LETTERS TO THE EDITOR

Intestinal permeability

EDITOR,—We read with interest the paper by Dr Orishi and colleagues (Gut 1995; 36: 891–6) investigating intestinal permeability and the immune response to enteric bacterial antigens in patients with inflammatory bowel disease. Their finding of an increased systemic concentration of antibodies to lipid A in patients with inflammatory bowel disease and increased intestinal permeability is in agreement with studies showing increased titres of antibodies to the endotoxin core,1 to peptidoglycan-polysaccharide complexes,2 and to a variety of enteric bacteria3 in these diseases.4 These studies offer a differential diagnosis of systemic symptoms seen in patients with inflammatory bowel disease, which supports the more direct evidence provided by the measurement of systemic endotoxin concentrations and mucosal barrier function in patients with inflammatory bowel disease, which supports the more direct evidence provided by the measurement of systemic endotoxin concentrations and mucosal barrier function in patients with inflammatory bowel disease.5,6 The study by Dr Orishi and colleagues also provides confirmation that the pattern of antibody response to endotoxin antigens is different in patients with Crohn’s disease from those with ulcerative colitis.7 There is an increase in the systemic concentration of IgG to endotoxin core/lipid A in patients with Crohn’s disease but not in those with ulcerative colitis. Systemic IgM concentration to endotoxin core/lipid A is not increased in either disease. With regard to IgA, we similarly found that the plasma concentration of IgA to the endotoxin core was increased (though not significantly) in patients with Crohn’s disease (107±3.20±5 median units) and ulcerative colitis (93±0.2±2.4) in comparison with healthy controls (61±5.15).7 We are unable, yet, to explain these differences. The study by Dr Orishi and colleagues with regard to treatment for impaired gut barrier function. Lactulose has been shown to eliminate systemic endotoxemia in a hapten induced rat model of colitis8 and had been suggested as treatment for patients with inflammatory bowel disease.6,7 The mechanism of the anti-endotoxin action of lactulose is not clear, as lactulose treatment did not have any significant effect on the faecal count of Gram negative bacteria in the experimental model of colitis.6 It has generally been assumed that lactulose is fermented rapidly by colonic bacteria and that colonic absorption after oral administration would be minimal.9 The study by Dr Orishi and colleagues, however, suggests that there is significantly increased lactulose absorption in the presence of colonic inflammation. It is possible, therefore, that absorbed lactulose was effective as an anti-endotoxin agent in experimental colitis by exerting a direct neutralising effect on systemically circulating endotoxin.6,9

K R GARDNER
R J MAXWELL
B J ROWLANDS
Department of Medicine
The Queen’s University of Belfast,
Institute of Clinical Science,
Gowerstone Road,
Belfast BT12 6BJ

G R BARCLAY
The Blood Transfusion Service,
Edinburgh

1 Gardiner KB, Halliday MI, Barclay GR, Milne L, Brown D, Stephens S, et al. The significance of systemic endotoxaemia in inflammatory bowel disease. Gut 1995; 36: 897–901.
2 Sartor RB, Cleland DR, Kirovskaja CJ, Schwab JH. Serum antibody to bacterial cell wall peptido-glycan in inflammatory bowel disease. Gastroenterology 1985; 88: 157A.
3 Matthews N, Mayberry JP, Rhodes J, et al. Agglutinins to bacteria in Crohn’s disease. Gut 1990; 21: 376–80.
4 Ambrose NS, Johnson M, Burdon DW, Kighley MRB. Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn’s disease surgery. Br J Surg 1994; 71: 623–5.
5 Gardiner KR. Systemic endotoxaemia in inflammatory bowel disease and experimental colitis [MD Thesis]. Belfast: The Queen’s University of Belfast, 1994.
6 Gardiner KR, Erwin PJ, Anderson NH, McCaigue MD, Halliday MI, Rowlands B. Lactulose as an anti-endotoxin agent in experimental colitis. Br J Surg 1995; 82: 469–72.
7 Liao W, LS, Xin Y, Floren CH. Lactulose—a potential drug for the treatment of inflammatory bowel disease. Med Hypotheses 1994; 44: 234–8.
8 Elia M, Behrens R, Northrop C, Wright P, Neale G. Evaluation of mannitol, lactulose and 5G-labelled ethylenediaminetetra-acetate as markers of intestinal permeability in man. Clin Sci 1987; 73: 197–204.
9 Ditter B, Urbaschek R, Urbaschek B. Ability of various adhesives to bind endotoxin in vitro and to prevent orally induced endotoxaemia in mice. Gastroenterology 1983; 84: 1547–52.

Reply

EDITOR,—We thank Mr Keith Gardiner and his colleagues for their comments.

