Characterization of the microRNA Transcriptomes and Proteomics of Cochlea Tissue-derived Small Extracellular Vesicles From Different Age of Mice After Birth

Pei Jiang
Southeast University

Xiangyu Ma
Southeast University

Shanying Han
Southeast University

Leyao Ma
Southeast University

Jingru Ai
Southeast University

Leilei Wu
Southeast University

Yuan Zhang
Southeast University

Hairong Xiao
Southeast University

Mengyao Tian
Southeast University

W. Andy Tao
Purdue University

Shasha Zhang
Southeast University

Renjie Chai (renjie@seu.edu.cn)
Southeast University

Keywords: small extracellular vesicles, cochlea, development, microRNAs, proteins, proteomics

DOI: https://doi.org/10.21203/rs.3.rs-823336/v1
Abstract

The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 nm to 200 nm, have been considered as a significant medium for information communication in both the processing of physiological and pathological. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomics of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related with inner ear development, anatomical structure development, and the auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.

Introduction

The cochlea in the inner ear is an important auditory signal transduction organ that develops from embryonic day (E)9 through postnatal day (P)2 [1]. The detection of sound waves and transmission of sound information to the brain are both dependent on cochlear hair cell (HCs) [2]. The first cochlear HCs develop at E11, and ultimately three rows of outer hair cells (OHCs), one row of inner hair cells (IHCs), and supporting cells (SCs) beneath the HCs are formed [3]. By P3, the total number of HCs peaks and will remain basically unchanged, while the morphology of the HCs will change as the HCs mature from P3 to P21 [4, 5].

HC maturation involves many complex developmental processes, such as the formation of hair bundles, synapses, and mechanical transduction channels (METs) [6-8]. Hearing formation requires the establishment of proper innervation, and the afferent nerves of the inner ear gradually form an outer spiral bundle of OHCs from P0 to P3 [9]. In the first seven days after birth, hair bundles and METs develop gradually, and mature innervation patterns emerge gradually between P14 and P21 [9, 10]. At P7, HCs have mature mechanical transduction abilities, which is the most important aspect of formation of the auditory system [11]. HC synapses begin to mature at P14, which is when mice begin to gain hearing ability [12]. At P21, the morphology and function of the cochlea are mature, and hearing function can be measured by auditory brainstem response.

During the process of HC maturation, the characteristics of SCs, especially inner ear progenitors, also change dramatically. SCs have been reported to act as inner ear stem cells and transdifferentiated into
HCs by induction of Wnt signaling or inhibition of Notch signaling in newborn mice [13, 14]. However, the stemness of SCs deteriorates with age, and their capacity to divide is completely lost by P14 [15].

It has been reported that many important transcription factors and signaling pathways are associated with the development of the cochlea, such as Sox2, Atoh1 [16], and the Wnt, Notch, and FGF signaling pathways [17, 18]. In addition, many microRNAs (miRNAs), such as miR182, miR183, and miR124, are also reported to regulate inner ear tissue differentiation and to maintain cell differentiation and proliferation [19, 20]. However, the cochlea's development is a complicated process, and many regulatory processes and the factors that are involved remain to be elucidated.

Small extracellular vesicles (sEVs) have become a research hotspot in latest years, and are reported to be involved in intercellular signal transmission during many important pathological and physiological processes [21-23]. sEVs have sizes between 30 nm to 200 nm and can be generated by various cells [24]. The contents of sEVs include numerous proteins and nucleic acids that are protected by a phospholipid bilayer structure from being digested by extracellular substances, and these materials can be delivered to recipient cells and thus contribute to cellular communication and signal transmission [25, 26]. sEVs participate in cell proliferation and differentiation in both pathological and healthy situations through signaling pathways mediated by miRNAs [27-29], and sEVs are involved in intercellular signal transmission during the development of brain neural circuits and in regulating growth patterns during embryonic development [30, 31].

Although sEVs have been extensively studied in cancer and other diseases, limited studies have been performed on the role of sEVs in the cochlea. This may be because as the mice age the otic vesicle outside the cochlea gradually becomes ossified and becomes rigid, especially after P10, which makes it difficult to obtain the substances inside the cochlea. However, it is known that in the utricle SC-derived exosomes can protect HCs against neomycin-induced ototoxicity [32] and that inner ear stem cell-derived exosomes can reduce ototoxic drug damage by transferring miR-182-5p to HEI-OC1 cells [33, 34]. At present, the research on inner ear-derived sEVs is based on in vitro models, and there is no research on sEVs in intact inner ear tissues.

In this study, we extracted cochlear tissue-derived sEVs from mice at different ages after birth and systematically analyzed and characterized their protein and miRNA contents for the first time. We used transmission electron microscopy (TEM), western blotting, and nanoparticle tracking analysis (NTA) to quantify the characteristics of sEVs and then performed proteomics and small RNA-seq to analyze the differentially expressed proteins and miRNAs and to predict the functions of these proteins and miRNAs. These results are expected to provide important information for the subsequent functional analysis of sEVs in the cochlea.

Materials And Methods

Isolation of cochlear tissue-derived sEVs
The cochleae were obtained from P3, P7, P14, and P21 FVB mice. sEVs were isolated from 45 mouse cochleae according to the ultracentrifugation method as previously reported [35, 36]. Briefly, the cochleae were dissected, placed in a centrifuge tube with PBS buffer, and then ground for 1 minute at 40 Hz in a grinder (Jingxin, Shanghai, China). The sample was filtered via filter with an aperture size 0.22 µm after differential centrifugation to eliminate cell debris and microvesicles (600 × g for 10 minutes, 2,000 × g for 15 minutes, and 12,000 × g for 50 minutes, all at 4°C). The filtered samples were concentrated to 1–1.5 ml in a 50 ml 100 kDa MWCO ultrafiltration centrifuge tube (Millipore) at 3,000 × g for 15 minutes at 4°C. The samples were then ultracentrifuged at 110,000 × g for 2 hours at 4°C to obtain sEVs. After discarding the supernatant, the sEV pellets were resuspended, washed with PBS once, and ultracentrifuged a second time at 110,000 × g for 2 hours at 4°C. The sEVs were finally resuspended in 400–500 µl PBS for the following experiments.

Transmission electron microscopy

For visualizing cochlear sEVs by TEM (Hitachi, Tokyo, Japan), 10 µl of sEV sample was negatively stained with 1.5% phosphotungstic acid on an electron microscope copper grid for 2–5 min.

Nanoparticle tracking analysis

NTA (NS300, Malvern, United Kingdom) was employed to identified the size and concentration of sEVs. A total of five 60-second videos were obtained for each sample, and the dispersed light signal of the sEVs was gathered using an optical microscope. According to Brownian motion of particles, the sizes and concentrations of the sEVs were averaged from the 5 videos.

Immunofluorescent staining

Immunofluorescent staining was performed according to a previous study [37]. In brief, cochleae were decalcified with 0.5 M EDTA after being fixed in 4% (v/v) paraformaldehyde. As followed, cochleae blocked and incubated with primary antibodies. After that, fluorescence-conjugated secondary antibodies were added and bound to primary antibodies. A Zeiss LSM 700 confocal microscope was employed to caught fluorescent photos of the cochleae. The primary antibodies included anti-myosin7a (Proteus Bioscience, #25-6790, 1:1000 dilution), anti-Sox2 (R&D systems AF2018-SP, 1:1,000 dilution), anti-CD63 (ab217345, 1:1,000 dilution), and anti-CD9 (ab92726, 1:1500 dilution). Alexa Fluor 647 donkey anti-goat IgG (Invitrogen, A-21447, 1:400 dilution), Alexa Fluor 555 donkey anti-rabbit IgG (Invitrogen, A-31572, 1:400 dilution), and Alexa Fluor 488 donkey anti-mouse IgG (Invitrogen, A-21202, 1:400 dilution) as secondary antibodies.

Western blotting

sEVs were freeze-dried and then lysed in 200 µl RIPA lysis buffer (Beyotime) with 1× protease cocktail (Roche) for 30 min at 4°C. The protein quality was assessed using a BCA kit (Beyotime). The samples were boiled for 15 min at 95°C in 5× sodium dodecyl sulfate (SDS) loading buffer. SDS polyacrylamide gel electrophoresis was utilized to isolate the sEV proteins, and then transferred onto a polyvinylidene
diuoride membrane at 275mA for 90 minutes. The membrane was blocked with 5% BSA [5% (v/v) bovine serum albumin in 0.1% (v/v) Tween-20 in PBS] for 1h at room temperature and then incubated with primary antibody overnight at 4°C. The second day, the membrane was incubated with HRP-conjugated secondary antibody (Abclonal, 1:2,000 dilution). SuperSignal West Pico Plus chemiluminescent substrate (Thermo Scientific) was employed for visualized target bands on a Tanon-5200 automatic chemical imaging system. The primary antibodies were anti-CD63 (ab217345, 1:1,000 dilution), anti-CD9 (ab92726, 1:1500 dilution), anti-Tsg101 (ab125011, 1:2,000 dilution), anti-mouse EEA1 (Santa Cruz Biotechnology, 1:100 dilution), and anti-rabbit Rab7 (Cell Signaling, 1:1,000 dilution), and anti-GAPDH (Kangchen, KC-5G4, 1:2,000 dilution).

RNA extraction and quantitative real-time PCR

sEV samples were mixed with 1 ml Trizol (Invitrogen,15596-026) on ice for 5 min, then centrifuged at 17,970 × g for 5 min at 4°C. The sample was added with 200 μl chloroform, vortexed to mix well, and then placed upon ice for 10 min. After centrifugation at 17,970 × g for 15 min at 4°C, the supernatant was mixed with an equal amount of isopropanol, mixed well then hold on 10 min, and centrifuged at 17,970 × g for 10 min at 4°C. The RNA pellet was washed with 70% ethanol after eliminating the supernatant, then dissolved in 25 μl RNase free water.

Total RNA from sEV was reverse-transcribed to cDNA using a miRNA 1st strand cDNA synthesis kit (Vazyme #MR101) following manufacturer’s directions. Real-time PCR was done using an Applied Biosystems real-time RCR instrument by miRNA Universal SYBR qPCR Master Mix (Vazyme, #MR101-01) to quantify the miRNA expression levels. All primers sequences are listed in Table of supplement. The levels of miRNAs were compared utilizing two-tailed, unpaired Student’s t-tests after being standardized to small nuclear RNA U6.

