Implications of LHC Higgs and SUSY searches for MSSM

Nazila Mahmoudi
CERN TH & LPC Clermont-Ferrand (France)

In collaboration with A. Arbey, M. Battaglia & A. Djouadi
Search for SUSY is the main focus of BSM searches in both ATLAS and CMS!

Before the start of the LHC: high expectation for an early discovery of SUSY particles:

SUSY could be discovered even before the Higgs!

It appears not to be the case:
So far we have only limits which are pushing the masses to higher and higher values
Not enough to confirm/exclude SUSY

BUT:
- Supersymmetry is more than just the CMSSM!
- An alternative path to constrain SUSY efficiently is through the Higgs sector
Search for SUSY is the main focus of BSM searches in both ATLAS and CMS!

Before the start of the LHC: high expectation for an early discovery of SUSY particles:

SUSY could be discovered even before the Higgs!

It appears not to be the case:
So far we have only limits which are pushing the masses to higher and higher values
Not enough to confirm/exclude SUSY

BUT:

- Supersymmetry is more than just the CMSSM!
- An alternative path to constrain SUSY efficiently is through the Higgs sector!
phenomenological MSSM (pMSSM)

A nice framework to go beyond CMSSM is the phenomenological MSSM:
The most general CP/R parity-conserving MSSM, assuming Minimal Flavour Violation at the TeV scale and suppressed FCNC’s at tree level, with 19 free parameters:
10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsino

A. Djouadi et al., hep-ph/9901246

Flat scans over the pMSSM 19 parameters

Parameter	Range (in GeV)
$\tan \beta$	[1, 60]
M_A	[50, 2000]
M_1	[-2500, 2500]
M_2	[-2500, 2500]
M_3	[50, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_u = A_c = A_t$	[-10000, 10000]
$A_\mu = A_\tau$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}}_L = M_{\tilde{\mu}}_L$	[50, 3000]
$M_{\tilde{e}}_R = M_{\tilde{\mu}}_R$	[50, 3000]
$M_{\tilde{\tau}}_L$	[50, 3000]
$M_{\tilde{\tau}}_R$	[50, 3000]
$M_{\tilde{\nu}}_1 = M_{\tilde{\nu}}_2$	[50, 3000]
$M_{\tilde{\nu}}_3$	[50, 3000]
$M_{\tilde{u}}_R = M_{\tilde{c}}_R$	[50, 3000]
$M_{\tilde{t}}_R$	[50, 3000]
$M_{\tilde{d}}_R = M_{\tilde{s}}_R$	[50, 3000]
$M_{\tilde{b}}_R$	[50, 3000]

- Spectrum generation (SoftSusy, Suspect)
- Low energy observables (SuperIso)
- Dark matter (SuperIso Relic, Micromegas)
- SUSY and Higgs mass limits (SuperIso, HiggsBounds)
- Higgs and SUSY decays (HDECAY, Higlu, FeynHiggs, SDECAY)
- Event generation and cross sections (PYTHIA, Prospino)
- Fast detector simulation (Delphes)

Imposing constraints from:
Flavour physics ($BR(B \rightarrow X_s \gamma)$, $BR(B_s \rightarrow \mu^+ \mu^−)$, $R(B \rightarrow \tau \nu)$, $BR(D_s \rightarrow \tau \nu)$, $BR(B \rightarrow D^0 \tau \nu)$, $R_{\mu23}(K \rightarrow \mu \nu$)), dark matter relic density, sparticle mass upper bounds and Higgs search limits.
phenomenological MSSM (pMSSM)

A nice framework to go beyond CMSSM is the phenomenological MSSM:
The most general CP/R parity-conserving MSSM, assuming Minimal Flavour Violation at the
TeV scale and suppressed FCNC’s at tree level, with 19 free parameters:
10 sfermion masses, 3 gaugino masses, 3 trilinear couplings, 3 Higgs/Higgsinos

