Identification and Parentage Analysis of Citrus Cultivars Developed in Japan by CAPS Markers

Keisuke Nonaka, Hiroshi Fujii, Masayuki Kita, Takehiko Shimada, Tomoko Endo, Terutaka Yoshioka and Mitsuo Omura

1NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
2NARO Western Region Agricultural Research Center, Zentsuji 765-8508, Japan
3Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan

To protect the rights of breeders of the major citrus cultivars developed under breeding programs by the national institute of Japan, we developed a method of cultivar identification based on cleaved amplified polymorphic sequence (CAPS) markers, and used it to evaluate their identity and parentage. We selected 19 CAPS markers that had a single-locus origin and moderate polymorphism, and used them to construct genotyping data for 59 citrus cultivars (including American accessions), local varieties, and selections. Of the 19 CAPS markers, 8 were sufficient to discriminate among all accessions except ‘Mato’ buntan (Citrus grandis Osbeck) and ‘Hirado’ buntan (Citrus grandis Osbeck). Among the 33 Japanese cultivars, the parentage of 30 agreed with that reported, but ‘Setoka’, ‘Southern Red’, and ‘Reikou’ had discrepancies at one or more loci. Using 15 to 18 CAPS markers to validate the putative parentage revealed that the seed parent of ‘Setoka’ was ‘KyEn No. 4’, not ‘Tsunonozomi’, and the pollen parent of ‘Southern Red’ was ‘Osceola’, not ponkan (C. reticulate Blanco). The seed parent of ‘Reikou’ remains unknown.

Key Words: breeder rights, genotype, ‘Reikou’, ‘Setoka’, ‘Southern Red’.

Introduction

Citrus is one of the most important genera of fruit trees that are adapted to temperate and subtropical areas of Japan. The citrus cross-breeding program in Japan began in 1937 at the National Horticulture Research Station of the Ministry of Agriculture and Forestry, now the Okitsu Citrus Research Station of the National Agriculture and Food Research Organization Institute of Fruit Tree Science (NIFTS). The program has continued since 1964 at the NIFTS Okitsu and Kuchinotsu Citrus Research Stations. It is focused mainly on improving fruit quality, with the goals of a high sugar content, excellent flavor, seedlessness, ease of peeling, and presence of a thin locular membrane, which are characteristics specific to mandarins. The program released 41 new citrus cultivars by means of controlled cross-breeding between 1963 and 2014.

When we develop a new plant cultivar, we must simultaneously consider how to protect the rights of farmers and plant breeders from unwarranted damage concerning the outflow of a new cultivar overseas and the inflow of such products back to the host country. Therefore, it has become necessary to develop cultivar identification techniques (Kunihisa et al., 2003; Ninomiya et al., 2015). The rights of plant breeders are of increasing interest worldwide. The International Union for the Protection of New Varieties of Plants (UPOV; http://www.upov.int/index_en.html, June 14, 2016) has provided and promoted effective systems of plant variety protection. For example, UPOV’s working group on Biochemical and Molecular Techniques, and DNA-profiling in particular (BMT), has encouraged the use of DNA profiling techniques to protect the rights of plant breeders (Shoda et al., 2012).

To help identify citrus cultivars developed in Japan by using DNA-profiling techniques, several research groups have reported the development of DNA markers (Matsuyama et al., 1992; Omura et al., 2004; Ueda et al., 2003). However, information on these markers, their polymorphisms and their application to important commercial cultivars has not been made fully available.
to the public. Recently, Ninomiya et al. (2015) reported that 33 citrus cultivars or accessions, including 7 local varieties and 11 cultivars collected from abroad, could be identified from polymorphisms at 11 cleaved amplified polymorphic sequence (CAPS) markers. However, this information was not sufficient because the accessions they examined included only 8 of 41 cultivars developed by NIFTS that are commercially produced and frequently used as parents in citrus breeding programs in Japan.

In Citrus, a variety of DNA marker types have been developed. These include random amplified polymorphic DNA (RAPD), restriction-fragment-length polymorphism (RFLP), amplified-fragment-length polymorphism (AFLP), CAPS, and simple sequence repeat (SSR) markers (Kimura et al., 2003; Kitahara et al., 2005; Matsumoto et al., 1999d; Moriya et al., 2011; Ninomiya et al., 2015; Sawamura et al., 2004, 2008; Yamamoto et al., 2003). However, citrus cultivars developed in the NIFTS breeding program have generally not been investigated to confirm their parent–offspring relationships, even though they have frequently been used as parents in other breeding programs.

Here, we aimed at establishing a method for identification of the citrus cultivars developed by the citrus breeding program in Japan by using a subset of the CAPS markers developed by Shimada et al. (2014). We also aimed at confirming the parent–offspring relationships of these cultivars by adding related cultivars and selections in the analysis to increase the reliability of the identification. Using the results of this analysis, we investigated candidate parents of the cultivars that had discrepancies in the parent–offspring relationships.

Materials and Methods

Plant material and DNA preparation

We selected 59 citrus cultivars, local varieties and selections that were developed or used as parents in the NIFTS citrus breeding program (Table 1), for use in the CAPS analysis. ‘Okitsu-wase’, ‘Trovita’, and ‘Yoshida’ were chosen for the analysis as representative mutants of satsuma mandarin (Citrus unshiu Marc.), sweet orange (C. sinensis (L.) Osbeck), and ponkan (C. reticulata Blanco), respectively. All plant materials were obtained from the NIFTS collections at Kuchinotsu Citrus Research Station (Nagasaki, Japan) and Okitsu Citrus Research Station (Shizuoka, Japan). Total DNA was isolated from fully expanded fresh leaves by using the Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), following the manufacturer’s instructions.

CAPS analysis

The CAPS genotypes were identified by using 37 of the citrus CAPS markers developed by Shimada et al. (2014) that showed high versatility in the cultivars and selections used in this study (Table 2). Each CAPS amplification was conducted in 12.5 μL of 10 mM Tris·HCl (pH 8.3), 50 mM KCl, 2.5 mM MgCl₂, 0.16 mM each dNTP, 10 pM each forward and reverse primers, 10 ng of genomic DNA, 1.25 units of AmpliTaq Gold DNA polymerase (Roche, Branchburg, NJ, USA), and the manufacturer’s PCR buffer for the polymerase. After 10 min of denaturation at 94.5°C, amplification was performed using 35 cycles of 1 min denaturation at 94°C, 1 min annealing at 52 to 64°C (Table 2), and a 2 min extension at 70°C, followed by a 10-min final extension at 70°C. The PCR products were checked using a 200-bp ladder marker using 1.5% agarose gel electrophoresis.

The PCR products were digested with restriction enzymes (Takara Bio Inc., Shiga, Japan) (Table 2) under the following conditions. We mixed 4 μL of the PCR
Table 1. Citrus cultivars, local varieties, and other selections used in the present study. Cultivars 1 to 33 were developed by the citrus breeding program at the national institute of Japan and were used for parentage analysis.

