COVID-19: a importância da fisioterapia na recuperação da saúde do trabalhador

Luís Eduardo Santos Paz, Bruno José da Silva Bezerra, Taciane Machado de Melo Pereira, Welma Emidio da Silva

RESUMO | É inegável o impacto econômico e social que a doença do coronavírus-19 (COVID-19) pode trazer, uma vez que elevados contingentes de trabalhadores ativos da produção e prestação de serviços estão sendo contaminados. Além disso, os infectados podem apresentar sequelas a longo prazo, prejudicando sua capacidade funcional e, consequentemente, as atividades laborais. Este artigo analisou as repercussões da COVID-19 sobre a saúde do trabalhador, enfatizando a importância da fisioterapia na recuperação dos infectados. Trata-se de uma revisão integrativa da literatura, realizada nas bases de dados eletrônicos PubMed, SciELO e LILACS, utilizando os descritores: COVID-19, fisioterapia, reabilitação e saúde do trabalhador. Dos 1.308 estudos encontrados, apenas 15 se enquadraram nos critérios de inclusão. A leitura dos materiais selecionados permitiu estabelecer quatro eixos temáticos que correspondem aos resultados do estudo: 1) repercussões da COVID-19 sobre a saúde do trabalhador; 2) fisioterapia em casos leves e moderados não hospitalizados; 3) fisioterapia em hospitalizados com COVID-19; e 4) fisioterapia na recuperação pós-unidade de terapia intensiva e alta hospitalar. Foi possível constatar que a COVID-19 pode trazer repercussões em diversos sistemas e causar sequelas a curto e longo prazo, causando incapacidades físicas e psicológicas nos pacientes. É de suma importância a presença do fisioterapeuta no enfrentamento dessa doença para a recuperação das capacidades funcionais normais do organismo, proporcionando o retorno do indivíduo ao mercado de trabalho de forma rápida, segura e eficaz.

Palavras-chave | fisioterapia; COVID-19; reabilitação; saúde do trabalhador.

ABSTRACT | Coronavirus disease 2019 (COVID-19) is likely to have a major impact on society and the economy since the illness is currently infecting a significant number of active workers in the industry and service sectors. The illness can have long-term consequences for patients, affecting their functional capacity and, consequently, their occupational performance. This study analyzed the effects of COVID-19 on occupational health, with a focus on the importance of physical therapy in rehabilitation. An integrative literature review was conducted based on articles retrieved from the PubMed, SciELO, and LILACS databases using the following keywords: COVID-19, physical therapy, rehabilitation, and occupational health. The search retrieved 1,308 studies, 15 of which met inclusion criteria for the review. A thorough assessment of the articles revealed four topics that corresponded to the results of this study: 1) effects of COVID-19 on occupational health; 2) physical therapy in mild and moderate cases without hospitalization; 3) physical therapy in hospitalized patients with COVID-19; 4) physical therapy in post-intensive care unit (ICU) recovery and after hospital discharge. The findings showed that COVID-19 can affect several physiological systems and have both short- and long-term effects on patients, including physical and psychological impairments. Physical therapists must be involved in the battle against this illness to help patients recover their physical function and return to work as quickly, safely, and effectively as possible.

Keywords | physical therapy; COVID-19; rehabilitation; workers’ health.
A doença do coronavírus-19 (COVID-19) é o termo utilizado para designar uma doença ocasionada pela infecção do novo coronavírus [síndrome respiratória aguda grave do coronavírus (SARS-CoV-2)], que teve seu surto inicial em dezembro de 2019 na cidade de Wuhan, na China, espalhando-se rapidamente por diversos países no mundo1. A rápida disseminação em escala global, com alta taxa de infeção e morte, fez com que em 30 de janeiro de 2020 a Organização Mundial de Saúde (OMS) a declarasse como uma emergência de saúde pública de importância internacional e, em 11 março do mesmo ano, como uma pandemia2,3.

O SARS-CoV-2 é um vírus de RNA de fita simples, pertencente à família Coronaviridae. Essa família apresenta representantes que infectam tanto humanos como uma grande variedade de animais, causando infecções que podem variar de assintomáticas a graves4. Nos humanos, a forma leve ou oligo sintomática da infecção por esse vírus apresenta quadro clínico caracterizado por febre, tosse, coriza, dor de garganta, anosmia, ageusia, astenia, dispneia leve, hiporexia, náusea, diarreia e vômito5. Porém, a infecção pode progredir para a doença respiratória aguda grave [severe acute respiratory syndrome (SARS)], levando a dispneia grave, pneumonia e até morte do indivíduo6.

O coronavírus responsável pela COVID-19 pode apresentar repercussões que vão além do comprometimento do sistema respiratório, prejudicando diversos sistemas, incluindo cardiovascular, renal, gastrointestinal, endócrino, nervoso e musculoesquelético7,8. Também se sabe que idade avançada e comorbidades, como tabagismo, obesidade, diabetes mellitus, hipertensão, cardiopatias e problemas respiratórios prévios podem ser fatores de risco para pacientes graves em comparação com os não graves9.

Além disso, os pacientes com SARS normalmente necessitam de internação hospitalar prolongada com necessidade de ventilação mecânica, fazendo com que esses indivíduos possam vivenciar sérios efeitos colaterais com o desenvolvimento da chamada síndrome pós-cuidados intensivos10,11. Essa síndrome é caracterizada por alterações de ordem física, cognitiva e psiquiátrica, que repercutem na qualidade de vida do paciente, mesmo após a hospitalização12.

A literatura especializada traz dados que mostram que pacientes que apresentaram SARS pela forma mais antiga do coronavírus apresentaram redução da capacidade respiratória e limitações musculoesqueléticas anos após o término da doença13,14. Além disso, indivíduos não infectados ou assintomáticos podem sofrer redução da capacidade funcional em decorrência do sedentarismo durante o isolamento social, principalmente nos que já apresentavam patologias relacionadas ao sistema musculoesquelético15. Tais dados permitem concluir que a COVID-19 pode trazer repercussões, diretas e indiretas, a médio e longo prazo sobre a saúde. Assim, é inegável o impacto econômico e social que a COVID-19 pode trazer, uma vez que elevados contingentes de trabalhadores ativos da produção e prestação de serviços, especialmente os com funções na área da saúde, estão sendo infectados pelo novo coronavírus16.

Nesse contexto, os fisioterapeutas têm um papel fundamental no enfrentamento da pandemia causada pela COVID-19, pois apresentam recursos que podem ajudar na prevenção e reabilitação das sequelas ocasionadas pela doença15, além de ajudar na otimização da independência funcional e facilitar a reintegração do indivíduo na sociedade e no mercado de trabalho. O objetivo deste estudo foi analisar as repercussões da COVID-19 sobre a saúde do trabalhador, enfatizando a importância da fisioterapia para a reabilitação.

