Comparative Evaluation of the Efficacy of Shatavari Ghanavati & Bramhi Ghanvati in Jarajanya smritibramsha (Senile Dementia)

Mayuri Amol Deshpande *# and Vaishali Kuchewar ≡

*a Department of Kayachikista, Mahatma Gandhi Ayurved Medical College and Research Centre, Datta Meghe Institute of Medical Sciences (Deemed to be University) Salod (H), Wardha, Maharashtra, India.

ABSTRACT

Background: Memory is the important physiological process which is required to live normal life. Good and bad memories helps living being in stay protected from harms. In old age, these aspect of normal human physiology get deteriorated. This occurs due to increase in Vata dosha. As age progresses there is increase in vata causing diminished memory. There are various drugs which are prescribed by doctors for age associated memory disorder. Bramhi, Shankhpushpi, Mandukparni are the well-known drugs as memory booster. But in Bhavprakash Samhita and Kashyap samhita, Shatavari is described for its nootropic property.

Aim: Comparative evaluation of Shatavari ghanavati and Bramhi ghanavati in Jarajanya smritibramsha (Senile Dementia).

Objectives:
1. To confirm the most safest and effective dose of Shatavari in senile dementia by reverse pharmacology approach.
2. To evaluate the efficacy of Shatavari ghanavati on cognitive function in Senile dementia.
3. To evaluate the efficacy of Bramhi ghanavati on cognitive function in Senile dementia.
4. To evaluate the efficacy of Shatavari ghanavati as an Antioxidant.
5. To evaluate the efficacy of Bramhi ghanavati as an Antioxidant.
6. To evaluate the comparative efficacy of Bramhi ghanavati and Shatavari ghanavati on cognitive function in Senile dementia.

Methodology: In this study there will be two parts, to define safest and most effective dose in Senile dementia by reverse pharmacology and main study. In reverse pharmacology, 10 patients will be selected in each group. After this, 30 patients will be selected in control arm of bhramhi ghanavati and 30 in Shatavari ghanavati, experimental group. Patients will be assessed with MMSE scale.

Results: Shatavari is well known rasayan drug. Along with this, its has medhya (nootropic properties). It will work on memory as it acts as an antioxidant. The property will be studied by assessing SOD and MDA.

Conclusion: Conclusion will be drawn according to results.

Keywords: Human physiology; pharmacology; antioxidant; senile dementia.

1. INTRODUCTION

Mental health is the important aspect in living being. Intellectual power is boon for Human being. According to WHO, mental health is included in the definition of health [1]. In Ayurveda, ‘Prasannaatmendriyamanaha’ is mentioned in definition of ‘Swasthapatrusha’ means healthy person [2]. Mental health and Physical health are related to each other. Memory is inevitable part of mental health. This memory gets deteriorated as the age progresses.

Aging is a physiologic state in which a progressive decline of organ functions is accompanied with the development of age-related diseases [3]. Dementia or memory loss is one of them. It not only affects that particular individual but also his family members and society. Memory is important thing for surviving normally. Loss of memory is called as dementia and dementia caused due to old age is known as senile dementia [4-6]. Dementia is impaired cognitive function in the setting of a normal conscious level. Dementia is a chronic confusion state associated with loss of higher functions like memory, judgmental capacity and language without altered consciousness [7]. There are various causes of dementia such as drugs, depression, old age and endocrinral abnormalities. The prevalence rate of Senile Dementia is 0.49 % in India [8]. Oxidative stress is contributing factor in process of ageing and consequently age associated memory loss. Oxidation is normal and necessary process that takes place in body [9-12]. Oxidative stress occurs when there is an imbalance between free radical activity and antioxidant activity. OS is responsible for ‘n’ no. of pathological conditions taking place in human body such as Diabetes mellitus, atherosclerosis, inflammatory conditions, Cancer and Age associated memory loss (senile dementia) [13]. It is impossible to completely stop the free radical formation and oxidative stress. But an individual can minimize the effect by taking antioxidants. Superoxide dismutase level is beneficial in avoiding increased free oxygen radicals [14]. There are various treatment modalities for treating dementia such cholinesterase inhibitors. Still there is no remedy for complete cure, but symptomatic benefit is found with acetyl cholinesterase inhibitors (AChEI) (donepezil, rivastigmine and galantamine) and memantine, which is a N-methyl-D-aspartate partial antagonist. In the absence of more effective therapies, these medications persist as a vital option in managing dementia [15]. The side effects testified in presently existing “second-generation” AChEIs are nausea (11%-47%), vomiting (10%-31%), looseness of the bowels (5%-19%), and anorexia (4%-17%) [16]. These G. I. T side effects are fairly well known by concerning physician.

