Institute of Systems Science, Durban University of Technology, Durban, Republic of South Africa

Correspondence
Andronikos Paliathanasis, Institute of Systems Science, Durban University of Technology, PO Box 1334, Durban 4000, Republic of South Africa.
Email: anpaliat@phys.uoa.gr

Communicated by: P. Colli

1 INTRODUCTION

Shallow-water equations are a set of hyperbolic nonlinear partial differential equations, known also as the Saint-Venant equations, which describe a thin layer of inviscid fluid with a free surface. There are various applications of the shallow-water equations in physical science; for some recent results, we refer the reader to previous studies and references therein. In general, hyperbolic equations are of special interest for the study of flows. Two-phase flow is of special interest because it is described by a set of hyperbolic equations with nonequilibrium phenomena between different phases. There are various real-world applications for these models; hence, there are various studies in the literature.

In this piece of work, we are interested in the group properties of the rotating two-dimensional shallow-water equations. The shallow-water equations with the complete Coriolis force term and topography were derived in Dellar and Salmon. In the case of a linear plane, the shallow-water equations are

\[
\begin{align*}
ht + (hu)_x + (hv)_y &= 0, \\
u_t + uu_x + vv_y - (2\Omega_x - \Omega_y h_y) v + (gh - h^2\Omega_y) u_x &= 0, \\
v_t + uv_x + vv_y + (2\Omega_x - \Omega_y h_y) u + (gh - h^2\Omega_x) y &= 0,
\end{align*}
\]

where the axes have been selected to be tangent to a sphere at a specific latitude \(\phi_0\) such that the Coriolis term \(\Omega = (\Omega_x, \Omega_y, \Omega_z)\) has components \(\Omega_x = 0, \Omega_y = \Omega \cos \phi_0, \Omega_z = \Omega \sin \phi_0\).

We study the one-parameter point transformations which leave invariant the set of the three equations, (1)–(3). Specifically, the theory of Lie point symmetries is applied in order to determine the admitted Lie point symmetries and the one-dimensional optimal system.

Lie theory is a powerful mathematical treatment for the study of nonlinear differential equations. The existence of a transformation which leaves invariant a set of differential equations indicates the existence of invariant functions, known also as Lie invariants, which can be used to simplify the set of differential equations by reduction of the differential
equations. There are various applications of the Lie point symmetries in physical theories as also in fluid dynamics and in shallow-water equations. The Lie point symmetries of the nonrotating shallow-water equations were studied in Chesnokov, while a similar analysis with specific Coriolis term was performed in Chesnokov. In the latter case, it was found that the special Coriolis term can be neglected by the field equations with the use of point transformations. Rotating shallow-water equations with more general fluids were studied in Palithanasis while other studies of shallow-water equations can be found in previous works and in some recent works. In addition, for the hyperbolic equations which describe the two-phase flow, Lie symmetries were applied in other studies.

Ovsiannikov in 1982 demonstrated the construction of the one-dimensional optimal system for the Lie algebra, using a global matrix for the adjoint transformation. Since then, the classification of the one-dimensional optimal system has become a main tool for the study of nonlinear differential equations. Such analysis for the shallow-water system has been presented before in previous studies. However, in this study, we present for the first time the complete symmetry classification for the shallow-water equations with a complete Coriolis term. The structure of the paper is as follows.

In Section 2, we present the basic properties and definitions of Lie’s theory. The classification of the Lie point symmetries for the system of our study is presented in Section 3. We find that in the extreme values of the latitude \(\phi_0 \), the shallow-water equations admit additional Lie point symmetries, while when \(\phi_0 = \pi/2 \), we recover previous results of the literature. For all the different cases, we classify the one-dimensional optimal system which is essential to perform reductions and calculate similarity solutions. In Section 4, we apply the Lie invariants to reduce the dependent variables of the shallow-water equations, and we present the cases for which similarity solutions can be expressed in terms of closed-form function. Finally in Section 5, we summarize our results, and we draw our conclusions.

2 PRELIMINARIES

We present the basic definitions and properties for the mathematical tools which we apply in this work. Precisely, we give the main definition of point symmetries and of a Lie symmetry vector. Consider now the system \(H^A \) of partial differential equations with independent variables \(y^i \) and dependent variables \(u^A = u^A (y^j) \), that is,

\[
H^A (y^i, u^A, u^A_i, \ldots) \equiv 0, \tag{4}
\]

where \(u^A_i = \partial u^A / \partial y^i \).

