Natural Competence Is a Major Mechanism for Horizontal DNA Transfer in the Oral Pathogen Porphyromonas gingivalis

Gena D. Tribble, Todd W. Rigney, Doan-Hieu V. Dao, Cindy T. Wong, Jennifer E. Kerr, Brendan E. Taylor, Sara Pacha, and Heidi B. Kaplan

Department of Periodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA, and Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA

ABSTRACT Porphyromonas gingivalis is a Gram-negative anaerobe that resides exclusively in the human oral cavity. Long-term colonization by P. gingivalis requires the bacteria to evade host immune responses while adapting to the changing host physiology and alterations in the composition of the oral microflora. The genetic diversity of P. gingivalis appears to reflect the variability of its habitat; however, little is known about the molecular mechanisms generating this diversity. Previously, our research group established that chromosomal DNA transfer occurs between P. gingivalis strains. In this study, we examine the role of putative DNA transfer genes in conjugation and transformation and demonstrate that natural competence mediated by comF is the dominant form of chromosomal DNA transfer, with transfer by a conjugation-like mechanism playing a minor role. Our results reveal that natural competence mechanisms are present in multiple strains of P. gingivalis, and DNA uptake is not sensitive to DNA source or modification status. Furthermore, extracellular DNA was observed for the first time in P. gingivalis biofilms and is predicted to be the major DNA source for horizontal transfer and allelic exchange between strains. We propose that exchange of DNA in plaque biofilms by a transformation-like process is of major ecological importance in the survival and persistence of P. gingivalis in the challenging oral environment.

IMPORTANCE P. gingivalis colonizes the oral cavities of humans worldwide. The long-term persistence of these bacteria can lead to the development of chronic periodontitis and host morbidity associated with tooth loss. P. gingivalis is a genetically diverse species, and this variability is believed to contribute to its successful colonization and survival in diverse human hosts, as well as evasion of host immune defenses and immunization strategies. We establish here that natural competence is the major driving force behind P. gingivalis DNA exchange and that conjugative DNA transfer plays a minor role. Furthermore, we reveal for the first time the presence of extracellular DNA in P. gingivalis biofilms, which is most likely the source of DNA exchanged between strains within dental plaque. These studies expand our understanding of the mechanisms used by this important member of the human oral flora to transition its relationship with the host from a commensal to a pathogenic relationship.
givalis type strains W83 and ATCC 33277 (18), we found that strain ATCC 33277, but not W83, is able to transfer plasmid DNA into Escherichia coli. Plasmid transfers were insensitive to treatment with DNase I, implying a mechanism most consistent with conjugation. We also documented that chromosomal DNA transfer occurs within and between P. gingivalis strains and hypothesized that the mechanism was similar to that of the plasmid transfer model (18).

Each of the genome sequences of strains W83 and ATCC 33277 (19, 20) contain genetic loci that encode homologues of the DNA transfer apparatus of the Bacteroides conjugative transposons cTnDot and cTn341 (21, 22). The Bacteroides DNA transfer locus contains 17 genes annotated alphabetically from traA to traQ (traA–Q), as well as a mobilization locus annotated as mob. The Bacteroides are the dominant anaerobes in the human intestinal flora and are close taxonomic relatives of the oral genera Porphyromonas and Prevotella (23). Extensive research has documented horizontal DNA transfer of antibiotic resistance genes throughout the human gut flora via conjugative transposons utilizing traA–Q-encoded transfer systems (24–28). Other members of the Bacteroides contain loci that encode homologues of traA–Q; however, outside the Bacteroides, the role of traA–Q is not defined. P. gingivalis type strains W83 and ATCC 33277 contain traA–Q regions that are genetically distinct from one another; in our previous study, we hypothesized that this sequence divergence was responsible for the differences in plasmid and chromosome DNA transfer frequencies between these two strains (18).

In this study, we examine the molecular mechanisms responsible for DNA exchange in the oral opportunistic pathogen P. gingivalis. Our initial working hypothesis was that P. gingivalis chromosomal DNA transfer was mediated by the traA–Q locus by a mechanism similar to chromosomal mobilization by cTns in the Bacteroides (29). However, in contrast to our expectations, we uncovered an efficient comF-dependent transformation system that is responsible for the majority of P. gingivalis DNA exchange.

