Use of antioxidants in poultry farming (review)

V Pashtetsy1, P Ostapchuk1, R Il’yazov1,2, D Zubochenko1 and T Kuevda1

1Research Institute of Agriculture of Crimea, 150, Kievskaya Street, Simferopol, Republic of Crimea, 295493, Russia
2Scientific-Production Center “Liposomal Technologies”, 150, Tazi Gizzat Street, Elabuga, Republic of Tatarstan, 423602, Russia

E-mail: ostapchuk_p@niishk.ru

Abstract. An analysis of the literature sources, where the main results of the use of antioxidants in the poultry industry is given in the review article. Adaptation of a bird occurs due to its use of exogenous and endogenous antioxidants under stress. Scientists put forward the natural concept of antioxidant protection of cells. The essence of this protection lies in the fact that antioxidants prevent the leakage of free electrons in the mitochondria of cells by purifying the original radicals. Biologically active compounds, which include antioxidants, are divided into two groups: natural and synthetic. Natural antioxidants in poultry farming are safer, cheaper and can prevent oxidative reactions in food during storage and do not cause metabolic diseases in animals and birds, are a good alternative to synthetic ones.

1. Literature Analysis

The feeding factor for poultry should satisfy physiological needs as much as possible, which directly depends on its usefulness. Negative external technological factors lead to a decrease in productive indicators for growing poultry. The following types of stress factors can be distinguished: temperature, light effects, noise and chemical effects, drug use, feed change, transport effect, technological, biological and experimental factors, mental (rank). Under stress, the adaptation of poultry is due to its use of organic acids, betaine and other natural antioxidants, and therefore, the possibility of providing additional poultry rations with a set of important nutrients can be considered as one of the main elements for successfully combating stress factors [1].

The bird's body is completely deprived of protection from stress factors. During evolution, living organisms developed special antioxidant defense mechanisms. This is called “antioxidant system” in the world scientific literature. The antioxidant system is diverse and responsible for protecting cells from the action of free radicals and includes the following components: natural fat-soluble antioxidants (vitamins A and E, ubiquinones, carotenoids, etc.), water-soluble antioxidants (vitamin C, taurine, uric acid, etc.), antioxidant enzymes: (glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) and a thiol-redox provide maximum cell protection system consisting of glutathione and thioredoxin system. Protective antioxidant compounds are located in organelles, subcellular compounds or extracellular space [2].

Thus, the antioxidant system of a living cell includes three main levels of protection [3, 4]. At the first level, the formation of free radicals is prevented by removing free radical precursors with antioxidant enzymes, SOD, glutathione, GSH-Px and metal binding proteins. The second level of antioxidant protection consists of vitamin E, ubiquinol, carotenoids, vitamin A, ascorbic acid, uric acid,
and some other antioxidants. Hydroperoxides obtained in the reaction of vitamin E with peroxyl radicals are toxic and, if they are not removed, the structure of cell membranes and their functions are disturbed. That is why hydroperoxides should be removed from the cell in the same way as H_2O_2, but catalase is not suitable for detoxifying these compounds, only selenium-dependent GSH-Px turns hydroperoxides into non-reactive products. However, vitamin E does only half of the work to prevent lipid peroxidation by purifying radicals and the formation of hydroperoxides. The third level of protection is based on systems that eliminate and repair damaged molecules and includes lipases, peptidases or proteases and other enzymes. During this period almost all forms of free radicals are oxidized by methionine residues of proteins consisting of a mixture of R and S isomers of methionine sulfoxide [4].

Thus, scientists are propose the concept of antioxidant protection of cells, the essence of which is that the protection that is activated by incoming antioxidants is based on preventing the leakage of free electrons in the mitochondria of cells by purifying the original radicals. At the final stage, metal ions are bound by metal binding proteins and transformed into non-radical (non-toxic) product. The intermediate radicals are purified, fatally damaged molecules are removed, the synthesis of protective molecules is activated [5].

