Neural architectures in the light of comparative connectomics
Elizabeth Barsotti 1,2,a, Ana Correia 1,2,a and Albert Cardona 1,2

Abstract
Since the Cambrian, animals diversified from a few body forms or bauplans, into many extinct and all extant species. A characteristic neural architecture serves each bauplan. How the connectome of each animal differs from that of closely related species or whether it converged into an optimal architecture shared with more distant ones is unknown. Recent technological innovations in molecular biology, microscopy, digital data storage and processing, and computational neuroscience have lowered the barriers for whole-brain connectomics. Comparative connectomics of suitable, relatively small, representative species across the phylogenetic tree can infer the archetypal neural architecture of each bauplan and identify any circuits that possibly converged onto a shared and potentially optimal, structure.

Addresses
1 MRC Laboratory of Molecular Biology, Cambridge, UK
2 Department of Physiology, Development and Neuroscience, University of Cambridge, UK

Corresponding author: Cardona, Albert (acardona@mrc-lmb.cam.ac.uk)

* These authors contributed equally.

Existing connectomes
Today, connectomics research focuses primarily on the mouse [15–17], fruit fly [18–22], nematode Caenorhabditis elegans [14,23–25], and zebrafish [26], with additional contributions from polychaete worms (Platynereis sp.; [27]), chordates (Ciona intestinalis, [28]), and others. This contrasts with the origin of neuroscience as a discipline, where more and diverse species were used [29,30], leading to seminal discoveries such as action potentials in the giant axon of the squid [31], synaptic function in Aplysia [32], and in the relationship between neural circuit structure and function in crayfish [33,34].

For the four species that dominate neuroscience research, there is a complete connectome for one (C. elegans [14,23–25]) as well as complete electron microscopy (EM) volumes with partial connectomes for two (Drosophila [18–22] and Danio rerio [26]) and a proposal to map one (Mus musculus [35]). Broadening our reach beyond these few species will open up the opportunity to discover fundamental neural circuit architectures [30,36].
Techniques

Step improvements in electron microscopy (EM) automation, namely reliable focused ion beam scanning electron microscopy (FIB-SEM) for isotropic small volumes [37] and GridTape transmission electron microscopy (TEM) for much larger volumes [38], have expanded the set of feasible species (Table 1) to larger animals. Such larger samples require reliable, high-performance image registration methods to assemble continuous EM volumes from millions of image tiles, overcoming nonlinear deformations and artifacts [39,40]. In turn, larger EM volumes have shifted the focus from manual methods for neuronal arbor reconstruction and synapse annotation [41,42,43] to automated ones that target precision (accuracy) at the expense of recall (completeness) [21,44–46], guided by studies on redundancy in synaptic connectivity [42,47]. Reconstructed neurons are then matched across image modalities by registration and morphological similarity (e.g. with neuron BLAST (NBLAST); [48]), enriching connectomes with functional information [15–18] or neurotransmitter signatures [18], with the latter also inferred directly from EM [49]. Comparing the resulting connectomes across left-right symmetric brain hemispheres or across individuals or species requires matching graph nodes — where a node is a neuron or a group of neurons in a coarsened graph — by either exploiting known shared molecular information, location, and morphology (such as insect neuroblasts and their progeny of neurons [5,6] or cortical neurons [50]) to seed the alignment of at least some nodes across graphs [51] or from connectivity only with spectral
graph analysis [24,42]. With improvements across the board, we now have the opportunity to traverse the whole phylogenetic tree to sample representative species in the light of comparative connectomics.

Suitable representative species
An ideal data set includes whole-brain connectomes of both closely related and widely divergent species. Presently, only EM of densely labeled samples can deliver the complete, nanometer-resolution volumes necessary for mapping every neuronal arbor and synapse. A number of practical constraints reduce the pool of possible species (Table 1).

First, sample preparation for densely labeled, whole-brain connectomics is lengthy and costly, as evidenced by work in Drosophila [52] and the mouse [53]. Small brains available in large numbers ease the development of sample preparation protocols, which favor animals with fast life cycles and abundant progeny.

Second, in practice, sample dimensions are constrained to \(\sim 1 \text{ mm}^3 \) by the combination of resolution requirements, imaging speed, data costs, and funding cycles.

Third, free-living, nonparasitic small animals retaining a full complement of ancestral body parts and brain structures are best suited for both comparisons of individual brain modules and whole-brain architectural relationships. As follows, the comparison of a blind fish, for example, with an anosmic snake would be limited to brain structures besides olfaction and limb-based locomotion. This constraint favors a small lizard [54,55] over a small soil-dwelling anosmic snake that presents poor vision [56] and, likewise, favors a small nonblind fish, such as Danionella sp. [57]. Exceptionally, species that lost body parts while retaining the corresponding neural modules would serve as models for how a neural architecture takes on new functions (e.g. visual inputs dominate the mushroom bodies of anosmic beetles [58]), a situation inducible experimentally [59–61].

