ESTIMATING THIRD-ORDER MOMENTS FOR AN ABSORBER CATALOG

J. M. LOH

Department of Statistics, Columbia University, New York, NY 10027; meng@stat.columbia.edu

Received 2007 August 27; accepted 2007 November 4

ABSTRACT

Thanks to the recent availability of large surveys, there has been renewed interest in third-order correlation statistics. Measures of third-order clustering are sensitive to the structure of filaments and voids in the universe and are useful for studying large-scale structure. Thus, statistics of these third-order measures can be used to test and constrain parameters in cosmological models. Third-order measures such as the three-point correlation function are now commonly estimated for galaxy surveys. Studies of third-order clustering of absorption systems will complement these analyses. We define a statistic, which we denote K, that measures third-order clustering of a data set of point observations and focus on estimating this statistic for an absorber catalog. The statistic K can be considered a third-order version of the second-order Ripley K-function and allows one to study the abundance of various configurations of point triplets. In particular, configurations consisting of point triplets that lie close to a straight line can be examined. Studying third-order clustering of absorbers requires consideration of the absorbers as a three-dimensional process, observed on QSO lines of sight that extend radially in three-dimensional space from Earth. Since most of this three-dimensional space is not probed by the lines of sight, edge corrections become important. We use an analytical form of edge correction weights and construct an estimator of the statistic K for use with an absorber catalog. We show that with these weights, ratio-unbiased estimates of K can be obtained. Results from a simulation study also verify unbiasedness and provide information on the decrease of standard errors with increasing number of lines of sight.

Subject headings: large-scale structure of universe — methods: statistical

1. INTRODUCTION

The C iv and Mg u quasi-stellar object (QSO) absorption systems, or absorbers, appear to trace the same structure as do galaxies on very large scales and have been shown to be effective probes of large-scale structure in the universe (Crotts 1985; Crotts et al. 1985; Tytler et al. 1993; see Tripp & Bowen 2005 for a discussion of the connection between galaxies and QSO absorbers using observations at low redshift). The clustering of such absorbers has been studied in a series of investigations (Vanden Berk et al. 1996; Quashnock et al. 1996; Quashnock & Vanden Berk 1998) using an extensive catalog of absorbers drawn from the literature. Specifically, a second-order correlation analysis was performed in one dimension, restricted to absorber pairs lying on the same QSO lines of sight, and clustering on very large scales, up to 50–100 h^{-1} Mpc, was found. This superclustering has also been found in other studies (e.g., Heisler et al. 1989; Dinshaw & Impy 1996). This work on the second-order clustering of absorbers complements the analyses of second-order structure of other astronomical objects such as galaxies, quasars, and the cosmic microwave background.

In astronomy, a common measure of second-order structure is the two-point correlation function ξ (Peebles 1980, 1993), and this is the function used in the studies mentioned above. Another measure of second-order clustering is the reduced second moment function, also called Ripley’s K-function (Ripley 1988; Martıné & Saar 2002). In three dimensions, the K-function is related to the two-point correlation function by

$$K(r) = 4\pi \int_0^r u^2 [1 + \xi(u)] du.$$

Martínez et al. (1998) applied the K-function to galaxy surveys, while Quashnock & Stein (1999) and Stein et al. (2000) used it to examine clustering in the Vanden Berk et al. (1996) C iv absorber catalog.

Loh et al. (2001) extended the work of Quashnock & Stein (1999) on the study of second-order clustering in the Vanden Berk et al. absorber catalog by considering the absorbers as a process occurring in three dimensions. By treating the absorbers as a three-dimensional process, absorber pairs that lie on different lines of sight were included in estimates of the K-function. As a result, the estimates obtained were shown to have dramatically smaller standard errors than estimates obtained by only considering the absorbers as a one-dimensional process on the lines of sight, when there is a large enough number of lines of sight.

More recently, there has been interest in higher order clustering, in particular third-order clustering, partly because of limitations of restricting to second moments and partly because data sets are now large enough for third-order statistics to be estimated. In particular, the structure of filaments and voids that is present in galaxy surveys is more readily, although still inadequately, described by third-order statistics (Gaztañaga & Scoccimarro 2005; Sefusatti & Scoccimarro 2005; see Jing & Börner 1998, Gaztañaga et al. 2005, Nichol et al. 2006, and Kulkarni et al. 2007 for some examples of the three-point correlation function [Fry & Peebles 1980] applied to galaxy surveys). The Vanden Berk et al. (1996) absorber catalog, which has 276 lines of sight and 345 C iv absorbers, is too small for the investigation of third-order structure, but the catalog being gathered by the Sloan Digital Sky Survey (SDSS; York et al. 2000) will have many more absorbers and lines of sight, making a study of the third-order structure of absorbers feasible.

