Synthesis, Structure, and UV–Vis Characterization of Antimony(III) Phthalocyanine: [(SbPc)$_2$(Sb$_2$I$_8$)(SbBr$_3$)]

Ryszard Kubiak and Jan Janczak *

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland; r.kubiak@intibs.pl

Abstract: A new antimony(III)–phthalocyanine complex with the formula of [(SbPc)$_2$(Sb$_2$I$_8$)(SbBr$_3$)]$_2$ has been obtained in the reaction of pure antimony powder with phthalonitrile under the oxidation conditions by iodine monobromide vapors. The complex crystallizes in the centrosymmetric space group of the triclinic system. Both independent (SbPc)$^+$ units exhibit non-planar conformation, since the Sb(III) is larger than the equilibrium cavity size of the ring and cannot be accommodated without its expansion; thus, the metal protrudes out of the cavity, forming a saucer shape. The centrosymmetric anionic unit of the crystal consists of two (Sb$_2$I$_8$)$^{2-}$-interacted anionic units forming (Sb$_4$I$_{16}$)$^{4-}$ anionic complex that interacts with two SbBr$_3$ molecules to form [Sb$_9$I$_{16}$Br$_6$]$^{4-}$ anionic aggregate. Each [Sb$_9$I$_{16}$Br$_6$]$^{4-}$ anionic aggregate is surrounded by four (SbPc)$^+$ cations forming a supramolecular centrosymmetric (SbPc)$_3$[Sb$_9$I$_{16}$Br$_6$] complex. Translationally related (SbPc)$_4$[Sb$_9$I$_{16}$Br$_6$] molecules form a stacking structure along the [100] and [011] directions with N$_4$−N$_4$ distances of 3.55 and 3.53 Å, respectively, between the back-to-back-oriented saucer-shaped (SbPc)$^+$ units. The interaction between the building units of the crystal was analyzed using the Hirshfeld surface and the analysis of the 2D fingerprint plots. The UV–Vis absorption spectra of crystal 1 were taken in CH$_2$Cl$_2$ and toluene solutions in the concentration range from 10^{-5} to 10^{-6} mol/L. No significant changes related to aggregation in solutions were observed. The Q-band in toluene solution is red shifted by ~15 nm in comparison to that in CH$_2$Cl$_2$ solution. Oxidation of (SbPc)$_4$[Sb$_9$I$_{16}$Br$_6$] yields SbVPc derivative. Both SbIII and SbV phthalocyanine derivatives absorb near infrared light (600–900 nm), which should be intriguing from the point of view of potential use as photosensitizers for PDT and as an infrared cut filter for plasma display and silicon photodiodes.

Keywords: antimony(III) phthalocyanine; crystal structure; Hirshfeld surface; oxidation; UV–Vis spectroscopy

1. Introduction

Phthalocyanine and its metal complexes are still very intensively studied due to their various technological applications. The initial interest in them resulted from their deep and intense color; hence, they were used as pigments in the plastic industry and as dyes in the textile industry [1–9]. The dyeing properties of metallophthalocyanines result from their structure and very strong characteristic optical absorption in the visible region, the so-called Q band, which is characteristic for a macrocyclic tetrapyrrole ring with an 18π-electron-conjugated tetrapyrrole macrocycles (Scheme 1) [10]. The molar extinction coefficient of the Q-band of metal-free porphyrin, is 1.71×10^5 dm3·mol$^{-1}$·cm$^{-1}$ at 407 nm, and for metal-free phthalocyanine it is 2.766×10^5 dm3·mol$^{-1}$·cm$^{-1}$ in the visible spectral region (669 nm), and they may vary significantly depending on the solvents [11]. For metalloporphyrins and metallophthalocyanines, the molar extinction coefficient varies depending on the central metal as well as on the solvent in the wide range, for example, for the zinc porphyrin and zinc phthalocyanine the molar extinction coefficient is 5.74×10^5 dm3·mol$^{-1}$·cm$^{-1}$ at 422.8 nm and 2.818×10^5 dm3·mol$^{-1}$·cm$^{-1}$ at 674 nm, respectively [12,13]. The molar
extinction coefficients of several metal(II) phthalocyanines in various solvents derived from the intensities of the Q-band were recently published [14].

Scheme 1. Metalloporphyrins (a) and metallophthalocyanines (b) showing the 18π-electron tetrapyrrole macrocycle (in red). For metal-free porphyrin or metal-free phthalocyanine, M is two hydrogens.

For antimony(III)–phthalocyanine derivatives (Scheme 2) in ethanol solution, the molar extinction coefficient is 1.059×10^5 and 1.717×10^5 dm3·mol$^{-1}$·cm$^{-1}$ at \sim730 nm for unsubstituted Sb(III) phthalocyanine and 1.06×10^5 dm3·mol$^{-1}$·cm$^{-1}$ at \sim740 nm for octa-substituted Sb(III) phthalocyanine, whereas for Sb(V) phthalocyanine, the molar extinction coefficient is 1.908×10^5 dm3·mol$^{-1}$·cm$^{-1}$ at 699 nm [15,16].

Scheme 2. Examples of some Sb(III) and Sb(V) phthalocyanines (-OR = C$_6$H$_{5}$O- or tert-butylo-).

Further interest of metallophthalocyanines results from their interesting properties, such as electronic, photonic, and photovoltaic that have already found industrial applications in many instruments or chemical processes, including catalysis, gas sensors, solar cells, charge-generating materials, optical data storage, infrared cut-off filters, active matrix displays, light organic-emitting diodes (OLED), organic photovoltaics (OPVs), etc. [17–27]. Strong and intense absorption of light by metal phthalocyanines in the so-called therapeutic window, namely in the near-infrared (NIR) region of visible light (600–900 nm), proved to be promising for photodynamic cancer therapy (PDT) in which they can be used as photosensitizers [28–35].

The physical and chemical properties of metallophthalocyanines are varied by the structure of the macrocyclic ligand with the extended π-electron delocalization system as well as by the central metal. Planar metallophthalocyanines with 18π electrons conjugate form a stacking structure in the solid state stabilized by π–π interactions, and this limits their solubility in the most commonly used organic solvents and undergo molecular aggregation [36]. Aggregation phenomena are common in chemistry of phthalocyanines and are known to give rise to significant changes in their physical properties [37–39] and may arouse interest from the point of view of supramolecular chemistry [40]. Metallophthalocyanines containing heavy atoms with too large radii to fit into the phthalocyanine core...
are nonplanar and lead to the reduction of $\pi-\pi$ interactions and improve the intersystem crossing [41], resulting in the improvement in photophysical and photochemical properties as well as improve their solubility due to the reduction of molecular aggregation, resulting from changes in the electronic structure of the molecule as well as due to the dipole moment of the non-planar molecule [42].

A large number of metallophthalocyanine derivatives have so far been studied; however, the metallophthalocyanines with group 15 elements, unlike porphyrins analogues [43–47], were ignored for a long time until the first derivatives of bismuth and antimony were identified [48–51], and their structural characterizations are still less explored [52–64]. The variable valency of these metals depending on the reaction conditions (III or V) can lead to the formation of various MPc derivatives. SbPc derivatives can be promising candidates for new drugs because they are stable, powerful electron donors/acceptors [65,66], and some derivatives undergo facile Sb$^{\text{III}}$/Sb$^{\text{V}}$ conversion under mild conditions [67,68]. Their use as drugs requires further research on their biocompatibility and effectiveness as well as their toxicity.

