MEMBRANE BIOPHYSICS

The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues

Andreas Horner,1* Florian Zocher,1* Johannes Preiner,2* Nicole Ollinger,1 Christine Siligan,1 Sergey A. Akimov,3,4 Peter Pohl1†

Channel geometry governs the unitary osmotic water channel permeability, \(p_f \), according to classical hydrodynamics. Yet, \(p_f \) varies by several orders of magnitude for membrane channels with a constriction zone that is one water molecule in width and four to eight molecules in length. We show that both the \(p_f \) of those channels and the diffusion coefficient of the single-file waters within them are determined by the number \(N_W \) of residues in the channel wall that may form a hydrogen bond with the single-file waters. The logarithmic dependence of water diffusivity on \(N_W \) is in line with the multiplicity of binding options at higher \(N_W \) densities. We obtained high-precision \(p_f \) values by (i) having measured the abundance of the reconstituted aquaporins in the vesicular membrane via fluorescence correlation spectroscopy and via high-speed atomic force microscopy, and (ii) having acquired the vesicular water efflux from scattered light intensities via our new adaptation of the Rayleigh-Gans-Debye equation.

Movement of water through very narrow membrane channels is different from Poiseuillian flow through macroscopic tubes (1). The diffusive nature of single-file transport (2) and the unaltered fluidity of confined water (3) suggest that the unitary osmotic water channel permeability \(p_f \) may only vary within the narrow limits that are set by the small length deviations of the single-file region. This is in sharp contrast to the experimental observation that \(p_f \) alterations stretch over three orders of magnitude (4).

Part of the \(p_f \) scatter is likely to be caused by technical difficulties: reported \(p_f \) values for correspondent aquaporins can vary by more than an order of magnitude. For example, \(p_f \) for human aquaporin-1 (AQP1) ranges from \(1 \times 10^{-14} \) to \(16 \times 10^{-14}\) cm\(^3\) s\(^{-1}\) (5). The problem of obtaining correct \(p_f \) values is also underscored by the differences in the in vitro and in silico order in which \(p_f \) decreases among the members of the protein family. Three experimental groups reported that \(p_f \) in AQPZ, the orthodox water channel of Escherichia coli, exceeds \(p_f \) of the glycerol facilitator from E. coli, GlpF (6–8), whereas three other theoretical groups observed the exact opposite (table S1) (9–11).

Single-file water movement may be governed by interactions with the channel wall or limited by water dehydration at the channel entrance. The dehydration energy penalty arises because the single-file waters only have two of the four usual hydrogen bonds available when entering a channel, which does not provide a surrogate for the waters of hydration. In the presence of pore-lining residues that donate or accept hydrogen bonds, water movement should be limited by the time required for breaking H-bonds, reorientation of the molecules, and reforming H-bonds while traversing the channel. If so, the fastest flow should occur when the interaction between single-file waters and the channel wall is restricted to van der Waals interactions, and no hydrogen bonds are formed as is the case in carbon nanotubes (12).

Water mobility in these tubes and in membrane water channels is best compared to bulk water mobility by means of the diffusion constant \(D_W \) of the single-file water molecules. \(D_W \) can be calculated according to the Einstein relation (13, 14):

\[
D_W = \frac{k_B T}{2} \frac{z^2}{v_w^2}
\]

where \(z, k_B \) and \(v_w \) indicate the average distance between two water molecules in the single-file region, the transport rate, and the molecular volume of one water molecule, respectively.

By inserting \(p_f = 5.43 \times 10^{-13}\) cm\(^3\) s\(^{-1}\) (15) of AQP1 and assuming \(z = 2.8 \, \text{Å} \), we found that \(D_w \approx 4 \times 10^{-7}\) cm\(^2\) s\(^{-1}\). This result does not agree with previous estimates of \(D_w \approx 4 \times 10^{-6} \) to \(8 \times 10^{-6} \) cm\(^2\) s\(^{-1}\) (5, 16) in aquaporins. They have been derived using the equation \(D_w = \frac{U}{A_C} \times p_f \) where \(A_C \) is the cross-sectional area of the channel (5, 17). Assuming that channel length \(l = z \times N_W \), where \(N_W \) is the number of single-file waters and that \(l \times A_C = N_W \times v_w \), we find that \(D_w \) was exaggerated by a factor of 2\(N_W \). Thus, the uncertainty in the experimental \(p_f \) was amplified by the ambiguity in extracting \(D_w \) from it.

