Transformation of diclofenac in hydrid biofilm–activated sludge processes

Supplementary data

Kevin S. Jewell, Per Falås, Arne Wick, Adriano Joss, Thomas A. Ternes

Federal Institute of Hydrology,
Am Mainzer Tor 1, 56068, Koblenz, Germany
Eawag, Swiss Federal Institute of Aquatic Science and Technology,
Überlandstrasse 133, 8600 Dübendorf, Switzerland
Contents

1 Compound details, MS2 fragmentation and elucidation of TP structures 5

1.1 Diclofenac (DCF) ... 6
1.2 4HD .. 7
1.3 5HD .. 8
1.4 DCF-lactam ... 9
1.5 DCF-BA ... 10
1.6 4HDQI ... 11
1.7 5HDQI ... 11
1.8 TP285 .. 13
1.9 TP287 .. 14
1.10 TP259 .. 15
1.11 TP225 .. 16
1.12 TP293a ... 17
1.13 TP293b ... 18
1.14 TP391a ... 19
1.15 TP391b ... 20
1.16 TP243 .. 21
1.17 TP297 .. 22
1.18 TP273 .. 23
1.19 TP343a ... 24
1.20 TP343b ... 25
1.21 TP275 .. 26

2 Additional figures and tables 27
List of Figures

Figure	Description	Page
S1	Characterisation of MS² fragment ions of DCF	6
S2	Characterisation of MS² fragment ions of 4HD	7
S3	Characterisation of MS² fragment ions of 5HD	8
S4	Characterisation of MS² fragment ions of DCF-Lactam	9
S5	Characterisation of MS² fragment ions of DCF-BA	10
S6	Characterisation of MS² fragment ions of 4HDQI	11
S7	Characterisation of MS² fragment ions of 5HDQI	12
S8	Characterisation of MS² fragment ions of TP285	13
S9	Characterisation of MS² fragment ions of TP287	14
S10	Characterisation of MS² fragment ions of TP259	15
S11	Characterisation of MS² fragment ions of TP225	16
S12	Characterisation of MS² fragment ions of TP293a	17
S13	Characterisation of MS² fragment ions of TP293b	18
S14	Characterisation of MS² fragment ions of TP391a	19
S15	Characterisation of MS² fragment ions of TP391b	20
S16	Characterisation of MS² fragment ions of TP243	21
S17	Characterisation of MS² fragment ions of TP297	22
S18	Characterisation of MS² fragment ions of TP273	23
S19	Characterisation of MS² fragment ions of TP343a	24
S20	Characterisation of MS² fragment ions of TP343b	25
S21	Characterisation of MS² fragment ions of TP275	26
S22	Transformation reactions of DCF (spike concentration 5 µg/L) in incubation experiments inoculated with carriers from WWTP Bad Ragaz	27
S23	DCF transformation showing sum of TPs and DCF concentration at each time point (spike concentration 5 µg/L) in incubation experiments inoculated with carriers from WWTP-BR (Bad Ragaz, hydrid-MBBR)	28
List of Tables

Table No.	Description	Page
S1	Table of TPs identified in lab-scale experiments with the recorded exper-	5
	imental [M+H]⁺ mass and retention time.	
S2	Fragmentation spectrum of DCF	6
S3	Fragmentation spectrum of 4HD	7
S4	Fragmentation spectrum of 5HD	8
S5	Fragmentation spectrum of DCF-Lactam	9
S6	Fragmentation spectrum of DCF-BA	10
S7	Fragmentation spectrum of 4HDQI	11
S8	Fragmentation spectrum of 5HDQI	11
S9	Fragmentation spectrum of TP285	13
S10	Fragmentation spectrum of TP287	14
S11	Fragmentation spectrum of TP259	15
S12	Fragmentation spectrum of TP225	16
S13	Fragmentation spectrum of TP293a	17
S14	Fragmentation spectrum of TP293b	18
S15	Fragmentation spectrum of TP391a	19
S16	Fragmentation spectrum of TP391b	20
S17	Fragmentation spectrum of TP243	21
S18	Fragmentation spectrum of TP297	22
S19	Fragmentation spectrum of TP273	23
S20	Fragmentation spectrum of TP343b	24
S21	Fragmentation spectrum of TP343b	25
S22	Fragmentation spectrum of TP275	26
S23	TPs formed from primary DCF TPs	28
S24	DCF-TPs detected during lab-scale experiments with carriers from WWTP	29
	Klippan	
1 Compound details, MS2 fragmentation and elucidation of TP structures

