Cooperative C–H Bond Activation by a Low-Spin d⁶ Iron–Aluminum Complex

Nikolaus Gorgas, Andrew J. P. White, and Mark R. Crimmin*

ABSTRACT: The reactions of transition metal complexes underpin numerous synthetic processes and catalytic transformations. Typically, this reactivity involves the participation of empty and filled molecular orbitals centered on the transition metal. Kinetically stabilized species, such as octahedral low-spin d⁶ transition metal complexes, are not expected to participate directly in these reactions. However, novel approaches that exploit metal–ligand cooperativity offer an opportunity to challenge these preconceptions. Here, we show that inclusion of an aluminum-based ligand results in a distortion of the geometry away from octahedral low-spin d⁶ iron complex leads to unexpected reactivity. Complexes featuring an unsupported Fe–Al bond are capable of the intermolecular C–H bond activation of pyridines. Mechanistic analysis suggests that C–H activation proceeds through a reductive deprotonation in which the two metal centers (Fe and Al) act like a frustrated Lewis pair. The key to this behavior is a ground state destabilization of the iron complex, brought about by the inclusion of the electropositive aluminum-based ligand. These findings have immediate implications for the design of reagents and catalysts based on first-row transition metals.

INTRODUCTION

The concept of metal–ligand cooperativity has greatly enriched the chemistry and catalytic applications of transition metal complexes. Cooperative strategies that take advantage of the Lewis acidic nature of a transition metal center in combination with a Lewis basic ligand have become established features, frequently employed in the design of novel catalytic systems. Equally attractive but less common are transition metal complexes that bear a Lewis acidic functionality in the ligand. These new design principles offer an opportunity to overturn existing paradigms in transition metal chemistry. This is particularly important for applications of inexpensive and sustainable first-row transition metals (e.g., Fe). Despite the exciting opportunities in this field, many of the emerging reactions that involve metal–ligand cooperativity still proceed through established mechanisms, such as oxidative addition. For example, transition metal complexes bearing Lewis acidic ligands (based on B or Al) can activate the ortho C–H bond of pyridine substrates (Figure 1). C–H activation is believed to take place by an oxidative addition mechanism at the transition metal center, leading to products in which the pyridyl group is directly bonded to this metal. The main group ligand plays a role in substrate coordination and determining the ortho selectivity but itself does not lead to new types of reactivities.

In this paper, we report the synthesis and characterization of bimetallic complexes in which an unsupported aluminum-based ligand is bound to an iron(II) dihydride fragment. These complexes are neutral low-spin d⁶ species based on an octahedral parent geometry and as such are expected to be chemically inert. Textbook examples of such compounds with more classical ligand systems possess a stable 18-electron configuration and a large highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap, limiting direct reactivity at the metal site. Inclusion of the aluminum-based ligand results in a significant distortion of the geometry away from octahedral due to favorable, but weak, interactions in the secondary coordination sphere. This distortion leads to an unusual ground state destabilization and raises the energy of the HOMO of the iron center. This effect exposes an entirely new type of reactivity of the neutral low-spin d⁶ center. These complexes were found to selectively break the ortho C–H bond in pyridine. Mechanistic studies reveal that the two metal centers act as a frustrated Fe–Al Lewis pair (FLP) leading to a deprotonation rather than oxidative addition pathway.

The findings both complement and expand upon the known nucleophilicity of anionic analogues such as [Fe(η⁵-C₅H₅)·

Received: March 11, 2022
Published: May 5, 2022
Figure 1. Well-defined bimetallic systems for the selective ortho C–H activation of pyridines. Current systems that require ligand dissociation prior to bond activation vs a novel pathway occurring at a coordinatively saturated iron aluminylene system.

Figure 2. (a) Preparation of complexes 2a-b and 3a-b. (b) X-ray structure of 2b. (c) X-ray and calculated structure of 3b.
More broadly, these results suggest that the shape and electronic structure of transition metal centers can be modulated through incorporation of Lewis acidic ligands, leading to perturbation of the electronic structure and exposing new types of reactivities.

