The diffuse gamma-ray flux from clusters of galaxies

Saqib Hussain1,2, Rafael Alves Batista3,4, Elisabete M. de Gouveia Dal Pino1 & Klaus Dolag5,6

The origin of the diffuse gamma-ray background (DGRB), the one that remains after subtracting all individual sources from observed gamma-ray sky, is unknown. The DGRB possibly encompasses contributions from different source populations such as star-forming galaxies, starburst galaxies, active galactic nuclei, gamma-ray bursts, or galaxy clusters. Here, we combine cosmological magnetohydrodynamical simulations of clusters of galaxies with the propagation of cosmic rays (CRs) using Monte Carlo simulations, in the redshift range $z \leq 5.0$, and show that the integrated gamma-ray flux from clusters can contribute up to 100\% of the DGRB flux observed by Fermi-LAT above 100 GeV, for CRs spectral indices $\alpha = 1.5 - 2.5$ and energy cutoffs $E_{\text{max}} = 10^{16} - 10^{17}$ eV. The flux is dominated by clusters with masses $10^{13} \lesssim M/M_\odot \lesssim 10^{15}$ and redshift $z \lesssim 0.3$. Our results also predict the potential observation of high-energy gamma rays from clusters by experiments like the High Altitude Water Cherenkov (HAWC), the Large High Altitude Air Shower Observatory (LHAASO), and potentially the upcoming Cherenkov Telescope Array (CTA).

The DGRB provides a unique glimpse into the high-energy universe. Its inherent links with high-energy CRs and neutrinos enable investigations of the most powerful cosmic accelerators in the Cosmos. The observed energy fluxes of these three components are all comparable1,3, suggesting that they may have a common origin. Galaxy clusters are believed to be the result of very violent processes such as the accretion and merging of smaller structures into larger ones. These processes can release large amounts of energy (about $10^{60} - 10^{64}$ erg), part of which can accelerate CRs to very-high energies1,3. CRs with $E \leq 10^7$ eV can be confined within clusters for a time comparable to the age of the universe due to the size of these structures (the order of Mpc) and their magnetic-field strength ($B \sim \mu G$)4. Therefore, clusters are unique reservoirs of CRs that can produce high-energy photons through collisions with the gas in intracluster medium (ICM), or through processes involving energetic electron-positron pairs produced as secondaries of hadronic and/or leptonic interactions. CR interactions with the cosmic microwave background (CMB) and the extragalactic background light (EBL) are also promising channels for producing high-energy gamma rays, especially for CRs with energies $\geq 10^{18}$ eV.

Several analytical and semi-analytical models have been employed to estimate the fluxes of gamma rays and neutrinos stemming from CR interactions in the ICM2,8-12, but in all these studies the ICM is assumed to have spherically symmetric distributions of magnetic fields and gas.

Here, we explore the production of DGRB by galaxy clusters. We adopt a more rigorous numerical approach, employing cosmological three-dimensional magnetohydrodynamic (3D-MHD) simulations7, taking into account the non-uniform distributions of the gas density, temperature, and magnetic field, as well as their dependence on the mass and redshift of the clusters. We did not make any approximations to constrain the background density, temperature, and magnetic fields of the ICM as they are directly obtained from the simulations. This extends our previous work in which we employed a similar approach to compute the diffuse neutrino emission from these structures13. Our
cosmological simulations indicate that the magnetic field and gas density distributions in massive clusters (with \(M \gtrsim 10^{15} M_\odot \)) are larger than in the lower-mass ones, and that massive clusters (\(M \gtrsim 10^{15} M_\odot \)) are less abundant at high redshifts\(^{13}\) than in the lower-mass ones, and that massive clusters (\(M \gtrsim 10^{15} M_\odot \)) are larger than in the lower-mass ones, and that massive clusters (\(M \gtrsim 10^{15} M_\odot \)) are less abundant at high redshifts\(^{13}\) than in the lower-mass ones, and that massive clusters (\(M \gtrsim 10^{15} M_\odot \)) are less abundant at high redshifts\(^{13}\).

