Multiple Drugs Compete for Transport via the *Plasmodium falciparum* Chloroquine Resistance Transporter at Distinct but Interdependent Sites*

Received for publication, September 25, 2014, and in revised form, October 29, 2014. Published, JBC Papers in Press, November 6, 2014, DOI 10.1074/jbc.M114.614206

Sebastiano Bellanca†, Robert L. Summers§, Max Meyrath‡, Anurag Dave†, Megan N. Nash†, Martin Dittmer†, Cecilia P. Sanchez†, Wilfred D. Stein‡, Rowena E. Martin§,¶, and Michael Lanzer‡,¶,‡2,3

From the †Department of Infectious Diseases, Parasitology, Heidelberg University, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany, the ‡Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia, and the ¶Department of Biological Chemistry, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel

Background: Mutations in the chloroquine resistance transporter (PfCRT) change the susceptibility of *Plasmodium falciparum* to diverse antimalarial drugs.

Results: In addition to chloroquine, PfCRT transports quinine, quinidine, and verapamil, which bind to distinct but antagonistically interacting sites.

Conclusion: PfCRT is a multidrug carrier with a polyspecific drug-binding cavity.

Significance: These findings could be used to develop high affinity inhibitors of PfCRT.

Mutations in the “chloroquine resistance transporter” (PfCRT) are a major determinant of drug resistance in the malaria parasite *Plasmodium falciparum*. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates. Here we show that mutant PfCRT also transports quinine, quinidine, and verapamil, indicating that the protein behaves as a multidrug resistance carrier. Detailed kinetic analyses revealed that chloroquine and quinine compete for transport via PfCRT in a manner that is consistent with mixed-type inhibition. Moreover, our analyses suggest that PfCRT accepts chloroquine and quinine at distinct but antagonistically interacting sites. We also found verapamil to be a partial mixed-type inhibitor of chloroquine transport via PfCRT, further supporting the idea that PfCRT possesses multiple substrate-binding sites. Our findings provide new mechanistic insights into the workings of PfCRT, which could be exploited to design potent inhibitors of this key mediator of drug resistance.

Changes in the “chloroquine resistance transporter” (PfCRT)§ are associated with reductions in the susceptibility of the human malaria parasite *Plasmodium falciparum* to several important antimalarial drugs (1, 2). Initially identified as the main determinant of resistance to chloroquine (3), a synthetic 4-aminoquinoline and a mainstay in previous campaigns to eradicate malaria, mutations in PfCRT are now known to have wide-ranging effects on the parasite’s sensitivity to an assortment of pharmacons (4). These include antimalarial drugs that share the quinoline scaffold (e.g. quinine, amodiaquine, and mefloquine) or that possess structural moieties present in quinoline drugs (e.g. lumefantrine and halofantrine) but also encompass a diverse range of compounds that have not been deployed as antimalarial treatments (4–12). Given that the activities of most of the antimalarials that currently serve as partner drugs in the artemisinin-based combination therapies are affected by mutations in PfCRT (1) and that all of the upcoming partner drugs are quinolines or quinoline-related, it is possible that PfCRT may evolve multidrug resistance capabilities that will render entire drug classes ineffective, including compounds that are in clinical and preclinical development. It is vital that we prolong the longevity and efficacy of the current quinoline drugs and also retard the emergence and spread of resistance to new antimalarials. A greater understanding of the mechanism by which PfCRT alters the parasite’s susceptibility to diverse compounds could form the basis for antimalarial strategies that combat PfCRT-mediated drug resistance.

PfCRT is a member of the drug/metabolite transporter superfamily and displays the 2-fold pseudosymmetry typical of carriers (13). The transporter resides at the membrane of the parasite’s digestive vacuole (3) and is thought to efflux drugs out of this organelle, away from their main target, the detoxification
of heme arising from the digestion of host hemoglobin (1, 2, 14). Evidence of PfCRT functioning as a drug carrier has come from in vitro parasite assays as well as characterizations of PfCRT in heterologous expression systems. In the parasite studies, the efflux of radiolabeled drugs from parasite-infected red blood cells was linked to PfCRT (15–18), and PfCRT was also implicated in the drug-mediated efflux of protons from the digestive vacuole of chloroquine-resistant parasites (19–21). Moreover, heterologous expression of the Dd2 form of PfCRT (PfCRT(Dd2)) at endosomal membranes within Dictostelium discoideum reduced the accumulation of chloroquine and quinine within these vesicles, consistent with the mutant protein mediating the transport of these two drugs (22, 23). Finally, a diverse range of chloroquine-resistant variants of PfCRT induced saturable chloroquine transport when expressed at the surface of Xenopus laevis oocytes (24, 25). By contrast, the wild-type form of the protein (found in chloroquine-sensitive parasites) did not exhibit chloroquine transport activity in this assay. A key advantage of the oocyte system is that it allows interactions with PfCRT to be studied directly and in isolation, without confounding effects such as the binding of drugs to heme or to other targets or transporters within the parasite-infected red blood cell.

Although it is now well established that chloroquine-resistant forms of PfCRT transport chloroquine, little is known about its ability to mediate the transport of other drugs or how the protein recognizes diverse compounds. For instance, it is unclear whether PfCRT accepts different drugs at a single site or at distinct sites. Several lines of evidence support the view that PfCRT possesses a single drug-binding site, with the lysine to threonine mutation at position 76 (K76T) playing a pivotal role in the binding and translocation of drugs (26, 27). Indeed, all chloroquine-resistant field isolates identified to date harbor a mutation at position 76, and reversal of the K76T mutation has been shown to abolish the transport of chloroquine via resistant forms of PfCRT (15, 24, 25) and to increase the parasite’s susceptibility to a number of drugs, including chloroquine, quinine, and amodiaquine (28, 29). On the other hand, the fact that PfCRT variants of different geographic origins vary in both the number (typically 4–10 amino acid substitutions) and nature of the mutations they contain and that such variations may impart different drug responses (7, 8) suggests that a more complex interaction may exist between PfCRT and its drug substrates.

Here we investigated the interaction of PfCRT with chloroquine, quinine, quinidine, and verapamil. The latter compound can partially reverse chloroquine resistance in vitro (30). The PfCRT(Dd2) variant of the protein (from the Southeast Asian strain Dd2, which is chloroquine-resistant and also exhibits reduced sensitivity to quinine) was expressed in Xenopus oocytes and shown to mediate the transport of radiolabeled chloroquine, quinine, quinidine, and verapamil. The results of an in depth kinetic examination of the inhibition of chloroquine or quinine transport by another drug suggest that PfCRT(Dd2) possesses at least two distinct binding sites that antagonistically affect one another.

Distinct but Linked Drug-binding Sites in PfCRT

EXPERIMENTAL PROCEDURES

Ethical Statement—Ethical approval of the work performed with the *X. laevis* frogs was obtained from (i) the Australian National University Animal Experimentation Ethics Committee (Animal Ethics Protocol Number A2013/13) in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes and (ii) the Regierungspräsidium Karlsruhe (Aktenzeichen 35-9185 81/G-31/11) in accordance with the German “Tierschutzgesetz.”

Radiolabeled Drugs—[3H]Chloroquine (specific activity, 5–25 Ci mmol⁻¹), [3H]quinine (specific activity, 10–20 Ci mmol⁻¹), [3H]quinidine (specific activity, 5–25 Ci mmol⁻¹), and [3H]verapamil (specific activity, 80 Ci mmol⁻¹) were obtained from American Radiolabeled Chemicals or GE Healthcare.

Harvesting of Xenopus Oocytes and Expression of PfCRT—Adult female *X. laevis* frogs (purchased from NASCO) were anesthetized by submersion in a solution of 0.1% (w/v) ethyl 3-amino benzoate methanesulfonate and 1 mM NaCO₃ for 15–20 min. Sections of the ovary were surgically removed and placed in Ca²⁺-free amphibian-adapted Ringer’s solution (96 mM NaCl, 2 mM KCl, 1 mM MgCl₂, and 5 mM HEPES, pH 7.5) supplemented with penicillin/streptomycin (10 mg/ml). The collagenous membrane that envelopes the oocyte lobes, as well as the individual oocytes, was removed by the addition of collagenase D (final concentration of 0.3 FALGPA units/ml). Following collagenase treatment, the oocytes were kept in Ca²⁺-replete amphibian-adapted Ringer’s solution (96 mM NaCl, 2 mM KCl, 1 mM CaCl₂, 1 mM MgCl₂, and 5 mM HEPES, pH 7.5) supplemented with penicillin/streptomycin (10 mg/ml). Expression of the HB3 and Dd2 versions of PfCRT at the plasma membrane of *Xenopus* oocytes was achieved as described previously (24, 25). Briefly, cRNA was transcribed *in vitro* using a mMessage mMachine kit (Ambion) and microinjected into stage V-VI oocytes (30 ng/oocyte). Oocytes were incubated for 48–72 h at 18 °C in ND96 medium (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂, 10 mM MES, and 10 mM Tris, pH 7.5), and water-injected oocytes served as a negative control.

