FIGURATE NUMBERS AND SUMS OF POWERS OF INTEGERS

JOSÉ LUIS CERECEDA

ABSTRACT. Recently, Litvinov and Marko conjectured that, for all positive integers \(n \) and \(p \), the \(p \)th power of \(n \) admits the representation \(n^p = \sum_{\ell=0}^{p-1} (-1)^\ell \frac{F_{n-p}^p}{F_{n-\ell}^p} \), where \(F_{n-p}^p \) is the \(n \)th hyper-tetrahedron number of dimension \(p-\ell \) and \(c_{p,\ell} \) denotes the number of \((p-\ell)\)-dimensional facets of the \(p \)-dimensional simplex \(x_{\sigma_1} \geq x_{\sigma_2} \geq \cdots \geq x_{\sigma_p} \) (where \(\sigma \) is a permutation of \(\{1,2,\ldots,p\} \)) formed by cutting the \(p \)-dimensional cube \(0 \leq x_1, x_2, \ldots, x_p \leq n-1 \). In this note we show that this conjecture is true for every natural number \(p \) if, and only if, \(c_{p,\ell} = (p-\ell)!S(p,p-\ell) \), where \(S(p,p-\ell) \) are the Stirling numbers of the second kind. Furthermore, we provide several equivalent formulas expressing the sum of powers \(\sum_{i=1}^n i^p \), \(p = 1,2,\ldots \), as a linear combination of figurate numbers.

1. Introduction

Let \(F_n^k = \binom{n+k-1}{k} \) be the \(n \)th hyper-tetrahedron number of dimension \(k \). In particular, \(F_n^2 \) is the \(n \)th triangular number \(T_n = \frac{1}{2}n(n+1) \) and \(F_n^3 \) is the \(n \)th tetrahedral number \(T_n = \frac{1}{2}n(n+1)(n+2) \) (see, for instance, [1, Chapter 2]). Recently, Litvinov and Marko conjectured (see [2, Conjecture 16]) that, for all positive integers \(n \) and \(p \), the \(p \)th power of \(n \) can be put as

\[
n^p = \sum_{\ell=0}^{p-1} (-1)^\ell \frac{F_{n-p}^p}{F_{n-\ell}^p},
\]

for certain positive integer coefficients \(c_{p,0}, c_{p,1}, \ldots, c_{p,p-1} \) (note the corrected factor \((-1)^\ell\) in Equation (1) instead of the original one \((-1)^p \) appearing in [2]). Specifically, \(c_{p,\ell} \) is the number of \((p-\ell)\)-dimensional simplices defined by \(0 \leq x_1, x_2, \ldots, x_p \leq n-1 \) in conjunction with the conditions

\[
x_{\sigma_1} L_{1} x_{\sigma_2} L_{2} \ldots L_{p-1} x_{\sigma_p},
\]

where exactly \(\ell \) symbols \(L_i \) are "\(= \)", the remaining \(p-\ell-1 \) symbols \(L_i \) are "\(\geq \)”, and where \(\sigma \) is a permutation of \(\{1,2,\ldots,p\} \). As indicated in [2], every such simplex is then a \((p-\ell)\)-dimensional facet of the \(p \)-dimensional simplex \(x_{\sigma_1} \geq x_{\sigma_2} \geq \cdots \geq x_{\sigma_p} \) formed by cutting the \(p \)-dimensional cube \(0 \leq x_1, x_2, \ldots, x_p \leq n-1 \).

An alternative characterization of the coefficients \(c_{p,\ell} \) can be made in terms of \(m \)-tuples \((k_1, k_2, \ldots, k_m) \) of nonnegative integers with content \(\ell = \sum_{i=1}^m k_i \) and support \(s \) (the latter being defined as the number of indices \(i \) such that \(k_i > 0 \)). As shown in [2, Proposition 14], the coefficients \(c_{p,\ell} \) are given by

\[
c_{p,\ell} = \sum_{(k_1, k_2, \ldots, k_m)} \frac{p!}{(k_1+1)! (k_2+1)! \cdots (k_m+1)!},
\]

