Circularly Polarized Fabry–Pérot Cavity Sensing Antenna Design Using Generative Model

Kainat Yasmeen1, Kumar Vijay Mishra2, A. V. Subramanyam1, and Shobha Sundar Ram1

1Indraprastha Institute of Information Technology Delhi, New Delhi 110020, India
2United States DEVCOM Army Research Laboratory, Adelphi, MD 20783 USA

Abstract—In this letter, we consider the problem of designing a circularly polarized Fabry–Pérot cavity (FPC) antenna for S-band sensing applications, such as satellite navigation and communication. The spatial distribution of the peripheral roughness of the unit cell of FPC’s partially reflecting surface serves as an important design optimization criterion. However, the evaluation of each candidate design using a full-wave solver is computationally expensive. To this end, we propose a deep generative adversarial network (GAN) for realizing a surrogate model that is trained with input–output pairs of antenna designs and their corresponding patterns. Using the GAN framework, we quickly evaluate the characteristics of a large volume of candidate designs and choose the antenna design with an axial ratio of 0.4 dB, a gain of 7.5 dB, and a bandwidth of 269 MHz.

Index Terms—Microwave/millimeter wave sensors, circular polarization (CP), Fabry–Pérot cavity (FPC) antenna, generative adversarial network (GAN), inverse design, surrogate model.

I. INTRODUCTION

Highly directive radiation from a finite aperture is desired in many electromagnetic (EM) applications, such as radar, communications, sensing, and imaging [1], [2], [3]. Wireless sensor networks for the Internet of Things, vehicle-to-everything communications, satellite positioning, and communicating devices require circular polarization (CP) [4], [5], [6]. In these applications, CP offers the advantages of robustness to atmospheric anomalies and rain as well as reduced polarization mismatch loss between a linearly polarized (LP) antenna on a mobile unit with a circularly polarized antenna on a fixed base station. In this context, Fabry–Pérot cavity (FPC) antennas have captured significant research interest because they offer a high gain with a small aperture while retaining a simple feed structure for ease of fabrication and conformal deployment [7]. The FPC consists of a dielectric cavity encaised by a metal ground plane on one side and a partially reflecting surface (PRS) on the other. Excitation from a primary radiator within the cavity undergoes multiple reflections between the PRS and the ground plane before emanating from the antenna, resulting in an enhanced gain.

The primary FPC radiators are conventionally LP microstrip patches or slot antennas. The design of CP FPC antennas is relatively very challenging. A common way to achieve CP FPC is to employ a CP primary radiator, such as a feed point at a particular position on an asymmetric and rectangular patch [8], [9]. However, this technique suffers from low fabrication error tolerances and narrow bandwidths. Simple patches with dual-orthogonal feed structures have also been proposed [10], but a complicated feeding mechanism negates the purpose of realizing a simple single-feed high-gain FPC antenna [11]. Alternatively, an LP primary radiator is used, and the polarization is subsequently changed to CP by the PRS [12], [13].

In [7], the PRS was designed with a periodic array of unit cells where each unit cell consists of a rectangular loop with a diagonal. The resulting axial ratio (AR) of the structure was fairly low, but the antenna system was narrowband and of low gain. Our preliminary work in [14] showed that further enhancements in the bandwidth and gain could be realized by incorporating peripheral roughness in the form of bricks along the metal edges of the unit cell. However, there are considerable degrees of freedom (DoFs) in the number and distribution of the bricks along the periphery. This design is not optimal because the evaluation of each candidate design, through either EM simulations or measurements, is slow and laborious. In this letter, we propose accelerating the design optimization process by replacing the time-consuming EM simulations with rapid neural-network-based surrogate models.

