Revisit of constraints on dark energy with Hubble parameter measurements including future redshift drift observations

Yan Liu, a Rui-Yun Guo, a Jing-Fei Zhang a and Xin Zhang a,b, 1

aDepartment of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
bMinistry of Education Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110819, China
cCenter for High Energy Physics, Peking University, Beijing 100080, China

E-mail: liuyanld@163.com, guoruiyun110@163.com, jfzhang@mail.neu.edu.cn, zhangxin@mail.neu.edu.cn

Received December 13, 2018
Revised April 21, 2019
Accepted April 29, 2019
Published May 13, 2019

1Corresponding author.
Abstract. We investigate whether the current Hubble parameter $H(z)$ measurements could help improve the constraints on dark energy on the basis of the mainstream cosmological probes including the type Ia supernovae (SN) observation, the cosmic microwave background anisotropies (CMB) observation, and the baryon acoustic oscillations (BAO) observation. For the current $H(z)$ data, we use 30 data points measured by using a differential age method. Furthermore, we also consider the future $H(z)$ measurements based on the Sandage-Loeb (SL) test by means of the E-ELT in construction, and thus we also use 30 simulated $H(z)$ data according to a 10-year SL test observation. In this work, we choose four typical dark energy models as examples, i.e., the ΛCDM model, the wCDM model, the αDE model, and the GCG model, to complete the analysis. We find that, when only the current $H(z)$ data are added, the constraints on these models are not improved compared to the cases using the SN+CMB+BAO data; but when further adding the 10-year SL test data, the constraint results are tremendously improved for all the four models. Therefore, we conclude that, although the current $H(z)$ measurements could not provide an evident improvement on the basis of the current mainstream cosmological probes, the future $H(z)$ measurements from the SL test would have enormous potential to change the status of the Hubble parameter measurements in constraining dark energy.

Keywords: dark energy experiments, dark energy theory

ArXiv ePrint: 1811.12131
1 Introduction

The accelerating expansion of the universe was discovered by two observation teams through the observations of type Ia supernovae [1, 2] and was subsequently confirmed by various other astronomical observations [3–6]. In order to explain the phenomenon of the cosmic acceleration, a new energy component in the universe, named dark energy, is proposed, which is assumed to be a source to produce negative pressure and can thus drive the cosmic acceleration [7–16]. The current observations reveal that dark energy contributes about 68% of the total energy in the universe. However, we actually know little about the nature of dark energy. To investigate the nature of dark energy, numerous dark energy models have been proposed.

The preferred candidate of dark energy is the so-called cosmological constant Λ, first introduced by Einstein, which is actually physically equivalent to the vacuum energy density. The cosmological constant Λ has an equation of state (EoS) $w_\Lambda = p_\Lambda/\rho_\Lambda = -1$, due to the fact that its corresponding density is a constant. The cosmological model with Λ and cold dark matter (CDM) is usually called the ΛCDM model, which is favored by the current cosmological observations, especially by the observation of the Planck satellite mission [17]. However, it has always been challenged by some theoretical problems, such as the fine-tuning and coincidence problems [18]. Thus, an important mission in cosmology is to probe if there is some dynamics in dark energy, which usually leads to an EoS of dark energy which deviates from -1 and evolves in time.

It is of great difficulty to measure the EoS $w(z)$ (with z being the redshift factor of the universe) of dark energy because $w(z)$ is not a direct observable. Actually, $w(z)$ has a fairly complex relationship with the observables in cosmology. To probe the expansion history of the universe, in practice one usually tries to establish a distance-redshift relation because the luminosity distance and the angular diameter distance are the most common observables in cosmology. However, these distances link to the EoS of dark energy by an
integral over $1/H(z)$ (with $H(z)$ being the Hubble parameter of the universe), and $H(z)$ is affected by dark energy through another integral over a factor involving $w(z)$. The current mainstream mature cosmological probes measuring the cosmic distances mainly include: type Ia supernovae (SN), cosmic microwave background (CMB), and baryon acoustic oscillations (BAO). By using these cosmological probes, the EoS of dark energy has been constrained to be in a precision of less than $\sim 4\%$ (assuming w is a constant) \cite{17}. The aim in the next decade is to measure the EoS of dark energy to be in a precision of less than $\sim 1\%$. Obviously, for constraining w, the measurements of the Hubble parameter at different redshifts are of vital importance, because there is only one integral between $H(z)$ and $w(z)$.

Although the measurements of $H(z)$ are a challenging mission in cosmology, through the great efforts of astronomers some $H(z)$ data have been accumulated. In the past decades, roughly 50 data points of $H(z)$ have been obtained by using two astrophysical methods, namely, the measurement of differential age of galaxies and the measurement of clustering of galaxies or quasars \cite{19–48}. These data points trace the cosmic expansion rate up to $z \approx 2$. Actually, there has been a proposal named Sandage-Loeb (SL) test \cite{49, 50}, which proposes measuring the redshift drifts for the quasars in the redshift range of $2 \lesssim z \lesssim 5$ (this range is also known as the “redshift desert”).\footnote{This is true for the measurements of the redshift drift with the European Extremely Large Telescope (E-ELT) by observing the Lyman-α absorption lines of quasars. We note here that observations at $z < 1$ will likely be realized by the Square Kilometre Array (SKA) \cite{51, 52} or 21 cm experiments such as CHIME \cite{53}. SKA will measure the redshift drift through the observations of neutral hydrogen (HI) emission signal of galaxies at two different epochs to a precision of one percent in the range of $0 < z < 1$ (for the SKA Phase 2 array) \cite{51, 52}. Thus, actually, E-ELT and SKA ideally complement each other because the E-ELT probes the deep matter era and the SKA probes the acceleration era. However, in this work, we only focus on the redshift drift measurements by the E-ELT, because our aim is to discuss how the high-redshift $H(z)$ measurements help break the parameter degeneracies formed by the low-redshift observations.} Through the SL test, in the future one would be capable of measuring $H(z)$ up to $z \sim 5$. These redshift-drift data would provide an important supplement to other observational data and play a fairly significant role in geometric measurements of the expansion of the universe. Recently, there have been a host of works discussing the future observations of the redshift drifts \cite{26, 28, 54–68}, showing that the simulated $H(z)$ data at high redshifts could help to break degeneracies among parameters by providing additional accurate information about $\Omega_m h^2$.

In this work, we wish to investigate if the current $H(z)$ data could help improve the constraints on dark energy on the basis of the mainstream cosmological probes (including SN, CMB, and BAO). Furthermore, we wish to show how the SL test (future measurements of the redshift drifts) changes the status of the Hubble parameter measurements in constraining dark energy.