Here we are concerned with estimating the third-order structure of an absorber catalog. With such estimates, one can compare with corresponding estimates from galaxy surveys. For example, one can study whether absorbers lie along filaments as galaxies do.
where $I_{x,y}$ is the set of points in $\delta B_d(x, |y-x|) \cap L$ and θ_p is the angle subtended by the line of sight that point p lies on and the line joining point p and absorber x. In Figure 1, $I_{x,y}$ just consists of the points y and b. The angles θ_y and θ_b are also indicated in Figure 1. The variable d is the radius of an absorber in comoving units, and we assume it to be unknown but fixed. The value of d does not need to be specified because it gets canceled away and does not appear in the estimator for K. For more details, see § 3, where this cancellation also occurs for the estimator of the third-order statistic K.

With weights specified by equation (1), Loh et al. (2001) shows that estimates for \hat{K} are unbiased.

3. ESTIMATING THIRD-ORDER STATISTICS FOR THE ABSORBER CATALOG

It is well known that second-order statistics do not completely describe the clustering properties of point processes. For example, Baddeley & Silverman (1984) provide an example of a non-Poisson process with the K-function identical to that of a homogeneous Poisson process. Third-order and higher statistics will allow a more detailed study of clustering than just second-order statistics.

Peebles & Groth (1975) defined a three-point correlation function ζ and applied it to the Zwicky catalog. With three volume elements $dV_1, dV_2,$ and dV_3 that define a triangle with lengths $r_{12}, r_{23},$ and r_{13}, Peebles & Groth wrote the probability of finding an object in each of these elements as

$$
\frac{dP}{\hat{K}} = \lambda^3 [1 + \zeta(r_{12}) + \zeta(r_{23}) + \zeta(r_{13}) + \zeta(r_{12}, r_{23}, r_{13})] dV_1 dV_2 dV_3,
$$

where λ is the intensity or number density of the point process. Subsequent studies using the three-point correlation function frequently used a different description of the configuration of triplets, employing two distance measures and one angle measure: $s = r_{12}, q = r_{23}; r_{13}$, and θ, the angle between r_{12} and r_{23} (see, e.g., Gaztañaga et al. 2005; Nichol et al. 2006; Kulkarni et al. 2007). Note that in the above notation the angle is subtended at the second point. We use the parameterization of two distances and an angle in this work.

For the study of galaxy surveys, a related quantity Q, called the reduced three-point correlation function, is often used, where

$$
Q(s, q, \theta) = \frac{1}{\hat{K}} [\zeta(r_{12}) \zeta(r_{23}) + \zeta(r_{13}) \zeta(r_{12}) + \zeta(r_{12}, r_{23}, r_{13})].
$$

The hierarchical form of equation (3) was proposed by Peebles & Groth (1975) based on their analyses of the Lick and Zwicky catalogs. It is an empirical form without theoretical support (Jing & Börner 1998) but has been found to hold in other studies (e.g., Szapudi et al. 2001). In analyses of the 2dF Galaxy Redshift Survey and the SDSS, there appears to be a variation of Q with θ (see, e.g., Gaztañaga et al. 2005; Nichol et al. 2006).

In the statistics literature, the quantity dP in equation (2) is more commonly expressed in terms of a function $g^{(3)}$:

$$
dP = \lambda^3 g^{(3)}(r_{12}, r_{23}, \theta) dV_1 dV_2 dV_3,
$$

where we have used two distances and an angle for the parameters of $g^{(3)}$. Möller et al. (1998) refer to $\hat{K}^3 g^{(3)}$ as the third-product density. Möller et al. also designed a third-order statistic to distinguish between certain classes of point-process models, while Hanisch (1983) used a third-order statistic to examine inner
linearities in point patterns (see also Schladt & Baddeley 2000). These third-order statistics are integrated versions of the third-order density and can be considered third-order versions of the second-order K-function. For our purposes, we define such a third-order function, which we denote by K:

$$K((0,R_1], (R_2, R_3], \Omega) = \int_0^{R_1} \int_{R_2}^{R_3} \int_\Omega 4\pi r_1^2 r_2 r_3^2 g^3(r_{12}, r_{23}, \theta) \times (2\pi \sin \theta) d\theta dr_{23} dr_{12},$$

(5)

where $(a, b]$ denotes an interval that includes b but not a, and where $\Omega = [\alpha_1, \alpha_2]$, with $0 \leq \alpha_1 < \alpha_2 \leq \pi$, is a range of angles.

