Modeling unbalanced systems in network-like oil and gas processes

S M Sergeev, L B Rajhelgauz, V N Hoang and I N Panteleev

1 Peter the Great St. Petersburg Polytechnic University, 29, Polytechnitcheskaya st., Saint-Petersburg, 199000, Russian Federation
2 Voronezh State University, 1, Universitetskaya pl., Voronezh, 394006, Russian Federation
3 Ministry of Education and Training, 49 Dai Co str., Hanoi, Viet Nam
4 Voronezh State Technical University, 14, Moscow ave., Voronezh, 394026, Russian Federation

E-mail: wwprov@mail.ru

Abstract. In the paper proposes a analog of the method E. Rote (the method of semi-discrete by time variable) to construction converging different schemes when analyzing the mathematical models of network-like oil and gas processes. The proposed method reduce the study of the input initial boundary value problem to study the boundary value problem in a weak setting for elliptical type equations with distributed parameters on the net-work. Thus, there is another possibility, besides the Faedo-Galerkin method, to construction approaches to the desired solution of the initial boundary value problem, to analyze its stability and the way to prove the theorem of the existence of a weak solution to the input problem. The approach is applied to finding sufficient conditions for the existence of weak solutions to other initial boundary value problems with more total boundary conditions -- in which elliptical equations are considered with the boundary conditions of the second or third type. Further analysis is possible on the way to finding the conditions of the Lyapunov stability. The approach can be used to analyze the optimal control problems, as well as the problems of stabilization and stability of differential systems with delay. Presented method of finite difference open new ways of approximation of the states of the parabolic system, analysis of their stability when numerical implementation and algorithmic of optimal control problems.

1. Introduction

The paper provides a fairly sufficiently total approach of using ideas of the method of finite difference and some principles of construction converging different schemes when analyzing initial boundary value problems with distributed parameters on the graph in the class of summable up functions. Below is a analogy of the Rote method [1] which essentially reduce the analysis of the input initial boundary value problem to the study of the boundary value problem for elliptical type equations with distributed parameters on the graph. Thus, there is another possibility [2-4], besides the Faedo-Galerkin method, to construction approaches to the desired solution of the initial boundary value problem, to analyze its stability and the way to prove the theorem of the existence of a weak solution to the input problem. The approach is applied to finding sufficient conditions [5] for the stability of weak solutions to other initial boundary value problems with more total boundary conditions - in which elliptical equations are
considered with the boundary conditions of the second or third type. The solvability of such problems is proved similarly to the reasoning for the problem [6] with the boundary conditions of the first type.

2. Notations, concepts and basic statements. Case \(x \in \mathbb{R}^1 \)

In the represented work uses concepts and notations accepted in the works \([7,8]\): \(\Gamma \) is bounded oriented geometric graph with edges \(\gamma \) parameterized segment \([0,1]\); \(\partial \Gamma \) and \(J(\Gamma) \) are many boundary \(\zeta \) and interior \(\xi \) nodes of the graph, respectively; \(\Gamma_0 \) join all the edges of the graph \(\Gamma \) that do not contain endpoints; \(\Gamma_i = \Gamma_0 \times (0,t) \) \((\gamma_i = \gamma_0 \times (0,t)) \), \(\partial \Gamma_i = \partial \Gamma \times (0,t) \) \((t \in (0,T], \ T < \infty \) is arbitrary fixed constant). Necessary spaces and sets: \(C[\Gamma] \) is space of continuous and differentiable on \(\Gamma \) functions (derivative at the endpoints of the ribs is understood as one-sided), \(L_p(\Gamma) \) \((p = 1, 2) \) is the Banach space \([9]\) of measurable on \(\Gamma_0 \) functions summarized with a \(p \) degree (similar to space \(L_p(\Gamma) \)); \(L_{2,1}(\Gamma) \) is the space of function from \(L_2(\Gamma) \) with the norm, defined by the ratio \(\|u\|_{2,1} = \int_0^T \left(\int_\Gamma u^2(x,t)dx \right)^{1/2} dt \); \(W^{2,1}_1(\Gamma) \) is the space of functions from \(L_2(\Gamma) \) having a generalized first order derivative also from \(L_2(\Gamma) \); \(W^{1,0}_1(\Gamma) \) is the space of functions from \(L_2(\Gamma) \) having a generalized first order derivative by \(x \) belonging \(L_1(\Gamma) \) (similarly entered the space \(W^{1,0}_1(\Gamma) \)). Below is the difference-differential analogue of the parabolic \([10]\) equation

