Physico-chemical analysis of the sections of the ternary BiCl₃-LiCl-AgCl systems

K B Dzeranova, L K Yesieva, I Ya Ter-Barsegova, F A Agayeva and I M Bigayeva

North Ossetian State University after K.L. Khetagurov, 44-46, Vatutina Str., Vladikavkaz, 362025, Russia

E-mail: esieva.mila@yandex.ru

Abstract. Recently, the use of halogens and their compounds in industry and the national economy has increased. The halides of the ternary systems Ag – Bi – Li of are insufficiently studied. So, to create semiconductor materials on their basis, the analysis of this system has become very important. In this paper, the character of interaction of the binary sections in the BiCl₃-LiCl-AgCl ternary system is studied through a complex of methods of physical and chemical analysis, precisely by differential thermal and X-ray phase analyses. The analysis of the obtained data allowed to establish the eutectic character of interaction in the LiCl-AgBiCl₄ system. It was confirmed that the addition of AgBiCl₄ lowers significantly the melting point of the second component. Also, it was defined as the eutectic character of interaction with limited solubility of the components in the AgBiCl₄-LiBiCl₄ and AgBiCl₄-LiBi₄Cl₁₃ systems.

1. Introduction
The development of physical and chemical bases of halogenation is explained by the increasing role of halogens in various manufacturing processes of chemical raw materials to obtain pure and superpure materials. Halides of various metals appear to be non-conventional materials in this field.

2. Problem statement
The aim of this paper is to analyse binary sections of LiCl-AgBiCl₄, LiBiCl₄-AgBiCl₄, LiBi₄Cl₁₃-AgBiCl₄ in the BiCl₃-LiCl-AgCl ternary system using the complex methods of physical-chemical analysis: differential thermal and X-ray phase analysis [1, 2].

3. Scientific novelty
A quasi-binary section of LiCl-AgBiCl₄ and polythermal sections of LiBiCl₄-AgBiCl₄, LiBi₄Cl₁₃-AgBiCl₄ in the BiCl₃-LiCl-AgCl ternary system are studied firstly.

According to the literature data [3, 4, 5] the LiCl- AgCl binary system is characterized by a number of solid solutions; the BiCl₃-AgCl system is characterized by the formation of the AgBiCl₄ chemical compound at a ratio of 1:1; the BiCl₃ – LiCl system is characterized by the formation of chemical compounds at a ratio of 1: 1 and 1: 4, i.e. the LiBiCl₄ and LiBi₄Cl₁₃ compounds.

4. Materials and methods
To analyse the section of the LiCl-AgBiCl₄ compound the alloys of chemical compounds or solid solutions were taken.

Pre-weighed samples (3.0000 g) were thoroughly mixed and homogenized to bring into equilibrium at temperatures below the melting temperatures of the respective compositions and time regimes. The mixture of chlorides were vacuumed and sealed in the molybdenum vessels of Stepanov (5 cm³) and annealed to provide the equilibrium state. The vessels were then cooled to room temperature in a furnace.

Differential thermal analysis was carried out on a thermal analyzer (DTA-850), the heating rate of the samples was 1–25 deg/min. The standard was calcined aluminum oxide, HC model number. To stabilize the temperature, the required time was 10 minutes, after which the study began.

X-ray phase analysis was performed on XRD-7000 Maxima diffractometer manufactured by Shimadzu with vertical goniometer by a continuous flow method. The obtained diffractograms were identified and compared with the database of X-ray card index of PDF-2 2012.

The measurement process was completely controlled by the computer. Using the software, the measurement results were subjected to various profile processing (smoothing, background subtraction), peak parameters processing (peak search, systematic error correction, internal/external standard method).

The accuracy in determining the reflection angles Δ θ did not exceed 0.02 °C. The hygroscopic samples were protected from air contact by X-ray amorphous film. The original components were identified using X-ray card index ASTM, interplanar distances were found in the tables of Hiller J.L.

