Impact of Insulin Receptor Substrate-1 rs956115 and CYP2C19 rs4244285 Genotypes on Clinical Outcome of Patients Undergoing Percutaneous Coronary Intervention

Jiaxin Zong, MD;* Yingdan Tang, MSc;* Tong Wang, MD;* Inam Ullah, MBBS;* Ke Xu, MD, PhD;* Jing Wang, MD; Pengsheng Chen, MD; Zengguang Chen, MD; Tiantian Zhu, MD; Jun Chen, MD; Jimin Li, MD; Fei Wang, MD; Lu Yang, MD; Yansheng Fan, MD; Lu Shi, MD; Xiaoxuan Gong, MD; John W. Eikelboom, MD; Yang Zhao, PhD; Chunjian Li, MD, PhD

BACKGROUND: Insulin receptor substrate-1 (IRS-1) rs956115 is associated with vascular risk in patients with coronary artery disease and concomitant diabetes. CYP2C19*2 (rs4244285) modulates clopidogrel response and predicts the outcome of coronary artery disease. This study was designed to explore the association between IRS-1, CYP2C19*2 genotypes, platelet reactivity, and 1-year outcome in patients with coronary artery disease undergoing percutaneous coronary intervention.

METHODS AND RESULTS: Genotyping was performed using an improved multiplex ligation detection reaction technique. Platelet aggregation was assessed by light transmission aggregometry. Major adverse cardiovascular events were defined as a composite of cardiovascular death, myocardial infarction, and ischemic stroke. A total of 2213 consecutive patients were screened and 1614 were recruited. At 1 month, patients with IRS-1 CG genotype had significantly lower levels of ADP-induced platelet aggregation compared with patients with CC homozygotes. Patients with IRS-1 CG or GG genotype had a 2.09-fold higher risk of major adverse cardiovascular events compared with those with CC homozygotes (95% CI, 1.04–4.19; P = 0.0376). By comparison, patients with CYP2C19*2 GA or AA genotype had higher ADP-induced platelet aggregation compared with patients with GG homozygotes. Although there was no significant difference in risk of major adverse cardiovascular events between patients with GA/AA and GG genotypes, patients with GA genotype had a 2.19-fold higher risk than those with GG homozygotes (95% CI, 1.13–4.24; P = 0.0200). No interaction between IRS-1 and CYP2C19*2 genotypes was observed.

CONCLUSIONS: In patients following percutaneous coronary intervention, IRS-1 GG/CG and CYP2C19*2 GA genotypes were associated with 2.09- and 2.19-fold increased cardiovascular risk, respectively, at 1-year follow-up. The association between IRS-1 genotypes and major adverse cardiovascular events appeared to be independent of known clinical predictors.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01968499.

Key Words: coronary artery disease ■ CYP2C19 rs4244285 ■ IRS-1 rs956115 ■ percutaneous coronary intervention ■ platelet reactivity
Insulin receptor substrate-1 (IRS-1), a ligand of insulin receptor tyrosine kinase, plays a central role in the insulin signal transduction system. Dysregulation of IRS-1 has been suggested as a common mechanism underlying insulin resistance that may lead to high platelet reactivity and low response to antiplatelet treatment in patients with type 2 diabetes. CYP2C19 is one of the isoenzymes of the hepatic cytochrome P450 system, which plays a key role in the bioactivation of clopidogrel. Patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI) who are carriers of CYP2C19 loss of function *2 (rs4244285) have lower levels of the active metabolite of clopidogrel than wild-type homozygotes, which is associated with lower clopidogrel responsiveness and an increased risk of major adverse cardiovascular events (MACE).

This study was designed to examine the association between IRS-1 rs956115, CYP2C19*2 genotypes and platelet reactivity as well as MACE in patients with CAD who had undergone PCI and were treated with aspirin and clopidogrel.

METHODS

Ethical Considerations

All protocols for this study were reviewed and approved by the ethics committee of the First Affiliated Hospital of Nanjing Medical University (approval number 2011-SRFA099). Written informed consent was obtained from each patient. The data that support the findings of this study are available from the corresponding author on reasonable request.

Study Design

A prospective single-center cohort study was conducted in the First Affiliated Hospital of Nanjing Medical University, Nanjing, China. The inclusion criteria were patients with CAD undergoing urgent or elective coronary stent implantation who were aged >18 years and planning to take dual antiplatelet treatment with clopidogrel 75 mg and aspirin 100 mg once daily for at least 1 year. Patients who met any of the following criteria were excluded: (1) allergic or intolerant to aspirin or clopidogrel; (2) at high risk for bleeding (eg, platelet count <80×10^9/L, known bleeding diathesis, active peptic ulcer, or with a history of cerebral hemorrhage within 1 year); and (3) planning to take drugs that could potentially interfere with the antiplatelet effects of aspirin (eg, NSAIDs) or clopidogrel (eg, CYP3A inhibitors or inducers). Baseline demographic and clinical characteristics as well as medical treatments and procedural details were collected on prespecified case report forms.

