Bringing microbiome-drug interaction research into the clinic

Leah Guthrie a, Libusha Kelly a,b,*

a Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America
b Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America

A R T I C L E I N F O

Article history:
Received 5 March 2019
Received in revised form 3 May 2019
Accepted 3 May 2019
Available online 28 May 2019

Keywords:
Microbiome
Drug metabolism
Metabolomics
High throughput genomics

A B S T R A C T

Our understanding of the scope and clinical relevance of gut microbiota metabolism of drugs is limited to relatively few biotransformations targeting a subset of therapeutics. Translating microbiome research into the clinic requires, in part, a mechanistic and predictive understanding of microbiome-drug interactions. This review provides an overview of microbiota chemistry that shapes drug efficacy and toxicity. We discuss experimental and computational approaches that attempt to bridge the gap between basic and clinical microbiome research. We highlight the current landscape of preclinical research focused on identifying microbiome-based biomarkers of patient drug response and we describe clinical trials investigating approaches to modulate the microbiome with the goal of improving drug efficacy and safety. We discuss approaches to aggregate clinical and experimental microbiome features into predictive models and review open questions and future directions toward utilizing the gut microbiome to improve drug safety and efficacy.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction .. 709
2. Connecting human and microbial drivers of variability in drug response ... 709
2.1. Human metabolism and individual variation in drug response .. 709
2.2. Microbiome chemical mechanisms shape drug metabolism ... 709
2.3. Microbiome modulation of phase I and II drug metabolism enzymes ... 709
2.4. Therapeutic drug influences on the gut microbiome --- 711
3. Ex vivo and animal models for microbiome drug metabolism research ... 711
3.1. Models of the human gastrointestinal tract .. 711
3.1.1. Ex vivo colon models .. 711
3.2. Model systems in the study of microbiome-drug interactions .. 711
3.2.1. Rodent ... 711
3.2.2. Other whole organism model systems ... 711
4. Community level analysis of microbiome function ... 711
4.1. High throughput sequencing. ... 711
4.1.1. Metagenomics and metatranscriptomics ... 711
4.2. High throughput protein and metabolite analyses ... 712
4.2.1. Metaproteomics and metabolomics .. 712
5. Computational approaches to pharmacokinetics in microbiome research ... 712
5.1. Computational approaches to pharmacokinetics in microbiome research ... 712
5.1.1. Physiologically based pharmacokinetic (PBPK) models ... 712
5.1.2. Constraint-based reconstruction and analysis (COBRA) .. 712
6. Bringing insights from microbiome-drug interaction studies into the clinic ... 712
6.1. Microbiome metabolic phenotyping ... 712
6.2. Developing drug metabolism classifiers .. 712
6.3. Clinical trials 713
6.3.1. CPT-11 ... 713
6.3.2. Tacrolimus .. 713

* Corresponding author at: Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America.
E-mail address: libusha.kelly@einstein.yu.edu (L. Kelly).

https://doi.org/10.1016/j.ebiom.2019.05.009
2352-3964/© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Microbiome research has reinvigorated an ecological and metabolic view of diseases, including, but not limited to, autoimmune and inflammatory diseases, metabolic diseases and cancers. Advances in culture-independent methodologies for high throughput analysis of microbial community composition and function, analytical chemistry techniques and gnotobiotic mouse models have expanded our understanding of gut microbiota-mediated biotransformations of exogenous compounds including diet-based chemicals, environmental toxins and therapeutic drugs [1,2]. In particular, recent studies provide mechanistic insight into the role of gut microbiota metabolism in drug bioavailability, efficacy and toxicity and suggest that the gut microbiome, in addition to human genetics and environmental variables, contributes to inter-personal variation in human drug responses [1,2].

However, we have limited insight into 1) the broader spectrum of human gastrointestinal tract microbial species and enzymes that can alter drug bioavailability and toxicity; and 2) the clinical relevance of microbiome metabolism. These gaps in our understanding of gut microbiome chemistry at both the community and individual gut strain level present a challenge to incorporating data from microbiome studies into accurate surrogate endpoints for clinical studies. Here, we describe human and microbial drivers of variability in drug response, and discuss current barriers and opportunities for translating basic research on microbiome drug metabolism into clinical applications. We specifically focus on model systems, experimental approaches and computational techniques to characterize the microbiome and its interactions with drugs.

