FROM CM-FINITE TO CM-FREE

FAN KONG, PU ZHANG∗

Abstract. The aim of this paper is twofold. On one hand, we prove a slight generalization of the stability for Gorenstein categories in [SWSW] and [Huang]; and show that the relative Auslander algebra of a CM-finite algebra is CM-free. On the other hand, we describe the bounded derived category, and the Gorenstein defect category introduced in [BJO], via Gorenstein-projective objects; and we show that the Gorenstein defect category of a CM-finite algebra is triangle-equivalent to the singularity category of its relative Auslander algebra.

1. Introduction

1.1. M. Auslander and M. Bridger [AB] introduced the modules of G-dimension zero over two-sided noetherian rings. E. E. Enochs and O. M. G. Jenda [EJ1] generalized this concept and introduced Gorenstein-projective modules over any ring. This class of modules enjoys pleasant stable properties, becomes a main ingredient in the relative homological algebra, and widely used in the representation theory of algebras and algebraic geometry. See e.g. [AM], [AR], [BGS], [Buch], [EJ2], [Hap2], [Hol], [Kn]. Recent studies show that they are important not only to Gorenstein algebras, but also to non-Gorenstein ones (see e.g. [B2], [BK], [BR], [C], [CPST], [Rin], [T], [Y]).

1.2. Throughout A is an abelian category with enough projective objects unless stated otherwise, P(A) is the full subcategory of projective objects, and GP(A) is the full subcategory of Gorenstein-projective objects. Replacing P(A) by a full additive subcategory C, one similarly define a category GC(C), and G2(C) := G(G(C)). S. Sather-Wagstaff, T. Sharif and D. White proved that if C is self-orthogonal, then G2(C) = G(C); and they proposed the question: Whether G2(C) = G(C) holds for an arbitrary C? See [SWSW, 4.10, 5.8]. Recently Z. Y. Huang ([Huang, 4.1]) answered this question affirmatively. This shows that G(C), in particular GP(A), has a strong stability. We give a slight generalization of this stability by a different method. For details please see 2.1 and Theorem 3.1.

1.3. Throughout Λ-mod is the category of finitely generated left modules of Artin algebra Λ, P(Λ) the full subcategory of projective Λ-modules, and GP(Λ) the full subcategory of Gorenstein-projective Λ-modules. Clearly P(Λ) ⊆ GP(Λ). If GP(Λ) = P(Λ), then Λ

The corresponding author.

2010 Mathematical Subject Classification. 16G10, 18E30, 16G50, 18G25.

Supported by the NSF China (11271251), and Doc. Fund of Ministry of Education (20120073110058).
is called CM-free. Algebras of finite global dimension are CM-free ([EJ2, 10.2.3]), and there are also many CM-free algebras of infinite global dimension ([C]). If $GP(\Lambda)$ has only finitely many isoclasses of indecomposable objects, then Λ is called CM-finite. In this case, let E_1, \cdots, E_n be all the pairwise non-isomorphic indecomposable Gorenstein-projective modules, and $\textbf{Aus}(\Lambda)$ the relative Auslander algebra $\text{End}_{\Lambda}(\bigoplus_{1 \leq i \leq n} E_i)^{op}$. CM-finiteness and CM-freeness have been recently studied for examples in [B2], [B3], [C], [CY], [GZ], [LZ], [Rin]. In fact, CM finiteness characterizes the simple hypersurface singularity ([BGS], [CPST], [Kn]).

A CM-finite algebra Λ is Gorenstein if and only if $\text{gl.dim} \textbf{Aus}(\Lambda) < \infty$ ([LZ]; [B3]). Thus in this case $\textbf{Aus}(\Lambda)$ is CM-free. A CM-finite Gorenstein algebra Λ which is not CM-free has a non-zero singularity category, but the singularity category of $\textbf{Aus}(\Lambda)$ becomes zero. So, this is a kind of categorical resolution of singularities ([Kuz]). However, by the recent work of C. M. Ringel [Rin] there are many CM-finite algebras which are non-Gorenstein and not CM-free (see 2.3). So it is natural to study $\textbf{Aus}(\Lambda)$ also for such algebras. We prove that for an arbitrary CM-finite algebra Λ, $\textbf{Aus}(\Lambda)$ is always CM-free (Theorem 4.5). It is a Gorenstein version of Auslander’s theorem ([ARS, p.215]). For those CM-finite algebras which are non-Gorenstein and not CM-free, Theorem 4.5 means a categorical resolution of Gorenstein singularities.

Put Ω to be the class of CM-finite algebras, and Θ the class of CM-free algebras. Theorem 4.5 implies that there is a surjective map $\textbf{Aus} : \Omega \rightarrow \Theta$; moreover, it sends CM-finite Gorenstein algebras to algebras of finite global dimension, and sends CM-finite non-Gorenstein algebras to CM-free non-Gorenstein algebras. Graphically, we have

1.4. An important feature is that $GP(\mathcal{A})$ is a Frobenius category ([Ke]) with relative projective-injective objects being projective objects ([B2]), and hence the stable category $GP(\mathcal{A})$ of $GP(\mathcal{A})$ modulo $\mathcal{P}(\mathcal{A})$ is triangulated (see D. Happel [Hap1, p.16]).

The singularity category $D_{sg}^b(\mathcal{A})$ of \mathcal{A} is defined as the Verdier quotient $D^b(\mathcal{A})/K^b(\mathcal{P}(\mathcal{A}))$ (R.-O. Buchweitz [Buch], D. Orlov [O]), where $D^b(\mathcal{A})$ is the bounded derived category of
\(\mathcal{A} \), and \(K^b(\mathcal{P}(\mathcal{A})) \) is the thick subcategory consisting of bounded complexes of projective objects. It measures how far \(\mathcal{A} \) is from smoothness. Buchweitz’s Theorem ([Buch, 4.4.1]; also [Hap2, 4.6]) says that there is a triangle-embedding \(F : \mathcal{GP}(\mathcal{A}) \rightarrow D^b_{sg}(\mathcal{A}) \), and if each object of \(\mathcal{A} \) is of finite Gorenstein-projective dimension, then \(F \) is an equivalence (it is stated for \(R\text{-mod} \), but it holds also for \(\mathcal{A} \)). The converse is also true. See A. Beligiannis [B1, 6.9(8)], [BJO], and S. J. Zhu [Zhu].

Following P. A. Bergh, D. A. Jorgensen and S. Oppermann [BJO], the Gorenstein defect category of \(\mathcal{A} \) is defined as the Verdier quotient \(D^b_{\text{defect}}(\mathcal{A}) := D^b_{sg}(\mathcal{A})/\text{Im} F \). It measures how far \(\mathcal{A} \) is from Gorensteinness since \(D^b_{\text{defect}}(\mathcal{A}) = 0 \) if and only if each object of \(\mathcal{A} \) is of finite Gorenstein-projective dimension.

Another aim of this paper is to describe \(D^b_{\text{defect}}(\mathcal{A}) \).

1.5. Note that \(D^b(\mathcal{A}) \) can be interpreted as \(K^{-b}(\mathcal{P}(\mathcal{A})) \). This makes \(D^b(\mathcal{A}) \) more accessible. If \(\mathcal{A} \) is CM-contravariantly finite, we can describe \(D^b(\mathcal{A}) \) also via Gorenstein-projective objects, i.e., there is a triangle-equivalence

\[
D^b(\mathcal{A}) \cong K^{-, gp}(\mathcal{GP}(\mathcal{A}))/K^{b, ac}(\mathcal{GP}(\mathcal{A})),
\]

where \(K^{-, gp}(\mathcal{GP}(\mathcal{A})) \) is introduced in [GZ]. For details please see 2.2 and Theorem 5.1.

1.6. By introducing the category \(K_{-}^{-, b}(\mathcal{P}(\mathcal{A})) \), we describe \(D^b_{\text{defect}}(\mathcal{A}) \) as

\[
D^b_{\text{defect}}(\mathcal{A}) \cong K^{-, b}(\mathcal{P}(\mathcal{A}))/K_{-}^{-, b}(\mathcal{P}(\mathcal{A}));
\]

and if \(\mathcal{A} \) is CM-contravariantly finite, then we also have

\[
D^b_{\text{defect}}(\mathcal{A}) \cong K^{-, gp}(\mathcal{GP}(\mathcal{A}))/K^{b}(\mathcal{GP}(\mathcal{A})).
\]

For details please see Theorem 6.8. This implies that in this condition \(D^b_{\text{defect}}(\mathcal{A}) \) is completely controlled by \(\mathcal{GP}(\mathcal{A}) \). As an application, if \(\Lambda \) is CM-finite, then we get a triangle-equivalence (Corollary 6.10)

\[
D^b_{\text{defect}}(\Lambda) \cong D^b_{sg}(\mathcal{Aus}(\Lambda)).
\]

Thus the Gorenstein defect category of a CM-finite algebra can be reduced to the singularity category of a CM-free algebra.

1.7. Suppose that \(\mathcal{A} \) is CM-contravariantly finite with \(\mathcal{GP}(\mathcal{A}) \cong \mathcal{GP}(\mathcal{A}') \). One can not expect that \(\mathcal{A}' \) is also CM-contravariantly finite. However, \(D^b(\mathcal{A}') \) and \(D^b_{\text{defect}}(\mathcal{A}') \) share the same descriptions via \(\mathcal{GP}(\mathcal{A}') \). So \(D^b_{\text{defect}}(\mathcal{A}) \cong D^b_{\text{defect}}(\mathcal{A}') \). Please see Theorem 7.1.

1.8. The paper is organized as follows. In Section 2 we give necessary preliminaries and notations. In Section 3 we prove a version of the stability of \(\mathcal{G}(\mathcal{C}) \). Sections 4 is devoted to Theorem 4.5. Sections 5 and 6 are to describe \(D^b(\mathcal{A}) \) and \(D^b_{\text{defect}}(\mathcal{A}) \) via Gorenstein-projective objects. Section 7 is to prove Theorem 7.1.
2. Preliminaries and notations

2.1. Category $\mathcal{G}(\mathcal{C})$ and Gorenstein-projective objects. Let \mathcal{C} be a full additive subcategory of an abelian category \mathcal{A} (not necessarily has enough projective objects) which is closed under isomorphisms. A complex X^\bullet over \mathcal{A} is \mathcal{C}-exact (resp. \mathcal{C}-coexact) if $\text{Hom}_{\mathcal{A}}(C, X^\bullet)$ is exact (resp. $\text{Hom}_{\mathcal{A}}(X^\bullet, C)$ is exact) for each $C \in \mathcal{C}$. A \mathcal{C}-exact and \mathcal{C}-coexact complex is said to be \mathcal{C}-biexact.

Let L be an object of \mathcal{A}. An exact complex $X^\bullet = (X^i, d^i)$ over \mathcal{A} is a complete \mathcal{C}-resolution of L, if each $X^i \in \mathcal{C}$ and X^\bullet is \mathcal{C}-biexact, such that $L \cong \text{Im} d^0$. Define $\mathcal{G}(\mathcal{C})$ to be the full subcategory of \mathcal{A} consisting of the objects which admit complete \mathcal{C}-resolutions. Define $\mathcal{G}^2(\mathcal{C}) := \mathcal{G}(\mathcal{G}(\mathcal{C}))$ ([SWSW, 4.1]). Clearly $\mathcal{C} \subseteq \mathcal{G}(\mathcal{C}) \subseteq \mathcal{G}^2(\mathcal{C})$.

Let \mathcal{A} be an abelian category with enough projective objects. Taking \mathcal{C} to be $\mathcal{P}(\mathcal{A})$, we get the notion of a complete projective resolution. Let $\mathcal{G}\mathcal{P}(\mathcal{A})$ denote the category $\mathcal{G}(\mathcal{P}(\mathcal{A}))$, whose objects are called Gorenstein-projective objects ([AB], [EJ1]).

