Cytochrome P450 family 17 subfamily A member 1 mutation causes severe pseudohermaphroditism: A case report

Yu Gong, Fang Qin, Wen-Jia Li, Le-Yu Li, Ping He, Xing-Jian Zhou

 Specialty type: Medicine, research and experimental

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): C, C
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Son TQ, Viet Nam; Velázquez-Saornil J, Spain

Received: November 5, 2021
Peer-review started: November 5, 2021
First decision: December 27, 2021
Revised: January 29, 2022
Accepted: February 27, 2022
Article in press: February 27, 2022
Published online: April 16, 2022

Abstract

BACKGROUND
17α-Hydroxylase deficiency (17-OHD) is a rare form of congenital adrenal hyperplasia, characterized by hypertension, hypokalemia, and gonadal dysplasia. However, due to the lack of a comprehensive understanding of this disease, it is prone to misdiagnosis and missed diagnosis, and there is no complete cure.

CASE SUMMARY
We report a female patient with 17-OHD. The patient was admitted to the Department of Neurology of our hospital due to limb weakness. During treatment, it was found that the patient's condition was difficult to correct except for hypokalemia, and her blood pressure was difficult to control with various antihypertensive drugs. She was then transferred to our department for further treatment. On physical examination, the patient's gonadal development was found to be abnormal, and chromosome analysis demonstrated karyotype 46,XY. Considering the possibility of 17-OHD, the cytochrome P450 family 17 subfamily A member 1 (CYP17A1) test was performed to confirm the diagnosis.

CONCLUSION
The clinical manifestations of 17-OHD are complex. Hormone determination, imaging examination, chromosome determination and CYP17A1 gene test are helpful for early diagnosis.

Key Words: Congenital adrenal cortex hyperplasia; Cytochrome P450 family 17 subfamily A member 1; 17α-Hydroxylase deficiency; Pseudohermaphroditism; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: 17α-Hydroxylase deficiency (17-OHD) is a rare form of congenital adrenal hyperplasia, characterized by hypertension, hypokalemia, and gonadal dysplasia. We report a case of 17-OHD admitted to our hospital due to limb weakness. The patient’s blood pressure was difficult to control with various antihypertensive drugs. Her gonadal development was found to be abnormal, and chromosome analysis demonstrated karyotype 46,XY. The diagnosis was confirmed by the cytochrome P450 family 17 subfamily A member 1 (CYP17A1) test. The clinical manifestations of 17-OHD are complex. Hormone determination, imaging examination, chromosome determination and CYP17A1 gene detection are helpful for early diagnosis.

INTRODUCTION
17α-Hydroxylase deficiency (17-OHD) is a rare type of congenital adrenal hyperplasia (CAH), which is caused by mutations in the cytochrome P450 family 17 subfamily A member 1 (CYP17A1) gene, and the incidence of this disorder is approximately 1 in 50000[1]. In 1966, Biglieri et al[2] reported the first case of 17-OHD. To date, about 200 cases have been reported worldwide[3-5]. At present, there is no unified standard for the diagnosis of 17-OHD, which is mainly based on the clinical manifestations, laboratory and imaging examinations, etc., and the diagnosis depends on the detection of gene CYP17A1[6]. We here report a patient with 17-OHD admitted to our hospital, and review the literature on the pathogenesis, clinical characteristics, diagnosis and treatment of the disease.

CASE PRESENTATION

Chief complaints
A 29-year-old female was admitted to the Department of Neurology in our hospital due to limb weakness for 1 d.

History of present illness
The patient had a history of syncope on several occasions, which lasted approximately 1 min and could be relieved without treatment.

History of past illness
She denied other medical history such as hypertension or coronary heart disease and had no history of smoking or alcohol consumption.

Personal and family history
Upon further investigation, the patient had primary amenorrhea and was unmarried and childless. Her parents were first cousins and her older brother was healthy.

Physical examination
At admission, her temperature was 36.5 °C, respiration rate was 23 breaths/min, pulse rate was 114 bpm, blood pressure was 184/127 mmHg, height was 180 cm, weight was 69 kg, and body mass index was 21.3 kg/m². The patient’s breast development had only progressed to Tanner stage 1, and her vulva was similar to that of a female infant. The patient’s pubic and axillary hair was undeveloped, and her Adam’s apple was small. Pathological reflexes were not elicited (Figure 1).

