A Young-Laplace law for black hole horizons

José Luis Jaramillo

Max-Planck-Institut für Gravitationsphysik, Albert Einstein Institut, Am Mühlenberg 1 D-14476 Potsdam Germany

Black hole horizon sections, modelled as marginally outer trapped surfaces (MOTS), possess a notion of stability admitting a spectral characterization. Specifically, the “principal eigenvalue” λ_o of the MOTS-stability operator (an elliptic operator on horizon sections) must be non-negative. We discuss the expression of λ_o for axisymmetric stationary black hole horizons and show that, remarkably, it presents the form of the Young-Laplace law for soap bubbles in equilibrium, if λ_o is identified with a formal pressure difference between the inner and outer sides of the “bubble”. In this view, that endorses the existing fluid analogies for black hole horizons, MOTS-stability is interpreted as a consequence of a pressure increase in the black hole trapped region.

PACS numbers: 04.70.-s, 04.50.Gh, 98.80.Jk

I. INTRODUCTION

Mechanical fluid analogies have played an important role in building our intuition of black hole (BH) horizon dynamics. The comparison with a rotating liquid drop was early discussed [1], providing an interpretation of the BH surface gravity as the corresponding liquid surface tension. More systematically, the analogy of the BH horizon with a 2-dimensional viscous fluid was developed in [2–4] (and references therein) building the so-called “membrane paradigm”, of particular interest in astrophysical BH dynamics. Remarkably, aspects of the latter “membrane perspective” have been recently revisited in higher dimensional settings in the context of the CFT/AdS duality (e.g. [5]). Related analogies of BH horizons as “soap bubbles” can be found in [6] and, particularly interesting in our present context, have led to the discussion of the Gregory-Laflamme instability of black strings in terms of the classical fluid Rayleigh-Plateau instability [8].

Here we further support these analogies by interpreting the stability of stationary BHs in terms of the Young-Laplace law for “soap bubbles”. This relates the pressure difference at the interface between fluids in equilibrium to the interface shape

$$\Delta p = p_{inn} - p_{out} = \gamma (1/R_1 + 1/R_2),$$

where at any interface point Δp is the difference between the inner and outer pressures (p_{inn} and p_{out}), γ is the surface tension and $R_{1,2}$ are the principal curvature radii (with normal vector pointing outwards). Specifically, we show that MOTS-stability [9] of stationary BH horizons, characterised by the non-negativity of the so-called principal eigenvalue λ_o of the MOTS-stability operator L_S (see below), can be discussed in terms of the Young-Laplace law in Eq. (1) if λ_o is identified with a formal pressure difference Δp. This provides a first step in the systematic spectral analysis of the MOTS-stability operator, as well as a suggestive interpretation shift that casts this geometric stability problem on fluid physical grounds.

II. MOTS, STABILITY AND QUASI-LOCAL HORIZONS

Let us introduce the specific notion of stability here discussed. Let us consider a $d-$dimensional spacetime (\mathcal{M}, g_{ab}) with Levi-Civita connection ∇_a and a closed spacelike ($d - 2$)-surface S (we make $G = c = 1$). Let q_{ab} denote the induced metric on S, and D_a and R its associated Levi-Civita connection and Ricci scalar. We span the normal plane $T^+ S$ by (future) outgoing ℓ^a and ingoing k^a null vectors, normalised as $\ell^a k_a = -1$. Expansions in the outgoing and ingoing directions are $\theta^{(i)} = q^{ab} \nabla_a \ell_b$ and $\psi^{(k)} = q^{ab} \nabla_a k_b$.

