Supplementary Information

Characterization of rare germline variants in familial multiple myeloma

Calogerina Catalano1,2,#, Nagarajan Paramasivam3,#, Joanna Blocka2, Sara Giangiobbe1,2, Stefanie Huhn2,4, Matthias Schlesner5, Niels Weinhold2, Rolf Sijmons6, Mirjam de Jong6, Christian Langer7, Klaus-Dieter Preuss8, Björn Nilsson9, Brian Durie10, Hartmut Goldschmidt2,4, Obul Reddy Bandapalli1,11,12,§, Kari Hemminki1,13,14,§ and Asta Försti1,11,12,§,*

1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
2 Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
3 Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
4 National Center for Tumor Diseases Heidelberg (NCT), Heidelberg, Germany
5 Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
6 University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
7 Kempten Clinic, Kempten, Germany
8 José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University Medical School, Homburg (Saar), Germany
9 Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
10 Cedars Sinai Cancer Center, Los Angeles, CA, USA
11 Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
12 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
13 Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
14 Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czech Republic

Equal contribution
§ Shared senior authorship
* Correspondence to: Asta Försti, Division of Pediatric Neurooncology (B062), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany. Tel.: +49-6221-421792, Fax: +49-6221-424639, Email: a.foersti@kitz-heidelberg.de
Materials and methods

Ethical approval

Collection of patient samples and associated clinico-pathological information was undertaken with written informed consent and relevant ethical review board approval at respective study centers in accordance with the tenets of the Declaration of Helsinki. The study was approved by the ethics committee of the Medical Faculty of the University of Heidelberg (study number S-589/2016), the Lund University Ethics Review Board (dnr 2010/131 and 2013/54) and the ethics committee of the Ärztekammer des Saarlandes (#154/08, #177/08). All patients enrolled by the University Medical Center Groningen (UMCG) were part of the Groningen-Heidelberg-Stettin EU TRANSCAN Familial cancer whole genome sequencing project. They were referred to UMCG clinically for diagnostics and counselling because of their cancer family history. Enrollment was therefore regarded as being directly in line with the clinical reason for testing and not subject to review by Ethics review board of the UMCG. All UMCG participants did sign informed consents stating that they agreed to undergo whole genome sequencing in this project to identify the cause of cancer predisposition (if any) in their families.

Multiple myeloma families

Altogether, 21 families with 46 affected and 20 unaffected family members were recruited (Supplementary Figure 1). Fifteen of the families were recruited in Germany, 12 in Heidelberg (1), two in Homburg and one in Ulm. Four families came from Sweden (2) and two from the Netherlands. Each family had at least two individuals diagnosed with MM or its precursors MGUS and smoldering MM (SMM). Also, patients with solitary plasmacytoma and AL amyloidosis were enrolled. Participating unaffected family members recruited in Heidelberg were analyzed for the
following parameters: blood count, creatinine, and glomerular filtration rate, calcium,
immunoglobulin levels, free light chains and their ratio, protein electrophoresis, and
immunofixation in serum and urine in order to exclude undetected MM or its precursor stages (1).
Only individuals with negative immunofixation in serum and urine were considered as unaffected.
The pedigrees of the German and Dutch families are shown in Supplementary Figure 1, each of
the four Swedish families consisted of two first- or second-degree relatives diagnosed with MM.

Whole Genome Sequencing

Samples from Heidelberg and the Netherlands were whole-genome sequenced at the core facility of
DKFZ. WGS of the MM family members was carried out using the Illumina X10 platform on DNA
isolated from the peripheral blood samples (QIAamp® DNA Mini Kit. Qiagen). WGS was
performed as paired-end sequencing with a read length of 150 bp. BWA mem (version 0.7.15, with
parameters: -T 0) and Sambamba (version 0.6.5, with parameters: t 1 -l 0 --hash-table-
size=2000000 --overflow-list-size=1000000 --io-buffer-size=64) were used to map sequences to the
reference human genome (build GRC37, assembly hs37d5) and to remove duplicates, respectively.
Platypus (version 0.8.1) was used for variant calling of small variants, single nucleotide variants
(SNVs) and indels.

Whole-exome sequencing

Samples from Homburg, Ulm and Sweden were whole-exome sequenced as described in
Halvarsson et. al. (2). Following isolation of exonic DNA by hybrid capture (SureSelect; Agilent,
Santa Clara, CA), libraries were constructed using standard methods, and sequenced on Illumina
HiSeq instruments to target mean coverage of 100x. Reads were aligned to GRCh37 and the
resulting SAM files were converted to BAM files using Picard (http://picard.sourceforge.net). The
variants were called using multi sample processing mode of the Unified Genotyper tool from GATK. To calculate background frequencies, we used pre-existing WES data from the NHLBI GO Exome Sequencing Project, which were subjected to variant calling in the same run (3). Genotypes with quality <10 or read depth <8 were marked as missing data. Variants with >10% missing data were excluded, as were samples with >5% missing data. A total of 3,597 controls of European ancestry were selected from the ESP data using the first two principal components calculated using –mds-plot option in PLINK (4).

Variant annotation and filtering

The processed list of WES variants and raw WGS variants were analyzed together in the following downstream steps. The variants were annotated with Gencode v19 gene definitions using ANNOVAR (5) and further with dbSNP (6), 1000 Genomes phase III (7), dbNSFP v2.9 (8), and ExAC (9) read depth >10. Minor allele frequency (MAF) of 0.1% was used with respect to 1000 Genomes phase III and non-TCGA exome aggregation (ExAC, version 0.3) data to remove common variants, and variant frequency of 2% from the local data sets was used to remove technical artefacts. In order to control for family relatedness and sample swaps, a pairwise comparison of variants among the cohort was carried out.

Variant prioritization: missense variants

Variant prioritization was performed using our in-house developed pedigree-based pipeline, Familial Cancer Variant Prioritization Pipeline (FCVPP) version 2 (10). Pedigree segregation was the first criterion the variants were screened for. Family members diagnosed with MM, MGUS or AL amyloidosis were considered as cases, also members with plasma cell dyscrasia, solitary plasmacytoma and aberrant plasma cell clone were considered as variant carriers and unaffected
members as non-carriers, unless they were more than 10 years younger than the earliest age of
diagnosis of cases in the family. After the pedigree segregation filtering, all the variants ranking
within the top 1% of potentially deleterious variants in the human genome were selected using the
Combined Annotation Dependent Depletion (CADD) tool v1.3; a scaled PHRED-like CADD score
greater than 20 was applied (11).

As the following step, based on the assumption that variants within genes intolerant to variation are
likely to be deleterious, only variants located in genes predicted to be intolerant by at least two of
the Residual Variation Intolerance Scores (RVISs) based on NHLBI-ESP6500 (12) and ExAC (9)
datasets and a local dataset, were selected. Additionally, they should be located in genes intolerant
for missense variants according to Z-score, developed by the ExAC consortium (9).

As next, the variants should locate at an evolutionary conserved position, which was evaluated by
Genomic Evolutionary Rate Profiling (GERP >2.0) (13), PhastCons (>0.3) (14) and Phylogenetic
P-value (PhyloP ≥3.0) (15) with an inclusion cutoff of at least two positive predictions.

The variants were further screened for their potential deleteriousness by using 10 different
prediction tools: Sorting Intolerant from Tolerant (SIFT) (16), Polymorphism Phenotyping version
2 (PolyPhen-2) HDIV (HumDiv) (17), PolyPhen-v2 HVAR (HumVar) (17), Log ratio test (LRT)
(18), MutationTaster (19), Mutation Assessor (20), Functional Analysis Through Hidden Markov
Models (FATHMM) (21), MetaSVM (8), MetaLR (8) and Protein Variation Effect Analyzer
(PROVEAN) (22). Variants predicted to be deleterious by at least 60% of these tools were selected
for further analyses.

