INFLATION AND UNEMPLOYMENT RELATIONSHIP IN TURKEY:
AN EXAMINATION ON THE VALIDITY OF PHILLIPS CURVE (1988-2017)

Musa ATGÜR
Assist. Prof. Dr., Balıkesir University, Turkey, musa.atgur@balikesir.edu.tr
ORCID: 0000-0003-0429-4619

ABSTRACT
It makes important contributions to economics literature Phillips Curve explaining the interaction between rate of change in monetary wages and unemployment rate firstly appeared in 1958. It explains relationship between inflation rate and unemployment rate Phillips Curve which has been handled differently since and after 1960. This study aims to examine inflation-unemployment relationship and the validity of Phillips Curve in Turkey. In this context, the data set used for econometric application is annual and covers the period 1988-2017. Econometric methods are used as ordinary least squares estimation and Johansen cointegration test in the study. Ordinary least squares estimation method and Johansen cointegration test results indicate that there is a relationship between inflation and unemployment and Phillips Curve is valid in Turkey during the period 1988-2017. Johansen cointegration test results show that there is a long-run relationship such as unemployment rate, inflation rate, unit value index of export goods, unit value index of imported goods and broadly defined monetary growth variables. Thus, it is thought to be useful the Central Bank of the Republic of Turkey of the policies implementation taking into account the existence of this relationship between inflation and unemployment in the context of ensuring and sustaining price stability in the next process.

Keywords: Inflation, unemployment, Turkey, Phillips Curve.
INTRODUCTION

Inflation and unemployment are among the macroeconomic problems all over the world, especially developing countries. Inflation rate and unemployment rate are negatively affected and significant fluctuations occur in these two indicators especially after economic and financial crises. It is stated that there is a trade-off relationship between these two indicators and one of the variables increases while the other decreases. This phenomenon entered macroeconomic literature as Phillips Curve in 1958, and was later differentiated and reconsidered by Keynesian, New Keynesian, Monetarist and New Classical economists. While it initially explains the exchange between monetary wages and unemployment rate, it started to express exchange between inflation and unemployment since 1960 Phillips Curve expressing relationship between unemployment and inflation.

Unemployment and inflation continues to be the two most important macroeconomic problem in Turkey. The inflation rate increased rapidly in the eighties and nineties and continued at two-digit numerical values and at times reached three-digit numerical values. In this respect, it is targeted to reduce inflation to reasonable levels in monetary and stability programs and to ensure its long-run sustainability, policy instruments are used towards this goal. In this process, there was an economic crisis caused by negative consequences in public balances in Turkey in 1994 and there was an important financial crisis arising from the financial sector in 2000. Combating inflation has been successful in short-run desired success cannot be achieved in ensuring a permanent price stability in long-run as a result of stabilization program implementations implemented in nineties and two thousand years.

On the other hand, significant regional investment incentives are provided in order to reduce to the lowest level of development disparities among regions facing and reduce unemployment in Turkey. Although these policies to increase employment are successful in short term, they are not successful in long term due to the effect of the economic policies implemented and rapid population growth.

Consumer price index (CPI) inflation rate and unemployment rate series are shown in Figure 1 in Turkey during the period 1988-2017. According to Figure 1, inflation rate shows a fluctuating trend during the period 1988-2004 and shows a horizontal trend during the period 2005-2017. There was a significant breakpoint in inflation rate in 1994, which is 89.11 percent. A major economic crisis occurred as the reason for this breakpoint in the inflation rate in Turkey in 1994. After this economic crisis, significant fluctuations in inflation and other macroeconomic indicators in Turkey occur.
According to Figure 1, the unemployment rate shows a horizontal trend during the period 1988-2017. However, it has been acting together with the inflation rate since 2005.

It is tried to contribute to the literature the presence of inflation-unemployment relationship and in terms of the results to determine the validity of Phillips Curve in Turkey in this study. It is acted within the framework of a basic hypothesis such that the presence of inflation-unemployment relationship and that the current direction of Phillips Curve in Turkey in this study. In this context, what are the theoretical dimensions of relationship between inflation and unemployment? What are the approaches of different economic trends on this relationship? In this respect, is there a relationship between inflation and unemployment in Turkey? If there is such a relationship, what is the dimension and direction of this relationship? Answers to the questions are sought.

In the first part of the study, it will be discussed inflation-unemployment relationship and theoretical dimensions of Phillips Curve, and it will be examined theoretical approaches that belong to different macroeconomic flows. In the second part, it will be discussed the studies on the relationship between inflation and unemployment and the validity of the Phillips Curve. In the third part, it will be done econometric application on inflation-unemployment relationship and the validity of Phillips Curve using annual data in Turkey for the period 1988-2017. Finally, it will be discussed obtained the findings throughout the study.

THEORETICAL BACKGROUND

It begins with the detection of the negative relationship between unemployment rate and wage inflation rate by using data of the United Kingdom (UK) in 1958 by A. W. Phillips the first appearance of Phillips Curve. Later, Phillips Curve has emerged expressed today in a modern sense modifying the theoretical dimensions of Phillips curve. The Modern Phillips Curve differs from the original Phillips Curve in three respects. The first difference, the modern Phillips Curve, is based on price inflation rather than wage inflation. As a reason for this, price
inflation and wage inflation are related since prices increased rapidly in the period when wages increased. The second difference is Phillips Curve approach, which includes the expected inflation proposed by Friedman (1968) and Phelps (1967). The third difference is that the modern Phillips Curve includes supply shocks. It is due to the rapid increases of world oil prices in the 1970s differences in these approaches on Phillips Curve (Mankiw, 2009: 390). Input prices are also increasing as a result of a rapid increase in oil prices, therefore, unemployment rate is also increasing while prices of goods and services are increasing rapidly.

The basics of Phillips Curve are based Phillips (1958)'s study for the UK. Phillips (1958) examined the relationship between unemployment rate and monetary wages change rate for the UK during the period 1861-1957. Phillips (1958) found a negative relationship between unemployment rate and monetary wages change rate.

After Phillips (1958), Samuelson and Solow (1960) determined the existence of a negative relationship between unemployment rate and inflation rate by differentiating Phillips Curve in their analysis for the USA during the period 1935-1959.

According to Samuelson and Solow (1960), Phillips Curve provides an attractive option for policymakers to follow expansionary monetary and fiscal policies, which will increase inflation, but not to high levels. Samuelson and Solow (1960) argue that Phillips Curve is also a policy instrument. They estimated relationship between inflation and unemployment in US economy for the period 1934-1958 instead of focusing on the relationship between the rate of change in nominal wages and the unemployment rate Phillips (1958) did (Hall & Hart, 2010: 2-3). Original Phillips Curve is shown in Figure 2. According to Figure 2, the labor market is in balance at the Unemployment rate and wages are stable.

![Figure 2. Original Phillips Curve](Humphrey, 1985: 4)
According to Figure 2, the unemployment rate shows frictional and structural unemployment rates in which total labor demand is zero and wages are constant. If unemployment rate decreases, demand and wages for labor force increase. When unemployment rate increases, wages decrease due to excess supply in the labor market. Convex Phillips Curve shows that labor reduces marginal productivity in reducing unemployment with increasing demand for labor. Wage inflation rate increases as you go upwards and wage inflation rate decreases as you go downwards on the curve in Figure 2.

Phillips Curve reflects a nonlinear relationship and its slope differs. Accordingly, it becomes vertical when unemployment is low and it gradually becomes horizontal when unemployment is high (Gagnon & Collins, 2019).

Humphrey (1985) attributes the rapid acceptance of Phillips Curve in economic theory for three reasons. It is the first reason that Phillips Curve reflects a steady state for a bivariate relationship. Accordingly, the results are consistent with each other examined from 1861-1913 to 1948-1957 periods. The second reason is that Phillips Curve embodies very different inflation theories. Accordingly, inflation, wages, and prices were announced as a result of excessive demand. Excess demand may arise from changes in supply regardless of changes in demand or the reasons for these changes. The third reason is Phillips Curve addressing policy makers, and it sets out a convincing rationale in the context of the fact that full employment cannot be achieved with price stability targets previously stated to be mutually compatible and argues that both objectives cannot be achieved at the same time. Accordingly, original Phillips Curve is expressed in form in equation (1).

\[
\pi_t = \sum_{i=1}^{1} \alpha_i \pi_{t-i} + \eta \bar{y}_t
\]

(1)

According to equation (1), \( \sum_{i=1}^{1} \alpha_i = 1 \) and \( \eta > 0 \). \( \pi_t \) is inflation rate and \( \bar{y}_t \) is a typical output gap. Accordingly, positive output deficit increases inflation rate since there is no long-run transaction (McAdam & Willman, 2003: 6).

Different approaches have been proposed on theoretical dimensions of Phillips Curve. Among these approaches, Keynesians argued that central bank should target unemployment rate in order to increase employment and make full use of resources. The amount of free resources is increasing in economy due to weaknesses in price system. In such a case, central bank should restrict an acceptable real target. Phillips Curve thus enables policymakers to estimate cost of implementing full employment target.

It is New Keynesian Phillips Curve one of theoretical approaches on Phillips Curve. The New Keynesian Phillips Curve states that future expected inflation has a positive function and that the output gap deviates from the potential level of real output. To follow policy based on rules and to prevent potential supply from being exceeded as in New Classical theory it is policy implication of New Keynesian theory (Motyovszki, 2013: 9).
Therefore, it is misleading that nominal wages are decisive for the labor market balance. From this perspective, real wages reveal a healthier situation in understanding the labor market.

On the other hand, Monetarists brought three different innovations to Phillips Curve analysis. Firstly, demand excess variable is redefined. Monetarists express the difference between current and normal capacity of real production or current and natural unemployment rates that are equal to this in original Phillips Curve analysis. Secondly, price expectations are included in Phillips Curve analysis. Accordingly, Monetarists see the expected inflation rate as reason for Phillips Curve to shift. Thirdly, Monetarists have developed the expectation calculation mechanism, expressed as the adaptive expectations hypothesis to understand how economic units’ price expectations are formed. According to the adaptive expectations hypothesis, economic units use their future expectations to shape what they learned from their past experiences (Tunay, 2010: 9-13). In this respect, Monetarists contributed to Phillips Curve analysis in three different ways. Monetarists argue that central bank should focus on money creation control to ensure price stability. This monetary goal is transferred to price mechanism responsibility for determining real variables such as unemployment rate (Hetzel, 2013: 91).

According to the New Classical Economists, as long as inflation is a surprise, there is a balance between inflation and unemployment, otherwise Phillips Curve is vertically shaped, demand-side policies have no real effects (Motyovszki, 2013: 7). New Classical Economists explain their approach on Phillips Curve Based on Rational Expectations hypothesis and wage-price elasticity assumptions. According to the new classics, the actual inflation depends on being different from the expected inflation existence of unemployment-inflation relationship. The difference between actual and expected inflation is random if expectations are rational. In such a situation, unemployment, except for shock and random errors, always occurs at the level of natural unemployment. In this case, inflation can be reduced without a loss in production and employment (Çevik, 2005). According to the rational expectations hypothesis, Phillips Curve is vertical in both short-run and long-run. New Classics argue that economy is at the natural unemployment level. They base unemployment on voluntary reasons, in other words, they express that they are unemployed voluntarily.

