LIMIT-POINT CRITERIA FOR THE MATRIX STURM-LIOUVILLE OPERATOR AND ITS POWERS

Irina N. Braeutigam

Communicated by Alexander Gomilko

Abstract. We consider matrix Sturm-Liouville operators generated by the formal expression
\[l[y] = -(P(y' - Ry))' - R^* P(y' - Ry) + Qy, \]
in the space \(L^2_n(I), I := [0, \infty) \). Let the matrix functions \(P := P(x), Q := Q(x) \) and \(R := R(x) \) of order \(n \) \((n \in \mathbb{N}) \) be defined on \(I \), \(P \) is a nondegenerate matrix, \(P \) and \(Q \) are Hermitian matrices for \(x \in I \) and the entries of the matrix functions \(P^{-1}, Q \) and \(R \) are measurable on \(I \) and integrable on each of its closed finite subintervals. The main purpose of this paper is to find conditions on the matrices \(P, Q \) and \(R \) that ensure the realization of the limit-point case for the minimal closed symmetric operator generated by \(l^k[y] \) \((k \in \mathbb{N}) \). In particular, we obtain limit-point conditions for Sturm-Liouville operators with matrix-valued distributional coefficients.

Keywords: quasi-derivative, quasi-differential operator, matrix Sturm-Liouville operator, deficiency numbers, distributions.

Mathematics Subject Classification: 34L05, 34B24, 47E05.

1. PRELIMINARIES

Let \(I := [0, +\infty) \) and let the complex-valued matrix functions \(P := P(x), Q := Q(x) \) and \(R := R(x) \) of order \(n \) \((n \in \mathbb{N}) \) be defined on \(I \). Suppose that \(P \) is a nondegenerate matrix, \(P \) and \(Q \) are Hermitian matrices for \(x \in I \) and the entries of the matrix functions \(P^{-1}, Q \) and \(R \) are measurable on \(I \) and integrable on each of its closed finite subintervals (i.e. belong to the space \(L^1_{loc}(I) \)).

1.1. Let us consider the block matrix
\[F = \begin{pmatrix} R & P^{-1} \\ Q & -R^* \end{pmatrix}, \]
where * is the conjugation symbol. Let $AC_{n,\text{loc}}(I)$ be the space of complex-valued n-vector functions $y(x) = (y_1(x), y_2(x), \ldots, y_n(x))'$, t is the transposition symbol, with locally absolutely continuous entries on I. Using matrix F, we define quasi-derivatives $y^{[i]}$ ($i = 0, 1, 2$) of a given vector function $y \in AC_{n,\text{loc}}(I)$ by setting
\[
y^{[0]} := y, \quad y^{[1]} := P(y' - R y), \quad y^{[2]} := (y^{[1]})' + R^* y^{[1]} - Qy,
\]
provided that $y^{[1]} \in AC_{n,\text{loc}}(I)$ and a quasi-differential expression
\[
l[y](x) := -y^{[2]}(x), \quad x \in I.
\]
Thus,
\[
l[y] = -(P(y' - R y))' - R^* P(y' - R y) + Qy. \tag{1.2}
\]
The set of complex-valued vector functions $D := \{y(x) \mid y(x), y^{[1]}(x) \in AC_{n,\text{loc}}(I)\}$ is the domain of expression (1.2). For $y \in D$ the expression $l[y]$ exists a.e. on I and locally integrable there.

We note here that for every pair of vector functions $f, g \in D$ and for every pair of numbers α and β such that $0 \leq \alpha \leq \beta < \infty$ the following vector analogue of Green’s formula holds:
\[
\int_{\alpha}^{\beta} \{\langle l[f](x), g(x) \rangle - \langle f(x), l[g](x) \rangle\} \, dx = \langle f, g \rangle(\beta) - \langle f, g \rangle(\alpha), \tag{1.3}
\]
where $\langle u, v \rangle = v^* u = \sum_{s=1}^{n} u_s \overline{v_s}$ is the inner product of vectors u and v and the form $[f, g](x)$ is defined by
\[
[f, g](x) := \langle f(x), g^{[1]}(x) \rangle - \langle f^{[1]}(x), g(x) \rangle. \tag{1.4}
\]

Let $L^2_n(I)$ be the Hilbert space of equivalence classes of all complex-valued n-vector functions Lebesgue measurable on I for which the sum of the squared absolute values of coordinates is Lebesgue integrable on I.

Let D^*_0 denote the set of all complex-valued vector functions $y \in D$ which vanish outside of a compact subinterval of the interior of I (this subinterval may be different for different functions) and such that $l[y] \in L^2_n(I)$. This set is dense in $L^2_n(I)$. By formula $L^*_0 y = l[y]$ the expression l on the set D^*_0 defines a symmetric (not necessary closed) operator in $L^2_n(I)$. Let L_0 and D_0 denote the closure of this operator and its domain, respectively. The operator L_0 and operators associated with it are called matrix Sturm-Liouville operators.

