Modeling *Drosophila* Motion Vision Pathways for Decoding the Direction of Translating Objects Against Cluttered Moving Backgrounds

Qinbing Fu · Shigang Yue

Abstract Decoding the direction of translating objects in front of cluttered moving backgrounds, accurately and efficiently, is still a challenging problem. In nature, lightweight and low-powered flying insects apply motion vision to detect a moving target in highly variable environments during flight, which are excellent paradigms to learn motion perception strategies. This paper investigates the fruit fly *Drosophila* motion vision pathways and presents computational modelling based on cutting-edge physiological researches. The proposed visual system model features bio-plausible ON and OFF pathways, wide-field horizontal-sensitive (HS) and vertical-sensitive (VS) systems. The main contributions of this research are on two aspects: 1) the proposed model articulates the forming of both direction-selective (DS) and direction-opponent (DO) responses, revealed as principal features of motion perception neural circuits, in a feed-forward manner; 2) it also shows robust direction selectivity to translating objects in front of cluttered moving backgrounds, via the modelling of spatiotemporal dynamics including combination of motion pre-filtering mechanisms and ensembles of local correlators inside both the ON and OFF pathways, which works effectively to suppress irrelevant background motion or distractors, and to improve the dynamic response. Accordingly, the direction of translating objects is de-
coded as global responses of both the HS and VS systems with positive or negative output indicating preferred-direction (PD) or null-direction (ND) translation. The experiments have verified the effectiveness of the proposed neural system model, and demonstrated its responsive preference to faster-moving, higher-contrast and larger-size targets embedded in cluttered moving backgrounds.

Keywords *Drosophila* · motion vision · ON and OFF pathways · direction selectivity · visual system model · foreground translation perception

1 Introduction

Intelligence is one of the amazing products through millions of years of evolutionary development, with which the features of biological visual systems have been gradually learnt and acknowledged as powerful model systems towards building robust artificial visual systems. In nature, for the vast majority of animal species, a critically important feature of visual systems is the perception and analysis of motion that serves a wealth of daily tasks for animals [Borst and Euler (2011), Borst and Helmstaedter (2015)]. Seeing the motion and direction in which a chased prey, a striking predator, or a mating partner is moving, is of particular importance for their survival.

Direction selective neurons, with responsive preference to specific directional visual motion, have been identified in flying insects, like locusts [Rind (1990)], and flies [Borst and Euler (2011)]. Each group of the direction selective neurons responds selectively to a specific optic flow (OF)-field representing the spatial distribution of motion vectors on the field of vision. Accordingly, the visual motion cues as feedback signals provided by such neurons are applied for ego-motion control of flying insects.

Recent decades have witnessed much progress on unravelling the underlying neurons, pathways and mechanisms of insects’ motion vision systems [Fu et al. (2019b) Fu, Wang, Hu, and Yue]. Notably, the fruit fly *Drosophila* has been disseminated as a prominent paradigm to study motion perception strategies [Riehle and Franceschini (1984), Franceschini et al. (1989) Franceschini, Riehle, and Le Nestour, Borst and Euler (2011), Borst and Helmstaedter (2015), Borst et al. (2010) Borst, Haag, and Reiff, Borst (2014)]. More specifically, direction-selective (DS) and direction-opponent (DO) responses represented by the *Drosophila* motion vision pathways have been identified as two essential features in the neural circuits [Mauss et al. (2015) Mauss, Pankova, Arenz, Nern, Rubin, and Borst, Haag et al. (2016) Haag, Arenz, Serbe, Gabbiani, and Borst, Badwan et al. (2019) Badwan, Creamer, Zavatone-Veth, and Clark]. The former indicates that neurons respond differently to stimuli moving in different directions, that is, the directional motion yielding the largest response is termed the preferred direction (PD); the latter denotes that neurons are also inhibited by stimuli in the opposite direction, i.e., the null (or non-preferred) direction (ND). How to realise such diverse direction selectivity in motion sensitive visual systems is thus attractive to not only biologists but also computational modellers for addressing real-world motion detection problems.

Although some biological and computational models have demonstrated the DS and DO responses resembling the neural circuits to decode the direction of translational OF, those models are faced with the following challenges:
1. The biological models focus on explaining the forming of DS and DO responses on neuronal or behavioural level, which have been tested by merely simple synthetic stimuli, e.g. sinusoidal gratings and the like [Joesch et al.(2010)Joesch, Schnell, Raghu, Reiff, and Borst, Joesch et al.(2013)Joesch, Weber, Eichner, and Borst, Maisak et al.(2013)Maisak, Haag, Ammer, Serbe, Meier, Leonhardt, Schilling, Bahl, Rubin, Nern, Dickson, Reiff, Hopp, and Borst, Eichner et al.(2011)Eichner, Joesch, Schnell, Reiff, and Borst, Clark et al.(2011)Clark, Bursztyn, Horowitz, Schnitzer, and Clandinin, Haag et al.(2016)Haag, Arenz, Serbe, Gabbiani, and Borst, Gabbiani and Jones(2011)]. Flying insects nevertheless can detect and track a moving target in front of more cluttered backgrounds mixed with irrelevant motion or distractors. Are these models able to reproduce the similar DS and DO responses when dealing with the highly variable statistics of natural environments? This is yet lack of investigation.

2. It is still a challenging problem for artificial visual systems to accurately decode the direction of foreground translating objects, by extracting merely meaningful motion cues embedded in a cluttered moving background. The vast majority of bio-inspired models are efficient for motion perception, but deficient in effective mechanisms to deal with highly variable backgrounds. In addition, the requirements of both energy-efficient and real-time visual processing exclude many segmentation or learning based methods.

3. Most bio-inspired motion detection models derive from a classic theory of Hassenstein-Reichardt Correlation (HRC, or referred as ‘Reichardt detectors’) [Hassenstein and Reichardt(1956), Borst and Egelhaaf(1989)]. The HRC-based models are sensitive to the temporal frequency of visual stimuli across the view rather than the true velocity. Accordingly, a pronounced shortcoming of such methods is the dynamic response in speed tuning of translational OF perception [Frye(2015), Zanker et al.(1999)Zanker, Srinivasan, and Egelhaaf].

In this article, according to the latest physiological researches and our preliminary studies on the Drosophila motion vision systems [Fu and Yue(2017b), Fu and Yue(2017a), Fu et al.(2018)Fu, Bellotto, Hu, and Yue], we present a thorough modelling study to mimic the visual processing in Drosophila ON and OFF motion vision pathways through multiple layers, from initial photoreceptors to internal lobula plate tangential cells (LPTCs), in a computational manner. Differently to previous related methods, the emphasis herein is laid behind the OF level. More specifically, we highlight the modelling of spatiotemporal dynamics in the proposed neural system model including 1) the combination of spatial and temporal motion pre-filtering mechanisms prior to generating the DS and DO responses, 2) the ensembles (or multi-connected) of local ON-ON and OFF-OFF motion correlators inside the ON and OFF pathways in horizontal and vertical directions. The former works effectively to suppress irrelevant background motion flows or distractors to a large extent, and to achieve edge selectivity revealed in motion detection neural circuits. The latter can enhance the dynamic response to translating objects in front of a cluttered moving background, and alleviate the impact by temporal frequency of visual stimuli. Accordingly, two wide-field systems, i.e., the horizontal-sensitive (HS) and the vertical-sensitive (VS)
Acronym	Full-Name
EMD	elementary motion detector
DS	direction-selective
HS	horizontal-sensitive
PD	preferred direction
OF	optic flow
vDoG	variant of Difference of Gaussians
LPTC	lobula plate tangential cell
LGMD	lobula giant movement detector
HRC	Hassenstein-Reichardt Correlation
DO	direction-opponent
VS	vertical-sensitive
ND	null (or non-preferred) direction
LMC	lamina monopolar cell
FDSR	fast-depolarising-slow-repolarising
LPi	lobula plate-intrinsic
STMD	small target movement detector

Table 1 Nomenclature in this paper

systems, integrate the LPTCs’ responses to decode the principal direction of foreground translating objects against cluttered moving backgrounds.