We will employ some concrete dark energy models to complete such an analysis. There actually have been a lot of dark energy models in the research field of dark energy, but we of course cannot use them all to do the analysis, and we can only choose several typical models as examples to complete the analysis.

In a recent work by Yue-Yao Xu and Xin Zhang \cite{69}, a comparison was made for ten typical, popular dark energy models according to their capability of fitting the current observational data. They show \cite{69} that according to the capability of explaining the observations the ΛCDM model is still the best one among all the models; the generalized Chaplygin gas (GCG) model, the wCDM model (in which w is a constant), and the α dark energy (αDE) model are worse than the ΛCDM model, but still are good models compared to others; the holographic dark energy (HDE) model, the new generalized Chaplygin gas (NGCG) model,
and the Chevallier-Polarski-Linder (CPL) model can still fit the current observations well, but from the perspective of “Occam’s Razor”, they are not so good; and, the new agegraphic dark energy (NADE) model, the Dvali-Gabadadze-Porrati (DGP) model, and the Ricci dark energy (RDE) model are evidently excluded by the current observations. According to this analysis result, we decide to choose the ΛCDM model, the \(w \)CDM model, the \(\alpha \)DE model, and the GCG model as typical examples to make an analysis in the present work.

The structure of this paper is arranged as follows. In section 2, we present the analysis method and the observational data used in this work. In section 3, we report the constraint results and make relevant discussions. In section 4, we give the conclusion of this work.

2 Method and data

In this work, we will constrain the four typical dark energy models (the ΛCDM model, the \(w \)CDM model, the \(\alpha \)DE model, and the GCG model) by using several combinations of observational data sets, from which we wish to show: (1) whether the current \(H(z) \) data could help improve the constraints on dark energy on the basis of the mainstream cosmological probes including SN, CMB, and BAO, and (2) how the SL test changes the status of the Hubble parameter measurements in constraining dark energy. Therefore, we will use the three data combinations, i.e., SN+CMB+BAO, SN+CMB+BAO+\(H(z) \), and SN+CMB+BAO+\(H(z) \)+SL, in this work, where \(H(z) \) denotes the current \(H(z) \) data and SL denotes the future \(H(z) \) data from redshift-drift measurement of SL test simulated according to a 10-year observation.

In the following, we shall describe briefly these models and data considered in this work.

2.1 A brief description of the dark energy models

Though the four dark energy models have been discussed previously in the literature, in particular they have been uniformly constrained and compared in ref. [69], in this paper in order to be self-contained in the contents we will still make a brief description for them. In general, for the EoS of a dark energy \(w(z) \), the evolution of the Hubble parameter is expressed as \(E^2(z) \equiv H^2(z)/H^2_0 = \Omega_m(1+z)^3 + \Omega_r(1+z)^4 + (1-\Omega_m-\Omega_r) \exp[3 \int_0^z (1+w(z'))/(1+z')dz'] \), where \(\Omega_m \) and \(\Omega_r \) are the present-day fractional densities of matter and radiation, respectively, and a flat universe is assumed throughout this work.

In what follows we will directly give the expressions of \(E(z) \) for the specific dark energy models.

- ΛCDM model: although the cosmological constant \(\Lambda \) has been suffering the severe theoretical puzzles, it can explain the various observations quite well, and thus it is still the most promising candidate for dark energy. The cosmological constant has the EoS of \(w = -1 \), and thus we have

\[
E^2(z) = \Omega_m(1+z)^3 + \Omega_r(1+z)^4 + (1-\Omega_m-\Omega_r).
\]

(2.1)

- \(w \)CDM model: this model is the simplest case for a dynamical dark energy because the EoS of dark energy in this model is assumed to be a constant, i.e., \(w = \) constant. Although it is hard to believe that a constant EoS would correspond to the real physical situation, it can describe dynamical dark energy in a simple way. In this model, we have

\[
E^2(z) = \Omega_m(1+z)^3 + \Omega_r(1+z)^4 + (1-\Omega_m-\Omega_r)(1+z)^3(1+w).
\]

(2.2)
• αDE model: this model [70] is a phenomenological extension of the DGP model, in which the Friedmann equation is modified as \(3M_{\text{Pl}}^2 (H^2 - H^\alpha / r_c^2)^\alpha = \rho_m (1 + z)^3 + \rho_r (1 + z)^4 \), where \(\alpha \) is a phenomenological parameter, \(M_{\text{Pl}} \) is the reduced Planck mass, \(\rho_m \) and \(\rho_r \) are the present-day densities of matter and radiation, respectively, and \(r_c = (1 - \Omega_m - \Omega_r)^{1/(\alpha - 2)} H_0^{-1} \). In this model, \(E(z) \) is derived by solving the following equation
\[
E^2(z) = \Omega_m (1 + z)^3 + \Omega_r (1 + z)^4 + E^\alpha(z) (1 - \Omega_m - \Omega_r). \tag{2.3}
\]
Obviously, the model with \(\alpha = 1 \) reduces to the DGP model [71] and with \(\alpha = 0 \) reduces to the ΛCDM model.

• GCG model: this model has an exotic EoS, \(p_{\text{gcg}} = -A/\rho_{\text{gcg}}^\beta \), where \(A \) is a positive constant and \(\beta \) is a free parameter. The GCG behaves as a dust-like matter at the early times and behaves like a cosmological constant at the late times. In this model, we have
\[
E^2(z) = \Omega_b (1 + z)^3 + \Omega_r (1 + z)^4 + (1 - \Omega_b - \Omega_r) \left(A_s + (1 - A_s) (1 + z)^{3(1+\beta)} \right)^{1/(1+\beta)}, \tag{2.4}
\]
where \(A_s \equiv A/\rho_{\text{gcg}0}^{1+\beta} \) is a dimensionless parameter, \(\rho_{\text{gcg}0} \) is the present-day density of GCG, and \(\Omega_b \) is the present-day density of baryon matter. Actually, the GCG model can be viewed as a model of vacuum energy interacting with cold dark matter with the interaction term \(Q = 3\beta H \rho_A \rho_c / (\rho_A + \rho_c) \), where \(\rho_A \) and \(\rho_c \) are the energy densities of vacuum energy and cold dark matter. Thus, the GCG model with \(\beta = 0 \) reduces to the ΛCDM model and with \(\beta = 1 \) reduces to the original Chaplygin gas model.