Laboratory examinations
After admission, low serum potassium levels (2.26 mmol/L) were observed and appeared to be uncorrected after potassium supplementation. In addition, the patient had constant high blood pressure, with a maximum reading of 184/127 mmHg.

Imaging examinations
The results of the patient’s biochemical and imaging examinations are shown in Figure 2 and Tables 1 and 2. Genetic analysis (Figure 3) showed homozygous mutations in the CYP17A1 gene (NM_000102.3:
Table 1 The biochemical examinations of the patient

Projects	Results	Reference range
Potassium (mmol/L)	2.26	3.5-5.5
Renin (mIU/L)	< 0.5	2.8-39.9
Aldosterone (ng/dL)	3.69	0-23.6
Angiotension II (pg/ml)	39.1	25-129
FSH (mIU/mL)	38.97	Follicular phase: 3.03-8.08; Ovulatory phase: 2.55-16.69; Luteal phase: 0.9-16.69; Postmenopausal: 26.7-133.4
LH (mIU/mL)	14.49	Follicular phase: 1.8-11.78; Ovulatory phase: 7.59-89.08; Luteal phase: 0.56-14; Postmenopausal: 5.16-61.99
Progesterone (ng/mL)	5.5	Follicular phase: < 0.1-0.3; Luteal phase: 1.20-15.9; Postmenopausal: < 0.1-0.2
Estradiol (pg/mL)	< 10	Follicular phase: 21-251; Luteal phase: 38-649; Postmenopausal: 21-312
Testosterone (ng/dL)	0.18	Male (21-49 yr): 2.4-8.71; Female (21-49 yr): 0.14-0.53
Cortisol (nmol/L)		
0 a.m.	83.46	45-135
8 a.m.	170.11	120-660
4 p.m.	106.01	55-200
ACTH (pmol/L)		
0 a.m.	8.54	0.4-4.0
8 a.m.	112.85	1.5-14.1
4 p.m.	27.15	0.95-9.5
Dehydroepiandrosterone-S (µg/dL)	17.80	95-510
GH (ng/mL)	0.648	< 8
Urine cortisol for 24 h (µg/24 h)	17.33	19.30-317.50
Urinary potassium 24 h (mmol/24 h)	204.5	25-100
Karyotype	46,XY	

FSH: Follicle-stimulating hormone; LH: Luteinizing hormone; ACTH: Adreno-cortico-tropic hormone; GH: Growth hormone.

Table 2 The imaging examinations of the patient

Projects	Results
Plain CT scan of adrenal	Bilateral multiple adrenal lesions were considered to be multiple myeloid lipomas or diffuse adrenal hyperplasia
Enhanced CT scan of adrenal	Bilateral multiple adrenal lesions were considered to be multiple myeloid lipomas
Plain MRI scan of pituitary gland	Normal
X-ray examination of both hands	The epiphyses of the fingers, metacarpal and distal ulna and radius of both hands were not healed
Ultrasonography of the pelvis	No obvious uterine echo was observed
Plain MRI scan of the pelvis	No obvious cryptorchidism and uterine accessory tissues were observed

CT: Computed tomography; MRI: Magnetic resonance imaging.

c.81C>A (p. Tyr27*). These genetic variations have been reported by Müßig et al[7] and Keskin et al[8]. Genetic analysis of the patient showed a heterozygous mutation (c.81C>A). Unfortunately, we were unable to perform a genetic analysis of the patient’s older brother, as he was unavailable at the time of testing.
FINAL DIAGNOSIS

The clinical manifestations of this patient combined with the results of various auxiliary examinations, resulted in a final diagnosis of 17-OHD associated with multiple myeloid lipomas of the adrenal gland.

TREATMENT

Following the diagnosis of 17-OHD, the patient started on oral dexamethasone (0.75 mg/d), which will be a lifelong medication. When her blood pressure and potassium level had returned to normal, she was discharged from the hospital.

OUTCOME AND FOLLOW-UP

One year later, the patient’s electrolytes (serum potassium level 4.6 mmol/L) and blood pressure (130/75 mmHg) were normal on re-examination.