Different levels of confidence are given for the structures based on the categorisation proposed by Schymanski et al. (2014). For 4HD, 5HD, DCF-Lactam and DCF-BA, the identity could be confirmed with authentic reference standards. For the other TPs, the structure was postulated based on the exact mass, isotope pattern, retention time, MS2 fragmentation spectrum, the similarities or differences of the MS2 spectrum to that of DCF and other TPs and based on the primary TPs from which they were formed. Software tools that were used to aid structural identification include PeakView and MasterView (Sciex), ChemDoodle (iChemLabs) and ChemCalc.org (Patiny and Borel, 2013).

Table S1: Table of TPs identified in lab-scale experiments with the recorded experimental [M+H]$^+$ mass and retention time.

Name	Formula	Monoisotopic mass (u)	Retention time (min)	Confidence level	Polarity	[M+H]$^+$ mass (u)
DCF	C14H11Cl2NO2	295.0167	12.74	pos		
5HD	C14H11Cl2NO3	311.0116	10.16	1	pos	312.0184
5HDQI	C14H9Cl2NO3	308.9959	10.52	2	pos	310.0035
DCF-d4	C14H7D4Cl2NO2	299.0418	12.71	pos		
4HD	C14H11Cl2NO3	311.0116	10.60	1	pos	312.0191
4HDQI	C14H9Cl2NO3	308.9959	10.90	2	pos	310.0031
DCF-lactam						
DCF-BA	C14H9Cl2NO2	281.0010	13.05	1	pos	282.0083
TP285	C12H9Cl2NO3	284.9959	8.59	3	pos	286.0031
TP287	C12H11Cl2NO3	287.0116	7.02	4	pos	288.0191
TP259	C14H10N2O2Cl	259.0400	10.10	3	pos	260.0467
TP225	C14H11NO2	225.0790	9.06	3	pos	226.0856
TP293a	C14H9Cl2NO2	293.0010	10.64	2	pos	294.0082
TP293b	C14H9Cl2NO2	293.0010	11.14	2	pos	294.0088
TP391a	C14H11Cl2NO6S	390.9683	8.34	2	neg	389.9605
TP391b	C14H11Cl2NO6S	390.9683	9.61	2	neg	389.9592
TP297	C13H9Cl2NO3	296.9660	11.08	2	pos	298.0032
TP273	C11H9Cl2NO3	272.9595	7.14	4	pos	274.0030
TP243	C10H7Cl2NO2	242.9854	9.34	4	pos	243.9922
TP343a	C14H11Cl2NO5	343.0014	7.25	4	pos	344.0088
TP343b	C14H11Cl2NO5	343.0014	7.65	4	pos	344.0086
TP275	C14H10CIN03	275.0349	9.87	3	pos	276.0422
1.1 Diclofenac (DCF)

DCF fragmentation is included for the purposes of comparison. The fragmentation spectrum and corresponding postulated fragment ions are shown in Table S2 and Figure S1.

Mass/Charge	Intensity
178.0640	2%
179.0720	2%
180.0801	2%
214.0425	100%
250.0180	5%

Figure S1: Characterisation of MS2 fragment ions of DCF
1.2 4HD

This TP of DCF was available as a reference standard (level 1 confidence). The relatively simple fragmentation pattern with -CO and -Cl losses is characteristic of secondary TPs formed from 4HD, e.g. TP259 and TP225.

