A Construction of Infinitely Many Solutions to the Strominger System

Teng Fei, Zhijie Huang and Sebastien Picard

Contents

1 Introduction 1

2 Reduction of the Strominger System and Its Solutions 2
 2.1 The Generalized Calabi-Gray Construction .. 2
 2.2 Minimal Surfaces in Flat 3-Spaces .. 4
 2.3 Derivation of the Equation ... 5
 2.4 Solutions ... 8
 2.5 Geometric Consequences of the Hemisphere Condition 10

1 Introduction

The Strominger system [18, 30] is a system of partial differential equations characterizing the compactification of heterotic superstrings with torsion. Mathematically speaking, we may think of the Strominger system as a generalization of the Ricci-flat metrics on non-Kähler Calabi-Yau 3-folds, which is simultaneously coupled with the Hermitian Yang-Mills equation on a gauge bundle.

Let X be a complex 3-fold, preferably compact, with holomorphically trivial canonical bundle. We fix a nowhere vanishing holomorphic $(3,0)$-form Ω on X. Let ω be a Hermitian metric on X, and denote by $\|\Omega\|_\omega$ the norm of Ω with respect to the metric ω. In addition, let (E, h) be a holomorphic vector bundle over X equipped with a Hermitian metric. We denote by R and F the endomorphism-valued curvature 2-forms of the holomorphic tangent bundle $T^{1,0}X$ and E respectively. Finally, let $\alpha' \in \mathbb{R}$ be a constant. We can write down the Strominger system as follows [19]:

\begin{align*}
(1) & \quad F \wedge \omega^2 = 0, \quad F^{0,2} = F^{2,0} = 0, \\
(2) & \quad i\partial\bar{\partial}\omega = \frac{\alpha'}{4} (\text{Tr}(R \wedge R) - \text{Tr}(F \wedge F)), \\
(3) & \quad d(\|\Omega\|_\omega \cdot \omega^2) = 0.
\end{align*}

In the literature, Equations (1), (2) and (3) are known as the Hermitian Yang-Mills equation, the anomaly cancellation equation and the conformally balanced equation respectively. In this paper, we will only use the Chern connection to compute the curvatures R and F and work with positive α'.

It is not hard to see that when ω is a Kähler metric, by Yau’s theorem [34] the full Strominger system can be solved if we take ω to be Ricci-flat and simultaneously embed the spin connection into the Yang-Mills connection, meaning to set $R = F$. Such a solution corresponds to the torsion-free compactification of
superstrings [4]. However, the Strominger system allows for more general backgrounds than Kähler Calabi-Yau manifolds. In fact, the interest of the Strominger system is to solve it on non-Kähler Calabi-Yau 3-folds, where we say that a complex manifold is non-Kähler if it does not admit any Kähler metric at all. Currently the only constraint is that \(X \) needs to admit a balanced metric [19], i.e., a Hermitian metric whose Kähler form is co-closed.

Unfortunately, there are not many non-Kähler solutions to the Strominger system known so far. It appears to the authors that the only compact examples are the notable Fu-Yau solution [11, 12, 28] and a few parallelizable examples, see [10, 13, 9, 24] and references therein.

As for compact Kähler Calabi-Yau manifolds (treated as solutions to the Strominger system), it is widely speculated that in each dimension there are only finitely many deformation types and hence finitely many sets of Hodge numbers. Moreover, there are no explicit expressions for Calabi-Yau metrics except for the flat case.

In this paper, we demonstrate that the non-Kähler world of solutions to the Strominger system is considerably different. More precisely, we construct explicit smooth solutions to the Strominger system on compact non-Kähler Calabi-Yau 3-folds with infinitely many topological types and sets of Hodge numbers. The following is a summary of our construction:

Theorem 1.1.
Let \(\Sigma \) be a compact Riemann surface of genus \(g \geq 3 \) with a basepoint-free theta characteristic. Let \(M \) be a compact hyperkähler 4-manifold. The generalized Calabi-Gray construction gives rise to a compact non-Kähler Calabi-Yau 3-fold \(X \), which is the total space of a fibration \(p : X \to \Sigma \) with fiber \(M \), admitting explicit smooth solutions to the Strominger system with gauge bundle \(E = \Omega_{X/\Sigma} \) taken to be the relative cotangent bundle of the fibration. If \(M = T^4 \), we may also take \(E \) to be any flat vector bundle.

Recently D.H. Phong, X.-W. Zhang and the third-named author showed in a series of papers [25, 26, 27] that the Anomaly flow is a powerful tool in studying the Strominger system. Using our ansatz, the Anomaly flow reduces to an interesting parabolic equation on Riemann surfaces. We shall treat this aspect in a forthcoming paper.

Acknowledgements The authors would like to thank Prof. D.H. Phong and Prof. S.-T. Yau for their constant encouragement and help. The authors are also indebted to R. Schoen, L.-S. Tseng, B.-S. Wu and X.-W. Zhang for useful discussions. The third-named author was supported in part by National Science Foundation grant DMS-12-66033.

2 Reduction of the Strominger System and Its Solutions

2.1 The Generalized Calabi-Gray Construction

To obtain interesting solutions to the Strominger system, we need first to construct compact non-Kähler Calabi-Yau 3-folds with balanced metrics. A class of nice such examples is what we call the generalized Calabi-Gray construction [7], which can be phrased as follows.

