Pazopanib-mediated Long-term Disease Stabilization after Local Recurrence and Distant Metastasis of Primary Intracranial Leiomyosarcoma: A Case Report on the Efficacy of Pazopanib as a Salvage Therapy

Yasuhiro Kawabata, Tomokazu Aoki, Tetsurou Yamamoto, Hisateru Yasui, Satoru Sawai, Shunichi Fukuda, Satoru Kawarazaki, and Tetsuya Tsukahara

Primary intracranial leiomyosarcoma (LMS) is an extremely rare tumor of the central nervous system. Only sporadic case reports have been published, and therefore data regarding long-term prognosis remain scarce. A 76-year-old woman presented with a right parietal mass, which had grown rapidly in the month prior to admission. Neuroimaging showed a resemblance to intraosseous meningioma. Gross total resection of the tumor was achieved, and histological diagnosis confirmed LMS. Because positron emission tomography (PET) with fluorodeoxyglucose (FDG) just after the resection showed no abnormal uptake, we diagnosed the tumor as primary intracranial LMS. Follow-up PET at 16 months after treatment showed two foci of FDG uptake in the bilateral lungs. Histological diagnosis by surgical resection identified the lesions as lung metastases of LMS. In addition, follow-up head magnetic resonance imaging (MRI) at 31 months showed local recurrence, and we conducted salvage therapy using CyberKnife system (Accuray incorporated) and pazopanib. To date, for 15 months after local recurrence, she is alive with intracranial recurrent disease remained inactive.

Keywords: leiomyosarcoma, lung metastasis, local recurrence, pazopanib

Introduction

Leiomyosarcoma (LMS) is a malignant tumor that can originate from smooth muscle cells anywhere in the body, such as the uterus, gastrointestinal tract, and subcutaneous tissue. In contrast, primary intracranial LMS is extremely rare, and only a few case reports have been published. Paulus et al. reported that LMS constitutes only 0.012% of primary intracranial tumors. Data regarding long-term prognosis of primary intracranial LMS are scarce and no standardized therapy has been established. Although some authors have suggested that prognosis is relatively favorable, others have reported relatively poor outcomes once recurrence or progression occurred.

The oral tyrosine kinase inhibitor pazopanib was the first molecular-targeted agent approved for the treatment of advanced soft tissue sarcoma. Pazopanib is an oral multitarget tyrosine kinase inhibitor of vascular endothelial growth factor (VEGFR)-1, -2, and -3; platelet-derived growth factor (PDGF)-α, and –β; and c-Kit receptor. In the PALETTE trial, it has been demonstrated to improve progression-free survival, compared with placebo. Here we report a case of intracranial LMS with local recurrence and lung metastases treated with pazopanib, which led to stable disease control.

Case Report

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from the participant included in this study. A 76-year-old woman with a prior history of appendicitis, torsion of the ovarian cyst pedicle, and myoma uteri presented with a right parietal mass behind the ear. The lesion had been growing rapidly in the month before admission. There were no neurological symptoms and no symptoms suggestive of other sites of involvement. Complete blood counts and metabolic panel were normal. Viral serology was negative for both human immune deficiency virus and Epstein-Barr virus. A non-contrast computed tomography (CT) scan of the brain demonstrated a 5-cm mass involving the meninges with invasion of the parietal bone (Fig. 1a). A magnetic resonance imaging (MRI) scan with gadolinium showed a heterogeneously enhanced mass in the right parietal region (Fig. 1b). A cerebral angiography showed that the tumor was vascularized and was supplied by the middle meningeal artery. Thus, a clinical diagnosis of osteoblastic meningioma was made. The differential diagnosis included...
primary lymphoma, metastasis, and sarcoma. The patient underwent a surgical resection of the tumor following endovascular embolization of the feeding middle meningeal artery using platinum coils. At surgery, the scalp was easily removed from the tumor, which had caused destruction of the skull and had extended extradurally without any intradural involvement. The tumor and surrounding bone with about a 1-cm margin were removed, followed by bone reconstruction. Histology showed a malignant spindle cell neoplasm (Fig. 2a) with positive immunostaining for α-smooth muscle actin, vimentin, and desmin (Fig. 2b). Immunohistochemical staining for Epstein Barr virus was negative. Pathological interpretation was a malignant spindle cell neoplasm consistent with high-grade LMS. Postoperative complications included chronic mastoiditis due to cerebrospinal fluid leakage. Staging CT scan of the lung and abdomen and whole body positron emission tomography (PET) scan were negative for extra cranial involvement. Pelvic MRI showed a 4-cm myoma uteri on the anterior wall of the uterine corpus, which has not been growing and PET-negative throughout the follow-up period. The patient underwent local field radiotherapy (45 Gy in 25 fractions with a boost to the tumor bed). Follow-up brain MRI at 26 months showed no evidence of local recurrence. FDG-PET scan at 16 and 26 months after the treatment showed two small foci of abnormal uptake in the bilateral lungs, which had been growing slowly. The maximum tumor standard uptake value was 3.3 and 6.35 at 16 and 26 months, respectively. Chest CT at 26 months showed a 9-mm nodular lesion in the right lung and a 6-mm nodular lesion in the left lung. Chronological changes in size and uptake values suggested lung metastasis of the LMS. The lesions were separately removed, and histology of the surgical specimens confirmed them to be metastatic LMS. Although postoperative recovery was uneventful, follow-up MRI at 31 months showed local recurrence mainly in the mastoid air cell.

