Current status of wet lab and cadaveric simulation in urological training: A systematic review

Ahmed Al-Jabir, MSc, MBBS¹; Abdullah Aydin, BSc (Hons), MBBS²; Hussain Al-Jabir, MSc, MBBS³; M. Shamim Khan, FRCS (Urol), FEBU⁴; Prokar Dasgupta, MSc, MD, FRCS (Urol), FEBU⁴; Kamran Ahmed, PhD, FRCS (Urol)²⁵

¹GKT School of Medical Education, King’s College London, London, United Kingdom; ²MRC Centre for Transplantation, Guy’s Hospital, King’s College London, London, United Kingdom; ³William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; ⁴Department of Urology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom; ⁵Department of Urology, King’s College Hospital NHS Foundation Trust, London, United Kingdom

Cite as: Al-Jabir A, Aydin A, Al-Jabir H, et al. Current status of wet lab and cadaveric simulation in urological training: A systematic review. Can Urol Assoc J 2020;14(11):E594-600.
http://dx.doi.org/10.5489/cuaj.6520
Published online June 5, 2020
Appendix available at cuaj.ca

Abstract

Introduction: We undertook a systematic review of the use of wet lab (animal and cadaveric) simulation models in urological training, with an aim to establishing a level of evidence (LoE) for studies and level of recommendation (LoR) for models, as well as evaluating types of validation.

Methods: Medline, EMBASE, and Cochrane databases were searched for English-language studies using search terms including a combination of “surgery,” “surgical training,” and “medical education.” These results were combined with “wet lab,” “animal model,” “cadaveric,” and “in-vivo.” Studies were then assigned a LoE and LoR if appropriate as per the education-modified Oxford Centre for Evidence-Based Medicine classification.

Results: A total of 43 articles met the inclusion criteria. There was a mean of 23.1 (±19.2) participants per study with a median of 20. Overall, the studies were largely of low quality, with 90.7% of studies being lower than LoE 2a (n=26 for LoE 2b and n=13 for LoE 3). The majority (72.1%, n=31) of studies were in animal models and 27.9% (n=12) were in cadaveric models.

Conclusions: Simulation in urological education is becoming more prevalent in the literature, however, there is a focus on animal rather than cadaveric simulation, possibly due to cost and ethical considerations. Studies are also predominately of a low LoE; higher LoEs, especially randomized controlled studies, are needed.

Introduction

The Halsteadian model of “see one, do one, teach one” has long permeated and monopolized surgical education,¹ with surgeons learning techniques in an apprenticeship style under an experienced colleague in the operating room (OR). However, in modern medical practice, service delivery pressures have reduced training hours and so new ways must be found to enhance and be an adjunct to patient and operation exposure hours.

The solution of the aviation industry has long been to use simulation models to enhance learning²,³ and this style of learning is also becoming more widely adopted and validated as a way to enhance performance in the OR.⁴,⁵

Despite the widespread use of bench-top dry lab models, the gold standard of simulation-based surgical training is still using wet lab models, consisting of animal models (both live animals and animal tissues) and cadaveric simulation models. The advantages and disadvantages of these are summarized in Table 1.

Previous systematic reviews have been published on the use of surgical simulators in specific specialties⁶-¹² but to date, none have comprehensively focused on the use of wet lab simulation models in urology. The aim of this study is to systematically review the literature for the use of wet lab simulator models in urological surgery, to establish a level of evidence (LoE) for studies, a level of recommendation (LoR) for models, as well as evaluating types of validation used in studies.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to optimize the transparency and detail of the review.¹³

Eligibility criteria

Included in the review are original research articles and systematic reviews, as well as posters and oral presentations from conferences that described the use of wet lab models for surgical simulation. We included validation studies or articles studying the educational value of a model.
Systematic reviews, insufficiently short abstracts, and articles not in the English language were excluded, as were those relating specifically to dental surgery.

