AN ALPERN TOWER INDEPENDENT OF A GIVEN PARTITION

JAMES T. CAMPBELL, JARED T. COLLINS, STEVEN KALIKOW, RAENA KING, AND RANDALL MCCUTCHEON

Abstract. Given a measure-preserving transformation T of a probability space (X, B, μ) and a finite measurable partition P of X, we show how to construct an Alpern tower of any height whose base is independent of the partition P. That is, given $N \in \mathbb{N}$, there exists a Rohlin tower of height N, with base B and error set E, so that B is independent of P, and $T(E) \subset B$.

2010 Mathematics Subject Classification: 28D05, 37M25, 60A10

Keywords: Rohlin tower, Alpern tower, independent sets, measure-preserving transformation, probability space.

1. Introduction and Statement of Results

It has long been known that, given an ergodic invertible probability measure preserving system, a Rohlin tower may be constructed with base independent of a given partition of the underlying space ([Roh52], [Roh65]). In [Alp79], meanwhile, S. Alpern proved a 'multiple' Rohlin tower theorem (see [EP97] for an easy proof) whose full statement we will not give, but which has the following corollary of interest:

Theorem 1.1. Let $N \in \mathbb{N}$ and $\epsilon > 0$ be given. For any ergodic invertible measure-preserving transformation T of a Lebesgue probability space (X, \mathcal{B}, μ), there exists a Rohlin tower of height N with base B and error set E with $\mu(E) < \epsilon$, so that $T(E) \subset B$.

A Rohlin tower of height N with base B and error set E is characterized by the collection of sets $\{B, TB, \ldots, T^{N-1}B, E\}$ forming a partition of X. If in addition $T(E) \subset B$, we shall say Alpern Tower. It is our goal to show that for ergodic transformations on (X, \mathcal{B}, μ), given a finite measurable partition P of X, an Alpern tower may be constructed with base B independent of P. Precisely:

Theorem 1. Let (X, \mathcal{B}, μ) be a Lebesgue probability space, and suppose P is a finite measurable partition of X. For any ergodic invertible measure-preserving transformation T of X, $N \in \mathbb{N}$, there exists a Rohlin tower of height N with base B and error set E such that $T(E) \subset B$ and B is independent of P.

We do not specify the size of the error set; but the process of constructing our tower makes it clear that the error set may be made arbitrarily small.

2. Proof of main result

For the remainder of the paper, (X, \mathcal{B}, μ) will be a fixed Lebesgue probability space and $T : X \to X$ will be an invertible ergodic measure-preserving transformation on
X. All mentioned sets will be measurable and we will adopt a cavalier attitude toward null sets. In particular, “partition” will typically mean “measurable partition modulo null sets”.

Definition 2.1. By a tower over B we will mean a set $B \subset X$, called the base, and a countable partition $B = B_1 \cup B_2 \cup \cdots$, together with their images $T^i B_j$, $0 \leq i < j$, such that the family $\{T^i B_j : 0 \leq i < j\}$ consists in pairwise disjoint sets. If this family partitions X, we will say that the tower is exhaustive.

If a tower over B is exhaustive and $B = B_N \cup B_{N+1}$, we shall speak of an exhaustive Alpern tower of height $\{N, N+1\}$, as in such a case, $\{B, TB, \ldots, T^{N-1}B, E = T^N B_{N+1}\}$ partitions X with $T(E) \subset B$. So we may re-phrase Theorem 1 as:

Theorem 1. Let (X, B, μ) be a Lebesgue probability space and suppose \mathbb{P} is a finite measurable partition of X. For any ergodic invertible measure-preserving transformation T of X, $N \in \mathbb{N}$, one may find an exhaustive Alpern tower of height $\{N, N+1\}$ having base independent of \mathbb{P}.

We require a lemma (and a corollary).

Lemma 2.2. Let $M \in \mathbb{N}$ and let $\mathbb{P} = \{P_1, \ldots, P_t\}$ be a partition of X with $\mu(P_i) > 0$ for each i. There exists a set S of positive measure so that if $x \in S$ with first return $n(x) = n$, say, then $|\{x, Tx, \ldots, T^{n-1}x\} \cap P_i| \geq M, 1 \leq i \leq t$.