On the other hand, adverse conditions and economic recession cause unemployment and inflation to accelerate emerging in world economies in seventies. These two negative situations brought important criticisms against Phillips Curve since Phillips Curve could not demonstrate the unemployment and inflation relationship in a consistent framework. As part of these criticisms, Phelps (1967) and Friedman (1968) state that there are some errors in Phillips Curve. They see real wages as opposed to nominal wages as the main determinant of the labor market balance the main point that Phelps (1967) and Friedman (1968) criticized Phillips Curve. In this context, they argued that expectations are very important and state that the expected real wage is a correct variable to be considered (Motyovszki, 2013: 5).
LITERATURE REVIEW

In this section the studies have been examined on relationship between inflation and unemployment and the validity of Phillips Curve developed and developing countries. It is stated that obtained the results in developed and developing countries differ in supporting the existence of the inflation-unemployment relationship and the theoretical background of Phillips Curve looking at Phillips Curve literature in a general framework. From these studies, Onder (2004), Kustepeli (2005), Furuoka (2007), Tang and Lean (2007), Schreiber and Wolters (2007) identified a stable and nonlinear relationship between unemployment and inflation. In addition, Okun (1975), Lucas (1976), Turner (1997), Atkeson and Ohanian (2001), Niskanen (2002), Reichel (2004) have demonstrated the existence of an unstable relationship between unemployment and inflation. It may vary depending on economic conditions the existence and direction of the interaction between unemployment and inflation.

On the other hand, Turner and Seghezza (1999) examined the validity of Phillips Curve using the ordinary least squares (OLS) method in Organization for Economic Cooperation and Development (OECD) countries. The variables were determined such that inflation rate, output deficit, import / gross domestic product (GDP), inflation rate of imported goods for econometric modeling of the study. According to the findings, it is determined that Phillips Curve is valid in most OECD countries.

Céspedes et al. (2005) examined the validity of New Keynesian Phillips Curve using the generalized moments (GMM) method in Chilean economy during the period 1990-2004. The variables were determined such that the consumer price index (CPI) inflation rate, output gap, inflation target, labor rate, output-capital ratio and import prices for the econometric model. Findings show that New Keynesian Phillips Curve was valid in Chile for the period 1990-2004.

Sanchez (2006) examined the validity of New Keynesian Phillips Curve by applying the GMM method in Japanese economy for the period 1973-2005. The variables were determined such that wages, hourly wages, real output deficit, gross domestic product (GDP) deflator and Consumer price index (CPI) and the results support New Keynesian Phillips Curve.

Plessis and Burger (2006) examined the validity of New Keynesian Phillips Curve in South African economy for the period 1975-2003. GMM method was applied as econometric method. The variables were determined such that CPI inflation rate, output gap, import prices, daily wages per employee, real marginal cost, real output-Hodrick-Prescot trend, yields of bonds with a maturity of more than ten years for the econometric model. The results showed that in South African economy, New Keynesian Phillips Curve was valid for that period.

Aurelius and Kulikov (2007) have identified and compared the structural parameters underlying New Keynesian Phillips Curve model in Estonia, Latvia and Lithuania for the period 1995-2005. Findings show that New Keynesian Phillips Curve is significant and valid for open economy model.
Puzon (2009) examined the validity of traditional Phillips Curve in Southeast Asian Union (ASEAN) countries, including Philippines, Thailand, Indonesia and Malaysia during the period 1980-2005. OLS estimation method has been used and the variables were determined such that inflation rate, unemployment rate, interest rate, exchange rate, oil and 1997 Asian Crisis dummy for the econometric model of the study. The findings show that traditional Phillips Curve was valid in Southeast Asian Union (ASEAN) countries studied.

Mihailov et al. (2011) studied the validity of New Keynesian Phillips Curve in ten OECD countries including Austria, Canada, France, Germany, Italy, the Netherlands, Spain, Sweden, Switzerland and the United Kingdom (UK) for the period 1970-2007. The findings show that New Keynesian Phillips Curve is partially valid in these OECD countries.

Shahbaz et al. (2012) examined the validity of Phillips Curve in short-run and long-run in Turkish Republic of Northern Cyprus (TRNC) for the period 1978-2007. The variables were determined such that inflation rate and unemployment rate for econometric modeling, Autoregressive Distributed Lag (ARDL) cointegration test and dynamic ordinary least squares (DOLS) estimation methods were used. ARDL cointegration test and dynamic ordinary least squares (DOLS) estimation results indicate that Phillips Curve is valid in both short-run and long-run in Turkish Republic of Northern Cyprus (TRNC).

Bayrak and Kanca (2013) examined the validity of Phillips Curve in Turkey's economy. Inflation rate is determined as dependent variable and unemployment rate as independent variable for the econometric model of the study. OLS estimate results suggest that long-term Phillips curve is valid for Turkey.

Saman and Pauna (2013) estimated New Keynesian Phillips Curve in Romanian economy for the period 2000-2011. Estimation results show that the estimated New Keynesian Phillips Curve for Romania is not different from theoretical framework.

Chowdhury and Sarkar (2014) examined the validity of New Keynesian Phillips Curve in four countries: Brazil, Russia, India and South Africa for the period May 1994 and May 2011. The modified Markov Switching model method has been used and the variables were determined such that CPI inflation rate, output gap, monetary growth and real effective exchange rate for the econometric model. Study results show that New Keynesian Phillips Curve is valid for the specified period in Brazilian and South African economies.

Machado and Portugal (2014) studied the formal direction of Phillips Curve in Brazilian economy for the period April 2000 and May 2011. Ljung-Box Q statistical method was used in the study and the econometric model was determined by inflation rate, output, inflation expectation and marginal cost variables. The findings reveal that Phillips Curve was flattened for the period in Brazilian economy.

Rosa (2014) examined relationship between inflation and unemployment using Johansen cointegration test method in Italy for the period 1961-2012. The findings reveal that there is a relationship between inflation and unemployment in Italian economy at the relevant time.
Esu and Atan (2017) examined the validity of Phillips curve in twenty-nine African countries under the Sahara during the period 1991-2015. CPI inflation rate and unemployment rate variables were preferred for the econometric model of the study. There is an insignificant relationship between inflation rate and unemployment rate in twenty-nine African countries under the Sahara during the period 1991-2015. Accordingly, it is determined that Phillips Curve is invalid in twenty-nine countries under the Sahara.

Karahan and Uslu (2018) examined the relationship between unemployment rate and inflation rate in Turkey. The variables were determined such that inflation rate and unemployment rate for the econometric model of the study in which ARDL Bound Test was applied. ARDL Bound Test results show that unemployment rate is effective on inflation rate in Turkey.

Zayed et al. (2018) examined the relationship between unemployment and inflation in Philippines economy for the period 1950-2017. The variables were determined such that inflation rate, target inflation, unemployment rate, annual wage rate and GDP for econometric modeling of the study using OLS estimation, error correction model (ECM) and CUSUM test methods. Accordingly, the Philippines Government needs to implement policy instruments in a way that positively affects the unemployment rate and inflation rate.

**DATA SET AND ECONOMETRIC METHODOLOGY**

The data set is on an annual frequency and covers the period 1988-2017 used in the econometric application of the study. This data set is obtained from the database on the World Bank (WB) website.

The regression models specified in equation (2) and equation (3) are taken as basis for econometric application in the study. Bayrak and Kanca (2013)'s and Karahan and Uslu (2018)'s study in which they examined the validity of Phillips Curve in Turkey differ from the modeling regression models of the study shown in equation (2) and equation (3). Accordingly, in this study, besides unemployment and inflation variables, export unit value index, import unit value index and broad definition monetary growth variables are added to regression models different from Bayrak and Kanca (2013), Karahan and Uslu (2018). These regression models are shown in equation (2) and equation (3).

\[
UR = \alpha_0 + \alpha_1 INF + \alpha_2 LEXPUV + \alpha_3 LIMPUV + \alpha_4 BDMG \tag{2}
\]

\[
INF = \beta_0 + \beta_1 UR + \beta_2 LEXPUV + \beta_3 LIMPUV + \beta_4 BDMG \tag{3}
\]

The variables and coefficients specified in equation (2) and equation (3) are as follows; UR, unemployment rate; INF, CPI inflation rate, LEXPUV, logarithmic transformed export unit value index, LIMPUV; logarithmic transformed import unit value index, BDMG; broad definition monetary growth rate. \(\alpha_0\) and \(\beta_0\) are constant coefficients of the regression models. \(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta_1, \beta_2, \beta_3, \beta_4\) coefficients indicate slope coefficients of the regression models.
Firstly, the coefficients of the models were estimated using OLS estimation method based on the two regression models specified in equation (2) and equation (3). OLS estimation method is a reliable method in terms of its properties and it is a widely used method for estimating coefficients of economic relations in most accurate way. OLS method is a coefficient estimation method with features such as linear, unbiased and having minimum variance. Null hypothesis, which states that test statistics values of estimated coefficients of independent variables are significantly, are tested according to a certain level of significance in this estimation method. Null hypothesis is rejected if the test statistical value of estimated coefficient of relevant independent variable is significant.

On the other hand, it is being done unit root analysis of series OLS estimation method after estimation. Dickey-Fuller GLS (ERS) and Phillips-Perron (PP) Unit Root Test methods were used one of the unit root test methods commonly used in time series analysis for unit root analysis of the series. Unit root tests show the distribution of series around their averages. If the series contain unit root as a result of unit root tests made according to their level values; in this case, unit root test is performed again according to the appropriate lag values by taking the first differences. The null hypothesis is tested by comparing the critical value corresponding to a certain significance level with test statistical value in implementation of the unit root test. If test statistic value is higher than absolute critical value, then it is decided to reject null hypothesis.

After unit root tests, cointegration tests are applied in order to determine whether the series used are related in long-run. Johansen (1988, 1991) cointegration test is used as cointegration test in this study. It is decided according to the trace statistics and maximum eigenvalue statistics concluded simultaneously the existence of the cointegrated vector in Johansen (1988, 1991) cointegration test. These statistics concluded simultaneously are compared with the critical values. It is concluded that number of vectors cointegrated by corresponding alternative hypothesis if trace and maximum eigenvalue test statistics values are greater than critical values.

**FINDINGS**

They are estimated using the OLS estimation method coefficients of variables determined for econometric application. OLS estimation is made on two different models. In the first model, the UR variable is accepted and estimated as a dependent variable. In the second model, the INF is accepted as a dependent variable and has been re-estimated. OLS estimation results are given in Table 1 and Table 2.
Table 1. Ordinary Least Squares (OLS) Method Estimation Results

| Variable | Coefficient | Standard Error | t-Statistic | Prob. |
|----------|-------------|----------------|-------------|-------|
| \( C \)  | 2.580       | 15.744         | 0.164       | 0.871 |
| \( \text{INF} \) | -0.061     | 0.021          | -2.974\(^*\) | 0.006 |
| \( \text{LEXPUV} \) | 27.717     | 20.260         | 1.368       | 0.184 |
| \( \text{LIMPUV} \) | -7.283     | 3.857          | -1.889      | 0.071 |
| \( \text{BDMG} \) | 0.007       | 0.014          | 0.528       | 0.603 |

\[ \text{R-squared} = 0.583 \]
\[ \text{Adjusted R-squared} = 0.5163 \]
\[ \text{S. E. of regression} = 1.038 \]
\[ \text{Akaike Info Criterion} = 3.063 \]
\[ \text{Sum squared resid} = 26.930 \]
\[ \text{Schwarz Criterion} = 3.297 \]
\[ \text{Log Likelihood} = -40.949 \]
\[ \text{Hannan-Quinn Criter} = 3.138 \]
\[ \text{F-Statistic} = 8.724 \]
\[ \text{Durbin-Watson Stat.} = 1.194 \]
\[ \text{Probability (F-Statistic)} = 0.000 \]

\( * \): It indicates that the null hypothesis was rejected according to significance level 1%.

