Vascular flora of semi-arid region, São José do Piauí, state of Piauí, Brazil

Maura Rejane de Araújo Mendes 1* and Antonio Alberto Jorge Farias Castro 2

1 Universidade Estadual do Piauí, Departamento de Biologia, Avenida Nossa Senhora da Fátima s/n. CEP 64202-220. Parnaíba, PI, Brazil.
2 Universidade Federal do Piauí, Departamento de Biologia, Avenida Ininga. CEP 64049-550. Teresina, PI, Brazil.
* Corresponding author. E-mail: maurarejanem@gmail.com

ABSTRACT: The Caatinga biome is located in the semi-arid region of northeastern Brazil and covers about 37 % of Piauí state. The main objective of the present study was a characterization of the Caatinga flora of the farm of Morro do Baixio, in state of Piauí, Brazil (06°51’13” S; 41°28’15” W, at 400 to 540 m above sea level) in view of the fact that very few such surveys were conducted in the state. The flora of the farm was surveyed monthly, during a year, to gather herbs, epiphytes, parasites, shrubs, shrubs and trees. We encountered 136 species belonging to 46 families, including a new species of Bauhinia. The richest families were Caesalpiniaceae (15 spp.), Fabaceae (11 spp.), Bignoniaceae and Mimosaceae (both with nine spp.). We observed a higher frequency of typical species from sedimentary Caatinga. However, local conditions favor the appearance of species that occur in Carrasco and Cerrado.

INTRODUCTION
The semi-arid of Brazil extends over 800,000 km², approximately 10 % of the national territory within the states of Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia and Northern Minas Gerais, delimited by the medium isoleta of 800 mm (Ab’Sáber 1974; Hueck 1972). This region presents heavy rains in some years, prolonged drought periods in others, with irregular and concentrated in a few months, higher evapotranspiration rates and low infiltration capacity of soils (Ab’Sáber 1974; Reis 1976; Kampen 1979).

The Caatinga is the dominant vegetation of the semi-arid region (Luetzelburg 1923; Engler 1951) which has been suffering severe environmental degradation in recent decades, mainly as a consequence of rural growth and expansion of agriculture and cattle grazing. Among different types of Caatingas, those located in sedimentary areas have been the focus of very few studies until recently.

The state of Piauí accounts for 37 % of the area of Caatinga biome and according to Sampaio (2002) 118 municipalities within the state are included in the semi-arid domain. The lack of such information has motivated the inclusion of sites such as the microrregion of Picos in Piauí as priority area for the conservation of the Caatinga biome (Silva et al. 2004).

In the present study, we aimed provide a check list the vascular flora of the municipality of São José do Piauí, a priority area for conservation, identifying the species which occur in the region in crystalline and sedimentary formations and determining whether the life-forms differ from the normal spectrum of Raunkiaer’s system.

MATERIALS AND METHODS
The present study was carried out in the municipality of São José do Piauí, within the Picos microrregion in Piauí state, in a privately owned property called Morro do Baixio (06°51’13” S; 41°28’15” W, at 400 to 540 m above sea level) (Figure 1). According IBGE classification (Veloso et al. 1991), the vegetation is characterized by steppe-savana. Based on temperature data, estimated through linear regression equations, and precipitation of 14 years (1984-1998) obtained from the São José Meteorology Station (Secretaria de Agricultura, Abastecimento e Recursos Hídricos – Departamento de Hidrometeorologia), the mean annual rainfall was 816.4 mm, with nine months of water deficit. The climate is Dd2A’3a’ (Thornthwaite and Mather 1955), characterized as semi-arid with little hydric excess and small thermal annual amplitude. This area is dated to Paleozoic and belongs to the sedimentary firth of Piauí-Maranhão. The lithology is characterized predominantly by sandstones, shales and silts of the Serra Grande, Pimenteira and Cabeça formations. Geomorphologically, it is located in the Eastern Plateau of Piauí, with the surface exhibiting varied dissection features (Jacomine et al. 1986; Ramos and Sales 2001).

