Data in Brief

Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12

Jill Gaskella, Phil Kerstenab, Luis F. Larrondob, Paulo Canessab,c, Diego Martinezd,1, David Hibbett, Monika Schmoll, Christian P. Kubiceke, Angel T. Martinezh, Jagjit Yadav, Emma Masterb, Jon Karl Magnusonb, Debbie Yaverb, Randy Berka, Kathleend Lail, Cindy Chen, Kurt LaPutt, Matt Nolan, Anna Lipzen, Andrea Aertsm, Robert Rileym, Kerrie Barrem, Bernard Henri Sass, Igor V. Grigoriov, Dan Cullene,⁎

a USDA Forest Products Laboratory, Madison, WI, USA
b Millennium Nucleus for Fungal Integrative and Synthetic Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
c Universidad Andres Bello, Santiago, Chile
d Los Alamos National Laboratory/Joint Genome Institute, Los Alamos, NM, USA
e Biology Department, Clark University, Worcester, MA, USA
f Austrian Institute of Technology GmbH, Vienna, Austria
g Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
h Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
i Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, USA
j Novozymes Inc., 1445 Drew Avenue, Davis, CA, USA
k US Department of Energy Joint Genome Institute, 2800 Mitchell Avenue, Walnut Creek, CA, USA
l Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche, France
m Institut National de la Recherche Agronomique, USC 1408 AFMB, Marseille, France
n Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
o University of Minnesota, St. Paul, MN, USA

ARTICLE INFO

Keywords:
Postia placenta
Rhodonia placenta
Monokaryon

Data format Analyzed
Experimental factors Genomic DNA from pure culture
Experimental features Draft genome assembly and annotation
Consent N/A
Sample source location Pseudotsuga menziesii, Maryland, USA

We report the genome of Postia (Rhodonia) placenta MAD-SB12, a homokaryotic wood decay fungus (Basidiomycota, Polyporales). Intensively studied as a representative brown rot decayer, the gene complement is consistent with the rapid depolymerization of cellulose but not lignin.

Specifications

Sex N/A
Organism/cell line/tissue Postia (Rhodonia) placenta Mad-SB12
Sequencer or array type Illumina paired-end, 454 titanium, Sanger

1. Direct links to deposited data

The whole genome project has been deposited at DDJB/EMBL/GenBank under accession NEDQ00000000. The version described in

⁎ Corresponding author.
E-mail address: dcullen@wisc.edu (D. Cullen).
1 Present address: Diego Martinez, Veritas Genetics Inc., Danvers, MA USA.

http://dx.doi.org/10.1016/j.gdata.2017.08.003
Received 14 July 2017; Received in revised form 31 July 2017; Accepted 9 August 2017
Available online 10 August 2017
2213-5960/ Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
this paper is version NEDQ00000000.1. The annotated genome is also available via the Joint Genome Institute fungal portal MycoCosm ([1]; http://genome.jgi.doe.gov/PosplSB12.1).

2. Experimental design, materials and methods

Common inhabitants of forest litter and decaying wood, brown-rot fungi play a key role in carbon cycling. These Basidiomycetes rapidly depolymerize cellulose while leaving the bulk of lignin as a modified residue. The preponderance of evidence supports oxidative mechanisms involving diffusible hydroxyl radicals, but much uncertainty remains. To examine the system more closely, a dikaryotic isolate of the brown-rot fungus, *Postia placenta* (which is also classified in the genus *Rhodonia* [2]), was previously sequenced [3]. The genome has been used for phylogenomic comparisons and for analyses of transcriptomes and secretomes, but investigations are hampered by allelic variation [4–13].

Addressing this problem, single basidiospores were collected from the fruiting dikaryon strain Mad-98B by inverting agar plates containing malt extract medium. The basidiospores were eluted from the lids with sterile water and, after streaking onto agar, individual germinating basidiospores were transferred to new plates. The monokaryotic condition was confirmed by PCR amplification and direct sequencing of genes encoding a glycosyl transferase family 66, and representatives of glycosidase families 55 and 1 [14].

