HÖLDER–ZYGUMN Classes ON Smooth CURves

ARMIN RAINER

Abstract. We prove that a function in several variables is in the local Zygmund class $Z_{m,1}$ if and only if its composite with every smooth curve is of class $Z_{m,1}$. This complements the well-known analogous result for local Hölder–Lipschitz classes $C^{m,\alpha}$ which we reprove along the way. We demonstrate that these results generalize to mappings between Banach spaces and use them to study the regularity of the superposition operator $f^*: g \mapsto f \circ g$ acting on the global Zygmund space $\Lambda_{m+1}(\mathbb{R}^d)$. We prove that, for all integers $m, k \geq 1$, the map $f^*: \Lambda_{m}^{+1}(\mathbb{R}^d) \to \Lambda_{m+k}^{+1}(\mathbb{R}^d)$ is of Lipschitz class $C^{k-1,1}$ if and only if $f \in Z_{m+k,1}(\mathbb{R})$.

1. Introduction

The main goal of this note is to prove the following 1-dimensional characterization of the local Zygmund class $Z_{m,1}$ of functions in several variables.

Theorem 1.1. Let $m \in \mathbb{N}$. Let $f: U \to \mathbb{R}$ be a function defined on an open subset $U \subseteq \mathbb{R}^d$. The following conditions are equivalent:

1. $f \circ c \in Z_{m,1}(\mathbb{R})$ for each $c \in C^\infty(\mathbb{R}, U)$.
2. $f \in Z_{m,1}(U)$.

By definition, $Z_{m,1}(U)$ consists of all C^m-functions $f: U \to \mathbb{R}$ such that for all compact subsets $K \subseteq U$ and all multiindices $\gamma \in \mathbb{N}^d$ with $|\gamma| = m$ the set

$$\left\{ \frac{f^{(\gamma)}(x + h) - 2f^{(\gamma)}(x) + f^{(\gamma)}(x - h)}{h} : x, x \pm h \in K, h \neq 0 \right\}$$

is bounded.

The local Zygmund classes $Z_{m,1}(U)$ fit in the scale of local Hölder–Lipschitz classes: in fact, $C^{m,1}(U) \subseteq Z_{m,1}(U) \subseteq C^{m,\alpha}(U)$ for all $m \in \mathbb{N}$ and $\alpha \in (0, 1)$ with strict inclusions. In some respects (e.g. in harmonic analysis, cf. [8]) the Zygmund class $Z_{m,1}(U)$ is more natural and important than the Lipschitz class $C^{m,1}(U)$. We speak of the scale of local Hölder–Zygmund classes, where for $\alpha = 1$ the Zygmund class replaces the respective Lipschitz class:

$$\{C^m(\mathbb{R}^d) : m \in \mathbb{N}, \alpha \in (0, 1)\} \cup \{Z_{m,1}(\mathbb{R}) : m \in \mathbb{N}\}$$

It corresponds to the scale of global Hölder–Zygmund classes $\{\Lambda_s(\mathbb{R}^d) : s > 0\}$ which are the Besov classes $B^{s,\infty}_\infty(\mathbb{R}^d)$; see Section 4 for precise definitions. The Hölder–Lipschitz analogue of Theorem 1.1 is due to Boman [1].

Date: July 27, 2022.

2020 Mathematics Subject Classification. 26B05, 26B35, 46T20, 47H30, 58C25, 58B10.

Key words and phrases. Hölder–Zygmund classes, testing regularity on smooth curves, Boman's theorem, superposition operator, Lipschitz regularity.

Supported by FWF-Project P 32905-N.
Theorem 1.2. Let \(m \in \mathbb{N} \) and \(\alpha \in (0, 1] \). Let \(f : U \to \mathbb{R} \) be a function defined on an open subset \(U \subseteq \mathbb{R}^d \). The following conditions are equivalent:

1. \(f \circ c \in C^{m,\alpha}(\mathbb{R}) \) for each \(c \in C^\infty(\mathbb{R}, U) \).
2. \(f \in C^{m,\alpha}(U) \).

Faure [4] generalized this result to \(C^{m,\omega} \), where \(\omega \) is any modulus of continuity.

The results of Theorem 1.1 and Theorem 1.2 have a certain similarity with the well-known fact (e.g. [5, Theorem 9.1]) that a function \(f : \mathbb{R}^d \to \mathbb{R} \) belongs to \(\Lambda_s(\mathbb{R}^d) \) if it does so uniformly in each variable separately. There is no uniformity (with respect to \(c \)) required in condition (1) of Theorem 1.1 and Theorem 1.2 respectively; on the other hand, \(f \) is tested on the much larger set of all \(C^\infty \)-curves in the domain (instead of just affine lines parallel to the axes).

We will prove Theorem 1.1 in Section 3. Only a few modifications are necessary to obtain also a proof of Theorem 1.2. The general proof scheme is the one used in [7, Section 4.3] and [10, Section 12] for the Lipschitz case. It is combined with the characterization of Hölder–Zygmund classes in terms of finite differences; see [8].

The characterization in Theorem 1.1 enables us to extend the notion of local Zygmund class \(\Lambda_{m+1}(\mathbb{R}^d) \) to mappings between convenient vector spaces (i.e. Mackey–complete locally convex spaces) such as has been done for Hölder–Lipschitz classes in [7, 6, 10]. This leads to a version of Theorem 1.1 for maps between Banach spaces; see Corollary 4.3.

We also discuss versions of Theorem 1.1 where the domain of definition of \(f \) is not an open set. Then a loss of regularity depending on the geometry of the boundary occurs; see Theorem 4.7, Theorem 4.8, and Theorem 4.9 as well as [9] and [14, 15].

In the final section we utilize a version of Theorem 1.2 for maps between Banach spaces to study the regularity of the nonlinear superposition operator \(f_* : g \mapsto f \circ g \) acting on the global Zygmund class \(\Lambda_{m+1}(\mathbb{R}^d) \).

Theorem 1.3. Let \(m, k \in \mathbb{N}_{\geq 1} \) and \(f : \mathbb{R} \to \mathbb{R} \) a function. Then \(f_* \) acts on \(\Lambda_{m+1}(\mathbb{R}^d) \) and \(f_* : \Lambda_{m+1}(\mathbb{R}^d) \to \Lambda_{m+1}(\mathbb{R}^d) \) is of Lipschitz class \(C^k_{-1,1} \) if and only if \(f \in C^{m+k+1,1}(\mathbb{R}) \).

This complements results of [2] on the \(C^k \)-regularity of \(f_* : \Lambda_{m+1}(\mathbb{R}^d) \to \Lambda_{m+1}(\mathbb{R}^d) \) based on totally different methods.

Notation. We denote by \(\mathbb{N} = \{0, 1, 2, \ldots\} \) the set of nonnegative integers and set \(\mathbb{N}_{\geq k} := \{ n \in \mathbb{N} : n \geq k \} \). We will make use of standard multiindex notation. The partial derivative of a function \(f \) with respect to the \(j \)-th variable is denoted by \(\partial_j f \). If \(\gamma \in \mathbb{N}^d \) is a multiindex, then we use the notation \(f^{(\gamma)} = \partial^\gamma f = \partial_1^{\gamma_1} \cdots \partial_d^{\gamma_d} f \) for the corresponding partial derivative of higher order.

2. Hölder–Zygmund classes

2.1. Function spaces. By a modulus of continuity we mean an increasing subad- ditive function \(\omega : [0, \infty) \to [0, \infty) \) such that \(\lim_{t \to 0^+} \omega(t) = 0 \) and \(t \mapsto t/\omega(t) \) is locally bounded.

Let \(\omega \) be a modulus of continuity. Let \(U \subseteq \mathbb{R}^d \) be an open set. Recall that \(C^{0,\omega}(U) \) denotes the set of functions \(f : U \to \mathbb{R} \) such that

\[
\sup_{x, x + h \in K, h \neq 0} \frac{|f(x + h) - f(x)|}{\omega(|h|)} < \infty
\]
for all compact subsets \(K \subseteq U \). For a positive integer \(m \),
\[
C^{m,\omega}(U) := \left\{ f \in C^m(U) : f^{(\gamma)} \in C^{0,\omega}(U) \text{ for all } \gamma \in \mathbb{N}^d \text{ with } |\gamma| = m \right\}.
\]
For \(\omega(t) = t^\alpha \), where \(\alpha \in (0,1] \), we obtain the Hölder–Lipschitz classes \(C^{m,\alpha}(U) \).

The Zygmund class \(Z^{0,1}(U) \) is the set of all continuous functions \(f : U \to \mathbb{R} \) such that
\[
(2.1) \quad \sup_{x,x+h \in K, h \neq 0} \frac{|f(x + h) - 2f(x) + f(x - h)|}{|h|} < \infty,
\]
and if \(m \) is a positive integer,
\[
Z^{m,1}(U) := \left\{ f \in C^m(U) : f^{(\gamma)} \in Z^{0,1}(U) \text{ for all } \gamma \in \mathbb{N}^d \text{ with } |\gamma| = m \right\}.
\]
Continuity of \(f \) does not follow from (2.1) and has to be imposed (cf. [8, Proposition 2.7]). All classes \(C^{m,\omega}(U) \) and \(Z^{m,1}(U) \) are endowed with their natural locally convex topologies.

