Accurate Inference in Adaptive Linear Models

Yash Deshpande∗ Lester Mackey† Vasilis Syrgkanis‡ Matt Taddy§

February 21, 2022

Abstract

Estimators computed from adaptively collected data do not behave like their non-adaptive brethren. Rather, the sequential dependence of the collection policy can lead to severe distributional biases that persist even in the infinite data limit. We develop a general method—W-decorrelation—for transforming the bias of adaptive linear regression estimators into variance. The method uses only coarse-grained information about the data collection policy and does not need access to propensity scores or exact knowledge of the policy. We bound the finite-sample bias and variance of the W-estimator and develop asymptotically correct confidence intervals based on a novel martingale central limit theorem. We then demonstrate the empirical benefits of the generic W-decorrelation procedure in two different adaptive data settings: the multi-armed bandit and the autoregressive time series.

1 Introduction

Consider a dataset of n sample points $(y_i, x_i)_{i \leq n}$ where y_i represents an observed outcome and $x_i \in \mathbb{R}^p$ an associated vector of covariates. In the standard linear model, the outcomes and covariates are related through a parameter β:

$$y_i = \langle x_i, \beta \rangle + \epsilon_i.$$ \hspace{1cm} (1)

In this model, the ‘noise’ term ϵ_i represents inherent variation in the sample, or the variation that is not captured in the model. Parametric models of the type (1) are a fundamental building block in many machine learning problems. A common additional assumption is that the covariate vector x_i for a given datapoint i is independent of the other sample point outcomes $(y_j)_{j \neq i}$ and the inherent variation $(\epsilon_j)_{j \in [n]}$. This paper is motivated by experiments where the sample $(y_i, x_i)_{i \leq n}$ is not completely randomized but rather adaptively chosen. By adaptive, we mean that the choice of the data point (y_i, x_i) is guided from inferences on past data $(y_j, x_j)_{j < i}$. Consider the following sequential paradigms:

1. Multi-armed bandits: This class of sequential decision making problems captures the classical ‘exploitation versus exploitation’ tradeoff. At each time i, the experimenter chooses an ‘action’ x_i from a set of available actions \mathcal{X} and accrues a reward $R(y_i)$ where (y_i, x_i) follow the model (1). Here the experimenter must balance the conflicting goals of learning about the underlying model (i.e., β) for better future rewards, while still accruing reward in the current time step.

2. Active learning: Acquiring labels y_i is potentially costly, and the experimenter aims to learn with as few outcomes as possible. At time i, based on prior data $(y_j, x_j)_{j \leq i-1}$ the experimenter chooses a new data point x_i to label based on its value in learning.

∗Department of Mathematics, Massachusetts Institute of Technology and Microsoft Research
†Microsoft Research
‡Microsoft Research
§Chicago Booth and Microsoft Research
3. Time series analysis: Here, the data points \((y_i, x_i)\) are naturally ordered in time, with \((y_i)_{i \leq n}\) denoting a time series and the covariates \(x_i\) include observations from the prior time points.

Here, time induces a natural sequential dependence across the samples. In the first two instances, the actions or policy of the experimenter are responsible for creating such dependence. In the case of time series data, this dependence is endogenous and a consequence of the modeling. A common feature, however, is that the choice of the design or sequence \((x_i)_{i \leq n}\) is typically not made for inference on the model after the data collection is completed. This does not, of course, imply that accurate estimates on the parameters \(\beta\) cannot be made from the data. Indeed, it is often the case that the sample is informative enough to extract consistent estimators of the underlying parameters. Indeed, this is often crucial to the success of the experimenter’s policy. For instance, ‘regret’ in sequential decision-making or risk in active learning are intimately connected with the accurate estimation of the underlying parameters [Castro and Nowak, 2008, Audibert and Bubeck, 2009, Bubeck et al., 2012, Rusmevichientong and Tsitsiklis, 2010]. Our motivation is the natural follow-up question of accurate \textit{ex post} inference in the standard statistical sense:

Can adaptive data be used to compute accurate confidence regions and \(p\)-values?

As we will see, the key challenge is that even in the simple linear model of (1), the distribution of classical estimators can differ from the predicted central limit behavior of non-adaptive designs. In this context we make the following contributions:

- **Decorrelated estimators**: We present a general method to decorrelate arbitrary estimators \(\hat{\beta}(y, X_n)\) constructed from the data. This construction admits a simple decomposition into a ‘bias’ and ‘variance’ term. In comparison with competing methods, like propensity weighting, our proposal requires little explicit information about the data-collection policy.

- **Bias and variance control**: Under a natural exploration condition on the data collection policy, we establish that the bias and variance can be controlled at nearly optimal levels. In the multi-armed bandit setting, we prove this under an especially weak averaged exploration condition.

- **Asymptotic normality and inference**: We establish a martingale central limit theorem (CLT) under a moment stability assumption. Applied to our decorrelated estimators, this allows us to construct confidence intervals and conduct hypothesis tests in the usual fashion.

- **Validation**: We demonstrate the usefulness of the decorrelating construction in two different scenarios: multi-armed bandits (MAB) and autoregressive (AR) time series. We observe that our decorrelated estimators retain expected central limit behavior in regimes where the standard estimators do not, thereby facilitating accurate inference.

The rest of the paper is organized with our main results in Section 2, discussion of related work in Section 3, and experiments in Section 4.

2 Main results: \(W\)-decorrelation

We focus on the linear model and assume that the data pairs \((y_i, x_i)\) satisfy:

\[
y_i = (x_i, \beta) + \varepsilon_i, \tag{2}
\]

where \(\varepsilon_i\) are independent and identically distributed random variables with \(\mathbb{E}\{\varepsilon_i\} = 0, \mathbb{E}\{\varepsilon_i^2\} = \sigma^2\) and bounded third moment. We assume that the samples are ordered naturally in time and let \(\{\mathcal{F}_i\}_{i \geq 0}\) denote the filtration representing the sample. Formally, we let data points \((y_i, x_i)\) be adapted to this filtration, i.e. \((y_i, x_i)\) are measurable with respect to \(\mathcal{F}_j\) for all \(j \geq i\).
Our goal in this paper is to use the available data to construct \textit{ex post} confidence intervals and \(p \)-values for individual parameters, i.e. entries of \(\beta \). A natural starting point is to consider is the standard least squares estimate:

\[
\hat{\beta}_{\text{OLS}} = (X_n^T X_n)^{-1} X_n^T y_n,
\]

where \(X_n = [x_1^T, \ldots, x_n^T] \in \mathbb{R}^{n \times p} \) is the design matrix and \(y_n = [y_1, \ldots, y_n] \in \mathbb{R}^n \). When data collection is non-adaptive, classical results imply that the standard least squares estimate \(\hat{\beta}_{\text{OLS}} \) is distributed asymptotically as \(N(\beta, \sigma^2 (X_n^T X_n)^{-1}) \), where \(N(\mu, \Sigma) \) denotes the Gaussian distribution with mean \(\mu \) and covariance \(\Sigma \). Lai and Wei [1982] extend these results to the current scenario:

Theorem 1 (Theorems 1, 3 [Lai and Wei, 1982]). Let \(\lambda_{\text{min}}(n) (\lambda_{\text{max}}(n)) \) denote the minimum (resp. maximum) eigenvalue of \(X_n^T X_n \). Under the model (2), assume that (i) \(\varepsilon_i \) have finite third moment and (ii) almost surely, \(\lambda_{\text{min}}(n) \to \infty \) with \(\lambda_{\text{min}} = \Omega(\log \lambda_{\text{max}}) \) and (iii) \(\log \lambda_{\text{max}} = o(n) \). Then the following limits hold almost surely:

\[
\|\hat{\beta}_{\text{OLS}} - \beta\|^2 \leq C \frac{\sigma^2 \log \lambda_{\text{max}}}{\lambda_{\text{min}}}.
\]

\[
\left| \frac{1}{n} y_n - X_n \hat{\beta}_{\text{OLS}} \right|^2 \leq C(p) \frac{1 + \log \lambda_{\text{max}}}{n}
\]

Further assume the following stability condition: there exists a deterministic sequence of matrices \(A_n \) such that (iii) \(A_n^{-1}(X_n^T X_n)^{1/2} \to I_p \) and (iv) \(\max_i \|A_n^{-1} x_i\|_2 \to 0 \) in probability. Then,

\[
(X_n^T X_n)^{1/2}(\hat{\beta}_{\text{OLS}} - \beta) \overset{d}{\to} N(0, \sigma^2 I_p).
\]

At first blush, this allows to construct confidence regions in the usual way. More precisely, the result implies that \(\hat{\sigma}^2 = \|y_n - X_n \hat{\beta}_{\text{OLS}}\|^2 / n \) is a consistent estimate of the noise variance. Therefore, the interval \([\hat{\beta}_{\text{OLS},1} - 1.96\hat{\sigma}(X_n^T X_n)^{-1}, \hat{\beta}_{\text{OLS},1} + 1.96\hat{\sigma}(X_n^T X_n)^{-1}] \) is a 95\% two-sided confidence interval for the first coordinate \(\beta_1 \). Indeed, this result is sufficient for a variety of scenarios with weak dependence across samples, such as when the \((y_i, x_i) \) form a Markov chain that mixes rapidly. However, while the assumptions for consistency are minimal, the additional stability assumption required for asymptotic normality poses some challenges:

1. The stability condition can provably fail to hold for scenarios where the dependence across samples is non-negligible. This is not a weakness of Theorem 1: the CLT need not hold for the OLS estimator [Lai and Wei, 1982, Lai and Siegmund, 1983].

