A new clitocyboid genus Spodocybe and a new subfamily Cuphophylloideae in the family Hygrophoraceae (Agaricales)

Zheng-Mi He¹,², Zhu L. Yang¹,²

¹ CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China ² Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China

Corresponding author: Zhu L. Yang (fungi@mail.kib.ac.cn)

Abstract

Phylogenetically, the genera Cuphophyllus, Ampulloclitocybe and Cantharocybe are treated as basal in the family Hygrophoraceae, despite weak support. However, the exact phylogenetic positions of the three genera have remained unresolved, and taxa related to these genera are poorly known. In this study, a new clitocyboid genus Spodocybe was proposed based on multigenic phylogenetic inference datasets and morphological evidence. The analyses of ITS as well as two combined datasets ITS-nrLSU-rpb2 and ITS-nrLSU-rpb1-rpb2-tef1-a-atp6 supported that (1) Spodocybe formed a well-supported monophyletic clade; and (2) sisters Spodocybe and Ampulloclitocybe, along with Cantharocybe and Cuphophyllus also formed a monophyletic lineage, as sister to the rest of the Hygrophoraceae. Meanwhile, two new species, namely S. rugosiceps and S. bispora, from southwestern China, were documented and illustrated. These results support the new proposed genus Spodocybe, and that Spodocybe, Ampulloclitocybe, Cantharocybe and Cuphophyllus should be retained in the Hygrophoraceae as a new subfamily Cuphophylloideae.

Keywords

Ampulloclitocybe, Cantharocybe, Cuphophyllus, morphological characters, phylogenetic analysis, taxonomy
Introduction

The widespread genus *Clitocybe* (Fr.) Staude currently encompasses large numbers of species with clitocyboid habit, sharing the features of saprophytic nutrition, funnel-shaped pileus, decurrent lamellae, a usually white, cream or pale colored spore-deposit and smooth and inamyloid spores (Singer 1986; Breitenbach and Kraenzlin 1991; Læssøe and Petersen 2019). As a consequence of the poor, broad and unrepresentative morphological characteristics, the genus appeared heterogeneous and was subsequently proven to be polyphyletic based on the phylogenetic analysis (Moncalvo et al. 2002; Harmaja 2003).

Based on phylogenetic analyses over the past 20 years, (i) many new genera within the Tricholomatoid clade were proposed to accommodate previous *Clitocybe* species deviating from the core Clitocybeae clade (Matheny et al. 2006), such as *Cleistocybe* Ammirati, A.D. Parker & Matheny (Ammirati et al. 2007), *Trichocybe* Vizzini (Vizzini et al. 2010), *Atractosporocybe* P. Alvarado, G. Moreno & Vizzini, *Leucocybe* Vizzini, P. Alvarado, G. Moreno & Consiglio and *Rhizocybe* Vizzini, G. Moreno, P. Alvarado & Consiglio (Alvarado et al. 2015); (ii) Several clitocyboid groups were reconfirmed as independent genera, for instance, *Singerocybe* Harmaja (Qin et al. 2014) and *Infundibulicybe* Harmaja (Binder et al. 2010); and (iii) some others were even transferred to the Hygrophoroid clade (Binder et al. 2010), such as *Ampulloclitocybe* Redhead, Lutzoni, Moncalvo & Vilgalys (Redhead et al. 2002) and *Cantharocybe* H.E. Bigelow & A.H. Sm. (Hosen et al. 2016). However, many clitocyboid taxa remain to be reclassified.

The molecular phylogenetic relationships among members of the Hygrophoraceae Lotsy were well studied by Lodge et al. (2014). In their work, the family was divided into subfamily Hygrophorideae E. Larss., Lodge, Vizzini, Norvell & S.A. Redhead, Hygrocyboideae Padamsee & Lodge, Lichenomphalioideae Lücking & Redhead and Cuphophylloid grade. Meanwhile, the Cuphophylloid grade was retained in the Hygrophoraceae as the base comprising the genera *Cuphophyllus* (Donk) Bon, *Ampulloclitocybe* and *Cantharocybe*, despite weak phylogenetic support (Matheny et al. 2006; Binder et al. 2010; Lodge et al. 2014). Consequently, the taxonomic problem of the three genera on whether to be included or excluded in the Hygrophoraceae has remained unresolved.

Recently, some collections were shown to be closely related to *Clitocybe trulliformis* (Fr.) P. Karst. based on ITS-BLAST searches while at the same time they were surprisingly related to taxa of the genus *Cuphophyllus* based on nrLSU-BLAST searches. As far as we know, *C. trulliformis* and allied species were lacking taxonomic revision, especially regarding their molecular phylogenetic status. Furthermore, the phylogenetic delimitation of the Hygrophoraceae was ambiguous due to the uncertain positions of *Cuphophyllus, Ampulloclitocybe* and *Cantharocybe*. Hence, the aims of this study were (a) to propose and describe a new genus of the Hygrophoraceae for species related to *C. trulliformis* based on morphological and molecular analyses and (b) to reconstruct the phylogeny of the Hygrophoraceae for determining the exact phylogenetic placements of *Cuphophyllus, Ampulloclitocybe* and *Cantharocybe* with multi-gene data.
Materials and methods

Specimens

Twenty-three specimens of species similar to *C. trulliformis* and related species were collected from southwestern and northeastern China and western Germany, during 2007 to 2020. The fresh fruitbodies were dried using heat or silica gel. Voucher specimens were deposited in the Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences (KUN-HKAS). Detail information of these specimens is given in Table 1.

