Practitioner's review: medication for children and adolescents with autism spectrum disorder (ASD) and comorbid conditions

Christian Popow · Susanne Ohmann · Paul Plener

Received: 12 January 2021 / Accepted: 15 May 2021 / Published online: 23 June 2021
© The Author(s) 2021

Abstract Alleviating the multiple problems of children with autism spectrum disorder (ASD) and its comorbid conditions presents major challenges for the affected children, parents, and therapists. Because of a complex psychopathology, structured therapy and parent training are not always sufficient, especially for those patients with intellectual disability (ID) and multiple comorbidities. Moreover, structured therapy is not available for a large number of patients, and pharmacological support is often needed, especially in those children with additional attention deficit/ hyperactivity and oppositional defiant, conduct, and sleep disorders.

Keywords Autism spectrum disorder · ADHD · Children and adolescents · Pharmacotherapy

Practitioner Review: Medikamentöse Behandlung von Kindern und Jugendlichen mit Autismus-Spektrum-Störung (ASS) und Komorbiditäten

Introduction Autism spectrum disorder (ASD) is a common [73], complex, genetically based, disabling disorder [15] that needs specific knowledge and parenting skills [165] and burdensome, costly treatment. The complex clinical picture is characterized in ICD-11 6A02 by

- Persistent deficits in the ability to initiate and sustain reciprocal social interaction and social communication,
- A range of restricted, repetitive, and inflexible patterns of behavior and interests, and
- A high prevalence of intellectual disability, language impairments, and other comorbid disorders

and a number of comorbid conditions such as attention deficit/hyperactivity disorder (ADHD), sleep disorders, convulsions, oppositional defiant disorder (ODD), anxieties, obsessions and compulsions (OCD), depression, and numerous other symptoms and conditions that are discussed as to whether they represent “core” or comorbid problems [281]. These conditions differ in symptomatology, prevalence, and treatability from those of normally developing children. These
ASD comprises persons with a very low functional level up to a normal or even supranormal level with relatively low impairment. The disorder may not be cured but largely ameliorated by therapy and guided intrafamilial support [36, 165]. Especially in children with a low functional level, structured behavioral therapies [178] such as ABA\(^1\) and its variants, TEACCH\(^2\) or PECS\(^3\) have been proven to be beneficial. Therapeutic success will depend on the level of impairment, the intrafamilial and peer relation support, the availability, quality and quantity of therapeutic support [183, 192], the age at diagnosis [86, 119, 229, 263, 299], the types and number of comorbid conditions, and the financial support provided by the state or the social insurance, because an individual family will usually not dispose of the necessary means. Less affected children will present with flexibility problems and may easily be overburdened with social problems [166]. Additional challenges may be caused by comorbid conditions like ADHD, dysexecutive problems, depression, anxiety disorders, or seizures [10, 18, 24, 38, 105, 106, 187, 201, 281] (Table 2 [187, 223, 281]). Therapy should aim at attaining autonomy, flexibility, social competence, an educational level that is appropriate to the individual intellectual capacity of the child, and provide the basis for a self-determined and socially integrated life.

"Conventional" pharmacotherapy is targeted to reduce inappropriate behavior and the associated burden for family, school, and the social environment, to limit inattention, impulsivity, and hyperactivity associated with ADHD, and to reduce the risk of seizures. Up to two-thirds of children with ASD are treated with psychotropics, and a third with multiple drugs [92, 156, 288]. Newer trends aim at improving social communication [21] or transferring experimental therapies into real life [81, 171]. Examples include improving the imbalance between excitatory (glutamatergic) and inhibitory (GABA-ergic) neurotransmission [180, 216] or synaptic plasticity [34]. Among the most promising candidate substances are [171], NMDA\(^4\) antagonists [33], memantine [139], and

\(^1\) applied behavioral analysis [209].

\(^2\) Treatment and Education of Autistic and related Communication Handicapped Children [211].

\(^3\) Picture Exchange Communication System [89].

\(^4\) N-methyl-D-aspartate.
Table 2 ASD: relevant comorbid disorders

Disorders	Normotypic Children %	ASD Children %	References
Anxiety disorders	20–40	11–84	[261]
Sensory integration/EF	7.5–15	>75	[126, 198]
Sleep disorder	22–32	40–80	[175]
ADHD	5–7	30–75	[10, 58, 266]
ODD/CD	30–90	20–40	[264]
Intellectual disability	2–3	25–70	[163]
OCD	2.5	8–37	[187]
Epilepsy	1–3	20–34	[24, 105, 261]
Depression/BPD	2–3	11–20	[161, 201]
Tic disorder	1–2	9–20	[260]
Central auditory processing disorder	2–5	?	[16]

In order to improve the multiple medical, social, behavioral, learning, or sleep-related problems, a number of drugs have been recommended and studied in clinical trials [241]. In addition, a number of experimental therapies, such as diets and brain extracts, were tried, most of them without any clinical evidence. Because the individual reaction to pharmacotherapy varies considerably [28], individualized treatment is mandatory [218]. We, therefore, performed a systematic review of the current literature, aiming at providing an overview on recommended pharmacotherapy for ASD and its most important comorbid disorders. The review is divided into three sections:

1. Pharmacologic agents
2. Therapy for common problems of ASD and comorbid disorders
3. Other substances, supplementary and alternative therapies.

Methods

We searched the database PubMed/Medline for the following terms: autism AND pharmacotherapy OR medication, and retrieved 4,248 citations. Restricting the period covered to the years 2000–2019 and the language to English OR French OR German; 3,607 citations remained, including 1,120 reviews. Selecting relevant titles, primarily taking into account the contents and quality of the papers, and secondarily the authors, publication media (impact factor), and date (selecting newer references), 223 remained. These were carefully studied in detail and supplemented by 742 additional relevant articles retrieved by specific topic searches that were considered important for understanding during the writing process. This added to 965 references of which 325 were cited in this article, depending on their subjectively estimated significance, and aiming at not overloading the chapter with citations (see Fig. 1). The relationship between reviews and meta-analyses and original papers in the cited references was 1:3.

Pharmacotherapy of ASD

In the following, we will discuss the various groups of pharmaceuticals used in children and adolescents with ASD, namely antipsychotics, antidepressants, and anticonvulsants.

Antipsychotics

Antipsychotics influence dopamine neurotransmission, acting sedating in lower, antipsychotic in medium, and narcotic in high doses. First generation antipsychotics (FGA), especially haloperidol, have been shown to influence stereotypic and hyperactive behavior, to reduce temper tantrums and social isolation [9]. FGAs should no longer be used because of an inappropriate risk–benefit ratio related to cognitive as well as early and late (e.g., dyskinetic) side effects. As an alternative, second generation antipsychotics (SGAs), especially risperidone, aripiprazole, and quetiapine, are substances of choice for treating aggression, self-injuring behavior, temper tantrums, withdrawal, tics, and rituals.

This is also true for the SGA clozapine because of its dangerous hematologic side effects [152]. As an alternative, SGAs, especially risperidone, aripiprazole, and quetiapine, are substances of choice for treating aggression, self-injuring behavior, temper tantrums, withdrawal, tics and rituals [35, 43, 62, 68, 103, 122, 153, 170, 221, 231, 241, 249, 262, 272, 275, 290, 295, 319]. Other SGAs (such as asenapine and iloperidone) may also be used off-label but do not offer advantages [326]. Positive effects should be balanced against (metabolic, endocrine, neurologic, and cardiac) side effects [61, 273]. Therefore, mainly low-dose application should be tried. Recommended dosages and specific features are listed in Table 4. Adding topiramate to risperidone therapy was more effective on overall behavior when compared to risperidone monotherapy [257]. A potential adverse effect of topiramate on language development [227] has, nevertheless, to be considered.

Antidepressants

In normally developing children, selective serotonin antagonists (SSRIs) are effective against depressive disorders [68, 214], the GABA agonists, baclofen or arbaclofen [77, 130], oxytocin [17, 21, 47, 113, 313], vasopressin [235] or balovaptan [27], and insulin-like growth factors (IGF-I) [44, 301]. Among these, only the binding hormone oxytocin has gained widespread attention, stimulating a considerable number of clinical studies, although with inconsistent results [228].

References

Consider additional relevant articles retrieved by specific topic searches that were considered important for understanding during the writing process. This added to 965 references of which 325 were cited in this article, depending on their subjectively estimated significance, and aiming at not overloading the chapter with citations (see Fig. 1). The relationship between reviews and meta-analyses and original papers in the cited references was 1:3.

Pharmacotherapy of ASD

In the following, we will discuss the various groups of pharmaceuticals used in children and adolescents with ASD, namely antipsychotics, antidepressants, and anticonvulsants.

Antipsychotics

Antipsychotics influence dopamine neurotransmission, acting sedating in lower, antipsychotic in medium, and narcotic in high doses. First generation antipsychotics (FGA), especially haloperidol, have been shown to influence stereotypic and hyperactive behavior, to reduce temper tantrums and social isolation [9]. FGAs should no longer be used because of an inappropriate risk–benefit ratio related to cognitive as well as early and late (e.g., dyskinetic) side effects. As an alternative, second generation antipsychotics (SGAs), especially risperidone, aripiprazole, and quetiapine, are substances of choice for treating aggression, self-injuring behavior, temper tantrums, withdrawal, tics, and rituals.

This is also true for the SGA clozapine because of its dangerous hematologic side effects [152]. As an alternative, SGAs, especially risperidone, aripiprazole, and quetiapine, are substances of choice for treating aggression, self-injuring behavior, temper tantrums, withdrawal, tics and rituals [35, 43, 62, 68, 103, 122, 153, 170, 221, 231, 241, 249, 262, 272, 275, 290, 295, 319]. Other SGAs (such as asenapine and iloperidone) may also be used off-label but do not offer advantages [326]. Positive effects should be balanced against (metabolic, endocrine, neurologic, and cardiac) side effects [61, 273]. Therefore, mainly low-dose application should be tried. Recommended dosages and specific features are listed in Table 4. Adding topiramate to risperidone therapy was more effective on overall behavior when compared to risperidone monotherapy [257]. A potential adverse effect of topiramate on language development [227] has, nevertheless, to be considered.

Antidepressants

In normally developing children, selective serotonin antagonists (SSRIs) are effective against depressive disorders [68, 214], the GABA agonists, baclofen or arbaclofen [77, 130], oxytocin [17, 21, 47, 113, 313], vasopressin [235] or balovaptan [27], and insulin-like growth factors (IGF-I) [44, 301]. Among these, only the binding hormone oxytocin has gained widespread attention, stimulating a considerable number of clinical studies, although with inconsistent results [228].

References

Consider additional relevant articles retrieved by specific topic searches that were considered important for understanding during the writing process. This added to 965 references of which 325 were cited in this article, depending on their subjectively estimated significance, and aiming at not overloading the chapter with citations (see Fig. 1). The relationship between reviews and meta-analyses and original papers in the cited references was 1:3.

Pharmacotherapy of ASD

In the following, we will discuss the various groups of pharmaceuticals used in children and adolescents with ASD, namely antipsychotics, antidepressants, and anticonvulsants.

Antipsychotics

Antipsychotics influence dopamine neurotransmission, acting sedating in lower, antipsychotic in medium, and narcotic in high doses. First generation antipsychotics (FGA), especially haloperidol, have been shown to influence stereotypic and hyperactive behavior, to reduce temper tantrums and social isolation [9]. FGAs should no longer be used because of an inappropriate risk–benefit ratio related to cognitive as well as early and late (e.g., dyskinetic) side effects. As an alternative, second generation antipsychotics (SGAs), especially risperidone, aripiprazole, and quetiapine, are substances of choice for treating aggression, self-injuring behavior, temper tantrums, withdrawal, tics, and rituals.

This is also true for the SGA clozapine because of its dangerous hematologic side effects [152]. As an alternative, SGAs, especially risperidone, aripiprazole, and quetiapine, are substances of choice for treating aggression, self-injuring behavior, temper tantrums, withdrawal, tics and rituals [35, 43, 62, 68, 103, 122, 153, 170, 221, 231, 241, 249, 262, 272, 275, 290, 295, 319]. Other SGAs (such as asenapine and iloperidone) may also be used off-label but do not offer advantages [326]. Positive effects should be balanced against (metabolic, endocrine, neurologic, and cardiac) side effects [61, 273]. Therefore, mainly low-dose application should be tried. Recommended dosages and specific features are listed in Table 4. Adding topiramate to risperidone therapy was more effective on overall behavior when compared to risperidone monotherapy [257]. A potential adverse effect of topiramate on language development [227] has, nevertheless, to be considered.

Antidepressants

In normally developing children, selective serotonin antagonists (SSRIs) are effective against depressive
Fig. 1 Processing of records

- Records identified through database search (n=4,245)
- Restricting period to 2000-2019 (n=641)
- Records screened by title (n=3,607)
- Records excluded for relevance (n=3,384)
- Remaining full text articles (n=223)
- Additional records identified through other sources (n=742)
- Records screened (n=965)
- Records excluded by screening text (n=640)
- Full-text articles cited (n=325)

Symptoms with substance-related differences in effectivity and side effects. SSRIs also act against anxiety disorders in lower dosages and against OCD in higher dosages, compared to the treatment of depression. In children with ASD, SSRIs are widely prescribed, but their therapeutic effect is less evident [319]. Other AD agents, such as MAOIs, mirtazapine, hypericum, etc., also seem to produce only little effect, possibly because of elevated peripheral serotonin blood levels in a number of children and adolescents with ASD [100, 232, 309, 319].

A few studies suggest improvements of repetitive and stereotypic behavior with AD therapy in children with ASD [221], although this was not reported by King et al. [168] or Williams et al. [319]. Side effects of SSRIs usually are mild but may be exaggerated in children with ASD, especially when children are restless and agitated [173]. Bupropion, a NDRIF acts like a stimulant, may create dependence, and should not be used in adolescents. Mirtazapine [243], a tricyclic AD, has modest antidepressant effects and further acts as a sedative and hypnotic agent by stimulating H1 receptors but is slowly eliminated (t1/2 37h), strongly increases appetite, and leads to significant weight gain [143]. Studies in autistic children are scarce (e.g., [243]), and long-term studies are not available. Mirtazapine, therefore, should not be used or only used for a limited period and in low doses. Clomipramine and tricyclic antidepressants should only be used with care because of their severe side effects, and duloxetine and pregabaline have not been systematically studied in children and adolescents with ASD.