Code	Sample name	Described parentage (seed parent × pollen parent) or species	Type and Origin	Reference	Results for parentage analysis in the present study
1	"Akami"	"Kiyomi" × "Semimole"	Cultivar, bred by NI in Japan	Yoshida et al. (2000b)	No discrepancy
2	"Amaka"	"Kiyomi" × "Encore"	Cultivar, bred by NI in Japan	Matsumoto et al. (2001)	No discrepancy
3	"Amakusa"	"KyoNo. 14" × "Page"	Cultivar, bred by NI in Japan	Matsumoto et al. (1999b)	No discrepancy
4	"Arike"	"Seike" × "Clementine"	Cultivar, bred by NI in Japan	Yamada et al. (1995a)	No discrepancy
5	"Asami"	"Okitu 46 gout × "Harumi"	Cultivar, bred by NI in Japan	Kita et al. (2012)	No discrepancy
6	"Benbabe"	"HF No. 9" × "Encore"	Cultivar, bred by NI in Japan	Takahara et al. (2006)	No discrepancy
7	"Benimaru"	"Mato" × "Hirodo"	Cultivar, bred by NI in Japan	Yamada et al. (1993)	No discrepancy
8	"Harihime"	"E-647" × "Miyagawa Wase"	Cultivar, bred by NI in Japan	Yoshida et al. (2005d)	No discrepancy
9	"Hareyaka"	"Encore" × "Nakano 3 gosanponkan"	Cultivar, bred by NI in Japan	Matsumoto et al. (1999d)	No discrepancy
10	"Harumi"	"Kiyomi" × "Ponkan F-2432"	Cultivar, bred by NI in Japan	Yoshida et al. (2000a)	No discrepancy
11	"Hayaku"	"Imamura" × "Nakano 3 gosanponkan"	Cultivar, bred by NI in Japan	Okiyama et al. (1991b)	No discrepancy
12	"Kankitsu Chukanbohon Nou 5 Gou"	"Lee" × "Makiku kishu"	Cultivar, bred by NI in Japan	Yoshida et al. (2005a)	No discrepancy
13	"Kankitsu Chukanbohon Nou 6 Gou"	"Kiyomi" × "Makiku kishu"	Cultivar, bred by NI in Japan	Yoshida et al. (2005b)	No discrepancy
14	"Miyagawa Wase" × "Trovia"	"Orai"	Cultivar, bred by NI in Japan	Nishimura et al. (1983a)	No discrepancy
15	"Miyaku"	"Kiyomi" × "Encore"	Cultivar, bred by NI in Japan	Nishimura et al. (2012)	No discrepancy
16	"Miyaku"	"KyoNo. 14" × "Encore"	Cultivar, bred by NI in Japan	Matsumoto et al. (1999c)	No discrepancy
17	"Nakakou"	"Kiyomi" × "Encore"	Cultivar, bred by NI in Japan	Okai et al. (1991a)	No discrepancy
18	"Nakakou"	"KyoNo. 5" × "Makiku"	Cultivar, bred by NI in Japan	Yoshida et al. (2009)	Unidentified
19	"Nishinokaori"	"EnOw No. 21" × "Youkou"	Cultivar, bred by NI in Japan	Yoshida et al. (2015)	No discrepancy
20	"Orito"	"KyoNo. 5"	Cultivar, bred by NI in Japan	Ueno et al. (1985)	No discrepancy
21	"Orito"	"KyoNo. 5" × "Makiku"	Cultivar, bred by NI in Japan	Yoshida et al. (2005b)	No discrepancy
22	"Okitsu 46 gousanponkan"	"Lee" × "Makiku kishu"	Cultivar, bred by NI in Japan	Yoshida et al. (2005a)	No discrepancy
23	"Okitsu 46 gousanponkan"	"Lee" × "Makiku kishu"	Cultivar, bred by NI in Japan	Yoshida et al. (2005b)	No discrepancy
24	"Okitsu 46 gousanponkan"	"Lee" × "Makiku kishu"	Cultivar, bred by NI in Japan	Yoshida et al. (2005a)	No discrepancy
25	"Okitsu 46 gousanponkan"	"Lee" × "Makiku kishu"	Cultivar, bred by NI in Japan	Yoshida et al. (2005b)	No discrepancy
26	"Okitsu 46 gousanponkan"	"Lee" × "Makiku kishu"	Cultivar, bred by NI in Japan	Yoshida et al. (2005a)	No discrepancy

* Citrus species are based on Tanaka (1954).
* "Okitu Wase", "Trovia", and "Yoshida" were used in the analysis as representatives of mutants of satsuma mandarin, sweet orange, and ponkan, respectively.
* NI is abbreviation of the National Institute.
Table 2. Characteristics of the CAPS markers used in this study. The first 19 CAPS markers were used in the cultivar identification and parentage analysis for all 33 NIFTS cultivars; the next 18 markers were used to clarify any parentage discrepancies revealed by the first 19 markers.

Marker name	Restriction enzyme	Annealing Temperature (°C)	PCR product size (bp)	Polymorphic fragment size (bp)	Position in the integration map (AGI map)	Linkage group	Scaffold	Start position	End position
			a allele	b allele	common fragment of both allele				
A0326	NdeI	60	600	500	300	200	scaffold_3	6409311	6411254
A0413	MspI	56	1100	1100	900		scaffold_9	7579900	7583093
A0636	EcoRI	1400	1200	1200	800	650	scaffold_1	23776796	23782088
B0028	HaeIII	180	655	655	600		scaffold_2	35354776	35363062
B0029	SspI	2200	2200	2200	1200		scaffold_2	8683898	8685984
B0036	MspI	1400	1400	1400	800	650	scaffold_1	22840947	22844111
B0145	MspI	1800	1200	1200	1000		scaffold_8	22730839	22737521
B0158	PstII	600	600	600	300		scaffold_3	5253281	5254755
Cp1624	MspI	1000	900	900	800		scaffold_1	18086827	18070262
Gn0043	HincII	1100	1100	1100	1000		scaffold_8	21953129	21960709
I0208	HinfI	58	550	550	300	250	scaffold_5	40562844	40630241
M0097	DraI	400	400	400	300		scaffold_6	16712914	16716984
T0062	Rsal	900	800	800	600		scaffold_6	11826472	11830875
T0079	SspI	950	950	950	700		scaffold_3	7047024	7049430
T0150	HinfI	500	500	500	350		scaffold_8	22191056	22193554
T0168	Rsal	1200	1100	1100	600		scaffold_1	24898769	24905716
T0235	HaeIII	700	650	650	450		scaffold_6	17057658	17074575
T0271	Rsal	800	700	800	400		scaffold_6	11707593	11715646
T0326	Hhal	62	1400	1400	800	750	scaffold_7	2501520	2508737
B0136	HhaI	56	1000	1000	750		scaffold_6	15056834	15058632
Cp0075	HinfI	54	1600	850	600	700	scaffold_6	7924189	7928192
Fn0059	HincII	60	1400	850	450	500	scaffold_3	16223756	16233636
Gn0040	HaeIII	54	1200	1200	550	800	scaffold_6	25506466	2551133
I0211	PvuII	58	600	600	400		scaffold_8	6632695	6643448
Ov0305	MspI	58	1250	1250	1000		scaffold_6	16904992	16912088
T0069	MspI	64	800	800	450	300	scaffold_5	38566192	38571337
T0165	DraI	1100	1100	1100	750		scaffold_4	19605473	19608059
T0300	DraI	800	800	800	500		scaffold_3	43862440	43867443
T0348	HinfI	62	800	800	450	350	scaffold_8	11619894	11619437
T0350	Rsal	64	900	900	600	250	scaffold_3	8914744	8921411
T0364	HinfI	1000	900	900	400		scaffold_6	24606501	24612654
T0386	MspI	500	500	500	300		scaffold_6	23593516	23595492
Wx0002	MspI	1200	1000	1000	600	400	scaffold_5	37189553	37192231
C0336	PvuII	58	1200	1200	600		scaffold_6	37124440	37125036
C2223	NdeI	1400	800	800	700		scaffold_3	34883334	34856373

Note:
- * from Shimada et al. (2014).
- † from Shimada et al. (2014). Seed and pollen parents except T0250/HinfIII are ‘Okitsu 46 gou’ and ‘Kankitsu Chakanbohon Nou 5 Gou’. Segregation analysis of T0250/HinfIII and the values in parentheses of Fb0159/HinfII were analyzed on the basis of the offspring of the cross between ‘E-647’ and ‘Setoka’.
- a, b, c on the same line refer to the c, b, and a alleles, respectively.
- a, b, c in parentheses denote the c, b, and a alleles, respectively.
- a, b, c in parentheses show the fragment size of the c allele.

The annealing temperature was reduced by 2°C for every 2 cycles. When the annealing temperature reached 54°C, the amplification was continued at 54°C for 30 cycles.
product with 1.0 µL of the buffer and 2 to 3 units of the restriction enzyme, and then adjusted the volume to a total of 10 µL with sterilized water. After digestion at 37°C for more than 2 h, the segmentation patterns were analyzed by means of 1.5% agarose gel electrophoresis with ethidium bromide staining.

Of the 37 CAPS markers, 19 were used for the cultivar identification and parentage analysis (Table 3), and the other 18 for parentage analysis for cultivars that showed discrepancies in the previously reported parent–offspring relationship.

Identification of citrus cultivars and parentage analysis

We used MinimalMarker software (Fujii et al., 2013a) to select minimal CAPS marker subsets for identification of tested cultivars on the basis of the analysis results with the 19 markers. We then used the genotypes defined by the selected CAPS markers to identify 45 cultivars, 7 local varieties, and 7 selections.

We used MARCO software (Fujii et al., 2010) to identify the parent–offspring relationship on the basis of the inheritance of one allele at each CAPS locus being transmitted from the parents to the offspring. MARCO could arbitrarily set a cultivar as the “parent” or “offspring” from a supplied dataset. To confirm the assumed parent–offspring relationship, we defined the 33 cultivars developed in the citrus breeding program by the national institute of Japan as “offspring”, and the cultivars or selections reported as parents in previous records as “parents”. The software then revealed whether the inheritance pattern based on the genetic markers supported the assumed parentage or revealed a different one. We judged that a discrepancy in the parent–offspring relationship existed if neither of the two alleles in the offspring existed in the candidate parent.