The genome of *P. placenta* MAD-SB12 was sequenced using a combination of platforms: 454 (Roche), Illumina, and Sanger. Firstly, Illumina reads obtained from 300 bp insert size library sequenced in 2 × 72 bp format were assembled using Velvet [15], followed by shredding the velvet assemblies into ~1000 bp fragments. Then, these fragments were assembled with 454 Titanium standard and 2.8 kb insert size paired-end reads as well as Sanger fosmids using Newbler (2.5–internal-10Apr08-1) (Roche). The 42.5 Mbp genome assembly consisted of 549 scaffolds and 1446 contigs (scaffold N50 and L50 were 8

Table 1
Assembly and annotation features of *P. placenta* SB12.

Feature	Value
Genome assembly size (Mbp)	42.45
Sequencing read coverage depth	47.36
# of contigs	1446
# of scaffolds	549
# of scaffolds ≥ 2 kbp	549
Scaffold N50	8
Scaffold L50 (Mbp)	2.10
# of gaps	897
% of scaffold length in gaps	6.1%
Three largest Scaffolds (Mbp)	4.33, 3.52, 3.23
Gene models	12,541
Average and median protein length	429, 354
Genes with Interpro domains	7221
Genes with GO terms	5937

Table 2
Genes predicted to be involved in lignocellulose degradation by wood decay fungi.

CAZy categorya	Brown-rotb	White-rotc
Auxiliary Activities Family AA1_1 Laccase	4	7
Auxiliary Activities Family AA1_2 Ferrooxidase	2	2
Auxiliary Activities Family AA2 peroxidases	0	15
Auxiliary Activities Family AA3_1 CDH	0	1
Auxiliary Activities Family AA3_3 Alcohol oxidase	5	3
Auxiliary Activities Family A6 BQR	1	4
Auxiliary Activities Family A9 LPMO	2	16
Total AA-encoding genes	55	89
Carbohydrate binding modules family 1 (CBM1)	0	36
Total CBM-encoding genes	33	65
Glycoside hydrolase family GH12	2	2
Glycoside hydrolase family GH13	1	1
Glycoside hydrolase family GH135	0	1
Glycoside hydrolase family GH13	0	0
Glycoside hydrolase family GH3	3	4
Glycoside hydrolase family GH30_3	3	2
Glycoside hydrolase family GH12	1	2
Glycoside hydrolase family GH5_22	2	2
Glycoside hydrolase family GH5_31	1	2
Glycoside hydrolase family GH5_5	3	2
Glycoside hydrolase family GH51	1	2
Glycoside hydrolase family GH6	0	0
Glycoside hydrolase family GH7	0	0
Glycoside hydrolase family GH7	0	0
Glycoside hydrolase family GH74	0	4
Glycoside hydrolase family GH78	3	3
Glycoside hydrolase family GH7	2	8
Glycoside hydrolase family GH9	0	1
Total GH-encoding genes	144	181
Total GlycosylTransferase (GT)-encoding genes	70	70
Total Polysaccharide Lyase (PL)-encoding genes	5	6
Total	326	444

a Abbreviations: CAZy, Carbohydrate Active Enzyme classifications [14]; CDH, Cellobiose dehydrogenase; CRO, Copper radical oxidase; BQR, Benzoquinone reductase; LPMO, Lytic polysaccharide monooxygenase.
b Brown-rot genomes: PosplSB12, *P. placenta* monokaryotic strain described here; Pospl1, *P. placenta* dikaryotic strain (http://genome.jgi.doe.gov/Pospl1/Pospl1.home.html); Antsi, *Antrodia sinuosa* (http://genome.jgi.doe.gov/Antsi1/Antsi1.home.html); Daequ, *Daedalea quercina* (http://genome.jgi.doe.gov/Daequ1/Daequ1.home.html); Fompi, *Fomitopsis pinicola* (http://genome.jgi.doe.gov/Fompi3/Fompi3.home.html); Laesu, *Lentinus subvermispora* (http://genome.jgi.doe.gov/Laesu1/Laesu1.home.html); Wolco, *Wolfiporia cocos* (http://genome.jgi.doe.gov/Wolco1/Wolco1.home.html).
c White-rot genomes: Phach, *Phanerochaete chrysosporium* (http://genome.jgi.doe.gov/Phchr2/Phchr2.home.html); Cersu, *Ceriporiopsis subvermispora* (http://genome.jgi.doe.gov/Cersu1/Cersu1.home.html).
and 2.1 Mbp, respectively). Secretion signals were predicted in 1047 sequences and general annotation features are summarized in Table 1.

