Peripapillary choroidal neovascularization in pars planitis

Sonia Mehta1,2, Luxme Hariharan2, Allen C Ho3 and John H Kempen2,4,5*

Abstract

Background: Choroidal neovascularization (CNV) is a rare complication of intermediate uveitis. Risk factors are not well-characterized. Here, we describe a case of peripapillary CNV in a patient with intermediate uveitis and explore the pathophysiology and treatment of this condition. This study is a case report and review of the literature.

Results: A 15-year-old boy with intermediate uveitis - suppressed for the preceding year on immunosuppressive therapy and low-dose corticosteroids - and chronic disc swelling presented with unilateral metamorphopsia, peripapillary subretinal hemorrhage, and subretinal fluid. Fluorescein angiogram confirmed the presence of an active choroidal neovascular membrane. Treatment with intravitreal bevacizumab 1.25 mg every 4 weeks for 4 months resulted in resolution of subretinal fluid, subretinal hemorrhage, and regression of the CNV. The patient's intermediate uveitis remained inactive throughout this time.

Conclusion: Review of the existing literature and pathophysiologic consideration suggests that chronic disc edema may be a risk factor for this condition. Peripapillary CNV in the context of intermediate uveitis appears to respond well to VEGF-inhibitor therapy.

Keywords: Choroidal neovascularization, CNV, Intermediate uveitis, Pars planitis, Peripapillary
was normal in both eyes showing no anterior or vitreous cells or flare. Fundus examination of the right eye showed stable chronic disc swelling but was otherwise unremarkable. In addition to disc swelling, the left eye fundus showed peripapillary subretinal hemorrhage and subretinal fluid extending into the macula (Figure 1a,b). Fluorescein angiogram showed an active choroidal neovascular membrane adjacent to the disc in the left eye (Figure 1c, d). There was no evidence of cystoid macular edema, periphlebitis, snowballs, or snowbanking in either eye on clinical exam, optical coherence tomography (OCT), and fluorescein angiogram. B-scan ultrasound showed bilateral disc elevation with fluid and positive 30° sign. Echography showed no evidence of optic disc drusen. MRI of the brain and orbits was normal; lumbar puncture revealed an opening pressure of 180 mm H₂O at the upper limit of normal range.

The patient was treated with intravitreal bevacizumab 1.25 mg every 4 weeks for 4 months and retrobulbar triamcinolone acetonide 40 mg once at 6 weeks after presentation with the CNV. Acetazolamide 500 mg twice daily for several weeks after presentation did not decrease the disc swelling, at which point acetazolamide was discontinued. At 8 months follow-up, the patient’s vision was stable and exam showed resolution of subretinal hemorrhage and fluid (Figure 2a,b) but continued traction lines in the area of the affected retina. Because the disc swelling gradually resolved over several months of follow-up, no further lumbar punctures were obtained.

Throughout this time, the patient’s intermediate uveitis remained inactive. He was maintained on mycophenolate mofetil 1 g twice daily and methotrexate 25 mg once weekly. He was followed-up at our institution regularly over the next 3 years and did well. At last follow-up, the uveitis was inactive; no recurrence of CNV or disc swelling was noted throughout this period. His complaints of metamorphopsia gradually subsided, but he is still aware of metamorphopsia when he covers the right eye corresponding to the still-persistent traction lines in the nasal macula. It remains unclear whether the etiology of the disc swelling was from slowly resolving inflammatory disc edema, corticosteroid-induced intracranial hypertension, or both.

Discussion

Most cases of CNV in uveitis occur in posterior uveitis or panuveitis. CNV in intermediate uveitis is rare with only three cases reported in the literature; two of the three cases were noted to occur adjacent to the disc (Table 1) [1,2]. Arkfeld and Brockhurst reported the first of these cases in a 29-year-old female with sarcoid-related bilateral intermediate uveitis [2]. The patient had disc swelling and active intermediate uveitis in the involved eye which was treated with oral prednisone. The disc swelling occurred in the involved eye 10 months prior to the onset of peripapillary CNV. She was treated with argon green laser photocoagulation and did well with CNV regression and significant visual improvement. Garcia et al. reported the second case of a 15-year-old female who presented with intermediate uveitis, vasculitis, papillitis, and peripapillary CNV [1]. The patient was treated with systemic corticosteroids and one dose of intravitreal bevacizumab 1.25 mg. On follow-up 7 months later, vision improved significantly, vasculitis resolved, and CNV regressed. Garcia et al. reported another case of a 27-year-old female with bilateral intermediate uveitis and chronic cystoid macular edema in the right eye [1]. Systemic workup for conditions associated with intermediate uveitis including sarcoidosis evaluation was negative. The patient was noncompliant with the treatment and presented 1 year after a flare-up with decreased vision and a subfoveal pigmented granuloma in the right eye which the authors described as regressed CNV.

