Charged Q-ball dark matter from B and L direction

Jeong-Pyong Hong,a,b Masahiro Kawasakia,b and Masaki Yamadaa,b,c

aInstitute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582, Japan
bKavli IPMU (WPI), UTIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
cDepartment of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan

E-mail: hjp0731@icrr.u-tokyo.ac.jp, m_yamada@tuhep.phys.tohoku.ac.jp, kawasaki@icrr.u-tokyo.ac.jp

Received April 25, 2016
Revised June 24, 2016
Accepted August 19, 2016
Published August 24, 2016

Abstract. We consider nearly equal number of gauge mediation type charged (anti-) Q-balls with charge of $\pm\alpha^{-1} \simeq \pm137$ well before the BBN epoch and discussed how they evolve in time. We found that ion-like objects with electric charges of $\pm O(1)$ are likely to become relics in the present universe, which we expect to be the dark matter. These are constrained by MICA experiment, where the trail of heavy atom-like or ion-like object in 10^9 years old ancient mica crystals is not observed. We found that the allowed region for gauge mediation model parameter and reheating temperature have to be smaller than the case of the neutral Q-ball dark matter.

Keywords: dark matter theory, physics of the early universe, supersymmetry and cosmology

ArXiv ePrint: 1604.04352
1 Introduction

Affleck-Dine mechanism [1–3] is a promising candidate for baryogenesis based on supersymmetric (SUSY) theories due to its consistency with the observational bound on reheating temperature which avoids the gravitino problem [4]. In the Affleck-Dine mechanism, baryon number is generated from rotation in the phase direction of baryonic scalar field such as squark, which we call Affleck-Dine field, since baryon number has the meaning of angular momentum in complex plane of the field. After the Affleck-Dine mechanism, the spatial inhomogeneities of the Affleck-Dine field due to quantum fluctuations grows exponentially into non-topological solitons, which are called Q-balls [5–7]. They are defined as spherical solutions in a global U(1) theory which minimize energy of the system with U(1) global charge \(Q\) fixed [8]. Although Q-ball is stable against decay into heavy particles, such as squarks and sleptons, Q-ball may gradually decay into quarks and/or leptons from its surface. In this case, the final baryon number that contributes to the BBN is carried by quarks produced through the decay of Q-balls. However, in gauge mediated SUSY breaking models, a baryonic Q-ball with sufficiently large charge can be stable against decay into nuclei (i.e., quarks) [9], while a leptonic Q-ball can decay into leptons since some leptons are much lighter than nuclei.

In our previous work [10], we focused on gauge mediation type Q-balls that carry both baryon and lepton charges which can be formed after the Affleck-Dine baryogenesis with \(u^c u^c d^c e^c\) flat direction, for instance (See also ref. [11]). We found that it is possible for the Q-balls to be electrically charged, which we call charged or gauged Q-balls [12], due to the decay into charged leptons, until the electric charge becomes \(\pm \alpha^{-1} \simeq \pm 137\). Further decay is suppressed by Schwinger effect,\(^1\) and the charged Q-balls are stable by virtue of the stability of the baryonic component.

The charged Q-balls capture the other charged particles and form atom-like, or ion-like objects, which we call Q-ball atoms or Q-ball ions. We can expect that the Q-ball atoms and ions are dark matter in the present universe, and may make differences in the experimental signatures compared to neutral Q-balls. For instance, neutral Q-balls can be detected by Super-Kamiokande [13, 14] or IceCube [15], which probe the KKST process [16] where the

\(^1\)This limit can also be understood by the discussion given by Feynman, where he pointed out that the ground state energy of the electron, which is the solution of the Dirac equation, becomes imaginary for \(|Z| > \alpha^{-1} \simeq 137\).
Q-ball absorbs quarks and emits pions of energy $\sim 1\text{GeV}$. The charged Q-ball relics also experience the electromagnetic processes, so the detection of those processes are applicable for Q-ball atoms and ions. Various relevant experiments and upper bounds on the flux of the Q-ball atoms and ions are presented in ref. [13]. The most stringent constraint comes from MICA experiment [17, 18], where they claimed that the trail of heavy atom-like or ion-like object in 10^9 years old ancient mica crystals is not observed. Its observation time is equal to the age of the mica, so that its constraint on the flux of Q-ball atom or ion is much severer than those from other experiments. We found that the MICA constraint is more stringent than that from IceCube.

In this paper, we assume that besides the positively charged Q-balls, nearly equal number of negatively charged anti-Q-balls of charge $|Z_Q| \simeq \alpha^{-1}$ are formed as well after the Affleck-Dine mechanism works, which is usually the case in gauge mediation model as we will mention in the next section. We make a rough predictions on the evolution of them, especially on when the recombination process with the other particle species in the universe takes place. Our main purpose is to identify the eventual relics in the present universe and apply the MICA constraint on the relics. Consequently, we find that the constraint translates into that on gauge mediation model parameter and reheating temperature.

2 Q-balls in gauge mediated SUSY breaking model

In supersymmetric theories, the scalar potential is only determined by F-term and D-term, and there are numerous field directions which make these 0, which we call flat directions. For instance, if we consider a simple toy model of U(1) gauged two scalar fields, which have opposite charges to each other, D-term potential is given by

$$V_D = \frac{g^2}{2} (|\Phi_1|^2 - |\Phi_2|^2)^2,$$

where g denotes the U(1) gauge coupling. Thus, the direction which makes it 0 becomes

$$|\Phi_1| = |\Phi_2|. \tag{2.2}$$

This direction is sometimes dubbed as $\Phi_1 \Phi_2$ flat direction. The same reasoning also applies to MSSM, which has a different gauge group and particle contents, and there are numerous flat directions such as $u^c d^c$, and $u^c u^c d^c e^c$, for instance. We consider a dynamics of one of such flat directions in the MSSM. In particular, we consider a flat direction with nonzero baryon and lepton charges, which we call the Affleck-Dine field.\(^2\)

In the real world, SUSY is broken and this must be taken into account. The flat directions obtain soft terms via the SUSY breaking effect and thus they experience some non-trivial dynamics in the early Universe. In this paper, we consider the minimal gauge mediation model [19–28], where SUSY is spontaneously broken by F-term of a field Z:

$$\langle F_Z \rangle = F \neq 0. \tag{2.3}$$

The soft breaking effect is mediated to the observable sector by messenger fields Ψ and $\bar{\Psi}$, a pair of some representations and anti-representations of the minimal GUT group SU(5), through the following interactions:

$$W = kZ\bar{\Psi}\Psi + M_{\text{mess}} \bar{\Psi}\Psi, \tag{2.4}$$

where k is a Yukawa constant, and M_{mess} is messenger mass.

