Non-analyticity of the ground state energy of the hydrogen atom in non-relativistic QED

J-M Barbaroux\(^1,2\) and S A Vugalter\(^3\)

\(^1\) Centre de Physique Théorique, Luminy Case 907, 13288 Marseille Cedex 9, France
\(^2\) Département de Mathématiques, Université du Sud Toulon-Var, 83957 La Garde Cedex, France
\(^3\) Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstrasse 39, 80333 München, Germany

E-mail: barbarou@univ-tln.fr and wugalter@mathematik.uni-muenchen.de

Received 14 April 2010, in final form 13 August 2010
Published 9 November 2010
Online at stacks.iop.org/JPhysA/43/474004

Abstract

We derive the ground state energy up to the fourth order in the fine-structure constant \(\alpha\) for the translation-invariant Pauli–Fierz Hamiltonian for a spinless electron coupled to the quantized radiation field. As a consequence, we obtain the non-analyticity of the ground state energy of the Pauli–Fierz operator for a single particle in the Coulomb field of a nucleus.

PACS numbers: 31.15.xp, 31.30.gf
Mathematics Subject Classification: 35P15, 81Q05, 47N50

1. Introduction

We study the translation-invariant Pauli–Fierz Hamiltonian describing a spinless electron interacting with the quantized electromagnetic radiation field.

In the last 15 years, a large number of rigorous results have been obtained concerning the spectral properties of Pauli–Fierz operators, starting with the pioneering works of Bach, Fröhlich and Sigal [3–5]. In particular, the ground state energy was intensively studied [8, 9, 12, 14–18].

One of the problems recently discussed is the existence of an expansion in powers of the fine-structure constant \(\alpha\) for the ground state energy of Pauli–Fierz operators. The very first results in this direction are due to Pizzo [19] and later on Bach, Fröhlich and Pizzo [2], where the operator for the hydrogen atom is considered. In [2], a sophisticated rigorous renormalization group analysis is developed in order to determine the ground state energy, up

* To the memory of Pierre Duclos.
to any arbitrary precision in powers of α, with an expansion of the form

$$
\varepsilon_0 + \sum_{k=1}^{2N} \varepsilon_k(\alpha)\alpha^{k/2} + o(\alpha^N),
$$

for any given N, where the coefficients $\varepsilon_k(\alpha)$ may diverge as $\alpha \to 0$, but are smaller in magnitude than any power of α^{-1}. The recursive algorithms developed in [2] are highly complex, and explicitly computing the ground state energy to any subleading order of α is an extensive task. In the physical model, where the photon form factor in the quantized electromagnetic vector potential contains the critical frequency space singularity responsible for the infamous infrared problem, it is expected that the rate of divergence of some of these coefficient functions $\varepsilon_k(\alpha)$ is proportional to $\log \alpha^{-1}$. However, this is not explicitly exhibited in the current literature; for instance, it can a priori not be ruled out that terms involving logarithmic corrections cancel mutually. Moreover, for some models with a mild infrared behavior [14], the ground state energy is proven to be analytic in α.

In a recent paper [7] Chen, Vougalter and the present authors studied the binding energy for the hydrogen atom, which is the difference between the infimum Σ_0 of the spectrum of the translationally invariant operator and the infimum Σ of the spectrum of the operator with Coulomb potential. It is shown in [7] that the binding energy has the form

$$
\Sigma_0 - \Sigma = \frac{\alpha^2}{4} + e^{(1)}\alpha^3 + e^{(2)}\alpha^4 + e^{(3)}\alpha^5 \log \alpha^{-1} + o(\alpha^5 \log \alpha^{-1}),
$$

where the coefficients $e^{(1)}$, $e^{(2)}$ and $e^{(3)}$ are independent of α and explicitly computed. A natural question thus arose in the community, to know whether the logarithmic divergent term in (1) stemmed from Σ_0 or Σ_0, Σ or both. This question cannot be answered on the basis of the computations done in [7], because we did not compute separately the value of Σ and Σ_0, but their difference.

Although the value of Σ_0 was known up to the order α^3 from an earlier work [6], this did not allow us to answer the above question.

In the work at hand, we compute the infimum Σ_0 of the spectrum of the translationally invariant operator, up to the order α^4 with error $O(\alpha^5)$, derive Σ up to the order α^4 and show that the logarithmic term in (1) is related to Σ and not to Σ_0.

2. The model

We study a non-relativistic free spinless electron interacting with the quantized electromagnetic field in Coulomb gauge. The Hilbert space accounting for the pure states of the electron is given by $L^2(\mathbb{R}^3)$, where we neglect its spin. The Fock space of the transverse photons is

$$
\mathcal{F} = \bigoplus_{n \in \mathbb{N}} \mathcal{F}_n,
$$

where the n-photon space $\mathcal{F}_n = \bigotimes_n (L^2(\mathbb{R}^3) \otimes \mathbb{C}^2)$ is the symmetric tensor product of n copies of one-photon Hilbert spaces $L^2(\mathbb{R}^3) \otimes \mathbb{C}^2$. The factor \mathbb{C}^2 accounts for the two independent transversal polarizations of the photon. On \mathcal{F}, we introduce the creation and annihilation operators $a^{\dagger}_\lambda(k)$, $a_{\lambda}(k)$ satisfying the distributional commutation relations

$$
[a_{\lambda}(k), a^{\dagger}_{\lambda'}(k')] = \delta_{\lambda,\lambda'}\delta(k - k'), \quad [a^{\dagger}_\lambda(k), a^\dagger_{\lambda'}(k')] = 0,
$$

where a^{\dagger}_λ denotes either a_{λ} or a_{λ}^\dagger. There exists a unique unit ray $\Omega_f \in \mathcal{F}$, the Fock vacuum, which satisfies $a_{\lambda}(k) \Omega_f = 0$ for all $k \in \mathbb{R}^3$ and $\lambda \in \{1, 2\}$.

The Hilbert space of states of the system consisting of both the electron and the radiation field is given by
\[H := L^2(\mathbb{R}^3) \otimes \mathcal{F}. \]

We shall use units such that \(\hbar = c = 1 \), and where the mass of the electron equals \(m = 1/2 \). The electron charge is then given by \(e = \sqrt{\alpha} \).

The Hamiltonian of the system is given by
\[T = I_{el} \otimes H_f + : (i \nabla_x \otimes I_f - \sqrt{\alpha} A(x))^2 : \]
where \(: (\cdots) : \) denotes normal ordering. The free photon field energy operator \(H_f \) is given by
\[H_f = \sum_{\lambda = 1, 2} \int_{\mathbb{R}^3} |k| a^*_\lambda(k) a_\lambda(k) \, dk. \]

The magnetic vector potential is
\[A(x) = A^-(x) + A^+(x), \]
where
\[A^-(x) = \sum_{\lambda = 1, 2} \int_{\mathbb{R}^3} \frac{\kappa(|k|)}{2\pi |k|^1/2} \epsilon_{\lambda}(k) e^{ikx} \otimes a_\lambda(k) \, dk \]
is the part of \(A(x) \) containing the annihilation operators, and \(A^+(x) = (A^-(x))^* \). The vectors \(\epsilon_{\lambda}(k) \in \mathbb{R}^3 \) are the two orthonormal polarization vectors perpendicular to \(k \):
\[\epsilon_1(k) = \left(\frac{k_2, -k_1, 0}{\sqrt{k_1^2 + k_2^2}} \right) \quad \text{and} \quad \epsilon_2(k) = \frac{k}{|k|} \wedge \epsilon_1(k). \]

In (2), the function \(\kappa \) implements an ultraviolet cutoff on the momentum \(k \). We assume \(\kappa \) to be of class \(C^1 \), with compact support in \(\{|k| \leq \Lambda_1\} \), \(0 \leq \kappa \leq 1 \) and \(\kappa = 1 \) for \(|k| \leq \Lambda - 1 \).

The ground state energy of \(T \) is denoted by
\[\Sigma_0 := \inf \sigma(T). \]

We note that this system is translationally invariant; that is, \(T \) commutes with the operator of total momentum
\[p_{tot} = p_{el} \otimes I_f + I_{el} \otimes P_f, \]
where \(p_{el} \) and \(P_f = \sum_{\lambda = 1, 2} \int k a^*_\lambda(k) a_\lambda(k) \, dk \) denote respectively, the electron and the photon momentum operators.

Therefore, for a fixed value \(p \in \mathbb{R}^3 \) of the total momentum, the restriction of \(T \) to the fibre space \(C \otimes \mathcal{F} \) is given by (see e.g. [10])
\[T(p) := (p - P_f - \sqrt{\alpha} A(0))^2 : + H_f. \]

Henceforth, we will write
\[A^\pm := A^\pm(0). \]

It is proven in [1, 10] that
\[\Sigma_0 = \inf \sigma(T(0)) \]
is an eigenvalue of the operator \(T(0) \).

We are now in a position to state our first main result. On \(\mathcal{F} \) we define respectively the positive bilinear form and its associated semi-norm
\[\langle v, w \rangle_\ast := \langle v, (H_f + P_f^2)w \rangle, \quad \| v \|_\ast := \langle v, v \rangle_\ast^{1/2}. \]

3
Theorem 2.1 (Ground state energy of T and $T(0)$). We have

$$\Sigma_0 = d^{(0)} \alpha^2 + d^{(1)} \alpha^3 + d^{(2)} \alpha^4 + \mathcal{O}(\alpha^5),$$

(5)

with

$$d^{(0)} := -\| \Phi_2 \|^2,$$

$$d^{(1)} := 2\| A^- \Phi_2 \|^2 - 4\| \Phi_3 \|^2 - 4\| \Phi_1 \|^2,$$

$$d^{(2)} := -\left(\frac{2\| A^- \Phi_2 \|^2 - 4\| \Phi_1 \|^2}{\| \Phi_2 \|^2} \right)^2 + 8\Re \langle \Phi_4, A^- \cdot A^- \Phi_3 \rangle + 8\| A^- \Phi_4 \|^2 + 8\| A^- \Phi_3 \|^2 - 16\| \Phi_2 \|^2 - 16\| \Phi_2 \|^2 + \mathcal{O}(\alpha^2),$$

and

$$\Phi_2 := -(H_f + P_f^2)^{-1} A^+ \cdot A^+ \Omega_f,$$

$$\Phi_3 := -(H_f + P_f^2)^{-1} P_f \cdot A^- \Phi_2,$$

$$\Phi_4 := -(H_f + P_f^2)^{-1} \left(P_f \cdot A^+ \cdot \Phi_3 + \frac{5}{2} A^+ \cdot A^- \Phi_2 \right) - \mathcal{O}(\alpha^4),$$

where P_{Φ_2} is the orthogonal projection onto $\{ \psi \in \mathfrak{H} | \langle \psi, \Phi_2 \rangle = 0 \}$.

