Core/Shell/Shell Nanomaterials of NaYF₄: Yb, Er/Silica/Polystyrene with High Thermal Stability

Ming Zhang¹, Marco Herrera¹, Timothy E. Patten¹, Matthew Augustine¹, Lin-Dong Sun², Chun-Hua Yan² and Gang-yu Liu¹*

¹Department of Chemistry, University of California, Davis, California 95616, United States
²Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, P.R. China

Abstract
Rare earth based nanomaterials with up conversion properties have attracted much attention because of their potential applications in device and solar energy conversion, as well as in new optical tags in biomedical research. Emission stability has been a concern in realizing these materials’ application potential. Towards this goal, new core/shell/shell nanomaterials of NaYF₄: Yb, Er/silica/polystyrene is synthesized and characterized. Key steps include thermo decomposition method for production of rare earth nanocrystal core, followed with silica shell coated via hydrolysis in reverse micelle solution and, finally, polystyrene outer shell via atom transfer radical polymerization (ATRP). The structures of these nanomaterials are characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD). Corresponding upconversion spectra and thermal stability are acquired at each stage of the synthesis. Significant improvement in thermal stability upon coating with thin silica shell was found. The NaYF₄: Yb, Er/silica nanomaterials could be used as is, or functionalized using siloxane chemistry in conjunction with ATRP, as demonstrated in this work. This approach is of generic importance for production of useful rare earth-based nanomaterials, due to the mild reaction conditions used for the surface modification, and the versatility of ATRP to regulate structure and functionality towards designed applications.

Keywords
Core/shell, Core/shell/shell nanoparticles, Upconversion, Rare earth, Polystyrene, Atom transfer radical polymerization (ATRP), Thermal stability

Introduction
Recently, core/shell nanocomposite materials have attracted much interest because the core/shell design enables multi-modality imaging, and as well, incorporates designed chemical and biochemical functions [1-3]. Rare earth nanoparticles (RENs) with an upconversion property represent a desired class of phosphors in bio-imaging, security and solar applications due to the capability of absorbing red or infrared (IR) radiation and emitting visible photon [4,5]. The optical property reduces auto-fluorescence background, avoids photo-bleaching, and facilitates deeper penetration to a biospecimen than conventional down-conversion phosphors [6-8]. Another potential application includes anti-counterfeiting because RENs could provide security marks invisible to human eyes, and thus be difficult to mimic [9-11]. In addition, RENs could improve solar energy harvesting efficiency by utilizing the IR region of the solar spectrum [12,13].

Advancing and realizing those applications requires that the RENs should be compatible with their local environment and have high stability during an operation. Prior work has indicated that the stability of RENs’ fluorescence property might be a concern under various temperatures [14-16]. Prior work indicated that the upconversion efficiency of hexagonal phased NaYF₄: Yb, Er would decay to 30% at 450 K, compared to the emission at room temperature, and that this decay is not reversible [16]. In addition, bare RENs are not bio-friendly, and should be modified by designed functionalities towards specific bio-applications [17-20]. Toward these needs, we designed core/shell/shell nanomaterials, shown in Scheme 1, aiming to improve stability via silica coating and make the materials environmental friendly via a polymer outer shell. Polymers are typically used as the coating to passivate RENs and to enable further functionalization. For example, RENs with oleic acid as the capping agent and methyl benzoate with poly(methyl methacrylate) as the binding agent have been used for new upconversion security ink for anti-counterfeiting fabrication [21]. Pre-made polymer chains, such as polyethylene glycol, polyacrylic acid and polyethyleneimine