RESULTS

traA–Q locus and DNA transfer

Our initial working hypothesis was that conjugation mediated by the traA–Q locus was responsible for chromosomal DNA transfer in strain W83. To test this hypothesis, we created a W83 strain with a complete deletion of the locus traA–Q (PG1473 to PG1486) and the contiguous mobilization locus mobABC (PG1488 to PG1490) by allelic replacement of the locus with the ermF marker (see Fig. S1 in the supplemental material). Assuming the conjugation hypothesis is correct, the traA–Q-mob locus should be required for DNA transfer, as it is for Bacteroides (30). To create a chromosomal marker for the comparative analysis of DNA transfer, we inserted the tetQ gene into the intergenic region downstream of the PG1244 gene in wild-type W83 and in the traA–Q-ermtF mutant, thus creating strains W83 PG1244 tetQ (W83 Tet’ where Tet’ indicates tetracycline resistance) and W83 PG1244 tetQ traA–Q-mob ermF (W83 Tet’ traA–Q-mob ermF). A second traA–Q deletion mutant was created in the W83 rifampin-resistant (Rif r) background, resulting in W83 Rif r traA–Q (Table 1).

To examine the involvement of the traA–Q locus in P. gingivalis DNA exchange, transfer assays with live strains were performed. For these assays, equal amounts of two strains (having Rif r or Tet’ markers) were mixed, plated at a high density on agar, and incubated anaerobically for 24 h. The mixture was then collected, diluted, and plated on agar medium selective for both DNA transfer markers (Table 2). As a result, each strain in the mixture can potentially serve as both recipient and donor of the chromosomal markers. The DNA transfer efficiencies shown are calculated as the total numbers of Tet’ and Rif r offspring divided by the number of input cells and are the averages of results from three or more independent replicates (n). The DNA transfer efficiency between wild-type strains of W83 Rif r and W83 Tet’ is 6.73 \(\times 10^{-5} \) (Table 2, first row). The pairing of the W83 Tet’ traA–Q-mob ermF mutant and the W83 Rif r traA–Q-mob ermF mutant resulted in an average DNA transfer efficiency of 2.02 \(\times 10^{-5} \) (Table 2, second row), which is 3-fold lower and significantly different from the wild-type efficiency (P = 0.01). However, these results do not demonstrate the complete loss of DNA transfer expected if the traA–Q-mob locus were exclusively required for DNA exchange.

The results in Table 2 are remarkably similar to those that we previously published; in that study, the DNA transfer assays utilized erythromycin and tetracycline resistance markers (18). In that case, the DNA transfer efficiency (7.6 \(\times 10^{-5} \) [\(\pm 6.6 \times 10^{-5} \)]) was not significantly different from the results shown here. To ensure that use of rifampin resistance as a marker does not result in high levels of background mutations, we tested P. gingivalis W83 to determine the rate of spontaneous rifampin resistance. The spontaneous mutation frequency for W83 is 2.54 \(\times 10^{-9} \),

Strain	Genomic marker	Mutation	Strain abbreviation	Source
P. gingivalis W83	PG1244 tetQ	traA–Q-mob ermF	W83 tetQ	ATCC 33277
P. gingivalis W83	traA–Q-mob ermF	W83 Rif r traA–Q-mob ermF	This study	
P. gingivalis ATCC 33277	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis ATCC 53977	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
P. gingivalis W83	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis W83	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
P. gingivalis W83	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis W83	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
P. gingivalis ATCC 33277	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis ATCC 53977	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
P. gingivalis ATCC 33277	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis ATCC 53977	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
P. gingivalis ATCC 33277	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis ATCC 53977	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
P. gingivalis ATCC 33277	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis ATCC 53977	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study

Strain	Genomic marker	Mutation	Strain abbreviation	Source
P. gingivalis W83	PG1244 tetQ	traA–Q-mob ermF	W83 tetQ	ATCC 33277
P. gingivalis W83	traA–Q-mob ermF	W83 Rif r traA–Q-mob ermF	This study	
P. gingivalis ATCC 33277	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis ATCC 53977	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
P. gingivalis W83	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis W83	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study	
P. gingivalis ATCC 33277	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis ATCC 53977	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
P. gingivalis ATCC 33277	PG1244 tetQ	traA–Q-mob ermF	W83 Tet’ traA–Q-mob ermF	This study
P. gingivalis ATCC 53977	PG1244 tetQ	traA–Q-mob ermF	W83 Rif’ traA–Q-mob ermF	This study
with a standard deviation of 3.01×10^{-9}, and thus does not significantly impact our DNA transfer efficiency results.

