Lattice Gross–Neveu model with domain-wall fermions\(^1\)

筑波大学 計算物理学研究センター 長井敬一

この研究は実際の自然界的現象を直接扱うものではありませんが、lattice QCD という数値実験に対する結果の予想と、その結果に解釈を与えるものです。では何故 lattice QCD なのでしょうか？それは、良く知られているように非摂動計算を大変強力に実行出来るからです。しかしカイラル対称性を格子上に定義する事が難しいという事も、また良く知られた事実です。しかしながら、この数年間、domain-wall fermion (DWF) などの格子フェルミオンの定式化、格子カイラル対称性としての Ginsparg–Wilson 関係式や Lüscher 対称性を基にした研究など、目覚ましい発展を遂げていて今現在も発展中です。

特に DWF は、今までの lattice QCD のアルゴリズムを利用して計算が実行可能なものなので、この DWF を用いた lattice QCD (DWQCD) 計算が現在精力的に行なわれています。しかし DWQCD は通常の Wilson fermion に比べて複雑なので、理論構造を全て解明することは出来ません。（計算機も限られた資源ですから）従って、与えられた理論が、どのような（相）構造をして、どのような非摂動的な結果を出すのかを予め予想し、また数値実験の結果に対する解釈を用意しながら重点的に数値シミュレーションを行ない実際の理解を深めていかなければいけません。そこで我々は DWQCD の良いテストになっていると予想される Gross–Neveu model を (large \(N_c \) limit で) 調べました [1]。

我々が調べた DWF を用いた GN model (DWGN) の作用を次のように与えます。

\[
S = S_{\text{free}} + a^2 \sum_n q(n) \left\{ a\sigma(n) + i\gamma_5 a\Pi(n) \right\} q(n) + a^2 \sum_n \left[\frac{N}{2g_s^2} \left(\sigma(n) - m_f \right)^2 + \frac{N}{2g_s^2} \Pi(n)^2 \right].
\]

\(q(n) = P_R \psi(n, s = 1) + P_L \psi(n, s = N_s) \) という boundary fermion であり、相互作用項は、この \(q(n) \) で作られていることに注意してください。（この \(q(n) \) を DWF では quark 場と見做します。）まず DWF action (\(S_{\text{free}} \)) ですが、これは \(D + 1 \) 次元の Wilson fermion です。但し、外部次元方向 \((1 \leq s \leq N_s) \) には \(s = 1, N_s \) に境界 (wall) があり、そこで Dirichlet boundary をとることにします。そうすると、\(N_s \to \infty \) の時に \(D \) 次元 wall 上に互いに逆のカイラリティを持った massless mode が局在します。この mode を使って相互作用項を構成しています。

次に、この作用から large \(N_c \) limit での有効ポテンシャルを求めることが出来ます。

\[
V_{\text{eff}} = \frac{1}{2g_s^2} \left(\sigma - m_f \right)^2 + \frac{1}{2g_s^2} \Pi^2 - I(\sigma, \Pi, M, N_s)
\]

\[
I(\sigma, \Pi, M, N_s) = \int_{-a/2}^{a/2} \frac{d^2p}{(2\pi)^2} \ln \left[F a^2 (\sigma^2 + \Pi^2) + G a \sigma + H \right].
\]

\(m_f \) は \(q(n) \) の current quark mass です。

\(^1\) この研究は 筑波物理の出渕卓氏との共同研究によるものです。
まず着目すべき点は、カイラル対称性を壊している項 \(G_{ao} \) があるという事です。これは DWF が Wilson fermion をベースにして作られている事の反映で lattice artifact として現れます。しかし、カイラル不変な項の係数 \(F, H \) は \(N_s \to \infty \) で \(G \) に比べて非常に大きい値になります。従って \(N_s = \infty \) の時は項 \(G \) が消えてカイラル対称性が有限格子間隔でも存在していることが分かります。これこそ望んでいた性質で、Wilson fermion のように fine tuning や連続極限を取らないとカイラル対称性が回復しないという状況とは異なります。

それならば \(N_s \) が有限の時はどうなろうでしょうか？有効ポテンシャル \((2)(3) \) は Wilson fermion の時と形は全く同じです。breaking を \(N_s \) というパラメータで制御できるかどうかが Wilson fermion と DWF の違いなのです。従って \(N_s \) 有限の時は定性的には Wilson fermion と全く同じという事が分かります。即ちカイラル対称性を回復させるためには fine tuning が必要です。また、lattice artifact として parity の破れた相 (Aoki phase) が存在し cusp を成すことも示されます。（様々な図は省略します。下の文献 [1] を参照して下さい。）しかし、こういった lattice 特有の性質は \(N_s \to \infty \) によって指数的に減少していきます。そして \(N_s = \infty \) では、上で述べたように有限格子間隔でも連続理論と変わらないカイラル対称性を持つようになります。そういった意味で DWQCD は改良された Wilson fermion だという事が出来ます。

しかしながら、ここで調べた DWGN model は large \(N_c \) limit であり、ゲージ場が入っていません。従って DWGN が DWQCD を何処までも正確に記述していると主張することはなりませんが、simulation に対する様々な情報や系統的な情報を与えてくれるものと大いに期待していますし、実際に数値データの理解に役立っています。

最後に、\(N_s = \infty \) の時のゲージ場の効果について少しだけ議論します。有効ポテンシャル \((3) \) の望ましい振る舞いは外部次元方向の転送行列の固有値で決まります。我々が調べた DWGN の固有値は \(\sqrt{2} \) 以外の値をとります。しかし、ゲージ場があると固有値が \(1 \) に等しくなる可能性があります。この時には \(F, H \) が \(N_s \) 依存性を失って \(G \) が残ってしまう \(N_s = \infty \) でも \(N_s \) 有限と同じ結果をもたらします。つまり \(N_s = \infty \) でも fine tuning が必要となり、更に Aoki phase が存在するという結果になります。これが実際の DWQCD simulation の強結合領域の振る舞い \([2, 3] \) を示していると思われます。ゲージ化した DWGN を計算した結果ではなく、あくまで予想です。このシナリオは DWQCD の強結合領域の振る舞いを理解するためのものなので、今後は実際の DWQCD での転送行列（または Hamiltonian）の固有値分布そのものを調べることが重要であると考えています。

参考文献

[1] T. Izubuchi and K.-i. Nagai, hep-lat/9906017 ; hep-lat/9909153.
[2] CP-PACS collaboration, hep-lat/9909049.
[3] S.Aoki et al, hep-lat/9909154.