First Measurements of Absolute Branching Fractions of the Ξ^0_c Baryon at Belle

Y. B. Li,69 C. P. Shen,2,10 C. Z. Yuan,26 I. Adachi,17,13 H. Aihara,84 S. Al Said,79,35 D. M. Asner,3 T. Aushev,54 R. Ayad,79 I. Badhrees,79,34 Y. Ban,69 V. Bansal,67 C. Belenko,12 M. Berger,76 V. Bhardwaj,21 B. Bhuyan,22 T. Bilka,6 J. Biswal,54 A. Bondar,4,65 A. Bozek,62 M. Bračko,48,31 L. Cao,88 D. Červenkov,5 A. Chen,59 B. G. Cheon,15 K. Chilikin,43 K. Cho,37 S.-K. Choi,14 Y. Choi,77 D. Cinabro,88 S. Cunliffe,8 S. Di Carlo,41 Z. Doležal,5 T. V. Dong,17,13 Z. Drásal,5 S. Eidelman,4,65,43 J. E. Fast,67 B. G. Fulsom,67 R. Garg,69 V. Gaur,87 N. Gabyshev,4,65 A. Garmash,4,65 A. Giri,23 P. Goldenzweig,32 D. Greenwald,31 B. Grube,81 K. Hayasaka,58 C.-L. Hsu,78 T. Iijima,56,55 K. Inami,55 G. Inguglia,8 J. Ishikawa,82 R. Itoh,17,13 M. Iwasaki,66 Y. Iwasaki,17 W. W. Jacobs,25 S. Jia,2 Y. Jin,84 D. Joffe,33 K. K. Joo,6 G. Karyan,8 T. Kawasaki,36 H. Kichimi,17,13 H. Kim,40 J. B. Kim,38 K. T. Kim,38 S. H. Kim,15 K. Kinoshita,7 P. Kodyś,5 S. Korpar,48,31 D. Kotchetkov,16 P. Krizan,44,31 R. Kroeger,51 P. Krokovny,4,65 T. Kumita,86 A. Kuzmin,4,65 Y.-J. Kwon,90 J. Y. Lee,73 S. C. Lee,40 L. K. Li,26 L. Li Gioi,49 J. Libby,24 D. Liventsev,87,17 Z. Lubej,31 J. MacNaughton,52 M. Masuda,83 T. Matsuda,52 M. Merola,28,57 K. Miyabayashi,58 H. Miyata,64 R. Mizuk,43,54 G. B. Mohanty,80 R. Mussa,29 E. Nakano,66 M. Nakao,17,13 K. J. Nath,22 M. Nayak,88,17 M. Niyama,39 S. Nishida,17,13 H. Ono,53,64 Y. Onuki,84 P. Pakhlov,43,54 G. Pakhlova,43,54 Pal,5 S. Pardi,28 S.-H. Park,90 S. Paul,81 T. K. Pedlar,46 R. Pestotnik,31 L. E. Piilonen,87 V. Popov,43,54 E. Prencipe,19 G. Russo,28 Y. Sakai,17,13 M. Salehi,47,44 S. Sandilya,17 L. Santelj,17 T. Sanuki,82 V. Savinov,70 O. Schneider,42 G. Schnell,120 J. Schueler,8 C. Schwanda,27 A. J. Schwartz,7 Y. Seino,64 K. Senyo,89 M. E. Sevior,50 T.-A. Shibata,85 J.-G. Shiu,61 B. Shwartz,4,65 E. Solovieva,43,54 M. Starič,31 M. Sumihama,11 J. Sutcliffe,32 M. Takizawa,74,18,71 K. Tanida,30 Y. Tao,9 F. Tenchini,8 K. Trabelsi,17,13 M. Uchida,85 T. Uglov,43,54 Y. Unno,15 S. Uno,17,13 P. Urquijo,50 R. Van Tender,17 G. Varner,16 B. Wang,7 C. H. Wang,60 M.-Z. Wang,61 P. Wang,26 X. L. Wang,10 E. Won,38 S. B. Yang,73 H. Ye,7 J. Yelton,9 J. H. Yin,26 Y. Yusa,64 Z. P. Zhang,72 V. Zhilich,85 and V. Zhukova43

(Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191
3Brookhaven National Laboratory, Upton, New York 11973
4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague
6Chonnam National University, Kwangju 660-701
7University of Cincinnati, Cincinnati, Ohio 45221
8Deutsches Elektronen–Synchrontron, 22607 Hamburg
9University of Florida, Gainesville, Florida 32611
10Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
11Gifu University, Gifu 501-1193
12Il. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
13SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0198
14Gyeongsang National University, Chinju 660-701
15Hanyang University, Seoul 133-791
16University of Hawaii, Honolulu, Hawaii 96822
17High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
18J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
19Forschungszentrum Jülich, 52425 Jülich
20IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
21Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
22Indian Institute of Technology Guwahati, Assam 781039
23Indian Institute of Technology Hyderabad, Telangana 502285
24Indian Institute of Technology Madras, Chennai 600036
25Indiana University, Bloomington, Indiana 47408
26Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
27Institute of High Energy Physics, Vienna 1050
We present the first measurements of absolute branching fractions of Ξ^0_c decays into $\Xi^{-}\pi^+$, $\Lambda K^-\pi^+$, and $pK^-K^+\pi^+$ final states. The measurements are made using a dataset comprising $(772 \pm 11) \times 10^6 \bar{B}B$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB e^+e^- collider. We first measure the absolute branching fraction for $B^- \rightarrow \Lambda^-\Xi_c^0$ using a missing-mass technique; the result is $B(B^- \rightarrow \Lambda^-\Xi_c^0) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$. We subsequently measure the product branching fractions $B(B^- \rightarrow \Lambda^-\Xi_c^0)B(\Xi_c^0 \rightarrow \Xi^-\pi^+)$, $B(B^- \rightarrow \Lambda^-\Xi_c^0)B(\Xi_c^0 \rightarrow \Lambda K^-\pi^+)$, and $B(B^- \rightarrow \Lambda^-\Xi_c^0)B(\Xi_c^0 \rightarrow pK^-K^+\pi^+)$ with improved precision. Dividing these product branching fractions by the result for $B^- \rightarrow \Lambda^-\Xi_c^0$ yields the following branching fractions: $B(\Xi_c^0 \rightarrow \Xi^-\pi^+) = (1.80 \pm 0.50 \pm 0.14)\%$, $B(\Xi_c^0 \rightarrow \Lambda K^-\pi^+) = (1.17 \pm 0.37 \pm 0.09)\%$, and $B(\Xi_c^0 \rightarrow pK^-K^+\pi^+) = (0.58 \pm 0.23 \pm 0.05)\%$. For the above branching fractions, the first uncertainties are statistical and the second are systematic. Our result for $B(\Xi_c^0 \rightarrow \Xi^-\pi^+)$ can be combined with Ξ_c^0 branching fractions measured relative to $\Xi_c^0 \rightarrow \Xi^-\pi^+$ to yield other absolute Ξ_c^0 branching fractions.

DOI: 10.1103/PhysRevLett.122.082001

Half a century after the theory of quantum chromodynamics (QCD) was developed, understanding the nonperturbative property of the strong interaction still remains a challenge. Weak decays of charmed hadrons play a unique role in the study of strong interactions, as the charm mass scale is near the boundary between perturbative and nonperturbative QCD. The charmed-baryon sector offers an excellent laboratory for testing heavy-quark symmetry and light-quark chiral symmetry, both of which have important implications for the low-energy dynamics of heavy baryons interacting with Goldstone bosons [1]. In exclusive charm decays, the heavy-quark expansion does not work, and experimental data are needed to extract nonperturbative quantities in the decay amplitudes [2–5]. Decays of charmed baryons with an additional quark and spin of 1/2 provide complementary information to that of charm-meson decays.

Unlike in the charmed-meson sector, where D^0, D^*, and D_{sJ} decays are all well measured, in the charmed-baryon sector only Λ_c^+ absolute branching fractions have been measured [6,7]. Thus, the branching fractions of Ξ_c^0 baryons are all measured relative to the $\Xi_c^0 \rightarrow \Xi^-\pi^+$ mode. Thus a measurement of the absolute branching fraction $B(\Xi_c^0 \rightarrow \Xi^-\pi^+)$ is needed to determine the absolute branching fractions of other Ξ_c^0 decays. In charmed-baryon decays, nonfactorizable contributions to the decay amplitude are important, and a variety of models have been developed to predict the decay rate in such processes [8–17]. For example, the $B(\Xi_c^0 \rightarrow \Xi^-\pi^+)$ has been predicted to be 0.74% or 1.12% [15], $(2.24 \pm 0.34)\%$ [16], and $(1.91 \pm 0.17)\%$ [17]. Experimental information is crucial to validate these models as well as to constrain the model parameters.

