Exploring maverick top partner decays at the LHC

Shivam Vermaa,*, Sanjoy Biswasa,†, Anirban Chatterjeeb,‡, and Joy Gangulyc,§

aDepartment of Physics, Ramakrishna Mission Vivekananda Educational and Research Institute, Belur Math, Howrah 711202, India
bDepartment of Physics, Indian Institute of Technology, Kanpur 208016, India
cDepartment of Physics, Indian Institute of Technology, Hyderabad 502285, India

Abstract

In this work, we have considered an extension of the standard model (SM) with a $SU(2)_L$ singlet vectorlike quark (VLQ) with electric charge $Q = +2/3$. The model also contains an additional local $U(1)_d$ symmetry group and the corresponding gauge boson is the dark photon. The VLQ is charged while all the SM particles are neutral under the new $U(1)_d$ gauge group. Even though in this model the VLQ possesses many properties qualitatively similar to that of the traditional top partner (T_p), there are some compelling differences as well. In particular, its branching ratio to the traditional modes ($T_p \to bW,tZ,th$) are suppressed which in turn helps to evade many of the existing bounds, mainly coming from the LHC experiments. In an earlier work, such a VLQ is referred to as “maverick top partner”. It has been shown that the top partner in this model predominantly decays to a top quark and a dark photon/dark Higgs pair ($T_p \to t\gamma_d,$ th_d) over a large region of the parameter space. The dark photon can be made invisible and consequently, it gives rise to the missing transverse energy (E_T) signature at the LHC detector. We have mainly focused on the LHC signatures and future prospects of such top partners. In particular, we have studied the $t\bar{t} + E_T$ and $t + E_T$ signatures in the context of the LHC via pair and single productions of the top partner, respectively at 13 and 14 TeV LHC center of mass energies assuming that the dark photon either decays into an invisible mode or it is invisible at the length scale of the detector. We have shown that one can exclude $\sin \theta_L \sim 0.025 \ (0.05)$ for $m_{T_p} \leq 2.0 \ (2.6)$ TeV at $\sqrt{s} = 14$ TeV with an integrated luminosity of 3 ab$^{-1}$ using the single top partner production channel.

*shivam.59910103@gm.rkmvu.ac.in
†sanjoy.phy@gm.rkmvu.ac.in
‡anirban@iitk.ac.in
§joyganguly.hep2022@gmail.com

1 Introduction

Search for new resonances or particle-like states predicted by the physics beyond the Standard Model (BSM) is an important goal for the Large Hadron Collider (LHC). One of the foremost among them is search for vectorlike fermions (VLFs), in particular, vectorlike quarks (VLQs). VLQs are omnipresent in many extensions of the SM such as SM with extra dimension [1–3], composite Higgs model [4–6], primarily motivated to solve the Higgs mass problem in the SM [7–9]. A lot of studies has been done on the phenomenological aspects of VLQs in a general setup [10–27]. However, the existence of VLQ (or VLF in general) can also be motivated in a class of theories where the SM is augmented with a dark sector (DS) and the VLFs act as mediators between the visible and the DS (often referred as portal matter) [28–31]. The DS in its most simple form can contain a dark photon [32] corresponding to a dark $U(1)_d$ gauge symmetry. In many extensions of the SM motivated by the solution to the dark matter (DM) problem, dark photon is introduced in order to explain the small scale structure of the universe [33].

The theoretical framework considered in this study closely follows that of Ref. [34]. We have considered a $SU(2)_L$ singlet vectorlike quark carrying +2/3 unit of electric charge. The VLQ is also charged under an additional $U(1)_d$ dark gauge symmetry whereas all the SM fields are neutral under this new symmetry. The $U(1)_d$ symmetry is spontaneously broken by the vacuum expectation value (VEV) of a complex scalar field (dark Higgs) and the gauge boson (dark photon) corresponding to the local $U(1)_d$ symmetry becomes massive. The dark Higgs field is not only responsible for giving mass to the dark photon in this framework but it also plays an important role, namely, it induces a mixing between the top-quark and the VLQ. We will only consider the VLQ mixing with the 3rd generation quark with same charge. However, as we will see later on, the vectorlike quark being charged under the additional $U(1)_d$ gauge interaction, its branching ratio into the traditional decay modes ($T_p \rightarrow bW,tZ,th$) are all suppressed. In this framework, it predominantly decays to a top-quark and a dark photon/dark Higgs ($T_p \rightarrow t\gamma,\gamma_d, th_d$). Such a VLQ having same electric charge and color quantum number as that of SM top-quark with traditional decay modes suppressed is referred to as “maverick top partner” in [34]. Similar extensions with VLQs carrying $-1/3$ unit of electric charge was earlier proposed in [28, 29] which also predicts an enhanced branching ratio of the bottom partner to the nonstandard modes. The origin of this enhancement in branching ratio to the nonstandard modes can be traced back to the hierarchies between (i) the top and the maverick top partner masses, (ii) the vacuum expectation values of the two Higgs fields and (iii) the fermion mass ratio and the fermion mixing angle. The existence of such a top partner, not only gives rise to rich collider phenomenology but also helps to evade the constraints coming from the LHC data depending on their transformation properties under the SM gauge group. The collider constraints come from pair production of top partner or single production of top partner in association with a forward jet at the LHC. The current LHC data is mostly sensitive to VLQ searches in the traditional decay modes ($T_p \rightarrow bW,tZ,th$) [35–38]. Nonstandard or exotic decays of the vectorlike quarks in different set-ups with different collider signatures have been considered in the literature [39–49].

In the present work, we will assume that the dark photon always decays to a pair of DM particles. Consequently, in a collider experiment the signature of the dark photon production will be missing momentum. Our motivation is to constrain the decay of the maverick top partner into a top-quark and dark photon pair at the LHC in the $t\bar{t}$+missing transverse energy (E_T) and $t+E_T$ channels and for that it is sufficient to treat the dark photon and its subsequent decay products to be invisible at the length scale of the detector. The details of the DM sector and its phenomenology is not considered here. We emphasize that the allowed region of the parameter space that is consistent with the perturbative unitarity and electroweak precision (EWP) measurements [50–52] can be excluded at the high-luminosity (HL) LHC. We have also set the exclusion limit on the relevant parameter space using the latest LHC data in the $t\bar{t}+E_T$ and $t+E_T$ channels [53–55].

The rest of the paper is organized as follows: In Sec. 2, we briefly outline the theoretical framework considered for the present analysis including various constraints on the model parameters. The event selection for both the single and pair production of maverick top partner(s) is detailed in Sec. 3. In Sec. 4, we present the results of our numerical simulation and discuss their significances. Finally, we conclude in Sec. 5.
2 Theoretical framework

In this section, we briefly summarize the theoretical framework proposed in [34]. The model contains a $SU(2)_L$ singlet vectorlike quark having electric charge $+2/3$ unit. The top partner is also charged under an additional $U(1)_d$ dark gauge symmetry. The gauge boson corresponding to the local $U(1)_d$ symmetry is the dark photon (in the limit of very tiny kinetic mixing). The model also contains a complex scalar field Φ_d charged under the $U(1)_d$ and singlet under the SM gauge group. The dark photon becomes massive as $\langle \Phi_d \rangle = v_d/\sqrt{2}$. The corresponding Higgs mode in the dark sector after mixing with the SM Higgs gives a dark Higgs in the mass eigenbasis. All the SM fields are neutral under the $U(1)_d$. The full Lagrangian of the model is detailed below:

The relevant fields content and their representations under $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_d$ symmetry groups are summarized in Table 1.

Fields	$SU(3)_C$	$SU(2)_L$	Y	Y_d
t'_R	3	1	2/3	0
b_R	3	1	-1/3	0
Q_L	3	2	1/6	0
Φ	1	2	1/2	0
T'_{L}^{i}	3	1	2/3	1
T'_{R}^{i}	3	1	2/3	1
Φ_d	1	1	0	1

Table 1: Representations of the relevant field content under the full symmetry group of the theory. The remaining SM fields are all neutral under the new $U(1)_d$.

The relevant sectors of the Lagrangian invariant under $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_d$ symmetry group are given below:

$$L_{\text{Gauge}} = -\frac{1}{4} G_{\mu\nu}^a G^{a,\mu\nu} - \frac{1}{4} W_{\mu\nu}^i W^{i,\mu\nu} - \frac{1}{4} B_{d,\mu\nu}^i B^{i,\mu\nu} - \frac{\epsilon'}{2 \cos \theta_W} B_{d,\mu\nu}^i B_{d,\mu\nu}^i - \frac{1}{4} B_{d,\mu\nu}^i B_{d,\mu\nu}^i,$$ \hspace{1cm} (1)

where $G_{\mu\nu}^a$ are the $SU(3)_C$ field strength tensor with $a = 1, \cdots, 8$, $W_{\mu\nu}^i$ are $SU(2)_L$ field strength tensor with $i = 1, 2, 3$, $B_{d,\mu\nu}^i$ is that of the $U(1)_Y$ and $B_{d,\mu\nu}^i$ corresponds the field strength tensor of the additional $U(1)_d$. The kinetic mixing term is parametrized by ϵ'.

$$L_{\text{Scalar}} = |D_{\mu} \Phi|^2 + |D_{\mu} \Phi_d|^2 - V(\Phi, \Phi_d)$$ \hspace{1cm} (2)

where Φ and Φ_d are the SM and dark sector Higgs fields, respectively and the corresponding scalar potential is given by

$$V(\Phi, \Phi_d) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4 - \mu_{\Phi_d}^2 |\Phi_d|^2 + \lambda_{h_d} |\Phi_d|^4 + \lambda_{h_{h_d}} |\Phi|^2 ||\Phi_d||^2.$$ \hspace{1cm} (3)

The gauge covariant derivative has the form

$$D_{\mu} = \partial_{\mu} - ig_S t^a G_{\mu}^a - ig T^i W_{\mu}^i - ig' Y B_{\mu}^d - ig'_d Y_d B_{d,\mu}.$$

Here, g_S, g, g', g'_d are the $SU(3)_C$, $SU(2)_L$, $U(1)_Y$ and $U(1)_d$ couplings constants, respectively and t^a’s and T^i’s are the generators of the $SU(3)_C$ and $SU(2)_L$ groups, respectively.
When the $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_d$ symmetry is spontaneously broken to $SU(3)_C \times U(1)_{em}$ by the choice of minimum value configurations of Φ and Φ_d which in unitary gauge can be written as

$$\Phi = \begin{pmatrix} 0 \\ v_{EW} + h' \sqrt{2} \end{pmatrix}, \quad \Phi_d = \frac{1}{\sqrt{2}}(v_d + h_d).$$

(5)

one ends up with two massive scalar modes (and massive gauge bosons of the corresponding broken gauge groups). Here, v_{EW} has value 246 GeV.