Fig. 1 (a) Head CT scan shows a hyperdense lesion in the right parietal area. CT scan with bone window shows remarkable bone destruction of the right parietal skull. (b) Gd-enhanced MRI shows a heterogeneously enhanced lesion, adjacent to the mastoid air cell.
The Efficacy of Pazopanib as a Salvage Therapy

(Fig. 3a), which was probably caused by cancer cell dissemination through cerebrospinal fluid leakage. Local recurrence was treated by salvage therapy using CyberKnife system (Accuray incorporated) at the prescription dose of 36 Gy and pazopanib. Pazopanib administration at 800 mg/day was started, but was discontinued after 2 weeks because she had grade 1 of appetite loss according to the common terminology criteria for adverse events (CTCAE) version 4.0. It was then restarted at the reduced dose of 600 mg/day after one month, further reduced to 400 mg on alternate weeks after 2 months, and finally reduced to 200 mg on alternate weeks after 4 months due to appetite loss and general fatigue. She also experienced an adverse event of hypertension, and eight mg of candesartan was prescribed after 3 months. Follow-up MRI at 45 months showed cystic degeneration of the local recurrent lesion (Fig. 3b), and she is doing well in spite of hearing loss of the right ear.

![Fig. 2](image-url) (a) Light microscopy shows high-grade sarcoma with poorly differentiated and highly proliferative atypical spindle shaped cells. (b) Immunohistochemistry revealed staining for vimentin, α-smooth muscle actin, and desmin.

