CONSTRUCTION OF SEMI - FREE S^3 ACTIONS ON HOMOTOPY SPHERE WITH UNTWISTED FIXED POINT SET

ISSAM KADDOURA

ABSTRACT. In his paper "Surgery and the theory of differentiable transformation groups", William Browder developed surgery techniques to study semi-free actions of S^1 on homotopy spheres, under the additional assumption that the fixed point set is a homotopy sphere. He used this surgery to show how to construct such actions. In this paper, I discuss a similar theory about semi-free actions of S^3 on homotopy spheres. An open problem is raised at the end of the paper.

1. Introduction and preliminaries

Throughout this paper, R^n denotes the Euclidean n-space, S^n denotes the unit n-sphere in R^{n+1} and $QP(n)$ the quaterionic projective space, with the usual differentiable structures. A homotopy n-sphere is denoted by \sum^n, it means a closed differentiable n-manifold having the homotopy type of S^n. A homotopy quaterionic projective n-space is denoted by $HQP(n)$, it means a closed differentiable $4n$-manifold having the homotopy type of $QP(n)$.

$\pi_n(M)$ denotes the n^{th}-homotopy group of M, $H_i(M, G)$ and $H^i(M, G)$ denote the homology and cohomology of a space M, with coefficients in the group G under the assumption that it satisfies the Eilenberg–Steenrod axioms, See [12],page 6. If $G = Z$, we write $H_i(M)$ and $H_i(M)$ for $H^i(M, Z)$ and $H^i(M, Z)$ respectively. It is well known that S^1 and S^3 are the only compact connected Lie groups which have free differentiable actions on homotopy spheres [11]. It follows from Gleason’s lemma [5] that such an action is always a principal fibration which is homotopically equivalent to the classical Hopf fibration.

In fact, there are always infinitely many differentiably distinct free actions of S^3 on \sum^{4n+3} for $n \geq 2$, see [7].

2. Construction of semi-free actions:

An action (G, M, ϕ) is called semi-free, if it is free outside the fixed point set. That is, for an action $\phi : G \times M \rightarrow M$, let F be the fixed point set of the action,
\(\phi \) is semi-free if \(\phi(g, x) = x \), for some \(x \in M - F \) then \(g = e \) which is the identity of \(G \). Notice that there are only two types of orbits, fixed points and \(G \).

Lemma 2.1. ([16]) Let \(\phi : S^i \times M \to M \ (i = 1, 3) \), be a semi free differentiable action. let \(F^k \) denote the union of the \(k \)-dimensional components of the set of all fixed points of \(\phi \). Then the normal bundle of an imbedding \(F^k \subset M \) has naturally a complex structure for \(i = 1 \) and a quaternionic structure for \(i = 3 \) and that the induced \(S^i \)-action on the normal bundle is a scalar multiplication.

It follows from Lemma 2.1 that the codimension of each component of \(F \) in \(M \) is even for \(i = 1 \) and is divisible by 4 for \(i = 3 \). We shall study the situation where \((S^3, \sum^m, \phi) \) is a semi-free differentiable action on a homotopy sphere \(\sum^m \) and the fixed point set is a homotopy sphere \(\sum^r \). Let \((S^3, \sum^m, \phi) \) be a semi-free action with fixed point set \(\sum^r \subset \sum^m \), then \(S^3 \) acts freely outside \(\sum^r \) and \(S^3 \) acts freely and linearly on the normal space to \(\sum^r \) at each point of \(\sum^r \). See [3], page 58]. By Lemma 2.1, the normal bundle of \(\sum^r \) has a quaternionic structure and \(m - r = 4k, \ k \geq 1 \). Let \(\mu \) be the (quaternionic) bundle over \(\sum^r \) that is defined by the action. We prove the following:

Theorem 2.2. If \((S^3, \sum^m, \phi_1) \) and \((S^3, \sum^m, \phi_2) \) are equivalent, then \(F_1 \) is diffeomorphic to \(F_2 \) and \(\mu_1 \) is equivalent to \(\mu_2 \), where \(F_1 \) and \(F_2 \) are the fixed point sets of \(\phi_1 \) and \(\phi_2 \) respectively, \(\mu_1 \) and \(\mu_2 \) are the normal bundles of \(F_1 \) and \(F_2 \) respectively.