Consumers pay great attention to the quality of animal products. So the main task of the food industry is based on the quality of meat, for example, in a large store had high visual image characteristics. These indicators include texture, appearance, flavor, tenderness, juiciness and other subjective characteristics [6]. Buyers also prefer fresh meat with good water-holding capacity during processing and cooking, so the water-holding capacity of meat, as well as the color and lack of extraneous odors are the most important indicators of meat [7].

Tactile indicators of meat quality depend on muscle biochemistry and modern processing technologies. [8]. For example, grinding increases the inclusion of oxygen in the muscles, and culinary treatment affects the physical removal of iron bound to the protein of meat in the intracellular space. [9]. Due to the fact that the formation of free radicals causes destruction of the cell membrane structure, muscle tissue in this case could be fuzzy in texture for example, dry, or smeared, or can be a pale in color, or, conversely, too bright red, etc. [10].

One of the approaches to increase the oxidative stability of meat is to add antioxidants during the period of feeding or directly during processing. [11].

Natural tocopherols in the form of extracts of rosemary, green tea and grape seed were added in a total concentration of 100 to 200 mg per 1 kg of feed in order to study the oxidative stability of white meat. The use of natural antioxidants in case of broilers feeding has shown its effectiveness along with synthetic ones. [12, 13]. For example, the inclusion of grape seeds at the feeding stage reduces rancidity and improves the shelf life of chilled semi-finished meat products. [14].

Thus, biologically active compounds, which include antioxidants, are divided into two groups: biological (vitamins, coenzymes, trace elements) and synthetic (diludin, ionol, phenozan, santochin, phenoxane, etc.) [15, 16].

In addition to exogenous antioxidants, the body relies on endogenous defense mechanisms to protect against free radicals. These enzymes metabolize free radicals in the presence of such important micronutrient cofactors as selenium, copper, iron, manganese and zinc. It has been suggested that insufficient intake of these trace elements with food may jeopardize the effectiveness of antioxidant defense mechanisms. The absorption of these elements decreases with age. Figure 1 shows the main physiological antioxidants.

Thus, internal antioxidants presented in the body, but the severity of their action depends on the correct interaction of the components of antioxidant protection, on their concentration, reactivity towards free radicals, and the status of the antioxidants with which it interacts. [13].

Interest in natural antioxidants in the poultry industry in recent years has been increasing. This fact is due that synthetic antioxidants (butylated hydroxyanisole, butylated hydroxytoluene), despite the effectiveness of their use, can provoke the occurrence of various chronic diseases among both consumers and animals and birds, which significantly limits their use. A good alternative to synthetic antioxidants
are natural ones which are safer, cheaper, they are also able to prevent oxidative reactions in products during storage and do not cause metabolic diseases in animals and birds.

Natural antioxidants affect not only the metabolism in the body of the bird during the growing period, but also the oxidation of lipids in meat after slaughter during storage. Poultry meat usually becomes unusable during storage for two main reasons: deterioration of the chemical composition or growth of the microbial population. The most common factor is the so-called chemical wear, meat rancid that is caused by lipid oxidation, or oxidative rancidity, which can vary greatly, from changes in taste to loss of color and structural damage of proteins. Lipid oxidation is the most important problem in animal products: oxidative degradation of lipids damages biological membranes, enzymes and proteins in meat, which can pose a direct threat to human health. [17]

Figure 1. Antioxidant defense system of the body by M. Percival, 1998 [13].

A large proportion of the polyunsaturated fatty acids in poultry meat are susceptible to lipid oxidation. Lipid oxidation is initiated by the fraction of unsaturated fatty acids by auto-oxidation. Compounds formed by lipid oxidation (aldehydes, ketones, acids, alcohols, etc.) are toxic to humans and can cause various chronic diseases [18].

The adding of natural antioxidants to feed is a natural way to increase the internal concentration of antioxidants that slow down the oxidative effects in meat.

