Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of \(s\)-wave scattering lengths

Masaaki Kitagawa, Katsunari Enomoto, Kentarō Kasa, Yoshiro Takahashi, Roman Ciuryło, Pascal Naidon, and Paul S. Julienne

1Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
2CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
3Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland
4Atomic Physics Division and 5Joint Quantum Institute, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8423, Gaithersburg, Maryland 20899-8423, USA.

(Dated: February 1, 2008)

By performing high-resolution two-color photoassociation spectroscopy, we have successfully determined the binding energies of several of the last bound states of the homonuclear dimers of six different isotopes of ytterbium. These spectroscopic data are in excellent agreement with theoretical calculations based on a simple model potential, which very precisely predicts the \(s\)-wave scattering lengths of all 28 pairs of the seven stable isotopes. The \(s\)-wave scattering lengths for collision of two atoms of the same isotopic species are 13.33(18) nm for \(^{168}\text{Yb}\), 3.38(11) nm for \(^{170}\text{Yb}\), \(-0.15(19)\) nm for \(^{171}\text{Yb}\), \(-31.7(3.4)\) nm for \(^{172}\text{Yb}\), 10.55(11) nm for \(^{173}\text{Yb}\), 5.55(8) nm for \(^{174}\text{Yb}\), and \(-1.28(23)\) nm for \(^{176}\text{Yb}\). The coefficient of the lead term of the long-range van der Waals potential of the \(\text{Yb}_2\) molecule is \(C_6 = 1932(30)\) atomic units (\(E_b a_0^6 \approx 9.573 \times 10^{-26}\) J nm\(^6\)).

PACS numbers: 34.50.Rk, 34.20.Cf, 32.80.Pj, 34.10.+x

I. INTRODUCTION

A collision between two atoms is a fundamental physical scattering process and can be described by a few partial scattering waves for ultracold atoms. At a sufficiently low temperature the kinetic energy of colliding atoms becomes less than the centrifugal barrier, and only the \(s\)-wave scattering is possible. The \(s\)-wave scattering length is an essential parameter for describing ultracold collisions. It also governs the static and dynamic properties of quantum degenerate gases like a Bose-Einstein condensate (BEC) or a degenerate Fermi gas (DFG) of fermionic atoms in different spin states. Since the \(s\)-wave scattering length is very sensitive to the ground state interatomic potential, especially at short internuclear distance, the precise \textit{ab initio} calculation of the scattering length is very difficult, and therefore we must resort to experimental determination. The most powerful approach for determining the scattering length is to measure the binding energy \((E_b)\) of the last few bound states in the molecular ground state, since the energy \(E_b\) is closely related to the \(s\)-wave scattering length. So far, the binding energies were measured via two-color photoassociation (PA) spectroscopy for Li \({}^1\) \[1\], Na \({}^2\) \[2\], K \({}^3\) \[2\], Rb \({}^4\) \[4\], Cs \({}^5\) \[3\] and He \({}^6\) \[6\]. A schematic description is shown in Fig. 1. If a laser field \(L_2\) is resonant to a bound-bound transition, it causes an Autler-Townes doublet. This effect is detected as a reduction of a rate of a free-bound PA transition driven by the other laser field \(L_1\). This scheme is called Autler-Townes spectroscopy, and it is also explained in terms of the formation of a dark state. If both lasers are off-resonant and the frequency difference matches \(E_b\), these lasers drive a stimulated Raman transition from the colliding atom pair to a molecular state in the electronic ground state. In this Raman spectroscopy, the resonance is detected as an atom loss.

The \(s\)-wave scattering length of two colliding atoms is determined by the adiabatic Born-Oppenheimer interaction potential \(V(r)\) between the two atoms, which is very well approximated at large interatomic separation \(r\) by the van der Waals contribution, \(V(r) \approx -C_6/r^6\), where \(C_6\) is the van der Waals coefficient due to the dipole-dipole interaction. The \(s\)-wave scattering length is given by the following formula, based on a quantum correction to the WKB approximation so as to be accurate for the zero-energy \((E=0)\) limit \[2\] \[3\] \[4\].

\[
a = a \left[1 - \tan \left(\Phi - \frac{\pi}{8} \right) \right].
\]

