BUTTERFLY FAUNA (INSECTA: LEPIDOPTERA: PAPILIONOIDEA) AND LARVAL HOST PLANT IN BONGAON TOWN, WEST BENGAL, INDIA

Sourabh Biswas¹, Shiladitya Mukhopadhyay², Rajib Dey³*

¹ Indian Institute of Science Education and Research Kolkata, India
² School Road, Amlapara, Bongaon, West Bengal, India
³ Holding No. 05, Amarabati Road, Madhyamgram, West Bengal, India

Received 6 December 2021; accepted 25 May 2022

ABSTRACT

An appraisal of butterfly species diversity was carried out in the suburban town of Bongaon, southern West Bengal, India whose butterfly faunal diversity remained undocumented. A total of 76 species of butterflies were recorded from October 2018 to October 2019. The highest number of butterflies were recorded belonging to the family Nymphalidae (27 species), followed by Lycaenidae (21 species), Hesperiidae (13 species), Pieridae (8 species) and Papilionidae (7 species). Among the 76 butterfly species that have been recorded, nine species come under the protection category as per the Indian Wildlife (Protection) Act, 1972. Over the study period, 54 species of larval host plants were also documented. This communication will be the first comprehensive work on butterflies of Bongaon town and serve as baseline data for future research on the butterfly.

Keywords: Butterfly fauna, checklist, diversity, larval host plant, Lepidoptera, Sub-urban ecosystem.

Citation: Sourabh Biswas, Shiladitya Mukhopadhyay, Rajib Dey, 2022. Butterfly fauna (insecta: Lepidoptera: Papilionoidea) and larval host plant in Bongaon town, West Bengal, India. Academia Journal of Biology, 44(2): 79–90. https://doi.org/10.15625/2615-9023/16769

*Corresponding author email: rajibdey88@gmail.com

©2022 Vietnam Academy of Science and Technology (VAST)
INTRODUCTION

Butterflies are good pollinators (Dafni, 1992; Kearns & Inouye 1997), but at the same time, some of them are pest of crops (Nair et al., 2018) and fruits (Abbas et al., 2008). Although awareness of the increasing loss of butterfly biodiversity in the state is already present, several concerted efforts are being made to rescue the butterfly diversity of the state threatened by unplanned urban-tune and wetland as well as green patch reduction (Ganguli et al., 2016).

In West Bengal, as far back as 1866, F. Moore first contributed his butterfly knowledge through his publication (Moore, 1866). Later, de Nicéville (1885) worked on butterfly habits and their larval host plant. Such a fact-finding study on butterflies was followed by several scientists and amateur personnel, along with their life history stages, choice of food plants and related ecological documentation (Chowdhury, 2015). Judhajit Dasgupta (2010) compiled 452 species of butterflies through his Bengali literature book ‘Paschimbanger Prajapati’. Only in 2015, Mitra et al. (2015) listed 79 species of butterflies from Bibhutibhusan Wildlife Sanctuary, a protected area of West Bengal that falls under the Bongaon sub-division. However, no observation has been reported from the Bongaon town in particular. Hence, the data presented here is the first inventory of butterfly species diversity in the town that will act as the baseline data for similar studies in future.

The study was conducted in and around Bongaon (about 23.07°N; 88.82°E), a municipal town in the state of West Bengal, India (Fig. 1). The town is also a sub-divisional headquarter and situated in the vicinity of the India-Bangladesh border. River Ichhamati flows through it. The natural vegetation of the suburban town comprises scattered horticultural gardens, orchards, bamboo bushes, shrubs and herbs, and vast stretches of irrigated paddy fields intermingled with expanding human
settlements (Mukhopadhyay & Mazumdar, 2017). The area experiences a tropical monsoon climate. It has four distinct seasons viz., summer (March–May), monsoon (June–August), post-monsoon (September–November) and winter (December–February). The annual temperature ranges from 43 °C to 9 °C, and precipitation is 1,400 mm (Mitra et al., 2015). Relative humidity varies between 50% and 90% (Mukhopadhyay & Mazumdar, 2017).

Four sites were selected within a radius of 3 km of the Bongaon town area for the butterfly survey (Fig. 2). Site 1, 2 and 3 were rural habitats whereas Site 4 was urban habitat. Site 1 is a forested area with scattered horticulture gardens, orchards, bamboo bushes. Site 2 is a wetland area with scattered trees and bushes. Site 3 is dominated by agricultural fields with scattered trees and bushes. Site 4 is the highly populated municipal area with personal gardens and parks.