2.2. CM-contravariantly finite abelian categories. Let \mathcal{A} be an abelian category (not necessarily has enough projective objects), \mathcal{C} a full subcategory of \mathcal{A}, and $X \in \mathcal{A}$. A morphism $f : C \to X$ with $C \in \mathcal{C}$ is a right \mathcal{C}-approximation of X, if $\text{Hom}_{\mathcal{A}}(C', f) : \text{Hom}_{\mathcal{A}}(C', C) \to \text{Hom}_{\mathcal{A}}(C', X)$ is surjective for each $C' \in \mathcal{C}$. If each object $X \in \mathcal{A}$ admits a right \mathcal{C}-approximation, then \mathcal{C} is said to be contravariantly finite in \mathcal{A} ([AR]).

Let \mathcal{A} be an abelian category with enough projective objects. For short, we say that \mathcal{A} is CM-contravariantly finite, if $\mathcal{G}\mathcal{P}(\mathcal{A})$ is contravariantly finite in \mathcal{A}. If each object of \mathcal{A} has a finite Gorenstein-projective dimension, then \mathcal{A} is CM-contravariantly finite ([EJ2, 11.5.1], or H.Holm [Hol, 2.10]. We stress that the proof in [Hol, 2.10] is stated for module category over ring, but holds also for an abelian category with enough projective objects).

An Artin algebra Λ is CM-contravariantly finite, if Λ-mod is CM-contravariantly finite. Recall that Λ is a Gorenstein algebra, if the injective dimension of Λ is finite and the injective dimension of Λ is finite (in this case the both are same, see [I]). Note that Λ is a Gorenstein algebra if and only if each Λ-module has finite Gorenstein-projective dimension ([Hos]). Thus a Gorenstein algebra is CM-contravariantly finite. Also, clearly a CM-finite algebra is CM-contravariantly finite. By [B2, Theorem 8.2(ix)] a virtually Gorenstein algebra is CM-contravariantly finite. On the other hand, there exists an Artin algebra which is not CM-contravariantly finite (see [BK], [Y]. Also [T]).

2.3. CM-finite algebras which are non-Gorenstein and not CM-free. There are many CM-finite algebras which are non-Gorenstein and not CM-free. For examples, by [Rin, Proposition 5] the Nakayama algebras with admissible sequences $(6, 6, 5), (8, 8, 8, 7), (10, 10, 9, 10, 9)$, are such examples.

2.4. Triangulated categories. Among the other conditions, we emphasize that a triangulated subcategory \mathcal{D} of a triangulated category \mathcal{C} is a full subcategory and is closed.
under isomorphisms of \mathcal{C}. See A. Neeman [N]. For a triangle functor $F : \mathcal{A} \to \mathcal{B}$ between triangulated categories, let $\text{Im}F$ denote the full subcategory of \mathcal{B} consisting of the objects which are isomorphic to $F(X)$ with $X \in \mathcal{A}$. If F is full, then $\text{Im}F$ is a triangulated subcategory of \mathcal{B}.

Lemma 2.1. (J. L. Verdier [V], Corollary 4-3) Suppose \mathcal{D}_1 and \mathcal{D}_2 are triangulated subcategories of triangulated category \mathcal{C}, and \mathcal{D}_1 is a subcategory of \mathcal{D}_2. Then $\mathcal{D}_2/\mathcal{D}_1$ is a triangulated subcategory of $\mathcal{C}/\mathcal{D}_1$, and there is a triangle-equivalence $(\mathcal{C}/\mathcal{D}_1)/(\mathcal{D}_2/\mathcal{D}_1) \cong \mathcal{C}/\mathcal{D}_2$.

Lemma 2.2. (J. Rickard [Ric], p. 446, line 1) A full triangle functor which sends non-zero objects to non-zero objects is faithful.

2.5. Notations and convention.

For convenience, we list some categories mainly used in Section 5 - Section 7.

- $K^b(\mathcal{A}) = \text{the homotopy category of bounded complexes over } \mathcal{A}$.
- $K^{b,ac}(\mathcal{A}) = \text{the homotopy category of bounded exact complexes over } \mathcal{A}$.
- $K^{-}(\mathcal{A}) = \text{the homotopy category of upper bounded complexes over } \mathcal{A}$.
- $K^{-,ac}(\mathcal{A}) = \text{the homotopy category of upper bounded exact complexes over } \mathcal{A}$.
- $K^b(\mathcal{P}(\mathcal{A})) = \text{the homotopy category of bounded complexes over } \mathcal{P}(\mathcal{A})$.
- $K^{-}(\mathcal{P}(\mathcal{A})) = \text{the homotopy category of upper bounded complexes over } \mathcal{P}(\mathcal{A})$.
- $K^{-,b}(\mathcal{P}(\mathcal{A})) = \text{the homotopy category of upper bounded complexes over } \mathcal{P}(\mathcal{A})$, with only finitely many non-zero cohomologies.
- $K^b(\mathcal{GP}(\mathcal{A})) = \text{the homotopy category of bounded complexes over } \mathcal{GP}(\mathcal{A})$.
- $K^{b,ac}(\mathcal{GP}(\mathcal{A})) = \text{the homotopy category of bounded exact complexes over } \mathcal{GP}(\mathcal{A})$. Here “exact” means exact as a complex over \mathcal{A}.
- $K^{-}(\mathcal{GP}(\mathcal{A})) = \text{the homotopy category of upper bounded complexes over } \mathcal{GP}(\mathcal{A})$.
- $\mathcal{D}^b(\mathcal{A}) = \text{the derived category of bounded complexes over } \mathcal{A}$, i.e., the Verdier quotient $K^b(\mathcal{A})/K^{b,ac}(\mathcal{A})$.
- $\langle \mathcal{GP}(\mathcal{A}) \rangle = \text{the triangulated subcategory of } \mathcal{D}^b(\mathcal{A}) \text{ generated by } \mathcal{GP}(\mathcal{A})$, i.e., the smallest triangulated subcategory of $\mathcal{D}^b(\mathcal{A})$ containing $\mathcal{GP}(\mathcal{A})$.
- $\mathcal{D}^-(\mathcal{A}) = \text{the derived category of upper bounded complexes over } \mathcal{A}$, i.e., the Verdier quotient $K^{-}(\mathcal{A})/K^{-,ac}(\mathcal{A})$.
- $\mathcal{GP}(\mathcal{A}) = \text{the stable category of } \mathcal{GP}(\mathcal{A}) \text{ modulo } \mathcal{P}(\mathcal{A})$.

Convention. Let \mathcal{C} be a triangulated category and \mathcal{D} a full additive subcategory. We say that \mathcal{D} is a triangulated subcategory of \mathcal{C}, if the isomorphism closure $\bar{\mathcal{D}}$ of \mathcal{D} is a triangulated subcategory of \mathcal{C}. In this case, we do not distinguish between \mathcal{D} and $\bar{\mathcal{D}}$ (if no substantial difficulties occur): for example, the Verdier quotient \mathcal{C}/\mathcal{D} always means $\mathcal{C}/\bar{\mathcal{D}}$. This convention occurs in many places in this paper.
2.6. **Singularity categories.** The Verdier quotient \(D^b(A) / K^b(\mathcal{P}(A)) \) is called the singularity category of \(A \) and denoted by \(D^b_{sg}(A) \) (see \([O]\); or the stabilized derived category in \([Buch]\)). Then \(D^b_{sg}(A) = 0 \) if and only if each object of \(A \) has finite projective dimension. By the canonical triangle-equivalence \(\rho : K^{-,b}(\mathcal{P}(A)) \longrightarrow D^b(A) \), there is a triangle-equivalence \(D^b_{sg}(A) \cong K^{-,b}(\mathcal{P}(A))/K^b(\mathcal{P}(A)). \)

2.7. **Buchweitz Theorem and Gorenstein defect categories.** Consider the composition of the embedding \(\mathcal{G\mathcal{P}(A)} \hookrightarrow D^b(\mathcal{A}) \) and the localization functor \(D^b(\mathcal{A}) \longrightarrow D^b(\mathcal{A}) / K^b(\mathcal{P}(\mathcal{A})) \). It induces a functor
\[
F : \mathcal{G\mathcal{P}(A)} \longrightarrow D^b_{sg}(\mathcal{A}) := D^b(\mathcal{A}) / K^b(\mathcal{P}(\mathcal{A}))
\] (2.1)
which sends a Gorenstein-projective object \(G \) to the stalk complex of \(G \) at degree 0. By the triangle-equivalence \(\rho : K^{-,b}(\mathcal{P}(\mathcal{A}))/K^b(\mathcal{P}(\mathcal{A})) \cong D^b(\mathcal{A}) / K^b(\mathcal{P}(\mathcal{A})) \) one gets a functor
\[
\overline{F} : \mathcal{G\mathcal{P}(A)} \longrightarrow K^{-,b}(\mathcal{P}(\mathcal{A}))/K^b(\mathcal{P}(\mathcal{A}))
\] (2.2)
such that the diagram
\[
\begin{array}{ccc}
\mathcal{G\mathcal{P}(A)} & \xrightarrow{F} & K^{-,b}(\mathcal{P}(\mathcal{A}))/K^b(\mathcal{P}(\mathcal{A})) \\
\downarrow & & \downarrow \pi \\
\mathcal{G\mathcal{P}(A)} & \xrightarrow{\overline{F}} & D^b(\mathcal{A}) / K^b(\mathcal{P}(\mathcal{A}))
\end{array}
\] (2.3)
commutes. For a Gorenstein-projective object \(G \), let \((P^\bullet, d)\) be a complete projective resolution such that \(\text{Im} d^0 \cong G \). Then
\[
\overline{F}(G) = P^\bullet_{\leq 0} \in K^{-,b}(\mathcal{P}(\mathcal{A}))/K^b(\mathcal{P}(\mathcal{A})),
\]
where \(P^\bullet_{\leq 0} \) is the brutal truncation \(\cdots \longrightarrow P^{-1} \xrightarrow{d^{-1}} P^0 \longrightarrow 0 \) of \(P^\bullet \).

Following \([BJO]\), the Gorenstein defect category of \(\mathcal{A} \) is defined as the Verdier quotient
\[
D^b_{\text{defect}}(\mathcal{A}) := D^b_{sg}(\mathcal{A}) / \text{Im} F = (D^b(\mathcal{A}) / K^b(\mathcal{P}(\mathcal{A}))) / \text{Im} F.
\]
For an Artin algebra \(\Lambda \), the Gorenstein defect category \(D^b_{\text{defect}}(\Lambda) \) of \(\Lambda \) is defined to be \(D^b_{\text{defect}}(\Lambda\text{-mod}) \). Then \(D^b_{\text{defect}}(\Lambda) = 0 \) if and only if \(\Lambda \) is Gorenstein. By (2.3) the diagram
\[
\begin{array}{ccc}
\text{Im} \overline{F} & \longrightarrow & K^{-,b}(\mathcal{P}(\mathcal{A}))/K^b(\mathcal{P}(\mathcal{A})) \\
\downarrow & & \downarrow \pi \\
\text{Im} F & \longrightarrow & D^b(\mathcal{A}) / K^b(\mathcal{P}(\mathcal{A}))
\end{array}
\] (2.4)
commutes, where the horizontal functors are embeddings, and the vertical functors are triangle-equivalences. It follows that there is a triangle-equivalence
\[
D^b_{\text{defect}}(\mathcal{A}) \cong (K^{-,b}(\mathcal{P}(\mathcal{A}))/K^b(\mathcal{P}(\mathcal{A}))) / \text{Im} \overline{F}.
\] (2.5)
3. Stability of Gorenstein categories

Throughout \mathcal{A} is an abelian category (not necessarily has enough projective objects), and \mathcal{C} is a full additive subcategory of \mathcal{A}, which is closed under isomorphisms. By [SWSW, 4.10] and [Huang, 4.1] $\mathcal{G}^2(\mathcal{C}) = \mathcal{G}(\mathcal{C})$. This shows that the category $\mathcal{G}(\mathcal{C})$ has a strong stability. By using a different method, we have a little generalization of this stability.