The surface S is called (strictly) outer trapped iff $\theta^{(i)} < 0$ and a marginally outer trapped surface (MOTS) iff $\theta^{(i)} = 0$. MOTSs possess a natural notion of stability [9]: a MOTS surface is said to be (strictly) stable if it admits a deformation along k^a that is outer trapped or, equivalently, a deformation along $-k^a$ that is fully non-trapped. In other words, the MOTS S is stable if there exists a positive function ψ on S such that $\delta_{\psi(-k)} \theta^{(i)} > 0$, where δ denotes the deformation operator of the surface S discussed in [2–10]. This notion of stability admits a spectral characterization in terms of the MOTS-stability operator L_S defined on S as

$$L_S \psi \equiv \delta_{\psi(-k)} \theta^{(i)} = \left[-D^a D_a + 2\Omega^{(i)} \right] D^a \psi$$

where $\Omega^{(i, k)} = -k^c q^{ab} \nabla_c \ell_b$ is the connection in $T^+ S$ [10] and G_{ab} is the Einstein tensor. The eigenvalues are generically complex numbers (L_S is not self-adjoint). However the principal eigenvalue λ_o, namely the eigenvalue with smallest real part, can be shown to be real [9]. MOTS-stability of S is then characterised by the non-negativity of λ_o [9]

$$\lambda_o \geq 0,$$

with positive principal eigenfunction ψ_o (i.e. $L_S \psi_o = \lambda_o \psi_o$). We also define an operator $L_\mathcal{S}$ obtained from L_S by imposing Einstein equations, $G_{ab} + \Lambda g_{ab} = 8\pi T_{ab}$, but dropping the (explicit) presence of the cosmological constant Λ:

$$L_\mathcal{S} \psi \equiv \left[-D^a D_a + 2\Omega^{(i)} \right] D^a \psi - \left[\Omega^{(i)} \Omega^{(k)} - D^a \Omega^{(i)} \right] \frac{1}{2} R + 8\pi T_{ab} \ell^a k^b \psi.$$
MOTS stability (the outer condition in [11]). MTTs are either null or spacelike hypersurfaces [18, 11]. The former corresponds to non-expanding horizons whereas the latter, under the future condition $\theta^i = 0$, are dynamical expanding ones. We focus here on the equilibrium case, where the null horizon \mathcal{H} is generated by the null vector ℓ^a and the intrinsic geometry remains invariant under ℓ^a: $\mathcal{L}_{\ell^a} = 0$. Crucially for our discussion, any foliation of \mathcal{H} defines a foliation by MOTS. This freedom will be exploited in Theorem 1 below. We introduce the surface gravity $\kappa^{(f)}$ as the non-affinity coefficient of ℓ^a, i.e. $\ell^a \nabla_b \ell^a = \kappa^{(f)} \ell^a$, with $\kappa^{(f)} = -k^a \ell^b \nabla_b \ell_a$.

We will consider a stronger notion of stationarity than that of non-expanding horizons, by requiring also the extrinsic geometry of the null \mathcal{H} to be invariant under a certain ℓ^a fixed up to a constant rescaling. This defines an isolated horizon (IH) [12, 13]. More specifically, we require the invariance of the unique connection ∇_a induced on the non-expanding horizon \mathcal{H} by the ambient one ∇_a: $[\mathcal{L}_{\ell}, \nabla_a] = 0$. This implies the invariance of $\Omega_a^{(f)}$ and $\kappa^{(f)}$, i.e. $\mathcal{L}_{\ell} \Omega_a^{(f)} = \mathcal{L}_{\ell} \kappa^{(f)} = 0$, and the angular constancy of $\kappa^{(f)}$: $D_a \kappa^{(f)} = 0$. IHs constitute the model for stationary BH horizons discussed here. This includes in particular Killing horizons, in which ℓ^a can be extended to a symmetry in the spacetime neighbourhood of \mathcal{H}.

III. λ_0 EIGENVALUE FOR AXISYMMETRIC IHs

The sign of the principal eigenvalue λ_0 controls MOTS-stability, as expressed in [4]. It is therefore of interest to have an explicit expression of λ_0 in terms of the geometry of Σ. Although this is a challenging problem when considered in full generality, the very important case of stationary and axisymmetric BH horizons is addressed by the following result [14].