\(^2\)However, we do not aim to explain the observed amount of baryon asymmetry of the Universe. Instead, we consider Q-ball DM, which forms after the Affleck-Dine mechanism.
An AD field in this model obtains the following potential \([5, 29, 30]\) by the above soft breaking effect:

\[
V = V_{\text{gauge}} + V_{\text{grav}} = M_F^2 \log \left(1 + \frac{\Phi^2}{M_{\text{mess}}^2} \right) + m_{3/2}^2 \left(1 + K \log \left(\frac{\Phi^2}{M_*^2} \right) \right) |\Phi|^2 + (\text{A-term}). \tag{2.5}
\]

Here the first term comes from gauge mediation effect and

\[
M_F \simeq \frac{\sqrt{g k F}}{4\pi} \tag{2.6}
\]

where \(g\) generically means the gauge coupling of the standard model \([29]\). The second term comes from gravity mediation effect and the gravitino mass \(m_{3/2}\) is given by

\[
m_{3/2} \equiv \frac{F}{\sqrt{3} M_P}, \tag{2.7}
\]

where \(M_P = 2.4 \times 10^{18} \text{ GeV}\) is the reduced Planck mass. \(K\) is a constant parameter that is related to beta function of mass of the AD field and is typically negative, satisfying \(0.01 \lesssim |K| \lesssim 0.1\), and \(M_*\) is the renormalization scale. The third term (A-term) is a CP and baryon number violating term which induces the AD rotation.

During the inflation, the AD field can obtain an additional potential, a negative Hubble induced mass term \(-c_H H^2 |\Phi|^2\) due to the coupling to the inflaton in the Kahler potential, for example. This term makes it possible for the AD field to get a large vacuum expectation value (VEV). After the inflation, the Hubble rate becomes smaller than the soft mass and the AD field starts the oscillation around the origin. Then, the spatial inhomogeneities of the AD field due to quantum fluctuations grows exponentially into the Q-balls. Gauge mediation type Q-balls \([31]\) are formed if \(V_{\text{gauge}}\) dominates the potential when the AD field starts the oscillation. This is the case when

\[
\phi_{\text{osc}} < \phi_{\text{eq}} \simeq \sqrt{2} M_F^2 / m_{3/2} \tag{2.8}
\]

where \(\phi \equiv \sqrt{2} |\Phi|\), and \(\phi_{\text{osc}}\) denotes the field value at the beginning of the oscillation. We take \(\phi_{\text{osc}}\) as a free parameter in this paper because it depends on an unknown higher-dimensional operator \([32]\). A typical global charge (e.g., baryon charge) of gauge mediation type Q-ball can be estimated by a linear approximation or numerical simulations, and it is given by \([31]\)

\[
|B| = \beta \left(\frac{\phi_{\text{osc}}}{M_F} \right)^4. \tag{2.9}
\]

Here and hereafter, we assume that baryon and lepton charges of the AD field to be unity for simplicity, and \(\beta = 6 \times 10^{-5}\) for an oblate orbit \((\epsilon \lesssim 0.1)\), where \(\epsilon\) denotes the ellipticity of the field orbit. \(\epsilon\) is usually small in the gauge mediation model, since the A-term, which induces the rotation, is proportional to \(m_{3/2}\) which is typically small in the gauge mediation model. It is known that nearly the same number of Q-balls \((B > 0)\) and anti-Q-balls \((B < 0)\) are formed when the orbit is oblate, since the net baryon asymmetry is proportional to \(\epsilon\) while the total energy is not suppressed by any powers of \(\epsilon\) \([31]\). In the following we focus on this case.
The mass, size and mass per unit charge of gauge mediation type Q-ball are given by

\[M_Q \simeq \frac{4\sqrt{2}\pi}{3} \zeta M_F |B|^{3/4} \]
(2.10)

\[R_Q \simeq \frac{1}{\sqrt{2}} \zeta^{-1} M_F^{-1} |B|^{1/4} \]
(2.11)

\[\frac{dM_Q}{d|B|} \simeq \pi R_Q^{-1} \]
(2.12)

respectively, where \(\zeta \) is an \(O(1) \) parameter [33, 34].

Since the Q-balls originate from MSSM flat direction, which is a linear combination of several scalar fields, we can consider the simple two scalar model which consists of baryonic and leptonic components. A more realistic case is \(u^c u^c d^c e^c \) direction, for example. Then, the baryonic component is stable against decay for \(dM_Q/d|B| < m_p \), which is satisfied for a large enough Q-ball, and only the leptonic component can annihilate into \(e^\pm \) inside Q-balls via gaugino and/or higgsino exchange interactions, since the leptons are lighter than baryons.\(^3\) Then electric charge is induced on the Q-ball, so we must consider the charged, or gauged Q-ball [12].