MÉTODOS

Para atender aos objetivos propostos, realizou-se uma revisão integrativa da literatura. A revisão foi conduzida através das seguintes etapas: identificação do tema, definição da questão da pesquisa, delineamento metodológico, estabelecimento dos critérios de inclusão e exclusão, coleta e seleção de dados, avaliação dos estudos incluídos na revisão, interpretação dos resultados e apresentação da revisão. A coleta de dados foi realizada nas bases de dados United States National Library of Medicine (PubMed), Scientific Electronic Library Online (SciELO) e Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), no mês de agosto de 2020, utilizando os Descritores em Ciências da Saúde (DeCS): COVID-19, fisioterapia, reabilitação e saúde do
trabalhador, bem como seus correspondentes em inglês. Os descritores foram utilizados em diversas combinações e a expressão booleana “AND” foi utilizada a fim de localizar os registros que contivessem simultaneamente os descritores desejados.

Foram utilizados os seguintes critérios de inclusão: estudos disponíveis na íntegra; textos publicados no idioma inglês, espanhol e/ou português; artigos que tivessem como assuntos principais “sequelas da COVID-19”, “COVID-19 e fisioterapia” e “COVID-19 e saúde do trabalhador”. Foram excluídos os publicados em duplicatas e os que não apresentavam relação com o objetivo do estudo. Uma busca manual adicional, a partir das referências dos principais artigos selecionados, também foi realizada para identificar estudos relevantes não detectados na busca eletrônica. Somando os resultados de todas as bases de dados, foram encontrados 1.308 artigos. Após a análise dos títulos e dos critérios de inclusão, 202 estudos foram selecionados para a leitura dos resumos e abstracts. Desses, 32 foram eleitos para análise do texto na íntegra. Após a leitura dos textos, 12 foram excluídos, restando apenas 15 para compor a revisão. A Figura 1 mostra a estratégia de busca e seleção dos estudos.

RESULTADOS E DISCUSSÃO

Dos 15 artigos analisados, 7 eram chineses, 3 estadunidenses, 2 brasileiros, 1 italiano, 1 inglês e 1 multicêntrico, sendo que 7 eram descritivos, 2 eram revisões bibliográficas, 2 eram relatos de experiência, 2 eram documentos oficiais, 1 era descritivo e 1 era quase experimental (Tabela 1).

A análise dos estudos selecionados permitiu verificar que, apesar de haver uma grande quantidade de publicações sobre a COVID-19 no último ano, trabalhos

Figura 1. Fluxograma do método de coleta e seleção dos estudos. LILACS = Literatura Latino-Americana e do Caribe em Ciências da Saúde; PubMed = United States National Library of Medicine; SciELO = Scientific Electronic Library Online.
que avaliam as repercussões dessa doença sobre a saúde do trabalhador, bem como a atuação dos fisioterapeutas junto a esses indivíduos, ainda são incipientes. No entanto, alguns estudos emergentes foram desenvolvidos a partir de descrições clínicas em pacientes com COVID-19, principalmente da China, epicentro da doença. Além disso, especialistas, entidades de classe e associações profissionais de vários países têm publicado recomendações para o tratamento dos pacientes. As recomendações têm sido formuladas com base na experiência de países que já enfrentaram ou enfrentam um grande número de casos de COVID-19, em publicações sobre o tratamento de outras coronaviroses e em estudos sobre a SARS não causada por coronavírus.

A leitura do material permitiu estabelecer quatro eixos temáticos para nortear esta revisão: 1) repercussões da COVID-19 sobre a saúde do trabalhador; 2) fisioterapia em casos leves e moderados não hospitalizados; 3) fisioterapia

Tabela 1. Sumarização das fontes bibliográficas selecionadas, segundo autoria, origem, tipo de artigo, objetivos e relação temática

Autor	Origem	Tipo de artigo	Objetivo	Relação temática
Wang et al.¹⁷	China	Descritivo e exploratório	Entender os níveis de impacto psicológico, ansiedade, depressão e estresse durante o estágio inicial do surto de COVID-19.	COVID-19 e repercussões clínicas
Iannaccon et al.²⁰	Itália	Relatório de experiência	Identificar as barreiras para a recuperação funcional de pacientes com COVID-19 e fornecer sugestões para a configuração de procedimento clínico padrão especializado.	COVID-19 e reabilitação
Zhou et al.¹⁹	China	Descritivo e exploratório	Explorar fatores de risco de morte hospitalar e descrever o curso clínico dos sintomas da COVID-19.	COVID-19 e repercussões clínicas
Rede CoVida²⁰	Brasil	Bibliográfico	Avaliar os riscos e vulnerabilidades da saúde do trabalhador na pandemia de COVID-19.	COVID-19 e saúde do trabalhador
Guan et al.²¹	China	Descritivo e exploratório	Analisar as características clínicas de COVID-19.	COVID-19 e repercussões clínicas
Baker et al.²²	Estados Unidos	Descritivo e exploratório	Quantificar o número de trabalhadores expostos a infecções e doenças no local de trabalho, e compreender quais grupos ocupacionais eles representam.	COVID-19 e saúde do trabalhador
Lan et al.²³	Estados Unidos	Descritivo e exploratório	Identificar ocupações de alto risco para a transmissão local da COVID-19.	COVID-19 e saúde do trabalhador
Wu & McGoogan²⁴	China	Descritivo e exploratório	Analisar todos os casos diagnosticados até 11 de fevereiro de 2020.	COVID-19 e repercussões clínicas
Thomas et al.²⁵	China	Recomendação	Padronizar as técnicas e procedimentos de reabilitação respiratória.	COVID-19 e reabilitação
PAHO²⁶	Estados Unidos	Documento oficial	Considerações e recomendações de reabilitação.	COVID-19 e reabilitação
Halpin et al.²⁷	Inglaterra	Descritivo e exploratório	Examinar o impacto da COVID-19 nos sobreviventes que receberam alta hospitalar.	COVID-19 e repercussões clínicas
Liu et al.²⁸	China	Quase experimental	Investigar os efeitos do treinamento de reabilitação respiratória de 6 semanas, na função respiratória, qualidade de vida, mobilidade e função psicológica em pacientes idosos com COVID-19.	COVID-19 e reabilitação
Wang et al.²⁹	China	Bibliográfico	Servir como um guia e ponto de partida para o gerenciamento contínuo de questões de reabilitação funcionais e comorbidades relacionadas à COVID-19.	COVID-19 e reabilitação
Carda et al.³⁰	Multicêntrico	Relatório de experiência	Compartilhar experiência e perspectivas de diferentes centros de reabilitação de COVID-19.	COVID-19, repercussões clínicas e reabilitação
Brasil³¹	Brasil	Boletim epidemiológico	Divulgar os dados epidemiológicos e da estrutura para enfrentamento da COVID-19 no Brasil.	COVID-19, repercussões clínicas e saúde do trabalhador

COVID-19 = doença do coronavírus 2019; PAHO = Pan American Health Organization.
em hospitalizados com COVID-19; e 4) fisioterapia na recuperação pós-unidade de terapia intensiva (UTI) e alta hospitalar.