The proof of theorem 2.1 is postponed to section 4. The proof of the upper bound is derived in subsection 4.1 using a bona fide trial function, whereas the most difficult part, namely the proof of the lower bound, is given in subsection 4.2.

Corollary 2.1 (non analyticity of inf spec(H)). The Pauli–Fierz Hamiltonian for an electron interacting with a Coulomb electrostatic field and coupled to the quantized radiation field is

$$H := T - \frac{\alpha}{|x|},$$

Its ground state energy $\Sigma := \inf \ spec(H)$ fulfills

$$\Sigma = d^{(0)} \alpha^2 + d^{(1)} \alpha^3 + d^{(2)} \alpha^4 + d^{(3)} \alpha^5 \log \alpha^{-1} + \mathcal{O}(\alpha^5 \log \alpha^{-1}),$$

where

$$d^{(0)} = d^{(0)} - \frac{1}{4}, \quad d^{(1)} = d^{(1)} - \epsilon^{(1)}, \quad d^{(2)} = d^{(2)} - \epsilon^{(2)}, \quad d^{(3)} = -\epsilon^{(3)},$$

with

$$\epsilon^{(1)} = \frac{2}{\pi} \int_0^\infty \frac{\kappa^2(t)}{1+t} dt,$$

$$\epsilon^{(2)} = \frac{2}{3} \Re \sum_{i=1}^3 \| (A^-)^i (H_f + P_f^2)^{-1} A^+ \cdot A^+ \Omega_f, (H_f + P_f^2)^{-1} (A^+)^i \Omega_f \|^2 + \frac{1}{3} \sum_{i=1}^3 \| (H_f + P_f^2)^{-1} (2A^+ \cdot P_f (H_f + P_f^2)^{-1} A^+)^i - P_f (H_f + P_f^2)^{-1} A^+ \cdot A^+ \Omega_f \|^2$$

$$- \frac{2}{3} \sum_{i=1}^3 \| A^- (H_f + P_f^2)^{-1} (A^+)^i \Omega_f \|^2 + 4a_0 \| A_f \left(\frac{\alpha}{|x|} - \frac{1}{4} \right)^2 \Delta u_1 \|^2,$$

$$a_0 = \int \frac{1}{3\pi^2 |k|(|k|^2 + |k|) \kappa(|k|)} dk_1 dk_2 dk_3,$$

$$\epsilon^{(3)} = -\frac{1}{3\pi} \left(-\frac{\alpha}{|x|} + \frac{1}{4} \right)^2 \nabla u_1 \|^2.$$
and Q^1_\perp is the projection onto the orthogonal complement to the ground state u_1 of the Schrödinger operator $-\Delta - \frac{1}{|x|}$.

Proof. This is a direct consequence of the above theorem 2.1 and ([7], theorem 2.1). \square

The next main result gives an approximate ground state of $T(0)$.

Let Ψ be the ground state of $T(0)$, normalized by the condition

$$\langle \Psi, \Omega_f \rangle = 1.$$ (7)

The existence of Ψ was proved in [1, 10]. We decompose the state Ψ according to its $\langle \cdot, \cdot \rangle_*$-projections in the direction of Φ_1, Φ_2, Φ_3 and Φ_4 and its orthogonal part R. This gives

$$\Psi = \Omega_f + 2\eta_1 \alpha^2 \Phi_1 + \eta_2 \alpha \Phi_2 + \eta_3 \alpha^2 \Phi_3 + \eta_4 \alpha^2 \Phi_4 + R,$$ (8)

where the coefficients η_i ($i = 1, 2, 3, 4$) and $\tilde{\eta}_2$, and the vector R are uniquely determined by the conditions

$$\langle \Phi_1, \Phi_j \rangle_* = \| \Phi_j \|_2^2 \delta_{ij}, \quad \langle \Phi_1, \Phi_2 \rangle_* = 0, \quad \langle \Phi_j, R \rangle_* = 0, \quad \langle \Omega_f, R \rangle = (\Omega_f, \Phi_j) = 0,$$ (9)

for $i, j = 1, 2, 3, 4$.

Theorem 2.2 (Ground state of $T(0)$). Let Ψ be the ground state of $T(0)$, normalized by the condition $\langle \Psi, \Omega_f \rangle = 1$. Then

$$\Psi = \Omega_f + 2\alpha^2 \Phi_1 + \alpha (1 - \beta \alpha) \Phi_2 + 4\alpha^2 \Phi_3 + 4\alpha^2 \Phi_4 + \tilde{R},$$

with $\beta := \frac{2\|A^* \Phi_2\|^2 - 4\|\Phi_1\|^2 - 4\|\Phi_3\|^2}{\|\Phi_2\|^2}$,

$$\tilde{R} := R + 2(\eta_1 - 1) \alpha^2 \Phi_1 + (\eta_2 - (1 - \beta \alpha)) \alpha \Phi_2 + 2(\eta_3 - 1) \alpha^2 \Phi_3 + (\eta_4 - 4) \alpha^2 \Phi_4,$$ (10)

where the coefficients η_j ($j = 1, 2, 3, 4$) and $\tilde{\eta}_2$ satisfy that there exists a finite constant c such that for all α, $|\eta_{1,3} - 1|^2 \leq c \alpha$, $|\eta_2 - 1|^2 \leq c \alpha^2$, $|\eta_2 - 4|^2 \leq c \alpha$, and $|\eta_4 - 4|^2 \leq c \alpha$, with $\|\tilde{R}\|, \|R\| = \mathcal{O}(\alpha)$, and $\|\tilde{R}\|_* = \|R\|_* = \mathcal{O}(\alpha^2)$,

and $\Psi - \tilde{R}$ is a minimizer of the energy up to the order $\mathcal{O}(\alpha^5)$.

The proof of this theorem is given in subsection 4.3.

3. Photon number and field energy bounds

In order to derive the ground state energy for $T(0)$, we need to derive some a priori expected photon number bound and expected field energy bound for the ground state.

As a consequence of theorem 3.2 in [6], we have the following bound for the \ast-norm of the remainder R of the ground state Ψ, as defined in (8).

Proposition 3.1. There exists $c < \infty$ such that

$$\left(\|H_f + P_2^\perp\| R, R\right) \leq c(1 + |\eta_2|^2 + |\eta_4|^2)\alpha^4.$$ (11)

Proof. In ([6], theorem 3.2), it is shown that for η_1, η_2 and η_3 given by (8) and (9), and for $r := \Psi - \Omega_f - 2\eta_1 \alpha^2 \Phi_1 - \eta_2 \alpha \Phi_2 - 2\eta_3 \alpha^2 \Phi_3$, we have $\|r\|_* = \mathcal{O}(\alpha^2)$. Therefore, using the decomposition (8) concludes the proof. \square
\textbf{Proposition 3.2.} Let

\[\Theta := \Psi - \alpha \eta_2 \Phi_2 - 2 \alpha^3 \eta_1 \Phi_1 - 2 \alpha^3 \eta_3 \Phi_3 - \Omega_f, \]

where the vectors Φ_i ($i = 1, 2, 3$) are defined in (6) in theorem 2.1 and the coefficients η_i ($i = 1, 2, 3$) are given by the decomposition of Ψ according to (8) and conditions (9). Then

\[\langle \Theta, N_f \Theta \rangle = O(\alpha^3), \]

where $N_f = \sum_{i=1,2} \int a_i^\dagger(k)a_i(k) \, dk$ is the photon number operator.

\textbf{Proof.} According to ([6], theorem 3.2), we have

\[\| \Theta \|^2 = O(\alpha^4). \]

Now we write

\[\langle \Theta, N_f \Theta \rangle = \int_{|k| < \alpha} \| a_i(k) \Theta \|^2 \, dk + \int_{|k| \geq \alpha} \| a_i(k) \Theta \|^2 \, dk. \]

The second term on the right-hand side of (15) is bounded as follows:

\[\int_{|k| \geq \alpha} \| a_i(k) \Theta \|^2 \, dk = \int_{|k| \geq \alpha} \frac{1}{|k|} \| a_i(k) \Theta \|^2 \, dk \leq \alpha^{-1} \| H_f \Theta \|^2 = O(\alpha^3), \]

where we used (14). For the first term on the right-hand side of (15), we write

\[\int_{|k| < \alpha} \| a_i(k) \Theta \|^2 \, dk = \int_{|k| < \alpha} \left\| a_i(k) \left(\Psi - \alpha \eta_2 \Phi_2 - 2 \alpha^3 \eta_1 \Phi_1 - 2 \alpha^3 \eta_3 \Phi_3 \right) \right\|^2 \, dk \]

\[\leq 4 \left(\int_{|k| < \alpha} \| a_i(k) \Psi \|^2 \, dk + \alpha^2 \| \eta_2 \|^2 \int_{|k| < \alpha} \| a_i(k) \Phi_2 \|^2 \, dk \right. \]

\[+ \alpha^3 \left(\int_{|k| < \alpha} \| a_i(k) \Phi_1 \|^2 \, dk + \alpha^3 \| \eta_3 \|^2 \int_{|k| < \alpha} \| a_i(k) \Phi_3 \|^2 \, dk \right). \]

Straightforward computations show that the last three terms on the right-hand side of (17) are $O(\alpha^3)$. To estimate the first integral on the right-hand side of (17) we follow the strategy used in the proof of ([6], proposition 3.1) as explained below.

