CT-guided bone biopsy using electron density maps from dual-energy CT

Shota Yamamoto, MD1, Shunsuke Kamei, MD1, Kosuke Tomita, MD1, Chikara Fujita, BS, RT2, Kazuyuki Endo, BS, RT2, Shinichiro Hiraiwa, MD3, Terumitsu Hasebe, MD, PhD1,∗

1Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
2Department of Radiological Technology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan
3Department of Pathology, Tokai University Hachioji Hospital, Tokai University School of Medicine, Tokyo, Japan

A R T I C L E I N F O

Article history:
Received 27 May 2021
Revised 5 June 2021
Accepted 6 June 2021

Keywords:
Bone metastasis
Computed tomography-guided intervention
Bone biopsy
Dual energy computed tomography
Electron density

A B S T R A C T

Computed tomography (CT)-guided bone biopsy is a diagnostic procedure performed on the musculoskeletal system with a high diagnostic yield and low complications. However, CT-guided bone biopsy has the disadvantage that it is difficult to confirm the presence of tumor cells during the biopsy procedure. Recently, the clinical benefits of dual-energy CT (DECT) over single-energy CT have been revealed. DECT can provide material decomposition images including calcium suppression images, and effective atomic number (Z_eff) and electron density (ED) maps. ED maps have been reported to indicate cellularity. A 61-year-old woman with a history of breast cancer surgery was admitted to our hospital and underwent a CT-guided bone biopsy of the right ilium using ED maps. As a result, she was diagnosed with breast cancer metastases of intertrabecular bone. A comparison of ED maps with a pathological specimen revealed that high ED values occurred exclusively in the tumor area with high cellularity. This study indicates that ED maps produced using DECT may have potential utility in the accurate identification of metastases with high cellularity in bone lesions.

© 2021 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction

Computed tomography (CT)-guided bone biopsy is a diagnostic procedure for obtaining a tissue sample with a high diagnostic yield and low complications [1]. However, CT-guided bone biopsy has the disadvantage that it is difficult to confirm the presence of viable tumor cells during the biopsy procedure. Therefore, there are some cases in which the procedure succeeded but the diagnosis remained unconfirmed or was incorrect [2,3].

∗ Acknowledgments: The authors acknowledge the valuable assistance of Dr. Satoshi Suda from the Department of Radiology, Tokai University Hachioji Hospital, and Professor Takuma Tajiri from the Department of Pathology, Tokai University Hachioji Hospital for the kind assistance with the pathological diagnosis of the patient.

∗∗ Competing Interest: The authors have no conflicts of interest to declare.

∗ Corresponding author.
E-mail address: hasebe@tokai-u.jp (T. Hasebe).
https://doi.org/10.1016/j.radcr.2021.06.009
1930-0433/© 2021 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Recently, the clinical benefits of dual-energy CT (DECT) over single-energy CT have been revealed [4]. DECT uses two separate X-ray photon energy spectra to integrate the assessment of materials with different attenuation properties at different energies. Dual-energy data (attenuation values at two energy spectra) can be used to reconstruct numerous types of material decomposition images including calcium suppression images, effective atomic number (Z_eff) maps, and electron density (ED) maps [5]. It has been reported that ED maps may be used to describe different types of atoms, chemical bonds, and tissue compositions [6,7], which suggests that they may indicate cellularity [8]. Here, we report a case involving breast cancer bone metastasis, which was identified in a patient who underwent a CT-guided bone biopsy using ED maps.

