Magnetic structure determination of Ca$_3$LiOsO$_6$ using neutron and x-ray scattering
S. Calder, M. D. Lumsden, V. O. Garlea, J. W. Kim, Y. G. Shi, H. L. Feng, K. Yamaura, and A. D. Christianson
Phys. Rev. B 86, 054403 — Published 2 August 2012
DOI: 10.1103/PhysRevB.86.054403
Magnetic structure determination of Ca$_3$LiOsO$_6$ using neutron and x-ray scattering

S. Calder,1,* M. D. Lumsden,1 V. O. Garlea,1 J.-W. Kim,2
Y. G. Shi,3,4 H. L. Feng,4,5 K. Yamaura,4,5 and A. D. Christianson1

1Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
2Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
3Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China.
4Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
5Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.

We present a neutron and x-ray scattering investigation of Ca$_3$LiOsO$_6$, a 5d material predicted to host magnetic ordering solely through an extended superexchange pathway involving two anions. This contrasts with investigations of extended superexchange interactions that have been largely limited to low dimensional 3d systems involving both superexchange and extended superexchange. Despite the apparent 1D nature and triangular units of magnetic osmium ions in Ca$_3$LiOsO$_6$ the onset of magnetic correlations has been observed at a high temperature of 117 K in bulk measurements. We experimentally determine the magnetically ordered structure and show it to be long range and three dimensional. Our results support the model of extended superexchange interaction.

I. INTRODUCTION

The investigation of 5d transition metal oxides (TMO) has resulted in the observation of a variety of novel properties due to the competition of spin-orbit coupling (SOC), on-site Coulomb interaction and crystal field splitting that are all of comparable strength. This contrasts with the much more studied 3d TMO in which spin-orbit coupling is generally only a small perturbation. On the other hand the radius of the electronic wavefunction is extended in 5d systems compared to 3d TMO, resulting in increased itinerant properties. Much of the recent experimental and theoretical focus on 5d TMO has concentrated on iridates due to the observance of a so called $J_{\text{eff}} = 1/2$ Mott spin-orbit insulating state. This state arises due to the SOC splitting of the t_{2g} manifold as a consequence of the 5d^9 electron configuration. Consequently even small on-site Coulomb interactions can result in insulating behavior1. Iridates have been found to host topological insulating states2, Weyl semi-metal3 and potentially the Kitaev model4.

Systems containing the neighboring osmium ion have also showed interesting properties. For example NaOsO$_3$ undergoes a Slater metal-insulator transition5 and KO$_2$O$_6$ is an unconventional superconductor6. We focus on an additional compound of note, Ca$_3$LiOsO$_6$, that was grown and characterized for the first time by Shi et al.7. Ca$_3$LiOsO$_6$, an insulator at all temperatures we consider, forms the K$_4$CdCl$_6$-type crystal structure (hexagonal space group $R\overline{3}c$) in which apparent 1D chains of Os ions along the c-axis are separated by Li ions in a frustrated geometry, as shown in Fig 1. However, the high magnetic ordering temperature reported of 117 K is not compatible with this quasi-1D frustrated picture7. Instead the authors presented a model for Ca$_3$LiOsO$_6$ containing extended superexchange magnetic interactions of Os-O-O-Os to account for the high magnetic ordering temperature. Shortly after a theoretical investigation supported this model and considered possible magnetic exchange interactions8. Whilst magnetic interactions mediated by a single anion are common with long standing and well defined Goodenough-Kanamori rules9, the investigation of materials with solely the extended superexchange interaction through two anions has undergone relatively little investigation.

We have performed a neutron and magnetic x-ray scattering investigation to determine the magnetic structure of Ca$_3$LiOsO$_6$. The related 4d material Ca$_3$LiRuO$_6$ also undergoes a magnetic transition at a similar temperature, suggestive that the electronic configuration of d^3 is significant and plays a role in the magnetic ordering10. For Ca$_3$LiOsO$_6$ we find a magnetic structure in which both inter and intra-chain magnetic interactions are present. The magnetic model is 3D and contains no geometric frustration, making it compatible with the high mag-
netic ordering temperature observed and the low ratio of Θ_W/T_N from susceptibility. We present both powder and single crystal results that confirm the magnetic ordering temperature and are consistent with a magnetic structure that involves solely the extended superexchange interaction. $\text{Ca}_3\text{LiOsO}_6$, along with $\text{Ca}_3\text{LiRuO}_6$, appear to be ideal candidates to investigate the extended superexchange interaction. Unlike the iridates discussed above in which the $5d^5$ electronic configuration leads to the degeneracy of the t_{2g} level being broken by spin-orbit coupling, the $5d^3$ configuration is expected to remain degenerate, even for the case of large SOC. We consider the t_{2g} configuration through an interpretation of our neutron and x-ray results.

