Comparison of the Efficiency of the Various Algorithms in Stratified Sampling when the Initial Solutions are Determined with Geometric Method

Şebnem Er

Quantitative Methods Department, Istanbul University, Istanbul, 34320, Turkey

Abstract The main aim of this paper is to examine the efficiency of Genetic Algorithm (GA) of Keskintürk and Er (2007)[1], Kozak’s (2004) Random Search[2] and Lavallée and Hidiroglou’s (1988) Iterative Algorithm method[3] on determination of the stratum boundaries that minimize the variance of the estimate. Initial starting boundaries of the mentioned algorithms are obtained randomly. Here, it is aimed to reach better results in a shorter period of time by utilizing the initial boundaries obtained from Gunning and Horgan’s (2004) geometric method[4] compared to the random initial boundaries. Three algorithms are applied on various populations with both random and geometric initial boundaries and their performances are compared. With the stratification of 11 heterogeneous populations that have different properties, higher variance of the estimates or infeasible solutions can be observed once the initial boundaries are obtained with geometric method.

Keywords Stratified sampling, Stratum boundaries, Genetic algorithm, Random search, Iterative method

1. Introduction

In stratified sampling, in order to gain more precision than other methods of sampling, a heterogeneous population is divided into subpopulations, each of which is internally homogeneous. As a result the main problem arising in stratified sampling is to obtain the optimum boundaries. Several numerical and computational methods have been developed for this purpose. Some apply to highly skewed populations and some apply to any kind of populations. An early and very simple method is the cumulative square root of the frequency method (cum√f) of Dalenius & Hodges in 1959[5]. More recently Lavallée & Hidiroglou algorithm[3] and Gunning & Horgan’s (2004) geometric method[4] have been proposed for highly skewed populations whereas Kozak’s (2004) random search method[2] and Keskintürk & Er’s (2007) genetic algorithm (GA) method[1] have been proposed for even non-skewed populations. Very recently, Brito et.al[6] proposed an exact algorithm for the stratification problem with only proportional allocation based on the concept of minimum path in graphs and they called their method StratPath. Moreover, developed an iterated local search method to solve the stratification problem of variables with any distribution with Neyman allocation[7]. All these methods aim to achieve the optimum boundaries that maximise the level of precision or equivalently minimise the variance of the estimate or the sample size required to reach a level of precision and some of them are available in the stratification package stratification for use with the statistical programming environment R[8]; freely available on the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=stratification.

The main aim of this research is to compare the efficiency ratios of the Lavallée ve Hidiroglou iterative method, Kozak’s random search method and Keskitnurk and Er’s genetic algorithm approach when the initial boundaries are obtained either randomly or from the geometric method of Gunning and Horgan, and to examine the performances of the three methods. The predetermined total sample size (n) is allocated using Neyman[9] optimum allocation method.

The paper is structured as follows: In the second section the exact solution of Dalenius[10] and the methods that are developed in order to approximately solve the Dalenius equations are briefly explained. In the third section, the results obtained with Lavallée and Hidiroglou’s iterative method, Kozak’s random search method and Keskitnurk and Er’s genetic algorithm are given when the initial boundaries are obtained randomly or from the geometric method of Gunning and Horgan and the performance of the algorithms are compared.

2. Dalenius’ (1950) Exact Solution
Dalenius (1950)[10] considers a density \(f(x) \) with mean
\[
\mu = \frac{\int_{-\infty}^{+\infty} f(t) dt}{\int_{-\infty}^{+\infty} f(t) dt}
\] (1)

The range \((X_{\text{max}}-X_{\text{min}})\) of the stratification variable \(x\) is divided into \(L\) parts at points \(b_1<b_2<\ldots<b_{L-1}\), each part corresponding to a stratum. When a sample of \(n = \sum n_h \) observations is selected from \(f(x) \), the true mean
\[
\mu_h = \frac{\sum W_h x_h}{N_h}
\] (2)
is estimated by Cochran as [11]
\[
\bar{x}_{st} = \sum W_h x_h
\] (3)
where for the \(h\)th stratum \(W_h\), \(\mu_h\), \(\bar{x}_{st}\) and are calculated as follows[11]:
\[
W_h = \int_{b_{h-1}}^{b_h} f(t) dt = \frac{N_h}{N}
\] (4)
\[
\mu_h = \frac{\sum n_h x_h}{N_h}
\] (5)
\[
\bar{x}_{st} = \frac{\sum n_h x_h}{N_h}
\] (6)
The estimate of the mean \(\bar{x}_{st}\) has a variance of
\[
\sigma^2(\bar{x}_{st}) = \sum W_h \sigma^2_h \left(1 - \frac{n_h}{N_h}\right)
\] (7)
where the true variance is
\[
\sigma^2 = \frac{\sum \left(x_{hi} - \mu\right)^2}{N_h - 1}
\] (8)