Let \((M, g)\) be a compact hyperkähler 4-manifold. It is well-known that \(M \) is either a flat 4-torus or a K3 surface with a Calabi-Yau metric. We denote by \(I, J \) and \(K \) the compatible complex structures with \(IJK = -\text{id} \) and write \(\omega_I, \omega_J \) and \(\omega_K \) for the corresponding Kähler forms, defined as usual by \(\omega_I(v_1, v_2) = g(Iv_1, v_2) \), \(\omega_J(v_1, v_2) = g(Jv_1, v_2) \) and \(\omega_K(v_1, v_2) = g(Kv_1, v_2) \). In fact, for any real numbers \(\alpha, \beta \) and \(\gamma \) such that

\[
\alpha^2 + \beta^2 + \gamma^2 = 1,
\]

we have a compatible complex structure \(\alpha I + \beta J + \gamma K \), whose associated Kähler form is given by \(\alpha \omega_I + \beta \omega_J + \gamma \omega_K \).
Following [17], let us first describe the twistor space \(Z \) of \(M \). By stereographic projection, we may parameterize \(S^2 = \{ (\alpha, \beta, \gamma) \in \mathbb{R}^3 : \alpha^2 + \beta^2 + \gamma^2 = 1 \} \) by \(\zeta \in \mathbb{C}P^1 \) via

\[
(\alpha, \beta, \gamma) = \left(\frac{1 - |\zeta|^2}{1 + |\zeta|^2}, \frac{\zeta + \bar{\zeta}}{1 + |\zeta|^2}, \frac{i(\bar{\zeta} - \zeta)}{1 + |\zeta|^2} \right).
\]

Moreover, we always equip \(\mathbb{C}P^1 \cong S^2 \) the round (Fubini-Study) metric

\[
\omega_{FS} = \frac{2i d\zeta \wedge d\bar{\zeta}}{(1 + |\zeta|^2)^2}.
\]

The twistor space \(Z \) of \(M \) is defined to be the manifold \(Z = \mathbb{C}P^1 \times M \) with the tautological almost complex structure \(I \) given by

\[
I = j \oplus (\alpha I_x + \beta J_x + \gamma K_x).
\]

In fact, we have

Theorem 2.1. [2, 16, 21, 17, 23]

(a). \(\mathcal{I} \) is an integrable complex structure, making \((Z, \mathcal{I})\) a compact non-Kähler 3-fold whose natural product metric is balanced.

(b). The natural projection \(\pi : Z = \mathbb{C}P^1 \times M \to \mathbb{C}P^1 \) is holomorphic.

(c). Let \(\Lambda^2 \Omega_{Z/\mathbb{C}P^1} \) be the determinant line bundle of the relative cotangent bundle associated to the holomorphic fibration \(\pi \). Then the line bundle \(\Lambda^2 \Omega_{Z/\mathbb{C}P^1} \otimes \pi^*\mathcal{O}(2) \) on \(Z \) has a global section which defines a holomorphic symplectic form on each fiber of \(\pi \).

Now let \(\Sigma \) be a compact Riemann surface of genus \(g \) and let \(\varphi : \Sigma \to \mathbb{C}P^1 \) be a nonconstant holomorphic map. We may treat \(\varphi \) either as a nonconstant meromorphic function \(\zeta \) on \(\Sigma \) or, by identifying \(\mathbb{C}P^1 \) with the unit sphere in \(\mathbb{R}^3 \), as a map \(\varphi = (\alpha, \beta, \gamma) \) into \(\mathbb{R}^3 \). These two viewpoints are related by the stereographic projection formula (4). By pulling back the holomorphic fibration \(\pi : Z \to \mathbb{C}P^1 \) over \(\varphi : \Sigma \to \mathbb{C}P^1 \), we get a holomorphic fibration \(p : X = \varphi^*Z \to \Sigma \). As a complex manifold, \(X \) is topologically \(\Sigma \times M \) with a twisted complex structure \(J_0 = J_{\Sigma} \oplus (\alpha I_x + \beta J_x + \gamma K_x) \). We have

Proposition 2.2. [6, 7, 8]

(a). \(X \) has trivial canonical bundle if and only if

\[
\varphi^*\mathcal{O}(2) \cong K_\Sigma,
\]

where \(K_\Sigma \) is the canonical bundle of \(\Sigma \).

(b). Under (a), \(X \) is non-Kähler with balanced metrics.

From now on, we shall call condition (7) plus that \(\varphi \) is not the constant map the “pullback condition”. Assuming the pullback condition, it is clear that \(S = \varphi^*\mathcal{O}(1) \) is a square root of \(K_\Sigma \), which is known as a theta characteristic in algebraic geometry, or a spin structure according to Atiyah [1]. Furthermore, the linear system associated to the line bundle \(S \) is basepoint-free.
Conversely, if we start with a basepoint-free theta characteristic S on Σ, we may choose $s_1, s_2 \in H^0(\Sigma, S)$ such that s_1 and s_2 have no common zeroes, then $\zeta = s_1 / s_2$ is a meromorphic function on Σ. Moreover, ζ defines a holomorphic map $\varphi : \Sigma \to \mathbb{CP}^1$ such that the pullback condition holds.

