Extracorporeal Membrane Oxygenation in Children with Coronavirus Disease 2019: Preliminary Report from the Collaborative European Chapter of the Extracorporeal Life Support Organization Prospective Survey

MATTEO DI NARDO*, † APARNA HOSKOTE, ‡ TIM THIRUCHELVAM, ‡ JON LILIE, ‡ MARIE HORAN, § SYLVIA BELDA HOFHEINZ, ¶ LAURENT DUPIC, †† RICARDO GIMENO, ‡‡ MARIA ELENA DE PIERO, §§ VALERIA LO COCO, ‡‡ PETER ROELEVEELD, §§ MARC DAVIDSON, ¶¶ TIM JONES, ‡‡ LARS MIKAEL BROMAN, |||| ROBERTO LORUSSO, ‡‡‡ AND JAN BELohlavek***, on behalf of the EuroELSO Neonatal & Pediatric Working Group & collaborators on COVID-19

Key Words: extracorporeal membrane oxygenation, pediatrics, severe acute respiratory syndrome coronavirus 2, inflammation

Since the declaration of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic,1 a small percentage of children with coronavirus disease 2019 (COVID-19) infection have required intensive care unit (ICU) admission with an even smaller percentage needing extracorporeal membrane oxygenation (ECMO) support.2,3 To provide contemporaneous data on ECMO utilization and activity during the COVID-19 pandemic, the European Chapter of the Extracorporeal Life Support Organization (EuroELSO) established a prospective survey among European neonatal and pediatric centers from the 15th of March to the end of June 2020. The survey was approved by the Maastricht University Medical Centre Ethics Committee. Centers reported anonymized data weekly through the EuroELSO website (www.euroelso.org). We report the preliminary data from 52 neonatal and pediatric ECMO centers across Europe during the first wave of the COVID-19 pandemic.

Seven children (<18 years of age) from four countries received ECMO support for SARS-CoV-2 infection. The demographics, clinical details, and pre-ECMO characteristics of these seven children supported on ECMO are shown in Table 1. The median age was 11.5 years (range 54 days to 16 years), three (43%) were male, and two (29%) had underlying comorbidities. These significant comorbidities included one infant with transposition of great arteries diagnosed at 5 weeks of age and another child who received hematopoietic stem cell transplant (HSCT) for primary immunodeficiency disease (STAT-3 mutation). The indications for ECMO were hypoxemia (n = 3, 43%), shock associated with Pediatric Multisystem Inflammatory Syndrome Temporally Associated With SARS-CoV-2 (PIMS-TS) (n = 3, 43%), and septic shock (Staphylococcus aureus) (n = 1, 14%). The median time from the onset of symptoms to ECMO deployment was 5 days (range 2–32 days), while median time from intubation to ECMO was 34 hours (range 10–624 hours). All patients were ventilated in pressure-controlled mode in the 6 hours pre-ECMO deployment. Adjunctive respiratory therapies pre-ECMO such as prone positioning (n = 2, 28%), inhaled nitric oxide (n = 2, 28%), prone positioning (n = 2, 28%), and high-frequency oscillatory ventilation (n = 1, 14%) were tried. In the three children supported for hypoxemia, the median oxygenation index was 29 (range 24–41) and the partial pressure of oxygen (PaO₂)/fraction of inspired oxygen (FiO₂) ratio was 65 (range 37–82). In the three patients with PIMS-TS and in the one with sepsis, supported for hemodynamic collapse, the median Vasoactive-Inotropic Score was 160 (range 142–220) and the median lactate was 7 mmol/L (range 4–9 mmol/L). All, except the patient number 6, had signs of hyperinflammatory state.4,6 In particular, children with PIMS-TS reported higher levels of inflammatory proteins before ECMO: C-reactive protein 306 mg/L (range 300–463 mg/L), ferritin 2,185 ng/mL (range 845–4,815 ng/mL), and fibrinogen 5.8 g/L (range 5–9.5 g/L). Patient 2 with S. aureus septic shock reported lower level of inflammatory proteins (C-reactive protein 184 mg/L, fibrinogen 3.7 g/L, and ferritin 1,100 ng/mL).

