Distinct Effects of IL-18 on the Engraftment and Function of Human Effector CD8+ T Cells and Regulatory T Cells

Richard G. Carroll1,2, Carmine Carpenito1,9, Xiaochuan Shan1,9, Gwenn Danet-Desnoyers3, Ronghua Liu1, Shuguang Jiang1, Steven M. Albelda3, Tatiana Golovina1, George Coukos1,4, James L. Riley1,2, Zdenka L. Jonak5, Carl H. June1,2,*

1 Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America, 2 Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America, 3 Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America, 4 Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America, 5 GlaxoSmithKline, Biopharm-CEDD, Biology US, King of Prussia, Pennsylvania, United States of America

Abstract

IL-18 has pleotropic effects on the activation of T cells during antigen presentation. We investigated the effects of human IL-18 on the engraftment and function of human T cell subsets in xenograft mouse models. IL-18 enhanced the engraftment of human CD8+ effector T cells and promoted the development of xenogeneic graft versus host disease (GVHD). In marked contrast, IL-18 had reciprocal effects on the engraftment of CD4+CD25 Foxp3+ regulatory T cells (Tregs) in the xenografted mice. Adoptive transfer experiments indicated that IL-18 prevented the suppressive effects of Tregs on the development of xenogeneic GVHD. The IL-18 results were robust as they were observed in two different mouse strains. In addition, the effects of IL-18 were systemic as IL-18 promoted engraftment and persistence of human effector T cells and decreased Tregs in peripheral blood, peritoneal cavity, spleen and liver. In vitro experiments indicated that the expression of the IL-18Rα was induced on both CD4 and CD8 effector T cells and Tregs, and that the duration of expression was less sustained on Tregs. These preclinical data suggest that human IL-18 may have use as an adjuvant for immune reconstitution after cytotoxic therapies, and to augment adoptive immunotherapy, donor leukocyte infusions, and vaccine strategies.

Introduction

Initially isolated from macrophages as a potent interferon-γ (IFN-γ)-inducing factor [1,2], Interleukin-18 (IL-18) is a multifunctional cytokine affecting both innate and adaptive immune responses [3,4]. IL-18 is produced as an inactive precursor (pro-IL-18), which is activated by proteolytic cleavage, primarily by caspase-1 [5,6]. Pro-IL-18 is produced by multiple cell types, including macrophages [1], dendritic cells [7], vascular endothelial cells [8], and intestinal epithelial cells [9].

Numerous effector functions have been attributed to IL-18. Perhaps the best characterized of these is IL-18’s context-dependent induction of Th1 or Th2 CD4+ T cell polarization [3]. In the presence of IL-12, IL-18 drives the Th1 polarization of activated CD4+ T cells. However, in the absence of IL-12 or in the presence of IL-2 or IL-4, IL-18 promotes IgE expression and Th2 differentiation. More recently, IL-18 has been demonstrated, in synergy with IL-23, to drive TH17 cell polarization [10,11]. IL-18 also exerts multiple effects on NK cells, including increased cytotoxicity [12], and in synergy with IL-2, promotion of NK cell expansion and IFNγ production [13]. Given its widespread immune-augmenting functions, it is not surprising that IL-18 has been evaluated in numerous animal models of cancer. For example, IL-18 enhances the efficacy of DNA vaccines directed against prostate-specific antigen [14] or Fos-related antigen [15]. Additionally, IL-18 augments the efficacy of DC-based vaccines [16,17] as well as whole-cell tumor vaccines [18]. However, IL-18 has also been reported to enhance tumor progression [reviewed in [19]]. For example, tumor-produced IL-18 induces Fas ligand expression in melanoma cells, possibly resulting in escape from NK cell-mediated immune surveillance [20]. Furthermore, IL-18 has been shown to increase the invasiveness of myeloid leukemia lines [21].

IL-18 has also been implicated in multiple autoimmune-associated pathologies [reviewed in [22]]. For example, high levels of IL-18 are found in the synovial fluid of rheumatoid arthritis patients [23], and alleviation of rheumatoid arthritis symptoms is associated with a decrease in IL-18 levels [24]. Paradoxically, given its’ proinflammatory properties, IL-18 is well tolerated and safe in humans [25]. In contrast, IL-12 is toxic at doses three orders of magnitude lower [26].

