Searching for Representation: A sociotechnical audit of googling for members of U.S. Congress

Emma Lurie
University of California, Berkeley
emma_lurie@berkeley.edu

Deirdre K. Mulligan
University of California, Berkeley
dmulligan@berkeley.edu

Abstract
High-quality online civic infrastructure is increasingly critical for the success of democratic processes. There is a pervasive reliance on search engines to find facts and information necessary for political participation and oversight. We find that approximately 10% of the top Google search results are likely to mislead California information seekers who use search to identify their congressional representatives. 70% of the misleading results appear in featured snippets above the organic search results. We use both qualitative and quantitative methods to understand what aspects of the information ecosystem lead to this sociotechnical breakdown. Factors identified include Google’s heavy reliance on Wikipedia, the lack of authoritative, machine parsable, high accuracy data about the identity of elected officials based on geographic location, and the search engine’s treatment of under-specified queries. We recommend steps that Google can take to meet its stated commitment to providing high quality civic information, and steps that information providers can take to improve the legibility and quality of information about congressional representatives available to search algorithms.

Introduction
Search engines are an important part of the “online civic infrastructure” (Thorson, Xu, and Edgerly 2018) that allows voters to access political information (Dutton et al. 2017; Sinclair and Wray 2015). While an informed citizenry is considered a prerequisite for an accountable democracy (Carpini and Keeter 1996), political scientists have long understood that the cost of becoming a well-informed voter is too high for most Americans (Lupia 2016). Quality online civic infrastructure can reduce this cost, enabling individuals to locate information necessary for meaningful engagement in elections and other democratic processes. Many forms of civic participation require constituents to contact their member of Congress (Eckman 2017). Contacts from non-constituents are often ignored, making it important for constituents to correctly identify their representatives. A 2017 report found that only 37% of Americans know the name of their congressional representative. The 435 congressional districts are drawn using 9-digit zip codes, so districts often split counties, towns, and 5-digit zip codes. Individuals turn to search engines to fill this information gap. The tweets below indicate such reliance and motivate our inquiry.

She didn’t know how to get in contact with a member of Congress? Um...Google?
@RepJayapal we urge all DEMs to call their Reps as we did and demand Nancy begin impeachment! It’s very easy if you don’t know who your rep is, google “House of Representative” then put in your zip code! Your rep & their phone number will appear, CALL YOUR REP! @SpeakerPelosi #ImpeachTrump

Approximately 90% of U.S. search engine queries are performed on Google search. Thus Google’s search results influence the relative visibility of elected officials and candidates for elected offices, and how they are presented and perceived (Diakopoulos et al. 2018).

In response to a user query, Google returns a search engine results page (SERP). This paper is especially interested in the role of featured snippets in filling this information gap. Featured snippets are a Google feature that often appears as the top result and provides “quick answers” generated using “content snippets” from “relevant websites” (Google Search Help 2019) (see Figure 1 for an example of a featured snippet). While the technical details of the feature are not public information, Google frames featured snippets as higher quality by placing them in the top position on the SERP and by instituting stricter content quality standards for featured snippets, and conveying those standards to the public.

This study explores Google’s search performance on the task of identifying the U.S. congressional representative associated with a geographic location. The search engine auditing community has evaluated how biases influence access to information about elections. Researchers have explored whether search engine biases can be exploited to manipulate elections (Epstein and Robertson 2015) and the partisan biases of search results (Metaxas and Prukachatkun 2017; Kliman-Silver et al. 2015; Robertson, Lazer, and Wilson 2018). We conduct an information seeker-centered search.
Figure 1: A screenshot of the featured snippet that appears when searching about LA County. Despite the county containing 18 distinct congressional districts, many SERPs surface this featured snippet that name Rep. Jimmy Gomez is the only representative of the county.

eengine audit and find that approximately 10% of SERPs surface a misleading top result in response to queries for California congressional representatives in a given location (e.g. “San Diego rep name”). Both featured snippets and organic search results yield incorrect information; however, we focus on results that are both inaccurate and likely to mislead a reasonable information seeker to misidentify their congressperson.

The identity of the congressional representative for a specific street address or nine-digit zip code is unambiguous and can be retrieved from numerous web resources. Following elections, news sources and state election boards, report the name of all elected officials including members of Congress. Moreover, every member of Congress has an official house.gov site as well as a Wikipedia page. Given this, and Google’s commitment to “providing timely and authoritative information on Google Search to help voters understand, navigate, and participate in democratic processes,” search results for this basic, relatively static, factual information should be accurate.

To answer the research question: what are the causes of the algorithmic breakdown? we explore how various actors—Google, information providers, information seekers—as well as information quality contribute to this sociotechnical breakdown. Looking at how the actors and their interactions align with Google’s expectations provide insight into the sociotechnical nature of this breakdown as well as the various sites and options for intervention and repair.

This paper offers the following contributions:

1. We identify four distinct concepts as contributing to the breakdown: 1) Google’s reliance on Wikipedia pages, 2) variations in relative algorithmic legibility and information completeness across information providers, 3) insufficiently specific queries by information seekers, and 4) interaction between the convoluted nature of congressional districts and challenges in geographic information retrieval. The sociotechnical analysis of this paper provides insight into the interactions between these factors.

2. We outline a novel method that combines a user-centered sock-puppet audit protocol [Mustafaraj, Lurie, and Devine 2020] with interpretivist methods to explore sociotechnical breakdown.

3. We provide recommendations for Google and other actors to improve the quality of search results for uncontested political information.

Related Research

Breakdown

Winograd and Flores define the theoretical concept of breakdown as “...a situation of non-obviousness, in which the recognition that something is missing leads to unconcealing (generating through our declarations) some aspect of the network of tools that we are engaged in using” (Winograd, Flores, and Flores 1986).

