Phytochemistry of *Allium cepa* L. (Onion): Its Nutritional and Pharmacological Importance

Nida Mahmood¹, Muazzam Ali Muazzam¹, Muhammad Ahmad¹, Shabbir Hussain¹*, Warda Javed¹

¹Department of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan

*dr.shabbirhussain@lgu.edu.pk; shabchem786@gmail.com

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: https://doi.org/10.32350/sir.53.04

Abstract

The present studies were conducted to review the phytochemical composition, nutritional and pharmacological values of onion. Attempts have been made to compile the findings of 75 articles into a single manuscript. Onion is cultivated all over the world. The onion bulbs are comprised of polysaccharides including peptides, fructans, flavonoids (mostly quercetin), saccharose and organosulfur compounds having salutary effects on human health. The onion in the diet gives us a positive response in nutritional manner. The nutritional contents of onion bulb are crude oil, vitamin E, sodium, potassium, and zinc. The onion bulb has the potential to reduce the problem of stomach cancer, osteoporosis, and brain cancer in human beings. In addition, onion is antidiabetic, anti-inflammatory, anti-scar, antispasmodic, antiseptic, anti-genotoxic, anti-mutagenic, diuretic, anti-parasitic, antimicrobial, antipyretic, and Analgesic.

Key words: Onion, Phytochemicals, Nutrients, Disease treatment,

1. Introduction
Onion is cultivated commercially almost everywhere in the world [1]. Out of fifteen vegetables reported by Food & Agriculture Organization of United Nations, onion falls second solely to tomato in terms of total annual world production [2]. It is an agricultural crop of short intervals [3] grown at low liberties [4]. Onion is used throughout the year in medicines, salads and is cooked with many vegetables. It also finds applications in various types of processed foods such as pickles. The human use of onions is as old as the Neolithic period [5]. China and India are the first and second largest producers of onions, respectively. The United States harvests about 125,000 acres, producing 6.75 billion pounds each year. The four largest onion producing regions of United States are Washington, Idaho-Eastern Oregon, California, and West-Central Oregon. In Pakistan, onion is commercially grown on an area of 131.4 thousand hectares and the annual production is around 1.8 million tones. The top ten onion producing districts of Pakistan are Chaghi, Hyderabad, Sanghar, Swat, Kharan, Kalat, Mirpurkhas, Nawabshah, Nasirabad, and Dir contributing more than 59% of the total production [6].

The onion was reported to be grown during the rainy seasons in the river Afram basin of the Eastern region of Ghana because of the availability of irrigation water and rainfall. However due to prevalence of onion thrips and fungal diseases during those days, onion was mainly grown after mid-June to mid-July. About 94.6% of the farmers grew Malavi (a local onion cultivar) only which was susceptible to the onion thrips as well as basal fusarium rot [7]. Onion comprises of more than 780 morphologically described species with great diversity. Onion’s chromosome number is 16 (2n). It (Allium cepa L.) belongs to Genus Allium, Order Liliaceae, Subclass Liliales, Division Liliopodia, Super division Spermatophyta, Subkingdom Tracheobionta and Kingdom Plantae [8]. China is the world's leading producer of onion (contributing 31.43 percent to the total production), according to FAO reports based on the 2000-2004 average production. Other eight major onion producing countries are India (10.22%), Turkey (3.83%), Pakistan (2.97%), Russia (2.84%), Iran (2.80%), Japan (2.35%), Brazil (2.22%), and Spain (1.95%) [9-12].
Keeping in view the great nutritional and medicinal value of this plant, this paper overviews phytochemical composition, nutritional and pharmacological value of onion.