The rest of this paper is structured as follows. Section 2 reviews the related works. Section 3 presents the formulation of the proposed visual system model. Section 4 describes the experimental setting. Section 5 illustrates the results. Section 6 presents further discussions. Section 7 concludes this paper.

2 Literature Review

Within this section, we concisely review the related works in the areas of 1) a few categories of motion sensitive neural models inspired by flying insects, 2) physiological research on the *Drosophila* motion vision pathways, 3) different combinations of the EMD in the ON and OFF channels. The nomenclature is given in Table 1.

2.1 Motion Sensitive Neural Models

Flying insects have tiny brains, but compact visual systems for decoding diverse motion features varying in directions and sizes. Some identified neurons and corresponding circuits have been investigated as robust motion sensitive neural models, as reviewed in [Fu et al.(2019b)Fu, Wang, Hu, and Yue].

In the locust’s visual brains, two lobula giant movement detectors (LGMDs), i.e., the LGMD-1 and the LGMD-2 have been modelled as quick and robust looming detectors specialising in collision perception [Fu et al.(2018b)Fu, Hu, Peng, and Yue, Fu et al.(2019a)Fu, Hu, Peng, Rind, and Yue, Fu et al.(2017)Fu, Hu, Liu, and Yue, Fu et al.(2016)Fu, Yue, and Hu]. The LGMD models respond selectively to movements in depth, with the most powerful response to objects that signal frontal collision threats. A good number of models have been applied for collision detection against various scenarios including ground vehicles, mobile robots and unmanned aerial vehicles [Fu et al.(2019b)Fu, Wang, Hu, and Yue, Fu et al.(2018a)Fu, Hu, Liu, and Yue].

Inspired by the flies and bees, a considerable number of OF-based collision sensing visual systems mimics the functions of bilateral compound eyes, at ommatidium level. More specifically, there are several categories of methods to realise such signal...
processing. The HRC theory originates the elementary motion detector (EMD)-based models correlating two signals in space, by multiplication with one delayed [Borst and Egelhaaf(1989)]; such a method is effective to enhance the PD motion. Another famous mechanism is called the “Barlow-Levick” model by non-linearly suppressing the ND motion [Barlow and Levick(1965)], which is recently collaborated with the HRC mechanism in constructing fly motion detectors [Strother et al.(2017)Strother, Wu, Wong, Nern, Rogers, Le, Rubin, and Reiser, Haag et al.(2016)Haag, Arenz, Serbe, Gabbiani, and Borst]. In addition, Franceschini proposed a velocity-tuned method depending on the ratio between the photoreceptor angles in space and the time delay for each pairwise contrast detection photoreceptor [Franceschini et al.(1989)Franceschini, Riehle, and Le Nestour, Franceschini et al.(1992)Franceschini, Pichon, and Blanes]; subsequently, it has been called the “time-of-travel” scheme [Moeckel and Liu(2007), Vanhoutte et al.(2017)Vanhoutte, Mafmica, Ruffier, Bootma, and Serres]. As a variation of the EMD, a few methods were proposed to decode or estimate the angular velocity accounting for various flight behaviours of bees [Brinkworth and O’Carroll(2009), Cope et al.(2016)Cope, Sabo, Gurney, Vasilaki, and Marshall,Wang et al.(2019a)Wang, Fu, Wang, Peng, Baxter, Hu, and Yue, Wang et al.(2019b)Wang, Fu, Wang, Peng, and Yue]. Benefiting from the computational efficiency and robustness, many OF-based methods have been applied for near-range navigation of flying robots and micro aerial vehicles, as reviewed in [Franceschini(2014), Serres and Ruffier(2017)].

With distinct size selectivity, the small target movement detectors (STMDs) in flying insects, like the dragonflies, respond selectively to moving objects of very small size (subtended an angle of less than 10 degrees) [Fu et al.(2019b)Fu, Wang, Hu, and Yue]. Wiederman proposed seminal works to detect small dark object motions embedded in natural scenes, via correlating ON and OFF channels in motion detection circuits [Wiederman et al.(2008)Wiederman, Shoemaker, and O’Carroll, Wiederman et al.(2013)Wiederman, Shoemaker, and O’Carroll]. They also combined its functionality with the EMD structure to implement the direction selectivity [Wiederman and O’Carroll(2013)]. Recently, the STMD models have been successfully implemented in a ground robot to track small targets in natural backgrounds [Bagheri et al.(2017)Bagheri, Cazzolato, Grainger, O’Carroll, and Wiederman], and in on-line system of an airborne vehicle for small-field object detection and avoidance [Escobar et al.(2019)Escobar, Ohradzansky, Keshavan, Ranganathan, and Humbert].

2.2 Physiological Research on the Fly Motion Vision Pathways

Our proposed model is based on an important physiological theory that motion information is processed in parallel ON and OFF pathways [Borst et al.(2020)Borst, Haag, and Mauss]. As illustrated in Fig. 1, we can summarise the following steps of the Drosophila’s preliminary visual processing:

1. The motion perception starts from the retina layer with photoreceptors (R1–R6) which conveys received brightness to LMCs in the lamina layer.

2. The LMCs encode motion by luminance increments (ON) and decrements (OFF). The motion information is separated into parallel channels: the L1 with its downstream Mi1 and Tm3 interneurons in the medulla layer convey onset or light-on
3. The DS responses of ON and OFF contrasts are produced by the T4 and T5 cells in a feed-forward manner, respectively. The selectivity to four cardinal directions is well separated in different groups of T4 and T5 neurons [Maisak et al. (2013)Maisak, Haag, Ammer, Serbe, Meier, Leonhardt, Schilling, Bahl, Rubin, Nern, Dickson, Reiff, Hopp, and Borst].

4. The LPTCs in four stratified sub-layers of the lobula plate integrate the T4 and T5 signals, where the same DS responses converge on the same sub-layer. Meanwhile, the LPI interneurons convey inhibition to adjacent sub-layers through sign-inverting interactions, thus forming the DO responses [Mauss et al. (2015)Mauss, Pankova, Arenz, Nern, Rubin, and Borst]. Finally, two directionally selective systems, i.e., the HS and VS systems pool the responses from LPTCs towards sensorimotor control [Joesch et al. (2010)Joesch, Schnell, Raghu, Reiff, and Borst].
2.3 EMD in the ON and OFF Channels

Based on the EMD, there are several theories representing different combination forms to encode the spatiotemporal signal flows in the ON and OFF channels [Joesch et al.(2013)Joesch, Weber, Eichner, and Borst], as shown in Fig. 2. Importantly, since the signals are already directionally selective before collectively arriving at the stratified LPTCs [Maisak et al.(2013)Maisak, Haag, Ammer, Serbe, Meier, Leonhardt, Schilling, Bahl, Rubin, Nern, Dickson, Reiff, Hopp, and Borst, Badwan et al.(2019)Badwan, Creamer, Zavatone-Veth, and Clark], all these models could well explain the neural computation inside the ON and OFF channels.