3. Data description

Consistent with the degradative potential of brown rot fungi, no ligninolytic peroxidases, cellulose binding modules, or members of glycoside hydrolase (GH) families 6 and 7 were detected in the P. placenta SB12 genome (Table 2). Among the brown rot fungi, potential cental ligninolytic peroxidases, cellulose binding modules, or members of 3. Data description sequences. Assembly and general annotation features are summarized and 2.1 Mbp, respectively). Secretion signals were predicted in 1047 domains (Table 2). A total of 326 biohydrolases and endoglucanases are typically fused to family CBM1, and their activity on crystalline cellulose is therefore suspect. In the white rot fungi, these exocellobiohydrolases and endoglucanases are typically fused to family CBM1 domains (Table 2). A total of 326 P. placenta SB12 genes encode carbohydride active enzymes (CAZys), of which 144 are glycoside hydrolases [14].

To recognize single haplotypes within the dikaryon, BLASTN alignments of putative alleles plus 500 bp of upstream regions were used to delete 4996 allelic variants. This resulted in 12,227 total gene predictions [3], an estimate similar to the actual number of haplotypes shown here in the monokaryon (12,541). However, a substantial number of genes involved in lignocellulose degradation were not captured by the computational approach. For example, dikaryotic P. placenta MAD-698 was predicted to encode only 243 CAZys including 129 GHS [3]. Glycosyl transferases were particularly underestimated in the dikaryon, as were 15 GHS and several oxidoreductases (Table 2). Among the latter, alcohol oxidase genes (AA3_3) are particularly important as evidence suggests their peroxide-generating activity may be directly related to the generation of small molecular weight oxidants via Fenton chemistry [16].

Acknowledgments

The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. BH was funded by the AMIDEX foundation (MicrobioE project, grant number ANR-11-IDEX-0001-02).

