OLD AND NEW MORREY SPACES VIA HEAT KERNEL BOUNDS

XUAN THINH DUONG, JIE XIAO AND LIXIN YAN

Abstract. Given $p \in [1, \infty)$ and $\lambda \in (0, n)$, we study Morrey space $L^{p, \lambda}(\mathbb{R}^n)$ of all locally integrable complex-valued functions f on \mathbb{R}^n such that for every open Euclidean ball $B \subset \mathbb{R}^n$ with radius r_B there are numbers $C = C(f)$ (depending on f) and $c = c(f, B)$ (relying upon f and B) satisfying

$$r_B^{-\lambda} \int_B |f(x) - c|^p dx \leq C$$

and derive old and new, two essentially different cases arising from either choosing $c = f_B = |B|^{-1} \int_B f(y) dy$ or replacing c by $p_t(x, y) = \int_{tB} P_t(x, y) f(y) dy$ where t_B is scaled to r_B and $p_t(\cdot, \cdot)$ is the kernel of the infinitesimal generator L of an analytic semigroup $\{e^{-tL}\}_{t \geq 0}$ on $L^2(\mathbb{R}^n)$. Consequently, we are led to simultaneously characterize the old and new Morrey spaces, but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.

1. Introduction

As well-known, a priori estimates mixing L^p and Lip_λ are frequently used in the study of partial differential equations – naturally, the so-called Morrey spaces are brought into play (cf. [24]). A locally integrable complex-valued function f on \mathbb{R}^n is said to be in the Morrey space $L^{p, \lambda}(\mathbb{R}^n)$, $1 \leq p < \infty$ and $\lambda \in (0, n + p)$, if for every Euclidean open ball $B \subset \mathbb{R}^n$ with radius r_B there are numbers $C = C(f)$ (depending on f) and $c = c(f, B)$ (relying upon f and B) satisfying

$$r_B^{-\lambda} \int_B |f(x) - c|^p dx \leq C.$$

The space of $L^{p, \lambda}(\mathbb{R}^n)$-functions was introduced by Morrey [18]. Since then, the space has been studied extensively – see for example [4, 13, 14, 20, 21, 22, 28].

We would like to note that as in [20], for $1 \leq p < \infty$ and $\lambda = n$, the spaces $L^{p,n}(\mathbb{R}^n)$ are variants of the classical BMO (bounded mean oscillation) function space of John-Nirenberg. For $1 \leq p < \infty$ and $\lambda \in (n, n + p)$, the spaces $L^{p, \lambda}(\mathbb{R}^n)$ are variants of the homogeneous Lipschitz spaces Lip($\lambda-n)/p(\mathbb{R}^n)$.

XTD is supported by a grant from Australia Research Council; JX is supported by NSERC of Canada; LXY is partially supported by NSF of China (Grant No. 10371134).

2000 Mathematics Subject Classification. 42B20, 42B35, 47B38.

Key words and phrases. Morrey spaces, semigroup, holomorphic functional calculus, Littlewood-Paley functions.
Clearly, the remaining cases: $1 \leq p < \infty$ and $\lambda \in (0, n)$ are of independent interest, and hence motivate our investigation. The purpose of this paper is twofold. First, we explore some new characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ through the fact that $L^{p,\lambda}(\mathbb{R}^n)$ consists of all locally integrable complex-valued functions f on \mathbb{R}^n satisfying

$$\|f\|_{L^{p,\lambda}} = \sup_{B \subset \mathbb{R}^n} \left[r_B^{-\lambda} \int_B |f(x) - f_B|^p dx \right]^{1/p} < \infty,$$

where the supremum is taken over all Euclidean open balls $B = B(x_0, r_B)$ with center x_0 and radius r_B, and f_B stands for the mean value of f over B, i.e.,

$$f_B = |B|^{-1} \int_B f(x) dx.$$

The second aim is to use those new characterizations as motives of a continuous study of $\|L^{p,\lambda}\|$ and so to introduce new Morrey spaces $L^{p,\lambda}_L(\mathbb{R}^n)$ associated with operators. Roughly speaking, if L is the infinitesimal generator of an analytic semigroup $\{e^{-tL}\}_{t \geq 0}$ on $L^2(\mathbb{R}^n)$ with kernel $p_t(x, y)$ which decays fast enough, then we can view $P_t f = e^{-tL} f$ as an average version of f at the scale t and use the quantity

$$P_{tB} f(x) = \int_{\mathbb{R}^n} p_{tB}(x, y) f(y) dy$$

to replace the mean value f_B in the equivalent semi-norm (1.1) of the original Morrey space, where t_B is scaled to the radius of the ball B. Hence we say that a function f (with appropriate bound on its size $|f|$) belongs to the space $L^{p,\lambda}_L(\mathbb{R}^n)$ (where $1 \leq p < \infty$ and $\lambda \in (0, n)$), provided

$$\|f\|_{L^{p,\lambda}_L} = \sup_{B \subset \mathbb{R}^n} \left[r_B^{-\lambda} \int_B |f(x) - P_{tB} f(x)|^p dx \right]^{1/p} < \infty$$

where $t_B = r_B^m$ for a fixed constant $m > 0$ – see the forthcoming Sections 2.2 and 3.1.

We pursue a better understanding of (1.1) and (1.2) through the following aspects:

In Section 2, we collect most useful materials on the bounded holomorphic functional calculus.

In Section 3, we study some characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$ and give a criterion for $L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n)$. The later fact illustrates that $L^{p,\lambda}(\mathbb{R}^n)$ exists as the minimal Morrey space, and consequently induces a concept of the maximal Morrey space.

In Section 4, we establish an identity formula associated with the operator L. This formula is a key to handle the quadratic features of the old and new Morrey spaces.

As an immediate continuation of Section 4, Section 5 is devoted to Littlewood-Paley type characterizations of $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$ via the predual of $L^{p,\lambda}(\mathbb{R}^n)$ (cf. [28]) and a number of important estimates for functions in $L^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}_L(\mathbb{R}^n)$. Moreover, we show that for a suitable semigroup $\{e^{-tL}\}_{t > 0}$, $L^{p,\lambda}_L(\mathbb{R}^n)$ equals $L^{p,\lambda}(\mathbb{R}^n)$ with equivalent
seminal norms – in particular, if L is either \triangle or $\sqrt{\triangle}$ on \mathbb{R}^n, then $L^{p,\lambda}(\mathbb{R}^n)$ coincides with $L^p_{\sqrt{\triangle}}(\mathbb{R}^n)$ and $L^p_{\triangle}(\mathbb{R}^n)$.

Throughout, the letters c, c_1, c_2, \ldots will denote (possibly different) constants that are independent of the essential variables.

2. Preliminaries

2.1. Holomorphic functional calculi of operators. We start with a review of some definitions of holomorphic functional calculi introduced by McIntosh [17]. Let $0 \leq \omega < \nu < \pi$. We define the closed sector in the complex plane

$$S_\omega = \{ z \in \mathbb{C} : |\arg z| \leq \omega \} \cup \{0\}$$

and denote the interior of S_ω by S^0_ω.

We employ the following subspaces of the space $H(S^0_\nu)$ of all holomorphic functions on S^0_ν:

$$H_\infty(S^0_\nu) = \{ b \in H(S^0_\nu) : \|b\|_\infty < \infty \},$$

where

$$\|b\|_\infty = \sup\{|b(z)| : z \in S^0_\nu\}$$

and

$$\Psi(S^0_\nu) = \{ \psi \in H(S^0_\nu) : \exists s > 0, \ |\psi(z)| \leq c|z|^s(1 + |z|^{2s})^{-1} \}. $$

Given $0 \leq \omega < \pi$, a closed operator L in $L^2(\mathbb{R}^n)$ is said to be of type ω if $\sigma(L) \subset S_\omega$, and for each $\nu > \omega$, there exists a constant c_ν such that

$$\|(L - \lambda\mathcal{I})^{-1}\|_{2,2} = \|(L - \lambda\mathcal{I})^{-1}\|_{L^2 \rightarrow L^2} \leq c_\nu|\lambda|^{-1}, \quad \lambda \notin S_\nu.$$

If L is of type ω and $\psi \in \Psi(S^0_\nu)$, we define $\psi(L) \in \mathcal{L}(L^2, L^2)$ by

$$(2.1) \quad \psi(L) = \frac{1}{2\pi i} \int_\Gamma (L - \lambda\mathcal{I})^{-1}\psi(\lambda)d\lambda,$$

where Γ is the contour $\{ \xi = re^{\pm i\theta} : r \geq 0 \}$ parametrised clockwise around S_ω, and $\omega < \theta < \nu$. Clearly, this integral is absolutely convergent in $\mathcal{L}(L^2, L^2)$ (which is the class of all bounded linear operators on L^2), and it is straightforward to show, using Cauchy’s theorem, that the definition is independent of the choice of $\theta \in (\omega, \nu)$. If, in addition, L is one-one and has dense range and if $b \in H_\infty(S^0_\nu)$, then $b(L)$ can be defined by

$$b(L) = [\psi(L)]^{-1}(b\psi)(L) \quad \text{where} \quad \psi(z) = z(1 + z)^{-2}.$$

It can be shown that $b(L)$ is a well-defined linear operator in $L^2(\mathbb{R}^n)$.

We say that L has a bounded H_∞ calculus in $L^2(\mathbb{R}^n)$ provided there exists $c_{\nu,2} > 0$ such that $b(L) \in \mathcal{L}(L^2, L^2)$ and

$$\|b(L)\|_{L^2} = \|b(L)\|_{L^2: L^2} \leq c_{\nu,2} \|b\|_{H_\infty} \quad \forall b \in H_\infty(S^0_\nu).$$

For the conditions and properties of operators which have holomorphic functional calculi, see [17] and [2] which also contain a proof of the following Convergence Lemma.

Lemma 2.1. Let X be a complex Banach space. Given $0 \leq \omega < \nu \leq \pi$, let L be an operator of type ω which is one-to-one with dense domain and range. Suppose $\{f_\alpha\}$ is a uniformly bounded net in $H_\infty(S^0_\nu)$, which converges to $f \in H_\infty(S^0_\nu)$ uniformly on compact subsets of S^0_ν, such that $\{f_\alpha(L)\}$ is a uniformly bounded net in the space $\mathcal{L}(X,X)$ of continuous linear operators on X. Then $f(L) \in \mathcal{L}(X,X)$, $f_\alpha(L)u \to f(L)u$ for all $u \in X$ and

$$\|f(L)\| = \|f(L)\|_{X \to X} \leq \sup_\alpha \|f_\alpha(L)\| = \sup_\alpha \|f_\alpha(L)\|_{X \to X}.$$

2.2. **Two more assumptions.** Let L be a linear operator of type ω on $L^2(\mathbb{R}^n)$ with $\omega < \pi/2$, hence L generates a holomorphic semigroup e^{-zL}, $0 \leq |\text{Arg}(z)| < \pi/2 - \omega$. Assume the following two conditions.

