Optimizing Weed Control by Integrating the Best Herbicide Rate and Bio-agents in Wheat Field

Meisam Zargar1*, Vadim G. Plushyko2, Elena N. Pakina1 and Maryam Bayat1

1Department of Agro-Biotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia; meisam_pfur@yahoo.com
2Department of Agro-Engineering, Institute of Agriculture, RUDN University, Moscow, 117198, Russia; agro@rudn.ru, e-pakina@yandex.ru, maryam1313@yahoo.com

Abstract

Objectives: Study of reducing the rates of a new generation herbicide verdict in combination with some biocontrol components under the field condition of Moscow to suppress Avena fatua and broad-leaved weeds and consequently maintaining satisfactory crop yield under intensive technology. Method/Statistical analysis: Field experiment were laid out to appraise the efficacy of reduced concentrations of a post-emergence herbicide verdict in combination with biocontrol agent to suppress three major weeds (Chenopodium album, Avena fatua and Capsella bursa-pastoris) in wheat field under the condition of Non-chernozem zone, Moscow region. Findings: Shown labeled concentration 0.3 kg/ha+ bio-agents was effective in reducing total weed populations. This study showed that a desirable weed reduction in wheat was achieved when intermediate herbicide rate 0.3 kg/ha+ and bio-agents were used, that was comparable to the result which achieved for registered verdict dose as 0.5 kg/ha+. Hence, despite the higher weed reduction efficacy was obtained with herbicide in registered label dose plus biocontrol agent, but the differences were not significant in comparison with below herbicide dose 0.3 kg/ha+. Meanwhile, the best energy output (90.3 GDj/ha-1), agricultural efficiency (19.9%) and wheat grain yield 7.80 t/ha-1 were achieved when reduced rate 0.3 kg/ha+ combined to bio-agent were applied. Application /Improvement: Cutting of herbicide dosage without compromising grain yield can cause to less environmental pollution and lower production costs, besides, can reduce weed population desirably.

Keywords: Agronomical Efficiency, Energy Output, Reduced Herbicide Rate, Weed, Wheat Yield

1. Introduction

Weed is the most important factor in wheat grain yield losses1. Crops often have challenges with weeds by competition on water, nutrition and other elements through competition2.

The important purpose of managing weeds is to reduce the weeds at a desirable or appropriate level, but not to eliminate them comprehensively. In most case, satisfactory weed reduction and favorable yields were obtained, when herbicides are operated at reduced concentrations3–11, and, lower rates of chemical components are often sufficient to reduce weeds. To ensure considerable weed management under undesirable technique of cropping factors, producers recommended higher than necessary concentrations. Therefore, it is not often necessary using full herbicide rate (labeled rate)12. Additionally, modern weed science insists ecological approaches based on controlling weeds below threshold levels13.

Herbicides are the dominant tool used for weed management in modern cropping systems; they are highly effective on most weed populations but are not a complete solution to the complex challenge that weeds present. The overuse of chemical agent has led to the evolution of herbicide resistance14,16. Herbicides in Labeled concentrations are often elected to ensure desirable weed suppression over a wide range of environmental conditions and weed species17.
50% rate of tralkoxydim suppresses higher than 85% of narrow leaf weeds in barley. Also tralkoxydim at reduced rates can provides an acceptable reduction of wild oat. Survey of various herbicides (fluroxypyr; diflufenican + MCPA and Clopyralid + 2, 4-D) efficacy in different concentrations to suppress weeds in cereals revealed that 85% of Galium tricornutum was suppressed for the higher herbicide rate, but bellow-labeled 50% rate as the lowest herbicide concentration also diminished weeds populations to 82%. Nevertheless, majority of herbicide at low concentrations are often adequate to reduce weed density without yield reduction.

Scientists emphasize the importance of investigating the dynamics of weed communities to broaden the function of cultural and biological control approaches. The integrating reduced herbicide doses with other management strategies, such as biological methods, could also markedly enhance the odds of desirable weed suppression. Hence, weed control system with the purpose of the reducing herbicide application needs to integrate multiple techniques. Control strategies involve mowing, herbicides, and biological components. Mowing reduces, but does not eliminate weeds, and the application of herbicides to large areas with rough terrain is difficult and so costly. Hence, the using biological agents seem to be the most pragmatic control option.