\[
\frac{\partial y(x,t)}{\partial t} - \frac{\partial}{\partial x} \left(a(x) \frac{\partial y(x,t)}{\partial x} \right) + b(x)y(x,t) = f(x,t), \quad x, t \in \Gamma_t .
\]

with measurable bounded on \(\Gamma_0 \) functions \(a(x), b(x) \) summable with the square:

\[
0 < a, a', b(x) \leq \beta, x \in \Gamma_0 .
\]

The following statement to take place \([11]\).

Lemma. Let fulfill conditions \((2)\) and function \(u(x) \in W^1_2(\Gamma) \) is such that \(\ell(u,\nu) = \int f(x)\eta(x)dx = 0 \) for any \(\eta(x) \in W^1_2(\Gamma) \), \(f(x) \in L_2(\Gamma) \) is fixed function. Then for any edge \(\gamma \subset \Gamma \) narrowing

\[
a(x) \gamma \frac{du(x)}{dx} \quad \text{continuously at the endpoints of the edge } \gamma, \quad \ell(\mu,\nu) = \int \left(a(x) \frac{d\mu}{dx} + b(x)\nu \right) dx .
\]

Let's designate through \(\Omega_0(\Gamma) \) a set of functions \([12]\) \(u(x) \in C[\Gamma] \) that meet the conditions of Lemma \([13]\) and ratios

\[
\sum_{\gamma \in \Delta(\xi)} a(1)_{\gamma} \frac{du(1)_{\gamma}}{dx} = \sum_{\gamma \in \Delta(\xi)} a(0)_{\gamma} \frac{du(0)_{\gamma}}{dx}
\]

in all the nodes \(\xi \in J(\Gamma) \) (here \(R(\xi) \) and \(r(\xi) \) are sets of edges \(\gamma \), respectively oriented "to node \(\xi \)" and "from node \(\xi \")). The closing of the set \(\Omega_0(\Gamma) \) in norm \(W^1_2(\Gamma) \) relabel \(W^1_2(a,\Gamma) \). In addition, if we assume that the functions \(u(x) \in \Omega_0(\Gamma) \) satisfy the boundary condition \(u(x)|_{\partial \Gamma} = 0 \), then we will get space \(W^1_0(a,\Gamma) \). Next, let's designate through \(W^1_{0,1}(a,\Gamma) \) the closure in the norma \(W^1_{2,1}(\Gamma) \) the set of differentiable functions \(\Omega(\Gamma) \), equal to zero near the boundary \(\partial \Gamma \) and satisfying ratios \((3)\) for all nodes \(\xi \in J(\Gamma) \) and for any \(t \in [0,T] \). Analogously let's introduce space \(W^1_{0,1}(a,\Gamma) \) as the closure in the norma \(W^1_{2,1}(\Gamma) \) set of functions \(\Omega(\Gamma) \). The space \(W^1_{0,1}(a,\Gamma) \) describes many states \(y(x,t) \) of the
parabolic system (1), $W^1_0(a, \Gamma)$ -- auxiliary space. For functions $y(x,t) \in W^1_0(a, \Gamma)$ we consider equation (1) with initial and boundary conditions
\[y \big|_{t=0} = \varphi(x) \in L^2(\Gamma), \quad y \big|_{x=\pm \infty} = 0; \] the first equality in (4) have meaning sense and is understood almost everywhere. The initial boundary value problem (1), (4) in the space $W^1_0(a, \Gamma)$ is a mathematical model of the process of gas and oil transfer on the network Γ, linear fragments Γ_k which have a small section diameter.