Small RNA sequencing and analysis

For the small RNA-seq library, a minimum of 2 μg RNA single sample (n = 3) was used as building material. Following the manufacturer’s protocol, sequencing libraries were created employing NEBNext® Miltiplex Small RNA Library Prep Set for Illumina® (NEB, USA), and miRNA data was evaluated by FASTQC (v 0.11.5). Sequences were aligned to the reference genome derived from MirBase v22.1 (http://www.mirbase.org/) using Bowtie2 (v 2.2.5). The miRNA expression level in each sample was determined by featureCounts (v 2.0.0) and then normalized with the CPM (counts-per-million) algorithm, and differential expression analysis was performed in edgeR (v 3.30.3) using |log2FoldChange| > 2.0 and p < 0.05 as the threshold. Short Time-Series Expression Miner (STEM) (v 1.3.13) software was used for expression trend analysis. In order to avoid too many false positives, only miRNA-targeted genes in the Tarbase v7.0 database,[38] which were identified experimentally, were selected.

DIANA-279 miRPath v.3 was used to assess miRNA enrichment pathways [39], and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to investigate functional annotation and pathway enrichment. The cumulative effects of the specified miRNAs were evaluated.
using the "genes-Union" algorithm. The Fisher accurate test with a microT threshold of 0.8, false discovery rate (FDR) correction, and a p-value threshold of 0.05 was used for enrichment analysis.

Protein digestion

The freeze-dried sEVs were dissolved in buffer consisting of phosphatase inhibitor cocktails, 10 mM TCEP, 40 mM 2-chloroacetamide, 12 mM sodium deoxycholate, 50 mM Tris-HCl, and 12 mM sodium lauroyl sarcosinate (pH 8.5) (Sigma-Aldrich) by boiling for 10 minutes at 95°C. After that, the samples were diluted 5-fold with 50 mM triethylammonium bicarbonate and digested for 3 hours at 37°C with Lys-C (Wako) at 1:100 (w/w). To further degrade the peptides, the samples were treated overnight in a 37°C with trypsin at a ratio of 1:50 (w/w). To acidify the sample with a concentration of 1% TFA, ethyl acetate solution and 10% trifluoroacetic acid (TFA) were adjusted in a 1:1 ratio to the aforesaid combination. The sample solution was vortexed before being centrifugation at 15,000 \(\times g \) for 3 minutes. The organic phase on the top was discarded, and the aqueous phase at the base was harvested and frozen dried by refrigerated vacuum centrifuge (Laconco CentriVap). The desalting experiment was developed on an 8 mm extraction disk as directly by manufacturer (3M Empore 2240-SDB-XC). All samples were stored at –80°C.

LC-MS/MS and quantitative data analysis

LC-MS/MS experiment method refer to previous study [40]. Briefly, the peptides were solubilized in 10 µL 0.1% formic acid (FA), then taken 2 µL into the nanoelute for proteomics analysis. All peptides can be separated in a 25 cm internal packed column in the mobile phase with a fluid velocity of 300nl/min. The timsTOF Pro mass spectrometer (Bruker) is connected to Nanoeluate in real time, and the data settings are adjusted to full scan (m/z 100 to 1,700) by the mass spectrometer.

Using the PEAKS Studio X+ program (Bioinformatics Solutions Inc), the raw files were explicitly compared with the UniProt database to obtain clean data. There were no duplicate entries in the identification of proteins and peptides, but special peptides and proteins were found. To examine differential proteins, markers of exosome, and isolated inner ear proteins in various samples, the intensities of peptides were quantified using a label-free approach. The Perseus software was utilized to investigate the differential expression of sEV proteins of the cochlea based on these data. DAVID (https://david.ncifcrf.gov/) was conducted to identify biological process terms from GO and KEGG pathway analysis, and the protein-protein interaction network obtained by STRING database (http://string-db.org/).

Statistical analysis

All data in this study are shown as the mean ± SD, and all analyses were performed using GraphPad Prism 7 software. When analyzing the different groups, performed a two-tailed, unpaired Student's t-tests to evaluate statistical significance. Statistical significance was defined as a value of p < 0.05.

Table1 Mass spectrometry analysis identified typical sEV proteins
Results

Isolation and characterization of cochlear tissue-derived sEVs

sEVs were isolated from the cochlear tissue of mice at P3, P7, P14, and P21 by ultracentrifugation as described previously [35, 41] (Fig. 1a). Considering that the cochlea is surrounded by the rigid otic vesicle, we dissected the cochleae and ground them in a grinder at 40 Hz as gently as possible so as not to break open the cells. The samples were centrifuged at low speed (600 \times g and 2,000 \times g) to remove cell debris and then at high speed (12,000 \times g) to remove large extracellular vesicles. After passing through a 0.22 µm filter, the samples are concentrated by ultrafiltration with a 100 kDa MWCO ultrafilter. Finally, sEVs were isolated by ultracentrifugation at 110,000 \times g. The RNAs and proteins extracted from sEVs were used for miRNA sequencing and proteomics analysis, respectively. TEM by negative staining indicated the oval shape of sEVs (Fig. 1b), and we characterized the size and number of sEVs from mice of different ages by NTA and confirmed that the diameter of the sEVs was 30–200 nm (Fig. 1d). Typical sEV marker proteins – such as the tetraspanins CD63 and CD9 – and the composition of ESCRT-I complex Tsg101 were detected in cochlear tissue-derived sEVs by western blotting (Fig. 1c). Marker proteins for other vesicles, including EEA1 (endosome marker), Rab7 (lysosome marker), and GAPDH, were used as negative markers of sEVs and were not detected in the sEV samples (Fig. 1c). We also used immunofluorescent staining to confirm the presence of CD63 and CD9 in HCs and SCs (Fig. 1e). Together, these results suggest that this isolation method of cochlear tissue-derived sEVs is feasible and can yield relatively pure sEVs.

miRNA analysis of cochlear tissue-derived sEVs from mice of different ages

sEVs contain a variety of RNAs, especially miRNAs, that play important roles in gene regulation and thus mediate numerous biological processes [42, 43]. Because the role of sEV miRNA in the cochlea is poorly

Name	Accession	-10lgP	P3	P7	P14	P21
TSG101	Q61187	214.54	4.11E+03	1.57E+03	2.75E+03	1.79E+03
CD9	P40240	293.38	4.24E+04	1.99E+04	5.30E+04	3.44E+04
CD63	P41731	195.28	7.86E+03	2.46E+03	1.52E+04	4.64E+03
CD81	P35762	248.37	1.46E+04	5.28E+03	2.05E+04	5.33E+03
Flotillin-1	O08917	376.55	1.03E+04	3.66E+03	1.31E+04	4.46E+03
understood, we employed small RNA-seq to evaluated the cochlear tissue-derived exosomes from P3, P7, P14, and P21 mice to discover differentially expressed miRNA during the development of the cochlea.

The correlations of the samples were tested by hierarchical clustering analysis, and the P3, P7, P14, and P21 groups were well-separated according to their Spearman correlation coefficient (Fig. 2a). We detected a total of 561 miRNAs, including 454, 453, 465, and 455 miRNAs from cochlear tissue-derived sEVs from P3, P7, P14, and P21 mice, respectively (Fig. 2b). Furthermore, there were 18, 17, 17, and 15 miRNAs that were uniquely expressed at P3, P7, P14, and P21, respectively (Fig. 2b). The expression levels of all miRNAs at P3, P7, P14, and P21 are shown in Fig. 2c. We compared the differentially expressed miRNAs between each of the age groups pairwise (Fig. S1), and the top 50 most abundant miRNAs in the four age groups are shown in Fig. 2d.

We found 179 miRNAs that were differentially expressed across the four age groups by pairwise comparison, including 57, 33, 29, and 60 miRNAs that were highly expressed at P3, P7, P14, and P21, respectively (Fig. 3a, p < 0.05, fold change > 2). Further analysis of the 179 differentially expressed miRNAs showed that 18 of these miRNAs became more prevalent in sEVs with age, while 17 miRNAs decreased with age (Fig. 3b, c). Of the increased miRNAs, miRLet-7f-5p [44], miRLet-7e-5p [45], miRLet-7c-5p [46], miR29a-3p [47], miR146b-5p [48], miRLet-7d-5p [49], miR338-3p [50], miR144-3p [51], miRLet-7j [52], miR449a-5p [53], miR30c-1-3p [54], miR147-3p [55], miR30c-2-3p [56], and miR1195 [57] have been attributed to a range of biological processes including cellular proliferation, cellular differentiation, and cellular signaling and communication. The miRNAs miR3074-1-3p, miR3095-3p, miR344b-3p, and miR3057-5p have no reported biological functions. For the decreased miRNAs, miR495-3p [58], miR140-3p [59], miR434-5p [60], miR322-3p [61], miR409-3p [62], miR674-3p [63], miR335-3p [61], miR543-3p [64], miR341-3p [65], miR202-5p [66], miR369-3p [67], miR330-3p [68], miR370-3p [69], miR335-5p [70], miR503-3p [71], and miR503-5p [72] have been reported that related to biological processes, and only miR299a-3p has no reported function. We verified the 18 increased miRNAs by qPCR, and Fig. 3d shows that the expression of 7 miRNAs (miRLet7c-5p, miR29a-3p, miR449a-5p, miR147-3p, miR30c-2-3p, miR3095-3p, and miR1195) was matched to the results of bioinformatics analysis.