Here \(a = 2^{-3/2} \frac{\Gamma(3/4)}{\Gamma(1/4)} \left(2\mu C_6 / \hbar^2 \right)^{1/4}\) is a characteristic length associated with the van der Waals potential, where \(\Gamma\) is the gamma-function, \(\mu\) is the reduced mass, and \(\hbar\) is the Planck constant divided by \(2\pi\). The semiclassical phase \(\Phi\) is defined by

\[
\Phi = \frac{\sqrt{2\mu}}{\hbar} \int_{r_0}^{\infty} \sqrt{-V(r)} dr,
\]

where \(r_0\) is the inner classical turning point of \(V(r)\) at zero energy. The number of bound states \(N\) in the potential is \[8\]

\[
N = \left\lfloor \frac{\Phi}{\pi} - \frac{5}{8} \right\rfloor + 1,
\]

where \(\lfloor \ldots \rfloor\) means the integer part. As was mentioned above, the scattering length is very sensitive to the phase \(\Phi\) and can take on any value between \(\pm \infty\) when \(\Phi\) varies.
over a range spanning π. While the accurate calculation of Φ is very difficult since it requires a knowledge of the whole potential, Φ is proportional to $\sqrt{\pi}$, and so the formula in Eq. (1) gives a simple mass-scaling of the isotopic variation of the scattering length once a and N are known for one isotopic combination. Mass scaling applies as long as small mass-dependent corrections to the Born-Oppenheimer potential \cite{12, 13, 14} can be ignored. While mass scaling is often used for bound and scattering states for cold atomic systems \cite{10, 11}, and seems applicable to large-mass systems within experimental uncertainties \cite{12}, exceptions are known \cite{16}, and its accuracy should be carefully tested for different kinds of systems.

Ytterbium (Yb) is a rare-earth element with an electronic structure similar to that of the alkaline-earth atoms. One of the unique features of Yb atoms is a rich variety of isotopes with five spinless bosons (168Yb, 170Yb, 172Yb, 174Yb, 176Yb) and two fermions (171Yb with the nuclear spin $I = 1/2$ and 173Yb with $I = 5/2$), which enables us to study various mixtures of degenerate gases of Yb atoms. In fact, recently, a BEC \cite{17} and a DFG \cite{18} of Yb atoms have been achieved. Another distinct feature of Yb atoms is the simple electronic ground state of 1S_0 symmetry. Therefore, the ground molecular state of Yb has only one potential of $^1\Sigma_g$ molecular symmetry with no electronic orbital and spin angular momenta. This is in contrast to the case of an alkali dimer which has spin-singlet $^1\Sigma_g$ and spin-triplet $^3\Sigma_g$ ground states with a complicated hyperfine structure. These two unique features of the Yb system, that is, the existence of rich variety of isotopes and one simple isotope-independent molecular potential, offers the possibility to systematically check the scattering length theory with an unprecedented precision. If we can be confident in the theory, then it would enable us to determine the scattering lengths of all possible isotope pairs which are not measured experimentally. So far, to determine the s-wave scattering length of 174Yb, one-color PA spectroscopy was performed \cite{19}, which gave the result of 5.53(11) nm. From the cross-dimensional rethermalization technique, the absolute value of the scattering length for 173Yb was estimated as 6(2) nm \cite{18}, assuming that the spin was completely unpolarized. However, these two values are not enough for a rigorous test of the theory.

In this paper, we report an accurate determination of the s-wave scattering lengths for all Yb isotopes including those for different isotope pairs. By using two-color PA spectroscopy with the intercombination transition $^4S_0 - ^3P_1$, we successfully determined the binding energy E_b of twelve bound states near the dissociation limit of four homonuclear dimers comprised of bosonic atoms (170Yb\textsubscript{2}, 172Yb\textsubscript{2}, 174Yb\textsubscript{2}, and 176Yb\textsubscript{2}) and two dimers comprised of fermionic atoms (171Yb\textsubscript{2} and 173Yb\textsubscript{2}). The spectroscopically measured binding energies are in excellent agreement with theoretical calculations based on a simple model potential that was fit to the data. The calculated s-wave scattering lengths for the six isotopes obey the mass-scaling law with very good precision. Moreover, this excellent agreement allows us to accurately deter-
mine the scattering lengths of all twenty-eight different isotopic combinations. In addition, we can reveal scattering properties of other partial waves such as p- and d-wave scatterings and energy dependence of the elastic cross sections. These results are an important foundation for future research, such as the efficiency of evaporative cooling, stability of quantum gases and their mixtures, and the clock shift [20].

