Draft genome sequence of *Thermoactinomyces* sp. strain AS95 isolated from a Sebkha in Thamelaht, Algeria

Oliver K. I. Bezuidt, Mohamed A. Gomri, Rian Pierneef, Marc W. Van Goethem, Karima Kharroub, Don A. Cowan and Thulani P. Makhalanyane*

Abstract

The members of the genus *Thermoactinomyces* are known for their protein degradative capacities. *Thermoactinomyces* sp. strain AS95 is a Gram-positive filamentous bacterium, isolated from moderately saline water in the Thamelaht region of Algeria. This isolate is a thermophilic aerobic bacterium with the capacity to produce extracellular proteolytic enzymes. This strain exhibits up to 99% similarity with members of the genus *Thermoactinomyces*, based on 16S rRNA gene sequence similarity. Here we report on the phenotypic features of *Thermoactinomyces* sp. strain AS95 together with the draft genome sequence and its annotation. The genome of this strain is 2,558,690 bp in length (one chromosome, but no plasmid) with an average G+C content of 47.95%, and contains 2550 protein-coding and 60 RNA genes together with 64 ORFs annotated as proteases.

Keywords: *Thermoactinomyces* sp. strain AS95, Genome, Thermophilic, Proteolytic activity, Taxonomo-genomics

Introduction

Modern metagenomic approaches have provided insights on the evolution and functional capacity of microbial communities resistant to classical culture-based methods [1]. However, these classical techniques remain crucial for understanding the molecular adaptations of microbial guilds, especially those with potential biotechnological applications [2, 3]. Consequently, efforts to isolate novel taxa, particularly from environmentally extreme habitats remain widespread [4, 5].

The genus *Thermoactinomyces* is a member of the family *Thermoactinomycetaceae*. The first known representative from this genus (*Thermoactinomyces vulgaris*) was isolated from decaying straw and manure [6]. Since then, a number of isolates, from a wide array of extreme habitats [7–10] have been validly described. Currently, this genus comprises ten validly published species, and a few of these are; *Thermoactinomyces vulgaris* [6], *Thermoactinomyces intermedius* [11], *Thermoactinomyces daquis* [7] and *Thermoactinomyces guangxiensis* [8]. These species are all Gram-positive, aerobic, non-acid-fast, chemoorganotrophic, filamentous and thermophilic bacteria.

Here, we report the draft genome sequence of *Thermoactinomyces* sp. strain AS95, which was isolated from a sebkha (endorheic salt pan) in the Thamelaht region of Algeria. We present a summary of the classification and set of phenotypic features for *Thermoactinomyces* sp. strain AS95 together with the description of the non-contiguous genome sequence and its annotation with particular reference to ORFs encoding proteolytic enzymes.

Organism information

Classification and features

Thermoactinomyces strain AS95 was isolated from a sebkha water sample collected in June 2013 from the Thamelaht region of Algeria (Table 1). This isolate is a Gram-positive, aerobic, thermophilic, filamentous bacterium (Fig. 1) belonging to the order *Bacillales*. Based on the 16S rRNA gene sequence similarity searches by BLASTN against the NCBI-NT database, strain AS95 showed 97–99% sequence similarity to members of the genus *Thermoactinomyces*. A 16S rRNA gene-based
phylogenetic tree of *Thermoactinomyces* sp. strain AS95 was constructed (Fig. 2), based on neighbor-joining and maximum composite likelihood models with 1000 bootstrap replications using MEGA 7 [12]. The *Thermoactinomyces* sp. strain AS95 (KU942442) 16S rRNA gene sequence exhibited high identity (99 %) with *Thermoactinomyces vulgaris* RVH210302 (AY114167), the closest validly published *Thermoactinomyces* species.

The strain was cultivated on *Thermus* medium agar containing 2.0 g NaCl, 4.0 g yeast extract, 8.0 g peptone and 30.0 g agar per liter of distilled water. The bacterium grew optimally at 55 °C, with a broad temperature growth range of 40–65 °C (Thermophilic).

