Gas Chromatographic Study of Bio-active Compounds in Methanolic Extract of Leaf of *Crateva adansonii* DC

Ajanaku Christiana O.¹, Echeme Johnbull O.², Mordi Raphael C.¹, Olugbuyiro Joseph O.¹, Osamudiamen Paul M.³, Jolayemi Emmanuel G.¹

¹ Department of Chemistry, P.M.B.1023, Ota, Ogun State, Nigeria.
² Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.
³ Department of Chemical and Food Science, Bells University of Technology, Ota.Ogun State.

Corresponding author’s email: oluwatoyin.ajanaku@covenantuniversity.edu.ng

Abstract. This study investigates the volatile bioactive components in *Crateva adansonii* plant that has been applied in the treatment of diverse ailments in the Western part of Nigeria and in Africa. The methanolic leaf extract of *Crateva adansonii* was subjected to analysis using gas chromatographic-mass spectrometric technique. The mass spectra of the compounds were analysed and identity of the compounds confirmed using the data base of the National Institute of Standard and Technology (NIST) library. The compounds identified includes n-Hexadecanoic acid; 9,12-Octadecadienoic acid (Z,Z); 9-Octadecenoic acid; (Z,E)-2,13-Octadecadien-1-ol; 9,17-Octadecadienal; cis-9-Hexadecenal; cis-Vaccenic acid; Z,Z-10,12-Hexadecadienal; 13-Octadecenal; Hexadecanoic acid 2-hydroxy-1-(hydroxymethyl)ethyl ester; E-11-Hexadecenal. Most of the compounds identified have antibacterial, anti-oxidant, anti-inflammatory and hypocholesterolemic properties, which affirms the therapeutic applications of *Crateva adansonii* as a medicinal plant.

Keywords: *Crateva adansonii*, GC-MS, medicinal plants, ethnobotany, antimicrobial

INTRODUCTION

Medicinal plants have been important tools as food, for prevention and treatment of ailments. Several modern medicines that have been in use in the treatment of various ailments have their origin from plants. It is imperative, therefore, to identify the chemically active
constituents of such medicinal plants. This will further advance the synthesis of drugs that are therapeutic[1]. The application of medicinal plants as therapeutic agents began as far back as 2600 B.C. with the Egyptians, the Greeks, Chinese, and Romans which applied the use of natural products in diverse forms ranging from decoctions, gargles, ointments, pills and infusions being used to treat disorders ranging from mild to complex states [2]. *Crataeva adansonii,* (CA) is a deciduous plant, found mainly in Africa. It grows to a height of about 10 metres. The plant, *Crataeva adansonii* is from the family, Capparaceae and species *C. adansonii,* commonly distributed across the savannah and forest areas across Nigeria [3]. It has close similarity with another species, *Crataeva religiosa* G. Forst from Asia, which is reported to exhibit same properties [4]. The bole is short and irregular. The surface of its bark is smooth, while the inner part of the bark is yellow. The leaves are in alternate positions, they are clustered at the end of the twigs, with 3 leaflets.

The leaves are used in sauces, soups and prepared as cooked vegetables. Decoctions from the leaf part of the plant is functional as a vapour bath against yellow fever, eye complaints and jaundice [5]. It is also taken orally in the treatment of pains, malaria[6][7], hypertension[8], oedema, jaundice, epilepsy, skin diseases [9]dysmenorrhoea and abscesses[10]. The dried and ground leaves are used to stimulate production of milk for lactating mothers in Burkina Faso [4] An earlier study on the methanolic extract of the leaf of CA against free radicals and antibiotic resistant organisms revealed the anti-oxidant and antibiotic potentials in the plant [7][11]. The phytochemical constituents and antimicrobial properties of this plant have been reported[12]. An important technological platform for profiling of volatile secondary metabolites in plant species is the employment of gas chromatography-mass spectrometry (GC-MS). Here we report on the gas chromatography coupled with mass spectrometry study of the leaf extract of CA. This study aims to investigate the volatile chemical components from the leaf of CA. It commences by first preparing the methanolic extract of the leaf, separation and identification of its components by subjecting the extract to GC-MS analysis.