Therefore in this paper, we shall call a pair (Σ, φ) such that the pullback condition holds a vanishing spinorial pair. The generalized Calabi-Gray construction says that from any vanishing spinorial pair, one can construct a compact non-Kähler Calabi-Yau 3-fold X with balanced metrics. In particular, it includes the classical construction of Calabi [3] and Gray [14], where Σ is an immersed minimal surface in a flat 3-torus and φ its Gauss map. We also say such an X is a genus g generalized Calabi-Gray manifold, where g is the genus of Σ.

It is trivial to remark that if (Σ, φ) is a vanishing spinorial pair and $\tau : \widetilde{\Sigma} \to \Sigma$ an unramified covering map, then $(\widetilde{\Sigma}, \varphi \circ \tau)$ is also a vanishing spinorial pair.

2.2 Minimal Surfaces in Flat 3-Spaces

In this section, we construct vanishing spinorial pairs by studying minimal surfaces in flat T^3. Let $T^3 = \mathbb{R}^3 / \Gamma$ be a 3-torus equipped with the standard flat metric. Let $x = (x_1, x_2, x_3)$ be the coordinate function on \mathbb{R}^3, which we also use as local flat coordinates on T^3. Now assume that $\Sigma \subset T^3$ is a closed (immersed) oriented surface of genus g with induced metric and let (u, v) be local isothermal coordinates on Σ. It is well-known that the (conformal class of) induced metric on Σ determines a complex structure on Σ and $z = u + iv$ is a local holomorphic coordinate. The metric on Σ can be expressed as

$$ds^2 = \rho(u, v)(du^2 + dv^2) = \rho(z, \bar{z})dz d\bar{z}.$$

In other words,

$$\left(\frac{\partial x}{\partial u}, \frac{\partial x}{\partial u} \right) = \left(\frac{\partial x}{\partial v}, \frac{\partial x}{\partial v} \right) = \rho \quad \text{and} \quad \left(\frac{\partial x}{\partial u}, \frac{\partial x}{\partial v} \right) = 0,$$

where $\langle \cdot, \cdot \rangle$ is the ambient metric on T^3. Moreover we can write down the Kähler form $\tilde{\omega}$ as

$$\tilde{\omega} = \rho(u, v)du \wedge dv = \frac{i \rho(z, \bar{z})}{2}dz d\bar{z}.$$

Locally, define

$$\phi = (\phi_1, \phi_2, \phi_3) = \frac{\partial}{\partial z}(x_1, x_2, x_3) = \frac{1}{2} \left(\frac{\partial}{\partial u} - i \frac{\partial}{\partial v} \right)(x_1, x_2, x_3).$$

The isothermal condition implies that

$$\phi_1^2 + \phi_2^2 + \phi_3^2 = 0.$$

It is a well-known result that Σ is a minimal surface if and only if ϕ is holomorphic, or equivalently, $x = (x_1, x_2, x_3)$ is harmonic with respect to the Laplace-Beltrami operator

$$\Delta = \frac{1}{\rho} \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) = \frac{4}{\rho} \frac{\partial^2}{\partial z \partial \bar{z}}$$

on Σ. Notice that for any smooth function u on Σ, we have

$$2i \partial \bar{\partial} u = \Delta u \cdot \tilde{\omega}.$$

Now let us assume that Σ is minimal and denote by Q the Fermat quadric

$$Q = \{ [\phi_1 : \phi_2 : \phi_3] \in \mathbb{CP}^2 : \phi_1^2 + \phi_2^2 + \phi_3^2 = 0 \}.$$
Therefore we get a map \(\nu: \Sigma \to Q \) given by
\[
z = u + iv \mapsto [\phi_1(z) : \phi_2(z) : \phi_3(z)],
\]
which is a globally defined holomorphic map and it does not depend on the choice of local isothermal coordinates. This is known as the tangential Gauss map.

A simple genus calculation indicates that \(Q \) is biholomorphic to \(\mathbb{CP}^1 \). Let \(\mathcal{O}(1) \) be the positive generator of the Picard group of \(Q \) and let \(H \) be the hyperplane line bundle on \(\mathbb{CP}^2 \). It is easy to see that
\[
H|_Q \cong \mathcal{O}(2).
\]
Moreover each \(\phi_j \) can be thought of as a section of \(H \), which corresponds to a globally defined holomorphic 1-form \(\mu_j = \phi_j dz \) on \(\Sigma \). From this, we see that
\[
\nu^* H \cong K_\Sigma,
\]
in other words, \((\Sigma, \nu)\) is a vanishing spinorial pair.

In fact, an explicit identification \(g: \mathbb{CP}^1 \to Q \) can be constructed as follows
\[
[z_1 : z_2] \mapsto [\phi_1 : \phi_2 : \phi_3] = [2z_1 z_2 : z_1^2 - z_2^2 : -i(z_1^2 + z_2^2)].
\]
Write \(\zeta = z_2/z_1 \), then
\[
\zeta = \frac{\phi_2 + i\phi_3}{\phi_1} = -\frac{\phi_1}{\phi_2 - i\phi_3}.
\]
Through the stereographic projection (4), it follows that the composition \(\varphi = g^{-1} \circ \nu: \Sigma \to \mathbb{CP}^1 = S^2 \) is exactly the classical Gauss map given by the unit normal vector field. Moreover, the Gauss-Bonnet Theorem tells us that \(\varphi: \Sigma \to \mathbb{CP}^1 \) is of degree \(g - 1 \).