Theorem 3.1. Let \mathcal{A} be an abelian category, and \mathcal{C} a full additive subcategory of \mathcal{A} which is closed under isomorphisms. Let $X^\bullet = (X^i, d^i)$ be an exact complex with $X^i \in \mathcal{G}(\mathcal{C})$ for all $i \in \mathbb{Z}$. If X^\bullet is \mathcal{C}-biexact, then $\text{Im} d^i \in \mathcal{G}(\mathcal{C})$ for all $i \in \mathbb{Z}$.

If X^\bullet in Theorem 3.1 is required to be $\mathcal{G}(\mathcal{C})$-biexact, then it is exactly $\mathcal{G}^2(\mathcal{C}) = \mathcal{G}(\mathcal{C})$.

3.1. We need the following fact.

Lemma 3.2. Suppose there is a commutative diagram in \mathcal{A} with exact rows δ and η:

$$
\begin{array}{ccc}
\delta: & 0 & \rightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \rightarrow 0 \\
& \downarrow{\alpha} & \downarrow{\beta} & \downarrow{\beta} \\
\eta: & 0 & \rightarrow X' \xrightarrow{f'} Y' \xrightarrow{g'} Z \rightarrow 0.
\end{array}
$$

Denote by Δ the corresponding short exact sequence

$$
0 \rightarrow X \xrightarrow{(\alpha f)} Y \oplus X' \xrightarrow{(\beta, f')} Y' \rightarrow 0.
$$

Then we have

(i) δ is \mathcal{C}-exact if and only if both η and Δ are \mathcal{C}-exact.

(ii) δ is \mathcal{C}-coexact if and only if both η and Δ are \mathcal{C}-coexact.

Proof. (i) We need to prove that $\text{Coker}(\text{Hom}_\mathcal{A}(C, g)) = 0$ if and only if $\text{Coker}(\text{Hom}_\mathcal{A}(C, g')) = 0$ and $\text{Coker}(\text{Hom}_\mathcal{A}(C, (\beta, f'))) = 0$, for each $C \in \mathcal{C}$. This can be seen from the diagram chasing. However, for simplicity we use an argument from triangulated category.

Regard δ, η and Δ as complexes in $K^b(\mathcal{A})$, and the above commutative diagram as a morphism h from δ to η. Then the mapping cone $\text{Cone}(h)$ is the complex

$$
0 \rightarrow X \xrightarrow{(\alpha f)} Y \oplus X' \xrightarrow{(\beta, f')} Z \oplus Y' \xrightarrow{(1, g')} Z \rightarrow 0.
$$

Then there is a homotopy equivalence $\Delta[1] \cong \text{Cone}(h)$, see the commutative diagram.
Thus we have a distinguished triangle \(\delta \to \eta \to \Delta[1] \to \delta[1] \) in \(K^b(A) \). Applying the cohomological functor \(\text{Hom}_{K^b(A)}(C, -) \) to this distinguished triangle we get the following long exact sequence of abelian groups

\[
\cdots \to \text{Hom}_{K^b(A)}(C, \eta[1]) \to \text{Hom}_{K^b(A)}(C, \Delta[2]) \to \text{Hom}_{K^b(A)}(C, \delta[2]) \to \text{Hom}_{K^b(A)}(C, \eta[2]) \to \text{Hom}_{K^b(A)}(C, \Delta[3]) \to \cdots.
\]

Using the formula \(\text{Hom}_{K^b(A)}(C, \eta[n]) = H^n \text{Hom}_A(C, \eta) \), the above exact sequence read is

\[
\cdots \to H^1 \text{Hom}_A(C, \eta) \to H^2 \text{Hom}_A(C, \Delta) \to H^2 \text{Hom}_A(C, \delta) \to H^2 \text{Hom}_A(C, \eta) \to H^3 \text{Hom}_A(C, \Delta) \to \cdots.
\]

That is we have the exact sequence

\[
0 \to \text{Coker}(\text{Hom}_A(C, (\beta, f'))) \to \text{Coker}(\text{Hom}_A(C, g)) \to \text{Coker}(\text{Hom}_A(C, g')) \to 0.
\]

This prove (i).

(ii) can be similarly proved. ■

3.2. We also need the following technical lemma.

Lemma 3.3. Let \(\delta : 0 \to X_1 \xrightarrow{f} U \xrightarrow{g} X_2 \to 0 \) be an exact sequence with \(U \in \mathcal{G}(C) \) such that \(\delta \) is \(C \)-biexact. Let \(\eta : 0 \to X_1 \xrightarrow{u} Y \xrightarrow{v} V \to 0 \) be an exact sequence with \(V \in \mathcal{G}(C) \) such that \(\eta \) is \(C \)-coexact. Then we have a commutative diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & X_1 & \xrightarrow{f} & U & \xrightarrow{g} & X_2 & \rightarrow & 0 \\
& & \downarrow{u} & & \downarrow{u'} & & \downarrow{u'} & & \\
0 & \rightarrow & Y & \rightarrow & C & \rightarrow & Z & \rightarrow & 0
\end{array}
\]

such that

(i) \(\delta' \) is exact with \(C \in \mathcal{C} \), and \(\delta' \) is \(C \)-biexact;

(ii) \(u' \) is a monomorphism with \(\text{Coker} u' \in \mathcal{G}(C) \), and \(\text{Hom}_A(u', C) \) is surjective.
Proof. Step 1. Since by assumption $U, V \in \mathcal{G}(\mathcal{C})$, by definition there exists two exact sequences $\epsilon_1 : 0 \to U \xrightarrow{a} C_1 \xrightarrow{b} L_1 \to 0$ and $\epsilon_2 : 0 \to V \xrightarrow{c} C_2 \xrightarrow{d} L_2 \to 0$ with $C_1, C_2 \in \mathcal{C}, L_1, L_2 \in \mathcal{G}(\mathcal{C})$, such that both ϵ_1 and ϵ_2 are \mathcal{C}-biexact. Since by assumption $\text{Hom}_A(\eta, C_1)$ is exact, by considering $af \in \text{Hom}_A(X_1, C_1)$ we see that there exists morphisms e and e' such that the following diagram commutes:

$$
\begin{array}{c}
\eta : & 0 & \to & X_1 & \xrightarrow{u} & Y & \xrightarrow{v} & V & \to & 0 \\
& & \downarrow f & & \downarrow e & & \downarrow e' & & \\
& 0 & \to & U & \xrightarrow{a} & C_1 & \xrightarrow{b} & L_1 & \to & 0.
\end{array}
$$

Put $\alpha = (\begin{smallmatrix} c \\ e' \end{smallmatrix}) : Y \to C_2 \oplus C_1$, $i = (\begin{smallmatrix} 0 \\ a \end{smallmatrix}) : U \to C_2 \oplus C_1$, $\pi = (\begin{smallmatrix} -1 & 0 \\ 0 & b \end{smallmatrix}) : C_2 \oplus C_1 \to C_2 \oplus L_1$, $x = (\begin{smallmatrix} -c \\ e' \end{smallmatrix}) : V \to C_2 \oplus L_1$. Then there exist morphisms β, u', v', y such that the following diagram commutes:

$$
\begin{array}{c}
\eta & \Xi & \eta' \\
\delta : & 0 & \to & X_1 & \xrightarrow{f} & U & \xrightarrow{g} & X_2 & \to & 0 \\
& \downarrow u & & \downarrow f & & \downarrow g & & \downarrow u' & & \downarrow v' & & \downarrow \Xi \\
\delta' : & 0 & \to & Y & \xrightarrow{\alpha} & C_2 \oplus C_1 & \xrightarrow{\beta} & Z & \to & 0 \\
& \downarrow v & & \downarrow \alpha & & \downarrow \beta & & \downarrow \pi & & \downarrow \Xi & & \downarrow \Xi \\
\Delta : & 0 & \to & V & \xrightarrow{x} & C_2 \oplus L_1 & \xrightarrow{y} & L & \to & 0 \\
& \downarrow & & \downarrow x & & \downarrow y & & \downarrow & & \downarrow & & \downarrow \\
& 0 & \to & 0 & \to & 0 & \to & 0 & \to & 0.
\end{array}
$$

where $Z = \text{Coker} \alpha$ and $L = \text{Coker} x$. Since c is a monomorphism, so is x. Also, the middle column Ξ is exact since ϵ_1 is exact. Applying Snake Lemma to the left two columns we know that α is a monomorphism and that the right column η' is exact. In particular, u' is a monomorphism.

We will prove that the upper two rows of (\ast) are what we need.

Step 2. Write $y = (l, m)$. Observe that Δ is exact means that there is the following commutative diagram with exact rows (note that L is the push-out of e' and c):

$$
\begin{array}{c}
\epsilon_2 : & 0 & \to & V & \xrightarrow{c} & C_2 & \xrightarrow{d} & L_2 & \to & 0 \\
& \downarrow e' & & \downarrow c & & \downarrow d & & \downarrow l & & \downarrow \\
\zeta : & 0 & \to & L_1 & \xrightarrow{m} & L & \xrightarrow{n} & L_2 & \to & 0
\end{array}
$$
Since ϵ_2 is C-biexact, it follows from Lemma 3.2 that both ζ and Δ are C-biexact. Since $L_1, L_2 \in G(C)$, and ζ is C-biexact, it follows from Proposition 4.4 of [SWSW] that $L \in G(C)$, thus $\text{Coker } u' = L \in G(C)$.

Step 3. $\forall \ C \in C$, applying $\text{Hom}_A(C, -)$ to the right two columns of (\ast), we get the following commutative diagram with exact rows

$$
\begin{array}{ccc}
\text{Hom}_A(C, U) & \rightarrow & \text{Hom}_A(C, C_2 \oplus C_1) \\
\downarrow \text{Hom}_A(C, g) & & \downarrow \text{Hom}_A(C, \beta) \\
\text{Hom}_A(C, X_2) & \rightarrow & \text{Hom}_A(C, Z) \\
\downarrow & & \downarrow \\
0 & \rightarrow & \text{Hom}_A(C, L).
\end{array}
$$

(Note that $\text{Hom}_A(C, \pi)$ is surjective since $\text{Hom}_A(C, \epsilon_1)$ is exact.) Also $\text{Hom}_A(C, y)$ and $\text{Hom}_A(C, g)$ are surjective, by Snake Lemma $\text{Hom}_A(C, \beta)$ is surjective. Thus δ' is C-exact.