Case report

A 61-year-old woman with a history of breast cancer surgery was admitted to our hospital for a bone biopsy. Nine months prior to hospitalization, she was diagnosed with breast cancer using needle biopsy in her left breast. Imaging studies revealed bilateral breast cancer with left sentinel lymph node metastases. Five months prior to hospitalization, she underwent bilateral partial mastectomy and sentinel lymph node dissection. The breast cancer on her left side was an invasive ductal carcinoma. Four or more metastases of left axillary lymph nodes were identified to be Stage IIIA (T2N2M0; expression of estrogen receptor: 95%; human epidermal growth factor receptor 2: negative; progesterone receptor: 25%; Ki-67: 20%). The breast cancer on her right side was determined to be a ductal carcinoma in situ. Three months prior to hospitalization, letrozole (2.5 mg/day) treatment was initiated as adjuvant therapy. Radiotherapy (total dose of 40 Gy) was performed on both sides of the breast. One month prior to hospitalization, the patient experienced left shoulder joint and chest pain, and sciatica. Ten days prior to hospitalization, 18F-fluorodeoxyglucose positron emission tomography/CT (FDG-PET/CT) revealed abnormal uptake in the systemic multiple bone, left axillary lymph node, and liver (Fig. 1a).

The patient’s physician suspected multiple breast cancer metastases to the bone, malignant lymphoma, multiple myeloma, or other diseases. On the day of admission, a CT-guided bone biopsy of the right ilium was performed using a 10-cm, 13G Osteosite bone biopsy needle (Cook Medical, Bloomington, IN) (Fig. 1b–e). The biopsy procedure was performed via CT fluoroscopy, as previously reported [3], using an Aquilion ONE PRISM Edition CT, Canon Medical Systems Corporation, Tochigi, Japan (320-row detector; tube voltage: 135/80 kV; rotation speed: 0.75 s/rotation; collimation: 0.5 mm × 80; pitch factor: 0.637; tube current: AEC [SD: 6.0]; reconstruction, spectral body and spectral bone standard: determined by software). The total level of radiation to which the patient was exposed during the procedure was a 622.3 mGy × cm dose-length product. The procedure time was 22 minutes. We relied on an ED map created via DECT during the biopsy procedure. Both FDG-PET/CT and calcium suppression imaging revealed 18F-FDG uptake and a high signal value in the dorsal right iliac region, but the precise location of the high signal value was only revealed via ED mapping, approximately 3 cm from the bone surface. As a result of these analyses, the patient was diagnosed with breast cancer metastases to intertrabecular bone. The pathological specimen showed a low cellularity area with strong fibrosis that was approximately 2 cm from the bone surface, and high cellularity tumor cells approximately 3 cm from the bone surface. Normal bone marrow was observed at levels deeper than 3 cm from the bone surface (Fig. 2). A high ED of $4.47 \times 10^{23}/\text{cm}^2$ was observed only in the area with high cellularity (Fig. 2).

Discussion

Bone metastases derived from breast cancer cells have been identified in 49% (range: 42-73%) of pooled and analyzed data from 10,521 patients [9], of which 22% are intertrabecular bone metastases [10]. Intertrabecular bone metastases, occasionally called CT-negative bone metastases [10,11], are difficult to diagnose from CT scans of bone condition (Fig. 1b). We were able to detect intertrabecular bone metastases before biopsy using ED map values. To the best of our knowledge, this is the first report that described a successful CT-guided biopsy using ED maps created via DECT.

In CT-guided biopsy, it is important to obtain a sufficient number of tumor cells for genetic testing or detection of hormone receptor expression [12]. FDG-PET/CT and calcium suppression images overestimate the dimensions of metastatic bone lesions (Fig. 1a, c). However, ED maps were the only imaging modality we used that accurately identified the extent of tumor cell spread (Fig. 1d). FDG-PET/CT data reflect glucose metabolism levels in tumor cells. Therefore, if tumor cell numbers are low and glucose metabolism is hyperactive, uptake levels likely increase, as was observed in this case. Use of calcium suppression imaging (a virtual calcium-removed technique) via DECT to evaluate acute fractures is well documented [13,14]. However, the technique is primarily used to assess bone marrow edema. In addition to imaging technologies, contrast media [3] and rapid on-site cytologic evaluation (ROSE) [15] have been used to confirm the presence of tumor cells during a biopsy procedure. However, contrast media cannot be used in patients allergic to the materials or in those with contrast medium-induced nephropathy [16], and ROSE requires knowledge of pathology and skill with regard to specimen preparation [15,17]. Currently, it is difficult to determine procedural success or failure during a CT-guided biopsy procedure. Therefore, a method that determines the presence of viable tumor cells during a biopsy procedure is of great value.

