Millets across Eurasia: chronology and context of early records of the genera *Panicum* and *Setaria* from archaeological sites in the Old World

Harriet V. Hunt · Marc Vander Linden · Xinyi Liu · Giedre Motuzaite-Matuzeviciute · Sue Colledge · Martin K. Jones

Received: 31 October 2007 / Accepted: 15 August 2008 / Published online: 14 October 2008 © The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract We have collated and reviewed published records of the genera *Panicum* and *Setaria* (Poaceae), including the domesticated millets *Panicum miliaceum* L. (broomcorn millet) and *Setaria italica* (L.) P. Beauv. (foxtail millet) in pre-5000 cal B.C. sites across the Old World. Details of these sites, which span China, central-eastern Europe including the Caucasus, Iran, Syria and Egypt, are presented with associated calibrated radiocarbon dates. Forty-one sites have records of *Panicum* (*P. miliaceum*, *P. cf. miliaceum*, *Panicum* sp., *Panicum* type, *P. capillare* (?) and *P. turgidum*) and 33 of *Setaria* (*S. italica*, *S. viridis*, *S. viridis/verticillata*, *Setaria* sp., *Setaria* type). We identify problems of taphonomy, identification criteria and reporting, and inference of domesticated/wild and crop/weed status of finds. Both broomcorn and foxtail millet occur in northern China prior to 5000 cal B.C.; *P. miliaceum* occurs contemporaneously in Europe, but its significance is unclear. Further work is needed to resolve the above issues before the status of these taxa in this period can be fully evaluated.

Keywords Millet · Early Neolithic · Eurasia · Chronology · Archaeobotanical methodology

Introduction

Two cereals with an unusual geographical pattern in the archaeobotanical record are the temperate Eurasian millets *Panicum miliaceum* L. (broomcorn, proso or common millet) and *Setaria italica* (L.) P. Beauv. (foxtail millet). Both species are known from a number of sixth and seventh millennium B.C. sites in the Yellow River valley and other regions of north China; *P. miliaceum* has been reported from approximately contemporary sites in eastern Europe and the Caucasus, while *S. italica* appears in the same broad region later, around the 5th/4th millennium B.C. (Gumelnitsa culture) (Zohary and Hopf 2000; Jones 2004). Neither species has so far been recorded from the intervening central Asian region until the mid-2nd millennium B.C., when *P. miliaceum* is found in the Bronze Age site of Tahirbaj Tepe (Nesbitt 1994). Several hypotheses have been proposed to explain the disjunct distributions of these two millet species: a single domestication in either northern China or eastern Europe followed by rapid spread across the central Asian steppe, or multiple domesticaations that could either represent two discrete events at either end of the region, or diffuse domestication across the steppe zone as a whole (Jones 2004). A resolution to this uncertainty has significant implications for our understanding of interactions between early farming societies across Eurasia.
Pan-Eurasian summaries of the archaeobotanical evidence for broomcorn and foxtail millet have previously been published by Marinval (1995), Zohary and Hopf (2000) and Jones (2004). The data for Europe (including the Caucasus) is reviewed in Lisitsyna and Prishchepenko (1977), Lisitsyna (1984), and Wasylkowa et al. (1991), and for China in Underhill (1997), Cohen (1998), Shelach (2000), Lu (2005) and Crawford et al. (2007). To date, however, there has been no comprehensive review of early sites with Panicum and Setaria which provides detailed information on sites, calibrated radiocarbon dates and archaeological finds. Such a review is timely for a number of reasons: first, in both eastern Europe and north China a number of new excavations are taking place in which sediment is being floated for archaeobotanical remains, supported by direct dating of carbonized seeds. Second, a number of database projects are improving the international collation of archaeobotanical and radiocarbon dating information (see Shennan and Steele 2000; Colledge et al. 2004, 2005; Kroll 2005).

Our objective in this paper is to collate and present published records of the genera Panicum and Setaria prior to 5000 cal B.C., with details of sites and radiocarbon dates, as a reference source to enable assessment of the biogeography of these two millet taxa in the context of a unified chronology, and to consider the implications for research into the origins and spread of millet agriculture.

The foci of this review are the two principal Asian millet domesticates, P. miliaceum and S. italica. The primary archaeobotanical literature, however, records finds of the two genera along a continuum of within-genus identifications. In the case of Panicum, the continuum ranges from ‘domesticated P. miliaceum’ through ‘Panicum cf. miliaceum’, ‘Panicum sp.’, ‘Panicum ?’, through to entirely distinct species (Panicum turgidum, not currently known to have any particularly close relationship to broomcorn millet). A similar spectrum exists for Setaria. This is one of the key factors that currently hinder evaluation of the age and geographical range of domesticated broomcorn and foxtail millet, particularly the former. To avoid the twin pitfalls of either potentially overrepresenting the record of securely identified domesticated forms, or excluding tentative or genus-level identifications that may in fact represent domesticates, we chose to report all finds within each genus, with their original identifications. Although this does result in the inclusion of some entirely different species, for example in North Africa, that are most unlikely to be related to the domestication history of the Asian millets, such an ‘inclusive’ strategy has the advantage of clear boundaries to the data set, and a transparency not easily achieved through attempting to fully subdivide each intrageneric continuum of attempted identifications.

Methodology and results

We have sought to collate all published records of Panicum and Setaria prior to 5000 cal B.C. This band of time, which encompasses early phases of food production across the area under review, is necessarily arbitrary, but we consider this circumscription to be more useful than for example ‘Neolithic sites’, since the Neolithic is defined differently in different parts of the world.

For the reasons outlined above, we have included any cited taxon within these two genera. We have not attempted to re-evaluate identifications based on morphological criteria. However, we have assessed the context of and grounds for each identification in terms of preservation type, nomenclature, and chronology.

For Europe and southwest Asia, we have drawn extensively on the databases compiled by Colledge et al. (2004, 2005), Shennan and Conolly (2007) and Kroll (1996, 1997, 1998, 1999, 2000, 2001, 2005). The latter also provides information from beyond this region. For sites in the northern Black Sea region and the Caucasus, we have worked from Lisitsyna and Prishchepenko (1977), Lisitsyna (1984), Wasylkowa et al. (1991), Kotova (2003) and references therein, in addition to Helmut Kroll’s database.

For China, a number of English- and Chinese-language references (Crawford 1992; Underhill 1997; Shelach 2000; Liu et al. 2004a; Lu 2005; Crawford et al. 2007; Lee et al. 2007) provide information on sites with millet. We have consulted the primary excavation reports for details of most of these sites, relying on secondary literature where these were not accessible.

Radiocarbon dates were calibrated using OxCal 4.0 (Bronk Ramsey 2001). We report confidence intervals to 2σ. Included in the data table (Table 1) are all sites with at least one date whose earliest boundary falls before 5000 cal B.C. Where no radiocarbon dates were available, we have reported available chronological information.