If the sampling fractions \(n_h/N_h\) are negligible then the variance could be written in short,
\[
\sigma^2(\bar{x}_{st}) = \sum W_h \sigma^2_h
\] (9)

It is well-known that this variance of the estimate is minimum
\[
\sigma^2_{\text{min}}(\bar{x}_{st}) = \left[\frac{1}{n}\left(\sum W_h \sigma^2_h\right)\right]^2
\] (10)
when total sample size \(n\) is allocated using Neyman’s optimum allocation method [9]:
\[
n_h = \frac{N_h \sigma^2_h}{\sum n_i \sigma^2_i}.
\] (11)

Therefore, the variance of the estimate is a function of the boundaries \(b_h\). As a result, it is very difficult to find the boundaries that minimise the variance of the estimate. Dalenius (1950)[10] has shown that the variance of the estimate obtained with Neyman’s optimum allocation method is optimum or in other words minimum, when the stratum boundaries satisfy the following equations:
\[
\frac{\sigma^2_h + (b_h - \mu_h)^2}{\sigma^2_h} = \frac{\sigma^2_{h+1} + (b_{h+1} - \mu_{h+1})^2}{\sigma^2_{h+1}}
\] (12)

It is very difficult to find the stratum boundaries \(b_h\) that satisfy these equations remembered as Dalenius equations since these equations include \(\sigma^2_h\) and \(\mu_h\) that both vary with \(b_h\) stratum boundaries. As a result, there have been many approximations and algorithms proposed for solving Dalenius equations. The widely known simple method among the proposals is the cumulative square root frequency method of Dalenius and Hodges (1959) (cumJF) [5]. Then, in 1988 Lavallée and Hidiroglou’s iterative approach[3], in 2004 Gunning and Horgan’s geometric method [4] and Kozak’s random search method[2], in 2007 Keskintürk and Er’s genetic algorithm method[1] are developed in order to find the stratum boundaries. Among these methods, geometric method is the simplest method that does not include any complex algorithms. Therefore, the main aim of this research paper is to set the initial boundaries of the proposed algorithms with geometric method and compare the efficiencies of the algorithms when the boundaries are obtained with or without geometric method since it is believed that these algorithms would reach the solution in a shorter period once they start searching the entire space at a reasonable point. The details of the approaches and algorithms of these methods could be obtained from the original papers of Dalenius and Hodges’ (1959)[5], Gunning and Horgan (2004)[4], Kozak (2004)[2] and Keskintürk and Er’s (2007)[1]. All of these methods could be applied in R statistical environment using stratification[12] and GA4stratification[13] packages but the GA results given in this study are obtained in Matlab 7.0 since in the package there is no option for setting the initial boundaries with non-random results.

3. Application

3.1. Populations for Stratification

In this paper, many populations are used for stratification with different skewness, kurtosis, mean, standard deviation and size properties. Those populations that are available in the R stratification[12] and GA4stratification[13] packages are used for stratification. Each of the populations are divided into 3, 4, 5 and 6 strata and the boundaries are obtained using Lavallée and Hidiroglou, Kozak and GA methods with random and geometric initial boundaries.

Pop1: An accounting population of debtors in an Irish firm (Debtors).

Pop2: The population in thousands of US cities in 1940 (UScities).

Pop3: The number of students in four-year US colleges in 1952-1953 (UScolleges).

Pop4: The resources in millions of dollars of large commercial US banks (USbanks).

Pop5: Number of municipal employees of 284 municipalities in Sweden in 1984 (ME84).

Pop6: Population in thousands of 284 municipalities in Sweden in 1975 (Pop75).