Proof. For almost every x we may find $K(x)$ so that for each i between 1 and t we have $|\{x, Tx, \ldots, T^{K(x)-1}x\} \cap P_i| \geq M$. Since almost all of X is the countable union (over $k \in \mathbb{N}$) of $\{x : K(x) = k\}$, there exists some fixed K so that the set $A = \{x : K(x) \leq K\}$ has positive measure. If $C \subset A$ has very small measure $\mu(C) < 1/K$ then the average first-return time of $x \in C$ to C is $\frac{1}{\mu(C)} > K$, so we can find $S \subset C$ with $\mu(S) > 0$ so that $S, TS, \ldots, T^{K-1}S$ are pairwise disjoint.

Corollary 2.3. Let $M \in \mathbb{N}$ and $\mathbb{P} = \{P_1, \ldots, P_t\}$ be a partition of X with $\mu(P_i) > 0$ for each i. There is a tower having base $S = S_1M \cup S_2M+1 \cup \cdots$ where for each $x \in S_i$, $|\{x, Tx, \ldots, T^{r-1}x\} \cap P_i| \geq M$ for all $1 \leq i \leq t$.

Proof. Let S, K be as in Lemma 2.2 and choose any $k \geq K$.

We turn now to the proof of Theorem 1. Fix a partition $\mathbb{P} = \{P_1, \ldots, P_t\}$, an arbitrary natural number N, and $\epsilon > 0$. Set $m_i = \mu(P_i)$, and assume (without loss of generality) that $0 < m_1 \leq m_2 \leq \cdots \leq m_t$. Select and fix $M > \frac{2N+1}{m_1}$. Let S be as in Corollary 2.3 for this M; hence $S = S_1M \cup S_2M+1 \cup \cdots$ (Some S_i may be empty, of course.) For each non-empty S_R, partition S_R by \mathbb{P}-name of length R. (Recall that x, y in S_R have the same \mathbb{P}-name of length R if T^ix and T^iy lie in the same cell of \mathbb{P} for $0 \leq i < R$.) Let C be the base of one of the resulting columns; hence, every $x \in C$ has the same \mathbb{P}-name of length R (for some $R \geq tM$), and the length R orbit of each $x \in C$ meets each P_i at least M times.

Partition C into pieces $C^{(1)}, C^{(2)}, \ldots, C^{(t)}$ whose measures will be determined later. Then partition each $C^{(i)}$ into N equal measure pieces, $C^{(i)} = C^{(i)}_1 \cup C^{(i)}_2 \cup \cdots \cup C^{(i)}_N$.

Now we fix (R, C) and focus our attention on the height R column over a single $C^{(i)}$ and its height R subcolumns over $C^{(i)}_j$, $1 \leq j \leq N$. We refer to the sets $T^rC^{(i)}_j$, $0 \leq r < R$, as levels and to the sets $T^rC^{(i)}_j$ as rungs. We are going to build a portion
of B by carefully selecting some rungs from the subcolumns under consideration. As we move through the various subcolumns, we need to have gaps of length N or $N+1$ between selections. Now to specifics. We want to have our $C^{(i)}$-selections form a “staircase” of height N starting at level $N^2 - N$. That is, at height $(N-1)N$, the rung over $C_1^{(i)}$ is the only one selected; at height $N(N-1) + 1$, the rung over $C_2^{(i)}$ is the only one selected; etc., so that at height $N^2 - 1$, the rung over $C_N^{(i)}$ is the only one selected.