We define the infinitesimal one-parameter point transformation

\[
\tilde{y}^i = y^i (y^j, u^B; \epsilon), \tag{5}
\]

\[
\tilde{u}^A = u^A (y^j, u^B; \epsilon), \tag{6}
\]

defined in the space of variables \(\{y^i, u^A\} \), and \(\epsilon \) is an infinitesimal parameter. From (5) and (6), the infinitesimal transformation is defined

\[
\tilde{y}^i = y + \epsilon \xi^i (y^j, u^B) \tag{7}
\]

\[
\tilde{u}^A = u^A + \epsilon \eta^A (y^j, u^B) \tag{8}
\]

with extension in the jet space \(\{y^i, u^A, u^A_i, \ldots\} \) as

\[
\tilde{u}^A_i = u^A_i + \epsilon \eta^A_i \tag{11}
\]

\[
\ldots
\]

\[
\tilde{u}^A_{i_1 i_2 \ldots i_n} = u^A_{i_1 i_2 \ldots i_n} + \epsilon D_{i_1} \eta^A - u^A_{i_1 i_2 \ldots i_{n-1}} D_i (\xi^j) , \tag{9}
\]

where

\[
\eta^A_i = D_i \eta^A - u^A_{i_1 i_2 \ldots i_{n-1}} D_i (\xi^j) \tag{10}
\]

and

\[
\eta^A_{i_1 i_2 \ldots i_n} = D_i \eta^A_{i_1 i_2 \ldots i_n} - u^A_{i_1 i_2 \ldots i_{n-1}} D_i (\xi^j) .
\]
Under the action of the one-parameter point transformation (5) and (6), the system of differential equations becomes

\[\bar{H}^\alpha (\bar{y}, \bar{u}^A, \ldots, \varepsilon) \].

We say that the system \(\bar{H}^\alpha \) remains invariant under the action of the one-parameter point transformation (5) and (6) if and only if

\[\lim_{\varepsilon \to 0} \frac{H^\alpha (\bar{y}, \bar{u}^A, \ldots, \varepsilon) - H^\alpha (y, u^A, \ldots)}{\varepsilon} = 0, \]

that is,

\[\mathcal{L}_X (H^\alpha) = 0, \]

where \(\mathcal{L} \) denotes the Lie derivative with respect the generator \(X \) of the infinitesimal transformation (5) and (6), that is,

\[X = \varepsilon^i (y^j, u^B) \partial_i + \eta^A (y^j, u^B) \partial_A. \]

The latter vector field is set in the jet space, \(\{ y^i, u^A, u^A_i, \ldots \} \),

\[X^{[n]} = X + \eta^{[1]} \partial_{u^A} + \ldots + \eta^{[n]} \partial_{u^A_{i_1 \ldots i_n}}. \]

When (12) is true for a specific vector field \(X \), then the vector field \(X \) is a Lie symmetry for the system of partial differential equations \(H^\alpha \).

The admitted symmetry vectors of a given set of differential equations constitute a closed-group known as a Lie group. A Lie group defines the main properties for the set of the differential equations. The main application of the Lie symmetries is the determination of solutions known as similarity solutions and follow from the application of the Lie invariants in the differential equations. However, in order to classify all the possible similarity transformations and solutions, the one-dimensional optimal system should be calculated.\(^{47}\)

3 | LIE SYMMETRY ANALYSIS

We apply the theory for the system of the three-dimensional partial differential Equations (1)–(3). It follows that the admitted Lie point symmetries for arbitrary latitude \(\phi_0 \) are

\[X_1 = \partial_t, X_2 = \partial_x, X_3 = \partial_y. \]

In Table 1, we present the commutators for the three-dimensional Lie algebra, \(\{X_1, X_2, X_3\} \). The adjoint representation of the latter Lie algebra is presented in Table 2. From Table 1, we infer that the admitted Lie algebra is the 3A\(_1\) according to the classification scheme of Patera et al.\(^{50,51}\)

From Tables 1 and 2, we conclude that the one-dimensional optimal system\(^{47}\) of the four-dimensional Lie algebra consists of the vector fields

\[\{X_1\}, \{X_2\}, \{X_3\}, \{X_1 + \alpha X_2\}, \]

\[\{X_1 + \alpha X_3\}, \{X_2 + \alpha X_1\}, \{X_1 + \alpha X_2 + \beta X_3\}. \]

\[X_1, X_2\]	\[X_1\]	\[X_2\]	\[X_3\]
\[X_1\]	0	0	0
\[X_2\]	0	0	0
\[X_3\]	0	0	0

\(Ad(e^{\alpha x_1})\)	\[X_1\]	\[X_2\]	\[X_3\]
\[X_1\]	\[X_1\]	\[X_2\]	\[X_3\]
\[X_2\]	\[X_1\]	\[X_2\]	\[X_3\]
\[X_3\]	\[X_1\]	\[X_2\]	\[X_3\]

TABLE 1	Commutator table for the Lie point symmetries of the shallow-water system

| TABLE 2 | Adjoint representation for the Lie point symmetries of the shallow-water system |
Commutator table for the Lie point symmetries of the shallow-water system for \(\phi_0 = 0 \)

