Kinetic and static parameters of a new sorbent based on clays and ways of its determination

S V Stepanov and O N Panfilova
Samara State Technical University, 194, Molodogvardeyskaya st., Samara, 443001, Russian Federation

E-mail: stepanovsv3@yandex.ru

Abstract. The paper demonstrates experimental research results obtained while studying heavy metal ions sorption ability. These ions were extracted from a multicomponent model solution. The research was conducted for a new sorption sample based on clays under static conditions and carried out in the range of low concentrations of heavy metal ions in the solution. For the development of sorption isotherms, the method of non-variant test portions and variable concentrations of heavy metal ions was used. As a result, the researchers constructed sorption isotherms for copper, zinc, manganese, iron and lead. The experimental data was approximated by the Freundlich, Langmuir, Langmuir-Freundlich, Toch and Redlich-Peterson equations. MathCAD and SciDAVis software programs were used for mathematical processing. The authors came to the conclusion that the Langmuir equation most adequately described the sorption isotherms for copper, lead and zinc, the Toch model was preferable for iron and manganese isotherms. During the experiment, sorption constants and determination coefficient were also determined for each metal.

1. Introduction
The most difficult task in the field of wastewater treatment is to achieve MAC standards for heavy metal ions that exist in water at low concentrations in conditions than these ions at the same time exceed MAC standards by several times. Sorbents based clay demonstrate high capacity relative to ions of heavy metals [1-5]. Clay, the main sorbent component, is widespread and inexpensive in comparison with activated coals. When clays are modified, their sorption capacity considerably increases [6]. Many studies confirm the existence of high content of exchange cations and anions retained on the surface of the material. For these reasons, the attention of many scientists has been focused on the use of clay materials as an adsorbent for water treatment. Montmorillonite and its modified forms have a higher adsorption capacity to metals than kaolinite [7]. The absorption of heavy metals by clay minerals involves a number of complex adsorption mechanisms, such as direct binding of metal cations to the surface of clay minerals, surface complexion formation, ion exchange, etc. [8-10].

The objectives of this research are to study sorption properties of a new sample of sorbent intended for wastewater final treatment from heavy metals, to construct a series of selectivity, to empirically identify mathematical equations that best describe experimental data, to calculate determination coefficients and the sorbent total capacity.

The composition of the new sample included montmorillonite, kaolin, peat and dolomite, with polyvinyl acetate used as a binder. In order to change the chemical structure and morphology of the surface and to obtain porosity, the authors applied thermal modification [1].
2. Methods
The sorbent, which properties are studied in this work, was previously collected from ten samples, also obtained on the basis of clays. It was chosen because this sorbent was characterised by the best kinetics and the highest sorption capacity for heavy metal ions [12]. The main parameters obtained during the experiment are presented in Table 1.

To build sorption isotherms the researchers used the method of constant weighed portions and variable concentrations of heavy metal ions (from 27 to 0.05 mg/l). The volume of the solution (V) was taken as 200 ml, the mass of the sorbent (m) – 1 g, the temperature equalled 20°C. Each experiment was carried out twice. The initial solutions were prepared in the volume enough for two parallel samples. Their concentrations were tested analytically. The results of the experiment are shown in Figure 1. Adsorption capacity (A) was figured out for decrease of concentration, mg/g:

\[A = \frac{C_{\text{en}} - C_{\text{ex}}}{m} \times V, \]

3. Results and discussion
The high rate of sorption in the initial period of interaction is associated with the attraction of metal cations from the solution to the negatively charged surface of clay minerals [13]. The ions of iron, copper and zinc sorption flowed at a high speed during the first 5-20 minutes, then the speed decreased and the curves smoothed out [14].

![Figure 1. Sorption kinetics of heavy metal ions.](image)

The results obtained under static conditions with a stirring duration of 150 minutes are presented in Table 1.

Sorption isotherms are built while taking average concentrations, defined from two parallel experiments (see Fig. 2). The values of the exchange capacity corresponding to MAC for metal ions are, mg/g: for iron – more than 1.95; for copper – more than 0.75; for zinc – more than 0.464; for manganese – more than 0.011, for lead – more than 0.77. Figure 2 testifies that achieved equilibrium concentration for the ions of iron and manganese corresponded to the maximum capacity of the sorbent, that is 3.17 and 1.14 mg/g. For the ions of copper, zinc, manganese saturation at the given concentrations was not reached and the greatest values of capacity were 2.33, 1.75 and 1.14 mg/g respectively.