Validation of the putative parent–offspring relationships using SNP genotyping data

We used the 116 SNPs randomly selected from the 268 reliable SNPs obtained from genotyping data of 103 citrus accessions analyzed by Fujii et al. (2013b) to validate the parent–offspring relationships and to identify the putative parentage predicted based on the CAPS marker analysis performed in MARCO. SNP genotyping data for accessions that were not analyzed by Fujii et al. (2013b) were acquired by using the same genotyping method (i.e., the GoldenGate assay).

Results

Selection and evaluation of 19 CAPS markers for cultivar identification and parentage analysis

We selected 19 CAPS markers from the frame markers in the linkage map of Shimada et al. (2014) and evaluated their use for cultivar identification and parentage analysis using the 59 accessions (Table 3). The sample genotypes for each CAPS marker were decided from the fragment patterns obtained from images of the electrophoresis results. Table 3 shows the observed heterozygosity (H_o) and polymorphism information content (PIC) of each CAPS marker, which could be used to evaluate their genetic diversities. H_o was calculated as the percentage of individuals with heterogeneous genotypes that were actually observed in the 59 accessions, and PIC was calculated according to the method of Botstein et al. (1980). H_o for the CAPS markers ranged from 0.246 to 0.820, and averaged 0.461. PIC ranged from 0.207 to 0.375, and averaged 0.325. These markers were assigned to the reference genetic map of the Clementine (C. clemetina Hort. ex Tanaka) scaffolds v. 1.0 developed by Ollitrault et al. (2012), and at least one marker was located in each of the nine scaffolds (Table 2). Segregation of the genotypes of the 19 markers in the F1 progeny is shown in Table 2. All markers except Bf0028/HaeIII showed Mendelian segregation which fitted the expected ratio deduced from the parent genotypes (χ^2 test, $P > 0.05$), indicating that each CAPS marker was derived from one locus. The Bf0028/HaeIII marker showed a significant χ^2 result ($P < 0.05$), but was nonetheless judged to be a suitable marker because allele inheritance based on it was evaluated using more than 10 combinations of parents and their offspring, and 1 allele was transmitted from the parents to their offspring without any discrepancies. Thus, we concluded that the 19 CAPS markers were each amplified from a single locus, and could be effectively used in cultivar identification and parentage analysis.

Cultivar identification

The genotyping data based on the 19 CAPS markers for the 59 accessions (Table 3) were analyzed with MinimalMarker software (Fujii et al., 2013a) to estimate the minimal number of markers that could be used to identify the 33 cultivars developed by the citrus breeding program in the national institute. We found a set of 8 CAPS markers that was sufficient to discriminate among 57 accessions, except for ‘Mato Buntan’ (C. grandis Osbeck) and ‘Hirado Buntan’ (C. grandis Osbeck), resulting in 7 subsets of the 19 CAPS markers:

Set 1: A10413/MspI, Bf0029/SylI, Bf0036/MspI, Cp1624/MspI, If0208/HinFI, Tf0062/RsaI, Tf0150/HinFI, Tf0326/HhaI

Set 2: A10413/MspI, Bf0028/HaeIII, Bf0036/MspI, Cp1624/MspI, Mf0097/DraI, Tf0150/HinFI, Tf0271/RsaI, Tf0326/HhaI

Set 3: A10413/MspI, Bf0028/HaeIII, Bf0036/MspI, Cp1624/MspI, Tf0150/HinFI, Tf0235/HaeIII, Tf0271/RsaI, Tf0326/HhaI

Set 4: A10413/MspI, Bf0036/MspI, Bf0158/PvuII, Cp1624/MspI, If0208/HinFI, Tf0062/RsaI, Tf0150/HinFI, Tf0326/HhaI

Set 5: A10413/MspI, Bf0036/MspI, Cp1624/MspI, If0208/HinFI, Tf0062/RsaI, Tf0079/SylI, Tf0150/HinFI, Tf0326/HhaI
Table 3. The genotypes for the 19 CAPS markers and the associated embryo types of the 59 cultivars and selections used in the parentage analysis. The underlined genotypes represent discrepancies with the assumed parent-offspring relationship.

Code	Sample name	Embryo type	Observed heterozygosity (Ho)	PIC
			CAPS marker	
			A00326/Ax/II	0.479/0.326
			A00413/MspI	0.508/0.358
			Al0636/EcoRI	0.599/0.322
			Bf0028/HaeIII	0.576/0.326
			Bf0029/StyI	0.322/0.278
			Bf0036/MspI	0.492/0.364
			Bf0145/MspI	0.254/0.263
			Bf158/PvuII	0.559/0.322
			Cp1624/MspI	0.492/0.351

1. "Akemi" p aa ab ab ab aa ab aa bb ab
2. "Amaka" m aa aa bb ab aa ab aa ab bb
3. "Amakura" p ab ab ab aa ab ab aa ab ab
4. "Ariake" m aa ab bb aa ab ab ab ab bb
5. "Asami" m ab ab ab aa aa ab ab ab aa
6. "Benibae" m ab ab ab aa aa aa aa bb ab
7. "Benimados" m aa bb ab aa bb bb bb bb aa
8. "Harimine" m ab ab ab ab aa ab aa ab aa
9. "Haryuka" p aa aa bb ab aa bb aa bb ab
10. "Harumi" p ab ab ab ab aa ab aa ab aa
11. "Hayaka" p aa aa bb ab aa ab aa ab bb
12. "Kanita Chukanteban Nou 5 Gou" m ab ab ab ab aa ab aa ab bb
13. "Kanita Chukanteban Nou 6 Gou" m aa ab bb ab aa ab aa bb bb
14. "Kiyomi" m ab ab ab ab ab ab ab ab ab
15. "May Pummmelo" m aa bb ab aa ab bb ab ab ab
16. "Mihaya" m ab aa bb aa aa ab ab aa bb
17. "Misho core" p ab aa bb ab aa bb aa bb bb
18. "Nankou" m ab aa bb ab ab ab aa ab bb
19. "Nishihon" m ab ab ab aa aa ab ab aa ab
20. "Rekou" p ab ab ab ab aa ab aa ab ab
21. "Seinnohiikari" p aa aa bb ab aa ab aa ab bb
22. "Seto" p aa ab ab aa ab ab ab ab bb
23. "Shirinami" p aa ab ab aa aa aa aa ab ab
24. "Southern Red" m aa aa bb aa aa bb aa bb bb
25. "Southern Yellow" m aa ab ab ab aa bb ab ab ab
26. "Summer Fresh" p aa bb bb aa ab bb ab ab ab
27. "Sweet Spring" m aa ab ab ab aa ab ab ab ab
28. "Tamami" m bb aa ab ab aa aa aa ab bb
29. "Tsunokagu" m ab aa ab ab aa ab aa ab ab
30. "Tsunobara" p ab ab ab ab ab ab ab ab ab
31. "Tsunozono" m ab ab ab aa aa aa aa ab ab
32. "Yellow Pummele" m ab aa ab ab aa bb ab ab bb
33. "Youkou" p aa aa ab ab aa aa aa ab ab
34. "Clementine" m ab ab ab ab ab ab ab ab ab
35. "E-447" m ab bb ab aa aa ab aa ab ab
36. "Encore" m ab aa bb ab aa ab aa ab bb
37. "Fu-Da No 21" m ab aa bb ab aa bb aa bb bb
38. "Hasaku" m aa ab ab aa ab bb ab ab ab
39. "HFW" m ab ab ab ab aa ab aa ab ab
40. "Hirado buntan" m aa bb ab aa bb bb bb bb aa
41. "Kara" p aa aa bb ab aa bb aa ab bb
42. "Kawano Natsudai" p aa ab ab ab ab ab ab ab bb
43. "King" p aa ab ab ab aa ab aa ab bb
44. "Ku-En No.5" m bb aa bb ab ab ab bb ab ab
45. "Ku-Da No.14" m ab aa ab ab ab ab ab ab ab
46. "Lee" m bb ab ab aa aa aa aa ab ab
47. "Mato buntan" m aa bb ab aa bb bb bb bb aa
48. "Murakami kishu" m aa aa bb ab ab ab ab ab ab
49. "Murcott" p aa ab bb aa ab bb ab ab ab
50. "Na-1408" m aa ab bb ab aa bb aa bb bb
51. "Okiitsu 46 gou" m ab aa ab ab ab ab ab ab ab
52. "Okiitsu Wase" p aa aa bb ab aa bb aa ab ab
53. "Page" p ab ab bb ab ab ab ab ab ab
54. "Semilole" p ab ab ab ab ab ab ab ab ab
55. "Takawara buntan" m aa bb ab aa ab bb bb bb ab
56. "Trovia orange" p ab ab ab ab ab ab ab ab ab
57. "Wilk" m ab ab bb ab aa ab aa bb ab
58. "Yoshida ponkan" p ab ab bb ab aa ab aa ab ab
59. "Uoceola" m aa ab bb aa aa ab aa bb bb

Embryo types: "p", polyembryony; "m", monoembryony.
Table 3. Continued.

