GigaScience
Evolution of complex genome architecture in gymnosperms
---Manuscript Draft---

Manuscript Number: GIGA-D-22-00123R2

Full Title: Evolution of complex genome architecture in gymnosperms

Article Type: Review

Funding Information: Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species indicate their complex evolutionary history including ancient radiation and massive extinctions. Due to the ultra-large genome size, the whole genome assembly of gymnosperms has only sprung up in the past ten years and further expanded into more taxonomic representations. Here, we provide a contemporary view of publicly available gymnosperm genome resources, including assembly quality and advances in large genome architecture. We dissect the intricate genomic features regarding fundamental changes at the whole-genome level and highlight emergent realizations on repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies in gymnosperms, we suggest additional efforts should be made toward medium-sized (5-15 gigabases) species. More comparative analyses among high-quality assemblies are needed for the inquiry into genomic shifts and early species diversification in seed plants.

Corresponding Author: Tao Wan
Wuhan Botanical Garden
Wuhan, CHINA

Corresponding Author Secondary Information:

Corresponding Author’s Institution: Wuhan Botanical Garden

Corresponding Author’s Secondary Institution:

First Author: Tao Wan

First Author Secondary Information:

Order of Authors: Tao Wan
Yanbing Gong
Zhiming Liu
YaDong Zhou
Can Dai
Qingfeng Wang

Order of Authors Secondary Information:

Response to Reviewers: 1. The title and the abstract have been substantially revised and the text has been polished again by another native speaker (Dr. Ruth from UK).
2. All web links and URLs in main text have been given a reference number and included in the reference list.
3. We have updated all the links in Table 1 to make the data be easily accessed by readers.

Additional Information:

Question Are you submitting this manuscript to a special series or article collection? Response No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	

Resources	No
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?	
If not, please give reasons for any omissions below.	

as follow-up to "Resources"

A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible. | N/A |
Have you included the information requested as detailed in our **Minimum Standards Reporting Checklist**?
"

Availability of data and materials

All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in [publicly available repositories](#) (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript.

Have you have met the above requirement as detailed in our **Minimum Standards Reporting Checklist**?

| No |

If not, please give reasons for any omissions below.

as follow-up to "Availability of data and materials"

All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in [publicly available repositories](#) (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript.

Have you have met the above requirement as detailed in our **Minimum Standards Reporting Checklist**?

| N/A |

"

Review Article

Evolution of complex genome architecture in gymnosperms
Tao Wan1,2,3, Yanbing Gong4,5, Zhiming Liu3, YaDong Zhou4, Can Dai7, Qingfeng Wang1,2*

1 Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
2 Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
3 Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, China
4 Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
5 Research Center for Ecology, College of Science, Tibet University, Lhasa, China
6 School of Life Science, Nanchang University, Nanchang 330031, China
7 School of Resources and Environmental Science, Hubei University, Wuhan, China

Corresponding author: QingfengWang qfwang@wbgcas.cn

Tao Wan [0000-0002-5505-970X];
Can Dai [0000-0003-3914-2041];
Qingfeng Wang [0000-0001-9143-8849].

Abstract

Gymnosperms represent an ancient lineage that diverged from early spermatophytes during the Devonian. The long fossil records and low diversity in living species prove their complex evolutionary history, which included ancient radiations and massive extinctions. Due to their ultra-large genome size, the whole genome assembly of gymnosperms has only been generated in the past ten years and is now being further expanded into more taxonomic representations. Here, we provided an overview of the publicly available gymnosperm genome resources, and discussed their assembly quality and recent findings in large genome architectures. In particular, we described the genomic features most related to changes affecting the whole-genome. We also highlighted new realizations relative to repetitive sequence dynamics, paleopolyploidy, and long introns. Based on the results of relevant genomic studies of gymnosperms, we suggest additional efforts should be made toward exploring the genomes of medium-sized (5-15 gigabases) species. Lastly, more comparative analyses among high-quality assemblies are needed to understand the genomic shifts and the early species diversification of seed plants.

Keywords: gymnosperms, genome architecture, genomic shift, diversification

Background

Over the past 20 years, since Arabidopsis thaliana was first sequenced, the number of assembled genomes of seed plants has reached a considerable number (>800) thanks to the fast innovation of sequencing technologies [1,2]. Among these assemblies, only 2% (17 species, Table 1) are gymnosperms. This is partially attributed to their extraordinarily large genome sizes (>10 gigabases (Gb) on average), complexity [3], as well as their low richness of species.
Extant gymnosperms comprise ~1,100 species encompassing four major lineages: cycads, Ginkgo, conifers, and gnetophytes (Fig. 1A). Due to the conifers’ immense ecological and economic value, great efforts were made to examine the whole genomes of this group [6]. The conifers consist of approximately 615 species covering enormous regions of the Northern Hemisphere and serving as the major backbone of worldwide forest ecosystems [7] (Fig. 1A). A milestone report from early 2013 presented a 23-Gb assembly of loblolly pine (Pinus taeda), the first draft genome of a gymnosperm species [8, 9]; a pre-publication release of the initial assembly was made in 2012 [10]. Notably, at least ten conifer genome projects were underway at that time [8]. Another sequencing study on Norway spruce (Picea abies) conducted a comparative analysis of the genome architectures of seed plants [11]. Two sets of annotated coding genes (high-confidence and low-confidence) with a BUSCO (Benchmarking Universal Single-Copy Orthologs) ratio <30% indicated there are still considerable gaps and redundancies in this assembly. The small size of the scaffolds (the total length of those scaffolds size >10 kb is 4.3 Gb) also reflected the objective limits of short-read sequencing, even when using high-coverage Illumina data [11]. Based on samples of the protein-coding and -noncoding fractions of the assembly, a plausible model for the conifer genome evolution was proposed: slow rates of activity for a diverse set of retrotransposons, and a much lower frequency of recombination in noncoding regions compared to angiosperms [11]. The subsequent investigations revived the scenario of genomic dynamics in conifers, enabling the establishment of giant genomes [12-15] and the study of ecological adaptiveness and phenotypic stasis [16,17]. With increased data, including transcriptomes and plastid genomes, studies focusing on the phylogenetic relationships among extant gymnosperms triggered great debates regarding various lineages whose studies were based on different data matrices and/or analytical approaches. One of the most controversial issues is the placement of gnetophytes. Several hypotheses have been put forward, suggesting gnetophytes are sisters to Pinaceae (the ‘Gnepine’ hypothesis), cupressophytes (the ‘Gnup’ hypothesis), all conifers (the ‘Gnetifer’ hypothesis), or all the other gymnosperms [18-22]. The unresolved phylogenetic relationships have encouraged new efforts toward filling in the taxonomic sampling gaps. In the last five years, draft maps of Ginkgo, gnetophytes, cupressophytes (Conifer II), and cycads have been produced and refined with an improved assembly quality [6, 23-28]. In addition, genome-wide investigations have revealed typical signatures of the gymnosperm genomes, such as ubiquitously large introns and the higher expression levels of long genes [11,15,26,29]. However, the reasons behind the preservation of long genes remain poorly understood.

