Computation of Neutrino Masses in \(R \)-parity Violating Supersymmetry in SOFTSUSY

B.C. Allanacha, C.H. Koma,b, M. Hanussekc

aDAMTP, CMS, University of Cambridge, Wilberforce road, Cambridge, CB3 0WA, United Kingdom
bThe Cavendish Laboratory, J J Thomson Ave, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
cBethe Center of Theoretical Physics, University of Bonn, Nussallee 12, D-53115 Bonn, Germany

Abstract

The program SOFTSUSY can calculate tree–level neutrino masses in the \(R \)-parity violating minimal supersymmetric standard model (MSSM) with real couplings. At tree–level, only one neutrino acquires a mass, in contradiction with neutrino oscillation data. Here, we describe an extension to the SOFTSUSY program which includes one–loop \(R \)-parity violating effects’ contributions to neutrino masses and mixing. Including the one–loop effects refines the radiative electroweak symmetry breaking calculation, and may result in up to three massive, mixed neutrinos. This paper serves as a manual to the neutrino mass prediction mode of the program, detailing the approximations and conventions used.

Key words: sparticle, MSSM
PACS: 12.60.Jv
PACS: 14.80.Ly

1. Program Summary

Program title: SOFTSUSY
Program obtainable from: \url{http://projects.hepforge.org/softsusy/}
Distribution format: tar.gz
Programming language: C++, fortran
Computer: Personal computer
Operating system: Tested on Linux 4.x
Word size: 32 bits
External routines: None
Typical running time: A second per parameter point.
Nature of problem: Calculation of neutrino masses and the neutrino mixing matrix at one–loop level in the \(R \)-parity violating minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with a high or weak–scale boundary condition on supersymmetry breaking parameters and \(R \)-parity violating parameters, as well as a weak–scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters.
Solution method: Nested iterative algorithm.
Restrictions: SOFTSUSY will provide a solution only in the perturbative régime and it assumes that all couplings of the MSSM are real (i.e. \(CP \)-conserving).
2. Introduction

Supersymmetric (SUSY) models provide an attractive weak–scale extension to the Standard Model (SM). The R–parity conserving (R_p) minimal supersymmetric extension of the Standard Model (R_p MSSM) is often used as a reference model for phenomenological studies. There exist several publicly available spectrum generators for the R_p MSSM: ISASUGRA [1], SOFTSUSY [2], SUSPECT [3] and SPHENO [4]. Spectrum information is typically transferred to decay packages and event generators via a file in the SUSY Les Houches Accord format [5, 6].

The most general renormalisable superpotential of the MSSM contains R–Parity violating (\bar{R}_p) couplings which violate baryon and lepton number [7]. A symmetry can be imposed upon the model in order to maintain stability of the proton, for example baryon triality [8] or proton hexality [9]. It has been shown that \bar{R}_p models may have interesting features, such as the generation of non–zero neutrino masses and mixing without the addition of right–handed neutrino fields [10]. In fact, neutrino oscillation data indicates that at least two neutrinos must be massive, so a realistic extension to the SM should include mechanisms to generate these masses. Here, we describe an extension to SOFTSUSY which calculates neutrino masses and mixing to one–loop order in the presence of R_p couplings. The latest version of SOFTSUSY including \bar{R}_p effects can be downloaded from the address

http://projects.hepforge.org/softsusy/

Installation instructions and more detailed technical documentation of the code may also be found there.

The R_p and \bar{R}_p aspects of the SOFTSUSY calculation leading to self–consistent spectra are already explained in detail in Refs. [2] and [11] respectively, with the technical differences between these two calculations detailed in the latter reference. They shall not be repeated here. Instead we shall concentrate on the calculation of neutrino masses and mixing, and differences in the \bar{R}_p calculations between the new and the previous release, which are called the neutrino mode and the R_p mode respectively. Two new features of SOFTSUSY3.2 are the \bar{R}_p one–loop tadpole corrections to the two Higgs vacuum expectation values (VEVs), and the complete one–loop tadpole corrections to the sneutrino VEVs. These improvements allow the computation of the neutrino spectrum and neutrino mixings, with minimal additional computational cost. They also slightly change some predictions in the non-neutrino sector.

We proceed with a definition of the SOFTSUSY convention for the \bar{R}_p parameters and mixings relevant for the neutrino mass calculation in section 3. Next, in section 4, we discuss the calculation of the neutrino masses, detailing the approximations made. Installation instructions can be found on the SOFTSUSY web–site, but instructions to run the program can be found in A whereas a sample main program is shown and explained in C. Some more technical information on the structure of the program can be found in D. It is expected that the information in D will only be of use to users who wish to ‘hack’ SOFTSUSY in some fashion.

3. MSSM R_p Parameters

In this section, we introduce the R_p MSSM parameters in the SOFTSUSY conventions relevant for the neutrino mass and 1–loop tadpole calculations. A detailed description of the complete set of R_p MSSM parameters is presented in Ref. [11]. The latter follows Ref. [12] and so the notation and conventions employed are similar.

