Effect of egg yolk of free-range chicken and methanol as a cryoprotective agent for the sperm preservation of cyprinid fish, *Neolissochilus soroides* (Valenciennes, 1842)

Abinawanto Abinawanto a,*, Nia Vardinic, Anang Hari Kristanto b, Retno Lestari a, Anom Bowolaksonoa

a Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

b Research Institute for Freshwater Aquaculture and Fisheries Extension, Jalan Sempur No 1, Bogor 16129, West Java, Indonesia

c Graduate School of Biology, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

A R T I C L E I N F O

Keywords:
Cryoprotectants
Fertility rate
Godfish
Spermatozoa

A B S T R A C T

The objective of this study was to determine the optimum concentration of egg yolk of free-range chicken as a cryoprotective agent on cyprinid fish, *Neolissochilus soroides* sperm after 48 h frozen. One level of methanol (10%) combined with six levels of egg yolk solution (0%, 5%, 10%, 15%, 20% and 25%) were tested. Fish Ringer's solution was used as an extender. The diluted sperm was equilibrated for 10 min at 5°C, then kept at -10°C temperature for 48 h. Sperm was thawed for 1 min at 40°C. Spermatozoa viability, abnormality, and fertilization rates were analysed afterwards. The one-way ANOVA showed that the combination methanol with several concentrations of egg yolk solution had a significant effect on spermatozoa viability, abnormality, and fertilization rates (*P* < 0.05) by improving semen character. The study revealed that the 5% egg yolk solution combined with 10% methanol resulted in the highest rates of viability (82.13 ± 1.75%) and fertility rates (92.96 ± 1.94%), with the lowest abnormality (25.25 ± 2.22%). A 5% egg yolk solution was identified as the best cryoprotective agent for *N. soroides* spermatozoa preservation at -10°C for 48 h.

1. **Introduction**

God’s fish or Kancra, *Neolissochilus soroides* (Valenciennes, 1842) is one of domesticated fresh water cyprinid fish (Cypriniformes) widely distributed in Southeast Asia including Indonesia (Kottelat et al., 1996). This species also popularly known as Kancra fish in Sumedang and Kuningan areas (West Java), while in North Sumatra it is called as Batak fish (Asih et al., 2008). The populations of *N. soroides* in the wild has been decreasing due to the spawning difficulties (Junior et al., 2005), and overfishing (Rumondang and Mahari, 2017) such has been reported in the previous study in another fresh water fish (Hossain et al., 2015). Another factors like water pollution (Kottelat et al., 1996), habitat degradation, and associated, and illegal logging are also threatening the fish populations (Afrose and Ahmed, 2016; Gupta et al., 2015; Hossain et al., 2015). Therefore, the fish supply has been swift from wild populations to aquaculture productions to meet the market demand (FAO, 2020). As the bioecology of the fish in general has been well documented (Tan and Kottelat, 2009), along with the successfully developed breeding technologies (Legendre et al., 2012) the aquaculture productions are playing a key role in many emerging economies. Spawning difficulties of God’s fish appeared due to the asynchronous gonad maturation (Junior et al., 2005) of the fish. The male gonad maturation of God’s fish usually happens during the months of May to June, while female’s from December to January (Subagia et al., 2006). Therefore, sperm cryopreservation is one of the potential solutions to overcome the asynchronous gonad maturation (Jang et al., 2017; Martinez-Paramao et al., 2017; Riesco et al., 2017; Hezavehei et al., 2018). Cryopreservation is a cell-storage technique that maintains very low temperatures to maintain cell structure over a long period of time (Tsai and Lin, 2012). The fish sperm of many species have been cryopreserved successfully e.g. Eurasian perch, *Perca fluviatilis* (Bernith et al., 2016); carp, *Cyprinus carpio* (Boryshpolets et al., 2017); Atlantic salmon, *Salmo salar* (Figueroa et al., 2018); zebra fish, *Danio rerio* (Matthews et al., 2018; Rebocho, 2018); Mozambique tilapia, *Oreochromis mossambicus*...
Cryoprotectant is a successful substance plays a vital role in preserving spermatozoa or cryopreservation of fish sperm from cold and heat shocks (Mutchminah et al., 2015). Muchlisin et al. (2015); Ciereszko et al., 2014; Muchlisin et al., 2015; Olanrewaju et al., 2015; Peters, 1852; Ugwu et al., 2018); rainbow trout Oncorhynchus mykiss (Walbaum, 1792; Ciereszko et al., 2014; Kuthayer et al., 2014); bagrid catfish, Mystus nemurus (Valenciennes, 1840; Muchlisin and Siti-Aziah, 2009); African catfish, Clarias gariepinus Burchell, 1822 (Muchlisin et al., 2015; Olarewaju et al., 2015); giant gourami, Osphronemus goramy Lacépède, 1801 (Abinawanto et al., 2017); Java barb, Barbonymus gonionotus (Bleeker, 1852; Abinawanto et al., 2013), tiger botia, Osphronemus goramy lacèpède, 1801 (Abinawanto et al., 2017; Ciereszko et al., 2014; Muchlisin et al., 2015; Boryshpolets et al., 2017; Gil et al., 2017). However, the preservation of God’s fish sperm has not been reported yet.

