Bioconversion of lignocellulosic waste to bioethanol by *Trichoderma* and yeast fermentation

K. Saravanakumar · K. Kathiresan

Received: 25 May 2013 / Accepted: 7 October 2013 / Published online: 24 October 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The present work aimed at producing bioethanol using lignocellulosic waste sawdust and marine yeast fermentation. Lignocellulosic waste materials were converted into monosugars through acid hydrolysis and finally treated with cellulase enzyme derived from *Trichoderma/Hypocrea*. To enhance the conversion of the glucose from sawdust, the experimental conditions were statistically optimized. The efficient conversion of sawdust to glucose of 78.56 % was achieved under the conditions of pH 6.19, temperature 29 °C, cellulase enzyme (8.16 IU ml⁻¹) and sawdust (7.95 g l⁻¹). The lignocellulosic waste-sawdust hydrolysis was used as the carbon source for the production of bioethanol. Bioethanol production of 85.6 % was achieved (55.2 g l⁻¹) under the optimized conditions of temperature of 36.5 °C, incubation time of 102 h and enzyme-treated sawdust of 45.14 ml l⁻¹ and agitation of 330 rpm. This work achieved maximum bioethanol production using *H. estonica* and *S. cerevisiae* fermentation.

Keywords Bioethanol · Marine yeasts · *Trichoderma* · Lignocellulosic waste · Mangroves

Introduction

Fuel deficiency is a global issue due to exhaustion of fossil fuel and growing climate change (EC 2003; Li 2003; Qureshi et al. 2006; Sveinsdottir et al. 2009). In order to overcome this issue, different types of techniques have been invented for the possible conversion of cellulosic waste materials into glucose for the ethanol production, as an alternative way for fuel conservation (Sun and Cheng 2002). The bioconversion of lignocellulosic materials (i.e., agricultural residues, woods, and residues from pulp and paper industries, solid wastes) to bioethanol produces high yield of glucose after hydrolysis (McMillan 1994). The utilization of the lignocellulosic materials for the conversion of the biofuel involves only low cost (Li et al. 2007).

Lignocellulose, the most abundant organic matter in the Earth, can be utilized to produce various renewable fuels and chemicals (Lau et al. 2010). For the digestion of these materials into glucose, many methods have been used such as thermal pretreatments, chemical pretreatments, biological pretreatments and enzymatic pretreatments (Meinita et al. 2012). Cellulolytic and hemicellulolytic enzymes are able to increase monosugars from the digestion of lignocellulose (Pakarinen et al. 2011). For this purpose, fungi in particular *Trichoderma* species that can produce cellulolytic enzymes are employed (Aro et al. 2005; Rodriguez Gomez et al. 2012). In general, yeasts are potential microorganisms for the production of bioethanol by sugar fermentation (Kathiresan et al. 2011; Senthilraja et al. 2011). However, most of the studies are restricted to microbes of terrestrial origin, but not of marine origin. Hence, the present work was undertaken for the conversion of sawdust (lignocellulosic wastes) to sugars for fuel fermentation using cellulolytic enzymes of the mangrove-derived *Trichoderma* and further conversion of sugars to bioethanol using the mangrove-derived yeast strain of *Saccharomyces cerevisiae*. Based on the data, the culture...
conditions were optimized statistically for the enzyme hydrolysis process and bioethanol fermentation.

Materials and methods

Microorganisms and maintenance

\textit{Trichoderma} (\textit{Hypocrea}) species (\textit{Trichoderma estonicum}/\textit{H. estonica} SKS1 JQ611722) and yeasts species (\textit{Saccharomyces cerevisiae} JN387604) were isolated from mangrove sediment, located in the south east coast of India using selective medium (Askew and Laing 1993) and yeast peptone agar medium (Fell 2005), respectively. The stock cultures were maintained at 4°C on slants of potato dextrose agar for \textit{H. estonica} and yeast peptone agar for \textit{S. cerevisiae}.

Substrate

Sawdust was obtained from local wood mills, passed through a 1.5-mm sieve to maintain uniform particle size, washed through distilled water to remove impurities present in it and finally dried at 60°C overnight. The sawdust was pre-hydrolyzed using 0.8% of phosphoric acid by the method of Kathiresan et al. (2011).