Code	Sample name	CAPS marker	Observed heterozygosity (Ho)	Polymorphic information content (PIC)
		Gn0043/HincII	0.559/0.356	0.475/0.341
1	'Akemi'	ab	bb	bb
2	'Amaka'	ab	bb	ab
3	'Amakuni'	ab	bb	ab
4	'Ariake'	ab	bb	ab
5	'Azumi'	ab	bb	ab
6	'Benihoe'	aa	bb	ab
7	'Benimadoko'	bb	aa	bb
8	'Harehime'	ab	ab	ab
9	'Hareyaka'	aa	ab	ab
10	'Harumi'	aa	bb	ab
11	'Hayaka'	ab	bb	ab
12	'Kankitu Chukanshoku Nengeto 5 Gou'	ab	dd	ab
13	'Kankitu Chukanshoku Nengeto 6 Gou'	ab	bb	dd
14	'Kiyomi'	ab	ab	dd
15	'May Pummelo'	ab	ab	dd
16	'Mihaya'	aa	bb	dd
17	'Milche-core'	aa	bb	dd
18	'Nankou'	ab	dd	ab
19	'Nishihonokairo'	ab	ab	dd
20	'Ruskin'	aa	bb	dd
21	'Seiunshihokari'	ab	bb	dd
22	'Setoka'	ab	bb	dd
23	'Shiramahi'	ab	bb	dd
24	'Southern Red'	aa	ab	dd
25	'Southern Yellow'	ab	ab	dd
26	'Summer Fresh'	aa	ab	dd
27	'Sweet Spring'	ab	ab	dd
28	'Tamami'	aa	ab	dd
29	'Tsunokagayakio'	ab	bb	dd
30	'Tsunokasiori'	aa	ab	dd
31	'Tsunonozumi'	ab	bb	dd
32	'Yellow Pummelo'	ab	ab	dd
33	'Youkou'	ab	ab	dd
34	'Clementine'	aa	ab	dd
35	'Encore'	aa	bb	dd
36	'EntDw No.21'	ab	ab	dd
37	'Hassaku'	ab	ab	dd
38	'HFW'	ab	bb	dd
39	'Hirado' buntan	bb	aa	dd
40	'Kara'	ab	bb	dd
41	'Kawano' Natsudaidai	ab	ab	dd
42	'Lang'	ab	ab	dd
43	'King'	ab	bb	dd
44	'KyEn No.5'	ab	ab	dd
45	'KyDw No.14'	bb	bb	dd
46	'Lee'	ab	ab	dd
47	'Mato' buntan	bb	aa	dd
48	'Mukake kishu'	aa	bb	dd
49	'Murcott'	ab	ab	dd
50	'No.1408'	ab	ab	dd
51	'Okitu 46 gyou'	ab	ab	dd
52	'Okitu Wase'	ab	ab	dd
53	'Page'	ab	ab	dd
54	'Seminole'	ab	ab	dd
55	'Tanakawa' buntan	bb	ab	dd
56	'Trovis' orange	ab	ab	dd
57	'Wilking'	aa	bb	dd
58	'Yoshida' ponkan	aa	bb	dd
59	'Osceola'	aa	ab	dd
‘Reikou’. In the case of ‘Reikou’, ‘Murcott’ was cor-
protect, and other developed pummelo cultivars such as
C. grandis ‘Benimadoka’ (Thermore, we included ‘KyEn No. 3’, ‘KyEn No. 4’,
data from the 19 CAPS markers.

Both ‘Mato’ buntan and ‘Hirado’ buntan are pumme-
lo (C. grandis Osbeck) local varieties and have the same genotypes at all 19 CAPS markers. Pummelo has high homozygosity at most loci (Moore, 2001), so it may be difficult to find polymorphisms among pumme-
lo cultivars. ‘Mato’ buntan and ‘Hirado’ buntan were not distinguished by the seven subsets of the CAPS markers, but this may not be important because both cultivars are local varieties with no breeders’ rights to protect, and other developed pummelo cultivars such as ‘Benimadoka’ (C. grandis Osbeck) could be distin-
guished from them by the marker sets.

Parentage analysis

We compared previously reported parent–offspring relationships with the parentage predicted using the 19 CAPS markers within the 33 citrus cultivars in MARCO software. The reported relationships were validated for 30 of the cultivars, but not for ‘Setoka’, ‘Southern Red’, or ‘Reikou’ (Table 1). Every allele at the 19 CAPS marker loci within the 30 cultivars was the previously reported parent allele. However, ‘Setoka’, ‘Southern Red’, and ‘Reikou’ had a discrep-
ant allele at one or more loci compared with their repor-
ted parents: there were discrepancies at Bf0029/StyI in ‘Setoka’; at If0208/HinfI in ‘Southern Red’; and at Al0636/EcoRI, Bf0036/MspI, and Tfo326/HhaI in ‘Reikou’. In the case of ‘Reikou’, ‘Murcott’ was cor-
rectly described as the pollen parent, but the discrepan-
cy at Tfo326/HhaI showed that ‘KyEn No. 5’ was not correctly described as the seed parent. However, it was not clear which parent was descendant in ‘Setoka’ and ‘Southern Red’ solely on the basis of the genotyping data from the 19 CAPS markers.

To solve this problem, we applied an additional 15 CAPS markers to the parentage analysis for ‘Southern Red’ and ‘Reikou’, and an additional 18 (including the aforementioned 15 markers) for ‘Setoka’ (Table 2). Furthermore, we included ‘KyEn No. 3′, ‘KyEn No. 4′, ‘KyEn No. 86′, ‘Minneola’, and ‘Osceola’ as potential true parents, since these cultivars were commonly util-
ized as parents in the cross-breeding program at the time when the three discrepant cultivars were produced. ‘KyEn No. 3′, ‘KyEn No. 4′, ‘KyEn No. 5′, and ‘KyEn No. 86′ were full siblings of ‘Tsunonozomi’ (that is, they were selected from seedlings that resulted from a cross between ‘Kiyomi’ and ‘Encore’).

The genotyping data in the parentage analysis for ‘Setoka’ and ‘Southern Red’ are summarized in Tables 4 and 5, respectively. ‘Setoka’ is registered as being derived from a cross between the seed parent

‘Tsunonozomi’ and the pollen parent ‘Murcott’. In this parent–offspring relationship, there were discrepancies at C0313/STS, C0223/NdeI, and T0250/HinII (Fig. 1), and the result for C0223/NdeI suggested that ‘Tsunonozomi’ could not be the seed parent. ‘Murcott’ was compatible with being the pollen parent because both alleles at all 37 CAPS marker loci were trans-
mitted without any discrepancies (Table 4). Among the candidate parent accessions, ‘KyEn No. 4′ appears more likely to be the seed parent than ‘Tsunonozomi’.

‘Southern Red’ is registered as being derived from a cross between the seed parent ‘Kara’ and the pollen par-
ent ponkan. In this parent–offspring relationship, there were discrepancies at Bfo159/HinII, Gmo071/PvuII, and If0211/PvuII (Fig. 2), and the result for Bfo159/
HinII indicated that ponkan could not be the pollen par-
ent. ‘Kara’ was compatible with being the seed parent because at least one of the two alleles for each of the 34 CAPS markers loci was transmitted without any discrepancies (Table 5). Among the candidate parent ac-
cessions, ‘Osceola’ was predicted to be the pollen parent instead of ponkan.

In contrast, we could not confirm the seed parent for ‘Reikou’, which was registered as being derived from a cross between the seed parent ‘KyEn No. 5′ and the pollen parent ‘Murcott’, because there were discrepan-
cies at A10636/EcoRI, Bf0036/MspI, Tfo326/HhaI, and Tfo300/DraI (Table 6). ‘Murcott’ was compatible with being the pollen parent because at least one of the two alleles for each of the 34 CAPS markers’ loci was trans-
mitted without any discrepancies (Table 6).

Validation of the putative parent–offspring relationships using SNP genotyping data

To further evaluate the putative parentage of ‘Setoka’ and ‘Southern Red’, we used 116 reliable SNPs from the analysis by Fujii et al. (2013b). We obtained the genotyping data for ‘KyEn No. 4’, which was not included in their analysis, by following their method; thus, we used genotype data from a total of 104 citrus accessions for the parentage validation.

