Diversity and Abundance of Plants with Flowers and Fruits from October 2001 to September 2002 in Paucarillo Reserve, Northeastern Amazon, Peru

Diversidad y abundancia de plantas con flores y frutos entre octubre 2001 y septiembre 2002 en la Reserva Paucarillo, en el noroeste de la Amazonia Peruana

Johanna P.S. Choo¹,³, Rodolfo Vasquez Martinez² and Edmund W. Stiles¹,⁴

¹ Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901, USA.
² Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri, 63166-0299, U.S.A.
³ Corresponding author’s current address: Monitoring and Assessment of Biodiversity Program/NZP Smithsonian Institution, 100 Jefferson Drive, SW, Quad 3123, MRC 705, Washington DC 20560, Email Johanna P.S. Choo: chooj@si.edu
⁴Deceased.

Abstract

We recorded the diversity of flowering and fruiting plants during one year of phenological study at Paucarillo Reserve located in the northeastern part of the Peruvian Amazon (3°41’ S, 72°24’ W). A total of 270 species from 59 families were recorded, of which 57% were represented by only one individual plant. Arecaceae and Rubiaceae were the dominant families in this site.

Keywords: flowering plants, diversity, terra firme forest, north western Peru, Amazon.

Introduction

This paper documents the species diversity of plants that were phenologically active (i.e. flowering and/or fruiting) during a one year period at a site in the Peruvian Amazon that is mostly unstudied. To date, most botanical studies in the Peruvian Amazon have been concentrated at a few established research sites in southern Peru, e.g. Manu (Foster 1990, Pitman et al. 2002). However, there has been detailed floristic surveys in northwestern Peruvian Amazon in two sites near Iquitos at Allpahuayo-Mishana (Gentry 1988, Malhi et al. 2002) and at the Explorama lodges (Vásquez Martínez 1997), which are located 122.7 km west and 77 km north-west of the study site described here. This project was part of a larger project to assess the productivity of vertebrate-dispersed fruit at Paucarillo. This paper adds to our growing pool of knowledge regarding the plant species diversity and distribution of Peru’s lowland Amazonian plants.

Study site description

Our study was carried out in Paucarillo Reserve (3°41’ S, 72°24’ W), located in the Department of Loreto on the Rio Orosa (a southern tributary of the Amazon) (Fig. 1). This 500 hectare reserve encompasses primary igapo (black-water inundated forest) and terra firme forest and is owned by Project Amazonas (http://www.projectamazonas.com/), a non-profit organization based in Florida. Surrounding this reserve is primary forest that extends to the Brazilian border, so that the contiguous forest in this area exceeds 100000 hectares (D. Graham pers. comm.).

Figure 1. Location of study site in Paucarillo Reserve (3°41’S, 72°24’W).
Climate data from the nearest meteorological station in Pebas (4° S, 73° W) managed by SENAMHI (Servicio Nacional de Meteorología e Hidrología del Perú), 66,88 km northeast from the study site, recorded total precipitation of 3296.9 mm during the one year study period.

Materials and methods

The data presented here is part of a larger study of the birds and forest fruits in this area (Choo, 2005). Two study plots located in terra firme forest were established at the study site. In each plot, four parallel trails 90 m long and 50 m apart were established that served as mist-net lanes for capturing birds as part of another study, and were used for the phenological surveys described here. Each study plot consisted of 8 phenology lanes (each 90 × 10 m) flanking both sides of the net lanes. These phenology lanes covered an area of 7200 m² per study plot. The total area surveyed for 12 months at this site covered an area of 14400 m² or 1.44 ha.

Phenological data were collected from October 2001 to September 2002. Phenology surveys were conducted twice a month for 11 months and once for the month of December. During surveys, JC walked along net lanes to record the flowering and fruiting activity of all plants (herbs, shrubs, epiphytes, lianas and trees) found within the phenology belts. Two field assistants walked in tandem with her within the phenology belts to detect flowering and fruiting plants in the understory and to help detect flowering and fruiting canopy plants that she may have missed. When flowers or fruits were discovered on the forest floor, attempts were made to locate the source(s). Surveys were conducted visually and if necessary with the aid of binoculars (10×40 and 10×50).

