exposure to elevated combustion temperatures and flames. The fabrication of soft robots using multi-material 3D printing has numerous advantages over traditional molding techniques. This strategy promotes high-throughput prototyping by enabling rapid design iteration with no additional cost for increased morphological complexity. By allowing designers greater freedom, 3D printing also facilitates the implementation of good robotic design principles, such as modularity and the separation of power and control actuators. Beyond soft robotics specifically, the ability to print a single structure composed of multiple materials enables investigation into mechanically complex designs, without the drawbacks of complicated assembly or inconsistent manufacturing repeatability. One such design is a modulus gradient that eases the transition from soft to rigid components through stress reduction at the interface of materials mismatched in compliance. Although the materials available to this fabrication strategy are currently limited and perhaps best suited to the fabrication of prototype devices, future development of materials compatible with 3D printing will only enhance the relevance of this approach.

REFERENCES AND NOTES
1. D. Rus, M. T. Tolley, Nature 521, 467–475 (2015).
2. D. Trivedi, C. D. Rahn, W. M. Kier, J. D. Walker, Appl. Bionics Biomech. 5, 99–117 (2008).
3. R. Pfeifer, M. Lungarella, F. Iida, Commun. ACM 55, 76 (2012).
4. S. Kim, C. Laschi, B. Trimmer, Trends Biotechnol. 31, 287–294 (2013).
5. C. Majidi, Soft Robotics 1, 5–11 (2014).
6. C. Laschi, M. Ciucchi, Front. Bioeng. Biotechnol. 2, 1–5 (2014).
7. W. McMahan et al., in Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 15 to 18 May 2006, Orlando, FL, pp. 2336–2341.
8. R. F. Shepherd et al., Proc. Natl. Acad. Sci. U.S.A. 108, 20400–20403 (2011).
9. C. Laschi et al., Adv. Robot. 26, 709–727 (2012).
10. H.-T. Lin, G. Li, E. Leshk, B. Trimmer, Bioinspir. Biomim. 6, 026007 (2011).
11. C. D. Onal, D. Rus, Bioinspir. Biomim. 8, 026003 (2013).
12. A. D. Marchese, C. D. Onal, D. Rus, Soft Robotics 1, 75–87 (2014).
13. R. Pfeifer, M. Lungarella, F. Iida, Science 318, 1088–1093 (2007).
14. K. Suzumori, S. Ikura, H. Tanaka, Control Syst. J. IEEE 12, 21–27 (1992).
15. Y.-L. Park et al., Bioinspir. Biomim. 9, 016007 (2014).
16. P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, C. J. Walsh, Robot. Auton. Syst. available at www. sciencedirect.com/science/article/pii/S0921889014001729.
17. M. T. Tolley et al., Soft Robotics 1, 213–223 (2014).
18. H. Lipson, Soft Robotics 1, 21–27 (2014).
19. K.-J. Cho et al., Int. J. Precision Eng. Manuf. 10, 171–181 (2009).
20. F. Iliievski, A. D. Mazzoe, R. F. Shepherd, X. Chen, G. M. Whitesides, Angew. Chem. 123, 1930–1935 (2011).
21. E. Sheltz, A. Mozeika, N. Rodenburg, E. Brown, H. M. Jaeger, in Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 10 to 15 October 2009, St. Louis, MO, pp. 5672–5677.
22. T. J. Roberts, E. Azizi, J. Exp. Biol. 214, 353–361 (2011).
23. A. Miserez, T. Schneberk, C. Sun, F. W. Zok, J. H. Waite, Science 319, 1816–1819 (2008).
24. Materials and methods are available as supplementary materials on Science Online.
25. R. F. Shepherd et al., Angew. Chem. 125, 2964–2968 (2013).
26. M. T. Tolley et al., in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 14 to 18 September 2014, Chicago, IL, pp. 561–566.
27. M. Loslep, C. M. Schumacher, U. B. Lienkenberg, W. J. Stark, Soft Robotics 2, 33–41 (2015).