More concretely, in the former EMD models, e.g., [Iida and Lambrinos(2000), Zanker and Zeil(2005), Zanker et al.(1999)Zanker, Srinivasan, and Egelhaaf], visual information is processed in a single pathway with the basic format between every
pairwise photoreceptors (Fig. 2a). After the identification of ON and OFF channels, the motion information is split into different places, however can further interact even with the opposite polarity signal flows. Different combinations have been investigated through either the electro-physiological recordings from the LPTCs [Eichner et al. (2011)Eichner, Joesch, Schnell, Reiff, and Borst] or the behavioural experiments [Clark et al. (2011)Clark, Bursztyn, Horowitz, Schnitzer, and Clandinin]. The 4-quadrant (4-Q) detectors model with communications between both the same and the opposite polarity signals (see Fig. 2b) is fully equivalent to the full-HRC, namely the EMD model in Fig. 2a. The second important model is the 2-Q structure in Fig. 2c, which processes input combinations of only the same-sign signals, i.e., ON-ON and OFF-OFF contrast. In addition to that, the 6-Q model has a more complex structure (see Fig. 2d), which argues that either the ON/OFF channel conveys motion information with both positive (onset) and negative (offset) contrast changes. Our proposed method leverages them with the 2-Q model’s simpler computational structure as well as the 6-Q model’s edge selectivity prior to the ON and OFF channels.

3 Formulation of the Proposed Model

Within this section, we present the formulation of the proposed visual system model. Fig. 3 depicts the schematic of model structure. Generally speaking, for mimicking the *Drosophila* physiology in Fig. 1, the model consists of mainly five computational neuropile layers with the HS and VS systems. The forming of DS and DO responses in the proposed model resembles the revealed *Drosophila* visual processing in a feed-forward manner [Badwan et al. (2019)Badwan, Creamer, Zavatone-Veth, and Clark]. Compared to previous related methods, we highlight the following mechanisms:

1. The model combines bio-plausible spatiotemporal pre-filtering methods to remove redundant background motion to a large extent, and achieve edge selectivity, which include firstly a variant of ‘Difference of Gaussians’ (vDoG) mechanism with ON and OFF contrast selectivity, spatially, and then a fast-depolarising-slow-repolarising (FDSR) mechanism, temporally (see Fig. 4).

2. To improve the dynamic response and alleviate the impact by temporal frequency of visual stimuli, we propose a novel structure representing ensembles of motion correlators for each interneuron inside the ON and OFF pathways to produce the DS responses in horizontal and vertical directions, i.e., multi-connected and same-polarity cells possess dynamic latency corresponding to the sampling distance between each pairwise detectors (see Fig. 4).

3. The HS and VS systems integrate the local DS responses from stratified LPTCs with inhibitions from adjacent LPi interneurons representing the DO responses to form global membrane potential. Accordingly, the PD or ND translating motion is indicated by the positive or negative membrane potential of both systems.
3.1 Computational Retina Layer

In the first retina layer, there are photoreceptors (see P in Fig. 3) that capture single-channel luminance (green-channel or grey-scale in our case), at ommatidia (grouped local optical units) or local pixel level from images, with respect to time. Let \(L(x,y,t) \in \mathbb{R}^3 \) denote the input image streams, where \(x, y \) and \(t \) are spatial and temporal positions. The calculation of motion signals is as follows:

\[
P(x,y,t) = L(x,y,t) - L(x,y,t-1) + \sum_{i=1}^{n_p} a_i \cdot P(x,y,t-i).
\]

The change of brightness could continue and decay for a short while of \(n_p \) number of frames. The decay coefficient \(a_i \) is computed by

\[
a_i = \left(1 + e^i\right)^{-1}.
\]

3.2 Computational Lamina Layer

As illustrated in Fig. 1 and 3, in the second lamina layer, there are LMCs that split motion signals from the retina layer into parallel ON and OFF channels encoding light-on (onset) and light-off (offset) responses, respectively. For enhancing the motion edge selectivity and maximising the transmission of useful information from visually cluttered environments, we propose a bio-plausible spatial mechanism, named the
“vDoG”, simulating the functions of LMCs. Compared to the traditional DoG mechanism, it also demonstrates the ON and OFF contrast selectivity to fit with the following processing in the ON and OFF channels. The vDoG depicts a centre-surrounding antagonism with centre-positive and surrounding-negative Gaussians representing excitatory and inhibitory fields in space. That is,

\[P_e(x, y, t) = \sum_{u=-2}^{2} \sum_{v=-2}^{2} P(x-u, y-v, t) \cdot G_{\sigma_e}(u, v), \]
\[P_i(x, y, t) = \sum_{u=-4}^{4} \sum_{v=-4}^{4} P(x-u, y-v, t) \cdot G_{\sigma_i}(u, v), \]

\[G_{\sigma_e}(u, v) = \frac{1}{2\pi \sigma_e^2} \exp\left(-\frac{u^2 + v^2}{2\sigma_e^2} \right), \quad G_{\sigma_i}(u, v) = \frac{1}{2\pi \sigma_i^2} \exp\left(-\frac{u^2 + v^2}{2\sigma_i^2} \right), \]

where \(\sigma_e \) and \(\sigma_i \) indicate the excitatory and inhibitory standard deviations. The outer convolution kernel \(G \) is with twice the radius of the inner one. Accordingly, the broader inhibitory Gaussian is subtracted from the narrower excitatory one with the polarity selectivity. That is,

\[LA(x, y, t) = \begin{cases} \left| P_e(x, y, t) - P_i(x, y, t) \right|, & \text{if } P_e(x, y, t) \geq 0 \& P_i(x, y, t) \geq 0 \\ -\left| P_e(x, y, t) - P_i(x, y, t) \right|, & \text{if } P_e(x, y, t) < 0 \& P_i(x, y, t) < 0 \end{cases}. \]

After that, there are ON and OFF half-wave rectifying mechanisms splitting motion information into two parallel pathways, via filtering out negative and positive inputs for the ON and OFF pathways, respectively (see Fig. 3). In addition to that, the negative inputs to the OFF pathway are sign-inverted. The calculations are expressed as follows:

\[L1(x, y, t) = [LA(x, y, t)]^+, \quad L2(x, y, t) = -[LA(x, y, t)]^- . \]

\([x]^+\) and \([x]^−\) denote \(\max(0, x)\) and \(\min(x, 0)\), respectively. \(L1\) and \(L2\) indicate the LMCs in the lamina layer, i.e., \(L1\) in the ON channels, \(L2\) and \(L3\) in the OFF channels (see Fig. 1).