According to the work of Meeks [20] and Traizet [32], for every \(g \geq 3 \), there exist minimal surfaces of genus \(g \) in \(T^3 \). Conversely, it is an easy exercise in algebraic geometry that the existence of vanishing spinorial pair implies that the genus is at least three.

A pair \((\Sigma, \varphi)\) with pullback condition is not so far from being minimal. It turns out that (7) provides the Weierstrass data for the universal cover of \(\Sigma \) to be minimally immersed into \(\mathbb{R}^4 \) such that its Gauss map is given by \(\varphi \) itself. In this sense, we may think of \((\Sigma, \varphi)\) with pullback condition satisfied as “minimal surfaces in \(T^{3\sigma} \)” without solving the period problem.

2.3 Derivation of the Equation

Starting from a vanishing spinorial pair \((\Sigma, \varphi)\), we can construct a compact non-Kähler Calabi-Yau 3-fold \(X \) as described in Subsection 2.1. Now let us consider solving the Strominger system on \(X \), following the procedure and calculations given in [5, 7].

We start with the conformally balanced equation (3). Identifying \(\mathbb{CP}^1 \) with \(Q \), we obtain a holomorphic map
\[
g \circ \varphi: \Sigma \to Q
\]
such that
\[
(g \circ \varphi)^*(H|_Q) \cong K_\Sigma.
\]
By pulling back \(\phi_1, \phi_2 \) and \(\phi_3 \) as sections of \(H|_Q \), we get holomorphic 1-forms \(\mu_1, \mu_2 \) and \(\mu_3 \) on \(\Sigma \) such that
\[
\mu_1^2 + \mu_2^2 + \mu_3^2 = 0
\]
and that the linear system spanned by $\{\mu_j\}_{j=1}^3$ is basepoint-free. As is known in the literature relating to Theorem 2.1(c), one can check that

$$\Omega = \mu_1 \wedge \omega_I + \mu_2 \wedge \omega_J + \mu_3 \wedge \omega_K$$

is a nowhere vanishing holomorphic $(3,0)$-form on X. Indeed, using local coordinates z on Σ and $\zeta = z_2/z_1$ on $\mathbb{C}P^1$, we have the local expression

$$\Omega = 2 \varphi \, dz \wedge \omega_I + (\varphi^2 - 1) \, dz \wedge \omega_J - i(1 + \varphi^2) \, dz \wedge \omega_K.$$

A similar expression arises using $\xi = z_1/z_2$ on $\mathbb{C}P^1$. A computation shows that $\Omega(\partial_z, v, x + iJ_0 x) = 0$ for all $v, x \in T M$.

Next, the expression

$$\hat{\omega} = i(\mu_1 \wedge \bar{\mu}_1 + \mu_2 \wedge \bar{\mu}_2 + \mu_3 \wedge \bar{\mu}_3)$$

defines a Kähler metric on Σ. Using local coordinates z on Σ and $\zeta = z_2/z_1$ on $\mathbb{C}P^1$, we have

$$\hat{\omega} = 2(1 + \varphi^2)^2 i \, dz \wedge d\bar{z}.$$

A direct calculation reveals that the Gauss curvature κ of $\hat{\omega}$ is given by

$$-\kappa \hat{\omega} = i \partial \bar{\partial} \log \rho = \varphi^* \omega_{FS}.$$

Since $\varphi^* \omega_{FS} = \|\nabla \varphi\|^2 \hat{\omega}$, we obtain that

$$\|\nabla \varphi\|^2 = -2\kappa,$$

hence $\hat{\omega}$ has non-positive Gauss curvature.

If we add in the hyperkähler fiber metrics of the fibration $p : X \to \Sigma$, we get a natural Hermitian metric

$$\omega_0 = \hat{\omega} + \alpha \omega_I + \beta \omega_J + \gamma \omega_K$$

on X. By definition,

$$\|\Omega\|_{\omega_0}^3 = \theta \wedge \bar{\theta} / 3!.$$

We know that $\|\Omega\|_{\omega_0}$ is a constant by its design since

$$\omega_0^3 = 6 \hat{\omega} \wedge \text{vol}_M, \quad i \Omega \wedge \bar{\Omega} = 2 \hat{\omega} \wedge \text{vol}_M.$$

Here vol_M is the volume form of (M, g). Furthermore, the balanced condition

$$d(\omega_0^2) = 0$$

holds as well, therefore ω_0 solves the conformally balanced equation (3).

Let $f : \Sigma \to \mathbb{R}$ be any smooth function on Σ, and define the Hermitian metric

$$\omega_f = e^{2f} \hat{\omega} + e^f (\alpha \omega_I + \beta \omega_J + \gamma \omega_K)$$

on X. For convenience of notation, we write

$$\omega' = \alpha \omega_I + \beta \omega_J + \gamma \omega_K,$$

whose exterior derivative is given by

$$d\omega' = d\alpha \wedge \omega_I + d\beta \wedge \omega_J + d\gamma \wedge \omega_K.$$
An elementary calculation indicates that
\[
\|\Omega\|_{\omega_f} = e^{-2f}\|\Omega\|_{\omega_0},
\]
\[
\|\Omega\|_{\omega_f} \omega_f^2 = 2(e^f - 1)\|\Omega\|_{\omega_0}\bar{\omega} \land \omega' + \|\Omega\|_{\omega_0}\omega_0^2
\]
and hence \(\omega_f = e^{2f}\bar{\omega} + e^f\omega'\) solves the conformally balanced equation (3) for arbitrary \(f\).