ACKNOWLEDGMENTS
This material is based on work supported by NSF under award number DMR-1240570; the Wyss Institute for Biologically Inspired Research; and an Army Research Office, National Defense Science and Engineering Graduate (NDSEG) fellowship. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the funding organizations.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/349/6244/161/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 and S2
Table S1
References (28, 29)
Movies S1 and S2
27 February 2015; accepted 11 June 2015
10.1126/science.abb0129

APPLIED PHYSICS
Mid-infrared plasmonic biosensing with graphene
Daniel Rodrigo,1 Odeta Limaj,1 Davide Janner,2 Dordaneh Etezadi,1 F. Javier García de Abajo,1,3 Valerio Pruneri,2,3 Hatice Altug1,5

Infrared spectroscopy is the technique of choice for chemical identification of biomolecules through their vibrational fingerprints. However, infrared light interacts poorly with nanometric-size molecules. We exploit the unique electro-optical properties of graphene to demonstrate a high-sensitivity tunable plasmonic biosensor for chemically specific label-free detection of protein monolayers. The plasmon resonance of nanostructured graphene is dynamically tuned to selectively probe the protein at different frequencies and extract its complex refractive index. Additionally, the extreme spatial light confinement in graphene—up to two orders of magnitude higher than in metals—produces an unprecedentedly high overlap with nanometric biomolecules, enabling superior sensitivity in the detection of their refractive index and vibrational fingerprints. The combination of tunable spectral selectivity and enhanced sensitivity of graphene opens exciting prospects for biosensing.

Graphene has the potential to reshape the landscape of photonics and optoelectronics owing to its exceptional optical and electrical properties (1–3). In particular, its infrared (IR) response is characterized by long-lived collective electron oscillations (plasmons) that can be dynamically tuned by electrostatic gating, in contrast to conventional plasmonic materials such as noble metals (4–10). Furthermore, the electromagnetic fields of graphene IR plasmons display unprecedented spatial confinement, making them extremely attractive for enhanced light-matter interactions and integrated mid-IR photonics (11–14). Specifically, biosensing is an area in which graphene tunability and IR light localization offer great opportunities.

The mid-IR range is particularly well suited for biosensing, as it encompasses the molecular vibrations that uniquely identify the biochemical building blocks of life, such as proteins, lipids, and DNA (15). IR absorption spectroscopy is a powerful technique that provides exquisite bioinformation in a nondestructive label-free fashion by accessing these vibrational fingerprints. Nevertheless, vibrational absorption signals are prohibitively weak because of the large mismatch between mid-IR wavelengths (2 to 6 μm) and biomolecular dimensions (<10 nm). To overcome this limitation, high sensitivity can be achieved by exploiting the strong optical near fields in the vicinity of resonant metallic nanostructures (16–18); however, this comes at the expense of a reduced spectral bandwidth and is ultimately limited by the relatively poor field confinement of metals in the mid-IR (19).

Here, we report a graphene-based tunable mid-IR biosensor and demonstrate its potential for quantitative protein detection and chemical-specific molecular identification. Our device (Fig. 1A) consists of a graphene layer synthesized by chemical vapor deposition and transferred to a 280-nm-thick native silica oxide of a silicon substrate. Graphene nanoribbon arrays (width W ≈ 20 to 60 nm and period P = 2W) are then patterned using electron beam lithography and oxygen plasma etching (20). A scanning electron microscope image and an atomic force microscopy profile for typical samples are shown in Fig. 1, B and C. We apply an electrostatic field across the SiO2 layer through a bias voltage (V).

Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. 2Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain. 3Instituto Catánol de Recerca i Estudis Avancats, 08010 Barcelona, Spain. *Corresponding author. E-mail: hatice.altug@epfl.ch

SCIENCESciencemag.org 10 JULY 2015 • VOL 349 ISSUE 6244 • 165
Fig. 1. Tunable graphene mid-IR biosensor. (A) Conceptual view of the graphene biosensor. An infrared beam excites a plasmon resonance across the graphene nanoribbons. The electromagnetic field is concentrated at the ribbon edge, enhancing light interaction with the protein molecules adsorbed on graphene. Protein sensing is achieved by detecting a plasmon resonance spectral shift ($\Delta \omega$) accompanied by narrow dips corresponding to the molecular vibration bands of the protein. The plasmonic resonance is electrostatically tuned to sweep continuously over the protein vibrational bands. (B) Scanning electron microscope image of a graphene nanoribbon array (width $W = 30$ nm, period $P = 80$ nm). Vertical nanoribbons are electrically interconnected by horizontal strips to maintain the graphene surface at uniform potential. (C) Atomic force microscope cross section of a graphene nanoribbon array.