Table S3: Fragmentation spectrum of 4HD

Mass/Charge	Intensity
195.0651	4%
230.0367	100%
266.0137	5%

Figure S2: Characterisation of MS² fragment ions of 4HD
1.3 5HD

This TP, for which a reference standard was used (level 1 confidence) shows characteristic multiple -CO and -Cl losses similar to DCF and most other TPs. 5HD was found to be an intermediate of nine other TPs in the DCF transformation pathway many of which share a similar fragmentation pattern to 5HD.

Table S4: Fragmentation spectrum of 5HD

Mass/Charge	Intensity
168.0791	65%
196.0719	50%
202.0395	85%
238.0223	50%
266.0194	35%
294.0077	100%

Figure S3: Characterisation of MS2 fragment ions of 5HD
1.4 DCF-lactam

A reference standard of this TP was available (level 1 confidence). The lactam TP shows typical CO and Cl losses as well a characteristic fragment at mass 171.9715, which it shares with other TPs such as TP285 and TP287.

Mass/Charge	Intensity
171.9698	26%
180.0800	26%
208.0751	34%
214.0406	100%
215.0448	16%
243.0429	13%
250.0193	5%
278.0133	45%

Table S5: Fragmentation spectrum of DCF-Lactam
1.5 DCF-BA

A reference standard of this compound was available (level 1 confidence). The fragmentation pattern is typical of DCF TPs, showing loss of -CO and multiple -Cl losses.

Table S6: Fragmentation spectrum of DCF-BA

Mass/Charge	Intensity
166.0655	11%
201.0339	16%
229.0292	100%
263.9979	16%

Figure S5: Characterisation of MS² fragment ions of DCF-BA
1.6 4HDQI

4HDQI is a known human metabolite of DCF (Poon et al., 2001) and is reported to form by oxidation of 4HD. In this study, 4HDQI was identified by its very similar fragmentation pattern to 4HD and similar retention time (level 2 confidence). However, in incubation experiments of 4HD, 4HDQI was not formed whereas it was formed in incubations of DCF-lactam (and incubations of DCF itself). This might be due to the fast dissipation kinetics of 4HD, which is quickly transformed to other TPs, allowing little oxidation to take place, while DCF-lactam is more stable, allowing the formation of 4HDQI over a different route (e.g. by combined mono-oxygenation and de-amidation).

Table S7: Fragmentation spectrum of 4HDQI

Mass/Charge	Intensity
263.9944	54%
229.0288	100%

Figure S6: Characterisation of MS² fragment ions of 4HDQI

1.7 5HDQI

This TP was previously identified in soil/sediment systems (Gröning et al., 2007) and was identified in this study by the similar fragmentation pattern and retention time to 5HD (level 2 confidence).

Table S8: Fragmentation spectrum of 5HDQI

Mass/Charge	Intensity
166.0652	100%
194.0583	38%
201.0334	88%
229.0286	35%
236.0008	23%
263.9964	23%
291.9919	81%
Figure S7: Characterisation of MS2 fragment ions of 5HDQI
1.8 TP285

The characterisation of TP285 was based firstly on the presence of fragment 171.9715, which indicated that ring A was not hydroxylated. TP285 was formed from DCF via 5HD so one oxygen should be located on position 5. The remaining 2 oxygens were considered to be part of a carboxylic acid group which would explain the loss of -CO₂. It was postulated that TP285 was formed as a result of ring-opening of ring B since consecutive -CH₂, -CO and -C₂H₂ losses leading to fragment 171.9715 are indicative of a long-chain structure. According to this structure, the β-keto moiety might be formed via tautomerism. A level 3 confidence is therefore proposed (tentative structure).

Table S9: Fragmentation spectrum of TP285

Mass/Charge	Intensity
171.9676	26%
197.9856	19%
225.982	25%
239.9951	58%
242.0145	100%

Figure S8: Characterisation of MS² fragment ions of TP285
1.9 TP287

TP287 has a mass difference of only +2H compared to TP285 and also shows fragment 171.9715, the presence of which indicated that ring A is not hydroxylated. Structural characterisation of TP287 was not possible due to many possible structures on the right side of the molecule. The structure of ring A and the elemental composition of the rest of the molecule could be determined (level 4 confidence).

