Charged-particle distributions at low transverse momentum in \(\sqrt{s} = 13 \text{ TeV} \) \(pp \) interactions measured with the ATLAS detector at the LHC

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 6 June 2016 / Accepted: 23 August 2016 / Published online: 15 September 2016

© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract

Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 \(\mu \text{b}^{-1} \). The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.

1 Introduction

Measurements of charged-particle distributions in proton–proton (pp) collisions probe the strong interaction in the low-momentum transfer, non-perturbative region of quantum chromodynamics (QCD). In this region, charged-particle interactions are typically described by QCD-inspired models implemented in Monte Carlo (MC) event generators. Measurements are used to constrain the free parameters of these models. An accurate description of low-energy strong interaction processes is essential for simulating single pp interactions and the effects of multiple pp interactions in the same bunch crossing at high instantaneous luminosity in hadron colliders. Charged-particle distributions have been measured previously in hadronic collisions at various centre-of-mass energies [1–11].

The measurements presented in this paper use data from pp collisions at a centre-of-mass energy \(\sqrt{s} = 13 \text{ TeV} \) recorded by the ATLAS experiment [12] at the Large Hadron Collider (LHC) [13] in 2015, corresponding to an integrated luminosity of 151 \(\mu \text{b}^{-1} \). The data were recorded during special fills with low beam currents and reduced focusing to give a mean number of interactions per bunch crossing of 0.005. The same dataset and a similar analysis strategy were used to measure distributions of charged particles with transverse momentum \(p_T \) greater than 500 MeV [9]. This paper extends the measurements to the low-\(p_T \) regime of \(p_T > 100 \text{ MeV} \). While this nearly doubles the overall number of particles in the kinematic acceptance, the measurements are rendered more difficult due to multiple scattering and imprecise knowledge of the material in the detector. Measurements in the low-momentum regime provide important information for the description of the strong interaction in the low-momentum-transfer, non-perturbative region of QCD.

These measurements use tracks from primary charged particles, corrected for detector effects to the particle level, and are presented as inclusive distributions in a fiducial phase space region. Primary charged particles are defined in the same way as in Refs. [2,9] as charged particles with a mean lifetime \(\tau > 300 \text{ ps} \), either directly produced in pp interactions or from subsequent decays of directly produced particles with \(\tau < 30 \text{ ps} \); particles produced from decays of particles with \(\tau > 30 \text{ ps} \), denoted secondary particles, are excluded. Earlier analyses also included charged particles with a mean lifetime of \(30 < \tau < 300 \text{ ps} \). These are charged strange baryons and have been removed for the present analysis due to their low reconstruction efficiency. For comparison to the earlier measurements, the measured multiplicity at \(\eta = 0 \) is extrapolated to include charged strange baryons. All primary charged particles are required to have a momentum component transverse to the beam direction \(p_T > 100 \text{ MeV} \) and absolute pseudorapidity \(\eta < 2.5 \) to be within the geo-

* e-mail: atlas.publications@cern.ch
metrical acceptance of the tracking detector. Each event is required to have at least two primary charged particles. The following observables are measured:

\[
\frac{1}{N_{\text{ev}}} \frac{dN_{\text{ch}}}{d\eta}, \quad \frac{1}{N_{\text{ev}}} \frac{d^2N_{\text{ch}}}{d\eta d\phi}, \quad \frac{1}{N_{\text{ev}}} \frac{dN_{\text{ev}}}{d\eta}\text{ch}
\]

and \(\langle p_T \rangle\) vs. \(n_{\text{ch}}\).

Here \(n_{\text{ch}}\) is the number of primary charged particles within the kinematic acceptance in an event, \(N_{\text{ev}}\) is the number of events with \(n_{\text{ch}} \geq 2\), and \(N_{\text{ch}}\) is the total number of primary charged particles in the kinematic acceptance.

