In 2004, bacterial spot-causing xanthomonads (BSX) were reclassified into 4 species—Xanthomonas euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri. Bacterial spot disease on pepper plant in Korea is known to be caused by both X. axonopodis pv. vesicatoria and X. vesicatoria. Here, we reidentified the pathogen causing bacterial spots on pepper plant based on the new classification. Accordingly, 72 pathogenic isolates were obtained from the lesions on pepper plants at 42 different locations. All isolates were negative for pectolytic activity. Five isolates were positive for amylolytic activity. All of the Korean pepper isolates had a 32 kDa-protein unique to X. euvesicatoria and had the same band pattern of the rpoB gene as that of X. euvesicatoria and X. perforans as indicated by PCR-restriction fragment length polymorphism analysis. A phylogenetic tree of 16S rDNA sequences showed that all of the Korean pepper plant isolates fit into the same group as did all the reference strains of X. euvesicatoria and X. perforans. A phylogenetic tree of the nucleotide sequences of 3 housekeeping genes—gapA, gyrB, and lepA showed that all of the Korean pepper plant isolates fit into the same group as did all of the references strains of X. euvesicatoria. Based on the phenotypic and genotypic characteristics, we identified the pathogen as X. euvesicatoria. Neither X. vesicatoria, the known pathogen of pepper bacterial spot, nor X. perforans, the known pathogen of tomato plant, was isolated. Thus, we suggest that the pathogen causing bacterial spot disease of pepper plants in Korea is X. euvesicatoria.

Keywords: bacterial spot disease, pepper plants, re-identification, Xanthomonas euvesicatoria

Bacterial spot disease occurs on pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.) in warm, humid areas worldwide and causes lesions on the leaves, stems, and fruits (Jones et al., 2000; Stall et al., 1994). Yellow haloes appear around the lesions; smaller lesions coalesce into larger ones. Leaf infection results in blight, necrosis, and early leaf fall. These cause a reduction in photosynthesis and fruit infection, resulting in direct economic loss (Jones et al., 1991; Obradovic et al., 2004; Stall et al., 1994). Contaminated seeds and plant debris are common inoculum sources, and the disease is also transmitted by rain splash (Jones et al., 1991).

The pathogens causing bacterial spot disease were originally identified as Bacterium vesicatoria (Doidge, 1921) and B. exitiosum (Gardner and Kendrick, 1921). The 2 bacteria were later classified as Xanthomonas vesicatoria and then as X. campestris pv. vesicatoria by Young et al. (1978). Based on DNA homology by Vauterin et al. (1995), X. campestris pv. vesicatoria was separated into 2 species—X. vesicatoria and X. axonopodis pv. vesicatoria. Pseudomonas gardneri was first reported as the pathogen causing bacterial spot on tomato (Šutic, 1957) but was later reclassified as X. gardneri (De Ley, 1978; Dye, 1966). Jones et al. (2004) reported that all of the bacterial spot-causing xanthomonads (BSX) were reclassified as 4 species—X. euvesicatoria, X. vesicatoria, X. perforans, and X. gardneri. Among them, X. euvesicatoria and X. vesicatoria cause diseases on both pepper and tomato, while X. perforans and X. gardneri are known to...
infect only tomato. Recently, however, \textit{X. perforans} was isolated from the pepper plant (Potnis et al., 2015).

\textit{X. vesicatoria} and \textit{X. perforans} have strong amylolytic and pectolytic activity, but \textit{X. euvesicatoria} and \textit{X. gardneri} do not (Bouzar et al., 1994; Jones et al., 2000, 2004). \textit{X. euvesicatoria} has a unique 32 kDa protein, while the other BSX have a 27 kDa protein (Bouzar et al., 1994; Jones et al., 2004). In addition, there are differences in carbon source utilization among BSX species (Jones et al., 2004; Stoyanova et al., 2014; Vauterin et al., 1995). \textit{X. euvesicatoria} and \textit{X. perforans} were used to differentiate 4 species of BSX.

\textit{RpoB} based restriction fragment length polymorphism (RFLP) (Ferreira-Tonin et al., 2012), amplified fragment length polymorphism (AFLP) (Hamza et al., 2012) and multilocus sequence analysis (Almeida et al., 2010; Hamza et al., 2012; Kebede et al., 2014; Timilsina et al., 2015) were used to differentiate 4 species of BSX.

Bacterial spot is a common disease on pepper plants in Korea (Kim, 2004; Lee and Cho, 1996; Lee et al., 1999; Kyeon et al., 2012; Kebede et al., 2014; Timilsina et al., 2015) and sequences of 3 housekeeping genes. In addition, there are differences in carbon source utilization among BSX species (Jones et al., 2004). In the first time from a nursery farm in Korea (Myung et al., 2009). It is not clear as to which pathogens cause bacterial spot disease of pepper in Korea since \textit{X. axonopodis pv. vesicatoria} is no longer included in the list of BSX, and since \textit{X. perforans}, which was known to cause the disease on pepper plant, has been isolated only from tomato. The correct identification of the bacterial spot pathogen on pepper is important for plant quarantine, disease management, and breeding for resistance. In this study, the pathogen causing bacterial spot disease of pepper was reidentified by the isolation and identification of bacterial spot disease pathogens throughout Korea. To ensure correct identification, several phenotypic and genotypic characteristics were used, including amylolytic activity, pectolytic activity, unique protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), \textit{rpoB} based RFLP, phylogenetic analysis with 16S rDNA sequences, and sequences of 3 housekeeping genes.