The vascular flora was surveyed monthly, during a year in a 2 ha area, to collect herbs, epiphytes, parasites, lianas, shrubs, shrubs and trees, throughout the study area. All specimens collected were identified and
subsequently incorporated into the TEPB Herbarium collection. Data was organized listing the species and their families, according Cronquist (1988) for convenience of comparison to some floristic lists of Caatinga (Rodal et al. 2008; Araújo et al. 1995; Ferraz et al. 1998; Rodal et al. 1999; Figueiredo et al. 2000; Alcoforado-Filho et al. 2003; Lemos 2004; Araújo et al. 2005; Rodal et al. 2005; Costa et al. 2007), carrasco (Araújo et al. 1998; Araújo and Martins 1999), Caatinga-Carrasco transition (Oliveira et al. 1997), evergreen shrub vegetation (Rodal et al. 1998), transition from Campo Maior Complex (Farias and Castro 2004) and Cerrado (Castro et al. 1998; Ribeiro and Tabarelli 2002).

Species were classified as phanerophytes, camaxephytes, hemicryptophytes, geophytes, therophytes, lianas, epiphytes and parasites, according Raunkiaer (1934), adapted by Mueller-Dombois and Ellenberg (1974), to compare the Caatinga life-form spectrum with Raunkiaer’s normal spectrum. This classification is based on the meristematic tissue, which remains inactive to growth during unfavorable season (as dry summer or winter), and therefore the location of this tissue is an essential feature of plant’s adaptation to climate (Whittaker 1975). To verify if the life-form spectrum shows significant differences to Raunkiaer’s normal spectrum, we used a χ^2 test (Zar 1999). For this comparison, lianas were included like phanerophytes, and epiphytes and woody parasites excluded from the statistical analysis.

Results and Discussion

We recorded 136 species distributed among 104 genera and 47 families (Table 1), including one new species of *Bauhinia*. The families with the greatest number of species were Caesalpiniaeae (15), Fabaceae (11), Bignoniaceae and Mimosaceae (9), Cactaceae and Malpighiaceae (6), and Euphorbiaceae (5), represented by 44.85 %. Twenty one families (44.68 %) were represented by only a single species. In terms of genera, Fabaceae (11), Caesalpiniaeae (7), Bignoniaceae (6), Euphorbiaceae, Malpighiaceae and Mimosaceae (5) were the most representative, being *Bauhinia* (6), *Aspidosperma*, *Eugenia* and *Senna* (3) with the largest number of species.

A comparison of the flora encountered in the presented study with reports from the literature for crystalline and sedimentary formations revealed 33 species (27.96 %) occurring only in the study area, while 85 species (72.03 %) were cited in at least one of the earlier reports. Generally, the more frequent families encountered in this study were representative of the crystalline and sedimentary formations in the semi-arid domain, except for Malpighiaceae. Euphorbiaceae, Mimosaceae, Caesalpiniaeae and Cactaceae could be found in crystalline areas (Rodal et al. 2008; Araújo et al. 1995; Ferraz et al. 1998; Alcoforado-Filho et al. 2003). In addition to these species, Bignoniaceae, Fabaceae and Myrtaceae could be found in the sedimentary areas, but not Cactaceae (Araújo et al. 1998; Araújo and Martins 1999; Lemos 2004).

Rodal et al. (2008) reported that Euphorbiaceae, Cactaceae and Caesalpiniaeae were the families with the largest number of species in Caatinga. Lemos and Rodal (2002), studying a deciduous thorny vegetation in the state of Piauí, found that, except for Bignoniaceae and Myrtaceae, there was no distinction between families with the largest number of species in crystalline and sedimentary formations. However, analyzing the species distribution of these families, we found that there were differences among crystalline and sedimentary formations. The higher proportion of species in common (32.2 % with 38 species) occurred in Caatinga sedimentary formations (Rodal et al. 2008; Rodal et al. 1999; Figueiredo et al. 2000; Lemos 2004), followed by Cerrado (31.35 % with 37 species) (Araújo et al. 1998; Araújo and Martins 1999), and crystalline formations (29.81 % with 34 species) (Rodal et al. 2008; Araújo et al. 1995; Ferraz et al. 1998; Alcoforado-Filho et al. 2003; Lemos 2004, Araújo et al. 2005; Rodal et al. 2005; Costa et al. 2007).