Results and Discussion

Synthesis and Characterization

Complexes 2a and 2b could be readily prepared by reacting FeBr₂, PMe₃, and respective β-diketiminate aluminum hydrides 1a (R = Mesityl or Mes) and 1b (R = 2,6-diisopropylphenyl or Dipp) in toluene or benzene and were isolated in 80–90% yield (Figure 2). Both complexes exhibit a mutually coupled spin system comprised of one triplet and one doublet resonance in the 3¹P{¹H} NMR spectra with an integration ratio of 1:2. These resonances are consistent with the magnetic non-equivalence of the axial and equatorial phosphine ligands. The most characteristic features in the ¹H NMR spectra are broad signals at δH = −13.08 (2a) or −13.20 (2b) ppm assigned to the bridging hydrides which are coupled to the quadrupolar I = 5/2 ²⁷Al nucleus.

Reduction of these precursors using magnesium turnings in tetrahydrofuran affords complexes 3a and 3b in almost quantitative NMR yield. Both 3a and 3b can be isolated as dark red/orange crystalline solids. In contrast to complexes 2a-b, 3a-b show only one singlet resonance in the ³¹P{¹H} NMR spectra and a well resolved quartet hydride resonance in the ¹H NMR spectra. The data are consistent with a highly symmetric structure in solution—an observation that could suggest fast ligand exchange on the NMR timescale.

Structure and Bonding

Single crystals suitable for X-ray diffraction could be obtained for all four compounds. Data for 2b and 3b are depicted in Figure 2. The position of the hydride ligands in 3b could not be refined, but their presence is evident from the corresponding ¹H NMR spectrum. When comparing these structures, it becomes apparent that drastic changes in the Fe···Al intermetallic distances occur upon reduction. For example, a decrease in the Fe···Al distance from 2.459(1) Å in 2b to 2.194(1) Å in 3b becomes visible in the solid-state structures. Although the Fe···Al separation of 2b almost matches the sum of their covalent radii [formal shortness ratio (FSR) = 1.02], it is clearly below this value in 3b (FSR = 0.91). Such short Fe···Al bond lengths appear to be diagnostic for an aluminylene metalloligand covalently bound to iron.

Based on the experimental data, it is evident that 2a-b and 3a-b are low-spin and diamagnetic. These species can thus be assigned as 18-valence electron complexes. Although 2a-b can be confidently described as σ-alane complexes [see the quantum theory of atoms in molecules (QTAIM) analysis below], three extreme bonding scenarios may be considered for bimetallic species 3a-b (Figure 3a): (A) a four-electron η²:η²-coordination of H−Al−H to the 14-electron fragment [Fe(PMe₃)]₁, (B) two-electron coordination of an aluminylene metalloligand to a 16-electron Fe(II) dihydride fragment, and (C) strong polarization of the TM−M bond resulting in a cationic Al metalloligand and an anionic iron dihydride fragment due to the electronegativity difference between the two metals (ΔχP = 0.22). According to the computational results presented below, an intermediate between structures B and C in Figure 3a appears as the most appropriate bonding description for complexes 3a-b.

More insights into the structure and bonding in these complexes were gained by density functional theory (DFT) calculations, and the optimized structure of 3b is depicted in Figure 2c. In complexes 3a-b, the iron fragment adopts a pseudo-octahedral coordination geometry in an all-cis configuration of the hydride and phosphine ligands, leading to perturbation of the electronic structure and exposing new types of reactivities.
respectively (3b: L-Fe-L = 83.1−101.6°; L = H, PMe3). Only the Al metalloligand deviates from this geometry being bent away from its axial position by about 45°. The calculated structures also reflect the short Fe···Al distances observed in the solid-state structure of 3b (Figure 3b). The Al−H bonds in these species appear to be significantly longer in comparison to the parent dibromide complexes (e.g., 1.838 vs 2.045 Å), and the Wiberg bond indices (WBIs) for the Fe···Al bond drastically increase from 0.14 in 2b to 0.55 in 3b. These findings are further underpinned by QTAIM calculations (Figure 3c).30−35 In 2b, bond critical points (BCPs) are found between Fe and H and Al and H but not between Fe and Al. In 3b, the QTAIM analysis reveals BCPs between Fe and Al and Fe and H, whereas no BCPs are found between Al and H. These data suggest the presence of a direct metal−metal bond due to a preceding double Al−H bond activation at the transition metal center.30−35