2. Phytochemical Composition

Onion is an important source of nutritional contents e.g., flavonoids. It is especially rich in three important phytochemicals (flavonoids, organosulfur compounds and fructans). Such substances are known for their positive health effects. Onions are the main suppliers of flavonoids and organosulfur compounds which are potent antioxidants. As regards the antioxidant property contributing parameters, the concentration of ascorbic acid was found in the range of 1.18 to 3.89 mg/100 g of fresh weight. Across all cultures, ascorbic acid concentration has been greatly decreased. In the wild onion varieties, ascorbic acid content was usually between 5.0 and 10.0 mg/100 g fresh weight [13]. Organosulfur constituents of onions are mainly comprised of four diallyl sulfides: diallyltetrasulfide (DTTS), diallylmonosulfide (DMS), diallyltrisulfide (DTS) and diallyldisulfide (DDS). Di- and trisulfides were the principal compounds extracted by steam distillation of volatile fraction of onion. The primary sulfur-containing components in onions are Salk(en)yl-L-cysteine sulfoxides (ACSOs) e.g., alliin; they act as biosynthetic intermediates for ACSOs and also have a role as storage peptides. Volatile compounds including allicin and lipid-soluble sulfur compounds e.g. diallyl disulfide (DADS) and diallyl sulfide (DAS) originate from these metabolic pathways in the vegetables [14]. The specific smell and taste characteristics of the onion oil are owed to the presence of these compounds [15]. In addition to these sulfur containing compounds and flavonoids in onion, there are several other ingredients including lectins (highly abundant), prostaglandins, pectin, fructan, adenosine, biotin, phospholipids, fatty acids, glycolipids, nicotinic acid and vitamins B1, B2, B6, C & E. Its biological effects have been studied for a number of decades [16]. Besides, the presence of some steroidal sapogenins and saponins has also been reported; these components play an important role in pharmacological and biological activities i.e., antibacterial, antithrombotic, anti-inflammatory, antitumor, antifungal and hypocholesterolemic properties [16]. The presence of volatile S-
compounds owes the pungent flavor to the onion. Onions are known as an excellent source of flavonoids which are the part of Flavonolis family of polyphenols. A flavonoid subclass which includes quercetin (Figure 1) is considered as a leading and prominent nutritional flavonoid of onions. Other flavonols like quercetin, such as isorhamnetin and kaempferol, were also found in onions [15, 17, 18]. The secondary metabolites (phenolics) present in onions have an antioxidant effect and consist of aromatic hydroxylated rings [19]. The phenolics are very important antioxidant contents of plants [20].

![Figure 1: Structure of Quercetin](image)

Other sources of phytochemicals in onion bulbs are the fructans. The fructans mainly contain fructooligosaccharides. Mainly, they are nystose, inulin, fructofuranosynystose and kestose. The health benefits of these carbohydrates have been recorded extensively in recent years because of their prebiotic effect [21].

It has been reported that onion samples exhibit the presence of 10 various organic acids. The results were in agreement with those found in cv Recas onions (Table 1) [22].

Table 1: Ten organic acids identified in onion

No	Acid	Quantity	No	Acid	Quantity
1	Myristic acid	0.004 g	6	Linoleic acid	0.013 g
2	Palmitic acid	0.034 g	7	Linolenic acid	0.004 g
3	Stearic acid	0.004 g	8	Monounsaturated acids	0.013 g
	Saturated acids	0.043 g		Polyunsaturated acids	0.017 g
---	----------------	---------	---	-----------------------	---------
5	Oleic acid	0.013 g	10	Glutamic acid	0.258 g

Landraces of the onions were also analyzed for their unique composition of phenols. The most abundant phenol for all landraces was gallic acid, whose amount varies in Febbrarese and Giugnese from 55.66 to 64.90μg/g dw respectively. From a nutritional standpoint, quercetin has an important role among identified phenols. Quercetin is the aglycone component of many other flavonoid glycosides e.g. quercitrin and rutin present in citrus fruits, buckwheat and onions [23] are bases of proteins and sugars. The fructo-oligosaccharides, fructose, sucrose and glucose are the principal non-structural sugars in onion bulb tissue. Onions bulbs contain remarkable mineral composition, particularly potassium and phosphorus [24, 25]. Richest minerals which are present in the ‘Red Amposta’ are phosphorus (107.33 mg/100g DW), potassium (136.82 mg/100g DW), soluble protein (3.78%), water (86%), sodium (9.11 mg/100g DW), magnesium (3.17 mg/100g DW), calcium (60.47 mg/100g DW), and soluble sugar (4.72%) [26].

3. Nutritional Value

In fact, onion plants have many health benefits due to their nutritious content. Crude fiber in the food products is increasingly recognized as a useful implement for controlling oxidative processes and as a functional ingredient in the food. The availability of crude fiber in the diet is required for digestion and waste disposal [27]. The contraction of the digestive tract's muscle walls is caused by fiber, which counteracts constipation [28].