In general, the antenna design often involves the optimization of several complicated and irregular geometry parameters in order to meet multiple objectives pertaining to the resonant frequency, gain, polarization, bandwidth, and size constraints. The procedure involves two time-consuming steps before the optimal design is realized: The first step is the synthesis of multiple candidate designs for evaluation. Traditionally, antenna parameters were optimized through trial and error. Later works have employed evolutionary algorithms, such as genetic algorithms and particle swarm optimization, wherein geometry parameters were optimized through an iterative synthesis of antenna designs constrained by a fitness function on the antenna characteristics [15]. In the second step, the antenna characteristics for each design are simulated using computationally expensive full-wave EM solvers involving finite-difference time-domain techniques, finite-element methods, or the method of moments.
Several recent studies have shown to reduce the computational workload during the evaluation process through machine learning techniques, including artificial neural networks [16], support vector regression [17], and deep learning (DL) networks [18], [19], [20], [21]. These methods map the nonlinear relationship between the geometric parameters and antenna characteristics using data from EM solvers. Once trained, the design process is significantly accelerated, with the surrogate model replacing the EM solver for rapidly generating the antenna behaviors for any given set of geometry parameters. In this context, deep generative adversarial networks (GANs) have emerged as a preferred DL technique to solve a wide variety of EM problems [22], [23], [24], [25], [26], [27], [28]. GANs have been shown to be effective for augmentation, classification, and regression problems [19], [27]. As a result, they have been successfully exploited for reconstructing microwave imaging profiles and metasurface design [23], [29], [30]. Some prior studies employ the GAN to obtain antenna parameters from specified antenna characteristics that include basic geometric patterns (circles, pentagons, and hexagons) [25]. A GAN works as a zero-sum game between two deep networks: generator and critic. Its objective is to implicitly learn the probabilistic distribution of a set of training samples and, subsequently, create samples of the distribution during the prediction stage [31]. The generator produces samples of a distribution from the training data, while the critic assesses the samples and decides if they are real or fake (produced by the generator). The primary advantage of using the GAN framework with two competing neural networks is that the GAN is semisupervised and requires a smaller less diverse training dataset [31].

In this letter, we propose to accelerate the CP FPC parameter optimization through a GAN-aided design procedure. The generator serves as a surrogate model for producing samples of antenna characteristics using training antenna patterns obtained from an EM solver. The inputs to the generator are the unit cell geometric parameters. Once the surrogate model is trained, we use it to simultaneously evaluate the antenna characteristics of several hundred candidate designs, eventually facilitating the choice of the optimal design with bandwidth, AR, and gain as 269 MHz, 0.4 dB, and 7.5 dBi, respectively. We demonstrate the feasibility of our proposed method through validation via full-wave simulations, fabrication of optimized antenna, and hardware measurements.

II. FPC STRUCTURE

In the FPC, the primary source of excitation is introduced within the cavity. The height of the cavity is carefully chosen such that the multiple reflections within the cavity are in phase with each other when they emanate from the antenna, thereby enhancing the gain of the primary radiator. The polarization of the resulting radiation is determined by either the polarization of the primary radiating source or the unit cell in the PRS.

Consider a basic FPC structure [see Fig. 1(a)], where a single-feed patch antenna—the primary radiator resonating at 2.4 GHz—is mounted on a Rogers 4350B substrate and impedance matched to 50 Ω through a three-stage quarter-wave transformer [see Fig. 1(b)(i)]. The other side of the substrate is a partial ground metal plate of copper [see Fig. 1(b)(ii)]. The patch radiates into a polystyrene-based dielectric cavity, which is enclosed, on the other end, by a Rogers 4350B superstrate. The inner side of the superstrate is printed with a periodic array of 4 × 4 unit cells in copper to form a PRS [see Fig. 1(b)(iii)]. Each unit cell of the PRS is a rectangular loop with a diagonal. The dimensions of this basic antenna structure (see Fig. 1) remain fixed across all the candidate designs. Then, peripheral roughness is introduced to metallic edges along each dimension of the unit cell through 36.0.5 × 0.5 mm² metal bricks [see Fig. 1(b)(iv)].

The positions of the bricks along the peripheries of the rectangular loop become the DoFs for reducing the AR while enhancing the gain and bandwidth. The position of each brick is indicated in 2-D Cartesian coordinates, with the origin assumed to be at the left lower corner of the unit cell. The antenna system with each unique unit cell design is simulated in CST Microwave Studio to obtain the electrical characteristics from 2 to 3 GHz. Since this is a 3-D antenna structure, there are approximately 6.4 million mesh cells for each design, with a simulation duration of each around 75 min, which is excessive.

III. GAN ARCHITECTURE FOR CP FPC DESIGN

We propose to reduce the resource-expensive EM simulations by replacing them with a GAN at the prediction stage. This network comprises a generator (g_\ast) and a critic (c_\ast) [see Fig. 2(a)]. During the training phase, the 2-D position coordinates of 36 bricks in the unit cell in the PRS were reshaped to a single column vector, x, of size [72 × 1].