Note that for all \(m \in \mathbb{N} \) and \(0 < \alpha < \beta < 1 \), we have the strict continuous inclusions
\[
C^{m+1}(U) \subseteq C^{m,1}(U) \subseteq Z^{m,1}(U) \subseteq C^{m,\omega}(U) \subseteq C^{m,\beta}(U) \subseteq C^{m,\alpha}(U) \subseteq C^m(U),
\]
where \(\omega(t) := t \log \frac{1}{t} \). For instance \(Z^{0,1}(\mathbb{R}) \) contains the Weierstrass function \(t \mapsto \sum_k 2^{-k} \sin(2^k t) \) which is nowhere differentiable and thus not locally Lipschitz.

The spaces \(C^{m,\alpha}(U) \), \(0 < \alpha < 1 \), and \(Z^{m,1}(U) \) are local versions of the global Hölder–Zygmund spaces \(\Lambda_s(\mathbb{R}^d) \), \(s > 0 \), which are Banach spaces defined as follows.

For \(0 < s \leq 1 \), \(\Lambda_s(\mathbb{R}^d) \) consists of all bounded continuous functions \(f : \mathbb{R}^d \to \mathbb{R} \) such that \(\| f \|_{\Lambda_s} < \infty \), where
\[
\| f \|_{\Lambda_s} := \sup_{x \in \mathbb{R}^d} |f(x)| + \sup_{x, h \in \mathbb{R}^d, h \neq 0} \frac{|f(x + h) - f(x)|}{|h|^s}, \quad \text{if } 0 < s < 1,
\]
\[
\| f \|_{\Lambda_1} := \sup_{x \in \mathbb{R}^d} |f(x)| + \sup_{x, h \in \mathbb{R}^d, h \neq 0} \frac{|f(x + h) - 2f(x) + f(x - h)|}{|h|}.
\]
For \(s > 1 \) the space \(\Lambda_s(\mathbb{R}^d) \) is defined recursively: take the unique \(m \in \mathbb{N} \) with \(m < s \leq m + 1 \). Then \(\Lambda_s(\mathbb{R}^d) \) consists of all functions \(f : \mathbb{R}^d \to \mathbb{R} \) of class \(C^m \) such that
\[
\| f \|_{\Lambda_s} := \| f \|_{\Lambda_{s-1}} + \sum_{j=1}^d \| \partial_j f \|_{\Lambda_{s-1}} < \infty.
\]
For \(0 < s < t \) there is a continuous inclusion \(\Lambda_t(\mathbb{R}^d) \hookrightarrow \Lambda_s(\mathbb{R}^d) \). For integer \(s = m + 1 > 0 \), \(\Lambda_s(\mathbb{R}^d) \) strictly contains the Lipschitz space
\[
\text{Lip}_s(\mathbb{R}^d) := \left\{ f \in C^m(\mathbb{R}^d) : \| f \|_{\text{Lip}_s} < \infty \right\},
\]
where (again recursively)
\[
\| f \|_{\text{Lip}_s} := \sup_{x \in \mathbb{R}^d} |f(x)| + \sup_{x, h \in \mathbb{R}^d, h \neq 0} \frac{|f(x + h) - f(x)|}{|h|},
\]
\[
\| f \|_{\text{Lip}_{s-1}} := \| f \|_{\text{Lip}_{s-1}} + \sum_{j=1}^d \| \partial_j f \|_{\text{Lip}_{s-1}} \quad \text{for } s > 1.
\]
Note that \(\Lambda_t(\mathbb{R}^d) \hookrightarrow \text{Lip}_s(\mathbb{R}^d) \hookrightarrow \Lambda_s(\mathbb{R}^d) \) if \(s \) is an integer and \(t > s \).
2.2. Difference quotients and finite differences. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. The difference quotient $\delta^m f(x_0, \ldots, x_m)$ of order m on the pairwise disjoint points $x_0, \ldots, x_m \in \mathbb{R}$ is recursively defined by $\delta^0 f(x_0) := f(x_0)$ and

$$\delta^m f(x_0, \ldots, x_m) := m \frac{\delta^{m-1} f(x_0, \ldots, x_{m-1}) - \delta^{m-1} f(x_1, \ldots, x_m)}{x_0 - x_m}. \tag{2.4}$$

It is symmetric in x_0, \ldots, x_m. One checks easily that

$$\delta^m f(x_0, \ldots, x_m) = m! \sum_{i=0}^m f(x_i) \prod_{0 \leq j \leq m, j \neq i} \frac{1}{x_i - x_j}. \tag{2.3}$$

We will mainly use the equidistant difference quotient

$$\delta_{eq}^m f(x; h) := \delta^m f(x, x + h, \ldots, x + mh)$$

$$= \frac{1}{h^m} \sum_{i=0}^m (-1)^{m-i} \binom{m}{i} f(x + ih) =: \frac{1}{h^m} \Delta^m_h f(x),$$

where $\Delta^m_h f(x)$ is the (forward) finite difference of order m recursively defined by

$$\Delta^0_h f(x) := f(x), \quad \Delta^1_h f(x) := f(x + h) - f(x), \quad \Delta^m_h f(x) := \Delta^m_h (\Delta^{m-1}_h f(x)).$$

Note that, for $f \in C^1(\mathbb{R})$,

$$\Delta^2_h f(x) = \int_x^{x+h} \Delta^1_h f'(t) \, dt. \tag{2.5}$$

2.3. Product and chain rule. Let $f, g, f_i : \mathbb{R} \to \mathbb{R}$. We have

$$\Delta^m f_1 \cdots f_n(x) = \sum_{i_1 + \cdots + i_n = m} \binom{m}{i_1, \ldots, i_n} \prod_{j=1}^n \Delta^i_{g_j} f_j(x + (m - \sum_{k=j}^n i_k)h). \tag{2.4}$$

We also need a chain rule for finite differences of order one and two:

$$\Delta^1_h (f \circ g)(x) = \Delta^1_{\Delta^1_h g(x)} f(g(x)), \tag{2.5}$$

$$\Delta^2_h (f \circ g)(x) = \Delta^2_{\Delta^1_h g(x)} f(2g(x + h) - g(x)) + \Delta^1_{\Delta^1_h g(x)} f(g(x)).$$

The validity of these formulas is easily established by expanding the right-hand sides.

2.4. Hölder–Zygmund classes in terms of difference quotients. First we recall a description of local Lipschitz classes.

Theorem 2.1 ([10] Lemma 12.4). Let $m \in \mathbb{N}$. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. The following conditions are equivalent:

1. $f \in C^{m,1}(\mathbb{R})$.
2. $(x, h) \mapsto \delta^{m+1}_{eq} f(x; h)$ is locally bounded on $\mathbb{R} \times (\mathbb{R} \setminus \{0\})$.

As a consequence we obtain

Corollary 2.2. Let $m \in \mathbb{N}$. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. That $(x, h) \mapsto \delta^m_{eq} f(x; h)$ is locally bounded implies that $(x, h) \mapsto \delta^j_{eq} f(x; h)$ is locally bounded for all $0 \leq j \leq m$.

To get a similar characterization of local Hölder–Zygmund classes we recall

Theorem 2.3 ([8] Theorem 6.1). If $f \in L^\infty(\mathbb{R}) \cap C^0(\mathbb{R})$ and $0 < s < n$ with $n \in \mathbb{N}$, then $f \in \Lambda_s(\mathbb{R})$ is equivalent to $|\Delta^m_h f(x)| \leq C |h|^s$ for all $x, h \in \mathbb{R}$.
Remark 5.2.

Proposition 3.1. Let indicated in Section 3.7. These adjustments are This follows in analogy to Theorem 2.4 again from Theorem 2.3.

The following conditions are equivalent:

1. \(f \in \mathcal{Z}^{m,1}(\mathbb{R}) \).
2. \((x, h) \mapsto h \delta_{eq}^{m+2} f(x; h) \) and \((x, h) \mapsto \delta_{eq}^{m} f(x; h) \) are locally bounded on \(\mathbb{R} \times (\mathbb{R} \setminus \{0\}) \).

Proof. (1) \(\Rightarrow \) (2) Let \(f \in \mathcal{Z}^{m,1}(\mathbb{R}) \) and \(I \subseteq \mathbb{R} \) a bounded interval. Then \(f|_I \) has an extension \(F \in \Lambda_{m+1}(\mathbb{R}) \) (such that \(\|F\|_{\Lambda_{m+1}(\mathbb{R})} \leq C \|f\|_{\Lambda_{m+1}(I)} \) for some \(C > 0 \); see [8, Section 14]). By Theorem 2.3, \(\|\Delta_h^{m+2} F(x)\| \leq C \|h\|^{m+1} \) for all \(x, h \in \mathbb{R} \). From this it is easy to conclude that \((x, h) \mapsto h \delta_{eq}^{m+2} f(x; h) \) is locally bounded. That also \((x, h) \mapsto \delta_{eq}^{m} f(x; h) \) is locally bounded is trivial for \(m = 0 \) and follows from Theorem 2.1 for \(m \geq 1 \), since \(f \in \mathcal{Z}^{m,1}(\mathbb{R}) \subseteq \mathcal{C}^{m-1,1}(\mathbb{R}) \) by (2).