We now set out to obtain molecular insight into what determines \(D_w \). To obtain precise \(p_f \) values, we had to overcome the uncertainty in the number of channels per unit membrane area. Otherwise, osmotic channel water permeability \(P_{fc} \) cannot be dissected from lipid water permeability \(P_f \). \(P_f \) and \(P_{fc} \) add up to osmotic membrane water permeability (18):

\[
P_f = P_{f,1} + P_{f,c} = P_{f,1} + n p_f d_V^2 \pi^{-1}
\]

where \(n \) is the number of aquaporins per vesicle and \(d_V \) is vesicle diameter. Previously, the uncertainty in \(n \) arose chiefly from the poor repeatability and the limited accuracy of channel abundance determination by Coomassie and silver staining of SDS–polyacrylamide gel electrophoresis (19). Instead, we used both atomic force microscopy
AFM) and fluorescence correlation spectroscopy (FCS) to accurately measure membrane channel abundance. Therefore, the yellow fluorescent protein (YFP) was anchored to the N terminus of AQP1. AQPZ and GlpF were modified by site-directed mutagenesis to contain only one N-terminal or two C-terminal cysteine residues, respectively, thereby enabling covalent labeling with the fluorescent dye Atto 488 maleimide. We also had to render unstirred layer effects negligibly small. This was mainly achieved by reconstituting the purified aquaporins into vesicles that were only 120 nm in diameter (7, 20, 21). Assuming that the width of the unstirred (stagnant water) layer \(w_{UL} \) is comparable to vesicle size, and that the diffusion coefficient of bulk water \(D_0 \) is equal to \(2.3 \times 10^{-5} \) cm\(^2\) s\(^{-1}\), we find an unstirred layer water permeability \(P_{UL} = D_0/w_{UL} \approx 2 \) cm/s. Thus, even if \(P_{UL} \) is 10 times larger than \(P_\Omega = 20 \) \(\mu \)m/s, \(P_{UL} \) exceeds \(P_\Omega \) hundredfold. Because \(1/P_\Omega = 1/P_{UL} + 1/P_\omega \) the apparent (measured) water permeability \(P_\omega \) does not differ from \(P_\Omega \) by more than 1%.

In the immediate membrane vicinity of bigger objects, \(w_{UL} \) is so large in size that osmotic flow through them results in osmolyte dilution. If unaccounted for, the result is a severe underestimation of both \(P_\Omega \) and \(P_\omega \) (Eq. 2).

The small vesicle size led to the third problem: the assessment of changes in vesicle volume \(V \) from measurements of scattered light intensity \(I \). Empirical approximations thus far used ranged from double logarithmic (22), over quadratic (23), to simple linear dependencies (24) of \(V \) from \(I \). Here, we adopted the Rayleigh-Gans-Debye approximation and analytically solved the differential equation to calculate \(p_f \) from the water efflux rate.

We determined the number \(n \) of aquaporin monomers per proteoliposome by FCS as previously described (25) and as exemplified in Fig. 1A (see also fig. S5). Depending on the preparation, \(n \) varied between 1 and 30. The reconstitution efficiency varied between 10 and 50% (fig. S6). At very low concentrations, AQP1 and GlpF reconstituted as functional monomers, dimers, or trimers. To enable comparison with AFM measurements, we calculated the expected number \(N_{O,FCS} \) of oligomers per proteoliposome by assuming (i) a Poisson distribution of functional units among the proteoliposomes and (ii) that all units within one vesicle assembled into the smallest number of oligomers possible.

To confirm the FCS count, we performed additional measurements using high-speed AFM (HS-AFM) (26). In brief, we spread the vesicles on mica and imaged the resulting supported bilayers (Fig. 1, B to D). Initially, high-magnification raw data images were recorded and compared to the topography of the extracellular and cytoplasmic aquaporin surfaces known from previous studies of aquaporins reconstituted into two-dimensional crystals (27, 28). This enabled us to identify the extracellular and cytoplasmic surfaces of single aquaporins (Fig. 1B, inset) and to conclude that the aquaporins were reconstituted with random orientation (29). We generated a height histogram of the membrane-protruding parts with respect to the surrounding lipids by randomly taking 50 cross-sections of the protein surface. Subsequently, protein-free bilayers were spread on mica, and a second histogram of maximum height values (investigated area: \(13 \times 400 \times 400 \) nm\(^2\)) was constructed from the observed unspecified membrane-protruding features (Fig. 1C). Protein abundances per vesicle were determined for AQPZ, AQP1, and GlpF as exemplified for AQPZ in fig. S7. The comparison to \(N_{O,FCS} \) was quite satisfactory. When repeating the procedure for at least three different protein concentrations of each of the aquaporins, HS-AFM always counted \(f_c \approx 1.2 \) times more particles than FCS (Fig. 1D).

