FEYNMAN-KAC PENALISATIONS OF SYMMETRIC STABLE PROCESSES

MASAYOSHI TAKEDA
Mathematical Institute, Tohoku University, Aoba, Sendai, 980-8578, Japan
email: takeda@math.tohoku.ac.jp

Submitted June 4, 2009, accepted in final form February 6, 2010

AMS 2000 Subject classification: 60J45, 60J40, 35J10
Keywords: symmetric stable process, Feynman-Kac functional, penalisation, Kato measure

Abstract

In K. Yano, Y. Yano and M. Yor (2009), limit theorems for the one-dimensional symmetric \(\alpha \)-stable process normalized by negative (killing) Feynman-Kac functionals were studied. We consider the same problem and extend their results to positive Feynman-Kac functionals of multi-dimensional symmetric \(\alpha \)-stable processes.

1 Introduction

In [9], [10], B. Roynette, P. Vallois and M. Yor have studied limit theorems for Wiener processes normalized by some weight processes. In [16], K. Yano, Y. Yano and M. Yor studied the limit theorems for the one-dimensional symmetric stable process normalized by non-negative functions of the local times or by negative (killing) Feynman-Kac functionals. They call the limit theorems for Markov processes normalized by Feynman-Kac functionals the Feynman-Kac penalisations. Our aim is to extend their results on Feynman-Kac penalisations to positive Feynman-Kac functionals of multi-dimensional symmetric \(\alpha \)-stable processes.

Let \(M^\alpha = (\Omega, \mathcal{F}, \mathcal{F}_t, P_x, X_t) \) be the symmetric \(\alpha \)-stable process on \(\mathbb{R}^d \) with \(0 < \alpha \leq 2 \), that is, the Markov process generated by \(- (1/2)(-\Delta)^{\alpha/2} \), and \((\mathcal{E}, \mathcal{D}(\mathcal{E}))\) the Dirichlet form of \(M^\alpha \) (see (2.1),(2.2)). Let \(\mu \) be a positive Radon measure in the class \(\mathcal{K}_\infty \) of Green-tight Kato measures (Definition 2.1). We denote by \(A^\mu_t \) the positive continuous additive functional (PCAF in abbreviation) in the Revuz correspondence to \(\mu \): for a positive Borel function \(f \) and \(\gamma \)-excessive function \(g \),

\[
(g \mu, f) = \lim_{t \to 0} \frac{1}{t} \int_{\mathbb{R}^d} \mathbb{E}_x \left[\int_0^t f(X_s) dA^\mu_s \right] g(x) dx.
\]

\(^1 \)THE AUTHOR WAS SUPPORTED IN PART BY GRANT-IN-AID FOR SCIENTIFIC RESEARCH (NO.18340033 (B)), JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE
We define the family \(\{Q^\mu_{x,t}\} \) of normalized probability measures by
\[
Q^\mu_{x,t}[B] = \frac{1}{Z^\mu_{t}(x)} \int_B \exp(A^\mu_t(\omega)) \mathbb{P}_x(d\omega), \quad B \in \mathcal{F}_t,
\]
where \(Z^\mu_{t}(x) = \mathbb{E}_x[\exp(A^\mu_t)] \). Our interest is the limit of \(Q^\mu_{x,t} \) as \(t \to \infty \), mainly in transient cases, \(d > \alpha \). They in [16] treated negative Feynman-Kac functionals in the case of the one-dimensional recurrent stable process, \(\alpha > 1 \). In this case, the decay rate of \(Z^\mu_{t}(x) \) is important, while in our cases the growth order is.

We define \(\lambda(\theta) = \inf \{ \mathcal{E}_\theta(u,u) : \int_{\mathbb{R}^d} u^2 d\mu = 1 \} \), \(0 \leq \theta < \infty \), (1.2)
where \(\mathcal{E}_\theta(u,u) = \mathcal{E}(u,u) + \theta \int_{\mathbb{R}^d} u^2 dx \). We see from [5, Theorem 6.2.1] and [12, Lemma 3.1] that the time changed process by \(A^\mu_t \) is symmetric with respect to \(\mu \) and \(\lambda(0) \) equals the bottom of the spectrum of the time changed process. We now classify the set \(\mathcal{K}_\infty \) in terms of \(\lambda(0) \):

(i) \(\lambda(0) < 1 \)
In this case, there exist a positive constant \(\theta_0 > 0 \) and a positive continuous function \(h \) in the Dirichlet space \(\mathcal{D}(\mathcal{E}) \) such that
\[
1 = \lambda(\theta_0) = \mathcal{E}_{\theta_0}(h,h).
\]
(Lemma 3.1, Theorem 2.3). We define the multiplicative functional (MF in abbreviation) \(L^h_t \) by
\[
L^h_t = e^{-\theta_0 \int_{\mathbb{R}^d} h(X_t) - h(X_0)} e^{A^\mu_t}.
\]
(1.3)