Sites producing Panicum and/or Setaria spp. are mapped in Fig. 1, and their details listed in Table 1. We report a total of 41 sites with Panicum identifications (including P. miliaceum and equivalent common names, Panicum cf. miliaceum, Panicum sp., Panicum type, Panicum capillare (?) and P. turgidum) and 33 with Setaria (S. italica and equivalent common names, Setaria viridis, S. viridis/vervaticillata, Setaria sp.). These totals include nine sites with taxa in both genera.

Detailed information on radiocarbon dates is given in the Supplementary Information (ESM) (Table 3).
Country (region/province)	Period	Culture	Site name	Type of site	Dating information	Context of find	Nature of find (no. of grains)	Identification	Reference		
Europe (incl. Caucasus)											
Azerbaijan	Late Neolithic	Shulaveri-Shomutepe	Kjuttepe	Settlement	5th–4th mill. B.C.a			Panicum miliaceum	Lisitsyna and Prishchepenko (1977)		
Bulgaria (southwest)	Late Neolithic	Drenkovo–Ploštëko	Settlement	Late 6th–early 5th mill. B.C.	Grain (4)		Panicum miliaceum	Kreuz et al. (2005)			
Bulgaria (south)	Early Neolithic	Karanovo 1	Kapitan Dimitrievo	Settlement	Grain (134)		Setaria viridis/verticillata		Marinova (2001)		
Bulgaria (south)	Middle Neolithic	Karanovo 2–3	Karanovo	Grain (10)			Setaria viridis/verticillata	Renfrew (1969), Hopf (1973), Thanheiser (1997), Marinova (2001)			
Bulgaria (southwest)	Early Neolithic	Karanovo 1	Kovacevo	Grain (62)			Setaria viridis/verticillata		Marinova (2001)		
Bulgaria (west)	Early Neolithic	Karanovo 1	Slatina	Grain (36)			Setaria viridis/verticillata	Donscheva (1990), Marinova (2001)			
Cyprus (north)	PN	Karanovo 1	Ayios Epiktitos Vrysi	Grain (1)			Setaria spp.	Waines and Stanley Price (1977), Miller (1984), Hansen (1989, 1994)			
Cyprus (south)	Khirokitian	Khirokitia		Grain (2)			Setaria spp.				
Czech Republic (northern Bohemia)	Early Neolithic	LBK	Brézno u Louny	Second half of 6th mill. B.C.	Grain (13)		Panicum miliaceum	Tempir (1979)			
Czech Republic (central Bohemia)	Early Neolithic	LBK/Stichbandkeramik/Lengyel	Bylany	Settlement	5400–4300 B.C.	Grain	Panicum miliaceum	Tempir (1979)			
Czech Republic (northern Moravia)	Early Neolithic	LBK/Moravian Painted Pottery?	Mohelnice	Settlement	5600–5000 B.C.	Grain	Panicum miliaceum	Tempir (1979)			
Georgia	Late Neolithic	Shulaveri-Shomutepe	Arukholo 1	Settlement	5th–4th mill. B.C.a	Grain	Panicum miliaceum, Panicum capillare?	Lisitsyna and Prishchepenko (1977)			
Georgia	Late Neolithic	Shulaveri-Shomutepe	Dikh-Gudzuba	Settlement	5th–4th mill. B.C.a	Grain	Panicum miliaceum	Lisitsyna and Prishchepenko (1977)			
Georgia	Late Neolithic	Shulaveri-Shomutepe	Imiris-gora	Settlement	5th–4th mill. B.C.a	Grain	Panicum miliaceum	Lisitsyna and Prishchepenko (1977)			
Germany (southwest, Hessen)	Early Neolithic	LBK	Bruchenbrücken	Grain (1)			Panicum miliaceum	Kreez (1990)			
Germany (southwest, Hessen)	Early Neolithic	LBK	Eitzum 2	Grain (2)			Panicum miliaceum	Kreez (1990)			
Germany (southwest, Hessen)	Early Neolithic	LBK	Goddelau	Grain (1)			Panicum miliaceum	Kreez (1990)			
Country (region/province)	Period	Culture	Site name	Type of site	Dating information	Context of find	Nature of find (no. of grains)	Identification	Reference		
---------------------------	--------	---------	-----------	--------------	-------------------	----------------	-------------------------------	---------------	----------		
Germany (southeast, Bayern)	Early Neolithic	LBK	Hienheim	Site name	5300–4700 B.C. (5 dates)	Grain (33)	Setaria viridis/verticillata	Bakels (1978)			
Germany (southwest, Baden-Württemberg)	Early Neolithic	LBK	Hilzingen	Site name	5400–4400 B.C. (9 dates)	Grain (47)	Setaria viridis/verticillata	Stika (1991)			
Germany (west, Nordrhein-Westfalen)	Early Neolithic	LBK	Langweiler 3	Site name	Second half of 6th mill. B.C.	Grain (1)	Panicum spp	Knörrer (1972)			
Germany (west, Nordrhein-Westfalen)	Early Neolithic	LBK	Langweiler 8	Site name	6000–4800 B.C. (6 dates)	Grain (2)	Setaria spp	Knörrer (1988)			
Germany (south, Bayern)	Early Neolithic	LBK	Meindling	Site name	5600–4800 B.C. (4 dates)	Grain (48)	Setaria viridis/verticillata	Bakels (1992)			
Germany (west, Nordrhein-Westfalen)	Early Neolithic	LBK	Mintraching	Site name	Second half of 6th mill. B.C.	Grain (1)	Panicum miliaceum	Kreutz (1990)			
Germany (northwest, Nordrhein-Westfalen)	Early Neolithic	LBK	Wanlo	Site name	Second half of 6th mill. B.C.	Grain (25)	Setaria spp	Knörrer (1980)			
Greece (Thessaly)	Early Neolithic	Protosesklo	Argissa Magoula Settlement	Site name	6500–6200 B.C. (1 date)	Grain (1)	Panicum miliaceum	Hopf 1962, Kroll 1981, 1983			
Greece (Thessaly)	Middle Neolithic	Sesklo	Otzaki Magoula	Site name	1st half of 6th mill. B.C.	Grain (2)	Panicum miliaceum	Kroll 1981, 1983			
Greece (Boeotia)	Early Neolithic	?	Toumba Balomenou	Site name	6th-5th mill. B.C.	Grain (1)	Panicum spp	Sarpaki 1995			
Italy (north)	Early Neolithic	Fagnigola	Sammardenchia	Site name	5600–4900 B.C. (5 dates)	Grain (3)	Setaria spp	Rotoli 1999			
Moldova (Prut-Dniestr rivers)	Early Neolithic	LBK	Denchen 1 Settlement	Site name	2nd half of 6th mill. B.C.	60 Imprints in pottery	Panicum miliaceum	Larina (1999)			
Moldova (Prut-Dniestr rivers)	Neolithic	LBK	Durlesht I Settlement	Site name	Second half of 6th mill. B.C.	1 Imprint in pottery	Panicum miliaceum	Larina (1999)			
Moldova (Prut-Dniestr rivers)	Early Neolithic	LBK/Cris	Sakarovka Settlement	Site name	Second half of 6th mill. B.C.	97 Imprints in pottery	Panicum miliaceum	Larina (1999)			