II. EXPERIMENT

The experimental setup was almost the same as our previous experiment of one-color PA spectroscopy [21]. All the experiments were performed at about 1 µK, where only the s-wave scattering is possible. Atoms were first collected in a magneto-optical trap (MOT) with the intercombination transition $^1S_0 \rightarrow ^3P_1$ at 556 nm. The linewidth and saturation intensity of the transition were 182 kHz and 0.14 mW/cm², respectively. The laser beam for the MOT was generated by a dye laser whose linewidth was narrowed to less than 100 kHz. The dye laser was stabilized by an ultralow expansion cavity, whose frequency drift was typically less than 20 Hz/s. The number, density and temperature of atoms in the MOT were about 2×10^7, 10^{11} cm⁻³ and 40 µK, respectively. Then the atoms were transferred into a crossed far-off resonant trap (FORT). The number, density and temperature of atoms in the FORT were about 2×10^6, 10^{13} cm⁻³, and 100 µK, respectively. To reach lower temperatures, evaporative cooling was carried out by gradually decreasing the potential depth of the horizontal FORT beam to several tens of µK in several seconds. Evaporative cooling worked rather well for the bosonic isotopes, 170Yb, 172Yb and 174Yb and for the fermionic isotope 173Yb. Typically 1×10^5 atoms at the temperature of about 1 µK finally remained in the trap and the density was between 10^{13} cm⁻³ and 10^{14} cm⁻³, although optimized evaporation ramps and efficiency for each isotope were different. In particular, we observed rapid atom decay for 172Yb due to three-body recombination. The steeper evaporation ramp was needed for 172Yb to obtain enough number of atoms. It is also noted that an unpolarized sample of 173Yb enabled us to perform efficient evaporative cooling even at a low temperature via elastic collisions between atoms with different spins. For the bosonic 176Yb and fermionic 171Yb isotopes, however, the evaporative cooling did not work well. In order to cool 171Yb and 176Yb, we performed sympathetic cooling with bosonic 173Yb [22, 23]. Bichromatic MOT beams for simultaneous trapping of two isotopes in the MOT were generated by an electro-optic modulator (EOM), of which the modulation frequency corresponds to the isotope shift. Typically 6×10^4 atoms for 171Yb

FIG. 3: (color online) Two-color PA spectra at about 1 µK. The horizontal and vertical axes are the frequency difference between the two lasers and the number of remained atoms, respectively. The vertical error bars represent the fluctuations of the number of atoms. The solid lines are fits of the Lorentz functions. The Autler-Townes spectroscopy is applied to the $v = 1, J = 0, 2$ states of 171Yb and the $v = 1, J = 0$ state of 172Yb, while the Raman spectroscopy is applied to the others.
and 2×10^5 atoms for 176Yb at the temperature of about 1 μK finally remained in the trap. The bosonic isotope of 168Yb was hard to collect in the MOT due to its small natural abundance of 0.13 percent, although there are no fundamental difficulties for 168Yb in principle.

After the evaporative cooling, the two lasers, L_1 for the free-bound transition and L_2 for the bound-bound transition, were simultaneously applied to the atoms in the trap for about 30 ms. These beams were focused to a 100 μm diameter. The schematic setup for the PA lasers is represented in Fig. 2. The two laser beams were prepared by splitting one laser beam for the MOT and therefore had the same frequency linewidth and stability as the MOT beam. The relative frequency was controlled by acousto-optic modulators (AOMs). The two laser beams were coupled in the same optical fiber. A polarizing beam splitter (PBS) and a half-wave ($\lambda/2$) plate after the optical fiber were inserted to fix the polarization of both lasers in the same direction. Finally, the PA laser beams were aligned to pass through the atoms in the FORT by using a CCD camera for absorption imaging. The detuning of the PA laser with respect to the atomic resonance $^1S_0 \rightarrow ^3P_1$ was easily checked by observing the frequency at which the atoms in the MOT disappeared. The power of the PA laser was monitored by a photodiode. For the Raman spectroscopy, the frequency f_1 of L_1 was fixed with a certain detuning Δ from a particular PA resonance, and the frequency f_2 of L_2 was scanned to search for the bound states of the ground state. For the Autler-Townes spectroscopy, f_1 was fixed to a particular PA resonance, and f_2 was scanned. Table I shows the excited state rovibrational levels used for the free-bound transition, where the resonance position is given in frequency detuning from the atomic $^1S_0 \rightarrow ^3P_1$ transition. Our setup for the PA laser beams could provide enough power for detuning smaller than 1 GHz. To obtain enough power for detuning larger than 1 GHz, the sideband of the EOM was used for the MOT while the carrier is used as the PA lasers. We observed the two-color PA signals by measuring the number of surviving atoms with the absorption imaging method with the $^1S_0 \rightarrow ^1P_1$ transition.