3. Main result. Differential-difference system, $x \in \mathbb{R}^1$
In space $W^1_0(a, \Gamma)$ consider the equation (1) and dissect the domain Γ planes $t = k\tau$, $k = 0, 1, 2, \ldots, M$, $\tau = T/M$, in addition denote by Γ_k section Γ the plane $t = k\tau$. Equation (1) will replace differential-difference
\[\frac{1}{\tau}(u_k(x)-u_{k-1}(x)) - \frac{d}{dx} \left(a(x) \frac{du_k(x)}{dx} \right) + b(x)u_k(x) = f(x,k), \quad k = 1, 2, \ldots, M, \] where $f(x,k) \equiv f(x,k) = \frac{1}{\tau} \int_{(k-1)\tau}^{k\tau} f(x,t)dt \in L^2(\Gamma)$. Functions $u_k(x)$ ($k = 1, 2, \ldots, M$) will define as a solution to the equation system (5) that meets the conditions
\[u_k(0) = \varphi(x), \quad u_k(x) \big|_{x=\pm \infty} = 0 \quad (k = 1, 2, \ldots, M). \]

Definition. A weak solution to a boundary value problem (5), (6) is called functions $u_k(x) = W^1_0(a, \Gamma)$ ($k = 0, 1, 2, \ldots, M$), $u_0(x) = \varphi(x)$ ($\varphi(x) \in L^2(\Gamma)$), satisfying an integral identity
\[\int_{\Gamma} u_k(x)\eta(x)dx + \ell(u_k(x),\eta) = \int_{\Gamma} f(x,k)\eta(x)dx, \quad k = 1, 2, \ldots, M, \quad \text{for any } \eta(x) \in W^1_0(a, \Gamma); \] equality $u_0(0) = \varphi(x)$ is understood almost everywhere, $u_k(x) = (u_{k}(x) - u_{k-1}(x))/\tau$.

We will establish the correctness of the statements, similar to presented in theorem 1.

Theorem 1. A weak solution of the initial boundary value problem (1), (4) is the limit of functions $u_k(x)$, calculated from ratios (5), (6).

4. Notations, concepts and basic statements. Case $x \in \mathbb{R}^n$ ($n \geq 2$)
In the Euclid space \mathbb{R}^n let's look at a network-like bounded area \mathcal{X}, comprised of N areas \mathcal{X}_k ($k = 1, N$), pairwise united by means of M nodal place ω_j: $\mathcal{X} = \mathcal{X} \cup \mathcal{X}'$, where $\mathcal{X}' = \bigcup_{k=1}^{N} \mathcal{X}_k$, $\mathcal{X}' = \bigcup_{j=1}^{M} \omega_j$, moreover $\mathcal{X}_k \cap \mathcal{X}_j = \emptyset$ ($k \neq l$), $\omega_j \cap \omega_l = \emptyset$ ($j \neq l$), $\mathcal{X}_k \cap \omega_j = \emptyset$ [14]. Areas \mathcal{X}_k in nodal place ω_j share common boundaries in the form of adjoining surfaces S_j (meas $S_j > 0$). At each nodal place ω_j the adjoining surface S_j separating to her $1+m_j$ the areas \mathcal{X}_{k_0} and \mathcal{X}_{k_j} ($1 \leq s \leq m_j \leq N$) has a representation $S_j = \cup_{s=1}^{m_j} S_{js}$. Thus, the nodal place ω_j is determined by the adjoining surface S_j, for which S_{js} are also the adjoining surface \mathcal{X}_b to \mathcal{X}_{s_j}, $s = 1, m_j$. The boundary $\partial \mathcal{X}$ of the area \mathcal{X} is called the union of the boundary $\partial \mathcal{X}_j$ of area \mathcal{X}_j ($k = 1, N$), which does not include the adjoining surface of all node places: $\partial \mathcal{X} = \bigcup_{k=1}^{N} \partial \mathcal{X}_k \cup \bigcup_{j=1}^{M} S_j$. The area \mathcal{X} has a network-like structure similar to that of the geometric graph [15], each area \mathcal{X}_k adjoins to one or two node places and has one
or more of the surface adjoining other areas (to compare with the structure [16] of the graph: each edge of the graph has two endpoints, of which one or both are conjugation nodes with the other edges).