Laboratory Sample Collection and Preparation

After receiving >5 days of aspirin and clopidogrel, blood samples were collected 2 hours after the most recent dose (~10 AM) into one 2-mL BD Vacutainer tube (Becton, Dickinson and Company) containing 3.6 mg of K2 EDTA and into two 2-mL BD Vacutainer tubes containing 0.105 mol/L of buffered sodium citrate (3.2%). Within 1 hour of collection, blood samples were transferred to the central laboratory. EDTA samples were frozen at −80°C for subsequent genotyping, whereas citrated samples were processed immediately for platelet aggregation studies. After centrifuging citrated samples at 200 g for 8 minutes at 22°C, platelet-rich plasma was carefully separated. The remaining sample was centrifuged at 2465 g for another 10 minutes to obtain platelet-poor plasma. The platelet count in platelet-rich plasma was standardized by adding platelet-poor plasma to achieve a count of

Nonstandard Abbreviations and Acronyms

Abbreviation	Description
AA	arachidonic acid
IRS-1	insulin receptor substrate-1
MACE	major adverse cardiovascular events
PL_{AA}	arachidonic acid induced platelet aggregation
PL_{ADP}	ADP-induced platelet aggregation

CLINICAL PERSPECTIVE

What is New?

- In patients with recent percutaneous coronary intervention, insulin receptor substrate-1 rs956115 G allele was associated with a 2.09-fold higher cardiovascular risk at 1 year.
- The association between the insulin receptor substrate-1 G allele and cardiovascular outcomes was independent of CYP2C19*2 genotypes and known clinical predictors.

What are the Clinical Implications?

- Insulin receptor substrate-1 genotyping provides further opportunity to improve risk stratification of individual patients undergoing percutaneous coronary intervention.
- The underlying mechanism linking insulin receptor substrate-1 genotype and cardiovascular risk warrants further investigation.

CLINICAL PERSPECTIVE

What is New?

- In patients with recent percutaneous coronary intervention, insulin receptor substrate-1 rs956115 G allele was associated with a 2.09-fold higher cardiovascular risk at 1 year.
- The association between the insulin receptor substrate-1 G allele and cardiovascular outcomes was independent of CYP2C19*2 genotypes and known clinical predictors.

What are the Clinical Implications?

- Insulin receptor substrate-1 genotyping provides further opportunity to improve risk stratification of individual patients undergoing percutaneous coronary intervention.
- The underlying mechanism linking insulin receptor substrate-1 genotype and cardiovascular risk warrants further investigation.
250×10^9/L. Platelet aggregation tests by light transmis-
sion aggregometry were performed within 3 hours of
platelet-rich plasma preparation. At 1-month follow-
up, additional blood samples were collected for repeat
platelet aggregation studies.

Platelet Aggregation Studies
Platelet aggregation testing was performed using a
Chronolog Model 700 aggregometer (Chronolog
Corporation). Immediately after preparation of platelet-
rich plasma, 500 μL was transferred into each of the 2
test tubes, with 500 μL platelet-poor plasma as con-
trol. Platelet aggregation was induced using ADP or
arachidonic acid (AA) as agonists with final concen-
trations of 5 μmol/L and 1 mmol/L, respectively. ADP
and AA-induced platelet aggregation (PLADP and PLAA,
respectively) was recorded using the maximum plate-
let aggregation within 8 minutes. PLADP >40% was de-
defined as high on-treatment platelet reactivity.

Genotype Analysis
IRS-1 (rs956115, C>G) and CYP2C19*2 (rs4244285,
G>A) genotyping was performed using a custom-by-
design improved multiplex ligation detection reaction
technique (Genesky Biotechnologies Inc) based on
highly specific double ligation and multiplex fluo-
rescence polymerase chain reaction. For quality control,
repeated testing was performed randomly in 5% of
samples.

Clinical Follow-up
Patients were followed for 12 months by investigators
who were blinded to the results of platelet reactivity
testing and genotyping. Patients were reviewed in per-
son or by telephone if they could not attend the clinic.
The primary clinical end point was MACE, a com-
posite of cardiovascular death, myocardial infarction
(MI), or ischemic stroke within 12 months after PCI.
Cardiovascular events were defined according to the
2001 American College of Cardiology criteria.

Statistical Analysis
Assuming a MACE rate of 2.3%, a sample size of 1052
patients was required to detect a hazard ratio (HR) of
2.88 0.90 with 90% power and a 2-sided α value of 0.05.
Continuous variables were described as mean±SD or
median and interquartile range when data did not
follow a normal distribution, and the statistical signif-
icance of any differences between groups was ana-
yzed using a t test or nonparametric test. Categorical
variables were expressed as numbers and percent-
ages, and the statistical significance of any differences
between groups was analyzed using a χ^2 test or Fisher
exact method. One-way ANOVA was used to compare
platelet reactivity among different genotypes of IRS-1
and CYP2C19*2. Multivariable Cox proportional hazard
model analysis was used to estimate the association
between genotypes of IRS-1 and CYP2C19*2 and risk
of MACE, reported as HRs and 95% CIs. The model
was adjusted for clinical covariables including age,
previous MI, hypertension, diabetes, smoking status,
previous PCI, left ventricular ejection fraction, serum
creatinine, low-density lipoprotein, and diagnosis. The
date of PCI was set as “time zero” with censoring at
the end of study follow-up.

RESULTS
Between March 2011 and September 2016, 2213 pa-
tients were consecutively screened and 1614 patients
who fulfilled the eligibility criteria were enrolled. Three
patients were excluded from the final analysis because
of unsatisfactory blood sample quality. All of the re-
main ing patients completed the genotype assessment
and 1-year clinical follow-up. Platelet aggregation test-
ing was performed in 1175 patients at baseline and in
624 patients at 1 month (Figure 1).