Step 4. $\forall \ C \in C$, applying $\text{Hom}_A(-, C)$ to (\ast), we have the following commutative diagram with exact rows and columns:

$$
\begin{array}{ccc}
(\eta', C) & (\Xi, C) & (\eta, C) \\
\downarrow & & \downarrow \\
0 & 0 & 0 \\
\downarrow & & \downarrow \\
(\Delta, C) : & (L, C) & (V, C) \\
\downarrow & & \downarrow \\
0 & (g, C) & (V, C) \\
(\delta', C) : & (Z, C) & (Y, C) \\
\downarrow & & \downarrow \\
0 & (\beta, C) & (Y, C) \\
(\delta, C) : & (X_2, C) & (X_1, C) \\
\downarrow & & \downarrow \\
0 & (u', C) & (X_1, C) \\
\end{array}
$$

(Note that the exactness of $\text{Hom}_A(\delta, C)$ and $\text{Hom}_A(\eta, C)$ follows from assumptions; the exactness of $\text{Hom}_A(\Xi, C)$ follows from the exactness of $\text{Hom}_A(\epsilon_1, C)$; and the exactness of $\text{Hom}_A(\Delta, C)$ follows from Step 2). Applying Snake Lemma to the right two columns we see that both $\text{Hom}_A(u', C)$ and $\text{Hom}_A(\alpha, C)$ are surjective. This completes the proof. ■

3.3. Proof of Theorem 3.1. Without loss of generality, we only prove $\text{Im } d^0 \in G(C)$.

For each i, decompose d^i as $X^i \xrightarrow{a_i} \text{Im } d^i \xrightarrow{b_i} X^{i+1}$. We claim that there exists an exact sequence $C^+ : 0 \rightarrow \text{Im } d^0 \xrightarrow{a^0} C^1 \xrightarrow{\gamma^1} C^2 \xrightarrow{\gamma^2} \cdots$ with $C^i \in C$ for all $i \geq 1$, such that C^+ is C-biexact.
In fact, applying Lemma 3.3 to the exact sequence $0 \to \text{Im}d^0 \xrightarrow{\partial^0} X^1 \xrightarrow{a^1} \text{Im}d^1 \to 0$ and the exact sequence $0 \to \text{Im}d^0 \xrightarrow{\cong} \text{Im}d^0 \to 0 \to 0$, we get the following commutative diagram with exact rows

$$
\begin{array}{cccccc}
0 & \to & \text{Im}d^0 & \xrightarrow{b^0} & X^1 & \xrightarrow{a^1} & \text{Im}d^1 & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \text{Im}d^0 & \xrightarrow{v^0} & C^1 & \xrightarrow{w^1} & L^1 & \to & 0 \\
\end{array}
$$

such that $C^1 \in \mathcal{C}$, w^1 is a monomorphism with $\text{Coker} w^1 \in \mathcal{G}(\mathcal{C})$, and that ξ_1 is \mathcal{C}-biexact, and $\text{Hom}_A(w^1, \mathcal{C})$ is surjective. Now applying Lemma 3.3 to the exact sequence $0 \to \text{Im}d^1 \xrightarrow{b^1} X^2 \xrightarrow{a^2} \text{Im}d^2 \to 0$ and the exact sequence $0 \to \text{Im}d^1 \xrightarrow{w^1} L^1 \to \text{Coker} w^1 \to 0$, we get an exact sequence $\xi_2 : 0 \to L^1 \xrightarrow{v^1} C_2 \xrightarrow{u^2} L_3 \to 0$ and a monomorphism $w^2 : \text{Im}d^2 \hookrightarrow L^2$. Continuing this process and putting ξ_1, ξ_2, \cdots together we finally obtain an exact sequence $C^+ \to C^0 \to \text{Im}d^0$, and this proves $\text{Im}d^0 \in \mathcal{G}(\mathcal{C})$.

3.4. Applying Theorem 3.1 to R-mod, the category of finitely generated left R-modules, we get

Corollary 3.4. Let R be a left noetherian ring. Let $X^\bullet = (X^i, d^i)$ be an exact complex with $X^i \in \mathcal{GP}(R)$ for all i. If $\text{Hom}_A(X^\bullet, R)$ is still exact, then $\text{Im}d^i \in \mathcal{GP}(R)$ for all i.

4. Relative Auslander algebras of CM-finite algebras

Throughout this section Λ is an Artin algebra. All modules are finitely generated.

4.1. Let E be a Gorenstein-projective generator, i.e., E is a Gorenstein-projective Λ-module such that $\Lambda \in \text{add}E$, where $\text{add}E$ is the smallest full additive subcategory of Λ-mod containing E and closed under direct summands. For short, we say that a complex X^\bullet is E-biexact, if it is E-biexact. Denote $\mathcal{G}(\text{add}E)$ by $\mathcal{G}(E)$, i.e.,

$$
\mathcal{G}(E) = \{X \in \Lambda\text{-mod} \mid \exists \text{ an exact complex } X^\bullet = (X^i, d^i) \text{ with all } X^i \in \text{add}E, \text{ such that } X^\bullet \text{ is } E\text{-biexact, and } X \cong \text{Im}d^0\}.
$$

By Corollary 3.4(ii) we have

Corollary 4.1. Let E be a Gorenstein-projective generator. Then $\mathcal{G}(E) \subseteq \mathcal{GP}(\Lambda)$.
4.2. Recall the Yoneda philosophy. Given a \(\Lambda \)-module \(E \), the functor \(\text{Hom}_\Lambda(E, -) : \Lambda\text{-mod} \to \Gamma\text{-mod} \) induces an equivalence between \(\text{add } E \) and \(\mathcal{P}(\Gamma) \), where \(\Gamma = (\text{End}_\Lambda E)^{\text{op}} \).

Also, for each \(E' \in \text{add } E \) and each \(X \in \Lambda\text{-mod} \) there is an isomorphism

\[
\text{Hom}_\Lambda(E', X) \to \text{Hom}_\Gamma(\text{Hom}_\Lambda(E, E'), \text{Hom}_\Lambda(E, X))
\]
given by \(f \mapsto \text{Hom}_\Lambda(E, f) \), \(\forall f \in \text{Hom}_\Lambda(E', X) \) (cf. [ARS], p.33).

Now, if \(E \) is a generator of \(\Lambda\text{-mod} \) (i.e., \(\Lambda \in \text{add } E \)), then we can say more.

Lemma 4.2. Let \(E \) be a generator of \(\Lambda\text{-mod} \), and \(\Gamma = (\text{End}_\Lambda E)^{\text{op}} \). Then the functor \(\text{Hom}_\Lambda(E, -) : \Lambda\text{-mod} \to \Gamma\text{-mod} \) is fully faithful.

Proof. Since \(E \) is a generator, for any \(\Lambda \)-module \(X \) there is a surjective map \(E^m \to X \)
for some positive integer \(m \). This implies that \(\text{Hom}_\Lambda(E, -) \) is faithful. Let \(X, Y \in \Lambda\text{-mod} \), \(f : \text{Hom}_\Lambda(E, X) \to \text{Hom}_\Lambda(E, Y) \) be a \(\Gamma \)-map. By taking right adjoint \(E \)-approximations, we get exact sequences \(T_1 \xrightarrow{u} T_0 \xrightarrow{\pi} X \to 0 \) and \(T'_1 \xrightarrow{u'} T'_0 \xrightarrow{\pi'} Y \to 0 \) with \(T_0, T_1, T'_0, T'_1 \in \text{add } E \) (note that since \(E \) is a generator, it follows that \(\pi \) and \(\pi' \) are surjective). Applying \(\text{Hom}_\Lambda(E, -) \) we have the following diagram with exact rows

\[
\begin{array}{ccccccc}
\text{Hom}_\Lambda(E, T_1) & \xrightarrow{\text{Hom}_\Lambda(E, u)} & \text{Hom}_\Lambda(E, T_0) & \xrightarrow{\text{Hom}_\Lambda(E, \pi)} & \text{Hom}_\Lambda(E, X) & \to & 0 \\
\downarrow f_1 & & \downarrow f_0 & & \downarrow f & & \\
\text{Hom}_\Lambda(E, T'_1) & \xrightarrow{\text{Hom}_\Lambda(E, u')} & \text{Hom}_\Lambda(E, T'_0) & \xrightarrow{\text{Hom}_\Lambda(E, \pi')} & \text{Hom}_\Lambda(E, Y) & \to & 0.
\end{array}
\]

Since the two rows are respectively parts of projective resolutions of \(\text{Hom}_\Lambda(E, X) \) and \(\text{Hom}_\Lambda(E, Y) \), \(f \) induces \(f_1 \) and \(f_0 \) such that the above diagram commutes. Thus \(f_i = \text{Hom}_\Lambda(E, f'_i) \) for some \(f'_i \in \text{Hom}_\Lambda(T_i, T'_i), i = 0, 1 \). So we get the following diagram

\[
\begin{array}{ccccccc}
T_1 & \xrightarrow{u} & T_0 & \xrightarrow{\pi} & X & \to & 0 \\
\downarrow f_1 & & \downarrow f_0 & & \downarrow f' & & \\
T'_1 & \xrightarrow{u'} & T'_0 & \xrightarrow{\pi'} & Y & \to & 0
\end{array}
\]

with commutative left square. So there exists \(f' \in \text{Hom}_\Lambda(X, Y) \) such that the above diagram commutes. Thus \(f \text{Hom}_\Lambda(E, \pi) = \text{Hom}_\Lambda(E, f') \text{Hom}_\Lambda(E, \pi) \) and hence \(f = \text{Hom}_\Lambda(E, f') \). This proves that \(\text{Hom}_\Lambda(E, -) \) is full. ✷

4.3. The following result shows that, after taking the opposite algebra of endomorphism algebra of a Gorenstein-projective generator, the category of the Gorenstein-projective modules can not be “enlarged”.

Theorem 4.3. Let \(\Lambda \) be an Artin algebra and \(E \) a generator, and \(\Gamma = (\text{End}_\Lambda E)^{\text{op}} \). Then \(\text{Hom}_\Lambda(E, -) \) induces an equivalence between \(\mathcal{G}(E) \) and \(\mathcal{GP}(\Gamma) \).

In particular, if \(E \) is a Gorenstein-projective generator, then \(\mathcal{GP}(\Gamma) \) is equivalent to a full subcategory of \(\mathcal{GP}(\Lambda) \).
Then Aus indecomposable Gorenstein-projective Θ bras, and
Let Theorem 4.5. Any Artin algebra is Morita equivalent to a basic Artin algebra.

4.4. Recall that an Artin algebra is basic dimension.

Γ = (End GP

Corollary 4.4. Let

E

there is a complete projective Γ-resolution Im(HomΛ(E, d0)). However,

since HomΛ(E, X) is exact and E is a generator, it follows that Im(HomΛ(E, d0)) = HomΛ(E, Im d0). That is, HomΛ(E, L) ∈ GP(Γ).

We claim that HomΓ(E, E) is a Gorenstein-projective generator, then

More precisely, put Ω to be the class of pairwise non-isomorphic basic CM-finite algebras, and Θ the class of pairwise non-isomorphic basic CM-finite algebras. Then

(i) The map Aus : Ω → Θ is surjective.

(ii) The map Aus sends CM-finite Gorenstein algebras to algebras of finite global dimension.

(iii) The map Aus sends CM-finite non-Gorenstein algebras to CM-free non-Gorenstein algebras.
(iv) A CM-free Gorenstein algebra Λ is of finite global dimension.

Proof. Write $\Gamma = \text{Aus}(\Lambda)$. By definition we have $\mathcal{G}P(\Lambda) = \text{add } E \subseteq \mathcal{G}(E)$. By Corollary 4.1 $\mathcal{G}(E) \subseteq \mathcal{G}P(\Lambda)$. Thus $\mathcal{G}(E) = \text{add } E$. By Theorem 4.3 we have $\mathcal{G}P(\Gamma) = \text{Hom}_{\Lambda}(E, \mathcal{G}(E)) = \text{Hom}_{\Lambda}(E, \text{add } E) = \mathcal{P}(\Gamma)$.

This means that Γ is CM-free.

(i) The map Aus sends a basic CM-free algebra to itself, and from this (i) follows.

(ii) Recall a well-known fact: for a CM-finite algebra Λ, Λ is Gorenstein if and only if Γ is of finite global dimension (see [LZ]). From this the assertion (ii) follows.

(iii) By the fact stated above, Aus sends CM-finite non-Gorenstein algebra Λ to a CM-free algebra Γ of infinite global dimension. Note that Γ can not be Gorenstein: otherwise, by (ii) $\text{Aus}(\Gamma) = \Gamma$ is of finite global dimension. This proves (iii).

