Oral administration of dibutyryl adenosine cyclophosphate improved growth performance in weaning piglets by enhancing lipid fatty acids metabolism

Guanya Li, Ling Chang, Guanglei Zhang, Zehe Song, Dan Wan, Chunyan Xie, Hong Wang, Zhiyong Fan

Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 41025, China
Meiya Hai’an Pharmaceutical Co., Ltd., Hai’an, 226600, China

A R T I C L E I N F O

Article history:
Received 24 March 2018
Received in revised form 1 June 2018
Accepted 21 June 2018
Available online 6 July 2018

Keywords:
Dibutyryl adenosine cyclophosphate
Growth performance
Lipid metabolism
Peroxisome proliferator-activated receptor α
Hormone sensitive glycerol three lipase
Early weaning piglets

A B S T R A C T

Dibutyryl adenosine cyclophosphate (dbcAMP-Ca), an analog of cyclic adenosine monophosphate (cAMP), plays greater roles in regulating physiological activities and energy metabolism than cAMP. The aim of this study was to investigate the effect of oral administration of dbcAMP-Ca on growth performance and fatty acids metabolism in weaning piglets. A total of 14 early weaning piglets (7 ± 1 d of age, 3.31 ± 0.09 kg, Landrace × Large White × Duroc) were randomly divided into 2 groups: control group and dbcAMP-Ca group, and the piglets received 7 mL of 0.9% NaCl or 1.5 mg dbcAMP-Ca dissolved in 7 mL of 0.9% NaCl per day for 10 d, respectively. The results showed that the average daily gain (ADG) increased by 109.17% (P < 0.05) in the dbcAMP-Ca group compared with the control group. Besides, dbcAMP-Ca significantly decreased blood high density lipoprotein cholesterol (HDL-C) concentration (P < 0.05) and significantly increased blood low density lipoprotein cholesterol (LDL-C) concentration (P < 0.05) compared with the control group. Further, liver C18:2n6t content significantly increased in dbcAMP-Ca group (P < 0.05) compared with the control group. With the increase of C18:2n6t content, the mRNA expression levels of peroxisome proliferator-activated receptor α (PPARα) and hormone sensitive glycerol three lipase (HSL), of which genes are related to lipid metabolism, were also significantly increased (P < 0.05 or P < 0.01). All of the results indicated that dbcAMP-Ca improved the ADG, which was probably done by regulating fatty acids metabolism in the liver of weaning piglets.

© 2018, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Neonatal piglets face heavy challenge to adapt to the shift between intrauterine and extraterine environments because of weak gut absorptive capacity, low immunity and adaptability, etc (Tanghe et al., 2014; Wang et al., 2017). Normally, weaning usually occurred in an early period at around 21 d of age. However, under the integrated production, weaning time of piglets gets earlier and earlier. Weaning in piglets may lead to worse situation and result in weaning stress in piglets, thus may affect their health and welfare with a decline in feed intake and be vulnerable to disease (Duan et al., 2015).
Milk lipids are the main sources of energy for sucking piglets. An earlier study has found that respiratory entropy of newborn piglets was reduced after birth which indicated that piglets used large amounts of fatty acids to provide energy (Hales, 1997). A former study also showed that lipids in the milk provided nearly 50% of the energy for suckling piglets (Hobbins, 1997). However, it has been reported that the activity of pancreatic lipase increased with age but weaning made it sharply decline (Aumaitre and Corring, 1978; Cera et al., 1990). Therefore, fatty acid, 1 of the 3 major nutrients, plays significant roles in growth, metabolism and physiological functions in newborn mammals because of their considerable energy needs and defective dietary capacity (Gruppuso et al., 1994; Hardy and Kleinman, 1994; Goodyer et al., 2001). Herein, the decomposition and utilization of fatty acids are of great significance to newborn piglets.