Suppose further that $\lambda \in \mathbb{C}$ and $\Im \lambda \neq 0$, $\Re \lambda$ is the imaginary part of the complex number λ. Denote by R_λ and $R_{\overline{\lambda}}$ the ranges of $L_0 - \lambda I_n$ and $L_0 - \overline{\lambda} I_n$, I_n is the $n \times n$ identity matrix, respectively, and by N_λ and $N_{\overline{\lambda}}$ the orthogonal complements in $L^2_n(I)$ of R_λ and $R_{\overline{\lambda}}$. The spaces N_λ and $N_{\overline{\lambda}}$ are called deficiency spaces. The numbers n_+ and n_- ($n_+ = \dim N_\lambda$, $n_- = \dim N_{\overline{\lambda}}$) are deficiency numbers of the operator L_0 in the upper-half or lower-half of the complex plane, respectively, moreover, the pair (n_+, n_-) is called the deficiency index of L_0.
As it was done, for example, in [1] and [18], it is possible to show that the deficiency numbers \(n_+ \) and \(n_- \) coincide with the maximum number of linearly independent solutions of the equation
\[
[l[y]] = \lambda y
\]
belonging to the space \(L^2_\infty(I) \), when \(\exists \lambda > 0 \) and \(\exists \lambda < 0 \), respectively. They also satisfy the double inequality
\[
n \leq n_+, n_- \leq 2n
\]
(1.5)
and, in addition, \(n_+ = 2n \) if and only if \(n_- = 2n \). Using the analogy of the spectral theory of scalar Sturm-Liouville operators on the half-axis, one may say that the expression \(l[y] \) (the operator \(L_0 \)) is in the limit-point case if \(n_+ = n_- = n \) or in the limit-circle case if \(n_+ = n_- = 2n \), (see, for example, [1]).

Let us consider the equation
\[
l[y](x) = f(x), \quad a \leq x \leq b,
\]
where \([a, b]\) is a finite real interval and \(f(x) \) some vector function in \(L^1_n[a, b] \), \(L^1_n[a, b] \) is the space of integrable \(n \)-vector functions on \([a, b]\).

Let vector function \(\phi(x) \) be such that
\[
\phi(x) \in AC_n[a, b], \quad \phi(a) = \phi(b) = 0.
\]
(1.7)
If we scalar multiply (1.6) by \(\phi(x) \), integrate over \([a, b]\) and integrate by parts on the left, we obtain
\[
\int_a^b \{\langle Py', \phi' \rangle - \langle PRy, \phi' \rangle - \langle R^* Py', \phi \rangle + \langle (R^* PR + Q)y, \phi \rangle\} = \int_a^b \langle f, \phi \rangle.
\]
(1.8)
If the equality (1.8) holds for all such functions \(\phi(x) \), then one may say that \(y \) is a weak solution of (1.6).

Thus, if \(y \) satisfies (1.6), we have (1.8) for all functions \(\phi(x) \) with (1.7). Conversely, one might ask whether if \(y \) satisfies (1.8) for all such \(\phi(x) \), then \(y \) satisfies (1.6).

Let \(P_0, Q_0 \) and \(P_1 \) be Hermitian matrix functions of order \(n \) with Lebesgue measurable entries on \(I \) such that \(P_0^{-1} \) exists and \(\|P_0^{-1}\|, \|P_0^{-1}\|P_1\|, \|P_0^{-1}\|Q_0\| \) are locally Lebesgue integrable. Let also \(\Phi := P_1 + iQ_0 \) and \(\tilde{\Phi} := P_1 - iQ_0 \). Assume that the block entries in the matrix (1.1) are represented as \(P := P_0, Q := -\tilde{\Phi}P_0^{-1}\Phi \) and \(R := P_0^{-1}\Phi \), then we obtain the block matrix
\[
F = \begin{pmatrix}
P_0^{-1}\Phi & P_0^{-1} \\
-\tilde{\Phi}P_0^{-1}\Phi & -\tilde{\Phi}P_0^{-1}
\end{pmatrix}.
\]
The conditions listed above on the matrix functions \(P_0, Q_0 \) and \(P_1 \) suggest that all entries of \(F \) belong to the space \(L^1_{loc}(I) \). Detailed justification of this fact is given in [17].
As above, using the matrix F, we can define the quasi-derivatives of given vector function $y \in AC_{n,loc}(I)$, assuming

$$y^0 := y, \quad y^1 := P_0 y' - \Phi y, \quad y^2 := (y^1)' + \Phi P_0^{-1} y^1 + \Phi P_0^{-1} \Phi y.$$

Suppose further that the elements of matrix function P_0 also belong to $L^1_{loc}(I)$, then the entries of Φ are locally integrable on I. Thus, if we interpret the derivative $'$ in the sense of distributions, then we can remove all the brackets in the expression y^2 and the quasi-differential expression $l[y]$ in terms of distributions can be written as

$$l[y] = -(P_0 y')' + i((Q_0 y)' + Q_0 y') + P_1 y.$$

(1.9)

In particular, if $P_0(x) = I$, $Q_0(x) = O$, O is the zero matrix and $P_1(x) = V(x)$, where $V(x)$ is a real-valued symmetric matrix function such that the entries of the matrix $V^2(x)$ are locally integrable on I, then the expression (1.9) takes the form

$$l[y] = -y'' + V'y.$$

Detailed description of scalar quasi-differential expressions of second order with generalized derivatives is given in [14] and matrix expressions in [15–17].

