Preparation and standardization of kasis bhasma by two different methods and its analytical study

*Manjiri Ranade*¹

1 Reader, Department of Rasa Shastra and Bhaishajya Kalpana, Sri Sai Ayurvedic Medical College, Aliagarh, Uttar Pradesh 202002, India

ABSTRACT

Different ayurvedic texts have mentioned different methods of shodhan (Purification) and maran (incineration) of ayurvedic mineral preparations of kasis. Though different methods of shodhan and maran are described in various texts complete physio chemical standardization is necessary to prepare the pure form and for quality assurance as well as it is necessary to understand the chemical changes that take place after various ayurvedic processes. **Aims and Objectives:** 1. Procurement of grahya kasis from local market and its chemical analysis 2. Purification of kasis in dolayantra and its chemical analysis 3. Preparation of kasis bhasma by two methods given by ras tarangini and its chemical analysis. **Setting and Design:** observational analytical study. **Place of study:** Department of Rasa Shastra and BK, GS Ayurvedic medical college. **Materials and methods:** Ashudhha kasis is purified and subjected to incineration by two types, Snuhipatra swaras bhavana, and kanji and Nimbu swaras bhavana as given in ras tarangini. Chemical composition of the raw form, pure form as well as two types of bhasmas is analyzed in laboratory. **Results:** 1. Analysis of kasis at each stage of its formation to kasis bhasma shows the changes in physical and chemical properties due to its transformation as it is heated thermal decomposition starts 2. The chemical analysis of kasis bhasma shows highest percentage of ferric iron in comparison with raw and shodhit form. 3. Chemical analysis of kasis bhasma obtained by incineration process, by Snuhipatra swaras bhavana, and kanji and Nimbu swaras bhavana does not show any notable difference in chemical composition. Both methods can be used to prepare kasis bhasma as per availability of bhavana dravya.

Keywords: Kasis bhasma, Snuhipatra swaras bhavana, Nimbu swaras bhavana.

INTRODUCTION

Different ayurvedic texts have mentioned different methods of shodhan (purification) and maran (incineration) of ayurvedic mineral preparations of kasis. Though different methods of shodhan and maran are described in various texts [1, 2, 3], complete physio chemical standardization is necessary to prepare the pure form and for quality assurance as well as it is necessary to understand the chemical changes that take place after various ayurvedic processes.

Kasis which come in “Uparasa varga” [4] in Ayurvedic literature, is one of the important drug used in ayurvedic therapeutics. It is a green colour mineral of iron, which is chemically ferrous sulphate. It is of two types, *valu kasis* and *pushpa kasis* out of which, *pushpa kasis* [5] is used for therapeutic purposes. Major sources of mining are in the Simha Bhumi district of Bihar. The therapeutic application of this *kasis* are many, including *visa, svitra, pandu, asmari etc*. Raw kasis form is purified by boiling in the juice of *Bhringaraj* (Eclipta alba) [6] for 3 hours, with the help of *dolayantra*. After purification, incineration is done with multiple methods which include incineration [7] with the help of *kanji* and nimbuswaras *bhavana*, and by giving *laghuputa* as well as with *snuhi patra swarabhavana* for seven times and subjected for *laghuputa* [8] (Misra GS. Acharya Madhava’s Ayurveda Prakasa. Varanasi: Chaukhambha Bharti Academy; 2007, p. 325.), continued till *kasis* loses its soreness. There is a paucity of data to indicate superiority of one method over the other for incineration as well as step by step changes that take place during purification and incineration of kasis. We undertook this analytical study to assess the superiority between two methods of incineration as well as to understand and analyse the chemical changes that take place during incineration of kasis.