Table 1 Classification and general features of *Thermoactinomyces* sp. strain AS95

MIGS ID	Property	Term	Evidence code
	Classification	Domain: *Bacteria*	TAS [20]
	Phylum: *Firmicutes*		
	Class: *Bacilli*		
	Order: *Bacillales*		
	Family: *Thermoactinomycetaeae*		
	Genus: *Thermoactinomyces*		TAS [6]
	Species: *Thermoactinomyces* sp.		IDA
	Strain: AS95		IDA
	Gram stain	Positive	IDA
	Cell shape	Filamentous	IDA
	Motility	Non-motile	IDA
	Sporulation	Endospores on unbranched sporophores	IDA
	Temperature range	40–65 °C (Thermophilic)	IDA
	Optimum temperature	55 °C	IDA
	pH range; Optimum	5.6–8.6; 7.2	IDA
	Carbon source	Peptides	IDA
	GS-6	Habitat	IDA
	MIGS-6.3	Salinity	IDA
	MIGS-22	Oxygen requirement	IDA
	MIGS-15	Biotic relationship	IDA
	MIGS-14	Pathogenicity	IDA
	MIGS-4	Geographic location	IDA
	MIGS-5	Sample collection time	IDA
	MIGS-4.1	Latitude	IDA
	MIGS-4.2	Longitude	IDA
	MIGS-4.4	Altitude	IDA

GS-6 Habitat Saline water
MIGS-6.3 Salinity 5.0 % total salt (w/v)
MIGS-22 Oxygen requirement Aerobic
MIGS-15 Biotic relationship Free-living
MIGS-14 Pathogenicity Non-pathogen
MIGS-4 Geographic location Thamelaht, Algeria
MIGS-5 Sample collection time 20 June 2013
MIGS-4.1 Latitude 36°32'18.29"N
MIGS-4.2 Longitude 5°11'48.89"E
MIGS-4.4 Altitude 890 m above sea level

Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e. a direct report exists in the literature). These evidence codes are from the Gene Ontology Project [29]. If the evidence is IDA, then the property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements.
range of between 40 and 65 °C (Table 1). The strain grew in liquid media at pH values from 5.6 to 8.6, but optimal growth occurred at a pH of 7.2. Morphologically, the isolate forms white colonies and abundant aerial mycelia with the appearance of well-developed, branched and septate substrate mycelia. The micromorphology of the cells was examined using scanning electron microscopy (Fig. 1). The predominant menaquinone was MK-7. Major fatty acids included iso-C15:0, and significant amounts of iso-C17:0 were also present.

Genome sequencing information
Genome project history
A high-quality draft genome sequence is deposited at DDBJ/EMBL/GenBank under the accession LSVF00000000 and consists of 11 scaffolds of 11 contigs. A summary of the project information and its association with MIGS version 2.0 compliance are shown in Table 2 [13].

![Fig. 2 Phylogenetic tree based on 16S rRNA gene sequences showing the relationship between strain AS95 (1435 bp) and strains of related genera of the family Thermoactinomycetaceae. The strains and their corresponding Genbank accession numbers are shown following the organism name and indicated in parentheses. The phylogenetic tree was made using the neighbor-joining method with maximum composite likelihood model implemented in MEGA 7. The tree includes the 16S rRNA gene sequence of Sulfobacillus acidophilus DSM 10332 T as outgroup. Bootstrap consensus trees were inferred from 1000 replicates, only bootstrap values >50 % are indicated. The scale bar represents 0.02 nucleotide changes per position. (*) indicates the isolate assessed in the current study, Thermoactinomyces sp. strain AS95.](image)
Growth conditions and genomic DNA preparation

Thermoactinomyces sp. strain AS95 was grown aerobically on Thermus medium agar (pH 7.2) at 55 °C for 24 h. Genomic DNA was extracted using a modification of a previously described protocol [14]. The quantity and quality of the genomic DNA was measured using a NanoDrop Spectrophotometer and a Qubit™ Fluorometer (Thermo Fisher Scientific Inc.).

Genome sequencing and assembly

Genomic DNA samples of Thermoactinomyces sp. strain AS95 were sequenced at MR DNA (Shallowater, TX, USA). Genome sequencing was performed on a MiSeq (Illumina, Inc.) generating 2 x 300 bp paired-end libraries. The sequencing run produced a total of 5,085,250 reads, with a mean length of 265.58 bp. The raw paired-end sequences were subjected to the fastxtools software [15] for quality trimming using a phred quality score ≥ 20. After trimming, a total of 3,013,639 reads with a mean length of 171.11 bp were assembled using SPAdes, version 3.5.0 [16]. The final assembly resulted in a total of 11 scaffolds, which generated a genome size of 2.56 Mb.

Genome annotation

Genome annotation was carried out on the RAST server [17] and using the NCBI Prokaryotic Genome Annotation Pipeline tools [18]. This Whole Genome Shotgun sequence project has been deposited at DDBJ/EMBL/GenBank under accession LSVF00000000. The version described in this paper is version LSVF00000000.