(ii) \(\lambda(0) = 1 \)
In this case, there exists a positive continuous function \(h \) in the extended Dirichlet space \(\mathcal{D}_e(\mathcal{E}) \) such that
\[
1 = \lambda(0) = \mathcal{E}(h,h).
\]
([14, Theorem 3.4]). Here \(\mathcal{D}_e(\mathcal{E}) \) is the set of measurable functions \(u \) on \(\mathbb{R}^d \) such that \(|u| < \infty \) a.e., and there exists an \(\mathcal{E} \)-Cauchy sequence \(\{u_n\} \) of functions in \(\mathcal{D}(\mathcal{E}) \) such that \(\lim_{n \to \infty} u_n = u \) a.e. We define
\[
L^h_t = \frac{h(X_t)}{h(X_0)} e^{A^\mu_t}.
\]
(1.4)

(iii) \(\lambda(0) > 1 \)
In this case, the measure \(\mu \) is gaugeable, that is,
\[
\sup_{x \in \mathbb{R}^d} \mathbb{E}_x \left[e^{\lambda_\mu \alpha} \right] < \infty
\]
([15, Theorem 3.1]). We put \(h(x) = \mathbb{E}_x \left[e^{\lambda_\mu \alpha} \right] \) and define
\[
L^h_t = \frac{h(X_t)}{h(X_0)} e^{A^\mu_t}.
\]
(1.5)
The cases (i), (ii), and (iii) are corresponding to the supercriticality, criticality, and subcriticality of the operator, \(-(1/2)(-\Delta)^{\alpha}/2 + \mu\), respectively (\cite{15}). We will see that \(L^h_t\) is a martingale \(\mathbb{P}^h\) for each case, i.e., \(\mathbb{E}_x[L^h_t] = 1\). Let \(M^h = (\Omega, \mathcal{F}_t, X_t)\) be the transformed process of \(M^\alpha\) by \(L^h_t\):

\[
\mathbb{P}^h_x(B) = \int_B L^h_t(\omega)\mathbb{P}_x(d\omega), \quad B \in \mathcal{F}_t.
\]

We then see from [3. Theorem 2.6] and Proposition 3.8 below that if \(\lambda(0) \leq 1\), then \(M^h\) is an \(h^2dx\)-symmetric Harris recurrent Markov process.

To state the main result of this paper, we need to introduce a subclass \(\mathcal{N}^S_\infty\) of \(\mathcal{N}_\infty\); a measure \(\mu \in \mathcal{N}_\infty\) is said to be in \(\mathcal{N}^S_\infty\) if

\[
\sup_{x \in \mathbb{R}^d} |x|^{d-\alpha} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}} < \infty. \tag{1.6}
\]

This class is relevant to the notion of special PCAF’s which was introduced by J. Neveu (\cite{6}); we will show in Lemma 4.4 that if a measure \(\mu\) belongs to \(\mathcal{N}^S_\infty\), then \(\int_0^t \int (1/h(X_s))dA^\mu_s\) is a special PCAF of \(M^h\). This fact is crucial for the proof of the main theorem below. In fact, a key to the proof lies in the application of the Chacon-Ornstein type ergodic theorem for special PCAF’s of Harris recurrent Markov processes (\cite{2. Theorem 3.18}).

We then have the next main theorem.

Theorem 1.1. (i) If \(\lambda(0) \neq 1\), then

\[
\mathcal{Q}^{\mu}_{x,t} \overset{t \to \infty}{\longrightarrow} \mathbb{P}^h_x \quad \text{along } (\mathcal{F}_t),
\]

that is, for any \(s \geq 0\) and any bounded \(\mathcal{F}_s\)-measurable function \(Z,

\[
\lim_{t \to \infty} \frac{\mathbb{E}_x[Z \exp(A^\mu_t)]}{\mathbb{E}_x[\exp(A^\mu_t)]} = \mathbb{P}^h_x[Z].
\]

(ii) If \(\lambda(0) = 1\) and \(\mu \in \mathcal{N}^S_\infty\), then (1.7) holds.

Throughout this paper, \(B(R)\) is an open ball with radius \(R\) centered at the origin. We use \(c, C, \ldots, \text{etc}\) as positive constants which may be different at different occurrences.

2 Preliminaries

Let \(M^\alpha = (\Omega, \mathcal{F}_t, \theta_t, \mathbb{P}_x, X_t)\) be the symmetric \(\alpha\)-stable process on \(\mathbb{R}^d\) with \(0 < \alpha \leq 2\). Here \(\mathcal{F}_t\) is the minimal (augmented) admissible filtration and \(\theta_t, \ t \geq 0\), is the shift operators satisfying \(X_s(\theta_t) = X_{s+t}\), identically for \(s, t \geq 0\). When \(\alpha = 2\), \(M^\alpha\) is the Brownian motion. Let \(p(t,x,y)\) be the transition density function of \(M^\alpha\) and \(G_\beta(x,y), \beta \geq 0\), be its \(\beta\)-Green function,

\[
G_\beta(x,y) = \int_0^\infty e^{-\beta t} p(t,x,y) dt.
\]