Morphological observation

Macroscopic characters of species were described based on the raw field record data and photographs. Colors used in description referred to Kornerup and Wanscher (1978). For the microscopic structure observation, tissue sections of dried specimens were mounted in 5% KOH solution or distilled water and structures of lamellar trama, pileipellis and stipitipellis, basidia and basidiospores were observed with a light microscopy. For the description of lamellar trama structure, seven types, including regular, subregular, divergent, pachypodial, bidirectional, tri-directional and interwoven, were used following Lodge et al. (2014). Besides, Melzer's reagent was applied to test the amyloidity of the basidiospores. In the description of basidiospores, the abbreviation \([n/m/p]\) represent that the measurements were made on \(n\) basidiospores from \(m\) basidiomes of \(p\) collections. The range notation \((a)b–c(d)\) stands for the dimensions of basidiospores in which \(b–c\) contains a minimum of 90% of the measured values while \(a\) and \(d\) in the brackets stand for the extreme values. In addition, a Q value show the length/width ratio of basidiospores and a Qm value for average Q ± standard deviation. All microstructures were illustrated by hand drawing.

DNA extraction, PCR and sequencing

Total genomic DNA was extracted using the Ezup Column Fungi Genomic DNA Purificaton Kit (Sangon Biotech, Shanghai, China) according to the manual. For the PCR amplification, (1) Primers ITS5 and ITS4 (White et al. 1990) were used for the internal transcribed spacer (ITS); (2) LROR and LR5 (Vilgalys and Hester 1990) for the nuclear ribosomal large subunit (nrLSU); (3) EF1-983F and EF1-1953R (Matheny et al. 2007), designed primers SPO-TEF1-F (5’-ATTGCYGGYGGTACYGGTGA-3’) and SPO-TEF1-R (5’-TCVAGDGATTTACCTGTHCGRC-3’) or another pair of designed primers HYG-TEF1-F (5’-CTTCGCTTYACTCTYTGGYGTCC-3’) and HYG-TEF1-R (5’-GCCAACCTTTGCAATGTG-3’) for the translation elongation factor 1-α (tef1-α); (4) RPB1-Af and RPB1-Cr (Matheny et al. 2002) or designed primers SPO-RPB1-F (5’-ACGAGGTTGTYGTGGGTAAT-3’) and SPO-RPB1-R (5’-GGAGGNGDACHGGCATATG-3’) for the DNA-directed RNA polymerase II second largest subunit 1 (rpbl); (5) RPB2-6F and RPB2-7.1R (Matheny 2005) for the
Table 1. Specimens used in phylogenetic analysis and their GenBank accession numbers. The newly generated sequences are shown in bold.

Species	Voucher	Locality	GenBank accession number					
			ITS	nrLSU	rpb2	rpb1	rpe1-α	atp6
Acantholichen pannaroides	MDF352	Costa Rica	KT429795	KT429807	KT429817			
Acantholichen campestris	DIC595b	Brazil	KT429798	KT429810	KT429818			
Acantholichen galapagoensis	MDF058	Ecuador	KT429785	KT429800	KT429812			
Ampulloclitocybe clavipes	KUN-HKAS	China: Jilin	MW616462	MW600481	MW656467			
				MW656467	MW656461	MW656478		
Arthelia auriscalpium	TUB 011588	Germany	DQ071732					
Arthelia acerosa	Lueck2	Germany	KP065766	KP065784				
Cantharellula unboundata	CBS 398.79	France	MH861222	MH872990				
Cantharellula gruberi	AFTOL-ID 1017	USA	DQ200927	DQ234540	DQ358879	DQ435808	DQ059045	
Cantharellula brunneovolutina	AH42539	Spain	JN006422	JN006420				
Cantharellula virosa	TENN63483	Bangladesh	KK52405	KK52403	KK503143			
Chromosera cyanophylla	AFTOL-ID 1684	USA	DQ486688	DQ457655	DQ81509			
Chromosera ambigua	GE18008-1	France	MK645573	MK645587	MK645593			
Chromosera tenebrosa	GE18035	Canada	MK645577	MK645591	MK645597			
Chromosera xanthochroa	GE18033	Canada	MK645576	MK645590	MK645596			
Chrysomphalina chrysophylla	AFTOL-ID 1523	USA	DQ192180	DQ457656				
Chrysomphalina grossula	OSC 113683	Bangladesh	EU644704	EU652373				
Clitocybe aff. costata	DJL06TN80	USA	FJ596913					
Clitocybe herbarum	G0171	Hungary	MK277719					
Clitocybe trulliformis	14562	Italy	JP07809					
	4804	Russia	MH930178					
Clitocybe cf. trulliformis	G0460	Hungary	MK277728					
Clitocybe sp.	NAMA 2015-206	USA	MH910535					
Clitocybe sp.	NAMA 2015-318	USA	MH910563					
Clitocybe sp. Observer 302917	Mushroom Observer 302917	USA	MK607556					
Corella brasiliensis	MDF017	Bolivia	KY780569	KY867172				
Corella aff. Mclinti	MDF200	Brazil	KY780569	KY867172				
Cyphellostereum galapagoense	Lueck7	Germany	KP065771	KP065789				
Cyphellostereum imperfectum	DJL-Scol-8	UK	KF291097	KF291058				
Cyphellostereum aff. prantius	CFMR PR-6601	Puerto Rico	KF291099	KF291100	KF291102			
Cyphellostereum prantius	AFTOL-ID 1682	USA	DQ486683	DQ457650	DQ435804			
Cyphellostereum sp.	KUN-HKAS 105671	China: Tibet	MW762875	MW763000	MW789179	MW789163		
Gloeocethomyces nitidus	GDGM41710	China: Jilin	MG712283	MG712282	MG711911			
A new genus, a new subfamily and phylogeny of the family Hygrophoraceae