Assumption (a): The holomorphic semigroup

$$\{e^{-zL}\}_{0 \leq |\text{Arg}(z)| < \pi/2 - \omega}$$

is represented by kernel $p_z(x,y)$ which satisfies an upper bound

$$|p_z(x,y)| \leq c_\theta h_{\|z\|}(x,y) \quad \forall x,y \in \mathbb{R}^n$$

and

$$|\text{Arg}(z)| < \pi/2 - \theta \quad \text{for} \quad \theta > \omega,$$

where $h_t(\cdot, \cdot)$ is determined by

$$h_t(x,y) = t^{-n/m} g\left(\frac{|x-y|}{t^{1/m}}\right),$$

in which m is a positive constant and g is a positive, bounded, decreasing function satisfying

$$\lim_{r \to \infty} r^{n+\epsilon} g(r) = 0 \quad \text{for some} \quad \epsilon > 0.$$

Assumption (b): The operator L has a bounded H_∞-calculus in $L^2(\mathbb{R}^n)$.

Now, we give some consequences of the assumptions (a) and (b) which will be used later.
First, if \(\{ e^{-tL} \}_{t>0} \) is a bounded analytic semigroup on \(L^2(\mathbb{R}^n) \) whose kernel \(p_t(x,y) \) satisfies the estimates (2.2) and (2.3), then for any \(k \in \mathbb{N} \), the time derivatives of \(p_t \) satisfy
\[
\left| t^k \frac{\partial^k p_t(x,y)}{\partial t^k} \right| \leq c \frac{\| x - y \|}{t^{n/m}} g\left(\frac{|x - y|}{t^{1/m}} \right) \quad \text{for all } t > 0 \text{ and almost all } x, y \in \mathbb{R}^n.
\]
(2.4)
For each \(k \in \mathbb{N} \), the function \(g \) might depend on \(k \) but it always satisfies (2.3). See Theorem 6.17 of [19].

Secondly, \(L \) has a bounded \(H_\infty \)-calculus in \(L^2(\mathbb{R}^n) \) if and only if for any non-zero function \(\psi \in \Psi(S_\nu^0) \), \(L \) satisfies the square function estimate and its reverse
\[
c_1 \| f \|_{L^2} \leq \left(\int_0^\infty \| \psi_t(L)f \|_{L^2}^2 \frac{dt}{t} \right)^{1/2} \leq c_2 \| f \|_{L^2}
\]
for some \(0 < c_1 \leq c_2 < \infty \), where \(\psi_t(\xi) = \psi(t\xi) \). Note that different choices of \(\nu > \omega \) and \(\psi \in \Psi(S_\nu^0) \) lead to equivalent quadratic norms of \(f \).

As noted in [17], positive self-adjoint operators satisfy the quadratic estimate (2.5). So do normal operators with spectra in a sector, and maximal accretive operators. For definitions of these classes of operators, we refer the reader to [27].

The following result, existing as a special case of [6, Theorem 6], tells us the \(L^2 \)-boundedness of a bounded \(H_\infty \)-calculus can be extended to \(L^p \)-boundedness, \(p > 1 \).

Lemma 2.2. Under the assumptions (a) and (b), the operator \(L \) has a bounded \(H_\infty \)-calculus in \(L^p(\mathbb{R}^n) \), \(p \in (1, \infty) \), that is, \(b(L) \in \mathcal{L}(L^p, L^p) \) with
\[
\| b(L) \|_{p,p} = \| b(L) \|_{L^p \rightarrow L^p} \leq c_{\nu,p} \| b \|_\infty \quad \forall b \in H_\infty(S_\nu^0).
\]
Moreover, if \(p = 1 \) then \(b(L) \) is of weak type \((1, 1)\).

Thirdly, the Littlewood-Paley function \(G_L(f) \) associated with an operator \(L \) is defined by
\[
G_L(f)(x) = \left(\int_0^\infty |\psi_t(L)f|^2 \frac{dt}{t} \right)^{1/2},
\]
(2.6)
where again \(\psi \in \Psi(S_\nu^0) \), and \(\psi_t(\xi) = \psi(t\xi) \). It follows from Theorem 6 of [3] that the function \(G_L(f) \) is bounded on \(L^p \) for \(1 < p < \infty \). More specifically, there exist constants \(c_3, c_4 \) such that \(0 < c_3 \leq c_4 < \infty \) and
\[
c_3 \| f \|_{L^p} \leq \| G_L(f) \|_{L^p} \leq c_4 \| f \|_{L^p}
\]
(2.7)
for all \(f \in L^p, 1 < p < \infty \).

By duality, the operator \(G_{L^*}(f) \) also satisfies the estimate (2.7), where \(L^* \) is the adjoint operator of \(L \).
2.3. **Acting class of semigroup** $\{e^{-tL}\}_{t>0}$. We now define the class of functions that the operators e^{-tL} act upon. Fix $1 \leq p < \infty$. For any $\beta > 0$, a complex-valued function $f \in L^p_{\text{loc}}(\mathbb{R}^n)$ is said to be a function of type $(p; \beta)$ if f satisfies

$$\left(\int_{\mathbb{R}^n} \frac{|f(x)|^p}{(1 + |x|)^{n+\beta}} \, dx \right)^{1/p} \leq c < \infty. \tag{2.8}$$

We denote by $\mathcal{M}_{(p;\beta)}$ the collection of all functions of type $(p; \beta)$. If $f \in \mathcal{M}_{(p;\beta)}$, the norm of $f \in \mathcal{M}_{(p;\beta)}$ is defined by

$$\|f\|_{\mathcal{M}_{(p;\beta)}} = \inf\{c \geq 0 : \text{(2.8) holds}\}.$$

It is not hard to see that $\mathcal{M}_{(p;\beta)}$ is a complex Banach space under $\|f\|_{\mathcal{M}_{(p;\beta)}} < \infty$. For any given operator L, let

$$\Theta(L) = \sup \{\epsilon > 0 : \text{(2.3) holds}\} \tag{2.9}$$

and write

$$\mathcal{M}_p = \left\{ \begin{array}{ll}
\mathcal{M}_{(p;\Theta(L))} & \text{if } \Theta(L) < \infty; \\
\bigcup_{\beta: 0 < \beta < \infty} \mathcal{M}_{(p;\beta)} & \text{if } \Theta(L) = \infty.
\end{array} \right.$$

Note that if $L = \triangle$ or $L = \sqrt{\triangle}$ on \mathbb{R}^n, then $\Theta(\triangle) = \infty$ or $\Theta(\sqrt{\triangle}) = 1$.

For any $(x,t) \in \mathbb{R}^n \times (0, +\infty) = \mathbb{R}^{n+1}_+$ and $f \in \mathcal{M}_p$, define

$$P_t f(x) = e^{-tL} f(x) = \int_{\mathbb{R}^n} p_t(x,y) f(y) \, dy \tag{2.10}$$

and

$$Q_t f(x) = tL e^{-tL} f(x) = \int_{\mathbb{R}^n} -t \left(\frac{d}{dt} p_t(x,y) \right) f(y) \, dy \tag{2.11}.$$

It follows from the estimate (2.4) that the operators $P_t f$ and $Q_t f$ are well defined. Moreover, the operator Q_t has the following two properties:

(i) For any $t_1, t_2 > 0$ and almost all $x \in \mathbb{R}^n$,

$$Q_{t_1} Q_{t_2} f(x) = t_1 t_2 \left(\frac{d^2 P_t}{dt^2} \bigg|_{t=t_1+t_2} f \right)(x);$$

(ii) The kernel $q_{t^m}(x,y)$ of Q_{t^m} satisfies

$$|q_{t^m}(x,y)| \leq ct^{-n} g \left(\frac{|x - y|}{t} \right) \tag{2.12}$$

where the function g satisfies the condition (2.3).
3. Basic properties

3.1. A comparison of definitions. Assume that L is an operator which generates a semigroup e^{-tL} with the heat kernel bounds (2.2) and (2.3). In what follows, $B(x, t)$ denotes the ball centered at x and of the radius t. Given $B = B(x, t)$ and $\lambda > 0$, we will write λB for the λ-dilate ball, which is the ball with the same center x and with radius λt.

Definition 3.1. Let $1 \leq p < \infty$ and $\lambda \in (0, n)$. We say that

(i) $f \in L^p_{loc}(\mathbb{R}^n)$ belongs to $L^p,\lambda(\mathbb{R}^n)$ provided (1.1) holds;
(ii) $f \in M_p$ associated with an operator L, is in $L^p,\lambda L(\mathbb{R}^n)$ provided (1.2) holds.

Remark 3.2.
(i) Note first that $(L^p,\lambda(\mathbb{R}^n), \| \cdot \|_{L^p,\lambda})$ and $(L^p,\lambda L(\mathbb{R}^n), \| \cdot \|_{L^p,\lambda L})$ are vector spaces with the seminorms vanishing on constants and

$$K_{L,p} = \left\{ f \in M_p : P_t f(x) = f(x) \text{ for almost all } x \in \mathbb{R}^n \text{ for all } t > 0 \right\},$$

respectively. Of course, the spaces $L^p,\lambda(\mathbb{R}^n)$ and $L^p,\lambda L(\mathbb{R}^n)$ are understood to be modulo constants and $K_{L,p}$, respectively. See Section 6 of [8] for a discussion of the dimensions of $K_{L,2}$ when L is a second order elliptic operator of divergence form or a Schrödinger operator.

(ii) We now give a list of examples of $L^p,\lambda(\mathbb{R}^n)$ in different settings.

(a) Define P_t by putting $p_t(x, y)$ to be the heat kernel or the Poisson kernel:

$$p_t(x, y) = \frac{1}{(4\pi t)^{n/2}} e^{-|x-y|^2/4t} \quad \text{or} \quad p_t(x, y) = \frac{c_n t}{(t^2 + |x-y|^2)^{(n+1)/2}} \quad \text{where} \quad c_n = \frac{\Gamma(n+1)}{\pi^{n/2}}.$$

Then we will show that the corresponding space $L^p,\lambda L(\mathbb{R}^n)$ (modulo $K_{L,p}$) coincides with the classical $L^p,\lambda(\mathbb{R}^n)$ (modulo constants).

(b) Consider the Schrödinger operator with a non-negative potential $V(x)$:

$$L = \triangle + V(x).$$

To study singular integral operators associated to L such as functional calculi $f(L)$ or Riesz transform $\nabla L^{-1/2}$, it is useful to choose P_t with kernel $p_t(x, y)$ to be the heat kernel (or Poisson kernel) of L. By domination, its kernel $p_t(x, y)$ has a Gaussian upper bound (or a Poisson bound).

The following proposition shows that $L^p,\lambda(\mathbb{R}^n)$ is a subspace of $L^p,\lambda L(\mathbb{R}^n)$ in many cases.
Proposition 3.3. Let \(1 \leq p < \infty \) and \(\lambda \in (0, n) \). Given an operator \(L \) which generates a semigroup \(e^{-tL} \) with the heat kernel bounds (2.2) and (2.3). A necessary and sufficient condition for the classical space \(L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n) \) with
\[
(3.1) \quad \|f\|_{L^{p,\lambda}_L} \leq c\|f\|_{L^{p,\lambda}}
\]
is that for every \(t > 0, \) \(e^{-tL}(1) = 1 \) almost everywhere, that is, \(\int_{\mathbb{R}^n} p_t(x,y)dy = 1 \) for almost all \(x \in \mathbb{R}^n \).