In the area of low concentrations, the isotherms are almost parallel to the ordinate axis, which proves the chemical nature of sorption. This is especially evident on \(\text{Fe}^{3+} \), \(\text{Cu}^{2+} \) and \(\text{Zn}^{2+} \) sorption isotherms.
Table 1. Results of ions of heavy metals sorption by modified clay sorbent in statics.

	Fe$^{3+}$, mg/l	Zn$^{2+}$, mg/l	Pb$^{2+}$, mg/l	Cu$^{2+}$, mg/l	Mn$^{2+}$, mg/l	pH$^\text{en}$	pH$^\text{ex}$
C$_{en}$	0.124	0.268	4.865	6.886	9.872	16.958	23.764
C$_{ex}$	0.010	0.006	0.004	0.004	0.006	1.312	7.834
C$_{ex}$	0.217	0.823	2.355	4.420	9.840	17.939	27.070
C$_{ex}$	0.004	0.003	0.008	0.157	4.138	11.025	18.227
C$_{ex}$	0.050	1.054	1.062	2.237	3.893	5.519	6.894
C$_{ex}$	0.000	0.001	0.001	0.001	0.001	0.130	0.588
C$_{ex}$	0.086	0.588	1.567	3.800	6.819	13.456	8.897
C$_{ex}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
C$_{ex}$	0.066	1.112	2.389	3.896	5.345	8.997	12.844
C$_{ex}$	0.010	0.240	0.896	5.90	4.36	7.70	
C$_{ex}$	5.07	4.53	4.35	7.40	3.62	4.74	
pH$_{en}$	9.90	9.66	5.36	11.02	3.62	5.90	
pH$_{ex}$	7.99	7.70	6.88	4.74	3.45	4.62	

4. Mathematical processing of experimental results

To approximate the experimental data (as it is shown in Table 1), the Langmuir, Freundlich, Redlich-Peterson, Toch, Langmuir-Freundlich equations were used to select the isotherms that most adequately describe the experiment results and determine the corresponding sorption coefficients (see Table 2). Figure 2 shows the obtained graphs. The determination coefficient R^2 was used to compare the accuracy of the approximation for each metal and the equation. All equations, with the exception of the Langmuir equation, involve three adjustable parameters and their values cannot be determined by linear regression or by any other reliable graphical method [15]. For this reason, the initial value of the sorption capacity M was set on the basis of the experimental results. The parameters k, β and the exact value M were calculated by the least-squares method using MS MathCAD Professional and SciDAVIs software programs. The obtained results are correct for concentrations within the range of studies.

Table 2. Adsorption Isotherms

Adsorption isotherms	Symbol	Formula
Langmuir	L	$f = \frac{k \times M \times C_{ex}}{1 + k \times C_{ex}}$
Langmuir-Freundlich	LF	$f = \frac{M \times (k \times C_{ex})^\beta}{1 + (k \times C_{ex})^\beta}$
Redlich-Peterson	RP	$f = \frac{M + C_{ex}}{1 + (k \times C_{ex})^\beta}$
Toch	T	$f = \frac{M \times C_{ex}^{\beta}}{(k \times C_{ex})^{1/\beta}}$
Freundlich	F	$f = \frac{M \times C_{ex}^{\beta}}{D_{ex}}$

Note: Here, C_{ex} is the equilibrium ion concentration (mg/l); M is the maximum adsorption capacity (mg/g); β - is the degree of non-homogeneity (0 < β < 1); k is the constant.

Sorption on modified clay is a complex process due to the porous structure, internal and external charged surfaces, mineralogical heterogeneity, the existence of crystal edges and broken bonds, which also have a high sorption capacity. The most common and frequently used Langmuir equation is unable to describe all these sorption processes in a wide range of concentrations. Experimental results often show nonlinear graphs that are better approximated by more complex models. The Langmuir-Freundlich equation better describes a sorption model for the low-concentration range as shown in Figure 2 (A-I).
Table 3. Adjustable isotherm parameters and determination coefficient calculated by using experimental data

ITM	Types of isotherms	k	β	M	R²
	L	5.49	-	3.37	0.994
Fe	LF	5.29	1	3.4	0.992
	RP	5.54	0.99	3.3	0.992
	T	0.39	0.89	11.12	0.998
	F	1.61	0.3	1.2	0.847
	L	13.45	-	1.4	0.842
	LF	0.49	0.28	3	0.911
Zn	RP	11.25	1	1.45	0.833
	T	1.16	1	1.4	0.624
	F	0.65	0.19	1.4	0.912
	L	0.37	-	1.7	0.942
	LF	0.37	0.1	1.7	0.944
Mn	RP	0.38	1	1.7	0.942
	T	6.41	0.61	1.9	0.952
	F	0.26	0.516	1.78	0.906
	L	3.6	-	2.27	0.865
	LF	0.32	0.24	6.45	0.875
Cu	RP	3.94	0.99	2.2	0.872
	T	0.32	0.97	7.4	0.861
	F	0.93	0.17	1.68	0.875
	L	239	-	1.65	0.813
	LF	0.86	0.3	4.07	0.865
Pb	RP	252	0.99	1.6	0.816
	T	-	-	-	-
	F	1.33	0.22	1.41	0.874