The third-order statistic of Møller et al. (1998) corresponds to K with $R_2 = 0$, $R_3 = R_1$, and $\Omega = [0, \pi]$. The quantity $K((0,R_1], (R_2, R_3], \Omega)$ has an intuitive interpretation: given a randomly chosen object at x, $\chi K((0,R_1], (R_2, R_3], \Omega)$ is the expected number of object pairs at y and z such that $|y - x| \in (0, R_1]$, $|z - x| \in (R_2, R_3]$, and the angle subtended by y and z at x, $\angle yxz$, is in Ω. To relate the notation in equation (5), note that $r_{12} = |y - x|$ and $r_{23} = |z - x|$, so that x is point 2, at which the angle is subtended. Of particular interest is the case in which θ is close to 0 or π, since this describes the situation of finding triplets of points that lie close to a line. We will also be interested in the variation of K with Ω.

Both the three-point and reduced three-point correlation functions can be obtained from K. Consider $K((0,R_1], (0, R_3], \Omega)$ where Ω is a small angle range, $(\theta - \delta \theta/2, \theta + \delta \theta/2)$, say. Then from equation (5) we have

$$\frac{d^2K}{dR_1 dR_3} = 4\pi S(\Omega) R_1^2 R_3^2 g^3(R_1, R_3, \theta),$$

(6)

where $S(\Omega)$ is the solid angle formed by the part of the unit sphere that subtends an angle θ to the x-axis. Using equations (2), (3), and (4), ζ and thus Q can be expressed in terms of g^3. Therefore, estimates for one quantity can be converted to estimates for the others.

There are different advantages to estimating K versus ζ. Since K is an integral quantity, it is often smoother, and thus its estimates might have better theoretical properties. It also separates the choice of bin size from the edge correction weights, so if a study of the effect of bin size or of different edge correction methods is desired, it may be more appropriate to use K (Stein et al. 2000). On the other hand, the hierarchical form of equation (3) is more simply expressed using ζ and Q. Having estimates of K, ζ, and Q allows for more flexibility in studying the clustering present in a data set, so rather than advocating for one statistic over another, we recommend using all these statistics as tools for a detailed analysis.

When studying clustering of a point pattern observed in a finite region, it is important to account for the boundary of the observation region. If a point falls near a boundary, we do not get to observe all the neighboring points. This is a particularly important issue for an absorber catalog, since only a small portion of the three-dimensional space is probed by the lines of sight. In order to obtain unbiased estimates, point pairs that are observed have to be reweighted to account for this boundary effect. There are various methods to perform the edge correction. These can be numerical, such as the estimators of the two-point correlation function introduced by Davis & Peebles (1983) and Hamilton (1993), or analytical, such as those introduced by Ripley (1988) and Ohser (1983) for the K-function. (See Kerscher et al. 2000 for a good review in the astronomical context.)

Loh et al. (2001) found correction weights, based on the correction procedure suggested by Ripley (1988) for estimating the K-function, for the Vanden Berk et al. (1996) $\mathrm{C\ IV}$ absorber catalog. Loh et al. (2003) found expressions for the correction weights based on Ohser’s and Stoyan’s correction methods (Ohser & Stoyan 1981; Ohser 1983). Here we obtain edge correction weights for estimating the third-order moment function K using Ripley’s method.

Note that since estimating a third-order statistic involves counting triplets of points, the more common analysis approach of treating the absorbers as a one-dimensional process on the lines of sight cannot be used. The absorbers have to be treated as a two-dimensional process, and the edge effects caused by the large regions of unobserved space have to be accounted for.

For fixed values of R_1, R_2, R_3, α_1, and α_2, we estimate K by first estimating $\lambda^3 AK$ with

$$\sum_{x,y,z \in \mathcal{L}} 1_{(0,R_1]}(|y-x|)1_{(R_2,R_3]}(|z-x|)1_\Omega(\angle yxz) \times \omega_x(|y-x|, |z-x|, \Omega) V(|y-x|, |z-x|, \Omega)$$

(7)

and then dividing the estimate $\lambda^3 AK$ by an estimator of $\lambda^3 A$. Here \mathcal{L} is the set of lines of sight, $A = \pi d^2 |L|$ is the volume probed by the lines of sight, d is the constant radius of an absorber in comoving units, $\angle yxz$ is the angle subtended by y and z at x, and for any set S, $1_S(u)$ is an indicator function, equal to 1 if $u \in S$ and zero otherwise.