All plants found flowering or fruiting were uniquely numbered with an aluminum tag. Plant habits were recorded as herb, shrub, epiphyte, treelet (subcanopy small trees), liana, tree (large canopy and subcanopy trees). Plants with easily recognized vegetative, floral and fruit characteristics were grouped in the field by JC into morphospecies and a representative voucher for each morphospecies was collected from those plants that subsequently produced fruit. All other plants that were not easily grouped were collected.

Table 1. Summary of plants that flowered and produced fruits during the study period.

Family	No. of Genera	No. of Species	No. of Plants
1. Annonaceae	9	12	16
2. Apocynaceae	2	2	3
3. Araceae	4	5	9
4. Arecaceae	11	19	236
5. Araliaceae	1	1	1
6. Aristolochiace	1	1	2
7. Asteraceae	1	1	1
8. Bignoniaceae	2	2	2
9. Bombacaceae	3	3	8
10. Boraginaceae	1	2	3
11. Burseraceae	2	3	11
12. Cecropiaceae	3	12	26
13. Celastraceae	3	4	7
14. Chrysobalanaceae	1	1	1
15. Clusiaceae	3	6	7
16. Combretaceae	1	1	2
17. Connaraceae	3	5	5
18. Convolvulaceae	2	3	17
19. Cyclanthaceae	1	1	8
20. Dichapetalaceae	1	2	3
21. Dilleniaceae	2	4	6
22. Elaeocarpaceae	1	5	7
23. Euphorbiaceae	12	15	42
24. Fabaceae	10	15	32
25. Flacourtiaceae	4	6	21
26. Gesneriaceae	1	1	11
27. Heliconiaceae	1	2	3
28. Icacinaceae	1	1	1
29. Lauraceae	3	4	6
30. Lecythidaceae	1	9	40
31. Linaceae	1	1	1
32. Loranthaceae	1	1	1
33. Malpighiaceae	4	5	5
34. Malvaceae	1	2	7
35. Melastomaceae	2	3	12
36. Meliaceae	2	4	5
37. Menispermaceae	3	4	5
38. Moraceae	6	14	18
39. Myristicaceae	4	17	76
40. Myrsinaceae	1	1	1
41. Myrtaceae	3	5	6
42. Nyctaginaceae	1	5	6
43. Ochnaceae	1	1	2
44. Piperaceae	1	2	3
45. Polygalaceae	1	1	2
46. Rhamnaceae	1	1	1
47. Rhizophoraceae	1	1	2
48. Rubiaceae	11	19	86
49. Sabiaceae	2	3	5
50. Sapindaceae	4	5	12
51. Sapotaceae	3	10	21
52. Simaroubaceae	1	1	1
53. Siparunaceae	1	1	11
54. Solanaceae	2	2	2
55. Sterculiaceae	1	3	3
56. Theophrastaceae	1	2	2
57. Verbenaceae	2	3	3
58. Violaceae	3	4	10
59. Vitaceae	1	1	1
Total	**157**	**270**	**847**
Table 2. Checklist of plants that flowered and fruited during the one year duration of the study.

