INTRODUCTION

The link between inflammation and cancer is well-established, with Rudolf Virchow first suggesting that 'lymphoreticular infiltrate' found next to the cancer site of origin had an active role in the pathogenesis of the disease. Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Crucially, inflammation has been recognized to have a major role in the tumorigenic process for HCC, with approximately 80% of cases developing as a consequence of chronic liver disease progressing to fibrosis and ultimately malignancy.

The different aetiologies of HCC include hepatotropic viral infection, non-alcoholic steatohepatitis and alcohol-induced fibrosis. While these all induce the tumorigenic process via separate mechanisms, inflammation stands out as a unifying mechanism amongst all. The pro-inflammatory response also plays a significant role in facilitating the intercellular cross-talk between the tumour cells and the tumour microenvironment, which includes cancer-associated fibroblasts (CAFs), endothelial and immune cells. The transition from fibrosis to carcinoma is accompanied by a persistent and unopposed release of cytokines such as interleukins (IL) and chemokines, further facilitating HCC pathogenesis. Furthermore, inflammation does not only seem to have a role in the development of HCC but rather recent studies confirm that inflammation actually plays a prognostic role in determining the clinical course of the malignancy.

The prognostic role of inflammation is corroborated by studies demonstrating that within peritumoural tissue, a cytokine shift of Th-1 to Th-2 can impact the likelihood of HCC recurrence and mortality after radical resection. Additionally, many single candidate studies illustrate that unopposed local or systemic release of...
pro-inflammatory mediators can predict an adverse course of disease. For example, elevated peritumoural expression of IL-2 and IL-5 is predictive for an earlier recurrence and a shorter survival time post-resection. Furthermore, an increased production of IL-10 has been associated with immune dysfunction, resulting in a higher number of myeloid-derived suppressor cells (MDSC) and impaired maturation of dendritic cells. Combined, these molecular factors help explain the role of inflammation in influencing HCC progression.

A pro-inflammatory state in the tumour microenvironment has also been linked with augmented angiogenesis in many studies. For example, in certain tumours the recruitment of IL-17 secreting T-helper cells helps facilitate angiogenesis and consequently negatively impacts prognosis. Collectively, such studies demonstrate that it is the intricate interplay between the tumour itself, its microenvironment, the host's immune response and several concurrent domains of cancer biology (e.g., angiogenesis, unrestrained proliferation, immune dysregulation) which underlies inflammation-driven HCC progression.

While a number of studies have evaluated the prognostic role of inflammatory biomarkers present in tumours, the surrounding tissue and systemic circulation in HCC, none have yet proved adequate enough to be used in the clinical environment. Furthermore, limited accessibility and high costs associated with genomic analysis of samples prevent the use of tissue and immunology-based approaches. Despite their accessibility, the use of cytokine quantification is also limited for several reasons. Foremost, the sheer number of candidates combined with the redundant and pleiotropic behaviour of cytokine signalling means that a combination of cytokines are involved in cancer pathogenesis, rather than one cytokine alone. Secondly, cytokines measured in the systemic circulation might not reflect the pro-inflammatory environment that results in a worse prognosis. Finally, given the number of studies exploring the prognostic role of cytokines in HCC, it is difficult to determine which candidate should be evaluated for use in the clinical setting.

1.1 | Biomarkers of systemic inflammation

Analysis of the inflammation-induced changes found in routine and accessible peripheral blood parameters gives additional insights into cancer-associated inflammation in HCC. For instance, studies have recognised numerous inflammation-related features in the peripheral blood of HCC patients. Such features include thrombocytosis, leucocytosis, hypoalbuminaemia, increased plasma fibrinogen, relative lymphopaenia, hyperferritinaemia and elevated C-reactive protein (CRP).

An increasing number of studies support the use of a combination of various acute phase proteins to develop composite, inflammation-based prognostic scores. These scores include the neutrophil-to-lymphocyte ratio (NLR), the platelet-to-lymphocyte ratio (PLR), the prognostic nutritional index, calculated using a nomogram based on hypoalbuminaemia and lymphopaenia (albumin in g/dL × 10 + 0.005 × total lymphocyte count), the prognostic index (PI), derived using elevated CRP (>1 mg/dL) and leukocytosis (>11,000/μL) and finally the modified glasgow prognostic score (mGPS)—named the inflammation based index (IBI) when applied to HCC—which combines elevated CRP (>1 mg/dL) and hypoalbuminaemia (<35 g/L) (Table 1). The derivation of these inflammation-based scores, as well as an outline of the systemic inflammatory response and its consequences in HCC, are shown in Figure 1.

Throughout the last decade, there has been an unprecedented increase in the volume of research exploring the prognostic power of inflammation-based scores in cancer, with over 70 studies having explored the prognostic role of NLR in patients with solid tumours, and likewise with the evaluation of GPS and mGPS. In particular, the prognostic use of these inflammation-based scores has now expanded to HCC, with studies accessing each biomarker individually or in comparison, in both curative and palliative settings.

In this review, we summarise the current body of evidence surrounding the use of inflammation-based scores in HCC and discuss where they sit in the prognostic assessment of HCC with regard to currently used staging systems and treatment algorithms. Secondly, we deliver an insight into the biological mechanisms underlying the prognostic decline found in those with deranged inflammatory scores and examine if modulation of the cancer-related inflammatory response may provide a novel therapeutic strategy for HCC. Finally, we look at the criticalities around the optimal clinical use of these inflammation-based scores in HCC.

1.2 | The prognostic role of inflammation-based indices in HCC

1.2.1 | Neutrophil-to-lymphocyte ratio

The normal proportion of neutrophil and lymphocytes changes from 50% to 60% and 30% to 40% respectively during the acute phase

Key points

- In hepatocellular carcinoma, chronic upregulation of pro-inflammatory mediators within the tumour or its microenvironment is known to influence clinical outcomes, including recurrence after radical treatment and long-term survival.
- This underlying inflammation that is essential to the pathogenesis of HCC has been extensively studied, with the aim of devising clinical biomarkers to assess the severity of cancer-related inflammation.
- There is evidence supporting the biologic qualification of inflammation-based scores in HCC, which can be used to facilitate prognostic assessment and treatment allocation in patients.
- Modulation of tumour-promoting inflammation may be employed as an emerging therapeutic strategy in the management of HCC.
recruitment and activation. There is significant evidence that this enables a cytokine-rich tumour microenvironment and granulocyte hypoxic and necrotic tumorous tissue during a pro-angiogenic signalling cascade. The induction of these pathways involved in the progression of damage-associated molecular pattern molecules and the tumour can also further elicit the innate immune response as a consequence of complement cascade activation, production of reactive oxygen species (ROS) as part of the oxidative burst. Secondly, the neutrophil response, instead of being terminally differentiated innate immune cells, have the potential to facilitate acquisition of an invasive phenotype can be mediated through interaction with the extracellular matrix via the production of proteases and initiation of hepatocyte growth factor signalling pathways.

Neutrophils are now known to possess an element of plasticity in their response, instead of being terminally differentiated innate immune effector cells. The variability in the sensitivity and response of neutrophils to different cytokines casts an additional layer of complexity in discerning the role they play in cancer-related inflammation. A notable example is transforming growth factor-β (TGF-β), a tumour-derived cytokine involved in the progression and metastatic dissemination of HCC, which also has the ability to polarise the neutrophil response from an antitumoural 'N1' phenotype to a pro-tumourigenic 'M2' phenotype. Similarly, MDSC, which are an immature group of innate immune cells, have the potential to respond, giving rise to peripheral blood neutrophilia and relative lymphopenia respectively. In turn, this causes the relative ratio between neutrophils and lymphocytes to increase above the normal value of 2.

In solid tumours, angiogenesis and tumour progression is facilitated through the activation of oncopgenes such as RAS and MYC, enabling a cytokine-rich tumour microenvironment and granulocyte recruitment and activation. There is significant evidence that this granulocyte recruitment and activation is predominantly driven by the paracrine and endocrine actions of cytokines derived from hypoxic and necrotic tumorous tissue during a pro-angiogenic signalling cascade. The induction of these pathways involved in the hypoxic response, along with the production of pro-angiogenic cytokines, demonstrates a recognised mechanism of neutrophil migration to the peritumoural tissue.

