Raffinose Family Oligosaccharides: Crucial Regulators of Plant Development and Stress Responses

Shijuan Yan, Qing Liu, Wenyan Li, Jianbing Yan & Alisdair R. Fernie

To cite this article: Shijuan Yan, Qing Liu, Wenyan Li, Jianbing Yan & Alisdair R. Fernie (2022): Raffinose Family Oligosaccharides: Crucial Regulators of Plant Development and Stress Responses, Critical Reviews in Plant Sciences, DOI: 10.1080/07352689.2022.2111756

To link to this article: https://doi.org/10.1080/07352689.2022.2111756
Raffinose Family Oligosaccharides: Crucial Regulators of Plant Development and Stress Responses

Shijuan Yana, Qing Liub, Wenyan Lia, Jianbing Yand, and Alisdair R. Ferniec

aGuangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China; bGuangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China; cMax Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; dNational Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China

\textbf{ABSTRACT}

Raffinose family oligosaccharides (RFOs), the \(\alpha\)-galactosyl derivatives of sucrose, are nearly ubiquitous in Plantae, and they have been demonstrated to play pivotal roles in regulating plant responses to various abiotic stresses. RFOs accumulate to high levels in plant kernels/fruits or vegetative parts and are commonly associated with storability and desiccation or cold tolerance. Recent studies have also revealed the regulatory roles of RFOs in seed germination, plant development, and biotic stress resistance. Here, we provide an overview of the metabolism, transport, and evolution of RFOs as well as their physiological importance in plants. Recent research highlights the general importance of RFOs in plant development and stress response.

\textbf{KEYWORDS}

Development; evolution; metabolism; raffinose family oligosaccharides; stress response; transport

\section{I. Introduction}

As sessile organisms, plants encounter changing environmental conditions including stresses, which can significantly impair their growth, development, and productivity (El Sayed et al., 2014; Sharma et al., 2019). To survive, plants have evolved numerous mechanisms to cope with suboptimal environments; these include triggering a series of signal transduction responses and accumulating compatible metabolic substances. These substances include quaternary compounds, amino acids, soluble sugars, and raffinose family oligosaccharides (RFOs) (El Sayed et al., 2014). RFOs, such as raffinose, stachyose, and verbascose, are derived from sucrose and activated galactose moieties, which are donated by galactinol. Galactinol and raffinose are ubiquitous in plants and have been demonstrated to play important roles in seed desiccation tolerance/seed storability (Sengupta et al., 2015; Li et al., 2017; Jing et al., 2018). In recent years, more and more evidence has demonstrated the involvement of galactinol and RFOs in various abiotic stress responses in plants, and in general, the levels of RFOs (or galactinol) in different tissues can be used as an indicator of the degree of stress tolerance in plants (Sengupta et al., 2015; Selvaraj et al., 2017; Han et al., 2020). The associations between RFOs (or galactinol) and plant development and biotic stresses have also been demonstrated by several recent studies (Unda et al., 2017; Zhao et al., 2017; La Mantia et al., 2018; Hua et al., 2021; Liu et al., 2022). These findings have greatly broadened our knowledge of the intrinsic molecular mechanisms underlying plant stress tolerance and disease resistance. In this review, we summarize the transport, evolution, and physiological importance of RFO metabolism pathways in plants with an emphasis on the specific functions of RFOs in development and stress responses. Finally, future research directions including the potential use of RFOs for crop improvement are discussed.

\section{II. RFO metabolism in plants: biosynthesis and catabolism}

RFOs are synthesized through the sequential addition of galactose moieties to sucrose by the action of \(\alpha\)-galactosyltransferases, resulting in a series of oligosaccharides
with degrees of polymerization up to 15 (Peterbauer and Richter, 2007). The biosynthesis of RFOs has been thoroughly studied in several plant species including Ajuga reptans, Medicago sativa, and Arabidopsis thaliana (Bachmann et al., 1994; Blöchl et al., 2005; Iftime et al., 2011; Sengupta et al., 2015).

To date, two pathways have been identified for RFO biosynthesis. One is the galactinol-dependent pathway (Figure 1). The first key step of this pathway is the synthesis of galactinol from UDP-galactose and L-myo-inositol by galactinol synthase (GolS) (Peterbauer et al., 2001; Sengupta et al., 2015). Raffinose is then formed by the addition of galactose units from galactinol to raffinose in a reaction catalyzed by raffinose synthase (RS), whereas stachyose is synthesized by the addition of galactose units from galactinol to raffinose in a reaction catalyzed by stachyose synthase (STS) (Peterbauer et al., 2001; Sengupta et al., 2015). The second RFO biosynthetic pathway is the galactinol-independent pathway (Figure 1), which has been identified in A. reptans and Coleus blumei; this pathway includes galactan:galactosyltransferase (GGT), which belongs to the acid x-galactosidase (AGAL) protein family (Bachmann et al., 1994; Gilbert et al., 1997; Haab and Keller, 2002; Tapernoux-Lüthi et al., 2004; Elango et al., 2022). GGT catalyzes the chain elongation of RFOs by transferring a terminal galactosyl moiety from one RFO molecule to one another. For instance, GGT can produce raffinose and verbascose when incubated with stachyose (Bachmann et al., 1994; Bachmann and Keller, 1995). However, it should be noted that GGT enzymatic activity has been found in leaves but not in seeds, suggesting that the galactinol-independent RFO synthesis pathway may exist in plant leaves, but not in plant seeds.

RFO catabolism in plants has received relatively little attention even though this process is as important as the biosynthesis reaction. RFOs are hydrolyzed to sucrose and D-galactose by the action of AGAL and alkaline x-galactosidase (AGA) (Blöchl et al., 2008; Sengupta et al., 2015). The resulting sucrose and D-galactose may either be used as energy sources or reutilized to form RFOs (Blöchl et al., 2008). To serve as an energy source, sucrose can be degraded into glucose and fructose by invertase or into UDP-glucose and fructose by sucrose synthase (Ruan, 2014). Subsequently, glucose, fructose, and D-galactose can readily enter other metabolic pathways. Free D-galactose can be rapidly converted into galactose-1-phosphate by GalK and further metabolized either by the conventional Leloir pathway or by a pyrophosphorylase-dependent pathway (Peterbauer et al., 2001; Sengupta et al., 2015). Intriguingly, all RFO biosynthesis and catabolism reactions are reversible.

III. The source-to-sink transport of RFOs in plants

In plants, <80% of carbohydrates produced by photosynthesis in leaves are exported to heterotrophic tissues and organs to enable their growth and development (Kalt-Torres et al., 1987; Ainsworth and Bush, 2011; Kölling et al., 2013; Brauner et al., 2018). Sucrose is the major carbohydrate used for long-distance transport. The initial step of source-to-sink transport of sucrose is phloem transport, which is the transfer of sugars from mesophyll cells (MCs) to companion cells (CCs) and then the sieve elements (SEs) of minor veins (Knop et al., 2001; Voitsekhovskaja et al., 2006; McCaskill and Turgeon, 2007). As shown in Figure 2, the two main phloem loading strategies in most species are apoplastic loading and passive symplasmic loading. The former is a transporter-mediated and energy-coupled process, while the latter is an osmotic driving force-dependent process with sucrose transport from MCs to CCs occurring via plasmodesma (Rennie and Turgeon, 2009; Slewinski and Braun, 2010; Ma et al., 2019). In addition, some tree species use an active symplastic loading strategy in addition to the passive strategy, such as the gymnosperm Gnetum gnemon and the angiosperms Quercus robur, Fraxinus excelsior, Fagus sylvatica, and Magnolia kobus (Liesche et al., 2011; Öner-Sieben and Lohaus 2014; Fink et al., 2018). Following long-distance transport through SEs and arrival at the sink tissues, the same strategies are used for phloem unloading, i.e., active apoplastic unloading or passive symplasmic unloading (Oparka et al., 1999; Stadler et al., 2005a, 2005b; Ma et al., 2019). Sucrose is then used directly to provide carbon and energy for growth and development or metabolized into RFOs or starch for storage in sink tissues (Ruan and Patrick, 1995; Ruan et al., 2001).

A third phloem loading strategy, polymer-trapping loading, is used in a limited number of plant families, such as Cucurbitaceae, Lamiaceae, and Oleaceae (Figure 2; Rennie and Turgeon, 2009; Gil et al., 2011; Ma et al., 2019). In this strategy, raffinose and stachyose, rather than sucrose, are the predominant carbohydrates transported in phloem. In the polymer-trapping loading model, sucrose produced by photosynthesis in leaves diffuses into specialized CCs (intermediary cells, ICs) from MCs through specialized plasmodesmata, where it is then polymerized to
Figure 1. The proposed RFO metabolism pathway in plants. α-D-galactose is phosphorylated by galactokinase (GalK, EC 2.7.1.6) to form galactose-1-phosphate. Then, a uridine monophosphate (UMP) group is transferred from UDP-glucose to galactose-1-phosphate by galactose-1-phosphate uridylyltransferase (GalT), producing glucose-1-phosphate and UDP-galactose (Peterbauer et al., 2001; Coelho et al., 2015). GolS: galactinol synthase; RS: raffinose synthase; STS: stachyose synthase; VES: verbascose synthase; AGA: alkaline α-galactosidase; AGAL: acid α-galactosidase; GGT: galactan: galactosyl-transferase.
form RFOs, i.e., raffinose and stachyose (Yadav et al., 2015). RFOs are thought to be unable to diffuse back to the MCs on account of their larger size, and they enter the SEs through wider plasmodesmata-pore units (Hannah et al., 2006; Zhang and Turgeon, 2018). In sink tissues, RFOs are unloaded from the phloem, and AGAs hydrolyze the RFOs to sucrose and galactose, which can also be partitioned via the

Figure 2. A proposed model of RFO transport in plants. SC: sink cell; PPC: phloem parenchymal cell; CC: companion cell; IC: intermediate cell (specialized CC); SE: sieve element; MC: mesophyll cell; TP: triose phosphate; Fru: fructose; Glu: glucose; Raf: raffinose; Sta: stachyose; Gal: galactinol; Myo-Iso: myo-inositol.
apoplastic pathway. The RFO transport pathway was recently demonstrated to function in sweet watermelon (Citrullus lanatus) and cucumber (Cucumis sativus). In these species, the alkaline AGA genes CIAGA2 (Ren et al., 2021) and CsAGA2 (Liu et al., 2022) were identified as the key factors controlling stachyose and raffinose hydrolysis, and they were found to be specifically expressed in the vascular bundle. Ren et al. (2021) showed that knocking out AGA2, Sugars Will Eventually Be Exported Transporter 3 (SWEET3), and Tonoplast Sugar Transporter 2 (TST2) affected fruit sugar accumulation in C. lanatus.

