concrete (FRC) depended on two diverse plan ways of thinking that focused on two [4] distinctive underlying exhibitions. VHSC also comparative high strength cement was intended to accomplish size proficiency for enormous constructions and to give extra strength edge for deliberately basic and defensive constructions. Of course, ECC also relatively High Recital Polyethylene Fiber Reinforced cementations merged were made to ensure flexibility [5] of hidden parts also huge energy maintenance even with phenomenal weight dislodging events, for instance, shudders.

The essential capacity of GFRC is to give high malleable malleability and strain limit while keeping up self-controlled tight miniature break widths. ECC with a high strain limit (300 to multiple times more prominent than typical cement) while keeping up low break widths (under 60µm) could resolve numerous issues and [6] refining constructability (quicker development also better concrete) just as upgrading malleability and solidness.
2. Objectives and Scope of work
The fundamental goals and extent of this venture are the accompanying
1. To determine durability properties in terms of strength characteristics of glass fiber reinforced concrete specimen.
2. The core aim was to study the influence, properties, and usage of glass fiber [7] reinforced concrete on different percentage addition in concrete.
3. To make proposals for creating high strength combinations with glass strands and to accomplish high pliability and strain solidifying conduct.

3. Methodology
In this research, glass fiber reinforced concrete is a combination of cement, fine aggregate; coarse aggregate also mainly glasses fibers in small amounts. [8] The properties of every one of these materials ought to be examined in Figure 1 with details procedure. In the present study, apart from the above, glass fibers are also used. The specimens were cast by using different percentages of glass fibers.

3.1 Flow chart of raw materials:

![Figure 1 Test flow of materials collection](image)

Figure. 1 Test flow of materials collection
3.2 *Material properties*
The properties of the materials used, namely cement, fine aggregate, coarse aggregate, and glass fiber, are studied. Sieve analysis was done for fine aggregate sand and coarse aggregate gravel to test their suitability for use in concrete as coarse and fine aggregate, and the specific gravity of the material also found out. Glass fibers play a vital role in this concrete material and the properties of these fibers were found out.

Cement:
Concrete is a latch, a substance used for improvement that sets, hardens, and sticks to various materials, limiting them together. Concrete is just once used in isolation, yet rather to tie sand and rock (all-out) together. Concrete is used with fine complete to convey mortar for stonework or with sand and rock aggregates to make concrete.

Fine aggregate:
Totals are inactive granular materials, for instance, sand, rock, or grit that is an eventual outcome by their own doing. They are moreover the crude materials that are a pivotal fixing in concrete. Totals, which address 60 to 75 percent of the absolute volume of cement, are secluded into two clear portrayals fine and coarse totals.

Fine totals generally involve basic sand or grit, with most particles going through a 9.5mm sifter. Fine totals generally involve ordinary sand or grit, with most particles going through an inch sifter. Fine totals are trademark sand that has been washed and sieved to check particles greater than 5mm. The code to be alluded to to comprehend the details for fine totals are IS: 383-1970.

Water
Water is a key ingredient in the manufacture of concrete as per IS: 456-2000. [11] Consideration ought to be given to the nature of water utilized in cement. The good quality concrete can be made with water which should be clean and portable. Water should be evaded on the off chance that it contains an enormous measure of broke up solids or a considerable measure of natural materials.

Specific gravity of water = 1
PH Value = 7 to 9.

Coarse aggregate
The total size is greater than 4.75 mm is considered as coarse total are accessible fit as a fiddle like adjusted or sporadic or mostly adjusted, rakish, flaky and so on. It ought to be free of any natural pollution, and the soil content was unimportant. The size of 20 mm coarse total has been chosen for the examination. [14] The physical properties will be tested as per IS 2386 (part -1)-1963. The fineness modulus of the coarse total is 5.95 with sp. gravity of 2.81.

