The effects of vitamin B_{12} on the brain damages caused by methamphetamine in mice

Mohammad Moshiri 1, Seyed Mojtaba Hosseiniyan 2, Seyed Adel Moallem 3,4, Farzin Hadizadeh 5,6, Amir Hossein Jafarian 7, Ameneh Ghadiri 2, Tektam Hoseini 2, Mahmoud Seifi 5, Leila Etemad 8*

1 Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
3 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
4 Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq
5 Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
6 Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
7 Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
8 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

A R T I C L E I N F O

Objective(s): Methamphetamine (METH) is a powerful stimulant drug that directly affects the brain and induces neurological deficits. B_{12} is a water-soluble vitamin (vit) that is reported to attenuate neuronal degeneration. The goal of the present study is to investigate the effect of vit B_{12} on METH's neurodegenerative changes.

Materials and Methods: Two groups of 6 animals received METH (10 mg/kg, intraperitoneally (IP)) four times with a 2 hr interval. Thirty mins before METH administration, vit B12 (1 mg/kg) or normal saline were injected IP. Animals were sacrificed 3 days after the last administration. Caspase proteins levels were measured by Western blotting. Also, samples were examined by TUNEL assay to detect the presence of DNA fragmentation. Reduced glutathione (GSH) was also determined by the Ellman method.

Results: The pathological findings showed that vit B_{12} attenuates the glosis induced by METH. Vit B_{12} administration also significantly decreased the apoptotic index in the striatum and the cerebral cortex (P<0.001). It also reduced caspase markers compared to the control (P<0.01 and P<0.001, respectively). Interestingly, co-administration of METH and Vit B_{12} elevated the levels of GSH in both regions of the brain and returned it to normal levels compared to the METH group.

Conclusion: The current study suggests that parenteral vit B_{12} at safe doses may be a promising treatment for METH-induced brain damage via inhibition of neuron apoptosis and increasing the reduced GSH level. Research focusing on the mechanisms involved in the protective responses of vit B_{12} can be helpful in providing a novel therapeutic agent against METH-induced neurotoxicity.

Introduction

Methamphetamine (METH) (also called meth, speed, chalk, crystal, and ice among other common slang terms) is a powerful stimulant drug with chemical structure similar to amphetamine. Relative ease of access and low cost of synthesis are among the reasons that METH abuse is on the rise (1, 2). METH can be snorted, smoked, injected or taken orally for therapeutic and recreational purposes. METH use in the treatment of attention deficit hyperactivity disorder in children and also in short term use in obesity has been approved by the FDA (3). METH rapidly crosses the blood brain barrier and penetrates into the brain and CSF. METH abuse can adversely affect health and cause long-term complications (4, 5). Even in small amounts, METH can lead to loss of appetite, increase in physical activity, confusion and produce wakefulness (6). METH also affects the cardiovascular system and increases blood pressure, heart rate and risk for stroke and heart attack (7). Pharmacological and psychological effects of amphetamine derivatives are due to enhanced neurotransmitters (serotonin, dopamine, and norepinephrine) release from nerve endings (8). Direct effects of METH on the brain can induce neurological deficits via chemical and molecular changes that may lead to serious health hazard (9). It seems that different mechanisms are involved in METH-induced neurotoxicity like generation of reactive oxygen/nitrogen species, glutathione depletion and cell death (10). No standard therapy is currently available to reverse METH’s neurotoxic effects (11).

Vitamin B_{12} (Vit B_{12}) is a water-soluble vitamin that possesses anti-inflammatory and analgesic properties (12). Vit B_{12} is reported to attenuate neuronal degeneration. It is the source of a coenzyme that participates in folate metabolism and thus plays a vital role in nucleotide synthesis (13). Therefore, vit B_{12} deficiency can lead to serious anemia, neuropathy and impaired brain function. Peripheral neuropathy in vit B_{12} deficiency is well established in animal and human studies (14). Therefore, vit B_{12} may interfere...
with some important mechanisms that are involved in METH neurotoxicity. The goal of the present study is to investigate the effect of vitamin B₁₂ on METH’s neurodegenerative changes.

Materials and Methods

Chemicals
Vit B₁₂ 1000 µg/ml injection vial was obtained from Raha Pharmaceutical Company, Iran. METH was donated by the Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences (Mashhad, Iran).