Increasing number of herbicide-resistant weeds makes it obvious that frequent using the single tool for pest suppression not just leads to a preponderance of the most problematic species, but can basically shift the genetic composition of their populations. However, integrating control practices emphasizes the use of multiple strategies to address the causes of weed fitness. Consequently, investigating for alternative cultural and biological practices has intensified. Biological strategies recommended modern approaches to the application of chemicals that create new environmental factors weed control practices. Biological management of weeds is defined as environment-friendly, using bio-agent components towards weeds.

Weed management by the using biological components has received much interest in the last decades. Majority of countries need bio-herbicides registration according to pesticide legislation before initial application. In present study, survey the optimizing weeds reduction by the reducing doses of new generation of herbicide in integration with some bio-agents under the field condition of Moscow region was the main purpose.

2. Material and methods

2.1 Experimental Design

Field experiments were carried out on improving the strategies for post-emergence weed suppression in winter wheat (Triticum aestivum) were performed as an intensive farming technology during 2012 - 2014 in the Moscow Research Institute of Agriculture, Moscow area, Russia. The site was located at 55° 45′ N, 37°37′ E and 200 m altitude. Samples were taken randomly from different spots at 0 - 15 cm to record the initial characteristics of the experimental soil. The soil type was a loamy with 1.7% organic matter and a pH of 5.3. The experimental field was plowed before planting seeds, and the field was prepared by roller harrowing. Disk operation also conducted; for changing soil pH, Dolomik powder 5 t/ha was applied to the seedbed.

2.2 Climatic Condition

During 2012 - 2013 years’ vegetative season there was measurable rainfall, mainly precipitation; daily average soil and atmospheric temperature was high; moisture deficiency was obtained in the middle of vegetation season. Weather condition of winter 2014 was non-typical in comparison with average for Moscow region. Soil was frozen up to 41 cm; snow level was very high – up to 40 cm. Figure 1 shows the average rainfall and mean monthly temperature data recorded in vicinity of the experimental farm.

![Average monthly rainfall and monthly temperature during 2012 – 2014 Moscow region.](image)

2.3 Field Layouts Details

Biological agents [bio-herbicide, bio-fertilize and biofungicide with anti-stress activity to chemical treatments in combination with the various doses of verdict (0, 0.2, 0.3 and 0.5 kg/ha) adjuvant 500 cc was mixed to herbi-
3. Result and Discussion

3.1 Weed Control Efficacy During 2013 - 2014

Combination of reduced herbicide doses and other management techniques could favorably enhance the odds of desirable weed suppression. Number of weeds and dry weight were mostly for effect of the reduced rates of herbicide in combination with bio-agents, weeds population reduced mainly when herbicide 0.5 kg/ha\(^{-1}\) + bio-agents was applied compared with other treatments, moreover, a satisfactory reducing *Cenopodium album*, *Capesella bursa-pastoris* and also *Avena fatua* were obtained with below-registered rate as intermediate concentration (Figures 2–5). Appropriate weed reduction might be occurred with reduced herbicide rates and also providing favorable suppression during critical periods.\(^{10,21,22,23}\) Therefore, it is not always essential to use full herbicide rate.\(^{32}\)

The higher efficacy was reached with the labeled herbicide rate + bio-agents. Additionally, the lowest concentration 0.2 kg/ha\(^{-1}\) combined with bio-agents had a significantly lowest control efficacy on declining of weed species: *Cenopodium album*, *Capesella bursa-pastoris* and *Avena fatua*. Although the highest weed control was achieved with the registered dose of verdict, below labeled herbicide dose (intermediate dose) + bio-agents also provided a desirable reduction about all three weeds varieties (Figures 2–5). As in our study, the efficacy of cutting rates of herbicide groups has been determined by other authors.\(^{49–52}\)