The rationale for the present study was to determine if IL-18 might present a less toxic alternative to IL-12 as an adjunct for cancer adoptive transfer immunotherapy. In the study described herein, we demonstrate that IL-18 administration resulted in
increased engraftment of CD8+ human T cells. Concurrently, IL-18 administration resulted in a decrease in human CD4+/CD25+Foxp3+ regulatory T cells (Tregs). Furthermore, we find that IL-18 augmented xenogeneic GVHD, and overrode the suppressive effect of Tregs in vivo. Our findings indicate that by simultaneously affecting both CD8+ T cells and Tregs, IL-18 may alter the set point of an immune response, underscoring the potential utility of IL-18 as an adjuvant in cancer therapy.

Methods

Mice

All animal experiments were approved by the University of Pennsylvania Institutional Animal Care and Use Committee. NOD/scid/B2mnull (NOD/scid/B2mnull) [27] and NOD/scid/IL-2reconstituted (NOG) [28] mice were purchased from the Jackson Laboratory. Animals were bred in the Animal Services Unit of the University of Pennsylvania. The mice were housed under specific pathogen-free conditions in microisolator cages and given unrestricted access to autoclaved food and acidified water. Animals of both sexes were used for experiments at 6–9 weeks of age.

Cells and Animal Injections

Peripheral blood mononuclear cells (PBMCs) were obtained by leukapheresis of healthy volunteer donors by the University of Pennsylvania Human Immunology Core. All specimens were collected under a University Institutional Review Board-approved protocol, and informed consent was obtained from each donor. Cells were injected intraperitoneally into non-irradiated host animals as described in the individual experiments.

Recombinant human IL-18 (SB-485232) and pegylated human IL-18 (GSK-189720) were prepared as previously described at GlaxoSmithKline [29]. Subcutaneous injections of 15 g/mouse/day for anti-tumor effects 1.5+10% human AB serum in round bottom 96 well plates (Corning Incorporated, Corning, NY). Frozen autologous PBMCs were thawed, CFSE-labeled, and resuspended in culture medium at 1 x 10^5/ml. Anti-CD3 beads (Invitrogen) were added at a ratio of 1 bead per cell. 100 µl of PBMC cell suspension (1 x 10^6 cells) was added to individual wells in a 96 well plate. CFSE-labeled PBMCs without CD3 beads (and lacking Tregs) were used as negative controls; CFSE-labeled PBMCs stimulated with anti-CD3 beads (no Tregs) were used as positive controls. Where indicated, the suppression assay was performed in the presence of 500 ng/ml IL-2 (Chiron) and 100 ng/ml Rapamycin (Calbiochem) [30]. After one growth cycle (approximately 14–21 days), the cells were harvested and used for injection as described in the text.

In Vitro Suppression Assay

Following harvest of expanded T cells (Tregs and control CD4 cells), varying numbers of Tregs were plated in 100 µl of X-VIVO 15, 10% human AB serum in round bottom 96 well plates (Corning Incorporated, Corning, NY). Frozen autologous PBMCs were thawed, CFSE-labeled, and resuspended in culture medium at 1 x 10^5/ml. Anti-CD3 beads (Invitrogen) were added at a ratio of 1 bead per cell. 100 µl of PBMC cell suspension (1 x 10^6 cells) was added to individual wells in a 96 well plate. CFSE-labeled PBMCs without CD3 beads (and lacking Tregs) were used as negative controls; CFSE-labeled PBMCs stimulated with anti-CD3 beads (no Tregs) were used as positive controls. Where indicated, the suppression assay was performed in the presence of 500 ng/ml recombinant human IL-18. The cultures were harvested four days later and stained with APC-conjugated anti-CD8 (BD Pharmingen). Data were acquired on a FACSCalibur flow cytometer using Cell Quest Pro software and analyzed using FlowJo software. Quantitative analysis of Treg suppression capacity was performed by gating on CD8+ CFSElow cells [30].

Statistical analysis

All results were expressed as means±standard deviation. Unless otherwise indicated, the statistical significance of differences between groups was evaluated by two-sample t tests assuming equal variance or the Mann-Whitney rank sum test. Survival data were analyzed by lifetable methods using log rank analysis performed using SysStat (Systat Software, Inc.).

