CLASSIFICATION OF POISSON SURFACES
CLAUDIO BARTOCCI AND Emanuele Macrì

Abstract. We study complex projective surfaces admitting a Poisson structure; we prove a classification theorem and count how many independent Poisson structures there are on a given Poisson surface.

1. Introduction

The notion of Poisson manifold naturally arises within the framework of analytical mechanics. We briefly recall that a Poisson structure on a C^∞ manifold M is given by a bilinear skew-symmetric bracket $\{\cdot,\cdot\}$ defined on the sheaf of functions \mathcal{C}^∞_M, such that
\[
\begin{align*}
\{f,g\} &= -\{g,f\}; \\
\{f,\{g,h\}\} + \{g,\{h,f\}\} + \{h,\{f,g\}\} &= 0 \text{ (Jacobi identity)}; \\
\{f,gh\} &= \{f,g\}h + \{f,h\}g.
\end{align*}
\]

As it was pointed out by Lichnerowicz [8], the assignment of a Poisson bracket is equivalent to the assignment of a skew-symmetric bilinear form on the cotangent bundle T^*M, i.e., a global section $\Pi \in \Gamma(M, \Lambda^2 TM)$, satisfying the condition
\[
[[\Pi, \Pi]] = 0,
\]
where $[\cdot, \cdot] : \Gamma(M, \Lambda^2 TM) \otimes \Gamma(M, \Lambda^2 TM) \to \Gamma(M, \Lambda^3 TM)$ is the Schouten-Nijenhuis bracket [12]. Any symplectic manifold (M, ω) carries a canonical Poisson structure, given by $\Pi(\alpha, \beta) = \omega(X_\alpha, X_\beta)$ where $i(X_\alpha)\omega = \alpha$ and $i(X_\beta)\omega = \beta$; the condition $[[\Pi, \Pi]] = 0$ is ensured by $d\omega = 0$.

The definition of Poisson structure extends in a natural fashion to complex manifolds. In particular, on a complex surface X any (holomorphic) global section σ of the anticanonical bundle $\mathcal{O}_X(-K_X) = \Lambda^2 TX$ gives rise to a (holomorphic) Poisson structure, since the condition $[\sigma, \sigma] = 0$ is automatically satisfied.

AMS Subject Classification: 14J26, 53D17
Complex Poisson surfaces play a major role in the theory of algebraically completely integrable Hamiltonian systems. Indeed, as was proved in [3, 4, 11], the choice of a Poisson bivector on a surface X determines natural Poisson structures both on the moduli space of stable sheaves on X and on the Hilbert scheme of points of X. By using this construction, under suitable hypotheses, it is possible to associate an integrable system to a linear system defined on a Poisson surface, generalizing the results obtained by Beauville for linear systems on K3 surfaces [2]. Important examples, like the Neumann system, the Hitchin system, etc., can be obtained in this way [7, 13].

It is quite immediate to get convinced that a projective Poisson surface can be only an abelian, or a K3 or a ruled surface. (By “ruled surface” we mean any projective surface birationally equivalent to $C \times \mathbb{P}^1$, where C is a smooth curve). However, not every ruled surface admits a Poisson structure. The following classification theorem holds.

Theorem 1.1. Let X be a minimal ruled surface over the curve C of genus g, determined by a normalized rank two vector bundle V over C. Let $e = -\text{deg}V$.

1) If $g = 0$, then X is a Poisson surface.

2) If $g = 1$, then
 • if $e = -1$, X does not admit any Poisson structure;
 • if $e \geq 0$, X is a Poisson surface.

3) If $g \geq 2$, then
 • if $-g \leq e \leq 2g - 3$, X does not admit any Poisson structure;
 • if $e = 2g - 2$ and V is indecomposable, X is a Poisson surface;
 • if $e = 2g - 2$ and V is decomposable, or $2g - 2 < e \leq 3g - 3$, X is a Poisson surface if and only if $-K_C - \Lambda^2V$ is effective;
 • if $e \geq 3g - 2$, X is a Poisson surface.

