THE DIAMETRAL STRONG DIAMETER 2 PROPERTY OF
BANACH SPACES IS THE SAME AS THE DAUGAVET
PROPERTY

VLADIMIR KADETS

Abstract. We demonstrate the result stated in the title, thus answering an open question asked by Julio Becerra Guerrero, Ginés López-Pérez and Abraham Rueda Zoca in J. Conv. Anal. 25, no. 3 (2018).

1. Introduction

According to the famous theorem [3] demonstrated by Daugavet in 1963, the norm identity
\[\|\text{Id} - T\| = 1 + \|T\|, \]
which has become known as the Daugavet equation, holds for compact operators on \(C[0,1] \).

Around 20 years ago the following general concept was introduced [8]: a Banach space \(X \) has the Daugavet property if the equation (1.1) is fulfilled for every rank one operator \(T \in L(X) \) (here and below \(L(X) \) denotes the space of all bounded linear operators \(G: X \to X \)).

Surprisingly, the Daugavet property of \(X \) implies the validity of (1.1) for much wider classes of operators than operators of rank 1: for example, for compact operators, weakly compact operators [8], operators that do not fix a copy of \(\ell_1 \) [13], narrow operators [9], SCD-operators [1], etc.

Although the Daugavet property is of isometric nature, it has a number of linear-topological consequences. For example, a space with the Daugavet property cannot be reflexive, it cannot possess an unconditional basis, and so on. We refer to [10, Section 1.4] for more motivation and the history of the subject.

Let \(B_X \) be the unit ball of a Banach space \(X \). A slice of \(B_X \) is a non-empty part of \(B_X \) that is cut out by a real hyperplane. Given \(x^* \in X^* \) with \(\|x^*\| = 1 \) and \(\alpha > 0 \), denote the corresponding slice as
\[\text{Slice}(x^*, \alpha) := \{x \in B_X : \text{Re}x^*(x) > 1 - \alpha\}. \]
The Daugavet property of X can be reformulated in terms of slices of the unit ball:

(i) the property holds if and only if for every slice S of B_X, every $\varepsilon > 0$ and every $x \in S_X$ there is $s \in S$ with $\|x - s\| > 2 - \varepsilon$.

There are two characterizations more [8, 13], relevant to the subject of this paper, where slices are substituted by relatively weakly open subsets or convex combinations of slices, respectively:

(ii) X has the Daugavet property if and only if for every non-empty relatively weakly open subset U of B_X, every $\varepsilon > 0$ and every $x \in S_X$ there is $y \in U$ with $\|x - y\| > 2 - \varepsilon$.

(iii) X has the Daugavet property if and only if for every finite collection S_1, \ldots, S_n of slices of B_X and every collection of positive scalars $\lambda_1, \ldots, \lambda_n$ with $\lambda_1 + \ldots + \lambda_n = 1$ the corresponding convex combination $C = \lambda_1 S_1 + \ldots + \lambda_n S_n$ of slices has the property that for every $\varepsilon > 0$ and every $x \in S_X$ there is $y \in C$ with $\|x - y\| > 2 - \varepsilon$.

In [6] it was asked whether the condition $x \in S_X$ in (i) can be changed to $x \in S \cap S_X$. In order to formalize this question the following definition was introduced:

Definition 1.1. A Banach space X is said to be a space with bad projections if and only if for every slice S of B_X, every $\varepsilon > 0$ and every $x \in S_X$ there is $s \in S$ with $\|x - s\| > 2 - \varepsilon$. We denote this condition $X \in SBP$, or “X is an SBP space”.

The name is motivated by the fact that $X \in SBP$ if and only if $\|\text{Id} - P\| \geq 2$ for every projection $P \in L(X)$ of rank 1.

It was demonstrated [6] that every absolute sum of two SBP spaces is an SBP space. On the other hand, the Daugavet property is inherited only by ℓ_1 and ℓ_∞ sums, consequently there are SBP spaces that do not have the Daugavet property.