Poland (southeast)	Early Neolithic	LBK	Olszanka	Site name	7000–4205 B.C. (8 dates)	Grain (2)	Panicum spp (impressions)	Ford (1986)			
Romania	Early Neolithic	Starčevo-Criş	Glăvăneşti Vechi Settlement	Site name	1st half of 6th mill. B.C.	Panicum sp.	Comşa (1996)				
Romania	Neolithic	Vinţa	Liubcova	Site name	Second half of 6th mill. B.C.	Panicum miliaceum L.	Comşa (1996)				
Romania	Neolithic	Vădastra	Vădastra	Site name	Second half 6th-1st half 5th mill. B.C.	Panicum sp.	Comşa (1996)				
Country (region/province)	Culture	Period	Site name	Location	Type of site	Nature of find	Dating information	Context of find	Nature of find (no. of grains)	Identification	Reference
--------------------------	---------	--------	-----------	----------	-------------	---------------	-------------------	----------------	-------------------------------	---------------	-----------
Russia (Dagestan)	Early Neolithic	7th–early 6th mill. B.C.	Chokh Settlement	7th–early 6th mill. B.C.	Grain	Panicum sp.	Amirkhanov (1987)	Grain (1)	Panicum miliaceum	Hajiabadi (1989)	Hajiabadi (1993)
Slovakia (southeast)	Early Neolithic (eastern) LBK	5200–4800 B.C.	Domica Cave	5200–4800 B.C.	Settlement	Grain	Panicum miliaceum	Hajnalova’ (1989)	Panicum miliaceum	1 date	Hajnalova’ (1989)
Slovakia (east)	Early Neolithic (eastern) LBK	5th–4th mill. B.C.	Šíšťanské Míchal’any 2	5th–4th mill. B.C.	Settlement	Grain (2)	Panicum miliaceum	Hajnalova’ (1993)	Panicum miliaceum	2 dates	Hajnalova’ (1993)
Slovakia (southwest)	Early Neolithic LBK (Zeliezovice group)	5500–5100 B.C.	Súrovno	5500–5100 B.C.	Settlement	Grain	Panicum miliaceum	Hajnalova’ (1989)	Panicum miliaceum	2 dates	Hajnalova’ (1989)
Ukraine (central)	Middle Neolithic Kievo-Cherkasskaya	5200–4250 B.C.	Kubinka	5200–4250 B.C.	Settlement	Grain	Panicum miliaceum	Hajnalova’ (1989)	Panicum miliaceum	2 dates	Hajnalova’ (1989)
Ukraine (northwest)	Early Neolithic Volynskaya	5400–4800 B.C.	Poltava	5400–4800 B.C.	Settlement	Grain	Panicum miliaceum	Hajnalova’ (1989)	Panicum miliaceum	2 dates	Hajnalova’ (1989)
Ukraine (northwest)	Early Neolithic Volynskaya	5500–5100 B.C.	Volynskaya	5500–5100 B.C.	Settlement	Grain	Panicum miliaceum	Hajnalova’ (1989)	Panicum miliaceum	2 dates	Hajnalova’ (1989)
Ukraine (central)	Early Neolithic Bugo-Dnestrovskaya	5100–4500 B.C.	Volynskaya	5100–4500 B.C.	Settlement	Grain	Panicum miliaceum	Hajnalova’ (1989)	Panicum miliaceum	2 dates	Hajnalova’ (1989)
Ukraine (western central)	Early Neolithic Kievo-Cherkasskaya	5550–5150 B.C.	Volynskaya	5550–5150 B.C.	Settlement	Grain	Panicum miliaceum	Hajnalova’ (1989)	Panicum miliaceum	2 dates	Hajnalova’ (1989)
East Asia	Early Neolithic	6400–5700 B.C.	Cishan Settlement	6400–5700 B.C.	Settlement	Grain	Panicum miliaceum	Huang (1982), Tong (1984)	Panicum miliaceum	2 dates	Huang (1982), Tong (1984)
China (Hebei)	Early Neolithic	5600–5400 B.C.	Dadiwan Settlement	5600–5400 B.C.	Settlement	Grain	Panicum miliaceum	GPICRA (2006)	Panicum miliaceum	1 date	GPICRA (2006)
China (Gansu)	Early Neolithic	6000–5500 B.C.	Huludun Chihe Cemetery/	6000–5500 B.C.	Settlement	Grain	Panicum miliaceum	Liu et al. (2004b)	Panicum miliaceum	2 dates	Liu et al. (2004b)
China (Henan)	Early Neolithic	5700–5000 B.C.	Peiligang Cemetery/settlement	5700–5000 B.C.	Settlement	Grain	Panicum miliaceum	GPICRA (2006)	Panicum miliaceum	2 dates	GPICRA (2006)
China (Inner Mongolia)	Early Neolithic	6200–5600 B.C.	Xinglongwa Xinglonggou Settlement	6200–5600 B.C.	Settlement	Grain (10)	Panicum miliaceum	Zhao (2005)	Panicum miliaceum	2 dates	Zhao (2005)
Country/Region/province	Period	Culture	Site name	Type of site	Dating Information	Context of find	Nature of find	Identification	Reference		
-------------------------	--------	---------	-----------	--------------	--------------------	-----------------	---------------	--------------	-----------		
China (Liaoning)	Early Neolithic	Xinle	Xinle	Settlement	5600–4600 B.C. (4 dates)	House F2 floor and shallow pit near pillar	Grain and chaff	"Dacongshu"	OPAMS and SPM (1985)		
China (Shandong)	Early Neolithic	Houli	Yuezhuan	Settlement	6060–5750 B.C. (Lee et al. 2007)	Pits	Grain (1)	*Setaria italica* spp. *italica*	Crawford et al. (2007)		
South and SW Asia and the Nile corridor											
Egypt	Neolithic										
		Abu Ballas	Settlement		6200–6000 B.C.	Grain (32)	*Panicum* sp.	Barakat and Fahmy (1999)			
		Farafra	Settlement		6000–5800 B.C. (1 date)	96E4, hearth	Grain (12)	*Panicum* cf, *turgidum* (1), *Panicum* type (11)	Barakat and Fahmy (1999)		
Egypt	Early Neolithic	El-Nabta	Nabta Playa	Settlement	7500–6500 B.C. (10 dates)	Hut F 2/90, middle level	Grain (‘numerous’)	*Panicum* cf, *turgidum* Setaria type *Panicum milaceum*	Wasylikowa et al. (1995), Wasylikowa and Dahlberg (1999)		
Iran (southeast)											
Syria (Euphrates Valley)	Late PPNB/PN	Bouqras			7900–6000 B.C. (25 dates)	Grain (13)	*Setaria* spp.	Van Zeist and Waterbolk-van Roonjen (1985)			
Syria (central part)	Final PPNB	El Kowm 2			7400–6100 B.C. (2 dates)	Grain (2)	*Setaria* spp.	De Moulins (1997)			
Syria (Euphrates Valley)	Early/middle/late PPNB	Tell Abu Hureyra 2A			8800–7000 B.C. (20 dates)	Grain (18)	*Setaria* spp.	Hillman et al. (1989), De Moulins (1997), Hillman (2000)			
Syria (Euphrates Valley)	Middle/late/final PPNB	Tell Abu Hureyra 2B			7900–6000 B.C. (8 dates)	Grain (5)	*Setaria* spp.	Hillman et al. (1989), De Moulins (1997), Hillman (2000)			

