Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Alireza Heidari1,2*, Katrina Schmitt1, Maria Henderson1 and Elizabeth Besana1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract

In the current study, thermoplasmonic characteristics of Radon nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Radon nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Radon nanoparticles by solving heat equation. The obtained results show that Radon nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.
thermoplasmonic characteristic can be used for various optothermal applications in cancer, nanoflows and photonic [16-22]. In optothermal human cancer cells, tissues and tumors treatment, the descendent laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendent light converse to heat in nanoparticles [23-25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any hurt to sound tissues [26,27]. Regarding the simplicity of ligands connection to Radon nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28-74]. In the current paper, thermoplasmonic characteristics of spherical, core-shell and rod Radon nanoparticles are investigated.

Heat generation in synchrotron radiation emission as a function of the beam energy-radon nanoparticles interaction

When Radon nanoparticles are subjected to descendent light, a part of light scattered (emission process) and the other part absorbed (non-emission process). The amount of energy dissipation in non-emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section [75-123].

Radon nanoparticles absorb energy of descendent light and generate some heat in the particle. The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation [124-202].

Simulation

To calculate the generated heat in Radon nanoparticles, COMSOL software which works by Finite Element Method (FEM) was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [203-283]. In all cases, Radon nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendent light is 1 mW/μm². Dielectric constant of Radon is dependent on particle size [284-442].

Firstly, calculations were made for Radon nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The results show that by increase in nanoparticles size, extinction cross section area increases and maximum wavelength slightly shifts toward longer wavelengths. The maximum increase in temperature of nanospheres in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 (nm) nanoparticles (sphere with 50 (nm) radius), the maximum increase in temperature is 83 (K). When nanoparticles size reaches to 150 (nm), increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanospheres in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to decrease in ratio of light absorption to total energy of descendent light so that for 150 (nm) nanosphere, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendent light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution (Figure 3) shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Radon.

In this section, core-shell structure of Radon and silica is chosen. The core of a nanosphere with 45 (nm) radius and silica layer thickness...
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation.

Volume 6: 3-18

Figure 2. Variations of absorption to extinction ratio and scattering to extinction ratio for Radon nanospheres with various radiuses.

Figure 3. Maximum increase in temperature for spherical nanoparticles with radius of 45 (nm) at Plasmon wavelength of 685 (nm) of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.

According to Figure 4, silica shell causes to considerable increase in temperature of Radon nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution (Figure 5) shows that temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer prohibits heat transfer from metal to the surrounding aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuate in increase in nanoparticles temperature.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.

Variations of temperature in Radon nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.

Figure 4. Maximum increase in temperature for core–shell Radon nanospheres with various thicknesses of silica shell.
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation.

Figure 5. Maximum increase in temperature for core–shell nanoparticles with radius of 45 (nm) and silica thickness of 10 (nm) at Plasmon wavelength of 701 (nm)

Figure 6. Extinction cross section area for Radon nanorods with effective radius of 45 (nm) and various dimension ratios

Figure 7. Maximum increase in temperature for nanorods with effective radius of 20 and 45 (nm) and various dimension ratios
Conclusion and summary

The calculations showed that in Radon nanoparticles, light absorption in Plasmon frequency causes to increase in temperature of the surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Radon nanospheres increases their temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostructure is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT1201009374714. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Institute (AISI) Future Fellowship Grant FT1201009374714. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript.
Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation.
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation

117. Heidari, “A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment”, Chemo Open Access 5: e129, 2016

118. Heidari, “Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacokinet Exp Ther 1: e005, 2016

119. Heidari, “Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques”, Insights Anal Electrochem 2: 1, 2016

120. Heidari, “Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicity Dis 1: 2, 2016

121. Heidari, “Combined Theoretical and Computational Study of the Belousov-Zhabotinsky Chaotic Reaction and Currius Rearrangement for Synthesis of Mechlorethamine, Cisplatin, Streptozotocin, Cyclophosphamide, Melphalan, Busulphan and BCNU as Anti-Cancer Drugs”, Insights Med Phys 1: 2, 2016