Let \(C^0(\mathfrak{F}) \) is a set of functions \(u(x) \in C(\mathfrak{F}) \cap C^1(\mathfrak{F}) \) satisfying the the condition of agreement

\[
\int_{S_j} a_j(x) \frac{\partial u_j(x)}{\partial n_j} ds + \sum_{i=1}^{m_j} \int_{S_{ij}} a_{ij}(x) u_{ij}(x) \frac{\partial n_{ij}}{\partial n_j} ds = 0, \quad x \in S_{ij}, i = 1, m_j, \quad \text{for each node } \nu_j \text{ on surfaces } S_j = \bigcup_{r=1}^{m_j} S_{ij}, \quad j = 1, M; \quad \text{here } u_j(x) \text{ and } u_{ij}(x) \text{ are narrowing the function } u(x)\) [17] on \(S_j \) and \(S_{ij} \), vectors \(n_j \) and \(n_{ij} \) are outer normals to \(S_j \) and \(S_{ij} \), respectively, \(i = 1, m_j, j = 1, M \) [18].

Let \(C^0(\mathfrak{F}) \) is a set of functions from \(C^0(\mathfrak{F}) \) having a compact carrier lying in \(\mathfrak{F} \) (in other words, \(C^0(\mathfrak{F}) \) is a set of functions that are zero near \(\partial \mathfrak{F} \)). Closing the set \(C^0(\mathfrak{F}) \) in norm \(\mathbb{P} = \sqrt{(u, u)^2} \), where \((u, v)^2 = \sum_{k=1}^{n} (uv)_{2k} \), let's call space \(W^0(\mathfrak{F}) \). Let the next \(\Omega_0(\mathfrak{F}) \) is the set of functions \(u(x, t) \in W^1(\mathfrak{F}) \), whose traces are defined in sections of the domain \(\mathfrak{F} \) the plane \(t = t_0 (t_0 \in [0, T]) \) as a function of class \(W^0(\mathfrak{F}) \). The closing of the set \(\Omega_0(\mathfrak{F}) \) in norm \(W^1_0(\mathfrak{F}, \mathfrak{F}) \) relabel \(W^1_0(a, \mathfrak{F}) \). In space \(W^1_0(a, \mathfrak{F}) \) consider the initial boundary value problem [19,20]:

\[
\frac{\partial u(x,t)}{\partial t} - \frac{\partial}{\partial x} \left(a(x) \frac{\partial u(x,t)}{\partial x} \right) + b(x)u(x,t) = f(x,t), \quad u\big|_{x=0}=\varphi(x), \quad \varphi(x) \in L_2(\mathfrak{F}). \tag{7}
\]

Function \(f(x,t) \in L_{2,1}(\mathfrak{F}) \) is the space of summable on domain \(\mathfrak{F} \) functions,

\[
P_{L_{2,1}}(\mathfrak{F}) = \int_0^T \left(\int_\mathfrak{F} |f(x,t)|^2 dx \right)^{\frac{1}{2}} dt; \quad \frac{\partial}{\partial x} \left(a(x) \frac{\partial u(x,t)}{\partial x} \right) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(a(x) \frac{\partial u(x,t)}{\partial x_i} \right), \quad a(x), b(x) \in L_2(\mathfrak{F}),
\]

\(0 < a \leq a^* < \infty, \quad |b(x)| \leq \beta < \infty \). The initial boundary value problem (7) in the space \(W^1_0(a, \mathfrak{F}) \) is a mathematical model [21-23] of the process of gas and oil transfer on the network \(\mathfrak{F} \), linear fragments of \(\mathfrak{F} \) which have a large enough diameter of the section, disproportionate to the length of the linear fragment [24] of the network [25].