Motivated by this result, Becerra Guerrero, López-Pérez and Rueda Zoca [2] introduced the following concepts.

Definition 1.2 ([2, Definition 2.1]). A Banach space X is said to have the diametral diameter two property (DD2P) if for every non-empty relatively weakly open subset U of of B_X, every $\varepsilon > 0$ and every $x \in U \cap S_X$ there is $y \in U$ with $\|x - y\| > 2 - \varepsilon$.

Comparing this with the characterization (ii), one easily sees that the Daugavet property implies the DD2P. On the other hand, DD2P is stable under all ℓ_p sums [2, Theorem 2.11], so the inverse implication does not hold.

Finally, we are prepared for the main subject of interest of this paper.

Definition 1.3 ([2, Definition 3.1]). A Banach space X is said to have the diametral strong diameter two property (DSD2P) if for every convex combination C of slices of B_X, every $\delta > 0$ and every $x \in C$ there is $y \in C$ with $\|x - y\| > 1 + \|x\| - \delta$.
Again, from the characterization (iii) of the Daugavet property, one can deduce [2, Example 3.3] that the Daugavet property implies the DSD2P.

The aim of this article is to demonstrate that the inverse implication is also true, so the diametral strong diameter 2 property of Banach spaces is the same as the Daugavet property. The validity of this inverse implication was suggested in [2, Question 4.1]. This question remained open since 2015, when the arXive preprint of [2] was published, and was mentioned as open problem in [4, 5, 11, 12]. Our result, combined with the known results about the Daugavet property, gives also the positive answers to Questions 4.3 and 4.4 of [2] (the last one was already solved directly in [4]).

2. The main result

Let us start with a useful geometrical concept.

Definition 2.1 ([7, Definition 1.2.9]). Let X be a normed space, $\varepsilon > 0$ and $x, y \in X$. The elements x, y are said to be ε-quasi-codirected if $\|x + y\| \geq \|x\| + \|y\| - \varepsilon$.

Lemma 2.2 ([7, Lemma 1.2.10]). Let $x, y \in X$ be ε-quasi-codirected. Then for every $a, b > 0$ the elements ax, by are $(\varepsilon \max\{a, b\})$-quasi-codirected.

Proof. Without loss of generality we may assume $a \geq b$. Then $a = \max\{a, b\}$ and

$$
\|ax + by\| = \|a(x + y) - (a - b)y\| \geq a\|x + y\| - (a - b)\|y\|
\geq a(\|x\| + \|y\| - \varepsilon) - (a - b)\|y\| = a\|x\| + b\|y\| - a\varepsilon.
$$

□

Theorem 2.3. Let X be a Banach space with the diametral strong diameter two property. Then X has the Daugavet property.

Proof. We are going to demonstrate that X satisfies the characterization (i). Let $\varepsilon > 0$, $x \in S_X$ and a slice $S = \text{Slice}(x^*, \alpha)$ of B_X be given, where $x^* \in X^*$, $\|x^*\| = 1$ and $\alpha > 0$. We need to demonstrate the existence of $s \in S$ with $\|x - s\| > 2 - \varepsilon$. To this end, take $\beta = \min\{\alpha, \varepsilon / 2\}$ and consider the slices

$$
S_1 = \text{Slice}(x^*, \beta) \subset S, \quad S_2 = \text{Slice}(-x^*, \beta) = -S_1
$$

and the convex combination C of slices defined as

$$
C = \frac{1}{2} S_1 + \frac{1}{2} S_2 = \left\{ \frac{1}{2} y_1 - \frac{1}{2} y_2 : y_1, y_2 \in S_1 \right\}.
$$

(2.1)