In this work, we report synthesis and X-ray structural characterization of a novel antimony(III) phthalocyanine, [(Sb$^{\text{III}}$Pc)$_2$(Sb$_2$I$_8$(SbBr$_3$)], obtained under an iodine monobromide vapor atmosphere. The Sb$^{\text{III}}$ cation with a radius of about 0.90 Å [69] is larger than the size of the ring cavity and cannot be accommodated without ring expansion; therefore, the formation of non-planar derivatives of Sb$^{\text{III}}$Pc can be expected. The antimony(III)phthalocyanine complexes can be oxidized to Sb$^{\text{V}}$Pc derivatives. In addition, the obtained antimony(III) phthalocyanine and its oxidized Sb$^{\text{V}}$Pc derivative, as described below, exhibits absorption of a wide range of visible light. Therefore, this should be of interest to those who work not only with dyes and pigments but also with solar cells and charge-generating material. It should be noted that antimony-phthalocyanine derivatives due to strong absorption of light in the therapeutic window may be attractive from the viewpoint of their potential application as a photosensitizer for PDT [70–74].

2. Experimental Section

2.1. General Procedure

Phthalonitrile (98%), iodine monobromide (98%), and antimony (99.999%) were obtained from Merck (Darmstadt, Germany) and used as received. The composition of the obtained crystals was checked with energy dispersive spectroscopy (EDS) (FEI company, Thermo Fisher Scientific, Waltham, MA, USA). EDS spectra were acquired and analyzed using an EDAX Pegasus XM4 spectrometer with an SDD Apollo 4D detector mounted on a FEI Nova NanoSEM 230 microscope. In addition, the elemental analysis was also carried out with a PerkinElmer 240 elemental analyzer (Waltham, MA, USA). The Fourier transform infrared spectra were recorded between 4000 and 450 cm$^{-1}$ on a Bruker IFS 113 V FTIR (Bruker Optik GmbH, Leipzig, Germany) in nujol mull (Figure S1, in Supplementary Materials). Measurements of the UV–Vis spectra were carried out at room temperature using an Agilent UV–Vis/NIR Cary 5000 spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA). The UV–Vis spectra were recorded in CH$_2$Cl$_2$ and toluene solutions with concentrations ranging from 1×10^{-5} to 1×10^{-6} mol/L.

2.2. Synthesis [(Sb$^{\text{III}}$Pc)$_2$(Sb$_2$I$_8$(SbBr$_3$)]$_2$

The crystals of the [(Sb$^{\text{III}}$Pc)$_2$(Sb$_2$I$_8$(SbBr$_3$)]$_2$ (1) were isolated as a product of the reaction of Sb (0.1218 g, 1.0 mmol) with phthalonitrile (0.51252 g, 4 mmol) under iodine monobromide vapor according to a slightly modified method described elsewhere [75]. The powder Sb and phthalonitrile (in a molar proportion of 1:4) were mixed with iodine monobromide (2.068 g, 10.0 mmol) and pressed into the pellets. The pellets were inserted into an evacuated glass ampoule and sealed. The ampoule was heated at 240 °C for one day, and next, it was cooled to room temperature. After such a process, good quality single crystals of [(Sb$^{\text{III}}$Pc)$_2$(Sb$_2$I$_8$(SbBr$_3$)] suitable for the X-ray analysis were formed. Anal.
Found: C, 26.51; Br, 8.26; I, 35.21; N, 7.72, and Sb, 21.20%. Calc. for C₆₄H₃₂Br₃I₈N₁₆Sb₅: C, 26.61; Br, 8.30; I, 35.14; N, 7.76; Sb, 21.07; and H, 1.12%.

2.3. X-ray Crystallography

X-ray intensity data collection for the [(Sb^{III}Pc)₂(Sb₂I₈)(SbBr₃)]—(I) crystal was collected using graphite monochromatic MoKα radiation on a four-circle θ geometry Xcalibur diffractometer with Sapphire2 area CCD detector. Data collections were made using the CrysAlis CCD program [76]. Integration, scaling of the reflections, correction for Lorenz and polarization effects, and absorption corrections were performed using the CrysAlis Red program [76]. The structures were solved by the direct methods using SHELXT-2014/7 [77] and refined using the SHELXL-2018/3 program [78]. The hydrogen atoms joined to aromatic carbon atoms were introduced in their geometrical positions and treated as rigid. The final difference Fourier maps showed no peaks of chemical significance. Details of the data collection parameters, crystallographic data, and final agreement parameters are collected in Table 1. Visualizations of the structures were made with the Diamond 3.0 [79].

Table 1. Crystal data and final refinement parameters for 1.

Formula	C₆₄H₃₂Br₃I₈N₁₆Sb₅
Molecular weight	2888.73
Temperature (K)	295(2)
Space group	P₁
a, b, c (Å)	14.399(2), 15.344(3), 18.992(3)
V (Å³)	3757.4(12)
Z	2
D_{calc} (g cm⁻³)	2.553
Crystal size (mm³)	0.250 × 0.125 × 0.080
µ (mm⁻¹)	6.707
Absorption correction	multi-scan
T_{max}/T_{min}	0.4754/1.000
Total/Unique/Obs refls	23,647/14,738/7721
R_{int}	0.0271
R₁ [F² > 2σ(F²)]	0.0476
wR [F² all refls]	0.0957
S	1.001
Δρ_{max} (e Å⁻³)	2.072, −1.286

1 R = Σ ||F_o|| − ||F_c|| / Σ||F<sub>c</sub||; wR = [Σ w(F² − F²)]/[Σ wF²]^{1/2}; w^{−1} = σ²(F²) + (aP)² where P = (F² + 2F²)/3.

The a parameter is 0.0263.

2.4. Hirshfeld Surface Analysis

Hirshfeld surface analysis and 2D fingerprint plots as well as percentage contributions for various intermolecular contacts in the investigated crystals, were calculated using the Crystal Explorer Ver. 3.1 program package [80].

2.5. Theoretical Calculations

The optimized geometry of the (SbPc)⁺ unit was performed based on the experimental X-ray geometry using the DFT and PBEPBE functional and LAN2MB basis sets using the Gaussian 2016 program package [81].

3. Results and Discussion

3.1. Synthesis and Initial Characterization

The preparation method leads directly to good-quality [(Sb^{III}Pc)₂(Sb₂I₈)(SbBr₃)]—(I) single crystals. During prolonged heating, the liquid phthalonitrile undergoes catalytic tetramerization forming the phthalocyanine units while accepting the two electrons from
the antimony present in the reaction forming (SbIII-Pc)+ cationic units (Scheme 3). Simultaneously, the iodine monobromide accepted the third electron as well as oxidized the excess of antimony present in the reaction forming the centrosymmetric \([[(Sb_2I_8)(SbBr_3)]_2]^{4-}\) anionic complex. These oppositely charged units interact with each other, leading to nu-

\[\text{C}^\equiv\text{N}\]

vibrations in the IR spectrum of phthalonitrile at \(\sim 2200 \text{ cm}^{-1}\) (Figure S1 in Supplementary Materials). The greater displacement of Sb(III) from the N4-isoindole plane in the (SbPc)\(^+\) unit performed by DFT calculations also show its non-planar conformation with the Sb atom displaced by 0.886 Å out of N4-isoindole plane (See Table S1 in Supplementary Materials). The antimony-phthalocyanine complex crystallizes in the centrosymmetric \([[(Sb_2I_8)(SbBr_3)]_2]^{4-}\) crystals have limited solubility in methanol and ethanol and dissolve much better in pyridine, DMF, DMSO, toluene, benzene, and other aromatic solvents. Contact with concentrated inorganic acids, such as H\(_2\)SO\(_4\) or HNO\(_3\), or their mixture or mixture with concentrated HCl leads to demetallation, resulting in the formation of metal-free phthalocyanine in the \(\alpha\)-form [86] and appropriate salt.

