A Note on Minimum-Cost Coverage by Aligned Disks

Chan-Su Shin∗

Abstract

In this paper, we consider a facility location problem to find a minimum-cost coverage of \(n \) point sensors by disks centered at a fixed line. The cost of a disk with radius \(r \) has a form of a non-decreasing function \(f(r) = r^\alpha \) for any \(\alpha \geq 1 \). The goal is to find a set of disks under \(L_p \) metric such that the disks are centered on the x-axis, their union covers the \(n \) points, and the sum of the cost of the disks is minimized. Alt et al. [1] presented an algorithm in \(O(n^4 \log n) \) time for any \(\alpha > 1 \) under any \(L_p \) metric. We present a faster algorithm for this problem in \(O(n^2 \log n) \) time for any \(\alpha > 1 \) and any \(L_p \) metric.

1 Introduction

We consider geometric facility location problems of finding \(k \) disks whose union covers a set \(P \) of input points with the minimum cost. A center of the disk of radius \(r \) is often modeled as a base station(server) of transmission radius \(r \) and an input point as a sensor(client), so we assume the cost of the disk to be \(r^\alpha \) for some real value \(\alpha \geq 1 \). Thus the goal is to minimize \(\sum_i r^{\alpha}(D_i) \) where the disks \(D_i \) covering \(P \) have radius \(r(D_i) \). Alt et al. [1] presented a number of results on several problems related in this context. Among them, we focus on a restricted version in which the centers of the disks are restricted to be on a fixed line, simply saying x-axis. When the fixed line is not given, but its orientation is fixed, finding the best line giving the minimum coverage even for \(\alpha = 1 \) is quite hard to compute exactly [1], thus they gave a PTAS approximation algorithm.

Alt et al. [1] presented dynamic programming algorithms for this restricted coverage problem by aligned disks on a fixed line in time \(O(n^2 \log n) \) for \(\alpha = 1 \), and in time \(O(n^4 \log n) \) for any \(\alpha > 1 \) under any \(L_p \) metric for \(1 \leq p < \infty \). For \(L_\infty \) metric, they presented an \(O(n^3 \log n) \)-time algorithm.

We reinterpret their dynamic programming algorithms together with new observations, then we present improved algorithms in \(O(n^2 \log n) \) time for any \(\alpha > 1 \) and any \(L_p \) metric, and in \(O(n^3) \) time for \(L_\infty \) metric. The number of disks in the optimal covering is automatically determined in the algorithm. If one would want to restrict the number of disks used, say as a fixed \(1 \leq k \leq n \), then we can find at most \(k \) disks whose union covers the input points with minimum cost in a similar way. Actually we can find such \(k \) disks for all \(1 \leq k \leq n \) in \(O(n^3 \log n) \) time in total.

The formal definition of the problem is as follows: Given a set \(P = \{p_1, p_2, \ldots, p_n\} \) of \(n \) points in the plane, a real value \(\alpha \geq 1 \) and \(L_p \) metric for some \(p \geq 1 \), find an optimal disks \(D_1, D_2, \ldots, D_k \) with centers \(s_i \) on the x-axis and with radii \(r(D_i) \) whose union covers \(P \) such that the sum of the radii, \(\sum_i r^\alpha(D_i) \) is minimized.

∗School of Electronics and Information Engineering, Hankuk University of Foreign Studies, Korea. Email: cssin@hufs.ac.kr. Supported by National Research Foundation Grant(NRF2011-002827).
2 Geometric properties

We assume that the line where the centers of the disks lie is x-axis. As mentioned in [1], we assume that all points in P lie above or on the x-axis and no two points have the same x-coordinates. If a point p is below the x-axis, we replace it with a new point p' mirroring p with respect to the x-axis, then we get the same optimal covering. If p is directly above p', then any disk containing p always contains p', so we can simply discard p from P. Thus from now on we assume that the points of P have nonnegative and distinct x-coordinates, and they are indexed from left to right. Finally we assume the points of P are in the general position, i.e., no three or more points lie on the boundary of a disk with centers on the x-axis.

We also notice that the optimal covering is not unique, so we assign the lexicographic order to the optimal covering, the set of the disks according to x-coordinates of their centers. Then we consider only the leftmost optimal covering $D = \{D_1, D_2, \ldots, D_k\}$ with centers in increasing order on x-axis.