For each interneuron in the lamina layer, an ‘adaptation state’ is formed by the bio-plausible FDSR mechanism which matches the neural characteristic of ‘fast onset and slow decay’ phenomena. As depicted in Fig. 4, we first check the derivative of inputs from the ON and OFF channels along the time \(t\). As digital signals do not have continuous derivatives, we compare neuronal responses between every two successive frames to get the change:

\[\Delta L1(x, y) = L1(x, y, t) - L1(x, y, t-1), \quad \Delta L2(x, y) = L2(x, y, t) - L2(x, y, t-1). \]

Subsequently, the input signals from the ON and OFF channels are delayed with two different latency constants \(\tau_1, \tau_2\) in milliseconds, and \(\tau_1 < \tau_2\) representing the
‘fast depolarising’ with non-negative change and the ‘slow repolarising’ with negative change, respectively. That is,

\[
\hat{L}_1(x,y,t) = \begin{cases}
\alpha_1 L_1(x,y) + (1 - \alpha_1)L_1(x,y,t - 1), & \text{if } \Delta L_1(x,y) \geq 0, \\
\alpha_2 L_1(x,y,t) + (1 - \alpha_2)L_1(x,y,t - 1), & \text{if } \Delta L_1(x,y) < 0.
\end{cases}
\] (8)

\[
\hat{L}_2(x,y,t) = \begin{cases}
\alpha_1 L_2(x,y) + (1 - \alpha_1)L_2(x,y,t - 1), & \text{if } \Delta L_2(x,y) \geq 0, \\
\alpha_2 L_2(x,y,t) + (1 - \alpha_2)L_2(x,y,t - 1), & \text{if } \Delta L_2(x,y) < 0.
\end{cases}
\] (8)

\[
\alpha_1 = \frac{\tau_i}{(\tau_1 + \tau_i)}, \quad \alpha_2 = \frac{\tau_i}{(\tau_2 + \tau_i)}.
\] (9)

\(\tau_i\) is the discrete time interval in milliseconds, between frames. Notably, in the FDSR mechanism, the delayed signal is subtracted from the original one (see Fig. 4) as

\[
M_1(x,y,t) = L_1(x,y,t) - \hat{L}_1(x,y,t), \quad M_2(x,y,t) = L_2(x,y,t) - \hat{L}_2(x,y,t).
\] (10)

\(M_1\) and \(M_2\) denote interneurons in the medulla layer including \(M_{11}, M_{21}\) in the ON channels, and \(M_{12}, M_{13}, M_{22}, M_{23}\) in the OFF channels (see Fig. 1). Such a temporal mechanism contributes significantly to filter out irrelevant background OF and visual flickers, like the windblown vegetation in natural environments.

3.3 Computational Medulla and Lobula Layers

Next, both the medulla and lobula layers constitute the DS layer in Fig. 3, in order to generate the specific DS responses to four cardinal directions, where these interneurons interact with each other, non-linearly [Maisak et al.(2013)Maisak, Haag, Ammer, Serbe, Meier, Leonhardt, Schilling, Bahl, Rubin, Nern, Dickson, Reiff, Hopp, and Borst]. Importantly, like the genuine T4 and T5 neurons in several individual groups sensitive to different directions (see Fig. 1), the proposed model demonstrates the same directional tuning. As mentioned above, for each local cell in the DS layer, we propose the ensemble mechanism (see Fig. 4) connecting same polarity motion detectors, in space, with ON-ON contrast correlation in the ON pathway and OFF-OFF contrast correlation in the OFF pathway, separately. Each pair-wise connection is featured by the aforementioned 2-Q correlation structure (see Fig. 2c). In addition,
as illustrated in Fig. 4, the delay is dynamic, varying with respect to the sampling
distance between every pair-wise detectors. More precisely, the combination with
smaller distance has larger latency, which decreases as the space increases. In our pre-
liminary modelling and bio-robotic researches [Fu and Yue(2017b),Fu et al.(2018)Fu,
Bellotto, Hu, and Yue], such a multi-connected structure has demonstrated the im-
proved dynamic response in speed tuning of translational OF perception, when chal-

enged by a range of angular velocities. The computations for producing the DS re-
sponses of the T4 neurons in the medulla layer are defined as follows:

\[T_{4r}(x,y,t) = \sum_{i=sd}^{sd} \hat{M}_1(x,y,t) \cdot M_1(x+i,y,t), \]
\[T_{4l}(x,y,t) = \sum_{i=sd}^{sd} \hat{M}_1(x+i,y,t) \cdot M_1(x,y,t), \]
\[T_{4d}(x,y,t) = \sum_{i=sd}^{sd} \hat{M}_1(x,y,t) \cdot M_1(x,y+i,t), \]
\[T_{4u}(x,y,t) = \sum_{i=sd}^{sd} \hat{M}_1(x,y+i,t) \cdot M_1(x,y,t). \] (11)

\{r,l,d,u\} indicate the DS responses on four cardinal directions: rightward, leftward,
downward and upward. \(n_c\) and \(sd\) stand for the number of correlated neighbouring
cells for each original cell, and the sampling distance between each pair-wise combi-
nation, respectively. \(\hat{M}_1\) denotes the delayed signal, calculated by

\[\hat{M}_1(x,y,t) = \alpha_3 M_1(x,y,t) + (1 - \alpha_3) M_1(x,y,t - 1), \]
\[\alpha_3 = \frac{\tau_{d}}{(\tau_{r} + \tau_{d})}. \] (12)

\(\tau_{d}\) indicates the proposed dynamic time delay, as exemplified in Fig. 4. Similarly for
the T5 neurons in the lobula layer, the forming of DS responses along four cardinal
directions is expressed as follows:

\[T_{5r}(x,y,t) = \sum_{i=sd}^{sd} \hat{M}_2(x,y,t) \cdot M_2(x+i,y,t), \]
\[T_{5l}(x,y,t) = \sum_{i=sd}^{sd} \hat{M}_2(x+i,y,t) \cdot M_2(x,y,t), \]
\[T_{5d}(x,y,t) = \sum_{i=sd}^{sd} \hat{M}_2(x,y,t) \cdot M_2(x,y+i,t), \]
\[T_{5u}(x,y,t) = \sum_{i=sd}^{sd} \hat{M}_2(x,y+i,t) \cdot M_2(x,y,t). \] (13)

The delay computation of \(\hat{M}_2\) conforms to Eq. 12, which is not restated here.

Importantly, a latest biological research has revealed that the distinct DS re-
sponses are all generated in a feed-forward manner when arriving the T4 and T5
neurons, each group of which demonstrates the specific direction selectivity [Badwan
et al. (2019) Badwan, Creamer, Zavatone-Veth, and Clark. As introduced in Section 2, though the different mechanisms forming such DS responses, with either PD motion enhancement or ND motion suppression, are still in debate, the proposed visual system model reconciles well the generation of DS responses with feed-forward signal processing.

3.4 Computational Lobula Plate Layer

After that, as illustrated in Fig. 1, the LPTCs in four stratified sub-layers integrate the DS responses from different groups of T4 and T5 neurons each with specific PD motion tuning, where the same DS responses converge at an identical sub-layer of the lobula plate. That is,

\[LP_r(t) = C \sum_{x=1}^{C} \sum_{y=1}^{R} T4_r(x,y,t) + T5_r(x,y,t), \]

\[LP_l(t) = C \sum_{x=1}^{C} \sum_{y=1}^{R} T4_l(x,y,t) + T5_l(x,y,t), \]

\[LP_d(t) = C \sum_{x=1}^{C} \sum_{y=1}^{R} T4_d(x,y,t) + T5_d(x,y,t), \]

\[LP_u(t) = C \sum_{x=1}^{C} \sum_{y=1}^{R} T4_u(x,y,t) + T5_u(x,y,t). \]

(14)

\[C \text{ and } R \text{ indicate columns and rows of the two-dimensional visual field. In addition to that, the proposed DO responses by opposing motions are generated via a sign-inverting operation representing the functionality of LPi interneurons inhibiting the LPTCs in neighbouring sub-layer (see Fig. 1 and 3), which are pooled by the HS and VS systems as the following:} \]

\[HS(t) = LP_r(t) - LP_l(t), \quad VS(t) = LP_d(t) - LP_u(t). \]

(15)

With regard to the non-linear and symmetric mapping in each combination of local ON-ON or OFF-OFF motion correlators inside the ON and OFF pathways, the model response is tuned to be positive by the PD (rightward and downward) motions, while negative by the ND (leftward and upward) motions.