During necrosis, the progression of hypoxia to anoxia in the tumour can also further elicit the innate immune response as a consequence of complement cascade activation, production of damage-associated molecular pattern molecules and opsonin release, leading to an overall rise in the neutrophil count. The local release of pro-angiogenic cytokines, such as IL-17, has been shown to be essential to this process in HCC, where it fosters neutrophil chemotaxis to the tumour via CXC chemokines derived from epithelial cells, resulting in increased production of MPP-9 and angiogenesis. IL-17 has also been shown to promote HCC growth and upregulated concentrations correlate with an elevated NLR score. More recent evidence has linked tumour-derived CXCL5, the secretion of which is dictated by combined TGF-beta and Axl expression, with infiltration of neutrophils and disease-free survival (DFS), verifying the prognostic power of neutrophil infiltration in determining HCC progression. Similarly, the CXCR2-CXCL1 axis is able to regulate neutrophil infiltration into HCC tumour tissue, indicating a poorer prognosis.

In addition to angiogenesis, neutrophil-mediated tumour promotion can be achieved by facilitating genomic instability, which arises as a consequence of the generation of reactive oxygen species (ROS) as part of the oxidative burst. Secondly, the neutrophil facilitates acquisition of an invasive phenotype can be mediated through interaction with the extracellular matrix via the production of proteases and initiation of hepatocyte growth factor signalling pathways.

It is also well established that HCC patients with an elevated NLR have a worse prognosis after curative resection. In a retrospective analysis by Mano et al, HCC patients with a high NLR also had higher amounts of macrophage infiltration into the peritumoural tissue post curative resection. A number of studies have suggested that these tissue macrophages exhibit an immunosuppressive role via numerous mechanisms: 1) overexpression of TGF-β, resulting in N2 polarisation, 2) PD-1 ligand 1 (PD-L1) expression, which dampens the cytotoxic role of PD-1-expressing CD8+ T cells and 3) release of immune-suppressive cytokines, including IL-10. Furthermore, growing evidence points to the crucial role of tumour-associated macrophages (TAMs) in determining the behaviour of circulating immune cells in the tumour microenvironment, through the differentiation of TAMs into an immune-regulatory, pro-tumourigenic ‘M2’ phenotype. Similarly, MDSC, which are an immature group of innate immune cells, have the potential to

Table 1: Computation of inflammation-based prognostic indices in HCC

Inflammation based prognostic index	Score	
Inflammation based index/mGPS		
CRP ≤ 10 mg/L	0	
CRP > 10 mg/L + Albumin ≥ 35 g/L	1	
CRP > 10 mg/L + Albumin < 35 g/L	2	
GPS		
CRP ≤ 10 mg/L + Albumin ≥ 35 g/L	0	
CRP > 10 mg/L + Albumin < 35 g/L	1	
CRP > 10 mg/L + Albumin < 35 g/L	2	
PI		
CRP ≤ 10 mg/L + WCC < 11.000/μL	0	
CRP > 10 mg/L + WCC > 11.000/μL	1	
CRP > 10 mg/L + WCC > 11.000/μL	2	
PNI		
Albumin (g/dL) × 10 + 0.005 × lymphocyte count ≥ 45	0	
Albumin (g/dL) × 10 + 0.005 × lymphocyte count < 45	1	
Neutrophil-to-lymphocyte ratio		
Total neutrophil count/total lymphocyte count	0/1	
Different cut-off values used: >3:1 or >5:1		
Platelet-to-lymphocyte ratio		
Total platelet count/total lymphocyte count		
Different cut-off values used: <300:1/>300:1	0/1	
	<150:1/150-300:1/>300:1	0/1/2

Abbreviations: CRP, C-reactive protein; HCC, hepatocellular carcinoma; mGPS, modified glasgow prognostic score; PI, prognostic index; PNI, prognostic nutritional index.
inhibit antitumour CD8+ T cell and NK cell responses, thus promoting tumour progression.40 Several other mechanisms that could explain the use of NLR as a prognostic factor have also been explored. Foremost, neutrophilia has been linked with inhibition of the cytolytic activity of immune cells, including lymphocytes, activated T cells and NK cells.41 Neutrophils present in the intratumoural regions in HCC have been associated with increased autophagy activation and the release of growth factors and proteolytic enzymes, enabling poor survival and pro-tumourigenic effects such as invasion, metastasis and angiogenesis.42,43 A recent study has also revealed the role of HCC derived CAFs in fostering neutrophil mediated immune suppression in HCC. Specifically, HCC-CAF derived IL-6 was able to induce PD-L1+ neutrophils via the JAK-STAT3 pathway, which in turn impaired T cell function through PD-1/PD-L1 signalling and hence facilitated HCC progression.44

Across a wide number of malignancies, numerous studies have confirmed that the interaction between the local immune response and systemic inflammation is because of a causal rather than casual relationship.45 However, the molecular and immunological drivers of this relationship have not been fully explicated in HCC, calling for additional clarification in further studies.

1.2.2 Platelet-to-lymphocyte ratio

In the context of acute inflammation, the reactive systemic thrombocytosis response enables resolving of tissue damage by stimulating local haemostasis and wound healing via focal production of a variety of platelet-derived humoral signals. However, this physiological response is adversely affected by the systemic release of cytokines in cancer. These cytokines act on platelets to establish an autostimulatory loop and subsequently cause the release of platelet-secreted mediators such as vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and others.46 The reduction in platelets, associated with HCC treatment, and the rise in platelets, associated with HCC recurrence, indicate that platelets may also be promoted by HCC-derived factors. Such factors include IL-1, IL-6, G-CSF, M-CSF, thrombopoietin, FGF and VEGF, which have been shown to be higher in HCC than cirrhosis patients.47

In HCC, the presence of underlying cirrhosis can influence platelet counts so absolute thrombocytosis may not be apparent. This arises as a consequence of portal hypertension secondary to cirrhosis, which can lead to hypersplenism and associated thrombocytopenia.48 Studies have now integrated absolute platelet...
Platelet counts may also reveal a more aggressive neoplastic phenotype that is independent of liver function, with some studies finding a correlation between thrombocytosis and adverse clinicopathological features. Specifically, thrombocytosis has been linked to a strong risk of extrahepatic metastasis. This can be attributed to the elevated levels of VEGF and PDGF associated with thrombocytosis, which in turn promotes angiogenesis, cell proliferation, migration and tumour metastasis. Platelet-derived serotonin can also promote angiogenesis and the development of an invasive phenotype. Platelets may also increase the survival of tumour cells by promoting the formation of tumour cell emboli within the vasculature, and via platelet-tumour cell binding, providing protection from shear stress and lysis from natural killer cells, as well as lead to metastasis via epithelial-mesenchymal transition (EMT). Furthermore, platelets seem to be more highly activated in patients with poorly differentiated HCC, suggesting platelets may inhibit HCC differentiation. This has been associated with more platelet-tumour cell binding and higher levels of ADP, which can induce platelet activation.

Platelet activation may also oppose treatment efficacy in patients receiving systemic HCC therapy. This is supported by mechanistic studies showing that platelet lysates in vitro can stimulate the proliferation of tumour cells and antagonise the effect of sorafenib-related cytotoxicity. It has also been suggested that platelets might possess a more complicated immunopathological function in HCC by controlling the hepatic build-up of virus-specific CD8+ lymphocytes and heightening the necro-inflammatory damage locally, predisposing the onset and progression of HCC. In addition to thrombocytosis, the mean platelet volume (MPV) has also been shown to have some prognostic value, with a high MPV being associated with improved survival in patients with advanced HCC. This could be attributed to a low MPV representing functionally exhausted platelets or, alternatively, reduced thrombopoietin production resulting from reduced liver function.

While inflammation-driven reactive thrombocytosis is strongly related to an infiltrative pattern of growth in HCC, the PLR still has inferior prognostic capacity in HCC when compared to other inflammation-based indices. However, the amalgamation of platelet levels with other bone marrow derived inflammatory indicators such as lymphocytosis and peripheral blood neutrophilia in the systemic immune inflammation index algorithm identifies an early subgroup of HCC with increased circulating tumour cells at diagnosis and reduced survival post-resection. Despite studies confirming a clear association between thrombocytosis and a more aggressive clinical course of HCC, additional research is required to illuminate whether this relationship is truly causative or instead reflects a simple epiphenomenon observed during the progression of HCC. Given the ready availability of antiplatelet agents in the clinical environment, there is a strong case for the prioritisation of this avenue of research.

