The Bacteria Genome Pipeline (BAGEP): An automated, scalable workflow for bacteria genomes with Snakemake

Idowu B Olawoye Correspond., 1, 2, Simon D.W. Frost 3, 4, Christian T Happi Correspond. 1, 2

1 Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
2 African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
3 Microsoft Research, Redmond, Washington, USA
4 London School of Hygiene & Tropical Medicine, University of London, London, London, United Kingdom

Corresponding Authors: Idowu B Olawoye, Christian T Happi
Email address: olawoyei0303@run.edu.ng, happic@run.edu.ng

Next generation sequencing technologies are becoming more accessible and affordable over the years, with entire genome sequences of several pathogens being deciphered in few hours. However, there is the need to analyze multiple genomes within a short time, in order to provide critical information about a pathogen of interest such as drug resistance, mutations and genetic relationship of isolates in an outbreak setting. Many pipelines that currently do this are stand-alone workflows and require huge computational requirements to analyze multiple genomes. We present an automated and scalable pipeline called BAGEP for monomorphic bacteria that performs quality control on FASTQ paired end files, scan reads for contaminants using a taxonomic classifier, maps reads to a reference genome of choice for variant detection, detects antimicrobial resistant (AMR) genes, constructs a phylogenetic tree from core genome alignments and provide interactive short nucleotide polymorphism (SNP) visualization across core genomes in the data set. The objective of our research was to create an easy to use pipeline from existing bioinformatics tools that can be deployed on a personal computer. The pipeline was built on Snakemake framework and utilizes existing tools for each processing step: fastp for quality trimming, snippy for variant calling, Centrifuge for taxonomic classification, Abricate for AMR gene detection, snippy-core for generating whole and core genome alignments, IQ-TREE for phylogenetic tree construction and vcfR for an interactive heatmap visualization which shows SNPs at specific locations across the genomes. BAGEP was successfully tested and validated with Mycobacterium tuberculosis (n=20) and Salmonella enterica serovar Typhi (n=20) genomes which are about 4.4 million and 4.8 million base pairs, respectively. Running these test data on a 8 GB RAM, 2.5 GHz quad core laptop took 122 and 61 minutes on respective data sets to complete the analysis. BAGEP is a fast, calls accurate SNPs and an easy to run pipeline that can be executed on a mid-range laptop; it is freely available on: https://github.com/idolawoye/BAGEP.
The Bacteria Genome Pipeline (BAGEP): An automated, scalable workflow for bacteria genomes with Snakemake.

Idowu B. Olawoye¹, ², Simon D.W. Frost³, ⁴, Christian T. Happi¹, ²

¹ Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
² African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
³ Microsoft Research, Redmond, Washington, USA
⁴ London School of Hygiene and Tropical Medicine, London, UK

Corresponding Author:
Christian Happi¹, ²
Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.

Email address: happic@run.edu.ng
Abstract

Next generation sequencing technologies are becoming more accessible and affordable over the years, with entire genome sequences of several pathogens being deciphered in few hours. However, there is the need to analyze multiple genomes within a short time, in order to provide critical information about a pathogen of interest such as drug resistance, mutations and genetic relationship of isolates in an outbreak setting. Many pipelines that currently do this are stand-alone workflows and require huge computational requirements to analyze multiple genomes. We present an automated and scalable pipeline called BAGEP for monomorphic bacteria that performs quality control on FASTQ paired end files, scan reads for contaminants using a taxonomic classifier, maps reads to a reference genome of choice for variant detection, detects antimicrobial resistant (AMR) genes, constructs a phylogenetic tree from core genome alignments and provide interactive short nucleotide polymorphism (SNP) visualization across core genomes in the data set. The objective of our research was to create an easy to use pipeline from existing bioinformatics tools that can be deployed on a personal computer.