Here, we summarized the progress made in the whole-genome assembly of gymnosperms and described the considerably varied genomic features observed in different lineages, focusing on the early genome divergence patterns of gymnosperms. We also discussed the concerns relative to inferred paleopolyploid events and provided insights for future research directions. Additionally, we reviewed the current knowledge on the effect of genomic changes on the
diversification of gymnosperms and suggested that more efforts should be focused on medium-sized genomes. Finally, to understand the function of long introns, we recommended further examinations with reverse-genetic tools, which can enhance our understanding of plant genome evolution and adaptation.

The pulsed rises in the whole-genome assembly of gymnosperms

Thus far, compared with flowering plants, the quantities and qualities of the assembled genomes of gymnosperms are relatively lower, with an average BUSCO value of 56.92% computed from 15 decoded species (Fig. 1B). These low values derive from time-consuming projects that were launched several years ago: decades before long-read technologies were developed and became widely used. Also, the species-specific gene sets included in the library may have contributed to the underrepresented annotation of gymnosperms [6]. In terms of high-throughput Illumina sequencing platforms, it often takes 4-6 months to obtain clean reads, as a 100x coverage is required for a typical genome of 15 Gb in size and high heterozygosity [30]. Upon the completion of sequencing, the subsequent assembly has further costs, requiring more time and advanced technology. This is because large genomes commonly comprise a variety of repetitive sequences (hereafter called ‘repeats’), which are untenable with short-read sequencing approaches based on overlapping reads [31,32]. For example, in the genome project of loblolly pine, although various strategies have been adopted (including fosmid and bacterial artificial chromosome (BAC) clones combined with whole-genome shotgun sequencing (WGS), RNA-seq, and Bionano-seq), it was challenging to gain good contiguous contigs, a critical requirement for gene annotation [13]. Additionally, investments in both computational and analytical resources further burdened the progress of genomics research since most assemblers could not handle the incredibly large amount of input sequences from the high coverage sequencing [33-37].

Thanks to the advanced sequencing technologies of the PacBio RSII and Oxford Nanopore platforms, there has recently been a dramatic increase in the high-quality assembly of these gigantic genomes (Fig. 1B and Table 1). For instance, a refinement of the previous Ginkgo draft showed that the contig N50 had remarkably grown from 48 kb to 1.58 Mb in length [23,26]; also, nearly 95% (9.33 Gb) of the scaffolds had been anchored onto the pseudochromosomes (Fig. 1B). The genomes of two iconic species from the Cupressaceae family, the giant sequoia (Sequoiadendron giganteum, 8.1 Gb) and the coast redwood (Sequoia sempervirens, a hexaploid genome of 26.5 Gb), were successively decoded with conspicuously enhanced contiguity [6,38]. Additionally, three assembly data resources for a single genus, Taxus, were released almost simultaneously, reflecting the great interest in the gymnosperm genomes [22,39,40]. Notably, all the records provided impressively complete genomes, as suggested by assembly lengths (contig N50 = 2.44 Mb in Taxus chinensis, 2.89 Mb in Taxus yunnanensis, and 8.60 Mb in Taxus wallichiana) and the coverage of the
core *Embryophyta* gene library [41] (Fig. 1B). Moreover, the recent sequencing of the haploid megagametophytes of *Cycas panzhihuaensis* showed outstanding assembled quality, with a contig N50 length of 12 Mb [28]. The integrative strategies combining long-read mapping and short-read data polish have been proven possible for almost all species. Also, high-throughput chromosome conformation capture (Hi-C) can further assist the sorting of sequences [15,42].

Insights into the repetitive sequence dynamics in gymnosperms

Comparative genomic studies revealed that angiosperm genomes are considerably flexible and dynamic in terms of the rate of DNA sequence integration and elimination [43-45]. Apart from the insertion of viral DNAs, plastids, and mitochondrial sequences, the fluctuation of plant genome sizes is mainly attributed to the historical and ongoing activity of (retro)transposable elements (TEs) (i.e., long terminal repeat retrotransposons (LTR-RTs), which are a major component contributing to the non-coding genomic regions of most seed plant genomes [46-48]). However, many of the angiosperm genomes have a fast turnover of a few million years (Ma) via the proliferation of retrotransposons and unequal recombinations (URs) [49]. Thus, the inevitable genome enlargement was efficiently counteracted by a high rate of DNA excisions [50]. In contrast, the ultra-large (>10 Gb) genomes of gymnosperms are commonly characterized by a relatively low frequency of UR, as evidenced by surveys of the ratio of intact long terminal repeats (LTRs) and solitary LTRs (sol-LTRs) (Fig. 1C). The URs between LTR-RTs often remove the intervening sequences and lead to the formation of solo-LTRs, enabling the ratio of intact versus solo-LTRs to be an indirect proxy for the removal mechanism [51,52]. The genome-skimming of *P. abies* and *Pinus tabuliformis* identified lopsided numbers of LTRs with much more complete LTRs than solo-LTRs [11,15]. This is consistent with the patterns observed in other conifers (*P. taeda* and *Picea glauca*) [24,52]. However, such a signature is atypical in non-conifer gymnosperms, specifically in non-Pinaceae species, regardless of the genome size. Numerous solo-LTRs (60,623) in contrast to much less intact-LTRs (14,128) were detected in the 9.88 Gb of the *Ginkgo* genome [27]. Likewise, a higher ratio of solo- to intact-LTRs (5.5:1) was reported in *T. wallichiana* (10.9 Gb), a species belonging to the cupressophytes [40]. Moreover, two gnetophyte species, *Gnetum montanum* (4.13 Gb) and *Welwitschia mirabilis* (6.86 Gb), showed an elevated frequency of the recombination-based removal of retroelements [24,27]. Hence, the greatly reduced TE elimination activity revealed in Pinaceae might be a family-specific feature generated after their separation from the main conifer clade. Potentially, such kinetic process of TE removal might diverge independently within the lineages, considering the incomplete examination of Pinaceae, especially in those groups of relatively smaller genomes (i.e., *Larix*). Furthermore, the low occurrence rate of the solo-LTRs in Pinaceae was mostly inferred from either fragmental assembly [11,52] or the manual examination of randomly sampled contigs/scaffolds [15]. More integrative and genome-wide identifications of these LTRs in high-quality genomes of Pinaceae are needed.
before we can fully understand the formation of ultra-large genomes. Except for infrequent URs, the reduced activity of other co-occurring processes, such as ‘illegitimate recombinations’, may also affect the steady growth of genomes in the long term [53]. Mobile elements like LTRs that are repaired by non-homologous end joining and single-strand annealing may generate truncated or solitary elements, resulting in genome shrinkage [50,54]. These disarmed LTRs may no longer be autonomous and thus cannot contribute to genome expansion [54]. More data needs to be collected concerning the DNA repair by-products of gymnosperms. Also, the comparison between gymnosperms and angiosperms of the proteins and genes (i.e., Ku70/Ku80 [55] and AtBRCC36A [56]) involved in such processes is required, especially among those species with distinct genome sizes.