REPERCUSSÕES DA COVID-19 SOBRE A SAÚDE DO TRABALHADOR

Nos humanos, o espectro clínico da infecção por coronavírus é muito amplo, podendo variar de um simples resfriado até enfermidades mais graves, como as epidemias causadas pelo SARS-CoV em 2002 e pelo coronavírus da síndrome respiratória do Oriente Médio (MERS-CoV) em 2012 e 2015. No final de 2019, uma nova cepa de coronavírus foi identificada por causar surtos de doenças respiratórias em seres humanos e foi denominada temporariamente de novo coronavírus de 2019 (2019-nCoV). Estudos de sequenciamento genético confirmaram a existência de uma nova cepa de coronavírus, que foi classificada na subfamília Betacoronavirus e passou a se chamar coronavírus da SARS-CoV-2, marcando o terceiro contágio de um coronavírus animal em humanos em menos de duas décadas.

Apesar de a infecção humana pelo SARS-CoV-2 ser recente e o espectro clínico não estar descrito completamente, atualmente se sabe que o vírus é altamente patogênico e responsável por infectar o trato respiratório superior e inferior, com risco de letalidade. A infecção está relacionada à afinidade pelo receptor de membrana da enzima conversora de angiotensina II (ACE2), que desempenha um papel fundamental no sistema renina-angiotensina-aldosterona, envolvendo a regulação da pressão arterial e da homeostase eletrolítica. A ACE2 é amplamente expressa nas células pulmonares e em diversos tecidos extrapulmonares, tais como gastrointestinais, cardíaco, endoteliais, pele, músculo liso e mucosas oral e nasal, que, ao serem infectados, aumentam a produção de ACE2, de proteínas que inibem o sistema imunitário e a liberação de citocinas inflamatórias. Como a ACE2 é amplamente expressa em células alveolares do tipo II, os pulmões são órgãos com grande comprometimento. No entanto, a ampla distribuição em outros órgãos permite que a COVID-19 apresente quadros com comprometimento em diversos sistemas.

Embora os pacientes possam ser afetados de maneira multissistêmica, a COVID-19 se apresenta nos pacientes sintomáticos de formas diferentes, sendo a maioria dos casos leve a moderado. Porém, a infecção pode progredir para o estágio grave, com o desenvolvimento de problemas respiratórios graves, pneumonia viral e até morte. Normalmente, os sinais e sintomas se iniciam 5-6 dias, em média, após a infeção (período médio de incubação 5-6 dias, intervalo de 1-14 dias). A evolução sintomática é caracterizada por duas fases: a aguda, em que prevalecem os sintomas respiratórios; e a pós-aguda, em que os pacientes podem apresentar sintomas relacionados a imobilização prolongada, a disfunções respiratórias anteriores e a distúrbios cognitivos e emocionais.

Estudos revelam que os indivíduos com maior risco de desenvolver a forma grave da doença são os que apresentam idade avançada, obesidade, cardiopatias, imunossupressão e problemas respiratórios preexistentes. Nesse contexto, trabalhos recentes reportam que, devido ao fato de o SARS-CoV-2 se ligar às células-alvo dos hospedeiros através do domínio peptidase da ECA2, o que facilita a sua entrada e replicação, pessoas que fazem uso de medicamentos inibidores da enzima conversora de angiotensina e/ou bloqueadores dos receptores da angiotensina II tipo I, como é o caso dos diabéticos e hipertensos, também possuem maior facilidade de desenvolver COVID-19 grave.

Dessa forma, as repercussões que a COVID-19 pode trazer para a saúde humana tornam-se preocupantes, principalmente quando se sabe que grande parte dos infectados é de pessoas em idade produtiva, obesidade, cardiopatias, imunossupressão e problemas respiratórios preexistentes. Um estudo realizado na China com 1.099 pessoas com COVID-19 verificou que a idade média dos pacientes era de 47 anos. Uma metanálise de estudos clínicos sobre COVID-19 averiguou que a idade média dos 46.959 infectados pelo SARS-CoV-2 era de 46,62 anos, sendo 55,6% do sexo masculino (intervalo de confiança de 95%)

A literatura mostra que casos de contaminação foram atribuídos ao exercício profissional de diversas categorias de trabalho, e que tanto o exercício das atividades laborais quanto as condições de trabalho são fontes potenciais de exposição ao vírus e de disseminação da doença. No início do surto, trabalhadores e clientes de um mercado atacadista de frutos do mar em Wuhan, na China, estiveram entre os primeiros casos de pessoas infectadas. Em Singapura, 68% dos casos iniciais de contaminação...
Repercussão da COVID-19 sobre a saúde do trabalhador

comunitária foram atribuídos ao exercício profissional41. Um estudo que avaliou casos confirmados de COVID-19 de seis países asiáticos (Hong Kong, Japão, Cingapura, Taiwan, Tailândia e Vietnã) identificou que 14,9% estavam relacionados ao trabalho e que os grupos de ocupação mais afetados foram das áreas da saúde (22%), transporte (18%), serviços e vendedores (18%), limpeza e empregados domésticos (9%) e segurança pública (7%)4. Esses dados também foram verificados por Lan et al.23. O relatório do Centers for Disease Control and Prevention registrou 55% das hospitalizações e evolução mais grave da doença entre pessoas não brancas e associou a maior vulnerabilidade dessas pessoas tanto às desigualdades das condições de moradia e saúde como às condições de trabalho43.

É importante destacar que, no Brasil, além dos casos gerais, o número de profissionais afastados, infectados ou mortos em decorrência da COVID-19 passa por uma subnotificação. O Ministério da Saúde (MS) recebeu a primeira notificação de um caso confirmado de COVID-19 no Brasil em 26 de fevereiro de 2020, sendo que a variável “ocupação” foi incluída apenas em 31 de março de 2020 na ficha de registro individual dos casos de SARS hospitalizados, a qual é disponibilizada pelo Sistema de Informação de Vigilância da Gripe (SIVEP-Gripe)20,31. Mesmo assim, dados do SIVEP-Gripe entre os meses de janeiro à primeira quinzena de abril de 2020 revelaram que, entre os 53.733 casos notificados, apenas 1,7% apresentava registro de ocupação20. Essa situação limita a vigilância em saúde do trabalhador e inviabiliza a análise de risco entre as diversas categorias profissionais, comprometendo estratégias de enfrentamento à doença nos ambientes de trabalho. Até o momento, pouco se discute sobre as condições e organização do trabalho, prevalecendo apenas protocolos com recomendação de medidas individuais de higienização e distanciamento social20,44.