2. Connecting human and microbial drivers of variability in drug response

2.1. Human metabolism and individual variation in drug response

Advances in high throughput sequencing and analytical chemistry propel precision medicine initiatives that use genomic, gene expression, proteomic and metabolomic data to inform patient treatment and care [3]. Yet, using these diverse data types to systematically maximize drug efficacy and minimize toxicity remains an open challenge. Towards addressing this challenge, pharmacology subdisciplines, pharmacogenomics and pharmacometabolomics, aim to identify the impact of human genetics and metabolism on patient drug responses [4]. Among the early successes of pharmacogenomics research was the identification of genetic polymorphisms in the UDP-glucuronosyltransferase (UGT) enzyme family which catalyzes the glucuronidation of drug compounds, promoting their inactivation and elimination from the human body. Patients with specific UGT1A1 variants have lower glucuronidation rates, which impacts the detoxification of a number of drugs, including the HIV drug atazanavir, nonsteroidal anti-inflammatory drugs (NSAIDs) and the chemotherapeutic irinotecan [5,6]. Clinical laboratories can thus use an UGT1A1 genotype assay to determine personalized patient toxicity risk [7]. Beyond UGT genotyping, pharmacogenomics tests that target other hepatic enzymes involved in drug metabolism, such as members of the cytochrome P450 (CYP) superfamily, may guide dosing decisions. For example, in the package insert for warfarin, a commonly prescribed drug with a narrow therapeutic range, the Food and Drug Administration (FDA) includes a dosing guide based on a patient’s CYP2C9 genotype [8,9].

Early proponents of pharmacogenomics hypothesized that genetic polymorphism analysis in drug metabolizing enzymes and the human genome more broadly would substantially improve clinical practice to reduce poor efficacy and toxicity [10,11]. However, basic research advances characterizing how genome variants impact drug metabolism have not been broadly translated into the clinic. In part, this discrepancy relates to how drug metabolism has been traditionally characterized in the context of the human liver and intestinal mucosa. The gut microbiota is a third dimension in drug metabolism, providing a nonoverlapping enzymatic capacity that generates distinct metabolites from host enzymatic products and may also shape drug pharmacokinetics. Research focused on extending pharmacogenomics and pharmacometabolomics to include the impact of the microbiome on drugs falls under the umbrella of pharmacomicrobiomics [12].

2.2. Microbiome chemical mechanisms shape drug metabolism

The gut microbiota alters drugs by various mechanisms: degrading the drug [13,14]; activating the drug [13–15]; and modulating host enzymes that metabolize the drug [13,14] (Fig. 1). Known microbial reactions that shape drug metabolism have been reviewed extensively by Wilson et al., and Spanogiannopoulos et al., and highlight bacterial enzymes such as β-glucosidases, β-glucuronidases, aryl sulfatases, azoreductases and nitroreductases, which have prominent roles in xenobiotic metabolism and vary widely in activity, sequence similarity, and abundance across individuals [1,2]. Hydrolytic and reductive reactions are the primary chemical mechanisms of gut microbiota drug metabolism. These reactions reflect the physicochemical parameters of the distal intestine, which has a limited oxygen gradient. The gut microbiota is also the source of numerous other chemical reactions including acetylation, deamination, dehydroxylation, decarboxylation, demethylation, deconjugation and proteolysis [1,2]. To date, microbial strains and enzymes have been experimentally demonstrated to directly or indirectly impact the metabolism and efficacy of over 50 therapeutic drugs, driving inter-patient variability in drug activation, inactivation and toxicity [1,2].