For a positive measure \(\mu\), the \(\beta\)-potential of \(\mu\) is defined by

\[
G_\beta \mu(x) = \int_{\mathbb{R}^d} G_\beta(x,y) \mu(dy).
\]
Let P_t be the semigroup of M^α,

$$P_tf(x) = \int_{\mathbb{R}^d} p(t, x, y)f(y)dy = \mathbb{E}_x[f(X_t)].$$

Let $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ be the Dirichlet form generated by M^α: for $0 < \alpha < 2$

\[\mathcal{E}(u, v) = \frac{1}{2} \mathcal{A}(d, \alpha) \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{d+\alpha}} dxdy,\]

\[\mathcal{D}(\mathcal{E}) = \left\{ u \in L^2(\mathbb{R}^d) : \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{(u(x) - u(y))^2}{|x - y|^{d+\alpha}} dxdy < \infty \right\},\]

where $\Delta = \{(x, x) : x \in \mathbb{R}^d\}$ and

$$\mathcal{A}(d, \alpha) = \frac{\alpha 2^{d-1} \Gamma\left(\frac{\alpha + d}{2}\right)}{\pi^{d/2} \Gamma\left(1 - \frac{\alpha}{2}\right)}$$

([5, Example 1.4.1]); for $\alpha = 2$

$$\mathcal{E}(u, v) = \frac{1}{2} D(u, v), \quad \mathcal{D}(\mathcal{E}) = H^1(\mathbb{R}^d),$$

where D denotes the classical Dirichlet integral and $H^1(\mathbb{R}^d)$ is the Sobolev space of order 1 ([5, Example 4.4.1]). Let $\mathcal{D}(\mathcal{E})$ denote the extended Dirichlet space ([5, p.35]). If $\alpha < d$, that is, the process M^α is transient, then $\mathcal{D}(\mathcal{E})$ is a Hilbert space with inner product \mathcal{E} ([5, Theorem 1.5.3]).

Definition 2.1. (I) A positive Radon measure μ on \mathbb{R}^d is said to be in the **Kato class** ($\mu \in \mathcal{K}$ in notation), if

$$\lim_{\beta \to \infty} \sup_{x \in \mathbb{R}^d} G_\beta \mu(x) = 0. \quad (2.3)$$

(II) A measure μ is said to be β-**Green-tight** ($\mu \in \mathcal{K}_\infty(\beta)$ in notation), if μ is in \mathcal{K} and satisfies

$$\lim_{\beta \to \infty} \sup_{R \to \infty} \int_{|y| > R} G_\beta(x, y)\mu(dy) = 0. \quad (2.4)$$

We see from the resolvent equation that for $\beta > 0$

$$\mathcal{K}_\infty(\beta) = \mathcal{K}_\infty(1).$$

When $d > \alpha$, that is, M^α is transient, we write \mathcal{K}_∞ for $\mathcal{K}_\infty(0)$. For $\mu \in \mathcal{K}$, define a symmetric bilinear form \mathcal{E}^μ by

$$\mathcal{E}^\mu(u, u) = \mathcal{E}(u, u) - \int_{\mathbb{R}^d} \bar{u}^2 d\mu, \quad u \in \mathcal{D}(\mathcal{E}), \quad (2.5)$$

where \bar{u} is a quasi-continuous version of u ([5, Theorem 2.1.3]). In the sequel, we always assume that every function $u \in \mathcal{D}(\mathcal{E})$ is represented by its quasi continuous version. Since $\mu \in \mathcal{K}$ charges no set of zero capacity by [11, Theorem 3.3], the form \mathcal{E}^μ is well defined. We see from
Theorem 4.1] that $(\mathcal{E}^\mu, \mathcal{D}(\mathcal{E}))$ becomes a lower semi-bounded closed symmetric form. Denote by \mathcal{H}^μ the self-adjoint operator generated by $(\mathcal{E}^\mu, \mathcal{D}(\mathcal{E})): \mathcal{E}^\mu(u, v) = (\mathcal{H}^\mu u, v)$. Let P_t^μ be the L^2-semigroup generated by \mathcal{H}^μ: $P_t^\mu = \exp(-t\mathcal{H}^\mu)$. We see from [1 Theorem 6.3(iv)] that P_t^μ admits a symmetric integral kernel $p^\mu(t, x, y)$ which is jointly continuous function on $(0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$.

For $\mu \in \mathcal{K}$, let A^μ_t be a PCAF which is in the Revuz correspondence to μ (Cf. [5 p.188]). By the Feynman-Kac formula, the semigroup P_t^μ is written as

$$P_t^\mu f(x) = \mathbb{E}_x[\exp(A^\mu_t f(X_t))].$$

Theorem 2.2 ([11]). Let $\mu \in \mathcal{K}$. Then

$$\int_{\mathbb{R}^d} u^2(x) \mu(dx) \leq \|G_\beta \mu\|_\infty \mathcal{E}_\beta(u, u), \quad u \in \mathcal{D}(\mathcal{E}),$$

(2.7)

where $\mathcal{E}_\beta(u, u) = \mathcal{E}(u, u) + \beta \int_{\mathbb{R}^d} u^2 dx$.

