Explaining the Type Ia supernova PTF 11kx with a violent prompt merger scenario

Noam Soker, Amit Kashi, Enrique García–Berro, Santiago Torres and Judit Camacho

1 Department of Physics, Technion, Israel Institute of Technology, Haifa 32000, Israel
2 Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4002, USA
3 Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Estève Terrades 5, E-08860 Castelldefels, Spain
4 Institute for Space Studies of Catalonia, c/Gran Capità 2–4, Edif. Nexus 104, E-08034 Barcelona, Spain

Accepted 2013 February 11. Received 2013 February 5; in original form 2012 October 26

ABSTRACT

We argue that the multiple shells of circumstellar material (CSM) and the supernovae (SNe) ejecta interaction with the CSM starting 59 d after the explosion of the Type Ia SN PTF 11kx are best described by a violent prompt merger. In this prompt merger scenario, the common envelope (CE) phase is terminated by a merger of a white dwarf (WD) companion with the hot core of a massive asymptotic giant branch star. In most cases, the WD is disrupted and accreted on to the more massive core. However, in the rare cases, where the merger takes place when the WD is denser than the core, the core will be disrupted and accreted on to the cooler WD. In such cases, the explosion might occur with no appreciable delay, i.e. months to years after the termination of the CE phase. This, we propose, might be the evolutionary route that could lead to the explosion of PTF 11kx. This scenario can account for the very massive CSM within \(\sim 1000 \) au of the exploding PTF 11kx star, for the presence of hydrogen, and for the presence of shells in the CSM.

Key words: supernovae: general – supernovae: individual: PTF 11kx.

1 INTRODUCTION

Observations and theoretical studies cannot teach us yet whether all three scenarios for the formation of Type Ia supernova (SN Ia), or only one or two of them can work – e.g. Livio (2001), Maoz (2010) and Howell (2011). These three basic theoretical scenarios can be described as follows. (i) In the single-degenerate (SD) scenario (e.g. Whelan & Iben 1973; Nomoto 1982; Han & Podsiadlowski 2004), a white dwarf (WD) grows in mass through accretion from a non-degenerate stellar companion. However, the mass increase of the WD seems to be very limited (e.g. Idan, Shaviv & Shaviv 2012). (ii) In the double-degenerate (DD) scenario [Iben & Tutukov 1984; Webbink 1984; see van Kerkwijk, Chang & Justham (2010) for a paper on sub-Chandrasekhar mass remnants], two WDs merge after losing energy and angular momentum through the radiation of gravitational waves (Tutukov & Yungelson 1979). Some list the ‘double-detonation’ mechanism (Woosley & Weaver 1994; Livne & Arnett 1995) as a separate channel, although it involves two WDs. (iii) In the core-degenerate (CD) scenario for the formation of SN Ia, the Chandrasekhar (\(M_{\text{Ch}} \)) or super-Chandrasekhar mass WD is formed at the termination of the common envelope (CE) phase, or during the planetary nebula phase, from a merger of a WD companion with the hot core of a massive asymptotic giant branch (AGB) star (Kashi & Soker 2011; Soker 2013a; Ilkov & Soker 2012a). The merger of a WD with the core of an AGB star was studied in the past (Sparks & Stecher 1974; Livio & Riess 2003; Tout et al. 2008). Livio & Riess (2003) suggested that the merger of the WD with the AGB core leads to a SN Ia that occurs at the end of the CE phase or shortly after, and can explain the presence of hydrogen lines. However, due to its rapid rotation (e.g. Anand 1965; Ostriker & Bodenheimer 1968; Uenishi, Nomoto & Hachisu 2003; Yoon & Langer 2005; Lorén-Aguilar, Isern & García-Berro 2009), and possibly very strong central magnetic fields (e.g. Kundu & Mukhopadhyay 2012), the explosion of a WD with \(M \geq M_{\text{Ch}} \) might be substantially delayed.

The recently observed SN Ia PTF 11kx (Dilday et al. 2012) has narrow lines, including hydrogen lines, and indications of interaction with a massive circumstellar material (CSM) which starts 59 d after the explosion. Dilday et al. (2012) argued that PTF 11kx can be explained by the SD scenario for SN Ia. They dismiss the merger scenario as suggested by Livio & Riess (2003) on several grounds. In particular, they claim that it cannot account for several CSM shells. We find this unjustified in Section 2. We further discuss the
properties of the CSM in Section 3, where we calculate the total radiated energy arising from the collision of the expanding gas with the CSM.