2. The rate of convergence to the asymptotic CLT depends on the \textit{quantitative rate} of the stability condition. In other words, variability in the inverse covariance \(X_n^T X_n \) can cause deviations from normality of OLS estimator [Dvoretzky, 1972]. In finite samples, this can manifest itself in the bias of the OLS estimator as well as in higher moments.

An example of this phenomenon is the standard multi-armed bandit problem [Lai and Robbins, 1985]. At each time point \(i \leq n \), the experimenter (or data collecting policy) chooses an arm \(k \in \{1, 2, \ldots, p\} \) and observes a reward \(y_i \) with mean \(\beta_k \). With \(\beta \in \mathbb{R}^p \) denoting the mean rewards, this falls within the scope of model (2), where the vector \(x_i \) takes the value \(e_k \) (the \(k \)-th basis vector), if the \(k \)-th arm or option is chosen at time \(i \).\footnote{Strictly speaking, the model (2) assumes that the errors have the same variance, which need not be true for the multi-armed bandit as discussed. We focus on the homoscedastic case where the errors have the same variance in this paper.}

Other stochastic bandit problems with covariates such as contextual or linear bandits [Rusmevichientong and Tsitsiklis, 2010, Li et al., 2010, Deshpande and Montanari, 2012] can also be incorporated fairly naturally into our framework. For the purposes of this paper, however, we restrict ourselves to the simple case of multi-armed bandits without covariates. In this setting, ordinary least squares estimates correspond to computing sample means for each arm. The stability condition of Theorem 1 requires that...
Figure 1: The distribution of normalized errors for (left) the OLS estimator for stationary and (nearly) nonstationary AR(1) time series and (right) error distribution for both models after decorrelation.

$N_k(n)$, the number of times a specific arm $k \in [p]$ is sampled is asymptotically deterministic as n grows large. This is true for certain regret-optimal algorithms [Russo, 2016, Garivier and Cappé, 2011]. Indeed, for such algorithms, as the sample size n grows large, the suboptimal arm is sampled $N_k(n) \sim C_k(\beta) \log n$ for a constant $C_k(\beta)$ that depends on β and the distribution of noise ε_i. However, in finite samples, the dependence on $C_k(\beta)$ and the slow convergence rate of $(\log n)^{-1/2}$ lead to significant deviation from the expected central limit behavior.

Villar et al. [2015] studied a variety of multi-armed bandit algorithms in the context of clinical trials. They empirically demonstrate that sample mean estimates from data collected using many standard multi-armed bandit algorithms are biased. Recently, Nie et al. [2017] proved that this bias is negative for Thompson sampling and UCB. The presence of bias in sample means demonstrates that standard methods for inference, as advocated by Theorem 1, can be misleading when the same data is now used for inference. As a pertinent example, testing the hypotheses “the mean reward of arm 1 exceeds that of 2” based on classical theory can be significantly affected by adaptive data collection.

The papers [Villar et al., 2015, Nie et al., 2017] focus on the finite sample effect of the data collection policy on the bias and suggest methods to reduce the bias. It is not hard to find examples where higher moments or tails of the distribution can be influenced by the data collecting policy. A simple, yet striking, example is the standard autoregressive model (AR) for time series data. In its simplest form, the AR model has one covariate, i.e. $p = 1$ with $x_i = y_{i-1}$. In this case:

$$y_i = \beta y_{i-1} + \varepsilon_i.$$

Here the least squares estimate is given by $\hat{\beta}_{OLS} = \sum_{t=1}^{t=n-1} y_t y_i / \sum_{t=1}^{t=n-1} y_i^2$. When $|\beta|$ is bounded away from 1, the series is asymptotically stationary and the OLS estimate has Gaussian tails. On the other hand, when $\beta - 1$ is on the order of $1/n$ the limiting distribution of the least squares estimate is non-Gaussian and dependent on the gap $\beta - 1$ (cf. Chan and Wei [1987]). A histogram for the normalized OLS errors in two cases: (i) stationary with $\beta = 0.02$ and (ii) nonstationary with $\beta = 1.0$ is shown on the left in Figure 1. The OLS estimate yields clearly non-Gaussian errors when nonstationary, i.e. when β is close to 1.

On the other hand, using the same data our decorrelating procedure is able to obtain estimates admitting Gaussian limit distributions, as evidenced in the right panel of Figure 1. We show a similar phenomenon in the MAB setting where our decorrelating procedure corrects for the unstable behavior of the OLS estimator (see Section 4 for details on the empirics). Delegating discussion of further related work to 3, we now describe this procedure and its motivation.

2.1 Removing the effects of adaptivity

We propose to decorrelate the OLS estimator by constructing:

$$\hat{\beta}^d = \hat{\beta}_{OLS} + W_n(y - X_n \hat{\beta}_{OLS}),$$

4
for a specific choice of a ‘decorrelating’ or ‘whitening’ matrix \(W_n \in \mathbb{R}^{p \times n} \). This is inspired by the high-dimensional linear regression debiasing constructions of Zhang and Zhang [2014], Javanmard and Montanari [2014b,a], Van de Geer et al. [2014]. As we will see, this construction is useful also in the present regime where we keep \(p \) fixed and \(n \gtrsim p \). By rearranging:
\[
\hat{\beta}^d - \beta = (I_p - W_n X_n)(\hat{\beta}_{\text{OLS}} - \beta) + W_n \varepsilon_n \\
\equiv b + v.
\]
We interpret \(b \) as a ‘bias’ and \(v \) as a ‘variance’. This is based on the following critical constraint on the construction of the whitening matrix \(W_n \):

Definition 1 (Well-adaptedness of \(W_n \)). *Without loss of generality, we assume that \(\varepsilon_i \) are adapted to \(F_i \). Let \(G_i \subset F_i \) be a filtration such that \(x_i \) are adapted w.r.t. \(G_i \) and \(\varepsilon_i \) is independent of \(G_i \). We say that \(W_n \) is well-adapted if the columns of \(W_n \) are adapted to \(G_i \), i.e. the \(i \)th column \(w_i \) is measurable with respect to \(G_i \).*

With this in hand, we have the following simple lemma.

Lemma 2. *Assume \(W_n \) is well-adapted. Then:
\[
\| \beta - \mathbb{E}(\hat{\beta}^d) \|_2 \leq \mathbb{E}(\| b \|_2),
\]
\[
\text{Var}(v) = \sigma^2 \mathbb{E}(W_n W_n^T).
\]

A concrete proposal is to trade-off the bias, controlled by the size of \(I_p - W_n X_n \), with the variance which appears through \(W_n W_n^T \). This leads to the following optimization problem:
\[
W_n = \arg \min_{W} \|I_p - W X_n\|_F^2 + \lambda \text{Tr}(W W^T).
\]

Solving the above in closed form yields ridge estimators for \(\beta \), and by continuity, also the standard least squares estimator. Departing from Zhang and Zhang [2014], Javanmard and Montanari [2014a], we solve the above in an *online* fashion in order to obtain a well-adapted \(W_n \). We define, \(W_0 = 0, X_0 = 0 \), and recursively \(W_n = [W_{n-1} w_n] \) for
\[
w_n = \arg \min_{w \in \mathbb{R}^p} \|I - W_{n-1} X_{n-1} - w x_n^T\|_F^2 + \lambda \|w\|_2^2.
\]
As in the case of the offline optimization, we may obtain closed form formulae for the columns \(w_i \) (see Algorithm 1). The method as specified requires \(O(np^2) \) additional computational overhead, which is typically minimal compared to computing \(\hat{\beta}_{\text{OLS}} \) or a regularized version like the ridge or lasso estimate. We refer to \(\hat{\beta}^d \) as a \(W \)-estimate or a \(W \)-decorrelated estimate.

