Critical Sensitizer Quality Attributes for Efficient Triplet-Triplet Annihilation Upconversion with Low Power Density Thresholds

Citation
Durandin, N., Isokuortti, J., Efimov, A., Vuorimaa-Laukkanen, E., Tkachenko, N. V., & Laaksonen, T. (2019). Critical Sensitizer Quality Attributes for Efficient Triplet-Triplet Annihilation Upconversion with Low Power Density Thresholds. Journal of Physical Chemistry C, 123(37), 2286522872. https://doi.org/10.1021/acs.jpcc.9b08026

Year
2019

Version
Publisher's PDF (version of record)

Link to publication
TUTCRIS Portal (http://www.tut.fi/tutcris)

Published in
Journal of Physical Chemistry C

DOI
10.1021/acs.jpcc.9b08026

License
CC BY

Take down policy
If you believe that this document breaches copyright, please contact cris.tau@tuni.fi, and we will remove access to the work immediately and investigate your claim.
Critical Sensitizer Quality Attributes for Efficient Triplet–Triplet Annihilation Upconversion with Low Power Density Thresholds

Nikita A. Durandin,* Jussi Isokuortti, Alexander Efimov, Elina Vuorimaa-Laukkanen, Nikolai V. Tkachenko, and Timo Laaksonen

Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland

Supporting Information

ABSTRACT: Triplet–triplet annihilation upconversion (TTAUC) is a power density-dependent process where photons of low energy are transformed into high energy ones. The most important attributes of efficient TTAUC are quantum yield \(\Phi_{\text{TTAUC}} \), power density threshold \(I_{\text{th}} \) (photon flux at which 50% of \(\Phi_{\text{TTAUC}} \) is achieved), and the upconversion shift of emitted photons (anti-Stokes shift). To date, approaches to balance these parameters have remained unclear. Herein, the cumulative effect of sensitizer triplet lifetime (\(\tau_s \)), sensitizer-annihilator triplet energy gap (\(\Delta E_T \)), and the total concentration of the sensitizer on the power density threshold at high TTAUC quantum yields is evaluated experimentally using Pt, Pd, and Zn tetraphenylporphyrin derivatives and a tetra-tert-butylpyrrole annihilator, and by kinetic rate modeling. The results suggest that a large energy gap (\(\Delta E_T \geq 4 \kappa_B T \)) and long sensitizer triplet lifetime make the triplet–triplet energy transfer (TTET) extremely efficient and allow the utilization of high sensitizer concentrations for low \(I_{\text{th}} \). However, for large upconversion shifts, the triplet energy gap should be as small as possible. Smaller energy gap values result in slower forward TTET and faster reverse TTET, which together with high total sensitizer concentration can lead to a quenching of annihilator’s triplet state and therefore elevate the \(I_{\text{th}} \). In this regard, low concentration of a sensitizer is beneficial, making sensitizers with high molar extinction coefficients preferential. Sensitizers with a long living triplet state and a high molar extinction coefficient can work efficiently and have low \(I_{\text{th}} \) at 0 \(k_B T \) or even negative \(\Delta E_T \). Kinetic rate modeling further helps to optimize the parameters for best possible TTAUC performance. Thus, the findings of the study pave the way for the design of TTAUC systems with superior performance, such as high \(\Phi_{\text{TTAUC}} \) at low excitation power densities with large anti-Stokes shift, for, for example, solar-driven photovoltaics, photocatalysis, bioimaging, and safe light-triggered drug-delivery systems.

INTRODUCTION

Photon upconversion based on triplet–triplet annihilation represents an attractive approach to turn the photons of higher wavelengths into lower ones by using noncoherent excitation sources.\(^1-^3\) Nowadays, the method draws a lot of attention because of its broad applicability, spanning from organic electronics to bionanotechnology.\(^4-^6\) The process relies on an interplay between two pairs of photoactive molecules, namely a sensitizer and an annihilator. After the photoexcitation of a sensitizer with photons of low energy, through the processes of triplet–triplet energy transfer (TTET) and triplet–triplet annihilation (TTA), the two annihilator triplet state molecules collide to generate one annihilator singlet state of high energy, which emits the upconverted photon (Scheme 1).\(^9\) Altogether, the TTAUC quantum yield (\(\Phi_{\text{TTAUC}} \)) is a product of five parameters:\(^9\)

\[
\Phi_{\text{TTAUC}} = \frac{1}{2} \times f \times \Phi_{\text{ISC}} \times \Phi_{\text{TTET}} \times \Phi_{\text{TTA}} \times \Phi_{\text{f}}
\]

where \(f \) is the statistical probability to obtain a singlet excited state after TTA, \(\Phi_{\text{ISC}} \) is the intersystem crossing efficiency of a sensitizer, \(\Phi_{\text{TTET}} \) and \(\Phi_{\text{TTA}} \) are TTET and TTA efficiencies, and \(\Phi_{\text{f}} \) is the fluorescence quantum yield of an annihilator.