The study was conducted from April to December 2019, at the hatchery of Research Institute for Freshwater Fish Genetic Resources, Cijeruk, West Java Province, Indonesia. Thirty mature males of God’s fish were used as extender and cryoprotectant, respectively. A stock of fish Ringer’s solution was prepared by dissolving 3.25 g of NaCl; 0.125 g of KCl; 0.175 g of CaCl2·2H2O; and 0.1 g of NaHCO3 in distilled water up to 500 mL and then the solution was kept at 4 °C temperature following Abinawanto et al. (2018). The eggs of free-range chickens were purchased from local market and six different concentrations of egg yolk solution were tested: 0%, 5%, 10%, 15%, 20%, and 25%. Following Abinawanto et al. (2018), the respective volume of egg yolk of 0, 25, 50, 75, 100, and 125 μL were added into fish Ringer’s solution up to 450 μL.

2.3. Preparation extender and cryoprotectant

The activator solution was prepared according to Perche et al. (1995), while eosin-Y was made based on Abinawanto et al. (2016). The activator solution was prepared by diluting 0.263 g of NaCl; 0.037 g of KCl and 0.363 g of Tris-HCl with distilled aquabidest up to 100 mL. The solution was kept at 4 °C (Perche et al., 1995). The 0.5% of eosin-Y solution was prepared by diluting 0.5 g of the eosin-Y with distilled aquabidest up to 100 mL.

2.4. Preparation of activator and eosin-Y solutions

The 0.15 M phosphate buffer was made based on Abinawanto et al. (2016), whereas Giemsa solution was prepared according to WHO (2010). The 0.15 M phosphate buffer solution was prepared by dissolving 3.34 g of Na2HPO4·2H2O and 4.08 g of KH2PO4 with distilled aquabidest up to 200 mL. The solution was kept at 4 °C prior to use in the experiment (Abinawanto et al., 2016). The Giemsa solution was prepared by diluting one part of Giemsa stock solution with ten parts of 0.15 M phosphate buffer, and was then filtered by Whatman paper no.1. The Giemsa solution was then kept at 4 °C (WHO, 2010).

2.5. Preparation of 0.15 M phosphate buffer and Giemsa solutions

The 0.15 M phosphate buffer was prepared based on Abinawanto et al. (2016), whereas Giemsa solution was prepared according to WHO (2010). The 0.15 M phosphate buffer solution was prepared by dissolving 3.34 g of Na2HPO4·2H2O and 4.08 g of KH2PO4 with distilled aquabidest up to 200 mL. The solution was kept at 4 °C prior to use in the experiment (Abinawanto et al., 2016). The Giemsa solution was prepared by diluting one part of Giemsa stock solution with ten parts of 0.15 M phosphate buffer, and was then filtered by Whatman paper no.1. The Giemsa solution was then kept at 4 °C (WHO, 2010).

2.6. Sperm collection

Four males weighing 800 ± 10.34 g were treated intramuscularly with Ovaprim (Syndel Laboratories Ltd. Nanaimo, Canada) at dosage of 0.8 mL kg-1 body weight. After 18 h, sperms were collected from individual male donors by a gentle abdominal stripping method (Muchlisin et al., 2010) and placed in 2 mL vials (Cryogenic storage vial, Nalgene International).