*Corresponding author: Gang-yu Liu, Department of Chemistry, University of California, Davis, California 95616, United States, E-mail: gyliu@ucdavis.edu
Received: August 06, 2015; Accepted: September 08, 2015; Published: September 10, 2015
Copyright: © 2015 Zhang M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Zhang M, Herrera M, Patten TE, Augustine M, Lin-Dong S, et al. (2015) Core/Shell/Shell Nanomaterials of NaYF₄: Yb, Er/Silica/Polystyrene with High Thermal Stability. Int J Nanoparticles Nanotech 1:003
have been coated on fluoride based upconversion material by ligand exchange and layer-by-layer deposition approach [5,22]. New coating methods are necessary to increase flexibility and to enable control of thickness and functionality by design. However, most polymer-coating techniques are subject to the nature of the REN crystal surface, the capping agent of the crystal, or the polymer candidates for coating, limiting the versatile coupling of polymer with RENs. To date, surface initiated polymerization on noble metals such as gold [23,24], semiconductor quantum dots such as CdSe [25,26] and magnetic nanoparticles such as iron oxide [2,27] have been widely reported, which render the target substrate with a variety of functionalities carried by versatile polymers. However, direct surface grafting of polymer from RENs is challenging, given the fact that the most well-known class of RENs, the fluoride based material such as hexagonal phase NaY\textsubscript{0.78}F\textsubscript{4}:Yb\textsubscript{0.2}Er\textsubscript{0.02}, shows relatively low reactivity for surface polymerization compared to the above substrates.

Here we report a simple method with mild reaction condition to form a polymer shell on REN core by silica coating and atom transfer radical polymerization (ATRP). First, thermo decomposition method was used to prepare the rare earth nanocrystal core, followed by silica inner shell coating via hydrolysis in reverse micelle solution, and finally a polystyrene outer shell via atom transfer radical polymerization (ATRP). The structures of these nanomaterials are characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) while the corresponding up conversion spectra were measured. Materials were subjected to upconversion emission intensity to test their thermal stability. The results indicate clear improvement in stability in comparison to uncoated rare earth nanocrystal core. The mild reaction conditions used for the surface modification and the flexibility of ATRP to regulate structure and functionality are advantageous for research and development. This work paves the way to incorporate rare earth based nanocomposites to a wide range of applications such as display, solar cells, and biological tagging.

Materials and Methods

Materials

Rare earth oxides (Y\textsubscript{2}O\textsubscript{3}, Yb\textsubscript{2}O\textsubscript{3}, Er\textsubscript{2}O\textsubscript{3}), sodium trifluoroacetate, oleic acid (OA, 90%), oleylamine (OM, 70%), 1-octadecene (ODE, 90%), trifluoroacetic acid (99%), tetraethyl orthosilicate (TEOS), polyoxymethylene (5) nonylphenylether (IGEPAL CO-520), ammonia hydroxide solution (28-30%), 2-bromoisobutyryl bromide, allyl alcohol, triethylamine, diethyl ether, platinum(0)-1,3-divinyl-1,1,3,3-tetramethyl disiloxane complex solution (Karstedt's catalyst), copper (II) bromide (CuBr\textsubscript{2}), calcium hydride (CaH\textsubscript{2}), magnesium sulfate (MgSO\textsubscript{4}) tetrahydrofuran (THF, 99%), cyclohexane, absolute ethanol and vacuum-distilled. The ligand 4,4'-di-(5-nylonyl)-2,2'-bipyridine (dNBP) was purchased from Reilly Industries Inc. and purified with distillation. Water (≥ 18.2 MΩ·cm) was generated from a Milli-Q system (Q-GARD 2, Millipore, Billerica, MA). Y(CF\textsubscript{3}COO)\textsubscript{3}, Yb(CF\textsubscript{3}COO)\textsubscript{3}, and Er(CF\textsubscript{3}COO)\textsubscript{3} were prepared by dissolving the oxide in dilute trifluoroacetic acid solution and drying in an oven at 160 °C overnight.

Synthesis protocols

Synthesis of rare earth doped nanoparticles: All the syntheses in this section were performed using standard oxygen-free conditions. The monodisperse oleic acid capped β-NaY\textsubscript{0.78}F\textsubscript{4}:Yb\textsubscript{0.2}Er\textsubscript{0.02} nanoparticles were prepared by a 2-step thermo decomposition reaction [28]. The α-NaY\textsubscript{0.78}F\textsubscript{4}:Yb\textsubscript{0.2}Er\textsubscript{0.02} nanocrystals were synthesized in the first step. 2 mmol CF\textsubscript{3}COONa, 1.56 mmol Y(CF\textsubscript{3}COO)\textsubscript{3}, 0.4 mmol Yb(CF\textsubscript{3}COO)\textsubscript{3}, and 0.04 mmol Er(CF\textsubscript{3}COO)\textsubscript{3} were added to a mixture of 20 mmol OA, 20 mmol OM, and 40 mmol ODE in a 100 mL 3-necked flask followed by a 30 min vacuum to remove water and oxygen at 100 °C. Then, the reaction mixture was heated to 290 °C and reacted for 45 min under N\textsubscript{2} flow. The reaction was quenched by removing the heat followed by adding in excess absolute ethanol. The resultant turbid solution was then centrifuged to yield white precipitates. Such precipitate was then washed with ethanol 4x and dried in the vacuum oven at 70 °C overnight.