Allium cepa L has high moisture content. Varieties show the need for adequate protection, as they are susceptible to deterioration. It renders them susceptible to microorganism infection. High content of water allows the body to absorb them, because the body does not need to use any of its own liquids. That means the body needs lesser time and resources to eat, and can assimilate all the nutrients much more easily. So, it places less pressure on the digestive system [29].”
The composition of the mineral elements revealed that calcium and iron are essential for bone development and hemoglobin production respectively. In addition to this, many important health benefits are associated with onion when consumed in raw form in salad or when it is used in the raw form by the direct ingestion of phytochemicals. Onion finds an immense significance in the food industry due to the presence of a number of rich nutritional contents. However, further investigations are needed, ranging from the farmer's field to the treating center, it is necessary to preserve valuable nutritional contents (for human health) by the use of appropriate technologies [30]. In both varieties of *Allium cepa L.*, sodium was also found to be substantially lower than potassium. It has been stated that low sodium diet is helpful in the prevention of high blood pressure and that high potassium has a protective result against excessive intake of sodium. Zinc present in onion plays a significant role in the appropriate functioning of nucleic acid metabolism and reproductive system [31].

Onion bulbs are enriched with vitamin C, dietary fiber and folic acid. Anti-oxidant compounds present in the onion help to fight inflammation. They are enriched with high soluble fibers called fructans. Onion contains low quantity of calcium, iron, folate, magnesium, phosphorus and potassium. These minerals have major effect on human health [32]. Raw onion contain following nutrients:

Carbs: In onion there are about 9-10% carbohydrates in the form of glucose fructose [33].

Fibers: They contain 0.9-2.6% fibers of the total weight of onion. Fructans fibers present in the onion help to feed friendly bacteria in the gut [34].

Proteins: They contain small amount of protein (less than 1 gram).

Vitamins and minerals: Onion contains following vitamins and minerals:

- **Vitamin C:** It is required for our immune function necessary for good health of skin and hairs.
- **Vitamin B(water soluble):** It is necessary for growth and metabolic activities especially during pregnancy.
- **Vitamin B6:** This vitamin help in the formation of RBCs.
- **Potassium & calcium**: This mineral is necessary for proper functioning of heart because it helps in the lowering of blood pressure. Calcium is also present in the onion which helps to strengthen bones [35].

According to the recommended daily allowance (RDA) and adequate intake (AI) values, vitamin C is required 13.11% for males and 15.73% for females, vitamin B-6 is required 11 to 15% (depending on age). Manganese is required 9% for males and 11.5% for females. In different regions of the world onion has different varieties which vary from each other with respect to their contents in terms of vitamins, carbs, fibers present in them [36].

4. **Pharmaceutical Importance**

Onion is rich in many nutritional and pharmaceutical ingredients which are used in treatment of a large number of diseases (Figure 1). Onion can be used in raw form, juice, poultice, powder, liquid extract, syrup and capsules (Table 2).

Table 2: Medicinal applications of onion

Benefit	Action	Component responsible
anti-inflammatory agents	reduce the swelling, pain and symptoms associated with severity	vitamin C and quercetin
Heart issues	Reduce heart disease risk	vitamin B6
diabetes	Reduce the fasting blood glucose levels	Allyl propyl disulfide and chromium
osteoporosis	inhibits the osteoclasts	gamma-L-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide
Antioxidant effect: This is the most well-studied and defined onion flavonoid action for protecting cells and tissues from reactive oxygen species (ROS). ROS generates free radicals, which destroy cells in various organs exogenously [37-39]. Flavonoids like kaempferol and quercetin have also been shown to stabilize free electrons generated by ROS in vitro [40, 41]. The flavonoid hydroxyl structure contributes hydrogen and an electron to peroxyl and hydroxyl to stabilize it, which helps to scavenge ROS [42]. Flavonoids' heterocycles initiate conjugation between a free 3-hydroxyl and aromatic bands, resulting in antioxidant activity [43]. Furthermore, reports show that the number, location, and number of sugar rests all affect antioxidant activity [44]. The antioxidant function of quercetin and its dimerized derivatives is similar to that of -tocopherol. As a result, the onion extract's outer layer is assumed to be a source of nutritional constituents [45]. Flavonoids also have metal chelating properties, which prevent the formation of free radicals [46]. Iron stabilization and iron chelation are properties of quercetin [47]. Kaempferol is a powerful antioxidant since its high concentration promotes the synthesis of antioxidant enzymes including superoxide dismutase, catalase, and others. It also inhibits atherosclerosis by preventing the oxidation of low-density lipid protein (LDLP) [48].

