Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number \(R_e \) and Deborah number \(D_e \). The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high \(R_e \) and \(D_e \), calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.

PACS numbers: xxxx

INTRODUCTION

Drag reduction in wall-bounded turbulent flows can be achieved with the addition of either flexible or rodlike polymers \(^1\)\(^2\). The theory of drag reduction by either type of polymers is by now well established \(^2\). The theory for flexible polymers is supported by both experiments and numerical simulations while that for rodlike polymers has been compared mainly with laboratory experiments. More scant are numerical simulations of drag reduction by rodlike polymers, and some results became available only quite recently \(^4\). Comparisons of theories and simulations in this case must be done with care, since the available theory assumes high enough Reynolds \(R_e \) and Deborah numbers \(D_e \), in contrast to the situation in simulations where these crucial characteristic numbers are relatively low. To clarify the relation between the theory and the available numerical simulations, we present in this note a comparison between numerical simulations and theoretical predictions adapted to the limited values of \(R_e \) and \(D_e \).

The equations of motion used for the numerical simulations are

\[
\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu_0 \frac{\partial^2 U_i}{\partial x_j \partial x_j} + \frac{\partial \sigma_{ij}}{\partial x_j},
\]

(1)

supplemented by the incompressibility constraint \(\partial U_i / \partial x_i = 0 \) where \(U \) is the velocity field, \(p \) is the pressure, the units are chosen such that the fluid density is unity, \(\nu_0 \) is the kinematic viscosity of the neat fluid, and \(\sigma_{ij} \) is the additional stress tensor due to the rodlike polymers.

The rodlike polymers are represented by rigid and neutrally buoyant elongated particles. The particles are assumed to be massless and have no inertia. The orientation of each polymer is given by a unit vector \(\mathbf{n} \). In turbulent flows with strong shear such that thermal Brownian rotations can be neglected, the evolution equation for the second moment of the conformation tensor \(R_{ij} = \langle n_i n_j \rangle \) is given by \(^5\):

\[
\frac{\partial R_{ij}}{\partial t} + U_k \frac{\partial R_{ij}}{\partial x_k} = S_{ik} R_{kj} + S_{jk} R_{ki} - 2 S_{kl} R_{ijkl} = 0
\]

(2)

where \(R_{ijkl} = \langle n_i n_j n_k n_l \rangle \) and \(S_{ij} \) are the velocity gradient \(S_{ij} = \partial U_i / \partial x_j \). Moreover, in this non-Brownian limit, the tensor \(\sigma_{ij} \) in Eq. (1) is given by \(^6\)\(^7\),

\[
\sigma_{ij} = 6 \nu_p S_{kl} R_{ijkl} \tag{3}
\]

where \(\nu_p \) is the polymeric contribution to the viscosity at vanishingly small and time-independent shear, and is proportional to the product of \(\nu_0 \) \(\phi \) where \(\phi \) is the volume fraction of the polymers. In \(^6\) it was argued that these equations can be closed by the simple closure \(R_{ijkl} = R_{ij} R_{kl} \).

SIMULATIONS

The equations of motion are numerically integrated for a channel flow. The dimensions of the integration domain are \(2\pi L \times 2L \times 1.2\pi L \) in the \(x \) (streamwise), \(y \) (wall-normal) and \(z \) (spanwise) directions respectively, with \(L \) being the channel half-width. The numerical formulation is a standard pseudospectral method with Fourier expansion in directions parallel to the wall and Chebyshev in the direction normal to the wall. The grid used is \(128 \times 193 \times 64 \). The direct numerical simulations (DNS) were performed at a nominal \(R_e \equiv U_0 L / \nu_0 \) of 10000 for both the Newtonian flow (with \(\eta_p \equiv 6 \nu_p / \nu_0 = 0 \)) and for turbulent flow with rodlike polymers with \(\eta_p = 25 \), where \(U_0 \) is the mean velocity at the center of the channel. Both flows were forced on average with the same pressure drop \(p' \equiv -\partial p / \partial x \), so the resulting Reynolds...
and a marked decrease of the mean momentum fluxes. Flexible polymers: an increase of the mean velocity profile close to what one observes in turbulent channel flows with reduction [7]. Let us note that Figs. 1 and 2 are quite.