Patient Characteristics
Baseline characteristics are summarized in Table 1.
Patients who experienced MACE compared with
those who did not were older (69.00 [14.50] versus
64.00 [15.00], P=0.0069) and more commonly having
reduced left ventricular ejection fraction (25.0% versus
7.66%, P=0.0001) and diagnoses of non–ST-segment–
elevation acute coronary syndromes and ST-segment–
elevation MI (63.63% versus 42.44%, P=0.0010). There
was no significant difference in baseline characteristics
between the 602 patients screened but not included
and the 1611 patients who were enrolled (Table S1,
Figure 1). Of the enrolled patients, 1175 had their plate-
let reactivities measured at baseline and 602 remeas-
ured at 1 month. There were no significant differences
in all baseline characteristics except smoking and pre-
vious PCI between patients who underwent reassess-
ment of platelet reactivity at 1 month and those who
did not (Table S2, Figure 1).

On-Treatment Platelet Reactivity and
Genotypes
The baseline and 1-month PLADP were 29.88±14.34%
and 26.27±15.10%, respectively. There was no sig-
nificant difference in baseline PLADP according to
IRS-1 genotypes (F=0.20, P=0.8200) (Figure 2A), but
a significant difference emerged at 1 month ($F=3.28$, $P=0.0381$) (Figure 2A). CG genotype was associated with a significantly lower PL_{ADP} compared with CC genotype ($P=0.0158$) (Figure 2A). Regarding PL_{AA}, there was no significant difference among the 3 genotypes of $IRS-1$ either at baseline ($F=2.73$, $P=0.0656$) (Figure S1A) or at 1 month ($F=0.20$, $P=0.8160$) (Figure S1A).

For $CYP2C19^{*2}$, PL_{ADP} were significantly different among the 3 genotypes at baseline ($F=53.27$, $P<0.001$) (Figure 2B) and at 1 month ($F=12.07$, $P<0.001$) (Figure 2B). By pairwise comparisons, the platelet reactivities corresponding to different genotypes of $CYP2C19^{*2}$ were all significantly different except the comparison between GA and AA at 1-month follow-up ($P=0.4392$) (Figure 2B). As shown in Figure 2B, $CYP2C19^{*2}$ GA or AA genotype were associated with higher PL_{ADP} compared with GG genotype. Regarding PL_{AA}, there was no significant difference among the 3 genotypes of $CYP2C19^{*2}$ either at baseline ($F=0.38$, $P=0.6870$) (Figure S1B) or at 1-month follow-up ($F=0.78$, $P=0.4590$) (Figure S1B).

There was no significant difference in the prevalence of high on-treatment platelet reactivity among patients with different genotypes of $IRS-1$ at both baseline (CC 22.80% versus CG 19.74% versus GG 8.33%; $P=0.3109$) (Table S3, Figure S2A) and 1-month follow-up (CC 18.52% versus CG 14.50% versus GG 0.00%; $P=0.2655$) (Table S3, Figure S2C). However, high on-treatment platelet reactivity was more frequently presented in the A allele carriers of $CYP2C19^{*2}$ at baseline (GG 16.41% versus GA 25.45% versus AA 40.00%; $P<0.0001$) (Figure S2B), as well as at 1-month follow-up (GG 11.70% versus GA 21.48% versus AA 25.00%; $P=0.0021$) (Table S3, Figure S2D).

Association Between $IRS-1/CYP2C19^{*2}$ Genotypes and Cardiovascular Outcomes

A total of 44 patients experienced MACE, including 15 cardiac deaths, 16 nonfatal MIs, and 13 ischemic strokes.

For $IRS-1$, patients with CG or GG genotypes had a 1.99-fold higher MACE risk compared with those with CC genotype (dominant model: adjusted HR, 1.99; 95% CI, 1.00–3.98 [$P=0.0499$]) (Table 2). When further adjusted for $CYP2C19^{*2}$ genotypes, patients with CG or GG genotypes had a 2.09-fold higher MACE risk compared with those with CC homozygotes (dominant model: adjusted HR, 2.09; 95% CI, 1.04–4.19 [$P=0.0376$]) (Table 2 and Figure 3A). There was no significant difference in risk of MACE between CG and CC genotypes ($P=0.0586$) and between GG and CC genotypes ($P=0.1351$) (Table 2 and Figure 3C).

For $CYP2C19^{*2}$, there was no significant difference in the risk of MACE between patients with GA or AA genotype and those with GG genotype (dominant model: $P=0.0759$) (Table 2). However, the risk of MACE was 2.13-fold higher in patients with GA genotype than in GG homozygotes (adjusted HR, 2.13; 95% CI, 1.10–4.12 [$P=0.0248$]) (Table 2). In the meantime, no significant difference in the risk of
MACE was found between AA and GG genotypes (P=0.4814) (Table 2). When further adjusted for IRS-1 genotypes, there was still no significant difference in the risk of MACE between patients with GA or AA and those with GG genotype (dominant model; P=0.0666) (Table 2 and Figure 3D). The entire results with categorical, dominant, additive, recessive models are presented in Table S4.