Functional analysis of differentially expressed miRNAs in cochlear sEVs

The GO and KEGG pathway analyses of the highly expressed miRNAs at P3, P7, and P14 were performed with DIANA-mirPath v.3 (http://snf-515788.vm.okeanos.gnet.gr/) using the target genes in the Tarbase v7.0 database (http://www.microrna.gr/tarbase). These miRNAs in cochlear sEVs at different ages have different biological functions (Fig. 4). Notably, the GO analysis showed that these miRNAs are mainly involved in anatomical structure development, cell differentiation, developmental maturation, growth, cell cycle, and vesicle-mediated transport (Fig. 4a, c, e, and g). Fig. 4(b, d, f, and h) show that the highly expressed miRNAs at P3, P7, P14, P21 are involved in the mTOR, PI3K-Akt, TGF-β, Wnt, Hippo, Notch, and cGMP-PKG signaling pathways. These findings suggest that these pathways likely actively involved in the development of the cochlea and the formation of the auditory system. Among them Wnt, Notch, TGF-
β, and Hippo signaling have been implicated in progenitor cell proliferation and differentiation, as well as cell plane polarity during inner ear development [73, 74].

Label-free quantitative proteomics analysis of cochlear tissue-derived sEVs from mice of different ages

Considering that proteins in sEVs also play important roles as biomarkers and in multiple biological processes [75, 76], the protein contents of sEV sample from the cochleae of P3, P7, P14, and P21 mice was analyzed utilizing label-free quantitative proteomics. Each group included three biological replicates, and the samples clustered well with no outliers (Fig. 5a). A total of 5,231 proteins were identified, and 2,257 of these were present in all four groups (Fig. 5b). sEV marker proteins (Tsg101, CD63, CD9, CD81 and Flotillin-1) were also found among these proteins by mass spectrometry (Table 1). Fig. 5c shows the top 50 most-abundant proteins in the P3, P7, P14, and P21 sEV samples. In addition, we compared all identified proteins with the Exocarta and Vesiclepedia databases and found that 978 proteins overlapped with Exocarta and 115 proteins overlapped with Vesiclepedia (Fig. S2a). Fig. S2b shows that 8, 6, 8, and 7 proteins of the top 100 proteins in P3, P7, P14, and P21 cochlea-derived sEVs were reported among the top 100 proteins in the Exocarta and Vesiclepedia databases. These results suggest that many sEV proteins in the Exocarta and Vesiclepedia databases were also found in our sEV samples and that there were sEV proteins in our samples that were not in the EV databases and thus might be newly identified EV proteins in cochlear tissue-derived sEVs.

We performed quantitative analysis of cochlear sEV proteins, which showed that there were many differentially expressed proteins between the different age groups (Fig. S3), suggesting that the expression of many sEV proteins changes with the development of the cochlea. We found 3,120 proteins that are differentially expressed across the four age groups (Fig. 6a), and among them the expression level of 17 proteins increased with age (Fig. 6b), while the expression level of 124 proteins decreased with age (Fig. 6c). Most of these proteins are reported to be involved in neurodevelopmental process [77], cilia formation [78], ion homeostasis [79], cell proliferation and differentiation [80], and signaling [81]. These results suggest that the expression patterns of proteins in the cochlear tissue-derived sEVs are correlated with age and may play significant roles in the formation of the inner ear system.

Functional analysis of differentially expressed cochlear sEV proteins

We performed GO analysis to identified the biological processes, molecular functions, and cell membrane components of the differentially expressed proteins (Fig. 7a-c). For the enriched biological processes, GO annotations indicated that these proteins are involved in cell, development, ion, neuron, signal communication, and vesicle processes. We mapped the top 20 molecular functions and cell membrane components of these proteins, and this showed that these proteins are mostly involved in ion binding, catalytic activity, protein binding, and RNA binding. In addition, the cellular components analysis revealed that these proteins are mostly found in the cytoplasm, the endomembrane system, and the plasma membrane.
We next conducted KEGG pathway analysis of the differentially expressed proteins, which showed that these proteins are mostly involved in the neurotrophin, AMPK, mTOR, PI3K-Akt, and cGMP-PKG signaling pathways and in endocytosis (Fig. 7d). These results suggest that cochlear sEVs may act as mediators in intercellular communications. Finally, in order to analyze the interactions between differentially expressed sEV proteins, we created a STRING protein interaction network (Fig. 7e).

Discussion

sEVs are important mediators in cellular communication and signal transmission, and they also can be used as naturally occurring carriers for drugs and biomarkers in clinical trials. At present, most researchers extract sEVs from *in vitro* culture systems, and previous research on inner ear sEVs has also relied on *in vitro* culture systems [32, 82]. However, the *in vitro* culture environment cannot truly replicate the *in vivo* environment, and sEVs derived from inner ear tissues can more accurately depict sEV functions in the inner ear. Therefore, we extracted sEVs from cochlear tissue for the first time and studied the miRNA transcriptomes and proteomics of the cochlear tissue-derived sEVs. We found that typical sEVs could be isolated from the cochlea by ultracentrifugation, and we identified 561 miRNAs and 5,231 proteins in cochlear tissue-derived sEVs that are engaged in multiple biological functions including cellular communication, development, and vesicle production.

The cochlea is surrounded by the otic vesicle that gradually ossifies and becomes rigid as the mouse ages, especially after P10, and this makes it difficult to dissect the basilar membrane for extracting cochlear tissue-derived sEVs. Some recent studies have used enzyme digestion for the purpose of maintaining the integrity of the cells as much as possible in order to extract EVs from fat, brain, and tumor tissues [35, 83-86], while other studies have ground the tissues as a necessary step for extracting EVs [85, 87-89]. Crescitelli *et al.* showed that the digestive enzymes in the existing tissue extraction methods are ineffective for bone tissue, and the methods for this type of tissue need further optimization [90]. Considering the above factors, we improved the extraction method based on the scheme of Crewe *et al.* [35]. We used low-frequency grinding of the cochlear tissue to avoid breaking open the cells, and we increased the centrifugal force (12,000 × *g*) for removing large vesicles and for isolating sEVs. TEM and NTA showed that the cochlear tissue-derived sEVs we extracted had typical sEV shapes and sizes. The western blotting also showed that the typical sEV markers – CD63, CD9, and Tsg101 – could be detected in the sEV samples, while contaminating proteins Rab7 and EEA1 from other vesicles and the intracellular protein GAPDH were not detected, which further confirmed the integrity and relative purity of the sEVs extracted by our method.

One of the important contents of sEVs is nucleic acids, which include miRNAs, lncRNAs, tRNAs, mtDNAs, and ssDNA [91]. Among them, miRNAs are reported to have a role in numerous of biological processes including organ development and maturation and cell communication [92, 93]. In addition, miR-318 from mesenchymal stem cell-derived sEVs promotes chondrogenesis by suppressing TAO1 [43], and miR135a derived from epithelial exosomes accelerates the mesenchymal production of dentin matrix proteins via triggering the Wnt/β-catenin signaling pathway [36]. Therefore, small RNA-seq was
performed to characterize the miRNAs in cochlear tissue-derived sEVs and to elucidate their possible roles in the cochlea. We identified 561 miRNAs in cochlear sEVs, including 179 differentially expressed miRNA, and we found that the expression of 18 miRNAs increased and 17 miRNAs decreased as the mice aged. We used qPCR to verify the expression of miRNAs and found that 7 miRNAs (miRLet7c-5p, miR29a-3p, miR449a-5p, miR147-3p, miR30c-2-3p, miR3095-3p, and miR1195) were consistent with the RNA-seq analysis results. Overexpression of miRLet7c-5p can inhibit laryngeal squamous cell carcinoma cell proliferation and can regulate microglial activation during the repair of brain injury [46, 94], and upregulation of miR30c-2-3p suppresses gastric cancer and the proliferation of renal cell carcinomas [56, 95]. miR29a-3p, miR449a-5p, and miR147-3p have been reported to be accumulated in exosomes derived from oral squamous cells, macrophages, and bronchoalveolar lavage fluid [53, 55, 96, 97]. In addition, upregulation of miR29a-3p rescues bronchopulmonary dysplasia and has a negative regulatory effect on the Smad, NFκB, and canonical Wnt signaling pathways [98-100]. Importantly, miR29a-3p directly targets the Wnt-related genes DVL3 (Dishevelled 3), CSNK2A2 (casein kinase 2 alpha 2 polypeptide), FZD3 (Frizzled family receptor 3), and FZD5 (Frizzled family receptor 5) [100]. These 7 miRNAs, whose expression increases as mice age, may be involved in the development of the cochlea after birth and may act as new targets to be further studied in the future to elucidate the detailed mechanisms behind cochlear development.

We also performed GO and KEGG analysis on the highly expressed miRNAs. GO analysis showed that these miRNAs are important for growth, development, maturation, anatomical structure development, ion binding, cell differentiation, and cell proliferation, all of which are relevant to cochlear development events. The enriched miRNAs in the sEVs are involved in the Hippo, MAPK, Wnt, Notch, TGF-β, and PI3K-Akt signaling pathways, most of which were essential to the development of the cochlea and in regulating the pluripotency of stem cells. These results showed that miRNAs enriched in cochlear tissue-derived sEVs may be essential for cell communication during inner ear development.

Proteins are another major component of sEVs and play significant roles in cell communication, mediation of immune responses, and proliferation of cancer cells and as markers for disease diagnosis [101, 102]. We performed proteomics analysis of the cochlear tissue-derived sEV proteins and identified 5,231 proteins, including 3,120 differentially expressed proteins, in the four age groups. We also found the sEV marker proteins CD63, CD9, CD81, and Tsg101 in the proteomics data, which again verified the purity of our isolated cochlear sEVs. We identified 1,051 proteins in the cochlear sEVs that overlapped with proteins in the Vesiclepedia and Exocarta databases.