AIMS AND OBJECTIVES

1. Procurement of grahya kasis from local market and its chemical analysis.
2. Purification of *kasis* in dolayantra and its chemical analysis.
3. Preparation of *kasis bhasma* by two methods given by Ras tarangini and its chemical analysis.
MATERIALS AND METHODS

Collection of raw material

Pushpa kasis is _grahya_ type of _kasis_ according to the ancient Ayurvedic texts and hence the _pushpa kasis_ was procured from local market (500 grams). Study was done in Rasa shastra and BK Department of GS Ayurvedic medical college.

Shodhana of raw kasis

Purification of the raw sample (500 grams) was done in dolayantra by _bhringraj swaras_ for 3 hours.

It is carried by the procedure mentioned in the _rasa tarangini_. After purification was complete the material was collected and sundried. When it became fully dry, weight was taken which was 400 grams.

Preparation of bhasma

After purification, the purified sample was divided into two equal parts i.e. each 200 grams, sample A and sample B.

In sample A, incineration was done by giving _bhavana_ of _kanji_ and _nimbuwaras_ for 7 times and after subjecting it to _laghuputa_ till it loses its sourness.

In sample B, incineration was done by giving _bhavana_ of _snuhipatra swaras_ and subjecting it to _laghuputa_ continuously till it loses its soreness.

Analytical study

Oregano leptic study and Chemical analysis was done for raw _kasis_ as well as after its purification.

Analytical study of both the samples was carried out by classical methods (bhasma pariksha) \[8\] of _Varna_, _sparsha_, _rasa_, _gandha_, _shabda_, _sukhamawata_, and _mruduwata_. Modern physiochemical parameters used for analysis included determination of PH, specific gravity, loss on drying, percentage of ferrous and ferric, assay of sulfur as SO4 \[9\].

RESULTS

We brought 500 gm of raw unpurified _kasis_ from local market.

The analysis of raw unpurified _kasis_ is as given in table 1.

Table 1: Analytical study of unpurified (raw) _kasis_

Quantity of (raw) unpurified _kasis_ taken for analysis	500 gms
PH of unpurified _kasis_ on dissolving in neutral solution	4
Loss of drying of raw _kasis_ at 105 degree Celsius	24.91%
Ferrous percentage	18.87%
Ferric percentage	0%
Assay of sulphur as SO4	11.40%

This unpurified _kasis_ was subjected to _shodhan_ by _swedan_ in dolayantra in _bhringraj swaras_. Analysis of this _kasis_ was as shown in table 2.

Table 2: Analytical study of _kasis_ purified in dolayantra by _bhringraj swaras_.

Quantity of purified _kasis_ gained after shodhan procedure in dolayantra	400 gms
PH of purified _kasis_	4.2
Loss of drying at 105 degrees	17.56%
Ferrous percentage	24.344%
Ferric percentage	0%
Assay of sulphur as SO4	14.5838%

This purified _kasis_ was divided into two equal parts of 200 gms each, sample A and sample B. After dividing it was subjected to incineration.

Table 3 (Method A): Analytical study of _kasis bhasma_ obtained by _bhavana_ of _kanji and nimbuswaras_ each for 7 times and after subjecting it to _laghuputa_.

PH of _kasis bhasma_ by _bhavana_ of _kanji and nimbuswaras_ for 7 times after subjecting it to _laghuputa_	7
Loss on ignition	0.6388%
Loss on drying at 105 degrees	0.6%
Solubility in water	4.91%
Ferrous percentage	0.002%
Ferric percentage	43.63%
Assay of sulphur as SO4	0.9883%

Table 4 (Method B): Analytical study of _kasis bhasma_ obtained by _bhavana_ of _snuhipatra swaras_ and subjecting it to _laghuputa_ continuously till it loses its soreness.

