DRAZIN INVERTIBILITY OF LINEAR OPERATORS ON QUATERNIONIC BANACH SPACES

EL HASSAN BENABDI AND MOHAMED BARRAA

Abstract. Let A be a right linear operator on a two-sided quaternionic Banach space X. The paper studies the Drazin inverse for right linear operators on a quaternionic Banach space. It is shown that if A is Drazin invertible then the Drazin inverse of A is given by $f(A)$ where f is 0 in an axially symmetric neighborhood of 0 and $f(q) = q^{-1}$ in an axially symmetric neighborhood of the nonzero spherical spectrum of A. Some results analogous to the ones concerning the Drazin inverse of operators on complex Banach spaces are proved in the quaternionic context.

1. Introduction and preliminaires

We denote by H the algebra of quaternions, introduced by Hamilton in 1843. An element q of H is of the form

$$q = a + bi + cj + dk; a, b, c, d \in \mathbb{R}$$

where i, j and k are imaginary units. By definition, they satisfy

$$i^2 = j^2 = k^2 = ij = -1.$$

Given $q = a + bi + cj + dk$, then

- the conjugate quaternion of q is $\bar{q} = a - bi - cj - dk$;
- the norm of q is $|q| = \sqrt{q\bar{q}} = \sqrt{a^2 + b^2 + c^2 + d^2}$;
- the real and the imaginary parts of q are respectively $\Re(q) := \frac{1}{2}(q + \bar{q}) = a$ and $\Im(q) := \frac{1}{2}(q - \bar{q}) = bi + cj + dk$.

The unit sphere of imaginary quaternions is given by

$$S = \{q \in H : q^2 = -1\}.$$

Let p and q be two quaternions. p and q are said to be conjugated, if there is $s \in H \setminus \{0\}$ such that $p = sqs^{-1}$. The set of all quaternions conjugated with q, is equal to the 2-sphere

$$[q] = \{\Re(q) + |\Im(q)|j : j \in S\} = \Re(q) + |\Im(q)|S.$$

For every $j \in S$, denote by C_j the real subalgebra of H generated by j; that is,

$$C_j := \{u + vj : u, v \in \mathbb{R}\}.$$
We say that \(U \subseteq \mathbb{H} \) is axially symmetric if \([q] \subset U\) for every \(q \in U\).

For a thorough treatment of the algebra of quaternions \(\mathbb{H} \), the reader is referred, for instance, to [4].

Definition 1.1 ([1, Definition 2.1.2], Slice hyperholomorphic functions). Let \(U \subseteq \mathbb{H} \) be an axially symmetric open set and let \(\mathcal{U} = \{(u, v) \in \mathbb{R}^2 : u + vS \subset U\} \).

A function \(f : U \to \mathbb{H} \) is called a left slice function if there exist two functions \(f_0, f_1 : \mathcal{U} \to \mathbb{H} \) such that:

\[
f(q) = f_0(u, v) + j f_1(u, v) \quad \text{for every } q = u + vj \in U
\]

and if \(f_0, f_1 \) satisfy the compatibility conditions

\[
f_0(u, -v) = f_0(u, v), \quad f_1(u, -v) = -f_1(u, v).
\]

(1.1)

If in addition \(f_0 \) and \(f_1 \) satisfy the Cauchy-Riemann equations

\[
\frac{\partial}{\partial u} f_0(u, v) - \frac{\partial}{\partial v} f_1(u, v) = 0, \\
\frac{\partial}{\partial v} f_0(u, v) + \frac{\partial}{\partial u} f_1(u, v) = 0,
\]

(1.2)

then \(f \) is called left slice hyperholomorphic. We denote the set of all left slice functions on \(U \) by \(\mathcal{SF}_L(U) \) and the set of all left slice hyperholomorphic functions on \(U \) by \(\mathcal{SH}_L(U) \).

A function \(f : U \to \mathbb{H} \) is called a right slice function if there exist two functions \(f_0, f_1 : \mathcal{U} \to \mathbb{H} \) such that:

\[
f(q) = f_0(u, v) + f_1(u, v)j \quad \text{for every } q = u + vj \in U
\]

and if \(f_0, f_1 \) satisfy the compatibility conditions (1.1). If in addition \(f_0 \) and \(f_1 \) satisfy the Cauchy-Riemann equations (1.2), then \(f \) is called right slice hyperholomorphic. We denote the set of all right slice functions on \(U \) by \(\mathcal{SF}_R(U) \) and the set of all right slice hyperholomorphic functions on \(U \) by \(\mathcal{SH}_R(U) \).

If \(f \) is a left (or right) slice function such that \(f_0 \) and \(f_1 \) are real-valued, then \(f \) is called intrinsic. The set of all intrinsic slice functions on \(U \) will be denoted by \(\mathcal{FN}(U) \) and the set of all intrinsic slice hyperholomorphic functions on \(U \) will be denoted by \(\mathcal{N}(U) \).

Lemma 1.2 ([1, Lemma 2.1.6], Splitting lemma). Let \(U \subseteq \mathbb{H} \) be an axially symmetric open set and let \(i, j \in S \) with \(ij = -ji \). If \(f \in \mathcal{SH}_L(U) \), then the restriction \(f_j = f|_{U \cap \mathbb{C}_j} \) satisfies

\[
\frac{1}{2} \left(\frac{\partial}{\partial u} f_j(z) + j \frac{\partial}{\partial v} f_j(z) \right) = 0,
\]

for all \(z = u + vj \in U \cap \mathbb{C}_j \). Hence

\[
f_j(z) = F_0(z) + F_1(z)i
\]
with holomorphic functions \(F_0, F_1 : U \cap \mathbb{C}_j \to \mathbb{C}_j \).

If \(f \in \mathcal{SH}_R(U) \), then the restriction \(f_j = f|_{U \cap \mathbb{C}_j} \) satisfies
\[
\frac{1}{2} \left(\frac{\partial}{\partial u} f_j(z) + \frac{\partial}{\partial v} f_j(z) \right) = 0,
\]
for all \(z = u + v j \in U \cap \mathbb{C}_j \). Hence
\[
f_j(z) = F_0(z) + iF_1(z)
\]
with holomorphic functions \(F_0, F_1 : U \cap \mathbb{C}_j \to \mathbb{C}_j \).

Theorem 1.3 ([1, Theorem 2.1.21], Cauchy’s integral theorem). Let \(U \subseteq \mathbb{H} \) be open, \(j \in \mathbb{S} \) and \(D_j \subset U \cap \mathbb{C}_j \) be a bounded open subset of the complex plane \(\mathbb{C}_j \) with \(\partial D_j \subset U \cap \mathbb{C}_j \) such that \(\partial D_j \) is a finite union of piecewise continuously differentiable Jordan curves. Then for all \(f \in \mathcal{SH}_L(U) \) and all \(g \in \mathcal{SH}_R(U) \)
\[
\int_{\partial D_j} g(s) ds_j f(s) = 0,
\]
where \(ds_j = ds(-j) \).

