Research Article

Synthesis Characterization and Antimicrobial Activities Studies of N-{2-(4-Chlorophenyl) Acetyl} Amino Alcohols Derived From A-Amino Acids

G. Venkateshappa, G. Shivaraja, P. Raghavendra Kumar*

Department of Studies and Research in Chemistry, University College of Science, Tumkur University, Tumkur-572103, Karnataka, India

ABSTRACT

Amino acids play important roles in organisms to sustain in living state and perform as body constituents, enzymes, and antibodies. At insalubrious situations, the use of amino acid derivatives as drugs in the maintenance of normal health is a better choice than common unnatural synthetic drugs. This is due to the fact that the derivatives of the amino acid may be more biocompatible, biodegradable, and eliminate easily than others. In this sense we have made an effort and report herein the synthesis of N-{2-(4-chlorophenyl) acetyl} amino alcohols synthesized by reduction of N-{2-(4-chlorophenyl)acetyl} derivatives of (S)-amino acids such as (S)-phenylalanine, (S)-alanine, (S)-methionine, (S)-leucine, (S)-tryptophan and (S)-proline. These newly synthesized amino acid derivatives were analyzed by proton, carbon-13 NMR, and fourier-transform infrared spectroscopy (FTIR). The composition of solid derivatives was determined by elemental analysis. Further, antimicrobial activities of these derivatives were assessed on usual bacteria K. aerogenes, E. coli, S. aureus and P. desmolyticum and fungi A. flavus and C. albicans. The compounds were witnessed moderate activity than authorized antibacterial and fungal agents, Ciprofloxacin and Fluconazole, respectively. The antimicrobial studies also revealed that these derivatives could be better antifungal agents than antibacterial agents. Finally, we compared the experimental results of antimicrobial activities with docking studies.

INTRODUCTION

A wide range of proteinogenic and non-proteinogenic derivatives of amino acids and reduced amino acids (amino alcohols) have been synthesized and found applications in various fields. Peptides have been displayed properties that control the biological functions of other proteins and also antagonism towards pathogenic microorganisms; such peptides commonly have been used as therapeutic agents due to their behavior as peptidomimetics or enzyme inhibitors. There are many simple amino alcohol derivatives exhibited various biological activities such as antitumor and antibacterial. Lipidic amino alcohol derivatives and their metal complexes showed good anti-carcinogenic, immune suppressor, anti-inflammatory, and analgesic properties. Non-proteinogenic small and natural amino alcohol derivatives like Bestatin, Valinocin-A are better in anticancer activities and Microginin as ACE inhibitors. Ethambutol is also an amino alcohol derivative that has been using for many decades to treat tuberculosis patients worldwide. Nature always preferred to create microorganisms as an evolutionary adaptation, which will make upcoming microbial species has drug resistance to overcome the adapted species. This process would be continuous and challenging in a contest of research and development that has been moved towards designing modern drugs. This made to explored or synthesize a large number of normal amino alcohol derivatives in the field of pharmaceutical chemistry to get control over multi-drug resistant species.

*Corresponding Author: Dr. P. Raghavendra Kumar
Address: Department of Studies and Research in Chemistry, University College of Science, Tumkur University, Tumkur-572103, Karnataka, India
Email: raghukp1@gmail.com
Tel.: +91-9901511112

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 G. Venkateshappa et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
However, there is limited research that has been taken on alpha-amino alcohol derivatives. In this context, herein, we have designed and synthesized the 4-chlorophenylacetyl derivatives of amino alcohols starting from natural proteinogenic α-L-amino acids by the well-known reported method[11] and investigated their antimicrobial activity and compared the experimental results with docking studies.