Materials and Methods

Isolation and pathogenicity test. Pepper leaves showing typical bacterial spot lesions were collected throughout Korea during 2013–2015. Small pieces of leaf lesions were macerated in sterile water, and the resulting suspension was streaked on nutrient agar (NA) (Difco™, BD, Sparks, MD, USA). After incubation at 27°C for 3–5 days, distinct single colonies were purified by subculturing. Isolates were stored in a deep freezer. Bacterial suspensions, optical density measured at a wavelength of 600 nm (\(OD_{600} = 0.1\) (ca. 1.0 \(\times\) 10^8 cfu/ml) were prepared on NA in sterile water using 3-day-old cell cultures, and the suspensions were sprayed on pepper and tomato seedlings. The inoculated plants were saturated and maintained in a humid environment for 48 h and then in the greenhouse. Bacterial spot symptoms were observed 3 weeks post-inoculation.

Reference strains. Twenty-nine different strains from 4 BSX species were used as reference strains in this study (Table 1).

Amylolytic and pectolytic assays. Amylolytic and pectolytic assays were carried out according to the method of Bouzar et al. (1994). Bacteria were streaked on brilliant cresyl blue-starch (BS) agar and incubated at 27°C for 2 days. Haloes around the colonies indicated that the strain was positive for amylolytic activity. For pectolytic assay, bacterial cells were spotted on crystal violet pectate (CVP) agar and incubated at 27°C for 2 days. Dents around the colonies indicated that the strain was positive for pectolytic activity.

Observation of unique proteins by SDS-PAGE. SDS-PAGE for the observation of proteins unique to BSX species was carried out according to the method of Bouzar et al. (1994). Bacteria were cultured in 3 ml NA (BD Difco™) at 27°C for 18 h. Two milliliters of bacterial culture were harvested by centrifugation (> 13,000 \(\times\) g) for 10 min, and the bacterial cells were washed twice in sterile water. The cell pellet was resuspended in 180 μl of 10% sorbitol and the bacterial suspension was mixed with an equal volume of 2 \(\times\) sampling buffer (125 mM Tris-HCl, pH 6.8, 20% glycerol, 2% β-mercaptoethanol, 0.04% bromophenol blue, and 4% SDS). After heating at 100°C for 10 min, 10 μl of suspension were electrophoresed in 12% resolving gel. The gel was stained with Coomassie R250 staining solution (0.1% Coomassie Blue R250 in 10% acetic acid, 45% methanol, 45% H₂O) for more than 1 h and destained for more than 2 h.

rpoB gene based RFLP. The \textit{rpoB} based RFLP was carried out according to the method of Ferreira-Tonin et al. (2012). The \textit{rpoB} gene was amplified with \textit{rpoB2F} (5’-TCA AGG AGC GTC TGT CGA T-3’) and \textit{rpoB3R} (5’-TCT GCC TCG TTG ACC TTG A-3’) primers. PCR amplification was performed in PCR reaction mixture (25 μl) of Takara Ex Taq PCR kit (Takara Co., Shiga, Japan) containing 1 μl of each primer (10 pmol/μl) and 10 μl of genomic DNA (20 ng/μl). The PCR conditions were as follows: an initial denaturation at 94°C for 2 min followed by 35 cycles of 94°C for 30 s, 63°C for 30 s, and 72°C for 30 s.
1 min, with a final extension at 72°C for 5 min. The PCR product was purified and 300 ng of purified PCR product was restricted with HaeIII (FastDigest-Thermo Fisher Scientific Inc., Waltham, MA, USA). The resulting DNA bands were observed after electrophoresis on a 4% agarose gel.

Phylogenetic tree with 16S rDNA sequences. The 16S rDNA was amplified with 27F (5'-AGA GTT TGA TCM TGG CTC AG-3') and 1492R (5'-GGT TAC CTT GGT ACG ACT T-3'). The amplicons were sequenced Macrogen Co. (Seoul, Korea). Phylogenetic analysis was carried out using the MEGA 6.0 program with neighbor-joining tree, Kimura 2-parameter model, and 3,000 bootstrap value.

Table 1. List of bacterial spot-causing xanthomonads strains used in this study

Species	Strain*	Host	Origin	Year
Xanthomonas euvesicatoria	75-3	SL	USA	NK
	85-10	SL	USA	1985
	155	SL	USA	1985
	E3	SL	USA	NK
	LMG667	SL	NK	1976
	LMG905	NK	India	NK
	NCPPB936	CA	USA	1939
	NCPPB941	CA	USA	1939
	NCPPB2968^T	CA	USA	1947
X. vesicatoria	ATCC11551	SL	USA	1943
	LMG916	SL	New Zealand	1955
	LMG924	SL	Hungary	1957
	NCPPB422^T	SL	New Zealand	1955
	NCPPB424	SL	New Zealand	1955
	NCPPB509	SL	Zimbabwe	1956
	NCPPB701	SL	Zimbabwe	1956
	NCPPB1431	SL	Hungary	1957
X. perforans	GEV1026	SL	USA	2012
	KACC16356	SL	Korea	2007
	KACC16357	SL	Korea	2007
	NCPPB4321^T	SL	USA	1991
	NCPPB4322	SL	USA	1993
	TB15	SL	USA	2013
	Xp10-13	SL	USA	2006
	Xp19-10	SL	USA	2006
X. gardneri	444	SL	Costa Rica	1991
	NCPPB881^T	SL	Yugoslavia	1953
	NCPPB4323	SL	Costa Rica	1991
	NCPPB4324	SL	Costa Rica	1991

SL, *Solanum lycopersicum*; NK, not known; CA, *Capsicum annuum*.