Definition 1.4 ([1, Definition 2.1.23]). We define the left slice hyperholomorphic Cauchy kernel as:
\[
S_L^{-1}(s, q) := -(q^2 - 2\text{Re}(s)q + |s|^2)^{-1}(q - \bar{s}); \quad q \notin [s],
\]
and the right slice hyperholomorphic Cauchy kernel as:
\[
S_R^{-1}(s, q) := -(q - \bar{s})(q^2 - 2\text{Re}(s)q + |s|^2)^{-1}; \quad q \notin [s].
\]

Lemma 1.5 ([1, Lemma 2.1.27]). Let \(q, s \in \mathbb{H} \) with \(s \notin [q] \).
The left slice hyperholomorphic Cauchy kernel \(S_L^{-1}(s, q) \) is left slice hyperholomorphic in \(q \) and right slice hyperholomorphic in \(s \).
The right slice hyperholomorphic Cauchy kernel \(S_R^{-1}(s, q) \) is left slice hyperholomorphic in \(s \) and right slice hyperholomorphic in \(q \).

Definition 1.6 ([1, Definition 2.1.30], Slice Cauchy domain). An axially symmetric open set \(U \subset \mathbb{H} \) is called a slice Cauchy domain if \(U \cap \mathbb{C}_j \) is a Cauchy domain in \(\mathbb{C}_j \) for every \(j \in \mathbb{S} \). More precisely, \(U \) is a slice Cauchy domain if for every \(j \in \mathbb{S} \) the boundary \(\partial(U \cap \mathbb{C}_j) \) of \(U \cap \mathbb{C}_j \) is the union a finite number of nonintersecting piecewise continuously differentiable Jordan curves in \(\mathbb{C}_j \).

Theorem 1.7 ([1, Theorem 2.1.32], Cauchy’s formulas). Let \(U \subset \mathbb{H} \) be a bounded slice Cauchy domain, let \(j \in \mathbb{S} \), and set \(ds_j = ds(-j) \). If \(f \) is a left slice hyperholomorphic function on a set that contains \(\overline{U} \), then
\[
f(q) = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} S_L^{-1}(s, q) ds_j f(s), \text{ for every } q \in U.
\]
If \(f \) is a right slice hyperholomorphic function on a set that contains \(\overline{U} \), then
\[
f(q) = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} f(s) ds_j S_R^{-1}(s, q), \text{ for every } q \in U.
\]
These integrals depend neither on \(U \) nor on the imaginary unit \(j \in \mathbb{S} \).
Definition 1.8 ([1, Definition 2.3.1]). Let \((X, +)\) be an abelian group.

- \(X\) is a right quaternionic vector space denoted by \(X_R\) if it is endowed with a right quaternionic multiplication \((X, \mathbb{H}) \to X, (u, q) \mapsto uq\) such that for all \(u, v \in X\) and all \(p, q \in \mathbb{H}\),
 \[u(p + q) = up + uq, (u + v)q = uq + vq, (up)q = u(pq)\text{ and } u1 = u.\]

- \(X\) is a left quaternionic vector space denoted by \(X_L\) if it is endowed with a left quaternionic multiplication \((\mathbb{H}, X) \to X, (q, u) \mapsto qu\) such that for all \(u, v \in X\) and all \(p, q \in \mathbb{H}\),
 \[(p + q)u = pu + qu, q(u + v) = qu + vq, q(pu) = (qp)u\text{ and } 1u = u.\]

- \(X\) is a two-sided quaternionic vector space if it is endowed with a left and a right quaternionic multiplication such that \(X\) is both a left and a right quaternionic vector space and such that \(ru = ur\) for all \(r \in \mathbb{R}\), and \((pu)q = p(Qu)\) for all \(p, q \in \mathbb{H}\) and all \(u \in X\).

Definition 1.9. Let \(X_R\) be a right quaternionic vector space. A function \(\| \cdot \| : X_R \to [0; +\infty)\) is called a norm on \(X_R\), if it satisfies

(i) \(\|u\| = 0\) if and only if \(u = 0\);
(ii) \(\|uq\| = \|u\||q|\) for all \(u \in X_R\) and all \(q \in \mathbb{H}\);
(iii) \(\|u + v\| \leq \|u\| + \|v\|\) for all \(u, v \in X_R\).

If \(X_R\) is complete with respect to the metric induced by \(\| \cdot \|\), we call \(X_R\) a right quaternionic Banach space.

Let \(X_L\) be a left quaternionic vector space. A function \(\| \cdot \| : X_L \to [0; +\infty)\) is called a norm on \(X_L\), if it satisfies (i), (iii) and

(ii') \(\|qu\| = |q|\|u\|\) for all \(u \in X_L\) and \(q \in \mathbb{H}\).

If \(X_L\) is complete with respect to the metric induced by \(\| \cdot \|\), we call \(X_L\) a left quaternionic Banach space.

Finally, a two-sided quaternionic vector space \(X\) is called a two-sided quaternionic Banach space if it is endowed with a norm \(\| \cdot \|\) such that it is both a left and a right quaternionic Banach space.

Remark 1.10. If \(X\) is a two-sided quaternionic Banach space, then \(\|qu\| = \|uq\| = |q|\|u\|\) for all \(u \in X\) and all \(q \in \mathbb{H}\).

Definition 1.11 ([1, Definition 2.3.9], Slice hyperholomorphic vector-valued functions). Let \(U \subseteq \mathbb{H}\) be an axially symmetric open set and let \(\mathcal{U} = \{(u, v) \in \mathbb{R}^2 : u + v\mathfrak{S} \subset U\}\). A function \(f : U \to X_L\) with values in a left quaternionic Banach space \(X_L\) is called a left slice function if it is of the form:

\[f(q) = f_0(u, v) + jf_1(u, v)\text{ for every } q = u + vj \in U\]

with two functions \(f_0, f_1 : \mathcal{U} \to X_L\) that satisfy the compatibility conditions (1.1).

If in addition \(f_0\) and \(f_1\) satisfy the Cauchy-Riemann equations (1.2), then \(f\) is called left slice hyperholomorphic.
A function \(f : U \to X_R \) with values in a right quaternionic Banach space \(X_R \) is called a right slice function if it is of the form:

\[
f(q) = f_0(u,v) + f_1(u,v)j \quad \text{for every } q = u + vj \in U
\]

with two functions \(f_0, f_1 : U \to X_R \) that satisfy the compatibility conditions (1.1). If in addition \(f_0 \) and \(f_1 \) satisfy the Cauchy-Riemann equations (1.2), then \(f \) is called right slice hyperholomorphic.