Species	Voucher	Locality	GenBank accession number					
			ITS	nrLSU	rpb2	rpb1	rpb1-α	atp6
Hyasiella splendidissima	Herb. Roux n. 4044	France	JN944400	JN944401				
	Herb. Roux n. 3666	Moldova	JN944398	JN944399				
Hyasiella venustissima	A. Gminder 971488	Italy	KF291092	KF291093				
	E. C. 08191	Italy	JN944393	JN944394				
Humidicatia marginata	AFTOL-ID 1727	USA	DQ490624	DQ457672	DQ472702	DQ447906		
Humidicatia auratocephalus	QCAM M6000	Ecuador	KY689661	KY780120				
Humidicatia sp.	CFMR BZ-3923	Belize	KF291110	KF291111				
Hygaster noduliporus	AFTOL-ID 2020	USA	EF561625					
Hygaster albellus	AFTOL-ID 1997	Puerto Rico	KF381521	E551314				
Hygocybe conica	FO 4674		DQ97139					
Hygocybe cf. acutoceps	CFMR NC-256	USA	KF291117	KF291118	KF291120			
Hygocybe coccina	AFTOL-ID 1715	USA	DQ490629	DQ457676	DQ472723	DQ447910	GU187705	
Hygocybe aff. conica	AFTOL-ID 729		AY854074	AY684167	AY803747			
Hygrophorus chrysodon	US97/138	Germany	AF430279					
Hygrophorus flavodiscus	KUN-HKAS 82501	China: Tibet	MW616463	MW600482	MW656472	MW656462	MW656479	
Hygrophorus gliocyclus	KUN-HKAS 112569	China: Tibet	MW762876	MW763001	MW789180	MW789164	MW773440	MW789195
Hygrophorus hypotrichus	KUN-HKAS 68013	Yunnan	MW616464	MW600483	MW656473	MW656468	MW656463	MW656480
Hygrophorus pudorinus	KUN-HKAS 55043	Yunnan	MW616465	MW600484	MW656474	MW656469	MW656464	MW656481
Hygrophorus sp. 1	KUN-HKAS 79992	China: Tibet	MW616466	MW600485	MW656475	MW656465	MW656482	
Hygrophorus sp. 2	KUN-HKAS 112569	China: Jilin	MW616468	MW600487	MW656477	MW656466	MW656484	
Hygrophorus sp. 3	KUN-HKAS 87261	Yunnan	MW616469					
Hygrophorus sp. 4	KUN-HKAS 112567	China: Tibet	MW762878	MW763003	MW789182	MW789166	MW773442	MW789197
Lichenomphalia budonioides	GAL18249	USA	JQ65873	JQ65875				
Lichenomphalia meridionalis	S-270-FB1	Japan	LC428308	LC428307				
Neohygrocybe ovina	GWG H. ovina Rhosiaif (ABS)		KF291233	KF291234	KF291236			
Neohygrocybe grieneumgi	GDGM 44492	China	MG779451	MG786565				
Neohygrocybe ingrata	DJL05TN62 (TENN)	USA	KF381525	KF381558	KF381516			
Neohygrocybe rubovina	GRSM 77065	China	KF291140	KF291141				
Spodocybe bispora	KUN-HKAS 73310	Yunnan	MW672880	MW763005	MW789184	MW789168	MW773444	MW789199
Spodocybe bispora	KUN-HKAS 73332	Yunnan	MW672881	MW763006	MW789185	MW789169	MW773445	MW789200
Spodocybe rugosiceps	KUN-HKAS 112564	Yunnan	MW672882	MW763007	MW789186	MW789170	MW773446	MW789201
Spodocybe rugosiceps	KUN-HKAS 112561	Yunnan	MW672883	MW763008	MW789187	MW789171	MW773447	MW789202
Spodocybe rugosiceps	KUN-HKAS 81981	Yunnan	MW672884	MW763009	MW789188	MW789172	MW789203	
Spodocybe rugosiceps	KUN-HKAS 69830	Yunnan	MW672885	MW763010	MW789189	MW789173	MW773448	MW789204
Species	Voucher	Locality	GenBank accession number					
------------------------------	---------------	----------	-----------------------------					
Spodocybe rugosiceps	KUN-HKAS 71071	China: Yunnan	MW762886, MW763011, MW789190, MW789197, MW773449, MW789205					
Spodocybe sp. 1	KUN-HKAS 112560	China: Jilin	MW762890, MW763015, MW789194, MW789178, MW789162, MW789209					
Spodocybe sp. 2	KUN-HKAS 112565	China: Yunnan	MW762889, MW763014, MW789193, MW789177, MW789161, MW789208					
Pseudomycillia exotropides	AFTOL-ID 1557	USA	DQ192175, DQ154111, DQ474127, DQ516076, GU187735					
Pseudomycillia basilicaris	KUN-HKAS 76377	China	KC222315, KC222316					
Sinogrocybe tomentosipes	GDGM 50075	China: Hunan	MG685873, MG696902, MG696906					
Amylocorticium cebennense	CFMR HHB-2808	USA	GU187505, GU187561, GU187770, GU187439, GU187675					
Asperotricha olera	DAOM 265047	Canada	KF381518, KF381541					
Macrotyphula fistulosa	IO. 14. 214	Spain	MT232352, KY224088, MT242317, MT242354					
Macrotyphula juncea	IO. 14. 177	Sweden	MT232353, MT232306, MT242337, MT242355					
Macrotyphula phacorrhiza	IO. 14. 167	France	MT232364, MT232315, MT242348, MT242367					
Phyllostix niglandus	IO. 14. 196	Spain	MT232308, MT242338, MT242319, MT242557					
Phyllostix sp.	AFTOL-ID 773	USA	MQ404382, MT232305, MT232309, MT242339					
Pleurocybella corrugata	UPS F-611882	Sweden	MT242352, MT232309, MT242339					
Plicaturopsis crispa	AFTOL-ID 1924	USA	MQ404686, MQ470820, GU187816					
Pterulicium echinatum	ZRL.20151311	China	LT716065, KY418881, KY419026, KY419079, KY419076					
Petrichium gracile	IO. 14. 142	Sweden	MT232356, MT232310, MT242358					
Saccospora oreadina	AFTOL-ID 536	Sweden	DQ494695, AY691887, DQ598992, DQ479398, GU187754					
Serpalomycetes borealis	CFMR L-8014	USA	GU187512, GU187570, GU187782, GU187686					
Tricholomopsis decora	AFTOL-ID 537	USA	DQ403848, AY691888, DQ408112, DQ479493, DQ299195					
Tricholomopsis siliquroides	ZRL.20151760	USA	LT716068, KY418884, KY419029, KY419079					
Tiphula capitata	IO. 15. 122	Spain	MT232357, MT232312, MT242341, MT242321, MT242360					
Tiphula incarnata	IO. 14. 92	Sweden	MT232362, MT232313, MT242346, MT242325					
Tiphula micans	IO. 14. 165	Sweden	MT232361, KY224102, MT242345, MT242324, MT242364					