According to the results of this study, despite the highest weeds control efficacy was obtained with the registered dose of herbicide, intermediate rate 0.3 kg/ha\(^{-1}\) + bio-agents also caused acceptable weed reduction about entire weeds varieties (Figures 2–5). There are examples where herbicides are used at doses that do not often cause such high weed suppression. Indeed, using herbicide rates can vary markedly between countries and enterprises. For instant, doses of herbicide in Australia are often 50\% of that in other nations. However, the labeled rate for diclofop in Australia is 375 g ai ha\(^{-1}\) compared with 640 g ai ha21 in the United States and 900 g ai ha21 in France.\(^{33}\) Moreover, 28\% of the crop fields in Canada manage weeds with reduced dose of herbicides.\(^{34}\) In addition to dose cutting, environmental variability under field conditions for
soil residual herbicides can result in lower than normal doses of herbicides being used to weed populations.

Biological agents cannot replace chemicals, or any other weed control tools, hence, biological agents should be combined to other control techniques. Using bio-agents can have acceptable weed control efficacy integrated with chemicals. Biological components will probably have long-time advantages to natural areas. Bio-agent alone is not a means by which to achieve weed suppression. However, using biological components for weeds management should not be assessed as a primary weed control practice, but can be illustrated as an integrated in other weed management techniques as it has been also revealed by authors.

![Figure 2](image.png)

Figure 2. Weed Density affected by treatments 30 days after applications in 2013 (plant/m²).

Abbreviations: T1, T2, T3 are herbicide dose 0.5, 0.3 and 0.2 L/ha⁻¹ respectively plus bio-agents.

![Figure 3](image.png)

Figure 3. Weed density affected by treatments 30 days after applications in 2014 (plant/m²).

Abbreviations: T1, T2, T3 are herbicide dose 0.5, 0.3 and 0.2 L/ha⁻¹ respectively plus bio-agents.
3.2 Biological Efficiency of Treatments During 2013 - 2014

Estimating the biological efficiency of verdict combined to bio-agents 30 days after application demonstrated that herbicide 0.5 kg/ha\(^{-1}\) combined to bio-agents reduced weeds dry weight 90 - 91% and density 86.6 - 87.5% compared to the control during 2013 - 2014 experimental years, additionally, biomass and density of weeds were desirably declined in comparison with control when intermediate concentration 0.3 kg/ha\(^{-1}\) was applied (Table 1).

Regarding to the result, it is recommended to reduce herbicide rates combined to biocontrol agents in order to improve weed control programs, this point in addition to control weeds in a proper way can diminish environmental pollution, weeds resistance and achieve sustainable cropping system. Some investigations have proved appropriate weed suppression and also desirable yields, when chemicals are operated at lower than registered rates \(^{10,11}\).

Results of this study might be due to the integration of biological agent to herbicide. It is necessary to realize that a bioherbicide or any biological weed control techniques are not an analogue of a chemical. Nevertheless, bioherbicides or any other biological practices have to be combined to other control tools in an integrated weed management approach. In this regards, some scientists have illustrated that low rates of agents could result in rapid evolution of herbicide resistant \(^{59,60}\). Reducing herbicide concentration is better combined to other techniques.

3.3 Responses of Yield and Yield Component to the Treatments During 2012 - 2014

Field data revealed that wheat yield was increased with the different verdict doses combined to the bio-agents as compared to control. The highest level of wheat yields
Optimizing Weed Control by Integrating the Best Herbicide Rate and Bio-agents in Wheat Field

7.8 t/ha\(^{-1}\) during 2013 and 7.57 t/ha\(^{-1}\) during 2014 was achieved while below labeled dose of verdict 0.3 kg/ha\(^{-1}\) plus bio-agents were used, and the lowest grain yield 6.87 t/ha\(^{-1}\) during 2013 and 6.51 t/ha\(^{-1}\) during 2014 was achieved in the control (no application) (Table 2). Grain weight factor is a significant component and individual grain weight could be raised and reduced\(^{61}\).

Herbicide applied at 0.5 kg/ha\(^{-1}\) plus bio-agent recorded as high productive biological yield 17.80 t/ha\(^{-1}\) and gluten content 31.95 %, 1000 grain weight 46.32 gram and protein content 18.02% as were obtained at registered dose for 2013 (Table 2). The highest biological yield is probably due to proper weed suppression and wheat get desirable nutrition. Also stated that desirable weed control increases biological yield\(^{62}\).

