Partitioning Items Into Mutually Exclusive Groups

Pawel Kalczynski, Zvi Goldstein, and Zvi Drezner
Steven G. Mihaylo College of Business and Economics
California State University-Fullerton
Fullerton, CA 92834.
e-mail: pkalczynski@fullerton.edu; zgoldstein@fullerton.edu; zdrezner@fullerton.edu

Abstract

We investigate a new model for partitioning a set of items into groups (clusters). The number of groups is given and the distances between items are well defined. These distances may include weights. The sum of the distances between all members of the same group is calculated for each group, and the objective is to find the partition of the set of items that minimizes the sum of these individual sums. Two problems are formulated and solved. In the first problem the number of items in each group are given. For example, all groups must have the same number of items. In the second problem there is no restriction on the number of items in each group.

We propose an optimal algorithm for each of the two problems as well as a heuristic algorithm. Problems with up to 100 items and 50 groups are tested. In the majority of instances the optimal solution was found using IBM’s CPLEX. The heuristic approach, which is very fast, found all confirmed optimal solutions and equal or better solutions when CPLEX was stopped after five hours. The problem with given group sizes can also be formulated and solved as a quadratic assignment problem.

Key Words: Clusters; Heuristic; Starting solutions; Location Analysis.

1 Introduction

Consider sport teams, such as those competing in the World cup, Olympics, NBA, NFL, NHL, various college teams. The teams need to be partitioned into divisions. In the first round teams compete within the division. In the second round the winners (and in some cases also runners-up) advance to compete in the finals. We are interested in a good partition of the teams into divisions for the first round of competition. Each team competes with each other team in the same division at least twice: once at home and once at the home of the other team. We are therefore interested to form divisions so that the total travel time by the teams is minimized. The number of divisions is pre-determined. It may be required to have a given number of teams in each division or the number of teams in each division is flexible.
This problem is similar to many multi-facility location problems. In facility location problems, a facility is located at the “center” of each division and the service distances are the distances to the central facility of each division (group) rather than pair-wise distances without a central facility. This may be the appropriate model if the competition within the division is held at a central location.

In typical multi-facility location models, a given number of facilities, \(p \), need to be located. For each demand point, its distance is defined as the distance to the closest facility. The following is a list of common objectives.

1. The objective of the \(p \)-median problem (Daskin, 1995; Daskin and Maass, 2015; Kariv and Hakimi, 1979b), sometimes referred to as the multi-source Weber problem (Brimberg et al., 2000; Kuenne and Soland, 1972), is to minimize the sum of the weighted distances to all demand points. The 1-median problem is termed the Weber problem (Weber, 1909) has a long history dating back to Fermat in the 1600s (Church, 2019; Drezner et al., 2002; Wesolowsky, 1993). Church (2019) has references dating back to 1687.

2. The \(p \)-median problem with equal weights and squared Euclidean distances is used in many papers to model clustering problems (e.g., Aloise, 2009; Hartigan and Wong, 1979; Lloyd, 1982; MacQueen, 1967). For recent reviews see Bagirov et al. (2015); Pereira et al. (2018).

3. The objective of the \(p \)-center problem (Calik et al., 2015; Drezner, 1984; Kariv and Hakimi, 1979a) is to minimize the largest distance to all demand points. The 1-center problem is termed the minimax location problem (Drezner, 2011; Elzinga and Hearn, 1972; Sylvester, 1857, 1860).

4. One of the competitive location models is based on the assumption that customers patronize the closest facility (Drezner, 1982; Hakimi, 1983; Hotelling, 1929). The objective is to locate one or more facilities to attract the maximum buying power from customers located at the demand points.

5. Obnoxious facility models (Church and Garfinkel, 1978; Drezner and Wesolowsky, 1996; Erkut, 1990; Erkut and Neuman, 1989) assume that facilities generate nuisance and facil-
cities should be located as far as possible from demand points. In most models it is assumed
that the nuisance affecting a demand point is generated by the closest facility

6. The objective of equitable location models (Baron et al., 2007; Berman et al., 2009) is to
equalize as much as possible the number of demand points attracted to each facility.

7. A wide variety of equity objectives were proposed. Maimon (1986) suggested to minimize
the variance of distances, Drezner et al. (1986) suggested to minimize the range of distances,
Drezner et al. (2009) suggested to minimize the Gini Coefficient of the Lorenz curve, Drezner
et al. (2014) suggested to minimize the Quintile share ratio. Eiselt and Laporte (1995) list
nineteen equity measures. As far as we know no one considered the multiple facility extension
of these problems.

In all these multiple facilities location models, for a given set of locations for the facilities, the
demand points are partitioned into groups. The plane is partitioned into polygons which is termed
a Voronoi diagram (Okabe et al., 2000; Sugihara and Iri, 1992; Suzuki and Okabe, 1995; Voronoï,
1908). Each facility is surrounded by a polygon and provides its services to the demand points
located in that polygon. The set of demand points is partitioned into groups.

In this paper we propose a new criterion for grouping the set of demand points. The objective is
to minimize the total intra-group distances. This means, for each group the total distance between
all pairs of demand points belonging to the same group is calculated and the sum of these total
distances is minimized. The number of groups is pre-specified. Clearly, if the number of groups
increases, the objective function decreases. In fact, when the number of groups is equal to the
number of demand points, each demand point belongs to its own group, and the objective function
is zero.

Weights can be easily incorporated into the models. If the population at each demand point is
a factor, the distance between two demand points can be multiplied by, for example, the product
or sum of the population counts at the two demand points thus defining a new “distance” value.

Two models are proposed. In Model A the number of items in each group is pre-specified. If
there are, for example, 12 items to be partitioned into 3 groups, we can require that one group will
contain 5 items, one 4 items, and one 3 items. It is possible that all groups are required to have the same number of items. An equal division of the items in each group may be required when sport teams are partitioned into divisions and we wish to have the same number of teams in each division. In Model B, the number of items in each group is not specified and each group can include any number of items as long as every item belongs exclusively to one group.

