DISTRIBUTION OF ANGLES IN HYPERBOLIC LATTICES

MORTEN S. RISAGER AND JIMI L. TRUelsen

Abstract. We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result due to F. P. Boca.

1. Introduction

Consider the group $G = \text{SL}_2(\mathbb{R})$ that acts on the upper halfplane \mathbb{H} by linear fractional transformations. Let $\Gamma \subset G$ be a cofinite discrete group, and let $d : \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{R}_+$ denote the hyperbolic distance. Consider the counting function

$$N_\Gamma(R, z_0, z_1) = \# \{ \gamma \in \Gamma | d(z_0, \gamma z_1) \leq R \}.$$

The hyperbolic lattice point problem is the problem of estimating this function as $R \rightarrow \infty$. A typical result would be an asymptotic expansion of the form

$$N_\Gamma(R, z_0, z_1) = \frac{\kappa_\Gamma \pi}{\text{vol}(\Gamma \backslash \mathbb{H})} e^R + O(e^{R(\alpha + \varepsilon)})$$

for some $\alpha < 1$, where $\kappa_\Gamma = 2$ if $-I \in \Gamma$ and $\kappa_\Gamma = 1$ otherwise. The problem has been considered by numerous people including Delsarte [3], Huber [8, 9, 10] (Γ cocompact), Patterson [20] ($\alpha = 3/4$ if there are no small eigenvalues), Selberg (unpublished) and Good [6] ($\alpha = 2/3$ if there are no small eigenvalues). Higher dimensional analogues have also been considered (see e.g. [14, 15, 4]), as well as the analogous problem for manifolds with non-constant curvature [16, 7]. For a discussion of the optimal choice of α we refer to [21], where the authors prove that α must be at least $1/2$ and they indicate that in many cases we should maybe expect (1) to hold with $\alpha = 1/2$.

Let $\varphi_{z_0, z_1}(\gamma)$ be $(2\pi)^{-1}$ times the angle between the vertical geodesic from z_0 to ∞ and the geodesic between z_0 and γz_1.

![Figure 1](image-url)
These normalized angles are equidistributed modulo one, i.e. for every interval $I \subset \mathbb{R}/\mathbb{Z}$ we have

$$ \frac{N_I^1(R, z_0, z_1)}{N_I(R, z_0, z_1)} \to |I| \text{ as } R \to \infty, $$

where

$$ N_I^1(R, z_0, z_1) = \#\{\gamma \in \Gamma | d(z_0, \gamma z_1) \leq R, \varphi_{z_0, z_1}(\gamma) \in I\}, $$

and $|I|$ is the length of the interval. This has been proved by Selberg (unpublished, see comment in [3, p. 120]), Nicholls [19] and Good [6].

In this paper we start by proving (2) with an error term:

Theorem 1. Let $K \subset \mathbb{H}$ be a compact set. There exists a constant $\alpha < 1$ possibly depending on Γ and K such that for all $z_0, z_1 \in K$ and all intervals I in \mathbb{R}/\mathbb{Z}

$$ \frac{N_I^1(R, z_0, z_1)}{N_I(R, z_0, z_1)} = |I| + O(e^{R(\alpha-1+\varepsilon)}). $$

If we assume that the automorphic Laplacian on $\Gamma \setminus \mathbb{H}$ has no exceptional eigenvalues, i.e. eigenvalues in $]0, 1/4[$, we prove that we can take

$$ \alpha = 11/12. $$

If there are exceptional eigenvalues the exponent could become larger, depending on how close to zero they are. We prove Theorem 1 by proving asymptotic expansions for the exponential sums

$$ \sum_{\gamma \in \Gamma \atop d(z_0, \gamma z_1) \leq R} e(n \varphi_{z_0, z_1}(\gamma)), $$

where $n \in \mathbb{Z}$ and $e(x) = \exp(2\pi i x)$. The exponent 11/12 can certainly be improved. In fact our proof uses a variant of Huber’s method [8] which does not give the optimal bound even for the expansion (4). In principle Theorem 1 could be proved by using the method of Good from [6], which gives the best known error term in the hyperbolic lattice point problem [11]. The one missing point in [6] to prove Theorem 1 is the dependence of n in the expansion of the exponential sum (4). Rather than patiently tracking down the n-dependence, we found it more to the point – albeit at the expense of poor error terms – to provide an alternative and more direct proof inspired by [8].

Recently Boca [2] considered a related problem: What happens if we order the elements according to $d(z_1, \gamma z_1)$ instead of $d(z_0, \gamma z_1)$? Let $\Gamma(N)$ be the principal congruence group of level N i.e. the set of 2×2 matrices γ satisfying $\gamma \equiv I \mod N$. Boca identified for these groups the limiting distribution using non-trivial bounds for Kloosterman sums. He proved the following [1]. Let $z_0, z_1 \in \mathbb{H}$ and let $\omega_{z_0, z_1}(\gamma)$ denote the angle in $[-\pi/2, \pi/2]$ between the vertical geodesic through z_0 and the geodesic containing z_0 and γz_1 (if $z_0 = \gamma z_1$ you can assign $\omega_{z_0, z_1}(\gamma)$ the value 0 – it does not matter what you choose, since there are only a finite number of such γ’s).

For any interval $I \subset [-\pi/2, \pi/2]$ we consider the counting function

$$ \mathfrak{N}_I^1(R, z_0, z_1) = \#\{\gamma \in \Gamma | d(z_1, \gamma z_1) \leq R, \omega_{z_0, z_1}(\gamma) \in I\}. $$

We emphasize that the elements are ordered according to $d(z_1, \gamma z_1)$ instead of $d(z_0, \gamma z_1)$. We shall write $\mathfrak{N}_I(R, z_0, z_1)$ instead of $\mathfrak{N}_I^1(-\pi/2, \pi/2)(R, z_0, z_1)$. Following

1 Readers consulting [2] should be warned that our notation differs slightly from Boca’s.
Boca we define
\[
\eta_{z_0, z_1}(t) = \frac{2y_0 y_1 (y_0^2 + y_1^2 + (x_0 - x_1)^2)}{(y_0^2 + y_1^2 + (x_0 - x_1)^2)^2 - ((y_1^2 - y_0^2 + (x_0 - x_1)^2) \cos(t) + 2y_0(x_0 - x_1) \sin(t))^2}.
\]

Then Boca proves the following result:

Theorem 2. Let \(\Gamma = \Gamma(N) \). For any interval \(I \subset [-\pi/2, \pi/2] \)
\[
\frac{\mathcal{N}_I^\gamma(R, z_0, z_1)}{\#\Gamma(R, z_0, z_1)} = \frac{1}{\pi} \int_I \eta_{z_0, z_1}(t) \, dt + O(e^{(7/8 - 1 + \epsilon)R})
\]
for any \(\epsilon > 0 \).

