RIGIDITY OF REDUCIBILITY OF GEVREY QUASI-PERIODIC COCYCLES ON $U(n)$

Xuanji Hou & Georgi Popov

Tome 144
Fascicule 1

2016
RIGIDITY OF REDUCIBILITY
OF GEVREY QUASI-PERIODIC COCYCLES ON $U(n)$

BY XUANJI HOU & GEORGI POPOV

Abstract. — We consider the reducibility problem of cocycles (α, A) on $T^d \times U(n)$ in Gevrey classes, where α is a Diophantine vector. We prove that, if a Gevrey cocycle is conjugated to a constant cocycle (α, C) by a suitable measurable conjugacy $(0, B)$, then for almost all C it can be conjugated to (α, C) in the same Gevrey class, provided that A is sufficiently close to a constant. If B is continuous we obtain that it is Gevrey smooth. We consider as well the global problem of reducibility in Gevrey classes when $d = 1$.

Résumé (Rigidité de réductibilité des cocycles quasi-périodiques de Gevrey sur $U(n)$)

On considère le problème de la réductibilité de cocycles (α, A) sur $T^d \times U(n)$ dans les classes de Gevrey, où α est Diophantien. Si A est proche d'une constante et le Gevrey cocycle (α, A) est conjugué au cocycle constant (α, C) par une conjugaison mesurable $(0, B)$, on montre que pour presque tous C le cocycle peut être conjugué à (α, C) dans la même classe de Gevrey. Si B est continue on obtient qu'elle est Gevrey. On considère aussi le problème de la réductibilité globale dans les classes de Gevrey dans le cas où $d = 1$.

Texte reçu le 5 juillet 2013, accepté le 21 janvier 2014.

XUANJI HOU, School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China • E-mail : hxj@mail.ccnu.edu.cn.
GEORGI POPOV, Université de Nantes, Laboratoire de mathématiques Jean Leray, CNRS: UMR 6629, France • E-mail : georgi.popov@univ-nantes.fr

Key words and phrases. — reducibility of quasi-periodic cocycles, Gevrey classes.

X.H. Supported by National Natural Science Foundation of China (Grant 11371019) and Program for New Century Excellent Talents in University (Grant NCET-12-0869).
G.P. Partially supported by Agence Nationale de la Recherche, Projet DYNPDE: ANR-2010-BLAN-102-03.
1. Introduction

This article is concerned with the reducibility of cocycles in Gevrey classes on the unitary group $U(n)$. A cocycle on $U(n)$ is a diffeomorphism of $T^d \times U(n)$, where T^d is the torus $T^d = \mathbb{R}^d / \mathbb{Z}^d$, given by the skew-product $(\alpha, A): T^d \times C^n \to T^d \times C^n$, $(\theta, v) \mapsto (\theta + \alpha, A(\theta)v)$, where $\alpha \in T^d$ and $A: T^d \to U(n)$ is a map. The corresponding dynamics is defined by the iterates of the cocycle by composition $(\alpha, A)^n$, $n \in \mathbb{Z}$. We denote by $C^r(T^d, U(n))$ ($r = 0, 1, \ldots, \omega$) the set of all C^r functions A. For any $\rho \geq 1$ and $L > 0$ we denote by $G^\rho_L(T^d, U(n))$ the class of Gevrey functions with an exponent ρ and Gevrey constant L. A map $A \in C^\infty(T^d, U(n))$ belongs to that class if it satisfies (2.10) (see Section 2.2). Denote by $SW^\rho_G(T^d, U(n))$ the set of all Gevrey quasi-periodic cocycles on $U(n)$.

The dynamics is particularly simple if (α, A) is a constant cocycle. The cocycle (α, A) is said to be constant if A is a constant matrix. Two cocycles $(\alpha, A), (\alpha, \tilde{A}) \in SW^\rho(T^d, U(n))$ are said to be conjugated if there exists $B: T^d \to U(n)$ such that $Ad(B)(\alpha, A) := (\alpha, B(\cdot + \alpha)^{-1}AB) = (\alpha, \tilde{A})$, which means that $B(\theta + \alpha)^{-1}A(\theta)B(\theta) = \tilde{A}(\theta)$ for any $\theta \in T^d$. The cocycle (α, A) is said to be reducible if it is conjugated to a constant one. We say also that the conjugation or the reducibility is Gevrey, C^r, or measurable, if B belongs to the corresponding class of functions.