Let $\alpha \leq 1$ and let $r(D_i)$ denote the radius of D_i. We call $r^\alpha(D_i)$ the cost of the disk D_i. For a while, let us consider L_p metric only for $1 \leq p < \infty$. Let ∂R denote the boundary of a closed region R. We denote by t_i the highest point(or apex) of ∂D_i, and by a_i and b_i the left and right intersection points of ∂D_i with the x-axis, respectively. Let B be the union of disks in D. Then the following facts hold; the first one is mentioned also in [1].

Fact 1 [1] For each $1 \leq i \leq k$, the apex t_i of D_i appears on ∂B.

Let us consider $\partial D_i \cap \partial B$, i.e., the circular arc of ∂D_i which appears on ∂B. By Fact 1, t_i must be contained on the arc, so the arc is divided into the left and right subarcs at t_i. Then we have the following fact.

Fact 2 For each $1 \leq i \leq k$, $\partial D_i \cap \partial B$ must contain either one point of P at the apex t_i or two points of P, one on the left subarc and the other on the right subarc of $\partial D_i \cap \partial B$.

Proof. It is obvious that there must be at least one point of P on $\partial D_i \cap \partial B$. Otherwise we can shrink D_i to get a smaller cost until ∂D_i contains some point. Also if one of the left and right arc has no points, then we can shrink D_i while keeping the point on the one subarc until some point lie either on the apex t_i or on the other subarc containing no points. This contradicts to the optimality.

For each $1 \leq i < k$, we define ℓ_i as a vertical line between D_i and D_{i+1}; if D_i intersects D_{i+1}, then ℓ_i is a vertical line through intersections $\partial D_i \cap \partial D_{i+1}$, otherwise ℓ_i is an arbitrary vertical line between b_i and a_{i+1}. For convenience, we define ℓ_0 and ℓ_k as vertical lines passing through a_1 and b_k, respectively.

Let P_i be a subset of points of P lying between ℓ_{i-1} and ℓ_i for $1 \leq i \leq k$. Then we know that P_i contains at least one point by Fact 2 and they are pairwise disjoint and their union is the same as the whole set P. Let C_i be the smallest axis-centered disk containing P_i. Clearly $\{C_1, \ldots, C_k\}$ is a covering for P. We have the following lemma.

Lemma 1 $\sum_{1 \leq i \leq k} r^\alpha(C_i) = \sum_{1 \leq i \leq k} r^\alpha(D_i)$.

Proof. Since $\{D_1, \ldots, D_k\}$ is the optimal covering for P, it holds that $\sum_i r^\alpha(D_i) \leq \sum_i r^\alpha(C_i)$. For each $1 \leq i < k$, P_i is contained in $P \cap D_i$, thus $r^\alpha(C_i) \leq r^\alpha(D_i)$. Since $f(r) = r^\alpha$ is a
nondecreasing function for $\alpha \geq 1$, $\sum_i r^\alpha(C_i) \leq \sum_i r^\alpha(D_i)$, which completes the lemma.

The above lemma means that there is a vertical partition of P into P_i's such that the smallest disks containing P_i's are the optimal disks for P. Using this lemma, we can derive a fast dynamic programming algorithm.

3 Dynamic programming algorithm

Alt et al. [1] defined a pinned disk (or circle) as the leftmost smallest axis-centered disks enclosing some fixed subset of points, so the pinned disk contains at least one point on its boundary. The disk C_i defined in Lemma 1 is a pinned disk. It is obvious that the optimal covering D is a subset of such pinned disks. In [1], the dynamic programming algorithm chooses pinned disks with minimum cost from all $O(n^2)$ pre-computed pinned disks, satisfying the feasibility condition that no other points of P lie above the chosen pinned disks. This step causes to take the total $O(n^4 \log n)$ time. But Lemma 1 tells us there must be a partition P_1, \ldots, P_k, separated by vertical lines, such that a set of the smallest disks containing P_i is indeed an optimal covering for P. Thus we simply go through the input points from left to right, not through the pinned disks, and compute the smallest disk C_i enclosing P_i instead of checking the feasibility condition.

