Three-Point Vortex Dynamics as a Lie-Poisson Reduced Space

Antonio Hernández-Garduño
Department of Mathematics
UAM-I, Mexico
ahg@xanum.uam.mx

September 20, 2016

Abstract
This paper studies the reduced dynamics of the three-vortex problem from the point of view of Lie-Poisson reduction on the dual of the Lie algebra of $U(2)$. The algebraic study leading to this point of view has been given by Borisov and Lebedev [1, 2] (see also [3]). The main contribution of this paper is to properly describe the dynamics as a Lie-Poisson reduced system on $(u(2)^*,\{\ ,\}_{\text{LP}})$, giving a systematic construction of a one-parameter family of covectors $\{\sigma_1, \sigma_2, \sigma_3\}$ satisfying Pauli-commutation relations.

Keywords: N-vortex problem, Lie-Poisson reduction, Pauli matrices.

Contents

1 Introduction ... 2

2 Reduced space as coadjoint orbit in $u(2)^*$ 3
 2.1 The extended vortex configuration space 4
 2.2 The shape sphere 5
 2.3 Jacobi-Bertrand-Haretu coordinates 6
 2.4 The σ^3-axis 9
 2.5 Hamiltonian flow on \mathcal{O}_μ 9

3 Pauli symbols for the 3-vortex problem 10
 3.1 Pauli symbols 12
 3.2 Choice of orientation for the a_1-a_2 plane 15
1 Introduction

The \(N\)-point-vortex problem arises as a model on incompressible, homogeneous, inviscid fluid flows, governed by Euler’s equation on \(\mathbb{R}^2\), where the vorticity is assumed to be concentrated at \(N\) discrete points. The equations of motion are (cf. [5])

\[
\dot{z}_\alpha = \frac{i}{2\pi} \sum_{\beta \neq \alpha}^N \Gamma_\beta \frac{z\alpha - z\beta}{|z\alpha - z\beta|^2}
\]

where the \(\Gamma_\beta\)’s are the vortex strengths. These equations are equivalent to Hamilton’s equations \(i_{X_h} \Omega = dh\) with Hamiltonian

\[
h = -\frac{1}{2\pi} \sum_{\alpha < \beta} \Gamma_\alpha \Gamma_\beta \ln|z_\alpha - z_\beta|
\]

and symplectic form

\[
\Omega_0(z, w) = -\text{Im} \sum_{\alpha=1}^n \Gamma_\alpha z_\alpha \bar{w}_\alpha.
\]

The Hamiltonian and symplectic form are invariant with respect to the diagonal action of \(SE(2)\) on the phase space of the system identified with \(\mathbb{C}^N\) minus collision points:

\[
z_i \mapsto e^{i\theta} z_i + a
\]

\((\theta, a) \in SE(2) \cong S^1 \times \mathbb{C}\)

The model admits various conserved quantities related to \(SE(2)\) invariance, time-translation and rescaling symmetries:

\[
Z_0 = \Gamma_{\text{tot}}^{-1} \sum_k \Gamma_k z_k, \quad \Theta_0 = \sum_k \Gamma_k |z_k|^2, \quad (2)
\]

\[
\Psi_0 = -\sum_{n < k} \Gamma_n \Gamma_k \ln|z_n - z_k|
\]

\[
V_0 = \frac{1}{2i} \sum_k \Gamma_k (\bar{z}_k \dot{z}_k - z_k \dot{\bar{z}}_k) = \sum_{n < k} \Gamma_n \Gamma_k.
\]

2
It should be noted that the expression

\[M = \sum_{n<k} \Gamma_n \Gamma_k |z_n - z_k|^2, \]

also a conserved quantity, is not independent. Indeed, it is expressed in terms of \(\Theta_0 \) and \(Z_0 \):

\[M = \Gamma_{\text{tot}} \Theta_0 - \Gamma_{\text{tot}}^2 |Z_0|^2, \]

where \(\Gamma_{\text{tot}} := \sum_k \Gamma_k. \)

The symplectic form (1) induces a Poisson structure on \(\mathbb{C}^N \). This Poisson structure can be written in terms of the following group invariants: the square of the distances between each pair of vortices and the oriented areas of each triad of vortices. By regarding these quantities as independent, Bolsinov, Borisov and Mamaev [3] are able to describe the reduced vortex dynamics as a subsystem of a hamiltonian system on the Lie algebra \(\mathfrak{u}(n-1) \). More concretely, Borisov and Lebedev [1, 2] study the 3-vortex compact and non-compact vortex dynamics using this point of view.

In this paper we concentrate on the 3-point vortex problem. One of the objectives is to clarify that, properly understood, the point of view of Borisov and Lebedev lead to a description of the reduced dynamics as a Lie-Poisson reduced system in \(\mathfrak{u}^*(2) \). The Poisson bracket for the reduced dynamics turns out to be the standard Lie-Poisson bracket on the dual of a Lie algebra (cf. [4, chap. 13]).

Moreover, this paper contributes by giving a systematic construction of a one-parameter family of covectors \(\{ \sigma_1, \sigma_2, \sigma_3 \} \) satisfying Pauli-commutation relations and relates such construction with canonical transformations involving Jacobi-Bertrand-Haretu coordinates for the original three point vortex system. The origin of the Pauli symbols is explained in a broader context and simple expressions for Casimirs are given in terms of the coordinates \((a_0, a_1, a_2, a_3) \) induced by the dual basis of the Pauli symbols. This allows for the foliation of \(\mathfrak{u}(2)^* \) by level sets of Casimirs to be made explicit.