5. Conclusions

The work outlines an approach to the analysis of the differential system with distributed parameters on the graph, which, not using the Faedo-Galerkin method, establishes the theorem of the existence of a solution to the initial boundary value problem (1), (4) and at the same time gives you the opportunity to obtain the conditions of stability (countably stability) of the investigated problem. The proposed method can be used for solve other initial boundary value problems. In this case, the boundary conditions of the second or third types is added to the elliptical equations (9). Note also, the used approach it is not difficult to extend to the case when \(\Gamma \) is a netlike domain of Euclidean space \(\mathbb{R}^n \) \((n \geq 2) \). Further analysis is possible on the way to finding the conditions of the Lyapunov stability of problem (1), (4). The approach can be used to analyze the optimal control problems of [26, 27], as well as the problems of stabilization and stability of differential systems [28] with delay[29, 30].

References

[1] Provotorov V V, Sergeev S M and Part A A 2019 Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation Vestnik of Saint Petersburg University Applied Mathematics Computer Science Control Processes 15(1) 107-17

[2] Volkova A S, Gnilitkskaya Y A and Provotorov V V 2014 On the solvability of boundary-value
problems for parabolic and hyperbolic equations on geometrical graphs *Automation and Remote Control* **75**(2) 405-12

[3] Provotorov V V, Ryazhskikh V I and Gnilitskaya Yu A 2017 Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain *Vestnik of Saint Petersburg University Applied Mathematics Computer Science Control Processes* **13**(3) 264-77

[4] Provotorov V V and Provotorova E N 2017 Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph *Vestnik of Saint Petersburg University Applied Mathematics Computer Science Control Processes* **13**(2) 209-24

[5] Borisoglebskaya L N, Provotorov V V, Sergeev S M and Kosinov E S 2019 Mathematical aspects of optimal control transfer processes in spatial networks *IOP Conf. Ser.: Mater. Sci. Eng.* **537** 042025

[6] Volkova A S and Provotorov V V 2014 Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph *Russian Mathematics* **58**(3) 1-13

[7] Kurochkina A A, Voronkova O V, Lukina O V and Bikezina T V 2019 Management features of small and medium-sized business enterprises *Espacios* **40**(34) 6

[8] Krasyuk I A, Kobeleva A A, Mikhailushkin P V, Terskaya G A and Chuvakhina L G 2018 Economic interests focusing as a basis of the formation of investment policy *Espacios* **39**(28) 518-31

[9] Krasnov S, Sergeev S, Titov A and Zotova Y 2019 Modelling of digital communication surfaces for products and services promotion *IOP Conf. Ser.: Mater. Sci. Eng.* **497** 012032

[10] Zhabko A P, Provotorov V V and Balaban O R 2019 Stabilization of weak solutions of parabolic systems with distributed parameters on the graph *Vestnik of Saint Petersburg University Applied mathematics Computer science Control processes* **15**(2) 187-98

[11] Pilipenko O V, Provotorova E N, Sergeev S M and Rodionov O V 2019 Automation engineering of adaptive industrial warehouse *J. Phys.: Conf. Ser.* **1399** 044045

[12] Krasyuk I A, Bakharev V V and Medvedeva Yu Yu 2017 Sector specific features of innovative development in the Russian economy *SHS Web of Conferences* **35** 01052

[13] Zhabko A P, Nurtazina K B and Provotorov V V 2019 About one approach to solving the inverse problem for parabolic equation *Vestnik of Saint Petersburg University Applied mathematics Computer science Control processes* **15**(3) 322-35