where the sum runs over all \(m \)-tuples of nonnegative integers having the content \(\ell \) and the support \(s = m + \ell + 1 - p \) and such that \(k_j > 0 \) implies that \(k_{j+1} = 0 \) for every \(j < m \).
Comparing the formulas for $\Sigma_n^p = \sum_{r=1}^n r^p$. Since $F_n^k = \sum_{i=1}^n F_i^{k-1}$, representation (1) for n^p immediately implies that

$$\Sigma_n^p = \sum_{i=1}^{p} (-1)^{i-1} c_{p,i-1} F_n^{p-i+2},$$

expressing Σ_n^p as a linear combination of figurate numbers. In what follows, we refer to either Equation (1) or (3) (with the coefficients $c_{p,i}$ being given by Equation (2)) as the LM conjecture. The crucial point we want to remark here is that Σ_n^p can, in fact, be expressed in the polynomial form (see, for example, [3, Equation (7.5)], [4], and [5, Section 4])

$$\Sigma_n^p = \sum_{i=1}^{p} (-1)^{p-i} S(p, i) \binom{n+i}{i+1},$$

where $S(p, i)$ are the Stirling numbers of the second kind. Correspondingly, formula (4) can be written in terms of the figurate numbers as follows:

$$\Sigma_n^p = \sum_{i=1}^{p} (-1)^{i-1}(p-i+1)! S(p, p-i+1) F_n^{p-i+2}.$$

For example, letting $p = 5$ in Equation (5) yields

$$\Sigma_5^5 = 120F_n^6 - 240F_n^5 + 150F_n^4 - 30F_n^3 + F_n^2.$$

Comparing the formulas for Σ_n^p in Equations (3) and (5), and noting that the polynomials representing the figurate numbers F_n^k are linearly independent, it is clear that if formula (3) for Σ_n^p is true then necessarily the coefficients $c_{p,\ell}$ in Equation (2) should be of the form $c_{p,\ell} = (p-\ell)! S(p, p-\ell)$ for $\ell = 0, 1, \ldots, p-1$. Conversely, if $c_{p,\ell} = (p-\ell)! S(p, p-\ell)$ for $\ell = 0, 1, \ldots, p-1$, then formula (3) for Σ_n^p is true by virtue of Equation (5). This can be summarized as

$$\text{LM conjecture } \iff c_{p,\ell} = (p-\ell)! S(p, p-\ell), \text{ for } \ell = 0, 1, \ldots, p-1.$$

2. Matrix formulation

One can also arrive at the equivalence in Equation (6) by considering the transition matrix connecting the bases $\{n, n^2, \ldots, n^p\}$ and $\{F_n^1, F_n^2, \ldots, F_n^p\}$. For $k \geq 0$, the figurate numbers F_n^k can be expanded in the basis $\{n, n^2, \ldots, n^k\}$ as

$$F_n^k = \binom{n+k-1}{k} = \frac{n(n+1)(n+2)\cdots(n+k-1)}{k!} = \frac{1}{k!} \sum_{r=1}^{k} s(k, r)n^r,$$
where the numbers \(s(k, r) \) are (unsigned) Stirling numbers of the first kind. For example, we have that

\[
\begin{align*}
F_n^1 &= n, \\
F_n^2 &= \frac{1}{2} n^2 + \frac{1}{2} n, \\
F_n^3 &= \frac{1}{6} n^3 + \frac{1}{2} n^2 + \frac{1}{3} n, \\
F_n^4 &= \frac{1}{24} n^4 + \frac{1}{4} n^3 + \frac{11}{24} n^2 + \frac{1}{4} n, \\
F_n^5 &= \frac{1}{120} n^5 + \frac{1}{12} n^4 + \frac{7}{24} n^3 + \frac{5}{12} n^2 + \frac{1}{5} n,
\end{align*}
\]

or, in matrix form,

\[
\begin{pmatrix}
F_1^1 \\
F_2^2 \\
F_3^3 \\
F_4^4 \\
F_5^5
\end{pmatrix} = A_5
\begin{pmatrix}
n \\
n^2 \\
n^3 \\
n^4 \\
n^5
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{2} & 1 & 0 & 0 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1 & 0 \\
\frac{1}{5} & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1
\end{pmatrix}
\begin{pmatrix}
n \\
n^2 \\
n^3 \\
n^4 \\
n^5
\end{pmatrix},
\]