Anti-diabetic: Onion is used for treating diabetes and its complications [49]. In Zucker diabetic fatty rats, it shows effects of anti-obesity. The use of raw red onion on a regular basis dissolves fat and helps obese women lose weight [50]. Type 2 diabetes and other lifestyle conditions are treated with onion soup [51]. The extract recovers the α-glucosidase function of the intestines, regulates spikes in the Sprague-Dawley rat model of postprandial blood glucose levels and protects mice from diabetic
neuropathy. In diabetic rats, it increases hyperglycemia and insulin resistance caused by a high-fat diet and streptozotocin. The *A. Cepa* (red onion) exhibits hypoglycemic symptoms in Types 1 and 2 diabetic patients [52]. In a high fat diet streptozotocin diabetes rodent model, dietary *A. Cepa* bulbs showed anti-diabetic properties [53]. The onion is a healthy medicinal plant that is used to treat diabetes patients. All anti-diabetic ingredients, including onions, can be used to treat diabetes mellitus [53]. In alloxane-induced diabetic rats, *A. Cepa* has hypoglycemic impact. Onions have an anti-hyperglycemic effect and reduce metabolic defects in rats with streptozotocin-induced diabetes [54].

Wound Healing and Anti-scar: Onion is widely used in the preparation of ayurvedic wound healing formulations [55]. This also indicates biological efficacy in preventing median sternotomy wounds in paediatric patients [56]. The extract has a beneficial effect on a human skin fibroblast cell line and is used to treat keloids. Onion peel abstract shows biological efficiency for hypertrophic scar prevention and keloid. Onion extract gel also demonstrate hypertrophic parasternal scar defense [57]. This is also used in topical diagnosis and prevention of postoperative hypertrophic wounds, and in keloid surgery [58]. Likewise, *A. Cepa*-allanto in pentaglycan gel is used to treat hypertrophic skin wounds and to enhance the cosmetic appearance of postoperative scars and burn scars [59].

Anticancer Activity: Organosulfur compounds produced by *A. Cepa* inhibit the proliferation of six different tumor cells [60]. Allium contains the flavonoid quercetin, which has been shown to have anti-cancer properties. It has the ability to stop the development of various cancer cells. Consumption of allium vegetables, especially garlic, is linked to a lower risk of prostate cancer [61].

Anti-genotoxic and Anti-mutagenic Effects: By inhibiting FAS, onions (*A. Cepa* L.) have inhibitory effects on cancer cells and adipocyte proliferation [62]. Allium vegetables inhibit the proliferation of MCF-7 breast cancer cells and reduce the risk of prostate cancer [53]. It is healthy food for human beings to avoid cancer. *A. Cepa* displays anti-mutagenic andantigenotoxic activity against carcinoma in the gut. Zidovudine or nevirapine causes cytogenotoxic changes in *A. cepa* root.
Onions contain the flavonoid quercetin, which has anticancer properties at particular sites. Isolated polyphenols from *A. Cepa* induce apoptosis in human leukaemia cells by inhibiting PI3K/Akt signaling pathways and suppressing apoptosis protein-1 inhibitors [64].

Antimicrobial: Green extract of onion dissolved in ozonated water inactivates the typhimurium Salmonella enterica. It also inactivates internalized and infected enteric viruses on the surface and prevents the development of Gram-positive, Gram-negative bacteria in vitro [66]. Internalized *S. Typhimurium* is inactivated with radiated UV-C and chemical sanitizers using green onions [67]. To decontaminate *Escherichia coli* O157:H7 water, green onions and pulsed light (PL) and PL-surfactant-sanitizer are used. Varieties of cepa red and white displayed chemical differences from each other and showed good antimicrobial and antioxidant activity [68].

Antiparasitic: Onion oils were found to be successful against *Schistosoma mansoni* cryptosporidium parvum infection in mice in an experiment [69]. *A. Cepa* oil has been shown to be extremely effective in the treatment of worm infections. The onion is successful against the eelworm (*Ditylenchus dipsaci*), a small soothing parasitic nematode that causes swollen, twisted leaves [70].

Antihyperlipidemic: Onion derivative sulfur-compounds, including S-methyl cysteine sulfoxide and allylpropyl disulfide [71] exhibited hypolipidemic effect. These compounds have been found to reduce the effects of diet-induced atherosclerosis, maintain hypolipidemic action, and inhibit platelet production in rats and rabbits. These compounds are abundant in raw onion, which has antithrombotic effects [63].

