ORIGINAL ARTICLE / ARTÍCULO ORIGINAL

NEMATODES PARASITES OF RHINELLA JIMI (STEVAUX, 2002) (ANURA: BUFONIDAE) IN AREAS OF CAATINGA, NORTHEASTERN BRAZIL

NEMÁTODOS PARÁSITOS DE RHINELLA JIMI (STEVAUX, 2002) (ANURA: BUFONIDAE) EN ÁREAS DE CAATINGA, NORDESTE DE BRASIL

ABSTRACT

Keywords: Helminth – Neotropical – Oswaldocruzia lopesi – Rhabdias – toads – Semiarid

Amphibians harbor a wide variety of parasites, acting as paratenic, intermediary and definitive hosts. Actually, just 8% of Brazilian amphibians have been investigated regarding associated helminths. Herein, we analyzed 20 specimens of the toad Rhinella jimi Stevaux, 2002 from Ceará and Rio Grande do Norte states. Seven taxa of nematodes were found infecting R. jimi (Oswaldocruzia lopesi Travassos, 1938, Raillietnema spectans Gomes, 1964, Physaloptera sp., Parapharyngodon sp., Rhabdias sp., Cosmocercidae, and Unidentified Nematoda larvae). All nematode species are new records for R. jimi. These results expand the Nematode records for R. jimi as well as increase knowledge of the diversity of parasites in anurans in South America.

RESUMEN

Palabras clave: Helmintos – Neotropical – Oswaldocruzia lopesi – Rhabdias – sapos – semiárido

Los anfibios hospedan una amplia variedad de parásitos, sea de forma temporal (hospedero paraténico), intermediaria o definitiva. Solamente un 8% de los anfibios en Brasil han sido investigados con relación a sus helmintos asociados, por lo que en este trabajo analizamos 20 especímenes de Rhinella jimi Stevaux, 2002 colectados en los estados de Ceará y Rio Grande do Norte, en la región Nordeste de Brasil. Siete taxones de nematodos se encontraron infectando individuos de R. jimi (Oswaldocruzia lopesi Travassos, 1938, Raillietnema spectans Gomes, 1964, Physaloptera sp., Parapharyngodon sp., Rhabdias sp., Cosmocercidae, y una larva no identificada). Todas las especies encontradas representan nuevos registros de parásitos para R. jimi, resultado que amplía los registros de nematodos para esta especie, así como aumentan el conocimiento de la diversidad de parásitos en anuros para América del Sur.
INTRODUCTION

Amphibians harbor a wide variety of parasites, acting as paratenic, intermediary and definitive hosts (Santos et al., 2013; Campião et al., 2014; Teles et al., 2018). Environmental characteristics, different patterns of life cycles and reproductive strategies are the main factors influencing helminth infection in amphibians (Aho, 1990; Campião et al., 2012; 2014; Toledo et al., 2017; Sena et al., 2018).

Brazil has the highest diversity of amphibians in the world, especially in anurans with 1040 species (Segalla et al., 2016). Most studies on helminths infecting amphibians in South America are from Brazilian species (Santos et al., 2013; Campião et al., 2014; Martins-Sobrinho et al., 2017; Teles et al., 2018). However, only 8% of Brazilian amphibians have been studied so far regarding helminth associated (Santos et al., 2013; Campião et al., 2014; Teles et al., 2018).

Rhinella jimi (Stevaux, 2002) is a widespread bufonid inhabiting Caatinga areas from Northeastern Brazil (Stevaux, 2002; Loebman & Roberto & Loebmann, 2016, Segalla et al., 2016). The species is also found frequently in rural and urban areas, being an opportunistic feeder of insects and small vertebrates (Moreira & Barreto, 1996; Stevaux, 2002), and status of conservation least concern (LC) according to the IUCN (2019).

According to Campião et al. (2014) and Müller et al. (2018), only six species of helminths have been reported for *R. jimi*: the trematode *Gorgoderina rochalimae* Dobin Jr., 1957 and the nematodes *Aplectana membranosa* Schneider, 1866; *Miranda, 1924*, *Oswaldocruzia subauricularis* Rudolphi, 1819; *Rhabdias fuelleborni* Travassos, 1926, *Rhabdias sphaerocephala* Goodey, 1924 and *Rhabdias pseudosphaerocephala* Kuzmin et al., 2007. Herein, we present data on nematodes infection in the toad *Rhinella jimi* from areas of Caatinga of two Brazilian states.