In A. reptans which is a frost-hardy, perennial labiate that contains high levels of RFOs, two different RFO pools are observed (Figure 2). One is a long-term storage pool of RFOs, which are synthesized in the MCs, and the other is a transport pool of RFOs, which are synthesized in the phloem. The storage RFOs serve as an energy source and support frost tolerance, while the transport RFOs enter sink tissues to maintain plant growth (Bachmann et al., 1994; Bachmann and Keller, 1995; Kannan et al., 2018). Interestingly, isoforms encoded by two allelic variants of GolS (ArGolS1 and ArGolS2) from A. reptans display different roles in RFO biosynthesis as evidenced by their differential gene expression and enzyme activity (Sprenger and Keller, 2000). ArGolS1 is primarily expressed in MCs and is involved in the synthesis of storage RFOs, whereas ArGolS2 is predominantly expressed in ICs and is involved in the synthesis of transport RFOs. Further compartmentalization analysis of MCs revealed that the RFO transport pool, GGT, stachyose, and verbascose are all vacuolar localized, whereas the RFO storage pool, GolS, STS, and galactinol are located outside the vacuole, and raffinose is distributed in both the cytosol and the vacuole (Bachmann et al., 1994; Bachmann and Keller, 1995; Kannan et al., 2018). It was proposed that stachyose is synthesized outside the vacuole (probably in the cytosol) and then transported into the vacuole via a stachyose transporter in the tonoplast, although multi-omics evaluation of the tonoplast membrane did not identify this transport protein (Tohge et al., 2011). A later report indicated that raffinose, which accumulates in the chloroplasts of cold-treated A. reptans, is originally synthesized outside the chloroplast and subsequently taken up into the chloroplast by a raffinose transporter on the chloroplast envelope (Schneider and Keller, 2009). A shift in carbohydrates (mainly RFOs) from the cytosol to the vacuole and chloroplast, and from winter leaves to summer leaves, has also been identified in A. reptans, suggesting that RFOs play important roles in frost tolerance in this evergreen plant (Findling et al., 2015).

Several studies have shown that the metabolism and transport of RFOs can be affected by exogenous stress treatment or by overexpression of the key RFO metabolism enzymes in plants (Gilbert et al., 1997; Ayre et al., 2003; Hannah et al., 2006; McCaskill and Turgeon, 2007; Obata and Fernie, 2012). For example, salt stress significantly induces the accumulation of RFOs (verbascose and raffinose) in both the source and white sink tissues of Coleus blumei, with stressed plants preferentially transporting sucrose over RFOs, as determined by phloem-sap analysis (Gilbert et al., 1997). Galactinol is the second most abundant sugar synthesized in the ICs of C. blumei, but galactinol accumulation is also observed in non-phloem compartments, such as MCs, in transgenic tobacco plants with CC-specific overexpression of CmGolS1 (Ayre et al., 2003). Hence, these transgenic tobacco plants accumulate large amounts of galactinol in the leaves, but long-distance transport of galactinol is limited, with only a small amount being transported to sink tissues. Moreover, in transgenic potato plants displaying constitutive or CC-specific overexpression of GolS or GolS in combination with RS, both galactinol and raffinose were transported in the phloem. However, although significant amounts of galactinol were observed in the phloem, only a small amount of raffinose was able to be transported even when there was a high concentration of raffinose (Hannah et al., 2006). In addition, simultaneous silencing of two GolS genes (VpGolS1 and VpGolS2) in Verbascum phoeniceum resulted in the inhibition of both RFO biosynthesis and RFO transport in phloem (McCaskill and Turgeon, 2007).

IV. Evolution of RFO metabolism in plants

To investigate the evolution of RFO metabolic pathways in plants, we searched for genes encoding homologous proteins of GolS, RS/STS, AGAL, and AGA, which are involved in RFO catabolism, in 26 representative plant species from nine plant lineages, namely glaucophytes, rhodophytes, chlorophytes, charophytes, bryophytes, lycophytes, gymnosperms, monocots, and dicots (Figure 3A), and performed BLAST analyses using HMMER software. After removal of redundant and incomplete protein sequences which may be encoded by pseudogenes, a
total of 45 GolSs, 15 RS/STSs, 59 AGAs, and 82 AGALs were identified (Figure 3A and Table 1). The number and distribution of these key enzyme genes in the selected representative species were distinctly different. AGA and AGAL were found in most of the species examined including algae, with the number of paralogous genes ranging from 1 to 14. GolSs were found in all vascular plants and in charophyte algae with 2 to 11 paralogous genes, whereas RS/STS genes were only found in gymnosperms, monocots, and dicots with 1 to 4 paralogous genes (Figure 3A). These observations suggested that gene expansion...
and gene loss occurred during the evolution of the RFO metabolic pathway in plants.

Phylogenetic analysis revealed that the clustering of GolSs, which belong to glycosyl transferase family 8 (GT8), is consistent with the evolutionary relationships of plant species (Figure 3B). RS/STS and AGA proteins belong to the glycosyl hydrolase family 36 (GH36), and the GH36 family was classified into four subfamilies, i.e. AGA I, AGAII, AGAIV, and RS/STS (Figure 3B). Unlike subfamily I, which contained sequences found in most of the plant lineages, from charophytes to monocots and dicots, subfamilies II, RS/STS, and IV only contained sequences from chlorophytes, vascular plants (gymnosperms, monocots, and dicots), and rhodophytes, respectively. These observations suggest that the functions of GH36 proteins have diverged during plant evolution, resulting in the specialized functions of the RS/STS subfamily members, which have been demonstrated to harbor multifunctional RFO synthase/galactosyl hydrolase activities. For example, the maize RS ZmRS (Zm00001d039685) displays both raffinose synthesis and galactinol hydrolysis activities (Li et al., 2020), while Arabidopsis AtRS4 (also named AtSTS, AT4G01970) exhibits not only stachyose synthesis activity but also stachyose- and galactinol-specific hydrolysis activity (Gangl et al., 2015). AGALs, which belong to glycosyl hydrolase family 27 (GH27), were classified into three subfamilies (I–III), with subfamily I present in most plant lineages from glaucophytes (Cyanophora paradoxa) to monocots and dicots. However, subfamilies II and III were only present in chlorophytes/charophytes and land plants (bryophytes, lycophytes, gymnosperms, monocots, and dicots), respectively (Figure 3B). The GGT enzyme in A. reptans, which belongs to AGAL subfamily I, can catalyze the chain elongation of RFOs and produce raffinose and verbascose (Bachmann et al., 1994; Bachmann and Keller, 1995). This observation, combined with the phylogenetic relationship of RS/STS/AGAs and GALs, leads us to speculate that the galactinol-dependent pathway for short RFO biosynthesis may be present in all green lineages, while the galactinol-independent pathway may occur only in certain land plants, such as A. reptans, and may have evolved as an environmental adaptation. Indeed, the specialized RS/STS subfamily likely coevolved with vascular development in higher plants, which are also adapted to the land environment. In fact, the transition of plants from aquatic to terrestrial environments required plant adaptation to drought-stress environments. In addition to structural changes in the vascular sheath, the emergence of new metabolic pathways and/or metabolites is also a means of plant adaptation to drought-stress environments. RFOs, especially raffinose, is thought to play a role in plant drought stress tolerance because of the increased raffinose accumulation observed in leaves when plants encounter drought stress (Egert et al., 2016; Li et al., 2020).

V. The potential roles of RFOs in plant development

Several studies have demonstrated the regulatory roles of RFOs in plant growth and development. During
seed germination, RFOs cannot be used directly and need to be broken down into sucrose and galactose by the hydrolytic enzyme AGAL. A recent report demonstrated that AGAL activity gradually increases during seed maturation and early germination in *Cicer arietinum*, with the latter stage requiring more energy (Arumraj et al., 2020). When the breakdown of RFOs in pea seeds is blocked by treatment with 1-deoxypalactono jirimycin (DGJ), a galactosidase-specific inhibitor, the treated seeds have a significantly lower germination rate, accompanied by depressed activities of GalK and UDP-galactose pyrophosphorylase, when compared with the control seeds (Blöchl et al., 2007). The inhibition of germination could be relieved by the addition of exogenous galactose and partially relieved by the addition of exogenous sucrose (Blöchl et al., 2007), suggesting that the content of galactose rather than sucrose was positively correlated with seed germination. Similarly, wild-type soybean seeds also show a delay in germination when treated with DGJ. However, soybean seeds with low RFO content (18% raffinose and 33% stachyose) show no significant differences in germination compared with wild-type seeds under normal conditions, and no remarkable delay in germination was observed when the low-RFO seeds were treated with DGJ (Dierking and Bilyeu, 2009). These results suggest that unlike in *C. arietinum* RFOs are not essential for soybean seed germination; however, sucrose levels in low-RFO seeds were significantly higher than those in the wild-type plants (Dierking and Bilyeu, 2009), which might at least partially explain the lack of effect of RFO content on the germination of soybean seeds. *RS4/5* double knock-out *Arabidopsis* seeds exhibited a five-day delay in germination in darkness and upregulated expression of a repressor of germination; these phenotypes were attributed to the absence of RFOs in germinated seeds (Gangl and Tenhaken, 2016). Taken together, previous studies indicate that the levels of RFOs and RFO pathway-derived metabolites are closely related to seed germination, but the exact function of RFOs varies among different seeds.