As designers create new technical objects, they imagine how individuals will use the tools. (Winograd, Flores, and Flores 1986; Akrich 1992). Akrich argues that users’ behavior frequently does not follow the script set up by designers, and breakdowns occur on unanticipated dimensions (Akrich 1992). Research has looked at breakdown as a means through which algorithms become visible to users in both the Facebook algorithm (Bucher 2017) and the Twitter algorithm (Burrell et al. 2019).

Previous research has examined the sociotechnical breakdown in Google search that occurs when content that denied the Holocaust surfaced in response to the query “did the holocaust happen” (Mulligan and Griffin 2018). They propose the “script” (Akrich 1992) of search “reveals that perceived failure resides in a distinction and a gap between search results... and the results-of-search (the results of the entire query-to conception experience of conducting a search and interpreting search results)” (Mulligan and Griffin 2018).

Algorithm Auditing

Due to the role search engines play in shaping individuals’ lives, researchers are increasingly using audits to document their performance and politics. Sandvig et al. proposes algorithm audits as a research design to detect discrimination on online platforms (Sandvig et al. 2014). Previous audits of search engines in the political context have primarily concerned themselves with whether search engines are biased. While these studies have found limited evidence of search engine political bias (Robertson et al. 2018), there is some evidence of personalization of results by location (Kliman-Silver et al. 2015) and a lack of information diversity in political contexts (Steiner et al. 2020). Metaxa et al. recasts search results as “search media” and proposes longitudinal audits as a way...
to understand political trends (Metaxa et al. 2019). Other research has audited Google’s non-organic search results finding that Google featured snippets amplify the partisanship of a SERP (Hu et al. 2019), Google Top Stories highlights primarily recent, mainstream news content (Trielli and Diakopoulos 2019), Google autocomplete suggestions have a high churn rate (Robertson et al. 2019), and that Google knowledge panels for news sources are inconsistent and reliant on Wikipedia (Lurie and Mustafaraj 2018).

Other studies have used a lens of algorithmic accountability to explore the impact of algorithms through algorithm audits (Diakopoulos 2015, Raji and Smart 2020 Robertson et al. 2019, Steiner et al. 2020). However, auditing is primarily used as a tool to provide transparency into the workings algorithms (Diakopoulos 2015). The lens of breakdown, in contrast, centers the sociotechnical system exposing a broader set of actors who interact with and through the algorithm to scrutiny, and focuses the analysis on understanding what it means for an algorithmic system “to work.”

Politics & Search Engines

Search engines help facilitate voters’ access to political information which supports engagement in democratic processes (Dutton et al. 2017, Sinclair and Wray 2015, Trevisan et al. 2018). Google has responded to information seekers’ reliance on its platform for access to civic and political information by augmenting search results for political candidates, and other civic information (Diakopoulos et al. 2018).

Researchers have raised concerns about biases and potential for manipulation (Epstein and Robertson 2015). Search engines, a type of online platform, are not neutral, apolitical intermediaries (Gillespie 2010). Previous research has sought to detect filter bubbles by measuring search engine personalization (Pariser 2011). Information seekers specific query formulations (Kulshrestha et al. 2017, Tripodi 2018 Robertson et al. 2018) and the resulting suggestions (Bonart et al. 2019 Robertson et al. 2019) shape search results; however others have not identified meaningful differences in searchers with different partisan affiliations query formulation (Trielli and Diakopoulos 2020). Additionally, the politics of platforms are not limited to information seekers and platforms. Information providers are constantly working to become algorithmically recognizable to search engines (Gillespie 2017), sometimes hijacking obscure search query formulations and filling data voids (Golebiewski and boyd, d 2018). Google search results heavily favor Wikipedia (Vincent and Hecht 2021, Pradel 2020) as well as Google operated results (e.g. non-organic search results) (Jeffries and Yin).

Algorithm Audit Study

To understand the complexities of the online civic infrastructure, we perform a scraping audit, when an automated program makes repeated queries to a platform (Sandvig et al. 2014). To bolster our information seeker-centered perspective, our audit was informed by a survey to identify realistic query formulations. To support our interest in auditing the results-of-search, rather than the search results, we take an interpretivist approach to analyzing the audit results. This allows us to distinguish and focus on results that are likely to mislead information seekers, rather than the larger corpus of inaccurate search results.

Modeling Information Seekers

It is important to use information seekers’ query formulations to assess the performance of the search results. Typically researchers use 1) web browser search history data or 2) Google Trends for user query formulations. However, large-scale browser history data is typically not available for researchers who do not work at a search engine company. Installing a browser extension on users’ computers is another technique employed to access users’ query formulations, but this is an expensive method that invades user privacy, and for this study would involve massive over collection. Alternatively, Google Trends provides web users with a sample of real users’ search queries. While high frequency queries may be well represented in the sample they are too low volume to register on Google Trends. That does not mean that no users formulate these queries, but the location-specific nature of these queries certainly make them less likely to register on Google Trends. Therefore, we follow Mustafaraj et al.’s (Mustafaraj, Lurie, and Devine 2020) approach of developing a survey to solicit user search terms.

We obtained IRB approval and compensated 150 Mechanical Turk workers $2 to answer the following survey question:

“You are having an issue with your Social Security check. Your neighbor suggests that you contact your congressional representative’s office to get the issue resolved. Use Google to search for your representative’s name.”

We chose this scenario as opposed to the advocacy examples in the motivating tweets because we wanted a scenario that is relatable to participants regardless of party affiliation or history of political engagement. Assistance navigating the federal bureaucracy is a standard constituent service offered by congressional offices, and one constituents consistently and broadly request.