The ECMO characteristics, treatment, and outcome of these children are described in Table 2. The initial ECMO mode was predominantly venoarterial (VA) ECMO in six (85%) and...
Table 1. Demographics, Clinical Details, and Pre-ECMO Characteristics of Children Supported on ECMO for SARS-CoV-2 Infection

Case/Country	Age/Sex/BMI	Diagnosis and Comorbidities	Covid-19 Status: SARS-CoV-2 PCR	Worst Ventilation Parameters (6 Hours Pre-Cannulation)	Worst ABG Parameters (6 Hours Pre-Cannulation)	Onset of Symptoms to ECMO (Days)	Intubation to ECMO (Hours)	Inflammatory State	Immunomodulatory Therapy Before ECMO	Antiviral Therapy (Yes/No)			
1/Spain	16 years/ female/27.3	pARDS, obesity	Positive	PIP: 34 PEEP: 14 Dynamic driving pressure: 20	pH: 7.29 PaCO₂: 55 PaO₂/FiO₂: 67	11	96	Yes	CRP: 192.9 Fibrinogen: 7.9	No	Yes (lopinavir-ritonavir→remdesivir)		
2/France	6 years/ female/14.9	Septic shock Staphylococcus aureus co-infection	Positive	PIP: 26 PEEP: 7 Dynamic driving pressure: 19	Lactate: 1.3 pH: 7.331 PaCO₂: 55 PaO₂/FiO₂: 100	2	34	Ferritin: 283	Yes	CRP: 184 Fibrinogen: 3.7	No	No	
3/United Kingdom	14 years/ male/29.9	PIMS-TS, none	Positive	PIP: 30 PEEP: 10 Dynamic driving pressure: 20	Lactate: 4.0 pH: 7.14 PaCO₂: 38 PaO₂/FiO₂: 185	7	34	Ferritin: 1,100	Yes	CRP: 463 Fibrinogen: 9.5	Yes	IVG and low dose of steroids	
4/United Kingdom	11 years/ female/17.8	PIMS-TS, none	Positive	PIP: 24 PEEP: 10 Dynamic driving pressure: 14	Lactate: 5.9 pH: 7.0 PaCO₂: 51 PaO₂/FiO₂: 186	3	10	Ferritin: 2,185	Yes	CRP: 300 Fibrinogen: 5.0	Yes	IVG	No
5/United Kingdom	12 years/ female/15	PIMS-TS, none	Negative*	PIP: 20 PEEP: 5 Dynamic driving pressure: 15	Lactate: 9.0 pH: 7.14 PaCO₂: 36 PaO₂/FiO₂: 100	5	20	Ferritin: 845	Yes	CRP: 306 Fibrinogen: 5.8	Yes	IVG, steroids, and high dose of aspirin	No
6/United Kingdom	54 days/ male/NA	pARDS in TGA, late presentation of congenital heart disease	Positive	PIP: 16 PEEP: 5 Dynamic driving pressure: 11	Lactate: 8.0 pH: 7.14 PaCO₂: 80.2 PaO₂/FiO₂: 37	1.4	31	Ferritin: 4,815	No	CRP: 51.6 Fibrinogen: 0.9	No	Yes (remdesivir)	
7/Spain	8 years/ male/21	pARDS, hematopoietic stem cell transplantation	Positive	PIP: 40 PEEP: 8 Dynamic driving pressure: 32	Lactate: 2.4 pH: 7.1 PaCO₂: 83 PaO₂/FiO₂: 65	32	624	Ferritin: 55.8	Yes	CRP: 1.2 Fibrinogen: 5.8	Yes	Tocilizumab and anakinra (lopinavir-ritonavir→remdesivir)	Ferritin: 10,000

