Introduction

The late 19th and early 20th century saw rapid declines in mortality in industrialized countries. The introduction of chlorinated piped water supplies in cities was a major contributor to this achievement. Today, chlorination is the most widely-used method for the treatment of piped water supplies, due to its simplicity, low cost and the residual protection it provides. Low levels of residual chlorine in water supplies limit microbial contamination during distribution and storage, reducing the risk of waterborne infectious diseases. Drawing on decades of experience with municipal piped water systems around the globe, the World Health Organization (WHO) guidelines for drinking water quality recommend a minimum concentration of 0.2 mg/L free residual chlorine at water system delivery points.

Humanitarian agencies generally use centralized batch chlorination for water treatment in settlements for refugees and internally displaced persons. This treatment method entails dosing an experimentally-determined amount of chlorine solution into a known volume of clear water, and allowing adequate retention time to allow disinfection to proceed to completion. Ensuring access to adequate quantities and quality of water is essential in refugee camps as waterborne diseases are among the most significant threats facing displaced populations. Drawing on WHO guidelines for drinking water quality, humanitarian organizations have developed several guidelines stipulating what residual chlorine levels should be at camp water distribution points, as well as during storage and drawing of water in the home, representing a significant health risk to vulnerable populations. Recontamination after collection of drinking water has also been documented in refugee camps in Uganda and linked to the spread of diarrhoeal disease and cholera among camp populations in Malawi, Kenya and Sudan. Humanitarian guidelines call for facilities and practices to preserve the safe water chain including the use of covered narrow-mouthed water containers with taps and their regular cleaning, disinfection and replacement. However, recontamination after distribution in camp settings remains poorly understood and is not explicitly included in guidelines for water treatment in emergency settings.

Abstract in العربية, 中文, Français, Русский and Español at the end of each article.

Effectiveness of emergency water treatment practices in refugee camps in South Sudan
Syed Imran Ali, Syed Saad Ali and Jean-François Fesselet

Objective To investigate the concentration of residual chlorine in drinking water supplies in refugee camps, South Sudan, March–April 2013.

Methods For each of three refugee camps, we measured physical and chemical characteristics of water supplies at four points after distribution: (i) directly from tapstands; (ii) after collection; (iii) after transport to households; and (iv) after several hours of household storage. The following parameters were measured: free and total residual chlorine, temperature, turbidity, pH, electrical conductivity and oxidation reduction potential. We documented water handling practices with spot checks and respondent self-reports. We analysed factors affecting residual chlorine concentrations using mathematical and linear regression models.

Findings For initial free residual chlorine concentrations in the 0.5–1.5 mg/L range, a decay rate of ~5x10^-3 L/mg/min was found across all camps. Regression models showed that the decay of residual chlorine was related to initial chlorine levels, electrical conductivity and air temperature. Covering water storage containers, but not other water handling practices, improved the residual chlorine levels.

Conclusion The concentrations of residual chlorine that we measured in water supplies in refugee camps in South Sudan were too low. We tentatively recommend that the free residual chlorine guideline be increased to 1.0 mg/L in all situations, irrespective of diarrhoeal disease outbreaks and the pH or turbidity of water supplies. According to our findings, this would ensure a free residual chlorine level of 0.2 mg/L for at least 10 hours after distribution. However, it is unknown whether our findings are generalizable to other camps and further studies are therefore required.

References

1. WHO guidelines for drinking water quality are appropriate when users drink directly from the flowing household taps of a municipal piped water system, but are unlikely to provide sufficient residual chlorine protection in the fundamentally different reality of a refugee camp. In this setting, where environmental hygiene may be poor, water is collected from tapstands, transported in containers through the camp to shelters and then stored and used over 24 hours or more. Chlorine treatment based on WHO guidelines for drinking water quality may not ensure that water remains safe over its entire course in the setting of a refugee camp. Studies in non-emergency settings in developing countries have shown recontamination of previously safe water does occur during collection and transport from distribution points, as well as during storage and drawing of water in the home, representing a significant health risk to vulnerable populations. Recontamination after collection of drinking water has also been documented in refugee camps in Uganda and linked to the spread of diarrhoeal disease and cholera among camp populations in Malawi, Kenya and Sudan. Humanitarian guidelines call for facilities and practices to preserve the safe water chain including the use of covered narrow-mouthed water containers with taps and their regular cleaning, disinfection and replacement. However, recontamination after distribution in camp settings remains poorly understood and is not explicitly included in guidelines for water treatment in emergency settings.

2. Ron E, Reitzel R, Loomis D, et al. Cancer risk from chlorination by-products in drinking water: past, present, and future. Environ Health Perspect. 2000;108:133–142.