FISIOTERAPIA EM CASOS LEVES E MODERADOS NÃO HOSPITALIZADOS

A COVID-19 é classificada em quatro níveis, de acordo com a gravidade da doença: leve, moderado, grave e crítico46. Segundo o MS, a maioria dos infectados (cerca de 80%) pelo SARS-CoV-2 apresenta quadros leves ou moderados da doença, que se caracterizam por sintomas que incluem mal-estar, febre, fadiga, tosse, dispneia leve, anorexia, dor de garganta, dor no corpo, dor de cabeça, congestão nasal, diarreia, náusea e vômito5,16. Também tem sido observada a presença de hiposmia/anosmia e ageusia47.

Nos casos leves, os pacientes apresentam um quadro de síndrome gripal e não apresentam características radiográficas, diferentemente dos moderados46. É importante ressaltar que a febre pode não estar presente em alguns casos, como, por exemplo, em pacientes jovens, idosos, imunossuprimidos ou em algumas situações em que possam ter utilizado medicamentos antiinflamatórios48. A literatura analisada mostra que esses pacientes podem ser manejados com medidas simples de controle de sintomas46, e geralmente não há necessidade de hospitalização. Contudo, eles necessitam permanecer em isolamento...
domiciliar por 14 dias após o surgimento dos sintomas, cuidando da sua saúde e evitando a propagação do vírus. Nessa situação, medidas não farmacológicas de prevenção podem ser adotadas a fim de evitar o agravoamento do quadro clínico48,49.

Os profissionais de reabilitação têm um papel fundamental no período de isolamento, ajudando a otimizar a independência funcional e melhorar a qualidade de vida. Estudos indicam que, durante a fase de isolamento, os pacientes naturalmente aumentam o tempo em que ficam sentados ou deitados, o que pode contribuir para maior intolerância ao exercício; redução de força muscular; aparição de sintomas musculoesqueléticos, como dor miofascial e artralgias, bem como risco de trombose venosa profunda31. Nesse contexto, é recomendado que, além de exercícios aeróbicos de baixa intensidade, exercícios de força muscular, de equilíbrio e alongamentos sejam incluídos no protocolo de tratamento fisioterápico desses indivíduos30. As recomendações estão baseadas em evidências científicas que mostram a ação de exercícios físicos no fortalecimento do sistema cardiovascular, imunológico e funções fisiológicas do corpo51.

No caso de condutas respiratórias, o fisioterapeuta pode atuar com o objetivo de melhorar a função respiratória e proceder ao rastreio para indicação ou não de hospitalização, com base na avaliação da dispneia e da saturação de oxigênio por oximetria de pulso (SpO\textsubscript{2}). A literatura recomenda exercícios respiratórios para os casos leves, a fim de que ajudem na melhora da saúde respiratória e no prognóstico da doença52. Em pacientes com tosse e dificuldades de expectoração, técnicas de remoção de secreção devem ser empregadas. No entanto, é importante ressaltar que essas técnicas são consideradas de alto risco, pois produzem e expandem microgotículas, o que poderia aumentar o risco de transmissão do SARS-CoV-2. Portanto, ações/técnicas que envolvam alteração de fluxo respiratório e drenagem de secreção devem ser consideradas após análise criteriosa da relação risco/benefício53.

Os conselhos profissionais da fisioterapia no Brasil, com o intuito de reduzir a infeção pelo novo coronavírus, liberaram os serviços de teleconsultas, teleconsultoria e telemonitoramento como ferramentas aplicáveis e reprodutíveis para permitir a supervisão e atenção aos pacientes que necessitam de intervenção clínica54. Dessa forma, o contato com o paciente só deve acontecer quando a realização de exame físico ou aplicação de técnicas específicas for necessária.

FISIOTERAPIA EM HOSPITALIZADOS COM COVID-19

Estudos mostram que, de 80% dos indivíduos diagnosticados com COVID-19, apenas 20% necessitam de hospitalização. Entre os hospitalizados, cerca de 15% atinge a forma grave da doença e 5%, a forma crítica, necessitando de acesso à UTI30. Até o momento, se tem verificado que os principais sintomas apresentados por pacientes internados com COVID-19 incluem febre, tosse, falta de ar, dor muscular, confusão mental, dor de cabeça, dor de garganta, rinorrea, dor no peito, diarreia, náusea e vômito4,55,56. Uma análise realizada em 1.099 pessoas admitidas em hospitais na China com COVID-19 registrou a presença de linfopenia e opacidade em vidro fosco em 83,2 e 56,4%, respectivamente21.

Nos casos de internações graves, a saúde respiratória está comprometida, e o paciente normalmente apresenta dispneia, pressão persistente no tórax, saturação de O\textsubscript{2} menor que 95% em ar ambiente, PaO\textsubscript{2}/FiO\textsubscript{2} menor que 300 mmHg, cianose e febre alta, caracterizando a SARS46. Também há registros de mialgia, rinorrea, cefaleia e pneumonia bilateral. Nas situações de complicações respiratórias, são necessárias internações em UTI e, consequentemente, uso de ventiladores mecânicos para o suporte respiratório4,55.

Os pacientes críticos, por sua vez, são marcados por insuficiência respiratória, choque séptico e insuficiência de múltiplos órgãos3,55. Também se sabe que pacientes em estado crítico são acometidos por diferentes graus de disfunção muscular e comprometimento cognitivo12,56. O resultado de uma análise descritiva exploratória realizada a partir de dados extraídos do sistema de informação de doenças infecciosas da China mostrou uma taxa de letalidade em 49% dos casos críticos. Pacientes com comorbidades (doença cardiovascular, diabetes, doença respiratória crônica, hipertensão e câncer) tiveram taxas de letalidade mais altas (10,5, 7,3, 6,5, 6 e 5,6%, respectivamente) do que aqueles sem comorbidades34.

Dessa forma, os pacientes com COVID-19, principalmente os sujeitos frágeis, expressam necessidades específicas de reabilitação por um equipe...
Repercussão da COVID-19 sobre a saúde do trabalhador

multidisciplinar\(^{18,57}\). O fisioterapeuta tem sido um profissional bastante requisitado no ambiente hospitalar para enfrentamento da pandemia pelo novo coronavírus, uma vez que a atuação desses profissionais no tratamento e recuperação dos indivíduos admitidos em unidades de saúde com a COVID-19 pode acontecer tanto na fase mais precoce da doença como nos níveis mais graves\(^{15}\).

