MicroRNA-34c Enhances Murine Male Germ Cell Apoptosis through Targeting ATF1

Xiaoxuan Liang, Doudou Zhou, Chao Wei, Haoshu Luo, Jiali Liu, Rui Fu, Sheng Cui
State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China

Abstract

Background: MicroRNAs (miRNAs) play vital regulatory roles in many cellular processes. The expression of miRNA (miR)-34c is highly enriched in adult mouse testis, but its roles and underlying mechanisms of action are not well understood.

Methodology/Principal Findings: In the present study, we show that miR-34c is detected in mouse pachytene spermatocytes and continues to be highly expressed in spermatids. To explore the specific functions of miR-34c, we have established an in vivo model by transfecting miR-34c inhibitors into primary spermatocytes to study the loss-of-function of miR-34c. The results show that silencing of miR-34c significantly increases the Bcl-2/Bax ratio and prevents germ cell from apoptosis induced by deprivation of testosterone. Moreover, ectopic expression of the miR-34c in GC-2 cell trigger the cell apoptosis with a decreased Bcl-2/Bax ratio and miR-34c inhibition lead to a low spontaneous apoptotic ratio and an increased Bcl-2/Bax ratio. Furthermore, ectopic expression of miR-34c reduces ATF1 protein expression without affecting ATF1 mRNA level via directly binding to ATF1's 3'UTR, indicating that ATF1 is one of miR-34c's target genes. Meanwhile, the knockdown of ATF1 significantly decreases the Bcl-2/Bax ratio and triggers GC-2 cell apoptosis. Inhibition of miR-34c does not decrease the GC-2 cell apoptosis ratio in ATF1 knockdown cells.

Conclusions/Significance: Our study shows for the first time that miR-34c functions, at least partially, by targeting the ATF1 gene in germ cell apoptosis, providing a novel mechanism with involvement of miRNA in the regulation of germ cell apoptosis.

Introduction

In mammals, the differentiation of germ cells into spermatozoa occurs in the seminiferous epithelium of the testis and is highly regulated by extrinsic and intrinsic factors. Small RNAs, including small interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs) and microRNAs(miRNAs), are involved in both somatic and germ line lineages in a broad range of eukaryotic species by regulating mRNA transcription, stability, and translation [1,2,3,4]. MiRNAs are evolutionarily conserved and regulate protein expression by targeting the mRNA of protein-coding genes.

The pre-miRNA hairpin is cleaved by Dicer, the RNase III enzyme. Dicer conditional knockout mice exhibit infertility, indicating that miRNAs are mechanistically involved in the mammalian spermatogenesis [5,6,7].

A number of studies have shown that miR-34c is implicated in the control of the cell cycle, senescence, and apoptosis [8,9,10,11,12,13,14,15,16,17]. Most miRNAs exhibit a tissue-specific expression pattern, and recent studies have reported that miR-34c is preferentially expressed in the mouse testis [18,19,20,21]. MiR-34c is largely p53 independent and is involved in late spermatogenesis in mouse testis [18]. However, the specific function of miR-34c in germ cell is not yet clear.

Activating transcription factor 1 (ATF1), which constitutes a subfamily of the basic leucine zipper transcription factors, mediates the transcriptional response of various extracellular signals and it is involved in cell viability and cell transformation [22,23,24,25]. In human clear cell sarcoma, the ATF1 gene seems to be responsible for maintaining tumor viability [26]. ATF1 also maintains cell viability during early embryonic development [25]. In the testis, ATF1 has been shown to be expressed in spermatocytes, but its function is not clear.

In this study, we find that inhibition of miR-34c prevents murine male germ cell apoptosis through targeting ATF1. The current report unveils the pro-apoptotic activity of miR-34c in male mouse reproductive system.

Results

MiR-34c Expression in the developing mouse testis

In order to identify the functions of miR-34c in the mouse testis, we initially examined miR-34c expression in the developing testis by real-time PCR and in situ hybridization (ISH). The real-time

PCR results showed that testis miR-34c was expressed at very low levels from E13.5 to 12 dpp, after which testis miR-34c expression levels sharply increased and persisted until the adult mouse (Fig. 1A).