\([Y_j,Y_f]\)	\(Y_1\)	\(Y_2\)	\(Y_3\)	\(Y_4\)	\(Y_5\)
\(Y_2\)	0	0	0	\(Y_2\)	0
\(Y_3\)	0	0	0	\(Y_3\)	0
\(Y_4\)	\(-Y_1\)	\(-Y_2\)	\(-Y_3\)	0	0
\(Y_5\)	\(-Y_3\)	0	0	0	0

Adjoint representation for the Lie point symmetries of the shallow-water system for \(\phi_0 = 0 \)

\[
\text{Ad} \left(e^{(\epsilon \phi)} \right) Y_j = Y_1 + \epsilon Y_2 + \epsilon^2 Y_3 + \epsilon^3 Y_4 + \epsilon^4 Y_5
\]

For special values of the parameters \(\Omega_x \) or \(\Omega_y \), the resulting shallow-water system is invariant under a different Lie algebra. We find that the two limits are for the latitudes (i) \(\phi_0 = 0 \) and (ii) \(\phi_0 = \pi/2 \), which correspond to values (i) \(\Omega_y = \Omega, \Omega_x = 0 \) and (ii) \(\Omega_y = 0, \Omega_x = \Omega \).

3.1 Lie symmetries at the equator

For latitude \(\phi_0 = 0 \), that is, for the equator, the resulting shallow-water Equations (1)–(3) are written as

\[
h_t + (hu)_x + (hv)_y = 0, \tag{14}
\]

\[
u_t + uu_x + vu_x + (\Omega_h)_y v + (gh - h^2 \Omega_y u)_x - \Omega_y (hu)_x + (hv)_y = 0, \tag{15}
\]

\[
u_t + uv_x + vv_y - (\Omega_h)_y u + (gh - h^2 \Omega_y u)_y = 0 \tag{16}
\]

and admit the following Lie point symmetries

\[
Y_1 = \partial_t, \quad Y_2 = \partial_x, \quad Y_3 = \partial_y, \quad Y_4 = t \partial_t + x \partial_x + y \partial_y, \quad Y_5 = t \partial_t + \partial_y
\]

with commutators and adjoint representation as given in Tables 3 and 4. The Lie symmetries form the \(\{3A_1 \otimes \phi, 2A_1 \} \) Lie algebra.

With the use of the adjoint representation from Table 4, we can determine the one-dimensional optimal system, that is,

\[
\{Y_1\}, \{Y_2\}, \{Y_3\}, \{Y_4\}, \{Y_5\}, \{Y_1 + a_2 Y_2\}, \{Y_1 + a_3 Y_3\}, \{Y_1 + a_4 Y_4\}, \{Y_1 + a_2 Y_2 + a_3 Y_3\}, \{a_1 Y_1 + a_4 Y_4 + a_3 Y_5\}.
\]

3.2 Lie symmetries at the pole

For latitudes near to the pole, that is, \(\phi = \pi/2 \), the shallow-water Equations (1)–(3) can be written in the simple form

\[
h_t + (hu)_x + (hv)_y = 0, \tag{17}
\]

\[
u_t + uu_x + vu_x + gh_x - 2\Omega_z v = 0, \tag{18}
\]

\[
v_t + uv_x + vv_y + gh_y + 2\Omega_z u = 0. \tag{19}
\]

The group properties of the latter system were studied before in Chesnokov,24 where in comparison with24 \(f = 2\Omega_z \).
Equations (17)–(19) are invariant under the action of a nine-dimensional Lie algebra with elements

\[
\begin{align*}
Z_1 &= \partial_t, \quad Z_2 = \partial_x, \quad Z_3 = \partial_y, \\
Z_4 &= x\partial_x + y\partial_y + u\partial_u + v\partial_v + 2h\partial_h, \\
Z_5 &= y\partial_x - x\partial_y + v\partial_u - u\partial_v, \\
Z_6 &= \sin(2\Omega t)\partial_x + \cos(2\Omega t)\partial_y + 2\Omega(\cos(2\Omega t)\partial_u - \sin(2\Omega t)\partial_v), \\
Z_7 &= -\cos(2\Omega t)\partial_x + \sin(2\Omega t)\partial_y + 2\Omega(\sin(2\Omega t)\partial_u + \cos(2\Omega t)\partial_v), \\
Z_8 &= \sin(2\Omega t)\partial_t + \Omega(x\cos(2\Omega t) + y\sin(2\Omega t))\partial_x - \Omega(x\cos(2\Omega t) - y\cos(2\Omega t))\partial_y + \\
& \quad -\Omega(u\cos(2\Omega t) - v\sin(2\Omega t))\partial_u + \Omega(u\cos(2\Omega t) + v\sin(2\Omega t))\partial_v + 2\Omega h\cos(2\Omega t)\partial_h, \\
Z_9 &= \cos(2\Omega t)\partial_t + \Omega(y\cos(2\Omega t) - x\sin(2\Omega t))\partial_y - \Omega(x\cos(2\Omega t) + y\sin(2\Omega t))\partial_x + \\
& \quad +\Omega(u\sin(2\Omega t) + v\cos(2\Omega t) + 2\Omega(x\cos(2\Omega t) + y\sin(2\Omega t))\partial_u + \Omega(-u\sin(2\Omega t) + v\cos(2\Omega t) + 2\Omega(x\cos(2\Omega t) - y\cos(2\Omega t))\partial_v + 2\Omega\sin(2\Omega t)\partial_h.
\end{align*}
\]

