Preparation of new nano-organoclayls from Hexadecylamine, Tetradeccylamine and Chalcone with Montmorillonite using ion exchange processes

Manar Ghyath ABD-ALMUTALIB AL-MOSAWY • Department of Chemistry, Faculty of Science, University of Kufa
Emad Abbas Jaffar AL-MULLA • College of Health and Medical Techniques, Al-Furat Al-Awsat Technical University • alimulaemad@gmail.com

Abstract
This study reports the effect of three new organic cations including hexadecylamine (HDA), tetradeccylamine (TDA) and 1-(4-aminophenyl)-3-(4-chlorophenyl)prop-2-en-1-one, chalcone (CH) on the basal spacing of the montmorillonite clay to MMT modification. Fourier Transform infrared spectroscopy (FTIR) was used to evaluate the incorporation of these cations in the MMT. X-ray diffraction technique was utilized to indicate the basal spacing of the treated clay as a measure of susceptibility of new organoclayls. The FTIR and XRD results shown that the three new organic cations were successfully incorporated in the montmorillonite clay.

Keywords: sodium montmorillonite, modification, surfactant, organic cation

1. Introduction
Sodium montmorillonite (MMT) is a naturally occurring clay mineral characterized by relatively low negative charge of its aluminosilicate layers as a result of octahedral substitutions of Al by Mg (II), Fe (II) or other divalent metal ions in a central octahedral sheet (Meleshyn, Bunnenberg, 2006). This negative charge is compensated by inorganic cations such as Na+, K+, Ca2+ and Mg2+ in the interlayer space while these inorganic cations can be exchanged by other cations (Chen et al., 2008). However, cation-exchange reaction have been traditionally exploited as an effective method to replace these inorganic cations with organic cationic surfactant molecules, which intercalate into the clay gallery, resulting in expansion of the interlayer spacing and leading to an increase in the basal spacing. These organic cations render the surface of the clay mineral hydrophobic, leading to the increase of the clay wettability and providing favourable interactions with organic molecules. Both organic-modified and unmodified clays have been used for different industrial applications such as rheological additives, thickeners in coating products, glues, plastisols, drilling fluids and cosmetics (Jaynes, Boyd, 1991). Recently, clays were used in the field of materials science such as solid phase polymeric nanocomposites. In the 1990’s, the use of organically modified clays in polymer-clay nanocomposites has attracted researchers into this area of materials science and technology (Zhang, Wilkie, 2003). The organic modification of clay minerals leads to a decrease in surface energy making clays compatible with polymers. The surface energy of clay minerals and polymer can be determined from contact angle measurements (Matti, Bhowmick, 2005; Stretz et al., 2005). Studies reported that melt processed nylon 6-clay nanocomposites was prepared using organoclay. Based on X-ray diffraction analysis, various arrangement of alkyl chains in organoclayls HDA proposed by Lagaly (1986). Novel organo-montmorillonites have been synthesized and characterized using different ammonium compounds (Rajkrian et al., 2008; Arroyo et al., 2003). Series of anion-cation surfactants modified organoclayls were prepared by incorporating of cationic surfactant hexadecyltrimethyl ammonium bromide and anionic surfactant, sodium dodecylsulfonate to montmorillonite (Chen et al., 2008; Rathanawan et al., 2001). In this study, three different ammonium; HDA, TDA and CH were used to modify the compatibility of montmorillonite clay with polymer. These organo-montmorillonites can be used in both medical and industrial applications as polymer nanocomposite.

2. Experimental
2.1. Materials
Sodium montmorillonite, Hexadecylamine and Tetradecylamine obtained from Sigma Aldrich, Germany were used. Hydrochloric acid was obtained from J.T. Baker, USA. p-aminoacetophenone and p-chlorobenzaldehyde were obtained from Fluka. Sodium hydroxide was obtained from B.D.H.

2.2. Preparation of CH (Sadiq et al., 2015)
0.5 g (1 mmol) of p-aminoacetophenone with 1 mmol p-chlorobenzaldehyde were mixed, then 0.5 mL of 10% NaOH aqueous solution and 5 mL of 99% ethanol were added to the mixture. The mixture was stirred at room temperature for 4 hrs. The crude mixture was poured in to ice water and then...
acidified the product with 10% HCl solution. The solid formed was filtered then washed with ethanol and water at a ratio of 10:5 mL. Recrystallization from 99% ethanol afforded (67% yield, yellow solid, m.p 160–165 °C).