This theorem can be obtained as a corollary of Sakai’s results about the anti-Kodaira dimension of ruled surfaces [10]. However, Sakai’s proof cannot be adapted to answer an important question: how many independent Poisson structures are there on a given ruled Poisson surface? In this note we provide a new (and completely elementary) proof of Theorem 1.1 in Corollary 2.1 and Corollary 2.2 we compute, whenever it is possible, the dimension of $H^0(X, O_X(-K_X))$.

Related results about $| - mK_X |$, for an integer $m \geq 1$, can be found in [3].
2. Classification theorem

Let X be a smooth projective surface over \mathbb{C} endowed with a (nontrivial) Poisson structure, namely a nonzero section β of $\mathcal{O}_X(-K_X)$. Let D be the divisor associated to β; from the exact sequence

$$0 \to \mathcal{O}_X(K_X) \to \mathcal{O}_X \to \mathcal{O}_D \to 0,$$

it follows that the Kodaira dimension of X has to be equal either to 0 or to $-\infty$ (see e.g. [3, Prop. 2.3]). In the first case, X is a K3 or an Abelian surface, and the canonical bundle is trivial: thus, the Poisson structure is induced by a (holomorphic) symplectic structure on X. If $\text{kod}X = -\infty$, Enriques' theorem implies that X is a ruled surface. We notice that, since the section β does not vanish on the open subset $X \setminus D$, the inverse of the Poisson bivector is a symplectic form on $X \setminus D$. In other words, $X \setminus D$ is the unique symplectic leaf of the foliation determined by Π [12]. In particular, it follows that Poisson structures on projective surfaces have no nontrivial Casimir (holomorphic) functions.

Example 2.1. Let C be a smooth curve. The cotangent bundle T^*C carries a canonical symplectic form $\Omega = d\theta$, where θ is the Liouville one-form. Denoting by Q the total space of T^*C, it follows that Q is a non-compact symplectic surface. It is easy to show that Q can be embedded as an open set into the ruled surface $X = \mathbb{P}(\mathcal{O}_C \oplus \mathcal{O}_C(K_C))$. X is a Poisson surface and Q a symplectic leaf.

It is obvious, however, that not every ruled surface carries a Poisson structure. For instance, the anticanonical bundle of the surface $X = C \times \mathbb{P}^1$ has no nonzero sections unless $g(C) \leq 1$.

In order to classify the ruled surfaces admitting Poisson structures, we have first to understand what happens when a Poisson surface X is blown-up at a point p.

Lemma 2.1. Let $\rho : \tilde{X} \to X$ the blow-up at the point $p \in X$. Then

$$h^0(X, \mathcal{O}_X(-K_X)) - 1 \leq h^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(-K_{\tilde{X}})) \leq h^0(X, \mathcal{O}_X(-K_X)),$$

and $h^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(-K_{\tilde{X}})) = h^0(X, \mathcal{O}_X(-K_X))$ if and only if p is a base point of $|-K_X|$.
Proof
Let E be the exceptional divisor. Since ρ is an isomorphism on $\tilde{X} \setminus E$, any Poisson bracket on \tilde{X} induces a Poisson bracket on X by Hartogs’ theorem; this proves the right inequality in (1). Since $-K_{\tilde{X}} \cdot E > 0$, any section $\beta \in H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(-K_{\tilde{X}}))$ coming from a section $\tilde{\beta} \in H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(-K_{\tilde{X}}))$ passes through the point p. Conversely, if β passes through the point p, then $-K_{\tilde{X}} \sim \rho^* D$, where D is the divisor associated to β, and therefore $-K_{\tilde{X}}$ is effective.

We can now restrict our attention to minimal ruled surfaces. We shall freely use the results and notations in [6], Chap. V, §2.

If $q(X) = 0$, then X is \mathbb{P}^2 or the rational ruled surface \mathbb{F}_n, with $n \neq 1$. In both cases, a straightforward computation shows that $h^0(X, \mathcal{O}_X(-K_X)) \geq 9$.

Proposition 2.1. Any minimal ruled surface X with $q(X) = 0$ is a Poisson surface.