Drug Transport Assays—Measurements of radiolabeled drug uptake were made over 1 h at 25 °C and in a ND96 medium that contained [3H]chloroquine (50 nm), [3H]quinine (62.5 nm), [3H]quinidine (62.5 nm), or [3H]verapamil (25 nm). Where specified, one or more unlabeled drugs were present at the indicated concentrations. The influx assays were terminated by removing the reaction medium and washing the oocytes three times with 3 ml of ice-cold ND96 buffer. Each oocyte was transferred to a separate scintillation vial and lysed by the addition of 5% sodium dodecyl sulfate (200 μl). The radioactivity in the sample solution was measured using a β-scintillation counter. The direction of radiolabeled drug transport in these assays is from the acidic extracellular medium (in most cases pH 6.0, and pH 4.0, 4.5, 5.0, or 5.5 where indicated) into the oocyte cytosol (pH ~7.2), which corresponds to the efflux of drug from the acidic digestive vacuole (pH 5–5.5) into the parasite cytosol (pH 7.3). Water-injected oocytes and oocytes expressing PfCRT(HR3) take up [3H]chloroquine to similar (low) levels via simple diffusion of the neutral species; this represents the “background”
Distinct but Linked Drug-binding Sites in PfCRT

level of chloroquine accumulation in oocytes (see Ref. 24 for full data and a detailed discussion). PfCRT^{Dd2}-mediated drug transport was calculated by subtracting the uptake measured in water-injected oocytes from that in oocytes expressing PfCRT^{Dd2}. Where specified, statistical comparisons were made with Student’s t test for paired samples or with analysis of variance in conjunction with Tukey’s multiple comparisons test. The half-maximum inhibitory concentrations derived from the global fit, IC₅₀, were obtained by least-squares fit of the equation,

\[Y = Y_{\text{min}} + ((Y_{\text{max}} - Y_{\text{min}})/(1 + ([\text{inhibitor}]/IC_{50}))C), \]

where \(Y \) is PfCRT^{Dd2}-mediated drug transport, \(Y_{\text{min}} \) and \(Y_{\text{max}} \) are the minimum and maximum values of \(Y \), IC₅₀ is the half-maximum inhibitory concentration, and \(C \) is a constant.

Discrimination between Models and Statistical Analyses of the Kinetic Data—Analyses of the kinetic data were performed using Sigma Plot version 12.5 or the software package “R” (31). The 16 different inhibition models (32) were globally fitted to the kinetic data using the least-squares method. The models were then ranked according to their Akaike information criterion difference (\(\Delta AIC_c \)) and their Akaike weight using a method described previously (33, 34). The two top-ranked models were compared using an F-test.

The Akaike information criterion (AIC_c) of the \(i \)th model (AIC_i) was calculated according to Equation 1,

\[AIC_c = n \times \ln \left(\frac{RSS}{n} \right) + 2 \times K + \frac{2 \times K \times (K + 1)}{n - K - 1} \]

(Eq. 1)

where RSS is the residual sum of squares.

\[RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

(Eq. 2)

Here, \(n \) is the total number of measurements used to perform the global fit, \(y_i \) are the experimentally measured values, \(\hat{y}_i \) are the values predicted by the model, and \(K \) is the number of parameters in the model. The \(\Delta AIC_c \) of the \(i \)th model (\(\Delta_i \)) was then calculated according to Equation 3,

\[\Delta_i = AIC_c - AIC_c^{\text{min}} \]

(Eq. 3)

where \(AIC_c^{\text{min}} \) is the smallest AIC_c value of all of the models tested. Models with \(\Delta AIC_c < 2 \) are equally plausible, models with \(4 < \Delta AIC_c < 7 \) are considerably less likely, and models with \(\Delta AIC_c > 10 \) are considered unlikely (33).

For a more detailed evaluation of the plausibility of models, the Akaike weight (\(w_i \)) was calculated according to Equation 4,

\[w_i = \frac{\exp(-\frac{1}{2} \times \Delta_i)}{\sum_{k=1}^{K} \exp(-\frac{1}{2} \times \Delta_k)} \]

(Eq. 4)

where \(\Delta_i \) is as described above, \(\Delta_k \) is the AIC_c difference of the \(k \)th model investigated, and \(K \) is the total number of models investigated. \(w_i \) can be in the interval of \(0 \leq w_i \leq 1 \) and reports the plausibility of the model. The model with the highest Akaike weight (i.e. closest to 1) is considered to be the best fit to the data. The \(F \) statistic was calculated according to Equation 5,

\[F = \frac{RSS_1 - RSS_2}{RSS_2} \times \frac{n - p_1}{p_2 - p_1} \]

(Eq. 5)

where \(RSS_1 \) and \(RSS_2 \) are given by Equations 6 and 7,

\[RSS_1 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

(Eq. 6)

\[RSS_2 = \sum_{k=1}^{n} (y_k - \hat{y}_k)^2 \]

(Eq. 7)

where \(RSS_i \) is the residual sum of squares of the \(i \)th model, \(RSS_1 \) is the residual sum of squares of the first model, and \(RSS_2 \) is the residual sum of squares of the second model, \(y_i \) and \(\hat{y}_i \) are the experimentally determined values for the first and second models respectively, and \(y_k \) and \(\hat{y}_k \) are the predicted values for the first and second models. \(n \) is the total number of data points, and \(p_1 \) and \(p_2 \) are the number of parameters present in the first and second models, respectively. The \(p \) value of the corresponding \(F \) statistics and its degrees of freedom were calculated using R. \(p < 0.05 \) indicates that the model with fewer parameters fits the data significantly better than the model with more parameters. All analyses of the kinetic data were performed using Sigma Plot version 12.5 or the software package R (31).

Equations Describing 16 Different Kinetic Models—The following kinetic equations were adapted from Segel (32). The concentration of substrate 1 is denoted as \([S1] \) and the concentration of the second, inhibiting substrate is denoted as \([S2] \). \(K_{S1} \) and \(K_{S2} \) are the dissociation constants for the respective substrate-protein complexes. Full mixed-type (linear mixed-type) inhibition is given by Equation 8.

\[v = \frac{V_max \cdot [S1]}{K_{S1} + [S1] + \frac{[S1][S2]}{K_{S1}K_{S2}}} \]

(Eq. 8)

Partial mixed-type (hyperbolic mixed-type) inhibition is given by Equation 9.

\[v = \frac{V_max \cdot [S1]}{1 + \frac{[S1]}{K_{S1}} + \frac{[S2]}{K_{S2}} + \frac{[S1][S2]}{K_{S1}K_{S2}}} \]

(Eq. 9)

Full competitive inhibition is given by Equation 10.

\[v = \frac{V_max \cdot [S1]}{1 + \frac{[S1]}{K_{S1}}} \]

(Eq. 10)

Partial competitive inhibition is given by Equation 11.
Distinct but Linked Drug-binding Sites in PfCRT

\[v = \frac{V_{\text{max}} [S_1]}{K_{S_1} + [S_1][S_2]} \]
(Eq. 11)

Full noncompetitive inhibition is given by Equation 12.

\[v = \frac{V_{\text{max}} [S_1]}{K_{S_1} + [S_1][S_2]} \]
(Eq. 12)

Partial noncompetitive inhibition is given by Equation 13.

\[v = \frac{V_{\text{max}} [S_1]}{K_{S_1} + [S_1][S_2]} \]
(Eq. 13)

Full uncompetitive inhibition is given by Equation 14.

\[v = \frac{V_{\text{max}} [S_1]}{K_{S_1} + [S_1][S_2]} \]
(Eq. 14)

Partial uncompetitive inhibition is given by Equation 15.

\[v = \frac{V_{\text{max}} [S_1]}{K_{S_1} + [S_1][S_2]} \]
(Eq. 15)

Ligand exclusion is given by Equation 16.

\[v = \frac{V_{\text{max}} [S_1]}{K_{S_1} + [S_1][S_2]} \]
(Eq. 16)

Cooperative substrate binding is given by Equation 17.

\[v = \frac{V_{\text{max}} [S_1] + [S_1]^2}{K_{S_1} + [S_1][S_2]} \]
(Eq. 17)

In cooperative substrate binding, the inhibitor does not mimic the substrate. This case is asymmetric; hence, there are different equations for the substrate (Equation 18) and the inhibitor (Equation 19).

\[v = \frac{V_{\text{max}} [S_1] + [S_1]^2}{K_{S_1} + [S_1][S_2]} \]
(Eq. 18)

Two-site pure competitive inhibition is given by Equation 20.

\[v = \frac{V_{\text{max}} [S_1] + [S_1]^2}{K_{S_1} + [S_1][S_2]} \]
(Eq. 20)

Partial competitive inhibition is given by Equation 21.

\[v = \frac{V_{\text{max}} [S_1] + [S_1]^2}{K_{S_1} + [S_1][S_2]} \]
(Eq. 21)

For substrate non-cooperative in the absence of inhibitor, the substrate reverses the effect of the inhibitor.

\[v = \frac{V_{\text{max}} [S_1] + [S_1]^2}{K_{S_1} + [S_1][S_2]} \]
(Eq. 22)

For substrate cooperative in the absence of the inhibitor, the substrate reverses the effect of the inhibitor.

\[v = \frac{V_{\text{max}} [S_1] + [S_1]^2}{K_{S_1} + [S_1][S_2]} \]
(Eq. 23)

Inhibitor eliminates substrate cooperativity.

\[v = \frac{V_{\text{max}} [S_1] + [S_1]^2}{K_{S_1} + [S_1][S_2]} \]
(Eq. 24)
TABLE 1

Predicted rates of quinine, chloroquine, and total drug transport in the presence of different concentrations of quinine and chloroquine

Quinine is denoted as substrate A and chloroquine as substrate B. P is the proportion of quinine in the chloroquine/quinine mixture, \(v_a \) and \(v_b \) are the respective rates of quinine and chloroquine transport, and \(V_{\text{total}} \) is the sum of \(v_a \) and \(v_b \). The values for \(v_a \) and \(v_b \) were calculated from the kinetic data presented in Figs. 2A and 4A.