We now consider the anomaly cancellation equation (2). The idea is the following: first we compute the curvature term \(\text{Tr}(R_f \land R_f)\) with respect to the ansatz metric \(\omega_f\) and then fix a gauge bundle which solves the Hermitian Yang-Mills equation (1). We then choose \(f\) to solve the anomaly cancellation equation. The calculation of the curvature term is essentially the same as we did in [5]. The result is

\[
\text{Tr}(R_f \land R_f) = i\partial\bar{\partial} \left(\frac{\|\nabla \varphi\|^2}{e^f} \omega' \right) + \text{Tr}(R' \land R'),
\]

where \(\|\nabla \varphi\|^2 = -2\kappa\) is with respect to \(\bar{\omega}\) and \(R'\) is the curvature form of the relative cotangent bundle \(\Omega_{X/\Sigma}\) with respect to the metric induced from \(\omega_0\). Therefore the \(\text{Tr}(R' \land R')\)-term can be cancelled by the curvature term from the gauge bundle, and the anomaly cancelation equation (2) reduces to

(10) \[
i\partial\bar{\partial} \left(e^f + \frac{\alpha' \kappa}{2e^f} \right) \omega' = 0.
\]

This choice of gauge bundle makes sense since the relative cotangent bundle solves the Hermitian Yang-Mills equation (1) automatically for arbitrary \(\omega_f\). Roughly speaking this is because the fiber metrics of \(p : X \rightarrow \Sigma\) are hyperkähler, and we refer to [5] for more details.

Remark 2.3.

In the case that \(M\) is a flat \(T^4\), the term \(\text{Tr}(R' \land R')\) disappears [7]. In particular we may use any flat vector bundle as our gauge bundle.

Notice that \(u = e^f + \frac{\alpha' \kappa}{2e^f}\) is a function depending only on \(\Sigma\), and we want to solve

\[
i\partial\bar{\partial}(u\omega') = i\partial\bar{\partial}u \land \omega' + i\bar{\partial}u \land \bar{\partial}\omega' - i\bar{\partial}u \land \partial\omega' + u \cdot i\partial\bar{\partial}\omega' = 0.
\]

Direct calculation shows that

\[
\partial\omega' = \partial\alpha \land \omega_I + \partial\beta \land \omega_J + \partial\gamma \land \omega_K,
\]
\[
\bar{\partial}\omega' = \partial\alpha \land \omega_I + \bar{\partial}\beta \land \omega_J + \bar{\partial}\gamma \land \omega_K,
\]
\[
i\bar{\partial}\partial\omega' = -i\bar{\partial}\partial\alpha \land \omega_I - i\bar{\partial}\partial\beta \land \omega_J - i\bar{\partial}\partial\gamma \land \omega_K.
\]

The decomposition of \(d\omega'\) (9) into its (2, 1) and (1, 2) parts can be seen by acting with the complex structure \(J_0\) and using the following identities

\[
J_0\omega_I = (2\alpha^2 - 1)\omega_I + 2\alpha\beta\omega_J + 2\alpha\gamma\omega_K,
\]
\[
J_0\omega_J = (2\beta^2 - 1)\omega_J + 2\beta\alpha\omega_I + 2\beta\gamma\omega_K,
\]
\[
J_0\omega_K = (2\gamma^2 - 1)\omega_K + 2\gamma\alpha\omega_I + 2\gamma\beta\omega_J,
\]
\[0 = \alpha\bar{\partial}\alpha + \beta\bar{\partial}\beta + \gamma\bar{\partial}\gamma.
\]

Next, a computation shows that \(\alpha, \beta\) and \(\gamma\) all satisfy the equation

\[
i\partial\bar{\partial}v - \kappa v\bar{\omega} = 0,
\]
i.e., they live in the kernel of the operator $-\Delta + 2\kappa$. Therefore

$$i\partial\bar{\partial}\omega' = -\kappa\tilde{\omega} \wedge \omega'$$

and the anomaly cancellation equation (2) is further reduced to

$$-\Delta u + 2\kappa u = 0.$$ \hspace{1cm} (12)

In conclusion, we have demonstrated that to solve the full Strominger system on generalized Calabi-Gray manifolds, we may use the ansatz (8) and the whole system reduces to a quadratic algebraic equation and a linear PDE on Σ:

$$\begin{cases}
e^f + \frac{\alpha'\kappa}{2\rho_f} = u, \\
\Delta u - 2\kappa u = 0.
\end{cases} \hspace{1cm} (13)$$

In particular, we get a smooth solution if and only if we can find a function u in the kernel of the operator $-\Delta + 2\kappa$ such that u is positive at all ramification points of φ. Consequently the solvability of the Strominger system on X is closely related to spectral properties of the operator $-\Delta + 2\kappa = -\Delta - \|\nabla \varphi\|^2$ on Σ, which we shall explore in the next subsection. It is also clear that there are no solutions to the Strominger system using our ansatz if $\alpha' \leq 0$.

A byproduct of the above calculation is the following statement:

Corollary 2.4.

A generalized Calabi-Gray manifold X does not admit any pluriclosed metrics.

