Fusarium oligoseptatum sp. nov., a mycosymbiont of the ambrosia beetle *Euwallacea validis* in the Eastern U.S. and typification of *F. ambrosium*

T. Aoki¹, M.T. Kasson², M.C. Berger², S. Freeman³, D.M. Geiser⁴, K. O’Donnell⁵

¹Genetic Resources Center, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
²Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
³Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Bet Dagan 50250, Israel
⁴Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
⁵Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, US Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, IL 61604, USA

*Corresponding author: taoki@affrc.go.jp

Key words:
Ailanthus altissima
Ambrosia Fusarium Clade
Camellia sinensis
phylogeny
shot-hole borer beetle

Abstract: *Fusarium oligoseptatum* sp. nov. was isolated from the invasive Asian ambrosia beetle *Euwallacea validis* (Coleoptera, Scolytinae, Xyleborini) and from the galleries that females had constructed in dying *Ailanthus altissima* (tree-of-heaven) symptomatic for Verticillium wilt in south-central Pennsylvania, USA. This ambrosia fungus was cultivated by *Euwallacea validis* as the primary source of nutrition together with a second symbiont, *Raffaelea subfusca*. Female beetles transport their fungal symbionts within and from their natal galleries in paired pre-oral mycangia. *Fusarium oligoseptatum* was distinguished phenotypically from the 11 other known members of the Ambrosia *Fusarium* Clade (AFC) by uniquely producing mostly 1–2 septate clavate sporodochial conidia that were swollen apically. Phylogenetic analysis of multilocus DNA sequence data resolved *F. oligoseptatum* as a genealogically exclusive species-level lineage but evolutionary relationships with other members of the AFC were unresolved. Published studies have shown that *F. oligoseptatum* can be identified via phylogenetic analysis of multilocus DNA sequence data or a PCR multiplex assay employing species-specific oligonucleotide primers. In addition, to provide nomenclatural stability, an epitype was prepared from an authentic strain of *F. ambrosium* that was originally isolated from a gallery constructed in Chinese tea (*Camellia sinensis*) by *E. farnicatus* in India, together with its lectotypification based on a published illustration.

Published online: 19 February 2018.

INTRODUCTION

Ambrosia beetles (Coleoptera, Curculionidae: Scolytinae and Platypodinae) are obligate mutualistic mycetophagous insects that cultivate ambrosia fungi as a source of nutrition typically in dead but occasionally in healthy woody hosts (Hulcr & Stelinski 2017). Most ambrosia beetles studied to date carry specific symbiotic ambrosia fungi within their mycangia, which are disseminated by females when they leave their natal galleries to establish new colonies (Hulcr & Cognato 2010, Hulcr & Dunn 2011). Genera in the tribe Xyleborini (Scolytinae) are considered to be the most ecologically successful ambrosia beetles (Hulcr & Stelinski 2017). Several well-studied fungus-farming beetles, including representatives of several tribes, have recently caused significant mortality of trees. Notable examples include the invasive Asian ambrosia beetle *Xyleborus glabratrus* and its nutritional symbiont *Raffaelea lauricola* on redbay (*Persea borbonia*) in the southeastern United States (Fraedrich et al. 2008), and *Platyphorus quercivorus* and its symbiont *Raffaelea quercivora* on Japanese oak (*Quercus serrata* and *Q. mongolica var. grosseserrata*) in Japan (Kubono & Ito 2002, Seo et al. 2012).

Compared to their beetle partners, relatively few fungal symbionts have been formally described. Most of the ambrosia fungi described to date are ascomycetous fungi in the Ophiostomatales, including members of *Afromorphaea*, *Ceratocystopsis*, *Dryadomyces* and *Raffaelea* (von Arx & Hennebert 1965, Upadhay & Kendrick 1975, Gebhardt et al. 2005, Harrington et al. 2008, 2010, Alamouti et al. 2009, Dreaden et al. 2014, Bateman et al. 2016, Hulcr & Stelinski 2017). The Microascales also include multiple groups of ambrosia fungi, some of which are important and widespread: *Ambrosiella*, *Meredithiella*, and *Phialophoropsis* (Mayers et al. 2015). Less common are symbionts belonging to the Polyporales (Li et al. 2015, Kasson et al. 2016, Simmons et al. 2016), Hypocreales (i.e., *Geosmithia*) (Kolařík & Hulcr 2009, Kolařík & Kirkendall 2010), and *Saccharomycetales* (van der Walt 1972, Hulcr & Stelinski 2017).

In addition to the symbionts mentioned above, *Fusarium ambrosium* (Hypocreales, Nectriaceae) is cultivated by *Euwallacea farnicata* (formerly *Xyleborus farnicatus*) as a source of nutrition (Gadd & Loos 1947, Norris & Baker 1967, Brayford 1987, Nirenberg 1990). The taxonomic history of *F. ambrosium*, however, is complicated because the species was originally misclassified and established in *Monacrosporium*, as *M. ambrosium*. This fungus
was isolated originally and described from galleries of the tea shot-hole borer, *E. fornicatus*, in *Camellia sinensis* (Chinese tea) and *Ricinus communis* (caster-oil tree) stems in Sri Lanka (Gadd & Loos 1947). Subsequently, *F. bugnicourtii* was described based on collections from galleries in Chinese tea in India, borer-damaged *Hevea brasiliensis* (rubber tree) and *Theobroma cacao* (cacao) in Sabah, Malaysia (Brayford 1987). Nirenberg (1990) synonymized *F. bugnicourtii* with *M. ambrosium* and recombined the latter as *F. ambrosium* based on nomenclatural priority. Brayford (1987) considered *F. bugnicourtii* to be conspecific with *F. tumidum* var. *coeruleum* (Bugnicourt 1939), but distinct from *F. tumidum*. Although the type of *F. tumidum* var. *coeruleum* based on a collection from *H. brasiliensis* appears to be phylogenetically distinct from *F. bugnicourtii*, the holotype of *F. bugnicourtii* selected by Brayford (IMI 296597 = NRRL 20438) is conspecific with *F. ambrosium* (Kasson et al. 2013).

Kasson et al. (2013) conducted an extensive multi locus molecular phylogenetic study on the ambrosial fusaria, based on isolates from beetles, their galleries, or from trees showing extensive borer damage and dieback. These included *Camellia sinensis*, *Persea americana* (avocado), *Ailanthus altissima* (tree-of-heaven), *Acer negundo* (box elder), and *Hevea brasiliensis* from natural and cultivated ecosystems, and avocado in the United States, Israel and Australia. Seven different *Fusarium* species lineages were reported to be associated with *Euwallacea* ambrosia beetles within the Ambrosia *Fusarium* Clade (AFC) and one other species (i.e., *Fusarium* sp. AF-9) with *Xyleborus ferrugineus* in Costa Rica. The monophyletic AFC is nested within Clade 3 of the *F. solani* species complex (FFSC; O’Donnell 2000), which contains 60 plus phylogenetic species based on genealogical concordance phylogenetic species recognition (GCPSR; Taylor et al. 2000). The AFC comprises two strongly supported clades: the four species within Clade A typically produce curved fusiform septate macroconidia, which are typical of *Fusarium*, whereas nine of the 10 species within Clade B produce clavate macroconidia (Kasson et al. 2013, Aoki et al. unpubl.), described as ‘dolphin-shaped’ by Brayford (1987). O’Donnell et al. (2015) conducted a multilocus phylogenetic analysis of the AFC and *Euwallacea* and found evidence of repeated host shifts rather than strict co-evolution of this mutualism.