Three recent reports demonstrated that RFOs are also involved in the growth and development of hybrid poplar (*Populus alba × grandidentata*) and cucumber (Unda et al., 2017; Hua et al., 2021; Liu et al., 2022). Transgenic poplar plants with the highest levels of *AtGolS3* transgene expression formed tension wood, as manifested by an increased number of vessels and the appearance of a G-layer in the fibers, whereas transgenic poplar plants with moderate *AtGolS3* expression showed only moderate alterations in secondary cell wall composition and ultrastructure, such as lower lignin and higher cellulose contents (Unda et al., 2017). In cucumber, transcription of *CsAGA1* was found to gradually increase during fruit development, especially in the fruit vasculature. *CsAGA1*-overexpressing plants showed bigger fruits compared with wild type, whereas *CsAGA1*-RNAi plants exhibited delayed fruit development due to altered hexose production in the peduncle and main vascular bundle of the fruit (Hua et al., 2021). Further analysis showed that manipulation of *CsAGA2* expression influences phloem loading, sugar production, and exportation from leaves and petioles, and thus affects cucumber fruit set and development (Liu et al., 2022). These results collectively illustrate that ectopic expression of *GolS/AGA* influences RFO metabolic pathways and that RFO may function as a molecular signal to trigger a series of metabolic changes, ultimately impacting sugar transport, cell differentiation, and development in plants (Unda et al., 2017).

VI. The roles of RFOs in plant abiotic stress tolerance

A. The roles of RFOs in seed desiccation tolerance, seed storability, and seed vigor

Desiccation tolerance, which is necessary for the maturation of orthodox seeds, refers to the ability of seeds to withstand dehydration, to reduce the deleterious effects of dehydration and slow their metabolic activity, and finally to maintain viability in a dry state for a long period of time (Wang et al., 2015; Jing et al., 2018). There is evidence that RFOs play a key role in desiccation tolerance. For example, the *GolS* enzymes are significantly upregulated in the alpine aeroteres-trial alga *Klebsormidium crenulatum* under strong desiccation-stress conditions (Holzinger et al., 2014), and raffinose accumulation is associated with the acquisition of desiccation tolerance as well as the tolerance to high-temperature drying in cereal seeds (Chen and Burris, 1990; Brenac et al., 1997). Conversely, loss of raffinose accumulation is accompanied by the loss of desiccation tolerance during the germination of maize seeds (Koster and Leopold, 1988). More recently, the positive correlation between RFOs and seed desiccation tolerance has been further validated by overexpressing *GolS1*, *GolS2*, and/or *RS5* in *Arabidopsis* (Jing et al., 2018). The resultant transgenics display higher levels of RFOs and greater desiccation tolerance than the wild-type plants, whereas *gos1 gos2* double mutant plants and *rs5* single mutant plants, which have lower levels of RFOs, exhibit delayed
acquisition of desiccation tolerance compared with the wild-type plants (Jing et al., 2018). High RFO levels might be required to maintain a steady state level of reducing monosaccharide sugars to confer desiccation tolerance to seeds, starting from dry seeds to all the way through the post-germination stage (Arunraj et al., 2020).

Seed storability, defined as the longevity of seeds after storage, is partially correlated with seed desiccation tolerance, and seed vigor is also closely correlated with seed longevity (Bentsink et al., 2000; Gurusinghe and Bradford, 2001). As a result, seeds with good desiccation tolerance frequently exhibit longer seed longevity and higher seed vigor. In addition to playing important roles in desiccation tolerance, high levels of RFOs are also required for maintaining seed vigor or longevity in plants (Bernal-Lugo and Leopold, 1992; Pukacka et al., 2009; Vandecasteele et al., 2011; de Souza Vidigal et al., 2016; Salvi et al., 2016; Li et al., 2017; Han et al., 2020). In hybrid rice seed, the level of raffinose is positively correlated with the seed germination rate under natural aging conditions (Yan et al., 2018), but the galactose content is negatively correlated with the seed germination rate under both natural and artificial aging conditions (Chen et al., 2022). In maize seeds, a low level of raffinose is associated with lower seed vigor (Bernal-Lugo and Leopold, 1992). Consistent with this, the maize Dehydration-Responsive Element-Binding 2A mutant (zmdreb2a) exhibits decreased seed longevity due to reduced expression of a ZmRS gene and a decreased level of raffinose accumulation in the embryo (Han et al., 2020). In Arabidopsis, overexpression of ZmAGA1, which decreases both RFO and galactinol contents in mature seeds, results in a higher seed germination percentage but decreased seed aging tolerance (Zhang et al., 2021). Further analysis showed that RFO levels were lowest in imbibed ZmAGA1 overexpressing seeds and rapidly increased post-imbibition. When seeds transitioned to the germination stage, the RFOs were rapidly hydrolyzed to monosaccharide sugars, which may be incorporated into either cell membranes or cell walls of the growing shoot and root tips, providing energy leading to increased germination vigor (Zhang et al., 2021).

Intriguingly, Li et al. (2017) found that monocot and dicot plants have different requirements for RFOs in modulating seed vigor. An important discovery was that raffinose is the only RFO that accumulates in seeds of the monocot maize, and the seeds of the zmrs mutant, which lacks raffinose, show remarkably reduced vigor even though they survive desiccation. By contrast, several RFOs (raffinose, stachyose, and verbascose) are detected in the seeds of Arabidopsis. It seems that seed vigor of Arabidopsis is positively correlated with either the total RFO content or the RFO/sucrose ratio, instead of the absolute amounts of individual RFOs, and moreover, that stachyose and verbascose contribute more than raffinose to seed vigor in Arabidopsis (Li et al., 2017). Nevertheless, in some plant species, there is no direct association between RFOs and desiccation tolerance or seed vigor (Bentsink et al., 2000; Gurusinghe and Bradford, 2001; Dierking and Bilyeu, 2009), suggesting that a broader analysis of this phenomenon is necessary. In conclusion, these observations demonstrate the pivotal roles of RFOs in controlling desiccation tolerance, storability, and vigor of plant seeds, and show that the specific roles of RFOs in these processes might be plant species-dependent to some extent.

B. The roles of RFOs in temperature stress tolerance

Extreme low (cold, chilling, or frost) and high temperatures, can have highly detrimental effects on plant growth and crop yield worldwide (Suzuki, 2019). Previous studies have indicated that cold treatment induces the accumulation of raffinose in both cold-tolerant and cold-sensitive Arabidopsis and rice accessions but that raffinose levels are remarkably higher in cold-tolerant accessions than in cold-sensitive accessions (Klotke et al., 2004; Morsy et al., 2007; Nägge and Heyer, 2013). Keller et al. (2021) demonstrated that accumulation of raffinose in the pith tissue is correlated with freezing tolerance of both freezing-sensitive and freezing-tolerant sugar beet. Increased transcription levels of the GolS and RS genes as well as the accumulation of raffinose were also observed in rice seedlings exposed to chilling stress, and in grapevine woody tissues subjected to cold stress (Saito and Yoshida, 2011). Moreover, excised A. reptans leaves accumulated more RFOs during frost treatment under temperatures ranging from −10.5 to −24.5 °C, with more severe damage being observed in photosystem II in the RS mutant than in the corresponding wild-type plants during freezing (Peters and Keller, 2009; Knaupp et al., 2011). A recent report demonstrated that the maize zmrs mutant lines, in which raffinose is eliminated, show decreased tolerance to cold stress compared with control plants. Further analysis also verified that the maize ZmDREB1A protein can bind directly to the promoter of ZmRS to activate its expression, and consequently lead to the accumulation
of raffinose and increased cold tolerance in maize (Han et al., 2020). Similarly, ethylene-responsive factor 108 (ERF108) has been observed to directly target an RS enzyme gene to modulate the cold stress response of trifoliate orange (Poncirus trifoliata L.) (Khan et al., 2021). Moreover, calmodulin-like protein 42 (MtCML42) has been demonstrated to positively regulate the C-repeat binding factor (CBF) pathway, which in turn increases the transcription of MtGolS1 and MtGolS2, resulting in raffinose accumulation and enhanced cold tolerance in Medicago truncatula (Sun et al., 2021). These results together suggest a positive role of RFOs in plant cold stress response.

Plants acquire heat stress tolerance through priming, which enables them to build stress memory when subjected to heat stress. A recent report found that primed plants perform better than non-primed plants under heat stress, partially because of increased RFO contents, suggesting an important role of RFOs in plant heat stress tolerance (Serrano et al., 2019). Indeed, researchers demonstrated that overexpression of chickpea (Cicer arietinum) CaGolS1 and CaGolS2, which are strongly induced by heat and oxidative stress, results in increased galactinol and raffinose contents as well as enhanced heat and oxidative stress tolerance through a reduced accumulation of reactive oxygen species (ROS) and consequent lipid peroxidation in Arabidopsis transgenic plants (Salvi et al., 2018). Furthermore, Arabidopsis plants overexpressing ZmGolS2 showed increased heat stress tolerance, which was attributed to the enhanced galactinol and raffinose contents (Gu et al., 2016). Recently, overexpression of the heat shock factor A2 (ZmHSFA2) in Arabidopsis plants was found to lead to increased transcription of AtGolS1, AtGolS2, and AtRS5, increased raffinose levels in leaves and enhanced heat tolerance, whereas overexpression of the maize heat shock binding protein 2 (ZmHSBP2) in Arabidopsis reduced the expression of AtGolS1, AtGolS2, and AtRS5, which prevented raffinose accumulation in leaves and decreased heat tolerance (Gu et al., 2019). In summary, all these results indicate the positive regulatory roles of RFOs in temperature stress response in plants.