As a side note, it should be noticed that our preferred choice of Pauli symbols differs from the corresponding one given in [1]. With our choice, the positive direction of the \(a_1 \)-axis intersects the coadjoint orbit at a binary collision and the expression for the hamiltonian takes a simpler form.

2 Reduced space as coadjoint orbit in \(\mathfrak{u}(2)^* \)

The purpose of this section is to realize the symplectic reduced space in the 3-vortex problem as a coadjoint orbit \(O_\mu \) in \(\mathfrak{u}(2)^* \).
2.1 The extended vortex configuration space

Consider the Poisson structure on C^3 induced by the symplectic form Ω_0:

$$\{f, g\}_{C^3} = \Omega_0(X_f, X_g)$$

with X_h defined by Hamilton’s equation $i_{X_h} \Omega_0 = df$. Let $b_i = |z_j - z_k|^2$ and let $\Delta = \text{Im}[(z_3 - z_1)(z_1 - z_2)]/2$, the oriented area of the triangle with vertices at z_1, z_2, z_3. Let C_3 denote the cyclic permutations of indices $(1, 2, 3)$.

It is verified that, with $(i,j,k) \in C_3$,

$$\{b_i, \Delta\}_{C^3} = \frac{1}{2} \left[\left(\frac{1}{\Gamma_j} - \frac{1}{\Gamma_k} \right) b_i + \left(\frac{1}{\Gamma_j} + \frac{1}{\Gamma_k} \right) (b_j - b_k) \right],$$

$$\{b_i, b_j\}_{C^3} = -8 \frac{\Delta}{\Gamma_k}.$$ (4)

Let $\mathcal{V} := \mathbb{R}^4$ and let $(\bar{b}_1, \bar{b}_2, \bar{b}_3, \bar{\Delta})$ be the dual to the standard basis in \mathcal{V}. (We emphasize that in this notation the over-bar does not denote complex conjugation.) Give \mathcal{V} a Poisson structure by defining $\{\bar{b}_i, \Delta\}_{\mathcal{V}}$ and $\{\bar{b}_i, b_j\}_{\mathcal{V}}$ as the right-hand sides of (4), putting bars on top of the b_i’s and Δ. Then $\psi : C^3 \rightarrow \mathcal{V}$ given by $(z_1, z_2, z_3) \mapsto (b_1, b_2, b_3, \Delta)$ is an $SE(2)$-invariant Poisson map. Moreover, restriction of ψ to $P_0 \subset C^3$, where $P_0 \subset C^3$ is the set of vortex configurations with center of vorticity at the origin, gives an $SO(2)$-invariant Poisson map.

We call \mathcal{V} the extended vortex configuration space. It is to be regarded as the space of “triangle configurations” with sides of length $\sqrt{b_i}$ and oriented area Δ. Of course, only those points in \mathcal{V} for which $b_i \geq 0$ and satisfy Heron’s condition relating the area and the sides of a triangle,

$$(4\Delta)^2 + b_1^2 + b_2^2 + b_3^2 - 2(b_1b_2 + b_2b_3 + b_3b_1) = 0,$$ (5)

have geometric and physical meaning.

Let $H(b_1, b_2, b_3, \Delta)$ be defined as the left-hand side of (5). We will refer to H as Heron’s function. It is verified that both I_2 and H are Casimirs of the Poisson structure $\{ , \}_{\mathcal{V}}$.

Observe that $\{ , \}_{\mathcal{V}}$ is closed in $\mathcal{V}^* \subset \mathcal{F}(\mathcal{V})$; that is to say, the bracket of two linear functionals is again a linear functional. It follows that $\{ , \}_{\mathcal{V}}$ makes \mathcal{V}^* a four-dimensional real Lie algebra. It’s center $Z(\mathcal{V}^*)$ is

$$Z(\mathcal{V}^*) = \text{span}(\sigma_0), \quad \text{where} \quad \sigma_0 := \frac{1}{2\Gamma_{\text{tot}}} \sum_{(i,j,k) \in C_3} \Gamma_j \Gamma_k \bar{b}_i.$$
Moreover, let
\[
\sigma_1 := \frac{1}{2\Gamma_{\text{tot}}} \left(\Gamma_2 \Gamma_3 \tilde{b}_1 + \Gamma_3 \Gamma_1 \tilde{b}_2 - \Gamma_1 \Gamma_2 \frac{\Gamma_{\text{tot}} + \Gamma_3}{\Gamma_{\text{tot}} - \Gamma_3} \tilde{b}_3 \right),
\]
\[
\sigma_2 := \frac{1}{2} \sqrt{\frac{\Gamma_1 \Gamma_2 \Gamma_3}{\Gamma_{\text{tot}}}} \left(-\tilde{b}_1 + \tilde{b}_2 + \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2} \tilde{b}_3 \right),
\]
\[
\sigma_3 := 2 \sqrt{\frac{\Gamma_1 \Gamma_2 \Gamma_3}{\Gamma_{\text{tot}}}} \Delta.
\]

(6)

Proposition 2.1. The \(\sigma_1, \sigma_2, \sigma_3\) satisfy Pauli's commutation relations:

\[
\{\sigma_i, \sigma_j\}_V = -2\sigma_k, \quad (i, j, k) \in C_3.
\]

(7)