We find that with

$$\omega_x(|y-x|, |z-x|, \Omega) = \frac{4\pi S(\Omega)|y-x|^2 |z-x|^2 (du)^2}{(\pi d^2)(du)^2} \sum_{p \in I_x} \sum_{q \in I_x} 1_\Omega(\angle pxq) (\cos \theta_p \cos \theta_q)$$

(8)

$$V(|y-x|, |z-x|, \Omega) = \frac{\pi d^2 |L|(|y-x|, |z-x|, \Omega)}{|L||y-x|, |z-x|, \Omega|},$$

(9)

the estimator of equation (7) is unbiased for $\lambda^3 AK$. The quantity $\omega_x(|y-x|, |z-x|, \Omega)$ is the correction weight needed to account for the edge effects. It is also called the “local weight” by Kerscher (1999). The quantity $V(|y-x|, |z-x|, \Omega)$ is sometimes referred to as Ohser’s factor (Ohser 1983), and it makes the estimator valid for longer distances. It is called the “global weight” by Kerscher (1999). In the rest of this section, we explain how the expressions in equations (8) and (9) are obtained.

The denominator on the right-hand side of equation (8) is related to the weights found in Loh et al. (2001)—specifically, to the denominator on the right-hand side of equation (1). In equation (1), the denominator is the sum of the volumes of the cylinders associated with the intersection of $\delta B_{\odot}(x, |y-x|)$ with the set of lines of sight L, less a factor of du. These cylinders are shown in Figure 1 and are shown again at lower left in Figure 2.

For equation (8), we need to consider the intersections of $\delta B_{\odot}(x, |z-x|)$ with L as well, represented by the outer shell in Figure 2. As in equation (1), $I_{x,y} = \delta B_{\odot}(x, |y-x|) \cap L$, where
\(\delta B_0(x, |y - x|)\) is a sphere centered at \(x\) with radius \(|y - x|\). The definition for \(I_{x,y}\) is similar. With respect to Figure 2, \(I_{x,y}\) contains the locations \(b\) and \(y\), while \(I_{x,z}\) contains the locations \(c\) and \(z\).

To obtain the denominator on the right-hand side of equation (8), we consider pairs of cylinders, one on the outer shell and one on the inner shell—that is, a cylinder associated with a point \(q\) in \(I_{x,z}\), and another associated with a point \(p\) in \(I_{x,y}\). Each product of the volumes of these pairs of cylinders, equal to
\[
\pi d^2(du) \cos \theta_p \pi d^2(du) \cos \theta_q,
\]
is included in the sum only if the angle subtended at \(x\) by the centers of the cylinder pair is in the range specified by \(\Omega\), that is, if \(1_{\Omega}(\angle pxq) = 1\). In Figure 2, these pairs are highlighted by rectangles that are similarly shaded. Note that the \((du)^2\) term cancels because there is a corresponding term in the numerator of equation (8). It is also worth noting that the numerator of equation (8) has a form similar to the right-hand side of equation (6).

There may be locations in \(L\) that cannot be a possible location for the absorber \(x\) of a triplet \((y, x, z)\) of the desired configuration. Which locations these are depends on the actual positions and lengths of the lines of sight in \(L\). The quantity \(V\) in equation (9) accounts for this. Each location \(a \in L\) is in the set \(L(|y - x|, |z - x|, \Omega)\) if there are points \((b, c) \in L\) such that \(|b - a| = |y - x|, |c - a| = |z - x|,\) and the angle subtended by \(b\) and \(c\) at \(a, \angle bac\), is in \(\Omega\); that is, \(L(|y - x|, |z - x|, \Omega)\) is just the set \(\{a \in L : \exists (b, c) \in L\text{ with }|b - a| = |y - x|, |c - a| = |z - x|, \angle bac \in \Omega\}\). So, by definition, \(x\) of Figure 2 has to be in \(L(|y - x|, |z - x|, \Omega)\).

Fig. 2.— Schematic diagram similar to Fig. 1, with an additional absorber at \(z\) and a shell centered at \(x\), with radius \(|z - x|\) and thickness \(du\). The triplet of absorbers \((y, x, z)\) is of the desired configuration. The triplet of points \((b, x, c)\) corresponds to a set of locations in \(L\) where a triplet of absorbers of the desired configuration could potentially be observed.

