INTEGRAL NON-HYPERBOLIKE SURGERIES

KAZUHIRO ICHIHARA

Abstract. It is shown that a hyperbolic knot in the 3-sphere admits at most
nine integral surgeries yielding 3-manifolds which are reducible or whose funda-
damental groups are not infinite word-hyperbolic.

1. Introduction

The well-known Hyperbolic Dehn surgery Theorem due to Thurston [12] says
that each hyperbolic knot admits only finitely many Dehn surgeries yielding non-
hyperbolic manifolds. A lot of works have been done to study how many, when and
on which knots such exceptional surgeries can occur. See [5] for a survey.

About the number of exceptional surgeries, it is conjectured that they are at
most TEN, and the knot admitting ten is only the figure-eight knot in the 3-
sphere S^3. See [9, Problem 1.77] for a detail. In [8], Hodgson and Kerckhoff
achieved the first universal upper bound SIXTY. In [4] and [10], Agol and Lack-
enby independently showed that there are at most TWELVE surgeries yielding
non-hyperbolike 3-manifolds. Here a 3-manifold is called non-hyperbolike (in the
sense of Agol) if it is reducible or does not have infinite word-hyperbolic fundamen-
tal group. Note that hyperbolic implies hyperbolike, equivalently non-hyperbolike
implies non-hyperbolic. Furthermore if the well-known Geometrization Conjecture
is true, hyperbolike and hyperbolic become equivalent.

The aim of this paper is to present the following result, which gives a new
upper bound on the number of non-hyperbolike surgeries under the assumption
that surgery slopes are integral. Remark that if a meridian-longitude system for
K is fixed, then surgery slopes for K are parametrized by $\mathbb{Q} \cup \{1/0\}$ in a standard
way. See [11] for example.

Theorem 1.1. Let K be a hyperbolic knot in a closed orientable 3-manifold. Sup-
pose that an arbitrarily chosen meridian-longitude system for K is fixed, and by
using this, surgery slopes for K are parametrized by $\mathbb{Q} \cup \{1/0\}$. If two 3-manifolds
obtained by Dehn surgeries on K are both non-hyperbolike, and their surgery slopes
are both integers, then the distance between the surgery slopes is at most eight. This
implies that there are at most NINE integral non-hyperbolike surgeries for K.

In particular case of the figure-eight knot in S^3, with the standard meridian-
longitude system, the exceptional surgery slopes are $-4, -3, -2, -1, 0, 1, 2, 3, 4,$ and
$1/0$. The slopes -4 and 4 have distance eight, and there are nine integral exceptiona-
surgery slopes. Thus our bound is best possible.

Date: February 5, 2005.
2000 Mathematics Subject Classification. Primary 57M50; Secondary 57M25.
Key words and phrases. exceptional surgery, integral surgery, hyperbolic knot.
It should be noted that Theorem 1.1 assures that if some knot admits only integral non-hyperbolike surgeries, then the knot have at most TEN non-hyperbolike surgeries, that is, nine integral ones and a trivial one.

For example, it is remarked in [13] that some class of arborescent knots admit only integral surgeries yielding reducible, toroidal or Seifert fibered 3-manifolds. Such 3-manifolds are sometimes called non-hyperbolike in the sense of Gordon, and are shown to be actually non-hyperbolike in the sense of Agol. Precisely we obtain:

Corollary 1.2. An arborescent knot admits at most TEN surgeries yielding reducible, toroidal or Seifert fibered 3-manifolds, unless it is a Montesinos knot of type $M(x,1/p,1/q)$ or its mirror image, where $x \in \{-1/2n,-1\pm1/2n,-2+1/2n\}$, and p, q and n are positive integers. □

2. Proof

We start with preparing definitions and notations.

As usual, we call an embedded circle in a 3-manifold a **knot**. A knot K is called **hyperbolic** if its complement C_K admits a complete hyperbolic structure of finite volume.

A **slope** is defined to be the isotopy class of an unoriented non-trivial simple closed curve on the torus. The **distance** between two slopes means the minimal geometric intersection number of their representatives.

