Stochastic Stability and Analytical Solution with Homotopy Perturbation Method of Multicompartment Non-Linear Epidemic Model with Saturated Rate

Laid Chahrazed
Department of Mathematics, Faculty of Exact Sciences, University Freres Mentouri, Constantine 1, Algeria
Email: chahrazed2009@yahoo.fr

Abstract

In this work, we consider a nonlinear epidemic model with a saturated incidence rate. We consider a population of size N(t) at time t, this population is divided into six subclasses, with N(t)=S(t)+I(t)+I₁(t)+I₂(t)+I₃(t)+Q(t). Where S(t), I(t), I₁(t), I₂(t), I₃(t), and Q(t) denote the sizes of the population susceptible to disease, infectious members, and quarantine members, respectively. We have made the following contributions: 1. The local stabilities of the infection-free equilibrium and endemic equilibrium are analyzed, respectively. The stability of a disease-free equilibrium and the existence of other nontrivial equilibria can be determined by the ratio called the basic reproductive number. 2. We find the analytical solution of the nonlinear epidemic model by Homotopy perturbation method. 3. Finally the stochastic stabilities. The study of its sections are justified with theorems and demonstrations under certain conditions. In this work, we have used the different references cited in different studies in the three sections already mentioned.

Keywords: Homotopy perturbation method; Incidence rate; Local stability; Nonlinear epidemic model; Stochastic stability.

1. Introduction

This paper considers the following epidemic model with saturated incidence rate.

\[
\begin{align*}
S(t) &= \lambda + \nu - \rho - \mu + d \cdot S(t) - \frac{\beta S(t)I(t)}{1 + a_0 I(t) + \sum_{i=1}^{3} a_i I_i(t)}, \\
I(t) &= \frac{\beta S(t)I(t)}{1 + a_0 I(t) + \sum_{i=1}^{3} a_i I_i(t)} - \mu_0 + d \cdot I(t) - \sum_{i=1}^{3} \alpha_i I_i(t), \\
I_1(t) &= \alpha_2 I(t) - \mu_1 + d + \gamma_1 \cdot I_2(t), \\
I_2(t) &= \alpha_2 I(t) - \mu_2 + d + \gamma_2 \cdot I_2(t), \\
I_3(t) &= \alpha_3 I(t) - \mu_3 + d + \gamma_3 \cdot I_3(t), \\
Q(t) &= \sum_{i=1}^{3} \gamma_i I_i(t) - (\mu_4 + d)Q(t).
\end{align*}
\]

- Consider a population of size N(t) at time t, this population is divided into six subclasses, with N(t)=S(t)+I(t)+I₁(t)+I₂(t)+I₃(t)+Q(t). Where S(t), I(t), I₁(t), I₂(t), I₃(t) and Q(t) denote the sizes of the population susceptible to disease, infectious members and quarantine members, respectively.
- The positive constants μ represent rate of incidence. The positive constant β is the average numbers of contacts infective for S to I. The positive constant ν is the parameter of emigration.
- The positive constant r is the parameter of immigration.
The positive constants γ₁, γ₂, and γ₃, are the numbers of transfer or conversion of infected people quarantined. The positive constant α₁, α₂ and α₃ are the average numbers of contacts for I to Iᵢ, i=1,2,3.

The positive constants μ, μ₀, μ₁, μ₂, μ₃ and μ₄ represent the death rates of susceptible, infectious and quarantine.

Biologically, it is natural to assume that μ ≤ min {μ₀, μ₁, μ₂, μ₃, μ₄}. The positive constant d is natural mortality rate.

\[S(t)I(t) \]
\[1 + aₙJ(t) + \sum_{i=1}^{n} a_i I_i(t) \]
which aᵢ, i=0, 1, 2, 3 is saturated rate with the susceptible.

