Abstract

Background and aims. Promoting remineralization is the ultimate goal of clinical prevention of caries lesion. The present in vitro study aimed to investigate the effect of grape seed extract (GSE) on artificial enamel caries in primary human teeth.

Materials and methods. Seventeen human sound primary incisors were sectioned mesiodistally. The tooth slices were placed in a demineralizing solution for 96 hours at 37ºC and 50% relative humidity to create lesions. The demineralized fragments of each tooth were randomly divided into two case (immersed in GSE solution in phosphate buffer for 8 days) and control (immersed in distilled water) groups. The samples were subsequently evaluated using a scanning electron microscope and a micro-hardness tester. Data were analyzed using independent t-test.

Results. The mean ± SD micro-hardness values for the case and control groups were 358.6±83.42 and 296.51±69.41, respectively. Grape seed extract significantly increased the micro-hardness of the lesions (P=0.03). The morphology of GSE treated enamel was clearly different from that in the control group, and there were deposits of scaffolding insoluble complexes on the enamel surface.

Conclusion. GSE enhanced the remineralization process of artificial enamel lesions of primary teeth, and thus, might be considered an effective natural agent in non-invasive dentistry.

Key words: Caries, enamel, grape seed extract, microhardness.
Introduction

Natural products have been used in medicines for thousands of years and are promising sources for novel therapeutic agents, especially in oral diseases such as dental caries. Teeth are constantly going through cycles of demineralization and remineralization. The ultimate goal of clinical intervention is the preservation of tooth structure and prevention of lesion progression to the point where restoration is required. While fluoride is an established agent in promoting remineralization and inhibiting demineralization of enamel, other agents exist for creating favorable remineralization conditions in the oral cavity like Casein phosphopeptide amorphous calcium phosphate (CPP-ACP) complex, and ß-tricalcium phosphate (ß-TCP). Grape seed extract (GSE) is a rich source of proanthocyanidin (PA), mainly composed of monomeric catechin and epicatechin, gallic acid and polymeric and oligomeric procyanidins. Proanthocyanidins has been reported to strengthen collagen-based tissues by increasing collagen cross-links. There is evidence that PA increases collagen synthesis and accelerates the conversion of soluble collagen to insoluble collagen. PA has proved safe in various clinical applications and has been used as dietary supplements.

It has been shown that GSE positively affects the remineralization process of root caries. Since collagen can serve as a substrate for apatite formation, the present study was designed to assess whether GSE, mainly consisting of PA, can effectively influence the remineralization of artificial caries in human primary teeth.

Materials and Methods

Preparation of Grape (Vitis vinifera L.) Seed Extract

Ground grape seeds (100 g) were extracted with ethanol to water ratio of 70:30, v/v, by maceration method. The extracts were then filtered.

Determination of Total Phenol Content (TPC)

The total phenol content of the grape seed extract was determined by the Folin-Ciocalteu method. One mL of GSE solution in aceton/water (6/4) was transferred to a test tube and then mixed thoroughly with 0.2 mL of Folin-Ciocalteu reagent. After mixing for 3 min, 1 mL of 2% (w/v) sodium carbonate was added. The mixtures were agitated with a vortex mixer and then kept in dark for 30 min, after which they were centrifuged at 12000 g for 5 min. The absorbance of the extracts and a prepared blank were measured at 750 nm using a spectrophotometer. The measurements were compared to a standard curve of prepared gallic acid solution and expressed as grams of gallic acid equivalents (GAE) per 100 grams of the extract, which was determined from known concentrations of gallic acid standard prepared similarly. The TPC of GSE was 70 g GAE/100 g.

Specimen Preparation

Seventeen extracted sound human primary incisors were selected. They were thoroughly cleaned of organic debris and stored in 0.5% chloramin solution for 24 h and then immersed in distilled water (grade 3, ISO 3696). The teeth were sectioned mesiodistally by a low-speed diamond saw cooled by water. The sectioned surfaces of the teeth were covered with an acid resistant nail varnish. The tooth slices were stored at 4ºC prior to use (according to ISO/TC 11405).