It follows that \((\mathcal{V}^*, \{\ , \}_V)\) is isomorphic, as a Lie algebra, to \(u(2)\). Hence \((\mathcal{V}, \{\ , \}_\mathcal{V})\) is isomorphic, as a Poisson vector space, to \((u(2)^*, \{\ , \}_{LP})\), where \(\{\ , \}_{LP}\) denotes the Lie-Poisson braquet\footnote{See \cite[chap. 10]{[4]} for background on the Lie-Poisson braquet defined on the dual of a Lie algebra.}

\[
\{F, G\}_{LP}(\nu) \equiv \left\langle \nu, \left[\frac{\delta F}{\delta \nu}, \frac{\delta G}{\delta \nu} \right] \right \rangle.
\]

Definition 2.2. We will refer to the \(\sigma_i\)'s as the Pauli symbols in \(\mathcal{V}^*\).

Remark 2.3. Commutation relations (7) follow from a direct computation. Nevertheless, we will leave the proof of theorem 2.1 to section 3 where we also discuss the origin of the definitions of the \(\sigma_i\)'s in a broader context.

2.2 The shape sphere

We start by considering the compact case \(W_0 > 0\), where

\[
W_0 \overset{\text{def}}{=} \frac{1}{\Gamma_1 \Gamma_2} + \frac{1}{\Gamma_2 \Gamma_3} + \frac{1}{\Gamma_3 \Gamma_1}.
\]

Given \(\nu \in \mathcal{V} \cong u(2)^*\), let \(\nu = \sum_{i=0}^{3} a_i \sigma^i\), where \(\{\sigma^0, \ldots, \sigma^3\}\) is the dual bases of \(\{\sigma_0, \ldots, \sigma_3\}\). Then the Casimirs \(I_2\) and \(H\) take the form

\[
I_2 = a_0, \quad H = 4 \frac{\Gamma_{\text{tot}}}{\Gamma_1 \Gamma_2 \Gamma_3} \left(a_1^2 + a_2^2 + a_3^2 - a_0^2 \right).
\]
Hence, the extended vortex configuration space \mathcal{V} is foliated by the three-dimensional hyperboloids $a_1^2 + a_2^2 + a_3^2 - a_0^2 = h = \text{constant}$, corresponding to level sets of Heron’s function. The manifold $\psi(P_0) \subset \mathcal{V}$ (i.e., the physically meaningful portion of \mathcal{V}) corresponds to the half-cone $\tilde{h} = 0, a_0 > 0$. This half-cone is further foliated by the two-dimensional spheres of radius μ

$$
S_\mu^2 = \left\{ \sum_{i=0}^{3} a_i \sigma^i \mid a_1^2 + a_2^2 + a_3^2 = \mu^2, a_0 = \mu \right\},
$$

each sphere lying on the three-dimensional hyperplane $a_0 = \mu > 0$. (Note that the vertex of the cone at $\mu = 0$ corresponds to triple collision.)

2.3 Jacobi-Bertrand-Haretu coordinates

We want to relate the above construction to Jacobi-Bertrand-Haretu coordinates. To accomplish this we will consider the composition of the following three canonical transformations.

Define $T_1 : \mathbb{C}^3 \to \mathbb{C}^3$ by

$$(z_1, z_2, z_3) \mapsto (Z_0, r, s)$$

with

$$Z_0 = \frac{1}{\Gamma_{\text{tot}}} \sum_{j=1}^{3} \Gamma_j z_j \quad \text{(center of vorticity)},
$$

$$r = z_2 - z_1,
$$

$$s = z_3 - \frac{\Gamma_1 z_1 + \Gamma_2 z_2}{\Gamma_1 + \Gamma_2}.
$$

One computes that $\det T_1 = 1$, hence T_1 is invertible. Vectors r and s are the Jacobi-Bertrand-Haretu coordinates on the original system. The symplectic form after T_1 becomes

$$\Omega_1 \equiv T_1^* \Omega_0 = \Gamma_{\text{tot}} dZ_{0x} \wedge dZ_{0y} + A \, dr_x \wedge dr_y + B \, ds_x \wedge ds_y,$$

where

$$A := \frac{\Gamma_1 \Gamma_2}{\Gamma_1 + \Gamma_2}, \quad B := \frac{\Gamma_1 + \Gamma_2) \Gamma_3}{\Gamma_1 + \Gamma_2 + \Gamma_3},$$

and the subindices x and y indicate real and imaginary parts.

Define $T_2 : \mathbb{C}^3 \to \mathbb{R}^2 \times \mathbb{R}^2 \times T^2$ by

$$(Z_0, r, s) \mapsto (K_x, K_y; j_1, j_2; \theta_1, \theta_2)$$

6
with
\[Z_0 = \frac{1}{\sqrt{\Gamma_{\text{tot}}}} (K_x + iK_y) \]
and
\[r = \frac{\sqrt{2j_1} e^{i\theta_1}}{\sqrt{A}}, \quad s = \frac{\sqrt{2j_2} e^{i\theta_2}}{\sqrt{B}} \] (10)
with \(A \) and \(B \) as in (9). Then,
\[\Omega_2 \overset{\text{def}}{=} T_2^* \Omega_1 = dK_x \wedge dK_y + dj_1 \wedge d\theta_1 + dj_2 \wedge d\theta_2. \]
Note that reduction by translational symmetry is achieved by setting the center of vorticity at the origin: \(K_x = K_y = 0 \).