Finally, the global membrane potential of either the HS/VS system is activated by a sigmoid function. Let the \(HS(t) \) or \(VS(t) \) be \(x \), the function is defined as

\[f(x) = 2 \cdot \text{sgn}(x) \cdot ((1 + e^{-|x|/(C \cdot R \cdot k)^{-1}})^{-1} - 0.5), \]

(16)

where \(k \) is a scale coefficient. Accordingly, the output of proposed model is regulated within \([0, 1]\) for the positive input, and \((-1, 0]\) for the negative input.
Table 2 Setting parameters of the proposed visual system model

Parameter	Description	Value
\(n_p\)	number of persistent frames	0 ~ 2
\(\tau_i\)	time interval constant between frames	1000/30 ms
\(\tau_f\)	fast depolarising time constant	1 ms
\(\tau_s\)	slow repolarising time constant	100 ms
\(sd\)	sampling distance between each combination	4
\(\{\sigma_e, \sigma_i\}\)	standard deviations in vDoG mechanism	{2, 4}
\(n_{cr}\)	number of correlating cells	4
\(\tau_s\)	dynamic delay in ensembles of correlators	10 ~ 200 ms
\(\{C, R\}\)	columns and rows of the visual field	adaptable
\(k\)	coefficient in sigmoid function	0.01

3.5 Setting Model Parameters

The parameters of the proposed model are given in Table 2. All of them are decided, empirically, with considerations of the functionality of the *Drosophila* visual system, and based on our previous modelling and experimenting experience in [Fu and Yue(2017b), Fu and Yue(2017a), Fu et al.(2018)Fu, Bellotto, Hu, and Yue]. In particular, the parameters of the vDoG mechanism correspond to the sampling distance between local motion correlators \(sd = \sigma_i\). It is also worthwhile pointing out that since each local cell inside the ON and OFF channels correlates with multiple neighbouring cells in horizontal and vertical directions, increasing the number of correlating cells \(n_{cr}\) could further improve the dynamic response to translating stimuli, at the cost though of more computational consumption.

4 Experimental Setting

In this section, we introduce the experimental settings. Generally speaking, all the experiments can be categorised into two types of tests. In the first type of tests, we aim at demonstrating the robust DS and DO responses, as the basic characteristic of the proposed neural system model, challenged by visual stimuli against various backgrounds, from simple to complex. More specifically, the visual inputs are with 320 \times 180 pixels, at 30 frames per second (fps) for the clean and real-world scenarios. After that, more systematic experiments are carried on with two cluttered moving backgrounds. We simulate a bar with 25 \times 120 pixels in size, at three certain grey levels (white, moderate, dark), translating rightward at three individual angular velocities of 9, 18, 27 degrees per second (degrees/s), in front of a cluttered moving background. Note that both the two backgrounds shift in an opposite direction (leftward) relative to the foreground translating targets, at a range of velocities (-5, -10, -20, -30, -40 degrees/s), respectively. The visual inputs are with 700 \times 180 pixels, at 30 fps.

In the second type of tests, we look deeper into the properties of both model and stimuli considering the effects of proposed spatiotemporal dynamics on decoding the direction of translating objects in front of cluttered moving backgrounds. We compare the performance of models with and without the investigated mechanisms
including the coordination of motion pre-filtering vDoG and FDSR, and the parameter n_c (number of correlating detectors) in the ensembles of local ON-ON/OFF-OFF motion correlators. Moreover, we also give insight into the model performance on perception of different sized targets (10×10, 25×25, 50×50 and 100×100 pixels), and also against very high-speed moving backgrounds (-50, -100, -200 degrees/s). The main objectives are 1) demonstrating the significance of proposed new structures and mechanisms for detecting the foreground translating objects and reproducing the DS/DO response; 2) revealing the model’s responsive preferences.
Fig. 7 Proposed model responses challenged by foreground translating stimuli in real physical scenes. The frame number is labelled at the bottom of each snapshot. The red arrow in snapshots denotes the ground truth of primary direction of foreground translational OF. The two vertical lines in each result indicate the time window of the appearance of foreground translational OF.
In all the experiments, the proposed visual system model was set up in Visual Studio (Microsoft Corporation). The synthetic visual stimuli were generated by a Python open-source library, i.e., the Vision Egg [Straw(2008)]. The real world stimuli were recorded by a camera. Data analysis and visualisations were implemented in MATLAB (The MathWorks, Inc., Natick, MA, USA).

5 Results

5.1 Demonstrations of the Specific Direction Selectivity

In this kind of tests, we systematically examine the specific direction selectivity of the proposed Drosophila visual system model. Firstly, the model is challenged by a few typical motion patterns with clean backgrounds, which include darker and brighter objects translating in four cardinal directions, approaching and receding. The model responses are shown in Fig. 5 and 6. More specifically, when challenged by translating in four cardinal directions (see Fig. 5), the HS and VS systems are highly activated by horizontal and vertical movements, respectively. In the process of translation, the leading and trailing edges of a darker object bring about OFF and ON contrasts, respectively; while a brighter object leads to the opposite responses. As a result, the model with ON and OFF channels can encode both polarity contrast in separate pathways in order to generate the specific DS responses to four cardinal directions: the HS system is rigorously activated by merely the horizontal translational OF representing positive or negative response to its PD (rightward) or ND (leftward) motion; the VS system only responds to the vertical translational OF that also shows positive or negative response to its PD (downward) or ND (upward) motion.

On the other hand, when challenged against approaching and receding motion patterns, i.e., movements in depth (see Fig. 6), both the HS and VS systems are rigorously inhibited during every entire process: the ON and OFF contrast by PD and ND motions with contracting and distracting edges are cancelled by each other. The results demonstrate clearly the direction selectivity of proposed visual system model to translation in four cardinal directions.

