Identification and Characterization of MRNAs, lncRNAs, and MiRNAs Expression Profiles and ceRNA Networks in PEDV Infection

Xiaojie Shi
Northwest A&F University

Qi Zhang
Northwest A&F University

Jingjing Wang
Northwest A&F University

Yuting Zhang
Northwest A&F University

Yuchao Yan
Northwest A&F University

Yi Liu
Northwest A&F University

Naling Yang
Northwest A&F University

Quanqiong Wang
Northwest A&F University

Xingang G. Xu (✉ tiger2003@nwsuaf.edu.cn)
Northwest A&F University

Research Article

Keywords: PEDV, lncRNA, functional enrichment, signaling pathway, ceRNA network

Posted Date: November 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1084768/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Long non-coding RNAs (LncRNAs) are transcripts longer than 200 nucleotides with no protein-coding ability and exert crucial effects on viral infection and host immune responses. Porcine Epidemic Diarrhea Virus (PEDV) is a coronavirus that seriously affects the swine industry. However, our understanding of the function of LncRNA involved in host-PEDV interaction is limited.

Results: A total of 1197 mRNA transcripts, 539 LncRNA transcripts, and 208 miRNA transcripts were differentially regulated at 24 h and 48 h post-infection. Moreover, gene ontology (GO) and KEGG pathway enrichment analysis showed that DE mRNAs and DE LncRNAs were mainly involved in biosynthesis, innate immunity, and lipid metabolism. Ten differentially expressed genes were randomly selected and validated by reverse-transcription qRT-PCR. In addition, we constructed a miRNA-mRNA-pathway network followed by a LncRNA-miRNA-mRNA ceRNA network.

Conclusions: The present study is the first to reveal the global expression profiles of mRNAs, LncRNAs, and miRNAs during PEDV infection. We comprehensively characterize the ceRNA networks which can provide new insights into the pathogenesis of PEDV.

Background

Porcine epidemic diarrhea (PED) is one of the infectious intestinal diseases of swine, manifested by severe diarrhea, vomiting, and dehydration [1]. Porcine epidemic diarrhea virus (PEDV), the etiological agent of PED, was originally identified in the United Kingdom in the 1970s [2]. PEDV is a single-stranded positive-stranded RNA virus that is a member of the *Coronavirus* family. The genome of PEDV is roughly 28 kb and contains seven open reading frames (ORF), including the ORF1a, ORF1b, S, ORF3, E, M, and N genes [3]. In 2010, the outbreak of PED caused by highly virulent PEDV strains spread in China, resulting in a mortality rate of nearly 100% in suckling piglets and huge economic losses [4–6]. Due to the high frequency of mutations in the PEDV genome, existing vaccines are ineffective in protecting pigs infected with highly dangerous strains [7]. Although the pathogenesis of PEDV has been studied, the mechanisms of host-PEDV interactions are still limited.

Non-coding RNAs (ncRNAs), such as small ncRNAs (sncRNAs) and long ncRNAs (LncRNAs), are transcribed from a large percentage of host genomes [8]. More and more studies have indicated that ncRNAs play crucial roles in many biological processes, including immune responses, post-transcriptional regulation, apoptosis, and autophagy [9–11]. MicroRNAs (miRNAs) are a type of abundant sncRNAs (~22nt long) that negatively regulate gene expression by binding to the 3'UTR of the mRNA [12]. It is well known that miRNAs are closely related to the infection and proliferation of various viruses [13, 14]. For example, miR-30c-5p inhibits SOCS1 expression by targeting the SOCS1 3'UTR region to facilitate PEDV replication [15]. MiR-129a-3p activates the NF-κB pathway by targeting the 3'UTR of EDA, thereby inhibiting the replication of PEDV [16].
LncRNAs are a class of RNAs that are more than 200 nucleotides (nt) in length and have no protein-coding capability [17]. Compared with mRNA, IncRNA is more tissue-specific and less conservative [18]. Several studies have shown that viral infection induces IncRNAs to regulate antiviral innate immunity [19]. LncRNA NEAT1 exerts an antiviral effect by promoting IFN response during Hantavirus infection [20]. On the other hand, another study has shown that IncRNA-CMPK2 acts as a negative regulator of IFN response to promote HCV replication [21]. In recent studies, the competing endogenous RNA (ceRNA) theory has been reported as a new regulatory mechanism between IncRNA and mRNA [22]. LncRNAs act as miRNA sponges to indirectly regulate the degradation or translational inhibition of target mRNA [22]. So far, ceRNA theory has become the mainstream method for studying IncRNA-miRNA-mRNA interaction and has been verified by many physiological processes. Lnc-ISG20 binds to miR-326 to enhance the expression of ISG20 and inhibit IAV replication [23]. However, there are no studies on the IncRNA-miRNA-mRNA network during PEDV infection.

In this study, we performed the first systematic analysis of mRNA, IncRNA, and miRNA expression profiles at two different time points during PEDV infection. We analyzed differentially expressed genes, identified the target genes of DE IncRNAs and DE miRNAs, and characterized the mRNA-miRNA-pathway network and immune-related ceRNA network. Our study aims to explore the potential role of ncRNAs during PEDV infection and expand the understanding of the host-virus interactions.