The $B(\Xi_c^0 \rightarrow \Lambda K^-\pi^+)$ and $B(\Xi_c^0 \rightarrow pK^-K^+\pi^+)$ have been measured relative to $B(\Xi_c^0 \rightarrow \Xi^-\pi^+)$ to be $1.07 \pm 0.12 \pm 0.07$ and $0.33 \pm 0.03 \pm 0.03$ [18], respectively. The decay $\Xi_c^0 \rightarrow pK^-K^+\pi^+$ plays a key role in many bottom-baryon studies at LHCb [19,20]. The decay $B^- \rightarrow \Lambda^-\Xi_c^0$, which proceeds via a $b \rightarrow c\bar{s}s$ transition, has a branching fraction predicted to be of the order 10^{-3} [21]. However, this has not been measured because the absolute branching fractions of Ξ_c^0 are unknown. The measured product branching fractions are $B(B^- \rightarrow \Lambda^-\Xi_c^0)B(\Xi_c^0 \rightarrow \Xi^-\pi^+) = (2.4 \pm 0.9) \times 10^{-5}$ and $B(B^- \rightarrow \Lambda^-\Xi_c^0)B(\Xi_c^0 \rightarrow \Lambda K^-\pi^+) = (2.1 \pm 0.9) \times 10^{-5}$ [22–24].

In this Letter, we perform an analysis of $B^- \rightarrow \Lambda^-\Xi_c^0$ with Λ_c^+ reconstructed via $pK^+\pi^-$ and $\bar{p}K_0^\mp$ modes, and Ξ_c^0 reconstructed both inclusively and exclusively via $\Xi^-\pi^+$, $\Lambda K^-\pi^+$, and $pK^-K^+\pi^+$ modes [25]. We present first a measurement of the absolute branching fraction for $B^- \rightarrow \Lambda^-\Xi_c^0$ using a missing-mass technique. For this analysis we fully reconstruct the tag-side B^+ decay. We subsequently measure the product branching fractions $B(B^- \rightarrow \Lambda^-\Xi_c^0)B(\Xi_c^0 \rightarrow \Xi^-\pi^+)$, $B(B^- \rightarrow \Lambda^-\Xi_c^0)B(\Xi_c^0 \rightarrow \Lambda K^-\pi^+)$, and $B(B^- \rightarrow \Lambda^-\Xi_c^0)B(\Xi_c^0 \rightarrow pK^-K^+\pi^+)$. For these measurements we do not reconstruct the recoiling B^+ decay, as the signal decays are fully reconstructed. Dividing these product branching fractions by $B(B^- \rightarrow \Lambda^-\Xi_c^0)$ yields the branching fractions $B(\Xi_c^0 \rightarrow \Xi^-\pi^+)$, $B(\Xi_c^0 \rightarrow \Lambda K^-\pi^+)$, and $B(\Xi_c^0 \rightarrow pK^-K^+\pi^+)$. This analysis is based on the full data sample of 702.6 fb^{-1} collected at the $\Upsilon(4S)$ resonance by the Belle detector [26] at the KEKB asymmetric-energy
e^+e^- collider [27]. The detector is described in detail elsewhere [26].

To optimize signal selection criteria and calculate the signal reconstruction efficiency, we use Monte Carlo (MC) simulated events. Signal events of B meson decays are generated using EVTGEN [28], while inclusive Ξ_c^0 decays are generated using PYTHIA [29]. The MC events are processed with a detector simulation based on GEANT3 [30]. MC samples of $\Upsilon(4S) \to BB$ events with $B = B^+$ or B^0, and $e^+e^- \to q\bar{q}$ events with $q = u, d, s, c$ at $\sqrt{s} = 10.58$ GeV, are used as background samples.

To select signal candidates, well-reconstructed tracks and particle identification are performed using the same method as in Ref. [31], as well as the $\Lambda \to p\pi^-$ and $K_S^0 \to \pi^+\pi^-$ candidates [31].

For the inclusive analysis of the Ξ_c^0 decay, the tag-side B^+ meson candidate, B^+_tag, is reconstructed using a neural network based on a full hadron-reconstruction algorithm [32]. Each B^+_tag candidate has an associated output value O_{NN} from the multivariate analysis that ranges from 0 to 1. A candidate with larger O_{NN} is more likely to be a true B meson. If multiple B^+_tag candidates are found in an event, the candidate with the largest O_{NN} is selected. To improve the purity of the B^+_tag sample, we require $O_{NN} > 0.005$, $M_{bc} > 5.27$ GeV/c^2, and $|\Delta E^{tag}| < 0.04$ GeV, where the latter two intervals correspond to approximately 3σ in resolution. The variables M_{bc}^{tag} and ΔE^{tag} are defined as