We confirmed discrepancies in the parentage of ‘Setoka’ at six SNP markers (SI116, SI145, SI209, SI269, SI282, and SI363), and the ‘Tsunonozomi’ alleles had discrepancies at three of these (SI145, SI209, and SI282; Table 4). In contrast, there were no discrepan-
cies in the inheritance of the alleles at any marker when the parents for ‘Setoka’ were ‘KyEn No. 4′ and ‘Murcott’. Furthermore, when ‘Murcott’ was fixed as the pollen parent, MARCO indicated ‘KyEn No. 4′ as the only seed parent. These results strongly support our finding that ‘Setoka’ is the offspring of a cross between ‘KyEn No. 4′ and ‘Murcott’.

We also confirmed discrepancies in the parentage of ‘Southern Red’, which was reported as being the result of a cross between ‘Kara’ and ponkan, at seven SNP markers (SI173, SI199, SI228, SI270, SI322, SI348,
Table 4. CAPS and SNP genotypes for the reported and putative parents of ‘Setoka’. The underlined CAPS genotypes represent discrepancies between the reported parent–offspring relationship, in which ‘Setoka’ resulted from a cross between ‘Tsunonozomi’ and ‘Murcott’, and the marker results. A discrepancy exists if neither of the two alleles in the offspring exist in the candidate parent. The first 19 CAPS markers were used in the overall parentage analysis for all 33 NIFTS cultivars; the next 18 markers were used to clarify any parentage discrepancies revealed by the first 19 markers. SNP marker results are shown only for loci with discrepancies.

Marker name	Cultivar	'Setoka'	'Tsunonozomi'	'Murcott'	'KyEn No. 4'
Al0326/NdeII	aa	ab	aa	aa	
Al0413/MspI	ab	ab	ab	ab	
Al0636/EcoRI	ab	ab	bb	ab	
Bf0028/HaeIII	aa	aa	aa	ab	
Bf0029/StyI	ab	aa	aa	ab	
Bf0036/MspI	ab	aa	bb	ab	
Bf0145/MspI	ab	aa	ab	aa	
Bf0158/PvuII	bb	bb	bb	bb	
Cp1624/MspI	ab	ab	bb	ab	
Gn0043/HincII	ab	ab	ab	aa	
If0208/HinfI	bb	bb	bb	bb	
Mt0097/DraI	bb	bb	ab	bb	
T0062/RsaI	aa	aa	ab	aa	
T0079/StyI	ab	ab	ab	ab	
T0150/HinfI	bb	ab	bb	bb	
T0168/RsaI	aa	aa	ab	ab	
T0235/HaeIII	aa	aa	ab	aa	
T0271/RsaI	aa	aa	ab	aa	
T0326/HhaI	aa	ab	ab	aa	
Bf0136/HhaI	bb	bb	ab	bb	
Cp0975/HinfI	ab	ab	ab	ab	
Fb0159/HincII	bc	ab	ac	ab	
Gn0040/HaeIII	bb	bb	ab	bb	
Gn0071/PvuII	bb	bb	bb	bb	
If0211/PvuII	aa	aa	aa	aa	
Ov0305/MspI	ab	aa	bb	aa	
T0069/MspI	bb	ab	ab	ab	
T0165/DraI	bb	bb	bb	bb	
T0300/DraI	ab	ab	bb	aa	
T0348/HinfI	ab	ab	ab	ab	
T0350/DraI	ab	ab	ab	ab	
T0364/HinfI	ab	aa	ab	aa	
T0386/MspI	ab	ab	ab	ab	
Wy0003/MspI	aa	ab	ab	ab	
Cp0336/STS	ab	aa	aa	ab	
Cp2223/NdeII	aa	bb	ab	ab	
T0250/HindIII	ab	aa	aa	ab	

SNP marker

Marker name	Cultivar	'Setoka'	'Tsunonozomi'	'Murcott'	'KyEn No. 4'
SI116	CG	GG	GG	CG	
SI145	TT	AA	AT	AT	
SI209	GG	AA	AG	GG	
SI269	AG	AA	AA	AG	
SI282	AA	GG	AG	AG	
SI363	AT	AA	AA	AT	
Table 5. CAPS and SNP genotypes for the reported and putative parents of ‘Southern Red’. The underlined CAPS genotypes represent discrepancies between the reported parent–offspring relationship, in which ‘Southern Red’ resulted from a cross between ‘Kara’ and ponkan, and the marker results. A discrepancy exists if neither of the two alleles in the offspring exist in the candidate parent. The first 19 CAPS markers were used in the overall parentage analysis for all 33 NIFTS cultivars; the next 15 markers were used to clarify any parentage discrepancies revealed by the first 19 markers. SNP marker results are shown only for loci with discrepancies.

Marker name	Cultivar			
	‘Southern Red’	‘Kara’	Ponkan	‘Osceola’
CAPS marker				
Al0326/NdeII	aa	aa	ab	aa
Al0413/MspI	aa	aa	ab	ab
Al0636/EcoRI	bb	bb	bb	bb
Bf0028/HaeIII	aa	ab	ab	aa
Bf0029/StyI	aa	aa	aa	aa
Bf0036/MspI	bb	bb	ab	ab
Bf0145/MspI	aa	aa	aa	aa
Bf0158/PvuII	bb	ab	ab	bb
Cpi1624/MspI	bb	bb	ab	bb
Gm0043/HincII	aa	ab	aa	aa
Fo208/HinfI	ab	bb	bb	aa
Mf0097/DraI	bb	bb	bb	bb
Tf0062/KsaI	ab	ab	aa	ab
Tf0079/StyI	aa	aa	aa	aa
Tf0150/HinfI	bb	ab	bb	bb
Tf0168/KsaI	ab	ab	ab	aa
Tf0235/HaeIII	aa	aa	aa	aa
Tf0271/KsaI	aa	aa	aa	aa
Tf0326/HhaI	ab	aa	bb	ab
Bf0136/AlaI	bb	bb	bb	bb
Cpi975/Hinfl	ab	bb	ab	ab
Fb0159/Hinfl	bb	ab	aa	bb
Gn0040/HaeIII	bb	bb	bb	bb
Gm0071/PvII	ab	bb	bb	ab
Fo211/PvIll	ab	aa	aa	bb
Ov0305/MspI	ab	ab	ab	aa
Tf0069/MspI	ab	ab	ab	aa
Tf0165/DraI	bb	bb	bb	bb
Tf0300/DraI	ab	bb	bb	bb
Tf0348/HinfI	ab	ab	bb	bb
Tf0350/DraI	ab	ab	aa	ab
Tf0364/HinfI	bb	ab	ab	ab
Tf0386/MspI	ab	ab	ab	aa
Wy0003/MspI	bb	ab	bb	bb

SNP marker

Marker name	Cultivar
SI173	AG
SI199	AC
SI228	CG
SI270	GG
SI322	AT
SI348	AA
SI363	AT
SI270	AA
SI322	AA
SI348	AA
SI363	AT

and SI363), and the ponkan alleles had discrepancies at two of these (SI270 and SI348; Table 5). In contrast, there were no discrepancies in the inheritance of the alleles at any marker when the parents for ‘Southern Red’ were ‘Kara’ and ‘Osceola’. Furthermore, when ‘Kara’ was fixed as the seed parent, MARCO predicted ‘Osceola’ as the only possible pollen parent. These results strongly suggest that ‘Southern Red’ is the offspring of a cross between ‘Kara’ and ‘Osceola’.

We also confirmed discrepancies in the parentage of ‘Reikou’, which was reported as being the result of a cross between ‘KyEn No. 5’ and ‘Murcott’, at nine SNP markers (SI124, SI156, SI158, SI190, SI220, SI251, SI313, SI334, and SI373), and the ‘KyEn No. 5’ alleles had a discrepancy at one of these (SI190; Table 5). However, when ‘Murcott’ was fixed as the pollen parent, MARCO could not select a compatible seed parent with no discrepancies.

Discussion

Intellectual property protection for plant breeders has become an important issue, and techniques for cultivar identification and parentage confirmation based on molecular markers have been developed to solve this problem in various plants. In Japanese citrus breeding, Ninomiya et al. (2015) developed genotyping data based on nine CAPS markers for 33 representative cultivars and selections, and used this to develop protection for citrus cultivars developed in the Ehime Prefecture breeding program. Our result complements this previous work. However, additional genotyping data will be required to protect breeders’ rights for the major citrus cultivars distributed in Japan. This is because the CAPS markers we used are mainly bi-allelic markers and have a lower PIC than would be provided by multi-allelic markers such as SSRs. In addition, superior cultivars, their offspring, and their full siblings are frequently used as breeding parents in the current breeding program. This makes it difficult to develop methods for cultivar identification and to find discrepancies in the reported parentage, since the developed cultivars and selections have similar genetic backgrounds.