Among the differentially expressed sEV proteins, we found that the expression of 17 proteins increased and 124 proteins decreased as the mice aged. For the 17 increased proteins, Slc4a10, Fbxo2, and S100b are related to the process of neurodevelopment and in regulating the differentiation and excitability of neurons [103, 104], which suggests that these three proteins may be involved in the innervation of the cochlea that is required for hearing function. Fbxo2 is enriched in the inner ear and is a key regulator for age-related hearing loss [105]. Tlr3 is also presented in the inner ear and regulates immune responses [106, 107], and Tlr4 acts as a mediator in protecting HCs from damage by exosomes secreted
by SCs [32]. This suggests that Tlr3 might also have a protective role on inner ear’s development. In addition, Slc4a10 is important for maintaining ion homeostasis of inner ear, and the absence of Slc4a10 can lead to hearing loss [108, 109]. Among the proteins that decrease with age, Hnrnp [110], Ddx5 [111], Ilf3 [112], Lamtor5 [113], Psmd2 [114], Ddb1 [115], Psmd6 [116], and Chd4 [117] are reported to related to cell proliferation and differentiation. Ptbp1 [118], Chd4 [119], Ruvbl2 [120], Cul4a [121], and Lama4 [122] are required for early developmental processes and neuronal differentiation, and some proteins also presented in the inner ear, such as P3h1 [123], Sorcs2 [78], Panx3 [124, 125], Idh1 [126], Lamb1 [127]. P3h1 knockout mice showed dysplasia of middle ear bones and hearing impairment [123]. Sorcs2 regulates HC development by maintaining the shape of the cilia [78]. Idh1 is protein found in the cochlea and may play a role in age-related hearing loss act as an antioxidant [126, 128]. Panx3 is a pannexin channel protein and is mainly presented in the cochlear bone structure and is essential for the maintenance of cochlear morphology [124, 125], and the expression of Panx3 is regulated during development and reaches its peak at P8 [124]. According to previous reports, these cochlear sEV proteins may play important roles and may be used as new targets for the development of the cochlea in the future.

We conducted GO and KEGG analysis of the differentially expressed proteins. The GO analysis revealed that cochlear tissue-derived sEV proteins play a significant role in various biology processes such as Ras protein signal transduction, cell proliferation, cell differentiation, neuron differentiation, endocytosis, cellular ion homeostasis, nervous system development, and organ development and that these proteins are involved in many molecular functions, including ion binding, protein binding, and RNA binding. The cellular components analysis showed that sEVs can be secreted from the cell, cytoplasm, and endomembrane system. These proteins are invested in axon guidance, the synaptic vesicle cycle, the AMPK signaling pathway, the mTOR signaling pathway, the PI3K-Akt signaling pathway, and endocytosis, according to the KEGG pathway analysis. Synapses on HCs are connected to spiral neurons for transmitting signals to the brain, and this activity is essential for hearing function [8, 129, 130]. In addition, these pathways have also been reported to be critical for the biological functions of the inner ear. Down-regulating the AMPK signaling pathway can reduce noise-induced damage to HCs and can prevent the age-related hearing loss [131, 132]. The mTOR signaling pathway is involved in reprogramming Myc/NICD to promote HC regeneration [15], and age-related hearing loss and HC damage can be relieved by inhibiting the mTOR signaling pathway [133, 134]. Balancing the AMPK and mTOR signaling pathways can further protect HCs from damage by ototoxic drugs [135]. We also created a STRING protein-interaction network investigating the interactions between differentially expressed sEV proteins, and this showed that sEV proteins involved in vesicles, development, neurons, signal communication, cellular processes, and ion homeostasis have close interactions with each other and with other differentially expressed cochlear sEV proteins. These results indicate that sEV may be critical for the development of the cochlear nervous system, as well as for the protection and regeneration of HCs during development.

In summary, we isolated cochlear tissue-derived sEVs from mice of different ages after birth by ultracentrifugation and characterized the microRNA transcriptomes and proteomics of these sEVs to
elucidate their possible roles. We found 561 miRNAs and 5,231 proteins in the cochlear sEVs, and among them 179 miRNAs and 3,120 proteins were differentially expressed at different ages. We further analyzed these differentially expressed miRNA and proteins and found that the expression of many miRNAs and proteins may be relevant to the maturation of HCs, to changes in SCs characteristics, to neural development, and to the protection of HCs from P3 to P21. These miRNAs and proteins might be used as new targets for further studying the detailed mechanism of cochlear development after birth. Based on our results, we speculate that sEVs play a regulatory role in the maturation of HCs, HC regeneration from inner ear stem cells, and neural development during the development of the inner ear after birth, and this should be further confirmed in future studies.

Declarations

Ethics approval and consent to participate

All studies of animal followed the authorized guidelines of Southeast University's Animal Care and Use Committee and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The amount of animals was kept to a minimum, and all efforts were made to reduce their suffering.

Consent for publication

Not applicable.

Availability of data and material

All the data analyzed by this research is included in this article and its supplementary files.

Competing interests

The authors declare that they have no conflict of interest.

Funding

This work was supported by grants from the National Key RD Program of China (No. 2017YFA0103903), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA16010303), the National Natural Science Foundation of China (Nos. 81970892, 81970882, 81870721, 81900944, and 81700913), the Natural Science Foundation of Jiangsu Province (Nos. BK20190062 and BE2019711), the Shenzhen Fundamental Research Program (No. JCYJ20190814093401920), the Jiangsu Provincial Medical Youth Talent of the Project of Invigorating Health Care through Science, Technology and Education (No. QNRC2016002), and the Fundamental Research Funds for the Central Universities for the Support Program of Zhishan Youth Scholars of Southeast University (No. 2242021R41136).

Author contributions
RC, SZ, and WAT designed the experiments. PJ, JA, LW, YZ, HX, and MT isolated and characterized the cochlear sEVs. XM performed the miRNA analysis. SH and LM performed the proteomics analysis. PJ and SZ analyzed all data and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments

Thanks to all colleagues who contributed to this research.

References

1. Wright, T.J., E.P. Hatch, H. Karabagli, P. Karabagli, G.C. Schoenwolf, and S.L. Mansour, Expression of mouse fibroblast growth factor and fibroblast growth factor receptor genes during early inner ear development. Dev Dyn, 2003. 228(2): p. 267-72.

2. LeMasurier, M. and P.G. Gillespie, Hair-cell mechanotransduction and cochlear amplification. Neuron, 2005. 48(3): p. 403-15.

3. Atkinson, P.J., E. Huarcaya Najarro, Z.N. Sayyid, and A.G. Cheng, Sensory hair cell development and regeneration: similarities and differences. Development, 2015. 142(9): p. 1561-71.

4. Burns, J.C., B.C. Cox, B.R. Thiede, J. Zuo, and J.T. Corwin, In vivo proliferative regeneration of balance hair cells in newborn mice. J Neurosci, 2012. 32(19): p. 6570-7.

5. Raft, S., E.J. Koundakjian, H. Quinones, C.S. Jayasena, L.V. Goodrich, J.E. Johnson, N. Segil, and A.K. Groves, Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development, 2007. 134(24): p. 4405-15.

6. Goutman, J.D., A.B. Elgoyhen, and M.E. Gómez-Casati, Cochlear hair cells: The sound-sensing machines. FEBS Lett, 2015. 589(22): p. 3354-61.

7. Kim, K.X. and R. Fettiplace, Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. J Gen Physiol, 2013. 141(1): p. 141-8.

8. Fettiplace, R., Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol, 2017. 7(4): p. 1197-1227.

9. Huang, L.C., P.R. Thorne, G.D. Housley, and J.M. Montgomery, Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development, 2007. 134(16): p. 2925-33.

10. Fettiplace, R. and K.X. Kim, The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev, 2014. 94(3): p. 951-86.
11. D, Ó.M. and A.J. Ricci, *A Bundle of Mechanisms: Inner-Ear Hair-Cell Mechanotransduction*. Trends Neurosci, 2019. 42(3): p. 221-236.

12. Sun, S., T. Babola, G. Pregernig, K.S. So, M. Nguyen, S.M. Su, A.T. Palermo, D.E. Bergles, J.C. Burns, and U. Müller, *Hair Cell Mechanotransduction Regulates Spontaneous Activity and Spiral Ganglion Subtype Specification in the Auditory System*. Cell, 2018. 174(5): p. 1247-1263.e15.

13. Samarajeewa, A., D.R. Lenz, L. Xie, H. Chiang, R. Kirchner, J.F. Mulvaney, A.S.B. Edge, and A. Dabdoub, *Transcriptional response to Wnt activation regulates the regenerative capacity of the mammalian cochlea*. Development, 2018. 145(23).

14. Wang, T., R. Chai, G.S. Kim, N. Pham, L. Jansson, D.H. Nguyen, B. Kuo, L.A. May, J. Zuo, L.L. Cunningham, and A.G. Cheng, *Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle*. Nat Commun, 2015. 6: p. 6613.

15. Shu, Y., W. Li, M. Huang, Y.-Z. Quan, D. Scheffer, C. Tian, Y. Tao, X. Liu, K. Hochedlinger, A.A. Indzhykulian, Z. Wang, H. Li, and Z.-Y. Chen, *Renewed proliferation in adult mouse cochlea and regeneration of hair cells*. Nature communications, 2019. 10(1): p. 5530-5530.

16. Kelley, M.W., *Regulation of cell fate in the sensory epithelia of the inner ear*. Nat Rev Neurosci, 2006. 7(11): p. 837-49.

17. Wu, J., W. Li, C. Lin, Y. Chen, C. Cheng, S. Sun, M. Tang, R. Chai, and H. Li, *Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles*. Sci Rep, 2016. 6: p. 29418.

18. Kiernan, A.E., *Notch signaling during cell fate determination in the inner ear*. Semin Cell Dev Biol, 2013. 24(5): p. 470-9.

19. Jiang, D., J. Du, X. Zhang, W. Zhou, L. Zong, C. Dong, K. Chen, Y. Chen, X. Chen, and H. Jiang, *miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells*. Int J Mol Med, 2016. 38(5): p. 1367-1376.

20. Li, H., W. Kloosterman, and D.M. Fekete, *MicroRNA-183 family members regulate sensorineural fates in the inner ear*. J Neurosci, 2010. 30(9): p. 3254-63.

21. Borghesan, M., J. Fafíán-Labora, O. Eleftheriadou, P. Carpintero-Fernández, M. Paez-Ribes, G. Vizcay-Barrena, A. Swisa, D. Kolodkin-Gal, P. Ximénez-Embún, R. Lowe, B. Martín-Martín, H. Peinado, J. Muñoz, R.A. Fleck, Y. Dor, I. Ben-Porath, A. Vossenkamper, D. Muñoz-Espin, and A. O’Loghlen, *Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3*. Cell Rep, 2019. 27(13): p. 3956-3971.e6.