Here, let us identify U(1) with U(1)\(_{\text{EM}}\) in the simple two scalar model mentioned above and consider it as an illustration (see [10] for details). The qualitative features are the same with realistic cases, such as the case of \(u^c u^c d^c e^c \) flat direction. The Lagrangian is written as

\[\mathcal{L}_{\text{eff}} = (D_\mu \Phi_1)^* D^\mu \Phi_1 + (D_\mu \Phi_2)^* D^\mu \Phi_2 - V(\Phi_1, \Phi_2) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \]
(2.13)

\[D_\mu \Phi_1 = (\partial_\mu - ieA_\mu)\Phi_1, \]
(2.14)

\[D_\mu \Phi_2 = (\partial_\mu + ieA_\mu)\Phi_2, \]
(2.15)

where we assigned the positive and negative electric charges for \(\Phi_1 \) and \(\Phi_2 \), respectively. We define baryon and lepton charges as

\[B = \frac{1}{i} \int d^3x (\Phi_1^* D_0 \Phi_1 - \Phi_1 (D_0 \Phi_1)^*) \equiv \int d^3xb, \]
(2.16)

\[L = \frac{1}{i} \int d^3x (\Phi_2^* D_0 \Phi_2 - \Phi_2 (D_0 \Phi_2)^*) \equiv \int d^3xl \]
(2.17)

where \(b \) and \(l \) are baryon and lepton number densities, and the total electric charge is given by

\[Z_Q = B - L. \]
(2.18)

Typical charges of \(B \) and \(L \) are given by eq. (2.9), where \(B = L \) (i.e., \(Z_Q = 0 \)) at the time of formation. We are interested in the case that the baryonic component \(\Phi_1 \) cannot decay into baryons while the leptonic one \(\Phi_2 \) decays into leptons such as electrons. In this case, even when a neutral Q-ball (i.e., a Q-ball with \(B = L \)) forms as discussed above, \(L \) decreases and \(Z_Q \) becomes nonzero due to the decay of \(\Phi_2 \). We show some profiles of Q-ball solutions in this simple model in figure 1, where we take unrealistic parameters to illustrate Q-ball solutions qualitatively. Left is the case when \(B = L \), which is when the Q-ball is initially formed, and right is the solution when electrically charged by the decrease of the leptonic charge.

\(^3\)Q-ball solution is defined to be stable against decay into the same particle species, but it can decay into lighter particles.
The nontrivial configuration of gauge field implies that Q-ball is charged under U(1)_{EM} when $Z_Q = B - L \neq 0$. We find that the configuration of Φ_1 and Φ_2 are modified only slightly for $Z_Q \neq 0$ when $|Z_Q| \ll |B|/L$. In this case, some properties of Q-balls, including eqs. (2.10) and (2.11), can be applied to the charged Q-ball, while the energy per unit charge becomes α when $|Z_Q| = 0$ while $|\Phi_1| = 0$ and $|\Phi_2| = 0$. The red line is the Coulomb potential, which arises since the Q-ball is electrically charged.

Q-balls with $B, L > 0$ become positively charged Q-balls ($Z_Q = B - L > 0$) while anti-Q-balls with $B, L < 0$ become negatively charged Q-balls ($Z_Q = B - L < 0$). The electric charge can grow until $|Z_Q| \simeq \alpha^{-1}$ [10], since the electric field at the surface of the Q-ball can only grow until $E \sim m_e^2/e$, above which e^+e^- pair production occurs since the electrostatic potential at about compton length becomes larger than electron mass so the on-shell particles are produced out of vacuum, which is called Schwinger effect. This means that even if neutral Q-balls form after the AD field starts to oscillate as discussed above, they eventually become charged Q-balls with $|Z_Q| \simeq \alpha^{-1}$. Such charged Q-balls may behave as exotic nuclei and may capture charged particles like protons and electrons. In the next section, we investigate how charged Q-balls capture these particles during the evolution of the Universe.

3 Evolution of charged Q-balls until present

We assume that the positively charged Q-balls and negatively charged anti-Q-balls with $|Z_Q| \sim \alpha^{-1}$ are formed well before the BBN epoch, as shown in ref. [10]. We consider the case that they eventually account for dark matter of the universe, i.e:

$$\frac{\rho_{Q\text{-ball}}}{s} + \frac{\rho_{\text{anti-Q\text{-ball}}}}{s} = \frac{\rho_{\text{DM}}}{s} \simeq 4.4 \times 10^{-10} \text{ GeV}$$ \hspace{1cm} (3.1)

where ρ_{DM} and s are the dark matter energy density and entropy density in the present universe, respectively. Note that $\rho_{Q\text{-ball}} \simeq \rho_{\text{anti-Q\text{-ball}}}$. Charged Q-balls and anti-Q-balls are expected to capture other charged particles in the universe.\(^4\) Since the number densities of (anti-) Q-balls must be extremely small in order to

\(^4\)Since the Q-balls are extremely heavy and the number densities are very small, we can safely ignore the $(Q\text{-ball})+(\text{anti-Q\text{-ball})}$ reactions. For example, the typical gauge mediation type Q-ball, which is our case, has the baryon (lepton) charge $|B| \sim 10^{30}$ and mass $M_Q = M_F|B|^{7/4} \sim 10^{28}\text{GeV}$ for $M_F \sim 10^{9}\text{GeV}$.
compose the dark matter, or to satisfy eq. (3.1), due to their heavy masses (See footnote 4), the recombination has almost no effect on the abundance of the other particle species, so that the BBN is not ruined.

In ref. [10], we showed that for
\[|B| \lesssim \left(\frac{4\sqrt{2}\pi\zeta M_F}{m_e} \right)^4 \approx 2.5 \times 10^{39} \left(\frac{\zeta}{2.5} \right)^4 \left(\frac{M_F}{10^6 \text{ GeV}} \right)^4, \tag{3.2} \]
the size of the charged Q-ball with \(|Z_Q| = \alpha^{-1}\) becomes smaller than the Bohr radius, so we approximate the electric potential in the outer region as the Coulomb type potential \(\sim 1/r\). This allows us to treat the charged Q-balls as extremely heavy nuclei.

In the following, we roughly estimate when the recombination occurs for positively charged Q-balls and negatively charged anti-Q-balls, and discuss whether they become neutral (like atoms) or charged (like ions) eventually, so that we can identify the final relics in the present universe. We discuss positively charged Q-balls in the next subsection, and then discuss negatively charged anti-Q-balls in section 3.2.