Proof. Suppose ω_1 is a pluriclosed metric on X, that is, ω_1 is a positive $(1,1)$-form such that $i\partial\bar{\partial}\omega_1 = 0$. Let us consider the integral

$$\int_X \omega_1 \wedge i\partial\bar{\partial}\omega'.$$

On one hand, by integration by part, this integral vanishes. On the other hand, $i\partial\bar{\partial}\omega' = -\kappa\tilde{\omega} \wedge \omega'$ is positive away from a set of measure zero, hence we get a contradiction.

This corollary generalizes a result in [7].

2.4 Solutions

In the previous section we manifested that the solvability of the Strominger system on generalized Calabi-Gray manifolds is closely related to the spectral property of the operator $-\Delta + 2\kappa = -\Delta - \|\nabla \varphi\|^2$. In fact, this operator falls into the larger class of Schödinger operators associated with holomorphic maps from Riemann surfaces to complex manifolds as below.

Let $\varphi : \Sigma \to N$ be a holomorphic map from a compact Riemann surfaces to a complex manifold. By fixing a Hermitian metric on N and choosing a metric $\hat{\omega}$ on Σ, it makes sense to talk about the Schödinger operator

$$L_{\varphi} = -\Delta - \|\nabla \varphi\|^2$$

on Σ. Here, Δ is the Laplace-Beltrami operator associated to $\tilde{\omega}$, and the norm $\|\nabla \varphi\|$ is measured with respect to the chosen metrics on both domain and target. Clearly, L_{φ} is a self-adjoint operator on the Sobolev space $W_1(\Sigma)$ with respect to the L^2-norm. The associated quadratic form is

$$Q_{\varphi}(u, v) = \int_{\Sigma} (\nabla u \cdot \nabla v - \|\nabla \varphi\|^2 uv) \tilde{\omega}.$$
Since the domain has real dimension two, this quadratic form is conformally invariant. Therefore, the kernel of L_{φ} and the number $\text{Ind} L_{\varphi}$ of negative eigenvalues of L_{φ}, known as the index, do not depend on the choice of the metric ω.

For example, if φ is the (extended) Gauss map of a minimal surface Σ in flat 3-space, then $L_{\varphi} = -\Delta + 2\kappa$ is the Jacobi operator, or the stability operator of the minimal surface, which comes from the second variation of the area functional. As mentioned in [22], this operator also shows up naturally in the study of Willmore surfaces and Polyakov quantum string theory. Throughout this paper, the target N is always the projective line \mathbb{CP}^1 equipped with the Fubini-Study metric (5).

Now let $\varphi : \Sigma \to \mathbb{CP}^1$ be a nonconstant holomorphic map. We would like to understand the space $\text{ker} L_{\varphi}$. By the stereographic projection (4), we may think of $\varphi = (\alpha, \beta, \gamma)$ as a map into \mathbb{R}^3. It is easy to check that α, β and γ live in the kernel of L_{φ}, therefore

$$\dim \text{ker} L_{\varphi} \geq 3.$$

Let V_{φ} denote the 3-dimensional space spanned by α, β and γ. Montiel and Ros [22] showed that the space $\text{ker} L_{\varphi}/V_{\varphi}$ is in 1-1 correspondence to complete branched minimal immersions into \mathbb{R}^3 with finite total curvature and planar ends (up to translation) such that its extended Gauss map is φ. However, it seems that in general we do not know how to compute $\text{ker} L_{\varphi}$ and there are examples that $\dim L_{\varphi}$ is strictly greater than 3. For this reason, to solve the reduced the Strominger system (13) on generalized Calabi-Gray manifolds, let us consider only the case $u \in V_{\varphi}$. In this scenario, the condition that u is positive at all ramification points of φ is equivalent to that the branched points of φ on \mathbb{CP}^1 all lie in an open hemisphere, which we abbreviate as the “hemisphere condition”. Clearly if (Σ, φ) satisfies the hemisphere condition and $\tau : \tilde{\Sigma} \to \Sigma$ is an unramified covering of Riemann surfaces, then $(\tilde{\Sigma}, \varphi \circ \tau)$ also satisfies the hemisphere condition.

Given any vanishing spinorial pair (Σ, φ), we may make the hemisphere condition holds by composing φ with a suitable automorphism of \mathbb{CP}^1, since there exist Möbius transformations on \mathbb{CP}^1 pushing all points on the south hemisphere to the north hemisphere. As a consequence, there exist vanishing spinorial pairs satisfying the hemisphere condition for every genus $g \geq 3$ and the moduli of curves with vanishing spinorial pairs satisfying the hemisphere condition is exactly the moduli of curves with basepoint-free theta characteristics, which roughly forms a divisor in the moduli space of curves [31]. However it seems unknown that whether there exists or not a minimal surface in T^3 with its Gauss map satisfying the hemisphere condition. The hemisphere condition fails for the 5-dimensional family of triply periodic minimal surfaces constructed by Meeks [20].

Summarizing our previous results, we have proved that

Theorem 2.5.

Let (Σ, φ) be a vanishing spinorial pair with the hemisphere condition satisfied, then we may construct explicit solutions to the Strominger system on the associated generalized Calabi-Gray manifold X. In fact, we get a family of such solutions of real dimension of $\dim \text{ker} L_{\varphi} \geq 3$. As a consequence, for every genus $g \geq 3$, there exist smooth solutions to the Strominger system on genus g generalized Calabi-Gray manifolds. They have infinitely many distinct topological types and sets of Hodge numbers.

