Article

Genetic Analysis of Hexaploid Wheat (Triticum aestivum L.) Using the Complete Sequencing of Chloroplast DNA and Haplotype Analysis of the Wknox1 Gene

Mari Gogniashvili 1,*, Yoshihiro Matsuoka 2 and Tengiz Beridze 1

1 Institute of Molecular Genetics, Agricultural University of Georgia, #240 D. Aghmashenebeli Av, Tbilisi 0131, Georgia; t.beridze@agruni.edu.ge
2 Graduate School of Agricultural Science, Kobe University, Rokko, Nada, Kobe 657-8501, Japan; pinehill@port.kobe-u.ac.jp
* Correspondence: m.gogniashvili@agruni.edu.ge; Tel.: +995-599-234-855

Abstract: The aim of the presented study is a genetic characterization of the hexaploid wheat Triticum aestivum L. Two approaches were used for the genealogical study of hexaploid wheats—the complete sequencing of chloroplast DNA and PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth-exon region of Wknox1b. The complete chloroplast DNA sequences of 13 hexaploid wheat samples were determined: Free-threshing—T. aestivum subsp. aestivum, one sample; T. aestivum subsp. compactum, two samples; T. aestivum subsp. sphaerococcum, one sample; T. aestivum subsp. carthlicoides, four samples. Hulled—T. aestivum subsp. spelta, three samples; T. aestivum subsp. vavilovii jakubz., two samples. The comparative analysis of complete cpDNA sequences of 20 hexaploid wheat samples (13 samples in this article plus 7 samples sequenced in this laboratory in 2018) was carried out. PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth exon region of Wknox1b of all 20 hexaploid wheat samples was carried out. The 20 hexaploid wheat samples (13 samples in this article plus 7 samples in 2018) can be divided into two groups—T. aestivum subsp. spelta, three samples and T. aestivum subsp. vavilovii collected in Armenia, and the remaining 16 samples, including T. aestivum subsp. vavilovii collected in Europe (Sweden). If we take the cpDNA of Chinese Spring as a reference, 25 SNPs can be identified. Furthermore, 13–14 SNPs can be identified in T. aestivum subsp. spelta and subsp. vavilovii (Vav1). In the other samples up to 11 SNPs were detected. 22 SNPs are found in the intergenic regions, 2 found in introns, and 10 SNPs were found in the genes, of which seven are synonymous. PCR-based haplotype analysis of the fourth intron of Wknox1d and the fifth-to-sixth-exon region of Wknox1b provides an opportunity to make an assumption that hexaploid wheats T. aestivum subsp. macha var. palaeocolchicum and var. letshckumicum differ from other macha samples by the absence of a 42 bp insertion in the fourth intron of Wknox1d. One possible explanation for this observation would be that two Aegilops tauschii Coss. (A) and (B) participated in the formation of hexaploids through the D genome: Ae. tauschii (A)—macha (1–5, 7, 8, 10–12), and Ae. tauschii (B)—macha M6, M9, T. aestivum subsp. aestivum cv. ‘Chinese Spring’ and cv. ‘Red Doly’.

Keywords: Triticum aestivum L.; chloroplast DNA; sequencing; Illumina; SNP; Wknox1 gene

1. Introduction

Wheat is the leading grain crop in the world. It originated in the Fertile Crescent approximately 10,000 years ago and has since spread worldwide. There are two biological species of hexaploidy wheat—T. aestivum, genome BBA A DD and Triticum zhukovskyi Menabde & Ericz., GGA A A A A A M. T. zhukovskyi and its predecessors (Triticum monococcum L. and Triticum timopheevii (Zhuk.) Zhuk.) form a separate lineage irrelevant to the evolution of the principal wheat lineage, which is formed by T. aestivum and its predecessors Aegilops tauschii Coss. And Triticum turgidum L. [1].
The *T. aestivum* lineage is divided into the domesticated, hulled lineage and the free-threshing lineage. The free-threshing lineage includes *T. aestivum* subsp. *Aestivum*, *T. aestivum* subsp. *Compactum* (Host) Mackey, *T. aestivum* subsp. *Sphaerococcum* (Percival) Mackey, and *T. aestivum* subsp. *carthlicoides* nom. nud. (Tables 1 and 2).

Table 1. List of hexaploid wheats.

Species	Genome	Plasmon
Hulled		
T. zhukovskyi	GGA^uA^uA^mAm	G
Hulled		
T. aestivum subsp. *spelta* Thell.	BBA^uA^uDD	B
Hulled	*T. aestivum* subsp. *aestivum*	
Free-threshing	*T. aestivum* subsp. *aestivum*	
T. aestivum subsp. *compactum* (Host) Mackey		
T. aestivum subsp. *sphaerococcum* (Percival) Mackey		
T. aestivum subsp. *carthlicoides* nom. nud.		

Table 2. Jacubciner’s classification system (1958) According to Yen a. Yang [2].

