Title
The Role of Mitochondria in AMD: Current Knowledge and Future Applications.

Permalink
https://escholarship.org/uc/item/618385n0

Journal
Journal of ophthalmic & vision research, 12(4)

ISSN
2008-2010

Authors
Riazi-Esfahani, Mohammad
Kuppermann, Baruch D
Kenney, M Cristina

Publication Date
2017-10-01

DOI
10.4103/jovr.jovr_182_17

Peer reviewed
MITOCHONDRIA AND AGING

It is generally accepted that in eukaryotes the mitochondria come from an endosymbiotic relationship and its DNA can be linked to an alpha-proteobacterial genome. The mitochondria energy requirements determine their count in each cell. Their numbers differ from one to thousands. Each mitochondrion is composed of an intermembrane space surrounded by an outer membrane and an inner membrane, numerous cristae, and the matrix [Figure 1]. Many enzymes are engaged in ATP production. The translocase outer membrane (TOM) and translocase inner membrane (TIM) are the main enzymes for transport of proteins that are encoded by the nuclear DNA (nDNA) into the mitochondria. Interestingly, mitochondria carry their own DNA (mtDNA), which is obtained through maternal lineage. The mtDNA is a closed ring including 16,569 nucleotide pairs and two strands. The heavy strand encodes for 28 genes while the light strand encodes for 9 genes, which yield 13 proteins for oxidative phosphorylation, 2 ribosomal RNAs and 22 transfer RNAs. The mtDNAs have multiple copies per cell, unlike nuclear DNA, which has a single copy in each cell.

Mitochondria play an important role in formation of energy, reactive oxygen species (ROS), membrane, numerous cristae, and the matrix [Figure 1]. Many enzymes are engaged in ATP production. The translocase outer membrane (TOM) and translocase inner membrane (TIM) are the main enzymes for transport of proteins that are encoded by the nuclear DNA (nDNA) into the mitochondria. Interestingly, mitochondria carry their own DNA (mtDNA), which is obtained through maternal lineage. The mtDNA is a closed ring including 16,569 nucleotide pairs and two strands. The heavy strand encodes for 28 genes while the light strand encodes for 9 genes, which yield 13 proteins for oxidative phosphorylation, 2 ribosomal RNAs and 22 transfer RNAs. The mtDNAs have multiple copies per cell, unlike nuclear DNA, which has a single copy in each cell.

MITOCHONDRIA AND AGING

It is generally accepted that in eukaryotes the mitochondria come from an endosymbiotic relationship and its DNA can be linked to an alpha-proteobacterial genome. The mitochondria energy requirements determine their count in each cell. Their numbers differ from one to thousands. Each mitochondrion is composed of an intermembrane space surrounded by an outer membrane and an inner membrane, numerous cristae, and the matrix [Figure 1]. Many enzymes are engaged in ATP production. The translocase outer membrane (TOM) and translocase inner membrane (TIM) are the main enzymes for transport of proteins that are encoded by the nuclear DNA (nDNA) into the mitochondria. Interestingly, mitochondria carry their own DNA (mtDNA), which is obtained through maternal lineage. The mtDNA is a closed ring including 16,569 nucleotide pairs and two strands. The heavy strand encodes for 28 genes while the light strand encodes for 9 genes, which yield 13 proteins for oxidative phosphorylation, 2 ribosomal RNAs and 22 transfer RNAs. The mtDNAs have multiple copies per cell, unlike nuclear DNA, which has a single copy in each cell.

Mitochondria play an important role in formation of energy, reactive oxygen species (ROS), membrane, numerous cristae, and the matrix [Figure 1]. Many enzymes are engaged in ATP production. The translocase outer membrane (TOM) and translocase inner membrane (TIM) are the main enzymes for transport of proteins that are encoded by the nuclear DNA (nDNA) into the mitochondria. Interestingly, mitochondria carry their own DNA (mtDNA), which is obtained through maternal lineage. The mtDNA is a closed ring including 16,569 nucleotide pairs and two strands. The heavy strand encodes for 28 genes while the light strand encodes for 9 genes, which yield 13 proteins for oxidative phosphorylation, 2 ribosomal RNAs and 22 transfer RNAs. The mtDNAs have multiple copies per cell, unlike nuclear DNA, which has a single copy in each cell.