Figure 2A. Comparison of adsorption isotherms with experimental points for the following ions: A – iron
Figure 2B. Comparison of adsorption isotherms with experimental points for the following ions: B – manganese

Figure 2C. Comparison of adsorption isotherms with experimental points for the following ions: C – copper

Figure 2D. Comparison of adsorption isotherms with experimental points for the following ions: D – lead.
Figure 2E. Comparison of adsorption isotherms with experimental points for the following ions: I - zinc.

Thus, the highest coefficient of determination for ions is as follows: $\text{Cu}^{2+} - R^2=0.875$; $\text{Pb}^{2+} - R^2=0.865$; for $\text{Zn}^{2+} - R^2 = 0.911$ (see Table 3). To describe the model of manganese and iron sorption, the Toch equation is more suitable. Thus, the highest coefficient of determination according to the Toch equation for ions is as follows: Fe - $R^2=0.998$, Mn - $R^2=0.952$.

5. Conclusion
The research yielded the following conclusions.

1. The values of the sorption capacity for the proposed sorbent, corresponding to MAC for fishery reservoirs in respect of metal ions sorption from a multicomponent solution, are as follows (mg/g): for iron – more than 1.95; for copper – more than 0.75; for zinc – more than 0.464; for manganese – more than 0.011, for lead – more than 0.77.
2. The selectivity range of the developed sorbent is expressed by the dependence Fe$^{3+}$ > Pb$^{2+}$ > Cu$^{2+}$ > Zn$^{2+}$ > Mn$^{2+}$.
3. For metals with a sorption isotherm ending in a horizontal section, the Langmuir-Freundlich model is better suited, since the maximum sorption capacity according to this equation is: for zinc – 3 mg/g, for copper – 6.45 mg/g, for lead – 4.07 mg/g. The maximum sorption capacity for iron ions is 11.12 mg/g; for manganese ions it is 1.9 mg/g. According to the Toch model, the maximum sorption capacity for iron ions is 11.12 mg/g; for manganese ions it is 1.9 mg/g.

References
[1] Kashifuddin M 2017 Chemical Engineering Journal 308 438-462
[2] Zacaroni L M, Magriotis Z M, Cardoso M G, Santiago W D et al 2015 Food Control 47 536-544
[3] Bentahar Y, Hurel C, Draoui K, Khairoun S and Marmier N 2016 Applied Clay Science 119 385392
[4] Alemayehu D D, Singh S K and Tessema D A 2012 Universal Journal of Environmental Research and Technology 2(5) 411-420
[5] Abollinoa O, Acetob M, Malandrinoa M, Sarzaninia C and Mentastia E 2003 Water Research 37 1619-1627
[6] O’Connell D W, Birkinshaw C and O’Dwyer T F 2008 Bioresour. Technol. 99 p 6709-6724
[7] Bhattacharyya K G and Gupta S S 2008 Advances in Colloid and Interface Science 140 p 114-131
[8] Churchman G J, Gates W P, Theng B K, Yuan G, Bergaya F and Theng B K 2006 Development in Clay Science (Elsevier Press)
[9] Kormosh E V 2009 Modification of montmorillonite-containing clays for complex sorption and wastewater treatment: Thesis for PhD in Technical Sciences (Belgorod)
[10] Trofimova F A 2016 Structural and chemical substantiation of technological modification of alkaline earth bentonites and bentonite-like clays: PhD Thesis, Moscow
[11] Abdugaffarov A K, Dorogov M V, Vikarchuk A A and Zabolotskikh V V 2017 Nano Hybrids and Composites 13 190–196
[12] Stepanov S V, Panfilova O N and Abdygaffarov A K 2018 Water Supply and sanitary technique 1 46-50
[13] Belenova S V, Vigdorovich V I, Schel N V and Tsygankova L E 2016 Sorption capacity of natural sorbents: Bulletin of TSU 20/2
[14] Stepanov S V and Panfilova O N 2019 IOP Conf. Series: Earth and Environmental Science 272 Doi:10.1088/1755-1315/272/2/022248
[15] Ho Y S, Porter J F and Mckay G 2002 Single component systems water, air, and soil pollution 141 1-33