DISCUSSION

CAH is an autosomal recessive disorder caused by mutations in the genes encoding essential enzymes for the synthesis of corticosteroids. As a result of the imbalance between glucocorticoids and mineralocorticoids, this leads to metabolic disorders, and thus morbidity and mortality in these patients are very high[9]. The enzymes involved include 21-hydroxylase, 11β-hydroxylase, 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase/isomerase etc. These enzyme defects (reduced or absent activity) can lead to CAH, but with different clinical manifestations[10]. Of these enzymes, 21-hydroxylase deficiency is the most common, accounting for more than 95% of cases[11], followed by 11β-hydroxylase deficiency. 17-OHD accounts for about 1% of all CAH cases, with an estimated incidence of 1 in 50000 to 100000[12,13].
17-OHD mainly manifests as hypertension, hypokalemia and abnormal sexual development. CYP17A1 encodes an enzyme with 17α-hydroxylase and 17,20-lyase activities, which is essential for the normal production of adrenal and gonadal glands[14]. When it is deficient, pregnenolone cannot translate into 17-hydroxyprogesterone and 17-hydroxypregnenolone, resulting in the impairment of cortisol and gonadal hormones (including testosterone and estrogen)[13]. Cortisol synthesis disorders lead to an increase in adrenocorticotropic hormone (ACTH) feedback, which further activates the 17-deoxy pathway of the zona fasciculata, producing overstimulation of this pathway and increasing progesterone, corticosterone and deoxycorticosterone (DOC) synthesis. The excessive levels of these hormones then lead to hypertension, and hypokalemia. Deficiency of gonadal hormones causes primary amenorrhea in women[15] and feminization of external genitalia in men[16]. Sexual dysplasia[6] in male patients mostly manifests as pseudohermaphroditism, with infantile female genitalia and a blind end vagina, while the internal genitalia is of the male type with small testicles and dysplasia, and external genitals are difficult to distinguish, such as small penis or mammary gland development. Female patients can be normal at birth, but do not develop secondary sexual signs with primary amenorrhea. There is no pubic or axillary hair growth in both men and women. After puberty, both follicle-stimulating hormone and luteinizing hormone are significantly increased. Due to the lag in bone age, the patient's height continues to increase slowly after reaching adulthood. The bone age of our patient was below the actual age, but she was tall (180.0 cm). In addition, some patients are prone to fatigue, infection, different degrees of skin pigmentation[17] and osteoporosis. The diversity of clinical manifestations in 17-OHD patients is due to the different mutation sites on the gene encoding the enzyme and different effects on the enzyme function. Therefore, in the clinic, the existence of hypertension, and hypokalemia accompanied by sexual dysplasia, should be considered as possible 17-OHD. This deficiency should be distinguished from several other diseases, such as 5α-reductase deficiency, androgen insensitivity syndrome and 3β-hydroxysteroid dehydrogenase deficiency. However, both 5α-reductase deficiency and androgen insensitivity syndrome are generally not accompanied by hypertension and hypokalemia[18,19], and the clinical manifestations in this case did not meet the criteria for 3β-hydroxysteroid dehydrogenase deficiency[20]. Hence, we were able to rule out these diseases.

There is no complete cure for 17-OHD, and treatment mainly consists of appropriate glucocorticoid and sex steroid hormone supplementation, social sex selection and psychological interventions. Low-dose glucocorticoid (dexamethasone or prednisolone) replacement therapy is administered in order to decrease and normalize the blood levels of 11-DOC and ACTH, which can normalize blood pressure and electrolyte imbalances[21]. However, due to the need to avoid high-dose glucocorticoid therapy and complete inhibition of the hypothalamic–pituitary–adrenal axis, DOC cannot be completely suppressed,

Figure 2 Imaging examinations. A: Plain computed tomography (CT) scan of adrenals; B: Enhanced CT scan of adrenals; C: Plain magnetic resonance imaging scan of the pituitary gland; D: X-ray examination of both hands; E: Ultrasonography of the pelvis.

DOI: 10.12998/wjcc.v10.i11.3553 Copyright © The Author(s) 2022.
and many patients will eventually become hypertensive, and corticosteroid receptor antagonists or calcium channel blockers can be used to control blood pressure[11]. Therefore, during treatment, spironolactone and nifedipine sustained release tablets are given to control blood pressure. In addition, sex hormone replacement is required for breast and uterus development and to maintain female sexual characteristics. Patients require estrogen and progestin circulation therapy to induce circulatory arrest bleeding and prevent endometrial hyperplasia. If the patient decides to be considered male, androgen replacement therapy may be given, and extensive genital reconstructive surgery may be performed, such as gonadectomy, to avoid malignant degeneration of the testes within the abdomen[13]. In this case, after full communication with the patient and her family, she decided to temporarily discontinue sex hormones and surgical treatment.