DNA-directed RNA polymerase II second largest subunit 2 (\(rpb2\)); and (6) ATP6-3 and ATP-6 (Kretzer and Bruns 1999) for ATP synthase subunit 6 (\(atp6\)).

The PCR mixtures contained 1× PCR buffer, 1.5 mM MgCl\(_2\), 0.2 mM dNTPs, each primer at 0.4 μM, 1.25U of Taq polymerase (Sangon Biotech, Shanghai, China), and 1 μL of DNA template in a total volume of 25 μL. Reactions were performed with the following program: initial denaturation at 94 °C for 5 min, 35 cycles at 94 °C for 30 s, 50 °C (\(atp6\)), 52 °C (nrLSU, tefl-\(\alpha\), \(rpb1\) and \(rpb2\)) or 54 °C (ITS) for 30 s, and 72 °C for 30 s (ITS and \(atp6\), 50 s (nrLSU and \(rpb2\)) or 75 s (tefl-\(\alpha\) and \(rpb1\)), and for terminal elongation, the reaction batches were incubated at 72 °C for 10 min. All PCR products were detected by 2% agarose gel electrophoresis and then sent to the Kunming branch of Tsingke Biological Technology Co., Ltd. (Beijing, China) for sequencing.
Phylogenetic tree construction

Sequences used for phylogenetic analysis (presented in Table 1) were aligned by using MAFFT v7.471 (Katoh and Standley 2016) and then manually adjusted by using BI-OEDIT v7.2.5 (Hall 1999). The intron regions of tef1-a, rpb2 and rpb1 were excluded except the conserved rpb1-intron2. Three datasets of ITS-nrLSU-rpb2, ITS-nrLSU-rpb1-rpb2-ef1-a-atp6 and ITS (Suppl. materials 1, 2 and 3) were used to construct phylogenetic trees. The two multi-gene matrixes were generated by SEQUENCEMATRIX 1.7.8 (Vaidya et al. 2011). GTR + I + G was inferred as the best-fit model for the three matrixes selected according to the AIC in MRMODELTEST v2.4 (Nylander 2004). Maximum likelihood (ML) trees with 1000 bootstrap replicates and Bayesian inferences were generated with RAXML v8.0.20 (Stamatakis 2006) and MRBAYES v3.2.7 (Ronquist and Huelsenbeck 2003), respectively.

Results

Molecular phylogenetic analysis

As shown in Table 1, a total of 393 sequences (109 ITS, 110 nrLSU, 40 tef1-a, 38 rpb1, 74 rpb2 and 22 atp6) from 118 samples were used in the phylogenetic analyses, 131 (23 ITS, 23 nrLSU, 20 tef1-a, 20 rpb1, 23 rpb2 and 22 atp6) of which were newly generated in the present study.

The combined dataset ITS-nrLSU-rpb2 comprised 221 sequences from 88 samples with a total of 3135 positions. In the three-gene tree (Fig. 1), 11 specimens from four novel Spodocybe species collected in this study, C. cf. trulliformis and C. herbarum formed a strongly supported monophyletic clade (BP = 100%, PP = 1.0), as sister to Ampulloclitocybe (BP = 63%, PP = 0.98). The phylogenetic analysis showed that the new proposed genus Spodocybe should be placed within the Hygrophoraceae, although intergeneric branched orders among Spodocybe, Ampulloclitocybe, Cantharocybe and Cuphophyllus were unstable with low support values.

In order to accurately determine the position of Spodocybe in the family Hygrophoraceae and better clarify the phylogenetic relationships of Spodocybe, Ampulloclitocybe, Cantharocybe and Cuphophyllus, a further six-gene matrix ITS-nrLSU-rpb1-rpb2-ef1-a-atp6 composed of 179 sequences from 54 samples with 5405 positions was used to rebuild the Hygrophoraceae tree. As revealed by the six-gene phylogenetic analysis (Fig. 2), the branch support level of the six-gene tree was obviously improved, compared with that of the previous three-gene tree. The monophyly of Spodocybe clade was strongly supported (BP = 100%, PP = 1.00), including Spodocybe rugosiceps (BP = 100%, PP = 1.00), S. bispora (BP = 100%, PP = 1.00) and two unnamed Spodocybe species. Spodocybe and Ampulloclitocybe were sister clades (BP = 78%, PP = 0.99), then further clustered with Cantharocybe (BP = 59%, PP = 0.97) and finally together with Cuphophyllus formed an independ-
Figure 1. ML analysis of Hygrophoraceae combined ITS, nrLSU and rpb2 sequence data, with *Macrotyphula juncea*, *Macrotyphula phacorrhiza* and *Phyllotopsis* sp. as outgroups. Bootstrap values (BP) ≥ 50% from ML analysis and Bayesian posterior probabilities (PP) ≥ 0.90 are shown at nodes. The newly generated sequences are shown in bold.
A new genus, a new subfamily and phylogeny of the family Hygrophoraceae

Figure 2. ML analysis of Hygrophoraceae combined ITS, nrLSU, rpb1, rpb2, tef1-α and atp6 sequence data with representatives of Amylocorticiaceae, Pterulaceae and the Hygrophoroid clade (Aphroditeola, Macrotyphula, Phyllotopsis, Pleurocybella, Sarcomyxa, Tricholomopsis and Typhula) as outgroups. Bootstrap values (BP) ≥ 75% from ML analysis and Bayesian posterior probabilities (PP) ≥ 0.95 are shown at nodes. Branches with BP ≥ 75% and PP ≥ 0.95 are bolded. The newly generated sequences are shown in bold. Lamellar trama types of specimens collected in this study were identified by ourselves and others referred to Lodge et al. (2014) and Hosen et al. (2016).

