Migration of anticyclonic vortices in the protoplanetary disk

C. Survillea, P. Bargea

a Laboratoire d’Astrophysique de Marseille, Université de Provence, CNRS, 38 rue Frédéric Joliot-Curie, F-13388 Marseille Cedex 13, France

Abstract:
This contribution describes the evolution of the protoplanetary disk using 2D numerical simulations. The 2D Euler equations are solved with the finite volume method. The numerical simulations are used to study the persistence and migration of anticyclonic vortices. Two cases are presented: (1) vortices produced by a Rossby wave instability, (2) a non-linear vortex model initially implemented into the disk. The migration of the vortices is due to spiral density waves excited by the vortex in the gas of the disk.

Mots clefs: hydrodynamics; vortex;

1 Introduction

La compréhension de l’évolution des disques protoplanétaires est cruciale dans la problématique de la formation des planètes. Nous sommes confrontés à deux problèmes majeurs. Le premier est une contrainte temporelle. En effet les observations de disques protoplanétaires en particulier dans l’excès infrarouge résultant des poussières laissent penser qu’au delà de 107 ans le disque est dissipé (\cite{3}). Le second est la croissance des grains dans le disque. Plusieurs théories ont été proposées pour expliquer comment les grains de la taille du micron présents au début de la vie du disque peuvent atteindre le km et former des planétésimaux ou des coeurs de planètes (\cite{12}, \cite{4}, \cite{2}. La principale limite à la croissance des grains est que l’écoulement est sub-képlérien alors que celui des particules est képlérien. Lorsque la taille des particules solides est grande devant le libre parcours moyen des molécules de gaz, de l’ordre de 10 cm à 1 m, celles-ci subissent un vent qui les fait tomber sur l’étoile en 100 ans typiquement. Le temps de coagulation ou de sédimentation des grains est au moins d’un ordre de grandeur supérieur. Le confinement des grains dans un environnement où cette migration radiale est réduite est donc favorable à la croissance des grains dans une échelle de temps suffisamment courte pour former des géantes gazeuses. C’est pourquoi les vortex anticycloniques sont étudiés car ils capturent en leur coeur les particules (\cite{1}, \cite{5}). Seuls les vortex anticycloniques persistent assez longtemps dans l’écoulement, les cyclones étant dissipés rapidement par le cisaillement képlérien. Plusieurs processus permettent de former des anticyclones. En particulier les instabilités des ondes de Rossby ou baroclines conduisent à la formation de grandes structures anticycloniques.

Nous nous proposons d’étudier ces vortex dans le cadre d’un modèle 2D, basé sur le modèle de la Nébuleuse Solaire de Masse Minimale, qui est le modèle standard des disques protoplanétaires. Nous
expliciterons ce modèle et les équations d’Euler cylindriques dans une première partie. Une approche quasi linéaire des équations d’Euler nous permet de présenter un modèle de vortex. La deuxième partie est consacrée à la présentation des simulations numériques. Différentes simulations d’instabilités de Rossby et de modèles de vortex seront étudiées. Enfin nous détaillerons les différents résultats de ces simulations, en particulier la robustesse des vortex et leur migration.

2 Équations d’Euler et modèle de vortex

Le modèle standard des disques protoplanétaires en 2D est basé sur l’étude de la répartition de la matière dans le système solaire et sur les observations des disques. On suppose que la densité, la température et la pression décroissent comme une puissance du rayon. On fait l’hypothèse que l’on a un gaz diatomique d’hydrogène, polytropique, avec les conditions suivantes à l’équilibre :

\[\sigma_0 = 1700 \left(\frac{r}{1 \text{AU}} \right)^p \text{g.cm}^{-2} \]

\[T_0 = 280 \left(\frac{r}{1 \text{AU}} \right)^q K \]

\[P_0 = k_B T_0 \sigma_0 \quad p + q = \gamma p \]

avec \(-2 < p < 0\) et \(-1 < q < 0\). On choisit dans notre étude \(p = -3/2 \), et \(\gamma = 1.4 \).

