The ecologic validity of fructose feeding trials: supraphysiological feeding of fructose in human trials requires careful consideration when drawing conclusions on cardiometabolic risk

Vivian L. Choo 1,2 and John L. Sievenpiper 1,2,3*

1 Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, 2 Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON, Canada, 3 Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON, Canada

Background: Select trials of fructose overfeeding have been used to implicate fructose as a driver of cardiometabolic risk.

Objective: We examined temporal trends of fructose dose in human controlled feeding trials of fructose and cardiometabolic risk.

Methods: We combined studies from eight meta-analyses on fructose and cardiometabolic risk to assess the average fructose dose used in these trials. Two types of trials were identified: (1) substitution trials, in which energy from fructose was exchanged with equal energy from other carbohydrates and (2) addition trials, in which energy from fructose supplemented a diet compared to the diet alone.

Results: We included 64 substitution trials and 16 addition trials. The weighted average fructose dose in substitution trials was 101.7 g/day (95% CI: 98.4–105.1 g/day), and the weighted average fructose dose in addition trials was 187.3 g/day (95% CI: 181.4–192.9 g/day).

Conclusion: Average fructose dose in substitution and addition trials greatly exceed national levels of reported fructose intake (49 ± 1.0 g/day) (NHANES 1977–2004). Future trials using fructose doses at real world levels are needed.

Keywords: fructose, HFCS, dose, cardiometabolic risk, meta-analysis

Introduction

With the increase in high-fructose corn syrup (HFCS) consumption since 1970s, there has been rising interest in the role of sugars toward the development of cardiometabolic diseases (1). Particular attention has focused on the “fructose hypothesis,” which suggests that the metabolic and endocrine responses unique to fructose are the main drivers in the etiology of obesity, diabetes, and cardiometabolic risk (2, 3). While this perspective is well supported by lower...
16673 reports identified:

- Glycemic Control: 4838 (through February 20, 2014)
- Uric Acid: 375 (through August 19, 2011)
- Blood Pressure: 319 (through January 9, 2012)
- Body Weight (fructose): 1984 (through November 18, 2011)
- Body Weight (fructose-containing SSBs): 4732 (through May 23, 2014)
- Post Prandial Triglycerides: 1259 (through September 3, 2013)
- Fasting Lipids: 1729 (through July 17, 2014)
- NAFLD: 1437 (through September 3, 2013)

16056 duplicate and irrelevant reports excluded based on title/abstract review

617 reports reviewed in full:

- Glycemic Control: 60
- Uric Acid: 35
- Blood Pressure: 16
- Body Weight (fructose): 81
- Body Weight (fructose-containing SSBs): 117
- Post Prandial Triglycerides: 48
- Fasting Lipids: 167
- NAFLD: 93

414 irrelevant reports excluded based on full article review

203 reports included in meta-analyses (267 Trials):

- Glycemic Control: 41 (58 trials, n=1025)
- Uric Acid: 16 (21 trials, n=425)
- Blood Pressure: 11 (15 trials, n=376)
- Body Weight (fructose all forms): 32 (41 trials, n=756)
- Body Weight (fructose-containing SSB): 43 (46 trials, n=3440)
- Post Prandial Triglycerides: 11 (32 trials, n=322)
- Fasting Lipids: 41 (57 trials, n=1007)
- NAFLD: 8 (13 trials, n=260)

148 duplicate reports excluded

55 reports included in final analysis (80 Trials):

- 64 Substitution trials, n=1235
- 16 Addition trials, n=197

FIGURE 1 | Systematic search and selection strategy: Flow of literature for eight separate searches of the effect of fructose on: glycemic control (fasting blood glucose, fasting blood insulin, HbA1c), uric acid, blood pressure, body weight (fructose, body weight (fructose-containing sugars-sweetened beverages, post prandial triglycerides, fasting lipids, and NAFLD).

Quality evidence from ecological studies (4) and animal models (5–7), it is not well supported by the highest level of evidence from controlled trials in humans (8–13). A main limitation of these trials has been the use of extreme levels of fructose feeding not representative of real world conditions. The present analysis aims to quantify the dose of fructose used in trials assessing the effects of fructose and cardiometabolic risk, and compare it to national levels of fructose consumption in the United States at the average and 95th percentile levels of intake based on the...
TABLE 1 | Characteristics of trials investigating the effect of fructose on cardiometabolic risk.