The paper is organized as follows. In Section 2 the fixed group size model is formulated. The quadratic assignment problem which can be used to solve this problem as well as a non-trivial binary linear programming formulation are detailed. In Section 3 the variable size model is presented and a binary linear program formulated. The main contribution of this paper is the effective heuristic procedures which are detailed in Section 4. Two case studies are described in Section 5 and extensive computational experiments in Section 6 demonstrate the effectiveness of the heuristic approaches. We conclude the paper in Section 7 suggesting the application of the proposed effective heuristic approach to other multi-facility location problems as well.

2 Model A: Fixed Group Sizes

There are \(n \) items. The distance between items \(i \neq j \) is \(d_{ij} \). By definition \(d_{ii} = 0 \). We need to create \(p \) groups. The number of items in these groups are required to be \(n_1, n_2, \ldots, n_p \) such that \(\sum_{i=1}^{p} n_i = n \). For generality we do not assume that each group has the same number of items. It is possible that we allow a certain number of items (can be any of the \(n \) items) to be excluded from the groups. In this case \(\sum_{i=1}^{p} n_i < n \).

When all groups are required to be of the same size \(\frac{n}{p} \), the total number of combinations is by the multinomial distribution: \(\frac{n!}{(\frac{n}{p})^p p!} \), which can be quite small for small values of \(n \) and \(p \), allowing for total enumeration. For example, for \(n = 12 \), \(p = 2 \) there are 462 possible partitions of items.

2.1 Models Related to Model A

Model A can be formulated as a quadratic assignment problem (QAP, [Drezner, 2015] [Gilmore, 1962] [Koopmans and Beckmann, 1957] [Lawler, 1963] [Rendl, 2002]), and has similar features to the gray pattern problem (Taillard, 1995) which is a special case of the quadratic assignment problem.
2.1.1 The Quadratic Assignment Problem (QAP)

The quadratic assignment problem is considered to be one of the most difficult optimization problems to solve optimally. It is defined as follows. A set of \(n \) possible sites are given and \(n \) facilities are to be located on these sites, one facility at a site. Let \(c_{ij} \) be the cost per unit distance between facilities \(i \) and \(j \) and \(d_{ij} \) be the distance between sites \(i \) and \(j \). The cost \(f \) to be minimized over all possible permutations, calculated for an assignment of facility \(i \) to site \(p(i) \) for \(i = 1, \ldots, n \), is:

\[
f = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} d_{p(i)p(j)}
\]

2.1.2 The Gray Pattern Problem

In the gray pattern problem [Taillard (1995)], the objective is to select \(k \) out of \(n \) black dots so that the pattern will be as uniform as possible. This is achieved by a specially designed distances matrix.

[Taillard (1995)] suggested the following cost matrix \(\{c_{ij}\} \): \(c_{ij} = 1 \) for \(1 \leq i, j \leq k \) and all other \(c_{ij} = 0 \). Such a matrix in [1] results in the sum of distances between all pairs of facilities for \(1 \leq i \neq j \leq k \) because \(d_{ii} = 0 \). The solution to the resulting QAP is the best possible selection of \(k \) out of the \(n \) items. The cost matrix \(\{c_{ij}\} \) can be visualized as the top left corner of the cost matrix has a \(k \) by \(k \) square of 1’s, and the rest of the cost matrix is all zeros.

The distances of the gray pattern problem suggested by [Taillard (1995)] are based on a rectangle of dimensions \(n_1 \) by \(n_2 \). A gray pattern of \(p \) black points is selected from the \(n = n_1 \times n_2 \) points in the rectangle while the rest of the points remain white. The objective is to have a gray pattern where the black points are distributed as uniformly as possible. To achieve that, [Taillard (1995)] created a distance matrix \(d_{ij} \) between locations \(i \) and \(j \) by minimum entropy in Physics. Let \(1 \leq i \leq n \) be the serial number of a point in the rectangle. Define \(r(i) \) the row of point \(i \), and \(c(i) \) the column of point \(i \):

\[
r(i) = \left\lfloor \frac{i - 1}{n_2} \right\rfloor; \quad c(i) = i - 1 - n_2 r(i).
\]

The distance between points \(i \) and \(j \) \((i \neq j)\) is

\[
d_{ij} = \max_{u,v \in \{-1,0,1\}} \left\{ \frac{100,000}{(r(i) - r(j) + un_1)^2 + (c(i) - c(j) + vn_2)^2} \right\}
\]

5
The distances are rounded to the nearest integer. It is interesting to note that when the result of (3) is exactly an integer+$\frac{1}{2}$ (such as 1562.5) the distance is rounded down which is not the customary rounding rule. We also define $d_{ii} = 0$ (it is infinite by (3)).

Drezner et al. (2015) optimally solved gray pattern problems of $n = 64$ (8×8) for $2 \leq p \leq 25$, $n = 256$ (16×16) for $2 \leq p \leq 12$, $n = 576$ (24×24) for $2 \leq p \leq 9$, and $n = 1024$ (32×32) for $2 \leq p \leq 8$.

The gray pattern problem can be extended to patterns of several colors, not only black points. The sequence of several squares along the diagonal can be used to create a pattern of several colors with certain percentage for each color so that the pattern will be as uniform as possible. Points that are not selected are white like in the gray pattern problem. This idea is used to formulate Model A as a quadratic assignment problem.

2.2 Formulating Model A as a Quadratic Assignment Problem

The quadratic assignment formulation for the grouping problem is based on the gray pattern model (Drezner 2006; Drezner and Kalczynski 2017; Drezner et al. 2015; Taillard 1995). Drezner (2006) proposed the one group problem: selecting the best one group of k items out of n available items and observed that this problem is equivalent to the gray pattern problem.

For our problem of multiple groups we generate a cost matrix $\{c_{ij}\}$ in Equation (1) that consists of p “squares” of 1’s on the diagonal of the matrix of sizes n_1, n_2, \ldots, n_p and the rest of the $c_{ij} = 0$. This way, only distances between pairs of items belonging to the same group are counted in the objective function. If $\sum_{i=1}^{p} n_i = n$, the whole diagonal is covered with squares and if $\sum_{i=1}^{p} n_i < n$, like the case of finding one group (Drezner 2006), some items are not selected for any group.