Interestingly, cyclic adenosine monophosphate (cAMP), which has been shown to mediate the hormonal regulation of lipid metabolism (Butcher et al., 1968; Gagelin et al., 1999), is vital in regulating and utilizing fatty acids (Luiken et al., 2002; Madsen et al., 2008). Moreover, dibutyryl adenosine cyclophosphate calcium (dbcAMP-Ca, Fig. 1), an analog of cAMP, can regulate the lipid metabolism remarkably in growing and finishing pigs (Gao et al., 2010). dBcAMP affects the metabolism of fatty acids and the growth performance in weaning piglets. Therefore, the present study was intended to seek the effect of oral administration of dbcAMP-Ca on growth performance and lipid fatty acids metabolism in weaning piglets.

2. Materials and methods

2.1. Animals and treatments

The animal experiment was approved by the Protocol Management and Review Committee of the institute of Subtropical Agriculture, Chinese Academy of Science. Pigs were fed by artificial breast feeder and had ad libitum access to water and the basal milk.

2.2. Samples collection

Before slaughter, 5 mL blood samples were collected from the jugular vein, and plasma samples were obtained by centrifugation at $3,000 \times g$ for 10 min at 4 °C, followed by being immediately stored at −80 °C for later lipid profiles analysis (Wu et al., 2016). Liver samples were taken from each animal, followed by being flash frozen in liquid nitrogen and stored at −80 °C prior to RNA isolation and at −20 °C for fatty acid analysis, respectively.

2.3. Fatty acids analysis in liver of piglets

The extraction of fatty acids from 500 mg of the liver tissue and the methylation were performed. The concentration of individual fatty acids was quantified according the peak area and expressed as a percentage of total fatty acids by gas chromatography (GC-2010, Shimadzu Corp, Japan) as previously described (Tan et al., 2009; Raj et al., 2010).

2.4. RNA extraction and cDNA synthesis

About 100 mg of the liver tissue was pulverized in liquid nitrogen. Total RNA was isolated from the homogenate using TRIzol reagent (Invitrogen, CA, USA). The concentration of total RNA was quantified spectrophotometrically (Nanodrop ND-1000; Thermo Fisher Scientific, DE, USA) at 260 nm, and the ratio of 260 nm to 280 nm was used to assess RNA quality, then cDNA synthesis was carried out using a PrimeScript RT reagent Kit With gDNA Eraser (TaKaRa, Dalian, China). Primers (Table 2) were designed by Primer 5.0 based on GenBank (http://www.ncbi.nlm.nih.gov/pubmed/), and Oligo Synthesis was conducted by Sangon Biotech (Shanghai, China). β-actin was chosen as a reference gene.

| Ingredients (%) and nutrient levels (%) of the basal milk (air-dry basis). |
|--------------------|-----------------|-----------------|
| Ingredients | Content | Nutrient levels | Content |
| Skimmed milk powder | 85.0 | DE, Mj/kg | 14.65 |
| Dried whey | 5.0 | CP | 20.50 |
| Glucose | 2.5 | Ca | 0.70 |
| Plasma proteins | 3.5 | Total P | 0.60 |
| Premix* | 4.0 | Lys | 1.45 |
| Total | 100.0 | Met | 0.48 |
| | | Try | 0.29 |

* The premix provided the following for per kg of the basal milk: vitamin A1 500 IU, vitamin D3 200 IU, vitamin E 85 IU, D-pantethenic acid 35 mg, vitamin B6 12 mg, folic acid 1.5 mg, nicotinic acid 35 mg, vitamin B12 2.5 mg, biotin 0.2 mg, vitamin B12 0.05 mg, copper (as copper sulfate) 15 mg, ferrum (as ferrous sulfate) 100 mg, manganese (as manganese sulfate) 20 mg, iodate (as calcium iodate) 1.0 mg, selenium (as sodium selenite) 0.35 mg, cobalt (as cobalt sulfate) 0.2 mg, and chromium (as chromium picolinate) 0.2 mg.
monounsaturated fatty acid (MUFA) C18:1n9t and C18:1n9c decreased by 12.50% and 5.14% \((P < 0.05)\) in dbcAMP-Ca group, respectively. Meanwhile, the liver content of C18:3n3 decreased by 30.00% in dbcAMP-Ca group \((P < 0.05)\) compared with the control group.