As the prevalent class of TEs, the historical activities of LTRs have a crucial influence on the genome size and the gene structure of plants [57,58]. All gymnosperms likely share the common feature of repeats dynamic as more ancient but continuous amplification of LTRs within a range of 5-50 Ma [28,40]. The estimation of the insertion date is usually determined by the synonymous substitutions per synonymous site (Ks) between each 5′-LTR and 3′-LTR flanking sequences, which are calculated based on appropriate mutation rates (per base per year) [59]. The intergenic nucleotide substitution rate of 2.2×10⁻⁹ is normally adopted, assuming that gymnosperms evolved at a slower pace than angiosperms. Thus, the various ages estimated by different studies of the LTR outbreaks of the same gymnosperm could be partially explained by the different neutral mutation rates assigned (i.e., 7.3×10⁻¹⁰ was used for T. yunnanensis and T. chinensis var. mairei [22,40]). It is worth mentioning that the outlier Welwitschia has suffered from a very recent expansion of both autonomous and nonautonomous LTRs in less than 1-2 Ma, which probably resulted from a cascade of events triggered by intense aridity [27]. The high-resolution categories of retroelements and the use of appropriate mutation rates [60] are both required to distinguish the species-specific expansions that contribute to the diversity in genome growth rhythms [61,62].

The subsequent ancient insertions and the unusual recent burst of LTRs raise an intriguing question regarding the differences in TE surveillance between gymnosperms and angiosperms since the genome size is generally smaller in the latter. The necessity of TE silencing has been widely acknowledged, and the epigenetic control of DNA sequences is considered the vital nuclear defence system of plant genomes to the destructive potential of TEs [63]. Approaches combining mutations and genome-wide studies of the TE properties in Arabidopsis suggested that the Dnmt1-type defence enzyme methyltransferase 1 (MET1), the plant-specific chromomethylase 3 (CMT3), and the chromatin remodeler Decrease in DNA Methylation 1 (DDM1) are altogether involved in the DNA methylation of cytosines at CpG and non-CpG loci [64-67].

RNA-directed DNA methylation (RdDM) is an epigenetic pathway that evolved to guide the modelling of DNA condensation and TE silencing [68]. This complicated pathway was first
observed in transgenic tobacco infected with viroids, plant pathogens containing solely nonprotein-coding RNA [69]. Despite the limited epigenetic investigations in gymnosperms, several instructive studies provided the general landscape of DNA methylation in the gymnosperm genome [70,71]. For example, CpG and non-CpG methylations are both surprisingly high in *P. tabuliformis* (88.4% for CG; 81.6% for CHG) and *W. mirabilis* (78.32% for CG; 76.11% for CHG) [15,27], consistently with previous observations in *P. abies* [72]. Furthermore, global methylation levels positively correlate with genome sizes due to the widespread distribution of TEs along the genome [73,74]. In addition, the representative genes associated with various methylation pathways have mostly been identified in gymnosperms, implying the probable functional conservation of pathways across seed plants [70]. The activity of RdDMs was further validated by its dynamic changes in the methylation level of specific sequence contexts among different tissue types [27,70]. The oscillating abundance of 21 nucleotide (nt), 22 nt, and 24 nt sRNAs indicated that both canonical and non-canonical RdDMs may play a role in TE’s control [15,27], complementing previous hypotheses that 24 nt sRNAs are restricted to the reproductive tissue in *P. abies* [11]. Thus, TE silencing is particularly reinforced by non-canonical RdDMs in gymnosperms, which mildly differs from the primary role of 24 nt-RdDMs in angiosperms [15,72]. However, assessing the extent to which the epigenetic mechanisms contribute to genome methylation and how they contribute to the developmental process is a highly anticipated direction for the genomic studies of gymnosperms. Incidentally, H3K9me, a mark for heterochromatin, showed contrasting distribution patterns between angiosperms and gymnosperms (*P. abies* and *Pinus sylvestris*), implying potential distinctive genome silencing mechanisms [4,73].

A fundamental shift in repeats’ dynamic has been observed in giant genomes, as indicated by the changes in repeats’ abundance and the curvilinear relationship between genome size and repeats’ proportion among 101 seed plant species (The samples have an approximately 2,400-fold range from 0.063-88.55 Gb in genome size) [74]. In particular, genomes larger than 10 Gb are characterized by the conspicuous increase in non-repetitive and low-copy DNA sequences (excluding genes) and the relative decrease in medium-copy repeats (>20 copies). Most of these repeats seem to have been slowly degraded and fossilized into very low copy numbers due to epigenetic suppression and limited recombination [74]. In turn, these highly heterogenous repeats contribute to the formation of interstitial heterochromatin with heavily methylated DNA [57,75]. Hence, large genomes have “one-way tickets to genomic obesity” [74,76]. Such genome evolutionary patterns involving derivative retrotransposons may help understand the observation that excess low-repetitive DNA components are overrepresented in the pine genome [61,77].

Controversy regarding paleopolyploidy and its implications for gymnosperm diversification
The extant gymnosperms have painted quite a different picture of the rarity of ancient polyploidizations known as whole-genome duplications (WGDs), which are often found with high frequency in flowering plants [20,78] (Fig. 1C). These events have been suggested as determining factors controlling the lower species abundance in gymnosperms unlike angiosperms [4,11,79,80]. Since postpolyploid diploidization often occurs rapidly and gives rise to many unpredictable consequences, such as chromosome number shifts and DNA loss [81], the inference of ancient WGDs remains highly challenging due to the long-term erosion of genome doubling signals (i.e., loss of duplicates and saturation of synonymous distances [82,83]).

Combining syntenic analysis with the Ks distribution of all paralogous pairs has been vital for distinguishing WGD-derived and small-scale duplication-derived paralogues [84,85]. However, due to the intermittent release of high-quality genome assemblies of gymnosperms, significant efforts have shifted to comparing genic signatures with improved phylogenomic approaches [20,78]. Heuristic gene tree–species tree reconciliation methods are broadly employed to search the evidence of ancient WGDs based on transcriptome data [83,86,87]. As a result, Li et al. (2015) [88] first proposed that there were at least two independent WGDs in the ancestry of the major conifer clades (Pinaceae and Cupressaceae) according to the analyses of the transcriptome assemblies of 24 gymnosperms plus three outgroup species. This idea was further supported by the distributions of the Ks values of syntenic gene pairs among P. tabuliformis, Sequoiaadendron giganteum, and Ginkgo biloba [15]. Furthermore, Li et al. confirmed the seed plant WGD (named \(\zeta \)) and predicted that a lineage-specific WGD occurred in Welwitschia – the latter prediction was validated in a recent Welwitschia genome investigation [27]. Another comprehensive study of WGD mapping with a considerably large RNA-seq sample suggested that a shared WGD might have occurred before all extant gymnosperms diverged [17]. However, such hypothetical WGD cannot be corroborated by most taxonomic-oriented genomic studies [15,23,26,40] (Fig. 1C). Among these genomes, a common feature was the lack of recent species-specific WGDs since only a few intragenomic blocks and syntenic gene pairs could be detected. However, all of the candidate old WGDs hinted by the Ks values were accordingly assigned to \(\zeta \) (i.e., \(K_s \approx 2.1 \) in T. chinensis, \(K_s \approx 1.3 \) in P. tabuliformis, and \(K_s \approx 0.8 \) in G. biloba). The variable Ks values could be attributed to the heterogeneous mutation rate and different versions of phylogenetic analysis by maximum likelihood (PAML) used. Whereas we fully recognize the salience of the study both for its data sampling and analytical refinement, it still might be vulnerable to the contested phylogenetic relationships remaining in gymnosperms (the placements of Ginkgo and gnetophytes) [19-22].