[ABG, arterial blood gas analysis; BMI, body mass index; Covid-19, coronavirus disease 2019; CRP, C-reactive protein; ECMO, extracorporeal membrane oxygenation; FiO₂, fraction of inspired oxygen; IVIG, intravenous immunoglobulin; NA, not applicable; OI, oxygenation index; PaCO₂, partial pressure of carbon dioxide; PaO₂, partial pressure of oxygen; pARDS, pediatric acute respiratory distress syndrome; PCR, polymerase chain reaction; PEEP, positive end-expiratory pressure; PIMS-TS, Pediatric Multisystem Inflammatory Syndrome Temporally Associated With SARS-CoV-2; PIP, peak inspiratory pressure; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TGAs, transposition of great arteries.]

*Positive on serology for SARS-CoV-2.
†Only venous gas.
venovenous (VV) ECMO in one patient (15%). Of the six children supported on VA ECMO, three were converted to VV ECMO after a median of 48 hours (range 24–87 hours) following: differential hypoxemia (Harlequin syndrome) \((n = 1)\) and improvement of cardiac function with lag in lung recovery \((n = 2)\). During ECMO, all children were managed with lung rest settings in pressure-controlled mode to maintain a median tidal volume of 5 ml/kg (range 4–6 ml/kg), a respiratory rate of 18 (range 15–20), a positive end-expiratory pressure of 7 cm H₂O (range 5–10 cm H₂O), and a FiO₂ of 0.25 (range 0.21–0.40). One child (patient 7) received a tracheostomy while on ECMO.

The management of ECMO was standard with staff in full personal protective equipment, and enhanced vigilance for thrombotic complications was maintained by the treating centers. All children were anticoagulated with unfractionated heparin as per their institutional protocol. Two children (patients 3 and 5) developed thrombosis while on ECMO despite having activated partial thromboplastin time ratios of 1.6 and 2.7, respectively, before clot formation.

All with PIMS-TS presentation were treated with intravenous immunoglobulin (IVIG) and steroids. Among these, one (patient 4) underwent a cardiac biopsy at the time of left atrial decompression procedure that showed an infiltration of lymphocytes suggestive of partially treated myocarditis. Two children required continuous renal replacement therapy, both died. Three patients (43%) received antiviral therapy: lopinavir/ritonavir pre-ECMO and then remdesivir on ECMO, two survived. Immunomodulation with tocilizumab, anakinra, or infliximab (Table 2) was used in three patients (43%), two survived. Convalescent plasma and infusion of mesenchymal stromal cells were administered to the child post HSCT. Surfactant therapy, plasma exchange, or cytokine adsorption filters were not used.

Five children (71%) were successfully decannulated, but four (57%) survived to hospital discharge. The median ECMO duration was 7 days (range 7–11 days) with a median ICU stay of 16 days (range 7–20 days). Three children (43%) died—two died on ECMO and a third died post decannulation before pediatric intensive care unit discharge (Table 2).

The child post HSCT (patient 7) died for refractory cardiac arrest due to pulmonary embolism after 30 days of ECMO. Patient 3 reported an ischemic stroke involving both the anterior and middle cerebral artery on day 2 of ECMO, while patient 2 reported severe intraventricular and intraparenchymal hemorrhages after 7 days of ECMO. In these three patients, high D-dimers levels 13,500 mcg/L (range 2,200–14,994 mcg/L) were reported suggesting an abnormal activation of the hemostatic system.

In contrast to adult data,⁴ we report that the use of ECMO in children with COVID-19 infection patients in Europe is both scarce and of diverse etiology. An age-specific immune-protective mechanism⁵ to SARS-CoV-2 may explain this low occurrence of severe disease. Our survey has highlighted: 1) SARS-CoV-2 infection may be associated with comorbid conditions in children, 2) a temporal increase in the ECMO utilization may have been associated with the emergence of PIMS-TS.
3) the risk of thrombotic complications is high when on ECMO support, and 4) the role of adjunctive therapies (antiviral and immunomodulation therapy) remains unclear, however, IVIG and judicious use of steroids may benefit those presenting with PIMS-TS. Early referral before circulatory collapse and multiple organ dysfunction may be advocated in these children.