We note here that in this case the relation (1.8) takes the form

$$\int_a^b \{ \langle P_0 y', \phi' \rangle - \langle \Phi y, \phi \rangle - \langle \Phi y', \phi \rangle \} = \int_a^b \langle f, \phi \rangle.$$

1.2. Let us consider the block matrix F of order $2kn$ ($k \in \mathbb{N}, k > 1$):

$$F = \begin{pmatrix} R & P^{-1} & O & O & O & O & \ldots & O & O \\ Q & -R^* & I_n & O & O & O & \ldots & O & O \\ O & O & R & P^{-1} & O & O & \ldots & O & O \\ O & O & Q & -R^* & I_n & O & \ldots & O & O \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ O & O & O & O & O & O & \ldots & R & P^{-1} \\ O & O & O & O & O & O & \ldots & Q & -R^* \end{pmatrix},$$

where I_n is the $n \times n$ identity matrix and P, Q, R satisfy the conditions listed in Subsection 1.1.

As above, using the matrix F, we define the quasi-derivatives $y[i]$ ($i = 0, 1, \ldots, 2k$) of a given vector function $y \in AC_{n,loc}(I)$ assuming

$$y^0 := y, \quad y^1 := P(y' - Ry), \quad y^2 := (y^1)' + R^* y^1 - Qy,$$

$$y^3 := P((y^2)' - Ry^2), \quad y^4 := (y^3)' + R^* y^3 - Qy^2, \ldots,$$

$$y^{[2k]} := P((y^{[2k-2]})' - Ry^{[2k-2]}), \quad y^{[2k]} := (y^{[2k-1]})' + R^* y^{[2k-1]} - Qy^{[2k-2]}.$$
provided that \(y^{[i]} \in AC_{n,loc}(I) \) \((i = 1, \ldots, 2k - 1)\) and a quasi-differential expression
\[
l^k[y](x) := (-1)^k y^{[2k]}(x), \quad x \in I. \tag{1.10}
\]
Note that the quasi-differential expression \(l^k[y] \) constructed in this way is a formal \(k \)-power of (1.2). The explicit form of this expression is too large, because of it we do not present it here.

The set of complex-valued vector functions
\[
D := \{ y(x) | y(x), y^{[i]}(x) \in AC_{n,loc}(I), i = 1, \ldots, 2k - 1 \}
\]
is the domain of (1.10). For \(y \in D \) the expression \(l^k[y] \) exists a.e. on \(I \) and locally integrable there.

Similarly as in Subsection 1.1, we can define a minimal closed symmetric operator \(L_0 \) generated by the expression (1.10) and introduce the concept of the deficiency numbers of this operator. And in this case, the numbers \(n_+ \) and \(n_- \) coincide with the maximum number of linearly independent solutions of the equation
\[
l^k[y] = \lambda y
\]
belonging to the space \(L^2_0(I) \) when \(\Im \lambda > 0 \) or \(\Im \lambda < 0 \). Moreover, they satisfy double inequality \(nk \leq n_+, n_- \leq 2kn \) and \(n_+ = 2kn \) if and only if \(n_- = 2kn \).

Additionally, assuming that the matrix functions \(P_0, P_1, Q_0 \) satisfy the conditions listed in Subsection 1.1, we can define a formal \(k \) power of the quasi-differential expression (1.9) where the derivatives are understood in the generalized sense.

As example, we present here the explicit form of \(l^2[y] \) if the matrix \(F \) takes the form
\[
F = \begin{pmatrix}
 V(x) & I_n & O & O \\
 -V^2(x) & -V(x) & I_n & O \\
 O & O & V(x) & I_n \\
 O & O & -V^2(x) & -V(x)
\end{pmatrix},
\]
where \(V(x) \) is a matrix function with sufficiently smooth entries. In this case the quasi-differential expression \(l^2[y] \) has the form
\[
l^2[y] = y^{(4)} - 2(V'(x)y')' + ((V'(x))^2 - V^{(3)}(x))y.
\]

1.3. Let us mention here that one of the important problems in the spectral theory of the matrix Sturm-Liouville operators is to determine the deficiency numbers of the operator \(L_0 \). In particular, to find the conditions on the entries of the matrix function \(F \) that ensure the realization of the given pair \((n_-, n_+)\). One of the first works in this direction was a paper of V.B. Lidskii [12]. Later this problem for classical matrix Sturm-Liouville operators and operators with generalized coefficients was discussed in many works, see, for instance, [3–5, 9, 11–13, 15–17, 19–22] (and also the references therein). In particular, for example, in [17] the authors obtained the conditions of nonmaximality of deficiency numbers of operator \(L_0 \) generated by (1.2). M.S.P. Eastham in [4] investigated the values of the deficiency numbers depending on the
indices of power functions which are entries of the matrix coefficient of the second order differential operator. In [19] the method presented in [2] for scalar (quasi) differential operators was generalized to operators generated by the matrix expression $-y'' + P(x)y$.

In [13] the authors obtained several criteria for a matrix Sturm-Liouville-type equation of special form to have maximal deficiency indices. In [3] it is presented the conditions on the coefficients of the expression (1.2) such that the deficiency numbers of the operator L_0 are defined as the number of roots of a special kind polynomial lying in the left half-plane. The authors of [11] established a relationship between the spectral properties of the matrix Schrödinger operator with point interactions on the half-axis and block Jacobi matrices of certain class. In particular, they constructed examples of such operators with arbitrary possible equal values of the deficiency numbers. We also mention that in [1,23] the deficiency numbers problem for matrix operators generated by differential expressions of even order higher than the second is considered and in [6–8,10] this problem was discussed for powers of ordinary (quasi)differential expressions.