We are aware of the anti-endotoxin action of lactulose. In our study, however, we used lactulose as a marker of intestinal permeability. Anti-lipid A antibody concentrations were not influenced by lactulose with an anti-endotoxin action, because anti-lipid A antibody concentrations were measured just before lactulose administration. Lactulose may be useful in both evaluation of disease activity and treatment in diseases with an increasing intestinal permeability and endotoxaemia, such as inflammatory bowel disease, alcoholic liver disease or liver failure in the inactivating phase of Crohn’s disease, the continuous administration of lactulose may be interesting. We look forward to further study on this subject.

T ORISHI
Second Department of Medicine,
Kumamoto University School of Medicine,
67 Aachi-machi, Kumamoto,
Fukuoka 830, Japan

1 Bjarnason I, Ward K, Peters T. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet 1984; i: 179–82.

Hydatid disease

EDITOR,—We read with interest the leading article by Dr D L Morris (Gut 1994; 35: 1517–8). We agree with the points concerning treatment of the hydatid disease, however, we are in disagreement with Dr Morris’ statement ‘there are two forms of echinococcus that affect the liver of humans, E granulosus and E multilocularis’.1 Rausch and Bernstein in 1972 described a new species of echinococcus named E vogeli.2 Furthermore E vogeli was found to be a zoonotic agent of the hydatid disease in several patients from Colombia, Venezuela, Equador, and Panama, most of them showing hepatic involvement by the disease.3 More recently, we had the opportunity to study nine patients with hydatid disease, seven of them from the Brazilian Amazon region; eight of nine showed extensive involvement of the liver.4 Another study of six additional patients from the state of Acre (Amazon region) showed severe involvement of the liver (Meneghelli et al, unpublished data). All of these patients showed pathological findings that allowed us to establish the diagnosis of hydatid disease.5 Subsequently new cases of this neotropical hydatidosis have been detected in Brazil by Ferreira et al6 and by D’Alessandro et al (unpublished data). It seems that the disease has extended its distribution in South America, mainly in the Amazon region. All patients we studied had extensive involvement of the liver making a surgical approach impossible. We found that albendazole is effective for the treatment of the disease.7 Thus, we consider that we have enough evidence to say that there are at least three species of echinococcus that affect the liver of humans: E granulosus, E multilocularis, and E vogeli. Moreover there is a possibility that although rare, E oligarthrus may also cause hepatic disease in humans.

U G MENEGHELLI
A L C MARTINELLI
M G Villanova
Department of Surgery, Instituto de Medicina de Ribeirão Preto,
University of São Paulo, CEP 14094-900, Ribeirão Preto, São Paulo, Brazil

1 Rausch RL, Bernstein JJ. Echinococcus vogeli sp n (Cestoda; Taeniidae) from the bush dog Speothos venaticus (Lund); E Tropembasis Parvatai 1972; 23: 25–54.
2 D’Alessandro A, Rausch RL, Cuello G, Artazabal N. Echinococcus vogeli in man, with a review of polycystic hydatid disease in Colombia and neighbouring countries. Am J Trop Med Hyg 1976; 28: 303–17.
3 Meneghelli UG, Martinelli LC, Llorach Velludo MAS, Bellucci AD, Magro JE, Barbó MLP. Polycystic hydatid disease (Echinococcus vogeli) in Bahia, Brazil, lack of recurrence. Trans Am Soc Trop Med Hyg 1993; 83: 94–9.
4 Ferreira MS, Nishioka SA, Rocha A, D’Alessandro A. Echinococcus vogeli polycystic hydatid disease: report of two Brazilian cases outside the Amazon region. Trans R Soc Trop Med Hyg 1995; 89: 286–90.
5 Meneghelli UG, Martinelli LC, Bellucci AD, Villanova MG. Polycystic hydatid disease (Echinococcus vogeli). Treatment with albendazole. Am J Trop Med Parasitol 1992; 86: 151–6.

Gastric mucus viscosity and Helicobacter pylori

EDITOR,—The article in Gut by Markesich et al reports that H pylori infection does not cause reduction in the viscosity of human gastric mucus gel (Gut 1995; 36: 527–9). The findings contradict the results of previous studies,1–3 and misquote the source of materials with which the work was carried out.4 Contrary to the authors’ assumption, we never used commercially obtained mucin and the work included human gastric mucus, as well as its purified mucin.5 Furthermore, our assays of H pylori enzymatic activities were carried out with enzyme enriched protein fraction under well controlled conditions.6 These studies showed that H pylori through its mucolytic enzyme actions is capable of exerting a detrimental effect on gastric mucus gel viscosity.7 The mucus data presented by Markesich et al were obtained directly on gastric juice samples from patients with and without H pylori infection, and do not provide any information on the mucolytic enzyme activities of the bacterium, nor for that matter on the mucous gel.