Lesion Formation and Remineralization Test

The tooth slices were placed in a demineralizing solution (2.2 mM of CaCl₂·2H₂O, 2.2 mM of KH₂PO₄, 45 mM of acetate, pH = 4.6) for 96 h at 37ºC and 50% relative humidity to create lesions. Subsequently, the fragments were rinsed thoroughly with deionized water. The demineralized fragments of each tooth were randomly divided in two groups. One of the sections was immersed in distilled water (control group) and the other section was immersed in GSE solution (12.5% w/v) in phosphate buffer (3.4 gr of KH₂PO₄, 782 mg of NaOH) for 8 days (case group). All solutions were freshly made on a daily basis prior to use.

Micro-hardness Test

To test micro-hardness, 15 case and 15 control samples were rinsed with deionized water and embedded in epoxy resin for micro-hardness evaluation; the two remaining samples were used for scanning electron microscope analysis. The embedded samples in epoxy resin were grounded flat with water-cooled discs (60 to 3000 grits of SiC papers, Matador, Germany) and polished with 1-µm Al₂O₃ felt papers (Struers, Denmark). The surface micro-hardness of the enamel was measured using a micro-hardness tester (Five HMV 2000, Shimadzu Corporation, Tokyo, Japan) with a Knoop diamond under a load of 50 gr/10s. Three indentations were made on each specimen and the average values were calculated. The average values for the case and control sections of each tooth were compared by independent t-test.
Scanning Electron Microscope Analysis

The two remaining samples were gold-coated for scanning electron microscope evaluation. The morphology of enamel surfaces was evaluated under a scanning electron microscope (SEM, Philips, XL30 Scanning Microscope, Philips, Netherlands). An intact enamel surface of a primary incisor tooth was also observed for better comparison of the samples.

Results

Figure 1 shows the SEM photomicrograph of sound enamel (×1000 magnification), revealing an orderly smooth appearance. There are also some spherical particles on the surface. Figure 2 shows the photomicrograph of demineralized enamel (×1000 magnification) before treatment; the enamel surface is rough and disorganized with significant porosities. In Figure 3A showing the demineralized enamel exposed to GSE (×1000 magnification), there are coating depositions of some insoluble complexes on the enamel surface. The reaction products of GSE are seen as amorphous clumps. Spherical globular agglomerates were observed on the surface of the enamel, with varying sizes from place to place. Figure 3B presents the previous photomicrograph at ×2500 magnification.

Table 1 demonstrates the mean micro-hardness values (±SD) of the two groups. Independent t-test revealed statistically significant differences between the two groups (Figure 4). Samples treated with GSE had significantly higher micro-hardness values compared with the control group (P=0.03).

Discussion

Grape seed extract has recently been advocated for...
In Vitro Remineralization by Grape Seed Extract

Grape seed extract has positive effects on the remineralization process of artificial carious lesions in the enamel of primary teeth. It should be noted that the oral cavity is different from an experimental environment and the obtained results should further be evaluated by in vivo studies.

Conclusion

Grape seed extract has positive effects on the remineralization process of artificial carious lesions in the enamel of primary teeth. It should be noted that the oral cavity is different from an experimental environment and the obtained results should further be evaluated by in vivo studies.
eralization process of artificial caries lesions of the enamel in human primary teeth in vitro. This solution might be considered an effective natural agent for non-invasive therapy of carious lesions in children.

