Some Remarks on ϕ-Dedekind rings and ϕ-Prüfer rings

Xiaolei Zhang a, Wei Qi a

a. School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China
Corresponding author: Xiaolei Zhang, E-mail: zxlrghj@163.com

Abstract

In this paper, the notions of nonnil-injective modules and nonnil-FP-injective modules are introduced and studied. Especially, we show that a ϕ-ring R is an integral domain if and only if any nonnil-injective (resp., nonnil-FP-injective) module R-module is injective (resp., FP-injective). Some new characterizations of ϕ-von Neumann regular rings, nonnil-Notherian rings and nonnil-coherent rings are given. We finally characterize ϕ-Dedekind rings and ϕ-Prüfer rings in terms of ϕ-flat modules, nonnil-injective modules and nonnil-FP-injective modules.

Key Words: nonnil-injective modules; nonnil-FP-injective modules; ϕ-Dedekind rings; ϕ-Prüfer rings.

2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 13F05.

Recall from [5] that a commutative ring R is an NP-ring if the nilpotent radical $\text{Nil}(R)$ is a prime ideal, and a ZN-ring if $Z(R) = \text{Nil}(R)$ where $Z(R)$ is the set of all zero-divisors of R. A prime ideal P of R is called divided prime if $P \subsetneq (x)$, for every $x \in R - P$. Set $\mathcal{H} = \{R|R$ is a commutative ring and $\text{Nil}(R)$ is a divided prime ideal of $R\}$. A ring R is a ϕ-ring if $R \in \mathcal{H}$. Moreover, a ZN ϕ-ring is said to be a strong ϕ-ring. Denote by $T(R)$ the localization of R at the set of all regular elements. For a ϕ-ring R, there is a ring homomorphism $\phi : T(R) \to R_{\text{Nil}(R)}$ such that $\phi(a/b) = a/b$. Denote by the ring $\phi(R)$ the image of ϕ restricted to R. In 2001, Badawi [6] investigated ϕ-chained rings (ϕ-CRs for short) which are ϕ-rings R such that for every $x, y \in R - \text{Nil}(R)$ either $x|y$ or $y|x$. In 2004, Anderson and Badawi [1] extended the notion of Prüfer domains to that of ϕ-Prüfer rings which are ϕ-rings R satisfies that each finitely generated nonnil ideal is ϕ-invertible. The authors in [1] characterized ϕ-Prüfer rings from the perspective of ring structures, which says that a ϕ-ring R is ϕ-Prüfer if and only if R_{m} is a ϕ-chained ring for any maximal ideal m of R if and only if $R/\text{Nil}(R)$ is a Prüfer domain if and only if $\phi(R)$ is Prüfer. Later in 2005, the authors in [2] generalized the concepts of Dedekind domains to the context of rings that are in the class \mathcal{H}. A ϕ-ring is called a ϕ-Dedekind ring
provided that any nonnil ideal is ϕ-invertible. They also showed that a ϕ-ring R is ϕ-Dedekind if and only if R is nonnil-Noetherian and R_m is a discrete ϕ-chained ring for any maximal ideal m of R, if and only if R is nonnil-Noetherian, ϕ-integral closed and of Krull dimension ≤ 1, if and only if $R/\text{Nil}(R)$ is a Dedekind domain. Some generalizations of Noetherian domains, coherent domains, Bezout domains and Krull domains to the context of rings that are in the class \mathcal{H} are also introduced and studied (see [1, 2, 4, 7, 8]).

The module-theoretic studies of rings in \mathcal{H} started more than a decade ago. In 2006, Yang [19] introduced nonnil-injective modules by replacing the ideals in Baer’s criterion for injective modules with nonnil ideals, and obtained that a ϕ-ring R is nonnil-Noetherian if and only if any direct sum of nonnil-injective modules is nonnil-injective. In 2013, Zhao et al. [23] introduced and studied the conceptions of ϕ-von Neumann rings which can be defined as the following characterizations: a ϕ-ring R is ϕ-von Neumann if and only if its Krull dimension is 0, if and only if any R-module is ϕ-flat, if and only if $R/\text{Nil}(R)$ is a von Neumann regular ring. In 2018, Zhao [22] gave a homological characterization of ϕ-Prüfer rings: a strong ϕ-ring R is ϕ-Prüfer if and only if each submodule of a ϕ-flat module is ϕ-flat, if and only if each nonnil ideal of R is ϕ-flat.

The main motivation of this paper is to give some characterizations of ϕ-Dedekind rings and ϕ-Prüfer rings in terms of some new versions of injective modules and FP-injective modules. We first introduce and study the notions of nonnil-injective modules and nonnil-FP-injective modules, and show that a ϕ-ring R is an integral domain if and only if any nonnil-injective module R-module is injective, if and only if any nonnil-FP-injective module R-module is FP-injective (see Theorem 1.6). Some new characterizations of ϕ-von Neumann regular rings, nonnil-Noetherian rings and nonnil-coherent rings in terms of ϕ-flat modules, nonnil-injective modules and nonnil-FP-injective modules are also given (see Theorem 1.7, Proposition 1.8 and Proposition 1.9 respectively). We obtain that a strong ϕ-ring R is a ϕ-Dedekind ring if and only if any divisible module is nonnil-injective, if and only if any h-divisible module is nonnil-injective, if and only if any nonnil ideal of R is projective (see Theorem 2.8). We also obtain that a strong ϕ-ring R is ϕ-Prüfer, if and only if any divisible module is nonnil-FP-injective, if and only if any finitely generated nonnil ideal of R is projective, if and only if any ideal of R is ϕ-flat, if and only if any R-module has an epimorphism ϕ-flat envelope (see Theorem 2.13).
1. NONNIL-INJECTIVE MODULES AND NONNIL-FP-INJECTIVE MODULES