C. The roles of RFOs in tolerance to drought, salt, and oxidative stresses

In addition to their roles in temperature stress, RFOs are also associated with enhanced drought stress tolerance in plants; for example, there is a strong accumulation of RFOs (raffinose, stachyose, and verbascose) in the resurrection plant Xerophytaviscosa when it is subjected to drought stress treatment (Peters et al., 2007). Overexpression of AtGolS2 in Brachypodium distachyon, Arabidopsis, and rice also remarkably increases drought tolerance (Taji et al., 2002; Himuro et al., 2014; Selvaraj et al., 2017). Transgenic rice plants overexpressing AtGolS2 exhibit increased galactinol content, grain yield in terms of panicle number, and grain fertility compared with control plants. In addition, ectopic expression of BhGolS1 leads to significant accumulation of galactinol and raffinose as well as elevated drought tolerance in tobacco, and ectopic expression of CsGolS4 results in increased galactinol and stachyose contents and improved drought tolerance in cucumber (Ma et al., 2021). Interestingly, the expression of BhGolS1 was found to be directly activated by the BhWRKY1 gene via the binding of BhWRKY1 to W-box elements in the BhGolS1 promoter (Wang et al., 2009). Modulating the expression of RS genes has also been found to result in altered drought stress responses in plants. The maize Zmrs mutant, which lacks raffinose, shows decreased drought tolerance, whereas Arabidopsis ZmRS-overexpressing plants show increased tolerance to drought stress (Li et al., 2020). This enhanced drought tolerance conferred by overexpression of ZmRS was found to be due to increased myo-inositol levels following galactinol hydrolysis, with the increased ratio of myo-inositol to raffinose positively regulating plant drought stress responses.

Thellungiella salsuginea, which is an important model for studying abiotic stress responses, shows increased levels of galactinol and raffinose and a high ratio of raffinose to sucrose when subjected to salt, drought, or cold stress (Amtmann, 2009). TsGolS2 is significantly induced by NaCl, polyethylene glycol, and abscisic acid (ABA) treatments. Overexpression of TsGolS2 in Arabidopsis improves salt and osmotic stress tolerance as manifested by the higher rates of germination and seedling growth of TsGolS2 overexpressors compared with those of the control plants (Sun et al., 2013). As mentioned above, ZmHSFA2 can regulate the expression of AtGolS1, AtGolS2, and AtRS5 in Arabidopsis plants. Analogously, Arabidopsis plants overexpressing AtHsfA2 also exhibit increased transcription of AtGolS1, AtGolS2, AtGolS4, and AtRS2 and increased galactinol and raffinose contents compared with control plants. Exogenous methylviologen treatment, which can mimic the oxidative stress in Arabidopsis, significantly increases the expression of not only AtHsfA2 but also the AtGolS and AtRS genes and the levels of galactinol and raffinose. Overexpression of AtGolS1 and AtGolS2 results in
Gene name	Species	Function	References
Galactinol synthase (GolS)			
ZmGolS1/2/3	Zea mays	Response to heat and drought stress	Zhao et al., 2004a, 2004b; Gu et al., 2016
OsGolS1/2	Oryza sativa	Response to chilling, cold, drought, salt stress, and N deficiency	Phan et al., 2009; Saito and Yoshida, 2011; Mukherjee et al., 2019; Cui et al., 2020
AtGolS1	Arabidopsis thaliana	Response to drought, high-salinity stresses, and fungal pathogens; negatively regulates seed germination	Taji et al., 2002; Jang et al., 2018; Jing et al., 2018; Himuro et al., 2014; de Souza Vidigal et al., 2016; Selvaraj et al., 2017; Jing et al., 2018
AtGolS2	A. thaliana	Response to oxidative stress, drought, salt, chilling, and high-light stress; seed longevity	
AtGolS3	A. thaliana	Response to cold and oxidative stress and pathogens	Taji et al., 2002; Jing et al., 2018; La Mantia et al., 2018
AtGolS4/5/6/7	A. thaliana	Drought and cold stress; oxidative damage	Taji et al., 2002; Nishizawa et al., 2008
AtGolS10	A. thaliana	Protects plants from oxidative damage	Nishizawa et al., 2008
CsGolS1	Corynespora cassicola	Involved in induction of systemic resistance	Zhou et al., 2017
CsGolS1/2/3	Camellia sinensis	Responses to water deficit, lower temperature, pest attack, and ABA.	Zhou et al., 2017
CsGolS1/2	Cicer arietinum	Improves seed vigor and prolongs seed life; response to heat and oxidative stress	Salvi et al., 2016, 2018
BnGolS1	Brassica napus	Response to desiccation during seed development	Li et al., 2011
XvGolS	Xerophyta viscosa	Transcript level increases under water deficit	Peters et al., 2007
BnGolS1	B. napus	Transcripts induced by dehydration and cold in seedlings	Wang et al., 2009
MtGolS1/2	Trichosanthes kirilowii	Involves in cold stress tolerance	Shimosaka and Ozawa, 2015
CsGolS1	Cucumis sativus	Promotes seed germination; overexpression enhances ROS tolerance and represses the defense response to leaf rust disease; response to nematode infection	Sui et al., 2012; La Mantia et al., 2018; Wang et al., 2022
Raffinose synthase (RS)			
ZmRS8	Z. mays	Response to drought stress; regulates seed vigor	Gu et al., 2016; Han et al., 2020; Li et al., 2020
OsRS	O. sativa	Expression induced by dehydration in seedlings	Saito and Yoshida, 2011
AtrRS (A1STS)	A. thaliana	Response to abiotic stress	Gangl et al., 2015
AtrRS	A. thaliana	Promotes seed germination in darkness	Gangl and Tenhaken, 2016; Jing et al., 2018
CtrRS	C. sativus	Promotes seed germination; overexpression enhances ROS tolerance and represses the defense response to leaf rust disease; response to nematode infection	Sui et al., 2012; La Mantia et al., 2018; Wang et al., 2022
AmSTS1	Alonsa meridionalis	Involved in phloem loading	Voitsekhovskaja et al., 2009
VaSTS	Vigna angularis	Response to cold stress	Ifrime et al., 2011
CsSTS	C. sativus	Involved in phloem loading; response to nematode infection	Liu et al., 2017; Zhang et al., 2020; Wang et al., 2022
PsRS	P. sativum	Response to dehydration in seedlings	Lahuta et al., 2014
PhRS	Poncirus trifoliata	Enhances cold stress tolerance	Khan et al., 2021
LdRS	Lens culinaris	Seed development	Kannan et al., 2021
VvRS5	Vitis vinifera	Response to cold stress	Noronha et al., 2021

(Continued)
increased levels of galactinol and raffinose, which are positively correlated with enhanced tolerance to oxidative, salinity, and chilling stresses in *Arabidopsis* (Nishizawa et al., 2008). These results together indicate the positive roles of RFOs in regulating plant responses to drought, salt, and oxidative stresses.

So far, three regulatory mechanisms have been proposed to explain the roles of RFOs in mediating different abiotic stress responses in plants. First, raffinose could maintain the stability of the cell membrane during air-drying and prevent leakage of cellular contents and membrane fusion after rehydration (Cacela and Hincha, 2006). Second, galactinol and raffinose could function as osmoprotectants and ROS scavengers to mitigate oxidative damage generated by adverse conditions (Nishizawa et al., 2008; Van den Ende and Valluru, 2009; Van den Ende, 2013). Third, raffinose could be transported into chloroplasts to protect thylakoids and stabilize photosystem II, maintaining plant photosynthesis under adverse conditions (Knaupp et al., 2011).

D. The role of RFOs in biotic stress response

Induced systemic resistance (ISR) and systemic acquired resistance are two types of resistance against pathogenic attacks induced in plants upon appropriate stimulation before contact with pathogens (Kim et al., 2008). Two previous studies have indicated the important roles of RFOs in regulating *Pseudomonas chlororaphis* O6-mediated ISR in plants (Kim et al., 2008). Transcriptional induction of *C. sativus* GolS1 (*CsGolS1*) and the resultant accumulation of galactinol are observed earlier in O6-treated cucumber plants than in control plants after *Corynespora cassicola* challenge. *CsGolS1*-overexpressing transgenic tobacco plants, which show increased accumulation of galactinol, exhibit constitutive resistance against the pathogens *Botrytis cinerea* and *Erwinia carotovora* (Kim et al., 2008). Exogenous galactinol treatment remarkably increases the resistance of wild-type tobacco plants against pathogen infection, at least partially through the activation of defense-related genes, such as pathogenesis-related protein 1a (PR1a) and PR1b.