3.1. R_p supersymmetric and SUSY breaking parameters

The chiral superfield particle content of the MSSM has the following $SU(3)_c\times SU(2)_L\times U(1)_Y$ quantum numbers:

\[
\begin{align*}
L: & \quad (1, 2, -\frac{1}{2}), & \bar{E}: & \quad (1, 1, 1), & Q: & \quad (3, 2, \frac{1}{6}), & \bar{U}: & \quad (\bar{3}, 1, -\frac{2}{3}), \\
D: & \quad (\bar{3}, 1, \frac{1}{2}), & H_1: & \quad (1, 2, -\frac{1}{2}), & H_2: & \quad (1, 2, \frac{1}{2}).
\end{align*}
\]

\[1\] SPHENO includes a small subset of the R_p interactions.
L, Q, H_1, and H_2 are the left handed doublet lepton and quark superfields and the two Higgs doublets. \tilde{E}, \tilde{U}, and \tilde{D} are the lepton, up–type quark and down–type quark right–handed superfield singlets, respectively. The R_p part of the renormalisable MSSM superpotential that violates lepton number, written in the interaction eigenbasis, is

$$W_{R_p} \propto \epsilon_{ab} \left[\frac{1}{2} h_{ij k} L_i^a \tilde{L}^b_j \tilde{e}_k + \lambda'_{ij k} Q_j^a \tilde{D}_k - \kappa_i L_i^a H_2^b \right].$$

Here, κ, λ', and λ'' are the bi–linear [trilinear] couplings. We denote an $SU(3)$ colour index of the fundamental representation by $\{x, y, z\} \in \{1, 2, 3\}$. The $SU(2)_L$ fundamental representation indices are denoted by $\{a, b, c\} \in \{1, 2\}$ and the generation indices by $\{i, j, k\} \in \{1, 2, 3\}$. $\epsilon_{ab} = \epsilon^{abc}$ is a totally antisymmetric tensor, with $\epsilon_{12} = 1$. Currently, only real couplings in the superpotential and Lagrangian are included.

The corresponding soft R_p breaking interaction potential, together with the bi–linear mixing term between the scalar component of the lepton doublets and the H_1 superfields, is involved in tadpole and 1–loop corrections to the neutrino–neutralino masses. It is given by

$$V_{R_p} \propto \epsilon_{ab} \left[\frac{1}{2} h_{ij k} \tilde{L}_i^a \tilde{L}^b_j \tilde{e}_k + \lambda'_{ij k} \tilde{Q}_j^a \tilde{D}_k - D_i \tilde{L}_i^a H_2^b + \text{H.c.} \right] + \left[m_{L_i H_1}^2 \tilde{L}_i^a H_1^b + \text{H.c.} \right],$$

where fields with a tilde are the scalar components of the superfield with the same capital letter. The scalar components of the superfields H_1 and H_2 and the superfields themselves have the same notation. The electric charges of \tilde{d} and \tilde{e} are $\frac{1}{2}$ and 1, respectively. $h_{ij k}$ and $\lambda'_{ij k}$ are trilinear soft SUSY breaking parameters that correspond to $\lambda_{ij k}$ and $\lambda'_{ij k}$, and D_i and $m_{L_i H_1}$ are bi–linear SUSY breaking parameters. “H.c.” denotes the Hermitian conjugate of the preceding terms.

3.2. Neutral and charged fermion masses

In the presence of R_p interactions that violate lepton number, the neutrinos and neutralinos mix, and the charginos and leptons mix with each other. Sneutrino–anti-sneutrino mixing is also present in principle; in practice this has been shown to have negligible phenomenological consequences once experimental bounds have been applied $[13]$, and is neglected in our calculation.

The (7×7) neutrino–neutralino Lagrangian mass term, containing three families of neutrinos is given in $[12]$ and reads

$$\mathcal{L} = -\frac{1}{2} \left(v_i, -i\tilde{B}, -\tilde{\omega}W^{(3)}, \tilde{h}_1^0, \tilde{h}_2^0 \right) \mathcal{M}_N \left(\begin{array}{c} v_j \\ -it \tilde{B} \\ -i\tilde{\omega}W^{(3)} \\ \tilde{h}_1^0 \\ \tilde{h}_2^0 \end{array} \right),$$

where at tree level,

$$\mathcal{M}_N = \left(\begin{array}{cccc} 0 & -\frac{t}{2} v_j & \frac{t}{2} v_j & 0 & -\kappa_i \\ -\frac{t}{2} v_j & M_1 & 0 & -\frac{t}{2} \langle H_1^0 \rangle & \frac{t}{2} \langle H_2^0 \rangle \\ \frac{t}{2} v_j & 0 & M_2 & \frac{t}{2} \langle H_1^0 \rangle & -\frac{t}{2} \langle H_2^0 \rangle \\ 0 & -\frac{t}{2} \langle H_1^0 \rangle & \frac{t}{2} \langle H_1^0 \rangle & 0 & -\mu \\ -\kappa_i & \frac{t}{2} \langle H_2^0 \rangle & -\frac{t}{2} \langle H_2^0 \rangle & -\mu & 0 \end{array} \right).$$