Cellulase enzyme production by \textit{Hypocrea estonica}

Spore suspension of \textit{Hypocrea estonica} SKS1 (JQ611722) was used as microbial inoculum for the fermentation. It was prepared by culturing \textit{H. estonica} in potato dextrose agar slant cultures at 30°C for 7 days and spore suspension was washed through the Tween-80 water (0.02% v/v); the suspension was then assessed as final spore count of 2.3×10^3 CFU ml$^{-1}$. Then 10 ml of spore suspension was inoculated into a 250-ml Erlenmeyer flask containing 100 ml glucose pre-cultured medium (% w/v) (glucose, 3; yeast extract, 0.8; K$_2$HPO$_4$, 0.4; MgSO$_4$, 7H$_2$O, 0.2; pH, 7.0) and was cultured at 30°C, 200 rpm for 48 h in a rotary shaking incubator to prepare the mycelial suspension. At last, mycelial suspension was inoculated into a 250-ml Erlenmeyer flask containing the statistically optimized medium for cellulase production by \textit{H. estonica} (Saravanakumar and Kathiresan 2013a) that consisted of 7.69 g l$^{-1}$ of sawdust, 3.59 g l$^{-1}$ of (NH$_4$)$_2$ SO$_4$, under the temperature of 49°C at pH of 8.8 with inoculum size of 6.0% (v/w) and was cultivated at 30°C for 120 h to produce cellulose.

Enzymatic hydrolysis

Enzymatic hydrolysis was carried out in 125 ml screw-capped Erlenmeyer flasks. Diluted acid-treated sawdust powder was suspended in distilled water in the flasks. Water was added during the pretreatment in such a way so as to maintain the substrate concentration at 15% (w/v) after the addition of the crude cellulase enzyme derived from \textit{H. estonica}. Hydrolysis was performed at 50°C for 24 h at 120 rpm in an incubator shaker. 1 ml sample was periodically removed from each flask (0, 2, 8, 18, 24, 72, 120, and 168 h). Each sample was centrifuged for 10 min at 13,500 g, and 500 ll supernatant was then removed and placed into a 1.5-ml Eppendorf tube containing the stop buffer (512 mM Na$_2$CO$_3$ and 288 mM NaHCO$_3$; pH 10.0) (Sandhu et al. 2012). The buffered samples were stored at 4°C for subsequent glucose measurement; commercial glucose was used as the standard for the percentage calculation.

Bioethanol production by \textit{S. cerevisiae}

Bioethanol production experiments were carried out according to the experimental setups derived from the center composite design. The enzyme-treated sawdust hydrolysis was used as the carbon source. The percentage of the bioethanol was calculated according to the method of Saravanakumar et al. (2013b).

Determination of bioethanol using gas chromatography

Concentration of bioethanol in the distillate of culture filtrate was estimated using a Hewlett Packard 5890 Series II gas chromatography with chromosorb 105 column and nitrogen as a carrier gas. The temperature of the injection port, oven and detection port was 250, 120, and 250°C, respectively. For the analysis, 1 µl of liquid samples was injected into gas chromatography. The bioethanol concentration was determined using bioethanol standard plot and is expressed in percentage with help of instrumental default standard value of 65 g l$^{-1}$ which is equivalent to 100% (Saravanakumar and Kathiresan 2013a, 2013b).

Optimization of the enzyme hydrolysis process

Optimization of the environmental conditions for the maximum hydrolysis process of the sawdust to sugar using
H. estonica-derived cellulase was studied using 30 runs of statistical model assessed from central composite design of response surface methodology. In this experiment, important factors such as pH (6–8), temperature (20–50 °C) and cellulase concentration (2–10 IU ml⁻¹) on glucose conversion were studied.

\[Y = \beta_0 + \sum \beta_i X_i + \sum \beta_{ii} X_i^2 + \sum \beta_{ij} X_i X_j \]

(1)

where \(Y \) is the predicted response (glucose), \(X_i, X_j \) the independent variables, \(\beta_0 \) the offset term, \(\beta_i \) the \(i \)th linear coefficient, \(\beta_{ii} \) the \(i \)th quadratic coefficient and \(\beta_{ij} \) is the \(ij \)th interaction coefficient. The experimental design in coded and uncoded value is presented in Table 1. In this study, the independent variables are coded as \(X_1, X_2, \) and \(X_3 \), Thus, the second-order polynomial equation can be presented as follows:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{33} X_3^2 + \beta_{44} X_4^2 + \beta_{12} X_1 X_2 + \beta_{13} X_1 X_3 + \beta_{14} X_1 X_4 + \beta_{23} X_2 X_3 + \beta_{24} X_2 X_4 + \beta_{34} X_3 X_4 \]

(2)