II. EXPERIMENTAL METHODS

Single crystal and polycrystalline samples of $\text{Ca}_3\text{LiOsO}_6$ were prepared as described in Ref. 7. Neutron powder diffraction (NPD) measurements were performed at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) using beamline HB-2A. Measurements were performed with both $\lambda = 1.54$ Å and $\lambda = 2.41$ Å on a 5 gram sample. The shorter wavelength gives a greater intensity and higher Q coverage that we utilized to investigate the crystal structure through the magnetic phase transition from 150 K to 30 K. The longer wavelength gives lower Q coverage and greater resolution that we employed to investigate the magnetic structure at 4 K, with a comparable measurement at 150 K. The NPD data was investigated using the rietveld refinement program Fullprof and the magnetic structural representation analysis was performed using SARAh.

The triple-axis instrument HB1 at HFIR was used in elastic mode with a wavelength of 2.46 Å to investigate the magnetic order parameter at the (101) magnetic reflection on the same powder sample. Various measurements were taken from 10 K through the magnetic transition temperature of ~ 117 K. The integrated intensity of the scattering around the magnetic reflection was calculated to determine the magnetic ordering temperature.

A single crystal investigation on a crystal of approximate size $0.1 \times 0.1 \times 0.05$ mm was performed at the Advanced Photon Source (APS) at beamline 6-ID-B using magnetic resonant X-ray scattering (MRXS). We carried out measurements at both the L2 and L3 resonant edges of osmium that correspond to 12.393 keV and 10.878 keV, respectively. Graphite was used as the polarization analyzer crystal at the $(0 0 10)$ and (008) reflections on the L2 and L3 edges, respectively, to achieve a scattering angle close to 90°. For the L3 edge the scattering angle was 86° and for L2 the scattering angle was 94°. Measurements were taken at several reflections to investigate possible magnetic structures, with an analysis of the photon polarization in $\sigma-\sigma$ and $\sigma-\pi$ allowing a distinction between magnetic and charge scattering. To account for absorption, energy scans were performed without the analyzer and with the detector away from any Bragg peaks through both absorption energies.

III. RESULTS AND DISCUSSION

A. Neutron diffraction crystal structure investigation

We investigated the crystal structure temperature variation of $\text{Ca}_3\text{LiOsO}_6$ using NPD from 150 K to 4 K, through the magnetic anomaly observed around 117 K. Our NPD results at 4 K and 150 K are consistent with previously reported XRD that showed no structural symmetry change. The results are not conclusive to assign the possibility of a structurally driven magnetic transition and any anomaly is much less pronounced than from XRD.

The crystal structure of $\text{Ca}_3\text{LiOsO}_6$ has each osmium ion surrounded by six oxygen ions in an octahedral environment, see Fig. 1. The octahedra remain invariant with a or b axis translations, but their orientation alternate along the c-axis. In a model of extended magnetic superexchange interaction the octahedra form the Os-O-O-O exchange pathway. The temperature variation of the Os-O distance obtained from NPD shows virtually no deviation with temperature. The electronic configuration of the Os$^{5+}$ ion is $5d^3$, with the three electrons therefore expected to each occupy the crystal field split degenerate t_{2g} orbitals d_{xy}, d_{yz} and d_{zx}.

Ref. 7 discusses the possibility of a trigonal CEF breaking of the t_{2g} degeneracy. If this degeneracy was
TABLE I. Refined crystal structure parameters from Fullprof for (a) 150 K and (b) 4 K for \(\lambda = 1.54 \) Å.