Congretio	Species	Distribution Areas	Habits
Hexaploidea	Cultivated hulled		
2n = 42	*T. zhukovskyi* Men.et Er.	Georgia	Springness
	T. macha Dek.et Men.	Georgia	Winterness
	T. spelta L.	Iran, south Germany, Spain	Winterness, Springness
Cultivated naked grain			
	T. aestivum L.	All over the world	Springness, winterness, half winterness
	T. compactum Host	Transcaucasia, Kazakhstan, Asia Minor, Afghan, Chile	Springness, winterness, half-winterness
	T. vavilovii Jakubz.	Armenia	Winterness
	T. sphaerococcum Perc.	Pakistan, India	Springness

Hexaploid wheat *T. aestivum* subsp. *carthlicoides* was found by Kuckuck [3] near the border of Turkey, Armenia and West Georgia. This hexaploid wheat showed the subsp. *carthlicum*-like spike morphology.

The hulled lineage includes spelt wheat *T. aestivum* subsp. *spelta* Thell., *macha* *T. aestivum* subsp. *macha* (Dekapr. and Menabde) Mackey and *T. aestivum* subsp. *vavilovii* Jakubz. In hulled wheats, glumes tenaciously enclose seeds, and strong mechanical force is needed to liberate seeds from glumes during threshing.

According to Dekaprelevich, Georgia is characterized by the largest number of cultivated wheat species in the world; altogether, 12 species of are found here. Only three narrowly endemic species, *Triticum abyssinicum* Vav., *T. sphaerococcum* and *T. spelta*, are absent [4].
South Caucasus (notably Georgia) and its earlier residents played an important role in wheat formation. In total, 17 domesticated species and subspecies of *Triticum* are known. Georgian endemic wheat species include one *Triticum* species and four subspecies [5–7]:

1. *Triticum turgidum* subsp. *palaecolchicum* (Menabde) A. Love
2. *Triticum turgidum* subsp. *carthlicum* (Nevski) A. Love
3. *Triticum timopheevii* subsp. *zhukovskyi* (Menabde & Ericzjan) L. B. Cai
4. *Triticum zhukovskyi* Menabde & Ericzjan
5. *Triticum aestivum* subsp. *macha* (Dekapr. & Menabde) McKey

All these cultivated species and subspecies have been found only in West Georgia, except subsp. *carthlicum* which has been distributed in East Georgia as well. All these species and subspecies grew in the territory of Georgia until the middle of the last century.

The “Wheat Enigma” was a term for the observation that wild predecessors of five Georgian endemic wheat subspecies are found in Fertile Crescent, quite far from the South Caucasus [8,9]. One possibility to explain the “Wheat Enigma” is that speakers of ProtoGeorgian language could have moved to Mesopotamia after migration from Africa to the Arabian Peninsula, where wheat was domesticated. Furthermore, they could have migrated to South Caucasus together with domesticated wheat subspecies [9,10].

The examination of genealogical data provides insights into the evolutionary history of a species. The wide application of gene genealogies for evolutional studies in plants involves identifying DNA sequences with levels of ordered variation within chloroplast, mitochondrial, or nuclear genomes [11]. Traditionally, extranuclear DNA, such as chloroplast DNA (cpDNA), has been considered as an effective tool for genealogic studies [12–14]. The sequences of wheat plasmons B and G (complete cpDNA sequences) of the genus *Triticum* were determined in our laboratory [8,15,16]. Plasmon B is detected in polyploid species—*Triticum turgidum* and *T. aestivum*. Plasmon of *T. zhukovskyi* belongs to the G type.

Another effective tool for gene genealogy studies for *Triticum* species is the three homoeologous loci of wheat *Wknox1* gene, functioning at shoot apical meristems (SAM) [17]. A comparative study of the three *Wknox1* genomic sequences revealed accumulation of numerous mutations, particularly in the fourth intron and the 5′-upstream region. Later, Takumi a. Morimoto [18] reported the discovery of a new allele for the fifth-to-sixth exon region of the *Wknox1b KNOTTED1*-type homeobox gene in a common wheat subspecies (*T. aestivum* subsp. *carthlicoides*).

The purpose of the present investigation was to carry out the comparative analysis of complete cpDNA sequences of 20 hexaploid wheat accessions (*T. aestivum* subsp. *aestivum*, two samples; *T. aestivum* subsp. *compactum*, two samples; *T. aestivum* subsp. *sphaeroecoccum*, one sample; *T. aestivum* subsp. *arthlicoides*, four samples; *T. aestivum* subsp. *spelta*, three samples; *T. aestivum* subsp. *macha*, six samples; *T. aestivum* subsp. *vavilovii*, two samples).

The second aim of the present investigation was to carry out a PCR-based haplotype analysis of the fourth intron of *Wknox1d* and of the fifth-to-sixth exon region of *Wknox1b* of all 20 hexaploid wheat samples.

2. Results

2.1. Complete cpDNA Sequence of Hexaploid Wheats

For comparative analysis of chloroplast DNA of hexaploid wheats, 20 hexaploid wheat samples were selected. CpDNA sequences from 13 of them were sequenced in this study, and the remaining 7 were sequenced earlier [15] (Table 3).