The commutators are presented in Table 5.

The symmetry vectors form a nine-dimensional Lie algebra. Furthermore, the adjoint representation of the nine-dimensional Lie algebra is given in Tables 6 and 7.

The shallow-water equations without a Coriolis term admit also nine Lie point symmetries with the same commutators. Hence, the same Lie algebra with that of the Coriolis term at the pole but in a different representation. That common property has been observed before in Chesnokov.24 The coordinate transformation which relates the two different representations of the Lie algebra can be used to remove the Coriolis term from the systems (17)–(19).

We do not continue with the determination of the one-dimensional optimal system for the systems (17)–(19), because it can be found in Chesnokov.24

4 | SIMILARITY SOLUTIONS

In this section, we apply the Lie point symmetries to determine similarity solutions for the shallow-water systems (1)–(3). For arbitrary latitude, the admitted Lie point symmetries provide only traveling-wave solutions. Therefore, we focus on the case with \(\phi_0 = 0 \), where there are additional Lie point symmetries which can provide alternate reductions.

In order to determine exact similarity solutions for the original system, we need the application of at least two Lie point symmetries. Thus, in the following lines, we continue with the investigation of exact similarity solutions by using the Lie invariants of the following set of Lie point symmetries \{X_1 + X_2 + X_3, X_2 - X_3\}, and in the limit at the equator, we study similarity solutions from the Lie symmetries \{Y_2, Y_3\}, \{Y_2, Y_3\}, \{Y_4, Y_5\}. The reduced equations are ordinary differential equations and lead to closed-form solutions.

Table 5	Commutator table for the Lie point symmetries of the shallow-water system for \(\phi_0 = \pi/2 \)								
\([Z_1, Z_2] \)	\(Z_3 \)	\(Z_4 \)	\(Z_5 \)	\(Z_6 \)	\(Z_7 \)	\(Z_8 \)	\(Z_9 \)		
\(Z_1 \)	0	0	0	0	0	0	0	0	
\(Z_2 \)	0	-Z_3	0	0	0	0	0	0	
\(Z_3 \)	0	Z_1	Z_2	0	0	0	0	0	
\(Z_4 \)	0	Z_3	0	0	0	Z_6	-Z_7	0	
\(Z_5 \)	0	Z_3	-Z_1	0	0	(1 - 2\Omega)Z_7	(1 - 2\Omega)Z_6	-2\OmegaZ_4	
\(Z_6 \)	2\OmegaZ_7	0	0	Z_6	-(1 - 2\Omega)Z_7	0	0	0	
\(Z_7 \)	-2\OmegaZ_6	0	0	Z_7	-(1 - 2\Omega)Z_6	0	0	-2\OmegaZ_2	
\(Z_8 \)	-2\OmegaZ_9	2\OmegaZ_7	2\OmegaZ_6	0	2\OmegaZ_8	-2\OmegaZ_3	2\OmegaZ_2	0	
\(Z_9 \)	2\OmegaZ_9	2\OmegaZ_6	2\OmegaZ_7	0	-2\OmegaZ_8	-2\OmegaZ_2	2\OmegaZ_3	-2\Omega(Z_1 + 2\OmegaZ_3)	0
Table 6: Adjoint representation for the Lie point symmetries of the shallow-water system for $\phi_0 = \pi/2$

