Dislocation Majorana zero modes in perovskite oxide 2DEG

Suk Bum Chung1,2, Cheung Chan3 & Hong Yao3

Much of the current experimental efforts for detecting Majorana zero modes have been centered on probing the boundary of quantum wires with strong spin-orbit coupling. The same type of Majorana zero mode can also be realized at crystalline dislocations in 2D superconductors with the nontrivial weak topological indices. Unlike at an Abrikosov vortex, at such a dislocation, there is no other low-lying midgap state than the Majorana zero mode so that it avoids usual complications encountered in experimental detections such as scanning tunneling microscope (STM) measurements. We will show that, using the anisotropic dispersion of the t$_{2g}$ orbitals of Ti or Ta atoms, such a weak topological superconductivity can be realized when the surface two-dimensional electronic gas (2DEG) of SrTiO$_3$ or KTaO$_3$ becomes superconducting, which can occur through either intrinsic pairing or proximity to existing s-wave superconductors.

Non-Abelian braiding statistics of well-separated Majorana zero modes can provide one simpler means for realizing topological quantum computations1-2. Partly motivated by this, the search for Majorana zero modes in nature has become one of the central and challenging issues in condensed matter physics in last few years3-5. It has been recognized in recent years that superconductivity in a system where the spin-orbit coupling and the Zeeman field co-exist can be topologically non-trivial even with conventional s-wave pairings, giving rise to Majorana zero modes in topological defects6-9. Although much of the experimental investigations into this physics have focused on 1D systems, e.g. refs 10 and 11, the results are known to hold in two-dimensional (2D) systems as well. One promising arena to realize such 2D systems is the 2DEGs formed at the boundaries of perovskite transition metal oxides12. Notable examples of such 2DEGs include the (001) interface between SrTiO$_3$ and LaAlO$_3$13, the surfaces of SrTiO$_3$14,15, and KTaO$_3$16. All of them possess Rashba-type spin-orbit coupling because of the lack of inversion symmetry at the boundaries. In addition, ferromagnetism is a frequent feature of these 2DEGs17-20 even though spin-orbit coupling usually tends to suppress spin alignment. Given that intrinsic superconductivity has been observed in many of these 2DEGs19,20-24, not to mention the possibility of inducing superconductivity on the surface 2DEGs through superconducting proximity effect, one naturally asks the question whether topologically protected Majorana zero modes can be achieved in the oxide 2DEG.

One major difficulty in investigating the topology of such oxide 2DEG superconductor is the multitude of bands at the Fermi level near the Γ point. While the topologically non-trivial superconductivity in such 2DEGs has been studied with relatively simple models21-27, these studies rely on the assumption of only one or two bands crossing the Fermi level, which, however, seems to be at variance with the reported experimental data28. This is because, unlike in the simplified models, the conduction bands of these 2DEGs near the Γ point cannot be attributed to a single set of the transition metal t$_{2g}$ orbitals. Given that the formation of 2DEG requires a confining potential, it is likely that multiple quantum well channels arise from each t$_{2g}$ orbital29. Exactly how many bands occur at the Γ point is often difficult to predict as the 2DEG confining potential is highly non-universal. Since the inclusion of more bands can turn topologically non-trivial superconductor into topologically trivial superconductor (and vice versa), this is an issue that raises question about the robustness of the simple model analysis.

We show here that it is possible to obtain robust Majorana zero modes in the perovskite oxide 2DEG by using its crystalline symmetry and anisotropic dispersions. Once the crystalline translational symmetry is assumed, weak topological indices are well-defined topological invariants30,31 that are unaffected by how many bands cross the Fermi level near the Γ point. Physically, in the case of 2D superconductors breaking time-reversal-symmetry, weak topological indices can tell us whether there would be a Majorana zero mode on an edge dislocation32,33.
which can be detected with the STM tip. Although a Fermi surface crossing the boundary of the first Brillouin zone (BZ), a requirement for any non-trivial weak indices, has not been observed yet in the oxide 2DEGs, it is possible with currently available experimental techniques to tune the system to satisfy this condition. This is thanks to one universal feature of the (001) perovskite oxide 2DEG - the strong anisotropy of the band dispersion. This feature, signified by the sharp distinction between the light mass and heavy mass bands in the (001) perovskite oxide 2DEG ARPES (angle-resolved photoemission spectrum) data14-16, means that there need not be large changes in either the Fermi level or the number of electrons per unit cell in tuning the system from the band bottom to the Lifshitz phase transition point. Moreover, this Lifshitz phase transition would involve only a single heavy mass band as all the light mass bands would be at much higher energy. Indeed, this tunability makes the oxide 2DEG a unique physical system to realize the dislocation Majorana zero mode compared to the ones discussed previously34-37 as we shall show below.

Results

Band structure of the (001) perovskite oxide 2DEG. It has been known that electrons close to the Fermi level in typical (001) perovskite 2DEGs are mainly from t_{2g} bands; the bands formed by d_{yz} and d_{xz} orbitals are quasi-1D while the one by d_{xy} orbital is quasi-2D. As we are mainly interested in weak topological superconductivity in such systems, we shall focus on the electrons at the Brillouin zone boundaries, namely $k_x = \pi$ or $k_y = \pi$. One important feature of the (001) perovskite 2DEG band structure is that the electrons close to the Fermi level with $k_z = \pi$ ($k_z = \pi$) originate mostly from the quasi-1D d_{xy} (d_{xz}) orbitals. This is because the low-energy physics at the BZ boundary arises out of the heavy-mass bands, and the quasi-1D nature of the d_{xy} (d_{xz}) orbital implies the heavy-mass dispersion in the $y(x)$-direction as well as the light-mass dispersion in the $x(y)$-direction. This anisotropic dispersion can be captured by the tight-binding model,

$$
\hat{K}_0 = -\sum_{\mathbf{k},\sigma} \left[t_{\mathbf{k},\sigma} \hat{c}_{\mathbf{k},\sigma}^\dagger \hat{c}_{\mathbf{k}+\mathbf{q},\sigma} + \hat{c}_{\mathbf{k},\sigma}^\dagger \hat{c}_{\mathbf{k}+\mathbf{q},\sigma} + h.c. \right]
$$