P	\(v_a \) pmol/h/oocyte	\(v_b \) pmol/h/oocyte	\(V_{\text{total}} \) pmol/h/oocyte	[Quinine] \(\mu M \)	[Chloroquine] \(\mu M \)
0.00	7.40	0.00	7.40	73.50	0.00
0.05	5.79	0.11	5.90	69.83	2.61
0.10	5.67	0.24	5.91	66.15	5.21
0.15	5.54	0.37	5.91	62.48	7.82
0.20	5.41	0.51	5.91	58.80	10.42
0.25	5.26	0.66	5.92	55.13	13.03
0.30	5.11	0.82	5.93	51.45	15.63
0.35	4.94	1.00	5.94	47.78	18.24
0.40	4.76	1.19	5.95	44.10	20.84
0.45	4.56	1.40	5.96	40.43	23.45
0.50	4.34	1.64	5.98	36.75	26.05
0.55	4.11	1.91	6.02	32.08	28.66
0.60	3.84	2.20	6.05	29.40	31.26
0.65	3.54	2.54	6.09	25.73	33.87
0.70	3.21	2.92	6.13	22.05	36.47
0.75	2.80	3.37	6.17	18.38	39.08
0.80	2.34	3.90	6.24	14.70	41.68
0.85	1.84	4.53	6.37	11.03	44.29
0.90	1.29	5.30	6.60	7.35	46.89
0.95	0.69	6.25	6.94	3.68	49.50
1.00	0.00	7.40	7.40	0.00	52.10

RESULTS

PfCRT^{Dd2} Mediates the Saturable Transport of Quinine and Quinidine—Quinine and its stereoisomer quinidine are diprotic weak bases with \(pK_a \) values of 4.12 and 8.58 and 4.42 and 8.58, respectively (where \(K_a \) is the acid dissociation constant). Both drugs can permeate membranes as free bases and will partition between membrane-bound compartments according to the prevailing pH gradient. The uptake of radiolabeled quinine and quinidine was measured in an acidic medium (pH 5.0) into *Xenopus* oocytes expressing either PfCRT^{Dd2} or the wild-type protein from the HB3 strain (PfCRT^{HB3}) as well as into water-injected oocytes. Oocytes expressing PfCRT^{Dd2} took up significantly more quinine and quinidine relative to water-injected oocytes or oocytes expressing PfCRT^{HB3} (left panels of Fig. 1, A and B, respectively). Similar results were obtained when the time courses were performed at pH 6.0 (data not shown). The level of uptake in oocytes expressing PfCRT^{HB3} was not significantly different from that measured in water-injected oocytes, indicating that the accumulation of quinine and quinidine in these oocytes and in the water-injected oocytes was most likely due to the simple diffusion of the uncharged forms of these drugs. Consistent with this observation, quinine transport was shown to be dependent on the pH of the medium (Fig. 1C). That is, the accumulation of quinine in the control oocytes increased as the pH was raised from 4.0 to 6.0, which correlated well with the pH dependence of the concentration of the uncharged quinine present in the medium (Fig. 1D). Nevertheless, under each of the conditions tested, the accumulation of quinine in oocytes expressing PfCRT^{Dd2} was significantly higher than that measured in water-injected oocytes and in oocytes expressing PfCRT^{HB3} (p < 0.05).

The portion of quinine or quinidine accumulation attributable to PfCRT^{Dd2} was calculated by subtracting the uptake in oocytes expressing PfCRT^{HB3} from that measured in PfCRT^{Dd2}-expressing oocytes (middle panels of Fig. 1, A and B, respectively). The resulting data indicated that the PfCRT^{Dd2}-mediated uptake of quinine and quinidine was approximately linear with time for at least 60 min at both pH 5.0 and pH 6.0.

We also tested the ability of the resistance reverser verapamil to inhibit the uptake of quinine and quinidine via PfCRT^{Dd2} at pH 5.0 (Fig. 1E). Verapamil has previously been shown to inhibit chloroquine transport via PfCRT^{Dd2} (24), and consistent with this activity, the addition of 100 μM verapamil significantly reduced the PfCRT^{Dd2}-mediated uptake of quinine and quinidine.

Given that the time dependence of PfCRT^{Dd2}-mediated uptake at pH 6.0 was roughly comparable to that obtained at pH 5.0, and in order to facilitate comparisons with previous kinetic analyses of transport via PfCRT^{Dd2} (which were performed at pH 6.0 (24, 25)), the saturability of quinine and quinidine transport was determined at pH 6.0. For both quinine and quinidine, the uptake of radiolabeled drug in PfCRT^{Dd2}-expressing oocytes decreased with increasing concentrations of the unlabeled drug, consistent with transport occurring via a saturable mechanism (right panels of Fig. 1, A and B, respectively). A least squares fit of the Michaelis-Menten equation to the data yielded apparent Michaelis constants (\(K_m \)) of 28 ± 4 and 23 ± 4 μM and maximal velocities (\(V_{\text{max}} \)) of 14 ± 1 and 13 ± 1 pmol/h/oocyte for quinine and quinidine, respectively.

Chloroquine and Quinine Are Mixed-type Inhibitors of PfCRT^{Dd2}—The finding that PfCRT^{Dd2} transports both quinine and chloroquine led us to undertake a series of kinetic analyses to assess the mechanism by which PfCRT accepts different substrates. Substrate competition experiments were conducted in...
which the uptake of radiolabeled chloroquine was determined at 60 min (i.e., within the initial phase of chloroquine uptake (24)) in water-injected oocytes and oocytes expressing PfCRT_{Dd2}. In these assays, the extracellular medium contained one of seven concentrations of unlabeled chloroquine (ranging from 10 to 500 μM), and at each of these chloroquine concentrations, the effects of seven concentrations of unlabeled quinine (ranging from 0 to 500 μM) were tested. The rate of PfCRT_{Dd2}-mediated transport was calculated by subtracting the rate measured in water-injected oocytes from that in oocytes expressing PfCRT_{Dd2} at each quinine or quinidine concentration. A least-squares fit of the Michaelis-Menten equation to the resulting data (using Sigma Plot version 12.5) yielded the following kinetic parameters: quinine, apparent $K_m = 28 \pm 4 \text{ μM}$ and apparent $V_{max} = 14 \pm 1 \text{ pmol/h/oocyte}$; quinidine, $K_m = 23 \pm 4 \text{ μM}$ and apparent $V_{max} = 13 \pm 1 \text{ pmol/h/oocyte}$.

C, pH dependence of quinine uptake into water-injected oocytes and oocytes expressing PfCRT_{H3} or PfCRT_{Dd2}. Measurements of radiolabeled quinine transport were made over the extracellular pH range (pH 4.0–6.0) and in the presence of 1 μM unlabeled quinine. Asterisks indicate significant differences in the accumulation of quinine between the control (water-injected or PfCRT_{H3}-expressing) oocytes and oocytes expressing PfCRT_{Dd2} within each pH condition (*, $p < 0.05$).