Theorem 1 (Reiris [15]). Given an axisymmetric IH \mathcal{H} with null generator ℓ^a and constant ingoing expansion $\theta^{(f)}$:

1. There exists an (axisymmetric) foliation $\mathcal{H} = \bigcup_i \Sigma_i^{\ell}$ by MOTSs Σ_i^{ℓ} with constant ingoing expansion $\theta^{(f)}$.

2. The principal eigenvalue λ_0 evaluated on sections Σ_i^{ℓ} is $\lambda_0 = -\kappa^{(f)} \theta^{(f)}$. (5)

3. The principal eigenfunction ϕ_0 is given by $\phi_0 = e^{2\chi}$, with $\Omega_0^{(f)} = \chi D_a \chi$ on Σ_i^{ℓ}, where $D^a \chi = 0$.

The result holds in any dimensions, under the topological condition in [16] of \mathcal{H} being foliated by closed MOTSs. Note that λ_0 does not depend on the section of \mathcal{H} [16], though the form (5) only holds in the preferred foliation $\{\Sigma_i^{\ell}\}$ in Theorem 1.

IV. YOUNG-LAPLACE LAW FOR STATIONARY HORIZONS

A. BH surface tension and mean curvature

Let us first rewrite expression (5) in the following way

$$\lambda_0/(8\pi) = \kappa^{(f)}/(8\pi) (-\theta^{(f)}) .$$

The right-hand-side presents then a particularly suggestive form when compared with the Young-Laplace law in [1]. First, from the first law of BH thermodynamics, namely $\delta M = \kappa^{(f)}/(8\pi) \delta A + \Omega \delta J$, the factor $\kappa^{(f)}/(8\pi)$ is identified in [1] as an effective BH surface tension

$$\gamma_{BH} = \kappa^{(f)}/(8\pi),$$

using its standard equivalence with an energy surface density. Such thermodynamical identification is consistent with the purely mechanical view provided by the analogy of BH horizons as 2–dimensional viscous fluids in the membrane paradigm [24]. In the latter, the understanding of the evolution equations for $\theta^{(f)}$ and $\Omega_0^{(f)}$ as, respectively, energy and momentum (Damour-Navier-Stokes) balance equations requires the interpretation of $\kappa^{(f)}/(8\pi)$ as a pressure of the 2–dimensional fluid, i.e. a mechanical surface tension.

Second, regarding the second factor in (6), let us consider the section Σ_i^{ℓ} provided by point i) in Theorem 1, and let us extend it to a $(d-1)$-dimensional spatial slice Σ_ℓ in the bulk. Such Σ_ℓ can be locally boosted so that the IH null generator ℓ^a and the ingoing null normal to Σ_i^{ℓ} are respectively written as $\ell^a = n^a + s^a$ and $k^a = (n^a - s^a)/2$, with n^a the timelike normal to Σ_ℓ and s^a the outgoing spacelike normal to Σ_i^{ℓ} tangent to Σ_ℓ. The mean curvature H of $(\Sigma_i^{\ell}, q_{ab})$ into $(\Sigma_\ell, \gamma_{ab})$, with γ_{ab} induced from the ambient g_{ab}, is written as

$$H = 2s^a \nabla_a s_b - 3D_a s^a,$$

with $3D_a$ the connection compatible with γ_{ab}. For a 2–surface embedded in an Euclidean 3-space, the form $H = (1/R_1 + 1/R_2)$ in [1] is recovered. Combining $\theta^{(f)}$ and $\theta^{(k)}$, we write $H = -\theta^{(k)} + 2\sqrt{2} \theta^{(f)}$, so that in our MOTS $\theta^{(f)} = 0$ case

$$H = -\theta^{(k)} .$$

From (7) and (9) we see that (6) matches the form [1] of the Young-Laplace law, if $\lambda_0/(8\pi)$ is formally identified with a pressure difference between the interior and the exterior of the BH horizon. We justify now such a heuristic identification.