2.3. Microbiome modulation of phase I and II drug metabolism enzymes

Microbial metabolism of dietary and endogenous compounds indirectly shapes key host hepatic enzymes that broadly contribute to drug metabolism. For example, Phase I hepatic enzymes account for 80% of oxidative metabolism of commonly used medications and include the cytochrome P450s (CYPs) superfamily and flavin-containing monoxygenases (FMOs) [16]. Phase II hepatic enzymes include glutathione S-transferases (GST), sulfortransferases (SULTs) and uridine diphosphate-glucuronosyltransferases (UGTs) and play key roles in drug detoxification and elimination from the body. The expression and activity of these enzymes is modulated by gut microbiota metabolism of uremic solutes, bile acids and steroid hormones; these microbiome–drug interactions can have adverse consequences for patients taking drugs that are substrates for these enzymes [17,18]. Microbiota produced uremic solute indoxyl sulfate decreases CYP3A4.
Fig. 1. Gut microbiota-host liver metabolic interactions drive variability in drug response. a Hepatic and gut microbiome enzymes co-metabolize chemically diverse exogenously derived substrates including foods, therapeutic drugs and environmental toxins. Key host hepatic enzymes include the cytochrome P450s (CYPs) superfamily and flavin-containing monooxygenases (FMOs) which are involved in phase I metabolism. Phase II enzymes including glutathione S-transferases (GST), sulfotransferases (SULTs) and uridine diphosphate-glucuronosyltransferases (UGTs). Hydrophilic therapeutic drug and drug conjugates excreted from the liver into the gastrointestinal tract via the biliary route are chemically modified primarily by gut microbiota hydrolytic and reductive reactions into hydrophobic products that can be reabsorbed via enterohepatic circulation, modified or extensively degraded by the gut microbiota. Gut microbiota metabolism also indirectly regulates phase I and II hepatic enzymes by producing metabolites, including uremic toxins and secondary bile acids, that alter hepatic enzyme expression and activity. b Gut microbiota enzyme catalyzed reactions have been linked to variation in patient response phenotypes. For example, microbial mediated azoreduction transforms the anti-inflammatory drug, sulfasalazine, into bioactive products. 10% of healthy individuals are poor converters of sulfasalazine. Microbial metabolism also negatively impacts host drug responses. Approximately 10% of patients given the cardiac glycoside, digoxin, excrete high levels of an inactive metabolite which is generated by microbial enzymes. 25% of patients taking irinotecan with 5-fluorouracil and leucovorin for the treatment of colorectal cancer experience grade 3–4 diarrhea which is mediated by microbial β-glucuronidase reactivation of a major inactive metabolite of the drug.
expression, reducing CYP3A4 mediated metabolism clearance of a di-
verse range of therapeutics including erythromycin, nimodipine and ve-
rapamil (Fig. 1) [19].

2.4. Therapeutic drug influences on the gut microbiome

Research studies defining how therapeutic drug moderation the gut
microbiome can play a central role in a drug’s mechanism of action are
limited. Of note, metformin, an anti-diabetic drug, has a poorly defined
mechanism of action and is known to alter gut microbiome composition
[20,21]. Recently Sun et al., used a combined metabolomics and shotgun
metagenomic approach using human serum and feces to conclude that
metformin decreases the abundance of Bacteroides fragilis, limiting its
bile salt hydrolase activity and promoting an increase in
glycosylcycloxycholic acid concentrations in the gut [20]. Sun et al.,
also used a mouse model to confirm that glycoursodeoxycholic acid
suppresses intestinal farnesoid X receptor signaling and alleviates
obesity-related metabolic disease [20]. Recent work by Maier et al., il-
lustrates the off-target effects of therapeutic drugs on the microbiome.
Maier identified non-antibiotic therapeutic drugs that inhibit the
growth of specific gut relevant bacterial strains [22]. Additional work
by Brochado et al., also highlights inter-species variation in sensitivity to
therapeutic antibiotic and non-antibiotic compounds [23].

3. Ex vivo and animal models for microbiome drug metabolism
research

3.1. Models of the human gastrointestinal tract

Experimental models for the study of human gastrointestinal tract
(GIT) phenotypes reflect different features of the physiological com-
plexity and biogeography of the human GIT. Defined anatomically, the
GIT is a continuous tube, approximately 9 m in length in an adult
human, that includes the pharynx, esophagus, stomach, duodenum, je-
junum, ileum, colon, cecum and rectum [24]. Microbes populate the en-
tire GIT, from the oral cavity to colon [25]. The activity of microbes in the
small (duodenum, jejunum and ileum) intestine and colon, is of partic-
ular interest for human microbiome researchers, as these are the key
sites for microbial activity. Choosing an appropriate study design,
based in part on how anatomical and physiological features of the
colon may impact its microbial ecology, may help address the challenge of
reproducing findings from model systems to human biology.