The samples were structured as follows: free-threshing—*T. aestivum* subsp. *aestivum*, two samples—Chinese Spring and Red Doly; *T. aestivum* subsp. *compactum*—two samples; *T. aestivum* subsp. *sphaeroecoccum*—one sample; *T. aestivum* subsp. *arthlicoides*—four samples; Hulled—*T. aestivum* subsp. *spelta*—three samples; *T. aestivum* subsp. *vavilovii*—two samples; *T. aestivum* subsp. *macha*—six samples.

To illustrate the evolutionary relationship among the studied cultivars, a phylogenetic tree was constructed based on complete nucleotide sequences of cpDNA of 20 hexaploid wheat samples (Figure 1).
Table 3. Hexaploid wheat accessions used in the study.

Botanical Name	GenBank Accession Number
Hulled	
M1	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *megrelicum* (Menabde) LC372826 ISU
M2	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *georgicum* (Menabde) LC373211 ISU
M3	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *colchicum* (Dekapr. and Menabde) LC375536 ISU
M4	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *scharashidzei* (Menabde) LC374397 ISU
M5	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *palaeoimereticum* (Dekapr. and Menabde) LC375773 ISU
M6	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *palaeocolchicum* (Dekapr. and Menabde) NC_025955 ISU
M7	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *ericziana* Menabde ISU
M8	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *ibericum* Dekapr. and Menabde ISU
M9	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *letshchumicum* Dekapr. and Menabde ISU
M10	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *subcolchicum* Dekapr. and Menabde ISU
M11	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *submegrelicum* Dekapr. and Menabde ISU
M12	*Triticum aestivum* L. subsp. *macha* (Dekapr. and Menabde) Mackey var. *subletshchumicum* Dekapr. and Menabde ISU
Splt2	*Triticum aestivum* L. subsp. *spelta* (L.) Thell. LC625352 PI 348000
Splt1	*Triticum aestivum* L. subsp. *spelta* (L.) Thell. LC625353 PI 348220
Splt3	*Triticum aestivum* L. subsp. *spelta* (L.) Thell. LC625866 PI 191393
Vav1	*Triticum vavilovii* Jakubz. LC621349 PI 326319
Vav2	*Triticum vavilovii* Jakubz. LC625865 PI 428342
Free-threshing	
RD	*Triticum aestivum* L. subsp. *aestivum* var. *ferrugineum* (Alef.) Mansf. cv. ‘Red Doly’ LC377169 ISU
CS	*Triticum aestivum* L. subsp. *aestivum* cv. ‘Chinese Spring’ LC622404
Cc1	*Triticum aestivum* L. subsp. *carthlicoides* nom. nud. LC621350 PI 262678
Cc3	*Triticum aestivum* L. subsp. *carthlicoides* nom. nud. LC621195 SRCA
Table 3. Cont.

Botanical Name	GenBank Accession Number	Hulled	
Hull			
Cc2	Triticum aestivum L. subsp. carthlicoides nom. nud.	LC622405	PI 532901
Cc4	Triticum aestivum L. subsp. carthlicoides nom. nud.	LC621194	SRCA
Com2	Triticum aestivum L. subsp. compactum (Host) Mackey	LC623766	KU-9873
Com1	Triticum aestivum L. subsp. compactum (Host) Mackey	LC623764	ISU
Sph1	Triticum aestivum L. subsp. sphaerococcum (Percival) Mackey	LC623765	Cltr17737

Figure 1. Complete chloroplast genome phylogeny of hexaploid wheats.

If we take the cpDNA of Chinese Spring as a reference, 25 SNPs can be identified. Furthermore, 13–14 SNPs can be identified in *T. aestivum* subsp. *Spelta* and subsp. *Vavilovii* (Vav1) (collected in Armenia) (Table 4). In the other samples, up to 11 SNPs were detected. In total, 22 SNPs are found in the intergenic regions, 2 were found in introns, and 10 SNPs were found in the genes, of which seven are synonymous and do not alter the amino acids. Indels specific for 20 cpDNA are given in Table 5.

One 35bp insertion and three inversions (56bp, 58bp and 25bp in length) have been identified in *Triticum aestivum* subsp. *spelta* (Spelt1, Spelt2, Spelt3) and *T. aestivum* subsp. *vavilovii* (Vav2) samples (Table 6). One 38bp inversion (TCGGCTCAATCTTTTTTTTTC-TAAAAAAAAAGATTGAGCCGA) with a 4bp loop has been identified in *T. aestivum* subsp. *vavilovii* (Vav1) (collected in Armenia) in the position 56,120–56,157 (intergenic *rbcL*—*psaI*).