D, percentages of quinine in the neutral (QN), monoprotonated (QN^H), and diprotonated (QN^{2H}) forms in solutions of different pH. The percentages were calculated using the Henderson-Hasselbalch equation, with pK_a values of 4.12 for the quinoline nitrogen and 8.58 for the side chain nitrogen (S1). E, the effect of verapamil (100 μM) on the PfCRT_{Dd2}-mediated transport of quinine (black bars) and quinidine (gray bars) was measured at pH 5.0. The total extracellular concentration of quinine or quinidine (radiolabeled plus unlabeled) was 10 μM. Asterisks indicate significant differences in the PfCRT_{Dd2}-mediated uptake of radiolabeled drug between the control oocytes and those suspended in 100 μM verapamil (*, $p < 0.05$). In all cases, uptake is shown as the mean ± S.E. (error bars) of at least three biological repeats, within which measurements were made from 10 oocytes/treatment.
formed a least-squares global fit of 16 different models of inhibition (32) to the data. The inhibition models were then ranked according to two measures that reflect how well a given model explains the experimentally derived data: the second-order Akaike information criterion difference (ΔAIC_c) and the Akaike weight (33, 34). The inhibition models were then ranked according to two measures that reflect how well a given model explains the experimentally derived data: the second-order Akaike information criterion difference (ΔAIC_c) and the Akaike weight (33, 34). The resulting rankings were assessed using the heuristic criteria devised by Burnham and Anderson (33), in which models with ΔAIC_c < 2 are equally plausible, models with 4 < ΔAIC_c < 7 are considerably less likely, and models with ΔAIC_c > 10 are considered unlikely. The Akaike weight varies from 1 to 0, with the plausibility of the model increasing as the Akaike weight approaches 1. According to these analyses, the most plausible models for the binding of quinine to PfCRT were full mixed-type inhibition followed by partial mixed-type inhibition (Fig. 2B and Table 2). The respective values for ΔAIC_c (0 and 2.0) suggested that both models were equally credible. We therefore applied an F-test to discriminate between full mixed-type inhibition and partial mixed-type inhibition, the results of which indicated that the former model provided the better fit to the data (F = 0.5; p < 0.01).

The models ranked third and fourth were full and partial noncompetitive inhibition, respectively. Although the Akaike weights for these two models were low, the ΔAIC_c values (which were between 3 and 6) indicated that neither model could be immediately dismissed. However, cases of noncompetitive

TABLE 2

Kinetic parameters describing interactions of PfCRT_{Dd2} with chloroquine, quinine, and verapamil

Shown are the best-fit values of kinetic parameters obtained using the full and partial mixed-type inhibition models. The drug present in radiolabeled form was denoted as the inhibitor. CI, confidence interval; V_{max}, the maximum velocity of substrate transport; K_{CQ}, K_{QN}, and K_{VP}, the dissociation constants for the chloroquine-PfCRT_{Dd2}, quinine-PfCRT_{Dd2}, and verapamil-PfCRT_{Dd2} complexes, respectively; α, the factor by which these K_i values change when the opposing substrate is already bound to the transporter; β, the factor by which the V_{max} is affected by the inhibitor; CQ, chloroquine; QN, quinine; VP, verapamil.

Substrate	Inhibitor	Parameters	Mean ± S.E.	95% CI	Mean ± S.E.	95% CI
CQ	QN	V_{max} (pmol/oocyte/h)	33 ± 2	29–37	33 ± 2	29–37
		K_{CQ} (μM)	250 ± 30	192–315	250 ± 30	192–316
		K_{QN} (μM)	40 ± 7	26–54	40 ± 7	25–53
		α	2.6 ± 1	0.3–5	2.6 ± 1	0.3–5
		β	0.02 ± 0.03	−0.04–0.1	0.02 ± 0.03	−0.04–0.1
QN	CQ	V_{max} (pmol/oocyte/h)	9 ± 0.2	9–10	9 ± 0.2	9–10
		K_{QN} (μM)	25 ± 1	22–28	25 ± 1	22–28
		α	1.9 ± 0.5	0.9–2.8	1.9 ± 0.5	0.9–2.8
		β	0.00 ± 0.03	−0.05–0.05	0.00 ± 0.03	−0.05–0.05
CQ	VP	V_{max} (pmol/oocyte/h)	27 ± 0.3	26–27	27 ± 0.3	26–27
		K_{CQ} (μM)	195 ± 6	183–208	196 ± 6	185–207
		K_{VP} (μM)	36 ± 2	32–40	35 ± 2	31–38
		α	2.9 ± 0.4	2–4	3 ± 0.3	2–3
		β	0.03 ± 0.01	0.01–0.05	0.03 ± 0.01	0.01–0.05
inhibition are rare in nature and appear to be primarily restricted to small inhibitors, such as protons or other inorganic ions (36). Given that chloroquine and quinine are large organic compounds (both have molecular weights greater than 300 g/mol), it is unlikely that quinine is a noncompetitive inhibitor of chloroquine transport via PfCRT.

Mixed-type inhibition occurs when an inhibitor can bind to an enzyme (or, in this case, a transporter) regardless of whether the substrate-binding site is occupied or empty but exhibits greater potency against one binding state over the other. Mixed-type inhibitors affect the apparent affinity of the transporter for the substrate (i.e. the K_m) and also cause a decrease in the apparent maximum rate of transport (i.e. the V_{max}). Hence, if quinine behaves as a mixed-type inhibitor of chloroquine transport, we would expect it to affect both the apparent K_m and apparent V_{max} of chloroquine transport via PfCRTDd2. To test this possibility, we reanalyzed the data presented in Fig. 2A by fitting the Michaelis-Menten equation to each of the seven data sets (which differed in the concentration of quinine that was present). The resulting apparent V_{max} values as well as the ratios of V_{max} to K_m were plotted as a function of the quinine concentration (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (K_q). Taken together, these data indicate that (i) the presence of chloroquine in the substrate-binding site reduces the transporter's affinity for quinine by a factor (α) of ~3, and (ii) although quinine's inhibition

Mixed-type inhibition occurs when an inhibitor can bind to an enzyme (or, in this case, a transporter) regardless of whether the substrate-binding site is occupied or empty but exhibits greater potency against one binding state over the other. Mixed-type inhibitors affect the apparent affinity of the transporter for the substrate (i.e. the K_m) and also cause a decrease in the apparent maximum rate of transport (i.e. the V_{max}). Hence, if quinine behaves as a mixed-type inhibitor of chloroquine transport, we would expect it to affect both the apparent K_m and apparent V_{max} of chloroquine transport via PfCRTDd2. To test this possibility, we reanalyzed the data presented in Fig. 2A by fitting the Michaelis-Menten equation to each of the seven data sets (which differed in the concentration of quinine that was present). The resulting apparent V_{max} values as well as the ratios of V_{max} to K_m were plotted as a function of the quinine concentration (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (K_q). Taken together, these data indicate that (i) the presence of chloroquine in the substrate-binding site reduces the transporter's affinity for quinine by a factor (α) of ~3, and (ii) although quinine's inhibition

Mixed-type inhibition occurs when an inhibitor can bind to an enzyme (or, in this case, a transporter) regardless of whether the substrate-binding site is occupied or empty but exhibits greater potency against one binding state over the other. Mixed-type inhibitors affect the apparent affinity of the transporter for the substrate (i.e. the K_m) and also cause a decrease in the apparent maximum rate of transport (i.e. the V_{max}). Hence, if quinine behaves as a mixed-type inhibitor of chloroquine transport, we would expect it to affect both the apparent K_m and apparent V_{max} of chloroquine transport via PfCRTDd2. To test this possibility, we reanalyzed the data presented in Fig. 2A by fitting the Michaelis-Menten equation to each of the seven data sets (which differed in the concentration of quinine that was present). The resulting apparent V_{max} values as well as the ratios of V_{max} to K_m were plotted as a function of the quinine concentration (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (K_q). Taken together, these data indicate that (i) the presence of chloroquine in the substrate-binding site reduces the transporter's affinity for quinine by a factor (α) of ~3, and (ii) although quinine's inhibition

Mixed-type inhibition occurs when an inhibitor can bind to an enzyme (or, in this case, a transporter) regardless of whether the substrate-binding site is occupied or empty but exhibits greater potency against one binding state over the other. Mixed-type inhibitors affect the apparent affinity of the transporter for the substrate (i.e. the K_m) and also cause a decrease in the apparent maximum rate of transport (i.e. the V_{max}). Hence, if quinine behaves as a mixed-type inhibitor of chloroquine transport, we would expect it to affect both the apparent K_m and apparent V_{max} of chloroquine transport via PfCRTDd2. To test this possibility, we reanalyzed the data presented in Fig. 2A by fitting the Michaelis-Menten equation to each of the seven data sets (which differed in the concentration of quinine that was present). The resulting apparent V_{max} values as well as the ratios of V_{max} to K_m were plotted as a function of the quinine concentration (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (K_q). Taken together, these data indicate that (i) the presence of chloroquine in the substrate-binding site reduces the transporter's affinity for quinine by a factor (α) of ~3, and (ii) although quinine's inhibition