Analgesic: Onions are used as antidepressants [72] for they suppress synthase of the lachrymatory factor (LFS). In a rat depression model, onion powder has an antidepressant-like effect. Fresh onion juice can reduce pain and inflammation in both acute and chronic conditions, with a stronger anti-inflammatory effect [73].

Antipyretic: Fresh, *A. Cepa* liquid bulb extract on paracetamol and carbon tetrachloride [74]. Usage of alliums reduces genotoxicity caused by series of synthetic
pharmaceutical compounds. It also decreases toxicity, genotoxicity and cytotoxicity of the metamizole sodium and acetylsalicylic acid [75].

5. Conclusions
The onion bulbs are comprised of polysaccharides including peptides, fructans, flavonoids (mostly quercetin), saccharose and organosulfur compounds with salutary effects on human health. The onion in the diet gives us a positive response in nutritional manner. The nutritional contents in onion bulb include crude oil, vitamin E, sodium, potassium and zinc. The onion bulb has the ability to reduce the problem of stomach cancer, osteoporosis and brain cancer in human being. It is also anti-diabetic, anti-inflammatory, anti-scar, antispasmodic, antiseptic, anti-genotoxic, anti-mutagenic, diuretic, anti-parasitic, antimicrobial, antipyretic and analgesic.

Conflict of Interest
The authors declare no conflict of interest.

6. References
[1]. Simon P. Onion improvement News letter for 1991. Dept of horticulture, university of Wisconsin, Madison, Wisconsin, USA. 1992.
[2]. Pathak C. Hybrid seed production in onion. Journal of New Seeds. 2000;1(3-4):89-108.
[3]. Brewster J. Physiology of crop growth and bulbing. Onions and allied crops: CRC Press; 2018. p. 53-88.
[4]. Griffiths G, Trueman L, Crowther T, Thomas B, Smith B. Onions—a global benefit to health. Phytotherapy research. 2002;16(7):603-15.
[5]. Reuter H, Koch H, Lawson L. The Science and Therapeutic Application of Allium sativum L. and Related Species. Williams and Wilkins, Baltimore, MD. 1996.
[6]. Mehta I. Origin and History of Onions. IOSR Journal Of Humanities And Social Science. 2017;22(9):07-10.
[7]. Akrofi S, Kotev DA, Ahiatsi EN, Larbi-Koranteng S. Onion Farming Practices in Eastern Region of Ghana: Implications for Research. *Asian Journal of Agriculture and Food Sciences (ISSN: 2321–1571)*. 2016;4(04).

[8]. Manna D, Santra P, Maity T, Namw A, Basu A. Quality Seed Production of Onion (Allium Cepa L.) cv. Sukhsagar as Influenced by Bulb Size and Date of Planting. *Agricultural Research & Technology: Open Access Journal*. 2016;2(3):01-7.

[9]. Naseer S, Hussain S, Naeem N, Pervaiz M, Rahman M. The phytochemistry and medicinal value of Psidium guajava (guava). *Clinical Phytoscience*. 2018;4(1):1-8.

[10]. Naseer S, Hussain S, Zahid Z. Nutritional and antioxidant potential of common vegetables in Pakistan. *RADS Journal of Biological Research & Applied Sciences*. 2019;10(1):36-40.

[11]. Rehman A, Hussain S, Javed M, Ali Z, Rehman H, Shahzady TG, et al. Chemical composition and remedial perspectives of Hippophae rhamnoides linn. *Postepy Biologii Komorki*. 2018;45(3):199-209.

[12]. Kamran M, Hussain S, Abid MA, Syed SK, Suleman M, Riaz M, et al. Phytochemical composition of moringa oleifera its nutritional and pharmacological importance. *Postepy Biologii Komorki*. 2020;47(3):321-34.

[13]. Kandoliya U, Bodar N, Bajaniya V, Bhadja N, Golakiya B. Determination of nutritional value and antioxidant from bulbs of different onion (Allium cepa) variety: A comparative study. *Int J Curr Microbiol App Sci*. 2015;4(1):635-41.

[14]. Lancaster JE, Shaw ML. γ-Glutamyl peptides in the biosynthesis of S-alk(en)yl-L-cysteine sulfoxides (flavour precursors) in Allium. *Phytochemistry*. 1989;28(2):455-60.