The destruction of the WD and its accretion on to the core while the core is still hot might prevent an early ignition of carbon (Yoon, Podsiadlowski & Rosswog 2007), which is one of the theoretical problems of the DD scenario (e.g. Saio & Nomoto 2004). However, in the case of PTF 11kx ignition of the merger product is required quite early, within \(\sim 30 \) yr from the CE ejection. We therefore consider in Section 4 the possibility that in the case of PTF 11kx the core was destructed on to the cooler WD. In those cases, where an explosion occurs shortly after the merger in the CE, there is no delay by spin-down or emission of gravitational waves. This is called a violent prompt merger, which might be considered as a subversion of the DD and CD scenarios. In Section 5, we show that in these cases a massive envelope can be ejected, and that this scenario can account for the frequency of such SN Ia. Our summary is in Section 6.

2 A CASE FOR A MASSIVE CIRCUMSTELLAR MEDIUM

Starting 59 d after the explosion of PTF 11kx, Dilday et al. (2012) detected a group of absorption lines (Na I, Fe II, Ti II and He I), and H\(\alpha \) and H\(\beta \) P-cygni lines at a velocity shift of 65 km s\(^{-1}\). The Ca II H&K absorption line was detected at an outflow velocity of 100 km s\(^{-1}\) and a group of emission lines (H, He, Fe, Ti) at 100 km s\(^{-1}\). This, according to Dilday et al. (2012), indicates the presence of multiple CSM shells interacting with the supernova (SN) ejecta. Adopting an ejecta velocity of 25 000 km s\(^{-1}\) they deduced that the ejecta–CSM interaction starts at a distance of \(\sim 10^{16} \) cm.

Dilday et al. (2012) suggest that PTF 11kx is an SN Ia formed by the SD scenario. A claim that was raised also in the theoretical work of Hachisu, Kato & Nomoto (2012). In the scenario of Dilday et al. (2012), the CSM structure is assumed to originate from recent recurrent nova eruptions whose ejecta sweep the wind of a giant companion. Based on the saturated Ca II H&K absorption lines, Dilday et al. (2012) calculated the CSM mass to be \(M_{\text{CSM}} \approx 5.3k \) M\(_{\odot} \), where \(k \) is the covering fraction. For the absence of an interaction with a very massive CSM, they argue that \(k \ll 1 \). The relevant radius of the photosphere at \(t = 20 \) d is \(r_{\text{ph}} = 1.6 \times 10^{15} \) cm. The location of the absorbing gas according to their analysis is \(r_{\text{CA}} = 1.3 \times 10^{16} \) cm. Taking the absorbing gas to be in a torus (as they do) of larger radius \(r_{\text{CA}} \) and smaller radius \(r_{\text{ph}} \), the covering fraction is \(k \gtrsim r_{\text{ph}}/r_{\text{CA}} = 0.12 \). We conclude, based on the analysis of Dilday et al. (2012), that \(M_{\text{CSM}} > 0.6 \) M\(_{\odot} \).

We can also estimate \(M_{\text{CSM}} \) from the H\(\alpha \) luminosity. Dilday et al. (2012) list \(L_{\text{H} \alpha} \) at five epochs, with a maximum of \(L_{\text{H} \alpha}(88 \text{ d}) = 1.84 \times 10^{40} \text{ erg s}^{-1} \). We take a case B recombination for solar composition gas and derive

\[
M_{\text{H} \alpha} \approx 0.2 \left(\frac{V}{10^{44} \text{ cm}^{2}} \right)^{1/2} M_{\odot},
\]

where \(V \) is the volume and we assumed a constant density here. The volume was scaled according to the torus discussed above. If ionization is not complete, then the mass could be even larger. This estimate does not depend on the calcium abundance. A value of \(M_{\text{CSM}} \approx M_{\text{H} \alpha} > 0.2 \) M\(_{\odot} \) at a distance of \(\sim 10^{16} \) cm is larger than what most SD scenarios predict.