A. Djouadi et al., hep-ph/9901246

Flat scans over the pMSSM 19 parameters

Parameter	Range (in GeV)
\(\tan \beta \)	[1, 60]
\(M_A \)	[50, 2000]
\(M_1 \)	[-2500, 2500]
\(M_2 \)	[-2500, 2500]
\(M_3 \)	[50, 2500]
\(A_d = A_s = A_b \)	[-10000, 10000]
\(A_u = A_c = A_t \)	[-10000, 10000]
\(A_e = A_{\mu} = A_\tau \)	[-10000, 10000]
\(\mu \)	[-3000, 3000]
\(M_{\tilde{e}}_L = M_{\tilde{\mu}}_L \)	[50, 3000]
\(M_{\tilde{e}}_R = M_{\tilde{\mu}}_R \)	[50, 3000]
\(M_{\tilde{\tau}}_L \)	[50, 3000]
\(M_{\tilde{\tau}}_R \)	[50, 3000]
\(M_{\tilde{q}}_1_L = M_{\tilde{q}}_2_L \)	[50, 3000]
\(M_{\tilde{d}}_L \)	[50, 3000]
\(M_{\tilde{u}}_R = M_{\tilde{c}}_R \)	[50, 3000]
\(M_{\tilde{t}}_R \)	[50, 3000]
\(M_{\tilde{d}}_R = M_{\tilde{s}}_R \)	[50, 3000]
\(M_{\tilde{b}}_R \)	[50, 3000]

- Spectrum generation (SoftSusy, Suspect)
- Low energy observables (Superlso)
- Dark matter (Superlso Relic, Micromegas)
- SUSY and Higgs mass limits (Superlso, HiggsBounds)
- Higgs and SUSY decays (HDECAY, Higlu, FeynHiggs, SDECAy)
- Event generation and cross sections (PYTHIA, Prospino)
- Fast detector simulation (Delphes)

Imposing constraints from:
Flavour physics \(BR(B \rightarrow X_s \gamma), BR(B_s \rightarrow \mu^+ \mu^-), \)
\(R(B \rightarrow \tau \nu), BR(D_s \rightarrow \tau \nu), BR(B \rightarrow D^0 \tau \nu), \)
\(R_{\mu 23}(K \rightarrow \mu \nu) \), dark matter relic density, sparticle mass upper bounds and Higgs search limits.
Both ATLAS and CMS have confirmed the excess at ~ 126 GeV!

Combining ATLAS and CMS results: $M_h = 125.9 \pm 2.1$ GeV

We consider the interval $123 < M_h < 129$ GeV
Higgs searches

- In the SM, the Higgs mass is essentially a free parameter.
- In the MSSM, the lightest CP-even Higgs particle is bounded from above: \(M_h^{\text{max}} \approx M_Z |\cos 2\beta| + \text{radiative corrections} \lesssim 110 - 135 \text{ GeV} \)
- Imposing \(M_h \) places very strong constraints on the MSSM parameters through their contributions to the radiative corrections:
 \[
 M_h^{2M_A \gg M_Z^2 \cos^2 2\beta} + \frac{3m_t^4}{2\pi^2 v^2} \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right]
 \]
- Important parameters for MSSM Higgs mass:
 - \(\tan \beta \) and \(M_A \)
 - the SUSY breaking scale \(M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} \)
 - the mixing parameter in the stop sector \(X_t = A_t - \mu \cot \beta \)
- \(M_h^{\text{max}} \) is obtained for:
 - a decoupling regime with a heavy pseudoscalar Higgs boson, \(M_A \sim O(\text{TeV}) \)
 - large \(\tan \beta \), i.e. \(\tan \beta \gtrsim 10 \)
 - heavy stops, i.e. large \(M_S \)
 - maximal mixing scenario, i.e. \(X_t = \sqrt{6}M_S \)
In the SM, the Higgs mass is essentially a free parameter

In the MSSM, the lightest CP-even Higgs particle is bounded from above:

\[M_{h}^{\text{max}} \approx M_Z |\cos 2\beta| + \text{radiative corrections} \lesssim 110 - 135 \text{ GeV} \]

Imposing \(M_h \) places very strong constraints on the MSSM parameters through their contributions to the radiative corrections

\[M_h^{2 M_A \gg M_Z} \approx M_Z^2 \cos^2 2\beta + \frac{3 m_t^4}{2 \pi^2 v^2} \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 M_S^2} \right) \right] \]

Important parameters for MSSM Higgs mass:
- \(\tan \beta \) and \(M_A \)
- the SUSY breaking scale \(M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} \)
- the mixing parameter in the stop sector \(X_t = A_t - \mu \cot \beta \)

