Designing new sustainable anti-landslide systems under constrained city conditions

T P Kasharina, D V Kasharin and D A Polyakov

1Federal State Budget Educational Institution of Higher Education, Platov South-Russian State Polytechnic University (NPI), 132 Prosveshcheniya St., 346428, Novocherkassk, Russian Federation

E-mail: kasharina tp@mail.ru, dendvk1@mail.ru, dan.polyakov2011@yandex.ru

Abstract. This article discusses the development of technical solutions for anti-erosion and landslide impact designs in the design and construction of buildings and structures in cramped urban conditions. They are created from composite nanomaterials. Many foreign and domestic scientists are engaged in such structures from soil-reinforced and soil-filled elements. We also examined the methods of calculating their justification and the results of experimental studies.

1. Measures to eliminate landslide phenomena

Currently, a number of environmental and social problems arise during construction in cramped urban conditions associated with natural and technological impacts, including erosion-landslide phenomena. To address this issue, the authors propose technical solutions and measures to preserve the sustainable development of urban construction. Table 1 below presents measures for the elimination of erosion-landslide phenomena in urban development [1-3].

Types of changes	The causes of the formation of erosion-landslide phenomena	Suggested activities and solutions
Natural	Change in stress state of the soil	Creation of underground structures at the base, loading at the site of the expected bulging of earth masses, horizontal and vertical drainage; inclined slot, microplaning, trays, tracks, etc.
	Ground and surface water, weathering	Mechanical resistance to movement of earth masses: soil reinforced, soil filled, gabion retaining walls, pile rows, dowels
	The combination of a number of active reasons	Special regime in the erosion-landslide zone: fencing of construction works, operation mode
Man-made	Human activity	

Table 1. Measures to eliminate erosion-landslide phenomena
2. Technical solutions of shell structures made of composite nanomaterials

The Department of PSGiF developed technical solutions using soil-reinforced and soil-filled shell structures made of composite nanomaterials, which can be created in cramped conditions by new methods of their construction and an application for inventions has been filed to eliminate such natural and technogenic phenomena (Figure 1).

Figure 1. Technical solutions of retaining structures. 1 – soil massif; 2 – gabion element; 3 – arm tape; 4 – placeholder; 5 – drainage; 6 – moving soil massif; 7 – geotextile; 8 – fender; 9 – the front shell; 10 – internal soil-filled shell; 11 – perforation for removal of the filtration stream; 12 – front wall; 13 – front element; 14 – rectilinear arm tape; 15 – inclined arm tape; 16 – soil-filled shell

2.1. Calculation justifications

When designing retaining structures from soil-reinforced elements (Figure 1), the maximum horizontal force T, which keeps the slope in equilibrium for given soil characteristics (approximately for a triangular distribution of soil pressure), should be determined by the following relationship:

$$ T = \frac{1}{2} \cdot K_a \cdot \gamma \cdot H^2, $$
where $K_a = t g^2 \left(\frac{\pi}{4} - \frac{\varphi}{2} \right)$ is the coefficient of active soil pressure;

γ is the specific gravity of soil, kN/m³; H is the height of reinforced layer, m; φ is the angle of internal friction of the embankment.

When using straight and inclined arm tape, the calculation of the forces in them can be carried out according to the following relationship:

$$T_0 = T_1 + T_2 = \int_0^{l_1} 2 \cdot b_1 \cdot m_1 \cdot f_1 \cdot \gamma \cdot h \cdot dl_1 + \int_0^{l_2} 2 \cdot b_2 \cdot m_2 \cdot f_2 \cdot \gamma \cdot h \cdot dl_2$$

where T_0 is the total tensile force in all layers of reinforcement corresponding to the collapse surface, kN/m; T_1, T_2 is the tensile forces in rectilinear and obliquely located arm tape, kN/m; b_1, b_2 is the width of a straight and inclined arm tape, m; m_1, m_2 is the number of reinforcement strips per 1 m soil reinforced wall; H is the height of the considered layer of soil over armor tape; f_1, f_2 is the rebar coefficient of soil, where $f = t g(\varphi)$ (φ of the soil internal friction); l_1, l_2 is the straight and inclined arm tape length, m; γ is the bulk density of the embankment t/m³; k is the coefficient taking into account the slope of the arm tape.

Based on Experimental studies of soil-reinforced structures, taking into account patent No.2444589, were conducted under the supervision of the doctor of technical science Kasharina T.P. by graduate students Prikhodko A.P. and Kundupyan K.S. in a flat deformation tray made of organic glass with a working space of 0.8 * 0.1 * 0.6 m, while dry sand was used as a backfill and ground-reinforced foundation [5-11].

The sizes of the front wall (150, 100, 50 mm) and the front element (50, 30, 10 mm), the length of reinforcing tapes $l = 0.7H$, where H is the total height of the moving wall, were changed.

Figure 2. The diagram of fixed deflections of horizontal and inclined reinforcing tapes, obtained using the method of photometry

Figure 2 clearly shows that inclined reinforcing tapes experience the greatest deformation and they appear at 2/3 H. This allows the most efficient use and adjustment of the parameters of the ground-reinforced mass.