This was concatenated with a latent noise vector, \mathcal{N} of [100 × 1] size, to prevent overfitting, and provided as input $z = (\mathcal{N} \parallel x)$, of [172 × 1] size to g_\ast. The output of the generator \hat{y} was antenna performance...
metrics (as a function of frequency): AR, return loss, and gain, each of size $[101 \times 1]$ concatenated to form a single column vector. These were input to C_y along with the real antenna characteristics, y, obtained from CST Microwave Studio for the same set of input antenna designs x. Both the GAN networks compete adversarially to optimize the weights ν and χ of G_v and C_y, respectively, based on the value function

$$V(G_v, C_y) = \mathbb{E}_{y \sim p(y)}[\log(C_y(y))] + \mathbb{E}_{x \sim p(x)}[\log(1 - C_y(G_v(x)))]$$

The training process involved iterative simultaneous stochastic gradient descent based on Adam optimization on batches of 16 samples of x, y, and \hat{y}. In each iteration, ν was updated, while χ kept constant and vice versa. The weights were normalized during each update to prevent overfitting and weighted by a regularizer $\lambda = 0.01$.

The total number of iterations was set to 10×1000. The learning rate of the stochastic gradient descent operation for both networks was 5×10^{-4}, and batch normalization was applied with a momentum of 0.8. The network G had 128, 256, and 512 nodes in the first, second, and third layers, respectively, with Leaky Rectified Linear Unit activation functions. The network C_y had similar 512 and 256 nodes in two respective hidden layers. The output layer had one node with the sigmoid function.

IV. NUMERICAL EXPERIMENTS

We implemented the DL network with Keras 2.7 and Python on an Intel Core i7-10510U processor running at 1.80 GHz and NVIDIA GeForce MX250.

A. Validation of Surrogate Model via Simulations

Consider the architecture in Fig. 2(b), where the input antenna designs (distinct from those used for training) correspond to the brick positions in the unit cell form \hat{x} and the output is the corresponding antenna characteristics $\hat{y} = G(\hat{x})$. The (fake) output \hat{y} of G was then compared with y generated from the EM solver to monitor the training process. We used 90% and 10% of a total of 300 antenna designs–pattern pairs for training and validation, respectively, with tenfold cross validation. We compared the performance metrics as a function of frequency from 2 to 3 GHz.

Training and test data in Fig. 3(a)–(c) show that these metrics vary with the spatial distribution of the peripheral roughness features, and the data were not overfitted. Finally, comparisons (see Table 1) with a multilayer perceptron (MLP) and a convolutional neural network (CNN) trained with the same data demonstrate that the GAN has the lowest normalized mean square error (NMSE) between the real and fake antenna characteristics.

B. Fabrication and Measurement Results

The simple rectangular patch is essentially an LP narrowband (20-MHz bandwidth) and low-gain (3.4-dBi) antenna. The PRS structure enhances the gain and bandwidth of the structure to 188.5 MHz, and 9.4-dBi gain (see Fig. 4) with a resonant frequency shifted from 2.4 GHz.

The unit cell design of a rectangular loop with a diagonal without roughness transforms the patch’s LP signal to an elliptically polarised wave with an AR of 7.4 dB. The peripheral roughness features reduce the AR without accounting for DoF in the metal brick distribution. The trained generator is able to analyze the antenna characteristics of 500 such designs in 20 s (as against 625 h with CST). From these 500 antenna characteristics [shown in Fig. 3(d)–(f)], we chose the design with a wide bandwidth of 269 MHz and an AR of 0.4 dB. We validated this with CST and fabricated the corresponding antenna [see Fig. 1(c)]. The measurements of gain, return loss, and the AR are carried out with a vector network analyzer N9926A and an LP reference horn antenna (HP907) with known gain characteristics. The measurements from the actual antenna show very good agreement with GAN and CST results (see Fig. 4).

Quantitative comparisons (see Table 2) with the FPC and the simple patch further demonstrate the performance enhancements with a GAN-aided design. We consider four antenna characteristics: the gain at the resonant frequency at the antenna boresight, the return loss bandwidth (ZBW), the 5-dB AR bandwidth, and the corresponding optimum AR. We observe that the proposed antenna has a wider bandwidth, lower AR, and higher gain than those of the simple patch. The proposed antenna also has a wider bandwidth and lower AR with respect to the FPC with smooth PRS, though the gain is slightly lower.