MATERIALS AND METHODS

Reagents and various solvents procured from Spectrochem Ind. Pvt. Ltd., and SD Fine Chemicals Ind. Pvt. Ltd., and were used as received. Melting points were measured in an open capillary tube closed at one end and are reported uncorrected. FTIR spectra were recorded on the Perkin Elmer Frontier-1 FTIR spectrophotometer using the ATR. Proton, carbon-13 NMR spectra were recorded on Agilent 400MR DD2 spectrometer and chemical shifts were measured with respect to TMS in ppm. TLC was carried on prefabricated silica gel plates (Merck, 60F254) and were developed using a suitable solvent system visualized under UV light, iodine vapor, and/or by KMnO4 spray. Bacterial strains *E. coli* [NCIM-5051], *K. aerogenes* [NCIM-2098], *P. desmolyticum* [NCIM-2028], *A. flavus* [NCIM-5022], and fungal strains *C. albicans* [NCIM-3100] were procured from National Chemical Laboratory, Pune, India. Standard antibiotics Ciprofloxacin and Fluconazole were obtained from Hi-Media, Mumbai, India.

Docking studies of these compounds were carried by Discovery studio 3.5 work station equipped with Xeon processor E3e1225, 3.20 GHz, V2 quadcore personal computer with 8 GB total RAM.

SYNTHESIS

N-(4-Chlorophenylacetyl) amino acid (1.574 mmol) and THF (100 mL) were placed into two-necked 100 mL round bottom flask. The main neck was closed by a balloon with an adaptor. The reaction mixture was stirred on a magnetic stirrer at ice-cold temperature (0-4°C) for 10 minutes. Then, added the N-methyl morpholine (159.12 mg, 1.574 mmol) followed by ethyl chloroformate (170.75 mg, 1.574 mmol) and continued stirring for 10-15 minutes. Sodium borohydride (357.17 mg, 9.441 mmol) was put in a single portion into the above reaction mixture. Then, 25 mL of methanol was added slowly through the side neck of the round bottom flask using a pressure-equalizing funnel. The liberated hydrogen gas was collected in the balloon and continued the stirring under the same conditions for further 2-3 hours, then allowed the contents of the reaction mixture to attain the room temperature. After completion on total leucocyte count (TLC), the reaction system was washed with water (25 mLx3) followed by brine solution (25 mL x 3). The organic layer was dried with anhydrous sodium sulfate. The solvent was evaporated by rotary evaporator; white solid was persisted as a product. Except for methionine and proline, these derivatives are yellow liquids.

N-(4-Chlorophenyl acetyl) alaninol (4-CPA-OH)

1H NMR (400 MHz, δ ppm): 0.873-0.877 (d, C(CH3), J=8 Hz, 6H), 1.079-1.096 (d, CH3, J= 6.8 Hz, 3H), 3.427-3.607 (d, CH2O, 2H) 3.492 (s, Ar-CH2, 1H), 3.527 (s, NHamide 1H), 4.000-4.014 (m, CH2Chiral, 1H) 5.773 (s, NHamide 1H), 7.169-7.303 (dd, ArCH), 13C NMR (100 MHz, δ ppm): 17.55 (CH3), 41.98 (Ar-CH2), 54.81 (ArCH), 64.25 (CH2O), 128.44-136.21 (ArC), 169.72 (CO). FT-IR (υ cm-1): 3348 (O-H streching), 1645 (amide C=O and various out plane bending), 1600 (ArC=C stretching), 1554 (N-H Plane bending), 1492 (C-N, 1H), 1250 (C-N stretching), 1089 (C-O streching), 735 (C-H out plane bending), 609 (N-H out of plane bending); Colour: White; Elemental analysis Found (calcd.): C, 58.10 (58.00); H, 6.30 (6.14); Melting point: 119°C; Yield: 88%.

N-(2-Chlorophenylacetyl) leucinol (4-CPL-OH)

1H NMR (400 MHz, δ ppm): 2.550-2.841 (d, PhCH2, 2H), 3.334 (Cl-Ar-CH2), 3.262-3.388 (m, CH2O, 2H), 3.830-3.885 (m, CH2Chiral, 1H), 1.473 (t, CH3, J=7.2 Hz, 3H), 7.119-7.248 (s, ArCH, 1H), 7.982-8.002 (d, ArNH, 1H); 13C NMR (100 MHz, δ ppm): 36.98 (PhCH2), 42.051 (Cl-Ar-CH2), 52.93 (CH2Chiral), 63.17 (CH2O), 126.28-139.53 (ArC), 169.72 (COamide); FT-IR (υ cm-1): 3370 (O-H streching), 1645 (amide C=O streching), 1492 (C-N, 1H), 1250 (C-N stretching), 1089 (C-O streching), 735 (C-H out plane bending), 609 (N-H out of plane bending); Colour: White; Elemental analysis Found (calcd.): C, 62.20 (62.27); H, 6.30 (6.14); Melting point: 119°C; Yield: 94%.