Family Plants	Genus	Species	N°
Annonaceae	Cremastosperma	cauliflorum R.E. Fr. 1931	1
	Duguetia	cauliflora R.E. Fr. 1939	1
	Ephedranthus	guianensis R.E. Fr. 1931	1
	Guatteria	calophylla R.E. Fr. 1939	1
		recurvisepalala R.E. Fr. 1939	2
	Klarobelia	cauliflora Chatrou 1998	2
	Oxandra	xylopoides Diels 1927	1
	Tetraneuranthus	umbellatus Westra 1985	1
	Unonopsis	stipitata Diels 1905	3
		veneficiorum (Mart.) R.E. Fr. 1937	1
		cuspidata Diels 1927	1
		frutescens Aubl. 1775	1
		speciosa Woodson 1949	1
		puncticuticulos (Rich.) Pulle 1906	2
Araceae	Anthurium	eminens Schott 1855	1
	Dieffenbachia	parvifolia Engl. 1915	1
		obliqua Miq. 1844	1
		sp. nov.	2
		wittianum Engl. 1905	4
Araliaceae	Dendropanax	umbellatus (Ruiz & Pav.) Decne. & Planch. 1854	1
	Aristolochiaceae	Aristolochia ruziana (Klotzsch) Duch. 1864	2
	Asteraceae	hookeriana DC. 1856	1
	Bignonieae	glabra (A.DC.) Bureau & K. Schum. 1897	1
	Massatia	hyacinthine (Standl) Sandwith 1937	1
	Bombacaceae	ochrocalyx K. Schum. 1886	1
	Phragmotheca	manunmosa W.S. Alverson 1991	1
	Scleronema	praecox (Ducke) Ducke 1937	6
Boraginaceae	Cordia	nodosa Lam. 1791	2
		ucayalensis (L.M. Johnst.) L.M. Johnst. 1935	1
		opacam Swart 1942	9
		Trattinnickia aspera (Standl.) Swart 1942	1
		engleriana Sneathl. 1923	1
		facifolia Warb. ex Sneathl. 1923	1
		Coussapoa asperifolia Trécéul 1847	2
		trinervia Spruce ex Mildbr. 1928	2
		villosa Poepp. & Endl. 1838	1
		Pourouna bicolor Mart. 1843	2
		cf. tomentosa subsp. persecta Standl. ex C. C. Berg & Heusden 1988	2
		guianensis Aubl. 1775	1
		melinonii Benoist 1922	1
		minor Benoist 1924	1
		tomentosa Mart. Ex Miq. 1853	10
	Celastraceae	Cheiloclinium cognatum (Miers) A.C. Sm. 1940	1
		hippocrateoides (Peyr.)J.A.C. Sm. 1940	1
		Tontelea coriacea A.C. Sm. 1940	1
		Anthodon decussatum Ruiz & Pav. 1798	1
		Hirtella racemosa Lam. 1789	1
		Chrysobalanaceae clusia amazonica Planch. & Triana 1860	1
		Clusiaceae nemorosa G. Mey 1818	2
		Garcia palmicida Rich. ex Planch. & Triana 1860	2
		Tovomita macrophylla Mart. 1841	1
		sp.	1
		sp.	1
		sp.	1
		Convulvulaceae Dicranostyles ampla Ducke 1953	4
		holostyla Ducke 1925	1
		Maripa axilliflora Mart. ex Meisn. 1869	12
		Cyclanthaceae bisectus (Vell.) Harling 1958	8
		Dichapetalaceae Tapura acreana (Ule) Rizzini 1952	1
		Dilleniaceae Davilla nitida (Vahl) Kubitzki 1971	2
		Doliocarpus novogranatensis Kubitzki 1971	1
		Elaeocarpaceae Sloanea brachyplepa Ducke 1943	3
		guianensis (Aubl.) Bentham 1861	3