DNA uptake via transformation. As the tra–Q–mob locus is not the only system responsible for *P. gingivalis* DNA transfer, we redirected our efforts to investigate the existence of other DNA exchange mechanisms in *P. gingivalis*. To determine if exogenous chromosomal DNA is involved in DNA exchange, we repeated the DNA transfer assay with wild-type cells and included 30 U of DNase I enzyme during the overnight anaerobic incubation of the cells on agar. If extracellular DNA (eDNA) is important for DNA exchange, the presence of DNase I will reduce the amount of free DNA available and cause a significant decrease in the number of recovered Tet$^+$ and Rif$^+$ offspring. The results from this assay show (Table 2, third row) that the DNA transfer efficiency in the presence of DNase I is reduced 7-fold relative to that in its absence (7.85×10^{-6} relative to 6.73×10^{-5}, respectively). These results indicate that the presence of extracellular chromosomal DNA is important for DNA transfer.

To further investigate if DNA can be introduced into *P. gingivalis* by a transformation-like mechanism, we modified our DNA transfer assay by incubating the donor bacteria at 80°C for 10 min to lyse the cells and release native genomic DNA. The live recipient strain was then mixed with the dead donor and treated as detailed previously. As conjugation requires both a live donor and recipient cells, conjugation would be prohibited under these conditions. The results show (Table 3, first row) that W83 is transformed by incubation with dead donor cells with an efficiency (3.17×10^{-4}) that is significantly higher than the DNA transfer efficiency in the assay with live donor cells (Table 2, first row) ($P = 0.02$). As a control, the wild-type mixture was incubated overnight with 30 U of DNase I, which reduced the DNA transfer efficiency to 7.81×10^{-6} (Table 3, second row). Taken together, these results indicate that strain W83 has an active DNA uptake system that recognizes external DNA released from donor cells and thus appears to be naturally competent.

DNA exchange by transformation occurs in other *P. gingivalis* strains. We examined two additional *P. gingivalis* strains for competence by utilizing strains ATCC 33277 and ATCC 53977. These strains are genetically distinct from each other and from W83. Most notably, ATCC 33277 has a tra–Q gene cluster with minimal DNA identity to the W83 tra–Q locus (15, 31); the ATCC 33277 tra–Q gene products are predicted to be more similar to those found in conjugative *Bacteroides* transposons. Previously, we demonstrated that strain ATCC 33277, but not W83, is able to transfer plasmid DNA to *E. coli* by conjugation, and this transfer was not affected by DNase I treatment (18). We created ATCC 33277 and ATCC 53977 donor strains with PG1244 ΩtetQ as the transfer marker (Table 1). Based on published genome sequences (19, 20), the PG1244 loci are 96% similar in W83 and ATCC 33277, and our PCR analysis shows it to be present in strain ATCC 53977. We then utilized the DNA transfer assay with dead donor cells to determine if strains ATCC 33277 and ATCC 53977 are competent and to compare the transformation frequencies when the DNA donor is a self or nonself strain. The results indicate that all three *P. gingivalis* strains tested could be transformed by both self- and nonself DNA (Fig. 1). However, in all cases, W83 was transformed at significantly higher frequencies (10^{-4}) than either ATCC 33277 or ATCC 53977 (10^{-6}). There was no significant difference in the transformation efficiencies between self- and nonself donors for any of the strains. Thus, our results indicated that three divergent strains of *P. gingivalis* all possess competence systems in which genomic DNA uptake shows no preference for the donor strain.

Role of comF in DNA exchange. The *P. gingivalis* W83 genome has genes that are predicted to be associated with competence, based on their identity to known competence genes in other bacterial species. One open reading frame carried by PG0158, here designated *comF*, is annotated as encoding an ATP-dependent DNA helicase and is predicted to possess a phosphoribosyltransferase domain, which is a distinguishing feature of ComF proteins.
A DNA transfer assay was then performed using the W83 Tet⁻ ΔtraA–Q-mob mutant as either the dead donor or the recipient, and no significant difference from results with the wild type was found for either condition (Table 3, fifth and sixth rows). From this we conclude that, unlike comF, the traA–Q-mob locus is not involved in DNA uptake via competence. However, as two ΔtraA–Q-mob mutants have a slight but significant reduction in DNA transfer efficiency in live-donor assays, we theorized that the ΔtraA–Q-mob mutant phenotype may represent the loss of conjugation, leaving transformation by comF as the only DNA exchange process. In the reciprocal situation, the residual DNA transfer in the ΔcomF mutant live-donor assay may result from conjugation mediated by traA–Q-mob.