Throughout this paper, R denotes an NP-ring with identity and all modules are unitary. We say an ideal I of R is nonnil if there exists a non-nilpotent element in I. Denote by $\text{NN}(R)$ the set of all nonnil ideals of R. It is easy to verify that $\text{NN}(R)$ is a multiplicative system of ideals. That is, $R \in \text{NN}(R)$ and $IJ \in \text{NN}(R)$ for any I and J both in $\text{NN}(R)$. Let M be an R-module. Define

$$\phi\text{-tor}(M) = \{x \in M|Ix = 0 \text{ for some } I \in \text{NN}(R)\}.$$

An R-module M is said to be ϕ-torsion (resp., ϕ-torsion free) provided that $\phi\text{-tor}(M) = M$ (resp., $\phi\text{-tor}(M) = 0$). Clearly, the class of ϕ-torsion modules is closed under submodules, quotients, direct sums and direct limits. Thus an NP-ring R is ϕ-torsion free if and only if every flat module is ϕ-torsion free if and only if R is a ZN-ring (see [22, Proposition 2.2]). The classes of ϕ-torsion modules and ϕ-torsion free modules constitute a hereditary torsion theory of finite type. Recall that an ideal I of R is regular if there exists a regular element (i.e., non-zero-divisor) in I.

Lemma 1.1. Let R be a ϕ-ring and I an ideal of R. Then the following assertions are equivalent:

1. I is a nonnil ideal of R;
2. $I/\text{Nil}(R)$ is a nonzero ideal of $R/\text{Nil}(R)$;
3. $\phi(I)$ is a regular ideal of $\phi(R)$;

Proof. (1) \iff (2): Obvious.

(1) \Rightarrow (3): Let s be a non-nilpotent element in I. Then $\frac{s}{1} \in \phi(I)$ is regular in $\phi(R)$. Indeed, suppose $\frac{s^k}{1} = 0$ in $\phi(R)$, then there exists a non-nilpotent element $u \in R$ such that $ust = 0$. Since R is a ϕ-ring, us is non-nilpotent. Thus $\frac{t}{1} = 0$ in $\phi(R)$.

(3) \Leftarrow (1): Let $\frac{s}{1}$ be an regular element in $\phi(I)$ with $s \in I$. Then s is non-nilpotent. Indeed, if $s^n = 0$ in R, then $(\frac{s}{1})^n = \frac{s^n}{1} = 0$ in $\phi(R)$ which implies $\frac{s}{1}$ is not regular in $\phi(R)$. \square

Recall that an R-module M is injective (resp., FP-injective) if $\text{Ext}_R^1(N, M) = 0$ for any (resp., finitely presented) R-module N. Now we investigate the notions of nonnil-injective modules and nonnil-FP-injective modules using ϕ-torsion modules.

Definition 1.2. Let R be an NP-ring and M an R-module.

1. M is called nonnil-injective provided that $\text{Ext}_R^1(T, M) = 0$ for any ϕ-torsion module T.

2. M is called nonnil-FP-injective provided that $\text{Ext}_R^1(T, M) = 0$ for any finitely presented ϕ-torsion module T.

3
Certainly, an R-module M is nonnil-injective if and only if $\text{Ext}^1_R(R/I, M) = 0$ for any nonnil ideal I of R (see [24, Theorem 1.7]). The class of nonnil-injective modules is closed under direct summands, direct products and extensions, and the class of nonnil-FP-injective modules is closed under pure submodules, direct sums, direct products and extensions.

Recall from [23] that an R-module M is ϕ-flat if $\text{Tor}^1_R(T, M) = 0$ for any ϕ-torsion module T. It is well-known that an R-module M is ϕ-flat if and only if $\text{Tor}^1_R(R/I, M) = 0$ for any (finitely generated) nonnil ideal I of R (see [23, Theorem 3.2]).

Proposition 1.3. Let R be an NP-ring, then the following assertions are equivalent:

1. M is ϕ-flat;
2. $\text{Hom}_R(M, E)$ is nonnil-injective for any injective module E;
3. $\text{Hom}_R(M, E)$ is nonnil-FP-injective for any injective module E;
4. if E is an injective cogenerator, then $\text{Hom}_R(M, E)$ is nonnil-injective.
5. if E is an injective cogenerator, then $\text{Hom}_R(M, E)$ is nonnil-FP-injective.

Proof. (1) \Rightarrow (2): Let T be a ϕ-torsion R-module and E an injective R-module. Since M is ϕ-flat, $\text{Ext}^1_R(T, \text{Hom}_R(M, E)) \cong \text{Hom}_R(\text{Tor}^1_R(T, M), E) = 0$. Thus $\text{Hom}_R(M, E)$ is nonnil-injective.

(2) \Rightarrow (3) \Rightarrow (5): Trivial.

(2) \Rightarrow (4) \Rightarrow (5): Trivial.

(5) \Rightarrow (1): Let I be a finitely generated nonnil ideal of R and E an injective cogenerator. Since $\text{Hom}_R(M, E)$ is nonnil-FP-injective, $\text{Hom}_R(\text{Tor}^1_R(R/I, M), E) \cong \text{Ext}^1_R(R/I, \text{Hom}_R(M, E)) = 0$. Since E is an injective cogenerator, $\text{Tor}^1_R(R/I, M) = 0$. Thus M is ϕ-flat. □

Proposition 1.4. Let R be a ϕ-ring and E an $R/\text{Nil}(R)$-module. Then E is injective over $R/\text{Nil}(R)$ if and only if E is nonnil-injective over R.