Define \(T_3 : \mathbb{R}^2 \times \mathbb{R}^2 \times T^2 \rightarrow \mathbb{R}^2 \times \mathbb{R}^2 \times T^2 \) by
\[(K_x, K_y; j_1, j_2; \theta_1, \theta_2) \mapsto (\tilde{K}_x, \tilde{K}_y; I_1, I_2; \varphi_1, \varphi_2) \]
through the (type II) generating function
\[G_2 = K_x \tilde{K}_y + j_1(\varphi_2 - \varphi_1) + j_2(\varphi_1 + \varphi_2) \]
with the relations
\[\theta_k = \frac{\partial G_2}{\partial j_k}, \quad I_k = \frac{\partial G_2}{\partial \varphi_k}, \quad k = 1, 2 \]
and \(K_y = \partial G_2/\partial K_x, \tilde{K}_x = \partial G_2/\partial K_y \). That is to say,
\[(\tilde{K}_x, \tilde{K}_y) = (K_x, K_y), \]
and
\[I_1 = j_2 - j_1, \quad I_2 = j_1 + j_2, \quad \varphi_1 = \frac{\theta_2 - \theta_1}{2}, \quad \varphi_2 = \frac{\theta_1 + \theta_2}{2}. \] (11) (12)
Note that, being half the angle between vectors \(r \) and \(s \), \(\varphi_1 \in [0, \pi] \). Also note that \(\Omega_3 := T_3^* \Omega_2 \) is again the standard symplectic form
\[\Omega_3 = d\tilde{K}_x \wedge d\tilde{K}_y + dI_1 \wedge d\varphi_1 + dI_2 \wedge d\varphi_2. \]
A computation shows that:
\[a_0 = I_2 \]
\[a_1 = I_1 \]
\[a_2 = \sqrt{I_2^2 - I_1^2} \cos(2\varphi_1) \]
\[a_3 = \sqrt{I_2^2 - I_1^2} \sin(2\varphi_1) \] (13)
Figure 1: Phase portrait on \mathcal{O}_μ and on its cylindrical coordinates chart for $\Gamma_1 = 0.08904$, $\Gamma_2 = 0.28196$, and $\Gamma_3 = 0.629$. Solid dots on the cylindrical chart indicate binary collisions.

The symplectic leaves of \mathcal{V} are its coadjoint orbits (the group orbits of the coadjoint action of $U(2)$ on the dual of its Lie algebra). Coadjoint orbits in $u(2)^*$ are 2-dimensional and connected. Therefore:

Proposition 2.4. For each $\mu \in \mathbb{R}^+$,

$$\mathcal{O}_\mu = S^2_\mu.$$

That is to say, each symplectic reduced space is identified with a two-dimensional sphere of radius μ in the hyperplane $a_0 = \mu > 0$, with center on the a_0-axis.

Remark 2.5. Since each point in the reduced space \mathcal{O}_μ represents an equivalence class of vortex configurations with the same “shape” (its orientation disregarded), it is natural to call \mathcal{O}_μ the **shape sphere**.

Remark 2.6. The case $\mu = 0$ corresponds to triple collision.

With this picture in mind, we see that $(I_1, 2\varphi_1) \in (-\mu, \mu) \times S^1$ are cylindrical coordinates of the shape sphere \mathcal{O}_μ, with the cylindrical axis in the direction of σ^1. Figure 1-(a) shows, as an example, the phase portrait on \mathcal{O}_μ for particular choices of the vortex strengths and $\mu = 1$.
2.4 The σ^3-axis

By definition of dual basis, each Pauli symbol σ_i is the projection functional giving the σ_i-component of a vortex configuration ν, i.e. $\sigma_i(\nu) = a_i$. This gives a_3 a simple interpretation in terms of the oriented area of the vortex triangle. Indeed, from (6):

$$a_3 = 2 \sqrt{\frac{\Gamma_1 \Gamma_2 \Gamma_3}{\Gamma_{tot}}} \Delta.$$ \hspace{1cm} (14)

Thus, the σ^3-component of a point on the shape sphere O_μ is proportional to the oriented area of the vortex triangle.

Remark 2.7. Relation (14) can be recovered directly from (13) and the geometric interpretation of the canonical transformation $T_3 \circ T_2 \circ T_1$ constructed in section 2.3. Indeed:

$$\Delta = \frac{1}{2} |r'||s| \sin(\theta_2 - \theta_1) = \sqrt{\frac{\Gamma_{tot}}{\Gamma_1 \Gamma_2 \Gamma_3}} \sqrt{j_1 j_2} \sin(2\varphi_1) = \frac{1}{2} \sqrt{\frac{\Gamma_{tot}}{\Gamma_1 \Gamma_2 \Gamma_3}} a_3,$$

which agrees with (14).

