Untwisting algebras with van den Bergh duality into Calabi-Yau algebras

Mariano Suárez-Álvarez

October 31, 2013

Recently, Jake Goodman and Ulrich Krähmer [4] have shown that a twisted Calabi-Yau algebra A with modular automorphism σ and dimension d can be “untwisted,” in the sense that the Ore extensions $A[X; \sigma]$ and $A[X^\pm 1; \sigma]$ are Calabi-Yau algebras of dimension $d + 1$. The purpose of this note is to record the observation that this result holds in greater generality:

Theorem. If A is an algebra that satisfies the conditions for van den Bergh duality of dimension d and $U = \Ext^d_A(A, A \otimes A)$ is its dualizing bimodule, then the tensor algebra $A[U] = \bigoplus_{n \in \mathbb{N}_0} U \otimes A^n$ is a Calabi-Yau algebra of dimension $d + 1$.

If in this statement we suppose that A is a twisted Calabi-Yau algebra with modular automorphism σ, then we recover the result of Goodman and Krähmer, for in that case $U = A\sigma$ is a twisted A-bimodule and $A[U]$ is isomorphic to the Ore extension $A[X; \sigma]$. We refer to the papers of van den Bergh [1] and Ginzburg [3] for the little information about duality and Calabi-Yau algebras that we need. We work over a fixed field, over which unadorned tensor products are taken, or over an arbitrary commutative ring, provided we add the hypothesis that A be projective. All our complexes are cochain complexes, we underline their components of degree zero and, for brevity, we say that a complex of A-bimodules is good if it is of finite length and its components are finitely generated as bimodules.

Proof. Let us write, for simplicity, $B = A[U]$. The kernel I of the obvious augmentation map $B \to A$ is finitely generated and projective as a B-module both on the left and on the right; indeed, restriction along the inclusion $U \hookrightarrow I$ gives an isomorphism of functors $\hom_B(I, -) \cong \hom_A(U, -)$ of left or right B-modules, and U is finitely generated and projective as an A-module both on the left and on the right. Let K be the complex

$$I \otimes B \longrightarrow B \otimes B$$

of B^\otimes-bimodules, and let us make the convention that the left and right actions of B^\otimes are the outer and the inner ones, respectively; it is clear that K is a
complex of projective and finitely generated right B-modules, and that its homology is $H(K) = A \otimes B$ concentrated in degree zero.

Let now P be a good resolution of A by projective A-bimodules. The complex of right B-modules $P \otimes_A K$ has finite length, and all its components are finitely generated and projective. To compute its homology, we can use a spectral sequence. Taking first homology with respect to the differential of P we obtain—because K is a complex of projective left A-modules—the complex $A \otimes_A K$. This can be identified with

$$B \otimes_A I \longrightarrow B \otimes_A B$$

and the homology of this is B concentrated in degree zero. We conclude in this way that $P \otimes_A K$ is a good resolution of B by projective B-bimodules.

We want to compute $\text{Ext}_{B^e}(B, B \otimes B)$. We have

$$\text{hom}_{B^e}(P \otimes_A K, B \otimes B) \cong \text{hom}_{A^e}(P, \text{hom}_{B^e}(K, B \otimes B))$$

and, since A satisfies van den Bergh duality of dimension d and dualizing module U, this has the same homology as

$$P \otimes_{A^e} \left(U \otimes_A \text{hom}_{B^e}(K, B \otimes B)\right)[-d]. \tag{1}$$

We use, as before, a spectral sequence to compute the homology of this complex. As U is finitely generated and projective as an A-module,

$$\text{hom}_{B^e}(I \otimes B, B \otimes B) \cong \text{hom}_B(I, B \otimes B) \cong \text{hom}_A(U, B \otimes B)$$

$$\cong U^* \otimes_A B \otimes B,$$

with $U^* = \text{hom}_A(U, A)$. Now $U \otimes_A U^* \cong A$ as A-bimodules, so the complex $U \otimes_A \text{hom}_{B^e}(K, B \otimes B)$ can be identified with

$$U \otimes_A B \otimes B \longrightarrow B \otimes B$$

and its homology is $A \otimes B$ concentrated in degree one. It follows that taking homology with respect to the differential induced by that of K in the complex (1), we get $P \otimes_{A^e} (A \otimes B)[-d - 1]$, and the homology of this, in turn, is clearly B concentrated in degree $d + 1$. This proves the theorem.