Results

In preliminary experiments we evaluated recombinant human IL-18 at doses from 1 to 100 µg/mouse/day for anti-tumor effects in xenografted mice (data not shown), and 15 µg was chosen as a daily dose based on tolerability and efficacy, and because this dose is less than the equivalent maximum tolerated dose that has been established in monkeys and humans [25,32]. The effects of IL-18 were tested on human T cell subsets using two humanized mouse models [27,28]. Initially, we determined if IL-18 directly affected the engraftment of human T cells in NOD/scid/B2mnull mice. These mice, in addition to lacking mature B and T cells, have reduced levels of NK cells compared to NOD/scid mice [27].
When NOD/scid/β2mnull mice were injected intraperitoneally with PBMC, human CD45 positive cells were recovered from peripheral blood, liver and spleen. Daily subcutaneous injections of IL-18 caused a substantial increase in the number of human leukocytes recovered from the blood, liver and spleens of the mice (Fig. 1A). However, the leukocyte promoting effect of IL-18 was entirely attributable to increased engraftment of CD8+ T cells, as the number of CD4+ T cells was not increased by IL-18 (Fig. 1B and 1C). No NK cells or B cells were observed at this time point (data not shown).

As is shown below, we observed that the IL-18 treated mice developed xenogeneic GVHD more rapidly than mice engrafted with PBMC only. We first considered the hypothesis that the IL-18 mediated increase in human CD8+ cells could account for this. However, an alternative hypothesis was also considered, that decreased engraftment with regulatory T cells could also account for this, because others have shown that regulatory T cell numbers and function can influence the onset and severity of xenogeneic GVHD [33,34]. Although IL-18 did not influence the total number of CD4 cells (Fig. 1B), there were significant decreases in regulatory T cells in the IL-18 treated mice, as judged by CD25 and FoxP3 expression (Fig. 2). The percentage and absolute number of CD4+CD25+Foxp3+ cells decreased in all organs and tissues examined, i.e. blood, spleen, liver, and peritoneal cavity (Fig. 2A and 2B).

It was possible that the distinct effects of IL-18 on human lymphocyte subsets were due to relative efficiencies of engraftment for effector and regulatory subsets in the NOD/scid/β2mnull mice. To test this possibility, PBMCs were transferred into NOD/scid/IL-2γnull (NOG) mice. This strain is highly permissive to human hematopoietic stem cell engraftment [28]. In NOG mice injected with PBMC, the mice treated with IL-18 had consistently elevated numbers of human CD45+ cells in the peripheral blood, and this increase was entirely accounted for by increased numbers of CD8+ cells (Fig. 3A) as was the case for NOD/scid/β2mnull mice. The NOG mice also had reciprocal decreases in CD4+CD25+FoxP3+ cells in the blood (Fig. 3B) and all tissues examined (data not shown). The IL-18 mediated decrease in CD4+CD25+FoxP3+ cells was not due to decreased recovery of the cells, as tissue sections examined by immunohistochemistry also documented consistent decreases in cells that stained for Foxp3 (data not shown). Furthermore, as shown in Fig. 3C, the CD8/Treg ratios in the peripheral blood of individual animals were markedly increased by IL-18 treatment.

To assess the effects of IL-18 treatment on human T cell differentiation in NOG mice after IL-18 treatment, peripheral blood and spleen were examined by flow cytometry (Fig. 4). There were only minor effects of IL-18 on the fraction of T cells with a central memory (CD27+CD28+) phenotype, and the modest effects were different in blood and spleen. There was only a slight effect of IL-18 on the appearance of T cells with a senescent or effector memory phenotype (CD28−CD25− or CD27+CD57+) as was the case for NOD/scid/β2mnull mice. The NOG mice also had reciprocal decreases in CD4+CD25+FoxP3+ cells in the blood (Fig. 3B) and all tissues examined (data not shown). The IL-18 mediated decrease in CD4+CD25+FoxP3+ cells was not due to decreased recovery of the cells, as tissue sections examined by immunohistochemistry also documented consistent decreases in cells that stained for Foxp3 (data not shown). Furthermore, as shown in Fig. 3C, the CD8/Treg ratios in the peripheral blood of individual animals were markedly increased by IL-18 treatment.

