EZH2 and SMYD3 expression in papillary thyroid cancer

NADIA SAWICKA-GUTAJ1, SARA SHAWKAT1*, MIROSŁAW ANDRUSIEWICZ2*, PAULINA ZIÓŁKOWSKA1*, AGATA CZARNYWOJTEK1,3, PAWEŁ GUT1 and MAREK RUCHAŁA1

1Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan; Departments of 2Cell Biology and 3Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland

Received July 24, 2020; Accepted January 18, 2021

DOI: 10.3892/ol.2021.12603

Abstract. Recent studies have revealed the significant role of SMYD3 and EZH2 genes in the development and aggressiveness of numerous types of malignant tumor. Therefore, the present study aimed to investigate the expression of SMYD3 and EZH2 in papillary thyroid cancer, and to determine the correlation between the expression of these genes and clinical characteristics. Resected thyroid tissue samples from 62 patients with papillary thyroid cancer were investigated. Thyroid tissue derived from the healthy regions of removed nodular goiters from 30 patients served as the control group. Reverse transcription-quantitative PCR analysis was employed to detect relative mRNA expression levels. Primer sequences and TaqMan® hydrolysis probe positions for EZH2 and SMYD3 were determined using the Roche Universal ProbeLibrary Assay Design Center version 2.50. EZH2 expression was detected in all thyroid cancer samples and in 83.3% of benign lesions. Notably, EZH2 was revealed to be upregulated in thyroid cancer tissues compared with control tissues (P<0.0002). EZH2 expression was positively correlated with tumor stage (P<0.0001; r=0.504), and multiple comparison analysis revealed that the highest expression of EZH2 was detected in samples staged pT4 (P=0.0001). SMYD3 expression was detected in all thyroid cancer samples and in 96.7% of healthy thyroid tissues; notably, the expression levels were similar in both groups. In addition, there was no correlation between SMYD3 expression and the aggressiveness of papillary thyroid cancer. In conclusion, overexpression of the EZH2 gene may be associated with the development of papillary thyroid cancer and EZH2 may be a potential therapeutic target in papillary thyroid cancer.

Introduction

Modifications to histone amino-terminals are significant for the regulation of chromatin structure, interaction with chromatin-associated proteins, transcription and DNA replication (1-3). Histone lysine methylases (KMTs) are responsible for modifications in amino-acid residues of the exposed N-terminal domain of histones by methylation of lysines. As a result, the gene is activated or repressed (2,3). Methyltransferases of mixed lineage leukemia (MLL) and the SET and MYND domain-containing protein (SMYD) family are involved in trimethylation of lysine 4 at histone 4 (3) (3). Expression of SMYD family members is significantly altered in various human diseases (3,4). Their participation has been studied in cancer, embryonic heart development and inflammatory processes (4). The SMYD family consists of five members with a different structure from the other KMTs: The SET domain of histones by methylation of lysines. As a result, the gene is activated or repressed (2,3). Methyltransferases of mixed lineage leukemia (MLL) and the SET and MYND domain-containing protein (SMYD) family are involved in trimethylation of lysine 4 at histone 4 (3) (3). Expression of SMYD family members is significantly altered in various human diseases (3,4). Their participation has been studied in cancer, embryonic heart development and inflammatory processes (4). The SMYD family consists of five members with a different structure from the other KMTs: The SET domain is split into two segments by an MYND domain, followed by a cysteine-rich post SET domain (1,3,5,6). SMYD3 was the first member of the SMYD family for which catalytic significance was also demonstrated for domains other than classical SET (3,7). SMYD3 was recently shown also to catalyze methylation of lysine 5 of histone 5 (3,8). Specific SMYD3 binding elements in the target DNA (5'-CCCTCC-3' or 5'-GGAGGG-3') are present in gene promoter regions below SMYD3, such as Nks2.8, WHT10B, and HTERT (1,9-11). SMYD3 activates transcription of several oncogenes (e.g. C-Met, JUND and Wnt10B), cell cycle regulating genes (e.g. CDK2 and β DNA topoisomerase) and genes responsible for signal transduction (e.g. RAB40C and GNRF2). However, SMYD3 inhibits the expression of some tumor suppressor genes (e.g. RIZI) by epigenetic regulation (1,9,12,13). Increased SMYD3 expression is significant for cell viability, adhesion, migration and invasion (1,14). It correlates with poor prognosis in various types of cancer. The nucleus placed protein-coding gene SMYD3 is a selective transcription enhancer of oncogenes and the process of cell proliferation in liver and colon cancers. The mechanism is based on interaction with RNA Pol II and H3K4me3 and, in the case of liver tumors, is strongly associated with poor prognosis. Additionally, SMYD3 has an impact on Ras/ERK signaling in lung and pancreatic cancers by methylation of MAP3K2 kinase (3). A significant correlation has been found