III. EXPERIMENTAL RESULTS

All the two-color PA spectra observed are shown in Fig. 3, where v is the vibrational quantum number counting down from the dissociation limit and J is the rotational quantum number. The observed spectral linewidth is typically several tens of kHz due to the finite energy distribution at the 1 μK temperature and the power broadening. The selection rule for the parity determines the observable quantum number J in the ground state $^1\Sigma^+$ as 0, 2, 4, \cdots from the s-wave collision. We observed all resonance positions with detuning less than 300 MHz from the dissociation limit except for the $v = 2$ state for 173Yb; see Fig. 4 (b).

The observed peak positions included the light shift.

![FIG. 4: (color online) Resonance positions $f_1 - f_2$ of the $v = 1, J = 0$ state of 174Yb as a function of δ_{LS}. The temperature shift is not compensated. The vertical error bars represent the uncertainty estimates for the temperature and the center frequency of the resonance. The horizontal error bars include the fluctuations of the laser intensities. The data are fitted with a linear function represented by a solid line.](image)

![FIG. 5: (color online) Resonance positions $f_1 - f_2$ of the $v = 1, J = 0$ state of 174Yb as a function of the temperature. The light shift is not compensated. The vertical error bars represent the uncertainty estimates for the center frequency of the resonance. The data are fitted with a linear function represented by a solid line.](image)
We measured the peak positions with several laser intensities for L_1 and L_2 and different detunings Δ, in order to compensate the light shift by interpolation or extrapolation. We found that the bound-bound coupling is dominant for the light shift for the Raman spectroscopy. Namely, the light shift is expressed as

$$
\delta_{LS} = \beta \left(\frac{I_1}{\Delta + f_1 - f_2} + \frac{I_2}{\Delta} \right),
$$

where β is a constant related to the Franck-Condon factor of the bound-bound transition, I_1 and I_2 are the laser intensities of L_1 and L_2, respectively. Typical values of the detuning Δ and laser intensity were about 2 MHz and $10-1000$ mW/cm2. The contributions of the other excited bound states were negligible, since their resonance frequencies were typically more than 300 MHz apart, which was much larger than Δ and $\Delta + f_1 - f_2$. Figure 4 shows the light shift δ_{LS} with several intensities for L_1 and L_2 and detuning Δ. The error bars include the uncertainty due to fluctuations of laser intensity and the uncertainty for the temperature of the atom clouds. We note that the data are well fitted by a linear function. It is also noted that the value of β obtained from the fitting is consistent with our estimation of the Franck-Condon factor of the bound-bound transition, which also ensures the validity of our analysis.

The resonance position at $\delta_{LS} = 0$ gives the peak position without the light shift. For the Autler-Townes spectroscopy the light shift was basically caused by the laser L_1. When the detuning Δ was not zero, however, the laser L_2 also contributed to the light shift. The sense and magnitude of the detuning Δ could be estimated from the careful investigation of the spectral shape [22]. Similarly, the peak positions with different laser intensities for L_1 and L_2 were measured and the light shift was compensated by extrapolation of these data.

The observed peak positions also suffered from the temperature shift. The temperature shift was assumed to be $2\alpha_T k_B T$, where α_T is a constant, k_B is the Boltzmann constant and T is the temperature. The factor α_T was expected to be $3/2$ [6], which was checked experimentally for $v = 1, J = 0$ state of 174Yb2 for the temperature range from 0.5 μK to 2 μK. The resonance positions with different temperatures are shown in Fig. 4. The data were fitted with a linear function represented in a solid line. The results are consistent with $\frac{1}{2} k_B T$ within 9 percent. We also compensated the temperature shift for the other data using the $\frac{2}{3} k_B T$ dependence. The final results of the experimentally determined binding energies are listed in Table II.