Statistical optimization of bioethanol production

In this experiment, *S. cerevisiae* (JN387604) was selected for optimization. The individual and interaction effects of temperature (°C), incubation time (0–120 h), and enzyme-treated sawdust (10–50 ml l⁻¹) and agitation (100–500) on bioethanol production were carried out. The maximum yield of bioethanol production was tested using 30 experimental setups derived from a statistical model-central composite design of response surface methodology. The

Std	(A) pH	(B) Temperature (°C)	(C) Cellulase concentration (IU ml⁻¹)	(D) Sawdust (mg l⁻¹)	Glucose (%)	
					Experimental	Predicted
1	6	20	2	2	65.26	63.13
2	8	20	2	2	52.26	44.33
3	6	50	2	2	42.56	34.68
4	8	50	2	2	32.26	31.08
5	6	20	10	2	53.26	52.91
6	8	20	10	2	41.23	31.96
7	6	50	10	2	23.25	19.11
8	8	50	10	2	15.26	13.36
9	6	20	2	10	45.65	52.32
10	8	20	2	10	36.56	31.85
11	6	50	2	10	35.62	36.04
12	8	50	2	10	25.65	30.77
13	6	20	10	10	78.56	70.89
14	8	20	10	10	35.62	48.27
15	6	50	10	10	36.56	49.26
16	8	50	10	10	48.56	41.84
17	5	35	6	6	68.56	67.71
18	9	35	6	6	36.56	41.49
19	7	5	6	6	45.56	49.89
20	7	65	6	6	15.26	15.01
21	7	35	2	6	35.26	39.03
22	7	35	14	6	39.56	39.87
23	7	35	6	2	12.25	27.61
24	7	35	6	14	56.56	45.28
25	7	35	6	6	65.23	65.23
26	7	35	6	6	65.23	65.23
27	7	35	6	6	65.23	65.23
28	7	35	6	6	65.23	65.23
29	7	35	6	6	65.23	65.23
30	7	35	6	6	65.23	65.23
coded values of the fermentation factors were determined by the following equation:

\[Y = \beta_0 + \sum_{i} \beta_i X_i + \sum_{ij} \beta_{ij} X_i X_j \]

(3)

where \(Y \) is the predicted response, \(X_i \), \(X_j \) the independent variables, \(\beta_0 \) the offset term, \(\beta_i \) the \(i \)th linear coefficient, \(\beta_{ij} \) the \(i \)th quadratic coefficient and \(\beta_{ij} \) is the \(ij \)th interaction coefficient. The experimental design in coded and uncoded value is presented in Table 2. In this study, the independent variables are coded as \(X_1, X_2, X_3 \) and \(X_4 \). Thus, the second-order polynomial equation can be presented as follows:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{33} X_3^2 + \beta_{44} X_4^2 + \beta_{12} X_1 X_2 + \beta_{13} X_1 X_3 + \beta_{14} X_1 X_4 + \beta_{23} X_2 X_3 + \beta_{24} X_2 X_4 + \beta_{34} X_3 X_4 \]

(4)

A statistical program package Design Expert 8.0.6 was used for regression and model fit analysis of the data was obtained, and then estimated the coefficient of the regression equation, and analyzed the variance of selected factors and model significance.

Results

Effect of the cellulase enzyme on sawdust hydrolysis process

The interaction and individual effects of the experimental condition on hydrolysis process were studied by adopting the statistical design of the center composite model of 30
hydrolysis process were tested and the data are presented in Table 1 along with the predicted and experimental responses of glucose production. The acceptability of the statistical model was tested by the quadratic model along with the contour error plot for the predicted and experimental responses and further model fitness tested by the normal standardized residual plot. The standard error value of 0.43 showed fitness for the acceptable model and R^2 value of the model was 0.87 which also proved the 87% of model fitness. The application of the response surface methodology based on the estimates of the parameters indicated an experimental relationship between the response and input variables with the glucose production expressed in the following quadratic mode:

$$
\text{Glucose (\%)} = 65.23 - 6.56X_1 - 8.72X_2 + 0.21X_3 + 4.42X_4 \\
+ 3.80X_1X_2 - 0.54X_1X_3 - 0.42X_1X_4 \\
- 1.34X_2X_3 + 3.04X_2X_4 + 7.20X_3X_4 - 2.66X_1^2 \\
- 8.19X_2^2 - 6.44X_3^2 - 7.20X_4^2 \\
(5)
$$

where X_1 (pH), X_2 (temperature), X_3 (cellulase) and X_4 (agitation) are independent variables. Significance of each coefficient is presented in Eq. (5), determined by the Student’s t test and p values (Montgomery 2001). The ANOVA results of the quadratic model for glucose production are given in Table 3. The value of R^2 and adjusted R^2 was close to 0.87 and it revealed a high correlation between the observed values and the predicted values. This means that regression model provides an excellent explanation of the relationship between the independent variables (factors) and the response (glucose production). The lack-of-fit term was non-significant as it was desired. The non-significant value of lack-of-fit observed (0.856) was more than probability of 0.05 and this revealed that the quadratic model was valid for the present study.