CONCLUSION

In summary, 17-OHD is extremely rare in clinical practice, and is prone to misdiagnosis and missed diagnosis. For patients with abnormal development of hypertension and hypokalemia, attention should be paid to the differentiation of this disease. Chromosome karyotype analysis and gene sequencing can help in diagnosis. Hormone replacement and antihypertensive treatment should be given as soon as possible after diagnosis. In addition, the psychological state of patients should be closely monitored.

FOOTNOTES

Author contributions: Gong Y and Qin F treated the patient; Zhou XJ drafted the manuscript; Li WJ and Li LY participated in the analysis and the interpretation of the data; He P critically revised the manuscript; all authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).
Gong Y et al. CYP17A1 mutation causes severe pseudohermaphroditism

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC-BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Yu Gong 0000-0001-7246-0637; Fang Qin 0000-0003-1173-2592; Wen-Jia Li 0000-0001-9609-968X; Le-Yu Li 0000-0002-4500-932X; Ping He 0000-0002-8060-6840; Xing-Jian Zhou 0000-0001-9432-111X.

S-Editor: Gao CC
L-Editor: A
P-Editor: Gao CC

REFERENCES

1 Zhou Y, Xue X, Shi P, Lu Q, Lv S. Multidisciplinary team management of 46,XY 17α-hydroxylase deficiency: a case report and literature review. J Int Med Res 2021; 49: 30060521993965 [PMID: 33761789 DOI: 10.1177/0300060521993965]

2 Bigléri EG, Herron MA, Brust N. 17-hydroxylation deficiency in man. J Clin Invest 1966; 45: 1946-1954 [PMID: 4288776 DOI: 10.1172/JCI105499]

3 Fontenele R, Costa-Santos M, Kater CE. 17α-hydroxylation deficiency is an underdiagnosed disease: high frequency of misdiagnoses in a large cohort of Brazilian patients. Endocr Pract 2018; 24: 170-178 [PMID: 2914824 DOI: 10.4158/EP171987.OR]

4 Hannab-Shmouni F, Chen W, Merke DP. Genetics of Congenital Adrenal Hyperplasia. Endocrinol Metab Clin North Am 2017; 46: 435-458 [PMID: 28476231 DOI: 10.1016/j.cemcl.2017.01.008]

5 Carvalho LC, Brito VN, Martin RM, Zamboni AM, Gomes LG, Inácio M, Mermejo LM, Coelli-Lacchini F, Teixeira VR, Gonçalves FT, Carrilho AJ, Del Toro Camargo KY, Finkielstain GP, Frade Costa EM, Domenice S, Mendonca BB. Clinical, hormonal, ovarian, and genetic aspects of 46,XX patients with congenital adrenal hyperplasia due to CYP17A1 defects. Fertil Steril 2016; 105: 1612-1619 [PMID: 26920256 DOI: 10.1016/j.fertstert.2016.02.008]

6 Beştaş A, Bolu S, Unal E, Aktar Karakaya A, Eriöz R, Tekin M, Haspolat YK. A rare case of delayed puberty and primary amenorrhea: 17α-hydroxylase enzyme deficiency. Endocrine 2021 [PMID: 34742156 DOI: 10.1007/s12020-021-02914-8]

7 Müssig K, Kaltenbach S, Machicao F, Mased-Gruth C, Hartmann MF, Wudy SA, Gühring HU, Seif FJ, Gallwitz B: 17α-hydroxylase/17, 20-lyase deficiency caused by a novel homozygous mutation (Y27Stop) in the cytochrome CYP17 gene. J Pediatr Endocrinol Metab 2005; 90: 4362-4365 [PMID: 15811924 DOI: 10.1210/jc.2005-0136]

8 Keskin M, Uğurlu AK, Savası-erdeve Ş, Sağsak E, Akyüz SG, Çetinkaya S, Aycan Z: 17α-hydroxylase/17, 20-lyase deficiency related to P. Y27(c.81C>A) mutation in CYP17A1 gene. J Pediatr Endocrinol Metab 2015; 28: 919-921 [PMID: 25719302 DOI: 10.1515/jpm-2014-0444]