Spondias tuberosa Arruda (Anacardiaceae), *Cuspardaria argentea* (Wawra) Sandw., *Manosoa hirsuta* DC. (Bignoniaceae), *Tournefortia rubicunda* Salzm. ex DC. (Boraginaceae), *Pilosocereus piauhensis* (Werdm.) Byles & Rowley (Cactaceae), *Chamaecrista eiteronum* (Irwin & Barneby) Irwin & Barneby *Poepigia procera* Presl. (Caesalpiniaeae), *Crotalaria holossericea* Nees & Mart. (Fabaceae), *Anadenanthera colubrina* var. *cebil* (Griseb.) Altschul (Mimosaceae), *Ximenia americana* L. (Oleaceae) and *Cardiospermum corindum* L. (Sapindaceae) occurred both in crystalline and sedimentary areas. *Spondias tuberosa* and *Pilosocereus piauhensis* were the only endemic species (Giulietti et al. 2002). The geographical distribution of *Poepigia procera* needs further investigation and *Crotalaria holossericea* is typical of degraded areas of Caatinga (Queiroz 2002).

We found 24 species (20.34 %) with lists for Cerrado from the state of Piauí (Castro et al. 1998; Ribeiro and Tabarelli 2002) and 22 species (18.64 %) with transition from Campo Maior Complex (Farias and Castro 2004). The most common species in 17 flora lists, including this study, were *Cereus jamacaru* DC. (12 lists), *Rollinia leptopetala* (R.E.Fries) Safford (9), *Commiphora leptoleploes* (Mart.) Gillet, *Bauhinia cheilanthe* (Bong.) Steud. (8) and *Aspidosperma pyrifolium* Mart. (8). These, except *Bauhinia cheilanthe*, were cited by Giulietti et al. (2002) as endemic of Caatinga. However, Taylor and Zappi (2002) affirm that these species, despite being predominant, also occur in other vegetation types. *Aspidosperma pyrifolium* also occurred in Cerrado and *Commiphora leptoleploes* in Carrasco and Cerrado. *Bauhinia cheilanthe* is cited by many authors (Ferraz et al. 1998; Lemos and Rodal 2002) as occurring in crystalline and sedimentary formations.

The flora life-form spectrum in this study showed a high proportion of phanerophytes (64.70 %) followed by lianas (12.50 %), hemicryptophytes (8.09 %), camaxephytes (5.88 %), geophytes (3.68 %), therophytes (2.94 %), epiphytes (1.47 %) and parasites (0.73 %). Excluding the epiphytes and the parasites, and including the lianas as phanerophytes in the statistical analysis, the life-form spectrum increases the proportion of the phanerophytes (78.95 %), the same dominant pattern observed for Raunkiaer’s normal spectrum (Table 2). The χ^2 test demonstrated significant differences between the study area flora and Raunkiaer’s normal spectrum ($\chi^2 = 45.20, p < 0.001$). Phanerophytes had the highest individual value obtained from χ^2test (52.21 %).

It is important to note that Raunkiaer’s normal spectrum was created for world flora and take into account...
homogeneous climatic conditions (Cain 1950). The χ² test showed significant differences of São José flora from the normal spectrum. Phanerophytes and hemicryptophytes were already cited as the main life-forms of Cerrado (Batalha and Martins 2004).