Information sources and search processes

Studies were identified by searching MEDLINE, EMBASE, and Cochrane Library databases via Ovid from 1946 to present using the strategy in Fig. 1. Search terms included a combination of “surgery,” “surgical training,” and “medical education.” These results were combined with “wet lab,” “animal model,” “cadaveric,” and “in vivo” (Supplementary Table 1; available at cuaj.ca)

Study selection and data collection process

After the initial search, abstracts and titles were screened and duplicates removed. Articles chosen were agreed upon by all authors. Full-texts were then reviewed to exclude non-urological articles, as well as those that do not meet the inclusion criteria. Further to this, a hand search of reference lists was done for any further articles missed.

Data items

Data extracted was as follows: author; year; type of simulation model; if animal model, which animal; if animal model, whether in-vivo or ex-vivo; procedure simulation method tested for; subjects size; validation type; brief description; LoR; LoE (if appropriate). Each study was classified for validity where appropriate using the definitions developed by McDougall,1 Van Nortwick et al,14 and Tay et al 15 (Supplementary Table 2; available at cuaj.ca).

A LoE and LoR was given to each study and model as according to the modified educational Oxford Centre for Evidence-Based Medicine classification system, as adapted by the European Association of Endoscopic Surgery16 (Supplementary Tables 3A, 3B; available at cuaj.ca).

Records identified through database searching (n=458)
Additional records identified through other sources (n=41)

Fig. 1. PRISMA Flow diagram as per Moher et al.13

Synthesis of the data

Due to the heterogeneous and qualitative nature of many of the studies, a quantitative meta-analysis could not be performed.

Results

Description of included studies

A total of 498 studies were identified for potential inclusion. After screening of abstracts and full-text review, 143 articles met criteria for inclusion in the study. Of the 140 articles included, 43 studies were identified as dealing with urological procedures.17-58

There were a far-ranging number of participants of each study, from 2–102, with a mean of 23.1 (±19.2), a median of 20 participants, and a mode of 20 participants per study. Overall, the studies were largely low-quality, with 90.7% of studies being lower than LoE 2a (n=26 for LoE 2b and n=13 for LoE 3). Subsequently, they had low LoR (58.5% LoR 3, 31.7% LoR 4). Most (72.1 %, n=31) studies were in animal models, with only 27.9% (n=12) were in cadaveric models: 26 studies were porcine studies and four were chicken studies. Thirteen (31.7%) studies were descriptive only, with the others involving elements of evaluation (Table 2). For evaluation studies, the average number of participants was 23.6
(±20.7), with a median of 20. Eighteen studies had elements of content validity evaluation and 17 studies examined construct validity. A total of 58.3% of cadaveric studies had LoE 2b, with the rest having LoR 3. Of the animal studies, three had LoE 2a, 19 had LoE 2b, and nine were descriptive-only studies with LoR 4.

The studies described a wide variety of simulation models covering percutaneous nephrolithotomy, flexible and semi-rigid ureteroscopy, as well as nephrectomy simulation models.

Laparoscopic surgery

Eight studies were identified for the simulation of laparoscopic procedures (Supplementary Table 4; available at cuaj.ca).

Nephrectomy

Molinas trained 10 medical students and 10 specialists in laparoscopic nephrectomy on a live rabbit model, finding a reduction in operative time, as well as significant differences between the experienced and novice groups.

Six moderately experienced laparoscopic surgeons were trained in radical nephrectomy on a live porcine model by Cruz et al. They found reduced blood loss, increased depth perception, and dexterity from the initial training session showing face and content validity.

De Win et al designed a model with a porcine kidney that is connected to a pulsatile pump and participants (n=22) were instructed to dissect the renal vessels, finding construct validity.

A study by Marchini et al enrolled 15 urologists in a course to learn single-incision laparoscopic total nephrectomy in a live porcine model and demonstrated face and content validity.

Pyeloplasty

Ramachandran et al developed a chicken-crop and esophagus model to simulate laparoscopic pyeloplasty. Following from this study, Jiang et al demonstrated the construct validity of this model with 15 participants of varied experience.

Teber et al describe a one-knot pyeloplasty model using a porcine bladder with five laparoscopic surgeons finding a 21% reduction in anastomotic time after training showing construct validity.