In Eq. 4, the flavour basis neutral fermions are the 3 neutrinos (v_i), the gauginos ($\tilde{B}, \tilde{\omega}$) and the higgsinos ($\tilde{h}_1^0, \tilde{h}_2^0$). In the mass matrix in Eq. 5, $\kappa_i, [\mu]$ are the supersymmetric R_p [R_p] bi–linear mixing parameters, v_i [\langle H_1^0 \rangle and \langle H_2^0 \rangle]
For realistic mass spectra, diagonalisation of

\[A \text{ can be diagonalised by a } \]

\[\begin{pmatrix} m_e & m_{\mu} & m_{\tau} \\ m_{\mu} & m_{\mu} & m_{\tau} \\ m_{\tau} & m_{\tau} & m_{\tau} \end{pmatrix}, \]

where \(m_r \) is a 3 \times 3 mass matrix, \(M^p \) is a 4 \times 4 mass matrix, and \(m \) is a 3 \times 4 matrix that mixes the neutrinos and the neutralinos. We define an effective 3 \times 3 neutrino mass matrix \(M_\nu \) via the see–saw relation

\[M_\nu = m_r - m M_{\chi^0} m^T. \]

It can be diagonalised by a \(O(3) \) matrix \(O_\nu \),

\[M_\nu^{\text{diag}} = O_\nu^T M_\nu O_\nu. \]

For realistic mass spectra, \(O_\nu \) is practically the same as the 3 \times 3 neutrino part of \(O \) (we do not assume this, however).

At tree level, the effective neutrino mass matrix is \[\]

\[\begin{pmatrix} \Delta_1 \Delta_1 & \Delta_1 \Delta_2 & \Delta_1 \Delta_3 \\ \Delta_2 \Delta_1 & \Delta_2 \Delta_2 & \Delta_2 \Delta_3 \\ \Delta_3 \Delta_1 & \Delta_3 \Delta_2 & \Delta_3 \Delta_3 \end{pmatrix}, \]

where

\[\Delta_i = v_i - \langle H^0_i \rangle / \mu, \quad i = 1, 2, 3. \]

\(M_\nu^{\text{tree}} \) is rank 1 and so contains two zero eigenvalues. Because of the presence of two massless neutrinos in the spectrum, the tree level values are not realistic. The numerical values of \(O_\nu \) are also not meaningful in the tree-level approximation. The 1–loop corrections to \(M_\nu \) can lead to two or three non–zero neutrino masses, if more than one lepton flavour is violated.

By default, the neutrino masses are normal–ordered, i.e. \(|m_{\nu_1}| < |m_{\nu_2}| < |m_{\nu_3}| \). A spectrum with inverted ordering can be obtained by

\[\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \rightarrow \begin{pmatrix} v'_1 \\ v'_2 \\ v'_3 \end{pmatrix} = \begin{pmatrix} v_2 \\ v_3 \\ v_1 \end{pmatrix}, \]

together with the corresponding swaps (of the column vectors) in the mixing matrix \(O_\nu \). The mass ordering then becomes \(|m_{\nu_1}| < |m_{\nu_3}| < |m_{\nu_2}| \).

The presence of \(H^0 \) interactions also mix charged–leptons with the charginos. The Lagrangian contains the \((5 \times 5) \) chargino–lepton mass matrix

\[\mathcal{L} = -(\bar{\nu} W^+, \tilde{h}_1, e^-) M_\nu \left(\begin{array}{c} -\bar{\nu} \mu \\ \tilde{h}_1 \\ e^- \end{array} \right) + \text{H.c.} \]

The mass eigenstates \(\ell = (e, \mu, \tau), \tilde{\chi}^{\pm}_{1,2} \) are given upon the diagonalisation of the matrix \(M_\nu \), where at tree level,

\[M_\nu = \begin{pmatrix} M_2 & \frac{\kappa_2}{\nu} \langle H^0 \rangle \\ \frac{\kappa_2}{\nu} \langle H^0 \rangle & \mu \end{pmatrix} \]

\[\begin{pmatrix} -\frac{1}{\sqrt{2}} (Y E)_{ij} v_i \\ \frac{1}{\sqrt{2}} (Y E)_{ij} v_i \end{pmatrix} \]

\[\tilde{\chi}_{1,2} \quad (13) \]

\[M_C = \begin{pmatrix} \frac{M_2}{\nu} \langle H^0 \rangle & \frac{\kappa_2}{\nu} \langle H^0 \rangle \\ -\frac{\kappa_2}{\nu} \langle H^0 \rangle & \frac{\kappa_1}{\nu} \langle H^0 \rangle \end{pmatrix} + \lambda \delta_{ij} v_k \]

\[\begin{pmatrix} 0 \\ \frac{1}{\nu} (Y E)_{ij} v_i \end{pmatrix} \]

\[\tilde{\chi}_{1,2} \quad (14) \]
Here, Y_E is the lepton Yukawa matrix from the R_p superpotential in Ref. [2]. We define the diagonalised mass matrix

$$
M_C^{diag} = U M_C V^T,
$$

(15)

U and V being orthogonal 5×5 matrices. The one–loop R_p corrections to M_C are related to neutrino masses. For R_p effects giving small enough neutrino masses to pass empirical bounds, the one–loop R_p corrections to M_C are expected to be negligible, unless one assumes that the R_p effects are large, but have a high degree of cancellation in the neutrino masses. At present, the one–loop R_p corrections to M_C are not implemented. The absolute mass eigenvalues are in increasing order along the diagonal of M_C^{diag}. An effective charged lepton mixing matrix, U_l, can be obtained from the 3×3, top right part of U. The PMNS matrix U_{PMNS} is then defined as

$$
U_{PMNS} = U_l^* O,
$$

(16)

with O, including the (column) swapping when an inverted mass ordering is desired.