To find the mass basis we rotate h' and h_d' as

$$\begin{pmatrix} h \\ h_d \end{pmatrix} = \begin{pmatrix} \cos \theta_S & -\sin \theta_S \\ \sin \theta_S & \cos \theta_S \end{pmatrix} \begin{pmatrix} h' \\ h_d' \end{pmatrix}$$

(6)

The h can be identified as the observed Higgs boson with mass $m_h = 125$ GeV while h_d can be taken as BSM Higgs with mass m_{h_d}. Hence, the free parameters are θ_S, m_{h_d} and v_d as all the other parameters in the potential of Eq. (3) can be expressed in terms of the above-mentioned free parameters.

The full lagrangian for the fermion sector involving 3rd generation quarks and VLQ is given by

$$\mathcal{L}_{\text{Fermion}} = Q_L i D Q_L + \bar{t}' R i D t'_R + b_R i D b_R + T' i D T' + \mathcal{L}_{\text{Yuk}}$$

where, \mathcal{L}_{Yuk} is given by

$$\mathcal{L}_{\text{Yuk}} = -y_t \bar{Q} \Phi b_R - y_t \bar{Q} \Phi t'_R - \lambda_T \Phi_d \bar{T}' L t'_R - m_T \bar{T}' L T'_R + \text{H.c.}.$$

(8)

when Φ and Φ_d get VEVs, mass matrix in t' and T' basis can be written in a form as

$$\mathcal{L}_{\text{mass}} = -\nu L \mathcal{M} \chi_R + \text{H.c.},$$

(9)

where,

$$\chi_t = \begin{pmatrix} t'_L \\ T'_R \end{pmatrix}, \quad \mathcal{M} = \begin{pmatrix} \nu v_{EW} \sqrt{2} & 0 \\ \frac{\nu v_{EW}}{\sqrt{2}} & m_T \end{pmatrix},$$

(10)

Here $\tau = L, R$.

One requires the biunitary transformation of the following kind in order to diagonalize the above mass matrix

$$\begin{pmatrix} t_L \\ T_{p_L} \end{pmatrix} = \begin{pmatrix} \cos \theta_L & -\sin \theta_L \\ \sin \theta_L & \cos \theta_L \end{pmatrix} \begin{pmatrix} t'_L \\ T'_L \end{pmatrix}, \quad \begin{pmatrix} t_R \\ T_{p_R} \end{pmatrix} = \begin{pmatrix} \cos \theta_R & -\sin \theta_R \\ \sin \theta_R & \cos \theta_R \end{pmatrix} \begin{pmatrix} t'_R \\ T'_R \end{pmatrix}$$

(11)

Here t can be identified as the SM top quark having mass $m_t = 173.2$ GeV. The fermion sector contains two free parameters: the mass of top partner, m_{τ_T} and the mixing angle involving the left-handed fields, θ_L. We take θ_L, m_t and m_{τ_T} as independent parameters for the rest of the discussion.

To verify the allowed ranges of $\sin \theta_L$ consistent with perturbative unitarity we trade Eq. (B.26) to write $\sin \theta_L$ as

$$|\sin \theta_L| = \frac{1}{2} \sqrt{\frac{2m_{\tau_T}^2 - 2m_t^2 - \lambda_T^2 v_d^2}{m_{\tau_T}^2 - m_t^2}} \left(1 + \frac{\frac{\lambda_T^2 v_d^2}{2}}{\frac{8\lambda_T^2 v_d^2 m_t^2}{(2m_{\tau_T}^2 - 2m_t^2 - \lambda_T^2 v_d^2)^2}}\right)^{-1}$$

(12)

To have real solution for $\sin \theta_L$ one needs $|\lambda_T| < \sqrt{2}(m_{\tau_T} - m_t)/v_d$. On the other hand the perturbative unitarity bound on λ_T requires $\lambda_T < 4\sqrt{2}$ $\frac{1}{1}$. We can combine these two conditions and write

$\frac{1}{1}$The perturbative unitarity bound has been estimated by studying the $h_d t \rightarrow h_d t$ scattering process in [34]
$$|\lambda_T| < \sqrt{2} \min \left(\frac{m_{T_p} - m_t}{v_d}, 4\sqrt{\pi} \right)$$ \hspace{1cm} (13)$$

In Fig. 1, we illustrate the effect of Eq. (13) on the allowed ranges of $\sin \theta_L$ as a function of the top partner mass.

Finally, the relevant parameters which play a crucial role in the discussion that follows are $\sin \theta_L$, v_d, m_{γ_d}, m_{h_d}, and m_{T_p}. These parameters can be considered as free, albeit with certain restrictions in their allowed ranges coming from various constraints such as perturbative unitarity bound, constraints coming from electroweak precision observables (EWPO)\[51, 52\] and Higgs signal strength measurements.

The mixing angle between the SM Higgs and the dark Higgs is constrained by various observations \[56–60\]. For low mass region ($10 \text{ GeV} \leq m_{h_d} \leq 100 \text{ GeV}$) there is a stringent lower limit ($0.9 - 0.998$) on the allowed values of $|\sin \theta_S|$ for $v_d \sim v_{EW}$ coming from LEP experiment.

For $m_{h_d} > 100 \text{ GeV}$, the constraint coming from LHC heavy Higgs searches and Higgs signal strength measurement are relevant and it depends on the mass of the dark Higgs. For $m_{h_d} \sim 200–1000 \text{ GeV}$, the Higgs signal strength measurement sets a limit on $|\sin \theta_S| < 0.24$ \[60\]. However, heavy Higgs searches at the LHC give more stringent bound on $|\sin \theta_S|$ in the range $200 - 600 \text{ GeV}$ and the present upper limit on the allowed values of $|\sin \theta_S|$ is 0.2 \[59, 60\].

For higher masses, the constraint coming from the correction to W boson mass and the perturbative unitarity requirement is more stringent, for example, $|\sin \theta_S|$ as low as 0.14 can be ruled out for $m_{h_d} \sim 1 \text{ TeV}$ \[60\].
Exotic decays of the SM Higgs via the mixing of the SM Higgs with the dark Higgs also provides strong constraint on the scalar mixing angle which is sometimes more constraining than the bound coming from the Higgs signal strengths measurements. For example, Higgs to invisible searches can be used to set limits on $|\sin \theta_S|$ using the formula quoted in Ref. [34],

$$|\sin \theta_S| \leq 4.6 \times 10^{-4} \left(\frac{v_d}{\text{GeV}} \right) \sqrt{\text{BR}_{\text{lim}}}$$

(14)

where BR$_{\text{lim}}$ is the upper limit on the branching ratio of the SM Higgs into invisible decay modes. The latest CMS [61] and ATLAS [62] searches for the Higgs \rightarrow invisible decay modes provide,

$$\text{BR}_{\text{lim}} = \begin{cases} 0.15 & \text{CMS} \\ 0.107 & \text{ATLAS} \end{cases}$$

(15)

For $v_d = 100$ GeV, this translates to $|\sin \theta_S| \leq 0.018$ (CMS) and 0.015 (ATLAS).

We define the ratio (R_t) of the decay widths in the nonstandard and the standard (or traditional) modes as,

$$R_t = \frac{\Gamma(T_p \rightarrow t + h_d/\gamma_d)}{\Gamma(T_p \rightarrow t/b + W/Z/h)}$$

(16)

In the limit $|\sin \theta_d|, |\sin \theta_S|, \varepsilon^2$, and $m_t/m_{T_p} \ll 1$ this ratio is given by Eq. (17). It illustrates that the enhancement in the decay width in the nonstandard mode compared to that for the standard one in two different region of the parameter space in the $\sin \theta_L - m_{T_p}$ plane significant for the HE-HL LHC analysis. In particular, at the HE-HL LHC both large m_{T_p} and small $|\sin \theta_L|$ will be probed. Hence, it is important to consider the following two scenarios: (i) $|\sin \theta_L| \ll m_t/m_{T_p} \ll 1$ and (ii) $m_t/m_{T_p} \ll |\sin \theta_L| \ll 1$, relevant for LHC.

$$R_t \approx \frac{1}{2} \begin{cases} \left(\frac{m_{T_p}}{m_t} \right)^2 \left(\frac{v_{EW}}{v_d} \right)^2 & \text{for, } |\sin \theta_L| \ll \frac{m_t}{m_{T_p}} \ll 1 \\ \left(\frac{m_t}{m_{T_p} \sin^2 \theta_L} \right)^2 \left(\frac{v_{EW}}{v_d} \right)^2 & \text{for, } \frac{m_t}{m_{T_p}} \ll |\sin \theta_L| \ll 1 \end{cases}$$

(17)

Eq. (17) explains when $|\sin \theta_L| \ll m_t/m_{T_p} \ll 1$, the enhancement in R_t has its origin in the hierarchy between the fermion masses (m_{T_p}/m_t) and the two VEVs (v_{EW}/v_d).

Whereas, in the other limit, i.e., $m_t/m_{T_p} \ll |\sin \theta_L| \ll 1$ the enhancement can be traced back to the hierarchy between the two VEVs, i.e., (v_{EW}/v_d) and that of $m_t/(m_{T_p} \sin^2 \theta_L)$. It shows even when $v_d \sim v_{EW}$ one can have a small enhancement in R_t if, $m_t/(m_{T_p} \sin^2 \theta_L) > 1$, i.e., when $\sin^2 \theta_L < m_t/m_{T_p} \ll |\sin \theta_L| \ll 1$.

Fig. 2 shows that the ratio of the decay widths (R_t) of the top partner in the nonstandard and the traditional modes without making any approximation mentioned in Eq. (17). The R_t is calculated using Eq. (16) and supplying various decay widths provided in Appendix B.

To calculate various decay widths, we use the following values for the relevant SM parameters [63],

$$m_h = 125.5 \text{ GeV, } m_t = 173.2 \text{ GeV, } m_b = 4.18 \text{ GeV}$$

$$m_W = 80.377 \text{ GeV, } m_Z = 91.187 \text{ GeV, } v_{EW} = 246 \text{ GeV}$$

Throughout our analyses we set, $|\sin \theta_S| = 10^{-6}$.

The branching ratio in the sin θ_L - m_{T_p} plane is displayed in Fig. 3 for various choices of v_d, m_{γ_d}, and m_{h_d}. In Table 2 we list the branching ratios of the top partner decaying into a top quark and a dark photon for various benchmark points. We have mostly restricted ourselves to the case of light

2\varepsilon and ε' are related via $\varepsilon = \varepsilon'/\sqrt{1 - \varepsilon'^2}/\cos^2 \theta_W$, where $\cos \theta_W = \cos \theta_W + O(\varepsilon^2)$

3However, this region of parameter space is disfavored by perturbative unitarity constraint.
dark photon in the mass range $1 - 10$ GeV. In this mass range the corresponding bound on the kinetic mixing parameter (ε) is found to be $\varepsilon \lesssim 10^{-3}$ [64–66]. For small kinetic mixing the $U(1)_Y$ and $U(1)_d$ gauge sectors remain practically decoupled and it hardly plays any role in the remaining discussions.