Our motivation to explore the violent prompt merger scenario to account for a massive CSM comes from other SN Ia as well. SN 2002ic (Hamuy et al. 2003) had a strong and broad, full width at half-maximum (FWHM) of \(\sim 1000 \) km s\(^{-1}\), H\(\alpha \) emission resulting from SN ejecta–CSM interaction, with CSM mass of \(\sim 6 \) M\(_{\odot} \) (Wang et al. 2004). Nomoto et al. (2004, 2005) suggested that the light curve can be explained by a non-spherical \(\sim 1.3 \) M\(_{\odot} \) CSM. Livio & Riess (2003) proposed that SN 2002ic represents a rare subtype of the DD scenario in which the explosion occurs by core-WD merger immediately following the CE phase.

SN 2005gj is another SN Ia with hydrogen emission (Aldering et al. 2006, Prieto et al. 2007), and an aspherical or clumpy CSM (Aldering et al. 2006) with an estimated mass of \(\geq 0.016-0.16 \) M\(_{\odot} \) (Aldering et al. 2006). More emission lines of hydrogen and helium were detected with time since explosion, indicating the presence of a few CSM layers.

The multi-layer aspherical CSM in the above SNe can be explained in the frame of the violent prompt merger scenario. (1) Before the CE phase there was the ordinary mass-loss of the AGB star, but enhanced by tidal interaction. (2) During the CE ejection a spiral structure can form several shells along the line of sight, and in particular in the equatorial plane. Some numerical simulations – e.g. Ricker & Taam (2012); San'dquist et al. (1998) – show that the CE mass-loss occurs in more than one episode, i.e. there are a few peaks in the mass-loss rate. In particular, along each direction there can be several shells due to the spiral structure that is formed during the CE phase, and that can later have imprint in the CSM. (3) The merger process can lead to an equatorial mass-loss event that ejects \(\sim 0.1-0.5 \) M\(_{\odot} \). It can accelerate some previously ejected gas to higher velocities, e.g. \(\sim 100 \) km s\(^{-1}\). (4) As observed in some post-CE planetary nebulae, e.g. Sp–1 and NGC 2346, the mass close to the star is concentrated in the equatorial plane. The rest of the mass forms a bipolar structure at much larger distances. In our model, the explosion took place at the centre of a pre-planetary nebulae. Our model therefore predicts that further interaction of the ejecta with the CSM will take place over the coming years to tens of years, and that the amount of accumulated mass in the CSM will be of the order of a solar mass.

3 RADIATED ENERGY

We calculate the excess energy of PTF 11kx – according to Dilday et al. (2012) – over the ‘normal’ SN Ia SN 2002er (Jha, Riess & Kirshner 2007). We extract the \(R \)-band light curve from Dilday et al. (2012) and integrate the luminosity as a function of time from day 7 to 99 for PTF 11kx we take the luminosity between day 64 and 99 to be constant, set to the value of day 64. We find that over the integrated time the energy in the \(R \)-band of SN 2002er is \(\sim 9.1 \times 10^{48} \) erg, and the total energy in the \(R \)-band of PTF 11kx is \(\sim 2.1 \times 10^{49} \) erg. Thus, in about 100 d PTF 11kx radiated \(\sim 1.2 \times 10^{49} \) erg more than a typical SN Ia. As this energy is calculated from emission only in the \(R \)-band, when considering other bands the actual excess energy value can be larger. On the other hand, by assuming that from day 64 to 99 the \(R \)-band luminosity does not decrease we somewhat overestimate the radiated energy. Over a period of 200 d we will take the excess energy that we attribute to the collision of the ejecta with the CSM to be \(\sim 2 \times 10^{49} \) erg.

Let us take the ejecta flowing with a velocity of \(v_{ej} \sim 10^{4} \) km s\(^{-1}\) to hit the CSM residing in a torus. In estimating the kinetic energy that is transferred to radiation one should consider the geometry. The CSM is in a torus rather than a spherical shell, and the shocked
ejecta flows around it and cools adiabatically. The fraction of the post-shock thermal energy that will be radiated is the ratio $\eta \sim \tau_c / (\tau_c + \tau_f)$, where τ_c is the radiative cooling time and τ_f is the flow time-scale.

$$\tau_f \simeq \frac{r_{ph}}{v_{ej}} = 2 \times 10^8 \left(\frac{r_{ph}}{2 \times 10^5 \text{ cm}}\right) \left(\frac{v_{ej}}{10^4 \text{ km s}^{-1}}\right)^{-1} \text{s}$$

is the flow time-scale.