In *Arabidopsis*, *AtGolS1*, the ortholog of cucumber *CsGolS1*, is specifically induced by the pathogen *B. cinerea* (Cho et al., 2010). Simultaneous overexpression of melon *CmGolS1*, cucumber *CsRS*, and *Alonsoa meridionalis* AmSTS in *Arabidopsis* resulted in a strong accumulation of RFOs in the transgenic plants, which showed enhanced resistance to the green peach aphid. Contrary to the positive roles of *GolS* in

Table 1. Continued.
Gene name
ZmAAGA1 (ZmRS10)
OsAGA1 (Osh69)
AtSIP2 (AtRS2)
AtSIP3 (AtDIN10)
ClAGA2
CsAGA1, CsAGA2
CsAGA2
AtAGAL2
AtAGAL2
VvAGAL1
regulating disease and pest resistance, GolS genes in poplar seem to play negative roles in resistance; the expression levels of two endogenous GolS genes are significantly downregulated and the galactinol level is reduced in wild-type poplar leaves inoculated with leaf rust (Melampsora acetidioles) (La Mantia et al., 2018). In addition, poplar plants overexpressing AtGolS3 and CsRS exhibit increased galactinol and raffinose contents and decreased leaf rust resistance, while GolS-silenced poplar plants, which have lower galactinol concentrations, show significantly higher leaf rust resistance than the AtGolS3-overexpressing plants. The decreased leaf rust resistance of AtGolS3 and CsRS overexpressing plants may be at least in part due to the reduced expression of salicylic acid (SA) signaling genes as well as the reduced level of SA in these transgenics (La Mantia et al., 2018). Intriguingly, antagonism between SA and myo-inositol, an essential substance for the synthesis of galactinol, was identified in Arabidopsis plants infected with Pseudomonas syringae (Chaouch and Noctor, 2010). Myo-inositol suppresses the accumulation of SA and abolishes the resistance to virulent bacteria in catalase-deficient plants. Taken together, these results suggest that RFOs play pivotal roles in plant biotic stress response and that their specific roles depend on the pathogen the plant encounters.

VII. Concluding remarks and future perspectives

Compelling evidence is accumulating that induction of the expression of RFO biosynthetic genes (especially GolS and RS) and the accumulation of RFOs (mainly galactinol and raffinose) are general responses of plants to various abiotic and biotic stresses and that high levels of RFOs lead to enhanced tolerance of plants to different stresses. More strikingly, the roles of RFOs in seed vigor, plant growth, and development have also been reported by recent studies, supporting the existential importance of RFOs in the plant kingdom.

Although great progress has been made, our knowledge of the specific roles of RFOs in plant development and the responses of RFOs to different plant stresses are still very limited. Systematic studies on the origin and evolution of RFO metabolic pathways will help us to understand the relationship between RFO functions and adaptive evolution in plants. In addition, comparative analysis of anatomical structure in more species, together with spatially resolved metabolomics studies will help reveal the mechanism of source-to-sink transport of RFOs in plants. Moreover, systemic studies on the molecular mechanisms by which RFOs modulate plant development, stress tolerance, and seed vigor are still largely lacking. With the application of cutting-edge technologies, we can expect that more specific roles of RFO metabolic genes will be validated and their regulatory mechanisms fully understood in the next few years. Crucially, the development of genome editing technology means that in the near future key RFO metabolism enzymes could serve as promising targets for improving crop yield or quality by achieving the right balance of RFOs. This is especially important for legumes, where reduction of the RFO content in seeds could make them more suitable for consumption by humans and monogastric animals.

Funding

We thank the joint support from the Science and Technology Program of Guangdong Province (2021A0505030050), the Key Realm R&D Program of Guangdong Province (2020B0202090005), the Special Funds for Scientific Innovation Strategy-construction of High Level Academy of Agriculture Science (R2020PY-JX019 and R2020PY-JX001), the Project of Collaborative Innovation Center of Guangdong Academy of Agricultural Sciences (XTXM202203), and the Natural Science Foundation of Guangdong Province (2021A1515011107).

References

Ainsworth, E. A., and Bush, D. R. 2011. Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol. 155: 64–69. doi:10.1104/pp.110.167684

Amtmann, A. 2009. Learning from evolution: thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol. Plant. 2: 3–12. doi:10.1093/mp/ssn094

Arunraj, R., Skori, L., Kumar, A., Hickerson, N. M. N., Shoma, N., Vairamani, M., and Samuel, M. A. 2020. Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in Cicer arietinum. Plant Signal. Behav. 15: 1709707. doi:10.1080/15592324.2019.1709707

Ayre, B.G., Keller, F., and Turgeon, R. 2003. Symplastic continuity between companion cells and the translocation stream: long-distance transport is controlled by retention and retrieval mechanisms in the phloem. Plant Physiol. 131: 1518–1528. doi:10.1104/pp.012054

Bachmann, M., and Keller, F. 1995. Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. (inter- and intracellular compartmentation). Plant Physiol. 109: 991–998. doi:10.1104/pp.109.3.991
Bachmann, M., Matile, P., and Keller, F. 1994. Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. (cold acclimation, translocation, and sink to source transition: discovery of chain elongation enzyme). *Plant Physiol.* 105: 1335–1345. doi:10.1104/pp.105.4.1335

Bentsink, L., Alonso-Blanco, C., Vreugdenhil, D., Tesnier, K., Groot, S. P., and Koornneef, M. 2000. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. *Plant Physiol.* 124: 1595–1604. doi:10.1104/pp.124.4.1595

Bernal-Lugo, I., and Leopold, A. C. 1992. Changes in soluble carbohydrates during seed storage. *Plant Physiol.* 98: 1207–1210. doi:10.1104/pp.98.3.1207

Blöchl, A., March, G., Soudioux, M., Peterbauer, T., and Richter, A. 2005. Induction of raffinose oligosaccharide biosynthesis by abscisic acid in somatic embryos of alfalfa (*Medicago sativa* L.). *Plant Sci.* 168: 1075–1082. doi:10.1016/j.plantsci.2004.12.004

Blöchl, A., Peterbauer, T., Hofmann, J., and Richter, A. 2008. Enzymatic breakdown of raffinose family oligosaccharides in pea seeds. *Planta* 228: 99–110. doi:10.1007/s00425-008-0722-4

Blöchl, A., Peterbauer, T., and Richter, A. 2007. Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds. *J. Plant Physiol.* 164: 1093–1096. doi:10.1016/j.jplph.2006.10.010

Brauner, K., Birami, B., Horst, Brauner, H. A., and Heyer, A. G. 2018. Diurnal periodicity of assimilate transport shapes resource allocation and whole-plant carbon balance. *Plant J.* 94: 776–789. doi:10.1111/tpj.13898

Brenac, P., Horbowicz, M., Downer, S., Dickerman, A., Smith, M., and Obendorf, R. 1997. Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation. *J. Plant Physiol.* 150: 481–488. doi:10.1016/S0176-1617(97)80102-2

Cacela, C., and Hincha, D.K. 2006. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidycholine, but not for lyoprotection of liposomes. *Biophys. J.* 90: 2831–2842. doi:10.1529/biophysj.105.074427

Chauotch, S., and Noctor, G. 2010. Myo-inositol abolishes salicylic acid-dependent cell death and pathogen defence responses triggered by peroxisomal hydrogen peroxide. *New Phytol.* 188: 711–718. doi:10.1111/j.1469-8137.2010.03453.x

Chen, Y., and Burris, J.S. 1990. Role of carbohydrates in desiccation tolerance and membrane behavior in maturating maize seed. *Crop Sci.* 30: 971–975. doi:10.2135/cropsci1990.0011183x0030000005002x

Chen, B. X., Fu, H., Gao, J. D., Zhang, Y. X., Huang, W. J., Chen, Z. J., Qi-Zhang, Yan, S. J., Kim, K., Liu, J. 2022. Identification of metabolomic biomarkers of seed vigor and aging in hybrid rice. *Rice (N Y)* 15(1): 7. doi:10.1186/s12284-022-00552-w.

Cho, S., Kang, E., Kim, M., Yoo, S., Im, Y., Kim, Y., Yang, K. Y., Kim, K., Kim, K., Choi, Y., and Cho, B. 2010. Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in *Arabidopsis thaliana*. *Botany* 88: 452–461. doi:10.1139/B10-009

Chrost, B., Kolukisaouglu, U., Schulz, B., and Krupinska, K. 2007. An alpha-galactosidase with an essential function during leaf development. *Planta* 225: 311–320. doi:10.1007/s00425-006-0350-9

Coelho, A. I., Berry, G. T., and Rubio-Gozalbo, M. E. 2015. Galactose metabolism and health. *Curr. Opin. Clin. Nutr. Metab. Care* 18: 422–427. doi:10.1097/mcco.0000000000000189

Cui, L. H., Byun, M. Y., Oh, H. G., Kim, S. J., Lee, J., Park, H., Lee, H., and Kim, W. T. 2020. Poaceae type II galactinol synthase 2 fromantarctic flowering plant *Deschampsia antarctica* and rice improves cold and drought tolerance by accumulation of raffinose family oligosaccharides in transgenic rice plants. *Plant Cell Physiol.* 61: 88–104. doi:10.1093/pch/aay180

Daldoul, S., Tourni, I., Reustle, G. M., Krzacal, G., Ghorbel, A., Mlki, A., and Hoyer, M. U. 2012. Molecular cloning and characterisation of a cDNA encoding a putative alkaline alpha-galactosidase from grapevine (*Vitis vinifera* L.) that is differentially expressed under osmotic stress. *Acta Physiol. Plant.* 34: 891–903. doi:10.1007/s11738-011-0887-5

de Medeiros, V. P. B., de Souza, E. L., de Albuquerque, T. M. R., da Costa Sassi, C. F., dos Santos Lima, M., Sivieri, K., Pimentel, T. C., and Magnani, M. 2021. Freshwater microalgae biomasses exert a prebiotic effect on human colonic microbiota. *Algal Res.* 60: 102547. doi:10.1016/j.algal.2021.102547

de Souza Vidigal, D., Willems, L., van Arkel, J., Dekkers, B. J. W., Hilhorst, H. W. M., and Bentsink, L. 2016. Galactinol as marker for seed longevity. *Plant Sci.* 246: 112–118. doi:10.1016/j.plantsci.2016.02.015