The ground-filled elements with sorbents, purifying groundwater and surface water, are used as drain anchors. They are calculated according to the empirical dependencies with a load of up to 120 kPa. The deformation of the ground-filled shell was $\varepsilon = 0.3$ mm, and its tension is determined by the dependencies [12-18]:

\[e = \frac{3}{4} \left(\frac{K}{H} - 1 \right) \]
\[T = (h + y)(1-a) + (1-am)y^2 \] +
\[+ (1-am)\left(hy + \frac{y^2}{2} \right) \], \quad (3) \]

where: \(T \) is the tension force in the shell,
\[T = \frac{T_0}{\gamma_0}, \text{kN/m}. \]

The equation describing the shape of the shell is the elastic equation of the second kind:
\[y = \left(1 - \sqrt{1 - \frac{\sin^2 \varnothing}{k^2}} \right) h, \quad (4) \]

where: \(\varnothing \) is the angle of internal friction of the backfill soil, degrees; \(k \) is the modulus of elliptic integrals.

The first and second derivatives of equation (3) take the following form:
\[y' = \frac{h \sin \varnothing \cos \varnothing}{k^2 \sqrt{1 - \frac{\sin^2 \varnothing}{k^2}}} \]
\[y'' = \frac{h (k^2 \cos 2\varnothing + \sin^2 \varnothing)}{k^4 \sqrt{1 - \frac{\sin^2 \varnothing}{k^2}}} \]. \quad (5) \]

On the basis of the obtained dependencies, a program was compiled for calculating a closed ground-filled shell under load [1].

3. Conclusion

The study results are currently used in the design of the retaining structures to protect the urban area. The above calculation justifications are necessary to create simulation models.

References

[1] Kasharina T P, Kasharin D V, Prikhodko A P and Zhmaylov O V 2012 Pat RU 2444589MIK E02B 3/06 Ground-reinforced structure and method of its construction declare 07/26/2010; publ. 10.03.2012 Bull. No.7
[2] Kasharina T P, Kasharin D V, Klimenko M Yu, Kundupyan K S and Sidenko E S 2016 Pat RU 2604933 E02B 3/02 (2006.01) E02B 5/00 E02B 8/06 B82Y 30/00 Installation of the protective system of urban development and the method of its construction declare 02.26.2015; publ. 09/20/2016 Bull. No. 35
[3] Kasharina T P 2000 Perfection of structures, methods of scientific justification, design and technology of erection of lightweight hydraulic structure. Abstract of Doctor’s degree dissertation (Moscow) p 56
[4] Vidal H 1978 The development and future of reinforced earth. Proceedings of Symposium on Earth Reinforcement, Geotechnical Engineering Division of American Society of Civil Engineers (Pittsburgh, USA) p 1
[5] Rudov-Clark S, Lomov S V and Bannister M K 2003 Geometric and mechanical modelling of 3D woven composites Materials of the 14th International Conference on Composite Materials (San Diego, USA)
[6] Juran I, Schlosser F, Long N and Legeay G 1978 Full scale experiment on reinforced earth abutment in Lille Proceedings, Symposium on Earth Reinforcement, ASCE Annual Convention (Pittsburg, USA) pp 586-584
[7] Matthews F L and Rawlings R D 1999 Composite materials: engineering and science (Oxford, Alden Press) p 470
[8] Kasharin D V 2018 Structures to protect the frame and soil reinforcement structures made of composite materials Fundamentals and applied issues of geotechnics: new materials, structures, technologies and calculations: a collection of annotations (Saint-Petersburg: SPSUKU) p 60

[9] Ingold T S 1981 Soil reinforcing systems in the United Kingdom Highways and Public Works 49 (1858) p 1620

[10] Kasharina T P, Zhmaylova O V and Glagolieva A S 2010 Recommendations for use in low-rise construction of soil-filled elements with reinforcement of foundations on technogenic soils (Rostov on Don: Yuzhvodoreproukt) p 23

[11] Kasharina T P and Kasharin D V 2017 Application of shell structures made of composite nanomaterials Bulletin of Perm National Research Polytechnic University. Construction and architecture 8 (3) pp 34-40

[12] Kasharina T at all 2012 Creation of protective mono-envelope systems of artificial bases and foundations of buildings and structures and a device for its implementation Application No.2012108682 of March 6, 2012, state registration number. Reg. 03/03/2014.

[13] Kasharina T P, Zhmailova O V and Glagoleva O S. 2009 Ground-filled shell. Computer program 2010610995 (No.2009616940)

[14] Khuberian K M 1956 Rational forms of pipelines, reservoirs and pressure transitions (Moscow: Gosstroyizdat) p 206

[15] Kasharina T P and Kasharin D V 2011 Use of soil-filled bases from composite materials for water-retaining structures. Foundations of deep foundation and problems of the development of the underground space. Materials of the international conference (Perm) p 395-401

[16] Kasharina T P, Zhmailova O V and Glagoleva A S 2009 Analysis of theoretical dependencies for calculating soil-filled shells Science, Technology and Technology of the 21st Century pp 346-350

[17] Floss R and Thamm B R 1976 Bewehrte Erde - Ein neues Bauverfahren im Erd- und Grundbau Bautechnik 53 (7) pp 217-226

[18] Kasharina T P 2018 New technological solutions for structures using composite materials. Fundamentals and applied issues of geotechnics: new materials, structures, technologies and calculations: a collection of annotations (Saint-Petersburg: SPSUKU) p 60