The PYTHIA 8 [14], EPOS [15] and QGSJET- II [16] MC generators are used to correct the data for detector effects and to compare with particle-level corrected data. PYTHIA 8 and EPOS both model the effects of colour coherence, which is important in dense parton environments and effectively reduces the number of particles produced in multiple parton-parton interactions. In PYTHIA 8, the simulation is split into non-diffractive and diffractive processes, the former dominated by \(t\)-channel gluon exchange and amounting to approximately 80\% of the selected events, and the latter described by a pomeron-based approach [17]. In contrast, EPOS implements a parton-based Gribov–Regge [18] theory, an effective field theory describing both hard and soft scattering at the same time. QGSJET- II is based upon the Reggeon field theory framework [19]. The latter two generators do not rely on parton distribution functions (PDFs), as used in PYTHIA 8. Different parameter settings in the models are used in the simulation to reproduce existing experimental data and are referred to as tunes. For PYTHIA 8, the A2 [20] tune is based on the MSTW2008LO PDF [21] while the MONASH [22] underlying-event tune uses the NNPDF2.3LO PDF [23] and incorporates updated fragmentation parameters, as well as SPS and Tevatron data to constrain the energy scaling. For EPOS, the LHC [24] tune is used, while for QGSJET- II the default settings of the generator are applied. Details of the MC generator versions and settings are shown in Table 1. Detector effects are simulated using the GEANT4-based [25] ATLAS simulation framework [26].

Generator	Version	Tune	PDF
PYTHIA 8	8.185	A2	MSTW2008LO
PYTHIA 8	8.186	MONASH	NNPDF2.3LO
EPOS	LHCv3400	LHC	–
QGSJET- II	II-04	Default	–

Table 1 Summary of MC generators used to compare to the corrected data. The generator, its version, the corresponding tune and the parton distribution function are given.

microstrip detector (SCT) and the transition radiation straw-tube tracker (TRT). These are located around the interaction point spanning radial distances of 33–150, 299–560 and 563–1066 mm respectively. The barrel (each end-cap) consists of four (three) pixel layers, four (nine) double-layers of silicon microstrips and 73 (160) layers of TRT straws. During the LHC long shutdown 2013–2014, a new innermost pixel layer, the insertable B-layer (IBL) [27,28], was installed around a new smaller beam-pipe. The smaller radius of 33 mm and the reduced pixel size of the IBL result in improvements of both the transverse and longitudinal impact parameter resolutions. Requirements on an innermost pixel-layer hit and on impact parameters strongly suppress the number of tracks from secondary particles. A track from a charged particle passing through the barrel typically has 12 measurement points (hits) in the pixel and SCT detectors. The inner detector is located within a solenoid that provides an axial 2 T magnetic field.

A two-stage trigger system is used: a hardware-based level-1 trigger (L1) and a software-based high-level trigger (HLT). The L1 decision provided by the MBTS detector is used for this measurement. The scintillators are installed on either side of the interaction point in front of the liquid-argon end-cap calorimeter cryostats at \(z = \pm 3.56\) m and segmented into two rings in pseudorapidity (2.07 < \(|\eta|\) < 2.76 and 2.76 < \(|\eta|\) < 3.86). The inner (outer) ring consists of eight (four) azimuthal sectors, giving a total of 12 sectors on each side. The trigger used in this measurement requires at least one signal in a scintillator on one side to be above threshold.

3 Analysis

The analysis closely follows the strategy described in Ref. [9], but modifications for the low-\(p_T\) region are applied where relevant.

3.1 Event and track selection

Events are selected from colliding proton bunches using the MBTS trigger described above. Each event is required to contain a primary vertex [29], reconstructed from at least two tracks with a minimum \(p_T\) of 100 MeV. To reduce contamination from events with more than one interaction in a
bunch events, with a second vertex containing four or more tracks are removed. The contributions from non-collision background events and the fraction of events where two interactions are reconstructed as a single vertex have been studied in data and are found to be negligible.