For $\sigma > 0$, let $T_\sigma(p)$ denote the fiber Hamiltonian regularized by an infrared cutoff implemented by replacing the ultraviolet cutoff function κ by (2) by a C^1 function κ_σ with $\kappa_\sigma = \kappa$ on $[\sigma, \infty)$, $\kappa_\sigma(0) = 0$ and κ_σ monotonically increasing on $[0, \sigma]$. Then, $E_\sigma(p) := \inf \text{spec}(T_\sigma(p))$ is a simple eigenvalue with eigenvector $\Psi_\sigma(p) \in \mathcal{F}$ $[1, 10]$. If $p = 0$, one has $\nabla_p E_\sigma(p = 0) = 0$ (see [1, 10]). In formula (6.11) of [11], it is shown that

\[a_i(k) \Psi_\sigma(0) = (A) + (B), \]

where from (6.12) of [11], it follows that

\[\| (A) \| \leq C(k) |\nabla_p E_\sigma(0)| = 0, \]

and that

\[(B) = -\sqrt{\alpha} \frac{\kappa_\sigma(|k|)}{|k|^2} \]

\[\frac{1}{T_\sigma(k) - E_\sigma(0)} \left(T_\sigma(0) - E_\sigma(0) \right) \epsilon_\sigma(k) \cdot \nabla_p \Psi_\sigma(0), \]

if the electron spin is zero. Thus it follows immediately from (6.19) in [11] that

\[\| a_i(k) \Psi_\sigma(0) \| \leq \sqrt{\alpha} \frac{\kappa_\sigma(|k|)}{|k|^2} \frac{1}{|m_{\text{fin}, \sigma}|} - 1 \| \Psi_\sigma(0) \| \leq \alpha \frac{\kappa_\sigma(|k|)}{|k|} \| \Psi_\sigma(0) \|. \]
for spin zero, where \(m_{\text{ren},\sigma} \) is the renormalized electron mass for \(p = 0 \) (see [1, 10]), defined by

\[
\frac{1}{m_{\text{ren},\sigma}} = 1 - 2 \frac{\nabla_p \Psi_\sigma(0), (T_\sigma(0) - E_\sigma(0))\nabla_p \Psi_\sigma(0)}{\|\Psi_\sigma(0)\|^2}.
\]

(21)

As proved in [1, 10], \(1 < m_{\text{ren},\sigma} < 1 + c\alpha \) uniformly in \(\sigma \geq 0 \).

Therefore, one can write

\[
\int_{|k| < c\alpha} (|a_s(k)\psi|^2\, dk = \lim_{\sigma \to 0} \int_{|k| < c\alpha} |a_s(k)\tilde{\psi}|^2\, dk \\
\leq \lim_{\sigma \to 0} \int_{|k| < c\alpha} c \frac{K_s(k)}{|k|} |\psi_\sigma(0)|^2\, dk = \mathcal{O}(\alpha^3),
\]

(22)

where \(\psi = s - \lim_{\sigma \to 0} \psi_\sigma(0) \) (see [1]). Inequalities (16) and (22) conclude the proof. \(\square \)

A straightforward consequence of this result is

Corollary 3.1. For \(\Theta \) defined as in (12) by \(\Theta = \psi - \alpha\eta_2 \Phi_2 - 2\alpha^2 \eta_1 \Phi_1 - 2\alpha^3 \eta_3 \Phi_3 - \Omega_f \), we have

\[
\|\Theta\|^2 \geq \mathcal{O}(\alpha^3).
\]

(23)

4. Proof of theorem 2.1

We introduce the following notations:

\[
\Phi_2 = \Phi_2^{(1)} + \Phi_2^{(2)} + \Phi_2^{(3)} := (P_{\Phi_2} (H_f + P_f^2)^{-1} P_f \cdot A^+ \Phi_1) + (P_{\Phi_2} (H_f + P_f^2)^{-1} P_f \cdot A^- \Phi_3) \\
+ (P_{\Phi_2} (H_f + P_f^2)^{-1} A^+ \cdot A^- \Phi_2).
\]

(24)

\[
\Phi_4 = \Phi_4^{(1)} + \Phi_4^{(2)} := ((H_f + P_f^2)^{-1} P_f \cdot A^+ \Phi_3) + (\frac{1}{2} (H_f + P_f^2)^{-1} A^+ \cdot A^- \Phi_2).
\]

(25)

For \(n \in \mathbb{N} \) we also define \(\Gamma^{(n)} \) as the orthogonal projection onto the \(n \)-photon space \(\mathfrak{N}_n \) of the Fock space \(\mathfrak{F} \), whereas \(\Gamma^{(\geq n)} \) shall denote the orthogonal projection onto \(\bigoplus_{k \geq n} \mathfrak{N}_k \).

Finally, we set

\[
R_i := \Gamma^{(i)} R_i \quad \text{for } i = 1, 2, 3, 4, \quad \text{and} \quad R_{\geq k} := \Gamma^{(\geq k)} R.
\]

(26)

4.1. Proof of the upper bound

The proof of the upper bound in theorem 2.1 is easily obtained by picking the trial function

\[
\Psi_{\text{trial}} := \Omega_f + 2\alpha^2 \Phi_1 + \alpha \left(1 - \alpha \frac{2\|A^- \Phi_2\|^2 - 4\|\Phi_1\|^2 - 4\|\Phi_3\|^2}{\|\Phi_2\|^2} \right) \Phi_2 \\
+ \alpha^2 \Phi_2 + 2\alpha^2 \Phi_3 + 2\alpha^2 \Phi_4.
\]

(27)

We then compute \(\langle \Psi_{\text{trial}}^\ast, T(0)\Psi_{\text{trial}} \rangle / \|\Psi_{\text{trial}}\|^2 \). A straightforward computation yields

\[
\langle \Psi_{\text{trial}}^\ast, T(0)\Psi_{\text{trial}} \rangle = -\alpha^2 \|\Phi_1\|^2 + \alpha^2 \left(2\|A^- \Phi_2\|^2 - 4\|\Phi_1\|^2 - 4\|\Phi_3\|^2 \right) \\
+ \alpha^4 \left(8 \text{Re}(\Phi_1, A^- \cdot A^+ \Phi_3) + 8\|A^- \Phi_1\|^2 + 8\|A^- \Phi_3\|^2 - 16\|\Phi_2\|^2 - 16\|\Phi_4\|^2 \right) \\
- \alpha^4 \left(\frac{-4\|\Phi_1\|^2 - 4\|\Phi_3\|^2 + 2\|A^- \Phi_2\|^2}{\|\Phi_2\|^2} \right)^2 + \mathcal{O}(\alpha^5).
\]
Since \(\| \Psi_{\text{trial}} \|^2 = 1 + \alpha^2 \| \Phi_2 \|^2 + \mathcal{O}(\alpha^3) \), we thus obtain
\[
\inf \text{spec}(T(0)) \leq \frac{\langle \Psi_{\text{trial}}, T(0) \Psi_{\text{trial}} \rangle}{\| \Psi_{\text{trial}} \|^2} = -\alpha^2 \| \Phi_2 \|^2 + \alpha^2 (2 \| A^- \Phi_2 \|^2 - 4 \| \Phi_3 \|^2 - 4 \| \Phi_1 \|^2) + \alpha^4 (8 \text{Re}(\Phi_1, A^- \cdot A^- \Phi_3) + 8 \| A^- \Phi_3 \|^2 - 16 \| \Phi_2 \|^2 - 16 \| \Phi_4 \|^2 + 2 \| \Phi_2 \|^2 \| \Phi_2 \|^2)
\]
\[
- \alpha^4 \left(\frac{-4 \| \Phi_1 \|^2 - 4 \| \Phi_3 \|^2 + 2 \| A^- \Phi_2 \|^2}{\| \Phi_2 \|^2} \right) + \mathcal{O}(\alpha^5),
\]
which concludes the proof of the upper bound.

4.2. Proof of the lower bound

Since
\[
T(0) = H_f + : (P_f - \alpha^2 A(0))^2 : = \left(H_f + P_f^2 \right) + \alpha^2 (P_f \cdot A^+ + A^+ \cdot P_f)
\]
\[
+ \alpha^4 (P_f \cdot A^- + A^- \cdot P_f) + \alpha(A^+)^2 + \alpha(A^-)^2 + 2 \alpha A^+ \cdot A^-,
\]
we obtain
\[
\langle \Psi, T(0) \Psi \rangle = \text{Re} \langle \Psi, \alpha^2 P_f \cdot A^- \Psi \rangle + \text{Re} \langle \Psi, 2 \alpha A^+ \cdot A^- \Psi \rangle + \langle \Psi, 2 \alpha A^+ \cdot A^- \Psi \rangle + \langle \Psi, (H_f + P_f^2) \Psi \rangle.
\]
(28)
As in (8) and (9), we decompose the ground state \(\Psi \) of \(T(0) \) as follows:
\[
\Psi = \Omega_f + 2 \eta_1 \alpha^2 \Phi_1 + \eta_2 \alpha \Phi_2 + \eta_2 \alpha^2 \Phi_2 + 2 \eta_3 \alpha^2 \Phi_3 + \eta_4 \alpha^2 \Phi_4 + R.
\]
Each term on the right-hand side of (28) is estimated respectively in lemmata A.2–A.5.