For a direct shock, the post-shock temperature is $T_{ph} \sim 3 \times 10^8 \text{ K}$. The post-shock density of the ejecta and the CSM have a similar electron density of $n_e \sim 10^3 \text{ cm}^{-3}$. For this temperature and density, the cooling time for an optically thin gas (the optical depth over the small radius of the torus is $\sim 0.1–0.5$) is $\tau_c \simeq 2 \times 10^9 \text{ s}$. Thus, a fraction of $\eta \sim 0.5$ of the thermal energy will be radiated. In the collision of the ejecta with the CSM only a fraction $\zeta < 1$ of the kinetic energy of the colliding gas is transferred to thermal energy because a large area of the shock on the torus is oblique and because the CSM is accelerated and takes part of the kinetic energy. Over all, the fraction of the kinetic energy of the ejecta that is radiated is $k\eta \zeta \sim 0.05\zeta$. For a kinetic energy of 10^{51} erg this amounts to $5 \times 10^{49} \zeta \text{ erg}$. The value of ζ depends on the geometry of the CSM and how it is being changed during the interaction. The interaction should last for a time of $t_{in} > 1.3 \times 10^{16} \text{ cm}/v_{ej} = 150 \text{ d}$. Therefore, the energy radiated within a time of 200 d can be $\sim 2 \times 10^{49} \text{ erg}$. Hence, a value of kinetic to thermal conversion ratio of $\zeta = 0.4$ can account for the observed extra luminosity.

4 ENERGY RELEASED IN THE MERGER PROCESS

4.1 The migration phase

There are various phases in the merger process (Kashi & Soker 2011). The dynamical CE phase ends when most of the envelope is ejected, and the binary system ends at an orbital separation of $\sim 1–3 \text{ R}_\odot$. The gravitational energy released in this process ejections part of the envelope, and a circumbinary disc is formed by the bound material, including fall back material. This material interacts gravitationally with the binary system. Typical time-scales for building-up the disc range from weeks to years, but these are gross estimates as the process requires further study. In any case, during this phase the semimajor axis is reduced to $a \simeq 0.5–1 \text{ R}_\odot$, while the eccentricity increases up to $e \lesssim 1$. Consequently, a merger can occur during this migration phase because of the substantial decrease in the periastron distance, despite the modest decrease in the semimajor axis. The merger lasts for several weeks up to a year. If the circumbinary disc is lost before the merger occurs, the final evolution of the merger is driven by the emission of gravitational waves (see fig. 7 in Kashi & Soker 2011). We note that the time-scale for this will be shorter due to the high eccentricity. In any case, the merger is set up by substantially increasing the eccentricity with a very moderate decrease of the semimajor axis. This implies that during the migration phase the binary system loses an amount of energy which is approximately equal to what has been lost during the dynamical CE phase, e.g. $\sim 10^{48} \text{ erg}$. So the total energy that is estimated to be radiated during the migration phase is $\sim 10^{48} \text{ erg}$. Moreover, the high eccentricity and monotonic increase in eccentricity imply also that the merger is likely to be violent, as required in our violent prompt merger scenario.

This evolutionary route is different from that proposed by Chugai & Yungelson (2004) who assumed that the binary has a circular orbit. Accordingly, they argued against the post-CE merger on the ground that the spiralling-in to a distance where gravitational waves take over, $a \sim 0.03 \text{ R}_\odot$, will release much more energy than is observed in SNe 2002ic and 1997cy. However, the migration process described above removes the objections of Chugai & Yungelson (2004) because of the modest decrease in orbital energy during the process. Actually, the modest amount of released gravitational energy can be carried away by the mass ejected from the circumbinary disc and by radiation. Additionally, we note that this mass-loss episode can form another circumstellar shell, with which the explosion can interact later on.