*Contributed equally

Key words: papillary thyroid cancer, SMYD3, EZH2, overexpression, tumor stage, progression, reverse transcription-quantitative PCR

Correspondence to: Dr Nadia Sawicka-Gutaj, Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland

E-mail: nsawicka@ump.edu.pl
between the genetic variant with the variable number tandem repeat (VNTR) in the \textit{SMYD3} gene and the development of breast cancer in Jordanian women (15). Overexpression of \textit{SMYD3} also correlates with a more aggressive phenotype of prostate cancer (16). The role of the \textit{SMYD3} gene is also being studied in cholangiocarcinoma, esophageal squamous cell carcinoma, cervical, ovarian, bladder, gastric cancers, chronic lymphocytic leukemia and glioma (17-26). No studies are being undertaken to evaluate \textit{SMYD3} expression in papillary thyroid cancers, while one previous study confirmed its overexpression in medullary thyroid cancers (24).

An enhancer of zeste homolog 2 (\textit{EZH2}) is a histone methyltransferase, the catalytic subunit of the Polycomb 2 repression complex responsible for the trimethylation of histone H3 lysine 27 (H3K27me3) (27,28). Research on embryonic \textit{EZH2}-zero (ESC) stem cells has shown residual H3K27me3, termed EZH1 methyltransferase. This may indicate at least partial compensation of both enzymes (29-31). Genetic loss-of-function studies have demonstrated a role for \textit{EZH2} in the establishment and physiology of several cell types and tissues, such as the skin, heart and mammary gland (29-33). Similar to \textit{SMYD3}, \textit{EZH2} is highly expressed in various types of cancer, which is often also correlated with poor prognosis. The effect of \textit{EZH2} gene expression on carcinogenesis is the promotion of survival, proliferation, transformation of epithelium to mesenchyme, and the invasion and drug resistance of cancers. However, tumor-suppressive effects of \textit{EZH2} have also been identified. \textit{EZH2} has a significant impact on immune cells (27). The overexpression of \textit{EZH2} has been demonstrated in breast, prostate, endometrial, bladder, liver, lung, ovarian cancer, melanoma, glioblastoma and Natural killer/T-cell lymphoma. Gain-of-function mutations are present in Non-Hodgkin's lymphoma and melanoma. Through repression of the \textit{TIMP-3} metastatic suppressor gene, \textit{EZH2} leads to progression and spread in prostate and lung cancers and, through missense mutation in lymphomas, leads to increased function of the mutated protein (28).

These genes are currently undergoing extensive research in various types of cancers, including thyroid cancers. These are seen as the goals for targeted therapeutic strategies in oncology. Both genes have already been studied in medullary thyroid cancer (MTC) (24). In addition, research on the \textit{EZH2} gene has also been carried out on poorly differentiated (PDTC) and anaplastic thyroid carcinoma (ATC) (34), and also papillary thyroid cancer (35). Our study aimed to analyze \textit{EZH2} and \textit{SMYD3} gene expression in papillary thyroid cancer (PTC), the most common form of malignancy in this organ, and to correlate this with clinical outcome.

\textbf{Material and methods}

\textbf{Tissue samples.} Samples of resected thyroid tissue from consecutive patients were collected: papillary thyroid cancers and thyroid tissue from thyroid tissues without cancer excised for nodular goiter. All patients underwent primary thyroid surgery. We excluded patients with mixed thyroid cancers. Tissue samples were stored in RNA protective medium at -80°C until reverse transcription-quantitative PCR (RT-qPCR) analysis. The Ethical Committee of Poznan University of Medical Sciences approved the study (approval no. 228/14) and each patient provided written informed consent.

