Significant decline of mesospheric water vapor at the NDACC site Bern in the period 2007 to 2018

Martin Lainer1, Klemens Hocke1, Ellen Eckert2, and Niklaus Kämpfer1

1Institute of Applied Physics, University of Bern, Bern, Switzerland
2University of Toronto, Department of Physics, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada

Correspondence: Martin Lainer (martin.lainer@iap.unibe.ch)

Abstract. The middle atmospheric water vapor radiometer MIAWARA is located close to Bern in Zimmerwald (46.88° N, 7.46° E, 907 m) and is part of the Network for the Detection of Atmospheric Composition Change (NDACC). Initially built in the year 2002, a major upgrade of the instruments spectrometer allowed to continuously measure middle atmospheric water vapor since April 2007. Thenceforward to May 2018, a time series of more than 11 years has been gathered, that makes a first trend estimate possible. For the trend estimation, a robust multi-linear parametric trend model has been used. The trend model encompasses a linear term, a solar activity tracker, the El Niño–Southern Oscillation (ENSO) index, the quasi-biennial oscillation (QBO) as well as the annual and semi-annual oscillation. In the time period April 2007 to May 2018 we find a significant decline in water vapor by −0.6 ± 0.2 ppm decade−1 between 61 and 72 km. Below the stratopause level (∼ 48 km) a smaller reduction of H\textsubscript{2}O of up to −0.3 ± 0.1 ppm decade−1 is detected.

1 Introduction

Water vapor is the most important greenhouse gas in the atmosphere (Kiehl and Trenberth, 1997) and has a dominant feedback role in the Earth’s climate system. In the troposphere it provides the main source of moisture for the formation process of precipitation in the atmosphere. While global warming progresses, the amount of moisture is expected to increase faster than the overall amount of precipitation, that is controlled by evaporation and the heat budget at the surface (Trenberth et al., 2003).

Long-term changes in the abundance of atmospheric water vapor can be used to characterize climate change. One region of the atmosphere which is very sensitive to those changes is the upper troposphere, but the actual impact on climate change is poorly understood (Held and Soden, 2000). Some direct anthropogenic changes in water vapor are due to emissions by aviation and the possible subsequent formation of contrails that freeze-dry the air and exert a strong radiative forcing (RF) effect. Contrails that persist for several hours and loose their line shaped form are known as contrail-cirrus. Globally averaged (1999 to 2016), annual mean RF estimates with uncertainty ranges are about 0.01 (0.005-0.03) W m−2 for long-lived contrails alone, and together with contrail-cirrus RF reaches about 0.05 (0.02-0.15) W m−2 (Kärcher, 2018). In contrast, total aviation RF for instance in the year 2000 is about 0.048 W m−2 (Sausen et al., 2005).

Compared to the troposphere, the stratosphere is very dry and the amount of H\textsubscript{2}O is commonly indicated in volume mixing ratios (parts per million) like for ozone. Water vapor from the troposphere can enter the stratosphere mainly through convective
processes at the equator. The cold tropical tropopause acts as a cold trap for ascending tropospheric air and causes most of
the water vapor to freeze out. Nevertheless, water vapor in the stratosphere has a high impact on ozone chemistry and it is of
importance to a global warming feedback process. Further, water vapor provides the main source of hydrogen radicals (OH,
H, HO\textsubscript{2}), which are involved in the catalytic destruction cycle of ozone in the stratosphere (Brasseur and Solomon, 2006). An
important long-term data set of lower free tropospheric (2 km) up to middle stratospheric (28 km) water vapor is available from
Boulder (Colorado) since 1980. This data comes from balloon frost-point hygrometer (FPH) measurements that are launched
usually once per month. A weighted, piecewise regression analysis of the 30-year record from 1980 to 2010 by Hurst et al.
(2011) revealed an average increase by 1.0 ± 0.2 ppm in the altitude range between 16 and 26 km. About a quarter of the H\textsubscript{2}O
increase could be attributed to changes in the methane (CH\textsubscript{4}) concentration. Methane can easily be transported from the surface
upward into the stratosphere where its oxidation is a major in-situ source of water vapor.