Figure 2. Habitat of four survey sites in Bongaon town

MATERIALS AND METHODS

Field surveys were conducted weekly from October 2018 to October 2019. Field observations were carried out only on days with suitable weather conditions (i.e., in the absence of rain or strong wind) between 9:30 am to 11:30 am and 3:30 pm to 5:30 pm. A modified Pollard walk (Royer et al., 1998) method is used for data collection and butterfly species random sightings. Butterfly species were recorded and photographed using digital cameras (Nikon P600 & D7000). Occasionally an entomological net was used for Hesperiids photographs and the butterflies were released unharmed to their natural habitats. No butterfly species were collected, euthanized, or killed during the entire study. Photographs of all species were identified using Evans (1949), Kehimkar (2016) and Ek-Amnuay (2012). The systematic position (order and family), common name and scientific name of each species were assigned.
following the synoptic catalogue by Varshney & Smetacek (2015). The observed butterfly species were categorized into five categories based on their presence in the study area VC - very common (> 100 sightings), C - common (> 50–100 sightings), NR - not rare (> 15–50 sightings), R - rare (> 2–15 sightings), VR - very rare (1–2 sightings). Authors have followed the updated scientific name of the larval host plants which were photographed from the study site as per The Plant List (2013) and Prain (1903).

RESULTS

The study revealed the presence of 76 butterfly species belonging to 5 families in the study area (Table 1, Fig. 1). Nymphalidae was the richest family, comprising 27 species (35.52%), followed by Lycaenidae 21 species (27.63%), Hesperiidae 13 species (17.10%), Pieridae 8 species (10.52%) and Papilionidae 7 species (9.21%). Assessment of local abundance revealed that 19 species (25%) were very common, 27 species (35.52%) were common, 17 species (22.36%) were fairly common, and 5 species (10.52%) were rare. Eight butterfly species, namely Arhopala atrax (Hewitson, 1862), Venessa cardui (Linnaeus, 1758), Mahathala ameria (Hewitson, 1862), Discophora sondaica (Boisduval, 1836), Lethe europaea (Fabricius, 1775), Junonia orithya (Linnaeus, 1758), Junonia iphita (Linnaeus, 1758) and Baoris farri (Moore, 1878) were reported only once during the study period. 10 species have a protected status under the Indian Wildlife (Protection) Act (WPA), 1972 (Anonymous, 2010), including Discophora sondaica (Boisduval, 1836) under Schedule I, Anthene lycena (Felder, 1868), Baoris farri (Moore, 1878), Euthalia aconthea (Cramer, 1777), Lampides boeticus (Linnaeus, 1767), Euchrysops cnejus (Fabricius, 1798), Mahathala ameria (Hewitson, 1862), Rapala varuna (Horsfield, 1829) under Schedule II, and Euploea core (Cramer, 1758), Euploea klugii kollari (Felder & Felder, 1865) under Schedule IV.

Subfamily	Binomial name	Status	WPA	Site 1	Site 2	Site 3	Site 4
Papilionidae (3 genera, 7 species)							
Papilioninae							
Graphium doson (Felder & Felder, 1864)	R	+	-	-	-		
Graphium agamemnon (Linnaeus, 1758)	VC	+	+	-	+		
Pachliopta aristolochiae (Fabricius, 1775)	NR	+	-	-	-		
Papilio clytia (Linnaeus, 1758)	NR	+	+	+	-		
Papilio polytes (Linnaeus, 1758)	VC	+	+	+	-		
Papilio polymnestor (Cramer, 1775)	C	+	+	-	-		
Papilio demoleus (Linnaeus, 1758)	C	+	+	+	-		
Nymphalidae (18 genera, 27 species)							
Danainae							
Tirumala linctia (Cramer, 1775)	NR	+	+	+	-		
Danaus genutia (Cramer, 1779)	C	+	+	+	-		
Danaus chrysippus (Linnaeus, 1758)	VC	+	+	+	-		
Euploea core (Cramer, 1758)	VC	+	+	+	-		
Euploea klugii kollari (Felder & Felder, 1865)	NR	Sch.IV	+	+	-	+	
Morphinae							
Discophora sondaica (Boisduval, 1836)	NR	Sch.IV	+	+	-	-	
Satyrinae							
Elymnias hypermnestra (Drury, 1763)	VC	+	+	+	-		
Melanitis leda (Linnaeus, 1758)	VC	+	+	+	-		
Lethe europaea (Fabricius, 1775)	VR	+	-	-	-		
Mycalesis sp. (Huebner, 1818)	VC	+	+	+	-		
Ypthima baldus (Fabricius, 1775)	NR	+	+	-	-		
Ypthima huebneri (Kirby, 1871)	VC	+	+	+	-		
Acraeinae							
Acraea violae (Fabricius, 1775)	C	+	+	+	-		
Phalantha phalantha (Drury, 1773)	C	+	+	-	-		