Association of IRS-1 Genotypes With MACE in Subgroup Analysis

We performed multivariable Cox regression analysis for IRS-1 genotypes in different patient subgroups (Figure S3). The association between IRS-1 genotypes and MACE remained statistically significant in the subgroup of normal serum creatinine (adjusted HR, 2.09; 95% CI, 1.04–4.18) (Figure S3). Although the adjusted HR between GA or GG and CC genotypes of IRS-1 did not reach statistical significance in the diabetest subgroup (Figure S3), the dominant model HR of MACE for patients with GA or GG genotypes of IRS-1 tended to be similar among subgroups. No significant interactions were observed in those subgroups except left ventricular ejection fraction (interaction P=0.0006) (Figure S3).

DISCUSSION

This study examined the association between IRS-1, CYP2C19*2 genotypes and clinical outcomes of patients undergoing PCI and receiving dual antiplatelet treatment, and found that G allele carriers of IRS-1 had a 2.09-fold higher risk of MACE compared with non-carriers at 1-year follow-up. Patients with CYP2C19*2 GA genotype had a 2.19-fold higher risk compared with GG homozygotes. The association between IRS-1 genotypes and MACE was independent of known clinical covariables, while the association between CYP2C19*2 genotypes and MACE could be mediated by lower clopidogrel response.

Angiolillo et al examined 7 single nucleotide polymorphisms of IRS-1. They found that IRS-1 rs956115 polymorphism was associated with a hyperreactive platelet phenotype and adverse cardiovascular outcomes in White patients with type 2 diabetes who had concomitant CAD. However, uncertainty remains about the association between IRS-1 genotypes and...
Zong et al Impact of IRS-1 Genotypes on Post-PCI Patients

platelet function or cardiovascular outcome in patients with nonselective CAD.

In this study, we found that the IRS-1 G allele was an independent prognostic factor of adverse cardiovascular outcomes in patients with nonselective CAD, irrespective of CYP2C19*2 genotype, diabetes, and other known risk factors. Although the IRS-1 G allele did not show a significant correlation with MACE in the subgroup of diabetes, our results showed the consistent tendency of almost all subgroups, as shown in Figure S3.

Regarding the underlying mechanism, Angiolillo et al suggested that IRS-1 rs956115 polymorphism was associated with a hyperactive platelet phenotype in White patients with type 2 diabetes. However, in a later study by Zhang et al, no association was observed between IRS-1 rs956115 polymorphism and platelet function profile. Our results were consistent with that of Zhang and colleagues’ in a larger Chinese population, showing no significant difference in AA or ADP-induced platelet aggregation at baseline among different IRS-1 genotypes. Moreover, ADP-induced
platelet aggregation was even lower in the IRS-1 CG genotype compared with the CC genotype at 1-month follow-up. Along with the results of Zhang et al’s study, we suggest that the association between IRS-1 genotypes and the risk of MACE cannot be explained by impaired platelet reactivity to either clopidogrel or aspirin.

Theoretically, IRS-1 is one of the central nodes in the insulin signaling network. It has been reported that IRS-1 is necessary for insulin-stimulated activation of the phosphatidylinositol 3 kinase/AKT pathway and subsequent enhanced production of nitric oxide in endothelial cells, which plays a critical role in maintaining cardiovascular homeostasis. Previous studies have demonstrated that functional variants of IRS-1 directly impaired insulin-regulated nitric oxide synthesis in cultured human endothelial cells. Considering the pivotal role of IRS-1 in the phosphatidylinositol 3 kinase/AKT signaling pathway of insulin, it may be reasonable to assume that IRS-1 rs956115 polymorphism affects the same process or an unknown pathway and consequently impacts the clinical outcome of patients with CAD.

Our results were consistent with previous reports and further confirmed that CYP2C19*2 loss of function polymorphism is a strong predictor of impaired clopidogrel response and adverse clinical outcomes. This consistency, in turn, enhances the credibility of our results on IRS-1. Meanwhile, we did not find a statistically significant interaction between IRS-1 and CYP2C19*3 genotypes from the interaction analysis, which proved the IRS-1 G allele to be an independent risk factor for MACE in patients with CAD after PCI. However, the apparent lack of interaction between genotypes on MACE may also be explained by low power caused by the small number of events. Regarding medication compliance, 42 (2.6%) patients permanently discontinued 1 or 2 antiplatelet agents because of major or minor bleeding events.

Our data indicate that IRS-1 genotyping provides further opportunity to improve risk stratification of individual patients undergoing PCI. We suggest that genotyping of the IRS-1 gene should be done in patients with high ischemic risks or recurrent ischemic events to predict the prognosis. Ideally, any treatment strategy that involves genotyping of the IRS-1 gene requires prospective evaluation to confirm that identification of patients at high risk using this approach can improve clinical outcomes.

Study Limitations

This study has potential limitations. First, because of limited funding, we did not evaluate CYP2C19*3 genotypes, also a determinant of clopidogrel metabolism. A potential interaction between IRS-1 and CYP2C19*3 genotypes and their impact on the clinical outcome remains to be investigated. Second, the number of

Table 2. MACE Risk Loci by Multi-Cox Regression

SNP	Gene	Genotype	Censored, n	MACE, n	HR (95% CI)	P value	Adjusted model†	Adjusted model‡	Adjusted model§
rs956115	IRS1	CC	1246	32	1.00 (Reference)				
		CG	305	11	1.00 (Reference)				
		GG	1	17	1.00 (Reference)				
		GG	14	712	1.00 (Reference)				
		GA	28	698	1.00 (Reference)				
		AA	2	189	1.00 (Reference)				

HR indicates hazard ratio; MACE, major adverse cardiovascular events; and SNP, single nucleotide polymorphism. The models adjusted for clinical covariates, including age, previous myocardial infarction, hypertension, diabetes, left ventricular ejection fraction, serum creatinine, diagnosis, low-density lipoprotein, smoking status, and previous percutaneous coronary intervention. Dominant model: IRS-1 CC + CG vs GG.