To overcome most constraints, an option is to consider juveniles. Typically, some animal groups present juveniles that closely resemble adults, such as coleoid cephalopods, reptiles, and some fishes, among many others. This approach works best when juveniles live independently of parental care, indicating that all aspects of their brains are already functional, except for those related to sexual maturity. An example, if unconstrained by dimensions would be the juvenile of some crocodiles that have been shown to present approximately the same number of neurons and presumably the same overall neural architecture, as the adults, differing primarily in neuronal cell size, not number [62]. Within the dimensional constraints, we find free-living lizard hatchlings, such as the chameleon Brookesia sp. [54] and the gecko Sphaerodactylus sp. [55,63], and cephalopod hatchlings, such as Idiosepius sp. [64]. A comparative connectomics approach targeting free-living juveniles would save time and resources (animal length \(\times \text{volume}^3 \)) while meeting the above constraints and compromising only on circuits associated with sexual maturity.

Case studies
Evolution of a brain structure: the cortical microcircuit
The apparent uniformity of the mammalian neocortex [65] suggested the existence of a basic microcircuit repeated throughout all cortical areas [66]. On the basis of sparsely sampled neuronal anatomy and electrophysiology of the cat and monkey visual cortex, a diagram for the basic cortical microcircuit was proposed, limited to excitatory neurons [67]. The addition of inhibitory connections led to the reformulation of the diagram as a...
canonical microcircuit that captured commonly observed motifs across multiple areas and species and which suggested fundamental features of cortical processing [68]. Mainly, the inseparability of excitation and inhibition, and the primacy of intracortical excitation over thalamic drive. Synaptic weights were later estimated from further sparse anatomical reconstructions [69].

The hypothesis of a repeated unit of computation throughout the cortex is attractive for its reductionist properties: the study of the immense cortical sheet becomes the study of its building block and interblock relationships. Dense reconstructions of volumes of cortex at synaptic resolution possibly containing a complete canonical microcircuit have only recently become possible for limited subregions of the mouse brain [15–17]. While the many similarities in microcircuit structure across cortical areas grant enormous support to the canonical microcircuit hypothesis, differences exist across areas and species [70–75]. The reconstruction of multiple instances of the cortical microcircuit in multiple cortical areas of various vertebrates will identify commonalities and differences in the cortical microcircuit of each brain area and species (Figure 2).

All amniotes — mammals, birds, and the polyphyletic reptiles — present a layered cortical sheet suitable for the study of the homogeneity or heterogeneity of the canonical microcircuit [76,77]. The architecture of the vertebrate forebrain is thought to be conserved across all vertebrates, including the lamprey [78,79].

Extant reptiles offer a useful model of vertebrate cortical architectures [50]. Juvenile lizards, including Brookesia sp. [54] and Sphaerodactylus sp. [55] [63], are free-living predators with a complete tetrapod bauplan and brain volumes of ~1 cubic millimeter.

Comparative connectomics of cortical columns from the same homologous brain regions across species, such as lizards and rodents, will highlight a possibly conserved cortical microcircuit and which circuit motifs are unique to mammals. Across the whole brain, such comparisons

Figure 2

Comparisons across cortical areas

Schematic representation of the comparison of cortical microcircuits across brain areas and species, on the basis of known genetic and developmental correspondences within the vertebrates. Cartoons show the right brain hemisphere; adapted from Naumann et al., 2015, with permission.
will further identify large-scale common circuits inter-relating different cortical areas and whether such patterns are already present outside amniotes. In summary, mapping the cortical architectures of multiple small vertebrates opens the opportunity to infer the archetypal cerebral circuit architecture.

Evolution of a substrate for computation: circuits for pursuit predation

Vision-driven behaviors, such as pursuit predation (the tracking and interception of prey), are present in coleoid cephalopods, vertebrates, and insects. Successful predation requires the integration of the prey motion vector with self-motion to intercept the prey [80]. Supporting these abilities is a visual system capable of distinguishing prey from background, tracking prey relative motion, and anticipating future prey position. Although coleoid cephalopods, vertebrates, and insects contain vastly diverse nervous systems, all comprise species that engage in pursuit predation. The possibility exists that some aspects of the neural circuit architectures for visually guided predation have converged throughout

Figure 3

Phylogenetic tree illustrating differences and similarities in eye structure among insects, coleoid cephalopods, and vertebrates, with the insect presenting a compound eye and the other two a camera eye. For full comparisons with the multilayered circuits of the vertebrate retina, additional brain structures of the insect and cephalopod must be considered such as their corresponding optic lobes. Blue, lens or crystalline cone; red, photoreceptors. Original hand drawings by Ana Correia.
evolution into a common, optimal configuration in animals with shared ecological niches such as fishes and squids.

Pursuit predation consists of three major components: visual tracking of prey; computation of speed and direction vectors; and motor planning toward interception.