Table 1. List of Butterflies found in and around the Bongaon Municipality area
Subfamily	Binomial name	Status	WPA	Site 1	Site 2	Site 3	Site 4	
Limenitae	Moduza procris (Cramer, 1777)	R	+	+	+	+		
	Neptis hylas (Linnaeus, 1758)	C	+	-	-	+		
	Neptis jambha (Moore, 1858)	NR	+	+	-	-		
	Ethalia acontha (Cramer, 1777)	C	Sch. II	+	+	+	+	
Biblidinae	Ariadne Ariadne (Linnaeus, 1763)	VC	+	+	+	+		
	Ariadne merione (Cramer, 1777)	C	+	-	-	+		
Nymphalinae	Venessa cardui (Linnaeus, 1758)	VR	-	+	-	-		
	Junonia orithya (Linnaeus, 1758)	VR	-	-	+	-		
	Junonia iphita (Cramer, 1779)	VR	+	-	-	-		
	Junonia alitites (Linnaeus, 1763)	VC	+	+	+	+		
	Junonia almana (Linnaeus, 1758)	C	+	+	+	+		
	Junonia lemonias (Linnaeus, 1758)	VC	+	+	+	+		
Pieridae (7 genera, 8 species)	Eurema hecabe (Linnaeus, 1758)	VC	+	+	+	+		
	Catopsilia pomona (Fabricius, 1775)	VC	+	+	+	+		
	Catopsilia pyranthe (Linnaeus, 1758)	VC	+	+	+	+		
	Pareronia valeria (Cramer, 1776)	C	+	+	-	-		
	Appias olferna (Swinhoe, 1890)	C	-	+	+	-		
	Cepora nerissa (Fabricius, 1775)	C	+	+	+	+		
	Delias eucharis (Drury, 1773)	C	+	+	+	+		
	Hypolimnas bolina (Linnaeus, 1758)	C	+	+	+	+		
Coliadinae	Eurema hecabe (Linnaeus, 1758)	VC	+	+	+	+		
	Catopsilia pomona (Fabricius, 1775)	VC	+	+	+	+		
	Catopsilia pyranthe (Linnaeus, 1758)	VC	+	+	+	+		
	Pareronia valeria (Cramer, 1776)	C	+	+	-	-		
	Appias olferna (Swinhoe, 1890)	C	-	+	+	-		
	Cepora nerissa (Fabricius, 1775)	C	+	+	+	+		
	Delias eucharis (Drury, 1773)	C	+	+	+	+		
	Hypolimnas bolina (Linnaeus, 1758)	C	+	+	+	+		
Lycaenidae (18 genera, 21 species)	Anthene emolus (Godart, 1824)	NR	+	-	-	+		
	Anthene lycaenina (Fielder, 1868)	NR	Sch. II	+	-	-	-	
	Catohrysops strabo (Fabricius, 1793)	C	+	+	-	-		
	Lampides boeticus (Linnaeus, 1767)	R	Sch. II	-	+	-	-	
	Castalium rosimon (Fabricius, 1775)	VC	+	+	-	-		
	Tarucus balkanicus (Freyer, 1844)	NR	+	+	+	-		
	Zicera karsandra (Moore, 1865)	NR	+	+	+	-		
	Pseudozicera maha (Kollar, 1844)	C	+	+	+	-		
	Zizula hylas (Fabricius, 1775)	NR	-	+	+	-		
	Nepithecops zalmora (Butler, 1870)	C	+	+	+	+		
	Euchrysops cnejus (Fabricius, 1798)	C	Sch. II	+	+	+	+	
	Chilades pandava (Horsfield, 1829)	VC	+	+	+	+		
	Chilades lajas (Stoll, 1780)	VC	+	+	+	+		
Miletinae	Spalgis epius (Westwood, 1851)	NR	+	-	-	-		