$$(1)$$

where $c_{\mathbf{k},\sigma}$ creates an electron at site \mathbf{r} with spin polarization $\sigma = \uparrow, \downarrow$ and orbital $a = x, y$ (representing d_{xy} and d_{xz} orbitals respectively). Because of the quasi-1D natures of d_{xy} and d_{xz} orbitals, $|t| \gg |t'|$. This simple model is sufficient to explain why we can reach the Lifshitz transition by lifting the Fermi level only in the order of the heavy-mass dispersion bandwidth $4t'$ and the electron filling fraction only by $-\sqrt{t/t'}$; this would involve raising the Fermi level by -0.1 eV and adding 0.3 electrons per unit cell when compared to the KTaO$_3$ surface ARPES data16 (we also note that superconductivity has been observed around this 2D electron density for the ionic liquid gated KTaO$_3$34). Such shift in the Fermi level can be achieved by both the electrical gating and optically induced oxygen vacancies15,16,38,39; more recently, a first-principle calculation showed how a large shift in chemical potential can occur a surface 2DEG from a cubic perovskite oxide heterostructure40. Meanwhile, the contribution from the d_{xy} orbital is suppressed as it has the light-mass dispersion in both the x- and y-direction.

We further need to consider the hybridization between the d_{yz} and d_{xz} orbitals in order to obtain from them two bands, one giving rise to the outer Fermi surface closer to the van Hove singularity at crystalline momentum points $X = (\pi, 0)$ and $Y = (0, \pi)$ and the other giving rise to the inner Fermi surface closer to the Γ point. Microscopically, the hybridization between d_{yz} and d_{xz} orbitals is mainly due to the on-site atomic spin-orbit coupling $\hat{K}_{ASO} = -\lambda \sum_{\mathbf{k},\sigma} \hat{c}_{\mathbf{k},\sigma}^\dagger \hat{\tau}_y \hat{c}_{\mathbf{k}}$ and the next-nearest neighbor hopping $\hat{K}_{n=2} = -t'' \sum_{\mathbf{k},\sigma} \left[\hat{c}_{\mathbf{k},\sigma}^\dagger \hat{s}_y \hat{c}_{\mathbf{k}+\mathbf{q},\sigma} - \hat{c}_{\mathbf{k}+\mathbf{q},\sigma}^\dagger \hat{s}_y \hat{c}_{\mathbf{k},\sigma} + h.c. \right]$, where s_y are Pauli matrices with spin indices and $\hat{\tau}_y$ with orbital indices. From these hybridization terms, we obtain the outer Fermi surface dispersion of

$$
\xi(k) = -(t + t') (\cos k_x + \cos k_y) - \mu
$$

$$- \sqrt{(t - t')^2 (\cos k_x - \cos k_y)^2 + \lambda^2 + (4t'' \sin k_x \sin k_y)^2}.
$$

(2)

It is clear that, for $(t - t') \gg \lambda, t'$, the orbital hybridization would have little effect near the X/Y points except for shifting the Lifshitz transition to $\mu = -\sqrt{4(t - t')^2 + \lambda^2}$. Even with a large λ, as shown in Fig. 1(a) where we used $t = 10t' = 0.5$ eV and $\lambda = 0.26$ eV, the former approximating the first principle calculation for KTaO$_3$16,41,42 while the latter larger by roughly a factor of 2, the distinction between the heavy-mass and the light-mass bands remains sharp. Hence the physics near the $(\pi, 0)$ point would be dominated by the d_{xz} and near $(0, \pi)$ by the d_{yz} orbital.

Since the inversion symmetry is obviously broken in the surface 2DEG, the spin degeneracy at the Fermi surface should be generically split by the non-zero Rashba spin-orbit coupling. For our analysis, it will be sufficient to consider only the most generic Rashba term, which is orbital independent,

$$
\hat{K}_{RSO}^{(0)} = \alpha_0 \sum_{\mathbf{r},\tau} \left[\hat{c}_{\mathbf{r}+\hat{\tau}_y}^\dagger \hat{s}_\tau \hat{c}_{\mathbf{r}} - \hat{c}_{\mathbf{r}+\hat{\tau}_y}^\dagger \hat{s}_\tau \hat{c}_{\mathbf{r}} + h.c. \right]
$$

(3)

(see Supplementary Information for further discussions).

After taking into account the hybridization as well as spin-orbital couplings, the band dispersions are described by $\hat{K} = \hat{K}_0 + \hat{K}_{ASO} + \hat{K}_{n=2} + \hat{K}_{RSO}^{(0)}$. As the chemical potential μ moves, there is a Lifshitz transition at which the outer Fermi surface crosses the van Hove points at X and Y. As we approach the Lifshitz transition, the
low-energy band structure near the \((\pi, 0)\) point, which would mainly originate from the \(d_{xy}\) orbital, can be given by the first-quantized Hamiltonian

\[
\mathcal{H}_0(k_x, k_y) = -2t' \cos k_x - 2t \cos k_y - \mu \\
- 2\alpha \langle s_y \sin k_x - s_x \sin k_y \rangle.
\]

Likewise the band structure in the vicinity of \((0, \pi)\), which would originate mainly from the \(d_{xz}\) orbital can be obtained by the \(\pi/2\) rotation of the momentum and the spin in Eq. (4). It is also analogous to the Rashba wire that the spin degeneracy at \((0, \pi)\) remains unbroken, which means that the Fermi surface splitting does not lead to two separated Lifshitz transitions.