2.7. Sperm dilution

Fresh sperm was suspended in the diluent mixtures containing fish Ringer’s solution, 10% methanol, and the respective egg yolk solution where applicable (Table 1). The composition of the solution was modified after Abinawanto et al. (2018). The dilution ratio of the fresh sperm and diluent solution was 1:10 based on Sunarma et al. (2007). The compositions of each component of the diluent solution and the ejaculated sperm.

Experimental Groups	10% Methanol (μL)	Fish Ringer (μL)	Egg yolk (μL)	Ejaculated sperm (μL)
0% Egg Yolk	50	450	0	50
5% Egg Yolk	50	425	25	50
10% Egg Yolk	50	400	50	50
15% Egg Yolk	50	375	75	50
20% Egg Yolk	50	350	100	50
25% Egg Yolk	50	325	125	50

The compositions of each component of the dilution solution and the ejaculated sperm.
ejaculated sperm are presented in Table 1. All treatment were subjected to the ejaculated sperm.

2.8. Equilibration, freezing and thawing

Following Abinawanto and Putri (2017), the diluted sperm in 2 mL tubes was equilibrated at 4–5°C in the refrigerator for 10 min then frozen at -10°C in freezer for 48 h. After that, the frozen sperm was thawed at 40°C for 1 min in a water bath (Abinawanto et al., 2013).

2.9. Sperm quality evaluation

The fresh sperm was evaluated for colour and pH. The preserved sperm was analysed for viability, and abnormality rates using a Boeco Trinocular Microscope (Boeco, Germany) equipped with a digital eyepiece camera (MDCE-5a). The microscope was connected to a computer equipped with an image driving software (Scopephoto 2.0.4).

2.10. Fish egg collection and fertilization

The eggs were collected from the mature female fish by gentle abdominal pressure, and the eggs were put in the plastic basin and kept at 5°C. A total of 100 eggs were taken randomly then fertilized with the treated sperm. The fertilized eggs were incubated in different a plastic basin A total of 0.2 mL of eggs were mixed with 0.6 mL of thawed sperm (1:3 v/v) and two drops of tap water, and then mixed with a soft feather and left in contact for 5 min. A Completely randomized design was applied as shown in Table 1. The ovulated eggs obtained were divided in to each treatment. The fertilization rate was observed 2 h after incubation. The fertilized eggs were transparent, while the unfertilized were opaque. The fertilization rate was calculated using the following formula: fertilization rate (%) = fertilized eggs/total number of incubated eggs x 100 (Yustina et al., 2003).

2.11. Statistical analysis

The replication of each treatment group was conducted based on Frederer formula, (t-1) (n-1) ≥ 15 (McDonald, 2014). The percentage data were arcsine transformed prior to analysis (Muchlisin et al., 2004). The data of sperm viability, abnormality, and fertilization were analyzed using one-way ANOVA then followed by the Tuckey’s test to determine the best treatment. The analysis was conducted using SPSS 14. (SPSS, Chicago, IL, USA). The qualitative data such as semen colour, volume, and pH were analysed descriptively.

3. Results

The fresh sperm was milky white colour, volume was 1.5–2.5 mL, and pH was 8–8.5. Viable sperm showed a green colour on the sperm head (Figure 1a), whereas the non-viable sperm showed a pink or red colour on the sperm head (Figure 1b). A normal sperm, and the abnormal sperm were shown in Figure 2a, and in Figure 2b–f, respectively. The sperm abnormalities were classified based on Ax et al. (2008). Figure 3a shows the fertilized, whereas Figure 3b demonstrates the unfertilized egg. In general, the quality of fresh sperm was higher than cryopreserved sperm. The viability, abnormality, and fertilization rates of fresh sperm were 87.25 ± 1.71%, 20.75 ± 2.50%, and 95.10 ± 1.77%, respectively. However, the sperm quality has decreased gradually depending on the egg yolk solution concentration after 48 h preservation. The ANOVA test showed that the application of egg yolk solution in the diluents gave the significant effect on the sperm viability, abnormality and fertilization rates (P < 0.05). In general, the sperm quality was decreasing with increasing the concentration of egg yolk (Figure 4) in the extender solution. The use of 5% egg yolk gave the highest (P < 0.05) sperm viability (82.13 ± 1.75%). The lowest (P < 0.05) sperm abnormality (Figure 5) was also recorded at 5% egg yolk solution (25.25 ± 4.78%), and this value was lower (P < 0.05) than other treatments except the 10% egg yolk (27 ± 2.16%), and 15% egg yolk (29.25 ± 2.50%). In addition, the highest (P < 0.05) fertilization rate was recorded at the 5%
egg yolk solution (92.96 ± 1.94%), and this value was higher ($P < 0.05$) than for egg yolk solution concentrations of 10%, 15%, 20%, 25%, and the control (Figure 6).