Proof. Since \((S^3, \sum^m, \phi_1) \) and \((S^3, \sum^m, \phi_2) \) are equivalent then there exists an equivariant diffeomorphism \(f \) such that the following diagram commutes:

\[
\begin{array}{ccc}
S^3 \times \sum^m & \xrightarrow{\phi_1} & \sum^m \\
I \times f \downarrow & & \downarrow f \\
S^3 \times \sum^m & \xrightarrow{\phi_2} & \sum^m
\end{array}
\]

Let \(x \in F_1 \), i.e. \(\phi_1(q, x) = x \ \forall \ q \in S^3 \) then \(f \circ \phi_1(q, x) = \phi_2 \circ (I \times f)(q, x) \ \forall \ q \in S^3 \), thus \(f(x) = \phi_2(q, f(x)) \ \forall \ q \in S^3 \). See [3], page 58]. Let \(\mu_1 \) be the (quaternionic) bundle over \(\sum^r \) that is defined by the action.

Now, assume that \(y \in F_2 \), i.e. \(\phi_2(q, y) = y \ \forall \ q \in S^3 \), but \(f \) is an equivariant diffeomorphism, then \(\exists \ x \in \sum^m \) such that \(y = f(x) \) and \(f \circ \phi_1(q, x) = \phi_2 \circ (I \times f)(q, x) \ \forall \ q \in S^3 \), then \(\phi(f(q, x)) = \phi_2(q, f(x)) = f(x) \), but \(f \) is 1-1, we get \(\phi_1(q, x) = x \ \forall \ q \in S^3 \), hence \(x \in F_1 \) and \(f(x) \in f(F_1) \), therefore \(f(F_1) = F_2 \). Moreover, the equivalence \(f : \sum^m \to \sum^m \) defines a quaternionic map of the normal bundles \(\mu_1 \) and \(\mu_2 \) of \(F_1 \) and \(F_2 \) respectively, so they are equivalent.

Now, \(\sum^r \) is a closed submanifold of \(\sum^m \) and is invariant under the action of \(S^3 \), therefore there exists a tubular neighbourhood \(E \) of \(\sum^r \) which is invariant under the action of \(S^3 \). So we may consider \(\mu : E \to \sum^r \), the normal bundle to \(\sum^r \) in \(\sum^m \) and \(S^3 \) acts differentiably on \(E \), see [3], page 58]. Let \(S^{4k-1} \) be the boundary of a fibre of \(E \), then we can prove the following:

Lemma 2.3. \(S^{4k-1} \subset \sum^m - \sum^r \) is a homotopy equivalence.
Proof. Consider the exact cohomology sequence of the pair \((\sum^m, \sum^r)\):

\[
\rightarrow H^{i-1}(\sum^r) \rightarrow H^i(\sum^m, \sum^r) \rightarrow H^i(\sum^m) \rightarrow H^i(\sum^r) \rightarrow H^{i+1}(\sum^m, \sum^r) \rightarrow H^{i+1}(\sum^m) \rightarrow
\]

At \(i = m\) : \(0 \rightarrow H^m(\sum^m, \sum^r) \rightarrow Z \rightarrow 0\), then \(H^m(\sum^m, \sum^r) \cong Z\).

At \(i = r\) : \(0 \rightarrow Z \rightarrow H^{r-1}(\sum^m, \sum^r) \rightarrow 0\), hence \(H^{r+1}(\sum^m, \sum^r) \cong Z\).