When $q(X) \geq 1$, then $\pi : X \to C$ is a geometrically ruled surface, with $g(C) = q(X)$. We can assume $X = \mathbb{P}(V)$, where V is rank 2 vector bundle on C such that $H^0(C, V) > 0$ and $H^0(C, V \otimes M) = 0$ for every line bundle M of negative degree. We shall say that such an V is normalized. Under this hypothesis, there exists a section $\tau : C \to X$ such that $\tau^2 = \deg V =: -e$; we have $\mathcal{O}_X(\tau) \cong \mathcal{O}_X(1)$ and so $V = R^0 \pi_* \mathcal{O}_X(\tau)$. There are some restrictions on the possible values of the invariant e [9, 6]:

1) if $V \cong \mathcal{O}_C \oplus L$, then $e \geq 0$;
2) if V is indecomposable, then $-g \leq e \leq 2g - 2$.

Moreover, all these values are admissible.

Any normalized vector bundle V over the curve C fits into an exact sequence

\begin{equation}
0 \to \mathcal{O}_C \to V \to L \to 0,
\end{equation}

where L is a line bundle over C; we have $L \cong \Lambda^2 V$. Let \mathcal{L} be the divisor on C corresponding to L; it is easy to show that

\begin{equation}
-K_X \sim 2\tau + \pi^*(-K_C - \mathcal{L}).
\end{equation}

By the projection formula, we obtain

\begin{equation}
H^0(X, \mathcal{O}(-K_X)) \cong H^0(C, S^2(V) \otimes L^*(-K_C)).
\end{equation}
Lemma 2.2. There is an exact sequence of vector bundles over C:
\begin{equation}
0 \to V \otimes L^\wedge(-K_C) \to S^2(V) \otimes L^\wedge(-K_C) \to L(-K_C) \to 0.
\end{equation}

Proof Let us consider the exact sequence
\begin{equation*}
0 \to \mathcal{O}_X(1) \to \mathcal{O}_X(2) \to \mathcal{O}_X(2) \otimes \mathcal{O}_\tau \to 0;
\end{equation*}
since $R^1\pi_*(\mathcal{O}_X(1)) = 0$ (see [6], Chap. V, Lemma 2.4), we get the exact sequence
\begin{equation*}
0 \to V \to S^2(V) \to L \otimes L \to 0.
\end{equation*}
The result follows by tensoring this sequence by the line bundle $L^\wedge(-K_C)$. \qed

Remark 2.1. By using the exact sequence (5) it is an easy exercise to compute the number of independent Poisson structures on the surfaces F_n (in this case, the invariant e coincides with n):
- if $X = F_0 \cong \mathbb{P}^1 \times \mathbb{P}^1$, then $h^0(X, \mathcal{O}(-K_X)) = 9$;
- if $X = F_2$, then $h^0(X, \mathcal{O}(-K_X)) = 9$;
- if $X = F_n, n \geq 3$, then $h^0(X, \mathcal{O}(-K_X)) = n + 6$.
\qed

We recall a useful criterion of ampleness that we shall exploit in the proof of Proposition 2.3.

Proposition 2.2.
1) If $e \geq 0$, a divisor $D \equiv a\tau + bf$ is ample if and only if $a > 0$ and $b > ae$.
2) If $e < 0$, a divisor $D \equiv a\tau + bf$ is ample if and only if $a > 0$ and $b > \frac{1}{2}ae$.
\qed

Theorem 2.1. Let X be a minimal ruled surface with $q(X) = 1$.
1) If $e = -1$, X does not admit any Poisson structure;
2) if $e \geq 0$, X is a Poisson surface.

Proof
If $e = 0$, we have to distinguish 3 cases: V indecomposable, $V = \mathcal{O}_C \oplus \mathcal{O}_C$ and $V = \mathcal{O}_C \oplus L$ with $L \not\cong \mathcal{O}_C$ (recall that V is normalized). If V is indecomposable,
then, as shown in Theorem V.2.15 of [3], it is uniquely determined by the exact sequence

\[(6) \quad 0 \to \mathcal{O}_C \to V \to \mathcal{O}_C \to 0.\]

Since the sequence (6) does not split, we have \(h^0(C, V) = 1\). The long exact cohomology sequence associated to the exact sequence (6) is

\[(7) \quad 0 \to H^0(C, V) \to H^0(C, S^2(V)) \to \mathbb{C} \to \mathbb{C} \to H^1(C, S^2(V)) \to \mathbb{C} \to 0.\]