Proof. Let I be a nonnil ideal of R. Set $\overline{R} = R/\text{Nil}(R)$ and $\overline{I} = I/\text{Nil}(R)$. Let E be an \overline{R}-module. The short exact sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$ induces the long exact sequence of R-modules:

$$0 \rightarrow \text{Hom}_R(R/I, E) \rightarrow \text{Hom}_R(R, E) \rightarrow \text{Hom}_R(I, E) \rightarrow \text{Ext}^1_R(R/I, E) \rightarrow 0. \quad (a)$$

The short exact sequence $0 \rightarrow \overline{I} \rightarrow \overline{R} \rightarrow R/I \rightarrow 0$ induces the long exact sequence of \overline{R}-modules:

$$0 \rightarrow \text{Hom}_{\overline{R}}(R/I, E) \rightarrow \text{Hom}_{\overline{R}}(\overline{R}, E) \rightarrow \text{Hom}_{\overline{R}}(\overline{I}, E) \rightarrow \text{Ext}^1_{\overline{R}}(R/I, E) \rightarrow 0. \quad (b)$$
By [21] Lemma 1.6, $\text{INil}(R) = \text{Nil}(R)$. Thus $I \otimes_R \overline{R} \cong I/\text{INil}(R) \cong \overline{I}$. Consequently, we have $\text{Hom}_R(I, E) \cong \text{Hom}_{\overline{R}}(I \otimes_R \overline{R}, E) \cong \text{Hom}_R(I, \text{Hom}_{\overline{R}}(R, E)) \cong \text{Hom}_R(I, E)$ by the Adjoint Isomorphism Theorem (see [18] Theorem 2.2.16). Combining (a) and (b), we have E is injective over $R/\text{Nil}(R)$ if and only if E is nonnil-injective over R (see Lemma [11] and [1] Lemma 2.4).

Proposition 1.5. Let R be a ϕ-ring and M an FP-injective $R/\text{Nil}(R)$-module. Then M is nonnil-FP-injective over R.

Proof. Let T be a finitely presented ϕ-torsion module over R. Then there is a short exact sequence $0 \to K \to F \to T \to 0$ where F is a finitely generated free R-module and K is finitely generated R-module. Set $\overline{R} = R/\text{Nil}(R)$. By tensoring \overline{R} over R, we obtain a long exact sequence $\text{Tor}_1^R(T, \overline{R}) \to K \otimes_R \overline{R} \to F \otimes_R \overline{R} \to T \otimes_R \overline{R} \to 0$ over \overline{R}. By [21] Proposition 1.7, \overline{R} is ϕ-flat over R thus $\text{Tor}_1^R(T, \overline{R}) = 0$. It follows that $T \otimes_R \overline{R}$ is a finitely presented R-module. There exists a commutative diagram of exact rows as follows:

$$
\begin{array}{cccccc}
\longrightarrow & \text{Hom}_R(F, M) & \longrightarrow & \text{Hom}_R(K, M) & \longrightarrow & \text{Ext}^1_R(T, M) \longrightarrow 0 \\
\downarrow \cong & & \downarrow \cong & & \downarrow f \\
\longrightarrow & \text{Hom}_{\overline{R}}(F \otimes_R \overline{R}, M) & \longrightarrow & \text{Hom}_{\overline{R}}(K \otimes_R \overline{R}, M) & \longrightarrow & \text{Ext}^1_{\overline{R}}(T \otimes_R \overline{R}, M) \longrightarrow 0.
\end{array}
$$

By the Adjoint isomorphism, the left two homomorphisms are isomorphisms. It follows from the Five Lemma that f is also an isomorphism. Since M is FP-injective over \overline{R}, $\text{Ext}^1_{\overline{R}}(T \otimes_R \overline{R}, M) = 0$. Then $\text{Ext}^1_R(T, M) = 0$. Thus M is nonnil-FP-injective over R.

Obviously, any FP-injective module is nonnil-FP-injective, and any injective module is nonnil-injective. However, the converses characterize integral domains.

Theorem 1.6. Let R be a ϕ-ring. Then the following assertions are equivalent:

1. R is an integral domain;
2. any nonnil-injective module is injective;
3. any nonnil-FP-injective module is FP-injective.

Proof. (1) \Rightarrow (2) and (1) \Rightarrow (3) : Trivial.

(2) \Rightarrow (1): By [9] Theorem 3.1.6, $\text{Hom}_\mathbb{Z}(R/\text{Nil}(R), \mathbb{Q}/\mathbb{Z})$ is an injective $R/\text{Nil}(R)$-module. Thus by Proposition [12] $\text{Hom}_\mathbb{Z}(R/\text{Nil}(R), \mathbb{Q}/\mathbb{Z})$ is a nonnil-injective R-module, and thus an injective R-module. By [9] Theorem 3.2.10], $R/\text{Nil}(R)$ is a flat R-module. Let K be a finitely generated nilpotent ideal, then $K \subseteq \text{Nil}(R) \subseteq \text{Rad}(R)$. Thus $K/K\text{Nil}(R) = \frac{K \cap \text{Nil}(R)}{K \text{Nil}(R)} = \text{Tor}_1^R(R/K, R/\text{Nil}(R)) = 0$. It follows from
the Nakayama Lemma that $K = 0$. Thus $\text{Nil}(R) = 0$, and then R is an integral domain.

$(3) \Rightarrow (1)$: Similar with $(2) \Rightarrow (1)$. □

Recall from [23] that a ϕ-ring R is said to be ϕ-von Neumann if the Krull dimension of R is 0. It is well known that a ϕ-ring R is ϕ-von Neumann if and only if $R/\text{Nil}(R)$ is a von Neumann ring, if and only if any R-module is ϕ-flat (see [23, Theorem 4.1]).

Theorem 1.7. Let R be a ϕ-ring. Then the following assertions are equivalent:

1. R is a ϕ-von Neumann regular ring;
2. $R/\text{Nil}(R)$ is a field;
3. any non-nilpotent element in R is invertible.
4. any R-module is ϕ-flat;
5. any R-module is nonnil-FP-injective.
6. any R-module is nonnil-injective.

Proof. $(1) \iff (4)$: See [23, Theorem 4.1].

$(1) \Rightarrow (2)$: Since $\text{Nil}(R)$ is a prime ideal of R, $R/\text{Nil}(R)$ is a 0-dimensional domain, thus a field by [12, Theorem 3.1].