We then localized miR-34c expression in the developing testis by using a digoxigenin-labeled locked nucleic acid (LNA) probe during 12 dpp, 14 dpp, 16 dpp and in the adult mouse testis. A scrambled probe was used as a negative control. The miR-34c ISH signal was not detected from E13.5 to 12 dpp (data not shown). The ISH signal for miR-34c initially appeared in pachytene spermatocytes at 14 dpp (Fig. 1B). In 16 dpp testis, the positive signal was much stronger and was distributed in every seminiferous tubule. The cause of this is that the pachytene spermatocytes ratio increases rapidly in seminiferous tubule compared to 14 dpp. In the adult mouse testis, the hybridization signal for miR-34c was detected in pachytene spermatocytes and round spermatids. Propidium iodide (PI) staining was used to identify the stages of the seminiferous epithelium cycle (Roman numbers). These results were consistent with previous studies [18].

Silencing of miR-34c resulted in resistance to flutamide induced germ cell apoptosis

In order to identify the function of miR-34c in germ cells, we initially inhibited miR-34c by transfecting a miR-34c inhibitor, which was injected into the seminiferous tubule of 14 dpp testis. 0.04% Trypan blue was added in the complex as an indicator (Fig. 2A). To measure the inhibiting efficiency, the testes (n=6) were collected and miR-34c levels were detected by real-time PCR at 48 hours (16 dpp) after transfection. The results showed that the inhibiting efficiency was up to 85%, compared to the control (Fig. 2B).

Figure 1. MiR-34c expression is dynamic in immature and adult mouse testes. (A) Real-time PCR for miR-34c. (B) Localization of miR-34c in mouse testis at different development stages using LNA in situ hybridization. The first five pictures are 12 dpp-adult ISH of miR-34c and a scrambled probe control (sc-adult). The last picture is a PI staining (red) of cell nuclei of the adult section. All the panels are shown at the same magnifications. L - Leptotene spermatocytes; P - Pachytene spermatocytes; Sd - Spermatids. Data were shown as mean ± S.E.M of three samples for each group. doi:10.1371/journal.pone.0033861.g001
local miR-34c inhibition significantly increased Bcl-2 expression and decreased Bax expression (Fig. 2C), which resulted in the rise of the Bcl-2/Bax ratio (Fig. 2D). However, Fas, acting as a signaling molecule related to apoptosis, did not change after silencing miR-34c. These findings suggest that miR-34c could enhance germ cell apoptosis via the intrinsic pathway of cell apoptosis.

To confirm the pro-apoptotic effect of miR-34c in the mouse testis, we used an animal model as reported by Mauduit et al. [31] to induce apoptosis by intraperitoneal injection of flutamide, an antagonist of androgen. After 24 h treatment with 10 mg/kg, flutamide, the miR-34c knockdown was carried out by injecting the miR-34c inhibitor. Cell apoptosis was detected by in situ DNA TUNEL labeling. The TUNEL-positive cells were observed in the seminiferous tubule (Fig. 3A), and in the flutamide treated groups, apoptotic spermatocytes in the miR-34c knockdown tests were much fewer than that in the non-transfected control or in the in-NC control group. For statistical analysis, we counted apoptotic cells in more than 500 seminiferous tubules per testis (Fig. 3B). In the flutamide treated groups, miR-34c knock-down testes had roughly two thirds less apoptotic cells than that in the controls (Fig. 3B). These data indicate that the miR-34c knock-down enhances the resistance of germ cell apoptosis induced by flutamide.

To further confirm the pro-apoptotic effect of miR-34c on spermatocytes apoptosis, we transfected miR-34c mimics and inhibitors into the GC-2 cell line. GC-2 cell is a spermatocytes-like cell line and was originally created by Hofmann et al. to study the process of germ cell differentiation and apoptosis [32,33]. The efficiencies of miR-34c over-expression and inhibition were 30–80 fold and 25%–40% respectively, for different doses of transfection as analyzed by real-time PCR (Fig. 4A). We then measured Bax and Bcl-2 expression by real-time PCR. MiR-34c over-expression resulted in a sharp increasing of Bax mRNA level compared to the nonsense control. Conversely, the silencing of miR-34c led to high levels of Bcl-2 (Fig. 4B). Bcl-2/Bax ratio decreased after treatment with miR-34c mimics, whereas the Bcl-2/Bax ratio increased once miR-34c was inhibited (Fig. 4C). Similar to the in vivo experiment results, miR-34c over-expression promoted cell apoptosis (Fig. 4D–E), whereas miR-34c inhibition resulted in the resistance to cell apoptosis.