Para o paciente que ingresse na unidade hospitalar com quadro moderado, o fisioterapeuta pode atuar na fisioterapia preventiva para evitar o agravamento dos sintomas, bem como na avaliação constante da necessidade de fisioterapia respiratória\(^{53}\). Nos casos em que a infecção gera tosse produtiva, que, de acordo com evidências publicadas, ocorre em 34% dos pacientes\(^{21}\), a execução de técnicas respiratórias com o intuito de aumentar a permeabilidade das vias aéreas e prevenir o acúmulo de secreções brônquicas são recomendadas\(^{25,53}\). Acreditase que as técnicas proporcionam melhora na mecânica respiratória através do aumento da complacência pulmonar dinâmica\(^{58}\). Tais técnicas são essenciais, principalmente em infectados com comorbidades preexistentes que podem estar associadas à hiperventilação ou tosse ineficaz, como é o caso de portadores de doença neuromuscular, doença respiratória e fibrose cística\(^{25}\).

No entanto, o papel do fisioterapeuta não se restringe ao sistema respiratório; esse profissional permanece indisponível aos pacientes internados com a fase aguda da doença, minimizando ou neutralizando os efeitos negativos do imobilismo do período de hospitalização\(^{15}\). Nesses casos, o fisioterapeuta vai conduzir exercícios voltados para o fortalecimento da musculatura periférica, mudança de posição e mobilização, com o objetivo de manter o paciente ativo e minimizar os déficits musculoesqueléticos. Porém, tais atividades só são recomendadas quando a situação clínica do paciente permitir\(^{50}\), o que torna necessário o monitoramento das constantes, principalmente a SpO\(_3\), para garantir a segurança durante a intervenção\(^{59}\).

Nos casos graves, a fisioterapia é considerada parte fundamental do atendimento oferecido na terapia intensiva dos pacientes. O fisioterapeuta é um dos responsáveis pelo funcionamento dessas unidades, pois oferece subsídios essenciais em casos de pacientes considerados graves, que necessitam de suporte ventilatório. Sua atuação inicia já nas primeiras etapas, ou seja, na preparação e ajustes do ventilador, até a intubação, desmame e extubação\(^{59,60}\). Além disso, o profissional desenvolve procedimentos a fim de prevenir e/ou tratar complicações comuns nas UTIs, tais como neuropatia, miopatia, contraturas, trombose e instabilidade postural\(^{10,11}\).

Segundo Wujtewicz et al.\(^{61}\), os pacientes graves apresentam pneumonia e, geralmente, evoluem rapidamente para insuficiência respiratória aguda hipoxêmica e síndrome do desconforto respiratório agudo na sua apresentação mais grave, necessitando de oxigenação suplementar. Além disso, tem sido constatado que pacientes com ventilação espontânea podem subitamente evoluir para necessidade de intubação e instituição de ventilação mecânica. Por esse motivo, a maioria, senão todos, dos pacientes graves necessita de oxigenoterapia ou ventilação mecânica invasiva (VMI), sendo necessária atenção fisioterapêutica intensiva\(^{59}\).

É importante salientar que a VMI tem sido associada a diversas complicações no paciente, como o baro/volutrauma, condicionamento da abolição dos mecanismos de defesa fisiológicos da via aérea superior, necessidade de sedo-analgésia, e aumento do risco de intercorrências infecciosas. Além disso, alguns pacientes apresentam importantes taxas de intolerância à ventilação mecânica não invasiva (VMNI), sendo lesões cutâneas, irritação ocular, secura das mucosas, clausfobia e risco de lesão pulmonar por excesso de oxigênio as complicações mais frequentes\(^{62,63}\). Tais dados são preocupantes, pois um estudo realizado com 302 pacientes com MERS demonstrou que a maioria (92%) dos pacientes submetidos à VMNI necessitou de intubação e VMI\(^{64}\). Outro estudo realizado por Arabi et al.\(^{65}\) constatou também que a demora em ventilar invasivamente pode ter contribuído para o alto índice de óbitos. Existem relatos na literatura que associam a grande tolerabilidade e conforto da VMNI com o mascaramento de situações mais graves, atenuando uma escalada de suporte ventilatório atempada\(^{62}\).

Por envolver riscos e contraindicações, essas condutas devem ser realizadas por profissionais capacitados, uma vez que pacientes com COVID-19 possuem particularidades e as sequelas podem ser minimizadas pelo trabalho de uma equipe experiente\(^{66}\). Também é essencial a realização de condutas fisioterápicas, como a mobilização precoce, para limitar a gravidade do déficit muscular adquirido durante o tratamento intensivo e promover a rápida recuperação funcional e independência para as atividades de vida diária.
De acordo com diversos autores, a perda de mobilidade em pacientes hospitalizados nas UTIs tem impacto negativo em outras estruturas e sistemas, incluindo o sistema respiratório, cardiovascular, músculos, pele e ossos, entre outros, a partir de 72 horas da admissão do paciente à unidade. Além disso, nos primeiros 7 dias de restrição ao leito, o paciente pode ter 30% de redução de força muscular e 20% adicionais a cada semana subsequente. Essa restrição resulta em alterações das fibras musculares, atrofia da musculatura periférica e respiratória, o que pode dificultar a extubação, prolongando a necessidade de VM.

Diante do exposto, cada vez mais crescem os registros da necessidade da presença de fisioterapeutas no ambiente hospitalar em tempo de pandemia da COVID-19. A atuação desses profissionais no tratamento e recuperação dos indivíduos admitidos em unidades de saúde com a COVID-19, tanto na fase mais precoce da doença como nos níveis mais graves, promove uma recuperação funcional mais rápida e acelera o processo de alta. Tais medidas são fundamentais, principalmente para os trabalhadores que necessitam retornar o mais rápido possível às suas atividades laborais. Além disso, sabe-se que a maioria dos acometidos é composta por trabalhadores ativos, uma vez que estudos epidemiológicos mostram que em crianças os sintomas da COVID-19 geralmente são menores graves que nos adultos, e uma proporção muito pequena de menores de 19 anos desenvolveu doença grave (2,5%) ou crítica (0,2%) devido ao vírus.

FISIOTERAPIA NA RECUPERAÇÃO PÓS-UTI E ALTA HOSPITALAR

Embora pouco seja conhecido sobre as consequências clínicas da COVID-19, especialistas têm alertado para a instalação de sequelas importantes em pacientes que necessitem de cuidados intensivos nas UTIs. Sobreviventes de internação em UTIs, com doença crítica, podem desenvolver a chamada “síndrome pós-cuidados intensivos” ou “síndrome pós-UTI”. Essa síndrome está caracterizada por alterações físicas, cognitivas e psíquicas, que têm potencial para reduzir a qualidade de vida e aumentar as dificuldades de retornar ao trabalho.

Myhren et al. demonstraram que 55% dos sobreviventes de UTIs com doenças graves, previamente ativos, retornaram ao trabalho ou à escola após um ano de acompanhamento. Kamdar et al. também demonstraram, em um estudo realizado com 922 sobreviventes de síndrome do desconforto respiratório agudo (SDRA), em 43 hospitais americanos, que 44% dos pacientes estavam desempregados após 1 ano da alta hospitalar. O estudo verificou também uma redução nos ganhos monetários de 71% dos pacientes, e as variáveis associadas ao desemprego foram o tempo de permanência hospitalar e a idade. Segundo Simpson & Robinson, fisicamente os pacientes que passaram por imobilidade prolongada apresentaram desconhecimento cardiorrespiratório, instabilidade postural, tromboembolismo venoso, encurtamentos musculares, bem como contraturas miogênicas, neurogênicas e artrogênicas.