(iv) By (ii) $\text{Aus}(\Lambda)$ is of finite global dimension. Since Λ is Morita equivalent to $\text{Aus}(\Lambda)$, Λ is of finite global dimension. ■

5. Description of bounded derived categories

Throughout this section \mathcal{A} is an abelian category with enough projective objects unless stated otherwise. The bounded derived category $D^b(\mathcal{A})$ can be interpreted as $K^{b,ac}(\mathcal{P}(\mathcal{A}))$. The aim of this section is to describe $D^b(\mathcal{A})$ via $\mathcal{G}P(\mathcal{A})$, under the condition that \mathcal{A} is CM-contravariantly finite.

5.1. To describe $D^b(\mathcal{A})$ via $\mathcal{G}P(\mathcal{A})$, we need the full additive subcategory $K^{-,gp}(\mathcal{G}P(\mathcal{A}))$ of $K^{-}(\mathcal{G}P(\mathcal{A})) ([GZ, 3.3])$, where

$$K^{-,gp}(\mathcal{G}P(\mathcal{A})) = \{ X^\bullet \in K^{-}(\mathcal{G}P(\mathcal{A})) \mid \text{there exists an integer } N \text{ such that } H^n \text{Hom}_{\mathcal{A}}(G, X^\bullet) = 0, \forall n \leq N, \forall G \in \mathcal{G}P(\mathcal{A}) \}.$$

As pointed in [GZ], $K^{-,gp}(\mathcal{G}P(\mathcal{A}))$ is a triangulated subcategory of $K^{-}(\mathcal{G}P(\mathcal{A}))$. Clearly, it is the Gorenstein version of $K^{-,b}(\mathcal{P}(\mathcal{A}))$.

Let $X^\bullet \in K^{-,gp}(\mathcal{G}P(\mathcal{A}))$. Since \mathcal{A} has enough projective objects and $\mathcal{P}(\mathcal{A}) \subseteq \mathcal{G}P(\mathcal{A})$, we see that $H^n(X^\bullet) = 0$ for $n << 0$.

The main result of this section is as follows.

Theorem 5.1. Let \mathcal{A} be a CM-contravariantly finite abelian category. Then there is a triangle-equivalence

$$D^b(\mathcal{A}) \cong K^{-,gp}(\mathcal{G}P(\mathcal{A}))/K^{b,ac}(\mathcal{G}P(\mathcal{A}))$$

which induces a triangle-equivalence $\langle \mathcal{G}P(\mathcal{A}) \rangle \cong K^b(\mathcal{G}P(\mathcal{A}))/K^{b,ac}(\mathcal{G}P(\mathcal{A}))$.

5.2. To prove Theorem 5.1 we need some preparations. First, we have

Lemma 5.2. (i) $K^{b,ac} (\mathcal{GP}(A))$ is a triangulated subcategory of $K^{-,gp} (\mathcal{GP}(A))$.

(ii) Let $G^\bullet = (G^i, d^i) \in K^{-,gp} (\mathcal{GP}(A))$. If G^\bullet is exact, then $G^\bullet \in K^{b,ac} (\mathcal{GP}(A))$.

Proof. (i) is clear. We prove (ii). Since $\mathcal{GP}(A)$ is closed under kernels of epimorphisms, $\text{Im} d^i \in \mathcal{GP}(A), \forall i \in \mathbb{Z}$. By definition there exists an integer N such that $H^n \text{Hom}_A(G, G^\bullet) = 0, \forall n \leq N, \forall G \in \mathcal{GP}(A)$. In particular $H^n \text{Hom}_A(\text{Im} d^{n-1}, G^\bullet) = 0$. This implies that the induced epimorphism $d^{n-1}_1 : G^{n-1} \to \text{Im} d^{n-1}$ splits for $n \leq N$, and hence $G^\bullet \cong G'^\bullet \in K^{b,ac} (\mathcal{GP}(A))$, where G'^\bullet is the complex $\cdots \to 0 \to \text{Im} d^{N-1} \leftarrow G^N \to G^{N+1} \to \cdots$. $lacksquare$

The following observation plays an important role in our argument.

Lemma 5.3. Assume that A is CM-contravariantly finite abelian category, $P^\bullet \in K^{-,b} (\mathcal{P}(A))$. Then

(i) There exists a quasi-isomorphism $P^\bullet \to G^\bullet$ with $G^\bullet \in K^{-,gp} (\mathcal{GP}(A))$.

(ii) For chain maps $f_i^\bullet : P^\bullet \to G^\bullet_i$ with $G^\bullet_i \in K^{-,gp} (\mathcal{GP}(A)), \ 1 \leq i \leq m$, there exist a quasi-isomorphism $g^\bullet : P^\bullet \to G^\bullet$ and chain maps $h_i^\bullet : G^\bullet \to G^\bullet_i$ with $G^\bullet \in K^{-,gp} (\mathcal{GP}(A))$, such that $f_i^\bullet = h_i^\bullet g^\bullet, \ 1 \leq i \leq m$.

Proof. (i) Write $P^\bullet = (P^i, d^i)$. Let N be an integer such that $H^n P^\bullet = 0$ for $n \leq N$. Since $\mathcal{GP}(A)$ is a contravariantly finite subcategory in A, we can take a right $\mathcal{GP}(A)$-approximation $G^{N-1} \to \text{Ker} d^N$ of Ker d^N, and then take right $\mathcal{GP}(A)$-approximations step by step

\[
\cdots \to G^{N-2} \xrightarrow{\partial^{N-2}} G^{N-1} \xrightarrow{} P^N \xrightarrow{} \text{Ker} d^{N-2} \xrightarrow{} \text{Ker} d^{N-1} \xrightarrow{} \text{Ker} d^N
\]

In this way we get a complex

$G^\bullet : \cdots \to G^{N-2} \to G^{N-1} \to P^N \to P^{N+1} \to \cdots$

in $K^{-,gp} (\mathcal{GP}(A))$ with $H^n \text{Hom}_A(G, G^\bullet) = 0, \forall n \leq N, \forall G \in \mathcal{GP}(A)$. Since G^n with $n \leq N$ is constructed via right $\mathcal{GP}(A)$-approximations, it is clear that there exists an induced chain map

\[
P^\bullet = \cdots \to P^{N-2} \to P^{N-1} \to P^N \to P^{N+1} \to \cdots
\]

\[
G^\bullet = \cdots \to G^{N-2} \to G^{N-1} \to P^N \to P^{N+1} \to \cdots,
\]

which is a quasi-isomorphism, since $H^n P^\bullet = 0 = H^n G^\bullet$ for $n \leq N$.
(ii) Let N be an integer such that $H^n \text{Hom}_A(G, G^*) = 0 = H^n P^*$, $\forall \ n \leq N$, $\forall \ G \in \mathcal{GP}(A)$, $1 \leq i \leq m$. By the proof of (i) we have the following quasi-isomorphism

$$
P^* = \cdots \rightarrow P^{N-2} \rightarrow P^{N-1} \rightarrow P^N \rightarrow P^{N+1} \rightarrow \cdots
$$

with $G^* \in K^{-,gpb}(\mathcal{GP}(A))$. Since for each i we have $H^n \text{Hom}_A(G, G^*) = 0, \forall \ n \leq N$, $\forall \ G \in \mathcal{GP}(A)$, by applying $\text{Hom}_A(G^{N-1}, -)$, $\text{Hom}_A(G^{N-2}, -)$, \cdots, to G^* respectively, we obtain the following chain map h_i^*:

$$
G^* = \cdots \rightarrow G_i^{N-2} \rightarrow G_i^{N-1} \rightarrow P^{-N} \rightarrow P^{N+1} \rightarrow \cdots
$$

For $1 \leq i \leq m$, if $l \geq N$, then $f_i^l - h_i^l g^l = 0$. If $l = N - 1$, then $f_i^{N-1} - h_i^{N-1} g^{N-1}$ can factor through $G_i^{N-2} \rightarrow G_i^{N-1}$ since $H^{N-1} G_i^* = 0$. By induction we get the following null homotopy $f_i^* - h_i^* g^*$.

$$
P^* = \cdots \rightarrow P^{N-2} \rightarrow P^{N-1} \rightarrow P^N \rightarrow P^{N+1} \rightarrow \cdots
$$

This completes the proof.

5.3. **Proof of Theorem 5.1.** Let $\eta : K^{-,gpb}(\mathcal{GP}(A)) \rightarrow D^-(A)$ be the composition

$$
K^{-,gpb}(\mathcal{GP}(A)) \xrightarrow{\sigma} K^-(A) \xrightarrow{Q} D^-(A) = K^-(A)/K^{-,ac}(A)
$$

where σ is the embedding and Q is the localization functor.

Since $K^{b,ac}(\mathcal{GP}(A))$ is a triangulated subcategory of $K^{-,gpb}(\mathcal{GP}(A))$, we have the Verdier quotient $K^{-,gpb}(\mathcal{GP}(A))/K^{b,ac}(\mathcal{GP}(A))$. Since $\eta(K^{b,ac}(\mathcal{GP}(A))) = 0$, by the universal property η induces a unique triangle functor $\bar{\eta} : K^{-,gpb}(\mathcal{GP}(A))/K^{b,ac}(\mathcal{GP}(A)) \rightarrow D^-(A)$.

If \mathcal{A} is CM-contravariantly finite, then by Lemma 5.3(i) we have $\text{Im} \bar{\eta} = K^{-,b}(\mathcal{P}(A)) \cong D^b(A)$. So we get a dense triangle functor from $K^{-,gpb}(\mathcal{GP}(A))/K^{b,ac}(\mathcal{GP}(A))$ to $D^b(A)$, again denoted by $\bar{\eta}$.

We prove that $\bar{\eta}$ is fully faithful. Suppose $G^* \in K^{-,gpb}(\mathcal{GP}(A))$ and $\bar{\eta}(G^*) = 0$. Then G^* is exact. By Lemma 5.2 we have $G^* \in K^{b,ac}(\mathcal{GP}(A))$. That is $\bar{\eta}$ maps non-zero objects to non-zero objects. By Lemma 2.2 it suffices to prove that $\bar{\eta}$ is full.

Let $G_1^*, G_2^* \in K^{-,gpb}(\mathcal{GP}(A))$, and α^*/σ^* be a morphism in $\text{Hom}_{D^-(A)}(\bar{\eta}(G_1^*), \bar{\eta}(G_2^*)) = \text{Hom}_{D^-(A)}(G_1^*, G_2^*)$, where $\sigma^* : X^* \Rightarrow G_1^*$ is a quasi-isomorphism with $X^* \in K^-(A)$,
and \(\alpha^\bullet : X^\bullet \to G_2^\bullet \) is a morphism in \(K^-(A) \). Then there exists a quasi-isomorphism \(t^\bullet : P^\bullet \to X^\bullet \) with \(P^\bullet \in K^-(\mathcal{P}(A)) \). Since \(s^\bullet \) and \(t^\bullet \) are quasi-isomorphisms and \(G_1^\bullet \in K^{-,gpb}(\mathcal{GP}(A)) \), it follows that \(P^\bullet \in K^{-,b}(\mathcal{P}(A)) \). Thus we get the commutative diagram

\[
\begin{array}{ccc}
X^\bullet & \xrightarrow{\alpha^\bullet} & G_2^\bullet \\
\downarrow{s^\bullet} & & \downarrow{\alpha^\bullet} \\
G_1^\bullet & \xleftarrow{t^\bullet} & P^\bullet
\end{array}
\]

where the double arrowed morphisms mean quasi-isomorphisms. By Lemma 5.3(ii) we have the following commutative diagram

\[
\begin{array}{ccc}
G_1^\bullet & \xleftarrow{z^\bullet} & P^\bullet & \xrightarrow{\alpha^\bullet} & G_2^\bullet \\
\downarrow{t^\bullet} & & \downarrow{\alpha^\bullet} & & \downarrow{g^\bullet} \\
G^\bullet & \xleftarrow{l^\bullet} & G_2^\bullet & \xrightarrow{\beta^\bullet} & G^\bullet
\end{array}
\]

where \(G^\bullet \in K^{-,gpb}(\mathcal{GP}(A)) \), and \(g^\bullet : P^\bullet \Rightarrow G^\bullet \) is a quasi-isomorphism. Note that \(l^\bullet \) is also a quasi-isomorphism, hence the mapping cone \(\text{Cone}(l^\bullet) \) is exact. Since \(K^{-,gpb}(\mathcal{GP}(A)) \) is a triangulated subcategory of \(K^-(A) \), \(\text{Cone}(l^\bullet) \in K^{-,gpb}(\mathcal{GP}(A)) \). By Lemma 5.2(ii) \(\text{Cone}(l^\bullet) \in K^{b,ac}(\mathcal{GP}(A)) \). This proves \(\beta^\bullet/l^\bullet \in \text{Hom}_{K^{-,gpb}(\mathcal{GP}(A))/K^{b,ac}(\mathcal{GP}(A))}(G_1^\bullet, G_2^\bullet) \) and \(\alpha^\bullet/s^\bullet = \beta^\bullet/l^\bullet = \tau(\beta^\bullet/l^\bullet) \). This proves the first triangle-equivalence in Theorem 5.1.