In summary, although AD medication, especially SSRIs, is widely prescribed in children and adolescents, its effectiveness is limited to not evident in children with ASD, and side effects may be more exaggerated in these patients. Therefore, the use of ADs in ASD can generally not be recommended. Because of their widespread use, pharmacologic data on AD medication are nevertheless summarized in Table 5.

Anticonvulsants

Anticonvulsants may be used to treat epilepsies, bipolar disorders, and externalizing behavioral problems. Anticonvulsant treatment of children with ASD [83, 133, 261], like in other patients with convulsions, de-

6 norepinephrine and dopamine reuptake inhibitor.

7 With inconsistent results [129, 137].
Table 3 ASD Symptoms, comorbid disorders and (off-label) pharmacotherapy

Symptoms	Available drugs
Behavioral problems, restlessness, temper tantrums, self-injuring behavior	Antipsychotics, (anticonvulsants)
Social problems	Oxytocin, D-cycloserin, memantine (experimental)
Sleeping problems	Melatonin, antipsychotics, anti-histaminics
ADHD	Atomoxetine, methylphenidate, amphetamines, (guanfacine ER)
Tics	Antipsychotics, (α2 sympathomimetics)
Depression	SSRIs, SNRIs, (+ antipsychotics)
Bipolar disorder	Antipsychotics, (lithium)
Anxiety & OCD	SSRIs (higher dosage needed), pregabalin
Seizures	Valproic acid, levetiracetam, lamotrigine (and others)
Psychosis	Antipsychotics
GI problems	Diet? probiotics?

Medication for ASD/ADHD targets modulating dopamine and epinephrinergic transmitter systems, thereby increasing dopamine availability in frontal areas and striatum, and downregulating dopamine moderators. Usually, two types of medication are distinguished: stimulants (methylphenidate, amphetamine, lis-dexamphetamine) and nonstimulants (atomoxetine and alpha-2 agonists).

Stimulants. Effectiveness and compatibility of methylphenidate, the most frequently used ADHD medication, have multiply been proven in patients with ASD and ADHD, with and without ID [11, 255, 281].

ADHD

ASD and ADHD share genetic, neurophysiological, and clinical similarities [10, 181]. Both disorders affect attention, flexibility, planning, and response inhibition, have a high heritability, early onset, overlapping comorbidities, and prevail in males [50, 58]. Hans Asperger already described attention problems as “almost regularly occurring in children of this type” [13]. Ronald et al. [265] found significant correlations between ASD and ADHD phenotypes and genotypes in their twins’ early development study, and a probability of 41% for co-occurrence ADHD in ASD patients. Nijmijer et al. [225] found genetic linkages between ASD and ADHD on chromosomes 7, 12, 15, 16, and 18. The “dual disorder” is characterized by increased psychopathology and psychosocial stress, more compromised cognitive and daily functions, including maladaptive behaviors, and poorer effects of therapy [48, 125, 147, 160, 246, 251]. ASD and ADHD share multiple comorbidities, such as dysexecutive problems, increased anxiety, sensory integration, sleep, affective and central hearing processing disorders, developmental delay, OCD, and epilepsy [187, 223, 281]. These comorbid conditions will largely determine the clinical picture. Unfortunately, ADHD in autistic patients is generally not appropriately treated [160]. This could be due to the fact that ADHD was excluded in autism diagnosis in ICD-10, a path that has now been changed in DSM-5 and ICD-11.

Treatment of ADHD in patients with ASD should follow the same multimodal algorithms as for ADHD alone and should include psychoeducation [87, 219, 238], parental training [41, 85, 87], school-based measures (such as daily record cards [70, 80, 97], structured task organization, physical activity [39, 158, 302]), and medication [31, 285, 296]. ADHD medication is usually less effective, and SE are more pronounced in ASD patients, especially in those with ID [48, 85, 241, 255]. Cognitive training [56] and neurofeedback [88, 212, 252] are less effective and more complex. Occupational therapy [49] is useful as an adjunct for improving comorbid sensory integration and dysexecutive problems.

Medication for ASD/ADHD targets modulating dopamine and epinephrinergic transmitter systems, thereby increasing dopamine availability in frontal areas and striatum, and downregulating dopamine moderators. Usually, two types of medication are distinguished: stimulants (methylphenidate, amphetamine, lis-dexamphetamine) and nonstimulants (atomoxetine and alpha-2 agonists).

APPENDIX A: Available drugs

SSRIs, SNRIs, (+ antipsychotics)
Oxytocin, D-cycloserin, memantine (experimental)
Atomoxetine, methylphenidate, (+ antipsychotics)
Antipsychotics, (+ anticonvulsants)
Diet? probiotics?
Melatonin, antipsychotics, anti-histaminics
Valproic acid, levetiracetam, (+ antipsychotics)
SSRIs (higher dosage needed), pregabalin
Valproic acid, levetiracetam, lamotrigine (and others)
Antipsychotics, (lithium)
Antipsychotics, (α2 sympathomimetics)
SSRIs, SNRIs, (+ antipsychotics)
SSRIs (higher dosage needed), pregabalin
Valproic acid, levetiracetam, lamotrigine (and others)
Antipsychotics
Diet? probiotics?

APPENDIX B: Comorbid Disorders

Therapy for Common Problems of ASD and Comorbid Disorders
Pharmacotherapy for patients with ASD aims at reducing inappropriate behavior and the related intrafamilial and psychological stress, at improving engagement in therapy, health-related quality of life, performance at school and work, social integration and participation, and at treating comorbid problems such as ADHD or seizures [14, 53, 67, 72, 154, 156, 164, 180, 210, 220, 245, 274]. Limitations include inconsistent evidence of efficiency and side effects, especially with long-term use [107]. A recent study [53] compared the benefits and adverse effects of the pharmacological treatment of a number of targeted symptoms in 505 children with ASD. The authors found small to medium benefits to adverse effects ratios and concluded that individualized treatment is mandatory. Table 3 summarizes the medical indications and available drugs.

Electrical status epilepticus during slow-wave sleep.
In addition to the main ADHD symptoms, executive and nonexecutive memory, reaction time, reaction time variability, response inhibition, social communication, and self-regulation are significantly improved with methylphenidate [51, 149, 298] with somewhat lower effect sizes (around 0.5) in children with ASD and ADHD, compared to normally developing children with ADHD. Because of the short $t_{1/2}$ of about 2 hours, stimulants are usually administered in a slow-release formulation, acting for 10–14 hours, depending on the preparation. About 70% of the normally developing children and half of the children with ASD and ID respond by improved behavior, especially with decreased impulsivity, improved cooperation and attention, and less hyperactivity. Behavioral improvement is more pronounced in children presenting with hyperactivity and normal IQ [4]. Careful dosage titration is recommended because of the large variability of efficacy that may be explained genetically [206]. The effect of methylphenidate on growth has been divergently debated with height deficits ranging from 0 to 4.7 cm with consistent use [258]. In children with severe side effects or decreased responsiveness to methylphenidate, amphetamine [284], or lisdexamphetamine [52, 54, 127, 145], an inactive amphetamine precursor that is activated in the erythrocytes may be recommended because of their larger effect sizes. Amphetamines, and especially lisdexamphetamine, also improve mood while acting.

Emotional dysregulation (irritability) is a common problem in children with ADHD and with ASD, with rates around 78% for both disorders [179]. Stimulants and atomoxetine act effectively but may also increase emotional dysregulation, although at a much lower prevalence of about 17% [104]. In addition, effects on sleep (longer sleep latency, decreased sleep efficiency, and shorter sleep duration) were observed with stimulant medication [167].

Atomoxetine. The norepinephrine reuptake inhibitor and NMDA receptor antagonist possesses good effectiveness [123, 124] and (compared to methylphenidate) a considerably longer $t_{1/2}$ of 35 hours and 99% plasma albumin binding. Because of its nearly continuous action, atomoxetine is a recommendable alternative to methylphenidate, although with a smaller effect size [5, 236, 244], especially in children who respond with pronounced SE to stimulants or are very difficult to handle in the morning and evening hours, when methylphenidate does not act. It may also be recommended in children with comorbid depression, tics, or anxiety disorders [3, 5]. Atomoxetine needs a longer dosing period (up to 12 weeks) and may cause initial fatigue, headache, and gastrointestinal SE, wherefore the medication should initially be started in the evening hours. About 15% of the patients may react with increased aggression, requiring discontinuation of atomoxetine and either addition of risperidone [207] or aripiprazole [231] or switching to extended-release guanfacine [269, 270] or lisdexamphetamine [52]. Comparing atomoxetine and amphetamine derives, higher effect sizes of methylphenidate slow-release preparations have been reported [121]. Small but significant cardiovascular effects have been reported for stimulant and atomoxetine medication [132], mainly small increases of the heart rate and of systolic or diastolic blood pressure [132]. Because significant cardiovascular effects may not be excluded.

Table 4 Selected antipsychotics used in children and adolescents with ASD

Drug	$t_{1/2}$	Recommended Dose (mg/kg/d)	Spec. remarks	References
Risperidone	22 h	0.005–0.02 a also available as syrup	Standard therapyb	[42, 64, 153, 207, 278]
Aripiprazole	60–80 h	0.05–0.1 c	Standard therapyb	[46, 62, 66, 82, 196, 231]
Olanzapine	30–60 h	0.1	SE: sedation, metabolic	[93, 136, 291]
Paliperidone	0.5–2		No advantage over risperidone	[98]
Quetiapine	7 h	0.5–4	Also acts against GADh	[100, 122, 200]
Ziprasidone	6 h	0.02–0.4	Cardiac SE (QTc c)	[69, 195]
Pimozide	55 h	0.02–0.08	FGA, therapy resistant tics	[79]

a [110], b as related to ASD, c 9-hydroxyrisperidone, d also available as syrup e FDA approved from age 5 years on, f also available as solution, g FDA approved from age 6 years on, h GAD – generalized anxiety disorder

Table 5 Selected antidepressants used in children and adolescents with ASD to treat depression, anxiety, and OCD

Drug	$t_{1/2}$	Recommended Dose (mg/kg/d)	Specific remarks	Literature
Fluoxetine	1–6 d	0.4–0.8	SE: sleep & eating problems	[135, 169, 253]
Paroxetine	12–22 h	0.4	Also effective against anxiety disorder and drug treatment	[242]
Sertraline	23–26 h	1	Well tolerated	[292]
Agomelatonin	2.3 h	0.5–1	MT1 & β2 agonist, no systematic studies in adolescents	[224]
Duloxetine	8–17 h	0.4–1.2	SNRI	[224]
Pregabalin	6 h	3–6–10	GABA analogon, pain killer, anticonvulsant, anxiolytic	No studies in ASD patients

a [110], b as related to ASD
Table 6 Anticonvulsants selected

Drug	Drug Code	Recommended Dose (mg/kg/d)	Comments	References
Ethosuximide	53	10–20–40	Absences, well tolerated	[95]e
Valproic acid	12–16	10–15–30	Enhances GABA-ergic inhibition	[96, 136]
Lamotrigine	25–50	0.5–4	Against gen. and PE, well tolerated	[23]
Levetiracetam	7	20–40–60	Against generalized and PE, SE tiredness	[96]
Clonazepam	18	0.2–0.8	Add-on against prim. generalized and PE	[83]
Gabapentin	18–50	0.01–0.4	Against myoclonus epilepsy, SE: dizziness, ataxia	[83]
Sultiame	24	5–6	SE: ataxia, paresthesia, anorexia	[115]
Topiramate	19–25	1–4/2	Against PE and generalized epilepsy, LGS, SE tiredness	[68, 133]
Vigabatrin	5–8	20–60–2/2	Weight loss, cognitive impairment	[68, 133]

*α [110], β as related to ASD, DRESS = drug rash with eosinophilia and systemic symptoms, LGS = Lennox–Gastaut syndrome

in a small subgroup of patients (e.g., with slow drug metabolism), occasional blood pressure checks are recommended.

Alpha-2-agonists. Clonidine and extended-release guanfacine are less effective medications against ADHD core symptoms with some antitopic potential, pronounced tiredness, and gastrointestinal SE, which may lead to discontinuing the medication. Hyperactivity and impulsivity are improved in about 45% of cases [144, 199, 241, 270, 294].

Other treatments for ADHD. Mindfulness-based [1, 259, 268] and neurofeedback therapies [138] have been tried with some success in children with ASD and ADHD.

Affective Disorders

Due to the fact that antidepressant medication is of questionable effect in children and adolescents with ASD, their use may generally not be recommended. There is no clear-cut evidence that this recommendation is also valid for patients with severe depression, and the widespread use of antidepressant medication reflects this challenge, especially in the light that the prevalence of comorbid depression in autistic patients is fourfold compared to the nonautistic population [318]. Combining antidepressants with (low-dose) antipsychotic medication may generally be recommended for augmenting antidepressant effects in therapy resistant depressive patients and—although with low evidence [78]—in suicidal patients. This relates to the long period needed for antidepressant drug effects to become evident and to the effect of antipsychotics to reduce initially present internal drive and suicidality. Psychotherapy adds to antidepressant therapy for light to medium severe depression in the short term but better in the long term. For severe depression, combining psycho and pharmacotherapy is recommended in normotypic children [40, 65].

Suicidal ideation has been reported in 21.3% (7–47%) of patients with ASD [142, 324]. Suicidal ideation is very common in adolescents with ASD, especially in Asperger’s autists, and is largely related to their increased vulnerability to stress, anxiety, and depression, their inflexibility, and their proneness to become bullied or sexually abused [142].