J Am Heart Assoc. 2022;11:e025058. DOI: 10.1161/JAHA.121.025058
MACE was relatively low and there was only 1 event in patients with GG homozygotes of IRS-1 and 2 events in patients with AA homozygotes of CYP2C19*2. Third, despite adjustment for clinical covariates including age, previous myocardial infarction, hypertension, diabetes, smoking status, previous percutaneous coronary intervention, left ventricular ejection fraction, serum creatinine, low-density lipoprotein, and diagnosis, we cannot exclude residual confounding as a contributor to our findings. Fourth, only 53.1% of the patients had platelet reactivity remeasured at 1 month, which may impact the generalizability of our results. However, there were no significant differences in all baseline characteristics except smoking and previous PCI between patients who underwent reassessment of platelet reactivity at 1 month and those who did not (Table S2). Furthermore, the pattern of platelet reactivity according to genotype at 1 month were consistent with those seen at baseline (Figure 2, Figure S1), which also makes it less likely that selection bias accounts for our findings.

CONCLUSIONS

IRS-1 rs956115 G allele was associated with an increased cardiovascular risk in patients post-PCI by 2.09-fold at 1-year follow-up, which was independent
of CYP2C19*2 genotypes, pharmacological platelet response, and known clinical variables.

ARTICLE INFORMATION
Received December 14, 2021; accepted April 21, 2022.

Affiliations
Departments of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (J.Z., T.W., I.U., K.X., J.W., P.C., Z.C., T.Z., J.C., J.L., F.W., L.Y., F.S., X.G., C.L.); Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (Y.T., Y.Z.); Department of Cardiology, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China (T.W.); Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (K.X.); and Department of Medicine, McMaster University or Thrombosis Service, Hamilton General Hospital, Hamilton, Ontario, Canada (J.W.E.).

Sources of Funding
This work was supported by a grant from the National Natural Science Funding of China (81170181, 82170351, 82173620), the Jiangsu Province’s Key Provincial Talents Program (ZDRCA2016013), the Second Level of 333 High Level Talent Training Project in Jiangsu Province (BRA2019099), the Special Fund for Key R & D Plans (Social Development) of Jiangsu Province (BE2019754), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutes.

Disclosures
None.

Supplemental Material
Table S1-S4
Figure S1-S3

REFERENCES
1. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32(suppl 2):S167–S163. doi: 10.2337/dc09-S202
2. Coppes KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55:2565–2582. doi: 10.1007/s00125-012-2644-8
3. Randriamboavonjy V, Fleming I. Insulin resistance, diabetes, and platelet signaling in diabetes. Diabetics Care. 2009;32:528–530. doi: 10.2337/ dc08-1942
4. Ferreira IA, Mocking AI, Feijge MA, Gorter G, van Haeften TW, Heemskerk JW, Akkerman JW. Platelet inhibition by insulin is absent in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2006;26:417–422. doi: 10.1161/01.ATV.0000199519.37089.a0
5. Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, Ikeda T, Kurihara A. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010;38:92–99. doi: 10.1124/dmd.109.029132
6. Cattaneo M. Response variability to clopidogrel: is tailored treatment, based on laboratory testing, the right solution? J Thromb Haemost. 2012;10:327–336. doi: 10.1111/j.1538-7836.2011.04602.x
7. Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, Alach M, Lechat P, Gaussem P. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108:2244–2247. doi: 10.1182/blood -2006-04-013052
8. Hochholzer W, Trenk D, Fromm MF, Valen CA, Bestehorn HP, Büttnner HJ, Neumann FJ. Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol. 2010;55:2427–2434. doi: 10.1016/j.jacc.2010.02.031
9. Mega JL, Close SL, Wiiotti SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W, Braunwald E, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–362. doi: 10.1056/NEJMoa0909171
10. Li C, Hirsh J, Xie C, Johnston MA, Eikelboom JW. Reversal of the anti-platelet effects of aspirin and clopidogrel. J Thromb Haemost. 2012;10:521–528. doi: 10.1111/j.1538-7836.2012.04641.x
11. Gurbel PA, Bleden KP, Saucedo JF, Suarez TA, DiChiara J, Antonino MJ, Mahia E, Singla A, Herzog WR, Bassi AK, et al. Bivalirudin and clopidogrel with and without epifibatide for elective stenting: effects on platelet function, thrombelastographic indices, and their relation to perioperative and residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol. 2009;53:648–657. doi: 10.1016/j.jacc.2008.10.045
12. Li HM, Zhang TP, Leng RX, Li XP, Wang DG, Li XM, Ye DQ, Pan HF. Association of leptin and leptin receptor gene polymorphisms with systemic lupus erythematosus in a Chinese population. J Cell Mol Med. 2017;21:1732–1741. doi: 10.1111/jcmm.13083
13. Cannon CP, Battler A, Brindis RG, Cox JL, Ellis SG, Every NR, Flaherty JT, Harrington RA, Krumholz HM, Simoons ML, et al. American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes. A report of the American College of Cardiology Task Force on Clinical Data Standards (Acute Coronary Syndromes Writing Committee). J Am Coll Cardiol. 2001;38:2114–2120. doi: 10.1016/s0735 -1097(01)01702-8
14. Price MJ, Berger PB, Teirstein PS, Tanguay JF, Angiolillo DJ, Spriggs D, Puri S, Robbins M, Garratt KN, Bertrand OF, et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA. 2011;305:1097–1105. doi: 10.1001/jama.2011.290
15. Angiolillo DJ, Bernardo E, Zanoni M, Vivas D, Capranzano P, Malerba G, Capodanno D, Prandini P, Pasquali A, Tafetti E, et al. Impact of insulin receptor substrate-1 genotypes on platelet reactivity and