To realize isolated Majorana zero modes, the final necessary component of the band structure is the Zeeman field. Near the Lifshitz transition, there will be both higher density of oxygen vacancies near the surface as well as enhancement of the quasi-1D characteristics of the \(d_{xz, yz}\) orbitals. Both can give rise to ferromagnetism: the former\(^49,43\) because of the oxygen vacancy acting as the magnetic impurity\(^44\) while the latter through the inter-orbital Hund’s rule coupling\(^45\). Both of these effects should be amplified by the enhanced density of states near the van Hove singularity that occurs at the Lifshitz transition. We will consider the ferromagnetic ordering in the perpendicular direction as was observed in the experiment with the density of oxygen vacancy induced by circularly polarized light\(^39\); we also note that, in case our 2DEG that arises from the heterostructure as described in\(^40\), we can also obtain the Zeeman field by either inserting a ferromagnetic layer between the 2DEG and the insulating substrate or using an appropriate ferromagnetic insulator as the substrate. Then, the ferromagnetism-induced Zeeman coupling \(\hat{k}_Z = h_Z \sum \sigma \hat{s} \cdot \hat{d} \cdot \hat{r}\) shall split the Lifshitz transition into two separated ones, as shown in Fig. 1(b), giving rise to a finite range of \(\mu\) for which there is a single hole pocket without spin degeneracy around the \(M = (\pi, \pi)\) point; for this plot we used \(t' = 0.05\) eV with \(\alpha_0 = 0.05\) eV and \(h_Z = 0.05\) eV.

Dislocation Majorana zero mode in proximity induced superconductivity. For the superconducting state, we will first consider the case where the pairing is induced through proximity to the conventional s-wave superconductor. This will ensure the s-wave pairing in theoxide surface 2DEG. We also point out that inducing superconductivity through proximity effect can have the advantage of achieving superconductivity at higher temperature. To enhance the pairing gap magnitude, we would need strong tunneling between the superconductor and the oxide surface 2DEG. This can be achieved through using the higher-\(T_c\) two-band superconductors such as FeSe\(^46–48\); note that by symmetry, the single orbital superconductor is unlikely to have a strong tunneling to the both the \(d_{xz}\) and \(d_{yz}\) orbitals. Hence our heterostructure will consist of the capping two-band s-wave superconductor on the \((001)\) surface of SrTiO\(_3\) or KTaO\(_3\) as shown in Fig. 2(a).

The combination of the Zeeman field \(h_Z\) and the s-wave pairing gap \(|\Delta|\) in the oxide 2DEG near the Lifshitz transition can give rise to the non-trivial weak index, \(\nu = (1, 1)\), i.e. non-trivial 1D topological invariants along \(k_{xy} = \pi\). For instance, the following low-energy effective BdG Hamiltonian with \(k_x = \pi\) is exactly equivalent to the Rashba-Zeeman wire superconducting state\(^5,19\).

\[
\mathcal{H}_{I_BD}(k_x = \pi, k_y) = \mu_s \left[2t(1 - \cos k_y) - \delta_\mu + 2\alpha \langle s_x \sin k_y \rangle - s_x h_Z + \mu_\mu |\Delta|\right],
\]

where \(\mu_\mu\)'s are Pauli matrices acting on the particle-hole Nambu space, \(\delta_\mu\) is the deviation of the chemical potential from the value at the Lifshitz transition for \(h_Z = 0\), and we use the basis \((\hat{c}_{k_0}, \hat{c}_{-k_0}^\dagger, -\hat{c}_{k_1}^\dagger, \hat{c}_{-k_1}^\dagger)\). It is well known that this 1D BdG Hamiltonian is topologically equivalent to the Kitaev chain\(^50\) (class D\(^51\)) when
Figure 2. (a) shows the schematic setup of our system, with the oxide 2DEG superconductivity induced through the proximity effect and a pair of edge dislocations is on the oxide (STO or KTO, viewed from the interface) but not on the s-wave superconductor (sSC); an STM tip probes sSC. (b,c) shows the wave function profile for the Majorana zero modes on both the oxide surface and the s-wave superconductor. (d) plots the local density of states on the s-wave superconductor for various different points of the system, with the dark blue curve (point a) being taken right at the oxide dislocation position; note that both the sharp peak right above the oxide dislocation and the Majorana zero mode being the only subgap mode below the induced oxide pairing gap of ~1.2 meV.

\[\hbar^2 > |\Delta|^2 + (\delta\mu)^2. \]

The orbital hybridization will not affect the topological nature of the superconductivity as long as the s-wave pairing is intra-orbital. Given that the s-wave pairing has no spin dependence, we see that even if we take into account the band hybridization and write \(\mathcal{H}(k_y = \pi, k_y) \) in the band basis, the Zeeman coupling and the s-wave pairing terms will remain unchanged, and hence so remain the condition for the topologically non-trivial superconductivity (see Supplementary Information for details).

Because of the nontrivial weak topological indices \(\nu=0 \), unpaired Majorana zero modes occur at dislocations whose Burger’s vector \(\mathbf{B} \) in units of lattice spacings satisfies \(\mathbf{B} \cdot \nu = 1 \) (mod 2), where mod 2 is from the \(Z_2 \) nature of weak topological indices in class D. To confirm this, we have performed BdG calculations of the lattice models describing the 2DEG in proximity to a two-orbital s-wave superconductor (sSC). As shown in Fig. 2(b,c), we have obtained the Majorana zero mode at each dislocation from the numerical exact diagonalization of the real-space BdG Hamiltonian. Our calculation was done on a 240 \(\times \) 240 unit cell with periodic boundary conditions. Two edge dislocations with the Burger’s vector \(\mathbf{B} = \pm \mathbf{e}_x \) are placed by one half system size in the \(x \)-direction, with the links between the dislocations shifted as shown in Fig. 2(a) (see Methods for details on implementation). This oxide surface with the pair of dislocations is coupled by tunneling amplitude of \(t_i = 0.05 \) eV to the s-wave superconductor. The sSC has the band structure well-matched with that of the oxide surface (see Methods for the band structure details) and the pairing gap of \(|\Delta| = 0.05 \) eV. Figure 2(b,c) shows the probability distribution of the dislocation zero energy states, showing sharp peak for both the oxide surface and the sSC, even though the latter does not have any dislocation.