References
1. Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod 1997;60:52-60.
2. Xie Q, Bedran-Russo AK, Wu CD. In vitro remineralization effects of grape seed extract on artificial root caries. J Dent 2008;36:900-6.
3. Wu CD. Grape products and oral health. J Nutr 2009;139:1818S-23.
4. Azarpazhooh A, Limeback H. Clinical Efficacy of casein derivatives. A systematic review of the literature. J Am Dent Assoc 2008;139:915-24.
5. Karlinsey RL, Mackay AC, Walker ER, Frederick KE. Preparation, characterization and in vitro efficacy of an acid modified β-TCP material for dental hard tissue remineralization. Acta Biomaterialia 2010;6:969-78.
6. Monagas M, Gómez-Cordovés C, Bartolomé B, Laureano O, Ricardo da Silva JM. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. J Agric Food Chem 2003 22;51:6475-81.
7. Yamakoshi J, Saito M, Kataoka S, Kikuchi M. Safety evaluation of proanthocyanidin rich extract from grape seeds. Food Chem Toxicol 2002;40:599-607.
8. Ray S, Bagchi D, Lim PM, Bagchi M, Gross SM, Kothari SC, Preuss HG, Stohs SJ. Acute and long-term safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Res Commun Mol Pathol Pharmacol 2001;109:165-97.
9. Lussi A, Linde A. Mineral induction in vivo by dentine proteins. Caries Res 1993;27:241-8.
10. Ou KL, Chung RJ, Tsai FY, Liang PY, Huang SW, Chang SY. Effect of collagen on the mechanical properties of hydroxyapatite coatings. J Mech Behav Biomed Mater 2011;4:618-24.
11. Kao TT, Tu HC, Chang WN, Chen BH, Shi YY, Chang TC, Fu TF. Grape seed extract inhibits the growth and pathogenicity of staphylococcus aureus by interfering with dihydrofolate reductase activity and folate mediated one carbon metabolism. Int J Food Microbiol 2010;141:17-27.
12. Furiga A., Lonvaud-Funel A., Badet C. In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes of a grape seed extract Food Chemistry 2009;113:1037-40.
13. Nakamura Y, Tsuji S, Tonogai Y. Analysis of proanthocyanidins in grape seed extracts, health foods and grape seed oils. Journal of Health Science 2003;49:45-54.
14. Cheng L, Li J, Hao Y, Zhou X. Effect of compounds of Gallina chinensis on remineralization of enamel surface in vitro. Arch Oral Biol 2010;55:435-40.
15. Ölmmez, Yuksel B, Çelik H. Scanning electron microscope study of human enamel surfaces treated with topical fluoride agents. Journal of Islamic Academy of Sciences 1993;2:133-9.
16. Luo LY, Wang Y, Li H, Zheng H, Gao SJ. Study on remineralization of human fluorosed teeth in vitro. Hua Xi Kou Qiang Yi Xue Za Zhi 2009;27:96-9.
17. Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater 2008;86B:330-4.
18. Bedran-Russo AK, Pereira PN, Duarte WR, Drummond JL, Yamauchi M. Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. J Biomed Mater Res B Appl Biomater 2007;80:268-72.
19. Al-Ammar A, Drummond JL, Bedran-Russo AK. The use of collagen cross-linking agents to enhance dentin bond strength. J Biomed Mater Res B Appl Biomater 2009;91:419-24.
20. Han B, Jaurequi J, Tang BW, Nimni ME. Proanthocyanidin: A natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res 2003;65A:118-24.
21. Hagerman AE, Butler LG. The specificity of proanthocyanidin-protein interactions. J Biol Chem 1981;256:4494-97.
22. Açıyl M, Mobasser A.E, Warkhe PH, Terheyden H, Wiltfang J, Springer I. Detection of mature collagen in human dental enamel. Calcif Tissue Int 2005;76:121-6.
23. Felszeghy S, Hollió K, Módis L, Lammi MJ. Type X collagen in human enamel development: a possible role in mineralization. ActaOdontol Scand 2000;58:171-6.
24. Almora-Barrios N, De Leeuw NH. A density functional theory study of the interaction of collagen peptides with hydroxyapatite surfaces. Langmuir 2010;26:14535-42.