continue...
Family Plants	Genus	Species	N°
Elaeocarpaceae	Sloanea	terniflora (Moc. & Sessé ex DC.) Standl. 1944	1
		tuercchheimii Donn. Sm. 1914	1
		sp. nov. (aff. macrophylla Bent. ex Turcz 1858)	1
Euphorbiaceae	Caryocar	grandifolium (Müll. Arg.) Pax 1890	1
	Condorea	guianensis Aubl. 1775	3
	Croton	panamensis Klotzsch 1843	1
	Drypetes	gentryi Monach. 1948	1
	Hevea	guianensis Aubl. 1775	1
	Heterocar	alchorneoides Allemao 1848	1
	Mabea	klugii Steyerl 1938	5
		pulcherina Müll. Arg. 1872	10
		standleyi Steyerl. 1938	3
	Neochoronea	yapuresis Huber 1913	3
	Pausandra	sp.	2
	Richeria	grandis Vahl 1976	2
	Sagotia	racemosus Baill. 1860-61	7
	Sapum	marmimeri Huber 1902	1
Fabaceae	Bauhinia	pterocarya Duche 1922	10
	Dalbergia	ecastaphyluum (L.) Taub. 1894	1
	Dialium	guianensis (Aubl.) Steud. 1840	1
	Dimorphandra	mollis Benth. 1840	1
	Inga	brachyrachis Harms 1907	4
		cf. cinnamomepr Spruce & Benth. 1875	2
		semialata (Vell.) Mart. 1837	1
		tomentosa vel sp. aff. Benth. 1875	1
	Mimosa	rufescens Benth. 1875 var rufescens	1
	Parkia	nitida Miq. 1851	2
		sp.	2
	Swartzia	cardiosperma Spruce ex Benth. 1870	1
		obscura Huber 1909	1
	Taccola	bractosa (Harms) Zarucchi & Pipoly 1995	1
	Vataireopsis	speciosum Duche 1932	1
Flacourtiaceae	Carpotroche	longifolia (Poeppe.) Benth. 1861	9
	Casearia	fisculata Bojer 1837	1
		sylvestris Sw. 1798	2
		ileana Sleumer 1980	1
	Lindackeria	paludosa (Benth.) Gilg 1925	7
	Tetrathyllum	macropiphylhum Poeppe. 1843	1
Gesneriaceae	Drymonia	semicordata (Poeppe.) Wiehler 1973	11
Heliconiaceae	Heliconia	sp.	1
		velutina L. Andersson 1985	2
Icacinaceae	Discophora	guianensis Miers 1852	1
Lauraceae	Chlorocar	venenosaum (Kosterm. & Pinkley) Rohwer, H.G. Richt. & van der Werff 1991	2
	Endlicheria	tessmannii D. C. Schmidt 1928	1
	Ocotea	cf. leucoxytum (Sw.) Mez 1889	1
		cf. longifolia Kunth 1817	2
Lecythisaceae	Eschweileri	albiziflora (DC.) Miers 1874	2
		coriacea (DC.) S.A. Mori 1990	9
		gigantea (R. Kunth) J.F. Macbr 1940	2
		grandiflora (Aubl.) Sandwith 1955	1
		nicrantha (O. Berg) Miers 1874	5
		ovatiflora (DC.) Nied. 1892	7
		puriflora (Aubl.) Miers 1874	3
		ruffiflora S.A. Mori 1990	2
Linaceae	Heteptetalum	huminifolium (Planch.) Benth. 1862	1
Loranthaceae	Psittacanthus	cortecocephalus Eichler 1868	1
Malpighiaceae	Bunchosia	argentea (Jaccy.) DC. 1824	1
	Byronima	cowani W.R. Anderson 1981	1
	Mascagnia	antivstpetala (A. Juss.) Griseb. 1858	1
	Mezio	psilophylhum (A. Juss.) Griseb. 1858	1
Malvaceae	Matisia	bracteolosa Duche 1945	1
Melastomaceae	Leandra	ochrocalyx K. Schum. 1886	6
	Longicona	longicona Cogn. 1886	3
	Miconia	biglandulosa Gleason 1932	8
Meliaceae	Guarea	kunthiana A. Juss. 1830	1
		pterorachis Harms 1924	1

Continue...
Table 2.