This wave function profile suggests that the STM would be a good experimental probe on our dislocation Majorana zero mode. When the STM tip is brought to the sSC as shown in Fig. 2(a), the local differential conductance \(\frac{dI}{dV} (r, \omega) \) is proportional to the local density of state (LDOS) of the sSC, \(\rho(r, \omega) = \sum_i |u_i(r)|^2 \delta(\omega - E_i) + |v_i(r)|^2 \delta(\omega + E_i) \) where the \(u_i, v_i \) are the electron and hole components of the \(i \)-th energy eigenstates, up to replacing the delta function by a Lorentzian with the width given by the STM energy resolution, which is chosen to be 0.1 meV for Fig. 2(d). We therefore predict that the STM will see a sharp zero bias anomaly when it is brought to the point on the sSC that is right over the dislocation, the point a of Fig. 2(d). This anomaly is unambiguously separated from the signal of other low lying states, which has a minimum energy of the induced oxide bulk pairing gap ~1.2 meV. This is because the Majorana zero mode is the only midgap state localized at the dislocation, unlike at the Abrikosov vortex where other low energy (\(-\frac{\hbar^2}{E_F} \)) bound states are present. Hence the zero bias anomaly in the crystalline dislocation can be regarded as more unambiguous signature of the Majorana zero mode than that of the Abrikosov vortex.

Dislocation Majorana zero mode in intrinsic superconductivity. We now consider the case of intrinsic superconductivity in the oxide 2DEG without proximity to conventional superconductors. When the oxide 2DEG becomes superconducting at this electron density, there arises possibility of a protected Kramer’s doublet of Majorana zero modes at each dislocation when no Zeeman field is applied. Due to the Rashba spin-orbit coupling, the intrinsic superconductivity should generically have on the Fermi surface a mixture of the s-wave pairing and the \(p \)-wave pairing, the latter with momentum-dependent Cooper pair spin state (this feature is independent of the debate on whether the pairing symmetry of the intrinsic superconductivity will follow that of the doped bulk.
Figure 3. (a) shows the energy gap Δ when we have mixture of the time-reversal invariant p-wave and the s-wave pairing, with $\eta = 0$ giving us the purely p-wave pairing and $\eta = 1$ giving us the purely s-wave pairing. Note that for $h_z = 0$, there need not be any gap closing in going from the pure p-wave to the pure s-wave pairing, suggesting that the two topological phases for the p-wave pairing - one at high h_z (in pink) and the other at low h_z (in blue) - are identical to those of the s-wave pairing. By contrast, for the case $h_z = 0$, where the time-reversal symmetry is preserved, the gap closing around $\eta = 0.7$ shows that the p-wave pairing (in orange) and the s-wave pairing are topologically distinct. (b) shows the probability distributions for the two dislocation zero energy states obtained for $h_z = 0$ and $\eta = 0.4$, which have exactly identical profile. (c) shows the energy level spacing for the eigenmodes with non-negative energies, again for $h_z = 0$ and $\eta = 0.4$. For all positive energy eigenstates, separated from the zero energy by a gap of ~ 12 meV, there is double degeneracy due to the time-reversal symmetry. At the zero energy, we used the full and dotted lines to indicate the quadruple degeneracy at the zero energy from the occupancies and vacancies of the two zero energy states originating from the Kramer’s double of Majorana zero modes at each dislocation.
conclude that the non-trivial high (trivial low) h_\parallel phase at $\eta = 1$ is topologically equivalent to that of $\eta = 0$, the purely s-wave pairing case we considered in the previous subsection. However, if we restrict ourselves to the case with time-reversal symmetry, i.e. $h_\parallel = 0$, Fig. 3(a) shows there is a gap closing around $\eta = 0.7$, consistent with the fact that the time-reversal invariant p-wave pairing ($\eta = 0$) is topologically distinct from the pure s-wave pairing ($\eta = 1$). At $\eta = 0.4$ and $h_\parallel = 0$, the two zero energy states localized at the two edge dislocations with exactly identical probability distribution, as shown in Fig. 3(b), indicates the existence of the Kramer's doublet of Majorana zero modes at each dislocation. This confirms that the existence of the Kramer's doublet of Majorana zero modes at each dislocation characterizes this time-reversal invariant topologically non-trivial phase. This means that with an STM with an s-wave superconducting tip over this dislocation, we should be able to observe time-reversal anomaly58. As in the case of the proximity induced superconductivity, these dislocation Majorana zero modes, as shown by Fig. 3(c), are the only subgap modes of the system.

Discussion

We have shown in this paper how isolated dislocation Majorana zero mode can arise from both the proximity induced and intrinsic superconductivity in the oxide 2DEG. Its existence can be considered the most pertinent criterion for the topologically non-trivial superconductivity in the oxide 2DEG, and it can be experimentally detected through STM. The crucial requirement for achieving such superconductivity is that the oxide 2DEG needs to be close to the Lifshitz transition.

The key difference between the proximity-induced and the intrinsic oxide 2DEG superconductivity is that the Zeeman field is a necessary condition for the non-trivial topology in the former but not for the latter. The physical consequence is that for the intrinsic superconductivity in the absence of the Zeeman field, the dislocation can host a Kramer's doublet of Majorana zero modes; this is not possible if the superconductivity is induced through proximity to an s-wave superconductor. By contrast, in the presence of non-zero Zeeman field, the only possible protected midgap state on a dislocation is a single Majorana zero mode regardless of the origin of superconductivity.

While our intrinsic superconductivity with the non-trivial weak index at the zero Zeeman field has the essentially same pairing symmetry as the topological superconductivity investigated by Scheurer and Schmalian27, these states are topologically distinct. From Eq.(7), our non-trivial phase requires $\delta_{\mu \nu} > 0$ while that of Scheurer and Schmalian requires $\delta_{\mu \nu} < 0$ with the Fermi surfaces enclosing the Γ point, and with this pairing symmetry the gap closing around $\delta_{\mu \nu} = 0$ cannot be avoided. This reflects the fact that, with the reflection symmetry, the topological invariant of the DIII class in 2D can be \mathbb{Z} rather than \mathbb{Z}28. The existence (absence) of the dislocation Majorana doublet for $\delta_{\mu \nu} > 0$ ($\delta_{\mu \nu} < 0$) can be regarded as a physical manifestation of this topological distinction. We leave to future work what type of interaction would favor this pairing symmetry near the Lifshitz transition.