For the present analysis, we assume that the dark photon decays to an invisible mode (for example a pair of dark matter particles) so that it gives rise to E_T signature in a collider experiment. To achieve this, one needs to augment the present model with an additional dark sector particle charged under $U(1)_d$ (a possible dark matter candidate4,5). Throughout this article we, therefore, simply assume that the dark photon is invisible and evade any detection by the detector.

![Figure 2: Ratio of the decay widths in the nonstandard ($t\gamma_d, th_d$) and traditional (bW, tZ, th) modes of the maverick top partner in the $\sin\theta_L - m_{Tp}$ plane for different choices of v_d consistent with perturbative unitarity bound.](image)

4We do not present explicit details of the DM content of the DS here. For more details we refer [28].
5Alternatively, the dark photon can be made stable at the length scale of the detector provided the kinetic mixing parameter is very small ($\lesssim 10^{-7}$).
Figure 3: Variation of the branching ratio of $T_p \rightarrow t\gamma$ in the $\sin\theta_L - m_{T_p}$ plane for several choices of v_d, $m_{\gamma d}$ and $m_{h d}$.

Table 2: Branching ratios of $T_p \rightarrow t\gamma$ for various benchmark points, assuming $\sin\theta_L = 0.1$, $v_d = 200$ GeV, $m_{\gamma d} = 10$ GeV and $m_{h d} = 400$ GeV.

m_{T_p} (GeV)	800	1000	1200	1400	1600	1800	2000	2200	2400	2500	2600	2800
BR	0.593	0.560	0.542	0.531	0.522	0.516	0.511	0.507	0.503	0.502	0.500	0.497

3 Top partner at the LHC

In this section we describe in detail our collider analysis in the context of the LHC. We have considered both the single ($pp \rightarrow T_p j$) and the pair ($pp \rightarrow T_p T_p$) production of top partner(s). We have used MadGraph5_aMC@NLO (version 3.2.0) [67] event generator to simulate both the single and pair production of top partner in the context of 13 and 14 TeV LHC energies. In order to achieve this, we have used FeynRules [68] where we have implemented the model described in Sec. 2 at the Lagrangian level. The Universal FeynRules Output [69] is then interfaced with MadGraph5_aMC@NLO for event generation. We have used parton distributions provided by NNPDF (version 2.3) [70] to simulate the parton-parton hard scattering in a pp collision. Events generated by MadGraph5 are then interfaced with Pythia (version 6.4) [72] for parton shower, hadronization, and further analysis.

The energy and momenta of all the final state objects are smeared with appropriate Gaussian smearing function [73, 74] to take into account the finite detector resolution effects and the resolution function considered is,

For $pp \rightarrow$ QCD multijet simulation we have used Pythia (version 8.3) [71] in order to implement the jet parton matching.
\[
\frac{\sigma(x)}{x} = \frac{N}{x} \oplus \frac{S}{\sqrt{x}} \oplus C
\]

(18)

where, \(x = p_T\) (for electron and muon) or \(E\) (for jet), \(N\) encapsulates the effect of electronic and pile-up noise, \(S\) characterizes stochastic effects arising from the sampling nature of calorimeters and \(C\) describes the \(x\) independent offset term.

We follow the functional form of resolution function as well as the fitted values of \(N\), \(S\), and \(C\) parameters as given in Table 3 from default ATLAS card in DELPHES (version 3.5.0) [75].

Since the top partner dominantly decays to top-quark and a dark photon \(T_p \rightarrow t\gamma_d\) in our model, presence of top-quark is ubiquitous in both the single and pair production channels. We will mostly confine ourselves to the fully hadronic decay of the top-quark \((t \rightarrow bW \rightarrow bq\bar{q}')\). In the following we consider the top partner in the mass range \(1\) TeV \((800\) GeV) \(\leq m_{T_p} \leq 2.6 (1.6)\) TeV for the single (pair) production of the top partner at the LHC. The top-quarks thus produced in the decay of the top partners are highly boosted for most of the ranges of top partner mass. Hence, the top decay products are highly collimated. Since the identification of top-quark and reconstruction of its four momenta will play an important role in our analysis, we make use of the Johns Hopkins (J-H) Top Tagger [76] to identify and reconstruct boosted top-quark initiated jet(s) implemented within the framework of FastJet (version 3.4.0) [77] jet finding and analysis package.

In the boosted top tagging analysis, we consider only those events that have total transverse momentum \((E_{\text{tot}})\) greater than 400 GeV. We use Cambridge-Achen (C-A) clustering algorithm [78] to define a fat jet with jet radius \((R)\) having values in accordance with the \(E_{\text{tot}}\) of these events and these are tabulated in Table. 4. The jets thus obtained are then sorted in decreasing order of their transverse momentum. The J-H top tagger iteratively declusters a C-A clustered jet to find the substructure inside a fat jet of radius \(R\).

The J-H top tagging algorithm requires the specification of the following additional parameters: the fraction of the jet \(p_T\) carried by a subjet and the Manhattan distance (defined as \(|\Delta \eta| + |\Delta \phi|\)) between two subjets to satisfy minimum values, \(\delta p\) and \(\delta r\), respectively to be considered as hard and resolved. We tabulate the values of \(R\), \(\delta p\) and \(\delta r\) for different total transverse energy of an event, \(E_{\text{tot}}\) in Table. 4.

We follow the functional form of resolution function as well as the fitted values of \(N\), \(S\), and \(C\) parameters as given in Table 3 from default ATLAS card in DELPHES (version 3.5.0) [75].

Since the top partner dominantly decays to top-quark and a dark photon \(T_p \rightarrow t\gamma_d\) in our model, presence of top-quark is ubiquitous in both the single and pair production channels. We will mostly confine ourselves to the fully hadronic decay of the top-quark \((t \rightarrow bW \rightarrow bq\bar{q}')\). In the following we consider the top partner in the mass range \(1\) TeV \((800\) GeV) \(\leq m_{T_p} \leq 2.6 (1.6)\) TeV for the single (pair) production of the top partner at the LHC. The top-quarks thus produced in the decay of the top partners are highly boosted for most of the ranges of top partner mass. Hence, the top decay products are highly collimated. Since the identification of top-quark and reconstruction of its four momenta will play an important role in our analysis, we make use of the Johns Hopkins (J-H) Top Tagger [76] to identify and reconstruct boosted top-quark initiated jet(s) implemented within the framework of FastJet (version 3.4.0) [77] jet finding and analysis package.

In the boosted top tagging analysis, we consider only those events that have total transverse momentum \((E_{\text{tot}})\) greater than 400 GeV. We use Cambridge-Achen (C-A) clustering algorithm [78] to define a fat jet with jet radius \((R)\) having values in accordance with the \(E_{\text{tot}}\) of these events and these are tabulated in Table. 4. The jets thus obtained are then sorted in decreasing order of their transverse momentum. The J-H top tagger iteratively declusters a C-A clustered jet to find the substructure inside a fat jet of radius \(R\).

The J-H top tagging algorithm requires the specification of the following additional parameters: the fraction of the jet \(p_T\) carried by a subjet and the Manhattan distance (defined as \(|\Delta \eta| + |\Delta \phi|\)) between two subjets to satisfy minimum values, \(\delta p\) and \(\delta r\), respectively to be considered as hard and resolved. We tabulate the values of \(R\), \(\delta p\) and \(\delta r\) for different total transverse energy of an event, \(E_{\text{tot}}\) in Table. 4.

\(E_{\text{tot}}\) (GeV)	400	600	800	1000	1600	2600
\(R\)	1.4	1.2	1.0	0.8	0.6	0.4
\(\delta p\)	0.10	0.10	0.05	0.05	0.05	0.05
\(\delta r\)	0.19	0.19	0.19	0.19	0.19	0.19

Table 4: Choices of \(R\), \(\delta p\), \(\delta r\) for various total transverse momentum range.

The efficiency of tagging a true top quark initiated jet in the \(p_T\) range 400-1000 GeV is found to be 25%-50% and corresponding light quark/gluon initiated jet being tagged as a top is found to be in the range 0.5-%-1.5 % in the same range.
3.1 Pair production of top partner

The pair production of top partner at the LHC is dominated by strong production and it depends on the strong coupling constant (α_S), the mass of the top partner (m_{Tp}) and it’s spin. This channel is less model dependent, i.e., the production cross section is independent of the details of the model parameters other than the top partner mass. The relevant Feynman diagrams for this process are depicted in Fig. 4. The production cross section as a function of m_{Tp} is presented in Fig. 5 for 13 and 14 TeV LHC centre of mass energies. The NNLO corrected cross sections at $\sqrt{s} = 13$ TeV are quoted from [79]. We also use these NNLO corrected cross sections at $\sqrt{s} = 13$ TeV to extract the m_{Tp} dependent k-factors by comparing them to the LO cross sections obtained from MadGraph5_aMC@NLO at the same center of mass energy. These k-factors are then used to get the NNLO corrected cross section at $\sqrt{s} = 14$ TeV from the LO cross section provided by MadGraph5_aMC@NLO at this center of mass energy.

![Feynman diagrams](image)

Figure 4: Feynman diagrams for the pair production of top partner at the LHC.

The top partner thus produced further decays substantially to a top quark and a dark photon in this model. So the final state consists of a $t\bar{t}$ pair and a pair of invisible dark photons ($pp \rightarrow Tp\bar{T}p \rightarrow t\bar{t} + 2\gamma_d$). The schematic diagram for the same is shown in Fig. 6.

The presence of dark photons in the final state gives rise to missing transverse energy signature as it goes undetected at the detector for the reasons already mentioned in previous sections.
Since the top quark produced in the decay of the top partner are highly boosted we have considered fully hadronic decays of the top quark to implement the boosted top tagging algorithm efficiently. The final state thus consists of jets + missing transverse energy with additional top structure present in it. We require at least two central jets with $p_T > 20$ GeV, $|\eta| < 2.5$ and no isolated leptons. The SM backgrounds that contribute to such a final state are $t\bar{t}$, tV (where $V = Z/W$), tW, and QCD multijet processes. Since our final state requirement is at least one boosted top quark jet, SM tj process in principle constitutes a potential background. However, the contribution from this background can be eliminated after further event selection criteria that we discuss later. We have listed the SM backgrounds relevant for the pair production analysis in Table. 5 along with their cross sections.

Figure 5: $pp \rightarrow T_p \bar{T}_p$ cross section as a function of the top partner mass at $\sqrt{s} = 13$ and 14 TeV. $\alpha_S(m_Z) = 0.1179$ [63] is used to estimate above cross section.

Figure 6: Schematic diagram for the signal process $pp \rightarrow T_p \bar{T}_p$ and further decay of $T_p \rightarrow t\gamma_d$.
Table 5: Cross sections of the background processes considered for the top partner pair production analysis at √s = 13 and 14 TeV.

