Strain-Dependent Modifier Genes Determine Survival in Zfp423 Mice

Wendy A. Alcaraz, Zheng Liu, Phoebe Valdes, Edward Chen, Alan G. Valdovino Gonzalez, Shelby Wade, Cinny Wong, Eunnie Kim, Hsiang-Hua M. Chen, Alison Ponn, Dorothy Concepcion, and Bruce A. Hamilton

Biomedical Sciences Graduate Program, Department of Cellular & Molecular Medicine, Department of Medicine, UC San Diego Moores Cancer Center, and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093

ABSTRACT Zfp423 encodes a transcriptional regulatory protein that interacts with canonical signaling and lineage pathways. Mutations in mouse Zfp423 or its human ortholog ZNF423 are associated with a range of developmental abnormalities reminiscent of ciliopathies, including cerebellar vermis hypoplasia and other midline brain defects. Null mice have reduced viability in most strain backgrounds. Here we show complete lethality on a C57BL/6J background, dominant rescue in backcrosses to any of 13 partner strains, with strain-dependent survival frequencies, and evidence for a BALB/c-derived survival modifier locus on chromosome 5. Survival data indicate both perinatal and postnatal periods of lethality. Anatomical data from a hypomorphic gene trap allele observed on both C57BL/6J and BALB/c congenic backgrounds shows an aggregate effect of background on sensitivity to Zfp423 loss rather than a binary effect on viability.

Zfp423 and its human homolog ZNF423 are transcriptional regulators that intersect both lineage and signal-induced pathways. Zfp423 was first described as an inhibitory interacting factor for Ebf-family basic helix-loop-helix (bHLH) transcription factors, blocking Ebf-dependent development in olfactory neurogenesis (Cheng and Reed 2007; Tsai and Reed 1997, 1998). Zfp423 was later independently found as a binding partner of BMP-dependent SMAD transcription factors (Hata et al. 2000), retinoic acid receptors (Huang et al. 2009), cleaved Notch intracellular domain (Masserdotti et al. 2010) and DNA damage response proteins (Chaki et al. 2012). Recruitment of Zfp423 in one pathway appears to antagonize alternative pathways (Hata et al. 2000; Masserdotti et al. 2010), suggesting that Zfp423 may act to integrate competing signals into a canalized cellular response. Indeed, Zfp423 is a potent factor for embryonic stem cell exit from naïve state (Lackner et al. 2020) and Zfp423 architecture and sequence are highly conserved (Hamilton 2020).

Zfp423-mutant mice have characteristic developmental abnormalities, particularly in hindbrain. Loss of cerebellar vermis and other midline defects in developing brain are prominent features across independent null and hypomorphic alleles (Alcaraz et al. 2006; Cheng et al. 2007; Warming et al. 2006). Vermis hypoplasia originates in reduced numbers of proliferating progenitors adjacent to the midline (Alcaraz et al. 2006) and Zfp423 in cerebellar granule cell progenitors (GCPs) is required for mitogenic response to SHH signaling, potentially through repression of Tulp3 (Hong and Hamilton 2016). Development of the roof plate and choroid plexus in the fourth ventricle are frequently abnormal (Alcaraz et al. 2006; Casoni et al. 2020). Formation of hippocampus, septum and thalamus are often affected, as are several fiber tracts, including frequent loss of midline crossing by commissural axons in corpus callosum and reduction of the anterior commissure (Alcaraz et al. 2006; Cheng et al. 2007). Loss of Zfp423 impairs maturation of olfactory neurons in a manner...
consistent with it acting in a developmental switch between early differentiating and maturing olfactory neurons (Cheng and Reed 2007). Zfp423 is also expressed by preadipocyte fibroblasts, where it induces PPARγ-dependent adipogenesis, and loss of Zfp423 function impairs adipogenesis both in development (Gupta et al. 2010) and in wound healing (Plikus et al. 2017).