By Lemma 2.1 we know that \(K^{b}(\mathcal{GP}(A))/K^{b,ac}(\mathcal{GP}(A)) \) is a triangulated subcategory of \(K^{-,gpb}(\mathcal{GP}(A))/K^{b,ac}(\mathcal{GP}(A)) \). Thus \(\tau(K^{b}(\mathcal{GP}(A))/K^{b,ac}(\mathcal{GP}(A))) \) is a triangulated subcategory of \(D^b(A) \). Obviously this image is generated by \(\mathcal{GP}(A) \), i.e.,

\[
\tau(K^{b}(\mathcal{GP}(A))/K^{b,ac}(\mathcal{GP}(A))) = \langle \mathcal{GP}(A) \rangle.
\]

So we get the second triangle-equivalence in Theorem 5.1.

6. Descriptions of Gorenstein defect categories

Throughout this section \(A \) is an abelian category with enough projective objects. The aim of this section is to describe \(D^{b,\text{defect}}(A) \).

6.1. A quick description is

Lemma 6.1. Let \(F : \mathcal{GP}(A) \to D^{b}(A) := D^b(A) / K^b(\mathcal{P}(A)) \) be the fully-faithful triangle functor defined in (2.1). Then

\[\text{Im} F = \langle \mathcal{GP}(A) \rangle / K^b(\mathcal{P}(A)), \]

and hence we have a triangle-equivalence

\[D^{b,\text{defect}}(A) \cong D^b(A) / \langle \mathcal{GP}(A) \rangle. \]
Proof. Since \(\mathcal{GP}(A)\) is the triangulated subcategory of \(D^b(A)\) generated by \(\mathcal{GP}(A)\), it follows that \(\mathcal{GP}(A)/K^b(\mathcal{P}(A))\) is the triangulated subcategory of \(D^b(A)/K^b(\mathcal{P}(A))\) generated by \(\mathcal{GP}(A)\), here view objects in \(\mathcal{GP}(A)\) as stalk complexes at degree 0. Since \(F\) is full, it follows that \(\text{Im}F\) is a triangulated subcategory of \(D^b(A)/K^b(\mathcal{P}(A))\) containing \(\mathcal{GP}(A)\). It follows that \(\text{Im}F \supseteq \mathcal{GP}(A)/K^b(\mathcal{P}(A))\).

On the other hand, by definition \(\text{Im}F \subseteq \mathcal{GP}(A)/K^b(\mathcal{P}(A))\). It follows that \(\text{Im}F = \mathcal{GP}(A)/K^b(\mathcal{P}(A))\), and hence by Lemma [2.1] we have a triangle-equivalence

\[
D^b_{\text{defect}}(A) = (D^b(A)/K^b(\mathcal{P}(A)))/(\mathcal{GP}(A)/K^b(\mathcal{P}(A))) \cong D^b(A)/\mathcal{GP}(A).
\]

By definition we have \(K^b(\mathcal{P}(A)) \subseteq \mathcal{GP}(A) \subseteq D^b(A)\).

Corollary 6.2. We have

(i) \(K^b(\mathcal{P}(A)) = \mathcal{GP}(A)\) if and only if \(A\) is CM-free, i.e., \(\mathcal{P}(A) = \mathcal{GP}(A)\).

(ii) \(\mathcal{GP}(A) = D^b(A)\) if and only if each object of \(A\) has finite Gorenstein-projective dimension.

Proof. (i) If \(\mathcal{P}(A) = \mathcal{GP}(A)\), then it is clear that \(K^b(\mathcal{P}(A)) = \mathcal{GP}(A)\). Conversely, assume that \(K^b(\mathcal{P}(A)) = \mathcal{GP}(A)\). Then one easily see that any Gorenstein-projective object \(G\) is of finite projective dimension, and hence \(G\) is projective ([EJ2, 10.2.3]).

(ii) By Lemma [6.1] \(\mathcal{GP}(A) = D^b(A)\) if and only if \(D^b_{\text{defect}}(A) = 0\), and if and only if each object of \(A\) has finite Gorenstein-projective dimension.

Remark 6.3. Although the generating process inside a triangulated category is clear (see e.g. R. Rouquier [Rou]), but the output of this generating process is not so clear. In other words, the description in Lemma [6.1] is rough in the sense that the shape of \(\mathcal{GP}(A)\) is vague. We will give an explicit description of \(D^b_{\text{defect}}(A)\).

6.2. Define \(K^b_{\mathcal{GP}}(\mathcal{P}(A))\) to be the full subcategory of \(K^b(\mathcal{P}(A))\) consisting of all the complexes \((P^\bullet, d) \in K^b(\mathcal{P}(A))\) such that there exists \(n_0 \in \mathbb{Z}\) with \(H^m(P^\bullet) = 0, \forall m \leq n_0\), and \(\text{Ker}d_{n_0}^A \in \mathcal{GP}(A)\).

In order to say that \(K^b_{\mathcal{GP}}(\mathcal{P}(A))\) is a thick triangulated subcategory of \(K^b(\mathcal{P}(A))\), first, we need to say that \(K^b_{\mathcal{GP}}(\mathcal{P}(A))\) is closed under isomorphisms of \(K^b(\mathcal{P}(A))\).

The following fact is well-known.

Lemma 6.4. Let \(A\) be the stable category of \(A\) modulo \(\mathcal{P}(A)\). Let \(X, Y \in A\). Then \(X \cong Y\) in \(A\) if and only if there exist projective objects \(P\) and \(Q\) such that \(X \oplus P \cong Y \oplus Q\) in \(A\).

The following fact is also well-known.

Lemma 6.5. Let \(f^\bullet : P^\bullet \to Q^\bullet\) be a null-homotopy with \(P^\bullet, Q^\bullet \in K^b(\mathcal{P}(A))\). Assume that \(H^m(P^\bullet) = 0 = H^m(Q^\bullet), \forall m \leq n_0\). Then the restriction \(f_{n_0} : \text{Ker}d_{n_0}^{P^\bullet} \to \text{Ker}d_{n_0}^{Q^\bullet}\) of \(f_{n_0}\) factors through a projective object.
Proof. For convenience we include a proof. Let $s : f^\bullet \sim 0$ be a homotopy. Put $K = \text{Kerd}_{P^\bullet}$ and $L = \text{Kerd}_{Q^\bullet}$.

Then we have $f_{n_0}^i = i'\overrightarrow{f_{n_0}}$ and $\overrightarrow{f_{n_0}}\pi = \pi' f_{n_0}^{-1}$. Since

$$i'\overrightarrow{f_{n_0}}\pi = d_{n_0}^{-1}f_{n_0}^{-1} = d_{n_0}^{-1}(s_{n_0}d_{n_0}^{-1} + d_{n_0}^{-2}s_{n_0}^{-1}) = d_{n_0}^{-1}s_{n_0}d_{n_0}^{-1} = i'\pi' s_{n_0}i\pi,$$

we have $\overrightarrow{f_{n_0}} = \pi's_{n_0}i$. Thus $\overrightarrow{f_{n_0}}$ factors through a projective object. ■

The following fact shows that $K^\leftarrow_{-b}(\mathcal{P}(A))$ is closed under isomorphisms of $K^\leftarrow_{-b}(\mathcal{P}(A))$.

Lemma 6.6. Let $f^\bullet : P^\bullet \rightarrow Q^\bullet$ be a homotopy equivalence in $K^\leftarrow_{-b}(\mathcal{P}(A))$ with $P^\bullet \in K^\leftarrow_{-b}(\mathcal{P}(A))$. Then $Q^\bullet \in K^\leftarrow_{-b}(\mathcal{P}(A))$.

Proof. Let $n_0 \in \mathbb{Z}$ such that $H^m(P^\bullet) = 0, \forall \ m \leq n_0$, and Ker$d_{n_0}^P \in \mathcal{G}\mathcal{P}(A)$. Then $H^m(Q^\bullet) = 0, \forall \ m \leq n_0$. Let $g^\bullet : Q^\bullet \rightarrow P^\bullet$ be the inverse of f^\bullet. Then we have the restriction $\overrightarrow{f_{n_0}} : \text{Kerd}_{Q^\bullet} \rightarrow \text{Kerd}_{P^\bullet}$ of f_{n_0}, and the restriction $g_{n_0} : \text{Kerd}_{P^\bullet} \rightarrow \text{Kerd}_{Q^\bullet}$ of g^\bullet. Since $g^\bullet f^\bullet - \text{Id}_{P^\bullet}$ and $f^\bullet g^\bullet - \text{Id}_{Q^\bullet}$ are null-homotopy, by Lemma 6.5 the induced morphism $\overrightarrow{g_{n_0}} f_{n_0}^{-1} - \text{Id}_{\text{Kerd}_{Q^\bullet}}$ factors through a projective object, and $\overrightarrow{f_{n_0}} g_{n_0}^{-1} - \text{Id}_{\text{Kerd}_{P^\bullet}}$ factors through a projective object. This means that Ker$d_{n_0}^P$ and Ker$d_{n_0}^Q$ are isomorphic in \mathcal{A}.

By Lemma 6.3 there exist projective objects P and Q such that there is an isomorphism Ker$d_{n_0}^P \oplus P \cong \text{Kerd}_{Q^\bullet} \oplus Q$ in \mathcal{A}. Since Ker$d_{n_0}^P \in \mathcal{G}\mathcal{P}(A)$ and $\mathcal{G}\mathcal{P}(A)$ is closed under direct summands, it follows that Ker$d_{n_0}^Q \in \mathcal{G}\mathcal{P}(A)$. This proves $Q^\bullet \in K^\leftarrow_{-b}(\mathcal{P}(A))$. ■

Proposition 6.7. $K^\leftarrow_{-b}(\mathcal{P}(A))$ is a thick triangulated subcategory of $K^\leftarrow_{-b}(\mathcal{P}(A))$.

