Global transcriptomic profiling of microcystin-LR or -RR treated hepatocytes (HepaRG)

Adam Biales
Microcystin congeners

• 100s of congeners
• Differentiated by structure
• Occur in mixtures
• MC-LR best characterized
• MC-RR commonly found w/ -LR
Prototypical Toxicity Pathway

- **Ingestion**
 - Oral Ingestion
 - Absorption through GI -> Liver

- **Liver**
 - Phosphatase Inhibition
 - Hyperphosphorylation

- **Systemic**
 - Cytoskeletal rearrangement
 - Cell death
 - Hepatic bleeding

- **MC congeners poorly characterized**
 - No mechanistic data
 - Potential for unidentified mechanisms

- **MC-LR > -RR toxicity**
 - MC-LR ≈ -RR in PP inhibition
 - Toxicokinetics
 - Molecular targets?
Molecular characterization of MC targets

Gene transcription
- Underlies cellular processes
- Likely to be impacted via phosphatase inhibition
- Generation of hypothesis

MC-LR
1000, 100, 10 μg/L

MC-RR
Design and Overview

Group	Total	Up-regulated	Down-regulated	1	2	3	N total
LR10	339	230	109	7	6	6	19
LR100	171	116	55	10	6	6	22
LR1000	2098	1740	358	6	6	6	18
RR10	12	11	1	7	6	0	13
RR100	1255	1130	125	10	6	6	22
RR1000	1279	1138	141	6	6	6	18
Solvent	18	12	6	6	6	6	36
Cytotoxicity

Treatment	XTT
LR10	0.0592
LR100	7.24e-05
LR1000	9.48e-12
RR10	0.3178
RR100	0.7634
RR1000	0.4227
Consistency of DEGs and enrichment

LR1000	LR100
FOS	15.5
ATF3	8.22
FOSB	6.31
IER2	4.08
RND1	3.94
GDNF	3.69
NFKBIZ	3.08
GADD34	3.00
JUN	2.68
SLC25A25	2.45

- LR1000:LR100 (59% overlap)
 - bZIP TFs
 - FOS family of proteins
 - TNF-α signaling pathway

- LR1000:RR1000 (25% overlap)
 - Aldehyde Dehydrogenase family
 - 7/8 members in common

- RR1000:RR100 (20% overlap)
 - Complement
 - Extracellular exosome
 - acetylation
Endoplasmic Reticulum Stress Response

Adaptive response
- IREα1
- XBP1
- HSP9C
- HSPA5
- PERK
- eIF2α
- Paused translation

Endoplasmic Reticulum C,F
- Increased protein folding capacity

Apoptosis
- PERK
- CHOP
- ATF4
- ATF3
- Gadd34
- eIF2α
- Translation

MC-RR
- MC-RR
- ROS/LPO

ROS/LPO
- MC-RR
- MC-LR

ER Stress
- PUMA/NOXA/C/BIM
- DR5A
Other common identified targets/processes

• Lipotoxicity
 • ALDH family up-regulated in MC-LR & - RR
 • ROS

• Extracellular Exosomes
 • Highly enriched in MC-RR
 • Less so in MC-LR
 • Off-loading misfolded proteins?
 • Extracellular signaling - sensitization
MC-LR specific

• AP-1 constituents
 • Among the most consistently and highly expressed
 • FOS, JUN, ATF
 • TNF-α/JNK signaling

\[
\text{TNF-\(\alpha\)} \rightarrow \text{JNK} \rightarrow \text{AP-1: FOS/JUN} \rightarrow \text{p53} \rightarrow \text{PUMA/NOXA/BIM} \rightarrow \text{Apoptosis}
\]

\[
\text{NFkBIZ} \rightarrow \text{NF-\(\kappa\)B} \rightarrow \text{Inflammatory Response}
\]

• Protein Phosphatases – PP1 and 2
MC-RR Specific Response

- Enrichment of complement genes
 - Immunity and defence
 - Liver damage → Apoptosis

- Diversity of protein phosphatases
 - Little overlap with MC-LR
Conclusions

• Consistent response
 • w/in study and across
• Oxidative Stress is a key driver of MC toxicity
• ER-stress is important
• MC-LR and –RR differ
 • Toxicity
 • PP targets
• Toxicity confounded with congeners
Acknowledgements

• Weichun Huang
• David Bencic
• Robert Flick
• Denise Gordon
• Armah Delacruz