Mutations in the human homolog ZNF423 have been reported in patients with ciliopathy diagnoses and anatomical findings reminiscent of Zfp423 mutant mice (Chaki et al. 2012) and a subset of patient mutations has been validated in mouse models (Deshpande et al. 2020). Ciliopathies comprise a spectrum of related phenotypes that involve one or more organs, often cerebellum, kidney, retina, and/or liver, and are united by cellular defects in structure of and signaling through the primary cilium (Badano et al. 2006; Hildebrandt et al. 2011; Waters and Beales 2011). Ciliopathies also range in severity from nearly unaffected to prenatal lethal. Some of the differences arise from differences between causal genes or allele strength, but similar primary mutations can give rise to very different outcomes in both patients and mouse models depending on other genes and non-genetic factors (Davis and Katsanis 2012; Norris and Grimes 2012). In previous work, we showed that differences in cerebellar hypoplasia had both genetic and non-genetic components in BALB/c and 129S1 strains (Alcaraz et al. 2011), but the distribution and effect sizes of genetic modifiers and other sources of variability are not well explored.

Here we show complete lethality of Zfp423 mutants in a C57BL/6 (B6 hereafter) background that correlates with both adiposity and neonatal feeding, and that lethality is specific to the perinatal period. As a prologue to both modeling patient mutations in mice and identifying modifiers that influence Zfp423-deficient developmental outcomes, we surveyed 13 inbred mouse strains through a series of crosses described here began with fully congenic stocks to minimize linked variation as previously described (Alcaraz et al. 2006) and maintained by further backcross in our laboratory. Congenic Zfp423nur12 and Zfp423XH542 mice were developed by serial backcross from mixed stock and linked markers on chromosome 8 were followed in early generations to estimate survival frequency were detected between backcross of F1 hybrid females and F1 hybrid males of a given strain pair and data from each direction were analyzed as a single cross. Statistical comparisons were made in R 3.5.1.

Materials and Methods

Mice

BALB/cAnNHsd (BALB/c) mice were obtained through the UC San Diego Transgenic Mouse Shared Resource and maintained in our laboratory. PWK/PhJ mice were obtained from Dr. Christopher K. Glass. 129S1/SvImJ (129S1), A/J, BTBR T+ tf/tf (BTBR), C3H/HeJ, C57BL/6J (B6), C57BLKS/J, C57L/J, C58/J, DBA/2J (DBA), FVB/NJ (FVB), NOD/LtJ, and NZO/HLttJ were obtained from The Jackson Laboratory. Congenic Zfp423nur12 and Zfp423XH542 mice were developed by serial backcross from mixed stock and linked markers on chromosome 8 were followed in early generations to minimize linked variation as previously described (Alcaraz et al. 2011; Alcaraz et al. 2006) and maintained by further backcross in our laboratory. Crosses described here began with fully congenic stocks for B6–Zfp423nur12 (N28, with no detected heterozygosity among 24 polymorphic markers on chromosome 8), BALB/c–Zfp423nur12 (N31, with a congenic interval ∼2.4 Mb bounded by D8Mit57 and D8Mit327), and 129S1–Zfp423nur12 (N24 without further characterization of the interval after Alcaraz et al. 2011). Mice were maintained on LabDiet 5P06 chow ad libitum and a 12 hr light:12 hr dark cycle in microisolator cages on high-density racks in a specific pathogen free facility, but crosses were split between two facilities on the UC San Diego campus, spanning a lab relocation. All animal experiments were approved by the UC San Diego Institutional Animal Care and Use Committee (IACUC).

Results

To test survival on different fully inbred or hybrid backgrounds, congenic stock heterozygotes were bred inter se to produce congenic F1 or crosses between congenic lines to produce hybrid F1 offspring. For 129S1, A/J, BALB/c, and FVB, crosses were initiated in each direction, with B6 as either the female or male partner, with equivalent results. For ease of breeding, other strain pairs were initiated with two females of the inbred strain crossed to males of the B6–Zfp423nur12 congenic stock. Backcrosses to B6–Zfp423nur12 congenic stock were performed using F1 of either sex, depending on availability of B6–Zfp423nur12 congenic and F1 breeders. Unless otherwise noted, survival was scored at two weeks postnatal. Where sufficient numbers were available for retrospective tests, no differences in survival were detected between backcross of F1 hybrid females and F1 hybrid males of a given strain pair and data from each direction were analyzed as a single cross. Statistical comparisons were made in R 3.5.1.