Remark that every element $z \in S_1$ has $\|z\| \geq \Re x^*(z) > 1 - \beta \geq 1 - \varepsilon / 2$ and S_1 has not empty norm-interior

$$
W = \{ z \in X : \|z\| < 1, \Re x^*(z) > 1 - \beta \}.
$$

Then $0 \in \frac{1}{4} W - \frac{1}{4} W \subset C$ is a norm-interior point of C, so there is such an $r \in (0, \frac{1}{2})$ that $r B_X \subset C$. Consider $rx \in C$ and $\delta \in (0, \varepsilon / (2r))$. According
to Definition 1.3, there is \(y \in C \) with \(\|rx - y\| > 1 + r\|x\| - \delta \). By (2.1), we may represent \(y \) as \(y = \frac{1}{2}s - \frac{1}{2}h \) with \(s, h \in S_1 \). Then

\[
\left\| rx - \frac{1}{2}s \right\| = \left\| rx - y + \frac{1}{2}h \right\| \geq \|rx - y\| - \frac{1}{2} > r\|x\| + \frac{1}{2} - \delta.
\]

This means that the elements \(rx \) and \(-\frac{1}{2}s\) are \(\delta\)-quasi-codirected. Applying Lemma 2.2, we obtain that the elements \(x \) and \(-s\) are \(\frac{\delta}{r}\)-quasi-codirected, that is

\[
\|x - s\| \geq \|x\| + \|s\| - \frac{\delta}{r} \geq 2 - \epsilon - \frac{\delta}{r} > 2 - \epsilon.
\]

Since \(s \in S_1 \subset S \), this completes the proof. \(\square \)

References

[1] A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska, *Slicely countably determined Banach spaces*, Trans. Amer. Math. Soc. 362 (2010), 4871–4900.

[2] J. Becerra Guerrero, G. López-Pérez and A. Rueda Zoca, *Diametral diameter two properties in Banach spaces*, J. Conv. Anal. 25, no. 3 (2018), 817–840.

[3] I. K. Daugavet, *On a property of completely continuous operators in the space \(C \)*, Uspekhi Mat. Nauk 18.5 (1963), 157–158 (in Russian).

[4] R. Haller, K. Pirk, and M. Pöldvere, *Diametral strong diameter two property of Banach spaces is stable under direct sums with 1-norm*, Acta Comment. Univ. Tartu. Math. 20 (2016), 101–105.

[5] R. Haller, J. Langemets, R. Nadel, *Stability of average roughness, octahedrality, and strong diameter 2 properties of Banach spaces with respect to absolute sums*, Banach J. Math. Anal. 12, no. 1 (2018), 222–239.

[6] Y. Ivakhno, V. Kadets *Unconditional sums of spaces with bad projections*, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh. 54 (2004), 30–35.

[7] V. Kadets, *Banach spaces with the Daugavet property and Banach spaces with numerical index 1*, Doctor of science thesis (in Russian). Kharkiv V. N. Karazin National University (2014), 307 pp. doi:10.13140/RG.2.1.2465.7689

[8] V. Kadets, R. Shvidkoy, G. Sirotkin, and D. Werner, *Banach spaces with the Daugavet property*, Trans. Amer. Math. Soc. 352 (2000), 855–873.

[9] V. Kadets, R. Shvidkoy, and D. Werner, *Narrow operators and rich subspaces of Banach spaces with the Daugavet property*, Stud. Math. 147 (2001), 269–298.

[10] V. Kadets, M. Martín, J. Merí, and A. Pérez, *Spear operators between Banach spaces*, Lecture Notes in Mathematics 2205. Springer, Cham, 2018. xv+161 pp.

[11] R. Nadel, *Big slices of the unit ball in Banach spaces*, Dissertationes Mathematicae Universitatis Tartuensis 132, University of Tartu Press, 2020, 109 pp.

[12] K. Pirk, *Diametral diameter two properties, Daugavet-, and \(\Delta \)-points in Banach spaces*, Dissertationes Mathematicae Universitatis Tartuensis 133, University of Tartu Press, 2020, 106 pp.

[13] R.V. Shvidkoy, *Geometric aspects of the Daugavet property*, J. Funct. Anal. 176 (2000), 198–212.

School of Mathematics and Informatics V.N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine

ORCID: 0000-0002-5606-2679

E-mail address: v.kateds@karazin.ua