\textbf{Nucleic acid extraction and validation.} RNA was isolated from tissue specimens using the Direct-zol RNA kit column system for high molecular weight RNA isolation according to the manufacturer’s protocol (Zymo Research). In short, ~25 µg of tissue was homogenized in liquid nitrogen, and suspended in TriReagent (GenoPlast). After chloroform addition, the samples were centrifuged (12,000 x g, 15 min, 4°C) and the aqueous phase was transferred in the column. The isolation, following the protocol, finished with RNA recovery from silica matrix columns in pre-warmed water. The quality, quantity and purity of RNA were analyzed as described before (36) with the use of a NanoPhotometer® NP-80 (IMPLEN). The integrity was evaluated by electrophoretic separation in denaturing conditions.

\textbf{RT-qPCR.} Complementary to RNA DNA (cDNA) was synthesized in a three-step reaction conducted following the Transcriptor Reverse Transcriptase manufacturer’s protocol (Roche Diagnostics GmbH) in a total volume of 20 µl. A mixture of 5 mM oligo(d)T\textsubscript{15}, RNA (1 µg) and RNase-, DNase- and pyrogen-free water was incubated for 10 min at 65°C. Subsequently, the samples were chilled. Subsequently, 10 U/µl ribonuclease inhibitor (RNasin, Roche Diagnostics GmbH), 10 U/µl of transcriptor reverse transcriptase (Roche Diagnostics GmbH), 100 mM deoxyribonucleotide triphosphates (Novayzm) and 1X reaction buffer (Roche Diagnostics GmbH) were added. The subsequent steps of cDNA synthesis had been described earlier (36).

RNA expression pattern analysis was performed using a LightCycler® 2.0 (Roche Diagnostics GmbH). Primer sequences and TaqMan® hydrolysis probe positions for the \textit{EZH2} and \textit{SMYD3} were determined using the Roche Universal ProbeLibrary (UPL) Assay Design Center (http://qpcr.probefinder.com; last accessed on May 10, 2017). Ensembl (http://www.ensembl.org/), and protein-coding sequences for \textit{EZH2} (ENST000003203567, ENST00000460911.5, ENST00000476773.5, ENST00000478654.5, ENST0000035995.6, ENST00000483967.5) were used to design the primers and hydrolysis probes (Roche TaqMan Probe UPL #35; cat. no. 04687680001). The forward (5’-tggtgatactcttcagcaaa-3’) and reverse (5’-gaggagccgtcctttttca-3’) primers flank the 90 nt amplicon (Fig. 1A). The set of forward (5’-ctccgtccgtcctttttca-3’) and reverse (5’-gagatactgtagatatgcacca-3’) primers for \textit{SMYD3} covered the 106 nt amplicons with the TaqMan UPL #4 in between (Roche Diagnostics GmbH; cat. no. 046850160001). The assay was designed for both transcript variants (NCBI NM_001167740 and NM_022743.2) (Fig. 1B). The hypoxanthine-guanine phosphoribosyltransferase (\textit{HPRT}) gene assay (Roche cat.no. 05532957001) served as an internal control.

The quantitative polymerase chain reactions had been standardized earlier and conducted as described before (36) in a total volume of 20 µl with a 1X LightCycler® FastStart TaqMan® Probe Master mix. Each reaction was performed in duplicate on independently synthesized cDNA, and the mean values were used for statistical analyses. Reaction efficiencies were obtained from the genes’ standard curves (36). Raw data for threshold values were analyzed by comparing them to...
appropriately selected standard curves and the reference gene assay with the use of LC 5.0.0.38 software, and presented as concentration ratios (Cr).

Statistical analysis. Statistical analysis was performed with MedCalc Statistical Software version 19.1.5 (MedCalc Software bv; https://www.medcalc.org; 2020). The D'Agostino-Pearson test analyzed normality. P<0.05 was considered to indicate a statistically significant difference. The Mann-Whitney test was used to compare non-normally distributed parameters between the study and control groups, as well as between analyzed subgroups. When data followed a normal distribution, Student's t-test was used for comparison between groups. The χ² test was applied to compare descriptive parameters. The Kruskal-Wallis test with Conover post-hoc test was used to compare gene expression between thyroid cancer samples staged 1, 2, 3, and 4. The Spearman's correlation coefficient test was used to find relationships between analyzed parameters.

Results

Patient characteristics. The study group consisted of 62 patients with papillary thyroid cancers. There were 30 tissue samples in the healthy control group. Clinical data are presented in Table I. The study, and the control groups did not differ according to patients' age or sex.