2.2 Current observations for cosmic distances

2.2.1 SN data

We use the “joint light-curve analysis” (JLA) compilation [72] of type Ia supernovae in this work. It consists of 740 type Ia supernovae data, which are obtained by SDSS-II and SNLS collaborations. The peak luminosity of SN observation is correlated to stretch and color, so the distance modulus could be written as
\[
\mu = m_B^* - (M_B - \alpha \times X_1 + \beta \times C), \tag{2.5}
\]
where \(m_B^* \) is the peak magnitude of observation in a rest-frame B-band, \(M_B \) is absolute magnitude of a SN Ia, \(X_1 \) and \(C \) are the time stretching of light curve and the supernova color at maximum brightness, respectively, and coefficients \(\alpha \) and \(\beta \) are the linear corrections, respectively, for stretch and color [72]. The luminosity distance \(d_L \) of a supernova can be calculated by
\[
d_L(z) = \frac{1 + z}{H_0} \int_0^z \frac{dz'}{E(z')}, \tag{2.6}
\]
where \(E(z) = H(z)/H_0 \) with \(H_0 \) being the Hubble constant. The \(\chi^2 \) function for SN observation is written as
\[
\chi^2_{\text{SN}} = (\hat{\mu} - \mu_{\text{th}})^T C_{\text{SN}}^{-1} (\hat{\mu} - \mu_{\text{th}}), \tag{2.7}
\]
where \(C_{\text{SN}} \) is the covariance matrix of the SN observation [72], and the theoretical distance modulus \(\mu_{\text{th}} \) can be calculated by
\[
\mu_{\text{th}} = 5 \log_{10} \frac{d_L}{10 \text{pc}}. \tag{2.8}
\]
2.2.2 CMB data

For the CMB data, we utilize the “Planck distance priors” from the Planck 2015 data [73]. The shift parameter R and the “acoustic scale” ℓ_A can be given by

\begin{equation}
R \equiv \sqrt{\Omega_m H_0^2} (1 + z_*) D_A(z_*),
\end{equation}

\begin{equation}
\ell_A \equiv (1 + z_*) \frac{\pi D_A(z_*)}{r_s(z_*)},
\end{equation}

where Ω_m denotes the present-day fractional energy density of matter, z_* is the redshift at the decoupling epoch of photons, $D_A(z_*)$ denotes the angular diameter distance at the redshift z_*, and $r_s(z_*)$ denotes the comoving sound horizon at the redshift z_*. In a flat universe, D_A can be expressed as

\begin{equation}
D_A(z) = \frac{1}{H_0 (1 + z)} \int_0^z \frac{dz'}{E(z')},
\end{equation}

and $r_s(z)$ can be expressed as

\begin{equation}
r_s(z) = \frac{1}{\sqrt{3} H_0} \int_z^\infty \frac{dz'}{(1 + z') E(z') \sqrt{1 + (3 \Omega_b/4 \Omega_\gamma)(1 + z')^{-1}}},
\end{equation}

where Ω_b and Ω_γ are the present-day baryon energy density and the present-day photon energy density, respectively. We take $3 \Omega_b/4 \Omega_\gamma = 31500 \Omega_b h^2 (T_{\text{cmb}}/2.7 \text{K})^{-4}$, with $T_{\text{cmb}} = 2.7255 \text{K}$. z_* is given by [74]

\begin{equation}
z_* = 1048 [1 + 0.00124 (\Omega_b h^2)^{-0.738}] [1 + g_1 (\Omega_m h^2)^{g_2}],
\end{equation}

where

\begin{equation}
g_1 = 0.0783 (\Omega_b h^2)^{-0.238} / (1 + 39.5 (\Omega_b h^2)^{-0.76}) \text{, } g_2 = 0.560 / (1 + 21.1 (\Omega_b h^2)^{1.81}).
\end{equation}

From the Planck TT+LowP data, the three values of the distance priors can be obtained: $R = 1.7488 \pm 0.0074$, $\ell_A = 301.76 \pm 0.14$, and $\Omega_b h^2 = 0.02228 \pm 0.00023$ [73]. The χ^2 function for CMB is

\begin{equation}
\chi^2_{\text{CMB}} = \Delta p_i [\text{Cov}^{-1}_{\text{CMB}}(p_i, p_j)] \Delta p_j, \text{ } \Delta p_i = p_i^{\text{obs}} - p_i^{\text{th}},
\end{equation}

where $p_1 = \ell_A$, $p_2 = R$, $p_3 = \Omega_b h^2$, and Cov$^{-1}_{\text{CMB}}$ is the inverse covariance matrix that can be found in ref. [73].

2.2.3 BAO data

Using the BAO measurements, we can obtain the ratio of the effective distance measure $D_V(z)$ and the comoving sound horizon size $r_s(z_d)$. The spherical average gives us the expression of $D_V(z)$,

\begin{equation}
D_V(z) \equiv \left[(1 + z)^2 D_A^2(z) \frac{z}{H(z)} \right]^{1/3}.
\end{equation}

The comoving sound horizon size $r_s(z_d)$ is given by eq. (2.12), where z_d is the redshift of the drag epoch and its fitting formula is given by [75]

\begin{equation}
z_d = \frac{1291 (\Omega_m h^2)^{0.251}}{1 + 0.659 (\Omega_m h^2)^{0.828}} [1 + (\Omega_b h^2)^{b_2}],
\end{equation}

\begin{equation}
\frac{1291 (\Omega_m h^2)^{0.251}}{1 + 0.659 (\Omega_m h^2)^{0.828}} [1 + (\Omega_b h^2)^{b_2}],
\end{equation}
for BAO is the drag epoch in a fiducial cosmology. For convenience, we give the values of the distance D and evolution of early-type galaxies. In 2014, Zhang et al. [82] obtained 4 data points from.

H_0 combining the chromometer method. The method was proposed by Jimenez and Loeb in 2002 [79] and then measuring the differential age (DA) of galaxies, which is called the DA method or the cosmic chromometer method. According to the second equal sign in eq. (2.20), we can get the ω of galaxies, and thus $r_{d,fid}$ is the sound horizon size of the drag epoch in a fiducial cosmology. For convenience, we give the values of the distance ratio $r_d/D_v(z_{eff})$ or $D_v(z_{eff})/r_d$ from the BAO measurements in Table 1. The χ^2 function for BAO is

$$\chi^2_{BAO} = \sum_{i=1}^{4} \frac{(\xi_{i,obs} - \xi_{i,th})^2}{\sigma_i^2},$$

where ξ_{th} and ξ_{obs} are, respectively, the theoretically predicted value and the corresponding experimentally measured value for the ith point of the BAO observation, and σ_i is the standard deviation of the ith point.