Family Plants	Genus	Species	N°
Menispermaceae	**Abuta**	grandifolia (Mart.) Sandwith 1937	1
Menispermaceae	**Elephantomene**	*eburnea* Barneby & Krukoff 1974	1
Moraceae	**Brosimum**	*acutifolium* Huber 1910 subsp. oboratum	1
Moraceae	**Ficus**	americana Aubl. 1775	3
Menispermaceae	**Menispermum**	*poeppigii* C. DC. 1878	2
Moraceae	**Maquira**	*calophylla* (Poepp. & Endl.) C.C. Berg 1969	2
Naucleopsis	**ulei** (Warb.)	*Duke 1922*	1
Persea	**guianensis**	*Aubl. 1775*	1
Myristicaceae	**Cybianthus**	*sp. 1*	2
Myrtaceae	**Cylistachys**	*sp.*	1
Myrtaceae	**Calyptranthes**	*densiflora* (O. Berg 1854(1855)	1
Myrtaceae	**Eugenia**	*egensis* DC. 1828	1
Nyctaginaceae	**Nea**	*calophylla* (Spruce) Warb. 1897	1
Nyctaginaceae	**spirecia**	*A.C. Sm. 1937(1938)*	3
Nyctaginaceae	**ventriculata**	*Ruiz & Pav. 1798*	1
Nyctaginaceae	**vires**	*Poep. ex A. DC. Warb. 1897*	1
Nyctaginaceae	**xanthochyma**	*H. Karst. 1862*	1
Ochnaceae	**Cespedesia**	*spathulata* (Ruiz & Pav.) Planch. 1846	2
Arecales	**Astrocaryum**	*chumbira* Burret 1934	7
Arecales	**Maclura**	*murumurua* Mart. 1824	35
Arecales	**Attalea**	*platerata* Mart. ex Spreng. 1816	3
Arecales	**Bactris**	*tessmannii* Burret 1929	1
Arecales	**Chamaedorea**	*pauiciflora* Mart. 1823	2
Arecales	**Euterpe**	*precatoria* Mart. 1842	19
Arecales	**Geonoma**	*cuneata* H. Wendl. ex Spruce 1869	2
Arecales	**Hyospathe**	*elegans* Mart. 1823	11
Arecales	**Iriartea**	*deltoidea* Ruiz & Pav. 1798	52
Arecales	**Iriartella**	*stenocarpa* Burret 1931	1
Arecales	**Manicaria**	*mapora* H. Karst. 1823	1
Arecales	**Socratea**	*exorrhiza* (Mart.) H. Wendl. 1860	14
Piperaceae	**Piper**	*augustum* Rudge 1805	2
Polygalaceae	**Moutabea**	*aculeata* (Ruiz & Pav.) Poep. & Engl. 1838	2
Rhamnaceae	**Amelopozzyphus**	*amazonicus* Duke 1935	1
Rhizophoraceae	**Cassipourea**	*peruviana* Alston 1925	2
Table 2.

Family Plants	Genus	Species	Nº
Rubiaceae	Alibertia	hispida Ducke 1932	1
		verrucosa S. Moore 1895	2
		sp.	1
Rubiaceae	Boroja	claviflora (K. Schum.) Cuatrec. 1953	1
	Durioha	hirsuta (Poeppl.) K. Schum. 1889	2
	Faramea	axillaries Standl. 1930	6
		multiforma A. Rich. ex DC. 1830	2
	Geophila	cordifolia Miq. 1850	1
	Ixora	peruviana (Spruce ex K. Schum.) Standl. 1931	1
	Notopleura	cf. congesta C.M. Taylor 2001	2
	Palicourea	subspicata Huber 1906	18
	Pseudaquatica	latifolia (Lam.) Roem. & Schult 1819	2
	Psychotria	bolitiana Standl. 1931	1
		deflexa DC. 1830	8
		microbotrys Ruiz ex Standl. 1930	6
		poeppigiana Mull Arg. 1881	18
		stenostachya Standl. 1930	2
	Warszewiczia	cocinea (Vahl) Klotzsch 1853	20
Sabiaceae	Meliosma	hebertii Rolfe 1893	1
		vasquezii A.H. Gentry 1986	1
Sapindaceae	Ophiocaryon	heterophyllum (Benth.) Urb. 1895	3
	Matayba	arborescens (Aubl.) Radl. 1879	1
	Paulinia	cf. anodonta Radl. 1753	1
		pterocarpa Triana & Planch. 1862	7
	Serjania	lethalis A. St. -Hil. 1824	2
	Talisia	cerasina (Benth.) Radl. 1878	1
Sapotaceae	Chrysophyllum	amazzonicum T.D. Penn. 1990	1
		bombyczinum T.D. Penn. 1990	1
	Manilkara	bilata Williams 1936	1
	Pouteria	bilocularis (H. Winkl.) Baehni 1942	1
		caimito (Ruiz & Pav.) Radl. 1882	1
		cuspidata (A. DC.) Baehni 1944	1
		elegans (A. DC.) Baehni 1944	1
		procera (Marti.) T.D. Penn. 1990	1
		rostrata (Huber) Baehni 1942	4
	Simaroubaceae	Simarouba anara Aubl. 1775	1
	Siparuracea	Siparuna bifida (Poepp. Endl.) A.DC. 1968	11
	Solanaceae	Brunfelsia grandiflora D. Don 1829	1
		Solanum grandiflora Ruiz & Pav. 1799	1
	Sterculiaceae	Sterculia apetophylla Ducke 1945	1
		killipiana Standl. ex E.L. Taylor 1989	1
	Theophrastaceae	Clavija elliptica Mez 1905	1
		venosa B. Stahl 1990	1
	Verbenaceae	Aegiphila elegans Moldenke 1932	1
		sp.	1
	Violaceae	Petrea blanchetiana Scharer 1847	1
		Gloeospermum sphacocarpum Triana & Planch. 1862	1
		Leonia cymosa Mart. 1826	2
		glycycarpa Ruiz & Pav. 1799	2
	Vitaceae	Rinorea flavescens (Aubl.) Kunze 1891	5
		Cissus biformenta Standl. 1929	1