EZH2 expression. EZH2 expression was found in all thyroid cancer samples and 25 out of 30 samples of benign lesions. We found EZH2 overexpression in thyroid cancers (P=0.0002) (Fig. 2). EZH2 expression positively correlated with tumor stage (P<0.0001; r=0.504; Fig. 3), and multiple comparison analysis revealed the highest expression in samples staged pT4 (P=0.0001) (Fig. 4). We did not observe EZH2 overexpression in patients with lymph node involvement (Fig. 5), and there was no association between EZH2 expression and multifocality (P=0.13 and P=0.49, respectively). Also, patients' age did not correlate with EZH2 expression levels (P=0.66) (Fig. 6).

SMYD3 expression. SMYD3 expression was found in all thyroid cancer samples and 29 out of 30 healthy tissues, and the expression levels were similar in both groups (P=0.90) (Fig. 7). Also, there were no differences in SMYD3 expression between tumors staged pT1, pT2, pT3 or pT4 (P=0.37) (Fig. 8). Patients with metastases to the lymph nodes did not have higher SMYD3 expression than those without (P=0.83) (Fig. 9). We did not observe any correlation between SMYD3 expression and multifocality (P=0.45).

Discussion

We found histone methyltransferase EZH2 overexpression in papillary thyroid cancer (PTC), while SMYD3 expression was not elevated. EZH2 gene expression was found in all papillary thyroid cancer samples, but also in most, as many as five sixths of healthy thyroid tissue samples. These were significantly higher expression rates, in both the study and control groups, than those obtained by Xue et al (35). However, they examined the expression of the EZH2 gene both by real-time PCR, as in our study, and immunohistochemistry (IHC), and they presented the expression percentages for IHC (35). However, in papillary thyroid carcinomas, statistically significant overexpression of the EZH2 gene was found in our study. Therefore, the EZH2 gene may be associated with the development of papillary thyroid cancer. Xue et al (35) obtained similar results. This is the case in papillary thyroid cancer, as well as in other thyroid cancers, as shown in Table II (24,34,35).
The expression of the *EZH2* gene positively correlated with the tumor stage, in the case of tumors staged pT4, it was the highest. Xue et al. (35) did not observe statistically significant differences between tumors <=1 cm and tumors >1 cm, or between those that extended beyond the thyroid tissue and those that did not. However, we did not observe *EZH2* overexpression in patients with lymph node involvement, as had been obtained by Xue et al. (35). Also, we did not find a relationship between *EZH2* expression and multifocality. In both studies, age did not significantly correlate with *EZH2* gene expression. Correlation with aggressiveness in thyroid cancers was described by Sponziello et al. (24) based on their study on medullary thyroid carcinomas (MTC). Sponziello et al. (24) examined the expression of epigenetic regulators in medullary thyroid carcinomas (MTCs) and correlated this with clinical outcome and RET or RAS mutational status. In the case of a more aggressive disease, they noted a significant increase in *EZH2* and *SMYD3* gene expression (more than 3 and 2-fold, respectively). They determined the aggressiveness of the disease, according to the current guidelines (37), based on the occurrence of lymph nodes and distant metastases, persistence after primary treatment and disease-related death. Noticeably, they did not observe a significant correlation between the overexpression of *EZH2* and *SMYD3* and the mutational status of RET or RAS genes. Therefore, the researchers suggested that *EZH2* and *SMYD3* mRNA expression may be useful prognostic biomarkers, and further studies are needed to investigate their possibility of use in therapy of MTC patients (24). Also, Masudo et al. (34) claim that *EZH2* overexpression may be a
useful prognostic marker for more aggressive thyroid cancers. This is justified by their statistically significant increase in EZH-positivity in order from differentiated (DTC), then poorly differentiated (PDTC) to anaplastic forms of thyroid cancers (ATC). Also, higher EZH2 expression correlated with more reduced survival in PDTC (P=0.004) and ATC (P=0.166).

First author, year	Number of patients, type of thyroid cancer	Number of patients in the control group	Analytical technique	Results	Refs.
Masudo, 2018	67 cases of PDTC and 48 cases of ATC	30 adjacent healthy and differentiated thyroid carcinoma tissue	IHC	EZH2 was expressed in PDTC and ATC, but not in the normal thyroid gland or DTC; EZH-positivity increased in the order of DTC, PDTC, and ATC (P<0.01); higher EZH2 expression correlated with more reduced survival in PDTC (P=0.004) and ATC (P=0.166)	(34)
Sponziello, 2014	54 MTCs; 13 familial MTCs and 41 sporadic forms; 33 hosted an RET mutation and 13 an RAS somatic mutation	-	qPCR	A significant increase in EZH2 and SMYD3 gene expression in more aggressive and 41 sporadic diseases (i.e. occurrence of metastases; persistent disease; disease-related death); the increase in EZH2 and SMYD3 did not correlate with the mutational status of RET or RAS genes	(24)
Xue, 2019	65 PTCs	30 adjacent healthy thyroid tissues	qPCR and IHC	Higher EZH2 expression in PTC tissues than in healthy thyroid tissues; EZH2 expression is associated with lymph node metastasis and is recurrent; inhibition of EZH2 in PTC cell lines downregulates cellular proliferation and migration. PTC is a disease with a high incidence in females and E2-ERα upregulates EZH2 expression	(35)