Track candidates are reconstructed in the pixel and SCT detectors and extended to include measurements in the TRT [30,31]. A special configuration of the track reconstruction algorithms was used for this analysis to reconstruct low-momentum tracks with good efficiency and purity. The purity is defined as the fraction of selected tracks that are also primary tracks with a transverse momentum of at least 100 MeV and an absolute pseudorapidity less than 2.5. The most critical change with respect to the 500 MeV analysis [9], besides lowering the p_T threshold to 100 MeV, is reducing the requirement on the minimum number of silicon hits from 7 to 5. All tracks, irrespective of their transverse momentum, are reconstructed in a single pass of the track reconstruction algorithm. Details of the performance of the track reconstruction in the 13 TeV data and its simulation can be found in Ref. [32]. Figure 1 shows the comparison between data and simulation in the distribution of the number of pixel hits associated with a track for the low-momentum region. Data and simulation agree reasonably well given the known imperfections in the simulation of inactive pixel modules. These differences are taken into account in the systematic uncertainty on the tracking efficiency by comparing the efficiency of the pixel hit requirements in data and simulation after applying all other track selection requirements.

Events are required to contain at least two selected tracks satisfying the following criteria: $p_T > 100$ MeV and $|\eta| < 2.5$; at least one pixel hit and an innermost pixel-layer hit if expected; at least two, four or six SCT hits for $p_T < 300$ MeV, < 400 MeV or > 400 MeV respectively, in order to account for the dependence of track length on p_T; $|z_{10}^{BL}| < 1.5$ mm, where the transverse impact parameter d_{0}^{BL} is calculated with respect to the measured beam line (BL); and $|z_{10}^{BL} \times \sin \theta| < 1.5$ mm, where z_{10}^{BL} is the difference between the longitudinal position of the track along the beam line at the point where d_{0}^{BL} is measured and the longitudinal position of the primary vertex and θ is the polar angle of the track. High-momentum tracks with mismeasured p_T are removed by requiring the track-fit χ^2 probability to be larger than 0.01 for tracks with $p_T > 10$ GeV. In total 9.3×10^8 events pass the selection, containing a total of 3.2×10^8 selected tracks.

3.2 Background estimation

Background contributions to the tracks from primary particles include fake tracks (those formed by a random combination of hits), strange baryons and secondary particles. These contributions are subtracted on a statistical basis from the number of reconstructed tracks before correcting for other detector effects. The contribution of fake tracks, estimated from simulation, is at most 1 % for all p_T and η intervals with a relative uncertainty of ± 50 % determined from dedicated comparisons of data with simulation [33]. Charged strange baryons with a mean lifetime $30 < \tau < 300$ ps are treated as background, because these particles and their decay products have a very low reconstruction efficiency. Their contribution is estimated from EPOS, where the best description of this strange baryon contribution is expected [9], to be below 0.01 % on average, with the fraction increasing with track p_T to be (3 ± 1) % above 20 GeV. The fraction is much smaller at low p_T due to the extremely low track reconstruction efficiency. The contribution from secondary particles is estimated by performing a template fit to the distribution of the track transverse impact parameter d_{0}^{BL}, using templates for primary and secondary particles created from PYTHIA 8 A2 simulation. All selection requirements are applied except that on the transverse impact parameter. The shape of the transverse impact parameter distribution differs for electron and non-electron secondary particles, as the d_{0}^{BL} reflects the radial location at which the secondaries were produced. The processes for conversions and hadronic interactions are rather different, which leads to differences in the radial distributions. The electrons are more often produced from conversions in the beam pipe. Furthermore, the fraction of electrons increases as p_T decreases. Therefore, separate

2 A hit is expected if the extrapolated track crosses an known active region of a pixel module. If an innermost pixel-layer hit is not expected, a next-to-innermost pixel-layer hit is required if expected.