To further test the theory that comF is involved in competence and that traA–Q-mob is involved in conjugation, we performed two live-donor transfer assays in the presence of DNase I. We hypothesized that two ΔtraA–Q-mob mutants in a live-donor assay would transfer DNA only via competence mechanisms and thus that the presence of DNase I in this assay would significantly reduce the number of CFU. In a parallel experiment, two ΔcomF mutants in a live-donor assay should exchange DNA only by conjugation; thus, the presence of DNase I should have no significant effect on DNA exchange efficiencies. The results from these assays are shown in Table 2 (sixth and seventh rows). Two ΔtraA–Q-mob mutants in the presence of DNase I have an average DNA transfer efficiency of 7.81 × 10⁻⁴, a 6-fold and significant reduction compared to the transfer efficiency of the non-DNase I controls (P = 0.05). However, the transfer efficiencies of two ΔcomF mutants in the presence (4.22 × 10⁻⁷) or absence (4.43 × 10⁻⁷) of DNase I are not statistically different; these results reinforce the concept that two forms of DNA transfer occur simultaneously in P. gingivalis.

Induction of natural competence in P. gingivalis. These studies demonstrate that DNA uptake by transformation is the dominant form of DNA exchange in *P. gingivalis*; thus, we decided to further investigate the conditions that regulate DNA uptake. This point was of great interest to us, as in our previous study we found that purified chromosomal DNA was not taken up by *P. gingivalis* (18). In our DNA transfer assays with dead donor cells, native methylated DNA is released from lysed bacteria as the source of the transferred DNA. To determine if nonmethylated DNA could be transferred at similar frequencies and if this process required signaling or DNA-binding molecules from the donor lysate, a DNA transfer assay was performed with a PCR product as the source of the DNA. Specifically, 1 μg of a 3.2-kb PCR product containing the PG1244 TetQ marker was incubated with a *P. gingivalis* recipient, in the presence or absence of bacterial cell lysate, overnight on an agar plate surface. After recovery and enumeration of the transformants, the transformation frequencies were calculated as the total number of recovered colonies per total number of recipient bacteria, with a standardized input of 1 μg of DNA. As a baseline of comparison, 1 μg of the same PCR product was electroporated into *P. gingivalis*, and transformation frequencies were calculated. The results of these experiments are shown in Table 4.

Our first observation from this experiment was that incubation of our PCR product with recipient cells on an agar plate resulted in a high transformation efficiency (1.81 × 10⁻⁴) and produced a significantly higher number of transformants than electroporation (180-fold). Additionally, the PCR product transferred equally
well in the presence or absence of cell lysate. Thus, the natural competence system is tolerant to nonmethylated DNA, and there is no signal required from the donor cell lysate to activate DNA uptake. Taken together with our earlier experiments, in which high-molecular-weight chromosomal DNA was not transformative, these results suggest that the natural competence system is efficient only for uptake of low-molecular-weight DNA or requires a free 5' DNA end.

Electroporation of the W83 Rif^R/H9004comF strain compared to that of the wild type revealed a complete loss of DNA transformability in the mutant. As electroporation introduces DNA into the periplasmic space for subsequent processing and recombination, this implies that the comF product is critical for active transport of DNA across the highly selective inner membrane.

TABLE 4 DNA transfer efficiency after electroporation and transformation with a DNA fragment

Recipient	Transfer efficiencya	In a biofilm	In a biofilm with a cell lysate	In a biofilm treated with DNase I
W83	1.04 x 10^{-6} (± 4.9 x 10^{-7})	1.81 x 10^{-4} (± 5.2 x 10^{-5})	2.66 x 10^{-4} (± 4.8 x 10^{-5})	<10^{-8}
W83 ΔcomF	<10^{-8}	<10^{-8}	ND	ND

a The DNA source was a 3.2-kb PCR product containing the PG1244 ΔtetQ gene. Standard deviations are shown in parentheses. ND, not determined.

P. gingivalis biofilms contain eDNA. *P. gingivalis* is a constituent of subgingival plaque biofilms and produces an extracellular matrix. Recent studies of other species have identified extracellular DNA (eDNA) as an important constituent of some biofilm matrixes (36–39). To determine if eDNA exists in *P. gingivalis* biofilms, as it may represent a potential DNA transformation substrate for uptake by comF, we developed a sequential biofilm-staining protocol to allow us to differentiate between eDNA (stained with GelGreen), DNA in cells with compromised membranes (stained with propidium iodide), and DNA inside live cells (stained with DAPI [4',6-diamidino-2-phenylindole]) using epifluorescence microscopy. As shown in Fig. 2A, copious amounts of green amorphous material can be seen surrounding distinct blue- and red-staining bacteria in 24-h biofilms. Upon closer in-