2.2 Interpretation as reverse implicit SGD

While we motivated \(W \)-decorrelation decorrelation as an online procedure for optimizing the bias-variance tradeoff objective (3), it holds a dual interpretation as implicit stochastic gradient descent (SGD) [see, e.g., Kulis and Bartlett, 2010], also known as incremental proximal minimization [Bertsekas, 2011] or the normalized least squares filter [Nagumo and Noda, 1967] in this context, with step-size \(\lambda \) applied to the least-squares objective, \(\frac{1}{p} \sum_{i=1}^n (y_i - \langle \beta, x_i \rangle)^2 \). Importantly, to obtain the well-adapted form of our updates, one must apply implicit SGD in reverse, starting with the final observation \((y_n, x_n) \) and ending with the initial observation \((y_1, x_1) \); this recipe yields the parameter updates \(\hat{\beta}_0 = \hat{\beta}_{\text{OLS}} \) and
\[
\hat{\beta}_{i+1} = \hat{\beta}_i + x_{n-i}(y_{n-i} - \langle x_{n-i}, \hat{\beta}_{i+1} \rangle)/\lambda \\
= (I_p + x_{n-i}x_{n-i}^T/\lambda)^{-1}(\hat{\beta}_i + y_{n-i}x_{n-i}/\lambda) \\
= (I_p - x_{n-i}x_{n-i}^T/(\lambda + \|x_{n-i}\|_2^2))\hat{\beta}_i \\
+ y_{n-i}x_{n-i}/(\lambda + \|x_{n-i}\|_2^2).
\]
Unrolling the recursion, we obtain $\hat{\beta}_n = \hat{\beta}_{\text{OLS}} + \sum_{i=1}^n y_i w_i$ with each w_i, precisely as in Algorithm 1:

$$w_i = \left(\prod_{j=1}^{i-1} (I_p - x_j x_j^T / (\lambda + \|x_j\|^2)) \right) x_i.$$

2.3 Bias and variance

We now examine the bias and variance control for $\hat{\beta}^d$. We first begin with a general bound for the variance:

Theorem 3 (Variance control). For any $\lambda \geq 1$ set non-adaptively, we have that

$$\text{Tr}\{\text{Var}(v)\} \leq \frac{\sigma^2}{\lambda} (p - E\{\|I_p - W_n X_n\|^2\}).$$

In particular, $\text{Tr}\{\text{Var}(v)\} \leq \sigma^2 p/\lambda$. Further, if $\|x_i\|^2 \leq C$ for all i:

$$\text{Tr}\{\text{Var}(v)\} \leq \frac{\sigma^2}{\lambda} (p - E\{\|I_p - W_n X_n\|^2\}).$$

This theorem suggests that one must set λ as large as possible to minimize the variance. While this is accurate, one must take into account the bias of $\hat{\beta}^d$ and its dependence on the regularization λ. Indeed, for large λ, one would expect that $I_p - W_n X_n \approx I_p$, which would not help control the bias. In general, one would hope to set λ, thereby determining $\hat{\beta}^d$, at a level where its bias is negligible in comparison to the variance. The following theorem formalizes this:

Theorem 4 (Variance dominates MSE). Recall that the matrix W_n is a function of λ. Suppose that there exists a deterministic sequence $\lambda(n)$ such that:

$$E\{\|I_p - W_n X_n\|^2\} = o(1/\log n),$$

$$P\{\lambda_{\min}(X_n^T X_n) \leq \lambda(n) \log \log n\} \leq 1/n,$$

Then we have

$$\frac{\|E\{b\}\|^2}{\text{Tr}\{\text{Var}(v)\}} = o(1).$$

The conditions of Theorem 4, in particular the bias condition on $I_p - W_n X_n$ are quite general. In the following proposition, we verify some sufficient conditions under which the premise of Theorem 4 hold.

Proposition 5. Either of the following conditions suffices for the requirements of Theorem 4.

1. The data collection policy satisfies for some sequence $\mu_n(i)$ and for all $\lambda \geq 1$:

$$E\left\{\frac{x_i x_i^T}{\lambda + \|x_i\|^2} | g_{t-1}\right\} \geq \frac{\mu_n(i)}{\lambda} I_p,$$

$$\sum_i \mu_n(i) \equiv n \mu_n \geq K \sqrt{n},$$

for a large enough constant K. Here we keep $\lambda(n) \approx n \mu_n / (p \log n)$.

2. The matrices $(x_i x_i^T)_{i \leq n}$ commute and $\lambda(n) \log \log n$ is (at most) the $1/n^{th}$ percentile of $\lambda_{\min}(X_n^T X_n)$.

It is useful to consider the intuition for the sufficient conditions given in Proposition 5. By Lemma 2, note that the bias is controlled by $\|I - W_n X_n\|_{op}$, which increases with λ. Consider a case in which the samples x_i lie in a strict subspace of \mathbb{R}^p. In this case, controlling the bias uniformly over $\beta \in \mathbb{R}^p$ is now impossible regardless of the choice of W_n. For example, in a multi-armed bandit problem, if the policy does not sample a specific arm, there is no information available about the reward distribution of that arm. Proposition 5 the intuition that the data collecting policy should explore the full parameter space. For multi-armed bandits, policies such as epsilon-greedy and Thompson sampling satisfy this assumption with appropriate $\mu_n(i)$.

6
Given sufficient exploration, Proposition 5 recommends a reasonable value to set for the regularization parameter. In particular setting λ to a value such that $\lambda \leq \lambda_{\min}/\log \log n$ occurs with high probability suffices to ensure that the W-decorrelated estimate is approximately unbiased. Correspondingly, the MSE (or equivalently variance) of the W-decorrelated estimate need not be smaller than that of the original OLS estimate. Indeed the variance scales as $1/\lambda$, which exceeds with high probability the $1/\lambda_{\min}$ scaling for the MSE. This is the cost paid for debiasing OLS estimate.

Before we move to the inference results, note that the procedure requires only access to high probability lower bounds on λ_{\min}, which intuitively quantifies the exploration of the data collection policy. In comparison with methods such as propensity score weighting or conditional likelihood optimization, this represents rather coarse information about the data collection process. In particular, given access to propensity scores or conditional likelihoods one can simulate the process to extract appropriate values for the regularization parameter. In particular setting λ to a value such that $\lambda \leq \lambda_{\min}/\log \log n$ occurs with high probability suffices to ensure that the W-decorrelated estimate is approximately unbiased. Correspondingly, the MSE (or equivalently variance) of the W-decorrelated estimate need not be smaller than that of the original OLS estimate. Indeed the variance scales as $1/\lambda$, which exceeds with high probability the $1/\lambda_{\min}$ scaling for the MSE. This is the cost paid for debiasing OLS estimate.

Before we move to the inference results, note that the procedure requires only access to high probability lower bounds on λ_{\min}, which intuitively quantifies the exploration of the data collection policy. In comparison with methods such as propensity score weighting or conditional likelihood optimization, this represents rather coarse information about the data collection process. In particular, given access to propensity scores or conditional likelihoods one can simulate the process to extract appropriate values for the regularization parameter. In particular setting λ to a value such that $\lambda \leq \lambda_{\min}/\log \log n$ occurs with high probability suffices to ensure that the W-decorrelated estimate is approximately unbiased. Correspondingly, the MSE (or equivalently variance) of the W-decorrelated estimate need not be smaller than that of the original OLS estimate. Indeed the variance scales as $1/\lambda$, which exceeds with high probability the $1/\lambda_{\min}$ scaling for the MSE. This is the cost paid for debiasing OLS estimate.

2.4 A central limit theorem and confidence intervals

Our final result is a central limit theorem that provides an alternative to the stability condition of Theorem 1 and standard martingale CLTs. Standard martingale CLTs [see, e.g., Lai and Wei, 1982, Dvoretzky, 1972] require convergence of $\sum w_i w_i^T/n$ to a constant, but this convergence condition is violated in many examples of interest, including the AR examples in Section 4.

Let $(X_{i,n}, F_{i,n}, 1 \leq i \leq n)$ be a martingale difference array, with the associated sum process $S_n = \sum_{i \leq n} X_{i,n}$ and covariance process $V_n = \sum_{i \leq n} \mathbb{E}\{X_{i,n}^2 | F_{i-1,n}\}$.

Assumption 1.

1. **Moments are stable:** for $a = 1, 2$, the following limit holds
 \[
 \lim_{n \to \infty} \mathbb{E}\left\{ \sum_{i \leq n} V_n^{-a/2} \mathbb{E}\{ X_{i,n}^a | F_{i-1,n}, V_n \} - \mathbb{E}\{ X_{i,n}^a | F_{i-1,n} \} \right\} = 0
 \]

2. **Martingale differences are small:**
 \[
 \lim_{n \to \infty} \sum_{i \leq n} \mathbb{E}\left\{ \frac{|X_{i,n}|^3}{V_n^{3/2}} \right\} = 0, \\
 \lim_{n \to \infty} \max_{1 \leq i \leq n} \mathbb{E}\{ X_{i,n}^2 | F_{i-1,n} \} / V_n = 0 \text{ in probability.}
 \]

Theorem 6 (Martingale CLT). Under Assumption 1, the rescaled process satisfies $S_n / \sqrt{V_n} \overset{d}{\to} \mathcal{N}(0, 1)$, i.e. the following holds for any bounded, continuous test function $\varphi: \mathbb{R} \to \mathbb{R}$:
\[
\lim_{n \to \infty} \mathbb{E}\{ \varphi(S_n / \sqrt{V_n}) \} = \mathbb{E}\{ \varphi(\xi) \},
\]

7
Figure 2: Histograms of the distribution of $N_1(n)/n$, the fraction of times arm 1 is picked under ε-greedy, UCB and Thompson sampling. The bandit problem has $p = 2$ arms which have i.i.d. $\text{Unif}([-0.7,1.3])$ rewards and a time horizon of $n = 1000$. The distribution is plotted over 4000 Monte Carlo iterations.

where $\xi \sim \mathcal{N}(0,1)$.