Results

We inject CRs with minimum energy of 100 GeV, such that we can study gamma-ray energies down to a few 10 GeV. The CRs can escape more easily from the regions with lower densities and magnetic-field strengths in the outskirts of the clusters, which decreases the gamma-ray flux. In Supplementary Fig. S4 of the Supplementary Material, we show the gamma-ray flux collected at the edge of individual clusters, produced by CR sources in different locations inside them. We find that the flux is one-order of magnitude larger when the source is located in the central region than in the edge of the cluster. For this reason, in order to compute the integrated contribution from all clusters in different redshifts below, we consider only the dominant contribution, i.e. from CR sources in the central region of the clusters.

The mass range of clusters in our background simulation is \(10^{13} \lesssim M/M_\odot < 5 \times 10^{15} \) and clusters with masses \(\lesssim 10^{13} M_\odot \) barely contribute to the high-energy gamma-ray flux. This occurs due to the lower interaction rate between CRs and the intraccluster environment, which is a consequence of the interplay between the Larmor radius, determined by the magnetic field, and the cluster size (see Supplementary Material for a detailed discussion). Also, massive clusters \((\gtrsim 10^{15} M_\odot) \) exist mostly at low redshifts \(z \lesssim 1 \), being rare at high redshifts. Therefore, the major contribution to the total flux comes from clusters in the mass range \(10^{13} \lesssim M/M_\odot \lesssim 10^{15} \) (see Supplementary Fig. S5). Figure 1 illustrates the propagation of two CRs within a cluster of our background simulation.

In Figs. 2–5 we present the integrated gamma-ray spectrum from all clusters for \(z \lesssim 0.0, \) propagated up to the Earth. The total flux \(\Phi \) was computed as follows:

\[
E_{\text{obs}}^2 \Phi(E_{\text{obs}}) = \int_{z_{\text{min}}}^{z_{\text{max}}} \int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{dN}{dM} E^2 \frac{dN}{dE}(E/(1+z),M,z) dE
\]

where the number of clusters per mass interval \(dN/dM \) was calculated from our background simulation (see Supplementary Fig. S1), \(g(E_{\text{obs}}, E, z) \) accounts for the interactions of gamma rays with energy \(E \) arriving with energy \(E_{\text{obs}} \), undergoing interactions during their propagation in the ICM and the intergalactic medium (IGM), \(\psi_{\text{eff}}(z) \) is a function that describes the cosmological evolution of the emissivity of the CR sources (AGN, SFR, or none; see Eqs. (E1) and (E2) of the Supplementary Material), the quantity \(E^2 dN/dE \) denotes the gamma-ray power computed from the simulation, \(d_L \) is the luminosity distance,
and $f(M)$ is a factor of order unit that corrects the flux by the amount of gas that is removed from the clusters due to stellar and AGN feedback. We note that the number of clusters per mass interval we obtained from our MHD cosmological simulation at different redshifts is comparable with results from other large-scale cosmological simulations13,16 and predictions from observations13,19 (see Supplementary Fig. S1).

The universe is believed to be isotropic and homogeneous at very large scales. Therefore, for the propagation of gamma rays from the clusters to Earth, we assumed a nearly uniform distribution of sources in comoving coordinates.

Figure 2 depicts the total flux for different redshift intervals: $z \leq 0.3$, $0.3 < z \leq 1.0$, and $1.0 < z \leq 5.0$. A representative spectral index $\alpha = 2.3$ and a maximum energy $E_{\text{max}} = 10^{17}$ eV are used for this evaluation (see also Figs. 3 and 4). The dominant contribution to the total flux of gamma rays comes from sources at low redshifts ($z \leq 0.3$), for which the effect of the EBL attenuation is less pronounced. This effect is more prominent at higher redshifts and also depends on the EBL model adopted20,21 (see Fig. 3, and Supplementary Fig. S7 of the Supplementary Material). Figure 2 shows the results for the EBL model from ref. 20, which predicts a slightly larger gamma-ray cut-off energy for the flux. Also, our treatment of the pp-interactions13,14 is only an approximation and contains uncertainties due to the unknown pp cross-section at energies beyond the reach of the LHC15.

Figure 2 also highlights the effects of the evolution of the CR sources on the gamma-ray flux, distinguishing the separated contributions of AGN and SFR, following the same procedure as in refs. 13,26. We find that an AGN-type evolution enhances the diffuse gamma-ray flux at high redshifts ($z \geq 1.5$) compared to scenarios wherein the sources evolve as the SFR (or without any evolution). On the other hand, these contributions are both comparable at low redshifts ($z \leq 0.3$) which in turn, provide the dominant contribution to the total gamma-ray flux.