Pop7: Real estate values in millions of kronor according to 1984 assessment of 284 municipalities in Sweden in 1984 (REV84)

Pop8: Simulated Data from the Monthly Retail Trade
Survey of Statistics Canada (MRTS)

Pop9: Household income before taxes from the 2001 Survey of Household Spending carried out by Statistics Canada (HHINCTOT)

Pop10: Net sales data of 487 Turkish manufacturing firms among the largest 500 firms in 2004 by Istanbul Chamber of Industry (ICI) (iso2004)

Pop11: Net sales data of 485 Turkish manufacturing firms among the largest 500 firms in 2005 by Istanbul Chamber of Industry (ICI) (iso2005)

The boxplots of the populations are displayed between Figures 1 and 3, and the summary statistics of the populations are given in Table 2.

Referring the descriptive statistics in Table 2 and boxplots in Figures 1-3, we see that the populations to be stratified are highly heterogenous which makes stratified sampling efficient to use. For comparison, the initial boundaries are obtained with both random initial boundaries and with geometric method. The populations are divided into 3, 4, 5 and 6 strata and the total sample size is determined as 100 for Pop1-Pop11. For genetic algorithm, the number of iterations is set to 10000, the GA population size to 35, the crossover rate to 0.99 and the mutation rate to 0.15. For efficiency comparisons of the ratio of variance of the estimates or the ratios of squares of coefficient of variations (CV) are calculated and given in Appendix 1. Since Lavallée and Hidiroglou’s (LH) method is based on sampling all of the elements in the last stratum (take-all top stratum), the following efficiency ratios are calculated if GA and Kozak’s methods provide a take-all top stratum solution:

\[
\text{eff}_\text{GA,Kozak} = \frac{\sigma^2_{\text{GA}}(\bar{\tau}_s)}{\sigma^2_{\text{Kozak}}(\bar{\tau}_s)} = \left(\frac{CV_{\text{GA}} \times \mu_x}{CV_{\text{Kozak}} \times \mu_x} \right)^2 \tag{13}
\]

\[
\text{eff}_\text{GA,LH} = \frac{CV_{\text{GA}}}{CV_{\text{LH}}} \tag{14}
\]

\[
\text{eff}_\text{Kozak,LH} = \left(\frac{CV_{\text{Kozak}}}{CV_{\text{LH}}} \right)^2 \tag{15}
\]

For those situations where some of the last stratum is sampled, only the efficiency ratio between GA and Kozak’s method (eff\text{GA,Kozak}) is calculated.

From the efficiency and the coefficient of variation ratios given in Table 3 in Appendix 1 and from the strata and sample sizes given in Table 5 in Appendix 2, it can be seen that the algorithms compared in this paper provide very close results and that the stratum boundaries are very close to each other when the initial boundaries are set randomly. When we look at the summary of the results given in Table 1, we see that the number of cases where GA or Kozak is better than the other one does not differ much and the gains in efficiencies are close to each other.

H	Better results with GA	Better Results with Kozak	Both Same	Total
3	4 (%0.1-0.6)	none	7	11
4	2 (%0.1-7.2)	1 (%1.2)	8	11
5	6 (%0.2-%26)	3 (%1.2-%37)	2	11
6	8 (%0.5-%25)	3 (%7.6-%27)	none	11

On the other hand, the results are different with higher coefficient of variations when the initial boundaries are obtained with geometric method (Table 4). Moreover, when the initial boundaries are set to be found with geometric method, many infeasible or nonconverged results are obtained. For example, when we look at Table 4 where the initial boundaries are obtained with geometric method, we see that the coefficient of variations for GA increases in 32 cases among 44 cases. Yet some of these increases in the CVs result from a nonconverged or an infeasible solution. Only in 4 cases there is a gain in efficiency ranging in between %0.01 (CV falling from 0.01437 to 0.01436 for H=5 for Pop3-UScolleges) and %0.186 (falling from 0.02485 to 0.02299 for H=5 for Pop8-MRTS), which could be counted as a very minor gain. The results for L&H and Kozak’s are more or less the same with the results obtained for GA. When the initial boundaries are obtained with geometric method, with each of Kozak’s and L&H’s methods there is an efficiency gain in only 5 cases, which are again minor. For these reasons, Lavallée and Hidiroglou’s iterative method, Kozak’s random search method and Keskimart and Er’s genetic algorithms give more efficient results when the initial boundaries are set randomly due to their nature. As a result, it can be concluded that starting with geometric initial boundaries does not have much contribution on the efficiency ratios or on the stratum boundaries for the computational methods. As proposed by Horgan (2011) [14], in order to obtain feasible solutions in some data sets, some modifications should be applied before utilising the geometric method. Horgan (2011) [14] suggests that the data should be analysed before applying the stratified sampling scheme if there are extreme outliers. In this paper the revised version of the geometric method is not applied since the algorithms examined here already give good results with random initials. Furthermore, if any researcher wants to use the geometric initial boundaries for data sets with extreme outliers, modified version of the geometric method should be used.
Şebnem Er: Comparison of the Efficiency of the Various Algorithms in Stratified Sampling when the Initial Solutions are Determined with Geometric Method