for identification. This method of identification meant that she was able to identify plants that flowered but failed to produce fruits based on the identity of their fruiting conspecifics.

Angiosperms and a few palms were identified at the Missouri Botanical Garden mostly by RV, with a few plants in Araceae, Menispermaceae and Rubiaceae identified by Thomas Croat, Rosa Ortiz-Gentry and Charlotte Taylor respectively. Most palms were identified at the New York Botanical Garden by Andrew Henderson. Vouchers were deposited in the institutions where they were identified, with duplicate vouchers deposited at AMAZ (Herbario Amazonense - Universidad Nacional de la Amazonia Peruana).

Results and discussion

Floristic description of study site

The canopy in this site is dense, with the majority of trees attaining heights of 15 -- 40 m. The highest emergents consisted of trees and canopy palms approximately 50 m tall. The most diverse plant groups in this site were the Arecaceae and Rubiaceae, both with 11 genera and 19 species that flowered and/or produced fruits. Palms were the most abundant group of flowering and/or fruiting plants with 156 fruiting palms/ha. The second most abundant group was the Myristicaceae (second most speciose group) from which 50 fruiting plants/ha were phenologically active.
The canopy of this forest is dominated by large canopy palms (Attalea, Astrocaryum, Euterpe, Socratea and Iriartea), and tree species from the genus Eschweilera (Lecythidaceae). The subcanopy was dominated by the palm Astrocaryum murumuru and medium sized trees from the genus Iryanthera (Myristicaceae). The understorey was dominated by palms in the genus Geonoma and shrubs in the genus Psychotria (Rubiaceae).

Species richness of flowering and fruiting plants

A summary of the diversity of flowering and fruiting plants in the study site is provided in Table 1, and a list of plants recorded flowering and fruiting in Paucaíllo during the one year study period is shown in Table 2. The diversity of flowering and fruiting plants in this site is high, with 270 species from 59 families recorded during the 12 month study period over an area of 1.44 hectares or 188 species/ha.

Proportion of all species that flowered and fruited during the study period

To compare the species richness of flowering and fruiting plants with total plant species richness in our study site, we examined data collected in a nearby site Madre Selva. In Madre Selva (3°37’ S, 72°14’W), 19 km east of our study site, 304 species/ha (trees > 10 cm dbh excluding lianas, epiphytes and herbs) were recorded (Davila et al. unpublished data). Madre Selva has a higher diversity of trees > 10 cm dbh than Manu National Park in Peru’s Madre de Dios region (174 species/ha) and Yasuni National Park in Ecuador (239 species/ha). To compare our results with the Madre Selva dataset, we excluded 61 species of lianas, epiphytes and herbs from our dataset, which reduced the number of flowering and fruiting tree species to 209 per 1.44 ha or approximately 145 species/ha. Assuming that our study site has the same total tree diversity as Madre Selva, this means that 48% of the total possible species richness (304 species) in this forest was recorded flowering and/or fruiting within our study site. Therefore 52% of plant species in our site were not flowering or fruiting because they were species (1) whose phenological activities were not recorded because they flowered and/or fruiting between phenology surveys, (2) represented by non-flowering and non-fruiting immature individuals and (3) represented by mature individuals of rare species that did not flower and fruit during our study period due to supra-annual phenological cycles. However, it is also possible that our assumption is not correct and our study site may have lower species richness than Madre Selva.