Urethrovesical anastomosis

Four studies used chickens to simulate urethrovesical anastomosis. Yang and Bellman used chicken skin folded on a catheter to simulate a bladder and urethral stump (n=8), with Laguna et al using the esophago-glandular-stomach junction of chicken carcasses (n=5), and Boon et al using a section of pig intestine (n=12). All models demonstrated construct B validity.

Sabbagh et al evaluated a model using live anæsthetised pigs with a randomized controlled trial comparing the model with a foam pad bench-top model; the group trained on the simulator outperformed the control group, also demonstrating face validity.

Endourology (Supplementary Table 5; available at cuaj.ca)

Urethrocystoscopy

Grimsby et al describe the evaluation of a boar bladder and urethra model by two residents for cystoscopy and bladder biopsy. They found an improvement after training with the model and thus demonstrated construct A validity.

Soria et al describe a live porcine module for urethrocystoscopy featuring ureteral orifices cannulation and subsequent ureteroscopy.

Bowling et al performed a randomized controlled trial comparing use of fresh-frozen cadavers and a bench-top model for rigid urethrocystoscopy in 29 obstetric residents.
and demonstrated construct B validity. Additionally, rigid and flexible urethrocystoscopy were two of the modules in the BAUS cadaveric course described by Ahmed et al.54

Ureterorenoscopy (URS)

Twentey fully qualified urologists were trained in flexible ureteroscopy by Hu et al13 using in vitro porcine kidneys and ureters. They found a 39% improvement in average operative time, as well as improvement on a global rating scale. Additionally, the authors found that a learning curve was established, plateauing at six training sessions.

Sixteen first-year medical students trained on a bench-top model or the UROMentor virtual reality (VR) simulator in a study by Chou et al,37 then later independently performed URS on an ex-vivo porcine kidney/ureter model. Both groups performed equally well, proving the concurrent validity of the animal model.

Ogan et al58 evaluated 16 medical students and 16 residents on a VR model and then followed it by a diagnostic ureteroscopy on a cadaveric model. They found close correlation between VR and cadaveric performance in students but not in residents. Cadaveric simulation showed construct B validity due to its ability to distinguish between training levels.

Mains et al51 designed a course using Thiel-embalmed cadavers to train flexible ureteroscopy. Five urological trainees and three faculty members demonstrated face and content validity with high level of satisfaction with the realism and usefulness of the tissue. This model was later improved in a followup study33 demonstrating high ratings for haptic feedback and realism of the tissue. This model was found to be superior in realism (4.44/5 vs 2.75) with superior usefulness (4.64/5 vs 2.75) in anesthetised pigs and found the live porcine model to be superior in realism (4.44/5 vs 2.75) with superior usefulness as an assessment tool (4.68 vs 2.75), however, noted that the VR model enabled repeated use and was easier to set up.

Jutzi et al, 25,29 used ex-vivo porcine kidneys placed in the animal model. They demonstrated face validity particularly with regards to percutaneous renal access.

Zhang et al15 used porcine kidneys wrapped in a full-thickness skin flap with 42 urologists and assessed face validity finding 85.7% rating it “helpful” or “very helpful.”

Hacker et al31 designed a model modified from that of Hammond32 using a porcine kidney, a chicken carcass, and artificial stones with the addition of a layer of ultrasound gel surrounding the kidney to enable more effective ultrasound monitoring.

Strohmaier and Giese44 developed a model using a porcine kidney embedded in silicon and filled with stone and demonstrating high ratings for haptic feedback and realism of the tissue. This model was later improved in a followup study13 by embedding the model in porcine thoracic/abdominal wall tissue to simulate retroperitoneal tissue in humans.

Jagtap37 compared a VR PCNL model to simulation in live, anesthetised pigs and found the live porcine model to be superior in realism (4.44/5 vs 2.75) with superior usefulness as an assessment tool (4.68 vs 2.75), however, noted that the VR model enabled repeated use and was easier to set up.

Huri et al48 used both fresh-frozen and soft embalmed cadavers for training in flexible ureteroscopy in 12 inexperienced urologists, demonstrating a 50.6% improvement in mean operative time with no intraoperative injuries, as well as feasibility for re-use in further sessions.