3.2. Structural Characterization

The obtained antimony-phthalocyanine complex crystallizes in the centrosymmetric space group of the triclinic system. Refinement of the structure of the title compound (I) shows that both ionic parts of the crystal building blocks, i.e., in (SbPc)\(^+\) as well as in the \([[(Sb_2I_8)(SbBr_3)]_2]^{4-}\), contain the antimony in the same oxidation state (Sb\(^{3+}\)). The molecular structure of the asymmetric unit is illustrated in Figure 1.

Both independent (SbPc)\(^+\) units exhibit similar non-planar conformation, since the Sb\(^{3+}\) (ionic radius of about 0.90 Å [69]) is larger than the equilibrium cavity size of the ring and cannot be accommodated without ring expansion; thus, the metal protrudes out of the Pc-cavity, forming a domed shape. Each of the positively charged atoms, Sb4 and Sb4B, of the cations (SbPc)\(^+\) is bound to four isoindole N atoms of Pc macrocycles with distances in the range from 2.146(8) to 2.206(8) Å (Table 2) and lies outside the plane defined by these N atoms, i.e., 0.992(1) and 0.994(1) Å for Sb4 and Sb4B, respectively. The optimized geometry of the (SbPc)\(^+\) unit performed by DFT calculations also show its non-planar conformation with the Sb atom displaced by 0.886 Å out of N4-isoindole plane (See Table S1 in Supplementary Materials). The greater displacement of Sb(III) from the N4-plane in the crystal is caused by the interaction of the positively polarized Sb\(^{3+}\) center of (SbPc)\(^+\) with the (Sb6I8Br6)\(^{4-}\) counterion.

Scheme 3. Synthesis of antimony phthalocyanine under oxidation condition of iodine monobromide vapor.

It should be noted that the heating time should not be extended too long, as it leads to partial decomposition of the phthalocyanine complex formed and to the formation of the phthalonitrile trimer [82]. Elemental analysis of the obtained crystals gave a satisfactory result, which is close to the calculated one. The sharp peak for the C\(\equiv\)N stretching vibrations in the IR spectrum of phthalonitrile at \(\sim 2200 \text{ cm}^{-1}\) disappeared after tetramerization into phthalocyanine moiety [83,84]. The IR spectrum of (SbPc)(I\(_1\)) \(\frac{1}{2}(I_2)\) (Figure S1 in Supplementary Materials) showed vibration peaks between 700 cm\(^{-1}\) and 1500 cm\(^{-1}\), which can be attributed to the skeletal vibration of the phthalocyanine macrocycle [85].
Figure 1. Asymmetric unit of 1 showing two independent (SbPc)+ units and (Sb3I8Br3)2−.

The anion of the complex consists of four distorted Sbi₆ octahedra lined together by μ₂ and μ₃ bridging I atoms into a (Sb₄I₁₆)⁴⁻ anion that weakly interacts with two SbBr₃ molecules forming the centrosymmetric (Sb₆I₁₆Br₆)⁴⁻ counterion complex (Figure 2). Generally, the Sb–I bond lengths fall into two groups, namely shorter Sb–I bonds with terminal I atoms and longer Sb–I bonds involving the bridging I atoms (Table 2). However, in the (Sb₆I₁₆Br₆)⁴⁻ anion, two different bridging I atoms exist. Atoms I1 and I2 bridge three Sb atoms, while atoms I3, I4, and I5 bridge only two Sb atoms. The Sb–Br bonds with distances ranging from 2.5659(14) to 2.6888(12) Å are shorter, as expected, than the Sb–I bonds (Table 2) and correlate with their covalent or ionic radii of I and Br [87,88]. Looking in more detail at the differences between the Sb–I and Sb–Br bond lengths and at the coordination geometry around atoms Sb1, Sb2, and Sb3, it is clear the Sb1 and Sb2 atoms are coordinated to the six I atoms through forces of different strength, whereas Sb3 coordinates to three Br and the three I atoms. Atom Sb1 links two I atoms with relatively short Sb–I bonds, two I atoms with intermediate Sb–I values, and two I atoms with relatively long Sb–I bonds, the longest being the Sb1⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ bond 3.4281(12) Å (Table 2).

The Sb2 atom in the coordination environment has one terminal I atom with the short Sb–I bond (2.7374(11) Å), two μ₂-bridged, and three μ₃-bridged I atoms with intermediate and longest Sb–I bonds (Table 2). The Sb3 links three Br atoms, all Br are terminal, with relatively short Sb–Br bond lengths, and the two μ₂-bridged and one μ₃-bridged I atoms with relatively long Sb–I bonds above 3.3 Å. Thus, the [Sb₆I₁₆Br₆]⁴⁻ ion can be regarded as being composed of three symmetrically equivalent pairs of units, viz. [SbI₆]²⁻, SbI₃, and SbBr₃ units. However, the mutual orientation of the [SbI₆]²⁻, SbI₃, and SbBr₃ units related by an inversion center leads to the formation of an [Sb₆I₁₆Br₆]⁴⁻ counter-ion in which all Sb atoms have distorted octahedral coordination environments (Figure 2).
Table 2. Selected bond lengths and angles (Å, °) in crystal of 1.

(SbPc)+ Cations	(SbI6Br6)4− Anion
Sb4–N2 2.191(8)	Sb4–N2 2.191(8)
Sb4–N4 2.178(8)	Sb4–N4 2.178(8)
Sb4–N6 2.190(9)	Sb4–N6 2.190(9)
Sb4–N8 2.206(8)	Sb4–N8 2.206(8)
Sb3–Br1 2.6888(12)	Sb3–Br1 2.6888(12)
Sb3–Br2 2.5659(14)	Sb3–Br2 2.5659(14)
Sb3–Br3 2.6321(15)	Sb3–Br3 2.6321(15)
Sb4–I5 3.6283(14)	Sb4–I5 3.6283(14)
Sb4–I7 3.6115(14)	Sb4–I7 3.6115(14)
Sb1–I1 3.1765(14)	Sb1–I1 3.1765(14)
Sb2–I1 3.1856(11)	Sb2–I1 3.1856(11)
Sb2–I3 2.9833(13)	Sb2–I3 2.9833(13)
Sb1–I3 3.2329(11)	Sb1–I3 3.2329(11)
Sb1–I4 2.8302(10)	Sb1–I4 2.8302(10)
Sb2–I4 2.8321(10)	Sb2–I4 2.8321(10)
Sb3–I2 3.3610(10)	Sb3–I2 3.3610(10)
Sb2–I6 2.7374(11)	Sb2–I6 2.7374(11)

