Spatial and seasonal variability in the water chemistry of Kabar Tal wetland (Ramsar site), Bihar, India: multivariate statistical techniques and GIS approach
Deepak Gupta, Rajesh Kumar Ranjan, Purushothaman Parthasarathy and Afroz Ansari

ABSTRACT
This study was performed to evaluate the spatial and temporal distribution of major ions in water samples of a newly designated Ramsar site, namely Kabar Tal (KT) wetland of Bihar. Samples were collected during summer, monsoon, and winter seasons. The analytical and GIS results show that concentration of electrical conductivity, chloride, and nitrate are higher in summer than monsoon and winter. However, the concentration of major cations such as sodium, potassium, calcium, and magnesium are higher in winter than monsoon and summer. In addition, major anions like sulphate and phosphate concentration is higher during monsoon than summer and winter. Multivariate statistical tool (discriminant analysis) results suggest that temperature, pH, electrical conductivity, sulphate, and potassium are the major parameters distinguishing the water quality in different seasons. The study confirms that seasonal variations are playing a major role in the hydrochemistry of KT wetland. Overall, this work outlines the approach towards proper conservation and utilization of wetlands and to assess the quality of surface water for determining its suitability for agricultural purposes. Overall, this work highlights the approach towards estimating the seasonal dynamics of chemical species in KT wetland and its suitability for irrigation purposes.

Key words | GIS, hydrochemistry, Kabar Tal, multivariate, Ramsar site, wetland

HIGHLIGHTS
- Spatiotemporal assessment of surface water has been characterized through hydrochemical studies.
- Temperature, pH, EC, sulphate, and potassium, influences water chemistry.
- Hydrochemical facies of surface water is of Ca\(^{2+}\) and Cl\(^{-}\); Ca\(^{2+}\)-Mg\(^{2+}\)-SO\(_4\)\(^{2-}\) and Cl\(^{-}\) type.
- The surface water of the wetland is of good quality for irrigation.
- Detailed exploration for the water chemistry has been studied through statistical methods.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
doi: 10.2166/wst.2021.115
INTRODUCTION

Freshwater is one of the most important constituents of life. Human interactions with water resources involve fresh streams, marshes, lakes, and groundwater. The rapid population growth, agriculture, and industrialization have forced environmentalists to determine the chemical, physical and biological characteristics of natural water resources (Regina & Nabi 2005). Wetlands are most productive ecosystems and play a very important role in the biogeochemical cycling of nutrients (Sánchez-Carrillo et al. 2014). In wetlands, nutrient dynamics is generally influenced by many processes like transport, transformation, storage, release, and removal of the inflow regime of wetlands (Shardendu et al. 2012). Wetlands function as water purification systems, helps in flood control, acts as sinks for pollutants as well as for organic carbon and therefore performs a vital role as climate stabilizers (Suhani et al. 2020). Wetlands are under increasing threat due to both point sources such as municipal and industrial wastewater and non-point sources like urban and agricultural run-off. Nitrate and phosphate are the major nutrients in the aquatic ecosystem which promote the productivity in an aquatic ecosystem (Weigelhofer et al. 2018). Phosphorous is an essential promoter of aquatic plant growth and a limiting nutrient for eutrophication in the lake ecosystem (Conley et al. 2009).

The use of various statistical techniques viz., principal component analysis (PCA), and discriminant analysis (DA) has been used by several researchers (Dash et al. 2018; Kaushik et al. 2021) to identify those parameters which govern the water quality and determine the geochemical processes. It helps in sorting out samples having similar properties or a particular group or cluster (may be seasonal or restricted to a particular site) (Singh et al. 2004).

Geographic information system (GIS) is one of the best intensive tools for processing, analyzing, storing, and displaying spatial distribution of data which improves the decision making ability of the conservation experts. Similar studies using the GIS tool has been conducted on Deepor Beel, by Dash & Kalamdhad (2021), for spatial mapping of water quality parameters.

Kabar Tal (KT) is one of the most important floodplain wetlands of Bihar (India) as it serves as a habitat for various migratory birds and plays important ecological functions for the regional hydrological balance. Recently, KT wetland has been designated as Ramsar sites (no. 2436) making it ‘Wetlands of international importance’ (Ramsar 2020). The wetland is shrinking at an alarming rate due to encroachment for agricultural practices (Ghosh et al. 2019; WISA 2016). Besides, it is also being used as a domestic wastewater drainage system by surrounding villages (Ambastha et al. 2020) resulting in the deterioration of water quality. Many researchers (Singh & Roy 1990; Siddiqui & Ramakrishna 2002; Ranjan & Kumari 2018) consider KT wetland to be at the initial stage of eutrophication.

The physicochemical characteristics of water alter seasonally; therefore it is very important to highlight its influence on the hydrochemistry of the wetland. Very few studies related to water quality have been carried on KT...
wetland related to water quality, which includes Siddiqui & Ramakrishna (2002), Singh & Jayakumar (2016), Ranjan et al. (2017), Ranjan & Kumari (2018) and Singh et al. (2020). However, all earlier studies are based on either one-time sampling during winter season (e.g., Ranjan et al. 2017) or a very small sample size. In addition, previous findings by Singh & Jayakumar 2016 and Singh et al. 2020, etc; have not focused on hydrochemical characterization and identification of water types (such as by using piper plot, etc.) and have also not evaluated the water quality for irrigation purpose.

Therefore, the present study was undertaken to assess the hydrochemistry of KT wetland to understand the influence of seasons (i.e., summer, monsoon, and winter) on water chemistry and also to delineate the sources of major ions and nutrients in the water. The literature survey shows that this study would be the first to address sources and processes along with influence of spatial and temporal variability in surface water chemistry of KT wetland.

MATERIALS AND METHODS

Study area

KT wetland (Figure 1) located at 86°05’E to 86°09’E, 25°30’N to 25°32’N, also known as Kabar Lake Bird Sanctuary or Kanwar Jheel is situated in the Begusarai district of Bihar, India. This wetland lies in the middle Gangetic plains, with alluvial landscape and has an elevation of 37–39 m above mean sea level (MSL). It is the largest wetland among the various wetlands found in the Kosi-Ganga interfluvue in the northern plains (Singh & Sinha 2019). The site is one among 18 wetlands within an extensive floodplain complex; it floods during the monsoon season to a depth of 1.5 meters. It experiences three climatic seasons, i.e., summer (March to mid-June), monsoon (mid-June to October), and winter (November to February), and characterized by tropical monsoon type climate with an average annual rainfall of 1,200 mm. The average temperature ranges from 25 °C to 38 °C in summer and 8 °C to 25 °C in winter.
The lake during dry season covers an area of 2600 hectares whereas; in monsoon, it expands up to an area of 7,400 ha. The Union Government of India has notified KT wetland as a wetland of national importance and also been declared as an IBA (Important Bird Area) site of Bihar and a Ramsar site. The wetland supports many waterfowl in the Gangetic plain along with a variety of species of migratory and resident avifauna; and an important stopover along the Central Asian Flyway, with 58 migratory water birds. Apart from this, the wetland is also a good source of fish varieties, paddy cultivation, and other resources like fodder (Irfan & Pasha 2013). Many varieties of aquatic flora is found in KT wetland, which includes Pistia stratiotes, Hydrilla verticillata, Eleocharis plantaginea, Eichhornia crassipes, Myriophyllum spicatum, Zostera marina, Egeria densa, Lemna obscura, Phragmites australis, and Typha (Shardendu et al. 2012). KT inhabits three critically endangered species of vultures, namely the red-headed vulture (Sarcogyps calvus), white-rumped vulture (Gyps bengalensis) and Indian vulture (Gyps indicus), and two water birds, the sociable lapwing (Vanellus gregarius) and Baer’s pochard (Aythya baeri) (Ramsar 2020).