The pipeline was built on Snakemake framework and utilizes existing tools for each processing step: fastp for quality trimming, snippy for variant calling, Centrifuge for taxonomic classification, Abricate for AMR gene detection, snippy-core for generating whole and core genome alignments, IQ-TREE for phylogenetic tree construction and vcfR for an interactive heatmap visualization which shows SNPs at specific locations across the genomes. BAGEP was successfully tested and validated with *Mycobacterium tuberculosis* (n=20) and *Salmonella enterica* serovar Typhi (n=20) genomes which are about 4.4 million and 4.8 million base pairs, respectively. Running these test data on a 8 GB RAM, 2.5 GHz quad core laptop took 122 and 61 minutes on respective data sets to complete the analysis. BAGEP is a fast, calls accurate SNPs
and an easy to run pipeline that can be executed on a mid-range laptop; it is freely available on:

https://github.com/idolawoye/BAGEP.

Introduction

Over the years, as next generation sequencing has rapidly become popular, molecular biology has taken a giant leap in the way genomes of various organisms are deciphered. Genomics have grown expeditiously with high throughput sequencing technologies and paving the way for novel biological analytical approaches (Schuster, 2008).

Genome sequencing of pathogens such as bacteria and viruses generate FASTQ files which contain quality cores of the nucleotide bases in raw format. These files usually need various technical processing steps such as adapter removal, sequence quality filtering and quality control. This is crucial for other downstream analysis, as seen in a work where choosing the appropriate FASTQ pre-processor improved downstream analysis significantly in comparison to other software (Chen et al., 2018).

In addition, reconstructing a sequenced genome is usually achieved through *de novo* assembly (genome assembly using overlapping regions in the genome) or through a reference sequence guided approach (mapping sequence reads to a reference genome) (Korbel et al., 2007; Zhang et al., 2011). There are numerous tools that can perform these tasks at various efficiency and for different lengths of sequence reads. A few genome assemblers such as SPAdes, Burrows-Wheeler Alignment tool (BWA), minimap2 and Bowtie are widely used in bioinformatics (Bankevich et al., 2012; Langmead and Salzberg, 2012; Li, 2018; Li and Durbin, 2009).

Variants in microbes occur as short nucleotide polymorphisms (SNPs), insertions and deletions (indels) and or translocations. Mapping the reads to a reference genome or comparing the assembled genome to a reference genome are the ways in detecting variants (Olson et al.,
SNP detection is important for comparative genomics in bacterial isolates as they have been used to characterized different bacteria species sharing the same genus (Ledwaba et al., 2019). SNP analysis is also an integral part of understanding evolution in bacterial genomes, detecting the cause or source of an outbreak, phylogeography and genome-wide association studies (GWAS) (Farhat et al., 2019; O’Neill et al., 2019; Stimson et al., 2019). At the moment, there is no generally accepted standard operating procedure for evaluating and calling SNPs and or indels which has led to a wide variety of tools and methods for variant detection. Furthermore, best practices for variant identification in microbial genomes have been proposed in literature and it has been adopted to a large extent (Olson et al., 2015; Van der Auwera et al., 2013).

Downstream analysis of numerous bacteria genomes using whole genome sequencing (WGS) pipelines require high performance computing servers or a cloud-based support system. In addition, while a number of WGS pipeline exist such as UVP (Ezewudo et al., 2018) and MTBseq (Kohl et al., 2018) for *Mycobacterium tuberculosis*, these pipelines require huge computing infrastructure. Moreover, the pipelines usually have many dependencies to be installed especially if the analysis requires multiple tasks to be performed such as phylogenetic tree construction, drug resistance prediction, clustering, and so on. The huge amount of bioinformatics tools available makes it a daunting task in picking the suitable software for a certain analysis. In low-to-middle countries who are becoming exposed to WGS of pathogens, it is important to also provide ready-to-use, quick and easily deployable pipelines for WGS data analysis. These pipelines should also be a stand-alone workflow on a local server or even a personal computer. For example, UVP and MTBseq needs at least 100 GB and 25 GB of RAM.
respectively to run locally which is capitally intensive for many researchers in low-to-middle
countries (LMICs) who need to analyze WGS data.

To address the challenges identified above, we embarked on the development of BAGEP
(Bacteria Genome Pipeline, available online at https://github.com/idolawoye/BAGEP#). It uses
existing pipelines and bioinformatics tools and an advanced workflow management system
called Snakemake (Koster and Rahmann, 2012). This pipeline combines many tools used in
downstream analysis of paired-end FASTQ raw reads such as quality control, read mapping,
variant calling, core genome and/or full genome alignments, SNP visualization and phylogeny
into a single, fast, easy to use workflow.