3.4. mRNA expression levels of lipid metabolism related genes

To further confirm the role of lipid metabolism in the liver, the mRNA expression levels of the lipid metabolism related genes, fatty acid synthases (FAS), hormone sensitive glycerol three lipase (HSL), acetyl-CoA carboxylase \(\alpha\) (ACC\(\alpha\)), carnitine palmitoyl transferase 1\(\alpha\) (CPT-1\(\alpha\)), carnitine palmitoyl transferase 1\(\beta\) (CPT-1\(\beta\)), peroxisome proliferator-activated receptor \(\alpha\) (PPAR\(\alpha\)), were detected by qRT-PCR. As shown in Fig. 3, compared with the control group, dbcAMP-Ca significantly increased the mRNA expression level of PPAR\(\alpha\) \((P < 0.05)\) and extremely significantly increased that of HSL \((P < 0.01)\) in the liver of piglets. However, there were no differences between the control group and dbcAMP-Ca group for the mRNA expression levels of FAS, ACC\(\alpha\), CPT-1\(\alpha\) and CPT-1\(\beta\).

4. Discussion

Dibutyryl adenosine cyclophosphate (dbcAMP-Ca), as an analog of cAMP, exerts effects via stimulating cAMP signaling pathway (Arnold et al., 2010), such as cell proliferation and differentiation, hormones release and regulation (Boghaert et al., 1991; Chrenek et al., 2010, 2013). And former studies have also found that

Table 2

Genes	Primers Sequence (5' to 3')	Size, bp
\(\beta\)-actin	Forward TGCGGACATCAAGGAGAAC	216
FAS	Forward GTCCTGCTAAGCTCAACTC	206
PPAR\(\alpha\)	Forward GCCATCATTTGTCGCGGAGAC	139
CPT-1\(\alpha\)	Forward CACTAAAAACTGCTCTTCTAG	118
CPT-1\(\beta\)	Forward CGCAAGTCGTCAGGATACAAA	100
ACC\(\alpha\)	Forward TGGGCTTGGGAAACAGAAGAC	211
HSL	Forward GAGGCGGAGCTATGGGCC	130

Table 3

Item	Groups\(^1\)	P-value	
TC	Control	dbcAMP-Ca	
TG	2.47±0.15	2.38±0.12	0.65
HDLC	0.36±0.03	0.32±0.04	0.56
LDL-C	1.21±0.07\(^*\)	1.03±0.04	0.04
T-bil	0.80±0.07	0.93±0.07\(^*\)	0.03
HDLC	20.70±2.06	21.39±4.76	0.80
D-bil	2.54±0.50	1.97±0.88	0.51
TBA	24.17±6.57	14.07±2.69	0.18

\(^{1}\) Control group: a basal diet; dbcAMP-Ca group: the basal diet supplemented with 1.5 mg/d of dbcAMP-Ca. \(^\ast\) Indicates a significant difference \((P < 0.05)\) between the control group and dbcAMP-Ca group.
growth hormone could be better stimulated through Ca$^{2+}$ and cAMP-dependent interactive mechanism thus enhance the production performance of animals (Sartini et al., 1996; Pahan et al., 1998). In this study, the supplement of dbcAMP-Ca significantly increased the ADG and promoted the growth of early weaning piglets, which might be caused by the interactive effect of Ca$^{2+}$ and dbcAMP.