Compared to water vapor, stratospheric ozone gathered much higher scientific attention in regard of its long-term develop-
ment after the detection of the Antarctic ozone whole in 1985 (Farman et al., 1985). Two years later in 1987 the Montreal
Protocol has been signed to protect the ozone layer by banning and regulating the production of numerous substances that
are responsible for ozone depletion. Numerous trend studies on ozone were published in the past years (e.g. Eckert et al.,
2014; Moreira et al., 2015; Steinbrecht et al., 2017; Ball et al., 2018) showing how ozone developed in the course of time.
Drift-corrected ozone trends from MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) space-borne obser-
vations (July 2002 to April 2012) range from negative (up to −0.41 ppm decade−1) in the tropical stratosphere to positive
(+0.55 ppm decade−1) at southern mid-latitudes (Eckert et al., 2014). A 20-year continuous mapping of the stratospheric
ozone layer at the NDACC site Bern could be achieved. A recent trend analysis by Moreira et al. (2015) showed that ozone
recovered by about 3% decade−1 at an altitude of 40 km within the time period 1997 to 2015. Steinbrecht et al. (2017) calcu-
lated ozone trends for larger number of ground-based NDACC site observations by different techniques such as FTIR (Fourier-
Transform-Infrared-Spectrometer), microwave radiometry or lidar. They found positive trends between 35 and 48 km altitude
in the tropics as well as in the the 35 to 65° latitude bands of the Northern and Southern Hemisphere. More specifically, ozone
mixing ratios at 42 km increased by 1.5 (tropics) and 2-2.5 (mid-latitudes) % decade−1, respectively. Although total column
measurements of ozone show that the ozone layer stopped to decline across the globe, there is some evidence from satellite
observations that lower stratospheric ozone continued to decline within 60° N to 60° S after 1998, resulting in downward trend
of stratospheric ozone columns (Ball et al., 2018).

In order to understand detected water vapor trends in the middle atmosphere, models and measurements are both important.
A 40-year (1960-1999) model simulation with the coupled chemistry-climate model (CCM) ECHAM resulted in a global
mean stratospheric H\textsubscript{2}O increase by 0.7 ppm between 1980 and 1999 (Stenke and Grewe, 2005). Trend estimates in lower
stratospheric water vapor strongly differentiate between the NOAA (National Oceanic and Atmospheric Administration) FPH
observations at Boulder and merged zonal mean satellite measurements as pointed out by Lossow et al. (2018). The differences
reach up to 0.5 ppm decade−1 and change the signs from positive for the in-situ observations to negative for the processed
satellite data. But not only the observations do not agree, also extensive trend estimates from simulations show discrepancies
for the location of Boulder and the corresponding zonal mean latitude band around 40° N. An intercomparison of ground-
based microwave and satellite linear trends in the lower mesosphere at an altitude of about 53 km (0.46 hPa) within different extended periods shows no consistent picture between the different observations. The following stations were considered in the study by Nedoluha et al. (2017): Lauder, Mauna Loa, Table Mountain, Seoul, Bern and Onsala. Satellite retrievals that were integrated in the intercomparison include ACE-FTS (Advanced Composition Explorer - Fourier Transform Spectrometer), HALOE (Halogen Occultation Experiment), MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), MLS (Microwave Limb Sounder), SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography), SMR (Sub-Millimeterwave Radiometer), SOFIE (Solar Occultation For Ice Experiment) and different data subversions of those. At none of the comparison sites a uniform result of only positive or negative trends could be retrieved. This might be related to the problem that the time periods cover different ranges. Regarding Fig. 8 in Nedoluha et al. (2017) the trends at Bern range from +16 to −5% decade⁻¹. However, the majority of H₂O time series, including Aura/MLS, exhibit small positive relative trends in the range 1-7% decade⁻¹. At the 0.46 hPa pressure level the multi-linear regression model used in our study does not produce a significant trend at the 95% confidence level.

Still it is unclear how mesospheric water vapor develops in a changing climate. Therefore it is very important to continue the observations especially from those instruments that already have long records such as the microwave NDACC instruments at Mauna Loa (Hawaii), Table Mountain (USA) or Bern (Switzerland). In this study we report on a detected decline of H₂O in the mesosphere from the NDACC ground-based microwave measurement site Bern in the time period between 2007-2018.

Section 2 introduces the NDACC measurement site Bern with the MIAW ARA radiometer in more detail and presents the water vapor data set that is processed in the trend model which is introduced in Sect. 3 later. The final results of the trend study are handled in Sect. 3.2, while conclusions are given in Sect. 4.

2 The MIAW ARA radiometer

The MIddle Atmospheric WAter vapor RAdiometer (MIAW ARA) measures the intensity of the pressure broadened emission of H₂O molecules at a center frequency of 22.235 GHz (Kämpfer et al., 2012). Atmospheric pressure decreases exponentially with altitude and this information is reflected in the H₂O line shape. The obtained spectra are used to retrieve water vapor profiles by means of radiative transfer calculations and the Optimal Estimation Method as described in Rodgers (2000) using the retrieval software package ARTS/qpack (Eriksson et al., 2005; Buehler et al., 2018). As spectroscopic H₂O model a combination of the H2O-PM93 model from Liebe et al. (1993), for the pressure broadened half line width, and recent entries in the JPL (Jet Propulsion Laboratory) line catalog, for the lower state energy and line strength at 300 K, is taken. MIAW ARA is continuously operated on the roof of the building for Atmospheric Remote Sensing in Zimmerwald (46.88° N, 7.46° E, 907 m a.s.l.), which is close to Bern, since September 2006. The reason why we only use data since April 2007 is a major upgrade of the instrument from optoacoustic to Fast Fourier Transform (FFT) spectrometry. In the course of this upgrade the spectral resolution increased from 600 to 61 kHz. Other technical instrumental parameters are summarized in Table 1.
In the last years, data from the MIAWARA radiometer was used to detect a solar induced variability of mesospheric H$_2$O (Lainer et al., 2016), further it was used to investigate planetary 16-day, sub-diurnal and 2-day atmospheric wave activities by using H$_2$O as a dynamical tracer (Scheiben et al., 2014; Lainer et al., 2017, 2018).