Histopathologic studies have provided insight into the potential mechanisms in the development of peripapillary CNV [3]. Sarks provided clinicopathologic correlation of 21 eyes with peripapillary CNV from AMD [3]. Based on histopathologic evidence, Sarks hypothesized that peripapillary CNV originates either from the choroidal vessels passing around the termination of Bruch’s membrane or from the choroidal vessels passing through defects in Bruch’s membrane. In the above reported cases of peripapillary CNV in intermediate uveitis, it is interesting to note that chronic disc edema was present prior to the onset of all cases. Arkfeld and Brockhurst hypothesized that chronic disc swelling may increase the potential space between Bruch’s membrane and swollen disc tissue facilitating ingrowth of choroidal vessels around the termination of Bruch’s membrane [2]. Alternatively, chronic disc swelling may result in the deformation of the peripapillary Bruch’s membrane leading to breaks in Bruch’s membrane facilitating ingrowth of the choroidal neovascular tissue under the RPE [4]. Peripapillary CNV has also been observed in conditions causing chronic disc swelling such as idiopathic intracranial hypertension and hydrocephalus [5-8].

Peripapillary CNV is characterized clinically by the presence of a choroidal neovascular membrane adjacent to the disc producing subretinal hemorrhage, fluid, and/or exudate [4]. OCT characteristics suggestive of CNV include the presence of subretinal fluid, subretinal hemorrhage, subretinal hyperreflective lesion, and intraretinal fluid. On fluorescein angiogram, well-defined CNV appears as a lacy network of capillary plexuses with leakage as the angiogram progresses [9]. Occult CNV can appear as an area of stippled hyperfluorescence on angiogram. The choroidal neovascular
Figure 1 Color fundus photograph, optical coherence tomography, and fluorescein angiogram at presentation. (a) Color fundus photograph of the left eye at presentation demonstrating disc swelling with peripapillary subretinal hemorrhage and subretinal fluid. (b) Intraretinal and subretinal fluid temporal to the disc is evident on optical coherence tomography. (c) Early and (d) late fluorescein angiograms of the left eye reveals a choroidal neovascular membrane adjacent to the disc.
membrane may be obscured by hemorrhage, pigment hyperplasia, fibrous tissue, or serous pigment epithelial detachment [9].

Peripapillary CNV has certain unique features compared to its macular counterpart. First, peripapillary CNV is associated not just with diseases affecting choriretinal tissue adjacent to the disc but also with diseases affecting the optic nerve head. For example, peripapillary CNV can be seen in optic disc drusen, congenital disc anomalies, tilted disc, and disc swelling [4]. Second, peripapillary CNV may develop from the breakthrough of abnormal choroidal blood vessels through Bruch’s membrane in addition to growth of vessels around the termination of Bruch’s membrane [2-4]. Third, the occurrence of clinical symptoms prior to the extension of the lesion into the fovea may allow detection and treatment of these lesions with potentially more favorable visual outcomes compared to their foveal counterparts [4].

Several treatment options exist for peripapillary CNV in uveitis including vascular endothelial growth factor inhibitors, argon laser photocoagulation, and photodynamic therapy [10-13]. In the above cases, all patients underwent treatment with either argon laser photocoagulation or intravitreal bevacizumab (as used in our case) and did well with significant improvements in vision and CNV regression. For lesions adjacent to vital structures such as the optic disc, therapy with bevacizumab injection likely is safer than laser photocoagulation or photodynamic therapy and is reasonably cost-effective.

In conclusion, patients with intermediate uveitis and chronic disc swelling may be at risk for peripapillary CNV. Control of inflammation without the use of corticosteroids likely will improve disc swelling in most cases, even though resolution of disc swelling may be delayed in some instances, as in our case. Corticosteroid-induced or idiopathic intracranial hypertension should

Table 1 Literature summary of choroidal neovascularization in intermediate uveitis

Case	Age (year)/gender	Systemic workup	Location of CNV	Active intraocular inflammation at the time of CNV	Treatment	Outcome	Notes
1	29/female	Sarcoidosis	Peripapillary (temporal to disc)	No	Argon green laser photocoagulation	Regressed CNV	Chronic disc swelling present prior to CNV
2	15/female	NR	Peripapillary (temporal to disc)	Yes	Intravitreal bevacizumab × 1	Regressed CNV	Disc swelling present
3	27/female	Idiopathic	Subfoveal	NR	None	Regressed CNV	Chronic cystoid macular edema present prior to CNV
4	15/male	Idiopathic	Peripapillary (superior and temporal to disc)	No	Intravitreal bevacizumab × 4	Regressed CNV	Chronic disc swelling present prior to CNV

CNV, choroidal neovascularization; NR, not reported.