As is clear from Scheme 1, the TTA efficiency (\(\Phi_{\text{TTA}} \)) relies on the concentration of the generated annihilator triplet state, which makes TTAUC quantum yield (\(\Phi_{\text{TTAUC}} \)) dependent on the power density of the excitation source.\(^10-^12\) Recently, the power density threshold (\(I_{\text{th}} \)), that is, the power density at which \(\Phi_{\text{TTA}} \) and therefore \(\Phi_{\text{TTAUC}} \) equals to 50% of its maximum for the system under study, has been proposed as a TTAUC figure-of-merit.\(^13-^15\) Together with \(\Phi_{\text{TTAUC}} \), \(I_{\text{th}} \) value is one of the crucial criteria for the selection of TTAUC sensitizer/annihilator pairs. Indeed, TTAUC systems with high \(\Phi_{\text{TTAUC}} \) that can be obtained at low excitation power densities are of paramount importance, for example, for the next generation of organic electronics and prospective biomedical
applications. While the way to control Φ_{TTAUC} seems to be straightforward, the methods to fine-tune the excitation power density threshold remain limited. This lack of proper methodology strongly hampers the development of TTAUC-based photon management approach toward high performance devices, for example, solar cells.

The expression for I_{th} value was proposed by Monguzzi et al.:

$$I_{th} = \frac{(k_0)^2}{k_{\text{TTA}} \times \alpha(\epsilon) \times \Phi_{\text{TTET}}} \quad (2)$$

where $k_0 = 1/\tau_0^0$ and represents the rate constant of all annihilator unimolecular and pseudo-first-order processes such as phosphorescence and quenching with, for example, oxygen (τ_0^0 is phosphorescence lifetime of an annihilator), $\alpha(\epsilon)$ is a sensitizer absorption coefficient, and k_{TTA} is second-order TTA rate constant.

On the basis of eq 2, one can easily modulate I_{th} values by using long-living annihilators. However, only a few annihilators have both high fluorescence quantum yield (Φ_{th}^0) and high singlet state formation probability via TTA (Φ_{TTAUC}) that are critical for high Φ_{TTAUC} values.

In this respect, the sensitizer choice allows a higher degree of freedom. Up to now, a large variety of sensitizers has been used for TTAUC studies starting from heavy-atom-free molecules toward metalated porphyrinoids and even semiconductor nanocrystals. Therefore, we are striving to understand the pathways toward efficient TTAUC in terms of power density threshold through the prism of sensitizer properties.

RESULTS AND DISCUSSION

Sensitizers and Annihilators under Study.

A set of metal complexes of 2-[3-(10,15,20-tris(3,5-dinit-tert-butyphenyl)]porphyrin-5-ylphenoxyl]ethanol with Pt, Pd or Zn (i.e., PtTPPOH, PdTPPOH, ZnTPPOH) was used as sensitizers (Scheme 2). The substances possess drastically different physicochemical characteristics such as triplet lifetime (τ_0^0), triplet energy level (E_T^0), Φ_{ISC} and molar extinction coefficient at excitation wavelength of 532 nm (ϵ_{532}). The last one is responsible for the different sensitizer concentrations (S_0) for ensuring identical absorption coefficient $\alpha(\epsilon)$ and laser power utilization for all three sensitizers. Therefore, the choice of porphyrins allowed us to follow the effect of sensitizer triplet lifetimes and energy levels and molar extinction coefficient together with total concentration of the sensitizer on I_{th} and Φ_{TTAUC}.