DTC, differentiated thyroid cancer; PDTC, poorly differentiated thyroid cancer; ATC, anaplastic thyroid carcinoma; MTCs, medullary thyroid cancer; PTC, papillary thyroid cancer; IHC, immunohistochemistry; qPCR, quantitative PCR.

![Figure 4](image-url)
Figure 4. Comparison of relative EZH2 gene expression in tumors staged pT1, pT2, pT3 or pT4. Values from the lower to the upper quartile are represented by the central box, while the middle line shows the median. The thin vertical lines extending up or down from the boxes to the horizontal lines extend to a multiple of 1.5X the distance of the upper and lower quartile, respectively. Outliers are any values beyond the whiskers. *P≤0.05.

![Figure 5](image-url)
Figure 5. Comparison between relative EZH2 expression in patients with lymph nodes involvement and without.

EZH-positivity in order from differentiated (DTC), then poorly differentiated (PDTC) to anaplastic forms of thyroid cancers (ATC). Also, higher EZH2 expression correlated with more reduced survival in the case of less differentiated cancers (34). Similarly, the prognostic significance of the EZH2 gene has already been observed in cancers of other organs, including
the prostate, lung or lymphomas (28). Currently, increasing numbers of studies are being developed that expand the range of thyroid cancers tested, as well as molecular mechanisms associated with the impact of the EZH2 gene on carcinogenesis (38). EZH2 is important in medullary thyroid cancer by affecting ERK and AKT signaling pathways. It also controls genes of the Wnt/β-catenin (24). It has been observed that increased expression of EZH2 in PTC cell lines upregulates cellular proliferation and migration by affecting the E2-ERα signaling pathway (35). Researchers have observed the role of long noncoding RNA PVT1 in the development of thyroid cancer through its involvement in the modulation of cell proliferation by recruiting EZH2 and regulating the thyroid-stimulating hormone receptor (TSHR) (39). In their search for differences between thyroid follicular cancer and thyroid follicular adenoma scientists have used network-based genetic profiling, which includes the EZH2 gene (40).

Overexpression of SMYD3 was not characteristic of papillary thyroid cancer in our study. Expression of this gene was observed in every test sample and in almost every control sample. Moreover, expression levels in study and control samples were similar. There was also no correlation between SMYD3 gene expression and the markers of greater disease aggression. No studies on the expression of the SMYD3 gene in papillary thyroid cancer have previously been performed. However, our study was justified due to the overexpression of both the EZH2 and SMYD3 genes observed by Sponziello et al, as well as the correlation of both genes with greater aggressiveness of medullary thyroid cancers (MTCs) (24). A similar correlation between the expression level of these genes and tumor aggression has been observed in cancers of other organs, e.g. liver or prostate (3,16). Chemical probes are being developed to target SMYD3 selectively (41).

In both the study and the control groups, the majority of patients were women. It has been known for many years that PTC is a disease with a high prevalence in women, which is also confirmed by the current research. This tendency is emphasized by Xue et al (35) who recently published their research on the EZH2 gene in PTC on similarly numerous research (n=65) and control (n=30) groups. Moreover, the latest trends show that among women, the highest increase in incidence was observed in 2014: 22.2 new cases were diagnosed per 100,000 people (42).
Also, researchers have noted that the disproportion between women and men is particularly intensified during the reproductive period (35,43). It has been found that estrogen can increase PTC growth, progression and metastasis and that E2 treatment can significantly increase EZH2 levels (35,44,45). The effectiveness of the specific EZH2 inhibitor GSK126 also confirms the above observations (35). Most, as many as 25 thyroid cancers were in stage I. This means that often the tumor was not larger than 2 cm and did not grow outside the thyroid gland (37). Samples in stages II–IV were similarly numerous. In thyroid cancers, metastases to the lymph nodes were observed in 23% of patients. Although PTC is often localized, the lymphatic tract is the most common for metastasis, and the site of metastasis is usually local lymph nodes (46). Literature data show the influence of both genes on the fate of individual cells, so it would be reasonable to compare cells from the same thyroid that are neoplastic to those unchanged. On the other hand, thyroid cancers might be multifocal, and molecular alterations proceed cancer. So it could also potentially affect achieved results. Our results indicate that overexpression of the EZH2 gene may be associated with the development of papillary thyroid cancer. Therefore, the EZH2 gene may also be a potential therapeutic target in papillary thyroid cancer.