Proportion of rare species

To compare the proportion of rare species between our site and Madre Selva, we arbitrarily defined rare species as those represented by 1–3 plants within 1–1.44 ha of forest. At Madre Selva, rare species accounted for 63% of all species in one hectare (Davila et al. unpublished data). Whereas, in our site rare species accounted for 57% of flowering and fruiting plants in 1.44 hectares. The high representation of rare species in both sites is consistent with the approximately 50% of species represented by one individual/ha at sites located within other parts of the Amazon (Faber-Langendoen and Gentry 1991, Valencia et al. 1994, Pitman et al. 2001). For detailed review of the distribution and rarity of Amazonian plants, we refer readers to Pitman et al. (1999 and 2001).

Acknowledgement

This paper is part of a dissertation project completed in partial fulfillment of JC’s doctoral dissertation at Rutgers University. She would like to thank her Peruvian field assistants and hosts for fieldwork help and in-town housing respectively. JC thanks the Herbário Amazonense - Universidad Nacional de la Amazonía Peruana and Missouri Botanical Garden for access and use of their herbarium. D. Graham, R. Pezo and O. Gonzalez assisted with permits and provided in-country support. We thank INRENA for providing research and export permits. We are grateful for funding secured by J. Pearson from three Rutgers University benefactors.

Literature cited

Choo, J. P. S. 2005. The avifauna and wild fruits of two equatorial rainforest sites: An intertropical comparison. Thesis Ph.D. Rutgers, The States University of New Jersey, New Brunswick.

Faber-Langendoen, D., and A. H. Gentry. 1991. The structure and diversity of rain forests at Bajo Calima, Choco Region, western Columbia. Biotropica 23:2-11.

Foster, R. B. 1990. The floristic composition of the Rio Manu floodplain forest. In A. H. Gentry, editor. Four neotropical forests. Pages 99-111, Yale University Press, New Haven.

Gentry, A. H. 1988. Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Science 85:156-159.

Malhi, Y., O. L. Phillips, J. B. Lloyd, T., J. Wright, S. Almeida, L. Arroyo, T. Frederiksen, J. H. Grace, N., T. Killeen, W. F. Laurance, C. Leano, S. Lewis, P. Meir, A. Monteagudo, D. Neill, P. Nunez Vargas, S. N. Fanfil, S. Patino, N. Pitman, C. A. Quesada, A. Rudas-Ll, R. Salomao, S. Saleska, N. Silva, M. Silvaeva, W. G. Sombrook, R. Valencia, R. Vasquez Martinez, I. C. G. Vieira, and B. Vinceti. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science 13:439-450.

Pitman, N., J. W. Terborgh, M. R. Silman, P. V. Núñez, D. A. Neil, C. E. Cerón, W. A. Palacios, and M. Aulestia. 2001. Domi- nance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82:2101-2117.

Pitman, N. C. A., J. Terborgh, M. R. Silman, and P. V. Nunez. 1999. Tree species distributions in an upper Amazonian forest. Ecology 80:2651-2661.

Pitman, N. C. A., J. W. Terborgh, M. R. Silman, P. Nunez V., D. A. Neill, C. E. Cerón, W. A. Palacios, and M. Aulestia. 2002. A comparison of tree species diversity in two upper Amazonian forests. Ecology 83:3210-3224.

Valencia, R., H. Balslev, and G. P. Y. Mino-C. 1994. High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation 3:21-28.

Vásquez Martinez. R. 1997. Flórula de las Reservas Biológicas de Iquitos, Perú. The Missouri Botanical Garden Press, St. Louis.