Materials & Methods

Sampling

To display the versatility of BAGEP, we applied it to a set of multi-drug resistant (MDR) *M.
tuberculosis* genomes (n=20) from Southwest Nigeria (Senghore et al., 2017) and *S. enterica*
serovar Typhi genomes (n=20) from the United Kingdom (Ashton et al., 2017). These publicly
available paired-end FASTQ reads were extracted from National Centre for Biotechnology
Information (NCBI) Sequence Read Archive (SRA). Genomic DNA of isolates were extracted
from liquid cultures and sequenced on Illumina MiSeq and HiSeq platforms. These raw reads are
deposited under BioProjects PRJEB15857 and PRJNA248792.

Implementation

Installation of BAGEP requires the pipeline to be downloaded on to a personal computer and
installed by creating a conda environment to set up all dependencies. Centrifuge database should
be downloaded separately in order to detect contaminants in the samples. Complete installation
steps are stated in the github README file:
https://github.com/idolawoye/BAGEP/blob/master/README.md.

The analysis of BAGEP is segmented into set of ‘rules’ that connects the output file of an
analysis into the input of the next task in the general workflow (Figure 1). The dependencies are
fastp for quality control of raw reads, Centrifuge for taxonomic classification, Snippy for variant
detection, snippy-core for core and whole genome alignments, Abricate for AMR detection, IQ-
TREE for phylogenetics, Krona for taxonomic visualization, vcfR and heatmaply for SNP
visualization.

These tools can be installed in a containerized manner using a bioconda channel (Dale et al.,
2018) which can be activated and deactivated easily, whereas the SNP visualization is provided
by R libraries included in the dependencies. The input files for BAGEP are paired-end FASTQ
files and a reference genome in FASTA or GenBank format, only the latter is provided in the
single line command to run, whilst the former should be saved in a designated local directory.

BAGEP also allows full customization of the pipeline, such that users can modify the parameters
used in running their samples. For example, the pipeline does not mask repeat regions when
aligning the core genomes by default, but this can be done by adding the option to the snakefile
rule handling that process. It is possible to modify every step of the workflow to suit the samples
being processed, even the model for phylogenetics.

Upon execution of the pipeline, Snakemake organizes the correct combination of tasks in order
to generate the desired output and also leverages on the wildcard feature to analyze multiple
genomes that have similar format allowed in the rule (Koster and Rahmann, 2012). Preliminary
results such as quality trimmed FASTQ files are saved in a new directory, while primary results
like detected variants, core genome alignments, phylogeny and SNP visualization are saved in a
different directory. The pipeline runs on Linux/Unix, MacOS terminal or Windows Subsystem for Linux. However, no prior skill in programming is required to run and interpret the results as only one stage of input is needed and thereafter the pipeline runs automatically. Another significant advantage of BAGEP is that it can re-execute steps that have not been ran if errors occur and resume from where it stopped rather than restarting the entire process which another valuable feature of the underlying framework.

Results

FASTQ Pre-processing

BAGEP performs several quality control tasks on raw FASTQ reads using fastp (Chen et al., 2018). Fastp capitalizes on speed, efficiency and an all-in-one pre-processor. It carries out sliding window quality filtering, adapter trimming, base correction, polyG and polyX tail trimming for Illumina NextSeq and NovaSeq series, UMI pre-processing to reduce background noise and improve sensitivity when detecting ultra-low frequency mutations in deep sequencing, duplication analysis, quality control and reporting (Figure 2).

Fastp was chosen as the suitable tool for this task as it is seen to outperform other quality control FASTQ software and it also allows multi-threading to improve its performance when dealing with numerous samples (Chen et al., 2018).