According to the estimation results given in Table 1, it is determined that the test statistic value of the estimated coefficient of the independent variable \( \text{INF} \) variable is significant according to the significance level 1%. In addition, they were found insignificant the test statistical values of the coefficient of \( \text{LEXPUV} \), \( \text{LIMPUV} \) and \( \text{BDMG} \) variables. It means that the effect of \( \text{INF} \) variable on dependent variable \( \text{UR} \) is negative the sign of the coefficient for the \( \text{INF} \) independent variable, which is estimated to be significant is negative. OLS estimation results for the second model are given in Table 2.

Table 2. Ordinary Least Squares (OLS) Method Estimation Results

| Variable | Coefficient | Standard Error | t-Statistic | Prob. |
|----------|-------------|----------------|-------------|-------|
| \( \text{C} \)  | -36.974     | 131.255        | -0.282      | 0.781 |
| \( \text{UR} \)  | -4.266      | 1.434          | -2.974\(^*\) | 0.006 |
| \( \text{LEXPUV} \) | 363.408    | 159.512        | 2.278\(^*\) | 0.032 |
| \( \text{LIMPUV} \) | -99.391    | 28.083         | -3.539\(^*\) | 0.002 |
| \( \text{BDMG} \) | 0.462       | 0.075          | 6.156\(^*\) | 0.000 |

\[ \text{R-squared} = 0.941 \]
\[ \text{Adjusted R-squared} = 0.932 \]
\[ \text{S. E. of regression} = 8.661 \]
\[ \text{Akaike Info Criterion} = 7.307 \]
\[ \text{Sum squared resid} = 1875.535 \]
\[ \text{Schwarz Criterion} = 7.540 \]
\[ \text{Log Likelihood} = -104.600 \]
\[ \text{Hannan-Quinn Criter} = 7.381 \]
\[ \text{F-Statistic} = 99.610 \]
\[ \text{Durbin-Watson Stat.} = 1.927 \]
\[ \text{Probability (F-Statistic)} = 0.000 \]

\( *\(^{(**)\)}\): It indicates that the null hypothesis \( (H_0) \) was rejected according to significance level 5% (1%).
According to the estimation results given in Table 2, it is determined that the test statistic values of the estimated coefficients of all independent variables in the model together with UR independent variable are significant according to significance levels 1% and 5%. Accordingly, UR, LEXPUV, LIMPUV and BDMG independent variables were all found to be effective on INF variable. It means that the UR variable has a negative effect on the INF variable. The sign of the estimated coefficient of the UR variable is negative.

It is performed by applying Dickey-Fuller GLS (ERS) and Phillips-Perron (PP) Unit Root Test methods unit root analysis of the series used in the study. Accordingly, Dickey-Fuller GLS (ERS) unit root test results are shown in Table 3.

### Table 3. Dickey-Fuller GLS (ERS) Unit Root Test Results

| Variable | Level Intercept | Level Intercept Trend | First Difference Intercept | First Difference Intercept Trend |
|----------|-----------------|-----------------------|----------------------------|----------------------------------|
| UR       | -1.900(0)       | -3.012(2)             | -4.538(0)**                | -4.548(0)**                     |
| INF      | -1.381(4)       | -2.767(4)             | -2.239(2)*                 | -3.762(1)*                      |
| LEXPUV   | -1.328(0)       | -2.067(0)             | -3.312(0)**                | -4.670(0)**                     |
| LIMPUV   | -1.051(0)       | -1.928(0)             | -4.026(0)**                | -4.660(0)**                     |
| BDMG     | -0.866(1)       | -1.806(1)             | 9.949(0)**                 | -10.068(0)**                    |

*(**): It indicates that the null hypothesis (H₀) was rejected according to significance level 5% (1%).

**Note:** Numerical values in parentheses indicate lag values.

According to the results in Table 3, the series are not stationary according to their level values in case of unit root test as both intercept and intercept-trend according to significance level 5% of the series. All series became stationary according to significance level 5% when the first differences of the series are taken, again Dickey-Fuller GLS (ERS) unit root test method is applied as intercept and intercept-trend.

It is used PP Unit Root Test method as a second test method for unit root analysis of series. PP Unit Root Test method results are shown in Table 4.

### Table 4. Phillips-Perron (PP) Unit Root Test Results

| Variable | Level Intercept | Level Intercept Trend | First Difference Intercept | First Difference Intercept Trend |
|----------|-----------------|-----------------------|----------------------------|----------------------------------|
| UR       | -1.768(5)       | -2.330(5)             | -4.567(5)*                 | -4.464(5)*                      |
| INF      | -0.895(3)       | -1.779(3)             | -5.226(3)*                 | -5.130(3)*                      |
| LEXPUV   | -1.488(3)       | -2.606(3)             | -5.861(3)*                 | -5.687(3)*                      |
| LIMPUV   | -1.069(2)       | -2.285(2)             | -5.147(1)*                 | -5.045(1)*                      |
| BDMG     | -1.763(4)       | -3.414(3)             | -9.823(3)*                 | -9.707(3)*                      |

*: It indicates that the null hypothesis was rejected according to significance level 1%.

**Note:** Numerical values in parentheses indicate lag values.
According to the results in Table 4, the series were not found to be stationary as a result of the unit root test performed with intercept and intercept-trend according to the level values. Afterwards, it is seen that the series become stationary as a result of the unit root test, which was performed by taking the first differences.

After unit root tests, Johansen (1988, 1991) cointegration test is applied to determine whether the series are related in long-run. Accordingly, Johansen (1988, 1991) cointegration test results are shown in table 5.

Table 5. Johansen (1988, 1991) Cointegration Test Results

| Hypothesis | Trace Statistic | Critical Value 5% | P-Value |
|------------|----------------|-------------------|---------|
| r≤0        | 76.161**       | 60.061            | 0.001   |
| r>0        |                 |                   |         |
| r≤1        | 43.503*        | 40.175            | 0.022   |
| r>1        |                 |                   |         |
| r≤2        | 15.521         | 24.276            | 0.415   |
| r>2        |                 |                   |         |
| r≤3        | 2.920          | 12.321            | 0.858   |
| r>3        |                 |                   |         |

| Hypothesis | Max. Eigenvalue Statistic | Critical Value 5% | P-Value |
|------------|---------------------------|-------------------|---------|
| r≤0        | 32.658*                   | 30.440            | 0.026   |
| r>0        |                           |                   |         |
| r≤1        | 27.982*                   | 24.159            | 0.015   |
| r>1        |                           |                   |         |
| r≤2        | 12.601                    | 17.797            | 0.255   |
| r>2        |                           |                   |         |
| r≤3        | 2.411                     | 11.225            | 0.873   |
| r>3        |                           |                   |         |

*(**): It indicates that the null hypothesis (H₀) was rejected according to significance level 5% (1%).

According to Johansen (1988, 1991) cointegration test results given in Table 5, trace and maximum eigenvalue statistical values are found to be significant according to significance levels 5%. The alternative hypothesis r > 1 is accepted, that is, test results show that more than one cointegrated vector exists.

When the econometric results are evaluated in a general framework, OLS estimation results show that the unemployment rate variable and the inflation rate variable interact mutually and negatively. Johansen (1988, 1991) cointegration test results indicate that all variables used in econometric practice, especially unemployment rate and inflation rate act together in the long-run. The econometric results offer evidence that Phillips Curve valid in Turkey for the period 1988-2017.

CONCLUSION AND DISCUSSION

Phillips Curve provides important contributions to macroeconomic theory. Keynesians advocates that the central bank should set the unemployment rate as a target in order to realize employment growth and full use of resources on inflation-unemployment relationship and Phillips Curve debate. New Keynesians states that the expected inflation in future has a positive function and output gap is caused by the deviation of the real output from potential level. New Classics argue that Phillips Curve is vertical in both short-run and long-run. In this context, they linked the existence of unemployment-inflation relationship to the fact that the actual inflation was different from the expected inflation. Monetarists express their views on expected inflation within
framework of adaptive expectations hypothesis. Accordingly, people shape their future expectations with their past experiences.

On the other hand, the world economy has entered an important recession in the seventies, simultaneous increases in unemployment and inflation rates caused criticism on the Phillips Curve. In this context, the validity of Phillips curve during the economic crisis is questioned.

In this study, it was examined inflation-unemployment relationship and the validity of Phillips curve in Turkey’s economy for the period 1988-2017. It is used OLS estimation and Johansen (1988, 1991) cointegration test methods as econometric method in the study. The findings provide evidence that Phillips Curve is valid in Turkey’s economy for the period. In this context, it has been determined the presence of a mutually negative interaction between unemployment and inflation. Also, they have been found to be effective on inflation along with the prices of export goods and import goods, the broad definition monetary growth rate besides the unemployment rate.

The findings indicate the existence of a trade-off relationship between inflation and unemployment in Turkey. This means that unemployment will decrease when inflation increases, or unemployment will increase when inflation decreases. Therefore, it must be put forward correctly the relationship between inflation and unemployment in order to achieve targeted success in the implementation of policies aimed at increasing employment and policies aimed at achieving price stability.

In the coming period, it is important that economic policy decision makers carry out the policies considering the existence of the relationship between inflation and unemployment rate in Turkey. In this context, Expectations that unemployment will increase will also increase the Central Bank of the Republic of Turkey (CBRT) in the case of price stability-oriented monetary policy instruments and taking a back seat as the implementation of oriented policies to increase employment.

Obtained the findings for Turkey, supported the Phillips Curve theory, though, different results can be obtained if a different period or a different developing country is examined. In this context, it becomes difficult to generalize.

ETHICAL TEXT

In this article, journal writing rules, publishing principles, research and publishing ethics rules, journal ethics rules are followed. Responsibility belongs to the author(s) for any violations related to the article.
REFERENCES

Atkeson, A. & Ohanian, L. E. (2001). "Are Phillips Curves Useful for Forecasting Inflation?". FRB Minneapolis Quarterly Review, 2-11.

Aurelijus, D. & Kulikov, D. (2007). New Keynesian Phillips curve for Estonia, Latvia and Lithuania. Working Papers of Eesti Pank. No 7/2007.

Bayrak, M & Kanca, O. C. (2013). "Türkiye’de Phillips Eğrisi Üzerine Bir Uygulama". Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 8(3): 97-115.

Céspedes, L. F., Ochoa, M. & Soto, C. (2005). The New Keynesian Phillips Curve in an Emerging Market Economy: The Case of Chile. Working Papers Central Bank of Chile 355, Central Bank of Chile.

Chowdhury, K. B. & Sarkar, N. (2014). Is the Hybrid New Keynesian Phillips Curve Stable? Evidence from Some Emerging Economies. Discussion Paper ERU/2014 – 02

Çevik, F. S. (2005). "Beklentilerin Rolü ve Phillips Eğrisi". Mevzuat Dergisi, 95: 1-11.

Esu, G. & Atan, J. (2017). The Phillip’s Curve in Sub-Saharan Africa: Evidence from Panel Data Analysis, MPRA Paper No. 82112.

Friedman, M. (1968). "The Role of Monetary Policy". American Economic Review, 58: 1-17.

Furuoka, F. (2007). "Does the Phillips Curve Really Exist? New Empirical Evidence from Malaysia". Economics Bulletin, 5: 1-14.

Gagnon, J. E. & Collins, C. G. (2019). Low Inflation Bends the Phillips Curve. Peterson Institute for International Economics Working Paper.