3. Klemm B, Andreassen E, Langeland K, et al. Risk of cancer in Norwegian women associated with chlorine disinfection of drinking water. Int J Epidemiol. 1999;28:1009–1014.

4. Fessey KL, Hunt J, Nwokolo C, et al. Early childhood cancer incidence in Athens, Ohio, and its relationship to water disinfection practices. Environ Health Perspect. 2009;117:183–188.

5. Ron E, Reitzel R, Loomis D, et al. Cancer risk from chlorination by-products in drinking water: past, present, and future. Environ Health Perspect. 2000;108:133–142.

6. Whorton JD, Merrett RE, Mosher TC, et al. Chlorination by-product formation in the presence of natural organic matter. Environ Sci Technol. 1997;31:1047–1052.

7. Ron E, Reitzel R, Loomis D, et al. Cancer risk from chlorination by-products in drinking water: past, present, and future. Environ Health Perspect. 2000;108:133–142.

8. Fessey KL, Hunt J, Nwokolo C, et al. Early childhood cancer incidence in Athens, Ohio, and its relationship to water disinfection practices. Environ Health Perspect. 2009;117:183–188.

9. Ron E, Reitzel R, Loomis D, et al. Cancer risk from chlorination by-products in drinking water: past, present, and future. Environ Health Perspect. 2000;108:133–142.

10. Fessey KL, Hunt J, Nwokolo C, et al. Early childhood cancer incidence in Athens, Ohio, and its relationship to water disinfection practices. Environ Health Perspect. 2009;117:183–188.

11. Ron E, Reitzel R, Loomis D, et al. Cancer risk from chlorination by-products in drinking water: past, present, and future. Environ Health Perspect. 2000;108:133–142.

12. Fessey KL, Hunt J, Nwokolo C, et al. Early childhood cancer incidence in Athens, Ohio, and its relationship to water disinfection practices. Environ Health Perspect. 2009;117:183–188.

13. Ron E, Reitzel R, Loomis D, et al. Cancer risk from chlorination by-products in drinking water: past, present, and future. Environ Health Perspect. 2000;108:133–142.

14. Fessey KL, Hunt J, Nwokolo C, et al. Early childhood cancer incidence in Athens, Ohio, and its relationship to water disinfection practices. Environ Health Perspect. 2009;117:183–188.

15. Ron E, Reitzel R, Loomis D, et al. Cancer risk from chlorination by-products in drinking water: past, present, and future. Environ Health Perspect. 2000;108:133–142.

16. Fessey KL, Hunt J, Nwokolo C, et al. Early childhood cancer incidence in Athens, Ohio, and its relationship to water disinfection practices. Environ Health Perspect. 2009;117:183–188.

17. Ron E, Reitzel R, Loomis D, et al. Cancer risk from chlorination by-products in drinking water: past, present, and future. Environ Health Perspect. 2000;108:133–142.
Table 1. Water supply and sanitation in the three refugee camps, South Sudan, June 2012 to March 2013

Indicator by refugee camp	Sphere target	2012	2013								
		Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Jamam											
Population	–	31686	30277	21179	16751	13984	15439	15765	15765	15670	
Water supply, L/person/day	≥ 20	7.5	7.5	11.3	17	23.3	22.8	18.8	13.8	17.5	18.9
Water access, users per tap	≤ 80	293	276	151	111.5	89	NA	NA	101	101	97
Sanitation access, users per latrine	≤ 20	37	39	23	22	17	18	16	15.8	16	20
Batil											
Population	–	NA	NA	NA	NA	NA	NA	37199	37199	37199	
Water supply, L/person/day	≥ 20	NA	NA	NA	NA	NA	NA	17.7	16.5	19	19.3
Water access, users per tap	≤ 80	NA	NA	NA	NA	NA	NA	85	86	86	84
Sanitation access, users per latrine	≤ 20	NA	NA	NA	NA	NA	NA	20	24	18	19
Gendrassa											
Population	–	0	0	6248	12904	14443	14638	14711	14946	14946	15810
Water supply, L/person/day	≥ 20	NA	NA	9.9	11.6	11.5	15.3	19.6	21.2	21.0	25.6
Water access, users per tap	≤ 80	NA	NA	86	130	104	92	90	87	87	88
Sanitation access, users per latrine	≤ 20	NA	NA	18	30	16	12	17	15	15	14

NA: not available.
Note: Figures in italics indicate coverage below Sphere targets for each indicator. Indicators without available data are due to gaps in monitoring or because the camp was not yet established. Per person water supply figures assume 15% system loss.
Source: Médecins Sans Frontières.16

Recent experiences in refugee camps in South Sudan brought this knowledge gap to our attention. Surveys conducted in the Jamam camp in October–November 2012 showed that 40–58% of households that collected water from chlorinated tapstand sources had no detectable residual chlorine in their stored household water.30,31 Another study carried out in Jamam and the nearby Batil camp in April 2013 found adenoviruses in stored household water, suggesting faecal contamination.32 These observations, taken in light of the prolonged hepatitis E and acute watery diarrhoea outbreaks affecting the Maban County refugee camps,33 raised pressing questions about chlorination in camp settings.