Proof. Clearly, the condition \(e^{-tL}(1) = 1, \text{ a.e.} \) is necessary for \(L^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}_L(\mathbb{R}^n) \).
Indeed, let us take \(f = 1 \). Then, (3.1) implies \(\|1\|_{L^{p,\lambda}_L} = 0 \) and thus for every \(t > 0, \) \(e^{-tL}(1) = 1 \) almost everywhere.

For the sufficiency, we borrow the idea of [16, Proposition 3.1]. To be more specific, suppose \(f \in L^{p,\lambda}(\mathbb{R}^n) \). Then for any Euclidean open ball \(B \) with radius \(r_B \), we compute
\[
\|f - P_t f\|_{L^p(B)} \leq \|f - f_B\|_{L^p(B)} + \|f_B - P_t f\|_{L^p(B)}
\]
\[
\leq \|f\|_{L^{p,\lambda}_B} \left(\int_{B} \left(\int_{\mathbb{R}^n} |f_B - f(y)|^{1/p} \right)^p \right)^{1/p} + \|f|_{L^{p,\lambda}_B} \left(\int_{B} (I(B) + J(B))^p \right)^{1/p},
\]
where
\(I(B) = \int_{2B} |f_B - f(y)| P_t f_B(x,y)dy \)
and
\(J(B) = \sum_{k=1}^{\infty} \int_{2^{k+1}B \setminus 2^kB} |f_B - f(y)| P_t f_B(x,y)dy. \)

Next we make further estimates on \(I(B) \) and \(J(B) \). Thanks to (2.2) and (2.3), we have
\[
\|I(B)\|_{L^p(B)} \leq cr_B^{-n} g(0)\|f_B - f\|_{L^1(B)} \leq cr_B^{\lambda/p} \|f\|_{L^{p,\lambda}}.
\]
Again, using (2.2) and (2.3), we derive that for \(x \in B \) and \(y \in 2^{k+1}B \setminus 2^kB, \)
\[
P_t f_B(x,y) \leq cr_B^{-n} g(2^k) \leq cr_B^{-n} 2^{-k(n+\epsilon)}, \quad k = 1, 2, \ldots,
\]
where \(\epsilon > 0 \) is a constant. Consequently,
\[
\|J(B)\|_{L^p(B)} \leq cr_B^{-n} \left(\int_{B} \left(\sum_{k=1}^{\infty} g(2^k) \int_{2^{k+1}B \setminus 2^kB} |f_B - f(y)|dy \right)^p \right)^{1/p}
\]
\[
\leq cr_B^{-n} \left(\sum_{k=1}^{\infty} g(2^k) \left(\int_{2^kB \setminus 2^kB} |f_{2^{k+1}B} - f(y)|dy + (2^k r_B)^n |f_{2^{k+1}B} - f_B| \right) \right)
\leq cr_B^{\lambda/p} \|f\|_{L^{p,\lambda}} \left(\sum_{k=1}^{\infty} 2^{-k(\epsilon + \frac{\lambda}{p})} + \sum_{k=1}^{\infty} k2^{-k} \right).
Putting these inequalities together, we find $f \in \mathcal{L}^{p,\lambda}_L(\mathbb{R}^n)$. \hfill \Box

3.2. **Fundamental characterizations.** In the argument for Proposition 3.3, we have used the following crucial fact that for any $f \in L^{p,\lambda}(\mathbb{R}^n)$ and a constant $K > 1$,

$$|f_B - f_{KB}| \leq cr_B^p \|f\|_{L^{p,\lambda}}.$$

Now, this property can be used to give a characterization of $L^{p,\lambda}(\mathbb{R}^n)$ spaces in terms of the Poisson integral. To this end, we denote the Laplacian by $\Delta = -\sum_{i=1}^n \partial_{x_i}^2$ and $e^{-t\sqrt{\Delta}}$ the Poisson semigroup on \mathbb{R}^n. We observe that if

$$f \in \mathcal{M}_{\sqrt{\Delta},p} = \left\{ f \in L^p_{\text{loc}}(\mathbb{R}^n) : |f(x)|^p(1 + |x|^{n+1})^{-1} \in L^1(\mathbb{R}^n) \right\},$$

then we can define the operator $e^{-t\sqrt{\Delta}}$ by the Poisson integral as follows:

$$e^{-t\sqrt{\Delta}}f(x) = \int_{\mathbb{R}^n} p_t(x-y)f(y)dy, \quad t > 0,$$

where

$$p_t(x-y) = \frac{c_n t}{(t^2 + |x-y|^2)^{(n+1)/2}}.$$

Proposition 3.4. Let $1 \leq p < \infty$, $\lambda \in (0, n)$ and $f \in \mathcal{M}_{\sqrt{\Delta},p}$. Then $f \in L^{p,\lambda}(\mathbb{R}^n)$ if and only if

$$\|f\|_{L^{p,\lambda}(\mathbb{R}^n)} = \left(\sup_{(x,t) \in \mathbb{R}^{n+1}_+} t^{n-\lambda} e^{-t\sqrt{\Delta}} \left(|f - e^{-t\sqrt{\Delta}} f(x)|^p \right)(x) \right)^{1/p} < \infty.$$

Proof. On the one hand, assume (3.2). Note that $|y - x| < t$ implies

$$\frac{c_n t}{(t^2 + |y - x|^2)^{(n+1)/2}} \geq ct^{-n}.$$

For a fixed ball $B = B(x, r_B)$ centered at x, we let $t_B = r_B$. We then have

$$r_B^{-\lambda} \|f - f_B\|_{L^p(B)}^p \leq cr_B^{-\lambda} \|f - e^{-t_B\sqrt{\Delta}} f(x)\|_{L^p(B)}^p \leq cr_B^{-\lambda} \int_B |f(y) - e^{-t_B\sqrt{\Delta}} f(x)|^p \frac{c_n t_B}{(t_B^2 + |y - x|^2)^{(n+1)/2}} dy \leq c \|f\|_{L^{p,\lambda}},$$

whence producing $f \in L^{p,\lambda}(\mathbb{R}^n)$.

On the other hand, suppose $f \in L^{p,\lambda}(\mathbb{R}^n)$. In a similar manner to proving the sufficiency part of Proposition 3.3, we obtain that if $(x,t) \in \mathbb{R}^{n+1}_+$ then

$$e^{-t\sqrt{\Delta}} \left(|f - e^{-t\sqrt{\Delta}} f(x)|^p \right)(x) \leq ct^{-n} \|f\|_{L^{p,\lambda}}^p + c \sum_{j=1}^{\infty} \int_{2^{k+1}B \setminus 2^kB} \frac{|f(y) - f_B|^p}{(t^2 + |y - x|^2)^{n+1}} dy \leq ct^{-n} \|f\|_{L^{p,\lambda}}^p,$$

and hence (3.2) holds. \hfill \Box
Remark 3.5. Since a simple computation gives
\[e^{-t\sqrt{\Delta}}(|f - e^{-t\sqrt{\Delta}} f(x)|^2)(x) \]
\[= \int_{\mathbb{R}^n} (f(y) - e^{-t\sqrt{\Delta}} f(x))(f(y) - e^{-t\sqrt{\Delta}} f(x)) p_t(x - y) dy \]
\[= \int_{\mathbb{R}^n} |f(y)|^2 p_t(x - y) dy - e^{-t\sqrt{\Delta}} f(x) \left(\int_{\mathbb{R}^n} f(y) p_t(x - y) dy \right) \]
\[- e^{-t\sqrt{\Delta}} f(x) \left(\int_{\mathbb{R}^n} f(y) p_t(x - y) dy \right) + |e^{-t\sqrt{\Delta}} f(x)|^2 \]
we have that if \(f \in M_{\sqrt{\Delta},2} \) then \(f \in L^{2,\lambda}(\mathbb{R}^n) \) when and only when
\[\sup_{(x,t) \in \mathbb{R}^{n+1}_+} t^{n-\lambda} \left(e^{-t\sqrt{\Delta}} |f|^2(x) - |e^{-t\sqrt{\Delta}} f(x)|^2 \right) < \infty \]
which is equivalent to (see also [15] for the BMO-setting, i.e., \(\lambda = n \))
\[\sup_{(x,t) \in \mathbb{R}^{n+1}_+} t^{n-\lambda} \int_{\mathbb{R}^{n+1}_+} G_{\mathbb{R}^{n+1}}((x,t), (y,s)) |\nabla_{y,s} e^{-s\sqrt{\Delta}} f(y)|^2 dy ds < \infty, \]
where \(G_{\mathbb{R}^{n+1}}((x,t), (y,s)) \) is the Green function of \(\mathbb{R}^{n+1}_+ \) and \(\nabla_{y,s} \) is the gradient operator in the space-time variable \((y,s)\).

To find out an \(L^{p,\lambda}_L(\mathbb{R}^n) \) analog of Proposition 3.3, we take Proposition 2.6 of [7] into account, and establish the following property of the class of operators \(P_t \).

Lemma 3.6. Let \(1 \leq p < \infty \) and \(\lambda \in (0,n) \). Suppose \(f \in L^{p,\lambda}_L(\mathbb{R}^n) \). Then:

(i) For any \(t > 0 \) and \(K > 1 \), there exists a constant \(c > 0 \) independent of \(t \) and \(K \) such that
\[|P_tf(x) - P_{Kt}f(x)| \leq c t^{\frac{\lambda-n}{pm}} \|f\|_{L^{p,\lambda}_L} \]
for almost all \(x \in \mathbb{R}^n \).

(ii) For any \(\delta > 0 \), there exists \(c(\delta) > 0 \) such that
\[\int_{\mathbb{R}^n} \frac{t^{\delta/m}}{(t^{1/m} + |x-y|^{n+\delta})} |(I - P_t)f(y)| dy \leq c(\delta) t^{\frac{\lambda-n}{pm}} \|f\|_{L^{p,\lambda}_L} \]
for any \(x \in \mathbb{R}^n \).