3.1.1. Ex vivo colon models

Ex vivo colon models are a powerful approach to replicate the com-
plexity and dynamics human gut microbial communities. Batch or con-
tinuous fermentation systems replicate the anaerobic condition of the
colon and allow specification of physiological parameters such as pH
and dissolved oxygen [26]. A human fecal sample prepared under an-
aerobic conditions serves as the initial inoculum into a multichambered
bioreactor. Takagi and colleagues developed a single-batch fermenta-
tion system to evaluate the effect of prebiotics on the colonic microbiota
and found that supplementation with prebiotic oligosaccharides in-
creased the abundance of the genus Bifidobacteria and acetate produc-
tion [27]. Fermentation systems can be manipulated through the
introduction of substrates of interest, monitored and sampled at defined
timepoints. However, there are concerns about how well the fecal mi-
icrobiota approximates the activity of colon. Comparative intestinal and
cecal sampling in a limited number of human and primate studies
identified overlapping but distinct microbial communities between
the small intestine, colon and cecal community [28,29].

A second class of ex vivo colon models, enteroids and organoid cul-
tures, replicate key host physiological features. These cultures are gen-
erated from heterogenous cell populations that self-organize into
three-dimensional structures that recapitulate features of the small in-
testinal epithelium [30]. These systems have been employed to gain
insight into host-viral and host-bacteria interactions. For example,
Finkbeiner et al., established an organoid model that supported rotavirus
infection after inoculation with rotavirus infected stool [31]. Forbester
et al. used an intestinal organoid model to assess interactions between
the enteric pathogen, Salmonella enterica serovar Typhimurium with
the intestinal mucosa [32]. Enteroids and organoids suffer from overlap-
ping disadvantages with fermentation systems in that they can take
months to stabilize for use [30]. It is also challenging to mimic and cul-
ture anaerobes under the conditions necessary to support organoid and
enteroid systems. For example, in an organoid model of Clostridioides
difficile (C. difficile) infection, the pathogen was viable for a maximum of
12 h [33].

3.2. Model systems in the study of microbiome-drug interactions

3.2.1. Rodent

Mouse models are considered the gold standard in terms of
balancing tractability with approximating the anatomical, physiological
and microbial features of human microbiomes. Both humans and mice
are dominated by the microbial phyla Bacteroidetes and Firmicutes
but vary at the genus level [34,35]. However, humans have a lower gran-
dular pH stomach, a significantly thicker layer of mucin as a part of the
epithelial barrier in the colon, an appendix and a segmented colon
[34,35]. As highlighted in Section 2.4, mouse models play a powerful
role in confirming mechanisms of microbiome-host-drug interactions
that are identified through human studies.

3.2.2. Other whole organism model systems

Scott et al., used the worm Caenorhabditis elegans to investigate the
role of host-microbe co-metabolism on the efficacy of fluoropyrimidine
anticancer drugs and identified several mechanisms by which microbial
metabolic processes shape fluoropyrimidine efficacy. Bacteria convert
the prodrug 5-fluorocytosine to 5-fluorouracil and the bacterial deoxy-
ribonucleotide pool shapes 5-fluorouracil induced autophagy [36]. The
advantages of using C. elegans include its short generation time and
high tractability [37]. The zebrafish (Danio rerio) represents a vertebrate
model for microbiome research. Zebrafish models have been employed
to study the role of microbes in development [38]. Phelps et al., used a
zebrafish model to uncover a role of microbial colonization in normal
neurobehavioral development [39]. These systems, while less expensive
than mice and more readily genetically tractable, recapitulate neither
human physiology nor microbiome composition.

4. Community level analysis of microbiome function

4.1. High throughput sequencing

Our current knowledge of the microbial inhabitants of our gut is
based primarily on community level analyses. A major unmet challenge is
to design species level analyses that appropriately contextualize how
individual species function within a larger community and to replicate
the complexity of interactions in the gut environment. Towards ad-
dressing this challenge, the use of 16S ribosomal RNA (rRNA) sequen-
cing and metagenomic shotgun sequencing of fecal samples can be
employed to characterize the microbial community resolved at the
level of species or strains and functional potential. The 16S rRNA gene
has a region that is widely conserved across bacteria and a hyper-
variable region that allows classification of bacteria into closely related
groups. Sequences that contain similar hyper-variable regions are clus-
tered into Operational Taxonomic Units (OTUs) [40]. Recently, new
methods have been developed to replace OTUs with Amplicon Se-
quence Variants (ASVs) as the “unit of analysis” [41].