Studies in semi-arid regions of northeastern Brazil are scarce except for recent studies carried out in Ceará and Pernambuco states (Araújo et al. 2005; Rodal et al. 2005; Costa et al. 2007). Therophytes are expected to register higher proportions in high temperature and low precipitation areas, characterizing the life-form spectrum of arid and semi-arid regions (Raunkiaer 1934; Araújo et al. 2005). However, our results show phanerophytes to be dominant, similar to the pattern found in dry forests and Carrasco areas of the state of Ceará (Araújo et al. 2005). This probably must be associated with the precipitation and altitudinal conditions of the study area, as well as the smaller number of species in the herbaceous/sub shrub layer when compared to shrub/woodland layer (99 species, including the woody lianas), a common pattern of sedimentary formations (Rodal et al. 1999; Figueiredo et al. 2000; Araújo et al. 2005).

The flora of Morro do Baixo was composed by a high frequency of typical species of sedimentary Caatinga. However, the geoenvironment of the São José municipality within the “cuesta” of Serra Grande (Rivas 1996) is characterized as a region of Cerrado/Caatinga/Carrasco transition, determining the appearance of species that occur in these formations.

Table 1. List of species, common names, families, and their life-forms in Morro do Baixo, municipality of São José do Piauí, state of Piauí, Brazil.

FAMILY/SPECIES	COMMON NAME	LIFE-FORM
Acanthaceae		
Ruellia sp.		Hemicryptophyte
Amaranthaceae		
Gomphrena aff. leucocarpa Mart.		Hemicryptophyte
Pfaffia sp.		Hemicryptophyte
Anacardiaceae		
Apterokarpus gardneri (Engler) Rizzini	aroeira-brava	Phanerophyte
Myrroodron urundevo Allemão	aroeira	Phanerophyte
Spondias tuberosa Arruda	umbu	Phanerophyte
Annonaceae		
Rollinia leptopetala (R.E.Fries) Safford	bananinha/açoita	Phanerophyte
Apocynaceae		
Aspidosperma sp.	pequió	Phanerophyte
Aspidosperma multiflorum A.DC.	pereiro-branco	Phanerophyte
Aspidosperma pyrifolium Mart.	pereiro-preto	Phanerophyte
Araceae		
Tacarum peregrinum L.	milho-de-cobra	Geophyte
Aristolochiaceae		
Aristolochia sp.	flor-de-cera	Liana
Asclepiadaceae		
Schubertia cf. multiflora Mart.	cipó-de-tamanduá	Liana
Asteroideae		
Pithecoseris pacourinoides Mart.	bananinha/açoita	Phanerophyte
Bignonaceae		
Bignonia sp.	cipó-de-arco	Liana
Caspidaria argentea (Wawra) Sandw.	chifre-de-carneiro	Phanerophyte
Godmania dardanoi (J.C.Gomes) A.H.Gentry	jarcara/carobinha	Phanerophyte
Jacaranda Jasminoides (Thunb.) Sandw.	caroba	Phanerophyte
Mansoa bisnata DC.	cipó-de-alho	Liana
Mansoa difficilis (Cham.) Bur. and K.Schum.	cipó-de-tamanduá	Liana
Tabebuia impetinosa (Mart. ex D.C.) Standl.	pau-d’arco-oxo	Phanerophyte
Tabebuia serratifolia (Vahl.) Nich.	pau-d’arco-amarelo	Phanerophyte
Bixaceae		
Cochlospermum vitifolium (Will.) Spreng.	algodão-bravo	Phanerophyte
Bombaceae		
Eriotheca sp.	barriguda	Phanerophyte
Pseudobomkis marginatum (A.St.-Hil.) A.Robyns	imbratanha	Phanerophyte
Boraginaceae		
Cordia raefescens A.DC.	grão-de-galo	Phanerophyte
Cordia trichotoma Vell.	freijorge/freijó	Phanerophyte
Tournefortia rubicunda Salzm. ex DC.	cipó-de-anjo	Liana
Bromeliaceae		
Bromelia plumieri (E. Morren) L.B.Sm.	macambira	Hemicryptophyte
Tillandsia loliacea Mart. ex Schult.F.		Epiphyte
Tillandsia streptocarpa Baker		Epiphyte
Bursceraeae		
Commiphora leptophloeos (Mart.) Gillet	imburana-de-cambão	Phanerophyte