isotope	v	J	method	E_b (MHz)	E_b (MHz)	Difference (MHz)
170Yb	1	0	R	-27.661(23)	-27.755	0.094
171Yb	2	R	-3.651(26)	-3.683	0.032	
172Yb	2	AT	-64.418(40)	-64.548	0.130	
172Yb	2	AT	-123.269(26)	-123.349	0.080	
173Yb	2	R	-1.539(74)	-1.613	0.074	
174Yb	1	0	R	-10.612(38)	-10.642	0.030
174Yb	1	0	AT	-10.606(17)	-10.642	0.036
176Yb	2	R	-325.607(18)	-325.607	0.000	
176Yb	2	R	-268.575(21)	-268.576	0.001	

isotope	v	J	method	E_b (MHz)
170Yb	1	0	R	-70.404(11)
171Yb	1	0	R	-37.142(13)

We also measured E_b for the $v = 1, J = 0$ state of 174Yb2 with the two-color PA using the strongly allowed $^1S_0 - ^3P_1$ transition. The wavelength, linewidth, and saturation intensity of the atomic transition were 399 nm, 29 MHz, and 60 mW/cm2, respectively. We used the ν_{11} level of the excited $^3\Sigma_u^+$ molecular state, where ν_{11} is numbered from the dissociation limit $^1S_0 + ^1P_1$ [19]. The resonance position of the level was -172.3 GHz from the dissociation limit. Raman spectroscopy was employed to measure the peak position. The light shift and temperature shift were also compensated. The measured E_b of 10.597(59) MHz is in excellent agreement with the values in Table II which includes the Autler-Townes measurement with a precision of better than 20 kHz.

IV. CALCULATION AND DISCUSSION

The binding energies of the bound states as well as scattering lengths of all isotopic combinations are determined by the reduced mass and a single Born-Oppenheimer potential $V(r)$, as long as small mass-dependent adiabatic and non-adiabatic corrections to the potential are sufficiently small. The key features of the potential that determine the positions of the last few bound states are the form of the long range potential and a phase associated with the short range potential. Consequently, we assume the following simple potential form to analyze the data:

$$
V(r) = -\frac{C_6}{r^6} \left(1 - \frac{2}{3} r^6 \right) - \frac{C_8}{r^8} + B(r)J(J + 1),
$$

where σ is a constant, C_6 is the van der Waals constant associated with the dipole-quadrupole interaction, and $B(r) = \hbar^2/(2\mu r^2)$ is due to molecular rotation. The first term in Eq. 5 gives the Lennard-Jones form for the potential, for which the short range form can be changed by varying σ. The C_8 term is needed to improve the quality of the fit to the data.

By solving the Schrödinger equation numerically for the eigenvalues and comparing to the measured binding energies, it is possible to determine an optimum set of
potential parameters. The $J = 0, v = 2$ level of 174Yb$_2$ and the $J = 0, v = 1$ level for 176Yb$_2$ were fit to determine C_6 and obtain the right number of bound states N_{174} for 174Yb$_2$. Then the $J = 2, v = 2$ level for 174Yb$_2$ was added to the fit to determine C_6 and improve the determination of C_6. The results are $C_6 = 1931.7\ E_h a_0^6$, $C_8 = 1.93 \times 10^5 \ E_h a_0^8$, $\sigma = 9.0109362\ a_0$, $N_{174} = 72$, where $a_0 \approx 0.529\ \text{nm}$, $E_h \approx 4.36 \times 10^{-18}\ \text{J}$. These parameters then determine without additional corrections the binding energies of the other isotopic combinations shown in Table I and Fig. 6(b). Taking into account a lack of precise knowledge about the short range part of the potential and the magnitude of possible retardation effects and neglect of higher order dispersion energy terms, we estimate the uncertainties in C_6 and C_8 to be about 2 percent and 25 percent respectively, or $C_6 = 1932(30)\ E_h a_0^6$ and $C_8 = 1.9(5) \times 10^5 \ E_h a_0^8$. Adding a $-C_{10}/r^{10}$ van der Waals term only very slightly improved the quality of the fit, and the optimum values of C_6 and C_8 remain within the above stated uncertainties. The C_6 value is lower than a previous experimental determination of $2300(250)\ E_h a_0^6$ [26] and recent theoretical predictions of $2291.6\ E_h a_0^6$ [27], $2567.9\ E_h a_0^6$ [27], and $2062\ E_h a_0^6$ [28]. The short range form of the potential should be viewed as a pseudopotential having the right number of bound states N but not necessarily giving an accurate shape for the potential. The model well depth $D_e/h = 32469\ \text{GHz}$ is significantly larger than ab initio values; see Ref. 27 and references therein.