where, following [2], we call the matrices \(A_p \) (for any \(p \geq 1 \)) Fermat matrices. By inverting the matrix \(A_5 \) we get the transition matrix from the basis \(\{ F_n^1, F_n^2, F_n^3, F_n^4, F_n^5 \} \) to \(\{ n, n^2, n^3, n^4, n^5 \} \), namely,

\[
\begin{pmatrix}
n \\
n^2 \\
n^3 \\
n^4 \\
n^5
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & 0 \\
1 & -6 & 6 & 0 & 0 \\
-1 & 14 & -36 & 24 & 0 \\
1 & -30 & 150 & -240 & 120
\end{pmatrix}
\begin{pmatrix}
F_1^1 \\
F_2^2 \\
F_3^3 \\
F_4^4 \\
F_5^5
\end{pmatrix}.
\]

Moreover, recalling that \(F_n^k = \sum_{i=1}^{n} F_i^{k-1} \), we can express the last matrix equation in the equivalent way

\[
\begin{pmatrix}
\Sigma_n^1 \\
\Sigma_n^2 \\
\Sigma_n^3 \\
\Sigma_n^4 \\
\Sigma_n^5
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & 0 \\
1 & -6 & 6 & 0 & 0 \\
-1 & 14 & -36 & 24 & 0 \\
1 & -30 & 150 & -240 & 120
\end{pmatrix}
\begin{pmatrix}
F_n^2 \\
F_n^3 \\
F_n^4 \\
F_n^5
\end{pmatrix}.
\]

Let \(A_p \) be a Fermat matrix, and denote the entries of \(A_p^{-1} \) as \(a_{k,j}^p \), \(k, j = 1, 2, \ldots, p \). Thus, for arbitrary \(p \geq 1 \), we have

\[
\begin{pmatrix}
\Sigma_n^1 \\
\Sigma_n^2 \\
\vdots \\
\Sigma_n^p
\end{pmatrix} =
\begin{pmatrix}
a_{1,1}^p & a_{1,2}^p & \cdots & a_{1,p}^p \\
a_{2,1}^p & a_{2,2}^p & \cdots & a_{2,p}^p \\
\vdots & \vdots & \ddots & \vdots \\
a_{p,1}^p & a_{p,2}^p & \cdots & a_{p,p}^p
\end{pmatrix}
\begin{pmatrix}
F_n^2 \\
F_n^3 \\
\vdots \\
F_n^p
\end{pmatrix},
\]

from which it follows that

\[
\Sigma_n^p = \sum_{i=1}^{p} a_{p,i}^p F_n^{i+1} = \sum_{i=1}^{p} a_{p,p-i+1}^i F_n^{i+2}.
\]
Comparing Equation (8) to Equation (3), and noting that the polynomials F_n^2, F_n^3, ..., F_n^{p+1} are linearly independent, it is concluded that the LM conjecture is equivalent to (cf. [2])

$$a'_p,i = (-1)^{p-i}c_{p,p-i}, \quad i = 1, 2, \ldots, p.$$ \hspace{1cm} (9)

Next, we show that

$$a'_{k,j} = (-1)^{k-j}j!S(k,j), \quad k, j = 1, 2, \ldots, p.$$ \hspace{1cm} (10)

To prove this, let us denote the entries of the Fermat matrix A_p as $a_{k,j}$, $k, j = 1, 2, \ldots, p$.

Then, from Equation (7), it is clear that

$$a_{k,j} = \frac{s(k,j)}{k!}, \quad k, j = 1, 2, \ldots, p.$$ \hspace{1cm} (11)

Now, consider the product matrices $M_p = A_pA_p^{-1}$ and $N_p = A_p^{-1}A_p$, where A_p^{-1} and A_p have elements given in Equations (10) and (11), respectively. It is readily seen that the matrix elements $M_{k,j}$ and $N_{k,j}$ of M_p and N_p are

$$M_{k,j} = \frac{j!}{k!} \sum_{r=1}^{p} (-1)^{r-j}s(k,r)S(r,j),$$

$$N_{k,j} = \sum_{r=1}^{p} (-1)^{k-r}S(k,r)s(r,j),$$

for $1 \leq k, j \leq p$. Therefore, invoking the well-known identities (see, for instance, [6, Theorem 6.24])