Deviation of Sb from N4-plane 0.992(1) Deviation of Sb from N4-plane 0.994(1)

Terminal Sb–I
Sb1–I7 2.7668(13) Sb1–I8 2.6965(12) Sb2–I6 2.7374(11)

Bridged μ2
Sb1–I3 3.2329(11) Sb2–I3 2.9833(13) Sb1–I5 2.8744(11)
Sb3–I5 i 3.4481(10) Sb2–I4 2.8321(10) Sb3–I4 3.31901(10)

Bridged μ3
Sb1–I1 3.1765(14) Sb2–I1 3.1856(11) Sb2–I2 3.4281(12)
Sb2–I2 3.0061(13) Sb1–I2 3.4281(12) Sb3–I2 3.3531(11)

Terminal Sb–Br
Sb3–Br1 2.6888(12) Sb3–Br2 2.5659(14) Sb3–Br3 2.6321(15)
I8–Sb1–I7 96.78(4) I8–Sb1–I5 90.48(4) I7–Sb1–I5 98.42(4)
I8–Sb1–I1 93.88(4) I7–Sb1–I1 166.21(3) I5–Sb1–I1 90.20(3)
I8–Sb1–I3 91.83(3) I7–Sb1–I3 85.88(4) I5–Sb1–I3 174.85(3)
I1–Sb1–I3 85.05(3) I1–Sb2–I4 97.06(3) I6–Sb2–I3 90.66(4)
I4–Sb2–I3 88.68(3) I6–Sb2–I2 91.49(3) I4–Sb2–I2 93.83(4)
I3–Sb2–I2 176.48(3) I6–Sb2–I1 90.88(3) I4–Sb2–I1 171.80(3)
I3–Sb2–I1 89.16(3) I2–Sb2–I1 88.02(3) I2–Sb3–Br3 92.11(5)
Br2–Sb3–Br1 97.60(5) Br3–Sb3–Br1 96.8 (5) Sb1–I1–I2 91.46(3)

Short Contacts between (SbPc)+ Units and (SbI6Br6)4− Anion
Sb4–I1 i 3.5083(13) Sb4–I2 3.4671(13) Sb4–I3 3.6115(14)
Sb4B–I5 3.6283(14) Sb4B–I7 3.4969(11) Sb4B–Br3 i 3.5941(18)

Symmetry Code: (i) −x, −y, −z + 1.

Figure 2. View of the anionic unit of 1.

A similar pattern concerning the Sb–I bond lengths is also observed in the [SbI6Br6]4− [59], [Sb4I4]2− [62], and [Sb4I2]3− [63] counter-ions of antimony(III)-phthalocyanine complexes. In the first complex, the [SbI6Br6]4− ion consists of four distorted Sb6 octahedra, in the second, the [Sb4I4]2− ion consists of two pairs of deformed Sb6 octahedra and distorted square pyramidal Sb5 polyhedra, while in the third, the [Sb4I2]3− ion consists of six di-
torted SbI₆ octahedra similar as in the present compound in which the Br atoms have been replaced by I atoms. A similar metal-polyheterohalide anion can be found in the bismuth(III)–phthalocyanine derivative whose [Bi₆Cl₁₁I₁₁]^{4−} anion consists of edge-shared distorted octahedra BiI₃Cl₃ [64].

In the crystal, there seems to be significant ionic attraction between the (SbPc)^+ cations and [Sb₆I₁₆Br₆]^{4−} complex counterions. The influence of the ionic attraction between the oppositely charged (SbPc)^+ and [Sb₆I₁₆Br₆]^{4−} ions is clearly manifested in the Sb–N(isoindole) coordination, leading to the molecular symmetry of the (SbPc)^+ unit being close to C₄, rather than the D₄ᵥ symmetry that characterizes the conformation in solution. The basic packing unit includes two pairs of (SbPc)^+ macrocycles associated by an inversion centre and an anionic [Sb₆I₁₆Br₆]^{4−} complex; thus, each anion is surrounded by four (SbPc)^+ cations (Figure 3).

Each of the two independent (SbPc)^+ cations interact with the [Sb₆I₁₆Br₆]^{4−} counterion in a slightly different manner. The Sb₄ of (SbPc)^+ interacts with three iodine atoms (I₁, I₂ and I₃) while the Sb₄B of (SbPc)^+ interacts with two iodines (I₅ and I₇) and one bromine (Br₃) with the contacts Sb–I and Sb–Br being much longer than the sum of the covalent radii of Sb (1.39 Å), I (1.40 Å) and Br (1.20 Å) [87] but shorter than the sum of the van der Waals radii Sb and I of ~4.3 Å or Sb and Br of ~4.1 Å [88]. The average Sb–I distance of 3.578 Å and the Sb–Br distance of 3.5941(18) Å between the Sb of (SbPc)^+ units and I or Br atoms of [Sb₆I₁₆Br₆]^{4−} complex point that the interaction between (SbPc)^+ units and [Sb₆I₁₆Br₆]^{4−} anion is intermediate between ionic and covalent. The centrosymmetric [(SbPc)₄(Sb₄I₁₆Br₆)] aggregates related by translation in crystal form a stacking structure along the [100] and [111] directions with back-to-back oriented (SbPc)^+ pairs (Figure 4).

Figure 3. View of the anionic [Sb₆I₁₆Br₆]^{4−} complex surrounded by four (SbPc)^+ in the crystal of 1.

The interplanar N₄-isooindole−N₄-isooindole distance within the stack is ~3.5 Å, which indicates an interaction between the non-planar (SbPc)^+ macrocycles with an intermediate force. The π–π interaction and overlapping of the π clouds of (SbPc)^+ macrocycles in the present crystal 1 is significantly lower compared to that found in the normal planar M(II)Pc structures. Decreasing of π–π interactions together with the ionic character of the (SbPc)^+ and [Sb₆I₁₆Br₆]^{4−} units result in improvement to its solubility as well as affects its optical spectroscopic properties.
Where the atoms make intermolecular contacts closer than the sum of van der Waals radii, the contacts are highlighted in red on the HS mapped with the nearest nucleus outside the surface, and the van der Waals radii of the atoms, where \(d \) is the distance from a point on the surface to the nearest nucleus outside the surface, and \(d \) is distance from a point on the surface to the nearest nucleus inside the surface and 2D-fingerprint plots of each units of crystal, i.e., both independent (SbPc)\(^+\) units and the \([\text{Sb}_{6}\text{I}_{16}\text{Br}_6]^{4-}\) counterion, and are shown in Figure 5. Where the atoms make intermolecular contacts closer than the sum of van der Waals radii, the contacts are highlighted in red on the HS mapped with the \(d_{\text{norm}} \); longer contacts are blue and the contacts around the sum of van der Waals radii are white. As can be seen from Figure 5, the HS analysis of both independent (SbPc)\(^+\) units in the crystal reveals that the (SbPc)\(^+\) units interact differently. The HS of both (SbPc)\(^+\) units exhibit that the dominant contacts are H–H interactions (dispersive forces) with a contribution of 36.7% and 45.0% in the HS of (SbPc)\(^+\) units containing the Sb4 and Sb4B, respectively. The interaction between the (SbPc)\(^+\) units with the \([\text{Sb}_{6}\text{I}_{16}\text{Br}_6]^{4-}\) counterion is manifested in the HS, and for the 2D-fingerprint plots that show the H–I contacts for the (SbPc)\(^+\) unit containing Sb4, the H–I contact contribution is greater (9.0%) than for the Sb4B unit (3.4%). However, in the HS of the second (SbPc)\(^+\) unit, the H–Br interactions with a contribution of ~4.5% are observed, but interactions of this type (H–Br) are absent in the HS for the first (SbPc) unit containing Sb4. Similar correlations as for H–I and H–Br are observed in the C–I and C–Br interactions in the HS of the (SbPc)\(^+\) units. The H–C/C–H and H–N/N–H interactions in the HS with

Figure 4. Packing of \([\text{SbPc})_4(\text{Sb}_{6}\text{I}_{16}\text{Br}_6)]\) showing a stacking structure in 1.