Analysis of the NPA charges in 3b reveals significant polarization of the Fe−Al bond showing values of −0.97 for Fe and 1.25 for Al, while negative charges on the hydrides are low (−0.18/0.18). The large negative charge accumulation on Fe likely results from the strong electron-donating nature of both the two hydrides and aluminylene ligand. This assumption is supported by extended transition state-natural orbitals for chemical valence (ETS-NOCV) calculations37 on 3b revealing that the donation from the hydrides and the aluminylene ligand to iron accounts for more than 64% ($\Delta \rho_1 = -74.7$ kcal/mol) of the total orbital interaction energy ($\Delta E_{orb} = -117.1$ kcal/mol), whereas backdonation from the Fe−H bonds to the empty Al p-orbitals was identified as the second ($\Delta \rho_2 = -16.6$ kcal/mol, 14%) and third ($\Delta \rho_3 = -14.2$ kcal/mol, 12%) largest contributions to ΔE_{orb} (see Table S5 in the Supporting Information). These secondary interactions are likely responsible for the bent position of the aluminylene metalloligand.

Natural bond orbital (NBO) calculations were used to gain further insights into the bonding in these complexes. For the sake of clarity, we considered simplified model complex 3c (P′ = PH3, R = Me) which, however, gives rise to highly similar frontier MOs as in 3a-b (see Table S6 in the Supporting Information). The NBO analysis identifies a σ-bond between Fe (4s, 40.8%, 3d 57.8%) and Al (3s 73.6%, 3p 26.4%) as the main contributor to the HOMO, while the LUMO + 2 comprises an empty p-orbital on aluminum and possesses antibonding character with respect to the Fe−Al σ-bond. The HOMO is significantly higher (about 1.0 eV) in energy than the lower MOs which are predominantly non-bonding and possess largely 3d character (HOMO-1 to HOMO-3). This difference appears to be a consequence of the distorted coordination geometry and vanishes when the metalloligand is moved toward the axial position (Figure 4).
Intramolecular C−H Activation. Complex 3a was found to undergo an intramolecular C−Ha
tivation (Figure 5a). Heating a toluene-d₈ solution of 3a to 80 °C results in slow formation of a new
species as revealed by a growing new singlet resonance at δₚ = 30.0 ppm in the ³¹P NMR spectrum.
In the ¹H NMR, 4a gives rise to a new hydride signal (broadened quartet) that integrates to 3H. The reaction was monitored over time, and complete
consumption of the starting material was observed after 24 h. The new species was formed in 71% NMR yield. Crystals
suitable for X-ray di
ff
d
d
fraction could be grown by di
ff
d
usion of
tetramethylsilane into a saturated solution of	n-pentane, and
the solid-state structure of 4a is depicted in Figure 5b. Heating a solution of 3b in toluene-
80 °C to 80
°
C only results in the slow
decomposition of this complex and the formation of
untraceable species.

More insights into the conversion of 3a to 4a were gained from a combination of kinetic experiments and DFT
calculations. Experimentally, the reaction was found to be first-order with respect to 3a. An Eyring analysis over a temperature range of 60−100 °C gave the activation parameters ΔH° = 23.4 ± 0.5 kcal mol⁻¹ and ΔS° = 12.5 ± 1.3 cal mol⁻¹ K⁻¹ which correspond to an associated ΔG°₂⁹₈K⁻¹ = 27.1 ± 0.8 kcal mol⁻¹. DFT calculations were benchmarked against the experimental data. Best results were obtained by using the B3PW91 functional and a 6−31g** (H,C,N,P)/
SDDAll (Fe,Al) basis set. Solvent (PCM, Benzene) and dispersion corrections (D3) were directly included in the optimization of the stationary points.

