Fixed-Orientation Equilateral Triangle Matching
of Point Sets

Jasine Babu¹, Ahmad Biniaz², Anil Maheshwari², and Michiel Smid²

¹ Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
² School of Computer Science, Carleton University, Ottawa, Canada
jasine@csa.iisc.ernet.in, ahmad.biniaz@gmail.com, {anil,michiel}@scs.carleton.ca

Abstract. Given a point set P and a class C of geometric objects, $G_C(P)$ is a geometric graph with vertex set P such that any two vertices p and q are adjacent if and only if there is some $C \in C$ containing both p and q but no other points from P. We study $G_\bigtriangleup(P)$ graphs where \bigtriangleup is the class of downward equilateral triangles (i.e., equilateral triangles with one of their sides parallel to the x-axis and the corner opposite to this side below that side). For point sets in general position, these graphs have been shown to be equivalent to half-Θ_6 graphs and TD-Delaunay graphs.

The main result in our paper is that for point sets P in general position, $G_\bigtriangleup(P)$ always contains a matching of size at least $\lceil \frac{n-2}{3} \rceil$ and this bound cannot be improved above $\lceil \frac{n-1}{3} \rceil$.

We also give some structural properties of $G_\bigtriangleup(P)$ graphs, where \bigtriangleup is the class which contains both upward and downward equilateral triangles. We show that for point sets in general position, the block cut point graph of $G_\bigtriangleup(P)$ is simply a path. Through the equivalence of $G_\bigtriangleup(P)$ graphs with Θ_6 graphs, we also deduce that any Θ_6 graph can have at most $5n - 11$ edges, for point sets in general position.

Keywords: Geometric graphs, Delaunay graphs, Matchings.

1 Introduction

In this work, we study the structural properties of some special geometric graphs defined on a set P of n points on the plane. An equilateral triangle with one side parallel to the x-axis and the corner opposite to this side below (resp. above) that side as in \bigtriangleup (resp. \bigtriangledown) will be called a down (resp. up)-triangle. A point set P is said to be in general position, if the line passing through any two points from P does not make angles 0°, 60° or 120° with the horizontal. In this paper, we consider only point sets that are in general position and our results assume this pre-condition.

Given a point set P, $G_\bigtriangleup(P)$ (resp. $G_\bigtriangledown(P)$) is defined as the graph whose vertex set is P and that has an edge between any two vertices p and q if and only if there is a down-(resp. up-)triangle containing both points p and q but no
other points from \(P \). (See Fig. 1.) We also define another graph \(G_{\bigtriangleup}(P) \) as the graph whose vertex set is \(P \) and that has an edge between any two vertices \(p \) and \(q \) if and only if there is a down-triangle or an up-triangle containing both points \(p \) and \(q \) but no other points from \(P \). In Section 2 we will see that, for any point set \(P \) in general position, its \(G_{\bigtriangleup}(P) \) graph is the same as the well known Triangle Distance Delaunay (TD-Delaunay) graph of \(P \) and the half-\(\Theta_6 \) graph of \(P \) on so-called negative cones. Moreover, \(G_{\bigtriangleup}(P) \) is the same as the \(\Theta_6 \) graph of \(P \). [16].

Given a point set \(P \) and a class \(C \) of geometric objects, the maximum \(C \)-matching problem is to compute a subclass \(C' \) of \(C \) of maximum cardinality such that no point from \(P \) belongs to more than one element of \(C' \) and for each \(C \in C' \), there are exactly two points from \(P \) which lie inside \(C \). Dillencourt [9] proved that every point set admits a perfect circle-matching. Ábrego et al. [1] studied the isothetic square matching problem. Bereg et al. concentrated on matching points using axis-aligned squares and rectangles [3].

A matching in a graph \(G \) is a subset \(M \) of the edge set of \(G \) such that no two edges in \(M \) share a common end-point. A matching of maximum cardinality is called a maximum matching in \(G \). If all vertices of \(G \) appear as end-points of some edge in the matching, then it is called a perfect matching. It is not difficult to see that for a class \(C \) of geometric objects, computing the maximum \(C \)-matching of a point set \(P \) is equivalent to computing the maximum matching in the graph \(G_C(P) \) [1].

The maximum \(\triangle \)-matching problem, which is the same as the maximum matching problem on \(G_{\bigtriangleup}(P) \), was previously studied by Panahi et al. [13]. It was claimed that, for any point set \(P \) of \(n \) points in general position, any maximum matching of \(G_{\bigtriangleup}(P) \) (and \(G_{\bigtriangledown}(P) \)) will match at least \(\lceil \frac{2n}{3} \rceil \) vertices. But we found that their proof of Lemma 7, which is very crucial for their result, has gaps. By a completely different approach, we show that for any point set \(P \) in general position, \(G_{\bigtriangledown}(P) \) (and by symmetric arguments, \(G_{\bigtriangleup}(P) \)) will have a maximum matching of size at least \(\lceil \frac{n-2}{3} \rceil \); i.e., at least \(2\lceil \frac{n-2}{3} \rceil \) vertices are matched. We also give examples where our bound is tight, in all cases except when \(|P| \) is one less than a multiple of three.

We also prove some structural and geometric properties of the graphs \(G_{\bigtriangledown}(P) \) (and by symmetric arguments, \(G_{\bigtriangleup}(P) \)) and \(G_{\bigstar}(P) \). It will follow that for point sets in general position, \(\Theta_6 \) graphs can have at most \(5n - 11 \) edges and their block cut point graph is a simple path.

2 Preliminaries

Our notations are similar to those in [4], with minor modifications. A cone is the region in the plane between two rays that emanate from the same point, its apex. Consider the rays obtained by a counter-clockwise rotation of the positive \(x \)-axis by angles of \(\frac{i\pi}{3} \) with \(i = 1, \ldots, 6 \) around a point \(p \). Each pair of successive rays, \(\frac{(i-1)\pi}{3} \) and \(\frac{i\pi}{3} \), defines a cone, denoted by \(A_i(p) \), whose apex is \(p \). For \(i \in \{1, \ldots, 6\} \), when \(i \) is odd, we denote \(A_i(p) \) using \(C_{i+1}(p) \) and the cone