The complement of an open tubular neighborhood of K is called the **exterior** E_K of the knot. Given a knot, a new manifold is obtained by taking the exterior of the knot and attaching a solid torus back. This operation is called a **Dehn surgery** on the knot. When one perform a Dehn surgery on a knot, a meridian curve of the attached solid torus determines a slope on the peripheral torus ∂E_K of the knot. This slope is called the **surgery slope** of the Dehn surgery. In the following, we will use $K(r)$ to denote the 3-manifold obtained by Dehn surgery on K with surgery slope r.

From now on, we assume that K is a hyperbolic knot in a closed orientable 3-manifold. Since K is hyperbolic, the complement C_K is regarded as a complete hyperbolic 3-manifold with single cusp. The universal cover of C_K is identified with the hyperbolic 3-space \mathbb{H}^3. Under the covering projection, an equivariant set of horospheres bounding disjoint horoballs in \mathbb{H}^3 descends to a torus embedded in C_K, which we call a **horotorus**. As demonstrated in [12], on a horotorus T, a Euclidean structure is obtained by restricting the hyperbolic structure of C_K. By using this structure, the length of a curve on T can be defined. Also T is naturally identified with the boundary ∂E_K of the exterior E_K of K, for the image of the horoballs under the covering projection is topologically T times half open interval. Thus, for a slope r on ∂E_K, we can define the **length** of r with respect to T as the minimal length of the simple closed curves on T corresponding to those on ∂E_K with slope r.

The following three results will be used in our proof. All notations as above will be still used.

The next proposition was shown by Agol [4] and Lackenby [10], independently.

Proposition 2.1 ([4, Theorem 6.2], [10, Theorem 3.1]). With respect to some horotorus, if the length of a slope r on ∂E_K is greater than 6, then the surgered manifold $K(r)$ is irreducible and its fundamental group is infinite word-hyperbolic. □
Now let us choose the maximal horotorus T, that is, the one bounding the maximal region with no overlapping interior. The next proposition holds for such T, which was given in [2]. See also [1] and [3].

Proposition 2.2. With respect to the maximal horotorus, every slope on ∂E_K has the length at least $4\sqrt{2}$ if K is neither the figure-eight knot nor the knot 5_2 in the knot table [11].

The next one was obtained in [7], which is the key to show that the figure eight knot complement has the minimal volume among orientable 1-cusped hyperbolic 3-manifolds.

Proposition 2.3 ([7, Proposition 5.8]). For any hyperbolic knot in a closed orientable 3-manifold, the area of the maximal horotorus must be at least 3.35.

Proof of Theorem 1.1. We first assume that K is the figure eight knot in S^3. In this case, exceptional surgeries are completely understood, as noted before, the statement holds. Next, in the case that K is the knot 5_2 in S^3, it is also shown in [6] that the statement also holds.

Now, we consider a hyperbolic knot K in general neither the figure eight knot nor the knot 5_2. Let r_1 and r_2 be slopes having distance Δ such that they are both integers with respect to the fixed meridian-longitude system for K and the surgered manifolds $K(r_1), K(r_2)$ are both non-hyperbolike.

Take the maximal horotorus T in the complement of K. Let μ be the closed geodesic on T corresponding to the fixed meridian on the boundary ∂E_K of the exterior E_K of K. Let γ_i be the closed geodesic on T corresponding to a simple closed curve with slope r_i on ∂E_K for $i = 1, 2$. Up to translations, we may assume that γ_1, γ_2 and μ have a common intersection point.

Consider a component \tilde{T} of the preimage of T in the universal cover \mathbb{H}^3 of the complement of K. Since T has a Euclidean structure, \tilde{T} is identified with the Euclidean 2-plane \mathbb{E}^2. On \tilde{T}, the preimage of the common intersection point of γ_1, γ_2 and μ give a lattice. By fixing one of the points, say O, each primitive lattice point corresponds to a slope on T, and the distance between O and a primitive lattice point is equal to the length of the corresponding slope.

We take lattice points A and B such that the paths OA and OB are lifts of γ_1 and γ_2 respectively, and the path AB is projected to Δ times multiple of μ on T. Note that the latter condition can be achieved by integrality of r_1 and r_2. Also note that the area of the triangle OAB is just the half of 3.35Δ.

