Studies on the plant electric wave signal by the wavelet analysis

WANG Lan-zhou, LI Hai-xia and LI Qiao

College of metrology technology and engineering, China Jiliang University, Zhejiang, Hangzhou 310018, China

E-mail: lzwang@cjlu.edu.cn

Abstract. In this study, we choose that the ‘db3’ wavelet as the basis function to decompose the electric wave signal in 5 levels and a low and high frequency coefficient of 6 species plants are obtained, and coefficients after denoise are reconstructed for the first time. A result of the analysis of the wavelet in plant electric wave signals indicates that plant electric wave signals are of changing of characters in the each frequencies scale. In the low frequency level, the main character of the plant electric wave signal is reflected; in the high frequency level, the noise of the determined signal and also the mutation of the signal are reflected respectively. That the denoised signal of plants by wavelet analysis is similar with the original one indicates that the wavelet analysis is fit for studies on the plant electric wave signal. There are -200~500μV of the electric wave signals in growing plants.

Keywords: wavelet transform, plant electric wave signal, signal processing

1. Introduction

The plant electric wave signals are the reflection of plants to the stimulation and changes of environments, and the informations it carried reflect the physiological activities of plants [1-21]. But, the plant electric wave signal is of rather strong randomicity and background noise, and it is also a kinds of non-stable micro-signal. How to obtain main character of plant electric wave signals is a difficult problem in the field of the signal processing of plant electric wave signals. Multiresolution wavelet analysis as a kind of the signal processing technology is already widely applied to many field, especially to biomedical signal, such as, brain wave signal [22-24], electrocardiosignal [25-28], electromyographic signal [29,30]. But it is seldom to use for the processing of electric signals of plants. The wavelet analysis is of excellent characteristic in time-frequency localization, and is fit for the analysis on the transient characteristic and the time varying characteristic of the non-stable signal. The wavelet transform is of the ability to processing the non-stable random signal of plant electric wave. It is a rather perfect mathematical tool for signal processing. We intend to use the wavelet transform theory to analyze the plant electric wave signal in this article.

2. Materials and methods

2.1. Testing apparatus

BL-420E biological enginery testing system was purchased from the Chengdu Taimeng Science and Technology Limited Company. The basic principle is: firstly, introducing the plant electric wave
signal by leading electrode; secondly, magnifying and filtering the signal; then, digitizing it by analog-to-digital converting, and imputing the digitizing signal into the computer to analyze it.

2.2. Plants
6 plants, that is, Crassula portulacea, Jasminum sambac, Aloe vera var. chinensis, Scindpsus aureus, Catharanthus roseus and Celosia cristata were bought from the flower market and cultivated in the lab.

2.3. Wavelet transform analysis
Basing on such characteristic, applying wavelet transform to the analysis of the plant electric wave signal to discuss the character of it. The wavelet transform comes from the analysis of signal, and has the ability of giving expression to time domain and frequency domain information at the same time [31-34]. The function (basic wavelet), which satisfies some conditions, is used to decompose original signal. And the wavelet function make up of the wavelet basis by extending and contracting in frequency domain and translating in time domain. The definition of wavelet transform as follows:

\[
WT_f(a, \tau) = \left(f(t), \Psi_{a,\tau}(t) \right) = \sqrt{a} \int_{-\infty}^{\infty} f(t) \Psi \left(\frac{t-\tau}{a} \right) dt, \quad \text{in the formula: } a, \ \text{denoting the scale frequency factor; } t, \ \text{denoting the time parameter; } \Psi(t), \ \text{denoting the wavelet generating function. The wavelet transform } WT_f(a, \tau) \ \text{is the two variable function, which was composed of the scale variable } a \ \text{and the variable } \tau. \ \text{The variable } a \ \text{and variable } \tau \text{defined the scale/ time plane. So, when we expand the function by the wavelet basis, it means that project a time function on the scale/ time plane. In this plane, we can sharply get the feature description of the signal we analyzed, in different scale and time. The most important application of the wavelet analysis is the denoising to the signal. The model of the noisy signal can be expressed as follow: } s(i) = f(i) + e(i), \quad i = 0, \ldots, n-1, \ f(i) \ \text{is the actual signal, } e(i) \ \text{is the yawp, } s(i) \ \text{is the noisy signal.}
\]