We asked participants to search for the name of the congressional representative, record the name of their representative, and then record all of the queries they searched to find the name of their representative. The 150 survey responses generated 166 related queries. Participants took on average 3.5 minutes to complete the survey. 16 queries appeared more than once when generalized (e.g. “California rep name” becomes “STATE NAME rep name”). We used these 16 and selected 12 additional queries of various geographic granularity and shared similar query construction formats. See Table 1 for the full list of generic query terms.

The breadth of queries generated by users illustrates the lack of a common search strategy among participants. While some users searched by state name, others searched with some combination of county, place (e.g. town, city, community), (5-digit) zip code, congressional district, state name, and state abbreviation.
Table 1: Search terms selected to use for audit. We search these 26 queries terms for a sample of US zip codes, places (towns, cities, etc.), counties, and all CA congressional districts. These are the generalized queries extracted from user query formulations. The occurrence of each generalized query appears in parentheses.

geographic granularity	query
no specification	congressional representative (3); who is my congressional representative (2); my congressman (2)
state	STATE congressional representatives (4); congressional representatives STATE (2); congressional representative STATE (2); STATE representatives (2); CONGRESSIONAL REPRESENTATIVE STATE (2)
county	COUNTY house representative (2); COUNTY congressional representative (2); COUNTY STATE congress rep (1); my congressional representative COUNTY (1); who is my representative in COUNTY STATE (1)
place (e.g. city, town, CDP)	PLACE STATE congressional representative (2); PLACE congressional representative (2); congressional representative PLACE STATE (2); PLACE STATE congressman (2); PLACE ABBR congressman (1); PLACE ABBR representative (1); house of rep PLACE (1); congressional rep of PLACE STATE (1); PLACE congressperson (1)
zip code	congressional representatives STATE ZIP CODE(2); congress rep ZIP CODE (1); representative ZIP CODE (1); congressional representative ZIP CODE (1)
congressional district	STATE CD representative (1)

We find that users search for the name of their representatives using various levels of geographic granularity that often do not provide a one-to-one mapping with congressional districts.

Methods: Audit configuration

This study focuses on data collected about California congressional representatives on two separate data collection rounds (May 3-5, 2020 and May 11-13, 2020). The two rounds allow us to 1) measure the variance in top results between the rounds and 2) verify that our results are not anomalous. We collected 1,803 SERPs in each data collection round that contain data about 146 zip codes, 117 places, and 36 counties in California. Each SERP is stored as an HTML file, but parsed with a modified version of the WebSearcher library. The location parameter on the WebSearcher library makes all queries to Google appear to originate from the Bakersfield, California.

We selected California for this paper because 1) it is the most populous state with 53 congressional districts; 2) there are both urban and rural communities and 3) California relies on an independent redistricting commission to draw congressional district boundaries. The commission has a mandate to keep communities, counties, cities and zip codes in the same congressional district where possible. So, we chose to analyze California data with the assumption that it would be one of the best performers for queries for congressional representatives (compared to states with histories of gerrymandered districts). Future work will extend this analysis to additional states.

4Results from the vacant congressional districts (CA-25 and CA-50) are filtered out, as the information was in flux during the data collection period which coincided with either a special election or campaigning.

5https://github.com/gitronald/WebSearcher

Audit Results

Table 2 displays the results of data collection. The results reported are the top results. If the first result is a featured snippet, that is the top result. If the first result is an “organic” search result, that is the top result. Over half of the top results are featured snippets, and of those 70% are from Wikipedia.

We focus the majority of our analysis on featured snippets, as they are, by Google’s own standards, designed to provide a quick and more authoritative answer to information seekers. Given the role Google intends featured snippets to play in guiding searchers to reliable information, the prevalence of misleading information about civic information is a breakdown of the online civic infrastructure worthy of interrogation.

Overall, 50% of the top results are sourced from Wikipedia. Approximately 30% of the top results are congressional representative’s official house.gov websites (including officials sites and the house.gov “Find your Representative” tool. The remaining 20% of top results are a combination of geographic look up tools (e.g. govtrack.us), county pages, and miscellaneous sites.

Across the two rounds, there is high turnover in the content in the top result, yet consistent rates of misleading top results. The top result changes in 30% of queries from Round 1 to Round 2. 12% of featured snippets change between rounds. 11% of results that were likely to mislead changed between rounds.

The Wikipedia articles surfaced in featured snippets vary. Some articles provide a detailed account of a geographic location, congressperson, or congressional district, others are incomplete, mentioning only one congressional representative in a location represented by multiple congressional districts, or omitting congressional representatives.
Defining “likely to mislead”

Centering the needs of information seekers requires us to consider not only how they construct queries, but how they interpret the search results revealed by the audit, construct the results of search (Mulligan and Griffin 2018). While many of the results are technically inaccurate, they are not all equally likely to mislead information seekers. Counting any top result that does not contain the name of the correct congressional representative as incorrect would conflate inaccurate results with those likely to mislead an information seeker. To further illustrate, the top results in Figure 2 do not identify the correct congressional representative, yet we do not believe they are likely to mislead an information seeker as they either clearly signal a failed search or an ambiguous answer.

To support our interest in the results of search, we focus our analysis on top search results that are “likely to mislead”, those that provide only a single congressional representative within the relevant state where that deterministic top result is either incorrect (i.e. the congressperson doesn’t represent that region) or is incomplete (i.e. the region is represented by multiple representatives). This notion of whether top search results are “likely to mislead” is motivated from the U.S. Federal Trade Commission, where the standard for consumer deception includes testing for whether a reasonable consumer would be misled (Dingell 1983).

As an example, if we are searching for L.A. County representative, and the top result says that Rep. Jimmy Gomez is the rep for L.A. County, this is considered a “likely to mislead” top result. While Rep. Gomez is one of 18 members of the House of Representatives to represent a portion of L.A. County, this answer is classified as likely to mislead because it likely leads the searcher to believe that their representative is Rep. Gomez.