Vertebrates and coleoid cephalopods present camera eyes of superficial similarities but deep developmental and structural differences [81], whereas insects present compound eyes (Figure 3). Despite divergent eye morphology, strong parallels have been found in the circuits for motion detection in mammals and insects [82]. The coleoid cephalopod’s visual circuits are mostly unknown but present a single-layer retina and an associated optic lobe [83]. Visual signals in all three animal groups arrive at the brain already processed: in mammals by the multilayered retina; and in insects and cephalopods by the optic lobes. The early visual circuits of the retina or associated optic lobes compute direction of motion of objects in the visual field, in insects and mammals [82]. Presumably, the visual circuits of coleoid cephalopods, like the fly’s, also implement an equivalent to the Hassenstein-Reichardt motion detector [84]. The mammalian and insect retinas have been studied in depth with connectomics [84–87]. Comparative connectomics of the visual circuits of species that share a bauplan (e.g., squids and octopus) will establish a baseline against which any similarities with species of other bauplans (e.g., insects and mice) could be interpreted as potentially optimal, products of convergent evolution.

In pursuit predation, in addition to tracking prey motion, the predator must compute an intersection trajectory that not only compensates for prey motion but also accounts for its own head and body motion. In mammals, circuits in the midbrain including the superior colliculus represent motor space [88]. In insects, circuits in the central brain including the central complex encode body direction [89]. The geometric computations of the multiple direction vectors are implemented in neural circuits whose architecture can be compared across species. Whether the circuits for spatial orientation share an overall architecture across species can be studied by whole-brain comparative connectomics of suitably small species.

All foraging animals, regardless of limb presence and overall body morphology, are endowed with different locomotion modes; therefore, the neural circuits for coordinated movement postsynaptic to command neurons will be idiosyncratic for each. Upstream, in neural circuits for decision making, surprising conservation has been observed. One remarkable example of conserved intermediate circuits connected to different, specialized motor modules is the Mooncrawler/Moonwalker neuron, which controls backward locomotion for both the limbless Drosophila larva and the legged adult [90]. In analyzing the connectomes of vertebrates, insects, and coleoid cephalopods, we expect extreme diversity of neural circuits for locomotion but potentially shared neural architectures for optimally computing direction vectors and behavior selection.

The connectomes of Drosophila, the zebrafish, and the mouse retina are either complete or imminent, whereas no studies have yet mapped the visual circuits of a cephalopod. Meeting all of the constraints, the pygmy squid Idiosepius sp. and the pygmy octopus Octopus joubini both present free-living juveniles with brain volumes within a cubic millimeter. Mapping the cephalopod connectome from an EM volume of the whole body, as is now possible for Idiosepius juveniles, will address further questions central to this phylum, including camouflage control [91] and soft limb coordination throughout multiple styles of locomotion and tool manipulation.

Analysis of diversification: the insect brain

Insects are likely the most speciose group of animals on Earth, with the Coleoptera (beetles; particularly the Phytophaga clade [92]), Hymenoptera (wasps, bees, ants, and sawflies; particularly parasitoid wasps [93]), and Diptera (flies, midges, and mosquitoes; particularly the Cecidomyiidae family [94]) being extraordinarily rich. The impact of insects on human life is immense, either as pests or vectors of deadly diseases (mosquitoes; [95,96]) or for their vital ecosystem services, such as the pollination of crops and pest control [97]. An approach to pest control that harms pollinators would result in a net loss, a predicament human societies are currently facing. Comparative connectomics would reveal the commonalities and particularities of each insect group and enable the design of targeted pest control, for example, by molecularly targeting circuits for human-seeking behavior (e.g. CO2 plume tracking [98]) while avoiding interference with beneficial services such as pollination (e.g. sensing flower-specific odors [99]).

Beyond the use of insects as experimental subjects for understanding cognition [100,101], these tiny animals pack mighty abilities, rivaling computer vision systems many orders of magnitude their size with extremely small energy requirements, and have been a continuous source of inspiration in engineering (e.g. [102–104]) and machine learning (e.g. [104,105]). The reduced dimensions and numerically reduced nervous systems of insects offer unmatched experimental tractability.

The connectomes of the adult and larval Drosophila brain are almost fully mapped [18–20,22]. Among the Hymenoptera, species as large as bumblebees [106] and as
small as fairy wasps [107] are currently under study. Meeting our criteria of small, complete, free-living, accessible species, we find the adult Drosophila melanogaster, the beetle Tribolium castaneum, the honeybee Apis mellifera, and the mosquito Anopheles gambiae, and all four of them are already laboratory animals and realistic targets for whole-brain connectomics today. The brains and nerve cords of all of these species share a recognizable architecture, with genetically identified neuroblasts [5,6] and individual neurons morphologically recognizable across species. Comparative connectomics across these species would produce an approximated insect brain neural circuit archetype, alongside species-specific brain modules and circuit motifs that confer each insect group with unique properties. With these animals, we now have the opportunity to understand in what way each different insect species has specialized its brain to better fit its ecological niche, in a process of divergent evolution, and how, in a process of convergent evolution, some of their brain structures — for example, the olfactory system [108,109], the visual system [82], and the learning and memory system [110] — have converged with those of distantly related animals.

Conclusion

The study of neural circuit architectures with synaptic resolution, or connectomics, has until now focused on a few species, primarily a nematode, a fly, a fish, and a mouse. Concentrating resources on few species generated synergies from the sharing of tools, databases, and understanding, which carried the neuroscience field forward. Now, technological improvements across the board open the opportunity to explore the diversity of nervous systems across the tree of life. With comparative connectomics, the search for neural circuit architectures common across species or independently converged into an optimal layout is now possible.