3.1 Positively charged Q-balls

The positively charged Q-balls \((Z_Q > 0)\) can capture negatively charged particles, but they all annihilate except electrons at low temperature, so we consider the recombination with electrons.\(^5\)

First, we estimate when the recombination starts, or 1S bound state is formed:
\[Q + e^- \rightarrow 1S + \gamma, \tag{3.3} \]
where \(Q\) means the charged Q-ball and 1S means that the charged Q-ball is surrounded by one electron. The cross section from the free state to the 1S bound state, which we assumed as a hydrogen-type bound state, is evaluated in ref. [36]:
\[\sigma v = \frac{2^9 \pi^2 \alpha^{-1}}{3} \frac{E_{\text{bin}}}{m_e v^2} \left(\frac{E_{\text{bin}}}{E_{\text{bin}} + 1/2 m_e v^2} \right)^2 e^{-4\sqrt{2E_{\text{bin}}/m_e v^2} \tan^{-1} \left(\sqrt{m_e v^2 / 2E_{\text{bin}}} \right)} \]
\[\approx \frac{2^9 \pi^2 \alpha^{-1}}{3} \frac{E_{\text{bin}}}{m_e v^2} \tag{3.4} \]
where \(v\) is the relative velocity of the bare Q-ball and electron and \(E_{\text{bin}}\) is binding energy. In the second line, we assumed that \(m_e v^2 / 2 \sim T \ll E_{\text{bin}}\), which corresponds to our case as we will see below. The thermal-averaged cross section is evaluated as [37]
\[\langle \sigma v \rangle \approx \frac{2^9 \pi \alpha^{-1} \sqrt{2\pi}}{3e^4} \frac{E_{\text{bin}}}{m_e^2 \sqrt{m_e T}} \tag{3.5} \]
Then
\[n_e \langle \sigma v \rangle / H \sim 10^{12} \left(\frac{n_e / n_\gamma}{10^{-10}} \right)^{1/2} \left(\frac{T}{\text{GeV}} \right)^{1/2} \tag{3.6} \]
\[\frac{n_e \langle \sigma v \rangle}{H} \sim 10^{12} \left(\frac{n_e / n_\gamma}{10^{-10}} \right)^{1/2} \left(\frac{T}{\text{GeV}} \right)^{1/2} \tag{3.7} \]
\(^5\)The discussion is somewhat similar to that in ref. [35], where a singly charged dark matter is considered, but since we assume the charged dark matter with \(|Z_Q| > 100\), the results differ from that in ref. [35].
where H is Hubble parameter and we assumed radiation dominated universe. This is larger than unity for a wide range of temperature, which allows us to use Saha’s equation,

$$\frac{n_{1S}n_e}{n_{1S}n_{\gamma}} \sim \frac{n_Q n_e}{n_Q n_{\gamma}},$$

(3.8)

where the subscripts represent number densities of corresponding particles and the superscript EQ means the thermal equilibrium value. This leads to

$$\frac{n_{1S}}{n_Q} \sim \frac{n_e}{n_{\gamma}} \left(\frac{T}{m_e}\right)^{3/2} \exp \left(\frac{E_{\text{bin}}^{(1S,e)}}{T}\right).$$

(3.9)

Then, from the condition $n_{1S}/n_Q \sim 1$, we can roughly estimate when 1S state is formed as

$$T_{c}^{(1S,e)} \sim E_{\text{bin}}^{(1S,e)} / 29.1 \sim 8.6 \text{ keV}$$

(3.10)

where we used $n_e/n_{\gamma} \sim O(10^{-10})$, and $E_{\text{bin}}^{(1S,e)} \simeq \alpha^2 Z_Q^2 Z_e^2 m_e / 2 \simeq m_e / 2$ since we assume the Coulomb type potential.

Next, we consider an era when the universe become cool enough so that Q^{+1} ions can exist, which means that the Q-ball become completely neutral if it captures one more electron. Let us consider the following process:

$$Q^{+1} + e^- \rightarrow Q^0 + \gamma,$$

(3.11)

where Q^0 indicates a Q-ball atom, i.e., the Q-ball neutralized by electrons. If we could use the Saha’s equation, we would estimate when the final electron is captured, by the same analysis as above:

$$T_{c}^{(\text{neu},e)} \sim E_{\text{bin}}^{(\text{neu},e)} / 46.0 \sim 10^{-1} \text{ eV}.$$

(3.12)

Here we assumed that the screening of the orbiting electrons make the binding energy smaller than that of hydrogen 13.6 eV, which is true for large enough ($Z > 36$) elements [38]. We used a typical value 10 eV. Then we see that $T_{c}^{(\text{neu},e)}$ is slightly smaller than the proton-electron recombination temperature. This implies that electrons are recombined with protons and the number of free electrons rapidly decreases before the process of eq. (3.11) occurred. Therefore, it is unlikely that the Q-ball atom Q^0 forms at a temperature of $T = T_{c}^{(\text{neu},e)}$.

In addition, our assumption that Q^{+1} ions can exist may not be correct in the first place, since even the temperature at which Q^{+1} ions are formed may be smaller than the proton-electron recombination temperature, for instance if we naively assume that the second ionization energy is twice the first ionization energy. Thus we expect that $Q^{+O(1)}$ ions are likely to be formed, since we have no rigid information about ionization energies of $Z \sim 137$ atoms.

3.2 Negatively charged anti-Q-balls

The negatively charged anti-Q-balls ($Z_Q < 0$), which we denote \bar{Q}, can capture the positively charged particles. Mainly protons and heliums remain after BBN, so we consider the recombination with them.
Even if we take into account the difference in mass and charge of proton and helium compared to that of electron, \(n_p(\sigma v)/H\) and \(n_{He}(\sigma v)/H\) are still larger than unity. Therefore, we can use the Saha’s equations:

\[
\frac{n_{1S}n_{\gamma}}{n_{1S}n_{\gamma}} \sim \frac{n_{Q}n_p}{n_{Q}n_p} \tag{3.13}
\]

\[
\frac{n_{1S}n_{\gamma}}{n_{1S}n_{\gamma}} \sim \frac{n_{Q}n_{He}}{n_{Q}n_{He}} \tag{3.14}
\]

As before, we can roughly estimate when 1S state with proton is formed:

\[
T_c^{(1S,p)} \sim \frac{E^{(1S,p)}_{\text{bin}}}{29.1} \sim 8.6 \text{ MeV}, \tag{3.15}
\]

where we used \(E^{(1S,p)}_{\text{bin}} \simeq \frac{\alpha^2 Z^2_\alpha Z^2_p m_p}{2} \simeq \frac{m_p}{2}\) since, again, we are assuming the Coulomb type potential. Thus, proton is captured before helium is formed.