Animal treatment
Male BALB/c mice, weighing 30–35 g were provided from the Animals Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Animals were maintained on a controlled temperature (22±3 °C), 12:12 hr light cycle and allowed free access to food and water. All experimental procedures were conducted according to the ethical standard and protocols approved by the Animal Experiments Committee of Mashhad University of Medical Sciences, Iran. Animals were divided into 4 groups, with 6 mice in each group. Treated animals received METH at a dose of 10 mg/kg IP four times with a 2 hr interval (15). Thirty mins before METH administration, vit B₁₂ (1 mg/kg) or normal saline in the same volume was injected IP. Control and sham groups received normal saline and vit B₁₂ (1 mg/kg) respectively in the same route and at the same time. During the experiments, all groups were observed for mortality and general appearance. Animals were sacrificed 3 days after the last administration. In the next step, the brain tissues were removed and divided into two hemispheres. In order to measure the expression level of caspase proteins as well as glutathione content, the cortex and striatum from one-half of the brain were punched out and stored at -80 °C and the other half was fixed in 10% formalin for pathological investigation.

Histological analysis
Formalin fixed tissues were embedded in paraffin and cut into sections with 5 µm thickness. Two slides per animal were prepared (twelve slides in each group) and then stained with hematoxylin and eosin.

TUNEL assay
In situ cell death was detected in brain tissue using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) commercial kit (Roche/Germany). According to the kit instruction, tissue sections were deparaffinized, rehydrated and covered with proteinase K solution for protein digestion. H₂O₂ solution used to quench the endogenous peroxidase activity. Sections were then exposed to TUNEL reaction mixture for 1 hr at 37 °C. After blocking the slide with a 3% BSA, one drop of peroxidase-labeled digoxigenin sheep Fab antibody was placed onto the slide in the presence of DAB (diaminobenzidine) substrate and counterstained with hematoxylin. Apoptotic index was calculated by counting the number of TUNEL-positive cell nuclei/total number of cell nuclei per field. Ten randomly microscopic fields per slide and two slides per animal were studied.

Western blot analysis
Western blot was carried out to detect caspase-3 and 9 activities. The tissue samples were added to homogenization buffer in ice and mechanically homogenized. After centrifugation, the total protein content was estimated using the Bradford method. The specific volume of proteins extraction was loaded on 10% SDS-PAGE and separated by electrophoresis. At the next step, proteins were transferred to PVDF membrane and blocked with 5% skim milk. The blots were then incubated with primary antibodies (caspase-3, abcam, ab4051; caspase-9, abcam, ab47537). HRP secondary antibody (Cell Signaling, #7074) was used for chemiluminescent detection. The band size was analyzed using UVtec software (UK) and normalized against beta actin intensity (16).

Estimation of reduced glutathione level
In order to measure glutathione (GSH) content, tissue homogenates were mixed with equal amount of 10% trichloroacetic acid. After centrifugation, the Elliot’s reagent in PBS (phosphate buffer) was added to supernatant. Within 10 min, the change of absorbance was measured at 412 nm in a spectrophotometer. The amount of GSH is determined using standard curve.

Statistical analysis
All data were expressed as mean±SE and analyzed using ANOVA, followed by Tukey’s test. The alpha level was set at 0.05. Data analysis was performed using SPSS Version 21.

Results
All animals were alive until the end of the experiments.

Histological analysis
The pathological findings showed that METH exposure causes marked gliosis in striatum and cortex regions. Vit B₁₂ at a dose of 1 mg/kg attenuates the gliotic response. No pathological finding was observed in the control and sham groups (Figure 1).

Figure 1. Histolopathogical analysis of brain tissue in mice. METH exposure at a dose of 10 mg/kg IP injection induced gliosis in cortex and striatum (A and C, respectively). Arrows indicate Rosenthal fibers. Vit B12, control or sham groups did not show any pathological effects in both regions (B and D). (H&E × 100)
Tunel assay

The TUNEL technique revealed the potential of METH-induced DNA fragmentation in brain tissues (Figure 2). The percentage of TUNEL positive cells in striatum and cerebral cortex were significantly increased in groups that received METH in comparison with control ($P<0.001$). Treatment with vit B$_{12}$ reduced the damage in cerebral cortex and striatum significantly compared to the group that received METH ($P<0.05$).

![Figure 2](image_url)

Figure 2. Apoptotic profile of METH in the striatum and cerebral cortex of rat (A and C, respectively). Treatment with vit B$_{12}$ reduced the METH-induced cell death in both regions (B and D).

Western blot analysis

The effect of METH on caspase-3 and 9 expression was investigated using Western blot analysis. Figure 4 and 5 show that METH exposure at dose of at dose of 10 mg/kg IP for four times upregulates the expression of caspase-3 and 9 in both regions compared to the control group ($P<0.001$). Co-administration of vit B$_{12}$ and METH significantly decreased the level of caspase-3 and 9 proteins in the cerebral cortex and striatum compared to the group that received METH alone ($P<0.001$ and $P<0.05$, respectively).

![Figure 3](image_url)

Figure 3. Effect of normal saline, vit B$_{12}$, METH or METH + vit B$_{12}$ on the protein level of caspase-3 in rat brain cortex. (A) Representative photograph of the Western blot analysis. Densitometric analysis of caspase-3 (B) and caspase-9 level (C). Data are expressed as means±SEM. **$P<0.01$ and ***$P<0.001$ compared to the control group. #P<0.05 and ###P<0.001 compared to the METH group.