Reducibility problem of cocycles has been investigated for a long time. The local reducibility problem (the cocycle is close to a constant one) is usually studied using KAM-type iterations. In particular, Eliasson’s KAM method developed in [3] gives full-measure reducibility for generic one-parameter families of cocycles [2, 4, 10, 9, 5, 6]. The global reducibility problem (cocycles are no longer close to a constant one) has been studied by Avila, Krikorian and others. By means of a renormalization scheme Krikorian obtained a global density result for C^∞ cocycles on $SU(2)$ [11] and also results for cocycles on $SL(2, \mathbb{R})$ [1, 12]. Almost reducibility for Gevrey cocycles has been studied by Chavaudret in [2].

The rigidity problem we are interested in, can be formulated as follows. Suppose that a Gevrey cocycle is measurably reducible. Is it also Gevrey reducible? In the case of C^∞ or C^r cocycles the rigidity problem has been investigated in [1, 12, 7, 6].
In this paper, we will focus our attention on the Gevrey case. We will prove a local rigidity result of reducibility in Gevrey classes which can be viewed as a Gevrey analogue of the main result in [7]. To this end we use techniques developed in [17]. When \(d = 1 \), the local result together with Krikorian’s renormalization scheme imply as in [11, 1] a global rigidity result for Gevrey quasi-periodic cocycles on \(T^1 \times U(n) \).

Why are we interested in Gevrey classes? Gevrey classes appear naturally in the KAM theory when dealing with Diophantine frequencies [16, 17]. They provide a natural framework for studying KAM systems, Birkhoff normal forms with an exponentially small reminder terms and the Nekhoroshev theory, and give an inside relation between these theories [14, 15, 16, 17]. One can consider as well the more general Roumieu classes of non-quasi-analytic functions. In the case of Bruno-Rüssmann arithmetic conditions we suggest that similar results hold in appropriate Roumieu spaces.

To formulate the main results we recall certain arithmetic conditions. Given \(\gamma > 0 \) and \(\tau > d - 1 \), we say that \(\alpha \in \mathbb{R}^d \) is \((\gamma, \tau)\)-Diophantine if
\[
|e^{2\pi i \langle k, \alpha \rangle} - 1| > \frac{\gamma^{-1}}{|k|^\tau}, \quad 0 \neq k \in \mathbb{Z}^d,
\]
and we denote by \(\text{DC} (\gamma, \tau) \) the set of all such Diophantine vectors. Hereafter, \(i := \sqrt{-1} \) stands for the imaginary unit. It is well known that \(\text{DC} (\tau) := \bigcup_{\gamma > 0} \text{DC} (\gamma, \tau) \) is a set of full Lebesgue measure. For any given \(\alpha \in \mathbb{R}^d \), we denote by \(\Upsilon (\alpha; \chi, \nu) \) the set of all vectors \((\phi_1, \ldots, \phi_n) \in \mathbb{R}^n\), satisfying
\[
|\langle k, \alpha \rangle + \phi_p - \phi_q - j| \geq \frac{\chi}{(1 + |k|)^\nu}
\]
for any \(p \neq q \in \{1, 2, \ldots, n\} \), \(k \in \mathbb{Z}^d \) and \(j \in \mathbb{Z} \). The set
\[
\Upsilon (\alpha) := \bigcup_{\chi, \nu > 0} \Upsilon (\alpha; \chi, \nu)
\]
has full Lebesgue measure in \(\mathbb{R}^n \). Recall that the Lie group \(U(n) \) consists of all \(A \in GL(n, \mathbb{C}) \) satisfying \(A^* A = I \). Hereafter, \(I \) stands for the identity matrix and \(A^* \) is the adjoint matrix to \(A \) in \(M_n = M_n (\mathbb{C}) \). The corresponding Lie algebra \(u(n) \) is the set of \(X \in gl(n, \mathbb{C}) \) satisfying \(X^* + X = 0 \). Any \(A \in U(n) \) is diagonalizable, and the set of eigenvalues of \(A \), denoted by \(\text{Spec} (A) \), is a subset of \(\{ z \in \mathbb{C} : |z| = 1 \} \). Denote by \(\Sigma (\alpha; \chi, \nu) \) the set of \(A \in U(n) \) with spectrum \(\text{Spec} (A) := \{ \lambda_1, \lambda_2, \ldots, \lambda_n \} \) satisfying
\[
|\lambda_p - \lambda_q e^{2\pi i \langle k, \alpha \rangle}| \geq \frac{\chi}{(1 + |k|)^\nu}
\]