Histology

P0 pups were fixed in 10% buffered formalin, cryoprotected with 30% sucrose, and frozen in OCT before being sectioned at 20 µm. Mice with the Zfp423 gene trap allele XH542 were sacrificed under deep anesthesia and fixed by transcardial perfusion with saline and 4% paraformaldehyde at 2 weeks old, cryoprotected with 30% sucrose, and frozen in OCT and sectioned at 16 µm. Cryosections were stained with hematoxylin and eosin. Sections were visualized and photographed on a Nikon E800 microscope equipped with a Spot Xplorer digital camera under standard illumination. Measurements were made from.tif format files in ImageJ.

Linkage analysis

Simple sequence-length repeat marker typing was performed using standard methods (Alcaraz et al. 2006; Dietrich et al. 1996). Marker loci were tested for reduced frequency of B6 allele homozygosity among surviving Zfp423nur12 homozygous pups using a chi-squared test in the R base environment from genotype frequencies tabulated in R/qtl (Broman and Sen 2009; Broman et al. 2003). Tests for duration of survival, up to 60 days, were carried out using the 2-step procedure in the scanone function and proportion of variance explained was estimated using the fitqtl function in R/qtl (Boyartchuk et al. 2001; Broman 2003).

Data availability

All data are included in the figures and tables or in supplementary tables for genotyping data. Zfp423nur12 mice are available from the Mouse Mutant Regional Resource Centers. Supplemental material available at figshare: https://doi.org/10.25387/g3.12899681.

Zfp423 null allele is perinatal lethal in B6 strain background

We examined Zfp423nur12/+ mice as congenic lines on three common inbred strain backgrounds and as hybrids between them. Offspring were genotyped at 1 to 2 weeks. While Zfp423nur12nur12 showed...
somewhat reduced frequency in BALB/c and 129S1 congenic strains, Zfp423
nur12/nur12 mice were never recovered among the B6 congenic
strain (Table 1). When B6–Zfp423nur12/+ mice were crossed to BALB/
c–Zfp423yur12/+ mice, the frequency of Zfp423nur12 homozygotes was
consistent with full survival. The difference in homozygote frequency
between BALB/c congenic stock and the BALB/c x B6 F1 (P = 0.019,
Fisher’s exact test) suggests that both strains contribute recessive
alleles that reduce Zfp423nur12 viability.

To determine lethal phase and rule out segregation distortion or
gametic effects, timed embryos and postnatal pups were collected and
genotyped to determine the frequency of Zfp423nur12 homozygotes at
each age. Only two mutants were observed at P1 and neither survived
to P2. These data show complete perinatal lethality of Zfp423nur12
mice on the B6 congenic background (Table 2).

Reduced feeding and brown adipose tissue in B6–Zfp423 neonates

To identify possible causes of lethality in B6–Zfp423nur12/nur12 mice, we
examined histology of P0 pups (Figure 1). Heart, kidney, and liver
did not show any obvious defects. Sections through stomach show
reduced amount of milk in B6 compared to BALB/c mice, independent
of Zfp423 genotype, while Zfp423nur12/nur12 mice have reduced
amount of milk compared to littermate controls in each strain, such
that B6–Zfp423nur12/nur12 mice are least well fed among comparison
groups. Examination of brown adipose tissue confirmed small fat
pads with gaps in the B6–Zfp423nur12/nur12 mice as expected (Gupta
et al. 2010). Two out of the three BALB/c–Zfp423nur12/nur12 mice
examined have normal brown adipose appearance, however, suggest-
ing a degree of strain-dependence for this phenotype in limited
sampling.