For example, if 12 items are split into three groups of 4 items each, the $C = \{c_{ij}\}$ matrix is depicted in Figure 1. The distance matrix consists of the distances between items and not defined by (3).
2.3 Binary Linear Programming Formulation for Model A

The grouping model can also be formulated as a binary linear program. Define \(np \) binary variables \(X_{ik} \) such that \(X_{ik} = 1 \) if item \(i \) belongs to group \(k \) and 0 otherwise. In addition we define \(n^2 \) variables \(Y_{ij} \) such that \(Y_{ij} = 1 \) if items \(i \) and \(j \) belong to the same group and 0 otherwise. The number of the \(Y \) variables can be reduced from \(n^2 \) to \(\frac{1}{2}n(n-1) \) by observing that by definition \(Y_{ii} = 1 \) and \(Y_{ij} = Y_{ji} \).

\[
\min \left\{ \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij}Y_{ij} \right\} \tag{4}
\]

Subject to:

\[-M(1 - Y_{ij}) \leq \sum_{k=1}^{p} kX_{ik} - \sum_{k=1}^{p} kX_{jk} \leq M(1 - Y_{ij}) \text{ for } i, j = 1, \ldots, n \tag{5}\]

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} Y_{ij} = \sum_{k=1}^{p} n_k^2 \tag{6}
\]

\[
\sum_{k=1}^{p} X_{ik} = 1 \text{ for } 1 \leq i \leq n \tag{7}
\]

\[
\sum_{i=1}^{n} X_{ik} = n_k \text{ for } 1 \leq k \leq p \tag{8}
\]

\[Y_{ij}, X_{ik} \in \{0, 1\}.\tag{9}\]

Equation (4) guarantees that only distances between items belonging to the same group are
counted in the objective function. The center term of inequality (5) is equal to 0 if items \(i\) and \(j\) belong to the same group, and is positive or negative otherwise. Its maximum possible absolute value is \(p - 1\). We use \(M = p\), so that if \(Y_{ij} = 0\) the constraint is always satisfied and if \(Y_{ij} = 1\) it is only satisfied when items \(i\) and \(j\) belong to the same group. Equation (6) forces \(Y_{ij} = 1\) for items belonging to the same group because there are exactly \(\sum_{k=1}^{p} n_k^2\) such pairs. Equation (7) guarantees that each item belongs to one and only one group, and equation (8) guarantees that group \(k\) has \(n_k\) items.

2.3.1 Reducing the Number of Variables

Since \(Y_{ij} = Y_{ji}\) and \(Y_{ii} = 1\) the problem can be reduced in size by having as variables \(Y_{ij}\) for \(j > i\). We get:

\[
\min \left\{ 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d_{ij} Y_{ij} \right\}
\]

Subject to:

\[
-M(1 - Y_{ij}) \leq \sum_{k=1}^{p} kX_{ik} - \sum_{k=1}^{p} kX_{jk} \leq M(1 - Y_{ij}) \quad \text{for } j > i
\]

\[
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Y_{ij} = \sum_{k=1}^{p} \frac{1}{2} n_k(n_k - 1)
\]

\[
\sum_{k=1}^{p} X_{ik} = 1 \quad \text{for } 1 \leq i \leq n
\]

\[
\sum_{i=1}^{n} X_{ik} = n_k \quad \text{for } 1 \leq k \leq p
\]

\[
Y_{ij} \quad \text{for } j > i, X_{ik} \in \{0, 1\}.
\]

In the computational experiments we used this more compact formulation.

3 Model B: Variable Group Sizes

Model B cannot be formulated as a quadratic assignment problem because the structure of the \(C\) matrix is not determined. The BLP formulation is more complicated because the numbers \(n_k\) are
variables rather than having given values.

The total number of possible groups $P(n,p)$, i.e., the number of ways of partitioning a set of n elements into p non-empty subsets, satisfies the recursion: $P(n,p) = P(n-1,p-1) + pP(n-1,p)$. Suppose that item n is added to the groups formed by the first $n-1$ items. The first term $P(n-1,p-1)$ is the number of possible groups when item n forms a new group of one item. The second term $pP(n-1,p)$ is the number of possible groups where item n joins one of the existing groups. $P(n,p)$ can be easily calculated recursively, for example, by Microsoft Excel, starting with $P(n,1) = P(p,p) = 1$.

This recursion leads to the Stirling number of the second kind (Abramowitz and Stegun, 1972; Stirling, 1764):

$$P(n,p) = \frac{1}{p!} \sum_{j=1}^{p} (-1)^{p-j} \frac{p!}{j!(p-j)!} j^n$$

which can be quite small for small values of n and p, allowing for total enumeration. For example, for $n = 12$, $p = 2$ there are 2,047 possible partitions of items. Note that for $p = 2$, $P(n,2) = 2^{n-1} - 1$.

3.1 Binary Linear Programming Formulation for Model B

In Model B, n_k is a variable that can assume a value between 1 and $n - p + 1$. Each group must have at least one item and $\sum_{k=1}^{p} n_k = n$. Similarly to the Model A formulation (10), Model B can be formulated as a BLP by adding $(n - p + 1)p$ binary variables U_{ik} for $i = 1, \ldots, n - p + 1; k = 1, \ldots, p$. $U_{ik} = 1$ if $i = n_k$ (n_k is a result of the solution) and 0 otherwise. Consequently, $n_k = \sum_{i=1}^{n-p+1} iU_{ik}$.

$$\min \left\{ \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d_{ij}y_{ij} \right\}$$

Subject to:

$$-M(1 - y_{ij}) \leq \sum_{k=1}^{p} kX_{ik} - \sum_{k=1}^{p} kX_{jk} \leq M(1 - y_{ij}) \text{ for } j > i$$

$$n + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} y_{ij} = \sum_{i=1}^{n-p+1} i^2 \sum_{k=1}^{p} U_{ik}$$

$$\sum_{k=1}^{p} X_{ik} = 1 \text{ for } 1 \leq i \leq n$$
\[\sum_{i=1}^{n} X_{ik} = \sum_{i=1}^{n-p+1} i U_{ik} \text{ for } 1 \leq k \leq p \] \hspace{1cm} (15)

\[\sum_{i=1}^{n-p+1} U_{ik} = 1 \text{ for } 1 \leq k \leq p \] \hspace{1cm} (16)

\[Y_{ij} \text{ for } j > i, X_{ik}, U_{ik} \in \{0, 1\}. \] \hspace{1cm} (17)

4 Heuristic Approaches

The following heuristic approach is simpler for Model B so we present it first for Model B and then show the modifications required in order to apply it for the solution of Model A.