Fig. 1 Comparison between data and PYTHIA 8 A2 simulation for the distribution of the number of pixel hits associated with a track. The distribution is shown before the requirement on the number of pixel hits is applied, for tracks with $100 < p_T < 500$ MeV and $|\eta| < 2.5$. The error bars on the points are the statistical uncertainties of the data. The lower panel shows the ratio of data to MC prediction.
templates are used for electrons and non-electron secondary particles in the region \(p_T < 500 \text{ MeV} \). The rate of secondary tracks is the sum of these two contributions and is measured with the fit. The background normalisation for fake tracks and strange baryons is determined from the prediction of the simulation. The fit is performed in nine \(p_T \) intervals, each of width 50 MeV, in the region \(4 < |d_0^{\text{BL}}| < 9.5 \text{ mm} \). The fitted distribution for \(100 < p_T < 150 \text{ MeV} \) is shown in Fig. 2.

For this \(p_T \) interval, the fraction of secondary tracks within the region \(|d_0^{\text{BL}}| < 1.5 \text{ mm} \) is measured to be \((3.6 \pm 0.7)\%\), equally distributed between electrons and non-electrons. For tracks with \(p_T > 500 \text{ MeV} \), the fraction of secondary particles is measured to be \((2.3 \pm 0.6)\%\); these are mostly non-electron secondary particles. The uncertainties are evaluated by using different generators to estimate the interpolation from the fit region to \(|d_0^{\text{BL}}| < 1.5 \text{ mm} \), changing the fit range and checking the \(\eta \) dependence of the fraction of tracks originating from secondaries. This last study is performed by fits integrated over different \(\eta \) ranges, because the \(\eta \) dependence could be different in data and simulation, as most of the secondary particles are produced in the material of the detector. The systematic uncertainties arising from imperfect knowledge of the passive material in the detector are also included; these are estimated using the same material variations as used in the estimation of the uncertainty on the tracking efficiency, described in Sect. 3.4.

3.3 Trigger and vertex reconstruction efficiency

The trigger efficiency \(\epsilon_{\text{trig}} \) is measured in a data sample recorded using a control trigger which selected events randomly at L1 only requiring that the beams are colliding in the ATLAS detector. The events are then filtered at the HLT by requiring at least one reconstructed track with \(p_T > 200 \text{ MeV} \). The efficiency \(\epsilon_{\text{trig}} \) is defined as the ratio of events that are accepted by both the control and the MBTS trigger to all events accepted by the control trigger. It is measured as a function of the number of selected tracks with the requirement on the longitudinal impact parameter removed, \(n_{\text{sel}}^{\text{no-z}} \). The trigger efficiency increases from \(96.5^{+0.4}_{-0.7} \% \) for events with \(n_{\text{sel}}^{\text{no-z}} = 2 \), to \((99.3 \pm 0.2)\%\) for events with \(n_{\text{sel}}^{\text{no-z}} \geq 4 \). The quoted uncertainties include statistical and systematic uncertainties. The systematic uncertainties are estimated from the difference between the trigger efficiencies measured on the two sides of the detector, and the impact of beam-induced background; the latter is estimated using events recorded when only one beam was present at the interaction point, as described in Ref. [9].

The vertex reconstruction efficiency \(\epsilon_{\text{vtx}} \) is determined from data by calculating the ratio of the number of triggered events with a reconstructed vertex to the total number of all triggered events. The efficiency, measured as a function of \(n_{\text{sel}}^{\text{no-z}} \), is approximately \((87 \pm 3)\%\) for events with \(n_{\text{sel}}^{\text{no-z}} = 2 \) and rapidly rises to \(100 \% \) for events with \(n_{\text{sel}}^{\text{no-z}} \geq 4 \). For events with \(n_{\text{sel}}^{\text{no-z}} = 2 \), the efficiency is also parameterised as a function of the difference between the longitudinal impact parameter of the two tracks (\(\Delta z_{\text{tracks}} \)). This efficiency decreases roughly linearly from \((91 \pm 7)\% \) at \(\Delta z_{\text{tracks}} = 0 \text{ mm} \) to \(32 \% \) at \(\Delta z_{\text{tracks}} = 10 \text{ mm} \). The systematic uncertainty is estimated from the difference between the vertex reconstruction efficiency measured before and after beam-background removal and found to be negligible.