Mixed-type inhibition occurs when an inhibitor can bind to an enzyme (or, in this case, a transporter) regardless of whether the substrate-binding site is occupied or empty but exhibits greater potency against one binding state over the other. Mixed-type inhibitors affect the apparent affinity of the transporter for the substrate (i.e. the K_m) and also cause a decrease in the apparent maximum rate of transport (i.e. the V_{max}). Hence, if quinine behaves as a mixed-type inhibitor of chloroquine transport, we would expect it to affect both the apparent K_m and apparent V_{max} of chloroquine transport via PfCRTDd2. To test this possibility, we reanalyzed the data presented in Fig. 2A by fitting the Michaelis-Menten equation to each of the seven data sets (which differed in the concentration of quinine that was present). The resulting apparent V_{max} values as well as the ratios of V_{max} to K_m were plotted as a function of the quinine concentration (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (K_q). Taken together, these data indicate that (i) the presence of chloroquine in the substrate-binding site reduces the transporter's affinity for quinine by a factor (α) of ~3, and (ii) although quinine's inhibition

Mixed-type inhibition occurs when an inhibitor can bind to an enzyme (or, in this case, a transporter) regardless of whether the substrate-binding site is occupied or empty but exhibits greater potency against one binding state over the other. Mixed-type inhibitors affect the apparent affinity of the transporter for the substrate (i.e. the K_m) and also cause a decrease in the apparent maximum rate of transport (i.e. the V_{max}). Hence, if quinine behaves as a mixed-type inhibitor of chloroquine transport, we would expect it to affect both the apparent K_m and apparent V_{max} of chloroquine transport via PfCRTDd2. To test this possibility, we reanalyzed the data presented in Fig. 2A by fitting the Michaelis-Menten equation to each of the seven data sets (which differed in the concentration of quinine that was present). The resulting apparent V_{max} values as well as the ratios of V_{max} to K_m were plotted as a function of the quinine concentration (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (Fig. 3, A and B, respectively). Both of these values decreased with increasing concentrations of unlabeled quinine, resulting in hyperbolic curves. The half-maximum inhibitory concentration derived from Fig. 3A, which equates to the dissociation constant for the binding of quinine to the empty transporter (K_q). Taken together, these data indicate that (i) the presence of chloroquine in the substrate-binding site reduces the transporter's affinity for quinine by a factor (α) of ~3, and (ii) although quinine's inhibition
of chloroquine transport is mostly a competitive process, there is also an uncompetitive component (Table 2).

A complementary set of experiments was undertaken to investigate the ability of chloroquine to inhibit quinine transport via PfCRTDd2. In assays similar to those described above, the uptake of radiolabeled quinine was measured in the presence of different concentrations of unlabeled quinine (ranging from 0 to 100 \textmu M), and at each of these quinine concentrations, the effects of seven concentrations of unlabeled chloroquine (ranging from 0 to 3 mM) were measured. The 16 models of inhibition were fitted to the resulting data (presented in Fig. 4A) and ranked according to \(DAIC_C\) and the Akaike weight (Fig. 4B). These analyses suggested that the most plausible models were again full mixed-type inhibition and partial mixed-type inhibition (\(DAIC_C\) of 0 and 2.5, respectively; Fig. 4B), with an F-test indicating that full mixed-type inhibition best described the data \((F = 0; p < 10^{-15})\). Moreover, increasing the concentration of unlabeled chloroquine decreased the apparent \(V_{\text{max}}\) of quinine transport (Fig. 5A) and increased the apparent \(K_m\) of PfCRTDd2 for quinine (Fig. 5B). The corresponding \(aK_S\) and \(K_S\) values were 650 \pm 50 and 300 \pm 50 \textmu M, respectively. These findings further support the idea that the affinity of PfCRTDd2 for one drug decreases when the carrier is occupied by a second drug.

Having obtained complementary sets of kinetic parameters for the transport of quinine and chloroquine via PfCRTDd2, as well as of their inhibition of the transporter, we modeled the kinetics of the interaction between PfCRTDd2, chloroquine and quinine using the full mixed-type inhibition equation. Three-dimensional plots of the modeled system are presented in Fig. 6, A and B, with the experimentally derived data (from Fig. 2A or 4A, respectively) superimposed. To assess how well the model fitted the data, we calculated the difference between the observed and expected uptake values and plotted the resulting residual values as a function of quinine or chloroquine concentration (Fig. 6, C and D, respectively) \((37)\). Within each concentration of chloroquine or quinine, the residuals did not tend to cluster to one side or the other of the x axis but were instead randomly distributed across the x axis. This pattern indicates that the model is an appropriate fit to the experimentally derived data, thereby providing further evidence that full mixed-type inhibition is a plausible model for the interaction of PfCRTDd2 with chloroquine and quinine.

Distinct Binding Sites for Chloroquine and Quinine—Many enzymes and some transporters bind substrates by induced fit, whereby the binding of a substrate alters the conformation of the protein \((32, 38)\). If PfCRT functions according to an induced fit mechanism, different substrates could induce distinct conformational changes, and even if the substrates compete for binding at the same site, the differences between these conformations may account for the mixed-type mechanism of inhibition identified here for chloroquine and quinine. To test whether chloroquine and quinine bind to the same site or at distinct sites, we performed the competition plot experiment \((35)\). To this end, we selected a concentration of chloroquine (from the 0 \textmu M quinine treatment of Fig. 2A) and a quinine concentration (from the 0 \textmu M chloroquine treatment of Fig. 4A) that gave the same rate of drug transport \((35)\). Measurements of radiolabeled chloroquine or radiolabeled quinine were then made in the presence of different proportions of these chloroquine and quinine concentrations (calculated using the equations set out under “Experimental Procedures”). For each of the resulting chloroquine/quinine mixtures, the rate of PfCRT-meditated chloroquine and quinine transport was determined (in fluxes performed pairwise) and then added together to yield a “total” rate of drug transport. These rates were plotted as a function of the proportion of quinine in the chloroquine/quinine mixture \((P)\). If two substrates bind to the same site, the total rate of drug transport will be independent of \(P\). However, if the substrates bind to different but antagonistically interacting sites, the total rate of drug transport will vary with \(P\), resulting in a concave curve \((35)\). Given that the latter relationship was apparent for PfCRTDd2 (Fig. 7), it is unlikely that the mixed-type inhibition kinetics observed for chloroquine and quinine arise from a special case of product inhibition. This finding, together with the analyses of the kinetics of inhibition, suggests that there are distinct but interdependent binding sites within PfCRTDd2 for chloroquine and quinine.
Verapamil Acts as a Partial Mixed-type Inhibitor of PfCRT^{Dd2}-mediated Chloroquine Transport—Verapamil is an inhibitor of PfCRT^{Dd2} and a reverser of chloroquine resistance in vitro (7, 24, 30). At present, the clinical application of resisters (such as verapamil) has been prevented by problems with potency and host toxicity. Little is known about the mechanism by which verapamil inhibits PfCRT^{Dd2}, yet it is possible that an understanding of this interaction could lead to the development of more potent inhibitors of the transporter. We investigated the interaction between verapamil and PfCRT^{Dd2} by conducting substrate competition experiments similar to those described for quinine and chloroquine. The PfCRT-mediated uptake of radiolabeled chloroquine was measured at five different concentrations of unlabeled chloroquine (0, 50, 100, 300, and 500 μM), and at each of these chloroquine concentrations, the effects of six concentrations of unlabeled verapamil (0, 15, 30, 100, 200, and 400 μM) were tested (Fig. 8A). The data were analyzed as outlined for the quinine and chloroquine data sets, and the results are presented in Fig. 8B. A partial mixed-type inhibition model was found to describe the data with high statistical confidence (∆AIC_c of 0 and Akaike weight of 0.889), and an F-test confirmed that this model was preferred over full mixed-type inhibition (∆AIC_c of 4.16 and Akaike weight of 0.111; F = 5.6, p < 10^{−5}). Increasing the concentration of unlabeled verapamil decreased the apparent V_{max} of chloroquine transport (Fig. 9A) and increased the apparent K_m of PfCRT^{Dd2} for chloroquine (Fig. 9B), with the verapamil K_S for the chloroquine-PfCRT complex (110 ± 10 μM) ~3-fold greater than the verapamil K_S for the empty transporter (35 ± 4 μM). Finally, we evaluated the partial mixed-type inhibition model by superimposing the experimentally derived data over a three-dimensional plot of the modeled system (Fig. 9C). A plot of the residual values as a function of (i) the chloroquine concentration and (ii) the quinine concentration.
Distinct but Linked Drug-binding Sites in PfCRT