Dierking, E. C., and Bilyeu, K. D. 2009. Raffinose and stachyose metabolism are not required for efficient soybean seed germination. *J. Plant Physiol.* 166: 1329–1335. doi:10.1016/j.jplph.2009.01.008

Downie, B., Gurusinge, S., Dahal, P., Thacker, R. R., Snyder, J. C., Nonogaki, H., Yin, K., Fukunaga, K., Alvarado, V., and Bradford, K. J. 2003. Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. *Plant Physiol.* 131: 1347–1359. doi:10.1104/pp.016386

Egert, A., Eicher, B., Keller, F., and Peters, S. 2016. Evidence for water deficit-induced mass increases of raffinose family oligosaccharides (RFOs) in the leaves of three Craterostigma resurrection plant species. *Front Physiol.* 6: 206. doi: 10.3389/fphys.2015.00206

Elango, D., Rajendran, K., Van der Laan, L., Sebasti, S., Raigne, I., Thaiparambil, N. A., El Haddad, N., Raja, B., Wang, W., Ferela, A., Chiteri, K. O., Thudi, M., Varshney, R. K., Chopra, S., Singh, A., and Singh, A. K. 2022. Raffinose family oligosaccharides: friend or foe for human and plant health? *Front. Plant Sci.* 13: 829118. doi:10.3389/fpls.2022.829118

El Sayed, A. I., Rafudeen, M. S., and Golldack, D. 2014. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. *Plant Biol.* 16: 1–8. doi:10.1111/plb.12053

Findling, S., Zanger, K., Krueger, S., and Lohaus, G. 2015. Subcellular distribution of raffinose oligosaccharides and other metabolites in summer and winter leaves of *Ajuga reptans* (Lamiaceae). *Planta* 241: 229–241. doi:10.1007/s00425-014-2183-2
Fink, D., Dobbelstein, E., Barbian, A., and Lohaus, G. 2018. Ratio of sugar concentrations in the phloem sap and the cytosol of mesophyll cells in different tree species as an indicator of the phloem loading mechanism. *Planta* **248**: 661–673. doi:10.1007/s00425-018-2933-7

Gangl, R., Behmüller, R., and Tenhaken, R. 2015. Molecular cloning of AtRFS4, a seed specific multifunctional RFO synthase/galactosylhydrodrolase in *Arabidopsis thaliana*. *Front. Plant Sci.* **6**: 789–789. doi:10.3389/fpls.2015.00789

Gangl, R., and Tenhaken, R. 2016. Raffinose family oligosaccharides act as galactose stores in seeds and are required for rapid germination of Arabidopsis in the dark. *Front. Plant Sci.* **7**: 1115. doi:10.3389/fpls.2016.01115

Gilbert, G. A., Wilson, C., and Madore, M. A. 1997. Root-zone salinity alters raffinose oligosaccharide metabolism and transport in coleus. *Plant Physiol.* **115**: 1267–1276. doi:10.1104/pp.115.3.1267

Gil, L., Yaron, I., Shalitin, D., Sauer, N., Turgeon, R., and Wolf, S. 2011. Sucrose transporter plays a role in phloem loading in CMV-infected melon plants that are defined as symplastic loaders. *Plant J.* **66**: 366–374. doi:10.1111/j.1365-313X.2011.04498.x

Gu, L., Jiang, T., Zhang, C., Li, X., Wang, C., Zhang, Y., Li, T., Dirk, L., Downie, A., and Zhao, T. 2019. Maize HSFA 2 and HSFP 2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis. *Plant J.* **100**: 128–141. doi:10.1111/tip.14434

Gu, L., Zhang, Y., Zhang, M., Li, T., Dirk, L. M., Downie, B., and Zhao, T. 2016. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A. *Plant Mol. Biol.* **90**: 157–170. doi:10.1007/s11103-015-0403-1

Gurusingshe, S., and Bradford, K. 2001. Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds. *Seed Sci. Res.* **11**: 121–134. doi:10.1079/SSR200167

Haab, C. I., and Keller, F. 2002. Purification and characterization of the raffinose family oligosaccharide chain elongation enzyme, galactan: galactan galactosyltransferase (GGT), from *Ajuga reptans* leaves. *Physiol. Plant.* **114**: 361–371. doi:10.1046/j.1399-3054.2002.0140305.x

Han, Q., Qi, J., Hao, G., Zhang, C., Wang, C., Dirk, L. M. A., Downie, A. B., and Zhao, T. 2020. ZmDREB1A regulates RAFFINOSE SYNTHASE controlling raffinose accumulation and plant chilling stress tolerance in maize. *Plant Cell Physiol.* **61**: 331–341. doi:10.1093/pcp/pcz200

Hannah, M. A., Zuther, E., Buchel, K., and Heyer, A. G. 2006. Transport and metabolism of raffinose family oligosaccharides in transgenic potato. *J. Exp. Bot.* **57**: 3801–3811. doi:10.1093/jxb/erl152

Himuro, Y., Ishiyama, K., Morii, F., Gondo, T., Takahashi, F., Shinozaki, K., Kobayashi, M., and Akashi, R. 2014. Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot model *Brachypodium distachyon*. *J. Plant Physiol.* **171**: 1127–1131. doi:10.1016/j.jplph.2014.04.007

Holzinger, A., Kaplan, F., Blaas, K., Zeichmann, B., Komsich-Buchmann, K., and Becker, B. 2014. Transcriptomics of desiccation tolerance in the streptophyte green alga *Klebsormidium* reveal a land plant-like defense reaction. *PLoS One* **9**: e110630. doi:10.1371/journal.pone.0110630

Hua, B., Zhang, M., Zhang, J., Dai, H., Zhang, Z., and Miao, M. 2021. CsAGA1 and CsAGA2 mediate RFO hydrolysis in partially distinct manner in cucumber fruits. *Int. J. Mol. Sci.* **22**: 13285. doi:10.3390/ijms222413285

Iftime, D., Hannah, M. A., Peterbauer, T., and Heyer, A. G. 2011. Stachyose in the cytosol does not influence freezing tolerance of transgenic Arabidopsis expressing stachyose synthase from adzuki bean. *Plant Sci.* **180**: 24–30. doi:10.1016/j.plantsci.2010.07.012

Jang, J. H., Shang, Y., Kang, H. K., Kim, S. Y., Kim, B. H., and Nam, K. H. 2018. Arabidopsis galactinol synthases 1 (AtGOLS1) negatively regulates seed germination. *Plant Sci.* **267**: 94–101. doi:10.1016/j.plantsci.2017.11.010

Jing, Y., Lang, S., Wang, D., Xue, H., and Wang, X. F. 2018. Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds. *J. Plant Physiol.* **230**: 109–121. doi:10.1016/j.jplph.2018.10.011

Kalt-Torres, W., Kerr, P. S., Usuda, H., and Huber, S. C. 1987. Diurnal changes in maize leaf photosynthesis: I. carbon exchange rate, assimilate export rate, and enzyme activities. *Plant Physiol.* **83**: 283–288. doi:10.1093/pp.83.2.294

Kannan, U., Sharma, R., Gangola, M. P., and Chibbar, R. 2018. Improving grain quality in pulses: strategies to reduce raffinose family oligosaccharides in seeds. *Ekin J.* **4**: 70–88.

Kannan, U., Sharma, R., Gangola, M. P., Ganeshan, S., Baga, M., and Chibbar, R. N. 2021. Sequential expression of raffinose synthase and stachyose synthase corresponds to successive accumulation of raffinose, stachyose and verbascose in developing seeds of *Lens culinaris* Medik. *J. Plant Physiol.* **265**: 153494. doi:10.1016/j.jplph.2021.153494

Keller, I., Müdsam, C., Rodrigues, C. M., Kischka, D., Zierer, W., Sonnewald, U., Harms, K., Czarnecki, O., Fiedler-Wiechers, K., Koch, W., Neuhaus, H. E., Ludewig, F., and Pomerrenig, B. 2021. Cold-triggered induction of ROS- and raffinose metabolism in freezing-sensitive taproot tissue of sugar beet. *Front. Plant Sci.* **12**: 715767. doi:10.3389/fpls.2021.715767

Khan, M., Hu, J., Dahro, B., Ming, R., Zhang, Y., Wang, Y., Alhag, A., Li, C., and Liu, J. H. 2021. ERF108 from *Poncirus trifoliata* (L.) Raf. functions in cold tolerance by modulating raffinose synthesis through transcriptional regulation of PrRafS. *Plant J.* **108**: 705–724. doi:10.1111/tpj.15465

Kim, M. S., Cho, S. M., Kang, E. Y., Im, Y. J., Hwangbo, H., Kim, Y. C., Ryu, C. M., Yang, K. Y., Chung, G. C., and Cho, B. H. 2008. Galactinol is a signaling component of the induced systemic resistance caused by pseudomonas chlororaphis O6 root colonization. *Mol. Plant Microbe Interact.* **21**: 1643–1653. doi:10.1094/MPMI-21-12-1643

Klotke, J., Kopka, J., Gatzke, N., and Heye, A. G. 2004. Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of *Arabidopsis thaliana* with contrasting cold adaptation-evidence for a role of raffinose in cold acclimation. *Plant Cell Environ.* **27**: 1395–1404. doi:10.1111/j.1365-3040.2004.01242.x

Knaupp, M., Mishra, K. B., Nedbal, L., and Heyer, A. G. 2011. Evidence for a role of raffinose in stabilizing
photosystem II during freeze-thaw cycles. *Planta* **234**: 477–486. doi:10.1007/s00425-011-1413-0

Knop, C., Voitekhhovskaja, O., and Lohaus, G. 2001. Sucrose transporters in two members of the scrophulariaceae with different types of transport sugar. *Planta* **213**: 80–91. doi:10.1007/s0042500000465