The initial condition of (1) is given as:
\[S(η) = \Phi₁(η), I(η) = \Phi₂(η), I₁(η) = \Phi₃(η), I₂(η) = \Phi₄(η) \]
\[I₃(η) = \Phi₅(η), Q(η) = \Phi₆(η), -τ ≤ η ≤ 0. \]

\[Φ = \Phi₁, \Phi₂, \Phi₃, \Phi₄, \Phi₅, \Phi₆ \]
\[T ∈ C \]

such that:
\[S(η) = \Phi₁(η) ≥ 0, I(η) = \Phi₂(η) ≥ 0, \]
\[I₁(η) = \Phi₃(η) = 0, I₂(η) = \Phi₄(η) = 0, \]
\[I₃(η) = \Phi₅(η) = 0, Q(η) = \Phi₆(η) = 0. \]

\[Ω = \left\{ S, I, I₁, I₂, I₃, Q ∈ \mathbb{R}^6, \right\} \]
\[S + I + I₁ + I₂ + I₃ + Q ≤ N < \frac{λ + ν - ρ}{μ + d} \]

The region is positively invariant set of (1).

2. Equilibrium and Local Stability

An equilibrium point of system (3) satisfies.
\[\lambda + ν - ρ - μ + d \cdot S(t) - \frac{βS(t)I(t)}{s} = 0, \]
\[1 + aₙJ(t) + \sum_{i=1}^{n} a_i I_i(t) \]
\[\frac{βS(t)I(t)}{s} - μ₀ + d \cdot I(t) - \sum_{i=1}^{n} α_i I(t) = 0, \]
\[\alpha_I(t) - μ_i + d + γ_i I_i(t) = 0, i=1,2,3, \]
\[\sum_{i=1}^{3} γ_i I_i(t) - μ₄ + d \cdot Q(t) = 0. \]

We calculate the points of equilibrium in the absence and presence of infection.

In the absence of infection, \(I = 0; I_i = 0 \), i = 1,2,3.
The system (3) has a disease-free equilibrium E_0.

$$E_0 = S, I_1, I_2, I_3, Q^T = (\lambda + \nu - \rho \mu + d, 0, 0, 0, 0)^T.$$

Theorem 2.1

The disease-free equilibrium E_0 of the system (3) is locally asymptotically stable if $R_0 < 1$.

So E^* is the unique positive endemic equilibrium point which exists if $R_0 > 1$.

Proof

The eigenvalues can be determined by solving the characteristic equation of the linearization of (3) near E_0. Therefore, the eigenvalues are:

$$A_i = -\mu_i + d + \gamma_i, i = 1, 2, 3; A_4 = -\mu + d$$

$$A_6 = -\mu_4 + d$$

$$A_9 = \beta S - \left(\mu_0 + d + \sum_{i=1}^3 \alpha_i\right)$$

In order to A_i will be negative, and then we define the basic reproduction number of the infection R_0 as follows:

$$R_0 = \frac{\beta}{\mu + d} \times \frac{\lambda + \nu - \rho}{\mu_0 + d + \sum_{i=1}^3 \alpha_i}$$

If $R_0 < 1$, $A_6 < 0$.

We have $A_i < 0, i = 1, 2, 3, A_4 < 0, A_5 < 0$ and $A_6 < 0$, if $R_0 < 1$.

Then E_0 of the system (3) is locally asymptotically stable.

In the presence of infection, substituting in the system, Ω also contains a unique positive, endemic equilibrium $E^* = S^*, I^*, I^*, Q^*, \forall i = 1, 2, 3$. Where

$$E^* = S^*, I^*, I^*, Q^*, \forall i = 1, 2, 3$$

So E^* is the unique positive endemic equilibrium point which exists if $R_0 > 1$.

Theorem 2.2

If $R_0 > 1$, the system (3) has a unique non-trivial equilibrium E^* which is locally asymptotically stable.

3. Solution of Model by HPM

We define the operator $L = \frac{d}{dt}$.