This section may be divided into subheadings. It should provide a concise and precise description of the experimental results, their interpretation, as well as the experimental conclusions that can be drawn.
Nucleotide Position According to CS	Locus	CS	M6	Vav1	Cc2	Cc1, Cc3, Cc4	RD	Sph1	M2, M3, M5	M4	M1	Com1	Com2	Splt1	Splt2	Splt3	Vav2	Amino Acid Substitution
2903	Gene matK	G																A–G
3400	Intergenic matK-trnK-UUU	C																
4918	Intergenic rps16	T																
13,015	Intergenic trnM-CAT-trnT-GGT	T																C C C C
14,580	Intergenic trnM-CAT-trnT-GGT	C																G
15,371	Intergenic trnY-GTA-trnD-GTC	A																G G G G G
16,481	Intergenic trnD-GTC-psbM	C																T T T T T
20,853	Gene rpoB	C																T T T T T Syn
25,444	Gene rpoC2	C																A A A A A Syn
32,710	Intergenic atpH-atpF	C																T
44,509	Intergenic ycf3-trnS-GGA	C																C C C C C
45,856	Intergenic rps4-trnT-TGT	A																C C C C C
46,434	Intergenic trnT-TGT-trnF-GAA	G																T T T T T
47,628	Intergenic trnT-TGT-trnF-GAA	G																A A G G G G
50,332	Intergenic ndhC-trnM-CAT	G																T T T T T
50,716	Intergenic ndhC-trnM-CAT	T																C C C C C
52,295	Gene atpB	G																T T T T T Q-K
56,472	Intergenic rbcl-psal	A																G G G G G
56,670	Intergenic rbcl-psal	C																T T T T T
63,289	Gene petG	A																T T T T T Syn
Table 4. Cont.

Nucleotide Position According to CS	Locus	CS	M6	Vav1	Cc2	Cc1, Cc3, Cc4	RD	Sph1	M2, M3, M5	M4	M1	Com1	Com2	Splt1	Splt2	Splt3	Vav2	Amino Acid Substitution
64,318	Intergenic psaJ-rpl33	C																
72,207	Intergenic petB-petD	C																
73,742	Intergenic petD-rpoA	T																
78,113	Intron rpl16	C																
78,732	Intergenic rpl16-rps3	G																
82,499	Intergenic rpl23-trnl-CAT	T																
100,961	Gene rps15	T																Syn
102,561	Gene ndhF	C																Syn
104,993	Intergenic rpl32-trnl-TAG	A																
105,477	Intergenic rpl32-trnl-TAG	C																
106,672	Gene ccsA	C																Syn
113,487	Gene ndhH	T																Syn
114,943	Gene rps15	A																
133,405	Intergenic trnl-CAT-rpl23	A																F–L

Table 5. Indels specific for chloroplast DNA of hexaploid wheats.

Nucleotide Position According to CS	Locus	CS	M6	Vav1	Cc2	Cc1, Cc3, Cc4	RD	Sph1	M2, M3, M5	M4	M1	Com1	Com2	Splt1	Splt2	Splt3	Vav2
4175	Intergenic matK-rps16	-												AAAAT	AAAAT	AAAAT	AAAAT
7422	Intergenic psbI-trnS-GCT	1ST												18T	12T	12T	12T
8219	Intergenic trnS-GCT-psbD	10T												11T			
Nucleotide Position According to CS	Locus	CS	M6	Vav1	Cc2	Cc1, Cc3, Cc4	RD	Sph1	M2, M3, M5	M4	M1	Com2	Com1	Split1	Split2	Split3	Vav2
------------------------------------	-------	----	----	------	-----	---------------	----	------	-------------	----	----	-------	------	--------	--------	--------	------
8407	Intergenic trnS-GCT-psbD	-															
11,183	Intergenic psbC-trnS-TGA	14A															
17,991	Intergenic petN-trnC-GCA	10A	11A		11A												
18,757	Intergenic trnC-GCA-rpoB	19C															
31,609	Intergenic atpI-atpH	12T															
32,442	Intergenic atpH-atpF																
33,718	Intergenic intron atpH	14A															
42,920	Intron ycf3	10T															
42,931	Intron ycf3	3T															
45,993	Intergenic rps4-trnT-TGT	8A															
47,788	Intergenic trnT-GAA-ndhJ	15A															
56,724	Intergenic rbcL-psaI	10T															
60,767	Intergenic petA-psbJ																
60,773	Intergenic petA-psbJ	17T	16T	16T	16T	16T											
62,041	Intergenic psbE-petL																
Duplication_70,856	Intron petB	-															
71,219	Intron petB	6T															
73,586	Intergenic petD-rpoA	5T															
75,699	Intergenic rpl36-infA	10A															
76,051-62_duplication	Intergenic infA-rps8																
76,599	Intergenic rps8-rpl14	10T															

Table 5. Cont.
Table 5. Cont.

Nucleotide Position According to CS	Locus	CS	M6	Vav1	Cc2	Cc1, Cc3, Cc4	RD	Sph1	M2, M3, M5	M4	M1	Com2	Com1	Splt1	Splt2	Splt3	Vav2
77,140	Intergenic rpl14-rpl16	10T												9T	9T	9T	9T
86,581	IntrondnB	5T												4T			
104,113	Intergenic ndhF-rpl32	13A										11A	12A	14A			
129,319	IntrondnB	5A												4A			

Table 6. Inversions and a long insertion specific for chloroplast DNA of hexaploid wheats.