Freeman et al. (2013) described a new species, *F. euwallaceae*, based on isolates corresponding to the ambrosia species symbiotic with the *Euwallacea* sp. #1 sensu O’Donnell et al. (2015), which causes serious damage to avocado production in Israel and California, USA (Mendel et al. 2012, Eskalen et al. 2013). *Fusarium euwallaceae* is closely related morphologically to *F. ambrosium*, but it can be distinguished from the latter by the abundant production of bluish to brownish sporodochial conidia that form greenish masses on PDA after 1 mo in culture, together with hyaline conidia. To date only three of the 16 species within the AFC have been described formally (Kasson et al. 2013, O’Donnell et al. 2015, Na et al. 2018). Similar to *E. validus*, *Euwallacea* sp. #1 also carries additional symbiotic fungi, *Graphium euwallaceae* and *Paracremoneum pseubeum* (Freeman et al. 2016, Lynch et al. 2015). Recently, PCR multiplexes were developed to discriminate *Fusarium* symbionts of invasive *Euwallacea* ambrosia beetles that inflict damage on numerous tree species throughout the United States, including *F. euwallaceae* and *F. kuroshium* along with four unnamed AFC species-level lineages: AF-3, AF-4, AF-6 and AF-8 (Short et al. 2017). One of the undescribed species, which was informally referred to as *Fusarium* sp. AF-4, is cultivated by the ambrosia beetle *E. validus* primarily in Verticillium wilt-stressed and dying stands of *A. altissima*, as well as from Verticillium wilt-stressed *Acer pensylvanicum* (striped maple), *Aralia spinosa* (devils walkingstick) and *Rhus typhina* (staghorn sumac) in south-central Pennsylvania, USA (Schall & Davis 2009, Kasson et al. 2013, 2015). In the present study, this species is described as *F. oligoseptatum* sp. nov. based on a comparison with *F. ambrosium* (AF-1) and *F. euwallaceae* (AF-2) (Kasson et al. 2013, Freeman et al. 2013). In addition, because type material for *F. ambrosium* was not designated (Gadd & Loos 1947), or appears to have been lost (Nirenberg 1990), a line-drawing of a clavate conidium of the species from Gadd & Loos (1947) was selected as the lectotype. Furthermore, an epitype was prepared from an authentic strain of this species to stabilize its taxonomy, according to the International Code of Nomenclature for algae, fungi and plants (ICN, The Melbourne Code; McNeill et al. 2012).

MATERIALS AND METHODS

Fungal isolates and type specimens

Fusarium strains examined in this study (Table 1) are stored in the Agriculture Research Service Culture Collection (NRRL), National Center for Agricultural Utilization Research (NCAUR), U.S. Department of Agriculture in Peoria, Illinois, USA. These strains were originally isolated from *Euwallacea* ambrosia beetles and their galleries, or from host trees showing extensive borer damage (Kasson et al. 2013). The Pennsylvanian strains of *F. oligoseptatum* were isolated from *E. validus* ambrosia beetles that had colonized *A. altissima*. Beetles were surface disinfested for 15 s in 70 % ethanol and then washed three times in sterile deionized water. Whole beetles or their heads were macerated using sterile Tenbroek homogenizers (Pyrex, Corning, NY), or pellet pestles (Fisher Scientific, Hampton, NH); suspensions were diluted 1:10 and 1:100, and then spread evenly over half-strength Potato Dextrose Agar (PDA, BD-Difco™, Thermo Fisher Scientific, Waltham, MA) amended with 100 ppm streptomycin sulfate (Sigma-Aldrich, St. Louis, MO) as described in Kasson et al. (2013). Other related ambrosia fusaria or close relatives within the *F. solani* species complex (O’Donnell et al. 2008) were obtained from culture collections (Table 1). Isolates used in this study are available upon request from NRRL (http://nrrl.ncuarr.usda.gov/cgi-bin/usda/), NARO Genebank, Microorganisms Section (MAFF), Genetic Resources Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan (http://www.gene.affrc.go.jp/about-micro_en.php), and the Westerdijk Institute (formerly CBS-KNAW Fungal Biodiversity Center), Utrecht, the Netherlands (http://www.westerdijkinstitution.nl/). Isolates of four novel Taiwanese AFC species discovered very recently, i.e. AF-13 to AF-16 (Na et al. 2018), were not included in this study.

Holotype and epitype specimens newly prepared from the selected strains were deposited in BPI, US National Fungus Collection (https://nt.ars-grin.gov/fungaldatabases/specimens/specimens.cfm).

Incidence of *Fusarium oligoseptatum* and other fungi from *Euwallacea validus* mycangia across recently confirmed tree hosts

Mycangial fungal communities were characterized as previously described by Kasson et al. (2013) for adult female
Table 1. Strains of Ambrosia *Fusarium* Clade (AFC) species examined in present study. Bold text is used to identify ex-holotype of *Fusarium oligoseptatum* and ex-epitype of *F. ambrosium*.

Species	AFC clade #	NRRL strain #	Equivalent nos. in other collections	Host beetle	Host plant	Origin	Country	Date	Collector	Remark
F. oligoseptatum	AF-4	62578	FRC S-2576	*Euwallacea validus*	*Ailanthus altissima*	Dauphin Co., Pennsylvania	USA	30-Jan-10	M. Kasson Bh17	Studied only phylogenetically
AF-4	62579		FRC S-2581	*Euwallacea validus*	*Ailanthus altissima*	Dauphin Co., Pennsylvania	USA	30-Jan-10	M. Kasson Bh24	Ex-HOLOTYPE
AF-4	62580		FRC S-2594	*Euwallacea validus*	*Ailanthus altissima*	Franklin Co., Pennsylvania	USA	9-Mar-10	M. Kasson Ch19	
AF-4	62581		FRC S-2616	*Euwallacea validus*	*Ailanthus altissima*	Huntington Co., Pennsylvania	USA	27-Feb-10	M. Kasson Dh24	
AF-4	62582		FRC S-2627	*Euwallacea validus*	*Ailanthus altissima*	Mifflin Co., Pennsylvania	USA	1-Jul-09	M. Kasson Eh11	Degenerated strain
F. ambrosium	AF-1	20438	IMI 296597	*Euwallacea fornicatus*	*Camellia sinensis*	Chinchona, Maharashtra	India	17-Jul-85	anonymous	Ex-holotype of *F. bugnicourtii*
AF-1	22345		BBA 65389	*Euwallacea fornicatus*	*Camellia sinensis*	Upari Tea Institute	India	9-May-90	V. Agnihothrudu	
AF-1	22346		BBA 65390	*Euwallacea fornicatus*	*Camellia sinensis*	Upari Tea Institute	India	9-May-90	V. Agnihothrudu	Ex-EPITYPE
AF-1	36510		BBA 65390	*Euwallacea fornicatus*	*Camellia sinensis*	Upari Tea Institute	India	9-May-90	V. Agnihothrudu	Duplicate of NRRL 22346
AF-1	46583		IMI 339338	*Euwallacea fornicatus*	*Camellia sinensis*	High Forest Estate, Anamalais, Coimbatore District, Tamil Nadu	India	26-Mar-90	anonymous	Received as *F. bugnicourtii*
Table 1. (Continued).