PH of _kasis bhasma_ obtained by _bhavana_ of _snuhipatra swaras_ and subjecting it to _laghuputa_ continuously till it loses its soreness	7
Loss on ignition	0.1984
Loss on drying at 105 degrees	0.19%
Solubility in water	3.12%
Ferrous percentage	0.02%
Ferric percentage	41.70%
Assay of sulphur as SO4	0.4835%
Comparative analysis of kasis bhasma by two different methods

Method of preparation	bhavana of kanji and nimbuswaras each for 7 times and after subjecting it to laghuputa (Method A)	bhavana of snuhipatra swaras and subjecting it to laghuputa (Method B)	Difference in two methods
PH of kasis bhasma	7	7	0
Loss on ignition	0.6388%	0.1984	0.4404%
Loss on drying at 105 degrees	0.6%	0.19%	0.44%
Solubility in water	4.91%	3.12%	1.79%
Ferrous percentage	0.002%	0.02%	
Ferric percentage	43.63%	41.70%	1.93%
Assay of sulphur as SO4	0.9883	0.4835%	0.5048%
Weight of kasis bhasma	120 gms	130 gms	

DISCUSSION

In the present study, we have standardized *kasis bhasma* in each step of its preparation i.e. from raw *kasis*, purified *kasis* and *kasis bhasma* made by two different methods with organoleptic as well as analytical methods. We have procured raw *kasis* of *pushpa kasis* variety from local market (500grams). Its organoleptic and chemical analysis was done.

When we analyzed raw *kasis*, it was in the form of bright green rough textured crystals with sour taste. The Ph was 4, loss on drying at 105 degrees was 24.91 %. Ferrous percentage was 18.81 % and ferric percentage was 0 %. Assay of sulphur as so4 was 11.40% (Table no 1).

This raw *kasis* was purified in *dolayantra* by *swedan* method for 3 hours in *bhringraj swaras*. *kasis* was completely dissolved into the *bhringraj swaras* used for *swedan* purpose hence the mixture was kept under sunlight till it completely dries. After purification, the *shodhit kasis* gained a specific acidic odor like *amchur*, and colour of purified *kasis* became greenish white, smooth crystals and sour in taste. There was loss of weight of 100 gm. This loss of weight was explained on the basis of evaporation of the water content of the unpurified *kasis* during *swedan* process. In purified *kasis*, the analytical study result is Ph was 4.2, loss on drying at 105 degrees was 17.56%, ferrous percentage was 24.344 %, and ferric percent was 0%. Assay of sulphur as so4 was 14.58% (Table no 2). After shodhan, we got 400 grams of purified *kasis* which was equally divided into 2 parts 200 grams each.

For each part incineration was done by 2 methods, as mentioned in *Ras tarangini*.

For the first part (method A), *maran* was done by *bhavana* of *kanji* and *nimbuswaras* each for 7 times and after subjecting it to *laghuputa*. For *laghuputa*, 20 cow dung cakes were used and 3 *laghuputas* in *sharava samputa* were given. After each *puta* it was tested for sourness and *rekhapurnata* as well as *dantagrey kachakachabha*. When it becomes sour less the material was carefully removed and weight was taken and noted which it was 120 grams. After this chemical analysis was done and the results are noted down as given in Table no 3. For second part (method B), *maran* was done by *bhavana* of *snuhipatra swaras* for 7 times and after that *laghuputa* was given with 20 cow dung cakes. such 3 *putas* were given up to it becomes sourless which is a special test as well as other Ayurvedic parameters of *bhasmapariksha* like *rekhapurnata* and *dantagrey kachakachabha* was also done. When *bhasma* passed all the tests it was removed carefully and weight was noted it was 130 grams. At this stage, chemical analysis was done and the results were noted as given in Table no 4. *Kasis bhasama* of both types was brownish red in colour, tasteless, amorphous in appearance with no specific odour was found, and on touching both were soft in texture.

After each *puta*, we observed that Ph increased. Finally it became neutral. Percentage of iron was found more in *shuddha kasis* than unpurified *kasis*. In the purification process of *kasis*, there is no oxidation. Ferrous was not converted into ferric form. In the incineration process by both methods, there was oxidation reaction; ferrous was converted into ferric form. SO4 was minimally present in both the samples. Water evaporated and we got a final product as reddish colored ferric oxide.

