2019

Controlling the magnetocrystalline anisotropy of E-Fe2O3

Imran Ahamed

Ralph Skomski

Arti Kashyap

Follow this and additional works at: https://digitalcommons.unl.edu/cmrafacpub

Part of the Atomic, Molecular and Optical Physics Commons, Condensed Matter Physics Commons, Engineering Physics Commons, and the Other Physics Commons

This Article is brought to you for free and open access by the Materials and Nanoscience, Nebraska Center for (NCMN) at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from Nebraska Center for Materials and Nanoscience by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Controlling the magnetocrystalline anisotropy of ε-Fe$_2$O$_3$

Imran Ahamed, Ralph Skomski, and Arti Kashyap

ARTICLES YOU MAY BE INTERESTED IN

Magnetocrystalline anisotropy of ε-Fe$_2$O$_3$
AIP Advances 8, 055815 (2018); https://doi.org/10.1063/1.5007659

Magnetoelectric ε-Fe$_2$O$_3$: DFT study of a potential candidate for electrode material in photoelectrochemical cells
The Journal of Chemical Physics 148, 214707 (2018); https://doi.org/10.1063/1.5025779

Effect of Cr substitution on ferrimagnetic and ferroelectric properties of GaFeO$_3$ epitaxial thin films
Applied Physics Letters 113, 162901 (2018); https://doi.org/10.1063/1.5029442
Controlling the magnetocrystalline anisotropy of ϵ-Fe₂O₃

The magnetocrystalline anisotropy of pristine and Co-substituted ϵ-Fe₂O₃ is investigated by density functional calculations. The epsilon-iron oxide is the only polymorph of Fe₂O₃ with antiferromagnetic ground states other crystalline forms being α-Fe₂O₃ (hematite), β-Fe₂O₃, and γ-Fe₂O₃ (maghemite). The magnetizations of the four iron sublattices are antiferromagnetically aligned with slightly different magnetic moments resulting in a ferrimagnetic structure. Compared to the naturally occurring hematite and maghemite, bulk ϵ-Fe₂O₃ is difficult to prepare, but ϵ-Fe₂O₃ nanomaterials of different geometries and feature sizes have been fabricated. A coercivity of 20 kOe [2 T] was reported in nanocomposites of ϵ-Fe₂O₃, and an upper bound for the magnetic anisotropy constant K at a low temperature of ϵ-Fe₂O₃ is previously measured to be 0.1 MJ/m³. In the Co-substituted oxides, one octahedral or tetrahedral Fe atom per unit cell has been replaced by Co. The cobalt substitution substantially enhances magnetization and anisotropy.

I. INTRODUCTION

Iron sesquioxide, Fe₂O₃, exists in form of several polymorphs: the common α-Fe₂O₃ (hematite), γ-Fe₂O₃ (maghemite) and the rare polymorphs β-Fe₂O₃ and ϵ-Fe₂O₃. Epsilon-Fe₂O₃ was first reported in 1934 by Forestier and Guiot-Guillain. Later, Schrader and Büttner in 1963 and Trautmann and Forester in 1965 studied its magnetic properties, especially its anisotropy. ϵ-Fe₂O₃ has been naturally found in the ancient Chinese pottery as patterns on the pots, in archeological sites around Europe, and very recently in young basaltic rocks. Very recently, the mineral Luogufengite has been identified by Xu et al. as being Al-containing ϵ-Fe₂O₃. The laboratory-synthesized ϵ-Fe₂O₃ and the mineral have the same structure and magnetic properties. The laboratory-prepared sample and the natural mineral have the lattice parameters as a = 5.095, b = 8.789 and c = 9.437 Å, and a = 5.0647, b = 8.7131, c = 9.3842 Å, respectively.