Lipid, as a kind of necessary substance for animals, plays a vital role in maintaining cell structure and function (Smith et al., 2003; Liu et al., 2017). Blood lipid concentrations were regarded as the status of dynamic lipid absorption and nutritional in animals and humans (Li et al., 2016). Notably, increasing levels of blood constituents are associated with the increasing of dietary nutrients (Brungardt, 1963; Sink et al., 1973). In this regard, the current result of the elevated blood concentrations of LDL and HDL was influenced by dbcAMP-Ca treatment when compared with the control group. In our results, LDL concentration increased while HDL decreased, which seemingly shows lipid metabolic disturbance and it might confer the risk for cardiovascular disease according to the former studies (Gupta and Rajagopal, 2007; Shin, 2009). However, for the fast growing piglets, high concentrations of LDL and low HDL may represent a high level of nutrition, which is in line with the significant change in the ADG. Furthermore, fatty acids composition in the liver also reflects the changes in fatty acid metabolism. The contents of polyunsaturated fatty acid (PUFA) and MUFA decreased whereas the content of saturated fatty acid (SFA) increased in dbcAMP-Ca group when compared with the control group, and this could be explained by the high LDL and low HDL in blood. According to the former studies, the proportion of PUFA is affected by many factors, such as synthesis rate, and mutual conversion (Enser et al., 2000). Besides, PUFA can be oxidized to supply energy to the organism (Tebby et al., 1994; Clarke, 2000). Our study indicated that the supplement of dbcAMP-Ca could promote the oxidation of PUFA and might provide energy for piglets to meet the requirements of growth and development. For the further researches on lipid metabolism in the liver, we detected the mRNA expression levels of lipid metabolism related genes. Hormone sensitive glycerol three lipase is a rate-limited enzyme in triglyceride decomposition which cleaves fatty acids from triglycerides and diglycerides (Watt, 2013). Peroxisome proliferator-activated receptor α (PPARα) has been regarded as the major regulators of lipid metabolism (Ajuwon et al., 2003). Triglyceride (TG) is synthesized via FAS catalyzing acetyl coenzyme A and malonate coenzyme A. Moreover, it is the major form required for body fat deposition (Semenkovich, 1997; Yan et al., 2002). In this experiment, dbcAMP-Ca increased the mRNA expression levels of PPARα and HSL in the liver, which indicated that the addition of dbcAMP-Ca mainly promoted lipolysis and inhibited lipid deposition in the liver, thereby promoted the usage of milk lipids, and thus provided more energy for sucking piglets (Luiken et al., 2002; Madsen et al., 2008; Jia et al., 2018).

Taken together, oral administration of dbcAMP-Ca can significantly increase the weight gain of piglets and affect blood HDL and LDL concentrations, decrease the content of PUFA and enhance metabolism of fatty acids in the liver, which may be through the decomposition of lipids by PPARα and HSL in the liver to provide more energy to ensure the healthy growth of piglets.

5. Conclusions

Conclusively, the present study suggests that dbcAMP-Ca has a significant effect on the growth performance mainly by its regulation effects on lipid metabolism. In the future, more well-designed researches will be needed to investigate the effects of dbcAMP-Ca on early weaning piglets.

Conflicts of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

Acknowledgements

This work was jointly supported by National Key Research and Development Program of China (2016YFD0501209, and

Table 4

Long chain fatty acid content (%) in liver (n = 7).

Item	Groups 1	P-value	
	Control	dbcAMP-Ca	
C18:0	0.02 ± 0.003	0.02 ± 0.003	0.69
C18:1n9t	0.08 ± 0.03	0.08 ± 0.03*	0.03
C18:1n9c	0.75 ± 0.27	0.75 ± 0.27	0.09
C16:0	0.07 ± 0.01	0.07 ± 0.01	0.34
C16:1	15.73 ± 0.56	15.73 ± 0.56	0.59
C17:0	0.41 ± 0.03	0.41 ± 0.03	0.75
C18:0	21.24 ± 0.61	22.21 ± 1.08	0.47
C20:0	0.04 ± 0.00	0.04 ± 0.00	0.61
C16:1	0.91 ± 0.21	0.93 ± 0.37	0.94
C17:1	0.04 ± 0.01	0.03 ± 0.00	0.23
C18:0n6t	0.08 ± 0.02	0.07 ± 0.04	0.79
C18:0n6c	17.73 ± 0.98	16.77 ± 0.75	0.45
C20:0n6t	0.01 ± 0.003	0.013 ± 0.008*	0.04
C20:0n6c	15.95 ± 0.37	16.07 ± 0.67	0.88
C18:3n6	0.16 ± 0.02	0.17 ± 0.02	0.76
C18:3n3	0.17 ± 0.02	0.12 ± 0.05	0.14
C20:0	0.31 ± 0.03	0.28 ± 0.03	0.47
C20:3n6	2.45 ± 0.20	2.53 ± 0.32	0.83
C22:0n6	17.67 ± 0.37	17.36 ± 0.82	0.76
SFA	6.70 ± 0.76	6.49 ± 0.23	0.82
MUFA	39.12 ± 0.6	40.00 ± 0.70	0.28
MUFA	17.82 ± 0.98	16.85 ± 0.76	0.44
PUFA	80.52 ± 0.86	77.48 ± 1.11	0.08