$$\sum_{r=0}^{k} (-1)^{r}s(k,r)S(r,j) = (-1)^{k}\delta_{k,j},$$

$$\sum_{r=0}^{k} (-1)^{r}S(k,r)s(r,j) = (-1)^{k}\delta_{k,j},$$

and taking into account that $s(k,0) = S(k,0) = 0$ for $k \geq 1$, and that $s(k,j) = S(k,j) = 0$ for $k < j$, we obtain $M_{k,j} = (-1)^{k-j}j!/k!\delta_{k,j}$ and $N_{k,j} = (-1)^{2k}\delta_{k,j}$, and thus both M_p and N_p turn out to be the identity matrix I_p.

Note that, for the case in which $k = p$, Equation (10) reads (after renaming the index j as i) $a'_{p,i} = (-1)^{p-i}i!S(p,i)$. Hence, from Equation (9), we conclude that the LM conjecture is true if, and only if, $c_{p,p-i} = i!S(p,i)$ or, equivalently, $c_{p,\ell} = (p-\ell)!S(p,p-\ell)$, for $\ell = 0, 1, \ldots, p-1$, thus recovering the statement in Equation (6).

Table 1 displays the first few rows of the triangular array for the numbers $c_{p,\ell} = (p-\ell)!S(p,p-\ell)$, where $\ell = 0, 1, \ldots, p-1$. It is worth pointing out that, starting from the well-known recurrence relation for the Stirling numbers of the second kind, namely, $S(k,j) = jS(k-1,j) + S(k-1, j-1)$ (with initial conditions $S(0,0) = 1$ and $S(0,j) = S(j,0) = 0$ for $j > 0$), one can derive the following recurrence relation which is fulfilled by the numbers $c_{p,\ell}$:

$$c_{p,\ell} = \begin{cases} p!, & \text{if } \ell = 0, \\ (p-\ell)[c_{p-1,\ell} + c_{p-1,\ell-1}], & \text{if } 0 < \ell < p-1, \\ 1, & \text{if } \ell = p-1. \end{cases}$$ \hspace{1cm} (12)

Of course, the entries in Table 1 may be computed using the recursive formula (12). For example, $c_{9,3}$ is determined by the values of $c_{8,3}$ and $c_{8,2}$ as follows: $c_{9,3} = 6(c_{8,3} + c_{8,2}) =$
6(126000 + 191520) = 1905120. Moreover, the alternating sum of the entries in the pth row in Table 1 is given by $\sum_{\ell=0}^{p-1} (-1)^\ell c_{p,\ell} = 1$ for all $p \geq 1$. This quickly follows from Equation (5) by noting that $\Sigma_p^\ell = 1$ for all $p \geq 1$.

Let us also observe that, since the recursive formula (12) completely defines the numbers $c_{p,\ell} = (p-\ell)!S(p, p-\ell)$, to prove the LM conjecture it suffices to show that the coefficients $c_{p,\ell}$ in Equation (2) satisfy such recurrence relation.

3. Concluding remarks

In addition to the formula in Equation (5), there are several alternative formulas expressing Σ_n^p as a linear combination of the figurate numbers $F_{n,k}^p = \binom{n+k-1}{k}$. For example, the following two well-known polynomial formulas for Σ_n^p (see, for instance, [5, 7, 8]):

$$
\Sigma_n^p = \sum_{j=1}^{p} j!S(p, j) \binom{n+1}{j+1},
$$

(13)

and

$$
\Sigma_n^p = \sum_{j=1}^{p} \left\langle \frac{p}{j} \right\rangle \binom{n+j}{p+1},
$$

(14)

can equivalently be written in terms of $F_{n,k}^p$ as

$$
\Sigma_n^p = \sum_{j=1}^{p} j!S(p, j) F_{n-j+1}^{j+1},
$$

(15)

and

$$
\Sigma_n^p = \sum_{j=1}^{p} \left\langle \frac{p}{j} \right\rangle F_{n+p-j}^{p+1},
$$