Previous work has investigated and modelled how residual chlorine decays within water distribution systems.34 However, as far as we are aware, residual chlorine decay after water leaves the tap of the distribution system has not been investigated. We sought to: (i) investigate residual chlorine decay after distribution in the refugee camp setting and (ii) identify factors that preserve or compromise the safe water chain by exploring how water quality, water handling practices and contextual factors influence residual chlorine decay. In this paper, we investigate the effectiveness of emergency water treatment practices in the field. We contribute to the evidence base on water, sanitation and hygiene in emergencies and make recommendations for best practice.35,36

Methods

Study setting

The study was carried out at Jamam, Batil and Gendrassa refugee camps in Maban County, South Sudan during March–April 2013. At the time of the study, the population at these camps was 15,500, 37,200 and 15,800, respectively. The local climate and terrain in Maban County exacerbated the crisis and impeded response. The region is part of the Nile basin floodplain and characterized by thick strata of clay-rich soil. This soil is prone to water-logging, heavy and difficult to work with and unproductive with respect to groundwater. The rainy season runs from May to October and the dry season from November to April. The rainy season of 2012 saw the camps flooding, with latrines overflowing and inundating the surface, leading to multiple waterborne infectious disease outbreaks.35 Limited water availability, poor sanitation coverage and poor environmental hygiene exacerbated the outbreaks (Table 1).

Groundwater was pumped from boreholes in or near the camps, treated with in-line chlorination then stored in tanks before being piped to tapstands for distribution. Tapstands in each camp were provided within 500 m of shelters, in accordance with Sphere Project guidelines.36 Supply was intermittent with water delivered for several hours in the morning and afternoon. Retention times in storage tanks following chlorination varied, contributing to variation in residual chlorine at tapstands. Water systems...
Study design

We sought to follow the pathway of water in the camp setting from distribution at the tapstand to consumption at the household level. The study had two elements: (i) water quality analyses; and (ii) surveys of water handling practices and contextual factors. We assessed water quality at four points after distribution:

- analysis event 1: directly from the tapstand (event 1);
- analysis event 2: from users’ containers immediately after collection at the tapstand (event 2);
- analysis event 3: from containers after transport to shelters (event 3); and
- analysis event 4: from containers after several hours of household storage and use (event 4).

We analysed the following water quality parameters: free and total residual chlorine (the parameters of primary interest); pH and turbidity (both known to reduce chlorine disinfection efficiency); oxidation reduction potential (a proxy for disinfection potential); electrical conductivity (reflects the dissolved solids or salt content of drinking water); and air and water temperature (which affect the rate of chemical reactions). Quality control was achieved by calibrating analytical equipment every 1–2 days using manufacturer calibration standards.

We documented water collection, transport and storage practices, as well as other contextual factors, via spot checks and respondent self-reports at the tapstand (i.e. event 2) and in the household at follow-up (i.e. event 4). As it was crucial to follow the same unit of water, we also noted if the water had been transferred between containers, if it had been used (and, if so, how much) and whether it had been mixed with any other water at any time. The detailed study design is available from the corresponding author.

We initially set out to sample water from every borehole in each camp, however we found that boreholes were not always operational or residual chlorine was not always present at tapstands. Accordingly, we adopted a convenience sampling approach so that we could maximize data collection in the limited time available at each camp. We sought to capture spatial representativeness by:

(i) visiting tapstands dispersed across the camp areas; and
(ii) sampling water from tapstands attached to different boreholes. We approached whoever was collecting water at the tapstand for enrolment in the study. In total, we collected 220 unique samples roughly divided between the three camps. The study was submitted for ethics review as only routine operational data was being collected.

Data analysis

We adopted a pooled data approach and modelled free residual chlorine concentration in MATLAB 7.12 (MathWorks Inc., Natick, United States of America) using the general integrated rate law:

$$\frac{1}{C^{n-1}} = \frac{1}{C_0^{n-1}} + (N - 1)Kt$$ \hspace{2cm} (1)

where C_0 is the initial chlorine concentration, C is the chlorine concentration at time t, N is the order of the reaction, and K is the rate constant.
We stratified by camp and by initial free residual chlorine concentration due to the nonlinearity of chlorine decay. Having estimated the model parameters \(K \) and \(N \), we calculated the initial free residual chlorine levels at the tapstand that would ensure the desired level of free residual chlorine after storage for a defined period.

