Use of Software Engineering on the Project Implementation Schedule of Lamreung Limpok Bridge

Abdul Muhyi¹, Miftahul Hamzi²*, Busra¹

¹ Civil Engineering Department, Politeknik Negeri Lhokseumawe, Aceh, Indonesia
² Geopolymer and Green Technology Research Center, Aceh, Indonesia

Email: Aidil.muhyi@gmail.com

Abstract. The development of technology is growing along with the time. It affects on development of construction management which several application programs are offered to facilitate construction management in term of implementing schedule and project data. The application program had facilitated the management to entry project data, manage project activities, project reports and control of project activities on lamreung limpok bridge, Lamgapang, Aceh besar, Aceh, Indonesia. The bridge incurred the expense of Rp.27.179.501.000.00 which it was supported by Aceh government budget 2018. The bridge connected the area of ulee kareng and limpok which the duration of project was 141 working days. This project consisted of 8 parameters in the activity that is the general work, drainage, work relate to land, aggregate pavement, asphalt pavement, structure, finishig, and maintenance. The issue of this study was the reach of project implementation schedule. This study will redesign the project schedule with the use of Microsoft Project 2013. The result showed that the duration of project was 122 working. Furthermore, the Gantt Chart and PDM had referred to the standard.

1. Introduction

The use of computer application programs has facilitated project managers to entry the project data, managing and controlling the project activities that had related to resources on the project. Microsoft project is an application on the processing time of a construction engineering having the ability to plan an activity, organizing, controlling time and cost. This study was conducted using the software application to facilitate the managing of construction project especially the schedule of project implementation on the bridge of Lamreung-Limpok. The length of the bridge is 276.61m with the width of 7m which it cross flood flow of the krueng aceh. The schedule of project implementation was considered as the issue so that the use of microsoft project 2013 on the project management was expected to be able to facilitate this issue.

The construction management aimed that the involvement of resources in the construction projects can be applied by the project manager. The resources of construction projects consisted of manpower, materials, machines, money and methods. The characteristic of construction project had three dimensions that was unique, resources and organization. Whereas, the process of finishing had three constraints consisted of the standard specifications, time schedule and cost[2].

The schedule of project was the determine of project activities schedule from the preparation work until finishing including material, labour and duration of activities. The parameters of in this study were gantt chart, PERT (Project Evaluation and Review Technique), and CPM (Critical Path Method). There were four process of project schedule in the precedence diagram method (PDM) such as description of work, the list of work, duration of work and PDM network [1].
Furthermore, the PDM network should link with the arrangement of plan node that described the number of activities with the relevant duration, finishing of the PDM diagram by completing the attributes and symbols, connecting the nodes with the arrows that described the interdependence between activities, figuring the earliest start (ES), earliest finish (EF), latest start (LS) and latest finish (LF) that identified the critical activities, critical paths, float and project completion duration [3].

The software of Microsoft Project was used to create and manage the project designs. Due to the facilities with the amazing benefits of this software to entry the project data, so that often caused by the operator. The Microsoft Project was used to manage the schedule of activity so that the construction project was evaluated throughout the stages of project task. Microsoft Project 2010 has advantages such as the ability to handle the activity schedule, organizing, controlling the time and cost that converted data input into an data output [5].

The Microsoft project provided the elements of project management by the combination of facilitated, capability, and flexibility so that was able to manage projects more efficiently and effectively. We got the information, control project work, schedules, financial reports, and control the team work of the project. Microsoft Project is one of the software provided which is a project administration software used to plan, manage, monitor and report data from a project [4].

2. Methodology

The location of project was in Lamreung Langgapang, Krueng Barona Jaya, Aceh Besar, Aceh. The collection of data was carried out by literature and field study. The secondary data from PT. PRIMA MANDIRI PERAPEN was used as the data in this study. The processing of data was done by using the Microsoft project application with the schedule techniques of Gantt charts and PDM. However, analysis of work duration data should be calculated by manual. Then, the item of activity and duration data was inputted to Microsoft project 2013.

3. Results and discussion

Figure 1. The schedule of project completion from task Information Summary

Figure 2. The schedule of finishing project from project summary task on PDM
Based on the analysis of Microsoft Project 2013, the result shows that the bridge project of Lamreung Limpok was finished by 103 working days compared to the secondary data (122 working days). This result was obtained by the display of task information and project tasks summary on PDM as seen in Figure 1 and Figure 2.