Synthesis of REN/silica nanoparticles: In a typical reaction, 1 mL CO-520, 60 mL cyclohexane, and 40 mL containing 80 mg REN nanocrystal solution in cyclohexane were mixed and stirred for 10 min. 4 mmol CO-520, and 0.3 mL ammonia (wt 30%) were then added and the container was sealed and sonicated for 20 min until a transparent emulsion was formed. TEOS (0.4 mL) was added into the solution, and the solution was stirred for 2 days at a speed of 600 rpm.

Synthesis of surface initiator and REN/silica/polystyrene nanoparticles: In a typical reaction, a slightly excess amount of 2-bromoisobutyryl bromide was added to the mixture of allyl alcohol and triethylamine in an ice bath. The mixture was brought to room temperature and then stirred for 18 h. The allyl 2-bromoisobutyrate was washed three times with 100 mL water, dried over MgSO\textsubscript{4} and distilled under reduced pressure. The distilled allyl 2-bromoisobutyrate was added with a few drops of Karstedt's hydroisylolation catalyst. A slightly excess amount of dimethyldioxsilane was added drop wise and the reaction was heated at 80 °C for 2-4 hours or until the...
vinyl photon disappeared in NMR spectrum to achieve the surface initiator BIDS. Then, REN/Silica particles were isolated from ethanol suspension by centrifugation and re-suspended in THF. The THF solution was heated at 85 °C. A slight excess amount (0.6 mmol, 1.2 mole equivalent) of BIDS was added and the mixture was heated at reflux for 12 h. The particles were isolated by centrifugation and washed 5 times to avoid any adsorbed initiator on surface. The particles were then suspended in hexane and solvent was removed by vacuum to obtain the initiator-modified REN/Silica nanoparticles.

The ATRP polymerization was performed using standard oxygen-free conditions. Initiator modified REN/silica particles from above, 0.6 mmol CuBr, 0.03 mmol CuBr₂, and 1.2 mmol dNbipy ligand were mixed into a Schlenk flask with a stirring bar. 60 mmol styrene was added by a syringe and the flask was deoxygenated (three freeze/vacuum/N₂ cycles). The mixture was stirred vigorously and sonicated to obtain a uniform suspension. The flask was heated to 110 °C and kept for 24 h. The polystyrene coated REN composite was isolated by precipitation with methanol, yielding a white powder [29,30].

Structural and spectroscopic characterization

The size and morphology of the nanomaterials were characterized by a transmission electron microscope (CM 12, Philips) at 120 kV acceleration voltages. Samples for transmission electron microscopy (TEM) were prepared by drying a drop of diluted particles solution on the copper grids coated with a thin carbon film. The samples were also characterized by a scanning electron microscope (Hitachi S-4100T) at 5kV acceleration voltages.

The element analysis of nanomaterials was characterized by energy dispersive X-ray spectroscopy (EDS) (INCA system, Oxford). Powder X-ray diffraction (XRD) patterns of the REN samples on zero-background substrates were recorded on an X-ray diffractometer (D/Max-2500, Regaku). The spectroscopic properties of the nanomaterials were investigated using an inverted optical microscope (Olympus IX 50.Olympus America Inc., Melville, NY) equipped with an imaging dual grating monochromator and PMT detector (Acton SP2150, Princeton Instruments). In addition to the lamps, we added 50 mW 980 nm diode laser (UHS-50G-980, World Star Tech) as the excitation source for RENs. Gel permeation chromatography (GPC) was measured in tetrahydrofuran (THF) at 30 °C and a flow rate of 1.00 mL/min. Three Polymer Standards Services columns (100 Å, 1000 Å, and linear) were connected in series to an isocratic pump, an autosampler, a column oven, and a refractive-index detector.