Proof. (i) For any \(t > 0 \), we choose \(s \) such that \(t/4 \leq s \leq t \). Assume that \(f \in L^{p,\lambda}_L(\mathbb{R}^n) \), where \(1 \leq p < \infty \) and \(\lambda \in (0,n) \), we estimate the term \(|P_tf(x) - P_{t+s}f(x)| \). Using the commutative property of the semigroup \(\{P_t\}_{t>0} \), we can write
\[P_tf(x) - P_{t+s}f(x) = P_t(f - P_s f)(x). \]
Since \(f \in L^p_{\lambda} (\mathbb{R}^n) \), one has

\[
|P_t f(x) - P_{t+s} f(x)| \leq \int_{\mathbb{R}^n} |p_t(x, y)| |f(y) - P_s f(y)| dy
\]

\[
\leq \frac{c}{|B(x, t^{1/m})|} \int_{\mathbb{R}^n} \left(1 + \frac{|x - y|}{t^{1/m}} \right)^{-(n+\epsilon)} |f(y) - P_s f(y)| dy
\]

\[
\leq c \left(\frac{1}{|B(x, s^{1/m})|} \int_{B(x, s^{1/m})} |f(y) - P_s f(y)|^p dy \right)^{1/p}
\]

\[
+ \frac{c}{|B(x, s^{1/m})|} \int_{B(x, s^{1/m})^c} \left(1 + \frac{|x - y|}{s^{1/m}} \right)^{-(n+\epsilon)} |f(y) - P_s f(y)| dy
\]

\[
\leq c s^{\frac{\lambda-n}{pm}} \|f\|_{L^p_\lambda} + I.
\]

We then decompose \(\mathbb{R}^n \) into a geometrically increasing sequence of concentric balls, and obtain

\[
I = c \sum_{k=0}^{\infty} \frac{1}{|B(x, s^{1/m})|} \int_{B(x, 2^{k+1}s^{1/m}) \setminus B(x, 2^{k}s^{1/m})} \left(1 + \frac{|x - y|}{s^{1/m}} \right)^{-(n+\epsilon)} |f(y) - P_s f(y)| dy
\]

\[
\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \frac{1}{|B(x, s^{1/m})|} \int_{B(x, 2^{k+1}s^{1/m})} |f(y) - P_s f(y)| dy,
\]

since

\[
(1 + s^{-1/m}|x - y|)^{-n-\epsilon} \leq c2^{-k(n+\epsilon)} \quad \forall y \in B(x, 2^{k+1}s^{1/m}) \setminus B(x, 2^{k}s^{1/m}).
\]

For a fixed positive integer \(k \), we consider the ball \(B(x, 2^k s^{1/m}) \). This ball is contained in the cube \(Q[x, 2^k s^{1/m}] \) centered at \(x \) and of the side length \(2^k s^{1/m} \). We then divide this cube \(Q[x, 2^k s^{1/m}] \) into \([2k+1 ([\sqrt{n}] + 1)]^n \) small cubes \(\{Q_{x_{ki}}\}_{i=1}^{N_k} \) centered at \(x_{ki} \) and of equal side length \(([\sqrt{n}] + 1)^{-1} s^{1/m} \), where \(N_k = [2^{k+1}([\sqrt{n}] + 1)]^n \). For any \(i = 1, 2, \ldots, N_k \), each of these small cubes \(Q_{x_{ki}} \) is then contained in the corresponding ball \(B_{k_i} \) with the same center \(x_{k_i} \) and radius \(r = s^{1/m} \). Consequently, for any ball \(B(x, 2^k t), k = 1, 2, \ldots \), there exists a corresponding collection of balls \(B_{k_1}, B_{k_2}, \ldots, B_{k_{N_k}} \) such that

(i) each ball \(B_{k_i} \) is of the radius \(t \);

(ii) \(B(x, 2^k s^{1/m}) \subset \bigcup_{i=1}^{N_k} B_{k_i} \);

(iii) there exists a constant \(c > 0 \) independent of \(k \) such that \(N_k \leq c2^{kn} \);

(iv) each point of \(B(x, 2^k s^{1/m}) \) is contained in at most a finite number \(M \) of the balls \(B_{k_i} \), where \(M \) is independent of \(k \).
Applying the properties (i), (ii), (iii) and (iv) above, we obtain

\[
I \leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \frac{1}{|B(x,s^{1/m})|} \int_{\bigcup_{i=1}^{N_{k+1}} B_{k_i}} |f(y) - P_t f(y)| dy
\]

\[
\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} \sum_{i=1}^{N_{k+1}} \frac{1}{|B_{k_i}|} \int_{B_{k_i}} |f(y) - P_s f(y)| dy
\]

\[
\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} N_{k+1} \sup_{i:1\leq i \leq N_{k+1}} \left(\frac{1}{|B_{k_i}|} \int_{B_{k_i}} |f(y) - P_s f(y)|^p dy \right)^{1/p}
\]

\[
\leq c \sum_{k=0}^{\infty} 2^{-k(n+\epsilon)} 2^{kn} s^{\frac{n-\lambda}{m}} \|f\|_{L^p_{\lambda}}
\]

\[
\leq c s^{\frac{n-\lambda}{m}} \|f\|_{L^p_{\lambda}},
\]

which gives (3.3) for the case \(t/4 \leq s \leq t \).

For the case \(0 < s < t/4 \), we write

\[
P_t f(x) - P_{t+s} f(x) = (P_t f(x) - P_{2t} f(x)) - (P_{t+s} (f - P_{t-s} f)(x)).
\]

Noting that \((t + s)/4 \leq (t - s) < t + s\), we obtain (3.3) by using the same argument as above. In general, for any \(K > 1 \), let \(l \) be the integer satisfying \(2^l \leq K < 2^{l+1} \), hence \(l \leq 2\log K \). This, together with the fact that \(\lambda \in (0, n) \), imply that there exists a constant \(c > 0 \) independent of \(t \) and \(K \) such that

\[
|P_t f(x) - P_{Kt} f(x)| \leq \sum_{k=0}^{l-1} |P_{2^k t} f(x) - P_{2^{k+1} t} f(x)| + |P_{2^l t} f(x) - P_{Kt} f(x)|
\]

\[
\leq c \sum_{k=0}^{l-1} (2^k t)^{\frac{\lambda-\epsilon}{m}} \|f\|_{L^p_{\lambda}} + c(Kt)^{\frac{\lambda-\epsilon}{m}} \|f\|_{L^p_{\lambda}}
\]

\[
\leq ct^{\frac{\lambda-\epsilon}{m}} \|f\|_{L^p_{\lambda}}
\]

for almost all \(x \in \mathbb{R}^n \).

(ii) Choosing a ball \(B \) centered at \(x \) and of the radius \(r_B = t^{1/m} \), and using (3.3), we have

\[
\left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - P_t f(y)|^p dy \right)^{1/p}
\]

\[
\leq \left(\frac{1}{|2^k B|} \int_{2^k B} |f(y) - P_{t_{2^k B}} f(y)|^p dy \right)^{1/p} + \sup_{y \in 2^k B} |P_{t_{2^k B}} f(y) - P_t f(y)|
\]

\[
(3.5) \leq ct^{\frac{\lambda-\epsilon}{m}} \|f\|_{L^p_{\lambda}}
\]
for all \(k \). Putting \(2^{-1}B = \emptyset \), we read off

\[
\int_{\mathbb{R}^n} \frac{t^{\delta/m}}{(t^{1/m} + |x-y|)^{n+\delta}} |(I-P_t)f(y)|dy
\leq \sum_{k=0}^{\infty} \int_{2^k B \setminus 2^{k-1} B} \frac{t^{\delta/m}}{(t^{1/m} + |x-y|)^{n+\delta}} |(I-P_t)f(y)|dy
\leq c \sum_{k=0}^{\infty} 2^{kn} 2^{-k(n+\delta)} \left\| f \right\|_{L^p_{\delta}} \left\| f \right\|_{L_{\lambda}^\delta}
\leq c \sum_{k=0}^{\infty} 2^{-k\delta} t^{\frac{\lambda-n}{pm}} \left\| f \right\|_{L_{\lambda}^p}
\leq ct^{\frac{\lambda-n}{pm}} \left\| f \right\|_{L_{\lambda}^p}.
\]

The above analysis suggests us to introduce the maximal Morrey space as follows.

Definition 3.7. Let \(1 \leq p < \infty \) and \(\lambda \in (0, n) \). We say that \(f \in M_p \) is in \(L_{p, \lambda}^{\max}(\mathbb{R}^n) \) associated with an operator \(L \), if there exists some constant \(c \) (depending on \(f \)) such that

\[
P_t(|f| - P_t f^p)(x) \leq ct^{\frac{\lambda-n}{pm}} \text{ for almost all } x \in \mathbb{R}^n \text{ and } t > 0.
\]

The smallest bound \(c \) for which (3.6) holds then taken to be the norm of \(f \) in this space, and is denoted by \(\| f \|_{L_{p, \lambda}^{\max}} \).

Using Lemma 3.6, we can derive a characterization in terms of the maximal Morrey space under an extra hypothesis.

Proposition 3.8. Let \(1 \leq p < \infty \) and \(\lambda \in (0, n) \). Given an operator \(L \) which generates a semigroup \(e^{-tL} \) with the heat kernel bounds (2.2) and (2.3). Then \(L_{p, \lambda}(\mathbb{R}^n) \subseteq L_{p, \lambda}^{\max}(\mathbb{R}^n) \). Furthermore, if the kernels \(p_t(x, y) \) of operators \(P_t \) are nonnegative functions when \(t > 0 \), and satisfy the following lower bounds

\[
p_t(x, y) \geq \frac{c}{t^{n/m}}
\]

for some positive constant \(c \) independent of \(t, x \) and \(y \), then, \(L_{p, \lambda}^{\max}(\mathbb{R}^n) = L_{L, \max}^{p, \lambda}(\mathbb{R}^n) \).

Proof. Let us first prove \(L_{L, \max}^{p, \lambda}(\mathbb{R}^n) \subseteq L_{p, \lambda}^{\max}(\mathbb{R}^n) \). For any fixed \(t > 0 \) and \(x \in \mathbb{R}^n \), we choose a ball \(B \) centered at \(x \) and of the radius \(r_B = t^{1/m} \). Let \(f \in L_{L, \max}^{p, \lambda}(\mathbb{R}^n) \). To estimate
we use the decay of function \(g \) in (2.3) to get
\[
|P_t(|f - \overline{P_tf}|^p)(x)| \leq \int_{\mathbb{R}^n} |p_t(x, y)||f(y) - P_t f(y)|^p dy
\]
\[
\leq c \sum_{k=0}^{\infty} \frac{1}{|B|} \int_{2^k B \setminus 2^{k-1} B} g \left(\frac{|x - y|}{t^{1/m}} \right) |f(y) - P_t f(y)|^p dy
\]
\[
\leq c \sum_{k=0}^{\infty} 2^k n \int_{2^k B} |f(y) - P_t f(y)|^p dy
\]
\[
\leq c \sum_{k=0}^{\infty} 2^k n \left(2^{(k-1)} \right) t^{\frac{\lambda - m}{m}} \|f\|^p_{L^p_{L,\lambda}}
\]
\[
\leq ct \frac{\lambda - m}{m} \|f\|^p_{L^p_{L,\lambda}}
\]
This proves \(\|f\|^p_{L^p_{L,\lambda}} \leq c \|f\|^p_{L^p_{L,\lambda}} \).