ATF1 is a direct target of miR-34c

In order to study the mechanism of miR-34c influencing spermatocytes apoptosis, we computationally predicted that ATF1 was the candidate of miR-34c targeting genes from www.miRNA.
ATF1 expression in pachytene spermatocytes has been reported [25]. The predicted binding site, 3’UTR of ATF1 was then inserted downstream from the Renilla luciferase coding region in the reporter vector (Table 1, Fig. 5.B–C). 3’UTR of ATF1 with six mutated nucleic acids in the seed sequence was used as a negative control (Table 1, Fig. 5B). Each reporter construct was separately co-transfected into 293T cells with the miR-34c mimicking molecules. Compared to the mut-ATF1-3’UTR control, the luciferase activity declined by about 27.7% after transfection with miR-34c mimics and ATF1-3’UTR reporter vector (Fig. 5D). Further, ATF1 mRNA and protein levels were analyzed by real-time PCR and Western blot after miR-34c inhibition in vivo. ATF1 protein level was significantly increased after miR-34c inhibition (Fig. 5E). Moreover, we obtained similar results when we transfected miR-34c mimics and ATF1-3’UTR reporter vector (Fig. 5D). Further, ATF1 mRNA and protein levels were analyzed by real-time PCR and Western blot after miR-34c inhibition in vivo. ATF1 protein level was significantly increased after miR-34c inhibition (Fig. 5E). Moreover, we obtained similar results when we transfected miR-34c mimics and inhibitors to GC-2 cells in vitro. MiR-34c inhibition showed a remarkable increasing protein level of ATF1, although the ATF1 mRNA level did not change (Fig. 5F). These suggest that miR-34c directly regulates ATF1 protein expression through its binding to the ATF1-3’UTR region.

MiR-34c regulates Bcl-2/Bax ratio and germ cell apoptosis by targeting ATF1

In order to confirm that the miR-34c targeting of ATF1 affects germ cell apoptosis, siRNA molecules of ATF1 were designed to inhibit ATF1 expression. RNAi efficiency analyzed using real-time PCR showed up to 87.4% inhibition (Fig. 6A). Apparently, the ATF1 knockdown significantly up-regulated bax expression and at the same time reduced Bcl-2 expression (Fig. 6B). This resulted in a sharp reduction of the Bcl-2/Bax ratio (Fig. 6C). Similarly, silencing ATF1 showed an increased GC-2 cell apoptosis ratio analyzed by FCM (Fig. 6D). This indicates that the anti-apoptotic activity of ATF1 is regulated through Bcl-2/Bax ratio.

In addition, ATF1 siRNA and miR-34c were co-transfected into GC-2 cells. Compared to the negative control (24~28%), silencing miR-34c reduced the GC-2 cell apoptosis ratio (~18.3%) and the knockdown of ATF1 increased the ratio (~44.82%) (Fig. 6D–E). These results give us important reminding that both miR-34c and ATF1 may be involved in regulating germ cell apoptosis.

Discussion

The current study reveals that miR-34c regulates germ cell apoptosis in the murine testis. We have for the first time demonstrated that miR-34c mediates posttranscriptional regulation of ATF1 expression to control germ cell viability through an intrinsic pathway of apoptosis. These findings specifically show the pro-apoptotic activity of miR-34c in mouse testis.

Recent studies have shown that miRNAs are evolutionarily conserved and regulate protein expression by either targeting mRNAs to direct their post-transcriptional repression or by regulating translation. MiR-34c is a highly conserved miRNA that is abundantly expressed in mature testis as compared to immature testis, in primates and rodents [19,34]. We conducted a detailed study of miR-34c expression in the course of testicular development using real-time PCR and in situ hybridization. MiR-34c began to be expressed from 14 dpp, in which germ cells have just developed to the pachytene stage [35,36], and it was continuously expressed during the entire germline differentiation. The fact that miR-34c is not expressed in Sertoli cells and Leydig
cells, indicates that miR-34c may play an important role in male spermatogenesis.