Next, we consider an era when the universe became cool enough so that \(\bar{Q}^{-1}\) ions can exist, which means that the anti-Q-ball will become neutral if it captures one more proton. We can estimate when the final proton is captured:

\[
T_c^{(\text{neu},p)} \sim \frac{E^{(\text{neu},p)}_{\text{bin}}}{46.0} \sim 10^{-1} \text{ keV}, \tag{3.16}
\]

Here, as the binding energy, we used 10 keV, which is the approximate value used in the previous subsection corrected by a factor of mass ratio \(\sim m_p/m_e\). The anti-Q-balls become neutral much earlier than proton-electron recombination unlike the case of Q-ball-electron recombination, because the bound state becomes more difficult for photons to destruct, due to the heaviness of protons. There are yet plenty of free protons in this era, so \(\bar{Q}^0\)s are actually formed at \(T_c^{(\text{neu},p)}\). Here we only considered the recombination with protons, but since the binding energy of helium to \(\bar{Q}^{-1}\) is 16 times that of proton, \(^4\text{He}^{+2}\) is easier to be captured. On the other hand, the protons start to be captured before the heliumpions are formed at \(T \sim 0.1 \text{ MeV}\), so which element is mainly captured is non-trivial. If the helium is captured to \(\bar{Q}^{-1}, \bar{Q}^{-1}\text{-He}^{+2}\) bound state may be formed as well, which is positively charged but cannot capture electrons for the same reason as \(Q^{+1}\) in the previous section. We illustrate our results in figure 2.

4 Constraints from MICA experiment

Various experiments sensitive to electromagnetic processes and upper bounds on the flux of the charged Q-ball relics are presented in ref. [13]. The most stringent comes from MICA experiment [17, 18],

\[
(\text{Flux}) \lesssim 2.3 \times 10^{-20} \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}, \tag{4.1}
\]

where they have not observed any trails of heavy atom-like or ion-like object in \(10^9\) years old ancient mica crystals. Since detection time effectively becomes the age of the mica, its constraint is much severer than those from other experiments. The original purpose of the experiment is to detect the flux of magnetic monopoles which form the bound states with \(^{27}\text{Al}\) or other elements in the Earth, through a magnetic-dipole-magnetic-monopole interaction. These bound states can be regarded as supermassive atoms or ions, to which
the detector is sensitive, since it is designed to be sensitive to atoms and ions with $Z \gtrsim 10$. Relics from positively charged Q-balls can also be regarded as heavy $+O(1)$ charged ions with $Z \simeq \alpha^{-1} = 137$, and thus the detector is sensitive to them as well. Relics from negatively charged anti-Q-balls are like atoms or $+O(1)$ ions with about 10^3 times heavier orbiting particles and with inverted charge sign between nucleus and orbiting particle. We do not know whether the detector is sensitive to these objects or not, since the stopping power in the experiment is fitted to the cases of realistic atoms and ions [39]. But even if the detector is sensitive to the objects, the constraint on the mass will almost be the same as the case we neglected their existence, since n_Q and $n_{\bar{Q}}$ are of the same order and the detector cannot identify the signals from different origins, only identifying that each stopping power has exceeded the threshold. Furthermore, the (anti-) Q-ball is so heavy that whether the orbiting particles are electrons or protons virtually has no effect on total mass. This situation is analogous to the case of monopoles, where we cannot identify whether 27Al or 55Mn is captured to the monopole from the experiment. In any case, dark matter flux is given by

$$\text{(Flux)} \simeq \frac{\rho_{\text{DM} \odot}}{M_Q} v$$

(4.2)

where $\rho_{\text{DM} \odot}$ is dark matter energy density near the solar system, and v is the Virial velocity of the Q-balls. Thus, using $\rho_{\text{DM} \odot} \sim 0.3 \text{ GeV/cm}^3$ and $v \sim 10^{-3}$, we obtain the following constraint on the mass of (anti-) Q-ball:

$$M_Q \gtrsim 3.9 \times 10^{26} \text{ GeV}.$$

(4.3)
This is quite a severe constraint since it almost reaches the typical mass of the Q-ball, and in turn constrains \(\phi_{osc} \) via eq. (2.9). In order to obtain the condition on \(M_F \) and the reheating temperature \(T_{RH} \), we derive a relation of \(\phi_{osc} \) and reheating temperature \(T_{RH} \) as

\[
\frac{\rho_{DM}}{s} \sim \frac{3T_{RH}}{4} \frac{M_Q n_\phi/|B|}{3H_{osc} M_P^2} \sim \frac{3\pi}{2} \xi \beta^{-1/4} T_{RH}^2 \phi_{osc}^2 \frac{\rho_{DM}}{M_P^2},
\]

(4.4)

where \(n_\phi = m_{eff} \phi_{osc}^2 \), \(m_{eff} \approx 2\sqrt{2} M_F^2 / \phi_{osc} \), \(3H_{osc} \simeq m_{eff} \), and eq. (2.10) are used [31]. Inserting the observational value \(\rho_{DM}/s \simeq 4.4 \times 10^{-10} \text{ GeV} \) [40], we obtain

\[
\phi_{osc} \simeq 4.3 \times 10^{12} \text{ GeV} \left(\frac{\zeta}{2.5} \right)^{-1/2} \left(\frac{\beta}{6 \times 10^{-5}} \right)^{1/8} \left(\frac{T_{RH}}{\text{GeV}} \right)^{-1/2},
\]

(4.5)

Using this relation and eq. (2.9), eq. (4.3) becomes

\[
T_{RH} \lesssim 4.5 \times 10^{-2} \text{ GeV} \left(\frac{\zeta}{2.5} \right)^{-1/3} \left(\frac{\beta}{6 \times 10^{-5}} \right)^{3/4} \left(\frac{M_F}{10^6 \text{ GeV}} \right)^{-4/3},
\]

(4.6)

which is indeed a constraint on \(M_F \) and \(T_{RH} \).