Glass fibers
Glass can be finely spun into filaments that are flexible to be woven into materials. Smooth materials, over their glass progress temperature, Tg. Glass filaments are utilized in assembling underlying composites, printed circuit sheets, and a wide scope of unique reason items. [15] The fundamental part of glass filaments is silica (silicon dioxide (SiO2)) got from common sand, and the thick melts can be solid melts ordinarily containing 50-100% SiO2 and 0-25% Al2O3. The glass's temperature leaving a tip is normally in the scope of 1150-1300ºc, contingent on the creation of the glass. The glass will be regularly streamed out of the bushing under the power of gravity into strands on the request for 1mm breadth. Figure 2 explains about Test flow of Experimental program: (Glass fiber concrete)
Experimental program: (Glass fiber concrete)

- Concrete mix
- Addition of 0%, 2%, 4% and 6% glass-fiber reinforced concrete
- The casting of concrete cubes
- Curing for 7, 14 and 28 days
- Compression test for 7, 14 and 28 days
- Result

Figure 2: Test flow of Experimental program: (Glass fiber concrete)

SPECIMEN	APPLIED LOAD (KN)	AVERAGE LOAD (KN)	% INCREASE IN STRENGTH
Conventional Concrete	20 KN	10 KN	3%
2% of glass fiber concrete	20 KN	10 KN	5
4% of glass fiber concrete	20 KN	10 KN	8
6% of glass fiber concrete	20 KN	10 KN	12

Table 1: 28th Day Compressive Strength of Concrete Cubes

4. Discussion
The present study of glass fiber in concrete has fulfilled most of the objectives of the study work. I have mentioned the conclusion below based on the research. In this thesis, glass fiber is used as a crash arrester in concrete. Breaking of cement is an irregular cycle, exceptionally factor and affected in numerous elements. However, one process is insured longer the crash, higher the stress attentions induced by it. Because of a break in a design, the strength of the construction will diminish dynamically with the
expansion of the break size. Accordingly, the design will be dependent upon disappointment when its solidarity turns out to be low to the point that a break happens under typical stacking. Therefore, Cracks in solid constructions ought not to be underestimated, yet, they should be forestalled, which can be satisfied by glass fiber built-up concrete. Table 1 discusses about 28th Day Compressive Strength of Concrete Cubes.

The test examples for compressive strength were made of shapes having a size of 150 mm x 150 mm x 150 mm cast iron steel molds were utilized. For each blend extent, three blocks were projected and tried at seven years old days, 14 days and 28 days. Lingering compressive is strength of the glass fiber built-up solid increases around 80-90 % of the complete compressive strength inside seven days.

5. Conclusion
The principal point was to contemplate the impact of glass fiber on the properties of FRP combinations. The shifting measure of glass fiber on FRC blends affected the properties, which is summed up as follows. All in all, droop stream diminished with the utilization of over 1% through the volume of glass fiber. Altogether FRC combinations were durable, tacky also not stream capable. However, all GFRC blends were functional for project examples. By and large, an increment in glass fiber volume expanded the territory under the heap diversion bend, which meant the higher break energy of FRC blends. The 28-days break energies were 130 N/m also 77 N/m for FRC blend with 3% and 1.5% through the volume of glass fiber exclusively. The setting time for FRC combinations was around 9 hours, besides blends with higher glass fiber content had higher time. Temperature development with time showed a comparable pattern of variety appearing in glass fiber in concrete. Modulus of flexibility expanded with the expansion of glass fiber by volume. Solid blends have a modulus of the flexibility of around 32.4 Gpa. The thickness of the solid blend was 2475 kg/m^3.

6. Scope of the Future Work
Glass fiber reinforced concrete (GFRC) combinations with the dissimilar amount of fiber investigated. The fundamental extent of this examination point was to contemplate the impact of glass fiber on the assets of four picked FRC blends.

- Investigate fresh state properties such as flowability, temperature evolution with time, and setting time.
- Investigate mechanical properties such as compressive, split tensile besides flexural strength, different ages 7, 14, and 28 days.
- Make recommendations for the production of high strength GFRC combinations with GE fibers, also suggest how to realize high ductileness besides strain hardening behavior.