It is well documented that in many cancer cells miR-34c is a pro-apoptotic gene that is regulated by the tumor suppressor protein p53 and is frequently observed to be epigenetically silenced in cancers [11,37,38]. However, in mouse testis, miR-34c is p53 independent [18]. Ectopic expression of miR-34c in several cell lines resulted in up-regulation of germ cell-specific genes [18]. The specific function of miR-34c in germline differentiation aroused our interest. By transfecting cells, we found that excess expression of miR-34c promotes GC-2 cell apoptosis with an up-regulation of Bax and a down-regulation of Bcl-2. In contrast, miR-34c inhibition resulted in a reduced GC-2 cells spontaneous apoptosis rate, with an increased expression of Bcl-2 and a decreased expression of Bax. Furthermore, the transient transfection of the miR-34c inhibitor resulted in a resistance to flutamide induced germ cell apoptosis in vivo, with an up-regulation of Bcl-2 and a down-regulation of Bax, confirming the pro-apoptotic activity of miR-34c.

Germ cell death is visible during normal spermatogenesis in mammals and plays a pivotal role in sperm output. Testosterone is important for survival of pachytene spermatocytes and is essential for the process of spermatids elongation. Studies showed that an acute degeneration of pachytene spermatocytes and a loss of round spermatids occur when testosterone is deprived [39,40,41]. The high expression of miR-34c in pachytene spermatocytes and round spermatids in vivo.
Figure 5. MiR-34c binds to ATF1-3' UTR which regulates its protein expression. (A) The predicted miR-34c binding site in ATF1-3' UTR from www.miRNA.org. (B) Schematic of inserted ATF1-3'UTRs sequences. (C) psi-CHECK™-2 reporter vector map. (D) Relative luminescence intensity detected by Modulus™II microplate multimode reader after miR-34c mimics and dual-luciferase vector were co-transfected into 293T cells. (E) ATF1

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33861
specific function of miRNA in vivo by using transfection complexes containing liposomes and miRNA inhibitors injected into seminiferous tubules. In previous studies, many research groups applied seminiferous tubule injection plus electroporation methods to deliver plasmids to germ cells [36,51,52]. Here we use lipofection to deliver small molecules, such as the inhibitor of miR-34c. This method showed a relatively low toxicity and a high efficiency compared to electroporation within three days. Also, for short term research, this method has a lower cost and is more convenient and effective compared to knockout animals. The reason for the effectiveness of this method may be that primary spermatocytes assemble in the center of seminiferous tubules and near the lumen in pubescent mouse testis of 10 dpp~18 dpp, and therefore, are relatively easily transfected. We choose mouse testis of 14 dpp when miR-34c’s expression begin to rise as the injection time of transfection in vivo.

It is worth mentioning that transfecting double stranded small RNAs such as siRNA or miR-34c mimics, which exhibit a higher toxicity, lead to germ cell apoptosis in vivo 24 hours later than single-stranded small RNAs, such as the miR-34c inhibitors, when using the same amount of substance (50 pmol/μl). One explanation is that the toxicity of miRNA mimics or ATFI siRNA-duplex is possibly associated with the off-target effects of double-stranded siRNAs, which may contribute to the final high toxicity of the cells [53]. Due to the relatively high toxicity of the short double-stranded siRNAs in the preliminary experiment in vivo, we did not analyze the ectopic expression of miR-34c and ATFI siRNA in the testis model.

In conclusion, the present study suggests that miR-34c regulates germ cell viability in mouse testis through targeting ATFI. The miR-34c-ATFI pathway is critical to the apoptosis of spermatocytes.

Materials and Methods

Animals and cell line

Adult male and female (6–8 month) Kunming white mice were purchased from the Animal Institute of the Chinese Medical Academy (Beijing, China) and were maintained under controlled light, temperature (22°C–24°C) and humidity (60–70%), with a 12-h light/dark cycle. One male and two female mice were put together to support breeding. The day the pups were born was marked as 1 dpp and the counting continued to the appropriate age for the experiments. All husbandry and experimental procedures were approved by the China Agricultural University Research Ethics Committee for Animal Sciences.

GG-2 germ cell line was kindly provided by Prof. Chunsheng Han of the Institute of Zoology, Chinese Academy of Sciences.

miR-34c detection by in situ hybridization(ISH)

MiR-34c ISH was carried out by using digoxigenin-labeled locked nucleic acid (LNA) probes. Hsa-miR-34c-3p mrCURY LNA microRNA detection probes and scrambled probes were purchased from Exiqon (Prod.No. 38542-00, Exiqon, Inc, MA, USA). We labeled the LNA probes with digoxigenin using a DIG oligonucleotide tailing kit (Roche) following the manufacturer’s instructions, and the testis miR-34c ISH was performed as described by Song R, et al [54]. Briefly, mouse testes were collected at 13.5 dpc, 15.5 dpc, 17.5 dpc, 1 dpp, 7 dpp, 10 dpp,

Table 1. The ATFI-3’UTR binding sites were constructed into a psi-CHECK 2 vector.