2.3 Hubble parameter observations

2.3.1 Current $H(z)$ data

In recent years, enormous efforts have been made in the measurements of $H(z)$ data. By definition, the Hubble parameter can be expressed as

$$H(z) = \frac{\dot{a}}{a} = -\frac{1}{1+z} \frac{dz}{dt},$$

where a and \dot{a} are the cosmic scale factor and its rate of change with the cosmic time t, respectively.

According to the second equal sign in eq. (2.20), we can get the $H(z)$ data by measuring the differential age (DA) of galaxies, which is called the DA method or the cosmic chromometer method. The method was proposed by Jimenez and Loeb in 2002 [79] and then the first $H(z)$ measurement at $z \approx 1$ was made in 2003 [80].

We adopt 30 data points obtained from the DA method in this work. Concretely, Stern et al. [81] provided 11 $H(z)$ data points covering the redshift range $0.1 < z < 1.75$ in 2010 and discussed the role of the direct $H(z)$ measurements in constraining dark energy parameters by combining the $H(z)$ data with CMB data. In 2012, Moresco et al. [19] reported 8 $H(z)$ data points covering the redshift range $0.15 < z < 1.1$ obtained via the differential spectroscopic evolution of early-type galaxies. In 2014, Zhang et al. [82] obtained 4 data points from

z_{eff}	$r_d/D_v(z_{eff}) = 0.336 \pm 0.015$	6dFGS	[76]
0.15	$D_v(z_{eff})/r_d = 4.466 \pm 0.168$	SDSS-DR7	[77]
0.32	$D_v(z_{eff})/r_d = 8.467 \pm 0.167$	BOSS-DR11	[78]
0.57	$D_v(z_{eff})/r_d = 13.773 \pm 0.134$	BOSS-DR11	[78]

Table 1. Values of the distance ratio $\xi(z_{eff}) = r_d/D_v(z_{eff})$ or $D_v(z_{eff})/r_d$ from the BAO measurements.

where

$$b_1 = 0.313(\Omega_m h^2)^{-0.419}[1 + 0.607(\Omega_m h^2)^{0.674}],$$

$$b_2 = 0.238(\Omega_m h^2)^{0.223}.$$

(2.18)
Table 2. The Hubble parameter values $H(z)$ from the measurements of differential age of galaxies. Here $H(z)$ and $\sigma_{H(z)}$ are in units of $\text{km s}^{-1}\text{Mpc}^{-1}$.

z	$H(z)$	$\sigma_{H(z)}$	Reference
0.07	69.0	19.6	[29]
0.1	69.0	12.0	[30]
0.12	68.6	26.2	[29]
0.17	83.0	8.0	[30]
0.179	75.0	4.0	[19]
0.1993	75.0	5.0	[19]
0.2	72.9	29.6	[29]
0.27	77.0	14.0	[30]
0.28	88.8	33.6	[29]
0.3519	83.0	14.0	[19]
0.3802	83.0	13.5	[84]
0.4	95.0	17.0	[30]
0.4004	77.0	10.2	[19]
0.4247	87.1	11.2	[19]
0.4497	92.8	7.8	[84]
0.4783	80.9	9.0	[84]
0.48	97.0	60.0	[30]
0.5929	104.0	13.0	[19]
0.6797	92.0	8.0	[19]
0.7812	105.0	12.0	[19]
0.8754	125.0	17.0	[19]
0.88	90.0	40.0	[30]
0.9	117.0	23.0	[30]
1.037	154.0	20.0	[19]
1.3	168.0	17.0	[30]
1.363	160.0	33.6	[83]
1.43	177.0	18.0	[30]
1.53	140.0	14.0	[30]
1.75	202.0	40.0	[30]
1.965	186.5	50.4	[83]

luminous red galaxies (LRGs) of Sloan Digital Sky Survey Data Release Seven (SDSS DR7) at the redshift range of $0 < z < 0.4$, and they also combined these four data with previous $H(z)$ data to constrain both the flat and non-flat ΛCDM models. About one years later, Moresco [83] presented 2 data points on the basis of previous dataset, and utilized these data to estimate the improvement of accuracy on cosmological parameters in the ΛCDM model and the wCDM model, finding an about 5% improvement of Ω_m and w_0. In addition, in 2016 Moresco et al. [84] enriched the dataset again with five new model-independent $H(z)$ measurements around the redshift $z \sim 0.45$ (in a narrow range) by using the cosmic chronometer approach. For convenience, we list these $H(z)$ data in table 2.
In the current literature [21, 23, 24, 28, 85, 86], these 30 data points have been used to estimate the accuracies of cosmological parameters in the ΛCDM and wCDM models, which provide constraints on dark energy comparable to or better than those provided by SN data. Note here that in this paper we do not adopt the $H(z)$ data compilation from the measurement of clustering of galaxies or quasars (simply called the “clustering” method). The main reason is that some authors have questioned that these data are not totally model-independent and thus cannot be adopted in cosmological parameter constraints [87–96]. In addition, in this paper we also use the 4 data from BAO observation, which is overlapping with the $H(z)$ data from the “clustering” method.

The χ^2 function of $H(z)$ is given by

$$
\chi^2_{H(z)} = \sum_{i=1}^{N} \frac{[H^{\text{th}}(z_i) - H^{\text{obs}}(z_i)]^2}{\sigma^2_{H(z_i)}},
$$

(2.21)

where H^{th} and H^{obs} are the theoretical value in a cosmological model and the measured value of $H(z)$, respectively, and $\sigma_{H(z_i)}$ is the standard deviation of the i-th data point.

2.3.2 Future $H(z)$ data from SL test

We also use the future SL test observation (simulated data). The method was proposed by Sandage in 1962 in order to directly probe the dynamics of the expansion [49]. Furthermore, it was improved in 1998 by Loeb who suggested a possible scheme by decades-long observation of the redshift variation of distant quasars (QSOs) Lyman-α absorption lines [50]. With the continuous development of spectroscopy in the near future, the CODEX experiment (COsmic Dynamics EXperiment) proposed for E-ELT will be capable of accessing the redshift range of $z \in [2, 5]$ [67]. Thus, a new “cosmological window” will be opened by the SL test.