N-(4-Chlorophenyl acetyl)phenylalaninol (4-CPPA-OH)

1H NMR (400 MHz, δ ppm): 1.079-1.096 (d, CH3, J= 6.8 Hz, 3H), 3.427-3.607 (d, CH2O, 2H) 3.492 (s, Ar-CH2, 1H), 3.527 (s, OH, 1H), 4.000-4.014 (m, CH2Chiral, 1H) 5.773 (s, NHamide 1H), 7.169-7.303 (dd, ArCH), 13C NMR (100 MHz, δ ppm): 17.55 (CH3), 41.98 (Ar-CH2), 54.81 (ArCH), 64.25 (CH2O), 128.44-136.21 (ArC), 169.72 (CO). FT-IR (υ cm-1): 3348 (O-H streching), 1645 (amide C=O and various out plane bending), 1600 (ArC=C stretching), 1554 (N-H Plane bending), 1492 (C-N, 1H), 1250 (C-N stretching), 1089 (C-O streching), 735 (C-H out plane bending), 609 (N-H out of plane bending); Colour: White; Elemental analysis Found (calcd.): C, 58.10 (58.00); H, 6.30 (6.14); Melting point: 119°C; Yield: 88%.
Synthesis Characterization and Antimicrobial Activities Studies of N-{2-(4-Chlorophenyl) Acetyl}...

N-(4-Chlorophenyl acetyl) Methioninol (4-CPM-OH)

1H NMR (400 MHz, δ ppm): 1.675-1.787 (d, CH₂, 2H), 2.011 (s, SCH₃, 3H), 2.395-2.430 (t, SCH₂, 2H), 3.476 (s, Cl-AR-CH₂, 2H), 3.530-3.600 (d, CH₃, 2H), 3.679 (s, O-H, 1H), 3.979-3.991 (m, CH₃chiral·1H), 6.196-6.217 (d, NHamide·J=8.4 Hz, 1H), 7.155-7.300 (d, ArCH, 4H); 13C{1H} NMR (100 MHz, δ ppm): 15.11 (S-CH₂), 42.04 (Cl-Ar-CH₂), 50.50 (CH₃chiral), 63.42 (CH₃O), 111.68-136.59 (ArC), 124.87-136.12 (ArC), 170.04 (COamide); FT-IR (ν cm⁻¹): 3694 (O-Hstretching and N-Hbending), 3137-2826 (ArC-Hstretching and overtones of various out plane bending), 1655 (amide C=Ostretching), 1554 (N-Hbending), 1492 (C-Hbending), 1445 (C-Nstretching and N-Hbending), 1254 (N-Ostretching), 1093 (C-Ostretching), 970 (C-Hout plane bending), 611 (N-Hout plane bending); Colour: Pale yellow viscous liquid; Yield: 78%.

N-{2-(4-Chlorophenyl acetyl)}tryptophnol (4-CPT-OH)

1H NMR (400 MHz, δ ppm): 2.692-2.729 (d, Indo-CH₂, 2H), 3.316 (s, Cl-AR-CH₂, 2H), 3.343-3.409 (m, CH₂O, 2H), 3.918-3.952 (m, CHchiral·1H), 4.724-4.750 (t, O-H, 1H), 6.913-7.569 (m, ArCH, 9H), 7.911-7.932 (d, NHamide·J=8.4 Hz, 1H), 10.750 (s, Indo-NH, 1H); 13C{1H} NMR (100 MHz, δ ppm): 26.95 (Indo-CH₂), 42.04 (Cl-AR-CH₂), 52.28 (CHchiral), 63.02 (CH₃O), 111.68-136.59 (ArC), 169.83 (COamide); FT-IR (ν cm⁻¹): 3480 (O-Hstretching), 1445 (C-N=Ostretching), 1380 (amide C=Ostretching), 1233 (Indole C-Nstretching), 1090 (C-Ostretching), 743 (C-Hout plane bending), 677 (N-Hout plane bending); Colour: White solid; Elemental analysis Found (Calcld.): C, 67.07 (67.15); H, 6.01 (5.92); N 4.78 (4.6); Melting Point: 147°C; Yield: 98%.