Loss-of-function variant analysis
Frameshift, stop-gain/loss and splice-site variants affecting the canonical splice sites were considered if pedigree segregation and CADD score criteria were met. It is well known that also healthy people carry genetic variants predicted to cause loss-of function (LoF) (23). In order to discriminate pathogenic and neutral variants, we used MutPred-LOF (http://mutpredlof.cs.indiana.edu/index.html) (24). For each variant, it returns a score between zero and one; higher scores denote variants that are more likely to be pathogenic. In our analysis a threshold score of 0.50 at 5% false positive rate was used as suggested by Pagel et. al. (24). In addition, it shows up to five structural and functional mechanisms that are impacted in the affected region of the protein, accompanied by significant prior-corrected P-values. Variants that passed the filtering were further analyzed using the Translate tool (https://web.expasy.org/translate/) to translate a nucleotide (DNA/RNA) sequence to a protein sequence and IntOGen/c-BioPortal (https://www.intogen.org/search) in order to visualize the domain affected by the variant and the portion of the protein lost after the newly formed stop codon. Splice site variants were analyzed by using Human Splicing Finder (http://www.umd.be/HSF/HSF.shtml), a tool used to predict the effects of variants on splicing signals (25).

Additional variant quality control

Using the Integrative Genomics Viewer (IGV; version 2.4.10) (26), WGS data of all cases and controls were visually checked for correctness in order to increase the confidence of variant calls and reduce the risk of false positives.

Germline Copy Number Variant (gCNV) analysis

GATK gCNV module (version 4.1.7.0) was used to call CNVs from the WGS samples individually against a background of 200 WGS samples sequenced from the sample platform. The gCNVs were
called based on the best practice recommended by the GATK (https://gatk.broadinstitute.org/hc/en-us/articles/360035531152--How-to-Call-common-and-rare-germline-copy-number-variants). The major deviation was that the gCNVs were called only on the Gencode v19 exonic regions by considering them as the target regions. This decreased the turnaround time for the analysis of gCNVs from WGS data.

The resulting CNV segments with QS score above 30 were selected and annotated with the subset of gnomAD structural variant (SV) data (version 2.1, variants with ‘PASS’ filter tags and ‘DUP’ or ‘DEL’ SV types) using vcfanno (27). The segments with at least 80% overlap with a common gnomAD SV (popmax MAF > 0.1%) of same SV subtype were considered as common and removed. In addition, at least 50% of the targets (exons here) in the gCNV segments should have the denoised ploidies among the bottom (in the case on deletion) or top (in the case of duplication) 5% denoised cohort ploidies to be considered as a rare gCNVs. Subsequently, the candidate rare gCNVs were selected if they followed the disease inheritance pattern in the family.

Protein function

We used the UniProt Knowledgebase (UniProtKB, https://www.uniprot.org/) to evaluate the general function of the proteins, whose sequence was affected by the variants identified in our study (28).

Details of identified candidate genes, proteins and their function

In the main text we referred to some genes and gene variants and here we give functional details with references. The functions of the gene products were collected from the UniProtKB database and literature search.
Missense variants: genes, proteins and their function

After the FCVPPv2 application, a total of 109 potential pathogenic missense variants were identified; in most families several candidates were found and in four families none (Supplementary Table 2). All variants were private for each family, except for two genes, KIF1B (kinesin family member 1B) and DCHS1 (dachsous cadherin-related 1), in which two different missense variants were found in two unrelated families (Families 10 and 18 for KIF1B and 15 and 17 for DCHS1). KIF1B is involved in the transport of mitochondria and synaptic vesicles (29, 30). In Family 18, the variant (ENST00000263934, p.Asn1594Lys) was located between a domain of unknown function (DUF 3694) and the pleckstrin homology (PH) domain, which plays a role in recruiting proteins to different membranes and targeting them to appropriate cellular compartments. In Family 10, the variant (p.Leu181Met) was located within the kinesin motor domain. DCHS1 is a calcium-dependent cell adhesion protein. Both variants in DCHS1 (ENST00000299441, p.Arg112Gln, p.Ser667Cys) were located within one of the extracellular cadherin domains, which are thought to mediate cell-cell contacts (CADD scores were 33 and 25).

Among the other genes harboring missense variants, DAB2IP has tumor suppressor but also oncogenic properties in many solid tumors and ABL2 is an oncogene in T-cell acute lymphocytic leukemia and acute myeloid leukemia (31-33). The former has diverse signal transduction functions and it is implicated in immune processes, as are TLN1, ZFAT, CLCF1, IL11RA, SEC14L1, SAMHD1, DCST1, TPP2 and MYO1G. ZFAT and TPP2 are associated with autoimmune manifestations, and TPP2 and DCST1 with antigen presentation to T-cells; DCST1 additionally regulates type I interferon mediated innate immune response to control virus infection (34). TPP2 has been suggested to be the autoantigen target of MM and MGUS M-proteins (35).
Another group of genes with key regulatory functions constituted FOXO1, B4GALT1, and NKX3-2. FOXO1 is a member of the forkhead box family of transcription factors. It is the main target of insulin signaling and it increases osteoblast numbers and regulates B cell development (36). The protein interacts with recombination activating proteins (RAG1 and RAG2) that introduces DNA breaks at immunoglobulin genes required for V(D)J recombination in developing lymphocytes (37). FOXO1 mutations may thus contribute to aberrant RAG-dependent chromosomal translocations.

Other potentially relevant pathways include signal transduction (kinases and phosphatases), chromatin remodeling, hematopoiesis and apoptotic pathways, represented by a number of candidate genes, such as B4GALT1, NKX3-2, KMT2A and USP28. Glycosylation of immunoglobulin G (IgG) influences IgG effector functions and the addition of galactose to IgG glycans is synthesized by beta-1,4-galactosyltransferase 1, encoded by the B4GALT1 gene. Variants in this gene were associated with IgG glycosylation levels, which correlated with some autoimmune diseases and hematological neoplasms, including MM (38, 39). NKX3-2 (homeobox protein Nkx-3.2) is a member of the HOX gene transcription factors family, which are frequently dysregulated in hematologic malignancies (40). Nkx-3.2 regulates expression of chondromodulin-1 in developing cartilage and in endochondral ossification (41).

Our candidate list included two genes, KMT2A and USP28, functionally related to the recently reported MM predisposing genes, LSD1/KDM1A, encoding a lysine-specific demethylase, and USP45, an apoptosis-related gene regulating DNA repair (42, 43). KMT2A (alias MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase, which plays an essential role in early development and hematopoiesis and which mediates chromatin modifications associated with epigenetic transcriptional activation (44). Somatic mutations in KMT2 gene family are reported to be among the most frequent variants in many types of cancers, including MM (45). Carcinogenic mechanism
for KMT2A mutations and the common fusion genes, which KMT2A is a part of, may be related to transcription of homeobox (HOX) target genes (45). USP28 is a deubiquitinase involved in the DNA damage-induced apoptosis. It regulates MYC protein stability in response to DNA damage (46). In MM, overexpression of MYC, mainly through complex chromosomal rearrangements, has been shown to promote myeloma cell survival and to lead to poor prognosis (47).