Results and Discussion

Key steps of our material synthesis to produce the designed REN/silica/polystyrene nanoparticles are shown in Scheme 1. First, rare earth upconversion nanocrystal cores were prepared by thermo decomposition method of rare earth trifluoroacetic salt [5,28]. Then, silica was coated on REN surface by reverse micelles method with Igepal CO520 surfactant [18]. The organosiloxane surface initiator 3-(2-bromoisobutyryl)propyl Dimethylethoxysilane (BIDS) was synthesized and then coupled with the silica surface. Finally, the initiator-modified nanoparticles were used as macro-initiators for the ATRP polymerization of styrene on REN surfaces catalyzed by CuBr [29,31,32].

Synthesis and characterization of rare earth doped nanoparticles

The detailed synthesis protocols are summarized in the previous section 2.2.1. The afforded β-NaY₀.₇₈F₄:Yb₀.₂Er₀.₀₂ nanocrystals can dissolve in hexane, cyclohexane, and other nonpolar solvents. This observation is the quick verification that as synthesized β-NaY₀.₇₈F₄:Yb₀.₂Er₀.₀₂ nanocrystals were capped with the oleic acid capping ligand as shown in Scheme 1.

The size of REN cores was characterized using TEM. In the large area TEM micrograph as shown in Figure 1A, the individual REN particles can be clearly observed. Based on over 150 REN particles in this electron micrograph, the size distribution measured as 3%. The particle size for REN nanocrystals was found to be 20.6 ± 0.6 nm obtained by a detailed particle-size analysis of multiple TEM images and hundreds of particles. Figure 1B is a high-resolution TEM
image of one REN nanoparticle, in which the lattice fringes can be clearly distinguished. This indicates the high single crystallinity of our RENs. The single crystallinity of these RENs is further confirmed by XRD shown in Figure 1C. All the diffraction peaks in XRD pattern can be assigned by comparison with the standard single crystal of β-NaYF4 (JCPDF # 28-1192). Our results are consistent with the prior knowledge that the two-step thermo decomposition method represents current state-of-the-art to produce RENs with the highest known uniformity, mono-dispersivity and single-crystallinity [28].

Figure 1D shows the emission spectrum of the RENs under 980 nm laser excitation. Two peaks are observed at 550 and 670 nm, which is consistent with the known upconversion characteristic [13, 28]. The stoichiometry is determined via EDS shown in Figure 1E, where key elements are clearly present and pristine: Na (1.041 keV), F (0.677 keV) and Yb (1.948 keV). Quantitatively, where key elements are clearly present and pristine: Na (1.041 keV), F (0.677 keV) and Yb (1.948 keV). The stoichiometry is determined via EDS shown in Figure 1E, where key elements are clearly present and pristine: Na (1.041 keV), F (0.677 keV) and Yb (1.948 keV). The stoichiometry is determined via EDS shown in Figure 1E, where key elements are clearly present and pristine: Na (1.041 keV), F (0.677 keV) and Yb (1.948 keV). The stoichiometry is determined via EDS shown in Figure 1E, where key elements are clearly present and pristine: Na (1.041 keV), F (0.677 keV) and Yb (1.948 keV). The stoichiometry is determined via EDS shown in Figure 1E, where key elements are clearly present and pristine: Na (1.041 keV), F (0.677 keV) and Yb (1.948 keV). The stoichiometry is determined via EDS shown in Figure 1E, where key elements are clearly present and pristine: Na (1.041 keV), F (0.677 keV) and Yb (1.948 keV). The stoichiometry is determined via EDS shown in Figure 1E, where key elements are clearly present and pristine: Na (1.041 keV), F (0.677 keV) and Yb (1.948 keV).

Synthesis and characterization of REN/Silica nanoparticles

The silica shell was coated on REN surface via TEOS hydrolysis in reverse micelle solutions as shown in Scheme 1. After introduction of the surfactant molecules and trace amount of water to the REN suspension, a thin water layer formed around the surfactant-bound REN. This water layer triggered the TEOS hydrolysis and subsequently resulted in the silica shell formation. The resulting core/shell nanoparticles can be dispersed in polar solvent such as water and ethanol, which was a quick in situ verification of successful coating of silica shell.