The crystal structure of ϵ-Fe₂O₃ is orthorhombic, has the space group Pna2₁, and contains 8 formula units per unit cell. Figure 1 shows that the unit cell contains four different Fe sites, namely two distorted octahedral sites (Fe₆ and Fe₇), a regular octahedral site (Fe₈), a regular tetrahedral site (Fe₉), the interatomic exchange interaction is of A-type antiferromagnetic, with the spin arrangement of β, α, γ, and δ for the Fe₆, Fe₇, Fe₈, Fe₉ atoms, respectively. The spin structure of this system is not fully understood and it is reported as collinear or noncollinear ferrimagnetic. Recently, Xu et al. predicted spin frustration of the Fe₉ sites, resulting in a noncollinear spin structure with the energy of 60 meV/Å. The oxide is magnetoelectric with a switchable ferroelectric polarization and ferrimagnetic with a Curie temperature of 510 K. Nanoparticles of ϵ-Fe₂O₃ are reported to have a high coercivity of about 20 kOe [2 T], but thin-film coercivities...
are lower.17,18 An upper bound to the low-temperature magnetic anisotropy constant \(K\) of \(\varepsilon\text{-Fe}_2\text{O}_3\) is previously measured to be 0.1 MJ/m\(^3\).1,3 Since \(\varepsilon\text{-Fe}_2\text{O}_3\) is an intermediate phase of hematite (\(\alpha\text{-Fe}_2\text{O}_3\)) and maghemite (\(\gamma\text{-Fe}_2\text{O}_3\)),3,21 the structure of its unit cell has Fe-atoms of both coordination as well.

There have been experimental attempts to further enhance and improve the coercivity of this particular phase of \(\varepsilon\text{-Fe}_2\text{O}_3\) by substitution of Fe-atoms on different sites by non-magnetic atoms such as indium, aluminum, gallium, and rhodium, in different concentrations. Namai \textit{et al.}22 chemically prepared a series of Rh-substituted \(\varepsilon\text{-Fe}_2\text{O}_3\) nanoparticles and obtained enhanced coercivities of 2.7 and 3.1 T for isotropic and crystallographically aligned nanoparticles, respectively. In this case, the Rh-atom occupies the Fe-atom at C-site. Ohkoshi \textit{et al.}21 prepared In-, Ga- and Al-substituted \(\varepsilon\text{-Fe}_2\text{O}_3\), with various concentrations and substitutions taking place at every Fe-site and obtained a tunability of the coercivity. In Al-substituted \(\varepsilon\text{-Fe}_2\text{O}_3\) (Fe\(_{1-x}\)Al\(_x\)), the Al atoms preferentially occupy the FeO sites21,23 but reduces the coercivity.

In this work, we have studied the effect of Co substitution on different Fe sites. We have replaced a single A, C, and D type Fe atom per unit cell by Co and calculated the saturation magnetization \(M_s\), the effective magnetic anisotropy constant \(K_{\text{effective}}\) and the anisotropy field \(H_A\). Since the anisotropy field is the upper bound to the coercivity, the variation of \(H_A\) with the site substitution will give a good estimate of the coercivity of the system. We also identify the site-specific origin of the anisotropy change and compare the situation in \(\varepsilon\text{-Fe}_2\text{O}_3\) with the anisotropy contribution in \(\alpha\text{-Fe}_2\text{O}_3\) and \(\gamma\text{-Fe}_2\text{O}_3\).

\section*{II. Method}

Density functional theory (DFT) based on the Vienna \textit{ab-initio} simulation package (VASP)24–26 was used for the calculation. The Perdew, Burke, and Ernzerhof (PBE)27 functional was used to incorporate semi-local exchange-correlation effects. The DFT+U28 formalism was implemented to account for the strongly correlated nature of the Fe 3d localized electrons. We took \(U-J = 4\) eV for \(\varepsilon\text{-Fe}_2\text{O}_3\)11,29 a value commonly used for the hematite. For Co-substituted \(\varepsilon\text{-Fe}_2\text{O}_3\), the value of \(U-J\) are 4 eV and 3.3 eV29 for the 3d-states of Fe- and Co-atom, respectively. Projected Augmented Wave (PAW)26 method-based potentials were used for Fe-, O-, and Co-atoms. The valence-electron configurations for the Fe-, O-, and Co-atoms were taken to be \(d^8s^2\), \(s^2p^6\), and \(d^5s^2\), respectively. The electronic wave functions were represented by a plane-wave basis set with an energy cutoff of 530 eV. A Monkhorst-Pack30 \(k\)-point mesh of \(5 \times 3 \times 3\) was used for one unit cell for structural optimization of the pristine bulk as well as of the Co-substituted \(\varepsilon\text{-Fe}_2\text{O}_3\). A convergence criterion of 10-7 eV for electronic self-consistency and maximum forces of 0.005 eV/Å for each atom during structural optimization were chosen.