$(2) \Rightarrow (3)$: Let a be a non-nilpotent element in R. Since $R/\text{Nil}(R)$ is a field, there exists $b \in R$ such that $1 - ab \in \text{Nil}(R)$. That is, $(1 - ab)^n = 0$ for some n. It is easy to verify that a is invertible.

$(3) \Rightarrow (2) \Rightarrow (1)$: Trivial.

$(3) \Rightarrow (5)$: It follows from (3) that the only nonnil ideal of R is R itself. Let T be a finitely presented ϕ-torsion module. Then $T = \phi\text{-tor}(T) = \{x \in T | Ix = 0 \text{ for some nonnil ideal } I \text{ of } R\} = 0$. It follows that $\text{Ext}_R^1(T, M) = 0$. Consequently, M is nonnil-FP-injective.

$(5) \Rightarrow (1)$: Let I be a finitely generated nonnil ideal of R. Since for any R-module M, $\text{Ext}_R^1(R/I, M) = 0$ by (5), then R/I is projective. Thus I is an idempotent ideal of R. By [11, Proposition 1.10], I is generated by an idempotent $e \in R$. Thus R is a ϕ-von Neumann regular ring by [23, Theorem 4.1].

$(3) \Rightarrow (6)$ and $(6) \Rightarrow (5)$: Obvious. □

Recall from [7] that a ϕ-ring R is called nonnil-Noetherian if any nonnil ideal of R is finitely generated.

Proposition 1.8. Let R be a ϕ-ring. Then R is nonnil-Noetherian if and only if any nonnil-FP-injective module is nonnil-injective.

Proof. Suppose R is a nonnil-Noetherian ring. Let I be a nonnil ideal of R and M a nonnil-FP-injective module. Then I is finitely generated, and thus R/I is
finitely presented \(\phi \)-torsion. It follows that \(\text{Ext}_R^1(R/I, M) \). Consequently, \(M \) is nonnil-injective by [24, Theorem 1.7]. On the other hand, since the class of nonnil-FP-injective modules is closed under direct sums, \(R \) is a nonnil-Noetherian ring by [19, Theorem 1.9].

Recall from [4] that a \(\phi \)-ring \(R \) is called nonnil-coherent if any finitely generated nonnil ideal of \(R \) is finitely presented. A \(\phi \)-ring \(R \) is nonnil-coherent if and only if any direct product of \(\phi \)-flat modules is \(\phi \)-flat, if and only if \(R^I \) is \(\phi \)-flat for any indexing set \(I \) (see [4, Theorem 2.4]). Now we give a new characterization of nonnil-coherent rings utilizing the preenveloping properties of \(\phi \)-flat modules.

Proposition 1.9. Let \(R \) be a \(\phi \)-ring. Then \(R \) is nonnil-coherent if and only if the class of \(\phi \)-flat modules is preenveloping.

Proof. Suppose \(R \) is a nonnil-coherent ring. By [4, Theorem 2.4], the class of \(\phi \)-flat modules is closed under direct products. Note that any pure submodule of a \(\phi \)-flat module is \(\phi \)-flat. Thus the class of \(\phi \)-flat modules is preenveloping by [9, Lemma 5.3.12, Corollary 6.2.2]. On the other hand, let \(\{ F_i \}_{i \in I} \) be a family of \(\phi \)-flat modules. Let \(\prod_{i \in I} F_i \to F \) is a \(\phi \)-flat preenvelope. Then there is a factorization \(\prod_{i \in I} F_i \to F \to F_i \) for each \(i \in I \). Consequently, the natural composition \(\prod_{i \in I} F_i \to F \to \prod_{i \in I} F_i \) is an identity. Thus \(\prod_{i \in I} F_i \) is a direct summand of \(F \) and then \(\prod_{i \in I} F_i \) is \(\phi \)-flat. It follows from [4, Theorem 2.4] that \(R \) is nonnil-coherent.

The following Corollary follows from Theorem 2.8 and [9, Corollary 6.3.5].

Corollary 1.10. Let \(R \) be a nonnil-coherent ring. If the class of \(\phi \)-flat modules is closed under inverse limits, then the class of \(\phi \)-flat modules is enveloping.

2. \(\phi \)-Dedekind rings and \(\phi \)-Prüfer rings

Recall that an \(R \)-module \(E \) is said to be divisible if \(sM = M \) for any regular element \(s \in R \), and an \(R \)-module \(M \) is said to be \(h \)-divisible provided that \(M \) is a quotient of an injective module. Evidently, any injective module is \(h \)-divisible and any \(h \)-divisible module is divisible. It is well known that an integral domain \(R \) is a Dedekind domain if and only if any \(h \)-divisible module is injective, if and only if any divisible module is injective (see [18, Theorem 5.2.15] for example).

Definition 2.1. Let \(R \) be an NP-ring. An \(R \)-module \(E \) is called nonnil-divisible provided that for any \(m \in E \) and any non-nilpotent element \(a \in R \), there exists \(x \in E \) such that \(ax = m \).
Lemma 2.2. Let R be an NP-ring and E an R-module. Consider the following statements:

1. E is nonnil-divisible;
2. E is divisible;
3. $\text{Ext}^1_R(R/\langle a \rangle, E) = 0$ for any $a \not\in \text{Nil}(R)$.

Then we have $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$. Moreover, if R is a ZN-ring, all statements are equivalent.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (1)$ for ZN-rings: Trivial.

$(1) \Rightarrow (3)$: Let a be a non-nilpotent element (then regular) in R and $f : \langle a \rangle \to E$ be an R-homomorphism. Then there exists an element $x \in E$ such that $f(a) = ax$ since E is nonnil-divisible. Set $g(r) = rx$ for any $r \in R$. Then g is an extension of f to R. Thus $\text{Ext}^1_R(R/\langle a \rangle, E) = 0$.