Nucleotide Position According to CS	Locus	Splt1, Splt2, Splt3, Vav2	Length
79,532	Gene rpl22	GATGGATCTAAAGGTATTTTAGATTTCTTTTACTAT	Insertion 35 bp
105,139–105,196	Intergenic rpl32—trnL-TAG	ACTTTTCATAATTTTCATAATAGAATCCT CATATTTTATGAAAATAATGAAAAGT	Inversion with 14 bp loop 58 bp
106,795–106,819	Intergenic ccsA—ndhD	AAAACCTTCATGAAAATGAAGGTTTT	Inversion with 3 bp loop 25 bp
135,896-52	Intergenic rps19—psbA	AAAGACAGAAATACCCAATATCTTGCTA GAACAAGATATTGGGTATTTGCTCTTT	Inversion with 6 bp loop 56 bp
2.2. PCR Analysis of Three Homoeologous Loci of Wheat Wknox1 Gene

2.2.1. Wknox1d Fourth Intron Region

In the present investigation, the genomic sequences of the Wknox1d fourth intron regions were amplified by PCR using the primer pair of Takumi a. Morimoto [18] (Table 7). A common wheat, T. aestivum subsp. aestivum cv. ‘Chinese Spring’ (CS), and a durum wheat, T. turgidum subsp. durum cv. ‘Langdon’ (Ldn), were used for PCR as control and the amplified DNA fragments were visualized on an agarose gel. In the fourth intron of Wknox1d in common wheat, a 122-bp MITE insertion has been reported [17]. The MITE-containing band (411 bp) was missing in all tetraploid wheat accessions and was observed in all subspecies of common wheat. In the case of subsp. macha (11 samples) the 453 bp band was observed. In the case of two macha samples (M6 and M9) the MITE-containing band typical for other hexaploid subspecies (411 bp) were detected.

Table 7. PCR-based haplotype analysis of the fourth intron of Wknox1d. A 122-bp MITE insertion specifically observed at the D-genome locus of Wknox1 generates the upper bands (411 bp) in hexaploid wheat accessions (except Triticum aestivum L. subsp. compactum) and 453 bp in macha accessions.

Sample	PCR Product, bp
	277, 284
	375
	400
	411
	453

Triticum aestivum subsp. aestivum cv. ‘Chinese Spring’ (CS)	+	+	+
Triticum aestivum subsp. aestivum var. ferrugineum (Alef.) Mansf. cv. ‘Red Doly’ (RD)	+	+	+
Triticum aestivum subsp. carthlicoides (Cc1, Cc2, Cc3, Cc4)	+	+	+
Triticum aestivum subsp. compactum (Com2)	+		
Triticum aestivum subsp. compactum (Com1)	+	+	+
Triticum aestivum subsp. sphaerococcum (Sph1)	+	+	+
Triticum aestivum subsp. macha (M6, M9)	+	+	+
Triticum aestivum subsp. macha (M1, M2, M3, M4, M5, M7, M8, M10, M11, M12)	+	+	+
Triticum aestivum subsp. spelta (splt1, splt2, splt3)	+	+	+
Triticum vavilovii (Arm) (Vav1)	+	+	+
Triticum vavilovii (Eur) (Vav2)	+	+	+
Triticum turgidum subsp. carthlicum var. rubiginosum	+		
Triticum turgidum subsp. durum cv. ‘Langdon’ (Ldn)	+		

In 2% agarose-gel, the PCR-amplified, fourth intron of the Wknox1d DNA region of hexaploid wheat gives four bands: N1 (280 bp), N2 (375 bp), N3 (411 bp), and N4 (453). Bands N3 and N4 were cut out and sequenced. In the case of band N4 (453), a 42 bp insertion was detected in the position 7009—AGTTTGCACACCTGAACTTTTGATTACGCCCTA (Figure 2).

2.2.2. Fifth-to-Sixth Exon Region of Wknox1b

PCR-based haplotype analysis of the fifth-to-sixth exon region of Wknox1b showed that the 157-bp MITE inserted band (588 bp) is present in T. turgidum subsp. durum cv. ‘Langdon’; CS; Red Doly (Table 8). This band is absent in tetraploid T. turgidum subsp. carthlicum, T. aestivum L. subsp. carthlicoides, T. aestivum subsp. macha (M1–M13).

Hexaploid wheats with matching values of the fourth intron of Wknox1d and the fifth-to-sixth-exon region of Wknox1b are given in Table 9.
In 2% agarose-gel, the PCR-amplified, fourth intron of the Wknox1d DNA region of hexaploid wheat gives four bands: N1 (280 bp), N2 (375 bp), N3 (411 bp), and N4 (453). Bands N3 and N4 were cut out and sequenced. In the case of band N4 (453), a 42 bp insertion was detected in the position 7,009—AGTTTGCACACCTGAACATTTTGCATTATGTTCGGGAGCCTA (Figure 2).