The contentious species-tree topologies probably led to differences in gene duplication mapping, despite the fact that specific nodes were examined [17,20]. Alternatively, the duplicated genes introduced by the \(\zeta \)-WGD were preferentially retained over the duplicates derived from the gymnosperm-WGD in all the species surveyed. In addition, a Ks peak (~0.8)
that was recently observed in the *Cycas* genome was similar to the *Ks* peak of *Ginkgo* [28], suggesting an ancient WGD shared by the two lineages as proposed by Roodt et al. (2017) [89]. This ancient WGD (named \(\omega \)-) was further dated to the most recent common ancestors (MRCA) of all gymnosperms and supported by both transcriptome data and multispecies syntenic block alignments [28]. However, an analysis with a probabilistic approach of the WGD inference against 21 representative seed plants provided clear evidence of the \(\zeta \)-WGD but not of the \(\omega \)-WGD, rendering the placement of the *Cycas*-*Ginkgo* WGD highly controversial [26, 83] (Fig. 1C).

Given the considerable number of predicted ancient WGDs, based at least on the increased signals of gene duplication (restricted to the WGD-derives) [17, 20], the question was raised regarding how polyploidy contributes to the evolution of gymnosperms. A recent comprehensive measurement of the traits from living and fossil records suggested that two ancient pulsed rises of morphological innovation occurred in seed plants’ evolutionary history: the incipient diversification of gymnosperms (ca. 400 Ma) and the subsequent prosperity of angiosperms during the Late Cretaceous (ca. 100 Ma) [90]. The first increase represented by gymnosperms seems to result from the most commonly shared \(\zeta \)-WGD and can be extended to the hypothetical \(\omega \)-WGD. Two direct correlations between the conifers’ WGD and their diversification shifts [17] likely suggest the potential roles of WGD in the culmination of early gymnosperms (*Cupressophyta*-WGD and *Pinaceae*-WGD occurred ca. 200-342 Ma [88]). Besides, considerable evolutionary stasis persisted in the morphological complexity of gymnosperms and was further exacerbated by the emergence of flowering plants [90]. One report linked to a genetic map analysis showed that many more \(\zeta \)-duplicates (688 gene pairs) than conifer-specific tandem duplicates (87 pairs) were preserved in the *Pinaceae* genomes. A highly conserved genome macrostructure was found between spruce and pine, which diverged at least 120 Ma ago [91]. The large excess of ancestral duplicates and the remarkable level of synteny indicated the much slower pace of evolution in *Pinaceae*, which can be considered evidence of their relative stasis. Interestingly, a karyotype comparison between *Pinaceae* and *Cupressaceae* suggested that substantial chromosomal shuffling likely commenced after their split [92]. Interspecies alignments within the *Cupressaceae* and other families are required to determine if the shuffling is a common feature of low-frequency genome rearrangements. This would help our understanding of the conifer cladogenesis resulting in speciation and diversity. Moreover, a case of coast redwood (*S. sempervirens*) implied that a very slow diploidization process followed WGD and found the persistence of multisomic inheritance in this hexaploidy species \((2n = 66) \). These findings may contribute to explaining why there are so few polyploid species in modern gymnosperms [92]. Normally, the long-term benefits of polyploidy require the divergence among homologous chromosomes, which can only happen once loci are diploidized [81, 93]. In turn, the reduced selection of efficient meiosis in *Sequoia* would preclude the emergence of any evolutionary advantages in polyploidy lineages. Hence, Scott et
al. (2016) [93] proposed that such an intriguing evolutionary strategy was additionally reinforced by asexual reproduction, self-compatibility, and extreme longevity, which likely took place in other conifers, such as *Fitzroya cupressoides* [94]. Aside from this, the fundamental dynamic shift in repeats is noteworthy, assuming that the genomic shift occurred early in gymnosperms, probably before most modern lineages diverged. The ancestral genome size of gymnosperms has been estimated to have been ~12.375-15.75 Gb [95]. If so, heterogeneous rates of genome size evolution should be expected considering the large range in 1C-DNA content (i.e., from 2.21 Gb in *Gnetum ula* to 35.28 Gb in *Pinus ayacahuite*) exhibited across gymnosperms [15] (Fig. 1D and E). The shift in genomic dynamics could directly lead to the unfavourable architecture of those large genomes as constrained chromosomal homogenization. Together with the slow pace of diploidization, these factors make polyploidy a burden rather than a boon in gymnosperms. Therefore, the extraordinarily massive loss of duplicates should not surprise due to the highly structured chromosomes and severely limited recombination of these genomes [4]; hence, most signals of WGD in the doubled genome were expunged (e.g., to date, *W. mirabilis* is the only gymnosperm species known to have a family-specific WGD that occurred ~86 Ma ago while showing an extremely low level of intrachromosomal syntenic relationships compared to angiosperms) [27]. The unusually low rate of WGD duplicate retention could further restrain the morphological and biological diversity of these lineages, given that polyploidy often introduces sub- or neofunctionalization and increases variations in dosage-sensitive genes and pathways [96-98].

To conclude, the concomitant problems imposed by an enlarged genome could affect the diverse physiological processes of plants, such as longer cell cycles [99,100] and higher nutrient costs [4], which eventually impact the competitiveness of the species.

Intriguing intron morphology and evolution in gymnosperms

The presence of astonishingly long genes has been extensively reported in many gymnosperms from distinct lineages [11,15,23] (Fig. 1C). These long genes are often associated with large amounts of intronic sequences characterized by cumulative size distributions, including numerous atypical long ones (>20 kb) [11,15,23,28]. Why these very long introns are preserved and how they influence the evolution and function of genes in gymnosperms remain largely obscure [15].

It has long been acknowledged that the genome size may be correlated with the intron size across broad phylogenetic groups. However, such a pattern was poorly translated into some narrow taxonomic distant groups of angiosperms [101]. A pioneering description and comparison of the gene structures of *P. glauca* and *P. taeda* with data from BAC clones and genome scaffolds indicated a relatively conserved signature in the long introns [29]. Moreover, the high frequency (32%) of the TEs found in captured sequences, even in introns <1 kb, suggested the important role of such invasive elements in the long gene space [29]. Niu et al.
(2022) [15] tabulated the characteristics of the gene structures among 68 recently sequenced seed plants. They found a positive correlation between the ratio of total intron/exon length and the genome size, especially in gymnosperm lineages (Fig. 1C). Collectively, this robust evidence supports the claim that genic expansion was coupled with the genome upsizing in the majority of gymnosperms, which is probably attributed to the slow growth and accumulation of repeats [15]. Additionally, Nystedt et al. (2013) [11] first provided insights into the presence of long introns by comparing the orthologues of the normal-sized (50-300 bp) and long (1-20 kb) introns of *P. abies*, *P. sylvestris*, and *G. montanum*. They suggested that an early intron expansion might have already occurred in the MRCA of all conifers, which would explain the identical trend in the increased length of orthologous introns. However, this point of view was changed by subsequent comparisons conducted within more species of early diverged seed plants [24]. Similar growth patterns of the intron size and content were observed in orthologues between *Ginkgo* and *P. taeda* with the accumulation of LTR-RTs (especially Ty1-copia elements). By contrast, a high proportion of long interspersed nuclear elements (LINEs) were found in orthologous long introns between *G. montanum* and *Amborella trichopoda* (the ‘basal’ angiosperm [102]), and both these species involved the expansion of long introns, consistently with the scenario of all intron morphology in *G. montanum* and *A. trichopoda* [24]. This result might indicate different repeat dynamics within the introns of *G. montanum* compared with other gymnosperms, and the level of Ty1-copia activity in introns might be more ancient and could be traced back to the origin of gymnosperms. Likewise, LINEs could be partially involved in the intron evolution of ancestral seed plants [24]. However, these hypotheses require more investigations using closely related or representative species like Welwitschia, *Ephedra*, and even *Cycads*, because the evolution of the gene structure of plants was determined by many more interacting forces than classically expected (i.e., the selective recombination rate [103,104] and the species-specific TE activity [105,106]). Indeed, a large portion of unknown sequences has been found in *Cycas’* introns, which is quite different from the pattern of LTR or LINE dominance found in other gymnosperms [28].