Species	AFC clade #	NRRL strain #	Equivalent nos. in other collections	Host beetle	Host plant	Origin	Country	Date	Collector	Remark
F. euwallacea	AF-2	54727	MAFF 243816 = CBS 135859	Euwallacea sp. #1	Persea americana	Volcani	Israel	17-Feb-10	S. Freeman 5-4	
Fusarium sp.	AF-2	62626		Euwallacea sp. #1	Persea americana	California	USA		A. Eskalen 1854	
	AF-3	62606		Euwallacea interjectus	Acer negundo	Gainesville, Florida	USA		J.A. Smith PL1499	
	AF-3	62628		Euwallacea interjectus	Acer negundo	Gainesville, Florida	USA		J.A. Smith 1190	
AF-5	AF-5	22231	IMI 110107	unknown	Hevea brasiliensis	Agriculture Research Centre Tuaran, Sabah, Borneo	Malaysia	19-Nov-64	Received as F. bugnicourtii	
	AF-6	46518	FRC S-2075	unknown	Hevea brasiliensis	Malaysia			R.C. Ploetz AF9	
	AF-6	62590		Euwallacea sp. #2	Persea americana	Miami, Florida	USA		R.C. Ploetz AF10	
	AF-7	62591		Euwallacea sp. #2	Persea americana	Miami, Florida	USA		R.C. Ploetz AF4	
	AF-7	62610		Euwallacea sp. #3	Persea americana	Queensland, Australia	Australia		A.D.W. Geering 2	
	AF-7	62611		Euwallacea sp. #3	Persea americana	Queensland, Australia	Australia		A.D.W. Geering 1	
	AF-8	62584		Euwallacea sp. #2	Persea americana	Miami, Florida	USA		R.C. Ploetz Amb2	
	AF-8	62585		Euwallacea sp. #2	Persea americana	Miami, Florida	USA		R.C. Ploetz AF4	
	AF-9	22643	ATCC 44215	Xyleborus ferrigineus		Costa Rica			E.B. Smalley	
	AF-9	66088		unknown	Delonix regia	Florida	USA			
	AF-10	62941	IMI 351954	unknown		Singapore				
	AF-11	62943		Euwallacea sp. #4	Camellia sinensis	Sri Lanka	P. Liyanage			
	AF-11	62944		Euwallacea sp. #4	Camellia sinensis	Sri Lanka	P. Liyanage			
F. kuroshium	AF-12	62945		Euwallacea sp. #5	Platanus racemosa	San Diego, CA	USA		A. Eskalen	
	AF-12	62946		Euwallacea sp. #5	Platanus racemosa	San Diego, CA	USA		A. Eskalen	
Table 1. (Continued).

Species	Equivalent numbers in other collections	Collector	Date	Country	Host plant	Origin	Host beetle	Remark
F. kuroshium	NRRL: ARS Culture Collection, Peoria, IL, USA; ATCC: American Type Culture Collection, Manassas, VA, USA; BBA: Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Mikrobiologie (currently Julius-Kühn-Institut), Berlin, Germany; CBS: Westerdijk Institute (formerly CBS-KNAW Fungal Biodiversity Center), Utrecht, the Netherlands; FRC: Fusarium Research Center, The Pennsylvania State University, University Park, PA, USA; IMI: CAB International, South Oxfordshire, Oxford, United Kingdom; NRRL, USA; TISTR, Thailand; TNAU, India; USDA-ARS, Peoria, IL, USA; UACMR, Beijing, China; UCSB, California, USA; USAMRIID, USA; WRPO, Leiden, the Netherlands.	R. C. Ploetz, University of Florida, Homestead, FL, USA; J. A. Smith, University of Florida, Gainesville, FL, USA.						
F. bugnicourtii	NRRL: ARS Culture Collection, Peoria, IL, USA; ATCC: American Type Culture Collection, Manassas, VA, USA; BBA: Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Mikrobiologie (currently Julius-Kühn-Institut), Berlin, Germany; CBS: Westerdijk Institute (formerly CBS-KNAW Fungal Biodiversity Center), Utrecht, the Netherlands; FRC: Fusarium Research Center, The Pennsylvania State University, University Park, PA, USA; IMI: CAB International, South Oxfordshire, Oxford, United Kingdom; NRRL, USA; TISTR, Thailand; TNAU, India; USDA-ARS, Peoria, IL, USA; UACMR, Beijing, China; UCSB, California, USA; USAMRIID, USA; WRPO, Leiden, the Netherlands.	R. C. Ploetz, University of Florida, Homestead, FL, USA; J. A. Smith, University of Florida, Gainesville, FL, USA.						

© 2018 Westerdijk Fungal Biodiversity Institute
et al. 2013). To compare the number of conidial septa in strains of *F. oligoseptatum* and *F. ambrosium*, they were incubated on SNA at 25 °C under continuous black light for one to two weeks and the number septa in the clavate sporodochial conidia were counted.

RESULTS

Incidence of *Fusarium oligoseptatum* and other fungi from *Euwallacea validus* mycangia across recently confirmed tree hosts

Mycangial communities were characterized from adult female beetles extracted from sixteen native host trees and *Ailanthus* (Fig. 1). Overall, *F. oligoseptatum* and *Raffaelea subfusca* comprised 84% of all fungal CFUs from female heads across all plant hosts with *F. oligoseptatum* yielding significantly more CFU’s (10 992) compared to *R. subfusca* (7 014; p < 0.0001). The remainder included miscellaneous yeasts and other fungi including *Paracremonium* sp. and a putatively novel *Graphium* sp. (Freeman et al. 2016, Lynch et al. 2016), as well as a variety of singleton taxa that were not further characterized. Incidence of the two primary symbionts from the heads of female *E. validus* was compared across and within plant hosts. Overall, significant differences were detected across hosts indicating that the relative proportion of the two symbionts varied across hosts with a majority of beetles from a majority of plant hosts yielding higher counts of *F. oligoseptatum* (Fig. 1). Of these, beetles from 11 of the 16 plant hosts, including *Ailanthus*, had significantly higher total CFU counts of *F. oligoseptatum* compared to *R. subfusca*. Only five species had a mean percent incidence of *F. oligoseptatum* below 50%: *Fraxinus americana* (white ash), *Pinus virginiana* (chestnut oak), *Populus grandidentata* (bigtooth aspen), *Quercus montana* (chestnut oak), and *Amelanchier arborea* (serviceberry) (Fig. 1). Of these, white ash, Virginia pine, and chestnut oak had significantly higher total CFU counts of *R. subfusca* compared to *F. oligoseptatum* (Fig. 1).

Molecular phylogenetics

A 4914 bp 31-taxon 4-locus dataset was constructed that included the internal transcribed spacer region and domains D1 and D2 of the nuclear ribosomal large subunit (ITS+LSU rDNA: 1004 bp alignment, 26 parsimony informative characters (PIC)), and portions of translation elongation factor 1-α (TEF1: 687 bp alignment, 53 PIC), DNA-directed RNA polymerase II largest (RPB1: 1588 bp alignment, 164 PIC) and second largest subunit (RPB2: 1635 bp alignment, 165 PIC) from 12 AFC species. Molecular phylogenetic analyses were conducted using maximum parsimony (MP) with PAUP v. 4.0b10 (Swofford 2003) and maximum likelihood (ML) with GARLI 2.0.1 (Zwickl 2006). Sequences of *Fusarium neocosmosporiellum* (= *Neocosmospora vasinfecta*; Geiser et al. 2013) NRRL 22468 and 43467 were used to root the phylogenies based on more inclusive analyses (O’Donnell et al. 2013). *Fusarium oligoseptatum* (AF-4) was poorly supported (MP and ML bootstrap = 63–56 %) as sister to a clade that included *F. euwallaceae* (AF-2) from Israel and California and *Fusarium* sp. (AF-3) from Florida. With the exception of *F. ambrosium*, the other AFC species represented by two or more strains received moderate to strong monophyly bootstrap support. The putative triparental hybrid strain *F. ambrosium* NRRL 62605 from Sri Lanka (Kasson et al. 2013), however, did not form a genealogically exclusive group with *F. ambrosium* from India. As reflected by poor bootstrap support along the backbone on the phylogeny, relationships among the species were generally unresolved (Fig. 2). The analyses did support monophyly of the AFC and the early diverging subclades designated Clade A and B (Fig. 2).

![Fig. 1. Total number of *F. oligoseptatum* and *Raffaelea subfusca* CFUs recovered from macerated heads of adult female *E. validus* from 17 tree hosts.](image-url)

A significant difference between the two fungal CFUs within a specific host is indicated with an asterisk on the side corresponding to the higher count.
Fusarium oligoseptatum sp. nov.

TAXONOMY

Fusarium oligoseptatum T. Aoki, M.T. Kasson, S. Freeman, Geiser & O’Donnell, *sp. nov*. MycoBank MB822305. Figs 3–5.