Corollary. In the conditions of the theorem, the algebra $C = \bigoplus_{n \in \mathbb{Z}} U \otimes A^n$ is also Calabi-Yau of dimension $d + 1$.

Notice that this makes sense because the A-bimodule U is invertible.

Proof. One can check at once that the multiplication in C induces an isomorphism $C \otimes_B C \rightarrow B$. On the other hand, C is flat as a left and as a right B-module: it is the colimit of the chain of its B-submodules of the form $\bigoplus_{n \geq n_0} U \otimes_A^n$ with $n_0 \in \mathbb{Z}$, each of which is projective, being isomorphic to $U \otimes_A^{n_0} \otimes_B B$ or $B \otimes_A U \otimes_A^{n_0}$. The corollary follows then from the theorem and the localization result [5, Theorem 6] of Farinati.
The theorem above and its corollary are unsatisfying in that they untwist the algebra A, which is of dimension d, into an algebra of dimension $d + 1$. In general, this seems to be as much as one can hope for. There is a case in which we can do better, though, and we end this note explaining this.

We put ourselves in the situation of the theorem again and suppose additionally that U is a bimodule of finite order, so that there exist $\ell \in \mathbb{N}$ and an isomorphism $\phi : U \otimes A^\ell \to A$ of A-bimodules, and that the isomorphism ϕ is associative, in the sense that the diagram

$$
\begin{array}{cc}
U \otimes A^\ell \\
\downarrow \phi \otimes \text{id}_U
\end{array}
\begin{array}{c}
A \otimes A U
\end{array}
\begin{array}{c}
A \otimes A U
\end{array}
\begin{array}{c}
U \otimes_A A
\end{array}
\begin{array}{c}
U
\end{array}
$$

in which the unlabelled arrows are canonical isomorphisms commutes. We consider the A-submodule $R = \{ x - \phi(x) : x \in U \otimes A^\ell \} \subseteq B$. Since the isomorphism ϕ is associative, the left ideal $J = BR$ coincides with the right ideal RB and it is a bilateral ideal: we can therefore consider the algebra $D = B/J$. There is clearly a direct sum decomposition $D \cong \bigoplus_{i=0}^{\ell-1} U \otimes A^i$ as A-bimodules, and this construction should remind us of the classical construction of cyclic algebras over a field.

Proposition. In the situation of the theorem, if the dualizing bimodule U is of finite order and admits an associative isomorphism $\phi : U \otimes A^\ell \to A$ and ℓ is invertible in A, then the algebra $D = A[U]/J$ with J generated by R as above is a Calabi-Yau algebra of dimension d.

Proof. Let $\xi \in U \otimes A^\ell$ be such that $\phi(\xi) = 1$; since ϕ is associative, ξ is central in B. The ideal J is generated by $\xi - 1$ and, if $\rho : B \to B$ is right multiplication by $\xi - 1$, the complex

$$
B \overset{\rho}{\to} B
$$

is a resolution of D as a left B-module, and we can use it to compute

$$
\text{Tor}_p^B(D, D) \cong \begin{cases}
D, & \text{if } p \in \{0, 1\}; \\
0, & \text{if } p \geq 2.
\end{cases} \tag{3}
$$

It is immediate that these isomorphisms are of left D-modules and by lifting the multiplication on the right of D on D to an endomorphism of the resolution (2), we see that they are actually isomorphisms of D-bimodules.