2.5 Hamiltonian flow on O_μ

The Hamiltonian

$$h = -\frac{1}{4\pi} \sum_{i=1}^{3} \Gamma_j \Gamma_k \ln b_i , \quad (i,j,k) \in C_3,$$ \hspace{1cm} (15)

induces a dynamic flow on the extended vortex configuration space V which restricts to the reduced flow on the coadjoint orbits $O_\mu, \mu > 0$. Since h does not depend on Δ, it follows that, for a fixed $a_0 = \mu$, h is a function of a_1 and a_2 only. Thus, the level sets of $h_\mu \equiv h|_{O_\mu}$ on the shape sphere O_μ are obtained by intersecting the cylinders

$$C_{\mu,E} = \left\{ \sum_i a_i \sigma^i \in V \mid h(a_0,a_1,a_2) = E, \quad a_0 = \mu \right\}$$

with the sphere O_μ. Now, since the cylindrical axis of $C_{\mu,E}$ is along the σ^3-direction, the phase portrait of the Hamiltonian flow will be most symmetrical when represented using the cylindrical coordinates (a_3, α) with respect
to the σ^3-axis, that is to say,

$$a_1 = \sqrt{\mu^2 - a_3^2} \cos \alpha, \quad a_2 = \sqrt{\mu^2 - a_3^2} \sin \alpha.$$

The coordinate transformation giving the cylindrical coordinates (a_3, α) of O_μ in terms of $(a_1, 2\varphi_1)$ is given by the equations

$$a_3 = \sqrt{\mu^2 - a_1^2} \sin(2\varphi_1),$$

$$\tan \alpha = \frac{\sqrt{\mu^2 - a_1^2} a_1}{a_1} \cos(2\varphi_1).$$

As an example, figure (b) shows the phase portrait on a cylindrical chart using coordinates (a_3, α), for particular choices of the vorticities.

3 Pauli symbols for the 3-vortex problem

The objective of this section is to justify the definitions of the Pauli symbols $\sigma_i, i = 1, 2, 3,$ that appear in (6) and the commutation relations (7).

Recall that $V \cong \mathbb{R}^4$ represents the extended vortex configuration space. Let (b_1, b_2, b_3, Δ) be the standard basis in V and $(\bar{b}_1, \bar{b}_2, \bar{b}_3, \bar{\Delta})$ its dual basis in V^*. We have equipped V with the Poisson structure

$$\{b_i, \Delta\} = \frac{1}{2} \left[\left(\frac{1}{\Gamma_j} - \frac{1}{\Gamma_k} \right) b_i + \left(\frac{1}{\Gamma_j} + \frac{1}{\Gamma_k} \right) (b_j - b_k) \right],$$

$$\{\bar{b}_i, \bar{b}_j\} = -\frac{8 \Delta}{\Gamma_k},$$

which also defines a Lie bracket in V^*. Let $W^* = \text{span}\{\bar{b}_1, \bar{b}_2, \bar{b}_3\} \subset V^*$ and let $A : W^* \rightarrow W^*$ defined by $A(x) = \{x, \Delta\}$. The matrix of A with respect to the basis $\beta = \{\bar{b}_1/\Gamma_1, \bar{b}_2/\Gamma_2, \bar{b}_3/\Gamma_3\}$ is

$$[A]_\beta = \frac{1}{2 \Gamma_1 \Gamma_2 \Gamma_3} \begin{pmatrix} \Gamma_1 (\Gamma_3 - \Gamma_2) & -\Gamma_1 (\Gamma_1 + \Gamma_3) & \Gamma_1 (\Gamma_1 + \Gamma_2) \\ \Gamma_2 (\Gamma_2 + \Gamma_3) & \Gamma_2 (\Gamma_1 - \Gamma_3) & -\Gamma_2 (\Gamma_1 + \Gamma_2) \\ -\Gamma_3 (\Gamma_2 + \Gamma_3) & \Gamma_3 (\Gamma_1 + \Gamma_3) & \Gamma_3 (\Gamma_2 - \Gamma_1) \end{pmatrix}.$$

The kernel of both $[A]_\beta$ and $[A]_\beta^T$ is spanned by $(1, 1, 1)$. Moreover, it is easy to check that $\text{span}(u)$ is the center of $(V^*, \{\ , \})$, where $u \in W^*$ is such that its coordinate vector relative to β is $(1, 1, 1)$, i.e.

$$u := \frac{\bar{b}_1}{\Gamma_1} + \frac{\bar{b}_2}{\Gamma_2} + \frac{\bar{b}_3}{\Gamma_3}.$$
Let $\langle \cdot , \cdot \rangle_\Gamma$ be the inner product on W^* whose matrix representation in the basis β is
\[
\begin{pmatrix}
\Gamma_2 + \Gamma_3 \\
\Gamma_3 + \Gamma_1 \\
\Gamma_1 + \Gamma_2
\end{pmatrix}.
\]
Let $S \overset{\text{def}}{=} \{ x \in W^* \mid \langle u, x \rangle_\Gamma = 0 \}$. Then

Proposition 3.1. It is verified that $S = \text{range}(A)$.

Proof: Since $u \in \ker A^*$, $\langle u, Ax \rangle = \langle A^*u, x \rangle = 0$ for all $x \in W^*$. □

The next two propositions (3.2 and 3.3) are easily proved by verifying the claim on a basis of S.