Hall, T. E. & Hart, W. R. (2010). The Samuelson - Solow "Phillips Curve" and the Great Inflation. Miami University, Farmer School of Business Department of Economics Working Paper 2010-08.

Hetzel, R. L. (2013). "The Monetarist-Keynesyen Debate and the Phillips Curve: Lessons from the Great Inflation". Economic Quarterly, 2(99): 83-116.

Humphrey, T. M. (1985). "The Evolution and Policy Implications of Phillips Curve Analysis". Economic Review, March/April, 3-22.

Johansen, S. (1988). "Statistical Analysis of Cointegration Vectors". Journal of Economic Dynamics and Control, 2–3(12): 231–254.

Johansen, S. (1991). "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models". Econometrica, 6(59): 1551–1580.

Karahan, P. & Uslu, N. Ç. (2018). "A Dynamic Analysis on the Validity of the Phillips Curve for Turkey". Finans Politik & Ekonomik Yorumlar, 636(55): 89-99.

Kustepeli, Y. (2005). "A Comprehensive Short-run Analysis of a (Possible) Turkish Phillips Curve". Applied Economics, 37: 581–91.

Lucas, R. E. (1976). "Econometric Policy Evaluation: A Critique". Carnegie-Rochester Series on Public Policy, 1: 19-46.

Machado, V. G. & Portugal, M. S. (2014). Phillips Curve in Brazil: An Unobserved Components Approach. Working Papers 354. Banco De Central Do Brasil, 1-28.
Mankiw, N. G. (2010). *Macroeconomics*. New York: Worth Publishers.

McAdam, P. & Willman, A. (2003). *New Keynesian Phillips Curves: A Reassessment Using EURO Area Data*. European Central Bank Working Paper No. 265, 1-64.

Mihailov, A., Rumler, F. & Scharler, J. (2011). "The Small Open-Economy New Keynesian Phillips Curve: Empirical Evidence and Implied Inflation Dynamics". *Open Economies Review, Springer*, 22(2): 317-337.

Motyovszki, G. (2013). *The Evolution of Phillips Curve Concepts and Their Implications for Economic Policy*. Central European University, Budapest: 1-13.

Niskanen, W.A. (2002). "On the Death of Phillips Curve". *Cato Journal*, 22: 193-98.

Okun, A. M. (1975). "Inflation: Its Mechanics and Welfare Costs". *Brookings papers on Economic Activity*, 2: 351-390.

Onder, A. O. (2004). "Forecasting Inflation in Emerging Markets by Using the Phillips Curve and Alternative Time Series Models". *Emerging Markets Finance and Trade*, 40: 71–82.

Phelps, E. (1967). "Phillips Curve, Expectation of Inflation, and Optimal Inflation over Time". *Economica*, 34: 254-281.

Phillips, A. W. (1958). "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom 1861-1957". *Economics*, 100(25): 283-299.

Plessis, S. & Burger, R. (2006). "A New Keynesian Phillips Curve for South Africa", SARB Conference 2006, 61-78.

Puzon, K. A. M. (2009). "The Inflation Dynamics of the ASEAN-4: A Case Study of the Phillips Curve Relationship". *Journal of American Science*, 5(1): 55-57.

Reichel, R. (2004). "On the Death of the Phillips Curve: Further Evidence". *Cato Journal*, 24: 341-348.

Rosa, A. S. (2014). "The Phillips Curve in Italy". *Econ. e Desenv., Santa Maria*, 2(26): 74-84.

Saman, C. & Pauna, B. (2013). "New Keynesian Phillips Curve for Romania". *Romanian Journal of Economic Forecasting*, 2/2013: 159-171.

Samuelson, P. A. & Solow, R. M. (1960). "Analytical Aspects of Anti-Inflation Policy". *American Economic Review Papers and Proceedings*, 50(2): 177-194.

Sanchez, D. A. (2006). "A New Keynesian Phillips Curve for Japan, A New Keynesian Phillips Curve for Japan". *Federal Deposit Insurance Corporation*, 06: 1-21.

Schreiber. S & Wolters, J. (2007). "The Long-Run Phillips Curve Revisited: Is the NAIRU Framework Data-consistent". *Journal of Macroeconomics*, 29: 355–367.

Shahbaz, M., Islam, F. & Shabbir, M. S. (2012). "Phillips Curve in a Small Open Economy: A Time Series Exploration of North Cyprus". *Bangladesh Development Studies*, 4(35): 113-130.

Tang, C. F. & H. H. Lean. (2007). *The Stability of Phillips Curve in Malaysia*. Discussion Paper 39, Monash University.

The World Bank (WB) (2019). World Development Indicators Database, World Bank Group. https://datacatalog.worldbank.org/dataset/world-development-indicators, (Accessed: 04.07.2019)

Tunay, K. B. (2010). *50.Yılınca Phillips Eğrisi: Makro Ekonomik İstikrar ve Maliyetleri*. İstanbul: Marmara Üniversitesi Yayınları.
Turner, P. (1997). "The Phillips Curve, Parameter Instability and the Lucas Critique". *Applied Economics*, 29(1): 7-10.

Turner, D. & E. Seghezza (1999). *Testing for a Common OECD Phillips Curve*. OECD Economics Department Working Papers No. 219.

Zayed, N. M., Islam, R. & Hasan, R. (2018). "Testing Phillips Curve to Examine the Inflation Rate Regarding Unemployment Rate, Annual Wage Rate and GDP of Philippines: 1950-2017". *Academy of Accounting and Financial Studies Journal*, 5(22): 1-9.
TÜRKİYE’DE ENFLASYON VE İŞSİZLIK İLİŞKİSİ: PHILLIPS EĞRİSİNİN GEÇERLİLİĞİ ÜZERİNE BİR İNCELEME (1988-2017)

ÖZ

Parasal ücretlerdeki değişim oranı ile, işsizlik oranı arasındaki etkileşimi ilk kez 1958 yılında ortaya çıkan Phillips Eğrisi iktisat literatürüne önemli katkılar sağlamıştır. 1960 ve sonrasında farklı bir biçimde incelenen Phillips Eğrisi, enflasyon oranı ile işsizlik oranı arasındaki ilişkiiyi açıklamaktadır. Bu çalışma, enflasyon- işsizlik iliskisini ve Phillips Eğrisinin Türkiye’de geçerliliğini incelemeyi amaçlamaktadır. Bu kapsamda, ekonometrik uygulama için kullanılan veri seti yıllık olup 1988-2017 dönemini kapsamaktır. Çalışmada ekonomerik yöntemi olarak, sıradan en küçük kareler tahmin ve Johansen eşbütünleşme testi yöntemleri kullanılmıştır. Sıradan en küçük kareler tahmin yöntemi ve Johansen eşbütünleşme testi sonuçları, Türkiye’de 1988-2017 dönemi için enflasyon ile işsizlik arasında bir ilişki olduğunu ve belirtilen dönem için Türkiye’de Phillips Eğrisinin geçeri olduğunu göstermektedir. Johansen (1988, 1991) eşbütünleşme testi sonuçları, işsizlik oranı, enflasyon oranı, ihraç edilen malların birim değer endeksi, ithal edilen malların birim değer endeksi ve geniş tanımlı parasal büyüme değişkenleri arasında uzun dönemli bir ilişki olduğunu göstermektedir. Dolayısıyla, gelecek süreçte fiyat istikrarının sağlanması ve sürdürülmeye bağlamda Türkiye Cumhuriyet Merkez Bankasının enflasyon ve işsizlik arasındaki bu ilişkinin varlığını göz önünde bulundurarak politikaları yürütmesinin yararlı olacağını düşünlüktedir.

Keywords: Enflasyon, işsizlik, Türkiye, Phillips Eğrisi.
GİRİŞ

Enflasyon ve işsizlik, başta gelişmekte olan ülkelerde olmak üzere tüm dünyada temel makroekonomik sorunlar arasında yer almaktadır. Ekonomik ve finansal krizler sonrasında enflasyon ve işsizlik oranı olumsuz etkilenmekte ve bu iki göstergede önemli dalgalanmalar meydana gelmektedir. Bu iki gösterge arasında bir değiş tokuş ilişkisinin var olduğu ve değişkenlerden biri artarken diğerinin azaldığı belirtilmektedir. Bu olgu 1958’de makroekonomik literatüre Phillips Eğrisi olarak girmiş ve daha sonra Keynesyen, Yeni Keynesyen, Parasalci ve Yeni Klasik iktisatçılar tarafından farklılaştırarak yeniden ele alınmıştır. Phillips Eğrisi, başlangıçta parasal ücretler ile işsizlik oranı arasındaki değişim ağırlığına yapılarak, 1960 yılı ve sonrasında enflasyon ile işsizlik arasındaki değişimi ifade etmeye başlamıştır.

İşsizlik ve enflasyon, Türkiye’de en önemli iki makroekonomik sorun olmaya devam etmektedir. Türkiye’de enflasyon oranı, seksonlu ve doksanlı yıllarda hızla arımış ve iki basamaklı sayısal değerlerde seyretmiştir ve zaman zaman üç basamaklı sayısal değerlerde de ulaşmıştır. Bu bağlamda, para ve istikrar programlarında enflasyonun makul seviyelerle düsörülemesi ve uzun vadede sürdürülebilirliğinin sağlanması hedeflenmektede, bu doğrultuda politika araçları kullanılmaktadır. Bu süreçte Türkiye’de, 1994 yılında kamu dengelerinde olumsuz sonuçların yol açtığı bir ekonomik kriz ve 2000 yılında finansal sektörden kaynaklanan önemli bir finansal kriz yaşanmıştır. Doksanlı yıllarda ve ikibinli yıllarda uygulanan, istikrar programı uygulamalarının bir sonucu olarak enflasyonla mücadelede kısa vadede başarı sağlanmakta fakat, uzun vadede kalkıcı bir fiyat istikrari sağlanamamaktadır.

Öte yandan, Türkiye’de bölgelerarası gelişmişlik farklarının en düşük düzeyeye düşürülebilmesi ve işsizliğin azaltılması için önemli bölgesel yatırım teşvikleri sağlanmaktadır. İstihdamı artırmaya yönelik bu politikalar kısa vadede başarılı olmasına rağmen, uygulanan ekonomi politikalarının ve hızlı nüfus artışının da etkisiyle uzun vadede başarısında ulaşamamaktadır.

Türkiye’de 1988-2017 dönemi için, tüketici fiyat endeksi (TÜFE) enflasyon oranı ve işsizlik oran serisi Şekil 1‘de gösterilmektedir. Şekil 1‘e göre, enflasyon oranı 1988-2004 döneminde dalgalı bir eğilim gösterirken, 2005-2017 döneminde yatay bir eğilim göstermektedir. 1994 yılında yüzde 89,11 olan enflasyon oranında önemli bir kırılma yaşanmıştır. 1994 yılında Türkiye’de enflasyon oranındaki bu kırmanın sebebi olarak büyük bir ekonomik kriz meydana gelmiştir. Bu ekonomik krizden sonra, Türkiye’de enflasyon ve diğer makroekonomik göstergelerde önemli dalgalanmalar meydana gelmiştir.
Şekil 1'e göre, işsizlik oranı 1988-2017 döneminde yatay bir eğilim göstermektedir. Ancak, 2005 yılından itibaren enflasyon oranı ile birlikte hareket etmektedir.

