Research Article

Statistics and Calculation of Entropy of Dominating David Derived Networks

Xuemei Zhao,¹ Haidar Ali,² Bilal Ali,³ Muhammad Ahsan Binyamin,³ Jia-Bao Liu,⁴ and Ali Raza⁵

¹Anhui Business and Technology College, Hefei 231131, China
²Department of Mathematics, COMSATS University Islamabad, Attock Campus, Islamabad, Pakistan
³Department of Mathematics, Government College University, Faisalabad, Pakistan
⁴School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
⁵Department of Statistics, Government College University, Faisalabad, Pakistan

Correspondence should be addressed to Haidar Ali; haidar3830@gmail.com

Received 6 April 2021; Accepted 19 June 2021; Published 1 July 2021

Academic Editor: Huihua Chen

Copyright ©2021 Xuemei Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A graph’s entropy is a functional one, based on both the graph itself and the distribution of probability on its vertex set. In the theory of information, graph entropy has its origins. Dominating David derived networks have a variety of important applications in medication store, hardware, and system administration. In this study, we discuss dominating David derived network of type 1, 2, and 3 written as \(D_1(n) \), \(D_2(n) \), and \(D_3(n) \), respectively of order \(n \). We also compute some degree-based entropies such as Randić, \(ABC \), and GA entropy of \(D_1(n) \), \(D_2(n) \), and \(D_3(n) \).

1. Introduction and Preliminary Results

A graph \(G \) is a tuple \(G = (V, E) \), where \(V \) is the set of vertices and \(E \) is the set of edges. A graph can be represented by a numerical quantity which is known as topological index. These indices have a vast number of application in various fields biology, computer science, information technology, and chemistry. Topological indices are used in QSAR/QSPR studies.

To comprehend the properties and data contained in the network example of graphs, there are a number of mathematical values, known as structure invariants, topological indices, or topological descriptors, which have been determined and concentrated in the course of recent many years. The topological indices have tremendous number of uses in the chemical graph which is the uncommon part of numerical science.

The combination of mathematics, information technology, and chemistry is a new division known as cheminformatics. It deals with QSAR and QSPR studies which predict the bio and physical chemical activities of compounds. The theory of topological indices was started by Wiener [17], when he was working on the boiling point of paraffins. The Wiener index is stated as

\[
W(G) = \sum_{(u,v) \in V(G)} d(u,v).
\]

A number of problems that occur in discrete mathematics, statistics, biology, computer science, chemistry, information theory, etc., investigate the entropy of structures to deal with them. Shannon, in 1948, gave the concept of entropy [12]. The entropy of a graph \(G \) is defined as follows.

Let \(G \) be a graph and \(V(G) = \{1, 2, \ldots, n\} \) be the vertex set of \(G \). Let \(P = (p_1, p_2, \ldots, p_n) \) be the probability density of \(V(G) \) and \(VP(G) \) be the vertex packing polytope of \(G \). Then, entropy of \(G \) with respect to \(P \) is

\[
H(G,P) = \min_{a \in VP(G)} \sum_{i=1}^{n} p_i \log \left(\frac{1}{a_i} \right).
\]

Graph entropy has been utilized broadly to portray the structure of graph-based frameworks in numerical science.
It has the formula

$$R_a(G) = \sum_{e=uv \in E(G)} (d_u \times d_v)^\alpha,$$

(3)

where $\alpha = 1, -1, (1/2), -(1/2)$.

ABC index was introduced in 1998, by Estrada et al. [7]. It has the formula

$$\text{ABC} (G) = \sum_{e=uv \in E(G)} \sqrt{d_u + d_v - 2}. $$

(4)

Vukicevic and Furtula studied this index for the first time [16]. It is written as the GA index:

$$\text{GA} (G) = \sum_{e=uv \in E(G)} \frac{2\sqrt{d_u \times d_v}}{(d_u + d_v)}. $$

(5)

1.2. Degree-Based Entropy of Graph. The entropy of a graph G is defined as

$$\text{ENT}_\phi (G) = - \sum_{i=1}^{p} \frac{d(u_i)}{\sum_{j=1}^{p} d(u_j)} \log \left(\frac{d(u_i)}{\sum_{j=1}^{p} d(u_j)} \right). $$

(6)

where d_{u_i} is the degree or vertex u_i.

1.3. Edge Weight-Based Entropy of Graph. The edge weight entropy of a graph G was introduced in 2014 by Chen et al. [5]:

$$\text{ENT}_{R_a} (G) = \log(R_a) - \frac{1}{R_a} \sum_{i=1}^{m} \sum_{uv \in E(G)} \left[(d(u) \times d(v))^a \right]^{(d(u) \times d(v))^a}.$$

(10)

1.3.1. Randić Entropy. Using equation (3), equation (9) reduced to
2. Main Results

Simonraj and George [13] computed the metric dimension of David network and Imran et al. [8] computed the degree-based topological indices of dominating David derived networks; also, Song et al. [14] computed the entropy-based indices of Hex derived networks. Here, we discuss the dominating David derived networks in this work and calculate the exact results for entropies based on edges.