In the view of [1] Theorem [2] is equivalent to an expansion of \(\mathcal{N}^\gamma(R, z_0, z_1) \).

We generalize and refine Boca’s result: With data as above, \(I \subset \mathbb{R}/\mathbb{Z} \) and \(w \in \mathbb{H} \) we consider the counting function
\[
\mathcal{M}_I^\gamma(R, z_0, z_1, w) = \# \{ \gamma \in \Gamma \mid d(z_1, \gamma w) \leq R, \varphi_{z_0, w}(\gamma) \in I \}.
\]

We emphasize that we order according to \(d(z_1, \gamma w) \). As before we shall write \(\mathcal{M}(R, z_0, z_1, w) \) instead of \(\mathcal{M}^{[-1/2, 1/2]}(R, z_0, z_1, w) \). Besides the more general ordering our result is more refined in the sense that we can distinguish between angles that differ by \(\pi \). Consider
\[
\rho_{z_0, z_1}(\omega) = \frac{2y_0 y_1 ((x_0 - x_1)^2 + y_0^2 + y_1^2)(1 - \cos(2\pi \omega)) + 2y_0^2 \cos(2\pi \omega) + 2(x_1 - x_0)y_0 \sin(2\pi \omega))}{(y_0^2 + y_1^2 + (x_0 - x_1)^2)^2}.
\]

Then we prove the following result:

Theorem 3. Let \(\Gamma \) be any cofinite Fuchsian group. There exists \(\alpha < 1 \) such that for any \(I \subset \mathbb{R}/\mathbb{Z} \) we have
\[
\frac{\mathcal{M}_I^\gamma(R, z_0, z_1, w)}{\mathcal{M}(R, z_0, z_1, w)} = \int_I \rho_{z_0, z_1}(\omega) \, d\omega + O(e^{(\alpha - 1 + \epsilon)R})
\]
for any \(\epsilon > 0 \).

Note that in the special case of \(\Gamma = \Gamma(N) \) and \(w = z_1 \) this implies Theorem [2] (with a poorer error term though), since
\[
\eta_{z_0, z_1}(2\pi t) = \rho_{z_0, z_1}(t) + \rho_{z_0, z_1}(t + 1/2).
\]

We will prove that Theorem [3] follows from Theorem [1].

Whereas Boca is using a non-trivial bound for Kloosterman sums, we are utilizing the fact that for any group there is a spectral gap between the zero eigenvalue of the Laplacian and the first non-zero eigenvalue. As in Theorem [1] the \(\alpha \) in Theorem [3] generally depends on the size of the first non-zero eigenvalue.
We remark that all the results presented here, can easily be phrased in terms of points in the orbit Γz_1, rather than elements in Γ, since
\[\# \{ z \in \Gamma z_1 \mid d(z_0, z) \leq R \} = \frac{N_{\Gamma}(R, z_0, z_1)}{\mid \Gamma z_1 \mid}, \]
where Γz_1 denotes the stabilizer of z_1.

2. Effective equidistribution of angles

Let $G = \text{SL}_2(\mathbb{R})$. The group G acts on the upper halfplane \mathbb{H} by linear fractional transformations
\[g z = \frac{az + b}{cz + d}, \quad g = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in G, \quad z \in \mathbb{H}. \]
Let $\Gamma \subset \text{SL}_2(\mathbb{R})$ be discrete and cofinite. For simplicity we assume that $-I \notin \Gamma$. If $-I \in \Gamma$ we need to multiply all main terms by 2.

For $z \in \mathbb{H}$ we let $r = r(z)$ and $\varphi = \varphi(z)$ be the geodesic polar coordinates of z. These are related to the rectangular coordinates by
\[z = \left(\begin{array}{cc} \cos \varphi(z) & \sin \varphi(z) \\ -\sin \varphi(z) & \cos \varphi(z) \end{array} \right) \exp(-r(z))i. \]
We note that if $z_0 = x_0 + iy_0$ and we let
\[\gamma_0 = \left(\begin{array}{cc} 1/\sqrt{y_0} & -x_0/\sqrt{y_0} \\ 0 & \sqrt{y_0} \end{array} \right) \]
then it is straightforward to check that $\gamma_0 z_0 = i$. We see that
\[\varphi_{z_0, z_1}(\gamma) = \varphi_{i, \gamma_0 z_1}(\gamma_0 \gamma_0^{-1}) = \varphi(\gamma_0 \gamma_0^{-1}(\gamma_0 z_1))/\pi \]
and
\[d(z_0, \gamma z_1) = d(i, \gamma_0 z_0^{-1}(\gamma_0 z_1)) = r(\gamma_0 \gamma_0^{-1}(\gamma_0 z_1)). \]
Therefore after conjugation of the group Γ the counting problems in the introduction may be formulated in terms of $r(\gamma z)$ and $\varphi(\gamma z)$ with $z = \gamma_0 z_1$.