(a) 150 K

Atom site	\(x \)	\(y \)	\(z \)	\(B_{iso} \) (Å²)
Os	0.0281(14)	0.8438(1)	0.3942(2)	0.610(3)
Ca	0.6460(3)	0.25	0.6458(3)	0.293(3)
O	0.0279(2)	0.8437(2)	0.3940(2)	0.483(3)
Li	0.0279(2)	0.8437(2)	0.3940(2)	0.483(3)

(b) 4 K

Atom site	\(x \)	\(y \)	\(z \)	\(B_{iso} \) (Å²)
Os	0.0281(14)	0.8438(1)	0.3942(2)	0.610(3)
Ca	0.6460(3)	0.25	0.6458(3)	0.293(3)
O	0.0279(2)	0.8437(2)	0.3940(2)	0.483(3)
Li	0.0279(2)	0.8437(2)	0.3940(2)	0.483(3)

broken it would be expected that this would be reflected in a deviation of the Os-O bonds within the octahedra, however this is not observed. Similarly any Jahn-Teller distortions are precluded by the lack of variation in the Os-O distance. Therefore our results show no indication of distortions are precluded by the lack of variation in the Os-O-O-Os interactions to describe the 3D ordering.

B. Magnetic structure

1. Neutron powder diffraction

The NPD measurements showed additional scattering at commensurate positions below \(\sim 120 \) K indicative of magnetic ordering. To determine the nature of the magnetic order we implemented representational analysis. For a second order transition, Landau theory states that the symmetry properties of the magnetic structure are described by only one irreducible representation (IR). All the magnetic reflections can be indexed using a propagation vector \(\mathbf{k} = (000) \) therefore this was employed in our analysis. For the \(R\bar{3}c \) crystal structure with the magnetic moment on the Os ion and commensurate propagation vector, \(\mathbf{k} = (0,0,0), \) there are three possible IRs. Table II lists the IR and corresponding basis vectors, \(\psi. \) The IR correspond to \(\Gamma(1), \) \(\Gamma(3) \) and \(\Gamma(5) \) (following the numbering scheme of Kovalev). \(\Gamma(3) \) could be readily discarded as not giving scattering at the correct reflections for the magnetic ordering. Figure 3 shows the refined model for the \(\Gamma(1) \) and \(\Gamma(5) \) IRs. Refining both models to fit the experimental scattering does not produce conclusively different results to allow for the definition of a unique magnetic structure, despite relatively large counting times performed during the NPD.

Although the scattering is well reproduced by both models, there is a clear distinction between the magnetic structure they represent. The two candidate magnetic structures are shown schematically in Fig. 3(c)-(d). \(\Gamma(1) \) has spins AFM aligned along the \(c \)-axis in 1D chains, for which 3D ordering would be frustrated due to the triangular units between the chains. \(\Gamma(5) \) has spins oriented in the \(a-b \) plane that would require extended superexchange Os-O-Os interactions to describe the 3D ordering.

There are certain distinctions between the modeled neutron scattering for each IR. Firstly, for \(\Gamma(1) \) there is no scattering at the reflection at \(\sim 40^\circ \) that corresponds to \((003), \) whilst there is scattering for the \(\Gamma(5) \) model. Secondly, the scattering at the magnetic peaks is slightly better modeled for the \(\Gamma(5) \) model compared to the \(\Gamma(1) \) model as evidenced by the \(\chi^2 \) value being slightly lower for the \(\Gamma(5) \) model. As shown in Table II there is only one BV, \(\psi_1, \) for \(\Gamma(1), \) Therefore there are only moments allowed oriented in \(c \)-axis and consequently the only variable is the size of the magnetic moment. The refinement for this \(\Gamma(1) \) model gives a magnetic moment of \(\sim 2 \mu_B. \) Conversely for \(\Gamma(5) \) there are four basis vectors, that only allow moments in the \(a-b \) plane. In the basal plane any angle between spins is possible. However, placing the spins at an angle of 90° or less results in an intensity mismatch on the lowest two observed angular reflections.
and can be readily discarded as a valid model. In the IR analysis the atoms of the non-primitive basis are defined according to 1: (0, 0, 0), 2: (0, 0, \frac{1}{2}). These two sites sit at equivalent atomic environments and so we consider the constraint that the magnitude of the spins on both sites should be the same and the orientation restricted to equivalent directions in the hexagonal crystal structure. Using different basis vector values with these constraints produces magnetic models with fixed angle of 120° and 180° between the spins in the basal plane as physically reasonable models. The modeled intensity is different for different values of BVs at the allowed reflections for \Gamma(5). However, the sharp fall of the form factor dependence for Os^{5+} results in appreciably no discernible difference between the various BV values with angles between spins of 120° and 180°. Consequently from the NPD data for the \Gamma(5) model we are able to define the magnetic moment as falling in the range 2.0\mu_B to 2.3\mu_B, with the spins in the a-b plane.