In order to generate the mock data of SL test, we adopt the scheme accordant with our previous papers [26, 28, 56–58, 68, 97]. The redshift variation, which is the main observable, is usually expressed as a spectroscopic velocity shift [50],

$$
\Delta v = \Delta z = H_0 \Delta t_o \left[\frac{1}{1 + z} \right],
$$

(2.22)

where Δt_o is the observer’s time interval, and $E(z) = H(z)/H_0$ can be determined by specific cosmological models. According to Monte Carlo simulations carried out to Lyman-α absorption lines from CODEX, the standard deviation on Δv can be estimated as [67]

$$
\sigma_{\Delta v} = 1.35 \left(\frac{2370}{S/N} \right) \left(\frac{N_{\text{QSO}}}{30} \right)^{-1/2} \left(\frac{1 + z_{\text{QSO}}}{5} \right)^x \text{ cm s}^{-1},
$$

(2.23)

where x is 1.7 for $2 \leq z \leq 4$ and 0.9 for $z \geq 4$, $S/N = 3000$ is spectral signal-to-noise ratio of Lyman-α, and N_{QSO} and z_{QSO} are the number and redshift of observed quasars, respectively. In this work, we simulate 30 $H(z)$ data within the redshift range of $z \in [2, 5]$ in a 10-year observation of redshift drift. These mock SL test data are uniformly distributed over six redshift bins of $z_{\text{QSO}} \in [2, 5]$. The fiducial cosmology for the SL simulated data is chosen to be the best fit result of the analysis of the data combination of SN+CMB+BAO+$H(z)$.
test can effectively break the degeneracies between Ω in particular for the GCG model. In addition, we find that these mock data combination can lead to a tremendous improvement for the constraints on these models, energy models, and further adding the 10-year SL mock data to the SN+CMB+BAO, SN+CMB+BAO+$H(z)$ results are significantly improved over other two cases, showing that the future SL mock data are added to the SN+CMB+BAO+$H(z)$ data combination, indicating that the current SL test will have important potential to change the status of the Hubble parameter measurements in constraining dark energy.

Table 3

Parameter	SN+CMB+BAO	SN+CMB+BAO+$H(z)$	SN+CMB+BAO+$H(z)+$SL			
w	-1 (fixed)	$-0.964^{+0.034}_{-0.035}$	-1 (fixed)	$-0.969^{+0.036}_{-0.031}$	-1 (fixed)	$-0.965^{+0.032}_{-0.034}$
Ω_m	$0.322^{+0.008}_{-0.007}$	$0.327^{+0.008}_{-0.009}$	$0.325^{+0.008}_{-0.009}$	$0.322^{+0.005}_{-0.005}$	$0.325^{+0.005}_{-0.005}$	
h	$0.668^{+0.005}_{-0.006}$	$0.662^{+0.008}_{-0.008}$	$0.669^{+0.006}_{-0.005}$	$0.664^{+0.007}_{-0.008}$	$0.669^{+0.004}_{-0.004}$	$0.663^{+0.006}_{-0.006}$

Results and discussion

We constrain the ΛCDM, wCDM, αDE, and GCG models by using the data combinations of SN+CMB+BAO, SN+CMB+BAO+$H(z)$, and SN+CMB+BAO+$H(z)+$SL. The detailed fit results are presented in Table 3 with the 1σ errors quoted. From Table 3, we find that, the constraint results from the SN+CMB+BAO+$H(z)$ data combination are very similar with those from the SN+CMB+BAO data combination, indicating that the current $H(z)$ data could not help improve the constraints on dark energy on the basis of the current cosmological observations (measuring the distance-redshift relation). But when the 10-year SL mock data are added to the SN+CMB+BAO+$H(z)$ data combination, the constraint results are significantly improved over other two cases, showing that the future $H(z)$ data from the SL test will have important potential to change the status of the Hubble parameter measurements in constraining dark energy.

In order to visually see the improvements of the parameter constraints with the addition of the current $H(z)$ data and the 10-year SL mock data, respectively, we present the constraints (1σ and 2σ CL) on the ΛCDM, wCDM, αDE, and GCG models by using the SN+CMB+BAO, SN+CMB+BAO+$H(z)$, and SN+CMB+BAO+$H(z)+$SL data in figures 1 and 2. From the two figures, we clearly see that adding the current $H(z)$ data to the SN+CMB+BAO data combination could not improve the constraints on the four dark energy models, and further adding the 10-year SL mock data to the SN+CMB+BAO+$H(z)$ data combination can lead to a tremendous improvement for the constraints on these models, in particular for the GCG model. In addition, we find that these mock $H(z)$ data from SL test can effectively break the degeneracies between Ω_m and other parameters, in particular between Ω_m and β for the GCG model. Note that here the constraints from the 10-year SL mock data alone are not shown, because the SL data alone can only give rather weak constraints on dark energy models. Although the constraints from the SL data alone are very weak, they are still rather helpful in breaking the parameter degeneracies since the degeneracy directions formed by them in the parameter planes are different from those formed by the SN+CMB+BAO+$H(z)$ data. For the relevant issue, we refer the reader to see figure 2.
Figure 1. Constraints (1σ and 2σ CL) on the ΛCDM, w_{CDM}, αDE, and GCG models in the Ω_m-h plane by using the SN+CMB+BAO, SN+CMB+BAO+$H(z)$, and SN+CMB+BAO+$H(z)$+SL data.

of ref. [56] and figure 4 of ref. [57], where the constraints on the ΛCDM and w_{CDM} models from the 30-year SL mock data alone are shown.

With the purpose of quantifying the constraint improvements from the current $H(z)$ data and the 10-year SL mock data, we list the constraint errors for the ΛCDM, w_{CDM}, αDE, and GCG models by using the SN+CMB+BAO, SN+CMB+BAO+$H(z)$, and SN+CMB+BAO+$H(z)$+SL data in table 4. We calculate the error as $\sigma = [(\sigma_+^2 + \sigma_-^2)/2]^{1/2}$, where σ_+ and σ_- correspond to the 1σ deviation for upper and lower limits, respectively. Furthermore, for a parameter ξ, its constraint precision $\varepsilon(\xi)$ is defined as $\varepsilon(\xi) = \sigma(\xi)/\xi_{bf}$, where ξ_{bf} is the best-fit value of ξ. In table 5, we also present the constraint precisions of parameters of the four models by using the SN+CMB+BAO, SN+CMB+BAO+$H(z)$, and SN+CMB+BAO+$H(z)$+SL data.

From table 4, we find that, with the addition of the current $H(z)$ data, the constraint errors of parameters are extremely close to those calculated from the SN+CMB+BAO data (without the current $H(z)$ data). But, when the 10-year SL mock data are combined to the SN+CMB+BAO+$H(z)$ data, the constraint errors of these parameters are greatly reduced. In other words, the current $H(z)$ data do not improve the constraints, but the 10-year SL mock data can obviously improve the constraints on dark energy in the four models.