Theorem 1.12 ([1, Theorem 2.3.19], Vector-valued Cauchy formulas). Let \(U \subset \mathbb{H} \) be a bounded slice Cauchy domain, let \(j \in \mathbb{S} \), and set \(ds_j = ds(-j) \). If \(f \) is a left slice hyperholomorphic function with values in a left quaternionic Banach space \(X_L \) that is defined on a set that contains \(\overline{U} \), then

\[
f(q) = \frac{1}{2\pi} \int_{\partial(U \cap C_j)} S_L^{-1}(s,q)ds_jf(s), \quad \text{for every } q \in U.
\]

If \(f \) is a right slice hyperholomorphic function with values in a right quaternionic Banach space \(X_R \) that is defined on a set that contains \(\overline{U} \), then

\[
f(q) = \frac{1}{2\pi} \int_{\partial(U \cap C_j)} f(s)ds_jS_R^{-1}(s,q), \quad \text{for every } q \in U.
\]

These integrals depend neither on \(U \) nor on the imaginary unit \(j \in \mathbb{S} \).

Definition 1.13. Let \(X \) be a two-sided quaternionic Banach space. A right (resp. left) linear operator on \(X \) is a map \(T : X \to X \) such that:

\[
T(u+p+v) = (Tu)p+Tv \quad \text{(resp. } T(pu+v) = p(Tu)+Tv) \quad \text{for all } u, v \in X \text{ and all } p \in \mathbb{H}.
\]

A right or left linear operator \(T \) on \(X \) is called bounded if

\[
\|T\| := \sup\{\|Tu\| : u \in X, \|u\| = 1\} < \infty.
\]

The set of all right (resp. left) linear bounded operators on \(X \) is denoted by \(B_R(X) \) (resp. \(B_L(X) \)). \(B_R(X) \) (resp. \(B_L(X) \)) is viewed as a two-sided quaternionic vector space equipped with the metric \(B_R(X) \times B_R(X) \ni (A,B) \mapsto \|A-B\| \) (resp. \(B_L(X) \times B_L(X) \ni (A,B) \mapsto \|A-B\| \)).

In a two-sided quaternionic Banach space \(X \), we can define a left and a right quaternionic multiplication on \(B_R(X) \) (resp. \(B_L(X) \)) by

\[
(Tq)u = T(qu) \quad \text{(resp. } Tq(u) = q(Tu)) \quad \text{for all } q \in \mathbb{H}, u \in X \text{ and all } T \in B_R(X)
\]

resp. \((Tq)u = T(u)q \) and \((qT)(u) = T(uq) \) for all \(q \in \mathbb{H}, u \in X \text{ and all } T \in B_L(X) \).

The spectral theory over quaternionic Hilbert spaces has been developed in [4] and [6].

In the remainder of this paper, \(X \) will be a two-sided quaternionic Banach space. We will consider just right linear operators on \(X \). The theory we develop here also applies in the case of left linear operators with obvious modifications.
Let $T \in B_R(X)$. We want to define the notion of spectrum for right linear operators on X such that this notion generalize the known results on the spectrum in the complex case (for instance, the compactness of the spectrum, the spectrum of self-adjoint operators is real). Note that if $q \in \mathbb{H}$, $T - Iq = T - qI$, where I is the identity operator on X. Take $X = \mathbb{H} \oplus \mathbb{H}$ equipped with the standard scalar product:

$$\langle \begin{bmatrix} p \\ q \end{bmatrix} ; \begin{bmatrix} p' \\ q' \end{bmatrix} \rangle = \bar{p}p' + \bar{q}q' \text{ for all } p, q, p', q' \in \mathbb{H}.$$

Then $T := \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$ is self-adjoint. Let $u = \begin{bmatrix} 1 \\ -k \end{bmatrix}$, then $(T - jI)u = 0$, hence j is an eigenvalue of T, thus the spectrum of T is not real, and so the operators $T - Iq$ and $T - qI$ should not be used to define the spectrum of T. F. Colombo et al. [2] extended the definitions of the spectrum and resolvent in quaternionic Banach spaces as follows.

Definition 1.14. Let $T \in B_R(X)$. For $q \in \mathbb{H}$, we set

$$Q_q(T) := T^2 - 2\text{Re}(q)T + |q|^2I.$$

Where I is the identity operator on X. We define the S-resolvent set $\rho_S(T)$ of T as:

$$\rho_S(T) := \{ q \in \mathbb{H} : Q_q(T) \text{ is invertible in } B_R(X) \},$$

and we define the S-spectrum $\sigma_S(T)$ of T as:

$$\sigma_S(T) := \mathbb{H} \setminus \rho_S(T).$$

Proposition 1.15 ([1, Proposition 3.1.8]). Let $T \in B_R(X)$. The sets $\sigma_S(T)$ and $\rho_S(T)$ are axially symmetric.

Theorem 1.16 ([1, Theorem 3.1.13], Compactness of the S-spectrum). Let $T \in B_R(X)$. The S-spectrum $\sigma_S(T)$ of T is a nonempty compact set contained in the closed ball \(\{ q \in \mathbb{H} : |q| \leq \|T\| \} \).

Let $T \in B_R(X)$. Then the S-spectral radius of T is defined to be the nonnegative real number

$$r_S(T) := \sup \{|q| : q \in \sigma_S(T)\}.$$

Theorem 1.17 ([1, Theorem 4.2.3]). For $T \in B_R(X)$, we have

$$r_S(T) = \lim_{n \to +\infty} \|T^n\|^\frac{1}{n}.$$

Theorem 1.18. Let $T \in B_R(X)$ and $q \in \mathbb{H}$ with $r_S(T) < |q|$. Then

$$(T^2 - 2\text{Re}(q)T + |q|^2I)^{-1} = \sum_{n=0}^{+\infty} T^n \sum_{k=0}^{n} \bar{q}^{-k-1}q^{-n+k-1},$$

where this series converges in the operator norm.
Proof. Let

\[a_n := \sum_{k=0}^{n} q^{-k-1} q^{-n+k-1}, \]
then

\[|a_n| \leq (n+1)|q|^{-n-2}. \]
Hence

\[\|T^n \sum_{k=0}^{n} q^{-k-1} q^{-n+k-1}\| \leq \|T^n\|(n+1)|q|^{-n-2}. \]
We have

\[\lim_{n \to \infty} \left(\|T^n\|(n+1)|q|^{-n-2} \right)^{\frac{1}{n}} = \frac{r_{S}(T)}{|q|}. \]
Thus the series \(\sum_{n=0}^{\infty} T^n \sum_{k=0}^{n} q^{-k-1} q^{-n+k-1} \) converges in the operator norm. The rest follows from the proof of [1, Theorem 3.1.5]. \(\square \)

Definition 1.19 ([1, Definition 3.2.5], S-functional calculus). Let \(T \in \mathcal{B}_{R}(X) \). Let \(U \supset \sigma_{S}(T) \) be a bounded slice Cauchy domain, let \(j \in \mathbb{S} \), and set \(ds_{j} = ds(-j) \). For every \(f \in \mathcal{SH}_{L}(U) \), we define

\[f(T) := \frac{1}{2\pi} \int_{\partial(U \cap C_{j})} S_{L}^{-1}(s, T) ds_{j} f(s). \]
For every \(f \in \mathcal{SH}_{R}(U) \), we define

\[f(T) := \frac{1}{2\pi} \int_{\partial(U \cap C_{j})} f(s) ds_{j} S_{R}^{-1}(s, T). \]
Let \(K \subseteq \mathbb{H} \). In the following, we mean by \(\mathcal{SH}_{R}(K) \) (resp. \(\mathcal{SH}_{L}(K), \mathcal{N}(K) \)), the set of all right (resp. left, intrinsic) slice hyperholomorphic functions on an open axially symmetric set \(U \) that contains \(K \).