Reference	Subjects	Age (years)	Setting	Design	Feeding control	Randomization	Fructose dose	Fructose form	Comparator	Diet	Follow-up	MQS	Energy Balance	Funding sources
(15) 5 HTG (3M:2F) 4 N (3M:1F)	42.8 ± 14.2	IP/OP, Israel	C Met	No	300 g/d (55% E)	Mixed Starch	77:05:18	~24 d	7 Neutral	Agency				
(16) Study 1	19 ± 0	IP, Australia	C Met	No	~255 g/d (50–52% E)	Mixed Glucose	77:09:14	1 wk	6 Neutral	Agency				
(16) Study 2	19 ± 0	IP, Australia	C Met	No	~255 g/d (52–55% E)	Mixed Glucose	77:09:14	1 wk	6 Neutral	Agency				
(17) 16 DM1	10 (2–16)	OP, Finland	C Supp	No	~40 g/d (20% E)	Mixed Starch	45:35:20	1 wk	4 Neutral	Industry				
(18)	53.5 (26–67)	IP, Finland	C Met	Yes	~77.5 g/d (~17% E)	Liquid Starch, sucrose	45:35:20	10–20 d	6 Neutral	Agency				
(19)	25.5 (19–70)	IP, Finland	C Met	No	75 g/d (15% E)	Mixed Starch	40:40:20	10 d	7 Neutral	Agency				
(20)	12 N (8M:4F)	(20–26)	IP, Germany	C Met	No	162 g/d (~33% E)	Liquid Glucose, sucrose	90:00:10	10 d	7 Neutral	–			
(21)	68 N	(13–55)	OP, Finland	P Dietary Advice	No	70 g/d (~14% E)	Mixed Sucrose	-	72 wks	5 Neutral	–			
(22) LC	4 HTG (4M:0F)	48 ± 8.8	IP, USA	C Met	No	~39.5 g/d (9% E)	Liquid D-Maltose	45:40:15	2 wks	7 Neutral	Agency and industry			
(22) HC	4 HTG (4M:0F)	48 ± 8.8	IP, USA	C Met	No	~122 g/d (11% E)	Liquid D-Maltose	85:00:15	2 wks	4 Neutral	Agency and industry			
(23)	2 DM2 (2M:0F)	41 ± 1.4	IP, USA	C Met	No	~40 g/d (9% E)	Liquid D-Maltose	45:40:15	2 wks	7 Neutral	Agency and industry			
(23)	15 N	(21–35)	OP, Denmark	P Supp	Yes	~250 g/d (~50% E)	Liquid Glucose	44:38:18	1 wk	6 Positive	Agency and industry			
(24)	16 type 4 HTG	57 (38–80)	OP, Poland	C Supp	No	80 g/d	Liquid Starch	45:50:15	28 d	7 Neutral	–			
(25) – N (HF)	12 N (12M:0F)	39.8 ± 8.3	IP/OP, USA	C Met	No	101.3 g/d (15% E)	Solid Starch	43:42:15	5 wks	8 Neutral	–			
(25) – N (LF)	12 N (12M:0F)	39.8 ± 8.3	IP/OP, USA	C Met	No	101.3 g/d (15% E)	Solid Starch	43:42:15	5 wks	8 Neutral	–			
(25) – H (HF)	12 HI (12M:0F)	39.5 ± 7.3	IP/OP, USA	C Met	No	101.3 g/d (15% E)	Solid Starch	43:42:15	5 wks	8 Neutral	–			
(25) – H (LF)	12 HI (12M:0F)	39.5 ± 7.3	IP/OP, USA	C Met	No	101.3 g/d (15% E)	Solid Starch	43:42:15	5 wks	8 Neutral	–			
(26)	8 N (4M:4F)	26.7 (20–32)	IP/OP, USA	C Met	Yes	~79 g/d (14% E)	Liquid Sucrose	~43:40:17	2 wks	8 Neutral	Agency			
(27)	11 N (4M:7F)	39.5 ± 11.4	IP/OP, USA	C Met	No	~81 g/d (13.2% E)	Mixed Sucrose	55:30:15	2 wks	7 Neutral	Agency and industry			
(28)	12 DM1 (6M:6F) 12 DM2 (5M:7F)	23 (15–32) 62 (36–80)	OP, USA	C Met	Yes	~137 g/d (21% E)	Mixed Starch	55:30:15	8 d	8 Neutral	Industry			