5. Discussion of results

The alloys from the area of formation of solid solutions or chemical compounds of the AgBiCl₄ – LiCl system are of practical interest as solid electrolytes [6-11]. According to the results of DTA a polythermal section was constructed. The melting temperature of the primary components are respectively equal to 100°C (AgBiCl₄) and 610 °C (LiCl). The following phases are found on the diagram of the analysed system: L, three double phases: L+ LiCl, L+ AgBiCl₄, LiCl + AgBiCl₄, two triple L+LiCl + AgCl, L+ AgCl + AgBiCl₄ phases. The analysis showed that the addition of LiCl increases the melting point of the alloys, while the addition of AgBiCl₄ lowers the melting point of the alloys; and this corresponds to the 1st Gibbs-Konovalov law. Interplanar distances are gradually increased for alloys, hence the solid phase of the analysed system is relatively rich in LiCl.

The XRPD results confirm the presence of primary crystallization fields.

In the analysed AgBiCl₄ – LiBiCl₄ system a polythermal section is firstly built, in which there are no solid-phase transformations at the temperature below the solidus level.

The system has three single-phase areas: L, α – and β-solids solutions based on the initial components, there are three double areas: L + α, L + β, α + β and the area of L + α + β non-variant equilibrium. The solidus curve was calculated theoretically by the Schroeder – Le-Chatelier equation, and the experimentally obtained data are in good agreement with them. The analysis of XRPD data confirmed the absence of solid-phase transformations, which is a consequence of a monotonic change in the interplanar distance.

In the LiCl-AgBiCl₄, LiBiCl₄-AgBiCl₄ sections of the LiCl-AgCl-BiCl₃ system the analysis of peak intensities showed that the transition from 100 % of the AgBiCl₄ content to 100% of LiCl content in the alloys of the intensity and interplanar distances change monotonically, indicating the preservation of the structure of the samples (tabl. 1–2).
Table 1 The results of X-ray phase analysis of the LiCl – AgBiCl₄ section of the alloys

	100	75	60	30	0
The contents of AgBiCl₄, mol %					
d, nm	I				
0.713	100	0.725	93	0.738	92
0.641	9	0.689	33	0.670	3
0.568	5	0.651	30	0.641	4
0.367	76	0.619	28	0.615	4
0.342	50	0.583	48	0.598	4
0.296	43	0.527	15	0.471	4
0.276	88	0.504	15	0.455	3
0.268	74	0.488	18	0.419	2
0.244	57	0.446	18	0.400	4
0.219	17	0.419	48	0.366	30
0.194	40	0.395	35	0.353	3
0.184	26	0.375	18	0.350	3
0.175	5	0.360	23	0.332	6
0.171	8	0.340	23	0.318	36
0.168	14	0.320	40	0.305	8
0.166	40	0.316	25	0.293	4
0.160	40	0.306	15	0.285	4
0.157	22	0.289	23	0.275	100
0.152	17	0.285	25	0.266	13
0.146	12	0.278	100	0.250	6
0.137	14	0.269	40	0.244	15
0.253	23	0.233	3	0.182	35
0.239	25	0.227	2	0.176	8
0.233	13	0.226	3	0.166	42
0.228	13	0.219	4	0.160	12
0.216	18	0.216	4	0.157	15
0.196	53	0.198	4	0.156	19
0.191	10	0.195	23	0.152	15
0.168	20	0.192	3	0.146	15
0.160	18	0.184	4	0.144	4
0.145	15	0.183	7	0.140	10
0.140	15	0.181	5	0.138	12
0.139	18	0.167	10	0.137	6
0.137	12	0.166	8	0.136	8
0.135	12	0.160	5	0.134	8
0.129	18	0.161	4	0.129	8
0.124	15	0.157	12	0.126	19
Table 2. The results of X-ray phase analysis of the LiBiCl₄–AgBiCl₄ section of the alloys