Taxonomic classification

This step is crucial in the pipeline as contaminants from the environment such as host cells or other bacteria can negatively impact the accuracy of variants detected. We utilized Centrifuge for this step due to its lower memory requirements compared to other similar tools like Kraken (Kim et al., 2016). To visualize the results, Krona was employed such that one can interact with the output and also export it as a static image file (Figure 3) (Ondov et al., 2011).
Read mapping and variant discovery

Mapping refined sequence reads to the reference genome is done by Snippy (Seemann, 2015) which is a variant calling and core genome alignment pipeline. Firstly, BWA MEM (Li and Durbin, 2009) maps reads to the provided reference genome and they are manipulated with Samtools (Li et al., 2009). Variants are called from the resulting Binary Alignment Map (BAM) files using freebayes (Garrison and Marth, 2012) which takes short-read alignments in BAM formats and Phred+33 quality scores from each sample and determines the best combination of polymorphisms in each sample at each position in the reference genome with the aid of Bayesian variant detection model. The variants are annotated with SnpEff (Cingolani et al., 2012), with reports generated in variant call format (VCF), TAB, CSV, HTML, BED, GFF and FASTA files. A unified VCF file that contains core and full genome alignments of individual SNP output files are generated with Snippy-core. Furthermore, BAGEP leverages on a function in Snippy-core that allows the user to filter out problematic or repetitive regions core genomes of the samples such as Proline-Glutamate (PE) and Proline-Proline-Glutamate (PPE) gene families in *M. tuberculosis* by providing a BED file to omit these regions.

Antimicrobial resistant gene screening

BAGEP uses abricate to screen the isolates for antimicrobial resistant (AMR) genes by using either one of the many AMR databases that comes with it. The great thing about abricate is that these databases can be updated from the help option and the user can select which databases suits their analysis. The results from this step is stored in a tab-separated file which can be viewed in a variety of software.

SNP visualisation
One other key feature of BAGEP is the ability to generate an interactive SNP visualization that allows the end user to view substitution polymorphisms across core genomes in the population. In the pipeline, a custom R script makes use of vcfR (Knaus and Grünwald, 2017) and heatmaply (Galili et al., 2017), parses the VCF file output from Snippy-core to render a heatmap showing SNP positions in a HTML file (Figure 4). The heatmap can be interacted with, with a number of tools such as zooming, hovering over the image to show SNPs and export a selected region as an image. This is very useful in a VCF file with high number of samples and reported SNPs as hovering around regions in the image can infer which position the polymorphism occur and in what sample.

Phylogeny

The final analysis done by BAGEP is the construction of a maximum-likelihood phylogenetic tree with IQ-TREE (Nguyen et al., 2015), this step uses the core genome alignment generated by Snippy-core with ultra-fast bootstrap value of 1000. The output tree is deposited in the ‘results’ directory and can be viewed and annotated with any tree viewing software such as Figtree or Interactive Tree of Life (ITOL).

Performance

Running BAGEP on 20 *M. tuberculosis* and 20 *S. enterica* serovar Typhi genomes with an 8 GB RAM, 2.5 GHz quad core laptop took 122 and 61 minutes to complete the analysis, respectively; *M. tuberculosis* has a 4.4 million base pair genome while *S. enterica* serovar Typhi has 4.81 million base pairs. BAGEP capitalizes on Snakemake’s multi-threading feature which implies that it can be deployed on laptops with greater performance or a computing server to improve its speed. Comparing BAGEP’s performance to Nullarbor pipeline on a benchmark computer using the same *M. tuberculosis* data sets, BAGEP took 122 minutes whilst Nullarbor spent 186 minutes.
to complete the same analysis. In addition to speed, BAGEP outperforms Nullarbor in detecting
more accurate SNPs. To assess the robustness of BAGEP, we ran the pipeline on 57 *M. tuberculosis*
(genomes using a 16 GB RAM computer and it completed the run in 225 minutes (Supplementary file 1).

Discussion

BAGEP was built around the core concepts of Snakemake which offers parallelization of several
tasks in an orderly manner. It was designed to be user friendly, fast, customizable and
reproducible. In addition, we wanted a pipeline that can be deployed on a personal computer and
handle medium to large data and finally, an interactive tool for visualizing SNPs that were
detected whilst running the pipeline. BAGEP requires minimal user input and runs from start to
finish with a single command.

As the backbone of BAGEP is Snakemake, each rule is run in its own environment and allows
the combination of other programming languages such as Python, R and Bash. This also implies
that each rule can be customized to make it run faster depending on the configuration of the
machine running it and basic understanding of tools used in the pipeline. For example, the rule
that takes the longest time to run is the step where reads are mapped to a reference genome and
variants are called. This is executed by *Snippy* and the number of threads can be increased to
speed up the process.