(Continued)
Reference	Subjects	Age (years)	Setting	Design	Feeding control	Randomization	Fructose dose	Fructose form	Comparator	Diet	Follow-up	MQS	Energy Balance	Funding sources
(30)	7 DM2	50.9 ± 8.4	IP/OP,	C	Met	No	~98 g/d	Mixed	Sucrose	55:30:15	2 wks	7	Neutral	Agency and industry
(30) EXP 1	23 OW/OB	22.2	OP,	P	Met	Yes	36 g/d	Liquid	Glucose, galactose	25:50:25	2 wks	8	Negative	Industry
(30)	18 OW/OB	22.2	OP,	P	Met	Yes	36 g/d	Liquid	Glucose, galactose	25:50:25	2 wks	8	Negative	Industry
(31)	10 DM2	64.4 (54–71)	OP,	C	Supp	No	55 g/d	Liquid	Starch	42:38:20	4 wks	7	Neutral	Industry
(32)	18 DM2	57 ± 3.0	OP,	P	Supp	Yes	60 g/d	Mixed	Starch	50:35:15	12 wks	8	Neutral	Agency and industry
(33)	8 DM2	40 ± 6.9	OP,	C	Supp	Yes	30 g/d	Mixed	Starch	50:30:20	8 wks	8	Neutral	Agency and industry
(34) –	9 N	48	OP, USA	C	Supp	No	~79 g/d	Mixed	Glucose	~53:32:16	4 wks	8	Neutral	–
(34) – IGT	9 IGT	53	OP, USA	C	Supp	No	~64 g/d	Mixed	Glucose	~53:32:16	4 wks	8	Neutral	–
(35)	14 DM2	60 ± 4 (54–71)	IP/OP,	C	Met/Supp	No	~55 g/d	Mixed	Starch	53:27:20	23 wks	8	Neutral	Agency and industry
(36)	13 DM2	54 ± 11	OP,	C	Supp	Yes	60 g/d	Mixed	Starch	50:35:15	26 wks	8	Neutral	Agency and industry
(37)	10 IR	47	IP, USA	C	Met	No	167 g/d	Solid	Starch	51:36:13	5 wks	4	Neutral	–
(38)	8 DM2	55 ± 11.2	IP,	P	Met	No	~100 g/d	Mixed	Sucrose	55:30:15	12 wks	6	Neutral	Agency and industry
(39)	14 DM1, 6 DM2	46.9 ± 13.1	OP,	P	Supp	Yes	~25 g/d	Mixed	Starch, sucrose	55:30:15	52 wks	7	Neutral	Agency and industry
(40)	6 DM2	53.7 ± 10.2	IP, USA	C	Met	No	~100 g/d	Mixed	Sucrose	55:30:15	100 d	4	Neutral	Agency and industry
(41)	6 DM1 (3M:3F) 12 DM2 (4M:8F)	23 (18–34)	OP,	C	Met	Yes	~120 g/d	Mixed	Starch	55:30:15	4 wks	8	Neutral	Agency
(42)	14 N	34 (19–60)	IP/OP,	C	Met	Yes	~120 g/d	Mixed	Starch	55:30:15	4 wks	8	Neutral	Agency
(43)	10 DM2	61 ± 9.5	IP,	C	Met	Yes	~55 g/d	Liquid	Starch	50:30:20	4 wks	9	Neutral	Agency
(44)	16 DM2	54.2 ± 9.2	OP,	C	Supp	No	63.2 g/d	Liquid	Starch, sucrose	55:30:15	4 wks	7	Neutral	Industry
(45)	24 N	41.3 ± 20.0	OP, USA	C	Met	Yes	85 g/d	Liquid	Glucose	55:30:15	6 wks	9	Neutral	Agency
(46) – P1	24 N	14.6 ± 1.2	OP, USA	P	Met	Yes	64.19 g/d	Mixed	Starch	30:55:15	1 wk	9	Neutral	Agency and industry
(46) – P2	12 N	14.8 ± 1.32	OP, USA	C	Met	Yes	~151.32 g/d	Mixed	Starch	60:25:15	1 wk	9	Neutral	Agency and industry

(Continued)
Reference	Subjects	Age (years)	Setting	Design	Feeding control	Randomization	Fructose dose	Fructose form	Comparator	Diet	Follow-up	MQS	Energy Balance	Funding sources
(45)	12 N (8M:6F)	15.3 ± 0.8	OP, USA	C	Met	Yes	128.5g/d (40% E)	Mixed Starch	60:25:15	8 d	9	Neutral	Agency and industry	
(46)	25 DM2	62.3 ± 10.1	OP, Israel	P	Supp	Yes	22.5 g/d (4.5% E)	Liquid Starch	–	12 wks	5	Neutral	–	
(47)	6 OB (9M:3F)	15.2 ± 1.22	OP, USA	C	Met	Yes	~149.1 g/d (24% E)	Mixed Starch	60:25:15	1 wk	9	Neutral	Agency and industry	
(48)	7 OW/OB (50–72)	(IP, USA)	C	Met	No	~125 g/d (25% E)	Liquid Starch	55:30:15	10 wks	7	Neutral	Agency		
(49)	32 OW/OB (16M:16F)	53	IP/OP, USA	P	Met/Supp	No	~182 g/d (+ 25% E)	Liquid Glucose	55:30:15	10 wks	6	Positive	Agency	
(50)	11 N (11M:0F)	24.6 ± 2.0	OP, Switzerland	C	Met	Yes	~+213 g/d (+ 35% E)	Liquid Glucose	55:30:15	1 wk	8	Positive	Agency	
(51) (LF)	29 N (29M:0F)	26.3 ± 6.6	OP, Switzerland	C	Supp	Yes	~40 g/d (7% E)	Liquid Glucose, starch	51:14:35	3 wks	9	Positive	Agency	
(51) (HF)	29 N (29M:0F)	26.3 ± 6.6	OP, Switzerland	C	Supp	Yes	~80 g/d (13% E)	Liquid Glucose, sucrose	55:13:32	3 wks	9	Positive	Agency	
(52)	131 OW/OB (29M:102F)	38.8 ± 8.8	OP, Mexico	P	Dietary advice	Yes	~60 g/d (13% E)	Solid Starch	55:30:15	6 wks	9	Negative	Agency	
(53)	20 N (12M:8F)	30.5 ± 8.93	OP, Germany	P	Supp	Yes	~150 g/d (+ 22% E)	Liquid Glucose	50:35:15	4 wks	7	Positive	Agency	
(54)	32 OW/OB (16M:16F)	54 ± 8	IP/OP, USA	P	Met/Supp	No	~182 g/d (+ 25% E)	Liquid Glucose	55:30:15	10 wks	6	Positive	Agency	
(55)	48 N (27M:21F)	27.6 ± 7.1	IP/OP, USA	P	Met/Supp	No	~168 g/d (+ 25% E)	Liquid Glucose HFCS	55:30:15	2 wks	6	Positive	Agency	
(56)	28 OKD (17M:11F)	59 ± 15	OP, Poland	C	Dietary advice	No	~56 g/d (10% E)	Mixed Starch	55:30:15	6 wks	8	Neutral	Agency	
(57)	31 OW/OB (16M:15F)	53.7 ± 8.1	IP/OP, USA	P	Met/Supp	No	~182 g/d (+ 25% E)	Liquid Glucose	55:30:15	10 wks	6	Positive	Agency	
(58)	9 N (9M:0F)	22.7 ± 1.8	OP, Switzerland	C	Supp	Yes	~80 g/d (+ 13% E)	Liquid Glucose sucrose	55:31:14	3 wks	9	Positive	Agency	
(59) – (NEB)	32 OW/OB (32M:0F)	33.9 ± 10.0	OP, UK	P	Met/Supp	Yes	~204 g/d (25% E)	Liquid Glucose	55:30:15	8 wks	10	Neutral	Agency	
(60) – (PEB)	32 OW/OB (32M:0F)	33.9 ± 10.0	OP, UK	P	Met/Supp	Yes	~204 g/d (+25% E)	Liquid Glucose	55:30:15	8 wks	10	Positive	Agency	
(61)	28 N (28M:0F)	22.5 ± 1.6	OP, Switzerland	P	Supp	Yes	~212 g/d (+ 24% E)	Liquid Glucose	–	7 d	9	Positive	Agency	
(62)	9 N (4M:5F)	20.9 ± 2	OP, USA	C	Met	Yes	~129 g/d (25% E)	Liquid Glucose	50:34:16	8 d	8	–	–	