3.3. Neutral slepton masses

Lepton number violating interactions mix the sleptons and higgs’s. In the limit of CP conservation, as assumed here, one obtains two mass squared matrices: one for the neutral CP even real scalars $M_{\nu_e}^2$, and one for neutral CP odd real scalars $M_{\nu_o}^2$. The Lagrangian containing these terms looks like

$$
\mathcal{L} = -\frac{1}{2} (h_{\nu_e}^0, h_{\nu_o}^1, \nu_{\mu}) \tilde{M}_{\nu_e}^2 \begin{pmatrix} h_{\nu_e}^0 \\ h_{\nu_o}^1 \\ \nu_{\mu} \end{pmatrix},
$$

(17)

where the fields with subscript $+$($-$) are the real (imaginary) part of the complex fields in obvious notation. At tree level,

$$
\tilde{M}_{\nu_e}^2 = \frac{g^2 + g_5^2}{4} \begin{pmatrix} \langle H_0^0 \rangle^2 & -\langle H_0^0 \rangle \langle H_0^0 \rangle & -\langle H_0^0 \rangle \\ -\langle H_0^0 \rangle \langle H_0^0 \rangle & \langle H_0^0 \rangle^2 & -\langle H_0^0 \rangle \\ -\langle H_0^0 \rangle & -\langle H_0^0 \rangle & \langle H_0^0 \rangle^2 \end{pmatrix} = \begin{pmatrix} \langle H_0^0 \rangle^2 - \langle H_0^0 \rangle^2 & -\langle H_0^0 \rangle & -\langle H_0^0 \rangle \\ -\langle H_0^0 \rangle & \langle H_0^0 \rangle^2 & -\langle H_0^0 \rangle \\ -\langle H_0^0 \rangle & -\langle H_0^0 \rangle & \langle H_0^0 \rangle^2 \end{pmatrix},
$$

(18)

where m_3^2 is the soft breaking term corresponding to the bilinear Higgs-mixing parameter μ.

Currently, $\tilde{M}_{\nu_e}^2$ is calculated at tree-level and is only used to calculate the one-loop corrections to neutrino masses and mixings. The mass eigenstates are ordered in mass $(m_{\nu_e})_{i=1...5}$

$$
\text{diag}(m_{\nu_e})^2 = O^T_{\nu_e} \tilde{M}_{\nu_e}^2 O_k
$$

(19)

with mixing matrix O_k.

4. Calculation Algorithm

The calculation to calculate the low energy R_p mass spectrum proceeds mostly in the same way as the original R_p mode, which is detailed in Ref. [11], but now also includes the full 1–loop R_p tadpoles and additional methods to calculate the 1–loop 7x7 neutralino–neutrino mass matrix and to obtain the neutrino pole masses and the PMNS matrix via the seesaw–mechanism. The calculation algorithm is displayed in Fig. II where the changes with respect to the R_p mode are displayed in bold print. For a given a set of inputs for R_p couplings, assumptions about the measurable quark mixing make a physical difference to the results. It is well known that in the R_p MSSM, a $U(3)^5$ global family symmetry, where Yukawa couplings also transform as spurfions, renders physical results invariant to where the CKM
1. SUSY radiative corrections to $g_i(M_Z)$

2. Y_E, Y_D include v_k contributions. Iterative solution of Y_E.

3. Run to M_S.

4. EWSB, iterative solution of μ and sneutrino VEVs including full R_p and \bar{R}_p 1 loop contributions to the tadpoles $\frac{dV}{dv_{\nu_d}}$.

5. Run to M_X. Apply soft breaking and R_p SUSY boundary conditions.

6. Run to M_Z.

7. Calculate Higgs, sparticle and neutrino pole masses. Run to M_Z.

Figure 1: Iterative algorithm used to calculate the R_p MSSM spectrum in the neutrino mode. Differences to the original \bar{R}_p mode are highlighted in bold print. The initial step is the uppermost one. M_S is the scale at which the EWSB conditions are imposed, as discussed in the text. M_X is the scale at which the high energy SUSY breaking boundary conditions are imposed.