Proposition 3.2. For all $x \in S$, $\{ \{ x, \Delta \}, \Delta \} = -\Gamma_\text{tot}/(\Gamma_1 \Gamma_2 \Gamma_3) x$. In other words:
\[
A^2|_S = -\frac{\Gamma_\text{tot}}{\Gamma_1 \Gamma_2 \Gamma_3} \text{Id}|_S.
\]

Proof: It suffices to verify the claim for a basis of S, e.g. $\{ v_1, v_2 \}$ with
\[
[v_1]_\beta = (-\Gamma_3 - \Gamma_1, \Gamma_2 + \Gamma_3, 0), \quad [v_2]_\beta = (-\Gamma_1 - \Gamma_2, 0, \Gamma_2 + \Gamma_3), \quad (16)
\]
which is easily done. □

Proposition 3.3. Let $Q_1 : W^* \rightarrow \mathbb{R}$ be the quadratic form defined by $Q_1(x) \Delta = \{ x, \{ x, \Delta \} \}$. Then $Q_1|_S = Q_2|_S$, where $Q_2 : W^* \rightarrow \mathbb{R}$ is the quadratic form whose matrix representation in β is:
\[
[Q_2]_\beta = -\frac{8}{\Gamma_1^2 \Gamma_2 \Gamma_3} Q,
\]
with
\[
Q \overset{\text{def}}{=} \begin{pmatrix}
(\Gamma_2 + \Gamma_3)^2 & \Gamma_1 \Gamma_2 & \Gamma_1 \Gamma_3 \\
\Gamma_1 \Gamma_2 & (\Gamma_3 + \Gamma_1)^2 & \Gamma_2 \Gamma_3 \\
\Gamma_1 \Gamma_3 & \Gamma_2 \Gamma_3 & (\Gamma_1 + \Gamma_2)^2
\end{pmatrix}.
\]

Proof: It suffices to verify that the bilinear forms associated with Q_1 and Q_2 coincide when evaluated at (v_i, v_j), with $\{ v_1, v_2 \}$ as in (16). □

Corollary 3.4. Let $Q : S \rightarrow \mathbb{R}$ be defined by $Q(x) \Delta = \{ x, \{ x, \Delta \} \}$. Then Q is negative definite.
Proof: It is easily verified that
\[
Q = T^t \cdot T + 2 \begin{pmatrix}
\Gamma_2 \Gamma_3 & \Gamma_3 \Gamma_1 \\
\Gamma_1 \Gamma_2 & \Gamma_1 \Gamma_2
\end{pmatrix}
\]
with \(T = \begin{pmatrix}
0 & \Gamma_3 & \Gamma_2 \\
\Gamma_3 & 0 & \Gamma_1 \\
\Gamma_2 & \Gamma_1 & 0
\end{pmatrix} \). Therefore \(Q \) is positive definite. Hence \([Q], \beta\), and thus \(Q \), are negative definite. \(\square \)

3.1 Pauli symbols

We will use the following notation: if \(E \) is a real vector space, its projective space is
\[
P(E) := (E \setminus \{0\}) / \sim
\]
where \(\sim \) is the equivalence relation on \(E \) defined by \(v \sim w \) if \(v = \lambda w \) for some \(\lambda \in \mathbb{R}, \lambda \neq 0 \).

Given \([x] \in P(S)\), let:
\[
\sigma_3 = \gamma \Delta, \quad \sigma_1 = \alpha x, \quad \text{and} \quad \sigma_2 = -\frac{1}{2} \{\sigma_3, \sigma_1\}.
\]

Then, from propositions 3.2, 3.3 and corollary 3.4,
\[
\begin{align*}
\{\sigma_1, \sigma_2\} &= \frac{\alpha^2 \gamma}{2} \{x, \{x, \Delta\}\} = \frac{\alpha^2 \gamma}{2} Q(x) \Delta \\
\{\sigma_2, \sigma_3\} &= \frac{\alpha \gamma}{2} \{\{x, \Delta\}, \Delta\} = -\frac{\alpha \gamma}{2} \frac{\Gamma_{\text{tot}}}{\Gamma_1 \Gamma_2 \Gamma_3} x \\
\{\sigma_3, \sigma_1\} &= -2 \sigma_2
\end{align*}
\]

Therefore, the Pauli commutation relations \(\{\sigma_i, \sigma_j\} = -2 \sigma_k, \ (i, j, k) \in \text{cyclic}(1, 2, 3) \), are equivalent to
\[
-\alpha^2 Q(x) = 4, \quad \gamma^2 \Gamma_{\text{tot}} = 4 \Gamma_1 \Gamma_2 \Gamma_3.
\]

Thus we arrive at the next proposition. (Note that the superindex \(\perp \) denotes the perpendicular subspace with respect to the usual dot product in \(\mathbb{R}^n \).)

Proposition 3.5. Let \(S_\Gamma := (\Gamma_2 + \Gamma_3, \Gamma_3 + \Gamma_1, \Gamma_1 + \Gamma_2)^\perp \subset \mathbb{R}^3 \). For any \([x] \in P(S_\Gamma)\), let
\[
\begin{align*}
\sigma_3 &= 2 \sqrt{\frac{\Gamma_1 \Gamma_2 \Gamma_3}{\Gamma_{\text{tot}}}} \Delta, \quad \sigma_1 = \frac{\Gamma_1 \Gamma_2 \Gamma_2}{\sqrt{2 \sqrt{x^T \cdot Q \cdot x}}} \hat{x}, \quad \sigma_2 = -\frac{1}{2} \{\sigma_3, \sigma_1\} \quad (17)
\end{align*}
\]
where
\[
\wedge : \mathbb{R}^3 \to \mathcal{W}^* , \quad (x_1, x_2, x_3)^\wedge = x_1 \vec{b}_1/\Gamma_1 + x_2 \vec{b}_2/\Gamma_2 + x_3 \vec{b}_3/\Gamma_3 ,
\]
and \(\mathcal{Q} \) is the matrix defined in proposition 3.3. Then \(\sigma_1, \sigma_2, \sigma_3 \) satisfy the Pauli commutation relations
\[
\{ \sigma_1, \sigma_2 \} = -2 \sigma_3, \quad \{ \sigma_2, \sigma_3 \} = -2 \sigma_1, \quad \{ \sigma_3, \sigma_1 \} = -2 \sigma_2.
\]