2.1 Measurement stability

The total spectrometer bandwidth is 1 GHz, but only a narrow part of maximal 250 MHz is in general usable in the retrieval procedure due to baseline artifacts at the wings of the H$_2$O spectrum. However, the reduced bandwidth is sufficient for the retrieval of water vapor in the middle atmosphere and even less is needed for the mesosphere. In order to guarantee a high stability of the spectral measurements we further constrain the bandwidth to 80 MHz around the central frequency of MIAWARA.

Changes in tropospheric opacity due to local weather variability affects the sensitive altitude region of the water vapor profile retrieval. In order to make the retrieved data independent of environmental conditions, we use a special H$_2$O retrieval with a variable integration time of the spectral information to reach a constant measurement noise (0.01 K) of the water vapor spectra. Further, we set the measurement response to 80% to derive a quite stable upper and lower limit of the measurements. This approach generates profiles with a time resolution of typically a few hours in winter and up to 1-2 days during summer.

The a priori water vapor information is derived from a monthly mean zonal mean climatology using Aura/MLS v2.2 data over 4 years between 2004 and 2008. The most recent Level2 Aura/MLS data (v.4.2) are used to initialize pressure, temperature and geopotential height within the MIAWARA H$_2$O retrieval. The vertical resolution of the instrument varies between 11 km in the stratosphere and 14 km in the mesosphere (Deuber et al., 2005). An instrument validation against Aura/MLS v3.3 with more than 1000 seasonal separated profile comparisons can be found in Lainer et al. (2015). An area of 800 × 400 km (E/W × N/S) has been used as spatial coincident criterion for the satellite overpasses. In the pressure range of 2-10 hPa the relative differences are below 3% and between 0.05-2 hPa the analysis revealed negative biases of MIAWARA compared to Aura/MLS of up to −10%.

Table 1. MIAWARA technical specifications

Calibration	Tipping curve and balancing calibration
Operational mode	SSB * 50 dB suppression
Line of view	∼ 20° elevation (northward)
Mirror	Plane aluminum mirror
Antenna	Corrugated horn (HPBW**: 6°)
Receiver temperature	∼ 180 K
Spectrometer	Aqiris FFTS
Total bandwidth	1 GHz
Spectral channels	16385

* single sideband | ** half power beamwidth
With Fig. 1 we show the overall development of the MIAWARA residuals in a bandwidth of 80 MHz. The shown residuals are defined as the difference between the observed difference spectrum and the modeled spectrum from the retrieved profile and is illustrated as residuum brightness temperature fluctuations T_R. Especially measurements at lower altitudes like in the stratosphere are particularly dependent on a good baseline fitting over a broad frequency range. Overall two different baseline fittings are performed. A polynomial fit of fifth order and a sinus fit with 6 coefficients guarantee a stable removal of baseline artefacts on our calibrated spectra.

The 3-D top plot in Fig. 1 shows the time series of T_R from April 2007 to May 2018 in the frequency range 22.195 to 22.275 GHz. Whereas the structure along the time axes changes, a uniform distribution in the frequency domain is predominant. Starting from autumn 2010 the T_R signature changes due to a hardware and measurement cycle upgrade, that made it possible to retrieve H$_2$O profiles in a higher temporal resolution while maintaining the same thermal noise level of the measured difference spectrum. The upgrade of the measurement cycle had no effect on the overall homogeneity of the water vapor time series, also because the measurements were always conducted with the same FFT spectrometer. Since no critical parts of the instrument’s receiver chain were replaced in the investigated time period, a thorough homogenization of the data has not been computed for this investigation. The band-like structure in the residuals is a very tiny pattern and hardly visible in a 2-dimensional plot. The pattern is likely related to temperature changes within the instrumental signal path, like microwave absorbers that are operated at the ambient temperature or periodically changes in the tropospheric attenuation affecting the H$_2$O line strength. However, the T_R differences that make the band-structure are very small (below $1 \cdot 10^{-2}$ K) and will not effect the water vapor retrieval and the trend estimation.

In particular the histograms below the 3-D plot show the PDF (probability density function) of the binned (bin width: $5 \cdot 10^{-3}$ K) brightness temperature fluctuations T_R of the yearly cumulated MIAWRARA measurement noise together with the fit of a normal distribution. We find irrelevant changes between the different years and the maxima of the normal distribution fits are always centered at 0 K. The temperature fluctuations of the baselines range are in general between $-3 \cdot 10^{-2}$ and $3 \cdot 10^{-2}$ K. Altogether it shows indirectly that the fitting of the baseline during the retrieval process is correct and stable.