The first part of Assumption 1 is an alternate form of stability. It controls the dependence of the conditional covariance of S_n on the first two conditional moments of the martingale increments $X_{i,n}$. In words, it states that the knowledge of the conditional covariance $\sum_i \mathbb{E}\{X_{i,n}^2|\mathcal{F}_{i-1,n}\}$ does not change the first two moments of increments $X_{i,n}$ by an appreciable amount.

With a CLT in hand, one can now assign confidence intervals in the standard fashion, based on the assumption that the bias is negligible. For instance, we have result on two-sided confidence intervals.

Proposition 7. Fix any $\alpha > 0$. Suppose that the data collection process satisfies the assumptions of Theorems 4 and 6. Set $\lambda = \lambda(n)$ as in Theorem 4, and let $\hat{\sigma}$ be a consistent estimate of σ as in Theorem 1. Define $Q = \hat{\sigma}^2 W_n W_n^T$ and the interval $I(a, \alpha) = [\hat{\beta}_a d - \sqrt{Q_{aa}}\Phi^{-1}(1 - \alpha/2), \hat{\beta}_a d + \sqrt{Q_{aa}}\Phi^{-1}(1 - \alpha/2)]$. Then

$$\limsup_{n \to \infty} \mathbb{P}\{\beta_a \notin I(a, \alpha)\} \leq \alpha.$$

2.5 Stability for multi-armed bandits

Limited information central limit theorems such as Theorem 6 (or [Hall and Heyde, 2014, Theorem 3.4]), while providing insight into the problem of determining asymptotics, have assumptions that are often difficult to check in practice. Therefore, sufficient conditions such as the stability assumed in Theorem 1 are often preferred while analyzing the asymptotic behavior of martingales. In this section we circumvent this problem by proving the standard version of stability (as assumed in Theorem 1) for W-estimates, assuming the matrices $x_i x_i^T$ commute. While this is not a complete resolution to the problems posed by limited information martingale CLT’s, it applies to important special cases like multi-armed bandits.

Recall that the stability assumed in Theorem 1 requires a non-random sequence of matrices A_n so that

$$A_n^{-1} X_n X_n^T \xrightarrow{p} I_p$$

When the vectors x_i take values among $\{v_1, \ldots, v_p\}$, a set of orthogonal vectors, we have

$$X_n X_n^T = \sum_i x_i x_i^T$$

$$= \sum_{a=1}^p v_a v_a^T \sum_i I(\text{arm } a \text{ chosen at time } i),$$

$$= \sum_{a=1}^p v_a v_a^T N_a(n),$$

\[2\] See Hall and Heyde [2014], Theorem 3.4 for an example of a martingale central limit theorem in this flavor.
where we define \(N_a(n) = \sum_{i=1}^n I(x_i = v_a) \). Therefore, if there existed \(A_n \) so that the stability condition held, then we would have, for each \(a \), that \(N_a(n)/(v_a, A_n^{-1}v_a) \to 1 \) in probability.

We test this assumption in a simple, but illuminating setting: a multi-armed bandit problem with \(p = 2 \) arms that are statistically identical: they each yield i.i.d. \(\text{Unif}([-0.7, 1.3]) \) rewards. We run \(\varepsilon \)-greedy (with a fixed value \(\varepsilon = 0.1 \)), Thompson sampling and a variant of UCB for a time horizon of \(n = 1000 \) for 4000 Monte Carlo iterations. The resulting histograms of the fraction \(N_1(n)/n \) of times arm 1 was picked by each of the three policies is given in Figure 2. Since the arms are statistically identical, the algorithm behavior is exchangeable with respect to switching the arm labels, viz. switching arm 1 for arm 2. In particular, the distribution of fraction \(N_1(n)/n \) is exchangeable with respect to switching the arm labels, viz. switching arm 1 for arm 2. In particular, the distribution of fraction \(N_1(n)/n \) would be close to a Dirac delta at 1/2. However, we see that for all the three policies UCB, Thompson sampling and \(\varepsilon \)-greedy, this is not the case. Indeed, \(N_1(n)/n \) has significant variance about 1/2 for all the policies; to wit, the \(\varepsilon \)-greedy indeed shows a sharp bimodal behavior. Consequently, the stability condition required by Theorem 1 fails to hold quite dramatically in this simple setting. As we observe in Section 4, this affects significantly the limiting distribution of the sample means, which have non-trivial bias and poor coverage of nominal confidence intervals.

In the following, we will prove that \(W \)-estimates are indeed stable in the sense of Theorem 1, given a judicious choice of \(\lambda = \lambda(n) \). Suppose that for each time \(i \), \(x_i \in \{v_1, \ldots, v_p\} \) the latter being a set of orthogonal (not necessarily unit normed) vectors \(v_n \). We also define \(N_n(i) = \sum_{j \leq i} I(x_j = v_a) \). The following proposition shows that when \(\lambda = \lambda(n) \) is set appropriately, the \(W \)-estimate is stable.

Proposition 8. Suppose that the sequence \(\lambda = \lambda(n) \) satisfies (i) \(\lambda(n)/\lambda_{\text{min}}(X_n X_n^T) \to 0 \) in probability and (ii) \(\lambda(n) \to \infty \). Then the following holds:

\[
\lambda(n)W_n W_n^T \xrightarrow{L_1} \frac{1_p}{2}.
\]

Along with Theorem 4 and Proposition 5, this immediately yields a simple corollary on the distribution of \(W \)-estimates in the commutative setting. The key advantage here is that we are able to circumvent the assumptions of the limited information central limit Theorem 6.

Corollary 9. Suppose that \(x_i \) take values in \(\{v_1, \ldots, v_p\} \), a set of orthogonal vectors. Let \(\hat{\sigma}^2 \) be an estimate of the variance \(\sigma^2 \) as obtained from Theorem 1 and \(\hat{\beta}^d \) be the \(W \)-estimate obtained using \(\lambda = \lambda(n) \) so that \(\lambda(n) \log \log(n) \mathbb{E}(\lambda^{-1} \mathbb{X}_n^T \mathbb{X}_n) \to 0 \). Then, with \(\xi \sim \mathcal{N}(0, I_p) \) and any Borel set \(A \subseteq \mathbb{R}^p \):

\[
\lim_{n \to \infty} \mathbb{P}\left\{ (\hat{\sigma}^2 \lambda(n)W_n W_n^T)^{-1/2}(\hat{\beta}^d - \beta) \in A \right\} = \mathbb{P}\{\xi \in A\}.
\]

3 Related work

There is extensive work in statistics and econometrics on stochastic regression models [Wei, 1985, Lai, 1994, Chen et al., 1999, Heyde, 2008] and non-stationary time series [Shumway and Stoffer, 2006, Enders, 2008, Phillips and Perron, 1988]. This line of work is analogous to Theorem 1 or restricted to specific time series models. We instead focus on literature from sequential decision-making, policy learning and causal inference that closely resembles our work in terms of goals, techniques and applicability.

The seminal work of Lai and Robbins [Robbins, 1985, Lai and Robbins, 1985] has spurred a vast literature on multi-armed bandit problems and sequential experiments that propose allocation algorithms based on confidence bounds (see Bubeck et al. [2012] and references therein). A variety of confidence bounds and corresponding rules have been proposed [Auer, 2002; Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010, Abbasi-Yadkori et al., 2011, Jamieson et al., 2014] based on martingale concentration and the law of iterated logarithm. While these results can certainly be used to compute valid confidence intervals, they are conservative for a few reasons. First, they do not explicitly account for bias in OLS estimates and, correspondingly, must be wider to account for it. Second, obtaining optimal constants in the concentration
inequalities can require sophisticated tools even for non-adaptive data [Ledoux, 1996, 2005]. This is evidenced in all of our experiments which show that concentration inequalities yield valid, but conservative intervals.

A closely-related line of work is that of learning from logged data [Li et al., 2011, Dudík et al., 2011, Swaminathan and Joachims, 2015] and policy learning [Athey and Wager, 2017, Kallus, 2017]. The focus here is efficiently estimating the reward (or value) of a certain test policy using data collected from a different policy. For linear models, this reduces to accurate prediction which is directly related to the estimation error on the parameters β. While our work shares some features, we focus on unbiased estimation of the parameters and obtaining accurate confidence intervals for linear functions of the parameters. Some of the work on learning from logged data also builds on propensity scores and their estimation [Imbens, 2000, Lunceford and Davidian, 2004].