Figure 2. Image of 2% agarose gel electrophoresis of PCR-amplified fourth intron of Wknox1d DNA region of hexaploid wheat. Lanes: 2—T. turgidum subsp. carthlicum, 3—T. turgidum subsp. durum (Ldn), 4—T. aestivum subsp. aestivum (CS), 5—T. aestivum subsp. carthlicoides, 6—T. aestivum subsp. carthlicoides, 7—T. aestivum subsp. macha (M_6), 8—T. aestivum subsp. macha (M_9), 9—T. aestivum subsp. macha (M_1), 10—T. aestivum subsp. macha (M_2), 11—T. aestivum subsp. macha (M_3); Lanes 1, 12—100 bp DNA marker.

Table 8. PCR-based haplotype analysis of the fifth-to-sixth exon region of Wknox1b.

Sample	PCR Product, bp			
	410	429, 430	560	588
Triticum aestivum subsp. aestivum cv. ‘Chinese Spring’ (CS)	+	+	+	
Triticum aestivum subsp. aestivum var. ferrugineum cv. ‘Red Doly’ (RD)	+	+	+	
Triticum aestivum subsp. carthlicoides (Cc1, Cc2, Cc3, Cc4)	+			
Triticum aestivum subsp. compactum (Com2)	+	+	+	
Triticum aestivum subsp. compactum (Com1)	+			
Triticum aestivum subsp. sphaerococcum (Sph1)	+	+	+	
Triticum aestivum subsp. macha (M6, M9)	+			
Triticum aestivum subsp. macha (M1, M2, M3, M4, M5, M7, M8, M10, M11, M12)	+			
Triticum aestivum subsp. spelta (splt1, splt2, splt3)	+	+	+	
Triticum vavilovii (Arm) (Vav1)	+	+		
Triticum vavilovii (Eur) (Vav2)	+	+	+	
Triticum turgidum subsp. carthlicum var. rubiginosum	+			
Triticum turgidum subsp. durum cv. ‘Langdon’ (Ldn)	+	+	+	
Table 9. Hexaploid wheats with matching values of fourth intron of Wknox1d and fifth-to-sixth exon region of Wknox1b.

Triticum aestivum subsp. carthlicoides (Cc1, Cc2, Cc3, Cc4)
Triticum aestivum subsp. compactum (Host) (Com1)
Triticum aestivum subsp. macha (M6, M9)
Triticum vavilovii (Arm) (Vav1)

3. Discussion

It is widely believed that the birthplace of *T. aestivum* is in a region between Transcaucasia and southwestern Caspian Iran [19]. The first step in the evolution of cultivated wheat was the formation in northern Mesopotamia of a tetraploid species with an AuAuBB genome [20]. Approximately 7000 years ago, the hexaploid bread wheat *T. aestivum* L. (BBAuAuDD) arose in southwestern Caspian Iran and Transcaucasia by allopolyploidization of the cultivated Emmer wheat *Triticum dicoccum* Schrank with the Caucasian *Ae. tauschii* [19,21–24]. It should be noted that *Ae. tauschii* was found in the western Caucasus as well [25,26]. According to authors “*Ae. squarrosa* (*Ae. tauschii*) grows in lowlands and mountain foothills, rarely in dry and humid silty areas up to the middle of the mountain, mainly in desert, semi-desert and field vegetation, as well as weeds in Abkhazia, Samegrelo, Imereti, Guria, Adjara, Kartli, in outer Kakheti, Gardabani” [25]. It can be assumed that two *Ae. tauschii* (A) and (B) participated in the formation of hexaploids through the D genome: *Ae. tauschii* (A)—macha (1–5, 7, 8, 10–12)—and *Ae. tauschii* (B)—macha M6, M9, CS, RD (Tables 3 and 7).

T. aestivum subsp. *carthlicoides* most likely originated in western Transcaucasia [3]; in 1967 Kuckuck had found populations with *carthlicium* and *carthlicoides* types near the border of East Turkey (Ardahan and Kars Provinces, Turkey) and West Georgia. This hexaploid wheat accession showed the subsp. *carthlicum*-like morphology. Subsp. *carthlicoides* was proposed to have originated from spontaneous hybridization between subsp. *carthlicoides* and cultivated emmer wheat, *T. dicoccum* subsp. *dicoccum* (Schrank) Thell. Subsp. *carthlicoides* should be considered as the original and elder genotype from which genes for this particular morphology of the ear were transferred together with the Q-factor to *T. carthlicum* [3,18]. According to Kuckuck, this region was distinguished by a tremendous genetic variation in wheat including *T. dicoccum, T. carthlicum* and *T. aestivum* subsp. *macha* [3]. It can be assumed that subsp. *carthlicoides* took part in the formation of the subsp. *macha* as an ancestor.