MATERIAL AND METHODS

We analyzed a total of 20 specimens of *R. jimi*, being 5 adult males (mean snout-vent length (SVL) = 108.34 ± 38.92), 2 adult females (mean SVL = 99.59 ± 41.30) and 13 juveniles (mean SVL = 66.60 ± 15.65). Specimens were collected manually from 2006 to 2014, in eight municipalities on Ceará state: Aiuaba (n=2) (06° 36′ S, 40° 07′ W), Acopiara (n=1) (6° 5′ S, 39° 27′ W), Caucaia (n=1) (3° 44′ S, 38° 39′ W), Barbalha (n=2) (7° 18′ S, 39° 18′ W), Farias Brito (n=1) (06° 55′ S 39° 33′ W), Santana do Cariri (n=1) (7° 11′ S, 39° 44′ W), Nova Olinda (n=5) (7° 34′ S, 39° 4′ W), and Brejo Santo (n=1) (7° 29′ S, 38° 58′ W); Additionally, six specimens from the municipality of João Câmara (05° 33′ S, 35° 56′ W) in the state of Rio Grande do Norte were also examined. Caatinga covers these areas with a semiarid climate (IDEMA, 2008; IPECE, 2016).

After the capture, specimens were euthanized with *lethal injection of sodium Thioental* (Thiopentax®), and have their SVL measured with a digital caliper (precision 0.01 mm). Sex was determined by visual inspection of gonads. Specimens were then fixed in formalin 10% (Franco & Salomão, 2002) and deposited in the Coleção Herpetológica da Universidade Regional do Cariri (URCA–H 471–476, 1737, 3024, 3164, 3413, 4192, 4193, 4875, 7956, 8399, 8400–8403, 8928). Toads were necropsied with a midventral incision and all organs and coelomic cavity were searched for helminths. These parasites found were preserved in 70% ethyl alcohol.

Nematodes found were mounted in temporary slides (Yamaguti, 1961), cleared in lactophenol and analyzed under microscope with computerized image analysis system (Carl Zeiss Microimaging GmbH, Gottingen, Germany). Thereafter, the helminths were deposited in the Coleção Parasitológica da Universidade Regional do Cariri (URCA-P).

Ethic aspects: The collecting methods were defined and authorized by the regulatory the ethics committee of Universidade Regional do Cariri (CEUA/URCA, process No. 00260/2016.1).

RESULTS

Of the 20 toads examined, 13 (65%) were infected
by at least one species of Nematode, and 191 nematodes specimens were recovered. Seven taxa of nematodes were found infecting *R. jimi*: *Oswaldocruzia lopesi* Travassos, 1938, *Raillietnema spectans* Gomes, 1964, *Physaloptera sp.*, *Parapharyngodon sp.*, *Rhabdias sp.*, unidentified Cosmocercidae Travassos, 1925, and encysted larvae of unidentified nematodes. All represent are new records for *R. jimi* (Table 1).

Nematoda	Site of infection
Oswaldocruzia lopesi	Stomach, Small intestines
Physaloptera sp.	Stomach
Cosmocercidae	Large intestines, Small intestines
Parapharyngodon sp.	Large intestines, Small intestines, Stomach
Encysted larvae (unidentified nematodes)	Small intestines
Raillietnema spectans	Large intestines
Rhabdias sp.	Lungs

DISCUSSION

Nematoda phylum was the only one recorded infecting the toad *R. jimi* in the present study, likewise other parasitological studies with species of the genus *Rhinella* (e.g. Santos, *et al.*, 2013; Teles *et al.*, 2018). The exclusive infection by nematodes may be related to host life cycle and foraging strategies (Yoder & Coggins 2007; Santos *et al.*, 2013). In anurans, the occurrence of nematodes may be associated with the time spent in water or on land (Aho, 1990; Anderson, 2000; Yoder & Coggins 2007; Santos *et al.*, 2013). In terrestrial habitats most nematodes infect anurans by skin penetration or egg ingestion, which may explain the infection in individuals of the genus *Rhinella* (Aho, 1990; Anderson, 2000; Bolek & Coggins 2000, Santos *et al.*, 2013; Teles *et al.*, 2018).