(2) \(\Rightarrow \) (1) Fix a bounded interval \(I \subseteq \mathbb{R} \) and a \(\mathcal{C}^\infty \)-function \(\chi : \mathbb{R} \to [0, 1] \) with compact support which is 1 in a neighborhood of \(I \). Then, by the product rule (2.4), \(g := \chi f \) satisfies \(|\Delta_h^{m+2} g(x)| \leq C \|h\|^{m+1} \) for all \(x, h \in \mathbb{R} \) and thus \(g \in \Lambda_{m+1}(\mathbb{R}) \), by Theorem 2.3. Indeed, \(|\Delta_h^{m+2} g(x)| \) is bounded by a finite sum of terms which are up to constant factors of the form \(|\Delta_h^i \chi(y) \Delta_h^j f(z)| \), where \(i + j = m + 2 \). If \(j \leq m \), then \(|\Delta_h^i f(z)| \leq C \|h\|^j \) and \(|\Delta_h^{m+1} f(z)| \leq C \|h\|^m \), by Corollary 2.2. Thus \(|\Delta_h^i \chi(y) \Delta_h^j f(z)| \) is locally bounded for \(j \leq m + 1 \). If \(j = m + 2 \) this follows from local boundedness of \((x, h) \mapsto h \delta_{eq}^{m+2} f(x; h) \). Since \(I \) was arbitrary, we may conclude that \(f \in \mathcal{Z}^{m,1}(\mathbb{R}) \).

□

Remark 2.5. The local boundedness of \((x, h) \mapsto \delta_{eq}^{m} f(x; h) \) is used for the “local to global” argument in (2) \(\Rightarrow \) (1). It is possible that it can be dropped from the formulation of (2).

For the local Hölder classes we have

Theorem 2.6. Let \(m \in \mathbb{N} \) and \(\alpha \in (0, 1) \). Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous. The following conditions are equivalent:

1. \(f \in \mathcal{C}^{m,\alpha}(\mathbb{R}) \).
2. \((x, h) \mapsto |h|^{1-\alpha} \delta_{eq}^{m+1} f(x; h) \) and \((x, h) \mapsto \delta_{eq}^{m} f(x; h) \) are locally bounded on \(\mathbb{R} \times (\mathbb{R} \setminus \{0\}) \).

Proof. This follows in analogy to Theorem 2.4 again from Theorem 2.3 □

3. Testing on smooth curves

This section is devoted to the proof of Theorem 1.1. A few adjustments are all that is needed to also prove Theorem 1.2 in one go. These adjustments are indicated in Section 5.7

3.1. Composition with smooth curves preserves the class.

Proposition 3.1. Let \(U \subseteq \mathbb{R}^d \) be an open subset and \(c \in \mathcal{C}^\infty(\mathbb{R}, U) \). Then:

1. For each \(m \in \mathbb{N} \) and \(f \in \mathcal{Z}^{m,1}(U) \) we have \(f \circ c \in \mathcal{Z}^{m,1}(\mathbb{R}) \).
2. For each \(m \in \mathbb{N} \), \(\alpha \in (0, 1] \), and \(f \in \mathcal{C}^{m,\alpha}(U) \) we have \(f \circ c \in \mathcal{C}^{m,\alpha}(\mathbb{R}) \).

The proposition is a consequence of sharper versions: e.g. [13], [2], and [3]. For \(m \geq 1 \) a proof of (1) can be assembled from the arguments in Section 5; see Remark 5.2.
3.2. Curve lemma. We will repeatedly use the general curve lemma \cite[12.2]{10} which we restate here in a simple form for the convenience of the reader.

Lemma 3.2. Let \(c_n \in C^\infty(\mathbb{R}, \mathbb{R}^d) \) be a sequence of \(C^\infty \)-curves that converges fast to 0, i.e., for each \(k \in \mathbb{N} \) the sequence \((n^k c_n)_n \) is bounded in \(C^\infty(\mathbb{R}, \mathbb{R}^d) \). Let \(s_n \geq 0 \) be reals with \(\sum_n s_n < \infty \). Then there exist a curve \(c \in C^\infty(\mathbb{R}, \mathbb{R}^d) \) and a convergent sequence \(t_n \) of reals such that \(c(t + t_n) = c_n(t) \) for \(|t| \leq s_n \) and all \(n \).

3.3. Degree zero. The proof of Theorem \autoref{thm:1.1} is based on induction on \(m \). The following lemma treats the base case \(m = 0 \).

Lemma 3.3. Let \(U \subseteq \mathbb{R}^d \) be an open set and \(f : U \to \mathbb{R} \) a function. The following conditions are equivalent:

1. \(f \circ c \in Z^{0,1}(\mathbb{R}) \) for all \(c \in C^\infty(\mathbb{R}, U) \).
2. \(f \in Z^{0,1}(U) \).

Proof. That (2) implies (1) follows from Proposition \autoref{prop:3.3}. Let us assume that (1) holds and suppose for contradiction that \(f \notin Z^{0,1}(U) \). Note that (1) implies that \(f \) is continuous (cf. \cite[Theorem 4.11]{10}). Thus there is a compact set \(K \subseteq U \) and points \(x_n, x_n \pm h_n \) in \(K \) such that

\[
q_n := \frac{|f(x_n + h_n) - 2f(x_n) + f(x_n - h_n)|}{|h_n|}
\]

is unbounded. Passing to subsequence, we may assume that \(|x_n - x| \leq 4^{-n} \), \(|h_n| \leq 4^{-n} \), and \(q_n \geq n2^n \). Consider the curves \(c_n(t) := x_n + t\frac{h_n}{2^n|h_n|} \) and note that \(c_n - x \) converges fast to 0. By Lemma \autoref{lem:3.2}, there is a \(C^\infty \)-curve \(c : \mathbb{R} \to U \) and a convergent sequence of reals \(t_n \) such that \(c(t + t_n) = c_n(t) \) for all \(|t| \leq s_n := 2^n|h_n| \). Then

\[
\frac{[(f \circ c)(t_n + s_n) - 2(f \circ c)(t_n) + (f \circ c)(t_n - s_n)]}{s_n} = q_n \geq n
\]

contradicting (1). \(\Box \)

Lemma 3.4. Let \(\alpha \in (0, 1], U \subseteq \mathbb{R}^d \) an open set, and \(f : U \to \mathbb{R} \) a function. The following conditions are equivalent:

1. \(f \circ c \in C^{0,\alpha}(\mathbb{R}) \) for all \(c \in C^\infty(\mathbb{R}, U) \).
2. \(f \in C^{0,\alpha}(U) \).

Proof. Repeat the proof of Lemma \autoref{lem:3.3} with \(q_n := \frac{|f(x_n + h_n) - f(x_n)|}{|h_n|\alpha} \); cf. \cite[10 Lemma 12.7]{5}, or \cite{11}. \(\Box \)

3.4. Proof of Theorem \autoref{thm:1.1}. The key step is the following proposition.

Proposition 3.5. Let \(m \in \mathbb{N}_{\geq 1} \). Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be such that \(f \circ c \in Z^{m-1}(\mathbb{R}) \) for all \(c \in C^\infty(\mathbb{R}, \mathbb{R}^2) \). Then \(\partial_2 f(\cdot, 0) \in Z^{m-1,1}(\mathbb{R}) \).

Let us now use Proposition \autoref{prop:3.5} to complete the proof of Theorem \autoref{thm:1.1}. The proof of Proposition \autoref{prop:3.5} will be given in Section \autoref{sec:3.6}.

Proposition 3.6. Let \(m \in \mathbb{N}_{\geq 1} \). Let \(U \subseteq \mathbb{R}^d \) be an open set. Let \(f : U \to \mathbb{R} \) be a function such that \(f \circ c \in Z^{m,1}(\mathbb{R}) \) for all \(c \in C^\infty(\mathbb{R}, U) \). Then \(d_{\partial_1} f(x) := \partial_1|_{|t|=0} f(x + tv) \) exists for all \((x, v) \in U \times \mathbb{R}^d \) and defines a mapping \(df : U \times \mathbb{R}^d \to \mathbb{R} \) such that \(df \circ (x, v) \in Z^{m-1,1}(\mathbb{R}) \) for each \((x, v) \in C^\infty(\mathbb{R}, U \times \mathbb{R}^d) \).
Lemma 3.7. Let $m \in \mathbb{N}$ and $f \in \mathcal{Z}^{m,1}(\mathbb{R})$. Then, for each bounded interval $I \subseteq \mathbb{R}$,

$$
\frac{1}{2m} f(x + 2h) - 2f(x + h) + \sum_{j=0}^{m} \left(2 - \frac{1}{2m-j} \right) \frac{f^{(j)}(x)}{j!} h^j = O_l(|h|^{m+1}).
$$