2.3. Preparation of organoclays (OMMTs)

Organoclay was prepared with a cationic exchange process, where Na in the MMT was exchanged with the alkylammonium ion, which was prepared applying the procedure reported by Al-Mulla et al. (2011) in an aqueous solution. Sodium montmorillonite (Na-MMT) 4.00 g was stirred vigorously in 600 mL of hot distilled water for 1 h to form a clay suspension. 4.50 g of HDA, TDA and CH, which HDA been dissolved separately in 400 mL of hot water with 16.00 mL of concentrated hydrochloric acid were added into the clay suspension. After being stirred vigorously for 1 h at 80 °C, the organoclay suspension was filtered and washed with distilled water until no chloride was detected with a 1.0 M silver nitrate solution. It was then dried at 60 °C for 72 h. The dried organoclay was ground until the particle size was 100μm (Al-Mulla et al., 2010a; 2010b). Structure of HDA, TDA and CH is shown in Fig. 1.

2.4. Characterization

Organoclays were characterized using two different techniques including X-ray diffraction and Fourier Transform Infrared Spectroscopy.

2.4.1. X-ray diffraction (XRD) analysis

X-ray diffraction (XRD) study was carried out using a Shimadzu XRD 6000 diffractometer with Cu K radiation (k = 0.15406 nm). The diffractogram was scanned in the ranges from 2° to 10° at a scan rate of 1°/min.

2.4.2. Fourier Transform Infrared (FTIR) spectroscopy

The FTIR spectra of the blend samples were recorded by the FTIR spectrophotometer (Perkin Elmer FT-IR-Spectrum BX, USA) using KBr disc technique.

3. Results and discussion

3.1. XRD analysis

The alkyl ammonium cation exchange enable the conversion of the hydrophilic interior clay surface into the hydrophobic surface and consequently increase the layer distance as well (Phua et al., 2013). Na-MMT was surface treated with HDA, TDA and CH as intercalation agents through cation exchange process. The cationic head groups of the intercalation agent molecule would preferentially reside at the layer surface and the tail of the compound will radiate away from the surface. The presence of these chains in the galleries makes the originally hydrophilic silicate to organophilic and thus, increase the layer-to-layer spacing of Na-MMT (Al-Mulla et al., 2009). The obtained HDA-MMT, TDA-MMT and CH-MMT were studied using XRD measurements in the 2θ ranges from 2° to 10°. Na-MMT shows a d001 diffraction peak at 2θ = 6.91° which, assigns to the interlayer distance of the natural montmorillonite with a basal spacing of 1.27 nm (Agag, Takeichi, 2001). Fig. 2 reveals XRD the basal spacing (d001 value) increase from 1.27, 1.51, 1.57 and 1.78 nm for Na-MMT, HDA-MMT, TDA-MMT and CH –MMT, respectively.

HDA, TDA, CH have been incorporated into the Na-MMT galleries to products organoclays. The basal spacings and angles of these organoclays were shown Table 1. Thus, XRD result indicate that organoclays are successfully intercalated into the silicate layer.

Sample	Exchanged cation	2θ (°)	d(001) spacing (nm)
Montmorillonite	Na⁺	6.91	1.27
HDA	C₁₆H₃₂NH₃⁺ (HDA⁺)	5.64	1.57
TDA	C₁₄H₂₈NH₃⁺ (TDA⁺)	4.96	1.78
CH	C₁₅H₉ClO NH₃⁺ (CH⁺)	5.86	1.51

Table 1. Diffraction angle and basal spacing of montmorillonite and modified montmorillonite with different organic cations