Quark mixing lies. For example, the physics is identical for the cases where CKM mixing lies solely in left handed up quarks and for the case where it lies solely in left handed down quarks, since the family symmetry relates the two cases [14]. However, in the R_p MSSM, one would also have to transform the R_p Yukawa couplings λ'_{ij} and λ''_{ij} to keep the theory invariant under the transformation. Since this is inconvenient, we wish to leave the R_p couplings untransformed, and instead specify (in the basis in which the R_p couplings are given), where the quark mixing lies. There is thus a physical difference depending on whether one assumes that CKM mixing lies e.g. solely in the down–type quarks or solely in the up–type quarks. We describe the parameter in the program which specifies this mixing in D. It can have a significant effect on the neutrino mass predictions.

4.1. R_p tadpole contributions

The 1–loop R_p contributions to the tadpoles $\frac{dV}{dv_{\nu_d}}$, as well as R_p and \bar{R}_p contributions to $\frac{dV}{dv_{\nu_e}}$, are implemented in the neutrino mode of SOFTSUSY. These calculations include all three SM fermion families in the loop. In the presence of R_p interactions, the charged sleptons and down–type Higgs mix, and the neutral scalars and Higgs mix with each other, so out computation treats these contributions on an equal footing. The sneutrino VEVs are now also calculated at 1–loop level at the renormalisation scale $M_S \equiv \sqrt{m_\tilde{t}_1(M_S)m_\tilde{t}_2(M_S)}$. However, there are no renormalisation group equations (RGEs) implemented for the sneutrino VEVs, so they remain constant at any renormalisation scale.

4.2. Neutrino–neutralino mass corrections

The physical neutrino–neutralino masses are calculated to full one–loop order, including both R_p and \bar{R}_p contributions, following Refs. [15, 16] closely. The running parameters are evaluated at the renormalisation scale $\mu = M_{SUSY}$. However, note that the physical neutralino masses are displayed in the R_p limit in the SOFTSUSY output without including the R_p contributions. However, in the absence of large cancellations, R_p corrections to neutralino masses will be of order the neutrino mass, i.e. negligible. To calculate the physical neutrino masses, the external momentum for the physical neutrino–neutralino mass matrix, M^{phys}_N, is set at $p = 0$. The matrix M^{phys}_N is given by

$$M^{\text{phys}}_N = M_N + \frac{1}{6} \left(\Delta_N + \Delta^T_N \right),$$

(20)
where

\[\Delta_N = \Sigma_D - M_N \Sigma_L. \]

(21)

In the above expression, \(\Sigma_D \) and \(\Sigma_L \) are mass corrections and wavefunction renormalisation respectively. The effective physical neutrino mass matrix \(M_\nu \) is obtained as defined in Eq. 8, from which the physical neutrino masses and mixings are extracted.

To avoid numerical instability due to large cancellations between the CP–even (CPE) and CP–odd (CPO) \(\Sigma_D \) contributions to \(m_\nu \) in Eq. 7, the combined contribution is obtained using an analytic expansion in the \(2 \times 3 \) \(R_p \) matrices that mix the Higgs with the sneutrinos in the \(5 \times 5 \) CPE and CPO neutral scalar mass matrices. Both \(R_p \) and \(\bar{R}_p \) corrections to the physical neutrino masses are computed simultaneously, treating the charged sleptons and down–type Higgs as well as the neutral scalars and Higgs particles on an equal footing, as in the tadpole calculation.

When calculating realistic inverted or quasi–degenerate neutrino mass spectra, the mass eigenvalues are much larger than their differences, so some fine tuning is expected. For example, in Ref. [17], the level of fine–tuning is estimated to be of \(O(10^{-3}) \) and \(O(10^{-4}) \) for the inverted and quasi–degenerate cases respectively. In order to obtain numerically stable results for neutrino masses and mixings for degenerate or inverted hierarchies, we recommend setting the `TOLERANCE` parameter to \(10^{-5} \) and \(10^{-6} \), respectively.

Acknowledgments

This work has been partially supported by STFC, an IPPP associateship and the Deutsche Telekom Stiftung. MH and CHK would like to thank J.S. Kim for useful discussions. CHK thanks the hospitality of Oxford Rudolf Peierls Centre For Theoretical Physics for hospitality while part of the work was carried out.

A. Running SOFTSUSY

SOFTSUSY produces an executable called softpoint.x. Instructions on how to run softpoint.x in the presence of \(\bar{R}_p \) couplings are detailed in Appendices A and B of Ref. [11]. Starting from version SOFTSUSY–3.2, output for both input options is compliant to the SLHA2 conventions, which are fully explained in Ref. [6]. A sample SLHA2 file, rpvHouchesInput, may be used as input, and SOFTSUSY run, by the command

```
./softpoint.x leshouches < rpvHouchesInput
```

When any non–zero \(\bar{R}_p \) couplings are set in either the command line or the \(\bar{R}_p \) Les Houches input file, the program automatically calls the neutrino mode instead of the original \(\bar{R}_p \) mode. There is a new optional SLHA2 input parameter in the block SOFTSUSY associated with the neutrino mode, which can be set in the following fashion:

```
Block SOFTSUSY
  9 0.000000000e+00 # output uses normal hierarchy (=0.0) or inverted (=1.0)
```