1.2.3 Inflammation-based index (mGPS)

During acute tissue injury, cells of the innate immune system are locally recruited and activated by chemotactic mediators acting in both a paracrine and autocrine manner, promoting and maintaining an inflammatory response locally. These mediators include IL-1, which is involved in thermoregulation, and IL-6, which acts as a hepatocyte stimulatory factor in the induction of the acute phase response. IL-6 is synthesised acutely after local tissue injury and is released into the bloodstream, where it reduces the production of albumin and stimulates CRP production. CRP is a homopentameric soluble acute-phase protein and is an important regulator of inflammatory processes, developing a favourable microenvironment for tumour cells to undergo angiogenesis. However, while it is understood that CRP indirectly modulates the tumour microenvironment, its effect on tumour progression remains elusive. Two recent studies found CRP gene polymorphisms correlate with dysregulation of the Wnt-signalling pathway frequently observed in colorectal cancer, calling for further investigations to elucidate its functional significance. Nevertheless, other members of the pentraxin family, including Pentraxin-3 (PTX3), have been shown to promote the migratory and invasive capacity of pancreatic cancer cells, demonstrating how inflammatory mediators may directly facilitate the progression of solid tumours.

Elevated CRP levels, combined with hypoalbuminaemia, were originally utilised to develop the GPS, which has sustained additional modifications (mGPS) to enhance the prognostic accuracy in individuals with early and advanced stage tumours in various treatment modalities. In addition, data from large international cohorts have also illustrated mGPS to have an independent prognostic value irrespective of tumour stage, which correlates with a worse performance status (PS).

In addition to underlying liver dysfunction in HCC, systemic inflammation seems to play an equally relevant role in influencing albumin levels. Hence, by modulating the underlying inflammatory response, anticancer therapies have been found to exert a positive effect on albumin levels. In contrast, it remains unclear whether increased CRP secretion promotes tumorigenesis or is merely an innocent bystander that happens to sit downstream of excess systemic cytokine release. Nevertheless, it remains apparent that elevated CRP secretion corresponds to poorer HCC prognosis in both the curative and palliative setting. Furthermore, the IBI has been confirmed as a stage independent prognostic indicator that has greater accuracy compared to other inflammatory indices, with changes in its value after loco-regional treatment being predictive of disease modulation and survival in those with intermediate stage HCC.
1.3 Inflammation-based prognostic indices in the curative setting

In accordance with the Barcelona Clinic Liver Cancer (BCLC) algorithm, it is recommended that patients with unifocal asymptomatic HCC and intact liver function should have the option of undergoing percutaneous radiofrequency ablation (RFA) or hepatectomy as radical treatment. However, in patients that have a complete response after resection for early stage HCC the predicted 5-year survival rate is only 17% to 53%. In those undergoing radical treatment for HCC the overall lifetime risk of recurrence is nearer to 70%. This figure is thought to take into account the likelihood of primary progression of micrometastatic foci derived from the primary tumour, in addition to the emergence of new neoplastic clones arising from the underlying cirrhosis.

For those with early stage HCC, there is compelling evidence that NLR provides an accurate prediction of both overall survival (OS) and DFS, as demonstrated in Table 2. In particular, examination of a selection of 150 resected tumour samples from a study of 998 patients demonstrated that a raised NLR is associated with greater CD163+ peritumoural infiltrate, revealing an insightful relationship between the local and systemic inflammatory response. Likewise, deterioration of NLR following RFA may predict earlier recurrence and associated mortality. Moreover, an elevated NLR also seems to have prognostic significance in those undergoing trans-arterial chemoembolization (TACE) therapy. It should also be noted that lower cut-off values of NLR were used for prognostic stratification in early stage HCC compared to advanced disease. This perhaps suggests that NLR demonstrates the progressive, stage-dependent intensity of HCC and the severity of the systemic inflammatory response, raising the question as to whether this should be taken into account through the use of different cut-off values depending on the stage of HCC.

Studies investigating albumin/CRP based prognostic algorithms have reported similar figures, where derangement of the scores pre-surgery predict for increased risk of perioperative complications, longer operating times and worse OS and DFS (Table 3). Some studies have also evaluated the role of inflammation-based scores in those undergoing orthotopic liver transplantation (OLT), with OS nearing 75% after 4 years, and tumour recurrence appearing in 8%-15% of all graft recipients that fulfilled the Milan criteria. Notably, NLR has proven to be a consistent and reliable biomarker of OS and reduced DFS in a large number of studies spanning both Eastern and Western populations, where differing indications for OLT may greatly influence survival outcomes. A study by Shindoh et al revealed that NLR at a cut-off of 2.4 was an independent predictor of DFS, although it had poorer accuracy when compared to alpha fetoprotein (AFP) and des-gamma-carboxyprothrombin. However, despite showing promise and being validated across many studies, the prognostic association of deranged inflammatory scores with survival in early stage HCC is mainly derived from retrospective, single-institution studies, limiting the applicability in clinical practice. Nevertheless, once validated in larger, multi-institute prospective studies, these results might influence the management of HCC in terms of graft allocation and pre-operative risk assessment in patients with resectable disease that are at higher risk of perioperative complications and mortality, as a consequence of ongoing systemic inflammation.

Even though there is a large number of studies evaluating the role of inflammation-based indicators in early stage disease, only a small proportion of these have explored the molecular pathogenesis underlying the inflammatory response. Given that preliminary evidence indicates that modulation of this cancer-related inflammatory response leads to desirable antitumour effects, investigating the biological background of this response may lead to the identification of targets for novel inflammation-based adjuvant treatment approaches in HCC.

1.4 Inflammation-based prognostic indices in advanced HCC

Variable survival outcomes are reported for patients with unresectable HCC, ranging from any duration between 14 and 45 months in intermediate stage disease, to less than 3 months in BCLC-D. There has been a strong research focus on prognosticating patients with intermediate stage HCC since the BCLC algorithm is unable to determine survival outcomes after TACE, which is the first-line treatment option for those with confined tumours and stable liver function. Furthermore, while several prognostic algorithms have been suggested to help direct the use of TACE, they have yet to be validated and hence have not entered the clinical setting.

Some proposed strategies have relied on quantifying CRP levels, an emerging prognostic marker that allows the development of combined prognostic scores that integrate liver function and the radiological response, helping to stratify patients who are unsuitable for further TACE. Furthermore, changes in NLR and IBI following TACE might demonstrate the disease modulating response from treatment, additionally emphasising that cancer-associated inflammation is a useful prognostic indicator in HCC. Intriguingly, the normalisation of inflammatory indices after TACE correlates with improved survival and radiological response. This validates the theory that diminishing the systemic inflammatory environment could serve as a substitute biomarker for chemo-embolisation failure. While the prognostic role of IBI has been validated prospectively in a number of prospective European and Asian patient cohorts, other prognostic scores including NLR have yet to be formally validated.