Aphnaeinae	Spindasis vulcanus (Fabricius, 1775)	C	+	+	+	+		
Polyommatinae	Anthene emolus (Godart, 1824)	NR	+	-	+	-		
	Anthene lycaenina (Fielder, 1868)	NR	Sch. II	+	-	-	-	
	Catohrysops strabo (Fabricius, 1793)	C	+	+	-	-		
	Lampides boeticus (Linnaeus, 1767)	R	Sch. II	-	+	-	-	
	Castalium rosimon (Fabricius, 1775)	VC	+	+	-	-		
	Tarucus balkanicus (Freyer, 1844)	NR	+	+	+	-		
	Zicera karsandra (Moore, 1865)	NR	+	+	+	-		
	Pseudozicera maha (Kollar, 1844)	C	+	+	+	-		
	Zizula hylas (Fabricius, 1775)	NR	-	+	+	-		
	Nepithecops zalmora (Butler, 1870)	C	+	+	+	+		
	Euchrysops cnejus (Fabricius, 1798)	C	Sch. II	+	+	+	+	
	Chilades pandava (Horsfield, 1829)	VC	+	+	+	+		
	Chilades lajas (Stoll, 1780)	VC	+	+	+	+		
Theclinae	Arhopala atrax (Hewitson, 1862)	VR	+	-	-	-		
	Mahathala ameria (Hewitson, 1862)	VR	Sch. II	+	-	-	-	
	Loxura atymnus (Stoll, 1780)	NR	+	-	+	-		
	Rathinda amor (Fabricius, 1775)	C	+	+	-	-		
	Rapala manea (Hewitson, 1863)	C	+	+	+	+		
	Rapala varuna (Horsfield, 1829)	R	Sch. II	-	-	+	-	
Hesperiidae (12 genera, 13 species)	Tagiades japetus (Stoll, 1781)	NR	+	+	-	-		
Pyrginae	Tambrix salisala (Moore, 1866)	VC	+	+	-	-		
Hesperiinae	Suastus greius (Fabricius, 1798)	C	+	+	+	-		
	Matapa aria (Moore, 1866)	NR	+	+	-	-		
	Parnara bada (Moore, 1878)	C	+	-	-	-		
Authors have recorded 70 species of butterflies from Site 1, 60 species from Site 2, 46 species from Site 3 and 41 species from site 4 (Fig. 3). Chi-square goodness of fit test was performed using R statistical software to compare the species richness across sites. The result showed a significant difference (Chi value = 9.6728, df = 3, p-value = 0.02) across sites. A pairwise comparison using the chi-square test identified a significant difference (p-value = 0.03) of species richness between Site 1 and Site 4. In the course of the study, a total of 54 plant species belonging to 28 families and 51 genera were found to use by the butterfly larvae of this town as host plants (Table 2). Poaceae (8 species) and Fabaceae (6 species) were the most dominant families of host plants in this area. Six species of caterpillars feed on the plant *Cassia fistula*, whereas *Capparis zeylanica* exclusively supports the growth of four species of caterpillars.