2,5,8,11-Tetra-tert-butylperylen (TBPer) was selected as the annihilator because of perylene’s long triplet lifetime, high fluorescence quantum yield, and moderately high triplet state energy (4 ms, 96%, and ~1.54 eV, respectively). Moreover, the singlet state formation probability via TTA (Φ_{TTAUC}) for perylene is approaching unity, while the tert-butyl substituents prevent an aggregation making TBPer one of the first-in-class annihilators.

Degassed poly(ethylene glycol)-200 matrix with 30 mM oleic acid (PEG-OA) was employed as the media for experiments. The degassed PEG protects the sensitizer/annihilator system from back oxygen diffusion and allows a moderate degree of mobility for triplet–triplet interactions (TTET and TTA), while OA represents a powerful scavenger for the residual trace oxygen.

TTET and TTA Photophysics.

To prove the ability of the sensitizers under study to serve as triplet energy donors, time-resolved phosphorescence quenching experiments with TBPer were performed. Efficient TTET occurred and Stern–Volmer constants (K_{SV}) and forward TTET rates (k_{FTTET}) were calculated (see ESI). K_{SV} values were in agreement with the triplet lifetimes of the sensitizers. Short living PtTPPOH showed a Stern–Volmer constant of $\sim 3 \times 10^3$ M$^{-1}$, while the longer living sensitizers PdTPPOH and ZnTPPOH revealed higher values of 100×10^3 and 220×10^3 M$^{-1}$, respectively. On the other hand, PtTPPOH and PdTPPOH demonstrated higher forward k_{FTTET} rate constants than did ZnTPPOH (5 \ times 103 and 6.4 \ times 103 M$^{-1}$ s$^{-1}$ vs 2.2 \ times 103 M$^{-1}$ s$^{-1}$). This fact can be explained in terms of triplet energy gap values for the sensitizer/annihilator pairs (ΔE_T) (Figure 1). Indeed, forward and reverse TTET rate constants (k_{FTTET} and k_{RTTET}) are dependent on the energy gap value through Boltzmann equation:

$$k_{\text{FTTET}} = k_0 \times \frac{1}{1 + e^{-(\Delta E_T/k_B T)}} \quad (3)$$
The di gap makes the forward (FTTET) step enthalpy-driven and diffusion-controlled, hence facilitating the population of annihilator triplet state.

Power density dependences of upconverted light were measured for every sensitizer/annihilator pair. Nd:YAG continuous wave laser emitting at 532 nm was employed to selectively excite the porphyrins. Concentrations of the continuous wave laser were adjusted to have OD = 1 at the excitation wavelength to utilize 90% of input power density. The annihilator TBPer was used at a fixed 3 mM concentration to obtain at least 90% Φ_{TTA} for all TTAUC pairs. Quantum yields of TTAUC for all of the pairs were calculated by using Rhodamine 6G in ethanol as a reference. Figure 2a clearly shows the strong and weak annihilation regimes, which is an integral feature of TTAUC process described by the equations:

$$k_{\text{RTTET}/k_{\text{FTTET}}} = e^{-\Delta E_f/k_B T} \quad (4)$$

where ΔE_f is sensitizer/annihilator triplet energy gap, k_B is Boltzmann constant, T is the absolute temperature, and k_D is the diffusion constant of a medium. Therefore, higher energy gap makes the forward (FTTET) step enthalpy-driven and diffusion-controlled, hence facilitating the population of annihilator triplet state.

The upconversion yields and power density thresholds are collected in Table 1. The Φ_{TTA} values of 29%, 31%, and 24% for PtTPPOH, PdTPPOH, and ZnTPPOH, respectively, are in good agreement with Φ_{ISC} and Φ_{TTET} efficiencies for these porphyrins. It is noteworthy that the obtained power density thresholds for the three porphyrin/annihilator pairs were close for all pairs studied. One of the reasons for this discrepancy is the large difference in the sensitizer concentrations $[S_0]$ because of different ε_{532} of the porphyrins used in our study. Recently, Schmidt et al. have stressed that a too high sensitizer concentration can be detrimental for the upconversion efficiency regardless of improved power density utilization. At constant power density, the Φ_{TTA} dependence on the sensitizer concentration appeared detrimental for the upconversion efficiency regardless of improved power density utilization.
Table 1. Characteristics of 2,5,8,11-Tetra-tert-butylperylene TTAUC Sensitized by Different Porphyrins