Collection of samples and analysis

Overall 83 water samples, 29 samples each in summer (May 2015), and monsoon (July 2015), and 25 samples in winter (February 2016) were collected. Sampling points were fixed by using the portable Global Positioning System (GPS, Garmin Etrex-20). Water samples were collected based on water availability and possible sites for sampling. Samples were stored in an icebox and brought to the laboratory for analysis. The pH, electrical conductivity (EC), total dissolved solids (TDS) and temperature were recorded on the field using a Thermo-Orion portable meter (Thermo Scientific Orion Star A329). Sodium and potassium were estimated by flame photometer; however, calcium and magnesium were analyzed by the EDTA complexometric titration method. Sulphate, nitrate, and phosphate were estimated by spectrophotometric method, chloride was analyzed by argentometric method and HCO₃ by titrimetric methods (APHA 2012). The analytical data quality was controlled by standardization, procedure blank measurements. All observations were recorded in duplicate and average values were reported. The data used for doing all statistical analysis, as well as preparing contour map, were based on 29 samples each from summer and monsoon and 25 samples from winter season.

Statistical analysis and preparation of contour map

Correlation

Correlation analysis is a statistical method to know relations between variable pairs and given by formula:

\[r = \frac{N\Sigma(X_iY_i) - (\Sigma X_i)(\Sigma Y_i)}{\sqrt{[N\Sigma X_i^2 - (\Sigma X_i)^2][N\Sigma Y_i^2 - (\Sigma Y_i)^2]}} \]

where \(r \) = correlation coefficient
\(X_i \) and \(Y_i \) represent two different parameters and \(N \) = the total number of observations.

Principal component analysis (PCA)

PCA overall is a mathematical approach which does not depend upon assumptions (Mazlum et al. 1999) and is used to decrease the number of the sample without losing on the original sample information (Helena et al. 2000; Singh et al. 2017). Eigen value plays a significant role in importing the variations of these observed data (Praus 2007). In the present study, principal component (PC) having Eigen value >1 is considered. The factor axis was varimax-rotated to extract and minimize the variations among the variables for each factor.

Discriminant analysis (DA)

DA is mostly used to identify the variables, by discriminating two or more naturally occurring groups. Prior understanding of the objects in a particular group/cluster is needed before proceeding with DA. It is applied to the raw data sets and is used to assist in the prediction of groups to which individual parameters belong (Singh et al. 2004), as shown in the equation below:

\[f(G_i) = k_i + \sum_{j=1}^{n} w_{ij}p_j, \]

where,
i represents the number of groups (G);
k_i = constant inherent to each group;
n = number of parameters used for classification of every parameter; and
w_{ij} = the weighting coefficient assigned by DA to a particular parameter (p_j).
PCA, DA and correlation matrix for water samples was carried out by using ‘Statistical Package for Social Sciences (SPSS), version-10.0’. Microsoft Excel 2013 was used for hydrochemical plotting.

Contour map

In this study, the contour map is prepared through interpolation, by Inverse Distance Weighted (IDW) method. IDW is the method, which implements the assumption that the things that are closer to one another are more alike than those farther apart. The data obtained through laboratory analysis were tabulated and interpolated using GIS tools. ArcGis 10.1 software was used for preparing contour map.

Calculation for classification of surface water quality for irrigation purpose

Classification of surface water quality (Table 1) for irrigation purpose is done on the basis of Na% [Sodium % = [(Na + K) * 100]/(Ca + Mg + Na + K)], Sodium adsorption Ratio (SAR) = Na/[(Ca + Mg)/2]1/2), Residual Sodium Carbonate (RSC) [RSC = (CO3 + HCO3)−(Ca + Mg)], and Salinity Hazard (EC) (μS/cm) (Richards 1954).

Sodium % <20; SAR <10; RSC <1.25, indicates that the waters of the wetland is excellent for irrigation for all seasons, if RSC is >2.5 it indicates increased salt content which might lead to chocking of soil pores and thereby reduce air passage (Inayathulla & Paul 2013).

RESULTS AND DISCUSSION

Spatial and seasonal variations in water chemistry

The change in temperature at different sampling points of KT wetland was analyzed during the summer, monsoon, and winter seasons are shown in Table 2. The results show that there is not much variation in temperature between summer (28.5 °C–34 °C) and monsoon (28 °C–35 °C) however, during winter temperature ranges between 18 °C and 23.5 °C. Temperature in the wetland varies at different segments with Northern part showing high temperature (~33 °C, ~23 °C) than southern part (~29 °C, 18 °C) during summer and winter, respectively. During monsoon (~30 °C) it is almost uniform showing

Parameters	Range	Water class	Summer	Monsoon	Winter
Na%	<20	Excellent	All	All	All
	20–40	Good	Nil	Nil	Nil
	40–60	Permissible	Nil	Nil	Nil
	60–80	Doubtful	Nil	Nil	Nil
SAR	<10	Excellent	All	All	All
	18	Good	Nil	Nil	Nil
	18–26	Doubtful	Nil	Nil	Nil
	>26	Unsuitable	Nil	Nil	Nil
RSC	<1.25	Good	All	All	All
	1.25–2.50	Doubtful	Nil	Nil	Nil
	>2.50	Unsuitable	Nil	Nil	Nil
Salinity Hazard (EC)(μS/cm)	<250	Excellent	S3	M2,M3,M4,M5,M7,M8,M9,M10, M11,M13,M16,M17,M19,M20, M21,M22,M23,M24,M25,M26, M27,M28,M29	J5,J6,J7,J15,J24,J25
	250–750	Good	S1,S2,S4,S5,S6,S7,S8,S9,S10, S11,S12,S13,S14,S15,S17,S18, S19,S20,S21,S22,S23,S24,S24,S25, S26,S27,S28,S29	M1,M6,M12,M14,M15,M18	J1,J2,J3,J4,J8,J9,J10, J11,J12,J13,J14,15, J16,J17,J18,J19,J20, J21,J22,J23
	750–2,000	Permissible	S16	Nil	Nil
slight variation on the periphery of the northern, southern, and eastern region. It is observed that the temperature during winter is higher in the northeastern and northwestern regions (∼23°C) whereas the southern part has lower temperature (18°C) (Figure 2(a)). The pH shows spatial variation during summer. It is highest at the southern side (∼7.2) and lowest in the northwestern (∼6.5) and northeastern region (∼6.8). In monsoon, pH is highest at the southern side (∼6.5) whereas during winters, the pH is highest at the northern side (∼7.97) as shown in Figure 2(b).

The seasonal variation of temperature in the water is due to the variability in water depth and its quantity (Ling et al. 2017). The temperature fluctuation of KT wetland at various seasons is less significant in areas where volume of water is greater.

The average value of pH during winter (7.9) is slightly more than in summer and monsoon, indicating the neutral to alkaline nature of water. pH value is affected by biological activities like photosynthetic and respiration rates in wetland (Weisse & Stadler 2006; Shah et al. 2019). Therefore, higher photosynthesis uptakes more CO2 and thus increases pH in winter. The low value of pH in summer could be due to the decomposition of accumulated organic matter, and its biological oxidation, releasing CO2 which in turn reduces the pH (Langmuir 1997). However, a low value in monsoon may be due to high turbidity of water and elevated temperatures which leads to less photosynthesis and accumulation of more free CO2 (Adebisi 1988; Edoreh et al. 2019). A low rate of photosynthesis can also cause a decline in pH due to inefficiency of light-dependent reactions on a cloudy day during monsoon as temperatures hardly affect the light-dependent reactions of photosynthesis (Marra & Heinemann 2006).