2.1. Results on Dominating David Derived Network of Type 1.

Using equation (10) and Table 1, the Randic entropy is

$$R_{\alpha} (H) = 4n \times (4^\alpha) + (4n - 4) \times (6^\alpha) + (28n - 16) \times (8^\alpha) + (9n^2 - 13n + 5) \times (9^\alpha) + (36n^2 - 56n + 24) \times (12^\alpha) + (36n^2 - 52n + 20) \times (16^\alpha),$$

for $\alpha = 1$. Randic index is

$$R_1 (H) = 1089n^2 - 1357n + 501.$$

For $\alpha = -1$,

$$R_{-1} (H) = \frac{25}{4} n^2 \frac{151}{36} n + \frac{41}{46}.$$

For $\alpha = (1/2)$,

$$\Rightarrow R_{(1/2)} (H) = \frac{295.707658n^2 - 343.995772n + 123.085646}{2}.$$

For $\alpha = -(1/2)$,

$$\Rightarrow R_{-(1/2)} (H) = \frac{22.392305n^2 - 19.266653n + 6.305022}{2}.$$

Using equation (10) and Table 1, the Randic entropy is

$$\text{ENT}_{\alpha} (H) = \log (R_{\alpha}) - \frac{1}{R_{\alpha}} \left[4n \times \log \left(4^\alpha \right) + (4n - 4) \times \log \left(6^\alpha \right) + \log (28n - 16) \times \log (8^\alpha) + (9n^2 - 13n + 5) \times \log (9^\alpha) + (36n^2 - 56n + 24) \times \log (12^\alpha) + (36n^2 - 52n + 20) \times \log (16^\alpha) \right].$$

For $\alpha = 1$, $\text{ENT}_{1} (H) = 295.707658n^2 - 343.995772n + 123.085646.$
Table 1: Edge partition of $D_1(n)$.

$(d(u), d(v))$, where $uv \in E(D_1(n))$	Cardinality of edges
(2, 2)	$4n$
(2, 3)	$4n - 4$
(2, 4)	$28n - 16$
(3, 3)	$9n^2 - 13n + 5$
(3, 4)	$36n^2 - 56n + 24$
(4, 4)	$36n^2 - 52n + 20$

$$
\text{ENT}_{(R_i)}(H) = \log(R_i) - \frac{1}{R_1} \left[4n \times \log (4)^4 + (4n - 4) \times \log (6)^6 \\
+ (28n - 16) \times \log (8)^8 + (9n^2 - 13n + 5) \times \log (9)^9 \\
+ (36n^2 - 56n + 24) \times \log (12)^{12} + (36n^2 - 52n + 20) \times \log (16)^{16} \right], \\
\implies \text{ENT}_{(R_i)}(H) = \log(R_i) - \frac{1}{R_1} \left(1237.073052n^2 - 1608.08325n + 604.792358 \right).
$$

For $\alpha = 1/2$,

$$
\text{ENT}_{\left(R_{(1/2)} \right)}(H) = \log\left(R_{(1/2)} \right) - \frac{1}{R_{(1/2)}} \left[4n \times \log (\sqrt{4})^{\sqrt{4}} + (4n - 4) \times \log (\sqrt{6})^{\sqrt{6}} \\
+ (28n - 16) \times \log (\sqrt{8})^{\sqrt{8}} + (9n^2 - 13n + 5) \times \log (\sqrt{9})^{\sqrt{9}} \\
+ (36n^2 - 56n + 24) \times \log (\sqrt{12})^{\sqrt{12}} + (36n^2 - 52n + 20) \times \log (\sqrt{16})^{\sqrt{16}} \right], \\
\implies \text{ENT}_{\left(R_{(1/2)} \right)}(H) = \log\left(R_{(1/2)} \right) - \frac{1}{R_{(1/2)}} \left(166.869996n^2 - 206.530299n + 75.935599 \right).
$$