![Image](https://example.com/image.png)
spection, the green eDNA is associated with both blue- and red-staining bacterial cells (Fig. 2B). There are relatively few propidium iodide-labeled bacteria, as expected for a 24-h biofilm; the majority of bacterium are stained with DAPI, indicating cell viability and intact membranes (Fig. 2C). To confirm that the green-staining material is eDNA, we incubated the 24-h biofilm with and without DNase I for 4 h prior to staining (Fig. S2). Incubation of the 24-h biofilms with DNase I significantly reduced the amount of green signal, without altering the relative numbers of the blue- and red-staining bacterial cells. Although DNA released from lysed bacteria in a biofilm is a likely DNA source for uptake by the ComF system, these images indicate that active secretion of DNA by live *P. gingivalis* into the biofilm matrix may also occur.

DISCUSSION

Our results indicate that DNA transfer events in *P. gingivalis* are complex and that multiple mechanisms exist simultaneously to mediate DNA transfer. Our studies reveal that *comF*-dependent transformation by uptake of extracellular DNA is the major mechanism of horizontal DNA transfer in strain W83 and that conjugation plays a minor role in the transfer of genomic DNA. We propose that a likely extracellular DNA source is the *P. gingivalis* biofilm matrix, and we document the presence of extracellular DNA in 24-h *P. gingivalis* biofilms. The presence of redundant mechanisms to facilitate DNA exchange in this species suggests that it plays a critical role in bacterial survival in the stressful and highly competitive oral habitat.

Previously, it was assumed that *P. gingivalis* is not naturally competent, as recombinant DNA has traditionally been introduced by either electroporation (40, 41) or conjugation from an *E. coli* donor (42, 43), by using genetic tools and protocols developed for *Bacteroides* (44). However, molecular investigations of natural DNA transfer events in *P. gingivalis* have only recently been initiated. Our results here indicate that the *traA–Q* locus in strain W83 is involved in low-frequency conjugal transfer of chromosomal DNA, and our previous work found that plasmids were not a substrate for the W83 transfer system (18). In contrast, the *traA–Q* locus in *P. gingivalis* ATCC 35277 can mobilize plasmids by a DNase I-insensitive mechanism, and a recent study revealed the *traA–Q* containing element *cTnPg1* to be capable of excision and conjugation (45); both behaviors are similar to those of conjugal *Bacteroides* transposons. These *cTn*-like elements may have been shared between the oral and intestinal *Bacteroidetes* populations at some time in evolutionary history, and similar loci are found in the genome sequences of other members of phylum *Bacteroidetes*, indicating that DNA conjugation by *traA–Q* is widespread in this taxonomic group.

In naturally competent bacteria, specialized proteins are used for the uptake of DNA. In *P. gingivalis*, we show that *comF* is critical for DNA uptake from the exogenous environment. ComF proteins are hypothesized to produce the energy required to drive translocation of DNA through the inner membrane into the cytoplasm (35). Consistent with this, our *comF* mutant cannot be transformed by incubation with exogenous DNA or by electroporation. Interestingly, our studies show no bias against natural transformation of DNA from different strains or unmethylated DNA produced by PCR. This willingness to “sample” DNA from other sources is likely a major factor in the generation of genetic diversity within this species. It may also indicate that *P. gingivalis* is able to scavenge DNA from other species as a nutritional source, as not all DNA in a polymicrobial biofilm will be a candidate for homologous recombination into the chromosome.

From a practical perspective, *P. gingivalis* researchers should note that the introduction of genetic constructs via natural competence is more efficient than conjugation or electroporation. This is most likely due in part to the inherent degree of cell lysis resulting from the electric pulse during electroporation. An additional difference is that our competence assay mixtures mimic biofilms by incubation overnight on the surface of an agar plate, whereas cells recovered from electroporation are incubated in broth.

A recent transcriptome comparison analysis of planktonic versus biofilm-grown *P. gingivalis* revealed *comF* expression to be increased 2-fold in the biofilm cells (46). The same study showed that the expression of restriction-modification genes is decreased in biofilms. Thus, biofilm conditions appear to favor enhanced uptake of exogenous DNA. In parallel with this, we show here for the first time that *P. gingivalis* biofilms contain eDNA. As different *P. gingivalis* strains often colonize the same subgingival biofilm (47), it is possible that the biofilm lifestyle of *eDNA* release and natural biofilm competence underlies the reassortment of alleles into new, potentially better adapted strains of this oral anaerobe.