We thus collect all terms that occur in lemmata A.2–A.5, regroup them according to the following rearrangement and estimate them separately:
\[
\langle \Psi, T(0) \Psi \rangle = (I) + (II) + (III) + (IV) + (V) + \text{positive terms},
\]
(29)
where the positive terms are a part of \(\langle \Psi, (H_f + P_f^2) \Psi \rangle \) and
\[
(I) = \text{terms with a pre-factor } \alpha^2 \text{ involving a remainder term } R,
\]
\[
(II) = \text{terms with a pre-factor } \alpha^2 \text{ not involving remainder terms } R,
\]
\[
(III) = \text{terms with a pre-factor } \alpha^3,
\]
\[
(IV) = \text{terms with a pre-factor } \alpha^4,
\]
\[
(V) = \text{terms with a pre-factor } \alpha^5 \text{ and the terms } \mathcal{O}(\alpha^6).
\]

* Terms with a pre-factor \(\alpha^2 \) involving a remainder term \(R_* \):
\[
(I) := -8 \alpha^2 \text{Re} \eta_1 \| \Phi_1 \|^2 \phi_* - 8 \alpha^2 \text{Re} \eta_2 \| \Phi_2 \|^2 \phi_* - 8 \alpha^2 \text{Re} \eta_1 \| \Phi_3 \|^2 \phi_* - 8 \alpha^2 \text{Re} \eta_2 \| \Phi_4 \|^2 \phi_*
\]
\[
- 8 \alpha^2 \text{Re} \eta_2 \| \Phi_2 \|^2 \phi_* - 8 \alpha^2 \text{Re} \eta_3 \| \Phi_3 \|^2 \phi_* - 8 \alpha^2 \text{Re} \eta_4 \| \Phi_4 \|^2 \phi_*.
\]

* Terms with a pre-factor \(\alpha^2 \) not involving remainder terms \(R_* \):
\[
(II) := -\alpha^2 \text{Re} \eta_1 \| \Phi_1 \|^2 + \alpha^2 \| \Phi_2 \|^2 \phi_*
\]
\[
= -\alpha^2 \| \Phi_2 \|^2 + \alpha^2 ((\text{Re} \eta_1) - 1)^2 + (\text{Im} \eta_1)^2
\]
\[
\geq -\alpha^2 \| \Phi_2 \|^2 + \alpha^2 ((\text{Re} \eta_1) - 1)^2.
\]
(30)
• Terms with a pre-factor α^3:

\[(III) := \alpha^3(-8 \, \Re \, \eta_1 \bar{\eta}_2 \| \Phi_1 \|^2_2 + 4 |\eta_1|^2 \| \Phi_1 \|^2_2 \\
- 8 \, \Re \, \eta_3 \bar{\eta}_2 \| \Phi_3 \|^2_2 + 4 |\eta_3|^2 \| \Phi_3 \|^2_2 + 2 |\eta_2| \| A^- \Phi_2 \|^2_2) \\
= 4\alpha^3 \| \Phi_1 \|^2_2 (|\eta_1 - \eta_2|^2 - |\eta_3|^2) \\
+ 4\alpha^3 \| \Phi_3 \|^2_2 (|\eta_3 - \eta_2|^2 - |\eta_3|^2) + 2\alpha^2 \| A^- \Phi_2 \|^2_2 + O(\alpha^5). \]

(31)

Since from lemma A.1 we have $\eta_2 = 1 + O(\alpha)$, we get $(\Im \eta_2)^2 = O(\alpha^2)$ and $(\Re \eta_2)^2 - 1 = 2(\Re \eta_2 - 1) + O(\alpha^2)$, and thus $|\eta_2|^2 = 1 + 2(\Re \eta_2 - 1) + O(\alpha^2)$. Together with (31), this yields

\[(III) = \alpha^3 (-4 \| \Phi_1 \|^2_2 - 4 \| \Phi_3 \|^2_2 + 2 \| A^- \Phi_2 \|^2_2) \\
+ 2\alpha^3 (\Re \eta_2 - 1)(-4 \| \Phi_1 \|^2_2 - 4 \| \Phi_3 \|^2_2 + 2 \| A^- \Phi_2 \|^2_2) \\
+ 4\alpha^3 \| \Phi_1 \|^2_2 |\eta_1 - \eta_2|^2 + 4\alpha^3 \| \Phi_3 \|^2_2 |\eta_3 - \eta_2|^2 + O(\alpha^5). \]

(32)

The first term on the right-hand side of (32) is the α^3 term in equality (5); thus, we leave it as it is. The last line in (32), which is positive, shall be used later to estimate the terms (I) and (IV).

The second term on the right-hand side of (32) is estimated together with the term $\alpha^2 \| \Phi_1 \|^2_2 (\Re \eta_2 - 1)^2$ obtained in the lower bound (30) for (I). We obtain

\[2\alpha^3 (\Re \eta_2 - 1)(2 \| A^- \Phi_2 \|^2_2 - 4 \| \Phi_1 \|^2_2 - 4 \| \Phi_3 \|^2_2) + \alpha^2 \| \Phi_2 \|^2_2 (\Re \eta_2 - 1)^2 \]

\[= \alpha^2 \left(2 \| A^- \Phi_2 \|^2_2 - 4 \| \Phi_1 \|^2_2 - 4 \| \Phi_3 \|^2_2\right)(\Re \eta_2 - 1)\| \Phi_2 \|^2_2 \]

\[\geq -\alpha^4 \left(2 \| A^- \Phi_2 \|^2_2 - 4 \| \Phi_1 \|^2_2 - 4 \| \Phi_3 \|^2_2\right) \cdot \| \Phi_2 \|^2_2 \]

(33)

• Collecting estimates (30), (32) and (33) yields

\[(II) + (III) \geq -\alpha^2 \| \Phi_2 \|^2_2 + \alpha^2 (2 \| A^- \Phi_2 \|^2_2 - 4 \| \Phi_1 \|^2_2 - 4 \| \Phi_3 \|^2_2) \\
- \alpha^4 \left(2 \| A^- \Phi_2 \|^2_2 - 4 \| \Phi_1 \|^2_2 - 4 \| \Phi_3 \|^2_2\right) \cdot \| \Phi_2 \|^2_2 \]

\[+ 4\alpha^3 \| \Phi_1 \|^2_2 |\eta_1 - \eta_2|^2 + 4\alpha^3 \| \Phi_3 \|^2_2 |\eta_3 - \eta_2|^2 + O(\alpha^5). \]

(34)

• Terms with a pre-factor α^4:

\[(IV) := -8\alpha^4 (\Re \eta_1 \eta_2 (\Phi_1(2), \Phi_3(2)) + \Re \eta_1 \eta_2 (\Phi_1(3), \Phi_2(3)) + \Re \eta_2 \eta_3 (\Phi_2(2), \Phi_3(2)) \\
+ |\eta_2|^2 |\alpha|^2 \| \Phi_2 \|^2_2 - 8\alpha^4 (\Re \eta_2 \eta_3 (\Phi_2(2), \Phi_3(2)) + \Re \eta_3 \eta_1 (\Phi_1(3), \Phi_4(3))) + |\eta_4|^2 |\alpha|^2 \| \Phi_4 \|^2_2 \\
+ 8\alpha^4 \Re \eta_1 \eta_3 (\Phi_1, A^- \Phi_3) + 8|\eta_1|^2 |\alpha|^2 \| A^- \Phi_1 \|^2_2 + 8|\eta_3|^2 |\alpha|^2 \| A^- \Phi_3 \|^2_2). \]

(35)

Let us first remark that in this expression, we have terms with a pre-factor $\bar{\eta}_2$ and positive terms with a pre-factor $|\bar{\eta}_2|^2$; therefore, this implies that $\bar{\eta}_2$ is uniformly bounded in α for a minimizer. The same remarks hold for η_4. Thus, there exists $c < \infty$ independent on α such that

\[|\bar{\eta}_2| \leq c, \quad |\eta_4| \leq c. \]

(36)

Now, we add to the term (IV) half of the positive term $4\alpha^3 \| \Phi_1 \|^2_2 |\eta_1 - \eta_2|^2 + 4\alpha^3 \| \Phi_3 \|^2_2 |\eta_3 - \eta_2|^2$ obtained in the lower bound (34) for (I) + (III), and we split the resulting expression
in three parts as follows:

\[(IV) + 2\alpha^4 \| \Phi_1 \|^2 \| \eta_1 - \eta_2 \|^2 + 2\alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2 \]

\[= (IV)^{(1)} + (IV)^{(2)} + (IV)^{(3)} + (IV)^{(4)}, \quad (37)\]

where

\[(IV)^{(1)} := -8\alpha^4 (\text{Re } \eta_1 \tilde{\eta}_2 (\Phi_1^{(1)}, \Phi_2)^\ast) + \text{Re } \eta_1 \tilde{\eta}_2 (\Phi_3^{(1)}, \Phi_2^\ast) + \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_3^{(2)}, \Phi_2^\ast)

+ |\tilde{\eta}_2|^2 \alpha^4 \| \Phi_2 \|^2 + 2\alpha^3 \| \Phi_1 \|^2 \| \eta_1 - \eta_2 \|^2 + \alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2, \quad (38)\]

\[(IV)^{(2)} := -8\alpha^4 (\text{Re } \eta_2 \tilde{\eta}_2 (\Phi_4^{(1)}, \Phi_4^\ast) + \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_4^{(2)}, \Phi_4^\ast) + |\eta_4|^2 \alpha^4 \| \Phi_4 \|^2

+ \alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2 \quad (39)\]

and

\[(IV)^{(3)} := 8\alpha^4 \text{Re } \eta_1 \tilde{\eta}_2 (\Phi_1, A^\ast \cdot A^\ast \Phi_3) + 8|\eta_1|^2 \alpha^4 \| A^\ast \Phi_1 \|^2

+ 8|\eta_3|^2 \alpha^4 \| A^\ast \Phi_3 \|^2 + \alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2. \quad (40)\]

Using from lemma A.1 that \(\eta_2 = 1 + O(\alpha) \) and the fact that \(\eta_4 \) is bounded uniformly in \(\alpha \) (see (36)) yields

\[(IV)^{(2)} = -8\alpha^4 (\text{Re } \eta_2 \tilde{\eta}_2 (\Phi_4^{(1)}, \Phi_4^\ast) + \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_4^{(2)}, \Phi_4^\ast) - 8\alpha^4 \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_4^{(1)}, \Phi_4^\ast)

- 8\alpha^4 \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_4^{(2)}, \Phi_4^\ast) - 8\alpha^4 \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_3^{(2)}, \Phi_2^\ast)

+ |\tilde{\eta}_2|^2 \alpha^4 \| \Phi_2 \|^2 - \alpha^5. \quad (41)\]

The term \((IV)^{(1)} \) is treated as follows:

\[(IV)^{(1)} = -8\alpha^4 \text{Re } (\eta_1 - \eta_2) \tilde{\eta}_2 (\Phi_2^{(1)}, \Phi_2^\ast) + 2\alpha^3 \| \Phi_1 \|^2 \| \eta_1 - \eta_2 \|^2

- 8\alpha^4 \text{Re } (\eta_3 - \eta_2) \tilde{\eta}_2 (\Phi_2^{(1)}, \Phi_2^\ast) + \alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2

- 8\alpha^4 \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_2^{(1)}, \Phi_2^\ast) - 8\alpha^4 \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_2^{(2)}, \Phi_2^\ast) - 8\alpha^4 \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_3^{(2)}, \Phi_2^\ast)