B. The principal eigenvalue λ_0 as a pressure

The principal eigenvalue λ_0 admits the interpretation of a pressure. First we note that λ_0 shares physical nature with the cosmological constant Λ. Indeed, the (explicit) effect of switching-on the cosmological constant, as compared with the reference situation in absence of Λ, is to produce a shift in the eigenvalue λ_0 characterising MOTS-stability [17]

$$L_S \phi = \lambda \phi , \quad L_{\Sigma} \phi = \lambda^* \phi \implies \lambda_0^{\dagger} = \lambda_0 + \Lambda ,$$

(10) that follows from [2] and [4] when imposing $G_{ab} + \Lambda g_{ab} = 8\pi T_{ab}$. Therefore, physical dimensions of Λ are shared by λ_0. Second, the cosmological constant Λ admits the natural interpretation of a pressure, $p_{\text{cosm}} = -\Lambda/(8\pi)$, for a perfect fluid stress-energy. Based on these remarks, we propose the interpretation of $\lambda_0/(8\pi)$ as a pressure, specifically a pressure difference between the interior and exterior of the BH horizon

$$\Delta p = p_{\text{inn}} - p_{\text{out}} \equiv \lambda_0/(8\pi) ,$$

with p_{inn} and p_{out} the formal inner and outer pressures.
C. The MOTS-stability operator L_S as a “Pressure Operator”

Beyond the interpretation of λ_o in (11), the whole stability operator L_S can be understood as a “pressure operator”. To justify this claim, we consider the equation of a MTT. The horizon evolution vector h^a, tangent to $H = \bigcup_{t \in \mathbb{R}} S_t$ and normal to MOTS sections S_t, Lie-drags the section S_t to $S_{t+\delta t}$. It can be written as $h^a = \ell^a - C k^a$, where C is a (dimensionless) function on H such that the MTT is null, spacelike or timelike for $C = 0$, $C > 0$ or $C < 0$, respectively. The MTT condition $\delta_t \theta^{(t)} = 0$ is then expressed in terms of the MOTS-stability operator L_S. By using $\delta_t \theta^{(t)} = \delta_t \psi^{(t)} - \delta_C \theta^{(t)}$, the MTT condition is rewritten as $\delta_{(\ell)} C \theta^{(t)} = -\delta_t \theta^{(t)}$, so that

$$L_S C = \sigma^{(t)}_{ab} \sigma^{(t)ab} + 8\pi T_{ab} \ell^a \ell^b , \quad (12)$$

where $\sigma^{(t)}_{ab} = \eta^d \eta^d \nabla \epsilon \epsilon - 1/(d-2) \theta^{(t)} q_{ab}$ is the shear associated with the outgoing null normal and we have made use of the null Raychaudhuri equation. The right-hand-side of Eq. (12) fixes the physical dimensions of the stability operator as $[L_S/(8\pi)] = \text{Energy} \cdot \text{Time}^{-1} \cdot \text{Area}^{-1}$, $(G = c = 1)$. Such an interpretation is natural in dynamical scenarios, where the horizon growth is controlled by the presence of matter or gravitational energy fluxes. In purely stationary settings, as in the spectral problem of (10), physical dimensions of L_S can be recast in a better suited form by simply noting $\text{Energy} \cdot \text{Time}^{-1} \cdot \text{Area}^{-1} \approx \text{Force} \cdot \text{Area}^{-1}$, so that

$$[L_S/(8\pi)] = \text{Pressure} . \quad (13)$$

This provides additional support to the proposed physical interpretation of the (real) $\lambda_o/(8\pi)$ as a pressure. But, in addition, it also suggests a role of the whole spectrum of L_S (including complex eigenvalues) in horizon stability issues.