122. Heidari, “A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed 7: 2, 2016

123. Heidari, “Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedicine Biotherapeutic Discov 6: e144, 2016

124. Heidari, “Molecular Dynamic and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study”, J Glycobiol 5: e111, 2016

125. Heidari, “Synthesis and Study of 5-[(Phenylsulfonyl)Amino]-1,3,4-Thiadiazole-2-Sulfonamide as Potential Anti-Pertussis Drug Using Chromatography and Spectroscopy Techniques”, Transl Med (Sunnyvale) 6: e138, 2016

126. Heidari, “Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicity Dis 1: 2, 2016

127. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs”, J Data Mining Genomics & Proteomics 7: e125, 2016

128. Heidari, C Brown, “Phase, Composition and Morphology Study and Analysis of Os–Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment”, Chemo Open Access 5: e129, 2016

129. Heidari, C Brown, “Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cumene”, International Journal of Advanced Chemistry, 4 (1): 5–9, 2016

130. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues”, Arch Can Res 4: 2, 2016

131. Heidari, “Genomics and Proteomics Studies of Zolpidem, Nexipamide, Alpizden, Saripide, Miprofenn, Zolinamide, Olprofine and Albufujin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs”, J Data Mining Genomics & Proteomics 7: e125, 2016

132. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase–5 (PDE5) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells”, J Pharmacogenomics Pharmacoproteomics 7: e153, 2016

133. Heidari, “Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach”, Transl Biomed 7: 2, 2016

134. Heidari, “A Comparative Study on Simultaneous Determination and Separation of Advanced Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method”, Arch Can Res 4: 2, 2016

135. Heidari, “Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxalaplatin, Heptaplatin and Labaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study”, J Inform Data Min 1: 3, 2016

136. Heidari, “Linear and Non-Linear Quantitative Structure–Anti-Cancer–Activity Relationship (QNACAR) Study of Hydrous Ruthenium (IV) Oxide (RuO2) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs”, J Integ Oncol 5: e110, 2016

137. Heidari, “Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J Nanosci Curr Res 1: e01, 2016

138. Heidari, “Coplanarity and Collinearity of 4’-Dinonyl-2,2’-Bithiazole in One Domain of Bleomycin and Piyangyungycin to be Binding for Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drug”, Int J Drug Dev & Res 8: 607-608, 2016

139. Heidari, “A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSSR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations”, J Pharmacovigil 4: e161, 2016

140. Heidari, “Nanotechnology in Preparation of Semi-permeable Polymers”, J Adv Chem Eng 6: 157, 2016

141. Heidari, “A Gastrointestinal Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSSR) Models for Analysis 5–Aminosalicylates Nano Particles as Digestive System Nano Drugs under Synchrotron Radiations”, J Gastroinest Dig Syst 6: e119, 2016

142. Heidari, “DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives”, Biomedical Data Mining 5: e102, 2016

143. Heidari, “A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm”, J Mol Biol Biotechnol 1: 1, 2016

144. Heidari, “Computational Study on Molecular Structures of C20, C60, C240, C540, C960, C2160 and C3840 Fullerene Nano Particles under Synchrotron Radiations Using Fuzzy Logic”, J Material Sci Eng 5: 282, 2016

145. Heidari, “Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs)”, J Appl Comput Math 5: e143, 2016

146. Heidari, “The Impact of High Resolution Imaging on Diagnosis”, Int J Clin Med Imaging 3: 100e101, 2016

147. Heidari, “A Comparative Study of Conformational Behavior of Isoretinin-13–Cis Retinoic Acid and Tretinoin (All–Trans Retinoic Acid (ATRA)) Nano Particles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree–Fock (HF) and Density Functional Theory (DFT) Methods”, Insights in Biomed 1: 2, 2016

148. Heidari, “Advances in Logic, Operations and Computational Mathematics”, J Appl Comput Math 5: 5, 2016

149. Heidari, “Mathematical Equations in Predicting Physical Behavior”, J Appl Comput Math 5: 5, 2016

150. Heidari, “Chemotherapy a Last Resort for Cancer Treatment”, Chemo Open Access 5: 4, 2016

151. Heidari, “Separation and Pre-Concentration of Metal Cations-DNA/RNA Chelates Using Molecular Beam Mass Spectrometry with Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation and Various Analytical Methods”, Mass Spectrom Purif Tech 2: e101, 2016