*LMG, Collection of the laboratorium voor Microbiologie en Microbiele Genetica, Ghent University, Belgium; NCPPB, National Collection of Plant Pathogenic Bacteria, Central Science Laboratory, United Kingdom; ATCC, American Type Culture Collection, USA; KACC, Korean Agricultural Culture Collection, Rural Development Administration, Korea; 75-3, 85-10, 155 from Stall; GEV1026, TB15, Xp10-13, Xp19-10, 444 from Jones; E3 from Hert.

Phylogenetic tree with multilocus sequences. Multilocus sequence analysis (MLSA) was carried out using 3 housekeeping genes—gapA, gyrB, and lepA. The PCR were carried out according to the method of Almeida et al. (2010). PCR primers were gap-1-F (5'-GGC AAT CAA GGT TGG YAT CAA CG-3') and gap-1-R (5'-ATC TCC AGG CAC TTG TTS GAR TAG-3') for gapA, gyrB-F (5'-AAG TTC GAC GAC AAC AGC TAC AA-3') and gyrB-R (5'-GAM AGC ACY GCG ATC ATG CCT TC-3') for gyrB, and lepA-F (5'-AAG CSC AGG TGC TCG ACT CCA AC-3') and lepA-R (5'-CGT TCC TGC ACG ATT TCC ATG TG-3'). PCR reactions were performed in reaction mixture (25 μl) of Takara Ex Taq PCR kit containing 1 μl of each primer (10 pmol/μl) and 10 μl of...
genomic DNA (10 ng/μl). The PCR conditions were as follows: an initial denaturation at 94°C for 5 min followed by 35 cycles of 94°C for 30 s, 58°C for 30 s, and 72°C for 30 s, with a final extension at 72°C for 7 min. The amplicons were sequenced at Macrogen Co. The concatenated sequence was 444 bp of gapA, 411 bp of gyrB, and 390 of lepA. Phylogenetic analysis was carried out using the MEGA 6.0 program with neighbor-joining tree, Kimura 2-parameter model, and 3,000 bootstrap value.

Results

Pathogen isolation. All isolates from the bacterial spot lesions of pepper plants were tested for pathogenicity on both pepper and tomato plants. About 5–10 days after inoculation, water soaked spots started to appear on the lower epidermis of leaves. Circular dark brown and black spots appeared, followed by yellow haloes around some of the spots (Fig. 1). A total of 72 isolates caused typical bacterial spot symptoms on both pepper and tomato plants. Our tests indicated that all of the isolates are pathogenic to both pepper and tomato plants despite the fact that all of them were isolated from only pepper plants. The pathogens were isolated from isolates collected from 42 different locations that cover all provinces of Korea, including Jeju Island (Table 2). The 2 pathogenic isolates CNUPBL 2030 and CNUPBL 2058 were deposited in Korean Agricultural Culture Collection as KACC18722 and KACC18723.

Table 2. List of the pathogenic isolates from bacterial spot lesion of the pepper plants in the Korea