Proof. We proceed by induction on m. For $m = 0$ the statement follows from the definition. Let us assume that the identity holds for m and show it for $m+1$. We suppose that $h > 0$; if $h < 0$ the arguments are similar. Let $F \in \mathcal{Z}^{m+1,1}(\mathbb{R})$ with $F' = f \in \mathcal{Z}^{m,1}(\mathbb{R})$. Integrating \eqref{eq:3.1} in h yields

$$
\frac{1}{2m+1} (F(x + 2h) - F(x)) - 2(F(x + h) - F(x)) + \sum_{j=0}^{m} \left(2 - \frac{1}{2m-j} \right) \frac{F^{(j+1)}(x)}{(j+1)!} h^{j+1}
$$

$$
= \frac{1}{2m+1} F(x + 2h) - 2F(x + h) + \sum_{i=0}^{m+1} \left(2 - \frac{1}{2m+1-i} \right) \frac{F^{(i)}(x)}{i!} h^i
$$

$$
= O_l(h^{m+2})
$$

completing the induction. \hfill \Box

Let $f : \mathbb{R} \to \mathbb{R}$ and $m \in \mathbb{N}$. We set

$$
D_m(f)(x; h) := \frac{1}{2m} f(x + 2h) - 2f(x + h), \quad x, h \in \mathbb{R}.
$$
If $m \geq 1$ we can approximate $hf'(x)$ to order $m + 1$ in h by a suitable linear combination of $D_m(f)(x;jh)$, for $j = 0, 1, \ldots, m$, in a uniform way for $f \in Z^{m,1}(\mathbb{R})$ and $x \in I$:

Lemma 3.8. Let $m \in \mathbb{N}_{\geq 1}$. There exist constants $a_0, \ldots, a_m \in \mathbb{R}$ such that for all $f \in Z^{m,1}(\mathbb{R})$ we have, for each bounded interval $I \subseteq \mathbb{R}$,

$$hf'(x) - \sum_{j=0}^{m} a_j D_m(f)(x;jh) = O_I(|h|^{m+1}).$$

Proof. By Lemma 3.7 for any choice of $a_0, \ldots, a_m \in \mathbb{R}$ we have

$$\sum_{j=0}^{m} a_j D_m(f)(x;jh) = \sum_{j=0}^{m} a_j \left(\sum_{i=0}^{m} \frac{1}{2m-i - 2} f^{(i)}(x)(jh)^i + O_I(|h|^{m+1}) \right)$$

$$= \sum_{i=0}^{m} \left(\sum_{j=0}^{m} a_j j^i \right) \left(\frac{1}{2m-i} - 2 \right) f^{(i)}(x) j^i h^i + O_I(|h|^{m+1}).$$

To obtain the assertion it suffices to choose a_0, \ldots, a_m such that

$$\sum_{j=0}^{m} a_j = \left(\frac{1}{2m-1} - 2 \right)^{-1},$$

$$\sum_{j=0}^{m} a_j j^i = 0, \quad 0 \leq i \leq m, \ i \neq 1,$$

which is possible, since the coefficients of this linear system of equations form a Vandermonde matrix. □

Let us set

$$A_m(f)(x;h) := \sum_{j=0}^{m} a_j D_m(f)(x;jh),$$

where $a_0, \ldots, a_m \in \mathbb{R}$ are the constants provided by Lemma 3.8.

3.6. Proof of Proposition 3.5

For $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ we define

$$\mathbf{D}_m(f)(x,h) := \frac{1}{2m} f(x,2h) - 2f(x,h)$$

and

$$\mathbf{A}_m(f)(x,h) := \sum_{j=0}^{m} a_j \mathbf{D}_m(f)(x,jh),$$

where $a_0, \ldots, a_m \in \mathbb{R}$ are the constants provided by Lemma 3.8.

From Lemma 3.8 we get an approximation result for functions in two variables:

Lemma 3.9. Let $m \in \mathbb{N}_{\geq 1}$. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be such that $f \circ c \in Z^{m,1}(\mathbb{R})$ for all $c \in C^\infty(\mathbb{R}, \mathbb{R}^2)$. For each compact interval $I \subseteq \mathbb{R}$ there is a constant $C > 0$ such that for all $x, h \in I$ we have

$$|h \partial_2 f(x,0) - A_m(f)(x,h)| \leq C|h|^{m+1}.$$
Proof. In the case $0 \not\in I$ so that h is bounded away from 0, it is enough to check that $x \mapsto \partial_2 f(x,0)$ is bounded on I. (That f and consequently $(x,h) \mapsto A_m(f)(x,h)$ is bounded on $I \times I$ follows easily from Lemma 3.8 or [10, 2.8].) Suppose, for contradiction, that there exist $x_n, x \in I$ with $|x_n - x| \leq 4^{-n}$ and $|\partial_2 f(x_n,0)| \geq n 2^n$. Applying Lemma 3.2 to $c_n(t) := (x_n, 2^{-n} t)$ and $s_n := 2^{-n}$ gives a \mathcal{C}^∞ curve $c : \mathbb{R} \to \mathbb{R}^2$ and a convergent sequence of reals t_n such that $c(t + t_n) = c_n(t)$ for $|t| \leq s_n$. Thus, $|(f \circ c)'(t_n)| = |(f \circ c_n)'(0)| = 2^{-n} |\partial_2 f(x_n,0)| \geq n$, contradicting that $f \circ c \in Z^{m-1}(\mathbb{R}) \subseteq \mathcal{C}^1(\mathbb{R})$.

Now assume that $0 \in I$. Suppose, for contradiction, that there are $x_n, h_n \in I$ such that

$$|h_n \partial_2 f(x_n,0) - A_m(f)(x_n,h_n)| \geq n 2^{n(m+1)} |h_n|^{m+1}.$$

By passing to subsequences, we may assume that $x_n \to x$ and $h_n \to 0$ (by the first paragraph) and in turn that $|x_n - x| \leq 4^{-n}$ and $|h_n| \leq 4^{-n}$. Applying Lemma 3.2 to $c_n(t) := (x_n, 2^{-n} t)$ and $s_n := 2m \cdot 2^{-n}$ we find a \mathcal{C}^∞ curve $c : \mathbb{R} \to \mathbb{R}^2$ and a convergent sequence of reals t_n with $c(t + t_n) = c_n(t)$ for $|t| \leq s_n$. Then

$$2^n h_n (f \circ c)'(t_n) - A_m(f \circ c)(t_n; 2^n h_n)$$

$$= 2^n h_n (f \circ c_n)'(0) - A_m(f \circ c_n)(0; 2^n h_n)$$

$$= h_n \partial_2 f(x_n,0) - A_m(f)(x_n,h_n)$$

$$\geq n (2^n |h_n|)^{m+1}.$$

But this contradicts Lemma 3.8. \qed

Now we are ready to show Proposition 3.5 assuming the validity of Theorem 1.2, which will be (re)proved in Section 3.7. Let $m \in \mathbb{N}_{\geq 1}$ and suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ satisfies $f \circ c \in Z^{m-1}(\mathbb{R})$ for all $c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^2)$. Then $g := \partial_2 f(\cdot,0)$ is well-defined. We have to prove that $g \in Z^{m-1,1}(\mathbb{R})$. By Theorem 2.1 it suffices to check the following three claims.

Claim (i). g is continuous.

Since $f \circ c \in \mathcal{C}^{1,\alpha}(\mathbb{R})$ for all $c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^2)$ and all $\alpha \in (0,1)$, by (2.2), we may invoke the result for $\mathcal{C}^{1,\alpha}$; cf. Theorem 1.2 and its proof in Section 3.7. Claim (i) follows.

Claim (ii). $\delta_{eq}^{m-1} g(x; h)$ is locally bounded in $(x,h) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\})$.

By (2.2), we have $f \circ c \in \mathcal{C}^{m-1,1}(\mathbb{R})$ for all $c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^2)$. By Theorem 1.2 $g \in \mathcal{C}^{m-2,1}(\mathbb{R})$ if $m \geq 2$ and thus $\delta_{eq}^{m-1} g(x; h)$ is locally bounded in $(x,h) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\})$, in view of Theorem 2.1. If $m = 1$ this is trivially true by Claim (i).

Claim (iii). $h \delta_{eq}^{m+1} g(x; h)$ is locally bounded in $(x,h) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\})$.