We also remind the reader that the quark mixing assumption can have a physical effect given an assumed set of \(\bar{R}_p \) couplings, and that the CKM mixing may be set solely in the up or down quark sector via

```
Block SOFTSUSY
  2 1.000000000e+00 # quark mixing: none (=0), up (=1) or down (=2)
```

B. Sample Output

The following is an example for one non–zero \(\bar{R}_p \) coupling \(\lambda_{22}^\prime (M_{\text{GUT}}) = 0.01 \) at \(M_{\text{GUT}} \) in an \(\bar{R}_p \) mSUGRA SPSIa–like [18] scenario:

```
./softpoint.x sugra 100 250 -100 10 unified 1 lambdaP 3 2 2 0.01
```

The SLHA2 compliant output contains \(R_p \)–conserving and \(\bar{R}_p \) MSSM information. Results related to the neutrino sector are displayed in the following blocks:
The block MASS includes the three pole neutrino masses calculated in units of GeV, given the R_p model parameters. Note that the corresponding particle data group (PDG) codes are for the neutrino flavour eigenstates. However, since we are dealing with massive neutrinos, we slightly adapt this definition such that the mass ordering of the neutrinos is specified to be either normal or inverted hierarchy according to the value of the inverted output parameter.

In block RVSNVEV, the 1–loop sneutrino VEVs are displayed at the energy scale Q at which the EWSB conditions are imposed (M_S). Finally, the block UPMNS displays the matrix elements of the matrix U_{PMNS} in Eq. 16. The neutrino spectrum predicted by this model point is in contradiction with data, but in the next section, we calculate with a parameter point that leads to neutrino mixings and masses that are agreement with 2011 oscillation data in a sample program.

C. Sample Program

In this section we present a sample main program, that illustrates a calculation of neutrino masses and mixings given a set of R_p parameters at M_{GUT}. This main program is included as the rpvneutmain.cpp file with the standard SOFTSUSY distribution and performs the calculation assuming mSUGRA parameters $m_0 = 100$ GeV, $M_{1/2} = 500$ GeV, $A_0 = 932.9$ GeV, $\tan \beta = 20$ and $\mu > 0$, with non–zero R_p parameters $\lambda'_{\mu\mu\mu}(M_{GUT}) = 0.039$, $\lambda'_{\mu\tau\mu}(M_{GUT}) = -0.016$, $\lambda'_{\mu\tau\tau}(M_{GUT}) = 0.018$, $\lambda'_{\tau\mu\mu}(M_{GUT}) = 3.0 \times 10^{-5}$, $\lambda'_{\tau\tau\tau}(M_{GUT}) = 3.0 \times 10^{-5}$, $\lambda'_{\tau\tau\tau}(M_{GUT}) = -3.5 \times 10^{-5}$.

The sample program has the following form:

```c++
#include <rpvmain.h>

int main() {
    /// Sets up exception handling
    signal(SIGFPE, FPE_ExceptionHandler);

    /// MIXING=0: diagonal Yukawa matrices, MIXING=1: CKM-mixing in up-sector,
    /// MIXING=2: CKM-mixing in down-sector
    MIXING = 1;

    /// Apply SUSY breaking conditions at GUT scale, where $g_1=g_2$
    bool gaugeUnification = true;
```

...
/// Sets format of output: 3 decimal places
outputCharacteristics(3);

/// "try" catches errors in main program and prints them out
try {
 QedQcd oneset; // See "lowe.h" for default parameter definitions
 oneset.toMz(); // Runs SM fermion masses to MZ

 /// Guess at GUT scale
 double mxGuess = 2.e16;

 /// Close to scenario IH S2 from arXiv 1106.4338
 int sgnMu = 1;
 double tanb = 20., a0 = 912.3, m12 = 500., m0 = 100.;

 /// Define RpvNeutrino object
 RpvNeutrino kw;

 /// Set the GUT scale RPV SUSY couplings
 kw.setLamPrime(1, 1, 1, 0.040);
 kw.setLamPrime(2, 1, 1, -0.018);
 kw.setLamPrime(3, 1, 1, 0.019);
 kw.setLamPrime(1, 3, 3, 3.3e-5);
 kw.setLamPrime(2, 3, 3, 3.2e-5);
 kw.setLamPrime(3, 3, 3, -3.5e-5);

 /// Store inputs into one vector
 DoubleVector pars(3); pars(1) = m0; pars(2) = m12; pars(3) = a0;

 /// Outputs the RPV couplings required into the vector pars used by lowOrg
 kw.rpvDisplay(pars);
 /// Makes sure the neutrino mass ordering will be as expected in inverted
 /// hierarchy output. If required, must be set before lowOrg is called
 kw.setInvertedOutput();
 /// For inverted output, because of large cancellations, one requires the
 /// SUSY spectrum calculation to be performed to a high fractional
 /// accuracy
 TOLERANCE = 1.0e-6;

 /// Main driver routine: do the calculation
 double mgut = kw.lowOrg(rpvSugraBcs, mxGuess, pars, sgnMu, tanb, oneset, gaugeUnification);

 /// Output the results in SLHA2 format
 double qMax = 0.; char * modelIdent = (char *)"sugra";
 int numPoints = 1; bool altEwsb = false;
 kw.lesHouchesAccordOutput(cout, modelIdent, pars, sgnMu, tanb, qMax, numPoints, mgut, altEwsb);
}
}

The structure of the main file above is as follows. After including a header file, an exception handler is set up, fol-
lowed by specifying a (sub–) set of global variables, all of which are described in the R_p manual [2]. These include the MIXING switch, which determines how any quark mixing is implemented, the gaugeUnification switch, which determines mgutGuess as the scale of MGUT of electroweak gauge unification. The switch outputCharacteristics, which specifies the output accuracy, is then set.

