Sarcoid Myositis with Anti-Ku Antibody Consistent with both Sarcoidosis and Polymyositis

Nobuyasu Awano¹, Kensuke Fukuda¹, Masashi Sakayori¹, Keisuke Kondoh¹, Ryu Ono¹, Atsuko Moriya¹, Tsunehiro Ando¹, Toshio Kumasaka², Tamiko Takemura² and Soichiro Ikushima¹

Abstract

We herein describe a case of sarcoid myositis with anti-Ku antibody positivity. Pathological findings of the muscle were compatible with sarcoidosis, but could not be completely distinguished from myositis diseases that arise from other causes. According to a physical examination, pathological findings, the detection of anti-Ku antibody and the human leukocyte antigen (HLA)-DPB1 allele, we strongly suspected that the patient developed both sarcoidosis and polymyositis. Sarcoidosis is often complicated by autoimmune diseases. This case suggests the possibility that sarcoidosis and other autoimmune diseases may have common causal genetic factors.

Key words: sarcoidosis, polymyositis, anti-Ku antibody, overlap syndrome, HLA-DPB1

(Intern Med 55: 2049-2053, 2016) (DOI: 10.2169/internalmedicine.55.5816)

Introduction

Sarcoidosis is a systemic granulomatous disease of unknown origin. It involves many organs such as the eyes, lungs, lymph nodes, heart, and musculoskeletal system. Patients with acute sarcoid myositis complain of muscle weakness or muscle atrophy. It is difficult to differentiate sarcoid myositis from other myositis diseases that arise from other causes. Sarcoidosis frequently complicates autoimmune diseases, such as rheumatoid arthritis (1), systemic scleroderma (2), and polymyositis/dermatomyositis (PM/DM) (3-7). PM/DM causes symmetrical muscle weakness and muscle atrophy. Although PM/DM shows no granuloma in the muscle, its clinical and pathological features are similar to sarcoid myositis.

The presence of anti-Ku antibody was initially reported in 1981 by Mimori et al. in systemic sclerosis-dermatomyositis overlap syndrome (8). Subsequently, anti-Ku antibodies have been detected in various connective tissue diseases including systemic lupus erythematosus, Sjögren’s syndrome and mixed connective tissue diseases (MCTD) (9, 10). We herein report a rare case of sarcoid myositis with anti-Ku antibody positivity that strongly suggests the occurrence of both sarcoidosis and polymyositis.

Case Report

A 30-year-old man was referred to our hospital in 2011. The patient was diagnosed with sarcoidosis in a previous hospital in 2006. The first part of the patient’s clinical course has been previously reported (11) and will be briefly described here. His initial symptoms were progressive proximal extremity weakness, general fatigue, mild exertional dyspnea and poor vision. The body weight of the patient was 60 kg and he did not lose weight. The patient did not develop arthralgia, Raynaud’s phenomenon or skin disease except for eczema on the back. The presentation of uveitis, bilateral hilar and mediastinal lymphadenopathy on chest X-ray and a CT scan, a negative tuberculin skin test and elevated levels of serum angiotensin-converting enzyme concentration (ACE) (28.3 U/L), lymphocytes (36%) and CD4/
body (ANA) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (speckled derma, hyperpigmentation or joint diseases, antinuclear antibody (ANA)) testing was positive at a titer of 1280 (spec...
caseating epithelioid cell granulomas and lymphocytic inflammation. Furthermore, according to the criteria proposed by Bohan and Peter in 1975 (14), the patient’s findings were all compatible with polymyositis. The pathological findings revealed not only non-caseating epithelioid cell granulomas, but also diffuse lymphocyte infiltration, muscle necrosis and myolysis. We considered that these pathological changes were caused by both sarcoid myositis and polymyositis.

In addition, we detected not only ANA, but also anti-Ku antibody. Ku antigen is a heterodimer composed of 70 kD and 80 kD subunits that bind to the ends of double-stranded DNA through its zipper structure (15). It plays a role in the repair of damaged DNA (16, 17) and V(D)J recombination in B and T cell activation (18).