By applying the homotopy perturbation method to system, (3) we obtain the following form:
The initial condition is
\[S_0(t) = S(0), I_0(t) = I(0), I_{\frac{\mu}{\omega}}(t) = I_{\frac{\mu}{\omega}}(0), Q_0(t) = Q(0). \] (10)

We assume the solution for system (8) in the form
\[
\begin{align*}
S^* t &= S_0^*(t) + p S_1^*(t) + p^2 S_2^*(t) + \ldots \\
I^* t &= I_0^*(t) + p I_1^*(t) + p^2 I_2^*(t) + \ldots \\
I_\frac{\mu}{\omega}^* t &= I_{\frac{\mu}{\omega}}^*(t) + p I_{\frac{\mu}{\omega}}^* 1(t) + p^2 I_{\frac{\mu}{\omega}}^* 2(t) + \ldots \\
Q^* t &= Q_0^*(t) + p Q_1^*(t) + p^2 Q_2^*(t) + \ldots
\end{align*}
\] (11)

Using (10) in (8), and comparing the coefficients of the same power, then we obtain
\[
\begin{align*}
LS(t) - LS^0(t) &= 0, \\
LI(t) - LI^0(t) &= 0, \\
LI_{\frac{\mu}{\omega}}(t) - LI_{\frac{\mu}{\omega}}^0(t) &= 0, i = 1, 2, 3, \\
LQ(t) - LQ^0(t) &= 0.
\end{align*}
\] (12)

Moreover, we have
\[
\begin{align*}
LS^*_1(t) &= \lambda + \nu - \mu + d S_0^*(t) - \frac{\beta S_0^*(t) I_0^*(t)}{1 + a_0 I_0^* + \sum a_i I_{\frac{\mu}{\omega}}^* 0(t)}, \\
LI_1^*(t) &= \frac{\beta S_0^*(t) I_0^*(t)}{1 + a_0 I_0^* + \sum a_i I_{\frac{\mu}{\omega}}^* 0(t)} - \mu_0 + d I_0^*(t) - \sum a_i I_{\frac{\mu}{\omega}}^* 0(t) - LI_0^*(t), \\
LI_{\frac{\mu}{\omega}}^*(t) &= \gamma_i I_i^*(t) - \mu_i + d + \gamma_i I_{\frac{\mu}{\omega}}^* 0(t) - LI_{\frac{\mu}{\omega}}^* 0(t), i = 1, 2, 3, \\
LQ_{\frac{\mu}{\omega}}^*(t) &= \gamma_i I_i^*(t) - \mu_4 + d Q_0^*(t) - LQ_0^* 0(t).
\end{align*}
\] (13)

With the conditions
\[
\begin{align*}
S_1^*(t) &= 0, I_1^*(t) = 0, I_{\frac{\mu}{\omega}}^* 1(t) = 0, Q_1^*(t) = 0.
\end{align*}
\] (14)

We have
\[L S^*_2(t) = - \mu + d \ S^*_1(t) - \frac{\beta S^*_0(t) I^*_1(t) + S^*_1(t) I^*_0(t)}{1 + \alpha_0 I^*_2(t) + \sum_{i=1}^{\infty} \alpha_i I^*_1(t)} \]

\[L I^*_2(t) = \frac{\beta S^*_0(t) I^*_1(t) + S^*_1(t) I^*_0(t)}{1 + \alpha_0 I^*_2(t) + \sum_{i=1}^{\infty} \alpha_i I^*_1(t)} - \mu_0 + d \ I^*_1(t) - \sum_{i=1}^{\infty} \alpha_i I^*_1(t) \]

\[L Q^*_2(t) = \sum_{i=1}^{\infty} \gamma_i (I^*_0 I^*_1(t) - \mu_4 + d) Q^*_1(t) \]

With the conditions

\[S^*_2(t) = 0, \ I^*_2(t) = 0, \ I^*_1(t) = 0, \ Q^*_2(t) = 0 \]