The calculated free energy profile for the intramolecular C−H activation is shown in Figure 5c. The reaction sequence is initiated by a slight rotation of the aluminylene ligand around the Fe···Al axis (1-A to 1-B) followed by a deprotonation of the mesityl CH₃ group by the iron metal center (1-TSBC). Intermediate 1-C features the Fe-(μ-H₃)-Al bridging motif and the deprotonated mesityl residue. Another slight conformational change initiates the Al−C bond formation (1-TSCD) and leads to the cyclometalated product (1-D). Formation of the product is exergonic by −13.3 kcal mol⁻¹ with an overall barrier of 27.9 kcal mol⁻¹ being in good agreement with the experimental value (27.1 ± 0.8 kcal mol⁻¹).

Analysis of the frontier MOs reveals that the HOMO in the ground state of 3a (Figure 5d) acts as the electron donor for the reductive deprotonation of the CH₃ group in 1-TSBC, while an empty p-orbital at Al (LUMO + 6, Figure 5d) acts as the electron acceptor for the deprotonated CH₂ group (1-TSCD) to form the Al−C bond in the final product (1-D).

Intermolecular C−H Activation. Complexes 3a and 3b are also capable of promoting intermolecular C−H activation. For example, 3a readily reacts with pyridine (1 equiv, C₆D₆, room temperature) resulting in the selective C−H activation in the 2-position of the heterocycle (>95% NMR yield, Figure 6a). Like 4a, 5a exhibits a sharp singlet resonance in the ³¹P{¹H} NMR spectrum at δₚ = 29.6 ppm and a broadened quartet hydride signal at δₜ = −15.33 ppm in the ¹H NMR spectrum. The reaction of 3b with pyridine required more forcing reaction conditions (40 °C, 10 equiv of pyridine, 18 h) but led to analogue product 5b in about 80% NMR yield.
Crystals suitable for X-ray diffraction could be obtained for 5b, and the solid-state structure confirms the ortho C–H activation and C–Al bond formation in the 2-position of the pyridine heterocycle (Figure 6b).

A small array of substrates was investigated. Employing pyridines with different substituents in the 4-position (R = Me, Ph, and NMe2) under the same conditions did not show any change in the reactivity or selectivity of the C−H activation with 3a−b, in all cases giving products that arise from substitution at the 2-position (Figure 6a). On the other hand, 2-phenylpyridine did not react with 3a, presumably due to steric interference of the phenyl substituent with the ligand system on aluminum.

DFT calculations on the ortho C−H activation of pyridine suggest a similar reaction pathway as for the intramolecular C−H activation of 3a (Figure 6c). Again, a two-step mechanism has been identified that proceeds via the deprotonation of the pyridine substrate. Coordination of the pyridine nitrogen to the aluminum center controls the site selectivity of the reaction. NBO calculations reveal that the coordination of pyridine also facilitates bond breaking. In 2-A, the Fe−Al bond becomes more polarized in comparison to 1-B, and the WBI drops (see Tables S7 and S8 in the Supporting Information).

The following transition state 2-TSAB is significantly lower in energy than for the intramolecular deprotonation of the mesityl CH3 group in 3a (14.7 vs 27.9 kcal/mol) being in line with a fast reaction at room temperature. Both the intermediates after coordination (2-A, 0.0 kcal/mol) and deprotonation (2-B, 0.8 kcal/mol) of the pyridine appear to be almost thermoneutral in comparison to the starting materials. However, a final switch from N- to C-coordination of the deprotonated pyridine is facile (2-TSBC, a barrier of 5.5 kcal/mol) and highly exergonic due to formation of the Al−C bond in 2-C (−20.7 kcal/mol).