[15]. Lanzotti V. The analysis of onion and garlic. *Journal of chromatography A*. 2006;1112(1-2):3-22.

[16]. Fenwick GR, Hanley AB, Whitaker JR. The genus Allium—part 1. *Critical Reviews in Food Science & Nutrition*. 1985;22(3):199-271.
[17]. Dorsch W, Wagner H. New antiasthmatic drugs from traditional medicine? International Archives of Allergy and Immunology. 1991;94(1-4):262-5.

[18]. Dorant E, van den Brandt PA, Goldbohm RA, Sturmans F. Consumption of onions and a reduced risk of stomach carcinoma. Gastroenterology. 1996;110(1):12-20.

[19]. Nuutila AM, Puupponen-Pimiä R, Aarni M, Oksman-Caldentey K-M. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food chemistry. 2003;81(4):485-93.

[20]. Farhat N, Hussain S, Syed SK, Amjad M, Javed M, Iqbal M, et al. Dietary phenolic compounds in plants: Their antioxidant and pharmacological potential. Postepy Biologii Komorki. 2020;47(3):307-20.

[21]. Benitez V, Molla E, Martin A, Lopez F, Downes K, Terry L, et al. Study of bioactive compound content in different onion sections. Plant Foods for Human Nutrition. 2011;66(1):48-57.

[22]. Colina-Coca C, de Ancos B, Sánchez-Moreno C. Nutritional composition of processed onion: S-Alk (en) yl-L-cysteine sulfoxides, organic acids, sugars, minerals, and vitamin C. Food and bioprocess technology. 2014;7(1):289-98.

[23]. Makris DP, Rossiter JT. Domestic processing of onion bulbs (Allium cepa) and asparagus spears (Asparagus officinalis): effect on flavonol content and antioxidant status. Journal of Agricultural and Food Chemistry. 2001;49(7):3216-22.

[24]. Mallor Giménez C, Carravedo Fantova M, Estopañán Muñoz G, Mallor Giménez F. Characterization of genetic resources of onion (Allium cepa L.) from the Spanish secondary centre of diversity. Spanish Journal of Agricultural Research, 2011, 9 (1) Págs 144-155. 2011.

[25]. O'Donoghue EM, Somerfield SD, Shaw M, Bendall M, Hedderly D, Eason J, et al. Evaluation of carbohydrates in Pukekohe Longkeeper and Grano cultivars of Allium cepa. Journal of agricultural and food chemistry. 2004;52(17):5383-90.
[26]. AZOOM AAA, HAMDI W, ZHANI K, HANNACHI C. Evaluation of mineral element, sugars and proteins compositions in bulbs of eight onion (Allium cepa L.) varieties cultivated in Tunisia. 2015.

[27]. El Mashad HM, Zhang R, Pan Z. Onion and garlic. Integrated Processing Technologies for Food and Agricultural By-Products: Elsevier; 2019. p. 273-96.

[28]. Samydurai P, Thangapandian V. Nutritional assessment, polyphenols evaluation and antioxidant activity of food resource plant Decalepis hamiltonii Wight & Arn. Journal of Applied Pharmaceutical Science. 2012;2(5):16.

[29]. Kwenin W, Wolli M, Dzomeku B. Assessing the nutritional value of some African indigenous green leafy vegetables in Ghana. Journal of Animal and Plant Sciences. 2011;10(2):1300-5.

[30]. Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New phytologist. 2003;157(3):423-47.

[31]. Atukorala T, Waidyanatha U. Zinc and copper content of some common foods. Journal of the National Science Council of Sri Lanka. 1987;15:61-9.

[32]. Petropoulos SA, Fernandes Â, Barros L, Ferreira IC, Ntatsi G. Morphological, nutritional and chemical description of “Vatikiotiko”, an onion local landrace from Greece. Food Chemistry. 2015;182:156-63.

[33]. Gennaro L, Leonardi C, Esposito F, Salucci M, Maiani G, Quaglia G, et al. Flavonoid and carbohydrate contents in Tropea red onions: effects of homelike peeling and storage. Journal of Agricultural and Food Chemistry. 2002;50(7):1904-10.

[34]. Jaime L, Mollá E, Fernández A, Martín-Cabrejas MA, López-Andréu FJ, Esteban RM. Structural carbohydrate differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. Journal of Agricultural and Food Chemistry. 2002;50(1):122-8.
[35]. Mlcek J, Valsikova M, Druzbikova H, Ryant P, Jurikova T, Sochor J, et al. The antioxidant capacity and macroelement content of several onion cultivars. *Turkish Journal of Agriculture and Forestry*. 2015;39(6):999-1004.