As baseline CRP measurements at diagnosis predict long-term outcomes in HCC patients, a composite prognostic model, that identifies patients with intermediate stage HCC who are unsuitable for repeat TACE, has been devised. This model, known as the START strategy, integrates baseline CRP and other variables that demonstrate the radiological response to TACE and reflect progressive liver impairment. However, the implementation of inflammation-based indices to identify patients amenable to TACE is still uncertain and requires further assessment in additional studies, especially given the rise of newly validated alternate prognostic models.
Study	Biomarker	Clinical setting	N	Comments
Huang et al (2011)	NLR	TACE	145	NLR ≥ 3.3 pre-TACE predicted for worse OS. NLR increase 3 days post-TACE predicted for improved OS.
Chen et al (2012)	NLR	TACE	158	NLR analysed as continuous explanatory variable predicted for worse OS but not DFS. Elevated post-RFA NLR predicted for shortened DFS and OS.
Pinato et al (2012)	NLR	TACE	54	NLR > 5 at baseline predicted for worse OS. Dynamic changes of NLR after TACE predict for OS advantage following TACE.
Motomura et al (2013)	NLR	OLT	158	NLR ≥ 4 predicted for DFS associated with higher IL-17 peritumoral expression.
Mano et al (2013)	NLR	Resection	958	NLR ≥ 2.81 predicted for worse OS and DFS and associated with higher peritumoral macrophage infiltrate.
Yoshizumi et al (2013)	NLR	Salvage OLT in recurrent HCC after primary resection	104	NLR > 4 predicted for worse DFS after achieving complete response following salvage OLT.
Zhou et al (2015)	NLR	Mixed stages (7% surgical candidates)	1061	NLR > 2.8 associated with worse DFS and OS but inferior accuracy (AUC) to modified NLR (M/GLR) score.
Lu et al (2016)	NLR	Resection	963	NLR > 2.81 associated with worse DFS and OS in only BCLC stage A or B HCC.
Liu et al (2016)	NLR	Resection	233	Preoperative NLR > 2.75 associated with early but not late recurrence of HCC. Prognostic ability improves when combined with other prognostic factors.
Hung et al (2017)	NLR	Resection	672	NLR > 2.5 associated with worse DFS and OS, as well as larger tumour size, higher histology grade, higher rates of tumour multiplicity and vascular invasion.
Bruix et al (2017)	NLR	Advanced HCC	827	Elevated NLR associated with worse OS during treatment with sorafenib and in placebo groups.
Jianyong et al (2017)	NLR	Mixed treatment	1560	NLR > 4 predicted worse DFS and OS.
Yang et al (2017)	NLR	Resection	1020	Elevated NLR associated with worse DFS.
He et al (2017)	NLR	Resection	590	NLR > 1.77 associated with worse OS but inferior to combined NLR-PLR score.
Liu et al (2017)	NLR	TACE	793	NLR > 2.2 predicted worse OS but inferior accuracy to combined NLR-PNI score.
Wu et al (2018)	NLR	Resection	344	Postoperative NLR > 2.29 associated with poor prognosis with NLR > 2.41 associated with early recurrence and NLR > 2.15 associated with late recurrence.
Pang et al (2018)	NLR	Mixed treatment	470	Elevated NLR associated with worse DFS and OS for HBV HCC, and when combined with tumour size has better prognostic value than BCLC and CLIP.
Shen et al (2014)	PLR	Resection	332	Elevated PLR associated with worse OS and DFS.
Li et al (2015)	PLR	Mixed stages	233	PLR is an independent prognostic factor for advanced HCC patients not receiving systemic sorafenib.
Xue et al (2015)	PLR	TACE	291	Elevated baseline PLR associated with worse OS.
Xia et al (2015)	PLR	OLT	343	Preoperative PLR > 125 associated with advanced tumour stage and more aggressive behaviour.
Dong et al (2016)	PLR	Resection	337	Elevated preoperative PLR associated with worse OS.
Kaida et al (2017)	PLR	Resection	271	PLR > 150 associated with worse DFS.
Huang et al (2017)	PLR	Resection	1804	Elevated preoperative PLR associated with worse OS.
Yang et al (2017)	PLR	Resection	778	Elevated preoperative PLR may be independently associated with poor OS and DFS.
TABLE 2 (Continued)

Study	Biomarker	Clinical setting	N	Comments
Wang et al (2017)	PLR	Mixed stages	270	PLR > 220 at diagnosis is a predictor for poor prognosis in HCC.
Chen et al (2018)	PLR	RFA	287	Elevated PLR is an independent prognostic factor for OS and DFS.

Abbreviations: AUC, Area under curve; BCLC, disease-free survival; CLIP, Cancer of the Liver Italian Program Score; DFS, disease-free survival; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; OLT, orthotopic liver transplantation; OS, overall survival; PNI, prognostic nutritional index; RFA, radiofrequency ablation; TACE, trans-arterial chemoembolization.

The use of inflammation-based indices in prognosticating advanced stage HCC has substantiated the use of GPS and NLR in predicting OS during sorafenib treatment. For example, a recent study reported the prognostic usefulness of GPS, mGPS and CRP to albumin ratio in advanced HCC patients treated with sorafenib, with prediction of OS improving when GPS was combined with Eastern Cooperative Oncology Group PS and the presence of portal thrombosis. In addition, this study found that CRP based scores had superior prognostic value when compared to both NLR and PLR scores. However, because of the volume of relatively small retrospective studies there is a need for a comprehensive comparative analysis of all the utilised scores in order to enable appropriate clinical recommendations. Furthermore, the interplay between toxicity from systemic treatment and the underlying pro-inflammatory status, a relationship that has been established in animal studies showing inflammation-induced suppression of drug metabolism, has yet to be explored in advanced HCC.

1.5 Inflammation as a therapeutic target in HCC

As HCC progression is closely linked to systemic inflammation, a hypothesised viable therapeutic strategy is to target the cancer-related inflammation pharmacologically, with the potential for integration with other systemic, loco-regional or molecular anticancer therapies. This section aims to review the evidence behind the therapeutic strategies in HCC.

1.5.1 Targeting the systemic inflammatory response

With growing evidence that anti-inflammatory agents could play an antineoplastic role, there has been a shift towards re-purposing these therapeutics and integrating them as part of an anticancer regime. These anti-inflammatory therapeutics range from broad spectrum corticosteroids and non-steroidal anti-inflammatory drugs, to compounds that directly perturb specific molecular pathways. However, the mechanism of action of most of these anti-inflammatory strategies remains unelucidated and needs further characterisation. Dexamethasone, for example, is already widely prescribed to counteract cancer-related cachexia and anorexia, particularly in patients with advanced malignancy. However, in murine models of HCC, there has also been evidence that dexamethasone may inhibit tumour growth by encouraging a shift from glycolysis to gluconeogenesis, warranting further evaluation in prospective trials.

Aspirin has also emerged as both a chemopreventative and direct anticancer treatment, which is supported by robust retrospective evidence and a plethora of prospective randomised trials across a range of different tumour types. For example, a recent study in a small cohort of patients with unresectable HCC found that aspirin combined with TACE improves OS, while another study proposed a synergistic antitumour effect of aspirin when combined with sorafenib. It is currently unclear whether the anticancer properties of aspirin are mediated through its antiplatelet properties, reducing T-cell mediated necro-inflammation in the liver, or instead relies on maintained inhibition of cyclooxygenase (COX), the expression of which in the tumour microenvironment is associated with a worse prognosis. Foremost, active suppression of the inflammatory NFκB signalling cascade justifies the use of aspirin and other NSAIDS as disease modulating agents, since this pathway regulates both inflammation and the proliferation of tumour cells, and is also closely associated with the pathogenesis and advancement of HCC.

In addition to aspirin, other antiplatelet therapies also have the potential to suppress hepatic immunopathology and slow the progression of HCC. Platelets have been shown to be present within CD8+ T cell-containing hepatic necro-inflammatory foci and their depletion ameliorates the severity of liver disease. A study evaluating the use of aspirin and clopidogrel in a HBV transgenic mouse model of chronic immune-mediated necro-inflammatory liver disease found that these antiplatelet therapies delayed the development of HCC and improved OS. This was associated with diminished accumulation of intrahepatic virus-specific CD8+ cells, leading to reduced recruitment of non-specific inflammatory cells, hepatocellular inflammation and injury, ultimately attenuating the sustained immune-mediated necro-inflammatory liver dysfunction that leads to HCC. In addition, antiplatelet therapies may also inhibit platelet-derived factors that promote tumour growth independent of CD8+ T cells.