N-(4-Chlorophenyl acetyl) prolinol(4-CPP-OH)

1H NMR (400 MHz, δ ppm): 1.707-2.033 (m, CHPyrolidine and OH, 5H), 3.400-3.755 (m, NCH₂, NCHchiral, Cl-AR-CH₂ and CH₂O, 7H), 7.160-7.505 (m, ArCH); 13C{1H} NMR (100 MHz, δ ppm): 23.89 (Cpyrolidine), 27.15 (Cpyrolidine), 37.54 (Cl-PhCH₂), 47.28 (NCH₂), 59.15 (CHchiral), 61.48 (CH₂O), 128.66-132.15 (ArCH), 167.32 (C=Oamide); FT-IR (ν cm⁻¹): 3626-3163 (O-Hstretching and N-Hbending), 3055-2797 (ArC-Hstretching and overtones of various out plane bending), 1728 (AmideC=Ostretching), 1601 (ArC=Cstretching), 1492 (C-Hbending), 1439 (CH asymmetric), 1286 (C-Nstretching), 1092 (C-Ostretching), 746 (C-Hout plane bending); Colour: Pale yellow viscous liquid; Yield: 90%.

Antimicrobial Activity

The new compounds 4-CPA-OH, 4-CPL-OH, 4-CPPA-OH, 4-CPM-OH, 4-CPT-OH, and 4-CPP-OH were screened for the antimicrobial activity using agar well diffusion method. Matured broth cultures of selected bacteria and fungi strains were smeared on sterile nutrient agar and potato dextrose agar media containing plates respectively, with the help of steel cork-borer wells were made about 10 mm diameter on each inoculated plate. Synthesized samples solutions were prepared of concentrations 20 µg/µL and 10 µg/µL in DMSO. About 50 µL of differently concentrated solutions were put into the wells using a micropipette. Plates were incubated for 18–24 hours at 37°C. The activity indexes were calculated by measuring the inhibition zone.

Docking Studies

The C (30) carotenoid dehydroxylase synthase (CDS) and N-myristoyl transferase with myristoyl-CoA (NMT-CoA) are enzymes of S. aureus and C. albicans, respectively. The 3D crystallographic structures of the complexes of CDS – BPH-673[13] (PDB ID: 3ACX) and NMT-CoA-peptidic inhibitor[14] (PDB ID: 1YIK) were taken from protein data bank website. The synthesized compounds and enzymes complexes structures were optimized and minimized in protein preparation wizard[15] by using the CHARMM force field[16] to obtain the root mean square deviation (RMSD) value 0.3 Å. Synthesized 2D structures were minimized to possible conformation by using Ligprep[17] and placed into a grid of pre-processed protein for docking study by applying default parameters incorporated in maestro[18-19] applications. The extra precision (XP) mode was used to identify the binding modes of our samples with targets. The docking energy and hydrogen-bonded residues obtained from docking studies on bacteria and fungi were tabulated in Tables 1 and 2 with the binding receptor PDB ID: 3ACX and PDB ID: 1YIK, respectively.

Results and Discussion

The 4-chlorophenyl acetyl derivatives of six amino acids such as (S)-alanine (4-CPA), (S)-phenylalanine (4-CPA), (S)-methionine (4-CPM), (S)-leucine (4-CPL), (S)-tryptophan (4-CPT) and (S)-proline (4-CPP) were synthesized and reduced using borohydride and methanol system via carbonate intermediate in the presence of ethyl chloroformate resulted corresponding six new alcohol derivatives 4-CPA-OH, 4-CPPA-OH, 4-CPM-OH, 4-CPT-OH, and 4-CP-OH. The synthesis reactions (Scheme 1) of these compounds were monitored by TLC using 70:30 n-hexane and ethyl acetate mixture as a solvent phase. The composition of solid compounds was confirmed by elemental analysis. The derivatives were characterized by 1H, 13C{1H} NMR, and FTIR spectroscopy.