To assess the effects of IL-18 treatment on human T cell differentiation in NOG mice after IL-18 treatment, peripheral blood and spleen were examined by flow cytometry (Fig. 4). There were only minor effects of IL-18 on the fraction of T cells with a central memory (CD27+CD28+) phenotype, and the modest effects were different in blood and spleen. There was only a slight effect of IL-18 on the appearance of T cells with a senescent or effector memory phenotype (CD28−CD25− or CD27+CD57+) as was the case for NOD/scid/β2mnull mice. The NOG mice also had reciprocal decreases in CD4+CD25+FoxP3+ cells in the blood (Fig. 3B) and all tissues examined (data not shown). The IL-18 mediated decrease in CD4+CD25+FoxP3+ cells was not due to decreased recovery of the cells, as tissue sections examined by immunohistochemistry also documented consistent decreases in cells that stained for Foxp3 (data not shown). Furthermore, as shown in Fig. 3C, the CD8/Treg ratios in the peripheral blood of individual animals were markedly increased by IL-18 treatment.

To address the mechanisms for these observations, we used an adoptive transfer model of effector and regulatory T cells that we and others have developed [35–38]. PBMCs were subjected to immunoaffinity bead separation to obtain CD4+CD25high cells and PBMC depleted of CD4+CD25high cells. The CD4+CD25high cells at baseline were >70% Foxp3+, and these cells were expanded using
K562 cells expressing CD64, CD86, and OX40L in the presence of IL-2 and rapamycin as described [37]. NOG mice were injected with PBMC plus enriched CD4+CD25− effector cells, or with PBMC plus ex vivo-expanded CD4+CD25+ Tregs. IL-18 treatment in vivo accelerated GVHD lethality in mice engrafted with PBMC plus enriched CD4+CD25− effector cells, or with PBMC plus ex vivo-expanded CD4+CD25+ Tregs (Fig. 6A and B). In contrast, most mice engrafted with PBMC and ex vivo-expanded Tregs had long term survival. The mice were monitored for engraftment of CD8+ T cells by periodic measurements of absolute CD8+ T cell numbers in peripheral blood using the Trucount assay (Fig. 6C–E). Mice engrafted with PBMC and CD4+ effector cells had a progressive increase in the number of circulating CD8+ T cells.

Previous studies have shown that human Tregs prevent the expansion of the presumably xenoreactive CD8+ T cells in mice [34]. We found that ex vivo-expanded Tregs also prevented the expansion of CD8+ T cells in the mice. However, IL-18 treatment resulted in a striking increase in the numbers of CD8+ T cells in mice engrafted with either PBMCs and CD4+ effectors or with PBMCs and Tregs. In fact, all IL-18-treated animals were sacrificed early due to acute GVHD symptoms (Fig. 6E and data not shown). Thus, in the presence of IL-18, Tregs failed to control CD8+ T cell proliferation. However, the Kaplan-Meier curves show a significant difference between each of the 4 groups, indicating that Tregs have an effect even in the face of IL-18 treatment.

Figure 2. Human IL-18 Mediates a Decrease in Tregs in NOD/scid/β2mnull mice Injected with Human PBMCs. 5×10^7 PBMCs were transferred into NOD/scid/β2mnull mice. The day following cell injection, a three week course of subcutaneous huIL-18 injections was initiated. Animals in the experiment depicted in panel A received twice-weekly doses of 15 μg pegylated human IL-18, while the animals in the experiments depicted in panel B received daily doses of 15 μg recombinant human IL-18. (A) At the end of IL-18 treatment, cells isolated from the peripheral blood, peritoneal cavity, spleen and liver were stained with antibodies to human CD45, CD4, and CD25 and analyzed by flow cytometry. The mean percentage of CD4+CD25+ cells from each tissue is depicted. Filled bars represent values obtained from IL-18-treated animals; open bars represent values obtained from mock-treated animals. (B) Paraffin sections from the spleens of mock- or IL-18-treated animals were reacted with antibodies specific for human CD25 or Foxp3. Antibody-reactive cells per 400X field were enumerated blindly, and the mean±s.d. depicted. Solid bars depict sections from IL-18-treated animals, while open bars represent sections from mock-treated animals. The experiment in panel A was performed 2 times, and the experiment in panel B was performed 6 times. Asterisks indicate significant differences between mock- and IL-18-treated animals (n=8/group; p<0.05).