Exploring the biological relevance of long introns could be insightful for addressing a fundamental scientific inquiry: “Why some genomes are really big and others quite compact?”

Unfortunately, this matter has been poorly addressed in gymnosperms [29] except for a very recent description of gene expression profiles, alternative splicing, and DNA methylation [15]. The atypically long introns seem to have minimal influence on transcript accuracy, probably facilitated by different levels of CpG and non-CpG methylations among exons and introns [15]. These results call for similar examinations in other giant gymnosperm genomes, such as *Ginkgo* or *Welwitschia*, considering their lower effective population size compared to conifers since the loosening of natural selection often allows the fixation of potentially deleterious mutations in the genome [107]. In addition, long genes tend to have higher expression levels in *P. tabuliformis*, similarly to the situation observed in *P. glauca*, *Oryza sativa*, and *A. thaliana*.
[29,108]. However, such a pattern contrasts with other organisms, like Physcomitrium patens [109], Caenorhabditis elegans, and Homo sapiens [110], where compact genes are highly expressed. If so, the ‘low-cost transcription hypothesis’ is probably unsuitable for gymnosperms. Alternatively, the length of introns is likely less relevant to the expression level since introns are involved in a variety of regulatory phenomena (i.e., post-transcriptional gene regulation [111], nucleosome formation, and chromatin organization [112-114]). Nevertheless, the correlation between gene length and gene expression should be interpreted with caution and is likely caused by technical issues: the statistical bias in RNA-sequencing data due, for instance, to the over-count reads from long transcripts [102].

Conclusion and perspectives

In this review, while appreciating the advances in our knowledge of the genome evolution of gymnosperms, we demonstrated that some essential characteristics, such as repeat dynamics, ancient WGDs inference, and the biological relevance of long introns, are far from understood. The state of ‘genome paralysis’ may be confined to Pinaceae rather than all conifers or gymnosperms since a high frequency of TE removal does exist in cupressophytes, gnetophytes, and Ginkgo. The hypothetical ω-WGD is still highly contested and needs to be reconsidered by future studies. The sporadic and long-awaited releases of genome drafts inevitably limit the conclusions of species-specific cases. Despite the low level of cladogenesis and the rarity of polyploids, the fundamental shift of genomic dynamics and the potential signature of the slow process of diploidization probably offer new insights into the complex evolution of the genome architectures of gymnosperms. Additionally, the dominant model of recent allopolyploidy speciation in Ephedra [115], and the growing number of species on the list of hybridization and polyploidization in Juniperus [116], contrasts with the gymnosperm reputation of being composed of ancient species. These results could be explained by the resurgence of gymnosperm diversification and the increase in habitat ranges [17]. With regards to all these aspects, we envisage that gymnosperms could be a candidate model to investigate the changes in genome dynamics and their influence on species diversifications (Fig. 1E). However, in-depth studies on the wealth of information contained within these genomes cannot be conducted without generating more high-quality assemblies. The investigation of interspecific variations and diverse properties in gymnosperms would be more profound if the data sampled were consistent, as in many excellent works conducted on animals or crops [117,118]. Considering the intricate evolutionary history of gymnosperms, we propose that, in the future, attention should be paid to at least the four aspects next described. First, more integrative estimations of TE eliminations are needed, and a high-resolution subclassification of the TEs would help to distinguish family-specific expansion patterns. Intensive studies on the many repetitive relics with a low copy number would also enable us to illustrate the formation of the highly-structured and less dynamic chromosomes of gymnosperms [4,11,75]. Finally, the rapid accumulation of
epigenetic data is imperative since variable repeat dynamics and sophisticated epigenetic machinery play crucial roles in gymnosperms. This data should be either at the single-base resolution of DNA methylation or for comparing methylomes among different tissues. Second, ancestral paleopolyploidy inferences should be investigated by large-scale multi-alignments of more complete gymnosperm assemblies with fully considered phylogenies. In particular, the structural evidence of intra- and inter-species collinearity may be essential to clarify the number and timing of these ancient duplications [82]. Moreover, the comprehensive evaluation of the loss and retention of duplicate genes could help elucidate the potential heterogeneity in the genome evolution of gymnosperms. Third, it may be worthwhile to include intron length and expression characteristics in future whole-genome studies of gymnosperms. Also, more investigations on alternative splicing patterns should be carried out and analysed together with DNA methylation footprints. Despite the lack of appropriate genetic transformation tools for long-lived perennial species, it might be insightful to conduct analogous molecular experiments in model plant systems concerning the potential biological functions of ultra-long genes [15, 119]. Finally, more chromosome-level genomes of gymnosperms are needed. However, we suggest that additional efforts should be made to sequence medium-sized (5-15 G) species and refine the short-read drafts released for conifers, especially Pinaceae.

Data Availability
Not applicable.

Competing interests
The authors declare no competing interests.

Funding
This work was supported by the Scientific Research Program of Sino-Africa Joint Research Center (grant no. SAJC202105) and the National Natural Science Foundation of China grants (grant no. 31870206).

Author contributions
T.W. and Q.F.W. designed the outline of the manuscript. T.W. and Y.B.G. wrote the manuscript. T.W., C.D., and Q.F.W. polished the article. Z.M.L. and Y.D.Z. worked on the revisitation of the genomic data. T.W. and Y.B.G. are joint first authors.

Acknowledgements
We wish to thank Dr Neng Wei from the Wuhan Botanical Garden for collecting the species images. We acknowledge Prof. Shouzhou Zhang from the Fairy Lake Botanical Garden for the assistance with the data access to the Cycas genome assembly. We also thank Ms Ruth
Wambui Mbichi for her revision of this manuscript.

References

1. Initiative TAG. Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. *Nature* 2000; 408:796-815.

2. Marks RA, Hotaling S, Frandsen PB, VanBuren R. Representation and participation across 20 years of plant genome sequencing. *Nat Plants* 2021; 7:1571-1578.

3. Murray BG. Nuclear DNA amounts in gymnosperms. *Ann Bot.* 1998; 82: 3-15.

4. Leitch AR, Leitch IJ. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. *New Phytol* 2012; 194: 629-646.

5. Sederoff R. Genomics: A spruce sequence. *Nature* 2013; 497: 569-570.

6. Neale DB, Zimin AV, Zaman S, Scott AD, Shrestha B, Workman RE, et al. Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. *G3: Genomes, Genomes, Genetics* 2022; 12: jkab380.

7. Jin W-T, et al. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. *Proc Natl Acad Sci USA.* 2021; 118 (20): e2022302118.

8. Neale DB, Langley CH, Salzberg SL, Wegryn JL. Open access to tree genomes: the path to a better forest. *Genome Biol* 2013; 14:120.