$(1) \Rightarrow (3)$ for ZN-rings: Let a be a non-nilpotent element in R and m an element in E. Set $f(ra) = rm$. Then f is a well-defined R-homomorphism from $\langle a \rangle$ to E. Since $\text{Ext}^1_R(R/\langle a \rangle, E) = 0$, there exists an R-homomorphism $g : R \to E$ such that $g|_{\langle a \rangle} = f$. Let $x = g(1)$, then $m = f(a) = g(a) = ag(1) = ax$. Thus E is nonnil-divisible. \qed

The following result is an easy corollary of Lemma 2.2.

Corollary 2.3. Let R be a ZN-ring and E a nonnil-FP-injective R-module. Then E is a nonnil-divisible R-module.

Lemma 2.4. Let R be an NP-ring and E a nonnil-divisible R-module. Then E_p is a nonnil-divisible R_p-module for any prime ideal p of R.

Proof. Suppose E is a nonnil-divisible R-module. Let $\frac{m}{s}$ be an element in E_p and $\frac{r}{t}$ a non-nilpotent element in R_p. Then s, t and r are non-nilpotent elements in R. Thus there exists $y \in E$ such that $tm = sry$ in R. Then $\frac{m}{s} = \frac{r}{t} \cdot \frac{y}{1}$. It follows that E_p is a nonnil-divisible R_p-module. \qed

Recall from [1] that a ϕ-ring R is called a ϕ-chained ring if every $x \in R_{\text{Nil}(R)} - \phi(R)$, we have $x^{-1} \in \phi(R)$, equivalently, if for any $a, b \in R - \text{Nil}(R)$, either $a|b$ or $b|a$ in R. Moreover, a ϕ-ring R is said to be a discrete ϕ-chained ring if R is a ϕ-chained ring with at most one nonnil prime ideal and every nonnil ideal of R is principal (see [2]).

Proposition 2.5. Let R be a discrete ϕ-chained ring and E a nonnil-divisible R-module. Then E is a nonnil-injective R-module.
Proof. Let \(I \) be a nonnil ideal of \(R \). Since \(R \) is a discrete \(\phi \)-chained ring, then \(I \) is generated by a non-nilpotent element \(a \in R \). Let \(f : I \to E \) be an \(R \)-homomorphism. Then there exists \(x \in E \) such that \(f(a) = ax \) as \(E \) is divisible. Define \(g : R \to E \) by \(g(r) = rx \). Then \(g \) is an extension of \(f \) to \(R \). Hence \(E \) is a nonnil-injective \(R \)-module.

\[\square \]

Recall that a regular ideal \(I \) of \(R \) is called invertible if \(II^{-1} = R \) where \(I^{-1} = \{ x \in T(R) | Ix \subseteq R \} \). It follows from [12, Lemma 18.1] and [11, Lemma 5.3] that a regular ideal is invertible if and only if it is finitely generated and locally principal, if and only if it is projective. Recall from [11] that a nonnil ideal \(I \) of a \(\phi \)-ring \(R \) is said to be \(\phi \)-invertible provided that \(\phi(I) \) is an invertible ideal of \(\phi(R) \).

Proposition 2.6. Let \(R \) be a \(\phi \)-ring and \(I \) a nonnil ideal of \(R \). If \(I \) is projective over \(R \), then \(I \) is \(\phi \)-invertible.

Proof. Since \(I \) is a projective \(R \)-ideal, \(I \) is a direct summand of a free \(R \)-module \(R^{(x)} \). Then \(\phi(I) \) is a direct summand of a free \(\phi(R) \)-module \(\phi(R)^{(x)} \). Thus \(\phi(I) \) is a projective \(\phi(R) \)-ideal. Since \(I \) is a nonnil ideal of \(R \), \(\phi(I) \) is a regular ideal of \(\phi(R) \) by Lemma [11]. By [11, Lemma 5.3], \(\phi(I) \) is an invertible ideal of \(\phi(R) \). Thus \(I \) is \(\phi \)-invertible. \(\square \)

Recall that an integral domain \(R \) is a Dedekind domain if any nonzero ideal is invertible. Utilizing \(\phi \)-invertible, the authors in [2] introduce \(\phi \)-Dedekind rings which are generalizations of Dedekind domains to the context of rings that are in the class \(\mathcal{H} \).

Definition 2.7. A \(\phi \)-ring \(R \) is called \(\phi \)-Dedekind provided that any nonnil ideal of \(R \) is \(\phi \)-invertible.

Theorem 2.8. Let \(R \) be a \(\phi \)-ring. Then the following statements are equivalent for \(R \):

1. \(R \) is a \(\phi \)-Dedekind ring and a strong \(\phi \)-ring;
2. any divisible module is nonnil-injective;
3. any \(h \)-divisible module is nonnil-injective;
4. any nonnil ideal of \(R \) is projective.

Proof. (1) \(\Rightarrow \) (2): Let \(E \) be a divisible module and \(I \) a nonnil ideal of \(R \). By [2, Theorem 2.10], \(R \) is non-nil-Noetherian. Then \(I \) is finitely generated, and thus \(R/I \) is finitely presented. Let \(m \) be a maximal ideal of \(R \). Then \(E_m \) is a divisible module over \(R_m \) by Lemma [2.2] and Lemma [2.4]. By [2, Theorem 2.10] again, \(R_m \) is
a discrete \(\phi \)-chained ring, thus \(E_m \) is a nonnil-injective \(R_m \)-module by Proposition 2.5. By [13, Theorem 3.9.11], \(\text{Ext}^1_{R_m}(R/I, E)_m = \text{Ext}^1_{R_m}(R_m/I_m, E_m) = 0 \). Thus \(\text{Ext}^1_R(R/I, E) = 0 \). Therefore, \(E \) is nonnil-injective.

(2) \(\Rightarrow \) (3): Trival.