3.4 Track reconstruction efficiency

The primary-track reconstruction efficiency \(\epsilon_{\text{trk}} \) is determined from simulation. The efficiency is parameterised in two-dimensional bins of \(p_T \) and \(\eta \), and is defined as:

\[
\epsilon_{\text{trk}}(p_T, \eta) = \frac{N_{\text{rec}}^{\text{matched}}(p_T, \eta)}{N_{\text{gen}}^{\text{primary}}(p_T, \eta)},
\]

where \(p_T \) and \(\eta \) are generated particle properties, \(N_{\text{rec}}^{\text{matched}}(p_T, \eta) \) is the number of reconstructed tracks matched to generated primary charged particles and \(N_{\text{gen}}^{\text{primary}}(p_T, \eta) \) is the number of generated primary charged particles in that kinematic region. A track is matched to a generated particle if the weighted fraction of track hits originating from that particle exceeds \(50 \% \). The hits are weighted such that hits in all subdetectors have the same weight in the sum, based on the number of expected hits and the resolution of the individual
subdetector. For $100 < p_T < 125$ MeV and integrated over η, the primary-track reconstruction efficiency is 27.5%. In the analysis using tracks with $p_T > 500$ MeV [9], a data-driven correction to the efficiency was evaluated in order to account for material effects in the $|\eta| > 1.5$ region. This correction to the efficiency is not applied in this analysis due to the large uncertainties of this method for low-momentum tracks, which are larger than the uncertainties in the material description.

The dominant uncertainty in the track reconstruction efficiency arises from imprecise knowledge of the passive material in the detector. This is estimated by evaluating the track reconstruction efficiency in dedicated simulation samples with increased detector material. The total uncertainty in the track reconstruction efficiency due to the amount of material is calculated as the linear sum of the contributions of 5% additional material in the entire inner detector, 10% additional material in the IBL, and 50% additional material in the pixel services region at $|\eta| > 1.5$. The sizes of the variations are estimated from studies of the rate of photon conversions, of hadronic interactions, and of tracks lost due to interactions in the pixel services [34]. The resulting uncertainty in the track reconstruction efficiency is 1% at low $|\eta|$ and high p_T and up to 10% for higher $|\eta|$ or for lower p_T. The systematic uncertainty arising from the track selection requirements is studied by comparing the efficiency of each requirement in data and simulation. This results in an uncertainty of 0.5% for all p_T and η. The total uncertainty in the track reconstruction efficiency is obtained by adding all effects in quadrature. The track reconstruction efficiency is shown as function of p_T and η in Fig. 3, including all systematic uncertainties. The efficiency is calculated using the PYTHIA 8 A2 and single-particle simulation. The statistical uncertainties are shown as vertical bars, the sum in quadrature of statistical and systematic uncertainties as shaded areas.

The data are corrected to obtain inclusive spectra for primary charged particles satisfying the particle-level phase space requirement. The inefficiencies due to the trigger selection and vertex reconstruction are applied to all distributions as event weights:

$$w_{ev}(n^{no-z}_{sel}, \Delta z_{tracks}) = \frac{1}{\varepsilon_{trig}(n^{no-z}_{sel})}, \frac{1}{\varepsilon_{vtx}(n^{no-z}_{sel}, \Delta z_{tracks})}.$$ (1)

Distributions of the selected tracks are corrected for inefficiencies in the track reconstruction with a track weight using the tracking efficiency (ε_{trk}) and after subtracting the fractions of fake tracks (f_{fake}), of strange baryons (f_{sb}), of secondary particles (f_{sec}), and of particles outside the kinematic range (f_{okr}):

$$w_{trk}(p_T, \eta) = \frac{1}{\varepsilon_{trk}(p_T, \eta)} \cdot [1 - f_{fake}(p_T, \eta) - f_{sb}(p_T, \eta) - f_{sec}(p_T, \eta) - f_{okr}(p_T, \eta)].$$ (2)

These distributions are estimated as described in Sect. 3.2 except that the fraction of particles outside the kinematic range whose reconstructed tracks enter the kinematic range is estimated from simulation. This fraction is largest at low p_T and high $|\eta|$. At $p_T = 100$ MeV and $|\eta| = 2.5$, 11%
of the particles enter the kinematic range and are subtracted as described in Formula 2 with a relative uncertainty of ±4.5 %.