Beside baseline artifacts which are not fitted correctly, it is known that the retrieval averaging kernels A can have an impact on the H$_2$O profile product. For a long-term measurement-based trend study it is of importance that any variability of A does not imply a data drift, which could induce an artificial trend. Accordingly we investigate this issue by a sensitivity trend test in Section 3.1.

2.2 H$_2$O data and error handling

Figure 2 presents the derived monthly mean H$_2$O data time series from the MIAWARA instrument at the northern mid-latitude observation site Bern. From 2007-04-01 to 2018-04-30 a total of 133 months are available. The white horizontal lines indicate the pressure level where the measurement response drops below 80%. The annual cycle of water vapor can be seen in the plot and mainly originates from dynamics. In the summer mid-latitude mesosphere an upwelling motion of air with higher H$_2$O mixing ratios determines the seasonal variability. The photodissociation by Lyman-α radiation which is stronger during summer has only a minor impact on the abundance of water vapor. This is predominantly the case in the upper mesosphere.
For the trend model it is very important to assess a reasonable uncertainty of the microwave radiometer measurements and thus the overall error of the monthly mean water vapor profiles. Two different types of errors were considered. The first type is the natural variability, which can be approximated by the standard error \(\sigma_{std}\) of the monthly mean \(H_2O\) profiles. The second type is the instrument related observational error \(\sigma_{obs}\) that belongs to the random error and depends on the thermal noise on the water vapor spectra. The observational error is calculated during the retrieval computation. Both errors were then combined in the following way to get a total monthly mean error profile \(\sigma_{tot}\) for the initialization of the trend model:

\[
\sigma_{tot} = \sqrt{\sigma_{std}^2 + \sigma_{obs}^2}
\]

(1)

The third panel (c) of Fig. 3 shows the temporal evolution of the total error at an altitude of 70 km. At this altitude the error predominantly fluctuates around 0.3 ppm.

3 Trend model description

We performed the trend analyses of the water vapor data through a robust multilinear parametric trend estimation method developed by von Clarmann et al. (2010). The trend program finds a linear trend of the data time series by minimizing a cost function.

The cost function includes a quadratic norm of the residual between a regression model and the analyzed monthly \(H_2O\) profile time series, weighted by the inverse covariance matrix of the data errors. The data errors are based on the monthly standard deviation and observational errors of the instruments as described in Sect. 2.2. In addition, error correlations between data points are supported which makes the method suitable for consideration of auto-correlated residuals. The regression function \(Y(t)\) itself consists of an axis intercept, a linear trend, sine waves, and different proxies:

\[
Y(t) = a + b \cdot t + c_1 \cdot qbo_1(t) + d_1 \cdot qbo_2(t)
\]

\[+ e \cdot F_{10.7}(t) + f \cdot MEI(t)
\]

\[+ \sum_{n=2}^{m=3} \left[c_n \cdot \sin \left(\frac{2\pi \cdot t}{l_n} \right) + d_n \cdot \cos \left(\frac{2\pi \cdot t}{l_n} \right) \right]
\]

where \(t\) represents the time, \(a\) and \(b\) the constant term and the slope of the fit. The terms \(qbo_1\) and \(qbo_2\) are the normalized Singapore winds at 30 and 50 hPa pressure levels as provided by the Free University of Berlin via http://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/index.html. According to Kyrölä et al. (2010), the Singapore zonal wind series at the two altitudes are in good approximation orthogonal to each other so that the combination of both can reproduce the Quasi-Biennial Oscillation (QBO) phase shift. Fitting against the solar irradiance variability is accounted for by the \(F_{10.7}\) flux which is a good proxy for this variability. The \(MEI\) term in the regression function is the Multivariate ENSO index. It describes the strength of the El Niño - Southern Oscillation (ENSO) with six parameters consisting of surface winds (zonal and meridional), sea surface temperature, sea level pressure, surface air temperature and the sky cloudiness fraction. Both, the solar activity and \(MEI\) index lists are available from the following webpage: www.esrl.noaa.gov/psd/data/climateindices/list.
The sum term consists of two sine and cosine functions with the period length \(l_n\), including the annual and semi-annual oscillations \((l_1 = 182.5 \text{ d} \text{ and } l_2 = 365 \text{ d})\). All coefficients \((a, b, c_1, c_2, d_1, d_2, d_3, e \text{ and } f)\) are fitted against the water vapor monthly mean time series in order to estimate the linear variations.

For the water vapor trend analyses, the multi-linear regression model needs the monthly mean profiles together with their uncertainties as input. Figure 3a represents the \(\text{H}_2\text{O}\) model fit (magenta line) on top of the monthly mean time series (blue line) derived by MIAW ARA and the linear variation (black line) on 0.04 hPa. Overall, the temporal \(\text{H}_2\text{O}\) variability could be very well reproduced by the model fit, which is also revealed by the residual between the measurements and fit (Fig. 3b) rarely exceeding 0.5 ppm. Overall, the regression model is able to explain about 90\% of the variance of the measurements between 0.02 and 3 hPa. The three other panels display the \(\text{H}_2\text{O}\) fitted signals of the QBO (green line), solar F10.7 cm flux (red line) and ENSO (cyan line) proxies at 0.04 hPa (70 km).