4.1 Heuristic Approach to Model B

Phase 1 (selecting one item for each group):

- Select the two items that are farthest from one another to be in group #1 and group #2. It is unlikely that the farthest two items will be in the same group.
- Select for the next group the item that its minimum distance to the already selected items is the largest.
- Continue until \(p \) items are assigned to \(p \) groups.

Phase 2 (adding items to groups):

- Check all unassigned items to be added to each of the groups. Select the item that adding it to one of the groups will increase the objective function the least and add this item to the particular group.
- Keep adding items to groups until all the items are assigned a group.

Phase 3 (a descent algorithm):

1. Evaluate all combinations of moving an item from one group to another.
2. If an improvement is found, perform the best move and go to Step 1.
3. If no improvement is found, stop.
Applying GRASP:

The algorithm described above yields one final solution. We introduce randomness into the procedure so that the algorithm can be repeated many times in a multi-start heuristic approach. The idea follows the “Greedy Randomized Adaptive Search Procedure” (GRASP) suggested by [Feo and Resende (1995)]. In each step in the first two phases, we find the best move and the second best move. The best move is selected with probability \(\frac{2}{3} \) and the second best with probability \(\frac{1}{3} \).

4.2 Modification to the Heuristic Approach for Solving Model A

We detail the modifications for equal size \(s \) for all groups. It can be further modified to a list of given sizes which are not necessarily equal.

Phase 1 is not altered. In Phase 2: once a group reaches size \(s \) it is no longer considered for adding more items to it. In Phase 3: since the groups must retain the same number of items, rather than evaluating the move of an item from one group to another, we evaluate all pair exchanges between groups. The GRASP approach is not altered.

4.3 Efficient Calculations

In order to calculate the increase in the value of the objective function when an item is added to a group, we just need to calculate the sum of the distances between the added item and all the existing items in the group.

In order to calculate the decrease in the value of the objective function when an item is removed from a group (needed for the decent phase), we just find the sum of distances between the removed item and all the remaining items in the group.

5 Case Studies

5.1 Creating Divisions for Teams

[Winston and Albright (2016)] used the example of creating divisions for NBA teams to illustrate
the evolutionary procedure available in Microsoft Excel’s Solver. There are \(n \) competing sport teams that play against one another during the regular season. The teams are partitioned into \(p \) divisions with \(n_i \) teams in each division. Each pair of teams in a division play two games against one another, one in each home team city. The problem is to form divisions in such a way that the total distance traveled by the teams is minimized.

5.2 Dividing the Largest US Cities into Groups

The website https://simplemaps.com/data/us-cities has data for more than 36,000 U.S. municipalities. The data provide both population and population proper (i.e., not including the population in the metropolitan area). We selected the proper population and therefore the largest city is New York, the fourth largest is Brooklyn, the fifth largest is Queens, and so on. We extracted data for latitude, longitude and population of the largest 100 U.S. cities. The data for these cities sorted by their population size is given in Table 1 and depicted in Figure 2. It can be used to solve problems for any number of cities up to 100. Instances based on fewer than 100 cities, use the largest ones listed in Table 1.

The distances between any two cities can be calculated by the “great circle” formula given in [Drezner and Wesolowsky (1978)]. The distance \(d \) between two cities whose latitudes are \(\phi_1, \phi_2 \) and longitudes \(\theta_1, \theta_2 \) is:

\[
d = R \arccos (\cos \phi_1 \cos \phi_2 \cos(\theta_1 - \theta_2) + \sin \phi_1 \sin \phi_2)
\] (18)

where \(R = 3959 \) miles is the earth’s radius. This formula can be rewritten to avoid large round-off errors for small distances when \(\cos \frac{d}{R} \approx 1 \). The identity \(\cos \alpha = 1 - 2 \sin^2 \frac{\alpha}{2} \) is used. We get

\[
\cos \phi_1 \cos \phi_2 \cos(\theta_1 - \theta_2) + \sin \phi_1 \sin \phi_2 = \cos \phi_1 \cos \phi_2 + \sin \phi_1 \sin \phi_2
\]

\[
-(1 - \cos(\theta_1 - \theta_2)) \cos \phi_1 \cos \phi_2 = \cos(\phi_1 - \phi_2) - 2 \sin^2 \frac{\theta_1 - \theta_2}{2} \cos \phi_1 \cos \phi_2
\]

yielding

\[
\cos \frac{d}{R} = 1 - 2 \sin^2 \frac{d}{2R} = \cos(\phi_1 - \phi_2) - 2 \sin^2 \frac{\theta_1 - \theta_2}{2} \cos \phi_1 \cos \phi_2
\]

\[
\rightarrow 2 \sin^2 \frac{d}{2R} = 2 \sin^2 \frac{\phi_1 - \phi_2}{2} + 2 \sin^2 \frac{\theta_1 - \theta_2}{2} \cos \phi_1 \cos \phi_2
\]
\[d = 2R \arcsin \sqrt{\sin^2 \frac{\phi_1 - \phi_2}{2} + \sin^2 \frac{\theta_1 - \theta_2}{2} \cos \phi_1 \cos \phi_2} \] (19)