Kölling, K., Müller, A., Flütsch, P., and Zeeman, S. C. 2013. A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in *Arabidopsis thaliana*. *Plant Methods* **9**: 45. doi:10.1186/1746-4811-9-45

Koster, K. L., and Leopold, A. C. 1988. Sugars and desiccation tolerance in seeds. *Plant Physiol.* **88**: 829–832. doi:10.1104/pp.88.3.829

La Mantia, J., Unda, F., Douglas, C. J., Mansfield, S. D., and Hamelin, R. 2018. Overexpression of AtGolS3 and CsRFS in poplar enhances ROS tolerance and represses defense response to leaf rust disease. *Tree Physiol.* **38**: 457–470. doi:10.1093/treephys/tpx100

Lahuta, L. B., Pluskota, W. E., Stelmaszewska, J., and Szablitska, J. 2014. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (*Pisum sativum* L.). *J. Plant Physiol.* **171**: 1306–1314. doi:10.1016/j.jplph.2014.04.012

Lee, R. H., Lin, M. C., and Chen, S. C. 2004. A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence. *Plant Mol. Biol.* **55**: 281–295. doi:10.1007/s11103-004-0641-0

Li, T., Zhang, Y., Liu, Y., Li, X., Hao, G., Han, Q., Dirk, L. M. A., Downie, A. B., Ruan, Y. L., Wang, J., Wang, G., and Zhao, T. 2020. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants. *J. Biol. Chem.* **295**: 8064–8077. doi:10.1038/jbc.RA120.01348

Li, T., Zhang, Y., Wang, D., Liu, Y., Dirk, L. M. A., Goodman, J., Downie, A. B., Wang, J., Wang, G., and Zhao, T. 2017. Regulation of seed vigour by manipulation of raffinose family oligosaccharides in maize and *Arabidopsis thaliana*. *Mol. Plant*. **10**: 1540–1555. doi:10.1016/j.molp.2017.10.014

Li, X., Zhou, J., Jing, Y., Liu, X., and Wang, X. 2011. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development. *J. Plant Physiol.* **168**: 1761–1770. doi:10.1016/j.jplph.2011.04.006

Liesche, J., Martens, H. J., and Schulz, A. 2011. Symplastic transport and phloem loading in gymnosperm leaves. *Protoplasma* **248**: 181–190. doi:10.1007/s00709-010-0239-0

Liu, H., Liu, X., Zhao, Y., Nie, J., Yao, X., Lv, L., Yang, J., Ma, N., Guo, Y., Li, Y., Yang, X., Lin, T., and Sui, X. 2022. Alkaline α-galactosidase 2 (CsAGA2) plays a pivotal role in mediating source-sink communication in cucumber. *Plant Physiol.* **152**: kia152. doi:10.1093/plphys/kia152

Liu, Y., Zhang, L., Chen, L., Ma, H., Ruan, Y., Xu, T., Xu, C., He, Y., and Qi, M. 2016. Molecular cloning and expression of an encoding galactinol synthase gene (AnGolS1) in seedling of *Amomum compactum* nanus. *Sci. Rep.* **6**: 36113. doi:10.1038/srep36113

Lü, J., Sui, X., Ma, S., Li, X., Liu, H., and Zhang, Z. 2017. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance. *Plant Mol. Biol.* **95**: 1–15. doi:10.1007/s11103-017-0621-9

Ma, S., Li, Y., Li, X., Sui, X., and Zhang, Z. 2019. Phloem unloading strategies and mechanisms in crop fruits. *J. Plant Growth Regul.* **38**: 494–500. doi:10.1007/s00344-018-9864-1

Ma, S., Lv, J., Li, X., Ji, T., Zhang, Z., and Gao, L. 2021. Galactinol synthase gene 4 (CsGolS4) increases cold and drought tolerance in *Cucumis sativus* L. by inducing RFO accumulation and ROS scavenging. *Environ. Exp. Bot.* **185**: 104406. doi:10.1016/j.envexpbot.2021.104406

Ma, S., Sun, L., Sui, X., Li, Y., Chang, Y., Fan, J., and Zhang, Z. 2019. Phloem loading in cucumber: combined symplastic and apoplastic strategies. *Plant J.* **98**: 391–404. doi:10.1111/tpj.14224

McCaskill, A., and Turgeon, R. 2007. Phloem loading in *Verbascum phoenicium* L. depends on the synthesis of raffinose-family oligosaccharides. *Proc. Natl. Acad. Sci. U.S.A.* **104**: 19619–19624. doi:10.1073/pnas.0707368104

Morsy, M. R., Jouve, L., Hausman, J. F., Hofmann, L., and Stewart, J. M. 2007. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (*Oryza sativa L.*) genotypes contrasting in chilling tolerance. *J. Plant Physiol.* **164**: 157–167. doi:10.1016/j.jplph.2005.12.004

Mukherjee, S., Sengupta, S., Mukherjee, A., Basak, P., and Majumder, A. L. 2019. Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. *Planta* **249**: 891–912. doi:10.1007/s00425-018-3046-z

Nägele, T., and Heyer, A. G. 2013. Approximating subcellular organization of carbohydrate metabolism during cold acclimation in different natural accessions of *Arabidopsis thaliana*. *New Phytol.* **198**: 777–787. doi:10.1111/nph.12201

Nishizawa, A., Yabuta, Y., and Shigeoka, S. 2008. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. *Plant Physiol.* **147**: 1251–1263. doi:10.1104/pp.108.122465

Noronha, H., Silva, A., Silva, T., Frusciante, S., Diretto, G., and Geros, H. 2021. VviRafS5 is a raffinose synthase involved in cold acclimation in grapevine woody tissues. *Front. Plant Sci.* **12**: 754537. doi:10.3389/fpls.2021.754537

Obata, T., and Fernie, A. R. 2012. The use of metabolomics to dissect plant responses to abiotic stresses. *Cell. Mol. Life Sci.* **69**: 3225–3243. doi:10.1007/s00018-012-1091-5

Öner-Sieben, S., and Lohaus, G. 2014. Apoplastic and symplastic phloem loading in and *Quercus robur* and *Fraxinus excelsior*. *J. Exp. Bot.* **65**: 1905–1916. doi:10.1093/jxb/eru066

Oparka, K., Roberts, A., Boevink, P., Santa Cruz, S., Roberts, I., Pradel, K., Imlau, A., Kotlizky, G., Sauer, N., and Epel, B. 1999. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. *Cell* **97**: 743–754. doi:10.1016/S0092-8674(00)80786-2

Peterbauer, T., Lahuta, L. B., Blöchl, A., Mucha, J., Jones, D. A., Hedley, C. L., Gérecki, R. J., and Richter, A. 2001. Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. *Plant Physiol.* **127**: 1764–1772. doi:10.1104/pp.010534

Peterbauer, T., Mucha, J., Mach, L., and Richter, A. 2002. Chain elongation of raffinose in pea seeds. Isolation, isolation,
characterization, and molecular cloning of multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. J. Biol. Chem. 277: 194–200. doi:10.1074/jbc.M109734200

Peterbauer, T., and Richter, A. 2007. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res. 11: 185–197. doi:10.1017/S0960258507000175

Peters, S., Egert, A., Stieger, B., and Keller, F. 2010. Functional identification of Arabidopsis ATSP2 (At3g57520) as an alkaline α-galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression pattern. Plant Cell Physiol. 51: 1815–1819. doi:10.1093/pcp/pcq127

Peters, S., and Keller, F. 2009. Frost tolerance in excised leaves of the common bugle (Ajuga reptans L.) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs). Plant Cell Environ. 32: 1099–1107. doi:10.1111/j.1365-3040.2009.01991.x

Peters, S., Mundree, S. G., Thomson, J. A., Farrant, J. M., and Keller, F. 2007. Protection mechanisms in the resurrection plant Xerophyta viscose (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J. Exp. Bot. 58: 1947–1956. doi:10.1093/jxb/erm056

Phan, T., Ishibashi, Y., Yuasa, T., and Iwaya-Inoue, M. 2009. Chilling stress induces galactinol synthase (OsGolS1) in rice seedlings. Cryobiol. Cryotechnol. 56: 139–146. doi:10.20588/cryobolcryotechnol.56.2.139

Pukacka, S., Rajatczak, E., and Kalemba, E. 2009. Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. J. Plant Physiol. 166: 1381–1390. doi:10.1016/j.jplph.2009.02.013

Ren, Y., Li, M., Guo, S., Sun, H., Zhao, J., Zhang, J., Liu, G., He, H., Tian, S., Yu, Y., Gong, G., Zhang, H., Zhang, X., Alseekh, S., Fernie, A. R., Scheller, H. V., and Xu, Y. 2021. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. Plant Cell 33: 1554–1573. doi:10.1093/pcc/koa055

Rennie, E. A., and Turgeon, R. 2009. A comprehensive picture of phloem loading strategies. Proc. Natl. Acad. Sci. U.S.A. 106: 14162–14167. doi:10.1073/pnas.0902279106

Ruan, Y., Llewellyn, D., and Furbank, R. 2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+-transporters and transporters. Plant Cell 13: 47–60. doi:10.2307/3871152

Ruan, Y., and Patrick, J. 1995. The cellular pathway of post-phloem sugar transport in developing tomato fruit. Planta 196: 434–444. doi:10.1007/BF00203641

Ruan, Y. L. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 65: 33–67. doi:10.1146/annurev-arplant-050213-040251

Saito, M., and Yoshida, M. 2011. Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress. J. Plant Physiol. 168: 2268–2271. doi:10.1016/j.jplph.2011.07.002

Salvi, P., Kamble, N. U., and Majee, M. 2018. Stress-inducible galactinol synthase of chickpea (CaGols) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation. Plant Cell Physiol. 59: 155–166. doi:10.1093/pcp/pcx170