Then we have:
- the length $\overline{OA}, \overline{OB}$ of the paths OA, OB is at most 6 by Proposition 2.1
- the length \overline{AB} of the path AB is at least $4\sqrt{2}\Delta$ by Proposition 2.2
- the area $\text{Area}(OAB)$ of the triangle OAB is greater than the half of 3.35Δ by Proposition 2.3

Suppose for a contradiction that $\Delta > 8$. Let θ be the angle between OA and OB so that $0 < \theta < \pi$. Then by
$$\overline{OA}^2 + \overline{OB}^2 \leq 6^2 + 6^2 = 72 < 64\sqrt{2} < (4\sqrt{2}\Delta)^2 \leq \overline{AB}^2$$
the angle θ is greater than $\pi/2$.

Now, by the Euclidean cosine law, we have
\[\frac{AB^2 - OA^2 + OB^2}{2} = -OA \cdot OB \cos \theta , \]
and so,
\[(2.1) \quad \frac{\Delta^2}{\sqrt{2}} - 36 < \left(\frac{\sqrt{2} \Delta}{2} - 6^2 - 6^2 \right) < 6 \cdot (\cos \theta) = 36 |\cos \theta| \]
holds.

On the other hand, by the formula of the area of a Euclidean parallelogram, we have
\[2 \cdot \text{Area}(OAB) = OA \cdot OB \sin \theta , \]
and so,
\[(2.2) \quad 3.35 \Delta < 6 \cdot 6 \sin \theta = 36 \sin \theta \]
Combining Equations (2.1) and (2.2), we have
\[\left(\frac{\Delta^2}{\sqrt{2}} - 36 \right)^2 + (3.35 \Delta)^2 < 36^2 (\sin^2 \theta + \cos^2 \theta) = 1296. \]
From this, we have
\[\left(\frac{\Delta^2}{\sqrt{2}} - 36 \right)^2 + (3.35 \Delta)^2 - 1296 < 0 \]
\[\frac{\Delta^4}{2} + (11.2225 - 36 \sqrt{2}) \Delta^2 < 0 \]
\[\Delta^2 < 2(36 \sqrt{2} - 11.2225) < 80 \]
\[\Delta < \sqrt{80} < 8.95 . \]
However, \(\Delta \) must be an integer, and so we would have \(\Delta \leq 8 \). This implies a contradiction to the assumption that \(\Delta > 8 \). \(\square \)

References
1. C.C. Adams, Waist size for cusps in hyperbolic 3-manifolds, Topology, 41 (2002), 257–270.
2. C.C. Adams, Waist size for hyperbolic 3-manifolds II, preprint, 2000.
3. C.C. Adams, Hyperbolic Knots, preprint, arXiv:math.GT/0309466.
4. I. Agol, Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000), 431–449.
5. S. Boyer, Dehn surgery on knots, in: Handbook of geometric topology (ed. R.J. Daverman), pp. 165–218, Elsevier, Amsterdam, 2002.
6. M. Brittenham and Y.-Q. Wu, The classification of Dehn surgery on 2-bridge knots, Comm. Anal. Geom. 9 (2001), 97–113.
7. C. Cao and G.R. Meyerhoff, The orientable cusped hyperbolic 3-manifolds of minimum volume, Invent. Math. 146 (2001), no.3, 451–478.
8. Craig D. Hodgson and Steven P. Kerckhoff, Universal bounds for hyperbolic Dehn surgery, preprint, arXiv:math.GT/0204345.
9. R. Kirby, Problems in low-dimensional topology, Geometric topology, AMS/IP Stud. Adv. Math., 2-2, (Athens, GA, 1993), (Amer. Math. Soc., Providence, RI, 1997), 35–473.
10. M. Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000), 243–282.
11. D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, Ca, 1976.
12. W. P. Thurston, The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1978.
13. Y.-Q. Wu, Dehn surgery on arborescent knots and links. – A survey, Chaos Solitons Fractals 9 (1998), No.4-5, 671–679.
College of General Education, Osaka Sangyo University, 3–1–1 Nakagaito, Daito, Osaka 574–8530.

E-mail address: ichihara@las.osaka-sandai.ac.jp