B6 background enhances phenotype of a Zfp423 hypomorphic allele

To determine whether strain background might similarly affect
weaker Zfp423 alleles, we examined congenic lines for a hypomorphic
gene trap line, XH542, that expresses weaker level (Alcaraz
et al. 2006), on both BALB/c and B6 backgrounds (Figure 2). Gene trap homoygotes are viable on both backgrounds, but occur with reduced frequency on B6 (15% vs. 26%, Figure 2A). Surviving B6 gene trap homoygotes also have higher frequency of ataxia (Figure 2B). Gene trap homoygotes on both strain backgrounds had reduced cross-sectional area in vermis, but the
difference between strains was not significant at conventional alpha
for pre-planned sample size (N = 11 paired samples, Figure 2C).
Among samples allocated to anatomy we observed four with hydro-
cephalus, all of which were B6 gene trap homoygotes (Figure 2D).
Taken together, these observations further support B6 as a sensitized
background for loss of Zfp423 function.

B6 sensitivity to Zfp423 relative to BALB/c is polygenic, recessive in aggregate, and includes a locus on chromosome 5

To test the genetic architecture of the striking difference in Zfp423
survival and phenotype severity, we analyzed data from both B6 x
BALB/c intercross and backcross designs performed several years ago
(Supplemental Data S1 and S2). We specified linkage thresholds for
suggestive (expected once per genome by chance) and significant
(once in twenty genomes by chance) for a given cross design in
advance (Lander and Kruglyak 1995) and assessed both marker-based
chi-squared tests for proportion of B6 homozygotes at ascertainment
(~2 weeks postnatal) and for survival up to P60 as a quantitative trait.
In the intercross, chi-squared tests for proportion of B6 homozygotes
(1 degree of freedom) supported linkage at genome-wide significance
for reduced B6 homozygotes at a locus on chromosome 5 (P = 3.1 ×
10⁻⁴ at rs254857227), with significant over-representation of B6
homozygotes on chromosome 13 (P = 3.7 × 10⁻⁴ at D13Mit17;
Figure 3A). Similar analysis of an earlier intercross from a partially
inbred stock had shown additional strong signals on chromosomes
11 and 17 that were not replicated in the intercross from fully
congenic stocks, although the chromosome 17 locus remained sig-
nificant in a combined analysis. This suggested context dependence
and potential for epistatic interactions and resulted in limiting formal
analysis to crosses initiated from fully congenic stocks. Analysis of a
smaller backcross showed only suggestive levels of support for a locus
on chromosome 12 (P = 0.0012) and sub-threshold support for the
locus on chromosome 5 (P = 0.01), but encompassing the same
chromosome 5 interval as the intercross (Figure 3B). Selective
genotyping of ~70 backcross progeny from other strain partners
(see below) for survival at two weeks increased support for the
chromosome 5 locus, with combined support across all backcrosses
in the suggestive range (P = 6.9 × 10⁻⁴ at D5Mit157) for backcross
data alone.

| Table 1 Zfp423nur12 genotype frequencies (proportions) show enhanced lethality in B6 background |
|---|----------------|----------------|----------------|----------------|
| Genotype | 129S1-nur12 F1 | BALB/c-nur12 F1 | B6-nur12 F1 | BALB/c-nur12 x B6-nur12 F1 |
| ++ | 124 (0.31) | 156 (0.28) | 156 (0.35) | 28 (0.24) |
| n/+ | 223 (0.56) | 297 (0.53) | 285 (0.65) | 55 (0.47) |
| n/n | 48 (0.12) | 110 (0.20) | 0 (0.00) | 35 (0.30) |
| total | 395 | 563 | 441 | 118 |
| Chi-sq P for frequency n/n | 3.7e-09 | 0.0035 | (<2.2e-16) | 0.24 |