4.1.1. Metagenomics and metatranscriptomics

Taxonomic studies are thus far limited in predicting human disease
and health states [42,43]. Shotgun metagenomics, an alternative
approach, is the untargeted sequencing of the total DNA of a sample, providing insight into both phylogenetic diversity and the abundance of functional genes. Metatranscriptomics studies provide insight into community-level gene expression, a more direct measure of microbiome functional activity. These approaches are more expensive than 16S-based profiling and share technical and computational challenges. Assembling metagenomic and metatranscriptomics data and downstream statistical analyses to assess differences in microbial features are not standardized, contributing to variability in significant functional features between studies [42].

4.2. High throughput protein and metabolite analyses

4.2.1. Metaproteomics and metabolomics

While not yet used as a standard component of human microbiome research, metaproteomic and metabolomic analyses provide complementary and more direct insight into active functions of gut microbes than metatranscriptomic or metagenomic approaches. These analyses are based on the use of mass spectrometry coupled to a variety of front-end molecular separation approaches. Using combined and metagenomic and metaproteomic analysis Erickson et al. found significant differences in protein expression in the intestinal barrier between individuals in good health and those with Crohn’s disease [44]. Microbiome studies including metabolomics have found that greater microbiota mediated p-cresol formation competitively reduced acetaminophen sulfoxonation and excretion in the urine, and is a key source of inter-personal variation in acetaminophen metabolism [45]. To date, targeted approaches, quantifying a defined set of metabolites, and untargeted approaches have been used to follow the fate and interplay between host and gut microbiota generated metabolites. For example, we used a combined shotgun metagenomic and targeted metabolomic approach to quantify inter-individual variability in microbiome metabolism of a glucuronidated metabolite of a chemotherapeutic drug and linked a high turnover phenotype to specific microbial β-glucuronidases [46]. There are notable bottlenecks that restrict the use of these approaches in microbiome studies including expense and the tradeoffs between efficient protein or metabolite extraction from fecal or intestinal samples while maintaining mass spectrometry sensitivity [47].

5. Computational approaches to pharmacokinetics in microbiome research

5.1. Computational approaches to pharmacokinetics in microbiome research

There are several computational approaches to model and predict drug pharmacokinetics and microbial metabolic processes that support the quantitative in silico assessment of microbiome-drug interactions. These approaches, which most notably include physiologically based pharmacokinetic (PBPK) models and constraint-based reconstruction and analysis (COBRA) methods, rely on data gathered from high throughput sequencing and analytical chemistry approaches.

5.1.1. Physiologically based pharmacokinetic (PBPK) models

PBPK models represent whole body drug kinetics with differential equations [48]. The model system is defined by compartments corresponding to specific tissues of the body such as the liver, kidney, gut, or lung. System-specific parameters are derived from experimental data such as enzyme and transporter expression, organ volumes and blood flow. Drug-specific parameters include drug physiochemical properties and tissue permeability. Traditionally these models exclusively modelled human metabolism; however, several studies have included microbial enzymes among the system-specific parameters. For example, Boajian Wu developed a PBPK model to evaluate the impact of GIT glucuronide hydrolysis of SN-38 Glucuronide, a key inactive metabolite of the chemotherapeutic irinotecan, on the pharmacokinetic profile of the active compound, SN-38. In this two-compartment model, encompassing the liver and gut, Wu found GIT microbial β-glucuronidase activity increased intestinal exposure to SN-38 but not systemic exposure [49]. Recently, Zimmermann et al. used gnotobiotic mouse studies involving a specific gut colonist that varied in its encoding of single enzymes to quantify brivudine metabolism in vivo and to construct a pharmacokinetic model to quantitatively predict microbiome contributions to systemic drug and metabolite exposure and to distinguish host and microbe contributions [50].

5.1.2. Constraint-based reconstruction and analysis (COBRA)

COBRA methods use formalized metabolic models to simulate, analyze and predict metabolic phenotypes including how microbes utilize various metabolic processes, host-microbe interactions and microbiome-drug interactions [51,52]. In the context of drug metabolism, Swagatika et al., employed COBRA methods to model the effects of commonly used drugs, including statins, anti-hypertensives, analgesics and immunosuppressants, on human metabolism [53]. They found that diet shapes human metabolism and elimination of acetaminophen and statins [53]. In particular, a low L-cysteine vegetarian diet resulted in a reduction in sulfation and excretion of acetaminophen metabolites. Reduced sulfation can be attributed to low levels of sulfur containing compounds such as L-cysteine, which contributes to the biosynthesis of a critical co-factor, phosphoadenylyl sulfate, for sulfation reactions [53].