Conflict of interest statement

Nothing declared.

Acknowledgements

The authors thank Laura Lungu for posing as a model for the illustration of a human in Figure 3. The authors thank Nadine Randel and Marc Corrales for discussions on evolution. A. Cardona thanks the Wellcome Trust Investigator Award 205038/Z/16/Z and the MRC LMB for funding. We thank G. Laurent for helpful comments.

References

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- ** of outstanding interest

1. Hirth F, Reichert H: Conserved genetic programs in insect and mammalian brain development. *Biossays* 1999, 8:677–684.
2. Puelles L, Sandoval JE, Ayad A, del Corral R, Alonso A, Ferran JL, Martinez-de-la Torre M: The pallium in reptiles and birds in the light of the updated tetrapartite pallium model. *Evol Nerv Syst* 2017, 1:519–555.
3. Strausfeld Nicholas J, Hirth Frank: Deep homology of arthropod complex and vertebrate basal ganglia. *Science* 2013, 340:157–161.
4. Mueller Thomas, Dong Zhiqiang, Berberoglu Michael A, Guo Su: The dorsal pallium in zebrafish. *Danio rerio* (cyprinidae, teleostei). *Brain Res* 2011, 1381:95–105.
5. Witten JL, Truman JW: Distribution of GABA-like immunoreactive neurons in insects suggests lineage homology. *J Comp Neurol* 1998, 399:515–528.
6. Schmid A, Chiba A, Doe CQ: Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. *Development* 1999, 128:4653–4689.
7. Strausfeld Nicholas J: Crustacean–insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. *Brain Behav Evol* 1998, 52:186–206.
8. Smith Frank W, Bartels Paul J, Goldstein Bob: A hypothesis for the composition of the tardigrade brain and its implications for panarthropod brain evolution. *Integr Comp Biol* 2017, 57:546–559.
9. Ma Xiaoya, Hou Xianguang, Edgecombe Gregory D, Strausfeld Nicholas J: Complex brain and optic lobes in an early Cambrian arthropod. *Nature* 2012, 490:258–261.
10. Simon Conway Morris and Jean-Bernard Caron: A primitive fish from the Cambrian of north America. *Nature* 2014, 512:419–422.
11. Smith Martin R, Caron Jean-Bernard: Primitive soft-bodied cephalopods from the Cambrian. *Nature* 2010, 465:469–472.
12. Gerhard S, Andrade I, Fetter RD, Cardona A, Schneider-Mizell C: Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics. eLife 2017, e29089.
13. Valdes-Aleman Javier, Fetter Richard D, Emily C Sales, Chris Q Doe, Landgraf Matthias, Cardona Albert, Zlatic Marta: Synaptic specificity is collectively determined by partner identity, location and activity. bioRxiv; 2019:697763.
14. Withlvet Daniel, Mulcay Ben, Mitchell James K, Meirovitch Yaron, Berger Daniel R, Wu Yuelong, Liu Yufang, Wan Xian Koh, Parvathala Rajeev, Douglas Holmyard, Schalek Richard L, Shavit Nir, Chisholm Andrew D, Lichtman Jeff W, Samuel Aravinthan DT, Zhen Mei: Connectomes across development reveal principles of brain maturation. *Nature* 2021:1–5.
15. Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC: Network anatomy and in vivo physiology of visual cortical neurons. *Nature* 2011, 47:177–182.
16. Allen Lee Wei-Chung, Bonin Vincent, Reed Michael, Graham Brett J, Hood Greg, Glattfelder Katie, Reid R Clay: Anatomy and function of an excitatory network in the visual cortex. *Nature* 2016, 532:370–374.
17. MiCRONs Consortium, Alexander Bae J, Baptiste Mahaly, Bodor Agnes L, Brittain Derrick, Buchanan JoAnn, Bumberger Daniel J, Castro Manuel A, Celi Bennett, Cobos Erick, Collam Forrest, Maçarico da Costa Nuno, Bumbarger Daniel J, Castro Manuel A, Collin Ippolito, Celi Bennett, Cobos Erick, Collam Forrest, Maçarico da Costa Nuno, Dorkenwald Sven, Elabbady Leila, Fahey Paul G, Tim Fliss, Froudakis Emmanouil, Gager Jay, Gamlin Clare, Halageni Akhilesh, James Hebditch, Jia Zhen, Jordan Chris,
A large-scale study captured the anatomy of 75,000 neurons from the mouse visual cortex and then reconstructed their synaptic connectivity from volume EM.

18. Ohyama Tomoko, Schneider-Mizell Casey M, Fetter Richard D, Valdes Aleman Javier, Franconville Romain, Rivera-Alba Marta, Menah Brett D, Bronstein Kristin M, Simpson Julie H, James W Truman, Cardona Albert, Zlatic Marta: A multilevel multimodal circuit enhances action selection in Drosophila. Nature 2015, 520:633–639.