Isolate*	Location	Year
CNUPBL 1984	Gundong, Gangjin	2013
CNUPBL 1985	Gundong, Gangjin	2013
CNUPBL 1986	Beopjeon, Bonghwa	2013
CNUPBL 1987	Jaesan, Bonghwa	2013
CNUPBL 1988	Yeonmu, Nonsan	2013
CNUPBL 1989	Gonggeun, Hoengseong	2014
CNUPBL 1990	Bokheung, Sunchang	2014
CNUPBL 1991	Gobu, Jeongeup	2014
CNUPBL 1992	Jocheon, Jeju	2014
CNUPBL 1993	Jocheon, Jeju	2014
CNUPBL 1994	Jocheon, Jeju	2014
CNUPBL 1995	Aewol, Jeju	2014
CNUPBL 1996	Dopyeong, Jeju	2014
CNUPBL 1997	Dopyeong, Jeju	2014
CNUPBL 1998	Dopyeong, Jeju	2014
CNUPBL 1999	Jocheon, Jeju	2014
CNUPBL 2000	Jocheon, Jeju	2014
CNUPBL 2001	Jocheon, Jeju	2014
CNUPBL 2002	Jocheon, Jeju	2014
CNUPBL 2003	Cheongsso, Boryeong	2014
CNUPBL 2004	Inji, Seosan	2014
CNUPBL 2005	Inji, Seosan	2014
CNUPBL 2006	Inji, Seosan	2014
CNUPBL 2007	Eumam, Seosan	2014
CNUPBL 2008	Eumam, Seosan	2014
CNUPBL 2009	Bongsan, Yesan	2014
CNUPBL 2010	Bongsan, Yesan	2014
CNUPBL 2011	Oga, Yesan	2014
CNUPBL 2012	Oga, Yesan	2014
CNUPBL 2013	Oga, Yesan	2014
CNUPBL 2014	Myeoncheon, Dangjin	2014
CNUPBL 2015	Daesan, Gochang	2014
CNUPBL 2016	Samgye, Jangseong	2014
CNUPBL 2017	Samgye, Jangseong	2014
CNUPBL 2018	Hwangnyong, Jangseong	2014
CNUPBL 2019	Hwangnyong, Jangseong	2014
CNUPBL 2020	Myoryang, Yeonggwang	2014
CNUPBL 2021	Myoryang, Yeonggwang	2014
CNUPBL 2022	Sinbuk, Yeongam	2014
CNUPBL 2023	Sinbuk, Yeongam	2014
CNUPBL 2024	Sinbuk, Yeongam	2014
CNUPBL 2025	Eomda, Hampyeong	2014
CNUPBL 2026	Eomda, Hampyeong	2014
CNUPBL 2027	Munpyeong, Naju	2014
CNUPBL 2028	Munpyeong, Naju	2014
CNUPBL 2029	Hanbando, Yeongwol	2014
CNUPBL 2030′	Nam, Inje	2014
CNUPBL 2031	Inje, Inje	2014
CNUPBL 2032	Inje, Inje	2014

Fig. 1. Bacterial spot symptoms on pepper and tomato leaves inoculated with CNUPBL 2039, a pathogenic isolate from bacterial spot lesion of pepper plant. Lesions on the upper epidermis of pepper leaf (A), lower epidermis of pepper leaf (B), upper epidermis of tomato leaf (C), and lower epidermis of tomato leaf (D).
X. euvesicatoria Causes Bacterial Spot Disease on Pepper Plant

Phenotypic characteristics. All of the X. vesicatoria and X. perforans reference strains were positive for amylolytic and pectolytic activities, whereas all of the X. euvesicatoria and X. gardneri reference strains were negative for both enzyme activities (Supplementary Fig. 1, Supplementary Fig. 2, Table 3). Five isolates (CNUPBL 1999, 2030, 2038, 2039, 2092) of the Korean pepper pathogens were positive for amylolytic activity and the other reference strains had a 32 kDa protein band and the other reference strains had a 27 kDa protein band (Supplementary Fig. 3, Table 3). All of the Korean pepper pathogens had a 32 kDa protein that is unique to X. euvesicatoria (Table 3).

Genotypic characteristics. In rpoB gene-based RFLP, all of the X. euvesicatoria and X. perforans reference strains had the same DNA band pattern with DNA bands of 339 bp, 154 bp, and 153 bp. X. vesicatoria and X. gardneri had DNA band patterns different from those of X. euvesicatoria and X. perforans, and also had different patterns from each other. X. vesicatoria had DNA bands of 216 bp, 123 bp, and 106 bp, and X. gardneri had DNA bands of 215 bp, 156 bp, 154 bp, and 123 bp (Fig. 2). All of the Korean pepper pathogens had the same DNA band pattern as that of X. euvesicatoria and X. perforans (Table 3).

A phylogenetic tree of the 16s rDNA sequences showed that all of X. vesicatoria and X. gardneri reference strains were grouped into their own clade. All X. euvesicatoria

Table 2. Continued

Isolate*	Location	Year
CNUPBL 2033	Seo, Cheorwon	2014
CNUPBL 2034	Seo, Cheorwon	2014
CNUPBL 2035	Nam, Yangju	2014
CNUPBL 2036	Nam, Yangju	2014
CNUPBL 2037	Nam, Yangju	2014
CNUPBL 2038	Gwangjeok, Yangju	2014
CNUPBL 2040	Tanhyeon, Paju	2014
CNUPBL 2041	Tanhyeon, Paju	2014
CNUPBL 2042	Tanhyeon, Paju	2014
CNUPBL 2043	Munsan, Paju	2014
CNUPBL 2044	Hwasan, Yeongcheon	2014
CNUPBL 2046	Hayang, Gyeongsan	2014
CNUPBL 2047	Woldeung, Suncheon	2014
CNUPBL 2048	Gyeombaek, Boseong	2014
CNUPBL 2049	Miryoeok, Boseong	2014
CNUPBL 2050	Deungnyang, Boseong	2014
CNUPBL 2058†	Jangseungpo, Geoje	2014
CNUPBL 2092	Simsheon, Youngdong	2015
CNUPBL 2093	Hallim, Jeju	2015
CNUPBL 2096	Pyoseon, Seogwipo	2015
CNUPBL 2098	Pyoseon, Seogwipo	2015

All hosts are Capsicum annuum.
*CNUPBL, Chunbuk National University Plant Bacteriology and Molecular Genetics Lab., Korea.
†Deposited in Korean Agricultural Culture Collection as KACC18722 (CNUPBL 2030) and KACC18723 (CNUPBL 2058).