One of the four subspecies of wheat detected in Georgia is hexaploid, domesticated, hulled wheat *T. aestivum* subsp. *macha* [15]. This subspecies was detected in West Georgia in 1928 and described by Dekaprelevich and Menabde [27]. It is endemic to Georgia and is cultivated along with tetraploid West Georgian wheat (*T. turgidum* subsp. *palaeocolchicum*) [28]. It is proposed that macha and West Georgian wheats are sibling cultivars that arose in a hybrid swarm involving *T. aestivum* and wild emmer wheat [29]. It is accepted that spelt wheat is derived from free-threshing hexaploid wheat (*T. aestivum* subsp. *aestivum*) by hybridization with hulled emmer (*T. turgidum*). Experimental data suggest that European and Asian spelt may be polyphyletic. Free-threshing, hexaploid wheat seems to precede spelt. At least some European spelt originated from hybridization of club wheat (*T. aestivum* subsp. *compactum*) with emmer (domesticated hulled *Triticum turgidum*). Free-threshing hexaploid wheat was an ancestor of not only European spelt but also of some of the Asian forms of spelt, although the exact role free-threshing wheat has played is debatable [1].

The comparative analysis of complete nucleotide sequence 20 samples of hexaploid wheats offers the opportunity to draw several conclusions: 20 hexaploid wheat samples are divided into two groups—*Triticum aestivum* subsp. *spelta* three samples + *T. aestivum* subsp. *vavilovii* (Vav1) (collected in Armenia), and the remaining 16 samples including *T. aestivum* subsp. *vavilovii* (Vav2) (Collected in Sweden).

Hirosawa et al. [30] found two cpDNA SSR lineages in *T. aestivum*: Plastogroup I and II. Most subsp. *aestivum, compactum, macha*, and *sphaerococcum* accessions belonged to Plas-
to subgroup I. Subspecies *spelta* was split into Plastogroup I (70% of accessions examined) and Plastogroup II (30%). So, given the numbers of subsp. *spelta* accessions used (27 accessions in Hirosawa et al. and 3 in our work), the cpDNA trees (Hirosawa et al.’s and ours) appear quite consistent. Plastogroup I (and our major lineage) might represent a major lineage that was transmitted from cultivated *T. turgidum* via hybrid cross with *Ae. tauschii* and its subsequent allopolyploidization. Plastogroup II (and our minor lineage) might have resulted from introgression between hexaploid and tetraploid wheats, because subsp. *spelta* has the emmer wheat ancestry in Europe and Asia [1].

PCR-based haplotype analysis of the fourth intron of *Wknox1d* and the fifth-to-sixth-exon region of *Wknox1b* of all 20 hexaploid wheat samples was carried out. PCR-based haplotype analysis of the fourth intron of *Wknox1d* and the fifth-to-sixth-exon region of *Wknox1b* provides an opportunity to make an assumption that hexaploid wheats *T. aestivum* subsp. *macha* var. *palaecolchicum* and var. *lethshkicum* differ from other macha samples by the absence of a 42 bp insertion in the fourth intron of *Wknox1d*. It can be assumed that two *Ae. tauschii* (A) and (B) participated in the formation of hexaploids through the D genome: *Ae. tauschii* (A)—macha (1–5, 7, 8, 10–12)—and *Ae. tauschii* (B)—macha M6, M9, *T. aestivum* subsp. *aestivum* cv. ‘Chinese Spring’ and cv. ‘Red Doly’. Another possible explanation would be that the insertion might have arisen during the diversification process of common wheat after polyploidization.

In recent years, wheat yields have not increased per hectare, which is important due to the growing world population. Transferring agronomically important genes from wild relatives to common wheat has been shown to be an effective genetic resource for hexaploid wheat improvement. Advances in new technologies have made the complete wheat reference genome available, which offers a promising future for the study of wheat improvement which is essential to meet global food demand [31].

4. Materials and Methods

4.1. Plant Material, DNA Isolation, PCR Analysis, Genomic DNA Library Preparation and Sequencing on an Illumina NovaSeq 6000 Platform

The seeds of hexaploid wheat samples were received from the seed bank of The Agricultural University of Georgia (the late Prof. P. Naskidashvili) and Institute of Botany (Ilia State University, Tbilisi, Georgia) (ISU); The U.S. National Plant Germplasm System (GRINGlobal); The National BioResource Project—WHEAT Centre (Graduate School of Agriculture, Kyoto University, Kyoto, Japan); The Scientific Research Center of Agriculture (SRCA) (Georgia) and Tel Aviv University (Israel). The seeds were germinated in water at room temperature. Total genomic DNA extraction from young leaves, the construction of genomic DNA libraries and assembly of cpDNA have been described earlier [15,31]. An automatic annotation of cpDNA was performed by CpGAVAS [32]. For detection of SNPs (single nucleotide polymorphism) and Indels (insertion/deletion) and phylogeny tree construction, computer programs Mafft and Blast were used [33,34].

