A karyomorphological study in *Ledebouria crispa*, Asparagaceae

Shuichi Hamatani

Hiroshima Botanical Garden, Saeki, Hiroshima 731-5156, Japan

Author for correspondence: (hamasyu@ma6.seikyou.ne.jp)

Received June 10, 2017; accepted August 1, 2017

ABSTRACT: A karyomorphological study was made in *Ledebouria crispa* S.Venter (Asparagaceae). The chromosomes at resting stage were classified as the diffuse type, while those at mitotic prophase were classified as the continuous type. The chromosome number was 2n = 36 reported here for the first time. The 36 chromosome sets at mitotic metaphase showed gradual decrease in size from the longest to the shortest chromosomes and they showed symmetric karyotype due to arm ratio with 34m+2sm. Thus, the 18 pairs of chromosomes classified were comprised from two similar chromosomes and thus, it was concluded as a diploid.

KEYWORDS: Asparagaceae, Chromosomes, Karyomorphological study, *Ledebouria crispa*

Ledebouria Roth is a genus distributed in India, Madagascar, and sub-Saharan Africa, mainly southern Africa (Manning et al. 2002). This genus is concluded in the family of Asparagaceae, and the species of the genus show deciduous or weakly evergreen perennials and have bulbs. Fifty-three accepted species were reported as this genus (The Plant List 2013). The chromosome numbers of the 20 species of *Ledebouria* reported up to the present were 2n = 16, 20, 22, 24, 26, 28, 30, 34, 38, 40, 44, 45, 46, 48, 55, 58, 60, 64, 66, 68 and 70 (Raghavan and Venkatasubban 1940a, b; Sheriff and Murthy 1946; Delay 1947; Rao 1954, 1956; De Wet 1957; Giménez-Martin 1959; Fernandez and Neves 1962; Mahalakshma and Sheriff 1970; Sharma 1970; Ratter and Miline 1973; Sen 1973a, b; Gill 1978; Sheriff 1979; Sarkar et al. 1980; Valdes-Bermejo 1980; Sheriff and Rao 1981; Subramanian 1981; Vij et al. 1982; Chakraborty and Sen 1983; Vijayavalli and Mathew 1988, 1990; Dixit et al. 1989; Naik 1989; Chakravarty and Sen 1992; Venter 1993; Stedje 1996; Johnson and Brandham 1997; Sheeba and Vijayavalli 1998; Chala 2006; Wetschnig et al. 2007; Haque and Ghosh 2015; Rahangdale and Rahangdale 2016).

Ledebouria crispa S. Venter was recorded from Northern Province (the name was changed from Limpopo Province) by Venter and Edwards (1998). This species is highly localized yet, and is probably the one with the most undulate leaves in the genus *Ledebouria* (Hankey 2016). No chromosome data has been documented in *L. crispa*. Thus, the karyomorphological study in *L. crispa* was here made for the first time.

MATERIALS AND METHODS
The plants (Fig. 1A) used for the observation were introduced from a nursery located in Osaka Pref., Japan. Somatic chromosomes were observed in growing root tips by the aceto-orcein squash method as in Hamatani et al. (1998). Root tips were harvested and pretreated in 2 mM 8-hydroxyquinoline at 20°C for 2 hrs. before they were fixed in the 3 : 1 ethanol and Acetic acid at ca 10°C for 10 min and stored at below freezing temperature for a few days. Then, they were macerated in the 1:1 mixture of 45% acetic acid and 1 N hydrochloric acid at ca 60°C for 1 min. They were then, stained and squashed in 2% aceto-orcein.

The resting nuclei and somatic prophase chromosomes were classified according to Tanaka (1980) and those on mitotic metaphase chromosomes by centromeric position according to Levan et al. (1964).

RESULTS
The results of the observations on chromosome are described in Fig. 1B-E.

The chromosomes in the resting stage showed diffuse type (Fig. 1B). And, the chromosomes in the mitotic prophase showed continuous type (Fig. 1C).

The chromosome number was 2n = 36 (Fig. 1D, E). It was reported for the first time.

On the mitotic metaphase, the 36 chromosomes showed gradual decrease in size from the longest to the shortest (Fig. 1E). And it showed symmetric karyotype due to arm ratio with 34m+2sm. All chromosomes were classified in 18 pairs each were comprised from two similar chromosomes, then it was decided as a diploid.