In experiment 2014, biological yield 17.80 t/ha\(^{-1}\),1000 grains weight 46.20 gram and gluten content 32.20% were achieved as the highest levels when verdict 0.3 kg/ha\(^{-1}\) as an intermediate dose plus biological agents were used. Despite, there is no difference between experimental treatments about harvest index, but it is indicated the 44.77% harvest index as the best level was recorded when herbicide rate 0.3 kg intermediate/ha\(^{-1}\) and bio-agent were used.

Weeds interfere with crops through competition, resulting in direct losses to crops and enhancing cropping costs\(^{63}\). In this study, wheat yields were related to weed population and biomass as denoted (Table 2), and increasing wheat productivity with the various herbicide rates could be provided to decline weed competition\(^{11,64}\). Fairly acceptable wheat and wheat traits and also weeds

Table 1. Biological efficiency of treatments 30 days after applications during 2013-2014

Treatments	yr	Density	Dry weight	Percent of weed reduction compared to control	
		plant/m\(^2\)	gr/m\(^2\)	Density	Dry weight
T 1	2013	7.5	0.6	87.5	91
	2014	8	0.7	86.6	90
T 2	2013	13	1.3	79	82
	2014	13	1.2	78.3	83
T 3	2013	27	2.3	55	65.6
	2014	25	2.6	58	62.5
T 4	2013	60	6.7	-	-
	2014	60	7	-	-

Abbreviations: T1, T2, T3 and T4 are herbicide dose 0.5, 0.3, 0.2 L/ha\(^{-1}\) plus bio-agents and control respectively.

Table 2. Influence of treatments on wheat and wheat component in 2013-2014

Treatments	yr	Gluten content %	Protein content %	1000 grain weight	Biological yield (t/ha\(^{-1}\))	Wheat yield (t/ha\(^{-1}\))	Harvest index %
T 1	2013	31.95a	17.28b	45.65a	17.80a	7.30ab	42.90a
	2014	31.70a	17.40a	45.51ab	17.65a	7.31a	41.40a
T 2	2013	32.75a	18.02a	46.32a	17.65a	7.80a	44.77a
	2014	32.20a	17.30a	46.20a	17.80a	7.57a	42.80a
T 3	2013	31.00a	16.80c	44.30a	16.80b	7.20ab	41.01a
	2014	31.50ab	17.6a	45.50b	17.60a	7.55a	42.80a
T 4	2013	27.75b	16.76c	43.37a	16.74b	6.87b	41.00a
	2014	30.60b	16.80a	44.30c	16.88b	6.51a	38.59a

Means in columns followed by the same letter are not significantly different at \(P = 0.05\).
Abbreviations: T1, T2, T3 and T4 are herbicide dose 0.5, 0.3, 0.2 L/ha\(^{-1}\) plus bio-agents and control respectively.
reduction was obtained with herbicide rate 0.3 kg/ha\(^{-1}\) in combined to bio-agents that were close to results with its labeled rate.

In this regard, reducing herbicide rate seem to recommend a desirable weed management technique to diminish chemical consumption across the globe\(^{39,38}\). Registration of herbicide doses are set at a level designed to provide high weed mortality across a range of environmental status\(^{65}\). On the other hand, using herbicides at below labeled rate is risky because herbicide efficacy depends strongly on competitive ability of host plant, herbicide efficiency and the crop growth stage\(^{17}\).

3.3.1 Agronomical Efficiency

As it is obvious, the most efficient treatment was verdict 0.3 kg/ha\(^{-1}\) in integrated with bio-agent about all three experimental years (Table 3). When herbicides applied at proper rates, obtain favorable weed reduction with no crop damage. Reducing the dose of chemical is going to be an appropriate technique. Thus, labeled doses of chemicals are always defined to ensure higher control of spectrum of weed species and growth stages\(^{8,22}\). In this regards, herbicide concentration can be different and might be diminished regarding to the density of weeds and environmental factors. Several scientific findings indicate that favorable weed management can be achieved when chemicals are applied at low herbicide rates\(^{31,33,66-68}\).