The agreement shown in Table I with a precision less than 100 kHz between the experimentally determined E_b and most of the calculated E_b values is quite impressive for such a simple model potential. The use of a single mass-independent potential with the appropriate reduced mass is thus seen as an excellent approximation for calculating the isotopic variation in binding energies. The failure to obtain a fit to the data within experimental error in all cases could be indicative of the failure of mass scaling, although it may only be due to the limitations of the simple form we assumed to represent the potential over its whole range. Adding a small mass-dependent correction on the order of 1 GHz to the well depth of the potential allows us to fit the binding energies for each isotope almost within experimental uncertainties. We see indications that the potential is deeper for heavier isotopes. Additional work is needed to see if the Yb system can be used to make quantitative tests of the accuracy and limitations of mass scaling.

When we added terms to account for relativistic retardation effects [29], the χ^2 of the overall fit did not improve, although the energies of the least bound levels improved slightly. These relativistic terms take on the form $\alpha^2 W_4/r^4$ in the physically interesting region $r \ll \lambda$, where α is the fine structure constant and $\lambda \approx 1100\ a_0$ is a characteristic length associated with a mean electronic excitation energy. The lead term in the retarded van der Waals interactions switches to $1/r^7$ behavior in the very long range region $r \gg \lambda$. Since the outer turning point of the least bound level is still only around $150\ a_0$, the $\alpha^2 W_4/r^4$ form is the appropriate form to use in looking for the magnitude of the effect. When we added a C_4/r^4 term to the potential, we find that we get a slightly better fit for the most weakly bound levels, but not a better overall fit, if we take $C_4 = 1.5 \times 10^{-3} \ E_h a_0^6$, similar in magnitude to the value $0.6 \times 10^{-3} \ E_h a_0^5$ estimated in the way proposed in Ref. 29 using the dipole polarizability and C_6 coefficient for Yb reported in Ref. 27. Our reported model parameters and scattering lengths include the uncertainties associated with the lack of knowledge of the retardation corrections for this system. Consequently, there is a need for a theoretical evaluation of these corrections.

Given the ground state potential energy curve with the form of Eq. (5) and the parameters given above, we can calculate the s-wave scattering lengths for all isotopic combinations by numerically solving the Schrödinger equation with the appropriate reduced mass. These are shown in Table III and Fig. 6(a). The uncertainties reflect the uncertainties in the model parameters and the need to include retardation corrections to the potential. The value for 174Yb is in excellent agreement with the value 5.53(11) reported in Ref. 13. The value for 173Yb is slightly larger than the value estimated from the thermalization experiments in Ref. 13. However, the s-wave elastic cross section for 173Yb decreases by about 10 percent between $E = 0$ and the 6 μK temperature of the experiment. The experimental value could also be larger if the unknown distribution of spin populations differed from the assumption of uniformity.

Since the three-parameter model potential Eq. (1) is

Isotope	168Yb	170Yb	171Yb	172Yb	173Yb	174Yb	176Yb
168Yb	13.33(18)	6.19(8)	4.72(9)	3.44(10)	2.04(13)	0.13(18)	-19.0(1.6)
170Yb	3.38(11)	1.93(13)	-0.11(19)	-0.30(36)	-0.24(7.2)	11.08(12)	
171Yb	-0.15(19)		-4.46(36)	-30.6(3.2)	22.7(7)	7.49(8)	
172Yb	-31.7(3.4)		-22.1(7)	10.61(12)	5.62(8)		
173Yb	10.55(11)		7.34(8)	4.22(10)			
174Yb			5.55(8)	2.88(12)			
176Yb			-1.28(23)				
assumed to be common for all possible isotopic combinations, the simple analytical formula Eq. (1) also holds. The predictions of this formula are completely indistinguishable from those of the numerical calculation on the scale of Fig. 6 (a). The actual difference between scattering lengths calculated exactly from the model potential and those calculated from the analytical formula in Eq. (1) are below 0.03 nm for all like isotope cases except the ^{173}Yb scattering length of Ref. [19] is also shown in (a). The horizontal dashed line in (a) shows the van der Waals length \bar{a}.