It had been explained before that the reduction in the mechanical momentum flux from the fluid to the wall. The Reynolds stress is the mean value of the fluctuating part of the velocity gradient tensor S_{ij}, defined by:

$$S_{ij}(r,t) = S(y)\delta_{ux} \delta_{uy} + s_{ab}(r,t), \quad \langle s_{ab}(r,t) \rangle = 0. \quad (8)$$

It was shown that for large Re and De these equations predict the establishment of a new velocity profile, again in the form a power law, but with a considerably larger slope compared to the Newtonian slope. This asymptotic log-law is known as the Maximum Drag Reduction number based on the friction velocity is the same and equal to $Re_e = \sqrt{\mu LL}/v_0 = 300$. In channel geometry the only non-vanishing mean velocity component is $V(y) \equiv \langle U_y \rangle$. Accordingly we separate the velocity field into its mean and fluctuation, $U = V \hat{x} + u$. Below we use the wall units: $y^+ \equiv y Re_e / L$ and $V^+(y^+) \equiv V/\sqrt{Re}$. In the polymer laden flow, the mean velocity profile as a function of the distance from the wall (in wall units) exhibits an increase with respect to the Newtonian flow. The Reynolds stress is the mean kinetic energy of the fluctuating velocity. Here $S_{ij} = \langle \sigma_{ij} \rangle$ (5)

$$\langle \sigma_{xy} \rangle \approx c_1 \nu_p R_{yy} (y) S(y) \quad (5)$$

The polymer contribution to the dissipation, denoted here as $\epsilon^p = \langle \sigma_{ij} s_{ij} \rangle$, can be evaluated as:

$$\epsilon^p(y) \approx c_2 \nu_p R_{yy} (y) \frac{K(y)}{y^2} \quad (7)$$

with some constant c_2, where $K(y) \equiv \langle |u|^2 \rangle/2$ is the kinetic energy of the fluctuating velocity. Here s_{ij} is the fluctuating part of the velocity gradient tensor S_{ab}, defined by:

$$S_{ab}(r,t) = S(y)\delta_{ux} \delta_{by} + s_{ab}(r,t), \quad \langle s_{ab}(r,t) \rangle = 0. \quad (8)$$

In Fig. 2 we show the momentum fluxes. There is a significant reduction in the Reynolds stress $W(y) = -(u_x u_y)$ for the rodlike polymer laden flow as compared to the Newtonian flow. The Reynolds stress is the mean mechanical momentum flux from the fluid to the wall. It had been explained before that the reduction in the momentum flux is at the heart of the mechanism for drag reduction [7]. Let us note that Figs. 1 and 2 are quite close to what one observes in turbulent channel flows with flexible polymers: an increase of the mean velocity profile and a marked decrease of the mean momentum fluxes.

The theory of turbulent drag reduction by rodlike polymers [4] is based in part on the exact momentum balance equation:

$$\langle \sigma_{xy} \rangle + \nu_0 S + W = p'(L - y) \quad (4)$$

where $S(y) = dV(y)/dy$ is the mean shear. A central ingredient of the theory is the statement that the polymer contribution to this equation, i.e. $\langle \sigma_{xy} \rangle$, can be evaluated as:

$$\langle \sigma_{xy} \rangle \approx c_1 \nu_p R_{yy} (y) S(y) \quad (5)$$

with some constant c_1 and $R_{ij} = \langle R_{ij} \rangle$. Similarly, in the energy balance equation:

$$\nu_0 (s_{ij} s_{ij}) + \langle \sigma_{ij} s_{ij} \rangle \approx SW \quad (6)$$

In Fig. 1 we show the mean streamwise velocity profile $V^+(y^+)$ for both the Newtonian flow (solid line) and the rodlike polymer laden flow (circles).

FIG. 1: Mean streamwise velocity profile $V^+(y^+)$ for both the Newtonian flow (solid line) and the rodlike polymer laden flow (circles).

FIG. 2: The Reynolds stress $W(y)$ for the Newtonian flow (dashed line) and the flow with rodlike polymers (squares).

COMPARISON OF THEORY WITH SIMULATIONS

FIG. 2: The Reynolds stress $W(y)$ for the Newtonian flow (dashed line) and the flow with rodlike polymers (squares).
Asymptote (MDR). Moreover, the existence of a new log-law, with V^+ linear in log y^+, for the (drag reduced) mean energy profile is directly related to $R_{yy}(y)$ increasing linearly with y. Physically, the theory states that the effects of the polymer can be treated as an y-dependent effective viscosity which increases linearly with y. It is thus of immediate interest to test these predictions also in the present case of relatively low \Rey and \Deb. To this end, we show in Fig. 4 the averages of various components of the conformation tensors: R_{xx}, R_{yy}, and R_{xy} obtained in the simulation. We see clearly that R_{yy} increases linearly with y up to $y^+ \sim 80$, which is the relevant range where drag reduction takes place in this simulation. In Fig. 4 we present the direct comparison of $\langle \sigma_{xy} \rangle$ with $\nu_p R_{yy}(y) S(y)$. The good agreement between the object and its evaluation is shown to exceed the region of linearity in y^+. Thus two central predictions of the theory are well supported by the direct numerical simulation even at the modest value of \Rey that is available here.