Ayurveda has solution for diseases occurring in every age group. In fact the eight main branches which are depicted in Ayurveda literature includes ‘Jara’ as separate branch [17]. According to Ayurveda memory is Smriti. In Rasayan benefits, Smriti is included in it [18]. Shatavari is a drug which is commonly used for gynecological conditions such as leucorrhea, post-menopausal depression [19]. According to Acharya Bhavaprakash, it can be given as Medhya and Rasayana. It is depicted that Shatavari is antioxidant and nootropic in properties. Here we are going to evaluate the efficacy of Shatavarighanavati in senile dementia.
In Ayurveda, one drug can be used in various ways in various diseases. There are some drugs which are used for only one particular disease. Shatavari is one of them which is used in classical ways in women health-related problems. Reverse pharmacology is best way to revalidate the various actions of drugs.

2. BACKGROUND

Historical review of Medha

Significance of Medha is depicted in Medhasukta of Upanishadhas. Those mantras are offered to goddess for gaining intelligence. Medha is compared with Sunrays.

Purana

In Puranas, Bramhiyog is depicted as Medhasmritikara.

Samhita kala

Medhya term is depicted in Bruhatrayee namely Charak, Sushruta and vaghbhatta samhitas. Charak Samhita has given a complete chapter of four parts for rasayan therapy. Medhya rasayana is one of them.

Adhunika Kala

There are many researches going on regarding nootropic properties of drugs. Bramhi is the most known drug for nootropic and cognitive functions [20].

In Ayurveda, Rasayan is constitution of drugs which have antioxidant properties. Acharya Charak, Acharya Sushruta and Acharya Vagbhhat has depicted Rasayan and its benefits in their literatures. There are many drugs which act on Smriti (memory). So, we can evaluate the effect of Rasayan in Jarajanya smritibhramsha (senile dementia)

Dravya i.e medicine is the one of the four components for successful management of disease. According to acharya Charak, Laghupakam, Sukhaswadam, Preenanam, Vyadhinashana are the properties of matrayukta aushadh.

Reverse Pharmacology –

Reverse pharmacology consists of four stages.

1. Selection of herbal remedy – According to Bhavprakash and acharya Kashyap, Shatavari can be given in memory related disorders.

2. Dose escalating clinical trial – In this stage the most effective and safest dose is found out by taking clinical trials.

3. Randomized clinical trial – In this stage, RCTs are conducted.

4. Isolation of active ingredient.

Research Gaps Analysis

- Shatavari is used in women related health issues. There are only 2 studies which are conducted on animals to prove its nootropic property.
- No Human trail is done yet.
- There is no reverse pharmacology adapted for deciding the most effective dose of Shatavari in Senile dementia.
- There are only two studies conducted on Shatavari for accessing its Medhya property. Both studies were done on animal model.
- Bramhi is the commonly used drug for age associated memory disorders. So, the availability is less. Hence the chances of adulteration are more.
- In samhitas, Bramhi is described as medhya. In practice also it is used for its Medhya properties.
- Comparative study of Bacopa monneire and Asparagus racemose is not conducted yet.
- Animal studies has been conducted; no human trial is done on Shatavari.
- Solidified water extracts are not used in any study. Shatavari roots contains saponins which are water soluble [21]. So, it will give beneficial effect.
- Shatavari is generally used in female reproductive health complications such as Polycystic ovarian disorder, female infertility, hormonal imbalance and post-menopausal depression [22]. But Acharya Bhavprakash has given the Medhya & Rasayani properties of Shatavari [23].
- Some are done on elderly but oxidative stress is not included. It is important to access oxidative stress as Oxidative stress found in cognitive dysfunction. MDA is oxidative stress marker whereas Superoxide dismutase level defenses from reactive oxygen species. So, its need of an hour to study the effect and relation between oxidative stress level and Shatavari ghanavati in senile dementia.
Research question

Whether Shatavari ghanavati is as effective as Bramhigavanavati in Jarajanya smritibhamsha (senile dementia)?

Hypothesis

Null Hypothesis H_0 – Shatavari ghanavati is not as effective as Bramhigavanavati in Jarajanya smritibhamsha (senile dementia).

Alternate Hypothesis H_A – Shatavari ghanavati as effective as Bramhigavanavati in Jarajanya smritibhamsha (senile dementia)

2.1 Aim

Comparative evaluation of Shatavari ghanavati and Bramh ghanavati in Jarajanya smritibhamsha (Senile Dementia).