* Indicates a significant difference ($P < 0.05$) between the control group and dbcAMP-Ca group.

1 Control group: a basal diet; dbcAMP-Ca group: the basal diet supplemented with 1.5 mg/d of dbcAMP-Ca.
2016YF05000504), the Earmarked Fund for China Agriculture Research System (CARS-35) and the Major Project of Hunan Province (2016N02124; 2015N01002).

References

Ajwun KM, Kuske JL, Anderson DR, Hancock DL, Houseknecht KL, Aedeia O, et al. Chronic leptin administration increases serum NEFA in the pig and differentially regulates PPAR expression in adipose tissue. J Nutr Biochem 2003;14: 576–83.

Arnold DE, Gagne C, Niknejad N, McBurney MW, Dimitrakoulos J. Lovastatin induces neuronal differentiation and apoptosis of embryonal carcinoma and neuroblastoma cells: enhanced differentiation and apoptosis in combination with dbcAMP. Mol Cell Biochem 2010;345:1–11.

Aumaitre A, Corring T. Development of digestive enzymes in the piglet from birth to 8 weeks. II. Intestine and intestinal disaccharidases. Nutr Metab 1978;22:244–55.

Boghaert ER, Simpson J, Jacob RJ, Lacey T, Walsh JG, Zimmer SG. The effect of dibutyryl cAMP (dbcAMP) on morphological differentiation, growth and invasiveness in vitro of a hamster brain-tumor cell line: a comparative study of dbcAMP effects in 2- and 3-dimensional cultures. Int J Cancer 1991;47:810–8.

Brungardt TF. The hi-riding contact lens. Optom Wkly 1963;54:1409–14.

Butcher RW, Baird CE, Sutherland EW. Effects of lipolytic and antilipolytic substances on adenosine 3′,5′-monophosphate levels in isolated fat cells. J Biol Chem 1968;243:1705–12.

Cera KR, Mahan DC, Reinhart GA. Effect of weaning, week postweaning and diet composition on pancreatic and small intestinal luminal lipase response in young swine. J Anim Sci 1990;68:384–91.

Chernek P, Grossmann R, Sirotkin AV. The cAMP analogue, dbcAMP affects release of neurotransmitters from cultured sympathetic neurons: enhanced release of noradrenaline and a reduction in dopamine. J Auton Pharmacol 1987;7:27–35.

Clark SD. Polyunsaturated fatty acid regulation of gene transcription: a mechanism of hormone action and control of adipose tissue gene expression. Endocrinology 1987;121:S69–75.

Clarke DR, Saville AW, Crossley PB, Schriemer CA, et al. The effect of chronic weaning on the organic synthesis and catabolism of amino acids in piglets. J Anim Sci 1990;68:384–91.

Claret P, Fekete P, Lajous M, Mercier J, Therisod S, et al. The relationship between the animal origin of carcass fat and the fatty acid composition of the carcass and meat. J Anim Sci 1990;68:384–91.

Colombo ES, Coleman JM, Fung J, et al. cAMP-dependent signaling regulates the adiopogenic effect of n-6 polysaturated fatty acids. J Biol Chem 2008;283:7196–205.

Fahn K, Khan M, Singh I. Therapeutics for A-adreno-leukodystrophy: normalization of very long chain fatty acids and inhibition of induction of cytokines by cAMP. J Lipid Res 1998;39:1089–106.