For $\alpha = -1$,

$$
\text{ENT}_{\left(R_{(-1)} \right)}(H) = \log\left(R_{(-1)} \right) - \frac{1}{R_{(-1)}} \left[4n \times \log (\sqrt{4})^{\sqrt{4}} + (4n - 4) \times \log (\sqrt{6})^{\sqrt{6}} \\
+ (28n - 16) \times \log (\sqrt{8})^{\sqrt{8}} + (9n^2 - 13n + 5) \times \log (\sqrt{9})^{\sqrt{9}} \\
+ (36n^2 - 56n + 24) \times \log (\sqrt{12})^{\sqrt{12}} + (36n^2 - 52n + 20) \times \log (\sqrt{16})^{\sqrt{16}} \right], \\
\implies \text{ENT}_{\left(R_{(-1)} \right)}(H) = \log\left(R_{(-1)} \right) - \frac{1}{R_{(-1)}} \left(166.869996n^2 - 206.530299n + 75.935599 \right).
$$
\[
\text{ENT}_{(\alpha)}(H) = \log(R_{-\alpha}) - \frac{1}{R_{-\alpha}} \left[4n \times \log \left(\frac{1}{4} \right)^{(4/\alpha)} + (4n - 4) \times \log \left(\frac{1}{6} \right)^{(1/\alpha)} + (28n - 16) \times \log \left(\frac{1}{8} \right)^{(1/\alpha)} + (9n^2 - 13n + 5) \times \log \left(\frac{1}{9} \right)^{(1/\alpha)} + (36n^2 - 56n + 24) \times \log \left(\frac{1}{12} \right)^{(1/\alpha)} + (36n^2 - 52n + 20) \times \log \left(\frac{1}{16} \right)^{(1/\alpha)} \right], \\
\text{\Rightarrow} \text{ENT}_{(\alpha)}(H) = \log(R_{-\alpha}) - \frac{1}{R_{-\alpha}} (-6.901056n^2 + 6.046277n - 1.8687).
\]

For \(\alpha = -(1/2), \)

\[
\text{ENT}_{(-\alpha/2)}(H) = \log(R_{-(1/2)}) - \frac{1}{R_{-(1/2)}} \left[4n \times \log \left(\frac{1}{4} \right)^{1/(\sqrt{4})} + (4n - 4) \times \log \left(\frac{1}{6} \right)^{1/(\sqrt{6})} + (28n - 16) \times \log \left(\frac{1}{8} \right)^{1/(\sqrt{8})} + (9n^2 - 13n + 5) \times \log \left(\frac{1}{9} \right)^{1/(\sqrt{9})} + (36n^2 - 56n + 24) \times \log \left(\frac{1}{12} \right)^{1/(\sqrt{12})} + (36n^2 - 52n + 20) \times \log \left(\frac{1}{16} \right)^{1/(\sqrt{16})} \right], \\
\text{\Rightarrow} \text{ENT}_{(-\alpha/2)}(H) = \log(R_{-(1/2)}) - \frac{1}{R_{-(1/2)}} (-12.457494n^2 + 12.909738n - 4.354213),
\]

where \(R_{\alpha} \) for \(\alpha = 1, -1, (1/2), -(1/2) \) is written in equations (14)–(17), respectively.

2.3. The Atom Bond Entropy of \(D_1(n) \). If \(H \equiv D_1(n) \), then, by using equation (4) and Table 1, the \(ABC \) index is

\[
ABC(H) = (4n) \times \sqrt{\frac{2 + 2 - 2}{2 \times 2}} + (4n - 4) \times \sqrt{\frac{2 + 3 - 2}{2 \times 3}} + (28n - 16) \times \sqrt{\frac{2 + 4 - 2}{2 \times 4}} + (9n^2 - 13n + 5) \times \sqrt{\frac{3 + 3 - 2}{3 \times 3}} + (36n^2 - 56n + 24) \times \sqrt{\frac{3 + 4 - 2}{3 \times 4}} + (36n^2 - 52n + 20) \times \sqrt{\frac{4 + 4 - 2}{4 \times 4}}, \\
\text{\Rightarrow} ABC(H) = 51.283308n^2 - 51.202034n + 16.93058.
\]

Using equation (11) and Table 1, the \(ABC \) entropy is
\[
\text{ENT}_{ABC}(H) = \log(ABC) - \frac{1}{ABC} \left[(4n) \times \log \left(\frac{2 + 2 - 2}{2 \times 2} \right)^{\sqrt{(2+2-2)/(2 \times 2)}}
+ (4n - 4) \times \log \left(\frac{2 + 3 - 2}{2 \times 3} \right)^{\sqrt{(2+3-2)/(2 \times 3)}}
+ (28n - 16) \times \log \left(\frac{2 + 4 - 2}{2 \times 4} \right)^{\sqrt{(2+4-2)/(2 \times 4)}}
+ (9n^2 - 13n + 5) \times \log \left(\frac{3 + 3 - 2}{3 \times 3} \right)^{\sqrt{(3+3-2)/(3 \times 3)}}
+ (36n^2 - 56n + 24) \times \log \left(\frac{3 + 4 - 2}{3 \times 4} \right)^{\sqrt{(3+4-2)/(3 \times 4)}}
+ (36n^2 - 52n + 20) \times \log \left(\frac{4 + 4 - 2}{4 \times 4} \right)^{\sqrt{(4+4-2)/(4 \times 4)}} \right].
\]

\[
\implies \text{ENT}_{ABC}(H) = \log(ABC) - \frac{1}{ABC} (-10.16953n^2 + 11.348686n - 4.011986),
\]

where \(ABC \) index of \(D_1(n) \) is written in equation (23).