The cross sections quoted in Table 5 are beyond leading order except for the QCD multijet background which is at leading order. For the simulation of QCD multijet background we have generated pp → 2j, 3j, 4j samples using MADGRAPH5_aMC@NLO and interfaced with PYTHIA 8.3 to implement jet parton matching using the MLM matching scheme.

Event selection criteria

We require the final state to have at least one boosted top quark jet. If the event contains exactly one tagged top quark jet, we take the untagged one of the two hardest jets as a top candidate. We have compared the significances for the two different categories: i.e., requiring exactly two boosted top quarks vs at least one boosted top quark requirement. It is the later one which gives better significance because of higher signal acceptance ratio. In addition, the kinematic variables we have used later in our analysis (for example, transverse mass (M_{T2}) variable) capture the topology of an event where the top partners are pair produced and decay to semi-invisible mode.

We propose several kinematic observables including M_{T2} which can be useful to efficiently discriminate the signal from the SM backgrounds. Below, we define these variables and present their corresponding distributions.

- Transverse momentum (p_T): The transverse momentum of a particle is defined as,

\[p_T = \sqrt{p_x^2 + p_y^2} \]

and corresponding transverse momentum distribution of the tagged top quark jet for both the signal benchmark points and SM backgrounds are shown in Fig. 7.

Figure 7: Transverse momentum (p_T) distributions of leading (or only) tagged top quark jet for various signal benchmark points and background processes at 13 and 14 TeV center of mass energies.

7In this analysis the tt and tW is considered at aN^3LO and t\bar{t}Z, t\bar{t}W are considered at NLO+NNLL in QCD.
• **Missing transverse energy** (E_T): The missing transverse energy is associated with the particles which go undetected at the detector. In a hadronic collider such as the LHC one can use the momentum conservation in the transverse plane to find the transverse components of the total missing momentum associated with all the invisible particles

$$\vec{p}_T = - \sum_{i \in \text{visible}} \vec{p}^i_T$$ \hspace{1cm} (20)

The missing transverse energy is then simply, $E_T = |\vec{p}_T|$. Corresponding distributions for both the signal benchmark points and SM backgrounds are shown in Fig. 8.

![Figure 8](image.png)

Figure 8: Distribution of missing transverse energy (E_T) variable for signal (top partner pair production) and background processes at 13 and 14 TeV center of mass energies.

• **Stransverse mass** (M_{T2}): When a heavy particle is pair produced and subsequently decays to a mode which contains both visible as well as a invisible particles in such a situation the final state contains at least two invisible particles coming from both end of the two decay chains (see Fig. 6). The transverse mass variable (M_T) defined as

$$M_T = \sqrt{(E_{T,\text{vis}} + E_T)^2 - (\vec{p}_{T,\text{vis}} + \vec{p}_T)^2}$$ \hspace{1cm} (21)

is not useful since it will be difficult to reconstruct the missing momentum carried by the individual invisible particle. In this case, one can then make use of the stransverse mass variable [84] defined as

$$M_{T2}^2 = \min_{\vec{p}_{1,\text{vis}}, \vec{p}_{2,\text{vis}}} \left\{ \max \left[M_T^2(\vec{p}_{1,\text{vis}}, \vec{p}_T) + M_T^2(\vec{p}_{2,\text{vis}}, \vec{p}_T) \right] \right\} \leq m_{Tp}^2$$ \hspace{1cm} (22)

where $\vec{p}_{1,\text{vis}}$ and $\vec{p}_{2,\text{vis}}$ represent the momenta of the reconstructed top-jets originated in the two decay chains as shown in Fig. 6. The corresponding M_{T2} distributions for signal benchmark points and backgrounds are shown in Fig. 9.
Figure 9: Distribution of transverse mass (M_{T2}) variable for signal (top partner pair production) and background processes at 13 and 14 TeV center of mass energies.

All these variables play a crucial role in separating the signal from the SM backgrounds quite efficiently as evident from the respective distributions. The optimized event selection criteria are summarized in Table 6 after comparing the kinematic distributions for various signal benchmark points and the corresponding SM backgrounds.

Minimum values	13 TeV	14 TeV
M_{T20}	467 $(m_{Tp} < 1000)$	472
	523 $(m_{Tp} \geq 1000)$	300
p_{T0}	300	300
E_{T0}	463 $(m_{Tp} < 1000)$	0.674 × $m_{Tp} \left(m_{Tp} < 1200 \right)$
	663 $(m_{Tp} \geq 1000)$	708 $(m_{Tp} \geq 1200)$

Table 6: Minimum values of the observables M_{T2}, p_{T} and E_{T} in the context of $pp \rightarrow TpT_{p}$ analysis at $\sqrt{s} = 13$ and 14 TeV.

3.2 Single production of top partner

The single production of top partner in association with a light-quark jet occurs via t-channel W boson exchange and requires the presence of b-quark Parton Distribution Function (PDF) in the five flavor PDF scheme [85]. The relevant Feynman diagrams for this process are shown in Fig. 10. Since the top partner is $SU(2)_{L}$ singlet, the single production cross section depends on the mixing of the top-quark with the top partner, parametrized by the mixing angle $\sin \theta_{L}$. The $T_{p} - b - W$ coupling being proportional to the mixing angle $\sin \theta_{L}$, the single top partner production cross section is proportional to $\sin^{2} \theta_{L}$. Fig. 11 depicts the $\sigma(pp \rightarrow T_{p}j)$ as a function of the top partner mass (m_{Tp}) at 13 and 14 TeV LHC center of mass energies assuming $\sin \theta_{L} = 0.1$. In this case the cross sections are quoted at leading order (LO) using MadGraph5_aMC@NLO.

8The choice of benchmark point dependent cuts can be justified by the fact that the endpoint of transverse mass distribution contains the information about the mass of the top partner.
The top partner produced in \(pp \) collision further decays into a top-quark and a dark photon \((T_p \rightarrow t\gamma_d)\). Thus giving rise to \(t + E_T + jet \) final state. Fig. 12 represents a schematic diagram for \(pp \rightarrow T_p j \rightarrow t\gamma_d j \) process. In this analysis the fully hadronic decay of the top-quark has been considered for the same reason as that in the previous section. We also require the final state to have at least two central jets with \(p_T > 20 \text{ GeV} \), \(|\eta| < 2.5\) and no isolated leptons.

The relevant SM backgrounds in this case are \(t\bar{t}, t\bar{t}V \) (where \(V = Z/W \)), \(tW \), \(tj \) and QCD multijet processes. The dominant contribution comes from the \(t\bar{t} \) process and to some extent QCD multijet process given their overwhelming production rate at the LHC. The process \(pp \rightarrow tZj \) with \(Z \rightarrow \nu\bar{\nu} \) constitutes a irreducible background, however, we have estimated its contribution to be negligible and hence, not considered in the following discussion. In Table. 7 we list these background processes along with their cross sections.
Figure 12: Schematic diagram for the process $pp \rightarrow Tp \rightarrow (Tp \rightarrow t\gamma_d)j$.

Process	Cross section (fb)	
	13 TeV	14 TeV
$pp \rightarrow tt$	8.39×10^5	9.9×10^6
$pp \rightarrow ttZ$	8.63×10^2	1.045×10^3
$pp \rightarrow ttW$	5.66×10^2	6.53×10^2
$pp \rightarrow tW$	7.95×10^4	9.4×10^4
$pp \rightarrow tj$	1.579×10^5	1.797×10^5
$pp \rightarrow$ QCD multijet	1.96×10^{11}	2.16×10^{11}

Table 7: Cross sections of the background processes considered for the analysis of single top partner production at $\sqrt{s} = 13$ and 14 TeV.

The cross sections quoted in Table. 7 are beyond leading order\(^9\) except for the QCD multijet background which is at leading order.

Event selection criteria

In the context of collider simulation of the single top partner production in pp collision we require the final state to have *exactly one* boosted top quark jet. Furthermore, we again propose certain kinematical variables that can discriminate between the signal and the SM backgrounds. Some of these variables are already defined in the context of pair production of top partner in pp collision (see Sec. 3.1) such as transverse momentum (p_T) of the reconstructed top and missing transverse energy (E_T) will be useful in this analysis as well.

However, instead of the transverse mass variable used in the previous analysis we will use the transverse mass variable (M_T) itself as the final state in this case contain only one invisible particle barring the neutrinos from the decay of the top-quarks.

We also use an additional forward jet rapidity cut ($|\eta| > 2.1$) where the forward jet is defined as the maximum rapidity jet which is not tagged as a top quark initiated jet. Fig. 13, 14, and 15 display the distributions of p_T of the top quark, E_T, and M_T of the top quark and the invisible system.

\(^9\)In this analysis the tt, ttW and tj are considered at aN\(^3\)LO in QCD.
• Transverse momentum (p_T):

Figure 13: Transverse momentum (p_T) distribution of tagged top quark for signal and background processes at 13 and 14 TeV center of mass energies.

• Missing transverse energy (E_T):

Figure 14: Distribution of missing transverse energy (E_T) variable for signal (single top partner production) and background processes at 13 and 14 TeV center of mass energies.

• Transverse mass (M_T):

The transverse mass M_T of the reconstructed top quark jet and the missing momentum system following the definition in Eq. (21) is given by,

$$ M_T = \sqrt{(E_{T,t} + E_T)^2 - (\vec{p}_{T,t} + \vec{p}_T)^2} \leq m_{T,p} \quad (23) $$

where $E_{T,t}$ and $\vec{p}_{T,t}$ represent the reconstructed energy and momentum of the top-jet, respectively.
Figure 15: Distribution of transverse mass (M_T) variable for signal (single top partner production) and background processes for 13 and 14 TeV center of mass energies.

Depending on above distributions, we have imposed the following set of cuts presented in Table 8, in order to optimize the signal significance.

Minimum values	13 TeV	14 TeV		
M_{T0}	$0.5 \times m_{Tp}$	$0.5 \times m_{Tp}$		
p_{T0}	300	300		
E_{T0}	$0.40 \times m_{Tp} \left(m_{Tp} < 1600 \right)$	$0.42 \times m_{Tp} \left(m_{Tp} < 1800 \right)$		
	708	774	$\left(m_{Tp} \geq 1600 \right)$	$\left(m_{Tp} \geq 1800 \right)$

Table 8: Minimum values of the observables M_T, p_T, and E_T in the context of $pp \rightarrow T_p j$ analysis at $\sqrt{s} = 13$ and 14 TeV.

4 Results and discussions

In this section, we present the results of our analysis for both the single and pair production of top partner in pp collisions at two different LHC center of mass energies (13 and 14 TeV) after implementing the event selection criteria detailed in the previous section for both of these production modes.