Similarly, we show the constraint precisions of parameters for the ΛCDM, w_{CDM}, αDE, GCG models in table 5. We see that, with the addition of the current $H(z)$ data, slight improvement is generated for the constraint precisions of parameters in the four models. When further adding the 10-year SL mock data to the SN+CMB+BAO+$H(z)$ data, the constraint precisions of parameters are tremendously improved for the four dark energy
Figure 2. Constraints (1σ and 2σ CL) on the $w_{\Lambda \text{CDM}}$, α_{DE}, and GCG models from the SN+CMB+BAO, SN+CMB+BAO+$H(z)$, and SN+CMB+BAO+$H(z)$+SL data. We show the two-dimensional marginalized contours in the $\Omega_m - w$ plane for $w_{\Lambda \text{CDM}}$, in the $\Omega_m - \alpha$ plane for α_{DE}, in the $\Omega_m - \beta$ and $A_s - \beta$ planes for GCG.

Table 4. Constraint errors of cosmological parameters in the ΛCDM, w_{CDM}, α_{DE}, and GCG models by using the SN+CMB+BAO, SN+CMB+BAO+$H(z)$, and SN+CMB+BAO+$H(z)$+SL data.

models. Concretely, the precision of Ω_m is improved from 2.5% to 1.6% for ΛCDM, from 2.8% to 1.5% for w_{CDM}, from 2.5% to 1.5% for α_{DE}, and from 7.0% to 1.7% for GCG. For the parameter h, the constraint precision is improved from 0.9% to 0.6% for ΛCDM, from 1.2% to 0.9% for w_{CDM}, from 1.2% to 0.8% for α_{DE}, and from 1.2% to 0.6% for GCG. In the w_{CDM} model, the precision of w is improved from 3.5% to 3.4%; in the
Table 5. Constraint precisions of cosmological parameters in the ΛCDM, wCDM, αDE, and GCG models by using the SN+CMB+BAO, SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL data.

Precision	SN+CMB+BAO	SN+CMB+BAO+H(z)	SN+CMB+BAO+H(z)+SL
ε(w)	−0.036	−0.035	−0.034
ε(Ω_m)	0.025	0.028	0.016
ε(Ω_m)	0.009	0.012	0.009
ε(α)	1.000	0.947	1.008
ε(β)	−1.422	−1.550	−0.574
ε(A_0)	−0.038	−0.036	−0.009
ε(Ω_m)	0.028	0.072	0.015
ε(h)	0.012	0.012	0.008

GCG model, the precision of A_0 is improved from 3.6% to 0.9% and the precision of $β$ is improved from 155.0% to 57.4%. For the parameter $β$ in the GCG model, its constraint result approaches 0, indicating that the ΛCDM limit of the GCG model is more favored by the observational data ($β \sim -0.04$ from SN+CMB+BAO, SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL). Obviously, this is due to the fact that the fiducial cosmology for the SL simulated data is chosen to be the same of the best fit of the SN+BAO+CMB+H(z) analysis and therefore the SL mock data can only tighten constraints around this cosmology. Note that $β = 0$ is the ΛCDM limit and $β = 1$ is the pure Chaplygin gas limit of the GCG model, and $β$ is not necessarily a positive number. We see that for the GCG model the error of $β$ is reduced by 56.5% and for the αDE model the error of $α$ is reduced by 5.55% once the 10-year SL data are considered. Therefore, we conclude that the current $H(z)$ data do not help improve the constraints on dark energy on the basis of the SN+CMB+BAO combination, but the 10-year SL data would significantly improve the constraints on dark energy on the basis of the SN+CMB+BAO+H(z) combination.

4 Conclusion

In this work, we wish to investigate whether the current $H(z)$ measurements could help improve the constraints on dark energy on the basis of the mainstream cosmological probes (namely SN+CMB+BAO). We consider 30 $H(z)$ data measured using the DA method. Furthermore, we also consider the future redshift drift measurements (i.e., the SL test) by means of the E-ELT that is still in construction. We thus simulate 30 future $H(z)$ data from the 10-year redshift-drift observation. Thus, the second aim of this work is to investigate how the SL test changes the status of the Hubble parameter measurements in constraining dark energy. To fulfill the task, we employ several concrete dark energy models, including the ΛCDM, wCDM, αDE, and GCG models, which are still favored by the current observations, at least to some extent.

We first use the data combination of SN+CMB+BAO to constrain the four dark energy models, and then we consider the addition of the current 30 $H(z)$ data in the data combination, i.e., we use the data combination of SN+CMB+BAO+H(z) to constrain the models.
We find that the current $H(z)$ data actually could not help improve the constraints on dark energy on the basis of the current mainstream cosmological probes (SN+CMB+BAO). Furthermore, we consider 30 mock SL test data simulated according to a 10-year observation in the data combination. By using the data combination SN+CMB+BAO+$H(z)$+SL, we find that compared to the case of SN+CMB+BAO+$H(z)$, the constraints on cosmological parameters are tremendously improved for all the four dark energy models. For example, with the help of the 10-year SL observation, the constraint on Ω_m is improved by about 40%–75% and the constraint on H_0 is improved by about 25%–50%. We find that the degeneracies between cosmological parameters could be effectively broken by the 10-year SL test data. Therefore, we conclude that although the current $H(z)$ measurements could not improve the constraints on dark energy on the basis of the mainstream cosmological probes, the future redshift-drift observation will provide a good chance to change the status of the Hubble parameter measurements in constraining dark energy.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875102, 11835009, 11522540, and 11690021) and the Top-Notch Young Talents Program of China.

References

[1] Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [insPIRE].
[2] Supernova Cosmology Project collaboration, Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [insPIRE].
[3] WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175 [astro-ph/0302209] [insPIRE].
[4] WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1 [astro-ph/0302207] [insPIRE].
[5] SDSS collaboration, Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 (2004) 103501 [astro-ph/0310723] [insPIRE].
[6] SDSS collaboration, The Second data release of the Sloan digital sky survey, Astron. J. 128 (2004) 502 [astro-ph/0403325] [insPIRE].
[7] V. Sahni and A.A. Starobinsky, The Case for a positive cosmological Lambda term, Int. J. Mod. Phys. D 9 (2000) 373 [astro-ph/9904398] [insPIRE].
[8] T. Padmanabhan, Cosmological constant: The Weight of the vacuum, Phys. Rept. 380 (2003) 235 [hep-th/0212290] [insPIRE].
[9] P.J.E. Peebles and B. Ratra, The Cosmological constant and dark energy, Rev. Mod. Phys. 75 (2003) 559 [astro-ph/0207347] [insPIRE].
[10] E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep-th/0603057] [insPIRE].
[11] V. Sahni and A. Starobinsky, Reconstructing Dark Energy, Int. J. Mod. Phys. D 15 (2006) 2105 [astro-ph/0610026] [insPIRE].
[12] J. Frieman, M. Turner and D. Huterer, Dark Energy and the Accelerating Universe, Ann. Rev. Astron. Astrophys. 46 (2008) 385 [arXiv:0803.0982] [inspire].