Let A be an array in which $A[i]$ stores the minimum cost for a subset $\{p_i, p_{i+1}, \ldots, p_n\}$. The minimum cost for the whole set $\{p_1, \ldots, p_n\}$ will be stored at $A[1]$. If we denote by $D(\{p_i, \ldots, p_j\})$ the smallest disk containing $\{p_i, \ldots, p_j\}$, then we have the following recurrence relation:

$$A[i] = \begin{cases} \infty & \text{if } i > n, \\ \min_{i \leq j \leq n} \{A[j+1] + r^\alpha(D(\{p_i, \ldots, p_j\}))\} & \text{if } 1 \leq i \leq n. \end{cases}$$

The key step is to compute $D(\{p_i, \ldots, p_j\})$ fast. We can do this in amortized $O(\log n)$ time maintaining the intersection of the x-axis with the farthest Voronoi diagram (FVD) in a dynamic way. For a fixed i, $A[i]$ is computed in $O(n \log n)$ time, so the total time to compute $A[1]$ becomes $O(n^2 \log n)$.
As in Figure 1, the intersection of the farthest Voronoi diagram for \(\{p_1, \ldots, p_j\} \) with the \(x \)-axis partitions the \(x \)-axis into intervals \(I_1, I_2, \ldots, I_{m(i,j)} \) from the left to the right, where \(I_l \) is a half-open interval \(I_l := [x_{l-1}, x_l) \), where \(x_0 = -\infty \) and \(x_{m(i,j)} = +\infty \). Each interval \(I_l \) is a collection of the points from which the farthest point of \(\{p_1, \ldots, p_j\} \) is the same. We denote by \(p(I_l) \) the farthest point from any \(x \in I_l \). Then a disk centered at some point \(x \in I_l \) and with radius \(|xp(I_l)| \) encloses all the points of \(\{p_1, \ldots, p_j\} \).

Let \(D(I_l) \) be the smallest disk enclosing \(\{p_1, \ldots, p_j\} \) whose center lies in \(I_l \). We have two cases. For a case which \(\partial D(I_l) \) has one point at its apex, the point is indeed \(p(I_l) \) and the center of \(D(I_l) \) has the same \(x \)-coordinate as that of \(p(I_l) \). For the other case, \(\partial D(I_l) \) should have two points, so the center of \(D(I_l) \) must be on \(x_{l-1} \), the left endpoint of \(I_l \), but the radius of \(D(I_l) \) is defined as \(\infty \).

To store such intervals, we use a balanced search tree \(T \) [3]. We store at its leaves the intervals \(I_1, \ldots, I_{m(i,j)} \) with their corresponding radii from left to right. Each internal node \(v \) of \(T \) stores the minimum one among the radii in the leaves of the subtree rooted at \(v \). Then the radius stored at the root of \(T \) is the radius of the smallest disk enclosing \(\{p_1, \ldots, p_j\} \). We can insert a new interval into \(T \) and delete an interval from \(T \) both in \(O(\log n) \) time.

For a fixed \(i \), we now construct the intervals \(I_1, \ldots, I_{m(i,j)} \) for all \(i \leq j \leq n \) incrementally from \(j = i \) to \(j = n \). For \(j = i \), there is only one interval. We start with this interval, and update the interval set by adding the points one by one from \(p_{i+1}, \ldots, p_n \). We now explain how we update \(T \) for \(\{p_i, \ldots, p_{j-1}\} \) when \(p_j \) is inserted.

We know that the interval for \(p_j \) must appear because \(p_j \) is the rightmost point among \(p_i, \ldots, p_{j-1} \), and moreover the interval should be the leftmost one, i.e., its left endpoint must be \(x_0 = -\infty \). When the interval for \(p_j \) is inserted into \(T \), several consecutive intervals in \(T \) from the left should be removed from \(T \) or replaced with a shorter interval in \(T \). To identify such intervals, we need the following basic properties on the farthest Voronoi diagram.

Lemma 2 For \(\{p_1, \ldots, p_j\} \) under any \(L_p \) metric, \(1 \leq p < \infty \), the intersection of the \(x \)-axis with the farthest Voronoi diagram for \(\{p_1, \ldots, p_j\} \) has the properties: (1) The interval for \(p_j \) is connected, and (2) for any two consecutive intervals \(I \) and \(J \) where \(I \) is in the left of \(J \) on the \(x \)-axis, then \(p(I) > p(J) \), where \(p(I) > p(J) \) means the \(x \)-coordinate of \(p(I) \) is larger than that of \(p(J) \).