The Laplacian for the G-invariant measure $d\mu(z) = dxdy/y^2$ on \mathbb{H} is given in Cartesian coordinates by
\[\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right). \]

In geodesic polar coordinates the Laplace operator is given by
\[\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{\tan \varphi} \frac{\partial}{\partial \varphi} + \frac{1}{4 \sinh^2(r)} \frac{\partial^2}{\partial \varphi^2}. \]

Consider $L^2(\Gamma \backslash \mathbb{H}, d\mu(z))$ with inner product $\langle f, g \rangle = \int_{\Gamma \backslash \mathbb{H}} f \overline{g} d\mu(z)$ and norm $\|f\|_2 = \sqrt{\langle f, f \rangle}$. The Laplacian induces an operator on $L^2(\Gamma \backslash \mathbb{H}, d\mu(z))$ called the automorphic Laplacian defined as follows: Consider the operator defined by $-\Delta f$ on smooth, bounded, Γ-invariant functions satisfying that $-\Delta f$ is also bounded. This operator is densely defined in $L^2(\Gamma \backslash \mathbb{H})$ and is in fact essentially selfadjoint. The closure of this operator is called the automorphic Laplacian. By standard abuse of notation we also denote this operator by $-\Delta$.

The automorphic Laplacian is selfadjoint and non-negative and has eigenvalues
\[0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots \lambda_i \leq \ldots \]
with the number of eigenvalues being finite or $\lambda_i \to \infty$. It has a continuous spectrum $[1/4, \infty]$ with multiplicity equal to the number of inequivalent cusps.

By standard operator theory for selfadjoint operators (See e.g. [L3]) the resolvent $R(s) = (-\Delta - s(1 - s))^{-1}$ is a bounded operator which is meromorphic in s for
s(1 − s) off the spectrum of −Δ. For an eigenvalue λi outside the continuous spectrum the operator \(R(s) = P_i/(\lambda_i - s(1-s)) \) is analytic at s satisfying s(1−s) = λi
where \(P_i \) is the projection to the \(\lambda_i \)-eigenspace. In particular for \(\lambda = 0 \) we note
that
\[
R(s) - \frac{P_0}{s(1-s)}
\]
is analytic for \(\Re(s) > 1 - \delta \) for some \(\delta \) where \(P_0 f = \int f(z) d\mu(z)/\text{vol}(\Gamma \setminus \mathbb{H}) \) is the projection to the 0-eigenspace. (Alternatively one may quote [11, Theorem 7.5] to obtain the same result.)

We define for \(\Re(s) > 1 \)
\[
G_n(z, s) = \sum_{\gamma \in \Gamma} \frac{e(n\varphi(\gamma z)/\pi)}{(\cosh(r(\gamma z)))^s}.
\]
We recall that
\[
cosh(r(\gamma z)) = 1 + 2u(\gamma z, i),
\]
where \(u(z, w) \) is the point pair invariant defined by
\[
u(z, w) = \frac{|z - w|^2}{4\Im(z)\Im(w)}.
\]
Hence
\[
|\frac{e(n\varphi(z)/\pi)}{(\cosh(r(z)))^s}| \leq \frac{1}{(1 + 2u(z, i))^{\Re(s)}}.
\]

It therefore follows from [22, Theorem 6.1] and the discussion leading up to it that the sum (10) converges absolutely and uniformly on compact sets and the limit is \(\Gamma \)-automorphic, and bounded in \(z \) – in particular square integrable on \(\Gamma \setminus \mathbb{H} \).

By applying the Laplace operator to \(G_n(z, s) \) a straightforward calculation shows that
\[
(-\Delta - s(1-s))G_n(z, s) = s(s + 1)G_n(z, s + 2) + \sum_{\gamma \in \Gamma} \frac{n^2e(n\varphi(\gamma z)/\pi)}{\sinh^2(r(\gamma z)) (\cosh(r(\gamma z)))^s}.
\]
The sum on the right converges absolutely and uniformly on compacta for \(\Re(s) > -1 \). Since \(G_n(z, s) \) is square integrable, we may invert (11) using the resolvent
\[
R(s) = (-\Delta - s(1-s))^{-1},
\]
so we have
\[
G_n(z, s) = R(s) \left(s(s + 1)G_n(z, s + 2) + \sum_{\gamma \in \Gamma} \frac{n^2e(n\varphi(\gamma z)/\pi)}{\sinh^2(r(\gamma z)) (\cosh(r(\gamma z)))^s} \right).
\]
The right-hand-side is meromorphic in s for \(\Re(s) > 1/2 \) since the resolvent is holomorphic for \(s(1-s) \) not in the spectrum of the automorphic Laplacian. This gives the meromorphic continuation of \(G_n(z, s) \) to \(\Re(s) > 1/2 \). The only potential poles are at \(s = 1 \) and \(s = s_j \) where \(s_j(1-s_j) \) is a small eigenvalue for the automorphic Laplacian. Using the analyticity of (7) we see that the pole at \(s = 1 \) has residue
\[
\frac{1}{\text{vol}(\Gamma \setminus \mathbb{H})} \int_{\Gamma \setminus \mathbb{H}} \left(2G_n(z, 3) + \sum_{\gamma \in \Gamma} \frac{n^2e(n\varphi(\gamma z)/\pi)}{\sinh^2(r(\gamma z)) \cosh(r(\gamma z))} \right) d\mu(z).
\]
By unfolding the integral we find that this equals
\[
\frac{1}{\text{vol}(\Gamma \setminus \mathbb{H})} \int_{\mathbb{H}} \left(2\pi(n\varphi(z)/\pi) \cosh^3(r(z)) + \frac{n^2e(n\varphi(z)/\pi)}{\sinh^2(r(z)) \cosh(r(z))} \right) d\mu(z).
\]
Changing to polar coordinates we find

\[
16 \frac{1}{\text{vol}(\Gamma \setminus \mathbb{H})} \int_0^\infty \int_0^\pi \left(\frac{2e(n\varphi/\pi)}{\cosh^3(r)} + \frac{n^2e(n\varphi/\pi)}{\sinh^2(r) \cosh(r)} \right) 2 \sinh(r) d\varphi dr,
\]

which equals

\[
17 \frac{2\pi \delta_{n=0}}{\text{vol}(\Gamma \setminus \mathbb{H})}.
\]

This follows since

\[
\int_0^\infty 2 \sinh(r) \cosh(r)^3 dr = 1.
\]

From a Wiener-Ikehara Tauberian theorem (see e.g. [18, Theorem 3.3.1 and Exercises 3.3.3+3.3.4]) we may conclude that

\[
18 \sum_{\gamma \in \Gamma} e(n\varphi(\gamma)/\pi) \leq 2\pi \frac{\delta_{n=0}}{\text{vol}(\Gamma \setminus \mathbb{H})} R + o(R).
\]

This implies immediately – via Weyl’s criterion – that the angles \(\varphi(\gamma)/\pi\) are equidistributed modulo 1.