Needless to say, not every prediction of a theory that is developed as an asymptotic theory in the limit of $\Rey \to \infty$ and Deborah number $\Deb \to \infty$ can be expected to hold verbatim, and some modification might be required. In the asymptotic theory one argues that $R_{xx} \approx 1 \gg R_{xy}$, $R_{xy} \gg R_{yy}$ and $R_{yy} \sim R_{xy}^2$. We see from Fig. 3 that this is not the case here. To understand these results, note first that the Deborah number for flows with rodlike polymers is defined in the literature as $\Deb = S/\gamma_B$, where γ_B is the Brownian rotational frequency. The simulations were done using $\gamma_B = 0$, formally at infinite \Deb for a laminar shear flow. In the present case of a turbulent channel flow, the effect of turbulence is to induce rotations of the polymers, giving rise to an effective relaxation frequency γ_{turb} which depends on the turbulent intensity. Thus the corresponding effective Deborah number $\Deb = S/\gamma_{turb}$ is also finite. At finite \Rey and finite \Deb, the relative sizes of the averages of the various components of the conformation tensors need to be reevaluated. In the following, we shall show how the theory can be employed for the case of finite \Rey and \Deb to explain the observed numerical results Fig. 3.

We shall start from the equations of motions of the conformation tensor R_{ab}. Averaging Eq. (2) over the turbulent fluctuations,

$$\langle U_k \partial_{xx} R_{ab} \rangle = SR_{yy} \delta_{ax} + SR_{yy} \delta_{bx} + \delta_{ab} \Sigma - 2R_{ab} R_{xy} S + \Sigma \right)$$

where $\Sigma = \langle R_{ab} s_{ab} \rangle$. To derive this equation we first employed the closure assumption

$$\langle R_{abcd} S_{cd} \rangle \approx \langle R_{ab} R_{cd} S_{cd} \rangle \approx R_{ab} (R_{xy} S + \Sigma) \right)$$

The second simplification is the assumption that after removing the mean shear, the remaining velocity fluctuations are not too far from isotropic, and in the log-layer can also be taken as homogeneous. This implies that correlation functions of s_{ab} with R_{ab} are isotropic in space:

$$\langle s_{xx} R_{xx} \rangle \approx \langle s_{yy} R_{xx} \rangle \approx \langle s_{xy} R_{xy} \rangle \approx \Delta R_{xy} (R_{xy} S + \Sigma) \right)$$

Within the same assumptions we can also offer an approximate evaluation of $\Sigma \approx A \sqrt{K/y^2}$ since all the velocity fluctuations are close to isotropic. Here A is a constant of the order of unity. Finally, we evaluate $\langle U_k \partial_{xx} R_{ab} \rangle \approx 0$. This is seen by integrating by parts and using the the incompressibility constraint on. The derivative of the average is negligible for fluctuations that are not too far from homogeneous. With all these we ob-

FIG. 3: The profiles of the averages of the components of the conformation tensor R_{xx} (solid line), R_{yy} (circles), R_{xy} (triangles), and R_{xy} (squares).

FIG. 4: A comparison of $R_{yy}(y)$ (dashed line) with $\langle \sigma_{xy} \rangle/c_1 \nu_p S(y)$ (circles).
turbulent Newtonian channel flow read

units, the momentum and energy balance equations for

equations can also explain the results shown in Fig. 4. We

compact predictions of the asymptotic theory. Our simple mod-

ing (13), (14) and (15) with

These equations are identical to those obeyed by the con-

formation tensor in a steady laminar shear flow and this
tells us that $\kappa S/\Sigma$ can be taken as the effective y-dependent
Deborah number in the simulation. Using Eqs. (13)-(15),

where k is the Von Karman constant and δ is the

thickness of the viscous layer, and $\delta = 6$ was found in [2].

In Fig. 5 we show R_{xx}, R_{xy} and R_{yy} obtained by solving

with $A = 0.7$. We find general agreement with the results shown in Fig. 3 explaining why in this case the relative sizes of the averages of the components of the conformation tensor differ from the predictions of the asymptotic theory. Our simple modeling can also explain the results shown in Fig. 4. We obtain from Eq. (14)

$SR_{yy} = 2R_{yy} (SR_{xy} + \Sigma) \tag{18}$

Using this result and Eqs. (13) and (14), we get

$$
\langle \sigma_{xy} \rangle \approx 6\nu_y R_{xy} (R_{xy} S + \Sigma) = 6\nu_y R_{yy} S \tag{19}
$$

Thus, even if the asymptotic theory cannot be applied directly in the present DNS, the basic prediction $\sigma_{xy} \approx c_1 \nu_y R_{yy} S$ still holds, consistent with the above mentioned approximations, i.e. neglecting anisotropic contributions like $\langle R_{xx} \sigma_{xy} \rangle$.

