Electrocardiographic alterations in patients with chronic obstructive pulmonary disease

Mehmet Eyuboglu

Specialty type: Cardiac and cardiovascular systems
Provenance and peer review: Invited article; Externally peer reviewed.
Peer-review model: Single blind
Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): C, C
Grade D (Fair): 0
Grade E (Poor): 0
P-Reviewer: Leowattana W, Liu W, Satoh H, Ueda H

Received: October 28, 2021
Peer-review started: October 28, 2021
First decision: December 27, 2021
Revised: December 27, 2021
Accepted: February 20, 2022
Article in press: February 20, 2022
Published online: March 26, 2022

Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular events, and electrocardiography has an important role in detecting cardiac side effects of COPD-related hypoxia.

Key Words: Electrocardiography; Chronic obstructive pulmonary disease; QT interval; QT dispersion; Frontal plane QRS-T angle; Fragmented QRS

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: QT parameters and frontal plane QRS-T angle may provide useful information regarding subclinical left ventricular dysfunction in patients with chronic obstructive pulmonary disease. In addition to standard electrocardiography parameters, these parameters may also be useful in demonstrating cardiac side effects of chronic obstructive pulmonary disease.

Citation: Eyuboglu M. Electrocardiographic alterations in patients with chronic obstructive pulmonary disease. World J Cardiol 2022; 14(3): 187-189
URL: https://www.wjgnet.com/1949-8462/full/v14/i3/187.htm
DOI: https://dx.doi.org/10.4330/wjc.v14.i3.187

TO THE EDITOR
I have read with great interest the article by Gupta et al[1] in which the authors reported the important electrocardiography (ECG) changes in patients with chronic obstructive pulmonary disease (COPD). Patients with COPD are at increased risk for cardiovascular events and ECG may provide useful information in monitoring these
patients. In their article, Gupta et al.[1] mentioned various important ECG alterations in patients with COPD. However, I would like to point out some other important ECG parameters which may be significantly associated with myocardial damage and should not be neglected in patients with COPD.

COPD causes alterations in the cardiac conduction system and is associated with increased risk for cardiac arrhythmias and cardiovascular events[2,3]. Importantly, repolarization parameters QT interval and QT dispersion are the most important ECG parameters in predicting future arrhythmic events, and these parameters seem to be significantly altered in patients with COPD[3,4]. Alterations in these repolarization parameters seem to be associated with COPD-related hypoxia and significantly predict arrhythmic events in patients with COPD. Hence, QT parameters may be useful in the monitoring of patients with COPD for adverse cardiovascular events.

Additionally, frontal plane QRS-T angle (fQRST angle) which could be easily measured from standard 12-lead ECG as the absolute difference between QRS axis and T wave axis, maybe a useful ECG parameter in the monitoring of patients with COPD. fQRST angle describes the angular difference between depolarization and repolarization directions and increased fQRST angle is significantly associated with adverse cardiovascular events[5,6]. Importantly, fQRST angle seems to be associated with subclinical myocardial damage even in the absence of overt cardiovascular disease[7-9]. Moreover, COPD seems to cause an increase in fQRST angle, and fQRST angle seems to be associated with the severity of COPD[10]. Therefore, as a sign of ventricular repolarization heterogeneity, fQRST angle may be a useful ECG parameter in the clinical evaluation of patients with COPD.

Another important ECG parameter that should be considered in patients with COPD may be QRS fragmentation. In addition to its predictive value for myocardial scar tissue, presence of a narrow fragmented QRS complex (fQRS) on ECG is significantly associated with subclinical myocardial fibrosis even in the absence of manifest cardiovascular disease[11-14]. Importantly, fQRS also seems to be a sign of hypoxia-related subclinical left ventricular dysfunction in patients with the pulmonary disease[15]. Although its clinical importance in patients with COPD has not been demonstrated yet, QRS fragmentation patterns may be useful in detecting subclinical left ventricular dysfunction in patients with COPD.

In conclusion, various ECG changes may be seen in patients with COPD, and these ECG alterations seem to be associated with adverse cardiovascular events in these patients. However, besides the other ECG parameters, QT interval, QT dispersion and fQRST angle should be considered to demonstrate COPD's cardiac side effects. Also, evaluation of QRS fragmentation patterns may provide useful information in detecting subclinical myocardial dysfunction in patients with COPD.

FOOTNOTES

Author contributions: Eyuboglu M solely contributed to this letter.

