Complex permittivity, complex permeability and microwave absorption properties of human blood

E Handoko¹*, R Fahdiran¹, S Budi², S A Saptari³, A Humairrah⁴, M Alaydrus⁵, Z Mutmainnah⁶ and R Puspitaningrum⁶

¹ Dept of Physics, Universitas Negeri Jakarta, Jalan Rawamangun Muka 13220, Jakarta, Indonesia
² Dept. of Chemistry, Universitas Negeri Jakarta, Jalan Rawamangun Muka 13220, Jakarta, Indonesia
³ Dept. of Physics, Universitas Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia
⁴ Dept. of Human Medicine, Justus Liebig University Giessen, Ludwigstraße 23, 35390 Gießen, Germany
⁵ Dept. of Electrical Engineering, Universitas Mercu Buana, Jalan Meruya Selatan No.1, Jakarta, Indonesia
⁶ Dept. of Biology, Universitas Negeri Jakarta, Jalan Rawamangun Muka 13220, Jakarta, Indonesia

*erfan@unj.ac.id

Abstract. This paper reports a method for measuring for the complex permittivity, permeability and microwave absorption properties of human blood of healthy human body. The proposed measurement method can be a useful technique for microwave absorption properties of human blood. The measurement using a waveguide in the microwave band. In order to measure the s-parameter of human blood, a sample should completely fill in the waveguide end and the samples holder using the vector network analyzer (VNA). The complex permittivity and permeability of human blood are resulted in the frequency range from 7 to 13 GHz. Their complex permeability and permittivity, microwave absorption properties values were calculated. The blood sample has the magnetic loss and magnetic energy dissipation. The reflection loss (RL) of blood sample has different absorption with its minimum value of -3.53 dB at 9.36 GHz.

1. Introduction

It is known that iron is an essential substance of human body. The iron distribution inside the body is as follow: circulating red blood cells, 1800 mg; bone marrow, 300 mg; muscle, 300 mg; splenic macrophages, 600 mg; and liver, 1000 mg; with 20-25 mg of iron cycles daily [1]. Iron is absorb by the divalent metal transporter of the enterocytes in duodenum and upper jejunum [2]. Iron intake into the plasma is control by the ferroportin which depends on the iron requirement of the body. Furthermore, the iron homeostatis is regulate by hepcidin, a peptide hormone which secrete by the liver [2]. Iron constructs many biological compounds inside the cells, such as proteins and enzymes or dissolve in blood plasma. Iron also plays role in many enzymatic process in the body, such as metabolism, oxygen transport, collagen and deoxyribonucleic acid (DNA) synthesis [2,3].It is available in two forms, the anorganic iron (ionic iron) and the organic iron (heme iron) [4]. In the organic form, iron takes the core
site of the heme phrostetic group which constructs hemoglobin [5]. It provides one oxygen-binding site in each of four heme, which means that every hemoglobin has the ability to carry four oxygen molecules [6].

Nowadays, electromagnetic (EM) interference pollution which can be harmful to the human beings, have attracted much attention [7–12]. The red blood cell that is important parts in human body and play important role in healthy human body [13,14]. In this paper, we have studied microwave absorption properties of human blood of healthy human body. The complex permittivity, permeability and reflection loss of human blood are measured using the vector network analyzer (VNA) in the frequency range from 7 to 13 GHz. The proposed measurement method can be a useful technique for microwave absorption properties of human blood.

2. Experimental methods
The human blood of healthy human body have been prepared and placed in a sample holder with a dimension of width 22.86 mm, height 10.16 mm and thickness 2 mm (see Figure 1). A vector network analyzer (VNA) Rohde-Schwarz ZVL13 to measure the reflected signal (S\(_{11}\)) and transmitted signal (S\(_{21}\)) was used to analyze microwave absorbing properties in the frequency range from 7 to 13 GHz. the permeability and permittivity values (real and imaginary parts) are used to calculate the reflection loss (RL) by Eq. (1) and result are shown in Figure 3.

Reflection loss (RL) were calculated and simulated with the electromagnetic parameters data through the Nicholson–Ross–Weir (NRW) formula and transmission line theory using the equation [15–18]:

\[
R\ (d\) = -20 \log \left(\frac{|\varepsilon - 1|}{|\varepsilon + 1|} \right)
\]

(1)

where Z = √μ/ε tanh \((-j2π/\varepsilon)\sqrt{\mu-\varepsilon}\), μ = μ\(^{\prime}\) - jμ\(^{\prime\prime}\) (permeability) and ε = ε\(^{\prime}\) - jε\(^{\prime\prime}\) (permittivity), f is frequency and d is the thickness of the blood sample.

![Figure 1.](image1.png) (a) Sample holder and (b) schematic of transmission line methods for blood sample.

3. Results and discussion
According to scattering parameters of microwave reflection (S\(_{11}\)) and transmission (S\(_{21}\)) signal, the complex permittivity and complex permeability have been calculated by using the Nicholson–Ross–Weir method [17]. Figure 2 shows the complex permittivity and complex permeability of human blood sample. It can be found that real (μ\(^{\prime}\)) part value of blood sample is in the range of 0.25 – 0.45, at the 7 – 13 GHz frequency range. While the imaginary (μ\(^{\prime\prime}\)) part values of complex permeability decrease. These values have informed that blood sample has the magnetic loss and magnetic energy dissipation.
Figure 2. The real and imaginary parts of (a) permeability and (b) permittivity of human blood.