Bu çalışmada, enflasyon-işsizlik ilişkisinin varlığını ve Phillips Eğrisinin Türkiye'de geçerliliğinin tespit edilmesi açısından literatürde katkı sağlanmaya çalışılmaktadır. Bu çalışmada, enflasyon-işsizlik ilişkisinin varlığı ve Türkiye'de Phillips Eğrisinin geçerliliği temel hipotezleri çerçevesinde hareket edilmektedir. Bu bağlamda, enflasyon ve işsizlik arasındaki ilişkinin teorik boyutları nelerdir? Farklı iktisadi akımların bu ilişki üzerine yaklaşımları nelerdir? Bu bağlamda, Türkiye'de enflasyon ve işsizlik arasında bir ilişki var mı? Boyle bir ilişki varsa, bu ilişkinin boyutu ve yönü nedir? Soruların yanıtlar aranmaktadır.

Çalışmanın ilk kısmında, enflasyon-işsizlik ilişkisi ile Phillips Eğrisinin teorik boyutları tartışılacak ve farklı makroekonomik akımların teorik yaklaşımları incelenektr. İkinci kısmında, enflasyon-işsizlik ilişkisi ve Phillips Eğrisinin geçerliliği üzerine yapılan olan çalışmalar ele alınacaktır. Üçüncü kısmında, Türkiye'de 1988-2017 dönemi için yıllık veriler kullanılarak enflasyon-işsizlik ilişkisi ve Phillips Eğrisinin geçerliliği üzerine ekonometrik uygulama yapılacaktır. Son olarak, çalışma boyunca elde edilen bulgular tartışılacaktır.

TEORİK ARKAPLAN

Phillips Eğrisinin ilk olarak ortaya çıkışı, 1958 yılında A. W. Phillips tarafından Birleşik Krallık'a ait veriler kullanılarak işsizlik oranı ile ücret enflasyonu arasında karşılıklı negatif ilişkisinin varlığını tespit edilmesi ile başlamaktadır. Daha sonrasında, Phillips Eğrisinin teorik boyutları üzerinde değişiklikler yapılarak günümüzde modern anlamda ifade edilen Phillips Eğrisi ortaya çıkmaktadır. Modern anlamda Phillips Eğrisi, orijinal Phillips Eğrisinden üç açıdan farklılıklar göstermektedir. Birinci farklılık, modern Phillips Eğrisi ücret enflasyonu yerine fiyat enflasyonunu esas almaktadır. Bunun nedeni, ücretlerin arttığı dönemde fiyatlar da hızla arttığı için fiyat enflasyonu ile ücret enflasyonu birbirine ilişkin bulunmaktadır. İkinci farklılık, Friedman (1968) ve Phelps (1967) tarafından ileri sürülen beklenen enflasyonu içeren Phillips Eğrisi yaklaşımıdır. Üçüncü farklılık ise, modern
Phillips Eğrisinin temelleri, Phillips (1958)'ın Birleşik Krallık için yaptığı çalışmaya dayanmaktadır. Phillips (1958), Birleşik Krallık'ta 1861-1957 döneminde, işsizlik oranı ile parasal ücretlerdeki değişim oranı arasındaki ilişkiyi incelemiştir. Phillips (1958), bu çalışmada işsizlik oranı ile parasal ücretlerin değişim oranı arasında negatif yönlü bir ilişkinin varlığını tespit etmektedir.

Phillips (1958)'ten sonra Samuelson ve Solow (1960), Phillips Eğrisini farklılaştırarak ABD için yaptıkları analizde, işsizlik oran ile enflasyon oran arasında 1935-1959 dönemi için negatif yönlü bir ilgiğinin varlığını tespit etmektedir.

Samuelson ve Solow (1960)'a göre Phillips Eğrisi, politika yapıcılarda enflasyonu artırarak, ancak yüksek seviyelerde de çıkmayan genişleyici para ve maliye politikalarını takip edebilenin çekicisi bir seçeneğini sunmaktadır. Samuelson ve Solow (1960), Phillips Eğrisinin aynı zamanda bir politika aracı olduğu fikrini savunmaktadır. Phillips (1958)'ın yaptığı gibi, nominal ücretlerdeki değişim oranı ile işsizlik oranı arasındaki ilişkiyi odaklamak yerine ABD ekonomisinin 1934-1958 dönemi için enflasyon ile işsizlik arasındaki ilişkiyi tahmin etmiştirlerdir (Hall ve Hart, 2010: 2-3). Orijinal Phillips Eğrisi şekil 2'de gösterilmiştir. Şekil 2'ye göre, İşsizlik oranı düşlüğü piyasası dengede olup, ücretler istikrarsız durumdur.
olsması, işgücüne olan talebin artması ile birlikte, işsizliği azaltmada emeğin de marjinal verimliliğini azalttığını göstermektedir. Şekil 1'de eğri üzerinde, yukarıya doğru çıkıldıkça ücret enflasyon oranı artmakta, aşağıya doğru inildiğçe ücret enflasyon oranı düşmektedir.

Phillips Eğrisi, doğrusal olmayan bir ilişki yansıtmaktadır ve eğimi farklılıklar göstermektedir. Buna göre, işsizliğin düşük olduğu durumda, dikey hale gelmekte, işsizliğin yüksek olduğu durumda ise giderek yatay hale gelmektedir (Gagnon ve Collins, 2019).

Öte yandan Humphrey (1985), Phillips Eğrisinin iktisat teorisinde hızlı bir şekilde kabul görmesini üç nedende bağlamaktadır. Birinci neden, Phillips Eğrisinin iki değişkenli bir ilişki için istikrarlı bir durumu yansıtırmasıdır. Buna göre, incelenen 1861-1913 ile 1948-1957 dönemlerine ait sonuçlar birbirileyle tutarlılık arzetmektedir. İkinci neden, Phillips Eğrisi çok farklı enflasyon teorilerini bünyesinde barındırmaktadır. Buna göre, enflasyon, ücret ve fiyatlar, artış talebin birer sonucu olarak açıklanmıştır. Talep fazlası, talepteki değişimlerden veya bu değişimlerin nedenleri arzındaki değişimlerden kaynaklanabilmektedir. Üçüncü neden, Phillips Eğrisi politika yapıcılara hitap etmekte olup, önceden karşılık olarak uyumlu olduğu ifade edilen fiyat istikrarı hedefleriyle tam istihdam sağlanamayacağı bağlamında ikna edici bir gerekçe ortaya koymaktadır. Phillips Eğrisi, orijinal Phillips Eğrisi denklem (1)'deki biçimde ifade edilmektedir.

\[
\pi_t = \sum_{i=1}^{\eta} \alpha_i \pi_{t-i} + \eta \bar{y}_t
\]  

(1)

Denklem (1)'de \(\sum_{i=1}^{\eta} \alpha_i = 1\) ve \(\eta > 0\) 'dır. \(\pi_t\) enflasyon oranı ve \(\bar{y}_t\) ise, tipik bir çıktı açığıdır. Phillips Eğrisi üzerine diğer bir teorik yaklaşım, Yeni Keynesyen Phillips Eğrisidir. Yeni Keynesyen Phillips Eğrisi, gelecekte beklenen enflasyonun olumlu bir işlevi olduğunu ve sözkonusu çıktı açığının, gerçekleşen reel çıktının potansiyel seviyesinden sapması olduğunu belirtmektedir. Yeni Keynesyen teorinin politika çıkarmı, kural dayalı politikalar takip etmek ve Yeni Klasik teoride olduğu gibi potansiyel arzın üzerine çıkılması engellenmesidir (Motyovszki, 2013: 9). Dolayısıyla, nominal ücretlerin işgücü piyasası dengesi açısından
belirleyici olması yanılıştır. Bu bakımdan, enflasyondan arındırılmış ücretler işgücü piyasasını anlamada daha sağlıklı bir durumu ortaya koymaktadır.

Öte yandan Monetaristler, Phillips Eğrisi analizine üç farklı yenilik getirmiştir. Birincisi, talep fazlalığı değişkeni yeniden tanımlanmaktadır. Orijinal Phillips Eğrisi analizinde, reel üretimin cari ve normal kapasitesi arasındaki farklılık veya buna eşit olan cari ve doğal işsizlik oranları arasındaki açık Monetaristler tarafından ifade edilmiştir. İkinci olarak, Phillips Eğrisi analizine fiyat beklentilerini dâhil edilmiştir. Buna göre Monetaristler, Phillips Eğrisinin kayması nedeni olarak beklenen enflasyon oranını görmekteydiler. Üçüncü olarak Monetaristler, ekonomik birimlerin fiyat beklentilerinin nasıl oluştuğunu anlayabilmek için, uyumlu beklentiler hipotezi olarak ifade edilmişdir. Phillips Eğrisi analizine üç farklı açıdan katkı sağlamışlardır. Uyumlu beklentiler hipotezine göre, ekonomik birimler geçmişte yaşadıkları tecrübelerinde önceden gelecekteki beklentilerini nasıl üretim yapacağını belirtmişlerdir (Tunay, 2010: 9-13). Bu bakımdan Monetaristler, Phillips Eğrisi analizine üç farklı açıdan çok katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışlardır. Phillips Eğrisi analizine üç farklı açıdan katki sağlamışistros.
LITERATÜR İNCELEMESİ

Bu kısımda, gelişmiş ve gelişmekte olan ülkelerde enflasyon-işsizlik ilişkisi ve Phillips Eğrisinin geçerliliği üzerine yapılan çalışmalar incelenmiştir. Enflasyon-işsizlik ilişkisi ve Phillips Eğrisi yazısına genel bir çerçevede bakıldığında, gelişmiş ve gelişmekte olan ülkeler üzerinde elde edilen sonuçların Phillips Eğrisinin teorik arkaplanını desteklemeye fakirliklilik gösterdiği belirtilmektedir. Bu çalışmaların, Onder (2004), Kustepeli (2005), Furuoka (2007), Tang ve Lean (2007), Schreiber ve Wolters (2007) işsizlik ve enflasyon arasındaki ilişkisi ve doğrusal olmayan bir ilişkinin varlığını tespit etmişlerdir. Bunun yanı sıra, Okun (1975), Lucas (1976), Turner (1997), Atkeson ve Ohanian (2001), Niskanen (2002), Reichel (2004), işsizlik ve enflasyon arasındaki etkileşimin yönünü ve yönü ekonomik koşullara göre değişiklik gösterebilirken, Turner ve Seghezza (1999), Ekonomik İşbirliği ve Kalkınma Örgütü (OECD) ülkelerinde Phillips Eğrisinin geçerliliğini sıradan en küçük kareler (OLS) yöntemi ile incelemişlerdir. Çalışmanın ekonometrik modellemesi için enflasyon oranı, çıktısı, ithalat/gayri safi yurtiçi hasıla (GSYİH), ithal malların enflasyon oranını dahil etmişlerdir. Elde edilen bulgulara göre, OECD ülkelerinin çoğununda Phillips Eğrisinin geçeri olduğu tespit edilmişdir.

Céspedes vd. (2005), Şili ekonomisinde 1990-2004 dönemi için, Yeni Keynesyen Phillips Eğrisinin geçerliliğini genelleştirilmiş momentler (GMM) yöntemi ile incelemişlerdir. Ekonometrik modelin belirlenmesinde, Tüketici fiyat endeksi (TÜFE) enflasyon oranı, çıktısı, enflasyon hedefi, iş gücü orani, çıktısı-sermaye oranı ve ithalat fiyatları değişkenleri kullanılmıştır. Bulgular, 1990-2004 dönemi için Şili'de, Yeni Keynesyen Phillips Eğrisinin geçeri olduğu gösterilmiştir.