4. Discussion

The application of 5% egg yolk with 10% methanol in the fish Ringer’s solution gives the best results on quality of God’s fish spermatozoa 48 h post-thawing. The study revealed that sperm quality in the control (without egg yolk solution) was lower than the quality in the 5% egg yolk treatment. However, the quality of cryopreserved sperm decreased gradually at higher concentrations of egg yolks above 5%. This is might be due to the increase of the viscosity of diluent along with the increase of egg yolk concentration (Sakri, 2015), and preventing methanol entering the cell which reducing the protective effect of this intracellular cryoprotectant inside the cell, as egg yolk is known as natural extracellular cryoprotectant. In general, the natural cryoprotectants are non toxic, inexpensive, and environmentally friendly (Muchlisin, 2005; Muchlisin et al., 2015). Therefore, utilization of natural cryoprotectants as alternatives is highly recommended; however, it must be applied at the optimum concentration as observed in this study.

The sperm viability rate in the best treatment (10% methanol 5% egg yolk) of this study is higher than the combinations of cryoprotectants published in other studies; e.g. combinations of 20% skim milk 5% methanol for 81.75% viability rate (Abinawanto et al., 2016), and 0.7% honey solution 10% DMSO for 74.83% viability rate (Abinawanto et al., 2017). Therefore, we assume that the combination of methanol and egg yolk at concentration of 10% and 5% is a very effective cryoprotectant to maintain sperm quality of God’s fish during cryopreservation. The...
5. Conclusion

It is concluded that the combination of 5% of egg yolk of free-range chicken and 10% methanol are highly effective as a natural cryoprotectant agent for Neolissochilus soroide sperm storage at -10 °C for 48 h.

Declarations

Author contribution statement

A. Abinawanto: Conceived and designed the experiments, Analyzed and interpreted the data, Contributed reagents, materials, analysis tools or data; Wrote the paper.

N. Vardini: Performed the experiments.

R. Zuraida: Contributed reagents, materials, analysis tools or data.

R. Lestari: Analyzed and interpreted the data.

Funding statement

This work was supported by Universitas Indonesia (NKB-0015/UN2.R3.1/HKP.05.00/2019).

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abinawanto, Bayu, M.D., Lestari, R., Sunarma, A., 2011. Spermatozoa quality of goramy fish, Osphromen longiceps, 1801 after four hours post- cryopreservation: the role of dimethyl sulfoxide (DMSO) as a cryoprotectant. Biota 16 (1), 10–15.

Abinawanto, A., Nurman, K., Lestari, R., 2012a. The effect of sucrose on sperm quality of Goramy fish, Osphromen longiceps, 1801 two days post-cryopreservation. J. Agric. Sci. Technol. 82, 204–207. http://papers.csi.edu.au/jpstu-handle/2808.2/61.

Abinawanto, A., Anindita, I., Lestari, R., 2012b. Cryopreservation of spermatozoa of Osphromen longiceps using skim milk. Int. J. Eng. Sci. 2, 62–68.

Abinawanto, A., Rahayu, S., Lestari, R., 2013. Cryopreservation of Java barb (Barbonymus gonionotus) spermatozoa using egg yolk as a cryoprotectant. Global Vet. 10, 318–321.

Abinawanto, A., Zuiraida, Z., Lestari, R., 2016. The effect of skim milk combined with 5% of methanol on motility, viability, and abnormality of Java barb, Barbonymus gonionotus spermatozoa after 24 hours freezing. AACL Bioflux 92, 326–333. http://www.bioinfo.com.cn/docs/2016.326-333.pdf.

Abinawanto, A., Pratiwi, I.A., Lestari, R., 2017. Sperm motility of giant gourami (Osphromen longiceps, Lacepede, 1801) at different concentrations of honey combined with DMSO after short-term storage. AACL Bioflux 10, 156–163. http://www.bioinfo.com.cn/docs/2017.156-163.pdf.