19. Winding Michael, Benjamin Pedigo, Barnes Chris L, *Patsolic Heather G, Park Youngser, Kazmiemors Tom, Fushiki Akira, Andrade Ingrid V, Li Feng, Aleman Javier Valdes, Khandelwal Avinash, Herren Laura, Randel Nadine, Barsottì Elizabeth, Correia Ana, Fetter Richard D, Harnstein Volker, Pribe Carey E, Vogelstein Joshua, Zlatic Marta, Cardona Albert: The wiring diagram of the Drosophila larval brain in preparation. 2021.

The complete connectome of the Drosophila larval brain, comprising over 3000 fully mapped neurons, reveals the complexity of even numerically reduced nervous systems and their modular organization.

20. Zheng Zhihao, Larurzen J Scott, Perlman Eric, Robinson Camenzind G, Nichols Matthew, Milke Daniel, Omar Torrens, Price John, Fischer Corey B, Shard Nadya, Steven A, Calle-Schuler, Kmeocova Lucia, Ali Iqbal J, Karch Bill, Trautman Eric T, Bogovic John, Hanslovsky Philipp, Gregory S, Jeffreis XE, Kazhdan Michael, Khairy Khaled, Saaifeld Stephan, Fetter Richard D, Bock Davi D: A complete electron microscopy volume of the brain of adult Drosophila melanogaster. BioRxiv; 2017:140905.

21. Li Peter H, Lindsey Larry F, Januszewski Michal, Tyka Mike, Maitin-Shepard Jeremy, Tim Blakely, Jain Viren: Automated reconstruction of a serial-section em Drosophila brain with flood-filling networks and local realignment. Microscopy Microanal 2019, 25:1364–1365.

A novel computer vision method to map neuronal arbors successfully reconstructed large fragments of a serial section volume EM of the whole Drosophila brain.

22. Scheffer Lin, Xu CS, Januszewski M, Lu Z, Takemura SY, **Hassan Ahmed M, Garcia-Cerdan Jose G, Niyogi Krishna K, Nogales Eva, Weinberg Richard J, Hess Harold F: Enhanced fibsem systems for large-volume 3D imaging. Elife 2017, 6.

Customization and automatic close-loop monitoring of an off-the-shelf FIBSEM microscope with the ability to image 0.03 mm³ per year opened access to larger than ever brain volumes at an isotropic 1345–1352.

23. Prinz Astrid A, Bucher Dirk, Marder Eve: Similar network activity from disparate circuit parameters. Nat Neurosci 2004, 7:1345–1352.

24. Bucher Dirk, Prinz Astrid A, Marder Eve: Animal-to-animal variability in motor pattern production in adults and during growth. J Neurosci 2005, 25:1611–1619.

25. Abbott LF, Bock DD, Callaway EM, Denk W, Dulac C, Fairhall AL, Fiete I, Harris KM, Helmstaedter M, Jain V, Kasthuri N: The mind of a mouse. Cell 2020, 182:1372–1376.

Inspired by early work in C. elegans and more recent in Drosophila and in small volumes of the mouse brain, a consortium of labs makes the case for mapping the connectome of the whole mouse brain.

26. White JG, Southgate E, Thomson JN, Brenner S: The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans Roy Soc Lond B 1986, 314:1–340.

27. Zhu C, Hanhoshv T, Ushiyama T, Grob Patricia, Hassan Ahmed M, Garcia-Cerdan Jose G, Niyogi Krishna K, Nogales Eva, Weinberg Richard J, Hess Harold F: Enhanced fibsem systems for large-volume 3D imaging. Elife 2017, 6.

Customization and automatic close-loop monitoring of an off-the-shelf FIBSEM microscope with the ability to image 0.03 mm³ per year opened access to larger than ever brain volumes at an isotropic nanometer resolution sufficient to resolve synaptic and cytoplasmic detail.

28. Graham Brett J, Hildebrand David Grant Colburn, Kuan Aaron T, Manates-Selvin Jasper T, Thomas Logan A, Shanny Brendan L, Allen Lee Wei-Chung: High-throughput transmission electron microscopy with automated serial sectioning. bioRxiv; 2019.

The development of a new reel-based serial section sample holder delivers high-throughput volume EM at unprecedented reliability and low cost.

29. Saalfeld Stephan, Fetter Richard, Cardona Albert, Tomancak Pavel: Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat Methods 2012, 9:717–720.

30. Lee Kishuk, Turner Nicholas, Macrina Thomas, Wu Jingpeng, Lu Ran, Saung H Sebastian: Convolutional nets for reconstructing neural circuits from brain images acquired by serial
section electron microscopy. Curr Opin Neurobiol 2019, 55: 188–198.

41. Helmstaedter Moniz, Kevin Brigman, Denk Winfried: High-acucracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 2011, 14:1081–1088.

42. Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A, Midgley FM, Fetter RD, Saalfeld S, Cardona A: Quantitative neuroanatomy for connectomics in Drosophila. eLife; 2016.

43. Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomanak P, Hartenstein V, Douglas RJ: TrakEM2 software for neural circuit reconstruction. PLoS ONE 2012:e38011, https://doi.org/10.1371/journal.pone.0038011.

44. Sheridan Ar, Nguyen Tri, Deb Diptopdi, Lee Wei-Chung Allen, Saalfeld Stephun, Turaga Srini, Manur Urn, Funke Jan: Local shape descriptors for neuron segmentation. bioRxiv; 2021.