3.2. FTIR spectroscopy

FTIR spectra are a useful technique to verify the presence of HDA⁺, TDA⁺ and CH⁺ in the clay. Fig. 3 shows the FTIR spectra of Na-MMT, pure HDA and HDA-MMT, Fig. 4 shows the FTIR spectra of Na-MMT, pure TDA and TDA-MMT, Fig. 5 shows the FTIR spectra of Na-MMT, pure CH and CH-MMT. The infrared spectrum of the Na-MMT shows two peaks, which correspond to Si-O stretching at 1033 cm⁻¹ and interlayer water deformation vibration at 1632 cm⁻¹ (Guo et al., 2006). The band at 3625 cm⁻¹ results from the O-H
stretching vibration and the band at 3043 cm⁻¹ results from the CH= stretching vibration back to compound CH. The peaks observed at 2924-2854 cm⁻¹, 2926-2852 cm⁻¹ and 2850-2920 cm⁻¹ correspond to the presence of the C-H asymmetric and symmetric stretching vibration for HDA-MMT, TDA-MMT and CH-MMT, respectively. The IR spectrum reveals a weak incorporate of the compound CH in the clay (Fig. 5.c).

3. Conclusions

Three new ammonium cations including HDA, TDA and CH were used to modify montmorillonite clay in an attempt to create susceptible clay to polymers. The organoclays were characterized using FTIR and XRD based on results of this study. Based on results of this study, the following conclusions can be drawn:

- These ammonium cations can be successfully incorporated in the montmorillonite clay.
- The basal spacing of the montmorillonite clay increases as a result of incorporating HDA, TDA and CH.
- The IR spectrum showed that there is a weak incorporate of the compound CH in the clay.
- The new organoclay can be used to produce polymer nanocomposites.