References:
Wasylikowa et al. (1995), Wasylikowa and Dahlberg (1999)
Discussion

Issues of taphonomy and identification

The data comprise evidence arising from a variety of site formation processes. Prominent among these are carbonization and impressions in either pottery or daub. From one site in China (Cishan) evidence comes in the form of ‘grain-shaped voids’ in sediment. In some reports the evidence of the form of preservation involved is incomplete or absent. The geographical distribution of the principal evidence types is patchy, reflecting different regional traditions of archaeobotany, for example in how widespread the use of flotation has been. Consequently, the presence of carbonized grain versus impressions most likely reflects regional differences in the history of archaeological practice rather than any original patterning in the data.

Various authors have discussed identification criteria for the caryopses of carbonized *P. miliaceum* and *S. italica* found in archaeological sites of a variety of dates (Knörzer 1971; Kroll 1983; Nesbitt and Summers 1988; Liu and Kong 2004; Fuller 2006; Fuller and Zhang 2007; Nasu et al. 2007). The last report presents excellent grain measurements and photographs of modern reference specimens of ten *Setaria* taxa. All other publications deal with both genera and mention that the caryopses of *P. miliaceum* and *S. italica* are different in general shape. Grains of *P. miliaceum* typically have a pointed distal (‘top’) end and relatively blunt proximal (‘bottom’) end, while grains of *S. italica* are gently rounded at both ends (Nesbitt and Summers 1988).

A second key identification criterion all the authors mention is the size of the embryo pit. Knörzer (1971) and Nesbitt and Summers (1988) recognize that the embryo pit of *P. miliaceum* is ‘short and wide’, 40–60% of grain length (maximum 70%). The groove of *S. italica*, however, is much longer and narrower than in broomcorn millet, almost always over 65% of grain length, usually averaging 70–80%. Kroll (1983) states that the embryo pit of *P. miliaceum* is smaller than half the grain length. Fuller (2006) generalizes that the embryo pit of *Panicum* spp. is around half of grain length, ranging up to two-thirds, while *Setaria* spp. are markedly longer than half, usually exceeding two-thirds.

A third criterion is the morphological pattern of lemma and palea under the microscope. In the earlier publications (Knörzer 1971; Nesbitt and Summers 1988), they state that the charred husk fragments of *P. miliaceum* are smooth and glossy, and the ones of *S. italica* vary from finely rugose to punctuate. The later references present good SEM images of husks (Fuller 2006). In addition, Nesbitt and Summers (1988) argued that in *P. miliaceum* the husks often adhere to the charred caryopses.
Numbers of identifications by nomenclature in this data set are summarized in Table 2. With a few exceptions, the reports relevant to the period covered by this paper do not allude to the above identification criteria, but simply present taxon names. Moreover, identification is not always reported consistently between (and sometimes even within) publications. For example, Lisitsyna and Prishchepenko (1977) list *P. miliaceum* L. at the Shula-Magoula sites of Arukho I, Dikhi-Guzduba and Imirisgora, but in a later review (Lisitsyna 1984), these identifications are revised to ‘*Panicum* sp.’, without explanation. In a more common scenario, original genus-level identifications are elsewhere ‘upgraded’ to specific identification of a palaeoethnobotanical interest. For example, Barakat and Fahmy present a detailed table of the results of archaeobotanical analysis from Abu Ballas in which a total of 32 grains of ‘*Panicum* sp.’ and 13 of ‘*Setaria* sp.’ from a range of sediment samples are recorded (1999, Table 2, p. 39); however, a summary table (Barakat and Fahmy 1999, Table 3, p. 40) comparing grass taxa at multiple sites, and subsequent discussion, refer to ‘*P. turgidum*’; the same table refers to ‘*S. viridis*’, but the text states that further morphological investigations are under way to identify the grains of

![Fig. 1](image_url)

Fig. 1 Sites pre 5000 cal B.C. with archaeobotanical remains of *Panicum* and/or *Setaria*. 1 Abu Ballas; 2 Argissa Magoula; 3 Arukho I; 4 Ayios Epiktitos Vrysi; 5 Bouqras; 6 Brezno u Louny; 7 Bruchentruenken; 8 Bylany; 9 Chokh; 10 Cishan; 11 Dadivan; 12 DenchenI; 13 Dikhi-Guzduba; 14 Domica Cave; 15 DursletI; 16 Drenkovo-Ploshteko; 17 Eitzum 2; 18 El Kowm 2; 19 Farafa; 20 Glavaneftii Vechi; 21 Goddelau; 22 GriniI; 23 Hienheim; 24 Hilzingen; 25 Imirisgora; 26 Kapitan Dimitrievo; 27 Karanovo; 28 Khrokita; 29 Kjulitepe; 30 Kovacevo; 31 Krishniki 2; 32 Langweiler; 33 Liubcova; 34 Mala OsnitsaI; 35 Meindling; 36 Mintraching; 37 Mohelnice; 38 Nabta Playa; 39 ObolonI; 40 Olszanica; 41 Otsaki Magoula; 42 Peiligang; 43 Roovno; 44 Sakarovka; 45 Sammardenchia; 46 Shariske Michalany 2; 47 Shawoli; 48 Slatina; 49 Sokoltsy 2; 50 Slutovo; 51 Tell Abu Hureyra; 52 Tell Mureybit; 53 Tepe Gaz Tavila (Dautalabad R37); 54 Touma Balomenou; 55 Vadastra; 56 Wanlo; 57 Wuluxi; 58 Xinglonggou; 59 Xinle; 60 Yuezhuang

Identification	Number of ident.
Panicum miliaceum	31
Panicum cf. miliaceum	1
Panicum capillare	1
Panicum turgidum	1
Panicum (cf.) turgidum	2
Panicum sp(p).	8
Panicum type	1
Daongshu’ (Chinese, ‘onion broomcorn millet’)	1
Setaria italica	1
Setaria italica ssp. *italica*	1
cf. Setaria italica	1
Su (Chinese, ‘foxtail millet’)	2
Foxtail millet/grass	1
Setaria viridis	1
Setaria cf. viridis	1
Setaria viridis/verticillata	7
Setaria sp(p)	16
Setaria type	3
‘Setaria’ type from Abu Ballas accurately to species level. Such inconsistencies may seem trivial in the context of an individual report, but they have knock-on effects in the secondary literature. This is not to single out the authors above for particular criticism—there is a universal tendency to simplify the complex details of primary data sets to provide a concise synthesis.