Another potential treatment option is the use of renin-angiotensin system (RAS) inhibitors. In addition to being a therapeutic target in cardiovascular disease, RAS is expressed locally within many tissues where it regulates cellular proliferation and metabolism. Of interest, a number of preclinical studies have implicated the role of RAS in the development, growth and proliferation of cancer. More specifically, RAS has been shown to promote tumour-associated...
TABLE 3 Summary table of the studies investigating the prognostic role of the GPS and IBI/mGPS in patients with HCC

Study	Biomarker	Clinical Setting	N	Comments
Kinoshita et al (2012)	NLR	Mixed stages (55% TNM I-II)	150	All inflammation-based indices emerged as univariate predictors of OS. GPS preserved independent prognostic power on MVA with greater accuracy established using AUC for predicting OS at 6, 12 and 24 mo. The cut-off for NLR was ≥5 while for PLR was <150, ≥150 and ≥300.
Morimoto et al (2012)	GPS	Advanced HCC	81	GPS predicted for OS in patients treated with sorafenib.
Pinato et al (2012)	PNI	Mixed stages—mostly intermediate/advanced HCC	112 training set (BCLC-A 15%) 68 validation set	PNI emerged as independent predictor of OS in both cohorts.
Pinato et al (2012)	IBI NLR	Mixed stages (prospective study)	112 training set (BCLC-A 15%) 466 validation set (BCLC-A 56%)	IBI emerged as most accurate predictor of OS. Combination of IBI and CLIP resulted in improved prognostic accuracy.
Horino et al (2013)	GPS	Resection	352	GPS predicted for perioperative complications and worse OS.
Kinoshita et al (2013)	GPS	Resection	150	GPS predicted for worse OS.
Huang et al (2014)	NLR GPS	Resection	349	GPS emerged as most accurate predictor of OS. Combination of GPS and CLIP resulted in improved prognostic accuracy.
Pan et al (2014)	GPS	Resection	171	GPS predicted for worse OS and DFS.
Pinato et al (2014)	IBI	TACE	64 training set 577 Retrospective validation set^a 76 prospective validation set	IBI and its dynamic changes following TACE predict for treatment-induced OS benefit. The effect on patient’s survival was validated prospectively.
Ni et al (2015)	GPS mGPS	Resection	723	mGPS emerged as an independent marker of poor prognosis.
Zhou et al (2015)	GPS	TACE	224	GPS associated with worse OS.
Aino et al (2016)	NLR PLR	Stage IVB advanced HCC	433	GPS and NLR predicted for worse OS.
Kaltenborn et al (2017)	GPS mGPS	Living donor LT Deceased donor LT	29 Living donors 319 Deceased donors	GPS emerged as the best predictor for 3-year mortality in living donor LT. All scores failed to predict mortality in deceased donor LT and overall mortality in living donor LT.
Abe et al (2017)	GPS	Resection	453	GPS emerged as independent predictor for worse OS.
Shiba et al (2017)	GPS	Resection	144	GPS emerged as independent predictor for worse OS and DFS.

Note: Abbreviations: AUC, area under curve; BCLC, Barcelona Clinic Liver Cancer system; CLIP, Cancer of the Liver Italian Program Score; DFS, disease-free survival; GPS, glasgow prognostic score; HCC, hepatocellular carcinoma; IBI, inflammation based index; mGPS modified glasgow prognostic score; MVA, multivariate analysis of survival; NLR, neutrophil-to-lymphocyte ratio; OLT, orthotopic liver transplantation; OS, overall survival; PI, prognostic index; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; RFA, radiofrequency ablation; TACE, trans-arterial chemoembolization; TNM, tumor node metastasis system.

^aIn the Japanese sub-cohort IBI was calculated using high sensitive CRP with a cut-off of 0.3 mg/dL.
Inflammation and infiltration of pro-inflammatory cell through various mechanisms. One such mechanism is increased production of pro-inflammatory cytokines through angiotensin II/angiotensin II type 1 receptor (AngII/AT1R) signalling, the main effector pathway of RAS implicated in HCC-related inflammation through the induction of downstream PKC and NF-κB expression. These cytokines include TGF-β, IL-6 and IL-8, which can exert an immunosuppressive effect through control of lymphoid and myeloid cell recruitment and differentiation. CRP and COX-II expression is also increased, the former of which is suspected to impede dendritic cell function and the latter reducing antitumour immunity. AngII/AT1R can also increase cancer-related inflammation through promoting increased tumour infiltration by TAMs and facilitating the production of ROS, which can improve the function of both TAMs and regulatory T cells, while reducing the function of effector T cells. Significantly, in addition to their use in liver fibrosis and portal hypertension, the direct antitumour effects of RAS inhibitors have been shown to prolong survival outcomes in HCC patients.

1.5.2 | Molecularly targeted modulation of cancer-related inflammation

Various targeted anti-inflammatory strategies, including the selective inhibition of pro-inflammatory signalling cascades such as chemokine receptors, Tumour Necrosis Factor-α and IL-6, are being investigated for a number of metastatic malignancies, including HCC. While these strategies have been reviewed elsewhere in detail, none of them have yet to be translated into clinical benefits in the management of HCC.

In particular, the JAK/STAT pathway has shown a lot of promise as a therapeutic target in the management of HCC. JAK has been well-characterised as an intracellular kinase that exerts its effects on the cytoplasmic domain of several growth factor tyrosine kinase receptors, signalling downstream via STAT protein dimerisation and nuclear migration. Selective inhibition of JAK using ruxolitinib, an oral inhibitor of JAK-1 and JAK-2, had demonstrated a significant improvement in progression free survival (PFS) and OS when administered in combination with capecitabine in a group of pre-treated pancreatic cancer patients that demonstrated evidence of a sustained systemic inflammatory response, indicated by their baseline mGPS. However, these preliminary results were not replicable in subsequent studies, prompting discontinuing of the trial in pancreatic cancer, as well as ending trials in other tumours that show evidence of systemic inflammation.

Sorafenib, the first-line treatment for advanced HCC, inhibits angiogenesis and the proliferation of tumour cells through inhibition of the intracellular Raf kinase pathway and extracellular VEGFR-2/33 and PDGFRβ related kinases. This anti-angiogenic effect is known to increase tissue hypoxia in the tumour, which in turn leads to an immunosuppressive effect. However, there is also evidence that sorafenib has an immunomodulatory role. For instance, treatment with sorafenib has been shown to improve the immune response by upregulating the activity of tumour-specific effector T cells, as well as reducing the number of PD-1 expressing CD8+ T cells and regulatory T cells, which has been correlated with improved OS. In addition to its direct immunomodulatory effect on lymphocytes, sorafenib may also exert an indirect effect on the HCC microenvironment by decreasing the levels of immunosuppressive cytokines such as IL-10 and TGF-β. There is also evidence that sorafenib can modulate dendritic cells and induce the proinflammatory activity of TAMs, stimulating an antitumour natural killer cell response.

In contrast, because of its anti-angiogenic nature, sorafenib has also been shown to increase tumour hypoxia and inflammation, which in turn exerts an overall immunosuppressive effect. One possible mechanism of this is the induction of SDF1α and CXCR4 axis by the hypoxic environment, which mediates the infiltration of pro-inflammatory cells including Gr-1+ MDSC, TAMs and regulatory T cells. In addition, hypoxia also promotes the expression of immune regulatory proteins such as PD-1/PD-L1, facilitating immunosuppression. However, it may be possible to overcome this effect through the use of SDF1α/CXCR4 inhibitors and PD-1 blockade, which ultimately improves the efficacy of sorafenib and delays disease progression.

Transforming growth factor-β is another promising therapeutic target for HCC, because of its pleiotropic signalling effects within the tumour microenvironment. TGF-β modulates both tumour progression through stimulating angiogenesis, promoting EMT and inducing immune cell dysfunction. Various strategies can be employed to target the TGF-β signalling cascade, including inhibiting TGF-β synthesis directly, ligand interference with monoclonal antibodies and selectively inhibiting the TGF-β receptor intracellular kinase domain. For example, recombinant IgG antibodies that target TGF-β1 and TGF-β2 respectively. Within the intracellular kinase inhibitors, the TGF-βR1 inhibitor galunisertib (LY2157299) has proven to be a leading candidate in a phase I study. Consequently it is being evaluated in proof-of-concept studies in numerous solid tumours, such as HCC, and also in combination with other immunomodulatory strategies, such as PD-L1 receptor blockade.

1.5.3 | Immunotherapy

A significant implication of systemic inflammation in HCC is represented by its potential role in influencing suppression of tumour-specific immunity. A number of studies conducted across malignancies have suggested a clinically important relationship between systemic inflammation and response to immune checkpoint inhibitors (ICI).