Check List | Volume 6 | Issue 1 | 2010 | 041
Table 1. List of species, common names, families, and their life-forms in Morro do Baixio, municipality of São José do Piauí, state of Piauí, Brazil.
(Continued)

FAMILY / SPECIES	COMMON NAME	LIFE-FORM
Cactaceae		
Cereus albicaulis	rabo-de-raposa	Phanerophyte
(Britton & Rose)		
Luetzelb.		
Cereus jamacaru DC.	manadacaru	Phanerophyte
Melocactus zehtnieri	croa-de-frade	Camephyte
(Britton and Rose)		
Luetzelb.		
Pilosocereus gounellei	xique-xique	Phanerophyte
(F.A.C. Weber) Byles		
and Rowley		
Pilosocereus piauhensis	facheiro	Phanerophyte
(Werdm.) Byles and Rowley		
Tacinga inamoena	palmatoria	Camephyte
(K.Schum) N.P.Taylor and Stuppy		
Caesalpinioideae		
Bauhinia cheilantha	mororó	Phanerophyte
(Bong.) Steud.		
Bauhinia pentandra	mororó	Phanerophyte
(Bong.) Steud.		
Bauhinia pulchella	mororó	Phanerophyte
Bauhinia subclava	mororó	Phanerophyte
Bauhinia sp. nov.	mororó	Phanerophyte
Bauhinia ungulata L.		
Caesalpinia bacteosa	catinga-de-porco	Phanerophyte
Tul.		
Caesalpinia ferrea	jucá-pau-ferro	Phanerophyte
Mart. ex Tul.		
Chamaeclista etenorum	birro-preto	Phanerophyte
(Irwin & Barneby) Irwin & Barneby		
Hymenaea stigonocarpa	jatobá-de-vaqueiro	Phanerophyte
Mart. ex Hayne		
Pelogyne confertiflora	jatobazinho	Phanerophyte
(Hayne) Benth.		
Poeppigia procer a	_	
Presl.		
Senna acureen sis	canafistinha	Phanerophyte
(Benth.) Irwin & Barneby		
Senna cearen sis A.Fern.	oca	Phanerophyte
Senna spectabilis	_	Phanerophyte
var. excelsa (Schrad) Irwin & Barneby		
Capparaceae		
Capparis hastata L.	feijão-bravo	Phanerophyte
Cleome guianensis		
Aulect.		
Crateva tapia L.	trapiá	Phanerophyte
Combretaceae		
Combretum leprosum	mofumbo	Phanerophyte
Mart.		
Combretum melilium	sipaubinha	Phanerophyte
Eichler		
Terminalia actinophylla	chapada	Phanerophyte
Mart.		
Thiloo glaucocarpa	sipauba-branca	Phanerophyte
(Mart.) Eichler		
Convolvulaceae		
Ipomeea brasiliana	cabacinha-braba	Liana
(Choisy) Meisn		
Evolulus sp.	_	Hemicriptófito
Dioscoreaceae		
Dioscorea glandulosa	_	Camephyte
Klotsch ex Knuth		
Erythroxylaceae		
Erythroxylum laetevirens	carocinho	Phanerophyte
O.E.Schulz		
Erythroxylum subracemum	carocinho	Phanerophyte
Turcz.		
Euphorbiaceae		
Croton celtifolius	marmeleiro-preto	Phanerophyte
Baill.		
Dalechampia affinis	_	Liana
MüLArg.		
Euphorbia comosa	_	Camephyte
Vell.		
Maniho heterom (Pohl)	_	Phanerophyte
Sapium cf. obovatus Kt	mangaba	Phanerophyte
Fabaceae		
Amburana cearensis	imburana-de-cheiro	Phanerophyte
(Allemão) A.C.Sm.		
Crotalaria holosericea	modubim-brabo	Camephyte
Nees & Mart.		
Dioclea grandiflora	mucunã	Liana
Mart. ex Benth.		
Galactia texana A.Gray		Hemicriptófito
Lonchocarpus arapiensis	amargoso	Phanerophyte
Bentham.		
Luetzelburgia auriculata	pau-mocó	Phanerophyte
Duerre.		
Macqueria acutifolius	coração-de-negro	Phanerophyte
Vogel.		
Macroptilium martii	_	Liana
(Benth.) Maréchal & Baudet		
Pterocarpus villosus	_	Phanerophyte
Mart. ex Benth.		
Swartzia fleemmingii	jacarandá	Phanerophyte
Raddi.		
Vigna cf. penduncularis	feijão-bravo	Liana
Fawc. & Rendle		
Lamiaceae		
Indetermined	_	Therophyte
Lilaceae		
Alstroemeria piauhynsis	senhora-me-deixe	Geophyte
Gardner ex Baker		
Hippeastrum aff. solandriflorum	_	Geophyte
Herb.		
Zephyranthes sylvatica	cebolinha	Geophyte
Baker.		
Loranthaceae		
Strutantus sp.	erva-de-passarinho	Parasite
Lythraceae		
Table 1. List of species, common names, families, and their life-forms in Morro do Baixio, municipality of São José do Piauí, state of Piauí, Brazil. (Continued)