Table 1: List of 100 most populated U.S. Cities

City	Lat.	Long.	City	Lat.	Long.	City	Lat.	Long.
New York	40.6943	-73.9249	Milwaukee	43.0640	-87.9669	Saint Paul	44.9477	-93.1040
Los Angeles	34.1140	-118.4068	Albuquerque	35.1055	-106.6476	Cincinnati	39.1412	-84.5060
Chicago	41.8373	-87.6861	Tucson	32.1558	-110.8777	Anchorage	61.1508	-149.1091
Brooklyn	40.6501	-73.9496	Fresno	36.7834	-119.7933	Henderson	36.0145	-115.0362
Queens	40.7498	-73.7976	Sacramento	38.5666	-121.4683	Greensboro	36.0960	-79.8275
Houston	29.7871	-95.3936	Mesa	33.4016	-111.7180	Plano	33.0502	-96.7487
Manhattan	40.7834	-73.9662	Kansas City	39.1239	-94.5541	Newark	40.7242	-74.1724
Phoenix	33.5722	-110.891	Staten Island	40.5834	-74.1496	Lincoln	40.8102	-96.6808
Philadelphia	40.0076	-75.1340	Atlanta	33.7627	-84.4231	Toledo	41.6639	-83.5820
San Antonio	29.4722	-98.5247	Long Beach	33.8059	-118.1610	Orlando	28.4801	-81.3448
Bronx	40.8501	-73.8662	Colorado Springs	38.8673	-104.7605	Chula Vista	32.6281	-117.0144
San Diego	32.8312	-117.1255	Raleigh	35.8323	-78.6441	Irvine	33.6772	-117.7738
Dallas	32.4738	-96.7902	Miami	25.7840	-80.2102	Fort Wayne	41.0889	-85.1436
San Jose	37.3020	-121.8488	Virginia Beach	36.7335	-76.0435	Jersey City	40.7161	-74.0683
Austin	30.3038	-97.7545	Omaha	41.2634	-96.0453	Durham	35.9801	-78.9045
Jacksonville	30.3322	-81.6749	Oakland	37.7903	-122.2165	Saint Petersburg	27.7931	-82.6652
San Francisco	37.7561	-122.4429	Minneapolis	44.9635	-93.2679	Laredo	27.5536	-99.4890
Columbus	39.9859	-82.9852	Tulsa	36.1284	-95.9037	Buffalo	42.9016	-78.8487
Indianapolis	39.7771	-86.1458	Arlington	32.6998	-97.1251	Madison	43.0809	-89.3921
Fort Worth	32.7813	-97.3466	New Orleans	30.0687	-89.9288	Lubbock	33.5665	-110.8867
Charlotte	35.2080	-80.8308	Wichita	37.6894	-97.3440	Chandler	33.2828	-111.8517
Seattle	47.6217	-122.3238	Cleveland	41.4766	-81.6805	Scottsdale	33.6872	-111.8650
Denver	39.7621	-104.8759	Tampa	27.9937	-82.4454	Glendale	33.5797	-112.2246
El Paso	31.8478	-106.4310	Bakersfield	35.3528	-119.0354	Reno	39.5487	-119.8486
Washington	38.9047	-77.0163	Aurora	39.7085	-104.7274	Norfolk	36.8945	-76.2590
Boston	42.3189	-71.0838	Honolulu	21.3293	-157.8460	Winston-Salem	36.1029	-80.2610
Detroit	42.3834	-83.1024	Anaheim	33.8390	-117.8572	North Las Vegas	36.2880	-115.0901
Nashville	36.1714	-86.7844	Santa Ana	33.7366	-117.8819	Irving	32.8584	-96.9702
Memphis	35.1047	-89.9775	Corpus Christi	27.7173	-97.3822	Chesapeake	36.6778	-76.3024
Portland	45.5372	-122.6500	Riverside	33.9382	-117.3949	Gilbert	33.3103	-111.7463
Oklahoma City	35.4767	-97.5138	Lexington	38.0423	-84.4587	Hialeah	25.8696	-80.3045
Las Vegas	36.2288	-115.2603	Saint Louis	38.6385	-90.2451	Garland	32.9100	-96.6305
Louisville	38.1662	-85.6488	Stockton	37.9766	-121.3111			
Baltimore	39.3051	-76.6144	Pittsburgh	40.4396	-79.9763			
6 Computational Experiments

We first tested the solution approaches on the Winston and Albright (2016) instances \((n \leq 30) \) using Frontline System’s Premium Solver in Excel. We do not report the specific results because run time cannot be measured. The problem size for the BLP formulation is limited to 18. The evolutionary algorithm was tested on \(n = 12, 18, 30 \) instances. The results of the evolutionary algorithm are significantly worse than the best known solution for most instances. However, if the evolutionary algorithm is repeated many times, results close to the best known or optimal solution may be obtained. As the computational results obtained by the heuristic algorithm proposed in this paper are so good, there is no reason to apply any version of Excel’s solver. As is recognized by the research community, the Solver in Excel may be a good approach for instructional purposes but it is not recommended for professional use.

For testing the heuristic procedure, computer programs were coded in Fortran using double precision arithmetic and were compiled by an Intel 11.1 Fortran Compiler using one thread with no parallel processing. They were run on a desktop with the Intel i7-6700 3.4GHz CPU processor and
Table 2: Results for fixed group sizes