Ferric content in *kasis bhasma* produced by method A was 43.63% while that of method B was 41.70 %. Final product obtained (*kasis bhasma*) was almost one fourth of original quantity, taken as *unpurified kasis*. This can be explained by the fact that there was evaporation of water and sulphur as SO4.LOD test shows the amount of moisture drying off from the matter. During *bhasma* preparation the moisture content is reduced and it becomes non volatile inorganic material[10].

Both the samples were colorless, odourless and passed all tests for final *bhasma* products as mentioned in *bhasma pariksha* [11].

So there was no notable difference between chemical analyses of *kasis bhasma* obtained by these two methods, but further studies (randomized double blind) studies are necessary to assess clinical superiority and therapeutic efficacy of *kasis bhasma* obtained by either of two methods.

CONCLUSION

Analysis of kasis at each stage of its formation to kasis bhasma shows the changes in physical and chemical properties due to its transformation as it is heated thermal decomposition starts. The chemical analysis of kasis bhasma shows the highest percentage of ferric iron in comparison with raw and shodhit form.

Chemical analysis of kasis bhasma obtained by incineration process, by snuhipatra swaras *Bhavana*, and kanji and nimbu swaras *bhavana* does not show any notable difference in chemical composition. Both
methods can be used to prepare kasis bhasma as per availability of bhavana dravya.

REFERENCES

1. Sharma Sadananda. Adhyaya. 255-258. Vol. 22. Delhi-7: Motilal Banarasidas Prakashan; 2000. 'Rasatarangini' by Pandit Kashiram Shastri; p. 568. Reprint.
2. Vagbhatacharya. Adhyaya. 52-55. Vol. 3. New Delhi-2: Meharchand Lachhamandas Publications; 1998. 'Rasa-ratna-samuchchaya', with Hindi commentary by prof. D. A. Kulkarni, Vol. 1; p. 70. Preprint.
3. Acharya Madhav. Adhyaya. 4th ed. 275. Vol. 2. Varanasi -1: Chaukhamba Bharati Academy; 1994. 'Ayurveda Prakasha' by Shri. Gulraj Sharma Mishra; p. 325.
4. Vagbhatacharya.'Rasa-ratna-samuchchaya 'New Delhi-2: Meharchand Lachhamanda Publications; 1998. with Hindi commentary by prof. D. A. Kulkarni Vol. 1Adhyaya. 03/1; p. 26
5. Acharya Y.T., Rasamritam, Joshi D., Translation, Chaukhamba Sanskrit Bhawan, Varanasi, 1998
6. Sharma Sadananda. Adhyaya. 255-258. Vol. 22. Delhi-7: Motilal Banarasidas Prakashan; 2000. 'Rasatarangini' by Pandit Kashiram Shastri; p. 568. Reprint
7. Acharya Madhav. Adhyaya. 4th ed. 275. Vol. 2. Varanasi -1: Chaukhamba Bharati Academy; 1994. 'Ayurveda Prakasha' by Shri. Gulraj Sharma Mishra; p. 325
8. Misra GS. Acharya Madhava's Ayurveda Prakasa. Varanasi: Chaukhambha Bharti Academy; 2007. p. 325.),
9. Reddy KR. Ocean of Ayurvedic Pharmaceutics. 1st ed., Ch. 2. Varanasi: Chaukhambha Sanskrit Bhawan; 2007. p. 5.
10. Anonymouws, Ayurvedic Pharmacopoeia of India, Department of AYUSH, Ministry of H & FW. Part 2. 1st ed., Vol. 1. India: Government of India; 2007.
11. Reddy KR. Ocean of Ayurvedic Pharmaceutics. 1st ed., Ch. 2. Varanasi: Chaukhambha Sanskrit Bhawan; 2007. p. 5.

HOW TO CITE THIS ARTICLE
Ranade M. Preparation and standardization of kasis bhasma by two different methods and its analytical study. J Ayu Herb Med 2020;6(4):213-216.