Among the sources of natural antioxidants for the poultry industry is, for example, rosemary (Rosmarinus officinalis L.), which affects the further preservation of poultry meat and semi-finished products made from it [19]. The antioxidant properties of natural phytobiotics are mainly related to their phenolic content, thus, their action is similar to synthetic phenolic antioxidants [20]. Green tea (Camellia sinensis) is well-known as an antioxidant that helps reduce the risk of a wide range of chronic diseases such as cancer, diabetes and cardiovascular diseases. Green tea contains epigallocatechin-3-gallate (EGCG), epigallocatechin (EGC), epicatechin-3-gallate (ECG), epicatechin (EC), and flavonoids. These antioxidants inhibit oxidative enzymes [21]. Detection of biologically active phenolic compounds in grape seed extract such as flavonols, plant polyphenols (flavan-3-ol), anthocyanins, tannins and derivatives of phenolic acid was documented [22]. Phenolic compounds in grapes are found both in
In the experiments in vivo it was found out that grape seed extract inhibits the lipid oxidation of poultry during gastric digestion [23]. Clove oil is a natural preservative: inhibits the growth of bacteria and mold. Japanese Chestnut (Castanea crenata), the nuts of which contain an abundance of phenols and hydrolyzable tannins, possess antimicrobial activity against several types of bacteria, including Staphylococcus aureus, Bacillus cereus and Salmonella Typhimurium. Cinnamon is a spice with strong antimicrobial and antioxidant activity. [24]. Colored berries (blueberries, black currants, blackberries, etc.) have become especially popular in the study of antioxidant protection in poultry farming in recent decades. For example, Vaccinium uliginosum L., also known as marsh blueberry, is a wild, short, deciduous shrub that is rich in anthocyanins and flavonols. Tomato is widely cultivated throughout the world. The presence of a high amount of lycopene in tomato, which is a natural red dye, is also an antioxidant. Sunflower seeds and pomegranate peel are good sources of tannins, anthocyanins and flavonoids [25].

The positive dynamics of growth and development of broiler chickens and laying hens was noted, when instead antibiotics, they obtained mandarin peel extract and crushed leaves of moringa oleifera. The improved feed conversion was noted. However, an increase in the moringa oleifera concentration to 15 g per 100 g of feed led to, unfavorable histopathological changes in the kidney tissue and lower egg production compared to the control group; the inclusion of moringa oleifera leaves at a concentration of up to 5 g per 100 g of feed made a yolk color deeper [26]. These results indicate the following: before including components in feed mixtures that are considered safe, it is necessary to examine them carefully for possible anti-nutritional or side effects due to the presence of flavonoids in their composition. The live weight of broilers increases with the inclusion of clove essential oil at a rate from 300 to 500 mg per 1 kg of feed. [27]. An increase in the intestinal population of the Lactobacillus bacteria and the suppression of the Escherichia coli population in the cecum compared to control group of broilers after the introduction of eugenol (4-allyl-2-methoxyphenol), obtained from a tropical plant Eugenia uniflora L., has been reported [28].

The effective antioxidants for broilers that suppress the activity of Escherichia coli are: Echinacea purpurea extract (Echinacea purpurea (L.) Moench), containing β-glucan, shiitake mushroom extract (Lentinula edodes (Berk.) Pegler) that contains betaine and β-curcumin obtained from turmeric (Curcuma longa L.) [29]. However, as the authors note, none of the tested phytobiotics reliably reduced the percentage of chickens during the test period, and did not affect the degree of colibacteriosis damage.

Anticoccidial effect was observed when thymol and carvacrol (obtained from oregano leaves) were added to broiler food. There was a decrease in oocysts number in feces compared to the control group that received coccidioids [30]. The same authors demonstrated an increase in feed conversion: the antimicrobial properties of polyphenols were proven.