The main goal of this work is to obtain new sufficient conditions on the entries of the matrices P, Q and R when the limit-point case can be realized for the expressions $l[y]$ and $l^k[y]$ ($k > 1$) constructed above in Subsections 1.1 and 1.2 (Theorems 2.1 and 2.10). In particular, we apply these results to obtain new interval limit-point criteria (Corollary 2.11 and 2.12) and consider two examples of matrix Sturm-Liouville operators with minimal deficiency numbers. We also note here that our approach is based on the equality (1.8) and generalizes some results of [2] and [8] to the matrix case. This method allows to obtain the limit-point conditions for the operators with distributional coefficients and, in particular, for the matrix Sturm-Liouville operator with point interactions.

2. LIMIT-POINT CONDITIONS

One of the main theorem is the following:

Theorem 2.1. Let w be a scalar non-negative absolutely continuous function on I, suppose that the $n \times n$ matrix functions P, Q and R satisfy the conditions listed above in Subsection 1.1 and there exist positive constants K_1, K_2, K_3, K_4, K_5 and a, such that for $x \geq a$

- (i) $P \geq K_1\|P\|I_n$,
- (ii) $\frac{w^2}{\|P\|} \leq K_2$,
- (iii) $\|P\| \left(\frac{w}{\|P\|^{\frac{1}{2}}} \right)^2 \leq K_3$,
- (iv) $w\|PR\| \leq K_4\|P\|$,
- (v) $w^2(R^*PR + Q) \geq -K_5\|P\|I_n$,
- (vi) $\int_a^\infty \frac{w}{\|P\|} = \infty$,

where $\| \cdot \|$ is the self-adjoint norm. Then the operator L_0 generated by (1.2) is in the limit-point case.
The proof of this theorem is established with the help of a few lemmas.

Let us mention that everywhere below the symbols \(K, K_1, K_2, \ldots \) denote various positive constants and \(\epsilon, \epsilon_1, \epsilon_2, \ldots \) denote “small” positive constants. These constants will not necessarily be the same on each occurrence. And we write \(K(\epsilon) \) when we indicate the dependence of \(K \) on \(\epsilon \).

Lemma 2.2. Let \(w \) be as in Theorem 2.1 and let \(v \) be a scalar non-negative absolutely continuous function with support in a compact \(J \subset I \). Suppose that there exist positive constants \(K_i, (i = 1, 2, \ldots, 7) \) independent of \(J \) such that (i)–(v) in Theorem 2.1 are satisfied on \(J \) and also

\[
\begin{align*}
(a) \quad \|P\|v' & \leq K_6 w, \\
(b) \quad v & \leq K_7.
\end{align*}
\]

Let \(l[y](x) = f(x) \). Then, given any \(\epsilon > 0 \), there exists a positive constant \(K(\epsilon) \), independent of \(J \), such that

\[
\int_J v^{2+\alpha} w^2 y'(x)^2 dx \leq \epsilon \int_J v^\alpha \|y(x)\|^2 dx + K(\epsilon) \int_J v^{4+\alpha} l^2 \|y(x)\|^2 dx.
\]

Proof. The proof involves the use of (1.8) and the simple inequality

\[
2|ab| \leq \epsilon a^2 + (1/\epsilon)b^2
\]

which holds for arbitrary \(\epsilon > 0 \). All integrals are over \(J \) and we omit the \(dx \) symbol for brevity.

Using (1.8), we obtain

\[
\Re \int \langle Py', \phi' \rangle - \int |\langle PRy, \phi' \rangle + \langle R^* Py', \phi \rangle| + \Re \int \langle (R^* PR + Q)y, \phi \rangle \leq \int |\langle f, \phi \rangle|,
\]

where \(\Re f \) is a real part of function \(f \).

Assume that \(\phi = v^{2+\alpha} \frac{w^2}{\|P\|} y \).

Next, we note that

\[
\Re \int \langle Py', \left(v^{2+\alpha} \frac{w^2}{\|P\|} y\right)' \rangle \geq \int \{ \langle P \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y\right)' , \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y\right)' \rangle \]

\[
- \langle P \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y\right)' , \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y\right)' \rangle \}

\[
- \langle P \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y \right)' , \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y\right)' \rangle \}

\[
- \langle P \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y \right)' , \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y\right)' \rangle \}

Furthermore, using (i)–(iii) of Theorem 2.1, the Cauchy-Schwarz inequality and that \(P \) is Hermitian matrix, we get

\[
\Re \int \langle Py', \left(v^{2+\alpha} \frac{w^2}{\|P\|} y\right)' \rangle \geq K_1 \int \|P\| \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2}} y\right)' \|^2 - K(\epsilon_1) \int v^\alpha \|y\|^2.
\]

(2.3)
Next, we estimate the expression
\[\int \left| \left\langle PRy, \left(v^{2+\alpha} \frac{w^2}{\|P\| y} \right)' \right\rangle + \left\langle R^*Py', \left(v^{2+\alpha} \frac{w^2}{\|P\| y} \right) \right\rangle \right|. \]