The competition plot tests whether two reactions occur at the same site or at distinct sites (38). An extracellular concentration of quinine (73.5 μM) was selected from the data presented in Fig. 4A, such that the resulting rate of quinine transport (7.4 pmol/h/oocyte) would approach its Vmax. The concentration of chloroquine (52.1 μM) that would result in the equivalent rate of chloroquine transport was estimated from the data shown in Fig. 2A. Pairwise measurements of radiolabeled chloroquine and radiolabeled quinine were made in the presence of different proportions of these chloroquine and quinine concentrations (see “Experimental Procedures”), from which the total rate of drug transport within each of the chloroquine/quinine mixtures was calculated. The resulting total PfCRTDd2-mediated chloroquine and quinine concentrations (see “Experimental Procedures”), beled quinine were made in the presence of different proportions of these chloroquine and quinine concentrations. The resulting rate of quinine transport (7.4 pmol/h/oocyte) would approach its Vmax. The concentration of chloroquine (52.1 μM) that would result in the equivalent rate of chloroquine transport was estimated from the data shown in Fig. 2A. Pairwise measurements of radiolabeled chloroquine and radiolabeled quinine in the presence of different proportions of these chloroquine and quinine concentrations (see “Experimental Procedures”), from which the total rate of drug transport within each of the chloroquine/quinine mixtures was calculated. The resulting total PfCRTDd2-mediated transport velocities (Vmax) were plotted as a function of the proportion of quinine in the chloroquine/quinine mixture (P). The total rate of drug uptake (closed circles) is shown as the mean ± S.E. (error bars) of four biological repeats, within which measurements were made from 10 oocytes/treatment. If the two drugs compete for binding to the same site, the total rate of drug transport within each of the chloroquine/quinine mixtures would be 7.4 pmol/h/oocyte (indicated by the solid line). By contrast, if chloroquine and quinine bind to distinct but antagonistically interacting sites, the total rate of drug transport will vary with P, resulting in a concave curve (open circles; values were predicted as described under “Experimental Procedures”) using a full mixed-type inhibition model. Those experiments in which P equaled 0.15, 0.40, 0.60, or 0.9 yielded rates that were significantly different from 7.4 pmol/h/oocyte (p < 0.01; one-way analysis of variance).

PfCRTH3. As shown in Fig. 10, there was a modest but statistically significant increase in the accumulation of verapamil in oocytes expressing PfCRTDd2 relative to water-injected oocytes or oocytes expressing PfCRTDd2. The low signal obtained for the transport of verapamil via PfCRTDd2, which is most likely due to the relatively high lipophilicity of this drug (at pH 5.2 verapamil has a distribution coefficient (log D) of 0.52, whereas chloroquine has a log D of −3.44; (39)), precluded a kinetic analysis of verapamil transport.

DISCUSSION

Here we provide direct evidence for the transport of quinine, quinidine, and the resistance reverser verapamil via PfCRTDd2. By contrast, these drugs do not appear to be substrates of the wild-type form of the protein (PfCRTH3). These observations are consistent with the findings of Lehane et al. (19, 21) as well as those of Wellem and colleagues (22, 23). The former studies showed that chloroquine, quinine, quinidine, and verapamil are each able to induce a proton leak from the digestive vacuole of parasites carrying PfCRTDd2 but not from the digestive vacuole of an isogenic line expressing PfCRTH3. In the work performed by Wellem and co-workers, the accumulation of chloroquine, quinine and quinidine was reduced in D. discoideum cells expressing PfCRTDd2 at the endosomal membrane but was unchanged in the cell line expressing PfCRTH3. Moreover, intact endosomes isolated from the PfCRTDd2-expressing cells were also shown to accumulate less chloroquine and quinine compared with endosomes extracted from untransformed cells or cells expressing PfCRTH3. Hence, there is now an appreciable body of evidence, obtained from three different experimental systems, which indicates that PfCRTDd2 is not just a transporter of chloroquine but may be viewed as a “multidrug resistance carrier.”

FIGURE 8. Kinetic analysis of the inhibition of PfCRTDd2-mediated chloroquine transport by verapamil. A, the uptake of chloroquine (CQ) into water-injected oocytes and oocytes expressing PfCRTDd2 was measured at pH 6.0 and in the presence of a total extracellular chloroquine concentration (radiolabeled plus unlabeled) of 10, 50, 100, 300, or 500 μM. At each of these chloroquine concentrations, the effects of six concentrations of unlabeled verapamil (VP, ranging from 0 to 400 μM) were tested. For each of the 30 treatments, the rate of chloroquine transport attributable to PfCRTDd2 was then calculated by subtracting the rate measured in water-injected oocytes from that in oocytes expressing PfCRTDd2. Chloroquine uptake is shown as the mean ± S.E. (error bars) of at least eight biological repeats, within which measurements were made from 10 oocytes/treatment. B, Sixteen different models of inhibition were globally fitted to the data presented in A using the least-squares method. The plausibility of each model was evaluated by calculating the Akaike information criterion difference (ΔAICc) and the Akaike weight (33, 34). The table shows the models in descending order (i.e. the most plausible model is listed first). The kinetic parameters derived from the two most plausible inhibition models are presented in Table 2.
Our detailed kinetic analyses of PfCRT-mediated drug transport in the presence of a second (inhibiting) drug indicated that these drugs interact with PfCRTDd2 in a complex manner. In three separate sets of experiments (Figs. 2, 4, and 8), the interactions of chloroquine, quinine, and verapamil with PfCRTDd2 were best explained by models of mixed-type inhibition. This form of inhibition, which combines features of both competitive and uncompetitive inhibition, is characterized by systematic variations in the K_m and V_{max} for the transport of one substrate in the presence of a second substrate. In all three experiments, occupation of PfCRTDd2 by one drug reduced the protein's affinity for the second drug by a factor of 2–3, a finding that is consistent with the drugs acting to compete with one another's transport. However, the binding of one drug did not fully exclude the binding of the second, and the binding of both drugs to PfCRTDd2 led to the formation of a ternary complex, the properties of which differed depending on the substrates that were bound. In the case of chloroquine and quinine, the value derived for the parameter β (a measure of the contribution of the chloroquine-quinine-PfCRTDd2 complex to the total rate of transport), was not different from zero (Table 2). This finding indicates that the binding of both chloroquine and qui-
Distinct but Linked Drug-binding Sites in PfCRT

nine to PfCRTDd2 results in an inactive transporter and that the kinetic data are therefore better described by full mixed-type inhibition rather than partial mixed-type inhibition (Fig. 2B). By comparison, analyses of the kinetics of verapamil inhibition suggested that the verapamil-chloroquine-PfCRTDd2 complex remains active, albeit with a chloroquine transport rate that is 30-fold lower than that measured in the absence of verapamil ($\beta = 0.03 \pm 0.01$; Table 2). Hence, partial mixed-type inhibition was found to be more plausible than full mixed-type inhibition for modeling the inhibition of chloroquine transport by verapamil (Fig. 8B). The very low level of activity detected for the verapamil-chloroquine-PfCRTDd2 complex suggests that the transporter is occasionally able to translocate chloroquine and verapamil in sympport, which is a phenomenon that is unlikely to occur when chloroquine and quinine are the bound substrates. The reaction schemes describing the interactions of PfCRTDd2 with (i) chloroquine and quinine and (ii) chloroquine and verapamil are shown in Fig. 11. A and B, respectively.

Very few studies have attempted to elucidate the mechanism by which resistance-conferring forms of PfCRT interact with different substrates or inhibitors. In a detailed analysis of structure-activity relationships among a series of chemosensitizing agents, Alibert et al. (26) predicted the features of a putative drug-binding site that would account for the patterns of resistance-reversing activity that they observed. The authors suggested that the amino groups present in many quinoline anti-malarials and reversing agents (including chloroquine and verapamil) would form hydrogen bonds with a hydroxyl group of a serine and a salt bridge with the carboxyl group of an aspartic acid. They proposed that the N75E and K76T mutations in PfCRTDd2 (26), which introduce a glutamate and a threonine residue, respectively, could fulfill these roles, forming a site of interaction where compounds compete for binding and translocation (26, 27). Studies of laboratory-derived drug-resistant parasites as well as of transgenic lines that differ in the haplo-type of PfCRT they carry have provided good support for the idea that position 76 plays a crucial role in determining the susceptibility of the parasite to chloroquine and quinine (11, 28, 29). Indeed, we recently showed that the minimum changes required to enable PfCRT to transport chloroquine are K76T with either N75E or N326D (25). When considered together, these observations suggest that the threonine at position 76 is the key element of the binding site of resistance-conferring forms of PfCRT. However, the results of our kinetic analyses indicate that interactions at a single site are not sufficient to explain the complex interplay observed between PfCRTDd2 and chloroquine, quinine, and verapamil. In regard to chloroquine and quinine, the mixed-type inhibition observed for these two substrates could not be attributed to a special case of product inhibition, and the results of the competition plot confirmed that these two drugs do not compete for binding at a single site. The lack of a robust signal for the uptake of verapamil via PfCRTDd2 precluded a similar examination of the interplay between chloroquine and verapamil. Nevertheless, the finding that the partial mixed-type model best describes the inhibition of PfCRTDd2 by verapamil suggests that chloroquine and verapamil are also likely to be binding to distinct sites. Taken together, our studies suggest that a more nuanced model is required to describe the interaction of PfCRTDd2 with its substrates.

We recently showed that several of the eight mutations found in PfCRTDd2 demonstrate epistasis and that the protein acquires the ability to transport chloroquine via a rigid process (whereby mutations must be added in a specific order to avoid significant reductions in chloroquine transport activity) (25). These findings indicate that the repurposing of PfCRT for the binding and translocation of chloroquine entails dramatic and complex rearrangements to its substrate-binding site (25).