n	k	Combinations*	Heuristic Runs	CPLEX	QAP	+	Runs†	Time‡	
			Best	Times†	Time‡	%	OPT	Times†	Time‡
12	2	462	46,323.8	10,000	0.02	0	OPT	10	0.00
12	3	5,775	23,476.8	10,000	0.03	0	OPT	10	0.00
12	4	15,400	12,172.4	10,000	0.02	0	OPT	10	0.00
12	6	10,395	5,009.4	9,512	0.02	0	OPT	10	0.02
18	2	24,310	118,124.2	10,000	0.09	0	OPT	10	0.02
18	3	2,858,856	57,393.8	10,000	0.14	0	OPT	10	0.02
18	6	1.91E+08	13,965.6	3,442	0.08	0	OPT	10	0.00
18	9	34,459,425	57,393.8	10,000	0.14	0	OPT	10	0.02
30	2	77,558,760	336,107.2	10,000	0.50	0	OPT	10	0.15
30	3	9.25E+11	161,559.2	10,000	0.41	0	OPT	10	0.15
30	5	1.14E+16	67,421.0	8,864	0.50	0	OPT	10	0.15
30	6	1.23E+17	50,457.8	3,269	0.36	0	OPT	10	0.16
30	10	1.21E+18	18,078.4	4,104	0.44	0	UB*	9	0.24
30	15	6.19E+15	7,007.2	3,333	0.30	0	OPT	8	0.29
40	2	6.89E+10	501,424	10,000	0.61	0	OPT	10	0.42
40	4	1.96E+20	149,708	10,000	1.67	0	OPT	10	0.42
40	5	6.38E+22	102,882	9,999	1.20	0	OPT	10	0.43
40	8	4.71E+26	44,976	6,982	1.30	1.79%	UB	10	0.44
40	10	3.55E+27	32,782	7,891	1.02	6.71%	UB	10	0.56
40	20	3.20E+23	7,082	2,296	0.83	0	OPT	4	0.84
50	2	6.32E+13	801,378	10,000	0.95	0	OPT	10	1.00
50	5	4.03E+29	182,112	5,243	3.47	0.48%	UB	10	1.01
50	10	1.35E+37	53,164	1,110	1.75	0	UB	10	1.08
50	25	5.84E+31	6,782	6,994	1.48	0	OPT	0	1.89
100	2	5.04E+28	3,656,540	10,000	11.89	0	OPT	10	26.71
100	4	6.72E+55	1,261,274	8,649	81.22	17.51%	UB	10	26.88
100	5	9.12E+63	1,261,274	8,649	81.22	17.51%	UB	10	26.88
100	10	6.50E+85	1,261,274	8,649	81.22	17.51%	UB	10	26.88
100	20	1.00E+98	1,261,274	8,649	81.22	17.51%	UB	10	26.88
100	25	1.88E+98	1,261,274	8,649	81.22	17.51%	UB	10	26.88
100	50	2.73E+78	1,261,274	8,649	81.22	17.51%	UB	10	26.88

* Number of feasible solutions.
† Times best solution found
‡ Run time for all 10,000 runs for Heuristic (seconds) and one run of QAP (minutes)
% Percent above best found solution
+ OPT: Optimal solution found within 5 hrs; UB: stopped with UB after 5 hrs
* This upper bound was confirmed as optimal by CPLEX after 1,000 hours run time
Table 3: Results for variable group sizes

n	k	Combinations*	Heuristic Runs	CPLEX			
			Best	Times†	Time‡	%	+
12	2	2,047	39,587.8	10,000	0.02	0	OPT
12	3	86,526	19,985.8	10,000	0.02	0	OPT
12	4	611,501	10,641.0	6,625	0.02	0	OPT
12	5	1,379,400	7,052.4	2,111	0.02	0	OPT
12	6	1,323,652	3,946.0	10,000	0.03	0	OPT
18	2	131,071	108,347.8	4,900	0.03	0	OPT
18	3	64,439,010	52,989.4	7,908	0.05	0	OPT
18	4	2.80E+09	30,272.6	1,620	0.06	0	OPT
18	5	2.90E+10	19,369.2	9,596	0.06	0	OPT
18	6	1.11E+11	12,643.4	5,301	0.06	0	OPT
18	7	1.97E+11	9,577.4	46	0.08	0	OPT
18	8	1.89E+11	6,777.8	581	0.06	0	OPT
18	9	1.06E+11	5,101.2	4,976	0.06	0	OPT
30	2	5.37E+08	316,187.2	10,000	0.11	0	OPT
30	3	3.43E+13	150,078.4	10,000	0.12	0	OPT
30	5	7.71E+18	66,352.2	3,436	0.20	0	UB
30	6	2.99E+20	43,550.0	2,514	0.20	0	UB
30	10	1.73E+23	16,670.0	1,420	0.20	0.67%	UB
40	2	5.50E+11	499,930	10,000	0.23	0	OPT
40	4	5.04E+22	143,408	9,998	0.39	0	OPT
40	5	7.57E+25	89,530	8,166	0.38	0	UB
40	8	3.17E+31	38,576	9,442	0.33	4.84%	UB
40	10	2.36E+33	25,042	467	0.34	5.31%	UB
50	2	5.63E+14	797,668	10,000	0.41	0	OPT
50	5	7.40E+32	165,234	4,773	0.64	2.47%	UB
50	10	2.62E+43	44,602	127	0.62	34.76%	UB
100	2	6.34E+29	3,645,284	7,766	2.36	0.46%	UB
100	4	6.70E+58	1,244,694	775	4.69	58.01%	UB
100	5	6.57E+67	850,330	202	5.09	50.45%	UB
100	10	2.75E+93	233,958	1,130	3.81	185.89%	UB

* Number of feasible solutions.
† Times out of 10,000 best found
‡ Time in seconds for all 10,000 runs
* Optimality verified by CPLEX
% Percent above best solution
+ Optimal solution found within 5 hrs; stopped with UB after 5 hrs

16GB RAM. The quadratic assignment problem was also solved by a Fortran program compiled by the same compiler and run on the same computer.
CPLEX was run on a virtualized Windows environment with 16 vCPUs and 128GB of vRAM. The physical server used was a 2 CPU (8 cores each) PowerEdge R720 Intel E5-2650 CPUs with 128 GB RAM using shared storage on MD3620i via 10GB interfaces.

We experimented with the case study taken from Winston and Albright (2016) of up to 30 cities (distances rounded to one digit after the decimal point), and for the largest U.S. cities depicted in Table 1 for $n \geq 40$ with distances calculated by (18) or (19) rounded to the nearest integer.

Each instance was solved for both Model A and Model B by the heuristic algorithm 10,000 times in a multi-start approach incorporating GRASP. CPLEX was run only once because it does not have a random component and it finds the guaranteed optimal solution if it is not stopped prematurely. The CPLEX was stopped after 5 hours if the optimal solution was not found and the upper bound (best feasible solution found) is reported.

6.1 Testing Solution Approaches for Model A

For Model A the Quadratic Assignment Problem (QAP) was solved by the alpha-male genetic algorithm (Drezner and Drezner, 2019) based on the effective genetic algorithm proposed by Drezner and Misevičius (2013) in addition to the heuristic algorithm and CPLEX. We performed a few experiments to determine the parameters to be used for the alpha-male genetic algorithm. For the definition of parameters see Drezner and Drezner (2019). We found that the parameters similar to the ones used for solving the BL instances (de Carvalho Jr. and Rahmann, 2006) are the most effective. The population has 100 members out of which 25 are alpha males; the number of tabu search iterations is $32n$; the number of generations is $g = 5 \times \max\{1000, 20n\}$, and the number of population members selected for differential improvement (Drezner and Misevičius, 2013) is $R = 15$. Each instance was solved 10 times by the genetic algorithm.