Figure 4. The hazard ratio (HR) of insulin receptor substrate-1 (IRS-1) by different genotypes of CYP2C19*2.

Model adjusted for clinical covariates, including age, previous myocardial infarction, hypertension, diabetes, smoking status, previous percutaneous coronary intervention, left ventricular ejection fraction, serum creatinine, low-density lipoprotein, and diagnosis. * P value indicates the association between IRS-1 genotypes and major adverse cardiovascular events in all patients.
cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. *J Am Coll Cardiol*. 2011;58:30–39. doi: 10.1016/j.jacc.2011.02.040

16. SAS Institute Inc. SAS/ACCESS® 9.4 Interface to ADABAS: Reference. Cary: NSII. 2013.

17. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing V, Austria. 2018. https://www.R-project.org/

18. Zhang D, Zhang X, Liu D, Liu T, Cai W, Yan C, Han Y. Association between insulin receptor substrate-1 polymorphisms and high platelet reactivity with clopidogrel therapy in coronary artery disease patients with type 2 diabetes mellitus. *Cardiovasc Diabetol*. 2016;15:50. doi: 10.1186/s12933-016-0362-0

19. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. *Nat Rev Mol Cell Biol*. 2006;7:85–96. doi: 10.1038/nrm1837

20. Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. *Mol Endocrinol*. 2002;16:1931–1942. doi: 10.1210/me.2002-0074

21. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. *Curr Vasc Pharmacol*. 2012;10:4–18. doi: 10.2174/157016112798829760

22. Federici M, Pandolfi A, De Filippis EA, Pellegrini G, Menghini R, Lauro D, Cardellini M, Romano M, Sesti G, Lauro R, et al. G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. *Circulation*. 2004;109:399–405. doi: 10.1161/01.Cir.0000109498.77895.6f

23. Huang C, Li G, Dong H, Sun S, Chen H, Luo D, Sun L, Li X, Chen Z, Yang H, et al. Arg972 insulin receptor substrate-1 inhibits endothelial nitric oxide synthase expression in human endothelial cells by upregulating microRNA-155. *Int J Mol Med*. 2015;36:239–248. doi: 10.3892/ijmm.2015.2192
SUPPLEMENTAL MATERIAL
Table S1. Comparison of Baseline Characteristics between the Included and the Excluded/dropped-out Patients

Variables	Included Patients (n=1,611)	Excluded/dropped-out Patients (n=602)	P value
Age, median (IQR), years	63.75 (10.47)	63.71 (10.58)	0.9499
Sex, No. (%)			0.4586
Female	401 (24.9)	140 (23.3)	
Male	1210 (75.1)	462 (76.7)	
Previous MI, No. (%)			0.6894
No	1541 (95.7)	575 (96.2)	
Yes	70 (4.3)	23 (3.8)	
Missing	0 (0.0)	4 (0.7)	
Hypertension, No. (%)			0.7763
No	532 (33.0)	203 (33.8)	
Yes	1079 (67.0)	398 (66.2)	
Missing	0 (0.0)	1 (0.2)	
Diabetes Mellitus, No. (%)			0.9370
No	1195 (74.2)	446 (74.1)	
Yes	416 (25.8)	153 (25.4)	
Missing	0 (0.0)	3 (0.5)	
Smoking, No. (%)			0.6798
No	767 (47.6)	280 (46.5)	
	Yes	No	
------------------------	----------	----------	
Previous PCI, No. (%)	844 (52.4)	322 (53.5)	
No	1466 (91.0)	546 (90.7)	
Yes	145 (9.0)	55 (9.1)	
Missing	0 (0.0)	1 (0.2)	
LVEF, No. (%)		0.9787	
≥ 55%	1480 (91.9)	228 (37.9)	
< 55%	131 (8.1)	26 (4.3)	
Missing	0 (0.0)	348 (57.8)	
Serum creatinine, No. (%)		0.3167	
≤ 133μmol/L	1579 (98.0)	569 (94.5)	
> 133μmol/L	32 (2.0)	16 (2.7)	
Missing	0 (0.0)	17 (2.8)	
Low density lipoprotein, No. (%)		0.7309	
≥ 1.8mmol/L	1371 (85.1)	490 (81.4)	
< 1.8mmol/L	240 (14.9)	81 (13.5)	
Missing	0 (0.0)	31 (5.1)	
Diagnosis, No. (%)		0.0341	
SA	424 (26.3)	129 (21.4)	
NSTE-ACS	918 (57.0)	344 (57.1)	
STEMI	269 (16.7)	120 (19.9)	
Values are presented as median (IQR) or number of patients (percentage) as appropriate. *P* values were calculated with the use of *t* test or χ^2 test as appropriate. *P* values were calculated without considering missing data. MI, myocardial infarction; PCI, percutaneous coronary intervention; LVEF, left ventricular ejection fraction; SA, stable angina pectoris; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; STEMI, ST-segment-elevation myocardial infarction.			
Variables	Platelet Reactivity Remeasured at 1 Month (n=624)	Platelet Reactivity Measured only at Baseline (n=551)	P value
---	---	---	---
Age, median (IQR), years	64.00 (15.0)	65.00 (15.0)	0.4423
Sex, No. (%)			0.3115
Female	145 (23.2)	143 (26.0)	
Male	479 (76.8)	408 (74.0)	
Previous MI, No. (%)			0.0565
No	605 (97.0)	521 (94.6)	
Yes	19 (3.0)	30 (5.4)	
Hypertension, No. (%)			0.4348
No	223 (35.7)	184 (33.4)	
Yes	401 (64.3)	367 (66.6)	
Diabetes Mellitus, No. (%)			0.2225
No	454 (72.8)	419 (76.0)	
Yes	170 (27.2)	132 (24.0)	
Smoking, No. (%)			0.0124
No	309 (49.5)	314 (57.0)	
Yes	315 (50.5)	237 (43.0)	
Previous PCI, No. (%)			0.0015
	No		Yes
----------------	--------	--------	--------
No	580 (92.9)	481 (87.3)	
Yes	44 (7.1)	70 (12.7)	