And for \(i \neq m, r + 1 : 0 \rightarrow 0 \rightarrow H^i(\sum^m, \sum^r) \rightarrow 0\), thus \(H^i(\sum^m, \sum^r) \cong 0\) for \(i \neq m, r + 1\). Finally, we obtain

\[
H^i(\sum^m, \sum^r) = \begin{cases} Z & \text{for } i = m, r + 1 \\ 0 & \text{otherwise} \end{cases}
\]

It is clear that \(\sum^m - \sum^r\) is simply connected \([9], page 3\) and using Lefshetz duality \([12], page 32\),

\[
H_i(\sum^m - \sum^r) \cong H^{m-i}(\sum^m, \sum^r),
\]

we finally deduce that

\[
H_i(\sum^m - \sum^r) = \begin{cases} Z & \text{for } i = 0, 4k - 1 \\ 0 & \text{otherwise} \end{cases}
\]

hence, the inclusion map \(i : S^{4k-1} \rightarrow \sum^m - \sum^r\) induces

\[i_* : \pi_j(S^{4k-1}) \rightarrow \pi_j(\sum^m - \sum^r)\] an isomorphism \(\forall j\), see \([14], page 283\). Therefore \(S^{4k-1} \subset \sum^m - \sum^r\) is a homotopy equivalence.

Now, let \(N = \sum^m - E_0\) where \(E_0\) is the interior of an equivariant tubular neighbourhood of \(\sum^r\) with \(E_0 \subset \text{int}(E)\). Then \(S^3\) acts freely on \(N\) and \(S^{4k-1} \subset N\). Notice that \(S^{4k-1}\) is a homotopy equivalence to \(N\), it follows from the exact homotopy sequence of the fibre maps, using the diagram :

\[
\begin{array}{ccc}
\rightarrow S^3 & \rightarrow & S^{4k-1} \\
\downarrow & & \downarrow \\
\rightarrow S^3 & \rightarrow & N \\
\end{array} \rightarrow \frac{N}{S^3} \rightarrow
\]

that is \(S^{4k-1}/S^3 \rightarrow N/S^3\) is a homotopy equivalence.

Set \(N^1 = N/S^3\) and \(S^{4k-1}/S^3 = QP(k - 1)\). Notice that the region between \(\partial N^1\) and \(QP(k - 1) \times S^r\) is an \(h\)--cobordism, so if \(m \geq 6\), then by the \(h\)--cobordism theorem of Smale \([15]\), \(N^1\) is diffeomorphic to \(QP(k - 1) \times D^{r+1}\) and \(N \rightarrow N^1\) is equivalent to

\[h \times I : S^{4k-1} \times D^{r+1} \rightarrow QP(k - 1) \times D^{r+1}\], where \(h : S^{4k-1} \rightarrow QP(k - 1)\) is the hopf map. Hence, we have proved the following theorem:

Theorem 2.4. Let \((S^3, \sum^m, \phi)\) be a semi–free \(S^3\) action on \(\sum^m\) with fixed point set \(\sum^r\), \(m - r = 4k, k \geq 1, m \geq 6\). If \(N\) is the complement of an open tubular neighbourhood of \(\sum^r\) in \(\sum^m\), then \(N\) is equivariantly diffeomorphic to \(S^{4k-1} \times D^{r+1}\), with the standard action on \(S^{4k-1}\) and trivial action on \(D^{r+1}\).
Now, we will describe how to construct smooth semi–free S^3 actions on a homotopy m–sphere \sum^m. Let \sum^r be a homotopy r–sphere and μ a (quaternionic) normal bundle over \sum^r given by $\mu : E(\mu) \to \sum^r$ where $E(\mu)$ is the total space of μ such that $E(\mu) \cong D^{4k} \times \sum^r$, i.e., $E(\mu)$ is the trivial bundle and suppose that $h : S^{4k-1} \times \sum^r \to S^{4k-1} \times \sum^r$ is an equivariant diffeomorphism.