2.4. The Geometric Arithmetic Entropy of \(D_1(n) \). If \(H \equiv D_1(n) \), then, by using equation (5) and Table 1, the GA index is

\[
\text{GA}(H) = (4n) \times \frac{2 \sqrt{2 \times 2}}{2 + 2} + (4n - 4) \times \frac{2 \sqrt{2 \times 3}}{2 + 3}
+ (28n - 16) \times \frac{2 \sqrt{2 \times 4}}{2 + 4} + (9n^2 - 13n + 5) \times \frac{2 \sqrt{3 \times 3}}{3 + 3}
+ (36n^2 - 56n + 24) \times \frac{2 \sqrt{3 \times 4}}{3 + 4} + (36n^2 - 52n + 20) \times \frac{2 \sqrt{4 \times 4}}{4 + 4},
\]

\[
\implies \text{GA}(H) = 80.630759n^2 - 86.107789n + 29.749711.
\]

Using equation (12) and Table 1, we have
Complexity

\[
\text{ENT}_{\text{GA}} (H) = \log(\text{GA}) - \frac{1}{\text{GA}} \left[(4n) \times \log \left(\frac{2\sqrt{2} \times 2}{2+2} \right) \right]^{(2\sqrt{3}/2+2)} + (4n-4) \times \log \left(\frac{2\sqrt{2} \times 3}{2+3} \right) \right) \right]^{(2\sqrt{3}/2+3)} + (28n-16) \times \log \left(\frac{2\sqrt{2} \times 4}{2+4} \right) \right]^{(2\sqrt{3}/2+4)}
\]

\[
+ (9n^2 - 13n + 5) \times \log \left(\frac{2\sqrt{3} \times 3}{3+3} \right) \right]^{(2\sqrt{3}/3+3)}
\]

\[
+ (36n^2 - 56n + 24) \times \log \left(\frac{2\sqrt{3} \times 4}{3+4} \right) \right]^{(2\sqrt{3}/3+4)}
\]

\[
+ (36n^2 - 52n + 20) \times \log \left(\frac{2\sqrt{3} \times 4}{4+4} \right) \right]^{(2\sqrt{3}/4+4)}
\]

\[
\implies \text{ENT}_{\text{GA}} (H) = \log(\text{GA}) - \frac{1}{\text{GA}} \left[(-0.159534n^2 - 0.461756n + 0.314202) \right],
\]

where GA index of \(D_1(n) \) is written in equation (25).

2.5 Results on Dominating David Derived Network of Type 2

Here, we calculate certain degree-based entropies of Dominating David Derived network of type 2. The \(D_2(n) \) shown in Figure 2, and edge partition is shown in Table 2.

\[
R_\alpha (H) = (4n) \times (4)^\alpha + \left(18n^2 - 22n + 6 \right) \times (6)^\alpha + (28n - 16) \times (8)^\alpha + (36n^2 - 56n + 24) \times (12)^\alpha + (36n^2 - 52n + 20) \times (16)^\alpha.
\]

\[
\implies R_{1/2} (H) = 312.798474n^2 - 368.682505n + 132.580543.
\]

For \(\alpha = 1 \),

\[
\implies R_1 (H) = 1116n^2 - 1396n + 516.
\]

For \(\alpha = -1 \),

\[
\implies R_{-1} (H) = \frac{33}{2} n^2 - \frac{85}{4} n + \frac{9}{4}
\]

For \(\alpha = (1/2) \),

\[
\implies R_{1/2} (H) = 26.740774n^2 - 26.247775n + 8.720839.
\]

Using equation (3) and Table 2, we have

\[
\text{ENT}_{R_\alpha} (H) = \log(R_\alpha) - \frac{1}{R_\alpha} \left[(4n) \times \log \left(4^\alpha \right) \right]^{(2\sqrt{3}/4+4)} + (28n-16) \times \log \left(8^\alpha \right) \right]^{(2\sqrt{3}/4+4)}
\]

\[
+ (36n^2 - 56n + 24) \times \log \left(12^\alpha \right) \right]^{(2\sqrt{3}/4+4)}
\]

\[
+ (36n^2 - 52n + 20) \times \log \left(16^\alpha \right) \right]^{(2\sqrt{3}/4+4)}
\]

For \(\alpha = 1 \),

\[
\implies R_{1/2} (H) = 312.798474n^2 - 368.682505n + 132.580543.
\]
\[
\text{ENT}_{(R_1)}(H) = \log(R_1) - \frac{1}{R_1} \left[(4n) \times \log(4)^4 + (18n^2 - 22n + 6) \times \log(4)^6 \\
+ (28n - 16) \times \log(8)^8 + (36n^2 - 56n + 24) \times \log(12)^{12} \\
+ (36n^2 - 52n + 20) \times \log(16)^{16} \right].
\]

\[\implies \text{ENT}_{(R_1)}(H) = \log(R_1) - \frac{1}{R_1} \left((1243.819743n^2 - 1617.828471n + 608.54052) \right).\]