Fig. 3.— Plots of the mean, over 1000 simulated realizations, of the ratio \(\hat{K}(0, 50, \Omega)\) to the expected Poisson value as a function of \(r\) from 250 to 330 \(h^{-1}\) Mpc. The \(\Omega\) for each plot is specified at the top of the panel. The dashed lines refer to pointwise errors that are twice the standard deviation obtained from the simulations.
To obtain an estimate of K, we divide the estimator (eq. [7]) by an estimate of $\lambda^3 A$, for example, $(N^3/A^3)A = N^3/(\pi d^2)^2 |L|^2$. Thus, although the expression for ω_s includes a $(\pi d^2)^2$ term, the value of d need not be specified when estimating K, since it gets canceled away by the same term in the estimate of $\lambda^3 A$.

The proof of unbiasedness is provided in the Appendix. Note that it is the estimator of $\lambda^3 A K$ that is unbiased. The estimate K that is obtained by dividing by an estimate of $\lambda^3 A$ may be slightly biased. Such a property is called ratio-unbiasedness and is a feature of estimators of the second-order K-function as well.

4. SIMULATION STUDY

We ran a simulation study to explore the performance of the estimator given in equation (7), with weights given in equations (8) and (9). Note that the distances referred to here are comoving distances. We first generated a set of 1000 lines of sight in a region similar to that to be probed by the QSO lines of sight for Mg ii and C iv absorbers under the Einstein–de Sitter cosmology. A thousand realizations of a Poisson point process are then simulated on these lines of sight, with density equal to that found in the Vanden Berk et al. (1996) catalog, 0.004 h^{-1} Mpc$^{-1}$. We chose Poisson processes because the theoretical value of K is known for the Poisson model: $P = K_p((0, R_1], (R_2, R_3], \Omega) = 4\pi S(\Omega)(R_3^3 - R_2^3)R_2^3/9$. For each realization, we estimate the third-order function K. We then find the mean and variance of these estimates and compare with the theoretical Poisson value P. The results are shown in Figures 3 and 4.

Figure 3 shows the ratio of the mean estimates of $K((0, 50], 250, r], \Omega)$ to the expected Poisson value, for $\Omega = (0^\circ, 5^\circ)$ (top left), $\Omega = (40^\circ, 50^\circ)$ (top right), $\Omega = (55^\circ, 60^\circ)$ (bottom left), and $\Omega = (80^\circ, 90^\circ)$ (bottom right), plotted as a function of r, for $250 h^{-1}$ Mpc $< r \leq 330 h^{-1}$ Mpc (thick solid lines). The dashed lines show the pointwise error, equal to 2 times the standard deviation of the 1000 estimates. Note that in each case, the true value of 1 lies within this band. Furthermore, the mean estimated value is very close to 1 for the smaller angle ranges, with a slight bias appearing with angles close to 90°. We believe this is because the edge correction approximation becomes less accurate at angles close to 90°.

Figure 4 shows plots of the same ratio as a function of θ, the midpoint of Ω, from 0° to 90°, for values of r fixed at 260, 280, 300, and $320 h^{-1}$ Mpc. The angular bin size used is 10°. Again, we find that the pointwise confidence band contains the true value 1, with the mean value also close to 1. These plots show the bias appearing as the angle is increased to 90°, with this bias becoming slightly less as the range (250, r] increases.

We chose the distance $50 h^{-1}$ Mpc for R_1 because it corresponds roughly to the scale of superclustering that has been detected (Quashnock et al. 1996). With the values of r_{23} in (250, 330] that we used, the ratio r_{23}/r_{12} is then about 5 or 6, close to the values considered by, for example, Kulkarni et al. (2007), although the values of r_{12} considered there are much smaller. We
also considered values of $10–40\, h^{-1}\, \text{Mpc}$ for R_1. The results are qualitatively similar to the results for $R_1 = 50\, h^{-1}\, \text{Mpc}$, except with slightly larger standard errors.

We also performed a simulation study using 10,000 lines of sight in the same region. The corresponding plots are similar to those of Figures 3 and 4, but with standard errors smaller by a factor of about 10 to 15, that is, roughly of the order of the increase in the number of lines of sight. For $\Omega = (0^\circ, 5^\circ)$, the standard errors dropped only by about a factor of 5, however. This approximate relation between standard errors and the number of lines of sight is similar to that found in Loh et al. (2001).