Table S10: Fragmentation spectrum of TP287

Mass/Charge	Intensity
132.9596	17%
159.9697	98%
164.0264	21%
171.9707	59%
187.9648	21%
200.0054	14%
227.9990	100%

Figure S9: Characterisation of MS2 fragment ions of TP287
The mass of TP259 and the isotopic pattern indicate it has one chloride and two oxygen atoms. Since it is formed from DCF via 4HD, it is assumed that the 4'-position (ring A) is hydroxylated. The fragmentation pattern is very similar to DCF-lactam showing consecutive -CO and -Cl losses, it is therefore postulated that TP259 has a lactam structure, which also accounts for the second oxygen. To account for the extra hydrogen a reductive dechlorination at the 2'-position is postulated (level 3).

Table S11: Fragmentation spectrum of TP259

Mass/Charge	Intensity
132.0451	12%
168.0807	30%
180.0799	15%
196.0747	100%
225.0781	21%

Figure S10: Characterisation of MS² fragment ions of TP259
1.11 TP225

The mass and isotopic pattern of TP225 indicate that no Cl atom is present in the molecule. The similar fragmentation pattern to TP259 suggest this compound is the result of a second reductive dechlorination, which also accounts for the extra hydrogen. Therefore, a level 3 confidence is given for the structure.

Table S12: Fragmentation spectrum of TP225

Mass/Charge	Intensity
120.0453	59%
132.0440	69%
180.0801	86%
183.0634	43%
196.0745	100%
198.0912	53%

Figure S11: Characterisation of MS2 fragment ions of TP225
1.12 TP293a

This TP was formed from both DCF-lactam and 5HD. Due to the parent TPs and the fragmentation pattern, the structure can be given at level 2 confidence. Several isomers of this TP were detected, with similar retention times and MS2 spectra. It is postulated that these are formed by hydroxylation of ring B at different positions.

Table S13: Fragmentation spectrum of TP293a

Mass/Charge	Intensity
266.0128	40%
238.0187	40%
202.0415	60%
168.0817	100%

Figure S12: Characterisation of MS2 fragment ions of TP293a
1.13 TP293b

This TP is an isomer of TP293a but is formed from 4HD or DCF-lactam and not formed from 5HD and was previously detected WWTP effluents, where it was identified as a human metabolite of DCF (Stültten et al., 2008). It has a different MS² spectrum since ring A is hydroxylated. A level 2 confidence is given for this structure.

Mass/Charge	Intensity
230.0366	100%
224.0696	50%
132.0437	45%

Figure S13: Characterisation of MS² fragment ions of TP293b.
1.14 TP391a

This DCF-TP is formed via 5HD. The molecular formula and characteristic -SO\textsubscript{3} loss indicate that this TP is the result of sulfate conjugation of 5HD. Due to the observed fragments, and in comparison to similar sulfate conjugation reactions observed at aromatic hydroxy groups in activated sludge (Jewell et al., 2014), it is postulated the conjugation occurs at the hydroxylated 5-position (ring B). Thus, level 2 confidence is given for the structure.

Table S15: Fragmentation spectrum of TP391a

Mass/Charge	Intensity
79.9572	100%
185.9972	29%
309.9933	42%
345.9676	78%

Figure S14: Characterisation of MS2 fragment ions of TP391a.
1.15 TP391b

This TP is formed from 4HD similarly to TP391a. It is postulated the conjugation occurs at the 4′-position (ring A). Level 2 confidence is given for the structure.