45. Buhmann J, Sheridan A, Malin-Mayor C, Schlegel P, Gerhard S, Drosophila. A partial connectomic reconstruction of a small fragment of human cerebral cortex greatly speeds up FIBSEM imaging, and can be applied broadly to insects and beyond. Current Opinion in Neurobiology. 2021:1–4.

46. Macrina Thomas, Lee Kisuk, Lu Ran, Turner Nicholas L, Wu Jingpeng, Popovich Sergiy, Williams Silversmith William, Kemritz Nico, Alexander Bae J, Castro Manuel A, Dorkenwald Sven, Halageri Akhilesh, Jia Zhen, Jordan Chris, Li Kai, Mitchell Eric, Mondal Shanka Subhra, Shang Mu, Nehoran Barak, Wong William, Yu Sui-chi, Bodor Agnes L, Brittain Derrick, Buchanan JoAnn, Bumbarger Daniel J, Cobos Eric, Collman Forrest, Elabady Ela, Fehey Paul G, Froudarakis Emmanouil, Kapielska Robert, Kinn Daniel, Papadopoulos Stelios, Patel Saumil, Perez-Martinez and Manuel Leal Christian A: Rivaling the world’s smallest reptiles: discovery of minimutizier and microendemic new species of leaf chameleons (Brookesia) from northern Madagascar. PLoS One 2012, 7, e3540.

47. Shapson-Coe Alexander, Januszewski Michal, Berger Daniel R, Pope Art, Wu Yuehong, Tim Blakely, Schalek Richard L, Pieter Wang, Shuohong, Maitin-Shepard Jeremy, Karlupia Neha, Pope Art, Wu Yuelong, Tim Blakely, Schalek Richard L, Wu Jingpeng, Popovich Sergiy, Williams Silversmith William, Kemritz Nico, Alexander Bae J, Castro Manuel A, Dorkenwald Sven, Halageri Akhilesh, Jia Zhen, Jordan Chris, Li Kai, Mitchell Eric, Mondal Shanka Subhra, Shang Mu, Nehoran Barak, Wong William, Yu Sui-chi, Bodor Agnes L, Brittain Derrick, Buchanan JoAnn, Bumbarger Daniel J, Cobos Eric, Collman Forrest, Elabady Ela, Fehey Paul G, Froudarakis Emmanouil, Kapielska Robert, Kinn Daniel, Papadopoulos Stelios, Patel Saumil, Perez-Martinez and Manuel Leal Christian A: Rivaling the world’s smallest reptiles: discovery of minimutizier and microendemic new species of leaf chameleons (Brookesia) from northern Madagascar. PLoS One 2012, 7, e3540.

48. Costa Marta, Mantion James D, Ostrovsky Aaron D, Prachaska Steffen, JEFFERIS GREGORY SXE; NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 2016, 91:293–311.

49. Eckstein Nils, Bates Alexander S, Du Michelle, Hartenstein Volker, Jeffers Gregory SXE, Funke Jan: Neuro-transmitter classification from electron microscopy images at synaptic sites in Drosophila, bioRxiv; 2020.

50. Antonietta Tosches Maria, Yamawaki Tracy M, Naumann Robert K, Jacobi Ariel A, Tushav Georgi, Laurent Gilles: Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 2018, 360: 881–885.

51. An comparative RNAseq analysis of hippocampal neurons in reptiles and mammals demonstrates close homology of GABAergic neuron types and suggests mammalian glutamatergic types are evolutionarily novel. Current Opinion in Neurobiology. 2021:1–4.

52. F. Meinertz-Hagen Ian A: En bloc preparation of Drosophila brains enables high-throughput fiba-SEM connectomics. bioRxiv; 2019: 855130.

53. Mikula Shawn, Denk Winfried: High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods 2015, 12:541–546.

54. Frank Glaw, Köhler Jörg, Townsend Ted M, Vences Miguel: Rivaling the world’s smallest reptiles: discovery of minimutizier and microendemic new species of leaf chameleons (Brookesia) from northern Madagascar. PLoS One 2012, 7, e3540.

55. Blair Hedges S, Thomas Richard: At the lower size limit in amniote vertebrates: a new diminutive lizard from the West Indies. Canibb J Sci 2001, 37:168–173.

56. Blair Hedges S: At the lower size limit in snakes: two new species of threadsnakes (squamata: Leptotyphlopidae: Leptotyphlops) from the lesser antilles. Zootaxa 2008, 1811:1–30.

57. Schulze L, Henninger J, Kadoianiansky M, Chaigne T, Faustino AI, Hakyi N, Albadri S, Schuelke M, Maler L, Del Bene F, Judkewitz B: Transparent Dianoeilla translucida as a genetically tractable vertebrate brain model. Nat Methods 2018, 15: 977–983.

58. Lin Chuan, Strausfeld Nicholas J: Visual inputs to the mushroom body calyces of the whirigig beetle dnieusus sublineatus: modality switching in an insect. J Comp Neurol 2012, 520: 2562–2574.

59. Roe Anna W, Pallas Sarah L, Hahm Jong-On, Sur Miiganka: A map of visual space induced in primary auditory cortex. Science 1990, 250:918–920.