The running masses of the SM fermions and the QED and QCD gauge couplings are determined at M_Z from data with the method toMz. In order for SOFTSUSY to determine MGUT, it requires an initial guess, which must be supplied as the initial value of the variable mxGuess (in GeV), and is later over–written by the program with a more accurate calculated value.

Next, the mSUGRA parameters sgnµ =sgnMu, tanβ =tanb, A_0/GeV=a0, M_{1/2}/GeV=m12 and m_0/GeV=m0 are defined. This is then followed by the instantiation of the RpvNeutrino object kw and the assignment of the R_p parameters kw.setLamPrime(i,j,k,val) for λ′, and the assignment of the RpvNeutrino object change due to the RGE running. The pars vector is needed to keep track of the boundary conditions set at MGUT. These boundary conditions are re–set in every iteration at MGUT from the unchanged DoubleVector pars parameters.

We do not fill the other 102 R_p entries of pars explicitly. This would be tedious and an additional source of potential bugs. Instead, we fill the RpvSoftsusy object itself using the setLamPrime method in this example. We use the rpvDisplay method: this fills the pars vector automatically with what was set already inside the RpvNeutrino object, while leaving the first nine entries in the vector unchanged. The rpvDisplay method automatically changes the length of pars appropriately.

The neutrino masses may be presented in normal (default) and inverted mass orderings. This is controlled by the method setInvertedOutput which must be invoked before the actual SOFTSUSY main driving method lowOrg is called. When lowOrg is called, the first argument specifies the type of boundary condition (currently rpvSugraBcs), which assumes that pars has already been prepared by using the rpvDisplay object. This is followed by a print to standard output of the model parameters at M_Z and the physical parameters SLHA2 compliant format. Finally, the catch commands print any errors produced by the code.

The output is in standard SLHA2 format, including neutrino masses in GeV units, neutrino mass ordering (inverted hierarchy in this example) and the PMNS mixing matrix:

```
[ ... ]
Block MASS # Mass spectrum
  # PDG code mass particle
[ ... ]
  12 4.65793809e-11 # Mnu1 inverted hierarchy output
  14 4.70348794e-11 # Mnu2 inverted hierarchy output
  16 1.20158889e-14 # Mnu3 inverted hierarchy output
[ ... ]
Block UPMNS Q= 9.11876000e+01 # neutrino mixing matrix (inverted hierarchy)
  1 1 8.61178721e-01 # UPMNS_{11} matrix element
  1 2 5.08244716e-01 # UPMNS_{12} matrix element
  1 3 7.64979577e-03 # UPMNS_{13} matrix element
  2 1 -3.29127098e-01 # UPMNS_{21} matrix element
  2 2 5.69021210e-01 # UPMNS_{22} matrix element
  2 3 -7.53584909e-01 # UPMNS_{23} matrix element
  3 1 -3.87358444e-01 # UPMNS_{31} matrix element
  3 2 6.46534336e-01 # UPMNS_{32} matrix element
  3 3 6.57306066e-01 # UPMNS_{33} matrix element
[ ... ]
```
D. The RpvNeutrino class

We now go on to sketch the class RpvNeutrino. This class publicly inherits from the class RpvSoftsusy, cf. Fig. 2. The RpvSoftsusy methods physical, calculateSneutrinoVevs and doCalcTadpole1oneLoop, doCalcTadpole2oneLoop are overloaded in RpvNeutrino in order to include 1-loop neutrino masses, sneutrino VEVs and tadpoles. The data and methods in the RpvNeutrino class deemed of possible importance for prospective users are presented in Table 1. Note that different quark mixing assumptions can significantly affect the predictions of the neutrino masses. The MIXING parameter is implemented in the neutrino mode in the same fashion as in Ref. [2], and can take values 0, 1, 2 for no mixing, up quark mixing and down quark mixing, respectively.