The useful signal of plants usually is a low frequency signal, and the noisy signal usually is a high frequency signal. So, the denoising course can be done by the following methods: firstly, decomposing the signal and the noise contain in the high frequency coefficient; secondly, processing the wavelet coefficient by the threshold value; then, reconstructing the signal to denoise. In this study, we choose the ‘db3’ wavelet as the basis function to decompose the plant electric wave signal in 5 levels, and obtained the low and high frequency coefficient, and reconstructed the coefficient to denoise.

3. Results and discussions

3.1. The time domain waveform of electric wave signal
Figure 1–3 is the time domain waveform of 6 plants electric wave signal respectively. An appearance of the action wave from the first to second time in Crassula portulacea is about 60s and the action wave appears 5 times in 180s, and the maximum value of the electric wave signal is about 80 μv (figure 1 left s). An appearance of the action wave from the first to second time in Jasminum sambac is about 65s and the action wave appears 2 times in 100s, and the maximum value of the electric wave signal is about 190 μv (figure 1 right s). An appearance of the action wave from the first to second time in Aloe vera var. chinensis is about 260s and the action wave appears 2 times in 500s, and the maximum value of the electric wave signal is about 310 μv (figure 2 left s). An appearance of the action wave from the first to second time in Scindpsus aureus is about 100s and the action wave appears 2 times in 400s, and the maximum value of the electric wave signal is about 550 μv (figure 2 right s). An appearance of the action wave from the first to second time in Catharanthus roseus is about 60s, but it takes very long time that an appearance of the action wave from the second to third time is about 310s and the action wave appears 3 times in 500s, and the maximum value of the electric wave signal is about 590 μv (figure 3 left s). An appearance of the action wave from the first to second
time in *Celosia cristata* is about 40s and the action wave appears 2 times in 100s, and the maximum value of the electric wave signal is about 200 μv (figure 3 right s). These results show that signals are different and it is difficult to distinguish the noise and signal itself of 6 plants interweaved together. It is the significant and representational plants that we selected *Crassula portulacea*, *Jasminum sambac*, *Catharanthus roseus* and *Celosia cristata* belong to the dicotyledon and *Aloe vera* var. *chinensis*, *Scindpsus aureus* belong to the monocotyledon. But it is -200~500μV and never “mV”, of the testing electric wave signals in 6 plants, which is quite difference with other publications’ [1-14].

3.2. The wavelet decomposing of 6 plants electric wave signal

The low and high frequency coefficient of 6 species plants are obtained and their decomposing results respectively show in figure 1-3. With the level changing from the low to high, it evidently displayed the detail component of each level, which represent the high frequency component of the plant electric wave signal. Through analyzing the high frequency coefficient, we can accurately detect the arisen position of the action electric wave, which was one type of the plant electric wave, just like the brain wave of animals.

3.3. The denoised signal of the six plants electric wave signal

The high frequency level also reflects the noise component of the plant electric wave signal, so, quantizing the high frequency coefficient of the wavelet decomposing of the plant electric wave by a threshold. In this article, the denoising threshold value is estimated by the standard deviation of the coefficients of the wavelet decomposing. Then it has been reconstructed of the quantized high frequency coefficient and the low frequency coefficient of the fifth level of wavelet decomposing for denoising plant electric wave signals. The denoised plant electric wave signal is shown in figure 4-6. Results indicate that the denoised signals can keep the pinnacle and the mutational site of the useful signal of plants well, and is of high degree of similarity with the original one.

![Figure 1](image1.png)

Figure 1. The three-dimensional diagram of 5 scale wavelet decomposing of *Crassula portulacea* (left) and *Jasminum sambac* (right) (original s, low frequency a5, high frequency d5, d4, d3, d2, d1).