2.1 Équations d’Euler

La gaz du disque est en rotation dans le potentiel képlérien de l’étoile de masse \(M_\ast \). Les équations de conservation d’Euler permettent de décrire l’évolution de ce gaz. En coordonnées cylindriques, avec \(\vec{V} = u \vec{u}_r + v \vec{u}_\theta \), on écrit :

\[\partial_t \sigma + \frac{1}{r} \partial_r (r \sigma u) + \frac{1}{r} \partial_\theta (\sigma v) = 0 \]

\[\partial_t \sigma u + \frac{1}{r} \partial_r (r \sigma u^2) + \frac{1}{r} \partial_\theta (\sigma uv) = \frac{v^2}{r} - \sigma \frac{v^2}{r} - \partial_r P \]

\[\partial_t \sigma v + \frac{1}{r} \partial_r (r \sigma vu) + \frac{1}{r} \partial_\theta (\sigma v^2) = -\sigma \frac{uv}{r} - \frac{1}{r} \partial_\theta P \]

\[\partial_t \sigma e + \frac{1}{r} \partial_r (\sigma (e + P) u) + \frac{1}{r} \partial_\theta ((\sigma e + P) v) = -\sigma u \frac{v^2}{r} \]

avec \(v_k = \sqrt{\frac{GM_\ast}{r}} \), et l’énergie totale du gaz \(\sigma e = \frac{P}{\gamma - 1} + \frac{\sigma}{2} (u^2 + v^2) \).

Une solution stationnaire associée aux grandeurs thermodynamiques \(\sigma_0 \) et \(P_0 \) est donnée par la vitesse \(\vec{V}_0 = u_0 \vec{u}_r + v_0 \vec{u}_\theta \) suivante :

\[u_0 = 0 \]

\[v_0 = \left(v_k^2 + \gamma p \frac{P_0}{\sigma_0} \right)^{1/2} \]

où le deuxième terme du membre de droite dérive de \(\frac{\sigma}{\sigma_0} \partial_\theta P_0 \). On remarque que du fait de sa pression, le gaz est en rotation sub-képlérienne. Nous l’appellerons dans la suite ”la solution stationnaire”, bien qu’il y en ait d’autres.

2.2 Modèle de vortex

On cherche une solution quasi stationnaire non axissymétrique des équations d’Euler pour cet écoulement. On pose :

\[\vec{V} = \vec{V}_0 + \vec{v} \]

\[\vec{V}_0 = u_0 \vec{u}_r + v_0 \vec{u}_\theta \]

\[\sigma = \sigma_0 \tilde{\sigma} \]

\[P = P_0 \tilde{P} \]

\[c_s^2 = \frac{P}{\sigma} = c_{s0} \frac{\tilde{P}}{\tilde{\sigma}} \]
Si on se place dans un repère tournant à V_0, les équations de la densité et des vitesses deviennent :

\[
\partial_t \sigma + \tilde{u} \partial_r \sigma + \frac{\tilde{v}}{r} \partial_\theta \sigma + \sigma \left(\frac{1}{r} \partial_r (r \tilde{u}) + \frac{1}{r} \partial_\theta \tilde{v} \right) = 0 \tag{12}
\]

\[
\partial_t \tilde{u} + \tilde{u} \partial_r \tilde{u} + \frac{\tilde{v}}{r} \partial_\theta \tilde{u} = \tilde{v} \frac{\tilde{v}}{r} + \tilde{v} \frac{\tilde{v}}{r} - c_s^2 \left[\frac{\gamma P}{r} \left(\frac{\tilde{P}}{\sigma} - 1 \right) \right] + \left[\frac{1}{\sigma} \partial_r \tilde{P} \right] \tag{13}
\]

\[
\partial_t \tilde{v} + \tilde{u} \partial_r \tilde{v} + \frac{\tilde{v}}{r} \partial_\theta \tilde{v} = -\frac{\tilde{u}}{r} - \frac{\tilde{v}}{r} + r \partial_r v_0 - \frac{\tilde{c}_s^2}{\sigma} \frac{1}{r} \partial_\theta \tilde{P} \tag{14}
\]

On cherche une solution stationnaire donc on pose $\partial_t = 0$. Si on suppose que les termes en $\tilde{u} \tilde{v}$, \tilde{v}^2, $\tilde{u} \partial_r$ et $\tilde{v} \partial_\theta$ sont petits devant les autres termes, alors le champ de vitesse est donné par :

\[
\tilde{u} = -v_0 \frac{M_{ao}^{-2}}{1 + r \partial_r \ln(v_0)} \frac{r}{\sigma} \frac{1}{r} \partial_\theta \tilde{P} \tag{15}
\]

\[
\tilde{v} = v_0 \frac{M_{ao}^{-2}}{2} \left[\frac{\gamma P}{\sigma} - 1 \right] + \frac{r}{\sigma} \partial_r \tilde{P} \tag{16}
\]

où on a défini le nombre de Mach de la solution stationnaire $M_{ao}^2 = \frac{\tilde{c}_s^2}{\sigma} \approx 10^3 (\frac{r}{1AU})^{-(q+1)}$.