Theorem 1.20 ([1, Theorem 4.1.3], Product rule). Let \(T \in \mathcal{B}_{R}(X) \), \(f \in \mathcal{N}(\sigma_{S}(T)) \) and \(g \in \mathcal{SH}_{L}(\sigma_{S}(T)) \) or \(g \in \mathcal{SH}_{R}(\sigma_{S}(T)) \). Then

\[(fg)(T) = f(T)g(T). \]

Theorem 1.21 ([1, Theorem 4.2.1], The spectral mapping theorem). Let \(T \in \mathcal{B}_{R}(X) \) and \(f \in \mathcal{N}(\sigma_{S}(T)) \). Then

\[\sigma_{S}(f(T)) = \sigma(f_{S}(T)) := \{ f(q) : q \in \sigma_{S}(T) \}. \]

Theorem 1.22 ([1, Theorem 4.2.4], Composition rule). Let \(T \in \mathcal{B}_{R}(X) \) and \(f \in \mathcal{N}(\sigma_{S}(T)) \). If \(g \in \mathcal{SH}_{L}(\sigma_{S}(f(T))) \), then \(g \circ f \in \mathcal{SH}_{L}(\sigma_{S}(T)) \), and if \(g \in \mathcal{SH}_{R}(\sigma_{S}(T))) \), then \(g \circ f \in \mathcal{SH}_{R}(\sigma_{S}(T)) \). In both cases,

\[g(f(T)) = (g \circ f)(T). \]

A bounded right projection \(P \in \mathcal{B}_{R}(X) \) (or simply projection when no confusion can arise) is such that \(P^2 = P \). If \(P \) is a projection, then so is \(I - P \), and their null spaces and ranges are related as follows:

\[\mathcal{R}(P) = \mathcal{N}(I - P) \text{ and } \mathcal{N}(P) = \mathcal{R}(I - P). \]
The range and the kernel form a pair of algebraic complements,
\[\mathcal{R}(P) + \mathcal{N}(P) = X \text{ and } \mathcal{R}(P) \cap \mathcal{N}(P) = \{0\}. \]

2. Generalized inverse

In this section, we study the generalized invertibility of right linear operators on quaternionic Banach spaces.

Definition 2.1. An operator \(B \in \mathcal{B}_R(X) \) is called a generalized inverse of \(A \in \mathcal{B}_R(X) \) if \(ABA = A \) and \(BAB = B \).

Remark 2.2. Let \(A, B \in \mathcal{B}_R(X) \).

1) If \(B \) is a generalized inverse of \(A \), then \(AB \) and \(BA \) are projections. Indeed \((AB)^2 = (ABA)B = AB \), \((BA)^2 = B(ABA) = BA \).

2) If \(ABA = A \), then \(T := BAB \) is a generalized inverse of \(A \).

3) If \(A \) is left (resp. right) invertible, then it is generalized invertible.

Theorem 2.3. An operator \(A \in \mathcal{B}_R(X) \) has a generalized inverse if and only if both the range \(\mathcal{R}(A) \) and the null space \(\mathcal{N}(A) \) are closed complemented subspaces of \(X \).

Proof. Let \(Y \) and \(Z \) be two closed complemented subspaces of \(X \). If \(X = \mathcal{R}(A) \oplus Y = \mathcal{N}(A) \oplus Z \), then the operator defined by \(B(az + y) = z \) with \(z \in Z \) is right linear on \(X \). It is easy to check that \(B \) is a generalized inverse of \(A \). Conversely, if \(A \) has a generalized inverse \(B \in \mathcal{B}_R(X) \), then by Remark 2.2, \(\mathcal{R}(AB) = \mathcal{R}(A) \) and \(\mathcal{N}(BA) = \mathcal{N}(A) \). Since \(AB \) and \(BA \) are bounded right projections, both the range \(\mathcal{R}(AB) \) and the null space \(\mathcal{N}(BA) \) are closed complemented subspaces of \(X \), then so is \(\mathcal{R}(A) \) and \(\mathcal{N}(A) \).

The generalized inverse is not unique in general, the following theorem describes all generalized inverses of \(A \in \mathcal{B}_R(X) \).

Theorem 2.4. Suppose \(B \in \mathcal{B}_R(X) \) is a generalized inverse of \(A \in \mathcal{B}_R(X) \). Then the set of all generalized inverses of \(A \) consists of all operators of the form:

\[T = PBQ, \]

where \(Q \) is a projection onto \(\mathcal{R}(A) \) and \(P \) is a projection whose kernel coincides with \(\mathcal{N}(A) \).

Proof. Let \(B \) and \(T \) be two generalized inverses of \(A \), then \(ABA = ATA = A \) and \(TAT = T \), hence \(T(ABA)T = (TA)B(AT) = T \). By Remark 2.2, \(TA \) and \(AT \) are projections and such that \(\mathcal{N}(TA) = \mathcal{N}(A) \) and \(\mathcal{R}(A) = \mathcal{R}(AT) \).

Conversely, if \(B, P \) and \(Q \) are as in Theorem 2.4, then \(QA = A = AP \), hence \(A(PBQ)A = A \) and \((PBQ)A(PBQ) = PBQ \).
Lemma 2.5. Let $A \in B_{\mathcal{R}}(X)$. Then A has a generalized inverse B such that $AB = BA$ if and only if X can be written as $X = \mathcal{R}(A) \oplus \mathcal{N}(A)$. In such a case, B is unique.

Proof. By Remark 2.2, $X = \mathcal{R}(A) \oplus \mathcal{N}(B)$ and since $AB = BA$, $\mathcal{N}(B) = \mathcal{N}(AB) = \mathcal{N}(BA) = \mathcal{N}(A)$, then $X = \mathcal{R}(A) \oplus \mathcal{N}(A)$.