2.2 Objectives

1. To confirm the most safest and effective dose of Shatavari in senile dementia by reverse pharmacology approach.
2. To evaluate the efficacy of Shamkharigavanavati on cognitive function in Senile dementia.
3. To evaluate the efficacy of Bramhigavanavati on cognitive function in Senile dementia.
4. To evaluate the efficacy of Shatavari ghanavati as an Antioxidant.
5. To evaluate the efficacy of Bramhigavanavati as an Antioxidant.
6. To evaluate the comparative efficacy of Bramhigavanavati and Shatavari ghanavati on cognitive function in Senile dementia.

Material with information regarding Standardization

REVERSE PHARMACOLOGY –

Selection of herbal remedy – It is already described in literature review.

3. MATERIALS AND METHODS

3.1 Drug Source

Raw drug will be procured from ‘Acharya aushdhalay Nashik’ and its authentication will be done at Dravyaguna department at MGACH & RC.

Drug details

Group A - Bramhi ghanavati

Dravya Part used

Bramhi Panchang

Group B – Shatavari ghanavati.

Dravya Part used

Shatavari Mula (Root)

Material with information regarding Standardization

REVERSE PHARMACOLOGY –

Selection of herbal remedy – It is already described in literature review.

3. MATERIALS AND METHODS

3.1 Drug Source

Raw drug will be procured from ‘Acharya aushdhalay Nashik’ and its authentication will be done at Dravyaguna department at MGACH & RC.

Drug details

Group A - Bramhi ghanavati

Dravya Part used

Bramhi Panchang

Group B – Shatavari ghanavati.

Dravya Part used

Shatavari Mula (Root)

These will be prepared in ghanvati form.

3.2 Subject Source

Patients suffering from Jarajanya Smritibhamsha will be clinically diagnosed will be selected randomly from OPD and IPD of department of Kayachikitsa, MGACH & RC, Salod (H), Wardha

Dose escalating clinical trial

The dose of Ghana is 250 mg – 500 mg in Siddhayog samgraha by Vaidya Yadavi Trikamji acharya [23]. The most effective and safest dose will be decided by reverse pharmacology approach. The pilot study will include 10 subjects in both arms receiving 250 mg and 500 mg of Shatavari ghanavati respectively. The duration of pilot study shall be 2 months with the same methodology as per the RCT. After selection of best dose, randomized placebo control double blind clinical study will be conducted on that dose.

Posology:

Group A – 10 patients will be selected randomly and Shatavari ghanavati 250 mg BD will be given with Koshnajal after meal.

Group B – 10 patients will be selected randomly and Shatavari ghanavati 500 mg BD will be given with Koshnajal after meal.

• Total 20 patients who fulfill the inclusion criteria will be selected.
• Both groups A & B will be given medicine for continuous 90 days.
• Inform consent will be taken from each patient before commencement of medicine.
• Each patient will be followed-up on 30th, 60th and 90th day.
Inclusion criteria

1. Patients of age group 60 years to 75 years
2. Patients of senile dementia of MMSC scoring 18-23 [25] (Mild cognitive impairment)

Exclusion criteria

1. Patients with delirium, hallucinations, diagnosed Parkinson’s disease patients, stroke, intracranial hemorraghe, brain tumors, history of alcoholism or drug dependence, use of any psychotropic drug.
2. Patients with loss of bodily competences, such as walking, sitting, and holding one’s head up, ability to swallow, to regulate the bladder and bowel function.
3. Patients with loss of ability to communicate.

Withdrawal criteria

1) If Patient had any adverse drug effect during treatment.
2) If patient is no more willing to continue the treatment.

Assessment Parameters

- Mini Mental State Examination (MMSE)
- Super oxide Dismutase level (SOD)
- Malondialdehyde level (MDA)

Randomised clinical trial

Randomised clinical trial will be done on 60 patients divided equally in two groups.

Posology:

Group A – 30 patients will be selected randomly and Bramhi ghanvati 500 mg BD will be given with Koshnajal after meal.

Group B – 30 patients will be selected randomly and Shatavari ghanvati (most effective and safest dose according to reverse pharmacology) will be given with Koshnajal after meal.