ATFI-3’UTR	Mut-ATFI-3’UTR
CTGAGCAGAAGGCTTCC TAGGGGTTTTAATATCATCTTACCGTA AGGTGTTGAGTTTTACGTCGAGCATCTTGGTA	CTCACTGCAAGGCTTCC TAGGGGTTTTAATATCATCTTACCGTA AGGTGTTGAGTTTTACGTCGAGCATCTTGGTA
AGTTTGTAGTTTTACGTCGAGCATCTTGGTA	AGCTTGTAGTTTTACGTCGAGCATCTTGGTA
GCCGCCGC	GCCGCCGC

The nucleic acids in frame are the binding site of miR-34c. The nucleic acids in bold are the seed binding site mutated which was used as the Mut-ATFI control.

doi:10.1371/journal.pone.0033861.t001
12 dpf, 14 dpf, 16 dpf and at the adult stage. All of the prepubertal testis samples were fixed in 4% PFA in DEPC PBS for 2 h. Adult testes were fixed overnight, and then placed in 30% sucrose overnight. The tissues were embedded in “Tissue Tek” O.C.T. compound (Takara) and 10 µm sections were cut using a cryostat. The slides were laid at room temperature (RT) for 30 min, fixed in 4% paraformaldehyde at RT for 10 min followed by two washes in PBS. The fixed sections were subjected to acetylation for 15 min and Protease K treatment for 5 min, which was followed by two PBS washes. The slides were then prehybridized for 8 h at RT and the hybridization was carried out at 50°C overnight. After stringent washing using 5×SSC for 10 min and 1×SSC for 1 hour at 60°C, the slides were incubated in a blocking solution for 1 h at RT, which was followed by incubation with AP-conjugated antibody to digoxingenin at 4°C overnight. After PBS and alkaline phosphates buffer washes, the slides were incubated in NBT and BCIP in the dark until the desired intensity of staining was reached.

Preparation of cDNAs and analysis of real-time PCR

According to the protocols provided by the manufacturer, the total RNA of the testis was isolated using the Trizol Reagent (Vigorous Biotechnology Beijing Co., Ltd., China). MiR-34c expression assay were based on the method described by Chen C. et al [55]. U6 RNA was used for normalization of miRNA expression. Reverse transcriptase reactions contained the purified total RNA, 50 nM RT primer (the RT-34c stem-loop primer: CTCAACTGGTGTCGTGGAGTC GGCAATTCAGTTGAG-GCAATCAG; or the U6 RT-primer: AACGCTTCACGA-ATTTGCGT). M-MLV Reverse Transcriptase (Promega, WI, USA) was used. The 15 µl reactions were incubated in a DNA Thermal Cycler 4800 for 30 min at 16°C, 30 min at 42°C and 5 min at 85°C and then stored at 4°C. All reverse transcriptase reactions included no-template controls and minus controls. Real-time PCR was performed using a standard Takara SYBR Premix Ex Taq protocol on an Applied Biosystems 7500 Real-time PCR System (Applied Biosystems). The real-time PCR primers used are

Figure 6. ATF1 regulates GC-2 cell apoptosis and changes the bcl-2/bax ratio. (A) ATF1 siRNA transfected into GC-2 cells to silence its mRNA expression. Knockdown efficiency was analyzed by real-time PCR. Non-treated: non-transfection group; s-NC: stable NC transfected group as a negative control; ATF1i: ATF1 mRNA interference group. (B) Bcl-2 mRNA decreased and Bax mRNA increased significantly after ATF1i. (C) The Bcl-2/Bax ratio was reduced very significantly in ATF1i group. (D) GC-2 cell apoptosis analysis by Annexin V/Propidium Iodide staining after ATF1 knockdown or dual-inhibition of ATF1 and miR-34c. (E) The summary of GC-2 cell apoptotic ratio. Each bar presents the mean ± S.E.M from three samples for each group. (**P<0.01, ***P<0.001).