(LVEF, No. (%))

≥ 55%	567 (90.9)	503 (91.3)
< 55%	57 (9.1)	48 (8.7)

(Serum creatinine, No. (%))

≤ 133μmol/L	613 (98.2)	539 (97.8)
> 133μmol/L	11 (1.8)	12 (2.2)

(Low density lipoprotein, No. (%))

≥ 1.8mmol/L	533 (85.4)	454 (82.4)
< 1.8mmol/L	91 (14.6)	97 (17.6)

(Diagnosis, No. (%))

SA	156 (25.0)	135 (24.5)
NSTE-ACS	360 (57.7)	308 (55.9)
STEMI	108 (17.3)	108 (19.6)

Values are presented as median (IQR) or number of patients (percentage) as appropriate. *P* values were calculated with the use of *t* test or *χ*² test as appropriate. *P* values were calculated without considering missing data. MI = myocardial infarction; PCI = percutaneous coronary intervention; LVEF = left ventricular ejection fraction; SA = stable angina pectoris; NSTE-ACS = non-ST-segment elevation acute coronary syndromes; STEMI = ST-segment-elevation myocardial infarction.
Table S3. Association between IRS-1, CYP2C19*2 genotypes and HOPR by Logistic regression

SNP	Gene	HOPR	Unadjusted model	Adjusted model *		
			OR (95%CI)	P value	OR (95%CI)	P value
rs956115	IRS-1	Baseline	0.80 (0.56, 1.14)	0.2256	0.81 (0.56, 1.14)	0.2382
		1 month	0.70 (0.40, 1.18)	0.1963	0.67 (0.38, 1.12)	0.1413
rs4244285	CYP2C19	Baseline	2.44 (1.82, 3.31)	<0.0001	2.47 (1.84, 3.36)	<0.0001
		1 month	2.16 (1.39, 3.40)	<0.0001	2.21 (1.42, 3.52)	0.0006

Dominant models were adopted in the analysis. * Model adjusted for clinical covariates including age, hypertension, diabetes mellitus, smoking status, serum creatinine, low density lipoprotein and diagnosis. HOPR, high on-treatment platelet reactivity; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence intervals.
SNP	Gene	Genotype	MACE N	Censored N	Comparison	Unadjusted model	Adjusted model *	Adjusted model †
						HR (95%CI)	HR (95%CI)	HR (95%CI)
						P value	P value	P value
rs956115	IRS1	CC	32	1245	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)	0.0586
		CG	11	305	CG vs. CC	1.66(0.82,3.34)	0.1571	1.99(0.98,4.08)
		GG	1	17	GG vs. CC	2.65(0.36,19.53)	0.3377	4.70(0.62,35.84)
					Recessive	2.35(0.32,17.11)	0.3992	3.91(0.52,29.33)
					Additive	1.65(0.91,3.00)	0.1013	2.04(1.10,3.81)
rs4244285	CYP2C19	GG	14	712	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)	0.0244
		GA	28	666	GA vs. GG	2.04(1.07,3.90)	0.0303	2.19(1.13,4.24)
					Dominant	1.76(0.93,3.33)	0.0843	1.85(0.96,3.56)
		AA	2	189	AA vs. GG	0.60(0.14,2.65)	0.5010	0.58(0.13,2.60)

Table S4. MACE Risk Loci by Multi-Cox Regression for Categorical, Dominant, Recessive and Additive Models.
	Hazard Ratio	95% CI	P-value	Hazard Ratio	95% CI	P-value	Hazard Ratio	95% CI	P-value
Recessive	0.40(0.10,1.65)	0.2049	0.1767	0.37(0.09,1.56)	0.1702	0.2049	0.37(0.09,1.56)	0.1702	0.2049
Additive	1.17(0.75,1.82)	0.4853	0.5114	1.16(0.74,1.81)	0.4936	0.4853	1.16(0.74,1.81)	0.4936	0.4853