![Figure 2](image2.png)

Figure 2. The three-dimensional diagram of 5 layer decomposing of wavelet of *Aloe vera* var. *chinensis* (left) and *Scindpsus aureus* (right) (original s, low frequency a5, high frequency d5, d4, d3, d2, d1).
Figure 3. The three-dimensional diagram of 5 layer decomposing of wavelet of *Catharanthus roseus* (left) and *Celosia cristata* (right) (original s, low frequency a5, high frequency d5, d4, d3, d2, d1).

Figure 4. The denoising plant electric wave signal of *Crassula portulacea* (left) and *Jasminum sambac* (right).

Figure 5. The denoising plant electric wave signal of *Aloe vera var. chinensis* (left) and *Scindpsus aureus* (right).

Figure 6. The denoising plant electric wave signal of *Catharanthus roseus* (left) and *Celosia cristata* (right).
4. Conclusions

Our research result shows that the waveform of the ‘db3’ wavelet is the most similar with the plant electric wave signal. It is not the higher decomposing level, the better decomposing effect. If the decomposing level is too high, there is perhaps distortion in the waveform. Through calculating and trying, the fifth level decomposing is the best. So, that is why we choose the ‘db3’ wavelet as the basis function, to decomposing 6 plant electric wave signals in 5 levels.

The wavelet analysis result of plant electric wave signals indicates that the signal is of the character changing in all frequency scale. The wavelet analysis is of the ability to express the local characteristic of the signal in both time and frequency domain, namely, there is of higher frequency resolution and lower time resolution in low frequency, there is of the higher time resolution and lower frequency resolution in high frequency. So, in the analysis of the plant electric wave signal, the wavelet analysis can evidently display the detailed component of it, and can express the character of it better in time and frequency domain, and can accurately detect the arisen position of the action electric wave. Through studying the frequency and the variation instance of the action electric wave, we can ascertain cases of the plant growth or disease. So, the wavelet analysis can be applied to the analysis of the plant electric wave signal as well.

There are -200~500μV of the electric wave signals in growing plants, that is, a measure of μV. After the wavelet analysis it will be become a significant signal for the physics research, and also to analyse physiological characters of plants.

Acknowledgments
We thank Mr. Leslie Chason, who teaches English at China Jiliang University for revising conscientiously this manuscript.