Villar et al. [2015] empirically demonstrate the presence of bias for a number of multi-armed bandit algorithms. Recent work by Dimitakopoulou et al. [2017] also shows a similar effect in contextual bandits. Along with a result on the sign of the bias, Nie et al. [2017] also propose conditional likelihood optimization methods to estimate parameters of the linear model. Through the lens of selective inference, they also propose methods to randomize the data collection process that simultaneously lower bias and reduce the MSE. Their techniques rely on considerable information about (and control over) the data generating process, in particular the probabilities of choosing a specific action at each point in the data selection. This can be viewed as lying on the opposite end of the spectrum from our work, which attempts to use only the data at hand, along with coarse aggregate information on the exploration inherent in the data generating process. It is an interesting, and open, direction to consider approaches that can combine the strengths of our approach and that of Nie et al. [2017].

4 Experiments

In this section we empirically validate the decorrelated estimators in two scenarios that involve sequential dependence in covariates. Our first scenario is a simple experiment of multi-armed bandits while the second scenario is autoregressive time series data. In these cases, we compare the empirical coverage and typical widths of confidence intervals for parameters obtained via three methods: (i) classical OLS theory, (ii) concentration inequalities and (iii) decorrelated estimates. Code for reproducing our experiments are available [Deshpande et al., 2018].

4.1 Multi-armed bandits

In this section, we demonstrate the utility of the W-estimator for a stochastic multi-armed bandit setting. Villar et al. [2015] studied this problem in the context of patient allocation in clinical trials. Here the trial proceeds in a sequential fashion with the i^{th} patient given one of p treatments, encoded as $x_i = e_a$ with $a \in [p]$, and y_i denoting the outcome observed. We model the outcome as $y_i = \langle x_i, \beta \rangle + \varepsilon_i$ where $\varepsilon_i \sim \text{Unif}([-1,1])$ with $\beta = (0.3,0.3)$ being the mean outcome of the treatments. Note that the two treatments are statistically identical in terms of outcome. As we will see, the adaptive sampling induced by the bandit strategies, however, introduces significant biases in the estimates.

We sequentially assign one of $p = 2$ treatments to each of $n = 1000$ patients using one of three policies (i) an ε-greedy policy (called ECB or Epsilon Current Belief), (ii) a practical UCB strategy based on the law of iterated logarithm (UCB) [Jamieson et al., 2014] and (iii) Thompson sampling [Thompson, 1933]. The ECB and TS sampling strategies are Bayesian. They place an independent Gaussian prior (with mean $\mu_0 = 0.3$ and variance $\sigma_0^2 = 0.33$) on each unknown mean outcome parameter and form an updated posterior belief concerning β following each treatment administration x_i and observation y_i.

For ECB, the treatment administered to patient i is, with probability $1 - \varepsilon = .9$, the treatment with the largest posterior mean; with probability ε, a uniformly random treatment is administered instead, to ensure sufficient exploration of all treatments. Note that this strategy satisfies condition (6) with $\mu_n(i) = \varepsilon/p$. For TS, at each patient i, a sample $\hat{\beta}$ of the mean treatment effect is drawn from the posterior belief. The treatment assigned to patient is the one maximizing the sampled mean treatment, i.e. $a_n(i) =$
Figure 3: Multi-armed bandit results. Left: One-sided confidence region coverage for OLS and decorrelated W-decorrelated estimates of the average reward $0.5\beta_1 + 0.5\beta_2$. Right: Probability (PP) plots for the OLS and W-decorrelated estimate errors of the average reward.

Figure 4: Multi-armed bandit results. Mean 2-sided confidence interval widths (error bars show 1 standard deviation) for the average reward $0.5\beta_1 + 0.5\beta_2$ in the MAB experiment.
arg max\(_{a \in [p]} \hat{\beta}_a\). In UCB, the algorithm maintains a score for each arm \(a \in [p]\) that is a combination of the mean reward that the arm achieves and the empirical uncertainty of the reward. For each patient \(i\), the UCB algorithm chooses the arm maximizing this score, and updates the score according to a fixed rule. For details on the specific implementation, see Jamieson et al. [2014]. Our goal is to produce confidence intervals for the \(\beta_a\) of each treatment based on the data adaptively collected from these standard bandit algorithms. We will compare the estimates and corresponding intervals for the average reward \(0.5\beta_1 + 0.5\beta_2\). As the two arms/treatments are statistically identical, this isolates the effect of adaptive sampling on the obtained estimates.

We repeat the simulation for 5000 Monte Carlo runs. From each trial, we estimate the parameters \(\beta\) using both OLS and the W-estimator with \(\lambda = \lambda_{5\%}\), which is the 5th percentile of \(\lambda_{\text{min}}(n)\) achieved by the policy \(\pi \in \{\text{ECB, UCB, TS}\}\). This choice is guided by Corollary 4.

We compare the quality of confidence regions for the average reward \(0.5\beta_1 + 0.5\beta_2\) obtained from the W-decorrelated estimator, the OLS estimator with standard Gaussian theory (\(\text{OLS}_{\text{gsn}}\)), and the OLS estimator using concentration inequalities (\(\text{OLS}_{\text{conc}}\)) [Abbasi-Yadkori et al., 2011, Sec. 4]. Figure 3 (left column) shows that the OLS Gaussian have have inconsistent coverage from the nominal. This is consistent with the observation that the sample means are biased negatively [Nie et al., 2017]. The concentration OLS tail bounds are all conservative, producing nearly 100% coverage, irrespective of the nominal level. This is intuitive, since they must account for the bias in sample means [Nie et al., 2017]. Meanwhile, the decorrelated intervals improves coverage uniformly over OLS intervals, often achieving the nominal coverage.

Figure 3 (right column) shows the PP plots of OLS and W-estimator errors for the average reward \(0.5\beta_1 + 0.5\beta_2\). Recall that a PP plot between two distributions on the real line with densities \(P\) and \(Q\) is the parametric curve \((P(z), Q(z)), z \in \mathbb{R}\) [Gibbons and Chakraborti, 2011, Chapter 4.7]. The distribution of OLS errors is clearly seen to be distinctly non-Gaussian.

Figure 4 summarizes the distribution of 2-sided interval widths produced by each method for the sum reward. As expected, the W-decorrelation intervals are wider than those of \(\text{OLS}_{\text{gsn}}\) but compare favorably with those provided by \(\text{OLS}_{\text{conc}}\). For UCB, the mean \(\text{OLS}_{\text{conc}}\) widths are always largest. For TS and ECB, W-decorrelation yields smaller intervals than \(\text{OLS}_{\text{conc}}\) for moderate confidence levels and comparable for high confidence levels. From this, we see that W-decorrelation intervals can be considerably less conservative than the concentration-based confidence intervals.

4.2 Autoregressive time series

In this section, we consider the classical AR\((p)\) model where \(y_t = \sum_{\ell \leq p}\beta_\ell y_{t-\ell} + \varepsilon_t\). We generate data for the model with parameters \(p = 2, n = 50, \beta = (0.95, 0.2), y_0 = 0\) and \(\varepsilon_t \sim \text{Unif}([-1, 1]); all estimates are computed over 4000 Monte Carlo iterations.

We plot the coverage confidences for various values of the nominal on the right panel of Figure 5. The PP plot of the error distributions on the bottom right panel of Figure 5 shows that the OLS errors are skewed downwards, while the W-estimates are nearly Gaussian. We obtain the following improvements over the comparison methods of OLS standard errors \(\text{OLS}_{\text{gsn}}\) and concentration inequality widths \(\text{OLS}_{\text{conc}}\) [Abbasi-Yadkori et al., 2011]

The Gaussian OLS confidence regions systematically give incorrect empirical coverage. Meanwhile, the concentration inequalities provide very conservative intervals, with nearly 100% coverage, irrespective of the nominal level. In contrast, our decorrelated intervals achieve empirical coverage that closely approximates the nominal levels. These coverage improvements are enabled by an increase in width over that of \(\text{OLS}_{\text{gsn}}\), but the W-estimate widths are systematically smaller than those of the concentration inequalities.

Acknowledgements

The authors would like to thank Adel Javanmard and Lucas Janson for feedback on an earlier version of this paper.
Figure 5: AR(2) time series results. Upper left: PP plot for the distribution of errors of standard OLS estimate and the W-decorrelated estimate. Upper right: Lower (top) and upper (bottom) coverage probabilities for OLS with Gaussian intervals, OLS with concentration inequality intervals, and decorrelated W-decorrelated estimate intervals. Note that ‘Conc’ has always 100% coverage. Bottom: Average 2 sided confidence interval widths obtained using the OLS estimator with standard Gaussian theory, OLS with concentration inequalities and the W-decorrelated estimator.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Online least squares estimation with self-normalized processes: An application to bandit problems. *arXiv preprint arXiv:1102.2670*, 2011.