Both \Gamma(1) and \Gamma(5) models give a reduced magnetic moment from the spin only S = 3/2 value of 3\mu_B of between 66% to 76%. This is reduced from that predicted by a Curie-Weiss fit to the susceptibility that produced 98% of the expected spin only model7. A reduced moment from that expected by a localized spin model, and even that found from a Curie-Weiss fit, has been observed for various 5d TMO systems14. The extended radius of 5d systems would be expected to result in a greater tendency away from a purely localized spin model and consequently a larger degree of covalency and charge fluctuations has been postulated to describe this behavior15.

2. Magnetic resonant X-ray scattering

To distinguish between the \Gamma(1) and \Gamma(5) magnetic models we extended our investigation to a single crystal of Ca\textsubscript{3}LiOsO\textsubscript{6} using magnetic resonant X-ray scattering (MRXS) at the APS. MRXS has several unique qualities, specifically for our investigation is the ability to measure magnetic scattering using small single crystals of dimensions inaccessible to neutron scattering. Additionally MRXS directly probes electronic excitations within the magnetic ion and therefore allows a consideration of the role of the increased SOC in 5d systems, as has been previously shown using MRXS1. In general 5d systems are particularly well suited to MRXS and show large resonant enhancements at certain well defined energies1,16,17. For osmium these resonant edges are labelled L2 and L3 and correspond to energies of 12.393 keV and 10.878 keV, respectively, for Ca\textsubscript{3}LiOsO\textsubscript{6}. The L3 absorption corresponds to electronic 2p\textsubscript{3/2} → 5d transitions and the L3 edge corresponds to 2p\textsubscript{1/2} → 5d electronic transitions. The crystal environment plays a role in determining the exact resonant energies observed away from that of an isolated single ion, however we note that Ca\textsubscript{3}LiOsO\textsubscript{6} and the recently measured NaOsO\textsubscript{3} produced virtually the same resonant energy values and energy peak shapes5. This suggests a similar local environment and electronic configuration for the Os5+ ion in both systems. We observed a strong magnetic resonant enhancement at both L2 and L3 edges for Ca\textsubscript{3}LiOsO\textsubscript{6}. This is compatible with a lack of splitting of the t\textsubscript{2g} degeneracy by spin-orbit coupling, as was observed for NaOsO\textsubscript{3}. These results contrast with irradiates with a J\textsubscript{eff} = 1/2 insulating state in which there is virtually no resonant enhancement at the L2-edge1.

![FIG. 3. NPD data with \lambda = 2.41 Å at 4 K modeled with two possible magnetic structures from the representational analysis, labelled (a) \Gamma(1) and (b) \Gamma(5), following the numbering scheme of Kovalen. The refinement gave (a) Rp = 5.10, \textit{R} = 7.21, \textit{R}_{\text{exp}} = 2.82, \chi^2 = 6.54 and (b) Rp = 4.98, \textit{R}_{\text{exp}} = 7.02, \chi^2 = 2.83. The corresponding magnetic spin structure is shown for (c) \Gamma(1) and (d) \Gamma(5). The schematic shows 180° between spins, however additional angles are possible in the basal plane as described in the text.](image-url)
We performed a thorough analysis of various magnetic and non-magnetic reflections using MRXS to distinguish between the two candidate magnetic structures from NPD. To determine if the observed scattering was magnetic or non-magnetic (or both) we performed a polarization analysis of the scattered x-ray beam. This exploits the fact that an incident x-ray beam of linearly polarized light is rotated by 90° when scattered by magnetic dipoles. Therefore for σ-σ polarization there is no intensity if the scattering is magnetic, whereas σ-π polarization produces a large enhancement around the resonant edges for magnetic scattering. This is demonstrated in Fig. 4 for the (009) purely magnetic reflection. We performed measurements above and below the magnetic transition temperature to rule out the possibility of the (009) intensity being due to Templeton (ATS) scattering. To confirm the consistency of our distinction between magnetic and non-magnetic reflections we measured all permutations of a select reflection: (107), (0-17), (-117), (-1-0 7) and (017) and found the correct nature of scattering for the crystal and magnetic structures. We measured the reflections at the same azimuth to limit the possibility that the zero intensities were azimuth or moment direction dependent.

Table III lists the measured peaks of Ca₃LiOsO₆ in our investigation and the nature of the scattering. All the magnetic reflections are consistent with that of the Γ(5) model, with those marked with an asterix not allowed for the Γ(1) model. Therefore taking all our neutron and x-ray results support the Γ(5) model, with spins oriented in the a-b plane, as being the ordered magnetic structure for Ca₃LiOsO₆. We present results of MRXS scans through (H K L) at the (-2 2 11) magnetic reflection. The scans show peaks at (H K L) that are entirely consistent with 3D magnetic order.