Figure 1. Boxplots of Pop1-Pop4

Figure 2. Boxplots of Pop5-Pop9

Figure 3. Boxplots of Pop10-Pop11
Table 2. Summary Statistics of the Populations

Pop	Name	N	Range	Skewness	Kurtosis	Mean	StdDev.
Pop1	Debtors	3369	40-28000	6.44	59.00	838.64	1873.99
Pop2	UsCities	1038	10-198	2.87	9.12	32.57	50.4
Pop3	USColleges	677	200-9623	2.45	5.80	1563	1799.06
Pop4	USBanks	357	70-977	2.07	4.06	225.62	190.46
Pop5	ME84	284	173-47074	8.64	84.04	1779.07	4253.13
Pop6	P75	284	4-671	8.43	88.56	28.81	52.87
Pop7	REV84	284	347-59877	7.83	81.33	137.91	4746.16
Pop8	MRTS	2000	141-486366	6.61	136.20	16882.8	21574.88
Pop9	HHINCTOT*	16025	100-690000	2.71	18.79	52123.73	41120.41
Pop10	iso2004	487	63582908-1044659175	10.03	137.91	278237616.44	637769009.37
Pop11	iso2005	485	69121110-14239223472	12.63	206.49	305852522.35	785107451.87

4. Conclusions
Stratified sampling is a sampling methodology used for heterogeneous populations in order to gain more precision than other methods of sampling. This paper examines the improvement in the efficiency ratios and stratum boundaries obtained with Lavallée and Hidiroglou [3], Kozak [2] and Keskinrück and Er’s (2007) [1] methods once the initial boundaries are obtained with geometric method. With the stratification of 16 heterogeneous populations that have different properties, higher variance of the estimates or infeasible solutions can be observed. As a result, researchers should be much more rigorous when using geometric method for the initial boundaries in algorithmic methods or else use the modified version of geometric method once the data has very extreme values.

ACKNOWLEDGEMENTS
I would like to thank the reviewer of this article whose comments and suggestions have helped improve the paper.

REFERENCES
[1] Keskinrück, T., Er, Ş., A Genetic Algorithm Approach to Determine Stratum Boundaries and Sample Sizes of Each Stratum in Stratified Sampling. Computational Statistics & Data Analysis, 52, 1, pp.53-67, 2007.
[2] Kozak, M., Optimal Stratification Using Random Search Method in Agricultural Surveys. Statistics in Transition, 6, 5, pp.797-806, 2004.
[3] Lavallée, P., Hidiroglou, M., On the Stratification of Skewed Populations, Survey Methodology, 14, 1, pp.33-43, 1988.
[4] Gunning, P., Horgan, J.M., A New Algorithm for the Construction of Stratum Boundaries in Skewed Populations. Survey Methodology, 30, 2, 2004.
[5] Dalenius, Tore, Hodges, Joseph L.Jr., “Minimum Variance Stratification”, Journal of the American Statistical Association, 54 (285), pp.88-101, 1959.
[6] Brito, J., Maculan, N. Lila, M., Montenegro, F. An Exact Algorithm for the Stratification Problem with Proportional Allocation. Optimization Letters, 4, 2, pp.185-195, 2010.
[7] Brito, J., Ochi, L., Montenegro, F., Maculan, N. An Iterative Local Search Approach Applied to the Optimal Stratification Problem. International Transactions in Operational Research, 17, 6, pp.753-764, 2010.
[8] R Development Core Team. R: A language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, (URL) http://www.r-project.org. 2005.
[9] Neyman, Jerzy. “On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection”, Journal of the Royal Statistical Society, 97 (4), pp.558-625, 1934.
[10] Dalenius, T. The problem of optimum stratification, Skandinavisk Aktuarietidskrift, pp. 203-213, 1950.
[11] Cochran, W. G., Sampling Techniques, 3rd ed., John Wiley & Sons, Inc. USA., 1977.
[12] R: stratification. http://CRAN.R-project.org/package=stratification
[13] R: GA4Stratification. http://CRAN.R-project.org/package=G4Stratification
[14] Horgan, J.M., “Geometric Stratification Revitalised”. ISI World Congress 2011 Proceedings, 2011.
APPENDIX 1