A comparison of the reaction rates using an excess of pyridine or pyridine-d5 in two independent reactions gave an unusually large kinetic isotope effect (KIE) of 14.0 ± 0.2 at 297 K. The experimentally observed kH/kD value likely results from a large classical KIE including a significant contribution of quantum tunneling.38 The rate-determining elementary step (2-A to 2-B) is nearly thermoneutral with a centered transition state along the reaction coordinate, and thus, a maximum primary KIE (up to 7−8) may be expected.38,39 On the other hand, KIEs greater than 10 are generally considered to be caused by quantum tunneling and are diagnostic for proton transfer reactions.40−43 Both assumptions are in agreement with the calculated mechanism in Figure 6c and support a non-oxidative addition pathway.

Figure 6. (a) Pyridine ortho C−H activation with 3a-b (NMR yields are given in parentheses), (b) X-ray structure of 5b, and (c) calculated free energy profile for the conversion of 3a to 5a [B3PW91/PCM (benzene)/D3//6−31g** (H,C,N,P)/SDDAll (Fe,Al)]. Energies are given in kcal/mol.
CONCLUSIONS

In summary, we described two well-defined bimetallic Fe–Al complexes that possess a distorted octahedral geometry. This distortion leads to an unusual ground state destabilization and raises the energy of the HOMO (the Fe–Al bond). Consequently, the HOMO becomes accessible for an encounter substrate and leads to an enhanced reactivity of these complexes including intramolecular sp2 C–H activation and the selective ortho C–H activation of pyridine substrates. These reactions were found to follow a novel cooperative mechanism in which a reductive deprotonation of the C–H bond was identified as a key elementary step. We could show that the Fe–Al bonds in these complexes are highly polarized and react as a bimetallic FLP in which the destabilized HOMO acts as a Lewis donor orbital, while empty p-orbitals on Al serve as Lewis acceptors. The reaction leads to the formation of a Fe–H and Al–C bonds. These results may lay the foundation for the rational design of future catalytic systems with prospects in the field of base-metal catalysis.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c02662.

Synthetic procedures, kinetic experiments, NMR spectra of all compounds, crystallographic data, and computational methods (PDF)

Cartesian coordinates of the DFT-optimized structures (XYZ)

Accession Codes

CCDC 2127534–2127539 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Mark R. Crimmin — Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom; orcid.org/0000-0002-9339-9182; Email: m.crimmin@imperial.ac.uk

Authors

Nikolaus Gorgas — Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
Andrew J. P. White — Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c02662

Funding

Open Access is funded by the Austrian Science Fund (FWF).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

N.G. is grateful to the Austrian Science Fund (FWF) for provision of an Erwin Schrödinger Fellowship (Project No. J-4399).