3.3. Hirshfeld Surface Analysis

To better understand the nature of the interactions between the components constituting the crystal 1, the Hirshfeld surface analysis and the analysis of the 2D fingerprint plots were performed. The Hirshfeld surface (HS) analysis and the analysis of 2D fingerprint plots are good tools that not only allow for qualitative analysis of the intermolecular interactions in the crystals [89–92], but also allow for quantitative analysis, i.e., allow the percentage contribution to the HS surface resulting from particular types of interactions between building blocks of the crystal 1 to be calculated. The 3D Hirshfeld surfaces are mapped via the normalized contact distance \((d_{\text{norm}})\) relative to both \((d_i)\) and \((d_i)\) and the van der Waals radii of the atoms, where \(d_i \) is the distance from a point on the surface to the nearest nucleus outside the surface, and \(d_i \) is distance from a point on the surface to the nearest nucleus inside the surface and 2D-fingerprint plots of each units of crystal, i.e., both independent (SbPc)\(^+\) units and the \([\text{Sb}_{6}\text{I}_{16}\text{Br}_6]^{4-}\) counterion, and are shown in Figure 5. Where the atoms make intermolecular contacts closer than the sum of van der Waals radii, the contacts are highlighted in red on the HS mapped with the \(d_{\text{norm}} \); longer contacts are blue and the contacts around the sum of van der Waals radii are white. As can be seen from Figure 5, the HS analysis of both independent (SbPc)\(^+\) units in the crystal reveals that the (SbPc)\(^+\) units interact differently. The HS of both (SbPc)\(^+\) units exhibit that the dominant contacts are H–H interactions (dispersive forces) with a contribution of 36.7% and 45.0% in the HS of (SbPc)\(^+\) units containing the Sb4 and Sb4B, respectively. The interaction between the (SbPc)\(^+\) units with the \([\text{Sb}_{6}\text{I}_{16}\text{Br}_6]^{4-}\) counterion is manifested in the HS, and for the 2D-fingerprint plots that show the H–I contacts for the (SbPc)\(^+\) unit containing Sb4, the H–I contact contribution is greater (9.0%) than for the Sb4B unit (3.4%). However, in the HS of the second (SbPc)\(^+\) unit, the H–Br interactions with a contribution of ~4.5% are observed, but interactions of this type (H–Br) are absent in the HS for the first (SbPc) unit containing Sb4. Similar correlations as for H–I and H–Br are observed in the C–I and C–Br interactions in the HS of the (SbPc)\(^+\) units. The H–C/C–H and H–N/N–H interactions in the HS with
contributions of 17.3% and 5.9%, and 16.1% and 5.4%, respectively, are found in the SbPc units with Sb4 and Sb4B atoms, respectively. The contribution of the π–π interactions between the back-to-back-oriented pair of (SbPc)⁺ units, which correlate well with the C–C and C–N/N–C contacts in the HS of approximately 8.5% and 10.4% for (SbPc)₂ unit pairs containing Sb4 and Sb4B atoms, respectively, and is 2 ÷ 2.5 times smaller than in normal and planar metallophthalocyanine crystals in which these interactions reach about 22% [93].

The HS of the [Sb₆I₁₆Br₆]⁴⁻ unit shows small light-red areas resulting from the interaction of I–Sb and Br–Sb with the surrounding units (SbPc)⁺ with contributions of 6.8% and 1.4% in the HS. However, the main contribution to the HS results from the interactions of I–H and Br–H, which account for more than 50% of the HS area. The contribution in area of the HS of the (Sb₄I₁₆Br₆)⁴⁻ anion resulting from the I–C, Br–C, I–N, and Br–N interactions with a total share is about 40%. The deconvolution of the 2D-fingerprint plot illustrating the respective interactions for both independent (SbPc)⁺ units and for (Sb₄I₁₆Br₆)⁴⁻ counterion is shown in Figure S2 (in Supplementary Materials).

![Figure 5. Hirshfeld surface (a) and the 2D-fingerprint plots (b) for each building units of the crystal 1 and (c) percentage contributions of the respective interactions in the HS.](image-url)
3.4. UV–Vis Spectroscopy

To characterize the optical properties of the obtained antimony(III) phthalocyanine complex, [(SbPc)₄(Sb₆I₁₆Br₆)], the absorption UV–Vis electronic spectra were made in CH₂Cl₂ and toluene solutions (Figure 6). The ground state electronic absorption spectra of [(SbPc)₄(Sb₆I₁₆Br₆)] in CH₂Cl₂ and in toluene solutions show relatively sharp Q bands typical of unaggregated MPc complexes, as has been reported before for other antimony(III)–phthalocyanine derivatives [94,95]. The Q band in the spectrum of the [(SbPc)₄(Sb₆I₁₆Br₆)] complex in both solutions is broadened, and the half-width of this band is almost twice as wide as compared to the spectra of normal/flat M(II) Pc complexes [96–98], since the Sb(III) is larger than the equilibrium cavity size of the ring and cannot be accommodated without ring expansion; thus, the metal protrudes out of the cavity, forming a non-planar Sb(III) phthalocyanine complex. Thus, the symmetry of the (SbPc)⁺ complex unit in solution becomes D_{4h} symmetry that is lower than D_{14v} as for normal/planar MPc complexes in solutions [99]. Lowering of the symmetry of the (SbPc)⁺ allows for some so far forbidden transitions, and consequently, spectral splitting as well as a broadening is observed. The Q-band, an electronic transition from HOMO to LUMO of the phthalocyanine ligand in character, in the spectrum of the SbPc complex 1 in the CH₂Cl₂ solution is observed at ~725 nm (logε = 5.33), and the Q band in the spectrum in toluene solution is red shifted to ~740 nm (logε = 5.35), whereas for normal, planar and with D_{4h} symmetry of metal(II) phthalocyanines, the Q band is observed at almost the same wavelength (~670 nm) [100].

