Thermoelectric performance of PbSnTeSe high-entropy alloys

Zhao Fan, Hui Wang, Yuan Wu, Xiongjun Liu and Zhaoping Lu

State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, People’s Republic of China

ABSTRACT
In our study, we designed the PbSnTeSe high-entropy alloy (HEA) and investigated its microstructure and thermoelectric properties. It was found that the PbSnTeSe HEA has a simple face-centered cubic structure and possesses quite low lattice thermal conductivity at low temperatures, which could be ascribed to the strong phonon scattering due to its severe lattice-distortion. Minor additions of La not only enhanced both Seebeck coefficient and electrical conductivity at high temperatures, but also suppressed the bipolar effect to some degree. Our results indicate that the HEA concept could be applied for developing promising thermoelectric materials, which merits further investigation.

IMPACT STATEMENT
The high-entropy alloy-design concept was employed to develop novel thermoelectric materials. Our findings indicate that this strategy effectively reduced the lattice thermal conductivity, which have important implications for the field.

Introduction
Thermoelectric materials, which are capable of direct conversion between heat and electricity,[1] have attracted worldwide attention over the past decades for engine exhaust heat recovery to improve fuel efficiency.[2] Ideal thermoelectric materials should possess a high dimensionless figure of merit, \(ZT\), defined as \(ZT = S^2T/\rho(\kappa_e + \kappa_L)\), where \(S\) is the Seebeck coefficient, \(T\) is the absolute temperature, \(\rho\) is the electronic resistivity, and \(\kappa_e\) and \(\kappa_L\) are the carrier and lattice thermal conductivity, respectively.[1,3] Majority of IV–VI compounds tend to be dominant thermoelectric materials in the medium-temperature (500–900 K) range; these include most of lead chalcogenides (PbTe,[4–8] PbSe,[9,10] and PbS[11,12]), and tin chalcogenides (SnTe,[13,14] SnSe,[15–17] and SnS[18]). In addition, many mixtures composed of these compounds, such as PbTe-PbSe alloys,[19–21] PbTe-PbS alloys,[22,23] PbSe-PbS alloys,[24,25] SnSe-SnS alloys,[26] and PbTe-rich quaternary alloys of PbTe-PbSe-PbS,[27,28] have been extensively studied for further improving their performance. However, solid solutions on a simple underlying lattice have been much less frequently considered for thermoelectric applications.

Recently, a brand-new method for designing alloys with multiple principal elements at equimolar or near equimolar ratios, called as high-entropy alloys (HEAs), has been proposed.[29–36] Because of the high-mixing entropy, these newly developed alloys often form random solid solutions with a simple body-centered cubic (BCC) or face-centered cubic (FCC) crystal structure during solidification, instead of intermetallic compounds or complex phases.[30,37–39] Due to the chemical complexity (e.g. large atomic size differences) and high configuration entropy, this novel class of alloys usually exhibits severe lattice-distortion and high-temperature
phase stability,[33,34] which could effectively reduce its lattice thermal conductivity due to the enhancement of scattering of phonons.[1,21] Thus, it is reasonable to speculate that HEAs probably possess intrinsically low lattice thermal conductivity in a wide temperature range and may be a class of promising thermoelectric materials. Lately, AlCoCrFeNi HEAs were studied for their thermoelectric properties at high temperatures.[40] However, these HEAs composed of only metal elements still exhibit the behavior typical of metal conductors and have a very small Seebeck coefficient due to high charge carrier concentration, and large thermal conductivity, leading to an ignorable ZT value. In our previous work,[41] we designed BiSbTe1.5Se1.5 high-entropy thermoelectric materials for uses in the near-room temperature range (300–500 K) with this concept and demonstrated that increasing configuration entropy is indeed beneficial for achieving low lattice thermal conductivity due to the severe lattice-distortion, and thus may be a novel approaching for developing promising thermoelectric materials.

In the present study, we simultaneously alloyed IV–VI elements in equimolar ratios to form a quaternary PbSnTeSe thermoelectric HEA for applications in the medium temperature range (500–900 K). We discovered that the PbSnTeSe HEA possesses quite low lattice thermal conductivity at room temperature, for example, less than 0.6 Wm−1K−1 at 300 K, and found that its thermoelectric property could be further enhanced by minor composition tuning. Our current results indicate that the PbSnTeSe HEA could be a promising thermoelectric material if some challenges can be resolved.