Attribute	Value	% of total
Genome size (bp)	2,558,690	100.00
DNA coding region (bp)	2,214,681	86.56
DNA G + C (bp)	1,226,817	47.95
DNA scaffolds	11	
Total genes	2,649	100.00
Protein coding genes	2,550	96.26
RNA genes	60	2.26
Pseudo genes	39	1.47
Genes in internal clusters	ND	
Genes with function prediction	1,296	50.82
Genes with Pfam domains	2,001	78.47
Genes assigned to COGs	1,924	75.45
Genes with signal peptides	164	6.43
Genes with transmembrane helices	655	25.69
CRISPR repeats	2	ND

*The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome. ND: Not determined

Genome properties

The genome is composed of 2,558,690 nucleotides with 47.95 % G + C content (Table 3) and comprised 11 scaffolds of 11 contigs. The genome contains a total of 2,649 genes, 2,550 of which were protein coding, 39 pseudogenes and 60 RNA coding genes. The majority of protein-coding genes (75.45 %) were assigned a putative function while the remaining genes were annotated as hypothetical. The distribution of genes in COGs functional categories is presented in Table 4.

A blastp comparison was conducted against the MEROPS database. A total of 64 protein-coding genes (2.4 %) were predicted to share homology with various categories of proteases (Table 5). Of these predictions indicated that 36 were putatively secreted in a classical pathway (SignalP), whereas the other 28 were secreted in a non-classical pathway (SecretomeP). Only 2 of the 64 protein-coding genes share sequence similarities with

Code	Value	% of total	Description
J	154	9.96	Translation, ribosomal structure and biogenesis
A	0	0.00	RNA processing and modification
K	145	5.68	Transcription
L	100	3.92	Replication, recombination and repair
B	0	0.00	Chromatin structure and dynamics
D	27	1.05	Cell cycle control, mitosis and meiosis
V	32	1.25	Defense mechanisms
T	71	2.78	Signal transduction mechanisms
M	99	3.88	Cell wall/membrane biogenesis
N	8	0.31	Cell motility
Z	0	0.03	Cytoskeleton
U	33	1.29	Intracellular trafficking and secretion
O	85	3.33	Posttranslational modification, protein turnover, chaperones
C	135	5.29	Energy production and conversion
G	122	4.78	Carbohydrate transport and metabolism
E	213	8.35	Amino acid transport and metabolism
F	70	2.74	Nucleotide transport and metabolism
H	108	4.23	Coenzyme transport and metabolism
I	109	4.27	Lipid transport and metabolism
P	101	3.96	Inorganic ion transport and metabolism
Q	53	2.07	Secondary metabolites biosynthesis, transport and catabolism
R	249	9.76	General function prediction only
S	196	7.68	Function unknown
-	626	24.54	Not in COGs

*The total is based on the total number of protein coding genes in the annotated genome
proteases of the *Thermoactinomyces vulgaris* and sp. E79 families of peptidases in the MEROPS database.

Conclusions

This study describes the draft genome sequence of *Thermoactinomyces* sp. strain AS95, which is associated with a high level of extracellular proteolytic activities. To date, only a few metabolic pathways involved in protein degradation have been characterized for the genus *Thermoactinomyces* [19]. The genome sequence and characteristics of strain AS95 will provide new insights into the mechanisms of protein degradation in the genus *Thermoactinomyces*, and towards establishing a comprehensive genomic catalog of the metabolic diversity of the genus *Thermoactinomyces*.

Acknowledgements

We wish to acknowledge the following organizations for providing financial support for this project: The Genomics Research Institute and the University of Pretoria (OKIB, DAC, TPM), the National Research Foundation (MWVG, DAC, TPM). The Algerian Ministry of Higher Education and Scientific Research is also acknowledged for funding (MAG and KK).

Authors’ contributions

OKIB performed the analysis, and led the drafting of the manuscript. MAG isolated the strain and conducted confirmatory analysis using 16S rRNA gene sequence of *Thermoactinomyces daqus* sp. nov., a thermophilic bacterium isolated from high-temperature Daqu. TPM conceived the study and provided support in drafting the manuscript. DAC helped draft the manuscript. TPM conceived the SEM and helped draft the manuscript. All authors read and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details

1Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria 0028, South Africa. 2Biotechnology Platform, Agricultural University of Pretoria, Natural Sciences 2 Building, Office 3-14, Lynnwood Road, Pretoria 0028, South Africa. 3Equipe Métabolites des Extrêmes, Laboratoire de Recherche Biotechnologie et Qualité des Aliments, INATAA, Université Frères Mentouri Constantine, Constantine, Algérie. 4Centre for Bioinformatics and Computational Biology, Department of Biochemistry, University of Pretoria, Pretoria 0028, South Africa.