Int. J. Pharm. Sci. Drug Res. January-February, 2020, Vol 12, Issue 1, 11-16
In 1H spectra of these compounds, the peak for CH$_2$O protons observed at δ, 3.262 to 3.755 ppm based on the number and nature of neighboring protons and the absence of signal for the carboxylic group confirmed the reduction of the amino acid derivative into amino alcohol. A broad singlet or a multiplet observed at δ, 3.9 to 4.2 ppm, attributed to the chiral CH proton.[20] A broad singlet for alcoholic OH proton was appeared the spectra of all the compounds. All other signals are self-explanatory.

In 13C(1H) spectra, the signal for CH$_2$O carbon observed in the range of δ, 47–52 ppm. The signal for CONH carbon observed in the range δ, 169.58 to 170.04 ppm in all the compounds. The peak for chiral CH carbon appeared between δ, 62-64 ppm.

In the FTIR spectra, a band observed in the range 1644 to 1728 cm$^{-1}$ attributed to the stretching of C = O group of amide. The band for O-H and N-H stretching observed in the range of 3694- 3163 cm$^{-1}$.[21] The band for acid C=O stretching was found vanished, and the bands at 1331 and 1627 cm$^{-1}$ for COO due to symmetric and asymmetric stretching also found vanished in the products. These observations from the 1H and 13C(1H) NMR, FTIR spectra confirmed the formation of desired products.

The new derivatives containing 4-chlorophenyl, amide, and alcoholic groups were screened for antimicrobial and antifungal activity studies against selected bacteria and fungi. The results of antimicrobial activities are presented in Table 3 and are also depicted as bar diagrams Fig. 1. Ciprofloxacin and Fluconazole were used as standard antibacterial and antifungal agents for these studies.

The antibacterial activity results demonstrated that all the compounds showed activity against all the bacterial strains. Further, the compound 4-CPM-OH showed the highest activity against two bacteria K. aerogenes and P. desmolyticum, whereas the compounds 4-CPA-OH and 4-CPP-OH showed the highest activity against S. aureus and E. coli respectively. All the compounds exhibited moderate activity against both the fungal strains A. flavus and C. albicans. In addition, the compound 4-CPA-OH showed the highest activity against both of these fungal strains.

The docking studies on the refined structure of C(30) carotenoid dehydrosoqualeine synthase complex with BPH-673 had been found that most of the compounds depicted specific van der Waals interactions with the surrounding hydrophobic residues and form hydrogen bonds through hydroxyl group and amide linkage with residues (Ser19, Tyr41, Asn168, Arg171, Tyr248, Asp48, Val33) in the cavity of target protein and the docking score found in the least range -0.157 to -1.385 kcal/mol. Antifungal molecular docking studies were carried out to investigate the binding affinities of newly synthesized...
compounds and target protein 1IYK. The docking results revealed that all the compounds except 4-CPT-OH showed hydrogen bonding interactions in the binding pocket of 1IYK (Figs. 3 and 4) with docking score in the range –0.127 to –5.263 kcal/mol.

Conclusions

The N-{2-(4-chlorophenyl)acetyl} derivatives of amino alcohols were synthesized and characterized by FTIR, 1H, and 13C-NMR spectroscopic techniques. The compounds found moderate antimicrobial activity when compared
with standard drugs. Activity had been increased with an increased dosage of the respective compounds. The results also revealed that synthesized compounds could be better antifungal agents than antibacterial. Some of the compounds showed antimicrobial activity with positive docking score; hence, the compounds reduced the activities of the strains by noncompetitive inhibition manner.