doi:10.1371/journal.pone.0003289.g002
Because IL-18 was able to override some of the effects of the Tregs as indicated by the findings of increased CD8⁺ T cells in mice given adoptively transferred Tregs, we next evaluated the effects of IL-18 on Treg function in vitro. We found that the addition of IL-18 to culture medium did not affect the population doubling rate of Tregs in vitro after anti-CD3/CD28 stimulation, in the presence or absence of IL-2 (data not shown). Furthermore, IL-18 did not affect the suppressive function of ex vivo expanded Tregs (Fig. 7) or the expression of Foxp3 (data not shown).

Finally, the upregulation of IL-18Rα did not differ between CD4⁺CD25⁻ or CD4⁺CD25⁺ T cells in culture after activation using a variety of stimulation conditions. However, it is notable that the expression of IL-18Rα was not sustained on the regulatory T cells after day 3 in culture, in contrast to bulk CD4 and CD8 T cell subsets (Fig. 8).

Discussion

This study demonstrates that in immune-deficient mice engrafted with human PBMCs, human IL-18 administration exerts opposite effects upon two human cell populations: CD8⁺ T cell numbers are increased, while CD4⁺CD25⁺Foxp3⁺ Treg cell numbers are markedly decreased. The altered ratio of effector to Treg engrafment was functionally important as judged by the accelerated onset and severity of xenogeneic GVHD in the
recipient mice. These effects were unexpected because we are not aware of studies with mouse IL-18 that have revealed differential effects of IL-18 on regulatory and effector T cells [39,40].

Our studies revealed several potential mechanisms for the effects of IL-18. IL-18 can cause the expansion of mouse NK cells [13], but has not been reported to directly mediate the expansion of T cells. Consistent with this, we were unable to demonstrate a direct effect of IL-18 on the expansion of human effector or regulatory T cells in vivo. However, we found that the expression of the IL-18Rα subunit was more prolonged on effector T cells than Tregs, providing a potential mechanism to explain the reciprocal effects that we observed in vivo on the effects of IL-18 on effector T cells and Tregs. There may be important species specific differences in the biology of IL-18 on human and mouse T cells [41]. In the mouse, IL-18 has a protective effect on CD4(+) mediated acute GVHD [42], and blockade of IL-18 accelerates acute GVHD-related mortality in mice [43]. Recent studies in the mouse indicate that IL-18 has a role in promoting an IFN-γ dependent positive regulation of memory CD8 T cell proliferation [44]. Recent studies with human cells indicate that the interaction of IL-18 treated NK cells and DCs induces maturation of DCs that subsequently promote Th1 and IFN-γ secretion [45]. Together, the above studies are consistent with our findings, and suggest a mechanism that IL-18 promotes engraftment of CD8 cells in the mice at the expense of regulatory T cells, leading to increased memory CD8 cells and increased xenogenic GVHD.

A complete mechanistic understanding of the effects mediated by IL-18 is not yet available from the present findings. It is still not clear which T cell subsets are preferentially expanded during IL-18 therapy in the mice, although we found some selective effects on subsets of CD8 T cells in Figure 4. We do not yet know if CD8 T cells need to be activated in order to be regulated by IL-18. Similarly, we do not yet know if CD4 T cells need to be present for the IL-18 effects on CD8 cells. Our data in Figure 6 suggest that the effects on CD8 T cells and Tregs are independent.

IL-18 has been proposed to have a role in a number of inflammatory and autoimmune disorders in mice and man [46]. In mice, IL-18 may have a role in lupus nephritis [47]. In humans, IL-18 over-expression has been reported in rheumatoid arthritis, sarcoidosis, adult-onset Still’s disease, vasculitis, lupus, urticaria and histiocytosis [23,48–54]. Tregs have been reported to be decreased or to have decreased functional activity in a number of autoimmune disorders [55], and it is possible that an imbalance of Tregs and effector T cells due to differential IL-18 signaling contributes to the loss of tolerance.

