AN ANALYSIS OF 4-QUARK ENERGIES
IN SU(2) LATTICE MONTE CARLO

Sadataka Furui
School of Sci. and Engr., Teikyo Univ., Utsunomiya 320-8551, Japan

and

Bilal Masud
Centre for High Energy Physics, Punjab Univ., Lahore 54590, Pakistan

March 25, 2022

Abstract

Energies of four-quark systems with the tetrahedral geometry measured by the static quenched SU(2) lattice monte carlo method are analyzed by parametrizing the gluon overlap factor in the form $\exp(-b_s E A + \sqrt{b_s F P})$, where A and P are the area and perimeter defined mainly by the positions of the four quarks, b_s is the string constant in the 2-quark potentials and E, F are constants.

1 Introduction

For the purpose of understanding meson-meson interactions from the QCD, we studied the ground and the 1st excited state energy of 4-quark system measured by the SU(2) lattice Monte-Carlo. The configuration of the four quarks that we consider are large square(LS), rectangular(R), tilted rectangular(TR), linear(L), quadrilateral(Q), non-planar(NP) and tetrahedral(TH).
There are three possible choices of the colour singlet pairs which are denoted by $A(14,23)$, $B(12,34)$ and $C(13,24)$. (We interchange the definition of A,B from [1].) Identifying these bases as P_1, P_2 and P_3, we obtain the eigen-energies by diagonalizing 3×3 matrix of

$$W_{ij}^T = <P_i|\hat{T}^T|P_j>$$

where $\hat{T} = \exp(-a\hat{H})$ is the transfer matrix. Using a trial wave function $\psi = \sum_i a_i |P_i>$, the eigenvalue equation

$$W_{ij}^T a_j^T = \lambda^{(T)} W_{ij}^{-1} a_j^T$$

is solved to get $\exp(-aV_2) = \lambda^{(T)}$ for large $T[1]$.

2 The model with the gluon overlap factor

We observed that among the three bases, one base can be treated as a linear combination of the other two, but within a base in the coarse lattice, when the shortest path between a quark and an antiquark is not along any link, there are several possible configurations of links, which are specified by the parity. When there are $m(n)$ parity eigenstates in $A(B)$, we solve;

$$det \begin{pmatrix}
V_A & \cdots & c_{Am} & V_{ABf_{11}} & \cdots & V_{ABf_{1n}} \\
\vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
c_{Am1} & \cdots & V_A & V_{ABf_{m1}} & \cdots & V_{ABf_{mn}} \\
V_{ABf_{11}^*} & \cdots & V_{ABf_{1m}^*} & V_B & \cdots & c_{B1n} \\
\vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
V_{ABf_{n1}^*} & \cdots & V_{ABf_{nm}^*} & c_{Bn1} & \cdots & V_B
\end{pmatrix}$$

$$-E \begin{pmatrix}
1 & \cdots & 0 & f_{11}/2 & \cdots & f_{1n}/2 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & f_{m1}/2 & \cdots & f_{mn}/2 \\
f_{11}/2 & \cdots & f_{1m}/2 & 1 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
f_{n1}/2 & \cdots & f_{nm}/2 & 0 & 0 & 1
\end{pmatrix} = 0$$

We introduce the gluon overlap factor in the form $f_{ij} = \exp(-b_s E \mathcal{A} + \sqrt{b_s F_{ij} \mathcal{P}_{ij}})$, where \mathcal{A} and \mathcal{P} are the area and the perimeter. We assume that
the length of the zig-zag perimeter has the fractal dimension 2, and so it is fixed from that of the coarse lattice, use the string constant \(b_s \) measured in the simulation of the 2-quark potentials and fit constants \(E \) and \(F_{ij} \)\[2\]. The length \(P_{ij} \) depends on the base but the minimal area \(A \) are chosen to be independent of the base and estimated by the analytical form derived in the regular surface approximation. (The analysis of NP of\[2\] is revised, where the area depended on the bases.) The perimeter dependent terms contain lattice artefacts and the physical quantities are obtained by subtracting the artefacts.

The parameter \(E \) for the area term and \(A_0 \) for the self energy in the Linear configuration are fixed in the previous model\[4\]. In the NP case we fitted three coefficients \(F \) corresponding to the three types of the perimeter lengths and a mixing parameter between the parity eigenstates\[2\]. The details of the revised fitting are in \[4\].

In the case of TH, when the length of the links are all equal\((r = d) \), the ground state energy is doubly degenerate. When they differ\((r \neq d) \) we evaluate minimal surface area for \(A-C(\text{regular}_1) \) and for \(A-B(\text{regular}_2) \) and redefine among \(B \) and \(C \), the base \(B \) such that it is connected to \(A \) by the smaller area. We solve the secular equation of \(m=4 \) and \(n=4 \).

\[\begin{array}{c}
A_1 \quad A_2 \quad A_3 \quad A_4
\end{array} \]

Figure 1: The bases \(A_1, A_2, A_3 \) and \(A_4 \) in the TH configuration.

We explain the degeneracy of the ground state energy for the \(r = d \) cases and the ground and the first excited state eigen-energies of \(r \neq d \) cases by introducing an additional coefficient \(F \) corresponding to the new type of perimeter length and a parameter that specifies the internal excitation of the two quark cluster.

3 Discussion and Conclusions

In an analysis of 4-quark energy of the tetrahedral geometry, Green and Pennanen\[3\] proposed a 6-basis model in which the ground \((A_{1g}, A_{1g})\) and an excited state \((E_u, E_u)\) are considered for each of the configuration A, B and
Table 1: Minimal surface area in regular surface approximation and the sum of two triangles for the TH and the experimental and the fitted binding energy.

r,d	regular₁	regular₂	2 triangles	E_0	E_0(fit)	E_1	E_1(fit)
1 2	4.316	3.180	4.899	-0.043	-0.036	0.084	0.108
2 2	5.123	5.123	6.928	-0.021	-0.023	-0.021	-0.023
3 2	6.209	7.260	9.381	-0.008	-0.011	0.148	0.139
2 3	10.22	8.528	12.369	-0.040	-0.043	0.051	0.072
3 3	11.53	11.53	15.588	-0.028	-0.027	-0.028	-0.027
4 3	13.11	14.71	19.209	-0.007	-0.012	0.110	0.115
3 4	18.69	16.45	23.324	-0.041	-0.050	-0.032	-0.032
4 4	20.49	20.49	27.713	-0.030	-0.031	-0.030	-0.031
5 4	22.56	24.71	32.496	-0.010	-0.014	0.089	0.093

C. Our choice corresponds to $A_{1g}A_{1g}$, E_uE_u, $A_{1g}E_u$ and E_uA_{1g} for each of the configuration A and B. Our estimation of the minimal surface is more accurate than their triangular approximation. The relatively large coefficients of P suggests that the lattice artefact is still large.

References

[1] A.M.Green, C.Michael and J.E.Paton, Nucl.Phys. A554, 701 (1993); A.M.Green, C.Michael and M.Sainio, Z. Phys. C67, 291 (1995), [hep-lat/9404007]; A.M.Green, J. Lukkarinen, P. Pennanen, C.Michael and S.Furui, Nucl. Phys. B(Proc. Suppl.) 42, 249 (1995).

[2] S.Furui, A.M.Green and B.Masud, Nucl Phys. A582, 682 (1995).

[3] A.M.Green and P. Pennanen, Preprint, HIP-1998-01/TH.

[4] S.Furui and B.Masud, to be published.