Ainsi, en considérant un gaz polytropique, la seule prescription de $\tilde{\sigma} (r, \theta)$ donne la solution quasi stationnaire. Notre modèle de vortex est donné par :

\[
\tilde{\sigma} = 1 + A \exp \left[-\frac{\tilde{v}_0^2}{\omega_r^2} \left(\frac{r}{r_0} - 1 \right)^2 + \frac{1}{\chi_2} (\theta - \theta_0)^2 \right] \tag{17}
\]

où r_0 et θ_0 définissent la position du vortex, A l’amplitude au centre du vortex, ω_r la largeur radiale et χ le rapport d’aspect du vortex.

3 Simulations

La résolution temporelle des équations d’Euler est effectuée grâce à un code numérique aux volumes finis, utilisant un solveur de Riemann exact et dont la méthode de calcul des flux radiaux a été améliorée par rapport au schéma MUSCL classique. L’intégration en temps est basée sur la méthode de Runge-Kutta d’ordre 2. La stabilité temporelle du schéma est vérifiée ce qui permet d’intégrer la solution pendant plus de 1000 rotations du disque sans erreurs significatives (10^{-8} sur les vitesses et 10^{-6} sur la densité). Les conditions aux limites sont la continuité vers la solution stationnaire σ_0, P_0, V_0 radialement, et la périodicité azimuthalement.

Nous utilisons une grille polaire, avec $n_r = 500$ mailles radiales et $n_\theta = 1000$ mailles azimuthales. De plus 4 mailles fantômes sont ajoutées aux frontières du domaine pour réduire les effets de bords. Le disque est étendu de 5 AU à 10 AU.

3.1 Instabilité de Rossby

La première famille de simulations est l’étude de l’instabilité dite de Rossby. Nous n’aborderons pas son étude détaillée, nous renvoyons aux articles [8] et [9]. Ces étude montrent qu’une perturbation axisymétrique de profil radial gaussien permet de la déclencher si la hauteur et la largeur de cette perturbation sont suffisantes. Nous introduisons donc les conditions initiales suivantes dans nos simulations :

\[
\tilde{\sigma}_{ini} = 1 + f \tag{18}
\]

\[
\tilde{P}_{ini} = (1 + f)^\gamma \tag{19}
\]

\[
\tilde{u}_{ini} = 0 \tag{20}
\]

\[
\tilde{v}_{ini} = v_0 \frac{M_{ao}^{-2} \gamma (1 + f)^{\gamma - 1}}{1 + f} \frac{p}{\gamma} \left(1 - (1 + f)^{1-\gamma} \right) + \frac{r}{1 + f} \partial_r f \tag{21}
\]
où f est la perturbation. On utilise $f = f_0 \exp\left[-\frac{(r-r_0)^2}{\omega_f^2}\right]$ et $r_0 = 7.5 \, AU$. Nous avons réalisé 6 simulations avec les paramètres f_0 et ω_f suivants :

f_0	20%	20%	20%	30%	30%	30%
ω_f	0.2 AU	0.3 AU	0.4 AU	0.2 AU	0.3 AU	0.4 AU

Figure 1 – Densité et vorticité relatives à la solution stationnaire à l’instant initial (a1 et b1), après 16 rotations (a2 et b2) et après 180 rotations (a3 et b3) pour $f_0 = 20\%$ et $\omega_f = 0.3 \, AU$

3.2 Modèles de vortex

Nous avons réalisé une étude de modèles de vortex en changeant les paramètres du vortex de façon systématique. Le vortex est positionné à $r_0 = 7.5 \, AU$ et $\theta_0 = 3 \, rad$. Trois types de simulations ont été réalisés :