3.3.2 Energetic Efficiency

Energetic efficiency is an important factor for sustainability of the cropping systems, hence, effective energy use allows financial savings\(^{85}\) and can lead to environment-friendly production systems\(^{22,23}\). For the mentioned reason, energy input and output are essential option to specify the energetic efficiency of crop productions\(^{31}\). Present study indicated that the best energy output was obtained (90.3 GDj/ha\(^{-1}\)) when intermediate verdict rate 0.3 kg/ha\(^{-1}\) plus bio-component was done (Table 4).

Treatments	Yield t/ha\(^{-1}\)	Average Yield enhancement	%			
2012	2013	2014				
T 1	5.8	7.3	7.8	6.97	0.80	13.0
T 2	6.5	7.7	7.9	7.40	1.23	19.9
T 3	5.8	7.2	7.5	6.83	0.66	10.7
T 4	5.2	6.8	6.5	6.17	-	-
HCP\(_{av}\)	0.23	0.18	0.21			

Abbreviations: T1, T2, T3 and T4 are herbicide dose 0.5, 0.3, 0.2 L/ha\(^{-1}\) plus bio-agents and control respectively.

Treatments	Yield, t/ha	Energy output, GDj/ha\(^{-1}\)	Cost, GDj/ha	Energetic efficiency rate
T 1	6.97	85.0	10.0	1.7
T 2	7.40	90.3	10.7	1.8
T 3	6.83	83.3	9.8	1.7
T 4	6.17	75.3	8.9	1.8

Abbreviations: T1, T2, T3 and T4 are herbicide dose 0.5, 0.3, 0.2 L/ha\(^{-1}\) plus bio-agents and control respectively.

4. Conclusion

This study illustrated that herbicides at lower than labeled dose can also result desirable weed reduction. It can be resulted, that verdict use at a reduced rate, and combined to biological components caused an adequate weed suppression efficacy, without diminish in crops. Results of 3-yrs experiments indicated that a desirable level of weed reduction was obtained when lower concentration of herbicide rate 0.3 kg/ha\(^{-1}\) plus bio-agents. This approach can be operated as an economically effective technique and environmental-friendly practice to diminish weed damage.

5. Acknowledgements

We are thankful to Russian Centre for International Agricultural Research, and Institute of Agricultural sciences at the University of RUDN for funding this research.