![Fig. 3](image-url) (a) Follow-up head MRI at 31 months showed local recurrence in the right mastoid air cell. (b) Follow-up head MRI at 45 months showed cystic degeneration of the recurrent lesion.
Author, year	Sex	Age	Location	Number of lesions	Medical history	Extent of resection	Adjuvant therapy	Recurrence (months)	Follow-up (months)	Outcomes
Anderson, 1980	male	35	sellar and suprasellar region	single	none	partial	Rad(+)	32	alive	
Sieben, 1980	male	57	foramen jugulare	single	radiation therapy, syringomyelia	none	Rad(+)	n.a.	dead	
Asai, 1988	male	73	dura	single	none	complete	Rad(+)	n.a.	n.a.	
Louis, 1989	female	72	intraventricle	single	none	complete	none	6	alive	
Skullerud, 1995	male	33	pineal region	single	teratoma of the pineal area	complete	Rad(+)	24	alive	
Niwa, 1996	male	51	sella, cavernous sinus, and sylvian fissure	single	pituitary adenoma, radiation therapy	partial	none	L	8 years	dead
Lee, 1997	male	8	extra-axial	single	none	complete	CTx(+), Rad(+)	20	alive	
Mierau, 1997	female	14	temporal lobe	single	genetic immunodeficiency	complete	none	18	alive	
Murakami, 1997	male	38	frontal lobe	single	fibrillary astrocytoma, radiation therapy	partial	CTx(+), Rad(+)	n.a.	n.a.	
Litofsky, 1998	male	50	dura	single	AIDS	complete	none	8	alive	
Kleinschmidt-DeMasters, 1998	female	14	dural sinus	single	AIDS	complete	none	21	alive	
Bejjani, 1999	male	38	dura	single	HIV positive	complete	none	12	alive	
Brown, 1999	female	34	pontine cistern	multiple	AIDS	partial	none	L(12)	12	alive
Blumenthal, 1999	male	43	cavernous sinus	n.a.	AIDS	n.a.	CTx(+)	24	alive	
Merimsky, 2000	male	33	temporo-occipital lobe	single	n.a.	complete	Rad(+)	M(111)	111	alive
Yeh, 2002	male	42	brainstem	single	ganglioglioma, radiotherapy	complete	none	n.a.	n.a.	
Kaphan, 2003	male	45	cavernous sinus	single	renal transplantation	biopsy	CTx(+), Rad(+)	L	18	dead
Eckhardt, 2004	male	13	temporo-parietal	single	none	partial	CTx(+), Rad(+)	L+LD	15	dead
Suankratay, 2005	female	43	tentorium cerebelli	multiple	AIDS	complete	CTx(+), Rad(+)	4	dead	
Suankratay, 2005	female	34	tentorium cerebelli	single	AIDS, HBV(+)	complete	Rad(+)	8	alive	
Hussain, 2006	male	26	extra-axial	single	none	complete	Rad(+)	L(5)+M(5)	7	dead
Toh, 2007	female	40	intradural and extradural	single	pituitary adenoma, radiation therapy	partial	none	1.5	dead	
Jhas, 2009	male	14	temporal lobe	single	neurofibromatosis type 1	complete	CTx(+), Rad(+)	24	alive	
Mathieson, 2009	male	5	frontal lobe	single	chronic subdural hematoma	partial	CTx(+), Rad(+)	18	alive	
Fujimoto, 2011	female	45	cerebellopontine angle	single	prior neurofibroma	partial	Rad(+)	L+LD	10	dead
Table 1 continued

Author, year	Sex	Age (yr)	Location	Number of lesions	Medical history	Extent of resection	Adjuvant therapy	Follow-up (months)	Recurrence (months)	Outcomes	Recurrence (months)	Follow-up (months)
Almubaslat, 2011	40	male	47	frontoparietal lobe	single	none	complete	none	21	alive	23	alive
Aeddula, 2011	41	female	58	temporal lobe	multiple	adenocarcinoma	complete	none	3 weeks	alive	18	alive
Sivendran, 2011	19	male	43	frontal lobe	single	AIDS	complete	none	20	dead	3	dead
Kelley, 2012	9	male	62	intra-axial and extra-axial	single	none	partial	none	3	dead	24	alive
Zhang, 2012	4	female	26	the genu of corpus callosum	single	none	partial	none	3	alive	24	alive
Alijani, 2013	42	male	19	extra-axial	single	none	complete	Rad(+)	18	alive	46	alive
Takei, 2013	23	male	27	fronto-temporal lobe	single	none	complete	CTx for HL	24	alive	3	dead
Present case, 2015	female	76	extra-axial	single	none	complete	Rad(+)	M(16)	46	alive	24	alive

AIDS: adult immunodeficiency syndrome, HBV: hepatitis B virus, CTx: chemotherapy, Rad: radiotherapy, L: local recurrence or progression, LD: leptomeningeal dissemination, M: metastasis, n.a.: not available, HL: Hodgkin lymphoma.

Discussion

LMS is a malignant tumor that can originate from smooth muscle cells anywhere in the body. The most frequent site is the uterus, but the other sites include the gastrointestinal tract, retroperitoneum, lung, and heart. It is well known that the myoma uteri in this case has been dormant and negative on PET-CT scan throughout the follow-up period, and considered unrelated to intracranial lesion. The differential diagnosis for intracranial LMS includes meningiomas and schwannomas, which are more prevalent. Thus, clinical experience in treating intracranial LMS is limited and the long-term prognosis is unknown, especially in terms of recurrence or metastasis. The prognosis of intracranial LMS can be underestimated because it is sometimes associated with immunosuppression, such as human immunodeficiency virus infection, transplantation, and malignancies. However, the prognosis for intracranial LMS was reported to be relatively fair: a recent review by Zhang et al. showed that the 5-year survival rate was as high as 70%.

