Hey Bill, what’s the deal with Threshold Progressions in a Variety of Covering and Packing Contexts?

Many combinatorial objects can be viewed as covering other combinatorial objects. For example, the set:

\[\{1, 4, 7\} \]

is “covered” by the set

\[\{1, 2, 4, 7, 9\} \]

because it is a subset. Similarly, the permutation

\[132 \]

is covered by the permutation

\[3174256 \]

because it exists as a subpermutation (i.e., if we delete all the non-bold symbols and pretend like we have a permutation on 3 elements, it’s a 132 permutation). In order to motivate the problems addressed in this paper, let’s focus on the first example—subsets of the numbers \(\{1, 2, 3, \ldots, n\} := [n] \).

Let’s say that \(C \) is a collection of subsets of \([n]\) which each have cardinality 5. We wish to introduce the primary notions investigated in this project with the specific example of size 3 subsets of \([n]\):

- If every subset which has size 3 is covered by at least one element of \(C \), we say that \(C \) covers the size 3 subsets of \([n]\). If every subset which has size 3 is covered by at least \(\lambda \) elements of \(C \), we say \(C \) is a \(\lambda \)-covering of the size 3 subsets of \([n]\).
- If every subset which has size 3 is covered by at most one element of \(C \), we say that the size 3 subsets of \([n]\) pack into \(C \). If every subset which has size 3 is covered by at most \(\lambda \) elements of \(C \), we say that the size 3 subsets of \([n]\) \(\lambda \)-pack into \(C \).

We can discuss \(\lambda \)-covering and \(\lambda \)-packing for any objects which have some kind of subobject relation. We now need a few notions from probability theory.

We say that a family of events \(E_n \) in a probability space happens with high probability (abbreviated whp) if \(P(E_n) \to 1 \) as \(n \to \infty \). Similarly, we say that \(E_n \) happens with low probability (wlp) if \(P(E_n) \to 0 \) as \(n \to \infty \). We say that a value \(p_0 = p_0(n) \) is a threshold for a property \(C \) if for all \(p = p(n) \) where \(p < p_0 \) the property \(C \) occurs wlp, while for all \(p \gg p_0 \) the property \(C \) occurs whp. A simple example would be to look at \(G(n, p) \), the graph on \(n \) vertices where we include each potential edge with probability \(p \), and exclude it with probability \((1 - p) \). Note that for each \(p \), \(G(n, p) \) is a probability distribution on the collection of all graphs on \(n \) vertices. It can be shown that if \(p < 1/n \), then \(P(G(n, p) \text{ has a cycle}) \to 0 \), while if \(p \gg 1/n \), then \(P(G(n, p) \text{ has a cycle}) \to 1 \), and hence \(1/n \) serves as a threshold for \(G(n, p) \) containing a cycle.

Given some combinatorial objects \(A \), and we select some random collection \(C \) of (larger) objects with probability \(p \). We can ask for which values of \(p \) is \(C \) a \(\lambda \)-cover or when \(A \) \(\lambda \)-packs into \(C \) with high probability. We establish probabilistic thresholds for the following:

- Let \(k < t \), and let \(A = \binom{[n]}{k} \) and \(C \subseteq \binom{[n]}{t} \) be chosen randomly with each member selected with probability \(p \). We establish a threshold for both \(\lambda \) coverings and \(\lambda \) packings, where \(\lambda \geq 2 \).
- Let \(A \) be all permutations on \(n \) symbols and \(C \) a random subset of the permutations on \(n+1 \) symbols, where the subobject relation is “order isomorphic subpattern”. In [?] Allison, Godbole, Hawley, and K. showed the covering and packing thresholds for \(\lambda = 1 \), and in this paper we establish them for all \(\lambda \geq 2 \).
- Suppose a set \(A \subseteq [n] \) satisfies the property that for all \(k \in [h, nh] \) there are fewer than \(\lambda \) solutions to the equation:

\[
\sum_{i=1}^{h} a_i = k
\]

where \(a_1 < \ldots < a_h \subseteq A \). We call such a set \(\lambda \)-Sidon. In some sense, we can think about the collection of sums with \(h \) terms from the set \(A \) as \(\lambda \)-packing into the set of potential sums from \(A \). We establish the packing threshold for all \(\lambda \).

This is joint work with Anant Godbole, Thomas Grubb, and Kyutae (Paul) Han.