The EuroELSO has provided a collaborative platform for shared learning of the most severe forms of a novel infection with variable presentation and outcome.

ACKNOWLEDGMENT

The authors thank all the centers who participated to this survey/study and the EuroELSO Social Media Team for their support in spreading the survey/study. EuroELSO Neonatal & Pediatric Working Group & collaborators on COVID-19: Giacomo Cavallaro, MD (Mangiagalli Neonatal Respiratory ECMO Center, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy); Matteo Di Nardo, MD and Salvatore Agati, MD (Centro Cardiologico del Mediterraneo, Bambino Gesù Hospital, Roma, Italy); Rosanna Zanai, MD (Evelina London Children’s Hospital, London, United Kingdom); Viola Scarzella, MD; Andrea Moscatelli, MD (U.O.S.D. Terapia Intensiva Neonatale e Pediatrica, Ospedale Gaslini, Genoa, Italy); Antonio Amodeo, MD (Bambino Gesù Children’s Hospital, Rome, Italy); Matteo Di Nardo (MD and collaborator on COVID-19: Giacomo Cavallaro, MD (Mangiagalli Neonatal Respiratory ECMO Center, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy); Rosanna Zanai, MD and Pierre-Louis Leger, MD (Hopital Armand-Trosseau Haut Léveque, CHU Bordeaux, Bordeaux, France); Jerome Rambaud, MD, PhD and Pierre-Louis Leger, MD (Hopital Armand-Trosseau [Hospitaux Universitaire Est Parisienne], Service de Réanimation néonatale Pediatrique, Paris, France); Pierre Tissieres, MD, PhD (Hopitaux de Paris, Pediatric Intensive Care and Neonatal Medicine, Paris, France); Capucine Didier, MD (Hopital Femme Meme Enfant, Lyon, France); Angele Boet, MD (Hopital Marie Lannelongue, Paris, France); Stephane Lebel, MD (Hopital de la Timone, Marseille, France); Lionel Berthomieu, MD (Centre Hospitalier Universitaire de Toulouse, Toulouse, France); Anne-Sophie Guilbert, MD (CHU Strasbourg, Strasbourg, France); Pierre Bourgoin, MD (Intensive Care Unit, Nantes Cedex, France); Enno D. Wildschut, MD (Intensive Care Unit, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands); Peter P. Roevekeld, MD (Intensive Care-Universitair Medical Center, Leiden, The Netherlands); Enno D. Wildschut, MD (Intensive Care Unit, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands); Peter P. Roevekeld, MD (Intensive Care-University Medical Center, Leiden, The Netherlands); Lars Mikael Broman, MD, PhD (Pediatric Perioperative Medicine and Intensive Care-Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Solna, Sweden); Oliver Miera, MD (Kinderkardiologie-Universitätsmedizin, Berlin, Germany); Matthias Kumpf, MD (Pediatric Intensive Care, Tübingen, Germany); Ralf Knies, MD (University of Bonn, Bonn, Germany); Thomas Schäible, MD (Klinik für Neonatologie, Uniklinik Mannheim, Mannheim, Germany); Brigitte Stiller, MD (Herzzentrum Freiburg, Bad Krozingen, Germany); Vaclav Vobruba, MD, PhD (Pediatric Department, Charles University, Prague, Czech Republic); Jesus Lopez-Herce, MD, PhD (Hospital General Universitario Gregorio Maranon, Madrid, Spain); Susana Segura Matute, MD (Servicio de Cuidados intensivos pediatricos, Hospital San Joan de deu, Barcelona, Spain); Joan Bacells, MD (University Hospital Vall d’Hebron, Barcelona, Spain); Vicent Modesto 1 Alapont, MD (UCI Pediatria, Hospital Universitari i Politècnic La Fe, Valencia, Spain); Sylvia