The aim of the research was to investigate the influence of strontium on the structure of thin films La$_{1-x}$Sr$_x$FeO$_3$ ($x = 0; 0.1; 0.2$). The LaFeO$_3$ and Sr-doped LaFeO$_3$ films were produced by pulsed laser deposition (PLD) on Si (100) substrate using the Nd-YAG ($\lambda = 266$ nm) laser. SEM, AFM and XRD methods were used to characterize the structure and morphology of the thin films. X-Ray Diffraction analysis showed only the LaFeO$_3$ phase in the undoped thin film and the La0.9Sr0.1O$_3$ and La0.8Sr0.2O$_3$ phases in thin films doped by Sr. The mean crystallite size, calculated by Williamson-Hall method, was smaller (of the order of 18 nm) in films doped by Sr. SEM analysis showed small droplets in thin films doped by Sr. Highly developed surface layer was observed using the AFM microscope for thin films doped by Sr.

Keywords: Perovskite LaFeO$_3$, thin films, gas sensors, PLD
Neocera. The parameters of the deposition system were as following: target-substrate distance $d = 70 \text{ mm}$, the oxygen pressure in the deposition chamber $p = 5 \text{ Pa}$ and the laser beam incident angle on the target $\zeta = 45^\circ$. Substrates and target were parallel. The deposition conditions were: laser frequency $f = 10 \text{ Hz}$, laser beam energy density on the target $\varepsilon = 2 \text{ J/cm}^2$ and the substrate temperature 933°K.

2.3. Characterization of the target and thin films

The phase analyses of the target and thin films were performed by means of the X-ray diffraction method using PANanalytical EMPYREAN DY 1061 with Cu K_α radiation in Bragg-Brentano geometry and the grazing angle $\alpha = 1^\circ$. PDF 4+ database of ICDD and CelRef software were used for phase identification and for calculation of the cell parameters, respectively. The surface morphology and chemical composition of the targets were analyzed using scanning electron microscope (SEM) FEI Inspect S50. The topography of the surface was investigated using atomic force microscope (AFM) Veeco Dimension® Icon™ SPM with NanoScope V.

3. Results and discussion

Phase compositions of the powders before mechanical alloying process were studied by X-Ray diffraction method in Bragg-Brentano geometry. Phases like La(OH)$_3$, La$_2$O$_3$, La$_{0.9}$Sr$_{0.1}$O$_3$ and La$_{0.8}$Sr$_{0.2}$O$_3$ were identified in powders (Fig. 1a,b). In order to obtain a homogeneous phase of powders, we proposed milling for 10 h and then annealing in temperature 973$^\circ\text{K}$ for 4 h. The XRD analysis of the powder before and after milling as well as after the annealing process are shown in Figure 1. The homogenous powders were obtain after 10 h milling (Fig. 1e,f).

![Fig. 1. XRD analysis of the powder a) deliver from producer La$_{0.9}$Sr$_{0.1}$FeO$_3$; b) deliver from producer La$_{0.8}$Sr$_{0.2}$FeO$_3$; c) after annealing La$_{0.9}$Sr$_{0.1}$FeO$_3$; d) after annealing La$_{0.8}$Sr$_{0.2}$FeO$_3$; e) after 10 h milling La$_{0.9}$Sr$_{0.1}$FeO$_3$; f) after 10 h milling La$_{0.8}$Sr$_{0.2}$FeO$_3$](image-url)
The targets used for PLD process were formed from sintered powders of La0.9Sr0.1O3 and La0.8Sr0.2O3. The analysis of thin films was performed in Grazing geometry at the angle $\alpha = 1^\circ$. The results are shown in Figure 2. The identification of phases was based on the JCPDS card number 04-008-0622, 04-007-6515, and 00-035-1480, for LaFeO3, La0.9Sr0.1O3, and La0.8Sr0.2O3, respectively. The analysis of the diffraction patterns did not reveal the presence of other phases, such as La2O3, Fe3O4, and SrCoO3.

![Fig. 2. XRD analysis of the thin films La1-xSrxFeO3](image)

Based on received X-Ray patterns a depth of penetrating of X-ray was calculated (Eq. (1)) for $\alpha = 1^\circ$ and $\alpha = 3^\circ$. For $\alpha = 1^\circ$ the calculated depth corresponds to $d = 107$ nm. On the diffraction pattern measured at $\alpha = 1^\circ$ (Fig. 2c) it is visible an extension from diffraction line at about $2\theta = 52^\circ$ that results from the support Si (100). Calculation by means of Eq. 1 suggests that mean thickness of the films studied is about 100 nm.

$$d = \frac{-\ln(1 - G_x)}{\mu \left(\frac{1}{\sin \alpha} + \frac{1}{\sin(2\theta - \alpha)} \right)}$$

α – grazing angle of the radiation beam, θ – Bragg angle, μ – linear rate of the radiation absorption.