sensitizer	Φ_{ISC}	τ_{S}, ms	ϵ_{SD}, M$^{-1}$ cm$^{-1}$	[S$_0$], mM	$E_{\text{r}1}$, eV	ΔE_T, eV (kT)a	k_{TTA}, M^{-1} s$^{-1}$	Φ_{TAUC}b	Φ_{TH}b	I_{P}, mW/cm2
PtTPPOH	1	0.061	10^6	100	1.84	0.3 (11.67)	5×10^7	0.9	29	168
PtTPPOH	1	0.75	1.9×10^6	52	1.76	0.22 (8.56)	6.4×10^5	0.993	31	50
ZnTPPOH	0.75	11.0	3.4×10^5	294	1.56	0.02 (0.78)	2.2×10^5	0.9986	24	260

aTriplet energy level of 1.54 eV was utilized for TBPer to calculate the triplet energy gap. b3 mM TBPer concentration was used to obtain the data.

Figure 3. Photon rate thresholds ($k_{\text{phot}}(th)$) simulated over several orders of magnitude of τ_{S} and ΔE_T and with (a) [A$_0$] = 0.5 mM, (b) [A$_0$] = 3 mM, (c) [A$_0$] = 30 mM while maintaining a constant sensitizer concentration of [S$_0$] = 100 μM.

Equation 10:

$$\Phi_{\text{TAUC}} = \frac{2k_{\text{TTA}}[A_{\text{T}}]^2}{k_{\text{phot}}[S_0]} \times \Phi_{\text{TH}}$$

where $k_{\text{TH}} = 1/\tau_{\text{S}}$ is the sensitizer triplet first-order decay constant, [S$_0$] = total annihilator concentration, [S$^*_{\text{T}}$] = sensitizer triplet state concentration, [A$_0$] = total annihilator concentration, [A$^*_{\text{T}}$] = annihilator singlet state concentration, [A$^*_{\text{T}}$] = annihilator triplet state concentration, $k_{\text{phot}} = q \times \epsilon'$ is the photon absorption rate (in s$^{-1}$) in which q is photon flux (in moles of photons dm$^{-2}$ s$^{-1}$) and $\epsilon' = \ln 10 \times \epsilon$ (in M$^{-1}$ dm$^{-1}$).

For the modeling, the excitation light power was expressed in photon absorption rate (in s$^{-1}$). The photon absorption rate was recalculated into power density (mW/cm2) or vice versa to compare the results of the modeling with the experimental data. TBPer triplet decay rate constant (k_{TH}) of 250 s$^{-1}$ was utilized based on the literature data, and diffusion constant $D = 5 \times 10^{-10}$ cm2 s$^{-1}$, $\Phi_{\text{ISC}} = 1$, and the triplet–triplet annihilation rate constant (k_{TTA}) of 2.5 $\times 10^7$ s$^{-1}$ (0.5 $\times k_{\text{TH}}$) was employed for TTAUC simulations. Maximum Φ_{TAUC} value of 32% was set to make calculations consistent with performed spectroscopy experiments. Further, photon rate threshold ($k_{\text{phot}}(th)$) was calculated as a photon absorption rate resulting in 16% upconversion quantum yield, that is, 50% of Φ_{TAUC} maximum.

The Journal of Physical Chemistry C
μM (Figure 3b). Notably, sensitizers with triplet lifetimes longer than 1 ms allow an efficient TTET even with lower amount of annihilator (e.g., 500 μM) while keeping $k_{photon(th)}$ values in the minimum (Figure 3a).

Low annihilator concentrations make TTAUC pairs more sensitive to lower triplet energy gap values (below 2 $k_B T$, or 0.0514 eV). At small $ΔE_T$, the reverse TTET process is not negligible. Excessive concentration of the sensitizer in the ground state can react with the triplet state of the annihilator, thus competing with annihilator’s TTA. At the same time, the sensitizer triplet—triplet annihilation competes with the forward TTET from sensitizer to the ground state annihilator resulting in a lower concentration of annihilator triplet state and high photon rate thresholds.30,31

However, a great excess of the annihilator with respect to the sensitizer, for example, from 3 to 30 mM, makes FTET more feasible even for the sensitizers with short living triplet states and small $ΔE_T$, hence suppressing RRTE and resulting in lower $k_{photon(th)}$ values (Figure 3b,c). On the other hand, high $[A_0]$ leads to higher excimer state formation probability, which decreases $Φ_{FF}$ and makes TTAUC less efficient (eq 1). Furthermore, solubility issues with high amounts of annihilator may come into play, especially in polymers and nanocarriers.7,32

It is further clear from Figure 3 that with high $ΔE_T$ values ($ΔE_T ≥ 4 k_B T$) and $τ_o^s$ above 200 μs, there are no additional benefits from even longer sensitizer triplet lifetimes.