TABLE 1. NMSE of Antenna Characteristics

Methods	Gain	Axial Ratio	Return Loss
MLP	0.3	0.09	0.27
CNN	0.28	0.08	0.26
GAN	0.23	0.05	0.2

TABLE 2. Comparison With Competing Antenna Structures

Antenna	ZBW (MHz)	5dB BW (MHz)	Axial Ratio (dB)	Gain (dBi)
Simple patch	20	-	40	3.4
FPC with PRS	88.5	-	7.6	9.4
GAN-based PRS	269	100	0.4	7.5
FPC, rough PRS				

1 Simple patch is linearly polarized and hence does not have a 5dB AR bandwidth.
2 FPC with PRS is elliptically polarized with the lowest AR of 7.6dB.
V. CONCLUSION

Peripheral roughness along the edges of the unit cell of the PRS of a CP-FPC offers several DoFs for improving antenna performance. We proposed a versatile GAN-based FPC design strategy where we train a GAN to serve as a surrogate model using input–output pairs of antenna designs and their corresponding patterns obtained from the solver. The proposed design strategy enables a rapid evaluation of a large number of candidate designs. Our GAN-optimized unit cell yielded AR, gain, and bandwidth of 0.4 dB, 7.5 dBi, and 269 MHz, respectively, thereby considerably improving the performance of the original FPC structure. Fabrication and experimental validations supported the GAN results. The design files, GAN codes, and supplementary document (with the description of antenna design parameter and GAN network hyperparameters) are available at https://essrg.iiitd.edu.in/?page_id=4355.

REFERENCES

[1] F. P. Casares-Miranda, C. Camacho-Périalosa, and C. Caloz, “High-gain active composite right/left-handed leaky-wave antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 8, pp. 2922–2930, Aug. 2006.

[2] S. K. K. Dash, T. Khan, and B. K. Kanaujia, “Circularly polarized dual facet spiral fed compact triangular dielectric resonator antenna for sensing applications,” IEEE Sens. Lett., vol. 2, no. 1, Mar. 2018, Art. no. 3500404.

[3] B. Rana and S. K. Purai, “Microstrip line fed circularly-polarized dielectric resonator antenna array for microwave imaging sensing,” IEEE Sens. Lett., vol. 1, no. 3, Jun. 2017, Art. no. 3500604.

[4] E. Arnaud, L. Huitena, R. Chantalat, A. Bellion, and T. Monediere, “Miniaturization of a circular polarized antenna using ferrite materials,” in Proc. 12th Eur. Conf. Antennas Propag., 2018, pp. 1–5.

[5] Y.-W. Zhong, G.-M. Yang, J.-Y. Mo, and L.-R. Zheng, “Compact circularly polarized archimedean spiral antenna for ultrawideband communication applications,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 129–132, 2017.

[6] A. Khidre, K.-E. Lee, F. Yang, and A. Z. Elsherbeni, “Circular polarization reconfigurable wideband E-shaped patch antenna for wireless applications,” IEEE Trans. Antennas Propag., vol. 61, no. 2, pp. 960–964, Feb. 2013.

[7] R. Otr, G. Gousettes, and V. Fusco, “Design method for circularly polarized Fabry-Pérot cavity antennas,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 19–26, Jan. 2014.

[8] X. Nasimuddin Qing and Z. N. Chen, “Compact asymmetric slit microstrip antennas for circular polarization,” IEEE Trans. Antennas Propag., vol. 59, no. 1, pp. 285–288, Jan. 2011.

[9] R. P. Sharma and K. Gupta, “Analysis and optimized design of single feed circularly polarized microstrip antennas,” IEEE Trans. Antennas Propag., vol. AP-31, no. 6, pp. 949–955, Nov. 1983.

[10] K.-B. Kim, B. C. Jung, and J.-M. Woo, “A compact dual-polarized (CP, LP) with dual-feed microstrip patch array for target detection,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 4, pp. 517–521, Apr. 2020.

[11] K. Carver and J. Mink, “Microstrip antenna technology,” IEEE Trans. Antennas Propag., vol. AP-29, no. 1, pp. 2–24, Jan. 1981.

[12] H. Zhu, S. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4615–4623, Sep. 2013.