We now prove \(L^p_{L,\max}(\mathbb{R}^n) \subseteq L^p_{L,\lambda}(\mathbb{R}^n) \) under (3.7). For a fixed ball \(B = B(x, r_B) \) centered at \(x \), we let \(t_B = r_B^m \). For any \(f \in L^p_{L,\max}(\mathbb{R}^n) \), it follows from (3.7) that one has
\[
\frac{1}{|B|} \int_B |f(y) - P_{t_B} f(y)|^p dy \leq c \int_{B(x, r_B^m)} p_{t_B}(x, y)|f(y) - P_{t_B} f(y)|^p dy
\]
\[
\leq c \int_{\mathbb{R}^n} p_{t_B}(x, y)|f(y) - P_{t_B} f(y)|^p dy
\]
\[
\leq ct \frac{\lambda - m}{m} \|f\|^p_{L^p_{L,\max}}
\]
which proves \(\|f\|^p_{L^p_{L,\max}} \leq c \|f\|^p_{L^p_{L,\max}} \). Hence, the proof of Proposition 3.8 is complete. □

4. An identity for the dual pairing

4.1. A dual inequality and a reproducing formula. From now on, we need the following notation. Suppose \(B \) is an open ball centered at \(x_B \) with radius \(r_B \) and \(f \in \mathcal{M}_p \). Given an \(L^q \) function \(g \) supported on a ball \(B \), where \(\frac{1}{q} + \frac{1}{p} = 1 \). For any \((x, t) \in \mathbb{R}^{n+1}_+ \), let
\[
F(x, t) = Q_{t^m}(I - P_{t^m})f(x) \quad \text{and} \quad G(x, t) = Q_{t^*}^m(I - P_{t^*}^m)g(x),
\]
where \(P^* \) and \(Q^* \) are the adjoint operators of \(P \) and \(Q \), respectively.

Lemma 4.1. Assume that \(L \) satisfies the assumptions (a) and (b) of Section 2.2. Suppose \(f, g, F, G, p, q \) are as in (4.4).

(i) If \(f \) also satisfies
\[
\|f\|^p_{L^p_{L,\lambda}} = \sup_{B \subset \mathbb{R}^n} r_B^{\frac{\lambda}{m}} \left\{ \int_0^{r_B} |Q_{t^m}(I - P_{t^m})f(x)|^2 \frac{dt}{t} \right\}^{1/2} \|f\|^p_{L^p(B)} < \infty,
\]
where the supremum is taken over all open ball \(B \subset \mathbb{R}^n \) with radius \(r_B \), then there exists a constant \(c > 0 \) independent of any open ball \(B \) with radius \(r_B \) such that

\[
\int_{\mathbb{R}^{n+1}_+} |F(x,t)G(x,t)| \frac{dxdt}{t} \leq cr_B^{\lambda/p} \| f \|_{L_p^{\lambda}} \| g \|_{L_q}.
\]

(ii) If

\[
h \in L^q(\mathbb{R}^n), \quad b_m = \frac{36m}{5} \quad \text{and} \quad 1 = b_m \int_0^{\infty} t^{2m} e^{-2m} (1 - e^{-t}) \frac{dt}{t},
\]

then

\[
h(x) = b_m \int_0^{\infty} (Q_{tm}^2(I - P_{tm}^*) h(x)) \frac{dt}{t},
\]

where the integral converges strongly in \(L^q(\mathbb{R}^n) \).

Proof. (i) For any ball \(B \subset \mathbb{R}^n \) with radius \(r_B \), we still put

\[
T(B) = \{(x,t) \in \mathbb{R}^{n+1}_+ : x \in B, \ 0 < t < r_B\}.
\]

We then write

\[
\int_{\mathbb{R}^{n+1}_+} |F(x,t)G(x,t)| \frac{dxdt}{t} = \int_{T(4B)} |F(x,t)G(x,t)| \frac{dxdt}{t} + \sum_{k=1}^{\infty} \int_{T(2^{k+1}B) \setminus T(2^kB)} |F(x,t)G(x,t)| \frac{dxdt}{t}
\]

\[
= A_1 + \sum_{k=2}^{\infty} A_k.
\]

Recall that \(q > 1 \) and \(\frac{1}{q} + \frac{1}{p} = 1 \). Using the Hölder inequality, together with (2.7) (here \(\psi(z) = z e^{-z} \)), we obtain

\[
A_1 \leq \left\| \left\{ \int_0^{r_2B} |Q_{tm}(I - P_{tm}) f(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(2B)} \times \left\| \left\{ \int_0^{r_2B} |Q_{tm}^* (I - P_{tm}^*) g(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^q(2B)}
\]

\[
\leq \left\{ \int_0^{r_2B} |Q_{tm}(I - P_{tm}) f(x)|^2 \frac{dt}{t} \right\}^{1/2} \| G_{L^*}((I - P_{tm}^*) g) \|_{L^q}
\]

\[
\leq cr_B^{\lambda/p} \| f \|_{L_p^{\lambda}} \| g \|_{L_q}.
\]
Let us estimate A_k for $k = 2, 3, \ldots$. Note that for $x \in T(2^{k+1}B) \setminus T(2^kB)$ and $y \in B$, we have that $|x - y| \geq 2^k r_B$. Using (2.4) and the commutative property of $\{P_t\}_{t > 0}$, we get

$$|Q_{t_n}^m (I - P_{r_B}^*) g(x)| \leq |Q_{t_n}^m g(x)| + c \left(\frac{t}{t + r_B} \right)^m |Q_{t_n + r_B^*}^m g(x)|$$

$$\leq c \int_B \frac{t^e}{(t + |x - y|)^{n+e}} |g(y)| dy + c \left(\frac{t}{r_B} \right)^m \int_B \frac{r_B^e}{(r_B + |x - y|)^{n+e}} |g(y)| dy$$

$$\leq c \frac{t^e}{(2^k r_B)^{n+e}} \int_B |g(y)| dy \leq c \frac{t^e}{(2^k r_B)^{n+e}} \int_B |g(y)| dy$$

where $e_0 = 2^{-1} \min(m, e)$ and $q = p/(p - 1)$. Consequently,

$$\left\| \int_0^{2^k r_B} |Q_{t_n}^m (I - P_{r_B}^*) g(x)| dx \left(T(2^{k+1}B) \setminus T(2^kB) \right)^{2 \frac{dt}{t}} \right\|_{L^q(2^k B)} \leq c 2^{k(n-\frac{1}{q}-1)} \|g\|_{L^q}.$$

Therefore,

$$A_k \leq \left\| \int_0^{2^k r_B} \left| Q_{t_n}^m (I - P_{r_B}^*) f(x) \right|^2 \frac{dt}{t} \right\|_{L^p(2^k B)}^{1/2} \times \left\| \int_0^{2^k r_B} \left| Q_{t_n}^m (I - P_{r_B}^*) g(x) \chi_{T(2^{k+1}B) \setminus T(2^kB)} \right|^2 \frac{dt}{t} \right\|_{L^q(2^k B)}^{1/2}$$

$$\leq c \frac{2^{k(n-\frac{1}{q}/q)}}{r_B} \|f\|_{L^p_r} \|g\|_{L^q_r}$$

Since $\lambda \in (0, n)$, we have

$$\int_{\mathbb{R}^{n+1}} |F(x, t)G(x, t)| \frac{dxdt}{t} \leq cr_B \|f\|_{L^p} \|g\|_{L^q} + c \sum_{k=1}^{\infty} 2^{k(n-\frac{1}{q})/q} r_B \|f\|_{L^p_r} \|g\|_{L^q}$$

as desired.

(ii) From Lemma 2.2 we know that L has a bounded H_∞-calculus in L^q for all $q > 1$. This, together with elementary integration, shows that the set $\{g_{\alpha, \beta}(L^*)\}$ is a uniformly bounded net in $L(L^q, L^q)$, where

$$g_{\alpha, \beta}(L^*) = b_m \int_{\alpha}^{\beta} (Q_{t_n}^m)^2 (I - P_{t_n^*}) \frac{dt}{t}$$

for all $0 < \alpha < \beta < \infty$.

As a consequence of Lemma 2.1, we have that for any $h \in L^q(\mathbb{R}^n)$,

$$h(x) = b_m \int_0^{\infty} (Q_{t_m}^* t_m^2) (I - P_{t_m}^*) h(x) \frac{dt}{t}$$

where $b_m = \frac{36m^5}{5}$ and the integral is strongly convergent in $L^q(\mathbb{R}^n)$. □

4.2. The desired dual identity. Next, we establish the following dual identity associated with the operator L.

Proposition 4.2. Assume that L satisfies the assumptions (a) and (b) of Section 2.2. Suppose B, f, g, F, G, p, q are defined as in (4.1). If $\| f \|_{L^p, \lambda} < \infty$ and $b_m = \frac{36m^5}{5}$, then

$$\int_{\mathbb{R}^n} f(x)(I - P_{t_m}^*) g(x) dx = b_m \int_{\mathbb{R}^n+1} F(x, t) G(x, t) \frac{dx dt}{t} .$$

Proof. From Lemma 4.1 (i) it turns out that

$$\int_{\mathbb{R}^n+1} \left| F(x, t) G(x, t) \right| dx dt / t < \infty.$$

By the dominated convergence theorem, the following integral converges absolutely and satisfies

$$\int_{\mathbb{R}^n+1} F(x, t) G(x, t) \frac{dx dt}{t} = \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\delta}^{N} \int_{\mathbb{R}^n} F(x, t) G(x, t) \frac{dx dt}{t} .$$

Next, by Fubini’s theorem, together with the commutative property of the semigroup $\{e^{-tL}\}_{t>0}$, we have

$$\int_{\mathbb{R}^n} F(x, t) G(x, t) dx = \int_{\mathbb{R}^n} f(x)(Q_{t_m}^* t_m^2) (I - P_{t_m}^*) (I - P_{t_m}^*) g(x) dx, \quad \forall t > 0.$$ This gives

$$\int_{\mathbb{R}^n+1} F(x, t) G(x, t) \frac{dx dt}{t}$$

$$= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\delta}^{N} \int_{\mathbb{R}^n} f(x)(Q_{t_m}^* t_m^2) (I - P_{t_m}^*) (I - P_{t_m}^*) g(x) dx \frac{dt}{t}$$

$$= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^n} f(x) \int_{\delta}^{N} (Q_{t_m}^* t_m^2) (I - P_{t_m}^*) (I - P_{t_m}^*) g(x) dx \frac{dt}{t} dx$$

$$= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^n} f_1(x) \left[\int_{\delta}^{N} (Q_{t_m}^* t_m^2) (I - P_{t_m}^*) (I - P_{t_m}^*) g(x) dx \frac{dt}{t} \right] dx$$

$$+ \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^n} f_2(x) \left[\int_{\delta}^{N} (Q_{t_m}^* t_m^2) (I - P_{t_m}^*) (I - P_{t_m}^*) g(x) dx \frac{dt}{t} \right] dx$$

$$= I + II ,$$

where $f_1 = f \chi_{AB}$, $f_2 = f \chi_{(4B)c}$ and χ_E stands for the characteristic function of $E \subseteq \mathbb{R}^n$.