In the last several years, a further genotypic analysis of patients with anti-Ku antibodies has been performed. Hirakata et al. examined the HLA class II (DRB1, DQA1, DQB1 and DPB1) of 21 Japanese patients with anti-Ku antibody-positive connective tissue diseases. They showed that HLA-DPB1 *05:01 was detected in all 21 patients and that the allele was one of the most common allele types in Japanese patients with anti-Ku antibody (19). However, HLA-DPB1 *05:01 was detected in 59% of the control subjects. Therefore, it does not necessarily serve as a useful diagnostic tool. Another study found that HLA-DPB1 *05:01 was also a risk factor for Graves’ disease in Japan (20). Hirakata et al. suggested that there is a common immunogenetic background for Graves’ disease and the anti-Ku autoimmune response. In the present case, the HLA-DPB1 allele was identified as *05:01, *09:01:01. Several studies reported a weak association between HLA alleles and sarcoidosis. Glutamic acid at position 69 in HLA-DPB1 was reported to be associated with sarcoidosis (21). HLA-DPB1*05:01 does not have glutamic acid at position 69, however, HLA-DPB1 *09:01 does. On the other hand, another study revealed a strong association between glutamic acid at position 69 in HLA-DPB1 and chronic beryllium disease (22). It has been

Table. Laboratory Data in January 2011.

Test	Value
WBC	4500/μL
RBC	491x10^6/μL
HB	14.9 g/dL
Hct	24.4x10^3/μL
TP	7.3 g/dL
Alb	4.5 g/dL
AST	65 IU/L
ALT	72 IU/L
LDH	298 IU/L
ALP	189 IU/L
γ-GTP	13 IU/L
T-Bil	0.6 mg/dL
BUN	10 mg/dL
Cre	0.57 mg/dL
Na	139 mEq/L
K	4.4 mEq/L
Cl	103 mEq/L
Ca	9.5 mg/dL
LDL	163 mg/dL
TG	134 mg/dL
CK	2131 U/L
CK-MB	255 U/L
Myoglobin	353 ng/mL
Aldolase	33.9 IU/L
IgG	1460 mg/dL
IgA	215 mg/dL
IgM	1440 mg/dL
CRP	0.81 mg/dL

sIL2R | 1220 U/mL |

MPO-ANCA: 14 EU

Reference ranges: myoglobin: 18-70ng/mL, aldolase: 1.7-5.7IU/L, ACE: 8.3-21.4IU/L, MPO-ANCA: 0-19EU.

ANA: antinuclear antibody, sIL2R: soluble IL-2 receptor, Ab: antibody, ARS: aminocyt-tRNA synthetase

Measurement methods: anti-Jo-1 Ab, anti-ARS Ab, anti-SRP Ab and anti-Ku Ab: radio-immunoprecipitation assays.

Figure 2. Both CD4 positive T cell (A) and CD8 positive T cell (B) infiltration into the muscles were detected (immunohistochemical staining, 40×). The CD4/CD8 ratio was 0.5.
suggested that HLA-DPB1 may play an important role in antigen presentation and recognition in chronic granulomatous diseases. Similarly, our findings suggest that the immunogenetic background may affect the occurrence of both sarcoidosis and polymyositis. Sarcoidosis infrequently complicates PM/DM, however, we have found only one case of sarcoidosis that is anti-Ku antibody-positive and accompanied by polymyositis (3). The patient developed systemic sclerosis, polymyositis, autoimmune hepatitis and sarcoidosis, which suggests that these autoimmune diseases have a similar immunopathogenic mechanism. The etiology of sarcoidosis is currently unknown. Genetic susceptibility to environmental agents and endogenous infection of pathogens such as Propionibacterium acnes may be involved in the etiology of sarcoidosis (23). Further studies are needed to define the etiology and mechanisms of sarcoidosis.

Corticosteroid therapy is usually beneficial for both sarcoid myositis and inflammatory myopathies of anti-Ku antibody-positive patients (24). However, PSL and steroid pulse therapy were ineffective in the present case. The additional use of MTX showed significantly improved treatment efficacy. A previous study by Chinoy et al. examined the risk of cancer-associated myositis (25). They showed that the detection of anti-Ku antibody in myositis is associated with a lower frequency of cancer as well as a favorable prognosis. In the present case, however, a long-term follow-up is essential due to the risk of developing malignant lymphoma associated with sarcoidosis or MTX, as well as cancer-associated myositis.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement
We would like to thank Shota Nakajima, MD (Second Department of Internal Medicine, University of Nagasaki) for valuable support while carrying out this study.