[13] L. Liu, S. Cheung, and T. Yuk, “Compact MIMO antenna for portable UWB applications with band-notched characteristics,” IEEE Trans. Antennas Propag., vol. 63, no. 5, pp. 1917–1924, May 2015.

[14] S. Jain and S. S. Ram, “Circularly polarized Fabry-Pérot cavity antennas with peripheral roughness in superstrate unit cells,” in Proc. IEEE Int. Radar Conf., 2020, pp. 83–87.

[15] N. Jin and Y. Rahmat-Samii, “Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3459–3468, Nov. 2005.

[16] M. Sedadhat, R. Trinchero, Z. H. Firoozeh, and F. G. Canavero, “Compressed machine learning-based inverse model for design optimization of microwave components,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 7, pp. 3415–3427, Jul. 2022.

[17] D. R. Prado, J. A. López-Fernández, M. Arrebola, M. R. Pino, and G. Goussetis, “Wideband shaped-beam reflectarray design using vector regression analysis,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 11, pp. 2287–2291, Nov. 2019.

[18] J. A. Hodge, K. V. Mishra, and A. I. Zaghoul, “RF metasurface array design using deep convolutional generative adversarial networks,” in Proc. IEEE Int. Symp. Phased Array Syst. Technol., 2019, pp. 1–6.

[19] J. A. Hodge, K. V. Mishra, and A. I. Zaghoul, “Joint multi-layer GAN-based design of tensorial RF metasurfaces,” in Proc. IEEE Int. Workshop Mach. Learn. Signal Process., 2019, pp. 1–6.

[20] S. Liagat, K. Dashtipour, K. Arshad, K. Assaleh, and N. Ramzan, “A hybrid posture detection framework: Integrating machine learning and deep neural networks,” IEEE Sens. J., vol. 21, no. 7, pp. 9515–9525, Apr. 2021.

[21] J. Xiao, Z. Liu, P. Zhao, Y. Li, and J. Hao, “Deep learning image reconstruction simulation for electromagnetic tomography,” IEEE Sens. J., vol. 18, no. 8, pp. 3290–3298, Apr. 2018.

[22] I. Almujaim, S. S. Ram, D. Oh, and Y. Kim, “Synthesis of micro-Doppler signatures of human activities from different aspect angles using generative adversarial networks,” IEEE Access, vol. 9, pp. 46422–46429, 2021.

[23] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative model for the inverse design of metasurfaces,” Nano Lett., vol. 18, no. 10, pp. 6570–6576, 2018.

[24] J. A. Hodge, K. V. Mishra, and A. I. Zaghoul, “Multi-discriminator distributed generative model for multi-layer RF metasurface discovery,” in Proc. IEEE Glob. Conf. Signal Inf. Process., 2019, pp. 1–5.

[25] M. Liu, H. Zhang, M. Lu, and J. Song, “Generative adversarial network-based design of dielectric resonator antenna for mmWave 5G applications,” in Proc. IEEE Int. Symp. Antennas Propag./USNC-URSI Radio Sci. Meeting, 2021, pp. 1877–1878.

[26] J. Vijayamohanan, O. Noakoasteen, A. Gupta, M. Martínez-Ramón, and C. G. Christodoulou, “On antenna Q-factor characterization with generative adversarial networks,” in Proc. IEEE Int. Symp. Antennas Propag./North Amer. Radio Sci. Meeting, 2020, pp. 1643–1644.

[27] X. Ye, Y. Bai, R. Song, K. Xu, and J. An, “An inhomogeneous background imaging method based on generative adversarial network,” IEEE Microw. Theory Techn., vol. 68, no. 11, pp. 4684–4693, Nov. 2020.

[28] H. Zhang et al., “Image reconstruction for electrical impedance tomography (EIT) with improved Wasserstein generative adversarial network (WGANS),” IEEE Sens. J., early access, doi:10.1109/SENS.2022.3197663.

[29] W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltaeva, W. Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nature Photon., vol. 15, no. 2, pp. 77–90, 2021.

[30] Z. Ma, K. Xu, R. Song, C.-F. Wang, and X. Chen, “Learning-based fast electromagnetic scattering solver through generative adversarial network,” IEEE Trans. Antennas Propag., vol. 69, no. 4, pp. 2194–2208, Apr. 2021.

[31] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2014, pp. 2672–2680.