(3) \(\Rightarrow \) (4): Let \(N \) be an \(R \)-module, \(I \) a nonnil ideal of \(R \). There exists a long exact sequence as follows:

\[
0 = \text{Ext}^1_R(R, N) \rightarrow \text{Ext}^1_R(I, N) \rightarrow \text{Ext}^2_R(R/I, N) \rightarrow \text{Ext}^2_R(R, N) = 0.
\]

Let \(0 \rightarrow N \rightarrow E \rightarrow K \rightarrow 0 \) be an exact sequence where \(E \) is the injective envelope of \(N \). There exists a long exact sequence as follows:

\[
0 = \text{Ext}^1_R(R/I, E) \rightarrow \text{Ext}^1_R(R/I, K) \rightarrow \text{Ext}^2_R(R/I, N) \rightarrow \text{Ext}^2_R(R/I, E) = 0.
\]

Thus \(\text{Ext}^1_R(I, N) \cong \text{Ext}^2_R(R/I, N) \cong \text{Ext}^1_R(R/I, K) = 0 \) as \(K \) is nonnil-injective. It follows that \(I \) is a projective ideal of \(R \).

(4) \(\Rightarrow \) (1): It follows from Proposition 2.6 that we just need to show \(R \) is a strong \(\phi \)-ring. Indeed, Let \(a \) be non-nilpotent element in \(R \). Then \(\langle a \rangle \) is a projective ideal of \(R \). It follows [13, Corollary 2.6] that \(R \) is a strong \(\phi \)-ring. \(\square \)

The next example shows that every divisible module is not necessary nonnil-injective for \(\phi \)-Dedekind rings. Thus the condition that \(R \) is a strong \(\phi \)-ring in Theorem 2.8 cannot be removed.

Example 2.9. Let \(D \) be non-field Dedekind domain and \(K \) its quotient field. Let \(R = D(+)K/D \) be the idealization construction. Then \(\text{Nil}(R) = 0(+)K/D \). Since \(D \cong R/\text{Nil}(R) \) is a Dedekind domain, \(R \) is a \(\phi \)-Dedekind ring by [2, Theorem 2.5]. Denote by \(U(R) \) and \(U(D) \) the sets of unit elements of \(R \) and \(D \) respectively. Since \(Z(R) = \{(r, m) | r \in Z(D) \cup Z(K/D)\} = [R - U(D)](+)K/D = R - U(R) \) by [3 Theorem 3.5, Theorem 3.7], \(R \) is a total ring of quotient. Thus any \(R \)-module is divisible. However, since \(\text{Nil}(R) \) is not a maximal ideal of \(R \), there exists an \(R \)-module \(M \) which is not nonnil-injective by Theorem 1.7.

Recall that an integral domain \(R \) is a Prüfer domain if any finitely generated nonzero ideal is invertible. The following definition is a generalization of Prüfer domains to the context of rings that are in the class \(\mathcal{H} \) (see [1]).

Definition 2.10. A \(\phi \)-ring \(R \) is called \(\phi \)-Prüfer provided that any finitely generated nonnil ideal of \(R \) is \(\phi \)-invertible.

Lemma 2.11. Let \(R \) be an NP-ring, \(p \) a prime ideal of \(R \) and \(I \) an ideal of \(R \). Then \(I \) is nonnil over \(R \) if and only if \(I_p \) is nonnil over \(R_p \).
Proof. Let I be nonnil over R and x a non-nilpotent element in I. We will show the element $x/1$ in I_p is non-nilpotent in R_p. If $(x/1)^n = x^n/1 = 0$ in R_p for some positive integer n, there is an $s \in R - \mathfrak{p}$ such that $sx^n = 0$ in R. Since R is an NP-ring, $\text{Nil}(R)$ is the minimal prime ideal of R. In the integral domain $R/\text{Nil}(R)$, we have $\overline{sx^n} = 0$, thus $\overline{x^n} = 0$ since $s \not\in \text{Nil}(R)$. So $x \in \text{Nil}(R)$, a contradiction.

Let x/s be a non-nilpotent element in I_p where $x \in I$ and $s \in R - \mathfrak{p}$. Clearly, x is non-nilpotent in R and thus I is nonnil over R. \square

Proposition 2.12. Let R be an NP-ring, \mathfrak{p} a prime ideal of R and M an R-module. Then M is ϕ-torsion over R if and only $M_\mathfrak{p}$ is ϕ-torsion over $R_\mathfrak{p}$.

Proof. Let M be an R-module and $x \in M$. If $M_\mathfrak{p}$ is ϕ-torsion over $R_\mathfrak{p}$, there is a nonnil ideal I_p over $R_\mathfrak{p}$ such that $I_p x/1 = 0$ in $R_\mathfrak{p}$. Let I be the preimage of I_p in R. Then I is nonnil by Lemma 2.11. Thus there is a non-nilpotent element $t \in I$ such that $tkx = 0$ for some $k \not\in m$. Let $s = tk$. Then we have $\langle s \rangle$ is nonnil and $\langle s \rangle x = 0$. Thus M is ϕ-torsion. Suppose M is ϕ-torsion over R. Let x/s be an element in $M_\mathfrak{p}$. Then there is a nonnil ideal I such that $Ix = 0$, and thus $I_p x/s = 0$ with $I_p \in \text{Nil}(R_\mathfrak{p})$ by Lemma 2.11. It follows that $M_\mathfrak{p}$ is ϕ-torsion over $R_\mathfrak{p}$. \square

Theorem 2.13. Let R be a ϕ-ring. Then the following statements are equivalent for R:

1. R is a ϕ-Prüfer ring and a strong ϕ-ring.;
2. any divisible module is nonnil-FP-injective;
3. any h-divisible module is nonnil-FP-injective;
4. any finitely generated nonnil ideal of R is projective;
5. any (finitely generated) nonnil ideal of R is flat;
6. any (finitely generated) ideal of R is ϕ-flat;
7. any submodule of ϕ-flat module is ϕ-flat;
8. any R-module has an epimorphism ϕ-flat preenvelope;
9. any R-module has an epimorphism ϕ-flat envelope.