Results

Overview of RNA-sequencing

To identify the ncRNAs (IncRNA and miRNA) and protein-coding transcripts associated with viral infections, 18 RNA-seq libraries were sequenced. A total of 995M raw reads were obtained and an average of 983.63 M clean reads per library was produced (Table S1). In addition, at least 89% of transcripts in each library were covered by reads (Table S2). Meanwhile, approximately 71.33M clean reads were obtained from 9 small RNA sequencing libraries (Table S3). In this study, we identified 17,500 mRNAs, 5,748 IncRNAs, and 659 miRNAs. The RNA analysis suggested that, except for miRNA, the distribution of mRNA and IncRNA in each treatment group was essentially the same (Fig. 1a-c, Fig. S1). The proportion of miRNA expression <1 was greater than 41% in the 48hpi-vs-Mock group. Following that, the properties of mRNA and IncRNA transcripts were assessed. The number of mRNA exons was noticeably greater than that of IncRNA exons. The findings revealed that mRNAs with more than 7 exons exceeded 60%, while IncRNAs mostly contained only two or three exons (Fig. 1d). The average length of these mRNAs was longer than the average length of IncRNAs, and the majority of the IncRNAs were longer than 2000 bp (Fig. 1e). Furthermore, miRNA length analysis revealed that it was commonly distributed at 22nt (Fig. 1f).

Identification and analysis of differentially expressed mRNAs
In this study, we identified 660 and 669 DE mRNAs in two groups, including 813 up-regulated (61.17%) and 516 down-regulated (38.83%) (Fig. 2a and b, Table S4). Next, the hierarchical cluster analysis revealed that the expression profiles of mRNAs changed significantly during PEDV infection, and 132 common DE mRNAs were found between the two groups through Venny 2.1 (Fig. 2c-e). GO enrichment analysis suggested that these DE mRNAs were significantly enriched in the biosynthetic process, metabolic process, cell-cell signaling, and binding (Fig. 3a and b). Meanwhile, KEGG analysis indicated that several DE mRNAs were enriched in signal transduction pathways, including the Rap1 signal, Wnt signal, cGMP-PKG signal, TGF-beta signal, and NOD-like receptor signaling pathway (Fig. 3c and d).

Identification and analysis of miRNAs

To analyze the characteristics of miRNAs during PEDV infection, miRNA expression levels were compared in different groups. We detected 43.1% mature miRNAs after comparing the clean reads to the GenBank, Rfam database, and reference genome. (Fig. 4a). A total of 616 and 641 miRNAs were detected from 24hpi-vs-Mock and 48hpi-vs-Mock, respectively. Among them, 598 miRNAs were co-expressed, while 18 and 43 miRNAs were specifically expressed in the two groups. According to fold change > 2 and P-value < 0.05, there were 3 and 206 DE miRNAs, including 100 up-regulated (31.9%) and 109 down-regulated (68.1%) were identified (Fig. 4b-d, Fig. S2a and b, Table S5). A total of 7,352 target mRNAs for DE miRNAs were identified, and we identify the potential physiological functions of DE miRNAs through GO and KEGG enrichment analyses. These genes were mainly related to cellular components and molecular functions, including intracellular signal transduction, single-organism component, and binding (Fig. S3a and b). KEGG results showed that the enriched pathways involved Endocytosis, FoxO signal, MAPK signal, cAMP signal, and apoptosis (Fig. S3c and d).

Construction of miRNA-mRNA-pathway network.

Among intersecting genes, 12 genes related to cellular immunity and cell growth along with their corresponding 120 DE miRNAs were selected (Table 1). CSF2 (Colony Stimulating Factor 2), BMP2 (Bone Morphogenetic Protein 2), WNT11 (Wnt Family Member 11), SFN (Stratin), and TNFAIP3 (TNF Alpha Induced Protein 3) genes are involved in a variety of pathways. To visualize the interactions and further explore the function of the DE mRNAs and their corresponding DE miRNAs, the miRNA-mRNA-pathway network was constructed using the data in Table 1 (Fig. 6).

Table 1

Twelve intersection genes and their corresponding pathways and differentially expressed miRNAs
DE mRNAs	Pathway	Numbers of differentially expressed miRNAs
IL2RB	Jak-STAT signaling pathway	4
CSF2	Jak-STAT signaling pathway, TNF signaling pathway	0
ID3	TGF-beta signaling pathway	11
BMP2	TGF-beta signaling pathway, MAPK signaling pathway	27
FGF21	MAPK signaling pathway	3
DUSP5	MAPK signaling pathway	17
MEFV	NOD-like receptor signaling pathway	7
TNFAIP3	NF-kappa B signaling pathway, NOD-like receptor signaling pathway, TNF signaling pathway	28
WNT11	mTOR signaling pathway, Wnt signaling pathway	9
SFN	p53 signaling pathway, Cell cycle	1
PRKN	Ubiquitin mediated proteolysis	9
TRBV	NF-kappa B signaling pathway	4

Identification and analysis of lncRNAs

In this study, CNCI, CPC, Pfam-scan, and PLEK were used to remove potential coding transcripts, and 5,769 lncRNAs were obtained. Through further filtering, we finally identified 5,748 lncRNAs, which included 37.2% intergenic lncRNAs and 40.4% intronic lncRNAs (Fig. 5a and b). Most of the lncRNA transcripts were found on chromosome 20, however, few lncRNAs were found on chromosome Y (Fig. 5c). A total of 404 and 209 DE lncRNAs were detected in 24hpi-vs-Mock and 48hpi-vs-Mock, respectively, including 269 up-regulated (31.9%) and 344 down-regulated (68.1%) (Fig. 5d-f, Fig. S2c and d, Table S6).