There are two possible channels to ignite the WD-core merger product: (i) a violent merger where ignition occurs within minutes (Pakmor et al. 2011, 2012a,b) and (ii) merging and relaxing within years up to the point where the WD becomes unstable and is ignited. We first note that during the merger itself more orbital gravitational energy will be released. In the first violent ignition channel, there is no need to explain the additional release of gravitational energy, as it becomes part of the energy budget of the explosion. In the second channel of several years to tens of years from merger to explosion, the merger process will release energy. In Section 4.2, we explain how this energy is dissipated such that the equatorial expanding gas keeps its relatively low velocity of $\sim 65–100 \text{ km s}^{-1}$. Basically, the released orbital energy is carried by a fast bipolar outflow and by radiation. Here, we note that the ejected mass will remove angular momentum as well. Basically, the disrupted object, which in our specific case is the core of the giant, forms an accretion disc around the WD. Since the viscous time-scale of this disc is much shorter than a year it plays no role in delaying the formation of a Chandrasekhar-mass remnant, that is formed within tens of years. However, viscous dissipation removes angular momentum from the disc, which must be carried away by the ejected mass. This can be done either by a disc wind or by jets, which carry all the angular momentum and a substantial fraction of the excess energy (see Section 4.2).

As previously discussed, most of the left-over mass from the merger process, which is a CO-rich gas, escapes in the form of a disc wind or jets. Thus, the circumstellar gas will have a bipolar structure, similar to that of bipolar planetary nebulae. Since in the equatorial plane there will be the torus of the hydrogen-rich gas ejected from the envelope of the giant moving slowly at velocities $\sim 100 \text{ km s}^{-1}$, the gas ejected by the explosion will first interact with it. The CO-rich gas will be ejected at much higher velocities, of the order of a few $\times 1000 \text{ km s}^{-1}$ (the escape speed from the merger remnant), and the encounter should take place much later, years to tens of years after explosion. The collision with the gas influences the light curve (e.g. Fryer et al. 2010).

One argument against the WD–WD merger scenario for SN Ia is that there is an early off-centre ignition of carbon. However, most calculations of ignition in WD–WD merger were done for cold WDs (e.g. Kawai, Saio & Nomoto 1987). Specifically, these authors found an early off-centre carbon ignition but they consider a maximum mass accretion rate of $2 \times 10^{-5} \text{ M}_\odot \text{ yr}^{-1}$. In our scenario, a much higher accretion rate is required. We actually have a process where the hot high-density core of the giant is accreted on to a more massive WD, for which there is a lack of self-consistent, realistic calculations. Future simulations, which are beyond the scope of this paper, must check whether in this situation excessive compression can be avoided, and thus prevent an early ignition of the WD. Else, the ignition in the very dense region can set the explosion itself, as
in Pakmor et al. (2012b). All in all, new simulations are required to study the WD-core merger, using sophisticated three-dimensional numerical codes because the outcome of the process is very sensitive to numerical resolution (Pakmor et al. 2012a).

It could be argued as well that traditional SN Ia carbon ignition models require the detonation to be preceded by a deflagration to occur over \(\sim 1000 \) yr, which is too long for the present scenario. However, we note that in recent years other ignition channels have been discussed in the literature, e.g. ignition in sub-Chandrasekhar WDs, and the violent merger ignition (Pakmor et al. 2012b). Consequently, the ignition process must be reconsidered in the case of core-WD merger. For example, as the accreted core gas is hot an ignition might occur in intermediate regions where temperature is high during the post-merger process.

4.2 The violent merger phase

When two WDs merge to form a super-Chandrasekhar mass WD a huge amount of energy is released. Actually, this might result in an event brighter than expected from SN Ia explosion, if there is a large delay between merger and explosion. This is less of a problem in the case of the violent merger scenario (Pakmor et al. 2012b), where the explosion occurs several minutes after merger starts. In the present case, the merger is of a core of an AGB star and a WD companion (the remnant of the primary star), with masses of \(M_{\text{core}} \) and \(M_{\text{WD}} \), respectively. Nevertheless, the merger of massive degenerate components releases less energy as they reach \(M_{\text{Ch}} \).