Theorem 2.5. There is a semi free action (S^3, \sum^m, ϕ) with a fixed point set \sum^r and $\sum^m = E(\mu) \cup_h (S^{4k-1} \times D^{r+1})$ where \cup_h means that we identify $S^{4k-1} \times \sum^r \subset E(\mu)$ with $S^{4k-1} \times \sum^r \subset S^{4k-1} \times D^{r+1}$ via the diffeomorphism h.

Proof. Consider the semi–free action on the total space of $\mu : E(\mu) \to \sum^r$ defined by the quaternionic structure and the free S^3–action on $S^{4k-1} \times D^{r+1}$ defined by the free action on S^{4k-1}, i.e., the standard action and $h : S^{4k-1} \times \sum^r \to S^{4k-1} \times \sum^r$ is an equivariant diffeomorphism, then $M = E(\mu) \cup_h (S^{4k-1} \times D^{r+1})$ has a semi–free action of S^3 with fixed point set \sum^r and normal bundle μ, it is enough to show that M is a homotopy sphere.

It is clear that $\pi_1(\partial E(\mu)) \cong \pi_1(S^{4k-1} \times \sum^r) \cong \pi_1(S^{4k-1}) \cong \pi_1(\sum^r)$ and $\pi_0(\partial E(\mu)) \cong \pi_0(\sum^r) \cong 0$, i.e., $E(\mu)$ and $S^{4k-1} \times D^{r+1}$ are simply connected and $E(\mu) \cap S^{4k-1} \times D^{r+1}$ is simply connected, hence by VanKampen’s theorem [2], M is simply connected.

Now, we consider the Mayer -Vietoris sequence for M [4]:

$$
\to H_{s+1}(M) \to H_s(\partial E(\mu)) \to H_s(E(\mu)) \oplus H_s(S^{4k-1} \times D^{r+1}) \to H_s(M) \to
$$

By the K"unneth formula ([6], page 98), since $H_s(\partial E(\mu))$, $H_s(E(\mu))$, $H_s(S^{4k-1} \times D^{r+1})$ are torsion free for $0 < s < 4k + r - 1$, we obtain

$$H_s(\partial E(\mu)) = H_s(S^{4k-1} \times \sum^r) \cong \bigoplus_{i=0}^s H_i(S^{4k-1}) \otimes H_{s-i}(\sum^r).$$

If $i = 0$, then $H_0(S^{4k-1}) \otimes H_0(S^r) \cong Z \otimes H_0(\sum^r)$.
If $i = s$, then $H_s(S^{4k-1}) \otimes H_0(S^r) \cong H_s(S^{4k-1}) \otimes Z$ and for $i \neq 0$

$H_i(S^{4k-1}) \otimes H_{n-i}(S^r) \cong 0$ therefore $H_s(\partial E(\mu)) \cong Z \otimes H_s(S^r) \oplus H_s(S^{4k-1}) \otimes Z$.

Again, we compute

$H_s(S^{4k-1} \times D^{r+1}) = \bigoplus_{i=0}^s H_i(S^{4k-1}) \otimes H_{s-i}(D^{r+1}) \cong H_s(S^{4k-1}) \otimes Z.$

Similarly $H_s(\partial E(\mu)) \cong H_s(E(\mu)) \oplus H_s(S^{4k-1} \times D^{r+1})$,

hence $H_s(M) \cong H_{s+1}(M) \cong 0, \forall 0 < s < 4k + r - 1$.

For, $s = 4k + r - 1 : H_{4k+r-1}(E(\mu)) \cong 0, H_{4k+r-1}(S^{4k-1} \times D^{r+1}) \cong 0$ and $H_{4k+r-1}(\partial E(\mu)) \cong Z \otimes Z \cong Z$.

Substituting in the Mayer -Vietoris sequence for $M : 0 \to H_{4k+r}(M) \to Z \to 0$.