![Figure 6. Electronic absorption spectra of antimony(III) phthalocyanine (I), [(SbPc)₄(Sb₆I₁₆Br₆)], in toluene (black) and CH₂Cl₂ (red) solutions.](image_url)

The aggregation behavior of the investigated antimony(III)–phthalocyanine complex (I), [(SbPc)₄(Sb₆I₁₆Br₆)], was examined by varying the concentrations in both used solvents within the limits of the Beer–Lambert’s law. The aggregation of phthalocyanines, especially the planar metallophthalocyanines occurs in solution through coplanar association that makes the conversion of a monomer to higher order complexes. However, this antimony(III) phthalocyanine complex, due to the non-planarity of the (SbPc)⁺ unit and the partially ionic character of the complex, is better soluble in the most organic common solvents. The aggregation behavior of the [(SbPc)₄(Sb₆I₁₆Br₆)] complex was investigated in CH₂Cl₂ and toluene solutions with concentrations between 8×10^{-6} mol/L and 10^{-6} mol/L. Both solvents are characterized by a non-zero dipole moment, $\mu = 1.60$ D and $\mu = 0.36$ D for CH₂Cl₂ and toluene, respectively [101]. The antimony(III) phthalocyanine complex (I) has minimum aggregation in both solvents, as illustrated in Figure 7. With an increase in concentration, the intensity of absorption of the Q-band increased linearly, with no new band and wavelength shifts observed, which clearly evidenced that the aggregate species was not observed.
Figure 7. Optical absorption spectra of SbPc-complex 1 in CH$_2$Cl$_2$ (a) and in toluene (b) at various concentrations (8×10^{-6}–1×10^{-6} mol/L).

The ability of [(SbPc)$_4$(Sb$_6$I$_{16}$Br$_6$)] to oxidize by H$_2$O$_2$ in a methanol solution was investigated. Hydrogen peroxide as an oxidant of metallophthlocyanines was often used. Therefore, for oxidation of [(SbPc)$_4$(Sb$_6$I$_{16}$Br$_6$)] dissolved in methanol (concentration of 5×10^{-6} mol/L) to SbVPc derivative the H$_2$O$_2$ was also used. The changes in the absorption spectrum in the range of the Q band (500–900 nm) during the oxidation process were monitored over time (Figure 8).

Figure 8. Spectral changes during the oxidation by H$_2$O$_2$ of 5×10^{-6} mol [(SbPc)$_4$(Sb$_6$I$_{16}$Br$_6$)] in methanol. The Q bands at 724 nm and 697 nm are characteristic for the SbIII and for SbV phthalocyanines, respectively.

The Q band characteristic of SbIIIPc at 724 nm begins to decrease with the simultaneous appearance and increase in intensity of the Q band characteristic for SbVPc derivatives. Complete disappearance of the Q band from (SbIIIPc)$^+$ occurred after approximately 2 h. Oxidation of SbIII to SbV is associated with a reduction of the ionic radius from 0.90 to 0.64 Å [69], with the result that the too large SbIII ion protruding from the ring plane in (SbIIIPc)$^+$ after oxidation to SbVPc adapts to the size of the ring cavity. Thus, the SbV lies in the plane of the Pc ring. The smaller size and higher electronegativity lead to increasing the conjugation of the Pc’s HOMO with the metal 5 pz orbital [102], which results in lower charge density and energy of the Pc’s HOMO. The effect of this is the observed blue shifting
of spectral Q band positions (Figure 8). In the solution after oxidation of (SbIII\(\text{Pc}\))\(^+\) with \(D_{4h}\) symmetry by \(\text{H}_2\text{O}_2\), the [SbV\(\text{Pc}(\text{OH})_2\)]\(^+\) complex with OH groups in the trans positions with approximately \(D_{4h}\) symmetry is formed. A quite similar correlation between the Q bands was observed during the oxidation of the complex (SbPc)(I\(\text{I}_3\))·I\(\text{I}_2\)·Br\(\text{I}_6\) to [SbV\(\text{Pc}(\text{OH})_2\)]\(^+\), was also suggested by Knör [15], who studied the oxidation of (SbIII\(\text{Pc}\))F by hydrogen peroxide in an ethanol solution.

4. Conclusions

A new, low valence antimony–phthalocyanine complex under iodine vapor atmosphere, [(SbPc)\(_4\)(Sb\(\text{I}_6\)Br\(\text{I}_6\))]—(1), was obtained in the crystalline form. In the crystal, the (SbPc)\(^+\) unit is non-planar, since the Sb(III) is larger than the cavity size of the ring; thus, the metal protrudes out of the cavity, forming a saucer shape. The Hirshfeld surface analysis and the analysis of two-dimensional fingerprint plots show approximately 2.5 times lower \(\pi\)–\(\pi\) interaction between the partially overlapping and saucer-shaped phthalocyanine rings of (SbPc)\(^+\) units compared to normal, planar MPc’s. This improves its solubility. In the CH\(_2\)Cl\(_2\) solution, the Q band is observed at 725 nm, whereas in toluene solution this band is red shifted to 740 nm. Since the [(SbPc)\(_4\)(Sb\(\text{I}_6\)Br\(\text{I}_6\))] as a low valent metal of 15 main group phthalocyanine complex is similar to other Sb\(\text{V}\)–phthalocyanine derivatives, it does not fluorescence; therefore, it can be used as precursor in obtaining (after oxidation) the high valent Sb\(\text{V}\)–phthalocyanine derivatives, showing the fluorescence excitation spectral. Oxidation of the complex (SbII\(\text{Pc}\))\(^+\) with \(D_{4h}\) symmetry yields the [SbV\(\text{Pc}(\text{OH})_2\)]\(^+\) complex with OH groups in the trans positions with approximately \(D_{4h}\) symmetry. It should also be noted that the [(SbPc)\(_4\)(Sb\(\text{I}_6\)Br\(\text{I}_6\))] before and after the oxidation to the Sb\(\text{V}\)–phthalocyanine derivative show a characteristic UV–Vis absorption in the near-infrared range of 600–900 nm (i.e., in the therapeutic window), which should be intriguing from the point of view of potential use as an infrared cut-off filter for plasma displays, silicon photodiodes, solar cells, and charge-generating material as well as photosensitizers for semiconductor lasers or for PDT.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules27061839/s1. Additional material contains the experimental IR spectrum of 1, full optimized parameters for (SbPc)\(^+\) unit and figures illustrating the deconvolution of the 2D-fingerprint plots for individual types of interactions in 1. CCDC No. 2131217 contains the supplementary crystallographic data for 1. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 2 January 2022) or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336-033; or email: deposit@ccdc.cam.ac.uk.