Table 2 | Seasonal variations of different parameters at Kabar Tal wetland (n = 29 summer and monsoon; n = 25 winter)

Season	Temp(°C)	pH	EC (μS/cm)	SO4^2- (ppm)	PO4^3- (μ/l)	HCO3^- (ppm)	NO3^- (ppm)	Cl^- (ppm)	Ca^2+ (ppm)	Mg^2+ (ppm)	K^+ (ppm)	Na^+ (ppm)	
Summer													
Mean	31.4	7.1	371.0	18.4	47.5	11.2	1.1	86.5	13.7	5.7	0.5	3.2	
Standard Error	0.3	0.1	19.6	3.3	3.6	1.3	0.1	14.9	1.4	0.7	0.1	0.3	
Standard Deviation	1.7	0.5	105.3	18.0	19.1	6.9	0.5	80.2	7.7	3.7	0.3	1.8	
Kurtosis	−1.2	1.7	11.8	1.7	0.3	−0.4	−0.1	−1.4	−0.5	0.7	4.8	0.5	
Skewness	0.0	0.9	3.0	1.4	0.6	−0.4	0.6	0.6	−0.4	0.4	2.2	0.8	
Minimum	28.5	6.5	240.0	0.4	10.6	0.0	0.2	2.3	0.0	0.0	0.2	0.7	
Maximum	34.0	8.1	820.0	73.2	93.4	24.4	2.2	234.3	28.1	15.8	1.5	7.6	
Monsoon													
Mean	30.2	6.8	164.8	59.0	63.3	11.2	0.6	34.4	17.1	5.5	2.4	2.7	
Standard Error	0.4	0.1	12.7	4.0	11.9	1.0	0.1	5.5	1.9	0.9	0.3	0.3	
Standard Deviation	1.9	0.3	68.2	21.8	64.2	5.6	0.3	29.9	10.0	4.8	1.6	1.6	
Kurtosis	0.7	2.0	−0.9	2.5	4.1	−0.4	−0.7	7.5	0.0	2.1	3.4	10.0	
Skewness	1.2	0.6	0.5	0.4	2.2	−0.5	−0.1	2.5	0.3	1.4	1.8	2.6	
Minimum	28.0	6.1	60.0	0.1	16.3	0.0	0.1	2.3	0.0	0.0	0.5	0.2	
Maximum	35.0	7.6	290.0	118.5	257.7	18.3	1.1	149.1	40.1	19.4	7.3	9.3	
Winter													
Mean	20.7	7.9	257.2	47.7	28.9	17.4	0.8	37.8	22.7	12.9	4.8	4.1	
Standard Error	0.3	0.1	10.2	3.3	2.5	1.1	0.1	8.2	2.3	1.2	0.4	0.4	
Standard Deviation	1.5	0.3	51.0	16.7	12.7	5.4	0.3	40.8	11.5	6.0	1.8	1.9	
Kurtosis	−0.7	−0.5	2.7	0.2	6.6	4.3	0.6	7.0	−1.0	−0.2	0.4	0.1	
Skewness	0.5	0.6	−0.6	−0.1	2.6	−1.7	1.2	2.7	−0.3	0.6	0.6	−1.0	
Minimum	18.0	7.4	110.0	16.0	17.7	0.0	0.5	7.1	0.0	2.4	1.4	0.0	
Maximum	23.5	8.6	360.0	87.2	69.1	24.3	1.5	177.5	40.1	25.0	8.5	6.5	

Standard Error, Standard Deviation, Kurtosis, and Skewness was calculated at 95% confidence level.
Additionally, transport of humic and fulvic materials in colloidal suspension may also contribute to lower pH values (Langmuir 1997; Weng et al. 2002).

The electrical conductivity (EC) of water is a measure of dissolved ions which originates from the weathering processes and decaying plant matter (Sarwar & Majid 1997; Ray et al. 2021), and also input of organic and inorganic waste (Wright 1982; Dey & Dey 2015). During the present analysis, EC was found to be significantly higher in the summer (371 μS/cm) than monsoon and winter. The higher value of EC during summer shows the ions getting concentrated due to lesser water availability and temperature induced rapid evaporation (Gupta & Paul 2013; Singh et al. 2020). However, it was noticed to be least in monsoon due to dilutions of the wetland water through rainfall and runoff from its adjoining areas like agricultural lands and water bodies (Ambastha et al. 2007). Electrical conductivity during summer is maximum in the northeastern region by up to 850 (μS/cm), reflecting the effect of an increase in temperature over northeastern part (Figure 2(c)); and lowest at the southern part (~250 μS/cm). EC shows the variation (from 110 to 360 μS/cm) in winter as shown in Figure 2(c) whereas, during monsoon, EC is uniform and shows a slight increase in the northern region (~290 μS/cm) and reduction at the southern region (~60 μS/cm). This may be the case due to an increase in runoff at the northern region from the agricultural fields.

Anions

The seasonal variations shows (Table 2) that anions follows the trend SO₄²⁻ > Cl⁻ > HCO₃⁻ > NO₃⁻ > PO₄³⁻ in monsoon and winter, whereas in summer its trend is Cl⁻ > SO₄²⁻ > HCO₃⁻ > NO₃⁻ > PO₄³⁻. Chloride (Cl⁻) occurs naturally in all types of water due to its high solubility. The higher concentration of chloride during summer may be associated with a high rate of evaporation as well as frequent run-off loaded with contaminated water from the surrounding.
areas. Sources of chloride in surface water are both natural and anthropogenic, such as weathering, leaching from sedimentary rocks and soils, the use of inorganic fertilizers, animal feeds, industrial effluents, irrigation drainage, and organic wastes of animal origin. Chloride enters surface water through both natural (weathering, sedimentary rock and soil leaching) and anthropogenic (inorganic fertilizers, animal feed, agricultural waste, irrigation runoff) sources (Venkatasubramani & Meenambal 2007). The chloride distribution in the study area is found to be highest at the western (234 mg/L) and northern (139 mg/L) periphery of KT wetland during summer. During monsoon, a single patch of high concentration of chloride (149 mg/L) is observed at the northeastern region whereas the concentration of chloride is relatively high in patches during winter as shown in Supplementary Figure S1(a).

The concentration of HCO₃⁻ is higher (17.4 mg/L) in winter than summer and monsoon (11.2 mg/L). The source of HCO₃⁻ in the aquatic ecosystem is through the dissolution of gases, carbonate equilibrium, and weathering of carbonate rocks (Shah et al. 2019). The increase in HCO₃⁻ concentration in winter can be attributed to seasonal variability in the chemical weathering of carbonate and silicate minerals (Tipper et al. 2006). The higher presence of HCO₃⁻ pertains generally to the dissolution of minerals like calcite and dolomite (Cai et al. 2007). In the winter season, higher dissolution of CO₂ due to the inverse relationship of dissolved CO₂ and temperature may induce a higher rate of carbonate weathering (Langmuir 1997). HCO₃⁻ is found to be higher at two patches at the northeastern and southern boundary of Kabar Tal during summer and monsoon; it has been vividly represented on the contour map, shown in Supplementary Figure S1(b). During winter, the bicarbonate concentration ranges from 12 to 24 (mg/L) but at the northeastern side wavering towards the center, it is 5.9 (mg/L) at a single patch.