After the authors agreed on the definition of “likely to mislead,” the first author did all of the labeling as there was limited opportunity for disagreement between labelers given the definition.

Interrogating Algorithmic Breakdown

Previous research on the sociotechnical nature of search engines has generated several theories about how algorithmic ranking methodologies and platform practices, and the behavior of other actors–information providers, information seekers, advertisers–can contribute to sociotechnical breakdowns in algorithmically driven systems. We draw on these insights to identify potential sources that might contribute to the breakdown we identified.

One possible explanation is data voids. Golebiewski and boyd describe data voids as “search terms for which the available relevant data is limited, non-existent, or deeply problematic.” (Golebiewski and boyd, d 2018). They identify five types of data voids: breaking news, strategic new terms, outdated terms, fragmented concepts, and problematic queries. While many of the queries we study can be considered obscure, the poor quality results we observe do not neatly fit into any of the five categories. Often with data voids, the search query is hijacked before authoritative content is created. Here, the authoritative content exists, yet it is not being surfaced on the SERP. Moreover, Golebiewski and boyd are concerned about intentional manipulators, but we find no evidence of intentional manipulation after examining the output for systematic output biases. In fact, we find no significant statistical difference in the rates of misleading results across gender or party affiliation, or whether the zip code is in an urban vs. rural area. Many of the results arise from search results containing a partial list of representatives, and while the error rate differs by congressional representative, we manually reviewed the results of the representatives with the highest prevalence of misleading content and were unable to detect any evidence of efforts to depress results of a specific congressperson or political party (e.g. astroturfing, advertisements, different sources in the top position).
While insights from previous audit research do not fully explain the poor performance, other known difficulties in information retrieval play a role.

In particular, place name ambiguity plays an important role in the breakdown. Looking at the SERPs, one is struck by the number of misleading results concerning Los Angeles County. Los Angeles County is divided into 18 different congressional districts. However, when searching for LA County representatives, the top search result is frequently a featured snippet about Rep. Jimmy Gomez (see Figure 1). This featured snippet is likely to mislead reasonable searchers. The issue extends to other counties in California, including San Diego County and San Bernardino County. In each instance, the member of Congress who represents a section of the city that contains the county name (e.g., Los Angeles, San Diego, etc.) is disproportionately returned as the top result. This is consistent with prior research finding that information retrieval systems perform poorly when trying to discern location from ambiguous place names (Buscaldi 2009).

Analyzing the Platform

Google informs users that featured snippets are held to a different quality standard than organic search results. Google states that snippets are generated using “content snippets” from “relevant websites.” This indicates that with respect to snippets Google is exercising judgment about which sites are relevant to the “quick answers” provided in a snippet, and either not or not exclusively relying on content identified through their standard metric of relevance (Google Search Help 2019).

Google also informs users of the distinct content removal standards for snippets stating that “featured snippets about public interest content – including civic, medical, scientific and historical issues – should not contradict well-established or expert consensus support” (Google Search Help 2019). Google writes that their “automated systems are designed not to show featured snippets that don’t follow our policies,” but tells users that they “rely on reports from our users” to identify such content. Google indicates that they “...manually remove any reported featured snippets if we find that they don’t follow our policies” and “if our review shows that a website has other featured snippets that don’t follow our policies or the site itself violates our webmaster guidelines, the site may no longer be eligible for featured snippets” (Google Search Help 2019). Users are asked to complain via the “feedback” button under the featured snippet (see Figure 1).

Google assigns itself the more modest task of drawing in information from relevant websites. The meting out of responsibility here is noteworthy. Google only provides substantive quality standards for content removal, rather than inclusion. They have created a standard for other actors to police accuracy, but not a distinct quality benchmark they are trying to maintain with respect to “consensus” or accuracy. Google’s script shifts responsibility to other stakeholders to maintain high-quality snippets on public interest content.

The uniqueness of the snippet quality standard is further underscored by Google’s help page that includes content removal policies for featured snippets. Google explains that “these policies only apply to what can appear as a featured snippet. They do not apply to web search listings nor cause those to be removed” (Google Search Help 2019).

The design and positioning of featured snippets also distinguishes them as more authoritative. Google states they “receive unique formatting and positioning on Google Search and are often spoken aloud by the Google Assistant” (Google Search Help 2019). Google attributes the “unique set of policies” to this special design and positioning.

It is clear that Google does not want stakeholders to conflate featured snippets and organic search results, nor the distinct quality standards applied to each.

With respect to the queries at issue in our study, Google has made other relevant commitments. Google commits to “providing timely and authoritative information on Google Search to help voters understand, navigate, and participate in democratic processes…” Researchers have discussed the various features that Google has augmented the SERP with in an attempt to more carefully curate information on elections, including issue guides, elected official knowledge panels, and more (Diakopoulos et al. 2018). The identification of a congressional representative via search clearly falls under Google’s commitment to help voters participate in democratic processes. Yet, currently, none of the additional scaffolding Diakopoulos et al. describes exists in our dataset.

The results of the audit give us a sense of what sites Google views as “relevant” for the snippets returned in response to user queries seeking congressional representatives. Wikipedia populates 50% of top results in our data collection and 70% of the featured snippets. Previous research (McMahon, Johnson, and Hecht 2017) depicts that Google populates 50% of top results in our data collection and 70% of the featured snippets. Previous research (Vincent, Johnson, and Hecht 2018) (Vincent et al. 2019) (Vincent and Hecht 2021) details the important role Wikipedia plays in improving the quality of Google search results, especially in domains that Google may otherwise struggle to surface relevant content. Setting aside the comparative accuracy of the information provided by these sites, discussed below, the question of which sites Google considers “relevant” for purposes of generating snippets is significant.