(Continued)
TABLE 1 | Continued

Reference	Subjects™	Age (years)	Setting	Design	Feeding control®	Randomization	Fructose dose®	Fructose form®	Comparator	Diet®	Follow-up	MQS	Energy	Funding sources®
(61)	40 N (40M:20F)	17.9 ± 1.9	OP, USA	C	Supp	Yes	~50 g/d (+10% E)	Liquid	Glucose	–	2 wks	7	Positive	Agency
(62)	21 OW (11M:10F)	13.5 ± 2.5	OP, USA	P	Supp	Yes	~99 g/d (+19.8% E)	Liquid	Glucose	–	4 wks	5	Neutral	Agency
(63)	73 OW (50M:23F)	39.7 ± 8.6	OP, Denmark	P	Supp	Yes	~60 g/d (+13.8% E)	Liquid	Glucose	45:34:21	4 wks	9	Positive	Agency
(61)	7 OW (3M:4F)	18 ± 0.4	OP, USA	C	Supp	Yes	~50 g/d (+6.7% E)	Liquid	Glucose	–	2 wks	8	Positive	Agency

ADDITION TRIALS

Reference	Subjects™	Age (years)	Setting	Design	Feeding control®	Randomization	Fructose dose®	Fructose form®	Comparator	Diet®	Follow-up	MQS	Energy	Funding sources®	
(23)	8 N	21–35	OP, Denmark	C	Supp	No	~250 g/d (+50% E)	Liquid	Diet alone	44:38:18	1 wk	5	Positive	Agency and industry	
(30)	EXP 2	14 OW/OB	OP, France	P	Met	Yes	~100 g/d (+97% E)	Liquid	Diet alone	0:35:65	2 wks	8	Negative	Industry	
(64)	7 N (7M:6F)	24.70 ± 3.44	OP, Switzerland	C	Supp	No	~104 g/d (+18% E)	Liquid	Diet alone	55:30:15	4 wks	7	Positive	Agency	
(65)	(N)	8 N (8M:0F)	24.5 ± 4.5	OP, Switzerland	C	Supp	Yes	~213 g/d (+35% E)	Liquid	Diet alone	55:30:15	7 d	9	Positive	Agency and industry
(65)	16 OFFDM2 (16M:0F)	24.7 ± 5.2	OP, Switzerland	C	Supp	Yes	~220 g/d (+35% E)	Liquid	Diet alone	55:30:15	1 wk	8	Positive	Agency and industry	
(49)	17 OW/OB (9M:8F)	52.5 ± 9.2	IP/OP, USA	C	Met/Supp	No	~182 g/d (+25% E)	Liquid	Diet alone	55:30:15	10 wks	6	Positive	Agency	
(50)	11 N (11M:0F)	24.6	OP, Switzerland	C	Met/Supp	Yes	~213 g/d (+35% E)	Liquid	Diet alone	55:30:15	7 d	8	Positive	Agency	
(66)	8 N (8M:0F)	24.8 ± 3.2	OP, Switzerland	C	Supp	No	~212 g/d (+35% E)	Liquid	Diet alone	55:30:15	1 wk	6	Positive	Agency	
(53)	10 N (7M:3F)	32.8 ± 9.3	OP, Germany	C	Supp	No	~150 g/d (+22% E)	Liquid	Diet alone	50:35:15	4 wks	6	Positive	Agency	
(54)	17 OW/OB (9M:8F)	52.5 ± 9.3	IP/OP, USA	C	Met/Supp	No	~182 g/d (+25% E)	Liquid	Diet alone	55:30:15	10 wks	5	Positive	Agency	
(54)	16 N (9M:7F)	28.0 ± 6.8	IP/OP, USA	C	Met/Supp	No	~168 g/d (+25% E)	Liquid	Diet alone	55:30:15	2 wks	6	Positive	Agency	
(66)	16 OW/OB (9M:7F)	52.5 ± 9.3	IP/OP, USA	C	Met/Supp	No	~182 g/d (+25% E)	Liquid	Diet alone	55:30:15	10 wks	5	Positive	Agency	
(88)	15 OW/OB (15M:0F)	35.0 ± 11.0	OP, UK	C	Supp	No	~203 g/d (+25% E)	Liquid	Diet alone	55:30:15	2 wks	8	Positive	Agency	
(59) (F1.5)	7 N (7M:0F)	22.5 ± 1.6	OP, Switzerland	C	Supp	Yes	~104 g/d (~+14% E)	Liquid	Diet alone	–	7 d	9	Positive	Agency	