Mitochondria play an important role in formation of energy, reactive oxygen species (ROS),
apoptosis (programmed cell death) and retrograde signaling. Retrograde signaling demonstrates that mitochondria transmit signals to the nucleus and thus can regulate nuclear gene expression and cellular behavior. Hence the ‘older’ idea that the nucleus is the ‘big boss’ and mitochondria are only involved in the production of ATP has changed significantly. Retrograde signaling (from mitochondria to nucleus) can regulate pathways related to complement, inflammation, angiogenesis, innate immunity, and, which are associated with development and progression of age-related macular degeneration (AMD).[7] Variations in mitochondrial DNA sequence, called haplogroups, have happened over 150,000 years and are connected to geographic ancestry of distinct populations. It is known that the oldest haplogroups (L haplogroup) originated in Africa and other haplogroups were formed through migration and climate adaptations [Figure 2]. Single nucleotide polymorphism (SNP) variants define the diverse haplogroups (populations). As a result of difference in the mtDNA profiles for different racial/ethnic groups, these SNP changes affect the rates of mtDNA replication and transcription. Moreover, different haplogroup SNP patterns can change the levels of oxidative phosphorylation, which in turn cause variations in ROS production, apoptosis and cell death. Specific haplogroups are related to a wide range of age-related diseases, such as Parkinson’s disease, Alzheimer’s disease and AMD.[8-13] AMD has been associated with haplogroups that corresponds to Northern European haplogroups, e.g., J, T, and U.[14-17] Those with H haplogroup mtDNA have a protection against AMD.[18] In one study, large soft drusen and pigment abnormalities have been connected to J and U haplogroups.[14] An independent predictor for AMD is related to the SNP defining the haplogroup T, which is in the NADH subunit 2 of complex I.[19] Two SNP variants, associated with the T haplogroup, are located in respiratory complex I and were 2.5 times more likely to be associated with advanced AMD than the age-matched controls.[16] MITOXONDRIA AND AGE-RELATED MACULAR DEGENERATION

Human retinal pigment epithelium (RPE) study by transmission electron microscopy has shown that mitochondria are damaged, fragmented and disrupted in AMD. [20] Those findings have been further confirmed by immunohistochemistry in AMD retinas. Karunadharma et al have reported the severity of AMD is linked to a higher number of mtDNA lesions and fragmentations in RPE cells.[21] There was also less nDNA damage with no correlation with AMD severity. Terluk et al study showed that mtDNA damage in AMD presents in RPE cells and not in the neural retina.[22] TRANSMITOXONDRIAL CYBRID MODEL TO STUDY AGE-RELATED MACULAR DEGENERATION MITOXONDRIA

We have created a transmitochondrial cybrid model in our lab to investigate the role of mitochondria in AMD. Cybrids are cell lines that have identical nuclei but mitochondria from different individuals. In our studies, ARPE-19 cells which are an established human RPE cell line were treated to remove their natural mitochondrial DNA, yielding Rho0 cells. Then, platelets were isolated from patients with AMD and age-matched control subjects. Platelets are used due to their large numbers of mitochondria without nuclei. Then, the platelets were fused with the Rho0 ARPE-19 cells devoid of mitochondria and cell lines were established. With this method, different cybrid cell lines were created which all have identical nuclei but mitochondria from patients with wet
The Role of Mitochondria in AMD; Riazi-Esfahani et al

AMD, dry AMD or age-matched controls [Figure 3]. In this way, any differences in the molecular or functional behavior of the cybrids can be attributed to mitochondrial influence. In addition, we can correlate the clinical pictures such as type of AMD, response to medication, family history, etc. with the in vitro cybrid findings. For example, when cybrids were cultured and stained with the green fluorescent protein that targets mitochondria, we noticed that the mitochondria originating from control subjects were much healthier than those from patients with AMD. The cybrids with J haplogroup mtDNA (high risk for AMD) had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but showed increased lactate levels. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes which are the high risk genes for AMD. Alternatively, the growth rates of J cybrids were significantly higher than H cybrids. Another study showed decreased gene and protein expression levels of complement inhibitors along with higher levels of complement activators in AMD cybrids, compared to older-normal cybrids.

Mechanisms by which gene expression and cellular functions are modified without changes in the gene sequence are “epigenetics.” Epigenetic factors are reversible and related to the environmental factors, but can be transferred to the next generations. The most common epigenetic changes occur by methylation of the cytosine at the 5 position or modifications of histones through methylation, acetylation, and/or phosphorylation. These epigenetic changes can lead to activation or inhibition of transcription, which regulate the gene expression. DNA methylation levels are modified in cells with depleted mitochondria. Besides, cybrids containing J haplogroups (high risk for AMD) have elevated total methylation levels in comparison with cybrids with H haplogroup mtDNA. Further investigations into the role of epigenetics can potentially address new strategies and approaches for the treatment of AMD.