Mass/Charge	Intensity
310.0047	30%
266.0127	100%
166.0639	30%

Table S16: Fragmentation spectrum of TP391b

Figure S15: Characterisation of MS2 fragment ions of TP391b.
1.16 TP243

This DCF-TP is formed via 5HD and has a similar fragmentation pattern to TP285 and TP287, sharing, for example, the fragment 171.9713. This fragment is again an indication that ring A is not hydroxylated. The two oxygen atoms from the formula are thus likely to be on the right side of the molecule. Due to the ambiguous fragmentation pattern, a tentative structure cannot be suggested (level 4). However, the low number of carbons on the right side of the molecule suggest that this TP has lost ring B due to ring opening reactions.

Table S17: Fragmentation spectrum of TP243

Mass/Charge	Intensity
216.0006	25%
197.9881	25%
187.9664	25%
171.9713	5%
159.9712	100%
132.9608	25%

![Chemical structures](image)

Figure S16: Characterisation of MS² fragment ions of TP243
This TP was formed from both 4HD and DCF-BA and to a minor extent 5HD. The molecular formula indicates it is formed as a result of the combination of reactions which lead to the parent TPs, i.e. a hydroxylation and a decarboxylation followed by oxidation to carboxylic acid. Two isomers of this compound are formed with retention times 10.68 min. and 11.08 min., but both with identical fragmentation patterns. It is expected that these are the result of the hydroxylations at different ring positions, i.e. 4′-, or 5-position. The isomer at 10.68 is only formed via 5HD, whereas the isomer at 11.08 is only formed via 4HD and both isomers are formed via DCF-BA. Level 2 confidence is given for this structure.

Table S18: Fragmentation spectrum of TP297

Mass/Charge	Intensity
153.0562	8%
182.0601	13%
217.0291	17%
245.0236	100%
279.9942	19%

Figure S17: Characterisation of MS² fragment ions of TP297
1.18 TP273

This DCF-TP is formed via 5HD and, as with TP243, TP285 and TP287 has a fragmentation pattern indicating ring A is not hydroxylated (fragment with mass 171.9718). The fragmentation pattern indicates several -CO losses however a unambiguous structure cannot be postulated for the right side of the molecule (level 4 confidence).

Table S19: Fragmentation spectrum of TP273

Mass/Charge	Intensity
164.0262	55%
171.9718	100%
200.0017	35%
227.9985	75%

Figure S18: Characterisation of MS² fragment ions of TP273
1.19 TP343a

This TP of DCF and 5HD has a formula with +2O in comparison to 5HD, suggesting that oxidative reactions took place. A characteristic fragment at 159.9731 indicates that ring A is likely not hydroxylated. The remaining fragments show multiple -H₂O and -CO losses (parent mass → 326.0028 → 298.0026 → 270.0039 → 251.9964 → 224.0014) indicating a structure with multiple hydroxy carboxyl groups. However an clear structure can not be postulated from the fragments (level 4).

Table S20: Fragmentation spectrum of TP343b

Mass/Charge	Intensity
159.9731	20%
217.0294	30%
224.0014	15%
251.9964	100%
270.0039	25%
298.0026	60%
326.0028	15%

Figure S19: Characterisation of MS² fragment ion of TP343a

Monoisotopic Mass = 344.0092 u
Molecular Formula = C14H12Cl2NOS+

Monoisotopic Mass = 159.9715 u
Molecular Formula = C6H4Cl2N+
1.20 TP343b

This DCF-TP is formed via 5HD and has a formula with +2O in comparison to 5HD, suggesting that oxidative reactions took place. Although the characteristic fragment at mass 171.9715 was not observed, a similar mass at 173.9834 is again an indication that ring A is not hydroxylated. The other fragments do not allow a full characterisation of the right side of the molecule (level 4). However, multiple -CO$_2$ losses, e.g. from parent mass \rightarrow 298.0063 \rightarrow 254.0122, suggest the presence of carboxylic acid groups. This compound has a similar retention time (δ 0.5 min) to the structural isomer TP343a, however these TPs do not have similar fragmentation patterns.