Analyzing Information Providers

Three types of relevant information providers that display in the top position on the SERP are: 1) Wikipedia (50% of top results), 2) representatives’ official house.gov websites (30% of top results), and 3) congressional representative geographic look-up tools (6% of top results).

Wikipedia

Google’s treatment of Wikipedia as “relevant” for snippets about congressional representatives contributes to this breakdown. Wikipedia does not exhaustively or equally cover all of the geographic areas or congressional districts.

We do not identify any instances of Wikipedia articles listing the incorrect name of representatives within the Wikipedia article; however, some Wikipedia pages list only...
a subset of the representatives for the place. Article length and level of detail varies widely on the Wikipedia pages referenced. In particular, information about representatives for snippets is sourced from multiple categories of Wikipedia pages that have different purposes and inconsistent levels of detail. Some articles do not list a congressional representative. Other articles mention one of the congressional representatives in the district but not another. Congressional districts that split geographic locations appear to be a major source of problems.

For example, the city of San Diego is part of five congressional districts. Yet, the Wikipedia page for the 52nd congressional district overwhelmingly appears as the featured snippet for several queries made about San Diego. As a result, Rep. Scott Peters of the 52nd congressional district, disproportionately appears in featured snippets about congressional representatives in San Diego, with no mention of the other representatives (similar to Figure 1). While Rep. Peters is one of the congressional representatives for San Diego, he is not the only one. So, why does the Wikipedia page for the 52nd congressional district appear rather than the 53rd? We hypothesize that the answer lies in the first sentence of the article summary (which is often used as the majority of the text in featured snippets) for the 52nd congressional district:

“The district is currently in San Diego County. It includes coastal and central portions of the city of San Diego, including neighborhoods such as Carmel Valley, La Jolla, Point Loma and Downtown San Diego; the San Diego suburbs of Poway and Coronado; and colleges such as University of California, San Diego (partial), Point Loma Nazarene, University of San Diego, and colleges of the San Diego Community College District.”

“San Diego” appears seven times in the above sentence. In comparison the Wikipedia page for the 53rd district, which encompasses sections of San Diego, only mentions San Diego twice in the first two sentences. While likely unintentional, the article summary for the Wikipedia page of the 52nd congressional district of California has effectively employed search engine optimization strategies to appear as the answer to queries about the congressional representative for San Diego. While the article summary explains the district is limited to coastal and central portions of San Diego, that distinction does not appear in the featured snippet. It seems unlikely that the contributors to that Wikipedia article were attempting to appear more ‘algorithmically recognizable’ (Gillespie 2017) to search engines, but, that is the result.

To quantify possible coverage gaps in Wikipedia, we measured how many Wikipedia pages for California places (cities, towns, etc.) mention the name of at least one member of Congress? To do this we randomly sampled 2,000 listed places from the child articles of the Wikipedia page “List of Places in California”. We then searched for the presence of the name of a California member of Congress in the resulting articles. We found that less than half of Wikipedia pages (42%) contained the name of a member of the California congressional delegation.

While increasing the level of detail on Wikipedia pages would likely improve overall search result quality, it is not only incorrect or even incomplete information on specific Wikipedia pages that contributes to the misleading content in snippets sourced from them. In short, Wikipedia articles are not constructed to provide accurate quick answers to these particular queries via featured snippets. While this is not inherently problematic on its own, given Google’s well-documented reliance on Wikipedia, it is a contributing factor to the observed breakdown.

Official Websites

Every congressional representative has a house.gov hosted web page. These results appeared in the top result 30%, and comprise 25% of all misleading results. While many of the house.gov pages share a common template, the level of detail and modes of displaying district information varies by representative. Most websites have an “our district” page, that contains details about the congressional district. These pages almost always include an interactive map of the district. While this is a useful tool for information seekers who find their way to that page, the map is not ‘algorithmically recognizable’ to Google. Some pages include a combination of counties, cities, zip codes, notable locations, economic hubs, images of landmarks. However, we found no correlation between the website design or content and better algorithmic performance for their district.

Geographic Lookup Tools

A number of online tools help voters identify their representatives via geographic location. One such tool is house.gov’s “Find Your Representative” tool (see Figure 3). For 6% of all SERPs, the house.gov “find my rep” tool appears in the top position in the organic search results. As shown in Figure 3, the text snippet in the search result does not include the name of the representative. So, if information seekers...
want to identify the name of their representative, they must click on the search result. This limits the prevalence and usefulness of the authoritative information for searchers looking for a “quick answer.”

However, the interface of the house.gov tool is different from other common representative look up tools, as its interface first asks information seekers to enter the zip code. If there is only one congressional representative in the five-digit zip code, the tool returns the name of the representative. If there are multiple congressional districts in the zip code, all the representatives in a zip code are displayed, and information seekers are then prompted to enter their street address. In contrast, the govtrack.us tool selects a set of geographic coordinates when you provide a zip code and Common Cause’s “Find your Representative tool” requires a street address.

Analyzing Information Seekers

Google places responsibility for query formulation on information seekers. The long tail of the queries information seekers searched indicate that features like autocomplete are likely not directing information seekers to particular query constructions. Unlike related areas such as polling place look up where Google has provided forms to structure user queries to ensure correct results, Google has left information seekers to structure queries on their own. Our pre-audit information seeker survey finds that several common user query formulations do not specify geographic location or only specify the name of the state the information seeker is searching from. However, properly identifying an individual’s congressional representative requires a nine-digit zip code or street address. Information seekers’ queries are limiting the accuracy of the search results; however, in practice it may not be misleading searchers of the results of search as some inaccurate results likely trigger further information seeking rather than belief in an inaccurate answer.