Suppose, for contradiction, that Claim (iii) is not true, say for x in a neighborhood of 0. Then there exist x_n and h_n with $|x_n| \leq 4^{-n}$ and $0 < h_n < 4^{-n}$ (if necessary replace $f(x,y)$ by $f(-(x-y))$ such that

$$|h_n \delta_{eq}^{m+1} g(x_n; h_n)| \geq n 2^{n(m+1)}.$$

Let $c_n(t) := (x_n - h_n + 2^{-n} t, 2^{-n} t)$ and $s_n := (m + 2) 2^{-n}$. Lemma 3.2 gives a \mathcal{C}^∞ curve $c : \mathbb{R} \to \mathbb{R}^2$ and a convergent sequence of reals t_n with $c(t + t_n) = c_n(t)$
Then the sequence

\[T_n := 2^n h_n \delta_{\text{eq}}^{m+2} (f \circ c)(t_n; 2^n h_n) \]

satisfies \(|T_n| \geq (m + 2)n\). On the other hand, \(A_m(f) \circ c \in \mathcal{Z}^{m,1}(\mathbb{R})\), by the assumption on \(f \), so that \(2^n h_n \delta_{\text{eq}}^{m+2} (A_m(f) \circ c)(t_n; 2^n h_n) \) is bounded, by Theorem 2.3. By Lemma 3.9 there is \(C > 0 \) such that \(|f_2(x, h)| \leq C|h|^{m+1}\) for all \(x, h \in [-2(a + 2), m + 2] \) which implies that

\[
2^n h_n \delta_{\text{eq}}^{m+2} (f_2 \circ c)(t_n; 2^n h_n) \leq \frac{2^n h_n}{(2^n h_n)^{m+2}} \sum_{i=0}^{m+2} \binom{m+2}{i} |f_2(x_n - h_n + ih_n, ih_n)|
\]

\[
\leq C \left(\frac{m+2}{2^n} \right)^{m+1} \sum_{i=0}^{m+2} \binom{m+2}{i}.
\]

Consequently, \(T_n \) is bounded, a contradiction. Thus, Claim (iii) is shown and the proof of Theorem 1.2 is complete.

3.7. Proof of Theorem 1.2

We will indicate how to show

Proposition 3.10. Let \(m \in \mathbb{N} \) and \(\alpha \in (0, 1] \). Let \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) be such that \(f \circ c \in \mathcal{C}^{m+1,\alpha}(\mathbb{R}) \) for all \(c \in \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^2) \). Then \(\partial_c f \cdot 0 \in \mathcal{C}^{m,\alpha}(\mathbb{R}) \).

Then it is easy to finish the proof of Theorem 1.2 using a variant of Proposition 3.10 as well as Lemma 3.7 and Proposition 3.4.

We replace Lemma 3.7 by the following easy consequence of Taylor’s formula.

Lemma 3.11. Let \(m \in \mathbb{N} \), \(\alpha \in (0, 1] \), and \(f \in \mathcal{C}^{m,\alpha}(\mathbb{R}) \). Then, for each bounded interval \(I \subseteq \mathbb{R} \),

\[
f(x + h) = \sum_{j=0}^{m} \frac{f^{(j)}(x)}{j!} h^j + O_I(|h|^{m+\alpha}).
\]
As in Lemma 3.8 we conclude: If \(b_0, \ldots, b_m \in \mathbb{R} \) is the solution of the system
\[
\sum_{j=0}^{m} b_j j = 1,
\]
\[
\sum_{j=0}^{m} b_j j^i = 0, \quad 0 \leq i \leq m, \ i \neq 1,
\]
then for all \(f \in C^{m, \alpha}(\mathbb{R}) \), \(m \geq 1 \), and for each bounded interval \(I \subseteq \mathbb{R} \),
\[
(3.3) \quad h f'(x) = \sum_{j=0}^{m} b_j f(x + j h) + O_j(|h|^{m+\alpha}).
\]

Now suppose that \(m \in \mathbb{N}, \alpha \in (0,1] \), and \(f : \mathbb{R}^2 \to \mathbb{R} \) is such that \(f \circ c \in C^{m+1, \alpha}(\mathbb{R}) \) for all \(c \in C^\infty(\mathbb{R}, \mathbb{R}^2) \). Then we infer from (3.3), in analogy to Lemma 3.9, that on each compact interval \(I \) there is \(C > 0 \) such that
\[
(3.4) \quad |h g(x) - B_m(f)(x, h)| \leq C|h|^{m+1+\alpha}, \quad x, h \in I,
\]
where \(g := \partial_x f(\cdot, 0) \) and \(B_m(f)(x, h) := \sum_{j=0}^{m} b_j f(x, j h) \).

To complete the proof of Proposition 3.10 we have to show that \(g \in C^{m, \alpha}(\mathbb{R}) \). By Theorem 2.6 it is enough to check the following three claims.

Claim (I). \(g \) is continuous.

To see that \(g \) is continuous it suffices to finish the proof of Proposition 3.10 in the case \(m = 0 \). Theorem 2.6 is trivial for \(m = 0 \) and holds without the a priori assumption that \(g \) is continuous: local boundedness of \(|h|^{1-\alpha} \delta_{eq}^1 g(x; h) = |h|^{-\alpha}(g(x+h) - g(x)) \) in \(x \) and \(h \) is equivalent to \(g \in C^{0, \alpha} \). That means for \(m = 0 \) only Claim (III) must be shown.

Claim (II). \(\delta_{eq}^m g(x; h) \) is locally bounded in \((x, h) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \).

By 2.2, we have \(f \circ c \in C^{m-1}(\mathbb{R}) \) for all \(c \in C^\infty(\mathbb{R}, \mathbb{R}^2) \). Thus it suffices to finish the proof of Proposition 3.10 in the case \(\alpha = 1 \). Indeed, by Theorem 2.1 Claim (II) holds if and only if \(g \in C^{m-1, 1}(\mathbb{R}) \) as \(g \) is continuous by Claim (I).

Claim (III). \(|h|^{1-\alpha} \delta_{eq}^{m+1} g(x; h) \) is locally bounded in \((x, h) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \).

We may assume that there exist \(x_n \) and \(h_n \) with \(|x_n| \leq 4^{-n} \) and \(0 < h_n < 4^{-n} \) such that
\[
h_n^{1-\alpha} |\delta_{eq}^{m+1} g(x_n; h_n)| \geq n 2^{(m+1+\alpha)}.
\]

With the same choices of \(c_n \) and \(s_n \) as in Section 3.6 we find a \(C^\infty \)-curve \(c \) and a convergent sequence of reals \(t_n \) such that \(c(t + t_n) = c_n(t) \) for \(|t| \leq s_n \). Using \(f_1(x, h) := h g(x) \) and \(T_n \) from 3.2, we find
\[
(2^n h_n)^{-\alpha} |T_n| = (2^n h_n)^{-\alpha} |\delta_{eq}^{m+2} (f_1 \circ c)(t_n; 2^n h_n)|
\]
\[
= \frac{m + 2}{2^{n(m+1+\alpha)}} h_n^{1-\alpha} |\delta_{eq}^{m+1} g(x_n; h_n)| \geq (m + 2)n.
\]

On the other hand, 3.3 implies that for \(f_2 := f_1 - B_m(f) \) the sequence \((2^n h_n)^{-\alpha} |\delta_{eq}^{m+2} (f_2 \circ c)(t_n; 2^n h_n)| \) is bounded. Since \(B_m(f) \circ c \in C^{m+1, \alpha}(\mathbb{R}) \) also \((2^n h_n)^{-\alpha} |\delta_{eq}^{m+2} (B_m(f) \circ c)(t_n; 2^n h_n)| \) is bounded, by Theorem 2.6 so that \((2^n h_n)^{-\alpha} |T_n| \) is bounded, a contradiction.
4. On Banach spaces and beyond

In this section we use the characterization in Theorem 1.1 to extend the local Zygmund classes to convenient vector spaces. We shall see in Corollary 1.3 that a version of Theorem 1.1 holds for maps between Banach spaces. For background on convenient analysis we refer to [10] and also [7]. We will also discuss versions of Theorem 1.1 and Theorem 1.2 where the domain of f is not an open set.

4.1. Convenient analysis of local Hölder–Zygmund classes. Recall that a convenient vector space E is a Mackey-complete locally convex space. The c^∞-topology on E is the final topology with respect to all C^∞-curves (equivalently, all Mackey-convergent sequences) in E; it is not a linear topology.

Let $m \in \mathbb{N}$ and $\alpha \in (0,1]$.

Definition 4.1. Let E,F be convenient vector spaces, U a c^∞-open subset of E. A map $f : U \to F$ is said to be of class Zyg^m (resp. $Hölm$) if for each $c \in C^\infty(\mathbb{R},U)$ and each $\ell \in F'$ the composite $\ell \circ f \circ c$ belongs to $Z^{m,1}(\mathbb{R})$ (resp. $C^{m,\alpha}(\mathbb{R})$).

For $Hölm$ the results we are aiming for have already be established in [6] (for $\alpha = 1$ also in [7]). So we will exploit the fact that, by (2.2), if f is of class Zyg^m then it is of class $Hölm$ for any $\alpha \in (0,1)$.

Let $f : U \to F$ be of class Zyg^1. Then, by [6, Lemma 7], f is weakly differentiable, i.e., for all $x \in U$, $v \in E$, the limit

$$df(x,v) := \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t}$$

exists with respect to the weak topology. By [6, Proposition 9], f is also strictly differentiable, i.e., for each Mackey-compact $K \subseteq U$ and bounded $B \subseteq E$,

$$\frac{f(x+sv) - f(x+tv)}{s-t}$$

is Mackey-convergent to $df(x,v)$ as $s,t \to 0$ uniformly for $x \in K$ and $v \in B$ and $f'(x) := df(x,\cdot) \in L(E,F)$ for every $x \in U$.

Lemma 4.2. Let $m \in \mathbb{N}$. Let $f : U \to F$ be of class Zyg^{m+1}. Then:

1. $df : U \times E \to F$ is of class Zyg^m.
2. $f' : U \to L(E,F)$ is of class Zyg^m.