9. PineRefSeq [http://www.pinegenome.org/pinerefseq/]

10. PineRefSeq [http://loblolly.ucdavis.edu/bipod/ftp/Genome_Data/genome/pinerefseq/Pita/v0.6/]

11. Nystedt B, et al. The Norway spruce genome sequence and conifer genome evolution. *Nature* 2013; 497: 579-584.

12. Birol I, et al. Assembling the 20 Gb white spruce (*Picea glauca*) genome from whole-genome shotgun sequencing data. *Bioinformatics* 2013; 29: 1492-1497.

13. Neale DB, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. *Genome Biol* 2014; 15 (3): R59.

14. Stevens KA, et al. Sequence of the Sugar Pine megagenome. *Genetics* 2016; 204: 1613-1626.

15. Niu S-H, et al. The Chinese pine genome and methylome unveil key features of conifer evolution. *Cell* 2022; 185: 1-14.

16. Warren RL, et al. Improved white spruce (*Picea glauca*) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. *Plant J* 2015; 83: 189-212.

17. Stull GW, et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. *Nat. Plants* 2021; 7: 1015-1025.

18. Wickett NJ, et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. *Proc Natl Acad Sci USA* 2014; 111: 4859-4868.

19. Ran J-H, Shen T-T, Wang M-M, Wang X-Q. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. *Proc R Soc B* 2018; 285 (1881): 20181012.

20. Leebens-Mack JH, et al. One thousand plant transcriptomes and the phylogenomics of green plants. *Nature* 2019; 574: 679–685.

21. Li H-T, et al. Origin of angiosperms and the puzzle of the Jurassic gap. *Nat Plants* 2019; 5: 461-470.
22. Song C, et al. *Taxus yunnanensis* genome offers insights into gymnosperm phylogeny and taxol production. *Commun Biol* 2021; 4: 1203.
23. Guan R, et al. Draft genome of the living fossil *Ginkgo biloba*. *Gigascience* 2016; 5: 49.
24. Wan T, et al. A genome for gnetophytes and early evolution of seed plants. *Nat Plants* 2018; 4: 82-89.
25. Zhao Y-P, et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. *Nat Commun* 2019; 10: 4201.
26. Liu H-L, et al. The nearly complete genome of *Ginkgo biloba* illuminates gymnosperm evolution. *Nat Plants* 2021; 7: 748-756.
27. Wan T, et al. The *Welwitschia* genome reveals a unique biology underpinning extreme longevity in deserts. *Nat Commun* 2021; 12: 4247.
28. Liu Y, et al. The *Cycas* genome and the early evolution of seed plants. *Nat Plants* 2022; 8: 389-401.
29. Sena JS, et al. Evolution of gene structure in the conifer *Picea glauca*: a comparative analysis of the impact of intron size. *BMC Plant Biology* 2014; 14: 95.
30. Van Dijk, E L, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. *Trends Genet* 2014; 30: 418-426.
31. Myers EW. Toward simplifying and accurately formulating fragment assembly. *J Comput Biol.* 1995; 2: 275-290.
32. Li R-Q, et al. The sequence and de novo assembly of the giant panda genome. *Nature* 2010; 463: 311-317.
33. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, et al. Assembling the 20 Gb white spruce (*Picea glauca*) genome from whole-genome shotgun sequencing data. Bioinformatics 2013; 29:1492-1497.
34. Zimin A, et al. Sequencing and assembly of the 22-Gb loblolly pine genome. *Genetics* 2014; 196: 875-890.
35. Kuzmin DA, Feranchuk SI, Sharov VV, Cybin AN, Makolov SV, et al. Stepwise large genome assembly approach: a case of Siberian larch (*Larix sibirica* Ledeb.). *BMC Bioinformatics* 2019; 20:37.
36. Neale DB, McGuire PE, Wheeler NC, Stevens KA, Crepeau MW, et al. The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. *G3: Genes, Genomes, Genetics* 2017; 7: 3157–3167.
37. Mosca E, Cruz F, Gómez Garrido J, Bianco L, Rellstab C, et al. A reference genome sequence for the European silver fir (*Abies alba* Mill.): a community-generated genomic resource. *G3: Genes, Genomes, Genetics* 2019; 9:2039–2049.
38. Scott AD, Zimin AV, Puiu D, Workman R, Britton M, et al. A reference genome sequence for giant sequoia. *G3: Genes, Genomes, Genetics* 2020; 10:3907–3919.
39. Cheng J, et al. Chromosome-level genome of Himalayan yew provides insights into the origin and evolution of the paclitaxel biosynthetic pathway. *Molecular Plant* 2021; 14: 1199-1209.
40. Xiong X-Y, et al. The *Taxus* genome provides insights into paclitaxel biosynthesis. *Nat Plants* 2021; 7:1026-1036.
41. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. *Methods Mol Biol* 2019; 1962:227-245.
42. Meyer A, et al. Giant lungfish genome elucidates the conquest of land by vertebrates. *Nature* 2021; 590:284-289.
43. Ma J-X, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. *Genome Res* 2004; **14**:860-869.

44. Lim KY, et al. Sequence of events leading to near-complete genome turnover in allopolyploid *Nicotiana* within five million years. *New Phytol* 2007; **175**:756-763.

45. Kejnovsky E, Leitch IJ, Leitch AR. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. *Trends Ecol Ecol Evol* 2009; **24**:572-582.

46. Kumar A, Bennetzen JL. Plant retrotransposons. *Annu Rev Genet* 1999; **33**:479-532.

47. Moffat AS. Transposons help sculpt a dynamic genome. *Science* 2000; **289**:1455-1457.

48. Feschotte C, Jiang N, Wessler SR. Plant transposable elements: where genetics meets genomics. *Nat Rev Genet* 2002; **3**:329-341.

49. Vitte C, Panaud O, Quesneville H. LTR retrotransposons in rice (*Oryza sativa*, L.): recent burst amplifications followed by rapid DNA loss. *BMC Genet* 2007; **8**:218.

50. Devos KM, Brown JKM, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in *Arabidopsis*. *Genome Res* 2002; **12**:1075-1079.

51. Vicient CM, et al. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. *Plant Cell* 1999; **11**:1769-1784.

52. Cossu RM, et al. LTR retrotransposons show low levels of unequal recombination and high rates of intraelement gene conversion in large plant genomes. *Genome Biol Evol* 2017; **9**:3449-3462.

53. Kelly LJ, et al. Analysis of the giant genomes of *Fritillaria* (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. *New Phytol* 2015; **208**:596-607.

54. Vu GTH, Cao H-X, Reiss B, Schubert I. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. *New Phytol* 2017; **214**:1712-1721.

55. Kim JH, Ryu TH, Lee SS, Lee S, Chung B-Y. Ionizing radiation manifesting DNA damage response in plants: an overview of DNA damage signaling and repair mechanisms in plants. *Plant Sci* 2019; **278**:44-53.

56. Block-Schmidt AD, Dukович-Schulze S, Waniek K, Reidt W, Puchta H. BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in *Arabidopsis thaliana*. *Nucleic Acids Res* 2011; **39**:146-154.

57. Fedoroff NV. Transposable elements, epigenetics, and genome evolution. *Science* 2012; **338**:758-767.

58. Barghini E, et al. LTR retrotransposon dynamics in the evolution of the olive (*Olea europaea*) genome. *DNA Res* 2015; **22**:91-100.

59. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 2004; **32**:1792-1797.

60. de La Torre AR, Li Z, Van de Peer Y, Ingvarsson PK. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. *Mol Biol Evol* 2017; **34**:1363-1377.

61. Morse AM, et al. Evolution of genome size and complexity in *Pinus*. *PLoS One* 2009; **4**:e4332.

62. Zhou S-S, et al. A comprehensive annotation dataset of intact LTR retrotransposons of 300 plant genomes. *Sci Data* 2021; **8**:174.

63. Zhou W-D, Liang G-N, Molloy PL, Jones PA. DNA methylation enables transposable element-driven genome expansion. *Proc Natl Acad Sci USA* 2020; **117**:19359-19366.

64. Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in *Arabidopsis thaliana* results in abnormal plant development. *Proc Natl Acad Sci USA* 1996; **93**:8449-8454.

65. Jeddeloh JA, Stokes TL, Richards EJ. Maintenance of genomic methylation requires a
SW12/SNF2-like protein. Nat Genet 1999; 22:94-97.

66. Zemach A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 2013; 153:193-205.

67. Ito H, Kakutani T. Control of transposable elements in Arabidopsis thaliana. Chromosome Res 2014; 22:217-223.

68. Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 2014; 15:394-408.

69. Wassenegger M, Heimes S, Riedel L, Sanger HL. RNA-directed de novo methylation of genomic sequences in plants. Cell 1994; 76:567-576.

70. Ausin I, et al. DNA methylome of the 20-gigabase Norway spruce genome. Proc Natl Acad Sci USA 2016; 113:e8106-e8113.

71. Takuno S, Ran J-H, Gaut BS. Evolutionary patterns of genomic DNA methylation vary across land plants. Nat Plants 2016; 2(2):15222.

72. Zhang H-M, Zhu J-K. RNA-directed DNA methylation. Curr Opin Plant Biol 2011; 14:142-147.

73. Fuchs J, Jovtchev G, Schubert I. The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Res 2008; 16:891-898.

74. Nóvak P. et al. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants 2020; 6:1325-1329.

75. Islam-Faridi MN, Nelson CD, Kubisiak TL. Reference karyotype and cytomeolecular map for loblolly pine (Pinus taeda L.). Genome 2007; 50:241-251.

76. Bennetzen JL, Kellogg EA. Do plants have a one-way ticket to genomic obesity? Plant Cell 1997; 9:1509-1514.

77. Elsik CG, Williams CG. Retroelements contribute to the excess low-copy-number DNA in pine. Mol Gen Genet 2000; 264:47-55.

78. Jiao Y-N, et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011; 473:97-100.

79. Soltis PS, Soltis DE. Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 2016; 30:159-165.

80. Wu S-D, Han B-C, Jiao Y-N. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Molecular Plant 2020; 13:59-71.

81. Mandakova T, Lysak MA. Post-polyploid diploidization and diversification through dysploid changes. Curr Opin Plant Biol 2018; 42:55-65.

82. Ruprecht C, et al. Revisiting ancestral polyploidy in plants. Sci. Adv. 2017; 3:1603195.

83. Zwaenepoel A, Van de Peer Y. Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol Biol Evol 2019; 36:1384-1404.

84. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000; 290:1151-1155.

85. Blanc G, Wolfe KH. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 2004; 16:1667-1678.

86. Rabier CE, Ta T, Ane C. Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. Mol Biol Evol 2014; 31:750-762.

87. Yang Y, et al. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol 2018; 217:855-870.

88. Li Z, et al. Early genome duplications in conifers and other seed plants. Sci Adv 2015; 1:e1501084.

89. Roodt D, et al. Evidence for an ancient whole genome duplication in the cycad lineage. PLoS One
110. Leslie AB, Simpson C, Mander L. Reproductive innovations and pulsed rise in plant complexity. *Science* 2021; 373:1368-1372.

91. Pavy N, et al. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. *BMC Biol* 2012; 10:84.

92. De Miguel M, et al. Evidence of intense chromosomal shuffling during conifer evolution. *Genome Biol Evol* 2015; 7:2799-2809.

93. Scott AD, Stenz NWM, Ingvarsson PK, Baum DA. Whole genome duplication in coast redwood (*Sequoia sempervirens*) and its implications for explaining the rarity of polyploidy in conifers. *New Phytol* 2016; 211:186-193.

94. Silla F, Fraver S, Lara A, Allnutt TR, Newton A. Regeneration and stand dynamics of *Fitzroya cupressoides* (Cupressaceae) forests of southern Chile's Central Depression. *For Ecol Manage* 2002; 165:213-224.

95. Burleigh JG, Barbazuk WB, Davis JM, Morse AM, Soltis PS. Exploring diversification and genome size evolution in extant gymnosperms through phylogenetic synthesis. *J Bot* 2012; 2012: 292857.

96. Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. *Annu Rev Plant Biol* 2009; 60:433-453.

97. Bekaert M, Edger PP, Pires JC, Conant GC. Two-phase resolution of polyploidy in the *Arabidopsis* metabolic network gives rise to relative and absolute dosage constraints. *Plant Cell* 2011; 23:1719-1728.

98. Conant GC, Birchler JA, Pires JC. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. *Curr Opin Plant Biol* 2014; 19:91-98.

99. Francis D, Davies MS, Barlow PW. A strong nucleotypic effect on the cell cycle regardless of ploidy level. *Ann Bot* 2008; 101:747-757.

100. Doyle JJ, Coate JE. Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. *Int J Plant Sci* 2019; 180:1-52.

101. Wendel JF, et al. Intron size and genome size in plants. *Mol Biol Evol* 2002; 19:2346-2352.

102. Amborella Genome Project. The *Amborella* genome and the evolution of flowering plants. *Science* 2013; 342:1241089.

103. Carvalho AB, Clark AG. Intron size and natural selection. *Nature* 1999; 401:344-344.

104. Comeron JM, Kreitman M. The correlation between intron length and recombination in *Drosophila*: Dynamic equilibrium between mutational and selective forces. *Genetics* 2000; 156:1175-1190.

105. Vinogradov AE. Intron-genome size relationship on a large evolutionary scale. *J Mol Evol* 1999; 49:376-384.

106. McLysaght A, Enright AJ, Skrabanek L, Wolfe KH. Estimation of syntenic conservation and genome compaction between pufferfish (Fugu) and human. *Yeast* 2000; 17:22-36.

107. Lynch M. Intron evolution as a population-genetic process. *Proc Natl Acad Sci USA* 2002; 99:6118-6123.

108. Ren X-Y, Vorst O, Fiers M, Stiekema WJ, Nap JP. In plants, highly expressed genes are the least compact. *Trends Genet* 2006; 22:528-532.