+ |\tilde{\eta}_2|^2 \alpha^4 \| \Phi_3 \|^2. \quad (42)\]

Since \(\tilde{\eta}_2 \) is bounded (see (36)), the first and the second lines on the right-hand side are of the order \(\alpha^5 \). In addition, replacing \(\eta_2 \) by \(1 + O(\alpha) \) (see lemma A.1) in the third line of (42) yields

\[(IV)^{(1)} = -8\alpha^4 \text{Re } (\eta_2 \tilde{\eta}_2 (\Phi_2^{(1)}, \Phi_2^\ast) + \eta_2 \tilde{\eta}_2 (\Phi_2^{(2)}, \Phi_2^\ast) + \eta_2 \tilde{\eta}_2 (\Phi_3^{(1)}, \Phi_2^\ast) + |\tilde{\eta}_2|^2 \alpha^4 \| \Phi_2 \|^2 + O(\alpha^5)

\[= -8\alpha^4 \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_2 \| \Phi_2^2 + |\tilde{\eta}_2|^2 \alpha^4 \| \Phi_2 \|^2 + O(\alpha^5)

\[\geq -16\alpha^4 \| \Phi_2 \|^2 + O(\alpha^5). \quad (43)\]

Eventually, we estimate the term \((IV)^{(3)} \). We have

\[(IV)^{(3)} = 8\alpha^4 \text{Re } \eta_1 \tilde{\eta}_3 (\Phi_1, A^\ast \cdot A^\ast \Phi_3) + \alpha^3 \| \Phi_1 \|^2 \| \eta_1 - \eta_2 \|^2 + \alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2

\[+ 8|\eta_1|^2 \alpha^4 \| A^\ast \Phi_1 \|^2 + \frac{1}{2}\alpha^3 \| \Phi_1 \|^2 \| \eta_1 - \eta_2 \|^2

\[+ 8|\eta_3|^2 \alpha^4 \| A^\ast \Phi_3 \|^2 + \frac{1}{2}\alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2. \quad (44)\]

The first line in (44) is estimated as

\[8\alpha^4 \text{Re } \eta_1 \tilde{\eta}_3 (\Phi_1, A^\ast \cdot A^\ast \Phi_3) + \frac{1}{2}\alpha^3 \| \Phi_1 \|^2 \| \eta_1 - \eta_2 \|^2 + \frac{1}{2}\alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2

\[= 8\alpha^4 \text{Re } \eta_1 (\eta_1 - \eta_2) \tilde{\eta}_3 (\Phi_1, A^\ast \cdot A^\ast \Phi_3) + \frac{1}{2}\alpha^3 \| \Phi_1 \|^2 \| \eta_1 - \eta_2 \|^2

\[+ 8\alpha^4 \text{Re } \eta_2 (\tilde{\eta}_3 - \tilde{\eta}_2) (\Phi_1, A^\ast \cdot A^\ast \Phi_3) + \frac{1}{2}\alpha^3 \| \Phi_3 \|^2 \| \eta_3 - \eta_2 \|^2

\[+ 8\alpha^4 \text{Re } \eta_2 \tilde{\eta}_2 (\Phi_1, A^\ast \cdot A^\ast \Phi_3)

\[\geq -\alpha^5 + 8\alpha^4 \text{Re } (\Phi_1, A^\ast \cdot A^\ast \Phi_3). \quad (45)\]
where we used again $|\eta_2|^2 = 1 + \mathcal{O}(\alpha)$ and $|\eta_3| = \mathcal{O}(1)$.

The second line in (44) is estimated as
\begin{align*}
8|\eta_1|^2 \alpha^4 \|A^{-1} \Phi_1\|^2 + \frac{1}{2} \alpha^3 \|\Phi_1\|^2 |\eta_1 - \eta_2|^2 = 8|\eta_2|^2 \alpha^4 \|A^{-1} \Phi_1\|^2 + 8(|\eta_2|^2 - |\eta_2|^2) \alpha^4 \|A^{-1} \Phi_1\|^2 + \frac{1}{2} \alpha^3 \|\Phi_1\|^2 |\eta_1 - \eta_2|^2 \\
\geq 8 \alpha^4 \|A^{-1} \Phi_1\|^2 + \mathcal{O}(\alpha^5) - 96 |\eta_1| - |\eta_2| \alpha^4 \|A^{-1} \Phi_1\|^2 + \frac{1}{2} \alpha^3 \|\Phi_1\|^2 |\eta_1 - \eta_2|^2 \\
\geq 8 \alpha^4 \|A^{-1} \Phi_1\|^2 + \mathcal{O}(\alpha^5). \quad (46)
\end{align*}

Similarly, the third line in (44) is estimated by
\begin{align*}
8|\eta_2|^2 \alpha^4 \|A^{-1} \Phi_3\|^2 + \frac{1}{2} \alpha^3 \|\Phi_3\|^2 |\eta_3 - \eta_2|^2 \geq 8 \alpha^4 \|A^{-1} \Phi_3\|^2 + \mathcal{O}(\alpha^5). \quad (47)
\end{align*}

Collecting (45)–(47) yields
\begin{align*}
(IV)^{(3)} \geq 8 \alpha^4 \text{Re} \langle \Phi_1, A^- \cdot A^- \Phi_3 \rangle + 8 \alpha^4 \|A^{-1} \Phi_1\|^2 + 8 \alpha^4 \|A^{-1} \Phi_3\|^2 + \mathcal{O}(\alpha^5). \quad (48)
\end{align*}

This inequality, together with (37), (41) and (43), gives
\begin{align*}
(IV) + 2 \alpha^3 \|\Phi_1\|^2 |\eta_1 - \eta_2|^2 + 2 \alpha^3 \|\Phi_3\|^2 |\eta_3 - \eta_2|^2 \\
\geq \alpha^4 (8 \text{Re} \langle \Phi_1, A^- \cdot A^- \Phi_3 \rangle + 8 \|A^{-1} \Phi_1\|^2 + 8 \|A^{-1} \Phi_3\|^2 - 16 \|\Phi_2\|^2 - 16 \|\Phi_4\|^2) + \mathcal{O}(\alpha^5). \quad (49)
\end{align*}

- Next, we can treat the term (I). For that sake, we add the remaining half of the positive term $4 \alpha^3 \|\Phi_1\|^2 |\eta_1 - \eta_2|^2 + 4 \alpha^3 \|\Phi_3\|^2 |\eta_3 - \eta_2|^2$ obtained in the lower bound (34) for (II) + (III). Writing $\eta_1 = (\eta_1 - \eta_2) + \eta_2$, $\eta_2 = (\eta_2 - \eta_3) + \eta_3$, $\eta_2 = 1 + \mathcal{O}(\alpha)$ and using the fact that $\langle \Phi_2^{(1)}, R_2 \rangle + \langle \Phi_2^{(2)}, R_2 \rangle + \langle \Phi_2^{(3)}, R_2 \rangle = \langle \Phi_2, R_2 \rangle = 0$, we get, following the same arguments as for the estimate of (IV),
\begin{align*}
(I) + 2 \alpha^3 \|\Phi_1\|^2 |\eta_1 - \eta_2|^2 + 2 \alpha^3 \|\Phi_3\|^2 |\eta_3 - \eta_2|^2 = \mathcal{O}(\alpha^5). \quad (50)
\end{align*}

- Terms with a pre-factor α^5 and the terms $\mathcal{O}(\alpha^5)$. Collecting these terms yields the following result:
\begin{align*}
\langle \Psi, T(0) \Psi \rangle = (I) + (II) + (III) + (IV) + (V) \\
\geq - \alpha^2 \|\Phi_2\|^2 + \alpha^3 \|A^{-1} \Phi_2\|^2 - 4 \|\Phi_1\|^2 - 4 \|\Phi_3\|^2 \\
- \alpha^4 \left(- 4 \|\Phi_1\|^2 - 4 \|\Phi_3\|^2 + 2 \|A^{-1} \Phi_3\|^2 \right) + \alpha^4 (8 \text{Re} \langle \Phi_1, A^- \cdot A^- \Phi_3 \rangle) + 8 \|A^{-1} \Phi_1\|^2 + 8 \|A^{-1} \Phi_3\|^2 - 16 \|\Phi_2\|^2 - 16 \|\Phi_4\|^2 + \mathcal{O}(\alpha^5). \quad (52)
\end{align*}

We conclude the proof of the lower bound for inf $\text{spec}(T(0))$ by computing
\begin{align*}
\|\Psi\|^2 = 1 + \|2 \eta_1 \alpha^2 \Phi_1 + R_1\|^2 + \|2 \eta_2 \alpha^2 \Phi_2 + \tilde{\eta}_2 \alpha^2 \Phi_2 + R_2\|^2 \\
+ \|2 \eta_3 \alpha^2 \Phi_3 + R_3\|^2 + \|\alpha^2 \eta_4 \Phi_4 + R_4\|^2 \\
= 1 + \alpha^2 \|\Phi_2\|^2 + \mathcal{O}(\alpha^5), \quad (53)
\end{align*}
where we used that η_1, η_3, $\tilde{\eta}_2$, and η_4 are bounded (lemma A.1 and (36)), that $\eta_2 = 1 + \mathcal{O}(\alpha)$ (lemma A.1) and as a consequence of corollary 3.1 that $\|R_1\|$, $\|R_2\|$, $\|R_3\|$, $\|R_4\| = \mathcal{O}(\alpha^2)$.

11
4.3. Proof of theorem 2.2

The proof of (10) is a consequence of the fact that the values of inf spec(T(0)) = ⟨Ψ, T(0)Ψ⟩/∥Ψ∥^2 and ⟨Ψ^{\text{trial}} , T(0)Ψ^{\text{trial}}⟩/∥Ψ^{\text{trial}}∥^2 coincide up to O(α^2) for Ψ^{\text{trial}} := Ω_ϕ + 2α^2 Φ_1 + α^3 \{ 1 - α^2 44Φ_1^2 - 4|Φ_1|^2 \} Φ_2 + α^2 Φ_2 + 2α^2 Φ_3 + α^2 Φ_4.

The properties for η_1, η_3 and η_2 were already established in [6] as reminded in lemma A.1. The properties for η_2 and η_4 come from the fact that η_2 and η_4 minimize (52) up to O(α^3).