The average crystallite size in each layer was calculated. On the basis of the X-Ray results determined from the Williamson-Hall plot. The results are summarized in Table 1. For calculation we used only peaks (002), (112), (022), (004), (204). The crystallite size decreases with increasing Sr doping. The decreasing of the crystallite size may be due to the slowing of the crystal growth process [19]. Thus, doping of LaFeO3 by Sr possibly affects the crystal growth rate, resulting in decreasing the mean grain size in these films.

Table 1: Structural parameters for Sr$^{2+}$ doped La$_{1-x}$Sr$_x$FeO$_3$ $(x = 0; 0.1; 0.2)$ perovskites

Compounds	LaFeO$_3$ $(T = 30^\circ\text{C})$	X = 0	X = 0.1	X = 0.2	
Crystal system space group	Orthorhombic Pbnm-62	$\alpha = \beta = \gamma = 90^\circ$			
Lattice parameters					
a [nm]	0.5554	0.5566	0.5552	0.5522	
b [nm]	0.5556	0.5557	0.5545	0.5546	
c [nm]	0.7853	0.7856	0.7859	0.7837	
Cell volume [nm3]	242.3	242.9	241.96	240	
Grain size D [nm]	36.8	18	21.1		
Roughness R_s [nm]	2.27	5.57	7.97		

At ambient conditions the lattice parameters of LaFeO$_3$ are: $a = 0.5554$ nm, $b = 0.5556$ nm and $c = 0.7853$ nm where $\alpha = \beta = \gamma = 90^\circ$. In our LaFeO$_3$ thin film the lattice parameter is slightly higher that reported in the literature (Tab. 1). The increasing of lattice parameters in LaFeO$_3$ with increasing of the process temperature was observed by Selbach at al. [20]. Lattice parameters calculated for our LaFeO$_3$ film at temperature 933$^\circ$K, the temperature of the support during PLD process, are in agreement with that refined by Selbach. This increasing lattice parameter and cell volume with temperature was explained by Selbach as transition of orthorhombic Pbnm phase to rhom-
bohedral R3c. The unit cell distortion subsequently increases gradually towards the transition to rhombohedral R3c at 1228°K. The linear thermal expansion coefficients between 500°K and 1200°K are \(\alpha_a = 14.270\pm0.3\times10^{-6} \), \(\alpha_b = 9.270\pm0.3\times10^{-6} \), and \(\alpha_c = 12.470\pm0.3\times10^{-6} \) [20]. Comparison of the diffraction patterns of the undoped and doped thin films (Fig. 2) showed the small moving of the diffraction lines (individual peaks) towards higher values of the 2\(\Theta \). Calculated lattice parameters change with the increasing of Sr content. This is the effect of doping and changes of the oxidation state of Fe. The ionic radius (8-coordinate) of La\(^{3+} \) (0.13 nm) is slightly less than that of Sr\(^{2+} \) (0.14 nm). To preserve the electro neutrality upon the substitution by atoms having the oxidation state of \(2^+ \), iron oxidation state increases from Fe\(^{3+} \) towards Fe\(^{4+} \). Taking into account the differences in the ionic radius of iron in oxidation states Fe\(^{3+} \) (0.0645 nm) and Fe\(^{4+} \) (0.0585 nm) we observed the decreasing of the cell volume [21,22]. Similar effects were observed in the system LaFeO\(_3\) doped by Ca and Ti where the unit cell volumes decreased comparing to LaFeO\(_3\) [21,22]. SEM images of La\(_{1-x}\)Sr\(_x\)FeO\(_3\) are show in (Fig. 3a-c). The LaFeO\(_3\) thin film
is free from the droplets and cracks but the Sr-doped LaFeO$_3$ films have on the surface small droplets and the La$_{0.8}$Sr$_{0.2}$O$_3$ thin film is also cracked. The cracks are the consequence of too fast cooling process in this case. The structure of La$_{1-x}$Sr$_x$FeO$_3$ thin films are nanocrystalline, the shape of the crystals does not change considerably upon Sr doping, what was observed in our previous investigation of La$_{1-x}$Sr$_x$CoO$_3$ thin films [23].

Surface observations by AFM confirmed the results of the X-Ray analysis that the grain size of Sr-doped thin films was smaller than the grain size of the undoped LaFeO$_3$. Analysis by AFM was performed on 500×500 μm2 area (Fig. 3d-f). On AFM scans we can observe refinement of the grain as a result of doping. The AFM results showed that the roughness parameter R_a (Table 1) is bigger in doped films.