Proof. (1) follows from the proof of Proposition 3.3 consider $(t,s) \mapsto \ell(f(x(t) + sv(t)))$ where $\ell \in F'$. By the uniform boundedness principle, to see (2) it suffices to check that $ev_v \circ f' : U \to F$ is of class Zyg^m for all $v \in E$ which holds by (1) since $ev_v \circ f' = df(\cdot,v)$. Indeed, a curve $c : \mathbb{R} \to G$ in a convenient vector space G is of class Zyg^m if and only if $h\delta^{m+2}c(t,h)$ and $\delta^m_c(t,h)$ are locally bounded in $(t,h) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\})$, by Theorem 2.4 and testing with $\ell \in G'$.

Assume that $f : U \to F$ is weakly differentiable and df is of class Zyg^0. Let $c \in C^\infty(\mathbb{R},U)$. Then $f \circ c$ is differentiable and $(f \circ c)'(t) = df(c(t),c'(t))$, by [6, Proposition 11].

Theorem 4.3. Let $m \in \mathbb{N}$. Let E,F be convenient vector spaces, U a c^∞-open subset of E, and $f : U \to F$ a map. The following conditions are equivalent:

1. f is of class Zyg^{m+1}.
2. f is strictly differentiable and $f' : U \to L(E,F)$ is of class Zyg^m.

(3) \(f \) is weakly differentiable and \(df : U \times E \to F \) is of class \(\text{Zyg}^m \).

Proof. \((1) \imp (2)\) follows from Lemma 4.2 and the preceding remarks.

\((2) \imp (3)\) The map \(f' \times \text{id} : U \times E \to L(E, F) \times E \) is of class \(\text{Zyg}^m \). The evaluation map \(\text{ev} : L(E, F) \times E \to F \) is bilinear and smooth. It follows that \(df = \text{ev} \circ (f' \times \text{id}) \) is of class \(\text{Zyg}^m \).

\((3) \imp (1)\) Let \(c \in C^\infty(\mathbb{R}, U) \). Then \((f \circ c)'(t) = df(c(t), c'(t)) \) (see remark before the theorem) is of class \(\text{Zyg}^m \), whence \(f \) is of class \(\text{Zyg}^{m+1} \).

Corollary 4.4. Let \(m \in \mathbb{N} \). Let \(E, F \) be Banach spaces, \(U \) open in \(E \), and \(f : U \to F \) a map. Then \(f \) is of class \(\text{Zyg}^m \) if and only if \(f \) is \(m \)-times Fréchet differentiable such that \(f^{(m)} \in \mathcal{Z}^{0,1}(U, L^m(E, F)) \).

It is straightforward to adapt the definition of \(\mathcal{Z}^{0,1} \) to maps between Banach spaces. The proof of Lemma 3.3 shows that such a map is of class \(\mathcal{Z}^{0,1} \) if and only if it is of class \(\text{Zyg}^0 \), note that Lemma 3.2 is valid in convenient vector spaces. So, for maps between Banach spaces, \(\text{Zyg}^m \) coincides with the naive notion of local Zygmund regularity.

The definition of difference quotient and finite difference of arbitrary order obviously makes sense for functions \(f : \mathbb{R} \to E \) with values in a vector space \(E \). It turns out that Theorem 2.4 (as well as Theorem 2.1 and Theorem 2.6) are still valid if \(E \) is a convenient vector space:

Theorem 4.5. Let \(m \in \mathbb{N} \). Let \(E \) be a convenient vector space. Let \(f : \mathbb{R} \to E \) be a function such that \(\ell \circ f \) is continuous for all \(\ell \in E' \). The following conditions are equivalent:

1. \(f \) is of class \(\text{Zyg}^m \).
2. \((x, h) \mapsto h\delta^{m+2}_{\text{eq}}f(x; h) \) and \((x, h) \mapsto \delta^m_{\text{eq}}f(x; h) \) are bounded on bounded subsets of \(\mathbb{R} \times (\mathbb{R} \setminus \{0\}) \).

Proof. This is immediate from Theorem 2.4, since (1) and (2) can be tested by composing with \(\ell \in E' \).

Remark 4.6. Let \(E, F \) be convenient vector spaces and \(U \subseteq E \) a \(C^\infty \)-open subset. Let us endow \(\text{Zyg}^m(\mathbb{R}, F) \) with the initial structure with respect to all maps \(c \mapsto ((x, h) \mapsto \delta^m_{\text{eq}}c(x; h)), \) for \(j = 0, 1, \ldots, m, \) and \(c \mapsto ((x, h) \mapsto h\delta^{m+2}_{\text{eq}}c(x; h)) \) into the space of all maps \(\mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to F \) that are bounded on bounded sets, where the latter space carries the locally convex topology of uniform convergence on bounded sets. Then the space \(\text{Zyg}^m(U, F) \) of all maps \(f : U \to F \) of class \(\text{Zyg}^m \) endowed with the initial structure with respect to all maps \(c^* : \text{Zyg}^m(U, F) \to \text{Zyg}^m(\mathbb{R}, F) \) for \(c \in C^\infty(\mathbb{R}, U) \), is a convenient vector space and it satisfies the uniform boundedness principle with respect to the point evaluations \(\text{ev}_x : \text{Zyg}^m(U, F) \to F \) for \(x \in U \). This can be seen in analogy to [10], 12.11].

4.2. Functions on non-open domains. Let \(E, F \) be convenient vector spaces and let \(X \subseteq E \) be a convex subset with non-empty \(C^\infty \)-interior \(X^\circ \). We say that a map \(f : X \to F \) is of class \(\text{Zyg}^m \) (resp. \(\text{Hölder}_\alpha^m \)) if for each \(c \in C^\infty(\mathbb{R}, X) \) (i.e. \(c \in C^\infty(\mathbb{R}, E) \) with \(c(\mathbb{R}) \subseteq X \)) and each \(\ell \in F' \) the composite \(\ell \circ f \circ c \) belongs to \(\mathcal{Z}^{m-1}(\mathbb{R}) \) (resp. \(\mathcal{Z}^{m-\alpha}(\mathbb{R}) \)).

Theorem 4.7. Let \(E, F \) be convenient vector spaces and let \(X \subseteq E \) be a convex subset with non-empty \(C^\infty \)-interior \(X^\circ \). Let \(f : X \to F \) be of class \(\text{Zyg}^{2m} \) (resp. \(\text{Hölder}_\alpha^{2m} \))
for \(m \in \mathbb{N}_{\geq 1} \) (and \(\alpha \in (0, 1) \)). Then \(f|_{X^c} \) is of class \(Zyg^{2m} \) (resp. \(\text{Hö}^{2m}_\alpha \)) and for \(j \leq m \) the derivatives \((f|_{X^c})^{(j)}\) extend uniquely to maps \(f^{(j)} : X \to L^j(E, F) \) of class \(Zyg^{2(m-j)} \) (resp. \(\text{Hö}^{2(m-j)}_\alpha \)).

Proof. This can be shown in analogy to [9] and [10, Theorem 24.5]]. The crucial ingredient is an application of Theorem 4.9 (resp. Theorem 1.2) in dimension two. \(\square \)

In finite dimensions this has been generalized in the \(C^\infty \)- and the \(\text{Hö}^m \)-setting by [14, 15] to a large class of closed sets \(X \subseteq \mathbb{R}^d \) with \(X = \mathbb{R}^d \) admitting cusps. Note that in \(\mathbb{R}^d \) the \(C^\infty \)-topology coincides with the classical topology. In the \(\text{Hö}^m \)-setting, a loss of regularity becomes apparent which is directly related to the sharpness of the cusps. More precisely, for \(\beta \in (0, 1] \) let \(\mathcal{H}^\beta(\mathbb{R}^d) \) denote the family of closed subsets \(X \subseteq \mathbb{R}^d \) with \(X = \mathbb{R}^d \) such that \(X^0 \) has the uniform \(\beta \)-cusp property: for each \(x \in \partial X \) there exist \(\epsilon > 0 \), a cusp

\[
\Gamma = \left\{ (x', x_d) \in \mathbb{R}^{d-1} \times \mathbb{R} : |x'| < r, h\left(\frac{|x'|}{r}\right)^\beta < x_d < h \right\}
\]

for some \(r, h > 0 \), and an orthogonal linear map \(A : \mathbb{R}^d \to \mathbb{R}^d \) such that \(y + A \Gamma \subseteq X^0 \) for all \(y \in X \cap B(x, \epsilon) \). Consider the functions \(p, q : (0, 1] \to \mathbb{N} \) defined by

\[
p(\beta) := \left\lfloor \frac{2}{\beta} \right\rfloor \quad \text{and} \quad q(\beta) := \left\lfloor \frac{1}{\beta} \right\rfloor.
\]

Theorem 4.8 ([15, Theorem A]). Let \(m \in \mathbb{N} \) and \(\alpha, \beta \in (0, 1] \). Let \(X \in \mathcal{H}^\beta(\mathbb{R}^d) \). If \(f : X \to \mathbb{R} \) is of class \(\text{Hö}^m_{\alpha p(\beta)} \), then all partial derivatives of \(f \) of order \(j \leq m \) extend continuously from \(X^0 \) to \(X \) and are of class \(\text{Hö}^{(m-j)q(\beta)} \), and the partial derivatives of order \(m \) are locally \(\frac{\alpha}{2q(\beta)} \)-Hölder continuous on \(X \).