$$M_{bc}^{tag} = \sqrt{E_{beam}^2 - \left(\sum p_i^2\right)^2}$$

and

$$\Delta E^{tag} = \sum E_i^{tag} - E_{beam},$$

where $E_{beam} = \sqrt{s}/2$ is the beam energy and (E_i^{tag}, p_i^{tag}) is the four-momentum of the B^+_tag daughter i in the e^+e^- center-of-mass system (c.m.s.). After reconstructing a B^+_tag candidate, $\Lambda_c^- \to \bar{p}K^+\pi^-$ and $\bar{\Lambda}_c^- \to \bar{p}K^0_S$ decays are reconstructed from among the remaining tracks. We perform a fit for the decay vertex and require that $\chi^2_{\text{vertex}}/\text{n.d.f.} < 15$, where n.d.f. is the number of degrees of freedom. If there is more than one $\bar{\Lambda}_c^-$ candidate in an event, the candidate with the smallest $\chi^2_{\text{vertex}}/\text{n.d.f.}$ is selected. We define a Λ_c^- signal region $|M_{pK^+\pi^-/\bar{p}K^0_S} - m_{\Lambda_c^-}| < 10$ MeV/c^2 (3.0σ), where $m_{\Lambda_c^-}$ is the nominal mass of the Λ_c^- [22].

The “recoil mass” of the daughter X in $B^- \to \bar{\Lambda}_c^- + X$ is calculated using $M_{BC}^{rcol B_{tag} \Lambda_c^-} = \sqrt{(P_{c.m.s.} - P_{B_{tag} \Lambda_c^-} - P_{\Lambda_c^-})^2}$, where $P_{c.m.s.}$, $P_{B_{tag} \Lambda_c^-}$, and $P_{\Lambda_c^-}$ are the four-momenta of the initial e^+e^- system, the tagged B meson, and the reconstructed $\bar{\Lambda}_c^-$ baryon. To improve the recoil mass resolution, we use

$$M_{B_{tag} \Lambda_c^-} \equiv M_{B_{tag} \Lambda_c^-} + M_{B_{tag} \Lambda_c^-} - M_B + M_{\Lambda_c^-} - m_{\Lambda_c^-},$$

where $M_{B_{tag} \Lambda_c^-}$ is the invariant mass of the B^+_tag candidate, $M_{\Lambda_c^-}$ is the reconstructed mass of the $\bar{\Lambda}_c^-$ candidate, and m_B is the nominal mass of the B meson [22].

The distribution of $M_{bc}^{\Lambda_c^-}$ of the B^+_tag candidates versus $M_{\Lambda_c^-}$ of the selected $B^- \to \bar{\Lambda}_c^- \Xi_c^0$ signal candidates summed over the two reconstructed $\bar{\Lambda}_c^- \Xi_c^0$ decay modes is shown in Fig. 1, for $2.40 < M_{B_{tag} \Lambda_c^-} < 2.53$ GeV/c^2. We observe a significant excess of $B^- \to \bar{\Lambda}_c^- \Xi_c^0$ candidates in the signal region denoted as the solid box in Fig. 1. To check for possible peaking backgrounds, we define M_{bc}^{tag} and $M_{\Lambda_c^-}$ sidebands, represented by the dashed and dash-dotted boxes in Fig. 1. Each sideband box is the same size as the signal box. The background contribution in the signal box is estimated using half the number of events in the blue dashed sideband boxes minus one-fourth the number of events in the red dash-dotted sideband boxes. The $M_{B_{tag} \Lambda_c^-}^{rec}$ distribution of events in both the signal and sideband boxes is shown in Fig. 2. No peaking backgrounds in the studied recoil Ξ_c^0 mass region are found in the M_{bc}^{tag} and $M_{\Lambda_c^-}$ sideband events, as shown with the shaded histogram in Fig. 2.

FIG. 1. The distribution of M_{bc}^{tag} of B^+_tag of selected $B^- \to \bar{\Lambda}_c^- \Xi_c^0$ candidates with $\Xi_c^0 \to \text{anything}$, summed over the two reconstructed $\bar{\Lambda}_c^-$ decay modes. The solid box shows the signal region, and the dashed and dash-dotted boxes define the M_{bc}^{tag} and $M_{\Lambda_c^-}$ sidebands described in the text.