We further notice that the flux of gamma rays above energies -10^{17} eV can also be attenuated by interactions with the local optical and infrared photon fields of clusters, in addition to the EBL. Nevertheless, this effect is more dominant for sources at redshift $z \geq 0.3$ as discussed in ref. 27. In our case, the major contribution corresponds to sources at $z \leq 0.3$. Therefore, we expect that this interaction channel has likely a minor impact on our results.

As remarked, our MHD simulations do not include radiative-cooling, or the amount of gas that is converted into stars or removed from the clusters due to stellar and AGN feedback. This implies a slight overestimation of the density in the structures, especially for clusters of mass $\leq 10^{14} M_{\odot}$ (see refs. 28,29). Based on observational results30, we have also estimated the total gamma-ray flux taking into account the expected decrease of the gas density as a function of the cluster mass. In Fig. 4 we recalculate the total diffuse gamma-ray flux (black dashed line) considering correction factors $f(M) = 0.95$ for clusters with $M \geq 10^{14} M_{\odot}$, $f(M) = 0.8$ for $M \geq 10^{15} M_{\odot}$, $f(M) = 0.3$ for $M \geq 10^{16} M_{\odot}$, and $f(M) = 0.3$ for $M \geq 10^{14} M_{\odot}$ following ref. 30. A comparison between the dashed and solid black lines of Fig. 4 indicates a small reduction of the flux by at most a factor about 2.

The results for different combinations of the CR cutoff energy and spectral index are presented in Fig. 5. The shaded region shows the total flux of gamma rays for all clusters from the entire redshift range $0 < z \leq 5.0$, calculated for $\alpha = 1.5 – 2.5$ and $E_{\text{max}} = 10^{16} – 10^{17}$ eV, including feedback by AGN and SF, and CR source evolution. The observed DGRB flux by Fermi-LAT, and the upper limits obtained by the currently operating HAWC31 and by the CASA-MIA experiment32, are also shown. For energies greater than ± 100 GeV, our simulations indicate that galaxy clusters can contribute substantially to the DGRB measured or constrained by these experiments. This contribution amounts for up to 100% of the observed flux by Fermi-LAT, for spectral indices $\alpha \leq 2$ and maximum energy $E_{\text{max}} \geq 10^{17}$ eV. This also clearly explains the apparent flatness of the spectrum up to about 1 TeV (see also Supplementary Figs. S8 and S9 of the Supplementary Material).

Discussion

The spectral indices considered here are consistent with the universal CR model33 used by Fermi-LAT to explore the CR induced gamma-ray emission from clusters34, and by H.E.S.S. for the Coma cluster ($\alpha = 2.1 – 2.4$), while the E_{max} range is compatible with the fact that the clusters can confine mainly CRs with energies $E \leq 10^{17}$ eV13,15.

Note that the slope of the integrated gamma-ray flux is strongly influenced by the spectral parameters of the injected CRs. Therefore,
Radio Astronomy Observatory Very Large Array sky survey\cite{35,44} and also assumed that the radio luminosity scales linearly with the hadronic high-energy emission. Their results are also comparable with ours.

Though individual source populations such as blazars\cite{44,45}, misaligned-AGNs\cite{46} and star-forming galaxies (SFGs)\cite{37} can contribute to a fairly large fraction of the DGRB for energies below TeV$^\text{44,45}$ (see Supplementary Fig. S9 of the Supplementary Material), our results demonstrate that the cumulative gamma-ray flux from clusters can dominate over the integrated contribution of individual classes of unresolved sources, at energies \geq100 GeV. The implications of our calculations are extremely important considering that the contribution from clusters is guaranteed if high-energy CRs are present in the ICM.

As shown in Fig. 5, our results are compatible with upper limits evaluated by HAWC\cite{31}. A similar estimate has yet to be performed by other facilities like the LHAASO\cite{50} or the forthcoming CTA\cite{51}. Nevertheless, considering the sensitivity curves for point sources obtained in both cases\cite{50,51}, the gamma-ray flux we derived has likely the potential to be detected by these facilities too (see also Supplementary Fig. S9 and the discussion therein).