![Figure 3](image)

Figure 3. Family wise species richness of butterflies in four different locations of the study area

Subfamily	Binomial name	Status	WPA	Site 1	Site 2	Site 3	Site 4
	Borbo cinnara (Wallace, 1866)	C	+	+	+	+	+
	Pelopidas sp. (Walker, 1870)	C	+	+	+	+	+
	Baoris farri (Moore, 1878)	VR	Sch. II	+	-	-	-
	Oriens gola (Moore, 1877)	C	+	+	+	-	-
	Telicota colon (Fabricius, 1775)	C	+	+	-	-	-
	Telicota bambusae (Moore, 1878)	NR	+	+	-	-	-
	Cephrenes acalle (Hopffer, 1874)	R	+	-	-	-	-
	Udaspes folus (Cramer, 1775)	NR	+	+	-	-	+

Abbreviations: VC - Very Common (> 100 sightings); C - Common (> 50–100 sightings); NR - Not Rare (> 15–50 sightings); R - Rare (> 2–15 sightings); VR - Very Rare (1–2 sightings); +: Present; -: Absent

Family	Larval host plant	Butterfly species	References	
Fabaceae	*Senna tora* (L.) Roxb.	*Eurema hecabe*	Nitin et al., 2018	
	Senna occidentalis (L.) Link	*Catopsilia pomona*	Kunte et al., 2021	
	Cassia fistula L.	*Catopsilia pyranthe*	Robinson et al., 2010	
		Eurema hecabe	Robinson et al., 2010	
		Catopsilia pomona	Robinson et al., 2010	
		Catopsilia pyranthe	Robinson et al., 2010	
		Spindasis vulcanus	Nitin et al., 2018	
		Anthene emolus	Robinson et al., 2010	
		Graphium agamemnon	Robinson et al., 2010	
		Tamarindus indica L.	*Suastus gremius*	Robinson et al., 2010
		Lablab purpureus (L.) Sweet	*Euchrysops cnejus*	Robinson et al., 2010
		Cajanus cajan (L.) Millsp.	*Lampides boeticus*	Robinson et al., 2010
			Catochrysops strabo	Robinson et al., 2010
Rutaceae	*Aegle marmelos* (L.) Corrêa	*Papilio demoleus*	Robinson et al., 2010	
		Papilio polytes	Robinson et al., 2010	
		Glycosmis pentaphylla (Retz.) DC.	*Neopithecops zalmora*	Robinson et al., 2010
			Papilio polytes	Robinson et al., 2010
		Citrus sp.	*Papilio polytes*	Robinson et al., 2010
Family	Larval host plant	Butterfly species	References	
---------------	-------------------	-------------------	------------------	
Oxalidaceae	Oxalis corniculata L.	Pseudozizeeria maha	Robinson et al., 2010	
Mimosaceae	Flacourtia indica (Burm.f.) Merr.	Pseudoselasia phalantha	Robinson et al., 2010	
Sapindaceae	Litchi chinensis Sonn.	Anthene emolus	Robinson et al., 2010	
Annonaceae	Polyalthia longifolia (Sonn.) Thwaites	Graphium agamemnon	Robinson et al., 2010	
Lauraceae	Litsea glutinosa (Lour.) C. B. Rob.	Papilio clytia	Robinson et al., 2010	
Rubiaceae	Neolamarckia cadamba (Roxb.) Bosser	Monasa procris	Kunte et al., 2021	
Anacardiaceae	Mangifera indica L.	Rathinda amor	Robinson et al., 2010	
Euphorbiaceae	Ricinus communis L.	Ariadne merione	Kunte et al., 2021	
Verbenaceae	Lantana camara L.	Zizia hylax	Robinson et al., 2010	
Areaceae	Phoenix sylvestris (L.) Roxb.	Elymnias hypermnestra	Kunte et al., 2021	
	Rhapis humilis Blume	Elymnias hypermnestra	Robinson et al., 2010	
	Areca catechu L.	Elymnias hypermnestra	Kunte et al., 2021	
Apocynaceae	Catalpa gigantea (L.) Dryand.	Danaus genuttia	Robinson et al., 2010	
Malvaceae	Sida rhombifolia L.	Spialia galba	Robinson et al., 2010	
Capparaceae	Capparis zeylanica L.	Cepora nerissa	Kunte et al., 2021; Robinson et al., 2010	
Brassicaceae	Sinapis arvensis L.	Pseudozizeeria maha	Robinson et al., 2010	
Rhamnaceae	Ziziphus jujuba Mill.	Castalia rosmon	Kunte et al., 2021	
Lamiaceae	Clerodendrum infortunatum L.	Rapala maneia	Kunte et al., 2021	
Mimosaceae	Mimosa pudica L.	Prosthas dubiosa	Kunte et al., 2021	
Oxalidaceae	Oxalis corniculata L.	Pseudozizeeria maha	Robinson et al., 2010	
DISCUSSION

The main objective of the study was to prepare a comprehensive list of butterfly species, determine which species were most abundant during the time of sampling, and document the available host and feeding plants in suburban Bongaon town. Our study confirms the presence of a wide variety of butterflies in the suburban town despite a large influx of human population and anthropogenic disturbances. The highest number of butterflies was recorded in Site 1 with the least human interferences and dense vegetation among the other sites. The availability of larval host plants and adult nectar plants could be one reason for its dominance (Murugesan et al., 2013). The least number of species were recorded from Site 4. High anthropogenic disturbance and the least vegetation might be a reason for this (Samal et al., 2021). The highest similar species assemblage was observed between Site 1 and Site 2 possibly due to their close proximity and the lowest similarity of species was recorded between Site 3 and Site 4 due to heterogeneity in habitat types (Table 3). Butterflies in high frequency were seen nectaring on flowering plants (Lantana camara, Nerium oleander, Ixora sp. etc.), planted by Bongaon Municipality to beautify the roads. The parks of the town, personal gardens also serve as potential resource sites for butterflies. However, seasonal slash and burn of vegetation poses a threat to the availability of both the host and feeding plants in the study area (Cleary & Genner, 2004). The presence of ten species listed under the Indian Wildlife (Protection) Act, 1972 demands necessary conservation measures to avoid regional extirpation.