We write $\xi = \xi_1 \otimes \cdots \otimes \xi_\ell$, with $\xi_1, \ldots, \xi_\ell \in U$ and omitting a sum à la Sweedler, and consider the element

$$
e = \frac{1}{\ell} \left(1 \otimes 1 + \sum_{r=1}^{\ell-1} (\xi_1 \otimes \cdots \otimes \xi_r) \otimes (\xi_{r+1} \otimes \cdots \otimes \xi_\ell) \right) \in D \otimes_A D.
$$
If \(\mu : D \otimes_A D \to D \) is induced by the multiplication of \(D \), then \(\phi(e) = 1 \) and, because of the associativity of \(\phi \), \(de = ed \) for all \(d \in D \). It follows that there is a \(D^e \)-linear morphism \(s : D \to D \otimes_A D \) such that \(s(1) = e \) which splits \(\mu \) and, in particular, that \(D \) is a direct summand of the \(D^e \)-module \(D \otimes_A D \); one says in this situation that \(D/A \) is a separable extension of algebras, as in [6, §10.8]. If now \(P \) is a good resolution of \(A \) by projective \(A \)-bimodules, then \(D \otimes_A P \otimes_A D \) is a good resolution of \(D \) by \(D \)-bimodules and, since \(D \) is a direct summand of \(D \otimes_A D \), we see that \(D \) itself has a good resolution by projective \(D \)-bimodules.

The construction done by Cartan and Eilenberg in [2, XVI, §5, Eq. (2)] specialized for the obvious morphism \(B^e \to D^e \), together with the natural isomorphism \(\text{Tor}^B_r(D^e, B) \cong \text{Tor}^D_r(D, D) \) of [2, IX, Prop. 4.4], gives us a change-of-rings spectral sequence with \(E^{p,q}_{2} = \text{Ext}^p_{D^e}(\text{Tor}_q^B(D, D), D \otimes D) \) converging to \(\text{Ext}^B_{2}(D, D \otimes D) \). Since \(B \) is Calabi-Yau of dimension \(d + 1 \),

\[
\text{Ext}^r_{p}((B, D \otimes D) \cong \text{Tor}^B_{d+1-r}(B, D \otimes D) \cong \text{Tor}^D_{d+1-r}(D, D),
\]

so that we know the limit of the spectral sequence from (3). From (3) we also know that \(E^{p,q}_{2} = 0 \) if \(q \notin \{0, 1\} \), and that \(E^{p,0} \cong E^{p,1} \cong \text{Ext}^p_{D^e}(D, D \otimes D) \) for all \(p \). A standard argument with the spectral sequence —using the fact that \(\text{pdim}_D \; D < \infty \) — shows now that \(D \) is Calabi-Yau of dimension \(d \). \(\square \)

An easy and probably important remark to be made is that the dualizing bimodule \(U \) for an algebra \(A \) with van den Bergh duality is always central: the actions of the center \(Z(A) \) of \(A \) on the left and on the right on \(U \) coincide. It follows from this that when \(U \) is of finite order, so that there is an isomorphism of bimodules \(\phi : U \otimes_A U \cong A \), the fact that \(\phi \) be associative or not does not depend on the particular choice of \(\phi \); it is a property of \(A \). It is natural to ask:

Question. If the dualizing bimodule of an algebra with van den Bergh duality is of finite order, is it necessarily associative?

If the algebra is twisted Calabi-Yau, the answer is affirmative.

References

[1] Michel van den Bergh, *A relation between Hochschild homology and cohomology for Gorenstein rings*, Proc. Amer. Math. Soc. **126** (1998), no. 5, 1345–1348; Erratum, Proc. Amer. Math. Soc. **130** (2002), no. 9, 2809–2810. MR1443171

[2] Henri Cartan and Samuel Eilenberg, *Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR0077480 (17,1040e)

[3] Victor Ginzburg, *Calabi-Yau algebras*. Preprint available at arXiv:0612139.

[4] John Goodman and Ulrich Krähmer, *Untwisting a twisted Calabi-Yau algebra*. Preprint available at arXiv:1304.0749.

[5] Marco Farinati, *Hochschild duality, localization, and smash products*, J. Algebra **284** (2005), no. 1, 415–434. MR2115022 (2005j:16009)

[6] Richard S. Pierce, *Associative algebras*, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, New York, 1982. Studies in the History of Modern Science, 9. MR674652 (84c:16001)