For \(\alpha = (1/2)\),

\[
\text{ENT}_{(R_{1/2})}(H) = \log(R_{1/2}) - \frac{1}{R_{1/2}} \left[(4n) \times \log\left(\sqrt{4}\right)^{\sqrt{4}} + (18n^2 - 22n + 6) \times \log\left(\sqrt{6}\right)^{\sqrt{6}} \\
+ (28n - 16) \times \log\left(\sqrt{8}\right)^{\sqrt{8}} + (36n^2 - 56n + 24) \times \log\left(\sqrt{12}\right)^{\sqrt{12}} \\
+ (36n^2 - 52n + 20) \times \log\left(\sqrt{16}\right)^{\sqrt{16}} \right].
\]

\[\implies \text{ENT}_{(R_{1/2})}(H) = \log(R_{1/2}) - \frac{1}{R_{1/2}} \left((171.142383n^2 - 212.701526n + 78.309148) \right).\]

For \(\alpha = -1\),

\[
\text{ENT}_{(R_1)}(H) = \log(R_{-1}) - \frac{1}{R_{-1}} \left[(4n) \times \log\left(\frac{1}{4}\right)^{\frac{1}{4}} + (18n^2 - 22n + 6) \times \log\left(\frac{1}{6}\right)^{\frac{1}{6}} \\
+ (28n - 16) \times \log\left(\frac{1}{8}\right)^{\frac{1}{8}} + (36n^2 - 56n + 24) \times \log\left(\frac{1}{12}\right)^{\frac{1}{12}} \\
+ (36n^2 - 52n + 20) \times \log\left(\frac{1}{16}\right)^{\frac{1}{16}} \right].
\]

\[\implies \text{ENT}_{(R_1)}(H) = \log(R_{-1}) - \frac{1}{R_{-1}} \left((-8.281267n^2 + 8.039915n - 2.635484) \right).\]

\begin{table}[h]
\centering
\caption{Edge partition of \(D_2(n)\).
\label{table:edgpart}
\begin{tabular}{c|c}
\hline
\(d(u), d(v)\) where \(uv \in E(D_2(n))\) & Cardinality of edges \\
\hline
(2, 2) & 4n \\
(2, 3) & 18n^2 - 22n + 6 \\
(2, 4) & 28n - 16 \\
(3, 4) & 36n^2 - 56n + 24 \\
(4, 4) & 36n^2 - 52n + 20 \\
\hline
\end{tabular}
\end{table}
For \(\alpha = -(1/2) \),

\[
\text{ENT}_{(R_{-(1/2)})}(H) = \log(R_{-(1/2)}) - \frac{1}{R_{-(1/2)}} \left[(4n) \times \log \left(\frac{1}{\sqrt{4}} \right) \right. \\
+ \left. (18n^2 - 22n + 6) \times \log \left(\frac{1}{\sqrt{6}} \right) \right. \\
+ \left. (28n - 16) \times \log \left(\frac{1}{\sqrt{8}} \right) \right. \\
+ \left. (36n^2 - 56n + 24) \times \log \left(\frac{1}{\sqrt{12}} \right) \right. \\
+ \left. (36n^2 - 52n + 20) \times \log \left(\frac{1}{\sqrt{16}} \right) \right] \\
\Rightarrow \text{ENT}_{(R_{-(1/2)})}(H) = \log(R_{-(1/2)}) - \frac{1}{R_{-(1/2)}}(-13.88524n^2 + 14.972039n - 5.147406),
\]

where \(R_\alpha \) for \(\alpha = 1, -1, (1/2), - (1/2) \) is written in equations (28)–(31), respectively.

2.7. The Atom Bond Entropy of \(D_2(n) \)

If \(H \equiv D_2(n) \), then, by using equation (4) and Table 2, we have

\[
ABC(H) = (4n) \times \sqrt{\frac{2 + 2 - 2}{2 \times 2}} + (18n^2 - 22n + 6) \times \sqrt{\frac{2 + 3 - 2}{2 \times 3}} + (28n - 16) \times \sqrt{\frac{2 + 4 - 2}{2 \times 4}} + (36n^2 - 56n + 24) \times \sqrt{\frac{3 + 4 - 2}{3 \times 4}} + (36n^2 - 52n + 20) \times \sqrt{\frac{4 + 4 - 2}{4 \times 4}},
\]

\[
\Rightarrow ABC(H) = 58.01123n^2 - 60.920143n + 20.668314.
\]