Fajardo LT, Skiba G, Weremko D, Panderajewski H, Migdaw W, Borowiec F, et al. The relationship between the chemical composition of the carcass and the fatty acid composition of intramuscular fat and backfat of several pig breeds slaughtered at different weights. Meat Sci 2010;86:324–30.

Falgout CL, Pearson BE, Patterson II, et al. Chronic leptin administration increases serum NEFA in the pig and differentially regulates PPAR expression in adipose tissue. J Nutr Biochem 2003;14: 576–83.

Gupta S, Rajagopal G. The significance of plasma high density lipoprotein cholesterol as a predictor of cardiovascular disease. J Ind Med Sci 1994;125:569–77.

Hobkins J. Morphometry of fetal growth. Acta Paediatr Suppl 1997;423:165–8. Discussion 169.

Jia D, Li Z, Gao Y, Feng Y, Li W. A novel triazine ring compound (MD568) exerts effects in vivo and in vitro effects on lipid metabolism. Biomed Pharmacother 2010;103:790–9.

Kong D, Cui J, Fu J. DbcAMP regulates adipogenesis in sheep inguinal preadipocytes. Lipids Health Dis 2017;16:51.

Li Y, Li F, Chen S, Duan Y, Gou Q, Wang W, et al. Protein-restricted diet regulates lipid and energy metabolism in skeletal muscle of growing pigs. J Agric Food Chem 2016;64:9412–20.

Liu T, Yang T, Tan P, Liu C, Li S. Effect of low-selenium/high-fat diet on pig peripheral blood lymphocytes: perspectives from selenoproteins, heat shock proteins, and cytokines. Biol Trace Elem Res 2017;3:1–12.

Lukken JJ, Willems J, Coort SL, Coumans WA, Boven A, Van Der Vusse GJ, et al. Effects of cAMP modulators on long-chain fatty-acid uptake and utilization by electrically stimulated rat cardiac myocytes. Biochem J 2002;367:881–7.

Madsen L, Pedersen LM, Lissat B, Ma T, Petersen RK, van den Berg S, et al. cAMP-dependent signaling regulates the adiopogenic effect of n-6 polysaturated fatty acids. J Biol Chem 2008;283:7196–205.

Pahan K, Khan M, Singh I. Therapeutics for A-adreno-leukodystrophy: normalization of very long chain fatty acids and inhibition of induction of cytokines by cAMP. J Lipid Res 1998;39:1089–106.

Raj S, Skiba G, Weremko D, Panderajewski H, Migdaw W, Borowiec F, et al. The relationship between the chemical composition of the carcass and the fatty acid composition of intramuscular fat and backfat of several pig breeds slaughtered at different weights. Meat Sci 2010;86:324–30.

Sartín JL, Coleman ES, Steele B. Interaction of cyclic AMP- and calcium-dependent mechanisms in the regulation of growth hormone-releasing hormone-stimulated growth hormone release from ovine pituitary cells. Domest Anim Endocrinol 1996;13:229–38.

Semenkovich CF. Regulation of fatty acid synthase (FAS). Prog Lipid Res 1997;36:43.

Tan B, Yin Y, Liu Z, Li X, Xu H, Kong X, et al. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 2009;37:169–75.

Tanghe S, Cox E, Melkebeek V, De Smet S, Millet S. Effect of fatty acid composition of diet with different energy composition. Nutr Res Pract 2009;3:31–7.

Tanghe S, Cox E, Melkebeek V, De Smet S, Millet S. Effect of fatty acid composition of diet with different energy composition. Nutr Res Pract 2009;3:31–7.

Watt MJ. Lipid metabolism in contracting muscle-HSL takes a back seat. J Physiol 2017;591:4951.

Xu W, Xie CY, Li B, Zhou H, Yao J, Li K, et al. Effect of Yeast extract on growth performance and intestinal mucosa morphology of weanling pigs. J Anim Plant Sci 2018;28:1568–75.

Yang X, Wang YZ, Zi-Rong XU. Regulation of fatty acid synthase (FAS) gene expression in animals. Acta Zootaxonomica Sinica 2002;2:1–4.