Depletion of Tregs in tumor bearing mice enhances the response to immunotherapy [56]. A high ratio of effector CD8 T cells to Tregs in Tregs in the tumor microenvironment has been shown to be a favorable prognostic feature in patients with ovarian cancer [57,58]. An increase in the ratio of CD8+ T effector to regulatory cells in syngeneic mouse tumor models and in humans with cancer correlates with responses to immunotherapies [59,60]. Thus, the ability of IL-18 to increase the ratio of effector CD8+ T cells to Tregs may have important implications for therapeutic vaccines and adoptive transfer strategies [61].

The ability of IL-18 to increase the ratio of effector CD8+ T cells to Tregs may have important implications for therapeutic vaccines and cancer therapy. Depletion of Tregs in tumor bearing mice enhances the response to immunotherapy [56]. A high ratio of effector CD8 T cells to Tregs in the tumor microenvironment has been shown to be a favorable prognostic feature in patients with ovarian cancer [57,58]. Furthermore, an increase in the ratio of CD8+ T effector to regulatory cells in syngeneic mouse tumor models and in humans with cancer correlates with responses to immunotherapies [59,60].

Our findings may have important implications for cancer therapy due to the immunosuppressive tumor microenvironment. Cancer patients have increased tumor infiltrating Tregs [62], and in many cases, CD8+ CTLs from the tumor environment are dysfunctional [63,64]. Recently, it has become more widely appreciated that successful immunotherapy requires neutralization of the immunosuppressive features of the tumor microenvironment, in particular Tregs [63]. Thus, by inhibiting Tregs and promoting conventional T cells, human IL-18 may have potential to restore immunocompetence in cancer patients, and thereby augment the effects of cytotoxic and biologic therapies, in order to provoke and maintain an effective anti-tumor immune response. Finally, IL-18 may have potential to augment the anti-tumor effects of donor leukocyte infusions by promoting effector T cells at the expense of regulatory T cell expansion.
Figure 6. Effect of Human IL-18 on Treg-Induced Delay of Xenogeneic GVHD in NOG Mice. NOG mice were injected with 2×10^7 Treg-depleted human PBMCs supplemented with either 4 million autologous CD4$^+$CD25$^+$ T cells ("CD4 T cells") or 4 million autologous, ex vivo-expanded CD4$^+$CD25$^+$ cells ("Tregs"). One cohort of each group received daily injections of 15 μg recombinant human IL-18 for three weeks. Human cell engraftment in the peripheral blood was measured 11, 22, and 30 days post-injection. The animals were followed until the onset of xenogeneic GVHD. (A) Experimental overview. (B) Kaplan-Meier Survival Analysis (Log-Rank) of the indicated cohorts of mice. The Holm-Sidak method for multiple comparisons (significance level 0.05) was performed, and showed significant differences between all groups. (C-E) Peripheral blood levels of human CD8$^+$ T cells were measured at Day 11 (C), Day 22 (D), and Day 30 (E) post-injection. Note that all IL-18-treated animals are not represented in panel E due to their death from acute GVHD.

doi:10.1371/journal.pone.0003289.g006
Supporting Information

Figure S1 Photomicrographs of lung and liver tissue sections taken from animals after xenogeneic GVHD induction. 10 million PBMC were transferred into NOG recipient mice followed by daily injections of IL-18 (15 µg) or PBS. Animals were euthanized on day 20 when recipients of PBMC and IL-18 were moribund. Sections were stained with hematoxylin and eosin. Left: Lung sections taken from PBMC or PBMC+IL-18 recipients, demonstrating severe inflammation and lymphocytic infiltration in IL-18 recipients. Right: Liver sections demonstrating marked periportal lymphocytic infiltrates in IL-18 recipients. Found at: doi:10.1371/journal.pone.0003289.s001 (5.49 MB TIF)

Figure S2 Photomicrographs of gut tissue sections taken from animals after xenogeneic GVHD induction. Sections were obtained from the animals described above in Suppl. Fig. S1. Left: low magnification. Middle: higher magnification. Right: highest magnification. Found at: doi:10.1371/journal.pone.0003289.s002 (5.14 MB TIF)

Acknowledgments

We thank Ella Ofori, Laura Pell and Michelle Kanther for expert technical assistance.