Sanchez (2006), Japonya ekonomisinde 1973-2005 dönemi için, Yeni Keynesyen Phillips Eğrisinin geçerliliğini GMM yöntemi ile incelemıştır. Ekonometrik model için; ücretler, saatlik ücretler, reel çıktısı, reel çıklaşi, gayri safi yurtiçi hasıla (GSYİH) deflatörü ve Tüketici fiyat endeksi (TÜFE) değişkenlerinin belirlendiği çalışmanın sonuçları, Yeni Keynesyen Phillips Eğrisinin geçerli olduğunu göstermiştir.

Plessis ve Burger (2006), Güney Afrika ekonomisinde, 1975-2003 dönemi için, Yeni Keynesyen Phillips Eğrisinin geçerliliğini incelemişlerdir. Çalışmada ekonometrik yöntem olarak GMM yöntemi uygulanmış olup ekonometrik model için; TÜFE enflasyon oranı, çıktısı, ithalat fiyatları, çalışan başına günlük ücret, reel marjinal maliyet, reel çıklaşi-Hodrick-Prescot trendi, vadesi on yıldan daha uzun süreli tahvillerin getirisi değişkenleri belirlenmiştir. Sonuçlar, Güney Afrika ekonomisinde söz konusu dönem için Yeni Keynesyen Phillips Eğrisinin geçeri olduğunu göstermiştir.

Aurelijus ve Kulikov (2007), Estonya da, Letonya da ve Litvanya da, Yeni Keynesyen Phillips Eğrisi modelinin altında yatan yapısal parametreleri 1995-2005 dönemi için tanımlamışlar ve karşılaştırmışlardır. Bulgular, Yeni Keynesyen Phillips Eğrisinin açık ekonomi modeli için anlamlı ve geçeri olduğu göstermektedir.
Puzon (2009), 1980-2005 döneminde Filipinler, Tayland, Endonezya ve Malezya olmak üzere Güneydoğu Asya Birliği (ASEAN) ülkelerinde geleneksel Phillips Eğrisinin geçerliliğini incelemiştir. OLS tahmin yönteminin kullanıldığı çalışmanın ekonometrik modeli için; enflasyon oranı, işsizlik oranı, faiz oranı, döviz kuru, petrol ve 1997 Asya Krizi kukla değişkenleri belirlenmiştir. Elde edilen bulgular, inceленen Güneydoğu Asya Birliği (ASEAN) ülkelerinde söz konusu dönemde geleneksel Phillips Eğrisinin geçerli olduğunu göstermektedir.

Mihailov vd. (2011), Avusturya, Kanada, Fransa, Almanya, İtalya, Hollanda, İspanya, İsveç, İsviçre ve Birleşik Krallık olmak üzere on OECD ülkelерinde 1970-2007 dönemi için Yeni Keynesyen Phillips Eğrisinin geçerliliğini incelemişlerdir. Çalışmadaki bulgular, sözkonusu OECD ülkelerinde Yeni Keynesyen Phillips Eğrisinin kısmen geçerli olduğunu göstermektedir.

Shahbaz vd. (2012), Kuzey Kıbrıs Türk Cumhuriyeti (KKTC)'nde, Phillips Eğrisinin kısa ve uzun dönemde olmak üzere 1978-2007 dönemi için geçerliliğini incelemişlerdir. Ekonometrik modelleme için; enflasyon oranı ve işsizlik oranı değişkenleri belirlenmiş olup, ARDL eşbütünleşme testi ve dinamik en küçük kareler (DOLS) tahmin yöntemleri kullanılmıştır. ARDL eşbütünleşme testi ve dinamik en küçük kareler (DOLS) tahmin sonuçları, Kuzey Kıbrıs Türk Cumhuriyeti (KKTC)'nde hem kısa vadede hem uzun vadede Phillips Eğrisinin geçerli olduğunu işaret etmektedir.

Bayrak ve Kanca (2013), Türkiye ekonomisinde Phillips Eğrisinin geçerliliğini incelemiştir. Çalışmanın ekonometrik modeli için; enflasyon oranı bağımlı değişken olarak ve işsizlik oranı bağımsız değişken olarak belirlenmiştir. OLS tahmin sonuçları, Türkiye ekonomisinde uzun dönemde Phillips Eğrisinin geçerli olmadığını ortaya koymaktadır.

Saman ve Pauna (2013), Romanya ekonomisinde 2000-2011 dönemi için, Yeni Keynesyen Phillips Eğrisini tahmin etmişlerdir. Tahmin sonuçları, Romanya için tahmin edilen Yeni Keynesyen Phillips Eğrisinin teorik çerçeveden farklı olmadığını göstermektedir.

Chowdhury ve Sarkar (2014), Brezilya, Rusya, Hindistan ve Güney Afrika olmak üzere dört ülkede, Yeni Keynesyen Phillips Eğrisinin geçerliliğini mayıs 1994 ve mayıs 2011 dönemi için incelemişlerdir. Modifiye edilmiş Markov Switching modeli yönteminin kullanıldığı çalışmada ekonometrik model için; TÜFE enflasyon oranı, çıktı açığı, parasal büyüme ve reel efektif döviz kuru değişkenleri belirlenmiştir. Çalışma sonuçları, Brezilya ve Güney Afrika ekonomilerinde belirtilen dönem için Yeni Keynesyen Phillips Eğrisinin geçerli olduğunu göstermektedir.

Machado ve Portugal (2014), Brezilya ekonomisinde, Phillips Eğrisinin biçimsel yönünü nisan 2000 ve mayıs 2011 dönemi için incelemiştir. Çalışmada Ljung-Box Q istatistik yöntemi kullanılmış olup, ekonometrik model, enflasyon oranı, çıktı, enflasyon beklenisi ve marjinal maliyet değişkenleri tarafından belirlenmiştir. Elde edilen bulgular, Brezilya ekonomisinde söz konusu dönem için, Phillips Eğrisinin düzelştiği ortaya koymaktadır.
Rosa (2014), İtalya’da 1961-2012 döneminde, enflasyon ve işsizlik arasındaki ilişkiyi yıllık veriler kullanarak Johansen eşbütünleşme test yöntemi ile incelemiştir. Çalışmanın bulguları, İtalya ekonomisinde söz konusu dönemde enflasyon ve işsizlik arasında ilişkinin var olduğunu ortaya koymaktadır.

Esu ve Atan (2017), sahranın altında yirmi dokuz Afrika ülkesinde 1991-2015 döneminde, Phillips Eğrisinin geçerliliğini incelediler. Çalışmanın ekonometrik modeli için TÜFE enflasyon oranı ve işsizlik oranı değişkenleri tercih edilmiştir. Panel veri analiz yönteminin uygulandığı çalışmada, 1991-2015 döneminde sahranın altında yirmi dokuz Afrika ülkelerinde enflasyon oranı ile işsizlik oranı arasında anlamlı bir ilişki bulunamamıştır. Buna göre, Phillips Eğrisinin sahranın altında yirmi dokuz ülkede geçersiz olduğu tespit edilmektedir.

Karahan ve Uslu (2018), Türkiye’de işsizlik oranı ile enflasyon oranı arasındaki ilişkiyi incelediler. ARDL Sınırlı Testinin uygulandığı çalışmanın ekonometrik modeli için, enflasyon oranı ve işsizlik oranı değişkenleri belirlenmiştir. ARDL Sınırlı Testi sonuçları, Türkiye’de işsizlik oranının enflasyon oranı üzerinde etkili olduğunu göstermektedir.

Zayed vd. (2018), Filipinler ekonomisinde, 1950-2017 dönemi için işsizlik ve enflasyon ilişkisini incelediler. OLS tahmin, hata düzeltme modeli (ECM) ve CUSUM test yöntemlerinin kullanıldığını çalışmanın ekonometrik modellemesini için; enflasyon oranı, hedef enflasyon, işsizlik oranı, yıllık ücret oranı ve GSYİH değişkenleri belirlenmiştir. Çalışmada elde edilen sonuçlara göre, değişkenler arasında uzun dönemli bir ilişki tespit edilmiştir. Buna göre Filipinler Hükümetinin, politika araçlarını, işsizlik oranını ve enflasyon oranını olumlu yönde etkileyecek biçimde uygulamasına ihtiyaç bulunmaktadır.

VERİ SETİ VE EKONOMETRİK YÖNTEM

Çalışmanın ekonometrik uygulamasında kullanılan veri seti yıllık frekansta olup, 1988-2017 dönemini kapsamaktadır. Bu veri seti, Dünya Bankası (WB) internet sitesi üzerinde bulunan veri tabanından alınmıştır.

Çalışmada, ekonometrik uygulama için denklem (2) ve denklem (3)’de belirtilen regresyon modelleri esas alınmıştır. Denklem (2) ve denklem (3)’te belirtilen çalışmanın regresyon modelleri Bayrak ve Kanca (2013)’nin, Karahan ve Uslu (2018)’ın Türkiye’de Phillips Eğrisinin geçerliliğini inceledikleri çalışmadaki modelleneden farklılık arzetmiştir. Buna göre, bu çalışmada Bayrak ve Kanca (2013)’dan, Karahan ve Uslu (2018)’dan farklı olarak işsizlik ve enflasyon değişkenlerinin yanı sıra ihracat birim değer endeksi, ithalat birim değer endeksi ve geniş tanımlı parasal büyüme değişkenleri regresyon modellerine ilave edilmiştir. Söz konusu regresyon modelleri denklem (2) ve denklem (3)’te gösterilmektedir.

\[ I_0 = \alpha_0 + \alpha_1 ENF + \alpha_2 LHRBD + \alpha_3 LTHBD + \alpha_4 GTPB \]  
\[ \text{ENF} = \beta_0 + \beta_1 I_0 + \alpha \beta_2 LHRBD + \beta_3 LTHBD + \beta_4 GTPB \]
Denklem (2) ve denklem (3) belirtilen değişken ve katsayılar şunlardır; İO, işsizlik oranını, ENF; TÜFE enflasyon oranını, LİHRBD; logaritmik dönüşüm yapılmış ihracat birim değer endeksinin, GTPB; geniş tanımlı parasal büyümenin, işsizlik oranı değişkeni bağımlı değişken olarak kabul edilmiştir. α₀ ve β₀, regresyon modellerinin sabit katsayılarıdır. α₁, α₂, α₃, β₁, β₂, β₃ katsayıları regresyon modellerinin eğim katsayılarını göstermektedir.