Next, the model is tested by more challenging real world scenarios. Compared to the computer-simulated stimuli, the real physical backgrounds are unstructured including motion distractors, such as the windblown vegetation, and etc. As the input visual stimuli, all the translating targets have the ground truth of primary direction in horizontal, as illustrated in Fig. 7. Accordingly, the HS system is highly activated when translations appear in the field of vision. Notably, the VS system is also activated compared to the above stimuli in clean backgrounds, caused by irregular locomotion of translating targets in vertical directions and background distractors. Despite that, the HS system responds much more strongly to the visual stimuli, which can well indicate the principal direction of foreground moving objects. The PD or ND motion in horizontal is well decoded as positive or negative membrane potential of the neural system model. The results verify that the proposed model responds more consistently to foreground translating objects rather than irrelevant background flows that is robust to generate the DS and DO responses against more variable backgrounds.
Fig. 8 Proposed model responses challenged by two cluttered moving backgrounds. The white, moderate and dark objects start from the left side and translate rightward at 27 degrees/second. The cluttered backgrounds shift leftward at -20 degrees/second. The red ellipses mark the start and end positions. The arrows indicate the ground truth directions of foreground objects(v_f) and moving backgrounds(v_b).
After that, more systematic experiments are carried on with cluttered moving backgrounds, in which the angular velocities of both the foreground translating objects and the shifting backgrounds are manually controlled. Fig. 8 illustrates the model responses by three grey-scale objects moving in front of two shifting natural backgrounds, respectively. We have the following observations:

1. The proposed model is effective to decode the direction of translating objects against cluttered moving backgrounds: only the HS system is activated representing positive response to PD translational motion in front of the ND shifting backgrounds; whilst the VS system is rigorously suppressed.

2. The model is sensitive to the contrast between translating objects and backgrounds: the white object, with relatively larger contrast to the moving backgrounds, leads to more constant and stronger responses; whilst the moderate object, with relatively smaller contrast to the moving backgrounds, brings about weaker responses. Moreover, the model is not responding to the dark or moderate object translating in front of the background with little contrast, e.g., the dark object moving into the shadowed area.

Subsequently, we compare the dynamic response in speed tuning between the three grey-scale translating objects, against the two cluttered moving backgrounds.
Based on the experimental setting introduced in Section 4, a range of angular velocities for both the foreground targets and the backgrounds are investigated. Fig. 9 illustrates the statistical results. Intuitively, the HS system responds more strongly to the PD translating stimuli at faster speeds; while the VS system maintains inactive in all the tests. Importantly, challenged by the ND moving backgrounds at a range of angular velocities, little variance is shown at all tested foreground translation speeds and contrasts, which indicates the proposed model performs robustly and consistently to decode the direction of translation in front of cluttered moving backgrounds. The irrelevant background translational OF mixed with distractors, such as the woods, have been satisfactorily suppressed, which is a significant achievement of this modelling research. Moreover, the model represents a broader dynamic range on the larger-contrast moving target which matches the above observations in Fig. 8.

5.2 Investigations on Model Characteristics

To provide insight into the significance of proposed new mechanisms or structures in decoding the direction of translating objects against cluttered moving backgrounds, we investigate the effectiveness of spatiotemporal dynamics in the proposed visual system model. Firstly, Fig. 10 demonstrates the effects of ensembles of ON-ON/OFF-OFF local motion correlators on the dynamic response in speed tuning (n_c in Eq. 11 and 13). The statistical results show that the dynamic response is stable and reflected by all the tested parameter and stimuli settings. The model is expected to respond more strongly to faster moving stimuli with more correlated detectors inside the ON and OFF channels. There is nevertheless little difference between $n_c = 4$ and $n_c = 8$, which indicates that $n_c = 4$ could be an optimal parameter set-up in our case. Such a structure can enhance the dynamic response by alleviating the impact by temporal frequency of visual stimuli though increasing the computational complexity.

Secondly, we compare the performance of model in the absence of proposed combination of spatial (vDoG) and temporal (FDSR) mechanisms refining ON and OFF contrast before generating the DS and DO responses. Fig. 11 illustrates the outputs...
Fig. 11 Proposed model responses without the combination of motion pre-filtering mechanisms including the vDoG and the FDSR, challenged by the two cluttered moving backgrounds. The stimuli settings are in accordance with the Fig. 8. Obviously, without the coordination of proposed spatiotemporal mechanisms, the model is no longer capable of accurately decoding the direction of translating objects in front of the cluttered moving backgrounds. More concretely, the HS system represents negative responses to the ND translational OF
Proposed model responses by different sized white squares translating rightward at 27 degrees/s, in front of the cluttered background (scene #2) moving leftward at -40 degrees/s.

Caused by the backgrounds, and the VS system is also highly activated. The results further verify the importance of proposed spatiotemporal dynamics to fit with the desired robustness in cluttered moving backgrounds.

Lastly, we also investigate the model performance on visual stimuli possessing different properties including varying sizes of translating objects and higher-speed
moving backgrounds. Fig. 12 and 13 illustrate the results. Interestingly, the proposed model can detect the different sized targets moving in front of a cluttered, and fast-moving background. However, the model demonstrates responsive preference to larger over smaller sized targets representing stronger response of the HS system; whilst the VS system is rigorously suppressed by all the tested visual stimuli, as expected (see Fig. 12).

When tested by the very high-speed moving cluttered background, some negative results are obtained: the HS system of the proposed model also responds correctly to the PD motion of foreground translation; the VS system nevertheless is activated more constantly than the afore-tested background angular velocities, especially at the highest velocity of -200 degrees/second (see Fig. 13). Therefore, the very high-speed cluttered moving background still poses a problem on decoding the direction of foreground moving object.

6 Discussion

6.1 Characterisation of the Model

We have demonstrated the effectiveness of the proposed *Drosophila* motion vision pathways model for decoding the direction of translating objects in front of different visual backgrounds, from simple to more challenging cluttered moving ones. The visual system model articulates the signal processing behind the OF level, and satisfactorily reproduces the DS and DO responses revealed in the neural circuits. The direction of foreground translating objects is indicated by the global membrane potential of the wide-field HS and VS systems, with which the positive or negative response indicate the PD or ND motion (Fig. 5, 7 and 8). Importantly, the model shows robust direction selectivity and dynamic response to translating objects in front of cluttered moving backgrounds, at a range of tested angular velocities for both the foreground targets and the backgrounds (Fig. 9 and 10). In addition, the model also shows responsive preference to faster-moving (Fig. 9 and 10), larger-size (Fig. 12), higher-contrast
(Fig. 8 and 9) translating targets. Moreover, we have clarified the importance of proposed modelling of spatiotemporal dynamics to refine the ON and OFF contrasts prior to the generation of DS responses (Fig. 11), and to improve dynamic response in speed tuning (Fig. 10). Furthermore, we have also shown the existing limitation of the proposed visual system model for foreground translation perception, that is, the model could not suppress the very high-speed background translational OF, to an acceptable level (Fig. 13). In fact, a single-type neural-pathway computation may be insufficient to handle this challenge, whereas the coordination of multiple neural pathways could be a potential solution.

Considering further improvements on this work, we also have the following observations:

1. A recent physiological study has suggested the visual interneurons in the medulla layer of fly motion vision pathways can rapidly adjust the contrast sensitivity [Drews et al. (2020)Drews, Leonhardt, Pirogova, Richter, Schuetzenberger, Braun, Serbe, and Borst]. Therefore, the implementation of contrast normalisation in the proposed model could reduce the high contrast fluctuations in natural images.

2. For the experimental setting, our model processes signals at only 30Hz that is 8 times lower than the fly’s eye at about 250Hz, although our model works with 126000 pixels, 15 times over the fly with approximately 8400 pixels in total. We will further investigate the proposed method by matching the settings with the fly visual systems and applying binocular vision.

6.2 Coordination of Multiple Neural Systems

The experiments have also demonstrated the proposed model can perceive small translating object, and decode its direction under a same model setting. However, in contrast to the STMD models [Wiederman et al. (2008)Wiederman, Shoemaker, and O’Carroll, Wiederman et al. (2013)Wiederman, Shoemaker, and O’Carroll], the wide-field HS and VS systems have responsive preference to larger-size targets resulting in much stronger responses (Fig. 12). A fascinating future work could be the integration of multiple neural pathways for size-varying target pursuit in natural environments.