Bipolar disorders are detected in 6–21% of adult ASD patients [307], and 30% of bipolar I patients meet the criteria for ASD [161]. Data for children and adolescents are still lacking. Therapeutic options include SGA, valproic acid, AD medication if severe depressive symptoms are present, and lithium. Lithium medication also improves social functioning in animals and adults [190]. Its use may be especially limited in children because of the narrow therapeutic range, its effect on thyroid function, the resulting need of a highly compliant and supportive environment, and the considerable and poorly tolerated emotional indifference created by the drug [208, 277].

Anxiety Disorders

About 40% of children with ASD present with various anxiety disorders, phobias including social phobia, general, and separation anxiety disorder, and OCD [323]. They also often react with symptoms of anxiety...
Medication Against Sleep Disorders

Medication may be helpful in inducing and improving disturbed sleep but should be provided with caution: melatonin will improve sleep rhythm in 85% of the children with ASD even in those without disturbed melatonin circadian rhythm at a daily dosage of 1–6 mg given 30 minutes before bedtime [108, 267]. Advancing sleep onset will require a smaller dose of 0.2–0.5 mg given 3–5 h prior to the desired sleep time [32, 175].

Other sleep-stimulating agents, like valerian, passion flower, and hops, provide placebo support; benzodiazepines, zolpidem, and zaleplon act on GABA receptors, helping in inducing sleep but usually have a long t1/2, decrease REM sleep phases, but lead to habituation, to losing sleep induction effects during prolonged use, and to promoting anxiety [234]. Sleep-inducing antidepressants like trazodone are commonly used. For contraindications (tricyclics, mirtazapine), see Sect. 3.2.

Restless legs syndrome [59, 280], another syndrome disturbing sleep and quality of life based on a genetic predisposition, dysregulation of iron metabolism, and the dopaminergic system, suggest considering iron deficiency as a cause of sleep disturbance [308].

Other sleep-stimulating agents, like valerian, passion flower, and hops, provide placebo support; benzodiazepines, zolpidem, and zaleplon act on GABA receptors, helping in inducing sleep but usually have a long t1/2, decrease REM sleep phases, lead to habituation, may lose sleep induction effects and promote anxiety during prolonged use [234]. Sleep-inducing antidepressants like trazodone are commonly used. For contraindications (tricyclics, mirtazapine), see Sect. 3.2.

Benzodiazepines, especially those targeting GABA₁ receptor subtypes, may attenuate ASD symptoms [216]. The clinical significance of this effect is not known at present [11].

Convulsions and Epilepsy

Epilepsy (more than one convulsion) occurs in about 5–46% of children with ASD, (compared to 1–2% in children not on the spectrum), depending on the clinical sample and the severity of ID [287]. Comorbid epilepsy adds to the impact of ASD on quality of life [303] because of a number of additional problems, such as cognitive, speech developmental, sleep, affective, medical, social, and behavioral issues [90, 118]. Phenotypes and causes are still insufficiently researched.

Mitochondrial respiratory chain defects have been detected as an important link between epilepsy and ASD [315]. In addition, three ASD associated syndromes with known genetic cause, tuberous sclerosis, Rett’s syndrome, and fragile X syndrome, are associated with epilepsy. Another group of disorders, epileptic encephalopathies, have been described in the context of brain dysfunction and increasing autistic symptomatology [74], affecting about 40% of children with convulsions in early childhood. These include early myoclonic encephalopathies, West, Dravet, Lennox Gastaud, and Landau–Kleffner syndromes, myoclonus epilepsy in nonprogressive encephalopathies, and continuous spike waves in slow-wave sleep (CSWS) [303]. Risk factors include epilepsies with known structural defects, bilateral frontal EEG changes, and persistent hypsarrhythmia [303].

Gastrointestinal Issues

Gastrointestinal distress related to constitutional, behavioral, and inflammatory causes is frequently observed in children with ASD and may be related to altered ASD severity [140]. Alterations of the intestinal microbiota, permeability, and functioning may, for example, alter intestinal serotonin metabolism and cause hyperserotoninemia, alter immune responses, and even brain functioning and behavior via the gut–brain axis [12, 193]. Attempts to influence these disturbances by diets (such as a gluten-free diet), probiotics, antibiotic or other “treatments” such as detoxification, would need careful prospective randomized clinical trials, precise diagnostics, and well-established clinical algorithms. At present, this clinical evidence is not available [240].

9 These two references do not primarily refer to children with ASD.
10 General description.
11 Trittico®.
Irritability, Aggression, Disruptive, and Self-Injuring Behavior

Impulsive aggression and related disruptive behavior, as well as self-injuring behavior are frequently observed in ASD/ADHD and are the leading cause for school suspension, clinical referrals, and ward admissions [182]. Positive parenting [71], early intensive psychosocial and behavioral interventions [60, 76], specific multisystemic programs, such as multisystemic therapy [131] or the Fast Track program [25, 55], and psychosocial interventions such as T-MAY [279] or TRAAY [276], and group sessions for social competence [101] lead to significant improvements of adaptive behavior. Recommendations for medical treatment include stimulants (in the case of comorbid ADHD) and nonstimulant medication, SGAs (cf. Sect. 3.1), antidepressant and mood stabilizing agents [48, 68, 75, 91, 116, 159]. In addition to pharmacotherapy, behavioral and social competence training, and parental counselling are strongly recommended.

Sleep Disorders

Independently of their intellectual capacity, up to 2/3 of children with ASD suffer from sleep problems: delayed sleep onset, frequent night awakenings, reduced total sleep time, dys and parasomnias [26, 57, 63, 157, 175, 189, 197, 205, 256, 308, 317]. These problems often persist into adulthood. The causes range from poor sleep hygiene and inconsistent parental behavior [317], (self) regulatory problems and central excitatory/inhibitory imbalance, delayed sleep pattern maturation, a disturbed hypothalamic-pituitary-adrenal axis, and decreased and dysrhythmic melatonin secretion to decreased binding of melatonin to its transporter protein and melatonin receptor dysfunction [57, 141, 202]. Recently, slow-release melatonin13 was approved by the European Medicines Agency for the treatment of sleep disorders in children with ASD from the age of 2. In addition, anxiety [305], ADHD/ASD associated sleep and sensory integration problems [126] leading to increased external stimulation (or decreased stimulus filtering), and cerebral convulsions may disturb sleep and quality of life of affected children and, consequently, of the whole family. Therefore, sleep diagnostics and treatment are important for both children with ASD and their families [174, 308].

Restless legs syndrome [59, 280], another syndrome disturbing sleep and quality of life based on a genetic predisposition, dysregulation of iron metabolism, and the dopaminergic system, suggest considering iron deficiency as a cause of sleep disturbance [308].

Behavioral measures [30, 283, 314] like fixed bedtime routine, providing sleeping cues and a low stimulation evening routine, supporting self-soothing behavior, light therapy14 [84], avoiding daytime sleeping, etc., and sensory integration therapy [325] have proven to be helpful, although with little evidence [30].

Chronic Tic Disorders, Tourette Syndrome, and Stereotypies

Chronic tic disorders and motor stereotypies are common comorbid movement disorders in children and adolescents with ASD [249]. The prevalence of chronic tic disorder is about 6.5% [281], about 10 times higher than in normally developing children. It is characterized by involuntary movements or utterings that vary in onset and frequency, depending on daytime and seasonal variations and stress exposure. Treatment is necessary if severity and frequency exceed subjective or environmental tolerance. Effective treatment options [249] (besides relaxation, stress reduction, and bio or neurofeedback) include antipsychotics such as risperidone, aripiprazole, or pimozide, eventually with added pentoxyphylline, and the anticonvulsant topiramate are effective, whereas haloperidole, levetiracetam, guanfacine, and atomoxetine, as well as metoclopramide and odanacetrone, have not proven effective [249, 262].

Other Substances, Supplementary and Alternative Therapies

Among the “newer” pharmacologic concepts (such as IGF-1, memantine, D-cycloserine, arbaclofen, and oxytocin [240, 300]), only three show promise for the future: oxytocin with the objective to improve sociogenic behavior, beta blockers to reduce stress, and the glumatate antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), to reduce stereotypic behavior [94]. For the latter substance, it is feared that sociogenic behavior may deteriorate during treatment [297].

In the short term, intranasal oxytocin enhances motivation and attention to social stimuli, improves social initiative, understanding, learning [8, 22, 176], and better recognition of emotions [111]. Unfortunately, these improvements were not substantiated in long-term trials [7, 112, 313, 321, 322]. A meta-analysis [248] reported medium-effect sizes for prolonged oxytocin therapy in small samples. Reasons for the variation in oxytocin response include time dependency of the oxytocin response [230], single nucleotide polymorphisms of the oxytocin receptor [148], and lasting effects of postnatal stimulation of the oxytocin system [300]. When studying oxytocin effects patients and targets must be carefully selected. Therefore, the clinical usefulness of oxytocin is still a matter of debate [228, 306]. Melanocortin, stimulating oxytocin release, could be a useful alternative

13 Slenyto®.

14 10,000lux for 1/2h in the early evening and/or morning in order to synchronize the circadian rhythm better.
15 Vol. 1580:1–232(2015).
16 Fragile X mental retardation 1 (FMR1) gene on chromosome X (Xa27.3).
17 Alternative and conventional medication.

[215], but large clinical trials are lacking. Still, a special edition of "Brain Research" provides a comprehensive overview about the state of research.

There is only limited evidence for using beta blockers for reducing stress-related autoaggressive behavior [312] or memantine for improving language and memory functions [233]. Defects of GABA-A receptors, leading to deficient synaptogenesis, have been demonstrated in fragile X syndrome, a pervasive developmental disorder with known genetic defect [61]. Ganaxolone, a strong GABA-A agonist, was used in a controlled clinical study [29, 188] and was found to be safe but only effective in a subgroup of patients with fragile X syndrome, high levels of anxiety, and low intellectual capacity.

Medical cannabis, especially for ADHD, tics, sleep problems, behavioral problems, and anxiety [2, 134, 247], may improve symptoms but does not lead to remission. Treatment evidence at present is limited to anecdotal reports and a few small studies; three further studies are to be expected. Treatment options should, therefore, be restricted to single patients in whom standard treatment did not improve severe symptoms.

Various behavioral and functional therapies, such as structured behavioral therapies [178, 254, 299], communication and social skills training [177, 213], occupational therapy [49, 194], mindfulness [259], play teaching [162], music [217, 289], and speech therapy, have been shown to have beneficial effects in improving development, behavior, speech, social functioning, and quality of life [146, 191, 192, 220, 221, 275]. Physical exercise is an effective treatment option, especially in children with dual disorder, ASD and ADHD [128, 286, 302].

Alternative, "natural" treatments seem less invasive, safer (there are no reports on dangerous action), more intuitive to understand, and easier to procure. Parents are concerned with the safety or side effects (listed in the package leaflet) of medication or are disappointed because conventional medication did not change the core symptoms of ASD [120]. Therefore, alternative therapies are very popular [186, 191, 316]; a third of the parents with ASD have tried "alternative", "integrative", or "complementary" therapies [185, 186, 191]. A higher educational level of the mothers predicted the use of alternative therapies [120]. Half of the families use alternative therapies, although they do not rate them as useful.

Most of these therapies are used as an adjunct to conventional therapy. Biologically based therapies (such as diet [239, 293], vitamins and minerals, food supplements such as omega-3 fatty acids [150], herbal remedies, secretin), and mind–body interventions (such as prayer, shamanism, biofeedback, meditation, and relaxation) are more often perceived efficacious than body-based methods (such as sensory integration therapy [325], massage, craniosacral therapy, neurofeedback, and special exercises) or energy therapies (healing touch, energy transfer) [120]. Technology based interventions seem promising because of the attention sustaining potential, but, at present, evidence of the success of such approaches is poor [172, 250]. Examples are interventions for acquiring language skills [226], for differentiating facial expressions [19], treating food selectivity [20], or anxiety or stress management [37].

A number of physicians encourage multivitamins (49%), essential fatty acids (25%), melatonin (25%), and probiotics (19%), and discourage withholding (76%) or delaying immunizations (55%), chelation (61%), anti-infectives (57%), or secretin (43%) [120]. It has to be stated that there is no clinical evidence for applying specific (e.g., gluten-free or pro-biotic) diets [203], vitamins [155, 237], oligominerals, herbal medicine [311], transfer of energy, chelates [151], or biologicals such as secretin [180, 186]. It has been found that 10% of parents even use potentially dangerous "medication" such as "whole-brain extracts" [185]. Medication from the Far East, such as traditional Chinese medicine or acupuncture, or osteopathy may be useful in the short-term run in improving single symptoms (restlessness, sleep disturbance); the long-term outcome is rather dubious [45].

Discussion

Pharmacotherapy in children and adolescents with ASD may be helpful in overcoming otherwise not resolvable behavioral and attentional problems (see Table 2 for an overview of indications and classes of useful substances). Individualized treatment is always mandatory. Reviewing the extensive literature on pharmacotherapy of ASD, a few trends may be recognized:

1. Conventional therapy, although mostly funded on extensive controlled studies, has its limits, especially when treating irritability and temper tantrums. These problems should be restricted by early behavioral treatment. Unfortunately, these treatments are tedious and not available everywhere. In addition, the question of the impact of comorbid conditions has not been solved as yet.

2. Pharmacologic treatments are not sufficient; the primary ASD treatment, especially for children with intellectual disabilities, will remain structured and

10 This is disputed for vitamin D: evidence [155] vs. no evidence [204].
19 For heavy metal detoxication.
functional therapy, as well as parental empowerment and support.

3. Therapies aiming at improving the core symptoms of ASD, such as social communication: novel therapies, e.g., oxytocin, are encumbered with the complex functioning of our social brain, which is outlined in the first days of life or even before.

4. At present, genetically based therapies are not visible on the horizon, mostly because the genetic background of ASD is so complex that it will probably need further years of intensive research to link clinical pictures to genetic variants and establish repair options.