Using equation (11) and Table 2, we have

\[
\text{ENT}_{ABC}(H) = \log(ABC) - \frac{1}{ABC} \left[(4n) \times \log \left(\sqrt{\frac{2 + 2 - 2}{2 \times 2}} \right) \right. \\
+ \left. (18n^2 - 22n + 6) \times \log \left(\sqrt{\frac{2 + 3 - 2}{2 \times 3}} \right) \right. \\
+ \left. (28n - 16) \times \log \left(\sqrt{\frac{2 + 4 - 2}{2 \times 4}} \right) \right. \\
+ \left. (36n^2 - 56n + 24) \times \log \left(\sqrt{\frac{3 + 4 - 2}{3 \times 4}} \right) \right. \\
+ \left. (36n^2 - 52n + 20) \times \log \left(\sqrt{\frac{4 + 4 - 2}{4 \times 4}} \right) \right] \\
\]
where the GA index of $D_2(n)$ is written in equation (37).

\[\text{GA} (H) = (4n) \times \frac{2\sqrt{2} \times 2}{2 + 2} + (18n^2 - 22n + 6) \times \frac{2\sqrt{2} \times 3}{2 + 3} \]
\[+ (28n - 16) \times \frac{2\sqrt{2} \times 4}{2 + 4} + (36n^2 - 56n + 24) \times \frac{2\sqrt{3} \times 4}{3 + 4} \]
\[+ (36n^2 - 52n + 20) \times \frac{2\sqrt{4} \times 4}{4 + 4}, \]

\[\implies \text{GA} (H) = 89.267086n^2 - 98.582482n + 34.54767. \]

Using equation (12) and Table 2, we have

\[\text{ENT}_{\text{GA}} (H) = \log (\text{GA}) - \frac{1}{\text{GA}} \left[(4n) \times \log \left(\frac{2\sqrt{2} \times 2}{2 + 2} \right) \right]^{(2\sqrt{2} \times 2)/(2+2)} \]
\[+ (18n^2 - 22n + 6) \times \log \left(\frac{2\sqrt{2} \times 3}{2 + 3} \right) \]
\[+ (28n - 16) \times \log \left(\frac{2\sqrt{2} \times 4}{2 + 4} \right) \]
\[+ (36n^2 - 56n + 24) \times \log \left(\frac{2\sqrt{3} \times 4}{3 + 4} \right) \]
\[+ (36n^2 - 52n + 20) \times \log \left(\frac{2\sqrt{4} \times 4}{4 + 4} \right), \]

\[\implies \text{ENT}_{\text{GA}} (H) = \log (\text{GA}) - \frac{1}{\text{GA}} \left[-0.315869n^2 - 0.235939n + 0.227349 \right], \]

where the GA index of $D_2(n)$ is written in equation (39).

2.9. Results on Dominating David Derived Network of Type 3.
Here, we calculate certain degree-based entropies of dominating David derived network of type 3. $D_3(n)$ is shown in Figure 3, and edge partition is shown in Table 3. We compute Randic entropy, ABC entropy, and GA entropy for $D_3(n)$.

2.10. Randic Entropy of $D_3(n)$. If $H \equiv D3(n)$, then, by using equation (3) and Table 3, we have
\[
R_\alpha(H) = (4n) \times (4)^\alpha + (36n^2 - 20n) \times (8)^\alpha + (72n^2 - 108n + 44) \times (16)^\alpha.
\]

For \(\alpha = 1\),
\[
\implies R_1(H) = 1440n^2 - 1872n + 704. \tag{42}
\]

For \(\alpha = -1\),
\[
\implies R_{-1}(H) = 9n^2 - \frac{33}{4}n + \frac{11}{4}. \tag{43}
\]

For \(\alpha = \frac{1}{2}\),
\[
\implies R_{(1/2)}(H) = 389.823376n^2 - 480.568542n + 176. \tag{44}
\]

For \(\alpha = -(1/2)\),
\[
\implies R_{-(1/2)}(H) = 30.727922n^2 - 32.071068n + 11. \tag{45}
\]

Using equation (10) and Table 2, we have
\[
\text{CARD} (R_\alpha(H)) = \text{CARD} (R_1(H)) = 1647.236136n^2 - 2215.580768n + 847.700468.
\]

For \(\alpha = 1\),
\[
\implies R_1(H) = \log(R_1) - \frac{1}{R_1} \left[(4n) \times \log (4^4) + (36n^2 - 20n) \times \log (8^8) + (72n^2 - 108n + 44) \times \log (16^{16}) \right]. \tag{46}
\]