FAMILY/SPECIES	COMMON NAME	LIFE-FORM	
Cuphea ericoides Cham. & Schlech.	-	Therophyte	
MALPighiaceae	**Byrsonima correifolia** A.Juss.	murici	Phanerophyte
	Byrsonima lutea (Griseb.) Cuatrec.	-	Liana
	Banisteriopsis stellaris (Griseb.) B.Gates	enfeito-de-grinalda	Liana
	Barnebya harleyi W.R.Anderson & B.Gates	murici-do-agreste	Phanerophyte
	Peixotoa jussieuana A.Juss.	flor-de-anjo	Phanerophyte
	Stigmatophyllum paralias A.Juss.	-	Hemicryptophyte
MALVACEAE	**Sida ulei** Ulbr.	malva-branca	Camephyte
MIMOSACEAE	**Acacia piauiensis** Benth.	jurema	Phanerophyte
	Acacia sp.	-	Phanerophyte
	Albizia polypephala (Benth.) Killip	-	Phanerophyte
	Anadenanthera colubrina var. cebil (Griseb.) Altschul	angico-preto	Phanerophyte
	Indetermined	maracaipe	Phanerophyte
	Mimosa sensitiva L.	-	Hemicryptophyte
	Mimosa tenuiflora (Willd.) Poir.	jurema-preta	Phanerophyte
	Piptadenia moniliformis Benth.	mama-de-bezerra	Phanerophyte
	Piptadenia stipulacea (Benth.) Duke	jurema-branca	Phanerophyte
NYCTAGINACEAE	**Guapira** sp.	farinha-velha	Phanerophyte
OLACACEAE	**Ximenia americana** L.	ameixa	Phanerophyte
OPILIACEAE	**Agonandra brasiliensis** Miers	marfim	Phanerophyte
PASSIFLORACEAE	**Passiflora cincinnata** Mast.	maracujá-do-mato	Liana
	Passiflora edmundoi Sacco	-	Liana
RHAMNACEAE	**Ziziphus cotinifolia** Reissek	juazeiro	Phanerophyte
Rubiaceae	**Alibertia edulis** (L.C.Rich.) A.Rich. ex D.C.	marmelada	Phanerophyte
	Coutarea hexandra (Jacq.) K.Schum.	quina-quina	Phanerophyte
	Richardia scabra L.	ervancinha	Hemicryptophyte
RUTACEAE	**Zanthoxylum rhoifolium** Lam.	laranjinha	Phanerophyte
	Zanthoxylum stelligerum Turcz.	laranjinha	Phanerophyte
SAPIANACEAE	**Cardiospermum corindum** L.	pustemeira	Liana
	Magnonia pubescens A.St.-Hil.	tingui	Phanerophyte
	Serjania caracasana (Jacq.) Willd.	moita-de-cururu	Liana
SCROPHULARIACEAE	**Angelonia sp.**	-	Phanerophyte
SOLANACEAE	**Capsicum parvifolium** Seuddtn	alecrim-quebrabo	Phanerophyte
	Solanum crinitum Lam.	jurubeba	Phanerophyte
	Solanum cf. chytidoaudrum Lam.	jurubeba-braba	Phanerophyte
STERculiaceae	**Helicteres barausensis** Jaq.	guaxum	Phanerophyte
	Helicteres muscosa Mart.	pimenta-de-mocó	Phanerophyte
	Waltheria sp.	malva	Hemicryptophyte
Turneraceae	**Turnera blanchetiana** Urb.	-	Phanerophyte
VerbenaCaeae	**Amasonia campestris** L.	-	Phanerophyte
	Lantana canescens Kunth	alecrim-quebrado	Phanerophyte
	Vitex sp.	pinho-brabo	Phanerophyte
	Indetermined	-	Phanerophyte
VITACEAE	**Cissus sp.**	-	Phanerophyte
VOCHYSIACEAE	**Callisthene microphylla** Warm.	carocinho	Phanerophyte
TABLE 2. Results of χ² tests of Morro do Baixio, municipality of São José do Piauí, Brazil, and Raunkiaer’s normal spectrum.