Since we intend to obtain a power saving in the remainder term we investigate \(G_n(z,s)\) a bit more careful:

Lemma 1. Write \(s = \sigma + it\). For \(z\) in a fixed compact set \(K \subset \mathbb{H}\), \(|t| > 1\) and \(\sigma > \sigma_0 > 1/2\) we have

\[
G_n(z,s) = O(|t| (|t|^2 + n^2)),
\]

where the implied constant may depend on \(\Gamma\), \(K\), and \(\sigma_0\).

Proof. We recall that [13 V (3.16)]

\[
19 \|R(s)\|_{\infty} \leq \frac{1}{\text{dist}(s(1-s), \text{spec}(-\Delta))} \leq \frac{1}{|t| (2\sigma - 1)},
\]

where \(\|\cdot\|_{\infty}\) denotes the operator norm. For \(\sigma > 3/2\) we have

\[
20 \|G_n(z,s)\|_2 \leq \|G_0(z,3/2)\|_2 = O(1).
\]

For \(\sigma > \sigma_0\) we may use this and [13] to conclude that

\[
21 \|G_n(z,s)\|_2 \leq \|R(s)\|_{\infty} \left(\|s(s+1)G_n(z,s+2)\|_2 + \left\| \sum_{\gamma \in \Gamma} \frac{n^2e(n\varphi(\gamma)/\pi)}{\sinh^2(r(\gamma))(\cosh(r(\gamma)))^{1/2}} \right\|_2 \right)
\]

\[
\leq \frac{1}{|t| (2\sigma - 1)} \left(|t|^2 \|G_0(z,3/2)\|_2 + \left\| \sum_{\gamma \in \Gamma} \frac{n^2}{\sinh^2(r(\gamma))(\cosh(r(\gamma)))^{1/2}} \right\|_2 \right)
\]

\[
= O(|t|^{-1} (|t|^2 + n^2)).
\]

Using this and [11] we find

\[
22 \|\Delta G_n(z,s)\|_2 = O(|t| (|t|^2 + n^2)).
\]

We can now use the Sobolev embedding theorem and elliptic regularity theory to get a pointwise bound:

For any non-empty open set \(\Omega\) in \(\mathbb{R}^2\) we consider the classical Sobolev space \(W^{k,p}(\Omega)\) with corresponding norm \(\|\cdot\|_{W^{k,p}(\Omega)}\) (See [1 p. 59]). Whenever \(\Omega\) satisfies
the cone condition (See [11 p. 82]) the Sobolev embedding theorem [11 Thm 4.12]) gives an embedding
\[W^{2,2}(\Omega) \rightarrow C_B(\Omega) \]
where \(C_B(\Omega) \) is the set of bounded continuous functions on \(\Omega \) equipped with the sup norm. In particular for \(f \in W^{2,2}(\Omega) \) we have
\[\sup_{z \in \Omega} |f(z)| \leq C \|f\|_{W^{2,2}(\Omega)} \]
where \(C \) is a constant which depends only on \(\Omega \).

By elliptic regularity theory, if \(\Delta_E = \partial^2/\partial x^2 + \partial^2/\partial y^2 \) is the Euclidean Laplace operator we have also that if \(u \in W^{1,2}(\Omega) \) satisfies \(\Delta_E u \in L^2(\Omega) \) (weak derivative) then
\[\|u\|_{W^{2,2}(\Omega')} \leq C' (\|u\|_{L^2(\Omega)} + \|\Delta_E u\|_{L^2(\Omega)}) \]
for all \(\Omega' \subset \Omega \) which satisfies that the closure of \(\Omega' \) is compact and contained in \(\Omega \). Here \(C' \) is a constant which depends only on \(\Omega \), and \(\Omega' \) (See [12 Theorem 8.2.1]).

We can use this general theory to bound \(|G_n(z, s)| \) in the following way: For every \(z \) in the compact set \(K \) we fix a small open (Euclidean) disc \(\Omega_z \) centered at \(z \) with some radius such that its closure \(\overline{\Omega_z} \) is contained in \(\mathbb{H} \). Let \(\Omega_i \) be the open disc with half the radius. By compactness of \(K \) the cover \(\{\Omega_i\} \) admits a finite subcover i.e. \(K \subset \bigcup_{i=1}^{n} \Omega_i \), for \(z_i \in K \). Choose as a fundamental domain for \(\Gamma \) a normal polygon \(F \). Since \(\Gamma \) is a discrete subgroup of \(SL_2(\mathbb{R}) \), \(\Omega_i \) intersects non-trivially with \(\gamma F \) for only finitely many (say \(n_i \)) \(\gamma \in \Gamma \) (See [14 1.6.2 (3)]).