Regression models

To explore associations between residual chlorine decay and water related physical and chemical parameters, handling practices and contextual factors, we used regression models in Stata 12.1 (StataCorp, College Station, USA). Regression models were run separately to investigate variables affecting water quality during three distinct stages: (i) during water collection; (ii) during transport to the household and (iii) during household storage and use (Table 2). Further details are available from the corresponding author.

Results

Summary statistics on water quality at the tapstand, in each of the three camps, are given in Table 3. Residual chlorine levels were similar in all camps. The turbidity was below the upper limit for effective chlorination at all sites (5 nephelometric turbidity units, NTU). Water temperatures averaged greater than 30°C at tapstands in the morning – an indication of how hot March and April are in this setting. The pH of the water at all camps was below 8.0, the upper limit for effective chlorination. Oxidation reduction potential varied widely between camps, partially reflecting residual chlorine levels but also potentially undocumented factors. Electrical conductivity, a proxy for chemical quality, was statistically different across camps (\(P < 0.0001 \)) suggesting that each camp’s source was unique. As discussed earlier, chlorination performance at each site was less than ideal. A histogram of free residual chlorine concentrations encountered at tapstands is presented in Fig. 1.

Modelling residual chlorine

As seen in Table 4, modelling suggested that residual chlorine decay was a second-order process. The average model \(R^2 \) was 0.76 (range: 0.57–0.95). Examining modelling graphs and residual plots offers additional insight regarding goodness of fit. The pattern of the residuals was consistent across models, so the most general model (including data for all camps and all initial free residual chlorine data) is shown in Fig. 2.

Table 3. Water quality measurements at tapstands for the three refugee camps, South Sudan, March–April 2013

Parameter by refugee camp	n	Mean (SD)	Range
Jamam			
Free residual chlorine, mg/L	75	0.9 (1.2)	0.01–4.60
Turbidity, NTU	75	3.4 (2.0)	0.2–8.8
Water temperature, °C	74	32.0 (1.0)	29.2–34.1
pH	75	7.3 (0.8)	2.3–7.8
Oxidation reduction potential, mV	75	500 (158)	197–821
Electrical conductivity, mS/cm	75	1.7 (0.8)	0.2–2.0
Batil			
Free residual chlorine, mg/L	69	1.2 (0.3)	0.6–2.3
Turbidity, NTU	69	1.4 (1.3)	0.01–8.77
Water temperature, °C	69	31.1 (1.8)	27.3–37.6
pH	69	7.2 (0.5)	4.4–7.7
Oxidation reduction potential, mV	69	701 (78)	342–861
Electrical conductivity, mS/cm	58	0.9 (0.3)	0.1–1.5
Gendrassa			
Free residual chlorine, mg/L	76	1.4 (1.2)	0.1–5.2
Turbidity, NTU	76	1.4 (0.9)	0.01–3.88
Water temperature, °C	76	30.2 (0.9)	27.8–32.4
pH	75	68.0 (0.7)	3.4–8.9
Oxidation reduction potential, mV	76	604 (124)	379–845
Electrical conductivity, mS/cm	60	0.6 (0.2)	0.4–1.0

NTU: Nephelometric turbidity units; SD: standard deviation.

Note: Free residual chlorine concentrations ranged from just detectable (i.e. 0.01 mg/L) to excessive (i.e. 5.2 mg/L), reflecting poor chlorination performance of camp water systems.
We calculated the initial free residual chlorine concentrations required to ensure a desired level of free residual chlorine at a designated time after distribution (Table 5). A primary target of 0.2 mg/L at 24 hours after distribution was selected, with a secondary target of 0.2 mg/L at 12 hours. Table 5 reports projections using modelling outputs from the 0.5–1.5 mg/L initial free residual chlorine strata, as this is the range most relevant to field practice.

According to our model results, the primary target of 0.2 mg/L at 24 hours after distribution could not be achieved. For the secondary target, 0.2 mg/L at 12 hours after distribution, the initial concentration of free residual chlorine averaged 1.1 mg/L (range 0.37–2.19). If free residual chlorine at the tapstand was set to 1.0 mg/L, the residual concentration remained above 0.2 mg/L for an average of 13.8 hours (range 10.4–19.7; Table 5).