Table 3. Characteristics of BSX reference strains and the Korean pepper isolates

BSX strain or pepper isolate	Amylolytic activity	Pectolytic hydrolysis	SDS-PAGE	rpoB gene based RFLP	16S rDNA	gapA	gyrB	lepA
Xanthomonas euvesicatoria 75-3	–	–	32 kDa	X.ev or X.p	KU301873 KU939855 KU887562 KU939954			
85-10	–	–	32 kDa	X.ev or X.p	KU301875 KU939848 KU887555 KU939947			
155	–	–	32 kDa	X.ev or X.p	KU301874 KU939849 KU887556 KU939948			
E3	–	–	32 kDa	X.ev or X.p	KU301876 KU939847 KU887543 KU939946			
LMG667	–	–	32 kDa	X.ev or X.p	KU301877 KU939856 KU887563 KU939955			
LMG905	–	–	32 kDa	X.ev or X.p	KU301878 KU939857 KU887564 KU939956			
NCPPB936	–	–	32 kDa	X.ev or X.p	KU301879 KU939853 KU867863 KU939934			
NCPPB941	–	–	32 kDa	X.ev or X.p	KU301880 KU939856 KU887543 KU939935			
NCPPB2968†	–	–	32 kDa	X.ev or X.p	KU301881 KU939837 KU887544 KU939936			
X. vesicatoria ATCC11551	+	+	27 kDa	X.v	KU301859 KU939860 KU887567 KU939959			
LMG916	+	+	27 kDa	X.v	KU301883 KU939858 KU887565 KU939957			
LMG924	+	+	27 kDa	X.v	KU301884 KU939859 KU887566 KU939958			
NCPPB424	+	+	27 kDa	X.v	KU301885 KU939838 KU887545 KU939937			
NCPPB509	+	+	27 kDa	X.v	KU301886 KU939839 KU887546 KU939938			
NCPPB701	+	+	27 kDa	X.v	KU301884 KU949841 KU887548 KU939940			
NCPPB1431	+	+	27 kDa	X.v	KU301889 KU939842 KU887549 KU939941			
BSX strain or pepper isolate	Amylolytic activity	Pectolytic activity	SDS-PAGE	rpOB gene based RFLP	Accession number			
-----------------------------	---------------------	---------------------	----------	----------------------	-----------------			
X. perforans								
GEV1026	+	-	27 kDa	X.ev or X.p	KU301890			
KACC16356	+	+	27 kDa	X.ev or X.p	KU301891			
KACC16357	+	+	27 kDa	X.ev or X.p	KU301892			
NCPPB4321T	+	+	27 kDa	X.ev or X.p	KU301893			
NCPPB4322	+	+	27 kDa	X.ev or X.p	KU301894			
TB15	+	+	27 kDa	X.ev or X.p	KU301895			
Xp10-13	+	+	27 kDa	X.ev or X.p	KU301896			
Xp19-10	+	+	27 kDa	X.ev or X.p	KU301897			
X. gardneri	444		27 kDa	X.g	KU301898			
NCPPB881T	-	-	27 kDa	X.g	KU301899			
NCPPB4323	-	-	27 kDa	X.g	KU301900			
NCPPB4324	-	-	27 kDa	X.g	KU301901			
CNUPBL 1984	-	-	32 kDa	X.ev or X.p	KU301902			
CNUPBL 1985	-	-	32 kDa	X.ev or X.p	KU301903			
CNUPBL 1986	-	-	32 kDa	X.ev or X.p	KU301904			
CNUPBL 1987	-	-	32 kDa	X.ev or X.p	KU301905			
CNUPBL 1988	-	-	32 kDa	X.ev or X.p	KU301906			
CNUPBL 1989	-	-	32 kDa	X.ev or X.p	KU301907			
CNUPBL 1990	-	-	32 kDa	X.ev or X.p	KU301908			
CNUPBL 1991	-	-	32 kDa	X.ev or X.p	KU308437			
CNUPBL 1992	-	-	32 kDa	X.ev or X.p	KU308458			
CNUPBL 1993	-	-	32 kDa	X.ev or X.p	KU308459			
CNUPBL 1994	-	-	32 kDa	X.ev or X.p	KU308460			
CNUPBL 1995	-	-	32 kDa	X.ev or X.p	KU308461			
CNUPBL 1996	-	-	32 kDa	X.ev or X.p	KU308462			
CNUPBL 1997	-	-	32 kDa	X.ev or X.p	KU308463			
CNUPBL 1998	-	-	32 kDa	X.ev or X.p	KU308464			
CNUPBL 1999	+	-	32 kDa	X.ev or X.p	KU308465			
CNUPBL 2000	-	-	32 kDa	X.ev or X.p	KU308466			
CNUPBL 2001	-	-	32 kDa	X.ev or X.p	KU308467			
CNUPBL 2002	-	-	32 kDa	X.ev or X.p	KU308468			
CNUPBL 2003	-	-	32 kDa	X.ev or X.p	KU308469			
CNUPBL 2004	-	-	32 kDa	X.ev or X.p	KU308470			
CNUPBL 2005	-	-	32 kDa	X.ev or X.p	KU308471			
CNUPBL 2006	-	-	32 kDa	X.ev or X.p	KU308472			
CNUPBL 2007	-	-	32 kDa	X.ev or X.p	KU323669			
CNUPBL 2008	-	-	32 kDa	X.ev or X.p	KU323670			
CNUPBL 2009	-	-	32 kDa	X.ev or X.p	KU323671			
CNUPBL 2010	-	-	32 kDa	X.ev or X.p	KU323672			
CNUPBL 2011	-	-	32 kDa	X.ev or X.p	KU323673			
CNUPBL 2012	-	-	32 kDa	X.ev or X.p	KU323674			
CNUPBL 2013	-	-	32 kDa	X.ev or X.p	KU323675			
CNUPBL 2014	-	-	32 kDa	X.ev or X.p	KU323676			
CNUPBL 2015	-	-	32 kDa	X.ev or X.p	KU323677			
CNUPBL 2016	-	-	32 kDa	X.ev or X.p	KU323678			
CNUPBL 2017	-	-	32 kDa	X.ev or X.p	KU323679			
CNUPBL 2018	-	-	32 kDa	X.ev or X.p	KU323680			
CNUPBL 2019	-	-	32 kDa	X.ev or X.p	KU323681			
CNUPBL 2020	-	-	32 kDa	X.ev or X.p	KU323682			
and *X. perforans* reference strains, however, were grouped into a different clade. All of the Korean pepper pathogens were grouped together with the reference strains of *X. euvesicatoria* and *X. perforans* (Fig. 3). In a phylogenetic tree of the concatenated sequences of gapA, gyrB, and lepA, all of the reference strains of each species were grouped into the same clade with strains of the same species. All of the Korean pepper pathogens were grouped together with the reference strains of *X. euvesicatoria* (Fig. 4).