In general, an elevated NLR has been associated with worse outcomes, with higher pre-treatment scores being associated with poorer OS and PFS in patients treated with ICI for melanoma, non-small cell lung cancer (NSCLC) and genitourinary cancers. A recent meta-analysis of 17 studies showed that a raised pre-treatment NLR was associated with a 1.81 increased risk of progression and 2.26 increased risk of death across malignancies. This could be attributed to neutrophilia/lymphopenia, indicating an intrinsically
immune-tolerogenic microenvironment, and leading to inferior response rates and a poorer prognosis. Interestingly, a number of studies have shown a superior predictive ability of post-treatment rather than pre-treatment NLR in correlating with outcome, suggesting systemic inflammation to be a dynamic rather than static predictive correlate of treatment benefit.146,147

While PLR has also been linked to poorer OS and PFS in ICI-treated patients, no significant difference was found in the context of the aforementioned meta-analysis, possibly because of the small number of relevant studies available.145,148,149 Similarly, contradictory results have arisen when evaluating the predictive role of mGPS in the setting of ICI treatment. For instance, one study found that mGPS was superior to NLR and other inflammation-based scores in determining outcomes in NSCLC patients treated with nivolumab, while another study refuted such an association.150,151

In a disease area where anticancer immunotherapy is rapidly evolving, having led to the approval of nivolumab and pembrolizumab for the systemic treatment of advanced HCC,152,153 it would be important to validate the relationship between inflammatory biomarkers and the prognosis of patients treated with ICI. The lack of validated predictive correlate of response in this disease area strengthens the need for the validation of accurate, inexpensive and reproducible biomarkers to maximise the provision of immunotherapy in patients with HCC.154

2 | CONCLUSION

Even though the relationship between local, systemic inflammation and HCC progression is now a well-established principle in defining the pathophysiology and prognosis of the disease, several important questions around the biologic basis of inflammatory biomarkers and their optimal positioning in the management of HCC remain unanswered.

From a clinical perspective, the use of inflammation-based biomarkers competes with other prognostic algorithms, despite being relatively inexpensive and universally available. Combined with the lack of prospective validation in the majority of the indices studied, the application of inflammatory biomarkers in clinical practice is diminished by their perceived limited ability to alter the management of HCC. Inflammation-based scores may be more helpful in intermediate or BCLC-B stage HCC, which has more variable survival outcomes because of differing levels of tumour burden and liver impairment.155 Identifying patients who are less likely to benefit from locoregional therapies also has clinical importance, warranting prospective comparison of inflammatory indices with other available clinical scores.156

Inflammatory scores are also being developed for advanced HCC. Foremost, evidence of deranged inflammatory markers at the start of treatment, or the derangement of these indices with time, could provide an objective method to streamline the use of systemic therapies, including potentially ICI, depending on their predicted efficacy. This may have a particularly pertinent role in advanced HCC, where the spiralling costs of targeted anticancer therapies, as well as the lack of robust predictors, represent areas of unmet need.

In addition to improved treatment allocation on the basis of efficacy, several studies highlight the correlation between systemic inflammation and systemic anticancer treatment toxicity. This is derived from alterations in pharmacokinetic measures such as direct volume of distribution suppression of cytochrome P450 metabolism in the liver, which is a significant detoxification pathway involved in the clearance of sorafenib.157 The combination of an inflammatory diathesis with sorafenib toxicity has been suggested to predict for prognosis in advanced HCC, a point that should be further investigated in prospective studies.158

Even though research has helped to unravel the role of systemic inflammation, an enhanced understanding of its importance in the pathogenesis of HCC specifically will undoubtedly enable clinicians and scientists to facilitate the provision of personalised medicine for both early and more advanced stage HCC.

CONFLICT OF INTEREST

No potential conflicts of interest. No financial support.

AUTHOR CONTRIBUTIONS

All authors equally contributed to this paper with conception and design of this study, literature review and analysis, drafting and critical revision and editing, and approval of the final version.

ORCID

Chandan Sanghera b https://orcid.org/0000-0002-7060-442X

Jhia J. Teh b https://orcid.org/0000-0002-7086-0546

David J. Pinato b https://orcid.org/0000-0002-3529-0103

REFERENCES

1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539-545. https://doi.org/10.1016/S0140-6736(00)04046-0

2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10-29. https://doi.org/10.3322/caac.20138

3. Kocabayoglu P, Friedman SL. Cellular basis of hepatic fibrosis and its role in inflammation and cancer. Front Biosci (Schol Ed). 2013;5:217-230.

4. Maki A, Kono H, Gupta M, et al. Predictive power of biomarkers of oxidative stress and inflammation in patients with hepatitis C virus-associated hepatocellular carcinoma. Ann Surg Oncol. 2007;14(3):1182-1190. https://doi.org/10.1245/s10434-006-9049-1

5. Lade A, Noon LA, Friedman SL. Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer. Curr Opin Oncol. 2014;26(1):100-107. https://doi.org/10.1097/CCO.0000000000000042
6. Cornelli H, Alsinet C, Villanueva A. Molecular pathogenesis of hepatocellular carcinoma. Alcohol Clin Exp Res. 2011;35(5):821-825. https://doi.org/10.1111/j.1530-0277.2010.01406.x

7. Hernandez-Gee V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512-527. https://doi.org/10.1053/j.gastro.2013.01.002

8. Budhu A, Wang XW. The role of cytokines in hepatocellular carcinoma. J Leukocyte Biol. 2006;80(6):1197-1213. https://doi.org/10.1189/jlb.0506297

9. Budhu A, Forgues M, Ye Q-H, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10(2):99-111. https://doi.org/10.1016/j.ccr.2006.06.016

10. Zhou H, Huang H, Shi J, et al. Prognostic value of interleukin 2 in hepatocellular carcinoma. J Immunol. 2013;180(9):5447-5456. https://doi.org/10.4049/jimmunol.1300022

11. Beckebaum S, Zhang X, Chen X, et al. Increased levels of interleukin-10 in peritumoral hepatic tissues for patients with hepatitis B-related hepatocellular carcinoma after curative resection. Gut. 2010;59(12):1699-1708. https://doi.org/10.1136/gut.2010.218404

12. Beckebaum S, Zhang X, Chen X, et al. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res. 2004;10(21):7260-7269. https://doi.org/10.1158/1078-0432.CCR-04-0872

13. Arihara F, Mizukoshi E, Kitahara M, et al. Increase in CD14+HLA‐DR−/low myeloid‐derived suppressor cells in hepatocellular carcinoma after curative resection. J Immunol. 2013;181(2):878-889. https://doi.org/10.4049/jimmunol.1202530

14. Aino H, Sumie S, Niizeki T, et al. Clinical characteristics and prognosis of hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 2013;62(8):1421-1430. https://doi.org/10.1007/s00262-013-1447-1

15. Hao KE, Luk JM, Lee N, et al. Predicting prognosis in hepatocellular carcinoma after curative surgery with common clinicopathologic parameters. BMC Cancer. 2009;9(1):389. https://doi.org/10.1186/1471-2407-9-389

16. Hwang S-J, Luo J-C, Li C-P, et al. Thrombocytosis: a paraneoplastic syndrome in patients with hepatocellular carcinoma. World J Gastroenterol. 2004;10(17):2472-2477. http://www.ncbi.nlm.nih.gov/pubmed/15300887. Accessed September 17, 2018.