In this case, the individual and interaction effects on the hydrolysis process were tested and the data are presented in Table 3. The factors of the X_1, X_2, X_3, X_4, X_1^2, X_2^2, X_3^2, X_4^2 were significant but other factors and their interaction effects were not significant on the glucose production ($p < 0.05$).

The optimization of the specific conditions for the glucose production was assessed. Statistically optimized conditions for the efficient sawdust hydrolysis process of glucose production were pH (6.19), temperature (29°C), cellulase enzyme (8.16 IU ml$^{-1}$) and sawdust (7.95 mg l$^{-1}$). This hydrolysed glucose was used further for the alcohol production as the carbon source.

Optimization of bioethanol production by S. cerevisiae

The interaction and individual effects of experimental conditions on bioethanol production process were studied by adopting the statistical design of the center composite for the bioethanol production. The acceptability of the statistical model was tested by the quadratic model along with the contour error plot for the predicted and experimental responses. The standard error value of the 0.43 showed fitness for the acceptable model and R^2 value of the model of 0.81 also proved 81% of model fitness. The application of the response surface methodology based on the estimates of the parameters indicated an experimental relationship between the response and input variables, which is expressed in the following quadratic model:

$$
\text{Bioethanol yield (\%)} = 75.60 + 14.86X_1 + 19.27X_2 \\
- 1.82X_3 + 2.39X_4 + 14.41X_1X_2 - 0.12X_1X_3 \\
- 0.83X_1X_4 - 0.11X_2X_3 - 2.67X_2X_4 - 2.67X_3X_4 \\
- 11.96X_1^2 - 11.33X_2^2 - 7.55X_3^2 - 13.68X_4^2 \\
(6)
$$

where X_1 (temperature), X_2 (incubation time), X_3 (enzyme-treated sawdust) and X_4 (agitation) are independent variables. Significance of each coefficient is presented in Eq. (6), determined by the Student’s t test and p values.
The ANOVA results of the quadratic model for bioethanol production are given in Table 4. The value of R^2 and adjusted R^2 was close to 0.81 and it revealed a high correlation between the observed values and the predicted values. This means that regression model provides an excellent explanation of the relationship between the independent variables (factors) and the response (bioethanol production). The lack-of-fit term was non-significant. The non-significant value of lack-of-fit observed (0.52) was more than probability of 0.05 and this revealed that the quadratic model was valid for the present study.

In this case, the individual and interaction effects on the hydrolysis process were tested and the data are presented in Table 4. The factors of the hydrolysis process were tested and the data are presented in Table 4. The factors of the

Source	Sum of squares	df	Mean square	F value	p value	prob > F
Model	28,097.22	14	2,006.944	4.82482	0.0023**	
(A) Temperature (°C)	5,299.67	1	5,299.67	12.73932	0.0028**	
(B) Incubation hours	8,909.677	1	8,909.677	21.41704	0.0003***	
(C) Enzyme-treated sawdust (ml l$^{-1}$)	79.64327	1	79.64327	0.191446	0.6680NS	
(D) Agitation (rpm)	136.8993	1	136.8993	0.329078	0.5747NS	
AB	3,320.641	1	3,320.641	7.982139	0.0128*	
AC	0.2116	1	0.2116	0.000509	0.9823NS	
AD	53.4361	1	53.4361	0.128449	0.7250NS	
BC	0.1849	1	0.1849	0.000444	0.9835NS	
BD	113.8489	1	113.8489	0.273669	0.6085NS	
CD	29.75703	1	29.75703	0.07153	0.7928NS	
A2	3,924.794	1	3,924.794	9.4344	0.0078**	
B2	3,519.94	1	3,519.94	8.461214	0.0108*	
C2	1,563.842	1	1,563.842	3.759156	0.0716NS	
D2	5,129.922	1	5,129.922	12.33128	0.0031**	
Residual	6,240.133	15	416.0088			
Lack-of-fit	6,240.133	10	624.0133	0.52NS		
Pure error	0	5	0			
Cor total	34,337.35	29				

NS not significant; *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$
attributed due to the higher availability of monosugars in the *Trichoderma*-derived enzyme-treated sawdust hydrolysis. Thus, the temperature has a significant role in the bioethanol production by increasing the enzyme hydrolysis of the sawdust concentration and also the bioethanol yield due to increased production of fermentable monosugars (Fromanger et al. 2010; Zuroff and Curtis 2012). The present work suggested that the maximum production of the bioethanol from the sawdust could be achieved by proper method of acid and enzyme pretreatment and yeast fermentation employing *H. estonica* and *S. cerevisiae*.