Etymology: oligo- + septatum, based on frequent production of sporodochial conidia with only 1–2 septa.

Diagnosis: Distinguished from *F. ambrosium* and *F. euwallaceae* by three times as many 0–2-septate sporodochial conidia (i.e., ≥75 % compared with values less than 25% in *F. ambrosium* and *F. euwallaceae*).

Type: USA, Pennsylvania: Dauphin Co., a dried specimen from a culture of NRRL 62579, isolated from a live female ambrosia beetle, *Euwallacea validus*, extracted from a gallery in a tree-...
of-heaven, Ailanthus altissima, 30 Jan. 2010, Matthew T. Kasson (Kasson Bh24) (BPI 910525 – holotype, designated in this study; NRRL 62579 = FRC S-2581 = MAFF 246283 = CBS 143241 – ex-holotype cultures).

Additional strains examined: USA: Pennsylvania: Franklin Co., isolated from a live E. validus female infesting an A. altissima tree, 9 Mar. 2010, Matthew T. Kasson (Kasson Ch19) (NRRL 62580 = FRC S-2594 = MAFF 246284 = CBS 143242); Pennsylvania: Huntingdon Co., isolated from a live E. validus female infesting an A. altissima tree, 27 Feb. 2010, Matthew T. Kasson (Kasson Dh24) (NRRL 62581 = FRC S-2616 = MAFF 246285 = CBS 143243; Pennsylvania: Mifflin Co., isolated from a live E. validus female infesting an A. altissima tree, 1 July 2009, Matthew T. Kasson (Kasson Eh11) (NRRL 62582 = FRC S-2627 = MAFF 246286 = CBS 143244; morphologically degenerated strain).

Description: Colonies on PDA showing radial mycelial growth rates of 2.2–3.6 mm/d at 20 °C and 3.3–4.6 mm/d at 25 °C in the dark. Colony color on PDA white (1A1) to yellowish-white (4A2) or orange white (5A2) in the dark, white (1A1) to yellowish-white (3–4A2) or pale yellow (3–4A3) under black light. Aerial mycelium white (1A1), sparsely formed or floccose in the dark, more abundantly formed and covering entire surface of colonies under black light. Colony margin entire to undulate. Reverse pigmentation absent or yellowish-white (3–4A2) or pale yellow (3–4A3) in the dark and under black light. Exudates absent. Odor absent, or slightly moldy or sweet in some strains. Hyphae on SNA 1.5–7.5 µm wide. Chlamydospores present but formation delayed in hyphae and in septate sporodochial conidia, mostly subglobose to round ellipsoidal, intercalary or terminal, mostly single, sometimes in chains, ordinary hyaline to very pale-yellow, wall smooth or often minutely roughened, 6–23.5 × 4.5–9 µm. Sclerotia absent. Sporulation on SNA and PDA generally rapid and abundant under black light, delayed in the dark, sometimes less sporulation on PDA in the dark; light-colored on SNA and PDA under black light or under daylight; sporodochia formed sparsely on SNA, rare on PDA. Aerial conidiophores formed abundantly on SNA under black light, less frequently in the dark, erect, short or tall and narrow, mostly unbranched, rarely branched sparsely, up to 130 µm long, 3–5.5 µm wide at base, thin-walled, forming monophialides integrated in the apices. Phialides on aerial conidiophores simple, subcylindrical to subulate, tapering towards apex, often with a minute colletare at the tip, 10–62.5 × 2.5–5.5 µm. Aerial conidia mostly (1) elliptical, oblong-elliptical,
Fusarium oligoseptatum sp. nov.

Editor-in-Chief
Prof. dr P.W. Crous, Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
E-mail: p.crous@westerdijkinstitute.nl

Fusarium oligoseptatum cultured on SNA under black light. A–C, F–H. Aerial conidiophores forming 0–1(–2)-septate conidia. D, E, J–L. Sporodochial conidiophores forming clavate conidia, often swollen apically with 1–4 septa. I. Round to obovate 0-septate aerial conidia. M–O. Mostly clavate conidia formed on sporodochial conidiophores, including some 0-septate that are oblong or short-clavate. P–T. Chlamydospores formed in hyphae. A–I, K, M, N, Q–S from NRRL 62579 (ex-holotype); J, O, P, T from NRRL 62580; L from NRRL 62581. (A–E: Aerial view without a cover slip; F–T: Mounted in water with a cover slip). Bars: A–E = 50 μm, F–T = 20 μm.

Fusiform-elliptical to short clavate, occasionally reniform, some obovate to subglobose, 0–1(–2)-septate; 0-septate on SNA in the dark: 3–13 × 2–5.5 μm in total range, 5.3–8.5 × 2.8–3.9 μm on average [ex type (NRRL 62579): 3.5–12 × 2–4 μm in total range, 6.9±2.0 × 2.8±0.5 μm on average ± S.D.]; 0-septate on SNA under black light: 3–17 × 2–6.5 μm in total range, 6.0–9.0 × 2.8–3.8 μm on average [ex type (NRRL 62579): 4–17 × 2.5–6.5 μm in total range, 9.0±2.8 × 3.8±0.9 μm on average ± S.D.]; 1-septate on SNA under black light: 7.5–26 × 2.5–8 μm in total range, 14.5–15.3 × 4.6–4.9 μm on average [ex type: 10.5–21.5 × 2.5–6 μm in total range, 15.1±2.7 × 4.6±0.7 μm on average ± S.D.]; sometimes with (2) larger, falcate to clavate, or curved cylindrical,
Currently known from 16 additional plant hosts, all of which
have been confirmed molecularly as *F. oligoseptatum* using AF-3
/F. oligoseptatum* (AF-4) multiplex PCR (Short et al. 2017):
Acer pensylvanicum (PA, USA), Acer rubrum (PA, USA), Amelanchier
arborea (VA, USA), Aralia spinosa (PA, USA), Betula lenta (PA, USA),
Celtis occidentalis (WV, USA), Fagus grandifolia (OH, USA),
Fraxinus americana (WV, USA), Populus grandidentata (PA, USA),
Prunus seratina (GA, USA), Quercus montana (PA, USA), Quercus
rubra (PA, USA), Rhus typhina (PA, USA), Robinia pseudoacacia
(PT, USA), Tsuga canadensis (OH, USA), and Pinus pseudoarucata
(PT, USA).

Distribution: Presently confirmed from GA (Georgia), MD, OH,
PA, TN, VA, and WV, USA.

Notes: Morphological data on sporodochial conidia was based
mainly on NRRL 62579, 62580 and 62581. Strain NRRL 62582
appears degenerated and produced only 1-septate sporodochial
conidia after 1 mo on SNA under continuous black light.
Strains of this species were all isolated from female *E. validus*
ambrosia beetles infesting *A. altissima* that were collected in
different counties in Pennsylvania, USA. The most distinctive
morphological feature of this fungus is the frequent production
of sporodochial conidia with 1–2 septa (Table 2, Figs. 3E–I, 4E,
J–O). This species formed sporodochial conidia with more than
two septa, but the percentage of 0–2-septate conidia (76.5–81
%) was much higher than observed in *F. ambrosium* (3.7–24.5 %)
and *F. euwallacea* (Freeman et al. 2013), where more than 75
% of the conidia were 3–5-septate. Cultures appear whitish to
yellowish-white when aerial mycelium is sparse on PDA.

Fusarium ambrosium (Gadd & Loos) Agninothor. & Nirenberg,
Stud. Mycol. 32: 98. 1990. MycoBank MB130225. Figs 6–8.
Basionym: Monocosmosporium ambrosium Gadd & Loos, *Trans.
Brit. Mycol. Soc.* 31(1 & 2): 13. 1947. MB288427.
Synonyms: Dactylella ambrosia (Gadd & Loos) K.Q. Zhang, Xing
Z. Liu & L. Cao, *Mycosystema* 7: 112. 1995. MB447506.
Neocosmospora ambrosia (Gadd & Loos) L. Lombard & Crous,
Stud. Mycol. 80: 227. 2015. MB810957.
Fusarium bugnicourti Brayford, *Trans. Brit. Mycol. Soc.* 89 (3):
350. 1987. MB133337.