The results are reported in Table 2. 21 out of the 31 instances were solved to optimality by CPLEX in less than 5 hours of computer time. The heuristic algorithm found the best known solution in all 31 instances. The best result was obtained by the heuristic algorithm once for the $n = 100, p = 5$ instance and at least 293 times out of 10,000 for all other instances. In 12 instances it found the optimal solution in all 10,000 runs. Run times are very short. The largest instance
was solved 10,000 times in total time of 81 seconds, i.e., 0.0081 seconds per run. The quadratic assignment solutions were quite good except for large values of p when group sizes are 4 or less. It missed the best known solution in two instances. Note that CPLEX is the only approach that can guarantee that the solution found is optimal.

6.2 Testing Solution Approaches for Model B

The results for Model B are depicted in Table 3. 18 out of the 30 instances were solved to optimality by CPLEX in less than 5 hours of computer time. The heuristic algorithm found the best known solution in all 30 instances. The best result was obtained by the heuristic approach at least 46 times out of 10,000 for all instances. In seven instances the optimal solution was found in all 10,000 starts. Run times by the heuristic approach are very short. The largest instance was solved 10,000 times in total time of 5 seconds, i.e., 0.0005 seconds per run. Since Model B cannot be formulated as a QAP case, the alpha-male genetic algorithm cannot be used to solve it.

6.3 Recommendations Based on the Experiments

The multi-start heuristic approach was extremely fast and is thus recommended as the solution method of choice unless the problem is small and a guaranteed optimal solution is sought. If reasonably long computer time is available CPLEX is recommended, and if it fails to find the optimal solution in a reasonable time (we tested some instances for two or more days and did not get optimal results), the fast heuristic can be used. The gap, i.e., the difference between the upper and lower bounds, can give an indication whether to continue to run the CPLEX. The alpha male genetic algorithm performed well for fixed group sizes when the group sizes are not small.

7 Conclusions

We investigated the partition of a set of items into groups when the number of groups and the distances between items are well defined. The objective function, to be minimized, is the total of the individual sums of the distances between all members of the same group. We find the partition of the set of items that minimizes the objective function. Two models are formulated and solved.
In the first model the number of items in each group is given. For example, all groups must have the same number of items. In the second model there is no restriction on the number of items in each group.

We propose an optimal algorithm for each of the two problems as well as a heuristic algorithm. Problems with up to 100 items and 50 groups are tested. In the majority of instances the optimal solution was found using CPLEX. The heuristic approach, which is very fast, found the optimal solution for these cases, and it found equal or better solutions than those found by CPLEX when CPLEX was stopped after five hours. The first problem when the sizes of the groups are given, can also be formulated and solved as a quadratic assignment problem.

The heuristic algorithm performed very well. Since it is very fast, we can also apply Tabu search (Glover 1977; Glover and Laguna 1997) or simulated annealing (Kirkpatrick et al. 1983) or other meta heuristic algorithms especially for large problems.

The heuristic algorithm can be modified to create starting solutions for many multi-facility location problems in which the demand points that are served by facilities form clusters. Seven examples for such problems are listed in the introduction.

References

Abramowitz, M. and Stegun, I. (1972). *Handbook of Mathematical Functions*. Dover Publications Inc., New York, NY.

Aloise, D. (2009). *Exact algorithms for minimum sum-of-squares clustering*. PhD thesis, Ecole Polytechnique, Montreal, Canada. ISBN:978-0-494-53792-3.

Bagirov, A. M., Ordin, B., Ozturk, G., and Xavier, A. E. (2015). An incremental clustering algorithm based on hyperbolic smoothing. *Computational Optimization and Applications*, 61:219–241.

Baron, O., Berman, O., Krass, D., and Wang, Q. (2007). The equitable location problem on the plane. *European Journal of Operational Research*, 183:578–590.

Berman, O., Drezner, Z., Tamir, A., and Wesolowsky, G. O. (2009). Optimal location with equitable loads. *Annals of Operations Research*, 167:307–325.

Brimberg, J., Hansen, P., Mladenović, N., and Taillard, E. (2000). Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem. *Operations Research*, 48:444–460.
Calik, H., Labbé, M., and Yaman, H. (2015). p-center problems. In Location Science, pages 79–92. Springer.

Church, R. L. (2019). Understanding the Weber location paradigm. In Eiselt, H. A. and Marianov, V., editors, Contributions to Location Analysis - In Honor of Zvi Drezner’s 75th Birthday, pages 69–88. Springer.

Church, R. L. and Garfinkel, R. S. (1978). Locating an obnoxious facility on a network. Transportation Science, 12:107–118.

Daskin, M. S. (1995). Network and Discrete Location: Models, Algorithms, and Applications. John Wiley & Sons, New York.

Daskin, M. S. and Maass, K. L. (2015). The p-median problem. In Laporte, G., Nickel, S., and da Gama, F. S., editors, Location science, pages 21–45. Springer.

de Carvalho Jr., S. A. and Rahmann, S. (2006). Microarray layout as a quadratic assignment problem. In Huson, D., Kohlbacher, O., Lupas, A., Nieselt, K., and Zell, A., editors, Proceedings of the German Conference on Bioinformatics, volume 83, pages 11–20, Bonn. Gesellschaft für Informatik.

Drezner, T., Drezner, Z., and Guyse, J. (2009). Equitable service by a facility: Minimizing the Gini coefficient. Computers & Operations Research, 36:3240–3246.

Drezner, T., Drezner, Z., and Hulliger, B. (2014). The quintile share ratio in location analysis. European Journal of Operational Research, 236:166–174.

Drezner, Z. (1982). Competitive location strategies for two facilities. Regional Science and Urban Economics, 12:485–493.

Drezner, Z. (1984). The p-center problem - heuristic and optimal algorithms. Journal of the Operational Research Society, 35:741–748.