FIG. 2. The fit to the $M_{bc}^{rcol B_{tag} \Lambda_c^-}$ distribution of the selected candidate events. The points with error bars represent the data, the solid blue curve is the best fit, the dashed curve is the fitted background (BKG), the cyan shaded histogram is from the scaled M_{bc}^{tag} and $M_{\Lambda_c^-}$ sidebands, the red open histogram is from the sum of the MC-simulated contributions from the $e^+e^- \to q\bar{q}$ with $q = u, d, s, c$, and $\Upsilon(4S) \to BB$ generic-decay backgrounds with the number of events normalized to the number of events from the normalized M_{bc}^{tag} and $M_{\Lambda_c^-}$ sidebands.
To extract the Ξ^0 signal yield, an unbinned maximum-likelihood fit is performed to the $M^\text{rec}_{B^+\Lambda^-}$ distribution. A double-Gaussian function (its parameters are fixed to those from a fit to the MC-simulated signal distribution) is used to model the Ξ^0 signal shape, and a first-order polynomial is taken as the background shape. The fit results are shown in Fig. 2.

The fitted N_{Ξ^0} signal yield is $N_{\Xi^0} = 40.9 \pm 9.0$, with a statistical significance of 5.5σ. The significance is calculated using $\sqrt{-2 \ln \left(\frac{L_0}{L_{\max}} \right)}$, where L_0 and L_{\max} are the likelihoods of the fits without and with a signal component, respectively. The $B(B^- \rightarrow \Lambda^-\Xi^0)$ is calculated using $N_{\Xi^0}/|N_B| (e_1 B_1 + e_2 B_2)$. In this expression, $B_1 = B(\Lambda^- \rightarrow \bar{p}K^+\pi^-)$, $B_2 = B(\Lambda^- \rightarrow \bar{p}K^+)/(S_K \rightarrow \pi^+\pi^-)$, and $N_B = 2N_{Y(4S)}B[Y(4S) \rightarrow B^+\bar{B}^-]$, where $N_{Y(4S)}$ is the number of $Y(4S)$ events, and $B[Y(4S) \rightarrow B^+\bar{B}^-] = (51.4 \pm 0.6)\%$ [22]. The reconstruction efficiencies e_1 and e_2 of the two Ξ^0 signal modes are obtained from MC simulation. The $B(\Lambda^- \rightarrow \bar{p}K^+\pi^-)$, $B(\Lambda^- \rightarrow \bar{p}K^+)$, and $B(\Xi^0 \rightarrow \pi^+\pi^-)$ are taken from Ref. [22]. The result is $B(B^- \rightarrow \Lambda^-\Xi^0) = (9.51 \pm 2.10(\text{stat})) \times 10^{-4}$.

For the analysis of the exclusive Ξ^0 decays, we again use $B^- \rightarrow \Lambda^-\Xi^0$ decays in which $\Lambda^- \rightarrow (\bar{p}K^+\pi^-)$, $\bar{p}K^+\pi^-$, and $\bar{p}K^+\pi^+$, where $\Xi^- \rightarrow \Lambda\pi^- \pi^+$ and $\Lambda \rightarrow p\pi^-$. Fits to the $B^-\Xi^0$, and $\Xi^-\Lambda\pi^-$ decay vertices are performed. If there is more than one B^- candidate in an event, the one with the smallest $\chi^2_{\text{vertex}}/n.d.f.$ from the B^- vertex fit is selected. We subsequently require $\chi^2_{\text{vertex}}/n.d.f. < 50$, 15, and 15 for reconstructed B^-, Ξ^0, and Ξ^- candidates, respectively. The Ξ^- and Ξ^0 signal ranges are defined as $|M_{\Lambda^-\pi^-} - m_{\Xi^-}| < 10$ MeV/GeV and $|M_{\Xi^0} - m_{\Xi^0}| < 20$ MeV/GeV (3.0σ), where $M_{\Lambda^-\pi^-}$ and M_{Ξ^0} are the invariant masses of the selected Ξ^- and Ξ^0 candidates, and m_{Ξ^-} and m_{Ξ^0} are the nominal masses of Ξ^- and Ξ^0 [22]. The $\Lambda^-\Xi^0$ signal interval is the same as in the inclusive analysis of Ξ^0 decays. The B^- signal candidates are identified using the beam-energy-constrained mass M_{bc} and the energy difference ΔE, where M_{bc} and ΔE are calculated in the same manner as done for B^+_{tag} candidates, but, here, tracks from the B^- signal candidate decay are used.