Table 3. The efficiency and coefficient of variation ratios of LH, GA and Kozak’s methods when the initial boundaries are obtained randomly

H	CVLH	CVGA	CVKozak	effGA/Kozak	effGA/LH	effKozak/LH
Pop1: Debtors						
3	0.06930*	0.05554	0.05554	0.9999	-	-
4	0.04721*	0.04049	0.04049	1.0000	-	-
5	0.03331*	0.03131	0.03131	0.9998	-	-
6	0.02678*	0.02562	0.02587	0.9801	-	-
Pop2: Uscities						
3	0.03217*	0.02649	0.02649	1.0000	-	-
4	0.02249*	0.01927	0.01934	0.9928	-	-
5	0.01943*	0.01437	0.01680	0.7312	-	-
6	0.01552*	0.01214	0.01209	1.0076	-	-
Pop3: Uscolleges						
3	0.03460*	0.02749	0.02749	0.9998	-	-
4	0.02399*	0.02018	0.02018	1.0000	-	-
5	0.01995*	0.01607	0.01726	0.8672	-	-
6	0.01715*	0.01323	0.01324	0.9995	-	-
Pop4: USbanks						
3	0.01839*	0.01802	0.01802	1.0000	-	-
4	0.01270*	0.01270*	0.01270*	1.0000	0.9991	0.9991
5	0.01094*	0.00861*	0.00861*	1.0000	0.6198	0.6198
6	0.00710*	0.00710*	0.00711*	0.9981	0.9997	1.0016
Pop5: ME84						
3	0.01296*	0.01296*	0.01296*	1.0000	0.9998	0.9998
4	0.00870*	0.00870*	0.00870*	1.0000	0.9991	0.9991
5	0.00663*	0.00661*	0.00661*	1.0000	0.9944	0.9944
6	0.00525*	0.00577*	0.00577*	1.2217	1.2064	0.9875
Pop6: P75						
3	0.01514*	0.01459*	0.01459*	1.0000	0.9278	0.9278
4	0.01068*	0.00966*	0.00966*	1.0000	0.8179	0.8179
5	0.00765*	0.00835*	0.00713*	1.3705	1.1904	0.8686
6	0.00608*	0.00623*	0.00552*	1.2735	1.0521	0.8261
Pop7: REV84						
3	0.01618*	0.01607*	0.01607*	1.0000	0.9954	0.9954
4	0.01120*	0.01120*	0.01120*	1.0000	0.9996	0.9996
5	0.00840*	0.00836*	0.00837*	0.9971	0.9896	0.9924
6	0.00700*	0.00666*	0.00675*	0.9759	0.9074	0.9298
Pop8: MRTS						
3	0.04559*	0.04167	0.04168	0.9994	-	-
4	0.03025*	0.02960	0.02960	0.9999	-	-
5	0.02307*	0.02485	0.02297	1.1704	-	-
6	0.01837*	0.01836*	0.01836*	0.9995	0.9984	0.9988
Pop9: HHINCTOT						
3	0.04503*	0.03184	0.03184	1.0000	-	-
4	0.03114*	0.02430	0.02429	1.0012	-	-
5	0.02379*	0.01979	0.01977	1.0012	-	-
6	0.01974*	0.01629	0.01630	0.9995	-	-
Pop10: iso2004						
3	0.01895*	0.01894*	0.01894*	1.0000	0.9982	0.9982
4	0.01208*	0.01206*	0.01206*	1.0000	0.9973	0.9973
5	0.00927*	0.00908*	0.00925*	0.9626	0.9584	0.9556
6	0.00820*	0.00703*	0.0081*	0.7516	0.7346	0.9773
Pop11: iso2005						
3	0.01833*	0.01833*	0.01833*	0.9999	0.9997	0.9998
4	0.01245*	0.01244*	0.01244*	1.0000	0.9973	0.9973
5	0.00912*	0.00903*	0.00910*	0.9852	0.9810	0.9958
6	0.00808*	0.00706*	0.00805*	0.7689	0.7630	0.9924