This is easy to accomplish. First, we select each base rung $C_j^{(i)}$, $j = 1, 2, \ldots, N$ (i.e., the rungs in the zeroth level). Over $C_1^{(i)}$, we then select $N - 1$ additional rungs with gaps of length N; that is, we select the rungs at heights N, $2N$, \ldots, $(N-1)N$. Over $C_2^{(i)}$ we select $N - 2$ rungs with gap N, then a rung with gap $N+1$. We continue in this fashion, choosing one less gap of length N and one more of length $N+1$ in each subsequent subcolumn. In the last subcolumn (that over $C_N^{(i)}$) we are thus choosing rungs with gaps of length $N+1$ a total of $N-1$ times. See the left side of Figure 1 for the case $N = 4$.

Now we perform a similar procedure moving down from the top, so as to obtain a staircase starting at height $R - (N^2 - 1)$. Note that there are either N or $N-1$ unselected rungs at the top of each subcolumn. See the right side of Figure 1.

Figure 1. Bottom, Top of Tower for $N = 4$
following rung. As we want to match stride with the staircase already selected at the top, the total number of levels skipped in the middle section will be constrained to a certain residue class modulo \(N \), and as we want the selected rungs to form a portion of an Alpern tower of height \(\{ N, N + 1 \} \), we cannot skip any two levels with fewer than \(N \) levels between them.

Some terminology: an appearance of \(P_j \) in \(C^{(i)} \) is just a level of \(C^{(i)} \) that is contained in \(P_j \). A selection of \(P_j \) is just a selected rung in a subcolumn of \(C^{(i)} \) that is contained in \(P_j \). The net skips of \(P_j \) in the tower over \(C^{(i)} \) is defined as

\[
S_j(C^{(i)}) = (\# \text{ of appearances of } P_j) - (\# \text{ of selections of } P_j).
\]

For example, looking at Figure 1, one sees that 4 zeroth level rungs are selected. So if the zeroth level belongs to \(P_j \), the zeroth level contribution to \(S_j(C^{(i)}) \) is \(-3\) (one appearance and 4 selections).

Let \(\delta = 2(N - 1)(N - 2) \) and choose \(\gamma \) with

\[
\frac{\delta}{m_1} + N > \gamma \geq \frac{\delta}{m_1} \quad \text{and} \quad (t - 1)\delta + \gamma \equiv R \pmod{N}.
\]

Over \(C^{(i)} \), we skip a quantity of “middle” levels belonging to each \(P_j \) (for \(j \neq i \)) sufficient to ensure that \(S_j(C^{(i)}) = \delta \) for \(j \neq i \) and \(S_i(C^{(i)}) = \gamma \). (Note that \(P_j \) cannot have been skipped more than \(\delta \) times in the outer rungs.) This is not delicate; one can just enact the selection greedily. That is to say, travel up the tower, beginning at level \(N^2 \), skipping rungs that belong to cells requiring additional skips whenever there’s been no too-recent skip. Since each \(P_j \) appears at least \(M > \frac{3N^3}{m_1} \) times, and we need only \(\gamma + (t - 1)\delta \leq \frac{2N^2}{m_1} \) net skips, we’ll find all the skips we need.

We have not specified the relative masses of the bases of the columns \(C^{(i)} \). Set

\[
b_j = \frac{\mu(P_j)(\gamma + (t - 1)\delta) - \delta}{\gamma - \delta}
\]

and put \(\mu(C^{(i)}) = b_i\mu(C) \), \(1 \leq i \leq t \). Our choice of \(\gamma \) ensures that \(b_i \geq 0 \) for each \(i \), and one easily checks that \(\sum b_i = 1 \), so this is coherent.

Let \(B_C \) be the union of the rungs selected from the columns over \(C \) (this includes each of the rungs selected from each of the \(N \) subcolumns over \(C^{(i)} \), \(1 \leq i \leq t \)) and put \(B = \bigcup_C B_C \). (Here \(C \) runs over the bases of the columns corresponding to every \(\mathcal{P} \)-name of length \(R \) for every \(R \geq tM \).) It is clear that \(B \) forms the base of an Alpern tower of height \(\{ N, N + 1 \} \). It remains to show that \(B \) is independent of \(\mathcal{P} \), which we will do by constructing a set \(A \), disjoint from \(B \), such that both \(A \) and \(A \cup B \) can be shown to be independent of \(\mathcal{P} \).