$\text{Ad} \left(e^{(Z_4)} \right) Z_j$	Z_1	Z_2	Z_3	Z_4	Z_5
Z_1	Z_1	Z_2	Z_3	Z_4	Z_5
Z_2	Z_1	Z_2	Z_3	Z_4-Z_2	Z_5-Z_2
Z_3	Z_4	Z_5	Z_1	Z_4-Z_3	Z_5-Z_3
Z_4	Z_1	$Z_2^\epsilon Z_3$	Z_4	Z_5	Z_5
Z_5	Z_1	$\cos(\epsilon) Z_2 + \sin(\epsilon) Z_1$	Z_4	Z_5	
Z_6	$Z_1 - 2\Omega\epsilon Z_2$	Z_2	Z_3	Z_4-Z_6	Z_5
Z_7	$Z_1 + 2\Omega\epsilon Z_6$	Z_2	Z_3	Z_4-Z_7	Z_5
Z_8	$\text{ch}^2(2\Omega\epsilon) Z_1 - \text{sh}^2(2\Omega\epsilon) Z_3 + \frac{1}{2} \text{sh}(4\Omega\epsilon) Z_8$	$\text{ch}(2\Omega\epsilon) Z_3 + \text{sh}(2\Omega\epsilon) Z_7$	$\text{ch}(2\Omega\epsilon) Z_3 + \text{sh}(4\Omega\epsilon) Z_6$	$\text{sh}(2\Omega\epsilon) Z_3$	$\frac{\text{sh}(2\Omega\epsilon)}{4\Omega} Z_3 - \text{sh}(4\Omega\epsilon) Z_8$
Z_9	$\text{ch}^2(2\Omega\epsilon) Z_1 - \text{sh}^2(2\Omega\epsilon) Z_3 + \frac{1}{2} \text{sh}(4\Omega\epsilon) Z_8$	$\text{ch}(2\Omega\epsilon) Z_3 + \text{sh}(2\Omega\epsilon) Z_6$	$\text{ch}(2\Omega\epsilon) Z_3 + \text{sh}(2\Omega\epsilon) Z_7$	$\text{sh}(2\Omega\epsilon) Z_3$	$\frac{\text{sh}(2\Omega\epsilon)}{4\Omega} Z_3 - \text{sh}(4\Omega\epsilon) Z_8$

Note: sh indicates sinh while ch means cosh ($1/2$).
TABLE 7 Adjoint representation for the Lie point symmetries of the shallow-water system for $\phi_0 = \pi / 2$

$\text{Ad} \left(e^{(Z_i)} \right) Z_j$	Z_0	Z_7	Z_8	Z_9
Z_1	$\cos (2\Omega e) Z_6 + \sin (2\Omega e) Z_7$	$- \sin (2\Omega e) Z_6 + \cos (2\Omega e) Z_7$	$\cos (2\Omega e) Z_8 - \sin (2\Omega e) Z_9$	$\sin (2\Omega e) Z_8 + \cos (2\Omega e) Z_9$
Z_2	Z_6	Z_7	$Z_8 + 2\Omega e Z_9$	$Z_9 + 2\Omega e Z_6$
Z_3	Z_6	Z_7	$Z_8 - 2\Omega e Z_9$	$Z_9 + 2\Omega e Z_7$
Z_4	$e^\varepsilon Z_6$	$e^\varepsilon Z_7$	Z_8	Z_9
Z_5	Z_6	Z_7	$\cos (\varepsilon) Z_8 + \sin (\varepsilon) Z_9$	$- \sin (\varepsilon) Z_8 + \cos (\varepsilon) Z_9$
Z_6	Z_6	Z_7	$Z_8 - 2\Omega e Z_9$	$Z_9 + 2\Omega e Z_7$
Z_7	Z_6	Z_7	$Z_8 + 2\Omega e Z_9$	$Z_9 + 2\Omega e Z_7$
Z_8	$\text{sh} (2\Omega e) Z_1 + \text{ch} (2\Omega e) Z_6$	$\text{ch} (2\Omega e) Z_7 - \text{sh} (2\Omega e) Z_2$	Z_8	$\text{ch} (4\Omega e) Z_9 + \text{sh} (4\Omega e) (Z_1 - 2\Omega Z_5)$
Z_9	$- \text{sh} (2\Omega e) Z_1 + \text{ch} (2\Omega e) Z_6$	$\text{ch} (2\Omega e) Z_7 - \text{sh} (2\Omega e) Z_2$	$\text{ch} (4\Omega e) Z_9 + \text{sh} (4\Omega e) (Z_1 - 2\Omega Z_5)$	Z_9

Note: sh indicates \sinh while ch means $\cosh (2/2)$.
4.1 | Reduction with \(\{X_1 + X_2 + X_3, X_2 - X_3\} \)