Table 3. Sorensen’s similarity index of butterfly species recorded in the study sites

Site 1	Site 2	Site 3	Site 4
Site 1	0.86	0.76	0.70
Site 2	0.81	0.73	0.69
Site 3			
Site 4			
Figure 4. Some butterflies recorded from the study site
1. Loxura atymnus; 2. Lampides boeticus; 3. Anthene lycaenina; 4. Castalus rosimon; 5. Spalgis epius; 6. Anthene emolus; 7. Zizeeria karsandra; 8. Mahathala ameria; 9. Chilades lajus; 10. Chilades pandava; 11. Zizula hylax; 12. Mycalesis sp.; 13. Moduza procris; 14. Ypthima baldus; 15. Junonia aitites; 16. Junonia lemonias; 17. Danaus chrysippus; 18. Venessa cardui; 19. Phalanta phalantha; 20. Pachliopta aristolochiae; 21. Papilio clyta; 22. Papilio polytes; 23. Graphium doson; 24. Eurema hecabe; 25. Pereronia valeria; 26. Iambris salsula; 27. Oriens gola; 28. Borbo cinnara; 29. Suastus gremius; 30. Matapa aria
Species like Pieris canidia, Charaxes solon (Dey, 2021), Iraota timoleon (Sourabh Biswas observed from IISER Kolkata Campus, Nadia, West Bengal) were reported within 40 km radius of Bongaon. The host plants of these three species i.e., Sinapis arvensis, Tamarindus indica, Ficus bengalensis respectively were present in abundance at the study site. Further exploration might reveal the presence of these butterflies in the area. As the study provides a checklist of butterfly species, their feeding and larval host plants available in the area, it can be regarded as the maiden step towards forming a butterfly garden. Research and systematic monitoring will be helpful to better understand the influence of different landscape elements on butterfly community structure and their conservation needs.
Acknowledgements: The authors are grateful to Mr. Hirok Pramanik, Mr. Javed Mondal and Mr. Sourav Mondal, for their help during the surveys. Thanks are also due to Mr. Sujoy Saha, Ms. Pramita Roy, Ms. Sukanya Ghose, Ms. Mohana Chaudhuri and Ms. Upasana Chattopadhyay for their constant support and encouragement.

REFERENCES

Abbas M. S. T., Razvi S. A., Al Shidi R. H., Al-Khatry S. A., 2008. Role of egg parasitoids in controlling the pomegranate butterfly, Virachola Livia Klug (Lycæniææ: Lepidoptera) in Sultanate of Oman. Egyptian Journal of Pest Control., 18(1): 43–46.

Anonymous., 2010. The Wildlife (Protection) Act, 1972 with amendments up to 2006. Natraj Publishers, Dehra Dun, pp. 291.

Chowdhury S., 2015. Literature survey and bibliographic analysis of butterfly fauna (Lepidoptera: Glossata) from West Bengal, India. Animal diversity, natural history and conservation, 4(7): 123–136.

Cleary D. F. R., Genner M. J., 2004. Changes in rain forest butterfly diversity following major ENSO-induced fires in Borneo. Global Ecology and Biogeography., 13(2): 129–140. https://doi.org/10.1111/j.1466-882X.2004.00074.x

Dafni A., 1992. Pollination Ecology: A Practical Approach. New York: Oxford Univ Pr.

de Nicéville L., 1885. List of butterflies of Calcutta and its neighbourhood with notes on habits and food plants. Journal of Asiatic Society of Bengal., 54(2): 39–54.

Dasgupta J., 2010. Paschimbanger prajaproiti. Ananda Publishing Private Limited, Kolkata, pp. 204.

Dey R., 2020. New Hesperiidae (Insecta: Lepidoptera) larval host plant associations from West Bengal, India. Bionotes., 22(4): 218–225.