In some cases the specificity of identification may have arisen from a circular argument—that *Setaria* sp. remains from Neolithic China may be discussed as possible cultivated foxtail millet, *S. italica*, because we expect to find this taxon there, whereas *Setaria* sp. identifications from Egypt are assumed to be part of a different archaeological ‘story’, and ignored in the former context. The lack of photographs or morphological details in reports from excavations of the 1970s/1980s in the key regions of China and the Caucasus makes it difficult to assess these records critically. Some authors have arrived at their own judgements on which records are dubious and should be discounted (see, for example, Nesbitt and Summers 1988). A further problem is posed by reports where botanical identifications are only given in the vernacular. The excavation report for Peiligang (HWTN1ACASS (Henan Working Team No. 1, Institute of Archaeology, Chinese Academy of Social Science) 1983) notes the presence of *su*—(*S. italica*, foxtail millet), while a Chinese book of the same year, *The history of Chinese Cultivated Plants*, reports that grains shaped like *ji*, which the author defines as sticky-type broomcorn millet, were found at Peiligang (Li 1984). Subsequent papers quoting both *S. italica* and *P. miliaceum* at Peiligang (Ren 1995; Underhill 1997) may represent an amalgamation of these two contemporary Chinese sources. We have listed *Setaria* only at Peiligang, in keeping with the primary report. At Cishan, *S. italica* was identified on the basis of seed-shaped voids in sediment (Huang 1982), of which no record has been kept. In the last decade, the introduction of flotation to Chinese archaeology, for example by Zhao (2004) at Xinglonggou and Crawford et al. (2007) at Yuezhuang, has resulted in substantially more robust evidence with the recovery and direct dating of broomcorn and foxtail millet macrofossils.

Identifying domestication, cultivation and crop/weed status

S. viridis has been conclusively identified as the wild ancestor of *S. italica* on the basis of morphology, interspecific crosses and AFLP analysis (Le Thierry d’Ennequin et al. 2000), but the wild ancestry of *P. miliaceum* remains uncertain. The most plausible candidate is a weedy taxon, *P. miliaceum* ssp. *ruderal*, which grows as a weed of maize and millet crops in China today. According to Zohary and Hopf (2000) this taxon grows west to the Aralo-Caspian basin, but a morphologically similar weed is found in central Europe (Scholz and Mikoláš 1991). Whether *P. miliaceum* ssp. *ruderal* constitutes a genuinely wild species or is a feral derivative of domesticated broomcorn millet, or whether, as these authors suggest, further taxonomic division of this subspecies is needed, remains an open question.

In the absence of secure knowledge about the wild ancestor, authors have speculated about familiar domestication markers such as grain size and shape. Zhao (2005) has tentatively related the wild/domesticated status of some of the *P. miliaceum* finds in northern China to variation in seed size. However, as Fuller et al. (2007) have shown for rice, grain size and shape need to be interpreted in the context of an understanding of panicle maturation patterns and the morphometry of seeds at different stages of maturity.

The clear taxonomic and morphological differentiation of domesticated *S. italica* and the wild annual weeds *S. verticillata* and (ancestral to *S. italica*) *S. viridis* leaves less room for ambiguity than in *Panicum* regarding the inferred wild/domesticated status of the finds. Crawford and Lee (mentioned in Liu et al. 2004b) assessed grains from WuLuoxipo as potential intermediates in the transition from wild to domesticated foxtail millet on the basis of dorsal flattening of the grain. The dataset contains a number of identifications of ‘Setaria spp.’ in Epipalaeolithic and Neolithic Syria, Cyprus, and central Europe. These are usually assumed (explicitly or otherwise) to represent one of the two wild species above, since there is no concrete evidence for *S. italica* until the Iron Age in the Near East (Nesbitt and Summers 1988) and until the Bronze Age in central Europe (Zohary and Hopf 2000).

In contrast, the only non-*miliaceum* species-level identifications of *Panicum* are *P. turgidum* in Egypt, of palaeoethnobotanical interest in its own right but distinct from broomcorn millet domestication history, and a tentative identification of *P. capillare* in the Caucasus (Lisitsyna and Prishchepenko 1977). *P. capillare* is a native of North America naturalized in Europe (Tutin 1980), so unless this find represents an intrusion or the chronology is wrong, this identification is unlikely to be correct. The *Panicum* flora of Europe is species-poor (*Panicum* is primarily a tropical genus) and only one native wild species, other than *P. miliaceum* ssp. *ruderal*, is widespread in Europe, *P. repens* (Tutin 1980). Probably for this reason, there has been no discussion to date of the morphology of wild *Panicum* species or their possible presence as weeds in assemblages, although such a study would be pertinent to China, which has a number of native wild *Panicum* species (Wu and Raven 2007). While the presence of *S. viridis* and *S. verticillata* as natives...
throughout much of Europe makes this the ‘default’
interpretation for records of Setaria sp., the absence of
clear-cut wild Panicum species (given the uncertainty
of the status of P. miliaceum ssp. ruderale) accounts for the
recurrent inference that generic level archaeobotanical
identifications of Panicum sp. represent domesticated
broomcorn millet. Explicit discussion is needed on mor-
phology of Panicum and allied genera to clarify which
species might potentially be indicated by an identification
of ‘Panicum sp.’