We first consider the term I. Since \(g \in L^q(B) \), where \(q = p/(p - 1) \), we conclude
\[
(I - P_{r_B^m}^\ast)g \in L^q.
\]
By Lemma 4.1 (ii), we obtain
\[
(I - P_{r_B^m}^\ast)g = \lim_{\delta \to 0} \lim_{N \to \infty} b_m \int_\delta^N (Q_{t_m}^\ast)^2 (I - P_{t_m}^\ast)(I - P_{r_B^m}^\ast)(g) \frac{dt}{t}
\]
in \(L^q \). Hence
\[
I = \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^n} f_1(x) \left[\int_\delta^N (Q_{t_m}^\ast)^2 (I - P_{t_m}^\ast)(I - P_{r_B^m}^\ast)(g) \frac{dt}{t} \right] dx
\]
\[
= b_m^{-1} \int_{\mathbb{R}^n} f_1(x)(I - P_{r_B}^\ast)g(x) dx.
\]
In order to estimate the term II, we need to show that for all \(y \not\in 4B \), there exists a constant \(c = c(g, L) \) such that
\[
(4.5) \quad \sup_{\delta > 0, N > 0} \left| \int_\delta^N (Q_{t_m}^\ast)^2 (I - P_{t_m}^\ast)(I - P_{r_B^m}^\ast)(g) \frac{dt}{t} \right| \leq c(1 + |x - x_0|)^{-\epsilon}.
\]
To this end, set
\[
\Psi_{t,s}(L^\ast)h(y) = (2t^m + s^m)^3 \frac{d^3 P_s^\ast}{ds^3} \bigg|_{s=2t^m+s^m}(I - P_{t_m}^\ast)h(y).
\]
Note that
\[
(I - P_{r_B^m}^\ast)g = m \int_0^{r_B} Q_{s_m}^\ast(g) s^{-1} ds.
\]
So, we use (2.3) and (2.4) to deduce
\[
\left| \int_\delta^N (Q_{t_m}^\ast)^2 (I - P_{t_m}^\ast)(I - P_{r_B^m}^\ast)(g) \frac{dt}{t} \right|
\]
\[
= \left| \int_\delta^N \int_0^{r_B} (Q_{t_m}^\ast)^2 Q_{s_m}^\ast(I - P_{t_m}^\ast)g(x) \frac{ds}{s} \frac{dt}{t} \right|
\]
\[
\leq c \int_\delta^N \int_0^{r_B} \frac{t^{2m} s^{m}}{(t^m + s^m)^3} |\Psi_{t,s}(L^\ast)g(x)| \frac{ds}{s} \frac{dt}{t}
\]
\[
\leq c \int_\delta^N \int_0^{r_B} \int_{B(x_0, r_B)} \frac{t^{2m} s^{m}}{(t^m + s^m)^3} (t + s)^\epsilon \left| g(y) \right| \frac{dy ds dt}{s}. \]

Because \(x \not\in 4B \) yields \(|x - y| \geq |x - x_0|/2 \), the inequality
\[
\frac{t^{2m} s^{m}(t + s)^\epsilon}{(t^m + s^m)^3} \leq c \min \left((ts)^{\epsilon/2}, t^{-\epsilon/2} s^{3\epsilon/2} \right),
\]
together with Hölder’s inequality and elementary integration, produces a positive constant \(c \) independent of \(\delta, N > 0 \) such that for all \(x \not\in 4B \),
\[
\left| \int_\delta^N Q_{t_m}^2 (I - P_{t_m})g(y) \frac{dt}{t} \right| \leq c r_B^\epsilon |x - x_0|^{-\epsilon} \left\| g \right\|_{L^1} \leq c r_B^{\epsilon + \frac{\alpha}{2}} \left\| g \right\|_{L^2} |x - x_0|^{-\epsilon}
\]
Accordingly, (4.5) follows readily.
We now estimate the term II. For \(f \in \mathcal{M}_p \), we derive \(f \in L^p((1 + |x|)^{-(n+\alpha)}dx) \). The estimate (4.5) yields a constant \(c > 0 \) such that

\[
\sup_{\delta > 0, N > 0} \int_{\mathbb{R}^n} \left| f_2(x) \int_\delta^N (Q_{\ell_n}^*)^2(\mathcal{I} - P_{\ell_n}^*)(\mathcal{I} - P_{r_B^*}) (g)(x) \frac{dt}{t} \right| dx \leq c.
\]

This allows us to pass the limit inside the integral of II. Hence

\[
\begin{align*}
II &= \lim_{\delta \to 0} \lim_{N \to \infty} \int_{\mathbb{R}^n} f_2(x) \left(\int_\delta^N (Q_{\ell_n}^*)^2(\mathcal{I} - P_{\ell_n}^*)(\mathcal{I} - P_{r_B^*}) (g)(x) \frac{dt}{t} \right) dx \\
&= \int_{\mathbb{R}^n} f_2(x) \left(\lim_{\delta \to 0} \lim_{N \to \infty} \left[\int_\delta^N (Q_{\ell_n}^*)^2(\mathcal{I} - P_{\ell_n}^*)(\mathcal{I} - P_{r_B^*}) (g)(x) \frac{dt}{t} \right] \right) dx \\
&= b_m^{-1} \int_{\mathbb{R}^n} f_2(x)(\mathcal{I} - P_{r_B^*})g(x)dx.
\end{align*}
\]

Combining the previous formulas for I and II, we obtain the identity (4.3). \(\square \)

Remark 4.3. For a background of Proposition 4.2, see also [8, Proposition 5.1].

5. Description through Littlewood-Paley function

5.1. The space \(L^{p,\lambda}(\mathbb{R}^n) \) as the dual of the atomic space. Following [28], we give the following definition.

Definition 5.1. Let \(1 < p < \infty \), \(q = p/(p - 1) \) and \(\lambda \in (0,n) \). Then

(i) A complex-valued function \(a \) on \(\mathbb{R}^n \) is called a \((q,\lambda)\)-atom provided:

(\(\alpha \)) \(a \) is supported on an open ball \(B \subset \mathbb{R}^n \) with radius \(r_B \):

(\(\beta \)) \(\int_{\mathbb{R}^n} a(x)dx = 0 \);

(\(\gamma \)) \(\|a\|_{L^q} \leq r_B^{-\lambda/p} \).

(ii) \(H^{q,\lambda}(\mathbb{R}^n) \) comprises those linear functionals admitting an atomic decomposition \(f = \sum_{j=1}^{\infty} \eta_j a_j \), where \(a_j \)’s are \((q,\lambda)\)-atoms, and \(\sum_j |\eta_j| < \infty \).

The forthcoming result reveals that \(H^{q,\lambda}(\mathbb{R}^n) \) exists as a predual of \(L^{p,\lambda}(\mathbb{R}^n) \).

Proposition 5.2. Let \(1 < p < \infty \), \(q = p/(p - 1) \) and \(\lambda \in (0,n) \). Then \(L^{p,\lambda}(\mathbb{R}^n) \) is the dual \((H^{q,\lambda}(\mathbb{R}^n))^* \) of \(H^{q,\lambda}(\mathbb{R}^n) \). More precisely, if \(h = \sum_j \eta_j a_j \in H^{q,\lambda}(\mathbb{R}^n) \) then

\[
\langle h, \ell \rangle = \lim_{k \to \infty} \sum_{j=1}^{k} \eta_j \int_{\mathbb{R}^n} a_j(x)\ell(x)dx
\]

is a well-defined continuous linear functional for each \(\ell \in L^{p,\lambda}(\mathbb{R}^n) \), whose norm is equivalent to \(\|\ell\|_{L^{p,\lambda}} \); moreover, each continuous linear functional on \(H^{q,\lambda}(\mathbb{R}^n) \) has this form.

Proof. See [28, Proposition 5] for a proof of Proposition 5.2 \(\square \)
5.2. Characterization of $L^{p,\lambda}(\mathbb{R}^n)$ by means of Littlewood-Paley function. We now state a full characterization of $L^{p,\lambda}(\mathbb{R}^n)$ space for $1 < p < \infty$ and $\lambda \in (0, n)$. For the case $p = 2$, see also [26, Lemma 2.1] as well as [25, Theorem 1 (i)].

Proposition 5.3. Let $1 < p < \infty$, $\lambda \in (0, n)$ and $f \in \mathcal{M}_{\sqrt{\Delta}, p}$. Then the following two conditions are equivalent:

(i) $f \in L^{p,\lambda}(\mathbb{R}^n)$;

(ii) $I(f, p) = \sup_{B \subset \mathbb{R}^n} r_B^{-\lambda \frac{1}{p}} \left\{ \int_0^{r_B} \left| \frac{\partial}{\partial t} e^{-t\sqrt{\Delta}} f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \|f\|_{L^p(B)} < \infty,$

where the supremum is taken over all Euclidean open ball $B \subset \mathbb{R}^n$ with radius r_B.

Proof. It suffices to verify (ii)⇒(i) for which the reverse implication follows readily from [11, Theorem 2.1]. Suppose (ii) holds. Proposition 5.2 suggests us to show $f \in (H^{p-1,\lambda}(\mathbb{R}^n))^*$ in order to verify (i). Now, let g be a $(\frac{p}{p-1}, \lambda)$-atom and

$$p_t(x) = \frac{c_n t}{(t^2 + |x|^2)^{\frac{n+1}{2}}}.$$

Then for any open ball $B \subset \mathbb{R}^n$ with radius r_B and its tent

$$T(B) = \{(x, t) \in \mathbb{R}^{n+1} : x \in B, t \in (0, r_B)\},$$

we have (cf. [23, p.183])

$$|\langle f, g \rangle| = \left| \int_{\mathbb{R}^n} f(x)g(x)dx \right|$$

$$= 4 \left| \int_{\mathbb{R}^n} \int_0^\infty \left(t \frac{\partial}{\partial t} p_t * f(x) \right) \left(t \frac{\partial}{\partial t} p_t * g(x) \right) t^{-1} dt dx \right|$$

$$\leq 4(I(B) + J(B)).$$

Here,

$$I(B) = \int_{4B} \int_0^{r_{4B}} \left| t \frac{\partial}{\partial t} p_t \ast f(x) \left| t \frac{\partial}{\partial t} p_t \ast g(x) \right| t^{-1} dt dx$$

$$\leq \left(\int_{4B} \left(\int_0^{r_{4B}} \left| t \frac{\partial}{\partial t} p_t \ast f(x) \right|^2 t^{-1} dt \right)^{\frac{p}{2}} dx \right)^{\frac{1}{p}}$$

$$\times \left(\int_{4B} \left(\int_0^{r_{4B}} \left| t \frac{\partial}{\partial t} p_t \ast g(x) \right|^2 t^{-1} dt \right)^{\frac{p}{2(p-1)}} dx \right)^{\frac{p-1}{p}}$$

$$\leq c r_B^{\frac{\lambda}{p}} I(f, p) \|g\|_{L^\frac{p}{p-1}(\mathbb{R}^n)}$$

$$\leq c I(f, p),$$
due to Hölder’s inequality, the $L^{p,q}_{r}$-boundedness of the Littlewood-Paley G-function, and g being a $(\frac{p}{p-1}, \lambda)$-atom.