Effect of Sensitizer Concentration and Lifetime on TTAUC Photon Rate Threshold. An increase in sensitizer concentration $[S_0]$ can improve the photon absorption rate threshold (eq 7) while keeping $Φ_{FFTTAUC}$ as high as possible. Indeed, a simultaneous increase in both $[S_0]$ and $τ_o^s$ should result in a dramatic increase in the sensitizer triplet state concentration. As a consequence, a decrease in $k_{photon(th)}$ values can be achieved. Keeping this consideration in mind, the response of TTAUC photon rate threshold to the changes in $τ_o^s$ and $[S_0]$ was simulated while keeping $ΔE_T$ fixed.

Figure 4a shows the dynamics of $k_{photon(th)}$ with respect to sensitizer triplet lifetime and total sensitizer concentration at $ΔE_T = 4 k_B T$. There is a slight improvement in photon rate threshold ($≈ 7.5$ vs 5 s$^{-1}$) upon changing the sensitizer triplet lifetime from 50 μs to 20 ms at $[S_0] = 100 μM$. However, three-fold increase in $[S_0]$ results in substantial decrease of the photon rate threshold for both $τ_o^s$ values ($≈ 3.36$ and 1.86 s$^{-1}$). This offers a way to further improve $k_{photon(th)}$. The same tendency occurs for simulations where $ΔE_T = 10 k_B T$ and 7 $k_B T$ were used (ESI). Albeit, the change in photon rate threshold with $τ_o^s$ becomes negligible for all three $ΔE_T$ values when the sensitizer lifetime exceeds 200 μs.

High triplet energy gaps $ΔE_T > 4 k_B T$ considerably limit the upconversion shift of emitted photons. Thus, a situation where $ΔE_T$ is close to 0 $k_B T$ is of a special interest. Notably, in this case, the reverse TTET effect may not be neglected a priori and must be always taken into account together with the sensitizer total concentration. Hence, a precise analysis of the photon rate threshold behavior with respect to the variations in the sensitizer triplet state lifetime and its total concentration was performed at energy gaps of 1, 0, and $-0.8 k_B T$ (Figure 4b–d).

Our modeling revealed that the $k_{photon(th)}$ dependence on $[S_0]$ and sensitizer lifetime is a parabolic surface with a distinct minimum.27 The minimum $k_{photon(th)}$ value depends strongly on the sensitizer triplet lifetime resulting in lower photon rate threshold for longer living sensitizers. This is particularly true in the case of a large sensitizer concentration. The $k_{photon(th)}$ initially decreases as sensitizer concentration and triplet lifetime increase due to generation of higher sensitizer triplet state concentrations and hence increased annihilator triplet state concentration through FTET. However, after reaching a minimum for $k_{photon(th)}$ with respect to the sensitizer concentration, a further increase in $[S_0]$ affects the $k_{photon(th)}$ values negatively. Overly high sensitizer concentrations quench the annihilator triplet states through reverse TTET process, thus increasing the apparent k_f rate constant, which is crucial for low power density threshold (eq 7).

The effect of reverse TTET becomes more pronounced for smaller triplet state energy gaps. For example, in the case of the sensitizer with 100 μs triplet lifetime at $ΔE_T = 1 k_B T$, the photon rate threshold of 17 s$^{-1}$ was reached at 167 μM sensitizer concentration. Meanwhile for $ΔE_T = 0$ and $ΔE_T = -0.8 k_B T$, the minimum $k_{photon(th)}$ value was 72 s$^{-1}$ and 295 s$^{-1}$ at $[S_0]$ of 41 μM and 13 μM, respectively. The $k_{photon(th)}$ values are higher and cannot be made smaller with larger sensitizer concentrations. This is in striking contrast with the scenario when a sensitizer with long living triplet state was simulated. The photon rate threshold dramatically improved with respect to the values obtained for short living sensitizers. Moreover, long living sensitizers allowed the utilization of higher total sensitizer concentration without a negative effect on the photon rate threshold. It is important to emphasize that sensitizers with long living triplet lifetimes and negative $ΔE_T$ values can work even better than a short living sensitizer with positive energy gaps. For long living sensitizers, the low photon rate thresholds can be reached at low $[S_0]$ concentrations even at negative triplet energy gaps. A precise analysis of the kinetic parameters for the sensitizer/annihilator pairs with $ΔE_T$ close to 0 $k_B T$ can be used to design functional and efficient TTAUC systems.