6. References

1. Baghestani MA, Zand E, Soufizadeh S, Bagherin N, Deihimfard R. Weed control and wheat (\textit{Triticum aestivum} L) yield under application of 2,4 – D plus carfenstra-
zoneethyl and florasulam plus flumetsulam: evaluation of the efficacy. Crop Protection. 2007; 26(12):1759–64.
2. Qasim JR, Foy CL. Weed allelopathy; its ecological impact and future prospect. Journal of Crop Production. 2001; 4(2):43–120.
3. Devlin DL, Long JH, Maddux LD. Using reduced rates of post-emergence herbicides in soybeans (Glycine max). Weed Technology. 1991; 5(4):834–40.
4. Spandle EB, Durgan R, Miller DW. Wild oat (Avena fatua) control in spring wheat (Triticum aestivum) and barley (Hordeum vulgare) with reduced rates of postemergence herbicides. Weed Technol. 1997; 11(2):591–7.
5. Stougaard RN, Maxwell BD, Harris JD. Influence of application timing on the efficacy of reduced rate postemergence herbicides for wild oat (Avena fatua) control in spring barley (Hordeum vulgare). Weed Technology. 1997; 11(2):283–9.
6. Fernandez-Quintanilla C, Barroso J, Recasense J, Sans X, Torner C, Sanchez Del Arco MJ. Demography of Lolium rigidum in winter barley crops: Analysis of recruitment, survival and reproduction. Weed Research. 1998; 40(1):281–91.
7. Brian P, Wilson BJ, Wright KJ, Seavers GP, Caseley JC. Modelling the effect of crop and weed on herbicide efficacy in wheat. Weed Research. 1999; 39(1):21–35.
8. Navarrete L, Del Arco MJS, Gonzales PR, Taberner A, Tiews MA. Curvas de dosis respuesta para avena loca y vallico en cultivos de cebada de invierno. XIX Reunión Anual del Grupo de Trabajo Malas Hierbas y Herbicidas, Oviedo; 2000. p. 50–3.
9. Zhang J, Weaver SE, Hamill AS. Risks and reliability of using herbicides at below-labeled doses. Weed Technology. 2000; 14(3):106–15.
10. Bostrom U, Fogelrors H. Response of weeds and crop yield to herbicide dose decision – support guidelines. Weed Science. 2002; 50(2):186–95.
11. Hamill AS, Weaver SE, Sikkema PH, Swanton CJ, Tardif FJ, Ferguson GM. Benefits and risks of economic vs. efficacious approaches to weed management in corn and soybean. Weed Technology. 2004; 18:723–32.
12. Talgare L, Lauringson E, Koppel M. Effect of reduced herbicide dosages on weed infestation in spring barley. Zemdirbyaste-Agriculture. 2008; 95:194–201.
13. Barroso J, Ruiz D, Escriban C, Barrios L, Fernandez-Quintanilla C. Comparison of three chemical control strategies for Avena sterilis ssp. ludoviciana. Crop Protection. 2009; 28:393–400.
14. Beckie HJ. Herbicide-resistant weeds: Management tactics and practices. Weed Technology. 2006; 20:793–814.
15. Egan JF, Maxwell BD, Mortensen DA, Ryan MR, Smith RG. 2, 4 dichlorophenoxyacetic acid (2, 4-D)–resistant Q:1 crops and the potential for evolution of 2, 4 D–resistant weeds. Proceedings of the National Academy of Sciences, USA 108 E37. 2011 Mar 3; 108(11). DOI: 10.1073/pnas.1017414108.
16. Powles SB, Yu Q. Evolution in action: plant resistance to herbicides. Annual Review of Plant Biology. 2010; 61:317–47.
17. Blackshaw RE, O’Donovan JT, Harker KN, Clayton GW, Stugard RN. Reduced herbicide doses in field crops: A review. Weed Biology and Management. 2006; 6:10–17.
18. Belles DS, Thill DC, Shafi B. PP-604 rate and Avena fatua density effects on seed production and viability in Hordeum vulgare. Weed Science. 2000; 48:378–84.
19. O’Donovan JT, Harker, KN, Clayton GW, Newman JC, Robinson D, Hall LM. Barley seedling rate influences the effects of variable herbicide rates on wild oat. Weed Science. 2001; 49(6):746–54.
20. Zand E, Mohammad AB, Saed S, Reza PA, Mozghan V, Naser B, Alireza B, Mohammad MK, Nooshin N. Broadleaved weed control in winter wheat (Triticum aestivum L.) with post-emergence herbicides in Iran. Crop Protection. 2007; 26:746–52.
21. Walker SR, Medd W, Robinson GR, Cullis BR. Improved management of Avena ludoviciana and Phalaris paradoxa with more densely sown wheat and less herbicide. Weed Resin. 2002; 42:257–70.
22. Auskalnis A, Kadzys A. Effect of timing and dosage in herbicide application on weed biomass in spring wheat. Agronomy Research. 2006; 4:133–6.
23. Barros JFC, Basch G, Carvalho M. Effect of reduced doses of a post-emergence herbicide to control grass and broadleaved weeds in no-till wheat under Mediterranean conditions. Crop Protection. 2007; 26:1538–45.
24. Busey P. Cultural management of weeds in turfgrass: A review. Crop Science. 2003; 43:1899–911.
25. Cousens R, Croft AM. Weed populations and pathogens. Weed Resin. 2000; 40:63–82.
26. Kennedy AC, Kremer RG. Microorganisms in weed control strategies. Journal of Production Agriculture. 1996; 9:480–5.
27. Radosevich S, Holt J, Ghersa C. Weed ecology– implications for management. J. Wiley: New York; 1997. p. 589.
28. Salonen J. Efficacy of reduced herbicide doses in spring cereals of different competitive ability. Weed Resin. 1992; 32:483–91.
29. Dickerson JR, Fay PK. Biology and control of hound’s-tongue (Cynoglossum officinale). Proceedings of the Western Society of Weed Science. 1982; 35:83–5.
30. Upadhyaya MK, Cranston RS. Distribution, biology, and control of houndstongue in British Columbia. Rangelands. 1999; 13:103–6.
31. Barros JFC, Basch G, De Carvalho M. Effect of reduced doses of a post-emergence graminicide mixture to control
32. DeClerck-Floate RA, Schwartzlaender M. Cynoglossum officinale (L.) houndstongue (Boraginaceae). In: Mason PG, Huber JT, editors. Biological Control Programmes in Canada. Wallingford; 2002. p. 1981–2000.