22. Wang, C., V. Börger, M. Sardari, F. Murke, J. Skuljec, R. Pul, N. Hagemann, E. Dzyubenko, R. Dittrich, J. Gregorius, M. Hasenberg, C. Kleinschnitz, A. Popa-Wagner, T.R. Doeppner, M. Gunzer, B. Giebel,
and D.M. Hermann, *Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Induce Ischemic Neuroprotection by Modulating Leukocytes and Specifically Neutrophils*. Stroke, 2020. **51**(6): p. 1825-1834.

23. Loyer, X., I. Zlatanova, C. Devue, M. Yin, K.Y. Howangyin, P. Klaihmon, C.L. Guerin, M. Kheloufi, J. Vilar, K. Zannis, B.K. Fleischmann, D.W. Hwang, J. Park, H. Lee, P. Menasché, J.S. Silvestre, and C.M. Boulanger, *Intra-Cardiac Release of Extracellular Vesicles Shapes Inflammation Following Myocardial Infarction*. Circ Res, 2018. **123**(1): p. 100-106.

24. Pegtel, D.M. and S.J. Gould, *Exosomes*. Annu Rev Biochem, 2019. **88**: p. 487-514.

25. Cocucci, E. and J. Meldolesi, *Ectosomes and exosomes: shedding the confusion between extracellular vesicles*. Trends Cell Biol, 2015. **25**(6): p. 364-72.

26. Chen, I.H., L. Xue, C.C. Hsu, J.S. Paez, L. Pan, H. Andaluz, M.K. Wendt, A.B. Iliuk, J.K. Zhu, and W.A. Tao, *Phosphoproteins in extracellular vesicles as candidate markers for breast cancer*. Proc Natl Acad Sci U S A, 2017. **114**(12): p. 3175-3180.

27. Zhang, Z., T. Xing, Y. Chen, and J. Xiao, *Exosome-mediated miR-200b promotes colorectal cancer proliferation upon TGF-β1 exposure*. Biomed Pharmacother, 2018. **106**: p. 1135-1143.

28. Liao, F.L., L. Tan, H. Liu, J.J. Wang, X.T. Ma, B. Zhao, Y. Chen, J. Bihl, Y. Yang, and R.L. Chen, *Hematopoietic stem cell-derived exosomes promote hematopoietic differentiation of mouse embryonic stem cells in vitro via inhibiting the miR126/Notch1 pathway*. Acta Pharmacol Sin, 2018. **39**(4): p. 552-560.

29. Guo, L., Y. Zhu, L. Li, S. Zhou, G. Yin, G. Yu, and H. Cui, *Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1*. Cancer Med, 2019. **8**(12): p. 5687-5701.

30. Sharma, P., L. Schiapparelli, and H.T. Cline, *Exosomes function in cell-cell communication during brain circuit development*. Curr Opin Neurobiol, 2013. **23**(6): p. 997-1004.

31. McGough, I.J. and J.P. Vincent, *Exosomes in developmental signalling*. Development, 2016. **143**(14): p. 2482-93.

32. Breglio, A.M., L.A. May, M. Barzik, N.C. Welsh, S.P. Francis, T.Q. Costain, L. Wang, D.E. Anderson, R.S. Petralia, Y.X. Wang, T.B. Friedman, M.J. Wood, and L.L. Cunningham, *Exosomes mediate sensory hair cell protection in the inner ear*. J Clin Invest, 2020. **130**(5): p. 2657-2672.

33. Men, Y., J. Yelick, S. Jin, Y. Tian, M.S.R. Chiang, H. Higashimori, E. Brown, R. Jarvis, and Y. Yang, *Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS*. Nat Commun, 2019. **10**(1): p. 4136.
34. Lai, R., C. Cai, W. Wu, P. Hu, and Q. Wang, *Exosomes derived from mouse inner ear stem cells attenuate gentamicin-induced ototoxicity in vitro through the miR-182-5p/FOXO3 axis*. J Tissue Eng Regen Med, 2020. 14(8): p. 1149-1156.

35. Crewe, C., N. Joffin, J.M. Rutkowski, M. Kim, F. Zhang, D.A. Towler, R. Gordillo, and P.E. Scherer, *An Endothelial-to-Adipocyte Extracellular Vesicle Axis Governed by Metabolic State*. Cell, 2018. 175(3): p. 695-708.e13.

36. Jiang, N., L. Xiang, L. He, G. Yang, J. Zheng, C. Wang, Y. Zhang, S. Wang, Y. Zhou, T.-J. Sheu, J. Wu, K. Chen, P.G. Coelho, N.M. Tovar, S.H. Kim, M. Chen, Y.-H. Zhou, and J.J. Mao, *Exosomes Mediate Epithelium-Mesenchyme Crosstalk in Organ Development*. ACS nano, 2017. 11(8): p. 7736-7746.

37. Zhang, S., Y. Zhang, Y. Dong, L. Guo, Z. Zhang, B. Shao, J. Qi, H. Zhou, W. Zhu, X. Yan, G. Hong, L. Zhang, X. Zhang, M. Tang, C. Zhao, X. Gao, and R. Chai, *Knockdown of Foxg1 in supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse cochlea*. Cell Mol Life Sci, 2020. 77(7): p. 1401-1419.

38. Vlachos, I.S., M.D. Paraskevopoulou, D. Karagkouni, G. Georgakilas, T. Vergoulis, I. Kanellos, I.L. Anastasopoulos, S. Maniou, K. Karathanou, D. Kalfakakou, A. Fevgas, T. Dalamagas, and A.G. Hatzigeorgiou, *DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions*. Nucleic Acids Res, 2015. 43(Database issue): p. D153-9.

39. Vlachos, I.S., K. Zagganas, M.D. Paraskevopoulou, G. Georgakilas, D. Karagkouni, T. Vergoulis, T. Dalamagas, and A.G. Hatzigeorgiou, *DIANA-miRPath v3.0: deciphering microRNA function with experimental support*. Nucleic Acids Res, 2015. 43(W1): p. W460-6.

40. Sun, J., S. Han, L. Ma, H. Zhang, Z. Zhan, H.A. Aguilar, H. Zhang, K. Xiao, Y. Gu, Z. Gu, and W.A. Tao, *Synergistically Bifunctional Paramagnetic Separation Enables Efficient Isolation of Urine Extracellular Vesicles and Downstream Phosphoproteomic Analysis*. ACS Appl Mater Interfaces, 2021. 13(3): p. 3622-3630.

41. Jiang, N., L. Xiang, L. He, G. Yang, J. Zheng, C. Wang, Y. Zhang, S. Wang, Y. Zhou, T.J. Sheu, J. Wu, K. Chen, P.G. Coelho, N.M. Tovar, S.H. Kim, M. Chen, Y.H. Zhou, and J.J. Mao, *Exosomes Mediate Epithelium-Mesenchyme Crosstalk in Organ Development*. ACS Nano, 2017. 11(8): p. 7736-7746.

42. Zhang, Y., C. Li, Y. Qin, P. Cepparulo, M. Millman, M. Chopp, A. Kemper, A. Szalad, X. Lu, L. Wang, and Z.G. Zhang, *Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer*. J Extracell Vesicles, 2021. 10(5): p. e12073.

43. Jing, H., X. Zhang, K. Luo, Q. Luo, M. Yin, W. Wang, Z. Zhu, J. Zheng, and X. He, *miR-381-abundant small extracellular vesicles derived from kartogenin-preconditioned mesenchymal stem cells promote chondrogenesis of MSCs by targeting TAO1*. Biomaterials, 2020. 231: p. 119682.
44. Chen, G., H. Gu, T. Fang, K. Zhou, J. Xu, and X. Yin, *Hypoxia-induced let-7f-5p/TARBP2 feedback loop regulates osteosarcoma cell proliferation and invasion by inhibiting the Wnt signaling pathway*. Aging (Albany NY), 2020. **12**(8): p. 6891-6903.

45. Handgraaf, S., R. Dusaulcy, F. Visentin, J. Philippe, and Y. Gosmain, *Let-7e-5p Regulates GLP-1 Content and Basal Release From Enteroendocrine L Cells From DIO Male Mice*. Endocrinology, 2020. **161**(2).

46. Wu, Y., Y. Zhang, X. Zheng, F. Dai, Y. Lu, L. Dai, M. Niu, H. Guo, W. Li, X. Xue, Y. Bo, Y. Guo, J. Qin, Y. Qin, H. Liu, Y. Zhang, T. Yang, L. Li, L. Zhang, R. Hou, S. Wen, C. An, H. Li, W. Xu, and W. Gao, *Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let-7c-5p/PBX3 axis*. Mol Cancer, 2020. **19**(1): p. 99.

47. Qu, F., B. Zhu, Y.L. Hu, Q.S. Mao, and Y. Feng, *LncRNA HOXA-AS3 promotes gastric cancer progression by regulating miR-29a-3p/LTβR and activating NF-κB signaling*. Cancer Cell Int, 2021. **21**(1): p. 118.

48. Tu, Z., J. Xiong, R. Xiao, L. Shao, X. Yang, L. Zhou, W. Yuan, M. Wang, Q. Yin, Y. Wu, S. Pan, J. Leng, D. Jiang, C. He, and Q. Zhang, *Loss of miR-146b-5p promotes T cell acute lymphoblastic leukemia migration and invasion via the IL-17A pathway*. J Cell Biochem, 2019. **120**(4): p. 5936-5948.

49. Suzuki, A., H. Yoshioka, D. Summakia, N.G. Desai, G. Jun, P. Jia, D.S. Loose, K. Ogata, M.V. Gajera, Z. Zhao, and J. Iwata, *MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse*. BMC Genomics, 2019. **20**(1): p. 852.

50. Zhang, R., H. Shi, F. Ren, W. Feng, Y. Cao, G. Li, Z. Liu, P. Ji, and M. Zhang, *MicroRNA-338-3p suppresses ovarian cancer cells growth and metastasis: implication of Wnt/catenin beta and MEK/ERK signaling pathways*. J Exp Clin Cancer Res, 2019. **38**(1): p. 494.

51. Hou, G., J. Yang, J. Tang, and Y. He, *LncRNA GAS6-AS2 promotes non-small-cell lung cancer cell proliferation via regulating miR-144-3p/ MAPK6 axis*. Cell Cycle, 2021. **20**(2): p. 179-193.