REFERENCES

1. Khusnutdinova, J. R.; Milstein, D. Metal-Ligand Cooperation. Angew. Chem. Int. Ed. 2015, 54, 12236–12273.
2. Elsby, M. R.; Baker, R. T. Strategies and Mechanisms of Metal–Ligand Cooperativity in First-Row Transition Metal Complex Catalysts. Chem. Soc. Rev. 2020, 49, 8933–8987.
3. Maity, A.; Teets, T. S. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes. Chem. Rev. 2016, 116, 8873–8911.
4. Takaya, J. Catalysis Using Transition Metal Complexes Featuring Main Group Metal and Metalloid Compounds as Supporting Ligands. Chem. Sci. 2021, 12, 1964–1981.
5. Bouhadir, G.; Bourissou, D. Complexes of Ambiphilic Ligands: Reactivity and Catalytic Applications. Chem. Soc. Rev. 2016, 45, 1065–1079.
6. Chirik, P.; Morris, R. Getting Down to Earth: The Renaissance of Catalysis with Abundant Metals. Acc. Chem. Res. 2015, 48, 2495.
7. Fürstner, A. Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion. ACS Cent. Sci. 2016, 2, 778–789.
8. Holland, P. L. Distinctive Reaction Pathways at Base Metals in High-Spin Organometallic Catalysts. Acc. Chem. Res. 2015, 48, 1696–1702.
9. Arevalo, R.; Chirik, P. J. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. J. Am. Chem. Soc. 2019, 141, 9106–9123.
10. Graziano, B. J.; Vollmer, M. V.; Lu, C. C. Cooperative Bond Activation and Facile Intramolecular Aryl Transfer of Nickel—Aluminum Pincer-type Complexes. Angew. Chem. Int. Ed. 2021, 60, 15087–15094.
11. Hara, N.; Saito, T.; Semba, K.; Kurikose, N.; Zheng, H.; Sakaki, S.; Nakao, Y. Rhodium Complexes Bearing PALP Pincer Ligands. J. Am. Chem. Soc. 2018, 140, 7070–7073.
12. Shih, W.-C.; Ozerov, O. V. Selective Ortho C–H Activation of Pyridines Directed by Lewis Acidic Boron of PBP Pincer Indium Complexes. J. Am. Chem. Soc. 2017, 139, 17297–17300.
13. Hara, N.; Aso, K.; Li, Q.-Z.; Sakaki, S.; Nakao, Y. C2-Selective Alkylation of Pyridines by Rhodium—Aluminum Complexes. Tetrahedron 2021, 95, 133239.
14. Cao, Y.; Shih, W.-C.; Bhuvanes, N.; Zhou, J.; Ozerov, O. V. Cooperative C–H Activation of Pyridine by PBP Complexes of Rh and Ir Can Lead to Bridging 2-Pyridyls with Different Connectivity to the B–M Unit. Chem. Sci. 2021, 12, 14167–14173.
15. Liu, J.; Li, Y.; Jiang, J.; Liu, Y.; Ke, Z. Mechanism of Ir-Mediated Selective Pyridine o-C–H Activation: The Role of Lewis Acidic Boryl Group. ACS Catal. 2021, 11, 6186–6192.
16. Butler, M. J.; Crimmin, M. R. Magnesium, Zinc, Aluminium and Gallium Hydride Complexes of the Transition Metals. Chem. Commun. 2017, 53, 1348–1365.
17. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005, pp 1–39.
18. Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Sausalito, CA, 2010; pp 1–1127.
19. Chatterjee, B.; Chang, W.-C.; Jena, S.; Werlé, C. Implementation of Cooperative Designs in Polarized Transition Metal Systems—Significance for Bond Activation and Catalysis. ACS Catal. 2020, 10, 14024–14055.
20. Mankad, N. P. Diverse Bimetallic Mechanisms Emerging from Transition Metal Lewis Acid/Base Pairs: Development of Co-Catalysis with Metal Carbenes and Metal Carbonyl Anions. Chem. Commun. 2018, 54, 1291–1302.
21. Navarro, M.; Campos, J. Bimetallic frustrated Lewis pairs. Advances in Organometallic Chemistry; Elsevier: Oxford, 2021; Vol. 75, Chapter 3, pp 95–148.
22. Hidalgo, N.; Alférez, M. G.; Campos, J. Frustrated Lewis Pairs Based on Transition Metals. Frustrated Lewis Pairs; Sloatweg, C. J., Jupp, A. R., Eds.; Springer: Cham, 2021; Vol. 2, pp 319–359.
(23) Bauer, J.; Braunschweig, H.; Dewhurst, R. D. Metal-Only Lewis Pairs with Transition Metal Lewis Bases. Chem. Rev. 2012, 112, 4329-4346.