doi:10.1371/journal.pone.0033861.g006
miR-34c inhibitor transfection in vivo via injection into seminiferous tubules

D14 male mice were anesthetized using Sodium Pentobarbital (8 μl of 0.5% solution/g bodyweight) injected intraperitoneally, and the testis was exposed under the dissecting stereomicroscope. 2'-Ome-miR-34c-5p inhibitor or control 2'-Ome-NC oligo (GenePharma Co., Ltd., Shanghai, China) ranging from 1–2 μg and Lipofectamine 2000 ranging from 0.5–2 μl in 8 μl of HBS buffer (150 mM NaCl, 20 mM Hepes, pH 7.4), were used together with 0.04% Trypan Blue dye for monitoring the accuracy of the injection. The transfection mix, after filtered through 0.22 μm Millipore filters, was injected into seminiferous tubules from the efferent duct using a glass injection pipette connected to an injector by a polyethylene tube. After the procedure, the skin was stitched and the mice were maintained for the following days.

Cell culturing and transfection

GC-2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (GIBICO) [56]. Transfections of ATF1 siRNA and miR-34c inhibitor or mimics (Shanghai GenePharma Co., Ltd., China) were performed using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. 24 hours after transfection, cells were harvested for real-time PCR, Western blot or cell apoptosis analysis. The relative abundance of the genes was determined using the ABI PRISM 7500 equipped with Applied Biosystems.

Luciferase reporter assay

The dual-luciferase reporter genes were constructed using the psCHECK™2 vector (Promega, USA) and the 3’-UTR sequences of mouse ATF1. The ATF1 3’-UTR fragment cloning was done using over-lap PCR (Table 1). The sequences were introduced between the NotI and XhoI sites to Renilla luciferase 3’UTR. The Firefly luciferase vector was used for internal reference. Constructs with mutated 3’-UTR of ATF1 (Mut-ATF1) were used as negative controls. The 293T cells were cultured in DMEM supplemented with 10% fetal bovine serum. A
were repeated independently at least three times. (Vigorous Biotechnology Beijing Co., Ltd, China). All transfections served as controls for normalization. Luciferase activity was measured by a Modulus™II microplate multimode reader (Promega) 24 h post-transfection using a Dual-Lucy Assay Kit (Vigorous Biotechnology Beijing Co., Ltd, China). All transfections were repeated independently at least three times.