References
[1] Mwesigwa J, Collins D J and Volkov A G 2000 Electrochemical signaling in green plants: effects of 2, 4-dinitrophenol on variation and action potentials in soybean *Bioelectrochemistry* **51** 201-5
[2] Alexander G and Volkov 2000 Green plants: electrochemical interfaces *Journal of Electroanalytical Chemistry* **483** 150–6
[3] Gyenes M A and GAKuerella 1983 Rhythmic excitation in Nitella at conditions of voltage clamp *J. Exp. Bot.* **34** 83-6
[4] Coleman H A 1986 Chloride currents in Chara-a patch clamp study *J. Memb. Biol.* **93** 55-61
[5] Sakamoto M and Sumiya K 1984 The bioelectrical potentials of young woody plants *Wood research* **70** 42-6
[6] Paszewski A and Zawadzki T 1976 Action potentials in Lupinus angustifolius shoots 3 Determination of the refractory periods *J. Exp. Bot.* **27** 369-74
[7] Pickard B G 1973 Action potential in higher plants *Bot. Rev.* **39** 172-201
[8] Pickard B G 1971 Action potential resulting from mechanical stimulation of pea epicotyls *Plant* **97** 106-15
[9] Paszewski A and Zawadzki T 1973 Action potentials in lupinus angustifolius shoots *J. Exp. Bot.* **24** 804-9
[10] Lou C H 1996 The messenger transmission of the electrochemistry wave in the higher plant *Acta Biophysica Sinica* **12** 739-45
[11] Lou C H and Zhang S Q 1997 The inductivity in the growth and development of the plant *Bulletin of Biology* **32** 2-5
[12] Guo J Y, Hua B G and Lou C H 1997 Variation potential transmission in willow plantlet *Scientia Silvae Sinicae* **23** 1-7
[13] Guo J Y, Wu Y X and Yang X L 1996 The variation electric wave transfer in the willow stem...
[14] Guo J Y, Yang X L and Wu Y X. 1996 The variation electric wave transfer in the willow stem phloem Journal of Shanxi Agricultural University 16 269-72
[15] Wang L Z, Cao W X, Ling L J and Cheng F 2000 The determination of weak electrical signal in leaves of *Lycoris radiata* Journal of Northwest Normal University 36 62-6
[16] Li H S, Cao W X, Wang L Z and Cheng F 2000 Study on weak signal for *P. tabulafirmis* and *P. bungeana* Journal of Northwest Normal University 36 77-81
[17] Li H X, Wang L Z and Li Q 2005 Study on electric signals in *Clivia miniata* Journal of China Jiliang University 16 62-5
[18] Wang L Z, Chen J and Chai Z L 2004 *A Study on the Analyses of the Strategic Mechanism in Ecological Adaptability of Plant Populations by Mathematical Models and Biochemistry* (Beijing: Science Press) pp 43-45
[19] Wang L Z, Li H X, Lin M, Li Q, Lou F B and Chen J 2005 Analysis of plant electrical signal in the time domain and frequency domain Journal of China Jiliang University 16 294-8
[20] Guo J, Zhao B G, Liu Y F and Zhang Y Q 2000 Electrical wave transmission in the healthy black pine seedlings Journal of Nanjing Forestry University 24 77-80
[21] Zhao B G, Guo J, Zhang Y Q and Liu Y F 2000 Changes of the electrical wave transmission in the black pine seedlings after inoculation with pine wood nematode Journal of Nanjing Forestry University 24 81-3
[22] Ji Z and Qin S R 2003 The application of the time-frequency testing method in EEG signals Journal of Chongqing University 26 1-5
[23] Liu J P, Tao W Z and Zheng C X 1999 High resolution time-frequency analysis method for extracting sleep spindles Chinese Journal of Biomedical Engineering 18 317-24
[24] Shen MF, Sun L S and Shen F L 1999 Detection of dynamic EEG rhythms based on wavelet transformation Journal of Data Acquisition & Processing 14 183-6
[25] Ye J L, Zheng C X, Guo S F, Wang L and Huang Y 1999 The method of wavelet transformation used for extracting the characteristic of the exercise ECG China Medical Apparatus Journal 23 268-71
[26] Wu X M, Ceng R J, Liang J D and Li H Y 1997 The study on the principle of wavelet analysis of the heart function parameters Journal of Jilin University 18 53-7
[27] Zhang Y and Wang J S 2002 Denoising algorithm for ECG signals based on multi-resolution analysis Systems Engineering and Electronics 24 32-4
[28] Li G L and Lv W X 1998 Wavelet transform based electrocardiogy signal analyses and processing Journal of Zhejiang University 32 82-7
[29] Long S C and Weng J F 1998 The detecting and analysis method of the electromyographic signal Foreign Medicine Biomedical Engineering Fascicule 21 78-83
[30] Yang J H, Zhou P, Zhang J S and Lou Z 2000 Experiments on elimination of the noise in NEMG by adopting wavelet transform Journal of Biomedical Engineering 17 44-6
[31] Li J P 1997 *The Wavelet Analysis and Signal Processing* vol 12 (ChongQing: ChongQing Publishing Company)
[32] Stephane Mallat 2003 *The Wavelet Guide of the Signal Processing* (Engineering Industry Publishing Company)
[33] Hu C H, Zhang J B and Xia J 1999 *The Systematic Analysis and Design Based on MATLAB—Wavelet Analysis* vol 12 (Xi’an: Xi’an Electron Science and Technology University Publishing Company)
[34] Albert Boggess and Francis J. Narcowich 2004 *The Basic of the Wavelet Analysis and Fourier analysis* (Electronic Industry Publishing Company)