References
1. Giannis A, Kolter T. Peptidomimetics for Receptor Ligands—Discovery, Development, and Medical Perspectives. Angew Chem Int Ed. 1993;32:1244-1267.
2. Goody RS, Alexandrov K, Engelhard M. Combining Chemical and Biological Techniques to Produce Modified Proteins. Chem Bio Chem. 2002; 3: 399-403.
3. Alan RK, Nader EA, Srinivasa RT, Kapil G, Zakaria KAS. An efficient method for the preparation of peptide alcohols. Org Biomol Chem. 2009;7:4444-4447.
4. de Souza Fernandes, Fabio, et al. Synthesis and evaluation of antibacterial and antitumor activities of new galactopyranosylated amino alcohols. Eur J Med Chem. 2016;108:203-210.
5. Bildirici I, Getin A, Menges N, Alan Y. Synthesis and SAR studies of pyrazole-3-carboxamides and 3-carbonyl thioureas including chiral moiety: Novel candidates as antibacterial agents. J Serb Chem Soc 2018;83(7-8):795-807.
6. Violetta CK. Synthesis and biological activities of long chain 2-amino alcohols. Lett. Pep Sci. 2002;9:143-152.
7. Bergmeier SC, Stanchina DM. Acynitrene route to vicinal amino alcohols. Application to the synthesis of (−)-bestatin and analogues. The J Org Chem. 1999;64(8):2852-2859.
8. Neumann U, Forchert A, Flury T, Weckesser J. Microcinin FR1, a linear peptide from a water bloom of Microcystis species. FEMS Microbiol Lett. 1997;153(2):475-478.
9. Burman WJ, Goldberg S, Johnson JL, Muzanye G, Engle M, Mohser AW, Choudhri S, Daley CL, Munsiff SS, Zhao Z, Vernon A. Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am J ResCri Care Med. 2006;174(3):331-338.
10. de Almeida AM, Nascimento T, Ferreira BS, de Castro PP, Silva VL, Diniz LG, Le Hyaric M. Synthesis and antimicrobial activity of novel amphiphilic aromatic amino alcohols. Bioorg MedChem Lett. 2013;23(10):2883-2887.
11. (a) George KA Convenient One-Pot Conversion of Protected Amino Acids and Peptides into Alcohols. Synthesis. 1990; 1990(4): 299-301; (b) Venkateshappa G, Raghavendra Kumar P, Krishna. Synthesis, Characterization and Antimicrobial Activity of N-2-(4-Chlorophenyl)acetyl Derivatives of (S)-Amino Acids. Asian J Chem. 2020;32(2):381-384.
12. Antara S, Amla B. Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia Azedarach L. Int J Cur Pharm Res. 2012;4(2):67-73.
13. Lin FY, Liu CL, Liu YL, Zhang Y, Wang K, Jeng WY, Ko TP, Cao R, Wang AHJ, Oldfield E. Mechanism of action and inhibition of dehydrosqualene synthase. Proc Nat Acad Sci. USA, 2010; 107: 21337-21342.
14. Sogabe S, Masubuchi M, Sakata K, Fukumi TA, Morikami K, Shiratori Y, Ebike H, Kawasaki K, Aoki Y, Shimma N, D'Arcy A, Winkler FK, Banner DW, Ohtsuka T. Crystal Structures of Candida albicans N-Myristoyltransferase with two distinct. ChemBio. 2002;9:1119-1128.
15. Protein Preparation Wizard; Epik version 2.3, 2014; Impact version 5.7, 2014, Schrödinger, LLC, New York.
16. Jorgensen WL, Maxwell DS, Tiradoe RJ. Development and Testing of the OPLS All-Atom Force Field on Conformational Energies and Properties of Organic Liquids. J Am Chem Soc. 1996;118: 11225-11236.
17. LigPrep, version 2.5, 2014, Schrödinger, LLC, New York.
18. Glide, version 5.8, 2014, Schrödinger, LLC, New York.
19. Maestro, 2014 release, Schrödinger suite, LLC, New York, 2014.
20. O’Brien P, Simon A, Osborne, Daniel DP. Asymmetric amino hydroxylation of substituted styrenes: applications in the synthesis of enantiomerically enriched arylglycinols and a diamine. J Chem Soc Perkin Trans. 1998;1:2519-2526.
21. Yuqing C, Guangyu Y. A Reduction of Chiral Amino Acids Based on Current Method. J Chem Pharma Res. 2016;8(12):139-143.

How to Cite This Article: Venkateshappa G, Shivaraja G, Kumar PR. Synthesis Characterization And Antimicrobial Activities Studies Of N-{2-(4-Chlorophenyl) Acetyl} Amino Alcohols Derived From A-Amino Acids. Int. J. Pharm. Sci. Drug Res. 2020;12(1):11-16. DOI: 10.25004/IJPSDR.2020.120102