Theorem 2.3. ([14 Theorem 10], [13 Theorem 2.7]) If $\mu \in \mathcal{K}_\infty(1)$, then the embedding of $\mathcal{D}(\mathcal{E})$ into $L^2(\mu)$ is compact. If $d > \alpha$ and $\mu \in \mathcal{K}_\alpha$, then the embedding of $\mathcal{D}_\alpha(\mathcal{E})$ into $L^2(\mu)$ is compact.

3 Construction of ground states

For $d \leq \alpha$ (resp. $d > \alpha$), let μ be a non-trivial measure in $\mathcal{K}_\infty(1)$ (resp. \mathcal{K}_α). Define

$$\lambda(\theta) = \inf \left\{ \mathcal{E}_\theta(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1 \right\}, \quad \theta \geq 0. \quad (3.1)$$

Lemma 3.1. The function $\lambda(\theta)$ is increasing and concave. Moreover, it satisfies $\lim_{\theta \rightarrow \infty} \lambda(\theta) = \infty$.

Proof. It follows from the definition of $\lambda(\theta)$ that it is increasing. For $\theta_1, \theta_2 \geq 0, 0 \leq t \leq 1$

$$\lambda(t \theta_1 + (1-t) \theta_2) = \inf \left\{ \mathcal{E}_{t \theta_1 + (1-t) \theta_2}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1 \right\}$$

$$\geq t \inf \left\{ \mathcal{E}_{\theta_1}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1 \right\} + (1-t) \inf \left\{ \mathcal{E}_{\theta_2}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1 \right\}$$

$$= t \lambda(\theta_1) + (1-t) \lambda(\theta_2).$$

We see from Theorem 2.2 that for $u \in \mathcal{D}(\mathcal{E})$ with $\int_{\mathbb{R}^d} u^2 d\mu = 1$, $\mathcal{E}_\theta(u, u) \geq 1/\|G_\theta \mu\|_\infty$. Hence we have

$$\lambda(\theta) \geq \frac{1}{\|G_\theta \mu\|_\infty}. \quad (3.2)$$

By the definition of the Kato class, the right hand side of (3.2) tends to infinity as $\theta \rightarrow \infty$. \hfill \Box

Lemma 3.2. If $d \leq \alpha$, then $\lambda(0) = 0$.

Proof. Note that for $u \in \mathcal{D}(\mathcal{E})$

$$\lambda(0) \int_{\mathbb{R}^d} u^2 d\mu \leq \mathcal{E}(u, u).$$

Since $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ is recurrent, there exists a sequence $\{u_n\} \subset \mathcal{D}(\mathcal{E})$ such that $u_n \uparrow 1$ q.e. and $\mathcal{E}(u_n, u_n) \rightarrow 0$ ([5 Theorem 1.6.3, Theorem 2.1.7]). Hence if $\lambda(0) > 0$, then $\mu = 0$, which is contradictory. \hfill \Box
We see from Theorem 2.3 and Lemma 3.2 that if $d \leq \alpha$, then there exist $\theta_0 > 0$ and $h \in \mathcal{D}(\mathcal{F})$ such that
\[
\lambda(\theta_0) = \inf \left\{ \mathcal{E}_{\theta_0}(h, h) : \int_{\mathbb{R}^d} h^2 d\mu = 1 \right\} = 1.
\]
We can assume that h is a strictly positive continuous function (e.g. Section 4 in [14]).

Let $M_t^{[h]}$ be the martingale part of the Fukushima decomposition ([5] Theorem 5.2.2):
\[
h(X_t) - h(X_0) = M_t^{[h]} + N_t^{[h]}.
\]
(3.3)

Define a martingale by
\[
M_t = \int_0^t \frac{1}{h(X_s)} dM_s^h
\]
and denote by L_t^h the unique solution of the Doléans-Dade equation:
\[
Z_t = 1 + \int_0^t Z_s dM_s.
\]
(3.4)

Then we see from the Doléans-Dade formula that L_t^h is expressed by
\[
L_t^h = \exp \left(M_t - \frac{1}{2} \langle M^c \rangle_t \right) \prod_{0 \leq s \leq t} \left(1 + \Delta M_s \right) \exp(-\Delta M_s) \exp \left(\frac{h(X_s)}{h(X_{s-})} \right) \exp \left(1 - \frac{h(X_s)}{h(X_{s-})} \right).
\]
Here M_t^c is the continuous part of M_t and $\Delta M_s = M_s - M_{s-}$. By Itô's formula applied to the semi-martingale $h(X_t)$ with the function $\log x$, we see that L_t^h has the following expression:
\[
L_t^h = e^{-\theta_0 t} \frac{h(X_t)}{h(X_0)} \exp(A_{\mu}^t).
\]
(3.5)

Let $d > \alpha$ and suppose that $\theta_0 = 0$, that is,
\[
\lambda(0) = \inf \left\{ \mathcal{E}(u, u) : \int_{\mathbb{R}^d} u^2 d\mu = 1 \right\} = 1.
\]

We then see from [14] Theorem 3.4 that there exists a function $h \in \mathcal{D}(\mathcal{F})$ such that $\mathcal{E}(h, h) = 1$.