The p_T and η distributions are corrected by the event and track weights, as discussed above. In order to correct for resolution effects, an iterative Bayesian unfolding [35] is additionally applied to the p_T distribution. The response matrix used to unfold the data is calculated from PYTHIA 8 A2 simulation, and six iterations are used; this is the smallest number of iterations after which the process is stable. The statistical uncertainty is obtained using pseudo-experiments. For the η distribution, the resolution is smaller than the bin width and an unfolding is therefore unnecessary. After applying the event weight, the Bayesian unfolding is applied to the multiplicity distribution in order to correct from the observed track multiplicity to the multiplicity of primary charged particles, and therefore the track reconstruction efficiency weight does not need to be applied. The total number of events, N_{ev}, is defined as the integral of the multiplicity distribution after all corrections are applied and is used to normalise the distributions. The dependence of $\langle p_T \rangle$ on n_{ch} is obtained by first separately correcting the total number of tracks and $\sum_i p_T(i)$ (the scalar sum of the track p_T of all tracks with $p_T > 100$ MeV in one event), both versus the number of primary charged particles. After applying the correction to all events using the event and track weights, both distributions are unfolded separately. The ratio of the two unfolded distributions gives the dependence of $\langle p_T \rangle$ on n_{ch}.

A summary of the systematic uncertainties is given in Table 2 for all observables. The dominant uncertainty is due to material effects on the track reconstruction efficiency. Uncertainties due to imperfect detector alignment are taken into account and are less than 5 % at the highest track p_T values. In addition, resolution effects on the transverse momentum can result in low-p_T particles being reconstructed as high-p_T tracks. All these effects are considered as systematic uncertainty on the track reconstruction. The track background uncertainty is dominated by systematic effects in the estimation of the contribution from secondary particles. The track reconstruction efficiency determined in simulation can differ from the one in data if the p_T spectrum is different for data and simulation, as the efficiency depends strongly on the track p_T. This effect can alter the number of primary charged particles and is taken into account as a systematic uncertainty on the multiplicity distribution and $\langle p_T \rangle$ vs n_{ch}. The non-closure systematic uncertainty is estimated from differences in the unfolding results using PYTHIA 8 A2 and EPOS simulations. For this, all combinations of these MC generators are used to simulate the distribution and the input to the unfolding.

4 Results

The measured charged-particle multiplicities in events containing at least two charged particles with $p_T > 100$ MeV and $|\eta| < 2.5$ are shown in Fig. 4. The corrected data are compared to predictions from various generators. In general, the systematic uncertainties are larger than the statistical uncertainties.

Figure 4a shows the charged-particle multiplicity as a function of the pseudorapidity η. PYTHIA 8 MONASH, EPOS and QGSJET- II give a good description for $|\eta| < 1.5$. The prediction from PYTHIA 8 A2 has the same shape as predictions from the other generators, but lies below the data.

The charged-particle transverse momentum is shown in Fig. 4b. EPOS describes the data well for $p_T > 300$ MeV. For $p_T < 300$ MeV, the data are underestimated by up to 15 %. The other generators show similar mismodelling at low momentum but with larger discrepancies up to 35 % for QGSJET- II. In addition, they mostly overestimate the charged-particle multiplicity for $p_T > 400$ MeV; PYTHIA 8 A2 overestimates only in the intermediate p_T region and underestimates the data slightly for $p_T > 800$ MeV.

Figure 4c shows the charged-particle multiplicity. Overall, the form of the measured distribution is reproduced reasonably by all models. PYTHIA 8 A2 describes the data well for $30 < n_{ch} < 80$, but underestimates it for higher n_{ch}. For $30 < n_{ch} < 80$, PYTHIA 8 MONASH, EPOS and QGSJET- II underestimate the data by up to 20 %. PYTHIA 8 MONASH and EPOS overestimate the data for $n_{ch} > 80$ and drop below the measurement in the high-n_{ch} region, starting from $n_{ch} > 130$ and $n_{ch} > 200$ respectively. QGSJET- II overestimates the data significantly for $n_{ch} > 100$.