Linear regression models were used to explore relationships between free residual chlorine decay and water quality, water handling practices and contextual factors. These variables accounted for only about 25% of the variance in the data, suggesting that other unknown or undocumented factors are also important. Ambient air temperature during water collection was positively associated with free residual chlorine decay, suggesting that where ambient temperatures are high we can expect decay to be accelerated. There was some evidence of a direct relationship between decay and electrical conductivity, a proxy measure for dissolved metals and salts content of water, raising the possibility that complete oxidation of dissolved metals and other compounds, as required for effective chlorination and maintenance of residual, was not being achieved before distribution. Covering household water storage containers had a protective effect, while there was inconsistent evidence for other hygienic water handling practices (e.g. container cleanliness and method of drawing water). Detailed regression results are available from the corresponding authors.

Discussion

According to our models, under the conditions in the South Sudan camps, it is not possible to ensure 0.2 mg/L of free residual chlorine 24 hours after distribution. Therefore, we must accept a lower level of protection than is ideal, or consider improvements to current practice. Centralized batch chlorination may be less appropriate where populations are dispersed across rural areas or within existing urban settlements; among populations with low chlorine taste or odour acceptance; or during the transitional phase from an acute to

Table 4. Modelling of initial free residual chlorine in refugee camps, South Sudan, March–April 2013

Concentration by refugee camp	Event 1	Event 2	Event 3	Event 4	\(K\) (L/mg/min)	\(N\)	\(R^2\)
All samples	220	186	199	205	8.150 × 10^{-4}	1.98	0.85
0.2–1.0 mg/L	106	90	97	97	6.390 × 10^{-3}	2.08	0.80
0.2–2.0 mg/L	166	142	151	153	3.824 × 10^{-3}	2.03	0.74
Jamam	75	68	69	71	6.630 × 10^{-4}	2.00	0.95
0.2–1.0 mg/L	47	45	44	44	1.393 × 10^{-2}	2.05	0.82
0.2–2.0 mg/L	50	48	47	47	7.048 × 10^{-3}	2.07	0.77
Batil	69	52	58	66	2.777 × 10^{-3}	1.96	0.59
0.2–1.0 mg/L	30	20	25	28	3.656 × 10^{-3}	2.15	0.57
0.2–2.0 mg/L	67	51	57	64	3.174 × 10^{-3}	1.97	0.60
Gendrassa	76	66	72	68	6.440 × 10^{-4}	1.97	0.81
0.2–1.0 mg/L	29	25	28	25	6.537 × 10^{-3}	2.06	0.87
0.2–2.0 mg/L	49	43	47	42	5.051 × 10^{-3}	2.02	0.71

Note: Modelling was stratified by camp and initial free residual chlorine concentration. \(K\) is the rate constant and \(N\) is the order of the reaction.

Table 5. Projections of free residual chlorine using decay models, South Sudan, March–April 2013

\(C_o\) (mg/L)	Camp	\(K\) (L/mg/min)	\(N\)	\(R^2\)	\(C_o\) (mg/L) for a free residual chlorine of 0.2 mg/L after 12 hours	Time taken (h) for free residual chlorine to fall to 0.2 mg/L given \(C_o = 1\) mg/L
0.5–1.5	All	5.149 × 10^{-3}	1.97	0.60	0.84	12.6
	Jamam	3.997 × 10^{-3}	2.16	0.74	0.37	19.7
	Batil	4.998 × 10^{-3}	1.94	0.59	0.86	12.5
	Gendrassa	5.884 × 10^{-3}	1.92	0.51	2.19	10.4

Note: \(K\) is the rate constant; \(N\) is the order of the reaction; \(C_o\) is the initial free residual chlorine concentration.
a stabilized emergency. In some situations, chlorine decay is so rapid that alternatives or adjuncts such as point-of-use water treatment may need to be considered.

Regarding the safe water chain, covering household water storage containers was confirmed to be protective while there was weak or inconsistent evidence on the effect of other important hygienic water handling practices. The fact that an effect was not observed in the present study does not imply that these practices are necessarily ineffective; promotion of hygienic water handling practices remains an essential component of emergency safe water supply. Although there was some evidence concerning the effect of container and tap type, the study was not sufficiently powered to draw strong conclusions in this regard.

Current guidelines for free residual chlorine in emergency water supplies are not based on field evidence and offer inadequate protection after distribution in refugee camps in South Sudan. We recommend that the free residual chlorine guideline be increased to 1.0 mg/L in all situations, irrespective of disease outbreak, pH, or turbidity conditions. This is a tentative recommendation because the degree to which these findings can be generalized to other camps in different settings is unknown. According to our findings, an initial concentration of 1.0 mg/L will provide 0.2 mg/L free residual chlorine protection for at least 10 hours after distribution. This is consistent with the recommended concentration for point-of-use water chlorination in emergency and non-emergency settings and is within the limits generally considered to be acceptable to users (2.0 mg/L). Further studies are required in diverse climatic and environmental settings to expand the evidence base.