D. MOTS-stability from a BH Young-Laplace law perspective

We can now revisit MOTS-stability for stationary axisymmetric BHs in the following soap-bubble analogy form:

BH Young-Laplace “law”: For stationary axisymmetric BHs, there exists a foliation in which the identifications

$$\frac{\kappa^{(t)}}{8\pi} \rightarrow \gamma_{\text{BH}}, \quad -\theta^{(t)} \rightarrow H, \quad \frac{\lambda_o}{8\pi} \rightarrow \Delta p = p_{\text{in}} - p_{\text{out}}, \quad (14)$$

permit to recast the principal eigenvalue in the form of a Young-Laplace law: $\Delta p = p_{\text{in}} - p_{\text{out}} = \gamma_{\text{BH}} H$. In this view, MOTS-stability ($\lambda_o \geq 0$) is interpreted as the result of an increase in the pressure of the BH trapped region.

V. PERSPECTIVES FROM A YOUNG-LAPLACE VIEW

Apart from the appeal of casting Theorem 1 in the physical terms of equilibrium bubbles, the main outcome of the Young-Laplace perspective is the identification of λ_o as a pressure. This interpretation extends beyond stationarity and axisymmetry, providing a new twist on MOTS-stability that suggests new avenues and questions motivated by the fluid analogy. The heuristic proposals in the rest of the article illustrate this.

A. BH horizon dynamical timescales

The identification of $\kappa^{(t)}/(8\pi)$ as a surface tension, together with the integrated expressions for the BH mass $M = 2\kappa^{(t)}/(8\pi)A + 2\nu J$, led Smarr [11] to consider BH horizon instabilities in analogy with the case of rotating liquid drops.

Although MOTS-stability does not correspond to the notion of dynamical stability, it provides a condition for equilibrium that can be used to estimate the characteristic timescale of dynamical perturbations. This is illustrated for fluids in the Rayleigh-Plateau instability, where the timescale τ_{RP} of the zero-mode dominating at large times can be determined solely from the equilibrium Young-Laplace law: $\tau_{\text{RP}} = \sqrt{4\pi a^2 \rho/\gamma}$, with a the radius of the fluid jet, ρ its density and γ the surface tension. In this spirit, our geometrical setting suggests the following proposal for a BH horizon dynamical timescale

$$\tau_{\text{dyn}} \equiv \sqrt{1/\Delta p} = \sqrt{8\pi/\lambda_o} . \quad (15)$$

If this corresponds to an instability or rather to a relaxation time must be determined by other methods (e.g. [19]). The first case is illustrated by the Gregory-Laflamme instability of d-dimensional black strings, where $\lambda_o = R g_{\mathbb{R}^d-\mathbb{R}^d}/2 = (d-3)(d-4)/(2\pi^2)$, with r_H the horizon areal radius, and (15) produces $\tau_{\text{BS}} = \sqrt{16\pi/(d-3)(d-4)} r_H$. For $d = 5$

$$\tau_{\text{BS}} = \sqrt{8\pi} r_H = \frac{8\pi \cdot 4M^2}{M/\gamma_{\text{BH}}} , \quad (16)$$

where the last expression stresses the analogy with the Rayleigh-Plateau instability shown in [8], when introducing the effective mass $m_{\text{eff}} = 4\pi a^2 \rho/\tau_{\text{BH}}$ above. Regarding the stable case, Reissner-Nordström ($d = 4$) provides a non-trivial example in which (15) leads to a dynamical timescale

$$\tau_{\text{RN}} = \frac{4\pi}{\sqrt{M(M+\sqrt{M^2+Q^2})-Q^2}} . \quad (17)$$

The shortest timescale occurs at $Q/M = \sqrt{7}/2$. Interestingly, this number coincides with the value for heat capacity change of sign in Reissner-Nordström [20] (and with Smarr’s proposal for the critical J/M^2 for Kerr “rotating instabilities”).