We checked our gene list also for the presence of the 82 somatically mutated driver genes in MM, described in Walker et al. (48) and Maura et al. (49), but only SAMHD1 passed all our in-house pipeline filters. SAMHD1 is a somatic driver in MM and the protein plays a role in maintaining dNTP levels in regulating DNA replication and damage repair and counteracting viral infections (50). It enhances immunoglobulin hypermutation in B-lymphocyte development. The present variant (ENST00000262878, Gly211Arg) maps within the histidine/aspartate domain, which possesses triphosphohydrolase activity through which SAMHD1 hydrolyzes dNTPs to deoxynucleosides (51).

LoF variants: genes, proteins and their function

A total of 36 LoF variants were identified in the MM families (Supplementary Table 3). If we would apply a MutPred-LOF score higher than 0.50 at a 5% false positive rate, as suggested by Pagel et al. (24), only two frameshift variants, in the genes SLC30A5 and LONP2, and six stop codon variants would pass the threshold. None of these had an apparent relationship to MM. Variants in the two genes related to immune function, IL3RA and IL17REL, had a low MutPred score. This score is not applicable to splice site variants. Of the eight splice site variants, five were predicted by Human Splicing Finder to alter the splicing motifs (indicate by ‘yes’ in Supplementary Table 3), however with no link to MM. Many of the genes with LoF mutations
encode proteins with housekeeping functions. LONP2 is an ATP-dependent protease that plays a role in maintaining peroxisome homeostasis. CSGALNACT2 is a member of the chondroitin N-acetylgalactosaminyltransferase family. HMGCLL1 is a non-mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase involved in ketogenesis. FUK catalyzes the utilization of free L-fucose in glycoprotein and glycolipid synthesis.

Copy number variants: genes, proteins and their function

We identified seven CNVs that segregated with MM in the families (Supplementary Table 4). These CNVs affected the coding regions of 11 genes. Duplication of chr4:15936942-16178663 in Family 5 covered the genes encoding fibroblast growth factor binding proteins FGFBP1 and FGFBP2, prominin 1 (*PROM1*) involved in suppression of cell differentiation and maintenance of stem cell properties and transmembrane anterior posterior transformation protein 1 homolog (*TAPT1*). One of the primary genetic events in MM is t(4:14) translocation, creating a fusion between the immunoglobulin heavy chain (*IGH*) enhancer and *FGFR3* and leading to overexpression of *FGFR3* (52). *FGFBP1* and *FGFBP2* encode proteins that are involved in FGF ligand bioactivation by releasing them from extracellular matrix. Thus, duplication of these two genes may lead to activation of the FGF signaling, enhanced MM cell proliferation and survival and affect bone homeostasis (53, 54). *PROM1* is considered a marker of both hematopoietic progenitor and stem cells and cancer stem cells and it is overexpressed in acute lymphoblastic leukemia and many solid cancers contributing to the growth of the cancer cells (55, 56).

In a review of cancer predisposing genes it was observed that over 40% of germline variants were in genes that functioned also as somatic drivers (57). In the above, we referred to some somatic drivers, and some of the observed genes are known to interact with key signaling pathways in MM,
including PI3K/Akt/mTOR, Ras/Raf/MEK/MAPK, JAK/STAT, NF-κB, Wnt/β-catenin, and RANK/RANKL/OPG (58). Among the relevant genes in our list, DAB2IP, encoding a Ras-GTPase activating protein, modulates key oncogenic pathways such as PI3K/Akt, NF-κB, and Wnt/β-catenin (31); FOXO1 encodes for a downstream effector of Akt signaling (36); the LRP1B gene product negatively regulates the Wnt/β-catenin/TCF signaling, through its interaction with DVL2 (59).

References

1. Blocka J. et al. Familial Cancer: How to Successfully Recruit Families for Germline Mutations Studies? Multiple Myeloma as an Example. Clin Lymphoma Myeloma Leuk. 19, 635-644 e632 (2019).
2. Halvarsson B. M. et al. Direct evidence for a polygenic etiology in familial multiple myeloma. Blood Adv. 1, 619-623 (2017).
3. Carson A. R. et al. Effective filtering strategies to improve data quality from population-based whole exome sequencing studies. BMC Bioinformatics. 15, 125 (2014).
4. Chang C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 4, 7 (2015).
5. Wang K. et al. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
6. Smigielski E. M. et al. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 28, 352-355 (2000).
7. Genomes Project C. et al. A global reference for human genetic variation. Nature. 526, 68-74 (2015).
8. Liu X. et al. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat. 37, 235-241 (2016).
9. Lek M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536, 285-291 (2016).
10. Kumar A. et al. Familial Cancer Variant Prioritization Pipeline version 2 (FCVPPv2) applied to a papillary thyroid cancer family. Sci Rep. 8, 11635 (2018).
11. Kircher M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 46, 310-315 (2014).
12. Petrovski S. et al. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9, e1003709 (2013).
13. Cooper G. M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901-913 (2005).
14. Siepel A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034-1050 (2005).
15. Pollard K. S. et al. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110-121 (2010).
16. Kumar P. et al. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc.* 4, 1073-1081 (2009).
17. Adzhubei I. et al. Predicting functional effect of human missense mutations using PolyPhen-2. *Curr Protoc Hum Genet. Chapter 7*, Unit7 20 (2013).
18. Chun S. et al. Identification of deleterious mutations within three human genomes. *Genome Res.* 19, 1553-1561 (2009).
19. Schwarz J. M. et al. MutationTaster evaluates disease-causing potential of sequence alterations. *Nat Methods.* 7, 575-576 (2010).
20. Reva B. et al. Predicting the functional impact of protein mutations: application to cancer genomics. *Nucleic Acids Res.* 39, e118 (2011).
21. Shihab H. A. et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. *Hum Mutat.* 34, 57-65 (2013).
22. Choi Y. et al. Predicting the functional effect of amino acid substitutions and indels. *PLoS One.* 7, e46688 (2012).
23. Kaiser V. B. et al. Homozygous loss-of-function variants in European cosmopolitan and isolate populations. *Hum Mol Genet.* 24, 5464-5474 (2015).
24. Pagel K. A. et al. When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. *Bioinformatics.* 33, i389-i398 (2017).
25. Desmet F. O. et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. *Nucleic Acids Res.* 37, e67 (2009).
26. Thorvaldsdottir H. et al. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform.* 14, 178-192 (2013).
27. Pedersen B. S. et al. Vc anno: fast, flexible annotation of genetic variants. *Genome Biol.* 17, 118 (2016).
28. UniProt C. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Res.* 47, D506-D515 (2019).
29. Matsushita M. et al. A novel kinesin-like protein, KIF1Bbeta3 is involved in the movement of lysosomes to the cell periphery in non-neuronal cells. *Traffic.* 5, 140-151 (2004).
30. Nangaku M. et al. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. *Cell.* 79, 1209-1220 (1994).
31. Bellazzo A. et al. Block one, unleash a hundred. Mechanisms of DAB2IP inactivation in cancer. *Cell Death Differ.* 24, 15-25 (2017).
32. Greuber E. K. et al. Role of ABL family kinases in cancer: from leukaemia to solid tumours. *Nat Rev Cancer.* 13, 559-571 (2013).
33. Liu L. et al. DAB2IP in cancer. *Oncotarget.* 7, 3766-3776 (2016).
34. Nair S. et al. Global functional profiling of human ubiquitome identifies E3 ubiquitin ligase DCST1 as a novel negative regulator of Type-I interferon signaling. *Sci Rep.* 6, 36179 (2016).
35. Preuss K. D. et al. Identification of antigenic targets of paraproteins by expression cloning does not support a causal role of chronic antigenic stimulation in the pathogenesis of multiple myeloma and MGUS. *Int J Cancer.* 121, 459-461 (2007).
36. Ushmorov A. et al. FOXO in B-cell lymphopoiesis and B cell neoplasia. *Semin Cancer Biol.* 50, 132-141 (2018).
37. Ochodnicka-Mackovicova K. et al. The DNA Damage Response Regulates RAG1/2 Expression in Pre-B Cells through ATM-FOXO1 Signaling. *J Immunol.* 197, 2918-2929 (2016).
38. Lauc G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. *PLoS Genet.* 9, e1003225 (2013).
39. Zhang Z. et al. Serum protein N-glycosylation changes in multiple myeloma. *Biochim Biophys Acta Gen Subj.* **1863**, 960-970 (2019).
40. Agnelli L. et al. Overexpression of HOXB7 and homeobox genes characterizes multiple myeloma patients lacking the major primary immunoglobulin heavy chain locus translocations. *Am J Hematol.* **86**, E64-66 (2011).
41. Zhu S. et al. Chondromodulin-1 in health, osteoarthritis, cancer, and heart disease. *Cell Mol Life Sci.* **76**, 4493-4502 (2019).
42. Waller R. G. et al. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk. *PLoS Genet.* **14**, e1007111 (2018).
43. Wei X. et al. Germline Lysine-Specific Demethylase 1 (LSD1/KDM1A) Mutations Confer Susceptibility to Multiple Myeloma. *Cancer Res.* **78**, 2747-2759 (2018).
44. Dupere-Richer D. et al. Epigenetic regulatory mutations and epigenetic therapy for multiple myeloma. *Curr Opin Hematol.* **24**, 336-344 (2017).
45. Fagan R. J. et al. COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer. *Cancer Lett.* **458**, 56-65 (2019).
46. Popov N. et al. The ubiquitin-specific protease USP28 is required for MYC stability. *Nat Cell Biol.* **9**, 765-774 (2007).
47. Walker B. A. et al. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients. *Blood Cancer J.* **4**, e191 (2014).
48. Walker B. A. et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. *Blood.* **132**, 587-597 (2018).
49. Maura F. et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. *Nat Commun.* **10**, 3835 (2019).
50. Kohnken R. et al. Regulation of deoxynucleotide metabolism in cancer: novel mechanisms and therapeutic implications. *Mol Cancer.* **14**, 176 (2015).
51. Hartmann G. Nucleic Acid Immunity. *Adv Immunol.* **133**, 121-169 (2017).
52. Foltz S. M. et al. Evolution and structure of clinically relevant gene fusions in multiple myeloma. *Nat Commun.* **11**, 2666 (2020).
53. Krejci P. et al. The fibroblast growth factors in multiple myeloma. *Leukemia.* **20**, 1165-1168 (2006).
54. Labanca E. et al. Fibroblast growth factors signaling in bone metastasis. *Endocr Relat Cancer.* **27**, R255-R265 (2020).
55. Godfrey L. et al. H3K79me2/3 controls enhancer-promoter interactions and activation of the pan-cancer stem cell marker PROM1/CD133 in MLL-AF4 leukemia cells. *Leukemia.* (2020).
56. Saha S. K. et al. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis. *Cancer Gene Ther.* **27**, 147-167 (2020).
57. Rahman N. Realizing the promise of cancer predisposition genes. *Nature.* **505**, 302-308 (2014).
58. Hu J. et al. Targeting signaling pathways in multiple myeloma: Pathogenesis and implication for treatments. *Cancer Lett.* **414**, 214-221 (2018).
59. Wang Z. et al. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells. *Exp Cell Res.* **357**, 1-8 (2017).
Supplementary Table 1. Summary of the variants identified in the multiple myeloma families. Number of variants after each step of Familial Cancer Variant Prioritization Pipeline version 2 is shown for each family.