There have been notable efforts to integrate the strengths of PBPK and COBRA methods [54,55]. Krauss et al., combined COBRA and PBPK methods to more accurately predict allopurinol pharmacokinetics and pharmacodynamics. Allopurinol is a preventative antigout medication that prevents increases in uric acid levels and alters gut microbiota composition [56]. The authors predicted the pharmacological effects of allopurinol on the biosynthesis of uric acid and reported a 69.3% decrease in uric acid concentrations which is supported by clinical data [55]. Future use of these approaches will enable both a systems level and targeted mechanistic understanding of host-microbiome metabolism.

6. Bringing insights from microbiome-drug interaction studies into the clinic

6.1. Microbiome metabolic phenotyping

The impact of the microbiome on the efficacy and toxicity of the chemotherapeutic irinotecan and the cardiac drug digoxin are relatively well characterized (Fig. 1b). In the case of metastatic colorectal cancer patients receiving irinotecan (CPT-11), microbial β-glucuronidases hydrolyze the glucuronide group from the major inactive metabolite of CPT-11, SN-38 glucuronide. A build-up of SN-38 in the colon causes epithelial cell damage that contributes to severe diarrhea in some patients [15,57]. Using a combined shotgun metagenomics and targeted metabolomics approach, a group previously identified a phylogenetically diverse set of bacterial β-glucuronidases and transporter proteins that are associated with high turnover of SN-38 glucuronide and a potentially elevated risk of irinotecan dependent toxicity [46]. Defining the metabolic and metagenomic basis of variability in drug metabolism using ex vivo incubations of drugs with human fecal samples may suggest putative biomarkers of a patient’s risk of poor drug efficacy and safety.

6.2. Developing drug metabolism classifiers

To date metabolic phenotyping studies of microbe-drug interactions pairing DNA or RNA high throughput sequencing with metabolomics reveal that the level of gut microbiome complexity linked to drug metabolism varies between drugs [45,46,58]. A major hurdle is understanding what microbiome features identified through these preclinical studies, using model systems or human fecal samples as a proxy for the gut microbiome, will translate into accurate surrogate
endpoints for clinical studies. For example, the presence or absence of a particular microbe or enzyme in a sequenced fecal sample may not have the power to predict drug metabolism.

One approach to overcome this hurdle is to combine features using machine learning to identify the combinations of features most strongly predictive of drug metabolism. One such supervised learning approach is the “random forest” [59,60] method, which can be used to combine chemical, molecular, and clinical features. Initially one could define drug metabolism as a binary value where every sample is labeled as either “high” or “low” based on drug concentrations in a fecal sample from a patient. A receiver-operator curve plotting true-positive and false-positive rates can then be used to assess performance on different combinations of feature sets [61]. To target specific features that drive predictions one can calculate the importance of individual features to prediction accuracy by calculating the mean decrease in accuracy per feature [60]. This analysis outputs the highest performing feature set and classifier to be used with future patient data for a given drug (Fig. 2).

6.3. Clinical trials

6.3.1. CPT-11

There are a number of clinical trials investigating the efficacy of probiotics to modulate microbiome-dependent adverse drug responses. A randomized, double blind design was carried out to investigate the potential for probiotic use to minimize CPT-11 induced toxicity. Patients were randomized in to a probiotic group (PRO) and a placebo group (PLA). 39% of patients in the PRO group experienced grade 3–4 diarrhea while 61% of participants in the PLA group experienced diarrhea (Table 1) [62]. Future studies of a similar design may also address how diet influences microbiome β-glucuronidase activity and patient toxicity by including metagenomics or metatranscriptomic sequencing from fecal samples to assess microbiome function.

Recent efforts to reduce CPT-11 toxicity also include targeted inhibition of microbial enzymes that convert the inactive form of the drug to its active form. Wallace et al., 2010, identified potent *Escherichia coli* β-glucuronidase inhibitors which substantially reduce CPT-11 induced toxicity in mice while having no effect on the orthologous mammalian enzyme [15]. A clinical trial establishing the safety and efficacy of this approach in human population has the potential to yield valuable insight into the efficacy of targeted, small molecule modulators of specific microbiome functions.