Figure 7. Human IL-18 Does Not Prevent Treg Suppressive Function in Vitro. Purified Tregs were expanded ex vivo for 18 days, and then tested in an in vitro suppression assay. Autologous PBMCs were labeled with CFSE and stimulated using anti-CD3 Ab coated beads and mixed with either no Tregs (top panel) or expanded Tregs at the indicated ratio (Treg:PBMC) in the presence or absence of recombinant human IL-18 (500 ng/ml). Histograms show the expansion of CD8+ cells on day 4 of culture. doi:10.1371/journal.pone.0003289.g007

Figure 8. Rapid Down Regulation of IL18-Rα on Tregs Following Cell Activation. Purified populations of Tregs, as well as bulk CD4 and CD8 cells, were activated with either αCD3/αCD28 beads, PHA (5 µg/ml), or PHA+recombinant human IL-18 (500 ng/ml). IL-18Rα expression was measured by flow cytometry. IL-18Rα MFI on effector CD4 cells (A), Tregs (B) and effector CD8 cells (C) is plotted before stimulation and 1, 2, and 3 days following stimulation. doi:10.1371/journal.pone.0003289.g008
Conceived and designed the experiments: RGC SMA GC JLR CHJ.

Author Contributions

24. Pittoni V, Bombardieri M, Spinelli FR, Scrivo R, Alessandri C, et al. (2002) 22. Boraschi D, Dinarello CA (2006) IL-18 in autoimmunity: review. Eur Cytokine

18. Xu B, Dong CY, Zhang F, Lin YM, Wu KF, et al. (2007) Large-scale in vitro expansion of polyclonal human CD4(+)CD25(high) regulatory T cells. Blood 104: 453–461.

25. Robertson MJ, Mier JW, Logan T, Atkins M, Koon H, et al. (2006) Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer. Clin Cancer Res 12: 4265–4273.

26. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, et al. (1997) Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interleukin-18 production. Blood 90: 2541–2548.

27. Christiansson SW, Greiner DL, Hesselson RA, Leff JH, Wager EJ, et al. (1997) Enhanced human CD14+ T cell engagement in beta2-microglobulin-deficient NOD-scid mice. J Immunol 158: 3578–3586.

28. Sludt LD, Lyons BL, Burzanski LM, Gott B, Chen X, et al. (2005) Human lymphoid and myeloid cell development in NOD/Ltlt/scid H.I.R gamma null mice engrafted with mobilized human hematopoietic stem cells. J Immunol 174: 6477–6489.

29. Kirkpatrick RB, McDevitt PJ, Matico RE, Nwagwu S, Trulli SH, et al. (2003) A diverse array of co-stimulatory molecules: T cell. Mol Ther 15: 981–988.

30. Heryzk HJ, Soom JM, Maier CC, Gore ER, Narayanan PK, et al. (2002) Immunopharmacology of recombinant human interleukin-18 in non-human primates. Cytokine 30: 38–48.

31. Suhoki MM, Golovina TN, Aqui NA, Varela-Rohena A, et al. (2007) Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. J Exp Med 198: 224–252.

32. Takachi MA, Nakashima Y, Sano O, Ohta T, Ikeda M, et al. (1997) Immunohistochemical and immuno-electron-microscopic detection of interferon-gamma-producing cells in mouse intestinal epithelial cells. Cell Tissue Res 289: 499–503.

33. Trenado A, Sudres M, Tang Q, Maury S, Charlotte F, et al. (2006) Ex vivo expanded CD4(+)CD25(+) immunoregulatory T cells prevent graft-vs-host disease by inhibiting activation/differentiation of pathogenic T cells. J Immunol 178: 1266–1273.

34. Dinarello CA (1999) IL-18: A TH1-inducing, proinflammatory cytokine and studies on the biologic activities of the protein. J Immunol 156: 4275–4279.

35. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M (2004) Interleukin-18 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 178: 1266–1273.

36. Hoffmann P, Erman J, Edinger M, Mathew CG, Surob 4265–4273.

37. Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wager EJ, et al. (2006) Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer. Clin Cancer Res 12: 4265–4273.