9 Espinoza-Herrera F, Espín E, Tito-Alvarez AM, Beltrán LJ, Gómez-Correa D, Burgos G, Llanos A, Zurita C, Rojas S, Dueñas-Espin I, Cueva-Ludeña K, Salazar-Vega J, Pinto-Basto J. A report of congenital adrenal hyperplasia due to 17α-hydroxylase deficiency in two 46,XX sisters. Genecol Endocrinol 2020, 36: 24-29 [PMID: 31464148 DOI: 10.1007/s12020-021-02914-8]

10 Chatzigagiou A, Sakkas EG, Votino R, Papagianni M, Mastorakos G. Assisted Reproduction in Congenital Adrenal Hyperplasia. Front Endocrinol (Lausanne) 2019; 10: 723 [PMID: 31078872 DOI: 10.3389/fendo.2019.00723]

11 El-Maouche D, Arti W, Merke DP. Congenital adrenal hyperplasia. Lancet 2017; 390: 2194-2210 [PMID: 28576284 DOI: 10.1016/S0140-6736(17)31431-9]

12 Fleming L, Van Riper M, Knaff K. Management of Childhood Congenital Adrenal Hyperplasia-An Integrative Review of the Literature. J Pediatr Health Care 2017; 31: 560-577 [PMID: 28416079 DOI: 10.1016/j.jpedhc.2017.02.004]

13 Xu S, Hu S, Yu X, Zhang M, Yang Y. 17αhydroxylase/17,20lyase deficiency in congenital adrenal hyperplasia: A case report. Mol Med Rep 2017; 15: 339-344 [PMID: 27959413 DOI: 10.3892/mmr.2016.6029]

14 Xia Y, Shi P, Xie J, Zhang H, Xu L, Kong X. Novel mutations of the CYP17A1 gene in four Chinese 46,XX cases with partial 17α-hydroxylase/17,20-lyase deficiency. Steroids 2021; 173: 108873 [PMID: 34097983 DOI: 10.1016/j.steroids.2021.108873]

15 Kim SM, Rhee JH. A case of 17 alpha-hydroxylase deficiency. Clin Exp Reprod Med 2015; 42: 72-76 [PMID: 26161337 DOI: 10.5653/crem.2015.42.2.72]

16 Aouchs RJ. Steroid 17-hydroxylase and 17,20-lyase deficiencies, genetic and pharmacologic. J Steroid Biochem Mol Biol 2017; 165: 71-78 [PMID: 28682015 DOI: 10.1016/j.jsbmb.2016.02.002]

17 Oh YK, Ryo Y, Kim D, Cho SY, Jin DK, Yoon BK, Lee DY, Choi D. 17α-hydroxylase/17, 20-lyase deficiency in three siblings with primary amenorrhea and absence of secondary sexual development. J Pediatr Adolesc Gynecol 2012; 25: e103-e105 [PMID: 22841373 DOI: 10.1016/j.jpag.2012.05.008]

18 Han B, Cheng T, Zhu H, Yu J, Zhu WJ, Song HD, Yao H, Qiao J. Genetic Analysis of 25 Patients with 5α-Reductase Deficiency in Chinese Population. Biomed Res Int 2020; 2020: 1789514 [PMID: 32596280 DOI: 10.1155/2020/1789514]

19 Tyutyushева N, Mancini I, Baroncelli GI, D’Elios S, Peroni D, Meriggiola MC, Bertelloni S. Complete Androgen
Gong Y et al. CYP17A1 mutation causes severe pseudohermaphroditism

Insensitivity Syndrome: From Bench to Bed. Int J Mol Sci 2021; 22 [PMID: 33514065 DOI: 10.3390/ijms22031264]

20 Guran T, Kara C, Yildiz M, Bitkin EC, Haklar G, Lin JC, Keskin M, Barnard L, Anik A, Catli G, Guven A, Kirel B, Tutunculer F, Onal H, Turan S, Akcay T, Atay Z, Yilmaz GC, Mamadoja J, Akbarzade A, Sirkeci O, Storbeck KH, Baris T, Chung BC, Bereket A. Revisiting Classical 3β-hydroxysteroid Dehydrogenase 2 Deficiency: Lessons from 31 Pediatric Cases. J Clin Endocrinol Metab 2020; 105 [PMID: 31950145 DOI: 10.1210/clinem/dgaa022]

21 Soveid Md, Rais-Jalali GA Md. Seventeen Alpha-Hydroxylase Deficiency Associated with Absent Gonads and Myelolipoma: A Case Report and Review of Literature. Iran J Med Sci 2016; 41: 543-547 [PMID: 27853336]