Figure 2 Color fundus photograph and optical coherence tomography at follow-up. (a) Color fundus photograph of the left eye 8 months after presentation showing resolution of the subretinal fluid and hemorrhage. (b) The subretinal fluid has resolved on optical coherence tomography.
be suspected in cases with ongoing disc swelling without active inflammation. Chronic disc swelling should be resolved if possible to avoid complications. CNV has been reported to develop during times of quiescence or active inflammation [1,2]. Management with a vascular endothelial growth factor inhibitor likely is the treatment of choice, along with control of inflammation and control of any associated factors that may be present such as intracranial hypertension [13]. Based on the limited number of observations available, the prognosis of this condition with appropriate treatment appears favorable.

Competing interests
JHK is a consultant at Lux Biosciences, Allergan, Alcon, Sanofi-Pasteur, and Xoma. All other authors have no competing interests.

Authors’ contributions
SM and JHK designed and conducted the study. SM, LH, ACH, and JHK collected, managed, analyzed, and interpreted the data and prepared, reviewed, and approved the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This study was supported primarily by a generous contribution to the Scheie Eye Institute by the Klein family. The SITE Cohort Study was supported by the National Eye Institute Grant EY014943 (JHK). Additional support was provided by the Research to Prevent Blindness and the Paul and Evanina Mackall Foundation.

Author details
1Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30307, USA. 2Ocular Inflammation Service, Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. 3Retina Service, Wills Eye Institute, Philadelphia, PA 19107, USA. 4Department of Biostatistics & Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. 5Center for Preventative Ophthalmology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 3535 Market St., Suite 700, Philadelphia, PA 19104, USA.

Received: 11 September 2012 Accepted: 12 September 2012
Published: 15 January 2013

References
1. Garcia CA, Segundo Pde S, Garcia Filho CA, Garcia AC (2008) Intermediate uveitis complicated by choroidal granuloma following subretinal neovascular membrane case reports. Arq Bras Oftalmol 71(6):890–893
2. ArMfeld DF, Brockhurst RJ (1985) Peripapillary subretinal neovascularization in peripheral uveitis. Retina 5:157–160
3. Sarks S (1973) New vessel formation between the retinal pigment epithelium in senile eyes. Br J Ophthalmol 57:951–965
4. Lopez PF, Green WR (1992) Peripapillary subretinal neovascularization. A review Retina 12(2):147–171
5. Jamison RR (1981) Subretinal neovascularization and papilledema associated with pseudotumor cerebri. Am J Ophthalmol 91:312–317
6. Troost BT, Sufit RL, Grand MG (1979) Sudden monocular visual loss in pseudotumor cerebri. Arch Neurol 36:440–442
7. Morse PH, Leveille AS, Antel JP, Burch JV (1981) Bilateral juxtapapillary subretinal neovascularization associated with pseudotumor cerebri. Am J Ophthalmol 91:312–317
8. Nguyen C, Bonneux FX (2005) Bilateral peripapillary subretinal neovessel membrane associated with chronic papilledema: report of two cases. Klin Monbl Augenheilkd 222(3):275–278
9. Gass JDM (1997) Diseases causing choroidal exudative and hemorrhagic localized (disciform) detachment of the retina and retinal pigment epithelium. In: Gass JDM (ed) Stereoscopic atlas of macular diseases. Mosby-Year Book, Inc., St. Louis, pp 49–285
10. Mansour AM, Arevalo F, Ziemssen F, Mehio-Sibai A, Mackensen F, Adan A, Chan W, Hess T, Banker AS, Dodwell D, Tran THC, Fardeau C, Lehoang P, Mahendradas P, Berrocal M, Tabbarah Z, Hisromalos N, Hisromalos F, Al-Salem K, Guthoff R (2009) Long term visual outcomes of intravitreal bevacizumab in inflammatory ocular neovascularization. Am J Ophthalmol 148:310–316
11. Arevalo JF, Adan A, Berrocal MH, Espinoza JV, Maia M, Wu L, Roca JA, Quiroz-Mercado H, Ruiz-Moreno JM, Serrano MA (2011) Intravitreal bevacizumab for inflammatory choroidal neovascularization: results from the Pan-American Collaborative Retina Study Group at 24 months. Retina 31:353–363
12. Lin J, Flaxel CJ, Laleree L (2006) Photodynamic therapy for choroidal neovascularization secondary to inflammatory choroidoretinal disease. Ann Acad Med Singapore 35:198–202
13. D’Otoole L, Tufail A, Pavesio C (2005) Management of choroidal neovascularization in uveitis. Int Ophthalmol Clin 45:157–177

doi:10.1186/1869-5760-3-13
Cite this article as: Mehta et al.: Peripapillary choroidal neovascularization in pars planitis. Journal of Ophthalmic Inflammation and Infection 2013 3:13.