Experimental

Pure elements (Pb 99.9%; Sn 99.99%; Te 99.99%; Se 99.99%; La 99.5%) were weighed and mixed based on the nominal composition of Pb1−xSnTeSeLax, where x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10, respectively. The mixtures were loaded into pyrolytic boron nitride crucibles within quartz ampoules, and the ampoules were then evacuated, sealed and heated up to 1373 K at a heating rate of ∼ 1 K/min and stabilized at this temperature for 6 h. During this period, the ampoules were rocked several times to ensure good homogeneity of melts. After that, the ampoules were water-quenched and subsequently annealed at 873 K for 120 h. The annealed ingots were ground to powders with an agate mortar and the resultant powders were eventually consolidated at 823 K for 5 min in a 20 mm-diameter graphite die under a uniaxial pressure of 50 MPa by spark plasma sintering (SPS). The sintered samples are disk-shaped, 20 mm in diameter, ∼ 7 mm in thickness with a density no less than 97% of the theoretical value (i.e. 7.33 g cm−3).

Differential thermal analysis was performed with a DSC 404 F1 Pegasus thermal analyzer (Netzsch, German) at a rate of 10 K/min using the α-Al2O3 powder as reference. X-ray diffraction analysis was conducted on a D/max-RB diffractometer (Rigaku, Japan) using Cu Kα radiation. Scanning electron microscopy (SEM) characterization of the bulk materials was carried out using a SUPPA-55 scanning electron microscope. Seebeck coefficient S and electrical resistivity ρ were measured simultaneously on the LSR-3 machine (Linseis, German). The total thermal conductivity κ is calculated from κ = dDCp, where d is the density measured by the Archimedes method, D is the thermal diffusivity obtained by the laser flash method (LFA-457, Netzsch, German), and Cp is the specific heat. In the calculation of κ, Cp was regarded as a constant value estimated using the method of Dulong-Petit which was often employed in the calculation of Cp of PbTe-based materials.[4,8] Table 1 also lists the Dulong-Petit Cp of all the samples. Noted that the actual Cp value could be around 10% higher at 873 K and the corresponding ZT about 10% lower.[8] Hall coefficient RH was measured by the Van der Pauw technique, and both the Hall carrier density nH = 1/eRH and Hall mobility μH = RH/ρ were then calculated based on the measured RH.

Results and discussion

For simplicity, the Pb1−xSnTeSeLa compositions containing various nominal contents of La, that is, x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10, are designated hereafter as base, 0.5La, 1.0La, 1.5La, 2.0La and 2.5La, respectively, as shown in Table 1 which also lists room temperature Hall carrier concentration (nH), and Dulong-Petit heat capacity (Cp) for Pb1−xSnTeSeLa alloys.

Label	x	La at.%	nH cm−3	Cρ Jg−1K−1
Base	0	0	6.12 × 1019	0.187
0.5La	0.02	0.5	1.347 × 1020	0.188
1.0La	0.04	1.0	1.561 × 1020	0.188
1.5La	0.06	1.5	1.563 × 1020	0.189
2.0La	0.08	2.0	1.836 × 1020	0.189
2.5La	0.10	2.5	1.722 × 1020	0.190

[Table 1. Nominal composition, room temperature Hall carrier concentration (nH), and Dulong-Petit heat capacity (Cp) for Pb1−xSnTeSeLa alloys.]
there is a small endothermic peak near 680 K on the DTA curves of the 1.5 La, 2.0 La and 2.5 La alloys, which should have resulted from the melting of precipitates. Figure 1(b) exhibits XRD patterns of all the samples subjected to the SPS process. All the crystalline peaks of the base alloy could be indexed to the single-phase PbSnTeSe with a NaCl-type face-centered cubic (FCC) crystal structure (PDF #65-8374), as indicated by vertical lines shown at the bottom. Based on these results, a schematic illustration of the crystal structure of the PbSnTeSe HEA can be obtained as shown in Figure 1(c). No appreciable difference on the XRD patterns among base, 0.5La and 1.0La alloys was observed, but there are two small extra diffraction peaks around 2θ of 27° and 38° for alloy 1.5La, 2.0La and 2.5La, indicating the presence of precipitates in the alloys with a high La content, which is consistent with the result of the DTA curves. The lattice parameter a of all the samples, which was extrapolated from the high-angle XRD diffraction peaks, is shown in Figure 1(d). As can be seen, the lattice parameter reduces linearly with the increase of nominal La content. This observation is somewhat unexpected, given the fact that the atomic radius of La is larger than that of all of the other four principal elements. It seems that the doped La dissolved into the lattice with a limited amount, which may be associated with the severe lattice distortion and complicated chemical environment of the PbSnTeSe HEA. The observed reduction of the lattice parameter could have resulted from the decrease in the Pb content which was substituted by La in the nominal compositions.