Summary of reported LMS cases is shown in Table 1. In literature, local recurrence or progression was observed in seven patients, and leptomeningeal dissemination was observed in three patients. Six of 7 patients who had local recurrence or progression died after a median of 12.5 months (4–96 months), and all the three patients with leptomeningeal dissemination died after a median of 10 months (3–10 months). Although five incidences of local recurrence or progression (45%) were observed in 11 patients (in whom partial resection or biopsy was performed), only one local recurrence (5%) was observed after complete resection (P < 0.05, Fisher’s exact test). In addition, leptomeningeal dissemination was exclusively observed in three patients (9.1%) after partial resection. Intracranial LMS has to be resected as much as possible, preferably with a safety margin, to prevent local recurrence. Although the most common sites of distant metastasis from LMS include lung, liver, kidney, bone, spine, and brain, few data exist about the metastatic potential of intracranial LMS. Extracranial metastasis was observed in three patients (9.1%), including our case. One patient had both a local recurrence and systemic metastases at 5 months after complete resection of the tumor, and died at 6 months. The other patient had malignant pleural effusion at 111 months after the treatment, but the details were not known. Thus, it can be said that the prognosis should be poor once local recurrence, dissemination, or metastasis occur.

Pazopanib is a multi-targeted tyrosine kinase inhibitor that impairs angiogenesis. The most common adverse events with pazopanib were fatigue, diarrhea, nausea, weight loss, and hypertension. Randomized controlled trial showed pazopanib prolonged median progression-free survival compared with placebo in patients with metastatic soft-tissue sarcoma. It is small enough to penetrate the blood brain barrier, and phase II trial was performed for patients with recurrent glioblastoma. Inoue et al. also reported a case report to show the efficacy of pazopanib for metastatic brain tumor in a patient with advanced uterine LMS. However, our case was the first to show the long-term stable disease control using pazopanib.
combined with stereotactic radiosurgery after local recurrence and lung metastasis of intracranial LMS. Thus, it cannot be determined whether pazopanib should be similarly effective even if without combined therapy of stereotactic radiosurgery. However, it can be said that pazopanib can be effective not only to control local recurrence but also distant metastasis on which stereotactic radiotherapy should have no effect.

Conclusions
Local recurrence or distant metastasis can occur even after complete resection of intracranial LMS. Pazopanib combined with stereotactic radiosurgery is effective as a salvage therapy for a recurrent or metastatic disease of intracranial LMS.

Acknowledgments
S. Fukuda receives funding (H25-NHO-01) in the research of computational flow dynamics of unruptured cerebral aneurysms. However, we have nothing to disclose regarding this manuscript. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Conflicts of Interest Disclosure
We have nothing to disclose regarding this manuscript. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