A number of researchers have noted the positive effect of using essential oils of oregano (Origanum sp.), leaves of laurel (Laurus nobilis L.), sage (Salvia triloba L.), myrtle (Myrtus communis L.), fennel (Foeniculum vulgare Mill) and citrus peel (Citrus sp.) in an amount of up to 24 mg per 1 kg of feed as a food additive for the production of quail eggs [31]. An unreliable increase in egg productivity was noted, but feed conversion improved. The use of lavender oil (Lavandula stoechas L.) for 21 days during the growth period of broiler chicken in an amount of 24 mg per 1 kg of feed led to an increase in live weight and a decrease in mortality in the experimental group. A mixture of essential oils containing capsaicin, carvacrol and cinnamon aldehyde on broilers in an amount of 400 mg per 1 kg of feed during the period of intensive growth and 150 mg per 1 kg of feed during the final stage of fattening (31 - 42 days) was applied. An increase in body weight and feed efficiency has been found. The authors link the observed trend with the fact that essential oils intensify the replacement of cells in the villi of the intestines, which blocks the intensity of the development of pathogenic microflora. Oskoueian E. et al. confirms the suppression of the vital activity of Campylobacter jejuni, which cause campylobacteriosis with bioactive phenols extracted from blackberry (Rubus fruticosus L.) and blueberry (Vaccinium corymbosum L.) [32]. Patra A.K. et al. [33] noted a positive effect on the overall health of a bird as a result of the consumption of extracts of cumin, anise, coriander and fennel.
Buo et al. [34], after analyzing the literature on the effectiveness of natural antioxidants in order to further improve the quality of poultry meat and eggs found that antioxidants such as vitamin E, ascorbic acid, selenium, polyphenols of oats, rosemary, sage, oregano and milk thistle extract [35] improve the antioxidant protection and preservation of broiler chickens.

Scientists have also attempted to systematize plant antioxidants and their effects. [36]. The results are summarized in table 1.

Plant	Antioxidant compounds	Antioxidant action
Rosemary (Rosmarinus officinalis L.)	L-carnosine, carnosic acid, rosmadial, diterpenes (epirosmanol, isosmanol, rosmaridiphenol, rosmarichinon, rosmarinic acid)	Lipid antioxidant - acts on the radicals
Sage (Salvia officinalis L.)	Carnic acid, rosmanol, rosmadial, methyl and ethyl, rosmarinic acid	Free radical acceptor
Oregano (Origanum vulgare L.)	Rosmarinic acid, 3,4-dihydroxycinnamic acid, phenylpropionic acid; flavonoids - apigen, eridectil, dihydroquercetin; carvacrol, thymol	Free radical acceptor
Thyme (Thymus vulgaris L.)	Thymol, carvacrol, phenolic acids, phenolic diterpenes, flavonoids	Free radical acceptor
Ginger (Zingiber officinale)	Gingerols	Free radical acceptor
Turmeric (Curcuma L.)	Turmeric, 4-Hydroxycinnamoylmethane	Free radical acceptor
Black pepper (Piper nigrum L.)	Kempferol, ramnetin, quercetin	Free radical acceptor
Hot red pepper (Capsicum frutescens)	Capsaicin, capsaicinol	Free radical acceptor
Carnation (Dianthus caryophyllus L.)	Phenolic acids (gallic acid), flavonol glucosides, phenolic volatile oils (eugenol, acetylenol, isoeugenol), tannins	Free radical acceptor, metal chelator
Marjoram (Majorana majorana L.)	β-carotene, β-sitosterol, caffeic acid, carvacrol, eugenol, hydroquinone, rosmarinic acid, terpinen-4-ol	Free radical acceptor
Cumin (Carum carvi L.)	Kumin, γ-terpinene, pinocarveol, linalool, 1-methyl-2- (1-methylethyl) benzene, carotene	Free radical acceptor, metal chelator

The actual problem is the form of the use of antioxidants. Antioxidants are not able to overcome the barriers of cell membranes because they have a low degree of solubility. Based on this fact, the liposomal form allows you to effectively transport vital structures: as water-soluble, liposoluble or combinations of various antioxidants. [37]. Antioxidants in the liposomal form increased the detoxification activity of the laying hens and reduced the content of xenobiotics, nitrates and nitrates; the accumulation of residual heavy metals presented in the diet was prevented due to their increased excretion from the body of chickens. Liposomal nanoform of silymarin at a dose of 200 g per 1 ton of feed in the diet of broiler chickens caused positive changes in the main physiological and productivity indicators. The
effectiveness of the use of liposomal forms of antioxidants has been proven by Russian scientists in other types of farm animals [38].