The corresponding back scattering electron (BSE) images of the polished surface are shown in Figure 2(a), which suggests that the PbSnTeSe HEA indeed is a complete solid solution without precipitate even doped with 0.5% La. However, a small amount of precipitates was already observed for the 1.0 La alloy and the amount of the precipitates apparently increased with the increase of La. The energy-dispersive X-ray spectroscopy (EDS) results confirm that the precipitates are mainly composed of Te, along with some Sn, Pb and Se, as shown in the inset of Figure 2(a). To further determine the chemical composition of the precipitate, EDS mapping was conducted and the results of alloy 2.5 La are exemplarily shown in Figure 2(b). As clearly seen, the precipitates are indeed enriched in Te. Since the La element is usually trivalent, its additions should contribute more electrons to the structure and induce excessive cation elements, that is, Pb or Sn, to precipitate out. In our case, however, the Te-rich precipitates were formed, which may have resulted from the decrease in the Pb content, further indicating that only
Figure 2. (a) BSE images of the polished surface of all the samples and (b) energy-dispersive X-ray spectroscopy (EDS) elemental maps of alloy 2.5 La.

A limited amount of La dissolved into the lattice of the HEA.

As can be seen in Figure 3(a), the sign of Seebeck coefficient is positive over the entire measured temperature range for the PbSnTeSe HEA, indicating that the base alloy is a p-type semiconductor and its dominant charge carriers are holes. The Seebeck coefficient S of the base alloy increases from $\sim 15\,\mu V/K$ at 300 K to $\sim 175\,\mu V/K$ at 750 K, after which it starts to reduce with the further increase of temperature due to the onset of thermal excitation of minority carriers (i.e. the bipolar effect). The Seebeck coefficient of all the La-doped alloys increases with temperature, a behavior typical of degenerate semiconductors. The peak value of the Seebeck coefficient of alloy 0.5 La is around 180 $\mu V/K$ at 873 K and slightly higher than that of the samples added with a higher La content. Compared to that of PbTe,[7] PbSe,[9] and SnSe,[16] the maximum Seebeck coefficient of the PbSeTeSe HEAs doped with La is relatively lower, which leaves more room for further optimization. According to the formula for calculating the band gap E_g developed by Goldsmid,[42] $E_g = 2eS_{\text{max}} T$, where S_{max} and T are the peak Seebeck coefficient and corresponding temperature, respectively, the band gap of the base alloy was estimated to be about 0.26 eV, and that of the alloys doped with La is in the range of between 0.29 and 0.32 eV, indicating that the minor compositional change increases the band gap of the PbSnTeSe HEA to some degree, which is consistent with the bipolar effect being suppressed to some extent.

The electrical resistivity ρ of all the samples as a function of temperature is shown in Figure 3(b). The electrical resistivity of the base alloy increases monotonically from $\sim 0.6\,\text{m}\Omega\,\text{cm}$ at room temperature to $\sim 5.5\,\text{m}\Omega\,\text{cm}$ at 873 K, which is lower than that of PbSe[9] and comparable with PbTe.[7] At temperatures below 500 K, there is almost no difference in the electrical resistivity between all La-doped alloys and the base alloy. However, above 500 K the electrical resistivity reduces gradually with the La addition. Compared with that of the base alloy, the hole concentration of the 0.5 La alloy at room temperature increased appreciably, which could have resulted from the increase of the concentration of cation vacancies due to the reduction of the Pb content. However, the hole concentration just increases slightly once the La content is above 1.0%, which could be related to the appearance of the rich-Te precipitates. The deficiency of Te created donor defects, thus reducing the hole concentration and compensating the effects of the reduction in Pb. Figure 3(c) exhibits Hall mobility as a function of La at room temperature. As can be seen, the Hall mobility of the 0.5 La alloy decreases drastically compared to that of the base alloy. With the further increase of La, the Hall mobility just decreases slightly, which is associated with the formation of the Te-rich precipitates.