Lastly, we want to point out that it is generically easy to change the topology of the superconducting state of the (001) perovskite oxide 2DEGs. This is because the universal anisotropic band structure makes it easy to access the van Hove singularity through gating and optically inducing oxygen vacancies. While there have been previous works on the physical realization of the the dislocation Majorana zero mode34–37, they have not provided easy means to alter the weak indices of the superconducting states. Therefore we conclude that not only is the dislocation Majorana zero mode the most robust topological feature of the oxide 2DEG superconductor but also that the oxide 2DEG superconductor is the particularly suitable system for realizing the dislocation Majorana zero mode.

Methods

Weak indices and dislocation Majorana zero modes. It is possible in a 2D superconductor on a square lattice to consider the 1D topological invariants defined along $k_{\parallel} = \pi$, which are known as the weak indices41–43. In general, the weak index ν_{i} can be defined for each time-reversal invariant momentum $G_{i}/2$ (which makes G_{i} a reciprocal lattice vector) as a topological invariant of the manifold perpendicular to G_{i}, but contains $G_{i}/2$, and hence the weak indices can be written as a single vector $\nu = \sum_{i} \nu_{i} G_{i}$, where G_{i} is the unit vector parallel to G_{i}. The C_{4v} symmetry of our 2DEG means that its ν will have only a single independent component ν and therefore can be written as $\nu = \nu (1, 1)$. The weak indices is clearly topologically protected when the system has crystalline symmetry, the topological crystalline insulators64 being one class of examples. In this paper, we will focus on its manifestation through the Majorana zero mode localized at its crystalline topological defect - the edge dislocation42–43.

We first note that the non-trivial weak indices in a superconductor imply the existence of a branch of Majorana edge modes around $k_{\parallel} = \pi$. Since restricting ourselves to the $k_{x} = \pi$ manifold means converting the 2D mean-field Hamiltonian $H_{\text{BdG}}(k_{x}, k_{y})$ into the 1D Hamiltonian $H_{\text{BdG}}(k_{y})$, the non-trivial weak index means that, for the simplest case of the class D, where the time-reversal symmetry is broken, a single protected Majorana zero mode exists at $k_{y} = \pi$ for the edge running in the x-direction. This is possible only if there is a branch of chiral Majorana edge state centered around $k_{x} = \pi$. Note that the existence of this branch of the edge state is determined by the projection of ν to the time-reversal invariant momentum (π, 0).

A single Majorana zero mode exists at the edge dislocation when there is a chiral Majorana edge state centered around $k_{y} = \pi$. To see how this arises, note that the dislocation can be created by severing all links, both through hopping and interaction, between two halves ($y < 0$ and $y > 0$) and then non-trivially re-connect the two halves to introduce the edge dislocation, with the $x < 0$ part glued back according to the original links but the $x > 0$ part has all the links altered by translating the sites of the $y > 0$ half by a lattice constant along the x-direction, which sets the Burger’s vector of this dislocation to be $B = \mathbb{Z}^{0,32}$. Now when this system was cut, there would have been Majorana edge states along the x-direction for both $y < 0$ and $y > 0$ with the opposite chirality. Hence when the system is glued back along the original links, the tunneling between the two edges would lead to the backscattering that gaps out these edge modes, with the mass gap being proportional to the tunneling amplitude. However, when the dislocation described above is introduced, there will be a qualitative effect on the tunneling between the $k_{y} = \pi$ edge state. This is because the $k_{y} = \pi$ edge mode wave function reverses its sign when we translate by one lattice site along the x-direction, the relative sign of the $k_{y} = \pi$ edge modes for $y < 0$ and $y > 0$ edges will change its
sign at the dislocation. That means that if a dislocation is introduced when we glue back with only infinitesimally weak coupling across $y = 0$, the effective low energy action along $y = 0$ for the $k_y = \pi$ edge modes would be

$$S_{\text{eff}} = \int dx \Psi^\dagger \begin{bmatrix} i\partial_t + i\partial_x + im_y \text{sgn}(x) & \text{sgn}(x) \\ -i\partial_t - i\partial_x & -im_y \text{sgn}(x) \end{bmatrix} \Psi$$

(9)

where the upper and the lower component correspond to the upper and the lower edge and m_0 is proportional to the tunneling amplitude for the $k_y = \pi$ modes; this action is well-known for having a single Majorana zero mode at our dislocation $x = 0$:

$$\Gamma_0 = \sqrt{\frac{m_0}{2}} \exp(-m_0|x|) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(10)

By contrast, the existence of the $k_y = 0$ branch is irrelevant as its tunneling amplitude does not change sign at the dislocation. Since the Majorana zero mode is protected as long as it remains separated from other Majorana zero mode, the Majorana zero mode that arose at the infinitesimal coupling across the $y = 0$ cut will persist when the coupling across $y = 0$ is increased to the bulk values. In general, the condition for the existence of the protected Majorana zero mode is $\nu \cdot \mathbf{B} \equiv 1 \mod 2$.