Meanwhile,

$$J(B) = \sum_{k=1}^{\infty} \int_{T(2^{k+1}B) \setminus T(2^kB)} \left| \frac{1}{t} \frac{\partial}{\partial t} p_t f(x) \right| \left| \frac{1}{t} \frac{\partial}{\partial t} g(x) \right| t^{-1} dt dx$$

$$\leq c \sum_{k=1}^{\infty} \left\| \left\{ \int_{0}^{2^{k+1}B} \left| \frac{1}{t} \frac{\partial}{\partial t} p_t f(x) \right|^2 t^{-1} dt \right\}^{\frac{1}{2}} \right\|_{L^p(2^{k+1}B)}$$

$$\times \left\| \left\{ \int_{0}^{2^{k+1}B} \left| \frac{1}{t} \frac{\partial}{\partial t} p_t g(x) \right|^2 t^{-1} dt \right\}^{\frac{1}{2}} \right\|_{L^q(2^{k+1}B)}$$

$$\leq c \sum_{k=1}^{\infty} (2^{k} r_B)^{\frac{1}{2}} I(f, p) 2^{-\frac{k-1}{p}} r_B^{-\lambda}$$

$$\leq c I(f, p),$$

for which we have used the Hölder inequality and the fact that if $|y - x| \geq 2^k r_B$ then

$$\left| \frac{1}{t} \frac{\partial}{\partial t} p_t g(x) \right| \leq c \frac{t^3}{(2^k r_B)^{3+n}} \|g\|_{L^1(B)} \leq c \frac{t^3}{(2^k r_B)^{3+n}} r_B^{-\lambda}$$

for the $(\frac{p}{p-1}, \lambda)$-atom g. Accordingly, $f \in L^{p,\lambda}_{L}(\mathbb{R}^n)$.

5.3. **Characterization of $L^{p,\lambda}_{L}(\mathbb{R}^n)$ by means of Littlewood-Paley function.** Of course, it is natural to explore a characterization of $L^{p,\lambda}_{L}(\mathbb{R}^n)$ similar to Proposition 5.3.

Proposition 5.4. Let $1 < p < \infty$, $\lambda \in (0, n)$ and $f \in \mathcal{M}_p$. Assume that L satisfies the assumptions (a) and (b) of Section 2.2. Then the following two conditions are equivalent:

(i) $f \in L^{p,\lambda}_{L}(\mathbb{R}^n)$;

(ii) $\left\| f \right\|_{L^{p,\lambda}_{L}} = \sup_{B \subset \mathbb{R}^n} r_B^{-\frac{\lambda}{p}} \left\| \left\{ \int_{0}^{r_B} |Q_{tm}(I - P_m)f(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} < \infty,$

where the supremum is taken over all Euclidean open ball $B \subset \mathbb{R}^n$ with radius r_B.

Proof. (i)⇒(ii). Suppose $f \in L^{p,\lambda}_{L}(\mathbb{R}^n)$. Note that

$$Q_{tm}(I - P_m) = Q_{tm}(I - P_m)(I - P_{tm}) + Q_{tm}(I - P_m)P_{tm}.$$

So, we turn to verify both

$$\left\| \left\{ \int_{0}^{r_B} |Q_{tm}(I - P_m)(I - P_{tm})f(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} \leq c r_B^{-\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_{L}}$$

and

$$\left\| \left\{ \int_{0}^{r_B} |Q_{tm}(I - P_m)P_{tm}|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} \leq c r_B^{-\frac{\lambda}{p}} \|f\|_{L^{p,\lambda}_{L}}.$$
and

\begin{equation}
\left\{ \int_{0}^{r_B} |Q_{t_m}(I - P_{t_m})P_{r_B}^m f(x)|^2 \frac{dt}{t} \right\}^{1/2} \leq c r_B^\lambda \|f\|_{L^p_L},
\end{equation}

thereby proving (ii). To do so, we will adapt the argument on pp. 85-86 of [12] to present the situation – see also page 955 of [8].

To prove (5.1), let us consider the square function $G(h)$ given by

\[G(h)(x) = \left(\int_{0}^{\infty} |Q_{t_m}(I - P_{t_m})h(x)|^2 \frac{dt}{t} \right)^{1/2}. \]

From (2.7), the function G is bounded on $L^p(\mathbb{R}^n)$ for $1 < p < \infty$. Let $b = b_1 + b_2$, where $b_1 = (I - P_{r_B}^m)f\chi_{2B}$, and $b_2 = (I - P_{r_B}^m)f\chi_{(2B)^c}$. Using Lemma 3.6, we obtain

\[
\left\{ \int_{0}^{r_B} |Q_{t_m}(I - P_{t_m})b_1(x)|^2 \frac{dt}{t} \right\}^{1/2} \leq c \|G(b_1)\|_{L^p} \leq c \|b_1\|_{L^p} = c \int_{2B} |(I - P_{r_B}^m)f(x)|^p dx \right\}^{1/p} + cr_B^{n/p} \sup_{x \in 2B} |P_{r_B}^m f(x) - P_{r_B}^m f(x)|^p \leq c r_B^\lambda \|f\|_{L^p_L}.
\]

(5.3)

On the other hand, for any $x \in B$ and $y \in (2B)^c$, one has $|x - y| \geq r_B$. From Proposition 3.5, we obtain

\[
|Q_{t_m}(I - P_{t_m})b_2(x)| \leq c \int_{\mathbb{R}^n \setminus 2B} \frac{t^\epsilon}{(t + |x - y|)^{n+\epsilon}} |(I - P_{r_B}^m)f(y)| dy \leq c \left(\frac{t}{r_B} \right)^\epsilon \int_{\mathbb{R}^n} \frac{r_B^\epsilon}{(r_B + |x - y|)^{n+\epsilon}} |(I - P_{r_B}^m)f(y)| dy \leq c \left(\frac{t}{r_B} \right)^\epsilon r_B^{\frac{n}{p}} \|f\|_{L^p_L},
\]

which implies

\[
\left\{ \int_{0}^{r_B} |Q_{t_m}(I - P_{t_m})b_2(x)|^2 \frac{dt}{t} \right\}^{1/2} \leq c r_B^\lambda \|f\|_{L^p_L}.
\]

This, together with (5.3), gives (5.1).

Next, let us check (5.2). This time, we have $0 < t < r_B$, whence getting from Lemma 3.6 that for any $x \in \mathbb{R}^n$,

\[
|P_{r_B}^m f(x) - P_{t_m} f(x)| \leq c r_B^{\frac{\lambda-n}{p}} \|f\|_{L^p_L}.
\]
By (2.4), the kernel $K_{t,r_B}(x,y)$ of the operator

$$Q_{tm}P_{\frac{r_B}{2}} = \frac{t^m}{r_B}Q_{tm+\frac{r_B^m}{2}}$$

satisfies

$$|K_{t,r_B}(x,y)| \leq c\left(\frac{t}{r_B}\right)^m \frac{r_B^m}{(r_B + |x-y|)^{n+\epsilon}}.$$

Using the commutative property of the semigroup $\{e^{-tB}\}_{t>0}$ and the estimate (2.4), we deduce

$$|Q_{tm}(I - P_{tm})P_{\frac{r_B}{2}}f(x)| = |Q_{tm}P_{\frac{r_B}{2}}(P_{\frac{r_B}{2}} - P_{(tm+\frac{r_B^m}{2})})f(x)| \leq c\left(\frac{t}{r_B}\right)^m \int_{\mathbb{R}^n} \frac{r_B^m}{(r_B + |x-y|)^{n+\epsilon}} |(P_{\frac{r_B}{2}} - P_{(tm+\frac{r_B^m}{2})})f(y)| dy \leq c\left(\frac{t}{r_B}\right)^m r_B^\epsilon \|f\|_{L^p,B},$$

whence deriving

$$\left\| \left\{ \int_0^{r_B} |Q_{tm}(I - P_{tm})P_{\frac{r_B}{2}}f(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(B)} \leq cr_B^\epsilon \|f\|_{L^p,B}.$$

This gives (5.2) and consequently (ii).

(ii) \Rightarrow (i). Suppose (ii) holds. The duality argument for L^p shows that for any open ball $B \subset \mathbb{R}^n$ with radius r_B,

$$\left(\int_B |f(x) - P_{r_B}f(x)|^p \right)^{1/p} = \sup_{\|g\|_{L^p(B)} \leq 1} \int_B (I - P_{r_B}f(x))g(x)dx \geq c \int_{\mathbb{R}^n} |Q_{tm}(I - P_{tm})f(x)| \left| Q_{tm}^\epsilon(I - P_{r_B}^\epsilon)g(x)dx \right| \frac{dxdt}{t} \leq c \|f\|_{L^p,B} \|g\|_{L^q}.$$

Using the identity (4.3), the estimate (4.2) and the Hölder inequality, we have

$$\left| \int_{\mathbb{R}^n} f(x)(I - P_{r_B}^\epsilon)g(x)dx \right| \leq c \int_{\mathbb{R}^{n+1}}|Q_{tm}(I - P_{tm})f(x)| Q_{tm}^\epsilon(I - P_{r_B}^\epsilon)g(x)| \frac{dxdt}{t} \leq c \|f\|_{L^p,B} \|g\|_{L^q}.$$

Substituting (5.5) back to (5.4), by Definition 3.1 we find a constant $c > 0$ such that

$$\|f\|_{L^p,B} \leq c \|f\|_{L^p,B} < \infty.$$

This just proves $f \in L^p_{r_B}((\mathbb{R}^n)$, thereby yielding (i).

\[\square\]

Remark 5.5. In the case of $p = 2$, we can interpret Proposition 5.4 as a measure-theoretic characterization, namely, $f \in L^2_{r_B}((\mathbb{R}^n)$ when and only when

$$d\mu_f(x,t) = |Q_{tm}(I - P_{tm})f(x)|^2 \frac{dxdt}{t}$$

where

$$d\mu_f(x,t) = \sum_{n=1}^{\infty} |Q_{tm}(I - P_{tm})f(x)|^2 \frac{dxdt}{t}.$$
is a λ-Carleson measure on \mathbb{R}^{n+1}_+. According to [10] Lemma 4.1, we find further that $f \in L^2_{\mathcal{L}}(\mathbb{R}^n)$ is equivalent to

$$\sup_{(y,s) \in \mathbb{R}^{n+1}_+} \int_{\mathbb{R}^n} \left(\frac{s}{(|x-y|^2 + (t+s)^2)^{\frac{n+1}{2}}} \right)^\lambda d\mu_f(x,t) < \infty.$$

5.4. A sufficient condition for $L_{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n) = L^{p,\lambda}(\mathbb{R}^n)$. In what follows, we assume that L is a linear operator of type ω on $L^2(\mathbb{R}^n)$ with $\omega < \pi/2$ -- hence L generates an analytic semigroup $e^{-tL}, 0 \leq |\text{Arg}(z)| < \pi/2 - \omega$. We also assume that for each $t > 0$, the kernel $p_t(x,y)$ of e^{-tL} is Hölder continuous in both variables x, y and there exist positive constants $m, \beta > 0$ and $0 < \gamma \leq 1$ such that for all $t > 0$, and $x, y, h \in \mathbb{R}^n$,

$$|p_t(x,y)| \leq c \frac{t^{\beta/m}}{(t^{1/m} + |x-y|)^{n+\beta}} \quad \forall \ t > 0, \ x, y \in \mathbb{R}^n,$$

$$|p_t(x+h,y) - p_t(x,y)| + |p_t(x,y+h) - p_t(x,y)| \leq c|h|^\gamma \frac{t^{\beta/m}}{(t^{1/m} + |x-y|)^{n+\beta+\gamma}} \quad \forall h \in \mathbb{R}^n \text{ with } 2|h| \leq t^{1/m} + |x-y|,$$

and

$$\int_{\mathbb{R}^n} p_t(x,y)dx = \int_{\mathbb{R}^n} p_t(x,y)dy = 1 \quad \forall t > 0.$$

Proposition 5.6. Let $1 < p < \infty$ and $\lambda \in (0, n)$. Given an operator L which generates a semigroup e^{-tL} with the heat kernel bounds (2.2) and (2.3). Assume that L satisfies the conditions (3.6), (3.7) and (3.8). Then $L_{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$ and $L^{p,\lambda}(\mathbb{R}^n)$ coincide, and their norms are equivalent.