In order to state that σ_{yy} is an effective viscosity it should also play the role of additional viscosity in the energy balance equation. To test the validity of this we compare the energy dissipation due to polymers ϵ^p against the theoretical prediction Eq. (7). This is done in Fig. 6. On the one hand, the results shown in Fig. 6 supports our general conclusion that $\epsilon^p \sim R_{yy} K/y^2$ within a prefactor that we cannot estimate from the theory. On the other hand the agreement is still not perfect; the measured ϵ^p shows two maxima as a function of y^+. The first peak is related to the maximum of $R_{yy} K/y^2$ while the second peak corresponds to the maximum of $\langle R_{xx}^2 S_{xx} \rangle$.

One of the central statements of the asymptotic theory is that this term drops, by exact cancellation with another term, when the MDR is approached in $De \to \infty$. This is not occurring yet in our simulations with low Re and De.

From our numerical simulations and the theoretical analysis we can also state that R_{yy} is linearly growing up to $y^+ \sim 80$. To see this, estimate the effect of linear viscosity profile using the following equations [3]:

$$
[1 + \alpha (y - \delta)] S^+ + W^+ = 1, \tag{20}
$$

$$
[1 + \alpha F (y - \delta)] \frac{\Delta^2(\alpha)}{y^2} + \frac{1}{\kappa k y} = S^+. \tag{21}
$$

In asymptotic conditions $F = 1$, but here the factor F takes into account that the effective slope of the linear
viscosity profile is somehow smaller for the energy balance equation than for the momentum equation. According to our previous discussion on Fig. (6), we can estimate $F \approx 2$. In (21) the term $\Delta(\alpha)$ was determined theoretically [9]:

$$\Delta(\alpha) = \frac{\delta}{1 - \alpha \delta} \quad (22)$$

In our case the value of α is given by the relation

$$\alpha = \frac{\nu \partial R_{yy}}{\nu \partial y} \quad (23)$$

where the slope dR_{yy}/dy is estimated from the numerical simulation. Solving these simple coupled equations we present in Fig. (7) the quantities $V^+(y^+)$ and $W^+(y^+)$ respectively for the Newtonian flow and for the polymer laden flow. Both figures agree well with the DNS.

CONCLUSIONS

The general philosophy behind our approach to drag reduction by additives is to consider the balance equations for mechanical momentum and turbulent energy, and to analyze the predictions of these equations for the profiles of the relevant quantities, in particular the mean velocity at distance y from the wall [3]. The theory can be simplified in the asymptotic regime when Re and De are very large; there one finds universal profiles, in particular for the the mean velocity profile which becomes the universal MDR [3]. For comparison with numerical simulations, where the drag reduction effect is rather limited due to small finite Re and De, one needs to analyze the balance equations with greater care, taking into account the non-asymptotic effects. This is what we have done in the present work, and our results are shown to agree well with the data obtained from direct numerical simulations.

ESCC acknowledges support by the Hong Kong Research Grants Council (CA05/06.SC01). IP acknowledges partial support by the US-Israel Binational Science Foundation.

[1] P.S. Virk, 1975, AIChE J. 21, 625; P. S. Virk, D. L. Wag- ger and E. Koury, 1996, ASME FED- 237, 261; P.S. Virk, D.C. Sherma and D.L. Wagger, 1997, AIChE J., 43, 3257.
[2] C. Wagner, Y. Amarouchène, P. Doyle and D. Bonn, 2003, Europhys. Lett. 64, 823.
[3] I. Procaccia, V. S. L’vov and R. Benzi, “Colloquium: Theory of Drag Reduction by Polymers in Wall Bounded Tur- bulence”, Rev. of Mod. Phys., submitted Feb.15, 2007 Also:nlin.CD/0702034.
[4] J.S.Paschkewitz, Y. Dubief, C.D. Dimitropoulos, E.S.G. Shaqfeh, and P. Moin, J. Fluid Mech. 518, 281 (2004).
[5] M. Doi and S.F. Edwards, The Theory of Polymer Dy- namics (Oxford, 1988).
[6] R. Benzi, E.S.C. Ching, T.S. Lo, V.S. L’vov, and I. Procaccia, Phys. Rev. E 72, 016305 (2005).
[7] V.S. L’vov, A. Pomyalov, I. Procaccia and V. Tiberkevich, Phys. Rev. Lett., 92 244503, (2004).
[8] cf. for example Fig. 4 in E. De Angelis, C.M. Casciola, V.S. L’vov, A. Pomyalov, I. Procaccia and V. Tiberkevich, Phys. Rev. E, 70, 055301 (2004).
[9] R. Benzi, E. De Angelis, V.S. L’vov and I. Procaccia, Phys. Rev. Lett., 95, 194502 (2005).