Phosphorus is one of the key nutrients which limit primary productivity in many freshwater ecosystems, whereas nitrogen is a common limiting nutrient in marine ecosystems (Cloern 2001). However, in some freshwater environments, particularly in the tropics and subtropics, N is the primary limiting nutrient for phytoplankton production, owing to excessive P load and long growing seasons (e.g., Yang et al. 2008). The nitrogen in water is generally present in forms like nitrate, nitrite, ammonia and organic form sources are urea, amino acids, etc. The most significant source of NO₃⁻ in an aquatic ecosystem such as wetland and lake is the biological oxidation of nitrogen-rich organic matter such as domestic sewage, agricultural runoff, and industrial effluents (Vrzel et al. 2016). The high concentration of nitrates is beneficial for irrigation, but it causes eutrophication which promotes the growth of algae and macrophytes (Trivedy & Goel 1984). NO₃⁻ concentration is greater in summer (0.5 ± 1.1 mg/L) than in monsoon (0.3 ± 0.6 mg/L) and winter (0.5 ± 0.8 mg/L). Similar trends in nitrate were also observed in many aquatic ecosystems (Garg et al. 2006; Sinha & Biswas 2011; Prabhahar et al. 2012; Singh & Jayakumar 2016; Singh & Deepika 2017). Nitrate concentration lies between 0.2 and 2.2 (mg/L), highest at the northern extreme, and two patches at the southeastern region during summers, and the distribution of nitrate is not found to be homogenous, especially during monsoons as nitrate cannot be attributed to a single source. Supplementary Figure S1(c) shows the heterogeneity of nitrate distribution in the wetland. Nitrate concentration gradually increases towards northern regions in winter.

The concentration of PO₄³⁻ in monsoon (63.5 ± 64.2 μg/L) is reported to be higher than in summer and winter. The source of PO₄³⁻ in the surface water comes mostly through anthropogenic sources. The high concentration of PO₄³⁻ and NO₃⁻ in monsoon may be due to the runoff from the agricultural area which contributes to both nitrate and phosphate (Desai et al. 1995; Bandela et al. 1999; Anshumali & Ramanathan 2007). In general, it is reported that 80% of lake and other reservoirs’ eutrophication is controlled by phosphorus (Zhao 2004). The lowest values of phosphate were observed in summer and winter which may be due to low inflow of wastewater, biological utilization, and removal by absorption on to sediment and suspended particles (D’Sousa et al. 1981; Rajasegar 2003). PO₄³⁻ concentration is observed high in the northern region during monsoon (257.7 μ/L) and winter (69.1 μ/L), whereas during summers it is concentrated towards the southern part with maximum recorded value of 180 μ/L. Monsoon season also exhibits a very high concentration of PO₄³⁻ (∼255 (μg/L) towards the northern end of the KT wetland as shown in Supplementary Figure S1(d). The high concentration of phosphates in the northern part and some patches coupled with nitrate concentration depicts that the agricultural runoff (fertilizer) is contributing to the presence of excess ionic entities (Ambastha et al. 2007; Singh et al. 2020).

Sulphate is a naturally occurring substance constituting sulphur and oxygen and is present in various mineral salts that are found in soil. Sulphate may leach from the soil, fertilizers, decaying plant and animal matter commonly released into the water. The highest SO₄²⁻ concentrations were observed in monsoon (59 ± 21.8 mg/L). This could be attributed to the dissolution of SO₄²⁻ rich minerals, and
also by human interventions through the application of fertilizers (Grasby et al. 1997). The similar trends of seasonal variations in physicochemical characteristics of River Yamuna reported a higher sulphate concentration of 80 mg/L during the wet season than the in dry season (Ravindra et al. 2003). Sulphate concentration during monsoon reaches up to 118 (mg/L) in the southwestern region whereas during summer and winter it is confined 80 (mg/L) with variation at different sampling points as depicted in Figure 2(d). Ranjan et al. (2017) has analyzed sulphate concentration in KT area and reported concentration of 10.89 mg/L, which is lower than present study (47.7 mg/L). As this area is surrounded by agriculture tration of 10.89 mg/L, which is lower than present study area is not homogenous as during summer and winter, maximum concentration was observed at the northern side of the KT wetland region whereas southern region exhibits lower concentration, 7.64 mg/L and 0.7 mg/L, respectively. Although calcium is found to be abundant in water naturally, as well as by induced weathering of rocks, still the addition of sewage waste from nearby residential areas of KT wetland may be accountable for its dominance (Angadi et al. 2005; Udhaya Kumar et al. 2006). Ca$^{2+}$ during monsoon and winter reaches up to 40 (mg/L) and during summers they are confined to a maximum of 28 (mg/L). The distribution is shown in Supplementary Figure S1(e).

Magnesium is generally found in minerals and rocks linked up with calcium and iron compounds, but its concentration is always less than calcium (Tulsankar et al. 2020). It is a very essential macronutrient for the chlorophyll bearing autotrophs like algae and plants which manufacture their food (White & Brown 2010). For phytoplankton, the limiting factor for its growth is magnesium (Dijkstra et al. 2019). The mean concentration of magnesium recorded seasonally ranged between (12.9 ± 6 mg/L) to (5.5 ± 4.8 mg/L), maximum concentration was observed during winter (12.9 ± 6 mg/L) and minimum concentration during monsoon (5.5 ± 4.8 mg/L). A similar result was observed by Kumar et al. (2014) also. Magnesium also enters the system in association with anions like chloride and sulfate (Jhingran 1975). Mg$^{2+}$ concentration show 1.2–15.8 (mg/L) variation during summers, maximum concentration was observed at the edges of the KT on the northeastern side. During monsoon, 2.4–19.4 (mg/L) concentration is observed with two patches recording high concentration in the northeastern and southeastern region. In winter season, a vivid patch of higher concentration is observed as shown in Supplementary Figure S1(f) ranging from 2.5 to 25 (mg/L).

The mean concentration of sodium ranges from 4.75 mg/L (± 1.8) to 2.40 mg/L (± 1.6), maximum during winter 4.75 mg/L (± 1.8) and minimum during monsoon 2.40 mg/L (± 1.6). However, mean concentration of potassium ranges from 4.1 mg/L (± 1.9) to 0.5 mg/L (± 0.3), maximum during winter 4.1 mg/L (± 1.9) and minimum during summer 0.5 mg/L (± 0.3). Sodium and potassium are naturally present in water, although its concentration may increase due to silicate weathering, application of potash fertilizers, precipitation runoff, and from detergents and soap (Kumar et al. 2014). The K$^+$ distribution in the study area is not homogenous as during summer and ranges from 0.2 to 1.49 (mg/L) with maximum value observed at the northern side of the KT wetland region (Figure 2(e)). During monsoon K$^+$ ranges from 0.22 to 9.25(mg/L), maximum concentration observed towards the northern side again but slightly moving towards the west. In winters, it is concentrated at two patches in the north and southeastern region.

Na$^+$ concentration ranges from 0.8 to 7.4 (mg/L) during summer. High concentration of Na$^+$ is observed in north side of KT wetland whereas southern region exhibits lower Na$^+$ concentration, 7.64 mg/L and 0.7 mg/L, respectively. However, during monsoon, Na$^+$ concentrations ranges from 0.52 to 7.2 (mg/L) and the highest value was noted to be at two patches at the center (7.2 mg/L) and northwestern (6.57 mg/L) part as shown in Supplementary

Cations

The seasonal variations show (Table 2) that cations follow the trend Ca$^{2+}$ > Mg$^{2+}$ > Na$^+$ > K$^+$ in summer and winter, whereas in monsoon its trend is Ca$^{2+}$ > Mg$^{2+}$ > K$^+$ > Na$^+$. Calcium is one of the most important nutrients for the aquatic organisms as it an essential element for the formation of the cell walls and is one of the important factors for physiological function (Yadav et al. 2013). The calcium ions are the dominant cations in the surface water. The mean value of calcium in KT wetland was found to be higher in the winter season (22.7 ± 11.5 mg/L) and lower during summer (15.7 ± 7.7 mg/L). Similar results were noted by (Munawar 1970; Singh & Jayakumar 2016). The high concentration of calcium ions may be due to the weathering of rocks such as limestone, marble, calcite, dolomite, gypsum, fluorite and apatite, etc. (Singh et al. 2011). Although calcium is found to be abundant in water naturally, as well as by induced weathering of rocks, still the addition of sewage waste from nearby residential areas of KT wetland may be accountable for its dominance (Angadi et al. 2005; Udhaya Kumar et al. 2006). Ca$^{2+}$ during monsoon and winter reaches up to 40 (mg/L) and during summers they are confined to a maximum of 28 (mg/L). The distribution is shown in Supplementary Figure S1(e).