Family ID	No. cases	No possible carriers	No. healthy	MAF <0.1%	Pedigree segregation	CADD >20	Nonsynonymous variants	Frameshift/stopgain/splice site variants	Non-coding variants	Nonsynonymous variants after pipeline	Frameshift/stopgain variants after filtering	Splice site variants after filtering
Family 1	2	2	73103	8170	55	23	1	31	5	0	1	1
Family 2	2	2	38348	12921	88	44	1	43	14	0	1	1
Family 3	2	2	82691	1306	3	2	0	1	0	0	0	0
Family 4	2	2	75478	3072	6	3	0	3	0	0	0	0
Family 5	2	1	73995	1159	7	5	1	1	1	1	0	0
Family 6	2	1	10699	33089	187*	74	9	101	6	7	2	2
Family 7	2	2	72315	15397	101*	53	6	41	8	4	0	0
Family 8	4	2	91888	3496	13	5	1	7	0	0	1	1
Family 9	3	2	46742	7027	40#	21	2	16	6	0	0	0
Family 10	2	1	51782	7223	48#	28	3	16	4	2	1	1
Family 11	2	2	41753	12709	108#	58	4	45	7	3	1	1
Family 12	2		49627	4815	28	14	0	14	3	0	0	0
Family 13	2	2	938	208	51	46	5	0	12	5	0	0
Family 14	2	2	862	20	4	4	0	0	0	0	0	0
Family 15	2		626	197	46#	42	2	0	7	2	0	0
Family 16	2	1	50077	6775	47#	20	3	23	2	1	0	0
Family 17	3	1	73373	3014	18	12	1	5	3	1	0	0
Family 18	2		462	135	33	30	2	1	5	0	0	0
Family 19	2		497	163	35	34	1	0	8	0	1	1
Family 20	2		496	171	46#	37	6	2	10	5	1	1
Family 21	2		477	142	35	33	1	1	8	1	0	0
MAF, minor allele frequency; CADD, Combined Annotation-Dependent Depletion
** Whole exome sequencing
* Includes 2 nonframeshift and 1 synonymous variants
Includes 1 nonframeshift variant
µ Includes 1 synonymous variant
§ Includes 2 synonymous variant
Supplementary Table 2. Missense variants prioritized using the FCVPPv2.