To calculate the effective magnetic anisotropy and the anisotropy field for the pristine as well Co-substituted \(\varepsilon\text{-Fe}_2\text{O}_3\), we included the spin-orbit coupling as implemented in VASP by Kresse and Lebacs. A very dense Monkhorst-Pack \(k\)-point mesh of \(15 \times 9 \times 9\) was used to calculate the total energies for the magnetization directions fixed parallel to the \(x\), \(y\), and \(z\)-axes. Due to the orthorhombic nature of the crystal, there exists low symmetry and the lowest order anisotropy energy21,32 is defined as

\begin{equation}
E = K_1 V \sin^2 \theta + K_2 V \sin^2 \theta \cos(2\Phi)
\end{equation}

Using Eq. 1, the effective magnetic anisotropy constant was calculated using the formula

\begin{equation}
K_{\text{eff}} = (E_{\text{hard axis}} - E_{\text{easy axis}}) / V
\end{equation}

which yields the anisotropy field

\begin{equation}
H_A = 2K_{\text{eff}} / \mu_0 M_s
\end{equation}

where \(E\) is the total ground state energy of the system, \(V\) is the volume of the unit cell of bulk \(\varepsilon\text{-Fe}_2\text{O}_3\), \(\mu_0\) is the permeability of free space and \(M_s\) is the saturation magnetization of the bulk \(\varepsilon\text{-Fe}_2\text{O}_3\).
III. RESULTS AND DISCUSSION

Our DFT optimized lattice parameters obtained for ε-Fe$_3$O$_4$ are as $a = 5.125$, $b = 8.854$ and $c = 9.563$ Å. Our calculated electronic structure yields an energy band-gap of 1.9 eV. Figure 2 shows the unit-cell structures of the Co-substituted ε-Fe$_3$O$_4$. For the Co-substitution, we kept the volume of the unit cell constant and only the ionic positions were relaxed. Taking into account the non-uniaxial character of the orthorhombic lattice, the total energies were calculated for magnetization directions along the three principal axes.

The saturation magnetization (M_s), effective magnetic anisotropy constant (K_{eff}) and anisotropy field (H_A) for the Co-free and Co-substituted oxides are listed in Table I. The table shows that the K_{eff} of the pristine bulk ε-Fe$_3$O$_4$ is comparable to the previously measured K value of 0.1 MJ/m3, which was the upper cutoff of anisotropy constant. Both theory and experiment yield a substantial anisotropy increase due to transition-metal substitution. One reason is the anisotropy of the starting compound, which is unusually low for a noncubic compound. The anisotropy constants of the Co-substituted oxides are typical for noncubic materials (several 0.1 MJ/m3). The anisotropy field, which provides an upper bound to the coercivity, is an order of magnitude higher than the experimentally reported coercivity. As explained in Ref. 32, such a difference is not unusual and means that the coercivity mechanism deviates from coherent rotation due to real-structure effects.

On all three Fe sites (distorted octahedra, regular octahedra, and regular tetrahedra), the Co atoms keep interacting antiferromagnetically, maintaining the ferrimagnetic order but not contributing to the total magnetization (Table I). Among the doped systems, the substitution at the tetrahedral site does not contribute to the enhancement of the anisotropy field, because the anisotropy and magnetization changes cancel each other. Among the two octahedrals, the distorted one has the bigger effect on both K_{eff} and on H_A. The distorted octahedral is not present in the structures of hematite and maghemite; it occurs in the ε-Fe$_3$O$_4$ crystal structure only, where it has a big effect on anisotropy and on the coercivity.

System	M_s per unit cell (kA/m)	K_{eff} (MJ/m3)	H_A (T)
Pristine bulk	2.95	0.034	23.06
Co substitution at distorted octahedra (A-site)	24.32	0.769	63.27
Co substitution at regular octahedra (C-site)	18.72	0.444	47.46
Co substitution at regular tetrahedra (D-site)	23.61	0.273	23.13

IV. CONCLUSIONS

In summary, we have studied the site substitution effect of Co on the magnetization, magnetic anisotropy, and anisotropy field of ε-Fe$_3$O$_4$. The distorted octahedron which is exclusive to the ε-Fe$_3$O$_4$ crystal structure and not found in hematite or maghemite, are important for the understanding of the anisotropy of the oxide. On Co substitution, they yield a disproportional contribution to anisotropy and coercivity. On the other hand, if the substitution takes places by a d-states element, such as Rh and Co, the magnetic anisotropy constant as well as the coercivity increases.

ACKNOWLEDGMENTS

Thanks are due to A. Ullah for help in details. This work is supported by Nano Mission, DST, India (SR/NSN/1198/2013, IA, AK) and by DOE/BES (DE-FG02-04ER46152, RS).