The genus $g = 3$ case is of particular interest. Assuming that Σ is of genus 3 and (Σ, φ) a vanishing spinorial pair, then clearly $\varphi : \Sigma \to \mathbb{CP}^1$ is of degree 2, therefore Σ is hyperelliptic. In this case, the map $\varphi : \Sigma \to \mathbb{CP}^1$ is a double covering branched over 8 points on \mathbb{CP}^1. Conversely, from any 8 distinct points on \mathbb{CP}^1, one can construct a double covering $\varphi : \Sigma \to \mathbb{CP}^1$ branched over them. By Riemann-Hurwitz, such Σ’s are hyperelliptic genus 3 curves. In addition, the pullback condition $\varphi^* \mathcal{O}(2) = K_{\Sigma}$ is automatically satisfied. Therefore we can construct vanishing spinorial pairs satisfying the hemisphere condition on any hyperelliptic genus 3 curve, hence solving the Strominger system.

It is also worth pointing out that Theorem 2.5 can be strengthen to an “if and only if” statement for the genus 3 case. This is because that when genus is 3 and $\varphi : \Sigma \to \mathbb{CP}^1$ the hyperelliptic covering, there exists...
the hyperelliptic involution ι on Σ commuting with φ. Since ι is an isometry of $\hat{\omega}$, it also acts on the space $\ker L_\varphi$. Consequently $\ker L_\varphi$ breaks up into eigenspaces of ι with eigenvalue 1 and -1:

$$\ker L_\varphi = V_1 \oplus V_{-1}.$$

The eigenspace V_1 of eigenvalue 1 consists of functions pulling back from \mathbb{CP}^1, hence we have

$$V_1 = V_\varphi,$$

since functions in V_1 have to be the first eigenfunctions of the spherical Laplacian on \mathbb{CP}^1. On the other hand ι acts as -1 on V_{-1}, therefore for any function in V_{-1}, it must vanish on the fixed points of ι, i.e., the ramification points of φ, hence we cannot use functions in V_{-1} to produce smooth solutions of the Strominger system. So we have proved

Corollary 2.6.

Suppose Σ has genus 3 and let (Σ, φ) be a vanishing spinorial pair. Using our ansatz, the Strominger system has a smooth solution if and only if (Σ, φ) satisfies the hemisphere condition.

2.5 Geometric Consequences of the Hemisphere Condition

Though the hemisphere condition is trivial for algebraic geometry, it has nontrivial consequences in differential geometry. In this subsection, we prove a simple result regarding the index of the operator $-\Delta - \|\nabla \varphi\|^2$ mentioned in Subsection 2.4.

Let $\varphi : \Sigma \to \mathbb{CP}^1$ be a holomorphic map from a compact Riemann surface to the projective line. Fix the Fubini-Study metric on \mathbb{CP}^1. As we have seen, the index $\text{Ind} L_\varphi$, i.e., the number of negative eigenvalues of the operator $-\Delta - \|\nabla \varphi\|^2$, does not depend on the choice of the metric on Σ. Moreover, we have the following estimates

Theorem 2.7. (Tysk [33])

$$\text{Ind} L_\varphi \leq 7.68183 \cdot \deg \varphi.$$

Theorem 2.8. (Grigor’yan-Netrusov-Yau [15])

$$\text{Ind} L_\varphi \geq C \cdot \deg \varphi$$

for some absolute constant C.

Assuming the hemisphere condition, we can derive

Proposition 2.9.

If the branched points of φ in \mathbb{CP}^1 all lie in an open hemisphere, then we have the estimate

$$\text{Ind} L_\varphi \geq \deg \varphi.$$

Proof. As mentioned in Subsection 2.4, the index $\text{Ind} L_\varphi$ does not depend on the choice of metrics on Σ. In particular, we may use the singular metric $\omega_\varphi := \varphi^* \omega_{FS}$ to calculate $\text{Ind} L_\varphi$, because the eigenvalues of the corresponding operator

$$-\Delta_\varphi + \|\nabla_\varphi\|^2_{\omega_\varphi} = -\Delta_\varphi + 2$$

can still be defined by variational characterization [33], where Δ_φ is the singular Laplace-Beltrami operator associated to ω_φ. Consequently we only need to estimate the number of eigenvalues of $-\Delta_\varphi$ less than 2.

Without loss of generality, we may assume all branched points of φ lie in the south hemisphere S. Let N be the north hemisphere, then we know that $\varphi^{-1}(N)$ consists of $\deg \varphi$ copies of disks and $\varphi^{-1}(S)$ is a connected compact Riemann surface with $\deg \varphi$ copies of S^1 as its boundary. Applying [22, Lemma 12] to this decomposition of Σ, and using the counting result from [22, Lemma 11(b)], we prove the proposition. \square
Remark 2.10.
The hemisphere condition is necessary for the above proposition, otherwise we have the counterexample due to Ross [29], where he showed that the Schwarz’ P and D surfaces (genus 3 minimal surfaces in flat T^3) have $\text{Ind } L_\varphi = 1$.

References

[1] M.F. Atiyah. Riemann surfaces and spin structures. *Annales Scientifiques de l’École Normale Supérieure*, 4(1):47–62, 1971.

[2] M.F. Atiyah, N.J. Hitchin, and I.M. Singer. Self-duality in four-dimensional Riemannian geometry. *Proceedings of the Royal Society of London A*, 362(1711):425–461, 1978.