In addition, an ITS dataset (23 sequences; 1053 positions) was applied to phylogenetic analysis for displaying the relationships among Spocybe species from this study and species of Clitocybe treated from GenBank. In the ITS tree (Fig. 3), Spocybe
species formed a highly supported monophyletic clade with *C. trulliformis* and related species (BP = 100%, PP = 1.00), which was also a sister clade to *Ampulloclitocybe* with strong support (BP = 91%, PP = 0.99).

Taxonomy

Cuphophylloideae Z. M. He & Zhu L. Yang, subf. nov.
MycoBank No: 839377

Diagnosis. Characterized generally by clitocyboid basidiomes, convex to funnel-shaped pileus, decurrent lamellae, absence of veils, inamyloid basidiospores and presence of clamps.

Etymology. From the type genus *Cuphophyllus*.

Type genus. *Cuphophyllus* (Donk) Bon.

Description. Basidiomes small, medium-sized to large, mostly clitocyboid, rarely omphalinoid or mycenoid; veils absent. Pileus convex, planate to funnel-shaped; surface usually dry, smooth, lubricous or rarely viscid. Lamellae decurrent to deeply
decurrent. Basidiospores ellipsoid, oblong or subglobose, thin-walled and inamyloid. Pileipellis usually a cutis, sometimes ixocutis or trichoderm. Lamellar trama regular, subregular, interwoven or bidirectional. Clamp connections present.

Habitat, ecology and distribution. Usually gregarious or caespitose on ground, rarely on wood; widespread in temperate and tropical regions.

The genera *Ampulloclitocybe*, *Cantharocybe*, *Cuphophyllus* and *Spodocybe* are included in the subfamily Cuphophylloideae, which is in correspondence with Cuphophylloid grade of Lodge et al. (2014) plus *Spodocybe*.

Spodocybe Z. M. He & Zhu L. Yang, gen. nov.
MycoBank No: 839050

Diagnosis. Differs from *Ampulloclitocybe* by its small basidiomes and subregular lamellar trama rather than medium-sized basidiomes and bidirectional lamellar trama. Differs from *Cuphophyllus* in the ratio of basidia to basidiospore length less than 5, and lamellar trama subregular rather than interwoven. Differs from *Cantharocybe* in its absence of cheilo- and caulocystidia, having small basidiomes rather than large ones and having subregular lamellar trama rather than regular one.

Etymology. *Spodo-* refers to grey; *-cybe* refers to head; that is a *Clitocybe*-like genus with grey pileus.

Type species. *Spodocybe rugosiceps* Z. M. He & Zhu L. Yang.

Description. Basidiomes small, clitocyboid. Pileus convex, applanate to infundibuliform; surface dry, greyish (2B1), grey-brown (5C4) to dark grey-brown (5E4); center depressed with age. Lamellae decurrent to deeply decurrent, white (1A1) to cream (1A2), thin, moderately crowded, sometimes furcate and interveined. Stipe central, subcylindrical, concolorous with pileus. Basidiospores ellipsoid, oblong to cylindrical, colourless, hyaline, smooth, thin-walled, inamyloid; ratio of basidia to basidiospore length less than 5. Pileipellis and stipitipellis a cutis. Lamellar trama subregular. Clamp connections abundant, present in all parts of basidiome.

Habitat, ecology and distribution. Saprophytic, usually gregarious or caespitose on the ground of coniferous or coniferous and broad-leaved mixed forest; distributed in the temperate and subtropical zones from June to November.

Spodocybe rugosiceps Z. M. He & Zhu L. Yang, sp. nov.
MycoBank No: 839052
Figs 4A, B, 5

Diagnosis. Differs from *S. bispora* in having a rugose pileus, smaller basidiospores and 4-spored rather than 2-spored basidia. Differs from *C. trulliformis* in having smaller basidiospores and a rugose rather than felty-squamulose pileus.

Etymology. *rugosiceps* refers to the rugose pileus.
Figure 4. Basidiomes of described Spodocybe species. **A, B** Spodocybe rugosiceps (KUN-HKAS 112563, KUN-HKAS 112562, respectively) **C, D** Spodocybe bipora (KUN-HKAS 73332, KUN-HKAS 112562, respectively). Scale bars: 1 cm.

Type. China. Yunnan Province: Kunming City, near Yeya Lake, at 25.136658°N, 102.873027°E, alt. 2000 m, 11 Aug 2020, Z. M. He 72 (KUN-HKAS 112563, holotype).

Description. Basidiomes small, clitocyboid. Pileus 0.5–2 cm in diam, at first nearly applanate, then concave; surface dry and rugose, gray-brown (5E2-4) to gray-black (4F2-4) in the center and gray-brown (5C2-4) or gray (5B1-2) towards margin; center often slightly umbonate; margin straight and undulating; context thin and white (1A1) to cream (1A2). Lamellae deeply decurrent, white (1A1) to cream (1A2), thin (up to 2 mm high), crowded, sometimes forked and intervenose. Stipe 2.5–6 × 0.2–0.4 cm, central, narrowly cylindrical to subcylindrical, sometimes flexuous, hollow; surface dry and nearly smooth, concolorous with pileus; context white (1A1).