Salvi, P., Saxena, S. C., Petla, B. P., Kamble, N. U., Kaur, H., Verma, P., Rao, V., Ghosh, S., and Majee, M. 2016. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation. Sci. Rep. 6: 35088. doi:10.1038/srep35088

Schneider, T., and Keller, F. 2009. Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope. Plant Cell Physiol. 50: 2174–2182. doi:10.1093/pcp/pcp151

Selvaraj, M. G., Ishizaki, T., Valencia, M., Ogawa, S., Dedicova, B., Ogata, T., Yoshiwara, K., Maruyama, K., Kusano, M., Saito, K., Takahashi, F., Shinozaki, K., Nakashima, K., and Ishitani, M. 2017. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnol. J. 15: 1465–1477. doi:10.1111/pbi.12731

Sengupta, S., Mukherjee, S., Basak, P., and Majumder, A. L. 2015. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 6: 656. doi:10.3389/fpls.2015.00656

Serrano, N., Ling, Y., Bahieldin, A., and Mahfouz, M. M. 2019. Thermoprimeing reprograms metabolic homeostasis to confer heat tolerance. Sci. Rep. 9: 181. doi:10.1038/s41598-018-36484-z

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., and Zheng, B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24: 2452. doi:10.3390/molecules24132452

Shimosaka, E., and Ozawa, K. 2015. Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice. Breed. Sci. 65: 363–371. doi:10.1270/jsbbs.65.363

Slewinski, T. L., and Braun, D. M. 2010. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci. 178: 341–349. doi:10.1016/j.plantsci.2010.01.010

Sprenger, N., and Keller, F. 2000. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J. 21: 249–258. doi:10.1046/j.1365-313x.2000.00671.x

Stadler, R., Lauterbach, C., and Sauer, N. 2005a. Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies sympodial domains in Arabidopsis seeds and embryos. Plant Physiol. 139: 701–712. doi:10.1104/pp.105.065607

Stadler, R., Wright, K., Lauterbach, C., Amon, G., Gahrtz, M., Feuerstein, A., Oparka, K., and Sauer, N. 2005b. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J. 41: 319–331. doi:10.1111/j.1365-313x.2004.02298.x

Sui, X. L., Meng, F. Z., Wang, H. Y., Wei, Y. X., Li, R. F., Wang, Z. Y., Hu, L. P., Wang, S. H., and Zhang, Z. X. 2012. Molecular cloning, characteristics and low temperature response of raffinose synthase gene in Cucumis sativus L. J. Plant Physiol. 169: 1883–1891. doi:10.1016/j.jplph.2012.07.019
Sun, Q., Huang, R., Zhu, H., Sun, Y., and Guo, Z. 2021. A novel Medicago truncatula calmodulin-like protein (MtCMML42) regulates cold tolerance and flowering time. *Plant J.* **108**: 1069–1082. doi:10.1111/tpj.15494

Sun, Z., Qi, X., Wang, Z., Li, P., Wu, C., Zhang, H., and Zhao, Y. 2013. Overexpression of TgGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. *Plant Physiol. Biochem.* **69**: 82–89. doi:10.1016/j.plaphy.2013.04.009

Suzuki, N. 2019. Temperature stress and responses in plants. *Int. J. Mol. Sci.* **20**: 2001. doi:10.3390/ijms20082001

Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2002. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. *Plant J.* **29**: 417–426. doi:10.1046/j.0960-7412.2001.01227.x

Tapernoux-Lithi, E. M., Böhm, A., and Keller, F. 2004. Cloning, functional expression, and characterization of the raffinose oligosaccharide chain elongation enzyme, galactan: galactan galactosyltransferase, from common bugle leaves. *Plant Physiol.* **134**: 1377–1387. doi:10.1104/pp.103.036210

Tohge, T., Ramos, M. S., Nunes-Nesi, A., Mutwil, M., Giavalisco, P., Steinhauser, D., Schellenberg, M., Willninter, L., Persson, S., Martinoa, E., and Fernie, A. R. 2011. Toward the storage metabolome: profiling the barley vacuole. *Plant Physiol.* **157**: 1469–1482. doi:10.1104/pp.111.185710

Tohge, T., Watanabe, M., Hoefgen, R., and Fernie, A. R. 2013. The evolution of phenylpropanoid metabolism in the green lineage. *Crit. Rev. Biochem. Mol. Biol.* **48**: 123–152. doi:10.1080/13995348.2012.758083

Unda, F., Kim, H., Hefer, C., Ralph, J., and Mansfield, S. D. 2017. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development. *Plant Biotechnol. J.* **15**: 865–878. doi:10.1111/pbi.12682

Vandecasteele, C., Teulat-Merah, B., MorÈRe-Le Paven, M. C., Leprince, O., Ly Vu, B., Vianu, L., Ledroit, L., Pelletier, S., Payet, N., Satour, P., Lebrass, C., Gallardo, K., Huguet, T., Limami, A. M., Prosperi, J. M., and Buïsink, J. 2011. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula. *Plant Cell Environ.* **34**: 1473–1487. doi:10.1111/j.1365-3040.2011.02346.x

Van den Ende, W. 2013. Multifunctional fructans and raffinose family oligosaccharides. *Front. Plant Sci.* **4**: 247. doi:10.3389/fpls.2013.00247

Van den Ende, W., and Valleru, R. 2009. Sucrose, succrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? *J. Exp. Bot.* **60**: 9–18. doi:10.1093/jxb/erm297

Voitsekhovskaja, O. V., Koroleva, O. A., Bataşhev, D. R., Knop, C., Tomos, A. D., Gamalei, Y. V., Heldt, H., and Lohaus, G. 2006. Phloem loading in two scrophulariaceae species. What can drive symplastic flow via plasmodesmata? *Plant Physiol.* **140**: 383–395. doi:10.1104/pp.105.068312

Voitsekhovskaja, O. V., Rudashevsksaya, E. L., Demchenko, K. N., Pakhomova, M. V., Bataşhev, D. R., Gamalei, Y. V., Lohaus, G., and Pawlowski, K. 2009. Evidence for functional heterogeneity of sieve element-companion cell complexes in minor vein phloem of Alnus serotina. *J. Exp. Bot.* **60**: 1873–1883. doi:10.1093/jxb/erp074

Wang, W. Q., Liu, S. J., Song, S. Q., and Möller, I. M. 2015. Proteomics of seed development, desiccation tolerance, germination and vigor. *Plant Physiol. Biochem.* **86**: 1–15. doi:10.1016/j.plaphy.2014.11.003

Wang, X., Li, S., Zhang, X., Gao, L., Ruan, Y. L., Tian, Y., and Ma, S. 2022. From raffinose family oligosaccharides to sucrose and hexoses: gene expression profiles underlying host-to-nematode carbon delivery in Cucumis sativus roots. *Front. Plant Sci.* **13**: 823382. doi:10.3389/fpls.2022.823382

Wang, Z., Zhu, Y., Wang, L., Liu, X., Liu, Y., Phillips, J., and Deng, X. 2009. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BlGols1) promoter. *Planta* **230**: 1155–1166. doi:10.1007/s00425-009-0143-3

Yadav, U. P., Ayre, B. G., and Bush, D. R. 2015. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality. *Front. Plant Sci.* **6**: 275. doi:10.3389/fpls.2015.00275

Yan, S., Huang, W., Gao, J., Fu, H., and Liu, J. 2018. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging. *Plant Physiol. Biochem.* **127**: 590–598. doi:10.1016/j.plaphy.2018.04.020

Zhang, C., and Turgenev, R. 2018. Mechanisms of phloem loading. *Curr. Opin. Plant Biol.* **43**: 71–75. doi:10.1016/j.pbi.2018.01.009

Zhang, J., Gu, H., Dai, H., Zhang, Z., and Miao, M. 2020. Alternative polyadenylation of the stacyose synthase gene mediates source-sink regulation in cucumber. *J. Plant Physiol.* **245**: 153111. doi:10.1016/j.jplph.2019.153111

Zhang, Y., Li, D., Dirk, L. M. A., Downie, A. B., and Zhao, T. 2021. ZmAGA1 hydrolyzes RFOs late during the lag phase of seed germination, shifting sugar metabolism toward seed germination over seed aging tolerance. *J. Agric. Food Chem.* **69**: 11606–11615. doi:10.1021/acs.jafc.1c03677

Zhao, T. Y., Martin, D., Meeley, R. B., and Downie, B. 2004a. Expression of the maize GALACTINOL SYNTHASE gene family: (II) Kernel abscission, environmental stress and myo-inositol influences accumulation of transcript in developing seeds and callus cells. *Plant. Physiol.* **121**: 647–655. doi:10.1104/pp.121.395-3054.2004.00368.x

Zhao, T. Y., Thacker, R., Corum, J. W., Snyder, J. C., Meeley, R. B., Obendorf, R. L., and Downie, B. 2004b. Expression of the maize GALACTINOL SYNTHASE gene family: (I) Expression of two different genes during seed development and germination. *Physiol. Plant.* **121**: 634–646. doi:10.1111/j.1399-3054.2004.00367.x

Zhao, T. Y., Corum, J., Mullens, J., Meeley, R. B., Helentjaris, T., Martin, D., and Downie, B. 2006. An alkaline z-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. *Seed Sci. Res.* **16**: 107–121. doi:10.1079/SSR2006243

Zhou, Y., Liu, Y., Wang, S., Shi, C., Zhang, R., Rao, J., Wang, X., Gu, X., Wang, Y., Li, D., and Wei, C. 2017. Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors. *J. Agric. Food Chem.* **65**: 2751–2759. doi:10.1021/acs.jafc.7b00377