$k_{v} = \frac{\text{mean value of calcium in KT wetland was found to be higher in the winter season (22.7 ± 11.5 mg/L) and lower during summer (15.7 ± 7.7 mg/L).}}{\text{Similar results were noted by (Munawar 1970; Singh & Jayakumar 2016). The high concentration of calcium ions may be due to the weathering of rocks such as limestone, marble, calcite, dolomite, gypsum, fluorite and apatite, etc. (Singh et al. 2011). Although calcium is found to be abundant in water naturally, as well as by induced weathering of rocks, still the addition of sewage waste from nearby residential areas of KT wetland may be accountable for its dominance (Angadi et al. 2005; Udhaya Kumar et al. 2006). Ca$^{2+}$ during monsoon and winter reaches up to 40 (mg/L) and during summers they are confined to a maximum of 28 (mg/L). The distribution is shown in Supplementary Figure S1(e).}$
Figure S1(g). Winter shows the highest concentration of Na at northern extremes of KT wetland. Most of the dynamic ionic activity is thus seem to occur at the north and north-western patch of wetland. The presence of higher ionic concentrations can change the hydrogeochemical dynamics which leads to alteration in functionality of the wetlands. The occurrence of higher ionic presence could be due to the depression hydrology where all entities meet and form a dynamic system of alternating storage and release of ions.

Correlation among different parameters of Kabar Tal wetland

The correlation matrix (Supplementary Table S1(a)) plotted for the water samples collected in summer season shows good correlation between Ca$^{2+}$ and HCO$_3^-$ (0.671), Mg$^{2+}$ and HCO$_3^-$ (0.678). Its main source may occur due to natural death and the decaying process occurring in the wetland. During summer, the temperature and humidity are relatively high; hence the decaying process is also high in releasing gases like CO$_2$, which dissolves in water. This helps in the formation of carbonic acid which leads to further breakdown resulting in an increased composition of bicarbonates.

The correlation matrix (Supplementary Table S1(b)) plotted for the monsoon water samples shows a good correlation between Na$^+$ and EC (0.717) as Na$^+$ ions are not generally up taken by the plants, thus, its concentration may have increased causing higher EC. Ca$^{2+}$ and SO$_4^{2-}$ show positive correlation (0.503). Similarly, Na$^+$ and Cl$^-$ (0.537) and Ca$^{2+}$ and HCO$_3^-$ (0.692) pairs show high positive correlation. This may be present in the water samples due to weathering of sulphate minerals (e.g. gypsum) and transfer in the lake through agricultural runoffs.

The correlation matrix (Supplementary Table S1(c)) plotted for the winter NO$_3^-$ and temperature (0.589), Na$^+$ and temperature (0.501), NO$_3^-$ and pH (0.707), Mg$^{2+}$ and EC (0.542), shows good correlation. These correlation values suggest that during winter, temperature governs the physicochemical character of the surface water of the wetland.

Classification of surface water chemistry

The surface water of the study area may have some similarities. To understand this, the study area has been classified hydrochemically using major cations and anions data by plotting Piper trilinear diagram (Piper 1944). Piper plot (Figure 3) shows that surface water during summer is dominated by Ca$^{2+}$ and Cl$^-$ but during the monsoon and winter period, the water shows the dominance of Ca$^{2+}$, Mg$^{2+}$-SO$_4^{2-}$ and Cl$^-$ types of ions, indicating possible runoff input of sulphur into the system. Excess input of sulphur into the system might be due to the agricultural runoff from the nearby agricultural fields. The presence of chloride type water during summer is mainly due to the evaporation of wetlands surface water. Overall, the hydrochemical facies in all the seasons indicates that strong acids exceed weak acids in the wetland and alkaline substances also dominate over alkalis.

Sodium percentage, SAR, RSC, and salinity hazard

The Wilcox plot, Figure 4(a), which uses sodium percentage and EC values helps in a better understanding of water usage for agricultural purposes pictorially. The study shows that wetland water in all seasons shows excellent nature for agricultural purposes except for few sampling locations in summer (S16, S17, S24, and S29) and monsoon (S11 and S21) where water quality falls in the group of unsuitable category. The unsuitable nature resulting from

![Figure 3](http://iwaponline.com/wst/article-pdf/83/9/2100/888808/wst083092100.pdf)
high sodium% during these seasons might be due to the influence of agricultural activity.

The SAR vs EC plot (Figure 4(b)) shows the usage of water for both drinking and agricultural purposes. The low EC (i.e. $<750 \, \mu S/cm$) indicates its suitability for drinking purposes and moderate EC value ($750-1,250 \, \mu S/cm$) indicate the acceptable nature of water. Low SAR values (<10) indicate its suitability for agricultural activity. The SAR vs EC plot shows that water in KT wetland in all seasons falls under the low-risk category (C1S1) indicating suitability for both drinking and agricultural purposes.

Provenance and water-rock interaction

The Gibbs plot (Gibbs 1970) helps to understand the dominant source of ions to the hydrological system. The low values of total dissolved solids (TDS) and high Na/Cl content indicates precipitation source whereas, high TDS value indicates evaporation dominated source. The present study (Figure 5(a) and 5(b)) shows that all data lies within the rock dominance region indicating weathering as the main source of ions regulating the water chemistry. The Mg/Na and HCO$_3$/Na vs Ca/Na plot helps to find the dominance of weathering in the region (Figure 6(a) and 6(b)). It shows the dominance of carbonate weathering along with a minor amount of silicate weathering in the Kabar Tal wetland’s water.

As depicted from the SO$_4^{2-}$ vs Ca$^{2+}$ plot (Figure 7(a)); HCO$_3$ vs Ca$^{2+}$ plot (Figure 7(b)); Na/Cl vs Cl$^{-}$ plot (Figure 7(c)); Ca$^{2+}$ + Mg$^{2+}$ vs HCO$_3$ plot (Figure 7(d)); it can inferred that the dominance of ions in the study area is mainly due to weathering of both carbonate and silicate
Figure 6 | (a) Mg/Na vs. Ca/Na; (b) HCO₃/Na vs. Ca/Na plot showing the major weathering source for surface water chemistry in Kabar Tal.

Figure 7 | Plots of (a) SO₄²⁻ vs. Ca⁺⁺; (b) HCO₃⁻ vs. Ca⁺⁺; (c) Na⁺/Cl⁻ vs. Cl⁻; (d) Ca⁺⁺ + Mg⁺⁺ vs. HCO₃⁻.
minerals. To understand the presence of dominant mineral, the biplots for various cations and anions were studied (Figure 7(a) and 7(d)). The Na\(^{+}\)/Cl\(^{-}\) vs Cl\(^{-}\) plot (Figure 7(c)) helps us decipher the dominance of evaporation over silicate weathering for Na\(^{+}\) and Cl\(^{-}\) concentration in the water. The plot (Figure 7(c)) depicts that during summer, the evaporation dominates whereas during winter and monsoon silicate weathering dominates. The plots (Figure 7(b) and 7(d)) show that all the data points fall near to the Y-axis (Ca\(^{2+}\) and Ca\(^{2+}\) + Mg\(^{2+}\)) indicating Ca and Mg chemistry is dominated by the predominance of calcite and dolomite. The sulphate concentration in the region is derived from both natural (dissolution of sulphate minerals like gypsum) and anthropogenic (fertilizers) activities as the data plots scatter to large extent in the biplot (Figure 7(a)).