(24) Li, Y.; Hou, C.; Jiang, J.; Zhang, Z.; Zhao, C.; Page, A. J.; Ke, Z. General H₂ Activation Modes for Lewis Acid–Transition Metal Bifunctional Catalysts. ACS Catal. 2016, 6, 1655-1662.
(25) Pauling, L. Atomic Radii and Interatomic Distances in Metals. J. Am. Chem. Soc. 1947, 69, 542-553.
(26) Multiple Bonds Between Metal Atoms; Cotton, F. A., Murillo, C. A., Walton, R. A., Eds.; Springer-Verlag: New York, 2005; pp 1-796.
(27) Cui, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Synthesis and Structure of a Monomeric Aluminum(I) Compound \[\{(HC(CMeNAr)₂)₂Al\} (Ar=2,6-iPr₂C₆H₃): A Stable Aluminum Analogue of a Carbene. Angew. Chem. Int. Ed. 2000, 39, 4274-4276.
(28) Kong, R. Y.; Crimmin, M. R. 1st Row Transition Metal Aluminylene Complexes: Preparation, Properties and Bonding Analysis. Dalton Trans. 2021, 50, 7810-7817.
(29) Riddlestone, I. M.; Edmonds, S.; Kaufman, P. A.; Urbano, J.; Bates, J. I.; Kelly, M. J.; Thompson, A. L.; Aldridge, S. σ-Alane Complexes of Chromium, Tungsten, and Manganese. J. Am. Chem. Soc. 2012, 134, 2551-2554.
(30) Ekkert, O.; White, A. J. P.; Toms, H.; Crimmin, M. R. Addition of Aluminium, Zinc and Magnesium Hydrides to Rhodium(III). Chem. Sci. 2015, 6, 5617-5622.
(31) Escomel, L.; Del Rosal, I.; Maron, L.; Jeanneau, E.; Veyre, L.; Thieuleux, C.; Camp, C. Strongly Polarized Iridium δ-Aluminum δ⁺ Pairs: Unconventional Reactivity Patterns Including CO₂ Cooperative Reductive Cleavage. J. Am. Chem. Soc. 2021, 143, 4844-4856.
(32) Abdalla, J. A. B.; Caise, A.; Sindlinger, C. P.; Tirfoin, R.; Thompson, A. L.; Edwards, A. J.; Aldridge, S. Structural Snapshots of Concerted Double E–H Bond Activation at a Transition Metal Centre. Nat. Chem. 2017, 9, 1256-1262.
(33) Turner, J.; Abdalla, J. A. B.; Bates, J. I.; Tirfoin, R.; Kelly, M. J.; Phillips, N.; Aldridge, S. Formation of Sub-Valent Carbenoid Ligands by Metal-Mediated Dehydrogenation Chemistry: Coordination and Activation of H₂Ga{(NDippCMe)₂CH. Chem. Sci. 2013, 4, 4245.
(34) O’Neill, M.; Addy, A.; Riddlestone, I.; Kelly, M.; Phillips, N.; Aldridge, S. Borane to Boryl Hydride to Borylene Dihydride: Explicit Demonstration of Boron-to-Metal σ-Hydride Migration in Amnoborane Activation. J. Am. Chem. Soc. 2011, 133, 11500-11503.
(35) Alcaraz, G.; Grellier, M.; Sabo-Etienne, S. Bis σ-Bond Dihydrogen and Borane Ruthenium Complexes: Bonding Nature, Catalytic Applications, and Reversible Hydrogen Release. Acc. Chem. Res. 2009, 42, 1640-1649.
(36) Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893-928.
(37) Mitoraj, M. P.; Michalak, A.; Ziegler, T. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5, 962-975.
(38) Gómez-Gallego, M.; Sierra, M. A. Kinetic Isotope Effects in the Study of Organometallic Reaction Mechanisms. Chem. Rev. 2011, 111, 4857-4963.
(39) Westheimer, F. H. The Magnitude of the Primary Kinetic Isotope Effect for Compounds of Hydrogen and Deuterium. Chem. Rev. 1961, 61, 265-273.
(40) Bell, R. P. Liversidge Lecture. Recent Advances in the Study of Kinetic Hydrogen Isotope Effects. Chem. Soc. Rev. 1974, 3, 513.
(41) Bell, R. P. The Tunnel Effect in Chemistry; Springer US: Boston, MA, 1980; pp 1-11.
(42) Caldin, E. F. Tunneling in Proton-Transfer Reactions in Solution. Chem. Rev. 1969, 69, 135-156.
(43) Limbach, H.-H.; Miguel Lopez, J.; Kohen, A. Arrhenius Curves of Hydrogen Transfers: Tunnel Effects, Isotope Effects and Effects of Pre-Equilibria. Philos. Trans. R. Soc. B 2006, 361, 1399-1415.