Proof. For the completeness, we prove these properties. A bisector of two points under any \(L_p \) metric is monotone to the \(x \)-axis and the \(y \)-axis, so it intersects the \(x \)-axis only once [4]. To prove the connectedness, we suppose that \(p_j \) has two disjoint intervals \(I \) and \(L \), where \(I \) is to the left of \(L \). There must be one or more intervals between them, denote by \(J \) the interval to the right of \(I \) and by \(K \) the interval to the left of \(L \). Note that \(J \) is not necessarily different with \(K \). Let \(D \) be a smallest disk centered at \(I \cap J \), i.e., the common endpoint of \(I \) and \(J \) which encloses all points in \(\{p_i, \ldots, p_j\} \). Then \(p(I) \) and \(p(J) \) lie on \(\partial D \). Similarly, let \(D' \) be a smallest disk centered at \(K \cap L \) enclosing all the points. Since \(p(I) = p(L) = p_j \), they must be on one of two intersections \(\partial D \cap \partial D' \), clearly the one above the \(x \)-axis. Also the lune \(D \cap D' \) contains all the points in \(\{p_i, \ldots, p_j\} \). This implies that \(p(J) \) must lie on the right boundary arc of the lune. The bisector of \(p(I) \) and \(p(J) \) intersects the \(x \)-axis at \(I \cap J \), thus the points on the \(x \)-axis to the left of \(I \cap J \) is farther to \(p(J) \) than to \(p(I) \), which contradicts that \(I \) is in the left of \(J \). For the second fact, we consider the half-circle of the smallest disk centered at \(I \cap J \) on the \(x \)-axis which passes through \(p(I) \) and \(p(J) \). Since the half-circle intersects with the bisector of \(p(I) \) and \(p(J) \) exactly once, \(p(I) \) should be in the right of \(p(J) \) along the
half-circle. This means \(p(I) > p(J) \) because the half-circle is monotone to the x-axis.

Let \(J = [a, b) \) be the interval of \(p_j \) in the interval set for \(\{p_1, \ldots, p_j\} \). Then we already know that \(a = -\infty \). By Lemma 2 it suffices to find the interval \(I_l \) from the intervals for \(\{p_1, \ldots, p_{j-1}\} \) which intersects with the bisector of \(p_j \) and \(p(I_l) \). Then \(b \) is the intersection of \(I_l \) with the bisector. For this, we do the intersection test from \(l = j - 1 \) to \(l = i \) one by one. Once \(I_l \) is found, we (1) delete the intervals \(I_1, \ldots, I_{l-1} \), which are completely contained in \(J \), from \(T \), (2) insert a new interval \(J \) for \(p_j \), and (3) replace(i.e., delete then insert) \(I_l \) with a part not contained in \(J, I_l \setminus J \). If some interval is removed from \(T \), then it is never inserted again into \(T \). Hence, for a fixed \(i \), we can compute the smallest disks enclosing disks for \(\{p_1, \ldots, p_j\} \) for all \(i \leq j \leq n \) in \(O((n-i) \log n) \) time. In other words, we can compute \(A[i] \) in \(O((n-i) \log n) = O(n \log n) \) for fixed \(i \). The total time of the algorithm is \(O(n^2 \log n) \), and the space is \(O(n) \). The detailed algorithm is summarized below.

Algorithm 1 MinCostAlignedCoverage(\(P, \alpha \))

Input: A set \(P \) of \(n \) points \(\{p_1, \ldots, p_n\} \) and \(\alpha \geq 1 \).

Output: A set of disks \(D = \{D_1, \ldots, D_k\} \) with minimum cost of \(\sum \alpha(D_i) \) which covers \(P \).

1. \(A[n + 1] = \infty \).
2. Initially, \(T \) consists of one interval \((-\infty, +\infty)\) for \(p_n \).
3. for \(i \leftarrow n \) to 1 do
4. \(A[i] = \infty \)
5. for \(j \leftarrow i \) to \(n \) do
6. Find the first interval \(I_l \) in \(T \) such that the bisector \(B \) of \(p_j \) and \(p(I_l) \) intersects \(I_l \) by scanning the intervals in \(T \) one by one from left to right
7. \(J := [-\infty, B \cap I_l] \)
8. Remove intervals \(I_1, \ldots, I_{l-1} \), replace \(I_l \) with \(I_l \setminus J \), and insert \(J \) in \(T \)
9. Let \(r \) be the radius stored at the roof of \(T \), i.e., \(r = r(D(\{p_i, \ldots, p_j\})) \)
10. \(A[i] = \min(A[i], \alpha + A[j + 1]) \)
11. Keep the index \(j \) which gives the minimum cost
12. end for \(j \)
13. end for \(i \)
14. Reconstruct the optimal disk set \(D \) by backtracking the recorded indices
15. return \(A[1] \) and \(D \)