Future more realistic MHD cosmological simulations that account directly for the CR sources distribution, evolution, and feedback\cite{52,53} may allow to constrain better the contribution of clusters to the DGRB. Furthermore, the effects of unknown magnetic fields of the diffuse IC M on the gamma-ray cascading may also change our results (see discussion in the Supplementary Material).

Figure 6 summarizes our findings, together with those from ref. 13. It shows both the high-energy gamma-ray and neutrino emission from the entire population of clusters up to redshift $z \lesssim 5.0$, assuming CR sources embedded in clusters. As we see, the neutrino flux we obtain is comparable with the diffuse neutrino background observed by IceCube for CR spectral index $\alpha = 1.5$–2.5 and maximum energy 10^{16}–10^{17} eV. A recent analysis by the IceCube Collaboration\cite{17} found that less than ~77% of the total diffuse neutrino flux could be due to clusters. While this could, at first glance, seem in conflict with our results, we note that changes in the parameters of our analysis such as the total CR luminosity or the distribution of CR sources within the cluster could reduce our estimate. The same is true for the DGRB predictions. Therefore, the link established by Fig. 6 between the diffuse gamma-ray and the diffuse neutrino backgrounds, should be interpreted minding these caveats.

Our results were obtained through the most detailed simulations to date of three-dimensional particle transport in cosmological environments. Combined with the other known components of the DGRB, our results strongly constrain the fraction of the diffuse flux that could be ascribed to unknown components such as the elusive dark matter. Moreover, it establishes a clear connection between the fluxes of two messengers, neutrinos and gamma rays, which, combined, enables us to indirectly study CRs in clusters even if they are not directly observable.

Methods

We describe the ICM through 3D-MHD smoothed-particle-hydrodynamical (SPH) cosmological simulations employing the GADGET code\cite{14,15}, within a sphere of radius 110 Mpc around the Milky Way. The simulations extend up to a redshift of $z = 5$ and contain clusters with masses $10^{15} - 10^{17} M_{\odot}$ and in our own MHD simulations. Because we are considering here the entire mass range ($10^{15} \leq M/M_{\odot} < 10^{17}$), the density is higher by an order of magnitude, and this is the main difference between ours and these previous studies\cite{36,41}.

Another study\cite{32} estimated the flux using a simple relation between the gamma-ray luminosity and the cluster mass. They constrained the radio-loud cluster count from observations by the

Figure 6 summarizes our findings, together with those from ref. 13. It shows both the high-energy gamma-ray and neutrino emission from the entire population of clusters up to redshift $z \lesssim 5.0$, assuming CR sources embedded in clusters. As we see, the neutrino flux we obtain is comparable with the diffuse neutrino background observed by IceCube for CR spectral index $\alpha = 1.5$–2.5 and maximum energy 10^{16}–10^{17} eV. A recent analysis by the IceCube Collaboration\cite{17} found that less than ~77% of the total diffuse neutrino flux could be due to clusters. While this could, at first glance, seem in conflict with our results, we note that changes in the parameters of our analysis such as the total CR luminosity or the distribution of CR sources within the cluster could reduce our estimate. The same is true for the DGRB predictions. Therefore, the link established by Fig. 6 between the diffuse gamma-ray and the diffuse neutrino backgrounds, should be interpreted minding these caveats.

Our results were obtained through the most detailed simulations to date of three-dimensional particle transport in cosmological environments. Combined with the other known components of the DGRB, our results strongly constrain the fraction of the diffuse flux that could be ascribed to unknown components such as the elusive dark matter. Moreover, it establishes a clear connection between the fluxes of two messengers, neutrinos and gamma rays, which, combined, enables us to indirectly study CRs in clusters even if they are not directly observable.

Methods

We describe the ICM through 3D-MHD smoothed-particle-hydrodynamical (SPH) cosmological simulations employing the GADGET code\cite{14,15}, within a sphere of radius 110 Mpc around the Milky Way. The simulations extend up to a redshift of $z = 5$ and contain clusters with masses $10^{15} - 10^{17} M_{\odot}$ and in our own MHD simulations. Because we are considering here the entire mass range ($10^{15} \leq M/M_{\odot} < 10^{17}$), the density is higher by an order of magnitude, and this is the main difference between ours and these previous studies\cite{36,41}.

