P1.171

ELECTRICAL FIELD CONSIDERATIONS FOR DEEP BRAIN STIMULATION PATIENTS UNDERGOING ELECTROCONVULSIVE THERAPY

Brendan Butler MD MPH, Cameron Smith MD PhD, Brent Carr MD, University of Florida, Department of Psychiatry, Gainesville, FL, USA;
University of Florida Department of Anesthesiology, Gainesville, FL, USA

Abstract

Introduction: ECT for a post Deep Brain Stimulation (DBS) implantation patient elicits apprehension given the limited available literature. Concerns arise regarding DBS device malfunction, alteration, or induction of high brain eFields, aberrant electrical conductivity over the metallic DBS coils, or shifting through a skull burr hole defect. There also exists the potential for cranial metallic objects to create high amperage through low impedance pathways creating abnormal tissue warming.

Case Report: We offer a case report of a 65-year-old WF admitted for severe psychotic depression with a right-sided constant voltage DBS implant for Parkinson’s Disease who received an Index Series of ECT using a MECTA SpecTrum 5000Q ECT Device. DBS device was an Activa SC 37603 Multi-program neurostimulator with DBS Lead Model #3387, and Medtronic SpECTrum 5000Q ECT Device. DBS device was an Activa SC 37603 Multi-program neurostimulator with DBS Lead Model #3387, and Medtronic SpECTrum 5000Q ECT Device.

Results: The DBS device remained viable throughout all treatments and measured brain impedances within normal limits. At 6 months f/u, the DBS device battery alert light was operational and functioning properly with DBS battery replacement occurred 1 year post ECT.

Conclusions: Structural and functional neuroimaging studies support no evidence for brain damage during ECT. The ECT electrode placement is consistent with electrical field modeling given the burr hole setup. Focus on ECT stimulating electrode placement over coils obscures the more significant matter of anchoring for BF and RUL (if no ring-cap) as per electrical field modeling (Deng). This poster explores the induced electrical field, anchoring, DBS coils, and DBS device considerations for ECT in DBS patients.

Research Category and Technology and Methods

Clinical Research: 1. Deep Brain Stimulation (DBS)

Keywords: DBS, ECT, Monopolar, triple

P1.173

NON-INVASIVE SUPPRESSION OF ESSENTIAL TREMOR VIA PHASE-LOCKED DISRUPTION OF ITS TEMPORAL COHERENCE

Junheng Li, Sebastian Schreglmann, David Wang, Robert Peach, Anna Laurette, Edward Rhodes, Emanuele Panella, Antonino Cassara, Edward Boyd, John Rothwell, Kailash Bhatia, Nir Grossman, Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute, UK; 1.5 Institute of Neurology, Department of Clinical and Movement Neuroscience, Queen Square, University College London (UCL), UK; 2.6 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), USA; 3.7 Department of Brain Sciences, Imperial College London, UK; 4.8 Department of Mathematics and EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, UK; 5.9 Department of Physics, Imperial College London, London, S9W 2AZ, UK; 6.10 ITIS Foundation for Research on Information Technologies in Society, Switzerland; 7.11 Department of Media Arts and Sciences, MIT, USA; 8.12 McGovern Institute for Brain Research, MIT, USA; 9.13 Howard Hughes Medical Institute, Cambridge, USA; 10.14 Department of Biological Engineering, MIT, USA; 11.15 Department of Brain and Cognitive Sciences, MIT, USA; 12.16 Centre for Neurobiological Engineering, MIT, USA; 13.17 Koch Institute for Integrative Cancer Research, MIT, USA; 14.18 Center for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, UK; 15.19 Centre for Neurotechnology, Imperial College London, UK

Abstract

Background: Essential tremor (ET) is one of the most prevalent movement disorder, and is hallmarked by aberrant neural coherent oscillations in the cortico-cerebello-thalamo-cortico (CCTC) neuronal network. ET has been successfully treated using deep brain stimulation (DBS) but the application is constrained due to the requirement of brain surgery. Thus novel non-invasive methods for disrupting relevant neuronal coherent oscillations is required.

Methods and results: We firstly developed a novel approach in tracking the phase of neuronal oscillations in real time, which is named as end-point corrected Hilbert transform (eHT). By mitigating the Gibbs