PRINCIPAL COMPONENT ANALYSIS (PCA) AND FACTOR ANALYSIS (FA)

PCA of the summer season

The first four PCs (Eigen value >1) are the most significant principal components, which represent 70.81\% of the variance in water quality of KT wetland (Table 3). PC 1 explains 23.52\% of the variation and is influenced highly by HCO\(_3\), Ca\(^{2+}\) and Mg\(^{2+}\); whereas the loading of Na\(^{+}\) is very weak. This PC 1 suggest that carbonate weathering plays a major role in governing water chemistry in summer. PC 2 is responsible for 18.01\% of the variation and is strongly influenced by temperature. The temperature in summer is relatively higher than winter and monsoon seasons and it is evident from the PC 2 that temperature is one of the determining factors which controls water chemistry. PC 3 contributes to 16.16\% of the variation and is influenced highly by Cl\(^{-}\) and Na\(^{+}\) ions. Since high evaporation rate in summer due to high temperature leads to an increase in concentration of Cl\(^{-}\) and Na\(^{+}\) in water and controls the hydro geochemistry. However, PC 4 contributes to 13.13\% of the variation and is highly influenced by SO\(_4^{2-}\) and is least influential in summer than other anions.

PCA of monsoon season

The first five PCs (Eigen value >1) are the most significant principals, which represent 75.57\% of the variance in water quality of KT wetland (Table 3). PC 1 contributes to 20.19\% of the variation and is highly loaded with Na\(^{+}\), and moderately loaded with nitrate and temperature. It is also observed that during a dry season Kabar Tal wetlands is used for agriculture purpose nitrogenous and phosphate-containing fertilizers are widely used (Ranjan et al. 2016). However, surface runoff from agricultural in monsoon increases concentration of nitrate which governs the water chemistry. PC 2 contributes to 18.76\% of the variation with a high loading of Mg\(^{2+}\) and SO\(_4^{2-}\). PC 3 contributes to 13.44\% of the variation with a high loading of HCO\(_3\). PC 4 contributes to 13.85\% of the variation with a high loading of Na\(^{+}\). PC 4 contributes to 13.44\% of the variation with a high loading of NO\(_3^{-}\) and Cl\(^{-}\). PC 5 contributes to 10.51\% of the variation with a high loading of K\(^{+}\). The combined interpretation of PC2, PC3 and PC4 suggests that sulphate weathering plays the prominent role, followed by bicarbonate in monsoon.

PCA of the winter season

The first five PCs (Eigen value >1) are the most significant principals, which represent 80.35\% of the variance in water quality of KT wetland (Table 3). PC 1 contributes to 20.69\% of the variation with a high loading of Mg\(^{2+}\) and temperature. PC 2 contributes to 20.57\% of the variation with a high loading of HCO\(_3\), Ca\(^{2+}\), and EC. PC 3 contributes to 15.05\% of the variation with a high loading of Na\(^{+}\). PC 4 contributes to 13.85\% of the variation with a high loading of NO\(_3^{-}\) and Cl\(^{-}\). PC 5 contributes to 10.39\% of the variation with a high loading of PO\(_4^{3-}\). The overall analysis of PC suggest that carbonate/dolomite weathering plays a significant role in increasing HCO\(_3\), Ca\(^{2+}\) and Mg\(^{2+}\) concentration in winter, which subsequently influences EC in winter season.

Discriminant analysis (DA)

Seasonal (summer, monsoon, and winter) water quality variations were evaluated using DA. Discriminant functions (DFs) and classification matrices (CMs) were obtained from standard, forward, and backward stepwise modes of DA (Table 4). In forward stepwise mode, parameters having more significant to no significant change are included by the step-by-step process. However, in backward stepwise mode, parameters with less significant to no significant change are obtained through removing the step-by-step process. The standard DA mode, constructed DFs including 12 parameters are shown in Table 4. All the standard, forward, and backward stepwise mode DFs using 12, 5, and 8 discriminant variables, respectively, rendered the corresponding CMs, assigning 100\% cases correctly (Table 5). Forward stepwise and backward stepwise DA showed that
Table 3
Rotated component matrix for different principal components of summer, monsoon and winter water samples (n = 29 summer and monsoon; n = 25 winter)

Parameters	Summer PC (1)	Summer PC (2)	Summer PC (3)	Summer PC (4)	Monsoon PC(1)	Monsoon PC (2)	Monsoon PC (3)	Monsoon PC (4)	Winter PC (1)	Winter PC (2)	Winter PC (3)	Winter PC (4)	Winter PC (5)
HCO₃⁻ (ppm)	0.845				0.830				0.810				
Ca²⁺ (ppm)		0.845	0.734	0.734		0.845			0.845				
Mg²⁺ (ppm)			0.690	0.690			0.775		0.775				
NO₃⁻ (ppm)				0.521			0.724		0.724				
PO₄³⁻ (ppb)					0.830	0.585	0.521	0.522	0.921				
Temp (°C)					0.690	0.521	0.724	0.724	0.921				
EC (μS/cm)	0.660					0.660							
Cl⁻ (ppm)	0.427		0.784	0.784	0.427	0.446	0.893	0.893	0.427	0.446	0.893	0.893	
pH		0.356	0.356	0.356	0.418	0.772	0.630	0.630	0.309	0.797			
SO₄²⁻ (ppm)					0.772	0.630	0.316	0.316	0.309				
K⁺ (ppm)	0.344	0.479	0.344	0.344	0.344	0.479	0.540	0.540	0.309				

Eigenvalue
- Summer: 2.822, 2.161, 1.939, 1.575
- Monsoon: 2.423, 2.251, 1.612, 1.521, 1.261
- Winter: 2.483, 2.444, 1.806, 1.662, 1.247

% of Variance
- Summer: 23.518, 18.007, 16.155, 13.126, 10.050
- Monsoon: 18.759, 18.759, 13.437, 12.673, 10.505
- Winter: 15.048, 15.048, 13.849, 13.849, 10.391

Cumulative %
- Summer: 23.518, 41.525, 57.680, 70.806, 80.348
- Monsoon: 24.552, 42.210, 55.851, 72.419, 80.446
- Winter: 24.552, 42.210, 55.851, 72.419, 80.446

Extraction Method: Principal Component Analysis & Rotation Method: Varimax with Kaiser Normalization.
temperature, pH, EC, SO$_4^{2-}$, and K$^+$ are the major significant parameters followed by NO$_3^-$, Cl$^-$, Na$^+$ (Table 4). Further, a less significant third group of the remaining four parameters, i.e., PO$_4^{3-}$, HCO$_3^-$, Ca$^{2+}$, and Mg$^{2+}$, is marked from the standard mode. Thus, the temporal DA results explain that temperature, pH, EC, SO$_4^{2-}$, and K$^+$ are the most significant parameters to discriminate among the three different seasons; these five parameters justify most of the expected temporal variations in the water quality (Table 5).

CONCLUSIONS

In this study, SAR (sodium adsorption ratio) value of the study area is less than 10, favorable, and suitable for irrigation purposes. Based on RSC values, all the samples of the three seasons had values less than 1.25 which also supports its suitability criteria. Gibb’s plot reveals that weathering processes are one of the major sources of ions in water. The statistical technique reveals that temperature, pH, EC, SO$_4^{2-}$, and K$^+$ are the most significant parameters which are governing the water quality. In summer season, the dry region of KT is utilized for agricultural purpose. Thus, application of fertilizers might occur to get good yield. Therefore, during monsoon these agricultural fields get flooded and change the water chemistry and deteriorate the water quality of the wetlands. The agricultural areas and villages around the wetland also contribute to the nutrient enrichment in the wetland. Overall results illustrate that seasonal variation is playing a
major role in nutrients dynamics and hydrochemistry of Kabar Tal wetland.