DISCUSSION
On genus *Ledebouria*, chromosome number of 2n = 38 was not reported. On the other hand, Jessop (1970) reported n = 18 or 19 on *L. floribunda*, and Jessop (1972) reported n = 18 on *L. concolor* on the meiosis cells.
On genus *Ledebouria*, detail researches were held on *L. revoluta*. 2n = 20, 22, 26, 30, 38, 40, 44, 45, 46, 58, 60, 64, 68 were reported as the chromosome number of of *L. revoluta* (Raghavan and Venkatasubban 1940a, b; Sheriff and Murthy 1946; Rao 1954; Ratter and Milne 1973; Sen 1973a, b; Sheriff 1979; Sarkar et al. 1980; Valdes-Bermejo 1980; Sheriff and Rao 1981; Subramanian 1981; Chakraborti & Sen 1983; Vijayavalli and Mathew 1988, 1990; Dixit et al., 1989; Nair 1989; Chakravarty and Sen 1992; Stedje 1996; Johnson and Brandham 1997; Sheeba and Vijayavalli 1998; Haque and Ghosh 2015), this species has a large variation of the chromosome number. And n = 10, 11, 17 and 30 were reported on *L. floribunda* (Jessop 1972) which was reported n = 18 or 19 (Jessop 1970), this species also showed a large variation on the chromosome number.

L. floribunda and *L. revoluta* are the species which have wide distribution area in genus *Ledebouria*, and they have a habitat near the distribution area of *L. crispa* which is a quite endemic species (Venter 2008). Meanwhile, Venter (2008) suggested that *L. crispa* and *L. undulata* were closely related each other. About the chromosome number of *L. undulata*, Giménez-Martin (1959) reported as 2n = 30. I wish to have chances to research the karyotypes of *L. floribunda*, *L. revoluta*, *L. undulata*, and so on, and to compare with it of *L. crispa*, in the future.

LITERATURE CITED

Chakraborti, S. P. and Sen, S. 1983. Chromosomal changes in the scale leaf callus of diploid *Scilla indica*. Proc. Indian Acad. Sci., B 49: 120–124.

Chakravarty, B. & Sen, S. 1992. Chromosomes and nuclear DNA in regenerants of *Scilla indica* (Roxb.) Baker derived from two explant sources. Cytologia 57: 41–46.

Chala, D. 2006. Morphological and chromosome cytological studies of *Ledebouria Roth* and *Drimiopsis Lindl*. and Paxt. (Hyacinthaceae) in Ethiopia. Thesis. Adis Ababa Univ.

De Wet, J. M. J. 1957. Chromosome numbers in *Scilleae*. Cytologia 22: 145-159.

Delay, C. 1947. Recherches sur la structure des noyaux quiestes chez les Phanérogames. Revue Cytologique et Cytophysiologique Végétale 9: 169-222.

Dixit, G. B., S. R. Yadav & C. B. Salunkhe. 1989. Cytomorphological studies in *Scilla hyacinthiana* (Roth.) Macbr. complex from Maharashtra. Glimpses Cytogenet. India 2: 124–134.

Fernandez, A. and Neves, J. B. 1962. Sur la caryologie de quelque Monocotylédones africains. Compte Rendu de la IVe Réunion plénière de l’association pour l’étude taxonomique de la flore d’Afrique tropicale, Lisboa. pp.430-463.

Gill, L. S. 1978. Chromosome numbers in angiosperms in *Tanzania*. II. *Adansonia*: 18,19-24.

Giménez-Martin, G. 1959. Numero cromosomico een especies de *Scilla*. Genetica Iberica 11: 1-297.

Hamatani, S., Hashimoto, K. and Kondo, K. 1998. A comparison of somatic chromosomes at mitotic metaphase in *Lachenalia* (Liliaceae). Chrom. Sci 2: 21-25.

Hankey, A. 2016. *Ledebouria crispa*. In *Plantz Africa.com*. http://pza.sanbi.org/ledebouria-crispa.
Haque, Sk. M. and Ghosh, B. 2015. Cytological studies of sporophytic and gametophytic generation of two bulbaceous species Ledebouria revoluta and Drimiopea botryoides (Asparagaceae). Caryologia 69(1): 38-49.

Jessop, J. P. 1970. Studies in the bulbous Liliaceae: 1. Scilla, Schizocarphus and Ledebouria. Journal of South African Botany 36: 233-266.

Jessop, J. P. 1972. Studies in the bulbous Liliaceae in South Africa: 3. The miotic chromosomes of Ledebouria. Journal of South African Botany 38: 249-259.

Johnson, M. A. T. and Brandham, P. E. 1997. New chromosome numbers in petaloid monocotyledons and in other miscellaneous angiosperms. Kew Bull. 52(1): 121–138.

Levan, A. Fredga, C. and Sandberg, A. A. 1964. Nomenclature of centromeric position on chromosomes. hereditias 52: 201-220.

Mahalakshma, N. and Sheriff, A. 1970. Karyomorphological studies in Drimiopea kirkii Baker. Proceedings of the Indian Academy of Sciences B 72: 135-137.