References
1) Gustafson P, Wiltén H, Baldeot B, Fernö M, Akerman M, Rydholm A. Soft tissue leiomyosarcoma. A population-based epidemiologic and prognostic study of 48 patients, including cellular DNA content. Cancer 70: 114–119, 1992
2) Mackay JJ, Buckanovich RJ, Hirte H, et al.: A Phase II study single agent of aflibercept (VEGF Trap) in patients with recurrent or metastatic gynecologic carcinomas and uterine leiomyosarcoma. A trial of the Princess Margaret Hospital, Chicago and California Cancer Phase II Consortia. Gynecol Oncol 125: 136–140, 2012
3) Matheson CS, St George EJ, Stewart W, Sastry J, Jamal S: Primary intracranial leiomyosarcoma: a case report and review of the literature. Childs Nerv Syst 25: 1013–1017, 2009
4) Zhang H, Dong L, Huang Y, et al.: Primary intracranial leiomyosarcoma: review of the literature and presentation of a case. Onkologie 35: 609–616, 2012
5) Paulus W, Slowik F, Jellinger K: Primary intracranial sarcomas: histopathological features of 19 cases. Histopathology 18: 395–402, 1991
6) Merimsky O, Lepechoux C, Terrier P, Vanel D, Delord JP, LeCesne A: Primary sarcomas of the central nervous system. Oncology 58: 210–214, 2000
7) Niwa J, Hashi K, Minase T: Radiation induced intracranial leiomyosarcoma: its histopathological features. Acta Neurochir (Wien) 138: 1470–1471, 1996
8) Fujimoto Y, Hirato J, Wakyama Y, Yoshimine T: Primary intracranial leiomyosarcoma in an immunocompetent patient: case report. J Neurooncol 103: 785–790, 2011
9) Kelley BC, Arnold PM, Grant JA, Newell KL: Primary intracranial β-human chorionic gonadotropin-producing leiomyosarcoma in a 2-year-old immunocompetent child. J Neurosurg Pediatr 10: 121–125, 2012
10) Suankratay C, Shuangshoti S, Mutirangura A, et al.: Epstein-Barr virus infection-associated smooth-muscle tumors in patients with AIDS. Clin Infect Dis 40: 1521–1528, 2005
11) Cranmer LD, Loggers ET, Pollack SM: Pazopanib in the management of advanced soft tissue sarcomas. Ther Clin Risk Manag 12: 941–955, 2016
12) van der Graaf WT, Blay JY, Chawla SP, et al.; EORTC soft tissue and bone sarcoma group; PALETTE study group: Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379: 1879–1886, 2012
13) Cancer therapy evaluation program. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_40 (Accessed on 2017 Feb 22)
14) Sieben G, Sieben-Praet M, De Reuck J, et al.: Dumb-bell sarcoma of the foramen jugulare with syringomyelia. A radio-induced tumour?. J Neurosurg 222: 219–225, 1980
15) Pai M, Yoon SN: 18F-FDG imaging of the primary breast leiomyosarcoma and follow-up lung metastasis. Clin Nucl Med 38: e152–e154, 2013
16) Yamasaki M, Sumi Y, Sakakibara Y, et al.: Pulmonary artery leiomyosarcoma diagnosed without delay. Case Rep Oncol 4: 287–298, 2011
17) Tokgoz N, Oner YA, Kaymaz M, Ucar M, Yilmaz G, Tali TE: Primary intraosseous meningioma: CT and MRI appearance. AJNR Am J Neuroradiol 26: 2053–2056, 2005
18) Litofsky NS, Pihan G, Corvi F, Smith TW: Intracranial leiomyosarcoma: a neuro-oncological consequence of acquired immunodeficiency syndrome. J Neurooncol 40: 179–183, 1999
19) Svendsen S, Vidal CI, Barginear MF: Primary intracranial leiomyosarcoma in an HIV-infected patient. Int J Clin Oncol 16: 63–66, 2011
20) Kaduri S, Tampieri D: Leiomyosarcoma leptomeningeal brain metastases. Neurol Med Chir (Tokyo) 57: S57–S62, 2012
21) Kaphan E, Eusebio A, Witjas T, et al.: [Primary leiomyosarcoma of the cavernous sinus associated with Epstein-Barr virus in a kidney graft]. Rev Neurol (Paris) 159: 1055–1059, 2003
22) Chaves NJ, Kotsimbos TC, Warren MA, et al.: Cranial leiomyosarcoma in an Epstein-Barr virus (EBV)-mismatched lung transplant recipient. J Heart Lung Transplant 26: 753–755, 2007
23) Takei H, Powell S, Rivera A: Concurrent occurrence of primary intracranial Epstein-Barr virus-associated leiomyosarcoma and Hodgkin lymphoma in a young adult. Neurosurgery 119: 499–503, 2013
24) Anderson WR, Cameron JD, Tsai SH: Primary intracranial leiomyosarcoma. Case report with ultrastructural study. J Neurol Neurosurg Psychiatry 53: 401–405, 1980