Conversely, since $X = \mathcal{R}(A) \oplus \mathcal{N}(A)$, the restriction $T := A/\mathcal{R}(A)$ is invertible, then $B = T^{-1} \oplus 0$ is a generalized inverse of A which commutes with A. If B and C are two generalized inverses of A that commute with A, then $B = AB^2 = CA^2B^2 = CAB = C^2A^2B = C^2A = C$. □

Theorem 2.6. Suppose $A \in B_{\mathcal{R}}(X)$ with generalized inverse B such that $AB = BA$. Then

$$\sigma_S(B) \setminus \{0\} = \{q^{-1} : q \in \sigma_S(A) \setminus \{0\}\}.$$

Proof. By Lemma 2.5, $X = \mathcal{R}(A) \oplus \mathcal{N}(A)$, then $A = T \oplus 0$ on $\mathcal{R}(A) \oplus \mathcal{N}(A)$ and $B = T^{-1} \oplus 0$. We have $Q_q(B) = Q_q(T^{-1}) \oplus Q_q(0)$, for all $q \in \mathbb{H}$. Then we have $\sigma_S(B) = \sigma_S(T^{-1}) \cup \sigma_S(0)$, since $Q_q(0) = |q|^2I$ is always invertible where I is the identity operator on $\mathcal{N}(A)$,

$$\sigma_S(B) \setminus \{0\} = \sigma_S(T^{-1}) \setminus \{0\}.$$

The function $f : \mathbb{H} \setminus \{0\} \ni q \mapsto q^{-1}$ is intrinsic slice hyperholomorphic (because $q^{-1} = \frac{q}{|q|^2}$), then by Theorem 1.21, $\sigma_S(T^{-1}) = \sigma_S(f(T)) = \{q^{-1} : q \in \sigma_S(T)\}$. Thus

$$\sigma_S(B) \setminus \{0\} = \{q^{-1} : q \in \sigma_S(A) \setminus \{0\}\}.$$

□

3. Drazin inverse

In this section, we study the Drazin invertibility of right linear operators acting on a quaternionic Banach space.

Definition 3.1. Let $A \in B_{\mathcal{R}}(X)$. An element $B \in B_{\mathcal{R}}(X)$ is a Drazin inverse of A, written $B = A^d$, if

$$AB = BA, \ AB^2 = B, \ A^{k+1}B = A^k,$$

for some nonnegative integer k. The least nonnegative integer k for which these equations hold is the Drazin index $i(A)$ of A.

Definition 3.2. An element A of $B_{\mathcal{R}}(X)$ is called quasinilpotent if $\sigma_S(A) = \{0\}$. The set of all quasinilpotent elements in $B_{\mathcal{R}}(X)$ will be denoted by $QN(B_{\mathcal{R}}(X))$.

Proposition 3.3. An element A of $B_{\mathcal{R}}(X)$ is quasinilpotent if and only if, for every T commuting with A, we have $I - TA$ is invertible.

Proof. Let $A \in B_{\mathcal{R}}(X)$, assume that for every $T \in B_{\mathcal{R}}(X)$ commuting with A, we have $I - TA$ is invertible. Let $T = \frac{-1}{|q|}A + \frac{2\text{Re}(q)}{|q|^2}I$ with $q \in \mathbb{H} \setminus \{0\}$, clearly T commutes with A and $I - TA = \frac{1}{|q|}[A^2 - 2\text{Re}(q)A + |q|^2I]$ is invertible, hence $\sigma_S(A) = \{0\}$.

Conversely, if $\sigma_S(A) = \{0\}$. Let $T \in \mathcal{B}_R(X)$ commutes with A, then by Theorem 1.17, $r_S(TA) \leq r_S(T)r_S(A) = 0$ and hence $\sigma_S(TA) = \{0\}$. Then by Theorem 1.21, $\sigma_S(I - TA) = \{1\}$ and hence $I - TA$ is invertible.

An operator $A \in \mathcal{B}_R(X)$ is said to be nilpotent if there exists $k \in \mathbb{N}$ such that $A^k = 0$. The least nonnegative integer k for which $A^k = 0$ is called the nilpotency index of A and the set of all nilpotent elements in $\mathcal{B}_R(X)$ is denoted by $N(\mathcal{B}_R(X))$.

Lemma 3.4. In $\mathcal{B}_R(X)$, (3.1) is equivalent to

$$AB = BA, AB^2 = B, A - A^2B \in N(\mathcal{B}_R(X)).$$

The Drazin index $i(A)$ is equal to the nilpotency index of $A - A^2B$.

Proof. If $AB = BA$ and $AB^2 = B$, then $I - AB$ is a projection. Hence the equivalence and the last statement are given by this equalities $(A - A^2B)^k = A^k(I - AB)k = A^k(I - AB) = A^k - A^{k+1}B$. □

Koliha [5, Definition 2.3] generalized the notion of Drazin invertibility in a complex Banach algebra. According to this definition one can generalize the notion of Drazin invertibility in $\mathcal{B}_R(X)$.

Definition 3.5. Let $A \in \mathcal{B}_R(X)$. An element $B \in \mathcal{B}_R(X)$ is a generalized Drazin inverse of A, written $B = A^D$, if

$$AB = BA, AB^2 = B, A - A^2B \in QN(\mathcal{B}_R(X)).$$

Lemma 3.6. In $\mathcal{B}_R(X)$, an element A has a Drazin (resp. generalized Drazin) inverse if and only if there is a projection P commuting with A such that

$$AP \in N(\mathcal{B}_R(X)) (\text{resp. } AP \in QN(\mathcal{B}_R(X))) \text{ and } A + P \text{ is invertible.}$$

A Drazin (resp. generalized Drazin) inverse of A is given by

$$A^d = (A + P)^{-1}(I - P) (\text{resp. } A^D = (A + P)^{-1}(I - P)).$$

Proof. Suppose that there is a projection P commuting with A and satisfying (3.4). Set $B = (A + P)^{-1}(I - P)$, then $AB = BA$, $AB^2 = B$ and $A - A^2B = AP \in N(\mathcal{B}_R(X))$ (resp. $A - A^2B = AP \in QN(\mathcal{B}_R(X))$). Conversely, suppose that B satisfies (3.2) (resp. (3.3)) and set $P = I - AB$. Since $AB^2 = B$, P is a projection commuting with A and $AP = A - A^2B$, then $AP \in N(\mathcal{B}_R(X))$ (resp. $AP \in QN(\mathcal{B}_R(X))$). Furthermore $(A + P)(B + P) = (B + P)(A + P) = I + AP$ and $I + AP$ is invertible because $\sigma_S(I + AP) = \{1\}$, then $A + P$ is invertible in $\mathcal{B}_R(X)$. □