TARGETING MITOCHONDRIA FOR TREATMENTS OF AGING DISEASES

At least two different routes exist to protect the mitochondria. One of them is to act on endogenously produced compounds (such as Humanin) and the other is to target particular pathways engaged in retaining the mitochondrial functions. The Humanin gene (MT-RNR2) is located in the 16S rRNA gene of the circular mtDNA. Humanin is a 24 amino acid peptide that has anti-apoptotic and neuroprotective characteristics. Aging causes decreased levels of Humanin in mice and human, and led to the assumption that low levels of Humanin may play a crucial role in age-related diseases. Also, it has been shown that this gene has been protective in models for Alzheimer’s disease, atherosclerosis, heart and brain ischemia and type 1 diabetes. Likewise, Humanin has protective effects against hypoxia-induced toxicity in retinal ganglion cells.

Higher oxidative stress and ROS levels are associated with a decrease in mitochondrial function. Therefore, antioxidant medications such as resveratrol and memantine have been used for their protective effects with some promising outcomes. Vitamin/mineral supplements that slowed the progression of AMD support the theory that suppressing ROS damage would be an applicable AMD management. Other strategies include using substrates or regulators of energy metabolism (e.g., creatine, coenzyme Q10, or quinone analogues), preventing apoptosis by stabilizing mitochondrial permeability using drugs such as cyclosporin A, or inhibiting the mitochondrial fission protein Drp1 with the agents such as MDIV-1. The field of mitochondria targeting drugs to treat retinal diseases, such as AMD, is a novel era with exciting capacity to be developed in the future.

In summary, the mitochondria from AMD patients are significantly damaged and may act as biomarkers for this disease. In vitro testing of relevant gene expression of AMD cybrids can potentially predict the outcome and response to treatment. Models can potentially be used to find the pharmacotherapeutic agents which may protect against AMD induced mtDNA damage.

Financial Support and Sponsorship
Nil.