The equality ∥R∥_α = O(α) is given by proposition 3.1. The equality ∥R∥_α = O(α^2) is a consequence of ∥R∥_α = O(α^2), the definition (10) for R and the ∗-orthogonalities in (9).

Finally, corollary 3.1 proves ∥R∥ = O(α), which in turn implies ∥R∥ = O(α).

Acknowledgments

J-MB and SAV thank the Institute for Mathematical Sciences and the Centre of Quantum Technologies of the National University of Singapore, where this work was done. J-MB also gratefully acknowledges financial support from Agence Nationale de la Recherche, via the project HAM-MARK ANR-09-BLAN-0098-01.

Appendix

A.1. Estimates on η_1, η_2 and η_3

In the following lemma, we give an estimate of the coefficients η_1, η_2 and η_3 that occur in the decomposition (8) of Ψ.

Lemma A.1. We have

\[η_1 = 1 + O(α^\frac{1}{2}) \quad \text{and} \quad η_3 = 1 + O(α^\frac{1}{2}) \quad \text{and} \quad η_2 = 1 + O(α). \]

Proof. This is a direct consequence on the estimates of η_1, η_2 and η_3 for the approximate ground state up to the order α^3 derived in [6], since, due to conditions (9), the coefficients η_1, η_2 and η_3 in the decomposition (8) of Ψ are the same as the coefficients η_1, η_2 and η_3 in the decomposition (6), equation (10)). Note that there was a misprint in the estimates provided in [6] for |η_1 - 1|, |η_2 - 1| and |η_3 - 1|, since a square was missing. One should read in ([6], theorem 3.2), |η_1,3 - 1|^2 \lesssim cα and |η_2 - 1|^2 \lesssim cα^2. □

Estimate of the term Re(Ψ, 4α^\frac{1}{2} P_f \cdot A^- Ψ)

Throughout this appendix, we shall always use the decomposition of Ψ given by (8) and (9) and (24) and (25).

Lemma A.2. For all α \geq 0, we have

\[
\begin{align*}
\text{Re}(Ψ, 4α^\frac{1}{2} P_f \cdot A^- Ψ) + \frac{1}{8}(H_f + P_f^2) R, R \bigg) & \geq -8α^3 \text{Re} η_1 η_2 \|Φ_1\|_α^2 - 8α^3 \text{Re} η_2 η_3 \|Φ_3\|_α^2 \\
& - 8α^3 \text{Re} η_1 η_2 \{ \Phi_2, \Phi_2^{(1)} \}_α - 8α^3 \text{Re} η_2 η_3 \{ \Phi_2, \Phi_2^{(2)} \}_α - 8α^3 \text{Re} η_1 η_3 \{ Φ_4^{(1)}, Φ_4 \}_α \\
& - 8α^3 \text{Re} η_1 η_2 \{ \Phi_2^{(1)}, R_2 \}_α - 8α^3 \text{Re} η_2 η_3 \{ \Phi_2^{(2)}, R_2 \}_α - 8α^3 \text{Re} η_1 η_3 \{ Φ_4^{(1)}, R_4 \}_α \\
& - c(1 + |η_2|^2 + |η_2|^2 + |η_4|^2)α^2.
\end{align*}
\]

(A.2)
Proof. Using the decomposition (8) and (9) of the ground state Ψ, we obtain

$$\text{Re}(\Psi, 4\alpha^2 \mathcal{P}_f \cdot A^- \Psi)$$

$$= \text{Re}(\mathcal{R}_1, (4\alpha^2 \mathcal{P}_f \cdot A^- \eta_2 \alpha \Phi_2 + 4\alpha \mathcal{P}_f \cdot A^- \tilde{\eta}_2 \alpha^2 \tilde{\Phi}_2 + 4\alpha^2 \mathcal{P}_f \cdot A^- R_2))$$

$$+ \text{Re}(\eta_2 \alpha \Phi_1, (4\alpha^2 \mathcal{P}_f \cdot A^- \eta_2 \alpha \Phi_2 + 4\alpha \mathcal{P}_f \cdot A^- \tilde{\eta}_2 \alpha^2 \tilde{\Phi}_2 + 4\alpha^2 \mathcal{P}_f \cdot A^- R_2))$$

$$+ \text{Re}(\tilde{\eta}_2 \alpha \Phi_2, (4\alpha^2 \mathcal{P}_f \cdot A^- 2\eta_2 \alpha \Phi_3 + 4\alpha \mathcal{P}_f \cdot A^- R_3))$$

$$+ \text{Re}(R_2, (4\alpha^2 \mathcal{P}_f \cdot A^- 2\eta_2 \alpha \Phi_3 + 4\alpha \mathcal{P}_f \cdot A^- R_3))$$

$$+ \text{Re}(\mathcal{R}_3, (4\alpha^2 \mathcal{P}_f \cdot A^- \eta_2 \alpha \Phi_4 + 4\alpha \mathcal{P}_f \cdot A^- R_4))$$

$$+ \text{Re}(\Gamma(\geq 4) \Psi, 4\alpha^2 \mathcal{P}_f \cdot A^- \Gamma(\geq 5) \Psi).$$

For each value of n, we collect separately the terms on the right-hand side of this equality that stem from $\text{Re}(\Gamma^{(n)} \Psi, 4\alpha^2 \mathcal{P}_f \cdot A^- \Gamma^{(n+1)} \Psi)$. For estimating some of these terms, like in (A.4) or (A.5), we shall add a term such as $\epsilon(H_f R, R)$ or $\epsilon(P^2 R, R)$ borrowed from the left-hand side of (A.2).

- For $n = 0$ there is no contribution.
- For $n = 1$, we obtain the terms

$$\text{Re}(\mathcal{R}_1, 4\alpha^2 \mathcal{P}_f \cdot A^- \eta_2 \alpha \Phi_2) = -4\alpha^2 \text{Re} \bar{\eta}_2(\mathcal{R}_1, \Phi_1),$$

where we used the $\langle \cdot, \cdot \rangle_\alpha$-orthogonality of \mathcal{R}_1 and Φ_1 given by (9):

$$\text{Re}(\mathcal{R}_1, 4\alpha^2 \mathcal{P}_f \cdot A^- \eta_2 \alpha \Phi_2) + \frac{1}{16}(P^2_f \mathcal{R}_1, \mathcal{R}_1)$$

$$\geq -4\|P_f \mathcal{R}_1\| \|A^- \Phi_2\| \|\alpha^2 \bar{\eta}_2\| + \frac{1}{16} \|P_f \mathcal{R}_1\|^2$$

$$\geq \left(\frac{\lambda}{2} \|P_f \mathcal{R}_1\| - 8\alpha^2 \|\bar{\eta}_2\| \|A^- \Phi_2\| \right)^2 - 64\|A^- \Phi_2\|^2 \|\bar{\eta}_2\| \|\alpha^2\|^2$$

$$\geq -c\|\bar{\eta}_2\|^2 \|\alpha^2\|^2. \quad (A.4)$$

Note that we shall use the above argument several times in this proof, as well as in the proof of the other lemmata of this appendix. We shall not give details again in these other cases.

We also have the following terms:

$$\text{Re}(\mathcal{R}_1, 4\alpha^2 \mathcal{P}_f \cdot A^- \mathcal{R}_2) + \frac{1}{16}(P^2_f \mathcal{R}_1, \mathcal{R}_1) + \frac{1}{16}(H_f \mathcal{R}_2, \mathcal{R}_2)$$

$$\geq -c\alpha^2 \|P_f \mathcal{R}_1\|^2 - c\alpha^2 \|A^- \mathcal{R}_2\|^2 + \frac{1}{16} \|P_f \mathcal{R}_1\|^2 + \frac{1}{16}(H_f \mathcal{R}_2, \mathcal{R}_2) \geq 0, \quad (A.5)$$

where we used from ([15], lemma A4) the inequality $\|A^- \mathcal{R}_2\| \leq c \|H_f \mathcal{R}_2\|,$.

$$\text{Re}(2\eta_1 \alpha \Phi_1, 4\alpha^2 \mathcal{P}_f \cdot A^- \eta_2 \alpha \Phi_2) = 8\alpha^3 \text{Re} \eta_1 \bar{\eta}_2(\Phi_1, P_f \cdot A^- \Phi_2)$$

$$= -8\alpha^3 \text{Re} \eta_1 \bar{\eta}_2 \|\Phi_1\|^2, \quad (A.6)$$

$$\text{Re}(2\eta_1 \alpha \Phi_1, 4\alpha^2 \mathcal{P}_f \cdot A^- \tilde{\eta}_2 \alpha \Phi_2) = 8\alpha^4 \text{Re} \eta_1 \bar{\tilde{\eta}}_2(\Phi_1, P_f \cdot A^- \tilde{\Phi}_2)$$

$$= -8\alpha^4 \text{Re} \eta_1 \bar{\tilde{\eta}}_2 \|\tilde{\Phi}_2\|^2, \quad (A.7)$$

and

$$\text{Re}(2\eta_1 \alpha \Phi_1, 4\alpha^2 \mathcal{P}_f \cdot A^- \mathcal{R}_2) = 8\alpha^3 \text{Re} \eta_1(\mathcal{H} + P^2_f \mathcal{P}_f \cdot A^* \Phi_1, \mathcal{R}_2)$$

$$= -8\alpha^2 \text{Re} \eta_1(\tilde{\Phi}_2^{(1)}, \mathcal{R}_2), \quad (A.8)$$
For $n = 2$, we obtain the terms
\begin{align}
\text{Re}\langle \eta_2 \alpha \Phi_2, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- \eta_3 \alpha^2 \Phi_3 \rangle &= -8 \alpha^3 \text{Re} \eta_2 \eta_3 \| \Phi_3 \|^2, \\
\text{Re}\langle \eta_2 \alpha^2 \Phi_2, 4 P_f \cdot A^- R_3 \rangle &= -4 \alpha^2 \text{Re} \eta_2 (\Phi_1, R_3)_\star = 0, \\
\text{Re}\langle \eta_2 \alpha^2 \Phi_2, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- \eta_3 \alpha^2 \Phi_3 \rangle &= -8 \alpha^2 \text{Re} \eta_2 \eta_3 (\Phi_2, \Phi_2^{(2)})_\star, \\
\text{Re}\langle \eta_2 \alpha^2 \Phi_2, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- R_3 \rangle + \frac{1}{16} (P_f^2 R_3, R_3) &\geq -c |\eta_2|^2 \alpha^5,
\end{align}
where we used from ([15], lemma A4) that $\| A^- R_3 \| \leq c \| H_f^\frac{1}{2} R_3 \|$, and

\begin{align}
\text{Re}\langle R_2, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- \eta_3 \alpha^2 \Phi_3 \rangle &= -8 \alpha^2 \text{Re} \eta_3 (R_2, \Phi_2^{(2)})_\star
\end{align}

and

\begin{align}
\text{Re}\langle R_2, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- R_3 \rangle + \frac{1}{16} (P_f^2 R_2, R_2) + \frac{1}{32} (H_f R_3, R_3) \geq 0,
\end{align}

with similar argument as for (A.5) for the last inequality.