Since the norm \(\| \cdot \| \) is self-adjoint, then \(\|PR\| = \|R^*P\| \). Using also the properties of inner products, norms and the condition (ii)–(iv) of Theorem 2.1 and (a),(b) of Lemma 2.2 we obtain
\[
\left| \left\langle PRy, \left(v^{2+\alpha} \frac{w^2}{\|P\| y} \right)' \right\rangle + \left\langle R^*Py', \left(v^{2+\alpha} \frac{w^2}{\|P\| y} \right) \right\rangle \right| \\
\leq \|PR\| \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2} y} \right)' \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2} y} \right)' \|y\| \\
+ \|PR\| \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2} y} \right)' \|y\|^2 + \|PR\| \left(v^{2+\alpha} \frac{w^2}{\|P\|} \right) \|y'||\|y\| \tag{2.4}
\]

Furthermore, using (v), we obtain
\[
\Re \int \left\langle - (R^*PR + Q)y, v^{2+\alpha} \frac{w^2}{\|P\| y} \right\rangle \leq K \int v^\alpha \|y\|^2. \tag{2.5}
\]

Also we shall need the estimate
\[
\frac{1}{1 + \epsilon_3} v^{2+\alpha} w^2 \|y'||^2 \leq \|P\| \left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2} y} \right)' \|y\|^2 + K(\epsilon_3, \epsilon_4) v^\alpha \|y\|^2. \tag{2.6}
\]

This inequality immediately follows from the product rule for \(\left(v^{1+\alpha/2} \frac{w}{\|P\|^{1/2} y} \right)' \) and the conditions (ii), (iii) of Theorem 2.1 and (a), (b) of Lemma 2.2.

Next, we note here that
\[
\int |\langle f, \phi \rangle| = \int \left| \left\langle f, v^{2+\alpha} \frac{w^2}{\|P\| y} \right\rangle \right| \leq \epsilon \int v^{4+\alpha} \|f\|^2 + K(\epsilon) \int v^\alpha \|y\|^2. \tag{2.7}
\]

Substitute now (2.3)–(2.7) into (2.2) and choose \(\epsilon_1, \epsilon_2, \epsilon_3 \) sufficiently small so that \((K_1 - \epsilon_1 K_3/2)(1 + \epsilon_3)^{-1} - \epsilon_2/2 > 0 \) we obtain the inequality (2.1). \(\square \)

From the Green’s formula (1.3) we obtain the following lemma.

Lemma 2.3. If \(y_1, y_2 \) are solutions of
\[
l[y_1](x) = f_1(x), \quad l[y_2](x) = f_2(x) \tag{2.8}
\]
and \(y_1, y_2, f_1, f_2 \in L^2_n(I) \) then the form \([y_1, y_2](x) \) (see (1.4)) tends to a finite limit as \(x \to \infty \).
Moreover, we get the ensuing lemma.

Lemma 2.4. If f_1, f_2 in $L_n^2(I)$ and for every pair of solutions $y_1, y_2 \in L_n^2(I)$ of (2.8)

$$[y_1, y_2](x) \to 0, \ x \to \infty,$$

then the set of such solutions has dimension at most n.

Proof of Theorem 2.1. Here we apply the ideas of [8] to the matrix case. From (vi) it follows that, for some $b > a$, $w(b) > 0$ and hence, since w is continuous, there is a $\delta > 0$ such that $\frac{w}{\|P\|} > 0$ on $[b, b + \delta]$. Define

$$\theta(x) = \int_b^x \frac{w}{\|P\|}, \ x \geq b,$$

$$v(x) = \begin{cases} 1 - \exp(\theta(x) - \theta(X)), & b + \delta \leq x \leq X, \\ 0, & x \geq X, \end{cases}$$

and in $[b, b + \delta)$ choose v such that it vanishes in a right neighborhood of b, $0 \leq v(x) \leq 1$ and v has a continuous derivative in $[b, b + \delta]$. Then from (ii)

$$v' = O\left(\frac{w}{\|P\|}\right).$$

We also choose X such that $\theta(X) > \ln 2$ and T such that $\theta(T) = \theta(X) - \ln 2$. Then

$$v(x) \geq \frac{1}{2}, \ b + \delta \leq x \leq T. \tag{2.9}$$

Let us consider

$$\left|\int_b^x \frac{vw}{\|P\|}[f, g]\right| \leq \int_b^x \frac{vw}{\|P\|}\left\{|\langle f, g^{[1]} \rangle| + |\langle f^{[1]}, g \rangle|\right\}.$$

Using now the properties of inner products, norms and (2.1) we obtain that

$$\left|\int_b^x \frac{vw}{\|P\|}[f, g]\right| \leq K \int_b^x \|f\|^2 + \|g\|^2 + \|l[f]\|^2 + \|l[g]\|^2. \tag{2.10}$$

By Lemma 2.3, we know that $[f, g]$ tends to a finite limit. Assume that this limit is $c \neq 0$ and show that this leads to a contradiction with (vi).