Furthermore, the proposed visual system model perfectly complements the looming sensitive neural models like the LGMD [Fu et al. (2018b)Fu, Hu, Peng, and Yue, Fu et al. (2019a)Fu, Hu, Peng, Rind, and Yue], on the aspect of direction selectivity (Fig. 6). The coordination of them could facilitate the perception of different motion patterns in more challenging scenarios.

7 Conclusion

This paper presents computational modelling of the Drosophila motion vision pathways accounting for how the flies decode the direction of a moving target in front of highly variable backgrounds. The emphasis herein is laid behind the OF level: the proposed model mimics the visual processing from the photoreceptors, through the parallel ON and OFF pathways, to the LPTCs in four stratified sub-layers sensitive
to motion in four cardinal directions. The wide-field HS and VS systems integrate the DS and DO responses from the LPTCs as the model outputs, with which the positive or negative response indicates the PD (rightward, downward) or ND (leftward, upward) translational motion. To extract merely the foreground translation and improve the dynamic response in a cluttered moving background, the proposed modelling of spatiotemporal dynamics including the coordination of motion pre-filtering mechanisms and the ensembles of local correlators inside the ON and OFF channels, works effectively. The experiments have verified the effectiveness of the proposed model with robust direction selectivity in various backgrounds, and also demonstrated its specific responsive preference. The proposed model processes signals in a feedforward manner resembling the *Drosophila* physiology; its computational efficiency and flexibility could fit with building neuromorphic sensors, either featuring compact size or achieving higher processing speed, for utility in mobile intelligent machines.

References

Badwan et al. (2019) Badwan, Creamer, Zavatone-Veth, and Clark. Badwan BA, Creamer MS, Zavatone-Veth JA, Clark DA (2019) Dynamic nonlinearities enable direction opponency in *Drosophila* elementary motion detectors. nature neuroscience 22:1318–1326

Bagheri et al. (2017) Bagheri, Cazzolato, Grainger, O’Carroll, and Wiederman. Bagheri ZM, Cazzolato BS, Grainger S, O’Carroll DC, Wiederman SD (2017) An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments. Journal of Neural Engineering 14(4):046030

Barlow and Levick (1965). Barlow H, Levick W (1965) The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology 178:477–504

Borst (2014). Borst A (2014) Fly visual course control: Behaviour, algorithms and circuits. Nature Reviews Neuroscience 15:590–599

Borst and Egelhaaf (1989). Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends in Neurosciences 12:297–306

Borst and Euler (2011). Borst A, Euler T (2011) Seeing things in motion: Models, circuits, and mechanisms. Neuron 71(6):974–994

Borst and Helmstaedter (2015). Borst A, Helmstaedter M (2015) Common circuit design in fly and mammalian motion vision. Nature Neuroscience 18(8):1067–1076

Borst et al. (2015) Borst, Haag, and Reiff. Borst A, Haag J, Reiff DF (2010) Fly motion vision. The Annual Review of Neuroscience 33:49–70

Borst et al. (2020) Borst, Haag, and Mauss. Borst A, Haag J, Mauss AS (2020) How fly neurons compute the direction of visual motion. Journal of Comparative Physiology A 206:109–124

Brinkworth and O’Carroll (2009). Brinkworth RSA, O’Carroll DC (2009) Robust models for optic flow coding in natural scenes inspired by insect biology. PLoS Computational Biology 5(11)

Clark et al. (2011) Clark, Bursztyn, Horowitz, Schnitzer, and Clandinin. Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR (2011) Defining the computational structure of the motion detector in drosophila. Neuron 70(6):1155–1164

Cope et al. (2016) Cope, Sabo, Gurney, Vasilaki, and Marshall. Cope AJ, Sabo C, Gurney K, Vasilaki E, Marshall JA (2016) A model for an angular velocity-tuned motion detector accounting for deviations in the corridor-centering response of the bee. PLoS Computational Biology 12(5):1–22

Drews et al. (2020) Drews, Leonhardt, Pirgovova, Richter, Schnetzenberger, Braun, Serbe, and Borst. Drews MS, Leonhardt A, Pirgovova N, Richter FG, Schnetzenberger A, Braun L, Serbe E, Borst A (2020) Dynamic signal compression for robust motion vision in flies. Current Biology 30:209–221

Eichner et al. (2011) Eichner, Joesch, Schnell, Reiff, and Borst. Eichner H, Joesch M, Schnell B, Reiff DF, Borst A (2011) Internal structure of the fly elementary motion detector. Neuron 70(6):1155–1164

Escobar et al. (2019) Escobar, Ohradzansky, Keshavan, Ranganathan, and Humbert. Escobar HD, Ohradzansky M, Keshavan J, Ranganathan BN, Humbert JS (2019) Bioinspired approaches for autonomous small-object detection and avoidance. IEEE Transactions on Robotics 35(5):1220–1232
Fisher et al. (2015) Fisher, Leong, Sporar, Ketkar, Gohl, Clandinin, and Silies. Fisher YE, Leong JCS, Sporar K, Ketkar MD, Gohl DM, Clandinin TR, Silies M (2015) A class of visual neurons with wide-field properties is required for local motion detection. Current Biology 25(24):3178–3189

Franceschini (2014). Franceschini N (2014) Small brains, smart machines: From fly vision to robot vision and back again. Proceedings of the IEEE 102:751–781

Franceschini et al. (1989) Franceschini, Riehle, and Le Nestour. Franceschini N, Riehle A, Le Nestour A (1989) Directionally selective motion detection by insect neurons. In: Stavenga DG, Hardie RC (eds) Facets of Vision. Springer Berlin Heidelberg, pp 360–390

Franceschini et al. (1992) Franceschini, Pichon, and Blanes. Franceschini N, Pichon J, Blanes C (1992) From insect vision to robot vision. Philosophical Transactions of the Royal Society B 337(1281):283–294

Frye (2015). Frye M (2015) Elementary motion detectors. Current Biology 25(6):R215–R217

Fu and Yue (2017a). Fu Q, Yue S (2017a) Mimicking fly motion tracking and fixation behaviors with a hybrid visual neural network. In: Proceedings of the 2017 IEEE international conference on robotics and biomimetics (ROBIO), IEEE, pp 1636–1641

Fu and Yue (2017b). Fu Q, Yue S (2017b) Modeling direction selective visual neural network with on and off pathways for extracting motion cues from cluttered background. In: Proceedings of the 2017 international joint conference on neural networks (IJCNN), IEEE, pp 831–838

Fu et al. (2016) Fu, Yue, and Hu. Fu Q, Yue S, Hu C (2016) Bio-inspired collision detector with enhanced selectivity for ground robotic vision system. In: British machine vision conference, BMVA Press, pp 1–13

Fu et al. (2017) Fu, Hu, Liu, and Yue. Fu Q, Hu C, Liu T, Yue S (2017) Collision selective LGMDs neuron models research benefits from a vision-based autonomous micro robot. In: Proceedings of the 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 3996–4002