The final state just before the SN Ia explosion is that the WD accreted a mass \(\Delta M \) from the core, and the rest of the mass is ejected. The ejected mass carries with it energy and angular momentum. The difference in binding energy is between the energy required to unbind the core and the gravitational energy released by the mass accreted on to the WD:

\[
\Delta E_G \simeq 0.5 \frac{G(M_{\text{WD}} + 0.5\Delta M)\Delta M}{R_{\text{WD}}} - \Gamma \frac{G M_{\text{core}}^2}{R_{\text{core}}} \tag{3}
\]

where \(\Gamma \simeq 0.5 \) is a parameter that depends on the properties of the core. We assume an adiabatic index of \(\gamma = 5/3 \) as the core is hot, and take a coefficient of 0.5 in the first term of equation (3). The core and WD first collide when they are on a highly eccentric orbit – see Section 4.1 and Kashi & Soker (2011). This implies that the kinetic energy of the binary system must be considered. This energy is already included in the first term of equation (3). For the typical parameters used here the gravitational energy released is

\[
\Delta E_G(\text{erg}) \simeq 1.9 \times 10^{49} \left(\frac{M_{\text{WD}} + 0.5\Delta M}{1.3 M_{\odot}} \right) \left(\frac{\Delta M}{0.6 M_{\odot}} \right) \nonumber
\]

\[
\times \left(\frac{R_{\text{WD}}}{5400 \text{ km}} \right)^{-1} - 1.6 \times 10^{30} \left(\frac{\Gamma}{0.6} \right) \nonumber
\]

\[
\times \left(\frac{M_{\text{core}}}{1 M_{\odot}} \right)^2 \left(\frac{R_{\text{core}}}{10^6 \text{ km}} \right)^{-1} \tag{4}
\]

The radius of a WD of mass 1\(M_{\odot} \) is 6000 km (Provenca et al. 1998). But as matter is accreted on to the cold massive WD its radius shrinks. However, this will not release much energy as the matter in the centre of the WD is relativistic, and thus the adiabatic index \(\gamma \) is close to the full relativistic value, 4/3. For \(\gamma = 4/3 \), the marginally stable value, no energy is released as the star contracts to satisfy hydrostatic equilibrium. Here, it is not fully relativistic, but the adiabatic index is still well below 5/3 and not much energy will be released. The binding energy of a WD at the critical mass of 1.4\(M_{\odot} \) is \(E_b = -5.5 \times 10^{49} \text{erg} \) (e.g. Ibanez Cahanell 1984). For a WD merger product of mass 1.4\(M_{\odot} \) and \(\gamma = 5/3 \) the corresponding radius is 4700 km. In summary, we conclude that not much energy will be released by the contraction of the cold accreting WD, and took an effective radius of 5400 km.

The ejected mass has more specific energy than it had before the merger. Therefore, it will carry some of the additional energy. As a large fraction of the ejected mass is blown by an accretion disc wind, it will carry angular momentum and will flow in the polar directions (and might even form two opposite jets).

Adopting typical values, the total energy that has to be radiated before the explosion is \(E_{\text{env}} \lesssim \text{several} \times 10^{49} \text{erg} \). This estimate is very sensitive to the parameters due to the subtraction of two very close large values. For example, adopting \(M_{\text{WD}} = 1.1 M_{\odot} \) and \(\Delta M = 0.45 M_{\odot} \), and using the same formalism we find the released energy to be \(\sim 10^{49} \text{erg} \). The total energy released in radiation can be larger than that emitted during the SN explosion itself. However, the model assumes (something that, as mentioned earlier, needs verification) that the building of the merger remnant to the point it explodes lasts for several years. Therefore, the time-scale is two orders of magnitudes longer than that of the SN explosion itself. The bolometric luminosity will be over one order of magnitude lower than that of the SN explosion, and most of the radiation (due to the optically thick ejected envelope) will be emitted in the infrared (IR). This is the reason why it avoided detection by different surveys in the visible. However, the model predicts that such SN Ia might have a precursor lasting several years with 3–7 bolometric magnitudes fainter than the SN explosion, and peaks in the near-IR. In case the merger is of a lighter core-WD system, then the pre-explosion total energy released might be much larger. But in that case the delay will be longer, as the central region needs to cool to reach the critical limit for explosion.

5 THE EVOLUTIONARY ROUTE

For the progenitor of the explosion we look for systems having the following properties.

(i) The total mass of the secondary core during the final CE phase and the mass of the WD remnant of the primary star should be super-Chandrasekhar, \(M_{\text{core}} + M_{\text{WD}} > 1.4 M_{\odot} \). But as discussed in the previous section, to prevent a pre-SN explosion outburst, the core and WD should be much more massive, \(M_{\text{core}} + M_{\text{WD}} \gtrsim 2 M_{\odot} \).