For \(\alpha = \frac{1}{2}\),
\[
\implies R_{(1/2)}(H) = \log(R_{(1/2)}) - \frac{1}{R_{(1/2)}} \left[(4n) \times \log (\sqrt{4})^{\sqrt{4}} + (36n^2 - 20n) \times \log (\sqrt{8})^{\sqrt{8}} + (72n^2 - 108n + 44) \times \log (\sqrt{16})^{\sqrt{16}} \right]. \tag{48}
\]
For \(\alpha = -1 \),

\[
\text{ENT}_{(R_{-1})}(H) = \log(R_{-1}) - \frac{1}{R_{-1}} \left[(4n) \times \log \left(\frac{1}{4} \right)^{(1/4)} + (36n^2 - 20n) \times \log \left(\frac{1}{8} \right)^{(1/8)} \right.
\]
\[
+ \left(72n^2 - 108n + 44 \right) \times \log \left(\frac{1}{16} \right)^{(1/16)} \right],
\]
\[
\implies \text{ENT}_{(R_{-1})}(H) = \log(R_{-1}) - \frac{1}{R_{-1}} \left(-9.482445n^2 + 9.783475n - 3.31133 \right).
\]

For \(\alpha = -\frac{1}{2} \),

\[
\text{ENT}_{(R_{-1/2})}(H) = \log(R_{-1/2}) - \frac{1}{R_{-1/2}} \left[(4n) \times \log \left(\frac{1}{\sqrt{4}} \right)^{1/\sqrt{4}} + (36n^2 - 20n) \times \log \left(\frac{1}{\sqrt{8}} \right)^{1/\sqrt{8}} \right.
\]
\[
+ \left(72n^2 - 108n + 44 \right) \times \log \left(\frac{1}{\sqrt{16}} \right)^{1/\sqrt{16}} \right],
\]
\[
\implies \text{ENT}_{(R_{-1/2})}(H) = \log(R_{-1/2}) - \frac{1}{R_{-1/2}} \left(-16.584309n^2 + 18.846465n - 6.62266 \right),
\]

where \(R_{\alpha} \) for \(\alpha = 1, -1, \frac{1}{2}, -\frac{1}{2} \) is written in equations (42)–(45), respectively.

2.11. The Atom Bond Entropy of \(D_3 \) \((n)\). If \(H \equiv D_2 \) \((n)\), then, by using equation (4) and Table 3, we have

\[
ABC(H) = (4n) \times \sqrt{\frac{2 + 2 - 2}{2 \times 2}} + (36n^2 - 20n) \times \sqrt{\frac{2 + 4 - 2}{2 \times 4}}
\]
\[
+ \left(72n^2 - 108n + 44 \right) \times \sqrt{\frac{4 + 4 - 2}{4 \times 4}},
\]
\[
\implies ABC(H) = 69.546659n^2 - 77.449932n + 26.944387.
\]

Using equation (11) and Table 3, we have

\[
\text{ENT}_{ABC}(H) = \log(ABC) - \frac{1}{ABC} \left[(4n) \times \log \left(\sqrt{\frac{2 + 2 - 2}{2 \times 2}} \right)^{(2+2-2)/(2\times2)} \right.
\]
\[
+ (36n^2 - 20n) \times \log \left(\sqrt{\frac{2 + 4 - 2}{2 \times 4}} \right)^{(2+4-2)/(2\times4)} \right.
\]
\[
+ \left(72n^2 - 108n + 44 \right) \times \log \left(\sqrt{\frac{4 + 4 - 2}{4 \times 4}} \right)^{(4+4-2)/(4\times4)} \right],
\]
\[
\implies \text{ENT}_{ABC}(H) = \log(ABC) - \frac{1}{ABC} \left[-13.222141n^2 + 15.788864n - 5.738733 \right],
\]
The Geometric Arithmetic Entropy of $D_3(n)$. If $H \equiv D_3(n)$, then, by using equation (5) and Table 3, we have

$$\text{GA}(H) = (4n) \times \frac{2\sqrt{2} \times 2}{2 + 2} + (36n^2 - 20n) \times \frac{2\sqrt{2} \times 4}{2 + 4} + (72n^2 - 108n + 44) \times \frac{2\sqrt{4} \times 4}{4 + 4}.$$

$$\implies \text{GA}(H) = 105.941125n^2 - 122.856181n + 44.$$

Using equation (12) and Table 2, we have

$$\text{ENT}_{GA}(H) = \log(\text{GA}) - \frac{1}{\text{GA}} \left[(4n) \times \log \left(\frac{2\sqrt{2} \times 2}{2 + 2} \right)^{1/(2+2)} + (36n^2 - 20n) \times \log \left(\frac{2\sqrt{2} \times 4}{2 + 4} \right)^{1/(2+4)} + (72n^2 - 108n + 44) \times \log \left(\frac{2\sqrt{4} \times 4}{4 + 4} \right)^{1/(4+4)} \right],$$

where the GA index of $D_3(n)$ is written in equation (53).
Table 6: Comparison table of entropies for $D_d(n)$.