d, nm	100	80	50	20	0
0.569	0.661	0.660	0.660	0.660	0.542
0.367	0.640	0.640	0.640	0.640	0.511
0.342	0.610	0.619	0.619	0.619	0.461
0.297	0.550	0.550	0.550	0.550	0.410
0.276	0.535	0.550	0.530	0.530	0.369
0.268	0.519	0.530	0.520	0.520	0.334
0.244	0.480	0.520	0.519	0.519	0.297
0.219	0.475	0.519	0.485	0.485	0.294
0.194	0.450	0.484	0.469	0.469	0.257
0.184	0.428	0.466	0.450	0.450	0.229
0.175	0.415	0.445	0.415	0.415	0.197
0.171	0.390	0.428	0.370	0.370	0.185
0.168	0.380	0.415	0.360	0.360	0.170
0.166	0.370	0.388	0.340	0.340	0.153
0.160	0.360	0.370	0.319	0.319	0.151
0.157	0.340	0.360	0.300	0.300	0.151
0.152	0.320	0.345	0.295	0.295	0.151
0.146	0.289	0.330	0.289	0.289	0.151
0.137	0.285	0.300	0.278	0.278	0.151

The melting temperatures of the primary components are respectively equal to 100°C (AgBiCl₄) and 210°C (LiBi₄Cl₁₃).

The analysis of the results of XRPA for the samples section of LiBi₄Cl₁₃-AgBiCl₄ confirmed that the intensity of the reflexes corresponding to the solid solution based on AgBiCl₄ decreases with decreasing the relative content of this phase (tabl. 3).
Table 3. The results of X-ray phase analysis of the alloys of the LiBi$_4$Cl$_{13}$ – AgBiCl$_4$ section

d, nm	100	90	50	20	0		
0.730	100	0.738	100	0.738	100	0.734	80
0.367	76	0.659	15	0.638	12	0.658	24
0.342	50	0.51	25	0.625	15	0.634	12
0.316	48	0.641	18	0.603	12	0.608	12
0.297	43	0.615	25	0.590	76	0.598	24
0.276	98	0.580	12	0.550	45	0.550	6
0.268	81	0.576	33	0.503	18	0.525	5
0.266	74	0.528	24	0.450	18	0.490	14
0.244	57	0.515	13	0.441	15	0.467	7
0.219	17	0.462	25	0.434	36	0.443	12
0.194	40	0.436	52	0.423	12	0.423	10
0.184	26	0.445	20	0.374	15	0.370	6
0.175	5	0.400	38	0.342	48	0.350	50
0.171	7	0.343	46	0.318	15	0.342	35
0.168	14	0.319	21	0.279	30	0.318	27
0.166	40	0.379	42	0.271	88	0.279	7
0.160	40	0.249	38	0.263	9	0.271	21
0.137	16	0.226	21	0.249	12	0.256	32
0.152	22	0.225	18	0.242	25	0.249	8
0.146	17	0.220	13	0.236	19	0.236	5
0.137	12	0.197	17	0.215	21	0.220	4
0.167	17	0.210	12	0.197	5	0.158	8
0.145	17	0.197	18	0.169	10		
0.130	25	0.185	12	0.166	6		

6. Conclusion
The AgBiCl$_4$ – LiBi$_4$Cl$_{13}$ system was analysed firstly, and a polythermal section was built. The melting temperatures of the initial components are respectively equal to 100°C (AgBiCl$_4$) and 224°C (LiBi$_4$Cl$_{13}$). The system has three single-phase areas: L, α – and β-solid solutions based on the initial components, two L + β, L + α double areas and a L + α + β triple area. The analysis of XRPA results showed that the intensity of reflexes corresponding to AgBiCl$_4$-based on the solid solution decreases with decreasing relative content of this phase.

In the analysed system it was made the projection of the liquidus surface of the BiCl$_3$-LiCl-AgCl ternary system. It consists of four fields of primary crystallization phases: BiCl$_3$, LiCl, AgCl, LiBi$_4$Cl$_{13}$ and solid solutions based on AgBiCl$_4$ and LiBiCl$_4$.