The mean transverse momentum versus the primary charged-particle multiplicity is shown in Fig. 4d. It increases towards higher n_{ch} as modelled by a colour reconnection...
Fig. 4 Primary charged-particle multiplicities as a function of a pseudorapidity η and b transverse momentum p_T, c the primary charged-particle multiplicity n_{ch} and d the mean transverse momentum $\langle p_T \rangle$ versus n_{ch} for events with at least two primary charged particles with $p_T > 100$ MeV and $|\eta| < 2.5$, each with a lifetime $\tau > 300$ ps. The black dots represent the data and the coloured curves the different MC model predictions. The vertical bars represent the statistical uncertainties, while the shaded areas show statistical and systematic uncertainties added in quadrature. The lower panel in each figure shows the ratio of the MC simulation to data. As the bin centroid is different for data and simulation, the values of the ratio correspond to the averages of the bin content.
mechanism in PYTHIA 8 and by the hydrodynamical evolution model in EPOS. The QGSJET-II generator, which has no model for colour coherence effects, describes the data poorly. For low \(n_{ch} \), PYTHIA 8 A2 and EPOS underestimate the data, where PYTHIA 8 MONASH agrees within the uncertainties. For higher \(n_{ch} \), all generators overestimate the data, but for \(n_{ch} > 40 \), there is a constant offset for both PYTHIA 8 tunes, which describe the data to within 10%. EPOS describes the data reasonably well and to within 2%.

The mean number of primary charged particles per unit pseudorapidity in the central \(\eta \) region is measured to be \(6.422 \pm 0.096 \), by averaging over \(|\eta| < 0.2 \); the quoted error is the systematic uncertainty, the statistical uncertainty is negligible. In order to compare with other measurements, it is corrected for the contribution from strange baryons (and therefore extrapolated to primary charged particles with \(\tau > 30 \text{ ps} \)) by a correction factor of 1.0121 \(\pm 0.0035 \). The central value is taken from EPOS; the systematic uncertainty is taken from the difference between EPOS and PYTHIA 8 A2 (the largest difference was observed between EPOS and PYTHIA 8 A2) and the statistical uncertainty is negligible. The mean number of primary charged particles after the correction is 6.500 \(\pm 0.099 \). This result is compared to previous measurements [1,2,9] at different \(\sqrt{s} \) values in Fig. 5. The predictions from EPOS and PYTHIA 8 MONASH match the data well. For PYTHIA 8 A2, the match is not as good as was observed when measuring particles with \(p_T > 500 \text{ MeV} \) [9].