References

1. Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 622–655.
2. Idler RR, Yan W (2011) Control of messenger RNA fate by RNA binding proteins: an emphasis on mammalian spermatogenesis. J Androl.
3. Neil S, Papaioannou MD (2010) microRNAs in the Testis: Building Up Male Fertility. Journal of Andrology 31: 26–33.
4. Zamoore PD, Gaidhial D (2009) Small silencing RNAs: an expanding universe. Nature Reviews Genetics 10: 94–108.
5. Harfe BD, Maatouk DM, Loveland KL, McManus MT, Moore K (2008) Dicer is required for differentiation of the male germ line. Biology of Reproduction 79: 696–703.
6. Hayashi K, Lopes SMCD, Kameda M, Tang FG, Hajkova P, et al. (2008) MicroRNA Biogenesis Is Required for Mouse Primordial Germ Cell Development and Spermatogenesis. Plos One 3.
7. Korhonen HM, Mekar O, Yadav RP, Papaioannou MD, Romero Y, et al. (2011) Dicer Is Required for Haploid Male Germ Cell Differentiation. In Micro Plos One 6.
8. Alvarez-Salas LM, Lopez JA (2011) Differential effects of miR-34c-3p and miR-34c-5p on SHh: cell proliferation, apoptosis, migration and invasion. Biochemical and Biophysical Research Communications 409: 513–519.
9. Bushell M, Cannell IG (2010) Regulation of Myc by miR-34c: A mechanism to prevent genomic instability? Cell Cycle 9: 2726–2730.
10. Ceder Y, Hagman Z, Larne O, Edjojo A, Bjaeld S, et al. (2010) miR-34c is downregulated in prostate cancer and exerts tumor suppressor activity. International Journal of Cancer 127: 2760–2767.
11. Hannon GJ, He XY, He L (2007) The guardian’s little helper: MicroRNAs in Development and Spermatogenesis. Plos One 3.
12. Harris CC, Kumamoto K, Spillare EA, Fujita K, Horikawa I, et al. (2008) MicroRNA Profiling in Mouse Testis Tissues. Reproduction 134: 59–67.
13. Ji Q, Hao XB, Zhang M, Tang WH, Meng Y, et al. (2009) MicroRNA miR-34b and MicroRNA-34c are targets of p53 and cooperate in control of microRNA Biogenesis Is Required for Mouse Primordial Germ Cell Development and Spermatogenesis. Plos One 3.
14. Knudson CM, Tung KS, Touret ette WG, Brown GA, Kosmeyer SJ (1995) Bcl-2 with a rhesus macaque model. Cancer Research 55: 1205–1209.
15. Nef S, Papaioannou MD (2010) microRNAs in the Testis: Building Up Male Fertility. Journal of Andrology 31: 26–33.
16. Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, et al. (2008) miR-34c inhibits Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 320: 97–99.
17. Rouault JP, Bouhallier F, Allioli N, Lavial F, Chalmel F, et al. (2010) Role of microRNAs expressed in testis tissues of developing primates. Journal of Investigative Dermatology 130: 1249–1257.
18. Sinha Hikim AP, Swedloff RS (1999) Hormonal and genetic control of germ cell apoptosis in the testis. Reviews of Reproduction 4: 38–47.
19. Mackey TJ, Berkowski A, Amin P, Jacobs SC, Kyprianou N (1998) bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 52: 1085–1090.
20. Alvarez-Salas LM, Lopez JA (2011) Differential effects of miR-34c-3p and miR-34c-5p on SHh: cell proliferation, apoptosis, migration and invasion. Biochemical and Biophysical Research Communications 409: 513–519.
21. O'Neill C, Jin XL (2010) The Presence and Activation of Two Essential Transcription Factors (cAMP Response Element-Binding Protein and cAMP-Dependent Transcription Factor ATFI) in the Two-Cell Mouse Embryo. Biology of Reproduction 82: 459–468.
22. Schütz G, Bleckmann SC, Blenly JD, Rudolph D, Monaghan AP, et al. (2002) Activating transcription factor1 and CREB are important for cell survival during early mouse development. Molecular and Cellular Biology 22: 1919–1925.
23. Hikim AP, Swedloff RS (1999) Hormonal and genetic control of germ cell apoptosis in the testis. Reviews of Reproduction 4: 38–47.
24. Mackey TJ, Berkowski A, Amin P, Jacobs SC, Kyprianou N (1998) bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 52: 1085–1090.
25. Ceder Y, Hagman Z, Larne O, Edjojo A, Bjaeld S, et al. (2010) miR-34c is downregulated in prostate cancer and exerts tumor suppressor activity. International Journal of Cancer 127: 2760–2767.
26. Hisaoka M, Ishida T, Kuro T, Matsuyama A, Inamura T, et al. (2008) Clear cell sarcoma of soft tissue - A clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. American Journal of Surgical Pathology 32: 452–460.
27. Knudsen CM, Tung KS, Touret ette WG, Brown GA, Kosmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 320: 97–99.
28. Xu X, Kubota H, Wang R, Saegusa J, Ogawa Y, et al. (2001) Involvement of Bcl-2 family genes and Fas signaling system in primary and secondary male germ cell apoptosis induced by 2-bromopropene in rat. Toxicol Appl Pharmacol 174: 35–40.
29. Sitha Hikim AP, Swedloff RS (1999) Hormonal and genetic control of germ cell apoptosis in the testis. Reviews of Reproduction 4: 38–47.
30. Mackey TJ, Berkowski A, Amin P, Jacobs SC, Kyprianou N (1998) bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 52: 1085–1090.
31. Manduit C, Boese A, Chiouel F, Chater S, Paulin C, et al. (2004) The mitochondrial-dependent pathway is chronically affected in testicular germ cell death in adult rats exposed in utero to anti-androgens. Journal of Endocrinology 183: 79–80.
32. Hofman MG, Hess RA, Goldberg E, Millman II, (1994) Immortalized germ cells undergo miosis in vitro. Proc Nail Acad Sci U S A 91: 5533–5537.
33. Chandra R, McKeen CM, Ye Y, Hachura J (2006) Involvement of TRPV5 status on FAS membrane localization, CLFAR (c-FLIP) ubiquitinylation, and sensitivity of GC-2spl (s) cells to undergo FAS-mediated apoptosis. Biology of Reproduction 74: 560–568.
34. Yan NH, Lu YL, Sun HQ, Qiu WM, Tao DC, et al. (2009) Microarray profiling of microRNAs expressed in testis tissues of developing primates. Journal of Assisted Reproduction and Genetics 26: 179–186.
35. Meukar O, Da Ros M, Korchuen H, Kotaja N (2011) Chromosomal and small RNAs in male germ cells. Reproduction 142: 195–209.
36. Yonemogu K (2008) Mammalian testis: A target of in vivo electropermeation. Development Growth & Differentiation 50: 313–315.
37. Cavin GA, Furleri M, Bottoni A, Shimizu M, Spina R, et al. (2011) Association of a MicroRNA/TTP53 Feedback Circumstantial With Pathogenesis and Outcome of B-Cell Chronic Lymphocytic Leukemia. Jama-Journal of the American Medical Association 305: 59–67.
38. Lajumbibu A, Calin GA, Villarreal A, Raposo S, Sanchez-Cespedes M, et al. (2008) A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America 105: 13536–13561.
39. Hikim AP, Rajasundar TB, Hikim IS, Yue YH, Bonavera JJ, et al. (1997) Significance of apoptosis in the temporal and stage-specific loss of germ cells in the adult rat after gonadotropin deprivation. Biology of Reproduction 57: 1193–1201.
40. Hikim AP, Swedloff RS (1999) Hormonal and genetic control of germ cell apoptosis in the testis. Reviews of Reproduction 4: 38–47.
42. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y (1996) Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development 122: 1703–1709.