Another study\cite{32} estimated the flux using a simple relation between the gamma-ray luminosity and the cluster mass. They constrained the radio-loud cluster count from observations by the
strengths from observations of different clusters of galaxies57. Feedback from active galactic nuclei (AGN) and star formation (SF) are not directly included in these MHD cosmological simulations, but the evolution effects of these potential CR sources on the flux of gamma rays is accounted for with a redshift-dependent profile, as in refs. 13,26,58 (see Eqs. (E1) and (E2) of the Supplementary Material). A flat ΛCDM universe model is assumed with the corresponding cosmological parameters given by $h = H_0/ (100 \text{ km s}^{-1} \text{ Mpc}^{-1}) = 0.7, \Omega_{m} = 0.3, \Omega_{\Lambda} = 0.7$, and the baryonic fraction $\Omega_{b}/\Omega_{m} = 0.14$. The maximum resolution in our SPH simulations is -10 kpc (see refs. 7,13 and also page 1 of the Supplementary Material for details).

We are interested in high-energy gamma rays with $E \geq 10$ GeV whose origin is more uncertain (see Supplementary Fig. S9 of the Supplementary Material) and thus consider CRs with energies $10^{11} \leq E \leq 10^{13}$ \text{ eV}. The energy around 10^{13} eV can be achieved by primary sources inside a cluster, such as AGNs29. For magnetic fields of $B \sim 1 \mu$G, the Larmor radius of CRs with $E \geq 10^{13}$ eV is $r_{L} \sim 10$ kpc, so that they cannot remain trapped within clusters for too long. On the other hand, CRs with lower energies remain confined, producing secondary CRs due to interactions with the ICM gas and the bremsstrahlung radiation, as well as with the CMB and the EBL11,20,26. We explore the propagation of CRs in the simulated background of clusters using the CRPropa code4,6. The propagation has two steps and we assume that the CRs are predominantly produced by protons, since we expect much smaller contribution from heavier elements31 (see page 4 of Supplementary Material). In the first step, we compute the gamma-ray flux produced by CR interactions in the clusters by considering all relevant interactions that generate both electrons and photons, namely: photopion production, Bethe-Heitler pair production, pair production, inverse Compton scattering, and proton-proton (pp) interactions. In addition, we take into account the energy losses due to the adiabatic expansion of the universe and due to synchrotron emission, although these only contribute to the electromagnetic flux at energies much lower than our energy of interest ($E \geq 10$ GeV). For more details on how CRs were propagated, see the Supplementary Materials (Supplementary Figs. S2 and S3). We find that the interactions of the CRs with the cluster gas and the CMB are the dominant channels for producing the secondaries11. In the second step, we perform the propagation of the gamma rays collected at the boundary of the clusters to Earth. We consider the electromagnetic cascade process initiated by these gamma rays both in the ICM and in the intergalactic medium, including inverse Compton scattering, single, double, and triple pair production, with the CMB, the EBL11,20, and the radio background12 (see Supplementary Fig. S3 in Supplementary Material). We did not consider the effects of intergalactic magnetic fields outside the cluster in this step, since they are highly uncertain11 and are not expected to majorly affect the gamma-ray flux at energies above 100 GeV11.

To compute the gamma-ray flux we have followed the same procedure given in ref. 13 and considered that 1% of the cluster luminosity goes into CRs, which is consistent with Fermi-LAT predictions24. We only considered the contribution of CRs with energies above 100 GeV approximately, although we did consider the whole energy range, starting from 1 GeV, to normalize the total energy of the simulation to the cluster luminosity, as explained on page 4 in the Supplementary Material. Also, in Supplementary Fig. S6 of the Supplementary Material, we compare the gamma-ray flux for different values of this luminosity fraction and the results indicate a variation much less than an order of magnitude.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author upon request. Source data are provided with this paper.

Code availability
The numerical codes used to generate results that are reported in the current study are available upon request.