[3] E. Calabi. Construction and properties of some 6-dimensional almost complex manifolds. *Transactions of the American Mathematical Society*, 87(2):407–438, 1958.

[4] P. Candelas, G.T. Horowitz, A. Strominger, and E. Witten. Vacuum configurations for superstrings. *Nuclear Physics B*, 258(1):46–74, 1985.

[5] T. Fei. Some torsional local models of heterotic strings. *arXiv: 1508.05566*, 2015.

[6] T. Fei. Stable forms, vector cross products and their applications in geometry. *arXiv: 1504.02807*, 2015.

[7] T. Fei. A construction of non-Kähler Calabi-Yau manifolds and new solutions to the Strominger system. *Advances in Mathematics*, 302:529–550, 2016.

[8] T. Fei. *On the geometry of the Strominger system*. PhD thesis, Massachusetts Institute of Technology, 2016.

[9] T. Fei and S.-T. Yau. Invariant solutions to the Strominger system on complex Lie groups and their quotients. *Communications in Mathematical Physics*, 338(3):1–13, 2015.

[10] M. Fernández, S. Ivanov, L. Ugarte, and R. Villacampa. Non-Kähler heterotic string compactifications with non-zero fluxes and constant dilaton. *Communications in Mathematical Physics*, 288(2):677–697, 2009.

[11] J.-X. Fu and S.-T. Yau. A Monge-Ampère-type equation motivated by string theory. *Communications in Analysis and Geometry*, 15(1):29–76, 2007.

[12] J.-X. Fu and S.-T. Yau. The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation. *Journal of Differential Geometry*, 78(3):369–428, 2008.

[13] G. Grantcharov. Geometry of compact complex homogeneous spaces with vanishing first Chern class. *Advances in Mathematics*, 226(4):3136–3159, 2011.

[14] A. Gray. Vector cross products on manifolds. *Transactions of the American Mathematical Society*, 141:465–504, 1969.

[15] A. Grigor’yan, Y. Netrusov, and S.-T. Yau. Eigenvalues of elliptic operators and geometric applications. In *Eigenvalues of Laplacians and Other Geometric Operators*, volume 9 of *Surveys in Differential Geometry*, chapter Eigenvalues of elliptic operators and geometric applications, pages 147–218. International Press, 2004.
[16] N.J. Hitchin. Kählerian twistor spaces. *Proceedings of the London Mathematical Society. Third Series*, 43(1):133–150, 1981.

[17] N.J. Hitchin, A. Karlhede, U. Lindström, and M. Roček. Hyperkähler metrics and supersymmetry. *Communications in Mathematical Physics*, 108(4):535–589, 1987.

[18] C.M. Hull. Compactifications of the heterotic superstring. *Physics Letters B*, 178(4):357–364, 1986.

[19] J. Li and S.-T. Yau. The existence of supersymmetric string theory with torsion. *Journal of Differential Geometry*, 70(1):143–181, 2005.

[20] W.H. Meeks III. The theory of triply periodic minimal surfaces. *Indiana University Mathematics Journal*, 39(3):877–936, 1990.

[21] M.-L. Michelsohn. On the existence of special metrics in complex geometry. *Acta Mathematica*, 149(1):261–295, 1982.

[22] S. Montiel and A. Ros. *Global Differential Geometry and Global Analysis*, volume 1481 of *Lecture Notes in Mathematics*, chapter Schrödinger operators associated to a holomorphic map, pages 147–174. 1991.

[23] O.K. Muškarov. Almost Hermitian structures on twistor spaces and their type. *Atti del Seminario Matematico e Fisico dell’Università di Modena*, 37:285–297, 1989.

[24] A. Otal, L. Ugarte, and R. Villacampa. Invariant solutions to the Strominger system and the heterotic equations of motion on solvmanifolds. *arXiv:1604.02851*, 2016.

[25] D.H. Phong, S. Picard, and X.-W. Zhang. Geometric flows and Strominger systems. *arXiv:1508.03315*, 2015.

[26] D.H. Phong, S. Picard, and X.-W. Zhang. The anomaly flow and the Fu-Yau equation. *arXiv:1610.02740*, 2016.

[27] D.H. Phong, S. Picard, and X.-W. Zhang. Anomaly flows. *arXiv:1610.02739*, 2016.

[28] D.H. Phong, S. Picard, and X.-W. Zhang. The Fu-Yau equation with negative slope parameter. *Inventiones Mathematicae*, pages 1–36, 2016.

[29] M. Ross. Schwarz’ P and D surfaces are stable. *Differential Geometry and Its Applications*, 2(2):179–195, 1992.

[30] A.E. Strominger. Superstrings with torsion. *Nuclear Physics B*, 274(2):253–284, 1986.

[31] M. Teixidor i Bigas. Half-canonical series on algebraic curves. *Transactions of the American Mathematical Society*, 302(1):99–115, 1987.

[32] M. Traizet. On the genus of triply periodic minimal surfaces. *Journal of Differential Geometry*, 79(2):243–275, 2008.

[33] J. Tysk. Eigenvalue estimates with applications to minimal surfaces. *Pacific Journal of Mathematics*, 128(2):361–366, 1987.

[34] S.-T. Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. *Communications on Pure and Applied Mathematics*, 31(3):339–411, 1978.