ω_f (AU)	0.6	0.6	0.5	0.7	0.9
χ	10	12.5	10	7.5	5
A	0.6	0.6	0.7	0.8	0.9

4 Discussion

Que les vortex soient issus de l’instabilité de Rossby ou imposés dans le disque, leur évolution est similaire. Tout d’abord, les différentes simulations confirment que les vortex sont des solutions robustes des équations d’Euler. Les Figures 1 et 2, montrant l’évolution de différentes simulations au cours du temps, mettent en évidence que sur plusieurs centaines de rotations, ces structures conservent leur masse et leur vorticité. Elles persistent pendant plus de 10^4 ans, ce qui représente une fraction importante de la vie du disque. Ce ne sont donc pas des solutions transitoires. La gamme de solutions stables est très étendue, en terme de largeur radiale et de rapports d’aspect. La Figure 3 montre ces différents paramètres pour différentes simulations. Seule la largeur radiale est plus contrainte. En effet, le cisaillement du gaz environnant limite cette largeur à l’échelle de hauteur du disque :

$$H = \frac{rC_{sc}}{v_0} \sim 0.45 \, AU \text{ à } 7.5 \, AU$$

(22)
Figure 2 – Densité et vorticité relatives à la solution stationnaire à l’instant initial (a1 et b1) et après 200 rotations (a2 et b2) pour un modèle avec $A = 60\%$, $\omega_r = 0.6 \ AU$ et $\chi = 10$

Figure 3 – Evolution de ω_r (a) et χ (b) au cours du temps pour différentes simulations

Cependant, la plupart des vortex ont une largeur radiale ω_r plus grande que $2H$ et sont stables ([7]). Il semble que tout l’écoulement se réorganise en présence du vortex. De fait la structure subit un faible cisaillement entre ses bords internes et externes.

Mais ce qui est majeur est la migration radiale des vortex. Ils perdent du moment cinétique avec un taux constant, comme le montre la Figure 4. L’émission d’ondes de densité qui sont spiralées par le cisaillement du gaz est systématique et est responsable du transport de moment cinétique. L’article [10] fait une étude des ondes linéaires émises par une perturbation et introduit le terme de flux radial du moment cinétique qui s’écrit :

$$F_r = 2\pi r < r\sigma \hat{u} >$$

où $< >$ dénote la moyenne azimutale. Un tel flux n’est pas associé à des ondes linéaires. Or nous mettons en évidence que les ondes des vortex de nos simulations ont un transport radial, constant dans le temps. L’onde dans la partie interne du disque a un taux inférieur à celle de la partie externe (Figure 5a). Le vortex situé au centre de la marche perd donc du moment cinétique. Ce flux radial est dirigé vers l’extérieur, donc le disque et le vortex migrent vers l’étoile. Nous montrons Figure 5b que ce transport dans les ondes est proportionnel à la vitesse de migration du vortex.
La vitesse de migration des vortex est comprise entre $0.2 - 2 \frac{AU}{10^3 \text{ans}}$. Cette migration est donc fondamentale dans les scénarios de formation de planètes et d’évolution des disques. Elle peut justifier la formation de jupiters chauds ou un scénario d’accrétion entretenu par un grand nombre de vortex répartis dans le disque. Le modèle de vortex que nous avons développé nous permet de mieux comprendre ce phénomène non-linéaire et nous comptons présenter la suite de nos travaux dans une publication à venir.

Références
[1] Barge, P., Sommeria, J. 1995 Astronomy & Astrophysics. 295 L1
[2] Barranco, J. A., Marcus P.S. 2005 Astrophysical Journal 623 1157
[3] Briceno, C. et al 2001 Science 291 93
[4] Goldreich, P., Tremaine, S. 1979 Astrophysical Journal 233 857
[5] Heng, K., Kenyon, S. J. 2010 Mon. Not. R. Astron. Soc. 408 1476
[6] Inaba, S., Barge, P. 2006 Astrophysical Journal 649 415
[7] Lesur, G., Papaloizou, J. C. B. 2009 Astronomy & Astrophysics 498 1
[8] Li, H. et al. 2000 Astrophysical Journal 533 1023
[9] Lovelace, R. V. E., et al. 1999 Astrophysical Journal 513 805
[10] Paardekooper et al 2010 Astrophysical Journal 725 146
[11] Tanga, P. et al. 1996 Icarus 121 158
[12] Weidenschilling, S. J. 1977 MNRAS 180 57
[13] Youdin, A. N. et al. 2007 Astrophysical Journal 662 613