References
1. Ahlers, M. & Halzen, F. Opening a new window onto the universe with IceCube. Prog. Part. Nucl. Phys. 102, 73–98 (2018).
2. Fang, K. & Murase, K. Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures. Nat. Phys. 14, 396–398 (2018).
3. Alves Batista, R. et al. Open questions in cosmic-ray research at ultrahigh energies. Front. Astronomy Space Sci. 6, 23 (2019).
4. Brunetti, G. & Jones, T. W. Cosmic rays in galaxy clusters and their nonthermal emission. Int. J. Modern Phys. D 23, 1430007 (2014).
5. Bonafede, A. et al. The Coma Cluster at Low Frequency ARRay Frequencies: I. Insights into particle acceleration mechanisms in the radio bridge. Astrophys. J. 907, 32 (2021).
6. Nishiwaki, K., Asano, K. & Murase, K. Particle reacceleration by turbulence and radio constraints on multimessenger high-energy emission from the coma cluster. Astrophys. J. 822, 180 (2021).
7. Dolag, K., Grasso, D., Springel, V. & Tkachev, I. Constrained simulations of the magnetic field in the local Universe and the propagation of ultrahigh energy cosmic rays. J. Cosmol. Astropart. Phys. 0501, 009 (2005).
8. Berezinsky, V. S., Blasi, P. & Ptuskin, V. Clusters of galaxies as storage room for cosmic rays. Astrophys. J. 487, 529 (1997).
9. Colafrancesco, S. & Blasi, P. Clusters of galaxies and the diffuse gamma-ray background. Astropart. Phys. 9, 227–246 (1998).
10. Rordorf, C., Grasso, D. & Dolag, K. Diffusion of ultra-high energy protons in galaxy clusters and secondary X-and gamma-ray emissions. Astropart. Phys. 22, 167–181 (2004).
11. Blasi, P., Gabici, S. & Brunetti, G. Gamma rays from clusters of galaxies. Int. J. Modern Phys. A 22, 681–706 (2007).
12. Koteru, K. et al. Propagation of ultrahigh energy nuclei in clusters of galaxies: resulting composition and secondary emissions. Astrophys. J. 737, 370 (2009).
13. Hussain, S., Alves Batista, R., Pino, E. M. & Dolag, K. High-energy neutrino production in clusters of galaxies. Mon. Not. R. Astron. Soc. 507, 1762–1774 (2021).
14. Jenkins, A. et al. The mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 321, 372–384 (2001).
15. Rosati, P., Borgani, S. & Norman, C. The evolution of X-ray clusters of galaxies. Ann. Rev. Astron. Astrophys. 40, 539–577 (2002).
16. Bocquet, S., Saro, A., Dolag, K. & Mohr, J. J. Halo mass function: baryon impact, fitting formulae, and implications for cluster cosmology. Mon. Not. R. Astron. Soc. 456, 2361–2373 (2016).
17. Abbasi, R. et al. Searching for high-energy neutrino emission from galaxy clusters with IceCube. Astropart. Phys. 93, L1 (2022).
18. Giovannini, G., Tordi, M. & Feretti, L. Radio halo and relic candidates from the NRAO VLA Sky Survey. Mon. Not. R. Astron. Soc. 378, 456 (2007).
19. Tinker, J. et al. Toward a halo mass function for precision cosmology: the limits of universality. Astrophys. J. 680, 709 (2008).
20. Gilmore, R. C., Somerville, R. S., Primack, J. R. & Dominguez, A. Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. Mon. Not. R. Astron. Soc. 422, 3189–3207 (2012).
21. Dominguez, A. et al. Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. Mon. Not. R. Astron. Soc. 410, 2556–2578 (2011).
22. Stecker, F. W., Scolly, S. T. & Malkan, M. A. An empirical determination of the intergalactic background light from UV to FIR wavelengths using FIR deep galaxy surveys and the gamma-ray opacity of the universe. Astrophys. J. 827, 6 (2016).
23. Kafexhiu, E., Aharonian, F., Taylor, A. M. & Vila, G. S. Parametrization of gamma-ray production cross sections for pp interactions in a
broad proton energy range from the kinematic threshold to PeV energies. Phys. Rev. D **90**, 123014 (2014).
24. Kelner, S., Aharonian, F. A. & Bugayov, V. Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime. Phys. Rev. D **74**, 034018 (2006).
25. Aaboud, M. et al. Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV with the ATLAS detector at the LHC. Phys. Rev. Lett. **117**, 182002 (2016).