Table S21: Fragmentation spectrum of TP343b
Mass/Charge
173.9834
177.0338
190.0415
204.0208
218.0365
237.9802
254.0122
283.9882
298.0063

Figure S20: Characterisation of MS2 fragment ions of TP343b

Monoisotopic Mass = 344.0092 u
Molecular Formula = C14H12C2NO5+

Monoisotopic Mass = 173.9872 u
Molecular Formula = C7H6Cl2N+
TP275 was formed via 4HD. The molecular formula indicated a loss of Cl and one H. The fragmentation spectrum was similar to 4HD and 4HDQI showing CO, H$_2$O, Cl and HCl losses. Since other reductive dechlorinations were observed, forming TPs 259 and 225, it was postulated that this TP was also formed through reductive dechlorination. To account for the loss of H an oxidation via dehydrogenation was proposed, similar to the reactions forming 4HDQI and 5HDQI. It was unclear if TP275 was formed directly from 4HD or via TP259. In the later case the reaction would be equivalent to the formation of 4HDQI from DCF-lactam (confidence level 3).

Mass/Charge	Intensity
140.0524	15%
167.0717	100%
194.0606	15%
202.0426	20%
230.0372	30%

Figure S21: Characterisation of MS2 fragment ion of TP275
2 Additional figures and tables

Figure S22: Transformation reactions of DCF (spike concentration 5 µg/L) in incubation experiments inoculated with carriers from WWTP Bad Ragaz.
Figure S23: DCF transformation showing sum of TPs and DCF concentration at each time point (spike concentration 5 µg/L) in incubation experiments inoculated with carriers from WWTP-BR (Bad Ragaz, hydrid-MBBR).

Table S23: TPs formed from primary DCF TPs

Parent	TPs
DCF-Lactam	DCF-BA 4HDQI TP293b TP285
4HD	TP293b TP259 TP225 TP275 TP391b TP297
5HD	5HDQI TP287 TP285 TP343a TP343b TP391a TP273a TP243 TP293a
DCF-BA	TP297 TP285 TP287
Table S24: DCF-TPs detected during lab-scale experiments with carriers from WWTP Klippan

DCF-lactam	DCF-BA	TP285	
Retention time (min)	12.42	12.88	8.44
Retention time of standard (min)	12.39	12.89	8.62^a
[M + H]^+ mass (u)	278.0131	282.0072	286.0027
Calculated mass (u)	278.0134	282.0083	286.0032
MS^2 Spectrum	166.0649		
	214.0445	201.0349	242.0151
		229.0297	

^aStandard not available, retention time was compared to a previous lab-scale incubation experiment using carriers from WWTP Bad Ragaz.

References

Gröning, J., Held, C., Garten, C., Claussnitzer, U., Kaschabek, S.R., Schlömann, M., 2007. Transformation of diclofenac by the indigenous microflora of river sediments and identification of a major intermediate. Chemosphere 69, 509–16.

Jewell, K.S., Wick, A., Ternes, T.A., 2014. Comparisons between abiotic nitration and biotransformation reactions of phenolic micropollutants in activated sludge. Water Research 48, 478–489.

Patiny, L., Borel, A., 2013. Chemcalc: A building block for tomorrow’s chemical infrastructure. Journal of Chemical Information and Modeling 53, 1223–1228.

Poon, G.K., Chen, Q., Teffera, Y., Ngui, J.S., Griffin, P.R., Braun, M.P., Doss, G.A., Freedon, C., Stearns, R.A., Evans, D.C., Baillie, T.A., Tang, W., 2001. Bioactivation of diclofenac via benzoquinone imine intermediates-identification of urinary mercapturic acid derivatives in rats and humans. Drug Metabolism and Disposition 29, 1608–13.

Schymanski, E.L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H.P., Hollender, J., 2014. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology 48, 2097–2098.

Stütlen, D., Zühlke, S., Lamshöft, M., Spiteller, M., 2008. Occurrence of diclofenac and selected metabolites in sewage effluents. Science of The Total Environment 405, 310–316.