MATERIALS AND METHODS

Collection of plant materials
The leaves of CA plant were collected from Iyesi village, in Ado-Odo/Ota local government of Ogun State, Nigeria. The plant identification was carried out by a botanist at the Forestry Herbarium, Forestry Reserve Institute of Nigeria, (FRIN), Ibadan, with No. FHI 110016.

Preparation of Plant Extracts

Dried leaves of CA were soaked in methanol (500 mL) and left for 72 hours. The mixture was filtered and the filtrate concentrated on a rotary evaporator. The crude extract of C. adansonii obtained was kept in the refrigerator for further analysis.

Gas Chromatography-Mass Spectrometry analysis

Analysis of the methanolic leaf extract of the CA plant was carried out on a GC-MS equipment by Agilent 7890A. The experimental conditions of the equipment are: HP-5MS ultra inert capillary non-polar column, dimensions: 30 mm × 0.25 mm; ID: 0.25 mm, film thickness: 0.25 μm. Flow rate of mobile gas: 1.0 ml/min. The oven temperature for the gas chromatographic part was 50°C raised to 300°C at 7°C/min for 10 min. The nature and structure of compounds were identified by the mass spectrometer. Appearance of peaks on the spectrum is as a result of the fragmentation of large compounds into smaller compounds at various m/z ratios. Spectrum of unidentified components was compared with the spectrum of identified components stored in the NIST library [13][14].

RESULTS AND DISCUSSION

The results of the study are presented in Table 1. One of the current techniques employed in compound identification from natural products is the gas chromatography equipment. It offers a simple and fast analytical approach to identification of low molecular weight compounds in plant extracts. Volatile components of extracts can be easily identified using this equipment. Compounds identified from the chromatographic analysis of the methanolic extract of the leaf of C. adansonii include: n-Hexadecanoic acid; 9,12-Octadecadienoic acid (Z,Z); 9-Octadecenoic acid; (Z,E)-2,13-Octadecadien-1-ol; 9,17-Octadecadienal; cis-9-Hexadecenal; cis-Vaccenic acid; Z,Z-10,12-Hexadecadienal; 13-Octadecenal; Hexadecanoic acid 2-hydroxy-1-(hydroxymethyl)ethyl ester; E-11-Hexadecenal. From table 1, the retention time, peak area, molecular weight and the molecular formula constituted the parameters by which each compound was identified. Compounds identified in this study show similarity
with earlier studies on the chromatographic analysis of *C. religiosa* [15]. From Table 1, the compound identified with the least retention time is n-Hexadecanoic acid (25.61 min) while E-11-Hexadecenal, was the last compound identified with the longest retention time (40.30 min). Figure 1, shows the chromatogram of the methanolic extract of the leaf of CA. The figure shows the various compounds identified alongside their retention times. Nature of compounds identified from the table can be categorized as fatty acids, long chain unsaturated aldehyde, fatty acid esters and polyunsaturated fatty acids (PUFA).

Fats are known to be vital sources of energy however, fats, as dietary intakes has more roles to the physiological system. Earlier studies have shown that unsaturated fatty acids have more health benefits than saturated fatty acids [16][17] and [18]. Observations made on intake of dietary fats have shown a steady relationship between polyunsaturated fatty acids and reduced risk of heart disease [19]. The compounds identified in Table 1 have common bioactive properties which include: antioxidant, anti-inflammatory [20], hypocholesterolemic, cancer preventive, antifungal, antibacterial, anti-acne, anti-coronary, anti-eczemic, insecticidal properties [21]. Unsaturated fatty acids can be obtained from fish, vegetables, olive oil, cotton seed oil, canola oil, or lean meat [22][23].