Subsequently, we subjected the reconstituted vesicles to osmotic stress. \(V \) was determined by the vesicular water permeability \(P_\Omega = P_{UL} + P_{UL} \), which reflects the permeabilities \(P_{UL} \) and \(P_\Omega \) of all channels and the lipid bilayer, respectively:

\[
V(t) = V_0 \frac{c_i^0}{c_i^0 + c_s} \left(1 + L \left(\frac{c_i}{c_i^0} - \frac{A P_\Omega V_w}{V_0 c_i^0} \right) \right)
\]

where \(V_0, V_0, A, c_i^0, c_s, \) and \(L \) are the molar volume of water, vesicle volume at time zero, surface area of the vesicle, the initial osmolyte concentration inside the vesicles, the incremental osmolyte concentration in the external solution due to sucrose addition, and the Lambert function \(L(x)e^{L(x)} = x \), respectively. \(V(t) \) is experimentally accessible by

Fig. 1. Determination of reconstitution efficiency. (A) FCS autocorrelation curves allowed us to obtain the number of (i) vesicles labeled with 0.004\% (w/w) N-lissamine-rhodamine-sulfonyl)phosphatidylethanolamine (sandy brown), (ii) AQP1-YFP–containing vesicles (purple), (iii) AQP1-YFP oligomers containing micelles that formed upon vesicle dissolution in mild detergent (dashed purple), and (iv) AQP1-YFP monomer containing micelles that formed upon further dissolution in harsh detergent (dotted purple) per confocal volume. The buffer (pH 7.4) contained 100 mM NaCl, 20 mM Mops, and a protease inhibitor. (B and C) AFM imaging of solid-supported lipid bilayers that were prepared from AQPZ proteoliposomes (B) or empty vesicles (investigated area: \(14 \times 400 \times 400 \) nm\(^2\)) (C) resulted in histograms of height values (\(n = 50 \)). (D) Inset: The high-resolution raw data allowed differentiation of the extracellular and cytoplasmic AQPZ surfaces. (C) The density of unspecified features (0.218 per vesicle) served to correct the protein count (see also fig. S1). (D) Comparison of both the absolute AFM and FCS counts of AQPZ tetramers per lipidosome (at three different concentrations) (upper panel) and their ratio (middle panel). Average ratio of AFM and FCS counts per lipidosome for AQPZ, GlpF, and AQP1 oligomers (lower panel: compare also eqs. S9 and S10).
measuring \(I(t) \). To derive the corresponding expression, we exploited the Rayleigh-Gans-Debye relation (see the Supplementary Materials). We then substituted the dependence of the scattered light intensity on \(V \) for its Taylor series (figs. S1 and S2) and took into account the fraction \(\alpha \) of bare vesicles, which does not contain any protein:

\[
I(t) = a + bV_{\text{bare}}(t) + (1 - \alpha)V_{\text{AQP}}(t) + d|\alpha V_{\text{bare}}(t) + (1 - \alpha)V_{\text{AQP}}(t)|^2
\]

(4)

where \(V_{\text{AQP}}(t) \) and \(V_{\text{bare}}(t) \) are the volumes of proteoliposomes and bare vesicles, respectively. The parameter \(a \) is calculated as follows: \(a = I(\infty) - bV_t - dV_t^2 \), where \(V_t = V_0c_0/(c_0 + c_s) \). The fitting parameters \(b \) and \(d \) can be found analytically (see the Supplementary Materials) so that \(P_t \) may remain as the sole fitting parameter. However, this rather laborious procedure returned the same \(P_t \) value as the simpler fitting approach, which simultaneously determined \(b, d \), and \(P_t \) for all test cases. When fitting Eq. 4 to the stopped-flow data (Fig. 2A), we fixed \(P_t \) to its value in pure lipid vesicles.