For $n = 3$, we obtain the terms
\begin{align}
\text{Re}\langle 2 \eta_2 \alpha^3 \Phi_3, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- \eta_3 \alpha^2 \Phi_4 \rangle &= -8 \alpha^4 \text{Re} \eta_3 \eta_4 (\Phi_4^{(1)}, \Phi_4)_\star, \\
\text{Re}\langle 2 \eta_2 \alpha^3 \Phi_3, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- R_4 \rangle &= -8 \text{Re} \eta_3 \alpha^2 (\Phi_4^{(1)}, R_4)_\star, \\
\text{Re}\langle R_3, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- \eta_3 \alpha^2 \Phi_4 \rangle + \frac{1}{32} (P_f^2 R_3, R_3) &\geq -c |\eta_4|^2 \alpha^5
\end{align}

and

\begin{align}
\text{Re}\langle R_3, 4 \text{Re} \alpha \frac{1}{\hbar} P_f \cdot A^- R_4 \rangle + \frac{1}{16} (P_f^2 R_3, R_3) + \frac{1}{32} (H_H R_4, R_4) \geq 0.
\end{align}

All contributions to the terms with $n \geq 4$ give
\begin{align}
\text{Re}\langle \Gamma^{(2)} \Psi, 4 \alpha \frac{1}{\hbar} P_f \cdot A^- \Gamma^{(2)} \Psi \rangle + \frac{1}{16} (H_f \Gamma^{(2)} \Psi, \Gamma^{(2)} \Psi) \\
\geq -c \alpha \| P_f \Gamma^{(2)} \Psi \|^2 = -c \alpha^5 (1 + |\eta_2|^2 + |\eta_3|^2),
\end{align}
where we used (11) of proposition 3.1.

Collecting inequalities (A.3)–(A.19) concludes the proof of the lemma. \qed

Estimate of the term $\text{Re}\langle \Psi, 2 \alpha A^- \cdot A^- \Psi \rangle$

Lemma A.3. For all $\alpha \geq 0$, we have
\begin{align}
\text{Re}\langle \Psi, 2 \alpha A^- \cdot A^- \Psi \rangle + \frac{1}{2} (H_f + P_f^2) R, R \rangle \\
\geq -2 \alpha^2 \text{Re} \eta_2 \| \Phi_2 \|^2 - 8 \alpha^2 \text{Re} \eta_2 (\Phi_4^{(2)}, R_4)_\star \\
+ 8 \alpha^4 \text{Re} \eta_4 \eta_3 (\Phi_1, A^- \cdot A^- \Phi_3) - 8 \alpha^4 \text{Re} \eta_2 \eta_3 (\Phi_2^{(2)}, \Phi_4)_\star \\
- c (1 + |\eta_1|^2 + |\eta_3|^2 + |\eta_2|^2 + |\eta_4|^2) \alpha^5.
\end{align}

Proof. Using the decomposition (8) and (9) of the ground state Ψ yields
\begin{align}
\text{Re}\langle \Psi, 2 \alpha A^- \cdot A^- \Psi \rangle \\
= \text{Re}\langle \Omega_f, (2 \alpha A^- \cdot A^- \eta_2 \alpha \Phi_2 + 2 \alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_2 + 2 \alpha A^- \cdot A^- R_3) \rangle \\
+ \text{Re}\langle 2 \eta_4 \alpha^2 \Phi_1, (2 \alpha A^- \cdot A^- \eta_2 \alpha \Phi_3 + 2 \alpha A^- \cdot A^- R_1) \rangle \\
+ \text{Re}\langle R_1, (2 \alpha A^- \cdot A^- 2 \eta_2 \alpha^2 \Phi_3 + 2 \alpha A^- \cdot A^- R_3) \rangle.
\end{align}
\begin{align}
&+ \text{Re}(\eta_2 \alpha \Phi_2, (2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_4 + 2\alpha A^- \cdot A^- R_4)) \\
&+ \text{Re}(\tilde{\eta}_2 \alpha^2 \Phi_2, (2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_4 + 2\text{Re} \alpha A^- \cdot A^- R_4)) \\
&+ \text{Re}(R_2, (2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_4 + 2\alpha A^- \cdot A^- R_4)) + \text{Re}(2\eta_2 \alpha^2 \Phi_3, 2\alpha A^- \cdot A^- R_5) \\
&+ \text{Re}(R_3, 2\alpha A^- \cdot A^- R_5)) + \text{Re}(\Gamma^{\alpha \beta} \Psi, 2\alpha A^- \cdot A^- R_{\geq 6}).
\end{align}

We collect in this expression the different contributions in \(\text{Re}(\Gamma^{\alpha \beta} \Psi, 2\alpha A^- \cdot A^- \Gamma^{(n+2)} \Psi)\) for each value of \(n\). We shall use throughout this proof very similar arguments to those used in the proof of lemma A.2.

\textbf{For} \(n = 0\), we have the terms

\begin{align}
\text{Re}(\Omega_f, 2\alpha A^- \cdot A^- \eta_2 \alpha \Phi_2) &= -2\alpha^2 \text{Re} \eta_2 \|\Phi_2\|^2, \\
\text{Re}(\Omega_f, 2\alpha A^- \cdot A^- \tilde{\eta}_2 \alpha^2 \Phi_2) &= -2\alpha^3 \text{Re} \tilde{\eta}_2 (\Phi_2, \Phi_2)_+, = 0
\end{align}

\textbf{and}

\begin{align}
\text{Re}(\Omega_f, 2\alpha A^- \cdot A^- R_2) &= -2\alpha \text{Re}(\Phi_2, R_2)_+, = 0.
\end{align}

\textbf{For} \(n = 1\), we have the terms

\begin{align}
\text{Re}(2\eta_1 \alpha^2 \Phi_1, 2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_3) &= 8\alpha^3 \text{Re} \eta_1 \tilde{\eta}_3 \Phi_1, A^- \cdot A^- \Phi_3), \\
\text{Re}(2\eta_2 \alpha^2 \Phi_1, 2\alpha A^- \cdot A^- R_3) + \frac{1}{16} (H_f R_3, R_3) &= -c|\eta_1|^2 \alpha^5, \\
\text{Re}(R_1, 2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_3) + \frac{1}{16} (H_f R_1, R_1) &= \text{Re}(H_f R_1, H_f R_1) ^{-2} 2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_3 + \frac{1}{16} (H_f R_1, R_1) \geq -c|\eta_3|^2 \alpha^5.
\end{align}

\textbf{and, using (13) of proposition 3.2 and (15), lemma A4),}

\begin{align}
\text{Re}(R_1, 2\alpha A^- \cdot A^- R_3) + \frac{1}{16} (H_f R_3, R_3) \geq \text{Re}(\eta_2 \alpha \Phi_2, 2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_4) = -8\alpha^4 \text{Re} \eta_2 \tilde{\eta}_4 (\Phi_4^2, \Phi_4)_+, \\
\text{Re}(\eta_2 \alpha \Phi_2, 2\alpha A^- \cdot A^- R_4) = -8\alpha^2 \text{Re} \eta_2 \tilde{\eta}_4 (\Phi_4^2, \Phi_4)_+, \\
\text{Re}(\eta_2 \alpha \Phi_2, 2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_4) \geq -c \alpha^5 (|\tilde{\eta}_2|^2 + |\eta_4|^2), \\
\text{Re}(\eta_2 \alpha \Phi_2, 2 \text{Re} \alpha A^- \cdot A^- R_4) \geq -c \alpha^5 (1 + |\tilde{\eta}_2|^2 + |\eta_4|^2).
\end{align}

\textbf{using} \(\|A^- R_4\| < c \|H_f R_4\| < \alpha^5 (1 + |\tilde{\eta}_2|^2 + |\eta_4|^2)\) (respectively [15, lemma A4] and proposition 3.1). We also have the terms

\begin{align}
\text{Re}(R_2, 2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_4) + \frac{1}{16} (H_f R_2, R_2) \\
\geq \text{Re}(H_f R_2, 2\alpha A^- \cdot A^- \eta_2 \alpha^2 \Phi_4) + \frac{1}{16} (H_f R_2, R_2) \geq -c|\eta_4|^2 \alpha^6.
\end{align}

\textbf{and}

\begin{align}
\text{Re}(R_2, 2\alpha A^- \cdot A^- R_4) + \frac{1}{16} (H_f R_4, R_4) \geq -c \alpha^2 \|A^- R_4\|^2 \\
\geq -c \alpha^2 (\|H_f R_2\|^2 + \|R_2\|^2) \\
\geq -c \alpha^2 (\|H_f R_2\|^2 + \|\Theta\|^2 + |\tilde{\eta}_2|^2 \|\Phi_2\|^2 + |\eta_4|^2 \|\Phi_4\|^2) \\
\geq -c \alpha^5 (1 + |\tilde{\eta}_2|^2 + |\eta_4|^2).
\end{align}
for Θ defined by (12) and using from (23) of corollary 3.1 that $\|\Theta\|^2 = O(\alpha^3)$ and from (11) of proposition 3.1 that $\|R_2\|^2_\alpha \leq c\alpha^2(1 + |\eta_2|^2 + |\eta_3|^2)$.