The addition of silica shell is evident by the presence of two TEM contrasts, dark core and grey shell, shown in Figure 2C. These two contrasts correspond to REN core and silica shell, respectively. The successful coating by silica is also supported by the increasing overall size comparing TEM images before and after coating reactions, as shown in Figure 2A and Figure 2C. Figure 2C also reveals that the REN/silica nanoparticles are fairly uniform in size, with the diameter measuring 58.5 ± 1.8 nm. The silica shell thickness can be quantified from zoom-in TEM images before and after coating, as shown in Figure 2B and Figure 2D, respectively. The thickness of the silica shell is 19 ± 2 nm among hundreds of nanoparticles measured in TEM images. Our results are in good agreement with prior knowledge that TEOS hydrolysis based coating is a good generic protocol for enclosing nanoparticle surface with silica of designed thickness [18]. The spectra are identical qualitatively to that of RENs, and the upconversion intensity remains constant as well. The stability of the spectra will be discussed in later sections.

Synthesis and characterization of REN/silica/polystyrene nanoparticles

ATRP was utilized to add the outer polystyrene shell, as shown in Scheme 1. Organosiloxane based surface initiator, BIDS, was synthesized and attached to the silica coating driven by the strong conjugation between silica and organosiloxanes. The silanol group binds to the silica surface while the Br terminal sticks out and acts as the surface initiator for polymerization [27, 29, 31, 35]. First, the surface initiator BIDS was synthesized and installed on the REN/silica surface. Polymerization can then only occur at the REN/silica surface through ATRP approach. Polymerization under a different monomer: initiator ratio at 100:1 and 300:1 was also conducted to study the influence of the chain length and molecular weight.

As reactions proceeded, we noticed dispersity of nanomaterials evolved accordingly. The RENs were well dispersed in non-polar solvent such as hexane or toluene. After the silica coating, the core-shell particles dispersed well in polar solvent, such as water or ethanol, forming a milky suspension. Upon the polystyrene grafting, the composite particles became well dispersed in polymer friendly solvents such as THF and toluene. These observations provide quick in situ indication that the surface modifications were successful and consistent with our designed functionalities.
Characterization of all nanomaterials followed similar protocols as used for the RENs. From images 2A–2C, the uniformity of resulting nanomaterials seems to be preserved. The final nanomaterials, REN/silica/polystyrene nanoparticles, measure 68.9 ± 2.2 nm in diameter, which means that the thickness of the polystyrene shell is 5 ± 2 nm. The fluorescence spectra are identical qualitatively and quantitatively to that of REN/silica nanomaterials. The stability of the spectra will be discussed in later sections.

One feature revealed in TEM images is the gap among nearest neighbor particles, which provides supportive evidence of surface coating. In the case of REN particles as shown in Figure 2B, the gap is 4.3 nm, which corresponds well with the closely packed RENs with the oleic acid coating (i.e. capping ligand). The gap among REN/silica particles is 9 nm, larger than that among RENs. This is consistent with the stronger repulsive interactions among nanoparticles due to the negative charges of silica and the surfactant of Igpal CO520 [36,37]. The gaps among nearest neighbor REN/silica/polystyrene particles are 6 nm, smaller than that among REN/silica nanoparticles. This is consistent with our ATRP procedures, during which the surfactants were removed, and the final exterior coating of uncharged polystyrene. Polystyrene are known to be relatively soft and more deformable in comparison to inner cores and middle silica shells [38]. The bright contrast surrounding the boundary of REN/silica/polystyrene nanoparticles is likely due to the charging effect of the polystyrene shells when imaged by TEM [39].

The grafted polystyrene was also characterized by GPC to obtain the molecular weight, as summarized in Table 1. The grafted polystyrene with 100:1 monomer/initiator ratio has a molecular weight of Mn = 1.80 × 10^4 g/mol, Mw = 1.94 × 10^4 g/mol and a polydispersity index (PDI) (= Mw/Mn) of 1.08, which is in good agreement with typical ATRP polymerization (PDI < 1.3), while PDI is typically larger than 2 for other conventional polymerization methods [30,40,41]. The narrow molecular weight distribution indicates the polymer coating process is relatively homogenous with similar polymer chain length. The polymer chain length, and the thickness of the polymer shell, can be readily tuned by varying the ratio between the monomer and surface initiator. Polymerization with 100:1 monomer/initiator ratio shows the thickness of polystyrene shell as 5 nm as indicated in Figure 2, which is in good agreement with ATRP carried out under similar conditions [29]. Polymerization with 300:1 monomer/initiator ratio still keeps a very low PDI at 1.12, and increased the polymer chain length and molecular weight from 1.8 to 7.25 × 10^4 g/mol, which will lead the increased polystyrene shell thickness. However, the molecular weight of actual obtained polymers in both 100:1 and 300:1 ratio are larger than the theoretical values calculated from monomer/initiator ratio, which indicated that about 40%-60% of surface initiators are installed on particle surface.