Therefore, for any automorphic function \(f \),
\[\|f\|^2_{L^2(\Omega_i)} := \int_{\Omega_i} |f(z)|^2 \, dx \, dy \]
\[\leq n_i y_i^2 \int_F |f(z)|^2 \, d\mu(z) = n_i y_i^2 \|f\|^2 \]
and
\[\|\Delta_E f\|^2_{L^2(\Omega_i)} := \int_{\Omega_i} |\Delta_E f(z)|^2 \, dx \, dy \]
\[\leq n_i y_i^{-2} \int_F |\Delta f(z)|^2 \, d\mu(z) = n_i y_i^{-2} \|\Delta f\|^2 \]
where \(y_i < \infty \) and \(y_i > 0 \) are heights over and under \(\Omega_i \). It is straightforward to verify that \(G_n(z, s) \) is in \(W^{1,2}(\Omega_i) \) (since it is continuously differentiable) and that \(\Omega_i \) has the cone property, so we may use the above inequalities to conclude
\[\sup_{z \in K} |G_n(z, t)| \leq \max_{i=1}^{n} \sup_{z \in \Omega_i} |G_n(z, s)| \]
\[\leq \max_i C_i \|G_n(z, s)\|_{W^{2,2}(\Omega_i)} \text{ by (21)} \]
\[\leq \max_i C_i C_i' \|G_n(z, s)\|_{L^2(\Omega_i)} + \|\Delta_E G_n(z, s)\|_{L^2(\Omega_i)} \text{ by (25)} \]
\[\leq \max_i C_i C_i' \|G_n(z, s)\|_2 + \|\Delta G_n(z, s)\|_2 \text{ by (21) and (27)} \]
which concludes the proof. \(\square \)

We note that Lemma 1 implies that
\[G_n(z, s) = O(|t|^3) \]
when \(|n| \leq |t| \), and by applying the Phragmén-Lindelöf theorem we may reduce the exponent to \(\max(6(1 - \sigma) + \varepsilon, 0) \) for any \(\varepsilon > 0 \).
We may now use the meromorphic continuation of $G_n(z, s)$ and Lemma 1 to get an asymptotic expansion with error term for the sum in (13). We will assume that there are no exceptional eigenvalues, which implies that $G_n(z, s)$ is regular in $\Re(s) > 1/2$. If this is not the case $G_n(z, s)$ will still be regular in $\Re(s) > h$ for some $h < 1$. In (33) below we then move the line of integration to $\Re(s) > h + \varepsilon$. Proceeding with the obvious changes still gives a nontrivial error term in the end. We shall not dwell on the details.

Let $\psi_U : \mathbb{R}_+ \to \mathbb{R}, U \geq U_0$, be a family of smooth non-increasing functions with

$$\psi_U(t) = \begin{cases} 1 & \text{if } t \leq 1 - 1/U \\ 0 & \text{if } t \geq 1 + 1/U, \end{cases}$$

and $\psi_U^{(j)}(t) = O(U^j)$ as $U \to \infty$. For $\Re(s) > 0$ we let

$$M_U(s) = \int_0^\infty \psi_U(t)t^{s-1}dt$$

be the Mellin transform of ψ_U. Then we have

$$M_U(s) = \frac{1}{s} + O\left(\frac{1}{U}\right)$$

as $U \to \infty$

and for any $c > 0$

$$M_U(s) = O\left(\frac{1}{|s|}\left(\frac{U}{1 + |s|}\right)^c\right)$$

as $|s| \to \infty$.

Both estimates are uniform for $\Re(s)$ bounded. The first is a mean value estimate while the second is successive partial integration and a mean value estimate. We use here the estimate $\psi_U^{(j)}(t) = O(U^j)$. The Mellin inversion formula now gives

$$\sum_{\gamma \in \Gamma} e(n\varphi(\gamma z)/\pi)\psi_U\left(\frac{\cosh(r(\gamma z))}{R}\right) = \frac{1}{2\pi i} \int_{\Re(s)=2} G_n(z, s)M_U(s)R^s ds.$$

We note that by Lemma 1 the integral is convergent as long as $G_n(z, s)$ has polynomial growth on vertical lines. We now move the line of integration to the line $\Re(s) = h$ with $h < 1$ by integrating along a box of some height and then letting this height go to infinity. Using Lemma 1 we find that the contribution from the horizontal sides goes to zero. Assume that $s = 1$ is the only pole of the integrand with $\Re(s) \geq 1/2 + \varepsilon$. Then using Cauchy’s residue theorem we obtain

$$\frac{1}{2\pi i} \int_{\Re(s)=2} G_n(z, s)M_U(s)R^s ds$$

$$= \text{Res}_{s=1} \left(G_n(z, s)M_U(s)R^s \right) + \frac{1}{2\pi i} \int_{\Re(s)=1/2+\varepsilon} G_n(z, s)M_U(s)R^s ds$$

$$= \frac{2\pi R}{\text{vol}(\Gamma \backslash \mathbb{H})} + O(R/U) + \frac{1}{2\pi i} \int_{\Re(s)=1/2+\varepsilon} G_n(z, s)M_U(s)R^s ds.$$

If there are other small eigenvalues there are additional main terms. In bypassing we note that their coefficients will depend on the n-th hyperbolic Fourier coefficients of the eigenfunctions corresponding to small eigenvalues. (See [1], Theorem 4 p. 116.) If we choose $c = 3 + \varepsilon$ and use Lemma 1 the last integral is $O(R^{1/2+\varepsilon}U^{3+\varepsilon}(n^2 + 1))$. The interval with $|\Im(s)| \leq 1$ can easily be dealt with using the bound

$$|R(s)||_{\infty} \leq \max_j \left| \frac{1}{\sigma(1 - \sigma)} - \frac{1}{\sigma_j(1 - \sigma_j)} \right|,$$

which in turn gives us an estimate for $G_n(z, s)$.

If } n = 0 \text{ we see that by further requiring } \psi_U(t) = 0 \text{ if } t \geq 1 \text{ and } \psi_U(t) = 1 \text{ if } t \leq 1, \text{ we have}

\[
\sum_{\gamma \in \Gamma} \psi_U \left(\frac{\cosh(r(\gamma z))}{R} \right) \leq \sum_{\gamma \in \Gamma} \frac{1}{\cosh(r(\gamma z))} \leq \sum_{\gamma \in \Gamma} \frac{1}{\cosh(r(\gamma z))}.
\]

Choosing } U = R^{1/8} \text{ we therefore obtain:}

Lemma 2. With assumptions as above we have

\[
(34) \quad \#\{ \gamma \in \Gamma | \cosh(r(\gamma z)) \leq R \} = \frac{2\pi R}{\text{vol}(\Gamma \setminus \mathbb{H})} + O(R^{7/8+\varepsilon}).
\]