(Continued)
Materials and Methods

We collated studies previously identified in a series of meta-analyses and systematic reviews of the effects of fructose on various cardiometabolic endpoints (8–13). We included controlled dietary trials across all populations investigating the effect of fructose on fasting blood lipids (Chiavaroli et al., unpublished study), postprandial triglycerides (13), blood pressure (9), glycemic control (Cosma et al., unpublished study), uric acid (11), non-alcoholic fatty liver disease (NAFLD) (12), body weight using mixed forms of fructose (solid, liquid, mixed) (10), and body weight from fructose-containing sugars-sweetened beverages only (Choo et al., unpublished study). Trials lasting <7 days, using intravenous administration or possessing unsuitable endpoints or comparators were excluded. Two types of trials were identified for the purposes of this analysis—substitution trials, in which fructose was exchanged for equal amounts of energy from other carbohydrates, or addition trials, in which a control diet was supplemented with additional energy from fructose compared to the control diet alone without the excess energy. Duplicate studies between meta-analyses were removed, and fructose dose data were extracted from each study when available and reported in grams per day. A weighted average fructose dose used across all studies was calculated according to the sample size of each trial, and reported as a mean and 95% confidence interval.

Results

The search and selection process can be found in Figure 1. A total of 16,673 reports were identified between all meta-analyses, and 203 reports (267 trials) were included after excluding reports based on title and abstract. After combining eligible trials and removal of duplicates from the meta-analyses, 64 substitution trials (1235 participants) and 16 addition trials (197 participants) were included in this analysis.

Trial Characteristics

Table 1 provides a detailed summary of trial characteristics. There were 64 substitution trials involving 1235 participants (15–63) and 16 addition trials involving 197 participants (23, 30, 49, 50, 53, 54, 56, 58, 59, 64–66). Sample sizes of substitution and addition trials tended to be small [median number of participants, 12.5 (IQR: 9–24) and 12.5 (IQR: 8–16) for substitution and addition trials, respectively]. A majority of trials used a crossover design (69 and 94% of substitution and addition trials, respectively). Participants in substitution trials tended to be middle aged males and females [55% males; median age, 39.5 years (IQR: 23.4–53 years)], whereas participants in addition trials tended to be younger males [81% males; median age, 24.7 years (IQR: 23.5–33.9 years)]. Study duration was relatively short in both types of trials [median, 4 weeks (IQR: 2–6 weeks) and median 1.5 weeks, (IQR: 1–4 weeks) in substitution and addition trials, respectively] and predominantly took place in the United States for substitution trials and Europe for addition trials under an outpatient setting. Comparators in substitution trials included starch (30%), glucose (26%), sucrose (8%),

Table 1

Reference	Subjects	Age (years)	Setting	Design	Feeding control	Comparator	Diet	Fructose dose	Fructose form	Energy Balance	Follow-up	MQS	Funding sources		
(59) (F3.0)	17 N	22.5 ± 1.6	OP	Liquid	Yes	Diet alone	C, Supp	212 g/d	(17M:0F)	-	7 d	Positive Agency	7 d	9	Travellers, UK
(59) (F4.0)	10 N	22.5 ± 1.6	OP	Liquid	Yes	Diet alone	C, Supp	293 g/d	(10M:0F)	-	7 d	Positive Agency	7 d	9	Travellers, US

Trials with a score ≥28 were considered to be of higher quality, according to the National Institutes of Health (NIH) quality assessment tool.
d-maltose (3%), galactose (2%), and HFCS (1%) and comparators in all addition trials were diet alone.

Fructose Dose

Figures 2 and 3 show trends of fructose dose in substitution and addition trials plotted against the average and 95th percentile intakes of fructose in the United States (49 ± 1.0 and 87 ± 4.0 g/day, respectively). Substitution trials were conducted from 1966 to 2014 with most conducted during 1980s and a recent resurgence in 2010s, while the addition trials were conducted from 1980 to 2013 with most conducted after the mid 2000s. The weighted average fructose dose in substitution trials was two times higher than reported average population intake levels [101.7 g/day (95% CI: 98.4–105.1 g/day)], whereas the weighted average fructose dose in the addition trials was much greater, at ~3.7 times the amount of the reported average population intake levels [187.3 g/day (95% CI: 181.4–192.9 g/day)].