LIFE-FORM CLASS	EXPECTED	OBSERVED	χ²
Phanerophytes	46.00	78.95	23.60
Camphytes	9.00	6.01	0.99
Hemicymophytes	26.00	8.27	12.09
Geophytes	6.00	3.76	0.84
Therophytes	13.00	3.01	7.68
Total	100.00	100.00	45.20

ACKNOWLEDGMENTS: The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for grants to the first author; Mundayatam Haridasan (Brasilia University – UnB) made the English review. Mr. Martins, proprietor of the farm, for permission to conduct the field work and to taxonomists for the identification of the botanical specimens.

LITERATURE CITED
Ab’Sáber, A.N. 1974. O domínio morfoclimático semi-árido das Caatingas brasileiras. São Paulo: Instituto de Geografia da USP. 37 p.

Alcoforado-Filho, F.G., E.V.B. Sampaio and M.J.N. Rodal. 2003. Florística e fitossociologia de um remanescente de vegetação caducifólia espinhosa arbórea em Caruaru – Pernambuco. Acta Botanica Brasiliaca 17(2): 287-303.

Araújo, E.L., V.S.B. Sampaio and M.J.N. Rodal. 1995. Composição florística e fitossociológica de um remanescente de vegetação caducifólia espinhosa arbórea em Capivara, Piauí. Rodriguesia 55(85): 55-66.

Lemos, J.R. 1994. Composição florística do Parque Nacional Serra da Capivara, Piauí, Brasil. Rodriguesia 55(85): 23-42.

SUDENE-DNR. 1972. p

Kampen, J. 1979. Farming system research and technology; semi arid tropics. Hyderabad: ICRIAT 39p.

Lemos, J.R. and M.J.N. Rodal 2002. Fitossociologia do componente lenhoso de um trecho de vegetação arbustiva espinhosa no Parque Nacional Serra da Capivara, Piauí, Brasil. Acta Botanica Brasiliaca 16(1): 23-42.

Luetzeburg, P.V. 1923. Estudo Botânico do Nordeste. Rio de Janeiro: IFOCS Publicações. 243p.

Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and methods of vegetation ecology. New York: John Willey & Sons. 546p.