We can similarly show the existence of a Kramer’s doublet of Majorana zero modes at the edge dislocation when there is a helical Majorana edge state centered around $k_{\text{edge}} = \pi$. The key point here is that dislocation involves no time-reversal symmetry breaking and therefore, in the ‘cut and paste’ picture, the Kramer’s doublet needs to be maintained even with the inter-edge backscattering. Therefore, when $\tilde{i} \tilde{s}_y$ is the intra-edge time-reversal operation, the effective low energy action for the $k_y = \pi$ helical edge mode would be

$$S_{\text{eff}} = \int dx \Psi^\dagger \begin{bmatrix} i\partial_t + i\tilde{s}_y \partial_x & i(\tilde{s}_y m + \tilde{s}_y m') \text{sgn}(x) \\ -i(\tilde{s}_y m + \tilde{s}_y m') \text{sgn}(x) & i\partial_t - i\tilde{s}_y \partial_x \end{bmatrix} \Psi.$$

(11)

This action gives us two Majorana zero modes,

$$\Gamma_+ = \frac{\sqrt{m_0}}{2} \exp(-m_0|x|) \begin{bmatrix} \cos m_0 |x| \\ \sin m_0 |x| \\ \cos m_0 |x| \\ \sin m_0 |x| \end{bmatrix}$$

(12)

$$\Gamma_- = \frac{\sqrt{-m_0}}{2} \exp(-m_0|x|) \begin{bmatrix} -\sin m_0 |x| \\ \cos m_0 |x| \\ -\sin m_0 |x| \\ \cos m_0 |x| \end{bmatrix}$$

(13)

which form a Kramer’s doublet, i.e. $(\tilde{i} \tilde{s}_y) \Gamma_{\pm} = \pm \Gamma_{\pm}$.

Real space Hamiltonian with dislocation. We need to have the real-space BdG Hamiltonian in order to obtain the dislocation Majorana zero mode through exact diagonalization. We first note that the terms in our real-space Hamiltonian could be divided into three groups, the first being the onsite term,

$$\hat{H}_{\text{on site}} = \sum_r \left(-\mu + \sigma \mathbf{h}_x \right) c_{r,a \sigma}^\dagger \hat{s}_\sigma \bar{c}_{r,a \sigma} + \lambda \sum_r (c_{r,x \sigma}^\dagger \hat{s}_\sigma \bar{c}_{r,x \sigma} + \text{h.c.}) + \hat{H}_{\text{on site-pair}}$$

(14)

consisting of the chemical potential, the Zeeman energy, the atomic spin-orbit coupling and the onsite pairing, the second being the nearest neighbor terms

$$\hat{H}_{nn} = \sum_{r \perp x,y} \hat{H}_c(r),$$

$$\hat{H}_c(r) \equiv -t \sum_{a=x,y} \delta_{a,r} (c_{r+\hat{x}_a,a \sigma}^\dagger \bar{c}_{r+\hat{x}_a,a \sigma} + \text{h.c.})$$

$$-2t' \sum_{a=x,y} (1 - \delta_{a,r}) (c_{r+\hat{x}_a,a \sigma}^\dagger \bar{c}_{r+\hat{x}_a,a \sigma} + \text{h.c.})$$

$$+ t'' \sum_{a=x,y} \delta_{a,r} (1 - \delta_{a,r}) \hat{s}_\sigma \bar{c}_{r,a \sigma} + \text{h.c.}$$

$$+ \hat{H}_{nn-pair}(r, \tilde{r})$$

(15)

which includes the spin-conserving intra-orbital nearest neighbor hopping, the Rashba spin-orbit coupling, and the nearest-neighbor time-reversal invariant pairing. Lastly, we have the next-nearest neighbor hopping,
\[
\hat{H}_{\text{ann}} = \sum_{\mathbf{r}, \mathbf{s} = \pm} \hat{K}_{\mathbf{r}, \mathbf{s} \pm}^{\dagger} (\mathbf{r}), \\
\hat{K}_{\mathbf{r}, \mathbf{s} \pm} (\mathbf{r}) \equiv \mp \nu' \sum_{\mathbf{r}, \mathbf{s} = \pm} (\epsilon_{\mathbf{r} \pm}^{\dagger} \tau_{\mathbf{r} \pm}^{\dagger} \epsilon_{\mathbf{r} \mp} + \text{h.c.}).
\]

(16)

which gives us the spin-independent component of the orbital hybridization. For the proximity-induced superconductivity, we set the nearest neighbor pairing to be zero, i.e. \(\hat{H}_{\text{ann-pair}} (\mathbf{r}, \mathbf{\xi}) = 0 \), and set the onsite pairing to be originated entirely from a two-band \(s \)-wave superconductor:

\[
\hat{H}_{\text{ onsite-pair}} = - t' \sum_{\mathbf{r}} (\epsilon_{\mathbf{r} \pm}^{\dagger} \tau_{\mathbf{r} \pm}^{\dagger} \epsilon_{\mathbf{r} \mp} + \text{h.c.}) + \hat{H}_s,
\]

(17)

where \(\hat{H}_s \) is given by

\[
\hat{H}_s = - t_s \sum_{\mathbf{a} = x, y} \delta_{\mathbf{a}, \mathbf{0}} (\epsilon_{\mathbf{r} \pm}^{\dagger} \tau_{\mathbf{r} \pm}^{\dagger} \epsilon_{\mathbf{r} \mp} + \text{h.c.}) \\
- t'_s \sum_{\mathbf{a} = x, y} (1 - \delta_{\mathbf{a}, \mathbf{0}}) (\epsilon_{\mathbf{r} \pm}^{\dagger} \tau_{\mathbf{r} \pm}^{\dagger} \epsilon_{\mathbf{r} \mp} + \text{h.c.}) \\
- \mu_s \sum_{\mathbf{r}} \epsilon_{\mathbf{r} \pm}^{\dagger} \tau_{\mathbf{r} \pm}^{\dagger} \epsilon_{\mathbf{r} \mp} + |\Delta_s| \sum_{\mathbf{r}} (\epsilon_{\mathbf{r} \pm}^{\dagger} \tau_{\mathbf{r} \pm}^{\dagger} \epsilon_{\mathbf{r} \mp} + \text{h.c.})
\]

(18)

