Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Case Report

Dexmedetomidine and worsening hypoxemia in the setting of COVID-19: A case report

John Stockton, MD, MPH, PGY1 Resident *, Cameron Kyle-Sidell, MD, Faculty

Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, United States of America

ABSTRACT

Emergency department management of hypoxemia in the setting of COVID-19 is riddled with uncertainty. The lack of high-quality research has translated to an absence of clarity at the bedside. With disease spread outpacing treatment consensus, provider discretion has taken on a heightened role. Here, we report a case of dexmedetomidine use in the setting of worsening hypoxemia, whereby oxygenation improved and intubation was avoided. Well known pharmacologic properties of the drug, namely the lack of respiratory depression and its anti-delirium effects, as well as other possible physiologic effects, suggest potential benefit for patients being managed with a delayed intubation approach. If dexmedetomidine can improve compliance with non-invasive oxygen support (the current recommended first-line therapy) while promoting better oxygenation, it may also decrease the need for mechanical ventilation and thus improve mortality.

1. Introduction

As of this writing, there have been over 1,300,000 confirmed cases of COVID-19 and 80,000 deaths in the United States [1]. While early intubation was the initial recommended strategy for COVID-19 hypoxemia, a large case series in the US as well as data coming out of Britain, China, and Italy suggests a high mortality for patients requiring invasive ventilation [2]. The National Institute of Health now recommends high flow nasal cannula (HFNC) as first line oxygen support [3]. The following case addresses the management of one patient on HFNC, with specific reference to dexmedetomidine.

2. Case description

A 58-year-old female with hypertension presented to a New York City emergency department for shortness of breath for one day in the setting of known COVID-19 diagnosed one week prior. Initial vital signs revealed an SpO2 of 95% on room air. On examination, the patient was tachypneic. Her chest x-ray showed pulmonary infiltrates consistent with COVID-19.

Initially placed on a non-rebreather mask, the patient’s SpO2 gradually dropped and she was started on HFNC (40 L and 88% FiO2). On day 2, oxygen requirements continued to increase and her HFNC was titrated up to 100% at 60 L, with a non-rebreather placed over it. On day 8 (day 15 of illness by symptomatology), SpO2 worsened from 92% to 84%, despite maximal oxygen support. The patient appeared uncomfortable, intermittently attempting to displace her oxygen devices. Intubation was strongly considered. However, with

* Corresponding author.
E-mail address: jstockton@maimonidesmed.org (J. Stockton).

1 During this pandemic, our hospital lacked available ICU beds and the patient remained in the emergency department.

https://doi.org/10.1016/j.ajem.2020.05.066
0735-6757/© 2020 Elsevier Inc. All rights reserved.
departmental preference toward delayed intubation,2 consensus developed to administer dexmedetomidine instead. After, our patient’s SpO\textsubscript{2} increased from 84\% to 100\%, with no other intervention taking place at the time.3

Given the context of gradually worsening hypoxemia, timing of administration, subsequent improvement in SpO\textsubscript{2} and observed change in mental status (from agitated to calm), dexmedetomidine appeared to play a significant role. The patient avoided intubation, now has a stable SpO\textsubscript{2} on nasal cannula and is not in multi-system organ failure, a significant victory considering the alternative. The pharmacokinetics of dexmedetomidine make it ideal in non-intubated COVID-19 patients. It has a minimal effect on respiratory drive, a rapid onset and elimination and is easily titratable 4. Its side effect of bradycardia appears to be well tolerated.

On a behavioral level, patients with worsening hypoxia are often very anxious and prone to agitation. This becomes especially dangerous when fully dependent on supplemental oxygen, where acute decline from dislodgement of support devices is always a concern. Dexmedetomidine has been shown in randomized controlled trials to decrease agitated delirium in critically ill patients 5. This benefit is likely amplified in elderly populations, who have higher mortality and baseline conditions that predispose them to delirium and noncompliance with HFNC.

Dexmedetomidine may promote oxygenation on a physiologic level as well. The mechanism of hypoxemia in COVID-19 is thought to be disrupted pulmonary vasoregulation due to viral induced endothelial damage of pulmonary capillaries and ensuing V/Q mismatch 6. Recent studies suggest dexmedetomidine may enhance hypoxic pulmonary vasoconstriction, improve ventilation/perfusion ratio and consequently improve oxygenation 7.

4. Conclusion

The uncertainty of COVID-19 has led to varying approaches in treatment which have yet to be validated and are not without their own risks.4 In this case, we believe dexmedetomidine helped one patient avoid mechanical ventilation by improving compliance with non-invasive ventilation and promoting better oxygenation. Whether that was primarily due to behavioral or physiologic changes induced by the drug is unknown. However, this case suggests that the unique pharmacologic properties of dexmedetomidine may help decrease the need for mechanical ventilation, thereby reducing mortality. In the face of this novel and complicated disease, the suggestion of such benefit is deserving of further investigation.

References

\begin{itemize}
\item 1 CDC coronavirus disease 2019 (COVID-19). Cases in the US. .https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html; ; 2020. [Accessed 14 May 2020].
\item 2 Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area [published online ahead of print, 2020 Apr 22]. JAMA. 2020;e206775. https://doi.org/10.1001/jama.2020.6775.
\item 3 NIH. COVID-19 treatment guidelines. Care of critically ill patients with COVID-19. . https://covid19treatmentguidelines.nih.gov/critical-care/; [Accessed 14 May 2020].
\item 4 Giovannitti Jr JA, Thoms SM, CrawfordJJ Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog. 2015;62(1):31–9. https://doi.org/10.2344/0003-3006-62.1.31.
\item 5 Ng KT, Shubash CJ, Chong JS. The effect of dexmedetomidine on delirium and agitation in patients in intensive care: systematic review and meta-analysis with trial sequential analysis. Anaesthesia. 2019;2019(74):380–92. https://doi.org/10.1111/anae.14472.
\item 6 Marino J, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020. https://doi.org/10.1001/jama.2020.6825 [Published online April 24].
\item 7 Hasanin A, Taha K, Abdelhamid B, et al. Evaluation of the effects of dexmedetomidine infusion on oxygenation and lung mechanics in morbidly obese patients with restrictive lung disease. BMC Anesthesiol. 2018;18(1):104 [Published 2018 Aug 14]. https://doi.org/10.1186/s12871-018-0572-y.
\end{itemize}