Conflicts of Interest
There are no conflicts of interest.
REFERENCES

1. Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science 1999;283:1476-1481.
2. Burger G, Gray MW, Lang BF. Mitochondrial genomes: Anything goes. Trends Genet 2003;19:709-716.
3. Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat Rev Mol Cell Biol 2010;11:655-667.
4. Wallace DC. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992;61:1175-1212.
5. Wallace DC. Mitochondrial DNA mutations in diseases of energy metabolism. Bioenerg Biomembr 1994;26:241-250.
6. McFarland R, Turnbull DM. Batteries not included: Diagnosis and management of mitochondrial disease. J Intern Med 2009;265:210-228.
7. Mueller EE, Schaier E, Brunner SM. Mitochondrial haplogroups and control region polymorphisms in age-related macular degeneration. PLoS One 2012;7:e30874.
8. Van der Walt JM, Nicodemus KK, Martin ER, Scott WK, Nance MA, Watts RL, et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 2003;72:804-811.
9. Van der Walt JM, Dementieva YA, Martin ER, Scott WK, Nicodemus KK, Kroner CC, et al. Analysis of European mitochondrial haplogroups with Alzheimer disease risk. Neurosci Lett 2004;365:28-32.
10. Hassan-Kumleh H, Khatibi N, Soe K, Sanati MH, Gharagozli K, et al. Mitochondrial DNA haplogroups confer differences in risk for age-related macular degeneration. J Hum Genet 2013;58:119-125.
11. Dunaief JL, Dentchev T, Ying GS, Milam AH. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 2002;120:1435-1442.
12. Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 1996;144:1835-1850.
13. Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, et al. Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 2003;100:171-176.
14. Jones MM, Manwaring N, Wang JJ, Rohtchchina E, Mitchell P, Sue CM. Mitochondrial DNA haplogroups and age-related maculopathy. Arch Ophthalmol 2007;125:1235-1240.
15. Udar N, Attilano SR, Pavlis JM, Falatoonzadeh P, Chen S, et al. Mitochondrial DNA haplogroups associated with Age-related macular degeneration. Invest Ophthalmol Vis Sci 2009;50:2966-2974.
16. SanGiovanni JP, Arking DE, Iyengar SK, Elashoff M, Clemons TE, Reed GE, et al. Mitochondrial DNA variants of respiratory complex I that uniquely characterize haplogroup T2 are associated with increased risk of age-related macular degeneration. PLoS One 2009;4:e5508.
17. Kenney MC, Hertzog D, Chak G, Attilano SR, Khatibi N, Soe K, et al. Mitochondrial DNA haplogroups confer differences in risk for age-related macular degeneration: A case control study. BMC Med Genet 2013;14:4.
18. Mueller EE, Schaier E, Brunner SM, Eder W, Mayr JA, Egger SF, et al. Mitochondrial haplogroups and control region polymorphisms in age-related macular degeneration: A case-control study. PLoS One 2012;7:e30874.
19. Canter JA, Olson LM, Spencer K, Schnez-Boutaud N, Anderson B, Hauser MA, et al. Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration. PLoS One 2008;3:e2091.
20. Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco Gabrieli C. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 2006;27:983-993.
21. Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. J OVS 2010;52:5470.
22. Terluk MR, Kapphahn RJ, Soukup LM, Gong H, Gallardo C, Montezuma SR, et al. Investigating mitochondria as a target for treating age-related macular degeneration. J Neurosci 2015;35:7304-7311.
23. Nashesie S, Chwa M, Kazemian M, Thaker K, Lu S, Nesburn A, et al. Differential expression of complement markers in normal and AMD transmichondrial cybrids. PLoS One 2016;11:e0159828.
24. Kenney MC, Chwa M, Attilano SR, Pavlis JM, Falatoonzadeh P, Ramirez C, et al. Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EDEMP1 genes: Implications for age-related macular degeneration. PLoS One 2013;8:e54339.
25. Hjelmeland LM. Dark matters in AMD genetics: Epigenetics and stochasticity. Invest Ophthalmol Vis Sci 2011;52:1622-1631.
26. Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 2008;7:1182-1190.
27. Bellizzi D, D’Aquila P, Giordano M, Montesanto A, Passarino G. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 2012;4:17-27.
28. Attilano SR, Malik D, Chwa M, Cáceres-Del-Carpio J, Nesburn AB, Boyer DS, et al. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum Mol Genet 2015;24:4491-4503.
29. Gong Z, Tas E, Muzumdar R. Humanin and age-related diseases: A new link? Front Endocrinol (Lausanne) 2014;5:210.
30. Tajima H, Niikura T, Hashimoto Y, Ito Y, Kita Y, Terashita K, et al. Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci Lett 2002;324:227-231.
31. Lee C, Wan J, Miyazaki B, Fang Y, Guevara-Aguirre J, Yen K, et al. IGF-1 regulates the age-dependent signaling peptide humanin. Aging Cell 2014;13:958-961.
32. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci U S A 2001;98:6336-6341.
33. Men J, Zhang X, Yang Y, Gao D. An AD-related neuroprotector rescues transformed rat retinal ganglion cells from CoCl(2)-induced apoptosis. J Mol Neurosci 2012;47:144-149.
34. Lee C, Yen K, Cohen P. Humanin: A harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab 2013;24:222-228.
35. Kin T, Sugie K, Hirano M, Goto Y, Nishino I, Ueno S. Humanin expression in skeletal muscles of patients with chronic progressive external ophthalmoplegia. J Hum Genet 2006;51:555-558.
36. Yen K, Lee C, Mehta H, Cohen P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. Mol Endocrinol 2010;24:911-19.
37. Men J, Zhang X, Yang Y, Gao D. An AD-related neuroprotector rescues transformed rat retinal ganglion cells from CoCl(2)-induced apoptosis. J Mol Neurosci 2012;47:144-149.
38. Miller TJ, Phelka AD, Tjalkens RB, Dethloff LA, Philbert MA. Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 2008;7:1182-1190.
40. Age-Related Eye Disease Study Research G. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. *Arch Ophthalmol* 2001;119:1417-1436.

41. Age-Related Eye Disease Study 2 Research G. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. *JAMA* 2013;309:2005-2015.

42. Krishnadev N, Meleth AD, Chew EY. Nutritional supplements for age-related macular degeneration. *Curr Opin Ophthalmol* 2010;21:184-189.

43. Andreatta W, El-Sherbiny S. Evidence-based nutritional advice for patients affected by age-related macular degeneration. *Ophthalmologica* 2014;231:185-190.

44. Ajith TA, Jayakumar TG. Mitochondria-targeted agents: Future perspectives of mitochondrial pharmacetics in cardiovascular diseases. *World J Cardiol* 2014;6:1091-1099.

45. Lee D, Kim KY, Shim MS, Kim SY, Ellisman MH, Weinreb RN, et al. Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury. *Apoptosis* 2014;19:603-614.

46. Kim SY, Shim MS, Kim KY, Weinreb RN, Wheeler LA, Ju WK. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury. *Cell Death Dis* 2014;5:e1105.