All nematodes found in the study present are monoxenous, except *Physaloptera sp*. Species of the genus *Physaloptera* have already been recorded infecting the stomach of mammals, fish, reptiles and amphibians, including anurans of the Bufonidae family, where this parasite is commonly recorded in larval stage (Anderson, 2000; Ávila & Silva, 2010; Santos *et al.*, 2013; Aguiar *et al.*, 2014; Campião *et al.*, 2014; Teles *et al.*, 2018). In the present study, we recorded an adult specimen, however, due to the preservation conditions, it was not possible to identify to species level. Infection by parasites of this genus may occur by ingestion of parasitized arthropods (Anderson, 2000; Campião *et al.*, 2014, 2015).

Unidentified nematodes of the Cosmocercidae family are frequently recorded infecting reptiles and amphibians (Ávila & Silva, 2010; Campião *et al.*, 2014) and have been found to parasite anurans of the genus *Rhinella* (Santos *et al.*, 2013; Campião *et al.*, 2014; Toledo *et al.*, 2017; Teles *et al.*, 2018). These parasites can cause infection when ingested or penetrated through the skin of the host (Anderson, 2000). Encysted larvae of unidentified nematodes were also recorded in the present study. The occurrence suggests that *R. jimi* may be acting as intermediate or paratenic hosts of these parasites (Anderson, 2000).

Rhabdias Stiles & Hassal, 1905, are common pulmonary parasites of amphibians and reptiles (Anderson, 2000; Ávila & Silva, 2010; Campião *et al.*, 2014). Infection in anurans may occur by direct penetration into the skin of the host, however the life cycle of these parasites is alternated between a free and parasitic life stage, but only females act as parasites, infecting the lungs of their hosts (Anderson, 2000). In South America there are more
than 19 *Rhabdias* species reported parasitizing amphibians (Kuzmin *et al.*, 2016., Muller *et al.*, 2018), including *R. jimi*, infected by *R. fuellleborni, R. sphaerocephala* and *R. pseudosphaerocephala* (Vicente *et al.*, 1991; Campião *et al.*, 2014; Kuzmin *et al.*, 2016; Muller *et al.*, 2018).

The molineid *Oswaldocruzi lopesi* usually infects the stomachs of lizards and amphibians (Ávila & Silva; Campião *et al.*, 2014). In toads of the genus *Rhinella, O. lopesi* have already been reported infecting *R. ictericus, R. margaritifera* and *R. marina* (Campiono *et al.*, 2014). The nematode *Raillietnema spectans* is a common anuran parasite (Vicente *et al.*, 1991; Campião *et al.*, 2014; Alcântara *et al.*, 2018; Teles *et al.*, 2018). In Brazil, it has been reported infecting *Leptodactylus latrans, Pleurodema diploplister, Dermatontus muelleri, R. crucifer, R. ictericus, R. diptycha, R. granulosa*, and *R. jimi* (Vicente *et al.*, 1991; Campião *et al.*, 2014; Teles *et al.*, 2015; Alcântara *et al.*, 2018; Teles *et al.*, 2018, present study).

Infection by *Parapharyngodon* spp., can occur by coprophagy or through ingestion of infected larvae (Anderson, 2000). Despite being considered typical parasites of lizards, many studies report their occurrence in anurans (e.g. Ramallo *et al.*, 2002; Bursey *et al.*, 2013; Araújo-Filho *et al.*, 2015; Alcântara *et al.*, 2018). To date it has been recorded infecting species of the families Eleutherodactylidae, Hylidae and Microhyliidae and Bufonidae (Campiono *et al.*, 2014; Araújo-Filho *et al.*, 2015; Alcântara *et al.*, 2018), including *R. marina*, *R. ictericus* and *R. jimi* (Luque *et al.*, 2005; Bursey *et al.*, 2013, present study).