Proof. It is clear that $K^\leftarrow_{-b}(\mathcal{P}(A))$ is an additive category. By Lemma 6.6 $K^\leftarrow_{-b}(\mathcal{P}(A))$ is a full subcategory of $K^\leftarrow_{-b}(\mathcal{P}(A))$ closed under isomorphisms. Since $\mathcal{G}\mathcal{P}(A)$ is closed under direct summands, it follows that $K^\leftarrow_{-b}(\mathcal{P}(A))$ is closed under direct summands. It is also clear that $K^\leftarrow_{-b}(\mathcal{P}(A))$ is closed under the shift functor $[1]$ and $[-1]$. Let $f^\bullet : P^\bullet \rightarrow Q^\bullet$ be a chain map with $P^\bullet, Q^\bullet \in K^\leftarrow_{-b}(\mathcal{P}(A))$. It remains to prove that the mapping Cone(f^\bullet) $\in K^\leftarrow_{-b}(\mathcal{P}(A))$.

\[\text{\textbullet} \]
Since $P^\bullet, Q^\bullet \in K^-_G \cdot b(P(A))$, there exists an integer n_0 such that $H^m(P^\bullet) = 0 = H^m(Q^\bullet)$ for $m \leq n_0$, and $\text{Kerd}_{P^\bullet}^{n_0} \in G\mathcal{P}(A)$, $\text{Kerd}_{Q^\bullet}^{n_0} \in G\mathcal{P}(A)$. It follows that there are complete projective resolutions X^\bullet and Y^\bullet such that

$$\text{Kerd}_{X^\bullet}^{n_0} = \text{Kerd}_{P^\bullet}^{n_0}, \text{Kerd}_{Y^\bullet}^{n_0} = \text{Kerd}_{Q^\bullet}^{n_0}.$$

Construct the following two complexes

$$P^\bullet = \ldots \rightarrow P^{n_0-2} \xrightarrow{d_{P^\bullet}^{n_0-2}} P^{n_0-1} \xrightarrow{d_{P^\bullet}^{n_0-1}} X^{n_0} \xrightarrow{d_{P^\bullet}^{n_0}} X^{n_0+1} \xrightarrow{d_{X^\bullet}^{n_0+1}} X^{n_0+2} \rightarrow \ldots,$$

and

$$Q^\bullet = \ldots \rightarrow Q^{n_0-2} \xrightarrow{d_{Q^\bullet}^{n_0-2}} Q^{n_0-1} \xrightarrow{d_{Q^\bullet}^{n_0-1}} Y^{n_0} \xrightarrow{d_{Q^\bullet}^{n_0}} Y^{n_0+1} \xrightarrow{d_{Y^\bullet}^{n_0+1}} Y^{n_0+2} \rightarrow \ldots,$$

where $d_{P^\bullet}^{n_0} : P^{n_0-1} \rightarrow X^{n_0}$ is the composition of the canonical morphisms

$$P^{n_0-1} \rightarrow \text{Kerd}_{P^\bullet}^{n_0}, \text{Kerd}_{X^\bullet}^{n_0} \rightarrow X^{n_0},$$

and $d_{Q^\bullet}^{n_0} : Q^{n_0} \rightarrow Y^{n_0+1}$ is the composition of the canonical morphisms

$$Q^{n_0-1} \rightarrow \text{Kerd}_{Q^\bullet}^{n_0}, \text{Kerd}_{Y^\bullet}^{n_0} \rightarrow Y^{n_0}.$$

Now $f^\bullet : P^\bullet \rightarrow Q^\bullet$ induces a morphism $\text{Kerd}_{P^\bullet}^{n_0} \rightarrow \text{Kerd}_{Q^\bullet}^{n_0}$, namely a morphism $\text{Kerd}_{X^\bullet}^{n_0} \rightarrow \text{Kerd}_{Y^\bullet}^{n_0}$. Since projective objects are injective objects in the category $G\mathcal{P}(A)$, it follows that the $\text{Kerd}_{X^\bullet}^{n_0} \rightarrow \text{Kerd}_{Y^\bullet}^{n_0}$ induces morphisms $f^i : X^i \rightarrow Y^i$ for $i \geq n_0$, such that the diagram

$$P^\bullet : \quad \ldots \quad \xrightarrow{d_{P^\bullet}^{n_0-2}} P^{n_0-1} \xrightarrow{d_{P^\bullet}^{n_0-1}} X^{n_0} \xrightarrow{d_{P^\bullet}^{n_0}} X^{n_0+1} \xrightarrow{d_{X^\bullet}^{n_0+1}} \ldots$$

$$f^\bullet \quad \xrightarrow{f^{n_0-2}} \quad \xrightarrow{d_{P^\bullet}^{n_0-2}} \quad \xrightarrow{d_{P^\bullet}^{n_0-1}} \quad \xrightarrow{d_{X^\bullet}^{n_0+1}} \ldots$$

$$Q^\bullet : \quad \ldots \quad \xrightarrow{d_{Q^\bullet}^{n_0-2}} Q^{n_0-1} \xrightarrow{d_{Q^\bullet}^{n_0-1}} Y^{n_0} \xrightarrow{d_{Q^\bullet}^{n_0}} Y^{n_0+1} \xrightarrow{d_{Y^\bullet}^{n_0+1}} \ldots$$

commutes. By construction P^\bullet and Q^\bullet are complete projective resolutions. It is clear that $\text{Cone}(f^\bullet)$ is again a complete projective resolution, and in particular $\text{Kerd} d_{\text{Cone}(f^\bullet)}^{n_0-3}$ is a Gorenstein-projective object. However by construction we have

$$d_{\text{Cone}(f^\bullet)}^{m} = \begin{pmatrix} -d_{P^\bullet}^{m+1} & 0 \\ f_{m+1} & d_{Q^\bullet}^{m} \end{pmatrix} = d_{\text{Cone}(f^\bullet)}^{m}, \quad \forall \ m \leq n_0 - 3.$$

This proves that $\text{Cone}(f^\bullet) \in K^-_G \cdot b(P(A))$. □

6.3. We have the following description of $D^{b}_{\text{defect}}(A)$.

Theorem 6.8. Let A be an abelian category with enough projective objects. Then

(i) There is a triangle-equivalence

$$D^{b}_{\text{defect}}(A) \cong K^-_G \cdot b(P(A)) / K^-_G \cdot b(P(A)).$$
(ii) If in addition \mathcal{A} is CM-contravariantly finite, then there is a triangle-equivalence

$$D_{\text{defect}}^b(\mathcal{A}) \cong K^{-\text{gp}}(\mathcal{G}\mathcal{P}(\mathcal{A}))/K^b(\mathcal{G}\mathcal{P}(\mathcal{A})).$$

Proof. (i) We claim: the restriction of the canonical triangle-equivalence $\rho : K^{-b}(\mathcal{P}(\mathcal{A})) \to D^b(\mathcal{A})$ to $K_G^{-b}(\mathcal{P}(\mathcal{A}))$ gives rise to a triangle-equivalence $K_G^{-b}(\mathcal{P}(\mathcal{A})) \to \langle \mathcal{GP}(\mathcal{A}) \rangle$.

In fact, let $P^\bullet \in K_G^{-b}(\mathcal{P}(\mathcal{A}))$. By definition there is an integer $n_0 \in \mathbb{Z}$ such that $H^m(P^\bullet) = 0$, $\forall \ m \leq n_0$, and $\text{Ker} P^{n_0} \in \mathcal{GP}(\mathcal{A})$. Then there is a quasi-isomorphism $P^\bullet \to G^\bullet$, where G^\bullet is the bounded complex

$$0 \to \text{Ker} P^{n_0} \hookrightarrow P^{n_0} \xrightarrow{d^{n_0}} P^{n_0+1} \to \cdots.$$

It follows that $\rho(P^\bullet) = P^\bullet \cong G^\bullet$ in $D^b(\mathcal{A})$. Since P^\bullet is an upper-bounded complex of projective objects, it follows that G is a bounded complex of Gorenstein-projective objects. Thus $G^\bullet \in \langle \mathcal{GP}(\mathcal{A}) \rangle$. So $\rho(K_G^{-b}(\mathcal{P}(\mathcal{A}))) \subseteq \langle \mathcal{GP}(\mathcal{A}) \rangle$.

On the other hand, by Proposition 6.7 $K_G^{-b}(\mathcal{P}(\mathcal{A}))$ is a triangulated subcategory of $K^{-b}(\mathcal{P}(\mathcal{A}))$. Since $\rho : K^{-b}(\mathcal{P}(\mathcal{A})) \to D^b(\mathcal{A})$ is full, it follows that $\rho(K_G^{-b}(\mathcal{P}(\mathcal{A})))$ is a triangulated subcategory of $D^b(\mathcal{A})$. Let $G \in \mathcal{GP}(\mathcal{A})$. Then there is a complete projective resolution E^\bullet such that $\text{Ker} d_{E_i} \cong G$. Then the brutal truncation

$$E_{\leq 0}^\bullet = \cdots \to E^{-2} \to E^{-1} \xrightarrow{d_{E_{i-1}}} E^{i} \to 0$$

is in $K_G^{-b}(\mathcal{P}(\mathcal{A}))$, and $\rho(E_{\leq 0}^\bullet) \cong \text{Im} d_{E_1} = \text{Ker} d_{E_2} \cong G$. Thus $\rho(K_G^{-b}(\mathcal{P}(\mathcal{A})))$ is a triangulated subcategory of $D^b(\mathcal{A})$ containing $\mathcal{GP}(\mathcal{A})$. So $\langle \mathcal{GP}(\mathcal{A}) \rangle \subseteq \rho(K_G^{-b}(\mathcal{P}(\mathcal{A})))$. Thus $\rho(K_G^{-b}(\mathcal{P}(\mathcal{A}))) = \langle \mathcal{GP}(\mathcal{A}) \rangle$. This proves the claim.

By the claim the diagram

$$
\begin{array}{ccc}
K^b(\mathcal{P}(\mathcal{A})) & \longrightarrow & K_G^{-b}(\mathcal{P}(\mathcal{A})) \longrightarrow \mathcal{K}^-b(\mathcal{P}(\mathcal{A})) \\
\Downarrow & & \Downarrow \\
K^b(\mathcal{P}(\mathcal{A})) & \longrightarrow & \langle \mathcal{GP}(\mathcal{A}) \rangle \longrightarrow D^b(\mathcal{A})
\end{array}
$$

commutes, where the horizontal functors are embeddings, and the vertical functors are triangle-equivalences. This induces a triangle-equivalence

$$K^{-b}(\mathcal{P}(\mathcal{A}))/K_G^{-b}(\mathcal{P}(\mathcal{A})) \cong D^b(\mathcal{A})/\langle \mathcal{GP}(\mathcal{A}) \rangle = D_{\text{defect}}^b(\mathcal{A})$$

where the last equality follows from Lemma 6.1.

(ii) Assume that \mathcal{A} is CM-contravariantly finite. By Theorem 5.1 and Lemma 2.1 we get a triangle-equivalence

$$K^{-\text{gp}}(\mathcal{GP}(\mathcal{A}))/K^b(\mathcal{GP}(\mathcal{A})) \to D^b(\mathcal{A})/\langle \mathcal{GP}(\mathcal{A}) \rangle.$$

By Lemma 6.1 we get a triangle-equivalence

$$D_{\text{defect}}^b(\mathcal{A}) \cong K^{-\text{gp}}(\mathcal{GP}(\mathcal{A}))/K^b(\mathcal{GP}(\mathcal{A})).$$
This completes the proof. ■

Remark 6.9. Let \(\overline{F} : \mathcal{GP}(A) \rightarrow K^{-,b}(\mathcal{P}(A))/K^{b}(\mathcal{P}(A)) \) be the fully-faithful triangle functor defined in (2.2). Then it is easy to see \(\text{Im} \overline{F} = K^{-,b}(\mathcal{P}(A))/K^{b}(\mathcal{P}(A)) \).