4.1 Pair production case

For the top partner pair production process, we consider 5×10^4 simulated $pp \rightarrow T_p \bar{T}_p$ signal events for various choices of the top partner’s mass in the range $\{0.8, 1, 1.2, 1.4, 1.6\}$ TeV against the 5×10^6 simulated $t\bar{t}$, and 10^6 simulated tW, tZ, $t\bar{t}W$, and 1.21×10^6 QCD multijet background events. Cross sections for each of the background processes are quoted in Table 5 and the values for M_{T20}, p_{T0}, E_{T0} are given in Table 6.

We illustrate the effects of the cut flow on cross sections for both the signal benchmark points and the estimated total SM background in Table 9 and 10. The estimated signal significance (defined as $S/\sqrt{S+B}$, where S and B are the number of signal and background events after applying the hard cuts) at 13 (14) TeV LHC collision energy assuming an integrated luminosity of 139 (300) fb$^{-1}$ is also mentioned in Table 9 (10).
Table 9: Columns [2-7] represent the effects of cut flow on cross sections for both the signal (black) and the total SM background (red) at $\sqrt{s} = 13$ TeV. $\sin \theta_L = 0.1$ is assumed to estimate the branching ratios for the various benchmark choices of m_{T_p}. The cross sections presented in column [2-7] assume BR($T_p \rightarrow t\gamma$) = 100%. The estimated signal significance is quoted in the last column assuming actual BR (100% BR) with an integrated luminosity of 139 fb$^{-1}$. [$v_d = 200$ GeV, $m_{\gamma d} = 10$ GeV and $m_{h_d} = 400$ GeV are assumed to obtain the above results.]

m_{T_p} (TeV)	Production cross section (fb)	Basic cuts (fb)	Boosted top cuts requirement	M_{T_2} cut (fb)	p_T cut (fb)	E_T cut $< E_{T_0}$ (fb)	Significance $\frac{S}{\sqrt{S+B}}$
0.8	190.0	124.24	31.71	11.35	11.03	9.86	16.6 (32.9)
1.0	1.96×10^{11}	7.42×10^{10}	1.93×10^7	6.14	5.87	2.61	8.4 (16.5)
1.2	1.96×10^{11}	7.42×10^{10}	1.93×10^7	2.48	2.47	0.22	4.7 (10.4)
1.4	1.96×10^{11}	7.42×10^{10}	1.93×10^7	2.48	2.47	0.22	2.3 (6.0)
1.6	1.96×10^{10}	7.42×10^{10}	1.93×10^7	2.48	2.47	0.22	1.1 (3.3)

Table 10: Columns [2-7] represent the effects of cut flow on cross sections for both the signal (black) and the total SM background (red) at $\sqrt{s} = 14$ TeV. $\sin \theta_L = 0.1$ is assumed to estimate the branching ratios for various benchmark choices of m_{T_p}. The cross sections presented in column [2-7] assume BR($T_p \rightarrow t\gamma$) = 100%. The estimated signal significance is quoted in the last column assuming actual BR (100% BR) with an integrated luminosity of 300 fb$^{-1}$. [$v_d = 200$ GeV, $m_{\gamma d} = 10$ GeV and $m_{h_d} = 400$ GeV are assumed to obtain the above results.]

m_{T_p} (TeV)	Production cross section (fb)	Basic cuts (fb)	Boosted top cuts requirement	M_{T_2} cut (fb)	p_T cut (fb)	E_T cut $< E_{T_0}$ (fb)	Significance $\frac{S}{\sqrt{S+B}}$
0.8	219.61	162.69	41.52	11.71	14.31	10.06	26.2 (50.3)
1.0	2.16×10^{11}	8.15×10^{10}	2.14×10^7	8.55	8.04	1.94	13.0 (27.0)
1.2	2.16×10^{11}	8.15×10^{10}	2.14×10^7	8.55	8.04	0.57	7.5 (17.1)
1.4	2.16×10^{11}	8.15×10^{10}	2.14×10^7	8.55	8.04	0.36	3.8 (10.2)
1.6	2.16×10^{11}	8.15×10^{10}	2.14×10^7	8.55	8.04	0.36	1.9 (5.7)

One can see from Table. 10 that at 14 TeV LHC center of mass energy with 300 fb$^{-1}$ integrated luminosity it is possible to exclude $m_{T_p} \leq 1.6$ TeV at 2σ significance level. The expected 2σ exclusion limits on the $\sigma(pp \rightarrow T_p T_p) \times BR^2(T_p \rightarrow t\gamma)$ for both the $\sqrt{s} = 13$ and 14 TeV are depicted in Fig. 16. We also depict the constraint coming from the CMS stop searches ($pp \rightarrow \tilde{t}\tilde{t}', \tilde{t} \rightarrow t\chi_1^0$) [53] in the $t\bar{t}$+missing transverse energy channel in Fig. 16(a). It is evident that the CMS analysis in this channel gives better limit compared to our analysis in the low m_{T_p} region and converges near $m_{T_p} = 1.4$ TeV.
Figure 16: 2σ exclusion limit on the $\sigma(pp \to TpTp) \times BR^2(Tp \to t\bar{t}d)$ as a function of m_{Tp} at (a) 13 TeV (139 fb$^{-1}$) and (b) 14 TeV (300 fb$^{-1}$). [sin$\theta_L = 0.1$, $v_d = 200$ GeV, $m_{\gamma d} = 10$ GeV and $m_{h_d} = 400$ GeV are assumed to obtain the above results.]

4.2 Single top partner production case

To analyze the $pp \to Tp,j$ process, we have simulated 5×10^4 signal events for top partner mass in the range 1-2.6 TeV against 5×10^6 simulated $t\bar{t}$, 10^6 simulated tW, $t\bar{t}Z$, $t\bar{t}W$, tj and 1.21×10^6 QCD multijet background events. The signal cross sections for various choices of the top partner masses and the effects of various kinematic cuts (listed in Tab 8) for $\sqrt{s} = 13$ TeV are depicted in Table. 11. It also contains the estimated signal significance at 13 TeV LHC collision energy assuming an integrated luminosity of 139 fb$^{-1}$. The results of the corresponding 14 TeV analysis are depicted in Table. 12 which contains the signal cross sections, effects of the cut flow on the signal as well as SM background cross sections and the estimated signal significance assuming an integrated luminosity of 300 fb$^{-1}$.

| m_{Tp} (TeV) | Production cross section (fb) | Basic cuts | Boosted top requirement | $|\eta| > 2.1$ | M_T cut (fb) | p_T cut (fb) | E_T cut (fb) | Significance $(\frac{S}{\sqrt{S+B}})$ |
|----------------|-------------------------------|-------------|-------------------------|--------------|---------------|---------------|---------------|-------------------|
| 1 | 1.96×10^{11} | 7.26 | 6.45 | 6.30 | 5.82 | 3.61 | 5.2 (9.0) |
| 1.2 | 1.96×10^{11} | 9.37 | 3.91 | 254.31 | 240.55 | 7.43 | 5.1 (8.8) |
| 1.4 | 1.96×10^{11} | 5.65 | 3.91 | 113.26 | 113.26 | 2.28 | 5.3 (9.0) |
| 1.6 | 1.96×10^{11} | 1.85 | 3.91 | 54.5 | 54.5 | 0.19 | 5.6 (8.4) |
| 1.8 | 1.96×10^{11} | 1.16 | 3.91 | 9.07 | 9.07 | 0.62 | 5.3 (8.1) |
| 2 | 1.96×10^{11} | 2.14 | 3.91 | 27.2 | 27.2 | 0.19 | 4.1 (6.5) |
| 2.2 | 1.96×10^{11} | 0.71 | 3.91 | 14.6 | 14.6 | 0.19 | 3.0 (4.9) |
| 2.4 | 1.96×10^{11} | 0.25 | 3.91 | 9.23 | 9.23 | 0.19 | 2.0 (3.4) |

Table 11: Columns [2-8] depict the effects of cut flow on cross sections for both the signal (black) and total background (red) at $\sqrt{s} = 13$ TeV. sin$\theta_L = 0.1$ is assumed to estimate the signal cross sections and branching ratios at various benchmark choices of m_{Tp}. The cross sections presented in column [2-8] assume BR($T_p \to t\bar{t}d$) = 100%. The estimated signal significance is quoted in the last column assuming actual BR (100% BR) with an integrated luminosity of 139 fb$^{-1}$. [vd = 200 GeV, $m_{\gamma d} = 10$ GeV and $m_{h_d} = 400$ GeV are assumed to obtain the above results.]

For $m_{Tp} \geq 1.6$ (1.8) TeV, we have simulated $10^7 t\bar{t}$ background events at center of mass energy 13 (14) TeV.
Table 12: Columns [2-8] depict the effects of cut flow on cross sections for both the signal (black) and total background (red) at $\sqrt{s} = 14$ TeV. sin$\theta_L = 0.1$ is assumed to estimate the signal cross sections and branching ratios at various benchmark choices of m_{T_s}. The cross sections presented in column [2-8] assume BR($T_s \to t\gamma_d$) = 100%. The estimated signal significance is quoted in the last column assuming actual BR (100% BR) with an integrated luminosity of 300 fb$^{-1}$. [v$_d$ = 200 GeV, m$_{\gamma_d}$ = 10 GeV and m$_{h_d}$ = 400 GeV are assumed to obtain the above results.]

In Table 11 (12), the final background cross sections for $m_{T_p} > 1.6$ (1.8) TeV at $\sqrt{s} = 13$ TeV (14 TeV) are all same even though different cross sections are expected as the cuts depend on benchmark point choices. This is visible after the M_T cut level for $m_{T_p} > 1.6$ (1.8) TeV at $\sqrt{s} = 13$ TeV (14 TeV) and also after the p_T cut level one has the effects of mass dependence in the cross section even though the p_T cut is same for these benchmark point. However, after the E_T cut we have only two simulated t\bar{t} background event left out of 107 for these benchmark points due to high E_T cut and a small but nonzero t\bar{t}V background contribution. This is the reason why the final cross section are same for all these benchmark points.

The 2σ exclusion limits on $\sigma(pp \to T_{pJ}) \times BR(T_p \to t\gamma_d)$ in the sin$\theta_L - m_{T_p}$ plane for 13 TeV (139 fb$^{-1}$) and 14 TeV (300 fb$^{-1}$ and 3000 fb$^{-1}$) LHC centre of mass energies have been presented in Figs. 17(a), 17(b) and 17(c), respectively, assuming v_d = 200 GeV, m_{γ_d} = 10 GeV and m_{h_d} = 400 GeV.

In these figures, we also depict the constraints coming from various other observations in the sin$\theta_L - m_{T_p}$ plane. The most stringent of these constraints is the one coming from the latest LHC data which rules out sin$\theta_L > 0.11$ for $m_{T_p} \leq 1.95$ TeV [54]. However, for $m_{T_p} \geq 1.95$ TeV the EWP data sets more stringent limit on sinθ_L, which rules out sin$\theta_L > 0.11$ in this mass range.