Rhinella jimi was infected by seven nematode taxa, all new host records. Previous studies with Anurans of genus *Rhinella* in South America recorded helminth richness for *R. fernandezae*, *R. major*, *R. ictericus* greater than 10 species (Luque *et al.*, 2005; Santos & Amato *et al.*, 2010; Hamann *et al.*, 2013; Santos *et al.*, 2013; Hamann & González, 2015; Toledo *et al.*, 2017). However, individuals of *Rhinella* genus recorded so far regarding occurrence of helminths, a large (*R. jimi; R. marina, R. diptycha (=R. schneideri), R. spinulosus, R. bergi, R. granulosa, R. limensis, R. poepigii*) has richness less than 9 (Galicia-Guerrero *et al.*, 2002, Chero *et al.*, 2015; 2016; Espinola-Novelo *et al.*, 2017; Toledo *et al.*, 2017; Teles *et al.*, 2018, present study). Compared to other South AmericanBufonids, *R. jimi* presented a relatively high parasite richness (e.g. Santos & Amato, 2010; Toledo *et al.*, 2017; Teles *et al.*, 2018). The species richness recorded in *R. jimi* may be related to the environmental conditions that may favor infection, as well as the low nematode specificity (Aho, 1990; Bolek & Coggins 2000; Campião *et al.*, 2012; Sena *et al.*, 2018).

In conclusion *R. jimi* presented seven new nematode registries, demonstrating that the parasites richness associated with Bufonidae Family, especially genus *Rhinella*, is more diverse than one currently documented. This study contributed to increase inventory of helminths for Anurans in South America.

ACKNOWLEDGEMENTS

We are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for a research grant to RWA (# 303622/2015-6; 305988/2018-2). To the ethics committee of Universidade Regional do Cariri (CEUA/URCA, process No. 00260/2016-1). To Waltecio O. Almeida for helping and permission of use of the microscope in the Laboratório de Zoologia Universidade Regional do Cariri.

BIBLIOGRAPHIC REFERENCES

Aguiar, A, Morais, DH, Cicchi, PJ & Silva, RJ. 2014. Evaluation of helminthes associated with 14 amphibian species from a Neotropical Island near the southeast coast of Brazil. Herpetological Review, vol. 45, pp. 227–236.

Aho, JM. 1990. Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. Chapman and Hall, London, U. K. In: Esch, GW., Bush, AO & Aho, JM. (Eds) Parasite Communities: Patterns and Processes. Volume 1. New York, Chapman & Hall, pp. 355.

Alcântara, EP, Ferreira-Silva, C, Silva, LAF, Lins,
Câmara. Instituto de Desenvolvimento Sustentável e Meio Ambiente do Rio Grande do Norte. IDEMA, Natal-RN/Brasil. 1–25.

IUCN SSC Amphibian Specialist Group 2019. Rhinella jimi. The IUCN Red List of Threatened Species. Version 2019.2. <www.iucnredlist.org>. Downloaded on 10 August 2019.

IPECE-Instituto de Pesquisa e Estratégia Econômica do Ceará. 2017. Perfil municipal 2016. IPECE-Institute of research and economic strategy of Ceará. (2017): Municipal profile 2016.

Kuzmin, Y, Melo, FTV, Silva Filho, HF & Santos, JN. 2016. Two new species of Rhabdias Stiles et Hassall, 1905 (Nematoda: Rhabdiasidae) from anuran amphibians in Para, Brazil. Folia Parasitologica, vol 63, pp. 015.

Luque, JL, Martins, AN & Tavares, LER. 2005. Community structure of metazoan parasites of the yellow Cururu toad, Bufo ictericus (Anura: Bufonidae) from Rio de Janeiro, Brazil. Acta Parasitologica, vol. 50, pp. 215-220.

Martins-Sobrinho, PM, Silva, WGDO, Santos, EGD, Moura, GJB & Oliveira, JB. 2017. Helminths of some tree frogs of the families Hylidae and Phyllomedusidae in an Atlantic rainforest fragment, Brazil. Journal of natural history, vol. 51, pp. 1639–1648.