Ainda se sabe que interações entre comorbidades, doenças crônicas preexistentes e complicações da doença crítica aguda, como hipotensão, hipóxia, hiperglicemia e polineuropatia, podem contribuir para ocorrência de sintomas associados à síndrome pós-cuidados intensivos em sobreviventes de UTI. E, dependendo do grupo clínico, até 100% dos sobreviventes de cuidados intensivos podem sofrer algum grau de comprometimento cognitivo, que pode persistir anos após alta hospitalar. A sobrevivência a doença crítica aguda não representa necessariamente qualidade plena de vida após a hospitalização.

Diante disso, a preocupação com a saúde dos sobreviventes da COVID-19 que necessitaram de internação hospitalar prolongadas e cuidados em UTIs é crescente. Apesar de informações sobre a natureza e prevalência dos problemas pós-UTI vivenciados pelos pacientes de COVID-19 serem muito limitadas, algumas publicações já relatam que esses pacientes costumam sofrer os efeitos deletérios de uma internação prolongada, como alterações cognitivas, depressão, ansiedade, alterações de mobilidade, delirium (confusão mental) e outras alterações cognitivas, além de alterações cardiovasculares e pulmonares.

Um estudo retrospectivo observacional realizado durante 2 anos na UTI de um hospital em Portugal verificou que a maioria de pacientes com SDRA evoluiu para o quadro clínico grave, necessitando de internamentos prolongados. No mesmo estudo se verificou que 27,5% do total de casos de SDRA resultaram em intercorrências/complicações hospitalares, sendo que as mais frequentes...
foram a pneumonia associada à ventilação, pneumotórax e miopatia dos cuidados intensivos75. Além disso, estudos com sobreviventes de SDRAs, independentemente dos fatores casuísticos, confirmam que mesmo após alta de UTIs os pacientes continuaram a ter a saúde comprometida, com prejuízo funcional, qualidade de vida reduzida e altos custos com cuidados de saúde69,76.

Evidências sobre problemas vivenciados a longo prazo por sobreviventes da COVID-19 estão emergindo. Um estudo de coorte prospectivo realizado em Wuhan, China, verificou as condições clínicas de 131 pacientes (idade entre 18 a 88 anos) que tiveram COVID-19 (grave e não grave) e receberam alta hospitalar. O estudo verificou que 40,46\% dos pacientes apresentavam sintomas como tosse, fadiga, expectoração, aperto no peito, dispneia, tontura e palpitações e linfopenia. O acompanhamento observacional revelou que entre a primeira e segunda semana pós-alta, 48,09\% dos pacientes ainda apresentavam um ou mais sintomas. Essa porcentagem reduziu para 13,74\% entre a 3a e 4a semana, com incidência de tosse (9,16\%), aperto no peito (0,76\%), dispneia (1,53\%), dor faríngea (1,53\%) e náusea (0,76\%)77. Halpin et al.27, ao realizarem um estudo com 100 sobreviventes da COVID-19 que haviam recebido alta de um grande hospital universitário da Inglaterra (Leeds Teaching Hospitals NHS Trust) entre 4 e 8 semanas, mostraram que fadiga muscular (72\% dos participantes do grupo UTI e 60,3\% do grupo enfermaria), falta de ar (65,6\% no grupo de UTI e 42,6\% no grupo de enfermaria) e problemas psicológicos (46,9\% no grupo de UTI e 23,5\% no grupo de enfermaria) foram os sintomas persistentes mais relatados.

Tais dados são preocupantes, uma vez que um estudo que realizou o acompanhamento de 100 sobreviventes da COVID-19 que haviam recebido alta de um grande hospital universitário da Inglaterra (Leeds Teaching Hospitals NHS Trust) entre 4 e 8 semanas, mostraram que fadiga muscular (72\% dos participantes do grupo UTI e 60,3\% do grupo enfermaria), falta de ar (65,6\% no grupo de UTI e 42,6\% no grupo de enfermaria) e problemas psicológicos (46,9\% no grupo de UTI e 23,5\% no grupo de enfermaria) foram os sintomas persistentes mais relatados.

Assim, é importante o acompanhamento dos trabalhadores que foram vítimas do SARS-CoV-2, principalmente dos que necessitaram cuidados intensivos e hospitalização prolongada, por profissionais de reabilitação, pois, de acordo com os dados existentes na literatura, a COVID-19 pode deixar sequelas a curto, médio e longo prazo, que podem afetar o desempenho funcional e, consequentemente, dificultar o retorno ao trabalho.

Foi possível notar, neste estudo, que a COVID-19 atinge grande parte da população trabalhadora, deixando sequelas físicas, psíquicas e cognitivas que podem levar à incapacidade funcional do indivíduo, principalmente dos que necessitam de hospitalização prolongada e cuidados intensivos. Os relatos presentes na literatura sobre SARS causada ou não pelo novo coronavírus indicam que os pacientes necessitam de intervenções fisioterápicas para a prevenção e recuperação de sequelas, que podem permanecer por curto, médio e longo prazo. É de suma importância a presença do fisioterapeuta no enfrentamento dessa doença para a recuperação das capacidades funcionais normais do organismo, proporcionando o retorno do indivíduo ao mercado de trabalho de forma rápida, segura e eficaz. Ademais, apesar de o número de estudos que relacionam a saúde do trabalhador e COVID-19 ser extenso e relevante, há uma escassez de publicações que averiguem a atividade ocupacional dos infectados, o que resulta em uma subnotificação e dificuldade de análise da repercussão da doença sobre as classes trabalhadoras.
REFERÊNCIAS

1. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020;25(3):278-80.
2. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. Vital surveillances: the epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) — China, 2020. China CDC Weekly. 2020;8(11):22.
3. Garcia LP, Duarte E. Intervenções não farmacológicas para o enfrentamento à epidemia da COVID-19 no Brasil. Epidemiol Serv Saude. 2020;29(2):e2020222.
4. Brasil. Ministério da Saúde. Protocolo de Manejo Clínico para o Novo Coronavírus (2019-nCoV). Brasília: Ministério da Saúde; 2020 [citado em 17 fev. 2021]. Disponível em: https://portalarquivos2.saude.gov.br/images/pdf/2020/fevereiro/05/Protocolo-de-manejo-clinico-para-o-novo-coronavirus-2019-n cov.pdf
5. Iser BPM, Silva I, Raymundu VT, Poletto MB, Schueller-Trevisol F, Bobinski F. Definição de caso suspeito da COVID-19: uma revisão narrativa dos sinais e sintomas mais frequentes entre os casos confirmados. Epidemiol Serv Saude. 2020;29(3):e2020233.
6. Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352-71.
7. Inciardi RM, Lupi L, Zacccone G, Italia L, Raffo M, Tomassoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24.
8. Loureiro CMC, Serra JPC, Loureiro BMC, Souza TDM, Góes TM, Neto JSA, et al.Alterações pulmonares na COVID-19. Rev Cient HSI. 2020;4(2):89-99.
9. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5.
10. Falvey JR, Krafft C, Kornetti D. The essential role of home- and hospital setting: clinical practice recommendations. J Physiother. 2020;66(2):73-82.
11. Simpson R, Robinson L. Rehabilitation after critical illness in people with COVID-19 infection. Am J Phys Med Rehabil. 2020;99(6):470-4.
12. Robinson CC, Rosa RG, Kochhann R, Schneider D, Sganzerla D, Dietrich C, et al. Qualidade de vida pós-unidades de terapia intensiva: protocolo de estudo de coorte multicêntrico para avaliação de desfechos em longo prazo em sobreviventes de internação em unidades de terapia intensiva brasileiras. Rev Bras Ter Intensiva. 2018;30(4):405-13.
13. Lau HM, Lee EW, Wong CN, Ng GY, Jones AY, Hui DS. The impact of severe acute respiratory syndrome on the physical profile and quality of life. Arch Phys Med Rehabil. 2005;86(6):134-40.
14. Hui DSC, Wong KT, Antonio GE, Tong M, Chan DP, Sung JYJ. Long-term sequelae of SARS: physical, neuropsychiatric, and quality-of-life assessment. Hong Kong Med J. 2009;15 Suppl B:21-3.
15. Silva RMV, Sousa AVC. Fase crônica da COVID-19: desafios do fisioterapeuta diante das disfunções musculoesqueléticas. Fisioter Mov. 2020;33:e0033002.
16. Brasil. Secretaria de Vigilância em Saúde, Ministério da Saúde. Boletim Epidemiológico 08 – Doença pelo novo coronavírus 2019. Brasília: Ministério da Saúde; 2020 [citado em 17 fev. 2021] Disponível em: http://www.cofen.gov.br/wp-content/uploads/2020/04/be-covid-08-final.pdf
17. Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, et al. Immediate psychological responses and associated factors during the initial stage of the COVID-19 epidemic among the general population in china. Int J Environ Res Public Health. 2020;17(5):1729.
18. Iannaccone S, Castellazzi P, Tettamanti A, Houdayer E, Bruglieri L, de Blasio F, et al. Role of rehabilitation department for adult individuals with covid-19: the experience of the San Raffaele Hospital of Milan. Arch Phys Med Rehabil. 2020;101(9):1656-61.
19. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
20. Rede CoVida. Saúde do trabalhador na pandemia de Covid-19: riscos e vulnerabilidades. Salvador: Rede CoVida; 2020 [citado em 17 fev. 2021]. Disponível em: https://www.cidadessaudaveis.org.br/cepedoc/wp-content/uploads/2020/06/Relatorio-Saude-do-Trabalhador.pdf
21. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.
22. Baker MG, Peckham TK, Seixas NS. Estimating the burden of United States workers exposed to infection or disease: a key factor in containing risk of COVID-19 infection. PLoS One. 2020;15(4):e0232452.
23. Lan F,Y, Wei C-F, Hsu YT, Christiani DC, Kales SN. Work-related COVID-19 transmission in six asian countries/areas: a follow-up study. PLoS One. 2020;15(5):e0233588.
24. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (covid-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-42.
25. Thomas P, Baldwin C, Bissett B, Boden I, Gosselink R, Granger CL, et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J Physiother. 2020;66(2):73-82.
26. Pan American Health Organization (PAHO). Rehabilitation considerations during the COVID-19 outbreak. Washington, DC: PAHO; 2020 [cited 2021 Feb. 17]. Available from: https://iris.paho.org/bitstream/handle/10665.2/52035/ NMHMHCovid19200010_eng.pdf?sequence=6&isAllowed=y
27. Halpin SJ, Mcvor C, Whyatt G, Adams A, Harvey O, McLean L, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: a cross-sectional evaluation. J Med Virol. 2021;93(2):1013-22.
28. Liu K, Zhang W, Yang Y, Zhang J, Li Y, Chen Y. Respiratory rehabilitation in elderly patients with COVID-19: A randomized controlled study. Complement Ther Clin Pract. 2020;39:101166.
29. Wang TJ, Chau B, Lui M, Lam G-T, Lin N, Humbert S. Physical medicine and rehabilitation and pulmonary rehabilitation for COVID-19. Am J Phys Med Rehabil. 2020;99(9):769-74.

30. Carda S, Invernizzi M, Bavikatte G, Bensmail D, Bianchi F, Deltombe T, et al. Covid-19 pandemic. What should physical and rehabilitation medicine specialists do? A clinician's perspective. Eur J Phys Rehabil Med. 2020;56(4):515-24.

31. Brasil. Secretaria de Vigilância em Saúde, Ministério da Saúde. Boletim Epidemiológico Especial 36 – Doença pelo novo Coronavírus 2019. Brasília: Ministério da Saúde; 2020 [citado em 17 fev. 2021]. Disponível em: https://www.gov.br/saude/pt-br/media/pdf/2020/outubro/23/boletim_epidemiologico_covid_36_final.pdf

32. Wong G, Liu W, Liu Y, Zhou B, Bi Y, Gao GF. MERS, SARS, and Ebola: the role of super-spreaders in infectious disease. Cell Host Microbe. 2015;18(4):398-401.

33. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586-90.

34. Gorbalenya AE, Baker SC, Baric RS, Groot RJ, Drosten C, Gulyaeva AA, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536-44.

35. Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251(3):228-48.

36. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7.

37. He F, Deng Y, Li W. Coronavirus disease 2019: what we know? J Med Virol. 2020;92(7):719-25.

38. World Health Organization (WHO). Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). Geneva: WHO; 2020 [citado 2021 Feb. 17]. Disponível em: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf

39. Fang L, Karakulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21.

40. Cao Y, Liu X, Xiong L, Cai K. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Med Virol. 2020;92(9):1449-59.

41. Koh D. Occupational risks for COVID-19 infection. Occup Med (Lond). 2020;70(1):3-5.

42. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-207.

43. Center for Disease Control and Prevention (CDC). COVID-19 in racial and ethnic minority groups. Atlanta: CDC; 2020 [citado 2021 Feb. 17]. Disponível em: https://www.hxsd.org/?view&did=837299

44. Fiho JMJ, Assunção AA, Algrenti E, Garcia EG, Saito CA, Maeno M. A saúde do trabalhador e o enfrentamento da COVID-19. Rev Bras Saude Ocup. 2020;45:e14.