References

[1] I.V. Grigoriev, R. Nikitin, S. Haridas, A. Kuo, R. Ohm, R. Otiilar, R. Riley, A. Salamov, X. Zhao, F. Korzeniewski, T. Smirnova, H. Nordberg, I. Dubchak, I. Shabalov, MycoCosm portal: gearing up for 1000 fungal genomes, Nucleic Acids Res. 42 (Database issue) (2014) D699–704.
[2] T. Niemela, J. Kinnunen, K.-E. Larsson, D.S. Schigel, E. Larsson, Genus revisions and new combinations of some North European polypores, Karstensia 45 (2005) 75–80.
[3] D. Martinez, J. Challacombe, I. Morgenstern, D. Hibbett, M. Schmoll, C.P. Kubicek, P. Ferreira, F.J. Ruiz-Duanes, A.T. Martinez, P. Kersten, K.E. Hammel, A. Vanden Wymelenberg, J. Gaskell, E. Lindquist, G. Sabat, S.S. Bondurant, I.F. Larrondo, P. Canessa, R. Vicuna, Y. Yadav, H. Doddapaneni, V. Subramanian, A.G. Pisasbaro, J.L. Lavin, J.A. Oguiza, E. Master, B. Henisstt, P.M. Coutinho, P. Harris, J.K. Magnuson, S.E. Baker, K. Bruno, W. Kenneley, P.J. Hoeugger, U. Kues, P. Ramayia, S. Lucas, A. Salamov, H. Shapiro, H. Tu, C.L. Chee, M. Mira, G. Xie, S. Teter, Y. Zavie, T. James, M. Mokre, M. Pospisek, I.V. Grigoriev, T. Brettin, D. Rokhsar, R. Berka, D. Cullen, Genome, transcriptome, and secretion analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion, Proc. Natl. Acad. Sci. U. S. A. 106 (6) (2009) 1954–1959.
[4] D.C. Eastwood, D. Floudas, M. Binder, A. Majcheryc, P. Schneider, A. Aerts, F.O. Asiebju, S.E. Baker, K. Barry, M. Bendikhsy, M. Blumentritt, P.M. Coutinho, D. Cullen, R.P. de Vries, A. Gathman, B. Goodell, B. Henisstt, K. Ihmark, H. Kaueterd, A. Kohler, K. Labitt, A. Lapidus, J.L. Lavin, Y.H. Lee, E. Lindquist, W. Lilly, S. Lucas, E. Morin, C. Murat, J.A. Oguiza, J. Park, A.G. Pisasbaro, R. Riley, A. Rosling, A. Salamov, O. Schmidt, J. Schmutz, I. Skrede, J. Stenild, A. Wiebenga, X. Xie, U. Kues, D.S. Hibbett, D. Hoffmeister, N. Hogberg, F. Martin, I.V. Grigoriev, P. Watkinson, The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi, Science 333 (6043) (2011) 762–765.
[5] M. Ide, H. Ichinose, H. Wariishi, Molecular identification and functional characterizion of cytochrome P450 monooxygenases from the brown-rot basidimycete Postia placenta, Arch. Microbiol. 194 (4) (2012) 243–253.
[6] G.N. Presley, J. Zhang, J.S. Schilling, A genomics-informed study of oxalate and cellulose regulation by brown rot wood-degrading fungi, Fungal Genet. Biol. (2016), http://dx.doi.org/10.1016/j.fgb.2016.08.004 (in press).
[7] M. Raudaskoski, E. Kothe, Basidiozyme mating type genes and pheromone sig- naling, Exaktyol. Cell 9 (6) (2010) 847–859.
[8] J.S. Ryu, S. Shary, C.J. Houtman, E.A. Panisko, P. Korripally, F.J. St John, J. Zhang, G.N. Presley, K.E. Hammel, J.S. Ryu, S. Shary, C.J. Houtman, E.A. Panisko, P. Korripally, F.J. St John, Significant alteration of gene expression in wood decay fungi Postia placenta during brown rot of solid wood, Appl. Environ. Microbiol. 77 (22) (2011) 7933–7941.
[9] K. Syed, K. Shale, N.S. Pagadala, J. Tuzunyski, Systematic identification and evo- lutionary analysis of catalytically versatile cytochrome p450 monooxygenase fa- milies enriched in model basidiomycete fungi, PLoS One 9 (1) (2014) e86683.
[10] A. Vanden Wymelenberg, J. Gaskell, M. Mozuch, S.S. BonDurant, G. Sabat, J. Ralph, O. Skyba, S.D. Mansfield, R.A. Blanchette, I.V. Grigoriev, P.J. Kersten, D. Cullen, Skyba, S.D. Mansfield, R.A. Blanchette, D. Martinez, I. Grigoriev, P.J. Kersten, D. Cullen, Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium, Appl. Environ. Microbiol. 77 (13) (2011) 4499–4507.
[11] A. Vanden Wymelenberg, J. Gaskell, M. Mozuch, G. Sabat, J. Ralph, O. Skyba, S.D. Mansfield, R.A. Blanchette, D. Martinez, I. Grigoriev, P.J. Kersten, D. Cullen, Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium, Appl. Environ. Microbiol. 76 (11) (2010) 3599–3610.
[12] J. Zhang, G.N. Presley, K.E. Hammel, J.S. Ryu, J.R. Menke, M. Figueroa, D. Hu, G. Orr, J.S. Schilling, Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta, Proc. Natl. Acad. Sci. U. S. A. 113 (39) (2016) 10968–10973.
[13] K. Syed, D.R. Nelson, R. Riley, J.S. Yadav, Genomewide annotation and comparat- tive genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Genomderma sp. and Phlebia brevispora, Mycologia 105 (6) (2013) 1445–1455.
[14] V. Lombard, H. Golaconda Ramula, E. Drula, P.M. Coutinho, B. Henisstt, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res. 42 (2014) D490–D495.
[15] D.B. Zerbin, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res. 18 (5) (2008) 821–829.
[16] G. Daniel, J. Voic, I. Filonova, O. Pihal, E. Kubatova, P. Halada, Characteristics of Gloeophrum trabeum alcohol oxidase, an extracellular source of H2O2, in brown rot decay of wood, Appl. Environ. Microbiol. 73 (19) (2007) 6241–6253.