3.1 Averaging kernel sensitivity test

Here we describe a performed test on an artificial water vapor profile time series in order to check if the variability of the MIAW ARA averaging kernels can induce a data drift that might be misinterpreted as a trend. The averaging kernel matrix \(A\) is defined as

\[
A = \frac{\partial \hat{x}}{\partial x} = \frac{\partial \hat{x}}{\partial y} \frac{\partial y}{\partial x}.
\]

(3)

It represents the sensitivity of the retrieved state \(\hat{x}\) to the difference in the true atmospheric state \(x\). The measured microwave spectrum is denoted as \(y\). In our case we use a time series of one constant artificial \(\text{H}_2\text{O}\) profile \(x_{\text{art}}\) of 5 ppm at 50 pressure levels between 10 and 0.01 hPa at the same time steps as the original MIAW ARA profiles were

\[
\hat{x}_{\text{art}} = x_a + A \cdot (x_{\text{art}} - x_a).
\]

(4)

\(A\) has to be given on the grid of \(x_a\) and is interpolated to the grid of \(x\), conserving the measurement response. The artificial convolved water vapor time series \(\hat{x}_{\text{art}}\) (2007-04 to 2018-04) was then used to calculate monthly mean profiles that could be used as input to the trend model described in Section 3. No significant trend has been generated by the convolution process with the MIAW ARA v301 averaging kernels, the retrieval version for the main trend analysis. In conclusion this means that the variability of \(A\) has no effect on the result of the trend estimate presented in Section 3.2.

3.2 \(\text{H}_2\text{O}\) trend estimate

After having shown that MIAW ARA is measuring with a high instrumental stability, we are confident to present the trend result from the multi-linear parametric trend model (von Clarmann et al., 2010). Figure 4 shows the estimated water vapor trend profiles in absolute (left) and relative (right) values. The latter is calculated relative to the mean \(\text{H}_2\text{O}\) profile between April 2007 and May 2018. Although the pressure range of the trend profile goes from 0.01 to 10 hPa in the two plots, equivalent to 30-80 km, we restrict the trustworthy trend results to the altitudes of the MIAW ARA radiometer which are to a degree of 80\% a priori independent. These lower and upper limits are marked by the horizontal red lines and are located at 0.03 and 2.5 hPa.
At higher and lower altitudes the trend turns towards zero which is to be expected due to the fact that the MIAWARA mixing ratios gradually approach the climatology of Aura/MLS a priori values and those exhibit no long-term variability. Further not at every pressure level between the red lines a significant trend result could be obtained. This circumstance is expressed by the dashed green boxes by encompassing two altitude regions where the trend is two times larger than the uncertainty. According to Tiao et al. (1990) this is equivalent to a significance on the 95% confidence level.

Below the stratopause from 1 to 2.5hPa (42-48km) a small but still significant negative trend, maximizing at 2hPa could be determined. A mean linear decline rate of $-2.5 \cdot 10^{-3}$ ppm month$^{-1}$ results in -0.3 ± 0.1 ppm decade$^{-1}$ (in relative units: -4 ± 1.2 % decade$^{-1}$) or a total loss of ≈ 0.33 ppm in the analyzed measurement period. This result is contradictory to explanations presented in North et al. (2015), where the increase of methane in the last decades is expected to also increase the water vapor content in the stratosphere by photodissociation and oxidation. On the other hand it has been pointed out, that the current understanding of the total stratospheric water vapor budget and the involved mechanisms controlling the entry and mixing of H$_2$O into the lower stratosphere are still under investigation.

The second statistically significant pressure layer in the MIAWARA trend profile is located in the mesosphere between 0.03 and 0.15hPa (61-72km). Although the 1σ error in the trend estimate is roughly doubled, the negative trend is clearly strengthened to -0.6 ± 0.2 ppm decade$^{-1}$ at 0.03-0.04hPa. In relative terms, we see a decrease between -12 to -12.5 ± 3 % decade$^{-1}$. The impact of the included extra month of H$_2$O data on the trend estimate was found to be below a change of ± 0.05 ppm. It is difficult to find other water vapor trend studies in the literature that investigate mesospheric altitudes and cover a comparable time period. Satellite data from Aura/MLS, which exist since August 2004, could be a basis for trend investigations. Lately MLS data has been globally analyzed by Froidevaux et al. (2018) and in case of water vapor a positive trend was derived between 100 and 0.03hPa for northern and southern latitudes up to 60 degree. However, Aura/MLS H$_2$O data below 20hPa could be problematic for estimating trends due to detected data drifts (Hurst et al., 2016).