ACKNOWLEDGEMENTS

The authors would like to thank Department of Environmental science, Central University of South Bihar, Gaya. Dr R. K. Ranjan would like to thank the Principal Chief Conservator of Forests, Govt. of Bihar and Divisional Forest Officer, Begusarai, Bihar for granting permission to conduct sampling. The authors would also like to thank Dr Das Ambika Bharti, Department of Psychological Sciences, CUSB, Gaya and Dr Ram Sagar, Department of Botany, BHU, Varanasi; for assisting in multivariate statistical analysis. The authors would also like to thank two anonymous reviewers for their critical comments which have greatly improved the manuscript. The study is funded by SERB, Department of Science and technology, Government of India (Grant no. SR/FTP/ES-01/2014).

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Adebisi, A. A. 1981 The physico-chemical hydrology of a tropical seasonal river-upper Ogun river. Hydrobiologia 79 (2), 157–165.

Ambastha, K., Hussain, S. A. & Badola, R. 2007 Social and economic considerations in conserving wetlands of indo-gangetic plains: a case study of Kabartal wetland, India. The Environmentalist 27 (2), 261–273.

Angadi, S. B., Shiddamallayya, N. & Patil, P. C. 2005 Limnological studies of Papnash pond, Bidar (Karnataka). Journal of Environmental Biology 26 (2), 213–216.

Anshumali & Ramanathan, A. L. 2007 Seasonal variation in the major ion chemistry of Pando Lake, Mandi District, Himachal Pradesh, India. Applied Geochemistry 22, 1736–1747.

APHA 2012 Standard Methods for the Examination of Water and Wastewater, 22nd edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA.

Bandela, N. N., Vaidya, D. P., Lomte, V. S. & Shivanikar, S. V. 1999 The distribution pattern of phosphate and nitrogen forms and their interrelationships in Barul Dam water. Pollution Research 18 (4), 411–414.

Cai, W. J., Guo, X., Chen, C. T., Dai, M., Zhang, L., Zhai, W., Lohrenz, S. E., Yin, K., Harrison, P. J. & Wang, Y. A. 2007 A comparative overview of weathering intensity and HCO3-flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Continental Shelf Research 28 (12), 1538–1549.

Cloern, J. E. 2001 Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210, 223–253.

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C. & Likens, G. E. 2009 Controlling eutrophication: nitrogen and phosphorus. Science 323 (5917), 1014–1015.

Dash, S. & Kalamhad, A. S. 2021 Hydrochemical dynamics of water quality for irrigation use and introducing a new water quality index incorporating multivariate statistics. Environmental Earth Sciences 80 (3), 1–21.

Dash, S., Borah, S. S. & Kalamhad, A. 2018 Monitoring and assessment of Deepor Beel water quality using multivariate statistical tools. Water Practice & Technology 13 (4), 893–908.

Desai, P. V., Godase, S. J. & Halkar, S. G. 1995 Physico-chemical characteristics of Khandepar river, Goa (India). Pollution Research 14 (4), 447–454.

Dey, S. & Dey, M. 2015 Deterioration and degradation of aquatic systems due to brick kiln industries-a study in Cachar District, Assam. Current World Environment 10 (2), 467.

Dijkstra, Y. M., Chant, R. J. & Reinfelder, J. R. 2000 Controlling seasonal phytoplankton dynamics in the delaware river estuary: an idealized model study. Estuaries and Coasts 42 (7), 1839–1857.

D’Sousa, S. N., Gupta, R. S., Sanzgiri, S. & Rajagopal, M. D. 1981 Studies on nutrients of Mandovi and Zuari river systems [India]. Indian Journal of Marine Sciences 10 (4), 314–321.

Edoreh, J. A., Inegbenosun, C. U., Elimhingbovo, I. O. & Imoobe, T. O. T. 2019 Spatial and temporal variation in physico-chemical parameters at Ugbevwe Pond, Oghara, Delta State. Tropical Freshwater Biology 28 (2), 141–157.

Garg, R. K., Saksena, D. N. & Rao, R. J. 2006 Assessment of physico-chemical water quality of Harsi Reservoir, district Gwalior, Madhya Pradesh. Journal of Ecophysiology and Occupational Health 6 (1), 33–40.

Ghosh, A. K., Bose, N., Singh, K. R. & Sinha, R. K. 2004 Study of spatio-temporal changes in the wetlands of north Bihar through remote sensing. In: Proceeding of the 13th ISCO, July 2004, Brisbane.

Gibbs, R. J. 1970 Mechanisms controlling world water chemistry. Science 170 (3962), 1088–1090.

Grasby, S. E., Hutcheson, I. & Krouse, H. R. 1997 Application of the stable isotope composition of SO4 to tracing anomalous TDS in Nose Creek, southern Alberta, Canada. Applied Geochemistry 12 (5), 567–575.

Gupta, T. & Paul, M. 2013 The seasonal variation in ionic composition of pond water of Lumding, Assam, India. Current World Environment 8 (4), 127–131.

Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. & Fernandez, L. 2000 Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by...
principal component analysis. Water Research 34 (3), 807–816.

Inayathulla, M. & Paul, J. M. 2015 Assessment of surface water chemistry of Jakkur Lake, Bangalore, Karnataka, India. International Journal of Scientific & Engineering Research 5, 302–305.

Irfan, S. & Pasha, F. 2015 Physicochemical properties of surface water and phosphorus uptake by two wetland macrophytes. Indian Journal of Biological Studies and Research 2 (2), 164–173.

Jhingran, V. G. 1975 Fish and Fisheries of India. Hindustan Publishing Corporation, New Delhi, India, p. 954.

Kaushik, H., Ranjan, R., Ahmad, R., Kumar, A., Kumar, N. & Ranjan, R. K. 2021 Assessment of trace metal contamination in the core sediment of Ramsar wetland (Kabar Tal), Begusarai, Bihar (India). Environmental Science and Pollution Research 1–16. https://doi.org/10.1007/s11356-020-11775-z.

Kumar, S., Adiyecha, R. & Patel, T. 2014 Seasonal variation in the water quality of lahru pond located in Himachal Pradesh. International Journal of Engineering Research and Applications 4 (3), 507–513.

Langmuir, D. 1997 Aqueous Environmental Geochemistry. Prentice Hall, Upper Saddle River, NJ, USA, p. 599.

Ling, T. Y., Gerunis, N., Soo, C. L., Nyanti, L., Sim, S. F. & Grinang, J. 2017 Seasonal changes and spatial variation in water quality of a large young tropical reservoir and its downstream river. Journal of Chemistry 2017, 1–16.

Marra, J. & Heinemann, K. 1982 Photosynthesis response by phytoplankton to sunlight variability. Limnology and Oceanography 27 (6), 1141–1153.

Mazlum, N., Özer, A. & Mazlum, S. 1999 Interpretation of water quality data by principal components analysis. Turkish Journal of Engineering and Environmental Sciences 23 (1), 19–26.

Munawar, M. 1970 Limnological studies on freshwater ponds of Hyderabad-India I. The Biotope. Hydrobiologia 35, 127–127.

Piper, A. M. 1944 A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union 25, 914–928.

Prabhahar, C., Saleshrani, K., Tharmaraj, K. & Kumar, V. M. 2012 Seasonal variation in hydrological parameters of Krishnagiri Dam, Krishnagiri district, Tamil Nadu, India. International Journal of Pharmaceutical and Biological Archives 3 (1), 134–139.

Praus, P. 2007 Urban water quality evaluation using multivariate analysis. Acta Montanistica Slovaca 12 (2), 130–158.

Rajasegar, M. 2005 Physico-chemical characteristics of the Vellar estuary in relation to shrimp farming. Journal of Environmental Biology 24 (1), 95–101.

Ramsar 2020 India Designates two Wetland Biodiversity Hotspots. 16 October 2020. Available from: https://www.ramsar.org/news/india-designates-two-wetland-biodiversity-hotspots

Ranjan, R. K. & Kumari, P. 2018 Impact of land use and land cover changes on nutrients concentration in and around Kabar tal wetland, Begusarai (Bihar), India. In: Geospatial Applications for Natural Resource Management (C. K. Singh, ed.). CRC Press, Boca Raton, FL, USA, pp. 243–250.