B. Full spectral analysis of L_S and BH horizon instabilities

Beyond the role of λ_o in setting a dominating timescales, the full spectrum of L_S may provide a more refined probe into the stability/dynamical properties of the horizon. This is suggested by the presentation of the whole stability operator in (13) as a “pressure operator”. Such an approach is particularly rich in the rotating case since higher eigenvalues $\lambda_{n,o,s}$ of $S_{\mathbb{R}^d}$ are then generically complex, due to the $2\Delta_{\mathbb{R}^d} D^2$ term, with imaginary part encoding rotational information [21]. In particular, it is of interest to study a possible imprint of superradience in the imaginary part of the spectrum. In brief, we propose here the systematic study of the full spectrum of L_S in a line of research that, inspired by the inverse spectral problem for the Laplacian [22, 23], can be paraphrased as: "can
one hear the stability of a Black Hole horizon?”. Although the exact resolution of the spectral problem is a formidable task in the generic case, semi-classical tools (e.g. [24]) may offer relevant insight into the statistical properties of the spectrum.

C. Inner and outer pressures and the cosmological constant

The Young-Laplace law says nothing about the absolute values of p_{inn} and p_{out} [25]. One can, however, speculate about the implications of the following two possibilities:

i) “Bubble in a room”: fix p_{out} to the pressure existing in the absence of the BH, namely the cosmological pressure. Then

$$p_{\text{out}} = p_{\text{cosm}} = -\Lambda/(8\pi), \quad p_{\text{inn}} = (\lambda_0 - \Lambda)/(8\pi).$$

ii) “Casimir-like effect”: Eqs. (10) and (11) imply $p_{\text{inn}} = p_{\text{out}} = -\Lambda/(8\pi) - (\lambda_0^*/(8\pi))$, motivating the identification

$$p_{\text{inn}} = p_{\text{cosm}} = -\Lambda/(8\pi), \quad p_{\text{out}} = -\lambda_0^*/(8\pi).$$

The outer pressure $p_{\text{out}} = -\lambda_0^*/(8\pi) = -(\Lambda + \lambda_0)/(8\pi)$ decreases in the formation of a stable BH horizon ($\lambda_0 \geq 0$). Equivalently, an effective (bulk) cosmological constant $\Lambda_{\text{eff}} \equiv \Lambda + \lambda_0$ increases due to the presence of an inner BH boundary. This provides an ingredient for a physical mechanism correlating the increase of the (effective) cosmological constant to BH cosmological dynamics (note the similarities of such Λ_{eff}-“enhancing” mechanism with the “neutralization” of Λ through the quantum creation of closed membranes [26]).

D. BH volume

A thermodynamic notion of BH volume has been formulated (e.g. [27]) by considering the cosmological constant as an independent intensive variable in the BH first law, so that a volume V is introduced as its corresponding conjugate extensive variable. The present Young-Laplace fluid analogy suggests to “shift” $-\Lambda/(8\pi)$ to $\lambda_0/(8\pi) = \Delta p$ [cf. Eq. (10)], as the appropriate intensive variable to be employed. That is

$$\delta M = T\delta S + \Omega_i \delta J_i + \Phi_\alpha \delta Q_\alpha + V_{\text{BH}}(\lambda_0/(8\pi)),$$

where M corresponds to a BH enthalpy and V_{BH} is now a volume explicitly associated with the BH. Interestingly, as in [27], such a thermodynamic volume provides the Euclidean $V_{\text{BH}} = 4\pi r^3 / 3$ in (3-dimensional) spherical symmetry.

E. BH rest-frame

The BH Young-Laplace law holds for a preferred (local) spacetime slicing $\{\Sigma_t\}$. This suggests the proposal: i) A “BH rest-frame” is introduced as the one in which $H = -\beta^{(k)}$ is constant and the BH Young-Laplace law holds. ii) Given a unit vector $\xi^a \in T\Sigma_t$, transverse to the horizon section S_t, a quasi-local linear momentum along ξ^a is proposed as

$$P(\xi) \equiv \frac{1}{8\pi} \int_{S_t} (\xi^a s_a) H dA.$$

A horizon slicing is fixed by setting the value of $D^a \Omega_a^{(t)}$. In [13] a “natural” BH rest-frame was introduced by choosing a vanishing divergence. From point iii) in Theorem 1, the present Young-Laplace proposal amounts to a geometric choice in terms of the principal eigenfunction: $D^a \Omega_a^{(t)} = D^a \Omega_a \ln \sqrt{\omega}$. Finally note that $P(\xi)$, devised for measuring a vanishing linear momentum in the BH rest-frame, is just the dipolar part of the Brown-York quasi-local energy [28].