Now, \(S^2(V)\) is indecomposable (see [1] Th. 9), so that one has \(h^0(C, S^2(V)) = h^0(X, \mathcal{O}(-K_X)) = 1\). The case \(V = \mathcal{O}_C \oplus \mathcal{O}_C\), corresponding to \(X = C \times \mathbb{P}^1\), is trivial; we have

\[H^0(X, \mathcal{O}(-K_X)) \cong H^0(C, \mathcal{O}_C) \otimes H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(2)),\]

hence, \(h^0(X, \mathcal{O}(-K_X)) = 3\). If \(V = \mathcal{O}_C \oplus L\) with \(L \not\cong \mathcal{O}_C\), then \(h^0(C, L) = h^1(C, L^\ast) = 0\). From the exact sequence

\[0 \to L^\ast \to V \otimes L^\ast \to \mathcal{O}_C \to 0,\]

we get \(H^0(C, V \otimes L^\ast) \cong H^0(C, \mathcal{O}_C) \cong \mathbb{C}\). By using again the sequence (6), it follows \(h^0(X, \mathcal{O}(-K_X)) = 1\).

If \(e > 0\), then \(V\) is decomposable: \(V \cong \mathcal{O}_C \oplus L\), with \(\deg L < 0\). By reasoning as in the previous case, we get \(h^0(X, \mathcal{O}(-K_X)) = e + 1\).

Finally, if \(e = -1\), then \(V\) is uniquely determined by the exact sequence

\[(8) \quad 0 \to \mathcal{O}_C \to V \to \mathcal{O}_C(P) \to 0,\]

where \(P\) is a point of \(C\). Dualizing the sequence (6), we get at once that \(V^\ast \cong V \otimes \mathcal{O}_C(-P)\). Now, \(V\) is indecomposable, of rank 2 and degree 1; so, by [1] Lemma 22, one has \(V \otimes V^\ast \cong \oplus_{i=0}^{3} \Xi_i\), where the \(\Xi_i\) are the line bundles on \(C\) of order dividing 2 (in particular, we set \(\Xi_0 \cong \mathcal{O}_C\)). An easy computation shows that \(S^2(V) \otimes \mathcal{O}_C(-P) \cong \oplus_{i=1}^{3} \Xi_i\). One concludes that \(h^0(X, \mathcal{O}(-K_X)) = h^0(C, S^2(V) \otimes \mathcal{O}_C(-P)) = 0\).

\[\square\]

Corollary 2.1. Let \(X\) be a minimal ruled surface with \(q(X) = 1\).

1) If \(e = 0\) and \(V = \mathcal{O}_C \oplus \mathcal{O}_C\) (hence \(X \cong \mathbb{P}^1 \times C\)), then \(h^0(X, \mathcal{O}_X(-K_X)) = 3\);
2) if \(e = 0\) and \(V\) is indecomposable, then \(h^0(X, \mathcal{O}_X(-K_X)) = 1\);
3) if \(e = 0\) and \(V = \mathcal{O}_C \oplus L\), with \(L \not\cong \mathcal{O}_C\), then \(h^0(X, \mathcal{O}_X(-K_X)) = 1\);
4) if \(e \geq 1\), then \(h^0(X, \mathcal{O}_X(-K_X)) = e + 1\).
It follows from the proof of Theorem 2.1 that, for a ruled surface over an elliptic curve, it may happen that the divisor
\(-L\) corresponding to
\(-\Lambda^2V\) is not effective while
\(-K_X \sim 2\tau + \pi^*(-L)\) is effective. This is not the case when
g(C) > 1, as we shall prove in the following Proposition, which can be rephrased as follows: the divisor
\(-K_X \sim 2\tau + \pi^*(-K_C - L)\) is effective if and only if
\(-K_C - L\) is effective, where \(L\) is the divisor corresponding to the line bundle \(\Lambda^2V\).

Proposition 2.3. Let \(\pi : X \to C\) be a minimal ruled surface with \(q(X) = g(C) > 1\). Then,
\(h^0(X, O_X(-K_X)) = h^0(C, L^*(-K_C))\).