As the reduced mass varies from $168/2$ to $176/2$, the scattering length varies through a complete cycle from $-\infty$ to $+\infty$. In fact, we have a rich variety of the scattering lengths from large negative values for ^{172}Yb, ^{171}Yb, ^{170}Yb, ^{174}Yb, and ^{168}Yb, ^{176}Yb, and almost zero for ^{171}Yb, ^{170}Yb, ^{172}Yb, and ^{168}Yb, and to large positive for ^{172}Yb, ^{173}Yb, and ^{171}Yb, ^{174}Yb. Thus, the scattering length can be widely tuned by varying isotopic composition.

It should be noted that the observed behavior of evaporative cooling and sympathetic cooling are consistent with these scattering lengths. The efficient evaporative cooling for ^{170}Yb, ^{173}Yb, and ^{174}Yb is consistent with the large scattering lengths: 3.4 nm for ^{170}Yb, 11 nm for ^{173}Yb, and 5.6 nm for ^{174}Yb. Inefficient evaporative cooling for ^{171}Yb and ^{176}Yb is also consistent with the small scattering lengths -0.1 nm for ^{171}Yb and -1.3 nm for ^{176}Yb. On the other hand, we have successfully used sympathetic cooling to cool ^{171}Yb and ^{176}Yb with detection for which the respective mixed-isotope scattering lengths are 22 nm and 2.9 nm. The extremely large value of -32 nm for ^{172}Yb would explain very rapid atom decay observed for this system, which could be due to three-body recombination.

Using the three-parameter model potential, we can also calculate the collisional properties of other partial waves at non-zero collision energies. Figure 7 shows the energy-dependent cross section for the collision of like isotopic species. The cross section can be resonantly enhanced by...
a shape resonance, caused by the existence of quasibound rovibrational levels supported by the centrifugal barrier. A d-wave shape resonance exists for 174Yb as already pointed out in Refs. [19, 21]. Our model predicts a broad peak in the collision cross section near $E/k_B = 4.5$ MHz, or $E/k_B = 220$ μK, which is off-scale in Fig. 2. We found that a low energy p-wave shape resonance also exists for 174Yb, giving rise to a peak in the cross section near $E/k_B = 48$ μK.

The s-wave contribution to the cross section becomes zero when the s-wave collisional phase shift is zero. Such a zero as a function of energy results in a Ramsauer-Townsend minimum in the cross section. This minimum is especially evident when the collision energy is so small that other partial waves make negligible contributions to the cross section. This effect occurs at very low collision energy when the scattering length has a small negative value, as for 171Yb and for 176Yb. Figure 7 shows the calculated cross section minima near 2 μK and 25 μK for these respective species. This effect explains why evaporative cooling is found to be inefficient for these isotopes.

V. CONCLUDING REMARKS

In conclusion, we report the accurate determination of the binding energies of the twelve least bound states in the ground molecular potentials for six Yb isotopes and the accurate determination of the s-wave scattering lengths for all possible combination of the isotopes based on a simple three-parameter model potential. The model parameters are based on fitting a very limited set of the experimental data, making use of only three binding energies: two bound-states of 174Yb$_2$ and one bound-state of 176Yb$_2$. Fitting this limited set of data allows us to reproduce the other nine binding energies with an accuracy of about 100 kHz and to determine the 28 scattering lengths for the different isotope combinations with an accuracy of about a few percent for most cases. In addition, we can calculate the energy-dependent elastic scattering due to other partial waves such as p- and d-waves. These results provide an important foundation for future research with Yb atoms on such topics as the efficiency of evaporative cooling, the stability of quantum gases and their mixtures, and clock shifts.

Acknowledgments

We acknowledge S. Uetake, A. Yamaguchi, T. Fukuhara and H. Hara for their experimental assistances. We thank M. Portier and J. Léonard for helpful comments. This work was partially supported by Grant-in-Aid for Scientific Research of JSPS (18043013, 18204035), SCOPE-S, and 21st Century COE "Center for Diversity and Universality in Physics" from MEXT of Japan. K. E. acknowledges support from JSPS. The research is also part of the program of the National Laboratory FAMO in Toruń, Poland. PSJ acknowledges helpful comments from E. Tiemann and partial support by the U. S. Office of Naval Research.