* Where there is a take-all top stratum
Table 4. The coefficient of variation ratios of LH, GA and Kozak’s methods when the initial boundaries are obtained with geometric method

H	CVLH	CVGA	CVKozak
	Pop1: Debtors		
3	Same	0.05554	Same
4	Same	0.04073	Same
5	Same	0.03122	Same
6	Same	0.02587	Same
	Pop2: UScities		
3	Same	0.02228	Same
4	0.01940	0.01927	
5	0.01436	0.01436	
6	0.01258	Same	
	Pop3: UScolleges		
3	Same	0.02730	Same
4	Same	0.01959	0.01972
5	0.01327	Same	
6	Same	0.00751	
	Pop4: USbanks		
3	Same	0.01322	0.01325
4	0.01043	0.00829	
5	0.00751	Same	
6	Same	0.01047	0.00835
	Pop5: ME84		
3	0.01378	Same	0.01296
4	0.01590	0.00870	0.00746
5	0.01199	0.00858	0.00870
6	0.01880	Same	
	Pop6: P75		
3	0.01558	0.01459	Same
4	0.01191	0.01459	0.01166
5	0.00847	0.00829	
6	0.01243	0.00835	0.00960
	Pop7: REV84		
3	0.01607	0.01614	Same
4	0.01318	0.01166	0.01166
5	0.01601	0.01120	0.01041
6	0.01306	0.01047	0.00835
	Pop8: MRTS		
3	Same	0.04169	Same
4	Same	0.02299	Same
5	Same	0.01837	Same
6	Same	0.01827	Same
	Pop9: HHINCTOT		
3	Same	0.03939	Same
4	Same	0.03384	Same
5	Same	0.02531	Same
6	Same	0.02275	Same
	Pop10: iso2004		
3	0.02111	Same	0.01894
4	0.02148	0.01222	0.01220
5	0.01832	0.01222	0.01220
6	0.01469	0.01222	0.00702
	Pop11: iso2005		
3	0.01835	Same	0.01840
4	0.02282	0.01840	0.01840
5	0.01858	0.01255	0.01255
6	0.01483	NONE	0.00706

LF: Infeasible; *NC*: Algorithm did not converge; *+: a decrease in CV; *-*: an increase in CV.
APPENDIX 2

Table 5. Size of the strata (Nh) and the sample sizes (nh) obtained from LH, GA and Kozak’s methods when the initial boundaries are obtained randomly

H	Pop1: Debtors	GA	Kozak
	Nh		
3	2894	36	26
	449	36	26
	26		
4	2179	17	24
	891	21	31
	271	31	28
	28		
5	1856	14	19
	191	16	19
	350	19	22
	146	32	26
6	1608	11	13
	956	15	14
	423	17	20
	223	20	32

	Nh		
3	795	35	28
	206	35	28
	37		
4	393	11	9
	433	10	39
	173	39	19
	39		
5	189	3	6
	270	21	8
	367	32	41
	171	41	
6	154	3	3
	154	3	8
	271	8	31
	267	31	

	Nh		
3	485	26	19
	137	19	55
	55		
4	256	9	12
	242	12	8
	118	8	66
	61		
5	135	4	6
	201	4	8
	167	8	66
	108	66	
6	93	2	4
	151	4	4
	134	4	6
	124	6	15
	104	15	

	Nh		
3	212	22	18
	85	18	60
	60		
4	110	7	8
	108	8	20
	76	20	
	63		
5	70	4	4
	68	4	9
	85	9	20
	71	20	
6	54	4	4
	60	4	13
	97	13	
	54	13	