In Fig. 3, we set the pairing terms to be

\[
\hat{H}_{\text{ onsite-pair}} = \eta|\Delta_0| \left[(1 - i(2/\pi)(1 - \eta) \arctan(h_2/h_{\text{crit}})) \sum_{\mathbf{r}} (\epsilon_{\mathbf{r} \pm}^{\dagger} \tau_{\mathbf{r} \pm}^{\dagger} \epsilon_{\mathbf{r} \mp} + \text{h.c.}) \right]
\]

and

\[
\hat{H}_{\text{ann-pair}} (\mathbf{r}, \mathbf{\xi}) = - (1 - \eta) |\Delta_0| \left[(\epsilon_{\mathbf{r} \pm}^{\dagger} (\epsilon_{\mathbf{r} \mp} \tau_{\mathbf{r} \mp}) \epsilon_{\mathbf{r} \pm}^{\dagger} + \text{h.c.}) \right].
\]

(19)

where we have set \(|\Delta_0| = 0.04 \text{ eV}, |\Delta_0| = 0.08 \text{ eV}, h_{\text{crit}} = 0.01 \text{ eV} \) with \(0 < \eta < 1 \) determining the relative contribution of the \(p \)- and \(s \)-wave pairings. For the intrinsic superconductivity under a finite \(h_z \), the phase difference between the \(s \)-wave and the \(p \)-wave pairings were added so that the pairing terms would break time-reversal symmetry.

In the real space, the dislocation point serves as a starting point for a branch cut along which the nearest-neighbor Hamiltonian \(\hat{H}_s (\mathbf{r}) \) is applied on a next-nearest neighbor link. Our square lattice \(N_x = 240 \) by \(N_y = 240 \) lattice has a periodic boundary condition to both direction. In order to have a dislocations at \((N_x/4, N_y/2 + 1) \) with the Burger’s vector \(\mathbf{B} = + \mathbf{\xi}_v \), and another dislocation at \((3N_x/4, N_y/2) \) with \(\mathbf{B} = - \mathbf{\xi}_v \), we apply \(\hat{H}_{\text{edge}}^{\pm} \) on the links connecting \((n, N_y/2) \) and \((n + 1, N_y/2 + 1) \) for \(N_x/4 \leq n < 3N_x/4, \hat{K}_{\mathbf{r}, \mathbf{s} \pm}^{\dagger} \) on the link connecting \((n, N_y/2) \) and \((n + 2, N_y/2 + 1) \) for \(N_x/4 \leq n < 3N_x/4 - 1, \hat{K}_{\mathbf{r}, \mathbf{s} \pm}^{\dagger} \) on the link connecting \((n, N_y/2) \) and \((n, N_y/2 + 1) \); meanwhile between the two nearest neighbor pairs \((N_x/4, N_y/2) \) and \((N_x/4, N_y/2 + 1) \), \((3N_x/4, N_y/2) \) and \((3N_x/4, N_y/2 + 1) \) and \((3N_x/4, N_y/2 + 1) \) and \((3N_x/4, N_y/2 + 1) \), all hoppings and pairings are set to zero. Note that for the case of proximity-induced superconductivity, the \(s \)-wave superconductor remains completely free of crystalline defects.

While we set some of the parameters to be rather large for the sake of convenience in the numerical calculation, such choice does not affect the topological properties of the system. For instance, \(\lambda = 0.26 \text{ eV} \) is about factor of 2 larger than the estimated value for the tantalum atom, while \(\alpha_0 = 0.05 \text{ eV} \) is several times larger than the estimated value from the magnetoconductivity measurement\(^\text{12}\). These choices are intended to increase the bulk energy gap so that our lattice size is sufficient to see a localized dislocation zero mode. This increase in the bulk energy gap occurs away from the BZ boundary \(k_{sz} = \pi, \) e.g. the larger \(\alpha_0 \) increases the energy gap along \(k_{sz} = \pm k_s \), while the larger \(\lambda \) lifts the higher \(d_{xz,yz} \) band away from the Fermi level. Such changes do not affect weak indices, which are the 1D topological invariant along \(k_{sz} = \pi \). Concerning real materials and experiments, as long as the system is in the topological regime and the induced bulk gap is large enough, i.e. much larger than the STM resolution, the dislocation Majorana zero mode and the zero energy anomaly can be detected clearly as shown in Fig. 2(c).

Lastly, we point out that with our \(p \)-wave pairing in Fig. 3(a) for \(h_z = 0 \) allows for a finite range of \(\eta \) for which there are nodal quasiparticles. While it is possible in principle to come up with a \(p \)-wave pairing for which the energy gap closes for only a single value of \(\eta \), such \(p \)-wave pairing should have constant magnitude over the entire Fermi surface, which in general is not possible with our nearest-neighbor pairing.

References

1. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. *Ann. Phys.* **303**, 2–30 (2003).
2. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian anyons and topological quantum computation. *Rev. Mod. Phys.* **80**, 1083–1159 (2008).
3. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. *Rep. Prog. Phys.* **75**, 076501, doi: 10.1088/0034-4885/75/7/076501 (2012).
4. Tanaka, Y., Sato, M. & Nagaosa, N. Symmetry and topology in superconductors - Odd-frequency pairing and edge states -. *J. Phys. Soc. Jpn.* **81**, 011013, doi: 10.1143/JPSJ.81.011013 (2012).
5. Elliott, S. R. & Franz, M. Colloquium : Majorana fermions in nuclear, particle, and solid-state physics. *Rev. Mod. Phys.* **87**, 137–163 (2015).
35. Teo, J. C. Y. & Hughes, T. L. Existence of Majorana-fermion bound states on disclinations and the classification of topological defects and gapless modes in insulators and superconductors. Phys. Rev. Lett. 105, 177002, doi: 10.1103/PhysRevLett.105.177002 (2010).

34. Mourik, V. et al. Signature of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

33. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 81, 125318, doi: 10.1103/PhysRevB.81.125318 (2010).

32. Ran, Y. Weak indices and dislocations in general topological band structures arXiv:1006.5454 (2010).

31. Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 946, 22–30 (2007).

30. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002, doi: 10.1103/PhysRevLett.105.177002 (2010).

29. Popović, Z. S., Satpathy, S. & Martin, R. M. Origin of the two-dimensional electron gas carrier density at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 108, 117602, doi: 10.1103/PhysRevLett.108.117602 (2012).