45. European Centre for Disease Prevention and Control (ECDC). Rapid risk assessment: coronavirus disease 2019 (COVID-19) in the EU/EEA and the UK – ninth update. Stockholm: ECDC; 2020 [citado 2021 Feb. 17]. Disponível em: https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-coronavirus-disease-2019-covid-19-pandemic-ninth-update

46. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020;92(6):568-76.

47. Bagheri SH, Ashhari A, Farhadi M, Shamshiri AR, Kabir A, Kamrava SK, et al. Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak in Iran. Med J Islam Repub Iran. 2020;34:62.

48. Brasil. Secretaria de Vigilância em Saúde, Ministério da Saúde. Boletim Epidemiológico 05 – Doença pelo novo coronavírus 2019: ampliação da vigilância, medidas não farmacológicas e descentralização do diagnóstico laboratorial. Brasília: Ministério da Saúde; 2020 [citado em 17 fev. 2021]. Disponível em: https://www.saude.gov.br/wps/portal/coronavírus/2019-nCoV/boletim-epidemiologico-05-1.pdf

49. Razal MS, Doerholt K, Ladhanis I, Oakeshott P. Coronavirus disease 2019 (covid-19): a guide for UK GPs. BMJ. 2020;368:m800.

50. Saraiva ACL, Bomfim IS, Alcancor TAF, Furlanetto KC. Recursos terapêuticos para pacientes com sintomas leves da Covid-19. ASSOBRAFIR Cienc. 2020;11(Supl 1):65-71.

51. Sahu A, Naqvi WM. Quarantine exercises in the time of Covid-19: a review. J Evolution Med Dent Sci. 2020;9(26):1922-7.

52. Elias B, Shen C, Bar-Yam Y. Respiratory health for better COVID-19 outcomes. Cambridge: New England Complex Systems Institute; 2020 [citado 2021 Feb. 17]. Disponível em: https://static1.squarespace.com/static/5b6b8a4e4a2772c2a2061ba01/t/5e6fd151f10fe68f96f39638/1584386498324/Breathing_for_COVID_19-4.pdf

53. Arbillaga A, Pardás M, Escudero R, Rodríguez R, Alcaraz V, Llanes S, et al. Fisioterapia respiratoria en el manejo del paciente con COVID-19: recomendaciones generales. Barcelona: Sociedad Española de Neumología e Cirugía Torácica; 2020 [citado en 17 fev. 2021]. Disponible en: https://www.sbmfc.org.br/wp-content/uploads/2020/03/2020_03_13_Fisioterapia_respiratoria_en_el Manejo_del_paciente_con_COVID-19($)4.pdf

54. Brasil. Conselho Federal de Fisioterapia e Terapia Ocupacional. Resolução nº 516, de 20 de março de 2020. Dispõe sobre a suspensão temporária do Artigo 15, inciso II e Artigo 39 da Resolução no 516, de 20 de março de 2020. Dispõe sobre a descentralização do diagnóstico laboratorial. Brasília: Ministério da Saúde; 2020 [citado em 17 fev. 2021]. Disponível em: http://svmefr.com/wp-content/uploads/2020/03/COVID19-SEPAR-26-03_20.pdf

55. World Health Organization (WHO). Oxygen sources and distribution for COVID-19 treatment centres: interim guidance, 4 April 2020. Geneva: WHO; 2020 [citado 2021 Feb. 17]. Disponível em: https://apps.who.int/iris/bitstream/handle/10665/331746/WHO-2019-nCoV-Oxygen_sources-2020-1-eng.pdf?sequence=1&isAllowed=y

56. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.
pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13.

57. Ceravolo MG, de Sire A, Andreelli E, Negrini F, Negrini S. Systematic rapid “living” review on rehabilitation needs due to COVID-19: update to March 31st, 2020. Eur J Phys Rehabil Med. 2020;56(3):347-53.

58. Rosa FK, Roese CA, Savi A, Dias AS, Monteiro MB. Comportamento da mecânica pulmonar após a aplicação de protocolo de fisioterapia respiratória e aspiração traqueal em pacientes com ventilação mecânica invasiva. Rev Bras Ter Intensiva. 2007;19(2):170-5.

59. Guimarães F. Atuação do fisioterapeuta em unidades de terapia intensiva no contexto da pandemia de COVID-19. Fisioter Mov. 2020;33:e0033001.

60. Rotta BP, Silva JM, Fu C, Goulardins JB, Pires-Neto RC, Tanaka C. Relação entre a disponibilidade de serviços de fisioterapia e custos de UTI. J Bras Pneumol. 2018;44(3):184-9.

61. Wujtewicz M, Dylczyk-Sommer A, Aszkiełowicz A, Zdanowski S, Owczuk R. COVID-19 - what should anaesthesiologists and intensivists know about it? Anaesthesiol Intensive Ther. 2020;52(1):34-41.

62. Silva VZM, Neves LMT, Forgiarini Jr LA. Recomendações para a utilização de oxigênio suplementar (oxigenoterapia) em pacientes com COVID-19. ASSOBRAFIR Cienc. 2020;11(Supl 1):87-91.

63. Alraddadi BM, Althafy AA, Bakly HN, Najm H, Aldawood AS, Ghabashi A, et al. Clinical course and outcomes of critically ill patients with the Middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014;160(6):389-97.

64. Borges DL, Rapello GGV, Deponti GN, Andre FMD. Posição prona no tratamento da insuficiência respiratória aguda em pacientes com COVID-19. ASSOBRAFIR Cienc. 2020;11(Supl 1):111-20.

65. Castro AAM, Holstein JM. Benefícios e métodos da mobilização precoce em UTI: uma revisão sistemática. Lifestyle J. 2019;6(2):7-22.

66. Rodrigues GS, Gonzaga DB, Modesto ES, Santos FDO, Silva BB, Bastos VPD. Mobilização precoce para pacientes internados em unidade de terapia intensiva: revisão integrativa. Rev Inspir Mov Saude. 2017;42(13):27-31.

67. Herridge MS, Moss M, Hough CL, Hopkins RO, Rice TW, Bienvenu OJ, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016;42(5):725-38.

68. Myhren H, Ekeberg Ø, Stokland O. Health-related quality of life and return to work after critical illness in general intensive care unit patients: a 1-year follow-up study. Crit Care Med. 2010;38(7):1554-61.

69. Kamdar BB, Huang M, Dinglas JD, Colantuoni E, Vande Wachter TM, Hopkins RO, et al. Joblessness and lost earnings after acute respiratory distress syndrome in a 1-year national multicenter study. Am J Respir Crit Care Med. 2017;196(8):1012-20.

70. Azoulay E, Vincent JL, Angus DC, Arabi YM, Brochard L, Brett SJ, et al. Recovery after critical illness: putting the puzzle together-a consensus of 29. Crit Care. 2017;21(1):296.