Number of Volunteers (Sample Size)	20 (10 in each group)
Medicine/ Intervention	Shatavari Ghanavati (SGV)
Duration	12 weeks
Dose	
Group 1	(Shatavari ghanavati) SGV 300 mg
Group 2	(Shatavari ghanavati) SGV 600mg
Time	Morning and evening (After meal)
Route Of Administration	With lukewarm water

Assessment Parameters

- Mini Mental State Examination (MMSE)
- Super oxide Dismutase level (SOD)
- Malondialdehyde level (MDA)

Withdrawal criteria

1) If Patient had any adverse drug effect during treatment.
2) If patient is no more willing to continue the treatment.
3.3 Statistical Analysis

The observations will be analyzed by using student unpaired t test.

4. RESULTS

Result will be given after the study.

5. DISCUSSION

Shatavari is mainly used as galactogogue and used in women related health issues. But Acharya bhavprakash and Acharya Kashyap described its medhya properties. As Vata and age are directly proportional to each other, increase in age causes increase in Vata in the body. Smritibramsha is nanatmaja vata vyadhi according to Acharya Charak. Shatavari has Madhur(sweet) and tikta(astringent) properties. It is guru (heavy) and snigdha(oily) which is exactly opposite to Vata properties. Due to its these properties it will act as Vata and pitta shamak. Along with this, it has antioxidant property. Oxidative stress is one of the physiological factor which causes ageing [26-37].

6. CONCLUSION

It will be drawn from statistical analysis.

NOTE

The study highlights the efficacy of “herbal” which is an ancient tradition, used in some parts of India. This ancient concept should be carefully evaluated in the light of modern medical science and can be utilized partially if found suitable.

CONSENT

Inform consent will be taken from each patient before commencement of medicine.

ETHICAL APPROVAL

Research ethics approval; approval from research ethics committee has taken. No. MGACHRC/IEC/July – 2021/314