Acknowledgements
We thank Simon Juma Choul, Thomas Bashir, Alfaki Yusif, Abdalbagi Madani, Mark Onna, Sebit Khalil, Issa Wallah, Biserka Pop-Stefanija, Annick Lenglet, Matt Arnold, Edward McBean, Cono Ariti, Kristin George and Ivan Gayton.

Competing interests: None declared.
Research

Water treatment in refugee camps, South Sudan

...in South Sudan, from March to April 2013.

Methods

We conducted three stages of water samples collection, first from the tap waters at four points of distribution: (i) directly from the water supply; (ii) after a transport to the household; and (iii) after the storage for several hours. We measured the following parameters: (i) residual chlorine in free and total form, temperature, turbidity, pH, conductivity, and redox potential. We then applied the linear regression model to analyze the relationship between the measured parameters and the predicted residual chlorine concentration.

Results

The concentration of residual chlorine in free form was found to be 0.5-1.5 mg/L, with a mean value of 1.0 mg/L. The regression model showed a significant correlation between the residual chlorine concentration and the other measured parameters, with an R² value of 0.75. This result suggests that the water treatment processes in the camps are effective in maintaining the residual chlorine levels.

Conclusions

The water treatment processes in the refugee camps in South Sudan are effective in maintaining the residual chlorine levels at the desired concentration. The regression model can be used to predict the residual chlorine concentration in future water treatment processes.

References

1. World Health Organization. (2015). Water Quality Guidelines for Drinking-water. Geneva, Switzerland.
2. Ali, S., et al. (2015). Water treatment in refugee camps, South Sudan. Bull World Health Organ, 93:550-558.
3. World Health Organization. (2014). Water Quality Guidelines for Drinking-water. Geneva, Switzerland.

Bull World Health Organ 2015;93:550–558 doi: http://dx.doi.org/10.2471/BLT.14.147645

556

© 2015 WHO. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/).
Resumen

La eficacia de las prácticas de emergencia de tratamiento del agua en los campos de refugiados de Sudán del Sur

Objetivo Investigar la concentración de cloro residual en los suministros de agua potable en los campos de refugiados de Sudán del Sur, entre marzo y abril de 2013.

Métodos Para cada uno de los tres campos de refugiados, se midieron las características físicas y químicas de los suministros de agua en cuatro puntos después de la distribución: (i) directamente de las tomas de agua; (ii) después de la recogida; (iii) tras transportarla a los hogares; y (iv) tras varias horas de almacenaje en los hogares. Se midieron los siguientes parámetros: el cloro residual libre y total, la temperatura, la turbiedad, el pH, la electricidad devocífera (EC) y el potencial de reducción (Eh). Se documentaron las prácticas de tratamiento del agua con verificaciones y autoinformes de los encuestadores. Se analizaron los factores que afectan a las concentraciones de cloro residual mediante modelos de regresión matemática y lineales.

Resultados Para las concentraciones iniciales de cloro residual libre en el rango 0,5–1,5 mg/l, se encontró una tasa de depreciación de ~5*10^{-1} mg/min en todos los campos. Los modelos de regresión mostraron que la depreciación del cloro residual estaba relacionado con los niveles de cloro iniciales, la electricidad devocífera y la temperatura ambiente. Los niveles de cloro residual mejoraron tras cubrir los contenedores de agua, pero no tras aplicar otras prácticas de tratamiento del agua.

Conclusion Las concentraciones de cloro residual que se midieron en los suministros de agua en los campos de refugiados de Sudán del Sur eran demasiado bajas. Se recomendó provisionalmente que la directriz de cloro residual libre se incrementara a 1,0 mg/l en todas las situaciones, independientemente de los brotes de la enfermedad diarreica y del pH o la turbiedad de los suministros de agua. De acuerdo con nuestros resultados, esto debería garantizar un nivel de cloro residual libre de 0,2 mg/l hasta al menos 10 horas después de la distribución. Sin embargo, no sabemos si nuestros resultados son generalizables a otros campos y, por lo tanto, se requieren más estudios.