Acknowledgements

Not applicable.

Funding

The National Science Center partially supported this work in Poland (grant no. DEC 2012/07/N/NZ5/01736).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

NSG designed the study, was involved in data collection, analyzed data, and wrote and revised the manuscript. SS and PZ conducted the manuscript preparation and data analysis/interpretation. MA carried out the experimental studies and data analysis. AC was involved in data collection and data analysis. PG conceived the study and was involved in data analysis. MR made substantial contribution to acquisition of samples and clinical data, and revised the paper. NSG and MA confirm the authenticity of all the raw data. All authors read and approved the final manuscript.

Ethics approval and consent to participate

The Ethical Committee of Poznan University of Medical Sciences approved the present study (approval no. 228/14). Written informed consent was obtained from all patients.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Zou JN, Wang SZ, Yang JS, Luo XG, Xie JH and Xi T: Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF. Cancer Lett 280: 78-85, 2009.
2. Kouzarides T: Chromatin modifications and their function. Cell 128: 693-705, 2007.
3. Giakountis A, Moulos P, Sarris ME, Hatzis P and Talianidis I: Smyd3-associated regulatory pathways in cancer. Semin Cancer Biol 42: 70-80, 2017.
4. Varier RA and Timmers HT: Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta 1815: 75-89, 2011.
5. Spellmon N, Holcomb J, Trescoff L, Sirinupong N and Yang Z: Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 16: 14046-14052, 2015.
6. Foreman KW, Brown M, Park F, Emtage S, Harriss J, Das C, Zhu L, Crew A, Arnold L, Shaaban S and Tucker P: Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS One 6: e22290, 2011.
7. Xu S, Wu J, Sun B, Zhong C and Ding J: Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding. Nucleic acids Res 39: 4438-4449, 2011.
8. Van Aller GS, Reynoard N, Barbash O, Huddleston M, Liu S, Zmoos AF, McDevitt P, Sinnamon R, Le B, Mas G, et al: Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7: 340-343, 2012.
9. Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R and Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6: 731-740, 2004.
10. Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y and Furukawa Y: Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci 97: 113-118, 2006.
11. Liu C, Fang X, Ge Z, Jalink M, Kyo S, Björkholm M, Gruber A, Sjöberg J and Xu D: The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res 67: 2626-2631, 2007.
12. Guo N, Chen R, Li Z, Liu Y, Cheng D, Zhou Q, Zhou J and Lin Q: Hepatitis C virus core upregulates the methylation status of the RASSF1A promoter through regulation of SMYD3 in hilar cholangiocarcinoma cells. Acta Biochim Biophys Sin 43: 354-361, 2011.
13. Tsuge M, Hamamoto R, Silva FP, Ohnishii Y, Chayama K, Kamatani N, Furukawa Y and Nakamura Y: A variable number of tandem repeats polymorphism in an E2F-1 binding element in the 5' flanking region of SMYD3 is a risk factor for human cancers. Nat Genet 37: 1104-1107, 2005.
14. Luo XG, Ding Y, Zhou QF, Ye L, Wang SZ and Xi T: SET and MYND domain-containing protein 3 decreases sensitivity to demethylation pathways in cancer. Biochim Biophys Acta 1815: 144281, 2020.
15. Vieira FQ, Costa-Pinheiro P, Almeida-Rios D, Graça I, Monteiro-Reis S, Simões-Sousa S, Carneiro I, Sousa EJ, Godinho MI, Baltazar F, et al: SMYD3 contributes to a more aggressive number tandem repeat (VNTR) polymorphism in SMYD3 gene and breast cancer: A genotype-phenotype study. Gene 728: 144281, 2020.
16. Zeng B, Li Z, Chen R, Guo N, Zhou J, Zhou Q, Lin Q, Cheng D, Liao Q, Zheng L and Gong Y: Epigenetic regulation of miR-124 by hepatocellular carcinoma core protein promotes migration and invasion of hepatocellular cholangiocarcinoma cells by targeting SMYD3. FEBS Lett 586: 3271-3278, 2012.
17. Zhu Y, Zhu MX, Zhang XD, Xu XE, Wu ZY, Liao LD, Li LY, Xie YM, Wu JY, Zou HY, et al: SMYD3 stimulates E2Z and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma. Hum Pathol 52: 153-163, 2021.
Epigenetic‑related gene expression profile in papillary thyroid cancer. In vivo 32: 25‑31, 2018.