33. DeClerck-Floate RA, Wikeem B, Bourchier RS. Early establishment and dispersal of the weevil Mogulonus cruciger (Coleoptera: Curculionidae) for biological control of houndstongue (Cynoglossum officinale) in British Columbia, Canada. Biocontrol Science and Technology. 2005; 15:173–90.

34. Basu C, Halfill MD, Mueller TC, Stewart CNJ. Weed genomics: new tool to understand weed biology. Trends Plant Sci. 2004; 9:391–8.

35. Buhler DD. Challenges and opportunities for integrated weed management. Weed Science. 2002; 50:273–80.

36. Hatcher PE, Melander B. Combining physical, cultural and biological methods: Prospects for integrated non-chemical weed management strategies. Weed Resin. 2003; 43:303–22.

37. Larsen SU, Kristoffersen P, Fischer I. Turfgrass management and weed control without pesticides on football pitches in Denmark. Pest Management Science. 2004; 50:579–87.

38. Bailey KL, Mupondwa EK. Developing microbial weed control products: Commercial, biological, and technological considerations. In: Singh HP, Batish DR, Kohli RK, editors. Handbook of Sustainable Weed Management. The Haworth Press Inc., Binghamton, NY; 2006.

39. Boyetchko SM. Biological herbicides in the future. In: J. A. Ivany, editor. Weed Management in Transition. Topics in Canadian Weed Science. Sainte-Anne-de-Bellevue, Quebec. Canadian Weed Science Society - Societe canadienne de malherbologie; 2005.

40. Delfosse ES. Introduction. In: Coombs EM, Clark JK, Piper GL, editors. Biological Control of Invasive Plants in the United States; 2004.

41. Pleban S, Strobel GA. Rapid evaluation of Fusarium spp. as a potential biocontrol agent for weeds. Weed Science. 1998; 46:703–6.

42. Franztzen J. An epidemiological study of Puccinia punctiformis (Str.) Ro ` h l as a stepping-stone to the biological control of Cirsium arvense (L.) Scop. New Phytologist. 1994; 127:147–54.

43. Charudattan R, Dinoor A. Biological control of weeds using plant pathogens: accomplishments and limitations. Crop Protection. 2000; 19:691–5.

44. Hasan S, Ayres PG. The control of weeds through fungi: principles and prospects. New Phytologist. 1999; 115:201–22.

45. Hoagland RE. Microbial allelochemicals and pathogens as bioherbicial agents. Weed Technology. 2001; 15:835–57.

46. Scheepens PC, Müller-Schärer H, Kempenaar C. Opportunities for biological weed control in Europe. Biological Control. 2001; 46:127–38.

47. Balatkin GA. Environmental and energy aspects agro-productivity, Pushino; 1986. p. 210.

48. SAS institute. The SAS system for windows, release 9.1. The Institute Cary, NC, USA; 2002.

49. Barros JFC, Basch G, Freixial R, Carvalho M. Effect of reduced doses of mesosulfuron + iodosulfuron to control weeds in no-till wheat under Mediterranean conditions. Spanish Journal of Agricultural Research. 2009; 7(4):905–12.

50. Barros JC, Basch G, Calado JG, Carvalho M. Reduced doses of herbicides to control weeds in barley crops under temperate climate conditions. Revista Brasileira Ciências Agrárias Recife. 2001; 6(2):197–202.

51. Kieloch R, Domaradzki K. The role of the growth stage of weeds in their response to reduced herbicide doses. Acta Agrobotanica. 2011; 64(4):259–66.