Definition 3.7. Let $A \in \mathcal{B}_R(X)$. For $s \in \rho_S(T)$, we define the left S-resolvent operator as

$$S_L^{-1}(s, A) = -Q_s(T)^{-1}(T - sI).$$

Theorem 3.8 ([1, Theorem 4.1.5]). Let $A \in \mathcal{B}_R(X)$ and assume that $\sigma_S(A) = \sigma_1 \cup \sigma_2$ with

$$\text{dist}(\sigma_1, \sigma_2) > 0.$$
We choose an open axially symmetric set \(O \) with \(\sigma_1 \subset O \) and \(\overline{O} \cap \sigma_2 = \emptyset \), and define a function \(\chi_{\sigma_1} \) on \(\mathbb{H} \) by \(\chi_{\sigma_1}(s) = 1 \) for \(s \in O \) and \(\chi_{\sigma_1}(s) = 0 \) for \(s \notin O \). Then \(\chi_{\sigma_1} \in \mathcal{N}(\sigma_S(A)) \), and for an arbitrary imaginary unit \(j \) in \(\mathbb{S} \) and an arbitrary bounded slice Cauchy domain \(U \subset \mathbb{H} \) such that \(\overline{U} \subset O \), we have

\[
P_{\sigma_1} := \chi_{\sigma_1}(A) = \frac{1}{2\pi} \int_{\partial(U \cap C_j)} S_L^{-1}(s, A)ds_j
\]

is a continuous projection that commutes with \(A \). Hence \(P_{\sigma_1}(X) \) is a right linear subspace of \(X \) that is invariant under \(A \).

Remark 3.9. Let \(q \in \mathbb{H} \). If \(\sigma_1 = \{q\} \), we say that the projection \(P_{\sigma_1} \) is the Riesz’s projection of \(A \) corresponding to \(q \).

Denote by acc \(U \) (resp. iso \(U \)) the set of all accumulation (resp. isolated) points of a set \(U \subset \mathbb{H} \).

Theorem 3.10. Let \(A \in \mathcal{B}_R(X) \). Then \(0 \notin \text{acc} \ \sigma_S(A) \) if and only if there is a projection \(P \in \mathcal{B}_R(X) \) commuting with \(A \) such that

\[
AP \in QN(\mathcal{B}_R(X)) \quad \text{and} \quad A + P \text{ is invertible in } \mathcal{B}_R(X).
\]

Moreover, \(0 \in \text{iso} \ \sigma_S(A) \) if and only if \(P \neq 0 \), in which a case \(P \) is the Riesz’s projection of \(A \) corresponding to \(q = 0 \).

Proof. Clearly, \(0 \notin \sigma_S(A) \) if and only if \(3.6 \) holds with \(P = 0 \).

Assume that \(0 \in \text{iso} \ \sigma_S(A) \). Let \(P \) be the spectral projection of \(A \) corresponding to \(q = 0 \), then \(P \neq 0 \), commutes with \(A \) and \(AP = \text{id}(A)\chi_{\{0\}}(A) = (\text{id}\chi_{\{0\}})(A) \) where \(\text{id} : \mathbb{H} \to \mathbb{H}, q \mapsto q \). Hence \(\sigma_S(AP) = \text{id}\chi_{\{0\}}(\sigma_S(A)) = \{0\} \), thus \(AP \in QN(\mathcal{B}_R(X)) \). Similarly \(A + P = \text{id}(A) + \chi_{\{0\}}(A) = (\text{id} + \chi_{\{0\}})(A) \), then \(0 \notin \sigma_S(A + P) = (\text{id} + \chi_{\{0\}})\sigma_S(A) \), hence \(A + P \) is invertible.

Conversely, assume that there is a nonzero projection \(P \) commuting with \(A \) such that \(3.6 \) holds. For any \(q \in \mathbb{H} \), we have

\[
A^2 - 2\text{Re}(q)A + |q|^2I
= P((AP)^2 - 2\text{Re}(q)AP + |q|^2I) + (I - P)((A + P)^2 - 2\text{Re}(q)(A + P) + |q|^2I).
\]

There is \(r > 0 \) such that if \(|q| < r \) then \((A + P)^2 - 2\text{Re}(q)(A + P) + |q|^2I \) is invertible. Since \(AP \in QN(\mathcal{B}_R(X)) \), \((AP)^2 - 2\text{Re}(q)AP + |q|^2I \) is invertible of all \(q \neq 0 \). Hence for all \(0 < |q| < r \), it is easy to check that

\[
(A^2 - 2\text{Re}(q)A + |q|^2I)^{-1} = P((AP)^2 - 2\text{Re}(q)AP + |q|^2I)^{-1} + (I - P)((A + P)^2 - 2\text{Re}(q)(A + P) + |q|^2I)^{-1}.
\]

That is,

\[
Q_q(A)^{-1} = PQ_q(AP)^{-1} + (I - P)Q_q(A + P)^{-1}.
\]

Since \(S_L^{-1}(q, A) = -Q_q(A)^{-1}(A - \bar{q}I) \), it is easy to see that

\[
S_L^{-1}(q, A) = PS_L^{-1}(q, AP) + (I - P)S_L^{-1}(q, A + P).
\]
Since $P \neq 0$, $0 \in \text{iso}_S(A)$. Indeed, if A is invertible, then $A^{-1}AP = P$, so that $r_S(A^{-1}AP) \leq r_S(A^{-1}) r_S(AP) = 0$ and $r_S(P) = 1$. To show that P is the Riesz's projection of A corresponding to $q = 0$. Let j and U as in Theorem 3.12, then
\[
\chi(\{0\})(A) = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} S_{L}^{-1}(s, A) ds.
\]
If we take U such that $U \subset \{q \in \mathbb{H} : |q| < \frac{1}{2}\}$, then by (3.7)
\[
\chi(\{0\})(A) = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} S_{L}^{-1}(s, A) ds_j = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} PS_{L}^{-1}(s, AP) + (I - P)S_{L}^{-1}(s, A + P) ds_j = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} PS_{L}^{-1}(s, AP) ds + \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} (I - P)S_{L}^{-1}(s, A + P) ds_j = \frac{P}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} S_{L}^{-1}(s, AP) ds_j + (I - P) \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} S_{L}^{-1}(s, A + P) ds_j.
\]
Since $S_{L}^{-1}(-, A + P)$ is right slice hyperholomorphic function on U (see, [1, Lemma 3.11]),
\[
\int_{\partial(U \cap \mathbb{C}_j)} S_{L}^{-1}(s, A + P) ds_j = 0.
\]
On the other hand,
\[
\frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_j)} S_{L}^{-1}(s, AP) ds_j = I,
\]
because $\sigma_S(AP) = \{0\} \subset U$. Hence $\chi(\{0\})(A) = P$. This completes the proof. \hfill \Box

Corollary 3.11. The Drazin (resp. generalized Drazin) inverse of an operator $A \in \mathcal{B}_R(X)$ is uniquely determined.