We can also assume that h is a strictly positive continuous function and satisfies
\[
\frac{c}{|x|^{d-\alpha}} \leq h(x) \leq \frac{C}{|x|^{d-\alpha}}, \quad |x| > 1
\]
(3.6)

(see (4.19) in [14]). We define the MF L_t^h by
\[
L_t^h = \frac{h(X_t)}{h(X_0)} \exp(A_{\mu}^t).
\]
(3.7)

We denote by $M_t^h = (\Omega, \mathbb{P}_x^h, X_t)$ the transformed process of M^θ by L_t^h,
\[
\mathbb{P}_x^h(d\omega) = L_t^h(\omega) \cdot \mathbb{P}_x(d\omega).
\]
Proposition 3.3. The transformed process $M^h = (P^h_x, X_t)$ is Harris recurrent, that is, for a non-negative function f with $m(\{x : f(x) > 0\}) > 0$,
\[\int_0^\infty f(X_t) dt = \infty \text{ P}_x\text{-a.s.}, \] (3.8)
where m is the Lebesgue measure.

Proof. Set $A = \{x : f(x) > 0\}$. Since M^h is an $h^2 dx$-symmetric recurrent Markov process,
\[\mathbb{P}_x[S_A \circ \theta_n < \infty, \forall n \geq 0] = 1 \text{ for q.e. } x \in \mathbb{R}^d \] (3.9)
by [5, Theorem 4.6]. Moreover, since the Markov process M^h has the transition density function
\[e^{-\theta_0 t} \cdot \frac{p^h(t, x, y)}{h(x)h(y)} \]
with respect to $h^2 dx$, (3.9) holds for all $x \in \mathbb{R}^d$ by [5, Problem 4.6.3]. Using the strong Feller property and the proof of [3, Chapter X, Proposition (3.11)], we see from (3.9) that M^h is Harris recurrent.

We see from [14, Theorem 4.15]: If $\theta_0 > 0$, then $h \in L^2(\mathbb{R}^d)$ and M^h is positive recurrent. If $\theta_0 = 0$ and $\alpha < d \leq 2\alpha$, then $h \not\in L^2(\mathbb{R}^d)$ M^h is null recurrent. If $\theta_0 = 0$ and $d \geq 2\alpha$, then $h \in L^2(\mathbb{R}^d)$ M^h is positive recurrent.

4 Penalization problems

In this section, we prove Theorem 1.1.

(1°) Recurrent case ($d \leq \alpha$)

Theorem 4.1. Assume that $d \leq \alpha$. Then there exist $\theta_0 > 0$ and $h \in \mathcal{D}(\mathcal{F})$ such that $\lambda(\theta_0) = 1$ and $\mathcal{E}_{\theta_0}(h, 1) = 1$. Moreover, for each $x \in \mathbb{R}^d$
\[e^{-\theta_0 t} \mathbb{E}_x \left[e^{\mathcal{L}_t x} \right] \rightarrow h(x) \int_{\mathbb{R}^d} h(x) dx \text{ as } t \rightarrow \infty. \] (4.1)

Proof. The first assertion follows from Theorem 2.3 and Lemma 3.2. Note that
\[e^{-\theta_0 t} \mathbb{E}_x \left[e^{\mathcal{L}_t x} \right] = h(x) \mathbb{E}_x \left[\frac{1}{h(X_t)} \right] \]
Then by [13, Corollary 4.7] the right hand side converges to $h(x) \int_{\mathbb{R}^d} h(x) dx$.

Theorem 4.1 implies 1.7. Indeed,
\[
\begin{align*}
E_x \left(\exp(A^\mu_t) | \mathcal{F}_t \right) &= \frac{e^{-\theta_0 t} \mathbb{E}_x \left(\exp(A^\mu_t) | \mathcal{F}_t \right)}{\mathbb{E}_x \left(\exp(A^\mu_t) \right)} \\
&= \frac{e^{-\theta_0 t} \mathbb{E}_x \left(\exp(A^\mu_t) \right) \mathbb{E}_x \left(\exp(A^\mu_t) \right) h(X_t) \int_{\mathbb{R}^d} h(x) dx}{\mathbb{E}_x \left(\exp(A^\mu_t) \right) h(X_t) \int_{\mathbb{R}^d} h(x) dx} = \mathbb{L}^h \text{ as } t \rightarrow \infty.
\end{align*}
\]
We showed in [3, Theorem 2.6 (b)] that the transformed process M^h is recurrent. We see from this fact that L^h_t is martingale, $\mathbb{E}(L^h_t) = 1$. Therefore Scheff’s lemma leads us to Theorem 1.1 (i) (e.g. [9]).