Moreira, G & Barreto, L. 1996. Alimentação e variação sazonal na frequência de captura de anuros em duas localidades do Brasil Central. Revista Brasileira de Zoologia, vol. 13, pp. 313–320.

Müller, MI, Morais, DH, Costa-Silva, GJ, Aguiar, A, Ávila, RW & Silva, RJ. 2018. Diversity in the genus Rhabdias (Nematoda, Rhabdiasidae): Evidence for cryptic speciation. Zoologica Scripta, vol. 47, pp. 595–607.

Ramallo, G, Bursey, CR & Goldberg, SR. 2002. Parapharyngodon riojensis n. sp. (Nematoda: Pharyngodonidae) from the lizard Phymaturus punae (Squamata: Iguania: Liolaemidae) from northwestern Argentina. Journal of Parasitology, vol. 88, pp. 979–982.

Roberto, IJ & Loebmann, D. 2016. Composition, distribution patterns, and conservation priority areas for the Herpetofauna of the State of Ceará, Northeastern Brazil. Salamandra, vol. 52, pp. 134–152.

Santos, VGT & Amato, SB. 2010. Helminth fauna of Rhinella fernandezae (Anura: Bufonidae) from the Rio Grande do Sul Coastland, Brazil: analysis of the parasite community. Journal of Parasitology, vol. 96, pp. 823–826.

Santos, VGT, Amato, SB & Borges-Martins, M. 2013. Community structure of helminth parasites of the “Cururu” toad, Rhinella icterica (Anura: Bufonidae) from southern Brazil. Parasitology research, vol. 112, pp. 1097–1103.

Segalla, MV, Caramaschi, U, Cruz, CAG, Grant, T, Haddad, CFB, Garcia, PCA, Berneck, BVM & Langone, JA. 2016. Brazilian Amphibians: List of species. Accessed 01 of February 2016. Available at: <http://www.sbherpetologia.org.br/index.php/anfibios>.

Sena, PA, Conceição, BM, Silva, PF, Silva, WG, Ferreira, WB, Júnior, VAS & Oliveira, JB. 2018. Helminth communities of Pithecopus nordestinus (Anura: Phylomedusidae) in forest remnants, Brazil. Herpetology Notes, vol. 11, pp. 565–572.

Stevaux, MN. 2002. A new species of Bufo Laurenti (Anura, Bufonidae) from northeastern Brazil. Revista brasileira de Zoologia, vol. 19, pp. 235–242.

Teles, DA, Sousa, JGG, Teixeira, AAM, Silva, MC, Oliveira, RH, Silva, MR & Ávila, RW. 2015. Helminths of the frog Pleurodema diplolister (Anura, Leptoperiidae) from the Caatinga Pernambuco State, Northeast Brazil. Brazilian Journal of Biology, vol. 75, pp. 251–253.

Teles, DA, Brito, SV, Araujo-Filho, JA, Ribeiro, SC, Teixeira, AA, Mesquita, DO & Almeida, WO. 2018. Nematodes of the Rhinella granulosa Spi, 1824 (Anura: Bufonidae) from the Semiariid Northeastern Caatinga Region of Brazil. Comparative Parasitology, vol. 85, pp. 208–212.

Toledo, GM, Fonseca, MG, Iannaccone, J, Callirgos, JMC, Vidaurre, CUM & Silva, RJ. 2017. Helminths Parásitos de Rhinella Marina (Linnaeus, 1758) (Anura: bufonidae) de Tarapoto, Perú. The Biologist (Lima), vol. 15, pp. 459–468.

Vicente, JJ, Rodrigues, HO, Gomes, DC & Pinto,
RM. 1991. Nematóides do Brasil 2a parte: nematóides de Anfíbios. Revista Brasileira de Zoologia, vol. 7, pp. 549–626.

Yamaguti, S. 1961. Systema Helminthum - Nematodes. Vol. III. - Part I e II. Interscience Publishers, London, 1261p.

Yoder, HR & Coggins, JR. 2007. Helminth communities in five species of sympatric amphibians from three adjacent ephemeral ponds in southeastern Wisconsin. Journal of Parasitology, vol. 93, pp. 755–760.

Received May 4, 2019.
Accepted August 12, 2019.