Percutaneous nephrolithotomy (PCNL)

Mishra et al16 compared 24 experts performing a percutaneous renal puncture in a live porcine model under C-arm guidance and a VR PERC Mentor (Simbionix, Lod, Israel). They demonstrated construct validity by finding superior realism and usefulness ratings in the animal model.

Earp30 produced a PERC model using an ex-vivo porcine kidney and a plastic catheter fixed to 3 cm thick foam to simulate the retroperitoneal space. This model was found to be useful, as well as cheap and able to be re-used; however, it was not possible to use ultrasound guidance using this model.

Hammond et al32 used a model where a porcine kidney with an artificial stone was placed inside a chicken carcass to simulate the layers of human posterior tissue. They demonstrated face validity particularly with regards to percutaneous renal access.

Several studies were identified for robot-assisted procedures (Supplementary Table 6; available at cuaj.ca).

Nephrectomy

Hung et al20 described a model for robot-assisted partial nephrectomy using porcine kidney and a styrofoam ball to a mimic renal tumor in the da Vinci Skills Simulator (dVSS; Intuitive Surgical, Sunnyvale, CA, U.S.), a simulator version of the most commonly used surgical robot. They established face, content, and construct validity in 46 participants, with 28% being experts. A followup study established concurrent and predictive validity in 24 participants.21
Renal transplantation

Khanna and Horgan\(^4^9\) developed a model for robot assisted ex-vivo kidney transplantation using porcine kidneys and the dVSS focusing on the skills for venous and arterial anastomoses. The model was assessed by a single specialist robotic surgeon and showed improvement in time taken after repeated training with the dVSS, as well as reduced leak rates and increase in surgical finesse.

Tiong et al\(^5^1\) used a live porcine model for robot-assisted kidney autotransplantation with a primary outcome of arterial anastomotic time for intermediate transplant surgeons with prior robotic experience, establishing face and content validity. In addition, they used intraoperative indocyanine green imaging to test perfusion of the graft.

Robot-assisted radical prostatectomy

Alemozaffar et al\(^4^0\) established face, content and construct validity in 20 participants for a porcine genitourinary model for robot-assisted radical prostatectomy.

Training courses

In a study by Blaschko et al.,\(^4^9\) 22 residents participated in a robot-assisted surgical training course using fresh-frozen cadavers by in combination with cardiac surgery training, with face validation established.

Raison et al\(^5^0\) ran a novel cadaveric training course for radical cystectomy, radical prostatectomy, extended lymph node dissection, and radical nephrectomy using fresh-frozen cadavers for 16 delegates using the dVSS finding face, content, and construct validity.

Ozcan et al\(^5^3\) used cadavers as part of a surgical anatomy training course using theoretical lectures and practical dissection focussing on renal, prostatic, bladder, and penile/scrotal anatomy. Fifty urological residents undertook the course and their knowledge, as tested by a written multiple-choice examination, improved by a statistically significant 11.1%.

Open surgery (Supplementary Table 7; available at cuaj.ca)

Huri et al\(^4^5\) introduced a uro-oncology training course for 25 participants featuring open prostatic, scrotal, and nephrectomy procedures on cadavers; on a five-point satisfaction scale, the course was rated more than 3.2/5 for all elements, theoretical and practical. The surgical anatomy sections of the course were the most highly rated.

Cabello et al\(^4^7\) describe a training model for open renal transplantation using Thiel-embalmed cadavers in 28 participants. On a 10-point scale, the participants rated it 8.6/10 for utility and 8.9/10 for usefulness for daily clinical practice.

However, the authors noted the lack of bleeding and the difficulties in determining the quality of vascular anastomosis.

Ahmed et al\(^5^4\) developed a cadaveric simulation course with the British Association of Urological Surgeons for 81 residents and 27 faculty including core open surgery, endourology, and advanced trauma and emergency urological surgery. The procedures taught and simulated included both renal, prostate, and bladder surgery, as well as scrotal procedures such as testicular fixation and radical orchidectomy. The course demonstrated face validity, with a mean of 3/5 on a five-point Likert scale and >3/5 for content validity.