[36]. Bhattacharjee S, Sultana A, Sazzad MH, Islam M, Ahtashom M, Asaduzzaman M. Analysis of the proximate composition and energy values of two varieties of onion (Allium cepa L.) bulbs of different origin: A comparative study. *International Journal of Nutrition and Food Sciences*. 2013;2(5):246-53.

[37]. De Groot H. Reactive oxygen species in tissue injury. *Hepato-gastroenterology*. 1994;41(4):328-32.

[38]. Harwood M, Danielewska-Nikiel B, Borzelleca J, Flamm G, Williams G, Lines T. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. *Food and chemical toxicology*. 2007;45(11):2179-205.

[39]. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. *The scientific world journal*. 2013;2013.

[40]. Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. *Free Radical Biology and Medicine*. 1994;16(6):845-50.

[41]. Pietta P-G. Flavonoids as antioxidants. *Journal of natural products*. 2000;63(7):1035-42.

[42]. Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. *Free radical biology and medicine*. 1997;22(5):749-60.

[43]. Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. *Methods in enzymology*. 1990;186:343-55.

[44]. Ratty A, Das N. Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship. *Biochemical medicine and metabolic biology*. 1988;39(1):69-79.
[45]. Ly TN, Hazama C, Shimoyamada M, Ando H, Kato K, Yamauchi R. Antioxidative compounds from the outer scales of onion. Journal of Agricultural and Food Chemistry. 2005;53(21):8183-9.

[46]. Mishra AK, Mishra A, Kehri H, Sharma B, Pandey AK. Inhibitory activity of Indian spice plant Cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds. Annals of Clinical Microbiology and Antimicrobials. 2009;8(1):1-7.

[47]. Van Acker SA, Tromp MN, Griffioen DH, Van Bennekom WP, Van Der Vijgh WJ, Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine. 1996;20(3):331-42.

[48]. M Calderon-Montano J, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini reviews in medicinal chemistry. 2011;11(4):298-344.

[49]. Mootoosamy A, Mahomoodally MF. Ethnomedicinal application of native remedies used against diabetes and related complications in Mauritius. Journal of ethnopharmacology. 2014;151(1):413-44.

[50]. Yoshinari O, Shiojima Y, Igarashi K. Anti-obesity effects of onion extract in Zucker diabetic fatty rats. Nutrients. 2012;4(10):1518-26.

[51]. Ebrahimi-Mamaghani M, Saghaif-Asl M, Pirouzpanah S, Asghari-Jafarabadi M. Effects of raw red onion consumption on metabolic features in overweight or obese women with polycystic ovary syndrome: a randomized controlled clinical trial. Journal of Obstetrics and Gynaecology Research. 2014;40(4):1067-76.

[52]. Bhanot A, Shri R. A comparative profile of methanol extracts of Allium cepa and Allium sativum in diabetic neuropathy in mice. Pharmacognosy research. 2010;2(6):374.
[53]. Tătărengă G, Miron A, Păduraru I, Hâncianu M, Gafuțanu E, Stănescu U. Characterization of some extractive fractions isolated from raw Allium cepa L. bulbs. Revista medico-chirurgicala a Societății de Medici și Naturalisti din Iasi. 2008;112(2):522-4.

[54]. Babu PS, Srinivasan K. Renal lesions in streptozotocin-induced diabetic rats maintained on onion and capsaicin containing diets. The Journal of nutritional biochemistry. 1999;10(8):477-83.

[55]. Abdel-Maksoud G, El-Amin A-R. A REVIEW ON THE MATERIALS USED DURING THE MUMMIFICATION PROCESSES IN ANCIENT EGYPT. Mediterranean Archaeology & Archaeometry. 2011;11(2).

[56]. Wananukul S, Chatpreodprai S, Peongsujarit D, Lertsapcharoen P. A prospective placebo-controlled study on the efficacy of onion extract in silicone derivative gel for the prevention of hypertrophic scar and keloid in median sternotomy wound in pediatric patients. J Med Assoc Thai. 2013;96(11):1428-33.

[57]. Gangopadhyay KS, Khan M, Pandit S, Chakrabarti S, Mondal TK, Biswas TK. Pharmacological evaluation and chemical standardization of an ayurvedic formulation for wound healing activity. The International Journal of lower extremity wounds. 2014;13(1):41-9.