Proof. If A is invertible, then it has a unique Drazin inverse which coincides with its inverse A^{-1}. Assume that A is not invertible and let B and C be two Drazin (resp. generalized Drazin) inverses of A, then by the proof of Lemma 3.6, $I - BA$ and $I - AC$ are two projections commuting with A and satisfying (3.6). Then by Theorem 3.10, $I - BA = I - AC$, and so $BA = AC$, thus $B = B^2A = BAC = AC^2 = C$. Hence the Drazin (resp. generalized Drazin) inverse of A is unique. \hfill \Box

Theorem 3.12. Let $A \in \mathcal{B}_R(X)$. If $0 \in \text{iso}_S(A)$, then
\[A^D = f(A), \]
where $f \in \mathcal{N}(\sigma_S(A))$ is such that f is 0 in an axially symmetric neighborhood of 0 and $f(q) = q^{-1}$ in an axially symmetric neighborhood of $\sigma_S(A) \setminus \{0\}$, and
\[\sigma_S(A^D) \setminus \{0\} = \{q^{-1} : q \in \sigma_S(A) \setminus \{0\}\}. \]

Proof. Let O_1 be an axially symmetric open neighborhood of 0 and O_2 be an axially symmetric open neighborhood of $\sigma_S(A) \setminus \{0\}$ with $\overline{O_1} \cap \overline{O_2} = \emptyset$. Define f by $f(q) = 0$ if $q \in O_1$ and $f(q) = q^{-1}$ if $q \in O_2$, clearly $f \in \mathcal{N}(\sigma_S(A))$. By
Theorem 1.20 and Theorem 1.21, it is easy to see that (3.3) holds for A and $f(A)$. By Theorem 1.21, it follows that $\sigma_s(A^D) \setminus \{0\} = \sigma_s(f(A)) \setminus \{0\} = \{f(q) : q \in \sigma_s(A) \setminus \{0\}\}. \hfill \square$

Theorem 3.13. Let $A \in \mathcal{B}_R(X)$. The following conditions are equivalent:

(i) A is generalized Drazin invertible;
(ii) $0 \notin \text{acc } \sigma_S(A)$;
(iii) $A = A_1 \oplus A_2$, where A_1 is invertible on some closed subspace X_1 of X and A_2 is quasinilpotent on some complemented subspace X_1 of X.

Proof. (i) \Leftrightarrow (ii) Already proved in Lemma 3.6 and Theorem 3.10.
(ii) \Rightarrow (iii) By Lemma 3.6 there exists a projection $P = I - AA^D$ such that AP is quasinilpotent and $AP = PA$, then $\mathcal{R}(P)$ and $\mathcal{N}(P)$ are invariant under A, that is $AR(P) \subset \mathcal{R}(P)$ and $AN(P) \subset \mathcal{N}(P)$. Let $u \in \mathcal{N}(P)$, then $u = AA^Du$, thus the restriction of A to the kernel of P is injective and surjective, and so invertible. If we write $A = A_1 \oplus A_2$ on $X = \mathcal{N}(P) \oplus \mathcal{R}(P)$, then $A_2 \in \mathcal{B}_R(X_1)$ is quasinilpotent and $A_1 \in \mathcal{B}_R(X_2)$ is invertible.
(iii) \Rightarrow (i) It is easy to check that $A^D = A_1^{-1} \oplus 0$. \hfill \square

Corollary 3.14. Let $A \in \mathcal{B}_R(X)$. The following conditions are equivalent:

(i) A is Drazin invertible;
(ii) $0 \notin \sigma(A)$;
(iii) $A = A_1 \oplus A_2$, where A_1 is invertible on some closed subspace X_1 of X, A_2 is nilpotent on some complemented subspace X_1 of X and the nilpotency index of A_2 is the Drazin index of A.

Proof. Assume that A is Drazin invertible, then by Theorem 3.13 (iii), $A = A_1 \oplus A_2$ and $A^k = A_1^{-1} \oplus 0$. Hence, by (3.1), $A^{k+1}A^D = A^k$, then $A_2^k \oplus 0 = A_1^k \oplus A_2^k$, thus $A_2^k = 0$, so that the nilpotency index of A_2 is less than the Drazin index of A.
Conversely, let $B = A_1^{-1} \oplus 0$, where A_1 is invertible and A_2 is nilpotent, then (3.1) holds for A, B and the nilpotency index of A_2. Hence A is Drazin invertible and the Drazin index of A is less than the nilpotency index of A_2. \hfill \square

Theorem 3.15. Suppose that $A \in \mathcal{B}_R(X)$ has the generalized Drazin inverse A^D.

Then

(i) $(A^k)^D = (A^D)^k$ for all $k \in \mathbb{N}$;
(ii) $(A^D)^D = A^2A^D$;
(iii) $(A^D)^D = A^D D$;
(iv) $A^D (A^D)^D = AA^D$.

Proof. Let $f \in \mathcal{N}(\sigma_S(A))$ such that f is 0 in an axially symmetric neighborhood of 0 and $f(q) = q^{-1}$ in an axially symmetric neighborhood of $\sigma_S(A) \setminus \{0\}$. By Theorem 3.12, $A^D = f(A)$. Let $k \in \mathbb{N}$ and $g_k \in \mathcal{N}(\mathbb{H})$ such that $g_k(q) = g^k$ if $q \in \mathbb{H}$. Clearly $f \circ g_k = g_k \circ f$ for all $k \in \mathbb{N}$, $f \circ f = g_2 \circ f$, $f \circ f \circ f = f$ and $f(f \circ f) = g_1f$. The above assertions are easily verified by using the previous equalities, Theorem 1.20 and Theorem 1.22. \hfill \square
Theorem 3.16. Let $A, B \in \mathcal{B}_R(X)$ be commuting elements such that A^d and B^d exist. Then $(AB)^d$ exists and

$$(AB)^d = A^d B^d.$$

Proof. By [3, Theorem 1], A, B, A^d and B^d commute mutually, then the result follows by Definition 3.1.

Given a right linear operator T on X. T is said to have finite ascent if there is an integer k such that $\mathcal{N}(T^k) = \mathcal{N}(T^{k+1})$, the smallest such positive integer k is called the ascent of T and denoted by $a(T)$. If there is no such integer we set $a(T) := \infty$. Analogously, T is said to have finite descent if there is an integer k such that $T^{k+1}(X) = T^k(X)$, the smallest such positive integer k is called the descent of T and denoted by $d(T)$. If there is no such integer we set $d(T) := \infty$.

As in the complex case, we have the following result.