This pipeline has been tested with *M. tuberculosis* and *S. enterica* serovar Typhi and it is suitable
for genetically monomorphic or monoclonal pathogens such as *Yersinia pestis, Bacillus anthracis, Mycobacterium leprae* and *Treponema pallidum* due to the limited amount of
variations in their core genome as compared to highly recombinant pathogens (Achtman, 2008).
For visualization, BAGEP generates a HTML file as output that contains observed SNPs in core genomes of the samples and the position where they can be found, in addition with dendrograms that highlight the relatedness of the genomes. The interactive image can be zoomed in and out, reveal SNP regions by hovering around the image with a mouse and also export the image as portable network graphics (PNG) image. This image can be easily interpreted by anyone with little or no knowledge in bioinformatics and gives a summary of the analysis.

It is worthy to note that BAGEP was compiled with speed in mind and ease-of-use and that is why the dependencies can be installed in a conda environment under the bioconda channel (Dale et al., 2018). Performance comparison to Nullarbor shows that BAGEP identified 459 SNPs in a particular isolate which yielded 598 SNPs with Nullarbor (it is important to note that BAGEP and Nullarbor uses the same tool, Snippy for variant detection). In other to validate the accuracy of the SNPs, we ran the same sample as raw reads (that is without undergoing QC steps with fastp or Trimmomatic) and the end result was 598 SNPs, this trend was seen in other samples as well. This indicates that the QC step in Nullarbor is not as effective as the one embedded in BAGEP, which will give rise to false positives when using Nullarbor. Furthermore, BAGEP is quicker than Nullarbor when analyzing the same set of samples. Therefore, standard population genomics of low recombinant or genetically monomorphic bacteria can be conducted with BAGEP as it handles the fundamental analysis needed.

Conclusions

We present BAGEP, a fully automated and scalable pipeline that is built on Snakemake framework. This pipeline will be useful for researchers in low-to-middle income countries and people with little or no bioinformatics skills in analyzing raw genomics data.
It is effective for running medium to large data sets of paired-end raw reads of bacteria genomes, and has been tested with *M. tuberculosis* and *S. enterica* serovar Typhi. We have also shown that it is suitable for genetically monomorphic or monoclonal pathogens such as *Yersinia pestis*, *Bacillus anthracis*, *Mycobacterium leprae* and *Treponema pallidum*. Some of BAGEP’s advantages is that it is quick, identifies SNPs with better accuracy, easy to run and can be deployed on a mid-range laptop computer. Our future plan is to improve this pipeline by adding new features and roll out updates as we collaborate with other scientists. We believe this will be useful for researchers in low-to-middle income countries and people with little or no bioinformatics skills in analyzing raw genomics data.

Acknowledgements

We will like to appreciate the entire team at the African Center of Excellence of Genomics for Infectious Diseases (ACEGID), Redeemer’s University, Nigeria and the Lab of Viral Zoonotics (LVZ), Department of Veterinary Medicine, University of Cambridge, UK for establishing the partnership that birthed the idea behind BAGEP.

Data Availability

BAGEP source code and documentation is freely available on GitHub at: https://github.com/idolawoye/BAGEP. The *Salmonella enterica* serova Typhi test data used can be found at: http://doi.org/10.5281/zenodo.3731118

References

Achtman, M. (2008). Evolution, Population Structure, and Phylogeography of Genetically Monomorphic Bacterial Pathogens. *Annual Review of Microbiology*, 62(1), 53–70. https://doi.org/10.1146/annurev.micro.62.081307.162832

Ashton, P. M., Owen, S. V., Kaindama, L., Rowe, W. P. M., Lane, C. R., Larkin, L., Nair, S., Jenkins, C., de Pinna, E. M., Feasey, N. A., Hinton, J. C. D., and Dallman, T. J. (2017). Public health surveillance in the UK revolutionises our understanding of the invasive...
Salmonella Typhimurium epidemic in Africa. *Genome Medicine*, 9(1), 92. https://doi.org/10.1186/s13073-017-0480-7