References

[1] Agag, T. – Takeichi, T. (2001): Polybenzoxazine montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer. Vol. 41, No. 19, pp. 7083 - 7090. https://doi.org/10.1016/S0032-3861(00)00064-1
[2] Al-Mulla, E. A. J. (2011): Preparation of polylactic acid/epoxidized palm oil/fatty nitrogen compounds modified clay nanocomposites by melt blending. Polymer Science, Series A. Vol. 53, pp. 149 - 157. https://doi.org/10.1134/S0965545X11020015
[3] Al-Mulla, E. A. J. – Saadon, A. A. (2011): New biopolymer nanocomposites based on epoxidized soybean oil plasticized poly(lactic acid)/fatty nitrogen compounds modified clay: Preparation and characterization. Industrial Crops and Products. Vol. 33, pp. 23 – 29. https://doi.org/10.1016/j.indcrop.2010.07.022
[4] Al-Mulla, E. A. J. – Mansor, B. A. – Wisam, H. H. – Noor, A. I. (2009): Modification of Montmorillonite by New Surfactants. Journal of Engineering and Applied Sciences. Vol. 4, pp. 184 - 188.
[5] Al-Mulla, E. A. J. – Yunus, W. M. Z. – Ibrahim, N. A. – Rahman, M. Z. (2010): Epoxidized Palm Oil Plasticized Poly(lactic acid)/Fatty Nitrogen Compound Modified Clay Nanocomposites: Preparation and Characterization. Polymers and Polymer Composites. Vol. 18, No. 8, pp. 451 – 460.
[6] Al-Mulla, E. A. J. – Yunus, W. M. Z. – Ibrahim, N. A. – Rahman, M. Z. A. (2010): Enzymatic synthesis of fatty amides from palm olein. Journal of Oleo Sciences. Vol. 59, No. 2, pp. 157 – 160.
[7] Arroyo, M. – Lopez-Manchado, M. A. – Herrero, B. (2003): Organomontmorillonite as substitute of carbon black in natural rubber compounds. Polymer. Vol. 44, pp. 2447 - 2453. https://doi.org/10.1016/S0032-3861(03)00900-9
[8] Meleshyn, A. – Bunnenberg, C. (2006): Interlayer Expansion and Mechanisms of Anion Sorption of Na-montmorillonite Modified by Cetylpyridinium Chloride: A Monte Carlo Study. The Journal of Physical Chemistry. Vol. 110, No. 5, pp. 2271 - 2277. https://doi.org/10.1021/jp056178v
[9] Chen, D. – Zhu, J. X. – Yuan, P. – Yang, S. J. – Chen, T. H. – He, H. P. (2008): Preparation and characterization of anion-cation surfactants modified montmorillonite. Journal of Thermal Analysis and Calorimetry. Vol. 94, pp. 841 – 848. https://doi.org/10.1007/s10973-007-8905-y
[10] Guo, L. – Wu, S. – Zeng, F. – Zhao, J. (2006): Synthesis and fluorescence property of terbium complex with novel Schiff-base macromolecular legend. European Polymer Journal. Vol. 42, pp. 1670 - 1675. https://doi.org/10.1016/j.europolymjr.2006.01.025
[11] Jaynes, W. F. – Boyd, S. A. (1991): Clay mineral type and organic compound sorption by hexadecyltrimethylammonium exchanged clays. Soil Science Society of America Journal. Vol. 55, pp. 43 - 48.
[12] Maiti, M. – Bhownick, A. K. (2005): Structure and properties of some novel fluoroelastomer/clay nanocomposites with special reference to their interaction. Journal of Applied Polymer Science. Vol. 44, pp. 162 - 176. https://doi.org/10.1002/polb.20680
[13] Rajkiran, R. T. – Kartic, C. K. – Upendra, N. (2008): Synthesis and characterization of novel organo-montmorillonites. Applied Clay Science. Vol. 38, pp. 203 - 208. https://doi.org/10.1016/j.clay.2007.05.008
[14] Ramachandran, E. – Baskaran, K. – Natarajan, S. (2007): XRD, thermal, FTIR and SEM studies on gel grown gamma-glycine crystals. Crystal Research and Technology. Vol. 42, pp. 73 - 77. https://doi.org/10.1002/crat.200610774
[15] Rathanawan, M. – Wittaya, L. – Anuvat, S. – Johannes, W. S. (2001): Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Composites Science and Technology. Vol. 61, pp. 1253 - 1264. https://doi.org/10.1016/S0266-3538(01)00026-4
[16] Sadiq, S. A. – Atyah, E. M. – Numan, A. T. – Sanak, K. A. (2015): Synthesis and characterization of new bidentate chalcone ligand type (NO) and its Mn⁴, Co⁴, Ni² and Cu² complexes with study of their antibacterial activity. Diyuha Journal For Pure Sciences. Vol. 11, No. 3, pp. 2222-8737.
[17] Stretz, H. A. – Paul, D. R. – Lib, R. – Keskkula, H. – Cassidy, P. E. (2005): Intercalation and exfoliation relationships in melt-processed poly(styrene-co-acrylonitrile)/montmorillonite nanocomposites. Polymer. Vol. 46, pp. 2621 - 2637. https://doi.org/10.1016/j.polymer.2005.01.063
[18] Phua, Y. J. – Chow, W. S. – Ishak, Z. A. M. (2013): Organomodification of montmorillonite and its effects on the properties of poly(butylene succinate) nanocomposites. Polymer Engineering & Science. Vol. 53, pp. 1947 - 1957. https://doi.org/10.1002/pen.23460
[19] Zhang, J. – Wilkie, C. A. (2003): Preparation and flammability properties of polyethylene-clay nanocomposites. Polymer Degradation and Stability. Vol. 80, pp. 163 - 169. https://doi.org/10.1016/S0141-3910(02)00398-1

Ref:
Abd-Almutalib Al-Mosawy, Manar Ghyath – Al-Mulla, Emad Abbas Jaffar: Preparation of new nanoorganoclays from Hexadecylamine, Tetradecylamine and Chalcone with Montmorillonite using ion exchange processes
Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 70, No. 4 (2018), 116–119. p. https://doi.org/10.14382/epitoanyag-jsbcm.2018.21

Meeting of the European Clay Groups Association (ECGA) jointly with the 56th annual meeting of The Clay Minerals Society (CMS) and the 6th Mediterranean Clay Meeting (MCM)

EUROCLAY is amongst the foremost scientific meetings in the field of clays and clay minerals, and upholds the tradition of presenting every four years, the latest cutting-edge results of this scientific field. EUROCLAY 2019 will be held at Pierre & Marie Curie University (UPMC) in the center of Paris, 1st-5th July 2019, and will be organized by the French Clay Group (GFA), under the auspices of ECGA and AIPEA. It will consist of scientific and technical sessions with both oral and poster presentations, arranged around four main themes, namely:

- Crystallography, mineralogy and modelling
- Environment and geological processes
- Resources, energy, storage
- Functionalized clays and archeology

euroclay2019.sciencesconf.org