4.2. Construction of Shotgun Genomic DNA Libraries

Construction of 13 shotgun genomic libraries and sequencing on the NovaSeq 6000 was carried out at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign (UIUC). The shotgun genomic DNA libraries were constructed from 50 ng of DNA after sonication with a Covaris ME220 (Covaris, MA, USA) to an average fragment size of 400 bp with the Hyper Library Preparation Kit from Kapa Biosystems (Roche, CA, USA). To prevent index switching, the libraries were constructed using unique dual-indexed adaptors from Illumina (San Diego, CA, USA). The individually barcoded libraries were amplified with 6 cycles of PCR and run on a Fragment Analyzer (Agilent, CA, USA) to confirm the absence of free primers and primer dimers and to confirm the presence of DNA of the expected size range. Libraries were pooled in equimolar concentration and the pool was further quantitated by qPCR on a BioRad CFX Connect Real-Time System (Bio-Rad Laboratories, Inc., Hercules, CA, USA).
4.3. Sequencing of Libraries in the NovaSeq

The pooled, barcoded, shotgun libraries were loaded on a NovaSeq SP lane for cluster formation and were sequenced for 150 cycles from each side of the DNA fragments. The fastq read files were generated and demultiplexed with the bcl2fastq v2.20 Conversion Software (Illumina, San Diego, CA, USA).

4.4. PCR Analysis of Three Homoeologous Wheat Wknox1 Gene

The genomic sequences of the Wknox1d 4th intron regions were amplified by PCR using the primer pair of Takumi a. Morimoto [18]: 5′-AAAAAAAGGTTAAATGGAC-3′ and 5′-ACCTTATACATGATTGGGAA-3′. The Wknox1b 5th-to-6th exon region was amplified by PCR using the primer pair 5′-GCTGAAAGCACCACATCTCCTGA-3′ and 5′-CATGTAGAAGGCAGCGCTTAG-3′. The DNA fragments (PCR products) were excised from the agarose gel. The DNA extraction and purification from the agarose gel was performed by the QIAquick Gel Extraction Kit (QIAGEN). PCR products were purified with GenElute PCR Clean-Up Kit (Sigma-Aldrich), dye labeled using a Big Dye Terminator Kit (Applied Biosystems), and sequenced on Applied Biosystems 3700 genetic analyzer (Laboratory Services Division of the University of Guelph, Guelph, ON, Canada).

5. Conclusions

Based on complete chloroplast DNA sequences, the 20 hexaploid wheat samples can be divided into two groups—T. aestivum subsp. spelta three samples + T. aestivum subsp. vavilovii collected in Armenia, and the remaining 16 samples, including T. aestivum subsp. vavilovii collected in Europe (Sweden).

Based on the fourth intron of Wknox1d and the fifth-to-sixth-exon region of Wknox1b hexaploid wheats, T. aestivum subsp. macha var. paleocolchicum and var. letshchikumic were found to differ from other macha samples by the absence of a 42 bp insertion in the fourth intron of Wknox1d.

Two Aegilops tauschii Coss. (A) and (B) participated in the formation of hexaploids through the D genome: Ae. tauschii (A)—macha (1–5, 7, 8, 10–12)—and Ae. tauschii (B)—macha M6, M9, T. aestivum subsp. aestivum cv. ‘Chinese Spring’ and cv. ‘Red Doly’.

Author Contributions: Conceptualization, T.B. and Y.M.; Methodology, M.G.; Software, M.G.; Formal analysis, M.G. and T.B.; Investigation, T.B. and Y.M.; Data curation, M.G., T.B. and Y.M.; Writing—original draft preparation, T.B. and M.G.; Writing—review and editing, T.B. and Y.M.; Visualization, M.G. and T.B.; Supervision, T.B.; Project administration, M.G.; Funding acquisition, M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded by a grant from the Shota Rustaveli National Science Foundation of Georgia (SRNSFG) (grant number: NFR-18-7262).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The complete chloroplast DNA sequence data supporting this study are openly available in GenBank at https://www.ncbi.nlm.nih.gov/nuccore/LC625352,LC625353,LC625866,LC621349,LC625865,LC377169,LC622404,LC623765,LC621350,LC623764,LC621194,LC622405,LC623766 (accessed on 8 April 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dvorak, J.; Deal, K.R.; Luo, M.-C.; You, F.M.; Von Borstel, K.; Denghani, H. The Origin of Spelt and Free-Threshing Hexaploid Wheat. J. Hered. 2012, 103, 426–441. [CrossRef]

2. Yen, C.; Yang, J. Biosystematics of Triticeae Volume I. Triticum-Aegilops Complex; Springer Nature: Basingstoke, UK, 2020; Available online: https://link.springer.com/book/10.1007/978-981-13-9931-2 (accessed on 5 November 2021).

3. Kuckuck, H. On the origin of Triticum carthlicum Nevski (Triticum persicum Vav.). Wheat Inf. Serv. 1979, 50, 1–5.

4. Dekaprelevich, L.L. The role of Georgia in the origin of wheat. Soobsch. Akad. Nauk Gruz. SSR 1941, 2, 915–922.
32. Liu, C.; Shi, Y.; Zhu, Y.; Chen, H.; Zhang, J.; Lin, X.; Guan, X. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. *BMC Genom.* 2012, 13, 715. [CrossRef] [PubMed]

33. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. *Brief Bioinform.* 2019, 20, 1160–1166. [CrossRef]

34. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. *J. Mol. Biol.* 1990, 215, 403–410. [CrossRef]