Discussion

This analysis, which combined the trials identified from eight meta-analyses, aimed to examine the trends of fructose dose in controlled dietary trials assessing the effects of fructose on various cardiometabolic outcomes. We identified 64 substitution trials, in which fructose was provided in isocaloric substitution for other carbohydrate sources (usually starch), and 16 addition trials, in which fructose supplemented diets with excess energy compared to the same diets without the excess energy. The average weighted fructose dose was 101.7 g/day (95% CI: 98.4–105.1 g/day) in substitution trials from 1966 to 2014, whereas the average weighted fructose dose was nearly twice as high at 187.3 g/day (95% CI: 181.4–192.9 g/day) in the 16 addition trials from 1980 to 2013.

There were differences observed in the temporal trends between substitution and addition trials. Most substitution trials were conducted in 1980s with a resurgence that followed in 2010s. The reason for this pattern is unclear. A growing interest in fructose trials early on may have reflected the initial interest in fructose as a potentially beneficial alternative sweetener (69–71). By controlling for energy, substitution trials provided a rigorous study design, which allowed for the assessment of whether fructose had a unique set of metabolic or endocrine responses beyond its energy across a wide dose range. The emergence of the addition trials in 2000s may have grown out of the consistent lack of effect or even the benefit (glycemic control) seen in the substitution trials (8) and the concern stimulated by the ecological analysis of Bray et al. (4) linking fructose from HFCS with the epidemic of overweight and obesity. The recent resurgence of substitution trials in 2010s appears to have been to reconcile the role of energy from that
of fructose in the addition trials. To test whether overfeeding of fructose differs from overfeeding of any other macronutrient (usually glucose or starch), these trials have compared fructose with other sources of carbohydrate under conditions of matched overfeeding.

Irrespective of any control for energy, the levels of intake observed in the available trials has been well beyond population levels of consumption. Compared to levels of reported fructose intake assessed by the National Health and Examination Survey in the United States (NHANES 1977–2004), the doses used in both the substitution and the addition trials exceeded the average and 95th percentile levels of fructose consumption (49 ± 1.0 and 87 ± 4.0 g/day, respectively). Furthermore, all addition trials used doses of fructose above the 95th percentile of reported intake, with the weighted average dose more than double that amount. While the present analysis suggests that these trials using supraphysiological doses of fructose feeding are not representative of levels normally consumed in the diet, the important caveat remains that underreporting from national population intake surveys, such as NHANES, may understate the actual amount of fructose consumed (72). However, taking into consideration the potential for underreporting when interpreting calculated trial means compared to reported population means, if an estimated level of 50% underreporting were present (average and 95th percentile fructose intake of 100 and 172 g/day, respectively), the fructose dose in substitution trials would reach levels representative of true dietary intake [101.7 g/day (95% CI: 98.4–105.1 g/day)], while supraphysiological doses of fructose in addition trials would still persist [187.3 g/day (95% CI: 181.4–192.9 g/day)]. Another important consideration is that fructose consumption has been changing with time in NHANES. HFCS (a main proxy for fructose consumption) availability has been declining since it peaked in 1999 (73). Variability of fructose consumption over time should be taken into consideration when predicting the true population average intake.

The implications of our findings suggest a potential lack of ecological validity when drawing conclusions from addition trials using unrealistically high doses of fructose. As with the excess consumption of any macronutrient, an adverse effect on cardiometabolic risk factors may be irrelevant under levels of normal dietary consumption and lead to unnecessary concern and confusion regarding the safety of fructose. Two trial designs have helped to clarify whether adverse effects relate to excess energy (either from fructose or any macronutrient in general) or specific metabolic and

![Figure 3: Trends of fructose dose in addition trials](image-url)
endocrine properties inherent to fructose itself. In a series of systematic reviews and meta-analyses of controlled trials to determine the effect of fructose on various cardiometabolic outcomes, a consistent signal for harm has only been shown in the addition trials (8–10, 12, 13). Substitution trials have failed to show differences in body weight (10), fasting triglycerides (74), post-prandial triglycerides (13), uric acid (9), glucose, insulin (8), or markers of NAFLD (12) with improvements seen in blood pressure (9) and glycemic control (8, 75). These findings hold even under conditions of overfeeding as long as the excess energy intake. While such high doses may be useful for determining a cause-effect relationship, replication of these studies using fructose doses closer to dietary levels are warranted and could help to establish a threshold beyond which excess energy from fructose demonstrate a signal for harm under real world conditions.

Conclusion

Most trials on fructose and cardiometabolic risk have used doses of fructose well beyond reported population levels of intake. While such high doses may be useful for determining a cause-effect relationship, replication of these studies using fructose doses closer to dietary levels are warranted and could help to establish a threshold beyond which excess energy from fructose demonstrate a signal for harm under real world conditions.