Based on the NRW formula and transmission line theory, the measured values of the real and imaginary parts of permeability and permittivity of human blood were used to calculate the reflection loss (RL) using Eq. (1) and results are shown in Figure 3. For blood sample, the microwave absorption curves show different absorption and the peaks shifts to the lower frequency with different thicknesses. It is also noticed that the RL value of blood sample is relatively poor with its minimum value of -3.53 dB at 9.36 GHz.

Figure 3. Reflection loss values of human blood with (a) thickness of 0.5 mm and (b) different thicknesses.

4. Conclusions

The human blood of healthy human body have been prepared. The complex permittivity and complex permeability have been calculated and showed fluctuation at the 7 – 13 GHz frequency range. The blood sample has the magnetic loss and magnetic energy dissipation. The reflection loss (RL) results are shown that blood sample has different absorption and the peaks shifts to the lower frequency with different thicknesses with its minimum value of -3.53 dB at 9.36 GHz.

Acknowledgments

This research was funded by The Ministry of Research, Technology and Higher Education Republic of Indonesia research grant (Penelitian Terapan 2019 No. 17/SP2H/DRPM/LPPM-UNJ/III/2019).
References
[1] Winter W E, Bazydlo L A L and Harris N S 2014 The molecular biology of human iron metabolism Lab. Med. 45 (2) 92–102
[2] Abbaspour N, Hurrell R and Kelishadi R 2015 Review on iron and its importance for human health Regulation of iron homeostasis J Res Med Sci 19 (2) 164–174
[3] Jung D, Park J, Kim D, Choi M, Kim S, Kim H, Park S G, Jung J, Han K and Park Y 2010 Association between serum ferritin and hemoglobin levels and bone health in Korean adolescents
[4] Zhang H, Zhabyeyev P, Wang S and Oudit G Y 2018 Role of iron metabolism in heart failure: From iron deficiency to iron overload Biochim. Biophys. Acta - Mol. Basis Dis
[5] Ganong W F 2005 Review of medical physiology 22nd ed (New York: McGraw Hill)
[6] Nam W 2015 Synthetic Mononuclear Nonheme Iron-Oxygen Intermediates Acc. Chem. Res. 48 (8) 2415–2423
[7] Zhao B, Liu J, Guo X, Zhao W, Liang L, Ma C and Zhang R 2017 absorption ability Phys. Chem. Chem. Phys. 19 9128–9136
[8] Wang M, An K, Fang Y, Wei G and Yang J 2017 The microwave absorbing properties of - CoFe 2 attached single walled carbon nanotube / BaFe 12 O 19 nanocomposites J. Mater. Sci. Mater. Electron. 28 (17) 12475–12483
[9] Zhou N, An Q, Xiao Z, Zhai S and Shi Z 2017 RSC Advances Solvothermal synthesis of three-dimensional , performance RSC Adv. 7 45156–45169
[10] Li C, Ji S, Jiang X, Waterhouse G I N and Zhang Z 2018 materials Microwave absorption by watermelon-like microspheres composed of c -Fe 2 O 3 , microporous silica and polypyrrole J. Mater. Sci. 53 (13) 9635–9649
[11] Baoyi L, Yuping D, Yuefang Z and Shunhua L 2011 Electromagnetic wave absorption properties of cement-based composites filled with porous materials Mater. Des. 32 (5) 3017–3020
[12] Basandrai D, Dhani R K B A and Narang J S S B 2018 Aluminum and chromium substituted Z-type hexaferrites for antenna and microwave absorber applications J. Sol-Gel Sci. Technol. 59–65
[13] Puspitaningrum R, Adhiyanto C and Firdausi A 2017 Identification Of The Levulinate Dehydratase (ALAD) Gene Polymorphism And Whole Blood Hemoglobin In The Students Of Elementary School In Kalideres , Jakarta , Indonesia 19 (4) 897–904
[14] Sadikin M, Puspitaningrum R, Wanandi S I and Soegianto R R 2012 Isolation and Characterization of Chelonia mydax Myoglobin Inst. Pertan. Bogor 19 (2) 60–64
[15] Handoko E, Iwan S, Budi S, Anggoro B S, Mangasi A M, Randa M, Zulkarnain J, Kurniawan C, Sofyan N and Alaydrus M 2018 Magnetic and microwave absorbing properties of BaFe12-2xCoZnXO19 (x = 0.0; 0.2; 0.4; 0.6) nanocrystalline Mater. Res. Express 5 (6) 64003
[16] Handoko E, Sugihartono I and Mangasi A 2017 Microwave Absorbing Studies of Magnetic Materials for X-Band Frequencies 19 17–20
[17] Handoko E, Mangasi A M, Iwan S, Randa M and Alaydrus M 2016 "Measurement of Complex Permittivity and Permeability ofHexagonal Ferrite Composite Material U sing a Waveguide in Microwave Band. 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications” pp 28–30
[18] Handoko E, Sugihartono I, Mangasi A M, Randa M, Alaydrus M and Sofyan N n.d. Double Layer Microwave Absorption Characteristics of Barium Hexaferrite/Silica Composite for X-Band Frequencies Materials Science Forum 929 109-115