Table 1: Compounds identified in the methanolic leaf extract of *Crateva adansonii* in GC-MS

Ret time (min)	Peak area (%)	Compound Description	Mol. Wt. (g/mol)	Mol. formula	Nature of compound
25.61	19.92	n-Hexadecanoic acid (palmitic acid)	256.42	C_{16}H_{32}O_{2}	Fatty acid
28.03	47.56	9,12-Octadecadienoic acid (Z,Z)	280.45	C_{18}H_{32}O_{2}	Polyunsaturated Fatty acid
29.45	0.31	9-Octadecenoic acid (Z,E)-2,13-Octadecadien-1-ol	282.10	C_{18}H_{34}O_{2}	Fatty acid pheromone
29.53	0.28	9,17-Octadecadienal	266.469	C_{18}H_{32}O	Long chain unsaturated aldehyde
31.99	0.91	cis-9-Hexadecenal	238.415	C_{16}H_{30}O	Long chain unsaturated aldehyde
32.81	2.03	cis-Vaccenic acid (Z,Z)-10,12-Hexadecadienal	236.399	C_{16}H_{30}O	Long chain unsaturated aldehyde
33.22	0.27	cis-Vaccenic acid (Z,Z)-10,12-Hexadecadienal	282.468	C_{18}H_{34}O_{2}	Long chain unsaturated aldehyde
33.93	0.81	13-Octadecenal	236.399	C_{18}H_{34}O_{2}	Long chain unsaturated aldehyde
36.12	0.86	13-Octadecenal	266.469	C_{18}H_{34}O	Long chain unsaturated aldehyde
CONCLUSION

The search for lead compounds as a cure to numerous microbial issues from natural source is endless, so the importance of this study is the identification of some of the volatile bioactive compounds in the leaves of the plant. Further work on the pharmacological activity of this plant can be considered.

ACKNOWLEDGEMENTS

The authors express appreciation to the Vice Chancellor, Covenant University, the management team of the Covenant University Centre for Research, Innovation and Development (CUCRID) for support grant towards this research and to the Chemistry
Department, Ahmadu Bello University for the use of the facilities of their Multi-User laboratory.

Conflict of Interest: The authors hereby declare that there is no conflict of interest

REFERENCES

[1] Ayepola, O.O and Ishola, R.O. (2009). Evaluation of Antimicrobial Activity of *Anacardium occidentale* (Linn.) *Advances in Medical and Dental Sciences*, 3(1): 1-3.

[2] Cragg, G.M. and Newman, D.J. (2005). Plants as a Source of Anti-Cancer Agents. *Journal of Ethnopharmacology*, 100, 72-79. http://dx.doi.org/10.1016/j.jep.2005.05.011

[3] Mann, A; Ibrahim, K; Oyewale, A.O; Amupitan, J.O. & Okogun, J.I. (2009). Antimycobacterial activity of some medicinal plants in Niger State, Nigeria. *African Journal of Infectious Diseases*, 3(2): 44–48.

[4] Burkill, H.M. (1985). The Useful Plants of West Tropical Africa, vol. 1. Families A – D, second ed. Royal Botanic Gardens, Kew.

[5] Adebolu, T.T., Adeboye, P.T., and Adegbola, N.B. (2007). Evaluation of a Traditional Decoction Made from *Psidium guajava* and *Zingiber officinale* for Anti Bacterial Activity. *Research Journal of Microbiology*, 2: 954- 959.

[6] Agbankpe, A. J, Bankoles, H. L, Dougnon, T. J, Yehouenou, B, Hounmanou, Y.M.G, BabaMoussa, L.S. (2015). Comparison of Nutritional Values of *Vernonia amygdalina, Crateva adansonii* and *Sesamum radiatum*: Three Main Vegetables Used in Traditional Medicine for the Treatment of Bacterial Diarrhoea in Southern Benin (West Africa). *Food and Public Health*. 5(4): 144-149. DOI:http://dx.doi:10.5923/j.fph.20150504.07

[7] Tsado, A. N.; Bashir, L.; Mohammed, S. S.; Famous, I. O.; Yahaya, A. M.; Shu’aibu, M.; Caleb, T. (2015). Phytochemical composition and antimalarial activity of methanol leaf extract of *Crateva adansonii* in Plasmodium berghei infected mice. *British Biotechnology Journal*, 6(4): 165-173.