4. Conclusions

The main objective of this research was to analyze the influence of strontium doping on the structure of LaFeO$_3$ films as potential material for gas sensor application and to deposit homogenous thin films of La$_{1-x}$Sr$_x$FeO$_3$ using Pulsed Laser Deposition method. The study showed that the PLD process parameters were set correctly and it was possible to obtain nanocrystalline thin films of the assumed phase composition. The X-Ray diffraction patterns revealed only LaFeO$_3$ in undoped films and La$_{0.9}$Sr$_{0.1}$O$_3$ and La$_{0.8}$Sr$_{0.2}$O$_3$ phases in films doped by Sr. Substitution of La by Sr caused the decrease of the grain size and the decreased cell volume which can we explain by the blockade of crystalline growth. The decreasing of the grain size (calculated and observed by SEM) and increasing of the roughness parameter R_a determined by AFM might have positive impact on the sensitivity to gases due to the increase of the surface reactions efficiency.

Acknowledgements

This work was financially supported by the National Science Center through project number: UMO-2013/09/B/ST8/01681.

REFERENCES

[1] J.W. Fergus, Sensors and Actuators B. 123, 1169 (2007).
[2] X. Liu, H. Ji, Y. Gu, M. Xu, Mat. Scien. and Eng. B 133, 98 (2006).
[3] S. Furfori, N. Russo, D. Fino, G. Saracco, V. Specchia, Chem. Eng. Scien. 65, 120 (2010).
[4] F. Patel, S. Patel, Proc. Engin. 51, 324 (2013).
[5] H. Takamura, Membrane Reactors for Energy Applications and Basic Chemical Production, 519-54 (2015).
[6] K. Zhao, F. He, Z. Huang, A. Zheng, H. Li, Z. Zhao, Inter. J. of Hydr. Ener. 39, 3243 (2014).
[7] O. Gwon, S. Yoo, J. Shin, G. Kim, Inter. J. of Hydr. Ener. 39, 20806 (2014).
[8] X. Ding, W. Zhu, G. Hua, J. Li, Z. Wu, Electr. Acta 163, 204 (2015).
[9] H. Li, S. Yin, Y. Wang, T. Sekino, S.W. Lee, T. Sato, J. of Cat. 297, 65 (2013).
[10] S. Ferraru, A.I. Borhan, P. Samoila, C. Mita, S. Cucu-Man, A.R. Iordan, M.N. Palamaru, J. Phot. and Phot. A, Chem. 307-308, 1 (2015).
[11] P.A. Murade, V.S. Sangawar, G.N. Chaudhari, V.D. Kapse, A.U. Bajpeyee, Curr. Appl. Phys. 11, 451 (2011).
[12] S. Thirumalairajan, K. Girija, V.R. Mastelaro, N. Ponpandian, Appl Mater. Interf. 6(16), 13917 (2014).
[13] Ch.W. Lee, R.K. Behera, S. Okamoto, R. Devanathan, E.D. Wachsman, S.R. Phillipot, S.B. Sinnott, J. Am. Ceram. Soc. 94, 1931 (2011).
[14] S. Thirumalairajan, K. Girija, V. Ganesh, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Cryst. Growth Des. 13, 291 (2013).
[15] P. Song, H. Qin, L. Zhang, K. An, Zh. Lin, J. Hu, M. Jiang, Sens. and Actuat. B 104, 312 (2005).
[16] Y.M. Zhang, Y.T. Lin, J.L. Chen, J. Zhang, Z.Q. Zhu, Q.J. Liu, Sens. and Actuat. B. Chemical 190, 171 (2014).
[17] J.W. Seo, E.E. Fullerton, F. Nolting, A. Scholl, J. Fompeyrine, J.P. Locquet, J. Phys.: Condens. Matter 20, 264014 (2008).
[18] M. Nistor, N.B. Mandaehel, J. Perrière, J. Phys. D: Appl. Phys. 41, 165205 (2008).
[19] R. Henda, G. Wilson, J.G. Munro, O. Alshekhli, A.M. McDonald, Thin Solid Films 520, 1885 (2012).
[20] S.M. Selbach, J.R. Tolchard, A. Fossdal, T. Grande, Journal of Solid State Chemistry 196, 249 (2012).
[21] S. Phokha, S. Hunpratup, S. Pinitsoontorn, B. Putasaeng, S. Rujirawat, S. Maensiri, Materials Research Bulletin 57, 118 (2015).
[22] G. Pecchi, M.G. Jiliberto, A. Buljan, E.J. Delgado, Solid State Ionics 187, 27 (2011).
[23] A. Kopia, L. Cieniek, K. Kowalski, J. Kusinski, Solid State Phenomena 231, 19 (2015).