Belda and Elena Montanes, MD (ICC-Hospital 12 de Octubre, University of Zaragoza, Madrid, Spain); Janos Schnur, MD and Veronika Maraczi, MD (Heim-Pal National Pediatric Institute, Budapest, Hungary); Malaika Mendonca, MD (Pediatric Intensive Care, Bern, Switzerland); Judit Llevadías, MD (Department of Pediatric Cardiology, The Newcastle upon Tyne Hospital, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom); Mark Davidson, MD (Paediatric Intensive Care, Royal Hospital for Children, Glasgow, United Kingdom); Claire Westroe, MD (University Hospital of Leicester Children Hospital, NHS Trust, Leicester, United Kingdom); Apanna Hoskote, MD and Tim Thiruchelvam, MD (Great Ormond Street Hospital (GOSH), London, United Kingdom); Ajay Desai, MD (Royal Brompton Hospital, London, United Kingdom); David Ellis, MD, Margaret Farley, RN, and Tim Jones, MD (Pediatric Intensive Care, Birmingham Children’s Hospital, NHS Foundation Trust, Birmingham, United Kingdom); Adrian Humphrey, MD (Pediatric Intensive Care, Bristol Royal Hospital for children, Bristol, United Kingdom); Jonathan Lillie, MD (Evelina London Children’s Hospital, London, United Kingdom); Marie Horan, MD (Pediatric Intensive Care Unit, Alder Hey Children’s Hospital, Liverpool, United Kingdom); Laurent Dupic, MD (Necker Children’s Hospital, Paris, France); Laura Koutainen, MD (Pediatric Intensive Care Unit, University of Helsinki, Helsinki, Finland); Francisco Abecasis, MD (Pediatric Intensive Care, Centro Hospitalar Lisboa Norte, Lisbon, Portugal); Dirk Vlasselaers, MD and Leon Vercaemst, Perfusionist (University Hospital Leuven, Leuven, Belgium); Jef Willems, MD (Department of Intensive Care, Universitair Ziekenhuis Ghent, Ghent, Belgium); Caroline Kelly, MD and Sunimrol Joseph, MD (Our Lady Children’s Hospital, Dublin, Ireland); Uri Pollak, MD (Hadassah University Medical Center, Jerusalem, and other centers [Petah, Ramat, Holon] Israel); Burkhard Simma, MD (Pediatric Intensive Care Academic Teaching Hospital, Feldkirch, Austria); Martin Schweiger, MD (University of Zurich, Zurich, Switzerland); Angeliki Gkouziouta, MD (Athens Onassis Heart Centre, Athens, Greece); and Laurent Storme, MD (CHRU de Lille, Hôpital Jeanne de Flandre, Lille, France).

References

1. Di Nardo M, van Leeuwen G, Loreti A, et al: A literature review of 2019 novel coronavirus (SARS-CoV-2) infection in neonates and children. Pediatr Res 2020 Jul 17. doi: 10.1038/s41390-020-1065-5. Online ahead of print.

2. Shekerdemian LS, Mahmood NR, Wolfe KJ, et al: Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr 174:1–6, 2020.

3. Lanyon N, du Pre P, Thiruchelvam T, Ray S, Johnson M, Peters MJ: Critical paediatric COVID-19: Varied presentations but good outcomes. Arch Dis Child 2020. doi: 10.1136/archdischild-2020-319602.

4. Davies P, Evans C, Vanthimathinathan HK, et al: Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: A multicentre observational study. Lancet Child Adolesc Health 4: 669–677, 2020.

5. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P: Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 395: 1607–1608, 2020.

6. Whitaker E, Bamford A, Kenny J, et al: PIMS-TS Study Group and EUCLIDS and PERFORM Consortia: Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA 324: 259–269, 2020.