- For $n \geq 3$ we collect all the terms as follows:
 \begin{align}
 \Re\{2\eta_2\alpha^2\Phi_3, 2\alpha A^+ \cdot A^- R_3\} + \frac{1}{32} (H_f R_3, R_3) &\geq -c|\eta_3|^2\alpha^5, \quad (A.34) \\
 \Re\{R_3, 2\alpha A^+ \cdot A^- R_3\} + \frac{1}{32} (H_f R_3, R_3) &\geq -c\alpha^5, \quad (A.35)
 \end{align}

using (23) of corollary 3.1 in the last inequality. Finally, we get
\begin{align*}
\Re\{\Gamma^{(n)}\psi, 2\alpha A^+ \cdot A^- R_{3\geq 6}\} + \frac{1}{32} (H_f R_{3\geq 6}, R_{3\geq 6}) &\geq -c\alpha^5(1 + |\eta_2|^2 + |\eta_3|^2). \tag{A.36}
\end{align*}
Collecting (A.21)–(A.36) yields the result. \qed

Estimate of the term $\langle \psi, 2\alpha A^+ \cdot A^- \psi \rangle$

Lemma A.4. For all $\alpha \geq 0$, we have
\begin{align*}
\langle \psi, 2\alpha A^+ \cdot A^- \psi \rangle &\geq \frac{1}{8} (H_f + R_2^2) R_2 \|R_2\|^2 + 2|\eta_2|^2\alpha^2 \|A^- \Phi_2\|^2 \\
&\quad + 8\alpha^8|\eta_1|^2\|A^- \Phi_1\|^2 + 8\alpha^4|\eta_3|^2\|A^- \Phi_3\|^2 - 8\alpha^8 \Re \eta_2\eta_2 \langle \Phi_2, \Phi_2^{(3)} \rangle \\
&\quad - c\alpha^5(1 + |\eta_1|^2 + |\eta_2|^2 + |\eta_3|^2). \tag{A.37}
\end{align*}

Proof. With the decomposition (8) and (9) of ψ we get
\begin{align*}
\langle \psi, 2\alpha A^+ \cdot A^- \psi \rangle &\geq \langle 2\eta_2\alpha^2\Phi_1, 2\alpha A^+ \cdot A^- 2\eta_1\alpha^2\Phi_1 \rangle + 2\Re\{2\eta_1\alpha^2\Phi_1, 2\alpha A^+ \cdot A^- R_1\} \\
&\quad + \langle \eta_2\alpha^2\Phi_2, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_2 \rangle + 2\Re\{\eta_2\alpha^2\Phi_2, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_2\} \\
&\quad + \langle \eta_2\alpha^2\Phi_2, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_2 \rangle + 2\Re\{\eta_2\alpha^2\Phi_2, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_2\} \\
&\quad + 2\Re\{\eta_3\alpha^2\Phi_3, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_3\} \\
&\quad + 2\Re\{\eta_3\alpha^2\Phi_3, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_3\} \\
&\quad + (R_3, 2\alpha A^+ \cdot A^- R_3) + (\Gamma^{(3)} \psi, 2\alpha A^+ \cdot A^- \Gamma^{(4)} \psi).
\end{align*}

For each value of n, we next collect in the above equality the different contributions of $\langle \Gamma^{(n)} \psi, 2\alpha A^+ \cdot A^- \Gamma^{(n)} \psi \rangle$.

- For $n = 0$, there is no term.
- For $n = 1$, we have
 \begin{align}
 \langle 2\eta_2\alpha^2\Phi_1, 2\alpha A^+ \cdot A^- 2\eta_1\alpha^2\Phi_1 \rangle &= 8|\eta_1|^2\alpha^4\|A^- \Phi_1\|^2, \tag{A.38} \\
 2\Re\{2\eta_1\alpha^2\Phi_1, 2\alpha A^+ \cdot A^- R_1\} + \frac{1}{32} (H_f R_1, R_1) &\geq -c|\eta_1|^2\alpha^5. \tag{A.39}
 \end{align}

- For $n = 2$, we obtain
 \begin{align}
 \langle \eta_2\alpha^2\Phi_2, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_2 \rangle &= 2|\eta_2|^2\alpha^4\|A^- \Phi_2\|^2, \tag{A.40} \\
 2\Re\{\eta_2\alpha^2\Phi_2, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_2 \} &= -8\Re\eta_2\eta_2\alpha^4\langle \Phi_2^{(3)}, \Phi_2 \rangle, \tag{A.41} \\
 \langle \eta_2\alpha^2\Phi_2, 2\alpha A^+ \cdot A^- \eta_2\alpha^2\Phi_2 \rangle &= 4\alpha^5|\eta_2|^2\|A^- \Phi_2\|^2, \tag{A.42} \\
 \langle R_2, 2\alpha A^+ \cdot A^- R_2 \rangle &\geq 0, \tag{A.43} \\
 2\Re\{R_2, 2\alpha A^+ \cdot A^- \eta_2\Phi_2 \} &= -8\alpha^2 \Re \eta_2\eta_2|\eta_2|^2, \tag{A.44}
 \end{align}
and

\[2 \text{Re}\{R_3, 2\alpha A^+ \cdot A^- \eta_3 \alpha^2 \Phi_2^{(3)}\} + \frac{1}{32} \langle H / R_3, R_3 \rangle \geq -c|\eta_3|^2 \alpha^5. \quad (A.45)\]

- For \(n = 3 \), we have

\[\langle 2\eta_3 \alpha^2 \Phi_3, 2\alpha A^+ \cdot A^- 2\eta_3 \alpha^2 \Phi_3 \rangle = 8\alpha^4 |\eta_3|^2 \|A^- \Phi_3\|^2, \quad (A.46)\]

\[2 \text{Re}\{2\eta_3 \alpha^2 \Phi_3, 2\alpha A^+ \cdot A^- R_3\} + \frac{1}{32} \langle H / R_3, R_3 \rangle \geq -|\eta_3|^2 \alpha^5 \quad (A.47)\]

and

\[\langle R_3, 2\alpha A^+ \cdot A^- R_3 \rangle \geq 0. \quad (A.48)\]

- For \(n \geq 4 \), we obtain

\[\langle \Gamma^{(\geq 4)} \Psi, 2\alpha A^+ \cdot A^- \Gamma^{(\geq 4)} \Psi \rangle \geq 0. \quad (A.49)\]

Collecting (A.38)–(A.49) concludes the proof of the lemma.

Lemma A.5. We have

\[\langle (H_f + P_f^2) \Psi, \Psi \rangle = |\eta_2|^2 \alpha^2 \|\Phi_2\|^2 + 4|\eta_1|^2 \alpha^2 \|\Phi_1\|^2 + 4|\eta_3|^2 \alpha^2 \|\Phi_3\|^2 + |\eta_2|^2 \alpha^2 \|\Phi_3\|^2 + |\eta_4|^2 \alpha^2 \|\Phi_4\|^2 + \|R\|^2. \quad (A.50)\]

Proof. Using the decomposition (8) of \(\Psi \) and using the whole set of orthogonalities with respect to \(\langle \cdot , \cdot \rangle_\alpha \) given in (9), we obtain that all crossed terms are zero. The proof is thus straightforward.

References

[1] Bach V, Chen T, Fröhlich J and Sigal I M 2007 The renormalized electron mass in non-relativistic QED J. Funct. Anal. 243 426–535

[2] Bach V, Fröhlich J and Pizzo A 2006 Infrared-finite algorithms in QED: the ground state of an atom interacting with the quantized radiation field Commun. Math. Phys. 264 143–65

[3] Bach V, Fröhlich J and Sigal I M 1999 Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field Commun. Math. Phys. 207 249–90

[4] Bach V, Fröhlich J and Sigal I M 1998 Quantum electrodynamics of confined nonrelativistic particles Adv. Math. 137 299–395

[5] Bach V, Fröhlich J and Sigal I M 1995 Mathematical theory of nonrelativistic matter and radiation Lett. Math. Phys. 34 183–201

[6] Barbaroux J-M, Chen T, Vougalter V and Vugalter S A 2008 On the ground state energy of the translation invariant Pauli-fierz model Proc. Am. Math. Soc. 136 1057–64

[7] Barbaroux J-M, Chen T, Vougalter V and Vugalter S A 2009 Quantitative estimates on the hydrogen ground state energy in nonrelativistic QED arXiv:0903.1854

[8] Barbaroux J-M, Chen T and Vugalter S A 2003 Binding conditions for atomic N-electron systems in non-relativistic QED Ann. Henri Poincaré 4 1101–36

[9] Barbaroux J-M, Linde H and Vugalter S A 2005 Quantitative estimates on the enhanced binding for the Pauli–Fierz operator J. Math. Phys. 46 122103

[10] Chen T 2008 Infrared renormalization in non-relativistic QED and scaling criticality J. Funct. Anal. 254 555–647

[11] Chen T and Fröhlich J 2007 Coherent infrared representations in non-relativistic QED Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday (Proc. Symp. Pure Math. vol 1) (Providence, RI: American Mathematical Society)
[12] Chen T, Vugalter V and Vugalter S A 2003 The increase of binding energy and enhanced binding in non-relativistic QED \textit{J. Math. Phys.} \textbf{44}

[13] Fröhlich J 1973 On the infrared problem in a model of scalar electrons and massless, scalar bosons \textit{Ann. Inst. Henri Poincaré} A \textbf{19} 1–103

[14] Griesemer M and Hasler D G 2009 Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation \textit{Ann. Henri Poincaré} \textbf{10} 577–621

[15] Griesemer M, Lieb E H and Loss M 2001 Ground states in non-relativistic quantum electrodynamics \textit{Inv. Math.} \textbf{145} 557–95

[16] Hainzl C, Hirokawa M and Spohn H 2005 Binding energy for hydrogen-like atoms in the Nelson model without cutoffs \textit{J. Funct. Anal.} \textbf{220} 424–59

[17] Hainzl C, Vugalter V and Vugalter S A 2003 Enhanced binding in non-relativistic QED \textit{Commun. Math. Phys.} \textbf{233} 13–26

[18] Lieb E H and Loss M 2003 Existence of atoms and molecules in non-relativistic quantum electrodynamics \textit{Adv. Theor. Math. Phys.} \textbf{7} 667–710

[19] Pizzo A 2003 One-particle (improper) states in Nelson’s massless model \textit{Ann. Henri Poincaré} \textbf{4} 439–86