109. Stenoien HK. 2007. Compact genes are highly expressed in the moss *Physcomitrella patens*. Journal of Evolutionary Biology 20(3): 1223-1229

110. Castillo-Davis CI. et al. 2002. Selection for short introns in highly expressed genes. *Nature Genetics* 31(4): 415-418.
111. Shabalina SA, Spiridonov NA. The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biol 2004; 5:105.
112. Zuckerkandl E. Junk DNA and sectorial gene repression. Gene 1997; 205:323-343.
113. Mattick JS, Gagen MJ. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 2001; 18:1611-1630.
114. Vinogradov AE. Noncoding DNA, isochores and gene expression: nucleosome formation potential. Nucleic Acids Res 2005; 33:559-563.
115. Wu H, et al. A high frequency of allopolyploid speciation in the gymnospermous genus Ephedra and its possible association with some biological and ecological features. Mol Ecol 2016; 25:1192-1210.
116. Farhat P, et al. Polyploidy in the conifer genus Juniperus: an unexpectedly high rate. Front Plant Sci 2019; 10:676.
117. Zhang GJ, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 2014; 346:1311-1320.
118. Varshney RK, et al. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 2011; 599:622-627.
119. Liu Y.Y., et al. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution. New Phytol. 2016; 212: 730-744.
Table 1. The list of currently available whole-genome assembly of gymnosperms

Species (Common name)	Size of Assembly (bp)	Family	Sequencing Platform	Online Year and relative publication	Link to the assembly data
Pinus taeda*	23 G	Pinaceae	Sanger+ Illumina HiSeq 2000	2013 [10]	ftp://plantgenie.org/Data/ConGenIE/Pinus_taeda/v1.0/
(loblolly pine)					
Picea abies	12.3 G	Pinaceae	Sanger whole-genome shotgun	2013 [11]	ftp://plantgenie.org/Data/ConGenIE/Picea_abies/v1.0/
(Norway spruce)					
Picea glauca (genotype PG29)	23.6 G	Pinaceae	Illumina HiSeq 2000, Miseq	2013 [12]	ftp://plantgenie.org/Data/ConGenIE/Picea_glauc/PG29/v4.0/
(white spruce)					
Pinus taeda (genotype 20-1010)	23.2 G	Pinaceae	Illumina GA II, HiSeq 2000, Miseq	2014 [13],[34]	https://treegenesdb.org/FTP/Genomes/Pita/v2.01/
(loblolly pine)					
Picea glauca (genotype WS77111)	22.4 G	Pinaceae	Illumina HiSeq2500, MiSeq	2015 [16]	ftp://plantgenie.org/Data/ConGenIE/Picea_glauc/Ws7v1.0/
(white spruce)					
Pinus lambertiana	27.6 G	Pinaceae	Illumina GA II, HiSeq 2000/2500, Miseq	2016 [14]	https://treegenesdb.org/FTP/Genomes/Pila/v1.5/
(sugar pine)					
Ginkgo biloba	10.6 G	Ginkgoaceae	Illumina Hiseq 2000/4000	2016 [23]	http://gigadb.org/dataset/100209
Pseudotsuga menziesii (Douglas-fir)	15.7 G	Pinaceae	Illumina HiSeq	2017 [36]	https://treegenesdb.org/FTP/Genomes/Psme/v1.0/
Gnetum montanum	4.0 G	Gnetaceae	Illumina HiSeq 2000/2500	2018 [24]	https://doi.org/10.5061/dryad.0vm37
Abies alba (silver fir)	18.2 G	Pinaceae	Illumina HiSeq	2019 [37]	https://treegenesdb.org/FTP/Genomes/Abalv1.1/
Larix sibirica (Siberian larch)	12.3 G	Pinaceae	Illumina HiSeq	2019 [35]	https://www.ncbi.nlm.nih.gov/databank/Genome/GCA_004151065.1/
Species	Size	Family	Sequencing Technology	Year	Repository Link
-------------------------------	-------	----------------	-------------------------------	--------	---
Sequoia giganteum	8.1 G	Cupressaceae	Illumina HiSeq + Oxford	2020	https://treegenesdb.org/FTP/Genomes/Segi/v2.0/
Ginkgo biloba	9.8 G	Ginkgoaceae	Illumina HiSeq + PacBio RSII	2021	https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA001755
Welwitschia mirabilis	6.8 G	Welwitschiaceae	Illumina HiSeq + Oxford	2021	https://doi.org/10.5061/dryad.ht76hdrdr
Taxus chinensis	10.2 G	Taxaceae	Illumina HiSeq + PacBio RSII	2021	https://www.ncbi.nlm.nih.gov/data-hub/genome/GCA_019776745.2/
Taxus wallichiana	10.9 G	Taxaceae	Illumina HiSeq + Oxford	2021	https://db.cngb.org/search/assembly/CNA0020892/
Taxus yunnanensis	10.7 G	Taxaceae	Illumina HiSeq + Oxford	2021	https://www.ncbi.nlm.nih.gov/labs/data-hub/genome/GCA_018340775.1/
Pinus tabuliformis	25.4 G	Pinaceae	Illumina HiSeq + PacBio RSII	2022	https://db.cngb.org/search/project/CNP0001649/
Sequoia sempervirens	26.5 G	Cupressaceae	Illumina HiSeq + Oxford	2022	https://treegenesdb.org/FTP/Genomes/Sese/v2.1/
Cycas panzhihuaensis	10.5 G	Cycadaceae	Illumina HiSeq, Miseq + Oxford	2022	https://db.cngb.org/codeplot/datasets/public_dataset?id=PwRftGHfPs5qG3gE

Pinus taeda: The pre-publication release of the assembly was made in 2012 [10]. It contained 18.5 Gbp of sequence with a contig N50 size of 800 bp.
Figure 1: The contemporary overview of the deciphered gymnosperm genomes and the genomic features underpinning their complicated evolutionary history. (A) The geographical distribution of the extant gymnosperms is depicted based on data from the Global Biodiversity Information Facility. The images list the representative gymnosperm species that have been sequenced. (B) Current status of the accumulation of high-quality assemblies of gymnosperms since the advent of long-read sequencing technologies. Abbreviations of the taxa listed from top to bottom: Pab = Picea abies, Pgl = Picea glauca, Pta = Pinus taeda, Pla = Pinus lambertiana, Gbi = Ginkgo biloba, Pme = Pseudotsuga menziesii, Gmo = Gnetum montanum, Aal = Abies alba, Sgi = Sequoia giganteum, Wmi = Welwitschia mirabilis, Tyu = Taxus yunnanensis, Sse = Sequoia sempervirens, Ptab = Pinus tabuliformis, and Cpa = Cycas panzhihuaensis. (C) The prediction and placement of ancient WGDs in seed plants and the highly contested inference of paleopolyploidy in the MRCA of all extant gymnosperms. The dashed line indicates the conflicts in the phylogenetic position of gnetophytes. The dashed arrows refer to the controversy on the shared polyploidy event of gymnosperms. The Cupressaceae-WGD is highlighted by a ‘*’ since only Taxus and Sequoiadendron were included (excluding Araucaceae) as representatives of the cupressophytes (left). The available records of the solo-/intact-LTR ratios and the relevance of intron lengths are mapped to each species (right). The data for estimating the solo-/intact-LTR ratios were derived from Nystedt et al. (2013), Cossue et al. (2017), Wan et al. (2018), Cheng et al. (2021), Wan et al. (2021), and Niu et al. (2022). The data on gene structure was derived from Niu et al. (2022). (D) Genome size distribution across the gymnosperm lineages with medium and ultra-large genome sizes. The 1C-DNA contents were obtained from Niu et al. (2021) and the data sources of Kew. (E) The genomic signatures of gymnosperms and the potential genome evolutionary patterns are summarized here with the recent discoveries on recombination and repeat dynamics. Abbreviations: TEs = transposable elements; UR = unequal recombination; GCE = gene conversion event.
Click here to access/download
Supplementary Material
responses3.docx