We note that this implies (1) with } \alpha = 7/8. \text{ Using this we can now deal with the general case. To get from a smooth cut-off to a sharp one we notice that if } \psi_U(t) = 1 \text{ for } t \leq 1 \text{ then we may bound the difference}

\[
\sum_{\gamma \in \Gamma} e(n\varphi(\gamma z)/\pi) \psi_U \left(\frac{\cosh(r(\gamma z))}{R} \right) - \sum_{\gamma \in \Gamma} e(n\varphi(\gamma z)/\pi) = O \left(\sum_{R<\cosh(r(\gamma z))\leq R(1+1/U)} 1 \right)
\]

which by Lemma 2 is } O(R/U + R^{7/8+\varepsilon}). \text{ Combining the above we find that for } n \neq 0

\[
\sum_{\gamma \in \Gamma} e(n\varphi(\gamma z)/\pi) \leq O(R^{1/2+\varepsilon}U^{3+\varepsilon}(n^2 + 1) + R/U + R^{7/8+\varepsilon}).
\]

Using the Erdős-Turán inequality [5, Theorem 3] we find that

\[
\frac{\#\{ \gamma \in \Gamma | \cosh(r(\gamma z)) \leq R, \varphi(\gamma z)/\pi \in I \}}{\#\{ \gamma \in \Gamma | \cosh(r(\gamma z)) \leq R \}} = |I| + O(1/M + R^{-1/2+\varepsilon}U^{3+\varepsilon}M^2 + \log M(1/U + R^{-1/8+\varepsilon}))
\]

for any } M. \text{ Letting } M = U = R^{1/12} \text{ we arrive at the following (still assuming that there are no small eigenvalues):}

Theorem 4. For all } \varepsilon > 0 \text{ and } I \subset \mathbb{R}/\mathbb{Z} \text{ we have}

\[
\frac{\#\{ \gamma \in \Gamma | \cosh(r(\gamma z)) \leq R, \varphi(\gamma z)/\pi \in I \}}{\#\{ \gamma \in \Gamma | \cosh(r(\gamma z)) \leq R \}} = |I| + O(R^{-1/12+\varepsilon}).
\]

Theorem 1 follows easily.

3. Proof of Theorem 3

We wish to find the limiting distribution of the number of lattice points in angular sectors defined from } z_0 \text{ when ordering the lattice points } \gamma w \text{ according to the distance to } z_1. \text{ More precisely we want to find the asymptotics of}

\[
A^l_\varepsilon(R, z_0, z_1, w) = \#\{ \gamma \in \Gamma | d(z_1, \gamma w) \leq R, \varphi_{z_0, w}(\gamma) \in I \}.
\]

Our strategy for finding the asymptotics is the following: We find the hyperbolic distance from } z_0 \text{ to the intersection(s) between the hyperbolic circle with center at } z_1 \text{ and radius } R \text{ and the geodesic through } z_0 \text{ determined by an angle } t \in [-\pi, \pi] \text{ relative to the vertical geodesic through } z_0. \text{ Once we have an asymptotic expression for this distance we can make a Riemann sum approximation of the counting function (35). The summands can be estimated via Theorem 1 leading to a proof of Theorem 3.}

We may safely assume that } z_0 = i \text{ – it is easy to extend our results to the general case. We would like to find the distance from } i \text{ to the relevant intersection point
which will be denoted by \(w' = x' + iy' \). There are 2 intersection points, but we choose the one which has negative real part for \(t > 0 \). This distance will be denoted \(Q(z_1, t, R) \).

Now fix \(z_1, t \) and \(R \). Let \(\alpha \in \mathbb{R} \) and \(\delta \in \mathbb{R}_+ \) denote the center and the radius respectively of the Euclidean half-circle which is the geodesic through \(i \) and \(w' \). From Figure 3 it is clear that

\[
\delta = 1/|\sin(t)|, \quad \alpha = -\cot(t)
\]

if \(t \neq 0, \pm \pi \). Thus we see that

\[
y' = \sqrt{\delta^2 - (x' - \alpha)^2} = \sqrt{1 - x'^2 + 2\alpha x'}.
\]

On the other hand it is well-known that the locus of points on the hyperbolic circle with center at \(x_1 + iy_1 \) and radius \(R \) is determined by the equation

\[
|x_1 + iy_1 \cosh(R) - z| = y_1 \sinh(R),
\]

which is equivalent to

\[
x^2 + y^2 + x_1^2 - 2xx_1 + y_1^2 = 2y_1 \cosh(R).
\]

Using the expression for \(y' \) given in (37) we obtain the equation

\[
\frac{\beta}{2} + (\alpha - x_1)x' = y_1 \cosh(R) \sqrt{\delta^2 - (x' - \alpha)^2}
\]

for \(x' \), where \(\beta = |z_1|^2 + 1 \). By squaring (38) we get the quadratic equation

\[
\left(\frac{(\alpha - x_1)^2}{y_1^2 \cosh^2(R)} + 1 \right) x'^2 + \left(\frac{\beta(\alpha - x_1)}{y_1^2 \cosh^2(R)} - 2\alpha \right) x' + \frac{\beta^2}{4y_1^2 \cosh^2(R)} - 1 = 0,
\]

with the solution

\[
x' = \frac{\alpha - \beta(\alpha - x_1)}{2y_1^2 \cosh^2(R) - \text{sign}(t) \sqrt{\delta^2 + \frac{(\alpha - x_1)^2}{y_1^2 \cosh^2(R)} - \beta^2 + 2\beta^2 \frac{\alpha(\alpha - x_1)}{y_1^2 \cosh^2(R)} - \frac{\alpha(\alpha - x_1)}{y_1^2 \cosh^2(R)}}}.
\]
Naturally, the quadratic equation has 2 solutions, but the solution above is the intersection point we are interested in. The distance \(Q(z_1, t, R) \) is

\[
Q(z_1, t, R) = \log \left(\frac{|w' + i| + |w' - i|}{|w' + i| - |w' - i|} \right) .
\]

(40)