In strawberry breeding (Fragaria × ananassa Duch.), CAPS markers have contributed greatly to preventing infringement of breeders’ rights (Kunihisa, 2011). Packed strawberry fruits imported from Korea that were labeled as ‘Nyohou’ were identified as a mix of ‘Redpearl’ and ‘Sachinoka’ by using CAPS markers (Kunihisa et al., 2005). After warnings and legal action against the brokers, the amount of illegally imported strawberry fruits decreased sharply. In other infringement cases, DNA profiling methods were developed for the sweet cherry (Prunus avium L.), rush (Juncus effusus L.), kidney beans (Phaseolus vulgaris L.), and adzuki beans (Vigna angularis (Willd.) Ohwi & Ohashi), among others (Shoda et al., 2012). Our results
show that it is possible to identify 59 citrus cultivars, local varieties, and selections, including new cultivars recently developed by the citrus breeding program in the national institute of Japan and that are now commercially produced and frequently used as citrus breeding parents in Japan, on the basis of their genotypes by using eight selected CAPS markers. Therefore, a cultivar identification method based on these CAPS markers and genotype data will contribute greatly to protecting breeders of the major citrus cultivars in Japan.

These results also show that the actual parentage of ‘Setoka’, ‘Southern Red’, and ‘Reikou’ differed from their reported parentage, and that the candidate true parents of ‘Setoka’ and ‘Southern Red’ could be estimated by using DNA markers. Since citrus cultivars have great diversity in their morphological and physiological characteristics, an incorrect recording of the parentage of a cultivar may be detected from phenotypic data. For example, the parentage of ‘Southern Red’ appeared for a long time to be incorrect on the basis of its morphological traits and disease resistance. ‘Southern Red’ has monoembryony and high susceptibility to citrus canker disease (Kobayashi, 1995b), but the offspring of ponkan frequently exhibit polyembryony (Parlevliet and Cameron, 1959) and relatively low susceptibility to citrus canker disease (Matsumoto and Okudai, 1990). On the other hand, the parentage of ‘Setoka’ was not suspected as being incorrect on the basis of its morphological traits or its disease resistance. This is reasonable because the putative seed parent, ‘KyEn No. 4’, is part of the full-sib family of ‘Tsunonozomi’, which was previously reported as the seed parent, and has a similar genetic background to ‘Tsunonozomi’.

Genetic assessment is important to validate the pedigree of the promising cultivar ‘Setoka’ because it has superior fruit quality and has been frequently used as a parent in citrus breeding programs. However, the correct parentage of ‘Reikou’ could not be estimated in this study. It is difficult to preserve all cultivars and selections used as parents in fruit tree breeding programs owing to the high labor costs and limitations on the amount of usable land in Japan. Therefore, it is possible
Table 6. CAPS and SNP genotypes for the reported parents of ‘Reikou’. The underlined CAPS genotypes represent discrepancies between the reported parent–offspring relationship, in which ‘Reikou’ resulted from a cross between ‘KyEn No. 5’ and ‘Murcott’, and the marker results. A discrepancy exists if neither of the two alleles in the offspring exist in the candidate parent. The first 19 CAPS markers were used in the overall parentage analysis for all 33 NIFTS cultivars; the next 15 markers were used to clarify any parentage discrepancies revealed by the first 19 markers. SNP marker results are shown only for loci with discrepancies.

Marker name	Cultivar	‘Reikou’	‘KyEn No. 5’	‘Murcott’
CAPS marker				
Al0326/NdeII	ab	bb	aa	
Al0413/MspI	ab	aa	ab	
Al0636/EcoRI	ab	bb	bb	
Bd0208/HaeIII	ab	ab	aa	
Bd0209/StyI	aa	ab	aa	
Bd0306/MspI	ab	bb	bb	
Bd1415/MspI	aa	aa	ab	
Bd1518/PvuII	ab	ab	bb	
Cp1624/MspI	bb	bb	bb	
Gn0043/HincII	aa	aa	ab	
Ho208/HinfI	bb	ab	bb	
Mf0097/DraI	bb	ab	ab	
T0062/RsaI	aa	aa	ab	
T0079/StyI	ab	aa	ab	
T0150/HinfF	bb	ab	ab	
T0168/RsaI	aa	ab	ab	
T0235/HaeIII	aa	ab	ab	
T0271/RsaI	aa	aa	ab	
T0326/HhaI	bb	aa	ab	
Cps0975/HinfI	ab	bb	ab	
Fb0159/HinfI	aa	ab	ac	
Gn0040/HaeIII	ab	ab	ab	
Gn0071/PvuII	bb	bb	bb	
Ho2111/PvuII	aa	ab	aa	
Ov0305/MspI	ab	ab	bb	
T0069/MspI	bb	ab	ab	
T0165/DraI	bb	ab	bb	
T0300/DraI	ab	bb	bb	
T0348/HinfI	ab	ab	ab	
T0350/DraI	ab	aa	ab	
T0364/HinfF	aa	aa	ab	
T0386/MspI	ab	ab	ab	
SNP marker				
SI124	AG	AA	AA	
SI156	AG	GG	GG	
SI158	AC	AA	AA	
SI190	CC	AA	CC	
SI220	AG	GG	GG	
SI251	CG	CC	CC	
SI313	AG	AA	AA	
SI334	AG	GG	GG	
SI373	AT	AA	AA	

that the actual parent of ‘Reikou’ has already been fell to make room for new accessions.

Analysis based on the CAPS markers that we have developed will be useful because it does not demand expensive devices such as DNA sequencers; accessions can be genotyped by means of electrophoresis. However, there are advantages and disadvantages for each type of DNA marker (Kumar et al., 2009). In order to make DNA markers available in a range of situations, genotyping data for the DNA markers must be accumulated. CAPS marker data for the 59 cultivars and selections analyzed here will help us to protect breeders’ rights and to better understand the parentage, genetic diversity, and origins of the cultivars. Together, these benefits will help us to conduct more efficient citrus breeding programs.

Literature Cited

Botstein, D., R. L. White, M. Skolnick and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer. J. Hum. Genet. 32: 314–331.

Cai, Q., C. L. Guy and G. A. Moore. 1994. Extension of the linkage map in citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor. Appl. Genet. 89: 606–614.

Chen, C., K. D. Bowman, Y. A. Choi, P. M. Dang, M. N. Rao, S. Huang, J. R. Soneji, T. G. McCollum and F. G. Gmitter, Jr. 2008. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliate. Tree Genet. Genomes 4: 1–10.

Close, T. J., P. R. Bhat, S. Lonardi, Y. Wu, N. Rostoks, L. Ramsay, A. Druka, N. Stein, J. T. Svensson, S. Wamamaker, S. Bozdog, M. L. Roose, M. J. Moscou, S. Chao, R. K. Varshney, P. Szücs, K. Sato, P. M. Hayes, D. E. Matthews, A. Kleinhofs, G. J. Muchelbauer, J. DeYoung, D. F. Marshall, K. Madishetty, R. D. Fenton, P. Condamine, A. Graner and R. Waugh. 2009. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10: 582.

Fujii, H., T. Ogata, T. Shimada, T. Endo, H. Iketani, T. Shimizu, T. Yamamoto and M. Omura. 2013a. Minimal marker: an algorithm and computer program for the identification of minimal sets of discriminating DNA markers for efficient variety identification. Bioinform. Comput. Biol. 11: 1250022.

Fujii, H., T. Shimada, K. Nonaka, M. Kita, T. Kuniga, T. Endo, Y. Ikoma and M. Omura. 2013b. High-throughput genotyping in citrus accessions using an SNP genotyping array. Tree Genet. Genomes 9: 145–153.

Fujii, H., H. Yamashita, F. Hosaka, S. Terakami and T. Yamamoto. 2010. Development of a software MARCO to presume the parental-child relationship using the result of DNA marker typing. Hort. Res. (Japan) 9 (Suppl. 1): 34 (In Japanese).

Hodgson, R. W. 1967. Horticultural varieties of citrus. p. 431–591. In: W. Reuther, H. J. Webber and L. D. Batchelor (eds.). The citrus industry. Vol. 1. University of California Press, Berkeley.