60. Sen Sonia, Cao Deshous, Choudhary Ramveer, Biagini Silvia, Wang Jing W, Reichert Heinrich, VijayRaghavan K: Genetic transformation of structural and functional circuitry rewires the drosophila brain. Elife 2014, 3, e04407.

61. Prieto-Godino Lucia L, Silbering Ana F, Khalilah Mohammed A, Cuchet Steeven, Bojkowska Karolina, Pradervand Sylvain, Hansson Bill S, Knaden Markus, Benton Richard: Functional integration of “undead” neurons in the olfactory system. Sci Adv 2020, 6.eaa27538.

62. Ngwenya Ayanda, Patzke Nina, Manger Paul R, Herculano-Houzel Suzana: Trends in brain size and neocortical magnification factor at the lower size limit in amniote vertebrates: a new diminutive lizard from the West Indies. Canibb J Sci 2001, 37:168–173.

63. An comparative RNAseq analysis of hippocampal neurons in reptiles and mammals demonstrates close homology of GABAergic neuron types and suggests mammalian glutamatergic types are evolutionarily novel. Current Opinion in Neurobiology. 2021:1–4.

64. Yamamoto Masamichi, Shimazaki Yumiko, Shiigoro Shunichi: Atlas of the embryonic brain in the pygmy squid, Idiosiphus paradoxus. Zool Sci 2003, 20:163–179.

65. Hubel David H, Wiesel Torsten N: Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J Comp Neurol 1974, 158:295–305.

66. Otto D Creutzfeldt: The functional brain: The functional structure of the neocortex. Naturwissenschaften 1977, 64:507–517.

67. Gilbert Charles D: Microcircuitry of the visual cortex. Annu Rev Neurosci 1983, 6:217–247.

68. Douglas Rodney J, Martin Kean AC, Whitledge David: A canonical microcircuit for neocortex. Neural Comput 1989, 1:480–488.

69. Tom Binzegger, Douglas Rodney J, Martin Kean AC: A quantitative map of the circuit of cat primary visual cortex. J Neurosci 2004, 24:8441–8453.
Evolution of Brains and Computation

70. Rudolf Nieuwenhuys: *The neocortex*. Anat Embryol 1994, 190: 307–337.

71. Elson Guy N, DeFelipe Javier: Spine distribution in cortical pyramidal cells: a common organizational principle across species. *Prog Brain Res* 2002, 136:109–133.

72. Douglas Rodney J, Martin Kevan AC: Neuronal circuits of the neocortex. *Annu Rev Neurosci* 2004, 27:419–451.

73. DeFelipe Javier, Jones Edward G: Neocortical microcircuits. *Handbook Brain Microcircuits*. 2010:5–14.

74. Harris Kenneth D, Shepherd Gordon MG: The neocortical circuit: themes and variations. *Nat Neurosci* 2015, 18:170.

75. Bopp Rita, Holler-Pickauer Simone, Martin Kevan AC, Schuhknecht Gregor FP: An ultrastructural study of the thalamic input to layers 4 of primary motor and primary somatosensory cortex in the mouse. *J Neurosci* 2017, 37:2435–2448.

76. Wang Yuan, Brzozowska-Prechtl Agnieszka, Karten Harvey J: Visual system revealed a common, likely evolutionarily convergent order. *J Comp Neurol* 2012, 520:2957–2973.

77. Suryanarayana SM, Robertson B, Wallén P, Grillner S: Cephalopods and fish: the limits of convergence. *Phil Trans R Soc Lond B Biol Sci* 2004, 362:333–338, https://doi.org/10.1038/nature14045.

78. Mischel M, Lin HT, Adler P, Olberg R, Leonardo A: Internal models direct dynamic interception steering. *Nature* 2015, 517:333–338, https://doi.org/10.1038/nature14045.

79. Packard A: Cephalopods and fish: the limits of convergence. *Biol Rev* 1972, 241–307.

80. Borst Alexander, Helmstaedter Moritz: Common circuit design in fly and mammalian motion vision. *Nat Neurosci* 2015, 18:1067–1076.

81. Young John Zachary: The central nervous system of *Loligo i*. the optic lobe. *Philos Trans R Soc Lond B Biol Sci* 1974, 267:263–302.

82. Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladenvi S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T: A visual motion detection circuit suggested by *Drosophila* connectomics. *Nature* 2013, 500:175–181.

83. Helmstaedter Moritz, Briggman Kevin L, Turaga Srinivas C, Jain Viren, Seung H Sebastian, Denk Winfried: Connectomic reconstruction of the inner plexiform layer in the mouse retina. *Nature* 2013, 500:168–174.

84. Kim Jinseop S, Greene Matthew J, Zlateski Aleksandar, Lee Kisuk, Richardson Mark, Turaga Srinivas C, Pucarco Michael, Balkam Matthew, Robinson Amy, Behabadi Bardia F, Campos Michael, Denk Winfried, Sebastian Seung H, The EyeWires: Space-time wiring specificity supports direction selectivity in the retina. *Nature* May 2014, 509:331–336.