![Figure 4](image_url)

Figure 4. Effect of normal saline, vit B$_{12}$, METH or METH + vit B$_{12}$ on the protein level of caspase 3 and 9 in the rat brain cortex. (A) Representative photograph of the Western blot analysis. Densitometric analysis of caspase-3 (B) and caspase-9 level (C). Data are expressed as means±SEM. **$P<0.01$ and ***$P<0.001$ compared to the control group. #P<0.05 and ###P<0.001 compared to the METH group.

![Figure 5](image_url)

Figure 5. Effect of normal saline, vit B$_{12}$, METH or METH + vit B$_{12}$ on the protein level of caspase-3 in rat brain striatum. (A) Representative photograph of the Western blot analysis. Densitometric analysis of caspase-3 (B) and caspase-9 level (C). Data are expressed as means±SEM. **$P<0.01$ and ***$P<0.001$ compared to the control group. #P<0.05 and ###P<0.001 compared to the METH group.
Our results, vit B12 at a dose of 1 mg/kg was able to abolish markers and morphological changes (19). According to is characterized by increased expression of glial-specific proliferation of glia cells in response to CNS insult and in striatum and cortex regions. Gliosis refers to the revealed that METH exposure causes marked gliosis parts of the brain (17, 18). The pathological findings neurotoxic drug and induces degeneration on different caused by inhibition neuron apoptosis and increasing the reduced GSH level. Research focusing on the mechanisms involved in protective responses of vit B12 can be helpful in providing a novel therapeutic agent against the METH-induced neurotoxicity.

Conflict of Interest

The authors declare that they have no conflict of interest.
Acknowledgment

The authors are thankful to the Vice Chancellor for Research, Mashhad University of Medical Sciences, Mashhad, Iran and Iran National Science Foundation for financial support.

References

1. Cadet JL, Krasnova IN, Janyati S, Lyles J. Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 2007; 11: 183-202.
2. Chulathidaa C, Summon C. Global patterns of methamphetamine use. Curr Opin Psychiatry 2015; 28: 269-274.
3. Kishi T, Ikeda M, Kitajima T, Yamanouchi Y, Kinoshita Y, Kawashima K, et al. Prostate apoptosis response 4 gene is not associated with methamphetamine-use disorder in the Japanese population. Ann N Y Acad Sci 2008; 1139: 83-88.
4. Kiyatkin EA, Sharma HS. Acute methamphetamine intoxication: brain hyperthermia, blood-brain barrier, brain edema, and morphological cell abnormalities. Int Rev Neurobiol 2009; 88: 65-100.
5. Rusyniak DE. Neurologic manifestations of chronic methamphetamine abuse. Neuro Clin 2011; 29: 641-655.
6. Rocken (FL): CRC Press.
7. Martin WR, Sloan JW, Sapira JD, Jasinski DR. Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther 1971; 12: 245-258.
8. Rothman RB, Baumann NH. Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 2003; 479: 23-40.
9. Ladenheim B, Krasnova IN, Deng X, Oyler JM, Polettini A, et al. Exploring the effect of intravenous lipid emulsion in acute methamphetamine toxicity. Arzneimittelforschung 2012; 62: 324-329.
10. Barayuga SM, Pang X, Andres MA, Panee J, Bellinger FP. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol Pharmacol 2000; 58: 1247-1256.
11. 18. Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL. Methamphetamine induces apoptosis in an immunoregulated rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 2002; 42: 837-845.
12. Kousik SM, Graves SM, Napier TC, Zhao C, Carvey PM. Methamphetamine selectively alters brain glutathione content, parietal cortical cell body injury. Synapse 1998; 30: 433-445.
13. Halpin LE, Collins SA, Yamamoto BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxyamphetamine. Life Sci 2014; 97: 37-44.
14. Eisch AJ, Marshall JF. Methamphetamine neurotoxicity: dissociation of striatal dopamine terminal damage from parietal cortical cell body injury. Synapse 1998; 30: 433-445.
15. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J 2015; 14: 6.
16. Tong J, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang IC, et al. Is brain gliosis a characteristic of chronic methamphetamine use in the human?. Neurobiology of Disease 2014; 67: 107-118.
17. Barraud R, Barraud H, Ravey J, Gueant JL, Bronowicki JP, Strazielle C. Effects of a B-vitamin-deficient diet on exploratory activity, motor coordination, and spatial learning in young adult BALB/c mice. Brain Res 2008; 1188: 123-131.
18. Mirecki A, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang IC, et al. Is brain gliosis a characteristic of chronic methamphetamine use in the human?. Neurobiology of Disease 2014; 67: 107-118.