43. Clausen OPF, Oldereid NB, De Angelis P, Wiger R (2001) Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis. Molecular Human Reproduction 7: 405–408.

44. De Rooij DG, Beumer TL, Roepers-Gajadien HL, Gademan IS, Lock TMTW, et al. (2000) Apoptosis regulation in the testis: Involvement of Bcl-2 family members. Molecular Reproduction and Development 56: 355–359.

45. Lee JW, Richburg JH, Younkin SC, Boekelheide K (1997) The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138: 2081–2088.

46. Toppari J, Yan W, Suominen J, Samson M, Jegou B (2000) Involvement of Bcl-2 family proteins in germ cell apoptosis during testicular development in the rat and pro-survival effect of stem cell factor on germ cells in vitro. Molecular and Cellular Endocrinology 165: 115–129.

47. De Cesare D, Sassone-Corsi P (2000) Transcriptional regulation by cyclic AMP-responsive factors. Prog Nucleic Acid Res Mol Biol 64: 343–369.

48. Green MR, Persengiev SP (2003) The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis 8: 225–228.

49. Dong L, Wang W, Wang F, Stoner M, Reed JC, et al. (1999) Mechanisms of transcriptional activation of bcl-2 gene expression by 17beta-estradiol in breast cancer cells. Journal of Biological Chemistry 274: 32099–32107.

50. Wilson BE, Mochon E, Boxer LM (1996) Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Molecular and Cellular Biology 16: 5546–5556.

51. Hibi K, Coward K, Kubota H, Prathalingham N, Hol WG, et al. (2006) In vivo gene transfer by electroporation allows expression of a fluorescent transgene in hamster testis and epididymal sperm and has no adverse effects upon testicular integrity or sperm quality. Biology of Reproduction 74: 95–101.

52. Widlak W, Szczykińska D, Vydra N, Mahońska E, Krawczyk Z (2005) In vivo electroporation of the testis versus transgenic mice model in functional studies of spermatocyte-specific hs70 gene promoter: A comparative study. Molecular Reproduction and Development 65: 382–388.

53. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, et al. (2006) Off-target effects by siRNA can induce toxic phenotype. RNA-a Publication of the RNA Society 12: 1188–1196.

54. Song K, Ro S, Michaels JD, Park C, McCarrey JR, et al. (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nature Genetics 41: 489–493.

55. Chen C, Rand DA, Broomer AJ, Zhou Z, Lee DH, et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research 33: el79.

56. Zhang KY, Shang YL, Liao SY, Zhang W, Nian H, et al. (2007) Uncoupling protein 2 protects testicular germ cells from hyperthermia-induced apoptosis. Biochemical and Biophysical Research Communications 360: 327–332.