Proof. From the exact sequence (5) we obtain:

\[
0 \to H^0(C, V \otimes L^*(-K_C)) \to H^0(C, S^2(V) \otimes L^*(-K_C)) \to H^0(C, L(-K_C)).
\]

Now, \(\deg L(-K_C) = -e - 2g + 2\); since \(-e \leq g\), one has \(\deg L(-K_C) < 0\) in all cases except when \(g = 2, e = -2\). So, for \(g \geq 3\) and for \(g = 2, e \neq -2\), we get

\(h^0(C, V \otimes L^*(-K_C)) = h^0(C, S^2(V) \otimes L^*(-K_C)).\)

The exact sequence (2) implies \(h^0(C, V \otimes L^*(-K_C)) = h^0(C, L^*(-K_C))\); thus, by (1) we get
\(h^0(X, O_X(-K_X)) = h^0(C, L^*(-K_C)).\) To deal with the missing case \(g = 2, e = -2\), we use the criterion in Proposition 2.2: the divisor \(\tau\) is ample. But, \(-K_X \cdot \tau = 0\), so \(-K_X\) is not effective. This ends the proof.

We can make the previous statement somewhat more precise. By noticing that if \(e = 2g - 2\) and \(V\) is indecomposable, then \(h^1(C, L^*) \neq 0\), hence
\(h^0(C, L(K_C)) \neq 0\), it is indeed easy to prove the following result.

Corollary 2.2. Let \(X\) be a minimal ruled surface with \(q(X) = g \geq 2\).

1) If \(-g \leq e \leq 2g - 3\), \(X\) does not admit any Poisson structure;
2) if \(e = 2g - 2\) and \(V\) is indecomposable, \(X\) is a Poisson surface;
3) if \(e = 2g - 2\) and \(V\) is decomposable, or \(2g - 2 < e \leq 3g - 3\), \(X\) is a Poisson surface if and only if
\(-K_C - \Lambda^2V\) is effective;
4) if \(e \geq 3g - 2\), \(X\) is a Poisson surface.

We recall that, whenever \(2g - 2 < e \leq 3g - 3\), the vector bundle \(V\) is decomposable.
Acknowledgements. C.B. acknowledges the financial support of the MIUR and the University of Genova through the national research project “Geometria dei sistemi integrabili”. The authors thank the referee for useful remarks, and Arnauld Beauville for having drawn Sakai’s paper to their attention after the first draft of this paper was completed.

References

[1] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452.
[2] A. Beauville, Systèmes hamiltoniens complètement intégrables associés aux surfaces K3, in: Problems in the theory of surfaces and their classification (Cortona, 1988), Sympos. Math. 32, Academic Press 1991, pp. 25-31.
[3] F. Bottacin, Poisson structures on moduli spaces of sheaves over Poisson surfaces, Invent. Math. 121 (1995), 421-436.
[4] F. Bottacin, Poisson structures on Hilbert schemes of points of a surface and integrable systems, Manuscripta Math. 97 (1998), 517-527.
[5] I. Dolgachev and D.-Q. Zhang, Coble rational surfaces, Amer. J. Math. 123 (2001), 79-114.
[6] R. Hartshorne, Algebraic Geometry, GTM 49, Springer-Verlag, New York 1977.
[7] J.C. Hurtubise, Integrable systems and algebraic surfaces, Duke Math. J. 83 (1996), 19-50; Erratum, ibid. 84 (1996), 815.
[8] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300.
[9] M. Nagata, On self-dual intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970), 191-196.
[10] F. Sakai, Anti-Kodaira dimension of ruled surfaces, Sci. Rep. Saitama Univ. 2 (1982), 1-7.
[11] A.N. Tyurin, Symplectic structures on the varieties of vector bundles on algebraic surfaces with $p_g > 0$, Math. USSR-Izv. 33 (1989), 139-177.
[12] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics 118, Birkhäuser, Basel 1994.
[13] P. Vanhaecke, Integrable systems in the realm of algebraic geometry, LNM 1638, Springer-Verlag, New York 1996.

Claudio Bartocci
Dipartimento di Matematica
Università degli Studi di Genova
Via Dodecaneso 35
16146 Genova, ITALY
E-mail: bartocci@dima.unige.it
Emanuele Macrì
Scuola Internazionale di Studi Superiori Avanzati (SISSA)
Via Beirut 2-4
34014 Trieste, ITALY
E-mail: macri@sissa.it