(2°) Transient case ($d > \alpha$)

If $\lambda(0) < 1$, there exist $\theta_0 > 0$ and $h \in \mathcal{D}(E)$ such that $\lambda(\theta_0) = 1$ and $\mathcal{E}_{\theta_0}(h, h) = 1$. Then we can show the equation (4.1) in the same way as above. If $\lambda(0) > 1$, then A^μ_t is gaugeable (see Theorem 4.1 below), that is,

$$
\sup_{x \in \mathbb{R}^d} \mathbb{E}_x \left[e^{A^\mu_t} \right] < \infty,
$$

and thus

$$
\lim_{t \to \infty} \mathbb{E}_x \left[e^{A^\mu_t} \right] = \mathbb{E}_x \left[e^{A^\mu_\infty} \right].
$$

Hence for any $s \geq 0$ and any \mathcal{F}_s-measurable bounded function Z

$$
\frac{\mathbb{E}_x \left[Ze^{A^\mu_t} \right]}{\mathbb{E}_x \left[e^{A^\mu_t} \right]} = \frac{\mathbb{E}_x \left[Ze^{A^\mu_t} \mathbb{E}_x \left[e^{A^\mu_t-s} \right] \right]}{\mathbb{E}_x \left[e^{A^\mu_t} \right]} \rightarrow \frac{1}{h(x)} \mathbb{E}_x \left[Ze^{A^\mu_t} h(X_s) \right] = \mathbb{E}_x^h \left[Z \right]
$$

as $t \to \infty$.

In the remainder of this section, we consider the case when $\lambda(0) = 1$. It is known that a measure $\mu \in \mathcal{H}_\infty$ is Green-bounded,

$$
\sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}} < \infty. \quad (4.2)
$$

To consider the penalisation problem for μ with $\lambda(0) = 1$, we need to impose a condition on μ.

Definition 4.2. (I) A measure $\mu \in \mathcal{H}$ is said to be special if

$$
\sup_{x \in \mathbb{R}^d} (|x|^{d-\alpha} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}}) < \infty. \quad (4.3)
$$

We denote by \mathcal{H}^S_∞ the set of special measures.

(II) A PCAF A_t is said to be special with respect to M^h, if for any positive Borel function g with $\int_{\mathbb{R}^d} g \, dx > 0$

$$
\sup_{x \in \mathbb{R}^d} \mathbb{E}_x^h \left[\int_0^\infty \exp \left(-\int_0^t g(X_s) \, ds \right) \, dA_t \right] < \infty.
$$

A Kato measure with compact support belongs to \mathcal{H}^S_∞. The set \mathcal{H}^S_∞ is contained in \mathcal{H}_∞,

$$
\mathcal{H}^S_\infty \subset \mathcal{H}_\infty. \quad (4.4)
$$

Indeed, since for any $R > 0$

$$
M(\mu) := \sup_{x \in \mathbb{R}^d} \left(|x|^{d-\alpha} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}} \right) \geq R^{d-\alpha} \sup_{x \in B(R)} \int_{\mathbb{R}^d} \frac{d\mu(y)}{|x-y|^{d-\alpha}},
$$
we have
\[\sup_{x \in \mathbb{R}^d} \int_{B_R(y)} \frac{d\mu(y)}{|x-y|^{d-\alpha}} = \sup_{x \in \mathbb{B}(R,y)} \int_{\mathbb{B}(R,y)} \frac{d\mu(y)}{|x-y|^{d-\alpha}} \leq \frac{M(\mu)}{R^{d-\alpha}} \to 0, \ R \to \infty. \]

Lemma 4.3. Let \(B_t \) be a PCAF. Then
\[\mathbb{E}_x \left[\int_0^\infty e^{(\alpha_s - \alpha_B) t} dA^\mu_s \right] = h(x) \mathbb{E}_x^h \left[\int_0^\infty e^{-B_t} \frac{dA^\mu_t}{h(X_t)} \right]. \]

Proof. We have
\[
\begin{align*}
\mathbb{E}_x \left[\int_0^s e^{-B_t} \frac{dA^\mu_t}{h(X_t)} \right] &= \mathbb{E}_x \left[e^{\alpha_s h(X_s)} \int_0^s e^{-B_t} \frac{dA^\mu_t}{h(X_t)} \right] \\
&= \mathbb{E}_x \left[\int_0^s e^{\alpha_s h(X_s)} e^{-B_t} \frac{dA^\mu_t}{h(X_t)} \right].
\end{align*}
\]

Put \(Y_t = e^{\alpha_s h(X_s)} e^{-B_t} / h(X_t) \). Then since \(Y_t \) is a right continuous process, its optional projection is equal to \(\mathbb{E}_x[Y_t|\mathcal{F}_t] \) (e.g. [15] Theorem 7.10). Hence the right hand side equals
\[\mathbb{E}_x \left[\int_0^\infty \mathbb{E}_x \left[Y_t|\mathcal{F}_t \right] dA^\mu_t \right] = \mathbb{E}_x \left[\int_0^\infty e^{\alpha_s h(X_s)} e^{-B_t} \frac{1}{h(X_t)} \mathbb{E}_{X_s} \left[e^{\alpha_s h(X_s)} \right] dA^\mu_t \right]. \]

Since \(\mathbb{E}_{X_s} \left[e^{\alpha_s h(X_s)} \right] = h(X_s) \), the right hand side equals
\[\mathbb{E}_x \left[\int_0^\infty e^{\alpha_s - \alpha_B} dA^\mu_t \right]. \]

Hence the proof is completed by letting \(s \to \infty \). \(\square \)

The next theorem was proved in [15].