References
1. Josse S, Klemmer N, Moreno-Swirc S, et al. Infliximab induced skin and pulmonary sarcoidosis in a rheumatoid arthritis patient. Joint Bone Spine 76: 718-719, 2009.
2. Ren XX, Hou SW, Li ZF, et al. A case of sarcoidosis with systemic sclerosis. Chin Med J (Engl) 126: 4400, 2013.
3. Lis-Swiety A, Brzezinska-Wcislo L, Pierzchala E, et al. Systemic sclerosis-polymyositis overlap syndrome accompanied by autoimmune hepatitis and sarcoidosis of mediastinal lymphnodes. J Eur Acad Dermatol Venereol 20: 107-108, 2006.
4. Hart Y, Schwartz MS, Bruckner F, et al. Relapsing dermatomyositis associated with sarcoidosis. J Neurol Neurosurg Psychiatry 51: 311-313, 1988.
5. Nishioka M, Igawa K, Yahata Y, et al. Simultaneous occurrence of dermatomyositis and systemic sarcoidosis with recurrent breast cancer. J Dermatol 39: 485-486, 2012.
6. Hayashi T, Nakamura T, Kurachi K, et al. Ulcerative colitis accompanied with sarcoidosis and dermatomyositis: report of a case. Dis Colon Rectum 51: 474-476, 2008.
7. Brateanu AC, Caracioni A, Smith HR. Sarcoidosis and dermatomyositis in a patient with hemoglobin SC. A case report and literature review. Sarcoidosis Vasc Diffuse Lung Dis 17: 190-193, 2000.
8. Mimori T, Akizuki M, Yamagata H, et al. Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68: 611-620, 1981.
9. Cavazzana I, Ceribelli A, Quinzanini M, et al. Prevalence and clinical associations of anti-Ku antibodies in systemic autoimmune diseases. Lupus 17: 727-732, 2008.
10. Franceschini F, Cavazzana I, Generali D, et al. Anti-Ku antibodies in connective tissue diseases: clinical and serological evaluation of 14 patients. J Rheumatol 29: 1393-1397, 2002.
12. Mayock RL, Bertrand P, Morrison CE, Scott JH. Manifestations of sarcoidosis. analysis of 145 patients, with a review of nine series selected from the literature. Am J Med 35: 67-89, 1963.

13. Stjernberg N, Cajander S, Truedsson H, et al. Muscle involvement in sarcoidosis. Acta Med Scand 209: 213-216, 1981.

14. Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med 292: 344-347, 1975.

15. Mimori T, Ohosone Y, Hama N, et al. Isolation and characterization of cDNA encoding the 80-kDa subunit protein of the human autoantigen Ku (p70/p80) recognized by autoantibodies from patients with scleroderma-polymyositis overlap syndrome. Proc Natl Acad Sci U S A 87: 1777-1781, 1990.

16. Mimori T, Hardin JA, Steitz JA. Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J Biol Chem 261: 2274-2278, 1986.

17. Mimori T, Hardin JA. Mechanism of interaction between Ku protein and DNA. J Biol Chem 261: 10375-10379, 1986.

18. Smider V, Rathmell WK, Lieber MR, Chu G. Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA. Science 266: 289-291, 1994.

19. Hirakata M, Suwa A, Kuwana M, et al. Association between autoantibodies to the Ku protein and DPB1*. Arthritis Rheum 52: 668-669, 2005.

20. Dong RP, Kimura A, Okubo R, et al. HLA-A and DPB1 loci confer susceptibility to Graves’ disease. Hum Immunol 35: 165-172, 1992.

21. Lyppany PA, Petrek M, Southcott AM, et al. HLA-DPB polymorphisms: Glu 69 association with sarcoidosis. Eur J Immunogenet 23: 353-359, 1996.

22. Richeldi L, Sorrentino R, Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease. Science 262: 242-244, 1993.

23. Eishi Y, Suga M, Ishige I, et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol 40: 198-204, 2002.

24. Rigolet A, Musset L, Dubourg O, et al. Inflammatory myopathies with anti-Ku antibodies: a prognosis dependent on associated lung disease. Medicine (Baltimore) 91: 95-102, 2012.

25. Chinoy H, Fertig N, Oddis CV, et al. The diagnostic utility of myositis autoantibody testing for predicting the risk of cancer-associated myositis. Ann Rheum Dis 66: 1345-1349, 2007.

© 2016 The Japanese Society of Internal Medicine
http://www.naika.or.jp/imonline/index.html