One question remains as to the specific direction of each spin in the a-b plane or if indeed there is a specific direction or a random arrangement due to domains. Since rotating the spins equally around the a-b plane results in appreciably the same modeled scattering from neutron diffraction this could not be used to distinguish between directions. Additionally we performed azimuthal scans that can give definitive information on the moment direction, however we observed no obvious trends. Regardless of the specific spin direction, the relative arrangement of each spin with respect to their neighbor and next nearest neighbor remains the same and therefore our discussion of the exchange interactions in section III B 4 does not depend on the definition of a unique spin direction.

3. Magnetic ordering temperature of Ca₃LiOsO₆

Having experimentally determined the magnetic structure for Ca₃LiOsO₆ we now consider the antiferromag-
FIG. 5. Integrated intensity of the scattering at purely magnetic reflections with (a) powder neutron scattering and (b) single crystal MRXS. The determined antiferromagnetic transition ordering temperature T_N is shown to agree for both techniques.

Magnetic ordering temperature, T_N. We measured the scattering around the (101) reflection, $|Q| = 0.97 \text{ Å}^{-1}$, with elastic neutron scattering on beamline HB1 at HFIR and the scattering around the (107), $|Q| = 4.16 \text{ Å}^{-1}$, reflection at the L2-edge with MRXS on beamline 6-ID-B at the APS. The integrated intensity for the various temperature measurements are shown in Fig. 5. We fit the temperature dependence of the integrated intensity to a power law to determine the magnetic ordering temperature and allow an estimate of the β exponent. From the neutron scattering results on a powder sample we find $T_N = 117.1 \pm 0.9$ K. The associated exponent is $\beta = 0.28 \pm 0.1$, however we stress that obtaining critical scattering from our data is not feasible and instead only note that the exponent is closer to the 3D value. We note that the observance of scattering along h, k and l in a single crystals using MRXS is more direct evidence that the magnetic order is 3D. MRXS gives a AFM ordering temperature of $T_N \approx 115$ K, however due to sample heating issues the reliability in sample temperature results in unassignable error bars and as such we simply note that the value is consistent with neutron scattering and bulk data. Additionally we cannot rule out that there may exist a difference between the powder and single crystal samples that results in slightly different ordering temperatures. The order parameter from both techniques has all the hallmarks for 3D order, and does not show the sharp increase associated with 2D ordering. Therefore within experimental error the neutron and x-ray results agree, and correspond to the transition temperature observed in susceptibly and specific heat measurements in the literature.

FIG. 6. Schematic of magnetic structure of Ca$_3$LiOsO$_6$. Blue spheres are Os ions with associated magnetic spin shown as an arrow. Smaller red spheres are oxygen ions. (a) Magnetic extended superexchange pathways Os-O-O-Os: J_1 (black), J_2 (red) and J_3 (blue). J_1 and J_2 form AFM exchange interactions, whereas J_3 forms FM bonds. (b)-(d) The separate magnetic interaction pathways are shown with their respective distances and angles. The angle between spins in the schematic is 180°. See the text for discussion of other angles, however we note that altering the angle between spins does not effect our discussion of the different exchange interactions.
4. Magnetic exchange interactions