Supposing that $[f, g](x) \geq c$ for large x, say $x \geq \gamma$ and choosing $a > \gamma$. For f, g satisfying (2.8) of Lemma 2.3 we have from (2.9) and (2.10) that

$$\frac{c}{2} \int_{b+\delta}^T \frac{w}{\|P\|} \leq \int_b^x \frac{vw}{\|P\|}[f, g] \leq K.$$
It leads to a contradiction with (vi). Therefore, $[f,g] \to 0$ when $x \to \infty$. Using now Lemma 2.4 and the inequality (1.5) we obtain that the operator L_0 generated by (1.2) is in the limit-point case.

Corollary 2.5. Let w be a scalar non-negative absolutely continuous function on I, suppose that the $n \times n$ matrix functions P_0, P_1 and Q_0 satisfy the conditions listed above in Subsection 1.1 and there exist positive constants K_1, K_2, K_3, K_4 and a, such that for $x \geq a$

(i) $P_0 \geq K_1 \|P_0\| I_n$,
(ii) $\frac{w}{\|P_0\|} \leq K_2$,
(iii) $\|P_0\| \left(\frac{w}{\|P_0\|} \right)^2 \leq K_3$,
(iv) $w \|P_1 + iQ_0\| \leq K_4 \|P_0\|$,
(v) $\int_a^\infty \frac{w}{\|P_0\|} = \infty$.

where $\| \cdot \|$ is the self-adjoint norm. Then the operator L_0 generated by (1.9) is in the limit-point case.

To prove the theorem about deficiency numbers of the operator generated by $l^k[y]$, $k > 1$ we need some additional lemma.

Lemma 2.6. Suppose that all hypothesis of Lemma 2.2 are satisfied. Then, given any $\epsilon > 0$, there exists a positive constant $K(\epsilon)$, independent of J, such that

$$
\int_J v^{4j} \|l^j[y]\|^2 dx \leq \epsilon \int_J v^{4(j+1)} \|l^{j+1}[y]\|^2 dx + K(\epsilon) \int_J v^{4(j-1)} \|l^{j-1}[y]\|^2 dx.
$$

(2.11)

Proof. In the proof all integrals are over J and we omit dx symbol for brevity. Put $f = l^{j-1}[y]$, $g = l[f] = l^j[y]$. Then

$$
\int v^{4j} \langle l^{j-1}[y], l^{j+1}[y] \rangle = \int v^{4j} \langle f, l[g] \rangle = \int v^{4j} \langle l[f], g \rangle + \int (v^{4j})' \langle Pf, g' \rangle - \int (v^{4j})' \langle R^* Pf, g \rangle - \int (v^{4j})' \langle P f', g \rangle + \int (v^{4j})' \langle PRf, g \rangle.
$$

(2.12)

Using (a) of Lemma 2.2, we note that

$$(v^{4j})' \leq K v^{4j-1} \frac{w}{\|P\|}.$$

Therefore, we obtain

$$
\left| \int (v^{4j})' \langle Pf, g' \rangle \right| \leq \int |(v^{4j})'| \|P\| \|f\| \|g'\| \leq K \int v^{4j-1} w \|f\| \|g'\|.
$$
From (2.1) with $\alpha = 4(j - 1)$ we have

$$
\left| \int (v^j)'(Pf, g') \right| \leq K_1(\epsilon_1, \epsilon_2) \int v^{4(j+1)}[f]^2 + K_2(\epsilon_1, \epsilon_2) \int v^{4j}[f]^2 + K_3(\epsilon_1) \int v^{4(j-1)}[f]^2.
$$

(2.13)

And

$$
\left| \int (v^j)'(Pf', g) \right| \leq K_4(\epsilon_3) \int v^{4j}[f]^2 + K_5(\epsilon_3) \int v^{4(j-1)}[f]^2.
$$

(2.14)

Similarly, using (iv) of Theorem 2.1, we get

$$
\left| \int (v^j)'(R^*Pf, g) \right| \leq K_6(\epsilon_4) \int v^{4(j-1)}[f]^2 + K_7 \int v^{4j}[l[f]]^2.
$$

(2.15)

Therefore, substituting (2.13)–(2.15) into (2.12), we obtain (2.11).

\begin{lemma}
Under the hypothesis of Lemma 2.2, given $\epsilon > 0$ there exists a $K(\epsilon) > 0$, independent of J, such that

$$
\int_j v^j[l^j[y]]^2 dx \leq \epsilon \int_j v^{4k}[l^k[y]]^2 dx + K(\epsilon) \int y^2 dx
$$

(2.16)

for $j = 1, 2, \ldots, k - 1$.
\end{lemma}

\begin{proof}
The proof is by induction on k and almost exactly the same as the proof of Lemma 2.4 in [10, p. 91].
\end{proof}

\begin{definition}[see [10]]
Let $l[y]$ be a symmetric differential expression and let $k \in \mathbb{N}, k > 1$. We say that $l^k[y]$ is partially separated if y and $l^k[y]$ in $L_n^2(I)$ together imply that $l^r[y]$ is in $L_n^2(I)$ for $r = 1, 2, \ldots, k - 1$.
\end{definition}

The next lemma follows from [10, Corollary 5.3.6].

\begin{lemma}
If $l[y]$ is limit-point then $l^k[y], k > 1$ is limit-point if and only if $l^k[y]$ is partially separated.
\end{lemma}

\begin{theorem}
Suppose the hypothesis of Theorem 2.1 hold. Then $l^k[y]$ is limit-point for any $k \in \mathbb{N}$.
\end{theorem}

\begin{proof}
Let us show that the expression $l^k[y]$ is partially separated.