FIG. 3. The distributions of M_{Ξ^0} versus M_{Λ^-} in (a) and the fits to the M_{bc} (b) and ΔE (c) distributions of the selected $B^+ \rightarrow \Lambda^-\Xi^0$ candidates with $\Xi^0 \rightarrow \Xi^0 \rightarrow \Xi^-\pi^+$ (1), $\Xi^0 \rightarrow \Lambda K^-\pi^+$ (2), and $\Xi^0 \rightarrow \bar{p}K^+\pi^+$ (3) decays, summed over the two reconstructed $\Lambda^-\Xi^0$ decay modes. In (a), the central solid box defines the signal region. The red dash-dotted and blue dashed boxes show the M_{Ξ^0} and M_{Λ^-} sideband regions used for the estimation of the non-Ξ^0 and non-$\Lambda^-\Xi^0$ backgrounds (see text). In (b) and (c), the dots with error bars represent the data, the blue solid curves represent the best fits, and the dashed curves represent the fitted background contributions. The shaded and red open histograms have the same meaning as in Fig. 2.
TABLE I. Summary of the measured branching fractions and ratios of Ξ^0 decays (last column), and the corresponding systematic uncertainties (%). For the branching fractions and ratios, the first uncertainties are statistical and the second are systematic.

Observable	Efficiency	Fit	Λ_c decays	B_{tag}	N_{B^+}	Sum	Measured value
$B(\bar{B}^0 \to \Lambda_c^- \Xi^0(1236))$	3.46	4.80	5.51	4.2	1.82	9.3	$(9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$
$B(\bar{B}^0 \to \Lambda_c^- \Xi^0(1520))B(\Xi^0 \to \Xi^-\pi^+)$	4.74	3.49	5.75	...	1.82	8.4	$(1.71 \pm 0.28 \pm 0.15) \times 10^{-5}$
$B(\bar{B}^0 \to \Lambda_c^- \Xi^0(1520))B(\Xi^0 \to \Lambda K^-\pi^+)$	4.56	4.03	5.82	...	1.82	8.6	$(1.11 \pm 0.26 \pm 0.10) \times 10^{-5}$
$B(\bar{B}^0 \to \Lambda_c^- \Xi^0(1800))B(\Xi^0 \to pK^-K^-\pi^+)$	7.25	5.11	5.03	...	1.82	10.5	$(5.47 \pm 1.78 \pm 0.57) \times 10^{-6}$
$B(\Xi^0 \to \Xi^-\pi^+)$	2.94	5.9	...	4.2	...	7.8	$(1.80 \pm 0.50 \pm 0.14)\%$
$B(\Xi^0 \to \Lambda K^-\pi^+)$	2.65	6.3	...	4.2	...	8.0	$(1.17 \pm 0.37 \pm 0.09)\%$
$B(\Xi^0 \to pK^-K^-\pi^+)$	3.84	7.0	...	4.2	...	9.0	$(0.58 \pm 0.23 \pm 0.05)\%$
$B(\Xi^0 \to pK^-K^-\pi^+)/B(\Xi^0 \to \Xi^-\pi^+)$	1.36	5.3	5.5	$0.65 \pm 0.18 \pm 0.04$
$B(\Xi^0 \to pK^-K^-\pi^+)/B(\Xi^0 \to \Xi^-\pi^+)$	5.24	6.2	8.1	$0.32 \pm 0.12 \pm 0.07$

We define a B^- signal region as $M_{bc} > 5.27$ GeV/c^2 and $|\Delta E| < 0.03$ GeV. The distributions of M_{Ξ^-} versus $M_{\Lambda_c^+}$ for events in the B^- signal region are shown in Figs. 3(a1)–3(a3) after all selection criteria are applied. The central solid boxes define the Ξ^0 and $\bar{\Lambda}_c$ signal regions. The backgrounds from non-Ξ^0 and non-$\bar{\Lambda}_c$ events are estimated from M_{Ξ^-} and $M_{\Lambda_c^+}$, sidebands, represented by the dashed boxes in Figs. 3(a1)–3(a3). The sideband’s contribution is estimated similarly to the inclusive analysis. Figures 3(b) and 3(c) show the M_{Ξ^-} and ΔE distributions in the Ξ^0 and $\bar{\Lambda}_c$ signal regions from the selected $B^0 \to \bar{\Lambda}_c^- \Xi^0$ candidates with (1) $\Xi^0 \to \Xi^-\pi^+$, (2) $\Xi^0 \to \Lambda K^-\pi^+$, and (3) $\Xi^0 \to pK^-K^-\pi^+$. All distributions are summed over the two reconstructed $\bar{\Lambda}_c$ decay modes.