Our biofilm images indicate that *P. gingivalis* actively secretes DNA into the matrix; in other bacterial species, eDNA has been shown to represent a subset of the DNA sequences found in the genome (36–39). Secretion of select regions of DNA may represent a mechanism to control the genetic information that is shared; for example, secretion hot spots may exist near alleles that are highly variable and thus important for selection in the host environment. Future research is needed to further characterize the features of *P. gingivalis* eDNA and to identify the full complement of genes encoding the DNA uptake and eDNA release mechanisms in *P. gingivalis* biofilms.

MATERIALS AND METHODS

Bacterial strains and culture conditions. *Porphyromonas gingivalis* strains (Table 1) were grown anaerobically at 37°C in a Coy anaerobic chamber under an atmosphere of 86% nitrogen–10% carbon dioxide–4% hydrogen. The culture medium was Trypticase soy broth (TSB) supplemented with 5% yeast extract, 2% sodium bicarbonate, 7.5 μM hemin, and 3 μM menadione. TSB blood agar plates (BAP) were made with the addition of 5% sheep’s blood and 1.5% agarose. *P. gingivalis* strains resistant to rifampin were selected by serial passage on BAP containing increasing amounts of the antibiotic. Selection for antibiotic-resistant *P. gingivalis* was with 30 μg/ml rifampin, 15 μg/ml erythromycin, or 1 μg/ml tetracycline. Dual resistance was selected with 30 μg/ml rifampin and 5 μg/ml erythromycin or 30 μg/ml rifampin and 1 μg/ml tetracycline.

Molecular biology. DNA cloning, sequencing, PCR amplification, *E. coli* plasmid purification, and other common molecular biology techniques were carried out by standard procedures (48). Total DNA was purified from *P. gingivalis* using the Promega Wizard genomic DNA purification kit, with further purification by phenol-chloroform extraction if necessary. DNA amplification by PCR was done using the high-fidelity ExTaq polymerase (Takara Bio, Inc.). Primers were synthesized by Integrated DNA Technologies (IDT). Primers used in this study are listed in Table 1 in the supplemental material. DNA sequencing was performed by SeqWright DNA Technology Services (Houston, TX). Sequence assembly and DNA and protein analysis were done with CLC Combined Workbench, v3 (CLC bio).

Construction of *P. gingivalis* allelic-exchange mutants. Allelic-exchange mutants of *P. gingivalis* W83 were generated by PCR amplification of ~1-kb fragments upstream and downstream of the region to be
deleted and then by creating fusion PCR products with the ermF marker according to a protocol derived from the work of Kurokawa et al. (49). The PCR product was cloned into the pcR2-TOPO vector for DNA sequencing (Invitrogen). Confirmed constructs were then digested with SacI, and the linear DNA was electrotransferred into P. gingivalis (40). Alternatively, fusion PCR products were sequenced and electroporated directly into W83 without cloning. Transformants were selected on erythromycin and confirmed by PCR or Southern hybridization. Mutant strains used in this study are listed in Table 1, and the genetic maps for relevant wild-type and mutant loci are shown in Fig. S1.

Construction of P. gingivalis genomic markers for DNA transfer assays. For this study, we created two genomic markers to test for chromosomal DNA transfer. A tetQ marker is located in a large intergenic region between PG1244 and PG1245 and is designated PG1244 tetQ. We use the symbol Ω to mean a gene insertion near the indicated gene rather than in it. This gene insertion was created using a PCR fusion method as described for the mutant strains above. As our second marker, we created Rif’ strains by serial passage on agar plates containing the antibiotic. Rifampin resistance results from spontaneous mutation of the rpoB gene, which is gene PG0394 in strain W83.

P. gingivalis DNA transfer assays with live strains. P. gingivalis-to-P. gingivalis DNA transfer assays with a live donor were performed by combining mid-log-phase cultures (optical density at 600 nm [OD₆00], 0.8 to 1.0) at equal ratios of both strains (5 × 10⁸ cells each), pelleting the mixed cultures, resuspending the cells in 50 µl of TSB, dropping the mixture onto prereduced BAP, and incubating the resulting bacterial pellet for 24 h anaerobically at 37°C. Chimeric P. gingivalis offspring were selected by resuspending the bacterial pellet into TSB and incubating the recovered bacteria for 10 to 14 days anaerobically on BAP containing both rifampin and tetracycline. DNA transfer efficiencies were calculated by dividing the total number of offspring by the number of input recipient bacterial cells. Controls were individual P. gingivalis strains resuspended in 50 µl TSB and treated identically to the mixed-strain samples.