Acknowledgments. I thank M. Reiris for sharing his result on λ_0 and M. Mars for key insights. I thank A. Ashtekar, R. Emparan, A. Harte, B. Krishnan and F. Pannarale for discussions.

[1] Smarr, L., Phys.Rev.Lett. 30, 71–73 (1973).
[2] Damour, T., Thèse de doctorat d’etat, Université Paris 6 (1979); Proceedings of the Second Marcel Grossmann Meeting on General Relativity, p. 587. North-Holland, Amsterdam (1982).
[3] Price, R.H., Thorne, K.S., Phys. Rev. D 33, 915 (1986).
[4] Thorne, K.S. and Price, R.H. and MacDonald, D.A., Black holes: the paradigm: Yale U. Press, N.Haven (1986).
[5] Hubeny V.E., Class. Quantum Grav. 28, 114007 (2011).
[6] Eardley, D.M., Phys. Rev. D 57, 2299 (1998).
[7] Eardley, D.M., Giddings, S.B., Phys. Rev. D66, 044,011 (2002).
[8] Cardoso, V., Dias, O.J.C., Phys. Rev. Lett. 96, 181,601 (2006).
[9] Andersson, L., Mars, M., Simon, W., Phys. Rev. Lett. 95, 111,102 (2005); Adv. Theor. Math. Phys. 12, 853–888 (2008).
[10] Booth, I., Fairhurst, S., Phys. Rev. D75, 084,019 (2007).
[11] Hayward, S., Phys. Rev. D 49, 6467 (1994).
[12] Ashtekar, A., Krishnan, B., Liv. Rev. Relat. 7, 10 (2004).
[13] Ashtekar, A. et al., Class. Quantum Grav. 19, 1195 (2002).
[14] In the following, we only use points i) and ii) of Theorem 1.

[14], but dropping the assumption of vanishing λ_0. A full proof, including also point iii), will be presented elsewhere [15].

[15] Reiris, M., private communication.
[16] Mars, M., Class. Quantum Grav. 29, 145,019 (2012).
[17] We note that the combination $\lambda_0^* = \lambda_0 + \Lambda$ is the relevant one in the horizon area-charge inequilities incorporating Λ [18].
[18] Simon, W., Class. Quantum Grav. 29, 062,001 (2012).
[19] Hollands, S., Wald, R.M., Comm.Math.Phys. 321, 629 (2013).
[20] Davies, P., Proc.Roy.Soc.Lond. A353, 499–521 (1977).
[21] Notice the role of $\Omega_a^{(t)}$ in the (Komar) angular momentum $J = \frac{1}{2\pi} \int_{S_t} \Omega_a^{(t)} \phi^a dA$ associated with an axial Killing vector ϕ^a.
[22] Kac, M., American Mathematical Monthly 73(4), 1–23 (1966).
[23] Engman, M., Soto, R.C., J. Math. Phys. 47, 033503 (2006).
[24] Berry, M., in “Comportement chaotique des systèmes déterministes”, Les Houches XXXV, North-Holland, 173–271 (1981).
[25] A quantum/semi-classical model for BH interiors could do so, the Young-Laplace law then constraining its classical limit.
[26] Brown, J.D., Teitelboim, C., Phys.Lett. B195, 177–182 (1987).
[27] Cvetic, M. et al., Phys. Rev. D 84, 024,037 (2011).
[28] Brown, J.D., York, J.W., Phys. Rev. D 47, 1407–1419 (1993).