REFERENCES

1. R. Zboril, M. Mashlan, and D. Petidis, Chem. Mater. 14, 969 (2002).
2. R. Schrader and G. Bützner, Zeitschrift für Anorganische und Allgemeine Chemie 320, 220 (1963).
3. D. Dészi and J. M. D. Coey, Physica Status Solidi (A) 15, 681 (1973).
4. C. Dejoie, P. Sciav, W. Li, L. Noé, A. Mehta, K. Chen, H. Luo, M. Kunz, N. Tamura, and Z. Liu, Scientific Reports 4, 4941 (2014).
5. G. McIntosh, M. Kovacheva, G. Cattaruzza, M. L. Osete, and L. Casas, Geophysical Research Letters 34, https://doi.org/10.1029/2007gl031168 (2007).
6. G. McIntosh, M. Kovacheva, G. Cattaruzza, F. Donadini, and M. L. O. Lopez, Geochemistry, Geosystems, Geosystems 12 (2011).
7. H. Xu, S. Lee, and H. Xu, American Mineralogist 102, 711 (2017).
8. U. Hälenius, F. Hatert, M. Pasero, and S. J. Mills, Mineralogical Magazine 80, 691 (2016).
9. E. Tronc, C. Chanéac, and J. P. Jolivet, Journal of Solid State Chemistry 139, 93 (1998).
10. M. Popovic, M. Gich, D. Nizhansky, A. Roig, C. Savit, L. Casas, E. Molins, K. Zaveta, C. Enache, J. Sort, S. de Brion, G. Chouteau, and J. Nogués, Chem. Mater. 16, 5542 (2004).
11. M. Yoshikiyo, K. Yamada, A. Namai, and S. Ohkoshi, J. Phys. Chem. C. 116, 8688 (2012).
12. J. Tucek, S. Ohkoshi, and R. Zboril, Appl. Phys. Lett. 99, 253108 (2011).
13. K. Xu, J. S. Feng, Z. P. Liu, and H. J. Xiang, Phys. Rev. Applied 9, 044011 (2018).
14. Y. C. Tseng, N. M. Souza-Neto, D. Haskel, M. Gich, C. Frontera, A. Roig, M. Van Veenendaal, and J. Nogués, Phys. Rev. B 79, 094404 (2009).
15. M. Gich, C. Frontera, A. Roig, J. Fontcuberta, E. Molins, N. Bellido, C. Simon, and C. Fleta, Nanotechnology 17, 687 (2006).
16. R. Zboril, M. Yoshikiyo, K. Yamada, A. Namai, M. Popovic, G. Chouteau, and J. Nogués, Journal of Applied Physics 98, 044307 (2005).
17. Y. Ding, J. R. Morber, R. L. Snyder, and Z. L. Wang, Advanced Functional Materials 17, 1172 (2007).
18. S. Ohkoshi and H. Tokoro, RCS 86, 897 (2013).
19. A. Namai, M. Yoshikiyo, K. Yamada, S. Sakurai, T. Goto, T. Yoshida, T. Miyazaki, M. Nakajima, T. Suemoto, H. Tokoro, and S. Ohkoshi, Nature Communications 3, 1035 (2012).
20. T. Nasu, M. Yoshikiyo, N. Tsuchi, and S. Ohkoshi, European Journal of Inorganic Chemistry 2017, 530 (2017).
24. G. Kresse and J. Furthmüller, *Computational Materials Science* 6, 15 (1996).
25. G. Kresse and J. Furthmüller, *Phys. Rev. B* 54, 11169 (1996).
26. G. Kresse and D. Joubert, *Phys. Rev. B* 59, 1758 (1999).
27. J. P. Perdew, K. Burke, and M. Ernzerhof, *Phys. Rev. Lett.* 77, 3865 (1996).
28. J. Hubbard, *Proc. R. Soc. Lond. A* 276, 238 (1963).
29. G. W. Mann, K. Lee, M. Cococcioni, B. Smit, and J. B. Neaton, *The Journal of Chemical Physics* 144, 174104 (2016).
30. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B* 13, 5188 (1976).
31. R. Skomski, *J. Phys.: Condens. Matter* 15, R841 (2003).
32. R. Skomski, *Simple Models of Magnetism* (Oxford University Press, Oxford, New York, 2008).
33. I. Ahamed, R. Pathak, R. Skomski, and A. Kashyap, *AIP Advances* 8, 055815 (2017).
34. I. Ahamed, K. Ulman, N. Seriani, R. Gebauer, and A. Kashyap, *J. Chem. Phys.* 148, 214707 (2018).