Behavioral problems, including irritability, reactive and proactive aggression, disruptive and self-stimulating behavior, restlessness, and temper tantrums, are among the most important therapeutic targets in children with ASD. Because of their very limited flexibility [102] and working memory problems [117], children with ASD easily become despaired and helpless and express this in externalizing behavior that can become difficult to control. Pharmacologic treatment, mostly using antipsychotics, must find a compromise between behavioral control, oversedation, and (mostly metabolic) side effects.

Depressed mood and anxiety disorders call for psychotherapy and, in selected patients, for treatment with antidepressants. The problems with antidepressant medication are its reduced efficacy in autistic vs. normally developing children (see Sect. 3.2), and, again, walking the tightrope between brightening mood or reducing anxiety or obsessions and compulsions and an increased behavioral activation.

Sleep problems are observed in a majority of patients with ASD. Sleep hygiene and bedtime routines should be tried before trying medication, and sleep-related side effects of stimulant therapy should also be considered as a promoting factor of sleep dysfunction. Melatonin is the first-line drug, especially for difficulties in falling asleep. It is effective in about two-thirds and counterbalances inherited melatonin dysfunction. It should be noted that falling asleep with lights on (especially from computer or mobile phone screens) counteracts the action of melatonin medication.

Treatment of ADHD, one of the most prominent comorbid conditions of ASD with overlapping symptoms, is often a key factor in enabling social and intellectual learning, school attendance, and fighting restlessness and impulsivity. Problems are related to the reduced efficacy of pharmacotherapy compared to normotypic patients and a multitude of interacting problems, e.g., bipolar disorder and ADHD.

In summary, we compiled an overview on substances that may be advantageously used in children with ASD with the aim of improving social behavior, learning ability, and quality of life of the children and their environment. The approach is rather defensive, mostly targeting undesired symptoms. Future work and experience should focus on desired changes of core symptoms, on long-term efficacy, on reducing polypragmasia and undesired drug effects, and on avoiding overtreatment, especially if behavioral therapies are available as an alternative. On the other hand, the benefits of carefully prescribed medication should always be recognized.

Funding Open access funding provided by Medical University of Vienna.

Conflict of Interest The authors state that no author has a conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aadil M, Cosme RM, Cherniak J. Mindfulness-based cognitive behavioral therapy as an adjunct treatment of Attention Deficit Hyperactivity disorder in young adults: A literature review. Cureus. 2017;9(5):e1269. https://doi.org/10.7759/cureus.1269.

2. Agarwal R, Burke SL, Maddux M. Current state of evidence of cannabis utilization for treatment of autism spectrum disorders. BMC Psychiatry. 2019;19(328):1–10. https://doi.org/10.1186/s12888-019-2259-4.

3. Allen A, Kurlan R, Gilbert D, Dunn D, Dallez FR, Spencer T. Atomoxetine treatment in children with ADHD and comor-
bid tic disorders. In: 16th World Congress of IACAPAP. Darmstadt: Steinkopff; 2004. pp.311–31.

4. Aman MG, Buican B, Arnold LE. Methylphenidate treat-
ment in children with borderline IQ and mental retardation: analysis of three aggregated studies. J Child Adolesc Psy-
chopharmacol. 2003;13(1):29–40.

5. Aman MG, Smith T, Arnold LE, Corbett-Dick P, Tumuluru R, Holtway JA, et al. A review of atomoxetine effects in young people with developmental disabilities. Res Dev Disabil. 2014;35(6):1412–24. https://doi.org/10.1016/j.ridd.2014.03.006.

6. American Academy of Child and Adolescent Psychiatry Committee on Quality Issues. Practice parameter for the assessment and treatment of children and adolescents with obsessive–compulsive disorder. J Am Acad Child Adolesc Psych. 2012;51(1):98–113.

7. Anagnostou E, Soorya L, Brian J, Dupuis A, Mankad D, Smile S, et al. Intranasal oxytocin in the treatment of autism spectrum disorder: a review of literature and early safety and efficacy data in youth. Brain Res Brain Res Protoc. 1580;2014:188–98. https://doi.org/10.1016/j.brainres.2014.01.049.

8. Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-
functioning autism spectrum disorder. Proc Natl Acad Sci U S A. 2010;107:4389–94.

9. Anderson LF, Campbell M, Grega DM, Perry R, Small AM, Green WH. Haloperidol in the treatment of infantile autism: effects on learning and behavioral symptoms. Am J Psychi-
atry. 1984;141:1195–202.

10. Antshel KM, Zhang-James Y, Faraone SV. The comorbidity of ADHD and autism spectrum disorder. Expert Rev Neurother. 2013;13(10):117–28.

11. Arnold LE. Commentary: filling out the evidence base for treatment of attention-deficit hyperactivity disorder symptoms in children with intellectual and developmen-
tal disability: conclusions for clinicians – response to Simonoff et al. J Child Psychol Psychiatry Allied Discip. 2013;54(6):701–4.

12. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pes-
sah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorder provide evidence of immune dysfunc-
tion and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25(1):40–5. https://doi.org/10.1016/j.bbi.2010.08.003.

13. Asperger H. Die „Autistischen Psychopathen“ im Kinde-
salter [The “Autistic Psychopath” in Childhood]. Arch Psychiatr. 1944;117:76–136. https://doi.org/10.1007/BF01837709.

14. Bachmann CJ, Manthey T, Kamp-Becker I, Glaeske G, Hoff-
mann F. Psychopharmacological treatment in children and adolescents with autism spectrum disorders in Germany. Res Dev Disabil. 2013;34(9):2551–63.

15. Bai D, Hon Kei Yip B, Windham GC, Sourander A, Francis R, Yoffe R, et al. Association of genetic and environ-
mental factors and impact of the fast track prevention program. J Am Acad Child Adolesc Psychiatry. 2014;23(1):20–30.

16. Bailey T. Beyond DSM: The role of auditory processing in autism: challenges and opportunities. Paediatr Drugs. 2015;17(2):115–24.

17. Bakermans-Kranenburg MJ, van Ijzendoorn MH. Sniffing around oxytocin: review and meta-analyses of trials in healthy and clinical groups with implications for pharma-
cotherapy. Transl Psychiatry. 2013;3:e258. https://doi.org/10.1038/tp.2013.34.

18. Banaschewski T, Pousta L, Holtmann M, Autismus und ADHS über die Lebensspanne. Differenzialdiagnosen oder Komorbidität? [Autism and ADHD across the life span. Differential diagnoses or comorbidity?]. Nervenarzt. 2011;82(5):573–80. https://doi.org/10.1007/s00115-010-2329-6.

19. Banire B, Al Thani D, Makki M, Qaraqe M, Anand K, Olcay C, Khowaja K, Mansoor B. Attention assessment: Evaluation of facial expressions of children with autism spectrum disorder. In: In: Universal access in human-computer interaction. Multimodality and assistive environments. Berlin Heidelberg: Springer; 2019. pp. 32–48. https://doi.org/10.1007/978-3-030-23563-5_4.

20. Banire B, Khowaja K, Mansoor B, Qaraqe M, Al Thani D. Reality-based technologies for children with autism spectrum disorder – a recommendation for food intake intervention. In: Advances in neurobiology. Berlin Heidelberg: Springer; 2020. pp. 679–93. https://doi.org/10.1007/978-3-030-30402-7_26.

21. Baribeau DA, Anagnostou E. Social communication is an emerging target for pharmacotherapy in autism spectrum disorder – a review of the literature on potential agents. J Can Acad Child Adolesc Psychiatry. 2014;23(3):20–30.

22. Bartz JA, Hollander E. Oxytocin and experimental thera-
peutics in autism spectrum disorders. Prog Brain Res. 2008;170:541–62.

23. Bartsch T, Poustka L, Holtmann M. Autismus und ADHS über die Lebensspanne. Differenzialdiagnosen oder Komorbidität? [Autism and ADHD across the life span. Differential diagnoses or comorbidity?]. Nervenarzt. 2011;82(5):573–80. https://doi.org/10.1007/s00115-010-2329-6.

24. Besag FM. Epilepsy in patients with autism: links, risks and treatment challenges. NDT. 2017;14:1–10. https://doi.org/10.2147/NDT.S120509.

25. Biernacki KL, Coie J, Dodge K, Greenberg M, Lochman J, Mcmohan R, et al. School outcomes of aggressive-
disruptive children: prediction from kindergarten risk factors and impact of the fast track prevention program. Aggr Behav. 2013;39(2):114. https://doi.org/10.1002/ab.21467.

26. Blackmer AB, Feinstein JA. Management of sleep disorders in children with neurodevelopmental disorders: A review. Pharmacotherapy. 2016;36(1):84–98. https://doi.org/10.1002/phar.1686.

27. Bolognani F, Del Valle Rubido M, Squassante L, Wandel C, Derks M, Murtagh L, et al. A phase 2 clinical trial of a vasopressin V1a receptor antagonist shows improved adaptive behaviors in men with autism spectrum disorder. Sci Transl Med. 2019;11(491):eaat7838. https://doi.org/10.1126/scitranslmed.aat7838.

28. Bowers K, Lin PI, Erickson C. Pharmacogenomic medicine in autism: challenges and opportunities. Paediatr Drugs. 2015;17(2):115–24.

29. Braat S, Kooij RF. Insights into GABAergic system deficits in fragile X syndrome lead to clinical trials. Neuropharma-
cology. 2015;88:48–54.

30. Brown CA, Kuo M, Phillips L, Berry R, Tan M. Non-pharma-
cological sleep interventions for youth with chronic health conditions: A critical review of the methodological qual-
ity of the evidence. Disabil Rehab. 2013;35(15):1221–55. https://doi.org/10.3109/09638288.2012.723788.

31. Brown KA, Samuel S, PatelDR. Pharmacologic management of attention deficit hyperactivity disorder in children and adolescents: a review for practitioners. Translat Pediatr. 2018;7(1):36–47. https://doi.org/10.21037/tp.2017.08.02.

32. Bruni O, Alonso-Alconada D, Besag F, Biran V, Braam W, Cortese S, et al. Current role of melatonin in pediatric neurology: clinical recommendations. J Paed Neurol.
38. Hoglund Carlsson L, Norrelgen F, Kjellmer L, Westerlund. 2015;20:73–82.
37. Carrier S, VanderPaelts S, Ongena E, Debakere F, DeTurck.
35. Canitano R, Scandurra V. Psychopharmacology in autism: an update. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):18–28.
36. Carbone PS. Moving from research to practice in the primary care of children with autism spectrum disorders. Acad Pediatr. 2013;13(5):390–9. https://doi.org/10.1016/j.acap.2013.04.003.
34. Canitano R. New experimental treatments for core social
39. Cerrillo-Urbina AJ, García-Hermoso A, Sánchez-López M, Cortese S, Ferrin M, Brandeis D, Buitelaar J, Daley D, Dittmann RW, et al. Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J Am Acad Child Adolesc Psychiatry. 2015;54(3):164–174. https://doi.org/10.1016/j.jaac.2014.12.010.
55. Conduct Problems Prevention Research Group. The effects of the Fast Track preventive intervention on the development of conduct disorder across childhood. Child Dev. 2011;82(1):331–45. https://doi.org/10.1111/j.1467-8624.2010.01558.x.
54. Cortese S, Ferrin M, Brandeis D, Buitelaar J, Daley D, Dittmann RW, et al. Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J Am Acad Child Adolesc Psychiatry. 2015;54(3):164–174. https://doi.org/10.1016/j.jaac.2014.12.010.
50. Clarke TK, Lupton MK, Fernandez-Pujals AM, Starr J, Davies G, Cox S, et al. Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol Psychiatry. 2015;21(3):419–25. https://doi.org/10.1038/mp.2015.12.
51. Coghill DR, Seth S, Pedrosa S, Usala T, Currie J, Gagliano A. Effects of methylphenidate on cognitive functions in children and adolescents with attention-deficit/hyperactivity disorder: evidence from a systematic review and a meta-analysis. Biol Psychiatry. 2014;76:603–15. https://doi.org/10.1016/j.biopsych.2013.10.005.
Dyches TT, Smith TB, Kort B, Roper SO, Mandelco B. Predisposition to rheumatoid arthritis in children and adolescents. 2012. http://www.awmf.org/leitlinien/aktuelle-leitlinien.html. Accessed: 17 Jun 2021.

Douglas-Hall P, Curran S, Bird V, Taylor D. Aripiprazole: a review of its use in the treatment of irritability associated with autistic disorder patients aged 6–17. J Cent Nerv Syst Disord. 2011;12(3):143–53.

Dove D, Warren Z, McPheeters ML, Taylor JL, Sathe NA. DuPaul GJ, Gormley MJ, Laracy SD. School-based inter-vention for disruptive behavior disorders: a systematic review. Pediatrics. 2012;130(4):717–26. 2012. https://doi.org/10.1542/peds.2012-0683.

Dolde K, Schulte-Körne G. Evidenztabelle Psycho- und Pharmakotherapie im Vergleich und in Kombination zur Leitlinie „Behandlung von depressiven Störungen bei Kindern und Jugendlichen“ (Table of evidence Psycho- and pharmacotherapy, comparing and combining the guideline Treatment of depressive disorders in children and adolescents. 2012. http://www.awmf.org/leitlinien/aktuelle-leitlinien.html. Accessed: 17 Jun 2021.

DuPaul GJ, Gormley MJ, Laracy SD. School-based interventions for elementary school students with ADHD. Child Adolesc Psychiat Clin N Am. 2014;23(4):687–97. https://doi.org/10.1016/j.chc.2014.05.003.

Duggal HS. Ziprasidone for maladaptive behavior and attention-deficit/hyperactivity disorders in autistic disorder. J Child Adolesc Psychopharmacol. 2007;2:261–3.

Duffy K, Warren Z, McPheeters ML, Taylor JL, Sathe NA. Veenstra-VanderWeele J. Medications for adolescents and young adults with autism spectrum disorders: a systematic review. Pediatrics. 2012;130(4):717–26, 2012. https://doi.org/10.1016/j.chc.2014.05.003.

Earle JF. An introduction to the psychopharmacology of autism spectrum disorders across the lifespan. Día Clín Neurosci. 2012;14(3):263–79, 2012.