Further, we analyzed and compared the results of our simulations with our experimental data. First, we focused on the sensitizer/annihilator pair with the most unexpected result, namely ZnTPPOH/TBPer. Simulations performed at $ΔE_T = 1 k_B T$ and $ΔE_T = 0$ for a molecule with ZnTPPOH properties in
the presence of 3 mM of the annihilator showed $k_{\text{photon(th)}}$ values of 2 s$^{-1}$ and 2.5 s$^{-1}$ that corresponded to 58 and 73 mW/cm2, respectively (Figure 4b,c). These values disagree with the value of 260 mW/cm2 obtained for ZnTPPOH experimentally. Even at $\Delta E_T = -0.5$ kT, the simulated I_{th} for ZnTPPOH is 112 mW/cm2 (ESI). Only an energy gap of -0.8 kT (-0.02 eV) gives good agreement between the modeling and the experimental value. Taking this energy gap into account together with the 1.56 eV ZnTPPOH triplet state energy obtained from phosphorescence studies, TBPer triplet state energy of ≥ 1.58 eV was elucidated in PEG-OA mixture. This value is consistent with results of Northrop et al. and Hall et al. where 1.57 eV triplet energy for perylene was calculated.33,34 It also proves that efficient TTAUC process with high quantum yield is possible at negative ΔE_T, even though careful kinetic analysis is needed to ensure lowest I_{th} values by adjusting the concentrations.33,34 By using 1.58 eV TBPer triplet energy level, the energy gaps ΔE_T for PtTPPOH/TBPer and PdTPPOH/TBPer were calculated to be 10 kT and 7 kT, respectively. The experimentally determined porphyrin/TBPer energy gaps were used to simulate the threshold I_{th}. The values of 70 mW/cm2, 56 mW/cm2, and 255 mW/cm2 were obtained for PtTPPOH, PdTPPOH, and ZnTPPOH, respectively, which are in agreement with the experimental data (Table 1).

To prove the fact that reverse TTET is responsible for the high I_{th} value for ZnTPPOH/TBPer as predicted by our modeling, we have performed the power density dependence experiment with three-times lower ZnTPPOH concentration (OD$_{532}$ = 0.34) keeping 3 mM TBPer concentration. In the absence of reverse TTET, one may expect a rise in I_{th} value due to much lower optical density at the excitation wavelength and hence lower absorption coefficient $\alpha(\epsilon)$ according to eq 7. Remarkably, for lower ZnTPPOH concentration, we obtained lower I_{th} value (Figure 5), which is already comparable with I_{th} of PtTPPOH/TBPer pair with large ΔE_T. This photon rate threshold behavior of ZnTPPOH/TBPer is in agreement with the results obtained by using kinetic rate modeling (Figure 4c).

Indeed, high sensitizer triplet state concentration promotes the population of annihilator triplet state through FTET. On the other hand, in the case of ZnTPPOH/TBPer pair, the reverse TTET is enthalpy-driven, and hence, higher annihilator triplet state concentration makes RTTET more favorable. This leads to even faster consumption of annihilator triplets.35 Consequently, the sensitizer triplet states recover and annihilate with each other with no desired upconverted light generation (Scheme 1).30,31 Altogether, this requires higher I_{th} values to reach high Φ_{TTAUC} yields.

CONCLUSIONS

Triplet–triplet annihilation upconversion systems with large anti-Stokes shift, high Φ_{TTAUC} and low power density thresholds are highly desired. In excellent agreement with previous studies, our results indicate that high energy gap between a sensitizer and an annihilator triplet states (more than 4 kT) makes forward TTET process enthalpy-driven and diffusion-controlled. This combined with high Φ_{ISC}, long triplet lifetime, and high molecular extinction coefficient of a sensitizer at the excitation wavelength leads to high TTAUC yields and extremely low I_{th} values without any negative effects of high sensitizer concentrations.