| Table 2 Genotype frequencies (proportions) by age support perinatal lethality |
|---|----------------|----------------|----------------|----------------|
| genotype | E12.5. | E14.5. | E16.5. | E18.5. | P0 | P1 |
| ++ | 27 (0.20) | 25 (0.21) | 17 (0.22) | 35 (0.26) | 59 (0.29) | 22 (0.30) |
| n/+ | 76 (0.55) | 62 (0.53) | 40 (0.51) | 77 (0.57) | 108 (0.54) | 49 (0.67) |
| n/n | 34 (0.25) | 31 (0.26) | 21 (0.27) | 23 (0.17) | 33 (0.16) | 2 (0.027) |
| total | 137 | 118 | 78 | 135 | 200 | 73 |
| Chi-sq P for frequency n/n | 0.96 | 0.75 | 0.69 | 0.032 | 0.005 | 1.2e-05 |
| Fisher’s exact P for comparison to previous day | — | 0.89 | 1 | 0.11 | 0.76 | 0.0017 |
Most animals from both intercross and backcross populations also had survival data to postnatal day 60, which allowed use of a 2-part model for survival duration as a quantitative trait (Boyartchuk et al. 2001; Broman 2003). Analysis of the intercross again showed significant linkage to the middle of chromosome 5, while also finding suggestive linkage on several other chromosomes (Figure 3C). Similar analysis of survival data from the backcross showed suggestive support for four regions, with strongest support for the chromosome 5 locus. In addition, the backcross animals that survived to at least P60 had significant depletion of B6 homozygotes compared to heterozygotes (22 vs. 59, chi-squared \(P = 3.9 \times 10^{-5} \) at D5Mit398-D5Mit157) and was the most significant finding genome-wide for survival to P60. Two-part survival analysis combining the intercross and backcross data (for loci that might act independently in both contexts) showed strongest support for the chromosome 5 locus (lod.p.mu = 7.4) with significant support for a locus on chromosome 6 (lod.p.mu = 5.1). Both loci were significant at genome-wide alpha < 0.02 based on 5000 permutations of the data. Effect plots for intercross (Figure 3E) and backcross (Figure 3F) showed that both loci reduce the probability of death at 3-5 weeks in favor of survival to the censored time point at P60. A simple additive model for the loci on chromosomes 5 and 6 applied to the combined backcross and intercross data explained 10% of the variance in survival, with a LOD score of 11.6 and most of the estimated effect contributed by chromosome 5 (6.5%).

B6 synthetic lethality is recessive and rescued by any of 13 strains

To examine the viability effects of strain background more broadly and to identify strains that might be useful for testing patient variants in an animal model, we crossed B6--Zfp423nur12+/+ to a broad panel of inbred strains (Figure 4A) and then backcrossed the resulting F1 progeny to B6--Zfp423nur12/+ to produce F2 (Figure 4B). Crosses with each of the 13 partner strains produced viable mutant offspring, regardless of which sex was used as the F1 for backcross. The survival difference can not, therefore, be explained by B6 maternal behavior. Progeny of each cross were genotyped for nur12 and all identified homozygotes had clearly recognized gait ataxia, indicating full...
penetrance. While some strains were under-sampled due to poor breeding performance, clear differences emerged among partner strains (Figure 4C). The frequency of F2 mutants recovered from the PWK/PhJ cross was 24% and not significantly different from Mendelian expectation ($P = 0.84$, chi-squared test, 1 df). By contrast, every other backcross showed reduced recovery, from 13% in 129S1 ($P = 2.8 \times 10^{-5}$), to 2.5% in BTBR ($P = 1.5 \times 10^{-8}$). The difference among strains had strong statistical support ($P = 5.0 \times 10^{-4}$, Fisher’s exact test; support for pairwise comparisons are provided in Supplemental Table S1). These data showed that survival of Zfp423nur12 homozygous mice is polygenic, with different sets of survival factors in different inbred stains.