Duggal HS. Ziprasidone for maladaptive behavior and attention-deficit/hyperactivity disorders in autistic disorder. J Child Adolesc Psychopharmacol. 2007;2:261–3.

DuPaul GJ, Gormley MJ, Laracy SD. School-based interventions for elementary school students with ADHD. Child Adolesc Psychiat Clin N Am. 2014;23(4):687–97. https://doi.org/10.1016/j.chc.2014.05.003.

Dyches TT, Smith TB, Korth RB, Roper S, Mandelco B. Positive parenting of children with developmental disabilities: a meta-analysis. Res Develop Disabil. 2012;33(6):2213–20. https://doi.org/10.1016/j.ridd.2012.06.015.

Earle JF. An introduction to the psychopharmacology of children and adolescents with autism spectrum disorder. J Child Adolesc Psych Nurs. 2016;29(2):62–71. https://doi.org/10.1177/1058585115612414.

Elshabagh M, Divan G, Koh YJ, Kim YS, Kaucz B, Marcin C, et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012;5(3):160–79. https://doi.org/10.1002/aur.239.

Engel J Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ilae task force on classification and terminology. Epilepsia. 2001;42:796–803.

Epstein R, Fonnesbeck C, Williamson E, Kuhn T, Lindegren M, Spitznagel EL. Prevalence and correlates of psychotropic drugs: a critical review. Harv Rev Psychiatry. 2004;12(1):14–41. https://doi.org/10.1067/mhp.2004.12.14-41.

Epstein CL, Goldberg JE. Antisuicide properties of psychotropic drugs: a critical review. Harv Rev Psychiatry. 2004;12(1):14–41. https://doi.org/10.1067/mhp.2004.12.14-41.

Ernst M, Magee HJ, Gonzalez NM, Locascio JJ, Rosenberg GL, Wright GW, Raj M, Potter S, McPheeters M. Psychosocial and pharmacological interventions for disruptive behavior in children and adolescents: a comparative effectiveness review number 154. 2015. https://www.effectivehealthcare.ahrq.gov/sites/default/files/pdf/disruptive-behavior-symptom-disorder_research.pdf. Accessed: 17 Jun 2021.

Epstein RA, Fonnesbeck C, Potter S, Rizzo KH, McPheeters M. Psychosocial interventions for child disruptive behaviors: a meta-analysis. Pediatrics. 2015;136(5):947–60. https://doi.org/10.1542/peds.2015-2577.

Ericsson CA, Veenstra-VanderWeele JM, Melmed RD, McCracken JT, Ginsberg LD, Sikich L, et al. Stc209 (Arbaclofen) for autism spectrum disorders: an 8-week open-label study. J Autism Dev Disord. 2014;44(4):958–64. https://doi.org/10.1007/s10803-013-1963-z.

Frazier TW, Youngstrom EA, Haycock T, Sinoff A, Dimitriou F, Knapp J, et al. Effectiveness of medication combined with intensive behavioral intervention for reducing aggression in youth with autism spectrum disorder. J Child Adolesc Psychiatry. 2014;23(8):637–47.

Fritz T, Gleuβner M. Neurofeedbacktherapie bei ADHS und Autismus [neurofeedback therapy for ADHD and Autism]. Paediatr Paedol. 2014;49:22–7.

Furniss E, Eriksson MA, Gillberg C. Early diagnosis of autism and impact on prognosis: a narrative review. Clin Epidemiol. 2013;5:53–43. https://doi.org/10.2147/cepl.s41714.

Ferrin M, Moreno-Granados JM, Salcedo-Marín MD, Ruiz-Veguilla M, Perez-Ayala V, Taylor E. Evaluation of a psychode-ducation programme for parents of children and adolescents with ADHD: Immediate and long-term effects using a blind randomized controlled trial. Eur Child Adolesc Psychiatry. 2014;23(8):637–47.

Fitz T, Gleuβner M. Neurofeedbacktherapie bei ADHS und Autismus [neurofeedback therapy for ADHD and Autism]. Paediatr Paedol. 2014;49:22–7.

Furniss E, Eriksson MA, Gillberg C. Early diagnosis of autism and impact on prognosis: a narrative review. Clin Epidemiol. 2013;5:53–43. https://doi.org/10.2147/cepl.s41714.

Faulkner SM, Bee PE, Meyer N, Dijk DJ, Drake RJ, Light theraphies to improve sleep in intrinsic circadian rhythm sleep disorders and neuro-psychiatric illness: a systematic review and meta-analysis. Sleep Med Rev. 2019;46:108–23. https://doi.org/10.1016/j.smrv.2019.04.012.

Feldman ME, Charach A, Bélanger SA. ADHD in children and youth: part 2—treatment. Paediatr Child Health. 2016;23:462–72. https://doi.org/10.1093/pcp/pxy113.

Fernell E, Eriksson MA, Gillberg C. Early diagnosis of autism and impact on prognosis: a narrative review. Clin Epidemiol. 2013;5:53–43. https://doi.org/10.2147/cepl.s41714.

Ferrin M, Moreno-Granados JM, Salcedo-Marín MD, Ruiz-Veguilla M, Perez-Ayala V, Taylor E. Evaluation of a psychode-ducation programme for parents of children and adolescents with ADHD: Immediate and long-term effects using a blind randomized controlled trial. Eur Child Adolesc Psychiatry. 2014;23(8):637–47.

Flatz T, Gleuβner M. Neurofeedbacktherapie bei ADHS und Autismus [neurofeedback therapy for ADHD and Autism]. Paediatr Paedol. 2014;49:22–7.

Furniss E, Eriksson MA, Gillberg C. Early diagnosis of autism and impact on prognosis: a narrative review. Clin Epidemiol. 2013;5:53–43. https://doi.org/10.2147/cepl.s41714.

Faulkner SM, Bee PE, Meyer N, Dijk DJ, Drake RJ, Light theraphies to improve sleep in intrinsic circadian rhythm sleep disorders and neuro-psychiatric illness: a systematic review and meta-analysis. Sleep Med Rev. 2019;46:108–23. https://doi.org/10.1016/j.smrv.2019.04.012.

Feldman ME, Charach A, Bélanger SA. ADHD in children and youth: part 2—treatment. Paediatr Child Health. 2016;23:462–72. https://doi.org/10.1093/pcp/pxy113.
93. Frémaux T, Reymann M, Chevreul C, Bentué-Ferraz D. Pre-
scription de l’olanzapine chez l’enfant et l’adolescent [Ver-
schreibung von Olanzapin bei Kindern und Jugendlichen].
Encephale. 2007;33(2):188–96.
94. Frye RE. Social skills deficits in autism spectrum disorder:
potential biological origins and progress in developing therapeutic
agents. CNS Drugs. 2018;32(8):713–34. https://doi.
org/10.1007/s40263-018-0556-y.
95. Frye RE, Seenivasulu S, Adams JB. Traditional and non-
traditional treatments for autism spectrum disorder with
seizures: an on-line survey. BMC Pediatr. 2011;11:37.
96. Frye RE, Rossignol D, Casanova ME, Brown GL, Martin V,
Edelson S, et al. A review of traditional and novel treat-
ments for seizures in autism spectrum disorder: findings from
a systematic review and expert panel. Front Public
Health. 2013;1:31:1–26. https://doi.org/10.3389/fpubh.
2013.00031.
97. Gaaster GF, Groen Y, Tucha L, Tucha O. The effects of class-
room interventions on off-task and disruptive classroom
behavior in children with symptoms of attention-deficit/
hyperactivity disorder: A meta-analytic review. PLOS
ONE. 2016;11(2):e0148841:1–19. https://doi.org/10.1371/
journal.pone.0148841.
98. Gahr M, Kölle MA, Schönfeldt-Lecuona C, Lepping R, Freudenmann RW. Paliperidone extended-release: does it have a place in antipsychotic therapy? DDDT.
2011;11(5):125–46.
99. Gao R, Pzenes P. Common mechanisms of excitatory and inhi-
bitory imbalance in schizophrenia and autism spectrum
disorders. Curr Molec Med. 2015;15(2):146–67. https://doi.
org/10.2174/1566524015666150303003028.
100. Garbarino VR, Lee Gilman T, Daws LC, Gould GG. Extreme
enhancement or depletion of serotonin transporter func-
tion and serotonin availability in autism spectrum disorder.
Pharmacol Res. 2019;140:85–99. https://doi.org/10.1016/j.
phrs.2018.07.010.
101. Gates JA, Kang E, Lerner MD. Efficacy of group social
treatments for youth with autism spectrum disorder:
a systematic review and meta-analysis. Clin Psychol
Rev. 2017;52:164–81. https://doi.org/10.1016/j.cpr.2017.
01.006.
102. Geurts HM, Corbett B, Solomon M. The paradox of cognitive
flexibility in autism. Trends Cogn Sci. 2009;13(2):74–82.
https://doi.org/10.1016/j.tics.2008.11.006.
103. Ghanizadeh A, Sahraeiazadeh A, Berk M. A head-to-head
comparison of Aripiprazole and Risperidone for safety
and treating autistic disorders, a randomized double blind
clinical trial. Child Psychiatry HumDev. 2014;45(2):185–92.
104. Ghanizadeh A, Molla MAS, Olango GJ. The effect of stimu-
lants on irritability in autism comorbid with ADHD: a sys-
tematic review. Neuropsych Dis Treat. 2019;15:1547–55.
https://doi.org/10.2147/ndt.s194022.
105. Gilby KL, O’Brien TJ. Epilepsy, autism, and neurodevelop-
ment: kindling a shared vulnerability? Epilepsy Behav.
2013;26(3):870–4. https://doi.org/10.1016/j.yebehv.2012.
11.002.
106. Gjevik E, Sandstad B, Andreassen OA, Myhre AM, Spon-
heim E. Exploring the agreement between questionnaire
information and DSM-IV diagnoses of comorbid psy-
chopathology in children with autism spectrum disor-
ters. Autism. 2014;19(4):433–42. https://doi.org/10.1177/
1362363414526003.
107. Goel R, Hong JS, Findling RL, Ji NY. An update on phar-
macotherapy of autism spectrum disorder in children and
adolescents. Int Rev Psych. 2018;30(1):78–95. https://doi.
org/10.1080/09540201.2018.1458706.
108. Goldman SE, Adkins KW, Calcutt MW, Carter MD, Good-
paster RL, Wang L, et al. Melatonin in children with
autism spectrum disorders: endogenous and pharmacoki-
netic profiles in relation to sleep. J Autism Dev Disord.
2014;44:2525–35.
109. Golubchik P, Sever J, Weizman A. Low-dose quetiapine for
adolescents with autistic spectrum disorder and aggres-
sive behavior: open-label trial. Clin Neuropharmacol.
2011;34(6):216–9.
110. Gründer G, Benkert O. Handbuch der Psychophar-
makotherapie [Handbook of Psychopharmacotherapy].
Heidelberg: Springer; 2008.
111. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ,
Lambert TJ, et al. Intranasal oxytocin improves emotion
recognition for youth with autism spectrum disorders. Biol
Psychiatry. 2010;67(5):692–4.
112. Guastella AJ, Hickie IB, McGuinness MM, Otis M, Woods EA,
Disinger HM, et al. Recommendations for the standardisa-
tion of oxytocin nasal administration and guidelines for its
reporting in human research. Psychoneuroendocrinology.
2013;38(5):612–25.
113. Guastella AJ, Hickie IB. Oxytocin treatment, circuitry
and autism: a critical review of the literature placing
oxytocin into the autism context. Biol Psychiatry.
2013;73(3):234–42. https://doi.org/10.1016/j.biopsych.
2013.05.028.
114. Guenot M. Indications et risques des techniques neuro-
chirurgicales chez l’enfant présentant une épipalysie par-
tielle pharmaco-résistante. [Surgical treatment for epilepsy in
children with a treatment resistant partial epilepsy:
indications and complications]. Rev Neurol. 2004;160(Supple-
ment 1):203–9.
115. Guglielmo R, Iomine L, Grandinetti P, Janiri L. Managing
disruptive and compulsive behaviors in adults with autis-
tic disorder with Galabapentin. J Clin Psychopharmacol.
2013;33(2):273–4.
116. Gurnani T, Ivanov I, Newcorn JH. Pharmacotherapy of
aggression in child and adolescent psychiatric disorders. J
Child Adolesc Psychopharmacol. 2016;26(1):65–73. https:
//doi.org/10.1089/cap.2015.0167.
117. Habib A, Harris L, Pollick F, Melville C. A meta-analysis
of working memory in individuals with autism spectrum
disorders. PLoS ONE. 2019;14(4):e0216198:1–25.
118. Hamiwka LD, Wirrell EC. Comorbidities in pediatric
epilepsy: beyond “just” treating the seizures. J Child Neurol.
2009;24(6):734–42.
119. Handleman JS, Harris SL. Preschool education programs for
children with autism. Austin: ProEd; 2001.
120. Hanson E, Kalish LA, Bunce E, Curtis C, McDaniel S, Ware
J, et al. Use of complementary and alternative medicine
among children diagnosed with autism spectrum disorder.
J Autism Dev Disord. 2007;37(4):628–36. https://doi.org/10.
s1080-006-0192-0.
121. Hanwell R, Senanayake M, deSilva V. Comparative efficacy
and acceptability of methylphenidate and atomoxetine in
treatment of attention deficit hyperactivity disorder in
children and adolescents: a meta-analysis. BMCPsychiatry.
2011;11(176):1–8. https://doi.org/10.1186/1471-244X-11-
176.
122. Hardan AY, Jou RJ, Handen BL. Retrospective study of quoti-
apine in children and adolescents with pervasive develop-
mental disorders. J Autism Dev Disord. 2005;35(3):387–91.
123. Harterkamp M, van de Loo-Neus G, Minderaa RB, van der
Klooster PM, Freudenmann RW. Paliperidone extended-release:
pharmacotherapy of autism spectrum disorder in children and
adolescents. Int Rev Psychiatry. 2019;31(4):260–7. https://doi.
org/10.1080/09540201.2019.1679946.
Hennissen L, Bakker MJ, Banaschewski T, Carucci S, Coghill Hirota T, Veenstra-Vanderweele J, Hollander E, Kishi T.