Susan Athey and Stefan Wager. Efficient policy learning. *arXiv preprint arXiv:1702.02896*, 2017.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits. In *COLT*, pages 217–226, 2009.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine Learning Research*, 3(Nov):397–422, 2002.

Dimitri P Bertsekas. Incremental proximal methods for large scale convex optimization. *Mathematical programming*, 129(2):163, 2011.
Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. *Foundations and Trends® in Machine Learning*, 5(1):1–122, 2012.

Rui M Castro and Robert D Nowak. Minimax bounds for active learning. *IEEE Transactions on Information Theory*, 54(5):2339–2353, 2008.

Ngai H Chan and Ching-Zong Wei. Asymptotic inference for nearly nonstationary ar (1) processes. *The Annals of Statistics*, pages 1050–1063, 1987.

Kani Chen, Inchi Hu, Zhiliang Ying, et al. Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs. *The Annals of Statistics*, 27(4):1155–1163, 1999.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit feedback. In *COLT*, pages 355–366, 2008.

Yash Deshpande and Andrea Montanari. Linear bandits in high dimension and recommendation systems. In *Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on*, pages 1750–1754. IEEE, 2012.

Yash Deshpande, Lester Mackey, Vasilis Syrgkanis, and Matt Taddy. Accurate inference for adaptive linear models, 2018. URL https://bit.ly/2mJxULg.

Maria Dimakopoulou, Susan Athey, and Guido Imbens. Estimation considerations in contextual bandits. *arXiv preprint arXiv:1711.07077*, 2017.

Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. *arXiv preprint arXiv:1103.4601*, 2011.

Aryeh Dvoretzky. Asymptotic normality for sums of dependent random variables. In *Proc. 6th Berkeley Symp. Math. Statist. Probab*, volume 2, pages 513–535, 1972.

Walter Enders. *Applied econometric time series*. John Wiley & Sons, 2008.

Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and beyond. In *Proceedings of the 24th annual Conference On Learning Theory*, pages 359–376, 2011.

Jean Dickinson Gibbons and Subhabrata Chakraborti. *Nonparametric statistical inference*. Springer, 2011.

Peter Hall and Christopher C Heyde. *Martingale limit theory and its application*. Academic press, 2014.

Christopher C Heyde. *Quasi-likelihood and its application: a general approach to optimal parameter estimation*. Springer Science & Business Media, 2008.

Guido W Imbens. The role of the propensity score in estimating dose-response functions. *Biometrika*, 87 (3):706–710, 2000.

Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lilucb: An optimal exploration algorithm for multi-armed bandits. In *Conference on Learning Theory*, pages 423–439, 2014.

Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis testing for high-dimensional regression. *Journal of Machine Learning Research*, 15(1):2869–2909, 2014a.

Adel Javanmard and Andrea Montanari. Hypothesis testing in high-dimensional regression under the gaussian random design model: Asymptotic theory. *IEEE Transactions on Information Theory*, 60(10):6522–6554, 2014b.

Nathan Kallus. Balanced policy evaluation and learning. *arXiv preprint arXiv:1705.07384*, 2017.
Brian Kulis and Peter L Bartlett. Implicit online learning. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 575–582, 2010.

TseLeung Lai and David Siegmund. Fixed accuracy estimation of an autoregressive parameter. The Annals of Statistics, pages 478–485, 1983.

Tze Leung Lai. Asymptotic properties of nonlinear least squares estimates in stochastic regression models. The Annals of Statistics, pages 1917–1930, 1994.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4–22, 1985.

Tze Leung Lai and Ching Zong Wei. Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. The Annals of Statistics, pages 154–166, 1982.

M. Ledoux. Isoperimetry and Gaussian analysis, volume 1648. Springer, Providence, 1996.

Michel Ledoux. The concentration of measure phenomenon. Number 89. American Mathematical Soc., 2005.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web, pages 661–670. ACM, 2010.

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 297–306. ACM, 2011.

Jared K Lunceford and Marie Davidian. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in medicine, 23(19):2937–2960, 2004.

Jin-Ichi Nagumo and Atsuhiko Noda. A learning method for system identification. IEEE Transactions on Automatic Control, 12(3):282–287, 1967.

Xinkun Nie, Tian Xiaoying, Jonathan Taylor, and James Zou. Why adaptively collected data have negative bias and how to correct for it. 2017.

Peter CB Phillips and Pierre Perron. Testing for a unit root in time series regression. Biometrika, 75(2):335–346, 1988.

Herbert Robbins. Some aspects of the sequential design of experiments. In Herbert Robbins Selected Papers, pages 169–177. Springer, 1985.

Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of Operations Research, 35(2):395–411, 2010.

Daniel Russo. Simple bayesian algorithms for best arm identification. In Conference on Learning Theory, pages 1417–1418, 2016.

Robert H Shumway and David S Stoffer. Time series analysis and its applications: with R examples. Springer Science & Business Media, 2006.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through counterfactual risk minimization. Journal of Machine Learning Research, 16:1731–1755, 2015.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics, 12(4):389–434, 2012.
Sara Van de Geer, Peter Bühlmann, Yaacov Ritov, Ruben Dezeure, et al. On asymptotically optimal confidence regions and tests for high-dimensional models. *The Annals of Statistics*, 42(3):1166–1202, 2014.

Sofia Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges. *Statistical science: a review journal of the Institute of Mathematical Statistics*, 30(2):199, 2015.

Ching-Zong Wei. Asymptotic properties of least-squares estimates in stochastic regression models. *The Annals of Statistics*, pages 1498–1508, 1985.

Cun-Hui Zhang and Stephanie S Zhang. Confidence intervals for low dimensional parameters in high dimensional linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1): 217–242, 2014.

A Proofs of main results

A.1 Proofs of Theorems 3 and 4

The proofs of the main results rely on the following simple lemma.

Lemma 10. Consider the W-estimate as defined in Algorithm 1. Assume $\|x_i\|_2^2 \leq C$. Then for any i,

$$\|I_p - W_{i-1}X_{i-1}\|_F^2 - \|I_p - W_iX_i\|_F^2 \leq 2\lambda(n)\|w_i\|_2^2$$

Proof. This follows directly from the fact that $W_iX_i = W_{i-1}X_{i-1} + w_ik_i$ and the following formula for w_i:

$$w_i = \frac{(I_p - W_{i-1}X_{i-1})x_i}{\lambda(n) + \|x_i\|_2^2}$$

which implies:

$$\|I_p - W_{i-1}X_{i-1}\|_F^2 - \|I_p - W_iX_i\|_F^2 = (2\lambda(n) + \|x_i\|_2^2)\|w_i\|_2^2$$

The result follows as $\|x_i\|_2^2$ is bounded uniformly.

We can now prove Theorems 3 and 4 in a straightforward fashion.

Proof of Theorem 3. We have:

$$\text{Tr}\{\text{Var}(v)\} = \sigma^2\mathbb{E}\left\{\sum_i \|w_i\|_2^2\right\}$$

$$\leq \frac{\sigma^2}{2\lambda(n)} \left(\|I_p\|_F^2 - \mathbb{E}\left\{\|I_p - W_nX_n\|_F^2\right\}\right),$$

where in the second line we use Lemma 10 and sum over the telescoping series in i. The result follows.

Proof of Theorem 4. From Lemma 2, the definition of the spectral norm $\|\cdot\|_{op}$, and Cauchy-Schwarz we have that

$$\|\beta - \mathbb{E}\{\hat{\beta}\}\|_2^2 \leq \mathbb{E}\{\|I_p - W_nX_n\|_{op}^2\} \mathbb{E}\{\|\hat{\beta}_{OLS} - \beta\|_2^2\}.$$
Using Theorem 1, the second term is bounded by $p\sigma^2 \mathbb{E}\{\log \lambda_{\text{max}} / \lambda_{\text{min}}\}$. We first show that this term is at most $p\sigma^2 \log n / \lambda(n)$, under the conditions of Theorem 4. First, note that

$$
\lambda_{\text{max}} \leq \text{Tr}(X_nX_n^\top) \\
\leq \sum_i \|x_i\|^2 \leq C^2n.
$$

With this and condition (5), we have that:

$$
\mathbb{E}\left\{ \frac{\log(\lambda_{\text{max}})}{\lambda_{\text{min}}} \right\} \leq \mathbb{E}\left(\frac{\log n}{\lambda_{\text{min}}(X_n^\top X_n)} \right) = \frac{\log n}{\lambda(n)} + O\left(\frac{1}{n} \right) \leq O\left(\frac{\log n}{\lambda(n)} \right).
$$

Therefore, $\mathbb{E}\{\|\hat{\beta}_{\text{OLS}} - \beta\|^2\} = O(p\sigma^2 \log n / \lambda(n))$. By condition (4) we have that the bias satisfies:

$$
\|\beta - \mathbb{E}\{\hat{\beta}\}\|^2 = o\left(\frac{p\sigma^2}{\lambda(n)} \right).
$$

On the other hand, for the variance, Theorem 3 yields

$$
\text{Tr}(\text{Var}(\nu)) = \frac{p\sigma^2}{\lambda(n)} \left(1 - \mathbb{E}\left\{ \|I_p - W_nX_n\|^2_F/p \right\} \right) = \Theta \left(\frac{p\sigma^2}{\lambda(n)} \right),
$$

provided $\mathbb{E}\{\|I_p - W_nX_n\|^2_F/p\} \rightarrow 0$. Condition (4) guarantees that

$$
\mathbb{E}\left\{ \frac{\|I_p - W_nX_n\|^2_F}{p} \right\} \leq \mathbb{E}\{\|I_p - W_nX_n\|^2_{\text{op}}\} = o(1/\log n).
$$

This finishes the proof.