Consider the similarity transformation provided by the set of the symmetry vectors \(\{X_1 + X_2 + X_3, X_2 - X_3\} \),

\[
h(t, x, y) = H(w) \, , \, u(t, x, y) = U(w) \, , \, v(t, x, y) = V(w) \text{with} \, w = (x + y) - 2t, (20)
\]

while the reduced system is

\[
\frac{G(w) H_w}{2\Omega_c} = V^2 - 2V - U^2 + 2U + \Omega_x H^2 U + \Omega_y H^2 V, (21)
\]

\[
-\frac{G(w) U_w}{2\Omega_c} = 2HU\Omega_y (HV + HU + 1) - VHg - UHg + U^2 V + 2UV^2 - 4UV + 4V + V^3 - 4V^2, (22)
\]

\[
-\frac{G(w) V_w}{2\Omega_c} = VHg + UHg - 2U^2 V - UV^2 + 4UV - 4U + 4U^2 - U^3 +
- H\Omega_x (U^2 H + 2U(1 + H) + VH(2 - V)), (23)
\]

where

\[
G(w) = 6U^2 + 6V^2 - 12V - 4Hg + 12UV + 8 - 3U^2V - 3UV^2 + 2UHg - V^3 - U^3 + 2VHg - 12U +
- H\Omega_x (U + V - 2)(U + 3HU + H(2 - V - H\Omega_z) + 2 - V). (24)
\]

In Figure 1, we present the numerical solution of the traveling-wave solution as it is given by the dynamical systems (21) and (22). The numerical solution is for \(\phi_0 = \pi/4 \) and \(\Omega_c = \Omega_y. \)

4.2 | Reduction with \(\{Y_2, Y_5\} \)

The application of the Lie point symmetries \(\{Y_2, Y_5\} \) lead to the invariants

\[
h(t, x, y) = H(t) \, , \, u(t, x, y) = U(t) \, , \, v(t, x, y) = \frac{y}{t} + V(t), (25)
\]

where the unknown functions, \(H(t) \), \(U(t) \), \(V(t) \), satisfy the following system:

\[
tH_t + H = 0 \, , \, tU_t - \Omega H = 0 \, , \, tV_t + V = 0, (26)
\]

with exact solution

\[
H(t) = \frac{H_0}{t} \, , \, U(t) = -\frac{H_0\Omega}{t} + U_0 \, , \, V(t) = \frac{V_0}{t}. (27)
\]

FIGURE 1 Qualitative evolution of \(H(w), U(w), \text{and} V(w) \) as they are given from numerical simulation of the dynamical systems (21) and (22). The plots are for \(\Omega_c = \Omega_y = 1 \) and \(g = 10 \) and for different initial conditions as they are presented at the plots.
Qualitative evolution of $H(w)$, $U(w)$, and $V(w)$ as they are given from the differential Equations (28)–(30) for $\Omega = 1$, and for different values for the initial conditions, they are presented in figures.

4.3 | Reduction with $\{Y_4, Y_5\}$

Reduction with the Lie point symmetries $\{Y_4, Y_5\}$ provides the following system of ordinary differential equations:

$$
\frac{H_w}{H} = \frac{\Omega H^2 + w - U}{L(w)},
$$

(28)

$$
U_w = \frac{H (2UH\Omega + w\Omega - g)}{L(w)},
$$

(29)

$$
V_w = V(U - w)^{-1},
$$

(30)

where

$$
h(t, x, y) = H(w), \ u(t, x, y) = U(w), \ v(t, x, y) = \frac{y}{t} + V(w) \text{ and } w = \frac{x}{t}
$$

(31)

and

$$
L(w) = wH\Omega(H + 1) + \Omega UH^2 - gH + (w - U)^2.
$$

(32)

The qualitative evolution of $U(w)$ and $V(w)$ for various initial conditions is presented in Figure 2.

5 | CONCLUSIONS

In this work, we studied the group properties of the shallow-water equations on a linear plane with the complete Coriolis force. In particular, we performed a classification of the admitted Lie point symmetries which are the generators of one-parameter point transformations which leave invariant shallow-water equations.

The coordinate system has been selected such that two terms of the Coriolis force are involved in the shallow-water equations. These terms which are the Coriolis components on the axes depend upon the position on the plane. For an arbitrary position and for the more general form, the shallow-water equations admit three Lie point symmetries which are the time translation and the two space translations. For specific values of the Coriolis terms, new symmetries follow.

When $\phi_0 = 0$, that is, at the equator, we found that the resulting system of hyperbolic differential equations is invariant under the action of a five-dimensional Lie algebra, while, when $\phi_0 = \pi/2$, that is, at the pole, the shallow-water equations admit nine Lie point symmetries. In the latter scenario, the Lie point symmetries form the same algebra as the shallow-water equations without the Coriolis term. However, the two algebras are in different representations. This case has been studied before in the literature so we focused upon the case with $\phi_0 = 0$.

For the latter case, we applied the new Lie point symmetries to determine similarity transformations and to write similarity solutions for the equations by using closed-form functions. We presented reductions which describe traveling-wave and scaling solutions. When it is possible, we write the closed-form solution of the shallow-water equations. However, in the remaining cases, we solve numerically the reduced system, and we study the qualitative behavior of the physical variables.

This work contributes to the subject of the group properties of hyperbolic equations with emphasis in fluid dynamics. We present for the first time new solutions of the shallow-water equations with a complete Coriolis term. Such an analysis shows the novelty and the power of the Lie symmetries for the study of nonlinear phenomena.