52. Zhang, J., N. Wang, and A. Xu, *miR-10b-3p, miR-8112 and let-7j as potential biomarkers for autoimmune inner ear diseases*. Mol Med Rep, 2019. **20**(1): p. 171-181.

53. Ni, Z., L. Kuang, H. Chen, Y. Xie, B. Zhang, J. Ouyang, J. Wu, S. Zhou, L. Chen, N. Su, Q. Tan, X. Luo, B. Chen, S. Chen, L. Yin, H. Huang, X. Du, and L. Chen, *The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis*. Cell Death Dis, 2019. **10**(7): p. 522.

54. Zhang, L.S., Y.D. Zhou, Y.Q. Peng, H.L. Zeng, S. Yoshida, and T.T. Zhao, *Identification of altered microRNAs in retinas of mice with oxygen-induced retinopathy*. Int J Ophthalmol, 2019. **12**(5): p. 739-745.
55. Tang, B., Y. Wu, H. Fang, Y. Wu, and K. Shi, *Small RNA Sequencing Reveals Exosomal miRNAs Involved in the Treatment of Asthma by Scorpio and Centipede*. Biomed Res Int, 2020. **2020**: p. 1061407.

56. Tang, C.T., Q. Liang, L. Yang, X.L. Lin, S. Wu, Y. Chen, X.T. Zhang, Y.J. Gao, and Z.Z. Ge, *RAB31 Targeted by MiR-30c-2-3p Regulates the GLI1 Signaling Pathway, Affecting Gastric Cancer Cell Proliferation and Apoptosis*. Front Oncol, 2018. **8**: p. 554.

57. Tagne, J.B., O.R. Mohtar, J.D. Campbell, M. Lakshminarayanan, J. Huang, A.C. Hinds, J. Lu, and M.I. Ramirez, *Transcription factor and microRNA interactions in lung cells: an inhibitory link between NK2 homeobox 1, miR-200c and the developmental and oncogenic factors Nfib and Myb*. Respir Res, 2015. **16**(1): p. 22.

58. Xia, Y., Y. Zhou, H. Han, P. Li, W. Wei, and N. Lin, *IncRNA NEAT1 facilitates melanoma cell proliferation, migration, and invasion via regulating miR-495-3p and E2F3*. J Cell Physiol, 2019. **234**(11): p. 19592-19601.

59. Dou, D., X. Ren, M. Han, X. Xu, X. Ge, Y. Gu, X. Wang, and S. Zhao, *Circ_0008039 supports breast cancer cell proliferation, migration, invasion, and glycolysis by regulating the miR-140-3p/SKA2 axis*. Mol Oncol, 2021. **15**(2): p. 697-709.

60. Qiu, W.I., H.B. Chen, Z.Q. Jiang, and H.G. Zhou, *[Effect of Xiaoai Jiedu Recipe on miRNA Expression Profiles in H Tumor-bearing Mice]*. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2016. **36**(9): p. 1112-1118.

61. Meyer, S.U., S. Sass, N.S. Mueller, S. Krebs, S. Bauersachs, S. Kaiser, H. Blum, C. Thirion, S. Krause, F.J. Theis, and M.W. Pfaffl, *Integrative Analysis of MicroRNA and mRNA Data Reveals an Orchestrated Function of MicroRNAs in Skeletal Myocyte Differentiation in Response to TNF-α or IGF1*. PLoS One, 2015. **10**(8): p. e0135284.

62. Liu, X., F. Zhou, Y. Yang, W. Wang, L. Niu, D. Zuo, X. Li, H. Hua, B. Zhang, Y. Kou, J. Guo, F. Kong, W. Pan, D. Gao, J.M. Meves, H. Sun, M. Xue, Q. Zhang, Y. Wang, and R. Tang, *MiR-409-3p and MiR-1896 co-operatively participate in IL-17-induced inflammatory cytokine production in astrocytes and pathogenesis of EAE mice via targeting SOCS3/STAT3 signaling*. Glia, 2019. **67**(1): p. 101-112.

63. Eom, T.Y., S.B. Han, J. Kim, J.A. Blundon, Y.D. Wang, J. Yu, K. Anderson, D.B. Kaminski, S.M. Sakurada, S.M. Pruett-Miller, L. Horner, B. Wagner, C.G. Robinson, M. Eicholtz, D.C. Rose, and S.S. Zakharenko, *Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice*. Nat Commun, 2020. **11**(1): p. 912.

64. Wu, X., X. Meng, F. Tan, Z. Jiao, X. Zhang, H. Tong, X. He, X. Luo, P. Xu, and S. Qu, *Regulatory Mechanism of miR-543-3p on GLT-1 in a Mouse Model of Parkinson's Disease*. ACS Chem Neurosci, 2019. **10**(3): p. 1791-1800.
65. Gässler, A., C. Quiclet, O. Kluth, P. Gottmann, K. Schwerbel, A. Helms, M. Stadion, I. Wilhelmi, W. Jonas, M. Ouni, F. Mayer, J. Spranger, A. Schürmann, and H. Vogel, **Overexpression of Gjb4 impairs cell proliferation and insulin secretion in primary islet cells.** Mol Metab, 2020. **41**(41): p. 101042.

66. Liu, T., J. Guo, and X. Zhang, **MiR-202-5p/PTEN mediates doxorubicin-resistance of breast cancer cells via PI3K/Akt signaling pathway.** Cancer Biol Ther, 2019. **20**(7): p. 989-998.

67. Galleggiante, V., S. De Santis, M. Liso, G. Verna, E. Sommella, M. Mastronardi, P. Campiglia, M. Chieppa, and G. Serino, **Quercetin-Induced miR-369-3p Suppresses Chronic Inflammatory Response Targeting C/EBP-β.** Mol Nutr Food Res, 2019. **63**(19): p. e1801390.

68. Li, Q., W. Wang, M. Zhang, W. Sun, W. Shi, and F. Li, **Circular RNA circ-0016068 Promotes the Growth, Migration, and Invasion of Prostate Cancer Cells by Regulating the miR-330-3p/BMI-1 Axis as a Competing Endogenous RNA.** Front Cell Dev Biol, 2020. **8**: p. 827.

69. Gao, X., D. Xu, S. Li, Z. Wei, S. Li, W. Cai, N. Mao, F. Jin, Y. Li, X. Yi, H. Liu, H. Xu, and F. Yang, **Pulmonary Silicosis Alters MicroRNA Expression in Rat Lung and miR-411-3p Exerts Anti-fibrotic Effects by Inhibiting MRTF-A/SRF Signaling.** Mol Ther Nucleic Acids, 2020. **20**: p. 851-865.

70. Gu, X., X. Yao, and D. Liu, **Up-regulation of microRNA-335-5p reduces inflammation via negative regulation of the TPX2-mediated AKT/GSK3β signaling pathway in a chronic rhinosinusitis mouse model.** Cell Signal, 2020. **70**: p. 109596.

71. Kim, K.S., J.I. Park, N. Oh, H.J. Cho, J.H. Park, and K.S. Park, **ELK3 expressed in lymphatic endothelial cells promotes breast cancer progression and metastasis through exosomal miRNAs.** Sci Rep, 2019. **9**(1): p. 8418.

72. Jee, Y.H., J. Wang, S. Yue, M. Jennings, S.J. Clokie, O. Nilsson, J.C. Lui, and J. Baron, **mir-374-5p, mir-379-5p, and mir-503-5p Regulate Proliferation and Hypertrophic Differentiation of Growth Plate Chondrocytes in Male Rats.** Endocrinology, 2018. **159**(3): p. 1469-1478.

73. Munnamalai, V. and D.M. Fekete, **Wnt signaling during cochlear development.** Seminars in cell & developmental biology, 2013. **24**(5): p. 480-489.

74. Riccomagno, M.M., S. Takada, and D.J. Epstein, **Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh.** Genes Dev, 2005. **19**(13): p. 1612-23.

75. Eguchi, T., C. Sogawa, K. Ono, M. Matsumoto, M.T. Tran, Y. Okusha, B.J. Lang, K. Okamoto, and S.K. Calderwood, **Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells.** Cells, 2020. **9**(3).

76. Štok, U., E. Blokar, M. Lenassi, M. Holcar, M. Frank-Bertoncelj, A. Erman, N. Resnik, S. Sodin-Šemrl, S. Čučnik, K.P. Pirkmajer, A. Ambrožič, and P. Žigon, **Characterization of Plasma-Derived Small
Extracellular Vesicles Indicates Ongoing Endothelial and Platelet Activation in Patients with Thrombotic Antiphospholipid Syndrome. Cells, 2020. 9(5).

77. Bachmann, C., H. Nguyen, J. Rosenbusch, L. Pham, T. Rabe, M. Patwa, G. Sokpor, R.H. Seong, R. Ashery-Padan, A. Mansouri, A. Stoykova, J.F. Staiger, and T. Tuoc, mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium. PLoS Genet, 2016. 12(9): p. e1006274.

78. Forge, A., R.R. Taylor, S.J. Dawson, M. Lovett, and D.J. Jagger, Disruption of SorCS2 reveals differences in the regulation of stereociliary bundle formation between hair cell types in the inner ear. PLoS Genet, 2017. 13(3): p. e1006692.

79. Damkier, H.H., C. Aalkjaer, and J. Praetorius, Na+-dependent HCO3- import by the slc4a10 gene product involves Cl- export. J Biol Chem, 2010. 285(35): p. 26998-7007.

80. Mamidi, M.K., W.E. Samsa, L.A. Bashur, Y. Chen, R. Chan, B. Lee, and G. Zhou, The transcriptional cofactor Jab1/Cops5 is crucial for BMP-mediated mouse chondrocyte differentiation by repressing p53 activity. J Cell Physiol, 2021.

81. Park, J., J.W. Seo, N. Ahn, S. Park, J. Hwang, and J.W. Nam, UPF1/SMG7-dependent microRNA-mediated gene regulation. Nat Commun, 2019. 10(1): p. 4181.

82. Wong, E.H.C., Y.Y. Dong, M. Coray, M. Cortada, S. Levano, A. Schmidt, Y. Brand, D. Bodmer, and L. Muller, Inner ear exosomes and their potential use as biomarkers. PLoS One, 2018. 13(6): p. e0198029.