Popkin D, Pillus L and Jenuwein T: Mammalian homologues of the Polycomb‑group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J 16: 3219‑3232, 1997.

Jiang K, Ritchie ME, Young M, Pal B, Bouras T, Shi W, Vaillant F, Sheridan JM, Fu N, Breslin K, Ito K, Kondo T, et al: EZH2 overexpression as a useful prognostic marker for aggressive behaviour in thyroid cancer. In vivo 32: 25‑31, 2018.

Wang LJ and Cai HQ: miR‑1258: A novel microRNA that controls TMRPSS4 expression is associated with malignant progression of papillary thyroid carcinoma. Endokrinol Pol 71: 146‑152, 2020.

Zhou Q, Chen J, Feng J and Wang J: Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid‑stimulating hormone receptor (TSHR). Tumour Biol 37: 3105‑3113, 2016.

Fabini E, Manoni E, Ferroni C, Rio AD and Bartolini M: Small‑molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: Current trends. Future Med Chem 11: 901‑921, 2019.

Roman BR, Morris LG and Davies L: The thyroid cancer epidemic, 2017 perspective. Curr Opin Endocrinol Diabetes Obes 24: 332‑336, 2017.

Al‑Zahrani AS and Ravichandran K: Epidemiology of thyroid cancer: A review with special reference to Gulf cooperation council (GCC) states. Gulf J Oncolog: 17‑28, 2007.

Al‑Zahrani AS and Ravichandran K: Epidemiology of thyroid cancer: A review with special reference to Gulf cooperation council (GCC) states. Gulf J Oncolog: 17‑28, 2007.

Hossain MA, Asa TA, Rahman MM, Uddin S, Moustafa AA, Quinn JMW and Moni MA: Network‑based genetic profiling reveals cellular pathway differences between follicular thyroid carcinoma and follicular thyroid adenoma. Int J Environ Res Public Health 17: 1373, 2020.

Kim KH and Roberts CW: Targeting EZH2 in cancer. Nat Rev Cancer 19: 131‑143, 2019.

Liu Y, Zhou H, Zhang TC, Wang L, Wang QT, Liu YP, Dong QQ, Hu MJ, Miao Z, Li S, Liu Y, Zhou H, Zhang TC, et al: ATM signalling pathway is implicated in the SMYD3‑mediated proliferation and migration of gastric cancer cells. J Gastric Cancer 17: 295‑305, 2017.

Khatami F and Tavangar SM: Genetic and epigenetic of medullary thyroid cancer. Iran Biomed J 22: 142‑150, 2018.

Sponziello M, Durante C, Boichard A, Dima M, Puppin C, Verrienti A, Tamburrano G, Di Rocco G, Redler A, Lacroix L, et al: Epigenetic‑related gene expression profile in medullary thyroid cancer revealed the overexpression of the histone methyltransferases EZH2 and SMYD3 in aggressive tumours. Mol Endocrinol 392: 8‑13, 2014.

Lin F, Wu D, Fang D, Chen Y, Zhou H and Ou C: STAT3‑induced SMYD3 transcription enhances chronic lymphocytic leukemia cell growth in vitro and in vivo. Inflamm Res 68: 739‑749, 2019.

Dai B, Wan W, Zhang P, Zhang Y, Pan C, Meng G, Xiao X, Wu Z, Jia W, Zhang J and Zhang L: SET and MYND domain‑containing protein 3 is overexpressed in human glioma and contributes to tumorigenicity. Oncol Rep 34: 2722‑2730, 2015.

Gun L, Yang Y, Li Q, Feng Y, Liu T and Guo W: Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark Res 6: 10, 2018.

Kim KH and Roberts CW: Targeting EZH2 in cancer. Nat Rev Cancer 19: 131‑143, 2019.