Theorem 4.1. (15) Suppose \(d > \alpha \). For \(\mu = \mu^+ - \mu^- \in \mathcal{K}_\infty - \mathcal{K}_\infty^\prime \) let \(A^\mu_t = A^\mu_t^+ - A^\mu_t^- \). Then the following conditions are equivalent:

(i) \(\sup_{x \in \mathbb{R}^d} \mathbb{E}_x[e^{\alpha x}] < \infty \).

(ii) There exists the Green function \(G^\mu(x,y) < \infty (x \neq y) \) of the operator \(-\frac{1}{2}(-\Delta)^{\alpha/2} + \mu \) such that
\[\mathbb{E}_x \left[\int_0^\infty e^{\alpha x} f(X_t) dt \right] = \int_{\mathbb{R}^d} G^\mu(x,y)f(y)dy. \]

(iii) \(\inf \left\{ \mathbb{E}(u,u) + \int_{\mathbb{R}^d} u^2 d\mu^- : \int_{\mathbb{R}^d} u^2 d\mu^+ = 1 \right\} > 1. \)

We see from (4.19) in [14] that if one of the statements in Theorem 4.1 holds, then \(G^\mu(x,y) \) satisfies
\[G(x,y) \leq G^\mu(x,y) \leq CG(x,y). \] (4.5)
Lemma 4.4. If $\mu \in \mathcal{K}_\infty^S$, then $\int_0^t \frac{dA^\mu_t}{h(X_t)}$ is special with respect to \mathbf{M}^h.

Proof. We may assume that g is a bounded positive Borel function with compact support. Note that by Lemma 4.3

$$E_x \left[e^{\int_0^t g(X_s)ds} \right] = \frac{1}{h(x)} \int_0^t \exp \left(\frac{A^\mu_t - \int_0^t g(X_s)ds}{h(X_t)} \right) \frac{dA^\mu_t}{h(X_t)}$$

If the measure μ satisfies $\lambda(0) = 1$, then $\mu - g \cdot dx \in \mathcal{K}_\infty^ \mathcal{K}_\infty$ satisfies Theorem 4.1 (iii), and $G^{\mu - {g \cdot dx}}(x,y)$ is equivalent with $G(x,y)$ by (4.5). Therefore the equation (3.6) implies that (4.3) is equivalent to that sup$_{x \in \mathbb{R}^d} \left\{ (1/h(x))G^{\mu - {g \cdot dx}}(x) \right\} < \infty$.

We note that by Lemma 4.3

$$E_x \left[e^{\int_0^t g(X_s)ds} \right] = 1 + \int_0^t e^{\int_0^s g(X_u)du} \frac{dA^\mu_s}{h(X_s)}.$$

Thus for a finite positive measure ν,

$$E_\nu \left[e^{\int_0^t g(X_s)ds} \right] = \nu(\mathbb{R}^d) + \langle \nu, h \rangle E^h \left[\int_0^t \frac{dA^\mu_s}{h(X_s)} \right].$$

(4.6)

where $\nu^h = h \cdot \nu / \langle \nu, h \rangle$. For a positive smooth function k with compact support, put

$$\psi(t) = E_x \left[\int_0^t k(X_s)ds \right].$$

Then $\lim_{t \to \infty} \psi(t) = \infty$ by the Harris recurrence of \mathbf{M}^h. Moreover,

$$\lim_{t \to \infty} \frac{\psi(t+s)}{\psi(t)} = 1.$$ (4.7)

Indeed,

$$\psi(t+s) = E_x \left[\int_0^t k(X_u)du \right] + E_x \left[\int_0^t k(X_u)du \right] \leq \psi(t) + \|k\|_\infty s,$$

and

$$1 \leq \frac{\psi(t+s)}{\psi(t)} \leq 1 + \frac{\|k\|_\infty s}{\psi(t)}.$$ (4.7)

We see from [4, Lemma 4.4] that the Revuz measure of A^μ_t is $h^2 \mu$ as a PCAF of \mathbf{M}^h. Since by (4.6)

$$\frac{1}{\psi(t)} E_\nu \left[e^{\psi(t)} \right] = \frac{\nu(\mathbb{R}^d)}{\psi(t)} + \langle \nu, h \rangle E^h \left[\int_0^t \frac{dA^\mu_s}{h(X_s)} \right] \frac{1}{\psi(t)} \int_0^t k(X_u)du$$
and \(\int_0^t (1/h(X_s))dA^h_s \) and \(\int_0^t k(X_s)ds \) are special with respect to \(M^h \), we see from Chacon-Ornstein type ergodic theorem in [2, Theorem 3.18] that

\[
\frac{1}{\psi(t)} \mathbb{E}_v \left[e^{\psi^h_t} \right] \to (v, h) \cdot \frac{\langle \mu, h \rangle}{\int_{\mathbb{R}^d} kh^2 dx} \quad (4.8)
\]
as \(t \to \infty \). Note that \(\langle \mu, h \rangle < \infty \) by (3.6) and (4.2).