We performed the stopped-flow experiments for different numbers \(n \) of functional AQP units per vesicle (Fig. 2 and fig. S4) to determine \(p_2 \) (Fig. 3A) from the linear regression of Eq. 2. Because the measurements were made at 5°C, we used the known activation energy of 4 kcal/mol (21, 30) to estimate \(P_t \) at room temperature. \(D_W \) (Eq. 1) decreased while \(N_W \) increased from 4 in GlpF (10) to 7 in AQP1 and AQPZ (Fig. 3B). Our \(p_2 \) values exceeded previously reported ones, confirming that \(p_2 \) estimations from larger objects were subject to unastered layer effects (15, 31) (see the Supplementary Materials). Our \(p_2 \) exceeds the in silico \(p_2 \) for AQPZ by a factor of 2 (11), that of AQP1 by a factor of 5 (32), and that of GlpF by a factor of 12 (9, 11).

We took the 0.88-Å resolution structure of yeast AQP1 (33) as a template and used PyMol (34) to construct homology models for AQP1, AQPZ, and GlpF (fig. S8). We counted \(N_H = 12 \) possible hydrogen bonds between the single-file waters and pore-lining residues in the plot that shows the water-filled cavity (Fig. 4). The twofold lower \(p_2 \) of AQPZ may be caused by closings of AQPZ (35). To allow for the passage of the comparatively large glycerol molecules, the constriction site of GlpF is wider and shorter than that of the pure water channels AQP1 and AQPZ. In contrast to the glycerol-free crystal structure and its molecular dynamics simulation (16), more recent simulations found the length of the single-file region to be halved in GlpF (10, 11). In agreement with the more recent simulations, we find \(N_H = 6 \) from the homology model (Fig. 4). Because the single-file region contains only a small number of binding places, it is not surprising that GlpF has the highest \(p_2 \) among the three aquaporins investigated.

Plotting \(N_H \) against \(D_W \) reveals a logarithmic dependence (Fig. 5). This observation is reminiscent of the logarithmic length dependence described for gramicidin derivatives (17). Because gramicidin conducts the single-file waters within the helix, we assume that all 30 backbone carbonyls may form hydrogen bonds. Midigramicidin and minigramicidin

Fig. 2. The osmotic shrinkage of proteoliposomes. (A) Representative stopped-flow raw data (spline lines) for AQPZ and the fit (dashed lines) according to Eq. 4. Equal volumes of vesicle suspension and hyperosmotic solution (300 mM sucrose) were mixed (5°C, same buffer as in Fig. 1). The number of reconstituted AQP monomers per proteoliposome is indicated. (B) \(P_t \) of reconstituted vesicles was calculated as shown in (A) for at least three independently purified and reconstituted batches for each protein and plotted as a function of the channel number per proteoliposome.

Fig. 3. Water movement in aquaporins. (A) \(p_2 \) (at 5°C) for AQPZ, GlpF, and AQP1 was taken from the slopes in Fig. 2B. The background water permeability of a single lipid vesicle was calculated by multiplying \(p_2 \) by the surface area of the vesicle. (B) The diffusion coefficient \(D_W \) (25°C) of water molecules inside the channel was calculated (Eq. 1). The bulk water diffusion coefficient is shown for comparison.

Fig. 4. Number \(N_H \) of pore-lining residues (in yellow circles) that may form hydrogen bonds (dotted lines) with single-file water molecules. The 0.88-Å resolution structure of yeast AQP1 (33) [Protein Data Bank (PDB) #1J4N] served as a template to find a model for the AQP1 (PDB #1J4N), AQPZ (PDB #1RC2), and GlpF (PDB #1FX8) structures via the PyMol’s “align” routine (34). The position of the water molecules (red spheres) is from the yeast AQP1 structure. The two water molecules below R206 have been added in the GlpF model to indicate that this region is wide enough to let the water molecules bypass each other within the pore.
We conclude that in single-file transport, \(D_W \) is not governed by channel geometry. Rather, the capability of the single-file waters to form hydrogen bonds to channel wall-lining residues causes the observed variability of two orders of magnitude. Other factors (for example, an increased penalty for entering the channel) may further reduce \(p_t \).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/2/2/e1400083/DC1

Fig. S1. The intensity \(I \) of scattered light for osmotically challenged vesicles as a function of vesicle radius \(R \) (A) and vesicle volume \(V \) (B).

Fig. S2. Comparison of the exact dependencies for \(I \) (red) with the approximate representations by their Taylor series (green) for \(R (\ell) = a + b \ell^0 + d \ell^2 (\ell) \) for \(V (\ell) = a + b V_0 + d V_2 (\ell) \).

Fig. S3. Osmotically induced vesicle shrinkage was accompanied by an increase in \(t \).