Basidiospores \[60/3/3\] 5–6 (6.5) × (2.5)3–3.5(4) μm, Q = (1.38)1.55–1.95(2), Qm = 1.73 ± 0.14, elongate, colorless, hyaline, smooth, thin-walled, inamyloid. Basidia 20–24 × 5–6 μm, clavate, 4-spored, colorless, hyaline, thin-walled; sterigmata up to 4 μm long; ratio of basidia to basidiospore length values about 3–5. Cystidia absent. Lamellar trama subregular; hyphae colorless, hyaline, cylindrical, thin-walled, 3–10 μm wide. Pileipellis a cutis, but in places upright or trichodermal in appearance, made up with thin-walled cylindrical hyphae 3–9 μm wide. Stipitipellis a cutis, composed of
thin-walled cylindrical hyphae 3–10 μm wide. Clamp connections present in all parts of basidiome.

Habitat, ecology and distribution. Gregarious or caespitose, growing saprotrophically in forest litter, often under conifers, on the ground, known from subtropical zone of Yunnan, China; from July to October.

Additional specimens examined. CHINA. Yunnan Province: Dali Bai Autonomous Prefecture, Yunlong Country, Tianchi National Nature Reserve, at 25.850365°N, 99.274236°E, alt. 2509 m, 28 Sep 2019, X. H. Wang 7471 (KUN-HKAS 112561); Kunming City, Fangwang Tree Farm, at 25.063737°N, 102.870690°E, alt. 2262 m, 22 Sep 2011, Z. L. Yang 5586 (KUN-HKAS 71071); Kunming City, Kunming Institute
of Botany, at 25.147081°N, 102.748855°E, alt. 1990 m, 24 Aug 2020, Z. L. Yang 6391 (KUN-HKAS 112562); Kunming City, Qiongzhu Temple, at 25.071304°N, 102.630934°E, alt. 1900 m, 28 Jul 2013, T. Guo 779 (KUN-HKAS 81981); Yulong Country, Lashi Village, at 26.883902°N, 100.234594°E, alt. 2655 m, 31 Jul 2011, L. P. Tang 1369 (KUN-HKAS 69830).

Spodocybe bispora Z. M. He & Zhu L. Yang, sp. nov.
MycoBank No: 839054
Figs 4C, D, 6

Diagnosis. Differs from *S. rugosiceps* in having a nearly smooth pileus, larger basidiospores and 2-spored rather than 4-spored basidia. Differs from *C. trulliformis* in having a nearly smooth rather than felty-squamulose pileus.

Eymology. *Bispora* refers to 2-spored.

Type. China. Yunnan Province: Baoshan City, Longyang District, Shuizhai Village, at 25.273967°N, 99.306216°E, alt. 2400 m, 12 Aug 2011, J. Qin 324 (KUN-HKAS 73310, holotype).

Description. Basidiomes small, clitocyboid. Pileus 1.5–3 cm in diam, plano-convex to funnel-shaped; surface dry and nearly smooth, greyish-brown (4B2-3) to grey-brown (4E3-5); center depressed, usually with a low umbo, somewhat darker; margin generally straight and undulating, incurved when old; context thin and white (1A1). Lamellae deeply decurrent, white (1A1) to cream (1A2), thin, 1–2 mm high, relatively crowded, sometimes forked and intervenose. Stipe 1–3 × 0.2–0.4 cm, central, sub-cylindrical, hollow; surface dry and nearly smooth, concolorous with pileus; context white (1A1).

Basidiospores [60/3/3] (7)7.5–10.5(11.5) × 3–4 μm, Q = (2.05)2.11–3(3.33), Qm = 2.56 ± 0.3, cylindrical, colorless, hyaline, smooth, thin-walled, inamyloid. Basidia 20–30 × 4–5.5 μm, clavate, 2-spored, colorless, hyaline, thin-walled; sterigmata up to 10 μm long; ratio of basidia to basidiospore length less than 5 (about 2–4). Cystidia absent. Lamellar trama subregular, colorless, hyaline, made up of thin-walled cylindrical hyphae with 3–10 μm wide. Pileipellis a cutis, composed of thin-walled cylindrical hyphae 3–11 μm wide. Stipitpellis a cutis, composed of thin-walled cylindrical hyphae 3–10 μm wide. Clamp connections in all parts of basidiomes.

Habitat, ecology and distribution. Saprophytic, usually gregarious on the ground of coniferous or coniferous and broad-leaved mixed forest, known from Yunnan, China; July to September.

Additional specimens examined. China. Yunnan Province: Kunming City, Qipan Mountain, at 26.060020°N, 102.576823°E, alt. 1900 m, 25 Jul 2020, Z. M. He 35 (KUN-HKAS 112564); Nujiang City, Lanping Country, No. 311 Provincial Highway, at 26.636613°N, 99.557809°E, alt. 2660 m, 14 Aug 2011, J. Qin 346 (KUN-HKAS 73332).
A new genus, a new subfamily and phylogeny of the family Hygrophoraceae

Figure 6. Microscopic features of *Spodocybe bispora* (KUN-HKAS 73310, holotype) a basidiospores b basidia c pileipellis. Scale bars: 10 μm.