Fig. 17(a) shows that the region of parameter space that can be ruled out using ATLAS data [54], namely, sin$\theta_L \gtrsim 0.1$ for $m_{T_p} \gtrsim 2$ TeV is already excluded by the EWP data for the singlet top partner case irrespective of its decay branching ratio. Our analysis at $\sqrt{s} = 13$ TeV with integrated luminosity of 139 fb$^{-1}$ in the single top partner mode gives comparatively better limit in the sin$\theta_L - m_{T_p}$ plane.

More importantly, in the high-luminosity phase of the LHC run which will be able to probe even a smaller production cross section corresponding to sin$\theta_L \sim 0.03 - 0.05$ in the mass range 1.0 TeV $\lesssim m_{T_p} \lesssim 2.6$ TeV, the analysis we presented here for the single top partner channel will be of much relevance. This is because it is exactly the range of parameter space where the decay width of the top partner in the traditional modes are highly suppressed compared to the nonstandard modes (see Fig. 2).
Figure 17: 2σ exclusion limit on $\sigma(pp \to T_pJ) \times \text{BR}(T_p \to t\gamma_d)$ in the $\sin\theta_L - m_{T_p}$ plane at (a) 13 TeV (139 fb$^{-1}$), (b) 14 TeV (300 fb$^{-1}$) and (c) 14 TeV (3000 fb$^{-1}$). $v_d = 200$ GeV, $m_{\gamma_d} = 10$ GeV and $m_{h_d} = 400$ GeV are assumed to obtain the above results.

In fact, the branching ratio of $T_p \to t\gamma_d$ could be as large as 60%-70% (see Fig. 3) depending on the masses of the dark photon and dark Higgs and the choice of v_d.

The study of the single production of the top partner at the LHC in the single top $+ E_T +$ jet final state and the event selection criteria listed in Sec. 3 shows if the top partner dominantly decays to a top quark and an invisible dark photon, it will be possible to set potentially stringent limit in the $\sin\theta_L - m_{T_p}$ plane. We obtained a 2σ exclusion limit on $\sin\theta_L$ as low as ~ 0.025 up to $m_{T_p} \sim 2.0$ TeV at $\sqrt{s} = 14$ TeV with 3 ab$^{-1}$ integrated luminosity. For m_{T_p} up to 2.6 TeV $\sin\theta_L \geq 0.05$ can be excluded at 2σ significance with the same specification.

We also present a 5σ (3σ) discovery (exclusion) limit on m_{T_p} using the single production of top partner analysis as a function of the integrated luminosity at $\sqrt{s} = 14$ TeV, assuming $\sin\theta_L = 0.1, 0.05$. Fig. 18 shows that at $\sqrt{s} = 14$ TeV assuming 3 ab$^{-1}$ integrated luminosity one can exclude $m_{T_p} \leq 2.4$ TeV for $\sin\theta_L = 0.05$ at 3σ significance level.

For low, $v_d \sim 1$ GeV the allowed ranges of $\sin\theta_L$ consistent with the perturbative unitarity bound are so small ($|\sin\theta_L| \lesssim 0.002$, see Fig. 1a) that it is not sensitive to LHC analyses.
Figure 18: The LHC reach for m_{T_p} at 3σ and 5σ significance level as a function of the integrated luminosity at $\sqrt{s} = 14$ TeV for two different choices of (a). $\sin \theta_L = 0.1$ and (b). $\sin \theta_L = 0.05$.

5 Conclusions

We have discussed the phenomenology of a VLQ which is charged under both the SM gauge interaction and also carries an additional dark $U(1)_d$ charge. This gives rise to some new consequences in terms of its decay. We have shown that in a large region of the parameter space, the top partner predominantly decays to a top and a dark photon/dark Higgs ($T_p \rightarrow t + \gamma_d/h_d$) with its traditional decay modes suppressed. This not only helps one to evade the strong bounds coming from LHC searches for a top partner in the traditional channels such as $T_p \rightarrow bW, tZ$, or th it opens up a new possibility to search for them at the LHC. We have focused on the $T_p \rightarrow t\gamma_d$ decay mode and analyzed the pair and single production of top partner at the LHC in the $t\bar{t} + \not{E}_T$ and $t + \not{E}_T$ final states, respectively, assuming that the dark photon decays to an invisible system or is stable at the length scale of the detector.

A striking feature of our signal is that the top quark produced in the decay of the top partner is highly boosted and one can use the boosted top tagging technique to reconstruct the momentum of the top quark initiated jet in the hadronic channel. We have proposed several kinematic variables such as transverse momentum of the reconstructed top quark, missing transverse momentum and transverse mass or transverse mass to suppress the dominant SM backgrounds in these channels. We have shown that top partner mass up to 1.6 TeV can be exclude with more than 2σ significance using the top-pair production channel. We have also incorporated the limit coming from the LHC analysis for stop pair searches ($pp \rightarrow \tilde{t}\bar{t}^* \rightarrow (t\chi_1^0)(\bar{t}\chi_0^0)$) in the same final state.

The single production of the top partner is sensitive to the mass of the top partner, m_{T_p} and the mixing angle, $\sin \theta_L$. The constraints coming from the EWPO and perturbative unitarity mostly prefer a very small mixing angle ($|\sin \theta_L| \lesssim 0.1$). Such a small mixing angle will imply small cross section in the single top partner production case. The future run of LHC at 14 TeV center of mass energy with 3 ab$^{-1}$ integrated luminosity will be sensitive to such small mixing angle, i.e., $\sin \theta_L \sim 0.05 - 0.1$. For $m_{T_p} \sim 2.5$ TeV, this is exactly the range consistent with the hierarchy $|\sin \theta_L| \ll m_t/m_{T_p} \ll 1$. This is also the case where one has the branching ratio enhancement in the γ_d and θ_d channels. Using simple cut based analysis we have set an exclusion limit in the $\sin \theta_L - m_{T_p}$ plane. We have shown that $\sin \theta_L \sim 0.025$ (0.05) can be ruled out for $m_{T_p} \leq 2.0$ (2.6) TeV at a 95% confidence level using the future LHC data corresponding to 3 ab$^{-1}$ integrated luminosity and $\sqrt{s} = 14$ TeV. We have also considered bounds coming from the latest LHC data in the single top partner channel with $T \rightarrow tZ \rightarrow t(Z \rightarrow \nu\bar{\nu})$. We have also presented LHC reach for top partner mass as a function of integrated luminosity at 14 TeV center of mass energy. Our collider analysis will also be applicable whenever the top partner decays to a top and an invisible system other than dark photon assuming m_{T_p}, $\sin \theta_L$ and $\text{BR}(T_p \rightarrow t + \text{invisible})$ as independent parameters.
Acknowledgement

SB is thankful to Emidio Gabrielli and Subhadeep Mondal for useful discussions. SV is thankful for support provided by Council of Scientific & Industrial Research (CSIR, India) under CSIR-UGC NET Fellowship (File No.: 09/934(0017)/2020-EMR-I). AC would like to thank Indian Institute of Technology, Kanpur for supporting this work by means of Institute Post-Doctoral Fellowship (Ref.No. DF/PDF197/2020-IITK/970).

A EWPO

For a singlet top partner model, we follow [52] to get the general expression for corrections to oblique parameters and $Zb\bar{b}$ couplings,

$$\Delta T = \frac{N_c m_l^2}{16\pi m_W^2} \sin^2 \theta_L \left[-(1 + \cos^2 \theta_L) + 2 \cos^2 \theta_L \frac{r_T}{r_T - 1} \log(r_T) + r_T \sin^2 \theta_L \right]$$ (A.1)

$$\Delta S = \frac{N_c}{18\pi} \sin^2 \theta_L \left[\log(r_T) + \cos^2 \theta_L \left(\frac{5r_T^2 + 1}{(1 - r_T)^2} - \frac{3(r_T + 1)(r_T^2 - 4r_T + 1)}{(1 - r_T)^3} \log(r_T) \right) \right]$$ (A.2)

$$\delta X_{bb}^L = \frac{g^2}{32\pi^2} \sin^2 \theta_L \left[f_1(x, x') + \cos^2 \theta_L f_2(x, x') \right]$$ (A.3)

where, $r_T = m_{TP}/m_t$, $x = m_t^2/m_W^2$, $x' = m_{TP}^2/m_W^2$ and,

$$f_1(x, x') = x' - x + 3 \log \left(\frac{x'}{x} \right)$$ (A.4)

$$f_2(x, x') = -x' - x + \frac{2x'x}{x' - x} \log \left(\frac{x'}{x} \right)$$ (A.5)

B Partial decay widths

In this section we list the formulae for the decay widths of the top partner in various modes.12

- $T_p \rightarrow bW$:

$$\mathcal{L}_{T_p-b-W} = \overline{T_p} \gamma^\mu (V_L P_L) b W_\mu + \text{H.c.}$$ (B.1)

The exact model independent expression for $\Gamma(T_p \rightarrow bW)$ is given by

$$\Gamma(T_p \rightarrow bW) = \frac{1}{16\pi} \frac{m_T^3}{m_W^2} \lambda^{1/2} \left(1, \frac{m_b^2}{m_T^2}, \frac{m_W^2}{m_T^2} \right) \left[\left(1 - \frac{m_b^2}{m_T^2} \right)^2 + m_W^2 m_T^2 - 2 \frac{m_W^4}{m_T^4} + \frac{m_W^2 m_b^2}{m_T^2} \right] \left(\frac{|V_L^2|}{2} \right)$$ (B.2)

where,

$$\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2bc - 2ca$$ (B.3)

12We have calculated both the general and model specific expressions for the decay widths independently. The general expressions for the decay widths agree with Ref. [12, 13] in various special cases or limits.
In the present model, we have

\[V_L = \frac{g \sin \theta_L}{\sqrt{2}} \]

(B.4)

In the limit \(|\sin \theta_d|, |\sin \theta_S|, \varepsilon, m_t/m_{T_p} \ll 1\) Eq. (B.2) reduces to

\[\Gamma(T_p \rightarrow bW) \approx \frac{1}{16\pi v_{EW}^2} \sin^2 \theta_L \]

(B.5)

• \(T_p \rightarrow tV: \)

\[\mathcal{L}_{T_p-t-V} = -T_p \gamma^\mu (V_L P_L + V_R P_R) tV_\mu + \text{H.c.} \]

(B.6)

The exact model independent expression for \(\Gamma(T_p \rightarrow tV) \) is given by

\[
\Gamma(T_p \rightarrow tV) = \frac{1}{16\pi} \frac{m_{T_p}^3}{m_V^2} \lambda^{1/2} \left(1, \frac{m_t^2}{m_{T_p}^2}, \frac{m_V^2}{m_{T_p}^2} \right) \left\{ \left[1 - \frac{m_t^2}{m_{T_p}^2} \right]^2 + \frac{m_V^2}{m_{T_p}^2} - 2 \frac{m_t^2}{m_{T_p}^2} + \frac{m_t^2 m_V^2}{m_{T_p}^2} \right\} \left(\frac{|V_L^2| + |V_R^2|}{2} \right) - 3 \frac{m_t m_V^2}{m_{T_p}^2} \left(V_L V_R^* + V_L^* V_R \right) \}
\]