Algorithm for \(L_\infty \) metric. Under this metric, the unit disk is an axis-aligned square. As before, we consider only the leftmost optimal covering by the lexicographic order. We can easily see that Fact 1 and Fact 2 can be applied for \(L_\infty \) metric if \(t_i \), the apex of the disk is defined as the upper and right corner of the disk. To use Lemma 2 we define a partition of \(P, P_1, \ldots, P_k \), separated by vertical lines containing right sides of the optimal disks. Then we can also prove in a similar way as the proof in Lemma 2 that the sum of the costs of the smallest squares \(C_i \) containing \(P_i \) is the same as the minimum cost for \(P \). We now compute \(A[i] \) similarly. The key step is to compute the smallest square \(C \) enclosing \(\{p_1, \ldots, p_j\} \) quickly. This square \(C \) is determined by two points; \(p_j \) and one of the points \(p_i \) and the highest point of \(\{p_i, \ldots, p_{j-1}\} \), which can be computed in \(O(1) \) time if we maintain the highest point during
the incremental evaluation. Thus we can compute $A[i]$ in $O(n)$ time. The total time is $O(n^2)$.

Theorem 1 Given a set P of n points in the plane and a non-decreasing cost function with $\alpha \geq 1$, we can compute an optimal disks centered on the x-axis such that the union covers P and the sum of the costs of the disks is minimized in $O(n^2 \log n)$ time for any fixed L_p metric and in $O(n^2)$ time for L_∞ metric.

We can also consider the case when the number of disks used to cover P is given as a fixed value k. This case would be required by practical reasons. This can be similarly solved by filling a two dimensional table $A[i][k]$, the minimum cost needed to cover p_i, \ldots, p_n with at most k disks, in $O(kn^2 \log n)$ time. Actually we can find all optimal coverings for any $1 \leq k \leq n$ in the same time.

Theorem 2 Given a set P of n points in the plane and a non-decreasing cost function with $\alpha \geq 1$, we can compute a collection of all optimal coverings for P such that P is covered by at most k disks for any $1 \leq k \leq n$ and the sum of the costs of the disks is minimized in $O(n^3 \log n)$ time for any fixed L_p metric and in $O(n^3)$ time for L_∞ metric.

4 Concluding Remarks

We can consider other disk coverage problems with practical restrictions such as the connectivity constraint. Recently, Chambers et al. [2] investigated a problem of assigning radii to a given set of points in the plane such that the resulting set of disks is connected and the sum of radii, i.e., $\alpha = 1$ is minimized. When we bring such connectivity constraint to our problem for $\alpha \geq 1$, we need to find a “connected” set of disks centered on the x-axis whose union covers n input points. When $\alpha = 1$, the smallest disk containing all points is the optimal coverage. However, we can easily show for $\alpha > 1$ that infinitely many disks always guarantee the minimum cost coverage for any input. Thus we should restrict the number of disks used to cover, say $1 \leq k \leq n$. But we have no idea how hard this problem is for a fixed k.

References

[1] Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P. Fekete, Christian Knauer, Jonathan Lenchner, Joseph S. B. Mitchell, and Kim Whittlesey. Minimum-cost coverage of point sets by disks. In Proceedings of the twenty-second annual symposium on Computational geometry, SCG ’06, pages 449–458, New York, NY, USA, 2006. ACM.

[2] Erin Wolf Chambers, Sándor P. Fekete, Hella-Franziska Hoffmann, Dimitri Marinakis, Joseph S. B. Mitchell, Venkatesh Srinivasan, Ulrike Stege, and Sue Whitesides. Connecting a set of circles with minimum sum of radii. In Proceedings of the 12th international conference on Algorithms and data structures, WADS'11, pages 183–194, Berlin, Heidelberg, 2011. Springer-Verlag.

[3] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.

[4] D. T. Lee. Two-dimensional voronoi diagrams in the l_p-metric. J. ACM, 27:604–618, October 1980.