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Chawake MA. Effectiveness of educational programme about knowledge of parents regarding ill effects of watching television among under-five children in selected area. International Journal of Emergency and Trauma Nursing. 2020;6(2):26-35.
2. Ambikadutta Shastry, Sushrutasamhita of Acharaya Sushruta, Edition reprint, Varanasi Chaukamba Sanskrit sansthan. 2013;84.
3. Romano AD, Serviddio G, De Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. Journal of Nephrology. 2010;23:S29-36.
4. Kukull WA, Larson EB, Teri L, Bowen J, McCormick W, Pfanschmidt ML. The Mini-Mental State Examination score and the clinical diagnosis of dementia. Journal of clinical epidemiology. 1994;47(9):1061-7.
5. Rathi, Renu, and Bharat Rathi. "Application of Ayurvedic Principles in Prevention and Management of Behavioural Problems in Children." International Journal of Ayurvedic Medicine. 2020;11(4):636–43.
6. Gupta, Pankaj Kumar, Sally John, Sonia Mary Thomas. A study of pattern of referrals in liaison psychiatry. Indian Journal of Psychiatry. 2018;60(5): 98.
7. Swash M, Glynn M, Harrison, Pain etiology and pathogenesis: Hutchinson’s clinical methods, edition 22nd Elsevier. 2002:450.
8. Vas CJ, Pinto C, Panikker D, Noronha S, Deshpande N, Kulkarni L, Sachdeva S. Prevalence of dementia in an urban Indian population. International psychogeriatrics. 2001;13(4):439-50.
9. Pankaj, Musale S, Desai Priti. Critical review of verse ‘evama yeva pittadhara saeva majjadharaiti. International Journal of Ayurvedic Medicine. 2020;11(1):1–5.
10. Wajpeyi, Sadhana Misar. Role of ayurveda in the management of guillain-barre syndrome case study. International Journal of Ayurvedic Medicine. 2018;9(4):288–92.
11. Wadnerwar N, Deogade M. Future perspectives of Therapeutic Claims of an Ethnopharmacological Drug Ipomoea carnea Jacq. - A Critical Review'. International Journal of Ayurvedic Medicine. 2021;12(2):177–84.
12. James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, Liu Z, Roberts NL, Sylte DO, Bertolacci GJ, Cunningham M, Henry NJ. Estimating global injuries morbidity and mortality: methods and data used in the
Global Burden of Disease 2017 study. Injury Prevention. 2020;26(Suppl 2):i125-53.
13. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1-9.
14. Bohl M. Essential oils for wrinkles: are they proven to work?
15. Overshott R, Burns A. Treatment of dementia. Journal of Neurology, Neurosurgery & Psychiatry. 2005;76(suppl 5):v53-9.
16. Cummings JL. Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations. Focus. 2004;11(2):131-252.
17. Acharya Priyavat Sharma, Dravyagunavidnyan, Medhya, Chaukhamba Bharati Academy, Varanasi. Reprint. 1978:6.
18. Acharya Charak, Chakrapanivirachit Ayurveda dipika, Dr. Lakshmidhar Dwivedi, Chikitsasthan, reprint. 2008:5.
19. Pandey AK, Gupta A, Tiwari M, Prasad S, Pandey AN, Yadav PK, Sharma A, Sahu K, Asrafuzzaman S, Vengayil DT, Shrivastav TG. Impact of stress on female reproductive health disorders: Possible beneficial effects of shatavari (Asparagus racemosus). Biomedicine & Pharmacotherapy. 2018;103:46-9.
20. Acharya Priyavat Sharma, Dravyagunavidnyan, Medhya, Chaukhamba Bharati Academy, Varanasi. Reprint. 1978:6.
21. Available:https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/saponins#:~:text=Saponins%20possess%20surface%2Dactive%20or,of%20the%20sapogenin%20is%20fat%2Dsoluble.
22. Pandey AK, Gupta A, Tiwari M, Prasad S, Pandey AN, Yadav PK, Sharma A, Sahu K, Asrafuzzaman S, Vengayil DT, Shrivastav TG. Impact of stress on female reproductive health disorders: Possible beneficial effects of shatavari (Asparagus racemosus). Biomedicine & Pharmacotherapy. 2018;103:46-9.
23. Vaidya Yadavji Trikamji acharya, siddhyog samagraha, Baidyanath Ayurved bhavan limited. 2000:4.
24. Acharya Priyavat Sharma, Dravyagunavidnyan, Medhya, Chaukhamba Bharati Academy, Varanasi. Reprint. 1978;503.
25. Yadahalli SL. Preventive role of panchakarma chikitsa in jara vyadhhi Acharya Charak, Chakrapanivirachit Ayurveda dipika, Dr. Lakshmidhar Dwivedi, Chikitsasthan, reprint. 2008:5.
26. Pradhan S, Madke B, Kabra P, Singh AL. Anti-inflammatory and immunomodulatory effects of antibiotics and their use in dermatology. Indian journal of dermatology. 2016;61(5):469.
27. Acharya S, Shukla S, Mahajan SN, Diwan SK. Acute dengue myositis with rhabdomyolysis and acute renal failure. Annals of Indian Academy of Neurology. 2010;13(3):221
28. Gadball AR, Chaudhary M, Patil S, Gawande M. Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts. Oral Diseases. 2009;15(7):490-8.
29. Prasad N, Bhatt M, Agarwal SK, Kohli HS, Gopalakrishnan N, Fernando E, Sahay M, Rajapurkar M, Chowdhary AR, Rathi M, Jeloka T. The adverse effect of COVID pandemic on the care of patients with kidney diseases in India. Kidney international reports. 2020;5(9):1545-50.
30. Walia IS, Borle RM, Mehendiratta D, Yadav AO. Microbiology and antibiotic sensitivity of head and neck space infections of odontogenic origin. Journal of maxillofacial and oral surgery. 2014;13(1):16-21.
31. Lohe VK, Degwekar SS, Bhowate RR, Kadu RP, Dangore SB. Evaluation of correlation of serum lipid profile in patients with oral cancer and precancer and its association with tobacco abuse. Journal of Oral Pathology & Medicine. 2010;39(2):141-8.
32. Korde S, Sridharan G, Gadball A, Poornima V. Nitric oxide and oral cancer: A review. Oral oncology. 2012;48(6):475-83.
33. Gondikvar SM, Gadball AR. Gorham-Stout syndrome: a rare clinical entity and review of literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2010;109(2):e41-8.
34. Gadball AR, Chaudhary M, Gawande M, Hande A, Sarode S, Tekade SA, Korde S, Zade P, Bhowate R, Borle R, Patil S. Oral squamous cell carcinoma in the background of oral submucous fibrosis is a distinct clinicopathological entity with better prognosis. Journal of Oral Pathology & Medicine. 2017;46(6):448-53.
35. Gadre PK, Ramanojam S, Patankar A, Gadre KS. Nonvascularized bone grafting for mandibular reconstruction: myth or reality?. Journal of Craniofacial Surgery. 2011;22(5):1727-35.

36. Sorte K, Sune P, Bhake A, Shivkumar VB, Gangane N, Basak A. Quantitative assessment of DNA damage directly in lens epithelial cells from senile cataract patients. Molecular vision. 2011;17:1.

37. Basak S, Rajurkar MN, Mallick SK. Detection of Blastocystis hominis: A controversial human pathogen. Parasitology research. 2014;113(1):261-5.

© 2021 Deshpande and Kuchewar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/80837