* Model adjusted for clinical covariates, including age, previous MI, hypertension, diabetes mellitus, LVEF, serum creatinine, diagnosis, low density lipoprotein, smoking status, previous PCI. † Model adjusted for CYP2C19*2/IRS-1 and clinical covariates including age, previous MI, hypertension, diabetes mellitus, LVEF, serum creatinine, diagnosis, low density lipoprotein, smoking status, previous PCI. Dominant model: IRS-1 CG and GG vs. CC, CYP2C19 GA and AA vs. GG. Recessive model: IRS-1 GG vs. CC and CG, CYP2C19 AA vs. GA and GG. Additive model: the number of risk alleles is proportional to the risk of MACE. MACE, major adverse cardiovascular events; SNP, single nucleotide polymorphism; HR, hazard ratio; CI, confidence intervals; MI, myocardial infarction; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention.
Figure S1. Platelet reactivities (PLAA) in patients with different genotypes of IRS-1 and CYP2C19*2.

(A) Boxplot of IRS-1 and PLAA at baseline and 1 month; (B) Boxplot of CYP2C19 and PLAA at baseline and 1 month. The dashed line represents the cut-off point for HOPR (PLAA > 20%).

PLAA, arachidonic acid induced platelet aggregation; HOPR, high on-treatment platelet reactivity.
Figure S2. Prevalence of HOPR by Genotypes of the IRS-1 and CYP2C19*2.

(A) Prevalence of HOPR in patients with different genotypes of IRS-1 at baseline. (B) Prevalence of HOPR in patients with different genotypes of CYP2C19*2 at baseline. (C) Prevalence of HOPR in patients with different genotypes of IRS-1 at 1 month. (D) Prevalence of HOPR in patients with different genotypes of CYP2C19*2 at 1 month. HOPR, High on-treatment platelet reactivity (PLADp>40%).
Figure S3. Forest plot of MACE risk in different IRS-1 genotypes.

Subgroup	IRS-1 CC	IRS-1 CG+GG	P interaction			
	Events / Total	%	Events / Total	%	Adjusted HR (95% CI)	
Sex						
Male	26 / 599	2.71	10 / 251	3.98	2.91 (0.94, 4.33)	0.1658
Female	6 / 318	1.90	2 / 83	2.41	1.90 (0.36, 9.62)	
Previous MI						0.5301
No	31 / 1,216	2.55	11 / 332	3.41	1.92 (0.94, 3.82)	
Yes	1 / 90	1.11	1 / 11	0.09	0.09 (0.00, 0.00)	
Hypertension						0.4717
No	8 / 425	3.27	4 / 187	2.60	2.46 (0.71, 8.55)	
Yes	26 / 652	2.60	8 / 227	3.52	1.84 (0.80, 4.24)	
Diabetes Mellitus						0.4190
No	22 / 541	2.34	8 / 254	3.15	1.70 (0.77, 4.33)	
Yes	10 / 326	2.96	4 / 69	3.60	2.60 (0.83, 9.39)	
Smoking status						0.6558
No	18 / 817	2.23	6 / 150	4.00	2.05 (0.75, 5.37)	
Yes	16 / 600	2.67	6 / 184	3.26	2.03 (0.75, 5.53)	
Previous PCI						0.5932
No	31 / 1,102	2.77	11 / 366	3.06	1.72 (0.94, 3.28)	
Yes	1 / 115	0.96	1 / 10	0.09	0.09 (0.00, 0.00)	
LVEF >55%						0.0006
	28 / 1,176	2.38	5 / 395	1.64	0.88 (0.33, 2.33)	
LVEF <55%	4 / 102	3.92	7 / 29	2.41	20.36 (1.37, 113.09)	
Serum creatinine						0.8915
≤133μmol/L	30 / 1,249	2.39	12 / 330	3.64	2.65 (1.04, 4.45)	
>133μmol/L	2 / 28	7.14	0 / 4	0.00	0.00 (0.00, 0.00)	
Low density lipoproteins						0.9389
≤1.6mmol/L	26 / 1,079	2.41	10 / 296	3.42	1.96 (0.92, 4.15)	
>1.6mmol/L	6 / 146	4.13	3 / 42	4.76	1.68 (0.38, 14.31)	
Diagnoses						
SA	9 / 304	2.99	3 / 99	3.33	1.34 (0.31, 5.73)	0.2611
NSTE-ACS	12 / 729	1.65	4 / 169	2.12	1.65 (0.50, 5.33)	0.4403
STEMI	11 / 214	5.18	5 / 55	9.09	2.62 (0.87, 7.85)	
All patients	32 / 1,377	2.61	12 / 314	3.92	1.89 (1.06, 3.88)	0.0499*

* P value indicated the association between IRS-1 genotypes and MACE. The adjusted HR for LVEF <55% and the upper end of the 95% CI for LVEF<55% and LDL <1.8 mmol/L are not shown because they are >10. MACE, major adverse cardiovascular events; MI, myocardial infarction; PCI, percutaneous coronary intervention; LVEF, left ventricular ejection fraction; SA, stable angina pectoris; NSTE-ACS, non-ST-segment elevation acute coronary syndromes; STEMI, ST-segment-elevation myocardial infarction; HR, hazard ratio; CI, confidence intervals.