Family	GENE	Gene name	CHROM_POS_REF_ALT	Ensembl transcript:exon:nucleotide: amino acid	CADD	ExAC z-score	Deleteriousness score (n/10)*	Function		
Family 1	CNOT10	CCR-NOT Transcription Complex Subunit 10	3_32776360_T_C	ENST00000328834.5:exon1:c:T1406C:p.L469S	28.80	0.71	6	transcription; translation regulation		
	PTPRG	Protein Tyrosine Phosphatase Receptor Type G	3_62268487_T_C	ENST00000474889.1:exon2:c:T3998C:p.I333T	28.10	0.34	10	protein phosphatase		
	BPGM	Bisphosphoglycerate Mutase	7_134346548_G_A	ENST00000393132.2:exon3:c.G289A:p.G97S	29.00	0.77	8	glycolysis		
	SNX25	Sorting Nexin 25	4_186185615_T_C	ENST00000504273.1:exon4:c.T263C:p.F88S	28.00	0.07	7	protein transport		
	TAB1	TGF-Beta Activated Kinase 1 (MAP3K7) Binding Protein 1	22_39814820_G_A	ENST00000393132.6:exon6:c.G634A:p.E212K	24.70	1.79	6	intracellular signaling		
Family 2	NADSYN1	NAD Synthetase 1	11_71201935_T_G	ENST00000319023.2:exon17:c.T1607G:p.I536S	29.60	0.06	7	NAD biosynthesis/metabolism		
	TCTN1	Tectonic Family Member 1	12_111057706_G_A	ENST00000397659.4:exon2:c.G286A:p.D96N	32.00	0.20	9	cilium biogenesis/degradation		
	SLC8A3	Solute Carrier Family 8 Member A3	14_70633677_C_G	ENST00000381269.2:exon2:c.G1463C:p.R88S	25.60	0.00	6	Ca2+ homeostasis		
	NEURL	Neuralized E3 Ubiquitin Protein Ligase 1	10_105344805_C_T	ENST00000369780.4:exon4:c.C1162T:p.R388C	34.00	3.48	7	ubiquitination; Notch signaling		
	SEMA3F	Semaphorin 3F	3_50225153_C_A	ENST00000028229.3:exon19:c.C1963A:p.R655S	34.00	2.68	7	neuronal development; anti-tumorigenic in endothelial cells		
	MYH7	Myosin Heavy Chain 7	14_23898252_A_G	ENST00000355349.3:exon1:c.T1319C:p.V440A	25.80	6.54	9	muscle myosin		
	LRP1B	LDL Receptor Related Protein 1B	2_141473606_G_A	ENST00000389484.3:exon37:c.C5959T:p.R1987C	34.00	0.52	9	endocytosis		
	EXOC3L4	Exocyst Complex Component 3 Like 4	14_103576417_C_T	ENST00000380069.3:exon11:c.C2026T:p.R676W	33.00	0.72	7	exocytosis		
	ABCF2	ATP Binding Cassette Subfamily F Member 2	7_150923514_C_T	ENST00000287844.2:exon2:c.G31A:p.A11T	23.50	2.70	6	cellular transporter?		
	DAB2IP	DAB2 Interacting Protein	9_124522455_G_A	ENST00000259371.2:exon6:c.G823A:p.G275R	29.00	2.61	9	tumor suppressor; signal transduction; immune response		
Gene	Description	Gene ID	Exon	cDNA Change	Protein Change	Score	q-value	p-value	Function	
----------	--	-----------------------	------	-------------	----------------	-------	---------	---------	---	
NKX3-2	NK3 Homeobox 2	4_13543940_G_T		c.C679A	p.H227N	28.20	1.00	9	skeletal development; transcription regulation	
TLN1	Talin 1	9_35725284_G_T		c.C165A	p.D55E	26.20	5.13	8	cell adhesion; bone metabolism; immune response	
MYH14	Myosin Heavy Chain 14	19_50752254_C_T		c.C1340T	p.A447V	34.00	1.70	9	cellular myosin	
RSPRY1	Ring Finger And SPRY Domain Containing 1	16_57250905_C_T		c.C65G	p.P22R	23.70	3.71	7	unknown function	
Family 5	BRD3	9_136918535_G_C		c.C395G	p.S132C	28.40	..	9	differentiation; spermatogenesis	
Family 6	TSNAX, TSNAX-DISC1	1_231696901_C_G		c.G463A	p.G155S	27.90	0.81	8	neuronal development; immune response	
UGDH	UDP-Glucose 6-Dehydrogenase	4_39523035_G_A		c.G4492495	p.G1867T	31.00	2.24	8	protein modification/glycosylation	
WNT7A	Wnt Family Member 7A	3_13916462_C_T		c.G1886T	p.G629V	31.00	2.24	8	neuronal development; immune response	
Family 7	CLCF1	11_67132822_C_T		c.G638G	p.G155S	27.90	0.81	8	neuronal development; immune response	
MGAT5B	Alpha-1,6-Mannosylglycoprotein 6-Beta-N-Acetylglucosaminyltransferase B	17_74942495_G_T		c.G1886T	p.G629V	31.00	2.24	8	protein modification/glycosylation	
MYRF	Myelin Regulatory Factor	11_61539096_C_G		c.C388G	p.P280A	23.50	2.39	6	oligodendrocyte differentiation	
HOXC8	Homeobox C8	12_54404885_G_A		c.G449A	p.R150H	29.60	1.44	10	cartilage differentiation	
DSP	Desmoplakin	6_7580073_C_T		c.C3650T	p.T1217M	24.40	0.91	6	desmosomal cell adhesion	
Gene	Protein Name	Chromosome	Start Position	Stop Position	Exon	Effect	p-value	q-value	Family	Function
--------------	---	------------	----------------	---------------	------	--------	---------	---------	--------	--
SLC22A6	Solute Carrier Family 22 Member 6	11	62744737_A_T		ENST0000377871.3:exon9: c.T1484A:p.V495E	24.70	0.04	7	organic anion transport	
B4GALT1	Beta-1,4-Galactosyltransferase 1	9	33166776_G_A		ENST0000379731.4:exon1: c.C392T:p.P131L	28.70	1.73	7	glycoconjugate and lactose biosynthesis; cell/matrix adhesion	
SEMA5A	Semaphorin 5A	5	9197323_C_A		ENST0000382496.5:exon1: c.G1025T:p.R342L	34.00	1.68	6	neurogenesis; angiogenesis	
Family 9	FRY	13	32698466_G_A		ENST0000380250.3:exon5: c.G508A:p.A170T	33.00	4.03	7	mitotic check-point	
PDE1A	Phosphodiesterase 1A	2	183070764_G_C		ENST0000435564.1:exon8: c.C853G:p.R285G	34.00	0.45	10	signal transduction	
FOXO1	Forkhead Box O1	13	41240315_G_T		ENST0000379561.5:exon1: c.C35A:p.P12Q	26.10	2.77	9	transcription factor; insulin signaling; bone metabolism	
WNK3	WNK Lysine Deficient Protein Kinase 3	X	54263446_G_C		ENST0000354646.2:exon2: c.C4553G:p.S1518C	26.80	1.57	7	electrolyte homeostasis	