In figure 3, we illustrate the allowed region of \(M_F \) and \(T_{RH} \), using the analogous method to that in ref. [15], where the authors focused on IceCube and BAKSAN constraints on the neutral Q-ball dark matter. The MICA constraint eq. (4.6) corresponds to the solid line in the figure.

The horizontal dotted lines indicate the condition that the gauge mediation effect dominates the potential of the Q-ball, which is given by eq. (2.8). Using eq. (4.5), eq. (2.8) becomes

\[
T_{RH} \gtrsim 1.3 \times 10^{-8} \text{ GeV} g^{-2} k^{-2} \left(\frac{\zeta}{2.5} \right)^{-1} \left(\frac{\beta}{6 \times 10^{-5}} \right) \left(\frac{M_F}{10^6 \text{ GeV}} \right)^{1/4},
\]

(4.7)

which indeed corresponds to the horizontal dotted lines in figure 3. We adopted \(k = 10^{-3} \) as for identifying the allowed region. For \(k \lesssim 6 \times 10^{-5} \), there is no allowed region for gauge mediation type Q-ball, so we must consider the case of gravity mediation domination, where the horizontal lines become upper bounds. The Q-ball when the gravity mediation dominates is called new type Q-ball, which is beyond the scope of this paper.

It is known that the Higgs boson mass at around 126 GeV leads to [19, 41]

\[
\Lambda_{mess} = \frac{k F}{M_{mess}} \gtrsim 5 \times 10^5 \text{ GeV}.
\]

(4.8)

Since the SUSY breaking scale is usually assumed to be small compared to the messenger mass

\[
k F < M_{mess}^2,
\]

eq. (4.8) becomes

\[
\sqrt{k F} \gtrsim 5 \times 10^5 \text{ GeV}.
\]

(4.10)

Then, using eq. (2.6), it reduces to

\[
M_F \gtrsim 4 \times 10^4 g^{1/2} \text{ GeV},
\]

(4.11)

which corresponds to the vertical dashed line in figure 3.
For a Q-ball with baryon charge $|B|$, the electric charge Z_Q must not be too large in order to be stable against baryonic decay [10], which leads to

$$m_p > \frac{dE}{d|B|} \quad (4.12)$$

$$\simeq \frac{dM_Q}{d|B|} + \frac{e^2 Z_Q}{4\pi R_Q}$$

$$= \left(\sqrt{2\pi} + \frac{e^2 Z_Q}{2\sqrt{2\pi}} \right) \zeta M_F |B|^{-1/4}. \quad (4.13)$$

Thus, we obtain

$$Z_Q \lesssim \frac{1}{\alpha} \left(m_p \frac{1}{\sqrt{2}} (\xi^{-1} M_F^{-1} |B|^{1/4} - \pi) \right). \quad (4.14)$$

where we used thin-wall approximation on charged Q-ball [12] in the second line. The condition that above is satisfied for the eventual electric charge $Z_Q \simeq \alpha^{-1}$ becomes

$$|B| \gtrsim \left(\frac{\sqrt{2}(\pi + 1)\xi M_F}{m_p} \right)^4 \simeq 4.6 \times 10^{28} \left(\frac{\zeta}{2.5} \right)^4 \left(\frac{M_F}{10^6 \text{ GeV}} \right)^4. \quad (4.15)$$
Using eq. (2.9) and eq. (4.4), we obtain

\[T_{RH} \lesssim 6.8 \times 10^{-4} \text{ GeV} \left(\frac{\zeta}{2.5} \right)^{-3} \left(\frac{\beta}{6 \times 10^{-8}} \right)^{3/4} \left(\frac{M_F}{10^6 \text{ GeV}} \right)^{-4}, \]

(4.16)

which corresponds to the dashed-dotted line in figure 3.

Finally, as mentioned in the previous section, we consider the (anti-) Q-ball smaller than Bohr radius so that the potential the external particles experience can be approximated into the Coulomb-type potential. Thus, the following condition must be satisfied,

\[|B| \lesssim \left(\frac{4\sqrt{2}\pi \zeta M_F}{m_e} \right)^4 \simeq 2.5 \times 10^{39} \left(\frac{\zeta}{2.5} \right)^4 \left(\frac{M_F}{10^6 \text{ GeV}} \right)^4 \]

(4.17)

which becomes

\[T_{RH} \gtrsim 2.9 \times 10^{-9} \text{ GeV} \left(\frac{\zeta}{2.5} \right)^{-3} \left(\frac{\beta}{6 \times 10^{-8}} \right)^{3/4} \left(\frac{M_F}{10^6 \text{ GeV}} \right)^{-4}, \]

(4.18)

where we used, again, eqs. (2.9) and (4.4). This corresponds to the thin line in figure 3. We see that this condition is automatically satisfied by virtue of the other conditions, which means that the other conditions constrain the (anti-) Q-balls to be smaller than Bohr radius so that the Coulomb type potential can be used.

The IceCube and BAKSAN constraints are shown at the upper left for comparison. We see that the MICA constraint is more stringent than that from IceCube and BAKSAN, where only the KKST process is probed. This makes the allowed region smaller.

5 Conclusions and discussion

In this paper, we considered nearly equal number of gauge mediation type charged Q-balls and anti-Q-balls with charge of \(Z_Q = \pm \alpha^{-1} \), as expected from ref. [10], and discussed how they evolve in time and what kinds of objects become relics in the present universe. We roughly estimated that the positively charged Q-balls start to capture electrons at \(T \sim 8.6 \text{ keV} \), and eventually become Q-ball ions with \(+O(1)\) total electric charges, since the number of free electrons decreases due to the recombination with protons before the Q-ball can capture further electrons. The negatively charged (anti-) Q-balls start to capture protons at \(T \sim 8.6 \text{ MeV} \), and after the BBN, helium and the other light elements can also be captured. Anti-Q-balls are neutralized by the final proton or positively charged by the final \(^4\text{He}\) at \(T \sim 10^{-1} \text{ keV} \), since it is earlier than the proton (helium) - electron recombination so the plenty of protons and heliums exist.