17. Aino H, Sumie S, Niizeki T, et al. Clinical characteristics and prognostic factors for advanced hepatocellular carcinoma with extrahepatic metastasis. Mol Clin Oncol. 2014;2(3):393-398. https://doi.org/10.3892/mco.2014.259

18. Haider C, Hnat J, Wagner R, et al. Transforming growth factor-β1 and Axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma. J Immunol. 2014;193(5):2570-2580. https://doi.org/10.4049/jimmunol.1300795

19. Zhou X, Wu W, et al. Neutrophil–lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J Hepatol. 2013;58(1):74-80. https://doi.org/10.1016/j.jhep.2012.08.017

20. Zhou S-L, Dai Z, Zhou Z-J, et al. CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 2012;56(6):2242-2254. https://doi.org/10.1002/hep.25907

21. Haider C, Hnat J, Wagner R, et al. Transforming growth factor-β1 and Axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma. J Hepatol. 2013;58(1):74-80. https://doi.org/10.1016/j.jhep.2012.08.017

22. Pinato DJ, Stebbing J, Ishizuka M, et al. A novel and validated prognostic index in hepatocellular carcinoma: the inflammation based index (IBI). J Hepatol. 2012;57(5):1013-1020. https://doi.org/10.1016/j.jhep.2012.06.022

23. Guthrie G, Charles KA, Roxburgh C, Horgan PG, McMillan DC, Clarke SI. The systemic inflammation-based neutrophil–lymophocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol. 2013;88(1):218-230. https://doi.org/10.1016/j.critrevonc.2013.03.010

24. McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev. 2013;39(5):534-540. https://doi.org/10.1016/j.ctrv.2012.08.003

25. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2004;454(7203):436-444. https://doi.org/10.1038/nature07025

26. Chen L, Zhang Q, Chang W, Du Y, Zhang H, Cao G. Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma. Eur J Cancer. 2012;48(13):1977-1987. https://doi.org/10.1016/j.ejca.2012.01.015

27. Scapini P, Morini M, Tecchio C, et al. CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol. 2004;178(5):5034-5040. http://www.ncbi.nlm.nih.gov/pubmed/15047085. Accessed September 17, 2018.

28. Kuang D-M, Zhao Q, Wu Y, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol. 2011;54(5):948-955. https://doi.org/10.1016/j.jhep.2010.08.041

29. Motomura T, Shirabe K, Mano Y, et al. Neutrophil–lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J Hepatol. 2013;58(1):51-58. https://doi.org/10.1016/j.jhep.2012.08.017

30. Zhou S-L, Dai Z, Zhou Z-J, et al. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 2012;56(6):2242-2254. https://doi.org/10.1002/hep.25907

31. Haider C, Hnat J, Wagner R, et al. Transforming growth factor-β1 and Axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma. J Hepatol. 2013;58(1):51-58. https://doi.org/10.1016/j.jhep.2012.08.017

32. Li L, Xu L, Yan J, et al. CXCR3-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2015;34(1):129. https://doi.org/10.1186/s13046-015-0247-1

33. Imai Y, Kubota Y, Yamamoto S, et al. Neutrophil enhancement inactivation activity of human cholangiocellular carcinoma and hepatocellular carcinoma cells: an in vitro study. J Gastroenterol Hepatol. 2005;20(2):287-293. https://doi.org/10.1111/j.1440-1746.2004.03575.x

34. Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β1: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183-194. https://doi.org/10.1016/j.ccr.2009.06.017

35. Mazzocco A, Antonacci S, Giannelli G. The TGF-β1 signaling pathway as a pharmacological target in a hepatocellular carcinoma. Curr Pharm Des. 2012;18(27):4148-4154. http://www.ncbi.nlm.nih.gov/pubmed/22630081. Accessed September 17, 2018.

36. Mano Y, Shirabe K, Yamashita Y-I, et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after hepatectomy for hepatocellular carcinoma. Ann Surg. 2013;258(2):301-305. https://doi.org/10.1097/SLA.0b013e318297ad6b

37. Hagemann T, Wilson J, Burke F, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol.
Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer.

Carr BI, Guerra V. HCC and its microenvironment. J Hepatol 2011;64(2):139-144. doi:10.1016/j.jhep.2011.09.009

Sanghera E et al. 2019;59(5):1007-1013. https://doi.org/10.1016/j.jhep.2013.06.010

Kusumanto YH, Dam WA, Hospers G, Meijer C, Mulder NH. Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis. 2003;6(4):283-287. doi:10.1023/B:AGEN.0000029415.62384.ba

Cheng Y, Li H, Deng Y, et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL-6/STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 2018;9(4):422. doi:10.1038/s41419-018-0458-4

Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15(11):e493-e503. doi:10.1016/S1470-2045(14)70263-3

Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005-1015. doi:10.1002/jcp.24539

Bihari C, Rastogi A, Shasthry SM, et al. Platelets contribute to growth and metastasis in hepatocellular carcinoma. APMIS. 2016;124(9):776-786. doi:10.1111/apm.12574

Carr BI, Guerra V, HCC and its microenvironment. Hepatogastroenterology. 2013;60(126):1433-1437. doi:10.10574/hge1201280

Kao W-Y, Chioo Y-Y, Hung H-H, et al. Risk factors for long-term prognosis in hepatocellular carcinoma after radiofrequency ablation therapy. Eur J Gastroenterol Hepatol. 2011;23(6):1. doi:10.1097/MEG.0b013e328346d529

Hung H-H, Su C-W, Lai C-R, et al. Fibrosis and AST to platelet ratio index predict post-operative prognosis for solitary small hepatitis B-related hepatocellular carcinoma. Hepatol Int. 2010;4(4):691-699. doi:10.1007/s12072-010-9213-3

Shen S-L, Fu S-J, Chen B, et al. Preoperative aspartate aminotransferase to platelet ratio is an independent prognostic factor for hepatitis B-induced hepatocellular carcinoma after hepatic resection. Ann Surg Oncol. 2014;21(12):3802-3809. doi:10.1245/s10434-014-3771-x

Carr BI, Lin C-Y, Lu S-N. Platelet-related phenotypic patterns in hepatocellular carcinoma patients. Semin Oncol. 2014;41(3):415-421. doi:10.1053/j.seminoncol.2014.04.001

Sarrouih D, Clairhaut J, Defamie N, Mesnil M. Serotonin and cancer: what is the link? Curr Mol Med. 2015;15(1):62-77. http://www.ncbi.nlm.nih.gov/pubmed/25601469. Accessed September 17, 2018.

Niewandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295-1300. http://www.ncbi.nlm.nih.gov/pubmed/10096562. Accessed September 17, 2018.

Takagi S, Sato S, Oh-hara T, et al. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. Han Z, ed. PLoS ONE. 2013;8(8):e73609. doi:10.1371/journal.pone.0073609

Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239-252. doi:10.1038/nrc2618

Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576-590. doi:10.1016/j.ccr.2011.09.009

Zhang R, Guo H, Xu J, et al. Activated platelets inhibit hepatocellular carcinoma cell differentiation and promote tumor progression via platelet-tumor cell binding. Oncotarget. 2016;7(37):60609-60622. doi:10.18632/oncotarget.11300

D’Alessandro R, Refolo MG, Lippolis C, et al. Antagonism of Sorafenib and Regorafenib actions by platelet factors in hepatocellular carcinoma cell lines. BMC Cancer. 2014;14(1):351. doi:10.1186/1471-2407-14-31

Carr BI, Cavallini A, D’Alessandro R, et al. Platelet extracts induce growth, migration and invasion in human hepatocellular carcinoma in vitro. BMC Cancer. 2014;14(1):43. doi:10.1186/1471-2407-14-43

Sitia G. Platelets promote liver immunopathology contributing to hepatitis B virus-mediated hepatocarcinogenesis. Semin Oncol. 2014;41(3):402-405. https://doi.org/10.1053/j.seminoncol.2014.04.013

Scheiner B, Kirstein M, Popp S, et al. Association of platelet count and mean platelet volume with overall survival in patients with cirrhosis and unresectable hepatocellular carcinoma. Liver Cancer. 2019;8(3):203-217. https://doi.org/10.1159/000489833

Boneu B, Bugat R, Boneu A, Eche N, Sie P, Combes P-F. Exhausted platelets in patients with malignant solid tumors without evidence of active consumption coagulopathy. Eur J Cancer Clin Oncol. 1984;20(7):899-903. doi:10.1016/0277-5379(84)90161-5

Balduini CL, Noris P, Spedini P, Belletti S, Zambelli A, Da Prada GA. Relationship between size and thiozole orange fluorescence of platelets in patients undergoing high-dose chemotherapy. Br J Haematol. 1999;106(1):202-207. doi:10.1046/j.1365-2141.1999.01475.x

Carr BI, Guerra V. Thrombocytosis and hepatocellular carcinoma. Dig Dis Sci. 2013;58(6):1790-1796. doi:10.1007/s00462-012-2527-3