DISCUSSION

Our results showed that the Zfp423nur12 null allele is a fully penetrant perinatal lethal on a C57BL/6J (B6) genetic background, but has $\geq 50\%$
survival when congenic on either 129S1 or BALB/c. Of the few neonates available for examination, mutants on the B6 background appeared to have more severe peripheral tissues abnormalities compared with mutants congenic on BALB/c, including notably reduced adipose tissue and poor feeding. These observations are consistent with previous reports on Zipf423 requirements for adipocyte differentiation (Gupta et al. 2010; Gupta et al. 2012; Plikus et al. 2017; Shao et al. 2017) and suggest that this phenotype in vivo may be strain-dependent in its effect size. Greater sensitivity of B6 than BALB/c for loss of Zipf423 function was supported by a small series of congenic mutants for a hypomorphic gene trap allele. Both survival and behavioral ataxia were substantially more penetrant on B6 than BALB/c, although statistical support for anatomical differences were sub-threshold and likely underpowered relative to the observed variance. This strain difference in sensitivity contrasts with recent work in our lab comparing different alleles on a single inbred background, where anatomical differences were more sensitive than behavior in a more extensive series of animals (Deshpande et al. 2020). Surviving Zipf423mut12 mutants from intercross and backcross designs reported here showed that no single locus is either necessary or sufficient for mutant survival, but taken together, our results supported the existence of a modifier locus on chromosome 5, with suggestive or significant support for linkage at other loci being cross-dependent. Comparing survival rates among B6 backcross progeny from several different partner strains indicated different sets of pro-survival factors in different inbred strains. This suggests that searches for survival loci might be more powerful in strains with low survival frequency and close relation to B6, as these should limit the number of contributing loci and therefore the statistical power per surviving mutant. These results also informed our choice of strains for modeling patient variants of uncertain significance (Deshpande et al. 2020), where FVB provided a high-survival, yet fully-penetrant background compatible with recovery of severe alleles and B6 provided a sensitized background to increase confidence in negative findings (Deshpande et al. 2020).

ACKNOWLEDGMENTS

We thank Professor Christopher K. Glass for the gift of PWK/PhJ breeders. We thank Wilfredo Villanueva and Abraham Ramirez for excellent animal care. W.A.A. was supported in part by an institutional training grant to the UC San Diego Genetics Training Program (T32 GM088666) from the National Institute of General Medical Sciences and by a Ruth L. Kirschstein National Research Service Award (F31 NS061513) from the National Institute of Neurological Disorders and Stroke. This work was supported by grants R01 NS054871 and R01 NS097534 from the National Institute of Neurological Disorders and Stroke to B. A. H.

LITERATURE CITED

Alcaraz, W. A., E. Chen, P. Valdes, E. Kim, Y. H. Lo et al., 2011 Modifier genes and non-genetic factors reshape anatomical deficits in Zifp423-deficient mice. Hum. Mol. Genet. 20: 3822–3830. https://doi.org/10.1093/hmg/ddr300

Alcaraz, W. A., D. A. Gold, E. Raponi, P. M. Gent, D. Concepcion et al., 2006 Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation. Proc. Natl. Acad. Sci. USA 103: 19424–19429. https://doi.org/10.1073/pnas.0609184103

Badano, J. L., N. Mitsuma, P. L. Beales, and N. Katsanis, 2006 The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7: 125–148. https://doi.org/10.1146/annurev.genom.7.080505.115610

Boyarchuk, V. L., K. W. Broman, R. E. Mosher, S. E. D’Orazio, M. N. Starnbach et al., 2001 Multigenic control of Listeria monocytogenes susceptibility in mice. Nat. Genet. 27: 259–260. https://doi.org/10.1038/85812

Bromann, K. W., 2003 Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163: 1169–1175.

Bromman, K. W., and S. Sen, 2009 A Guide to QTL Mapping with R/qtl, Springer, Dordrecht. https://doi.org/10.1007/978-0-387-92125-9

Bromman, K. W., H. Wu, S. Sen, and G. A. Churchill, 2003 R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889–890. https://doi.org/10.1093/bioinformatics/btg112

Casoni, F., L. Croci, F. Vincenti, P. Podini, L. Massimino et al., 2020 ZFP423 regulates early patterning and multiciliogenesis in the hindbrain choroid plexus. bioRxiv https://doi.org/10.1101/2020.03.04.0975573 (Preprint posted on March 5, 2020). https://doi.org/10.1101/2020.03.04.0975573

Chaki, M., R. Arik, A. K. Ghosh, R. H. Giles, R. Chen et al., 2012 Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150: 533–548. https://doi.org/10.1016/j.cell.2012.06.028

Cheng, L. E., and R. R. Reed, 2007 Zfp423/OAZ participates in a developmental switch during olfactory neurogenesis. Neuron 54: 547–557.

Cheng, L. E., J. Zhang, and R. R. Reed, 2007 The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. Dev. Biol. 307: 43–52.

Davis, E. E., and N. Katsanis, 2012 The ciliopathies: a transitional model into systems biology of human genetic disease. Curr. Opin. Genet. Dev. 22: 290–303.