Manning, J., Goldblatt. P and Snijman, D. 2002. The color encyclopedia of capr bulbs. pp. 272-274.Timber Press (Portland-Cambridge).

Nair, A. S. 1989. Micropropagation of Scilla hyacinthiana (Roth) Macbride. Proc. Indian Natl. Sci. Acad., B 55: 121–124.

Raghavan, T. S. and Venkatasubban, K. R. 1940a. Studies in Indian Scilleae. III. The cytology of diploid Urginea indica Kunth. Cytologia 11: 55-70.

Raghavan, T. S. and Venkatasubban, K. R. 1940b. Studies in Indian Scilleae IV. The cytology of triploid Urginea indica Kunth. Cytologia 11: 71-92.

Rahangdale, S. S. and Rahangdale, S. R. 2016. Rediscovery, systematics and proposed red list status of Ledebouria junnaresis S. S. Rahangdale and S. R. Rahangdale nom. Nov. (Asparagaceae) - An endemic species from the Western Ghats, Maharashtra, India. Journal of Threatened Taxa 8(2):8421–8433.

Rao, Y. S. 1954. Chromosomes of Scilla hohenackeri Fisch. & Mey. Current Science 23(3): 94-95.

Rao, Y. S. 1956. Scilla indica in India. Current Science 25(5): 164-165.

Ratter, J. A. and Milne, C. 1973. Some angiosperm phylogeny: cytology. Ann. Missouri Bot. Gard. 62: 724-764.

Sarkar, A. K., DATTA, N. and Chatterjee, U. 1980. In Chromosome number reports LXVII. Taxon 29: 360–361.

Sen, S. 1973a. Structural hybridity intra-and interspecific level in Liliales. Folia Biol. (Cracow) 21: 83-197.

Sen, S. 1973b. Polysomaty and its significance in Liliales. Cytologia 38: 737-751.

Sharma, A. K. 1970. Annual Report, 1967-1968. Res. Bull. 2. Univ. Calcutta (Cyto genetic Lab.), pp. 50.

Sheeba, M. J. and Vijayavalli, B. 1998. Cytological studies in Scilla indica. Journ. Cytol. Genet. 33(2): 189–193.

Sheriff, A. 1979. Cytogeographical studies on Scilla indica in India I–Diploids. Journ. Cytol. Genet. 14: 83–87.

Sheriff, A. and Murthy, M. H. 1946. A preliminary note on a new karyotype in Scilla indica Baker. Curr. Sci. 15(11):319.

Sheriff, A. and Rao, U. G. 1981. Cytogeographical studies on Scilla indica in India -triploids. Cytologia 46: 69–74.

Stedje, B. 1996. Karyotypes of some species of Hyacinthaceae from Ethiopia and Kenya. Nordic Journ. Bot. 16(2): 121–126.

Subramanian, D. 1981. Cytopolymorphism in Scilla indica Baker. Proc. Indian Sci. Congr. Assoc. 68 (Sect. VI): 93.

Tanaka, R. 1980. The karyotype. In Kihara, H. (ed.), Plant Genetics 1: 335-358. Shokabo Co., Tokyo (in Japanese).

The Plant List. 2013. http://www.theplantlist.org/tpl1.1/search?q =Ledebouria

Valdes-Bermejo, E. 1980. Numeros cromosomaticos de plantas occidentales, 55-63. Anales Jard. Bot. Madrid 37: 193–198.

Venter, S. 1993. A revision of the genus Ledebouria Roth (Hyacinthaceae) in South Africa. PhD Thesis, University of Natal, Pietremaritzburg.

Venter, S. 2008. Synopsis of the genus Ledebouria Roth (Hyacinthaceae) in South Africa. Herbertia 62: 85-155.

Venter, S. and Edwards, T. J. 1998. A revision of Ledebouria (Hyacinthaceae) in South Africa. 2. Two new species, L. crispa and L. parvifolia, and L. macowanii re-instated. Bothalia 28: 179-182.

Vijayavalli, B. and Mathew, P. M. 1988. Studies of south Indian Liliaceae: II. Cytology of species of four genera of the tribe Scilleae. New Bot. 15: 61–68.

Vijayavalli, B. and Mathew, P. M. 1990. Cytotax. Liliaceae Allied Fam. Continental Publishers, Kerala, India.

Vij, S. P., Sharma, M. and Chaudhary, J. D. 1982. Cytologenetical investigations into some garden ornamentals. III. Chromosomes of some monocot taxa. Cytologia 47: 649-663.

Wetschnig, W., Knirsch, W., Ali, S. S. and Pfosser, M. 2007. Systematic position of three little known and frequently misplaced species of Hyacinthaceae from Madagascar. Phytom 47: 321-337.