Discussion

Summary of evidence

This is the first paper to systematically review and compare the use of cadaveric tissue, animal tissue, and live animals in a wet lab simulation environment for urological surgery. Against a backdrop of restricted training time for surgical trainees in the present environment, the need for a representative, cost-effective, and realistic wet lab model is imperative,\(^6^0\) and this is clearly a growing issue. It is clear from reviewing the literature that wet lab simulation is being used across a range of procedures, however, there is a clear bias towards the use of wet lab simulation for laparoscopic and endoscopic procedures. The reasons for this have not been formally elucidated, but it appears that the high level of dexterity required for successful procedures has driven innovation in training techniques, namely wet lab simulation.

Most studies are of poor quality, with only a single study demonstrating LoE 1b (a randomized controlled trial, albeit with a small size with 29 participants), and three studies demonstrated LoE 2a (randomized but not necessarily controlled, with an average of 22.7 participants per study). No study demonstrated LoR 1.

Overall, many studies were small, with a mode of 20 participants per study. This correlates with the findings of Van Nortwick et al.,\(^1^4\) who reviewed validity studies and found an average of 37 participants per study (median=29). A significant proportion were often descriptive-only, demonstrating no more than LoR 4. Many of the studies show potential but have not undergone comparative research.

Most studies featured face validation (72.1%), however, few demonstrated higher-level validation, with only two studies demonstrating concurrent validity and two studies on predictive validity. This is also consistent with the findings of Van Nortwick e al.,\(^1^4\) who found only 24% of studies they reviewed demonstrated concurrent validity and 5% predictive validity.

Most studies were in animal models, which is to be expected from the discussions of authors highlighting the
superior visual and tactile realism of animal models compared to bench-top dry lab models. However, within wet lab models, the realistic anatomy and tissue feel of cadavers means that it retains its “gold standard” status in simulated training. The higher cost, poorer availability, and ethical concerns related to use of this tissue mean that it cannot be the sole method of wet lab simulation for surgical trainees. The numerous studies concerning animal models indicates the pertinence of this point.

The major point discussed in relation to cadaveric models is that animal models are cheaper and without the same ethical considerations (especially if using ex-vivo tissue models). Cadaveric samples form a later stage of training, enabling the fine-tuning of skills on the relatively scarce numbers of available cadavers. The general concordance of wet lab model usage between surgical specialties would suggest that this algorithm could be translated for use across numerous specialties, with positive effects on patient safety and learning quality.

VR models have gained traction within certain specialties over recent years, including urology. A further extension to our work could systematically review the introduction of VR models into the variety of surgical fields.

We recommend the implementation of wet lab simulation training methods from the earliest stages of surgical training to maximize learning within the limited time frame of formal teaching. As ex-vivo animal models are relatively affordable and have some educational value, they should be introduced early on within surgical training, progressing to in-vivo models and finally to cadaveric tissue.

Limitations

The studies exhibited significant heterogeneity and could not be used to perform a quantitative pooled meta-analysis. Additionally, many studies were excluded for being based on conference abstracts with insufficient information, in addition to other grey literature potentially being excluded contributing to bias.

Conclusions

Simulation in surgical education is becoming more prevalent in the literature, with the value of wet lab simulation in early stages of training clearly demonstrated and cadaveric simulation for more advanced procedures. There is currently a focus on animal rather than cadaveric simulation, possibly due to cost and ethical considerations. However, new techniques in embalming, such as the Thiel method, are improving the utility of cadaveric simulation. Studies are also predominately of a low LoE with higher LoE, especially randomized controlled studies, needed to determine the most effective method of simulation.

Competing interests: The authors report no competing personal or financial interests related to this work.