Deshpande, O., R. Z. Lara, O. R. Zhang, D. Concepcion, and B. A. Hamilton, 2020 ZNF423 patient variants, truncations, and in-frame deletions in mice define an allele-dependent range of midline brain abnormalities. PLoS Genet. 16: e1009017. https://doi.org/10.1101/2020.04.04.024562

Dietrich, W. F., J. Miller, R. Steen, M. A. Merchant, D. Damron-Boles et al., 1996 A comprehensive genetic map of the mouse genome. Nature 380: 149–152.

Gupta, R. K., Z. Arany, P. Seale, R. J. Mepani, L. Ye et al., 2010 Transcriptional control of predisipotency determination by Zifp423. Nature 464: 619–623.

Gupta, R. K., R. J. Mepani, S. Kleiner, J. C. Lo, M. J. Khandekar et al., 2012 Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 15: 230–239.

Hamilton, B. A., 2020 ZNF423 orthologs are highly constrained in vertebrates but show domain-level plasticity across invertebrate lineages. bioRxiv https://doi.org/10.1101/2020.03.09.984518 (Preprint posted March 11, 2020). https://doi.org/10.1101/2020.03.09.984518

Hata, A., J. Seoane, G. Lagna, E. Montalvo, A. Hemmati-Brivanlou et al., 2000 OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Off signaling pathways. Cell 100: 229–240.

Hildebrandt, F., T. Benzing, and N. Katsanis, 2011 Ciliopathies. N. Engl. J. Med. 364: 1533–1543.

Hong, C. J., and B. A. Hamilton, 2016 Zifp423 Regulates Sonic Hedgehog Signaling via Primary Cilium Function. PLoS Genet. 12: e1006357. https://doi.org/10.1371/journal.pgen.1006357

Huang, S., J. Laoukili, M. T. Epping, J. Koster, M. Holzel et al., 2012 ZFP423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 15: 328–339.

Keane, T. M., L. Goodstadt, P. Danecek, M. A. White, K. Wong et al., 2011 Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289–294.

Lackner, A., R. Sehlke, M. Garmhausen, G. G. Stirparo, M. Huth et al., 2020 Cooperative molecular networks drive a mammalian cell state transition. bioRxiv https://doi.org/10.1101/2020.03.23.000109 (Preprint posted March 25, 2020). https://doi.org/10.1101/2020.03.23.000109

Lander, E., and L. Kruglyak, 1995 Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11: 241–247.

Masserotti, G., A. Badaloni, Y. S. Green, L. Croci, V. Barili et al., 2010 ZFP423 coordinates Notch and bone morphogenetic protein signaling, selectively up-regulating Hes5 gene expression. J. Biol. Chem. 285: 30814–30824.

Norris, D. P., and D. T. Grimes, 2012 Mouse models of ciliopathies: the state of the art. Dis. Model. Mech. 5: 299–312.
Petkov, P. M., Y. Ding, M. A. Cassell, W. Zhang, G. Wagner et al., 2004 An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res. 14: 1806–1811.

Plikus, M. V., C. F. Guerrero-Juarez, M. Ito, Y. R. Li, P. H. Dedhia et al., 2017 Regeneration of fat cells from myofibroblasts during wound healing. Science 355: 748–752.

Shao, M., C. Hepler, L. Vishvanath, K. A. MacPherson, N. C. Busbuso et al., 2017 Fetal development of subcutaneous white adipose tissue is dependent on Zfp423. Mol. Metab. 6: 111–124.

Tsai, R. Y., and R. R. Reed, 1997 Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression; implications for olfactory neuronal development. J. Neurosci. 17: 4159–4169.

Tsai, R. Y., and R. R. Reed, 1998 Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz. Mol. Cell. Biol. 18: 6447–6456.

Warming, S., R. A. Rachel, N. A. Jenkins, and N. G. Copeland, 2006 Zfp423 is required for normal cerebellar development. Mol. Cell. Biol. 26: 6913–6922.

Waters, A. M., and P. L. Beales, 2011 Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26: 1039–1056.

Communicating editor: F. Pardo-Manuel de Villena