We split the proof of Proposition 5 for the different conditions independently in the following lemmas.

Lemma 11. Suppose that the data collection process satisfies (6) and (7). Then for any $\lambda \geq 1$ we have that:

$$
\mathbb{E}\{\|I_p - W_nX_n\|^2_F\} \leq p \exp\left(-\frac{n\mu(n)}{\lambda} \right).
$$

Proof. Define $M_i = I_p - W_iX_i$. Then, from Lemma 10 and the closed form for w_i, we have that:

$$
\|M_{i-1}\|^2_F - \|M_i\|^2_F = \frac{2\lambda + \|x_i\|^2}{(\lambda + \|x_i\|^2)^2} \text{Tr}\{M_{i-1}x_ix_i^\top M_{i-1}^\top\}
$$

$$
\geq \frac{1}{\lambda + \|x_i\|^2} \text{Tr}\{M_{i-1}x_ix_i^\top M_{i-1}^\top\}.
$$

We now take expectations conditional on \mathcal{G}_{i-1} on both sides. Observing that (i) W_n, X_n and, therefore, M_n are well-adapted and (ii) using condition (6), we have

$$
\mathbb{E}\{\|M_{i-1}\|^2_F | \mathcal{G}_{i-1}\} - \mathbb{E}\{\|M_i\|^2_F | \mathcal{G}_{i-1}\} \geq \frac{\mu_i(n)}{\lambda} \mathbb{E}\{\|M_i\|^2_F | \mathcal{G}_{i-1}\},
$$

or

$$
\mathbb{E}\{\|M_i\|^2_F | \mathcal{G}_{i-1}\} \leq \exp\left(-\frac{\mu_i(n)}{\lambda} \right) \mathbb{E}\{\|M_{i-1}\|^2_F | \mathcal{G}_{i-1}\}.
$$

Removing the conditioning on \mathcal{G}_{i-1} and iterating over $i = 1, 2, \ldots, n$ gives the claim. \qed
Lemma 12. If the matrices \(\{x, x_i^T\}_{i \leq n} \) commute, we have that

\[
\| I_p - W_n X_n \|_{op} \leq \exp \left(\frac{-\lambda_{\min}}{\lambda} \right)
\]

Proof. From the closed form in Lemma 10 and induction, we get that:

\[
I_p - W_n X_n = \prod_{i \leq n} \left(I_p - \frac{x_i x_i^T}{\lambda + \|x_i\|_2^2} \right).
\]

The scalar equality \(\exp(a + b) = \exp(a) \exp(b) \) extends to commuting matrices \(A, B \). Applying this to the terms in the product above, which commute by assumption:

\[
I_p - W_n X_n = \exp \left[\sum_i \log \left(I_p - \frac{x_i x_i^T}{\lambda + \|x_i\|_2^2} \right) \right]
\]

\[
\leq \exp \left(- \sum_i \frac{x_i x_i^T}{\lambda} \right),
\]

using the fact that \(\exp(\log(1 - a)) \leq \exp(-a) \). Finally, employing commutativity the fact that \(\lambda_{\min} \) is the minimum eigenvalue of \(X_n^T X_n = \sum x_i x_i^T \), the desired result follows.

We can now prove Proposition 5.

Proof of Proposition 5. We need to satisfy conditions (4) and (5) for both the cases. Using either Lemma 11 or 12, with the appropriate choice of \(\lambda(n) \) we have that

\[
E \{ \| I_p - W_n X_n \|_{op}^2 \} = o(1/\log n),
\]

thus obtaining condition (4). In fact, this can be made polynomially small with a slightly smaller choice for \(\lambda(n) \). Condition (5) only needs to be verified for the case of Lemma 11 or condition (6). It follows from a standard application of the matrix Azuma inequality Tropp [2012], the fact that \(n \bar{\mu}_n \geq K \sqrt{n} \) and the fact that \(\|x_i\|_2^2 \) are bounded.

A.2 Proof of Theorem 6: Central limit theorem

It suffices to show that, for every \(t > 0 \):

\[
\lim_{n \to \infty} E \{ e^{it S_n / \sqrt{n}} \} = e^{-t^2 / 2} = 0.
\]

Let \(V_{i,n} = \sum_{j \leq i} E \{ X_{j,n}^2 | F_{j-1,n} \} \) with \(V_{0,n} = 0 \). Therefore \(V_{n,n} = V_n \) and \(E \{ X_{i,n}^2 | F_{i-1,n} \} = V_{i,n} - V_{i-1,n} \).

Let us also define the following error terms

\[
\nu_{1,i,n} = E \left\{ \frac{\| X_{i,n} | F_{i-1,n} \} - E \{ X_{i,n} | F_{i-1,n}, V_n \} }{\sqrt{V_n}} \right\}
\]

\[
\nu_{2,i,n} = E \left\{ \frac{E \{ X_{i,n}^2 | F_{i-1,n} \} - E \{ X_{i,n}^2 | F_{i-1,n}, V_n \} }{V_n} \right\}
\]

\[
\nu_{3,i,n} = E \left\{ \frac{\| X_{i,n} \|_4^2}{V_n^2} \right\}
\]

\[
\nu_{4,i,n} = E \left\{ \frac{\sigma_{4,i,n}}{V_n^2} \right\}
\]

The first two are moment stability, while the latter two show that martingale increments are small.
Using the fact that $|e^{ix} - 1 - ix + x^2/2| \leq x^3$ and tower property, we have:

$$
\mathbb{E}\left\{ e^{itS_n}/\sqrt{V_n} \right\} = \mathbb{E}\left\{ \mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} e^{itX_{n-1}}/\sqrt{V_n} | \mathcal{F}_{n-1,n} V_n \right\} \right\}
$$

$$
= \mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} \left(1 + it\frac{X_{n-1}}{V_n} - \frac{t^2X_{n-1}^2}{2V_n} \right) \right\} + O\left(t^3 \mathbb{E}\left\{ \frac{|X_{n,n}|^3}{V_{n}^{3/2}} \right\} \right).
$$

Considering the first term, we write using tower property:

$$
\mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} X_{n,n}/\sqrt{V_n} \right\} = \mathbb{E}\left\{ \mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} X_{n,n} | \mathcal{F}_{n-1,n} V_n \right\} \right\}
$$

$$
= \mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} \mathbb{E}\left\{ X_{n,n} | \mathcal{F}_{n-1} \right\} \right\} + O\left(\mathbb{E}\left\{ |X_{n,n}|^3/\sqrt{V_n} \right\} \right)
$$

$$
= O\left(\mathbb{E}\left\{ |X_{n,n}|^3/\sqrt{V_n} \right\} \right) = O(\nu_{n,n}^1).
$$

In an exactly analogous fashion:

$$
\mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} \left(1 - \frac{t^2X_{n-1}^2}{2V_n} \right) \right\} = \mathbb{E}\left\{ \mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} \left(1 - \frac{t^2\mathbb{E}\left\{ X_{n,n}^2 | \mathcal{F}_{n-1,n} V_n \right\}}{2V_n} \right) \right\} \right\}
$$

$$
= \mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} \left(1 - \frac{t^2\mathbb{E}\left\{ X_{n,n}^2 | \mathcal{F}_{n-1} \right\}}{2V_n} \right) \right\} + O\left(t^2 \mathbb{E}\left\{ |X_{n,n}|^3 | \mathcal{F}_{n-1} \right\} \right)
$$

$$
= O\left(\mathbb{E}\left\{ |X_{n,n}|^3/\sqrt{V_n} \right\} \right) + O(t^2\nu_{n,n}^2).
$$

Using these estimates, we obtain:

$$
\mathbb{E}\left\{ e^{itS_n}/\sqrt{V_n} \right\} = \mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} e^{-t^2\sigma_{n,n}^2/2V_n} \right\} + O\left(t\nu_{n,n}^1 + t^2\nu_{n,n}^2 + t^3\nu_{n,n}^3 + t^4\nu_{n,n}^4 \right).
$$

At this point, we iterate the argument, accumulating error terms. The only minor difference is that we have to be more careful about the conditioning.