The magnetic spins reside on the a-b plane and form 3D magnetic order that is best explained as involving the extended superexchange magnetic interaction pathway Os-O-O-Os. The extended superexchange interactions are shown in Fig. 6, labeled J_1, J_2 and J_3. Kan et al. considered the relative strength of these exchange interactions using density functional theory calculations for Ca$_3$LiOsO$_6$ for various AFM or FM interactions. Considering Fig. 6, the magnetic structure for Ca$_3$LiOsO$_6$ we have presented gives J_1 spins oppositely aligned, J_2 spins oppositely aligned and J_3 spins coaligned. Kan et al. considered four possible magnetic structures and concluded that all J_1, J_2 and J_3 interactions were AFM, whereas the experimentally determined magnetic structure presented here has J_3 spins parallel. The overall Os-Os bond length increases in going from J_1 (5.38 Å) to J_2 (5.64 Å) to J_3 (6.43 Å). However, since the magnetic structure involves 3D interactions, the magnetic ordering cannot simply be described in terms of the shortest J_1 interaction along the c-axis. Therefore the further exchange interactions J_2 and J_3 are required. Since frustration effects are negligible, this requires that J_2 and J_3 not be of a similar strength, as noted previously. This would be compatible with J_1 and J_2 having large negative AFM values, while J_3 is small and consequently is fixed according to the J_1 and J_2 interactions and produces apparent FM interactions, even though the J_1 exchange interaction is negative. However, one alternative conclusion for J_3 spins being parallel could be argued in terms of the bond angles between the three different Os-O-O-Os pathways favoring FM interactions, considered in Fig 6(b)-(d). For J_1 and J_2 the Os-O bond angle is approximately equivalent to 90° and the torsion angle of Os-O-O-Os deviates from 90° by approximately the same value. Comparing J_1 and J_2 with J_3 shows markedly different Os-O-O and Os-O-O-Os bond angle values. Therefore the oxygen p orbitals and Os t_{2g} d orbitals will overlap differently for J_3, compared to J_1 and J_2. It would be of interest to theoretically calculate stable J_1-AFM, J_2-AFM and J_3-FM values compatible with the magnetic structure for Ca$_3$LiOsO$_6$ we have reported.

IV. CONCLUSION

We have presented a combined neutron and x-ray scattering investigation of Ca$_3$LiOsO$_6$. The results are compatible with a magnetic structure of $\Gamma(5)$ (following the numbering scheme of Kovalev) in which the spins are in the a-b plane. The magnetic order is 3D and can be explained in terms of a model of Os-O-O-Os extended superexchange interactions. Despite apparent triangular units frustration is relieved as a consequence of the nature of the Os-O-O-Os pathways present that involve both AFM and FM exchange interactions. Ca$_3$LiOsO$_6$ provides an ideal model to investigate the magnetic extended superexchange interaction free from any single anion superexchange effects.

ACKNOWLEDGMENTS

Work at ORNL was supported by the scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Research was supported in part by Grant-in-Aid for Scientific Research (22246083, 22850019) from JSPS and FIRST Program from JSPS and ALCA program from JST and the Ministry of Science and Technology of China (973 Project No. 2011CBA00110).

* caldersa@ornl.gov

1. B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science, 323, 1329 (2009).
2. D. Pesin and L. Balents, Nature Phys., 6, 376 (2010).
3. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B, 83, 205101 (2011).
4. J. c. v. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett., 105, 027204 (2010).
5. S. Calder, V. O. Garlea, D. F. McMorrow, M. D. Lumsden, M. B. Stone, J. C. Lang, J.-W. Kim, J. A. Schlueter, Y. G. Shi, K. Yamaura, Y. S. Sun, Y. Tsujimoto, and A. D. Christianson, Phys. Rev. Lett., 108, 257209 (2012).
6. S. Yonezawa, Y. Muraoka, Y. Matsushita, and Z. Hiroi, J. Phys.: Cond. Matt., 16, L9 (2004).
7. Y. Shi, Y. Guo, S. Yu, M. Arai, A. Sato, A. A. Belik, K. Yamaura, and E. Takayama-Muromachi, JACS, 132, 8474 (2010).
8. E. Kan, F. Wu, C. Kang, and M.-H. Whangbo, Inorganic chemistry, 50, 4182 (2011).
9. J. B. Goodenough, Magnetism and the Chemical Bond (Interscience-Wiley: New York, 1963).
10. J. Darriet, F. Grasset, and P. D. Battle, Materials Research Bulletin, 32, 139 (1997).
11. G. Chen and L. Balents, Phys. Rev. B, 84, 094420 (2011).
12. A. Wills, Physica B, 276, 680 (2000).
13. O. V. Kovalev, Representations of the Crystallographic Space Groups Edition 2 (Gordon and Breach Science Publishers, Switzerland, 1993).
14. E. E. Rodriguez, F. Poineau, A. Llobet, B. J. Kennedy, M. Avdee, G. J. Thorogood, M. L. Carter, R. Seshadri, D. J. Singh, and A. K. Cheetham, Phys. Rev. Lett., 106, 067201 (2011).
15. J. Mravlje, M. Aichhorn, and A. Georges, Phys. Rev. Lett., 108, 197202 (2012).
16 X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J. Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill, Phys. Rev. B, 83, 220403 (2011).

17 D. F. McMorrow, S. E. Nagler, K. A. McEwen, and S. D. Brown, J. Phys.: Condens. Matter, 15, L59 (2003).