These under specified queries may indicate that information seekers are unfamiliar with how congressional districts are drawn. This assumption seems likely given the body of political science research that finds that Americans know little about their political system (Lupia 2016, Bartels 1996, Somin 2006). Additionally, a study of search queries information seekers use to decide who to vote for in the 2018 U.S. midterm elections (i.e. a non-presidential election) finds that a majority of voters search terms use “low-information queries” (Mustafaraj, Lurie, and Devine 2020) to find out more information about political candidates.

Another explanation may be that users, like researchers, assume that Google uses location information latent in the web environment to refine search results. Given users’ experiences with personalization, they may incorrectly assume that Google will leverage other sources of information about location to fill in the gap in their search query generated by their lack of political knowledge.

Limitations

This paper uses algorithmic measurement techniques (auditing) to understand the sociotechnical system of the online civic infrastructure in the United States. Future work may collect data for a broader geographic region or a collect longitudinal data, but these efforts are outside the scope and research question of this paper.

Survey design: We asked participants in our survey to search until they identified their congressperson and then record their representative’s name and all of the queries they searched. However when lists of representatives appeared as in Figure 2 participants frequently selected the first name in the list (i.e. Nancy Pelosi). On one hand, this could indicate our criteria for content being “likely to mislead” information seekers is under-inclusive, as we assume that information seekers who are presented with multiple answers will seek out additional information rather than just selecting the first option on an image carousel (see Figure 2 for an example). A different interpretation is that participants weren’t incentivized to identify the correct name of their representative (e.g. with a bonus). Recognizing this limitation, we do not conduct any analysis around iterative search behavior or analyze how many of our participants correctly identified the name of their representative. Further data on how users search may reveal additional methods and avenues for repair.

Data Collection: This paper presents a subset of the data originally collected in the audit study. In an attempt to have the queries appear to be searched from different congressional districts (simulating users searching from home), we duplicated about 900 SERPs. Instead of the searches appearing to come from different congressional districts, they all originated in central California. As a result, we randomly select one copy of every unique query in our analysis (n=1803). There is additional work to do about the localization of the search results. Preliminary analyses find limited evidence of personalization, but more work is needed.

Discussion: Contemplating Repair

Our research identifies a breakdown created by relying on a generalized search script–relying on Wikipedia as a “relevant site”–to shape search results in the domain of civic information. Introna and Nissenbaum critique the assumption that a single set of commercial norms should uniformly dictate the policies and practices of Web search (Introna and Nissenbaum 2000). Nissenbaum also speculates that search engines will find little incentive to address more niche information needs, including those “for information about the services of a local government authority” (Nissenbaum 2011). In particular, Introna and Nissenbaum emphasize how the power to drive traffic toward certain Web sites at the expense of others may lead those sites to atrophy or even disappear. Where the sites being made less visible are those that provide accurate information to support civic activity, often provided by public entities with public funds, the risks of atrophy or disappearance are troubling. Driving traffic toward Wikipedia rather than house.gov may depress support for public investment in online civic infrastructure. By elevating Wikipedia pages in response to search queries seeking the identity of congressional representatives Google may undercut investment in expertly produced, public election infrastructure in favor of a peer produced infrastructure.
that is not tailored to support civic engagement and is dependent on private donations.

Deemphasizing Wikipedia: One factor in the breakdown is Google’s heavy reliance on Wikipedia to source featured snippets (70% in our results). This pattern (McMahon, Johnson, and Hecht 2017; Vincent, Johnson, and Hecht 2018) is not unique to our queries, but it is problematic in the case of searches for elected officials. Based on our review of the of Wikipedia pages from which snippets are pulled, we believe Wikipedia is a poor choice of “relevant site” to meet the goal of aligning results on public interest topics with well-established or expert consensus in response to these queries. A sample of 1,196 working Wikipedia pages of places in California (e.g. city, town, unincorporated communities) finds that 58% do not list the name of any congressional representatives. Others still only report one of the congressional representatives. The information on these pages is not constructed to help information seekers correctly identify their congressional representatives, especially not via extracted metadata or a partial article summary.

Bespoke tools: In other civic engagement areas Google has carved out an expanded role for itself in the search script. Rather than relying on seekers to craft effective queries, or relying on other sources to create accurate and machine legible content, Google has created structured forms, information sources, and APIs to fuel accurate results. Given relatively poor search literacy and political literacy, the current script assigns searchers too much responsibility for query formation. Given the public good of accurate civic information, and active efforts to mislead and misinform voters about basic aspects of election contests and procedures, such reliance on searchers poses risks. While we did not identify any activity to exploit the vulnerabilities we identify, this does not rule out such actions in the future.

Google could create a new widget and display it on the top of the SERP for queries that signal a user’s interest in identifying their congressional representative. Such a tool could augment or collaborate with existing resources like Google’s Civic Information API or the house.gov “Find your representative” tool. There is no benefit to diverse results in this context. Allowing different sites to compete for users’ eyeballs may encourage the proliferation of misinformation and indirectly to disenfranchisement.

The house.gov interface balances information quality and privacy in an ideal way. Unlike other geographic look up tools like govttrack.us or the Google Civic Information API that default to request information seekers’ street address, the house.gov tool first prompts information seekers for their zip code, and only prompts for their street address if their zip code overlaps with multiple congressional districts. The goal of a geographic look up tool that maps locations to congressional districts should be to accurately return data to all information seekers who navigate to the tool. Some information seekers may be skeptical of a tool that collects personal identifying information (e.g. street address), so providing information seekers with a less intrusive, but not always deterministic, initial prompt seems desirable. While geographic personalization is contextually appropriate to searches for congressional representatives, user studies to understand information seeker’s experience and perception with geographic look-up tools in this context would aid design.