Using the definition of v given in the proof of Theorem 2.1, Lemma 2.7 and (2.16) we get

$$
\left(\frac{1}{2} \right)^{4j} \int_{b+\delta}^{t} \|l^j[y]\|^2 \leq \sum_{b+\delta}^{X} \int v^{4j}||l^j[y]\|^2 \leq K \int \{||l^k[y]\|^2 + \|y\|^2\}.
$$

Since $t \to \infty$ as $X \to \infty$ we can conclude that $l^j[y]$ is in $L_n^2(I)$ for $j = 1, 2, \ldots, k - 1$ and that $l^k[y]$ is partially separated. Therefore, the statement of Theorem 2.10 follows from Lemma 2.9.
\end{proof}
Now we give some applications of Theorems 2.1 and 2.10.

Corollary 2.11. Let
\[[a_m, b_m], \ m = 1, 2, \ldots \]
be a sequence of intervals such that
\[0 \leq a_1 < b_1 \leq a_2 < b_2 \leq \ldots \]
and \(M_1, M_2, \ldots \) a sequence of positive numbers such that
\[\sum_{m=1}^{\infty} \frac{(b_m - a_m)^2}{M_m} = \infty. \]
(2.17)

For some fixed \(K > 0 \) suppose that in each \([a_m, b_m]\) we have

(i) \(P(x) \geq M_m I_n, \quad \|P(x)\| \leq K M_m, \)
(ii) \((b_m - a_m)\|PR\| \leq K M_m, \)
(iii) \((b_m - a_m)^2 (R^* PR + Q) \geq -K M_m I_n, \)

Then the operator \(L_0 \) generated by (1.2) and all its powers \(l^k[y], \ k = 2, 3, \ldots \) are in the limit-point case.

Proof. Taking
\[w(x) = \begin{cases}
 x - a_m, & a_m \leq x \leq (a_m + b_m)/2, \\
 b_m - x, & (a_m + b_m)/2 \leq x \leq b_m, \\
 0, & \text{otherwise}
\end{cases} \]

in Theorem 2.1 and applying Theorem 2.10 we get the corollary. \(\square \)

Corollary 2.12. Let \([a_m, b_m]\) and \(M_m, \ m = 1, 2, \ldots \) be sequences of intervals and positive numbers satisfying (2.17) as in Corollary 2.11. And for some fixed \(K > 0 \) suppose that in each \([a_m, b_m]\) we have

(i) \(P_0(x) \geq M_m I_n, \quad \|P_0\| \leq K M_m, \)
(ii) \((b_m - a_m)\|P_1 + iQ_0\| \leq K M_m, \)

Then the operator \(L_0 \) generated by (1.9) and all its powers \(l^k[y], \ k = 2, 3, \ldots, \) are in the limit-point case.

3. **EXAMPLES**

3.1. Let us consider the differential expression
\[l[y] = -(P_0 y')' + P_1'^* y \]
(3.1)
on \(I := [a, +\infty), a > 0, \) where \(P_0 = x^\alpha I_n, \ P_1 = x^{-\beta} Q(x^\gamma), \ \alpha \in [0, 2], \ \beta \geq 0 \) and \(Q(x^\gamma) \) is \(n \times n \) periodic matrix function with continuous entries. Applying Corollary 2.5 with
\(w = x^{\alpha-1} \) to this expression and observing that \(x^{-\beta-1}Q(x^{\gamma})y \) is a boundary operator, we obtain that the operator, generated by

\[-(x^{\alpha}y')' + x^\delta Q'(x^{\gamma})y, \quad \delta \leq \gamma \]

is in the limit-point case and all its powers are also limit-point.

Remark 3.1. We note here that the expression \(-y'' + x^\delta Q(x^{\gamma})y, Q \) is \(n \times n \) periodic matrix function with continuous entries is discussed in detail in [19].

3.2. Let us consider the differential expression (3.1). Suppose that \(0 = x_0 < x_1 < x_2 < \ldots \) and \(\lim_{m \to \infty} x_m = \infty \). Assume that \(P_1(x) \) is a piecewise continuously differentiable matrix function on \(I \) and \(x_m (m = 0, 1, 2 \ldots) \) are points of discontinuity of the first kind of \(P_1(x) \). Suppose also that \(P_1(x) = Q_m(x), (x_m - x_{m-1})\|Q_m\| \leq k \) \((k > 0)\) on \((x_{m-1}, x_m] \) and

\[\mathcal{H}_m = (h_{ij}^m)_{i,j=1}^n := Q_{m+1}(x_m + 0) - Q_m(x_m - 0) \]

is a jump of the matrix function \(P_1(x) \) in \(x_m \). Assume also

\[\sum_{m=1}^{\infty} (x_m - x_{m-1})^2 = \infty. \]

Then, applying Corollary 2.12, we obtain that the operator, generated by

\[-y'' + (P'_1(x) + \sum_{k=1}^{\infty} \mathcal{H}_m \delta(x - x_m))y, \]

here \(\delta(x) \) is the Dirac \(\delta \)-function and \(P'_1(x) \) is a derivative of \(P_1(x) \) when \(x \neq x_m (m = 0, 1, 2 \ldots) \) is in the limit-point case and all its powers are also limit-point.