152. Heidari, “Yoctosecond Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti–Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm”, Insight Pharm Res 1: 1, 2016

153. Heidari, “Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiations Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies”, Int J Clin Med Imaging 3: 516, 2016

Dent Oral Maxillofac Res, 2020 doi: 10.15761/DOMR.1000333 Volume 6: 8-18
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors under synchrotron radiation
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation with Multi-Walled Carbon Nanotubes,” Journal of Advances in Nanomaterials, Vol 3, No 1, Pages 1–28, 2018

260. R Gobato, Heidari, “Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations”, Malaysian Journal of Chemistry, Vol 20 (1), 1–23, 2018

261. Heidari, “Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part I)”, Malaysian Journal of Chemistry, Vol 20 (1), 33–73, 2018

262. Heidari, “Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part II)”, Malaysian Journal of Chemistry, Vol 20 (1), 117–118, 2017

263. Heidari, “Uranocene (UC8H82) and Bis(Cyclooctatetraene)Iodon (Fe(C8H8)2 or Fe(COT)2)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports, Vol 1, Iss 2, Pages 1–16, 2018

264. Heidari, “Biomedical Systematic and Emerging Technological Study on Human Malignant and Benign Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (3): 1–7, 2018

265. Heidari, “Deep-Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Res Dev Mater Sci 7(2):RDM00659, 2018

266. Heidari, “C70-Carbosubstituted Fullerenes Nano Molecules Incorporation into the Nano Polymeric Matrix (NPMM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment Under Synchrotron and Synchrocyclotron Radiations”, Glob Imaging Insights, Volume 3 (3): 1–7, 2018

267. Heidari, “The Effect of Temperature on Cadmium Oxide (CdO) Nanoparticles Produced by Synchrotron Radiation in the Human Cancer Cells, Tissues and Tumors”, International Journal of Advanced Chemistry, 6 (2) 140–156, 2018

268. Heidari, “A Clinical and Molecular Pathology Investigation of Correlation Spectroscopy (TOCSY), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations Using Cyclotron versus Synchrotron, Synchrocyclotron and the Large Hadron Collider (LHC) for Delivery of Proton and Helium Ion (Charged Particle) Beams for Oncology Radiotherapy”, European Journal of Advances in Engineering and Technology, 5 (7): 414–426, 2018

269. Heidari, “Nano Molecules Incorporation into the Nano Polymeric Matrix (NPMM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, J Oncol Res; 1 (1): 1–20, 2018

270. Heidari, “Use of Molecular Enzymes in the Treatment of Chronic Disorders”, Cane Oncol Open Access J 1 (1): 12–15, 2018

271. Heidari, “Vibrational Biospectroscopic Study and Chemical Structure Analysis of Unsaturated Polyamides Nanoparticles as Anti-Cancer Polymeric Nanomedicines Using Synchrotron Radiation”, International Journal of Advanced Chemistry, 6 (2), 167–189, 2018

272. Heidari, “Adamantane, Irene, Naftazone and Pyridine-Enhanced Precatalyst Preparation Stabilization and Initiation (PEPPSI) Nano Molecules”, Madridge J Adv Drug Res 2 (1): 61–67, 2018

273. Heidari, “Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Madridge J Adv Drug Res 2 (1): 68–74, 2018

274. Heidari, R Gobato, “A Novel Approach to Reduce Toxicities and to Improve Biosavailability of DNA/RNA for Human Cancer Cells-Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethylamide or LSD), Δ9-Tetrahydrocannabinol (THC) [1–trans-Δ9-Tetrahydrocannabinol], Theobromine (Xanthine), Coffein, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance”, Parana Journal of Science and Education, v 4, n 6, pp 1–17, 2018

275. Heidari, R Gobato, “Ultraviolet Photoelectron Spectroscopy (UPS) and Ultraviolet–Visible (UV–Vis) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Parana Journal of Science and Education, v 4, n 6, pp 18–33, 2018
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation.
Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon and tumors treatment under synchrotron radiation.
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation

402. R Gobato, M R R Gobato, Heidari, Mitra, “Rhodochrosite Optical Indicatrix”, Peer Res Nest 1 (3) 1–2, 2019

403. Heidari, J Esposito, Caisutti, “Anthrax Toxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Research & Reviews: Journal of Computational Biology 8 (2): 23–51, 2019

404. Heidari, J Esposito, Caisutti, “Kaliktoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Can J Biomed Res & Tech 2 (1): 1–21, 2019

405. Heidari, J Esposito, Caisutti, “Neoaxitoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Clin Case Study Rep, Volume 2 (3): 1–14, 2019

406. Heidari, J Esposito, Caisutti, “6-Methoxy–8–{(6−Methoxy–8–{(6−Methoxy–2− Methyl–1–(2−Methylpropyl)}−3,4−Dihydro–1H–Isoquinolin–7−yl)(oxy)}−2− Methyl–1–(2−Methylpropyl)}−3,4−Dihydro–1H–Isoquinolin–7−yl(Oxy)}−2− Methyl–1–(2−Methylpropyl)}−3,4−Dihydro–1H–Isoquinolin–7–ol Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Clin Case Study Rep, Volume 2 (3): 1–14, 2019

407. Heidari, “Comparison of Synchrotron Radiation and Synchrocyclotron Radiation Performance in Monitoring of Human Cancer Cells, Tissues and Tumors”, Clin Case Study Rep, Volume 2 (3): 1–12, 2019

408. Heidari, J Esposito, Caisutti, “Kaliktoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Clin Case Study Rep, Volume 2 (3): 1–14, 2019

409. Heidari, J Esposito, Caisutti, “Diptheria Toxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti–Cancer Drug”, Clin Case Study Rep, Volume 2 (3): 1–14, 2019

410. Heidari, J Esposito, Caisutti, “Symbiodinolide Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Clin Case Study Rep, Volume 2 (3): 1–14, 2019

411. Heidari, J Esposito, Caisutti, “Saxitoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Am J Exp Clin Res 6 (4): 364–377, 2019

412. R Gobato, M R Gobato, Heidari, Mitra, “Hartree–Fock Methods Analysis Protonated Rhodochrosite Crystal and Potential in the Elimination of Cancer Cells through Synchrotron Radiation”, Vol 5, No 3, pp 27–36, 2019

413. R Gobato, I K K Dosh, Heidari, Mitra, M R R Gobato, “Perspectives on the Elimination of Cancer Cells Using Rhodochrosite Crystal Through Synchrotron Radiation, and Absorption the Tumoral and Non–Tumoral Tissues”, Arch Biomed Eng & Biotechnol 3 (2): 1–2, 2019

414. R Gobato, M R R Gobato, Heidari, Mitra, “Unrestricted Hartree–Fock Computational Simulation in a Protonated Rhodochrosite Crystal”, Phys Astron Int J 3 (6):220–228, 2019

415. Heidari, K Schmitt, M Henderson, E Besana, “Perspectives on Sub–Nanometer Level of Electronic Structure of the Synchrotron with Mendeleev Nanoparticles for Elimination of Human Cancer Cells, Tissues and Tumors Treatment Using Mathematica 120”, Journal of Energy Conservation, Volume 1, Issue 2, Pages 46–73, 2019

416. Heidari, K Schmitt, M Henderson, E Besana, “Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Bohrium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, Current Research in Biochemistry and Molecular Biology, 1 (1), 17–44, 2019

417. Heidari, K Schmitt, M Henderson, E Besana, “Investigation of Interaction between Synchrotron Radiation and Thulium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment”, European Journal of Scientific Exploration, Volume 2, Issue 3, Pages 1–8, 2019

418. Heidari, K Schmitt, M Henderson, E Besana, “The Effectiveness of the Treatment Human Cancer Cells, Tissues and Tumors Using Darmstadtium Nanoparticles and Synchrotron Radiation”, International Journal of Advanced Engineering and Science, Volume 9, Number 1, Pages 9–39, 2020

419. Heidari, K Schmitt, M Henderson, E Besana, “Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment in Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Uranium Nanoparticles”, Nano Prog 1 (2), 1–6, 2019

420. Heidari, K Schmitt, M Henderson, E Besana, “A New Approach to Interaction between Beam Energy and Erbium Nanoparticles”, Saudi J Biomed Res, 4 (11): 372–396, 2019