In addition, 1,197 protein-coding genes were found to exhibit significant correlations with DE lncRNAs in expression, of which 1,169 were detected as trans-regulated target genes. GO terms analysis was performed, and many terms related to the biosynthetic process and immunity were significantly enriched (Fig. S4a and b). Meanwhile, KEGG analysis showed that DE lncRNAs were mainly involved in Toll-like receptor signal, Jak-STAT signal, NF-kappa B signal, and TGF-beta signal (Fig. S4c and d).

Construction of ceRNA network

We used TargetScan (v7.2), miRTarBase (v8.0), and miRanda (v3.3a) to identify the targets of each DE miRNA from DE mRNA and DE lncRNA transcripts. We selected 3 DE miRNAs important in the innate
immunity and built a ceRNA network by incorporating miRNA-target interactions. The ceRNA network consisted of 3 DE miRNAs, 82 DE mRNAs, 32 DE lncRNAs, and 171 edges (Fig. 7). The DE mRNAs in the ceRNA network included TNFAIP3, MEFV (MEFV innate immunity regulator, pyrin), TRBV13 (T Cell Receptor Beta Variable 13), DUSP5 (Dual Specificity Phosphatase 5), ID3 (Inhibitor of DNA Binding 3, HLH Protein), TRIM54 (Tripartite Motif Containing 54), and IL2RB (Interleukin 2 Receptor Subunit Beta), etc. Functional enrichment analysis revealed that these DE mRNAs were involved in several immune-related pathways, including apoptosis, NOD-like receptor signaling, PI3K-Akt, NF-kappa B signaling, and RIG-I-like receptor signaling pathway.

RT-qPCR validation of gene expression

To further verify the RNA-seq data, we randomly identified 5 DE mRNAs (ADSS1, GAS1, DUSP5, MEFV, and IL2RB) and 5 DE lncRNAs (TCONS_00009568, TCONS_00007263, TCONS_00021035, TCONS_00024125, and TCONS_00027963) by qRT-PCR. The results showed the expression pattern of these transcripts was consistent with those obtained by the RNA-Seq (Fig. 8).

Discussion

PEDV caused huge economic losses to the livestock industry, and commercial vaccines cannot provide complete protection for pigs [7]. Although research on PEDV has made great progress in recent decades, the pathogenic mechanism of PEDV has not been fully studied. Recent research has demonstrated that lncRNAs can act as miRNA sponges, regulating the expression of host genes and hence influencing virus replication. However, the characterization of the ceRNA mechanism in host cells during PEDV infection has not been elucidated. In this study, we detected changes in the expression profiles of mRNAs, lncRNAs, and miRNAs in PEDV-infected MARC-145 cells. The highest number of DE lncRNAs was discovered at 48 hpi, and there were more up-regulated genes were identified. These characteristics reveal that the host response to PEDV infection involves activating a large number of genes. Comparative analysis of the genomic characteristics of mRNAs and lncRNAs reveals that lncRNAs have shorter transcripts, fewer exons, and lower expression levels, which is consistent with the results of transcriptome analysis in different species [24–26]. In addition, the expression changes of randomly selected differentially expressed genes were confirmed by qPCR analysis, indicating the accuracy of the sequencing results.

Recent studies suggest a close relationship between cholesterol metabolism and innate immunity [27–29]. In addition, the ATP binding cassette (ABC) transporters play a key role in many metabolic processes and contribute to resisting the penetration of xenobiotic [30]. By analyzing these DE mRNAs, we found that the expression levels of ABCG1, ABCC3, LPIN1, DHCR7, HMGCR, and INSIG1 genes were significantly up-regulated during PEDV infection. ABCG1 and ABCC3 are members of the superfamily of ABC transporters. ABCG1 can catalyze the efflux of cholesterol and plays a role in cellular lipid homeostasis [31]. The lipin protein family contains three members, among which LPIN1 is a key gene that acts as a magnesium-dependent phosphatidic acid phosphatase to regulate fatty acid metabolism [32]. DHCR7
catalyzes the final step of cholesterol biosynthesis, which is of great significance in maintaining cholesterol homeostasis [33]. Xiao et al. reported that reducing the expression of DHCR7 or adding 7-dehydrocholesterol enhanced macrophage-mediated immune responses via increased IFN-I production [34]. INSIG1 is an endoplasmic reticulum membrane protein that is mainly involved in lipogenesis, which is combined with RNF145 to ubiquitinate and degrade HMGCR, thereby regulating cholesterol synthesis [35]. These genes related to cholesterol metabolism were significantly up-regulated, suggesting that the host may resist PEDV infection by regulating lipid metabolism.