52. Buczek J, Szpunar-Krok E, Tobias-Salach R, Bobrecka-Jamro D. Influence of sowing density and dose tribenuronmethyl on weed infestation in spring wheat. Progress of Plant Protection/Postępy W Ochronie Roślin. 2012; 52 (1):62–6.

53. Bayer. Bayer crop science [Internet]. [cited 2010 Jan 10]. Available from: http://www.bayercropsience.com.

54. Medd RW, Van de Den J, Pickering DI, Nordblom T. Determination of environment-specific dose-response relationships for clodinafop-propargyl on Avena spp. Weed Resin. 2001; 41:351–68.

55. Randall JM. In: Spencer N, Noweierski N, editor. A conservation biologist’s perspective on biocontrol of weeds. Abstracts of the 10th International Symposium on Biological Control of Weeds. Montana State University, Bozeman, MT, USA; 1999. p. 56.

56. Hallet SG. Where are the bioherbicides? Weed Science. 2005; 53:404–15.

57. Fernandez-Quintanilla C, Barroso J, Recasens J, Sans X, Torner, C, Sánchez Del Arco MJ. Demography of Lolium rigidum in winter barley crops: Analysis of recruitment, survival and reproduction. Weed Resin. 2000; 40(3):281–91.

58. Barros JFC, Basch G, De Carvalho M. Effect of reduced doses of a post-emergence graminicide to control Avena sterilis L. and Lolium rigidum G. in no-till wheat under Mediterranean environment. Crop Prote. 2008; 27:1031–7.

59. Manalil S, Busi R, Renton M, Powles SB. Rapid evolution of herbicide resistance by low herbicide dosages. Weed Science. 2011; 59:210–17.

60. Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM, Bradley KW, Frisvold G, Powles SB,
Optimizing Weed Control by Integrating the Best Herbicide Rate and Bio-agents in Wheat Field

Burgos NR, Witt WW, Barrett M. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Science. 2012; 31–62.

61. Whinguiri EE, Kemp DR. Spikelets development and grain yield of wheat ears in response to applied nitrogen. Australian Journal of Agricultural Research. 1980; 31:637–47.

62. Erman M, Tepe I, Yazlik A, Levent R, Ipek K. Effect of weed control treatments on weeds, seed yield, yield components and nodulation in winter lentil. Weed Resin. 2003; 44:305–12.

63. Gupta OP. Modern weeds management. 2nd ed. Agro Bios, Jodhpur, India; 2004. p. 18–23.

64. Cheema ZA, Khaliq A. Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi-arid region of Punjab. Agriculture Ecosystems and Environment. 2000; 79:105–12.

65. Doyle P, Stypa M. Reduced herbicide rates—a Canadian perspective. Weed Technology. 2004; 18:1157–65.

66. Steckel LE, Defelice MS, Sims BD. Integrating reduced doses of post emergence herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Science. 1990; 38:541–5.

67. Vitta JI, Facinini DE, Nisensohn LA. Control of Amaranthus quitensis in soybean crops in Argentina: An Alternative to Reduce Herbicide Use. Crop Protein. 2000; 19:511–13.

68. Cheema ZA, Jaffer I, Khaliq A. Reducing isoproturon dose in combination with sorgaib for weed control in wheat. Pakistan Journal of Weed Sciences Research. 2003; 9(3&4):153–60.

69. Pervanchon F, Bockstaller C, Girardin P. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: The energy indicator. Agricultural Systems. 2002; 72:149–72.

70. Gundogmuz E, Bayramoglu Z. Energy input use on organic farming: A comparative analysis of organic versus conventional farm in Turkey. Journal of Agronomy. 2006; 5(1):16–22.

71. Rathke GW, Behrense T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agriculture, Ecosystems and Environment. 2006; 117:80–108.

72. Saeed M, Meisam Z, Kiumars F. The best application time and dose of herbicide for optimum weed management in two red bean cultivars. Indian Journal of Science and Technology. 2012 Jan; 5(1). DOI: 10.17485/ijst/2012/ v5i1/30943.

73. Chakravarthy VD, Nagarajan V. Techniques for optimizing power utilization in data center network architectures: A survey report. Indian Journal of Science and Technology. 2016 Oct; 9(37). DOI: 10.17485/ijst/2016/v9i37/102066.