26. Alves Batista, R., de Almeida, R. M., Lago, B. & Kotera, K. Cosmic radiation in the early universe. J. Cosmol. Astropart. Phys. **1901**, 002 (2019).
27. Murase, K. & Waxman, E. Constraining high-energy cosmic neutrino sources: implications and prospects. Phys. Rev. D **94**, 103006 (2016).
28. Fabjan, D. et al. Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters. Mon. Not. R. Astron. Soc. **401**, 1670–1690 (2010).
29. Planck Collaboration, X. et al. On the role of AGN feedback on the thermal and chemodynamical properties of the hot intracluster medium. Mon. Not. R. Astron. Soc. **438**, 195–216 (2014).
30. Lovisari, L., Reiprich, T. & Schellenberger, G. Scaling properties of a cluster of galaxies selected group sample. Astron. Astrophys. **573**, A118 (2015).
31. Harding, J. P. Constraints on the diffuse gamma-ray background with HAWC. In Proceedings of Science (ICRC2017) 691 (ICRC, 2019).
32. Chantell, M. et al. Limits on the isotropic diffuse flux of ultrahigh-energy gamma radiation. Phys. Rev. Lett. **79**, 1895 (1997).
33. Pinzke, A. & Pfrommer, C. Simulating the gamma-ray emission from galaxy clusters: a universal cosmo ray spectrum and spatial distribution. Mon. Not. R. Astron. Soc. **408**, 449–480 (2010).
34. Ackermann, M. et al. Search for cosmic-ray-induced gamma-ray emission in galaxy clusters. Astrophys. J. **767**, 18 (2014).
35. Aharonian, F. et al. Constraints on the multi-TeV particle population in the Coma galaxy cluster with HESS observations. Astron. Astrophys. **502**, 437–443 (2008).
36. Fang, K. & Olinto, A. V. High-energy neutrinos from sources in clusters of galaxies. Astrophys. J. **828**, 37 (2016).
37. Aab, A. et al. Pierre Auger Collaboration. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. **04**, 038 (2017).
38. Heinze, J., Fedynitch, A., Boncioli, D. & Winter, W. A new view on auger data and cosmicogenic neutrinos in light of different nuclear disintegration and air-shower models. Astrophys. J. **873**, 88 (2019).
39. Brunetti, G., Zimmer, S. & Zandanel, F. Relativistic protons in the Coma galaxy cluster: first gamma-ray constraints ever on turbulent reacceleration. Mon. Not. R. Astron. Soc. **472**, 1506–1525 (2017).
40. Medina-Torrejón, T. E. et al. Particle acceleration by relativistic magnetic reconnection driven by kink instability turbulence in poynting flux-dominated jets. Astrophys. J. **908**, 193 (2021).
41. Murase, K., Ahlers, M. & Lacki, B. C. Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Phys. Rev. D **88**, 121301 (2013).
42. Zandanel, F., Tamborra, I., Gabici, S. & Ando, S. High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints. Astron. Astrophys. **578**, A32 (2015).
43. Cassano, R. et al. On the connection between giant radio halos and cluster mergers. Astrophys. J. Lett. **721**, L82 (2010).
44. Ajello, M. et al. The origin of the extragalactic gamma-ray background and implications for dark matter annihilation. Astrophys. J. Lett. **800**, L27 (2015).
45. de Menezes, R., D’Abrusco, R., Massaro, F. & Buson, S. The isotropic γ-ray emission above 100 GeV: where do very high-energy γ-rays come from? Astrophys. J. **933**, 213 (2022).
46. Di Mauro, M., Calore, F., Donato, F., Ajello, M. & Latronico, L. Diffuse γ-ray emission from misaligned active galactic nuclei. Astrophys. J. **780**, 161 (2013).
47. Roth, M. A., Krumholz, M. R., Crocker, R. M. & Celli, S. The diffuse γ-ray background is dominated by star-forming galaxies. Nature **597**, 341–344 (2021).
48. Fornasa, M. & Sanchez-Conde, M. A. The nature of the diffuse gamma-ray background. Phys. Rep. **598**, 1–58 (2015).
49. Ackermann, M. et al. Resolving the extragalactic γ-ray background above 50 GeV with the Fermi Large Area Telescope. Phys. Rev. Lett. **116**, 151105 (2016).
50. Wang, X.-Y. et al. Extra-galactic gamma-ray sources. Chin. Phys. C **46**, 030003 (2022).