Imai, A., T. Takahara, H. Fukamachi, K. Nonaka, R. Matsunoto, T. Yoshioka, T. Kuniga, N. Mitani and N. Hiehata. 2008. A new citrus cultivar ‘Tsunokagayaki’. Hort. Res. (Japan) 7 (Suppl. 1): 43 (In Japanese).
Iwasaki, T., M. Nishiura and N. Okudai. 1966. New citrus varieties ‘Okitsu-Wase’ and ‘Miiho-Wase’. Bull. Hort. Res. Sta. B 6: 83–93 (In Japanese with English abstract).

Iwata, H., T. Ujino-Ihara, K. Yoshimura, K. Nagasaki, Y. Mukai and Y. Tsumura. 2001. Cleaved amplified polymorphic sequence markers in sugi, Cryptomeria japonica D. Don, and their locations on a linkage map. Theor. Appl. Genet. 103: 881–895.

Jarrell, D. C., M. L. Roose, S. N. Traugh and R. S. Kupper. 1992. A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor. Appl. Genet. 84: 49–56.

Kimura, T., Y. Sawamura, K. Kobayashi, S. Matsuta, T. Hayashi, Y. Ban and T. Yamamoto. 2003. Parentage analysis in pear cultivars characterized by SSR markers. J. Japan. Soc. Hort. Sci. 72: 182–189.

Kita, M., H. Nesumi, T. Yoshioka, T. Kuniga, N. Nakajima, S. Ohta, H. Hamada and F. Takishita. 2012. A new citrus cultivar ‘Asumi’. Hort. Res. (Japan) 11 (Suppl. 2): 310 (In Japanese).

Kitahara, K., S. Matsumoto, T. Yamamoto, J. Soejima, K. Kimura, H. Komatsu and K. Ake. 2005. Molecular characterization of apple cultivars in Japan by S-RNase analysis and SSR markers. J. Amer. Soc. Hort. Sci. 130: 885–892.

Kobayashi, S. 1995a. Cultivation techniques of new cultivars, Citrus ‘Southern Yellow’. Fruit Japan. (Kajitsu Nihon) 50(7): 100–101 (In Japanese).

Kobayashi, S. 1995b. Cultivation techniques of new cultivars, Citrus ‘Southern Red’. Fruit Japan. (Kajitsu Nihon) 50(8): 68–69 (In Japanese).

Konieczny, A. and F. Ausubel. 1993. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4: 403–410.

Kumar, P., V. K. Gupta, A. K. Misra, D. R. Modi and B. K. Pandey. 2009. Potential of molecular markers in plant biotechnology. Plant Omics 2: 141–162.

Kunihisa, M. 2011. Studies using DNA markers in Fragaria × ananassa: genetic analysis, genome structure, and cultivar identification. J. Japan. Soc. Hort. Sci. 80: 231–243.

Kunihisa, M., N. Fukino and S. Matsumoto. 2003. Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 134: 209–215.

Kunihisa, M., S. Matsumoto and N. Fukino. 2005. Cultivar identification of strawberry fruits imported from Korea by use of DNA markers. Bull. Natl. Inst. Veg. Tea Sci. 4: 71–76 (In Japanese with English abstract).

Matsumoto, R. 2001. ‘Shiranui’, a late-maturing citrus cultivar. Bull. Fruit Tree Res. Stn. 33: 37–46 (In Japanese with English abstract).

Matsumoto, R., N. Okudai, M. Yamamoto, Y. Yamada, T. Takahara, I. Oiyama, D. Ishiuchi, K. Asada, H. Ikemiya, H. Murata, K. Yoshinaga, S. Uchihara and H. Ieki. 1999c. A new citrus cultivar ‘Miiho-core’. Bull. Fruit Tree Res. Stn. 33: 57–66 (In Japanese with English abstract).

Matsumoto, R., N. Okudai, M. Yamamoto, Y. Yamada, T. Takahara, I. Oiyama, D. Ishiuchi, K. Asada, H. Ikemiya, H. Murata, K. Yoshinaga, S. Uchihara, H. Ieki and T. Shichijo. 1999d. A new citrus cultivar ‘Hareyaka’. Bull. Fruit Tree Res. Stn. 33: 47–56 (In Japanese with English abstract).

Matsumoto, R., M. Yamamoto, T. Kuniga, N. Okudai, Y. Yamada, T. Takahara, I. Oiyama, D. Ishiuchi, H. Murata, K. Asada, H. Ikemiya, T. Shichijo, K. Yoshinaga, S. Uchihara and H. Ieki. 2003a. New citrus cultivar ‘Nishino-koari’. Bull. Natl. Inst. Fruit Tree Sci. 2: 17–23 (In Japanese with English abstract).

Matsumoto, R., M. Yamamoto, T. Kuniga, T. Yoshioka, N. Mitani, N. Okudai, Y. Yamada, K. Asada, H. Ikemiya, K. Yoshinaga, S. Uchihara and H. Murata. 2003b. New citrus cultivar ‘Setoka’. Bull. Natl. Inst. Fruit Tree Sci. 2: 25–31 (In Japanese with English abstract).

Matsumoto, R., M. Yamamoto, N. Okudai, T. Takahara, Y. Yamada, T. Kuniga, I. Oiyama, K. Asada, D. Ishiuchi, H. Ikemiya, H. Murata, S. Uchihara, K. Yoshinaga, H. Ieki and T. Iwanami. 2001. A new citrus cultivar ‘Amaka’. Bull. Fruit Tree Res. Stn. 35: 47–56 (In Japanese with English abstract).

Matsuyama, M., R. Motohashi, T. Akihama and M. Omura. 1992. DNA fingerprinting in Citrus cultivars. Breed. Sci. 42: 155–159.

Moore, G. A. 2001. Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. Trends Genet. 17: 536–540.

Moriya, S., H. Iwanami, K. Okada, T. Yamamoto and K. Abe. 2011. A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers. Euphytica 177: 135–150.

Ninomiya, T., T. Shimada, T. Endo, K. Nonaka, M. Omura and H. Fujii. 2015. Development of citrus cultivar identification by CAPS markers and parentage analysis. Hort. Res. (Japan) 14: 127–133 (In Japanese with English abstract).

Nishiura, M., T. Shichijo, I. Ueno, M. Iwamasu, T. Kihara, Y. Yamada, T. Yoshiha and T. Iwasaki. 1983a. New citrus cultivar ‘Kiyomi’ tangelo. Bull. Fruit Tree Res. Stn. B 10: 1–9 (In Japanese with English abstract).

Nishiura, M., T. Shichijo, I. Ueno, Y. Yamada, T. Kihara, M. Iwamasu and T. Iwasaki. 1983b. New citrus cultivar ‘Sweet Spring’ tangelo. Bull. Fruit Tree Res. Stn. B 10: 11–23 (In Japanese with English abstract).

Nonaka, K., T. Yoshioka, R. Matsumoto, H. Fukumachi, N. Hiehata, A. Imai, T. Kuniga and N. Mitani. 2012. A new citrus cultivar ‘Mihaya’. Hort. Res. (Japan) 11 (Suppl. 2): 84 (In Japanese).

Okudai, N., R. Matsumoto, I. Oiyama, T. Takahara, D. Ishiuchi, K. Asada and H. Murata. 1991a. New citrus cultivar ‘Nankou’. Bull. Fruit Tree Res. Stn. 20: 71–77 (In Japanese with English abstract).

Okudai, N., R. Matsumoto, I. Oiyama, T. Takahara, M. Yamamoto, K. Asada, D. Ishiuchi and H. Murata. 1991b. New citrus cultivar ‘Hayaka’. Bull. Fruit Tree Res. Stn. 21: 51–57 (In Japanese with English abstract).

Ollitrault, F., J. Terol, J. Antonio Pina, L. Navarro, M. Talon and P. Ollitrault. 2010. Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and inter-
specific transerability in *Citrus*. Amer. J. Bot. 97: e124–e129.

Ollitrault, P., J. Terol, C. Chen, C. T. Federici, S. Lotfy, I. Hippolyte, F. Ollitrault, A. Berard, A. Chauveau, J. Cuencà, G. Costantino, Y. Kacar, L. Mu, A. García-Lor, Y. Froelicher, P. Aleza, A. Boland, C. Billot, L. Navarro, F. Luro, M. L. Roose, F. G. Gmitter, M. Talon and D. Brunel. 2012. A reference genetic map of *C. clementina* hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genomics 13: 593.

Omura, M., H. Fujii, T. Shimada, T. Endo, T. Ueda and T. Shimizu. 2004. Generation of SNPs markers and application to discrimination of cultivars in *Citrus*. J. Soc. Hort. Sci. 73 (Suppl. 1): 184 (In Japanese).