![Figure 3](image-url)
Figure 3: The emission spectra of RENs (green), REN/silica (grey), and REN/silica/polystyrene (brown) under 980 nm laser excitation.

![Figure 4](image-url)
Figure 4: The thermal stability of RENs (black), REN/silica (red), and REN/silica/polystyrene (blue) using the ratio of 550 nm at test temperature and room temperature.

Table 1: Molecular weight and polydispersity index of polystyrene coatings from the REN/SiO2/polystyrene nanomaterials.

Monomer/initiator (mol:mol)	Mn (×10^4 g/mol)	Mw (×10^4 g/mol)	PDI
100:1	1.80	1.94	1.08
300:1	7.25	8.12	1.12

Citation: Zhang M, Herrera M, Patten TE, Augustine M, Lin-Dong S, et al. (2015) Core/Shell/Shell Nanomaterials of NaYF₄: Yb, Er/Silica/Polystyrene with High Thermal Stability. Int J Nanoparticles Nanotech 1:003
perature as shown in Figure 4. The RENs core without coatings showed the
decay of emission clearly at high temperature (decreased to 0.7% at
300 °C) and REN-Silica and REN/silica/poly styrene remained the same at
temperature up to 300 °C. With the silica and polystyrene as the
coating matrix, the upconversion properties of RENs are preserved. The
possible mechanism for improved stability with surface coating
might be due to the fact that the local environment of Ln3+ is better
preserved due to inert coating than REN core alone. In other words,
the movement or diffusion of the Ln3+ does not lead to significant
changes in their local environment for the core/shell materials, which
is analogous to improved stability among rare earth doped glass ma-
terials [43]. The addition of silica shells stabilized RENs and enabled
a wide range of chemical modality such as siloxane function [44,45]
and ATRP polymerization [29,31] as demonstrated by this work. The
silica and polystyrene coating provided the superior spectroscopy sta-
bility and functionality, which could extend the rare earth based core
particles into much wider applications.

Conclusions

In this work, we report a new core/shell/shell material with superior
upconversion fluorescence stability by a simple method to
protect the rare earth doped upconversion nanocrystals and enable further functionalization with surface chemistry. Silica shell
is prepared using a mild room temperature hydrolysis reaction. The
obtained 19 nm silica shell is sufficient to stabilize the rare earth
doped upconversion nanoparticles against the high temperature and enable the further functionalization such as siloxane chemistry and
atom transfer radical polymerizations. We have demonstrated
the polystyrene shell with 5 nm thickness can be coated by
the surface initiated ATRP approach. The grafted polystyrene chains
have very narrow molecule weight distribution and the molecule
weight as well as polymer shell thickness can be tuned with reaction
parameters. The mild reaction conditions are essential to keep the
structure and property integrity. The versatility of ATRP method
enables the various functional group to be conjugated on rare earth
doped nanocrystal surfaces and testing the composite material in biological and energy
conversion applications in wide temperature range still need further
investigation.

Acknowledgments

The authors greatly appreciate technical assistance on TEM imaging by Dr.
Virginia Altoe at Molecular Foundry of Lawrence Berkeley National Laboratory, and helpful discussion with Drs. Jianli Zhao and Wei-feng Lin at UC Davis. This work is
supported by ACS-PRF-ND and California Energy Commission Energy
Innovations Small Grant Program under the contract CA-ESIG-57513-A-12-15.
Acknowledgment is made to the donors of the American Chemical Society
Petroleum Research Fund for support (or partial support) of this research. This
work is supported by ACS-PRF-ND and California Energy Commission Energy
Innovations Small Grant Program under the contract CA-EISG-57513A-12-15.