Fu et al. (2018) Fu, Bellotto, Hu, and Yue. Fu Q, Bellotto N, Hu C, Yue S (2018) Performance of a visual fixation model in an autonomous micro robot inspired by drosophila physiology. In: Proceedings of the 2018 IEEE international conference on robotics and biomimetics (ROBIO), IEEE, pp 1802–1808

Fu et al. (2018a) Fu, Hu, Liu, and Yue. Fu Q, Hu C, Liu P, Yue S (2018a) Towards computational models of insect motion detectors for robot vision. In: Giuliani M, Assaf T, Giannaccini ME (eds) Towards autonomous robotic systems conference, Springer International Publishing, pp 465–467

Fu et al. (2018b) Fu, Hu, Peng, and Yue. Fu Q, Hu C, Peng J, Yue S (2018b) Shaping the collision selectivity in a looming sensitive neuron model with parallel ON and OFF pathways and spike frequency adaptation. Neural Networks 106:127–143, DOI https://doi.org/10.1016/j.neunet.2018.04.001

Fu et al. (2019a) Fu, Hu, Peng, Rind, and Yue. Fu Q, Hu C, Peng J, Rind FC, Yue S (2019a) A robust collision perception visual neural network with specific selectivity to darker objects. IEEE Transactions on Cybernetics pp 1–15, DOI 10.1109/TCYB.2019.2946090

Fu et al. (2019b) Fu, Wang, Hu, and Yue. Fu Q, Wang H, Hu C, Yue S (2019b) Towards computational models and applications of insect visual systems for motion perception: A review. Artificial Life 25(3):263–311

Gabbiani and Jones (2011). Gabbiani F, Jones PW (2011) A genetic push to understand motion detection. Neuron 70(6):1023–1025

Haag et al. (2016) Haag, Arenz, Serbe, Gabbiani, and Borst. Haag J, Arenz A, Serbe E, Gabbiani F, Borst A (2016) Complementary mechanisms create direction selectivity in the fly. eLife 5:1–15

Hassenstein and Reichardt (1956). Hassenstein B, Reichardt W (1956) Systemtheoretische analyse der zeit-, reihenfolgen- und vorzeichenauswertung bei der bewegungsperzeption des risselkiifers chlorophanus. Zeitschrift fur Naturforschung pp 513–524

Ida and Lambrinos (2000). Ida F, Lambrinos D (2000) Navigation in an autonomous flying robot by using a biologically inspired visual odometer. Sensor Fusion and Decentralized Control in Robotic System III Photonics East 4196:86–97

Joosch et al. (2010) Joosch, Schnell, Raghu, Reiff, and Borst. Joosch M, Schnell B, Raghu SV, Reiff DF, Borst A (2010) ON and OFF pathways in drosophila motion vision. Nature 468(7321):300–304

Joosch et al. (2013) Joosch, Weber, Eichen, and Borst. Joosch M, Weber F, Eichen H, Borst A (2013) Functional specialization of parallel motion detection circuits in the fly. Journal of Neuroscience 33(3):902–905

Maisak et al. (2013) Maisak, Haag, Ammer, Serbe, Meier, Leonhardt, Schilling, Bahl, Rubin, Nern, Dickson, Reiff, Hopp, and Borst. Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A (2013) A directional tuning map of drosophila elementary motion detectors. Nature 500(7461):212–216
Mauss et al. (2015) Mauss, Pankova, Arenz, Nern, Rubin, and Borst. Mauss AS, Pankova K, Arenz A, Nern A, Rubin GM, Borst A (2015) Neural circuit to integrate opposing motions in the visual field. Cell 162:351–362

Moeckel and Liu (2007). Moeckel R, Liu SC (2007) Motion detection circuits for a time-to-travel algorithm. In: Proceedings of the 2007 IEEE international symposium on circuits and systems, IEEE, pp 3079–3082

Riehle and Franceschini (1984). Riehle A, Franceschini NH (1984) Motion detection in flies: Parametric control over on-off pathways. Experimental Brain Research 54(2):390–394

Rind (1990). Rind F (1990) Identification of directionally selective motion-detecting neurons in the locust lobula and their synaptic connections with an identified descending neuron. Journal of Experimental Biology 149:21–43

Rister et al. (2007) Rister, Pauls, Schnell, Ting, Lee, Sinaevitch, Morante, Strausfeld, Ito, and Heisenberg. Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinaevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M (2007) Dissection of the peripheral motion channel in the visual system of drosophila melanogaster. Neuron 56(1):155–170

Serres and Ruffier (2017). Serres JR, Ruffier F (2017) Optic flow-based collision-free strategies: From insects to robots. Arthropod Structure and Development 46(5):703–717

Straw (2008). Straw AD (2008) Vision egg: an open-source library for realtime visual stimulus generation. Frontiers in Neuroinformatics 2(4)

Strother et al. (2014) Strother, Nern, and Reiser. Strother JA, Nern A, Reiser MB (2014) Direct observation of on and off pathways in the drosophila visual system. Current Biology 24(9):976–983

Strother et al. (2017) Strother, Wu, Wong, Nern, Rogers, Le, Rubin, and Reiser. Strother JA, Wu ST, Wong AM, Nern A, Rogers EM, Le JQ, Rubin GM, Reiser MB (2017) The emergence of directional selectivity in the visual motion pathway of drosophila. Neuron 94(1):168–182.e10

Vanhoutte et al. (2017) Vanhoutte, Mafrika, Ruffer, Bootma, and Serres. Vanhoutte E, Mafrika S, Ruffer F, Bootma RJ, Serres J (2017) Time-of-travel methods for measuring optical flow on board a micro flying robot. Sensors 17(3):571

Wang et al. (2019a) Wang, Fu, Wang, Peng, Baxter, Hu, and Yue. Wang H, Fu Q, Wang H, Peng J, Baxter P, Hu C, Yue S (2019a) Angular velocity estimation of image motion mimicking the honeybee tunnel centring behaviour. In: Proceedings of the 2019 IEEE International Joint Conference on Neural Networks, IEEE

Wang et al. (2019b) Wang, Fu, Wang, Peng, and Yue. Wang H, Fu Q, Wang H, Peng J, Yue S (2019b) Constant angular velocity regulation for visually guided terrain following. In: Artificial Intelligence Applications and Innovations, Springer International Publishing, pp 597–608

Wiederman and O’Carroll (2013). Wiederman SD, O’Carroll DC (2013) Biologically inspired feature detection using cascaded correlations of OFF and ON channels. Journal of Artificial Intelligence and Soft Computing Research 3(1):5–14

Wiederman et al. (2008) Wiederman, Shoemaker, and O’Carroll. Wiederman SD, Shoemaker PA, O’Carroll DC (2008) A model for the detection of moving targets in visual clutter inspired by insect physiology. PLoS One 3(7):1–11

Wiederman et al. (2013) Wiederman, Shoemaker, and O’Carroll. Wiederman SD, Shoemaker PA, O’Carroll DC (2013) Correlation between OFF and ON channels underlies dark target selectivity in an insect visual system. Journal of Neuroscience 33(32):13225–13232

Zanker and Zeil (2005). Zanker JM, Zeil J (2005) Movement-induced motion signal distributions in outdoor scenes. Network: Computation in Neural Systems 16(4):357–376

Zanker et al. (1999) Zanker, Srinivasan, and Egelhaaf. Zanker JM, Srinivasan MV, Egelhaaf M (1999) Speed tuning in elementary motion detectors of the correlation type. Biological Cybernetics 80(2):109–116