However, large anti-Stokes shift is almost impossible for sensitizer/annihilator pairs with high ΔE_T. Even though there are sensitizers with thermally activated delayed fluorescence and strong singlet-to-triplet absorption bands that could solve this issue, their implementation in TTAUC is still limited due to the reverse ISC process.37–39 Thus, S/A pairs with low ΔE_T must be used to increase the upconversion shifts. In this case, reverse TTET can be controlled via total sensitizer concentration in the system. This is of vital importance for systems utilizing low viscosity medium and annihilators with long living triplet lifetimes, which are more sensitive to a reverse TTET process (see ESI). Hence, preference should be given to the sensitizers with higher molar extinction coefficients and longer triplet lifetimes to neglect the effect of reverse TTET on I_{th}. Moreover, sensitizers with long living triplet states are capable of performing efficient upconversion even at negative triplet energy gaps. Finally, kinetic rate modeling is a powerful tool in the optimization of power density thresholds and upconversion quantum yields by manipulating the concentrations of sensitizer and annihilator.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.9b08026.

Synthetic procedures and compounds characterization, details of photophysical measurements and calculations (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: nikita.durandin@tuni.fi.

ORCID

Alexander Efimov: 0000-0003-4671-3009

Elena Vuorimaa-Laukkonen: 0000-0002-3610-785X

Nikolai V. Tkachenko: 0000-0002-8504-2335

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by The Academy of Finland (Grant No. 316893), fellowship programme of the Centre for...
International Mobility (CIMO, decision TM-16-10063, Finland).