Thus, the use of liposomal forms of antioxidants is an important part of further agroecological research in the field of agricultural production aimed at ensuring environmental well-being during the further development of technologies in the agro-industrial complex [39].

2. Conclusion
According to the analysis of literary sources scientists put forward the concept of protecting cells with antioxidants. It is based on preventing the leakage of free electrons in the mitochondria of cells due to the purification of the initial radicals. During antioxidant protection, intermediate radicals are purified by peroxyl radicals (vitamins, glutathions, uric acid, bilirubin, ubiquinol, etc.), damaged molecules are restored and removed; synthesis of protective molecules in cells is activated.

World practice suggests that the quality of animal products is very important for consumers, so it must meet a high level of requirements: have good water-holding capacity during processing and preparation, the color of meat must correspond to the type of meat, the absence of foreign odors, texture, appearance, flavor, tenderness, juiciness and other subjective characteristics, which are the most important indicators characterizing meat. Antioxidants that come with food, ultimately, optimize lipid oxidation in meat after slaughter, because oxidative degradation of lipids in products of natural origin damage biological membranes, enzymes and proteins in meat, which can pose an immediate threat to human health.

The review of the literature sources cited in the article indicates the high interest of poultry scientists all over the world to natural sources of antioxidants. Feed additives from plants with their high content of natural antioxidants can improve the efficiency of growing poultry without compromising product quality. A number of plant sources of natural antioxidants play two important roles in the poultry industry. The first one - phenolic compounds and flavanoids in the composition of antioxidants prevent diseases in birds associated with oxidative stress and the second one – are inhibitors of pathogenic microflora. The liposomal form of antioxidants will allow the selective delivering of vital compounds to tissues in optimal concentrations.

The prospect of increasing export of domestic poultry meat, addresses the issue of obtaining environmentally friendly meat products minimal amount of veterinary drugs and feed additives on a chemical basis. The use of natural antioxidants is another step towards achieving this goal.

3. Acknowledgments
The literature sources were analysed within the framework of the state task of Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea” No. AAAA-A16-116022610122-2.

References
[1] Fisinin V I and Kavtarashvili A Sh 2015 Heat stress in poultry. II. Methods and techniques for prevention and alleviation (review) Agricultural Biology [in Russian – Sel'skokhozyaistvennaya Biologiya] 50(4) 431–443 doi:10.15389/agrobiology.2015.4.431eng
[2] Halliwell B, Gutteridge J M C (Eds.) 2015 Free Radicals in Biology and Medicine (Oxford University Press) 5th ed.
[3] Brigelius-Flohe R 1999 Tissue-specific functions of individual glutathione peroxidases Free Radic. Biol. Med. 27 951–965 DOI: https://doi.org/10.1016/S0891-5849(99)00173-2
[4] Stadtman E R, Moskovitz J, Berlett B S and Levine R L 2002 Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism Mol. Cell. Biochem. 3-9 234–235. DOI: https://doi.org/10.1023/A:1015916831583
[5] Surai P F 2016 Antioxidant Systems in Poultry Biology: Superoxide Dismutase J. of Animal Research and Nutrition 1(1) 1–17. DOI: 10.21767/2572-5459.100008
[6] Zdanowska-Sąsiadek Z, Michalczuk M, Krzysztof D, Niemiec J, Polawska E, Gozdowski D and Rozanska E 2016 Effect of vitamin E supplementation on growth performance and chicken meat quality. *Europ. Poultry Sci.* 80 DOI: 10.1399/eps.2016.152

[7] Ouali A 1991 Sensory quality of meat as affected by muscle biochemistry and modern technologies. In: L O Fiems, B G Cottyn D I Demeyer (Eds.) *Animal Biotechnology and the Quality of Meat Production* B V Amsterdam Elsevier Science Publishers 85-105 DOI: https://doi.org/10.1016/B978-0-444-88930-0.50012-2

[8] Chan K M and Decker E A 1994 Endogenous skeletal muscle antioxidants *Critical Reviews in Food Science and Nutrition* 34 403–426 DOI:http://dx.doi.org/10.1080/10408399409527669