We note that

\[
\frac{|w' + i| + |w' - i|}{|w' + i| - |w' - i|} = \frac{x'^2 + y'^2 + 1 + \sqrt{(x'^2 + y'^2 + 1)^2 - 4y'^2}}{2y'} = \frac{1 + \alpha x' + \delta |x'|}{y'} = \frac{1 + \alpha x' - \delta' x'}{y'},
\]

(41)

where \(\delta' = 1/\sin(t) \). Using Taylor’s formula with remainder we see that

\[
\text{sign}(t) \sqrt{\delta^2 + \frac{(\alpha - x_1)^2}{y_1^2 \cosh^2(R)} - \frac{\beta^2}{4y_1^2 \cosh^2(R)} - \frac{\alpha \beta (\alpha - x_1)}{y_1^2 \cosh^2(R)}} = \delta' + \frac{(\alpha - x_1)^2}{2y_1^2 \cosh^2(R)} - \frac{\beta^2}{4y_1^2 \cosh^2(R)} - \frac{\alpha \beta (\alpha - x_1)}{y_1^2 \cosh^2(R)} + O \left(\frac{\delta}{\cosh^4(R)} \right)
\]

as \(R \to \infty \), where the constant implied depends on \(z_1 \). From this and (41) we deduce that

\[
x' = \frac{\alpha - \delta'}{1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2} + \frac{O((1 + \delta)e^{-R})}{1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2}
\]

(42)

and hence

\[
1 + \alpha x' - \delta' x' = 1 + \frac{(\alpha - \delta')^2}{1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2} + \frac{O(\delta(1 + \delta)e^{-R})}{1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2}.
\]

(43)

This implies that

\[
\sin^2(t) \left(1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2 \right) (1 + \alpha x' - \delta' x') = 2 + 2 \cos(t) + O(e^{-R}).
\]

(44)

Now we look at

\[
y'^2 \left(1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2 \right).
\]
Using Taylor’s formula as before we get

\[
\begin{align*}
y^2 \left(1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2 \right)^2 &= \left(1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2 \right)^2 - \left(\alpha - \frac{\beta(\alpha - x_1)}{2y_1^2 \cosh^2(R)} \right) \\
\text{sign}(t) \sqrt{\delta^2 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2} &= \left(\alpha - \frac{\beta(\alpha - x_1)}{2y_1^2 \cosh^2(R)} \right)^2 + 2\alpha \left(1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2 \right) \\
\text{sign}(t) \sqrt{\delta^2 + \left(\frac{\alpha - x_1}{y_1 \cosh^2(R)} \right)^2} &= \left(\alpha - \frac{\beta(\alpha - x_1)}{2y_1^2 \cosh^2(R)} \right)^2 + \frac{1}{y_1^2 \cosh^2(R)} \left(\frac{\beta^2}{4} + (\alpha - x_1)^2 + \alpha \beta(\alpha - x_1) + 2\alpha^2(\alpha - x_1)^2 - \delta'(\alpha - x_1)(\beta + 2\alpha(\alpha - x_1)) \right) + O \left(\frac{\delta^4}{\cosh^4(R)} \right) \\
&= \frac{(\beta - (\beta - 2) \cos(t) + 2x_1 \sin(t))^2(1 + \cos(t))^2}{4y_1^2 \cosh^2(R) \sin^2(t)} + O \left(\frac{\delta^4}{\cosh^4(R)} \right)
\end{align*}
\]

as \(R \to \infty \). From this we conclude that

\[
\begin{align*}
\frac{1 + \cos(t)}{2y^2 \left(1 + \left(\frac{\alpha - x_1}{y_1 \cosh(R)} \right)^2 \right)^2 \sin^2(t)} &= \frac{y_1 \cosh(R)}{\beta - (\beta - 2) \cos(t) + 2x_1 \sin(t)} + O(e^{-4R}) \\
&= \frac{y_1 e^R}{2(\beta - (\beta - 2) \cos(t) + 2x_1 \sin(t))} + O(e^{-R}).
\end{align*}
\]

We are interested in \(e^{Q(z, t, R)} \). Combining (11), (40), (44) and (45) we conclude that

\[
\begin{align*}
e^{Q(z, t, R)} &= \frac{1 + \alpha x' + \delta' x'}{y'} = \frac{2y_1 e^R}{\beta - (\beta - 2) \cos(t) + 2x_1 \sin(t)} + O(1).
\end{align*}
\]

To finish the proof we use the following elementary lemma which ‘integrates’ Theorem [1] over more general regions:

Lemma 3. Let \(D(R, \theta) : \mathbb{R}_+ \times \mathbb{R}/\mathbb{Z} \to \mathbb{R}_+ \) be a function which satisfies \(e^{D(R, \theta)} = k(\theta) e^R + O(e^{\beta R}) \) for some \(\beta < 1 \) uniformly in \(\theta \). Assume that \(k(\theta) \in C^1(\mathbb{R}/\mathbb{Z}) \). Then as \(R \to \infty \)

\[
N_{\Gamma, D}(R, z_0, z_1) := \# \{ \gamma \in \Gamma \mid d(z_0, z_1, \gamma) = D(R, \varphi_{z_0, z_1}(\gamma)), \varphi_{z_0, z_1}(\gamma) \in I \} = \frac{K \pi}{\text{vol}(\Gamma \backslash \mathbb{H})} \int_{t} k(\theta) d\theta e^R + O(e^{\delta R})
\]

for some \(\delta < 1 \).