For a bounded \(\mathcal{F}_t \)-measurable function \(Z \), define a positive finite measure \(\nu \) by

\[
\nu(B) = \mathbb{E}_x \left[Z e^{\psi^h_{t-s}} ; X_s \in B \right], \quad B \in \mathcal{B}(\mathbb{R}^d).
\]

Then by the Markov property,

\[
\mathbb{E}_x \left[Z e^{\psi^h_t} \right] = \mathbb{E}_x \left[e^{\psi^h_{t-s}} \right].
\]

Therefore

\[
\lim_{t \to \infty} \frac{\mathbb{E}_x \left[Z e^{\psi^h_t} \right]}{\mathbb{E}_x \left[e^{\psi^h_t} \right]} = \lim_{t \to \infty} \frac{\mathbb{E}_x \left[Z e^{\psi^h_t} / \psi(t) \right]}{\mathbb{E}_x \left[e^{\psi^h_t} / \psi(t) \right] / \psi(t)} = \lim_{t \to \infty} \frac{(\psi(t-s)/\psi(t)) \mathbb{E}_x \left[e^{\psi^h_{t-s}} \right] / \psi(t-s)}{\mathbb{E}_x \left[e^{\psi^h_t} / \psi(t) \right]}.
\]

By (4.7) and (4.8), the right hand side equals

\[
\frac{(v, h)(\mu, h)}{(h(x)(\mu, h))} = \frac{1}{h(x)} \mathbb{E}_x \left[Z e^{\psi^h_t} h(X_s) \right] = \mathbb{E}_x^h[Z]. \quad (4.9)
\]

Remark 4.5. We suppose that \(d > \alpha \) and \(\lambda(0) = 1 \). If \(d > 2\alpha \), then \(h \in L^2(\mathbb{R}^d) \) on account of (3.6). Hence \(M^h \) is an ergodic process with the invariant probability measure \(h^2 dx \), and thus for a smooth function \(k \) with compact support,

\[
\frac{\psi(t)}{t} = \frac{1}{t} \mathbb{E}_x^h \left[\int_0^t k(X_s)ds \right] \to \int_{\mathbb{R}^d} gh^2 dx.
\]

Hence we see that for \(\mu \in \mathcal{N}^h \infty \)

\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E}_x \left[e^{\psi^h_t} \right] = h(x)(\mu, h). \quad (4.10)
\]

References

[1] Albeverio, S., Blanchard, P., Ma, Z.M.: Feynman-Kac semigroups in terms of signed smooth measures, in "Random Partial Differential Equations" ed. U. Hornung et al., Birkhäuser, (1991). [MR1185735]

[2] Brancovan, M.: Fonctionnelles additives speciales des processus recurrents au sens de Harris, Z. Wahrsch. Verw. Gebiete. 47, 163-194 (1979). [MR0523168]

[3] Chen, Z.-Q., Fitzsimmons, P.J., Takeda, M., Ying, J., Zhang, T.S: Absolute continuity of symmetric Markov processes, Ann. Probab. 32, 2067-2098 (2004). [MR2073186]
[4] Fitzsimmons, P.J., Absolute continuity of symmetric diffusions, Ann. Probab. 25, 230-258 (1997). MR1428508

[5] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin (1994). MR1303354

[6] Neveu, J.: Potentiel Markovien recurrent des chaines de Harris. Ann. Inst. Fourier 22, 85-130 (1972). MR0380992

[7] Rogers, L., Williams, D.: Diffusions, Markov Processes, and Martingales, Vol. 2, John Wiley (1987). MR0921238

[8] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Third edition, Springer-Verlag, Berlin (1999). MR1725357

[9] Roynette, B., Vallois, P., Yor, M.: Some penalisations of the Wiener measure. Jpn. J. Math. 1, 263-290 (2006). MR2261065

[10] Roynette, B., Vallois, P., Yor, M.: Limiting laws associated with Brownian motion perturbed by normalized exponential weights. I. Studia Sci. Math. Hungar. 43, 171-246 (2006). MR2229621

[11] Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures, Potential Analysis 5, 109-138 (1996). MR1378151

[12] Takeda, M.: Exponential decay of lifetimes and a theorem of Kac on total occupation times, Potential Analysis 11, 235-247, (1999). MR1717103

[13] Takeda, M.: Large deviations for additive functionals of symmetric stable processes. J. Theoret. Probab. 21, 336-355 (2008). MR2391248

[14] Takeda, M., Tsuchida, K.: Differentiability of spectral functions for symmetric α-stable processes, Trans. Amer. Math. Soc. 359, 4031-4054 (2007). MR2302522

[15] Takeda, M., Uemura, T.: Subcriticality and gaugeability for symmetric α-stable processes, Forum Math. 16, 505-517 (2004). MR2044025

[16] Yano, K., Yano, Y., Yor, M.: Penalising symmetric stable Lévy paths, J. Math. Soc. Japan. 61, 757-798 (2009). MR2552915