Drezner, Z. (2006). Finding a cluster of points and the grey pattern quadratic assignment problem. OR Spectrum, 28:417–436.

Drezner, Z. (2011). Continuous center problems. In Eiselt, H. A. and Marianov, V., editors, Foundations of Location Analysis, pages 63–78. Springer.

Drezner, Z. (2015). The quadratic assignment problem. In Laporte, G., Nickel, S., and da Gama, F. S., editors, Location Science, pages 345–363. Springer, Chum, Heidelberg.

Drezner, Z. and Drezner, T. D. (2019). The alpha male genetic algorithm. IMA Journal of Management Mathematics, 30:37–50.

Drezner, Z. and Kalczyński, P. (2017). The continuous grey pattern problem. Journal of the Operational Research Society, 68:469–483.

Drezner, Z., Klamroth, K., Schöbel, A., and Wesolowsky, G. O. (2002). The Weber problem. In Drezner, Z. and Hamacher, H. W., editors, Facility Location: Applications and Theory, pages 1–36. Springer, Berlin.
Drezner, Z. and Misevičius, A. (2013). Enhancing the performance of hybrid genetic algorithms by differential improvement. *Computers & Operations Research*, 40:1038–1046.

Drezner, Z., Misevičius, A., and Palubeckis, G. (2015). Exact algorithms for the solution of the grey pattern quadratic assignment problem. *Mathematical Methods of Operations Research*, 82:85–105.

Drezner, Z., Thisse, J.-F., and Wesolowsky, G. O. (1986). The minmax-min location problem. *Journal of Regional Science*, 26:87–101.

Drezner, Z. and Wesolowsky, G. O. (1978). Facility location on a sphere. *Journal of the Operational Research Society*, 29:997–1004.

Drezner, Z. and Wesolowsky, G. O. (1996). Obnoxious facility location in the interior of a planar network. *Journal of Regional Science*, 35:675–688.

Elzinga, J. and Hearn, D. (1972). Geometrical solutions for some minimax location problems. *Transportation Science*, 6:379–394.

Erkut, E. (1990). The discrete p-dispersion problem. *European Journal of Operational Research*, 46:48–60.

Erkut, E. and Neuman, S. (1989). Analytical models for locating undesirable facilities. *European Journal of Operational Research*, 40:275–291.

Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures. *Journal of Global Optimization*, 6:109–133.

Gilmore, P. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. *Journal of SIAM*, 10:305–313.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints. *Decision Sciences*, 8:156–166.

Glover, F. and Laguna, M. (1997). *Tabu Search*. Kluwer Academic Publishers, Boston.

Hakimi, S. L. (1983). On locating new facilities in a competitive environment. *European Journal of Operational Research*, 29:29–35.

Hartigan, J. and Wong, M. (1979). Algorithm AS 136: A k-means clustering algorithm. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 28:100–108.

Hotelling, H. (1929). Stability in competition. *Economic Journal*, 39:41–57.

Kariv, O. and Hakimi, S. L. (1979a). An algorithmic approach to network location problems. I: The p-centers. *SIAM Journal on Applied Mathematics*, 37:513–538.

Kariv, O. and Hakimi, S. L. (1979b). An algorithmic approach to network location problems. II: The p-medians. *SIAM Journal on Applied Mathematics*, 37:539–560.
Kirkpatrick, S., Gelat, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. *Science*, 220:671–680.

Koopmans, T. C. and Beckmann, M. J. (1957). Assignment problems and the location of economic activities. *Econometrica*, 25:53–76.

Kuenne, R. E. and Soland, R. M. (1972). Exact and approximate solutions to the multisource Weber problem. *Mathematical Programming*, 3:193–209.

Lawler, E. (1963). The quadratic assignment problem. *Management Science*, 9:586–599.

Lloyd, S. (1982). Least squares quantization in PCM. *IEEE transactions on information theory*, 28:129–137.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In *Proceedings of the fifth Berkeley symposium on mathematical statistics and probability*, volume 1, pages 281–297. Oakland, CA, USA.

Maimon, O. (1986). The variance equity measure in locational decision theory. *Annals of Operations Research*, 6:147–160.

Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000). *Spatial Tessellations: Concepts and Applications of Voronoi Diagrams*. Wiley Series in Probability and Statistics. John Wiley.

Pereira, T., Aloise, D., Brimberg, J., and Mladenović, N. (2018). Review of basic local searches for solving the minimum sum-of-squares clustering problem. In *Open Problems in Optimization and Data Analysis*, pages 249–270. Springer.

Rendl, F. (2002). The quadratic assignment problem. In Drezner, Z. and Hamacher, H., editors, *Facility Location: Applications and Theory*. Springer, Berlin.

Stirling, J. (1764). *Methodus differentialis, sive Tractatus de summatione et interpolatione serierum infinitarum. Auctore Jacobo Stirling, RSS*. prostat apud J. Whiston & B. White, in Fleet-street.

Sugihara, K. and Iri, M. (1992). Construction of the voronoi diagram for “one million” generators in single-precision arithmetic. *Proceedings of the IEEE*, 80:1471–1484.

Suzuki, A. and Okabe, A. (1995). Using Voronoi diagrams. In Drezner, Z., editor, *Facility Location: A Survey of Applications and Methods*, pages 103–118. Springer, New York.

Sylvester, J. (1857). A question in the geometry of situation. *Quarterly Journal of Mathematics*, 1:79.

Sylvester, J. (1860). On Poncelet’s approximate linear valuation of Surd forms. *Philosophical Magazine*, 20 (Fourth series):203–222.

Taillard, É. D. (1995). Comparison of iterative searches for the quadratic assignment problem. *Location Science*, 3:87–105.

Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les paralléloèdres primitifs. *Journal für die reine und angewandte Mathematik*, 134:198–287.
Weber, A. (1909). *Über den Standort der Industrien, 1. Teil: Reine Theorie des Standortes. English Translation: on the Location of Industries*. University of Chicago Press, Chicago, IL. Translation published in 1929.

Wesolowsky, G. O. (1993). The Weber problem: History and perspectives. *Location Science*, 1:5–23.

Winston, W. L. and Albright, S. C. (2016). *Practical Management Science*. Nelson Education. 6th Edition.