[9] Decker E A 1998 Strategies for manipulating the prooxidative/antioxidative balance of foods to maximize oxidative stability *Trends Food Science Technol.* 9(6) 241–248 DOI: https://doi.org/10.1016/S0924-4224(98)00045-4

[10] Smet K, Raes K, Huyghebaert G, Haak L, Arnouts S and de Smet S 2008 Lipid and protein oxidation of broiler meat as influenced by dietary natural antioxidant supplementation *Poultry Science* 87 1682–1688 DOI: 10.3382/ps.2007-00384

[11] Rojas M C and Brewer M S 2007 Effect of natural antioxidants on oxidative stability of cooked, refrigerated beef and pork *J. of Food Science* 72(4) 282–288 DOI: org/10.1111/j.1750-3841.2007.00335.x

[12] Carocho M and Ferreira I C F R 2013 A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives *Food and Chemical Toxicology* 1(51) 15–25 DOI: 10.1016/j.fct.2012.09.021

[13] Percival M 1998 Antioxidants Clinical Nutrition Insights Oct 1(96) 1–4

[14] Vertuani S, Angusti A and Manfredini S 2004 The antioxidants and prooxidants network: an overview. *Current Pharmaceutical Design* 10(4) 1677–1694 DOI: 10.2174/1381612043384655.

[15] Candan T and Bağdatli A 2017 Use of Natural Antioxidants in Poultry Meat *Celal Bayar Univ. J. of Sci.* 13(2) 279–291 DOI: 10.18466/cbayarfb.319752

[16] Sebranek J G, Sewalt V J H, Robbins K L and Houser T A 2005 Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage *Meat Sci.* 2(69) 289–296 DOI: https://doi.org/10.1016/j.meatsci.2004.07.010

[17] Caleja C, Barros L, Antonia A L, Oliveira M B P P and Ferreira I C F R 2017 A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits *Food Chemistry* 216 342–346 DOI: https://doi.org/10.1016/j.foodchem.2016.08.075

[18] Jiang J and Xiong Y L 2016 Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review *Meat Sci.* 120 107–117 DOI: https://doi.org/10.1016/j.meatsci.2016.04.005

[19] Chammem, N, Saoudi S, Sifaoui I, Sifi S, de Person M, Abderraba M, Moussa F and Hamdi M 2015 Improvement of vegetable oils quality in frying conditions by adding rosemary extract *Industrial Crops and Products* 74 592–599 DOI: 10.1016/j.indcrop.2015.05.054

[20] Duong D N, Qin G, Harris J O, Hoang T H, Bansemier M S, Currie K L, Phan-Thien K Y, Dowell A and Stone D A 2016 Effects of dietary grape seed extract, green tea extract, peanut extract and vitamin C supplementation on metabolism and survival of greenlip abalone (*Haliotis laevigata Donovan*) cultured at high temperature *Aquaculture* 464 364–373 DOI: https://doi.org/10.1016/j.aquaculture.2016.07.011.

[21] Charradi K, Mohamed M, Bedhiafi T, Kadri S, Elkahouia S, Limam F and Aouani E 2017 Dietary supplementation of grape seed and skin flour mitigates brain oxidative damage induced by a high-fat diet in rat: Gender dependency *Biomedicine & Pharcamotherapy* 87 519–526 DOI:10.1016/j.biopharma.2017.01.015.
[22] Sano A 2017 Safety assessment of 4-week oral intake of proanthocyanidin-rich grape seed extract in healthy subjects Food and Chemical Toxicology 108(B) 519–523 DOI: https://doi.org/10.1016/j.fct.2016.11.021.