Type: India, Upaari Tea Institute, a dried specimen from culture
of NRRL 22346, isolated from a gallery of *Euwallacea fornictatus*
infesting a tea tree, *Camellia sinensis*, 9 May 1990, V. Agninothrudu
Table 2. Percentage of clavate sporodochial conidia of *Fusarium oligoseptatum* and *F. ambrosium* with different numbers of septa cultured on SNA under black light at 25 °C.

Species/strain	0-septate	1-septate	2-septate	3-septate	4-septate	5-septate	6-septate	7-septate	Total number of conidia counted
F. oligoseptatum									
NRRL 62579 (ex-holotype)	9.5	41.0	30.5	15.2	1.9	1.9	0	0	105
NRRL 62580	12.1	46.8	20.6	16.8	3.7	0	0	0	107
NRRL 62581	3.8	47.1	25.5	18.9	3.8	0.9	0	0	106
F. ambrosium									
NRRL 20438	0	3.4	5.0	44.5	38.7	6.7	1.7	0	119
NRRL 22345	0	5.9	7.8	25.5	23.5	29.5	4.9	2.9	102
NRRL 22346 (ex-epitype)	0	0	3.7	40.2	46.8	8.4	0.9	0	107
NRRL 36510	0	0.9	12.3	30.2	43.4	13.2	0	0	106
NRRL 46583	0	4.4	5.3	28.1	44.6	12.3	5.3	0	114
NRRL 62605	1.0	4.9	18.6	52.0	18.6	4.9	0	0	102

Fig. 6. *Fusarium ambrosium* cultured on SNA under black light. **A–C.** Tall and short aerial conidiophores forming 0-septate conidia. **D, E.** Short and tall aerial conidiophores forming septate conidia. **F, G.** Sporodochial conidiophores forming large clavate conidia. **H–J.** Clavate multisepitate septate conidia. **K–N.** Chlamydospores in hyphae (K–M) and conidium (N). **A, E, F, L** from NRRL 62605; **B, D, H, K, N** from NRRL 20438; **C, G, M** from NRRL 22346 (ex-epitype); **I** from NRRL 22345; **J** from NRRL 46583. Bar = 25 µm.

"© 2018 Westerdijk Fungal Biodiversity Institute"
Fig. 7. *Fusarium ambrosium* cultured on SNA under black light. A‒E. Aerial conidiophores forming 0‒1(‒2)-septate conidia. F‒K. Sporodochial conidiophores forming mostly multiseptate clavate conidia, swollen apically with (2‒)3‒5(‒6)-septa; (Arrowhead in G:) crescent-shaped conidium without septa. L. 0‒1-septate conidia formed on aerial conidiophores. M. Clavate conidia formed on sporodochial conidiophores. N‒Q. Chlamydospores formed in hyphae. A, L, M, O from NRRL 62605; B, C, E, I, K, N from NRRL 22346 (ex-epitype); D, F‒H, J, P, Q from NRRL 20438. (A‒E: Aerial view without a cover slip; F‒Q: Mounted in water with a cover slip.) Bars: A‒E = 50 μm, F‒Q = 20 μm.
Fusarium oligoseptatum sp. nov.

Additional strains examined: India, Maharashtra: Chinchona, isolated from a gallery of E. fornicatus infesting a C. sinensis tree, 17 Jul. 1985, (unknown collector) (NRRL 20438 = IMI 296597 = MAFF 246291, preserved as the ex-holotype strain of F. bugnicourtii); (State name of India not recorded): Upari Tea Institute, isolated from a gallery of E. fornicatus infesting C. sinensis tree, 9 May 1990, V. Agnihotruthu (NRRL 22345 = BBA 65389 = MAFF 246288; NRRL 36510 = BBA 65390 = MAFF 246289 as a duplicate of NRRL 22346); Tamil Nadu: Coimbatore District, Anamallais, High Forest Estate, isolated from a gallery of E. fornicatus infesting stem of C. sinensis, 9 May 1990, (unknown collector) (NRRL 46583 = IMI 339338 = MAFF 246290, preserved as F. bugnicourtii); Sri Lanka, Talawakelle, St. Coombs, Tea Research Institute of Sri Lanka, isolated from a gallery of E. fornicatus infesting C. sinensis tree, Mar. 2012, S. Freeman (NRRL 62605).

Description: Colonies on PDA showing radial mycelial growth rates of 1.9–3.3 mm/d at 20 °C and 3.0–4.5 mm/d at 25 °C in the dark. Colony color on PDA white (1A1) to yellowish-white (4A2) in the dark, white (1A1) to yellowish-white (3–4A2) or pale yellow (4A3) under black light. Aerial mycelium white (1A1) sparse to floccose in the dark, more abundantly formed and often covering entire surface of colonies under black light. Colony margin entire to undulate. Reverse pigmentation absent or yellowish-white (3–4A2) or pale yellow (4A3) in the dark and under black light. Olive (3E–F5–8) to olive-brown (4E–F5–8) spots in some strains when sporodochia formed on PDA. Exudates absent. Odor absent, or slightly moldy or sweet in some strains. Hyphae on SNA 1.5–9.5 µm wide. Chlamydospores present in hyphae and in septate sporodochial conidia, mostly subglobose to round ellipsoidal, intercalary or terminal, single or often in chains, hyaline or slightly pale yellow, smooth to often minutely rough-walled, 5–31.3 × 4.5–13 µm. Sclerotia absent. Sporulation on SNA and PDA generally rapid and abundant under black light, less abundant in some strains, delayed or sometimes less production in the dark; generally light-colored on SNA and PDA under black light or under daylight; sporodochia formed sparsely on SNA, and rarely on PDA under daylight; olive (3E–F5–8) to olive brown (4E–F5–8) when produced in mass. Aerial conidiophores formed abundantly on SNA under black light, erect, short or tall, mostly narrow but rarely thicker, mostly unbranched, rarely branched sparsely, up to 320 µm long, 2.5–7 µm wide at base, thin-walled, forming monophialides integrated in the apices. Phialides on aerial conidiophores simple, subcylinrical to subulate, tapering towards apex, often with a minute collarette at the tip, 15–66 × 2.5–4 µm. Aerial conidia typically (1) elliptical, oblong-elliptical, fusiform-elliptical to short clavate, occasionally reniform, some obovate, 0–1-septate; 0-septate on SNA in the dark: 3.5–14 × 1.5–7 µm in total range, 8.4–9.4 × 2.8–3.3 µm on average [ex epitype (NRRL 22346): 3.5–14 × 2–5.5 µm in total range, 9.4±2.4 × 2.3±0.6 µm on average ± S.D.]; 0-septate on SNA under black light: 3.5–22 × 2–7.5 µm in total range, 7.8–10.8 × 3.5–4.5 µm on average [ex epitype (NRRL 22346): 4.5–18.5 × 2–7.5 µm in total range, 10.2±2.4 × 4.1±1.1 µm on average ± S.D.]; 1-septate on SNA in the dark: 8–26 × 2.5–6.5 µm in total range, 13.6–16.3 × 3.7–4.9 µm on average [ex epitype: 12–19 × 3.5–5.5 µm in total range, 15.3±1.9 × 4.8±0.4 µm on average ± S.D.]; 1-septate on SNA under black light: 8.5–37 × 2.5–10.5 µm in total range, 15.3–20.1 × 5.4–6.6 µm on average [ex epitype: 10.5–36 × 2.5–10.5 µm in total range, 19.3±1.5 × 6.2±1.5 µm on average ± S.D.]; sometimes with (2) larger, falcate to clavate, or curved clavate, (1–2)(–3)-septate conidia, morphologically continuous with falcate sporodochial conidia. Sporodochial conidia generally short, unbranched or rarely sparsely branched, contorted, monopodial integrated apically, 20–61.3 × 3.5–5 µm. Sporodochial phialides simple, subulate, lanceolate or subcylinrical, often with a conspicuous collarette at the tip, 13–60 × 3–6 µm. Sporodochial conidia hyaline, mostly falcate to long clavate, sometimes curved cylindrical, mostly swollen in the upper part, tapering towards base, often with a round or papillate apical cell, and a distinct or indistinct foot-like, or rounded basal cell, swollen conidia often appear “dolphin-like” (Brayford 1987), (0–)2–(5–7)-septate, formed on SNA under black light, less frequently in the dark, sometimes formed on PDA under black light, rarely in the dark; 2-septate on SNA under black light: 15–61.5 × 3–12 µm in total range, 24.7–32.2 × 6.9–9.1 µm on average [ex-epitype: 15–61.5 × 4–10 µm in total range, 28.3±7.8 × 7.8±1.2 µm on average ± S.D.]; 3-septate on SNA under black light: 21–57.5 × 3.5–13 µm in total range, 34.1–40.4
× 8.3–10.0 μm on average [ex epitype: 30–57 × 7.5–12.5 μm in total range, 40.4±4.9 × 8.8±1.1 μm on average ± S.D.]; 4-septate on SNA under black light: 25.5–78.5 × 6–12.5 μm in total range, 40.7–45.6 × 8.8–10.4 μm on average [ex epitype: 33–78.5 × 7.5–11.5 μm in total range, 45.3±6.1 × 8.8±0.9 μm on average ± S.D.]; 5-septate on SNA under black light: 30–64 × 7–12.5 μm in total range, 42.9–52.1 × 8.8–10.3 μm on average [ex epitype: 37–51.5 × 7.5–12 μm in total range, 45.6±3.7 × 8.8±1.1 μm on average ± S.D.]. Together with multiseptate sporodochial conidia, often forming (0-1)(-2)-septate, oblong to naviculate or short-clavate, straight or curved conidia, with a rounded apex and a truncate base.