Here is how \(A \) is constructed. Consider again the tower over \(C^{(i)} \). This tower had \(R \) levels and \(RN \) rungs, some of which were selected for the base \(B \). We now choose \(\gamma + (t - 1)\delta \) additional rungs for the set \(A \). For each \(j \neq i \), \(\delta \) of these rungs should be contained in \(P_j \), with the remaining \(\gamma \) contained in \(P_i \). (We don’t worry about gaps and whatnot; just choose any such collection of rungs disjoint from the family of \(B \) selections.) Denote the union of the these additional rungs (in all of the columns over \(C^{(i)} \), \(1 \leq i \leq t \)) by \(A_C \). Finally, put \(A = \bigcup_C A_C \).
That $A \cup B$ is independent of \mathbb{P} is a consequence of the fact that for each $C^{(i)}$, the number appearances of P_j in the column over $C^{(i)}$ is precisely the number of B-selections from P_j plus the number of A-selections from P_j. Accordingly, the relative masses of the cells of \mathbb{P} restricted to $A \cup B$ are equal to the relative frequencies of the appearances of the cells of \mathbb{P} in the column over $C^{(i)}$. Therefore, since the proportion of the column that is selected for $A \cup B$ is independent of $C^{(i)}$ (in fact is always equal to $\frac{1}{N}$), and since the columns over the various $C^{(i)}$ exhaust X, $A \cup B$ is independent of \mathbb{P} (in fact $\mu(P_j \cap (A \cup B)) = \frac{1}{N}\mu(P_j)$, $1 \leq j \leq t$).

That A is independent of \mathbb{P}, meanwhile, is a consequence of equation (2.1). Fixing C and recalling that $b_i = \frac{\mu(C^{(i)})}{\mu(C)}$, that there were δP_j-rungs in the column over $C^{(i)}$ selected for A, $i \neq j$, and that there were γP_j-rungs in the column over $C^{(i)}$ selected for A, the relative mass of P_i among the A-selections in the tower over C is

$$r_i = \frac{b_i \gamma + (1 - b_i) \delta}{\gamma + (t - 1) \delta}.$$

But, solving for $\mu(P_i)$ in equation (2.1), one gets that

$$\mu(P_i) = \frac{b_i \gamma + (1 - b_i) \delta}{\gamma + (t - 1) \delta}$$

as well. So the intersection of A with the column over C is independent of \mathbb{P}. That this is true for every C gives independence of A from \mathbb{P} simpliciter. ■

References

[Alp79] Steve Alpern, Generic properties of measure preserving homeomorphisms, Ergodic Theory, Springer Lecture Notes in Mathematics 729 (1979), 16–27.

[EP97] S. J. Eigen and V. S. Prasad, Multiple Rokhlin tower theorem: a simple proof, New York Journal of Mathematics Proceedings of the New York Journal of Mathematics Conference, vol. 3A (1997), 11–14, http://nyjm.albany.edu:800/j/1997/3A.11.html.

[Roh52] V.A. Rohlin, On the fundamental ideas of measure theory, American Mathematical Society Translations (1952), no. 71.

[Roh65] ———, Generators in ergodic theory, II, Vesnik Leningrad University 20 (1965), 68–72.

(J. T. Campbell) Dept. Math. Sci., Dunn Hall 373, University of Memphis, Memphis, TN 38152

E-mail address: jcampbll@memphis.edu

(J. T. Collins) Dept. Math. and Comp. Sci., Freed-Hardeman University, Henderson TN 38340

E-mail address: jtcollins@fhu.edu

(S. Kalikow) Dept. Math. Sci., Dunn Hall 373, University of Memphis, Memphis, TN 38152

E-mail address: skalikow@memphis.edu

(R. King) Dept. Math. and Comp. Sci, Christian Bros. University, Memphis, TN, 38104

E-mail address: rking2@cbu.edu

(R. McCutcheon) Dept. Math. Sci., Dunn Hall 373, University of Memphis, Memphis, TN 38152

E-mail address: rmccctchn@memphis.edu