IL11RA	Interleukin 11 Receptor Subunit Alpha	9	34658519_C_T		ENST0000555003.1:exon8: c.C649T:p.R217C	25.30	0.30	6	bone metabolism; immune response	
SCN4A	Sodium Voltage-Gated Channel Alpha Subunit 4	17	62018409_G_A		ENST0000435607.1:exon2: c.C5233T:p.R1745C	24.60	1.23	10	sodium channel	
Family 10	KIF1B	1	10428554_C_G		ENST0000263934.6:exon4: c.C6464G:p.N1548K	31.00	4.04	6	cellular transporter	
PHACTR4	Phosphatase And Actin Regulator 4	1	28800291_A_G		ENST0000373839.3:exon7: c.A1049G:p.H350R	22.60	0.56	6	neurogenesis	
SLC50A1	Solute Carrier Family 50 Member 1	1	155109327_G_A		ENST0000368404.4:exon3: c.G182A:p.G61E	28.50	1.13	10	sugar transporter	
BIRC6	Baculoviral IAP Repeat Containing 6	2	32626383_G_A		ENST0000421745.2:exon7: c.G1187A:p.C396Y	26.50	1.40	7	apoptosis; ubiquitination	
Family 11	KIAA119	15	81201631_G_A		ENST0000394683.3:exon1: c.G1781A:p.G594D	29.00	2.18	10	epithelial-mesenchymal transition	
EPOR	Erythropoietin Receptor	19	11491590_A_T		ENST0000222139.6:exon6: c.T797A:p.L266Q	28.80	2.20	9	signal transduction	
ZNF236	Zinc Finger Protein 236	18	74589998_T_C		ENST0000253159.8:exon7: c.T868C:p.C290R	27.50	4.89	7	transcription regulation	
GRM4	Glutamate Metabotropic Receptor 3	6	34024438_G_A		ENST0000538487.2:exon6: c.C1051T:p.R351C	34.00	3.48	10	glutamatergic neurotransmission	
Gene	Description	Chromosome	Exon	Transcript ID	Mutation	p-value	Odds Ratio	Effect Size	Function/Effect	
-----------	--	------------	------	-----------------------------	------------------	---------	------------	-------------	---	
DHX16	DEAH-Box Helicase 16	6_30638221_C_T	4	ENST00000376442.3:exon4	c.G632A:p.R211H	27.50	3.68	7	mRNA processing; cell cycle progression	
FLNC	Filamin C	7_128492756_C_T	3	ENST00000325888.8:exon3	6:c.C5954T:p.S1985L	34.00	4.62	7	muscle-specific actin-cross-linking protein	
SYNJ1	Synaptojanin 1	21_34029139_C_T	3	ENST00000433931.2:exon2	1:c.G2770A:p.V924I	25.90	1.68	9	endocytosis	
TGIF2- RAB5IF Readthrough	TGFβ Induced Factor Homeobox 2, TGIF2-C20orf24	20_35207278_G_A	3	ENST00000373874.2:exon2	c.G101A:p.R34Q	34.00	..	8	transcription repression	
AMPD3	Adenosine Monophosphate Deaminase 3	7_10516449_C_T	1	ENST00000396554.3:exon8	c.C1165T:p.R389W	34.00	4.62	7	muscle-specific actin-cross-linking protein	
BTBD2	BTB Domain Containing 2	19_1987659_C_T	2	ENST00000255608.4:exon6	c.G1021A:p.E341K	35.00	2.93	7	protein-protein interaction	
TRIM71	Tripartite Motif Containing 71	3_32932492_A_G	5	ENST00000383763.5:exon4	c.A1796G:p.E599G	24.00	5.59	10	RNA-mediated gene silencing; ubiquitination	
EIF2B3	Eukaryotic Translation Initiation Factor 2B Subunit 2	1_45446770_G_A	2	ENST00000360403.2:exon2	c.C71T:p.P24L	32.00	0.56	10	protein biosynthesis	
BBS2	Bardet-Biedl Syndrome 2	16_56540081_T_C	1	ENST00000245157.5:exon6	c.A668G:p.N223S	23.70	0.72	9	cilium biogenesis/degradation; protein transport	
KMT2A	Lysine Methyltransferase 2A	11_118376242_C_T	3	ENST00000534358.1:exon2	7:c.C9635T:p.T3212I	23.20	6.64	6	histone modification; hematopoiesis	
DLGAP4	DLG Associated Protein 4	20_35060539_G_A	3	ENST00000373913.3:exon3	c.G419A:p.R140H	31.00	3.26	7	molecular organization of synapses; neuronal cell signaling	
INTS5	Integrator Complex Subunit 5	11_62415289_C_T	2	ENST00000330574.2:exon2	c.G2263A:p.G755S	29.60	2.28	7	snRNA transcription and processing	
HSPB1	Heat Shock Protein Family B (Small) Member 1	7_75932109_G_C	2	ENST00000248553.6:exon1	c.G80C:p.R27P	31.00	1.54	9	molecular chaperone	
TLE1	TLE Family Member 1, Transcriptional Corepressor	9_84228369_G_A	1	ENST00000376499.3:exon1	2:c.C986T:p.P329L	25.70	3.23	7	transcriptional corepressor	
SEC14L1	SEC14 Like Lipid Binding 1	17_75205479_A_G	2	ENST00000436233.4:exon1	4:c.A1532G:p.E511G	34.00	2.60	7	signal transduction inhibition; innate immunity	
THR8	Thyroid Hormone Receptor 8	3_24185122_T_C	2	ENST00000396671.2:exon8	c.A608G:p.E203G	24.40	2.84	10	transcription regulation	
Gene Symbol	Gene Name	Chromosome	Transcript ID	Mutation Details	Log R ratio			Function		
---	---	---	---	---	---					
UFC1	Ubiquitin-Fold Modifier Conjugating Enzyme 1	1_161123804_C_T	ENST00000368003.5:exon1: c.C17T:p.T6M	32.00	0.54	7	ubiquitination			
STARD10	STAR Related Lipid Transfer Domain Containing 10	11_72466798_C_T	ENST00000334805.6:exon6: c.G578A:p.G193D	32.00	1.78	6	lipid transporter			
COL5A2	Collagen Type V Alpha 2 Chain	2_189957140_G_A	ENST00000334805.6:exon6: c.G578A:p.G193D	32.00	1.78	6	lipid transporter			
SAMHD1	SAM And HD Domain Containing Deoxynucleoside Triphosphohydrolase 1	20_35555650_C_T	ENST00000326878.4:exon6: c.G631A:p.G211R	34.00	2.20	10	immune response			
DCHS1	Dachsous Cadherin-Related 1	11_6662510_C_T	ENST00000299441.3:exon2: c.G335A:p.R112Q	33.00	2.34	6	calcium-dependent cell adhesion			
KLHDC3	Kelch Domain Containing 3	6_42986424_C_T	ENST00000326974.4:exon7: c.C787T:p.R263W	35.00	3.83	7	meiotic recombination			
ATLAS	Atlastin GTPase 3	11_63419412_A_C	ENST00000398868.3:exon5: c.T557G:p.L186R	29.20	0.82	10	endoplasmic reticulum tubular network biogenesis			