Figure 3(c) shows the power factor PF as a function of temperature for all the samples. The maximum PF of the base alloy is reached at a relatively lower temperature (i.e. 700 K) and about $7.7 \times 10^{-4}\,\text{Wm}^{-1}\text{K}^{-2}$. Since the minor compositional tuning not only improved the Seebeck coefficient, but also reduced the electrical resistivity at high temperatures, the peak value of PF
was achieved at relatively high temperatures for the La-doped alloys. Among all the samples, the highest PF is about 12.6×10^{-4} Wm$^{-1}$K$^{-2}$ in the temperature range of 823–873 K for alloy 1.5La.

Temperature dependence of thermal diffusivity D and thermal conductivity κ is plotted in Figure 4(a) and (b), respectively. The thermal conductivity of the base alloy at room temperature is less than 1.8 Wm$^{-1}$K$^{-1}$, which is lower than that of both SnTe[13] and PbTe[5,7] and comparable with that of PbSe.[9] Upon heating, it shows a reducing trend before 650 K where an upturn occurs due to the bipolar effect. The thermal conductivity of La-doped alloys in the range of 300–700 K is slightly higher than that of the base alloy due to the increased electronic contribution.

The combined lattice and bipolar thermal conductivity, that is, $\kappa_L + \kappa_b$, was obtained through subtracting the electronic contribution κ_e from the total thermal conductivity κ. The electronic thermal conductivity was determined according to the Wiedemann–Franz relation, $\kappa_e = LT/\rho$, where ρ is the resistivity and L is the Lorenz number which was estimated as a function of temperature, as shown in Figure 4(c), assuming a single parabolic band with acoustic phonon scattering.[43] This rough estimate has been shown to be reasonably consistent with the calculation based on the detailed model taking into account the band nonparabolicity and multiband conduction effects.[19,27,28] As can be seen in Figure 4(d), the lattice thermal conductivity of the PbSnTeSe HEA with a highly symmetric NaCl structure is less than 0.6 Wm$^{-1}$K$^{-1}$ at room temperature, which is far lower than that of binary compounds with the same crystal structure, for example, SnTe,[13] PbTe,[5,7] and PbSe,[9] also lower than that of PbTe–PbSe[21] and PbTe–PbSe–PbS[27] solid solutions with the same crystal structure, and even lower than that of SnSe[16] with a layered orthorhombic structure. This phenomenon should be ascribed to the strong phonon scattering that resulted from the severe lattice-distortion of the PbSnTeSe HEA. Unfortunately, the lattice thermal conductivity of the base alloy starts to surge when the testing temperature exceeds 400 K due to the strong bipolar effect. For all the La-doped alloys, the bipolar effect was suppressed to a certain degree but still exists.

To analyze the lattice thermal conductivity without the bipolar contribution, $\kappa - \kappa_e$ vs. $1000/\tau$ was plotted in the inset of Figure 4(d). As can be seen, the lattice thermal conductivity at 873 K would be lower than 0.5 Wm$^{-1}$K$^{-1}$ for the base alloy if the bipolar effect were entirely eliminated. The lattice thermal conductivity of all

Figure 3. (a) Seebeck coefficient S, (b) electrical resistivity ρ and (c) power factor PF as a function of temperature for all the HEAs and (d) Hall mobility μ_H at room temperature as a function of the La content.
Figure 4. Thermal transport properties as a function of temperature. (a) thermal diffusivity, (b) thermal conductivity, (c) Lorenz number and (d) the combined lattice and bipolar thermal conductivity for all the samples. The lattice thermal conductivity of PbTe, PbSe and SnTe at 300 K was also shown in (d). The inset in (d) shows $\kappa - \kappa_e$ as a function of $1000/T$.

the La-doped alloys was slightly higher than that of the base alloy, which may have resulted from the contribution of the Te-rich precipitates and/or the errors introduced from the Lorenz numbers estimated with ignoring the presence of the Te-rich precipitates.