Acknowledgments

Aspects of this work were funded by a Canadian Institutes of Health Research (CIHR) Knowledge Synthesis grant (funding reference number, 102078) and a research grant from the Calorie Control Council. VC was supported by a Banting and Best Graduate Scholarship from the Canadian Institutes of Health Research (CIHR), Mary H. Beatty Fellowship. JLS was supported by a PSI Foundation Graham Farquharson Knowledge Translation Fellowship. None of the sponsors had a role in any aspect of the present study, including design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

References

1. Bray GA. Fructose: pure, white, and deadly? Fructose, by any other name, is a health hazard. *J Diabetes Sci Technol* (2010) 4:1003–7. doi:10.1177/19322968100400432
2. Lustig RH. Fructose: it’s “alcohol without the buzz.” *Adv Nutr* (2013) 4:226–35. doi:10.3945/an.112.019988
3. DiNicolanontio JJ, O’Keefe JH, Lucan SC. Added fructose: a principal driver of type 2 diabetes mellitus and its consequences. *Mayo Clin Proc* (2015) 90(3):372–81. doi:10.1016/j.mayocp.2014.12.019
4. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. *Am J Clin Nutr* (2004) 79:537–43.
5. Lee WN, Bassilian S, Ajei HO, Schoeller DA, Edmond J, Bergner EA, et al. In vivo measurement of fatty acids and cholesterol synthesis using D2O and mass isotopomer analysis. *Am J Physiol* (1994) 266:E999–708.
6. Brunengraber DZ, Mccabe BJ, Kasumov T, Alexander JC, Chandramouli V, Previs SF. Influence of diet on the modeling of adipose tissue triglycerides during growth. *Am J Physiol Endocrinol Metab* (2003) 285:E917–25. doi:10.1152/ajpendo.00128.2003
7. Dolan LC, Potter SM, Burdock GA. Evidence-based review on the effect of normal dietary consumption of fructose on blood lipids and body weight of overweight and obese individuals. *Crit Rev Food Sci Nutr* (2010) 50:889–918. doi:10.1080/104083989.2010.512990
8. Cozma AI, Sievenpiper JL, Chiavaroli L, Ha V, Wang DD, et al. Effect of fructose on glycemic control in diabetes in children. *Acta Med Scand Suppl* (2012) 285:1611–20. doi:10.2337/dc12-0073
9. Ha V, Sievenpiper JL, De Souza RJ, Chiavaroli L, Wang DD, Cozma AI, et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. *Hypertension* (2012) 59:787–95. doi:10.1161/HYPERTENSIONAHA.111.183231
10. Sievenpiper JL, De Souza RJ, Mirrahimi A, Yu ME, Carleton AJ, Beyene J, et al. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. *Ann Intern Med* (2012) 156:291–304. doi:10.7326/0003-4819-156-4-201202210-00007
11. Wang DD, Sievenpiper JL, De Souza RJ, Chiavaroli L, Ha V, Cozma AI, et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. *J Nutr* (2012) 142:916–23. doi:10.3945/jn.111.151951
12. Chiu S, Sievenpiper JL, De Souza RJ, Cozma AI, Mirrahimi A, Carleton AJ, et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. *Eur J Clin Nutr* (2014) 68:416–23. doi:10.1038/ejcn.2014.8
13. David Wang D, Sievenpiper JL, De Souza RJ, Cozma AI, Chiavaroli L, Ha V, et al. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. *Atherosclerosis* (2014) 232:125–33. doi:10.1016/j.atherosclerosis.2013.10.019
14. Marriott BP, Cole N, Lee E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. *J Nutr* (2009) 139:12285–35S. doi:10.3945/jn.108.098277
15. Kaufmann NA, Poznanski R, Blondheim SH, Stein Y. Effect of fructose, glucose, sucrose and starch on serum lipids in carbohydrate induced hypertriglyceridemia and in normal subjects. *Isr J Med Sci* (1966) 2:75–26.
16. Nestel PJ, Carroll KE, Havenstein N. Plasma triglyceride response to carbohydrates, fats and caloric intake. *Metabolism* (1970) 19:1–18. doi:10.1016/S0026-0495(70)90112-5
17. Akerblom HK, Siltanen I, Kallio AK. Does dietary fructose affect the control of diabetes in children? *Acta Med Scand Suppl* (1972) 542:195–202.
18. Nøkken R, Aro A, Nøkken EA. Metabolic effects of dietary fructose in insulin dependent diabetics of adults. *Acta Med Scand Suppl* (1972) 542:187–93.
19. Forster H, Heller G. [Studies on the significance of carbohydrates in a fully synthetic fat-free diet]. *Disch Med Wochenschr* (1979) 98:1156–63. doi:10.1055/s-0028-1106986
20. Huttunen JK, Makinen KK, Scheinin A. Turku sugar studies XI. Effects of sucrose, fructose and xylitol diets on glucose, lipid and urate metabolism. *Acta Odontol Scand* (1976) 34:345–51. doi:10.3109/000163576009004646
21. Turner JL, Bierman EL, Brunzell JD, Chait A. Effect of dietary fructose on triglyceride transport and glucoregulatory hormones in hypertriglyceridemic men. *Am J Clin Nutr* (1979) 32:1043–50.
22. Beck-Nielsen H, Pedersen O, Lindskov HO. Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects. *Am J Clin Nutr* (1980) 33:273–8.
23. Cylwik B, Naruszewicz M. The effect of short-term and prolonged fructose intake on VLDL-TG and relative properties on apo CIII1 and apo CII in the VLDL fraction in type IV hyperlipoproteinaemia. *Nahrung* (1982) 26:253–61. doi:10.1002/food.1982060306
24. Hallfrisch J, Ellwood KC, Michaelis OET, Reiser S, O’Doriso TM, Prather ES. Effects of dietary fructose on plasma glucose and hormone responses in normal and hyperinsulinemic men. *J Nutr* (1983) 113:1819–26.
64. Le KA, Faeh D, Stettler R, Ith M, Kreis R, Vermaethen P, et al. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr (2006) 84:1374–9.