n	ENT_R	$\text{ENT}_R_{(2)}$	$\text{ENT}_R_{(3)}$	$\text{ENT}_R_{(4)}$	ENT_{ABC}	ENT_{GA}
1	1.4075	1.4368	1.4042	1.4364	1.4463	1.4469
2	2.3296	2.3502	2.3215	2.3491	2.3568	2.3577
3	2.7842	2.8020	2.7759	2.8010	2.8077	2.8087
4	3.0827	3.0994	3.0748	3.0984	3.1047	3.1057
5	3.3049	3.3209	3.2972	3.3199	3.3261	3.3269
6	3.4819	3.4975	3.4744	3.4965	3.5024	3.5033
7	3.6289	3.6442	3.6215	3.6432	3.6490	3.6499
8	3.7546	3.7697	3.7473	3.7687	3.7745	3.7754
9	3.8645	3.8794	3.8572	3.8784	3.8841	3.8849
10	3.9619	3.9767	3.9547	3.9758	3.9814	3.9823

3. Discussion

Since entropy plays a vital role in various fields of science such as software engineering, medication, and pharmaceutical, its numerical values and graphical representation is very much important for researchers. Here, we calculate some exact values of degree-based entropies of dominating David derived networks $D_1(n)$, $D_2(n)$, and $D_3(n)$. Furthermore, we construct Tables 4–6 to estimate the degree-based entropies for various values of n. From Tables 4–6, we can see that, as n increases, the degree-based entropies of these networks also increase.

4. Conclusion

In this study, taking into account the definition of Shannon and Chen entropy, we studied the classifications of DDD (n) and also computed the entropies of them. We discuss the degree-based topological indices such as Randic, ABC, and GA index and find their closed formuale of entropy for dominating David derived network. We, in like manner, enlisted the mathematical assessments of these entropies in Tables 4–6. We gave the relation of these entropies which help us to know the physio-chemical activity of these networks [10, 3, 4].

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors' Contributions

All authors contributed to this article equally.

Acknowledgments

This paper was supported by 2020 Anhui Quality Engineering Project: Accounting and Statistics Teaching Team (2020jxtd031), 2019 Anhui Business and Technology College Teaching Innovation Team Project (2019jxjxtd01), and 2018 Anhui Natural Science Research Project (KJ2018A084).

References

[1] D. Amić, D. Davidović-Amić, D. Bešlo, B. Lučić, S. Nikolić, and N. Trinajstić, “The vertex-connectivity index revisited,” Journal of Chemical Information and Computer Sciences, vol. 38, no. 5, pp. 819–822, 1998.
[2] B. Bollobas and P. Erdos, “Graphs of extremal weights,” Ars Combinatoria, vol. 50, pp. 225–233, 1998.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Vol. 290, Macmillan, New York, NY, USA, 1976.
[4] M.-S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing, and broadcasting in hexagonal mesh multiprocessors,” IEEE Transactions on Computers, vol. 39, no. 1, pp. 10–18, 1990.
[5] Z. Chen, M. Dehmer, and Y. Shi, “A note on distance-based graph entropies,” Entropy, vol. 16, no. 10, pp. 5416–5427, 2014.
[6] D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures, Research Studies Press, Baldock, UK, 1983.
[7] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, “An atom-bond connectivity index: modelling the enthalpy of formation of alkanes,” Indian Journal of Chemistry, vol. 37A, pp. 849–855, 1998.
[8] M. Imran, A. Q. Baig, and H. Ali, “On topological properties of dominating david derived networks,” Canadian Journal of Chemistry, vol. 94, no. 2, pp. 137–148, 2016.
[9] S. M. Kang, W. Nazeer, W. Gao, D. Afzal, and S. N. Gillani, “M-polynomials and topological indices of dominating David derived networks,” Open Chemistry, vol. 16, no. 1, pp. 201–213, 2018.
[10] A. Nayak and I. Stojmenovic, Hand Book of Applied Algorithms: Solving Scientific, Engineering, and Practical Problems, p. 560, John Wiley and Sons, Hoboken, NJ, USA, 2007.
[11] M. Randic, “Characterization of molecular branching,” Journal of the American Chemical Society, vol. 97, no. 23, pp. 6609–6615, 1975.
[12] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
[13] F. Simonič and A. George, “Embedding of poly honeycomb networks and the metric dimension of star of david network,” International Journal on Applications of Graph Theory in Wireless Ad Hoc Networks and Sensor Networks, vol. 4, no. 4, pp. 11–28, 2012.
[14] P. Song, H. Ali, M. A. Binyamin, B. Ali, and J.-B. Liu, “On computation of entropy of hex-derived network,” Complexity, vol. 2021, Article ID 9993504, 18 pages, 2021.
[15] E. Trucco, “A note on the information content of graphs,” The Bulletin of Mathematical Biophysics, vol. 18, no. 2, pp. 129–135, 1956.
[16] D. Vukicevic and B. Furtula, “Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges,” Journal of Mathematical Chemistry, vol. 46, no. 4, pp. 1369–1376, 2009.

[17] H. Wiener, “Structural determination of paraffin boiling points,” Journal of the American Chemical Society, vol. 69, no. 1, pp. 17–20, 1947.