WFS1	Wolframin ER Transmembrane Glycoprotein	4_6296854_G_A	ENST00000226760.1:exon7: c.G799A:p.D267N	24.10		6	Ca2+ homeostasis			
FGG	Fibrinogen Gamma Chain	4_15553353_C_T	ENST00000336098.3:exon3: c.G124A:p.G42S	32.00	0.28	10	hemostasis			
DCST1	DC-STAMP Domain Containing 1	1_155006565_C_T	ENST00000295542.1:exon2: c.C537T:p.R18L	25.90	0.41	6	immune response			
SLC12A7	Solute Carrier Family 12 Member 7	5_1087125_A_G	ENST00000264930.5:exon6: c.T568C:p.S190P	24.80	1.65	10	ion transport			
KIF1B	Kinesin Family Member 1B	1_10327549_C_A	ENST00000317370.8:exon8: c.G973A:p.A325T	27.10	4.04	8	cellular transporter			
SLC2A4	Solute Carrier Family 2 Member 4	17_7188211_G_A	ENST00000326934.6:exon6: c.C541A:p.L181M	29.50	0.64	9	glucose transporter			
Gene	Description	Accession Numbers	Exon	Chromosome	Position (bp)	GO Terms				
-----------------	---	--	------	------------	--------------	---				
ATP11A	ATPase Phospholipid Transporting 11A	ENST00000487903.1:exon2:ENST00000487903.1:exon2	12	13	113512584	24.50 1.44 10 lipid transporter				
ITPRP	Inositol 1,4,5-Trisphosphate Receptor Interacting Protein	ENST00000278071.2:exon3:ENST00000278071.2:exon3	6	10	106074540	31.00 0.39 6 intracellular calcium signaling				
GPR125	ADGRA3; Adhesion G Protein-Coupled Receptor A3	ENST00000334004.5:exon1:ENST00000334004.5:exon1	5	4	22390532	26.20 0.73 7 signal transduction				
Family 19	ABL2 ABL Proto-Oncogene 2, Non-Receptor Tyrosine Kinase	ENST00000502732.1:exon4:ENST00000502732.1:exon4	9	11	179095661	34.00 1.31 10 cell growth and survival				
PDCD11	Programmed Cell Death 11	ENST00000369797.3:exon1:ENST00000369797.3:exon1	2	10	105173778	26.00 0.56 7 rRNA processing				
Family 20	CHD3 Chromodomain Helicase DNA Binding Protein 3	ENST00000330494.7:exon3:ENST00000330494.7:exon3	6	17	78102277	26.10 7.15 10 chromatin remodeling				
ATP2B2	ATPase Plasma Membrane Ca2+ Transporting 2	ENST00000360273.2:exon2:ENST00000360273.2:exon2	10	3	10381937	22.90 6.36 7 Ca2+ homeostasis				
OIT3	Oncoprotein Induced Transcript 3	ENST00000334011.5:exon7:ENST00000334011.5:exon7	10	10	74684222	24.10 0.73 10 liver development and function				
DAAM1	Dishevelled Associated Activator Of Morphogenesis 1	ENST00000395125.1:exon2:ENST00000395125.1:exon2	5	14	59835503	34.00 1.22 10 cell polarity; Wnt signaling				
SLC6A19	Solute Carrier Family 6 Member 19	ENST00000304460.10:exon3:ENST00000304460.10:exon3	10	5	1210676	27.60 0.37 8 amino acid transport				
Gene	Description	Chromosome	Position	Reference Allele	Alternative Allele	CADD Score	PolyPhen-2 HDIV Score	ExAC MAF	Function	
------------	------------------------------------	------------	----------	------------------	--------------------	------------	-----------------------	----------	---------------------------	
MYO1G	Myosin IG	7_45006305	C_T	ENST00000258787.7:exon1:5:c.G1915A:p.A639T	ENST00000258787.7:exon1:5:c.G1915A:p.A639T	33.00	1.83	9	immune response	
DNAH2	Dynein Axonemal Heavy Chain 2	17_7691226	A_T	ENST00000572933.1:exon1:3:c.A6652T:p.T2218S	ENST00000572933.1:exon1:3:c.A6652T:p.T2218S	24.20	2.44	10	motor protein	
DARS2	Aspartyl-tRNA Synthetase, Mitochondrial	1_173800731	G_T	ENST00000361951.4:exon5: c.G455T:p.C152F	ENST00000361951.4:exon5: c.G455T:p.C152F	27.20	0.56	8	tRNA aminoacylation; protein biosynthesis	
ATP1B2	ATPase Na+/K+ Transporting Subunit Beta 2	17_7559161	G_A	ENST00000250111.4:exon7: c.G821A:p.R274Q	ENST00000250111.4:exon7: c.G821A:p.R274Q	29.00	0.64	6	ion transport	
RAPGEF4	Rap Guanine Nucleotide Exchange Factor 4	2_173832028	A_G	ENST00000397081.3:exon1:0:c.A860G:p.Y287C	ENST00000397081.3:exon1:0:c.A860G:p.Y287C	27.90	1.55	9	exocytosis	
ADAT3	Adenosine Deaminase TRNA Specific 3	19_1912227	G_T	ENST00000329478.2:exon2: c.G181T:p.A61S	ENST00000329478.2:exon2: c.G181T:p.A61S	24.70	1.42	7	tRNA processing	
MORN4	MORN Repeat Containing 4	10_99379394	C_A	ENST00000307450.6:exon2: c.G17T:p.G6V	ENST00000307450.6:exon2: c.G17T:p.G6V	34.00	0.22	8	response to axon injury	
DDX59	DEAD-Box Helicase 59	1_200619764	A_G	ENST00000331314.6:exon5: c.T1103C:p.L368P	ENST00000331314.6:exon5: c.T1103C:p.L368P	29.50	0.08	6	RNA metabolism	
USP28	Ubiquitin Specific Peptidase 28	11_113683078	C_A	ENST0000003302.4:exon1:6:c.G1892T:p.R631I	ENST0000003302.4:exon1:6:c.G1892T:p.R631I	34.00	0.17	7	DNA damage-induced apoptosis	
GALNT10	Polypeptide N-Acetylgalactosaminyltransferase 10	5_153783769	C_T	ENST00000297107.6:exon8: c.C1162T:p.R388W	ENST00000297107.6:exon8: c.C1162T:p.R388W	35.00	1.75	9	synthesis of mucin-type oligosaccharides	
ABTB2	Ankyrin Repeat And BTB Domain Containing 2	11_34378544	C_A	ENST00000435224.2:exon1: c.G587T:p.G196V	ENST00000435224.2:exon1: c.G587T:p.G196V	28.40	1.16	7	hepatocyte growth	
PCDHGC5	Protocadherin Gamma Subfamily C, 5	5_140870047	C_T	ENST00000252087.1:exon1: c.C1240T:p.R414W	ENST00000252087.1:exon1: c.C1240T:p.R414W	31.00	1.59	7	call adhesion in brain	
KLHL18	Kelch Like Family Member 18	3_47376277	T_A	ENST00000232766.5:exon6: c.T866A:p.L289H	ENST00000232766.5:exon6: c.T866A:p.L289H	25.30	2.74	7	ubiquitination; mitotic check-point	