83. Crescitelli, R., C. Lässer, S.C. Jang, A. Cvjetkovic, C. Malmhäll, N. Karimi, J.L. Höög, I. Johansson, J. Fuchs, A. Thorsell, Y.S. Gho, R. Olofsson Bagge, and J. Lötvall, Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation. Journal of extracellular vesicles, 2020. 9(1): p. 1722433-1722433.

84. Huang, Y., L. Cheng, A. Turchinovich, V. Mahairaki, J.C. Troncoso, O. Pletniková, N.J. Haughey, L.J. Vella, A.F. Hill, L. Zheng, and K.W. Witwer, Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles. Journal of extracellular vesicles, 2020. 9(1): p. 1785746-1785746.

85. Vella, L.J., B.J. Scicluna, L. Cheng, E.G. Bawden, C.L. Masters, C.S. Ang, N. Willamson, C. McLean, K.J. Barnham, and A.F. Hill, A rigorous method to enrich for exosomes from brain tissue. J Extracellular Vesicles, 2017. 6(1): p. 1348885.

86. Muraoka, S., A.M. DeLeo, M.K. Sethi, K. Yukawa-Takamatsu, Z. Yang, J. Ko, J.D. Hogan, Z. Ruan, Y. You, Y. Wang, M. Medalla, S. Ikezu, M. Chen, W. Xia, S. Gorantla, H.E. Gendelman, D. Issadore, J. Zaia, and T. Ikezu, Proteomic and biological profiling of extracellular vesicles from Alzheimer's disease human brain tissues. Alzheimers Dement, 2020. 16(6): p. 896-907.
87. Gallart-Palau, X., A. Serra, and S.K. Sze, *Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR*. Mol Neurodegener, 2016. **11**(1): p. 41.

88. Perez-Gonzalez, R., S.A. Gauthier, A. Kumar, and E. Levy, *The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space*. J Biol Chem, 2012. **287**(51): p. 43108-15.

89. Wan, S., S. Wang, L. Weng, G. Zhang, Z. Lin, X. Fei, F. Zhang, F. Yang, J. Wang, and Z. Cai, *CD8a(+)CD11c(+) Extracellular Vesicles in the Lungs Control Immune Homeostasis of the Respiratory Tract via TGF-β1 and IL-10*. J Immunol, 2018. **200**(5): p. 1651-1660.

90. Crescitelli, R., C. Lässer, and J. Lötvall, *Isolation and characterization of extracellular vesicle subpopulations from tissues*. Nat Protoc, 2021. **16**(3): p. 1548-1580.

91. Kalluri, R. and V.S. LeBleu, *The biology, function, and biomedical applications of exosomes*. Science, 2020. **367**(6478).

92. Mensà, E., M. Guescini, A. Giuliani, M.G. Bacalini, D. Ramini, G. Corleone, M. Ferracin, G. Fulgenzi, L. Graciotti, F. Prattichizzo, L. Sorci, M. Battistelli, V. Monsurrò, A.R. Bonfigli, M. Cardelli, R. Recchioni, F. Marcheselli, S. Latini, S. Maggio, M. Fanelli, S. Amatori, G. Storci, A. Ceriello, V. Stocchi, M. De Luca, L. Magnani, M.R. Rippo, A.D. Procopio, C. Sala, I. Budimir, C. Bassi, M. Negrini, P. Garagnani, C. Franceschi, J. Sabatinelli, M. Bonafè, and F. Olivieri, *Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells*. J Extracell Vesicles, 2020. **9**(1): p. 1725285.

93. Zhang, H., J. Huang, J. Liu, Y. Li, and Y. Gao, *BMMSC-sEV-derived miR-328a-3p promotes ECM remodeling of damaged urethral sphincters via the Sirt7/TGFβ signaling pathway*. Stem Cell Res Ther, 2020. **11**(1): p. 286.

94. Lv, J., Y. Zeng, Y. Qian, J. Dong, Z. Zhang, and J. Zhang, *MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation*. Brain Res, 2018. **1685**: p. 91-104.

95. Mathew, L.K., S.S. Lee, N. Skuli, S. Rao, B. Keith, K.L. Nathanson, P. Lal, and M.C. Simon, *Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2α activity*. Cancer Discov, 2014. **4**(1): p. 53-60.

96. Cai, J., B. Qiao, N. Gao, N. Lin, and W. He, *Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p*. Am J Physiol Cell Physiol, 2019. **316**(5): p. C731-c740.

97. Zhou, J., X. Li, X. Wu, T. Zhang, Q. Zhu, X. Wang, H. Wang, K. Wang, Y. Lin, and X. Wang, *Exosomes Released from Tumor-Associated Macrophages Transfer miRNAs That Induce a Treg/Th17 Cell Imbalance in Epithelial Ovarian Cancer*. Cancer Immunol Res, 2018. **6**(12): p. 1578-1592.
98. Zhong, Q., L. Wang, Z. Qi, J. Cao, K. Liang, C. Zhang, and J. Duan, *Long Non-coding RNA TUG1 Modulates Expression of Elastin to Relieve Bronchopulmonary Dysplasia via Sponging miR-29a-3p*. Front Pediatr, 2020. **8**: p. 573099.

99. Song, Q., H. Zhang, J. He, H. Kong, R. Tao, Y. Huang, H. Yu, Z. Zhang, Z. Huang, L. Wei, C. Liu, L. Wang, Q. Ning, and J. Huang, *Long non-coding RNA LINC00473 acts as a microRNA-29a-3p sponge to promote hepatocellular carcinoma development by activating Robo1-dependent PI3K/AKT/mTOR signaling pathway*. Ther Adv Med Oncol, 2020. **12**: p. 175883920937890.

100. Le, L.T., T.E. Swingler, N. Crowe, T.L. Vincent, M.J. Barter, S.T. Donell, A.M. Delany, T. Dalmay, D.A. Young, and I.M. Clark, *The microRNA-29 family in cartilage homeostasis and osteoarthritis*. J Mol Med (Berl), 2016. **94**(5): p. 583-96.

101. Servage, K.A., K. Stefanius, H.F. Gray, and K. Orth, *Proteomic Profiling of Small Extracellular Vesicles Secreted by Human Pancreatic Cancer Cells Implicated in Cellular Transformation*. Sci Rep, 2020. **10**(1): p. 7713.

102. Vinik, Y., F.G. Ortega, G.B. Mills, Y. Lu, M. Jurkowicz, S. Halperin, M. Aharoni, M. Gutman, and S. Lev, *Proteomic analysis of circulating extracellular vesicles identifies potential markers of breast cancer progression, recurrence, and response*. Sci Adv, 2020. **6**(40).

103. Sinning, A., L. Liebmann, and C.A. Hübner, *Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity*. Front Cell Neurosci, 2015. **9**: p. 223.

104. Atkin, G., S. Moore, Y. Lu, R.F. Nelson, N. Tipper, G. Rajpal, J. Hunt, W. Tennant, J.W. Hell, G.G. Murphy, and H. Paulson, *Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity*. J Neurosci, 2015. **35**(15): p. 6165-78.

105. Nelson, R.F., K.A. Glenn, Y. Zhang, H. Wen, T. Knutson, C.M. Gouvion, B.K. Robinson, Z. Zhou, B. Yang, R.J. Smith, and H.L. Paulson, *Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit*. J Neurosci, 2007. **27**(19): p. 5163-71.

106. Yamada, T., K. Ogi, M. Sakashita, M. Kanno, S. Kubo, Y. Ito, Y. Imoto, T. Tokunaga, M. Okamoto, N. Narita, and S. Fujieda, *Toll-like receptor ligands induce cytokine and chemokine production in human inner ear endolymphatic sac fibroblasts*. Auris Nasus Larynx, 2017. **44**(4): p. 398-403.

107. Gollmann-Tepeköylü, C., F. Nägele, M. Graber, L. Pözl, D. Lobenwein, J. Hirsch, A. An, R. Irschick, B. Röhrs, C. Kremser, H. Hackl, R. Huber, S. Venezia, D. Hercher, H. Fritsch, N. Bonaros, N. Stefanova, I. Tancevski, D. Meyer, M. Grimm, and J. Holfeld, *Shock waves promote spinal cord repair via TLR3*. JCI Insight, 2020. **5**(15).
108. Huebner, A.K., H. Maier, A. Maul, S. Nietzsche, T. Herrmann, J. Praetorius, and C.A. Hübner, *Early Hearing Loss upon Disruption of Slc4a10 in C57BL/6 Mice*. J Assoc Res Otolaryngol, 2019. **20**(3): p. 233-245.

109. Sun, S., D. Zhang, G. Sun, Y. Song, J. Cai, Z. Fan, and H. Wang, *Solute carrier family 4 member 1 might participate in the pathogenesis of Meniere's disease in a murine endolymphatic hydrop model*. Acta Otolaryngol, 2019. **139**(11): p. 966-976.

110. Chen, E.B., X. Qin, K. Peng, Q. Li, C. Tang, Y.C. Wei, S. Yu, L. Gan, and T.S. Liu, *HnrNPR-CCNB1/CENPF axis contributes to gastric cancer proliferation and metastasis*. Aging (Albany NY), 2019. **11**(18): p. 7473-7491.

111. Du, C., D.Q. Li, N. Li, L. Chen, S.S. Li, Y. Yang, M.X. Hou, M.J. Xie, and Z.D. Zheng, *DDX5 promotes gastric cancer cell proliferation in vitro and in vivo through mTOR signaling pathway*. Sci Rep, 2017. **7**: p. 42876.

112. Jia, R., M. Ajiro, L. Yu, P. McCoy, Jr., and Z.M. Zheng, *Oncogenic splicing factor SRSF3 regulates ILF3 alternative splicing to promote cancer cell proliferation and transformation*. Rna, 2019. **25**(5): p. 630-644.

113. Liu, B.W., T.J. Wang, L.L. Li, L. Zhang, Y.X. Liu, J.Y. Feng, Y. Wu, F.F. Xu, Q.S. Zhang, M.Z. Bao, W.Y. Zhang, and L.H. Ye, *Oncoprotein HBXIP induces PKM2 via transcription factor E2F1 to promote cell proliferation in ER-positive breast cancer*. Acta Pharmacol Sin, 2019. **40**(4): p. 530-538.