5. DISCUSSION AND CONCLUSION

Measures of the third-order clustering of galaxy surveys and the cosmic microwave background are useful for the additional information they provide over measures of second-order clustering. In particular, the filamentary structure that has been found in galaxy data is more readily described by third-order and higher measures of clustering. Recently, as a consequence of the availability of larger data sets and advances in computing, such study of higher order clustering has been the subject of active research.

It will be desirable to study the third-order clustering of absorption systems. Absorbers are often detected at extreme comoving distances from Earth. Since absorbers are believed to be due to gas clouds near galaxies, an analysis of the third-order clustering of absorbers can serve as a complementary analysis to that of large galaxy surveys, enabling comparison of the local filamentary structure with that of the early universe. Studying the third-order structure of absorbers might also provide greater understanding of their nature. Finally, absorption systems consist of nonluminous matter. Understanding the clustering of absorbers can yield insight into the link between luminous and nonluminous matter in the universe.

In this paper, we defined a third-order moment function K that is an integrated version of the three-point correlation function, much like the relation between the second-order Ripley K-function and the two-point correlation function. We provide expressions for the weights necessary to correct for the boundary effects so that this function can be estimated for an absorber catalog. Our simulation study shows that the estimator gives correct results (i.e., including correctly accounting for the boundary effects), at least for the theoretically simple Poisson process.

Studies of large-scale structure with galaxy surveys have shown the existence of structures on the order of $100\, h^{-1}\, \text{Mpc}$ in size (Kirshner et al. 1981; Geller & Huchra 1989; da Costa et al. 1994).

In analyses of second-order clustering in the Las Campanas Redshift Survey and SDSS, Landy et al. (1996) and Eisenstein et al. (2005) respectively found peaks on scales of around $100\, h^{-1}\, \text{Mpc}$. Quashnock et al. (1996) also found evidence of superclustering on these scales in their analysis of C I v absorption systems. Loh et al. (2001) found evidence of clustering up to $100\, h^{-1}\, \text{Mpc}$ and possibly beyond. Studies of galaxy clustering have focused on smaller scales. Gaztañaga et al. (2005), Nichol et al. (2006), and Kulkarni et al. (2007) followed the example of Jing & Börner (1998), using r_{12} from 1 to $10\, h^{-1}\, \text{Mpc}$ and r_{23}/r_{12} between 1 and 4, and studied the variation in the reduced three-point correlation function Q with angle.

The choice of R_1, R_2, R_3, and Ω for K would thus depend on the aim of the analysis. For comparisons with the findings of, for example, Jing & Börner (1998), the focus would be to study the variation of K with Ω, with the distance measures close to the values used there. For studies of superclustering and large-scale structure, comoving distances of $100\, h^{-1}\, \text{Mpc}$ and beyond for one or both of r_{12} and r_{23} will be of interest. An initial study would probably use $\Omega = [0, \pi]$, studying clustering at various distances, followed by more detailed analyses with smaller angular ranges.

We are not aware of any other work on estimating third-order clustering specifically for absorber catalogs. Unfortunately, we do not have a large enough catalog of absorbers to obtain meaningful estimates of the third-order function. With the much larger absorber catalog that is being collected by the SDSS, a detailed study of the third-order clustering of absorbers will become feasible. From our simulation studies, we found that the standard errors of estimates of K for an absorber catalog scale roughly as the reciprocal of the number of lines of sight. This agrees with the findings from Loh et al. (2001) for standard errors of estimates of the K-function for absorber catalogs. Thus, we expect that with the SDSS absorber catalog, with approximately 50,000 lines of sight, the standard errors of the estimates of K will be roughly a factor of 50 smaller than the standard errors found in our simulation study with 1000 lines of sight. The actual increase in precision for a particular absorber catalog will of course depend on factors such as the actual spatial locations of the lines of sight and the density of the observed absorbers.

This research is supported in part by National Science Foundation award AST 05-07687.

APPENDIX

Here we prove that the estimator of equation (7) with weights $\omega_{\alpha \beta \gamma}$ and V given by equations (8) and (9) is unbiased. Let L represent the lines of sight and $\delta B_\Delta(x, h)$ denote a shell with center x, radius h, and thickness Δ. We write (h, γ) for the polar coordinates of vector h, $|\cdot|$ for Euclidean distance, area, or volume, depending on the context, $A = \pi d^2 |L|$ for the volume probed by the lines of sight, and $1_L(x)$ for the indicator function, with $1_L(x) = 1$ if $x \in L$ and $1_L(x) = 0$ otherwise.