Information providers can take independent steps to improve the ‘algorithmic recognizability’ of information about congressional representatives for specific locations. Specifically, congressional officials house.gov pages can make their sites more legible to search engine crawlers. While over half of representative’s home pages appear in at least one top result, they often appear in the top position for a small subset of queries about their district. The house.gov websites all contain an interactive map of the congressman’s district, which is useful for an information seeker already on that page, but is not meaningfully indexed by search engines. A substantial number of congressional representatives’ websites are largely invisible to geographic queries. All House of Representatives web pages are managed by House Information Resources (HIR). Creating metadata that speaks directly to these queries would likely improve the performance of house.gov sites in snippets and organic search. The HIR could provide standards, or at the very least guidance, to members about web site construction aimed at improving the legibility of this information to search engines. While we do not propose one silver bullet solution, we view this as a solvable issue.

Conclusion

The online civic infrastructure is an emergent infrastructure composed of the sites and services that are assembled to support users’ civic information needs, which is critical for meaningful participation in democratic processes.

There is a pervasive reliance on search engines to find facts and information necessary for civic participation. This research exposes a weakness in our current civic infrastructure and motivates future work in interrogating online search infrastructure beyond measuring partisan bias or information diversity of search results. Even under our stringent definition of misleading search results, we see real structural challenges in using search to provide information seekers with quick answers about uncontented political questions. Even in the high-stakes context of election information, this work finds deep similarities between work on the interdependence of Wikipedia and Google (Vincent and Hecht 2021; McMahon, Johnson, and Hecht 2017), particularly how Google sources many of their more detailed search results through Wikipedia. While we do not attempt to assess the magnitude of the harm of returning misleading information about representative identity to constituents, this is an open question that involves sociopolitical considerations in addition to the technical.

Google has recognized their role in this ecosystem, endeavoring to ensure that information seekers find accurate information about these issues, and has built out infrastructure on the SERP as well as public-facing APIs toward this end. Constituent searches for the identify of their member of Congress deserve more careful consideration.
References

[Akrich 1992] Akrich, M. 1992. The decription of technical objects.

[Bartels 1996] Bartels, L. M. 1996. Uninformed votes: Information effects in presidential elections. *AJPS* 194–230.

[Bonart et al. 2019] Bonart, M.; Samokhina, A.; Heisenberg, G.; and Schaar, P. 2019. An investigation of biases in web search engine query suggestions. *Online Information Review*.

[Bucher 2017] Bucher, T. 2017. The algorithmic imaginary: exploring the ordinary affects of facebook algorithms. *Information, communication & society* 20(1):30–44.

[Burrell et al. 2019] Burrell, J.; Kahn, Z.; Jonas, A.; and Griffin, D. 2019. When users control the algorithms: Values expressed in practices on twitter. *CSCW* 3(CSCW):1–20.

[Buscaldi 2009] Buscaldi, D. 2009. Toponym ambiguity in geographical information retrieval. In *SIGIR*, 847–847.

[Carpini and Keeter 1996] Carpini, M. X. D., and Keeter, S. 1996. *What Americans know about politics and why it matters*. Yale University Press.

[Diakopoulos et al. 2018] Diakopoulos, N.; Trielli, D.; Stark, J.; and Mussendt, S. 2018. I vote for—how search informs our choice of candidate. *Digital Dominance: The Power of Google, Amazon, Facebook, and Apple*, M. Moore and D. Tambini (Eds.) 22.

[Diakopoulos 2015] Diakopoulos, N. 2015. Algorithmic accountability: Journalistic investigation of computational power structures. *Digital journalism* 3(3):398–415.

[Dingell 1983] Dingell, J. D. 1983. Ftc policy statement on deception.

[Dutton et al. 2017] Dutton, W. H.; Reisdorf, B.; Dubois, E.; and Blank, G. 2017. Social shaping of the politics of internet search and networking: Moving beyond filter bubbles, echo chambers, and fake news.

[Eckman 2017] Eckman, S. J. 2017. Constituent services: Overview and resources. congressional research service.

[Epstein and Robertson 2015] Epstein, R., and Robertson, R. E. 2015. The search engine manipulation effect (seme) and its possible impact on the outcomes of elections. *Proceedings of the National Academy of Sciences* 112(33):E4512–E4521.

[Gillespie 2010] Gillespie, T. 2010. The politics of ‘platforms’. *New media & society* 12(3):347–364.

[Gillespie 2017] Gillespie, T. 2017. Algorithmically recognizable: Santorum’s google problem, and google’s santorum problem. *Information, communication & society* 20(1):63–80.

[Golebiewski and boyd 2018] Golebiewski, M., and boyd, d. 2018. Data voids: Where missing data can easily be exploited. *Data & Society* 29.

[Google Search Help 2019] Google Search Help. 2019. How google’s featured snippets work. https://support.google.com/websearch/answer/9351707?hl=en.

[Hu et al. 2019] Hu, D.; Jiang, S.; Robertson, R. E.; and Wilson, C. 2019. Auditing the Partisanship of Google Search Snippets. In *WWW 2019*.

[Introna and Nissenbaum 2000] Introna, L. D., and Nissenbaum, H. 2000. Shaping the web: Why the politics of search engines matters. *The information society* 16(3):169–185.

[Jeffries and Yin 2017] Jeffries, A., and Yin, L. Google’s top search result? surprise! it’s google. *The MarkUp*.

[Kliman-Silver et al. 2015] Kliman-Silver, C.; Hannak, A.; Lazer, D.; Wilson, C.; and Mislove, A. 2015. Location, location, location: The impact of geolocation on web search personalization. In *IMC ’15*, IMC, 121–127. New York, NY, USA: ACM.

[Kulshrestha et al. 2017] Kulshrestha, J.; Eslami, M.; Messias, J.; Zafar, M. B.; Ghosh, S.; Gummadi, K. P.; and Karras, K. 2017. Quantifying search bias: Investigating sources of bias for political searches in social media. In *CSCW’17*, 417–432. ACM.