Fig. S4. Osmotic shrinkage of proteoliposomes.

Fig. S5. A typical FCS counting experiment of an AQP1–YFP reconstitution series.

Fig. S6. Reconstitution efficiency varied between 10 and 50%.

Fig. S7. Membrane protein detection by AFM.

Fig. S8. Alignments of aquaporin structures.

Fig. S9. Water-filled cavities in the open and closed structures of AQP0.

Table S1. Overview of published in vitro and in silico single-channel permeability values \(p_t \) for AQP1, GlpF, and AQPZ as discussed in the main text.

REFERENCES AND NOTES

1. A. Finkelstein, Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes (Wiley & Sons, New York, 1987), pp. 1–228.
2. D. G. Levitt, G. Subramanian, A new theory of transport for cell membrane pores. II. Exact results and computer simulation (molecular dynamics). Biochim. Biophys. Acta 373, 132–140 (1974).
3. U. Raviv, P. Laurat, J. Klein, Fluidity of water confined to subnanometre films. Nature 413, 51–54 (2001).
4. P. Pohl, Combined transport of water and ions through membrane channels. Biol. Chem. 385, 921–926 (2004).
5. J. B. Heymann, A. Engel, Aquaporins: Phylogeny, structure, and physiology of water channels. News Physiol. Sci. 14, 187–193 (1999).
6. M. J. Borghia, P. Agre, Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 98, 2888–2893 (2001).
7. S. M. Saparov, S. P. Tsuonoda, P. Pohl, Proton exclusion by an aquaglyceroprotein: A voltage clamp study. Biochim. Biophys. Acta 97, 545–550 (2005).
8. D. F. Savage, J. D. O’Connell III, L. J. M. Miercke, J. Finer-Moore, R. M. Stroud, Structural context shapes the aquaporin selectivity filter. Proc. Natl. Acad. Sci. U.S.A. 107, 17164–17169 (2010).
9. F. Zhu, E. Tajkhorshid, K. Schulten, Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys. J. 83, 154–160 (2002).
10. M. Ø. Jensen, O. G. Mikkelsen, Single-channel water permeabilities of Escherichia coli aquaporins AqpZ and GlpF. Biophys. J. 90, 2270–2284 (2006).
11. M. Hashido, A. Kidera, M. Ikeguchi, Water transport in aquaporins: Osmotic permeability matrix analysis of molecular dynamics simulations. Biophys. J. 93, 373–385 (2007).
12. G. Hummer, J. C. Raisalia, P. N. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).
13. A. Berezkikhvski, G. Hummer, Single-file transport of water molecules through a carbon nanotube. Phys. Rev. Lett. 89, 064503 (2002).
14. F. Q. Zhu, E. Tajkhorshid, K. Schulten, Collective diffusion model for water permeation through microscopic channels. Phys. Rev. Lett. 93, 224501 (2004).
15. T. Walz, B. L. Smith, M. L. Zeidell, A. Engel, P. Agre, Biologically active two-dimensional crystals of aquaporin CHIP. J. Biol. Chem. 269, 1583–1586 (1994).
16. E. Tajkhorshid, P. Nollert, M. Ø. Jensen, L. J. Miercke, J. O’Connell, R. M. Stroud, K. Schulten, Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525–530 (2002).
17. S. M. Saparov, J. R. Pfeffer, L. Al-Momari, G. Portella, B. L. de Groot, U. Koert, P. Pohl, Mobility of a one-dimensional confined file of water molecules as a function of file length. Phys. Rev. Lett. 96, 148101 (2006).
18. T. Hoomann, N. Jahnke, A. Horner, S. Keller, P. Pohl, Filter gate closure inhibits ion but not water transport through potassium channels. Proc. Natl. Acad. Sci. U.S.A. 110, 10842–10847 (2013).
19. M. L. Zeidell, S. V. Ambudkar, B. L. Smith, P. Agre, Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31, 7436–7440 (1992).
RESEARCH ARTICLE

20. S. M. Saparov, D. Kozono, U. Rothe, P. Agre, P. Pohl, Water and ion permeation of aquaporin-1 in planar lipid bilayers. Major differences in structural determinants and stoichiometry. J. Biol. Chem. 276, 31515–31520 (2001).

21. P. Pohl, S. M. Saparov, M. J. Borgnia, P. Agre, Highly selective water channel activity measured by voltage clamp: Analysis of planar lipid bilayers reconstituted with purified AqpZ. Proc. Natl. Acad. Sci. U.S.A. 98, 9624–9629 (2001).