References
[1] Hadi, M.N S., “An investigation of the behavior of steel and glass fiber concrete slabs “, (2008) International journal of innovative research in engineering & management.
[2] Prathipati, S. T., & Rao, C. B. K. (2021). A study on the uniaxial compressive behaviour of graded fiber reinforced concrete using glass fiber/steel fiber. Innovative Infrastructure Solutions, 6(2), 1-14.
[3] Wang, Q., Song, H., Li, Y., Wang, F., Hu, Z., Lou, S., & Shi, Z. (2021). Experimental Study on the Performance of Graded Glass Fiber Reinforced Concrete (G-GRC) Based on Engineering Application. Materials, 14(5), 1149.
[4] Wang, Q., Song, H., Li, Y., Wang, F., Hu, Z., Lou, S., & Shi, Z. (2021). Experimental Study on the Performance of Graded Glass Fiber Reinforced Concrete (G-GRC) Based on Engineering Application. Materials, 14(5), 1149.
[5] Tandazo, C. M. V., Tu, J., & Gao, K. (2021). Research on vibration control for glass fiber reinforced polymer reinforced concrete (GFRP RC) frames subject to seismic loading. *Composite Structures, 261*, 113290.

[6] Jan, A., Pu, Z., Khan, K. A., Ahmad, I., & Khan, I. (2021). Effect of Glass Fibers on the Mechanical Behavior as Well as Energy Absorption Capacity and Toughness Indices of Concrete Bridge Decks. *Silicon, 1*, 1-15.

[7] Kim, T. K., Park, J. S., Kim, S. H., & Jung, W. T. (2021). Structural Behavior Evaluation of Reinforced Concrete Using the Fiber-Reinforced Polymer Strengthening Method. *Polymers, 13*(5), 780.

[8] Lau A Anson. M “Effect of high temperatures on high performance steel fiber reinforced concrete” (2006), International journal of engineering and advanced technology (IJEAT).

[9] Zhao, J., Luo, X., Wang, Z., Feng, S., Gong, X., & Shumuye, E. D. (2021). Experimental Study on Bond Performance of Carbon-and Glass-Fiber Reinforced Polymer (CFRP/GFRP) Bars and Steel Strands to Concrete. *Materials, 14*(5), 1268.

[10] Hatami, F., & Dehghani, A. (2021). Flexural Behavior of One-Way Concrete Slabs by Hybrid Glass Fiber-Reinforced Polymer-Steel Reinforcements. *ACI Structural Journal, 118*(1).

[11] Saravanakumar, P., Sivakamidevi, M., Meena, K., & Yamini, S. P. (2021). An experimental study on hybrid fiber reinforced concrete beams subjected to torsion. *Materials Today: Proceedings.*

[12] Cardoso, E. R., Panandikar, N., & Fondekar, K. V. P. (2021). Experimental Investigation of Using Eggshell Powder as Partial Replacement of Cement in Fiber Reinforced Concrete. In *Recent Trends in Civil Engineering* (pp. 557-566). Springer, Singapore.

[13] Zatar, W. A., Nguyen, H. D., Nghiem, H. M., & Cosgun, C. (2021). *Non-Destructive Testing of GFRP-Wrapped Reinforced-Concrete Slabs* (No. TRBAM-21-03354).

[14] Elbehiry, A., Elnawy, O., Kassem, M., Zaher, A., & Mostafa, M. (2021). FEM evaluation of reinforced concrete beams by hybrid and banana fiber bars (BFB). *Case Studies in Construction Materials, 14*, e00479.

[15] Ibrahim, H. A., & Fahmy, M. F. (2021). Discussion of “Seismic Behavior of GFRP-Reinforced Concrete Interior Beam–Column–Slab Subassemblies” by Shervin K. Ghomi and Ehab El-Salakawy. *Journal of Composites for Construction, 25*(1), 07020007.