Proof. $(1) \Rightarrow (2)$: Let T be a finitely presented ϕ-torsion module and \mathfrak{m} a maximal ideal of R. Then by Proposition 2.12, $T_\mathfrak{m}$ is a finitely presented ϕ-torsion $R_\mathfrak{m}$-module. By [11 Corollary 2.10], $R_\mathfrak{m}$ is a ϕ-chained ring. Since R is a strong ϕ-ring, $R_\mathfrak{m}$ is a strong ϕ-ring. Thus $T_\mathfrak{m} \cong \oplus_{i=1}^n R_\mathfrak{m}/R_\mathfrak{m} x_i$ for some regular element $x_i \in R_\mathfrak{m}$ by [22 Theorem 4.1]. Let E be a divisible module. Then $E_\mathfrak{m}$ is a divisible module over $R_\mathfrak{m}$ by Lemma 2.2 and Lemma 2.4. Thus $\text{Ext}_R^1(T, E)_\mathfrak{m} = \text{Ext}_R^1(T, E) = \oplus_{i=1}^n \text{Ext}_R^1(R_\mathfrak{m}/R_\mathfrak{m} x_i, E_\mathfrak{m}) = 0$ by Lemma 2.2 and [18 Theorem 3.9.11]. It follows that $\text{Ext}_R^1(T, E) = 0$. Therefore, E is nonnil-FP-injective.
Thus there is a commutative diagram of \(R \)-modules:

\[
\begin{array}{ccccccc}
0 & \rightarrow & \text{Tor}_1^R(R/I, J) & \rightarrow & I \otimes_R J & \rightarrow & R \otimes_R J & \rightarrow & R/I \otimes_R J & \rightarrow & 0 \\
\downarrow f & & \downarrow g & & \downarrow h & & \downarrow \cong & & & \\
0 & \rightarrow & \text{Tor}_1^R(R/K, J \otimes_R \overline{R}) & \rightarrow & K \otimes_R J & \rightarrow & \overline{R} \otimes_R J & \rightarrow & \overline{R}/K \otimes_R J & \rightarrow & 0.
\end{array}
\]

Since \(g \) and \(h \) are epimorphisms, \(f \) is also an epimorphism by the Five Lemma (see \cite{[18]} Theorem 1.9.9). By (5) \(J \) is flat, then \(\text{Tor}_1^R(R/I, J) = 0 \). Thus \(\text{Tor}_1^R(R/K, L) \cong \).
\[
\text{Tor}_1^R(\overline{R}/K, J \otimes_R \overline{R}) = 0. \text{ Consequently, } \overline{R} = R/\text{Nil}(R) \text{ is a Prüfer domain. By } [11 \text{ Corollary 2.10}], R \text{ is a } \phi\text{-Prüfer ring.}
\]

(5) ⇒ (7): Let \(M \) be a \(\phi \)-flat module and \(N \) a submodule of \(M \). Let \(I \) be a nonnil ideal of \(R \), then \(I \) is flat by (6). Thus \(\text{fd}_R(R/I) \leq 1 \). By considering the long exact sequence \(\text{Tor}_2^R(R/I, M/N) \to \text{Tor}_1^R(R/I, N) \to \text{Tor}_1^R(R/I, M) \), we have \(\text{Tor}_1^R(R/I, N) = 0 \) as \(\text{Tor}_2^R(R/I, M/N) = \text{Tor}_1^R(R/I, M) = 0 \). Thus \(N \) is \(\phi \)-flat.

(7) ⇒ (6) and (9) ⇒ (8): Trivial.

(8) ⇒ (7): Let \(F \) be a \(\phi \)-flat module, \(i : K \to F \) a monomorphism and \(f : K \to F' \) an epimorphism \(\phi \)-flat preenvelope. Then there exists an homomorphism \(g : F' \to F \) such that \(i = gf \). Thus \(f \) is a monomorphism. Consequently, \(K \cong F' \) is \(\phi \)-flat.

(1) + (4) + (7) ⇒ (9): Let \(R \) be a \(\phi \)-Prüfer ring and \(I \) a finitely generated nonnil ideal of \(R \). By (4), \(I \) is projective and thus finitely presented. It follows that \(R \) is nonnil-coherent. Thus the class of \(\phi \)-flat modules is preenveloping by Proposition 1.9. Let \(\{ F_i | i \in I \} \) be a family of \(\phi \)-flat modules. Then \(\prod_{i \in I} F_i \) is \(\phi \)-flat by [4, Theorem 2.4]. By (7), the class of \(\phi \)-flat modules is closed under submodules. Thus the class of \(\phi \)-flat modules is closed under inverse limits. By corollary 1.10 the class of \(\phi \)-flat modules is enveloping.

We claim that the \(\phi \)-flat envelope of any \(R \)-module \(M \) is an epimorphism. Indeed, suppose \(f : M \to F \) be \(\phi \)-flat envelope of \(M \). Let \(f = h \circ g \) with \(g : M \to \text{Im} f \) an epimorphism and \(f : \text{Im} f \to F \) the embedding map. We will show \(g \) is the the \(\phi \)-flat envelope of \(M \). For any \(f' : M \to F' \) with \(F' \phi \)-flat, there exists \(l : F \to F' \) such that \(l \circ f = f' \). Then \(g \circ h \circ l = f' \), and thus \(g \) is a \(\phi \)-flat preenvelope of \(M \) as \(\text{Im} f \) is \(\phi \)-flat by (7). Suppose \(a : \text{Im} f \to \text{Im} f \) such that \(g = a \circ g \). Then \(a \) is an epimorphism. Consider the following commutative diagram:

\[
\begin{array}{ccc}
M & \xrightarrow{g} & \text{Im} f \xrightarrow{h} F \\
\downarrow a & & \downarrow b \\
M & \xrightarrow{g} & \text{Im} f \xrightarrow{h} F
\end{array}
\]