The Q-ball ions can be treated as ordinary ions since the potential is nearly Coulomb type. Thus, they are detectable by MICA experiment, where no trail of heavy atom-like or ion-like object is observed in \(10^9 \) years old ancient mica crystals. This gives the most stringent constraint on the flux of the objects, which are assumed to compose the dark matter, among the constraints obtained in ref. [13], since the detection time is extremely long which is essentially the age of the mica. We translated the constraint into that on the gauge mediation model parameter \(M_F \) and reheating temperature \(T_{RH} \), as done in ref. [15] for the IceCube and BAKSAN constraints on the neutral Q-ball dark matter. As a result, we found that the MICA constraint is more severe than that from IceCube and BAKSAN,
so the allowed region in $M_F - T_{RH}$ becomes smaller. Identifying the relics from Q-balls and those from anti-Q-balls observationally, which includes examining the properties of (anti-Q-ball)+(nucleus) bound state, will be one of our future tasks. Also, we assumed $u^c d^c e^c$-like flat direction which includes only electron as the leptonic component. However, if we consider the direction which includes neutrino component, for example $QQQL$, the scenario may differ from what we pursued so far, and interesting in its own right. For instance, due to the decay into neutrinos, the Q-ball may have SU(2) charge, and we may need a fundamental theory of non-abelian gauged Q-ball. Finally, the Q-ball when the gravity mediation dominates is not discussed in this paper, which is called new type Q-ball [42]. From the mathematical point of view, new type Q-ball is equivalent to the Q-ball proposed and examined in [43, 44]. New type Q-ball is stable against decay into nucleon due to the smallness of gravitino mass, and it has different properties from gauge mediation type Q-ball, including its mass, size, and typical charge etc. In particular, we found that for new type charged Q-ball, the energy per unit charge is not written as the neutral Q-ball expression plus Coulomb potential at the surface of the Q-ball, which makes the analysis of new type Q-ball difficult. This difference may come from the fact that the new type Q-ball is a thick-wall type while the gauge mediation type Q-ball is a thin-wall type. That is, in the thick-wall case, the Q-ball is widely spread and it is difficult to identify the size of the Q-ball so that the relation like eq. (4.12) is not obtained. It is known that for one scalar gauged Q-ball, the effect of gauge field can be taken into account perturbatively even in the thick-wall case [45]. This may be applicable in our case but it is beyond the scope of the present paper. Identifying the relics from new type charged Q-balls and investigating the possibility as dark matter will be of our future interest.

Acknowledgments

This work is supported by MEXT KAKENHI Grand Number 15H05889 (M.K.) and JSPS KAKENHI Grand Number 25400248 (M.K.), World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and the Program for the Leading Graduate Schools, MEXT, Japan (M.Y.). M.Y. acknowledges the support by JSPS Research Fellowships for Young Scientists, No.25.8715.

References

[1] I. Affleck and M. Dine, *A New Mechanism for Baryogenesis*, Nucl. Phys. B 249 (1985) 361 [arXiv:hep-ph/9503303] [SPIRE].

[2] M. Dine, L. Randall and S.D. Thomas, *Supersymmetry breaking in the early universe*, Phys. Rev. Lett. 75 (1995) 398 [hep-ph/9503303] [SPIRE].

[3] M. Dine, L. Randall and S.D. Thomas, *Baryogenesis from flat directions of the supersymmetric standard model*, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [SPIRE].

[4] M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, *Big-Bang Nucleosynthesis and Gravitino*, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [SPIRE].

[5] A. Kusenko and M.E. Shaposhnikov, *Supersymmetric Q balls as dark matter*, Phys. Lett. B 418 (1998) 46 [hep-ph/9709492] [SPIRE].

[6] S. Kasuya and M. Kawasaki, *Q ball formation through Affleck-Dine mechanism*, Phys. Rev. D 61 (2000) 041301 [hep-ph/9909509] [SPIRE].

[7] S. Kasuya and M. Kawasaki, *Q Ball formation in the gravity mediated SUSY breaking scenario*, Phys. Rev. D 62 (2000) 023512 [hep-ph/0002285] [SPIRE].
[8] S.R. Coleman, Q Balls, *Nucl. Phys. B* **262** (1985) 263 [Erratum ibid. B **269** (1986) 744] [nSPIRE].

[9] G.R. Dvali, A. Kusenko and M.E. Shaposhnikov, New physics in a nutshell, or Q ball as a power plant, *Phys. Lett. B* **417** (1998) 99 [hep-ph/9707423] [nSPIRE].

[10] J.-P. Hong, M. Kawasaki and M. Yamada, Charged Q-balls in gauge mediated SUSY breaking models, *Phys. Rev. D* **92** (2015) 063521 [arXiv:1505.02594] [nSPIRE].

[11] I.M. Shoemaker and A. Kusenko, The ground states of baryoleptonic Q-balls in supersymmetric models, *Phys. Rev. D* **78** (2008) 075014 [arXiv:0809.1666] [nSPIRE].

[12] J.-P. Hong, M. Kawasaki and M. Yamada, Charged Q-balls in gauge mediated SUSY breaking models, *Phys. Rev. D* **92** (2015) 063521 [arXiv:1505.02594] [nSPIRE].

[13] I.M. Shoemaker and A. Kusenko, The ground states of baryoleptonic Q-balls in supersymmetric models, *Phys. Rev. D* **78** (2008) 075014 [arXiv:0809.1666] [nSPIRE].

[14] K.-M. Lee, J.A. Stein-Schabes, R. Watkins and L.M. Widrow, Gauged q Balls, *Phys. Rev. D* **39** (1989) 1665 [nSPIRE].