85. Meintschev AG, O’Neil SD: Synaptic organization of columnar elements in the lamina of the wild type in *Drosophila melanogaster*. *J Comp Neurol* 1991, 305:232–263.

86. Wilson Jonathan J, Alexandre Nicolas, Trentin Caterina, Tripodi Marco: Three-dimensional representation of motor space in the mouse superior colliculus. *Curr Biol* 2018, 28: 1744–1756.

87. Johannes D Seelig, Jayaraman Vivek: Neural dynamics for landmark orientation and angular path integration. *Nature* 2015, 521:186–191.

88. Carreira-Rosario Arnaldo, Zarin Aref Arzan, Clark Matthew Q, * Manning Laurina, Fetter Richard D, Cardona Albert, Chris Q Doe: Mdn brain descending neurons coordinately activate backward and inhibit forward locomotion. *eLife* 2018, e38554.

89. Harris Kenneth D, Shepherd Gordon MG: The neocortical circuit: themes and variations. *Nat Neurosci* 2015, 18:170.

90. Reiter S, Hülsdunk P, Woo T, Lauterbach MA, Eberle JS, Ayak LA, Longo A, Meier-Credo J, Kretschmer F, Langer JD: Elucidating the control and development of skin patterning in cuttlefish. *Nature* 2018, 562:361–366.

91. Farrell Brian D: "Inordinate fondness" explained: why are there so many butterflies? *Science* 1998, 281:555–559.

92. Forbes Andrew A, Bagley Robin K, Beer Marc A, Hippe Alaine C, Widmayer Heather A: Quantifying the unquantifiable: why hymenoptera, not coleoptera, is the most speciose animal order. *BMC Ecol* 2018, 18:1–11.

93. Hebert Paul DN, Ratnasingham Sujeevan, Zakharov Evgeny V, C Teller Angela, Levesque-Beaudin Valerie, Milton Megan A, Pedersen Stephanie, Paul Jannetta, P DeWaard Jeramy: Counting animal species with DNA barcodes: Canadian insects. *Phil Trans Biol Sci* 2016, 371:20150333.

94. World Health Organization: *World malaria report 2020*: 20 years of global progress and challenges. 2020.

95. Bourouis K, Dobson SL, XI Z, Rasog JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P: Harnessing mosquito—wolbachia symbiosis for vector and disease control. *Acta Trop* 2014, 132:S150–S163.

96. Brock Ryan E, Cini Alessandro, Sumner Seirian: Ecosystem services provided by aculate wasps. *Biol Rev* 2021.

97. McMeniman Connor J, Corfas Román A, Matthews Benjamin J, Ritchie Scott A, Vosshall Leslie B: Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. *Cell* 2014, 156:1060–1071.

98. Lahodère Chloé, Vinauger Clément, Okubo Ryo P, Wolff Gabriella H, Chan Jeremy K, Akbari Omar S, Riffell Jeffrey A: The olfactory basis of orchid pollination by mosquitos. *Proc Natl Acad Sci Unit States Am* 2020, 117:708–716.

99. Webb Barbara: *Cognition in insects*. *Phil Trans Biol Sci* 2012, 367:2715–2722.

100. Simons Meagan, Tibbetts Elizabeth: Insects as models for studying the evolution of animal cognition. *Curr Opin Insect Sci* 2019, 34:117–122.

101. Helmstaedter Moritz: The mutual inspirations of machine learning and neuroscience. *Neuron* 2015, 86:25–28.

102. Jürgensen Anna-Maria, Khalili Afsin, Chicca Elisabetta, Indiveri Giacomo, Paul Nawrot Martin: A neuroporphic model of olfactory processing and sparse coding in the Drosophila larva brain. *bioRxiv*.

103. Hong Jinyung, Pavlic Theodore P: An insect-inspired randomly, * weighted neural network with random fourier features for neuro- symbolic relational learning*. 2109.06663. arXiv preprint arXiv; 2021.

104. Delahunt Charles B, Kutz J Nathan: Putting a bug in ml: the moth olfactory network learns to read MNIST. *Neural Network* 2019, 118:54–64.

105. Sayre Marcel E, Templin Rachel, Chavez Johanna, Kempenaers Julian, Heinze Stanley: A projectome of the bumblebee central complex. *eLife* 2021, e68911.
Upon training 3-layer artificial neural networks to successfully perform the in silico equivalent of an olfactory task, the network connectivity was found to parallel the organization of both the insect and the mammal olfactory circuits, indicating that the nature of the task suffices to drive the evolution of a neural architecture towards an optimal configuration, illustrating the process of convergent evolution.

107. Polilov Alexey A: The smallest insects evolve anucleate neurons. *Arthropod Struct Dev* 2012, 41:29–34.

108. Strausfeld NJ, Hildebrand JG: Olfactory systems: common design, uncommon origins? *Curr Opin Neurobiol* 1999, 9: 634–639.

109. Wang Peter Y, Sun Yi, Axel Richard, Abbott LF, Yang Guangyu Robert: Evolving the olfactory system with machine learning. *bioRxiv*; 2021.

110. Farris Sarah M: Are mushroom bodies cerebellum-like structures? *Arthropod Struct Dev* 2011, 40:368–379.