4 Conclusions

Robust measurements by the water vapor radiometer MIAWARA, which belongs to the NDACC network, were performed between April 2007 and May 2018 and used to obtain a middle atmospheric trend profile by means of a multi-linear parametric regression trend model fit of prior derived monthly mean profile and uncertainty data time series.

With this study, we demonstrated the high stability of the MIAWARA measurement noise within the 80MHz bandwidth and outlined that a potential variability of the averaging kernels does not induce a measurement drift. Hence we rely on the computed trend results with the presented multi-linear parametric regression trend model. Overall two altitude regions exhibit a significant (95% confidence) negative water vapor trend during the time period of April 2007 to May 2018:

- 0.03-0.15hPa (61-72km): -12 to -12.5 ± 3 % decade$^{-1}$
- 1-2.5hPa (42-48km): -4 ± 1.2 % decade$^{-1}$
We are not able to give an explanation towards the reasons for the detected H$_2$O decline below the stratopause and in the mesosphere. The complexity of interactions between dynamics and chemistry is hardly addressable by observations alone. Numerical investigations will be needed to unravel the impacts of the different processes.

The fact that a lot of inconsistent results are published, regarding the evolution of middle atmospheric water vapor, it will be of great importance to continue with measurements from various ground-based observation sites. Although satellite missions, like EOS Aura, can provide data for almost the whole globe (82°S to 82°N), however the maintenance of the long-term stability and lifetime is limited and complicates trend studies.

Data availability. Data from the ground-based microwave instrument MIAWARA is publicly available from the NDACC database as monthly files with a diurnal temporal resolution (ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/bern).

Competing interests. The authors declare that no competing interests are present.

Acknowledgements. The presented study is supported by the Swiss National Science Foundation Grant 200020-160048 and MeteoSwiss in the frame of the GAW project “Fundamental GAW parameters measured by microwave radiometry”.

References

Ball, W. T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S., Froidevaux, L., Roth, C., Sofieva, V., Wang, R., Wild, J., Yu, P., Ziemke, J. R., and Rozanov, E. V.: Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery, Atmospheric Chemistry and Physics, 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, https://www.atmos-chem-phys.net/18/1379/2018/, 2018.

Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, vol. 32, Springer, 2006.

Buehler, S. A., Mendrok, J., Eriksson, P., Perrin, A., Larsson, R., and Lemke, O.: ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition, Geoscientific Model Development, 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018, https://www.geosci-model-dev.net/11/1537/2018/, 2018.

Deuber, B., Haefele, A., Feist, D. G., Martin, L., Kämpfer, N., Nedoluha, G. E., Yushkov, V., Khaykin, S., Kivi, R., and Vomel, H.: Middle Atmospheric Water Vapour Radiometer - MIAWARA: Validation and first results of the LAUTLOS / WAVVAP campaign, J. Geophys. Res., 110, D13 306, https://doi.org/10.1029/2004JD005543, 2005.

Eckert, E., von Clarmann, T., Kiefer, M., Stiller, G. P., Lossow, S., Glatthor, N., Degenstein, D. A., Froidevaux, L., Godin-Beekmann, S., Leblanc, T., McDermid, S., Pastel, M., Steinbrecht, W., Swart, D. P. J., Walker, K. A., and Bernath, P. F.: Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements, Atmospheric Chemistry and Physics, 14, 2571–2589, https://doi.org/10.5194/acp-14-2571-2014, https://www.atmos-chem-phys.net/14/2571/2014/, 2014.

Eriksson, P., Jiménez, C., and Buehler, S. A.: Qpack, a general tool for instrument simulation and retrieval work, J. Quant. Spectrosc. Radiat. Transfer, 91, 47–64, https://doi.org/10.1016/j.jqsrt.2004.05.050, 2005.

Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207 EP –, https://doi.org/10.1038/315207a0, 1985.

Froidevaux, L., Kinnison, D. E., Wang, R., Anderson, J., and Fuller, R. A.: Evaluation of CESM1 (WACC) free-running and specified-dynamics atmospheric composition simulations using global multi-species satellite data records, Atmospheric Chemistry and Physics Discussions, 2018, 1–70, https://doi.org/10.5194/acp-2018-546, https://www.atmos-chem-phys-discuss.net/acp-2018-546/, 2018.

Held, I. M. and Soden, B. J.: WATER VAPOR FEEDBACK AND GLOBAL WARMING, Annual Review of Energy and the Environment, 25, 441–475, https://doi.org/10.1146/annurev.energy.25.1.441, 2000.

Hurst, D. F., Oltmans, S. J., Vömel, H., Rosenlof, K. H., Davis, S. M., Ray, E. A., Hall, E. G., and Jordan, A. F.: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record, Journal of Geophysical Research: Atmospheres, 116, https://doi.org/10.1029/2010JD015065, 2011.

Hurst, D. F., Read, W. G., Vömel, H., Selkirk, H. B., Rosenlof, K. H., Davis, S. M., Hall, E. G., and Jordan, A. F., and Oltmans, S. J.: Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder, Atmospheric Measurement Techniques, 9, 4447–4457, https://doi.org/10.5194/amt-9-4447-2016, https://www.atmos-meas-tech.net/9/4447/2016/, 2016.