References

[1] F. E. Paige, S. D. Protopopescu, H. Baer, X. Tata, ISAJET 7.69: A Monte Carlo event generator for p p, anti-p p, and e+ e- reactions, arXiv:hep-ph/0312045.
[2] B. C. Allanach, SOFTSUSY: A C++ program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305–331. arXiv:hep-ph/0104146 doi:10.1016/S0010-4655(01)00480-1.
[3] A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426–455. arXiv:hep-ph/0211331 doi:10.1016/j.cpc.2006.11.002.
[4] W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders, Comput. Phys. Commun. 153 (2003) 275–315. arXiv:hep-ph/0301101 doi:10.1016/S0010-4655(03)00222-4.
[5] P. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators, JHEP 07 (2004) 036. arXiv:hep-ph/0311123.
[6] B.C. Allanach, et al., SUSY Les Houches Accord 2, Comp. Phys. Commun. 180 (2009) 8–25. arXiv:0801.0045 doi:10.1016/j.cpc.2008.08.004.
[7] H. K. Dreiner, An introduction to explicit R-parity violation, arXiv:hep-ph/9707435. G. Bhattacharyya, A brief review of R-parity-violating couplings, arXiv:hep-ph/9709395. G. Bhattacharyya, R-parity-violating supersymmetric Yukawa couplings: A mini-review, Nucl. Phys. Proc. Suppl. 52A (1997) 83. arXiv:hep-ph/9608415.
[8] L. E. Ibanez, G. G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B368 (1992) 3–37. doi:10.1016/0550-3213(92)90195-B.
[9] H. K. Dreiner, C. Luhn, H. Murayama, M. Thorner, Proton Hexality from an Anomalous Flavor U(1) and Neutrino Masses - Linking to the String Scale, Nucl. Phys. B795 (2008) 172–200. arXiv:0708.0989 doi:10.1016/j.nuclphysb.2007.11.014.
[10] L. J. Hall, M. Suzuki, Explicit R-Parity Breaking in Supersymmetric Models, Nucl. Phys. B231 (1984) 419. doi:10.1016/0550-3213(84)90513-3.

If the user wishes to provide this, 2×10^{16} GeV is a good initial guess for M_{GUT}.

![Figure 2: Heuristic high-level object structure of SOFTSUSY-3.2. Inheritance is displayed by the direction of the arrows.](image-url)
data variable	**methods**		
DoubleVector physNuMasses $m_{\nu_i}=1.2.3/\text{GeV}$	displayPhysNuMasses	setPhysNuMasses	
DoubleMatrix uPmns U_{PMNS} (3×3)	displayUpmns	setUpmns	
DoubleMatrix physNeutMix O (7×7)	displayPhysNeutMix	setPhysNeutMix	
bool invertedOutput	displayInvertedOutput	setInvertedOutput	setNormalOutput
double theta12, theta23	displayThetaCkm12, displayThetaCkm23	setThetaCkm12, setThetaCkm23	
double theta13, deltaCkm	displayThetaCkm13, displayDeltaCkm	setThetaCkm13, setDeltaCkm	
	setThetaCkm12, setThetaCkm23		
DoubleVector CPEmasses	displayCPEmasses	setCPEmasses	
$(m_{\phi_0^0})_{i=1...5}$			
DoubleVector CPOMasses	displayCPOMasses	setCPOMasses	
$(m_{\phi_0^0})_{i=1...5}$			
DoubleMatrix CPEscalars	displayCPEscalars	setCPEscalars	
$M_{\phi_0^0}^2$ (5×5)			
DoubleMatrix CP0scalars	displayCP0scalars	setCP0scalars	
$M_{\phi_0^0}^2$ (5×5)			
DoubleMatrix CPEscalarMixing	displayCPEscalarMixing	setCPEscalarMixing	
O_+ (5×5)			
DoubleMatrix CP0scalarMixing	displayCP0scalarMixing	setCP0scalarMixing	
O_- (5×5)			

Table 1: RpvNeutrino class. We display the important data contained within the object, along with ways of accessing and setting their values. For the definitions of the methods, see the file rpvneut.h in the SOFTSUSY distribution.
[11] B. C. Allanach, M. A. Bernhardt, Comput. Phys. Commun. 181, 232-245 (2010). [arXiv:0903.1805 [hep-ph]].

[12] B. C. Allanach, A. Dedes, H. K. Dreiner, The R parity violating minimal supergravity model, Phys. Rev. D69 (2004) 115002. [arXiv:hep-ph/0309196 [hep-ph]].

[13] A. Dedes, H. E. Haber, J. Rosiek, Seesaw mechanism in the neutrino sector and its consequences, JHEP 11 (2007) 059. [arXiv:0707.3718 [hep-ph]].

[14] G. D’Ambrosio, G. F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B645 (2002) 155-187. [hep-ph/0207036].

[15] A. Dedes, S. Rimmer and J. Rosiek, JHEP 0608, 005 (2006) [arXiv:hep-ph/0603225].

[16] B. C. Allanach, C. H. Kom, Lepton number violating mSUGRA and neutrino masses, JHEP 04 (2008) 081. [arXiv:0712.0852 [hep-ph]].

[17] H. K. Dreiner, M. Hanussek, J. S. Kim and C. H. Kom, “Neutrino masses and mixings in the baryon triality constrained minimal supersymmetric standard model,” arXiv:1106.4338 [hep-ph].

[18] B. C. Allanach, et al., The Snowmass points and slopes: Benchmarks for SUSY searches, Eur. Phys. J. C25 (2002) 113–123. [arXiv:hep-ph/0202233 [hep-ph]].

[19] K. Nakamura et al. (Particle Data Group), The Review of Particle Physics, J. Phys. G 37 (2010) 075021