[Lupia 2016] Lupia, A. 2016. *Uninformed: Why people know so little about politics and what we can do about it*. Oxford University Press.

[Lurie and Mustafaraj 2018] Lurie, E., and Mustafaraj, E. 2018. Investigating the effects of google’s search engine result page in evaluating the credibility of online news sources. In *Web Sci’18*, 107–116.

[McMahon, Johnson, and Hecht 2017] McMahon, C.; Johnson, I.; and Hecht, B. 2017. The substantial interdependence of wikipedia and google: A case study on the relationship between peer production communities and information technologies. In *AAAI ICWSM*.

[Metaxa et al. 2019] Metaxa, D.; Park, J. S.; Landay, J. A.; and Hancock, J. 2019. Search media and elections: A longitudinal investigation of political search results. *CSCW 2019* (CSCW):1–17.

[Metaxas and Pruksachatkun 2017] Metaxas, P. T., and Pruksachatkun, Y. 2017. Manipulation of search engine results during the 2016 us congressional elections. In *ICW’17*.

[Mulligan and Griffin 2018] Mulligan, D. K., and Griffin, D. S. 2018. Rescripting search to respect the right to truth.

[Mustafaraj, Lurie, and Devine 2020] Mustafaraj, E.; Lurie, E.; and Devine, C. 2020. The case for voter-centered audits of search engines during political elections. In *Proceedings of FACCT 2020*, 559–569.

[Nissenbaum 2011] Nissenbaum, H. 2011. A contextual approach to privacy online. *Daedalus* 140(4):32–48.

[Pariser 2011] Pariser, E. 2011. *The filter bubble: What the Internet is hiding from you*. Penguin UK.

[Pradel 2020] Pradel, F. 2020. Biased representation of politicians in google and wikipedia search? the joint effect of party identity, gender identity and elections. *Political Communication* 1–32.

[Raji and Smart 2020] Raji, I. D., and Smart, A. 2020. Closings the ai accountability gap: defining an end-to-end framework for internal algorithmic auditing. In *Proceedings of the FACCT 2020*, 33–44.
[Robertson et al. 2018] Robertson, R. E.; Jiang, S.; Joseph, K.; Friedland, L.; Lazer, D.; and Wilson, C. 2018. Auditing partisan audience bias within google search. Proc. ACM Hum.-Comput. Interact. 2(CSCW):1–22.

[Robertson et al. 2019] Robertson, R. E.; Jiang, S.; Lazer, D.; and Wilson, C. 2019. Auditing autocomplete: Suggestion networks and recursive algorithm interrogation. In ACM WebSci, 235–244.

[Robertson, Lazer, and Wilson 2018] Robertson, R. E.; Lazer, D.; and Wilson, C. 2018. Auditing the personalization and composition of politically-related search engine results pages. In Proceedings of the 2018 World Wide Web Conference, WWW ’18, 955–965. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee.

[Sandvig et al. 2014] Sandvig, C.; Hamilton, K.; Karahalios, K.; and Langbort, C. 2014. Auditing algorithms: Research methods for detecting discrimination on internet platforms. Data and discrimination: converting critical concerns into productive inquiry 22.

[Sinclair and Wray 2015] Sinclair, B., and Wray, M. 2015. Googling the top two: Information search in california’s top two primary. California Journal of Politics and Policy 7(1).

[Somin 2006] Somin, I. 2006. Knowledge about ignorance: New directions in the study of political information. Critical Review 18(1-3):255–278.

[Steiner et al. 2020] Steiner, M.; Magin, M.; Stark, B.; and Geiß, S. 2020. Seek and you shall find? a content analysis on the diversity of five search engines' results on political queries. Information, Communication & Society 1–25.

[Thorson, Xu, and Edgerly 2018] Thorson, K.; Xu, Y.; and Edgerly, S. 2018. Political inequalities start at home: Parents, children, and the socialization of civic infrastructure online. Political Communication 35(2):178–195.

[Trevisan et al. 2018] Trevisan, F.; Hoskins, A.; Oates, S.; and Mahlouly, D. 2018. The google voter: search engines and elections in the new media ecology. Information, Communication & Society 21(1):111–128.

[Trielli and Diakopoulos 2019] Trielli, D., and Diakopoulos, N. 2019. Search as news curator: The role of google in shaping attention to news information. In CHI, 1–15.

[Trielli and Diakopoulos 2020] Trielli, D., and Diakopoulos, N. 2020. Partisan search behavior and google results in the 2018 us midterm elections. Information, Communication & Society 1–17.

[Tripodi 2018] Tripodi, F. 2018. Searching for alternative facts. Media Manipulation Research Initiative. New York, NY: Data & Society Research Institute.

[Vincent and Hecht 2021] Vincent, N., and Hecht, B. 2021. A deeper investigation of the importance of wikipedia links to search engine results. Proceedings of the ACM on Human-Computer Interaction 5(CSCW1):1–15.

[Vincent et al. 2019] Vincent, N.; Johnson, I.; Sheehan, P.; and Hecht, B. 2019. Measuring the importance of user-generated content to search engines. In Proceedings of the International AAAI Conference on Web and Social Media, volume 13, 505–516.

[Vincent, Johnson, and Hecht 2018] Vincent, N.; Johnson, I., and Hecht, B. 2018. Examining wikipedia with a broader lens: Quantifying the value of wikipedia’s relationships with other large-scale online communities. In CHI 2018, 1–13.

[Winograd, Flores, and Flores 1986] Winograd, T.; Flores, F.; and Flores, F. F. 1986. Understanding computers and cognition: A new foundation for design. Intellect Books.