Omura, M., T. Ueda, M. Kita, A. Komatsu, Y. Takanokura, T. Shimada, T. Endo, H. Nesumi, and T. Yoshida. 2003. EST mapping of *Citrus*. Proc. Int. Soc. Citricult. IX Congr. 2000: 71–74.

Parlevliet, J. E. and J. W. Cameron. 1959. Evidence on the inheritance of nuclellar embryony in *Citrus*. Proc. Amer. Soc. Hort. Sci. 74: 252–260.

Ruíz, C. and M. J. Asins. 2003. Comparison between *Poncirus* and *Citrus* genetic linkage maps. Theor. Appl. Genet. 106: 826–836.

Sato, A., M. Yamada and H. Iwanami. 2006. Estimation of the proportion of offspring having genetically crispy flesh in grape breeding. J. Amer. Soc. Hort. Sci. 131: 46–52.

Sawamura, Y., T. Saito, N. Takada, T. Yamamoto and T. Kimura. 2004. Identification of parentage of Japanese pear ‘Housui’. J. Soc. Hort. Sci. 73: 511–518.

Sawamura, Y., N. Takada, T. Yamamoto, T. Saito, T. Kimura and K. Kotoyuki. 2008. Identification of parent-offspring relationships in 55 Japanese pear cultivars using S-RNase allele and SSR markers. J. Soc. Hort. Sci. 77: 364–373.

Shichijo, T., Y. Yoshida, Y. Yamada, T. Kihara, M. Nishura, I. Ueno, T. Iwasaki, S. Ohata, Y. Shimosako, S. Nishida and I. Tabata. 1983. New citrus cultivar ‘Summer Fresh’ tangelo. Bull. Fruit Tree Res. Stn. B 10: 25–33 (In Japanese with English abstract).

Shimada, T., H. Fujii, T. Endo, T. Ueda, A. Sugiyama, M. Nakano, M. Kita, T. Yoshioka, T. Shimizu, H. Nesumi, Y. Ikoma, T. Moriguchi and M. Omura. 2014. Construction of a citrus framework genetic map anchored by 708 gene-based markers. Tree Genet. Genomes 10: 1001–1013.

Shoda, M., N. Urasaki, S. Sakiyama, S. Terakami, F. Hosaka, N. Shigeta, C. Nishitani and T. Yamamoto. 2012. DNA profiling of pineapple cultivars in Japan discriminated by SSR markers. Breed. Sci. 62: 352–359.

Takahara, T., N. Hiehata, A. Imai, T. Yoshioka, T. Kuniga, R. Matsumoto and N. Mitani. 2006. A new citrus cultivar ‘Benibae’. J. Japan. Soc. Hort. Sci. 75 (Suppl. 2): 92 (In Japanese).

Tanaka, T. 1954. Species problem in citrus: a critical study of wild and cultivated units of citrus, based upon field studies in their native homes (Revisio Aurantiacearum IX). Japan. Soc. Promotion Sci., Tokyo.

Ueda, T., F. Ikeda, M. Kita, T. Shimada, T. Endo and M. Omura. 2003. Evaluation of a CAPS method based on ESTRs in *Citrus*. Proc. Int. Soc. Citricult. IX Congr. 2000: 116–117.

Ueno, I., T. Shichijo, Y. Yamada, T. Yoshida, T. Kihara, M. Nishura, T. Hidaka and I. Iwasaki. 1985. New citrus cultivars ‘May Pummelo’ and ‘Yellow Pummelo’. Bull. Fruit Tree Res. Stn. B 12: 1–15 (In Japanese with English abstract).

Yamada, Y., N. Okudai, R. Matsumoto, M. Yamamoto, T. Takahara, I. Oiyyama, D. Ishiuchi, K. Asada, H. Ikemiya and H. Murata. 1995a. A new citrus cultivar ‘Ariake’. Bull. Fruit Tree Res. Stn. 28: 1–13 (In Japanese with English abstract).

Yamada, Y., N. Okudai, I. Oiyyama, T. Shichijo, R. Matsumoto, T. Takahara, D. Ishiuchi, M. Yamamoto, K. Asada, H. Murata, H. Ikemiya, M. Iwamasu and M. Nishuru. 1993. A new pummelo cultivar ‘Benimadoka’. Bull. Fruit Tree Res. Stn. 24: 13–22 (In Japanese with English abstract).

Yamada, M., H. Yamane, Y. Takano and Y. Ukai. 1997. Estimation of the proportion of offspring having soluble solids content in fruit exceeding a given critical value in Japanese persimmon. Euphytica 93: 119–126.

Yamada, M., H. Yamane and Y. Ukai. 1994. Genetic-analysis of Japanese persimmon fruit weight. J. Amer. Soc. Hort. Sci. 119: 1298–1302.

Yamada, M., H. Yamane and Y. Ukai. 1995b. Genetic-analysis of fruit ripening time in Japanese persimmon. J. Amer. Soc. Hort. Sci. 120: 886–890.

Yamamoto, T., K. Mochida, T. Imai, T. Haji, H. Yaegaki, M. Yamaguchi, N. Matsuta, I. Ogwara and T. Hayashi. 2003. Parentage analysis in Japanese peaches using SSR markers. Breed. Sci. 53: 35–40.

Yoshida, T., H. Nesumi, T. Yoshioka, Y. Ito, I. Ueno and Y. Yamada. 2005a. ‘Kankitsu Chukanbohon Nou 5 Gou’ (‘Citrus Parental Line Norin No. 5’) is useful for breeding seedless and early maturing cultivars. Bull. Natl. Inst. Fruit Tree Sci. 4: 47–52 (In Japanese with English abstract).

Yoshida, T., H. Nesumi, T. Yoshioka, Y. Ito, M. Yano, M. Nakano, I. Ueno, Y. Yamada, K. Ogawa, S. Murase, F. Takishita, T. Hidaka and S. Kawai. 2005b. ‘Kankitsu Chukanbohon Nou 6 Gou’ (‘Citrus Parental Line Norin No. 6’) is useful for breeding seedless and functional component-rich cultivars. Bull. Natl. Inst. Fruit Tree Sci. 4: 53–59 (In Japanese with English abstract).

Yoshida, T., H. Nesumi, T. Yoshioka, N. Nakajima and T. Kuniga. 2005c. A new citrus cultivar ‘Tamami’. J. Japan. Soc. Hort. Sci. 74 (Suppl. 1): 236 (In Japanese).

Yoshida, T., H. Nesumi, T. Yoshioka, M. Nakano, Y. Ito, S. Murase and F. Takishita. 2005d. New citrus cultivar ‘Harehime’. Bull. Natl. Inst. Fruit Tree Sci. 4: 37–45 (In Japanese with English abstract).

Yoshida, T., Y. Yamada, H. Nesumi, I. Ueno, Y. Ito, T. Yoshioka, T. Hidaka, H. Ieki, T. Shichijo, T. Kihara and S. Tominaga. 2000a. New citrus cultivar ‘Harumi’. Bull. Fruit Tree Res. Stn. 34: 43–52 (In Japanese with English abstract).

Yoshida, T., Y. Yamada, I. Ueno, T. Shichijo, H. Nesumi, T. Hidaka, Y. Ito, T. Yoshioka, T. Kihara, H. Ieki, M. Hirai and S. Tominaga. 2000b. New citrus cultivar ‘Akemi’. Bull. Fruit Tree Res. Stn. 34: 53–62 (In Japanese with English abstract).

Yoshida, T., R. Matsumoto, T. Kuniga, M. Yamamoto, T. Takahara, K. Yoshinaga, Y. Yamada, N. Mitani, N. Okudai, N. Hiehata, H. Ikemiya, A. Imai, H. Fukamachi, S. Uchihara and K. Nonaka. 2015. New citrus cultivar ‘Seinannohikari’. Bull. NARO Inst. Fruit Tree Sci. 19: 11–22 (In Japanese with English abstract).

Yoshida, T., R. Matsumoto, N. Okudai, M. Yamamoto, T. Kuniga, Y. Yamada, N. Mitani, I. Oiyyama, H. Murata, K. Asada, H. Ikemiya, S. Uchihara and K. Yoshinaga. 2009. New citrus cultivar ‘Reikou’. Bull. Natl. Inst. Fruit Tree Sci. 8: 15–23 (In Japanese with English abstract).

Yoshida, T., K. Nonaka, A. Imai, H. Fukamachi, R. Matsumoto, M. Yamamoto, T. Kuniga, N. Mitani and N. Hiehata. 2011. A new citrus cultivar ‘Tsunonozomi’. Hort. Res. (Japan) 10 (Suppl. 1): 44 (In Japanese).