Moreover, we have

\[L S^*_1(t) = - \mu + d \ S^*_2(t) - \frac{\beta S^*_0(t) I^*_2(t) + S^*_1(t) I^*_1(t) + S^*_2(t) I^*_0(t)}{1 + \alpha_0 I^*_2(t) + \sum_{i=1}^{\infty} \alpha_i I^*_1(t)} \]

\[L I^*_1(t) = \frac{\beta S^*_0(t) I^*_2(t) + S^*_1(t) I^*_1(t) + S^*_2(t) I^*_0(t)}{1 + \alpha_0 I^*_2(t) + \sum_{i=1}^{\infty} \alpha_i I^*_1(t)} - \mu_0 + d \ I^*_2(t) - \sum_{i=1}^{\infty} \alpha_i I^*_2(t) \]

\[L Q^*_0(t) = \sum_{i=1}^{\infty} \gamma_i (I^*_0 I^*_2(t) - \mu_4 + d) Q^*_1(t) \]

We suppose that \(p=1 \) in (10), we have the solution is in the form

\[S^*_t = S^*_0(t) + S^*_1(t) + S^*_2(t) + \ldots \]

\[I^*_t = I^*_0(t) + I^*_1(t) + I^*_2(t) + \ldots \]

\[Q^*_t = Q^*_0(t) + Q^*_1(t) + Q^*_2(t) + \ldots \]

Finally the solution is

1. The zero order solution

\[S^*_0(t) = c_1, \ I^*_0(t) = c_2, \ I^*_0(t) = c_3, \ Q^*_0(t) = c_4 \]

2. The first order solution

\[S^*_1(t) = \frac{\lambda + \nu - \rho - \mu + d + c_1}{1 + \alpha_0 c_2 + \sum_{i=1}^{\infty} \alpha_i c_3} \]

\[I^*_1(t) = \frac{\beta \alpha_0 c_2}{1 + \alpha_0 c_2 + \sum_{i=1}^{\infty} \alpha_i c_3} - \mu_0 + d - c_2 - \sum_{i=1}^{\infty} \alpha_i c_2 \]

\[Q^*_1(t) = \sum_{i=1}^{\infty} \gamma_i c_3 - \mu_4 + d c_4 \]
3. The second order solution

\[S^*_t(t) = -μ + d \left(λ + ν - β - ε_1 + d + \frac{β c_2}{1 + q_0 e_2 + \sum_{i=1}^{3} q_i e_3} \right) t \]

\[+ \frac{β_1 c_2}{1 + q_0 e_2 + \sum_{i=1}^{3} q_i e_3} t \left(\mu_0 + d + \sum_{i=1}^{3} q_i c_2 \right) \left(\mu_0 + d + \sum_{i=1}^{3} q_i c_2 \right) t \]

\[+ \left(λ + ν - β - ε_1 + d + \frac{β c_2}{1 + q_0 e_2 + \sum_{i=1}^{3} q_i e_3} \right) t c_2 \]

\[= 1 + \frac{β_0 c_2}{1 + q_0 e_2 + \sum_{i=1}^{3} q_i e_3} t - \left(\mu_0 + d + \sum_{i=1}^{3} q_i c_2 \right) t + \sum_{i=1}^{3} q_i c_2 \left(\mu_i + d + \gamma_i \right) k_2 t \]

\[\left(Q^*_t(t) = \gamma_i \left(\mu_i + d + \gamma_i k_3 + \frac{β c_2}{1 + q_0 e_2 + \sum_{i=1}^{3} q_i e_3} \right) \right) \]

\[\left(Q^*_t(t) = \sum_{i=1}^{3} \gamma_i \left(\mu_i + d + \gamma_i k_3 + \frac{β c_2}{1 + q_0 e_2 + \sum_{i=1}^{3} q_i e_3} \right) \right) \]

4. Stochastic Stability

The system (3), is transformed to the Itô Stochastic differential equations. We replace \(β \) by \(β + ab(t) \) where \(b(t) \) is white noise.
Theorem 4.1

If $\beta^2 - 2a^2 \mu + d < 0$, $S(t)$ converge exponentially almost surely to $\frac{\lambda + \nu - \rho}{\mu + d}$.