6.3.2. Tacrolimus

Tacrolimus is an immunosuppressant commonly used for kidney transplant recipients. A narrow therapeutic range limits its efficacy: underexposure increases the risk of graft rejection and over-exposure increases the risk of drug-related toxicity [63]. An ongoing clinical trial focused on identifying biomarkers of successful discontinuation of immunosuppressants including tacrolimus for patients with liver disease, includes microbiome profiling as a secondary outcome measure for a trial (Table 1). However, preclinical research provides compelling evidence of a role of the gut microbiota in patient outcomes.

In a pilot study of kidney transplant recipients, patients who required a 50% increase in the standard dose of tacrolimus to maintain therapeutic levels had a greater abundance of *Faecalibacterium prausnitzii* [64]. Subsequently, Guo et al., reported that tacrolimus is
6.3.3. Xanthohumol metabolism of the drug into an integrated PBPK and COBRA model. It presents an opportunity to integrate known data regarding host and microbial pathways [67, 68]. In vitro, xanthohumol has high antimicrobial activity against Bacteroides fragilis and toxigenic, clinically relevant, strains of C. difficile [69]. Microbial metabolism has been linked to the bioactivity and toxicity of xanthohumol. For example, the gut microbiota converts xanthohumol into 8-prenylnaringenin, an estrogenic phytoestrogen, and further metabolizes the compound into less potent end products [70]. Eubacterium ramulus, from the abundant human microbiome genus Eubacterium, metabolizes xanthohumol extensively in vitro [70]. How the microbiome contributes to xanthohumol efficacy and toxicity is the focus of an ongoing Phase I randomized, interventional clinical trial (Table 1).

7. Conclusions and future prospects

The extent to which the gut microbiome influences variability in population level therapeutic drug efficacy and toxicity is unknown. Furthermore, we have limited insight into the underlying mechanisms, enzymes, metabolites and species that play key roles in microbiome-drug interactions. A broader map of the metabolic potential of gut microbes will support the development of predictive models of how drugs and foods are modified by the host microbiome, enabling crucial insight into the microbial enzymes and pathways that are responsive to drugs.

Collectively, mechanistic animal model studies, high throughput sequencing and computational approaches used to investigate the microbiome-drug interactions, represent a pipeline for the prediction and modulation of gut microbiome driven adverse drug responses in the clinic (Fig. 2). A shift away from snapshot study designs towards longitudinal human studies that monitor microbiome function over time and at varying levels of granularity may accelerate our discovery of population-level variability in drug response. Longitudinal study designs, depending on their resolution, offer unique insights into how microbial communities respond to a particular perturbation [71].

8. Outstanding questions

Among the outstanding questions to address through preclinical studies and randomized clinical trials are: Is a patient’s pre-treatment microbiome predictive of her drug response outcome? What microbiome features are most predictive? What is the temporal stability of patient microbiome phenotypes? How does diet and antibiotic use impact therapeutic drug treatment? What host factors are key modulators of microbiome activity that may shape drug response outcomes? Addressing these questions will enable us to reengineer microbial interactions to better promote drug safety and efficacy.

9. Search strategies and selection criteria

Clinical trial data for this review was identified by searches of ClinicalTrials.gov in addition to PubMed and references from relevant articles using the search terms “microbiome”, “microbiota”, “drug”, “metabolism”, “drug treatment”, “gene expression”, “metagenomics”, “prebiotic”, “probiotic”, “intervention”, “16 s” and “NOT r/evi/ew/[Publication Type]”. Only articles published in English between 2010 and 2019 were included with an exception for those introducing key terms for the first time; preference was given to articles published between 2016 and 2019.

Conflict of interest statement

Dr. Guthrie has nothing to disclose.
Dr. Kelly has nothing to disclose.

Acknowledgements

This work was supported in part by a Peer Reviewed Cancer Research Program Career Development Award from the United States Department of Defense to Libusha Kelly (CA171019); Leah Guthrie was supported by the predoctoral Training Program in Cellular and Molecular Biology and Genetics ST2GM007491-41. The funders had no role in writing the paper.

References

[1] Wilson ID, Nicholson JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 2017;179:204–22.
[2] Sapanugampa P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharma-
cists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 2007;5:473–87.

[3] Kunz TM, Gilbert JA. Introducing the microbiome into precision medicine. Trends Pharmacol Sci 2017;38:81–91.

[4] Aziz RK. Rethinking pharmacogenomics in an ecosystem: Drug–microbiome interac-
tions. Pharmacogenomics, and personalized medicine for the human Superorganism; 2012; 258–61.