Discussion

In this study, 72 pathogenic isolates were collected from bacterial spot lesions on pepper plants throughout Korea in order to reidentify the causative pathogen. The 3 phenotypic characteristics of the Korean pepper pathogens

Table 3. Continued

BSX strain or pepper isolate	Amylolytic activity	Pectolytic hydrolysis	SDS-PAGE	rpoB gene based RFLP	Accession number
CNUPBL 2021	–	–	32 kDa	*X. ev* or *X.p*	KU323683
CNUPBL 2022	–	–	32 kDa	*X. ev* or *X.p*	KU323684
CNUPBL 2023	–	–	32 kDa	*X. ev* or *X.p*	KU323685
CNUPBL 2024	–	–	32 kDa	*X. ev* or *X.p*	KU323686
CNUPBL 2025	–	–	32 kDa	*X. ev* or *X.p*	KU323687
CNUPBL 2026	–	–	32 kDa	*X. ev* or *X.p*	KU323688
CNUPBL 2027	–	–	32 kDa	*X. ev* or *X.p*	KU323689
CNUPBL 2028	–	–	32 kDa	*X. ev* or *X.p*	KU323690
CNUPBL 2029	–	–	32 kDa	*X. ev* or *X.p*	KU323691
CNUPBL 2030	+	–	32 kDa	*X. ev* or *X.p*	KU323692
CNUPBL 2031	–	–	32 kDa	*X. ev* or *X.p*	KU323693
CNUPBL 2032	–	–	32 kDa	*X. ev* or *X.p*	KU323694
CNUPBL 2033	–	–	32 kDa	*X. ev* or *X.p*	KU323695
CNUPBL 2034	–	–	32 kDa	*X. ev* or *X.p*	KU323696
CNUPBL 2035	–	–	32 kDa	*X. ev* or *X.p*	KU323697
CNUPBL 2036	–	–	32 kDa	*X. ev* or *X.p*	KU323698
CNUPBL 2037	–	–	32 kDa	*X. ev* or *X.p*	KU323699
CNUPBL 2038	+	–	32 kDa	*X. ev* or *X.p*	KU323700
CNUPBL 2039	+	–	32 kDa	*X. ev* or *X.p*	KU323701
CNUPBL 2040	–	–	32 kDa	*X. ev* or *X.p*	KU323702
CNUPBL 2041	–	–	32 kDa	*X. ev* or *X.p*	KU323703
CNUPBL 2042	–	–	32 kDa	*X. ev* or *X.p*	KU323704
CNUPBL 2043	–	–	32 kDa	*X. ev* or *X.p*	KU323705
CNUPBL 2044	–	–	32 kDa	*X. ev* or *X.p*	KU323706
CNUPBL 2045	–	–	32 kDa	*X. ev* or *X.p*	KU323707
CNUPBL 2046	–	–	32 kDa	*X. ev* or *X.p*	KU323708
CNUPBL 2047	–	–	32 kDa	*X. ev* or *X.p*	KU323709
CNUPBL 2048	–	–	32 kDa	*X. ev* or *X.p*	KU323710
CNUPBL 2049	–	–	32 kDa	*X. ev* or *X.p*	KU323711
CNUPBL 2050	–	–	32 kDa	*X. ev* or *X.p*	KU323712
CNUPBL 2051	–	–	32 kDa	*X. ev* or *X.p*	KU323713
CNUPBL 2052	–	–	32 kDa	*X. ev* or *X.p*	KU323714
CNUPBL 2053	–	–	32 kDa	*X. ev* or *X.p*	KU323715
CNUPBL 2054	–	–	32 kDa	*X. ev* or *X.p*	KU323716