Hollander E, Soorya L, Wasserman S, Chaplin W, Schapiro ML, Zagursky K, et al. A double-blind placebo-controlled pilot study of olanzapine in childhood/adolescent pervasive developmental disorder. J Child Adolesc Psychopharmacol. 2006a;16(5):541–8.

Holtmann M, Steiner S, Hohmann S, Poustka L, Banaschewski T, Bölte S. Neurofeedback in autism spectrum disorders. Dev Med Child Neurol. 2011;53:986–93. https://doi.org/10.1111/j.1469-8749.2011.04043.x.

Hosenbocus S, Chahal R, Memantine: a review of possible uses in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry. 2013;22(2):166–71.

Hsiao EY. Gastrointestinal issues in autism spectrum disorder. Harv Rev Psychiatry. 2014;22(2):104–11.

Hu VW, Sarachana T, Kim KS, Nguyen A, Kulkarni S, Steinberg ME, et al. Gene expression profiling differentiates autism case-controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Res. 2009;2(2):78–97. https://doi.org/10.1002/aur.73.

Huguet G, Contjean Y, Doyen C. Troubles du spectre autistique et suicidalité. Encephale. 2014;41(4):362–9. https://doi.org/10.1016/j.jencep.2014.08.010.

Hurwitz R, Blackmore R, Hazell P, Williams K, Woolfenden S. Tricyclic antidepressants for autism spectrum disorders (ASD) in children and adolescents. Cochrane Syst Rev. 2012;14(3):1–31, 2012.

Huss M, Chen W, Lodolph AG. Guanfacine extended release: A new pharmacological treatment option in Europe. Clin Drug Investigat. 2016;36(1):1–25. https://doi.org/10.1007/s40261-015-0336-0.

Hyman SL, Pennick M, Secker R. Preclinical pharmacokinetics, pharmacology and toxicology of lisdexamfetamine: a novel d-amphetamine pro-drug. Neuropsychopharmacology. 2014;87:41–50. https://doi.org/10.1016/j.neuropsychopharmacology.2014.02.014.

Hyman SL, Levy SE, Myers SM, Council on Children with Disabilities, Section on Developmental and Behavioral Pediatrics. Identification, evaluation, and management of children with autism spectrum disorders. Pediatrics. 2019;145(1):e20193447:1–64. https://doi.org/10.1542/peds.2018-3447.

Iizuka C, Yamashita Y, Nagamitsu S, Yamashita T, Araki Y, Ohya T, et al. Comparison of the strengths and difficulties questionnaire (SDQ) scores between children with high-functioning autism spectrum disorder (HFASD) and children with ADHD: a systematic literature review. J Neurol Sci. 2009;276(1):485–509. https://doi.org/10.1017/CBO97805117002/14651858.CD007992.pub2.

Iizuka C, Yamashita Y, Nagamitsu S, Yamashita T, Araki Y, Ohya T, et al. Comparison of the strengths and difficulties questionnaire (SDQ) scores between children with high-functioning autism spectrum disorder (HFASD) and attention-deficit/hyperactivity disorder (AD/HD). Brain Dev. 2010;32(8):609–12. https://doi.org/10.1016/j.braindev.2009.09.009.

Izuka C, Yamashita Y, Nagamitsu S, Yamashita T, Araki Y, Ohya T, et al. Comparison of the strengths and difficulties questionnaire (SDQ) scores between children with high-functioning autism spectrum disorder (HFASD) and attention-deficit/hyperactivity disorder (AD/HD). Brain Dev. 2010;32(8):609–12. https://doi.org/10.1016/j.braindev.2010.09.009.

James S, Levy SE, Myers SM, Council on Children with Disabilities, Section on Developmental and Behavioral Pediatrics. Identification, evaluation, and management of children with autism spectrum disorders. Pediatrics. 2019;145(1):e20193447:1–64. https://doi.org/10.1542/peds.2018-3447.

James S, Montgomery P, Williams K. Omega-3 fatty acids uses in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry. 2013;22(2):166–71.
152. Jensen PS, Buitelaar J, Pandina GJ, Binder C, Haas M. Management of psychiatric disorders in children and adolescents with atypical antipsychotics: a systematic review of published clinical trials. Eur J Child Adolesc Psychiatry. 2007;16(2):104–20.

153. Jeness OS, Aref-Adib M, Coren E. Risperidone for autism spectrum disorder. Cochrane Database Syst Rev. 2007; https://doi.org/10.1002/14651858.CD005040.pub2.

154. Ji NY, Findling RL. An update on pharmacotherapy for autism spectrum disorder in children and adolescents. Curr Opin Psychiatry. 2015;28(2):91–101. https://doi.org/10.1097/YCO.0000000000000132.

155. Jia F, Wang B, Schan L, Xu Z, Staal WG, Du L. Core symptoms of autism improved after vitamin D supplementation. Pediatrics. 2015;135(1):e196–8.

156. Jobski K, Hofer J, Hoffmann F, Bachmann C. Use of psychotropic drugs in patients with autism spectrum disorders: a systematic review. Acta Psychiatr Scand. 2017;135(1):8–28. https://doi.org/10.1111/acps.12644.

157. Johnson CR, Turner KS, Foldes EL, Malow BA, Wiggs L. Comparison of sleep questionnaires in the assessment of sleep disturbances in children with autism spectrum disorders. Sleep Med. 2012;13:795–801.

158. Jones RA, Downing K, Rinehart NJ, Barnett LM, May T, McGillivray J, et al. Physical activity, sedentary behavior and their correlates in children with autism spectrum disorder: A systematic review. PLOS One. 2017;12(2):1–23. https://doi.org/10.1371/journal.pone.0172482.

159. Joshua G. Are there lessons to be learned from the prevailing patterns of psychotropic drug use in patients with autism spectrum disorder? Acta Psychiatr Scand. 2017;135(1):5–7. https://doi.org/10.1111/acps.12683.

160. Joshua G, Farone SV, Wozniak J, Tarko L, Fried R, Galdo M, et al. Symptom profile of ADHD in youth with high-functioning autism spectrum disorder: a comparative study in psychiatrically referred populations. J Atten Disord. 2017;21(10):846–55. https://doi.org/10.1177/1087054714543368.

161. Joshua G, Biederman J, Petty C, Goldin RL, Furtak SL, Wozniak J, et al. Examining the comorbidity of bipolar disorder and autism spectrum disorders: a large controlled analysis of phenotypic and familial correlates in a referred population of youth with bipolar I disorder with and without autism spectrum disorders. J Clin Psych. 2013;74(6):578–86. https://doi.org/10.4088/JCP.12m07392.

162. Jung S, Sainato DM. Teaching play skills to young children with autism. J Intell Develop Disabil. 2013;38(1):74–90. https://doi.org/10.3109/13668250.2012.732220.

163. Kantner A-K, Fernell E, Gillberg C, Miniscalco C. Autism in community pre-schoolers: developmental profiles. Res Develop Disabil. 2013;34(9):2900–8. https://doi.org/10.1016/j.ridd.2013.06.016.

164. Kaplan G, McCracken JT. Psychopharmacology of autism spectrum disorders. Pediatr Clin N Am. 2012;59(1):175–87. https://doi.org/10.1016/j.pcl.2011.10.005.

165. Karst JS, Van Hecke AV. Parent and family impact of autism spectrum disorders: a review and proposed model for intervention evaluation. Clin Child Fam Psych Rev. 2012;15(3):247–77. https://doi.org/10.1007/s10567-012-0119-6.

166. Kasari C, Patterson S. Interventions addressing social impairment in autism. Cur Psych Rep. 2012;14(6):713–25. https://doi.org/10.1007/s11920-012-0317-4.

167. Kidwell KM, Van Dyk TR, Lundahl A, Nelson TD. Stimulant medications and sleep for youth with ADHD: A meta-analysis. Pediatrics. 2015;136(6):1144–53. https://doi.org/10.1542/peds.2015-1704.

168. King BH, Holland E, Sikich L, McCracken JT, Scambill L, Bregman JD, et al. Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior. Arch Gen Psychiatry. 2009;66(6):583–90.

169. King BH. Fluoxetine and repetitive behaviors in children and adolescents with autism spectrum disorder. JAMA. 2019;322(16):1557–8.

170. Kirino E. Efficacy and tolerability of pharmacotherapy options for the treatment of irritability in autistic children. Clin Med Insights Pediatr. 2014;7:1–17.

171. Kleijer KTE, Schmeisser MJ, Krueger DD, Boeckers TM, Scheiffle P, Bourgeron T, et al. Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology (Berl). 2014;231(6):1037–62.

172. Knight V, Mckissick BR, Saunders A. A review of technology-based interventions to teach academic skills to students with autism spectrum disorder. J Autism Develop Disord. 2013. https://doi.org/10.1007/s10803-013-1814-y.

173. Kolevzon A, Mathewson KA, Hollander E. Selective serotonin reuptake inhibitors in autism: a review of efficacy and tolerability. J Clin Psychiatry. 2006;67(3):407–14.

174. Kotagal S. Treatment of dysomnias and parasomnias in childhood. Curr Treat Options Neurol. 2012;14(6):630–49.

175. Kotagal S, Broomall A. Sleep in children with autism spectrum disorder. Pediat Neurol. 2012;47(4):242–51. https://doi.org/10.1016/j.pediatrneurol.2012.05.007.

176. Kruppa JA, Gossen A, Oberwelland Weiß E, Kohls G, Großheinrich N, Cholemkery H, et al. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: a randomized trial. Neuropsychopharmacology. 2019;44(4):749–56. https://doi.org/10.1038/s41386-018-0258-7.

177. Laugesen EA. Review: social skills groups may improve social competence in children and adolescents with autism spectrum disorder. Evidence-Based Mental Health. 2013;16(1):11. https://doi.org/10.1136/eb-2012-100985.

178. LeBlanc LA, Gillis JM. Behavioral interventions for children with autism spectrum disorders. Ped Clin N Am. 2012;59(1):147–64. https://doi.org/10.1016/j.pcl.2011.10.006.

179. Lee DO, Ousley OY. Attention-deficit hyperactivity disorder symptoms in a clinic sample of children with autism spectrum disorders and with pervasive developmental disorders. J Child Adoles Psychopharmacol. 2006;16(6):737–46. https://doi.org/10.1089/cap.2006.16.737.

180. Lee YJ, Oh SH, Park C, Hong M, Lee AR, Yoo HJ, et al. Advanced pharmacotherapy evidenced by pathogenesis of autism spectrum disorder. Clin Psychopharmacol Neurosci. 2014;12(1):19–30. https://doi.org/10.7557/cpn.2014.12.1.19.

181. Leitner Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children – What do we know? Front Hum Neurosci. 2014;8:268. https://doi.org/10.3389/fnhum.2014.00268.

182. Lerner MD, Haque OS, Northrup EC, Lawer L, Bursztajn HJ. Emerging perspectives on adolescents and young adults with high-functioning autism spectrum disorders, violence, and criminal law. J Am Acad Psych Law. 2012;40(2):177–90.

183. Lerner MD, White SW, McPartland JC. Mechanisms of change in psychosocial interventions for autism spectrum disorders. DialogClin Neurosci. 2012;14(3):307–18.

184. Levy ML, Levy KM, Hoff D, Amar AP, Park MS, Conklin JM, et al. Vagus nerve stimulation therapy in patients with autism spectrum disorder and intractable epilepsy: results...
from the vagus nerve stimulation therapy patient outcome registry. J Neuropsychiatr. 2010;5(5):595–602.

185. Levy S. Complementary and alternative medicine among children recently diagnosed with Autistic Spectrum Disorder. J Dev Behav Pediatr. 2003;24:418–23.

186. Levy SE, Hyman SL. Complementary and alternative medicine treatments for children with autism spectrum disorders. Child Adolesc Psychiatry. 2015;24(1):117–43.

187. Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Loo N, et al. Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord. 2006;36(7):849–61. https://doi.org/10.1007/s10803-006-0123-0.

188. Ligsay A, Van Dijck A, Nguyen DV, Lozano R, Chen Y, Bickel ES, et al. A randomized double-blind, placebo-controlled trial of ganaxolone in children and adolescents with fragile X syndrome. J Neurodevelop Disord. 2017;9(1:26):1–13. https://doi.org/10.1186/s11689-017-9207-8.

189. Liu X, Hubbard JA, Fabes RA, Adam JB. Sleep disturbances and correlates of children with autism spectrum disorders. Child Psychiatry Hum Dev. 2006;37:179–91.

190. Liu Z, Smith CB. Lithium: a promising treatment for fragile X syndrome. ACS Chem Neurosci. 2014;18(5):477–83.

191. Lofthouse N, Hendren R, Hurt E, Arnold LE, Butter PR, Delaney MA, Hyman SB, Cater JR. Ziprasidone in extended release and its potential in the treatment of attention deficit hyperactivity disorder. Neuropsychopharmacology. 2015;40:1856–65.

192. Lohothouse N, Hendren R, Hurt E, Arnold LE, Butter E. A review of complementary and alternative treatments for autism spectrum disorders. Autism Res Treat. 2012;2012:870391. https://doi.org/10.1155/2012/870391.

193. Lord C, McGee JP. Educating children with autism. Washington, DC: National Academic Press; 2001.

194. Mahdi F, Setiawati Y. Occupational therapy for children with attention deficit hyperactivity disorder: a literature review. J Child Adolesc Psychiatry. 2019;3(1):1–3.

195. Malow BA, Byars K, Johnson K, Weiss S, Bernal P, Goldstein J, et al. A randomized, placebo-controlled trial of flumazenil to enhancing cognition in Down syndrome and autism spectrum disorders. J Child Adolesc Psychopharmacol. 2013;23(4):275–88. https://doi.org/10.1089/cap.2012.00906.

196. Maloney A, Misk OA, Frazier J, Martiripolare disease is increased susceptibility to the etiology of autism spectrum disorders? Dig Dis Sci. 2012;57(8):1987–93. https://doi.org/10.1007/s10620-012-2286-1.

