Complete Genome Sequence of emm4 Streptococcus pyogenes MEW427, a Throat Isolate from a Child Meeting Clinical Criteria for Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS)

Kristin M. Jacob, a Theodore Spilker, a John J. LiPuma, a Suzanne R. Dawid, a,b c Michael E. Watson, Jr. a

Division of Pediatric Infectious Diseases, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA a; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA b

We report the complete genome assembly of the Streptococcus pyogenes type emm4 strain MEW427 (also referred to as strain UM001 in the Pediatric Acute-Onset Neuropsychiatric Syndrome [PANS] Research Consortium), a throat isolate from a child with acute-onset neuropsychiatric symptoms meeting clinical criteria for PANDAS (pediatric autoimmune neuropsychiatric disorders associated with streptococcus). The genome length is 1,814,455 bp with 38.51% G+C%.
This work was supported by the University of Michigan Department of Pediatrics and Communicable Diseases and NIH K12 HD028820. We acknowledge the use of the Streptococcus pyogenes MLST database which is located at Imperial College London and is funded by the Wellcome Trust.

FUNDING INFORMATION

This work, including the efforts of Michael E. Watson, was funded by HHS | NIH | National Institute of Child Health and Human Development (NICHD) (K12 HD028820).

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

1. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. 2014. Disease manifestations and pathogenic mechanisms of group A streptococcus. Clin Microbiol Rev 27:264–301. http://dx.doi.org/10.1128/CMR.00101-13.

2. Cunningham MW, Cox CJ. 2016. Autoimmunity against dopamine receptors in neuropsychiatric and movement disorders: a review of Sydenham chorea and beyond. Acta Physiol (Oxf) 216:90–100. http://dx.doi.org/10.1111/apha.12614.

3. Williams KA, Swedo SE. 2015. Post-infectious autoimmune disorders: Sydenham’s chorea, PANDAS and beyond. Brain Res 1617:144–154. http://dx.doi.org/10.1016/j.brainres.2014.09.071.

4. Myers EW, Sutton GG, Delcher AL, Dew JM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter JC. 2000. A whole-genome assembly of *Drosophila*. Science 287:2196–2204. http://dx.doi.org/10.1126/science.287.5461.2196.

5. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630. http://dx.doi.org/10.1038/nbt.3238.

6. Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. http://dx.doi.org/10.1093/bioinformatics/btr509.

7. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.

8. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. http://dx.doi.org/10.1371/journal.pone.0112963.

9. Teangen TJ, Ondov BD, Koren S, Phillippy AM. 2014. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15:52. http://dx.doi.org/10.1186/REACCEPT-2573980311437212.

10. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. http://dx.doi.org/10.1093/bioinformatics/btu153.

11. Beres SB, Richter EW, Nagiec MJ, Sumby P, Porcella SF, DeLeo FR, Musser JM. 2006. Molecular genetic anatomy of inter- and intrasertype variation in the human bacterial pathogen group A streptococcus. Proc Natl Acad Sci USA 103:7059–7064. http://dx.doi.org/10.1073/pnas.0510279103.

12. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. http://dx.doi.org/10.1093/nar/gkr485.

13. Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. http://dx.doi.org/10.1093/nar/gkm360.

14. McGregor KF, Spratt BG, Kalia A, Bennett A, Bilk D, Veall B, Bessen DE. 2004. Multilocus sequence typing of *Streptococcus pyogenes* representing most known *emm* types and distinctions among subpopulation genetic structures. J Bacteriol 186:4285–4294. http://dx.doi.org/10.1128/JB.186.13.4285-4294.2004.

15. Shulman ST, Tanz RR, Dale JB, Beall B, Kabat W, Kabat K, Cederlund E, Patel D, Rippe J, Li Z, Sakota V, North American Streptococcal Pharyngitis Surveillance Group. 2009. Seven-year surveillance of North American pediatric group A streptococcal pharyngitis isolates. Clin Infect Dis 49:78–84.