(ii) The total mass of the envelope at the final CE phase must be as massive as the observed CSM. We take it to be \(M_{\text{env}} \gtrsim 2 M_{\odot} \), but prefer \(M_{\text{env}} \gtrsim 4 M_{\odot} \).

(iii) To facilitate merger at the termination of the CE phase we require \(M_{\text{env}}/M_{\text{WD}} \gtrsim 3 \), but prefer a larger number even (Soker 2013b).

(iv) It is likely that an explosion without a delay will take place when the core is accreted on to the cooler WD remnant of the primary star (Kashi & Soker 2011). For that the density of the core should be lower than the density of the WD. As the core is hot its radius is larger than that of a cool WD. The condition reads \(M_{\text{env}} \lesssim 1.5 M_{\text{WD}} \).

(v) As we require the merger product to be a CO WD, to avoid ONe WDs, we are limited to both \(M_{\text{core}} < 1.1 M_{\odot} \) and \(M_{\text{WD}} < 1.1 M_{\odot} \).

To examine for such systems we ran the population synthesis code described in García-Berro et al. (2012), where all details are given. Here, for the sake of conciseness, we only present the results.
Explaining the SN Ia PTF 11kx

Figure 1. Mass of the envelope of the giant as a function of the mass of the primary WD and of the mass of the hydrogen-exhausted core of the secondary. The different colour scales denote different masses of the envelope. The brown scale corresponds to relatively small masses of the envelope ($2 \leq M_{\text{env}}/M_\odot \leq 3$), the grey-scale corresponds to intermediate masses ($3 \leq M_{\text{env}}/M_\odot \leq 4$), while the blue scale has been selected to show the masses of interest for the scenario described in the main text ($4 \leq M_{\text{env}}/M_\odot \leq 5$). Also plotted are the constrains given by conditions 1 and 4. For the sake of clarity, the region corresponding to the likely progenitors of PTF 11kx has been highlighted.

Figure 2. Ratio of the mass of the envelope of the secondary to the mass of the primary WD, as given by the coloured bar, as a function of the mass of the primary WD and of the hydrogen-exhausted core of the secondary. The rest of the lines are the same as shown in Fig. 1. Again, the region of likely progenitors of PTF 11kx has been conveniently highlighted in this plane.

6 SUMMARY

The conclusion that the presence of any CSM around an SN Ia implies that its association with the SD scenario – e.g. Sternberg et al. (2011) – is problematic, in particular in cases where the CSM mass within ~ 1000 au is $\gtrsim 0.01 M_\odot$. An explosion set by the violent prompt merger of a WD companion with the core of the giant star naturally occurs within a massive CSM – the ejected CE (Livio & Rieß 2003).

We find the association of the SN Ia PTF 11kx (Dilday et al. 2012) with the SD scenario to be unlikely due to the massive CSM. Instead, we found that the violent prompt merger of a massive WD with a massive core, as marked by the thick line on the upper-right corner of Figs 1 and 2, to be able to account for the properties of PTF 11kx. We predict that interaction of the ejecta with the CSM will take place over the coming decades and that the amount of mass in the CSM will be accumulated to few times of solar mass. We also found from our population synthesis calculations that the number of systems with large total mass of the WD and core match the number of SN Ia with massive CSM as deduced from observations.

ACKNOWLEDGEMENTS

This research was supported by the Asher Fund for Space Research at the Technion, by MCINN grant AYA2011–23102, by the European Union FEDER funds and by the ESF EUROGENESIS project (grant EUI2009–04167).
REFERENCES