We also studied the changes in the expression of genes associated with immunity. The sequencing results revealed that toll-like receptors (TLR2 and TLR10), some inflammatory factors (IL24, IL1RN, and IL37), and several antiviral genes such as IFIT1, ISG15, and TNK1 were differentially expressed. These up-regulated DE mRNAs were mainly focused on the immune-related pathways, such as Toll-like receptor signaling, p38 MAPK signaling, IFN signaling, and TNF signaling pathway. IFIT1 is an interferon-induced antiviral RNA binding protein that reduces the viral mRNA production by specifically binding single-stranded RNA with a 5’-triphosphate group [36]. In addition, IFIT1 can also bind 5’capped 2’-O unmethylated mRNA to inhibit mRNA translation and thus inhibit virus replication [37]. TNK1, a member of the Ack kinase family, is an essential regulator of intracellular signal transduction pathways, mediating important physiological activities such as cell proliferation and development [38]. Activated TNK1 inhibits virus replication by enhancing JAK-STAT signaling to induce the expression of ISGs [39]. The data presented here may indicate that the host resists viral infection by up-regulating the genes described above in 48h. As we all know, PEDV can use a variety of strategies to antagonize innate immune responses to ensure self-proliferation. However, no significant changes in mRNA levels of typical immune signaling factors such as MAVS, TRAF3, and IRF3 were detected during the early stages of PEDV infection. Therefore, we hypothesize that this may be one of the ways PEDV evades the host innate immune response. Further in vivo and in vitro studies are required to confirm these findings.

At present, only two studies have focused on IncRNA profile variation in PEDV-infected cells. Yu et al. analyzed PEDV-infected Vero cells at different infection time points and DE IncRNAs were screened [40]. Chen et al. compared the IncRNA profiles in PEDV infected IPEC-J2 cells at different time points and obtained the DE IncRNAs related to immunity [41]. There are several differences between our study and other studies. Firstly, we conducted a synthetic analysis of the mRNA, IncRNA, and miRNA expression profiles of PEDV-infected cells and performed KEGG and GO enrichment analysis. Secondly, we predicted the DE mRNAs and DE IncRNAs interacting with DE miRNAs through the database, and the ceRNA network was built. Subsequently, the enrichment analysis of DE mRNAs and DE IncRNAs showed the enrichment of cell growth, steroid synthesis, fatty acid synthesis, and other lipid metabolism pathways, which is different from previous reports.

In our study, 660 and 669 significantly DE IncRNAs were obtained at two different time points in PEDV-infected cells. We found that the position of IncRNA in the genome is non-random, which indicates a connection between the IncRNA function and genomic position. Ørom et al. found that a group of human IncRNAs can perform enhancer-like functions and increase the expression of neighboring protein-coding
genes through cis-acting [42]. Furthermore, another report clarified that IncRNA-mediated cis-regulation of adjacent gene transcription is common in mammalian gene regulation [43]. Therefore, knowledge of the cis-regulation of IncRNA is essential to reveal its biological effects. In our study, several IncRNAs (TCONS_00031360, TCONS_00030751, TCONS_00005777, TCONS_00021191, etc.) were involved in the cis-regulation of autophagy-related genes during PEDV infection. IFN also plays a vital role in innate immunity defense, and several studies have reported that numerous viral proteins of PEDV have been identified as IFN antagonists [7]. Our data also indicated that some IncRNAs targeted immunity-related genes such as DDIT3, TXNIP, and FOSL1. DDIT3 is a stress-inducible nuclear protein that induces apoptosis in response to ER stress. Moreover, it inhibits the antiviral immune response by promoting the degradation of MAVS [44]. Although IncRNA-mediated cis-regulation is ubiquitous, some IncRNAs can also function in trans. For example, the expression of several IncRNAs (TCONS_00039521, TCONS_00019044, TCONS_00024478, and TCONS_00021764) was significantly increased, and their target genes were ADA2, FADS1, MEA1, ADGRE1, MAN1C1, PNPLA3, and RND2, which were located in the trans-position.

Several studies have demonstrated the extensive involvement of miRNAs in viral pathogenesis as well as in multiple immune responses. In our study, we found that the NF-κB signaling pathway was shown to be regulated by miR-16-5p and miR-24-3p. It has been reported that during IBDV infection, up-regulated miR-16-5p can enhance IBDV-induced apoptosis by inhibiting Bcl-2 and promoting IBDV replication [45]. A similar promotion of virus replication by miR-24-3p was observed during PRRSV infection [46]. Up-regulated miR-24-3p inhibited the expression of Heme oxygenase-1 (HO-1) through targeting its 3’UTR, facilitating PRRSV replication. It is universally known that IRF3 is a member of the IRF family that can induce the expression of type I IFN to regulate the antiviral innate immune response. Interestingly, our sequencing data showed that the expression levels of miR-296-3p, miR-486-3p, miR-940, and miR-1306-5p, whose target gene is IRF3, were significantly down-regulated. Therefore, we hypothesize that the host innate immune system was effectively activated to down-regulate miRNA expression in response to viral infection. Furthermore, several DE miRNAs targeting immune-related genes were identified, but with different expression trends. This finding also indicates that these miRNAs are differentially regulated and perform diverse functions during viral infection. In addition, we identified several DE miRNA target genes enriched in lipid-associated pathways, such as fatty acid biosynthesis and metabolism, lipid binding, and PPAR signaling pathway.