BSX, bacterial spot-causing xanthomonads; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; RFLP, restriction fragment length polymorphism; *X.ev*, *Xanthomonas euvesicatoria*; *X.p*, *X. perforans*; *X.v*, *X. vesicatoria*; *X.g*, *X. gardneri*.
and the BSX reference strains were compared for correct identification. The 3 major characteristics were used to separate the 4 species of BSX referred to by Jones et al. (2004). All of the Korean pepper pathogens were negative for pectolytic activity, and all except 5 isolates were negative for amylolytic activity. These traits were identical to those of X. euvesicatoria and X. gardneri. The 5 amylolytic-positive isolates are not considered to be typical strains of X. euvesicatoria or X. perforans. Recently, Stoyanova et al. (2014) argued that some phenotype characteristics such as amylolytic activity and the utilization of cis-aconitic acid cannot be species-separating criteria of the BSX group. However, all of the Korean pepper pathogens have a 32 kDa protein that is unique to X. euvesicatoria. Thus, our results of the analysis of the 3 phenotypic characteristics suggest that all of the Korean pepper pathogens are X. euvesicatoria.

The result of rpoB based RFLP showed that all of the Korean pepper pathogens have DNA band patterns identical to those of X. euvesicatoria and X. perforans. A phylogenetic tree of the 16S rDNA sequences also showed that all of the Korean pepper pathogens were grouped together with X. euvesicatoria or X. perforans. These results suggest that rpoB based RFLP and 16S sequences are not enough to separate the 2 BSX species, X. euvesicatoria and X. perforans. These results also indicate that the 2 are very closely related to each other. MLSA generally gives more detailed genotypic information than does 16S rDNA sequencing. Several previous MLSA studies have also differentiated the 4 species of BSX (Almeida et al., 2010; Hamza et al., 2012; Kebede et al., 2014; Timilsnia et al., 2015). A phylogenetic tree of 3 housekeeping genes (gapA, gyrB, and lepA) showed that all of the Korean pepper isolates were grouped together into the same clade as that of the reference strains of X. euvesicatoria.
The phenotypic and genotypic characteristics of the Korean pepper pathogens suggest that all of those collected in this study are in fact *X. euvesicatoria*. Neither *X. vesicatoria*, which is considered the causative pathogen of pepper bacterial spot in the List of Plant Diseases in Korea (Yoo, 2009), nor *X. perforans*, which was recently reported as the causative pathogen of tomato bacterial spot, was isolated. It might be erroneous to designate *X. vesicatoria* as a causative pathogen of pepper bacterial spot in Korea since we could not find literature references for this. Although there is one study on the isolation of *X. perforans* from pepper plant in the United States, this species does not cause disease on pepper plant in Korea. Nevertheless, bacterial spot caused by *X. perforans* was reported on nursery-raised tomatoes in Korea, but not on field-grown tomatoes (Myung et al., 2009). *X. axonopodis* pv. *vesicatoria* is another species identified as a causative pathogen of pepper bacterial spot according to the List of Plant Diseases in Korea (Yoo, 2009). It was renamed as *X. euvesicatoria* following the reclassification of the 4 BSX species.

The results of the present study suggest that the bacterial spot of pepper plant in Korea is caused exclusively by *X. euvesicatoria*. Recently, Myung et al. (2015) reported that the latest strain of pepper bacterial spot disease in Korea is caused by *X. euvesicatoria*. Based on our study, the pepper bacterial spot reported as a new disease is in fact not new, but rather it is caused by the same pathogen whose scientific name was revised by Jones et al. (2004).

Acknowledgments

This study was supported by the Animal and Plant Quarantine Agency and by a research grant from Chungbuk National University in 2014. We thank Dr. Jeffery Jones for providing the reference strains of BSX.

References

Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., Schuenzel, E. L., Lacy, G. H., Sun, X., Jones, J. B., Castillo, J. A., Bull, C. T., Leman, S., Guttman, D. S., Setubal, J. C. and Vinatzer, B. A. 2010. PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. *Phytopathology* 100:208-215.

Bouzar, H., Jones, J. B., Minsavage, G. V., Stall, R. E. and Scott, J. W. 1994. Proteins unique to phenotypically distinct groups of *Xanthomonas campestris* pv. *vesicatoria* revealed by silver staining. *Phytopathology* 84:39-44.

De Ley, J. 1978. Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. In: *Proceedings of the 4th International Conference on Plant Pathogenic*
Gardner, M. W. and Kendrick, J. B. 1921. Bacterial spot of tomato. *Ann. Appl. Biol.* 7:407-430.

Dye, D. W. 1966. Cultural and biochemical reaction of additional *Xanthomonas* species. *N. Z. J. Sci.* 9:913-919.

Ferreira-Tonin, M., Rodrigues-Neto, J., Harakava, R. and Destéfano, S. A. 2012. Phylogenetic analysis of *Xanthomonas* based on partial rpoB gene sequences and species differentiation by PCR-RFLP. *Int. J. Syst. Evol. Microbiol.* 62:1419-1424.