Ranjan, R. K., Sinha, A. K., Gupta, D., Sappal, S. M., Kumar, A. & Ramanathan, A. L. 2016 Sedimentary geochemistry of Kabar Tal wetland, Begusarai, Bihar, India. Journal of Applied Geochemistry 18 (4), 414–429.

Ranjan, R., Srivastava, S. K. & Ramanathan, A. L. 2017 An assessment of the hydrogeochemistry of two wetlands located in Bihar State in the subtropical climatic zone of India. Environmental Earth Sciences 76 (1), 16.

Ravindra, K., Ameena, M., Monika, R. & Kaushik, A. 2003 Seasonal variations in physico-chemical characteristics of river Yamuna in haryana and its ecological best-designated use. Journal of Environmental Monitoring 5 (3), 419–426.

Ray, J. G., Santhakumaran, P. & Kookal, S. 2021 Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environment, Development and Sustainability 23, 259–290.

Regina, B. & Nabi, B. 2003 Physico-chemical spectrum of the Bhavani River water collected from the Kalingarayan Dam, Tamilnadu. Indian J Environment & Ecoplanning 7, 635.

Richards, L. A. 1954 Diagnosis and Improvement of Saline and Alkali Soils. Handbook No. 60. US Department of Agriculture, Washington, DC, USA, p. 160.

Sánchez-Carrillo, S., Ramesh Reddy, K., Inglett, K. S., Álvarez-Cobelas, M. & Sánchez-Andrés, R. 2014 Biogeochemical indicators of nutrient enrichments in wetlands: the microbial response as a sensitive indicator of wetland eutrophication. In: Ansari, A. & Gill, S. (eds) Eutrophication: Causes, Consequences and Control. Springer, Dordrecht, The Netherlands, pp. 203–222.

Sarwar, S. G. & Majid, I. 1997 Abiotic features and diatom population of Wular lake, Kashmir. Ecology Environment and Conservation 3 (3,4), 121–127.

Shah, J. A., Pandit, A. K. & Shah, G. M. 2009 Physico-chemical limnology of a shallow lake in the floodplains of western Himalaya from last four decades: present status. Environmental Systems Research 8 (1), 9.

Shardendu, S., Sayantan, D., Sharma, D. & Irfan, S. 2012 Luxury uptake and removal of phosphorus from water column by representative aquatic plants and its implication for wetland management. ISRN Soil Science 2012. Article ID 516947; pp. 1–9.

Siddiqui, S. Z. & Ramakrishna 2002 Zooplankton. In: Fauna of Kabar Lake, Wetland Ecosystem Series. Ecosystem Series 4. Zoological Survey of India, Kolkata, India, Vol. 4, pp. 47–56.

Singh, S. K. & Deepika 2017 Assessment of water quality parameters of Bhalswa Lake in New Delhi. International Journal of Environmental Engineering 9 (1), 52–69.

Singh, J. P. & Roy, S. P. 1990 Investigations on the limnological profile of the Karwar lake (Begusarai, Bihar). In: Recent
Singh, M. & Sinha, R. 2019 Evaluating dynamic hydrological connectivity of a floodplain wetland in North Bihar, India using geostatistical methods. Science of the Total Environment 651, 2473–2488.

Singh, K. P., Malik, A., Mohan, D. & Sinha, S. 2004 Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research 38 (18), 3980–3992.

Singh, C. K., Rina, K., Singh, R. P., Shashtri, S., Kamal, V. & Mukherjee, S. 2003 Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Bulletin of Environmental Contamination and Toxicology 86 (2), 152–158.

Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P. & Mallick, J. 2017 Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration 175, 59–71.

Singh, A. K., Sathya, M., Verma, S. & Jayakumar, S. 2020 Spatiotemporal variation of water quality index in Kanwar wetland, Begusarai, India. Sustainable Water Resources Management 6 (44), 1–8.

Suhani, I., Vaish, B., Singh, P. & Singh, R. P. 2020 Restoration, construction, and conservation of degrading wetlands: a step toward sustainable management practices. In: Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment (A. K. Upadhyay, R. Singh & D. P. Singh, eds). Springer, Singapore, pp. 1–16.

Tipper, E. T., Bickle, M. J., Galy, A., West, A. J., Pomies, C. & Chapman, H. J. 2006 The short term climatic sensitivity of carbonate and silicate weathering fluxes: insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta 70 (11), 2737–2754.

Trivedy, R. K. & Goel, P. K. 1984 Chemical and Biological Methods for Water Pollution Studies. Environmental Publications, Karad, India.

Tulsankar, S. S., Cole, A. J., Gagnon, M. M. & Fotedar, R. 2020 Effects of seasonal variations and pond age on trace elements and their correlations with plankton productivity in commercial freshwater crayfish (cherax cainii austin, 2002) earthen ponds. Aquaculture Research 51 (5), 1913–1922.

UdhayanKumar, J., Natarajan, D., Srinivasan, K., Mohanasundari, C. & Balasubramani, M. 2006 Physico-chemical and bacteriological analysis of water from Namakkal and Erode districts, Tamil Nadu, India. Pollution Research 25 (3), 495–498.

Venkatasubramani, R. & Meenambal, T. 2007 Study on subsurface water quality in Mettupalayam taluk of Coimbatore district, Tamil Nadu. Nature, Environment and Pollution Technology 6 (2), 307–310.

Vrzel, J., Vukovic-Gacic, B., Kolarevic, S., Gacic, Z., Kracun-Kolarevic, M., Kostic, J. & Ogrinc, N. 2016 Determination of the sources of nitrate and the microbiological sources of pollution in the Sava River Basin. Science of the Total Environment 573, 1460–1471.

Weigelhofer, G., Hein, T. & Bondar-Kunze, E. 2008 Phosphorus and nitrogen dynamics in riverine systems: human impacts and management options. In: Riverine Ecosystem Management. Aquatic Ecology Series, Vol 8 (S. Schmutz & J. Sendzimir, eds). Springer, Cham. https://doi.org/10.1007/978-3-319-73250-3_10

Weisse, T. & Stadler, P. 2006 Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol Ober. 51 (4), 1708–1715.

Weng, L., Fest, E. P., Fillius, J., Temminghoff, E. J. & Van Riemsdijk, W. H. 2002 Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil. Environmental Science & Technology 36 (8), 1699–1704.

White, P. J. & Brown, P. H. 2010 Plant nutrition for sustainable development and global health. Annals of Botany 105 (7), 1073–1080.

WISA 2016 Wetlands International South Asia Annual Report (2015–16). New Delhi, India. Available from: http://south-asia.wetlands.org

Wright, R. 1982 Seasonal variations in water quality of a West African river (R. jorg in Sierra Leone). Revenue Hydrobiological Tropic 15 (3), 193–199.

Wu, Y., Campbell, D. A. & Gao, K. 2017 Short-term elevated CO2 exposure stimulated photochemical performance of a coastal marine diatom. Marine Environmental Research 125, 42–48.

Yadav, P., Yadav, V. K., Yadav, A. K. & Khare, P. K. 2015 Physico-chemical characteristics of a fresh water pond of Orai, UP, Central India. Octa Journal of Biosciences 1 (2), 177–184.

Yang, X. E., Wu, X., Hao, H. L. & He, Z. L. 2008 Mechanisms and assessment of water eutrophication. Journal of Zhejiang University Science B 9 (3), 197–209.

Zhao, S. C. 2004 Mechanisms of lake eutrophication and technologies for controlling in China. Advance in Earth Sciences 19 (1), 138–140.

First received 14 November 2020; accepted in revised form 16 March 2021. Available online 24 March 2021