Since \(f = h \circ g \) is an \(\phi \)-flat envelope, there exists \(b : F \to F \) such that \(b \circ f = b \circ h \circ g = h \circ a \circ g = h \circ g = f \). Since \(g \) is an epimorphism, \(h \circ a = b \circ h \). Then \(a \) is a monomorphism, and thus \(a \) is an isomorphism. It follows that \(g \) is the \(\phi \)-flat envelope of \(M \).

\begin{remark}
Actually, Zhao [22, Theorem 4.3] showed that if \(R \) is a strong \(\phi \)-ring, then \(R \) is a \(\phi \)-Prüfer ring if and only if each submodule of a \(\phi \)-flat \(R \)-module is \(\phi \)-flat, if and only if each nonnil ideal of \(R \) is \(\phi \)-flat, if and only if finitely generated nonnil ideal of \(R \) is \(\phi \)-flat. In Theorem 2.13 we give some simple versions of [22, Theorem
\end{remark}
and several new characterizations ϕ-Prüfer ring using divisible modules, nonnil-FP-injective modules and the epimorphic enveloping properties of ϕ-flat modules.

The final example shows that every divisible R-module is not necessary nonnil-FP-injective for ϕ-Prüfer rings. Thus the condition that R is a strong ϕ-ring in Theorem 2.13 also cannot be removed.

Example 2.15. Let D be non-field Prüfer domain and K its quotient field. Let $R = D(+)K/D$ be the idealization construction. As in Example 2.9, we can show R is a ϕ-Prüfer ring and total ring of quotient. Thus any R-module is divisible. However, since $\text{Nil}(R)$ is not a maximal ideal of R, the Krull dimension of $R > 1$. Thus there exists an R-module M which is not nonnil-FP-injective by Theorem 1.7.

Acknowledgement.
The first author was supported by the Natural Science Foundation of Chengdu Aeronautic Polytechnic (No. 062026) and the National Natural Science Foundation of China (No. 12061001).

REFERENCES

[1] D. F. Anderson, A. Badawi, *On ϕ-Prüfer rings and ϕ-Bezout rings*, Houston J. Math., **30** (2004), 331-343.

[2] D. F. Anderson, A. Badawi, *On ϕ-Dedekind rings and ϕ-Krull rings*, Houston J. Math., **31** (2005), 1007-1022.

[3] D. D. Anderson, M. Winders, *Idealization of a module*, J. Commut. Algebra, **1** (2009) 3-56.

[4] K. Bacem, B. Ali, *Nonnil-coherent rings*, Beitr. Algebra Geom., **57** (2016), no. 2, 297-305.

[5] A. Badawi, *On divided commutative rings*, Comm. Algebra, **27** (1999), 1465-1474.

[6] A. Badawi, *On ϕ-chained rings and ϕ-pseudo-valuation rings*, Houston J. Math., **27** (2001), 725-736.

[7] A. Badawi, *On Nonnil-Noetherian rings*, Comm. Algebra, **31** (2003), no. 4, 1669-1677.

[8] A. Badawi, T. Lucas, *On ϕ-Mori rings*, Houston J. Math., **32** (2006), 1-32.

[9] E. E. Enochs, O. M. G. Jenda, *Relative homological algebra*, De Gruyter Exp. Math., vol. **30**, Berlin: Walter de Gruyter Co, 2011.

[10] L. Fuchs, L. Salce, *Modules over Non-Noetherian Domains*, New York: Math Surveys and Monographs, 84, AMS, 2001.

[11] Y. B. Gao, F. G. Wang, T, Xiong, *S-divisible modules and S-Dedekind rings*, J. Sichuan Normal Univ., **39** (2016) 783-789.

[12] J. A. Huckaba, *Commutative rings with Zero Divisors*, Monographs and Textbooks in Pure and Applied Mathematics, **117**, Marcel Dekker, Inc., New York, 1988.

[13] H. Kim, N. Mahdou, E. H. Oubouhou, *When every ideal is ϕ-P-flat*, Hacet. J. Math. Stat., to appear. DOI: 10.15672/hujms.1148258

[14] B. H. Maddox, *Absolutely pure modules*. Proc. Amer. Math. Soc. **18** (1967) 155-158.
[15] C. Megibben, *Absolutely pure modules*. Proc. Amer. Math. Soc. **26** (1970) 561-566.

[16] J. J. Rotman, *An Introduction to Homological Algebra*, London: Academic Press, 1979.

[17] B. Stenström, *Rings of Quotients*, Die Grundlehren Der Mathematischen Wissenschaften, Berlin: Springer-verlag, 1975.

[18] F. G. Wang, H. Kim, *Foundations of Commutative rings and Their Modules*, Singapore: Springer, 2016.

[19] X. Y. Yang, *Generalized Noetherian property of rings and modules*, Lanzhou: Northwest Normal University Library, 2006.

[20] X. L. Zhang, F. G. Wang and W. Qi, *On characterizations of w-coherent rings*, Comm. Algebra, **48** (2020), no. 11, 4681-4697.

[21] X. L. Zhang, W. Zhao, *On w-φ-flat modules and their homological dimensions*, Bull. Korean Math. Soc., **58** (2021), no. 4, 1039-1052.

[22] W. Zhao, *On ϕ-flat modules and ϕ-Prüfer rings*, J. Korean Math. Soc., **55** (2018), no. 5, 1221-1233.

[23] W. Zhao, F. G. Wang and G. H. Tang, *On φ-von Neumann regular rings*, J. Korean Math. Soc., **50** (2013), no. 1, 219-229.

[24] W. Zhao, X. L. Zhang, *On Nonnil-injective modules*, J. Sichuan Normal Univ., **42** (2019), no. 6, 808-815.