Discussion

The new genus *Spodocybe*

In our current study, the new clitocyboid species were clustered into a monophyletic lineage (BP = 100%, PP = 1.00) in the Hygrophoraceae according to the multi-gene phylogenetic analysis (Figs 1, 2). As a result, the new generic name *Spodocybe* is proposed here to accommodate the new lineage, which is irrelevant to Clitocybeae of the Tricholomatoid clade (Matheny et al. 2006; Alvarado et al. 2015). The three-gene tree of the Hygrophoraceae (Fig. 1) in this study presented basically consistent topological structure with Lodge et al. (2014), and showed that *Spodocybe* was a sister to *Ampulloclitocybe* located within the family Hygrophoraceae and further confirmed by a six-gene tree (Fig. 2).
Besides the molecular analyses, morphological data also support its separation from the relative genera. *Spodocybe* shares clitocyboid basidiomes, decurrent lamellae, inamyloid basidiospores and the presence of clamps with the other genera *Ampulloclitocybe*, *Cuphophyllus* and *Cantharocybe*. However, the genus *Ampulloclitocybe*, typified by *A. clavipes*, differs from *Spodocybe* in having medium-sized basidiomes and bidirectional lamellar trama (Harmaja 2002; Lodge et al. 2014). Afterwards, *Cuphophyllus* differs from *Spodocybe* in having long basidia, typically 7–8 (rarely 5–6) times the length of the basidiospores, highly interwoven lamellar trama, rarely subregular (Voitk et al. 2020). Finally, *Cantharocybe* differs from *Spodocybe* in having large basidiomes, broad lamellae, cheilo- and caulocystidia, clamps but not on all hyphal septa or at the base of every basidium and more regular lamellar trama (Ovrebo 2011; Hosen et al. 2016). In view of the four genera above with different structures in lamellar trama (Fig. 2), the type of lamellar trama can become a good distinguishing microscopic character for them.

For a long time, *C. trulliformis* has been placed in the genus *Clitocybe* based on the clitocyboid feature and habit since 1879 (Karsten 1879). However, *C. trulliformis* shares many morphological characteristics with *Spodocybe*, such as the small basidioma with applanate to infundibuliform pileus, grey-brown pileus and stipe, decurrent and whitish lamellae, and smooth and inamyloid basidiospores (Bas et al. 1995). Besides, the ITS phylogenetic analysis in our study (Fig. 3) showed that *C. trulliformis* and related *Clitocybe* species were involved in the *Spodocybe* clade as well, indicating that *C. trulliformis* and related species should be placed with *Spodocybe*. In consequence, it is foreseeable that *C. trulliformis* and other related clitocyboid species will eventually be moved to *Spodocybe*. Accordingly, more taxonomic work is needed in future.

The placements of *Spodocybe*, *Cuphophyllus*, *Ampulloclitocybe* and *Cantharocybe*

In previous studies, *Cuphophyllus*, *Ampulloclitocybe* and *Cantharocybe* were treated as basal in Hygrophoraceae (Lodge et al. 2014), but their phylogenetic placements were not resolved. In a six-gene phylogenetic analysis by Binder et al. (2010) and a three-gene analysis by Wang et al. (2018), *Ampulloclitocybe* and *Cantharocybe* were located between *Cuphophyllus* and the rest of the Hygrophoraceae, but without support. While two four-gene analyses by Lodge et al. (2014) showed that *Ampulloclitocybe* and *Cantharocybe* were sister clades as basal to *Cuphophyllus* along with the rest of the Hygrophoraceae with weak support. However, in our six-gene analysis (Fig. 2), the new proposed genus *Spodocybe* and *Ampulloclitocybe* were sisters (BP = 78%, PP = 0.99) and they clustered with *Cantharocybe* followed by *Cuphophyllus*, forming a supported monophyletic sister clade to the rest of the Hygrophoraceae (BP = 83%, PP = 1.00). Hence, *Spodocybe, Ampulloclitocybe, Cantharocybe* and *Cuphophyllus* should be retained in Hygrophoraceae, and a new subfamily, *Cuphophylloideae*, is proposed to accommodate the lineage.
Acknowledgements

The authors are very grateful to their colleagues at Kunming Institute of Botany, Chinese Academy of Sciences, including Drs. Xiang-Hua Wang, Jiao Qin, Bang Feng, Qi Zhao and Master students Hua Qu and Si-Peng Jian for collecting and providing specimens; and Drs. Gang Wu, Yang-Yang Cui, Qing Cai for providing help on morphological observation and phylogenetic analysis. This study was financed by Yunnan Ten-Thousand-Talents Plan – Yunling Scholar Project and Postdoctoral Directional Training Foundation of Yunnan Province.

References

Alvarado P, Moreno G, Vizzini A, Consiglio G, Manjón JL, Setti L (2015) *Atractosporocybe, Leucocebe* and *Rhizocybe*: three new clitocyboid genera in the Tricholomatoid clade (Agaricales) with notes on *Clitocybe* and *Lepista*. Mycologia 107(1): 123–136. https://doi.org/10.3852/13-369

Ammirati JF, Parker AD, Matheny PB (2007) *Cleistocybe*, a new genus of Agaricales. Mycoscience 48(5): 282–289. https://doi.org/10.1007/S10267-007-0365-5

Bas C, Kuyper TW, Noordeloos ME, Vellinga EC (1995) Flora agaricina neerlandica 3: critical monographs on families of agarics and boleti occurring in the Netherlands. A. A. Balkema, Rotterdam, 183 pp.

Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amyloclorticaceae ord. nov. and *Jae-piales* ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102(4): 865–880. https://doi.org/10.3852/09-288

Breitenbach J, Kraenzlin F (1991) Fungi of Switzerland 3: Boletales and Agaricales. Mykologia, Luzern, 361 pp.

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Harmaja H (2002) *Amylolepiota, Clavicybe* and *Cystodermella*, new genera of the Agaricales. Karstenia 42(2): 39–48. https://doi.org/10.29203/ka.2002.386

Harmaja H (2003) Notes on *Clitocybe* s. lato (Agaricales). Annales Botanici Fennici 40(3): 213–218.