(16)

respectively, where $\left\langle \frac{p}{j} \right\rangle$ are the Eulerian numbers, with the initial values $\left\langle \frac{p}{1} \right\rangle = 1$ for all $p \geq 1$. Note that Equation (16) only involves figurate numbers of dimension $p+1$. Along with the above two formulas in Equations (13) and (14), we may quote another, not so well-known formula for Σ_n^p which is a variant of that in Equation (13), namely (see [9,
Equation (9)] and [10])

\[
\sum_{p}^{p+1}(j-1)!S(p+1,j)\binom{n}{j} = \sum_{j=1}^{p+1}(j-1)!S(p+1,j)F_{n-j+1}^{2j-1}.
\]

As an example, for \(p = 8 \), from Equations (5), (15), (16), and (17), we obtain the equivalent polynomial representations

\[
\Sigma_{n}^{8} = 40320F_{n}^{9} - 141120F_{n}^{8} + 191520F_{n}^{7} - 126000F_{n}^{6} + 40824F_{n}^{5} - 5796F_{n}^{4} + 254F_{n}^{3} - F_{n}^{2}
\]

\[
= 40320F_{n-2}^{9} + 141120F_{n-6}^{8} + 191520F_{n-5}^{7} - 126000F_{n-4}^{6} + 40824F_{n-3}^{5} - 5796F_{n-2}^{4} + 254F_{n-1}^{3} + F_{n}^{2}
\]

\[
= F_{n}^{9} + 247F_{n-1}^{9} + 4293F_{n-2}^{9} + 15619F_{n-3}^{9} + 247F_{n-5}^{9} + F_{n-7}^{9}
\]

\[
= 40320F_{n-8}^{9} - 181440F_{n-7}^{8} + 332640F_{n-6}^{7} + 317520F_{n-5}^{6} + 166824F_{n-4}^{5} + 46620F_{n-3}^{4} + 6050F_{n-2}^{3} + 255F_{n-1}^{2} + F_{n}^{1}.
\]

For completeness, let us finally mention that, as is well known, the power sums \(\Sigma_{n}^{p} \) can be expressed as polynomials in the triangular numbers \(T_{n} \) (the so-called Faulhaber polynomials [11]) as follows:

\[
\Sigma_{n}^{2k} = \sum_{j=0}^{k}b_{k,j}T_{n}^{j} + \sum_{j=0}^{k}c_{k,j}T_{n}^{j},
\]

where \(b_{k,j} \) and \(c_{k,j} \) are numerical coefficients for \(j = 0, 1, \ldots, k \) and \(k \geq 1 \).

References

[1] Conway, J. H., Guy, R. K. (1996). *The Book of Numbers*. New York: Copernicus.

[2] Litvinov, S., Marko, F. (2020). Geometry of figurate numbers and sums of powers of consecutive natural numbers. *Amer. Math. Monthly*. 127(1):4–22.

[3] Gould, H. W. (1978). Evaluation of sums of convolved powers using Stirling and Eulerian numbers. *Fibonacci Quart.* 16(6):488–497.

[4] Poursaeed, M. H. (2003). A formula for the calculation of \(\sum_{j=0}^{k}j^{k} \). *Int. J. Math. Educ. Sci. Technol.* 34(4):634–638.

[5] Cereceda, J. L. (2017). Polynomial interpolation and sums of powers of integers. *Int. J. Math. Educ. Sci. Technol.* 48(2):267–277.

[6] DeTemple, D., Webb, W. (2014). *Combinatorial Reasoning. An Introduction to the Art of Counting*. Hoboken, New Jersey: John Wiley & Sons.

[7] Shirali, S. (2018). Stirling set numbers & powers of integers. *At Right Angles*. 7:26–32.

[8] Tsao, H. P. (2011). Sums of powers and Eulerian numbers. *Math. Gaz.* 95(533):347–349.

[9] Witula, R., Kaczmarek, K., Lorenz, P., Hetmanicki, E., and Pleszczyński, M. (2014). Jordan numbers, Stirling numbers and sums of powers. *Discuss. Math. Gen. Algebra Appl.* 34(2):155–166.

[10] Cereceda, J. L. (2015). Newton’s interpolation polynomial for the sums of powers of integers. *Amer. Math. Monthly*. 122(10):1007.

[11] Edwards, A. W. F. (1986). A quick route to sums of powers. *Amer. Math. Monthly*. 93(6):451–455.

Collado Villalba, 28400 – Madrid, Spain

E-mail address: jl.cereceda@movistar.es