Author Contributions: Conceptualization, R.K. and J.J.; formal analysis, R.K. and J.J.; investigation, R.K. and J.J.; X-ray analysis, J.J.; writing—original draft preparation, R.K. and J.J.; writing—review and editing, R.K. and J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank for the opportunity of making calculations with the Gaussian2016 program package in the Wroclaw Center for Network and Supercomputing (http://www.wcss.wroc.pl (accessed on 2 January 2022)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Herbst, W.; Hunger, K. Industrial Organic Pigments: Production, Properties, Applications; VCH: New York, NY, USA, 1993.
2. Gregory, P. Industrial Application of Phthalocyanines. J. Porhyr. Phthalocyanines 2000, 4, 432–437. [CrossRef]
3. Gregory, P. High-Technology Applications of Organic Colorants; CRC Press: Boca Raton, FL, USA, 1983.
4. Leznoff, C.C.; Lever, A.B.P. (Eds.) Phthalocyanines: Properties and Applications; VCH Publications: New York, NY, USA, 1989; Volume 1.
5. Leznoff, C.C.; Lever, A.B.P. (Eds.) Phthalocyanines: Properties and Applications; VCH Publications: New York, NY, USA, 1993; Volume 2.
6. Leznoff, C.C.; Lever, A.B.P. (Eds.) Phthalocyanines: Properties and Applications; VCH Publications: New York, NY, USA, 1996; Volume 3.
7. Leznoff, C.C.; Lever, A.B.P. (Eds.) Phthalocyanines: Properties and Applications; VCH Publications: New York, NY, USA, 1996; Volume 4.
8. Thomas, A. Phthalocyanine Research and Applications; CRS Press: Boca Raton, FL, USA, 1990.
9. Moser, F.H.; Thomas, A.L. The Phthalocyanines; CRC: Boca Raton, FL, USA, 1983.
10. Gouterman, M. Spectra of Porphyrins. J. Mol. Spectrosc. 1961, 6, 138–163. [CrossRef]
11. Falk, J.E. Porphyrins and Metalloporphyrins; Elsevier Pub. Co.: Amsterdam, The Netherlands; New York, NY, USA, 1964; p. 232.
12. Whalley, M. Conjugated macrocycles. Part XXXII. Absorption spectra of tetrazaporphyrins and phthalocyanines. Formation of pyridine salts. J. Chem. Soc. 1961, 61, 130–152. [CrossRef]
13. Barnett, G.H.; Hudson, M.F.; Smith, K.M. Concerning meso-tetraphenylporphyrin purification. J. Chem. Soc. Perkin Trans. 1 1975, 14, 1401–1403. [CrossRef]
14. Ghani, F.; Kristen, J.; Riegler, H. Solubility Properties of Unsubstituted Metal Phthalocyanines in Different Types of Solvents. J. Chem. Eng. Data 2012, 57, 439–449. [CrossRef]
15. Knörr, G. Synthesis and solution spectral properties of antimony(III) phthalocyanine and dihydroxantimony(V) phthalocyanine complexes. Inorg. Chem. 1996, 35, 7916–7918. [CrossRef]
16. Modibane, D.K.; Nyokong, T. Synthesis, photophysical and photochemical properties of octa-substituted antimony phthalocyanines. Polyhedron 2009, 28, 479–484. [CrossRef]
17. Wright, Gas adsorption on phthalocyanines and its effects on electrical properties. J. Prog. Surf. Sci. 1989, 31, 1–60. [CrossRef]
18. Bassoul, P.; Toupane, T.; Simon, J. Semiconductivity and gas-sensing properties of crown-ether-substituted lutetium bisphthalocyanines. Sens. Actuators B 1995, 26, 130–152. [CrossRef]
19. Torre, G.; Vázquez, P.; Aguilló-Lopez, F.; Torres, T. Phthalocyanines and related compounds: Organic targets for nonlinear optical applications. J. Mater. Chem. 1998, 8, 1671–1683. [CrossRef]
20. Shirk, J.S.; Pong, R.G.S.; Flom, S.R.; Heckmann, H.; Hanack, M. Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines. J. Phys. Chem. A 2000, 104, 1438–1449. [CrossRef]
21. Torre, G.; Vázquez, P.; Lopez, F.A.; Torres, T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 2004, 104, 3723–3750. [CrossRef] [PubMed]
22. Gu, D.; Chen, Q.; Shu, J.; Tang, X.; Fuxi, G.; Sten, S.; Liu, K.; Xu, X. Optical recording performance of thin films of phthalocyanine compounds. Thin Solid Films 1995, 275, 88–93. [CrossRef]
23. Meng, Z.; Ayyakanat, A.; Mirica, K.A. Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultraviolet, Low-Power Chemiresistive Detection of Gases. J. Am. Chem. Soc. 2019, 141, 2046–2053. [CrossRef] [PubMed]
24. Choy, C.H.W.; Liang, Y.J.; Fong, H.H. Improving the efficiency of OLEDs by utilizing metallophthalocyanines. In Proceedings of the Optics and Photonics 2005, San Diego, CA, USA, 31 July–4 August 2005; Volume 5937. [CrossRef]
25. Pearson, A.J.; Plint, T.; Jones, S.T.E.; Lessard, B.H.; Credington, D.; Bender, T.P.; Greenham, N.C. Silicon phthalocyanines as dopant red emitters for efficient solution processed OLEDs. J. Mater. Chem. C 2017, 5, 12688–12698. [CrossRef]
26. Bharati, M.S.S.; Bhattacharya, S.; Krishna, J.V.S.; Giribabu, L.; Rao, S.V. Femtosecond, broadband nonlinear optical studies of a zinc porphyrin and zinc phthalocyanine. Opt. Laser Technol. 2018, 108, 418–425. [CrossRef]
27. Bhattacharya, S.; Reddy, G.; Paul, S.; Hossain, S.S.; Raavi, S.S.K.; Giribabu, L.; Samanta, A.; Soma, V.R. Comparative photophysical and femtosecond third-order nonlinear optical properties of novel imidazole substituted metal phthalocyanines. Dyes Pigm. 2021, 184, 108791. [CrossRef]
28. Ben-Hur, E.; Chan, W.-S. Phthalocyanines in Photobiology and Their Medical Applications. In The Porphyrins Handbook; Kadish, K.M., Smith, K.M., Gullard, R., Eds.; Academic Press: Boston, FL, USA, 2003; Volume 19, pp. 1–35.
29. Bonnett, R. Chemical Aspects of Photodynamic Therapy; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 2000.
30. Moreira, L.M.; Vieira dos Santos, F.; Pereira Lyon, J.; Maftoum-Costa, M.; Pacheco-Soares, C.; Soares da Silva, N. Photodynamic Therapy: Porphyrins and Phthalocyanines as Photosensitizers. Aust. J. Chem. 2008, 61, 741–754. [CrossRef]
31. Lopez, T.; Ortiz, E.; Alvarez, M.; Navarrete, J.; Odisio, A.; Martínez-Ortega, F.; Päez-Mozo, E.A.; Escober, P.; Espinoza, K.A.; Rivero, I.A. Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 777–785. [CrossRef] [PubMed]
32. Mfouo-Tynga, I.; Houreld, N.N.; Abrahamse, H. Induced Cell Death Pathway Post Photodynamic Therapy Using a Metallophthalocyanine Photosensitizer in Breast Cancer Cells. Photomed. Laser Surg. 2014, 32, 205–211. [CrossRef] [PubMed]
33. Neagu, M.; Constantini, C.; Tampa, M.; Matei, C.; Lupu, A.; Manole, E.; Ion, R.M.; Fenga, C.; Tsatsakis, A.M. Toxicological and efficacy assessment of post-transition metal 9indium) phthalocyanine for photodynamic therapy in neuroblastoma. Oncotarget 2016, 7, 69718–69732. [CrossRef] [PubMed]
64. Janczak, J. Synthesis and characterization of bismuth(III) phthalocyaninate complex: [BiPc]_4[Bi_6I_{11}Cl_{11}]. J. Mol. Struct. 2010, 905, 125–130. [CrossRef]

65. Kagaya, Y.; Isago, H. Facile Reduction of Dichlorophthalocyaninatoantimony(V) Cation. Chem. Lett. 1994, 23, 1957–1960. [CrossRef]

66. Isago, H.; Kagaya, Y. Facile antimony(V/III) interconversion in phthalocyanine complexes. Chem. Lett. 2006, 35, 8–9. [CrossRef]

67. Kagaya, Y.; Isago, H. Synthesis of Dichlorophthalocyaninatoantimony(V) Perchlorate, Tetrafluoroborate, and hexafluorophosphate and Electrochemical Reinvestigation on the New Complex Salts. Bull. Chem. Soc. Jpn. 1997, 70, 2179–2185. [CrossRef]

68. Janczak, J. The synthesis, structure and spectral properties of antimony(III) phthalocyanine obtained under iodine vapor atmosphere: (Sb\(_{11}\))\(_3\)(I\(_8\)). Inorg. Chim. Acta 2022, 532, 120758. [CrossRef]

69. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [CrossRef]

70. Yan, S.; Jin, L.; Sun, H. \(^{63}\)Sb antimony in medicine. In Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine; Gielen, M., Tiekink, E.R.T., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005.