Jones, J. B., Bouzar, H., Stall, R. E., Almira, E. C., Robert, P. D., Bowen, B. W., Sudberry, J., Strickler, P. M. and Chun, J. 2000. Systematic analysis of xanthomonads (*Xanthomonas* spp.) associated with bacterial spot of tomato and pepper and their relatedness to *Xanthomonas* species. *Syst. Appl. Microbiol.* 23:183-190.

Jones, J. B., Bouzar, H., Stall, R. E., Almira, E. C., Robert, P. D., Bowen, B. W., Sudberry, J., Strickler, P. M. and Chun, J. 2000. Systematic analysis of xanthomonads (*Xanthomonas* spp.) associated with pepper and tomato lesions. *Int. J. Syst. Evol. Microbiol.* 50:1211-1219.

Jones, J. B., Jones, J. P., Stall, R. E. and Zitter, T. A. 1991. Compendium of tomato diseases. APS Press, St. Paul, MN, USA. p. 73.

Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E. and Schaad, N. W. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. *Syst. Appl. Microbiol.* 27:755-762.

Kebede, M., Timilsina, S., Ayalew, A., Admassu, B., Potnis, N., Minsavage, G. V., Goss, E. M., Hong, J. C., Strayer, A., Parett, M., Jones, J. B. and Vallad, G. E. 2014. Molecular characterization of *Xanthomonas* strains responsible for bacterial spot of tomato in Ethiopia. *Eur. J. Plant Pathol.* 140:677-688.

Kim, C. H. 2004. Review of disease incidence of major crop in Korea. *Korean J. Plant Pathol.* 12:150-155.

Lee, S. D. and Cho, Y. S. 1996. Copper resistance and race distribution of *Xanthomonas campestris* pv. *vesicatoria* on pepper in Korea. *Korean J. Plant Pathol.* 12:150-155.

Lee, S. D., Yoon, C. M., Lee, Y. K., Choi, Y. C. and Cho, Y. S. 1999. Occurrence and distribution of bacterial canker of red pepper caused by *Clavibacter michiganensis* subsp. *michiganensis*. *Plant Dis. Agric.* 5:105-110.

Myung, I. S., Moon, S. Y., Jeong, I. H., Lee, Y. K. and Ra, D. S. 2009. Bacterial spot of tomato caused by *Xanthomonas perforans*, a new disease in Korea. *Plant Dis.* 93:1349.

Myung, I. S., Park, K. S., Hong, S. K., Park, J. W., Shim, H. S., Lee, Y. K., Lee, S. Y., Lee, S. D., Lee, S. H., Choi, H. S., Kim, Y. G., Shin, D. B., Ra, D. S., Yeh, W. H. and Cho, W. D. 2005. Review of disease incidence of major crops of the South Korea in 2004. *Res. Plant Dis.* 11:89-92.

Myung, I. S., Yoon, M. J., Lee, J. Y., Kim, Y. S., Kwon, J. H., Lee, Y. K. and Shim, H. S. 2015. Bacterial spot of hot pepper, caused by *Xanthomonas euvesicatoria*, a new disease in Korea. *Plant Dis.* 99:1640.

Obradovic, A., Mavridis, A., Rudolph, K., Janse, J. D., Arsenijevic, M., Jones, J. B., Minsavage, G. V. and Wang, J. F. 2004. Characterization and PCR-based typing of *Xanthomonas campestris* pv. *vesicatoria* from peppers and tomatoes in Serbia. *Eur. J. Plant Pathol.* 110:285-292.

Stall, R. E., Beaulieu, C., Egel, D., Hodge, N. C., Leite, R. P., Minsavage, G. V., Bouzar, H., Jones, J. B., Alvarez, A. M. and Benedict, A. A. 1994. Two genetically diverse groups of strains are included in *Xanthomonas campestris* pv. *vesicatoria*. *Int. J. Syst. Bacteriol.* 44:47-53.

Stoyanova, M., Vancheva, T., Moncheva, P. and Bogatzevnsa, N. 2014. Differentiation of *Xanthomonas* spp. causing bacterial spot in Bulgaria based on biolog system. *Int. J. Microbiol.* 2014:495476.

Šutic, D. 1957. Bakterioze crvenog patlidzana [Tomato bacteriosis]. *Posebna Izd. Inst. Zasht. Bilja, Beograd* [Spec. Edit. Inst. Plant Prot., Beograd] 6:65.

Timilsina, S., Jibrin, M. O., Potnis, N., Minsavage, G. V., Kebede, M., Schwartz, A., Bart, R., Staskawicz, B., Boyer, C., Vallad, G. E., Pruvost, O., Jones, J. B. and Goss, E. M. 2015. Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of *Xanthomonas gardneri*. *Appl. Environ. Microbiol.* 81:1520-1529.

Vauterin, L., Hoste, B., Kersters, K. and Swings, J. 1995. Reclassification of *Xanthomonas*. *Int. J. Syst. Evol. Microbiol.* 45:472-489.

Yoo, S. H. 2009. List of plant diseases in Korea. 5th ed. The Korean Society of Plant Pathology, Suwon, Korea. p. 76.

Young, J. M., Dye, D. W., Bradbury, J. F., Panagopoulos, C. G. and Robbs, C. F. 1978. A proposed nomenclature and classification for plant pathogenic bacteria. *N. Z. J. Agric. Res.* 21:153-177.