Table 1. The schedule to use resource of equipment in the bridge of Lamreung Limpok

No	Resource Name	Work
1	asphalt mixing plant	40 hrs
2	asphalt finisher	40 hrs
3	asphalt sprayer	16 hrs
5	compressor 4000-6500 Nm	24 hrs
6	concrete mixer 0.3-0.6 m³	72 hrs
7	crane 10-15 ton	2.184 hrs
8	dump truck 3.5 ton	928 hrs
9	excavator 80-140 hp	24 hrs
10	generator set	40 hrs
11	motor grader >100 hp	96 hrs
12	wheel loader 1.0-1.6 m³	72 hrs
13	three wheel roller 6-8 t.	32 hrs
14	tandem roller 6-8 t.	40 hrs
15	tire roller 8-10 t.	8 hrs
16	vibratory roller 5-8 t.	96 hrs
17	water pump 70-100 mm	1.272 hrs
18	water tanker 3000-4500 l.	1.016 hrs
19	welding set	224 hrs
20	asphalt distributor	16 hrs
21	base camp	128 hrs
22	truck concrete mixer	2.544 hrs
23	batching plant	1.272 hrs

Table 2. The schedule to use resource of labour in the bridge of Lamreung Limpok

No	Resource Name	Work
1	Pekerja	35.078 hrs
2	Tukang	1.936 hrs
3	Mandor	1.960 hrs
4	Operator	5.720 hrs
5	Pembantu Operator	5.792 hrs
6	Sopir / Driver	3.880 hrs
7	Pembantu Sopir I Driver	3.824 hrs
Table 3. The schedule to use resource of material in the bridge of Lamreueng Limpok

NO	Resource Name	Work
1	Pasir	13.749.77 M³
2	Agregat Kelas A	84.37 M³
3	Agregat Kelas B	112.5 M³
4	Batu Gunung/Kali	211.22 M³
5	Timbunan Tanah	1.056 M³
6	Timbunan Pilihan	105.6 M³
7	As pal	332.35 kg
8	Kerosen I Minyak Tanah	151.52 liter
9	Semen I PC (50kg)	1.092.100.16 kg
10	Laston AC – WC	172.03 ton
11	Laston AC – BC	31.32 ton
12	Baja Tulangan Polos	3.870.35 kg
13	Baja Tulangan Ulir	83.914.03 kg
14	Kawat Seton	83.984.4 kg
15	Pipa Baja Diameter 100 MM	36 M³
16	Pipa PVC	1.116 M³
17	Paku	4.146.51 kg
18	Kayu Perancah	518.31 M³
19	Expansion Joint Asphaltic Plug Tipe Fixed	61 M³'
20	Marmer	2 buah
21	Adukan Semen	2
22	Sandaran (Railling)	558 M³'
23	Elastomerik Sintetis	64 buah
24	Agregat Kasar	3.255.11 M³
25	Agregat Halus	2.021.07 M³
26	Unit Pracetak Gelagar Tipe I bentang 31,6 meter	36 buah
27	Seton Diafragma	324 M³
28	Panel full deph slab	1.377 buah
29	Cat Marka	614.25 kg
30	Thinner	330.75 liter
31	Blass Bit	141.75 kg
32	Patok Pengarah	50 buah
33	Kerb Pracetak	200 M1
34	Lampu Penerangan Jalan Lengan Tunggal	20 uah

4. Conclusion
Efforts to improve the quality of schedule plan on a project provided the increasing of project performance. The use of Microsoft project 2013 on the management project provided the short time and was able to reschedule the duration if the job has been delayed from the first schedule.
References
[1] Andrian, n. (2017). sistem informasi penjadwalan proyek dan performansi biaya pada pt. kelana buana sulawesi selatan Nurfatwa Andriani Y Dosen Jurusan Teknik Industri. Universitas Teknologi Sulawesi, 2(April), 61–70.
[2] Ervianto, W. I. (2005). Manajemen Proyek Konstruksi. In Andi (p. 268).
[3] Maddeppungeng, A., Suryani, I., & Iskandar, M. (2015). Analisis Pengendalian Penjadwalan Pembangunan Gedung Administrasi Universitas Pendidikan Indonesia (UPI) Kampus Serang Menggunakan Metode “Work Breakdown Structure (WBS)” Dan Kurva-S. Jurnal Fondasi, 4(1), 88–98.
[4] Tjakra, J., Arsjad, T., & Malingkas, G. Y. (2013). Perataan Tenaga Kerja Menggunakan Microsoft Project Pada Pekerjaan Peningkatan Jalan, 1(10), 671–677.
[5] Wijaya, G. D., Marsiano, F., & Limanto, S. (2010). studi kasus penjadwalan proyek pada proyek rumah toko x menggunakan microsoft project 2010 Pada studi kasus ini dibantu software Microsoft Project 2010 untuk merencanakan jadwal proyek dan meneliti metode CPM untuk mengetahui durasi proyek diluar dari pek, 1–8.