This paper has been peer-reviewed

References

1. McDougall EM. Validation of surgical simulators. J Endourol 2007;21:244-7. https://doi.org/10.1089/ end.2007.9985
2. Coxon JP, Pattison SH, Parks JW, et al. Reducing human error in urology: Lessons from aviation. BJU Int 2008;91:3-6. https://doi.org/10.1111/j.1464-410X.2003.04005.x
3. McKinney WM. The aviation paradigm and surgical education. J Am Coll Surg 2005;201:110-7. https://doi.org/10.1016/j.jamcollsurg.2005.02.024
4. Torkington J, Smith SG, Rees Bl, et al. Skill transfer from virtual reality to a real laparoscopic task. Surg Endosc 2001;15:1076-9. https://doi.org/10.1007/s00460000233
5. Andreae PB, Woodrum DT, Birkmeyer JD, et al. Laparoscopic skills are improved with lapmentor™ training: Results of a randomized, double-blinded study. Ann Surg 2006;243:854-60. https://doi.org/10.1097/01.sla.0000219641.79092.e5
6. Sedlack RE, Kobis JC. Computer simulator training enhances the competency of gastrointestinal fellows at colonoscopy: Results of a pilot study. J Gastroenterol Hepatol 2004;19:3-7. https://doi.org/10.1111/j.1440-1746.2004.03271.x
7. Wignall GR, Demetrius JD, Premeringer GM, et al. Surgical simulation: A urological perspective. J Urol 2008;179:1690-9. https://doi.org/10.1016/j.juro.2008.01.014
8. Aydin A, Rascan N, Khan NS, et al. Simulation-based training and assessment in urological surgery. Nat Rev Urol 2016;13:503-19. https://doi.org/10.1038/nrou.2016.147
9. Aydin A, Shah AM, Shamim Khan M, et al. Current status of simulation and training models in urological surgery: A systematic review. J Urol 2016;196:312-20. https://doi.org/10.1016/j.juro.2016.01.131
10. Bronchastel O, Aydin A, Abboudi H, et al. Simulation-based uroresection training: A systematic review. J Surg Educ 2015;72:135-43. https://doi.org/10.1016/j.jsurg.2014.07.003
11. Morgan M, Aydin A, Salih A, et al. Current status of simulation-based training tools in orthopaedic surgery: A systematic review. J Surg Educ 2017;74:698-716. https://doi.org/10.1016/j.jsurg.2017.01.005
12. Musabih O, Aydin A, Al Omar Y, et al. Current status of simulation in otolaryngology: A systematic review. J Surg Educ 2017;74:203-15. https://doi.org/10.1016/j.jsurg.2016.09.007
13. Mahner D, Lüben A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097
14. Van Noordwijk SS, Lansbury TS, Jensen AR, et al. Mediation analysis for establishing validity in surgical simulation studies. Surgery 2016;150:622-30. https://doi.org/10.1016/j.surg.2016.07.087
15. Tov C, Kheirjaria A, Gupta C. Simulation training: A systematic review of simulation in orthopaedic and proposal of a new competency-based training framework. Int J Surg 2014;12:626-33. https://doi.org/10.1016/j.ijsu.2014.04.005
16. Carter FJ, Schifrin MR, Appawawal R, et al. Consensus guidelines for validation of virtual reality surgical simulators. Surg Endosc 2005;19:1523-32. https://doi.org/10.1007/s00464-005-0384-2
17. Jiang C, Liu M, Chen J, et al. Construct validity of the chicken crop model in the simulation of laparoscopic pyeloplasty. J Endourol 2013;27:1032-6. https://doi.org/10.1089/end.2013.0085
18. Yang KM, Bellman GC. Laparoscopic urethral valve anastomosis: A model to assess surgical competency. J Endourol 2006;20:679-82. https://doi.org/10.1089/end.2006.20.679
19. Laguna MP, Arocio-Moaza A, Machtar CA, et al. Construct validity of the chicken model in the simulation of laparoscopic radical prostatectomy surgery. J Endourol 2006;20:679-73. https://doi.org/10.1089/end.2006.20.679
E600

CUJM • November 2020 • Volume 14, Issue 11

Correspondence: Dr. Abdullahi Aydin, NR Centre for Transplantation, Guy’s Hospital, King’s College London, London, United Kingdom; abdullahi.aydin@kcl.ac.uk