We start with the main term on the RHS.

$$
\mathbb{E}\left\{ e^{itS_{n-1}}/\sqrt{V_n} e^{-t^2\sigma_{n,n}^2/2V_n} \right\} = \mathbb{E}\left\{ e^{itS_{n-2}}/\sqrt{V_n} e^{-t^2\sigma_{n,n}^2/2V_n} e^{itX_{n-1}}/\sqrt{V_n} \right\}
$$

$$
= \mathbb{E}\left\{ e^{itS_{n-2}}/\sqrt{V_n} e^{-t^2\sigma_{n,n}^2/2V_n} e^{itX_{n-1}}/\sqrt{V_n} | \mathcal{F}_{n-2,n} V_n \right\}.
$$

In the final step, we use the tower property, along with the fact that $(S_{n-2}, \sigma_{n,n}^2 V_n) = (S_{n-2}, V_{n-1,n} - V_n, V_n)$ are all measurable with respect to the minimal sigma algebra containing $V_n, \mathcal{F}_{n-2,n}$. Now, since the prefactor $e^{itS_{n-2}}/\sqrt{V_n} e^{-t^2\sigma_{n,n}^2/2V_n}$ is bounded in magnitude by 1, we can follow the same steps as before.

$$
\mathbb{E}\left\{ e^{itS_{n-2}}/\sqrt{V_n} e^{-t^2\sigma_{n,n}^2/2V_n} e^{itX_{n-1}}/\sqrt{V_n} | \mathcal{F}_{n-2,n} V_n \right\} = \mathbb{E}\left\{ e^{itS_{n-2}}/\sqrt{V_n} e^{-t^2\sigma_{n,n}^2/2V_n} (1 + \frac{itX_{n-1,n} - \frac{t^2X_{n-1}^2}{2V_n}}{\sqrt{V_n}}) \right\}
$$

$$
+ O\left(\frac{t^3 |X_{n-1,n}|^3}{V_{n}^{3/2}} \right) = \mathbb{E}\left\{ e^{itS_{n-3}}/\sqrt{V_n} e^{-t^2(\sigma_{n-1,n}^2 + \sigma_{n,n}^2)/2V_n} \right\}
$$

$$
+ O(t\nu_{n-1}^1 + t^2\nu_{n-1}^2 + t^3\nu_{n-1}^3 + t^4\nu_{n-1}^4).
$$

At this point, we iterate the argument to obtain:

$$
\mathbb{E}\left\{ e^{itS_n}/\sqrt{V_n} \right\} = e^{-t^2/2} + O\left(\sum_i t\nu_{i,n}^1 + t^2\nu_{i,n}^2 + t^3\nu_{i,n}^3 + t^4\nu_{i,n}^4 \right).
$$

Our assumptions guarantee that each of the error terms vanish as $n \to \infty$, yielding the desired claim.
A.3 Commutative problems: Proof of Proposition 8

Here we assume that \(\mathbf{x}_i \in \{ \mathbf{v}_1, \ldots, \mathbf{v}_p \} \), a set of orthogonal vectors. First, we compute some closed form formulae that are useful in proving Proposition 8.

Lemma 13. Define the sequence \(A = A(i) \) as the choice of arms at time \(i \), \(P_a \) denote the orthogonal projector along the direction \(\mathbf{v}_a \) and \(r_a = 1 - \| \mathbf{v}_a \|^2 / (\lambda + \| \mathbf{v}_a \|^2) \). We have the following:

\[
\mathbf{I}_p - \mathbf{W}_i \mathbf{X}_i = \sum_{a=1}^{p} \left(1 - \frac{\mathbf{v}_a \mathbf{v}_a^T}{\lambda(n) + \| \mathbf{v}_a \|^2} \right)^{N_a(i)} \mathbf{P}_a, \\
\mathbf{w}_i = \frac{r_a^{N_a(i-1)}}{\lambda(n) + \| \mathbf{v}_a \|^2} \mathbf{v}_a.
\]

In particular, the variance is given by:

\[
\mathbf{W}_n \mathbf{W}_n^T = \sum_{i=1}^{n} \mathbf{w}_i \mathbf{w}_i^T = \sum_{a=1}^{p} \frac{1 - r_a^{2N_a(n-1)+1}}{(\lambda(n) + \| \mathbf{v}_a \|^2)^2(1 - r_a^2)} \mathbf{v}_a \mathbf{v}_a^T.
\]

Proof of Proposition 8. Below, we keep implicit the dependence of \(\lambda \) on \(n \), with the understanding that \(\lambda(n) \) diverges with \(n \). By Lemma 13, we have

\[
\lambda \mathbf{W}_n \mathbf{W}_n^T = \sum_{a=1}^{p} c_a \mathbf{v}_a \mathbf{v}_a^T,
\]

where \(c_a = \frac{\lambda(1 - r_a^{2N_a(n-1)+1})}{(\lambda + \| \mathbf{v}_a \|^2)^2(1 - r_a^2)} \)

Note that, \(r_a = 1 - \| \mathbf{v}_a \| / \lambda + O(1/\lambda^2) \) as \(\lambda = \lambda(n) \) diverges, which implies that

\[
\lim_{n \to \infty} \frac{\lambda(n)}{(\lambda(n) + \| \mathbf{v}_a \|^2)^2(1 - r_a^2)} = \frac{1}{2 \| \mathbf{v}_a \|^2}.
\]

Therefore \(c_a \to (2 \| \mathbf{v}_a \|^2)^{-1} \) in \(L_1 \) provided \(r_a^{2N_a(n-1)} \to 0 \) in \(L_1 \). To show this:

\[
r_a^{2N_a(n-1)} = \left(1 - \frac{\| \mathbf{v}_a \|^2}{\lambda + \| \mathbf{v}_a \|^2} \right)^{2N_a(n-1)} \leq \exp \left(-2 \| \mathbf{v}_a \|^2 N_a(n-1) \right) \leq \exp \left(-2 \| \mathbf{v}_a \|^2 N_a(n) - \| \mathbf{v}_a \|^2 \right) \leq \exp \left(-2 \lambda \min \left(\mathbf{X}_n^T \mathbf{X}_n \right) - C^2 \right),
\]

where in the last line we use the fact that \(\| \mathbf{v}_a \| \leq C \equiv \max_a \| \mathbf{v}_a \| \). and:

\[
\lambda \min \left(\mathbf{X}_n^T \mathbf{X}_n \right) = \lambda \min \left(\sum_{a=1}^{p} \mathbf{P}_a \| \mathbf{v}_a \|^2 N_a(n) \right) = \min_a \| \mathbf{v}_a \|^2 N_a(n).
\]

Since \(\lambda(n)/\lambda \min \left(\mathbf{X}_n^T \mathbf{X}_n \right) \to 0 \) in probability, \(r_a^{2N_a(n-1)} \to 0 \) in probability and therefore, also in \(L_1 \) using bounded convergence.
It follows that
\[
\lambda(n) W_n W_n^T \xrightarrow{L_1} \frac{1}{2} \sum_{a=1}^{p} \frac{v_a v_a^T}{\|v_a\|^2} = \sum_{a=1}^{p} \frac{P_a}{2} = \frac{I_p}{2}.
\]

It remains to prove Lemma 13.

Proof of Lemma 13. From Lemma 10 and induction we have that
\[
I_p - W_i X_i = \prod_{j \leq i} \left(1 - \frac{x_j x_j^T}{\lambda + \|x_j\|^2} \right).
\]

Since the matrices $x_j x_j^T$ commute, we can rearrange the product as
\[
I_p - W_i X_i = \prod_{a=1}^{p} \prod_{j \leq i} \left(1 - \frac{v_a v_a^T}{\lambda + \|v_a\|^2} \right)^{N_{(i)}^A} = \prod_{a=1}^{p} \left(1 - \frac{v_a v_a^T}{\lambda + \|v_a\|^2} \right)^{N_{(i)}^A}.
\]

If P_a is the orthogonal projector along v_a (i.e., $P_a = v_a v_a^T / \|v_a\|^2$), then
\[
(I_p - W_i X_i) P_a = \left(I_p - \frac{v_a v_a^T}{\lambda + \|v_a\|^2} \right)^{N_{(i)}^A} P_a = r_{N_{(i)}^A} P_a.
\]

Since $\sum_{a} P_a = I_p$, the first claim follows. The formula for w_i follows immediately from this decomposition of $I_p - W_i X_i$.

For the variance, we have
\[
\sum_{i=1}^{n} w_i w_i = \sum_{i=1}^{n} \frac{r_A^{2 N_{(i)}^A(i-1)}}{(\lambda + \|v_A\|^2)^2} v_A v_A^T = \sum_{a=1}^{p} \frac{1 + r_a^2 + \ldots + r_a^{2 N_{(a)}(n-1)}}{(\lambda + \|v_a\|^2)^2} - v_a v_a^T = \sum_{a=1}^{p} \frac{1 - r_a^{2 N_{(a)}(n-1)+1}}{(\lambda + \|v_a\|^2)^2} v_a v_a^T.
\]