Acknowledgments

Research supported by the Ministry of Education and Science of Russian Federation and the German Service for Academic Exchange (DAAD) in the framework of the program “Mikhail Lomonosov” (no. 1.728.2016/DAAD).

The author is also indebted to Prof. Dr. K.A. Mirzoev for helpful discussions.

REFERENCES

[1] R.L. Anderson, *Limit-point and limit-circle criteria for a class of singular symmetric differential operators*, Canad. J. Math. **28** (1976) 5, 905–914.

[2] F.V. Atkinson, *Limit-n criteria of integral type*, Proc. Roy. Soc. Edinburgh Sect. A **73** (1974/75) 11, 167–198.

[3] I.N. Braeutigam, K.A. Mirzoev, T.A. Safonova, *An analog of Orlov’s theorem on the deficiency index of second-order differential operators*, Math. Notes **97** (2015) 1–2, 300–303.

[4] M.S.P. Eastham, *The deficiency index of a second-order differential system*, J. London Math. Soc. **23** (1981) 2, 311–320.

[5] M.S.P. Eastham, K.J. Gould, *Square-integrable solutions of a matrix differential expression*, J. Math. Anal. Appl. **91** (1983) 2, 424–433.
[6] W.N. Everitt, M. Giertz, *A critical class of examples concerning the integrable-square classification of ordinary differential equations*, Proc. Roy. Soc. Edinburgh Sect. A **74A** (1974/75) 22, 285–297.

[7] W.N. Everitt, A. Zettl, *The number of integrable-square solutions of products of differential expressions*, Proc. Roy. Soc. Edinburgh Sect. A **76** (1977), 215–226.

[8] W.D. Ewans, A. Zettl, *Interval limit-point criteria for differential expressions and their powers*, J. London Math. Soc. **15** (1977) 2, 119–133.

[9] G.A. Kalyabin, *On the number of solutions of a self-adjoint system of second-order differential equations in $L_2(0, +\infty)$*, Functional Anal. Appl. **6** (1973) 3, 237–239.

[10] R.M. Kauffman, T.T. Read, A. Zettl, *The deficiency index problem for powers of ordinary differential expressions*, Springer-Verlag, Berlin, Heidelberg, New York, 1977.

[11] A.S. Kostenko, M.M. Malamud, D.D. Natyagailo, *Matrix Schrödinger operator with δ-interactions*, Math. Notes **100** (2016) 1, 49–65.

[12] V.B. Lidskii, *On the number of solutions with integrable square of the system of differential equations $-y'' + P(t)y = \lambda y$*, Dokl. Akad. Nauk SSSR **95** (1954) 2, 217–220.

[13] M. Lesch, M. Malamud, *On the deficiency indices and self-adjointness of symmetric Hamiltonian systems*, J. Differential Equations **189** (2003), 556–615.

[14] K.A. Mirzoev, *Sturm-Liouville operators*, Trans. Moscow Math. Soc. **75** (2014), 281–299.

[15] K.A. Mirzoev, T.A. Safonova, *Singular Sturm-Liouville operators with distribution potential on spaces of vector functions*, Dokl. Math. **84** (2011) 3, 791–794.

[16] K.A. Mirzoev, T.A. Safonova, *Singular Sturm-Liouville operators with nonsmooth potentials in a space of vector-functions*, Ufim. Mat. Zh. **3** (2011) 3, 105–119.

[17] K.A. Mirzoev, T.A. Safonova, *On the deficiency index of the vector-valued Sturm-Liouville operator*, Math. Notes **99** (2016) 2, 290–303.

[18] M.A. Naimark, *Linear Differential Operator*, Nauka, Moscow, 1969; English transl. of 1st ed., Parts I, II, Frederick Ungar, New York, 1967, 1968.

[19] V.P. Serebryakov, *The number of solutions with integrable square of a system of differential equations of Sturm-Liouville type*, Differ. Equations **24** (1988) 10, 1147–1151.

[20] V.P. Serebryakov, *L^p-properties of solutions to systems of second-order quasidifferential equations and perturbation of their coefficients on sets of positive measure*, Differ. Equations **35** (1999) 7, 915–923.

[21] V.P. Serebryakov, *The deficiency index of second-order matrix differential operators with rapidly oscillating coefficients*, Russian Math. (Iz. VUZ) **3** (2000), 46–50.

[22] V.P. Serebryakov, *L^2-properties of solutions and ranks of radii of the limit matrix circles for nonselfadjoint systems of differential equations*, Russ. J. Math. Phys. **13** (2006) 1, 79–93.

[23] Y.T. Sultanaev, O.V. Myakinova, *On the deficiency indices of a singular differential operator of fourth order in the space of vector functions*, Math. Notes **86** (2009) 6, 895–898.
Irina N. Braeutigam
irinadolgh@rambler.ru

Northern (Arctic) Federal University named after M.V. Lomonosov
Severnaya Dvina Emb. 17, Arkhangelsk, 163002, Russia

Received: April 25, 2016.
Revised: September 21, 2016.
Accepted: September 25, 2016.