Finally, we obtain

$$H_s(M) \cong \begin{cases}
 z & \text{for } s = 0, 4k + r, \\
 0 & \text{otherwise}
\end{cases}$$
3. Applying surgery to construct semi free S^3–actions:

In this section, we used surgery techniques as Browder [1] to create a diffeomorphism of $QP(k-1) \times \sum$ with $QP(k-1) \times S^r$, then we apply Theorem 2.5

Theorem 3.1. Let \sum^{4n-1} be a homotopy sphere which bounds a parallelizable manifold, $n \geq 1$. Then for each even $k \geq 2$, there is a semi–free action of S^3 on a homotopy sphere $\sum^{4(n+k)-1}$ with \sum^{4n-1} as untwisted fixed point set.

Proof. Let $\sum^{4n-1} = \partial W^{4n}$, W is a parallelizable manifold. We may consider $W_0 = W - int(D^{4n})$ as a parallelizable cobordism between \sum^{4n-1} and S^{4n-1} thus we may define a normal map

$$f : (W_0, \sum^{4n-1} \cup S^{4n-1}) \to (S^{4n-1} \times I, S^{4n-1} \times \{0\} \cup S^{4n-1} \times \{1\})$$

with $f|_{S^{4n-1}} = $ Identity. Since W is a parallelizable manifold [[10], page 514], we may assume that W_0 is $(2n-1)$ connected.

Multiplying by $QP(k-1)$, we get $I \times f$:

$$QP(k-1) \times (W_0, \sum^{4n-1} \cup S^{4n-1}) \to QP(k-1) \times (S^{4n-1} \times I, S^{4n-1} \times \{0\} \cup S^{4n-1} \times \{1\})$$

with $I \times f|_{QP(k-1) \times S^{4n-1}} = $Identity.

The remainder of the proof is computing the obstruction σ for this map to be a cobordism and using this to determine if $QP(k-1) \times \sum^{4n-1}$ is diffeomorphic to $QP(k-1) \times S^{4n-1}$.

Claim: $Ker(I \times f)_* = H_*(QP(k-1)) \times Ker(f_*)$.

By the Künneth formula, since $H_*(QP(k-1))$ is torsion free then,

$$H_*(QP(k-1) \times (W_0, \sum^{4n-1} \cup S^{4n-1})) \cong H_*(QP(k-1)) \otimes H_*(W_0, \sum^{4n-1} \cup S^{4n-1})$$

and $(I \times f)_* = I \otimes f_*$

therefore, $Ker(I \times f)_* = H_*(QP(k-1)) \times Ker(f_*)$.

Now, consider the commutative diagram induced by f:

$$\begin{array}{cccc}
\to & H_i(\partial W_0) & \to & H_i(W_0) & \to & H_i(W_0, \partial W_0) & \to \\
\downarrow & & & \downarrow & & f_* \downarrow & \\
\to & H_i(\partial S^{4n-1} \times I) & \to & H_i(S^{4n-1} \times I) & \to & H_i(S^{4n-1} \times I, \partial S^{4n-1} \times I) & \to
\end{array}$$
Notice that, $H_i(\partial S^{4n-1} \times I) \cong H_i(\partial W_0)$ and $H_i(W_0) \cong 0$ for $i \neq 0, 2n$. We get

\[0 \longrightarrow H_{2n}(W_0) \cong H_{2n}(W_0, \partial W_0) \longrightarrow H_{2n}(W_0, \partial W_0) \downarrow f_* \longrightarrow 0 \longrightarrow 0 \]

Hence $\text{Ker}(f_*) \cong H_{2n}(W_0)$.

But $\text{Ker}(I \times f_*) = \text{Ker}(I \otimes f_*) = H_s(QP(k-1)) \otimes \text{Ker}(f_*) \cong H_s(QP(k-1)) \otimes H_{2n}(W_0)$, and $\text{Ker}(I \times f)_{*2n+2k-2} = H_{2k-2}(QP(k-1)) \otimes H_{2n}(W_0)$.