Notes: Strain NRRL 62605 did not form conidia on SNA or PDA in the dark. Therefore, the description of conidia in the dark was based on the three other strains examined in this study. All of the strains studied were isolated from galleries of E. fornicatus infesting C. sinensis trees in India and Sri Lanka. Fusarium ambrosium was originally isolated from E. (Xyleborus) fornicatus galleries in stems of Chinese tea and caster-oil trees in Sri Lanka, and was described as a new species of Monocarpocorton, i.e., M. ambrosium by Gadd & Loos (1947). Forty years later, it was redescribed by Brayford (1987) as F. bugnicourtii based on collections from beetle galleries in Chinese tea in India and borer-damaged Hevea brasiliensis and Theobroma cacao in Malaysia. Brayford (1987) considered F. bugnicourtii to be conspecific with F. tumidum var. coeruleum (Bugincourt 1939) isolated from H. brasiliensis, but distinct from F. tumidum. Fusarium bugnicourtii was recognized as conspecific with Gadd and Loos’ species, M. ambrosium from the shot-hole borer on tea, and synonymized under the new combination, F. ambrosium based on its nomenclatural priority (Nirenberg 1990). Because type material of M. ambrosium (= F. ambrosium) was not designated in the original description by Gadd & Loos (1947) and not found in the IMI, K, and BPI herbaria, we selected a line-drawing (illustration) of a conidium from Gadd & Loos (1947) as the lectotype, according to Art. 9.2 and 9.3 of the ICNfp (McNeill et al. 2012). To supplement the lectotype, BPI 910524, a dried culture of NRRL 22346 (= BBA 65390 = CBS 571.94), isolated from a gallery of E. fornicatus infesting C. sinensis in India by V. Agnihothrudu, was selected as the epitype according to Art. 9.8 of the code. Because an authentic strain of F. ambrosium, IMI 296597 (= NRRL 20438), isolated from E. (Xyleborus) fornicatus galleries in tea tree from India in 1985, was designated as the holotype of F. bugnicourtii by Brayford (1987), this material was not selected for the epitype, per Art. 52.1 and 52.2 of the ICN (McNeill et al. 2012). Although NRRL 62605 was isolated from an E. fornicatus gallery in Sri Lanka from the same host and type locality, it was not selected as the epitype because it appears to be an interspecific hybrid that contains alleles from what appear to be two other AFC species (Kasson et al. 2013). The present epitypification was prepared to stabilize the taxonomy of this species.

Fusarium ambrosium is most similar morphologically to F. euwallaceae (Freeman et al. 2013, Kasson et al. 2013). Fusarium ambrosium and F. euwallaceae produce very similar falcate to clavate, septate sporodochial conidia that are swollen in their upper half, together with ovoid to ellipsoid, 0-septate aerial conidia. The conidial sizes and number of septa of these two fusaria are almost identical (Table 2, Figs 6, 7; Freeman et al. 2013). However, F. ambrosium and F. euwallaceae can be distinguished by the production of hyaline or olive to olive-brown conidia when old in the former and bluish to greenish conidia in the latter when produced in mass on PDA after 1 mo (Freeman et al. 2013). Production of sporodochial conidia in F. euwallaceae is easily observed on SNA and PDA in the dark and under black light, but in F. ambrosium it is often delayed or limited without black light illumination, even if cultured on SNA.

A preliminary morphological comparison of the sporodochial conidia for 10 of the 12 AFC species has been conducted (T. Aoki et al. unpubl.). Ten of the species produced clavate sporodochial conidia that were swollen apically, and two, including AF-6 associated with Euwallacea sp. #2 in avocado in the Miami-Dade area of southern Florida, USA and AF-9 from Xyleborus ferrugineus in Costa Rica and Delonix regia (royal poinciana) in southern Florida only produced curved fusiform, septate sporodochial conidia in culture, as commonly observed in typical members of the F. solani species complex. Three novel AFC species that were reported recently (O’Donnell et al. 2015, Na et al. 2018), including AF-10 from Singapore, AF-11 from Sri Lanka, and AF-12 (= F. kuroshium) from San Diego County, California, produced clavate sporodochial conidia in culture.

The available data suggests that most of the AFC species might possess diagnostic phenotypic characters. For example, AF-3 ex Euwallacea interjectus infesting Acer negundo in Gainesville, Florida produced sporodochial conidia that were variable in size and shape; AF-5 from Malaysia ex Hevea brasiliensis produced the shortest sporodochial conidia when comparing those with the same number of septa produced by the members of the AFC; AF-7 from Euwallacea sp. #3 ex Persea americana in Australia produced sporodochial conidia that were densely and/or obliquely septate; AF-8 from Euwallacea sp. #2 ex avocado in the Miami-Dade area of southern Florida appeared to be unique in that it is the only AFC species that produced swollen clavate and curved fusiform sporodochial conidia (Kasson et al. 2013); AF-10 from Singapore produced clavate sporodochial conidia that were narrower than conidia of other AFC species with the same number of septa; AF-11 ex E. fornicatus in Chinese tea from Sri Lanka produced sporodochial conidia that were frequently pointed and curved or hooked to one side; F. kuroshium AF-12 ex Euwallacea sp. #5 from Platanus racemosa (California sycamore) and several other woody hosts in San Diego County, California was distinguished by the production of clavate sporodochial conidia together with crescent- or comma-shaped conidia (T. Aoki et al. unpubl.). By way of contrast, AF-6 ex Euwallacea sp. #2 in avocado in the Miami-Dade area of Florida and AF-9 from Costa Rica and the Miami-Dade area of Florida only produced curved cylindrical multiseptate conidia and elliptical to oblong aerial conidia (Kasson et al. 2013). However, the sporodochial conidia formed by AF-9 are atypical of the F. solani species complex because they were pointed at both ends, terminating in a short apical beak and a conspicuous foot-like basal cell. Detailed studies will be required to assess whether AF-6 and AF-9 possess morphological characters that distinguish them from other members of the F. solani species complex.