38. Liu X, Dong CY, Zhang F, Lin YM, Wu KF, et al. (2007) Large-scale in vitro expansion of polyclonal human CD4(+)CD25(high) regulatory T cells. Blood 104: 453–461.

39. Dinarello CA (2007) Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephrol 27: 98–114.

40. Logan TF, Robertson MJ (2006) Interleukins 18 and 21: biology, mechanisms of action, and clinical efficacy. Curr Opin Pharmacol 6: 114–119.

41. DiNarce LA (2009) IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103: 11–24.

42. Reddy P, Teshima T, Takakura M, Ordemann R, Liu C, et al. (2001) Interleukin-18 regulates acute graft-versus-host disease lethality. Blood 99: 3493–3499.

43. Dinarello CA (1999) IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103: 11–24.

44. Iwai Y, Hemmi H, Mizenina O, Kuroda S, Suda K, et al. (2008) An IFN-γ-regulatory molecule that controls T cell functions. Proc Natl Acad Sci USA 105: 17631–17636.

45. Dinarello CA (2007) Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephrol 27: 98–114.

46. Dinarello CA (2007) Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephrol 27: 98–114.

47. DiNarce LA (2009) IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103: 11–24.

48. Dai SM, Shan ZZ, Xu H, Nishioka K (2007) Cellular targets of interleukin-18 in diseases. Semin Nephrol 27: 98–114.

49. Greene CM, Meachery G, Taggart CC, Rooney CP, Coakley R, et al. (2000) IL-18 effects on T cell subsets. PLoS ONE 3: e2494.

50. Iwai Y, Hemmi H, Mizenina O, Kuroda S, Suda K, et al. (2008) An IFN-γ-regulatory molecule that controls T cell functions. Proc Natl Acad Sci USA 105: 17631–17636.

51. DiNarce LA (2009) IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103: 11–24.

52. Reddy P, Teshima T, Takakura M, Ordemann R, Liu C, et al. (2001) Interleukin-18 regulates acute graft-versus-host disease lethality. Blood 99: 3493–3499.
50. Tedeschi A, Lorini M, Suli C, Asero R (2007) Serum interleukin-18 in patients with chronic ordinary urticaria: association with disease activity. Clin Exp Dermatol 32: 568–570.

51. Efthimiou P, Kontzias A, Ward CM, Ogden NS (2007) Adult-onset Still’s disease: can recent advances in our understanding of its pathogenesis lead to targeted therapy? Nat Clin Pract Rheumatol 3: 329–335.

52. Hultgren O, Andersson B, Hahn-Zoric M, Almroth G (2007) Serum concentration of interleukin-18 is up-regulated in patients with ANCA-associated vasculitis. Autoimmunity 49: 329–331.

53. Lin YJ, Wan L, Sheu JJ, Huang CM, Lin CW, et al. (2008) A/C polymorphism in the interleukin-18 coding region among Taiwanese systemic lupus erythematosus patients. Lupus 17: 124–127.

54. Takada H, Ohiga S, Mizuno Y, Suminobe A, Matsuzaki A, et al. (1999) Oversecretion of IL-18 in haemophagocytic lymphohistiocytosis: a novel marker of disease activity. Br J Haematol 106: 182–189.

55. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. Journal of Experimental Medicine 199: 971–979.

56. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, et al. (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194: 823–832.

57. Zhang L, Conejo-Garcia JR, Katsanos D, Gimotty PA, Massobrio M, et al. (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348: 203–213.

58. Sato E, Olson SH, Abu J, Bundy B, Nishikawa H, et al. (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102: 18538–18543.

59. Hoik FS, Butler M, Obie DA, Seiden MV, Halaska FG, et al. (2008) Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A 105: 3005–3010.

60. Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116: 1935–1945.

61. June CH (2007) Principles of adoptive T cell cancer therapy. J Clin Invest 117: 1204–1212.

62. Woo-EY, Chu CS, Goletz TJ, Schlienger K, Coukos G, et al. (2001) Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non small cell lung cancer and late-stage ovarian cancer. Cancer Res 61: 4766–4772.

63. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, et al. (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213: 131–145.

64. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5: 263–274.

65. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117: 1167–1174.