Proof

We use Itô formula to the first equation in system (21), we obtain

$$dS = \left(\lambda + \nu - \rho - \mu + d\right) S - \frac{\beta SI}{1 + a_I + \sum_{i=1}^{3} a_i I_i} \, dt - a \frac{\beta SI}{1 + a_I + \sum_{i=1}^{3} a_i I_i} \, db,$$

$$dI = \left(\lambda + \nu - \rho - \mu + d\right) I - \sum_{i=1}^{3} a_i I_i \, dt + a \frac{\beta SI}{1 + a_I + \sum_{i=1}^{3} a_i I_i} \, db,$$

$$dI_i = \alpha_i I_i - \mu_i + \gamma_i I_i \, dt,$$

$$dQ = \sum_{i=1}^{3} \gamma_i I_i - \mu_i + d \, Q \, dt.$$

We suppose that
\[F(z) = -\frac{1}{2} \sigma^2 z^2 - \beta z - \mu + d, \quad z = \frac{S}{1 + \sum_{i=1}^{\infty} \frac{a_i I_i}{\mu + d}} \]

(23)

If the determinant of the equation is negative, then for all \(x \).

\[F(x) \leq \frac{\Delta}{a^2} dt, \text{With} \Delta = \beta^2 - 2\alpha^2 \mu + d \]

(24)

We have

\[d \log \left(S - \frac{\lambda + \nu - \rho}{\mu + d} \right) \leq \frac{\Delta}{a^2} dt - \frac{S I}{1 + \sum_{i=1}^{\infty} a_i I_i} \times \frac{a}{S - \frac{\lambda + \nu - \rho}{\mu + d}} \]

(25)

With integration, we obtain

\[d \log \left(S - \frac{\lambda + \nu - \rho}{\mu + d} \right) \leq \frac{\Delta}{a^2} dt - \int_0^t \frac{S(v)I(v)}{1 + \sum_{i=1}^{\infty} a_i I_i(v)} \times \frac{1}{S(v) - \frac{\lambda + \nu - \rho}{\mu + d}} \]

(26)

Since

\[\lim_{t \to \infty} \int_0^t \frac{S(v)I(v)}{1 + \sum_{i=1}^{\infty} a_i I_i(v)} \times \frac{1}{S(v) - \frac{\lambda + \nu - \rho}{\mu + d}} db(v) = 0, \]

Therefore

\[\lim_{t \to \infty} \sup \frac{1}{t} \log \left(S - \frac{\lambda + \nu - \rho}{\mu + d} \right) \leq \frac{\Delta}{a^2}, \text{almost surely.} \]

(27)

S(t) is exponentially almost stable. □

5. Conclusion

This paper addresses the equilibrium and local stability of the epidemic model with saturated incidence rate, in the absence of infection, the system has a disease-free equilibrium, in the presence of infection the system, has a unique positive, endemic equilibrium. Then we applied the Homotopy perturbation method, we obtained The zero, first and second order solutions.