51. CTA-Consortium et al. Science with the Cherenkov Telescope Array (World Scientific, 2018).
52. Barai, P. & de Gouveia Dal Pino, E. M. Intermediate-mass black hole growth and feedback in dwarf galaxies at high redshifts. Mon. Not. R. Astron. Soc. **487**, 5549–5563 (2019).
53. Hopkins, P. F. et al. First predicted cosmic ray spectra, primary-to-secondary ratios, and ionization rates from MHD galaxy formation simulations. Mon. Not. R. Astron. Soc. **516**, 3470–3514 (2022).
54. Springel, V., Yoshida, N. & White, S. D. GADGET: a code for collisionless and gasdynamical cosmological simulations. N. Astron. Soc. **6**, 79–117 (2001).
55. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. **364**, 1105–1134 (2005).
56. Schneider, P. Extragalactic astronomy and cosmology: an introduction (Springer, 2014).
57. Böhinger, H., Chon, G. & Kronberg, P. P. The Cosmic Large-Scale Structure in X-rays (CLASSIX) Cluster Survey-I. Probing galaxy cluster magnetic fields with line of sight rotation measures. Astron. Astrophys. **596**, 222 (2016).
58. Heinze, J., Boncioli, D., Bustamante, M. & Winter, W. Cosmogenic neutrinos challenge the cosmic-ray proton dip model. Astrophys. J. **825**, 122 (2016).
59. Murase, K., Inoue, S. & Nagataki, S. Cosmic rays above the second knee from clusters of galaxies and associated high-energy neutrino emission. Astrophys. J. Lett. **689**, L105 (2008).
60. Pfrommer, C. Simulating cosmic-ray clusters in galaxies--III. Non-thermal scaling relations and comparison to observations. Mon. Not. R. Astron. Soc. **385**, 1242–1256 (2008).
61. Alves Batista, R. et al. CRPropa 3–a public astrophysical simulation framework for propagating extraterrestrial ultra-high-energy particles. J. Cosmol. Astropart. Phys. **1605**, 038 (2016).
62. Alves Batista, R. et al. CRPropa 3.2 - an advanced framework for high-energy particle propagation in extragalactic and galactic spaces. J. Cosmol. Astropart. Phys. **09**, 035 (2022).
63. Protheroe, R. & Biermann, P. A new estimate of the extragalactic radio background and implications for ultra-high-energy γ-ray propagation. Astropart. Phys. **6**, 45–54 (1996).
64. Vazza, F. et al. Simulations of extragalactic magnetic fields and of their observables. Classical Quantum Grav. **34**, 234001 (2017).
65. Alves Batista, R. & Saveliev, A. The gamma-ray window to intergalactic magnetism. Universe **7**, 223 (2021).
66. Ackermann, M. et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. **799**, 86 (2015).
67. Aartsen, M. G. et al. Evidence for astrophysical muon neutrinos from the northern sky with Icecube. Phys. Rev. Lett. **115**, 081102 (2015).

Acknowledgements
S.H. acknowledges support from the Brazilian funding agencies CNPq and FAPESP (grant 2013/10559-5). R.A.B. is funded by “la Caixa” Foundation (ID 100010434) and European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement.
No 847648 (fellowship LCF/BQ/PI21/11830030); he was also supported by the grants PID2021-125331NB-I00 and CEX2020-001007-S funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. E.M.d.G.D.P. also acknowledges support from the Brazilian agencies FAPESP (grant 2013/10559-5) and CNPq (grant 308643/2017-8). K.D. acknowledges support by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2094 - 390783311 and by funding for the COMPLEX project from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant ERC-2019-AdG 882679). The numerical simulations presented here were performed in the cluster GAPAE of IAG/USP (FAPESP grant 2013/10559-5).

Author contributions
S.H. performed the calculations, analysis and writing of the manuscript. R.A.B. conceived the work, helped with the Monte Carlo simulations, performed analysis and writing. E.M.d.G.D.P. coordinated the project and performed analysis and writing. K.D. performed the MHD simulations.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-38226-w.