Conflict-of-interest statement: I declare that there is no any conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Turkey

ORCID number: Mehmet Eyuboglu 0000-0002-5754-9382,

S-Editor: Ma YJ
L-Editor: A
P-Editor: Ma YJ

REFERENCES

1 Gupta P, Jain H, Gill M, Bharaj G, Khalid N, Chaudhry W, Chhabra L. Electrocardiographic changes in Emphysema. World J Cardiol 2021; 13: 533-545 [PMID: 34754398 DOI: 10.4330/wjc.v13.i10.533]
2 Sin DD, Man SF. Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proc Am Thorac Soc 2005; 2: 8-11 [PMID: 16113462 DOI: 10.1513/pats.200404-032MS]
3 Sievi NA, Clarenbach CF, Camen G, Rossi VA, van Gestel AJ, Kohler M. High prevalence of altered cardiac repolarization in patients with COPD. BMC Pulm Med 2014; 14: 55 [PMID: 24690123 DOI: 10.1186/1471-2466-14-55]
4 Yıldız P, Tükek T, Akkaya V, Sözen AB, Yıldız A, Korkut F, Yılmaz V. Ventricular arrhythmias in patients with COPD are associated with QT dispersion. Chest 2002; 122: 2055-2061 [PMID: 12475847 DOI: 10.1378/chest.122.6.2055]
5. Aro AL, Huikuri HV, Tikkanen JT, Juntila MJ, Rissanen HA, Reunanen A, Anttonen O. QRS-T angle as a predictor of sudden cardiac death in a middle-aged general population. * Europace* 2012; 14: 872-876 [PMID: 22183749 DOI: 10.1093/europace/eur393]

6. May O, Graversen CB, Johansen MØ, Arildsen H. A large frontal QRS-T angle is a strong predictor of the long-term risk of myocardial infarction and all-cause mortality in the diabetic population. * J Diabetes Complications* 2017; 31: 551-555 [PMID: 28065667 DOI: 10.1016/j.jdiacomp.2016.12.001]

7. Tanriverdi Z, Unal B, Eyuboglu M, Bingol Tanriverdi T, Nurdag A, Demirbag R. The importance of frontal QRS-T angle for predicting non-dipper status in hypertensive patients without left ventricular hypertrophy. *Clin Exp Hypertens* 2018; 40: 318-323 [PMID: 28949780 DOI: 10.1093/eur393]

8. Eyuboglu M, Acikel B. Electrocardiographic differences in patients with true and pseudo-resistant hypertension. *J Hum Hypertens* 2021 [PMID: 34131262 DOI: 10.1038/s41371-021-00559-8]

9. Eyuboglu M, Celik A. Impact of blood pressure lowering on ventricular repolarization heterogeneity in patients with newly diagnosed hypertension. *Blood Press Monit* 2021; 26: 407-412 [PMID: 34074806 DOI: 10.1097/MBP.0000000000000551]

10. Hocanli I, Tanriverdi Z, Kabak M, Gungoren F, Tascanov MB. The relationship between frontal QRS-T angle and the severity of newly diagnosed chronic obstructive pulmonary disease. *Int J Clin Pract* 2021; 75: e14500 [PMID: 34117683 DOI: 10.1111/ijcp.14500]

11. Eyuboglu M. Characteristics of Circadian Blood Pressure Pattern of Hypertensive Patients According to Localization of Fragmented QRS on Electrocardiography. *High Blood Press Cardiovasc Prev* 2021; 28: 57-62 [PMID: 33216291 DOI: 10.1007/s40292-020-00422-w]

12. Tanriverdi Z, Eyuboglu M, Bingol Tanriverdi T, Nurdag A, Demirbag R. The relationship between fragmented QRS and non-dipper status in hypertensive patients without left ventricular hypertrophy. *Clin Exp Hypertens* 2017; 39: 680-684 [PMID: 28657410 DOI: 10.1080/10641963.2017.1313855]

13. Eyuboglu M, Akdeniz B. Association Between Non-Dipping and Fragmented QRS Complexes in Prehypertensive Patients. *Arq Bras Cardio* 2019; 112: 59-64 [PMID: 30570062 DOI: 10.5935/abc.20180242]

14. Eyuboglu M, Ekincli MA, Karakoyun S, Kucuk U, Senarslan O, Akdeniz B. Fragmented QRS for Risk Stratification in Patients Undergoing First Diagnostic Coronary Angiography. *Arq Bras Cardiol* 2016; 107: 299-304 [PMID: 27849256 DOI: 10.5935/abc.20160139]

15. Adar A, Kinç A, Bülbül Y, Bektash H, Acat M, Casim H, Onalan O. Association of Fragmented QRS with Subclinical Left Ventricular Dysfunction in Patients with Obstructive Sleep Apnea. *Med Princ Pract* 2015; 24: 376-381 [PMID: 26022145 DOI: 10.1159/000382077]