CHROM_POS_REF_ALT, chromosome_position_reference allele_alternative allele; CADD, Combined Annotation-Dependent Depletion; ExAC, the Exome Aggregation Consortium

*Deleteriousness of the variants were predicted using Sorting Intolerant from Tolerant (SIFT), Polymorphism Phenotyping version-2 (PolyPhen-2) HDIV (HumDiv), PolyPhen-v2 HVAR (HumVar), Log ratio test (LRT), MutationTaster, Mutation Assessor, Functional Analysis Through Hidden Markov Models (FATHMM), MetaSVM, MetaLR, Protein Variation Effect Analyzer (PROVEAN)
Supplementary Table 3 Loss-of-function variants segregating with the disease in the multiple myeloma families.

Family ID	GENE	Gene name	CHROM_POS_REF_ALT	VARIANT CLASSIFICATION	Ensembl transcript;exon:nucleotide: amino acid or Ensembl transcript;HGVS*	CADD	Impact on protein (MutPred-LOF; Human Splicing finder)**	Function
Family 1	NPFFR2	Neuropeptide FF Receptor 2	4_73003756_G_A	splicing	ENST00000308744.6; HGVSp:c.635-1G>A	26.40	yes	G-protein-coupled receptor signaling; pain modulation
Family 2	KRI1	KRI1 Homolog	19_10673404_C_A	splicing	ENST00000312962.6; HGVSp:c.401+1G>T	25.40	yes	
Family 6	FUK	Fucose Kinase	16_70500783_A_G	splicing	ENST00000288078.6; HGVSp:c.412-2A>G	23.40	yes	glycoprotein and glycolipid synthesis
	U2AF1L4	U2 Small Nuclear RNA Auxiliary Factor 1 Like 4	19_36234717_TG_T	frameshift deletion	ENST00000378975.3:exon5:c.453delC:p.P151fs	24.20	0.29	mRNA processing/splicing
	AHI1	Abelson Helper Integration Site 1	6_135752371_G_C	stopgain SNV	ENST00000367800.4:exon15:c.C2348G:p.S783X	38.00	0.53	cilium biogenesis/degradation
	DNLZ	DNL-Type Zinc Finger	9_139258036_C_T	stopgain SNV	ENST00000371738.3:exon1:c.G131A:p.W44X	35.00	0.33	chaperone
	MYO19	Myosin XIX	17_34867295_C_G	splicing	ENST00000614623.4; HGVSp:c.897-1C>G	25.00	yes	motor protein
	MUC17	Mucin 17, Cell Surface Associated	7_100679568_CA_C	frameshift deletion	ENST00000306151.4:exon3:c.4872delA:p.S1624fs	23.30	0.4	homeostasis of mucosal surfaces
	IARS1	Isoleucyl-tRNA Synthetase 1	9_95004514_T_TATGA	frameshift insertion	ENST00000375643.3:exon29:c.3097_3098insTCAT:p.I1033fs	35.00	0.42	aminoacyl-tRNA synthetase
	CORIN	Corin, Serine Peptidase	4_47667210_A_C	stopgain SNV	ENST00000273857.4:exon11:c.T1428G:p.Y476X	36.00	0.62	serine protease
	LONP2	Lon Peptidase 2, Peroxisomal	16_48311302_TG_T	frameshift deletion	ENST00000285737.4:exon8:c.1296delG:p.V432fs	22.60	0.68	peroxisome homeostasis
Family 7	IFT74	Intraflagellar Transport 74	9_26990150_C_T	stopgain SNV	ENST00000443698.1:exon8:c.C544T:p.R182X	41.00	0.43	cilium biogenesis/degradation
	ELOVL2	ELOVL Fatty Acid Elongase 2	6_10990562_G_A	stopgain SNV	ENST00000354666.3:exon6:c.C619T:p.Q207X	40.00	0.56	fatty acid biosynthesis
Family	Gene	Description	ENST_ID	Exon Region	SNP Type	Effect	Freq	Function
--------	------------------	---------------------------------------	---------	-------------	----------	--------	------	---
Family 1	RESP18	Regulated Endocrine Specific Protein 18	ENST0000333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	26.00	0.27	regulatory role in corticotrophs
	CDH19	Cadherin 19	ENST0000331035.4	exon6:c.591dupT:p.D197fs	frameshift deletion	25.70	0.47	cell adhesion
Family 8	CENPO	Centromere Protein O	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	25.30	no	mitotic check-point
Family 10	IL3RA	Interleukin 3 Receptor Subunit Alpha	ENST0000331035.4	exon6:c.591dupT:p.D197fs	frameshift deletion	22.70	0.44	immune response
	IL17REL	Interleukin 17 Receptor E Like	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	27.90	0.37	interleukin 17 receptor activity
Family 11	CRYL1	Crystallin Lambda 1	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	37.00	glucose catabolism	
	ARHGAP40	Rho GTPase Activating Protein 40	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	24.20	no	GTPase activation
	ABCC11	ATP Binding Cassette Subfamily C Member 11	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	37.00	0.39	transport of small molecules/multidrug resistance
Family 13	GHSR	Growth Hormone Secretagogue Receptor	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	36.00	0.45	G-protein coupled receptor; growth hormone secretion
	SLC30A5	Solute Carrier Family 30 Member 5	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	35.00	0.55	zink transport
	ARHGEF19	Rho Guanine Nucleotide Exchange Factor 19	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	37.00	0.44	GTPase activation
	CLSPN	Claspin	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	34.00	0.44	cell cycle regulation
Family 15	NBAS	NBAS Subunit Of NRZ Tethering Complex	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	43.00	0.49	Golgi to endoplasmic reticulum transport
	CSGALNACT2	Chondroitin Sulfate N-Acetylgalactosaminyltransferase 2	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	47.00	0.54	chondroitin sulfate synthesis
Family 16	CNGA1	Cyclic Nucleotide Gated Channel Subunit Alpha 1	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	25.90	0.49	phototransduction
	DPYD	Dihydropyrimidine Dehydrogenase	ENST00003333527.5	exon2:c.184delC:p.L62fs	frameshift deletion	36.00	0.39	pyrimidine catabolism
Family	Gene	Description	CHROM_POS_REF_ALT	SPlice Site	CADD	LOF	Phenotype	
--------	-------------	--------------------------------------	-------------------	-------------	-------	---------	---------------------------	
19	TMPRSS15	Transmembrane Serine Protease 15	21_19715821_A_C	splicing		24.00	activation of pancreatic proteolytic proenzymes	
20	COL19A1	Collagen Type XIX Alpha 1 Chain	6_70854808_A_G	splicing		23.20	cell adhesion	
	POP5	POP5 Homolog, Ribonuclease P/MRP Subunit	12_121018949_GA_G	frameshift deletion	ENST00000357500.4:exon2:c.131delT:p.F44fs	33.00	0.35	rRNA/tRNA processing
	HMGCLL1	3-Hydroxymethyl-3-Methylglutaryl-CoA Lyase Like 1	6_55406595_G_A	stopgain SNV	ENST00000398661.2:exon4:c.C319T:p.R107X	36.00	0.57	ketogenesis
	CARF	Calcium Responsive Transcription Factor	2_203842036_GA_G	frameshift deletion	ENST00000402905.3:exon13:c.1540delA:p.T514fs	33.00	0.35	transcription regulation
	CATSPER3	Cation Channel Sperm Associated 3	5_134345082_C_T	stopgain SNV	ENST00000282611.6:exon6:c.C838T:p.R280X	35.00	0.52	voltage-gated calcium channel
	SHPK	Sedoheptulokinase	17_3527481_G_A	stopgain SNV	ENST00000225519.3:exon3:c.C355T:p.R119X	23.80		glucose metabolism

CHROM_POS_REF_ALT, chromosome_position_reference allele_alternative allele; CADD, Combined Annotation-Dependent Depletion; LOF, loss-of-function;
* For LOF variants (frameshift and stopgain), Ensembl transcript:exon:nucleotide change:amino acid change are shown. For splice site variants Ensemble transcript; Human Genome Variation Society (HGVS) sequence variant nomenclature is used.
** For LOF variants (frameshift and stopgain), pathogenic and neutral variants were predicted using MutPred-LOF (http://mutpredlof.cs.indiana.edu/index.html) with a threshold score of 0.50 at 5% false positive rate. Human Splicing Finder (http://www.umd.be/HSF/HSF.shtml) was used to evaluate the effect of splice site variants, with yes/no score.
Supplementary Table 4. Copy number variants segregating with the disease in multiple myeloma families.

Family ID	CHROM_START_END	Type (size)	GENE	Gene name	Function
Family 5	4_15936942_16178663	DEL (241.72 kb)	FGFBP1	Fibroblast Growth Factor Binding Protein 1	cell proliferation, differentiation and migration
				FGFBP2	Fibroblast Growth Factor Binding Protein 2
				PROM1	Prominin 1
				TAPT1	Transmembrane Anterior Posterior Transformation 1
Family 7	22_30889887_30892208	DUP (2.32 kb)	SEC14L4	SEC14 Like Lipid Binding 4	transport of hydrophobic ligands
Family 7	3_43641626_43647605	DEL (5.98 kb)	ANO10	Anoctamin 10	calcium-activated chloride channel
	12_50363908_50364605	DEL (0.68kb)	AQP6	Aquaporin 6	kidney-specific water channel
Family 10	1_151028877_151033279	DUP (4.40 kb)	MLLT11	MLLT11 Transcription Factor 7 Cofactor	regulation of lymphoid development
				CDC42SE1	CDC42 Small Effector 1
Family 11	10_126172458_151033279	DEL (0.69kb)	LHPP	Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase	phosphatase
Family 17	1_87029094_87039091	DEL (10.00 kb)	CLCA4	Chloride Channel Accessory 4	calcium-activated chloride conductance

DEL, deletion; DUP, duplication
Supplementary Figure 1. Pedigrees of the multiple myeloma families. For cancer patients age of diagnosis is shown, for healthy family members age at sampling. Families 18-21 consisted of two first- or second-degree relatives diagnosed with MM and are not shown.
Family 8

Family 9

Family 10

Family 11

Family 12

Family 13

Family 14

Family 15

Family 16

Family 17

- Multiple myeloma
- MGUS
- Multiple myeloma or MGUS and AL amyloidosis
- Plasmacytoma or aberrant plasma cell clone in bone marrow
- Other cancer
- * WGS performed
- † Age at death