71. Carter, K.C.; Hutchinson, S.; Boitelle, A.; Murray, H.W.; Sundar, S.; Mullen, A.B. Sodium stibogluconate resistance in Leishmania donovani correlates with greater tolerance to macrophage antileishmanial responses and trivalent antimony therapy. Parasitology 2005, 131, 747–757. [CrossRef]

72. Mandal, S.; Maharjan, M.; Singh, S.; Chatterjee, M.; Madhubala, R. Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and resistant clinical isolates of Leishmania donovani from India. J. Antimicrob. Chemother. 2010, 65, 496–507. [CrossRef]

73. Hadijakkou, S.K.; Ozturk, I.I.; Banti, C.N.; Kourkoumelis, N.; Hadjiladas, N. Recent advances on antimony(III/V) compounds with potential activity against tumour cells. J. Inorg. Biochem. 2015, 153, 293–305. [CrossRef]

74. Maes, L.; Beyers, J.; Mondelaers, A.; Van den Kerkhof, M.; Eberhardt, E.; Caljon, G.; Hendrickx, S. In vitro ‘time-to-kill’ assay to assess the cidal activity dynamics of current reference drugs against Leishmania donovani and Leishmania infantum. J. Antimicrob. Chemother. 2017, 72, 428–430. [CrossRef]

75. Kubiak, R.; Janczak, J. A simple, novel method for the preparation of metallophthalocyanines. J. Alloys Compd. 1993, 200, L7–L8. [CrossRef]

76. CrystAlis CCD and CrystAlis Red 1.171.38.43; Rigaku Oxford Diffraction: Yarnaton, UK, 2015.

77. Sheldrick, G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Cryst. A 2015, 71, 3–8. [CrossRef] [PubMed]

78. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [CrossRef] [PubMed]

79. Brandenburg, K.; Putz, H. DIAMOND Version 3.0; Crystal Impact GbR: Bonn, Germany, 2006.

80. Wolff, S.K.; Grimwood, D.J.; MacKimon, J.J.; Turner, M.J.; Jayatilaka, D. Spackman, Crystal Explorer ver. 3.1; University of Western Australia: Perth, Australia, 2013.

81. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.

82. Janczak, J.; Kubiak, R. Tris(2-cyanophenyl)-1,3,5-triazine: A By-product of Metallophthalocyanine Synthesis. Acta Chem. Scand. 1999, 53, 602–610. [CrossRef]

83. Barraclough, C.G.; Bissett, H.; Pitman, P.; Thustlethwaite, P.J. The infrared, Raman and ultraviolet spectra of phthalonitrile, α-terephthalonitrile and 2,6-dichlorobenzonitrile. Aust. J. Chem. 1977, 30, 753–765. [CrossRef]

84. Ogunsipe, A.; Opeolu, S. Synthesis, Characterization and Photostability Studies on aluminium phthalocyanine chloride. Chem. Res. J. 2020, 5, 136–143.

85. Shurvell, H.F.; Pinzuti, L. Sur les spectres infraeouges des phthalocyanines. Can. J. Chem. 1966, 44, 125–136. [CrossRef]

86. Janczak, J. Comment on polymorphic forms of metal-free phthalocyanine. The refinement of the crystal structure of α-H\(_2\)Pc at 160 K. Pol. J. Chem. 2000, 74, 157–162. [CrossRef]

87. Cordero, B.; Gómez, V.; Platero-Prats, A.E.; Revés, M.; Echeverria, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 21, 2832–2838. [CrossRef]

88. Batsanov, S.S. Van der Waals Radii of Elements. Acta Cryst. B 2004, 60, 627–668. [CrossRef] [PubMed]

89. McKinnon, J.J.; Spackman, M.A.; Mitchell, A.S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst. B 2004, 60, 2136–2141. [CrossRef] [PubMed]

90. McKinnon, J.J.; Mitchell, A.S.; Spackman, M.A. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chem. Eur. J. 1998, 4, 2136–2141. [CrossRef] [PubMed]

91. McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 37, 3814–3816. [CrossRef] [PubMed]

92. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [CrossRef]

93. McKinnon, J.J.; Mitchell, A.S.; Spackman, M.A. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst. B 2004, 60, 627–668. [CrossRef] [PubMed]

94. Isago, H. Spectral properties of a novel antimony(III)-phthalocyanine complex that behaves like J-aggregates in non-aqueous media. Chem. Commun. 2003, 15, 1864–1865. [CrossRef]
95. Zahir, M.H.; Kagaya, Y.; Isago, H.; Furubayashi, T. Preparation of phthalocyanine(3-) species as bulk material by reduction of the dichloro(phthalocyaninato)antimony(V) complex cation. Inorg. Chim. Acta 2004, 357, 2755–2758. [CrossRef]

96. Bayo, K.; Mossoyan, J.C.; Ouedrago, G.V. Preparation and analysis by UV-Vis of zinc phthalocyanine complexes. Spectrochim. Acta A 2004, 60, 653–657. [CrossRef]

97. Staicu, A.; Pascu, A.; Nuta, A.; Sorescu, A.; Raditoiu, V.; Pascu, M.L. Studies about phthalocyanine photosensitizers to be used in photodynamic therapy. Rom. Rep. Phys. 2013, 65, 1032–1051.

98. Zhang, X.-F.; Guo, W. Imidazole functionalized magnesium phthalocyanine photosensitizer: Modified photophysics, singlet oxygen generation and photooxidation mechanism. J. Phys. Chem. A 2012, 116, 7651–7657. [CrossRef]

99. Tackley, D.R.; Dent, G.; Smith, W.E. Phthalocyanines: Structure and vibrations. Phys. Chem. Chem. Phys. 2001, 3, 1419–1426. [CrossRef]

100. Stillman, M.J.; Nyokong, T. Nonlinear Optical Properties of Phthalocyanines. In Phthalocyanines, Properties and Applications; Lever, A.B.P., Leznoff, C.C., Eds.; VCH: New York, NY, USA, 1989; Volume 1, Chapter 3.

101. Li, C.-P.; Du, M. Role of solvents in coordination supramolecular systems. Chem. Commun. 2011, 47, 5958–5972. [CrossRef] [PubMed]

102. Shelnutt, J.A. Correlation between metal stability, charge transfer, and Raman frequencies in metalloporphyrins and their π–π complexes. J. Am. Chem. Soc. 1983, 105, 774–778. [CrossRef]