Referencias

1. Cutler D, Miller G. The role of public health improvements in health advances: the twentieth-century United States. Demography. 2005 Feb;42(1):1–22. doi: http://dx.doi.org/10.1353/dem.2005.0002 PMID: 15782893
2. Hass CN. Disinfection. In: Letterman RD; editor. Water quality & treatment: a handbook of community water supplies. 5th ed. New York: McGraw-Hill Inc.; 1991.
3. Drinking water and health. Vol. 2. Washington: National Academy Press; 1980.
4. Guidelines for drinking-water quality. 3rd ed. Geneva: World Health Organization; 2008.
5. Reiff FM. Chlorination for international disasters. Proc Water Environ Fed. 2002;131(1):439–51. doi: http://dx.doi.org/10.2175/193864702785033914
6. Toole MJ, Waldman RJ. The public health aspects of complex emergencies and refugee situations. Annu Rev Public Health. 1997;18(1):283–312. doi: http://dx.doi.org/10.1146/annurev.publhealt18.1.283 PMID: 9143721
7. Connolly MA, Gaynor M, Ryan MJ, Salama P, Spiegel P, Heymann DL. Communicable diseases in complex emergencies: impact and challenges. Lancet. 2004 Nov 27;364(9449):1974–83. doi: http://dx.doi.org/10.1016/S0140-6736(04)17481-3 PMID: 15567014
8. Salama P, Spiegel P, Talley L, Waldman R. Lessons learned from complex emergencies over past decade. Lancet. 2004 Nov 13-19;364(9447):1801–13. doi: http://dx.doi.org/10.1016/S0140-6736(04)17405-9 PMID: 15541455
9. Cronin AA, Shrestha D, Spiegel P, Gore F, Hering H. Quantifying the burden of disease associated with inadequate provision of water and sanitation in selected sub-Saharan refugee camps. J Water Health. 2009 Dec;7(4):557–68. doi: http://dx.doi.org/10.2166/wh.2009.089 PMID: 19590123
10. Guidelines for water treatment in emergencies [Internet]. Oxford: Oxfam GB; 2001. Available from: http://reliefweb.int/report/world/guidelines-water-treatment-emergencies [cited 2015 May 14]
11. Wisner B, Adams J, editors. Emergencies and disasters: a practical guide. Geneva: World Health Organization; 2002.
12. Davis J, Lambert R. Engineering in emergencies: a practical guide for relief workers. London: ITDG Publishing; 2002.
13. Handbook for emergencies. 3rd ed. Geneva: United Nations High Commissioner for Refugees; 2007.
14. The Johns Hopkins and Red Cross. Red Crescent public health guide in emergencies. 2nd ed. Geneva: International Federation of Red Cross and Red Crescent Societies; 2008.
15. Syed Imran Ali et al.

16. Humanitarian charter and minimum standards in humanitarian response. 3rd ed. Rugby: The Sphere Project; Practical Action Publishing; 2011.

17. Chlorine residual testing [Internet]. Atlanta: Centers for Disease Control and Prevention; 2012. Available from: http://www.cdc.gov/safewater/chlorine-residual-testing.html [cited 2015 July 7].

18. Mintz ED, Reiff FM, Tause RV. Safe-water treatment and storage in the home. A practical new strategy to prevent waterborne disease. JAMA. 1995 Mar 22-29;273(12):948–53. doi: http://dx.doi.org/10.1001/jama.1995.03520360062040 PMID: 7884954

19. Elsaden TF, Bastable A. Faecal contamination of drinking water during collection and household storage: the need to extend protection to the point of use. J Water Health. 2003 Sep;1(3):109–15. PMID: 15384721

20. Trevett AF, Carter R, Tyrel SL. Five characteristics of the importance of domestic water quality management in the context of faecal-orai disease transmission. J Water Health. 2005 Sep;3(3):259–70. PMID: 16209030

21. Wright J, Gundry S, Conroy R. Household drinking water in developing countries: a systematic review of microbiological contamination between source and point-of-use. Trop Med Int Health. 2004 Jan;9(1):106–17. doi: http://dx.doi.org/10.1046/j.1365-3156.2003.01160.x PMID: 14728614

22. Trevett AF, Carter R, Tyrel SL. The importance of domestic water quality management in the context of faecal-orai disease transmission. J Water Health. 2005 Sep;3(3):259–70. PMID: 16209030

23. Günther I, Schipper Y. Pumps, germs and storage: the impact of improved water treatment in refugee camps, South Sudan. Disasters. 2005 Sep;29(3):213–21. doi: http://dx.doi.org/10.1111/j.0361-3666.2005.00287.x PMID: 16108988

24. Phillip M, Borsos E. Monthly monitoring report (Jamam Refugee Camp, November 2012). Oxford: Oxfam GB; 2012.

25. Final report: Hepatitis E outbreak investigation: results from the knowledge, attitudes and practices (KAP) survey, environmental investigation and seroprevalence survey in Jamam and Yusuf Batil camps, Upper Nile, South Sudan. Atlanta: Centers for Disease Control and Prevention; 2013.