[15] S. Kasuya, M. Kawasaki and T.T. Yanagida, IceCube potential for detecting Q-ball dark matter in gauge mediation, *PTEP* **2015** (2015) 053B02 [arXiv:1502.00715] [nSPIRE].

[16] A. Kusenko, V. Kuzmin, M.E. Shaposhnikov and P.G. Tinyakov, Experimental signatures of supersymmetric dark matter Q balls, *Phys. Rev. Lett.* **80** (1998) 3185 [hep-ph/9712212] [nSPIRE].

[17] P.B. Price and M.H. Salamon, Search for Supermassive Magnetic Monopoles Using Mica Crystals, *Phys. Rev. Lett.* **56** (1986) 1226 [nSPIRE].

[18] D. Ghosh and S. Chatterjea, Supermassive magnetic monopoles flux from the oldest mica samples, *Europhys. Lett.* **12** (1990) 25 [nSPIRE].

[19] K. Hamaguchi, M. Ibe, T.T. Yanagida and N. Yokozaki, Testing the Minimal Direct Gauge Mediation at the LHC, *Phys. Rev. D* **90** (2014) 015027 [arXiv:1403.1398] [nSPIRE].

[20] M. Dine, W. Fischler and M. Srednicki, Supersymmetric Technicolor, *Nucl. Phys. B* **189** (1981) 575 [nSPIRE].

[21] S. Dimopoulos and S. Raby, Supercolor, *Nucl. Phys. B* **192** (1981) 353 [nSPIRE].

[22] M. Dine and W. Fischler, A Phenomenological Model of Particle Physics Based on Supersymmetry, *Phys. Lett. B* **110** (1982) 227 [nSPIRE].

[23] M. Dine and W. Fischler, A Supersymmetric GUT, *Nucl. Phys. B* **204** (1982) 346 [nSPIRE].

[24] C.R. Nappi and B.A. Ovrut, Supersymmetric Extension of the SU(3) × SU(2) × U(1) Model, *Phys. Lett. B* **113** (1982) 175 [nSPIRE].

[25] L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-Energy Supersymmetry, *Nucl. Phys. B* **207** (1982) 96 [nSPIRE].

[26] M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, *Phys. Rev. D* **48** (1993) 1277 [hep-ph/9303230] [nSPIRE].

[27] M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, *Phys. Rev. D* **51** (1995) 1362 [hep-ph/9408384] [nSPIRE].

[28] M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, *Phys. Rev. D* **53** (1996) 2658 [hep-ph/9507378] [nSPIRE].

[29] A. de Gouvêa, T. Moroi and H. Murayama, Cosmology of supersymmetric models with low-energy gauge mediation, *Phys. Rev. D* **56** (1997) 1281 [hep-ph/9701244] [nSPIRE].
[30] K. Enqvist and J. McDonald, "B-ball baryogenesis and the baryon to dark matter ratio," *Nucl. Phys. B* **538** (1999) 321 [hep-ph/9803380] [INSPIRE].

[31] S. Kasuya and M. Kawasaki, "Q ball formation: Obstacle to Affleck-Dine baryogenesis in the gauge mediated SUSY breaking?", *Phys. Rev. D* **64** (2001) 123515 [hep-ph/0106119] [INSPIRE].

[32] K.-W. Ng, "Residual F terms and the Affleck-Dine Mechanism for Baryogenesis," *Nucl. Phys. B* **321** (1989) 528 [INSPIRE].

[33] J. Hisano, M.M. Nojiri and N. Okada, "The fate of the B ball, *Phys. Rev. D* **64** (2001) 023511 [hep-ph/0102045] [INSPIRE].

[34] M. Kawasaki and M. Yamada, "Q ball Decay Rates into Gravitinos and Quarks, *Phys. Rev. D* **87** (2013) 023517 [arXiv:1209.5781] [INSPIRE].

[35] A. De Rujula, S.L. Glashow and U. Sarid, "Charged Dark Matter, *Nucl. Phys. B* **333** (1990) 173 [INSPIRE].

[36] H.A. Bethe and E.E. Salpeter, *Quantum Mechanics of One- and Two- Electron Atoms*, Springer-Verlag OHG, Berlin Göttingen Heidelberg (1957).

[37] K. Kohri and F. Takayama, "Big bang nucleosynthesis with long lived charged massive particles, *Phys. Rev. D* **76** (2007) 063507 [hep-ph/0605243] [INSPIRE].

[38] PARTICLE DATA GROUP collaboration, K.A. Olive et al., *Review of Particle Physics, Chin. Phys. C* **38** (2014) 090001 [INSPIRE].

[39] W.D. Wilson, L.G. Haggmark and J.P. Biersack, "Calculations of nuclear stopping, ranges and straggling in the low-energy region, *Phys. Rev. B* **15** (1977) 2458 [INSPIRE].

[40] PLANCK collaboration, P.A.R. Ade et al., *Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.** **571** (2014) A16 [arXiv:1303.5076] [INSPIRE].

[41] J.L. Feng, Z. Surujon and H.-B. Yu, "Confluence of Constraints in Gauge Mediation: The 125 GeV Higgs Boson and Goldilocks Cosmology, *Phys. Rev. D* **86** (2012) 035003 [arXiv:1205.6480] [INSPIRE].

[42] S. Kasuya and M. Kawasaki, "A new type of stable Q balls in the gauge mediated SUSY breaking, *Phys. Rev. Lett.** **85** (2000) 2677 [hep-ph/0006128] [INSPIRE].

[43] G. Rosen, "Dilatation covariance and exact solutions in local relativistic field theories, *Phys. Rev.** **183** (1969) 1186 [INSPIRE].

[44] G.C. Marques and I. Ventura, *Resonances Within Nonperturbative Methods in Field Theories, Phys. Rev. D* **14** (1976) 1056 [INSPIRE].

[45] I.E. Gulamov, E. Ya. Nugaev and M.N. Smolyakov, "Theory of U(1) gauged Q-balls revisited, *Phys. Rev. D* **89** (2014) 085006 [arXiv:1311.0325] [INSPIRE].