28. Caviglia, A. D. Persistent optically induced magnetism in oxygen-deficient strontium titanate. Nat Mater 13, 481–487 (2014).

27. Scheurer, M. S. & Schmalian, J. Topological superconductivity and unconventional pairing in oxide interfaces. Nat Commun 6, 6005, doi: 10.1038/ncomms7005 (2015).

26. Caviglia, A. D. et al. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105, 236802, doi: 10.1103/PhysRevLett.105.236802 (2010).

25. Popović, Z. S., Satpathy, S. & Martin, R. M. Origin of the two-dimensional electron gas carrier density at the LaAlO3/SrTiO3 interface. Phys. Rev. B 87, 014436, doi: 10.1103/PhysRevB.87.014436 (2013).

24. Ueno, K. Electric-field-induced superconductivity in an insulator. Nat Mater 13, 481–487 (2014).

23. Kim, M., Ihm, J. & Chung, S. B. Strongly enhanced Rashba splittings in oxide heterostructure: a tantalate monolayer on BaHfO3. Nat Nanotech 8, 6005, doi:10.1038/nnano.2014.189 (2013).

22. Caviglia, A. D. et al. Electric-field-induced superconductivity in an insulator. Nat Mater 13, 481–487 (2014).

21. Reyren, N. et al. Electron correlation in oxygen vacancy in SrTiO3. Phys. Rev. B 89, 224503, doi:10.1103/PhysRevB.89.224503 (2014).

20. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat Phys 7, 766–772 (2011).

19. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat Phys 7, 114–118 (2011).

18. Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 946, 22–30 (2007).

17. Brinkman, A. M. Magnetic effects at the interface between non-magnetic oxides. Nat Mater 6, 493–496 (2007).

16. King, P. D. C. et al. Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3. Phys. Rev. Lett. 108, 117602, doi: 10.1103/PhysRevLett.108.117602 (2012).

15. Meevasana, W. et al. Creation and control of a two-dimensional electron liquid at the bare SrTeO3 surface. Nat Mater 10, 114–118 (2011).

14. Wang, Q.-Y. et al. Non-abelian statistics and topological quantum information processing in 1D wire networks. Nat Phys 7, 42–47 (2011).

13. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

12. Hwang, H. et al. Emergent phenomena at oxide interfaces. Nat Mater 11, 103–113 (2012).

11. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

10. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002, doi: 10.1103/PhysRevLett.105.177002 (2010).

9. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002, doi: 10.1103/PhysRevLett.105.177002 (2010).

8. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002, doi: 10.1103/PhysRevLett.105.177002 (2010).

7. Sato, M., Takahashi, Y. & Fujimoto, S. Non-abelian topological order in s-wave superfluids of ultracold fermionic atoms. Phys. Rev. Lett. 103, 020401, doi: 10.1103/PhysRevLett.103.020401 (2009).

6. King, P. D. C. & Caviglia, A. D. Magnetic effects at the interface between non-magnetic oxides. Nat Mater 6, 493–496 (2007).

5. Brinkman, A. M. Magnetic effects at the interface between non-magnetic oxides. Nat Mater 6, 493–496 (2007).

4. Wang, Q.-Y. et al. Non-abelian statistics and topological quantum information processing in 1D wire networks. Nat Phys 7, 42–47 (2011).

3. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002, doi: 10.1103/PhysRevLett.105.177002 (2010).

2. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002, doi: 10.1103/PhysRevLett.105.177002 (2010).

1. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002, doi: 10.1103/PhysRevLett.105.177002 (2010).
53. Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001, doi: 10.1103/PhysRevLett.103.237001 (2009).
54. Volovik, G. Fermion zero modes on vortices in chiral superconductors. JETP Lett. 70, 609–614 (1999).
55. Schooley, J. E., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting strto3, Phys. Rev. Lett. 12, 474–475 (1964).
56. Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001, doi: 10.1103/PhysRevLett.92.097001 (2004).
57. Qi, X.-L., Hughes, T. L., Raghu, S. & Zhang, S.-C. Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys. Rev. Lett. 102, 187001, doi: 10.1103/PhysRevLett.102.187001 (2009).
58. Chung, S. B., Horowitz, J. & Qi, X.-L. Time-reversal anomaly and Josephson effect in time-reversal-invariant topological superconductors. Phys. Rev. B 88, 214514, doi: 10.1103/PhysRevB.88.214514 (2013).
59. Chiu, C.-K., Yao, H. & Ryu, S. Classification of topological insulators and superconductors in the presence of reflection symmetry. Phys. Rev. B 88, 075142, doi: 10.1103/PhysRevB.88.075142 (2013).
60. Morimoto, T. & Furusaki, A. Topological classification with additional symmetries from Clifford algebras. Phys. Rev. B 88, 125129, doi: 10.1103/PhysRevB.88.125129 (2013).
61. Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B 79, 195322, doi: 10.1103/PhysRevB.79.195322 (2009).
62. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803, doi: 10.1103/PhysRevLett.98.106803 (2007).
63. Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306, doi: 10.1103/PhysRevB.75.121306 (2007).
64. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802, doi: 10.1103/PhysRevLett.106.106802 (2011).
65. Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803, doi: 10.1103/PhysRevLett.104.126803 (2010).

Acknowledgements
We would like to thank Erez Berg, Harold Y. Hwang, Minu Kim, Takahiro Morimoto, Naoto Nagaosa, Tae Won Noh, Srinivas Raghu and Shoucheng Zhang for helpful discussions. This work is supported in part by IBS-R009-Y1 (SBC), the Thousand-Young-Talent Program of China (HY), and by the NSFC under Grant No. 11474175 (CC and HY).

Author Contributions
All authors contributed significantly to the discussions as well as the writing of the manuscript. S.B.C. contributed most of the analytic derivations and C.C. contributed most of the numerical calculations.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chung, S. B. et al. Dislocation Majorana zero modes in perovskite oxide 2DEG. Sci. Rep. 6, 25184; doi: 10.1038/srep25184 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/