A Longitudinal Framework for Predicting Nonresponse in Panel Surveys

Christoph Kern1 Bernd Weiβ2 Jan-Philipp Kolb2

1University of Mannheim

2GESIS - Leibniz Institute for the Social Sciences

ESRA Conference 18.07.2019
Introduction

Motivation

- Panel studies often suffer from drop-outs over time
 - Biased estimates, decreasing sample size
- Prediction
 - Recent work studies the usage of machine learning (ML) to predict nonresponse (Klausch 2017; Lugtig and Blom 2018; Kern et al. 2019)
- Adaptive designs
 - May benefit from prediction perspective due to accurate targeting

Objective: Extend ML approach to account for longitudinal data structure

- Train and test prediction models with multiple panel waves
- Evaluate potential intervention based on prediction models
GESIS Panel

- Probability-based mixed-mode panel of the general population in Germany
- Recruitment in 2013, bi-monthly surveys since 2014 (~4900 panelists)
- ~20min each wave, includes external studies and longitudinal core study
- Online (web surveys) and offline (mail) mode
 - About 62% online and 38% offline respondents

→ **Outcome: Non-participation in (each) next wave**
- Complete or partial interview with sufficient information (0) vs. else (1)
- Sample: Excluding “ineligible” panelists per wave

1https://www.gesis.org/en/gesis-panel/
Features for each wave

- **Block I: Time-invariant**
 - Respondent/ socio-demographic characteristics from welcome survey
 - Survey cooperation in welcome survey

- **Block II: Time-variant**
 - Response status, survey evaluation and participation in last wave

- **Block III: Time-variant (aggregated)**
 - Response status, survey evaluation and participation over the last three waves

- **Block IV: Time-variant (aggregated)**
 - Response status, survey evaluation and participation over all previous waves

→ Feature group strategies: all, leave-one-in
Temporal CV

Longitudinal configuration

- Compare methods/ performance by repeatedly mimicking usage of model in real world
- Temporal Cross-Validation via triage (Python)²

![Temporal CV Diagram]

→ 20 train and 20 test matrices

²https://github.com/dssg/triage
Methods

- Penalized Logistic Regression
 - Logit regression plus lasso/ridge penalty on model complexity (Tibshirani 1996)

- Decision Trees
 - Split predictor space into subregions τ_m with associated constants γ_m (Breiman et al. 1984)
 \[
 T(x; \Theta) = \sum_{m=1}^{M} \gamma_m I(x \in \tau_m)
 \]

- Random Forest, ExtraTrees
 - Grow an ensemble of decorrelated trees (Breiman 2001, Geurts et al. 2006)
 \[
 \hat{f}_B(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x; \Theta_b)
 \]

- Extreme Gradient Boosting (XGBoost)
 - Build a sum-of-trees ensemble in a sequential manner (Chen and Guestrin 2016)
 \[
 \hat{f}_T(x) = \sum_{t=1}^{T} T_t(x; \Theta_t)
 \]
Tuning parameters

Table 1: Tuning grids

Method	Hyperparameter	Values
Logistic Regression	penalty, C	11, 12
		0.05, 0.1, 1, 1000
Decision Trees	max_depth, max_features, max_features	3, 5, 10
		null, sqrt
Random Forest, Extra Trees	min_samples_leaf, n_estimators	1, 10
		500
XGBoost	max_depth, n_estimators, learning_rate, subsample	3, 5, 10
		250, 500, 1000
		0.1, 0.05
		0.8

→ 4000 models to train \((20 \times 5 \times 40)\)
Model selection and evaluation

1. Find the optimal hyperparameter-feature group combination for each method over all waves
 - Highest mean ROC-AUC over time
2. Evaluate performance of selected/best models in most recent wave
 - ROC, PR curves
3. Evaluate potential intervention in most recent wave
All waves

Figure 1: ROC-AUCs for all waves and models with all feature blocks

https://ckern.shinyapps.io/predicting-nonresponse/
Figure 2: ROC-AUCs by model type and feature group
Figure 3: Performance curves of best models for most recent test wave

(a) ROC

(b) Precision-Recall
Figure 4: Differences of high risk vs. low risk observations (top 10%, RF)
Most recent wave

Figure 5: Differences between active panel population, respondents and potential respondents (RF)
In this section, we discuss the implications of our findings. Investigating the usage of ML with panel data needs a longitudinal train-test setup. Repeatedly predict nonresponse in next wave using information from previous wave(s).

GESIS Panel: General results
- Promising prediction performance
- Increased performance when aggregating features over multiple waves
- Robust results over time with ExtraTrees, Random Forests

GESIS Panel: Intervention
- Targeting predicted nonrespondents may reduce systematic nonresponse
Contact: c.kern@uni-mannheim.de
Breiman, L. (2001). Random forests. *Machine Learning*, 45(1):5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). *Classification and Regression Trees*. Monterey, CA: Brooks/Cole Publishing.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Technical report, https://arxiv.org/abs/1603.02754.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. *Machine Learning*, 63(1):3–42.

Kern, C., Klausch, T., and Kreuter, F. (2019). Tree-based machine learning methods for survey research. *Survey Research Methods*, 13(1):73–93.

Klausch, T. (2017). Predicting panel attrition using panel-metadata: A machine learning approach. Paper presented at the ESRA Conference, Lisbon, Portugal.

Lugtig, P. and Blom, A. (2018). It’s the process stupid! Using machine learning to understand the relation between paradata and panel dropout. Paper presented at the MOLS 2 Conference, Essex, Great Britain.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)*, 58(1):267–288.
Figure 6: Precision at top K for all waves and models with all feature blocks

(a) Precision @ 5 pct

(b) Precision @ 10 pct
Figure 7: Recall at top K for all waves and models with all feature blocks

(a) Recall @ 5 pct

(b) Recall @ 10 pct