Figure 5 shows the figure of merit, ZT, calculated from the above date for all the samples as a function of temperature. The peak value of ZT of the base alloy is up to 0.4 at a relatively low temperature, that is, 650 K, due to the strong bipolar effect. The minor compositional change not only improved both Seebeck coefficient and electrical conductivity at high temperatures, but also alleviated the bipolar thermal conductivity to some extent, which results in the increasing of both the peak value of ZT and the corresponding peak temperature. The maximum ZT value of ~ 0.8 was obtained at 873 K in the 1.5 La alloy. Based on the above discussion, the maximum ZT value of the PbSnTeSe HEA could be greatly improved if the Seebeck coefficient is further enhanced and/or the bipolar effect is entirely suppressed through searching for more ideal dopants or/and applying proper band structure engineering.

In summary, polycrystalline high-entropy PbSnTeSe alloys with minor additions of La substituted for Pb were prepared by melting, followed by SPS. The base PbSnTeSe HEA possesses very low lattice thermal conductivity at low temperature, for example, less than 0.6 Wm$^{-1}$ K$^{-1}$ at 300 K. The minor compositional change not only improved both the Seeck coefficient and electrical conductivity of the PbSnTeSe HEA at high temperatures, but also alleviated its bipolar thermal conductivity to some extent, resulting in the increment in the maximum ZT value. For the PbSnTeSe HEA doped with 1.5% La, its ZT value was found to be around 0.8 at 873 K. The PbSnTeSe HEA could be a promising thermoelectric
material, provided that some remaining challenges mentioned above can be resolved, which merits further investigation. Our work also demonstrates that the HEA concept is indeed a potential strategy for designing novel thermoelectric materials with desirable properties.

Acknowledgements

The authors would like to thank Dr. Heng Wang from Materials Science, California Institute of Technology for valuable discussion.

Disclosure statement

No potential conflict of interest was reported by the author.

Funding

This research was supported by National Natural Science Foundation of China [51571001, 51671018, 51422101, 51271212 and 51371003], 111 Project (B07003), International S&T Cooperation Program of China [2015DFG50600] and Program for Changjiang Scholars and Innovative Research Team in University [IRT_14R05]. YW acknowledges the financial support from the Top-Notch Young Talents Program and Fundamental Research Fund for the Central Universities [No. 15-004C1]. XJL thanks the support from Program for New Talents Research Fund for the Central Universities [No. FRF-TP-14-009C1].