FIGURE 11. Proposed reaction schemes describing the interaction of PfCRTDd2 with chloroquine, quinine and verapamil. A, chloroquine (CQ) and quinine (QN) act as full mixed-type inhibitors of PfCRTDd2-mediated transport. PfCRTDd2 can bind chloroquine and quinine at distinct sites. The ternary complex (T$_{o}$QN$_{o}$CQ$_{o}$) is inactive. T$_{t}$ represents PfCRTDd2 in the outward facing conformation (i.e. the extracellular face of the protein when in the oocyte plasma membrane and its luminal face when in the membrane of the digestive vacuole), and T$_{r}$ represents PfCRTDd2 in the inward facing conformation (i.e. the cytosolic face of the protein when in the membrane of either the oocyte or the digestive vacuole). Likewise, CQ$_{o}$ and QN$_{o}$ are the extracellular/luminal drug concentrations, and CQ and QN are the cytosolic drug concentrations. K_{CQ} and K_{QN} are the respective quinine and chloroquine dissociation constants for PfCRTDd2, α is the factor by which K_{CQ} and K_{QN} change when the other drug is already bound to the transporter; and κ_{CQ} and κ_{QN} describe the rate constants of chloroquine and quinine transport. B, chloroquine and verapamil (VP) act as partial mixed-type inhibitors of PfCRTDd2-mediated transport. The ternary complex (T$_{o}$VP$_{o}$CQ$_{o}$) retains a low level of activity, VP$_{o}$ and VP are the extracellular/luminal and cytosolic concentrations of verapamil, respectively. K_{VP} is the verapamil dissociation constant for PfCRTDd2, α is the factor by which K_{CQ} and K_{VP} change when the other drug is already bound to the transporter; and κ_{VP} describes the rate constant of verapamil transport; and β is the factor by which verapamil and chloroquine affect the rate constant of the other drug’s transport.
indicate that PfCRT possesses distinct binding sites for chloroquine and quinine (and for chloroquine and verapamil), it is possible that the mutations required for chloroquine resistance have enlarged the protein’s substrate-binding site by creating new substrate interaction points and/or multiple binding pockets. A large drug-binding cavity consisting of different substrate interaction domains has been observed in several other membrane transport proteins, including the multidrug resistance P-glycoprotein and the organic cation transporters (40–43).

There are several ways in which the binding of a drug at one pocket of PfCRTDd2 could influence the properties of other substrate-binding sites. First, the binding of one substrate could result in conformational changes that alter the protein’s ability to bind a substrate at a second site. This allosteric mechanism is consistent with the induced fit model of protein function, which has been remarkably successful in explaining the functions of a range of proteins, including transporters and channels (44). Our observations could also be reconciled with a slightly different scenario in which chloroquine and other compounds interact with several points of attachment within a large substrate-binding cavity. If one or more of these points of attachment are used by both of the substrates, then binding could be partial or reduced in affinity or could result in a shift in location of one substrate by the other, and it may even fail to trigger translocation. In this regard, it is worth noting that partially overlapping binding sites are often found in cases of mixed-type inhibition (43, 45, 46).

A third mechanistic explanation for the effect of a bound drug on a second binding site comes from the observation that PfCRTDd2 appears to transport drugs in their mono- and/or diprotonated forms (24) (Figs. 1A and 1B). The attachment of a protonated drug would add one or more positive charges to the protein’s substrate-binding cavity, resulting in a reduction in the electrostatic attractions between this domain and the second protonated drug. In this regard, it is worth noting that of one substrate by the other, and it may even fail to trigger translocation. In this regard, it is worth noting that partially overlapping binding sites are often found in cases of mixed-type inhibition (43, 45, 46).

The results of our kinetic analyses also indicate that different drugs are likely to interact with distinct sites within a polyspecific substrate recognition cavity of PfCRTDd2, resulting in different levels of affinity and transport efficiency. This suggests that there may be scope for the interaction of an antimarial drug with PfCRTDd2 to be minimized or even eliminated with modest modifications to its structure, thus allowing the drug to escape the resistance mechanism altogether. In other cases, it may be desirable to increase and optimize the interactions between PfCRTDd2 and a drug. For instance, a clinically effective reverser of chloroquine resistance is likely to be a drug that occupies multiple sites within the PfCRTDd2 substrate-binding cavity, because increasing the number of attachment points between the inhibitor and the transporter should increase the affinity of binding. Furthermore, once an inhibitor of this type is bound to the protein at one site, the probability of another part of the molecule binding to a second site is substantially increased relative to two separate compounds binding to the same sites (49). In this regard, it is interesting to note that a series of quinine dimers have recently been reported as the most potent inhibitors of PfCRTDd2 identified to date (50). These compounds inhibited the PfCRTDd2-mediated transport of chloroquine into Xenopus oocytes with half-maximum inhibitory concentrations between 1 and 6 μM. These values are substantially lower than that measured for the quinine monomer (48 ± 3 μM (24)). Moreover, the quinine dimers were not substrates of PfCRTDd2, and their strong affinity for the transporter translated into potent resistance-reversing activity. For example, low nanomolar concentrations of a quinine dimer restored the activity of chloroquine against chloroquine-resistant parasites, whereas micromolar concentrations were required for verapamil to exert an effect. The potent activity of the quinine dimers against PfCRTDd2 is probably due to their occupation of more than one site within the transporter’s substrate-binding cavity.

The work described here provides direct evidence of the ability of a chloroquine resistance-conferring form of PfCRT to transport quinine, quinidine, and verapamil. In a series of detailed kinetic analyses, we showed that chloroquine and quinine and also chloroquine and verapamil are mixed-type inhibitors of one another. The patterns of inhibition that we observed indicate that PfCRTDd2 possesses more than one
drug-binding site and that these binding sites, although distinct, are interdependent and hence may be located within a large polyspecific substrate recognition cavity. Our findings suggest that the mutations that confer resistance to chloroquine allow the protein to interact with and transport a range of structurally diverse compounds. However, the additional substrate attachment points generated by these changes could be exploited for the design of potent resistance-reversing agents.

Acknowledgments—We thank E. Baker, M. Müller, and S. Prior for technical assistance.