Proof. Let \(B = B(R) \) be a integer valued function of \(R \) to be determined later. For each integer \(j \leq B \) we choose \(\omega_j, \omega^j \in \left[a + \frac{(j - 1)(b - a)}{B}, a + \frac{j(b - a)}{B}\right] \) such that

\[
k(\omega_j) = \inf \left\{ k(\omega) \mid \omega \in \left[a + \frac{(j - 1)(b - a)}{B}, a + \frac{j(b - a)}{B}\right] \right\}
\]
and
\[k(\omega) = \sup \left\{ k(\omega) \mid \omega \in \left[a + \frac{(j-1)(b-a)}{B}, a + \frac{j(b-a)}{B} \right] \right\}. \]

We split the interval in \(B \) equal intervals (and compensate for counting the end-points twice) to get
\[N^I_{\Gamma,D}(R, z_0, z_1) = \sum_{j=0}^{B} N^I_{\Gamma,D}(a + \frac{(j-1)(b-a)}{B}, a + \frac{j(b-a)}{B})(R, z_0, z_1) \]
\[- \sum_{j=1}^{B-1} N^I_{\Gamma,D}(b-a, a + \frac{(j-1)(b-a)}{B})(R, z_0, z_1). \]

The last sum is \(O(Be^{\alpha R}) \) by Theorem 1 and the assumption on \(D(R, \theta) \). The first sum can be evaluated as follows. By using Theorem 1 again we have
\[N^I_{\Gamma,D}(a + \frac{(j-1)(b-a)}{B}, a + \frac{j(b-a)}{B})(R, z_0, z_1) \leq \frac{k_{\Gamma,\pi}(b-a)Ce^R}{B \text{vol}(\Gamma \setminus \mathbb{H})} \omega_j e^{R} + Ce^{\alpha R}. \]

Summing this inequality we find the Riemann sums
\[\sum_{j=0}^{B} \omega_j \frac{(b-a)}{B}, \sum_{j=0}^{B} \omega_j \frac{j(b-a)}{B}. \]

Since \(k \) is \(C^1 \) these converge to \(\int_I k(\theta)d\theta \) with rate \(O(1/B) \) as is seen using the mean value theorem. We therefore find that
\[N^I_{\Gamma,D}(R, z_0, z_1) = \frac{k_{\Gamma,\pi}}{\text{vol}(\Gamma \setminus \mathbb{H})} \int_I k(\theta)d\theta e^{R} + O(e^R/B) + O(Be^{\alpha R}). \]

Balancing the error terms we get the result.

\[\square \]

We can now finish the proof of Theorem 3. Let \(\rho_{z_0, z_1}(\omega) \) denote the fraction
\[\frac{2y_0y_1}{((x_0 - x_1)^2 + y_0^2 + y_1^2)(1 - \cos(2\pi \omega)) + 2y_0^2 \cos(2\pi \omega) + 2(x_1 - x_0)y_0 \sin(2\pi \omega)}. \]

We start with the case \(z_0 = i \). Equation (46) allows us to use Lemma 3 which gives Theorem 3 immediately. The general case can easily be reduced to the case where \(z_0 = i \) by conjugation of \(\Gamma \) with the element \(\left(\sqrt{\frac{\pi}{2\omega}} x_0/\sqrt{\pi}, 0 \right) \). This finishes the proof of Theorem 3.

\[\square \]

Acknowledgements: We thank the anonymous referee for his/her useful comments.

References

[1] Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003.
[2] Florin P. Boca. Distribution of angles between geodesic rays associated with hyperbolic lattice points. Q. J. Math., 58(3):281–295, 2007.
[3] Jean Delaunay. Sur le gitter fuchsien. C. R. Acad. Sci. Paris, 214:147–179, 1942.
[4] Jürgen Elstrodt, Fritz Grunewald, and Jenspa Mennicke. Arithmetic Applications of the Hyperbolic Lattice Point Theorem. Proc. London Math. Soc., 53(2):239–283, 1988.
[5] Paul Erdős and Paul Turán. On a problem in the theory of uniform distribution. I. Nederl. Akad. Wetensch., Proc., 51:1146–1154, 1948 = Indagationes Math. 10, 370–378, 1948.
[6] Anton Good. *Local analysis of Selberg’s trace formula*, volume 1040 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1983.

[7] Paul Günther. Gitterpunktprobleme in symmetrischen Riemannschen Räumen vom rang 1. *Math. Nachr.*, 94:5–27, 1980.

[8] Heinz Huber. Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen. *Math. Ann.*, 138:1–26, 1959.

[9] Heinz Huber. Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II. *Math. Ann.*, 142:385–398, 1960/1961.

[10] Heinz Huber. Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II nachtrag. *Math. Ann.*, 143:463–464, 1961.

[11] Henryk Iwaniec. *Spectral methods of automorphic forms*, volume 53 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, second edition, 2002.

[12] Jürgen Jost. *Partial differential equations*, volume 214 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2002. Translated and revised from the 1998 German original by the author.

[13] Tosio Kato. *Perturbation theory for linear operators*. Springer-Verlag, Berlin, second edition, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132.

[14] Peter D. Lax and Ralph S. Phillips. The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. *J. Funct. Anal.*, 46(3):280–350, 1982.

[15] Boris M. Levitan. Asymptotic formulæ for the number of lattice points in Euclidean and Lobachevskij spaces. *Russ. Math. Surv.*, 42(3):13–42, 1987.

[16] Grigory A. Margulis. Certain applications of ergodic theory to the investigation of manifolds of negative curvature. *Funkcional. Anal. i Priložen.*, 3(4):89–90. English translation in Functional Anal. Appl. 3 (1969), no. 4, 335–336, 1969.

[17] Toshitsune Miyake. *Modular forms*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, english edition, 2006. Translated from the 1976 Japanese original by Yoshitaka Maeda.

[18] M. Ram Murty. *Problems in analytic number theory*, volume 206 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2001. Readings in Mathematics.

[19] Peter Nicholls. A lattice point problem in hyperbolic space. *Michigan Math. J.*, 30(3):273–287, 1983.

[20] Samuel J. Patterson. A lattice-point problem in hyperbolic space. *Mathematika*, 22(1):81–88, 1975.

[21] Ralph Phillips and Zeév Rudnick. The circle problem in the hyperbolic plane. *J. Funct. Anal.*, 121(1):78–116, 1994.

[22] Atle Selberg. *Göttingen lecture notes in Collected papers. Vol. I*. Springer-Verlag, Berlin, 1989. With a foreword by K. Chandrasekharan.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN Ø, DENMARK

E-mail address: risager@math.ku.dk

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF AARHUS, NY MUNKEGADE BUILDING 1530, 8000 AARHUS C, DENMARK

E-mail address: lee@imf.au.dk