References

[1] Rowe DM. CRC handbook of thermoelectrics. Boca Raton, FL: CRC, 1995.
[2] Crane DT, LaGrandeur JW. Progress report on BSST-Led US department of energy automotive waste heat recovery program. J Electron Mater. 2009;39(9):2142–2148.
[3] Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105–114.
[4] Heremans JP, Jovovic V, Toberer ES, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554–557.
[5] Ahn K, Li C, Uber C, Kanatzidis MG. Improvement in the thermoelectric figure of merit by La/Ag cosubstitution in PbTe. Chem Mater. 2009;21(7):1361–1367.
[6] Androulakis J, Todorov I, Chung D-Y, et al. Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light- and heavy-hole valence bands. Phys Rev B. 2010;82(11):115209.
[7] Pei Y, LaLonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci. 2011;4(6):2085–2089.
[8] Pei Y, Lensch-Falk J, Toberer ES, et al. High thermoelectric performance in PbTe due to large nanoscale Ag$_2$Te precipitates and La Doping. Adv Funct Mater. 2011;21(2):241–249.
[9] Wang H, Pei Y, LaLonde AD, et al. Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. Adv Mater. 2011;23(11):1366–1370.
[10] Wang H, Pei Y, LaLonde AD, et al. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc Natl Acad Sci USA. 2012;109(25):9705–9709.
[11] Wang H, Schechtele E, Pei Y, et al. High thermoelectric efficiency of n-type PbS. Adv Energy Mater. 2013;3(4):488–495.
[12] Zheng Y, Wang S, Liu W, et al. Thermoelectric transport properties of p-type silver-doped PbS with in situ Ag$_2$S nanoprecipitates. J Phys D: Appl Phys. 2014;47(11):115303–115312.
[13] Zhang Q, Liao B, Lan Y, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci USA. 2013;110(33):13261–13266.
[14] Zhou M, Gibbs ZM, Wang H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band. Phys Chem Chem Phys. 2014;16(38):20741–20748.
[15] Zhao L-D, Lo S-H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373–377.
[16] Chen C-L, Wang H, Chen Y-Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A. 2014;2(29):11171–11176.
[17] Zhao LD, Tan G, Hao S, et al. Ultra high power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 2015;351(6269):141–144.
[18] Tan Q, Zhao L-D, Li J-F, et al. Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. J Mater Chem A. 2014;2(41):17302–17306.
[19] Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66–69.
[20] Zhang Q, Cao F, Liu W, et al. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe$_{1-y}$Se$_y$. J Am Chem Soc. 2012;134(24):10031–10038.
[21] Wang H, LaLonde AD, Pei Y, et al. The criteria for beneficial disorder in thermoelectric solid solutions. Adv Funct Mater. 2013;23(12):1586–1596.
[22] Wu HJ, Zhao LD, Zheng FS, et al. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe$_{0.7}$S$_{0.3}$. Nat Commun. 2014;5:4515.
[23] Wu D, Zhao L-D, Tong X, et al. Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier. Energy Environ Sci. 2015;8(7):2056–2058.
[24] Wang J, Wang H, Snyder GJ, et al. Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions. J Phys D Appl Phys. 2013;46(40):405301.
[25] Wang H, Wang J, Cao X, et al. Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. J Mater Chem A. 2014;2(9):3169–3174.
[26] Zhang Q, Chere EK, Sun J, et al. Studies on thermoelectric properties of n-type polycrystalline SnSe$_1$-xS$_x$ by iodine doping. Adv Energy Mater. 2015;1500360.
[27] Yamini SA, Wang H, Gibbs ZM, et al. Chemical composition tuning in quaternary p-type Pb-chalcogenides—a promising strategy for enhanced thermoelectric performance. Phys Chem Chem Phys. 2014;16(5):1835–1840.
[28] Yamini SA, Mitchell DRG, Gibbs ZM, et al. Heterogeneous distribution of sodium for high thermoelectric performance of p-type multiphase lead-chalcogenides. Adv Energy Mater. 2015;1501047.

[29] Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high—entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.

[30] Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213–218.

[31] Yeh JW. Recent progress in high-entropy alloys. Ann Chim Sci Mater. 2006;31(6):633–648.

[32] Tsai M-H, Yeh J-W. High-entropy alloys: a critical review. Mater Res Lett. 2014;2(3):107–123.

[33] Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93.

[34] Lu ZP, Wang H, Chen MW, et al. An assessment on the future development of high-entropy alloys: summary from a recent workshop. Intermetallics. 2015;66:67–76.

[35] Santodonato LJ, Zhang Y, Feygenson M, et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun. 2015;6:5964.

[36] Senkov ON, Miller JD, Miracle DB, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun. 2015;6:6529.

[37] Zhou Y, Zhang Y, Wang Y, et al. Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys. Mater Sci Eng A. 2007;454:260–265.

[38] Dolique V, Thomann A-L, Brault P, et al. Complex structure/composition relationship in thin films of AlCoGr-CuFeNi high entropy alloy. Mater Chem Phys. 2009;117(1):142–147.

[39] Chen Y, Duval T, Hung U, et al. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corros Sci. 2005;47(9):2257–2279.

[40] Shafeie S, Guo S, Hu Q, et al. High-entropy alloys as high-temperature thermoelectric materials. J Appl Phys. 2015;118(18):184905.

[41] Fan Z, Wang H, Wu Y, et al. Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Adv. 2016;6:52164–52170.

[42] Goldsmid HJ. Introduction to thermoelectricity. Springer Science & Business Media; 2009.

[43] May AF, Toberer ES, Saramat A, et al. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−xGe30+x. Phys Rev B. 2009;80(12):125205.