Kinoshiba A, Onoda H, Imai N, et al. Comparison of the prognostic value of inflammation-based prognostic scores in patients with hepatocellular carcinoma. Br J Cancer. 2012;107(6):988-993. doi:10.1038/bjc.2012.354

Hu B, Yang X-R, Xu Y, et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res. 2014;20(23):6212-6222. https://doi.org/10.1186/1471-2407-8-213

Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther. 2006;8(Suppl 2):S2. doi:10.1186/ar1916

Pinato DJ, Bains J, Irkulla S, et al. Advanced age influences the dynamic changes in circulating C-reactive protein following injury. J Clin Pathol. 2013;66(8):695-699. https://doi.org/10.1136/jclinpath-2012-01374
crosstalk between macrophages and natural killer cells. *Hepatology*. 2013;57(6):2358-2368. https://doi.org/10.1002/hep.26328

102. Kacevska M, Downes MR, Sharma R, et al. Extrahepatic cancer suppresses nuclear receptor-regulated drug metabolism. *Clin Cancer Res*. 2011;17(10):3170-3180. https://doi.org/10.1158/1078-0432.CCR-10-3289

103. Ma R, Zhang W, Tang KE, et al. Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. *Nat Commun*. 2013;4(1):2508. https://doi.org/10.1038/ncomms3508

104. Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. *Lancet Oncol*. 2012;13(5):518-527. https://doi.org/10.1016/S1470-2045(12)70112-2

105. Gala MK, Chan AT. Molecular pathways: aspirin and Wnt signaling-a molecularly targeted approach to cancer prevention and treatment. *Clin Cancer Res*. 2015;21(7):1543-1548. https://doi.org/10.1158/1078-0432.CCR-14-0877

106. Li JH, Wang Y, Xie XY, et al. Aspirin in combination with TACE in treatment of unresectable HCC: a matched-pairs analysis. *Am J Cancer Res*. 2016;6(9):2109-2116.

107. Xia H, Lee KW, Chen J, et al. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib. *Cell Death Discovery*. 2017;3:17058. https://doi.org/10.1038/cddiscovery.2017.58

108. Sitia G, Aiolfi R, Di Lucia P, et al. Platelets mediated cytotoxic T lymphocyte–induced liver damage. *Clin Cancer Res*. 2014;20(10):2865-2876. https://doi.org/10.1158/1078-0432.CCR-13-3317

109. Kondo M, Yamamoto H, Nagano H, et al. Increased expression of COX-2 in nontumor liver tissue is associated with shorter disease-free survival in patients with hepatocellular carcinoma. *Clin Cancer Res*. 1999;5(12):4005-4012. http://www.ncbi.nlm.nih.gov/pubmed/10632332. Accessed September 17, 2018.

110. Song R, Song H, Liang Y, et al. Reciprocal activation between ATPase inhibitory factor 1 and NF-kB drives hepatocellular carcinoma angiogenesis and metastasis. *Hepatology*. 2014;60(3):1165-1173. https://doi.org/10.1002/hep.27312

111. Seufert BL, Poole EM, Whitton J, et al. IκB kinase and NFκB, NSAID use and risk of colorectal cancer in the Colon Cancer Recovery.2017.58

112. Flescher E, Ledbetter JA, Schieven GL, et al. Evidence from observational studies versus randomised trials. *Lancet*. 2012;379(9817):1167-1169. https://doi.org/10.1016/S0140-6736(11)61576-3

113. Ji Y, Wang Z, Li Z, et al. Angiotensin II enhances proliferation and infiltration through AT1/PKC/NF-kB signaling pathway in hepatocellular carcinoma cells. *Cell Physiol Biochem*. 2016;39(1):13-32. https://doi.org/10.1159/00045602

114. Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. *Semin Cancer Biol*. 2012;22(1):33-40. https://doi.org/10.1016/j.semcancer.2011.12.005

115. Martin F, Apetoh L, Ghiringhelli F. Controversies on the role of Th17 in cancer: a TGF-β-dependent immunosuppressive activity? *Trends Mol Med*. 2012;18(12):742-749. https://doi.org/10.1016/j.trends molmed.2012.09.007

116. Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myelo-depression: when myeloid-derived suppressor cells meet tumor-associated macrophages. *J Clin Invest*. 2015;125(9):3365-3376. https://doi.org/10.1172/JCI80006

117. Balkwill FR, Mantovani A. Cancer-related inflammation: com-

118. Iannacone M, Sitia G, Isogawa M, et al. Platelets medi-
microenvironment to augment antitumor immunity. *Int J Cancer*. 2014;134(2):319-331. https://doi.org/10.1002/ijc.28362

135. Cabrera R, Ararat M, Xu Y, et al. Immune modulation of effector CD4+ and regulatory T cell function by sorafenib in patients with hepatocellular carcinoma. *Cancer Immunol Immunother*. 2013;62(4):737-746. https://doi.org/10.1007/s00262-012-1380-8

136. Kalathil SG, Lugade AA, Miller A, Iyer R, Thanavala Y. PD-1+ and Foxp3+ T cell reduction correlates with survival of HCC patients after sorafenib therapy. *JCI Insight*. 2016;1(11):1-6. https://doi.org/10.1172/jci.insight.86182

137. Alfaro C, Suarez N, Gonzalez A, et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. *Br J Cancer*. 2009;100(7):1111-1119. https://doi.org/10.1038/sj.bjc.6604965

138. Chen Y, Huang Y, Reiberger T, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. *Hepatology*. 2014;59(4):1435-1447. https://doi.org/10.1002/hep.26790

139. Chen Y, Ramnjawan RR, Reiberger T, et al. CXCR139 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. *Hepatology*. 2015;61(5):1591-1602. https://doi.org/10.1002/hep.27665

140. Jain RK. Antiangiogenesis strategies revisited: from starving tumor to alleviating hypoxia. *Cancer Cell*. 2009;16(1):1-4. https://doi.org/10.1016/j.ccell.2014.10.006

141. Giannelli G, Mazzocca A, Fransvea E, Lahn M, Antonaci S. Inhibiting the tor CD4+ and regulatory T cell function by sorafenib in patients with advanced stage non-small cell lung cancer treated with anti-programmed cell death-1 therapy: results from a single institutional database. *Acta Oncol (Madr)*. 2018;57(6):867-872. https://doi.org/10.1080/02841039.2017.1415460

142. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. *Lancet*. 2017;389(10088):2492-2502. https://doi.org/10.1016/S0140-6736(17)31046-2

143. Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. *Lancet Oncol*. 2018;19(7):940-952. https://doi.org/10.1016/S1470-2045(18)30351-6

144. Flynn MJ, Sayed AA, Sharma R, Siddique A, Pinato DJ. Challenges and opportunities in the clinical development of immune checkpoint inhibitors for hepatocellular carcinoma. *Hepatology*. 2018;69(5):2258-2270. https://doi.org/10.1002/hep.30337

145. Raoul J-L, Sangro B, Forner A, et al. Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. *Cancer Treat Rev*. 2011;37(3):212-220. https://doi.org/10.1016/j.ctrv.2010.07.006

146. Sieghart W, Huckle F, Peck-Radosavljevic M. Transarterial chemoembolization: modalities, indication, and patient selection. *J Hepatol*. 2015;62(5):1187-1195. https://doi.org/10.1016/j.jhep.2015.02.010

147. Gillani TB, Rawling T, Murray M. Cytochrome P450-mediated biotransformation of sorafenib and its N-oxide metabolite: implications for cell viability and human toxicity. *Chem Res Toxicol*. 2015;28(1):92-102. https://doi.org/10.1021/tr500373g

148. Howell J, Pinato DJ, Ramasswani R, et al. Integration of the cancer-related inflammatory response as a stratifying biomarker of survival in hepatocellular carcinoma treated with sorafenib. *Oncotarget*. 2017;8(22):36161-36170. https://doi.org/10.18632/oncotarget.15322

How to cite this article: Sanghera C, Teh JJ, Pinato DJ. The systemic inflammatory response as a source of biomarkers and therapeutic targets in hepatocellular carcinoma. *Liver Int*. 2019;39:2008-2023. https://doi.org/10.1111/liv.14220