DECT provides ED maps due to the Compton effect of X-rays [5,18,19]. ED is determined by constituent atoms, bonds between molecules, and phase of matter [18,20,21]. In human bone, ED increases as bone mineral density increases, and ED decreases with the proportion of adipose tissue in the bone marrow increases [19,22,23]. A clinical study reported a method that can be used to determine the malignancy and cellularity of gliomas using ED maps [8]. Researchers were able to determine malignancy and cellularity since nucleic acids, prevalent molecular conjugate systems in cells of the human body, have a high ED due to short bond distances within the
Fig. 1 – Images of the patient’s right ilium. (a) An 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) image. The maximum standardized uptake value was 15.3. The patient’s blood sugar at the time of imaging was 106 mg/dL. (b) A CT image to reveal bone condition. (c) Calcium suppression image (a virtual non-calcium technique). (d) Electron density map. The high cellularity region showed high electron density (white arrowhead). (e) A CT-guided bone biopsy image.

Fig. 2 – A pathological specimen and electron density spectrum
A substantial level of cancerous foci growth in bone tissue was observed, which was consistent with metastatic breast cancer. The high cellularity area occurred between the normal bone marrow and a low cellularity area with fibrosis. Electron density is maximal in the cortical bone area ($7.02 \times 10^{23}/\text{cm}^2$) and lower in the areas surrounding the high cellularity region ($4.47 \times 10^{23}/\text{cm}^2$).
molecules [24]. Since healthy red bone marrow contains adipose tissue, it has a lower nucleic acid density than other parenchymatous organs or muscles [19,22,23]. In intertrabecular bone metastases, tumor cells proliferate to fill the intertrabecular space, eventually increasing the density of nucleic acids above that of normal bone marrow. Therefore, the ED maps obtained by DECT have the potential to accurately identify metastases with high cellularity in bone lesions.

Financial/nonfinancial disclosures

None declared.

Role of sponsors

None declared.

REFERENCES

[1] Espinosa LA, Jamadar DA, Jacobson JA, DeMaeseneer MO, Ebrahim FS, Sabb BJ, et al. CT-guided biopsy of bone: a radiologist’s perspective. AJR Am J Roentgenol 2008;190(5):W283–9.

[2] Monfardini L, Preda L, Aurilo G, Rizzo S, Bagnardi V, Renne G, et al. CT-guided bone biopsy in cancer patients with suspected bone metastases: retrospective review of 308 procedures. Radiol Med 2014;119(1):852–60.

[3] Yamamoto S, Matsumoto T, Suda S, Tomita K, Kamei S, Hashida K, et al. First experience of efficacy and radiation exposure in 320-detector row CT fluoroscopy-guided interventions. British J Radiol 2021;94(1120):20200754.

[4] McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 2015;276(3):637–53.

[5] Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol 2012;199(5 Suppl):S3–8.

[6] Landry G, Reniers B, Granot PV, van Rooijen B, Beaulieu L, Wildberger JE, et al. Extracting atomic numbers and electron densities from a dual source dual energy CT scanner: experiments and a simulation model. Radiother Oncol 2011;100(3):375–9.

[7] Van Abbema JK, VAN der Schaaf A, Kristanto W, Groen JM, Greuter MJ. Feasibility and accuracy of tissue characterization with dual source computed tomography. Phys Med 2012;28(1):25–32.

[8] Kaichi Y, Tatsugami F, Nakamura Y, Baba Y, lida M, Higaki T, et al. Improved differentiation between high- and low-grade gliomas by combining dual-energy CT analysis and perfusion CT. Medicine 2018;97(32):e11670.