DISCUSSION

The AFC symbiont cultivated by the ambrosia beetle Euwallacea validus in Alantius altissima in eastern U.S. is formally described herein as Fusarium oligoseptatum. Sampling across 7 eastern U.S. states and 17 tree hosts confirmed that F. oligoseptatum is the
primary symbiont of *E. validus* and dominant, regardless of plant host with few exceptions. This species can be distinguished from the 11 other known AFC species by producing significantly more 0–2-septate clavate sporodochial conidia that are swollen apically and via multilocus molecular phylogenetics where it was strongly supported as a genealogically exclusive species-level lineage in the analyses reported here and in previous studies (Kasson et al. 2013, O’Donnell et al. 2015, Na et al. 2018). *Fusarium oligoseptatum* was strongly supported as a reciprocally monophyletic sister to *F. euwallaceae* + *Fusarium* sp. (AF-3) in Kasson et al. (2013), but the sister group relationship of *F. oligoseptatum* was unresolved in analyses that included the closely related *F. kuroshium* (AF-12) from San Diego, California (O’Donnell et al. 2015, and present study). Efforts to develop a robust hypothesis of evolutionary relationships among these four AFC species, which are estimated to have shared a most recent common ancestor approximately 1.6 Mya (O’Donnell et al. 2015), might benefit from the comparative phylogenomic analyses that are currently underway (Stajich et al., pers. comm.).

Herein, an epiotype of *F. ambrosium* was designated based on material originally isolated from a gallery of *E. fornicatus* infesting Chinese tea in India to provide nomenclatural stability for this species. AFC species have been collected in eight different countries, including Sri Lanka (*F. ambrosium* AF-1 and *Fusarium* sp. AF-11), India (*F. ambrosium* AF-1), Malaysia (*Fusarium* sp. AF-5), Singapore (*Fusarium* sp. AF-10), Australia (*Fusarium* sp. AF-7), Israel (*F. euwallaceae* AF-2), Costa Rica (*Fusarium* sp. AF-9) and the United States (*F. euwallaceae* AF-2, *Fusarium* sp. AF-3, *F. oligoseptatum* AF-4, *Fusarium* spp. AF-6, AF-8, AF-9 and *F. kuroshium* AF-12) (Brayford 1987, Nirenberg 1990, Freeman et al. 2013, Kasson et al. 2013, O’Donnell et al. 2015, Short et al. 2017, Na et al. 2018). To date only three species within the AFC have been described formally, i.e., *F. ambrosium* (AF-1; Gadd & Loos 1947, Nirenberg 1990), *F. euwallaceae* (AF-2; Freeman et al. 2013) and *F. oligoseptatum* (AF-4; in this study). Although nine of the AFC species are currently unnamed, the prospects for naming them are excellent because most of them appear to possess unique phenotypic/morphological features. Delimitations of such features may, in time, help to uncover the mechanisms underlying the production of clavate conidia, a posited adaptation for the *Euwallacea – Fusarium* symbiosis (Kasson et al. 2013). Indeed, analogous adaptations in agaricalean fungi (i.e., gongylidia) farmed by higher and occasionally lower attine ants (Schultz & Brady 2008, Masiulionis et al. 2014) also appear to exhibit variation among closely related lineages. However, quality of the substrate, pH, and temperature have also been shown to affect the growth and size of gongylidia in some higher attine ant cultivars when cultivated under lab conditions (Powell & Stradling 1986).

It remains unclear whether *F. ambrosium*, *F. euwallaceae*, or *F. oligoseptatum* are each farmed by a single *Euwallacea* species, including within their native range, where evidence of hybridization and co-cultivation with other closely related AFC members have been reported (O’Donnell et al. 2015). However, it has been shown that *F. euwallaceae* from avocado is obligately required for the survival and development of *Euwallacea* sp. #1 sensu O’Donnell et al. (2015) currently occurring in Israel, whereas *F. ambrosium* does not support development of this beetle species (Freeman et al. 2012). Likewise, specificity exists for *F. ambrosium* and its beetle host. Future studies focused on vector specificity could help clarify the threats these beetle-fungus consortia pose to our native ecosystems. This is especially important given that some AFC members such as *F. euwallaceae* have caused significant damage to orchard, landscape and forest trees and threaten avocado production worldwide (Mendel et al. 2012, Eskalen et al. 2013, Kasson et al. 2013), while other AFC members such as *F. oligoseptatum* appear to be quite innocuous when challenged against numerous plant species (Berger 2017).

The FSSC includes over 60 species (Zhang et al. 2006, O’Donnell et al. 2008, Short et al. 2013), a majority of which lack formal Latin binomials thus making it difficult to link specific plant diseases with specific phylogenetic species within the FSSC, including the AFC (Montecchio et al. 2015). The designation of formal Latin binomials for a majority of phylogenetic species within the FSSC coupled with recent abolishment of the dual system of fungal nomenclature will likely reduce confusion surrounding molecular identification of taxa within this large species complex. Nevertheless, the use of multilocus phylogenetic studies will remain the gold standard to discriminate closely related members in the FSSC.

Another avenue to further resolve these closely related phylogenetic species is to examine functional differences among closely related AFC. A recent study by Kasson et al. (2016) assessed the enzyme activity and wood degrading capacity of *F. oligoseptatum* and *R. subfusca*, the two known symbionts of *E. validus* in the eastern U.S. Polyphenol oxidase production was detected from *F. oligoseptatum* but not *R. subfusca*. An earlier study by Norris (1980) on AFC member *Fusarium* sp. AF-9 revealed this fungus was capable of degrading lignin. Further enzymatic studies among closely related AFC may compliment morphological and phylogenetic studies within the *Euwallacea – Fusarium* mutualism, revealing significant differences in enzyme activity. This is particularly important given recent studies by Aylward et al. (2015) that showed a diverse but consistent set of enzymes present in gongylidia, which are essential for initial degradation of plant substrates in the leaf-cutter ant-*Leucoagaricus* mutualism.

The results of this study suggest that many of the unnamed AFC species like *F. oligoseptatum* possess unique phenotypic/morphological features, which will facilitate formal description of these economically important pathogens. Phenotypic/morphological studies on the four additional AFC species from Taiwan (Na et al. 2018) are, therefore, also fully expected. Our ongoing research is focused on advancing the systematics of the AFC to promote accurate communication within the global scientific community.

ACKNOWLEDGMENTS

We are pleased to acknowledge the skilled technical assistance of Gail Doehring, Stacy Sink and Nathane Orwig in generating the DNA sequence data reported in this study. Dr. Konstanze Bensch, MycoBank, is thanked for her helpful advice concerning typification of *F. ambrosium*.

DISCLAIMER

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.
REFERENCES

Alamouti S, Tsui C, Breuil C (2009). Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycological Research 113: 822–835.

Aoki T, Vaughan MM, McCormick SP, et al. (2015). Fusarium dactylidis sp. nov., a novel nivalenol-toxin-producing species sister to F. pseudogibberellatum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand. Mycologia 107: 409–418.

Ayliward FO, Khadempour L, Tremmel DM, et al. (2015). Enrichment and broad representation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants. PLoS ONE 10: e0134752.

Bateman CC, Huang Y-T, Simmons D, et al. (2016). Ambrosia beetle Premnlobius cavipennis (Scolytinae: Ipini) carries highly divergent ascomycotan ambrosia fungus, Afroraffaelea ambrosiae gen. nov. et sp. nov. (Ophiostomatatales). Fungal Ecology 25: 41–49.