	Nh		
3	144	17	12
	79	12	9
	61		
4	115	5	7
	62	7	12
	45	12	
	62		
5	54	6	7
	69	7	12
	54	12	
	43	12	
6	42	6	8
	72	8	4
	32	4	10
	36	10	
	38	10	
	64	10	

	Nh		
3	132	16	21
	89	21	63
	63		
4	64	7	12
	91	12	18
	66	18	
	63		
5	45	6	6
	66	6	13
	65	13	
	45	13	
6	45	7	2
	34	2	7
	53	7	14
	52	14	
	42	14	

	Nh		
3	150	16	21
	77	21	63
	57		
4	111	7	12
	73	12	18
	43	18	
	57		
5	123	6	6
	61	6	13
	33	13	
	19	13	
6	45	7	2
	34	2	7
	33	7	14
	32	14	
	58	14	
Table 5. **Continues**: Size of the strata (Nh) and the sample sizes (nh) obtained from LH, GA and Kozak’s methods when the initial boundaries are obtained randomly.

H	LH	GA	Kozak
3	Nh 131 84 69	138 81 65	138 81 65
nh 16 15 69	19 16 65	19 16 65	
4	Nh 64 81 70 69	64 81 69 70	64 81 69 70
nh 6 10 15 69	6 9 15 70	6 9 15 70	
5	Nh 61 60 47 47 69	64 74 53 39 54	61 69 51 34 69
nh 7 6 7 11 69	9 12 11 14 54	7 8 9 7 69	
6	Nh 50 55 40 46 39 5 4	61 60 42 43 26 52	57 51 37 42 28 6 9
nh 7 7 6 10 16 5 4	11 8 9 12 8 52	8 5 5 7 6 9	

Pop7: REV84

H	Nh 1546 426 28	122 7 671 102	120 4 688 108
nh 42 30 28	30 32 38	29 31 40	
4	Nh 1017 749 206 28	102 3 742 203 32	101 7 748 203 32
nh 26 25 21 28	29 28 21 22	29 28 21 22	
5	Nh 749 690 379 153 29	749 698 371 150 32	774 675 369 150 32
nh 19 18 16 18 29	20 19 17 28 16	22 18 16 17 27	
6	Nh 513 580 455 280 140 3 2	521 573 455 283 136 3 2	513 580 458 281 136 3 2
nh 13 13 11 13 18 3 2	13 12 11 14 18 3 2	13 12 11 14 18 3 2	

Pop8: MRTS

H	Nh 1056 545 8	800 597 204	800 597 204
nh 40 52 8	31 31 38	31 31 38	
4	Nh 7438 617 240 3 6 8	645 517 330 109	628 523 342 109
nh 26 30 36 8	26 23 21 30	24 24 22 30	
5	Nh 5473 509 400 144 3 9 2 8	590 437 333 196	502 449 360 229 603
nh 18 21 24 29 8	26 19 18 18 19	19 19 18 20 24	
6	Nh 4144 386 372 284 144 1 5 5 5 1 0 0	481 386 342 248 118 26 8 8 3 2 8 8	437 394 361 263 118 8 6 8 3 2 8 8
nh 13 12 15 17 33 1	21 16 17 17 13 16	18 16 19 19 13 12 5	

Pop9: HHINCTOT

H	Nh 306 125 56	312 120 55	312 120 55
nh 21 23 56	23 22 55	23 22 55	
4	Nh 221 133 77 56	229 128 74 56	229 128 74 56
nh 13 13 18 56	14 13 17 56	14 13 17 56	
5	Nh 158 108 91 72 58	163 129 85 54 56	158 115 87 69 58
nh 7 7 9 19 58	8 11 12 13 56	7 8 9 18 58	
6	Nh 86 83 104 84 72 8 5 8 5 5	158 108 85 42 39 55	95 105 81 76 65 8 6 5 8 6 5 6
nh 2 3 7 9 21 8	10 9 10 7 9 55	2 5 5 7 16 5 6 5	

Pop10: iso2004

H	Nh 290 136 59	294 132 59	293 133 59
nh 18 23 59	19 22 59	19 22 59	
4	Nh 176 148 96 65	223 122 80 60	223 122 80 60
nh 6 12 17 65	13 12 15 60	13 12 15 60	
Observations with values of zero are excluded from the data since geometric method could not be applied with dataset including zeros as a minimum value.