[9] Wedam SB, Beaver JA, Amiri-Kordestani L, Bloomquist E, Tang S, Goldberg KB, et al. US Food and Drug Administration pooled analysis to assess the impact of bone-only metastatic breast cancer on clinical trial outcomes and radiographic assessments. J Clin Oncol 2018;36(12):1225–31.

[10] Capitanio S, Bongioanni F, Piccardo A, Campus C, Gonella R, Tisi L, et al. Comparisons between glucose analogue 2-deoxy-2-(18F)fluoro-D-glucose and (18F)-sodium fluoride positron emission tomography/computed tomography in breast cancer patients with bone lesions. World J Radiol 2016;8(2):200–9.

[11] Ahmed F, Muzaffar R, Fernandes H, Tu Y, Albaloshi B, Osman MM. Skeletal metastasis as detected by 18F-FDG PET with negative CT of the PET/CT: frequency and impact on cancer staging and/or management. Front Oncol 2016;6:208.

[12] Gradishar WJ, Anderson BO, Abraham J, AfR, Agnese D, Allison KH, et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology: J Natl Compr Canc Netw 2020;18(4):452–78.

[13] Gosangi B, Mandell JC, Weaver MJ, Uyeda JW, Smith SE, Sodickson AD, Khurana B. Bone marrow edema at dual-energy CT: a game changer in the emergency department. Radiographics 2020;40(3):859–74.

[14] Wilson MP, Lui K, Nobbe D, Murad MH, Katlarivala P, Low G. Diagnostic accuracy of dual-energy CT for detecting bone marrow edema in patients with acute knee injuries: a systematic review and meta-analysis. Skeletal Radiol 2021;50(5):871–9.

[15] Marotti JD, Rao KP, Brister KJ, Gutmann EJ, Tsapakos MJ, Shiehan R, et al. Cytologic rapid on-site evaluation of transthoracic computed tomography-guided lung needle biopsies: who should perform ROSE? A cross-institutional analysis of procedural and diagnostic outcomes. J Am Soc Cytopathol 2015;4(3):160–9.

[16] van der Molen AJ, Reimer P, Dekkers IA, Bongartz G, Bellin MF, Bertolotto M, et al. Post-contrast acute kidney injury - Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 2018;28(7):2845–55.

[17] Kubik MJ, Bobvel A, Goli H, Saremian J, Siddiqi A, Masood S. Diagnostic value and accuracy of imprint cytology evaluation during image-guided core needle biopsies: review of our experience at a large academic center. Diagn Cytopathol 2015;43(10):773–9.

[18] Rutherford RA, Pullan BR, Isherwood I. Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 1976;11(1):15–21.

[19] Bourque AE, Carrier JF, Bouchard H. A stoichiometric calibration method for dual energy computed tomography. Phys Med Biol 2014;59(8):2059–88.

[20] Cremer D, Kraka E. Chemical bonds without bonding electron density — does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 1984;23(8):627–8.

[21] Juurinen I, Nakahara K, Ando N, Nishiumi T, Seti H, Yoshida N, et al. Measurement of two solvation regimes in water-ethanol mixtures using X-ray Compton scattering. Phys Rev Lett 2011;107(19):197401.

[22] Kawahara D, Ozawa S, Yokomachi K, Higaki T, Shinoki T, Ohno Y, et al. Evaluation of raw-data-based and calculated electron density for contrast media with a dual-energy CT technique. Rep Pract Oncol Radiother 2019;24(5):499–506.

[23] Garcia L, Azorin JF, Almansa JF. A new method to measure electron density and effective atomic number using dual-energy CT images. Phys Med Biol 2016;61(1):265–79.

[24] Callis PR. Electronic states and luminescence of nucleic acid systems. Annu Rev Phys Chem 1983;34(1):329–57.