Combining Theorem 4.1 with the proof of [15, Proposition 3.3 and 3.4] gives

Theorem 4.9. Let \(m \in \mathbb{N} \) and \(\beta \in (0, 1] \). Let \(X \in \mathcal{H}^\beta(\mathbb{R}^d) \). If \(f : X \to \mathbb{R} \) is of class \(Zyg_{\alpha p(\beta)} \), then all partial derivatives of \(f \) of order \(j \leq m \) extend continuously from \(X^0 \) to \(X \) and are of class \(Zyg^{(m-j)q(\beta)} \).

By the inclusion \(Z^{0,1} \subseteq C^{\alpha,} \) for each \(\alpha \in (0, 1) \) (cf. [22]), also in this case the partial derivatives of order \(m \) satisfy a local \(\frac{\alpha}{2q(\beta)} \)-Hölder condition on \(X \) for each \(\alpha \in (0, 1) \).

5. **Regularity of superposition on Zygmund spaces**

The goal of this section is to prove Theorem 4.12 which characterizes the Lipschitz regularity of the superposition operator

\[
f_\ast : g \mapsto f \circ g
\]

acting on the global Zygmund spaces \(\Lambda_{m+1}(\mathbb{R}^d) \) for \(m \in \mathbb{N}_{\geq 1} \).

To put our result in perspective we recall the characterization of the \(C^k \)-regularity of \(f_\ast \): Let \(m \in \mathbb{N}_{\geq 1} \) and \(f : \mathbb{R} \to \mathbb{R} \) a function. Then:

1. \(f_\ast \Lambda_{m+1}(\mathbb{R}^d) \subseteq \Lambda_{m+1}(\mathbb{R}^d) \) if and only if \(f \in Z^{m,1}(\mathbb{R}) \); see [2, Theorem 1] or Remark 5.2.
(2) For $k \in \mathbb{N}$ the map $f_* : \Lambda_{m+1}(\mathbb{R}^d) \to \Lambda_{m+1}(\mathbb{R}^d)$ is of class C^k if and only if $f \in C^m(\mathbb{R})$ and
\[
(f^{(m+k)}(x+h) - 2f^{(m+k)}(x) + f^{(m+k)}(x-h)) = o(h) \quad \text{as } h \to 0^+
\]
uniformly on compact subsets of \mathbb{R}; cf. [7, Theorem 7].

Theorem 5.3 will follow from Proposition 5.1 and Proposition 5.3.

5.1. Sufficiency. We first show that $f \in \mathcal{Z}^{m+k,1}(\mathbb{R})$ implies that f_* acts on $\Lambda_{m+1}(\mathbb{R}^d)$ and is of class $C^{k-1,1}$. Our approach is based on a version of Theorem 1.2 for maps between Banach spaces (analogous to Corollary 4.4); see [7, 10]. This allows for a simple lucid proof. Similar results hold for f_* acting on Hölder–Lipschitz spaces; see e.g. [12, Theorem 2.14].

Proposition 5.1. Let $m, k \in \mathbb{N}_{\geq 1}$ and $f \in \mathcal{Z}^{m+k,1}(\mathbb{R})$. Then f_* acts on $\Lambda_{m+1}(\mathbb{R}^d)$ and $f_* : \Lambda_{m+1}(\mathbb{R}^d) \to \Lambda_{m+1}(\mathbb{R}^d)$ is of class $C^{k-1,1}$.

Proof. Let $r := m + 1$. For simplicity let $d = 1$. For the fact that $f_* \Lambda_r(\mathbb{R}) \subseteq \Lambda_r(\mathbb{R})$ we refer to [2, Theorem 1], but see also Remark 5.2. By [7, Theorem 4.3.27] or [6, Corollary 15] (i.e. the Lipschitz analogue of Corollary 4.4), it suffices to check that f_* is locally Lipschitz into $\Lambda_r(\mathbb{R})$ maps C^{∞}-curves to $C^{k-1,1}$-curves. That $t \mapsto g(t, \cdot)$ is C^∞ in $\Lambda_r(\mathbb{R})$ means that, for all $\ell \in \mathbb{N}$, $\|\partial^\ell g(t, \cdot)\|_{\Lambda_r}$ is locally bounded in t (cf. [7, 4.1.19]).

We first prove the case $k = 1$. Set $h(t, x) := f(g(t, x))$. In the following we denote, for clarity, by h_t, g_t, \cdots the partial derivatives with respect to t and write ∂^ℓ_t for partial derivatives with respect to x.

Then,
\[
h(t, x) - h(s, x) = \int_s^t h_t(\tau, x) \, d\tau = \int_s^t (f' \circ g)(\tau, x) g_t(\tau, x) \, d\tau
\]
and, for $\ell \leq m$,
\[
\partial^\ell_t h(t, x) - \partial^\ell_t h(s, x) = \sum_{j=0}^\ell \binom{\ell}{j} \int_s^t \partial^j_t (f' \circ g)(\tau, x) \partial^{\ell-j} g_t(\tau, x) \, d\tau.
\]

By Faà di Bruno’s formula,
\[
\partial^\ell_t (f' \circ g)(\tau, x) = \sum_{i=1}^j \sum_{\gamma \in \Gamma(i, j)} c_\gamma (f^{(i-1)} \circ g)(\tau, x) \partial^{\gamma_1}_x g(\tau, x) \cdots \partial^{\gamma_j}_x g(\tau, x), \quad (j \geq 1),
\]
where $\Gamma(i, j) := \{ \gamma \in (\mathbb{N}_{\geq 1})^i : |\gamma| = j \}$ and $c_\gamma := \frac{j!}{\ell! \gamma!}$, it is readily checked that $t \mapsto h(t, \cdot)$ is locally Lipschitz into $C^m(\mathbb{R}) := \{ u \in C^m(\mathbb{R}) : \sup_{\ell \leq m} \| u^{(\ell)} \|_{L^\infty(\mathbb{R})} < \infty \}$.

To see that $t \mapsto h(t, \cdot)$ is locally Lipschitz into $\Lambda_r(\mathbb{R})$ it remains to show

Claim. For each bounded interval $I \subseteq \mathbb{R}$ the set
\[
\left\{ \frac{\Delta^2_v \partial^\ell_{t} h(t, x) - \Delta^2_v \partial^\ell_{s} h(s, x)}{|v||t-s|} : x, v \in \mathbb{R}, v \neq 0, s \neq t \in I \right\},
\]
is bounded, where the second finite difference Δ^2_v acts in the x-variable.

In view of the above, it is enough to show that for all $0 \leq i \leq j \leq m$ and $\gamma \in \Gamma(i, j),$
\[
\Delta^2_v [(f^{(i+1)} \circ g)(\tau, x) \partial^{\gamma_1}_x g(\tau, x) \cdots \partial^{\gamma_i}_x g(\tau, x) \partial^{m-1-j}_x g_t(\tau, x)] = O(|v|),
\]
\[\text{(5.1)}\]
uniformly in \(x \in \mathbb{R} \) and \(\tau \in I \). Let us from now on suppress the dependence on \(\tau \) in the notation. We can assume that \(|v|\) is small; otherwise the result follows from the fact that \(t \mapsto h(t, \cdot) \) is locally Lipschitz into \(C^m_b(\mathbb{R}) \).

Each of the factors in the product
\[
(f^{(\ell+1)} \circ g)(x)\partial_x^{\ell+1}g(x) \cdots \partial_x^m g(x)\partial_x^{m-j} g(x)
\]
is globally bounded in \(x, \) locally in \(\tau \). Thus, by the product rule \((2.3)\), in order to prove \((7.1)\) it suffices to show the following two facts.

Fact 1: For each factor \(\Pi \) in the product \((5.2)\) we have \(\Delta_r^2 \Pi = O(|v|) \), uniformly in \(x \in \mathbb{R} \) and \(\tau \in I \).

Fact 2: For any two factors \(\Pi_1 \) and \(\Pi_2 \) in the product \((5.2)\) we have \(\Delta^1_r \Pi_1 \cdot \Delta^1_r \Pi_2 = O(|v|) \), uniformly in \(x \in \mathbb{R} \) and \(\tau \in I \).