Kämpfer, N., Nedoluha, G., Haefele, A., and De Wachter, E.: Microwave Radiometry, vol. 10 of ISSI Scientific Report Series, Springer New York, https://doi.org/10.1007/978-1-4614-3909-7, 2012.

Kärcher, B.: Formation and radiative forcing of contrail cirrus, Nature Communications, 9, 1824, https://doi.org/10.1038/s41467-018-04068-0, 10.1038/s41467-018-04068-0, 2018.
Kiehl, J. T. and Trenberth, K. E.: Earth’s Annual Global Mean Energy Budget, Bulletin of the American Meteorological Society, 78, 197–208, https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2, 1997.

Kyrölä, E., Tamminen, J., Sofieva, V., Bertaux, J. L., Hauchecorne, A., Dalaudier, F., Fussen, D., Vanellemont, F., Fanton d’Andon, O., Barrot, G., Guirlet, M., Fehr, T., and Sauvedra de Miguel, L.: GOMOS O₃, NO₂, and NO₃ observations in 2002–2008, Atmospheric Chemistry and Physics, 10, 7723–7738, https://doi.org/10.5194/acp-10-7723-2010, https://www.atmos-chem-phys.net/10/7723/2010/, 2010.

Lainer, M., Kämpfer, N., Tschanz, B., Nedoluha, G. E., Ka, S., and Oh, J. J.: Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments, Atmos. Chem. Phys., 15, 9711–9730, https://doi.org/10.5194/acp-15-9711-2015, 2015.

Lainer, M., Hocke, K., and Kämpfer, N.: Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle, J. Atmos. Sol.-Terr. Phy., 143–144, 71–87, https://doi.org/10.1016/j.jastp.2016.03.008, 2016.

Lainer, M., Hocke, K., Rüfenacht, R., Schranz, F., and Kämpfer, N.: Quasi 18-hour wave activity in ground-based observed mesospheric H₂O over Bern, Switzerland, Atmospheric Chemistry and Physics Discussions, 2017, 1–29, https://doi.org/10.5194/acp-2016-1050, https://www.atmos-chem-phys-discuss.net/acp-2016-1050/, 2017.

Lainer, M., Hocke, K., and Kämpfer, N.: Long-term observation of mid-latitude quasi 2-day waves by a water vapor radiometer, Atmospheric Chemistry and Physics Discussions, 2018, 1–22, https://doi.org/10.5194/acp-2017-1150, https://www.atmos-chem-phys-discuss.net/acp-2017-1150/, 2018.

Liebe, H., Hufford, G., and Cotton, M.: Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, in: In AGARD, Atmospheric Propagation Effects Through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation 11 p (SEE N94-30495 08-32), 1993.

Lossow, S., Hurst, D. F., Rosenlof, K. H., Stiller, G. P., von Clarmann, T., Brinkop, S., Dameris, M., Jöckel, P., Kinnison, D. E., Plieninger, J., Plummer, D. A., Ploeger, F., Read, W. G., Remsberg, E. E., Russell, J. M., and Tao, M.: Trend differences in lower stratospheric water vapour between Boulder and the zonal mean and their role in understanding fundamental observational discrepancies, Atmospheric Chemistry and Physics, 18, 8331–8351, https://doi.org/10.5194/acp-18-8331-2018, https://www.atmos-chem-phys.net/18/8331/2018/, 2018.

Moreira, L., Hocke, K., Eckert, E., von Clarmann, T., and Kämpfer, N.: Trend analysis of the 20-year time series of stratospheric ozone profiles observed by the GROMOS microwave radiometer at Bern, Atmospheric Chemistry and Physics, 15, 10999–11009, https://doi.org/10.5194/acp-15-10999-2015, https://www.atmos-chem-phys.net/15/10999/2015/, 2015.

Nedoluha, G. E., Kiefer, M., Lossow, S., Gomez, R. M., Kämpfer, N., Lainer, M., Forkman, P., Christensen, O. M., Oh, J. J., Hartogh, P., Anderson, J., Bramstedt, K., Dinelli, B. M., Garcia-Comas, M., Hervig, M., Murtagh, D., Raspollini, P., Read, W. G., Rosenlof, K., Stiller, G. P., and Walker, K. A.: The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements, Atmospheric Chemistry and Physics, 17, 14543–14558, https://doi.org/10.5194/acp-17-14543-2017, https://www.atmos-chem-phys.net/17/14543/2017/, 2017.

North, G. R., Pyle, J., and Zhangi, F., eds.: Stratospheric Chemistry Topics: Stratospheric Water Vapor, Academic Press, Oxford, second edition edn., https://doi.org/10.1016/B978-0-12-382225-3.00393-5, 2015.

Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice, vol. 2, World Scientific Publishing Co Pte. Ltd., 2000.