Aldering G. et al., 2006, ApJ, 650, 510
Anand S. P. S., 1965, Proc. Natl Acad. Sci., 54, 23
Chugai N. N., Yungelson L. R., 2004, Astron. Lett., 30, 65
Dilday B. et al., 2012, Sci, 337, 942
Fryer C. L. et al., 2010, ApJ, 725, 296
García-Berro E. et al., 2012, ApJ, 749, 25
Hachisu I., Kato M., Nomoto K., 2012, ApJ, 756, L4
Hamuy M. et al., 2003, Nat, 424, 651
Han Z., Podsiadlowski P., 2004, MNRAS, 350, 1301
Howell D. A., 2011, Nat. Commun., 2, id. 350
Ibanez Cabanell J. M., 1984, A&A, 135, 382
Iben I. Jr, Tutukov A. V ., 1984, ApJS, 54, 335
Idan I., Shaviv N. J., Shaviv G., 2012, J. Phys. Conf. Ser., 337, 012051
Ilkov M., Soker N., 2012, MNRAS, 419, 1695
Jha S., Riess A. G., Kirshner R. P., 2007, ApJ, 659, 122
Kashi A., Soker N., 2011, MNRAS, 417, 1466
Kawai Y., Saio H., Nomoto K., 1987, ApJ, 315, 229
Kundu A., Mukhopadhyay B., 2012, Mod. Phys. Lett. A, 27, 50084
Livio M., 2001, in Livio M., Panagia N., Sahu K., eds, Space Telescope Science Institute Symp. Ser., Vol. 13, Supernovae and Gamma-Ray Bursts: the Greatest Explosions since the Big Bang. Cambridge University Press, Cambridge, p. 334
Livio M., Riess A. G., 2003, ApJ, 594, L93
Livne E., Arnett D., 1995, ApJ, 452, 62
Lorén-Aguilar P., Isern J., García-Berro E., 2009, A&A, 500, 1193
Maoz D., 2010, AIP Conf. Ser. Vol. 1314, International Conference on Binaries: In Celebration of Ron Webbink’s 65th Birthday. Am. Inst. Phys., New York, p. 223
Maoz D., Mammucari F., Brandt T. D., 2012, MNRAS, 426, 3282
Nomoto K., 1982, ApJ, 253, 798
Nomoto K. et al., 2004, in Frontier in Astroparticle Physics and Cosmology. p. 323
Nomoto K., Suzuki S., Deng J., Uenishi T., Hachisu I., 2005, in Turatto M., Benetti L., Zampieri L., Shea W., eds, ASP Conf. Ser. Vol. 342, 1604-2004: Supernovae as Cosmological Lighthouses. Astron. Soc. Pac., San Francisco, p. 105
Ostriker J. P., Bodenheimer P., 1968, ApJ, 151, 1089
Pakmor R., Hachinger S., Röpke F. K., Hillebrandt W., 2011, A&A, 528, A117
Pakmor R., Edelmann P., Röpke F. K., Hillebrandt W., 2012a, MNRAS, 424, 2222
Pakmor R., Kromer M., Taubenberger S., Sim S. A., Röpke F. K., Hillebrandt W., 2012b, ApJ, 747, L10
Prieto J. L. et al., 2007, preprint (arXiv:0706.4088)
Provençal J. L., Shipman H. L., Hog E., Thejll P., 1998, ApJ, 494, 759
Ricker P. M., Taam R. E., 2012, ApJ, 746, 74
Saio H., Nomoto K., 2004, ApJ, 615, 444
Sandquist E. L., Taam R. E., Chen X., Bodenheimer P., Burkert A., 1998, ApJ, 500, 909
Soker N., 2013a, in Di Stefano R., Orio M., Moe M., eds, IAU Symposium, Vol. 281, Binary Paths to Type Ia Supernovae Explosions. Cambridge Univ. Press, Cambridge, p. 72
Soker N., 2013b, New Astron., 18, 18
Sparks W. M., Stecher T. P., 1974, ApJ, 188, 149
Sternberg A. et al., 2011, Sci, 333, 856
Tout C. A., Wickramasinghe D. T., Liebert J., Ferrario L., Pringle J. E., 2008, MNRAS, 387, 897
Tutukov A. V., Yungelson L. R., 1979, Acta Astron., 29, 665
Uenishi T., Nomoto K., Hachisu I., 2003, ApJ, 595, 1094
van Kerkwijk M. H., Chang P., Justham S., 2010, ApJ, 722, L157
Wang L. et al., 2004, ApJ, 604, L53
Webbink R. F., 1984, ApJ, 277, 355
Whelan J., Iben I. Jr, 1973, ApJ, 186, 1007
Woosley S. E., Weaver T. A., 1994, ApJ, 423, 371
Yoon S.-C., Langer N., 2005, A&A, 435, 967
Yoon S.-C., Podsiadlowski P., Rosswog S., 2007, MNRAS, 380, 933

This paper has been typeset from a TEX/LATEX file prepared by the author.