Fig. 2. Mid-IR spectrum of the graphene biosensor. (A) Extinction spectra of the graphene nanoribbon array ($W = 30$ nm, $P = 80$ nm) for bias voltages V_g from -20 V to -130 V before (dashed curves) and after (solid curves) protein bilayer formation. Extinction is calculated as the relative difference in transmission between regions with (T) and without (T_0) graphene nanoribbons. Gray vertical strips indicate amide I and II vibrational bands of the protein. (B) Analytic calculation of the extinction spectra after fitting graphene and protein parameters to reproduce experimental data. (C) Graphene carrier density (n_s) and Fermi energy (E_F) extracted from experimental IR extinction spectra of the bare graphene nanoribbon array at different applied bias voltages V_g. (D) Permittivity of the protein bilayer extracted from the analytic fit to the experimental IR spectra (solid red curves) of the graphene biosensor compared to the permittivity extracted from IRRAS and ellipsometry measurements (dashed black curves). Upper and lower curves show the real and imaginary components, respectively.
that is varied between 0 and 120 V to dynamically control the Fermi level \((E_F)\) of graphene. Extinction spectra of the device are acquired using Fourier transform infrared (FTIR) spectroscopy for the incident electric field polarized perpendicular to the nanoribbons. Figure 2A shows the extinction for a nanoribbon array with \(W = 30\) nm, \(P = 80\) nm, and different values of \(V_g\) (dashed curves). A prominent resonance is observed, which is associated with localized surface plasmons (LSPs) polarized across the nanoribbons. By changing \(V_g\), the resonance frequency is tuned continuously from \(1450\) cm\(^{-1}\) to above \(1800\) cm\(^{-1}\). The ribbon width \(W = 30\) nm is chosen so that the frequency tuning range sweeps across the target vibrational fingerprints (fig. S1).

We sought to detect protein molecules, the primary material of life enabling most of the critical biological functions. The main vibrational fingerprints of proteins are amide I and II bands (1660 and 1550 cm\(^{-1}\)). They are primarily associated with the C=O stretch and N-H bend modes in the amide functional group. For demonstration of protein detection, we used recombinant protein A/G and goat anti-mouse immunoglobulin G (IgG). Incubation of A/G on the sensor surface allows the formation of a protein monolayer by physisorption, which is then defined protein bilayer (20). The extinction spectra of the sensor are presented in Fig. 2A before and after protein bilayer formation, showing radical changes upon protein immobilization. The first observed prominent effect is a red shift of the plasmonic resonance as a consequence of the change in the refractive index at the sensor surface. Despite the nanometric thickness of the protein bilayer, we detected frequency shifts exceeding \(200\) cm\(^{-1}\). The second prominent effect is the emergence of two spectral dips at \(1660\) cm\(^{-1}\), which are almost undetectable when they are far from the plasmonic resonance (e.g., for \(V_g = -20\) V) and become progressively more intense with increasing spectral overlap (e.g., for \(V_g = -130\) V). Their spectral positions coincide with the amide I and II bands, respectively, unambiguously revealing the presence of the protein compounds in a chemically specific manner. The decrease in extinction induced by the vibrational modes is the result of resonant coupling between plasmons and molecular vibrations (21).

To extract quantitative information on the protein optical parameters, we use an analytical model of the IR response of the graphene nano-ribbon array (22). We model graphene in the electrostatic limit \((W, P << \lambda)\) under the assumption that the ribbon response is dominated by the lowest-order transversal mode. The model involves a detailed account of the protein layer; however, a reasonable agreement is obtained in the limit of a thick protein layer. The transmission coefficient of the structure then reduces to

\[
t = t_0 + \frac{4\pi^2 \alpha_{eff}(\omega)(1 + r_0)t_0}{n_2 P_h}
\]

where

\[
\alpha_{eff}(\omega) = \frac{0.894 W^2}{A n_2^2 r_2^2} \text{to} W^2 \sigma(\omega)
\]

is an effective graphene-ribbon polarizability that takes into account the complex refractive indices of the silica substrate \(n_2\) (23) and the material immediately above the ribbons \(n_2\), while the coefficient \(A\) is a function of \(P/W\) (in particular, \(A = 28.0\) for \(P/W = 2.67\)). Here, \(t_0\) and \(r_0\) are the transmission and reflection coefficients of the interface between media 1 and 2 in the absence of graphene. The response of the latter enters through its frequency-dependent surface conductivity \(\sigma(\omega)\), which we model in the local random-phase approximation (21). Finally, we compute the ratio of transmission in regions with and without graphene as \(|t/t_0|^2\), which is the magnitude measured in the experiments.