[58]. Shockman S, Paghdal KV, Cohen G. Medical and surgical management of keloids: a review. Journal of drugs in dermatology: JDD. 2010;9(10):1249-57.

[59]. Draelos ZD. The ability of onion extract gel to improve the cosmetic appearance of postsurgical scars. Journal of cosmetic dermatology. 2008;7(2):101-4.

[60]. Lai W-W, Hsu S-C, Chueh F-S, Chen Y-Y, Yang J-S, Lin J-P, et al. Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signaling pathways. Anticancer research. 2013;33(5):1941-50.

[61]. Zeng Y-W, Yang J-Z, Pu X-Y, Du J, Yang T, Yang S-M, et al. Strategies of functional food for cancer prevention in human beings. Asian Pacific Journal of Cancer Prevention. 2013;14(3):1585-92.
[62]. Wang Y, Tian W-X, Ma X-F. Inhibitory effects of onion (Allium cepa L.) extract on proliferation of cancer cells and adipocytes via inhibiting fatty acid synthase. *Asian Pacific Journal of Cancer Prevention*. 2012;13(11):5573-9.

[63]. Han MH, Lee WS, Jung JH, Jeong J-H, Park C, Kim HJ, et al. Polyphenols isolated from Allium cepa L. induces apoptosis by suppressing IAP-1 through inhibiting PI3K/Akt signaling pathways in human leukemic cells. *Food and chemical toxicology*. 2013;62:382-9.

[64]. Onwuamah CK, Ekama SO, Audu RA, Ezechi OC, Poirier MC, Odeigah PGC. Exposure of Allium cepa root cells to zidovudine or nevirapine induces cytogenotoxic changes. *PloS one*. 2014;9(3):e90296.

[65]. Xu W, Chen H, Huang Y, Wu C. Decontamination of Escherichia coli O157: H7 on green onions using pulsed light (PL) and PL–surfactant–sanitizer combinations. *International journal of food microbiology*. 2013;166(1):102-8.

[66]. Sak K. Site-specific anticancer effects of dietary flavonoid quercetin. *Nutrition and cancer*. 2014;66(2):177-93.

[67]. Sun F, Wu C, Wu Y, Xu T. Porous BPPO-based membranes modified by multisilicon copolymer for application in diffusion dialysis. *Journal of membrane science*. 2014;450:103-10.

[68]. Benmalek Y, Yahia OA, Belkebir A, Fardeau M-L. Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp monogyna and Allium cepa red and white varieties. *Bioengineered*. 2013;4(4):244-8.

[69]. Mantawy MM, Ali HF, Rizk MZ. Therapeutic effects of Allium sativum and Allium cepa in Schistosoma mansoni experimental infection. *Revista do instituto de medicina tropical de são paulo*. 2011;53(3):155-63.

[70]. Shaapan RM, Khalil FA, Nadia M. Cryptosporidiosis and Toxoplasmosis in native quails of Egypt. *Res J Vet Sci*. 2011;4:30-6.
[71]. Kumari K, Augusti K. Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn in high cholesterol diet fed rats. *Journal of ethnopharmacology*. 2007;109(3):367-71.

[72]. Peron AP, Mariucci RG, de Almeida IV, Düsman E, Mantovani MS, Vicentini VEP. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of a natural antidepressant, Hypericum perforatum L.(St. John’s wort), on vegetal and animal test systems. *BMC complementary and alternative medicine*. 2013;13(1):97.

[73]. Sakakibara H, Yoshino S, Kawai Y, Terao J. Antidepressant-like effect of onion (Allium cepa L.) powder in a rat behavioral model of depression. *Bioscience, biotechnology, and biochemistry*. 2008;72(1):94-100.

[74]. Porchezhian E, Ansari S. Effect of liquid extract from fresh Abutilon indicum leaves and Allium cepa bulbs on paracetamol and carbontetrachloride induced hepatotoxicity. *Die Pharmazie*. 2000;55(9):702-3.

[75]. Arkhipchuk V, Goncharuk V, Chernykh V, Maloshtan L, Gritsenko I. Use of a complex approach for assessment of metamizole sodium and acetylsalicylic acid toxicity, genotoxicity and cytotoxicity. *Journal of Applied Toxicology: An International Journal*. 2004;24(5):401-7.