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. *Journal of Computational Biology*, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics*. https://doi.org/10.1093/bioinformatics/bty560

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., and Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. *Fly*, 6(2), 80–92. https://doi.org/10.4161/fly.19695

Dale, R., Grüning, B., Sjödin, A., Rowe, J., Chapman, B. A., Tomkins-Tinch, C. H., Valieris, R., Batut, B., Caprez, A., Cokelaer, T., Yusuf, D., Beauchamp, K. A., Brinda, K., Wollmann, T., Corguillé, G. Le, Ryan, D., Bretaudeau, A., Hoogstrate, Y., Pedersen, B. S., … Köster, J. (2018). Bioconda: Sustainable and comprehensive software distribution for the life sciences. *Nature Methods*, 15(7), 475–476. https://doi.org/10.1038/s41592-018-0046-7

Ezewudo, M., Borens, A., Chiner-Oms, À., Miotto, P., Chindelevitch, L., Starks, A. M., Hanna, D., Liwski, R., Zignol, M., Gilpin, C., Niemann, S., Kohl, T. A., Warren, R. M., Crook, D., Gagneux, S., Hoffner, S., Rodrigues, C., Comas, I., Engeltalher, D. M., Alland, D., Rigouts, L., Lange, C., Dheda, K., Hasan, R., McNerney, R., Cirillo, D. M., Marco Schito, Rodwell, T. C., Posey, J. (2018). Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase. *Scientific Reports*, 8(1), 1–10. https://doi.org/10.1038/s41598-018-33731-1

Galili, T., O’Callaghan, A., Sidi, J., and Sievert, C. (2017). heatmaply: an R package for creating interactive cluster heatmaps for online publishing. *Bioinformatics*, 34(9), 1600–1602. https://doi.org/10.1093/bioinformatics/btx657

Garrison, E., and Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. *ArXiv Preprint ArXiv:1207.3907.*

Hendriksen, R. S., Price, L. B., Schupp, J. M., Gillece, J. D., Kaas, R. S., Engeltalher, D. M., Bortolaia, V., Pearson, T., Waters, A. E., Upadhyay, B. P., Shrestha, S. D., Adhikari, S., Shaky, G., Keim, P. S., and Aarestrupa, F. M. (2011). Population genetics of vibrio cholerae from Nepal in 2010: Evidence on the origin of the haitian outbreak. *MBio*, 2(4). https://doi.org/10.1128/mBio.00157-11

Keim, P. S., and Wagner, D. M. (2009). Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. In *Nature Reviews Microbiology* (Vol. 7, Issue 11, pp. 813–821). Nature Publishing Group. https://doi.org/10.1038/nrmicro2219
Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. *Genome research, 26*(12), 1721–1729. https://doi.org/10.1101/gr.210641.116

Knaus, B. J., and Grünwald, N. J. (2017). vcfr: a package to manipulate and visualize variant call format data in R. *Molecular Ecology Resources, 17*(1), 44–53. https://doi.org/10.1111/1755-0998.12549

Kohl, T. A., Utpatel, C., Schleusener, V., De Filippo, M. R., Beckert, P., Cirillo, D. M., and Niemann, S. (2018). MTBseq: A comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. *PeerJ, 2018*(11). https://doi.org/10.7717/peerj.5895

Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., Taillon, B. E., Chen, Z., Tanzer, A., Saunders, A. C. E., Chi, J., Yang, F., Carter, N. P., Hurles, M. E., Weissman, S. M., Harkins, T. T., Gerstein, M.B., Egholm, M., Snyder, M. (2007). Paired-end mapping reveals extensive structural variation in the human genome. *Science, 318*(5849), 420–426. https://doi.org/10.1126/science.1149504

Koster, J., and Rahmann, S. (2012). Snakemake--a scalable bioinformatics workflow engine. *Bioinformatics, 28*(19), 2520–2522. https://doi.org/10.1093/bioinformatics/bts480

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature Methods, 9*(4), 357–359. https://doi.org/10.1038/nmeth.1923

Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics, 34*(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics (Oxford, England), 25*(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. *Bioinformatics, 25*(16), 2078–2079.