[13] M. Li, X.-D. Li, S. Wang and Y. Wang, Dark Energy, Commun. Theor. Phys. 56 (2011) 525 [arXiv:1103.5870] [inspire].

[14] K. Bamba, S. Capozziello, S. Nojiri and S.D. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci. 342 (2012) 155 [arXiv:1205.3421] [inspire].

[15] D.H. Weinberg, M.J. Mortonson, D.J. Eisenstein, C. Hirata, A.G. Riess and E. Rozo, Observational Probes of Cosmic Acceleration, Phys. Rept. 530 (2013) 87 [arXiv:1201.2434] [inspire].

[16] M.J. Mortonson, D.H. Weinberg and M. White, Dark Energy: A Short Review, arXiv:1401.0046 [inspire].

[17] PLANCK collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [inspire].

[18] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1 [inspire].

[19] M. Moresco et al., Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers, JCAP 08 (2012) 006 [arXiv:1201.3609] [inspire].

[20] O. Farooq and B. Ratra, Constrains on dark energy from the Lyα forest baryon acoustic oscillations measurement of the redshift 2.3 Hubble parameter, Phys. Lett. B 723 (2013) 1 [arXiv:1212.4264] [inspire].

[21] O. Farooq and B. Ratra, Hubble parameter measurement constraints on the cosmological deceleration-acceleration transition redshift, Astrophys. J. 766 (2013) L7 [arXiv:1301.5243] [inspire].

[22] O. Farooq, S. Crandall and B. Ratra, Binned Hubble parameter measurements and the cosmological deceleration-acceleration transition, Phys. Lett. B 726 (2013) 72 [arXiv:1305.1957] [inspire].

[23] C.-H. Chuang and Y. Wang, Modeling the Anisotropic Two-Point Galaxy Correlation Function on Small Scales and Improved Measurements of H(z), D_A(z) and β(z) from the Sloan Digital Sky Survey DR7 Luminous Red Galaxies, Mon. Not. Roy. Astron. Soc. 435 (2013) 255 [arXiv:1209.0210] [inspire].

[24] Y. Chen and B. Ratra, Hubble parameter data constraints on dark energy, Phys. Lett. B 703 (2011) 406 [arXiv:1106.4294] [inspire].

[25] E. Gaztañaga, A. Cabré and Lam Hui, Clustering of Luminous Red Galaxies IV: Baryon Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z), Mon. Not. Roy. Astron. Soc. 399 (2009) 1663 [arXiv:0807.3551] [inspire].

[26] J.-J. Geng, R.-Y. Guo, A. Wang, J.-F. Zhang and X. Zhang, Prospect for cosmological parameter estimation using future Hubble parameter measurements, Commun. Theor. Phys. 70 (2018) 445 [arXiv:1806.10735] [inspire].

[27] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space, Mon. Not. Roy. Astron. Soc. 469 (2017) 3762 [arXiv:1607.03154] [inspire].

[28] R.-Y. Guo and X. Zhang, Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations, Eur. Phys. J. C 76 (2016) 163 [arXiv:1512.07703] [inspire].
[29] C. Zhang, H. Zhang, S. Yuan, T.-J. Zhang and Y.-C. Sun, *Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven*, Res. Astron. Astrophys. 14 (2014) 1221 [arXiv:1207.4541] [SPIRE].

[30] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski and S.A. Stanford, *Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements*, JCAP 02 (2010) 008 [arXiv:0907.3149] [SPIRE].

[31] X. Xu, A.J. Cuesta, N. Padmanabhan, D.J. Eisenstein and C.K. McBride, *Measuring D_A and H at z = 0.35 from the SDSS DR7 LRGs using baryon acoustic oscillations*, Mon. Not. Roy. Astron. Soc. 431 (2013) 2834 [arXiv:1206.6732] [SPIRE].

[32] C. Blake et al., *The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1*, Mon. Not. Roy. Astron. Soc. 425 (2012) 405 [arXiv:1204.3674] [SPIRE].

[33] A.L. Ratsimbazafy et al., *Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope*, Mon. Not. Roy. Astron. Soc. 467 (2017) 3239 [arXiv:1702.00418] [SPIRE].

[34] L. Anderson et al., *The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring D_A and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample*, Mon. Not. Roy. Astron. Soc. 439 (2014) 83 [arXiv:1303.4666] [SPIRE].

[35] BOSS collaboration, *Quasar-Lyman α Forest Cross-Correlation from BOSS DR11: Baryon Acoustic Oscillations*, JCAP 05 (2014) 027 [arXiv:1311.1767] [SPIRE].

[36] BOSS collaboration, *Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars*, Astron. Astrophys. 574 (2015) A59 [arXiv:1404.1801] [SPIRE].

[37] J. Simon, L. Verde and R. Jimenez, *Constraints on the redshift dependence of the dark energy potential*, Phys. Rev. D 71 (2005) 123001 [astro-ph/0412269] [SPIRE].

[38] T.-J. Zhang and C. Ma, *Constraints on the Dark Side of the Universe and Observational Hubble Parameter Data*, Adv. Astron. 2010 (2010) 184284 [arXiv:1010.1307] [SPIRE].

[39] O. Farooq, D. Mania and B. Ratra, *Hubble parameter measurement constraints on dark energy*, Astrophys. J. 764 (2013) 138 [arXiv:1211.4253] [SPIRE].

[40] O. Farooq and B. Ratra, *Constraints on dark energy from the Lyα forest baryon acoustic oscillations measurement of the redshift 2.3 Hubble parameter*, Phys. Lett. B 723 (2013) 1 [arXiv:1212.4264] [SPIRE].

[41] F. Melia and R.S. Maier, *Cosmic Chronometers in the R_h = ct Universe*, Mon. Not. Roy. Astron. Soc. 432 (2013) 2669 [arXiv:1304.1802] [SPIRE].

[42] Y.-L. Li, S.-Y. Li, T.-J. Zhang and T.-P. Li, *Model-independent determination of curvature parameter by using H(z) and D_A(z) data pairs from BAO measurements*, Astrophys. J. 789 (2014) L15 [arXiv:1404.0773] [SPIRE].