Received: 10 May 2016 Accepted: 27 August 2016

References

1. Cowan DA, Ramond J-B, Malhahanaya TP, De Maayer P. Metagenomics of extreme environments. Curr Opin Microbiol. 2015;25:97–102.
2. Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA. Thermophilic ethanologenics: future prospects for second-generation bioethanol production. Trends Biotechnol. 2009;27(7):398–405.
3. Hahn MW, Lünsdorf H, Wu Q, Schauer M, Höfle MG, Boenigk J, Stadler P. Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol. 2003;69(3):1442–51.
4. Harrison JP, Gheeraert N, Tsigelnytsky D, Cockell CS. The limits for life under multiple extremes. Trends Microbiol. 2013;21(4):204–12.
5. Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S. Marine bacteria: potential candidates for bioremediation applications. Appl Microbiol Biotechnol. 2013;97(2):561–71.
6. Tisslinsky P. On the thermoophilic moulds. Ann Inst Pasteur. 1899;13:500–5.
7. Yao S, Liu Y, Zhang M, Zhang X, Li H, Zhao T, Xin C, Xu L, Zhang B, Cheng C. *Thermoactinomyces daqus* sp. nov., a thermophilic bacterium isolated from high-temperature Daqu. Int J Syst Evol Microbiol. 2014;64(1):206–10.
8. Wu H, Liu B, Pan S. *Thermoactinomyces guangxiensis* sp. nov., a thermophilic actinomycete isolated from mushroom compost. Int J Syst Evol Microbiol. 2015;65(9):2859–64.
9. Mokrane S, Bouras N, Mellat A, Lahoum A, Zitouni A, Verheecke C, Klenn HP. *Thermoactinomyces khenchelensis* sp. nov., a filamentous bacterium isolated from soil sediment of a terrestrial hot spring. Antonie van Leeuwenhoek. 2016;109(2):311–317.
10. Yao S, Xu Y, Xin C, Xu L, Liu Y, Li H, Li J, Zhao J, Cheng C. Genome sequence of *Thermoactinomyces daqus* H-18, a novel thermophilic species isolated from high-temperature Daqu. Genome announcements. 2015;3(1):e01394–01314.
11. Kutup V, Hollick G, Pagan E. *Thermoactinomyces intermedium*, a new species of amylyase-negative thermoactinomycetes. Science-Ciencia Bol Cen Sur. 1980;7:104–8.
12. Kumar S, Stecher G, Tamura K, Kumar S, Stecher G, Tamura K. MEGA7. Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–1874.
13. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26(5):541–7.
14. Miller D, Bryant J, Madsen E, Ghose W. Evaluation and optimization of DNA extraction and purification procedures for soil and sediments samples. Appl Environ Microbiol. 1999;65(11):4715–24.
15. FASTX-Toolkit T: http://hannonlab.cshl.edu/fastx_toolkit/. Accessed Mar 2016.
16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin MV, Nikolenko SI, Pham S, Priybeltsi AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
17. Overbeek R, Olson R, Pusch GCM, Olsen GJ, Davis JJ, Duss T, Edwards RA, Gerdes S, Parello B, Shukla M, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42(Database issue):D210–D214.
18. Tatusova T, DiCuccio M, Badgett A, Chetverin V, Ciulo S, Li W. Prokaryotic genome annotation pipeline. 2013.
19. Białkowska A, Grömek E, Florczak T, Kracisz J, Szułczewska K, Turkwicz M. Extrremophilic Proteases: Development of Their Special Properties, Potential Resources and Biotechnological Applications. In: Biotechnology of Extremophiles. Switzerland: Springer; 2016. 399–444.
20. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87(12):4576–9.
21. Gibbons NE, Murray RGE. Proposals Concerning the Higher Taxa of Bacteria. Int J Syst Bacteriol. 1978;28(1):1–6.
22. Garrity GM, Holt JG. The Road Map to the Manual. In: Boone DR, Castenholz RW, Garrity GM, editors. BERGEY’S Manual of Systematic Bacteriology. Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria. New York, NY: Springer New York; 2009. p. 19–20.
23. Murray R. The higher taxa, or, a place for everything. In: Bergey’s Manual of Systematic Bacteriology. 1984.
24. Ludvig WW, Whitman WB. Bacilli class nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludvig W, Rainey FA, Schleifer KH, Whitman WB, editors. Bergey’s manual of systematic bacteriology, vol. 3. 2nd ed. New York: Springer; 2009. p. 19–20.
25. Ezubej Y. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol. 2006;56(5):925–7.
26. Skerman V, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:255–420.
27. Hauduroy P, Ehringer G. Dictionnaire des bactéries pathogènes. Paris: Masson; 1953.
28. Goodfellow M, Jones AL. "Thermoactinomycetaceae". Bergey’s Manual of Systematics of Archaea and Bacteria. New York: John Wiley & Sons, Ltd; 2015. p. 1–18.
29. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.