Oliveira, M.E.A., E.V.S.B. Sampaio, A.A.F. Castro and M.J.N. Rodal. 1997. Flora e fitossociologia de uma área de transição carrasco-Caatinga de areia em Padre Marcos, Piauí. Naturalia 22: 131-150.

Queiroz, L.P. 2002. Distribuição das espécies de Leguminosae na Caatinga; p. 141-153. In: E.V.S.B. Sampaio, A.M. Giulietti, J. Virgínia and C.F.L. Gamarra-Rojas (ed.). Vegetação & Flora da Caatinga. Recife: Associação de Plantas do Nordeste – APNE. p. 349-347

Ramos, V.M. and M.C.L. Sales. 2001. Análise da capacidade de uso da terra, com base na declividade e nas características dos solos, nas áreas sob influência do reservatório de Bocaina-Pl. Carta CEPRO 20: 46.

Raunkiaer, C. 1934. The Live Forms of Plants and Statistical Plant Geography. Oxford: Claredon Press. 632 p.

Reis, A.C. 1976. Clima da Caatinga. Anais da Academia Brasileira de Ciências 40(2): 325-335.

Ribeiro, L.F. and M. Tababelli. 2002. A structural gradient in cerrado vegetation of Brazil: changes in woody plant density, species richness, life history and plant composition. Journal of Tropical Ecology 18: 75-794.

Rivas, M.P. 1996. Macrozonamento geoeconomical da bacia hidrografica do rio Paraíba. Rio de Janeiro: IBGE, Série Estudos e Pesquisas em Geociências 4. 110 p.

Rodal, M.J.N., F.R. Martins and E.V.S.B. Sampaio. 2008. Levantamento quantitativo das plantas lenhosas em trechos de vegetação de Caatinga em Pernambuco. Revista Caatinga 21(3): 192-205.

Rodal, M.J.N., A.C.B. Lins-E-Silva, A.D.C. Cavalcanti and L.P. Maranhão. 1999. Composição florística da vegetação de cerrado, Novo Oriente, CE. Revista Brasileira de Botânica 21(2): 105-116.

Batalha, M.A. 2004. Floristic, frequency, and vegetation life-form spectra of a cerrado site. Brazilian Journal of Biology 64(2): 203-209

Cain, S.A. 1950. Life forms and Phytoclimate. Acta Botanica Brasilica 17(2): 287-303.

Ferraz, E.M.N., M.J.N. Rodal, E.S.B. Sampaio and R.C.A. Pereira. 1998. The woody flora and life-form a of cerrado vegetation in the state of Piauí, Northeastern Brazil. Revista Brasileira de Geografia 34-46.

Kampen, J. 1979. Farming system research and technology; semi arid tropics. Hyderabad: ICRIAT 39p.

Lemos, J.R. 1994. Composição florística do Parque Nacional Serra da Capivara, Piauí, Brasil. Rodriguesia 55(85): 23-42.

SUDENE-DNR. 1972. p

Kampen, J. 1979. Farming system research and technology; semi arid tropics. Hyderabad: ICRIAT 39p.

Lemos, J.R. 1994. Composição florística do Parque Nacional Serra da Capivara, Piauí, Brasil. Rodriguesia 55(85): 23-42.

SUDENE-DNR. 1972. p

Kampen, J. 1979. Farming system research and technology; semi arid tropics. Hyderabad: ICRIAT 39p.

Lemos, J.R. 1994. Composição florística do Parque Nacional Serra da Capivara, Piauí, Brasil. Rodriguesia 55(85): 23-42.

SUDENE-DNR. 1972. p

Kampen, J. 1979. Farming system research and technology; semi arid tropics. Hyderabad: ICRIAT 39p.

Lemos, J.R. and M.J.N. Rodal 2002. Fitossociologia do componente lenhoso de um trecho de vegetação arbustiva espinhosa no Parque Nacional Serra da Capivara, Piauí, Brasil. Acta Botanica Brasiliaca 16(1): 23-42.