Write $f(x, y, z) = 1_L(x)1_L(y)1_L(z)\delta B_{\Delta}(x, h)(y - x)(z - x)1_L(\Omega)(x, y, z)\omega_{\alpha \beta \gamma}(y - x, z - x, \Omega)$, where $\Omega = [\alpha_1, \alpha_2]$ represents the range of angles between α_1 and α_2. Then the estimator in equation (7) is $\sum_{x \neq y \neq z} f(x, y, z)$, with

$$E\left(\sum_{x \neq y \neq z} f(x, y, z) \right) = \lambda^3 \int \int \int f(x, x + h, x + k)g^0(x, x + h, x + k)dh\, dk\, dx \times \omega_{\alpha \beta \gamma}(h, k, \Omega)$$

$$= \lambda^3 \int \int \int_{R_1} \int_{R_2} \int_{\delta B_{\Delta}(0, h)} \int_{\delta B_{\Delta}(0, h)} 1_L(x)1_L(x + (h, \gamma))1_L(x + (k, \beta))1_L(\gamma - \beta)$$

$$\times \omega_{\alpha \beta \gamma}(h, k, \Omega) \int_{\Omega} V(\gamma - x, \Omega)\int_{\Omega} V(\gamma - z, \Omega)dh\, dk\, dx \times dh\, dk\, dx.$$
In the first equality, we have expressed $g^{(3)}$ in terms of three vector quantities $x, x + h,$ and $x + k.$ If stationarity is assumed, the specification of x in $g^{(3)}$ is redundant. Thus, we have removed the dependence on x in $g^{(3)}$ in the next line. We have also expressed h and k in polar coordinates. Now, with the further assumption of isotropy, $g^{(3)}(h, k)$ depends only on the direction of h relative to k (or vice versa). This simplifies the expression above, so that

$$E\left(\sum_{x \neq y \neq z} f(x, y, z)\right) = \lambda^3 \int_R^1 \int_{R_1}^1 \int_{R_1}^1 V(h, k, \Omega) L(x) \omega_k(x, \Omega)$$

$$\times \int_{B(h, k, L)} 1_L(x + (k, \beta)) k^2 \left[\int_{B(h, k, L)} 1_L(x + (h, \beta + \alpha)) h^2 g^{(3)}(x + (h, \beta + \alpha), x) d\alpha \right] d\beta dh dk dx,$$

where α denotes the angle on the sphere relative to $(k, \beta).$ Under the assumption that $g^{(3)}$ is slowly varying over $\Omega,$ the expression in square brackets is equal to

$$1_L(h, \beta + \Omega)(x) g^{(3)}(h, \Omega) \sum_{p \in B(h, k, L)} \frac{\pi d^2}{\cos \theta_p},$$

so that

$$E\left(\sum_{x \neq y \neq z} f(x, y, z)\right) = \lambda^3 A \int_R^1 \int_{R_1}^1 \int_{R_1}^1 \frac{1_L(x)}{\pi d^2 [L(h, k, \Omega)]} \omega_k(x, \Omega) g^{(3)}(h, \Omega)$$

$$\times \left[\int_{B(h, k, L)} 1_L(h, \beta + \Omega)(x) \right] \left[\int_{B(h, k, L)} 1_L(h, \beta + \Omega)(x) \right]$$

$$= \lambda^3 A \int_R^1 \int_{R_1}^1 \int_{R_1}^1 \frac{\omega_k(x, \Omega)}{\pi d^2 [L(h, k, \Omega)]} 1_L(h, k, \Omega) g^{(3)}(h, \Omega)$$

$$\times \left[\sum_{p \in B(h, k, L)} \sum_{q \in B(h, k, L)} \frac{\pi d^2}{\cos \theta_p} \frac{\pi d^2}{\cos \theta_q} \right] dh dk dx,$$

The last expression in square brackets is the denominator of $\omega_k(h, k, \Omega).$ Further simplification yields

$$E\left(\sum_{x \neq y \neq z} f(x, y, z)\right) = \lambda^3 A^2 \int_R^1 \int_{R_1}^1 \int_{R_1}^1 \frac{1_L(h, k, \Omega)(x)}{\pi d^2 [L(h, k, \Omega)]} 4\pi h^2 k^2 S(\Omega) g^{(3)}(h, k, \Omega) dh dk dx$$

$$= \lambda^3 A^2 \int_R^1 \int_{R_1}^1 \int_{R_1}^1 4\pi h^2 k^2 S(\Omega) g^{(3)}(h, k, \Omega) dh dk$$