22. M. P. van Heeswijk, C. H. van Os, Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J. Membr. Biol. 92, 183–193 (1986).

23. N. P. Bleyer, A. S. Verkman, Serial permeability barriers to water transport in human placental vesicles. J. Membr. Biol. 94, 267–278 (1986).

24. A. N. van Hoek, A. S. Verkman, Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 267, 18267–18269 (1992).

25. D. G. Kryazhev, A. Lents, E. Krause, N. Ollinger, C. Siligan, L. Winter, A. Horner, P. Pohl, The bacterial translocon SecYEG opens upon ribosome binding. J. Biol. Chem. 288, 17941–17946 (2013).

26. J. Preiner, N. Kodera, J. Tang, A. Ebner, M. Brameshuber, D. Blaas, N. Geibmann, H. J. Gruber, T. Ando, P. Hinterdorfer, IgGs are made for walking on bacterial and viral surfaces. Nat. Commun. 5, 4394 (2014).

27. S. Scheuring, P. Ringler, M. Borgnia, H. Stahlberg, D. J. Müller, P. Agre, A. Engel, High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18, 4981–4987 (1999).

28. C. Müller, D. Fotiadis, K. Suda, A. Engel, M. Kessler, D. J. Müller, Determining molecular forces that stabilize human aquaporin-1. J. Struct. Biol. 142, 369–378 (2003).

29. J. Preiner, A. Horner, A. Kaner, N. Ollinger, C. Siligan, P. Pohl, P. Hinterdorfer, High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. Nano Lett. 15, 759–763 (2015).

30. J. C. Mathai, S. Mori, B. L. Smith, G. M. Preston, N. Mohandas, M. Collins, P. C. van Zijl, M. L. Zeidel, P. Agre, Functional analysis of aquaporin-1 deficient red cells. The Colton-null phenotype. J. Biol. Chem. 271, 1309–1313 (1996).

31. G. A. Zampighi, M. Kreman, K. J. Boorer, D. D. Loo, F. Bezanilla, G. Chandy, J. E. Hall, E. M. Wright, A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J. Membr. Biol. 148, 65–78 (1995).

32. B. L. de Groot, H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001).

33. U. Kosinska Eriksson, G. Fischer, R. Friesmann, G. Enkavi, E. Tajkhonshid, R. Neutze, Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340, 1346–1349 (2013).

34. W. L. DeLano, The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA, 2002; www.pymol.org.

35. J. Jiang, B. V. Daniels, D. Fu, Crystal structure of AqpZ tetramer reveals two distinct Arg-189 conformations associated with water permeation through the narrowest constriction of the water-conducting channel. J. Biol. Chem. 281, 454–460 (2006).

36. G. Chandy, G. A. Zampighi, M. Kreman, J. E. Hall, Comparison of the water transporting properties of MIP and AQP1. J. Membr. Biol. 159, 26–39 (1997).

37. T. Gonen, P. Sliz, J. Kistler, Y. F. Cheng, T. Walz, Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004).

38. M. Hashido, M. Ikeyuchi, A. Kidera, Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF. FEBS Lett. 579, 5549–5552 (2005).

39. K. L. Nemeth-Cahalan, K. Kalman, J. E. Hall, Molecular basis of pH and Ca2+ regulation of aquaporin water permeability. J. Gen. Physiol. 123, 573–580 (2004).

40. K. L. Nemeth-Cahalan, D. M. Clemens, J. E. Hall, Regulation of AQPO water permeability is enhanced by cooperativity. J. Gen. Physiol. 141, 287–295 (2013).

Acknowledgments: We thank G. Hummer (Frankfurt, Germany) for a helpful discussion and Q. Beatty for editorial help. Funding: This work was supported by grants P23466 and P23679 of the Austrian Science Fund to P.P., the European Fund for Regional Development (Regio 13), and the Federal State of Upper Austria (to J.P.). S.A.A. gratefully acknowledges the financial support by both the Russian government (Goszadanie research project #3.2007.2014/K) and the Ministry of Education and Science of the Russian Federation in the framework of MISIS Increase Competitiveness Program.

Submitted 7 November 2014 Accepted 12 January 2015 Published 20 March 2015

Citation: A. Horner, F. Zocher, J. Preiner, N. Ollinger, C. Siligan, S. A. Akimov, P. Pohl, The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Sci. Adv. 1, e1400083 (2015).