More and more research has shown that IncRNAs can act as miRNA sponges, and the construction of ceRNA networks is a new strategy to investigate gene function. Therefore, we selected 3 DE miRNAs to build a ceRNA network to explore the exact roles and mechanisms of DE IncRNAs. Integration analysis of the IncRNA-associated ceRNA network revealed the functions of IncRNAs and their roles in cell proliferation and innate immune response. We identified many IncRNA-miRNA-mRNA regulatory axes that may be involved in the regulation of PEDV replication, for example Inc_00037724-miR-455-5p-MEFV, Inc_00036554-miR-27b-3p-ID3, and Inc_00010748-miR-145-5p-TNFAIP3. It has been reported that MEFV regulates innate immunity by degrading multiple inflammasome components, including CASP1, NLRP1, and NLRP3 [47]. Other studies have documented that ID3 is involved in several biological processes,
including cell proliferation, senescence, and apoptosis [48]. TNFAIP3 is a ubiquitin editing enzyme with immunosuppressive properties, preventing NF-κB activation and TNF-mediated apoptosis [49, 50]. Furthermore, several IncRNA-miRNA-mRNA axes with similar expression patterns were identified, which were enriched in different biological processes. Although the results predicted by the software need to be further investigated, our findings provide new evidence for the involvement of IncRNAs in host antiviral immunity.

Conclusions

In summary, we constructed the IncRNA-associated ceRNA network related to cellular immunity by comprehensive bioinformatics analysis. To our knowledge, this is the first comprehensive analysis report about the expression profiles of mRNAs, IncRNAs, and miRNAs during PEDV infection. Therefore, the data acquired in this study provides a beneficial reference for understanding the interaction between the host and PEDV.

Methods

Cells culture and virus infection

MARC-145 cells were maintained in Dulbecco’s modified Eagle’s essential medium (DMEM; Hyclone, USA) supplemented with 10% fetal bovine serum (FBS; Gibco, USA) and cultured at 37 °C with 5% CO₂. PEDV strain CH/SXYL/2016 (GenBank: MF462814.1) used in this study was isolated as previously described [51]. The cells were infected with PEDV at an MOI of 1 and incubated in DMEM containing 2μg/mL Trypsin for 1h at 37 °C with 5% CO₂. After incubation, the cells were washed with phosphate-buffered saline (PBS) and cultured in DMEM supplemented with 2% FBS.

RNA extraction

MARC-145 cells were divided into three groups: cells infected with PEDV for 24 hours (S24hpi_1, 2, 3), cells infected with PEDV for 48 hours (S48hpi_1, 2, 3), and mock-infected cells as controls (Mock_1, 2, 3). According to the manufacturer’s instructions, the total RNA of PEDV-infected cells and uninfected cells was extracted using the TRIzol® reagent (Invitrogen, USA). RNA quality and concentration were tested by NanoDrop 2000 (Thermo Scientific, USA) and Agilent 2100 Bioanalyzer (Agilent Technologies, USA). The samples with RNA Integrity Numbers (RIN) ≥ 7 were subjected to the subsequent analysis.

Library construction and sequencing

A total of 1μg RNA from each sample was used as input for RNA-seq library preparation. According to the manufacturer’s instructions, ribosomal RNA (rRNA) was removed using an Epicenter Ribo-Zero rRNA Removal Kit (Illumina, USA), and small RNA libraries were constructed using TruSeq Small RNA Sample
Prep Kit (Illumina, USA). Meanwhile, sequencing libraries of mRNA and lncRNA were generated using NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina® (NEB, USA). Thereafter, the library products were assessed for purity using an Agilent 2100 Bioanalyzer and then sequenced using the Illumina HiSeq X Ten platform by OE Biotech Co.

Analysis of differentially expressed mRNAs

First, low-quality reads were removed from the raw data using Trimomatic (v0.36) [52] to obtain clean reads. Then, the clean reads were mapped to the *Chlorocebus sabaeus* genome using HISAT2 (v2.2.1) [53], and the mapped reads of each sample were assembled using StringTie (v2.1.1) [54]. Cufflinks (v2.2.1) [55] was used to determine the FPKM [56] of each gene, and HTSeq-count (v0.9.1) [57] was used to obtain the read counts of each gene. Analysis of DE mRNAs was performed using the DESeq R package. Fold change > 2 and P-value < 0.05 were set as the thresholds for significantly differential expression.

miRNA identification and analysis

Cutadapt (v1.14) was used to remove adapter dimers, repetitive sequences, and sequences shorter than 18 nucleotides in the raw data. The clean data was aligned by ACGT101-miR (v4.2) to eliminate RNA families (rRNA, tRNA, snRNA, snoRNA) and repeat sequences. Then, the clean reads were mapped to the miRBase database (v22.0) to identify known miRNAs and novel miRNAs. The miRNA expression was calculated and normalized as transcripts per million (TPM), and DE miRNAs were selected according to fold change > 2 and P-value < 0.05.