Since $2k - 2 = 2(2s) - 2 \neq 0 \mod 4$, k is even, then $H_{2k-2}(QP(k-1)) \cong 0$ and $\text{Ker}(I \times f)_{*2n+2k-2} \cong 0$.

Therefore, $\sigma(I \times f) = 0$ and there exists an h-cobordism between $QP(k-1) \times \sum_{4n-1}^m$ and $QP(k-1) \times S^{4n-1}$, but $k \geq 2$ and $n \geq 1$, then $(4k-4) + (4n-1) = 4(k+n) - 5 \geq 7$. Hence, Smale’s h-cobordism theorem can be applied and $QP(k-1) \times \sum_{4n-1}^m$ is diffeomorphic to $QP(k-1) \times S^{4n-1}$. Applying Theorem 2.5, it follows that there is a semi-free action of S^3 on some homotopy sphere \sum_{4n-1}^m with \sum_{4n-1}^m as untwisted fixed point set, where $m = 4(n+k) - 1$. □

Open Problem

Browder [1] showed how to construct semi-free S^1 actions, with \sum_{4n-1}^m as untwisted fixed point set, i.e., its normal bundle is trivial. He stated that he did not know of any action with a twisted fixed point set. However Schultz [14] used complicated computations of homotopy groups, proved the following Theorem: Let $k \geq 2$ be a positive integer. Then there exist infinitely many values of n for which S^{2n} has a semi-free S^1 action with $S^{2(n-k+1)}$ as twisted fixed point set. In this work, as in the work of Browder, we consider \sum_{4n-1}^m as untwisted fixed point set and I raise the following question: Does there exist smooth semi free S^3 actions on homotopy spheres for which the fixed point set is twisted?

References

1. W.Browder, Surgery and the theory of differentiable transformation groups, Proc. Conference on transformation groups (New Orleans,1967) New York,(1968), 1-46.
2. R. Brown, Groupoids and Van Kampens theorem, Proc. London Math. Soc.3 (1967) 385-401.
3. P.E.Conner, and E.E.Floyd, Differentiable periodic maps, Springer Verlag, Academic press, Inc.Publishers, New york, (1964).
4. Eilenberg, Samuel; Steenrod, Norman , Foundations of Algebraic Topology, Princeton University Press, (1952), ISBN 978-0691079653.
5. A.Gleason, Spaces with a compact Lie group of transformations, proc. Amer. Math. Soc. I (1950), 35-43.
6. M.J.Greenberg, Lectures on algebraic topology, W.A. Benjamin, Inc., New york, (1967).
7. W.C.Hsiang, A note on free differentiable actions of S^1 and S^3 on homotopy spheres, Ann. of Math.83 (1966), 266-272.
8. S.T.Hu, Homology theory , Holden-day, Inc.(1970).
9. I.H.Kaddoura, De-suspension of free S^3-actions on Homotopy spheres, International Journal of Algebra 20 (2012), 985-994.
10. M.Kervaire, and J.Milnor, Groups of homotopy spheres, I.Ann. of Math.77 (1963), 504-537.
11. H.T.Ku, and M.C.Ku, Free differentiable actions of S^1 and S^3 on homotopy spheres, Proc. Amer Math.Soc. 25 (1970), 864-869.
12. J.Levine, A classification of differentiable knots, Ann.of Math. 82 (1965), 15-50.
13. S.P.Novikov, Homotopically equivalent smooth manifolds, Translations Amer.Math.Soc. 48 (1965), 271-396.
14. R.Schultz, Semifree actions with twisted fixed point sets, Proc.Conf.on transformation groups, Springer Verlag, Berlin, Hidelberg, New York, (1972), 102-116.
15. S.Smalse, On the structure of manifolds, Amer. J. Math.84 (1962), 387-399.
16. F.Uchida, Cobordism groups of semifree S^1 and S^3 actions, Osaka.J.Math. 7 (1970), 345-351.

1 Department of Mathematics, Lebanese International University, LIU, Lebanon.
E-mail address: issam.kaddoura@liu.edu.lb