A closely related issue to that of wild/domesticated plant
forms is whether the millets were being cultivated as crops
or alternatively existed as weeds. Some authors have
explicitly interpreted rare or solitary finds as arable weeds,
and/or only inferred intentional cultivation where large
quantities of grain are present. (Nesbitt and Summers 1988;
Kreuz et al. 2005). The latter authors consider that the
presence of P. miliaceum from four LBK sites in Germany
as only single seeds reflects its status as a weed of the
major crops (einkorn and emmer wheat), introduced in
seedcorn. P. miliaceum ssp. ruderale and similar types with
wild-type seed dispersal behaviour are significant arable
weeds in several parts of the world today: China, central
Europe (Scholz and Mikoláš 1991), and North America
(Bough et al. 1986). It is plausible that such types were also
weeds in prehistory, either as truly wild taxa, or derived
from domesticated non-shattering P. miliaceum by back-
mutation. However, grain quantities have at best an indirect
relationship with grain use, let alone grain domestication.
Our growing awareness of taphonomy and site formation
processes has brought to light a range of quite separate
factors that may determine numerical composition of
assemblages (Hubbard and Clapham 1992). We should also
bear in mind that the sharp distinction in modern agricul-
ture between ‘crop’ and ‘weed’ need not necessarily have
been as sharp, or indeed applied at all, among Neolithic
people.

Implications for the origins of domesticated broomcorn
and foxtail millet

More can currently be said with confidence about the
origins of domesticated S. italica than P. miliaceum. The
distinction between domesticated foxtail millet and its
wild relatives is established, and, as argued above, this
has knock-on effects for nomenclatural clarity and the
botanical framework in which identification of archaeo-
logical samples is carried out. Although the progenitor S.
viridis is widespread in Eurasia, and this appears to have
been the case in prehistory too, S. italica is found before
5000 cal b.c. only in China. Unfortunately, the records
from the two most widely mentioned sites, Peiligang and
Cishan, are enigmatic (see above). However, new site
excavations at Xinglonggou and Yuezhuang attest to the
presence of S. italica as early as the late seventh mil-
lennium b.c. in northern China. Analysis of intraspecific
generic polymorphisms at ribosomal and mitochondrial
loci supports eastern Asia as a centre of origin of foxtail
millet (Fukunaga et al. 2002, 2006; Fukunaga and Kato
2003). The genetic data also indicate an independent
domestication of landraces in Afghanistan and north-
western Pakistan (Li et al. 1995; Fukunaga et al. 2006).
An independent origin of foxtail millet landraces in
tropical eastern Asia, including Taiwan and the Philip-
ines, is also possible, but the complicated evolution of
the ribosomal markers used in this study means that this
is still uncertain (Fukunaga et al. 2006). The discovery
of foxtail millet at Chengtoushan at 3850 cal b.c. has
also led to the hypothesis that it was domesticated sepa-
ately in south-central China, alongside rice (Nasu et al.
2007).

Polymorphic genetic markers that have the potential to
reveal geographic patterns in P. miliaceum have not yet
been described in the literature. We are currently under-
taking marker development to address this problem. The
most plentiful early records of broomcorn millet appear in
two regions. Xinglonggou, Yuezhuang and Dadiwan in
northern China have yielded 1500, 40 and 8 carbonized
grains, respectively. Pottery from two sites in Moldova,
Denchen and Sakarokva, has, respectively, produced 97
and 60 impressions. We note that a great number of the
remaining early records are of single grains, which, as
mentioned above, have prompted some authors to speculate
on its status. Whatever that status might be in different
regions, crop, weed or intermediate form, the question of
its dispersal across Eurasia remains. Crucial to answering
this are the status and chronology of finds from the
northern Black Sea region and the Caucasus, which require
re-evaluation.

Ecological considerations

We would infer from the geographical distribution indi-
cated in Map 1 that the great majority of domesticated
millet records prior to 5000 b.c. could have arisen from
rainfed summer crops, without the need for any form of
irrigation. Such an inference demands closer scrutiny of
records from southeastern Europe and southern Iran. Four
records from Bulgaria and Greece specify either Panicum
or P. miliaceum. The varied topography around each of the
sites concerned does permit a combination of seasonal
sowing patterns, and the most southerly of these records,
from Toumba Balomenou, Chaeronia, Greece, occurs in
conjunction with weed evidence of summer sowing of at
least some crops (Sarpaki 1995). The Iranian record from
Tepe Gaz Tavila is more anomalous in ecological terms.
This record has not however yet reached primary archaeobotanical publication.

Conclusions

Archaeobotanical data underpins a range of recent and ongoing complementary archaeological science projects researching the origins of millet agriculture: stable isotope analysis (Hu et al. 2006), genetics (Fukunaga et al. 2002, 2006; Fukunaga and Kato 2003) and lipid analysis from sediment cores (Jacob et al. 2008).

The data assembled here have emphasized the contrasting patterns for the two principal Eurasian millets, *P. miliaceum* and *S. italica*. Both occur prior to 5000 cal B.C. in North China, but only *P. miliaceum* occurs prior to 5000 cal B.C. in western Asia and Europe. Within the *P. miliaceum* distribution, there is a marked contrast in numerical abundance between records, which some authors have related to crop/weed status. This review emphasizes the need for researchers across diverse disciplines to engage with the complexities and points of debate in the archaeobotanical data that pertain to the agrarian prehistory of these crops.

Not all domestication events need be associated with a pre-5000 cal B.C. archaeobotanical signature—independent domestications may have happened at a later date. However, discussion of millet domestication has stemmed largely from the geographical distribution of the earliest finds, which, given their rarity at this early date and the obscurity of some records, renders them critical.

The current archaeobotanical record does not allow discrimination between hypotheses of single versus multiple domestications, or of subsequent diffusion pathways, of *P. miliaceum* and *S. italica*. The key issues for future archaeobotanical research on these crops are the need for unified and transparent criteria for taxonomic identification, the more consistent application of flotation techniques, and the need to fill gaps in the record, particularly over large areas of central Asia.

Acknowledgments H. V. H. was supported by a Wellcome Trust Research Training Fellowship (ref. 076815), M. V. by the project The Formation of Europe: population dynamics and the roots of sociocultural diversity (European commission Specific Targeted Research Project no. 028192), G. M. by the Gates Foundation, X. L. by a University of Cambridge Dorothy Hodgkin studentship. We are grateful to Loukas Barton, James Conolly, Stephen Shennan, Helmut Kroll, and Zhao Zhijun for assistance finding data and for constructive comments. Thanks to Cameron Petrie for data mapping. We thank two anonymous referees for their constructive criticisms of the manuscript. Any remaining errors are our own.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Amirkhanov KA (1987) Chokhkoe poselenie: chelovek i ego kultura v mezolite i neolite gornogo Dagestana. (Chokh settlement: man and his culture in the Mesolithic and Neolithic of mountainous Dagestan, in Russian). Nauka, Moscow

Bakels CC (1978) Four Linearbandkeramik settlements and their environment: a palaeoecological study of Sittard, Stein, Elsloo and Hienheim. Analecta Praehist Leiden 11:1–248

Bakels CC (1992) Fruits and seeds from the Linearbandkeramik settlement at Meindling, Germany, with special reference to *Papaver somniferum*. Analecta Praehist Leiden 25:55–68