(B.7)

In this model, for \(V = Z \), we have

\[
V_L = \frac{1}{4} \sin 2\theta_L \left[\hat{g}_Z \left(\cos \theta_d + \sin \theta_d \hat{d}_W \varepsilon \right) + 2 g_d \sin \theta_d \right] \]

(B.8)

\[
V_R = \frac{1}{2} g_d \sin \theta_d \sin 2\theta_R
= \frac{1}{2} g_d \sin \theta_d \sin 2\theta_L m_t^2 \frac{m_{T_p} m_t}{m_t^2 \cos^2 \theta_L + m_{T_p}^2 \sin^2 \theta_L} \]

(B.9)

and for \(V = \gamma_d \), we have

\[
V_L = \frac{1}{4} \sin 2\theta_L \left[\hat{g}_Z \left(\sin \theta_d - \cos \theta_d \hat{d}_W \varepsilon \right) - 2 g_d \cos \theta_d \right] \]

(B.10)

\[
V_R = -\frac{1}{2} g_d \cos \theta_d \sin 2\theta_R
= -\frac{1}{2} g_d \cos \theta_d \sin 2\theta_L \frac{m_{T_p} m_t}{m_t^2 \cos^2 \theta_L + m_{T_p}^2 \sin^2 \theta_L} \]

(B.11)
where θ_d is the mixing angle between the abelian gauge bosons.

\begin{align}
\hat{t}_W &= \frac{\sin \theta_W}{\cos \theta_W} \\
\sin \theta_W &= \sin \theta_W + \mathcal{O}(\varepsilon^2) \\
g_Z &= \frac{g}{\cos \theta_W} \\
g_d &= \frac{m_{\gamma_d}}{v_d} + \mathcal{O}(\varepsilon^2) \\
g_d &= \frac{g_d}{\sqrt{1 - (\varepsilon^2 / \cos^2 \theta_W)}}
\end{align}

In the limit $|\sin \theta_d|, |\sin \theta_S|, \varepsilon, m_t/m_{T_p} \ll 1$ Eq. (B.7) simplifies to the following two equations for $V = Z$ and γ_d

\begin{align}
\Gamma(T_p \rightarrow tZ) &\approx \frac{1}{32\pi} \frac{m_{T_p}^3}{v_{EW}^2} \sin^2 \theta_L \cos^2 \theta_L \\
\Gamma(T_p \rightarrow \tau\gamma_d) &\approx \frac{1}{32\pi} \frac{m_{T_p}^3}{v_d^2} \sin^2 \theta_L \cos^2 \theta_L \times \left(1 + \frac{m_{T_p}^2 m_t^2}{D^2}\right)
\end{align}

where, $D = m_t^2 \cos^2 \theta_L + m_{T_p}^2 \sin^2 \theta_L$.

• $T_p \rightarrow tS$:

\begin{equation}
\mathcal{L}_{T_p-t-S} = -\bar{T}_p (Y_L P_L + Y_R P_R) tS + \text{H.c.}
\end{equation}

The exact model independent expression for $\Gamma(T_p \rightarrow tS)$ is given by

\begin{equation}
\Gamma(T_p \rightarrow tS) = \frac{1}{16\pi} m_{T_p} \lambda^{1/2} \left(1, \frac{m_t^2}{m_{T_p}^2}, \frac{m_S^2}{m_{T_p}^2}\right) \left\{ 1 + \frac{m_t^2}{m_{T_p}^2} - \frac{m_S^2}{m_{T_p}^2} \right\} \frac{|Y_L^2| + |Y_R^2|}{2} + \frac{m_t}{m_{T_p}} (Y_L Y_R^* + Y_L^* Y_R) \right\}
\end{equation}

In this model, for $S = h$

\begin{align}
Y_L &= \frac{1}{\sqrt{2}} \sin \theta_R (y_t \cos \theta_L \cos \theta_S + \lambda_T \sin \theta_L \sin \theta_S) \\
Y_R &= \frac{1}{\sqrt{2}} \cos \theta_R (y_t \sin \theta_L \cos \theta_S - \lambda_T \cos \theta_L \sin \theta_S)
\end{align}

and for $S = h_d$
\[Y_L = \frac{1}{\sqrt{2}} \sin \theta_R (y_t \cos \theta_L \sin \theta_S - \lambda_T \sin \theta_L \cos \theta_S) \]
(B.23)

\[Y_R = \frac{1}{\sqrt{2}} \cos \theta_R (y_t \sin \theta_L \sin \theta_S + \lambda_T \cos \theta_L \cos \theta_S) \]
(B.24)

where

\[y_t = \sqrt{2} \sqrt{m_t^2 \cos^2 \theta_L + m_{T_p}^2 \sin^2 \theta_L} \]
(B.25)

\[\lambda_T = \frac{v_{EW} (m_{T_p}^2 - m_t^2) \sin 2\theta_L}{\sqrt{2} v_d \sqrt{m_t^2 \cos^2 \theta_L + m_{T_p}^2 \sin^2 \theta_L}} \]
(B.26)

\[m_T = \frac{m_t m_{T_p}}{\sqrt{m_t^2 \cos^2 \theta_L + m_{T_p}^2 \sin^2 \theta_L}} \]
(B.27)

\[\sin \theta_R = \frac{m_T}{m_t} \sin \theta_L \]
(B.28)

\[\cos \theta_R = \frac{m_T}{m_{T_p}} \cos \theta_L \]
(B.29)

and \(\theta_S \) is a mixing angle in the scalar sector.

In the limit \(| \sin \theta_d |, | \sin \theta_S |, \varepsilon, m_t/m_{T_p} \ll 1 \) Eq. (B.20) simplifies to the following two equations for \(S = h \) and \(h_d \)

\[\Gamma(T_p \rightarrow th) \approx \frac{1}{32\pi v_{EW}^2} \frac{m_{T_p}^3}{m_t^2} \sin^2 \theta_L \cos^2 \theta_L \]
(B.30)

and,

\[\Gamma(T_p \rightarrow th_d) \approx \frac{1}{32\pi v_{d}^2} \frac{m_{T_p}^3}{m_t^2} \sin^2 \theta_L \cos^2 \theta_L \\
\times \frac{m_{T_p}^4}{D^2} \left(\sin^4 \theta_L + \frac{m_t^2}{m_{T_p}^2} \cos^4 \theta_L + 4 \frac{m_t^2}{m_{T_p}^2} \sin^2 \theta_L \cos^2 \theta_L \right) \]
(B.31)
References

[1] B. C. Allanchach, *Beyond the Standard Model*, *CERN Yellow Rep. School Proc.* **6** (2019) 113–144.

[2] L. Randall and R. Sundrum, *A Large mass hierarchy from a small extra dimension*, *Phys. Rev. Lett.* **83** (1999) 3370–3373, [hep-ph/9905221].

[3] M. Carena, E. Ponton, J. Santiago and C. E. M. Wagner, *Electroweak constraints on warped models with custodial symmetry*, *Phys. Rev. D* **76** (2007) 035006, [hep-ph/0701055].

[4] R. S. Chivukula, *Lectures on technicolor and compositeness*, in *Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2000): Flavor Physics for the Millennium*, pp. 731–772, 6, 2000. hep-ph/0011264.

[5] D. B. Kaplan, H. Georgi and S. Dimopoulos, *Composite Higgs Scalars*, *Phys. Lett. B* **136** (1984) 187–190.

[6] K. Agashe, R. Contino and A. Pomarol, *The Minimal composite Higgs model*, *Nucl. Phys. B* **719** (2005) 165–187, [hep-ph/0412089].

[7] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire and J. G. Wacker, *The Minimal moose for a little Higgs*, *JHEP* **08** (2002) 021, [hep-ph/0206020].

[8] Z. Chacko, H.-S. Goh and R. Harnik, *The Twin Higgs: Natural electroweak breaking from mirror symmetry*, *Phys. Rev. Lett.* **96** (2006) 231802, [hep-ph/0506256].

[9] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, *The Littlest Higgs*, *JHEP* **07** (2002) 034, [hep-ph/0206021].

[10] J. A. Aguilar-Saavedra, *Identifying top partners at LHC*, *JHEP* **11** (2009) 030, [0907.3155].

[11] J. Berger, J. Hubisz and M. Perelstein, *A Fermionic Top Partner: Naturalness and the LHC*, *JHEP* **07** (2012) 016, [1205.0013].

[12] M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, *Model Independent Framework for Searches of Top Partners*, *Nucl. Phys. B* **876** (2013) 376–417, [1305.4172].

[13] J. H. Kim and I. M. Lewis, *Loop Induced Single Top Partner Production and Decay at the LHC*, *JHEP* **05** (2018) 095, [1803.06351].

[14] H. Alhazmi, J. H. Kim, K. Kong and I. M. Lewis, *Shedding Light on Top Partner at the LHC*, *JHEP* **01** (2019) 139, [1808.03649].

[15] A. Anandakrishnan, J. H. Collins, M. Farina, E. Kuflik and M. Perelstein, *Odd Top Partners at the LHC*, *Phys. Rev. D* **93** (2016) 075009, [1506.05130].

[16] M. J. Dolan, J. L. Hewett, M. Krämer and T. G. Rizzo, *Simplified Models for Higgs Physics: Singlet Scalar and Vector-like Quark Phenomenology*, *JHEP* **07** (2016) 039, [1601.07208].

[17] M. Chala, R. Gröber and M. Spannowsky, *Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter*, *JHEP* **03** (2018) 040, [1801.06537].

[18] S. Gopalakrishna, T. Mandal, S. Mitra and G. Moreau, *LHC Signatures of Warped-space Vectorlike Quarks*, *JHEP* **08** (2014) 079, [1306.2656].

[19] R. Dermišek, E. Lunghi and S. Shin, *Hunting for Vectorlike Quarks*, *JHEP* **04** (2019) 019, [1901.03709].

[20] H. Han, L. Huang, T. Ma, J. Shu, T. M. P. Tait and Y. Wu, *Six Top Messages of New Physics at the LHC*, *JHEP* **10** (2019) 008, [1812.11286].
[21] S. Colucci, B. Fuks, F. Giacchino, L. Lopez Honorez, M. H. G. Tytgat and J. Vandecasteele, Top-philic Vector-Like Portal to Scalar Dark Matter, Phys. Rev. D 98 (2018) 035002, [1804.05068].

[22] B. A. Dobrescu and F. Yu, Exotic Signals of Vectorlike Quarks, J. Phys. G 45 (2018) 08LT01, [1612.01909].

[23] S. Gopalakrishna, T. S. Mukherjee and S. Sadhukhan, Extra neutral scalars with vectorlike fermions at the LHC, Phys. Rev. D 93 (2016) 055004, [1504.01074].