Theorem 3.17. Suppose that T is a right linear operator on X and let $k \in \mathbb{N}$. Then $a(T) = d(T) \leq k$ if and only if, we have the decomposition

$$X = \mathcal{R}(T^k) \oplus \mathcal{N}(T^k).$$

Proof. Let $k = a(T) = d(T)$, then $\mathcal{R}(T^k) \cap \mathcal{N}(T^k) = \{0\}$. Indeed, let $u \in \mathcal{R}(T^k) \cap \mathcal{N}(T^k)$, then there is a vector $v \in X$ such that $u = T^kv$, hence $T^ku = T^{2k}v = 0$. Since $\mathcal{N}(T^{2k}) = \mathcal{N}(T^k)$, $u = T^kv = 0$. On the other hand, we have $\mathcal{R}(T^k) \cap \mathcal{N}(T^k) = X$. Indeed, let $u \in X$, since $\mathcal{R}(T^k) = \mathcal{R}(T^{2k})$, there is a vector $v \in X$ such that $T^ku = T^{2k}v$, hence $u = T^kv + u - T^kv$. Thus $X = \mathcal{R}(T^k) \oplus \mathcal{N}(T^k)$. Conversely, let $u \in \mathcal{N}(T^{k+1})$. Since $\mathcal{R}(T^k) \cap \mathcal{N}(T^k) = \{0\}$, $T^ku = 0$. Hence $\mathcal{N}(T^{k+1}) = \mathcal{N}(T^k)$. On the other hand, let $u \in \mathcal{R}(T^k)$, then there is a vector $v \in X$ such that $u = T^kv$. Since $v \in \mathcal{R}(T^k) \oplus \mathcal{N}(T^k)$, $u = T^kv \in \mathcal{R}(T^{k+1})$. Hence $\mathcal{R}(T^k) = \mathcal{R}(T^{k+1})$. Let now $p = a(T)$ and $q = d(T)$, we can suppose that $p > 0$ and $q > 0$, assume that $p \leq q$, let $u \in \mathcal{R}(T^p)$, then there is a vector $v \in X$ such that $u = T^pv$. Since $v \in \mathcal{R}(T^q) \oplus \mathcal{N}(T^p)$, $u = T^pv \in \mathcal{R}(T^{p+q}) \subseteq \mathcal{R}(T^{p+1})$. Thus $p = q \leq k$. Assume that $q \leq p$, let $u \in \mathcal{N}(T^{q+1})$, then $T^{q}u = 0$, that is $T^q u \in \mathcal{R}(T^q) \cap \mathcal{N}(T)$. Since $X = \mathcal{R}(T^q) \oplus \mathcal{N}(T^q)$, $T^q u = 0$, and so $u \in \mathcal{N}(T^q)$. Thus $p = q \leq k$. Hence $a(T) = d(T) \leq k$.

Theorem 3.18. An operator A in $\mathcal{B}_R(X)$ has a Drazin inverse if and only if it has finite ascent and descent. In such a case, the Drazin index of A is equal to the common value of $a(A)$ and $d(A)$.

Proof. By Corollary 3.14, A is Drazin invertible if and only if $A = A_1 \oplus A_2$ with A_1 is invertible and A_2 is nilpotent. Let k be the nilpotency index of A_2, then k is the least integer such that $X = \mathcal{R}(T^k) \oplus \mathcal{N}(T^k)$, hence $a(A) = d(A) = k$. By Corollary 3.14, again, $k = i(A)$, thus $a(A) = d(A) = i(A)$.

Definition 3.19. A two-sided quaternionic Banach algebra is a two-sided quaternionic Banach space \mathcal{A} that is endowed with a product $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$ such that:

(i) The product is associative and distributive over the sum in \mathcal{A};
(ii) one has \((qx)y = q(xy)\) and \(x(yq) = (xy)q\) for all \(x, y \in \mathcal{A}\) and all \(q \in \mathbb{H}\);

(iii) one has \(\|xy\| \leq \|x\|\|y\|\) for all \(x, y \in \mathcal{A}\).

If in addition there exists \(e \in \mathcal{A}\) such that \(exe = x\) for all \(x \in \mathcal{A}\), then \(\mathcal{A}\) is called a two-sided quaternionic Banach algebra with unit.

One can prove that \(\mathcal{B}_R(X)\) and \(\mathcal{B}_L(X)\) are two-sided quaternionic Banach algebras with unit.

Definition 3.20. Let \(\mathcal{A}\) be a two-sided quaternionic Banach algebra and \(a \in \mathcal{A}\). An element \(b \in \mathcal{A}\) is a Drazin inverse of \(a\), written \(b = a^d\), if

\[
ab = ba, \quad ab^2 = b, \quad a^{k+1}b = a^k,
\]

for some nonnegative integer \(k\). The least nonnegative integer \(k\) for which these equations hold is the Drazin index \(i(a)\) of \(a\).

Let \(\mathcal{A}\) be a two-sided quaternionic Banach algebra and \(a \in \mathcal{A}\). For any \(a \in \mathcal{A}\) we define the left multiplication of \(a\) by \(L_a(b) = ab\), for all \(b \in \mathcal{A}\). Then \(L_a \in \mathcal{B}_R(\mathcal{A})\), we have \(\|L_a\| = \|a\|\).

Theorem 3.21. Let \(\mathcal{A}\) be a two-sided quaternionic Banach algebra and \(a \in \mathcal{A}\) with unit. Then \(a\) is Drazin invertible if and only if \(L_a\) is Drazin invertible. In such a case, \(L_a^d = L_a\) and \(i(L_a) = i(a)\).

Proof. Let \(a \in \mathcal{A}\) such that \(a\) is Drazin invertible. For every \(b \in \mathcal{A}\), we have \(L_a L_b = L_{ab}\), hence it is easy to check that \(L_a^d = L_a\) and then \(i(L_a) \leq i(a)\).

Conversely, assume that \(L_a\) is Drazin invertible and let \(b = L_a(c)\). Since \(L_a^{k+1}L_a^d = L_a^k\), \(a^k b = a^k\). Hence \(L_a^{k+1}L_b = L_a^k = L_a L_a^{k+1}\), then by [3, Theorem 4] and its proof, \(L_a^d = L_a^k L_a^{k+1} = L_a^{k+1} L_c = L_a L_c L_a\), \(L_a^2 = L_c, L_a^{k+1} L_c = L_a^k\), hence \(ac = ca, ac^2 = c, a^{k+1}c = a^k\). Thus \(a\) is Drazin invertible and then \(i(a) \leq i(L_a)\).

\[\square\]

References

[1] F. Colombo, J. Gantner, D.P. Kimsey, Spectral theory on the S-spectrum for quaternionic operators, Operator Theory: Advances and Applications, 270, Springer Basel, 2019.

[2] F. Colombo, I. Sabadini, D.C. Struppa, Noncommutative Functional Calculus, Birkhäuser Basel, 2011.

[3] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506–514.

[4] R. Ghiloni, V. Moretti, A. Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys. 25 (2013) 1350006, 83 pp.

[5] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367–381.

[6] B. Muraleetharan, K. Thirulogasanthar, Weyl and Browder S-spectra in a right quaternionic Hilbert space, J. Geom. Phys. 135 (2019) 7–20.