197. Maloney A, Mick EO, Frazier J, Aripiprazole dose is increased susceptibility to the etiology of autism spectrum disorders. J Child Adolesc Psychopharmacol. 2014;24(6):357–9.

198. Maloy BA, Byars K, Johnson K, Weiss S, Bernal P, Goldman SE, et al. A practice pathway for the identification, evaluation, and management of insomnia in children and adolescents with autism spectrum disorders. Pediatrics. 2012;130(Suppl 2):S106–24. https://doi.org/10.1542/peds.2012-99001.

199. Martinez K, Martinez-Garcia M, Marcos-Vidal L, Janssen J, Castellanos FX, Pretus C, et al. Sensory-to-cognitive systems integration is associated with clinical severity in autism spectrum disorder. J Am Acad Child Adolesc Psychiatr. 2019; electronic preprint:1–11. 2019 https://doi.org/10.1016/j.jaac.2019.05.033.

200. Martinez-Ragal K, Knecht C, de Alvaro R. Profile of guanfacine extended release and its potential in the treatment of attention-deficit hyperactivity disorder. Neuropsych Dis Treat. 2015;11:1359–70. https://doi.org/10.2147/ndt.s65735.

201. Matson JL, Cervantes PE. Commonly studied comorbid psychopathologies among persons with autism spectrum disorder in the two-process model for sleep-wake cycles in infantile autism. Cogn Neurodyn. 2008;2:221–8.

202. Mayer EA, Padua D, Tillisch K. Altered brain-gut axis in autism: comorbidity or causative mechanisms? Bioassays. 2014;36(10):933–9.

203. Mazahery H, Camargo Jr CA, Conlon C, Beck KL, Kruger MC, von Hurst PR, Vitamin D and Autism Spectrum Disorder: A Literature Review. Nutrients. 2016;8(4):236. https://doi.org/10.3390/nu8040236.

204. Mazurek MO, Dovgan K, Neumeyer AM, Malow BA. Course and predictors of sleep and co-occurring problems in children with autism spectrum disorder. J Autism Dev Disord. 2019;49(5):2101–15. https://doi.org/10.1007/s10803-019-03894-5.

205. McCracken JT, Badashova KK, Posey DJ, Aman MG, Scallhill L, Tierney E, et al. Positive effects of methylphenidate on hyperactivity are moderated by monoaminergic gene variants in children with autism spectrum disorders. Pharmacogenomics. 2014;14(3):295–302.

206. McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, et al., and for Research Units on Pediatric Psychopharmacology Autism Network. Risperidone in children with autism and serious behavioral problems. New Engl J Med. 2002;347(5):314–21. https://doi.org/10.1056/NEJMoa013171.

207. McDougle CJ, Scahlill L, McCracken JT, Aman MG, Tierney E, Arnold LE, et al. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. Background and rationale for an initial controlled study of risperidone. Child Adolesc Psychiatr Clin N Am. 2000;9(1):201–24.

208. McPheeeters ML, Warren Z, Sathe N, Bruzek J, Krishnaswami S, Jerome RN, et al. A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics. 2011;127(5):e1312–e21.

209. Mesibov GB, Shea V, Schopler E. The TEACCH approach to autism spectrum disorders. Issues in clinical child psychology. New York: Springer; 2004.

210. Micoulaud-Franchi JA, Geoffroy PA, Fond G, Lopez R, Bioulac S, Philip P. EEG neurofeedback treatments in children with ADHD: An updated meta-analysis of randomized controlled trials. Front Hum Neurosci. 2014; https://doi.org/10.3389/fnhum.2014.00906.

211. Minshawi NF, Wink JK, Shaffer R, Plawecki MH, Posey DJ, Liu H, et al. A randomized, placebo-controlled trial of d-cycloserine for the enhancement of social skills training in autism spectrum disorders. Mol Autism. 2016;7:2. https://doi.org/10.1186/s13229-016-0062-8.

212. Modle ME, Inoue K, Barrett CE, Kittleberga KA, Smith DG, Landgraf R, et al. Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology. 2015;40:1856–65.

213. Möhler H. The legacy of the benzodiazepine receptor: from flumazenil to enhancing cognition in Down syndrome and social interaction in autism. Adv Pharmacol. 2015;72(1):36. https://doi.org/10.1016/bs.apha.2014.10.008.

214. Molnar-Szakacs I, Heaton P. Music: a unique window into the world of autism. Ann New York Acad Sci. 2012;1252:318–24. https://doi.org/10.1111/j.1749-6632.2012.06465.x.
218. Molteni M, Nobile M, Cattaneo D, Radice S, Clementi E. Potential benefits and limits of psychopharmacological therapies in pervasive developmental disorders. Curr. Pharmacol. Rep. 2014;9(4):365–76.

219. Montoya A, Colom F, Ferrin M. Is psychoeducation for parents and teachers of children and adolescents with ADHD efficacious? A systematic literature review. Eur. Psychiatr. 2011;26(3):166–75. https://doi.org/10.1016/j.eurpsy.2010.005.

220. Moyal WN, Lord C, Walkup JT. Quality of life in children and adolescents with autism spectrum disorders: what is known about the effects of pharmacotherapy? Paediatr Drugs. 2014;16(2):123–8.

221. Myers SM, Pauché Johnson C, and the Council on Children With Disabilities. Management of children with autism spectrum disorders. Pediatrics. 2007;120(5):1162–82. https://doi.org/10.1542/peds.2007-2362.

222. Nadeau J, Sulikowski ML, Ung D, Wood JJ, Lewin AB, Murphy TK, et al. Treatment of comorbid anxiety and autism spectrum disorders. Neuropsychiatry (London). 2011;1(6):567–78.

223. Newcorn JH, Halperin JM, Jensen PS, Abikoff HB, Arnold LE, Novack MN, Hong E, Dixon DR, Granpeesheh D. An evaluation of a mobile application designed to teach receptive language skills to children with autism spectrum disorder. Behav Pediatr. 2014;35(4):247–56. https://doi.org/10.1177/0140544013515591.

224. Nijmeijer JS, Arias-Vásquez A, Rommelse NNJ, Altink KA, McDougle CJ. Open-label atomoxetine for attention-deficit/hyperactivity disorder in children with autism spectrum disorders and ADHD symptoms. J Child Adolesc Psychopharmacol. 2011;21(6):567–84. https://doi.org/10.1093/ebehy/epn100.

225. Novack MN, Hong E, Dixon DR, Granpeesheh D. An evaluation of a mobile application designed to teach receptive language skills to children with autism spectrum disorder. Behav Analysis Practice. 2018;12(1):66–77. https://doi.org/10.1016/j.bap.2017.08.001.

226. Ojemann LM, Ojemann GA, Dodrill CB, Crawford CA, Holmes MD, Dudley DL. Language disturbances as side effects of topiramate and zonisamide therapy. Epilepsy Behav. 2001;2(6):579–84. https://doi.org/10.1006/ebeh.2001.0285.

227. Ooi YP, Weng S-J, Kossowsky J, Gerger H, Sung M. Oxytocin and other neurotrophins: a systematic review and meta-analysis of randomized controlled trials. Neurobiol. Learn Mem. 2014;16(2):123–8. https://doi.org/10.1016/j.nlm.2013.10.004.

228. Orinstein AJ, Helt M, Troyb E, Tyson KE, Barton ML, Eigsti M, et al. Intervention history of children and adolescents with high-functioning autism and optimal outcomes. J Dev Behav Pediatr. 2014;35(4):247–56. https://doi.org/10.1093/devbps/dbu025.

229. Orsteijn LM, Oijen CA, Dordel CB, Crawford CA, Holmes MD, Dudley DL. Language disturbances as side effects of topiramate and zonisamide therapy. Epilepsy Behav. 2001;2(6):579–84. https://doi.org/10.1006/ebih.2001.0285.

230. Parker KJ, Oztan O, Libove RA, Mohns DS, Karbson N, Sumiyoshi RD, et al. A randomized placebo-controlled pilot trial shows that intranasal vasopressin improves social deficits in children with autism. Sci Transl Med. 2019;11(491):eaau7356. https://doi.org/10.1126/scitranslmed.aau7356.

231. Patra S, Nebhinani N, Viswanathan A, Kirubakaran R. Atropine for attention deficit hyperactivity disorder in children and adolescents with autism: A systematic review and meta-analysis. Autism Res. 2019;12(4):542–52. https://doi.org/10.1002/aur.2059.

232. Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28(6):2398–413.

233. Pearson DA, Santos CW, Aman MG, Arnold LE, Casat CD, Mansour R, et al. Effects of extended release methylphenidate treatment on ratings of attention-deficit/hyperactivity disorder (adhd) and associated behavior in children with autism spectrum disorders and ADHD symptoms. J Child Adolesc Psychopharmacol. 2013;23(5):337–51. https://doi.org/10.1080/10403983.2012.6096.

234. Pfeifer LM, Frankena K, Toorman J, Rodrigues Pereira R, Diet and ADHD, reviewing the evidence: A systematic review of meta-analyses of double-blind placebo-controlled trials evaluating the efficacy of diet interventions on the behavior of children with ADHD. PLOS ONE. 2017;12(1):e0169277. https://doi.org/10.1371/journal.pone.0169277.

235. Penagarikano O. New therapeutic options for autism spectrum disorder: Experimental evidences. Exp Neurol. 2015;24(4):301–11. https://doi.org/10.1016/j.expers.2015.02.013.

236. Politte LC, Henry CA, McDougle CJ. Psychopharmacological interventions in autism spectrum disorder. Harv Rev Psychiatry. 2014;22(2):76–92. https://doi.org/10.1097/HRP.0000000000000030.

237. Posey DJ, Litwiller M, Koburn A, McDougle CJ. Paroxetine in autism. J Am Acad Child Adolesc Psychiatry. 1999;38(2):111–2.

238. Posey DJ, Gueen KD, Kohn AE, Swiezy NB, McDougle CJ. A naturalistic open-label study of mirtazapine in autistic and other pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2001;11:267–77.

239. Posey DJ, Wiegand RE, Wilkerson J, Maynard M, Stigler KA, McDougle CJ. Open-label atomoxetine for attention-deficit/hyperactivity disorder symptoms associated with high-functioning pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2006;16(5):598–610.

240. Poulska L, Bender F, Bock M, Bölte S, Möhler E, Banaschewski T, et al. Temperament and social Reaktivität bei Autismus-Spektrum-Störungen und ADHS [Personality and social responsiveness in autism spectrum disorders and attention deficit/hyperactivity disorder]. Z Kinder Jugendpsychiatri Psychother. 2011;39:133–41. https://doi.org/10.1007/s00601-011-0416-1.

241. Poulska L, Brandeis D, Hohmann M, Bölte S, Banaschewski T. Neurobiologically based interventions for autism spec-
trum disorders - rationale neurobiology based interventions for autism spectrum disorders - rationale and new directions. RNN. 2014;32(1):197–212.

247. Premoli M, Aria F, Bonini SA, Maccarini G, Gianoncelli A, Pina SD, et al. Cannabidiol: recent advances and new insights for neuropsychiatric disorders treatment. Life. 2019;224:120–7.

248. Prettì A, Melis M, Siddi S, Vellante M, Doneddu G, Fadda R. Oxytocin and autism: a systematic review of randomized controlled trials. J Child Adolesc Psychopharmacol. 2014;24(2):54–68.

249. Rajapakse T, Pringsheim T. Pharmacotherapeutics of Tourette syndrome and stereotypes in autism. Semin Pediatr Neurol. 2010;17(4):254–60.

250. Ramdoss S, Machalicek W, Rispoli M, Mulloy A, Lang R, O’Reilly M. Computer-based interventions to improve social and emotional skills in individuals with autism spectrum disorders: a systematic review. Dev Neurorehabil. 2012;15(2):119–35. https://doi.org/10.3109/17518423.2011.651555.

251. Rao PA, Landa RJ. Association between severity of behavioral phenotype and comorbid attention deficit hyperactivity disorder symptoms in children with autism spectrum disorders. Autism. 2013;18(3):272–80. https://doi.org/10.1177/1362361312470494.

252. Razoki B. Neurofeedback versus psychostimulants in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a systematic review. Neuropsych Dis Treat. 2018;14:2905–13. https://doi.org/10.2147/ndt.s178839.

253. Reddihough DS, Marraffa C, Mouti A, O’Sullivan M, Lee KJ, Orsini F, et al. Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders. A randomized clinical trial. JAMA. 2019;322(16):1561–9.

254. Reichow B, Barton EE, Boyd BA, Hume K. Early intensive behavioral intervention (EIBI) for young children with autism spectrum disorders (ASD). Cochrane Database Syst Rev. 2012;10(CD009260):1–63. https://doi.org/10.1002/14651858.CD009260.pub2.

255. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. A randomized controlled crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. Arch Gen Psych. 2005;62:1266–1274.

256. Reynolds AM, Soke GN, Sabourin KR, Hepburn S, Katz T, Wiggins LD, et al. Sleep problems in 2- to 5-year-olds with autism spectrum disorders - rationale neurobiology based interventions. J Autism Dev Disord. 2000;30(5):373–8. https://doi.org/10.1021/01.651655.

257. Schreibman L. Intensive behavioral/psychoeducational treatment of children with autism spectrum disorders: psychiatric problems, phenotypic expression, and anticonvulsants. Neuropsy chol Rev. 2012;22(3):271–9. https://doi.org/10.1007/s11065-012-9212-3.

258. Roessner V, Schoenefeld K, Buse J, Wanderer S, Rothenberger A. Therapie der Tie-Störungen [Therapy of tic disorders]. Z Kinder Jugendpsychiatr. 2012;40(4):217–37.

259. Rogers SJ, Vismara LA. Evidence-based comprehensive treatments for early autism. J Clin Child Adolesc Psychol. 2008;37(1):8–38.