References

1. L Liu, B Li, R Qin, H Zhao, X Ren, et al. (2010) Synthesis and characterization
of nanoporous NaYF4:Yb3+, Tm3+@SiO2 nanocomposites. Solid State
Sciences 12: 345-349.
2. Y Sun, X Ding, Z Zheng, X Cheng, X Hu, et al. (2007) Surface initiated ATRP
in the synthesis of iron oxide/poly styrene core/shell nanoparticles. Eur Polym
J 43: 762-772.
3. Z Fang, F Lees E, Amin F, Rivera Gil P, Yang F, et al. (2011) Polymer-coated
nanoparticles: a universal tool for biolabelling experiments. Small 7: 3113-
3127.
4. M Deng, Y Ma, S Huang, G Hu, L Wang (2011) Monodisperse upconversion
NaYF4 nanocrystals: Syntheses and bioapplications. Nano Research 4: 685-
694.
5. Wu S, Han G, Milliron DJ, Aloni S, Altono V, et al. (2009) Non-blinking and
photostable upconverted luminescence from single lanthanide-doped
nanocrystals. Proc Natl Acad Sci U S A 106: 10917-10921.
6. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles
in biological labeling, imaging, and therapy. Analyst 135: 1839-1854.
7. B J Egner, S Rana, H Smith, N Bouloco, J G Frey, et al. (1997) Tagging in
combinatorial chemistry: The use of coloured and fluorescent beads. Chem
Comm: 735-736.
8. Ren W, Tian G, Zhou L, Yin W, Yan L, et al. (2012) Lanthanide ion-doped
GdPO4 nanorods with dual-modal bio-optical and magnetic resonance
imaging properties. Nanoscale 4: 3754-3760.
9. P Li, Q Peng, Y Li (2009) Dual-Mode Luminescent Colloidal Spheres from
Monodisperse Rare-Earth Fluoride Nanocrystals. Adv Mater 21: 1945-1948.
10. B Yoon, J Lee, I S Park, S Jeon, J Lee, et al. (2013) Recent functional material
based approaches to prevent and detect counterfetting. J Mater Chem C 1:
2388-2403.
11. Liu Y, Ai K, Lu L (2011) Designing lanthanide-doped nanocrystals with both
up- and down-conversion luminescence for anti-counterfetting. Nanoscale 3:
4804-4810.
12. Zhang M, Lin Y, Mullen TJ, Lin WF, Sun LD, et al. (2012) Improving Hematite's
Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion
Nanomaterials. J Phys Chem Lett 3: 3188-3192.
13. Mullen TJ, Zhang M, Feng W, El-khouri RJ, Sun LD, et al. (2011) Fabrication
and characterization of rare-earth-doped nanomaterials on surfaces. ACS
Nano 5: 6539-6545.
14. Vetrone F, Naccache R, Zamarrón A, Juarranz de la Fuente A, Sanz-
Rodriguez F, et al. (2008) Temperature sensing using fluorescent nanothermometers. ACS Nano 4: 3254-3258.
15. Fischer LH, Harms GS, Wolfbeis OS (2011) Upconverting nanoparticles for
nanoscale thermometry, Angew Chem Int Ed Engl 50: 4546-4551.
16. J Shan, W Kong, R Wei, N Yao, Y Ju (2010) An investigation of the
temperature sensitivity and stability of the beta-NaYF4:Yb, Er upconversion
nanophosphors. Journal of Applied Physics 107.
17. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent
nanoparticles for use in biocomjugation and bioimaging. Curr Opin Chem Biol
14: 582-596.
18. Abdul Jalil R, Zhang Y (2008) Biocompatibility of silica coated NaYF4(4)
upconversion fluorescent nanocrystals. Biomaterials 29: 4122-4128.
19. Mi C, Tian Z, Cao W, Wang Z, Mao C, et al. (2011) Novel microwave-assisted
solvothermal synthesis of NaYF4:Yb, Er upconversion nanoparticles and their
application in cancer cell imaging. Langmuir 27: 14632-14637.
20. J Zhang, C Ma, H Wu, H Huang, C Mao, et al. (2012) Synthesis of NaYF4:Yb/
Er/Gd up-conversion luminescent nanoparticles and luminescence resonance
energy transfer-based protein detection. Analytical Biochemistry 421: 673-
679.
21. Meruga JM, Cross WM, Stanley P, Luu Q, Crawford GA, et al. (2012)
Security printing of covert quick response codes using upconverting
nanoparticle inks. Nanotechnology 23: 395201.
22. G-S Yi, G-M Chow (2007) Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer
core/shell/nanoshell nanoparticles: A tool for the preparation of well-defined hybrid nanostructures. J Phys Chem C 111: 341-343.
23. S K Jewrajka, U Chatterjee (2006) Block copolymer mediated synthesis of
amphiphilic gold nanoparticles in water and an aqueous tetrahydrofuran
medium: An approach for the preparation of polymer-gold nanocomposites. J
Polym Sci Pol Chem 44: 3641-3654.
24. P J Roth, P Theato (2006) Versatile synthesis of functional gold nanocomposites:
Grafting polymers from and onto. Chem Mater 20: 1614-1621.
25. Esteves AC, Bomblaki L, Trindade T, Matyjaszewski K, Barros-Timmons
A (2007) Polymer grafting from CdS quantum dots via AGET ATRP in
miniemulsion. Small 3: 1230-1236.
26. K Sungwon, K Donghwan, K Hyun-Ji, L Yun-Jae, W Seung Sang (2011)
Hybrid nanocomposite of CdSe quantum dots and a P3HT-b-PDMAEMA
block copolymer for photovoltaic applications. Mater Sci Forum 700.
27. S M Gravano, R Dumas, K Liu, T E Patten (2005) Methods for the surface
functionalization of gamma-Fe2O3 nanoparticles with initiators for atom
transfer radical polymerization and the formation of core-shell inorganic-
polymer structures. J Polym Sci Pol Chem 43: 3675-3688.
28. H-X Ma, Y-W Zhang, L-D Sun, C-H Yan (2007) Highly efficient multicolor up-
conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core
and core/shell-structured nanocrystals. J Phys Chem C 111: 13721-13729.
29. T von Werne, T E Patten (2001) Atom transfer radical polymerization from
nanoparticles: A tool for the preparation of well-defined hybrid nanostructures
and for understanding the chemistry of controlled/living radical
polymerizations from surfaces. J Am Chem Soc 123: 7497-7505.
30. T. E Patten, K Matyjaszewski (1998) Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 10: 901-915.