The number of $B^0 \to \bar{\Lambda}_c^- \Xi^0$ signal events is extracted by performing an unbinned two-dimensional maximum-likelihood fit to the M_{bc} versus ΔE distributions. For the M_{bc} distribution, the signal shape is modeled with a Gaussian function and the background is described using an ARGUS function [33]. For the ΔE distribution, the signal shape is modeled using a double-Gaussian function and the background is described by a first-order polynomial. All shape parameters of the signal functions are fixed to the values obtained from the fits to the MC-simulated signal distributions. The fit results are shown in Fig. 3.

We obtain $N_{\Xi^-} = 44.8 \pm 7.3$, $N_{\Lambda_c^-} = 24.1 \pm 5.5$, and $N_{pK^-\pi^+} = 16.6 \pm 5.4$ signal events with statistical significances of 9.5σ, 6.8σ, and 4.6σ. Using the efficiencies calculated from the MC simulation, we obtain $B(\bar{\Lambda}_c^- \Xi^0)B(\Xi^0 \to \Xi^-\pi^+) = [1.71 \pm 0.28(\text{stat})] \times 10^{-5}$, $B(\bar{\Lambda}_c^- \Xi^0)B(\Xi^0 \to \Lambda K^-\pi^+) = [1.11 \pm 0.26(\text{stat})] \times 10^{-5}$, and $B(\bar{\Lambda}_c^- \Xi^0)B(\Xi^0 \to pK^-K^-\pi^+) = [5.47 \pm 1.78(\text{stat})] \times 10^{-6}$.

There are several sources of systematic uncertainties as listed in Table I. The reconstruction-efficiency-related uncertainties include those for tracking efficiency (0.35% per track), particle identification efficiency (0.9% per kaon, 0.9% per pion, and 3.6% per proton), as well as Λ (3.0% [34]) and K^0_s (1.6% [35]) reconstruction efficiencies. Assuming that all the above sources of systematic uncertainty are independent, the reconstruction-efficiency-related uncertainties are summed in quadrature for each decay mode, yielding 4.0%–8.4%, depending on the specific decay mode. For the four branching-fraction measurements, the final uncertainties related to the efficiency of the reconstruction are summed in quadrature over the two reconstructed $\bar{\Lambda}_c$ decay modes using weight factors equal to the product of the total efficiency and the $\bar{\Lambda}_c$ partial decay width.

We estimate the systematic uncertainties associated with the fit by changing the order of the background polynomial, the fitting range, and by enlarging the mass resolution by 20%. The observed deviations are taken as systematic uncertainties. Uncertainties on $B(\bar{\Lambda}_c^- \to pK^-\pi^+)$ and $\Gamma(\bar{\Lambda}_c^- \to pK^-\pi^+)$ are taken from Ref. [22]. The final uncertainties on the two $\bar{\Lambda}_c$ partial decay widths are summed in quadrature with the reconstruction efficiency as a weighting factor. The uncertainty due to the B tagging efficiency is 4.2% [36]. The uncertainty on $B(\Upsilon(4S) \to B^+ B^-)$ is 1.2% [22]. The systematic uncertainty on $N_{\Upsilon(4S)}$ is 1.37% [37]. For the Ξ^0 branching fractions and the corresponding ratios, some common systematic uncertainties cancel, including tracking, particle identification, $\bar{\Lambda}_c$ branching fractions, Λ and K^0_s selections, and N_{B^0}. The sources of uncertainty summarized in Table I are assumed to be independent and thus are added in quadrature to obtain the total systematic uncertainty.

In summary, based on $(772 \pm 11) \times 10^6 B\bar{B}$ pairs collected by Belle, we have performed an analysis of $B^0 \to \bar{\Lambda}_c^- \Xi^0$ inclusively with respect to the Ξ^0 decay using a hadronic B-tagging method based on a full reconstruction algorithm [32], and exclusively for Ξ^0 decays into $\Xi^-\pi^+$, $\Lambda K^-\pi^+$, and $pK^-K^-\pi^+$ final states. We report the first measurements of the absolute branching fractions

$$B(\Xi^0 \to \Xi^-\pi^+) = (1.80 \pm 0.50 \pm 0.14)\%,$$

$$B(\Xi^0 \to \Lambda K^-\pi^+) = (1.17 \pm 0.37 \pm 0.09)\%,$$

$$B(\Xi^0 \to pK^-K^-\pi^+) = (0.58 \pm 0.23 \pm 0.05)\%.$$
For the above branching fractions, the first uncertainties are statistical and the second systematic. The product branching fractions are $B(B^+ \to \bar{\Lambda}^0 \Xi^0) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$.