[43] V. Sahni, A. Shafieloo and A.A. Starobinsky, *Model independent evidence for dark energy evolution from Baryon Acoustic Oscillations*, Astrophys. J. 793 (2014) L40 [arXiv:1406.2209] [SPIRE].

[44] Y. Chen, C.-Q. Geng, S. Cao, Y.-M. Huang and Z.-H. Zhu, *Constraints on a φCDM model from strong gravitational lensing and updated Hubble parameter measurements*, JCAP 02 (2015) 010 [arXiv:1312.1443] [SPIRE].

[45] C.-G. Park and B. Ratra, *Measuring the Hubble constant and spatial curvature from supernova apparent magnitude, baryon acoustic oscillation and Hubble parameter data*, arXiv:1809.03598 [SPIRE].
[46] C.-G. Park and B. Ratra, *Using the tilted flat-ΛCDM and the non-flat ΛCDM inflation models to measure cosmological parameters from a compilation of observational data*, arXiv:1801.00213 [inSPIRE].

[47] C.-G. Park and B. Ratra, *Observational constraints on the tilted flat-XCDM and the untilted non-flat XCDM dynamical dark energy inflation parameterizations*, arXiv:1803.05522 [inSPIRE].

[48] C.-G. Park and B. Ratra, *Observational constraints on the tilted spatially-flat and the untilted nonflat ϕCDM dynamical dark energy inflation models*, Astrophys. J. 868 (2018) 83 [arXiv:1807.07421] [inSPIRE].

[49] A. Sandage, *The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes*, Astrophys. J. 136 (1962) 319.

[50] A. Loeb, *Direct Measurement of Cosmological Parameters from the Cosmic Deceleration of Extragalactic Objects*, Astrophys. J. 499 (1998) L111 [astro-ph/9802122] [inSPIRE].

[51] H.-R. Klöckner et al., *Real time cosmology — A direct measure of the expansion rate of the Universe with the SKA*, PoS(AASKA14)027 [arXiv:1501.03822] [inSPIRE].

[52] C.J. A.P. Martins, M. Martinelli, E. Calabrese and M.P. L.P. Ramos, *Real-time cosmography with redshift derivatives*, Phys. Rev. D 94 (2016) 043001 [arXiv:1606.07261] [inSPIRE].

[53] H.-R. Yu, T.-J. Zhang and U.-L. Pen, *Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems*, Phys. Rev. Lett. 113 (2014) 041303 [arXiv:1311.2363] [inSPIRE].

[54] R. Lazkoz, I. Leanizbarrutia and V. Salzano, *Forecast and analysis of the cosmological redshift drift*, Eur. Phys. J. C 78 (2018) 11 [arXiv:1712.07555] [inSPIRE].

[55] J.-J. Geng, J.-F. Zhang and X. Zhang, *Parameter estimation with Sandage-Loeb test*, JCAP 12 (2014) 018 [arXiv:1407.7123] [inSPIRE].

[56] J.-J. Geng, J.-F. Zhang and X. Zhang, *Sandage-Loeb test for the new agegraphic and Ricci dark energy models*, Phys. Lett. B 691 (2010) 11 [arXiv:1006.1738] [inSPIRE].

[57] M. Martinelli, S. Pandolfi, C.J. A.P. Martins and P.E. Vielzeuf, *Probing dark energy with the Sandage-Loeb test*, Phys. Rev. D 86 (2012) 123001 [arXiv:1210.7166] [inSPIRE].

[58] Z. Li, K. Liao, P. Wu, H. Yu and Z.-H. Zhu, *Probing modified gravity theories with the Sandage-Loeb test*, Phys. Rev. D 88 (2013) 023003 [arXiv:1306.5932] [inSPIRE].
[85] X.-W. Duan, M. Zhou and T.-J. Zhang, Testing consistency of general relativity with kinematic and dynamical probes, arXiv:1605.03947 [inSPIRE].

[86] J. Magana, M.H. Amante, M.A. Garcia-Aspeitia and V. Motta, The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and type-IA supernova data, Mon. Not. Roy. Astron. Soc. 476 (2018) 1036 [arXiv:1706.09848] [inSPIRE].

[87] K. Liao, S. Cao, J. Wang, X.-L. Gong and Z.-H. Zhu, Observational constraints on unified dark matter including Hubble parameter data, Phys. Lett. B 710 (2012) 17 [arXiv:1205.0972] [inSPIRE].

[88] K. Liao, Y. Pan and Z.-H. Zhu, Observational constraints on new generalized Chaplygin gas model, Res. Astron. Astrophys. 13 (2013) 159 [arXiv:1210.5021] [inSPIRE].

[89] F. Melia, The High-z Quasar Hubble Diagram, JCAP 01 (2014) 027 [arXiv:1312.5798] [inSPIRE].

[90] Y. Chen, C.-Q. Geng, C.-C. Lee, L.-W. Luo and Z.-H. Zhu, Constraints on the exponential f(R) model from latest Hubble parameter measurements, Phys. Rev. D 91 (2015) 044019 [arXiv:1407.4303] [inSPIRE].

[91] Z. Li, J.E. Gonzalez, H. Yu, Z.-H. Zhu and J.S. Alcaniz, Constructing a cosmological model-independent Hubble diagram of type-IA supernovae with cosmic chronometers, Phys. Rev. D 93 (2016) 043014 [arXiv:1504.03269] [inSPIRE].

[92] F. Melia and T.M. McClintock, A Test of Cosmological Models using high-z Measurements of H(z), Astron. J. 150 (2015) 119 [arXiv:1507.08279] [inSPIRE].

[93] R.-G. Cai, Z.-K. Guo and T. Yang, Null test of the cosmic curvature using H(z) and supernovae data, Phys. Rev. D 93 (2016) 043517 [arXiv:1509.06283] [inSPIRE].

[94] C. Blake et al., The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1, Mon. Not. Roy. Astron. Soc. 425 (2012) 405 [arXiv:1204.3674] [inSPIRE].

[95] J.E. Bautista et al., Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Lyα-Forests, Astron. Astrophys. 603 (2017) A12 [arXiv:1702.00176] [inSPIRE].

[96] O. Farooq, F.R. Madiyar, S. Crandall and B. Ratra, Hubble Parameter Measurement Constraints on the Redshift of the Deceleration–acceleration Transition, Dynamical Dark Energy and Space Curvature, Astrophys. J. 835 (2017) 26 [arXiv:1607.03537] [inSPIRE].

[97] J.-J. Geng, Y.-H. Li, J.-F. Zhang and X. Zhang, Redshift drift exploration for interacting dark energy, Eur. Phys. J. C 75 (2015) 356 [arXiv:1501.03874] [inSPIRE].