\(M_h^{\text{max}} \) is obtained for:
- a decoupling regime with a heavy pseudoscalar Higgs boson, \(M_A \sim \mathcal{O}(\text{TeV}) \)
- large \(\tan \beta \), \textit{i.e.} \(\tan \beta \gtrsim 10 \)
- heavy stops, \textit{i.e.} large \(M_S \)
- maximal mixing scenario, \textit{i.e.} \(X_t = \sqrt{6} M_S \)
Consequences of a 126 GeV Higgs on constrained MSSM scenarios

Maximal Higgs mass

Several constrained models are excluded or about to be!
Sensitivity to the top mass

Impact of m_t on the Higgs mass:

$m_t = 170$, 173 and 176 GeV

The variations in the top mass is directly transmitted to the Higgs mass!

That can even resurrect mGMSB!
Consequences of a 126 GeV Higgs on pMSSM

Influence on squark spectra

With $M_h > 111$ GeV

With $123 < M_h < 127$ GeV

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1847
A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012) 1906
Consequences of a 126 GeV Higgs

Particular benchmark scenarios

In the maximal mixing scenario ($X_t \approx \sqrt{6} M_s$):

\[
\text{Cyan: CMS limit from } A^0 \to \tau\tau \text{ with 4.6/fb}
\]
\[
\text{Red: flavour constraints: } b \to s\gamma, B \to \tau\nu \text{ and } B_s \to \mu\mu
\]

Very strong constraint from the neutral Higgs searches!
Consequences of a 126 GeV Higgs

Particular benchmark scenarios

In the **typical mixing** scenario ($X_t \approx M_S$):

Cyan: CMS limit from $A^0 \rightarrow \tau\tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and $B_s \rightarrow \mu\mu$

Very strong constraint from the neutral Higgs searches!
Consequences of a 126 GeV Higgs

Particular benchmark scenarios

In the no mixing scenario ($X_t \approx 0$):

Cyan: CMS limit from $A^0 \rightarrow \tau\tau$ with 4.6/fb

Red: flavour constraints: $b \rightarrow s\gamma$, $B \rightarrow \tau\nu$ and $B_s \rightarrow \mu\mu$

Very strong constraint from the neutral Higgs searches!
Consequences of a 126 GeV Higgs on pMSSM

Favoured region: χ^2 analysis and normalized distributions

Solid lines: accepted pMSSM points with $123 < M_h < 129$ GeV
Dashed lines: points favoured at 90% C.L. by M_h, $\text{BR}(h^0 \to \gamma \gamma)$, $\text{BR}(h^0 \to ZZ)$ and $\text{BR}(h^0 \to b\bar{b})$

$R_{\gamma\gamma} = 1.71 \pm 0.33$, $R_{ZZ} = 0.95 \pm 0.40$ (ATLAS+CMS), $R_{b\bar{b}} = 1.06 \pm 0.50$ (CMS+Tevatron)

\rightarrow Heavy stops and light sbottoms favoured by the new results!
Conclusion

- Impressive impact of the Higgs searches on SUSY scenarios
- Complementary to the direct SUSY searches
- Several constrained MSSM scenarios are about to be ruled out by the Higgs discovery
- It is now mandatory to go beyond CMSSM
- There is still plenty of room in general MSSM

Imagine what we can get by the end of the year with 3 times more data!
Backup

Introduction	pMSSM	Higgs searches	Implications	Conclusion
o	o	o	o	o

Backup
Sensitivity to M_A from $\text{BR}(B_s \rightarrow \mu^+\mu^-)$

Considering 2 scenarios:

- Current bound from LHCb+CMS + estimated th syst:
 \[
 \text{BR}(B_s \rightarrow \mu^+\mu^-) < 1.26 \times 10^{-8}
 \]

- SM like branching ratio with estimated 20% total uncertainty

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012)

Light M_A strongly constrained!
Dark matter direct detection

Considering 2 scenarios:

- Current Xenon 100 limit
- Projected 2012 90% C.L. upper limit

Again light M_A strongly constrained!

A. Arbey, M. Battaglia, F.M., Eur.Phys.J. C72 (2012)
Higgs searches

Direct searches for $A \rightarrow \tau \tau$

Allowed region of $(M_A, \tan \beta)$ from full pMSSM scans for 1.1 and 15 fb$^{-1}$ compared to published CMS expected limit

Low M_A region below 350 GeV can be explored and excluded if no signal except a narrow strip around $\tan \beta = 5$.