We thank Professor Fu-sheng Yu for useful discussions and comments. Y. B. L. acknowledges the support from the China Scholarship Council (201706010043). We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; the KEKB group for excellent operation of the accelerator; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET5 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC (Australia); FWF (Austria); the National Natural Science Foundation of China under Contracts No. 11475187, No. 11521505, No. 11575017, No. 11761141009; the CAS Center for Excellence in Particle Physics (CCEPP); MSMT (Czechia); CZF, DFG, EXC153, and VS (Germany); DIT (India); INFN (Italy); MOE, MSIP, NRF, RSRI, FLRAS project and GSDC of KISTI and KREONET/GLORIAD (Korea); MNIiSW and NCN (Poland); MSHE, Agreement No. 14.W03.31.0026 (Russia); ARRS (Slovenia); IKERBASQUE (Spain); SNSF (Switzerland); MOE and MOST (Taiwan); and DOE and NSF (U.S.).

[1] H. Y. Cheng, Front. Phys. 10, 101406 (2015).
[2] B. Bhattacharya and J. L. Rosner, Phys. Rev. D 77, 114020 (2008).
[3] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81, 074021 (2010).
[4] H. N. Li, C. D. Lu, and F. S. Yu, Phys. Rev. D 86, 036012 (2012).
[5] S. Müller, U. Nierste, and S. Schacht, Phys. Rev. D 92, 014004 (2015).
[6] A. Zupanc et al. (Belle Collaboration), Phys. Rev. Lett. 113, 042002 (2014).
[7] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 116, 052001 (2016).
[8] J. G. Körner, G. Krämer, and J. Wilrot, Z. Phys. C 2, 117 (1979).
[9] T. Uppal, R. C. Verma, and M. P. Khanna, Phys. Rev. D 49, 3417 (1994).
[10] G. Kaur and M. P. Khanna, Phys. Rev. D 44, 182 (1991).
[11] Q. P. Xu and A. N. Kamal, Phys. Rev. D 46, 270 (1992).
[12] P. Zenczykowski, Phys. Rev. D 50, 402 (1994).
[13] J. G. Körner and G. Krämer, Z. Phys. C 55, 659 (1992).
[14] H. Y. Cheng and B. Tseng, Phys. Rev. D 46, 1042 (1992); 55, 1697(E) (1997).
[15] H. Y. Cheng and B. Tseng, Phys. Rev. D 48, 4188 (1993).
[16] D. Wang, P.-F. Guo, W.-H. Long, and F.-S. Yu, J. High Energy Phys. 03 (2018) 066.
[17] H. J. Zhao, Y. K. Hsiiao, and Y. Yao, arXiv:1811.07265.
[18] T. Lesiak et al. (Belle Collaboration), Phys. Lett. B 605, 237 (2005); 617, 198(E) (2005).
[19] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 113, 242002 (2014).
[20] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 93, 092007 (2016).
[21] H. Y. Cheng, C. K. Chua, and S. Y. Tsai, Phys. Rev. D 73, 074015 (2006).
[22] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[23] R. Chistov et al. (Belle Collaboration), Phys. Rev. D 74, 111105 (2006).
[24] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 77, 031101 (2008).
[25] Inclusion of charge-conjugate states is implicit unless otherwise stated.
[26] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also, see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. (2012) 04D001.
[27] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013), and references therein.
[28] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[29] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, and E. Norrbin, Comput. Phys. Commun. 135, 238 (2001).
[30] R. Brun et al., GEANT 3: user’s guide Geant 3.10, Geant 3.11, CERN Report No. DD/EE/84-1, 1984.
[31] Y. B. Li et al. (Belle Collaboration), Eur. Phys. J. C 78, 928 (2018).
[32] M. Feindt, F. Keller, M. Kreps, T. Kuhr, S. Neubauer, D. Zander, and A. Zupanc, Nucl. Instrum. Methods Phys. Res., Sect. A 654, 432 (2011).
[33] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 229, 304 (1989).
[34] Y. Kato et al. (Belle Collaboration), Phys. Rev. D 94, 032002 (2016).
[35] N. Dash et al. (Belle Collaboration), Phys. Rev. Lett. 119, 171801 (2017).
[36] A. Sibidanov et al. (Belle Collaboration), Phys. Rev. D 88, 032005 (2013).
[37] E. Guido et al. (Belle Collaboration), Phys. Rev. D 96, 052005 (2017).