We first used the analytic model to extract the graphene parameters from experimental IR spectra for bare nanoribbons (i.e., with \(n_2 = 1\)). The calculated spectra are reported in Fig. 2B (dashed curves) for the extracted relaxation time \((\tau = 15\) fs) and

\[500 \text{ nm} |E/E_0| \]

\[\text{graphene} \quad \text{graphene} \quad \text{gold} \quad \text{gold} \]

\[\text{500 nm} \quad \text{10 nm} \quad \text{10 nm} \quad \text{10 nm} \]

\[\text{Field confinement (%)} \quad \text{Field confinement (%)} \quad \text{Field confinement (%)} \quad \text{Field confinement (%)} \]

\[\text{Graphene versus gold. (A) Extinction spectra of graphene and gold nanoantenna arrays before (dashed curves) and after (solid curves) protein bilayer formation for plasmonic resonance peak away from the molecular vibration bands. The gold antennas have dimensions } 2.6 \mu m \times 0.2 \mu m \times 0.1 \mu m \text{ while the graphene is biased to } V_g = -20 \text{ V. The spectral shift of the plasmonic resonance (indicated by horizontal arrows) shows the refractive index sensitivity of the biosensors. (B) Extinction spectra of graphene and gold biosensors after protein formation (thick curves) and fitting (thin curves) for plasmon peak overlapping with the molecular vibration bands. The gold antennas have dimensions } 2.1 \mu m \times 0.2 \mu m \times 0.1 \mu m \text{ and the graphene gate voltage is } V_g = -120 \text{ V. The intensity of the spectral features at amide I and II bands (1660 to 1550 cm}^{-1}) \text{ indicates the SEIRA sensitivity of the biosensors. (C) Near-field enhancement distribution } |E/E_0| \text{ in the plasmonic sensors operating at } 1600 \text{ cm}^{-1} \text{ resonance frequency. (D) Percentage of space-integrated near-field intensity confined within a volume extending a distance } d \text{ outside the nanoantenna. Inset shows a zoom-in for } d \text{ between 0 and 40 nm.} \]
By computing the percentage of near-field intensity confined within a given distance d from the structure (Fig. 3D), we observe that 90% of the mode energy is confined within 15 nm from the graphene surface, whereas the same percentage is spread over a distance 500 nm away from the gold surface, thus confirming the tighter field confinement of graphene in the mid-IR. As the biosensing signal comes only from the field inside the target volume, we also calculate the field overlap with an 8-nm-thick protein bilayer, which is 29% for graphene and only 4% for gold. The near-field intensity overlap can be experimentally extracted as the ratio of the relative resonance shift ($\Delta \omega/\omega_0$) and the permittivity variation (ε_2) (24). This estimate yields 26% and 5% field overlap for graphene and gold, in good agreement with simulations (see above). These results demonstrate the ability of graphene to provide stronger light-protein interactions beyond state-of-the-art metallic plasmonic sensors; further improvement in the graphene quality should lead to even better sensitivity and spectral resolution.

RESEARCH | **REPORTS**

GALAXY EVOLUTION

An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang

Benny Trakhtenbrot,1, C. Megan Urry,2,3,4 Francesca Civano,3,5 David J. Rosario,6 Martin Elvis,1 Kevin Schawinski,1 Hyewon Suh,6,7 Angela Bongiorno,6 Brooke D. Simmons9

Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift $z = 3.328$, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow.

Several lines of observational evidence, spanning a wide range of cosmic epochs, have led to a commonly accepted picture where in supermassive black holes (SMBHs, $M_{\text{BH}} > 10^6 M_\odot$; M_\odot is the solar mass) coevolve with their host galaxies (1–4). Moreover, energy- and/or momentum-driven "feedback" from accreting SMBHs (Active Galactic Nuclei; AGN) is thought to quench star formation in the host galaxy (5). To directly test the relevance of such scenarios at