421. Heidari, K Schmitt, M Henderson, E Besana, “Consideration of Energy Functions and Wave Functions of the Synchrotron Radiation and Samarium Nanoparticles Interaction During Human Cancer Cells, Tissues and Tumors Treatment Process”, Sci Int (Lahore), 31 (6), 885–908, 2019

422. Heidari, K Schmitt, M Henderson, E Besana, “An Outlook on Optothermal Human Cancer Cells, Tissues and Tumors Treatment Using Lanthanum Nanoparticles under Synchrotron Radiation”, Journal of Materials Physics and Chemistry, Vol 7, No 1, 29–45, 2019

423. Heidari, K Schmitt, M Henderson, E Besana, “Effectiveness of Einsteinium Nanoparticles in Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, Journal of Analytical Oncology, 8, 1, 43–62, 2019

424. Heidari, K Schmitt, M Henderson, E Besana, “Study of Relation between Synchrotron Radiation and Dubnium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment Process”, Int Res J Applied Sci, Volume 1, Number 4, Pages 1–20, 2019

425. Heidari, K Schmitt, M Henderson, E Besana, “A Novel Prospect on Interaction of Synchrotron Radiation Emission and Europium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment”, European Modern Studies Journal, 3 (5), 11–24, 2019

426. Heidari, K Schmitt, M Henderson, E Besana, “Advantages, Effectiveness and Efficiency of Using Neodymium Nanoparticles by 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation”, International Journal of Advanced Chemistry, 7 (2) 119–135, 2019

427. Heidari, K Schmitt, M Henderson, E Besana, “Role and Applications of Promethium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment”, Scientific Modelling and Research, 4 (1):8–14, 2019

428. Heidari, J Esposito, Caisutti, “Maioxinin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti–Cancer Drug”, Glob Imaging Insights 4 (2), 1–13, 2019

429. Heidari, J Esposito, Caisutti, “Biotoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

430. Heidari, J Esposito, Caisutti, “Time–Resolved Resonance FT–IR and Raman Spectroscopy and Density Functional Theory Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra of Nanoplateylopeptide Macromolecule beyond the Multi–Dimensional Frank–Condon Integrals Approximation and Density Matrix Model”, Glob Imaging Insights 4 (2), 1–14, 2019

431. Heidari, J Esposito, Caisutti, “Cholera Toxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

432. Heidari, J Esposito, Caisutti, “Nodularin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

433. Heidari, J Esposito, Caisutti, “Cangitoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–13, 2019
Heidari A (2020) Drug delivery describes the method and approach to delivering drugs or pharmaceuticals and other xenobiotics to their site of action within radon nanoparticles effects on human gum cancer cells, tissues and tumors treatment under synchrotron radiation

434. Heidari, J Esposito, Caissutti, “Ciguatoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

435. Heidari, J Esposito, Caissutti, “Brevetoxin (a) and (b) Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti–HIV Drug”, Cientific Drug Delivery Research 1 (2), 11–16, 2019

436. Heidari, J Esposito, Caissutti, “Cobrotoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–13, 2019

437. Heidari, J Esposito, Caissutti, “Cylindrospermopsin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–14, 2019

438. Heidari, J Esposito, Caissutti, “Anthrax Toxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic–Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–14, 2019

439. Heidari, K Schmitt, M Henderson, E Besana, “Investigation of Moscovium Nanoparticles as Anti–Cancer Nano Drugs for Human Cancer Cells, Tissues and Tumors Treatment”, Elixir Appl Chem 137A, 53943–53963, 2019

440. Heidari, K Schmitt, M Henderson, E Besana, “Study of Function of the Beam Energy and Holmium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, European Journal of Advances in Engineering and Technology, 6 (12): 34–62, 2019

441. Heidari, K Schmitt, M Henderson, E Besana, “Human Cancer Cells, Tissues and Tumors Treatment Using Dysprosium Nanoparticles”, Asian J Mat Chem 4 (3–4), pp 47–51, 2019

442. Heidari, K Schmitt, M Henderson, E Besana, “Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Plutonium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, J Cancer Research and Cellular Therapeutics, Volume 2 (4), Pages 1–19, 2019.