IncRNA identification and analysis

The raw data were first filtered by Trimomatic (v0.36) to remove low-quality reads and adapter sequences, which were then mapped to the *Chlorocebus sabaeus* genome using HISAT2 (v2.2.1). Afterward, transcripts that overlapped with known mRNAs and shorter than 200 bp were discarded. Next, we utilized CNCI (v1.0), CPC (0.9-r2), Pfam-scan (v30), and PLEK (v1.2) to predict the coding ability of transcripts. Transcripts with coding potential predicted by the four tools listed above were discarded, and those without coding potential were classified as IncRNAs. The target genes of IncRNAs were predicted using cis- and trans-regulation analyses [58]. Cufflinks (v2.2.1) was used to calculate the expression level of each transcript by calculating FPKM. DE IncRNAs were selected with fold change > 2 and P-value < 0.05 by DESeq R package.

GO and KEGG Enrichment Analysis
The DAVID online tool was used to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes and target genes. GO terms and KEGG pathways with P-value < 0.05 were considered to be significantly enriched.

Construction of IncRNA-miRNA-mRNA network

According to the ceRNA hypothesis, IncRNAs act as miRNA sponges to relieve the inhibition of the expression of target mRNAs [22]. TargetScan (v7.2), miRTarBase (v8.0), and miRanda (v 3.3a) were employed to predict the relationship between miRNAs and mRNAs as well as between IncRNAs and miRNAs. Cytoscape (v3.5.1) was used to create and visualize the IncRNA-miRNA-mRNA networks.

Quantitative Real Time-PCR (qRT-PCR) verification

To validate the data obtained from RNA-seq, qRT-PCR was performed for the randomly selected RNAs. To detect the differentially expressed mRNAs and IncRNAs, total RNA from PEDV-infected and mock-infected cells was extracted using TRIzol reagent (Invitrogen, USA), and reversely transcribed using the Fast Quant RT Kit (Tiangen, China). Then, qRT-PCR assays were performed with SYBR Green qPCR Master Mix (Bio-Rad, USA). The β-actin gene was selected as the internal control for the normalization of mRNA and IncRNA. The relative quantification of mRNAs and IncRNAs was determined using the $2^{-\Delta\Delta ct}$ method. The sequence of the primers used in this study is listed in Table S7.

Statistical analysis.

GraphPad Prism 6.0 software was used for statistical analyses. Differences were determined to be statistically significant at values of P < 0.05 by Student’s t-test for two groups and one-way ANOVA analysis for more than two groups. (Data are shown as means ± standard deviation (SD). n = 3).

Abbreviations

PEDV: Porcine epidemic diarrhea virus

ncRNAs: non-coding RNAs

miRNA: MicroRNA

IncRNA: Long non-coding RNA

mRNA: messenger RNA

rRNA: Ribosome RNA
snRNA: Small nuclear RNA
snoRNA: Small nucleolar RNA
tRNA: Transport RNA
ceRNA: competing endogenous RNA
GO: Gene ontology
KEGG: Kyoto encyclopedia of genes and genomes
DE: differentially expressed

Declarations

Acknowledgements
Not applicable.

Authors' contributions

XJS and QZ performed the majority of the experiments and were involved in preparation of the manuscript. JJW and YTZ participated in the editing of the manuscript. YCY and YL participated in the experimental work. NLY and QQW performed the statistical analysis. XGX conceived the study, participated in its design and coordination, and revised the manuscript. All authors have read and approved the final manuscript.

Funding

This work was supported by grants from the agricultural special fund project of Shaanxi Province (No. 2019SJNYZX45), and the innovation project for agrotechnology of Shaanxi Province (No. 2019NY-081), China.

Availability of data and materials

All raw data has been deposited into the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov) under the accession number PRJNA758783.

Ethics approval and consent to participate
Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Chen J, Wang H, Jin L, Wang L, Huang X, Chen W, et al. Profile analysis of circRNAs induced by porcine endemic diarrhea virus infection in porcine intestinal epithelial cells. Virology. 2019;527:169–79.

2. Wood EN. An apparently new syndrome of porcine epidemic diarrhoea. Vet Rec. 1977;100(12):243–4.

3. Cheun-Arom T, Temeeyasen G, Tripipat T, Kaewprommal P, Piriypongsa J, Sukrong S, et al. Full-length genome analysis of two genetically distinct variants of porcine epidemic diarrhea virus in Thailand. Infect Genet Evol. 2016;44:114–21.

4. Sun RQ, Cai RJ, Chen YQ, Liang PS, Chen DK, Song CX. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis. 2012;18(1):161–3.

5. Wang XM, Niu BB, Yan H, Gao DS, Yang X, Chen L, et al. Genetic properties of endemic Chinese porcine epidemic diarrhea virus strains isolated since 2010. Arch Virol. 2013;158(12):2487–94.

6. Li W, Li H, Liu Y, Pan Y, Deng F, Song Y, et al. New variants of porcine epidemic diarrhea virus, China, 2011. Emerg Infect Dis. 2012;18(8):1350–3.

7. Li S, Yang J, Zhu Z, Zheng H. Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens. 2020;9(5):367.

8. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

9. Hu G, Niu F, Humburg BA, Liao K, Bendi S, Callen S, et al. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget. 2018;9(26):18648–63.

10. Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol. 2018;60:25.

11. Gong Q, Su G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep. 2017;37(6):BSR20171157.

12. Kumar A, Wong AK, Tizard ML, Moore RJ, Lefevre C. miRNA_Targets: a database for miRNA target predictions in coding and non-coding regions of mRNAs. Genomics. 2012;100(6):352–6.
13. Lai FW, Stephenson KB, Mahony J, Lichty BD. Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-kappaB activation. J Virol. 2014;88(1):54–65.
14. Zhao X, Song X, Bai X, Fei N, Huang Y, Zhao Z, et al. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1 (RUNX1). PeerJ. 2016;4:e1635.
15. Wang C, Shan L, Qu S, Xue M, Wang K, Fu F, et al. The Coronavirus PEDV Evades Type III Interferon Response Through the miR-30c-5p/SOCS1 Axis. Front Microbiol. 2020;11:1180.
16. Qi X, Cao Y, Wu S, Wu Z, Bao W. miR-129a-3p Inhibits PEDV Replication by Targeting the EDA-Mediated NF-kappaB Pathway in IPEC-J2 Cells. Int J Mol Sci. 2021;22(15):8133.
17. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.
18. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.
19. Fortes P, Morris KV. Long noncoding RNAs in viral infections. Virus Res. 2016;212:1–11.
20. Ma H, Han P, Ye W, Chen H, Zheng X, Cheng L, et al. The Long Noncoding RNA NEAT1 Exerts Antihantaviral Effects by Acting as Positive Feedback for RIG-I Signaling. J Virol. 2017;91(9):e02250-16.
21. Kambara H, Niazi F, Kostadinova L, Moonka DK, Siegel CT, Post AB, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 2014;42(16):10668–80.
22. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.
23. Chai W, Li J, Shangguan Q, Liu Q, Li X, Qi D, et al. Lnc-ISG20 Inhibits Influenza A Virus Replication by Enhancing ISG20 Expression. J Virol. 2018;92(16):e00539-18.
24. Ning X, Sun L. Identification and characterization of immune-related IncRNAs and IncRNA-miRNA-mRNA networks of Paralichthys olivaceus involved in Vibrio anguillarum infection. BMC Genomics. 2021;22(1):447.
25. Li H, Cui P, Fu X, Zhang L, Yan W, Zhai Y, et al. Identification and analysis of long non-coding RNAs and mRNAs in chicken macrophages infected with avian infectious bronchitis coronavirus. BMC Genomics. 2021;22(1):67.
26. Li B, Yang J, He J, Peng X, Zeng Q, Song Y, et al. Characterization of the whole transcriptome of spleens from Chinese indigenous breed Ningxiang pig reveals diverse coding and non-coding RNAs for immunity regulation. Genomics. 2021;113(4):2468–82.
27. Mackenzie JM, Khromykh AA, Parton RG. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe. 2007;2(4):229–39.
28. Petersen J, Drake MJ, Bruce EA, Riblett AM, Didigu CA, Wilen CB, et al. The major cellular sterol regulatory pathway is required for Andes virus infection. PLoS Pathog. 2014;10(2):e1003911.
29. Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G, Lacaze P, et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. 2011;9(3):e1000598.

30. Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol. 2021;17(4):369–96.

31. Engel T, Kannenberg F, Fobker M, Nofer JR, Bode G, Lueken A, et al. Expression of ATP binding cassette-transporter ABCG1 prevents cell death by transporting cytotoxic 7beta-hydroxycholesterol. FEBS Lett. 2007;581(8):1673–80.

32. Reue K, Zhang P. The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Lett. 2008;582(1):90–6.

33. Moebius FF, Fitzky BU, Lee JN, Paik YK, Glossmann H. Molecular cloning and expression of the human delta7-sterol reductase. Proc Natl Acad Sci U S A. 1998;95(4):1899–902.

34. Xiao J, Li W, Zheng X, Qi L, Wang H, Zhang C, et al. Targeting 7-Dehydrocholesterol Reductase Integrates Cholesterol Metabolism and IRF3 Activation to Eliminate Infection. Immunity. 2020;52(1):109-122.e6.

35. Jiang LY, Jiang W, Tian N, Xiong YN, Liu J, Wei J, et al. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J Biol Chem. 2018;293(11):4047–55.

36. Abbas YM, Pichlmair A, Gorna MW, Superti-Furga G, Nagar B. Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins. Nature. 2013;494(7435):60–4.

37. Kimura T, Katoh H, Kayama H, Saiga H, Okuyama M, Okamoto T, et al. Ifit1 inhibits Japanese encephalitis virus replication through binding to 5' capped 2'-O unmethylated RNA. J Virol. 2013;87(18):9997–10003.

38. Prieto-Echague V, Miller WT. Regulation of ack-family nonreceptor tyrosine kinases. J Signal Transduct. 2011;2011:742372.

39. Ooi EL, Chan ST, Cho NE, Wilkins C, Woodward J, Li M, et al. Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. Proc Natl Acad Sci U S A. 2014;111(5):1909–14.