Dey R., 2021. Preliminary checklist of butterfly (Insecta, Lepidoptera, Papilionoidea) species around Haringhata dairy farm, Nadia district, West Bengal including range extension of Prosotas bhutea (de Nicéville, [1884]) for southern West Bengal, India. Cuadernos de Biodiversidad., 61: 1–16. https://doi.org/10.14198/cdbio.2021.61.01

Ek-Amnuay P., 2012. Butterflies of Thailand. 2nd Ed., Revised. Baan Lae Suan Amarin Printing, Bangkok, Thailand, pp. 943.

Evans W. H., 1949. A catalogue of the Hesperiidae From Europe, Asia, and Australia in the British Museum (Natural History). The Trustees of the British Museum, London, pp. 502.

Ganguli S., Das O., Bera A. R., Singh P. K., Vishal V., Gupta S., 2016. West Bengal butterfly biodiversity database - A compendium of butterfly biodiversity with information regarding the habitat and status of individual identified species of butterflies of West Bengal. Asian Journal of Conservation Biology., 5(2): 90–93.

Kearns C. A., Inouye D. W., 1997. Pollinators, flowering plants, and conservation biology. Bio Science., 47(5): 297–307. https://doi.org/10.2307/1313191

Kehimkar I., 2016. Butterflies of India. Bombay Natural History Society, Mumbai, pp. 505.

Kunte K., Sondhi S., Roy P., 2021. Butterflies of India, v. 2.88. Indian Foundation for Butterflies. https://www.ifoundbutterflies.org/ (accessed in 05/12/2021)

Mitra B., Ghosh J., Chakraborti U., Biswas O., Roy S., Roy A. B., 2015. Entomofaunal diversity of Bhishnu Bhusan Wild Life Sanctuary, West Bengal. Journal of Global Sciences., 4(7): 2795–2807.

Moore F., 1866. On the Lepidopterous insects of Bengal. Proceedings of the Zoological Society of London., 1865: 755–823, 3 pls.

Mukhopadhyay S., Mazumdar S., 2017. Composition, diversity and foraging guilds of avifauna in a suburban area of

89
southern West Bengal, India. *The Ring.*, 39(1): 103–120. https://doi.org/10.1515/ring-2017-0004

Murugesan M., Arun P. R., Prusty B. A. K., 2013. The butterfly community of an urban wetland system-a case study of Oussudu Bird Sanctuary, Puducherry, India. *Journal of Threatened Taxa.*, 5(12): 4672–4678. https://doi.org/10.11609/JoTT.o3056.4672-8

Nair, N., Giri, U., Debnath, M. R., Shah, S. K., 2018. Butterfly fauna (Lepidoptera: Rhopalocera) of Lembuchera, West Tripura, Tripura, India. *Journal of Entomology and Zoology Studies.*, 6(2): 975–981.

Nitin R., Balakrishnan V. C., Churi P. V., Kalesh S., Prakash S., Kunte K., 2018. Larval host plants of the butterflies of the Western Ghats, India. *Journal of Threatened Taxa.*, 10(4): 11495–11550. https://doi.org/10.11609/jott.3104.10.4.11495-11550

Prain D., 1903. Bengal Plants. Vol. 2, Botanical Survey of India, Calcutta. pp. 1184.

Prain D., 1903. Bengal Plants. Vol. 2, Botanical Survey of India, Calcutta. pp. 1184.

Robinson G. S., Ackery P. R., Kitching I. J., Beccaloni G. W., Hernández L. M., 2010. HOSTS - A Database of the World’s Lepidopteran Hostplants. Natural History Museum, London. http://www.nhm.ac.uk/hosts. (accessed on 18/08/2010)

Royer R. A., Austin J. E., Newton W. E., 1998. Checklist and “Pollard Walk” Butterfly Survey Methods on Public Lands. *The American Midland Naturalist.*, 140(2): 358–371. doi: 10.1674/0003-0031(1998)140[0358:CAPWBS]2.0.CO;2

Samal S., Satapathy A., Pattanaik N., 2021. Diversity of butterflies (Lepidoptera: Rhopalocera) in Bhubaneswar, Odisha, India. *Notulae Scientiae Biologicae.*, 13(4): 1–25. 10.15835/NSB13411074.

The Plant List, 2013: Version 1.1. Published on the Internet; http://theplantlist.org/ (accessed 12 February 2022)

Varshney R. K., Smetacek P., 2015. A Synoptic Catalogue of the Butterflies of India. Butterfly Research Centre, Bhimtal and Indinov Publishing, New Delhi, pp. 261 + pls. 8.