Sausen, R., Isaksen, I., Grew, V., Hauglustaine, D., Lee, D. S., Myhre, G., Köhler, M. O., Pitari, G., Schumann, U., Stordal, F., and Zerefos, C.: Aviation radiative forcing in 2000: an update on IPCC (1999), Meteorologische Zeitschrift, 14, 555–561, https://doi.org/10.1127/0941-2948/2005/0049, 2005.

Scheiben, D., Tschanz, B., Hocke, K., Kämpfer, N., Ka, S., and Oh, J. J.: The quasi 16-day wave in mesospheric water vapor during boreal winter 2011/2012, Atmos. Chem. Phys., 14, 6511–6522, https://doi.org/10.5194/acp-14-6511-2014, 2014.
Steinbrecht, W., Froidevaux, L., Fuller, R., Wang, R., Anderson, J., Roth, C., Bourassa, A., Degenstein, D., Damadeo, R., Zawodny, J., Frith, S., McPeters, R., Bhartia, P., Wild, J., Long, C., Davis, S., Rosenlof, K., Sofieva, V., Walker, K., Rahpoe, N., Rozanov, A., Weber, M., Laeng, A., von Clarmann, T., Stiller, G., Kramarova, N., Godin-Beekmann, S., Leblanc, T., Querel, R., Swart, D., Boyd, I., Hocke, K., Kämpfer, N., Maillard Barras, E., Moreira, L., Nedoluha, G., Vigouroux, C., Blumenstock, T., Schneider, M., García, O., Jones, N., Mahieu, E., Smale, D., Kotkamp, M., Robinson, J., Petropavlovskikh, I., Harris, N., Hassler, B., Hubert, D., and Tummon, F.: An update on ozone profile trends for the period 2000 to 2016, Atmospheric Chemistry and Physics, 17, 10 675–10 690, https://doi.org/10.5194/acp-17-10675-2017, https://www.atmos-chem-phys.net/17/10675/2017/, 2017.

Stenke, A. and Grewe, V.: Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry, Atmospheric Chemistry and Physics, 5, 1257–1272, https://doi.org/10.5194/acp-5-1257-2005, https://www.atmos-chem-phys.net/5/1257/2005/, 2005.

Tiao, G. C., Reinsel, G. C., Xu, D., Pedrick, J. H., Zhu, X., Miller, A. J., DeLuisi, J. J., Mateer, C. L., and Wuebbles, D. J.: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation, Journal of Geophysical Research: Atmospheres, 95, 20 507–20 517, https://doi.org/10.1029/JD095iD12p20507, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD095iD12p20507, 1990.

Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The Changing Character of Precipitation, Bulletin of the American Meteorological Society, 84, 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205, 2003.

von Clarmann, T., Stiller, G., Grabowski, U., Eckert, E., and Orphal, J.: Technical Note: Trend estimation from irregularly sampled, correlated data, Atmospheric Chemistry and Physics, 10, 6737–6747, https://doi.org/10.5194/acp-10-6737-2010, https://www.atmos-chem-phys.net/10/6737/2010/, 2010.
Figure 1. The 3-D plot in the top shows the temporal evolution of the MIAWARA residuals (difference between measured difference spectrum and modeled spectrum) as residuum brightness temperature fluctuations T_R in $[10^{-2} \text{ K}]$ within the frequency range of 22.195 GHz to 22.275 GHz (80 MHz bandwidth) from 2007 to 2018.

Yearly averaged histograms, showing the evolution of the PDF (probability density function) of the residuals, are presented below. The red curve is the fit of the corresponding normal distribution. The chosen bin width is $5 \cdot 10^{-3} \text{ K}$.
Figure 2. Monthly mean water vapor time series in [ppm] obtained by the MIAWARA instrument located at the Zimmerwald observatory near Bern between April 2007 and May 2018. The horizontal upper and lower white lines indicate the pressure layer within which the measurement response is higher than 80%. This data set is used as input for the trend model.
Figure 3. Panel (a) shows the trend fit at 0.04hPa (70km), with the MIAWARA monthly mean H₂O data (blue line), the calculated model fit (magenta line) and the related linear trend (black line). Panel (b) shows the residual and in the following panels (c), (d), (e) and (f) the evolution of the σ uncertainty (yellow line), the fitted signals of the QBO (green line), solar F10.7 cm flux (red line) and ENSO (cyan line) proxies at 0.04hPa.
Figure 4. Estimated water vapor trend profile in $[\text{ppm decade}^{-1}]$ (left), respectively $[\% \text{ decade}^{-1}]$ (right), for the time period between April 2007 and May 2018 observed by the MIAWARA instrument at the Zimmerwald observatory close to Bern, Switzerland. The black line represents the trend profile; the grey and violet shaded areas represent the 1σ and 2σ uncertainties of the trend estimate. The green boxes show where the trend is statistically significant on the 95% confidence level. The horizontal red lines mark the pressure range (0.03-2.5 hPa) where the MIAWARA data is to $\sim 80\%$ a priori independent.