40. Yu L, Dong J, Liu Y, Zhang L, Liang P, Wang L, et al. Genome-wide analysis of long noncoding RNA profiles in Vero cells infected with porcine epidemic diarrhea virus. Arch Virol. 2020;165(9):1969–77.

41. Chen J, Zhang C, Zhang N, Liu G. Porcine endemic diarrhea virus infection regulates long noncoding RNA expression. Virology. 2019;527:89–97.

42. Orom UA, Shiekhattar R. Long non-coding RNAs and enhancers. Curr Opin Genet Dev. 2011;21(2):194–8.

43. Yan P, Luo S, Lu JY, Shen X. Cis- and trans-acting IncRNAs in pluripotency and reprogramming. Curr Opin Genet Dev. 2017;46:170–8.
44. Wang S, Hou P, Pan W, He W, He DC, Wang H, et al. DDIT3 Targets Innate Immunity via the DDIT3-OTUD1-MAVS Pathway To Promote Bovine Viral Diarrhea Virus Replication. J Virol. 2021;95(6):e02351-20.

45. Duan X, Zhao M, Wang Y, Li X, Cao H, Zheng SJ. Epigenetic Upregulation of Chicken MicroRNA-16-5p Expression in DF-1 Cells following Infection with Infectious Bursal Disease Virus (IBDV) Enhances IBDV-Induced Apoptosis and Viral Replication. J Virol. 2020;94(2):e01724-19.

46. Xiao S, Wang X, Ni H, Li N, Zhang A, Liu H, et al. MicroRNA miR-24-3p promotes porcine reproductive and respiratory syndrome virus replication through suppression of heme oxygenase-1 expression. J Virol. 2015;89(8):4494–503.

47. Kimura T, Jain A, Choi SW, Mandell MA, Schroder K, Johansen T, et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol. 2015;210(6):973–89.

48. Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 2014;14(2):77–91.

49. Coornaert B, Carpentier I, Beyaert R. A20: central gatekeeper in inflammation and immunity. J Biol Chem. 2009;284(13):8217–21.

50. Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol. 2014;35(1):22–31.

51. Sun P, Wu H, Huang J, Xu Y, Yang F, Zhang Q, et al. Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase. Virus Res. 2018;253:1–11.

52. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

53. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.

54. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.

55. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

56. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12(3):R22.

57. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

58. Han D, Zhang Y, Chen J, Hua G, Li J, Deng X, et al. Transcriptome analyses of differential gene expression in the bursa of Fabricius between Silky Fowl and White Leghorn. Sci Rep. 2017;7:45959.

Figures
Figure 1

Overview of RNA sequencing. The distribution of mRNA (a), IncRNA (b), and miRNA (c) expressions at different times following viral infection were represented by histograms. (d) Exon number distribution of mRNAs and IncRNAs. Length distribution of mRNAs, IncRNAs (e), and miRNAs (f).
Figure 2

Identification and characterization of mRNAs. (a, b) Volcano plots of DE mRNAs between the mock-infected and PEDV-infected groups. The red and green dots represent up-regulated and down-regulated genes, respectively. (c, d) Heat map showing DE mRNAs expression levels. Individual samples are represented by columns, while genes with significant expression differences between the two groups are represented by rows. (e) Venn diagram for the intersection of DE mRNAs between the two groups.
Figure 3

Functional enrichment analysis of DE mRNAs. (a, b) The top 30 significantly enriched GO terms. (c, d) The top 20 significantly enriched KEGG pathways.
Figure 4

Identification and characterization of miRNAs. (a) Portions of small RNA types in the clean reads. (b) Venn diagram for the intersection of DE miRNAs between the two groups. (c, d) Volcano plots of DE miRNAs between the mock-infected and PEDV-infected groups. Up-regulated and down-regulated genes are represented by red and green dots, respectively.
Figure 5

Identification and characterization of lncRNAs. (a) Screening of non-coding lncRNAs by using CPC, Pfam, PLEK, and CNCI. (b) Distribution of the four types of lncRNAs. (c) Chromosome distribution of lncRNAs. (d) Venn diagram for the intersection of DE lncRNAs between the two groups. (e, f) Volcano plots of DE lncRNAs between the mock-infected and PEDV-infected groups. Up-regulated and down-regulated genes are represented by red and green dots, respectively.

Figure 6
The miRNA-mRNA-pathway network. The ellipse, round rectangle, and diamond symbols represent mRNA, miRNA, and the pathway, respectively. Up-regulated and down-regulated genes are represented by red and green, respectively.

Figure 7

An overview of the lncRNA-miRNA-mRNA ceRNA network. The ellipse, triangle, and round rectangle symbols represent mRNA, lncRNA, and miRNA respectively.
Figure 8

Validation of RNA-seq results by qPCR analysis. (a) The expression levels of DE mRNAs were validated by qPCR. (b) The expression levels of DE IncRNAs were validated by qPCR. Log2 fold change was expressed as mean ±SD.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- TableS1.xlsx
- TableS2.xlsx
- TableS3.xlsx
- TableS4.xlsx
- TableS5.xlsx
- TableS6.xlsx
- TableS7.xlsx
- Fig.S1.doc
- Fig.S2.doc
- Fig.S3.doc
- Fig.S4.doc