The XRPA results confirm the presence of primary crystallization fields.
Table 4 presents the non-variant equilibria.

Table 4. Non-variant equilibria

The character feature of the point	t °C	Composition, mole. %	The equilibrium phases		
E$_1$	120.0	13.4	23.3	63.3	L ↔ LiBi$_4$Cl$_{13}$ + AgBiCl$_4$ + BiCl$_3$
E$_2$	100.0	66.6	6.2	27.2	L ↔ AgBiCl$_4$ + AgCl + LiBiCl$_4$
E$_3$	125.0	25.0	41.7	33.3	L ↔ LiBi$_4$Cl$_{13}$ + AgBiCl$_4$ + AgCl
On the basis of experimentally obtained data, the lines of joint crystallization were drawn and the coordinates of non-variant points were determined.

Thus, in the present paper, the phase equilibria in the BiCl$_3$-LiCl-AgCl ternary system were analysed utilizing the methods of differential thermal and X-ray phase analysis. The paper establishes that in the LiCl-AgBiCl$_4$ system the eutectic nature of the interaction is observed. The addition of AgBiCl$_4$ significantly lowers the melting point of the second component. The eutectic character of interaction with limited solubility of components in the AgBiCl$_4$-LiBiCl$_4$ and AgBiCl$_4$-LiBi$_3$Cl$_3$ systems is determined.

References

[1] Trunin A S 1997 Complex methodology of the multicomponent systems (Samara: Samara State Technical University)
[2] Trunin A S and Meshalkin A V 2010 Methodical manual for maintaining of the unit of differential thermal analysis DTA-500 (Samara: Samara State Polytechnic University)
[3] Dzeranova K B and Trunin A S 2005 Phase diagrams of systems of Bi (III) halides and halides of the elements of I and II groups of the Periodic Table of D I Mendeleev (Vladikavkaz)
[4] Kodzasova S A and Dzeranova K B 2016 The BiCl$_3$-AgCl system. In the collection: Actual problems of chemistry, biology and biotechnology. The Materials of X All-Russian sci. conf. (Vladikavkaz: North Ossetian State University Publishing house) pp 222–3
[5] Dzeranova K B and Trunin A S 2007 Thermodynamic study of the BiCl$_3$-MCl (M = Li, Na, K, Cs) systems in the ideal associated solution model Inorganic Materials 43(9) 1015–7
[6] Dzeranova K B 2007 Phase relations in the BiI$_3$-ZnI$_2$ system Inorganic Materials 43(10) 1142–4
[7] Dzeranova K B 2004 Physico-chemical study of the quasi-binary section of LiZnBiI$_6$-ZnI$_2$ of the BiI$_3$-LiI-ZnI$_2$ ternary system The Proceedings of higher educational institutions. The North Caucasus. Ser. Natural sci. 51 35–7
[8] Dzeranova K B 2004 Thermal analysis of binary system of Li and Zn iodides. The Proceedings higher educational institutions. The North Caucasus. Ser. Natural Sci. 54 60–3
[9] Dzeranova K B 2004 The prediction of phase formation in the M(I)G-BIG$_3$ systems Izvestia of Rus. State Pedagogical University named after A I Herzen 4(8) 94–9
[10] Kaloev N I, Kubalova L M, Dzeranova K B, Toporovskaya E A and Paramazova S E 1998 Thermodynamic investigation of the binary BiI$_3$-Rbi, BiI$_3$-CsI, and BiI$_3$-Til systems in the approximation of the ideal associated solutions Rus. J. of Inorganic Chemistry 43(1) 125–7
[11] Dzeranova K B 2007 Interaction in the BiI$_3$-ZnI$_2$ system Inorganic materials 43(10) 1270–2
[12] Dzeranova K B 2004 The analysis of physico-chemical interaction in the melted materials of Bi iodides with iodide of Zn. SPb Izvestiya RSPU after A I Herzen 23