We are now ready to establish that the Lie-algebra \((\mathcal{V}^*, \{ \; , \; \})\) is isomorphic to \(u(2)\). Let
\[
\tilde{\sigma}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \tilde{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tilde{\sigma}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \tilde{\sigma}_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]
(Note that \(\tilde{\sigma}_0 \) spans the center of \(u(2) \) and that \(\tilde{\sigma}_1, \tilde{\sigma}_2, \tilde{\sigma}_3 \) are the Pauli spin matrices.) Let
\[
\sigma_0 = \frac{\Gamma_1 \Gamma_2 \Gamma_3}{2 \Gamma_{\text{tot}}} \left(\frac{\vec{b}_1}{\Gamma_1} + \frac{\vec{b}_2}{\Gamma_2} + \frac{\vec{b}_3}{\Gamma_3} \right) = \frac{1}{2 \Gamma_{\text{tot}}} \sum_{(i,j,k) \text{ cyclic}} \Gamma_i \Gamma_j \vec{b}_k . \tag{18}
\]

Proposition 3.6. For any \([x] \in \mathcal{P}(\mathcal{S}_\Gamma)\), let \(\sigma_1, \sigma_2, \sigma_3 \) be as in (17). Then the linear isomorphism \(\psi : \mathcal{V}^* \to u(2) \) given by
\[
\sigma_k \mapsto i \tilde{\sigma}_k , \quad k = 0, 1, 2, 3,
\]
defines a Lie algebra isomorphism.

Proof Both \(\{ \sigma_0, \sigma_1, \sigma_2, \sigma_3 \} \), basis of \(\mathcal{V}^* \), and \(\{ i\tilde{\sigma}_0, i\tilde{\sigma}_1, i\tilde{\sigma}_2, i\tilde{\sigma}_3 \} \), basis of \(u(2) \), satisfy the same commutation relations. \(\square \)

Proposition 3.7. Let \((V, \{ \; , \; \})\) be a Poisson vector space such that \(\mathcal{V}^* \subset \mathcal{F}(V) \) is closed under \(\{ \; , \; \} \); hence \((\mathcal{V}^*, \{ \; , \; \})\) is a Lie algebra. Suppose that \(\psi : \mathcal{V}^* \to g \) is a Lie algebra isomorphism, i.e.
\[
[\psi(\alpha), \psi(\beta)] = \psi(\{ \alpha, \beta \})
\]
for all \(\alpha, \beta \in \mathcal{V}^* \). (Here \(\{ \; , \; \} \) denotes the Lie bracket on \(\mathfrak{g} \).) Let \(\varphi : g^* \to V \) be the adjoint operator to \(\psi \), i.e. defined by
\[
\langle \alpha, \varphi(\mu) \rangle = \langle \mu, \psi(\alpha) \rangle . \tag{19}
\]
Then \(\varphi \) is a Poisson transformation; that is to say,
\[
\{ f \circ \varphi, h \circ \varphi \}_{\text{LP}} = \{ f, h \} \circ \varphi
\]
for all \(f, h \in \mathcal{F}(V) \). (Here \(\{ \; , \; \}_{\text{LP}} \) denotes the Lie-Poisson bracket on \(g^* \); for its definition see [4, chap. 10].)
Proof: It suffices to consider the case $f = \alpha, g = \beta$, with $\alpha, \beta \in V^*$. Observe that

$$(f \circ \varphi)(\mu) = \langle f \circ \varphi, \mu \rangle = \langle \alpha, \varphi(\mu) \rangle = \langle \mu, \psi(\alpha) \rangle.$$

Thus, under the identification $g^{**} = g, f \circ \varphi = \psi(\alpha)$. Analogously, $g \circ \varphi = \psi(\beta)$. Hence

$$\{f \circ \varphi, g \circ \varphi\}_{LP}(\mu) = \langle \mu, \left[\frac{\delta(f \circ \varphi)}{\delta \mu}, \frac{\delta(g \circ \varphi)}{\delta \mu} \right] \rangle$$

$$= \langle \mu, [\psi(\alpha), \psi(\beta)] \rangle = \langle \mu, \psi(\{\alpha, \beta\}) \rangle$$

$$= \langle \{\alpha, \beta\}, \varphi(\mu) \rangle = \langle \{f, g\} \circ \varphi, \mu \rangle$$

$$= (\{f, g\} \circ \varphi)(\mu)$$

as claimed. □

Propositions 3.6 and 3.7 allow us to identify the extended vortex configuration space V with the Poisson vector space $u(2)^*$:

Corollary 3.8. For any $[x] \in P(S_\Gamma)$, let $\psi : V^* \to u(2)$ be the Lie algebra isomorphism defined in proposition 3.6. Let $\varphi : u(2)^* \to V$ be its adjoint operator (defined by \(19\)). Then φ is a Poisson transformation.