26. Guerrero-Latorre L, Gonfa AH, Girones R. Environmental investigation in Maban, South Sudan (April 2013): preliminary results. Barcelona: University of Barcelona/WACHE Project; 2013.

27. Thomson K, Dvorzák J, List L, Mackinnon E, Ali SI, Bishop L, et al. Epidemiological characteristics of a prolonged hepatitis E outbreak in three refugee camps in South Sudan. London: MSF Scientific Day; 2013.

28. Rossman LA, Clark RM, Grayman WM. Modeling chlorine residuals in drinking-water distribution systems. J Environ Eng. 1994;120(4):803–20. doi: http://dx.doi.org/10.1061/(ASCE)0733-9372(1994)120:4(803)

29. Blanchet K, Roberts B. An evidence review of research on health interventions in humanitarian crises. London: London School of Hygiene & Tropical Medicine; 2013.

30. Bastable A, Russell L. Gap analysis in emergency water, sanitation and hygiene promotion. London: Humanitarian Innovation Fund; 2013.

31. Médecins Sans Frontières. Maban WASH Coordination Report Wk 11 and 12. Amsterdam: Médecins Sans Frontières; 2013.

32. LeChevallier MW, Evans TM, Seidler RJ. Effect of turbidity on chlorination and chlorination efficiency and bacterial persistence in drinking water. Appl Environ Microbiol. 1981 Jul;42(1):159–67. PMID: 7259162

33. Copeland A, Lyte DA. Oxidation-reduction potential measurements of important oxidants in drinking water. Am Water Works Assoc. 2014;106(1):E10–20. doi: http://dx.doi.org/10.5942/jawwa.2014.106.0002

34. Powell JC, Hallam NB, West JR, Forster CE, Simms J. Factors which control bulk chlorine decay rates. Water Res. 2000;34(1):117–26. doi: http://dx.doi.org/10.1016/S0043-1354(99)00097-4

35. Kumar MSM, Munavalli GR. Autocalibration of chlorine transport model for steady state distribution system by genetic algorithm. In: Proceedings of the 7th International Water Technology Conference, 2003 April 1-3; Cairo, Egypt, 2003.

36. Vuta LI, Dumitran GE. Some aspects regarding chlorine decay in water distribution networks. Air and water components of the environment. Cluj-Napoca: Cluj University Press; 2011. pp. 253–9.

37. Walski T, Chase DW, Savic D. Water distribution modeling. Exton: Haestad Methods; 2001.

38. Lantagne DS. Sodium hypochlorite dosage for household and emergency water treatment. J Am Water Works Assoc. 2008;100(8):106–19. doi: http://dx.doi.org/10.1002/jwa.11357205

39. Mazumder AS, Ahmed JA, Nyokta R, Auko E, Kahi V, Ndirangu J, et al. Chlorine residual testing [Internet]. Atlanta: Centers for Disease Control and Prevention; 2012. Available from: http://www.cdc.gov/safewater/chlorine-residual-testing.html [cited 2015 July 7].

40. Maude R, Chatterton P, O’Reilly A, Malenga G, Begg J, Nyangulu D, Toole M, et al. Evidence of liver infection among refugees in Malawi: treatment of hepatitis E virus infection in displaced persons. J Hepatol. 2004 Apr;40(4):640–5. PMID: 15384721

41. Ali SI, Bishop L, Thomson K, Dvorzák J, List L, Mackinnon E, et al. A systematic review of microbiological contamination between source and point-of-use. Trop Med Int Health. 2004 Jan;9(1):106–17. doi: http://dx.doi.org/10.1046/j.1365-3156.2003.01160.x PMID: 14728614

42. Lantagne DS. Sodium hypochlorite dosage for household and emergency water treatment. J Am Water Works Assoc. 2008;100(8):106–19.

43. Brdal J, Diaz F, Léglise J, Le Pape M. Is humanitarian water safe to drink? Paris: Médecins Sans Frontières; 2011.

44. Vuta LI, Dumitran GE. Some aspects regarding chlorine decay in water distribution networks: Air and water components of the environment. Cluj-Napoca: Cluj University Press; 2011. pp. 253–9.

45. Lantagne DS. Sodium hypochlorite dosage for household and emergency water treatment. J Am Water Works Assoc. 2008;100(8):106–19.

46. Lantagne DS. Sodium hypochlorite dosage for household and emergency water treatment. J Am Water Works Assoc. 2008;100(8):106–19.

47. Mohamed H, Brown J, Njee RM, Clasen T, Malebo HM, Mbuligwe S. Point-of-use chlorination of turbid water: results from a field study in Tanzania. J Water Health. 2015.

48. © 2020 Oxford University Press on behalf of the International Water Association.