In a future work, we plan to extend our analysis in the case of nonlinear topographies and with possible sources.
CONFLICT OF INTEREST
This work does not have any conflicts of interest.

FUNDING INFORMATION
There are no funders to report for this submission.

ORCID
Andronikos Paliathanasis https://orcid.org/0000-0002-9966-5517

REFERENCES
1. Mutlubas ND, Geyer A, Quirchmayr R. Well-posedness of a highly nonlinear shallow water equation on the circle. *Nonl Anal Theor Meth Appl*. 2020;197:111849.
2. Iga S, Matsuda Y. Shear instability in a shallow water model with implications for the Venus atmosphere. *J Atmos Sci*. 2005;62:2514.
3. Dong J, Li DF. A reliable second-order hydrostatic reconstruction for shallow water flows with the friction term and the bed source term. *J Comp Appl Math*. 2020;376:112871. https://doi.org/10.1016/j.cam.2020.112871
4. Jung J, Hwang JH, Borthwick AGL. Piston-driven numerical wave tank based on WENO solver of well-balanced shallow water equations. *KSCE J Civil Engin*. 2020;24:1959.
5. Kurganov A, Liu YL, Zeidlin V. Moist-convective thermal rotating shallow water model. *Phys Fluids*. 2020;32:7757.
6. Hewitt GF. Two-phase flow and its applications: past, present, and future. *Heat Trans Engr*. 1983;4:67.
7. Goncalves E, Hoarau Y, Zeidan D. Simulation of shock-induced bubble collapse using a four-equation model. *Shock Waves*. 2019;29:221.
8. Zeidan D, Bühr P, Farber P, Gräbel J, Ueberholz P. Numerical investigation of a mixture two-phase flow model in two-dimensional space. *Comput Fluids*. 2019;181:90.
9. Goncalves E, Zeidan D. Simulation of compressible two-phase flows using a void ratio transport equation. *Commun Comput Phys*. 2018;24:167.
10. Zeidan D, Romenski E, Slaouti A, Toro EF. Numerical study of wave propagation in compressible two-phase flow. *Int J Num Meth Fluids*. 2007;54:393.
11. Romenski E, Zeidan D, Slaouti A, Toro EF. *Hyperbolic Conservative Model for Compressible Two-Phase Flow*. Cambridge, U.K: Reprint N03022-NPA, Isaac Newton Institute for Mathematical Sciences; 2003.
12. Zhai J, Liu W, Yuan L. Solving two-phase granular flow equations with a well-balanced NOC scheme on multiple GPUs. *Comput Fluids*. 2016;134:90.
13. Zeidan D, Zhang LT, Goncalves E. High-resolution simulations for aerogel using two-phase flow equations and Godunov methods. *Int J Appl Mech*. 2020;12:2050049.
14. Dellar PJ, Salmon R. Shallow water equations with a complete Coriolis force and topography. *Phys Fluids*. 2005;17:106601.
15. Mahomed FM, Leach PGL. The Lie algebra sl(3, R) and linearization. *Quaest Math*. 1989;12:121.
16. Moyo S, Leach PGL. Exceptional properties of second and third order ordinary differential equations of maximal symmetry. *J Math Anal Appl*. 2001;252:840.
17. Leach PGL. Sl(3,R) and the repulsive oscillator. *J Phys A: Math Gen*. 1980;13:13991.
18. Paliathanasis A, Tsamparlis M, Mustafa MT. Symmetry analysis of the Klein–Gordon equation in Bianchi I spacetimes. *Int J Geom Meth Mod Phys*. 2015;12:1550033.
19. Kara AH, Mahomed FM. Classification of first-order Lagrangians on the line. *Int J Theor Phys*. 1995;34:2267.
20. Jamal S. Quadratic integrals of a multi-scalar cosmological model. *Mod Phys Lett A*. 2020;35:2050068.
21. Jamal S, Johnpillai AG. Constitutive thermal laws and the exact solutions of Timoshenko systems. *Indian J Phys*. 2020;94:233.
22. Jamal S, Shabbir G, Mathewa AS. Noether symmetry classifications of generalized diagonal spaces. *IJGMP*. 2018;15:1850191.
23. Chesnokov AA. Symmetries and exact solutions of the shallow water equations for a two-dimensional shear flow. *J Appl Mech Techn Phys*. 2008;49:737.
24. Chesnokov AA. Symmetries and exact solutions of the rotating shallow-water equations. *Eur J Appl Math*. 2009;20:461.
25. Paliathanasis A. One-dimensional optimal system for 2D rotating ideal gas. *Symmetry*. 2019;11:1115.
26. Xin X, Zhang L, Xia Y, Liu H. Nonlocal symmetries and exact solutions of the (2+1)-dimensional generalized variable coefficient shallow water wave equation. *Appl Math Lett*. 2019;94:112.
27. Szatmari S, Bihlo A. Symmetry analysis of a system of modified shallow-water equations. *Comm Nonl Sci Num Sim*. 2014;19:530.
28. Liu J-G, Zeng Z-F, He Y, Ai G-P. A class of exact solution of (3+1)-dimensional generalized shallow water equation system. *Int J Nonl Sci Num Sim*. 2015;21:114.
29. Pandey M. Lie symmetries and exact solutions of shallow water equations with variable bottom. *Int J Nonl Sci Num Sim*. 2015;16:93.
30. Paliathanasis A. Lie symmetries and similarity solutions for rotating shallow water. *Zeitschrift für Naturforschung A*. 2019;74:869.
31. Siriwat P, Kaewmanee C, Meleshko SV. Symmetries of the hyperbolic shallow water equations and the Green-Naghdi Model in Lagrangian coordinates. *Int J Non-lin Mechanics*. 2016;86:185.
32. Hematulin A, Meleshko SV, Gavrilyuk SG. Group classification of one-dimensional equations of fluids with internal inertia. *Math Methods Appl Sci*. 2007;30:2101.