The symplectic leaves of V are its coadjoint orbits. These are the common level sets of Casimirs I_2 and H, the semi-moment of circulation and Heron’s function defined in section 2. These Casimirs take very simple forms when expressed in terms of the dual to the Pauli symbols basis. Indeed, a computation shows that:

Proposition 3.9. For all $[x] \in P(S_\Gamma)$,

$$I_2 = \Gamma_{\text{tot}} a_0 \quad \text{and} \quad H = \frac{4\Gamma_{\text{tot}}}{\Gamma_1 \Gamma_2 \Gamma_3} \left(a_1^2 + a_2^2 + a_3^2 - a_0^2 \right).$$

Here (a_0, a_1, a_2, a_3) denotes the coordinates in V with respect to the basis $\{\sigma^0, \sigma^1, \sigma^2, \sigma^3\}$, defined as the dual to the basis of Pauli symbols $\{\sigma_0, \sigma_1, \sigma_2, \sigma_3\}$, which in turn were defined in (17) and (18).

We conclude that the symplectic leaves of V are the submanifolds

$$\mathcal{O}_{(\mu, \tilde{H})} \overset{\text{def}}{=} \left\{ \sum_i a_i \sigma^i \mid a_0 = \mu, a_1^2 + a_2^2 + a_3^2 - \mu^2 = \tilde{H} \right\}.$$
Physically (and geometrically) meaningful dynamics occur only when $H = 0$ and $\mu \geq 0$. Therefore, the symplectic reduced spaces for the three-vortex problem are the coadjoint orbits

$$O_\mu \overset{\text{def}}{=} \{ \sum_i a_i \sigma^i \mid a_0 = \mu, a_1^2 + a_2^2 + a_3^2 = \mu^2 \}, \quad \mu \in \mathbb{R}^+.$$

Note that $\mu = I_2/\Gamma_{\text{tot}}$ and that $\mu = 0$ corresponds to triple collision.

In this way, given $\mu \in \mathbb{R}^+$, the symplectic reduced space O_μ is a two-dimensional sphere of radius μ, embedded in the hyperplane $a_0 = \mu$. The “vertical” a_3-axis represents the oriented area of the triangle formed by the vortices. Hence, the equator $a_3 = 0$ corresponds to collinear configurations and the “north” and “south” hemispheres correspond to the two possible orientations of the triangle, with the poles representing equilateral triangles with opposite orientation.

3.2 Choice of orientation for the a_1-a_2 plane

The three possible binary collision appear as points on the equator of the sphere O_μ. It is convenient to choose an orientation of the a_1, a_2 axes (within the plane containing the equator of the sphere) so that the binary collision $z_1 - z_2 = 0$, which in coordinates $(I_1, I_2, \varphi_1, \varphi_2)$ corresponds to $I_1 = I_2$, lies on the positive direction of the a_1-axis. This collision is represented by a vector in V of the form $B_{12} = \lambda(\mathbf{b}_1 + \mathbf{b}_2) = (\lambda, \lambda, 0, 0)$. The condition $\sigma_2(B_{12}) = 0$ yields

$$-\frac{1}{2} \{\sigma_3, \sigma_1\}(\mathbf{b}_1 + \mathbf{b}_2) = 0$$

hence

$$\{\mathbf{\Delta}, \hat{x}\}(\mathbf{b}_1 + \mathbf{b}_2) = 0.$$

Therefore,

$$\left((\Gamma_3 - \Gamma_2)x_1 - (\Gamma_1 + \Gamma_3)x_2 + (\Gamma_1 + \Gamma_2)x_3 \right) \mathbf{b}_1 + \left((\Gamma_2 + \Gamma_3)x_1 + (\Gamma_1 - \Gamma_3)x_2 - (\Gamma_1 + \Gamma_2)x_3 \right) \mathbf{b}_2 \mathbf{b}_1 + \mathbf{b}_2 = 2\Gamma_3(x_1 - x_2) = 0.$$

Thus $x_1 = x_2$. Now, from the condition $\hat{x} \in \mathcal{S}_\Gamma$, i.e.

$$x_1(\Gamma_2 + \Gamma_3 + \Gamma_1) + x_3(\Gamma_1 + \Gamma_2) = 0,$$

15
we obtain $x_3 = -(\Gamma_{\text{tot}} + \Gamma_3)/(\Gamma_{\text{tot}} - \Gamma_3)x_1$. Therefore, setting

$$\hat{x} = x\left(1, 1, -\frac{\Gamma_{\text{tot}} + \Gamma_3}{\Gamma_{\text{tot}} - \Gamma_3}\right), \quad x \in \mathbb{R} \setminus \{0\}$$

is equivalent to positioning the binary collision B_{12} at the point where the positive direction of the q_3-axis intersects the sphere O_μ. It is straightforward to check that, with this choice of \hat{x}, the Pauli symbols defined in (17) and (18) take the form (6).

References

[1] Borisov, A. V. and V. Lebedev [1998], Dynamics of Three Vortices on a Plane and a Sphere—II. General compact Case. *Regul. Chaotic Dyn.*, 3(2), 99–114.

[2] Borisov, A. V. and V. Lebedev [1998]. Dynamics of three vortices on a plane and a sphere-III. Noncompact case. Problems of collapse and scattering. *Regul. Chaotic Dyn.*, 3(4), 74–86.

[3] Bolsinov, A. V., A. V. Borisov, and I. S. Mamaev [1999]. Lie algebras in vortex dynamics and celestial mechanics. IV. *Regul. Chaotic Dyn.*, 4(1), 23–50.

[4] Marsden, J. E. and T. S. Ratiu, *Introduction to Mechanics and Symmetry*, volume 17 of *Texts in Applied Mathematics*, vol. 17; 1994, Second Edition, 1999. Springer-Verlag (1999).

[5] Newton, Paul K. [2001] *The N-Vortex Problem: Analytical Techniques*. Springer.