6.4. Note that a CM-finite algebra is CM-contravariantly finite. By Theorem 6.8 we get

Corollary 6.10. Let \(\Lambda \) be a CM-finite algebra. Then there is a triangle-equivalence

\[D^{b}_{\text{defect}}(\Lambda) \cong D^{b}_{sg}(\text{Aus}(\Lambda)). \]

Proof. Put \(E \) to be the direct sum of all the pairwise non-isomorphic indecomposable Gorenstein-projective \(\Lambda \)-modules. Then \(\text{Hom}_{\Lambda}(E, -) : \mathcal{P}(\text{Aus}(\Lambda)) \cong \mathcal{GP}(\Lambda) \) as additive categories. This is extended to a triangle-equivalences

\[K^{-,b}(\mathcal{P}(\text{Aus}(\Lambda)))/K^{b}(\mathcal{P}(\text{Aus}(\Lambda))) \cong K^{-,gp}(\mathcal{GP}(\Lambda))/K^{b}(\mathcal{GP}(\Lambda)), \]

and hence we get the triangle-equivalences

\[D^{b}_{sg}(\text{Aus}(\Lambda)) = D^{b}(\text{Aus}(\Lambda))/K^{b}(\mathcal{P}(\text{Aus}(\Lambda))) \]
\[\cong K^{-,b}(\mathcal{P}(\text{Aus}(\Lambda)))/K^{b}(\mathcal{P}(\text{Aus}(\Lambda))) \]
\[\cong K^{-,gp}(\mathcal{GP}(\Lambda))/K^{b}(\mathcal{GP}(\Lambda)) \]
\[\cong D^{b}_{\text{defect}}(\Lambda), \]

where the final triangle-equivalence follows from the second triangle-equivalence in Theorem 6.8. This completes the proof. ■

7. Final Remarks

In fact, we have the following more general result.

Theorem 7.1. Suppose that \(\mathcal{A} \) and \(\mathcal{A}' \) are abelian categories with enough projective objects such that \(\mathcal{GP}(\mathcal{A}) \cong \mathcal{GP}(\mathcal{A}') \) as categories, and that \(\mathcal{A} \) is CM-contravariantly finite. Then

(i) There is a triangle-equivalence

\[D^{b}(\mathcal{A}') \cong K^{-,gp}(\mathcal{GP}(\mathcal{A}'))/K^{b,ac}(\mathcal{GP}(\mathcal{A}')); \]

(ii) There is a triangle-equivalence

\[D^{b}_{\text{defect}}(\mathcal{A}') \cong K^{-,gp}(\mathcal{GP}(\mathcal{A}'))/K^{b}(\mathcal{GP}(\mathcal{A}')), \]

and hence there is a triangle-equivalence

\[D^{b}_{\text{defect}}(\mathcal{A}) \cong D^{b}_{\text{defect}}(\mathcal{A}'). \]
Proof. Let $F : \mathcal{GP}(A) \to \mathcal{GP}(A')$ be an equivalence of categories, with quasi-inverse F^{-1}. Since an equivalence between additive categories is an additive functor, F is an additive functor.

By construction we have $H^i(GP(A)) = 0$ for $i \geq 0$, so $H^i(GP(D)) = 0$ is an equivalence, we have a triangle-equivalence $A \to \mathcal{GP}(A)$ is a contravariantly finite subcategory in N. Consider complex $F^{-1}P^\bullet$. Since $\mathcal{GP}(A)$ is an additive functor, we can take a right $\mathcal{GP}(A)$-approximation $G^N \to \text{Ker}F^{-1}(d^N)$ of $\text{Ker}F^{-1}(d^N)$, and then take right $\mathcal{GP}(A)$-approximations step by step (as in the proof of Lemma 5.3) we get a complex

$$G^\bullet : \cdots \to G^{N-2} \xrightarrow{\partial^{N-2}} G^{N-1} \xrightarrow{\partial^{N-1}} F^{-1}(P^N) \xrightarrow{F^{-1}(d^N)} F^{-1}(P^{N+1}) \to \cdots.$$

By construction we have $H^n \text{Hom}_A(G, G^\bullet) = 0$ for $G \in \mathcal{GP}(A)$ and $n \leq N$. Since $F : \mathcal{GP}(A) \to \mathcal{GP}(A')$ is an equivalence, we have the complex isomorphism $\text{Hom}_A(G, G^\bullet) \cong \text{Hom}_{A'}(FG, FG^\bullet)$ for $G \in \mathcal{GP}(A)$. Thus $FG^\bullet \in K^{-,gpb}(\mathcal{GP}(A'))$.

Since F^{-1} is a quasi-inverse of F, there is a complex Q^\bullet and a complex isomorphism

$$Q^\bullet : \cdots \to F(G^{N-2}) \xrightarrow{d^N} F(G^{N-1}) \xrightarrow{P^N} F^{-1}(P^N) \xrightarrow{F^{-1}(d^N)} F^{-1}(P^{N+1}) \to \cdots$$

By construction we have $H^n \text{Hom}_A(G, G^\bullet) = 0$ for $n \leq N$. Thus we have a quasi-isomorphism

$$P^\bullet : \cdots \to P^{N-2} \xrightarrow{d^N} P^{N-1} \xrightarrow{P^N} P^{N+1} \to \cdots$$

This proves that Lemma 5.3(i) holds for A'. Hence Lemma 5.3(ii) also holds for A'.

Repeating the proof of Theorem 5.1, we can prove

$$D^b(A') \cong K^{-,gpb}(\mathcal{GP}(A'))/K^{\text{h,ac}}(\mathcal{GP}(A')).$$

This proves (i).

Repeating the proof of Theorem 6.8(ii) we have

$$D^b_{\text{defect}}(A') \cong K^{-,gpb}(\mathcal{GP}(A'))/K^b(\mathcal{GP}(A')).$$

Note that the equivalence $\mathcal{GP}(A') \cong \mathcal{GP}(A')$ extends to a triangle-equivalence

$$K^{-,gpb}(\mathcal{GP}(A'))/K^b(\mathcal{GP}(A')) \cong K^{-,gpb}(\mathcal{GP}(A'))/K^b(\mathcal{GP}(A')).$$

By Theorem 6.8(ii) we have a triangle-equivalence $D^b_{\text{defect}}(A) \cong K^{-,gpb}(\mathcal{GP}(A'))/K^b(\mathcal{GP}(A))$. Altogether we get a triangle-equivalence $D^b_{\text{defect}}(A) \cong D^b_{\text{defect}}(A')$. This proves (ii).
Corollary 7.2. Let Λ and Λ' be Artin algebras such that $\mathcal{GP}(\Lambda) \cong \mathcal{GP}(\Lambda')$ as categories. Then Λ is Gorenstein if and only if Λ' is Gorenstein.

Proof. If Λ is Gorenstein, then $\mathcal{GP}(\Lambda)$ is contravariantly finite. By Theorem 7.1 we have

$$D^b_{\text{defect}}(\Lambda') \cong D^b_{\text{defect}}(\Lambda) = 0,$$

thus Λ' is Gorenstein. \blacksquare

References

[AB] M. Auslander, M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94., Amer. Math. Soc., Providence, R.I., 1969.

[AM] L. L. Avramov, A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85(3)(2002), 393-440.

[AR] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86(1991), 111-152.

[ARS] M. Auslander, I. Reiten, S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Adv. Math. 36., Cambridge Univ. Press, 1995.

[B1] A. Beligiannis, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories ans (co-)stabilization, Comm. Algebra 28(10)(2000), 4547-4596.

[B2] A. Beligiannis, Cohen-Macaulay modules, (co)tosion pairs and virtually Gorenstein algebras, J. Algebra 288(1)(2005), 137-211.

[B3] A. Beligiannis, On rings and algebras of finite Cohen-Macaulay type, Adv. Math. 226 (2) (2011), 1973-2019.

[BK] A. Beligiannis, H. Krause, Thick subcategories and virtually Gorenstein algebras, Illinois J. Math. 52(2008), 551-562.

[BR] A. Beligiannis, I. Reiten, Homological and homottopical aspects of tosion theories, Mem. Amer. Math. Soc. 188, Amer. Math. Soc., Providence, R.I., 2007.

[BJO] P. A. Bergh, D. A. Jorgensen, S. Oppermann, The Gorenstein defect category, available in arXiv Math. CT 1202.2876, 2012.

[Buch] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, Unpublished manuscript, Hamburg (1987), 155pp.

[BGS] R.-O. Buchweitz, G.-M. Greuel, F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math. 88(1)(1987), 165-182.

[C] X. W. Chen, Algebras with radical square zero are either self-injective or CM-free, Proc. Amer. Math. Soc. 140 (1) (2012), 93-98.

[CY] X. W. Chen, Y. Ye, Retractions and Gorenstein homological properties, to appear in: Algebras and Representation Theory; available in arXiv Math. RT 1206.4415, 2012.

[CPST] L. W. Christensen, G. Piepmeyer, J. Striuli, R. Takahashi, Finite Gorenstein representation type implies simple singularity, Adv. Math. 218(2008), 1012-1026.

[EJ1] E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220(4)(1995), 611-633.

[EJ2] E. E. Enochs, O. M. G. Jenda, Relative homological algebra, De Gruyter Expo. Math. 30 (2000).

[GZ] N. Gao, P. Zhang, Gorenstein derived categories, J. Algebra 323(2010), 2041-2057.

[Hapl] D. Happel, Triangulated categories in representation theory of finite dimensional algebras, London Math. Soc. Lecture Notes Ser. 119, Cambridge Uni. Press, 1988.
[Hap2] D. Happel, On Gorenstein algebras, in: Representation theory of finite groups and finite-dimensional algebras, Prog. Math. 95, 389-404, Birkhäuser, Basel, 1991.

[Hol] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189(1-3)(2004), 167-193.

[Hos] M. Hoshino, Algebras of finite self-injective dimension, Proc. Amer. Math. Soc. 112(3)(1991), 619-622.

[Huang] Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393(1)(2013), 142-169.

[I] Y. Iwanaga, On rings with finite self-injective dimension II, Tsukuba J. Math. 4(1)(1980), 107-113.

[Ke] B. Keller, Derived categories and their uses, In: Handbook of algebra, Vol. 1, 671-701, North-Holland, Amsterdam, 1996.

[Kn] H. Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 88(1)(1987), 153-164.

[Kuz] A. Kuznetsov, Lefschetz decompositions and categorical resolutions of singularities, Selecta Math. New Ser. 13(2008), 661-696.

[LZ] Z. W. Li, P. Zhang, Gorenstein algebras of finite Cohen-Macaulay type, Adv. Math. 223 (2010), 728-734.

[N] A. Neeman, Triangulated categories, Annals of Math. Studies 148, Princeton University Press, Princeton, NJ, 2001.

[O] D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 246(3)(2004), 227-248.

[Ric] J. Rickard, Morita theory for derived categories, J. London Math. Soc. 39 (1989), 436-456.

[Rin] C. M. Ringel, The Gorenstein-projective modules for the Nakayama algebras I, J. Algebra 385(2013), 241-261.

[Rou] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1(2008), 193-256 (and errata, 257-258).

[T] R. Takahashi, On the category of modules of Gorenstein dimension zero, Math. Z. 251(2)(2005), 249-256.

[V] J. L. Verdier, Des catégories dérivées abéliennes, Asterisque 239(1996), xii+253 pp. (1997). With a preface by L. Illusie. Edited and with a note by G. Maltsiniotis.

[SWSW] S. Sather-Wagstaff, T. Sharif, D. White, Stability of Gorenstein categories, J. London Math. Soc. 77(2) (2008), 481-502.

[Y] Y. Yoshino, Approximations by modules of G-dimension zero, Algebraic structures and their representations, 119-125, Contemp. Math. 376, Amer. Math. Soc., Providence, RI, 2005.

[Zhu] S. J. Zhu, Left homotopy theory and Buchweitz’s theorem, Master Thesis at SJTU, 2011.

F. Kong
College of Math. and Statistics, Chongqing University
Chongqing 401331, P. R. China e-mail: fankong2013@gmail.com

P. Zhang
Department of Math., Shanghai Jiao Tong University
Shanghai 200240, P. R. China e-mail: pzhang@sjtu.edu.cn