65. Le KA, Ith M, Kreis R, Faeh D, Bortolotti M, Tran C, et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr (2009) 89:1760–5. doi:10.3945/ajcn.2008.27336

66. Sobrecases H, Le KA, Bortolotti M, Schneiter P, Ith M, Kreis R, et al. Effects of short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids in healthy men. Diabetes Metab (2010) 36:244–6. doi:10.1016/j.diabet.2010.03.003

67. Blayo A, Fontvieille AM, Rizkalla S, Bruzzo F, Slama G. Effets metaboliques de la consommation quotidienne pendant un an de saccharose ou de fructose par des diabetiques. Medecine et Nutrition (1990) 26:909–13.

68. Thorburn AW, Crapo PA, Griver K, Wallace P, Henry RR. Long-term effects of dietary fructose on carbohydrate metabolism in non-insulin-dependent diabetes mellitus. Metabolism (1990) 39(1):58–63. doi:10.1016/0026-0495(90)90148-6

69. Crapo PA, Reaven G, Olefsky J. Plasma glucose and insulin responses to orally administered simple and complex carbohydrates. Diabetes (1976) 25:741–7. doi:10.2337/diab.25.7.741

70. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr (1981) 34:362–6.

71. Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care (2008) 31:2281–3. doi:10.2337/dc07-1239

72. Archer E, Hand GA, Blair SN. Validity of U.S. nutritional surveillance: National Health and Nutrition Examination Survey caloric energy intake data, 1971-2010. PLoS One (2013) 8:e76632. doi:10.1371/journal.pone.0076632

73. Fereday N, Forber G, Firardello S, Midgley C, Nutt T, Powell N, et al. HFCS Industry Annual Review – A Year of Changing Expectations. Oxford: L. Internat. (2007).

74. Sievenpiper JL, Carleton AJ, Chatha S, Jiang HY, De Souza RJ, Beyene J, et al. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care (2009) 32:1930–7. doi:10.2337/dc09-0619

75. Sievenpiper JL, Chiavaroli L, De Souza RJ, Mirrahimi A, Cozma AL, Ha V, et al. ‘Catalytic’ doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr (2012) 108:418–23. doi:10.1017/S000711451200013X

76. Livesey G, Taylor R. Fructose consumption and consequences for glycaemia, plasma triacylglycerol, and body weight: meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr (2008) 88:1419–37.

Conflict of Interest Statement: VC has received research support from the Canadian Institutes of Health Research (CIHR). She also received a summer student scholarship from the Canadian Sugar Institute. JS has received research support from the Canadian Institutes of Health Research (CIHR), Calorie Control Council, American Society of Nutrition (ASN), The Coca-Cola Company (investigator initiated, unrestricted), Dr. Pepper Snapple Group (investigator initiated, unrestricted), Pulse Canada, and The International Tree Nut Council Nutrition Research and Education Foundation. He has received reimbursement of travel expense, speaker fees, and/or honoraria from the American Heart Association (AHA), American College of Physicians (ACP), American Society for Nutrition (ASN), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Canadian Diabetes Association (CDA), Canadian Nutrition Society (CNS), University of South Carolina, University of Alabama at Birmingham, Oldways Preservation Trust, Nutrition Foundation of Italy (NFI), Calorie Control Council, Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD), International Life Sciences Institute (ILSI) North America, International Life Sciences Institute (ILSI) Brazil, Abbott Laboratories, Pulse Canada, Canadian Sugar Institute, Dr. Pepper Snapple Group, The Coca-Cola Company, Corn Refiners Association, World Sugar Research Organization, Dairy Farmers of Canada, Società Italiana di Nutrizione Umana (SINU), and C3 Collaborating for Health. He has ad hoc consulting arrangements with Winston & Strawn LLP, Perkins Coie LLP, and Tate & Lyle. He is on the Clinical Practice Guidelines Expert Committee for Nutrition Therapy of both the Canadian Diabetes Association (CDA) and European Association for the study of Diabetes (EASD), as well as being on an American Society for Nutrition (ASN) writing panel for a scientific statement on sugars. He is a member of the International Carbohydrate Quality Consortium (ICQC) and Board Member of the Diabetes and Nutrition Study Group (DNSG) of the EASD. He serves an unpaid scientific advisor for the International Life Science Institute (ILSI) North America, Food, Nutrition, and Safety Program (FNSP) and the Committee on Carbohydrates. His wife is an employee of Unilever Canada.

Copyright © 2015 Choo and Sievenpiper. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.