P. gingivalis DNA transfer assays with dead donor cells. P. gingivalis-to-P. gingivalis DNA transfer assays with dead donors were performed similarly to the assays with live cells, except that the mid-log-phase donor cells were heat killed by incubation at 80°C for 10 min and were then placed on ice for 10 min prior to being mixed with live recipient cells. The mixtures were subsequently treated as in the assays with live cells. Controls were individual P. gingivalis strains resuspended in 50 µl TSB and treated identically to the mixed-strain samples. As our second marker, we created Rif’ strains by serial passage on agar plates containing the antibiotic. Rifampin resistance results from spontaneous mutation of the rpoB gene, which is gene PG0394 in strain W83.

Determination of spontaneous mutation frequency. The P. gingivalis strains were spread on BAP and grown for 24 h. Three tubes containing 2 ml of TSB were inoculated with one independent colony each obtained from the BAP and incubated anaerobically overnight. One hundred microliters of a 10⁻⁵ dilution of the overnight cultures was seeded onto BAP, and 500 µl of the overnight cultures was plated onto BAP containing rifampin (30 µg/ml). Colony counts were performed after 7 days of anaerobic incubation. Mutation frequency values are reported as the number of rifampin-resistant colonies in proportion to the total viable count, calculated by dividing the total number of offspring by the number of input recipient bacterial cells.