25) Asai A, Yamada H, Murata S, et al.: Primary leiomyosarcoma of the dura mater. Case report. J Neurosurg 68: 308–311, 1988
26) Louis DN, Richardson EP, Dickersin GR, Petrucci DA, Rosenberg AE, Ojemann RG: Primary intracranial leiomyosarcoma. Case report. J Neurosurg 71: 279–282, 1989
27) Skullerud K, Stenwig AE, Brandtzaeg P, et al.: Intraoperative primary leiomyosarcoma arising in a teratoma of the pineal area. Clin Neuropathol 14: 245–248, 1995
28) Lee TT, Page LK: Primary cerebral leiomyosarcoma. Clin Neurol Neurosurg 99: 210–212, 1997
29) Mierau GW, Greffe BS, Weeks DA: Primary leiomyosarcoma of brain in an adolescent with common variable immunodeficiency syndrome. Ultrastruct Pathol 21: 301–305, 1997
30) Murakami N, Morikota T, Nishio S, et al.: [Radiation-induced leiomyosarcoma in an Epstein-Barr virus (EBV)-mismatched lung transplant recipient]. No Shinkei Geka 25: 1049–1053, 1997
31) Kleinschmidt-DeMasters BK, Mierau GW, Sze CI, et al.: Unusual dural and skull-based mesenchymal neoplasms: a report of four cases. Hum Pathol 29: 240–245, 1998
32) Bejjani GK, Stopak B, Schwartz A, Santi R: Primary dural leiomyosarcoma in a patient infected with human immunodeficiency virus: case report. Neurosurgery 44: 199–202, 1999
33) Brown HG, Burger PC, Olivi A, Sills AK, Barditch-Crovo PA, Lee RR: Intraosseous meningioma: a case report. J Neurosurg 52: 1648–1651, 1999
34) Bejjani GK, Stopak B, Schwartz A, Santi R: Primary dural leiomyosarcoma in a patient infected with human immunodeficiency virus: case report. Neurosurgery 44: 199–202, 1999
35) Brown HG, Burger PC, Olivi A, Sills AK, Barditch-Crovo PA, Lee RR: Intraosseous meningioma: a case report. J Neurosurg 52: 1648–1651, 1999
36) Blumenthal DT, Raizer JJ, Rosenbaum JM, Bilsky MH, Harihara S, Abrey LE: Primary intracranial neoplasms in patients with HIV. Neurology 52: 1648–1651, 1999
37) Yeh DJ, Hessler RB, Lee MR: Leiomyosarcomatous transformation of unknown pediatric primary brainstem lesion following radiotherapy. Case report. Neurosurgery焦点 12: ecp2, 2002
38) Eckhardt BP, Brandner S, Zollkofer CL, Wentz KU: Primary cerebral leiomyosarcoma in a child. Pediatr Radiol 34: 495–498, 2004
39) Hussain S, Nanda A, Fowler M, Ampil FL, Burton GV: Primary intracranial leiomyosarcoma: report of a case and review of the literature. Sarcoma 2006: 52140, 2006
38) Toh CH, Wong HF, Jung SM, Wong AM: Radiation-induced skull base leiomyosarcoma presenting with intracerebral haemorrhage. Br J Radiol 80: e212–e215, 2007
39) Jhas S, Henriques L, Hawkins C, Bouffet E, Rutka JT: An intracranial leiomyosarcoma in a child with neurofibromatosis type 1. Can J Neurol Sci 36: 491–495, 2009
40) Almubaslat M, Stone JC, Liu L, Xiong Z: Primary intracranial leiomyosarcoma in an immunocompetent patient. Clin Neuropathol 30: 154–157, 2011
41) Aeddula NR, Pathireddy S, Samaha T, Ukena T, Hosseinnezhad A: Primary intracranial leiomyosarcoma in an immunocompetent adult. J Clin Oncol 29: e407–e410, 2011
42) Alijani B, Yousefzade S, Arammia A, Mesbah A: Primary intracranial leiomyosarcoma. Arch Iran Med 16: 606–607, 2013
43) Elhammady MS, Manzano GR, Lebwohl N, Levi AD: Leiomyosarcoma metastases to the spine. Case series and review of the literature. J Neurosurg Spine 6: 178–183, 2007
44) Flannery T, Kano H, Niranjan A, et al.: Gamma knife radiosurgery as a therapeutic strategy for intracranial sarcomatous metastases. Int J Radiat Oncol Biol Phys 76: 513–519, 2010
45) Iwamoto FM, Lamborn KR, Robins HI, et al.: Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-oncology 12: 855–861, 2010
46) Inoue K, Tsubamoto H, Tomogane Y, Kamihigashi M, Shibahara H: Pazopanib-mediated long-term disease stabilization after resection of a uterine leiomyosarcoma metastasis to the brain: a case report. Gynecol Oncol Rep 17: 60–64, 2016

Corresponding author:
Yasuhiro Kawabata, MD, Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan.
ykawabata-kyt@umin.net