Çalışmada öncelikle, denklem (2) ve denklem (3)'te belirtilen iki regresyon modeli esas alınarak modellerin katsayıları OLS tahmin yöntemi uygulanarak tahmin edilmiştir. OLS tahmin yöntemi, özellikleri itibariyle güvenilir bir yöntem olup, iktisadi ilişkilerin katsayılarını gerçekle en yakın bir biçimde tahmin etmeye yarayan ve yaygın olarak kullanılan bir yöntemdir. OLS yöntemi, doğrusal, sapmasızlık, düşük varyansa sahip olma gibi özelliklere sahip bir katsayı tahmin yöntemidir. Bu tahmin yönteminde, bağımsız değişkenlerin tahmin edilen katsayılarına ait test istatistik değerlerinin anlamlı olma sırası durumunda null hipotezi reddedilmektedir. Öte yandan çalışmada, OLS tahmin yöntemi tahmini sonrasında serilerin birim kök analizi yapılmaktadır. Serilerin birim kök analizi için, zaman serileri analizlerinde yaygın olarak kullanılan birim kök test yöntemlerinden, Dickey-Fuller GLS (ERS) ve Phillips-Perron (PP) Birim Kök Test yöntemleri kullanılmıştır. Birim kök testleri, serilerin kendi ortalamaları etrafındaki dağılımlarını göstermektedir. Seriler, düzüy değerleri ile yapılan birim kök testleri sonucunda durağan sonuçlanmayıp birim kök içermektedir. Bu durumda birinci farklı alınarak uygun gecekmeye uygunluğunu değerlendirir. Daha sonra birinci farklı sonucunda durağan sonuçlanmayıp birim kök içermektedir. Bu durumda birinci farklı sonucunda durağan sonuçlanmayıp birim kök içermektedir. Bu durumda birinci farklı sonucunda durağan sonuçlanmayıp birim kök içermektedir. Bu durumda birinci farklı sonucunda durağan sonuçlanmayıp birim kök içermektedir.
regresyon modelinde ise, enflasyon oranı bağımlı değişken olarak kabul edilmekte ve yeniden tahmin edilmektedir. OLS tahmin sonuçları Tablo 1 ve Tablo 2'de verilmektedir.

| Tablo 1. Sıradan En Küçük Kareler (OLS) Yöntemi Tahmin Sonuçları |
| Bağımlı Değişken: IO |
| Yöntem: Sıradan En Küçük Kareler (OLS) |
| Değişken | Katsayı | Standart Hata | t-İstatistik | Olasılık |
|-----------|---------|---------------|-------------|----------|
| C         | 2.580   | 15.744        | 0.164       | 0.871    |
| ENF       | -0.061  | 0.021         | -2.974*     | 0.006    |
| LİHRBD    | 27.717  | 20.260        | 1.368       | 0.184    |
| LİTHBD    | -7.283  | 3.857         | -1.889      | 0.071    |
| GTPB      | 0.007   | 0.014         | 0.528       | 0.603    |
| R-kare    | 0.583   | Düzeltilmiş R-kare | 0.5163 |
| Regresyonun Standart Hatasi | 1.038 | Akaike Bilgi Kriteri | 3.063 |
| Kalıntı Kareler | 26.930 | Schwarz Bilgi Kriteri | 3.297 |
| Log Likelihood | -40.949 | Hannan-Quinn Kriteri | 3.138 |
| F-İstatistik | 8.724 | Durbin-Watson İstatistik | 1.194 |
| Olasılık (F-İstatistik) | 0.000 |

*: %1 Anlamlılık düzeyine göre yokluk hipotezinin reddedildiğini gösterir.

Tablo 1'de verilen tahmin sonuçlarına göre, bağımsız değişken olan ENF değişkeninin tahmin edilen katsayısına ait test istatistik değerinin yüzde bir anlamlılık düzeyine göre anlamlı olduğu tespit edilmektedir. Bunun yanında LİHRBD, LİTHBD ve GTPB değişkenlerinin katsayısına ait test istatistik değerleri ise anlamsız olarak tahmin edilmektedir. Anlamlı olarak tahmin edilen ENF bağımsız değişkenine ait katsayının işaretinin negatif olması, ENF bağımsız değişkeninin bağımlı değişken IO üzerindeki etkinin negatif yönde olduğu anlamına gelmektedir. İkinci model için yapılan OLS tahmin yöntemi sonuçları Tablo 2'de verilmektedir.

| Tablo 2. Sıradan En Küçük Kareler (OLS) Yöntemi Tahmin Sonuçları |
| Bağımlı Değişken: ENF |
| Yöntem: Sıradan En Küçük Kareler (OLS) |
| Değişken | Katsayı | Standart Hata | t-İstatistik | Olasılık |
|-----------|---------|---------------|-------------|----------|
| C         | -36.974 | 131.255       | -0.282      | 0.781    |
| IO        | -4.266  | 1.434         | -2.974**    | 0.006    |
| LİHRBD    | 363.408 | 159.512       | 2.278**     | 0.032    |
| LİTHBD    | -99.391 | 28.083        | -3.539**    | 0.002    |
| GTPB      | 0.462   | 0.075         | 6.156**     | 0.000    |
| R-kare    | 0.941   | Düzeltilmiş R-kare | 0.932 |
| Regresyonun Standart Hatasi | 8.661 | Akaike Bilgi Kriteri | 7.307 |
| Kalıntı Kareler | 1875.535 | Schwarz Bilgi Kriteri | 7.540 |
| Log Likelihood | -104.600 | Hannan-Quinn Kriteri | 7.381 |
| F-İstatistik | 99.610 | Durbin-Watson İstatistik | 1.927 |
| Olasılık (F-İstatistik) | 0.000 |

*(**) : %5(%1) Anlamlılık düzeyine göre yokluk hipotezinin reddedildiğini gösterir.
Tablo 2'de verilen tahmin sonuçlarına göre, IO bağımsız değişkeni ile birlikte modeldeki tüm bağımsız değişkenlerin tahmin edilen katsayılara ait test istatistik değerlerinin, yüzde bir ve yüzde beş anlamlılık düzeylerine göre anlamlı olduğu tespit edilmiştir. Buna göre, IO, LİHRBD, LİTHBD ve GTPB bağımsız değişkenlerinin tümü ENF bağımsız değişken üzerinde etkili olduğu tespit edilmiştir. IO bağımsız değişkenin tahmin edilen katsayısının işaretinin negatif olması, IO bağımsız değişkenin ENF bağımsız değişken üzerinde negatif yönde bir etkiye sahip olduğunu anlamaktadır.

Çalışmada kullanılan serilerin birim kök analizi, Dickey-Fuller GLS (ERS) ve Phillips-Perron (PP) Birim Kök Test yöntemleri uygulanarak yapılmaktadır. Buna göre, Dickey-Fuller GLS (ERS) birim kök test sonuçları Tablo 3’te gösterilmektedir.

Tablo 3: Dickey-Fuller GLS (ERS) Birim Kök Test Sonuçları

| Değişken | Düzey | Birinci Fark |
|----------|-------|-------------|
|          | Sabit | Sabit + Trend | Sabit | Sabit + Trend |
| IO       | -1.900(0) | -3.012(2) | -4.538(0)** | -4.548(0)** |
| ENF      | -1.381(4) | -2.767(4) | -2.239(2)* | -3.762(1)* |
| LİHRBD   | -1.328(0) | -2.067(0) | -3.312(0)** | -4.670(0)** |
| LİTHBD   | -1.051(0) | -1.928(0) | -4.026(0)** | -4.660(0)** |
| GTPB     | -0.866(1) | -1.806(1) | 9.949(0)** | -10.068(0)** |

*(*): %5 (%1) Anlamlılık düzeyine göre yokluk hipotezinin (H0) reddedildiğini gösterir.

Not: Parantez içindeki sayısal değerler gecikme uzunluklarını göstermektedir.

Tablo 3’teki sonuçlara göre, serilerin yüzde beş anlamlılık düzeyi esas alınarak hem sabitli hem sabitli+trendli olarak birim kök test yapılması durumunda seriler, düzey değerleri ile durağan sonuçlanmamaktadır. Serilerin birinci farkları alınarak, yeniden Dickey-Fuller GLS (ERS) birim kök test yönteminin sabitli ve sabitli+trendli olarak uygulanması sonucunda bütün seriler yüzde beş anlamlılık düzeyine göre durağan olarak sonuçlanmaktadır.

Serilerin birim kök analizinde, ikinci bir test yöntemi olarak Phillips-Perron (PP) Birim Kök Test yöntemi kullanılmaktadır. Phillips-Perron (PP) Birim Kök Test yöntemi sonuçları Tablo 4’te gösterilmiştir.

Tablo 4: Phillips-Perron (PP) Birim Kök Test Sonuçları

| Değişken | Düzey | Birinci Fark |
|----------|-------|-------------|
|          | Sabit | Sabit + Trend | Sabit | Sabit + Trend |
| IO       | -1.768(5) | -2.330(5) | -4.567(5)* | -4.464(5)* |
| ENF      | -0.895(3) | -1.779(3) | -5.226(3)* | -5.130(3)* |
| LİHRBD   | -1.488(3) | -2.606(3) | -5.861(3)* | -5.687(3)* |
| LİTHBD   | -1.069(2) | -2.285(2) | -5.147(1)* | -5.045(1)* |
| GTPB     | -1.763(4) | -3.414(3) | -9.823(3)* | -9.707(3)* |

*: %1 Anlamlılık düzeyine göre yokluk hipotezinin (H0) reddedildiğini gösterir.

Not: Parantez içindeki sayısal değerler gecekmek uzunluklarını göstermektedir.
Tablo 4'teki sonuçlara göre, seriler düzey değerlerine göre sabitli ve sabitli+trendli olarak yapılan birim kök testi sonucunda duruşan sonuçlanmamaktadır. Sonrasında, birinci farkları alınarak yeniden yapılan birim kök test sonucunda serilerin duruşan sonuçlandırıkları gözlemektedir.

Birim kök testlerinin ardından, serilerin uzun dönemde ilişkili olup olmadığını tespit etmek amacıyla Johansen (1988, 1991) eşbütünleşme testi uygulanmaktadır. Buna göre, Johansen (1988, 1991) eşbütünleşme test sonuçları tablo 5'te gösterilmiştir.

### Tablo 5. Johansen (1988, 1991) Eşbütünleşme Test Sonuçları

| Hipotez   | İz İstatistiği | %5 Kritik Değer | P-Değeri |
|-----------|----------------|-----------------|----------|
| $r \leq 0$ | 76.161**       | 60.061          | 0.001    |
| $r > 0$   |                |                 |          |
| $r \leq 1$ | 43.503*        | 40.175          | 0.022    |
| $r > 1$   |                |                 |          |
| $r \leq 2$| 15.521         | 24.276          | 0.415    |
| $r > 2$   |                |                 |          |
| $r \leq 3$| 2.920          | 12.321          | 0.858    |
| $r > 3$   |                |                 |          |

| Hipotez   | Maks. Özdeğer Istatistiği | %5 Kritik Değer | P-Değeri |
|-----------|----------------------------|-----------------|----------|
| $r \leq 0$ | 32.658*                    | 30.440          | 0.026    |
| $r > 0$   |                            |                 |          |
| $r \leq 1$| 27.982*                    | 24.159          | 0.015    |
| $r > 1$   |                            |                 |          |
| $r \leq 2$| 12.601                     | 17.797          | 0.255    |
| $r > 2$   |                            |                 |          |
| $r \leq 3$| 2.411                      | 11.225          | 0.873    |
| $r > 3$   |                            |                 |          |

*(**): %5(%1) Anlamlı düzeyine göre yokluk hipotезinin ($H_0$) reddedildiğini gösterir.

Tablo 5'te verilen Johansen (1988, 1991) eşbütünleşme test sonuçlarına göre, iz ve maksimum özdeğer istatistik değerlerinin yüzde bir anlamlı düzeyiğe göre anlamlı olduklarını tespit etmektedir. $r>1$ alternatif hipotезinin kabul edildiğini yani test sonuçları, birden fazla eşbütünleşik vektörün var olduğunu göstermektedir.

Ekonometrik sonuçlar genel bir çerçeve değerlendirildiğinde, OLS tahmin yöntemi sonuçları, işsizlik oranı değişkeni ile enflasyon oranı değişkeninin karşılıklı negatif yönde etkileşim halinde bulunduğunu göstermektedir. Çalışmada kullanılan bir diğer ekonometrik yöntem olan Johansen (1988, 1991) eşbütünleşme test sonuçları, başta işsizlik oranı, enflasyon oranı olmak üzere ekonometrik uygulama kullanılan tüm değişkenlerin uzun dönemde beraber hareket ettiği işaret etmektedir. Elde edilen ekonometrik sonuçlar, Phillips Eğrisinin 1988-2017 dönemi için Türkiye'de geçerli olduğu yönünde kanıtlar sunmaktadır.