REFERENCES

1. Ehrlich GD, et al. 2010. The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes. FEMS Immunol. Med. Microbiol. 59:269–279.
2. Gogarten JP, Townsend JP. 2005. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3:679–687.
3. Gupta S, Maiden MC. 2001. Exploring the evolution of diversity in pathogen populations. Trends Microbiol. 9:181–185.
4. Frost LS, Leplae R, Saunders AO, Toussaint A. 2005. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 5:722–732.
5. Kang I, Blaser MJ. 2006. Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori. Nat. Rev. Microbiol. 4:826–836.
6. Feil EJ, Maiden MC, Achtmann M, Spratt BG. 1999. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol. Biol. Evol. 16:1496–1502.
7. Lamont RJ, Jenkinson HF. 1998. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol. Mol. Biol. Rev. 62:1244–1263.
8. Ozmeriç N, Preus HR, Olsen I. 1997. Intrafamilial transmission of black-pigmented, putative periodontal pathogens. Anaerobe 3:571–577.
9. Tuite-McDonnell M, et al. 1997. Concordance of Porphyromonas gingivalis colonization in families. J. Clin. Microbiol. 35:455–461.
10. McClure CL, Grove RS, Marrus RJ, Blaser MJ. 1997. Pathogenic mechanisms of Porphyromonas gingivalis in children. J. Clin. Microbiol. 34:2017–2019.
11. Stinson MW, Safulko K, Levine MJ. 1991. Adherence of Porphyromonas gingivalis to Streptococcus sanguis in vitro. Infect. Immun. 59:102–108.
12. Neider ME, et al. 1989. Heterogeneity of virulence among strains of Porphyromonas gingivalis. Infect. Immun. 56:192–198.
13. Van Steenberghe TJ, Delemaar FF, Namavar F, De Graaff J. 1987. Differences in virulence within the species Porphyromonas gingivalis. Antonie van Leeuwenhoek 53:233–244.
14. Enersen M, Olsen I, van Winkelhoff AJ, Caugant DA. 2006. Multilocus sequence typing of Porphyromonas gingivalis strains from different geographic origins. J. Clin. Microbiol. 44:35–41.
15. Igboin C, Griffen A, Leys E. 2009. Analysis of Porphyromonas gingivalis strain diversity. J. Clin. Microbiol. 47:3073–3081.
16. Frandsen EV, Poulsen K, Curtis MA, Kilián M. 2001. Evidence of recombination in Porphyromonas gingivalis and random distribution of putative virulence markers. Infect. Immun. 69:4479–4485.
17. Koehler A, et al. 2003. Multilocus sequence analysis of Porphyromonas gingivalis indicates frequent recombination. Microbiology 149: 2407–2415.
18. Tribble GD, Lamont GJ, Pougulske-Fox A, Lamont RJ. 2007. Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. J. Bacteriol. 189:6382–6388.
19. Naito M, et al. 2008. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 15:215–225.
20. Nelson KE, et al. 2003. Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J. Bacteriol. 185: 5591–5601.
21. Bacic M, et al. 2005. Genetic and structural analysis of the Bacteroides conjugative transposon CTn341. J. Bacteriol. 187:2858–2869.
22. Bonheyo G, Graham D, Shoemaker NB, Salyers AA. 2001. Transfer region of a Bacteroides conjugative transposon, CTnDOT. Plasmid 45: 41–51.
23. Paster BJ, Dewhirst FE, Olsen I, Fraser GJ. 1994. Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria. J. Bacteriol. 176:725–732.
24. Arzese AR, Tomasetti L, Botta GA. 2000. Detection of tetQ and ermF antibiotic resistance genes in Prevotella and Porphyromonas isolates from clinical specimens and resident microbiota of humans. J. Antimicrob. Chemother. 45:577–582.
25. Leng Z, Riley DE, Berger RE, Krieger JN, Roberts MC. 1997. Distribution and mobility of the tetracycline resistance determinant tetQ. J. Antimicrob. Chemother. 40:551–559.
26. Lacroix JM, Walker CB. 1996. Detection and prevalence of the tetracycline resistance determinant tet Q in the microbiota associated with adult periodontitis. Oral Microbiol. Immunol. 11:282–288.
27. Nikolic MP, Hong G, Shoemaker NB, Salyers AA. 1994. Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize human and bacteria that normally colonize livestock. Appl. Environ. Microbiol. 60:3255–3260.
28. Lépine G, Lacroix JM, Walker CB, Pougulske-Fox A. 1993. Sequencing of a tet(Q) gene isolated from Bacteroides fragilis 1126. Antimicrob. Agents Chemother. 37:2037–2041.
29. Whittle G, Hamburger N, Shoemaker NB, Salyers AA. 2006. A Bacteroides conjugative transposon, CTnERL, can transfer a portion of itself by conjugation without excising from the chromosome. J. Bacteriol. 188:1169–1174.
30. Li LY, Shoemaker NB, Salyers AA. 1995. Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J. Bacteriol. 177:4992–4999.
31. Chen T, et al. 2004. Comparative whole-genome analysis of virulent and avirulent strains of Porphyromonas gingivalis. J. Bacteriol. 186:5473–5479.
32. Busch S, Rosenplätner C, Averhoff F. 1999. Identification and characterization of ComE and ComF, two novel plin-like competence factors involved in natural transformation of Acinetobacter sp. strain BD413. Appl. Environ. Microbiol. 65:4568–4574.
33. Londoño-Vallejo JA, Dubnau D. 1993. ComF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/ DNA helicases. Mol. Microbiol. 9:119–131.
34. Nakasugi K, Svensson CJ, Nielan BA. 2006. The competence gene, comF, from Synechocystis sp. strain PCC 6803 is involved in natural transformation, phototactic motility and piliation. Microbiology 152:3623–3631.
35. Johnborg O, Eldholm V, Håvarstein LS. 2007. Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158:767–778.
36. Harmes M, Lappann M, Knochel S, Molin S. 2010. Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl. Environ. Microbiol. 76:2271–2279.
37. Lappann M, et al. 2010. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis. Mol. Microbiol. 75:1355–1371.
38. Thomas VC, et al. 2009. A fratricidal mechanism is responsible for cDNA release and contributes to biofilm development of Enterococcus faecalis. Mol. Microbiol. 72:1022–1036.
39. Vilain S, Pretorius JM, Theron J, Brözel VS. 2009. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl. Environ. Microbiol. 75:2861–2868.
40. Smith CJ. 1995. Genetic transformation of Bacteroides spp. using electroporation. Methods Mol. Biol. 47:161–169.
41. Yoshimoto H, Takahashi Y, Hamada N, Unemoto T. 1993. Genetic transformation of Porphyromonas gingivalis by electroporation. Oral Microbiol. Immunol. 8:208–212.
42. Chen T, et al. 2000. Identification and cloning of genes from Porphyromonas gingivalis after mutagenesis with a modified Tn4400 transposon from Bacteroides fragilis. Infect. Immun. 68:420–423.
43. Pougulske-Fox A, Oberste A, Drummond C, McArthur WP. 1989. Transfer of plasmid pE5-2 from Escherichia coli to Bacteroides gingivalis and B. intermedia. Oral Microbiol. Immunol. 4:132–134.
44. Salyers AA, Bonheyo G, Shoemaker NB. 2000. Starting a new genetic system: lessons from Bacteroides. Methods 20:35–46.
45. Naito M, et al. 2011. Characterization of the Porphyromonas gingivalis conjugative transposon CTnPG1: determination of the integration site and the genes essential for conjugal transfer. Microbiology 157:2022–2032.
46. Lo AW, et al. 2009. Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiol. 9:18.
47. Leys EJ, Smith JH, Lyons SR, Griffen AL. 1999. Identification of Porphyromonas gingivalis strains by heteroduplex analysis and detection of multiple strains. J. Clin. Microbiol. 37:3906–3911.
48. Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
49. Kuwayama H, et al. 2002. PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res. 30:E2.