260. Roommelse NNN, Alink ME, Fliers EA, Martin NC, Buschgens CJM, Hartman CA, et al. Comorbid problems in ADHD: degree of association, shared endophenotypes, and formation of distinct subtypes. implications for a future DSM. J Child Adolesc Psych. 2009;37(6):793–804. https://doi.org/10.1007/s10802-009-9312-6.

261. Robinson SJ. Childhood epilepsy and autism spectrum disorders: psychiatric problems, phenotypic expression, and anticonvulsants. Neuropsych Rev. 2012;22(3):271–9. https://doi.org/10.1007/s11065-012-9212-3.

262. Rossignol DA, Frye BE. Melatonin in autism spectrum disorders. Child Care Health Dev. 2012;38(5):662–7. https://doi.org/10.1111/j.1362-3613.2012.01265.x.

263. Ronald A, Larsson H, Anckarsäter H, Lichtenstein P. Symptoms of autism and ADHD: a Swedish twin study examining their overlap. J Abnorm Psychol. 2014; https://doi.org/10.1037/a0036989.

264. Ronald A, Larsson H, Anckarsäter H, Lichtenstein P. Sympt oms of autism and ADHD: a Swedish twin study examining their overlap. J Abnorm Psychol. 2014; https://doi.org/10.1037/a0036989.

265. Saunders DC. Mindfulness-based ADHD treatment for children: a pilot feasibility study. J Acad Child Adolesc Psych. 2015;58(Suppl 10):312. American Academy of Child & Adolescent Psychiatry (AACAP) 66th Annual Meeting.

266. Schallì L, Aman MG, McDougle CJ, McCracken JT, Tierney E, Dzuiza J, et al. A prospective open trial of guanfacine in children with pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2006;16(5):589–98.

267. Schallì L, McCracken JT, King BH, Rockhill C, Shah B, Polite L, et al. Extended release guanfacine for hyperactivity in children with autism spectrum disorder. Am J Psychiatry. 2015;172(12):1197–206. https://doi.org/10.1176/appi.ajp.2015.15010055.

268. Schallì L, McDougle CJ, Williams SK, Dimitropoulos A, Aman MG, McCracken JT, et al. Children’s yale-brown obsessive compulsive scale modified for pervasive developmental disorders. J Am Acad Child Adolesc Psych. 2006;45(9):1114–23. https://doi.org/10.1097/01.chi.0000220854.79144.e7.

269. Scheltema Beduin A, de Haan L. Off-label second-generation antipsychotics for impulse regulation disorders: a review. Psychopharmacol Bull. 2010;43(3):45–81.

270. Schmidtke K, Antipsychotika im Kindes- und Jugendalter: pro und contra [Pros and cons of antipsychotics in children and adolescents]. Prax Schweiz Rundsch Med. 2015;104(16):859–64.

271. Schneider BN, Enenbach M. Managing the risks of ADHD treatments. Current Psych Rep. 2014;16(10):479. https://doi.org/10.1007/s11920-014-0479-3.

272. Schreibman L. Intensive behavioral/psychoeducational treatments for autism: research needs and future direction. J Autism Dev Disord. 2000;30(5):375–8.

273. Schur SB, Sikich L, Findling RL, Malone RP, Crismon ML, Derivan A, et al. Treatment recommendations for the use of antipsychotics for aggressive youth (TRAAY). Part ii. A review. J Am Acad Child Adolesc Psychiatry. 2003;42(2):132–44. https://doi.org/10.1097/01.CHI.0000037017.34553.2E.

274. Scott J, Elain B, Bellivier F. Can an integrated science approach to precision medicine research improve
lithium treatment in bipolar disorders? Front Psychiatry. 2018;9(360):1–10.

278. Scott LJ, Dhillon S. Risperidone: a review of its use in the treatment of irritability associated with autistic disorder in children and adolescents. Paediatr Drugs. 2007;9(5):343–54.

279. Scotti Rosato N, Correll CU, Papadopulos E, Chait A, Crystal S, Jensen PS on behalf of the Treatment of Maladaptive Aggressive in Youth Steering Committee. Treatment of maladaptive aggression in youth: CERT guidelines II. treatments and ongoing management. Pediatri cs. 2012;129(6):e1577–586. https://doi.org/10.1542/peds.2010-1361.

280. Silva GE, Goodwin JL, Vana KD, Vasquez MM, Wilcox PG, Quan SE. Restless legs syndrome, sleep, and quality of life among adolescents and young adults. J Clin Sleep Med. 2014;10(7):779–86. https://doi.org/10.5664/jcsm.3872.

281. Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G. Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry. 2008;47(8):921–9. https://doi.org/10.1097/CHI.0b013e31817966f4.

282. Simonoff E, Taylor E, Baird G, Bernard S, Chadwick O, Liag H, et al. Randomized controlled double-blind trial of optimal dose methylphenidate in children and adolescents with severe attention deficit hyperactivity disorder and intellectual disability. J Child Psychol Psychiatry. 2013;54(5):527–35. https://doi.org/10.1111/j.1469-7610.2012.02569.x.

283. sleepjunkie. The ultimate guide to helping children with autism sleep soundly at night. https://www.sleepjunkie.org/autism-and-sleep/. 2019. Accessed: 17 Jun 2021.

284. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998;88(1):127–52.

285. Southamkakandi C, Schmitz K. Pediatric psychopharmacology for treatment of ADHD, depression, and anxiety. Pediatrics. 2015;136(2):351–9. https://doi.org/10.1542/peds.2014-1581.

286. Sowa M, Meulenbroek K. Effects of physical exercise on autism spectrum disorders: a meta-analysis. Res Autism Spectr Disord. 2012;6(1):46–57. https://doi.org/10.1016/j.rasd.2011.09.001.

287. Spence SJ, Schneider MT. The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr Res. 2009;65:599–606.

288. Spencer D, Marchall J, Post B, Kulakodlu M, Newschaffer C, Demmen T, et al. Psychotropic medication use and polypharmacy in children with autism spectrum disorders. Pediatrics. 2013;132(5):833–40.

289. Srinivasan SM, Bhat AN. A review of “music and movement” therapies for children with autism: embodied interventions for multisystem development. Front Integrat Neurosci. 2013;7(22):1–15. https://doi.org/10.3389/fnint.2013.00022.

290. Stachnik JM, Nunn-Thompson C. Use of atypical antipsychotics in the treatment of autistic disorder. Ann Pharma cother. 2007;41(4):626–34.

291. Stavrakaki A, Antochi R, Emery PC. Olanzapine in the treatment of pervasive developmental disorders: a case series analysis. JPN. 2004;29(1):57–60.

292. Steingard RJ, Zimmitzky B, DeMasco DR, Bauman ML, Bucci JP. Sertraline treatment of transition-associated anxiety and agitation in children with autistic disorder. J Child Adolesc Psychopharmacol. 1997;7(1):9–5.

293. Stevenson J, Buitelaar J, Cortese S, Ferrin M, Konofal E, Lecendreu M, et al., on behalf of the European ADHD Guidelines Group. Research review: The role of diet in the treatment of attention-deficit/hyperactivity disorder – an appraisal of the evidence on efficacy and recommendations on the design of future studies. J Child Psychol Psychiat. 2014;55(5):416–27. https://doi.org/10.1111/jcpp.12215.

294. Stigler KA. Psychopharmacologic management of serious behavioral disturbance in ASD. Child Adolesc Psychiatr Clin NAm. 2014;23(1):73–82.

295. Stigler KA, McDougle CJ. Pharmacotherapy of irritability in pervasive developmental disorders. Child Adolesc Psychiatr Clin NAm. 2008;17(4):79–52.

296. Sturman N, Deckx L, van Driel ML. Methylphenidate for children and adolescents with autism spectrum disorder. Cochrane Database Sys Rev. 2017;11(Cd011144):1–98. https://doi.org/10.1002/14651858.CD011144.pub2.

297. Sung M, Chin CH, Lim CS, Liew HSA, Lim CS, Kashala E, et al. What's in the pipeline? Drugs in development for autism spectrum disorder. NDT. 2014;10:371–81.

298. Tarrant N, Roy M, Deb S, Odedra S, Retzer A, Roy A. The effectiveness of methylphenidate in the management of attention deficit hyperactivity disorder (ADHD) in people with intellectual disabilities: A systematic review. Res Development Disabil. 2018;83:217–232. https://doi.org/10.1016/j.ridd.2018.08.017.

299. Tonge BJ, Bull K, Brereten A, Wilson R. A review of evidence-based early intervention for behavioural problems in children with autism spectrum disorder: the core components of effective programs, child-focused interventions and comprehensive treatment models. Curr Opin Psychiatry. 2014;27(2):158–65.

300. Torres N, Martins D, Koutonio JS, Prata D, Verissimo M. How do hypothalamic neuropeptides shape youth's sociality? A systematic review on oxytocin, vasopressin and human socio-emotional development. Neurosci Biobehav Rev. 2018;90:309–31. https://doi.org/10.1016/j.neubiorev.2018.05.004.

301. Torres-Aleman I. Toward a comprehensive neurobiology of IGF-I, Devel Neurobio. 2010;70(S5):384–96. https://doi.org/10.1016/dnex.2010.07.001.

302. Toscano CVA, Carvalho HM, Ferreira JP. Exercise effects on children with autism spectrum disorder: the core components of effective programs, child-focused interventions and comprehensive treatment models. Curr Opin Psychiatry. 2014;27(2):158–65.

303. Tuchman R, Alessandri M, Cuccaro M. Autism spectrum disorder and epilepsy: Moving towards a comprehensive approach to treatment. Brain Dev. 2010;32:719–30.

304. Tye C, Runicles AK, Whitehouse AJO, Alvares GA. Characterizing the interplay between autism spectrum disorder and comorbid medical conditions: an integrative review. Front Psychiatry. 2019; https://doi.org/10.3389/fpsyt.2018.00751.

305. Uren J, Richdale AL, Cotton SM, Whitehouse AJO. Sleep problems and anxiety from 2 to 8 years and the influence of autistic traits: a longitudinal study. Eur Child. 2018;28(8):1117–27. https://doi.org/10.1002/1469-7618.001275-y.

306. van Ijzendoorn MH, Bakermans-Kranenburg MJ. The role of oxytocin in parenting and as augmentative pharmacotherapy; critical issues and bold conjectures. J Neuroendocrinol. 2015;27(1):1–8. https://doi.org/10.1111/jne.12355.

307. Vanucchi G, Masi G, Toni C, Dell’Oso L, Erfurth A, Perugi G. Bipolar disorder in adults with Asperger’s Syndrome: systematic review. J Affect Disord. 2014;168:151–60.
308. Veatch OJ, Maxwell-Horn AC, Malow BA. Sleep in autism spectrum disorders. Curr Sleep Medicine Rep. 2015;1(2):131–40.

309. Veenstra-VanderWeele J, Muller CL, Iwamoto H, Sauer JE, Owens WA, Shah CR, et al. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proceed Nat Acad Sci. 2012;109(14):5469–74. https://doi.org/10.1073/pnas.1112345109.

310. Venkateswaran S, Shevell M. The case against routine encephalography in specific language impairment. Pediatrics. 2008;122:e911–e6.

311. Wang L, Conion MA, Christophersen CT, Sorich MJ, Angley MT. Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomarkers Med. 2014;8(3):331–44.

312. Ward F, Tharian P, Roy S, Deb M, Unwin GL. Efficacy of beta blockers in the management of problem behaviours in people with intellectual disabilities: a systematic review. Res Dev Disabil. 2013;34(12):4293–303.

313. Watanabe T, Kuroda M, Kuwabara H, Aoki Y, Iwashiro N, Tatsunobu N, et al. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain. 2015;138:3400–12.

314. Weiskop S, Richdale A, Matthews J. Behavioural treatment to reduce sleep problems in children with autism or fragile x syndrome. Dev MedChildNeurol. 2005;47(2):94–104.

315. Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. DevMedChildNeurol. 2005;47(2):94–104.

316. Whitehouse AJ. Complementary and alternative medicine for autism spectrum disorders: rationale, safety and efficacy. J Paediatrics Child Health. 2013. https://doi.org/10.1111/jpc.12242.

317. Wiggs L, Stores G. Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy. Dev Med Child Neurol. 2004;46:372–80.

318. Wijnhoven LAMW, Niels-Kessels H, Creemers DHM, Vermulst AA, Otten R, Engels RCME. Prevalence of comorbid depressive symptoms and suicidal ideation in children with autism spectrum disorder and elevated anxiety symptoms. J ChildAdolesc Ment Health. 2019;31(1):77–84. https://doi.org/10.2989/17280583.2019.1608830.

319. Williams K, Brignell GA, Randall M, Silove P, Hazell N. Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). Cochrane Database Syst Rev. 2013; https://doi.org/10.1002/14651858.CD004677.pub3.

320. World Health Organization. ICD-11 for mortality and morbidity statistics (Version : 04/2019). https://icd.who.int/browse11/l-m/en, 2019. Accessed: 17 Jun 2021.

321. Yamasue H, Domes G. Behav Pharmacol Neuropep: Oxytocin, volume 35 of Current Topics in Behavioral Neurosciences, chapter Oxytocin and Autism Spectrum Disorders, pages 449–465. Springer, 2019. https://doi.org/10.1007/7854_2017_24.

322. Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry. 2016;21(9):1225–31. https://doi.org/10.1038/mp.2015.162.

323. Zaboski BA, Storch EA. Comorbid autism spectrum disorder and anxiety disorders: a brief review. Future Neurol. 2018;13(1):31–7. https://doi.org/10.2217/fnl-2017-0030.

324. Zahid S, Upthegrove R. Suicidality in autistic spectrum disorders. Crisis. 2017;38(4):237–46. https://doi.org/10.1027/0227-5910/a000458.

325. Zimmer M, Desch L. Sensory integration therapies for children with developmental and behavioral disorders. Pediatrics. 2012;129(6):1186–9. https://doi.org/10.1542/peds.2012-0876.

326. Zuddas A, Zanni R, Usala T. Second generation antipsychotics (SGAs) for non-psychotic disorders in children and adolescents: a review of the randomized controlled studies. Eur Neuropsychopharmacol. 2011;21(8):600–20.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.