Acknowledgments The authors are thankful to the authorities of Annamalai University, India and to Ministry of Human Resource Development, Govt. of India, New Delhi.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Aro N, Pakula T, Penttiillae M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

Askew DJ, Laing MD (1993) An adapted selective medium for the quantitative isolation of *Trichoderma* sp. Plant Pathol 42: 686–690

Fell JW (2005) The role of nucleotide analysis in the systematics of the yeast genera *Cryptococcus* sp. and *Rhodotorula* sp. Stud Mycol 58:129–146

Fromanger R, Guilhouet SE, Uribelarra JL, Molina-Jouve C, Cameleyre X (2010) Effect of controlled oxygen limitation on *Candida shehatae* physiology for ethanol production from xylose and glucose. J Ind Microbiol Biotechnol 37:437–445

Kathiresan K, Saravanakumar K, Senthilraja P (2011) Bio-ethanol fermentation employing *H. estonica* and *S. cerevisiae*. Enz Microb Technol 31:274–282

Matsushita Y, Yamauchi K, Takabe K, Awano T, Yoshinaiga A, Kato M, Kobayashi T, Asada T, Furuuyo A, Fukushima K (2010) Enzymatic saccharification of Eucalyptus bark using hydrothermal pretreatment with carbon dioxide. Biosres Technol 101: 4936–4939

Mcmillan JD (1994) Fuels production In: Himmel ME, Baker JO, Overend RP (eds) ACS symposium series 566. American Chemical Society, Washington, DC, pp 292–324

Meinita MD, Hong YK, Jeong GT (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of *Kappaphycus alvarezi* (cottoniti). Bioprocess Biosyst Eng Jan 35(1–2):123

Miller GL (1959) Use of DNS reagent for the measurement of reducing sugar. Anal Chem 31:426–428

Montgomery DC (2001) Design and analysis of experiments, 5th edn. John Wiley and Sons, New York

Pakarinen A, Zhang J, Brock T, Maijala P, Viikari L (2011) Enzymatic accessibility of fiber hemp is from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. 108(12):2823–2834

Qureshi TA, Mirbahar KB, Samo MU, Soonro NM, Solangi AA, Memon A (2006) Clinical study of experimentally induced anaphylactic shock in goats. Int J Pharmacol 2:357–361

Rodriguez Gomez D, Lehmann L, Olikjar et al (2012) Examining the potential of plasma-assisted pretreated wheat straw for enzyme production by *Trichoderma reesei*. Appl Biochem Biotechnol 166(8):2051–2063 (Data provider: Technical University of Denmark Document type)

Sandhu H, Nidumolu U, Sandhu S (2012) Assessing risks and opportunities arising from ecosystem change in primary industries using ecosystem-based business risk analysis tool. Hum Ecol Risk Assess 18(1):47–68

Saravanakumar K, Kathiresan K (2012) Bioprospecting potential of marine-derived Trichderma. Asian Pac J Trop Biomed 9(9):866–690

Saravanakumar K, Kathiresan K (2013a) Thermostable cellulase produced by trichderma (*Hypocrea estonica*). J Biotechnol Sci 1(1):22–41

Saravanakumar K, Senthilraja P, Kathiresan K (2013b) Comparative analysis of bioethanol production by different strains of immobilized marine yeast. J Yeast Fungal Res 2(8):113–116

Sherrard EC, Harris EE (1932) Factors influencing properties of ethanol and 11 with thermostable cellulases in lignocellulose hydrolysis. 108(12):2823–2834

Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic material from ethanol production: a review. Biosourc Technol 83:1–11

Sveindottir M, Baldursson SRB, Orlygsson J (2009) Ethanol production from Kappaphycus *cottonii*. Enz Microb Technol 31:274–282

Takabe K, Furujyo A, Fukushima K (2010) Enzymatic saccharification of Eucalyptus bark using hydrothermal pretreatment with carbon dioxide. Biosres Technol 101: 4936–4939

Zuroff TR, Curtis WR (2012) Development of symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol 93:1423–1435