$$= \lambda^3 A^2 \left((0, R_1], (R_2, R_3], \Omega)\right).$$

REFERENCES

Baddeley, A. J., & Silverman, B. W. 1984, Biometrics, 40, 1089
Crotts, A. P. S. 1985, ApJ, 298, 732 (erratum 305, 581 [1986])
Crotts, A. P. S., Melott, A. L., York, D. G., & Fry, J. N. 1985, Phys. Lett. B, 155, 251
da Costa, L. N., et al. 1994, ApJ, 424, L1
Davis, M., & Peebles, P. J. E. 1983, ApJ, 267, 465
Dinshaw, N., & Impey, C. D. 1996, ApJ, 458, 73
Eisenstein, D. J., et al. 2005, ApJ, 633, 560
Fry, J. N., & Peebles, P. J. E. 1980, ApJ, 238, 785
Gaztañaga, E., Norberg, P., Baugh, C. M., & Croton, D. J. 2005, MNRAS, 364, 620
Gaztañaga, E., & Scoccimarro, R. 2005, MNRAS, 361, 824
Geller, M. J., & Huchra, J. P. 1989, Science, 246, 897
Hamilton, A. J. S. 1993, ApJ, 417, 19
Hanisch, K.-H. 1983, Statistics, 14, 421
Hessler, J., Hogan, C. J., & White, S. D. M. 1989, ApJ, 347, 52
Jing, Y. P., & Börner, G. 1998, ApJ, 503, 37
Kerscher, M., 1999, A&A, 343, 333
Kerscher, M., Szapudi, I., & Szalay, A. S. 2000, ApJ, 535, L13
Kirshner, R. P., Oemler, A., Jr., Schechter, P. L., & Shectman, S. A. 1981, ApJ, 248, L57
Kulkarni, G. V., Nichol, R. C., Sheth, R. K., Seo, H.-J., Eisenstein, D. J., & Gray, A. 2007, MNRAS, 378, 1196
Landy, S. D., Schechter, S. A., Lin, H., Kirshner, R. P., Oemler, A. A., & Tucker, D. 1996, ApJ, 456, L1
Loh, J. M., Quashnock, J. M., & Stein, M. L. 2001, ApJ, 560, 606
Loh, J. M., Stein, M. L., & Quashnock, J. M. 2003, J. Am. Stat. Assoc., 98, 522
Martínez, V. J., Pons-Bordería, M.-J., Moyed, R. A., & Graham, M. J. 1998, MNRAS, 298, 1212
Martinez, V. J., & Saar, E. 2002, Statistics of the Galaxy Distribution (Boca Raton: Chapman & Hall/CRC)
Møller, J., Syversveen, A. R., & Waagepetersen, R. P. 1998, Scandinavian J. Stat., 25, 451
Nichol, R. C., et al. 2006, MNRAS, 368, 1507
Ohser, J. 1983, Statistics, 14, 63
Ohser, J., & Stoyan, D. 1981, Biometrical J., 23, 523
Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe (Princeton: Princeton Univ. Press)
———. 1993, Principles of Physical Cosmology (Princeton: Princeton Univ. Press)
Peebles, P. J. E., & Groth, E. J. 1975, ApJ, 196, 1
Quashnock, J. M., & Stein, M. L. 1999, ApJ, 515, 506
Quashnock, J. M., & Vanden Berk, D. E. 1998, ApJ, 500, 28
Quashnock, J. M., Vanden Berk, D. E., & York, D. G. 1996, ApJ, 472, L69
Ripley, B. D. 1988, Statistical Inference for Spatial Processes (New York: Wiley)
Schladitz, K., & Baddeley, A. J. 2000, Scandinavian J. Stat., 27, 657
Sefusatti, E., & Scoccimarro, R. 2005, Phys. Rev. D, 71, No. 063001
Stein, M. L., Quashnock, J. M., & Loh, J. M. 2000, Ann. Stat., 28, 1503
Szapudi, I., Postman, M., Lauer, T. R., & Oegerle, W. 2001, ApJ, 548, 114
Tripp, T. M., & Bowen, D. V. 2005, in IAU Colloq. 199, Probing Galaxies through Quasar Absorption Lines, ed. P. R. Williams, C.-G. Shu, & B. Ménard (Cambridge: Cambridge Univ. Press), 5

Tytler, D., Sandoval, J., & Fan, X.-M. 1993, ApJ, 405, 57
Vanden Berk, D. E., Quashnock, J. M., York, D. G., & Yanny, B. 1996, ApJ, 469, 78
York, D. G., et al. 2000, AJ, 120, 1579