Abinawanto, A., Putri, P.E., 2017. Goramy spermatozoa quality after sub-zero freezing: the role of coconut water as the cryoprotectant. Cell Biol. Dev. 1, 1–5.

Abinawanto, Wulantari, R., Muchlisin, Z.A., 2018. Effect of egg yolk on the spermatozoa quality of the boga Chromobotia macracanthus (Bleeker, 1852) (Cyprinidae) after short-term cryopreservation. AACL Bioflux 11 (6), 1757–1744.

Afree, S., Abinawanto, A., 2016. Effect of degraded ecosystem on fish biodiversity in the Old Brahmaputra River, Bangladesh and its conservation measures. IJOR J. Environ. Toxicol. Food. Technol. 10, 37–43.

Agarwal, N.K., 2011. Cryopreservation of fish semen. Himalayan aquatic biodiv. Conserv. New Tools Biotech. 104–127. https://www.academi.a.edu/download/37468844/Cryopr._Fish_Semen_Himalayan_Aquatic_Biodiversity_NKAbi.pdf.

Akay, R., Bodurkt, V., Secer, S., Tokin, N., 2004. Cryopreservation of mirror carp sperm. Turk. J. Vet. Anim. Sci. 28, 837–843. https://dergipark.org.tr/en/download/articlefile/132876.

Anil, S., Ghafari, F., Zampolla, T., Rawson, D.M., Zhang, T., 2011. Studies on cryoprotectant toxicity to zebrafish (Danio rerio) ovarian tissue fragments. Cryo Lett. 32, 40–50. https://www.ingentaconnect.com/content/cryo/cryo/2011/00000012/00000001/art00005 #.

Anil, S., 2013. Development of In-Vitro Culture and Cryopreservation Protocol for Zebrafish (Danio rerio) Ovarian Tissue Fragments. PhD. University of Bedfordshire, UK.

Aidh, S., Nugroho, E., Kristanto, A.H., Mukasyari, 2008. Determination of genetic variation of Batak fish (Tor soro) from North Sumatra and west Java by random amplified polymorphic DNA (RAPD) analyses. Aquacult. Res. J. 3, 91–97.

Ax, R.L., Dally, M.R., Didion, B.A., Lenz, R.W., Love, C.C., Varner, D.D., Hafez, B., Joyner, J.P., 2014. Cryopreservation of rainbow trout semen using a glucose-methanol extender. Aquacult. 420, 275–281.

Chew, C., Zulkafi, A.R., 2012. Sperm cryopreservation of some freshwater fish species in Malaysia. Curr. Fron. Cryopreserv. Intech, Croatia.

Czerska, A., Dietrich, G.J., Nynca, J., Dobosz, S., Zalewski, T., 2014. Cryopreservation of rainbow trout semen using a glucose-methanol extender. Aquacult. 420, 275–281.

Dash, S.N., Routy, P., Dash, C., Gupta, B.C., Swain, P., Sarangi, N., 2008. Use of the nontoxic cryoprotectant trehalose enhances recovery and function of fish embryonic stem cells following cryogenic storage. Curr. Stem Cell Res. Ther. 3, 277–287.

FAO, 2020. The state of world fisheries and aquaculture 2020. Sustainability in action 224, Rome.

Figuerola, E., Farías, J.G., Lee-Estevéz, M., Valdebenito, I., Risopatrón, J., Magnotti, C., Romero, J., Watanabe, J., Oliveira, R.P.S., 2016. Sperm cryopreservation with supplementation of α-tocopherol and ascorbic acid in freezing media increase sperm function and fertility rate in Atlantic salmon (Salmo salar). Aquacult 493, 1–8.

Gill, H.W., Lee, T.H., Park, I.S., 2017. Effects of cryoprotectants and diluents on the cryopreservation of spermatozoa from far eastern carp, Silarus altus. Dev. Reprod. 21, 71–91.

Gupta, N., Sivakumar, K., Mathur, V.B., Chadwick, M.A., 2015. Terrestrial protected areas and managed reaches conserve threatened freshwater fish in Uttarakhand, India. Parks J 21, 89–101.

Hezavehei, M., Mohsen, S., Kouchesfahani, H.M., Henkel, R., Agarwal, A., Esmaili, V., Shahverdi, A., 2018. Sperm cryopreservation: a review on current molecular cytobiology and advanced approaches. Reprod. Biomed. Online 37, 267–339.