REFERENCES

1. Ecker, A., Lehane, A. M., Clain, J., and Fidock, D. A. (2012) PfCRT and its role in antimalarial drug resistance. *Trends Parasitol.* 28, 504–514
2. Summers, R. L., Nash, M. N., and Martin, R. E. (2012) Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics. *Cell Mol. Life Sci.* 69, 1967–1995
3. Fidock, D. A., Nomura, T., Talley, A. K., Cooper, R. A., Dzekenov, S. M., Ferdig, M. T., Ursos, L. M., Sidhu, A. B., Naudé, B., Deitsch, K. W., Su, X. Z., Wootton, J. C., Roepe, P. D., and Wellem, T. E. (2000) Mutations in the *P. falciparum* digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. *Mol. Cell* 6, 861–871
4. Yuan, J., Cheng, K. C., Johnson, R. L., Huang, R., Pattaradiolokrat, S., Liu, A., Guha, R., Fidock, D. A., Inglese, J., Wellem, T. E., Austin, C. P., and Su, X. Z. (2011) Chemical genomic profiling for antimalarial therapies, response signatures, and molecular targets. *Science* 333, 724–729
5. Sidhu, A. B., Verdier-Pinard, D., and Fidock, D. A. (2002) Chloroquine resistance in *Plasmodium falciparum* parasite conferred by *pfcrt* mutations. *Science* 298, 210–213
6. Johnson, D. J., Fidock, D. A., Munthain, M., Laksmanan, V., Sidhu, A. B., Bray, P. G., and Ward, S. A. (2004) Evidence for a central role for PfCRT in conferring *Plasmodium falciparum* resistance to diverse antimalarial agents. *Mol. Cell* 15, 867–877
7. Sä, J. M., Twu, O., Hayton, K., Reyes, S., Fay, M. P., Ringwald, P., and Wellem, T. E. (2009) Geographic patterns of *Plasmodium falciparum* drug resistance distinguished by differential responses to amodiaquine and chloroquine. *Proc. Natl. Acad. Sci. U.S.A.* 106, 18883–18889
8. Sanchez, C., Mayer, S., Nuruhasan, A., Stein, W. D., and Lanzer, M. (2011) Genetic linkage analyses redefine the roles of PfCRT and PIMDR1 in drug accumulation and susceptibility in *Plasmodium falciparum*. *Mol. Microbiol.* 82, 865–878
9. Sisowath, C., Petersen, I., Veiga, M. I., Mårtensson, A., Premji, Z., Björk-Andrén, P., Muhle, R. A., Alakpa, G. E., Hughes, R. H., Ward, S. A., Krogstad, D. J., Sidhu, A. B., and Fidock, D. A. (2005) A critical role for PfCRT K76T in *Plasmodium falciparum* verapamil-reversable chloroquine resistance. *EMBO J.* 24, 2294–2305
10. Eastman, R. T., Dharia, N. V., Winzeler, E. A., and Fidock, D. A. (2011) Piperazine resistance is associated with a copy number variation on chromosome 5 in drug-pressed *Plasmodium falciparum* parasites. *Antimicrob. Agents Chemother.* 55, 3908–3916
11. Martin, R. E., and Kirk, K. (2008) Chloroquine resistance-conferring mutations in pfCRT give rise to a chloroquine-associated H+ leak from the malaria parasite’s digestive vacuole. *Antimicrob. Agents Chemother.* 52, 4374–4380
12. Lehane, A. M., and Kirk, K. (2009) Efflux of a range of antimalarial drugs and “chloroquine resistance reversers” from the digestive vacuole in malaria parasites with mutant PfCRT. *Mol. Microbiol.* 77, 1039–1051
13. Naudé, B., Brzostowski, J. A., Kimmel, A. R., and Wellem, T. E. (2005) *Dictyostelium discoideum* expresses a malaria chloroquine resistance mechanism upon transfection with mutant, but not wild-type, *Plasmodium falciparum* transporter PfCRT. *J. Biol. Chem.* 280, 25596–25603
14. Papakripos, J., Sä, J. M., and Wellem, T. E. (2012) Functional characterization of the *Plasmodium falciparum* chloroquine-resistance transporter PfCRT in transformed *Dictyostelium discoideum* vesicles. *PLoS One* 7, e39569
15. Martin, R. E., Marchetti, M. V., Cohan, A. L., Howitt, S. M., Brör, S., and Kirk, K. (2009) Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. *Science* 325, 1680–1682
16. Summers, R. L., Dave, A., Dolret, T. J., Bellanca, S., Marchetti, M. V., Nash, M. N., Richards, S. N., Goh, V., Schenk, R. L., Stein, W. D., Kirk, K., Sanchez, C. P., Lanzer, M., and Martin, R. E. (2014) Diverse mutational pathways converge on saturable chloroquine transport via the malaria parasite’s chloroquine resistance transporter. *Proc. Natl. Acad. Sci. U.S.A.* 111, E1759–E1767
17. Alibert, S., Santelli-Rouvier, C., Pradines, B., Houdoin, C., Parzy, D., Karolak-Wójciecekowska, J., and Barbe, J. (2002) Synthesis and effects on chloroquine susceptibility in *Plasmodium falciparum* of a series of new dihydroantracene derivatives. *J. Med. Chem.* 45, 3195–3209
18. van Schalkwyk, D. A., and Egan, T. J. (2006) Quinoline-resistance reversing agents for the malaria parasite *Plasmodium falciparum*. *Drug Resist. Updat.* 9, 211–226
19. Cooper, R. A., Ferdig, M. T., Su, X. Z., Ursos, L. M., Su, J., Nomura, T., Fujioka, H., Fidock, D. A., Roepe, P. D., and Wellem, T. E. (2002) Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in *Plasmodium falciparum*. *Mol. Pharmacol.* 61, 35–42
20. Cooper, R. A., Lane, K. D., Deng, B., Mu, J., Patel, J. J., Wellem, T. E., Su, X., and Ferdig, M. T. (2007) Mutations in transmembrane domains 1, 4 and 9 of the *Plasmodium falciparum* chloroquine resistance transporter alter susceptibility to chloroquine, quinine and quinidine. *Mol. Microbiol.* 63, 270–282
21. Martin, S. K., Oduola, A. M., and Milhoux, K. W. (1987) Reversal of chloroquine resistance in *Plasmodium falciparum* by verapamil. *Science* 235, 899–901
22. The R Core Team (2013) *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna
23. Segel, I. H. (1993) *Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems*, John Wiley & Sons, Inc., New York
33. Burnham, K. B., and Anderson, D. R. (2002) *Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach*, 2nd Ed., Springer Verlag, New York

34. Kuzmic, P., Cregar, L., Millis, S. Z., and Goldman, M. (2006) Mixed-type noncompetitive inhibition of anthrax lethal factor protease by aminoglycosides. *FEBS J.* **273**, 3054–3062

35. Chevillard, C., Cárdenas, M. L., and Cornish-Bowden, A. (1993) The competition plot: a simple test of whether two reactions occur at the same active site. *Biochem. J.* **289**, 599–604

36. Cornish-Bowden, A. (2012) *Fundamentals of Enzyme Kinetics*, 4th Ed., Wiley-Blackwell, Weinheim, Germany

37. Cornish-Bowden, A. (2001) Detection of errors of interpretation in experiments in enzyme kinetics. *Methods* **24**, 181–190

38. Ewers, D., Becher, T., Machtens, J. P., Weyand, I., and Fahlke, C. (2013) Induced fit substrate binding to an archaean glutamate transporter homologue. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 12486–12491

39. Warhurst, D. C. (2003) Polymorphism in the *Plasmodium falciparum* chloroquine-resistance transporter protein links verapamil enhancement of chloroquine sensitivity with the clinical efficacy of amodiaquine. *Malar. J.* **2**, 31

40. Aller, S. G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., Harrell, P. M., Trinh, Y. T., Zhang, Q., Urbatsch, I. L., and Chang, G. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. *Science* **323**, 1718–1722

41. Harper, J. N., and Wright, S. H. (2013) Multiple mechanisms of ligand interaction with the human organic cation transporter, OCT2. *Am. J. Physiol. Renal Physiol.* **304**, F56–F67

42. Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2003) Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. *J. Biol. Chem.* **278**, 39706–39710

43. Ohashi, R., Tamai, I., Inano, A., Katsura, M., Sai, Y., Nえzuo, J., and Tsuji, A. (2002) Studies on functional sites of organic cation/carnitine transporter OCTN2 (SLC22A5) using a Ser467Cys mutant protein. *J. Pharmacol. Exp. Ther.* **302**, 1286–1294

44. Cornish-Bowden, A. (2014) Understanding allosteric and cooperative interactions in enzymes. *FEBS J.* **281**, 621–632

45. Martinez, L., Arnaud, O., Henin, E., Tao, H., Chaptal, V., Doshi, R., Andrieu, T., Dussurget, S., Tod, M., Di Pietro, A., Zhang, Q., Chang, G., and Falson, P. (2014) Understanding polyspecificity within the substrate-binding cavity of the human multidrug resistance P-glycoprotein. *FEBS J.* **281**, 673–682

46. Schumacher, M. A., Miller, M. C., and Brennan, R. G. (2004) Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein. *EMBO J.* **23**, 2923–2930

47. Ursing, J., Kofoed, P. E., Rodrigues, A., Blessborn, D., Thoft-Nielsen, R., Björkman, A., and Rombo, L. (2011) Similar efficacy and tolerability of double-dose chloroquine and artether-lumefantrine for treatment of *Plasmodium falciparum* infection in Guinea-Bissau: a randomized trial. *J. Infect. Dis.* **203**, 109–116

48. Achan, J., Talisuna, A. O., Erhart, A., Yeka, A., Tibenderana, J. K., Baliraine, F. N., Rosenthal, P. J., and D’Alessandro, U. (2011) Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. *Malar. J.* **10**, 144

49. Breslow, R., Belvedere, S., Gershell, L., and D., L. (2000) The chelate effect in binding, catalysis, and chemotherapy. *Pure Appl. Chem.* **72**, 333–342

50. Hrycyna, C. A., Summers, R. L., Lehane, A. M., Pires, M. M., Namanja, H., Bohn, K., Kuriakose, J., Ferdig, M., Henrich, P. P., Fidock, D. A., Kirk, K., Chmielewski, J., and Martin, R. E. (2014) Quinine dimers are potent inhibitors of the *Plasmodium falciparum* chloroquine resistance transporter and are active against quinoline-resistant *P. falciparum*. *ACS Chem. Biol.* **9**, 722–730

51. Brittain, H. G. (ed) (2007) *Profiles of Drug Substances, Excipients and Related Methodology* Vol. 33, Academic Press/Elsevier, Amsterdam

52. Hasegawa, J., Fujita, T., Hayashi, Y., Iwamoto, K., and Watanabe, J. (1984) pK determination of verapamil by liquid-liquid partition. *J. Pharm. Sci.* **73**, 442–445
Molecular Bases of Disease: Multiple Drugs Compete for Transport via the *Plasmodium falciparum* Chloroquine Resistance Transporter at Distinct but Interdependent Sites

Sebastiano Bellanca, Robert L. Summers, Max Meyrath, Anurag Dave, Megan N. Nash, Martin Dittmer, Cecilia P. Sanchez, Wilfred D. Stein, Rowena E. Martin and Michael Lanz

J. Biol. Chem. 2014, 289:36336-36351.
doi: 10.1074/jbc.M114.614206 originally published online November 6, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M114.614206

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 47 references, 21 of which can be accessed free at http://www.jbc.org/content/289/52/36336.full.html#ref-list-1