[14] Krasnov S, Zotova E, Sergeev S, Krasnov A and Draganov M 2019 Stochastic algorithms in multimodal 3PL segment for the digital environment *IOP Conf. Ser.: Mater. Sci. Eng.* **618** 012069

[15] Provotorov V V 2008 Eigenfunctions of the Sturm-Liouville problem on astar graph. *Sbornik: Mathematics* **199**(10) 1523-45

[16] Krasyuk I A, Bakharev V V, Kozlova N A and Mirzoeva D D 2017 Staffing in the sphere of trade: the main issues and prospects of solution *Proceedings of 2017 IEEE 6th Forum Strategic Partnership of Universities and Enterprises of Hi-Tech Branches (Science. Education. Innovations)* **6** 48-50

[17] Kalinina O, Alekseeva L, Varlamova D, Barykin S and Kapustina I 2019 Logistic approach to intellectual property *E3S Web of Conferences* **110** 02103

[18] Aleksandrov A, Zhabko A. and Hu G-D 2014 Delay-independent stability conditions for some classes of nonlinear systems *IEEE Transactions on Automatic Control* **59**(8) 2209-14

[19] Kosnikov S N, Khaibullina I V, Ignatskaya M A, Bakharev V V and Pinchuk V N 2017 Characteristic of economic indicators as reproduction of fixed capital *International Journal of Applied Business and Economic Research* **15**(13) 243-53

[20] Podvalny S L, Provotorov V V and Podvalny E S 2017 The controllability of parabolic systems with delay and distributed parameters on the graph *Procedia Computer Science* **12th. International Symposium Intelligent Systems** **2017** 324-30

[21] Kapustina I V, Kirillova T V, Ilyina O V, Razzhivin O A and Smelov P A 2017 Features of
Economic Costs of Trading Enterprise: Theory and Practice *International Journal of Applied Business and Economic Research* **15**(11) 1-10

[22] Krasyuk I, Kirillova T, Bakharev V and Lyamin B 2019 Life cycle management in network retail enterprise based on introduction of innovations *IOP Conference Series: Materials Science and Engineering* **497**(1) 012125

[23] Grishchenko O V, Kireev V S, Dubrova L I, Yanenko M B and Vakulenko R Y 2016 Organization, planning and control of marketing logistics *International Journal of Economics and Financial Issues* **6**(8) 166-72

[24] Borisoglebskaya L N, Provotorova E N and Sergeev S M 2019 Promotion based on digital interaction algorithm *IOP Conf. Ser.: Mater. Sci. Eng.* **537** 042032

[25] Borisoglebskaya L N, Provotorova E N, Sergeev S M and Khudyakov A P 2019 Automated storage and retrieval system for Industry 4.0 concept *IOP Conf. Ser.: Mater. Sci. Eng.* **537** 032036

[26] Provotorov V V and Provotorova E N 2017 Optimal control of the linearized Navier-Stokes system in a netlike domain *Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes* **13**(4) 431-43

[27] Artemov M A, Baranovskii E S, Zhabko A P and Provotorov V V 2019 On a 3D model of non-isothermal flows in a pipeline network *Journal of Physics. Conference Series* **1203** 012094

[28] Golosnoy A S, Provotorov V V, Sergeev S M, Raikhelgauz L B and Kravets O Ja 2019 Software engineering math for network applications *Journal of Physics: Conference Series* **1399**(4) 044047

[29] Lvovich Ya E, Tishukov B N, Preobrazhenskiy A P, Pitolin A V and Kravets O Ja 2019 Complex-Structured Objects Optimization During Modeling on the Population Algorithms Adaptation Basis *International Journal on Information Technologies and Security* **3**(11) 41-50

[30] Nedyalkov I, Stefanov A and Georgiev G 2019 Studying and Characterization of the Data Flows in an IP-Based Network *International Journal on Information Technologies and Security* **1**(11) 3-12