**SONUÇ VE TARTIŞMA**

Phillips Eğrisi, makroekonomik teoride önemli katkılar sağlamaktadır. Keynesyenler, enflasyon-işsizlik ilişkisi ve Phillips Eğrisi tartışmasını üzerindeki istihdamdaki artış sağlamak ve kaynakların tam kullanımını gerçekleştirmek için merkez bankasının işsizlik oranını bir hedef olarak belirlemesi gerektiğini savunmaktadır. Öte yandan Yeni Keynesyenler, gelecekte beklenen enflasyonun olumlu bir işleve sahip olduğunu ve çıktığı açığını, reel çıktının potansiyel seviyesinden sapmasından kaynaklandığını belirtmektedir. Yeni Klasikler, Phillips Eğrisinin hem kısa...
dönemde hem uzun dönemde dikey olduğunu savunmaktadır. Bu bağlamda, işsizlik-enflasyon ilişkisinin varlığını, fiili enflasyonun beklenen enflasyondan farklı olduğu gerçeğiyle ilişkilendirmeleridir. Monetaristler ise, beklenen enflasyon hakkında görüşlerini uyarlanabilir beklentiler hipotezi çerçevesinde ifade etmektedir. Buna göre insanlar, gecelecek beklentilerine geçmiş deneyimleriyle yön vermektedir.

Öte yandan, dünya ekonomisi yetmişli yıllarda önemli bir durgunluk sürecine girmiş, işsizlik ve enflasyon oranlarındaki eş zamanlı artışlar Phillips Eğrisi üzerinde eleştirilere neden olmuştur. Bu bağlamda, Phillips eğrisinin ekonomik kriz döneminde geçerliliği sorgulanmaktadır.

Bu çalışmada, Türkiye ekonomisinde 1988-2017 döneminde enflasyon-işsizlik ilişkisi ve Phillips Eğrisinin geçerliliği incelenmiştir. Çalışmada ekonometrik yöntem olarak, OLS tahmin ve Johansen (1988, 1991) eşbütünleşme test yöntemleri kullanılmıştır. Bulgular, Phillips Eğrisinin Türkiye ekonomisinde 1988-2017 dönemi için geçerli olduğuna dair kanıtlar sunmaktadır. Bu bağlamda, işsizlik ve enflasyon arasında karşılıklı negatif yönü bir etkileşimden dolayı tespit edilmişdir. Ayrıca, işsizlik oranının yanı sıra geniş tanımlı parasal ihraç mallarının fiyatları ile birlikte enflasyon üzerinde etkili oldukları tespit edilmiştir.

Bulgular, Türkiye'de enflasyon ve işsizlik arasında bir değiş tokuş ilişkisinin olduğu göstermiştir. Bu durum, enflasyon arttığında işsizliğin azalacağı veya enflasyon azaldığında işsizliğin artacağı anlamına gelmektedir. Bu nedenle, istihdamı artırmaya ve fiyat istikrari sağlama yönelik politikaların uygulanmasında bir başarı elde etmek için enflasyon ve işsizlik arasındaki ilişkinin doğru bir biçimde ortaya konulması gerekmektedir.

Önümüzdeki dönemde, ekonomi politikası karar vericilerinin Türkiye'de enflasyon ve işsizlik oranı arasındaki ilişkisinin varlığını göz önünde bulundurarak politikaları yürütüme önem arzetmektedir. Bu bağlamda, Türkiye Cumhuriyeti Merkez Bankası (TCMB)'nin, para politikası araçlarını fiyat istikrari temel amaçına yönelik olarak tercih etmesi ve istihdamı arttırmaya yönelik politikaların geri plana alınması durumunda, işsizliğinin artacağını dair beklentiler de artacaktır.

Bu çalışmadaki sonuçlar her ne kadar Phillips Eğrisini desteklemiş olsa da, Türkiye yerine farklı gelişimde olan ülkelerin incelenmesi durumunda farklı sonuçlara ulaşılabileceğini dikkate alınması gerekmektedir ve bu sonuçlara dair genellemeye yapmak zorlaşmaktadır.

ETİK METNİ

Bu makalede dergi yazım kurallarına, yayın ilkelerine, araştırma ve yayın etiği kurallarına, dergi etik kurallarına uyulmuştur. Makale ile ilgili doğabilecek her türlü ihallerde sorumluluk yazar(ı)larla aittir.
KAYNAKÇA

Atkeson, A. ve Ohanian, L. E. (2001). "Are Phillips Curves Useful for Forecasting Inflation?". FRB Minneapolis Quarterly Review, 2-11.

Aurelijus, D. ve Kulikov, D. (2007). New Keynesian Phillips curve for Estonia, Latvia and Lithuania. Working Papers of Eesti Pank. No 7/2007.

Bayrak, M. ve Kanca, O. C. (2013). "Türkiye’de Phillips Eğrisi Üzerine Bir Uygulama". Eskişehir Osmangazi Üniversitesi İİBF Dergisi, 8(3): 97-115.

Céspedes, L. F., Ochoa, M. ve Soto, C. (2005). The New Keynesian Phillips Curve in an Emerging Market Economy: The Case of Chile. Working Papers Central Bank of Chile 355, Central Bank of Chile.

Chowdhury, K. B. ve Sarkar, N. (2014). Is the Hybrid New Keynesian Phillips Curve Stable? Evidence from Some Emerging Economies. Discussion Paper ERU/2014 – 02

Çevik, F. S. (2005). "Beklentilerin Rolü ve Phillips Eğrisi". Mevzuat Dergisi, 95: 1-11.

Esu, G. ve Atan, J. (2017). The Phillip’s Curve in Sub-Saharan Africa: Evidence from Panel Data Analysis, MPRA Paper No. 82112.

Friedman, M. (1968). "The Role of Monetary Policy". American Economic Review, 58: 1-17.

Furuoka, F. (2007). "Does the Phillips Curve Really Exist? New Empirical Evidence from Malaysia". Economics Bulletin, 5: 1-14.

Gagnon, J. E. ve Collins, C. G. (2019). Low Inflation Bends the Phillips Curve. Peterson Institute for International Economics Working Paper.

Hall, T. E. ve Hart, W. R. (2010). The Samuelson - Solow "Phillips Curve" and the Great Inflation. Miami University, Farmer School of Business Department of Economics Working Paper 2010-08.

Hetzel, R. L. (2013). "The Monetarist-Keynesyen Debate and the Phillips Curve: Lessons from the Great Inflation". Economic Quarterly, 2(99): 83-116.

Humphrey, T. M. (1985). "The Evolution and Policy Implications of Phillips Curve Analysis". Economic Review, March/April, 3-22.

Johansen, S. (1988). "Statistical Analysis of Cointegration Vectors". Journal of Economic Dynamics and Control, 2–3(12): 231–254.

Johansen, S. (1991). "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models". Econometrica, 6(59): 1551–1580.

Karahan, P. ve Uslu, N. Ç. (2018). "A Dynamic Analysis on the Validity of the Phillips Curve for Turkey". Finans Politik & Ekonomik Yorumlar, 636(55): 89-99.

Kustepeli, Y. (2005). "A Comprehensive Short-run Analysis of a (Possible) Turkish Phillips Curve". Applied Economics, 37: 581–91.

Lucas, R. E. (1976). "Econometric Policy Evaluation: A Critique". Carnegie-Rochester Series on Public Policy, 1: 19-46.

Machado, V. G. ve Portugal, M. S. (2014). Phillips Curve in Brazil: An Unobserved Components Approach. Working Papers 354. Banco De Central Do Brasil, 1-28.
Mankiw, N. G. (2010). *Macroeconomics*. New York: Worth Publishers.

McAdam, P. ve Willman, A. (2003). *New Keynesian Phillips Curves: A Reassessment Using EURO Area Data*. European Central Bank Working Paper No. 265, 1-64.

Mihailov, A., Rumler, F. ve Scharler, J. (2011). "The Small Open-Economy New Keynesian Phillips Curve: Empirical Evidence and Implied Inflation Dynamics". *Open Economies Review, Springer*, 22(2): 317-337.

Motyovszki, G. (2013). *The Evolution of Phillips Curve Concepts and Their Implications for Economy Policy*. Central European University, Budapest: 1-13.

Niskanen, W.A. (2002). "On the Death of Phillips Curve". *Cato Journal*, 22: 193-98.

Okun, A. M. (1975). "Inflation: Its Mechanics and Welfare Costs". *Brookings papers on Economic Activity*, 2: 351-390.

Onder, A. O. (2004). "Forecasting Inflation in Emerging Markets by Using the Phillips Curve and Alternative Time Series Models". *Emerging Markets Finance and Trade*, 40: 71-82.

Phelps, E. (1967). "Phillips Curve, Expectation of Inflation, and Optimal Inflation over Time". *Economica*, 34: 254-281.

Phillips, A. W. (1958). "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom 1861-1957". *Economics*, 100(25): 283-299.

Plessis, S. ve Burger, R. (2006). “A New Keynesian Phillips Curve for South Africa”, SARB Conference 2006, 61-78.

Puzon, K. A. M. (2009). "The Inflation Dynamics of the ASEAN-4: A Case Study of the Phillips Curve Relationship". *Journal of American Science*, 5(1): 55-57.

Reichel, R. (2004). "On the Death of the Phillips Curve: Further Evidence". *Cato Journal*, 24: 341-348.

Rosa, A. S. (2014). "The Phillips Curve in Italy". *Econ. e Desenv., Santa Maria*, 2(26): 74-84.

Saman, C. ve Pauna, B. (2013). "New Keynesian Phillips Curve for Romania". *Romanian Journal of Economic Forecasting*, 2/2013: 159-171.

Samuelson, P. A. ve Solow, R. M. (1960). "Analytical Aspects of Anti-Inflation Policy". *American Economic Review Papers and Proceedings*, 50(2): 177-194.

Sanchez, D. A. (2006). "A New Keynesian Phillips Curve for Japan, A New Keynesian Phillips Curve for Japan". *Federal Deposit Insurance Corporation*, 06: 1-21.

Schreiber, S ve Wolters, J. (2007). "The Long-Run Phillips Curve Revisited: Is the NAIRU Framework Data-consistent?". *Journal of Macroeconomics*, 29: 355-367.

Shahbaz, M., Islam, F. ve Shabbir, M. S. (2012). "Phillips Curve in a Small Open Economy: A Time Series Exploration of North Cyprus". *Bangladesh Development Studies*, 4(35): 113-130.

Tang, C. F. ve H. H. Lean. (2007). *The Stability of Phillips Curve in Malaysia*. Discussion Paper 39, Monash University.

The World Bank (WB) (2019). World Development Indicators Database, World Bank Group. https://datacatalog.worldbank.org/dataset/world-development-indicators, (Accessed: 04.07.2019)
Tunay, K. B. (2010). *50.Yılında Phillips Eğrisi: Makro Ekonomik İstikrar ve Maliyetleri*. İstanbul: Marmara Üniversitesi Yayınları.

Turner, P. (1997). "The Phillips Curve, Parameter Instability and the Lucas Critique". *Applied Economics*, 29(1): 7-10.

Turner, D. ve E. Seghezza (1999). *Testing for a Common OECD Phillips Curve*. OECD Economics Department Working Papers No. 219.

Zayed, N. M., Islam, R. ve Hasan, R. (2018). "Testing Phillips Curve to Examine the Inflation Rate Regarding Unemployment Rate, Annual Wage Rate and GDP of Philippines: 1950-2017". *Academy of Accounting and Financial Studies Journal*, 5(22): 1-9.