[8] Adjagba, M., Awede, B., Osseni, R., Hountondji, C., Dougnon, G., Lagnika, L., Darboux, R., and Laleye, A. (2017). Antihypertensive effect of extracts from *Crateva adansonii*DC.ssp. adansonii in the Wistar rats. *International Journal of Biology and Chemical Sciences*, 11(6): 2604-2615.

[9] Ganesan S.; Ponnuchamy M.; Kesavan L.; Selvaraj A. (2009). Floristic composition and practices on the selected sacred groves of Pallapatty village (Reserved forest), Tamil Nadu. *Indian Journal of Traditional Knowledge*, 8(2):154 - 162.
[10] Rathinavelab, T.; Ammashib, S; Muthusamy, G. (2018). Screening of anti-inflammatory phytocompounds from Crateva adansonii leaf extracts and its validation by in silicomodeling. Journal of Genetic Engineering and Biotechnology, 16(2); pp 711-719.

[11] Abenga, J.N., Lawal, I.A. (2005). Implicating roles of animal reservoir host in the resurgence of Gambian trypanosomiasis (Sleeping Sickness). African Journal of Biotechnology, 4: 134–137.

[12] Ajanaku, C. O., Echeme, J. O., Mordi, R. C., Owoeye, T. F., Taiwo, O. S., Ejilude, O., and Ataboh, J. U. (2018). Phytochemical Screening and Antimicrobial Studies of Stem and Root Extracts of Crateva adansonii. Annual Research & Review in Biology, 24(5): 1-7.

[13] Kanthal, L. K., Dey, A., Satyavathi, K. and Bhojaraju, P. (2014). GC-MS analysis of bio-active compounds in methanolic extract of Lactucaruncinata DC. Pharmacognosy Research, 6(1): 58-61.

[14] Uduman, M.S., Rathinam, P., Karuru, Y., Obili, G, Chakka, G, Janakiraman, A.K. (2017). GC-MS Analysis of Ethyl Acetate Extract of Whole Plant of Rostellulariadiffusa. Pharmacognosy Journal, 9(1):70-72.

[15] Wagay, N. A. (2017) Investigations On Secondary Metabolites From Crateva Religiosa Forst.—A Rare Medicinal Plant Of Vidarbha Region (M.S.) India. International Journal of Pharmaceutical Biological Sciences, 8(1): 402 – 407

[16] Sacks, F. M and Campos, H. (2006). Polyunsaturated Fatty Acids, Inflammation, and Cardiovascular Disease: Time to Widen Our View of the Mechanisms, The Journal of Clinical Endocrinology & Metabolism, 91(2):398–400.

[17] Ander, B. P., Dupasquier, C. M., Prociuk, M. A. and Pierce, G. N. (2003). Polyunsaturated fatty acids and their effects on cardiovascular disease. Experimental and Clinical Cardiology, 8(4): 164-72.

[18] Shahidi, F. and Ambigaipalan, P. (2018). Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annual Review of Food Science and Technology, 9(1): 345-381

[19] Hu, F.B., Bronner J., Willett W.C., Stampfer M.J., Rexrode K.M., Albert C.M., (2002) Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA, 287:1815–1821.

[20] Aparna, V., Dileep, K.V., Mandal, P.K., Karthe, P., Sadasivan, C. and Haridas, M. (2012). Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chemical Biology & Drug Design, 80 (3): 434-439.

[21] Sanni, D. M., and Omotoyinbo, O. V. (2016). GC-MS Analysis of Pteleopsis suberosa Stem Bark Methanol-Chloroform Extract. Journal of Plant Sciences.4(3): 37-40.

[22] Whelan, J. and McEntee, M. F. (2004). Dietary (n-6) PUFA and Intestinal Tumorigenesis. Journal of Nutrition, 134: 3421S-3426S.
[23] Adeoye-Isijola, M. O., Olajuyigbe O. O., Jonathan S. G., and Coopoosamy R. M., (2018). Bioactive Compounds In Ethanol Extract of LentinusSquarrosulus Mont – A Nigerian Medicinal Macrofungus. *African Journal of Traditional Complementary Alternative Medicine*, 15(2): 42-50.