Finding a most biased coin with fewest flips

Karthik Chandrasekaran (Simons Postdoc, Harvard)

Richard Karp (University of California, Berkeley)
The Coin-Toss Problem

- Given: n coins with bias probability p_i for coin i and $\delta, \epsilon > 0$
- Allowed operation: Toss and note down history
- Goal: Find a coin i with large bias $\Pr(p_i \geq p^* - \epsilon | i \text{ is output}) \geq 1 - \delta$
- Qn: Is there a strategy that minimizes the expected number of tosses needed?
- Indifference zone assumption: top two bias probabilities differ by at least ϵ
Related work

- Number of tosses for non-adaptive ≤ \(\left(\frac{4n}{\varepsilon^2} \right) \log \left(\frac{n}{\delta} \right) \)

- **[EMM ‘02]** Upper bound: Adaptive Algorithm
 - Number of tosses = \(O \left(\frac{n}{\varepsilon^2} \log \left(\frac{1}{\delta} \right) \right) \)

- **[MT ‘04]** Lower bound:
 - There exist probabilities \(p_1, \ldots, p_n \) such that the number of tosses for any adaptive strategy = \(\Omega \left(\frac{n}{\varepsilon^2} \log \left(\frac{1}{\delta} \right) \right) \)

Question: Better algorithm to address the constant factor gap?
A Decision-Theoretic Perspective

- Given: a history of toss outcomes
- Determine the coin to toss in the next step so that the expected future number of tosses to find a large bias coin is minimized
- Seeking optimum decision in each step
 - Does such a strategy even exist?
 - If it does, can we implement it efficiently?
Problem Setting

- Coins are of two types
 - Most biased: $p_i = p + \epsilon$ \(\xrightarrow{}\) Heavy coin
 - Second-most biased: $p_i = p - \epsilon$ \(\xrightarrow{}\) Non-heavy coin
- Infinite supply of coins with probabilistic prior
- Algorithm is allowed to toss coins adaptively
- Output a coin i s.t.
 \[\Pr(Coin \ i \ is \ heavy \mid history(i)) \geq 1 - \delta \]
An optimal algorithm: minimizes the expected number of tosses

- Decision Theoretic Optimal Strategy: In each step, the strategy picks a coin so that the expected future number of tosses is minimized
 - Can start with an arbitrary history for a finite collection of the coins

- Expected number of coin tosses $\leq \left(\frac{32}{\epsilon^2}\right) \left(\frac{1-\alpha}{\alpha} + \log \left(\left(\frac{1-\delta}{\delta}\right) \left(\frac{1-\alpha}{\alpha}\right)\right)\right)$
The Strategy
Likehood Ratio

- For a coin i with history$(i) = (\#\text{heads}(i), \#\text{tails}(i))$, define

$$L_i := \frac{\Pr(\text{history}(i) | \text{Coin } i \text{ is heavy})}{\Pr(\text{history}(i) | \text{Coin } i \text{ is non-heavy})}$$

$$= \frac{(p + \epsilon)^{\#\text{heads}(i)}}{(p - \epsilon)^{\#\text{tails}(i)}} \cdot \frac{(1 - p - \epsilon)^{\#\text{tails}(i)}}{(1 - p + \epsilon)^{\#\text{heads}(i)}}$$

Observation: Given the history$(i) = (\#\text{heads}(i), \#\text{tails}(i))$ for coin i

$$\Pr(\text{Coin } i \text{ is heavy} | \text{history}(i)) \geq 1 - \delta \text{ if and only if } L_i \geq \left(\frac{1 - \delta}{\delta}\right) \left(\frac{1 - \alpha}{\alpha}\right)$$
Algorithm

- Initialize $L_i = 1$ for every coin i

- While $L_i < \left(\frac{1-\delta}{\delta}\right) \left(\frac{1-\alpha}{\alpha}\right)$ for every coin i:
 - Toss coin i for which L_i is largest
 - Update L_i based on toss outcome:
 $$L_i \left\{ \begin{array}{ll}
 L_i \left(\frac{p + \epsilon}{p - \epsilon}\right) & \text{if outcome is head} \\
 L_i \left(\frac{1 - p - \epsilon}{1 - p + \epsilon}\right) & \text{if outcome is tail}
 \end{array} \right.$$

- Output coin i with largest L_i
Correctness Probability

Observation: Given the history \(i = (\#\text{heads}(i), \#\text{tails}(i)) \) for coin \(i \)

\[
\Pr(\text{Coin } i \text{ is heavy}|\text{history}(i)) \geq 1 - \delta \text{ if and only if } L_i \geq \left(\frac{1-\delta}{\delta}\right)\left(\frac{1-\alpha}{\alpha}\right)
\]

If coin \(i \) is output by the algorithm, then \(L_i \geq \left(\frac{1-\delta}{\delta}\right)\left(\frac{1-\alpha}{\alpha}\right) \)

\[\Rightarrow \Pr(\text{Coin } i \text{ is heavy}|\text{history } (i)) \geq 1 - \delta \]
Optimality
An alternate view of the algorithm

\[X_i := \log L_i \]

\[B := \log \left(\left(\frac{1 - \delta}{\delta} \right) \left(\frac{1 - \alpha}{\alpha} \right) \right) \]

\[\Delta_H := \log \left(\frac{p + \epsilon}{p - \epsilon} \right) \]

\[\Delta_T := \log \left(\frac{1 - p + \epsilon}{1 - p - \epsilon} \right) \]

\[\Pr(H|X_i) = \frac{\alpha e^{X_i}}{\alpha e^{X_i} + (1 - \alpha)} (p + \epsilon) + \frac{(1 - \alpha)}{\alpha e^{X_i} + (1 - \alpha)} (p - \epsilon) \]
An alternate view of the algorithm
Multi-token Markov Game
Multi-token Markov Game

- Cost of the game := \(\min_{\text{strategy } \Pi} \mathbb{E} \left(\text{cost}(\Pi) \right) \)
- Strategy can be randomized
Optimal Strategy [DTW ‘03]

- Optimal strategy: pick the token in a state with the least grade

grade: $\text{States} \rightarrow \mathbb{R}$
Optimality for our Markov Game

- Greedy strategy: Toss the coin with max likelihood
- Goal: Show that the greedy strategy is optimal
- State space: (all real values $\leq B$) corresponds to log-likelihoods
- Lemma: grade is non-increasing as a function of log-likelihood
 - [DTW ‘03]: Picking the token with the least grade is optimal

\Rightarrow Tossing the coin with maximum log-likelihood is optimal
Open Questions

- Three types of coins
 - Bias probabilities: \((p + \epsilon, p, p - \epsilon)\)
 - Infinite supply of coins with probabilistic prior:
 \[(\alpha_1, \alpha_2, 1 - \alpha_1 - \alpha_2)\]
- Two types of coins, but dependent prior
 - \(n\) coins containing exactly one heavy coin
 - Other prior models?

Questions?

Thank you