Barakat H, Fahmy AGe-D (1999) Wild grasses as ‘Neolithic’ food resources in the eastern Sahara. In: Van der Veen M (ed) The exploitation of plant resources in ancient Africa. Kluwer, New York, pp 33–46

Bough M, Colosi JC, Cavers PB (1986) The major weedy biotypes of proso millet (*Panicum miliaceum*) in Canada. Can J Bot 64:1188–1198

Bronk Ramsey C (2001) Development of the radiocarbon calibration program OxCal. Radiocarbon 43:355–363

Cohen DJ (1998) The origins of domesticated cereals and the Pleistocene-Holocene transition in East Asia. Rev Archaeol 19:22–29

Colledge S, Conolly J, Shennan S (2004) Archaeobotanical evidence for the spread of farming in the Eastern Mediterranean. Curr Anthropol 45:S35–S58

Colledge S, Conolly J, Shennan S (2005) The evolution of Neolithic farming from SW Asian origins to NW European limits. Eur J Archaeol 8:137–156

Comşa E (1996) Viaţa oamenilor din spaţial Carpaţo-Danubiana-Pontic în mileniile 7–4 î.Hr (The life of people in the Carpatho-Danubian-Pontic region in the 7th–4th millennia B.C., in Romanian). Ed didactică şi pedagogică, Bucharest

Crawford GW (1992) Prehistoric plant domestication in East Asia. In: Cowan CW, Watson PJ (eds) The origins of agriculture: an international perspective. Smithsonian Institution Press, Washington, pp 7–38

Crawford GW, Chen X, Wang J (2007) Shandong Jinan changjuing qu Yuezhuang yizhi faxian Houli wenhua shiqi de tanhua dao (Houli culture rice from the Yuezhuang site, Jinan, in Chinese). Dongfeng Kaogu (Orient Archaeol) 3:247–251

De Moulins D (1997) Agricultural changes at Euphrates and steppe sites in the mid-8th to the 6th millennium B.C. BAR international series, vol 683. John and Erica Hedges, Oxford

Dontscheva E (1990) Plant macrores research of early Neolithic dwellings in Slatina. Stud Praehist 10:86–90

Ford RI (1986) Appendix G. The archaeobotany of Olszanica, Poland. In: Milisauskas S (ed) Early Neolithic settlement and society at Olszanica. Memoirs of the museum of anthropology, vol 19. University of Michigan, Ann Arbor, pp 261–265

Fukunaga K, Wang Z, Kato K, Kawase M (2002) Geographical variation of nuclear genome RFLPs and genetic differentiation in foxtail millet, *Setaria italica* (L.) P. Beauv. Genet Resour Crop Evol 49:95–101

Fukunaga K, Kato K (2003) Mitochondrial DNA variation in foxtail millet, *Setaria italica* (L.) P. Beauv. Euphytica 129:7–13