Nelson, C. L., Pelak, K., Podgoreanu, M. V., Ahn, S. H., Scott, W. K., Allen, A. S., Cowell, L. G., Rude, T. H., Zhang, Y., Tong, A., Ruffin, F., Sharma-Kuinkel, B. K., and Fowler, V. G. (2014). A genome-wide association study of variants associated with acquisition of Staphylococcus aureus bacteremia in a healthcare setting. *BMC Infectious Diseases, 14*(1), 83. https://doi.org/10.1186/1471-2334-14-83

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution, 32*(1), 268–274. https://doi.org/10.1093/molbev/msu300

Olson, N. D., Lund, S. P., Colman, R. E., Foster, J. T., Sahl, J. W., Schupp, J. M., Keim, P., Morrow, J. B., Salit, M. L., and Zook, J. M. (2015). Best practices for evaluating single
nucleotide variant calling methods for microbial genomics. In *Frontiers in Genetics* (Vol. 6, Issue JUL, p. 235). Frontiers Media S.A. https://doi.org/10.3389/fgene.2015.00235

Ondov, B.D., Bergman, N.H. & Phillippy, A.M. Interactive metagenomic visualization in a Web browser. *BMC Bioinformatics* **12**, 385 (2011). https://doi.org/10.1186/1471-2105-12-385

Sahl, J. W., Gillece, J. D., Schupp, J. M., Waddell, V. G., Driebe, E. M., Engelthaler, D. M., and Keim, P. (2013). Evolution of a Pathogen: A Comparative Genomics Analysis Identifies a Genetic Pathway to Pathogenesis in Acinetobacter. *PLoS ONE*, 8(1). https://doi.org/10.1371/journal.pone.0054287

Schuster, S. C. (2008). Next-generation sequencing transforms today’s biology. In *Nature Methods* (Vol. 5, Issue 1, pp. 16–18). https://doi.org/10.1038/nmeth1156

Seemann, T. (2015). *Snippy: Rapid haploid variant calling and core genome alignment*. https://github.com/tseemann/snippy

Seemann T, *Abricate*, Github https://github.com/tseemann/abricate

Senghore, M., Otu, J., Witney, A., Gehre, F., Doughty, E. L., Kay, G. L., Butcher, P., Salako, K., Kehinde, A., Onyejepu, N., Idigbe, E., Corrah, T., De Jong, B., Pallen, M. J., and Antonio, M. (2017). Whole-genome sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in Southwest Nigeria. *PLoS ONE*. https://doi.org/10.1371/journal.pone.0184510

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K. V., Altshuler, D., Gabriel, S., and DePristo, M. A. (2013). From fastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. *Current Protocols in Bioinformatics*, 43(SUPL.43), 11.10.1-11.10.33. https://doi.org/10.1002/0471250953.bi1110s43

Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., and Shen, B. (2011). A Practical Comparison of De Novo Genome Assembly Software Tools for Next-Generation Sequencing Technologies. *PLoS ONE*, 6(3), e17915. https://doi.org/10.1371/journal.pone.0017915
Figure 1

A schematic workflow of BAGEP.

Fastp is used for quality control on paired-end FASTQ reads. The processed reads are mapped against a reference genome provided by the user. Centrifuge is used to check the reads for contamination and generate a taxonomic visualized report with Krona. Variants are called using Freebayes and annotated with SnpEff (aided by Snippy). The resulting variant call format (VCF) files and genomes from each sample are collated with Snippy-core to produce a VCF file containing all samples, core and whole genome multiple sequence alignments. A maximum-likelihood phylogenetic tree is constructed with IQTREE and a HTML file containing an interactive SNP visualization with the VCF file. Finally, Abricate generates an AMR report from whole genome multiple sequence alignments.
Manuscript to be reviewed
Figure 2

Pre-processing reports from read 1 of one of the *M. tuberculosis* genomes

(A) Read quality before filtering (B) Read quality after filtering (C) Base contents before filtering (D) Base contents after filtering.
Figure 3

Taxonomic classification of reads in an isolate using Centrifuge and Krona
Figure 4

Interactive visualization of SNPs showing their positions across genomes

(A) Twenty (20) *M. tuberculosis* genomes (B) Twenty (20) *Salmonella enterica* serova Typhi genomes.