Proof. Since Proposition 3.3 tells us that $L^{p,\lambda}(\mathbb{R}^n) \subseteq L_{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$ under the above-given conditions, we only need to check $L_{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n) \subseteq L^{p,\lambda}(\mathbb{R}^n)$. Note that $L^{p,\lambda}(\mathbb{R}^n)$ is the dual of $\mathcal{H}^{q,\lambda}(\mathbb{R}^n)$, $q = p/(p-1)$. It reduces to prove that if $f \in L_{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$, then $f \in (\mathcal{H}^{q,\lambda}(\mathbb{R}^n))^\ast$. Let g be a (q, λ)-atom. Using the conditions (5.6), (5.7) and (5.8) of the operator L, together with the properties of of (q, λ)-atom of g, we can follow the argument for Lemma 4.1 (ii) to verify

$$\int_{\mathbb{R}^n} f(x) g(x) dx = b_m \int_{\mathbb{R}^{n+1}_+} Q_{tm}(\mathcal{I} - P_{tm}) f(x) Q^*_tm g(x) \frac{dx dt}{t} \quad \text{where} \quad b_m = \frac{36m}{5}.$$
Consequently,

\[|⟨f, g⟩| = \left| \int_{\mathbb{R}^n} f(x)g(x)dx \right| = \left| \int_{\mathbb{R}^n_+} Q_{t^m}(I - P_{t^m})f(x)Q_{t^m}^*g(x) \frac{dxdt}{t} \right| \]
\[\leq \int_{T(4B)} |Q_{t^m}(I - P_{t^m})f(x)Q_{t^m}^*g(x)| \frac{dxdt}{t} \]
\[+ \sum_{k=1}^{\infty} \int_{(2^{k+1}B)\setminus (2^kB)} |Q_{t^m}(I - P_{t^m})f(x)Q_{t^m}^*g(x)| \frac{dxdt}{t} \]
\[= D_1 + \sum_{k=2}^{\infty} D_k. \]

Define the Littlewood-Paley function \(G^* \) by

\[G^*(h)(x) = \left[\int_0^{\infty} |Q_{t^m}^* h(x)|^2 \frac{dt}{t} \right]^{1/2}. \]

By (2.7), \(G^* \) is bounded on \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \).

Following the proof of Lemma 4.1 (i), together with the property \((\gamma)\) of \((q, \lambda)\)-atom \(g \), we derive

\[D_1 \leq \left\| \left\{ \int_{0}^{r^2B} |Q_{t^m}(I - P_{t^m})f(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^p(2B)} \left\| \left\{ \int_{0}^{r^2B} |Q_{t^m}^* g(x)|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^q(2B)} \]
\[\leq c r^\frac{\lambda}{2} \left\| f \right\|_{L^{p,\lambda}} \left\| g \right\|_{L^q} \leq c \| f \|_{L^{p,\lambda}}. \]

On the other hand, we note that for \(x \in T(2^{k+1}B)\setminus T(2^kB) \) and \(y \in B \), we have that \(|x - y| \geq 2^kr_B \). Using the estimate (2.4) and the properties \((\alpha)\) and \((\gamma)\) of \((q, \lambda)\)-atom \(g \), we obtain

\[|Q_{t^m}^* g(x)| \leq c \int_{B} \frac{t^k}{(t + |x - y|)^{n+\epsilon}} |g(y)|dy \]
\[\leq c \frac{t^k}{(2^kr_B)^{n+\epsilon}} \int_{B} |g(y)|dy \]
\[\leq c \frac{t^k}{(2^kr_B)^{n+\epsilon}} \frac{r_B^\lambda}{r_B^\lambda}, \]

which implies

\[\left\| \left\{ \int_{0}^{r^2B} |Q_{t^m}^* g(x)\chi_{T(2^{k+1}B)\setminus T(2^kB)}|^2 \frac{dt}{t} \right\}^{1/2} \right\|_{L^q(2^kB)} \leq c 2^{k(n(\frac{1}{p} - 1))r_B^\lambda}. \]
Therefore,

\[
D_k \leq \left\{ \int_0^{2k r_B} \left| Q_{t^m} (I - P_{t^m}) f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \left\| \int_0^{2k r_B} \left| Q_{t^m} g(x) \chi_{T(2^{k+1} B)} f(x) \right|^2 \frac{dt}{t} \right\}^{1/2} \leq c (2^k r_B)^{\frac{\lambda}{p} + 2^k r_B^{n-1} - \frac{\lambda}{p}} \left\| f \right\|_{L^p_{L,\lambda}}
\]

Since \(\lambda \in (0, n) \), we have

\[
|\langle f, g \rangle| \leq c \left\| f \right\|_{L^p_{L,\lambda}} + c \sum_{k=1}^{\infty} 2^{k(\lambda-n)} \left\| f \right\|_{L^p_{L,\lambda}} \leq c \left\| f \right\|_{L^p_{L,\lambda}}.
\]

This, together with Proposition 5.2, implies \(f \in \left(\mathcal{H}^{q,\lambda} (\mathbb{R}^n) \right)^* = L^{p,\lambda} (\mathbb{R}^n) \). \(\square \)

References

[1] D.R. Adams and J. Xiao, Nonlinear potential analysis on Morrey spaces and their capacities. *Indiana Univ. Math. J.* 53 (2004), 1629-1663.

[2] D. Albrecht, X.T. Duong and A. McIntosh, Operator Theory and Harmonic Analysis. *Workshop in Analysis and Geometry 1995*. Proceedings of the Centre for Mathematics and its Applications, ANU 34 (1996), 77-136.

[3] P. Auscher, X.T. Duong and A. McIntosh, Boundedness of Banach space valued singular integral operators and Hardy spaces. Preprint (2005).

[4] S. Campanato, Proprietà di una famiglia di spazi funzionali. *Ann Scuola Norm. Sup. Pisa* (3). 18 (1964), 137-160.

[5] D.G. Deng, X.T. Duong and L.X. Yan, A characterization of the Morrey-Campanato spaces. *Math. Z.* 250 (2005), 641-655.

[6] X.T. Duong and A. McIntosh, Singular integral operators with non-smooth kernels on irregular domains. *Rev. Mat. Iberoamerican* 15 (1999), 233-265.

[7] X.T. Duong and L.X. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation and applications. *Comm. Pure Appl. Math.* 58 (2005), 1375-1420.

[8] X.T. Duong, L.X. Yan, Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. *J. Amer. Math. Soc.* 18 (2005), 943-973.

[9] X.T. Duong and L.X. Yan, New Morrey-Campanato spaces associated with operators and applications. Preprint (2005).

[10] M. Essén, S. Janson, L. Peng and J. Xiao, Q Spaces of several real variables. *Indiana Univ. Math. J.* 49(2000), 575-615.

[11] E.B. Fabes, R.L. Johnson and U. Neri, Spaces of harmonic functions representable by Poisson integrals of functions in BMO and \(L^p_{\alpha,\lambda} \). *Indiana Univ. Math. J.* 25(1976), 159-170.

[12] J.L. Journé, *Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón*. Lecture Notes in Math. 994. Springer, Berlin-New York, 1983.

[13] F. John and L. Nirenberg, On functions of bounded mean oscillation. *Comm. Pure Appl. Math.* 14(1961), 415–426.

[14] S. Janson, M.H. Taibleson and G. Weiss, Elementary characterizations of the Morrey-Campanato spaces. *Lecture Notes in Math.* 992 (1983), 101-114.

[15] H. Leutwiler, BMO on harmonic spaces. *Univ. of Joensuu Pub. Sci.* 14(1989), 71-78.
[16] J.M. Martell, Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. *Studia Math.* **161** (2004), 113-145.

[17] A. McIntosh, Operators which have an L^∞ functional calculus. *Miniconference on operator theory and partial differential equations 1986*. Proceedings of the Centre for Mathematical Analysis, ANU **14** (1986), 210-231.

[18] C.B. Morrey, *Multiple integral problems in the calculus of variations and related topics*. Univ. of California Publ. Math. (N.S.) **1** (1943), 1-130.

[19] E.M. Ouhabaz, *Analysis of heat equations on domains*. London Math. Soc. Mono. **31**, Princeton Univ. Press, (2004).

[20] J. Peetre, On the theory of $L^{p,\lambda}$ spaces. *J. Funct. Anal.* **4** (1969), 71-87.

[21] S. Spanne, Some function spaces defined by using the mean oscillation over cubes. *Ann Scuola Norm. Sup. Pisa* **19** (1965), 593-608.

[22] G. Stampacchia, $L^{p,\lambda}$ spaces and interpolation. *Comm. Pure Appl. Math.* **17** (1964), 293-306.

[23] E.M. Stein, *Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals*. Princeton Univ. Press, Princeton, NJ, 1993.

[24] M.E. Taylor, Analysis of Morrey spaces and applications to Navier-Stokes and other evolution equations. *Commun. P.D.E.* **17**, 1407-1456 (1992).

[25] Z.J. Wu and C.P. Xie, Q spaces and Morrey spaces. *J. Funct. Anal.* **201** (2003), 282-297.

[26] J. Xiao, Towards $Q_0(\mathbb{R}^n)$ extension of $\text{BMO}(\mathbb{R}^n)$ by quadratic Campanato-Morrey space and incompressible Navier-Stokes system. Preprint, (2006).

[27] K. Yosida, *Functional Analysis* (Fifth edition). Spring-Verlag, Berlin, 1978.

[28] C.T. Zorko, Morrey space. *Proc. Amer. Math. Soc.* **98** (1986), 586-592.

DEPARTMENT OF MATHEMATICS, MACQUARIE UNIVERSITY, NSW 2109, AUSTRALIA
E-mail address: duong@ics.mq.edu.au

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, ST. JOHN’S, NL, A1C 5S7, CANADA
E-mail address: jxiao@math.mun.ca

DEPARTMENT OF MATHEMATICS, ZHONGSHAN UNIVERSITY, GUANGZHOU, 510275, P.R. CHINA
E-mail address: mcsylx@mail.sysu.edu.cn