[5] Lankisch TO, et al. Gilbert’s syndrome and Irinotecan toxicity: combination with UDP-
Glucuronosyltransferase 1A7 variants increases risk. Cancer Epidemiol Bio-
markers Prev 2008;17:697–704.

[6] Stingl JC, Bartels H, Viviani R, Lehnman ML, Brockmöller J. Relevance of UDP-
gluconoyltransferase polymorphisms for drug dosing: a quantitative systematic review. Pharmaco Ther 2014;141:52–116.

[7] Gamage RS, et al. Clinical Pharmacogenetic implementations and pathways (CPG)
clinical trial. Clin Pharmacol Ther 2016;99:363–9.

[8] Mosaddeh J., Haga SB. Pharmacogenetic testing: current evidence of clinical utility. Ther Adv drug Saf 2013;4:155–69.

[9] Scordo M, et al. Influence of FP2C29 and FP2C19 genetic polymorphisms on war-
farin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002;72:
762–70.

[10] Ventola CL. Pharmacogenomics in clinical practice: reality and expectations. P T 2011;36:412–50.

[11] Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of polymorphisms in reducing adverse drug reactions: a systematic review. JAMA 2009;302:2267–70.

[12] Rizkallah M, Saad R, Aziz R. The human microbiome project, personalized medicine and the birth of Pharmacoproteomics. Curr Pharmacogenomics Pers Med 2010; 8:182–93.

[13] Saad R, Rizkallah MR, Aziz RK. Gut Pharmacobiochemistry: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Patho 2012;4:16.

[14] Blutt SE, Crawford SE, Ramani S, Zou WY, Estes MK. Engineered human gastrointes-
tinal Organoids derived from human induced pluripotent stem cells. Infect Microbiol 2018;559:259

[15] Finkbeiner SR, et al. Stem cell-derived human intestinal Organoids as an infection
testation system as a reproducible, high-throughput ex vivo batch model of the distal
Gastroenterol Hepatol 2018;5:241

[16] Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005;352:2211–21.

[17] Devlin AS, et al. Modulation of a circulating uremic solute via rational genetic manip-
ation of the gut microbiota. Cell Host Microbe 2016;20:709–15.

[18] Wallace BD, et al. Allaying cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010;330:931–5.

[19] Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005;352:2211–21.

[20] Chen KY, et al. Modulation of a circulating uremic solute via rational genetic manip-
ation of the gut microbiota. Cell Host Microbe 2016;20:709–15.

[21] Bjorkholm B, et al. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 2009;4:e9698.

[22] Barnes KJ, Rowland A, Polasek TM, Miners JO. Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins. Eur J Clin Pharmacol 2014;70:1097–106.

[23] Sun L, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of met-
formin. Nat Med 2018;24:1919–29.

[24] Wu H, et al. Metformin alters the gut microbiota of individuals with treatment-
 refraining diabetes: current treatments and side-effects. Int J Clin Med 2014;5:393

[25] Norvaisas P, Cabreiro F. Pharmacology in the age of the holobiont. Curr Opin Syst Biol 2018;3:307–14.

[26] Schellenberger J, et al. Quantitative prediction of cellular metabolism with compu-
table genome-based models. Nat Biotechnol 2009;27:220–6.

[27] Wu B. Use of physiologically based pharmacokinetic models to evaluate the impact of intestinal glucose hydrolysis on the pharmacodynamics of acylglycine. J Pharm Sci 2011;100:1281–302.

[28] Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005;352:2211–21.

[29] Babaei P, Shoaie S, Ji B, Nielsen J. Challenges in modeling the human gut microbiome. Curr Pharmacogenomics 2010;13:715–22.

[30] McQuade RM, Bornstein JC, Nurgali K. Anti-colorectal cancer chemotherapy-induced diarrhoea: current treatments and side-effects. Int J Clin Med 2014;5:393–406.

[31] Van der Graaf Y, de Ruiter D. The composition of the zebra
fish intestinal microbial community varies across development. ISME J 2016;10:643–52.

[32] Stephens WZ, et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J 2016;10:643–52.

[33] McQuade RM, Bornstein JC, Nurgali K. Anti-colorectal cancer chemotherapy-induced diarrhoea: current treatments and side-effects. Int J Clin Med 2014;5:393–406.