[1] E.R.I Abraham, W.I. McAlexander, J.M. Gerton, R.G. Hulet, R. Côté, and A. Daligarno, Phys. Rev. A 55, R3299 (1997).
[2] F.A. van Abeelen and B.J. Verhaar, Phys. Rev. A 59, 578 (1999).
[3] H. Wang, A.N. Nikolov, J.R. Ensher, P.L. Gould, E.E. Eyler, W.C. Stwalley, J.P. Burke, J.L. Bohn, C.H. Greene, E. Tiesinga, C.J. Williams, and P.S. Julienne, Phys. Lett. 62, 052704 (2000).
[4] J.L. Roberts, N.R. Claussen, J.P. Burke, C.H. Greene, E.A. Cornell, and C.E. Wieman, Phys. Rev. Lett. 81, 5109 (1998); S. L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, and C.E. Wieman, ibid. 85, 1795 (2000); P.S. Julienne, F.H. Mies, E. Tiesinga, and C.J. Williams, ibid. 78, 1880 (1997).
[5] C. Chin, V. Vuletic, A.J. Kerman, and S. Chu, Phys. Rev. Lett. 85, 2717 (2000); P.J. Leo, C.J. Williams, and P.S. Julienne, ibid. 85, 2721 (2000).
[6] S. Moal, M. Portier, J. Kim, J. Duguet, U.D. Rapol, M. Leduc, and C. Cohen-Tannoudji, Phys. Rev. Lett. 96, 023203 (2006).
[7] G.F. Gribakin, and V.V. Flambaum, Phys. Rev. A 48, 546 (1993).
[8] V.V. Flambaum, G.F. Gribakin, and C. Harabati, Phys. Rev. A 59, 1998 (1999).
[9] C. Boisseau, E. Audouard, J. Vigué, and V.V. Flambaum, Eur. Phys. J. D 12, 199 (2000).
[10] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Verhaar, Phys. Rev. Lett. 88, 093201 (2002).
[11] F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno, and A. Simoni, Phys. Rev. A 73, 040702(R) (2006).
[12] P. R. Bunker and R. E. Moss, Mol. Phys. 33 417(1977)
[13] L. Wolniewicz, J. Chem. Phys. 78, 6173 (1983).
[14] C. J. Williams and P. S. Julienne, Phys. Rev. A 47, 1524 (1993).
[15] J.Y. Seto, R.J. Le Roy, J. Vergés, and C. Amiot, J. Chem. Phys. 113, 3067 (2000).
[16] S. Falke, E. Tiemann, and C. Lisdat, cond-mat/0706.2290.
[17] T. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Phys. Rev. Lett. 91, 040404 (2003).
[18] T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi, Phys. Rev. Lett. 98, 030401 (2007).
[19] K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, and Y. Takahashi, Phys. Rev. Lett. 98, 203201 (2007).
[20] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, Nature (London) 435, 321 (2005).
[21] S. Tojo, M. Kitagawa, K. Enomoto, Y. Kato, Y. Takasu, M. Kumakura, and Y. Takahashi, Phys. Rev. Lett. 96, 153201 (2006).
[22] K. Honda, Y. Takasu, T. Kuwamoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, Phys. Rev. A 66, 021401(R) (2002).
[23] T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Proceedings of the 20th international Conference on Atomic Physics, Innsbruck, 2006, edited by M. Inguscio, W. Ketterle, and C. Salomon (unpublished).
[24] K. Enomoto, et al., (unpublished).
[25] J.L. Bohn and P.S. Julienne, Phys. Rev. A 54, R4637 (1996).
[26] X. Chu, A. Dalgarno, and G.C. Groenenboom, Phys. Rev. A 75, 032723 (2007).
[27] A.A. Buchachenko, G. Chalasinski, and M.M. Szczesniak, Eur. Phys. J. D (to be published).
[28] P. Zhang and A. Dalgarno, preprint (2007).
[29] W.J. Meath and J.O. Hirschfelder, J. Chem. Phys. 44, 3197 (1966); W.J. Meath and J.O. Hirschfelder, J. Chem. Phys. 44, 3210 (1966).
[30] Y. Takahashi, Y. Takasu, K. Komori, K. Honda, M. Kumakura, and T. Yabuzaki, in Proceedings of the XVI-IHth International Conference on Atomic Physics, Massachusetts, 2003, edited by H.R. Sadeghpour, E.J. Heller, and D.E. Pritchard, (World Scientific, New Jersey, 2002).