Fukunaga K, Ichitani K, Kawase M (2006) Phylogenetic analysis of the rDNA intergenic spacer subrepeats and its implication for the
domestication history of foxtail millet, *Setaria italica*. Theor App Genet 113:261–269
Fuller DQ (2006) A millet atlas—some identification guidance. Institute of Archaeology, University College London. http://www.homepages.ucl.ac.uk/~tcmduf/Abot/Millet%20Handout06.pdf. Accessed 21 Apr 2008
Fuller DQ, Harvey E, Ling Q (2007) Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium b.c. of the lower Yangtze region. Antiquity 81:316–331
Fuller DQ, Zhang H (2007) A preliminary report of the survey archaeobotany of the upper Ying Valley (Henan Province). In: SAMPU and HIACR (eds) Dengfeng Wangchenggang yizi de faxian yu yanjiu (2002–2005) (Archaeological discovery and research at the Wangchenggang site in Dengfeng (2002–2005), in Chinese). Great Elephant, Zhengzhou, pp 916–958
GPICRA (Gansu Province Institute of Cultural Relics, Archaeology) (2006) Qinan Dadiwan-Xinshiqi Shidai yizhi (Shawoli, a Neolithic site in Xinzheng, Henan province, in Chinese). Kaogu (Archaeology) 181:418–420
Hajnalova´ E (1993) Pravekne´si´dlenie lokality Sˇarisˇske´ Michal'any (A subterranean settlement in Cyprus. Excavations at Prehistoric Ayios Epiktitos Brysi 1969–1973. Aris and Phillips, Warminster, pp 90–93
Karina OV (1999) Kultura Lineino-lentochnoi Keramiki Pruto-Dnestrovskogo regiona (LBK cultures in the Prut-Dnester region, in Russian). Stratum Plus 2:10–140
Kroll H (1999) Literature of archaeological remains of cultivated plants (1994/95). Veget Hist Archaeobot 5:169–200
Kroll H (1997) Literature on archaeological remains of cultivated plants (1995/1996). Veget Hist Archaeobot 6:25–67
Kroll H (1998) Literature on archaeological remains of cultivated plants (1996/1997). Veget Hist Archaeobot 7:23–56
Kroll H (1999) Literature on archaeological remains of cultivated plants (1998/1999). Veget Hist Archaeobot 8:129–163
Larina OV (1999) Kultura Lineino-lentochnoi Keramiki Pruto-Dnestrovskogo regiona (LBK cultures in the Prut-Dnester region, in Russian). Stratum Plus 2:10–140
Le Thierry d'Ennequin M, Penaud O, Toupance B, Sarr A (2000) Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theor Appl Genet 100:1061–1066
Lee G, Crawford GE, Liu L, Chen X (2007) Plants and people from the early Neolithic to Shang periods in North China. Proc Nat Acad Sci 104:1087–1092
Li F (1984) Zhongguo Zaipei Zuowu Fazhanshi (The history of cultivated plants in China, in Chinese). Science Publishing House, Beijing
Li Y, Wu SZ, Cao YS (1995) Cluster analysis of an international collection of foxtail millet (Setaria italica (L.) P. Beauv.). Euphytica 83:79–85
Listysyna GN, Prischepenko LV (1977) Paleol-knotnobotanicheskie nakhodki Kavkaza i Blizhnego Vostoka. (Palaeoethnobotanical finds of the Caucasus and the Near East, in Russian). Nauka, Moscow
Listysyna GN (1984) The Caucasus—a centre of ancient farming in Eurasia. In: Van Zeist W, Casparie WA (eds) Plants and ancient man. Balkema, Rotterdam, pp 285–292
Liu C, Kong Z (2004) Su shu zili de xingtai bijiao qiji zai kaogou jiandian zhong de yiyi (Morphological comparison of foxtail millet and broomcorn millet and its significance in archaeolog- ical identification, in Chinese). Kaogu (Archaeology) 443:76–83
Liu C, Kong Z, Lang SD (2004a) Dadiwan yizhi nizhen de tuntan (A discussion on agricultural and botanical remains and the human ecology of Dadiwan site, in Chinese). Zhongyuan Wenwu (Central China) 4:25–29
Liu L, Chen X, Lee YK, Wright H, Rosen A (2004b) Settlement patterns and development of social complexity in the Yiluo region, North China. J Field Archaeol 29:75–100
Lu TL-D (2005) The origin and dispersal of agriculture and human diaspora in East Asia. In: Blench RM, Sagart L, Sanchez-Mazas A (eds) The peopling of East Asia: putting together archaeology, linguistics and genetics. Curzon, London, pp 51–62
Marinova EM (2001) Vergleichende palaeoethnobotanische Untersuchung zur Vegetationsgeschichte und zur Entwicklung der prähistorischen Landnutzung in Bulgarien. Doctoral thesis, Rheinischen Friedrich-Wilhelms Universität, Bonn
Marinval P (1995) Données carologiques françaises sur les Millets (Panicum miliaceum L. et Setaria italica (L.) Beauv.) de la Protohistoire au Moyen Age. In: Hörandner E (ed) Millet-Hirse- und Weizenfunde aus der praehistorischen Bandkeramischen Siedlung Hilzingen, Kreis Konstanz. Fundber Bad-Würt 16:63–104
Medow RH (1986) The geographical and palaeoenvironmental setting of Tepe Yahya. In: Lambberg-Karlovsky CC, Wight-Beale T (eds) Excavations at Tepe Yahya, Iran 1967–1975: the early periods. Harvard University Press, Cambridge, pp 21–38
Miller NP (1984) Some plant remains from Khirokitia, Cyprus: 1977 and 1978 excavations. In: Le Brun A (ed) Fouilles récentes à Khirokitia (Chypre) 1977–1981. Études néolithiques, vol 1. Éditions Recherche sur les Civilisations, Paris, pp 183–188
Nasu H, Momohara A, Yasuda Y, He J (2007) The occurrence and dispersal of agriculture and human occupations in North China. Proc Nat Acad Sci 104:1087–1092
Sen S (1995) Gongyang qian wuqian nian qian Zhongguo xinshi wenhua de jixiang zhuyao chengjiu (The main achievements of Chinese Neolithic cultures before 5000 B.C., in Chinese). Kaogu (Archaeology) 328:37–49
Renfrew JM (1969) Palaeoethnobotany and the Neolithic cultures of Greece and Bulgaria. Doctoral thesis, University of Cambridge
Rottoli M (1999) I resti vegetali di Sammardenchia-Cuesi (Udine), insediamento del neolitico antico. In: Ferrari A, Pessina A (eds) Sammardenchia-Cuesi: Contributi per la Conoscenza di una Comunità del Primo Neolitico. (Pubblicazione n. 41) Edizione del Museo Friulano di Storia Naturale, Commune di Udine, pp 307–326
Sarpaki A (1995) Toumba Balomou, Chaeronia: plant remains from the early and middle Neolithic levels. In: Kroll H, Pasternak R (eds) Res archaeobotanicae. International Workgroup for Palaeoethnobotany. Proceedings of the 9th symposium, Kiel 1992. Oetker-Voges, Kiel, pp 5–15
Scholz H, Mikoláš V (1991) The weedy representatives of proso millet (Panicum miliaceum, Poaceae) in Central Europe. Thaï- szia 1:31–41
Shelach G (2000) The earliest Neolithic cultures of Northeast China. J World Prehist 14:363–413
Shennan S, Steele J (2000) Spatial and chronological patterns in the Neolithization of Europe. http://ads.ahds.ac.uk/catalogue/resources.html?tc14.meso. Accessed 25 Oct 2007
Shennan S, Connolly J (2007) The origin and spread of Neolithic plant economies in the Near East and Europe. http://ads.ahds.ac.uk/catalogue/resources.html?neoplants_abrh_2005. Accessed 21 Apr 2008
Sikta HP (1991) Die palaeoethnobotanische Untersuchung der linearbandkeramischen Siedlung Hilzingen, Kreis Konstanz. Fundber Bad-Würt 16:63–104
Tempir Z (1979) Kulturpflanzen im Neolithikum und Anzehitikum auf dem Gebiet von Böhmen und Mähren. Archaeo-Physika 8:303–309
Thanheiser U (1997) Botanische Funde. In: Hiller S, Nikolov V (eds) Karanovo. Die Ausgrabungen im Südsektor 1984–1992. Öster- reich Bulgarische Ausgrabungen in Karanovo, Berger, Horn, pp 429–454
Tong W (1984) Cishan Yizhi de Yuanshi Nongye Yicun Jiqi Xiangguan de Wenti (Remains of primitive farming at Cishan site and its related problems, in Chinese). Nongye Kaogu (Agric Archaeologia) 7:36–42
Tutin TG (ed) (1980) Gramineae (Poaceae). In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 5. Alismataceae to orchidaceae. Cambridge University Press, Cambridge, pp 118–154
Underhill AP (1997) Current issues in Chinese Neolithic archaeology. J World Prehist 11:103–160
Van Zeist W, Bakker-Heeres JA (1984) Archaeobotanical studies in the Levant, 3. Late-Paleolitische Murebytet. Palaeohistoria 26:171–199
Van Zeist W, Waterbolk-van Rooijen W (1985) The palaeobotany of Tell Bouqas, Eastern Syria. Paléorient 11:131–147
Waines JG, Stanley Price NP (1977) Plant remains from Khirokitia in Cyprus. Paléorient 3:281–284
Wasylikowa K, Schild R, Wendorf F, Król K, Kubiak-Martens L, Harlan JR (1995) Archaeobotany of the Early Neolithic site E-75-6 at Nahta Playa, Western Desert, South Egypt. Acta Palaeobot 35:133–155
Wasylikowa K, Dahlberg J (1999) *Sorghum* in the economy of the early Neolithic nomadic tribes. In: Van der Veen M (ed) The exploitation of plant resources in ancient Africa. Kluwer, New York, pp 11–31

Willcox G, Fornite S (1999) Impressions of wild cereal chaff in pisé from the 10th Millennium uncal. B.P. at Jerf el Ahmar and Mureybet: Northern Syria. *Veget Hist Archaeobot* 8:21–24

Wu Z, Raven PH (eds) (2007) Flora of China, vol 22. Poaceae, Missouri Botanical Garden Press, St Louis

Zhao Z (2004) Tanxun Zhongguo beifang hanzuo qiyuan de xin xiansuo (Searching for the origin of dry land farming in North China, in Chinese). *Zhongguo Wenwubao* (Paper of Cultural Relics) 12 Oct 2004, Beijing

Zhao Z (2005) Zhiwu kaoguxue jiqi xin jinzhan (Archaeobotany and its recent progress, in Chinese). *Kaogu* (Archaeology) 454:522–529

Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford University Press, Oxford