114. Li, Y., J. Huang, B. Zeng, D. Yang, J. Sun, X. Yin, M. Lu, Z. Qiu, W. Peng, T. Xiang, H. Li, and G. Ren, *PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteosomal degradation*. Cancer Lett, 2018. **430**: p. 109-122.

115. Zheng, W., J. Nazish, F. Wahab, R. Khan, X. Jiang, and Q. Shi, *DDB1 Regulates Sertoli Cell Proliferation and Testis Cord Remodeling by TGFβ Pathway*. Genes (Basel), 2019. **10**(12).

116. Imai, F., A. Yoshizawa, N. Fujimori-Tonou, K. Kawakami, and I. Masai, *The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish*. Development, 2010. **137**(19): p. 3257-68.

117. Xu, N., F. Liu, S. Wu, M. Ye, H. Ge, M. Zhang, Y. Song, L. Tong, J. Zhou, and C. Bai, *CHD4 mediates proliferation and migration of non-small cell lung cancer via the RhoA/ROCK pathway by regulating PHF5A*. BMC Cancer, 2020. **20**(1): p. 262.

118. Mokabber, H., N. Najafzadeh, and M. Mohammadzadeh Vardin, *miR-124 promotes neural differentiation in mouse bulge stem cells by repressing Ptbp1 and Sox9*. J Cell Physiol, 2019. **234**(6): p. 8941-8950.
119. Hirota, A., M. Nakajima-Koyama, Y. Ashida, and E. Nishida, *The nucleosome remodeling and deacetylase complex protein CHD4 regulates neural differentiation of mouse embryonic stem cells by down-regulating p53*. J Biol Chem, 2019. **294**(1): p. 195-209.

120. Hong, S., J. Jo, H.J. Kim, J.E. Lee, D.H. Shin, S.G. Lee, A. Baek, S.H. Shim, and D.R. Lee, *RuvB-Like Protein 2 (Ruvbl2) Has a Role in Directing the Neuroectodermal Differentiation of Mouse Embryonic Stem Cells*. Stem Cells Dev, 2016. **25**(18): p. 1376-85.

121. Liu, L., Y. Yin, Y. Li, L. Prevedel, E.H. Lacy, L. Ma, and P. Zhou, *Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis*. Cell Res, 2012. **22**(8): p. 1258-69.

122. Kim, I.M., S. Ramakrishna, G.A. Gusarova, H.M. Yoder, R.H. Costa, and V.V. Kalinichenko, *The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature*. J Biol Chem, 2005. **280**(23): p. 22278-86.

123. Pokidysheva, E., S. Tufa, C. Bresee, J.V. Brigande, and H.P. Bächinger, *Prolyl 3-hydroxylase-1 null mice exhibit hearing impairment and abnormal morphology of the middle ear bone joints*. Matrix Biol, 2013. **32**(1): p. 39-44.

124. Abitbol, J.M., J.J. Kelly, K. Barr, A.L. Schormans, D.W. Laird, and B.L. Allman, *Differential effects of pannexins on noise-induced hearing loss*. Biochem J, 2016. **473**(24): p. 4665-4680.

125. Abitbol, J.M., B.L. O'Donnell, C.B. Wakefield, E. Jewlal, J.J. Kelly, K. Barr, K.E. Willmore, B.L. Allman, and S. Penuela, *Double deletion of Panx1 and Panx3 affects skin and bone but not hearing*. J Mol Med (Berl), 2019. **97**(5): p. 723-736.

126. Kim, Y.R., K.H. Kim, S. Lee, S.K. Oh, J.W. Park, K.Y. Lee, J.I. Baek, and U.K. Kim, *Expression patterns of members of the isocitrate dehydrogenase gene family in murine inner ear*. Biotech Histochem, 2017. **92**(7): p. 536-544.

127. Meyer zum Gottesberge, A.M. and H. Felix, *Abnormal basement membrane in the inner ear and the kidney of the Mpv17-/- mouse strain: ultrastructural and immunohistochemical investigations*. Histochem Cell Biol, 2005. **124**(6): p. 507-16.

128. Tadros, S.F., M. D'Souza, X. Zhu, and R.D. Frisina, *Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits*. PLoS One, 2014. **9**(2): p. e90279.

129. Kearney, G., J. Zorrilla de San Martín, L.G. Vattino, A.B. Elgoynen, C. Wedemeyer, and E. Katz, *Developmental Synaptic Changes at the Transient Olivocochlear-Inner Hair Cell Synapse*. J Neurosci, 2019. **39**(18): p. 3360-3375.
130. Michanski, S., K. Smaluch, A.M. Steyer, R. Chakrabarti, C. Setz, D. Oestreicher, C. Fischer, W. Möbius, T. Moser, C. Vogl, and C. Wichmann, *Mapping developmental maturation of inner hair cell ribbon synapses in the apical mouse cochlea*. Proc Natl Acad Sci U S A, 2019. 116(13): p. 6415-6424.

131. Zhao, J., G. Li, X. Zhao, X. Lin, Y. Gao, N. Raimundo, G.L. Li, W. Shang, H. Wu, and L. Song, *Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss*. Aging (Albany NY), 2020. 12(7): p. 5590-5611.

132. Nagashima, R., T. Yamaguchi, N. Kuramoto, and K. Ogita, *Acoustic overstimulation activates 5'-AMP-activated protein kinase through a temporary decrease in ATP level in the cochlear spiral ligament prior to permanent hearing loss in mice*. Neurochem Int, 2011. 59(6): p. 812-20.

133. Fu, X., X. Sun, L. Zhang, Y. Jin, R. Chai, L. Yang, A. Zhang, X. Liu, X. Bai, J. Li, H. Wang, and J. Gao, *Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss*. J Clin Invest, 2018. 128(11): p. 4938-4955.

134. Leitmeyer, K., A. Glutz, V. Radojevic, C. Setz, N. Huerzeler, H. Bumann, D. Bodmer, and Y. Brand, *Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro*. Biomed Res Int, 2015. 2015: p. 925890.

135. Bodmer, D. and S. Levano-Huaman, *Sesn2/AMPK/mTOR signaling mediates balance between survival and apoptosis in sensory hair cells under stress*. Cell death & disease, 2017. 8(10): p. e3068-e3068.

Figures
Figure 1

Isolation and characterization of cochlear tissue-derived sEVs. (a) The workflow for isolating cochlear tissue-derived sEVs by ultracentrifugation. (b) TEM of cochlear sEVs. Scale bar = 100 nm. (c) Western blotting of cochlear sEV samples. CD63, CD9, and TSG101 were used as sEV markers, and EEA1, Rab7, and GAPDH from other organelles were used as negative markers. (d) NTA of cochlear sEVs from P3, P7, P14, and P21 mice. (e) Immunofluorescent staining of CD63 and CD9 (red) in the P3 cochlea. Myo7a
(green) and Sox2 (blue) were used as HC and SC markers, respectively. OHC, outer hair cell. IHC, inner hair cell. DC, Deiters’ cell. IPC, inner pillar cell. OPC, outer pillar cell. IPhC, inner phalangeal cell. Scale bar = 20 μm.

Figure 2

Transcriptome analysis of cochlear sEV miRNAs from P3, P7, P14, and P21 mice. (a) Cluster analysis of cochlear sEV miRNA sequencing data. (b) The Venn diagram of the miRNA sequencing data. (c) All differentially expressed miRNAs in the four samples. P3 data were used as the control as indicated by the blue line. (d) The top 50 highly expressed cochlear sEV miRNAs from P3 (blue), P7 (red), P14 (green), and P21 (yellow) mice.
Figure 3

The differentially expressed cochlear sEV miRNAs from P3, P7, P14, and P21 mice. (a) Heatmap of the differentially expressed miRNAs. (b) Heatmap of the up-regulated miRNAs as mice age. (c) Heatmap of the down-regulated miRNAs as mice age. (d) qPCR verification of some differentially expressed miRNAs. Values lower and higher than the mean are shown by blue and red scales, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001, n = 3.
Figure 4

The GO and KEGG pathway analysis of differentially expressed cochlear sEV miRNAs from P3, P7, P14, and P21 mice. (a, c, e, g) GO analysis of miRNAs of P3 (a), P7 (c), P14 (e), and P21 (g) mouse cochlear sEVs. (b, d, f, h) KEGG enrichment pathways analysis of miRNAs of P3 (b), P7 (d), P14 (f), and P21 (h) mouse cochlear sEVs. The size of the bubble described the number of miRNAs, and the intensity of the
color shows the amount of genes targeted by the miRNA in all figures. P3 (blue), P7 (red), P14 (green), P21 (yellow).

Figure 5

Proteomics analysis of cochlear sEV proteins from P3, P7, P14, and P21 mice. (a) Cluster analysis of cochlear sEV proteomics data. (b) The Venn diagram of cochlear sEV proteomics data. (c) The top-50 most highly expressed proteins of cochlear sEVs from P3 (blue), P7 (red), P14 (green), and P21 (yellow) mice.
Figure 6

The differentially expressed cochlear sEV proteins from P3, P7, P14, and P21 mice. (a) Heatmap of the differentially expressed cochlear sEV proteins. (b) Heatmap of the up-regulated proteins as mice age. (c) Heatmap of the down-regulated proteins as mice age. Values lower and higher than the mean are shown by blue and red scales, respectively.
Figure 7

GO and KEGG pathway analysis of differentially expressed cochlear sEV proteins from P3, P7, P14, and P21 mice. (a-c) Differentially expressed cochlear sEV proteins are identified by GO analysis that biological processes (a), molecular components (b), and cell membranes (c). (d) KEGG pathway analysis showing the significantly enriched pathways of differentially expressed cochlear sEV proteins in the four age groups. The size of the bubble shows the amount of protein, and the intensity of the color describes the number of genes targeted by the protein in a and d. (e) The STRING network analysis for cochlear sEV proteins.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FigS1.tif
- FigS2.tif
- FigS3.tif
- supplementmaterials.docx
• SupplementTableS1.jpg