Fact 1. For \(\Pi = \partial_x^\ell g(x) \) and \(\Pi = \partial_x^\ell g(x) \), where \(\ell \leq m \), the assertion \(\Delta^2_r \Pi = O(|v|) \) holds; either by assumption if \(\ell = m \) or using \((2.3)\) if \(\ell < m \). It remains to consider \(\Pi = (f^{(\ell+1)} \circ g)(x) \) for \(\ell \leq m \). In order to estimate \(\Delta^2_r (f^{(m+1)} \circ g)(x) \) we have, by \((2.3)\), to deal with terms of the form
\[
\Delta^2_{x, g(x)} f^{(m+1)}(y) \quad \text{and} \quad \Delta^2_{t, g(x)} f^{(m+1)}(y),
\]
where \(y \) ranges over a bounded set. By assumption and \((2.2)\), \(f^{(m+1)} \in \mathcal{Z}^{0,1}(\mathbb{R}) \subseteq C^{0,\alpha}(\mathbb{R}) \) for all \(\alpha \in (0,1) \) so that
\[
\Delta^1_{x, g(x)} f^{(m+1)}(y) = O(|\Delta^2_r g(x)|^\alpha).
\]
Because \(g \in \Lambda_r(\mathbb{R}) \宣 \Lambda_{1+\beta}(\mathbb{R}) \) for any \(\beta \in (0,1) \) (as \(r \geq 2 \)), Theorem \((2.3)\) implies
\[
\Delta^2_r g(x) = O(|v|^{1+\beta}).
\]
Taking \(\alpha := (1+\beta)^{-1} \) we conclude that
\[
\Delta^1_{x, g(x)} f^{(m+1)}(y) = O(|v|).
\]
For the second term in \((5.3)\) we have
\[
\Delta^2_{t, g(x)} f^{(m+1)}(y) = O(|\Delta^1_t g(x)|) = O(|v|),
\]
since \(g \) is globally Lipschitz. For \(\ell < m \) use \((2.3)\) and similar arguments.

Fact 2. By \((2.5)\) and since \(f^{(m+1)} \in \mathcal{Z}^{0,1}(\mathbb{R}) \subseteq C^{0,\omega}(\mathbb{R}) \) where \(\omega(t) := t \log 1/t \), we find
\[
\Delta^1_t (f^{(m+1)} \circ g)(x) = \Delta^1_{x, g(x)} f^{(m+1)}(g(x)) = O(\omega(|\Delta^1_t g(x)|)) = O(\omega(|v|))
\]
as well as \(\Delta^1_t \partial_x^m g(x) = O(\omega(|v|)) \) and \(\Delta^1_t \partial_x^{m-j} g(x) = O(\omega(|v|)) \). If the order of differentiation in \(x \) is lower than \(m \), then all these terms are actually \(O(|v|) \). In any case it follows that \(\Delta^1_r \Pi_1 \cdot \Delta^1_r \Pi_2 = O(|v|) \).

This ends the proof for \(k = 1 \). Now we argue by induction on \(k \). Let \(k > 1 \) and \(f \in \mathcal{Z}^{m-k,1}(\mathbb{R}) \). Then \(t \mapsto h(t, \cdot) = (f' \circ g(t, \cdot))g(t, \cdot) \) is of class \(C^{k-2,1} \) into \(\Lambda_r(\mathbb{R}) \), since \(f' \) is of class \(C^{k-2,1} \) by induction hypothesis. Consequently, \(t \mapsto h(t, \cdot) \) is of class \(C^{k-1,1} \) into \(\Lambda_r(\mathbb{R}) \) (cf. [7, Theorem 4.3.24]).

Remark 5.2. It is not difficult to build a proof of the fact that \(f, \Lambda_{m+1}(\mathbb{R}) \subseteq \Lambda_{m+1}(\mathbb{R}) \) if \(f \in \mathcal{Z}^{m,1}(\mathbb{R}) \) from the arguments used above. To see that, conversely, \(f, \Lambda_{m+1}(\mathbb{R}) \subseteq \Lambda_{m+1}(\mathbb{R}) \) implies \(f \in \mathcal{Z}^{m,1}(\mathbb{R}) \) consider \(f \circ g \), where \(g \) is a \(C^\infty \)-function with compact support and \(g(x) = x \) on a compact interval.
5.2. Necessity.

Proposition 5.3. Let $m, k \in \mathbb{N}_{\geq 1}$ and $f : \mathbb{R} \to \mathbb{R}$ a function. Suppose that f_\ast acts on $\Lambda_{m+1}(\mathbb{R})$ and $f_\ast : \Lambda_{m+1}(\mathbb{R}) \to \Lambda_{m+1}(\mathbb{R})$ is of class $C^{k-1,1}$. Then $f \in Z^{m+k,1}(\mathbb{R})$.

Proof. By Remark 5.2, $f \in Z^{m,1}(\mathbb{R})$, in particular, $f \in C^m(\mathbb{R})$.

For any compact interval $I \subseteq \mathbb{R}$ let $\rho_I : \mathbb{R} \to \mathbb{R}$ be a C^∞-function with compact support such that $\rho_I(x) = x$ for all $x \in I$. Then $g(x) := \rho_I(x)$ belongs to $\Lambda_{m+1}(\mathbb{R})$ and $c(t) := g + \rho_{-1,1}(t)$ defines a C^∞-curve in $\Lambda_{m+1}(\mathbb{R})$ with $c(0) = g$ and $c(t) = g + t$ if $t \in [-1,1]$. By assumption, f_\ast maps C^∞-curves in $\Lambda_{m+1}(\mathbb{R})$ to $C^{k-1,1}$-curves. Thus $f_\ast(c)$ is a $C^{k-1,1}$-curve in $\Lambda_{m+1}(\mathbb{R})$ and $(f_\ast(c))(t)(x) = f(x + t)$ if $x \in I$ and $t \in [-1,1]$. Thus, by the H"older-k-version of Theorem 4.7, see also [10, Lemma 12.4],

$$\frac{\delta_{eq}^k \Delta^2(f_\ast(c))(m)(x; t)}{t^k} = \frac{\Delta^k \Delta^2 f(m)(x)}{t^k}$$

is bounded for all $x \in I$ and all small $v, t \in \mathbb{R} \setminus \{0\}$. For $t = v$ we see that

$$\frac{\Delta^k \Delta f(m)(x)}{t^{k+1}} = t^k \delta_{eq}^{k+2} f(m)(x; t)$$

is bounded for all $x \in I$ and all small $t \neq 0$. Since $\Lambda_{m+1}(\mathbb{R}) \hookrightarrow \operatorname{Lip}_m(\mathbb{R})$, $f_\ast(c)$ also is a $C^{k-1,1}$-curve in $\operatorname{Lip}_m(\mathbb{R})$ whence similar considerations give that

$$\frac{\Delta^k \Delta f(m-1)(x)}{t^k}$$

is bounded for all $x \in I$ and all small v, t. We see that $\delta_{eq}^{k+1} f(m-1)(x; t)$ is bounded for $x \in I$ and small t. Invoking Theorem 2.4 twice, we find that $f^{(m-1)} \in C^k(\mathbb{R})$ which entails $f \in C^{m+k-1,1}(\mathbb{R})$, and so $\delta_{eq}^k f^{(m)}(x; t)$ is locally bounded in $(x, t) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\})$. By Theorem 2.4 we have $f^{(m)} \in Z^{k,1}(\mathbb{R})$ and consequently $f \in Z^{m+k,1}(\mathbb{R})$. \hfill \Box

Acknowledgments. We thank the anonymous referee for helpful remarks.

References

[1] J. Boman, *Differentiability of a function and of its compositions with functions of one variable*, Math. Scand. 20 (1967), 249–268.

[2] G. Bourdaud and M. Lanza de Cristoforis, *Functional Calculus in Hölder-Zygmund Spaces*, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4109–4129.

[3] R. de la Llave and R. Obaya, *Regularity of the composition operator in spaces of Hölder functions*, Discrete Contin. Dynam. Systems 5 (1999), no. 1, 157–184.

[4] C.-A. Faure, *Sur un théorème de Boman*, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 20, 1003–1006.

[5]———, *Théorie de la différentiation dans les espaces convenables*, Ph.D. thesis, Université de Genève, 1991.

[6] C.-A. Faure and A. Frölicher, *Hölder differentiable maps and their function spaces*, Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988), World Sci. Publ., Teaneck, NJ, 1989, pp. 135–142.

[7] A. Frölicher and A. Kriegl, *Linear spaces and differentiation theory*, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1988, A Wiley-Interscience Publication.

[8] S.G. Krantz, *Lipschitz spaces, smoothness of functions, and approximation theory*, Expo. Math. 1 (1983), 193–260.

[9] A. Kriegl, *Remarks on germs in infinite dimensions*, Acta Math. Univ. Comenian. (N.S.) 66 (1997), no. 1, 117–134.
[10] A. Kriegl and P. W. Michor, *The convenient setting of global analysis*, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997, http://www.ams.org/online_bks/surv53/.

[11] A. Kriegl, P. W. Michor, and A. Rainer, *Many parameter Hölder perturbation of unbounded operators*, Math. Ann. **353** (2012), 519–522.

[12] D. N. Nenning and A. Rainer, *On groups of Hölder diffeomorphisms and their regularity*, Trans. Amer. Math. Soc. **370** (2018), no. 8, 5761–5794.

[13] A. Norton, *The Zygmund Morse–Sard theorem*, J. Geom. Anal. **4** (1994), no. 3, 403–424.

[14] A. Rainer, *Arc-smooth functions on closed sets*, Compos. Math. **155** (2019), 645–680.

[15] Armin Rainer, *Arc-smooth functions and cuspidality of sets*, (2021), arXiv:2112.14163.

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

Email address: armin.rainer@univie.ac.at