31. S C Farmer, T E Patten (2001) Photoluminescent polymer/quantum dot composite nanoparticles. Chem Mater 13: 3920-3926.

32. Y. D. K, Selvan ST, Lee SS, Papafthymiou GC, Kundaliya D, et al. (2005) Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J Am Chem Soc 127: 4990-4991.

33. D Yuan, M C Tan, R E Riman, G M Chow (2013) Comprehensive Study on the Size Effects of the Optical Properties of NaYF4:Yb,Er Nanocrystals. J Phys Chem C 117: 13297-13304.

34. Boyer JC, van Veggel FC (2010) Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2: 1417-1419.

35. K Ohno, T Morinaga, K Koh, Y Tsuji, T Fukuda (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38: 2137-2142.

36. Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21: 5761-5769.

37. S Santra, R Tapec, N Theodoropoulou, J Dobson, A Hebard, et al. (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir 17: 2900-2906.

38. Vogel N, Ally J, Bley K, Kapp M, Landfester K, et al. (2014) Direct visualization of the interfacial position of colloidal particles and their assemblies. Nanoscale 6: 6879-6885.

39. C D Jones, L A Lyon (2000) Synthesis and characterization of multiresponsive core-shell microgels. Macromolecules 33: 8301-8306.

40. Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1: 276-288.

41. W A Braunecker, K Matyjaszewski (2007) Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 32: 93-146.

42. D A Shipp (2005) Living radical polymerization: Controlling molecular size and chemical functionality in vinyl polymers. J Macromol Sci-Pol. R 45: 171-194.

43. Z Duan, J Zhang, D He, H Sun, L Hu (2006) Effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+-Yb3+ codoped oxyfluoride silicate glasses. Materials Chemistry and Physics 100: 400-403.

44. L T Zhuravlev (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces a-Physicochemical and Engineering Aspects 173: 1-38.

45. J D Lichtenhan (1995) Polyhedral Oligomeric Silsesquioxanes: Building Blocks for Silsesquioxane-Based Polymers and Hybrid Materials. Comments on Inorganic Chemistry 17: 115-130.