References

[1] Abta, A., Kaddar, A., and Talibi, H. A., 2012. "Global Stability for Delay SIR and SEIR Epidemic Models with Saturated Incidence Rates." Electronic Journal of Differential Equations, vol. 23, pp. 1-13.
[2] Ademimpe, O., Erinle-Ibrahim, L. M., and Adebsi, A. F., 2016. "Stability analysis of siqs epidemic model with saturated incidence rate." Applied Mathematics, vol. 7, pp. 1082-1086.
[3] Batiha, M. S., Noorani, M., and Hashim, I., 2008. "Numerical solutions of the nonlinear integro-differential equations." Int. J. Open Probl. Compt. Math, pp. 34-42.
[4] Becker, N. G., 1979. "The uses of epidemic models." Biometrics, vol. 35, pp. 295-305.
[5] Billard, L., 1976. "A Stochastic General Epidemic in m Sub-Population." J. Appl. Prob., vol. 13, pp. 567-572.
[6] He, J.-H., 2000. "A coupling method of a homotopy technique and a perturbation technique for non-linear problems." International Journal of Non-Linear Mechanics, vol. 35, pp. 37-43.
[7] Jin, Z., Zhien, M., and Maolan, H., 2006. "Global stability of an SIRS epidemic model with delay." Acta Matimatica Scientia, vol. 26, pp. 291-306.
[8] Jinliang, W. and Xinxin, T., 2013. "Global stability of a delay differential equation of hepatitis b virus infection with immune response." Electronic Journal of Differential Equations, vol. 94, pp. 1-11.
[9] Lahrouz, A. and El Maroufy, H., 2011. "Qualitative behaviour of a model of an SIRS epidemic: Stability and permanence. Applied mathematics and information sciences." An International Journal, vol. 5, pp. 220-238.
Luo, Q. and Mao, X., 2007. "Stochastic population dynamics under regime switching." J. Math. Anal. Appl., vol. 334, pp. 69-84.

Ma, W., Takeuchi, Y., Hara, T., and Beretta, E., 2002. "Permanence of are SIR epidemic model with distributed time delays." Tohoku Math. J., vol. 54, pp. 581-591.

Ma, Z., Liu, J., and Li, J., 2003. "Stability analysis for differential infectivity epidemic models, Nonlinear Anal." Real World Appl., vol. 4, pp. 841-856.

Michael, S. J., 2003. Stochastic calculus and financial applications. Springer-Verlag.

Perto, L., 1996. Differential equations and dynamical systems. 2nd ed. New York: Springer.

Ray Waston, 1980. "A useful random time-seal transformation for the standard epidemic model." J. Appl. Prob., vol. 17, pp. 324-332.

Ray Waston, 1980. "On the size distribution for some epidemic models." J. Appl. Prob., vol. 17, pp. 912-921.

Ruoyan, S., 2010. "Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence." Computers and Mathematics with Applications, vol. 60, pp. 2286-2291.

Safeed, I., Syed, F. S., Gul, Z., Muhammad, A. K., Sher, A., Khan, Farooq, A., and Murad, U. A., 2013. "Analytical solution of an SEIV epidemic model by Homotopy perturbation method." VFAST Transactions on Mathematics, vol. 1, pp. 1-7.

Seddighi, C. S., Abu Bakar, M. R., Fudziah, I., Noor Akma, I., Malik, A. H., and Alli, V., 2010. "Behavior Stability in two SIR-Style Models for HIV." Int. Journal of Math. Analysis, vol. 4, pp. 427-434.

Volodymyr Makarov and Denis Dragunov, 2010. "A numeric-analytical method for solving the Cauchy problem for ordinary differential equations, pp. 1-26. https://arxiv.org/pdf/1009.0058.pdf

Wang, W., 2002. "Global behavior of an SEIR epidemic model with time delay." Appl. Math. Letters., vol. 15, pp. 423-428.

Wen, L. and Yang, X., 2008. "Global stability of a delayed SIRS model with temporary immunity." Chaos, Solitons and Fractals, vol. 38, pp. 221-226.

Xiao, C. L. and Ven Den, B. F., 2002. "Dynamical behavior for a stage-structured SIR infectious disease model, Nonlinear Anal." Real. World Appl., vol. 3, pp. 175-190.

Zhang, F., Zhen, L., and Zhang, F., 2008. "Global stability of an SIR epidemic model with constant infectious period." Applied Mathematics and Computation, vol. 199, pp. 285-291.