Hosen MI, Li TH, Lodge DJ, Rockefeller A (2016) The first ITS phylogeny of the genus *Can-tharocybe* (Agaricales, Hygrophoraceae) with a new record of *C. virosa* from Bangladesh. Mycokeys 14: 37–50. https://doi.org/10.3897/mycokeys.14.9859

Karsten PA (1879) Rysslands, Finlands och den Skandinaviska halfnåns Hattsvampar. Förra Delen; Skifsvampar. Bidrag till Kännedom av Finlands Natur och Folk 32: 1–571.

Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFFT multiple sequence alignment program. Bioinformatics 32(13): 1933–1942. https://doi.org/10.1093/bioinformatics/btw108

Kornerup A, Wanscher JH (1978) Methuen handbook of colour (3rd edn). Eyre Methuen, London, 252 pp.
Kretzer AM, Bruns TD (1999) Use of atp6 in fungal phylogenetics: an example from the Boletales. Molecular Phylogenetics and Evolution 13(3): 483–492. https://doi.org/10.1006/mpev.1999.0680

Læssøe T, Petersen JH (2019) Fungi of temperate Europe. Princeton University Press, Princeton, 1708 pp.

Lodge DJ, Padamsee M, Matheny PB, Aime MC, Cantrell SA, Boertmann D, Kovalenko A, Vizzini A, Dentinger BTM, Kirk PM, Ainsworth AM, Moncalvo JM, Vilgalys R, Larsson E, Lücking R, Griffith GW, Smith ME, Norvell LL, Desjardin DE, Redhead SA, Ovrebo CL, Lickey EB, Ercole E, Hughes KW, Courtecuisse R, Young A, Binder M, Minnis AM, Lindner DL, Ortiz-Santana B, Haight J, Læssøe T, Baroni TJ, Geml J, Hattori T (2014) Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Diversity 64: 1–99. https://doi.org/10.1007/s13225-013-0259-0

Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Molecular Phylogenetics and Evolution 35(1): 1–20. https://doi.org/10.1016/j.ympev.2004.11.014

Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). American Journal of Botany 89(4): 688–698. https://doi.org/10.3732/ajb.89.4.688

Matheny PB, Hofstetter V, Aime MC, Moncalvo JM, Ge ZM, Yang ZL, Slot JC, Ammirati JF, Baroni TJ, Bouger NL, Hughes NW, Lodge DJ, Kerrigan R, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98(6): 982–995. https://doi.org/10.1080/15572536.2006.11832627

Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson H, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E, Langer G, McLaughlin DJ, Wilson AW, Frøslev T, Ge ZW, Kerrigan RW, Slot JC, Yang ZL, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution 43(2): 430–451. https://doi.org/10.1016/j.ympev.2006.08.024

Moncalvo JM, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC, Hofstetter V, Verdun SJW, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clémençon H, Miller Jr OK (2002) One hundred and seventeen clades of euagarics. Molecular Phylogenetics and Evolution 23(3): 357–400. https://doi.org/10.1016/S1055-7903(02)00027-1

Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Ovrebo CL (2011) A new Cantharocybe from Belize with notes on the type of Cantharocybe gruberi. Mycologia 103(5): 1102–1109. https://doi.org/10.3852/10-360

Qin J, Feng B, Yang ZL, Li YC, Ratkowsky D, Gates G, Takahashi H, Rexer KH, Kost GW, Karunarathna SC (2014) The taxonomic foundation, species circumscription and continental endemisms of Singerocybe: evidence from morphological and molecular data. Mycologia 106(5): 1015–1026. https://doi.org/10.3852/13-338

Redhead SA, Lutzoni F, Moncalvo JM, Vilgalys R (2002) Phylogeny of agarics: partial systematics solutions for core omphalinoid genera in the Agaricales (euagarics). Mycotaxon 83: 19–57.
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Singer R (1986) The Agaricales in Modern Taxonomy (4th edn). Koeltz Scientific Books, Koenigstein, 981 pp.

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446

Vaidya G, Lohman DJ, Meier R (2011) Sequencematrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990

Vizzini A, Musumeci E, Murat C (2010) Trichocybe, a new genus for Clitocybe puberula (Agaricomycetes, Agaricales). Fungal Diversity 42: 97–105. https://doi.org/10.1007/s13225-010-0030-8

Voitk A, Saar I, Lodge DJ, Boertmann D, Berch SM, Larsson E (2020) New species and reports of Cuphophyllus from northern North America compared with related Eurasian species. Mycologia 112(2): 438–452. https://doi.org/10.1080/00275514.2019.1703476

Wang CQ, Zhang M, Li TH, Liang XS, Shen YH (2018) Additions to tribe Chromosereae (Basidiomycota, Hygrophoraceae) from China, including Sinohygrocybe gen. nov. and a first report of Gloioxanthomyces nitidus. Mycokeys 38: 59–76. https://doi.org/10.3897/mycokeys.38.25427

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Supplementary material I

Alignment of ITS-LSU-RPB2 dataset used in the three-gene phylogenetic analysis

Authors: Zheng-Mi He, Zhu L. Yang

Data type: fasta file

Explanation note: ITS: 1-1380, LSU: 1381–2356, RPB2: 2357–3135.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.79.66302.suppl1
Supplementary material 2

Alignment of ITS-LSU-RPB1-RPB2-TEF1-ATP6 dataset used in the six-gene phylogenetic analysis
Authors: Zheng-Mi He, Zhu L. Yang
Data type: fasta file
Explanation note: ITS: 1–1217, LSU: 1218–2158, RPB1: 2159–3358, RPB2: 3359–4089, TEF1: 4090–4967, ATP6: 4968–5405
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.79.66302.suppl2

Supplementary material 3

Alignment of ITS dataset used in the single-gene phylogenetic analysis
Authors: Zheng-Mi He, Zhu L. Yang
Data type: fasta file
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.79.66302.suppl3