[24] S. Dasgupta, R. Pramanick and T. S. Ray, Broad toplike vector quarks at LHC and HL-LHC, Phys. Rev. D 105 (2022) 035032, [2112.03742].

[25] G. Corcella, A. Costantini, M. Ghezzi, L. Panizzi, G. M. Pruna and J. Šalko, Vector-like quarks decaying into singly and doubly charged bosons at LHC, JHEP 10 (2021) 108, [2107.07426].

[26] R. Dermisek, E. Lunghi, N. Mcginnis and S. Shin, Tau-jet signatures of vectorlike quark decays to heavy charged and neutral Higgs bosons, JHEP 08 (2021) 159, [2105.10790].

[27] K. du Plessis, M. M. Flores, D. Kar, S. Sinha and H. van der Schyf, Hitting two BSM particles with one lepton-jet: search for a top partner decaying to a dark photon, resulting in a lepton-jet, SciPost Phys. 13 (2022) 018, [2112.08425].

[28] T. G. Rizzo, Kinetic mixing and portal matter phenomenology, Phys. Rev. D 99 (Jun, 2019) 115024.

[29] T. G. Rizzo, Portal Matter and Dark Sector Phenomenology at Colliders, in 2022 Snowmass Summer Study, 2, 2022. 2202.02222.

[30] X. Qin and J.-F. Shen, Search for single production of vector-like B quark decaying to a Higgs boson and bottom quark at the CLIC, Nucl. Phys. B 966 (2021) 115388.

[31] G. N. Wojcik, Kinetic Mixing from Kaluza-Klein Modes: A Simple Construction for Portal Matter, 2205.11545.

[32] M. Fabbrichesi, E. Gabrielli and G. Lanfranchi, The Dark Photon, 2005.01515.

[33] R. Foot and S. Vagnozzi, Solving the small-scale structure puzzles with dissipative dark matter, JCAP 07 (2016) 013, [1602.02467].

[34] J. H. Kim, S. D. Lane, H.-S. Lee, I. M. Lewis and M. Sullivan, Searching for Dark Photons with Maverick Top Partners, Phys. Rev. D 101 (2020) 035041, [1904.05893].

[35] ATLAS collaboration, M. Aaboud et al., Search for single production of vector-like quarks decaying into Wb in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP 05 (2019) 164, [1812.07343].

[36] ATLAS collaboration, M. Aaboud et al., Search for pair production of heavy vector-like quarks decaying into hadronic final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 092005, [1808.01771].

[37] CMS collaboration, A. M. Sirunyan et al., Cross section measurement of t-channel single top quark production in pp collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B 772 (2017) 752–776, [1610.00678].

[38] CMS collaboration, A. M. Sirunyan et al., Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $\sqrt{s} = 13$ TeV, JHEP 03 (2020) 056, [1907.11270].
[39] N. Bizot, G. Cacciapaglia and T. Flacke, Common exotic decays of top partners, *JHEP* 06 (2018) 065, [1803.00021].

[40] K.-P. Xie, G. Cacciapaglia and T. Flacke, Exotic decays of top partners with charge 5/3: bounds and opportunities, *JHEP* 10 (2019) 134, [1907.05894].

[41] G. Cacciapaglia, T. Flacke, M. Park and M. Zhang, Exotic decays of top partners: mind the search gap, *Phys. Lett. B* 798 (2019) 135015, [1908.07524].

[42] M. Chala, Direct bounds on heavy toplike quarks with standard and exotic decays, *Phys. Rev. D* 96 (2017) 015028, [1705.03013].

[43] J. A. Aguilar-Saavedra, D. E. López-Fogliani and C. Muñoz, Novel signatures for vector-like quarks, *JHEP* 06 (2017) 095, [1705.02526].

[44] R. Benbrik et al., Signs of vector-like top partners decaying into new neutral scalar or pseudoscalar bosons, *JHEP* 05 (2020) 028, [1907.05929].

[45] A. Bhardwaj, T. Mandal, S. Mitra and C. Neeraj, A roadmap to explore the vector-like quarks decaying to a new (pseudo) scalar, 2203.13753.

[46] K. Das, T. Mondal and S. K. Rai, Nonstandard signatures of vectorlike quarks in a leptoophobic 221 model, *Phys. Rev. D* 99 (2019) 115002, [1807.08160].

[47] S. Banerjee, D. Barducci, G. Bélanger and C. Delaunay, Implications of a High-Mass Diphoton Resonance for Heavy Quark Searches, *JHEP* 11 (2016) 154, [1606.09013].

[48] A. Banerjee, D. B. Franzosi and G. Ferretti, Modelling vector-like quarks in partial compositeness framework, *JHEP* 03 (2022) 200, [2202.00037].

[49] A. Banerjee et al., Phenomenological aspects of composite Higgs scenarios: exotic scalars and vector-like quarks, 2203.07270.

[50] M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, *JHEP* 08 (2013) 106, [1306.4644].

[51] J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, *JHEP* 12 (2016) 135, [1608.01509].

[52] C.-Y. Chen, S. Dawson and E. Furlan, Vectorlike fermions and Higgs effective field theory revisited, *Phys. Rev. D* 96 (2017) 015006, [1703.06134].

[53] CMS collaboration, A. M. Sirunyan et al., Search for top squark production in fully-hadronic final states in proton-proton collisions at \(\sqrt{s} = 13 \) TeV, *Phys. Rev. D* 104 (2021) 052001, [2103.01290].

[54] ATLAS collaboration, M. Aaboud et al., Search for invisible particles produced in association with single top quarks in proton–proton collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector, .

[55] S. Kraml, U. Laa, L. Panizzi and H. Prager, Scalar versus fermionic top partner interpretations of \(t\bar{t} + E_T^{miss} \) searches at the LHC, *JHEP* 11 (2016) 107, [1607.02050].

[56] T. Robens and T. Stefaniak, Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1, *Eur. Phys. J. C* 75 (2015) 104, [1501.02234].

[57] T. Robens, Investigating extended scalar sectors at current and future colliders, PoS LHCP2019 (2019) 138, [1908.10809].

[58] T. Robens, More Doublets and Singlets, in 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories, 5, 2022. 2205.06295.
[59] S. Adhikari, S. D. Lane, I. M. Lewis and M. Sullivan, *Complex Scalar Singlet Model Benchmarks for Snowmass*, in *Snowmass 2021*, 3, 2022. 2203.07455.

[60] T. Robens, *Constraining extended scalar sectors at current and future colliders - an update*, in *8th Workshop on Theory, Phenomenology and Experiments in Flavour Physics: Neutrinos, Flavor Physics and Beyond*, 9, 2022. 2209.15544.

[61] CMS collaboration, *Search for Higgs boson decays to invisible particles produced in association with a top-quark pair or a vector boson in proton-proton collisions at √s = 13 TeV and combination across Higgs production modes*, CERN Report No. CMS-PAS-HIG-21-007., .

[62] ATLAS collaboration, *Combination of searches for invisible decays of the Higgs boson using 139 fb⁻¹ of proton-proton collision data at √s = 13 TeV collected with the ATLAS experiment*, *Phys. Lett. B* 842 (2023) 137963, [2301.10731].

[63] PARTICLE DATA GROUP collaboration, P. A. Zyla et al., *Review of Particle Physics*, *PTEP* 2020 (2020) 083C01.

[64] J. Jaeckel and A. Ringwald, *The Low-Energy Frontier of Particle Physics*, *Ann. Rev. Nucl. Part. Sci.* 60 (2010) 405–437, [1002.0329].

[65] S. Davidson, B. Campbell and D. Bailey, *Limits on particles of small electric charge*, *Phys. Rev. D* 43 (Apr, 1991) 2314–2321.

[66] J. W. Brockway, E. D. Carlson and G. G. Raffelt, *SN1987A gamma-ray limits on the conversion of pseudoscalars*, *Phys. Lett. B* 383 (1996) 439–443, [astro-ph/9605197].

[67] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., *The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations*, *JHEP* 07 (2014) 079, [1405.0301].

[68] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, *FeynRules 2.0 - A complete toolbox for tree-level phenomenology*, *Comput. Phys. Commun.* 185 (2014) 2250–2300, [1310.1921].

[69] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, *UFO - The Universal FeynRules Output*, *Comput. Phys. Commun.* 183 (2012) 1201–1214, [1108.2040].

[70] R. D. Ball et al., *Parton distributions with LHC data*, *Nucl. Phys. B* 867 (2013) 244–289, [1207.1303].

[71] C. Bierlich et al., *A comprehensive guide to the physics and usage of PYTHIA 8.3*, 2203.11601.

[72] T. Sjostrand, S. Mrenna and P. Z. Skands, *PYTHIA 6.4 Physics and Manual*, *JHEP* 05 (2006) 026, [hep-ph/0603175].

[73] T. H. Park, *Jet energy resolution measurement of the ATLAS detector using momentum balance*, 2018.

[74] CMS collaboration, V. Khachatryan et al., *Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV*, *JINST* 12 (2017) P02014, [1607.03663].

[75] DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Denin, A. Giammanco, V. Lemaître, A. Mertens et al., *DELPHES 3, A modular framework for fast simulation of a generic collider experiment*, *JHEP* 02 (2014) 057, [1307.6346].

[76] D. E. Kaplan, K. Rehermann, M. D. Schwartz and B. Tweedie, *Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks*, *Phys. Rev. Lett.* 101 (2008) 142001, [0806.0848].
[77] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, *Eur. Phys. J. C* 72 (2012) 1896, [1111.6097].

[78] S. Bentvelsen and I. Meyer, The Cambridge jet algorithm: Features and applications, *Eur. Phys. J. C* 4 (1998) 623–629, [hep-ph/9803322].

[79] O. Matsedonskyi, G. Panico and A. Wulzer, On the Interpretation of Top Partners Searches, *JHEP* 12 (2014) 097, [1409.0100].

[80] N. Kidonakis, Higher-order corrections for $t\bar{t}$ production at high energies, in 2022 Snowmass Summer Study, 3, 2022. 2203.03698.

[81] A. Kulesza, L. Motyka, D. Schwartlander, T. Stebel and V. Theeuwes, Associated production of a top quark pair with a heavy electroweak gauge boson at NLO+NNLL accuracy, *Eur. Phys. J. C* 79 (2019) 249, [1812.08622].

[82] N. Kidonakis and N. Yamanaka, Higher-order corrections for tW production at high-energy hadron colliders, *JHEP* 05 (2021) 278, [2102.11300].

[83] M. L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: $W\bar{b}b + n$ jets as a case study, *Nucl. Phys. B* 632 (2002) 343–362, [hep-ph/0108069].

[84] C. Lester and D. Summers, Measuring masses of semi-invisibly decaying particle pairs produced at hadron colliders, *Physics Letters B* 463 (Sep, 1999) 99–103.

[85] F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, *JHEP* 07 (2012) 022, [1203.6393].