33. Siriwat P, Meleshko SV. Applications of group analysis to the three-dimensional equations of fluids with internal inertia. *Symmetry Integr Geom: Methods Appl*. 2008;4:1.

34. Dorodnitsyn VA, Kaptsov EI. Shallow water equations in Lagrangian coordinates: symmetries, conservation laws and its preservation in difference models. *Comm Nonl Sci Num Sim*. 2020;89:105343.

35. Meleshko SV, Samatova NF. Group classification of the two-dimensional shallow water equations with the beta-plane approximation of coriolis parameter in Lagrangian coordinates. *Comm Nonl Sci Num Sim*. 2020;90:105337.

36. Meleshko SV. Complete group classification of the Two-Dimensional shallow water equations with constant coriolis parameter in Lagrangian coordinates. *Comm Nonl Sci Num Sim*. 2020;89:105293.

37. Bihlo A, Poltavets N, Popovych RO. Lie symmetries of two-dimensional shallow water equations with variable bottom topography. *Chaos*. 2020;30:073132.

38. Bihlo A, Popovych RO. Zeroth-order conservation laws of two-dimensional shallow water equations with variable bottom topography. *Stud Appl Math*. 2020;145:291.

39. Zeidan D, Bira B. Weak shock waves and its interaction with characteristic shocks in polyatomic gas. *Math Meth Appl Sci*. 2019;42:4679.

40. Bira B, Raja TS, Zeidan D. Exact solutions for some time-fractional evolution equations using Lie group theory. *Comput Math Appl*. 2016;71:46.

41. Ovsiannikov LV. *Group Analysis of Differential Equations*. New York: Academic Press; 1982.

42. Chou KS, Qu CZ. Optimal Systems and Group Classification of (1+2)-Dimensional Heat Equation. *Acta Applicandae Mathematicae*. 2004;83:257. https://doi.org/10.1023/B:ACAP.0000039017.97566.77

43. Galas F, Richter EW. Exact similarity solutions of ideal MHD equations for plane motions. *Phys D*. 1991;50:297.

44. Coggheshall SV, Meyer-ter-Vehn J. Group-invariant solutions and optimal systems for multidimensional hydrodynamics. *J Math Phys*. 1992;33:3585.

45. Rezvan F, Yasar E, Ozer T. Group properties and conservation laws for nonlocal shallow water wave equation. *Appl Math Comp*. 2011;218:974.

46. Mullaert C. Study of the non-viscous equatorial shallow water system. *J de Mathéematiques Pures et Appliqu ées*. 2013;99:251.

47. Olver PJ. *Applications of Lie Groups to Differential Equations*. New York: Springer-Verlag; 1993.

48. Bluman GW, Kumei S. *Symmetries and Differential Equations*. New York: Springer-Verlag; 1989.

49. Ibragimov NH. *CRC Handbook of Lie Group Analysis of Differential Equations*, Vol. I. Florida: Symmetries, Exact Solutions, and Conservation Laws, CRS Press LLC; 2000.

50. Patera J, Sharp RT, Winternitz P, Zassenhaus H. Subgroups of the Poincaré group and their invariants. *J Math Phys*. 1976;17:986.

51. Patera J, Winternitz P. Subalgebras of real three- and four-dimensional Lie algebras. *J Math Phys*. 1977;18:1449.

How to cite this article: Paliathanasis A. Shallow-water equations with complete Coriolis force: Group properties and similarity solutions. *Math Meth Appl Sci*. 2021;44:6037–6047. https://doi.org/10.1002/mma.7168