REFERENCES

(1) Parker, C. A.; Hatchard, C. G. Delayed Fluorescence from Solutions of Anthracene and Phenanthrene. Proc. R. Soc. A Math. Phys. Eng. Sci. 1962, 269, 574–584.
(2) Parker, C. A. Sensitized P-Type Delayed Fluorescence. Proc. R. Soc. A Math. Phys. Eng. Sci. 1963, 267, 125–135.
(3) Parker, C. A.; Hatchard, C. G.; Joyce, T. A. Selective and Mutual Sensitization of Delayed Fluorescence. Nature 1965, 205, 1282–1284.
(4) Schulze, T. F.; Schmidt, T. W. Photochemical Upconversion: Present Status and Prospects for Its Application to Solar Energy Conversion. Energy Environ. Sci. 2015, 8, 103–125.
(5) Li, C.; Koenigsman, C.; Deng, F.; Hagstrom, A.; Schmuttenmaer, C. A.; Kim, J.-H. Photocurrent Enhancement from Solid-State Triplet–Triplet Annihilation Upconversion of Low-Intensity. ACS Photonics 2016, 3, 784–790.
(6) Kim, J.-H.; Kim, J.-H. Encapsulated Triplet–Triplet Annihilation-Based Upconversion in the Aqueous Phase for Sub-Band-Gap Semiconductor Photocatalysis. J. Am. Chem. Soc. 2012, 134, 17478–17481.
(7) Askes, S. H. C.; Bahreman, A.; Bonnet, S. Activation of a Photodissociative Ruthenium Complex by Triplet–Triplet Annihilation: The C60 Plus Anthanthrene System and the Importance of Tuning the Triplet Energies. J. Phys. Chem. A 2011, 115, 5419–5427.
(8) Yanai, N.; Kimizuka, N. New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption. Acc. Chem. Res. 2017, 50, 2487–2495.
(9) Moor, K.; Kim, J.-H.; Snow, S.; Kim, J.-H. Fullerenesensitized Triplet–Triplet Annihilation Upconversion. Chem. Commun. 2013, 49, 10829–10831.
(10) Wu, M.; Congreve, D. N.; Wilson, M. W. B.; Jean, J.; Geva, N.; Welborn, M.; Van Voorhis, T.; Bulović, V.; Bawendi, M. G.; Baldo, M. A. Solid-State Infrared-to-Visible Upconversion Sensitized by Colloidal Nanocrystals. Nat. Photonics 2016, 10, 31–34.
(11) Askes, S. H. C.; Isokuortti, J.; Blumhoff, J.; Khnayzer, R. S.; Castellano, F. N. Getting to the (Square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear. J. Phys. Chem. Lett. 2012, 3, 299–303.
(12) Askes, S. H. C.; Pomp, W.; Hopkins, S. L.; Kros, A.; Vuorimaa-Laukkanen, E.; Tkachenko, N. V.; Laaksonen, T. Efficient Photon Upconversion at Remarkably Low Annihilator Concentrations in a Liquid Polymer Matrix: When Less Is More. Chem. Comm. 2018, 54, 14029–14032.
(13) Sandros, K.; et al. Transfer of Triplet State Energy in Fluid Solvents. Acta Chem. Scand. A 1964, 18, 2355–2374.
(14) Chandra, S. R.; Lallaband, S.; Tripathi, U.; Maque, R. G. W.; Steer, R. P. Efficient S2 State Production in ZnTPP–PMMA Thin Films by Triplet–Triplet Annihilation: Evidence of Solute Aggregation in Photon Upconversion Systems. Chem. Phys. Lett. 2009, 475, 220–222.
(15) Giri, N. K.; Ponce, C. P.; Steer, R. P.; Paige, M. F. Homomolecular Non-Coherent Photon Upconversion by Triplet-Triplet Annihilation Using a Zinc Polychrysin on Wide Bandgap Semiconductors. Chem. Phys. Lett. 2014, 598, 17–22.
(16) Askes, S. H. C.; Pomp, W.; Hopkins, S. L.; Kros, A.; Wu, S. Schmidt, T.; Bonnet, S. Imaging Upconverted Polymersomes in Cancer Cells: Biocompatible Antioxidants Brighten Triplet-Triplet Annihilation Upconversion. Small 2016, 12, 5579–5590.
(17) Northrop, D. C.; Simpson, O. Electronic Properties of Aromatic Hydrocarbons I. Electrical Conductivity. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1956, 234, 124–135.
(18) Hall, G. G.; Lennard-Jones, J. E. The Molecular Orbital Theory of Chemical Valency. XI. Bond Energies, Resonance Energies and of Chemical Valency. XI. Bond Energies, Resonance Energies and Interfaces ACS Appl. Mater. Interfaces 2016, 8, 24038–24048.
(19) Sugunan, S. K.; Greenwald, C.; Paige, M. F.; Steer, R. P. Efficiency of Noncoherent Photon Upconversion by Triplet–Triplet Annihilation: The C60 Plus Anthanthrene System and the Importance of Tuning the Triplet Energies. J. Phys. Chem. A 2013, 117, 5419–5427.
(20) Zhao, J.; Ji, S.; Guo, H. Triplet–Triplet Annihilation Based Upconversion: From Triplet Sensitizers and Triplet Acceptors to Upconversion Quantum Yields. RSC Adv. 2011, 1, 937–950.
(21) Yuan, N.; Barnick, N. New Triplet Sensitization Routes for Photon Upconversion: Thermally Activated Delayed Fluorescence Molecules, Inorganic Nanocrystals, and Singlet-to-Triplet Absorption. Acc. Chem. Res. 2017, 50, 2487–2495.
(22) Moor, K.; Kim, J.-H.; Snow, S.; Kim, J.-H. [C70] Fullerenesensitized Triplet–Triplet Annihilation Upconversion. Chem. Commun. 2013, 49, 10829–10831.
(23) Wu, M.; Congreve, D. N.; Wilson, M. W. B.; Jean, J.; Geva, N.; Welborn, M.; Van Voorhis, T.; Bulović, V.; Bawendi, M. G.; Baldo, M. A. Solid-State Infrared-to-Visible Upconversion Sensitized by Colloidal Nanocrystals. Nat. Photonics 2016, 10, 31–34.
(37) Wu, T. C.; Congreve, D. N.; Baldo, M. A. Solid State Photon Upconversion Utilizing Thermally Activated Delayed Fluorescence Molecules as Triplet Sensitizer. *Appl. Phys. Lett.* **2015**, *107*, No. 031103.

(38) Chen, W.; Song, F.; Tang, S.; Hong, G.; Wu, Y.; Peng, X. Red-to-Blue Photon up-Conversion with High Efficiency Based on a TADF Fluorescein Derivative. *Chem. Commun.* **2019**, *55*, 4375−4378.

(39) Amemori, S.; Sasaki, Y.; Yanai, N.; Kimizuka, N. Near-Infrared-to-Visible Photon Upconversion Sensitized by a Metal Complex with Spin-Forbidden yet Strong S0-T1 Absorption. *J. Am. Chem. Soc.* **2016**, *138*, 8702−8705.