5 Conclusion

Primary charged-particle multiplicity measurements with the ATLAS detector using proton–proton collisions delivered by the LHC at \(\sqrt{s} = 13 \text{ TeV} \) are presented for events with at least two primary charged particles with \(|\eta| < 2.5 \) and \(p_T > 100 \text{ MeV} \) using a specialised track reconstruction algorithm. A data sample corresponding to an integrated luminosity of 151 \(\mu \text{b}^{-1} \) is analysed. The mean number of charged particles per unit pseudorapidity in the region \(|\eta| < 0.2 \) is measured to be 6.422 \(\pm 0.096 \) with a negligible statistical uncertainty. Significant differences are observed between the measured distributions and the Monte Carlo predictions tested. Amongst the models considered, EPOS has the best overall description of the data as was seen in a previous ATLAS measurement at \(\sqrt{s} = 13 \text{ TeV} \) using tracks with \(p_T > 500 \text{ MeV} \). PYTHIA 8 A2 and PYTHIA 8 MONASH provide a reasonable overall description, whereas QGSJET-II does not describe \(\langle p_T \rangle \) vs. \(n_{ch} \) well but provides a reasonable level of agreement for other distributions.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, FAPERJ, FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong; SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallace Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BMBF, Gifo and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [36].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
61 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong, China; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
62 Department of Physics, Indiana University, Bloomington, IN, USA
63 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
64 University of Iowa, Iowa City, IA, USA
65 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
66 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
67 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
68 Graduate School of Science, Kobe University, Kobe, Japan
69 Faculty of Science, Kyoto University, Kyoto, Japan
70 Kyoto University of Education, Kyoto, Japan
71 Department of Physics, Kyushu University, Fukuoka, Japan
72 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
73 Physics Department, Lancaster University, Lancaster, UK
74 (a) INFN Sezione di Lecce, Lecce, Italy; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
75 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
76 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
77 School of Physics and Astronomy, Queen Mary University of London, London, UK
78 Department of Physics, Royal Holloway University of London, Surrey, UK
79 Department of Physics and Astronomy, University College London, London, UK
80 Louisiana Tech University, Ruston, LA, USA
81 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
82 Fysiska institutionen, Lunds universitet, Lund, Sweden
83 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
84 Institut für Physik, Universität Mainz, Mainz, Germany
85 School of Physics and Astronomy, University of Manchester, Manchester, UK
86 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
87 Department of Physics, University of Massachusetts, Amherst, MA, USA
88 Department of Physics, McGill University, Montreal, QC, Canada
89 School of Physics, University of Melbourne, Melbourne, VIC, Australia
90 Department of Physics, The University of Michigan, Ann Arbor, MI, USA
91 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
92 (a) INFN Sezione di Milano, Milan, Italy; (b) Dipartimento di Fisica, Università di Milano, Milan, Italy
93 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
94 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
95 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
96 P.N. Lebedev Physical Institute of the Russian, Academy of Sciences, Moscow, Russia
97 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
98 National Research Nuclear University MEPhI, Moscow, Russia
99 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
100 Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
101 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
102 Nagasaki Institute of Applied Science, Nagasaki, Japan
103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
104 (a) INFN Sezione di Napoli, Naples, Italy; (b) Dipartimento di Fisica, Università di Napoli, Naples, Italy
105 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
108 Department of Physics, Northern Illinois University, DeKalb, IL, USA
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York, NY, USA
111 Ohio State University, Columbus, OH, USA
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
114 Department of Physics, Oklahoma State University, Stillwater, OK, USA
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
117 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, UK
121 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy
122 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
123 National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
124 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
126 (a)Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b)Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c)Department of Physics, University of Coimbra, Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e)Departamento de Física, Universidade do Minho, Braga, Portugal; (f)Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g)Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
128 Czech Technical University in Prague, Prague, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
130 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Protvino, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
132 (a)INFN Sezione di Roma, Rome, Italy; (b)Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
133 (a)INFN Sezione di Roma Tor Vergata, Rome, Italy; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
134 (a)INFN Sezione di Roma Tre, Rome, Italy; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
138 Department of Physics, University of Washington, Seattle, WA, USA
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
143 SLAC National Accelerator Laboratory, Stanford, CA, USA
Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
Department of Physics, University of Cape Town, Cape Town, South Africa; Department of Physics, University of Johannesburg, Johannesburg, South Africa; School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Stockholm University, Stockholm, Sweden; The Oskar Klein Centre, Stockholm, Sweden
Physics Department, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA
Department of Physics and Astronomy, University of Sussex, Brighton, UK
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, ON, Canada
TRIUMF, Vancouver, BC, Canada; Department of Physics and Astronomy, York University, Toronto, ON, Canada
Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, MA, USA
Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; ICTP, Trieste, Italy; Dipartimento di Chimica Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana, IL, USA
Instituto de Fisica Corpuscular (IFIC) and Departamento de Fisica Atomica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
Department of Physics, University of Warwick, Coventry, UK
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, WI, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, CT, USA
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Also at Department of Physics, King’s College London, London, UK
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Novosibirsk State University, Novosibirsk, Russia
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA
Also at Department of Physics, California State University, Fresno, CA, USA
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
Also at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
Also at Tomsk State University, Tomsk, Russia