Berger MC (2017). Interactions between Euwallacea ambrosia beetles, their fungal symbionts and the native trees - They attack in the Eastern United States (Master Thesis, West Virginia University).

Brayford D (1987). Fusarium bugicourtii sp. nov., and its relationship to F. tumidum and F. tumidum var. coeruleum. Transactions of the British Mycological Society 89: 347–351.

Bugnicourt F (1939). Les Fusarium et Cylindrocarpon de l’Indochine. Encyclopédie Mycologique 11: 83–87 + plate II.

Dreaden TJ, Davis JM, de Beer ZW, et al. (2014). Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biology 118: 970–978.

Eskalen A, Stouthamer R, Lynch SC, et al. (2013). Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Disease 97: 938–951.

Fraedrich SW, Harrington TC, Rabaglia RJ, et al. (2008). A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Disease 92: 215–224.

Freeman S, Protasov A, Sharon M, et al. (2012). Obligate feed requirement of Fusarium sp. nov., an avocado wilting agent, by the ambrosia beetle Euwallacea aff. fornicata. Symbiosis 58: 245–251.

Freeman S, Sharon M, Dori-Bachash M, et al. (2016). Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicata. Symbiosis 68: 115–128.

Freeman S, Sharon M, Maymon M, et al. (2013). Fusarium euwallaceae sp. nov. – a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia 105: 1595–1606.

Gadd CH, Loos CA (1947). The ambrosia fungus of Xyleborus fornicatus Eich. Transactions of the British Mycological Society 30: 13–18 + plate I.

Gebhardt H, Weiss M, Oberwinkler F (2005). Dryadomyces amasae: a nutritional fungus associated with ambrosia beetles of the genus Amasa (Coleoptera: Curculionidae, Scolytinae). Mycological Research 109: 687–696.

Geiser DM, Aoki T, Bacon CW, et al. (2013). One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Mycopathology 103: 400–408.

Harrington TC, Aghayeva DN, Fraedrich SW (2010). New combinations in Raffaelea, Ambrosiola, and Hyalorhinochlaediella, and four new species from the Redbay ambrosia beetle, Xyleborus glabratris. Mycotaxon 111: 337–361.

Harrington TC, Fraedrich SW, Aghayeva DN (2008). Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104: 399–404.

Hulcr J, Cognato AI (2010). Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution 64: 3205–3212.

Hulcr J, Dunn RR (2011). The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proceedings of the Royal Society B 278: 2866–2873.

Hulcr J, Stelinski LL (2017). The ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology 62: 285–303.

Kasson MT, O’Donnell K, Rooney AP, et al. (2013). An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genetics and Biology 56: 147–157.

Kasson MT, O’Neal ES, Davis DD (2015). Expanded host range testing for Verticillium nonalfalfae: potential biocontrol agent against the invasive Ailanthus altissima. Plant Disease 99: 823–835.

Kasson MT, Wickert KL, Stauder CM, et al. (2016). Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles. Fungal Ecology 23: 86–96.

Kolařík M, Hulcr J (2009). Mycobiota associated with the ambrosia beetle Scolytodes unipunctatus (Coleoptera: Curculionidae, Scolytinae). Mycological Research 113: 44–60.

Kolařík M, Kirkendall LR (2010). Evidence for a new lineage of primary ambrosia fungus in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biology 114: 676–689.

Kornerup A, Wanscher JH (1978). Methuen handbook of colour. London; Eyre Methuen.

Kubono T, Ito S (2002). Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43: 255–260.

Li Y, Simmons DR, Bateman CC, et al. (2015). New fungus-insect symbiosis: culturing, molecular, and histological methods determine saprophytic Polyporales mutualists of Ambrosiodmus ambrosia beetles. PLoS ONE 10: e0137689.

Lynch SC, Twizeyimana M, Mayorquin JS, et al. (2016). Identification, pathogenicity and abundance of Paracrenarum pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108: 313–329.

Masiuilionis VE, Rabeling C, Henrik H, et al. (2014). A Brazilian population of the asexaul fungus-growing ant Mycocepurus smithii (Formicidae, Myrmicinae, Attini) cultivates fungal symbionts with gongylidia-like structures. PLoS ONE 9: e103800.

Mayer CG, McNew DL, Harrington TC, et al. (2015). Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biology 119: 1075–1092.

McNeill J, Barrie FR, Buck WR, et al. (eds.) (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum Vegetabile no. 154.] Königstein: Koeltz Scientific Books.

Mendel Z, Protasov A, Sharon M, et al. (2012). An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry. Phytoparasitica 40: 235–238.

Montecchio L, Faccoli M, Short DPG, et al. (2015). First report of Fusarium solani phylogenetic species 25 associated with early stages of Thousand Cankers Disease on Juglans nigra and Juglans regia in Italy. Plant Disease 99: 1183.

Na F, Carrillo JD, Mayorquin JS, et al. (2017). Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause Fusarium dieback on woody host species in California. Plant Disease (ja). (in press) https://doi.org/10.1094/PDIS-07-17-1042-RE
Fusarium oligoseptatum sp. nov.

Nirenberg HI (1990). Recent advances in Fusarium taxonomy. Studies in Mycology 32: 91–101.
Nirenberg HI, O’Donnell K (1998). New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90: 434–458.
Norris DM (1980). Degradation of 14C-labeled lignins and 14C-labeled aromatic acids by Fusarium solani. Applied and Environmental Microbiology 40: 376–380.
Norris DM, Baker JK (1967). Symbiosis: effects of a mutualistic fungus upon the growth and reproduction of Xyleborus ferrugineus. Science 156: 1120–1122.
O’Donnell K (2000). Molecular phylogeny of the Nectria haematococca–Fusarium solani species complex. Mycologia 92: 919–938.
O’Donnell K, Rooney AP, Proctor RH, et al. (2013). Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genetics and Biology 52: 20–31.
O’Donnell K, Sink S, Libeskind-Hadas R, et al. (2015). Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism. Fungal Genetics and Biology 82: 277–290.
O’Donnell K, Sutton DA, Fothergill A, et al. (2008). Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. Journal of Clinical Microbiology 46: 2477–2490.
Powell RJ, Stradling DJ (1986). Factors influencing the growth of Attamyces bromatificus, a symbiont of attine ants. Transactions of the British Mycological Society 87: 205–213.
Schall MJ, Davis DD (2009). Ailanthus altissima wilt and mortality: Etiology. Plant Disease 93: 747–751.
Schultz TR, Brady SG (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Science of the United States of America 105: 5435–5440.

Seo MY, Matsuda Y, Nakashima C, et al. (2012). Taxonomic reevaluation of Raffaelea quercivora isolates collected from mass mortality of oak trees in Japan. Mycoscience 53: 211–219.
Short DPG, O’Donnell K, Stajich JE, et al. (2017). PCR multiplexes discriminate Fusarium symbionts of invasive Euwallacea ambrosia beetles that infest damage on numerous tree species throughout the United States. Plant Disease 101: 233–240.
Simmons DR, Li Y, Bateman CC, et al. (2016). Flavodon ambrosius sp. nov., a basidiomycetous mycosymbiont of Ambrosiodmus ambrosia beetles. Mycotaxon 131: 277–285.
Swofford DL (2003). PAUP*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sunderland, MA: Sinauer Associates.
Upadhyay HP, Kendrick WB (1975). Prodromus for a revision of Ceratocystis (Microscales, Ascomycetes) and its conidial states. Mycologia 67: 798–805.
von der Walt JP (1972). The yeast genus Ambrosiazyma gen. nov. (Ascomycetes). Mycopathologia et Mycologia Applicata 46: 305–316.
von Arx JA, Hennebert GL (1965). Deux champignons ambrosia. Mycopathologia et Mycologia Applicata 25: 309–315.
Zhang N, O’Donnell K, Sutton DA, et al. (2006). Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. Journal of Clinical Microbiology 44: 2186–2190.
Zwickl DJ (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence data sets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas, Austin.