[23] Bonilla J and Sobral P J A 2016 Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts Food Bioscience 16 17–25 DOI: 10.1016/j.fbio.2016.07.003

[24] Su S, Wang L J, Feng C Y, Liu Y, Li C H, Du H, Tang Z Q, Xu Y J and Wang L S 2016 Fingerprints of anthocyanins and flavonols of Vaccinium uliginosum berries from different geographical origins in the Greater Khingan Mountains and their antioxidant capacities Food Control 64 218–225 DOI: https://doi.org/10.1016/j.foodcont.2016.01.006

[25] Bazargani-Gilani B, Aliakbarlu J and Tajik H 2015 Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage Innovative Food Science and Emerging Technologies 29 280–287 DOI: https://doi.org/10.1016/j.ifset.2015.04.007

[26] Kutlu H R, Çelik L B, Ayfer G Filik, Kiraz B, Özcan H C and Uzun Y Y 2018 Effect of economase replacing vitamin E and selenium on growth performance and meat quality of broilers Int. J. of Agicult., Environm. and Food Sci. 2(3) 67–73 DOI: 10.31015/jaefs.18011

[27] Valenzuela-Grijalva N V, Pinelli-Saavedra A, Muhlia-Almazan A, Domínguez-Díaz D and González-Ríos H 2017 Dietary inclusion effects of phytochemicals as growth promoters in animal production J. of Animal Sci. and Technol. 59 8 DOI: 10.1186/s40781-017-0133-9

[28] Peek H W, Halkes S B A, Tomassen M M M, Mes J J and Landman W J M 2013 In vivo screening of five phytochemicals/extracts and a fungal immunomodulatory protein against colibacillosis in broilers Avian Pathology 42(3) 235–247 DOI: 10.1080/03079457.2013.780121

[29] Alp M, Midilli M, Kocabağlı N, Yılmaz H, Turan N, Gargili A and Acar N 2012 The effects of dietary oregano essential oil on live performance, carcass yield, serum immunoglobulin G level, and oocyst count in broilers The J. of Applied Poultry Res. 21 630–636 DOI: 10.3382/japr.2012-00551

[30] Surai P F 2013 Polyphenol compounds in the chicken/animal diet: from the past to the future The J. of Animal Physiology and Animal Nutrition 98(1) 19–31 DOI:10.1111/jppn.12070

[31] Adaszyński-Skowrzynska M and Szczepanińska D 2017 Use of essential oils in broiler chicken production – a review Annals of Animal Sci. 17(2) 317–335 DOI: 10.1515/aaas-2016-0046

[32] Oskoueian E, Abdullah N and Oskoueian A A 2013 Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population BioMed Res. Int. 1-8 DOI:10.1155/2013/349129

[33] Patra AK and Yu Z. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations Applied and Environm. Microbiology 78 4271–4280 DOI: 10.1128/AEM.00309-12

[34] Buo R, Codony R, Tres A, Deckere E A and Guardiola F 2009 Dietary strategies to improve nutritional value, oxidative stability, and sensory properties of poultry products Critical Rev. in Food Sci. and Nutrition 49 800–822 DOI: 10.1080/10408390902911108

[35] Embuscado M E 2015 Spices and herbs: Natural sources of antioxidants – a mini review J. of Functional Foods 18 811–819 DOI: 10.1016/j.jff.2015.03.005

[36] Suntrés Z E 2011 Review Article. Liposomal Antioxidants for Protection against Oxidant-Induced Damage J. of Toxicology 1–16 DOI: 10.1155/2011/152474

[37] Uli’ko V E, Pykhhtina L A, Erisanova O E and Gulyaeva L Yu 2017 Ecological and Incubation Properties of Laying Hens’ Eggs when Using Antioxidant Supplement in the Ration Res. J. of Pharmaceutical, Biological and Chemical Sci. 8(2) 2077–2082

[38] Il’yazov R G, Tokarev V P, Zavernyayev Yu A, Akhmetzyanova F K and Astasheva N P 2015 Increase in meat and dairy productivity with the introduction of liposomal forms of antioxidants into the diet of ruminants. Scientific notes of Kazan State Academy of Veterinary
Medicine named N.E. Bauman (Publishing House: Kazan State Academy of Veterinary Medicine named N.E. Bauman. Kazan) 223 75–79

[39] Il’yasov R G, Aleksakhin R M, Fisinin V I, Smirnov A M and Gusmanov U G 2010 Methodology of research and experiments in the agro-ecosphere with various types of technogenesis Agricultural Biology [in Russian – Sel’skokhozyaistvennaya Biologiya] 2 3–17