Serological and Molecular Phylogenetic Detection of *Coxiella burnetii* in Lactating Cows, Iraq

Hasanain A.J. Gharban* , Afaf A Yousif

*Correspondence: hghirban@uowasit.edu.iq
Received: 25 February 2020
Accepted: 13 May 2020
Published: 28 December 2020

ABSTRACT

This study is carried out to investigate the prevalence of *Coxiella burnetii* (*C. burnetii*) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as *C. burnetii* IQ-No.5 and *C. burnetii* IQ-No.6; and then recorded in the National Center for Biotechnology Information (NCBI) under an accession numbers of MN473204.1 and MN473205.1. Comparative identity of the local strains with NCBI-BLAST strains/isolates revealed 97% similarity and 0.1-0.6% of total genetic mutations/changes. NCBI-BLAST Homology Sequence reported high significant identity (P<0.05) between the local, *C. burnetii* IQ-No.5 and *C. burnetii* IQ-No.6; strains and *C. burnetii* 3345937 (CP014354.1) Netherlands isolate at 99.10% and 99.06%, respectively. The current study concluded that the percentage of infected cows with coxiellosis is relatively high, and *Coxiella* should be listed as abortive pathogen. Therefore, additional studies should be performed including different animals, samples, and regions.

KEYWORDS: *Coxiella burnetii*, cattle, Iraq, IS1111A transposase gene, ELISA, PCR

INTRODUCTION

Ovine coxiellosis is a common zoonotic infection caused by *Coxiella burnetii*, an obligate intracellular gamma proteobacterial organism (1). The disease is worldwide distribution except New Zealand and Antarctica; however, the incidence rate appears to vary considerably throughout all countries (2). In recent years, changes in social-economical, environmental, and ecological factors may be in contributing of emergence a large number of human cases that are attributed mostly to livestock sheep, goats and cattle (3). In cattle, *Coxiella burnetii* (*C. burnetii*) infection is commonly subclinical (asymptomatic) but it can result in reduced reproductive performance (4).
Various quantities of bacteria can be shed by infected animals through different routes (5). Intra-herd infection dynamic of a dairy herd is mainly influenced by the heterogeneity of the shedding routes. One of the important uncertainties concerning dynamics of infection lies in the contributions of the different routes in transmitting \textit{C. burnetii} between livestock herds (6). In pregnant cows, the outcomes of infection involve an abortion, weak offspring, stillbirth, and premature delivery (7). Airborne transmission of \textit{Coxiella} is well documented phenomenon (8). For humans, inhalation of contaminated aerosols generated during parturition, and ingestion of raw milk/unpasteurized dairy products of infected cows consider as the principal sources of infection (9, 10). Hence, intensive cattle farming with high prevalence could become a concern for public health, and investigation of infection dynamics in cattle herds is essential in the emergence to control continuum (11).

For the diagnosis, there are many laboratory tools that available for detecting \textit{C. burnetii} using many biological samples (12). Even though the direct detection of \textit{Coxiella} is more useful in veterinary pathology, cultivating of this fastidious microorganism is difficult and restricts to reference centers as it requires biosafety-level 3 laboratories and relies on cell culture which is performed by expert technicians (13). Serological screening of humans and animals for the detection of the organism specific antibodies by enzyme-linked immunosorbent assay (ELISA) has been found to be more sensitive and easier to be performed (14). Using only this method is not sufficient to demonstrate the infection so additional testing focused on confirmation the presence of the organism or its DNA is necessary (15). The development of highly sensitive and specific molecular assays has prompted the routine use of polymerase chain reaction (PCR) based analysis to assess the health status of the herds towards many pathogens including \textit{C. burnetii} and ensure the safety (16). Hence, this study aimed to use serological ELISA and molecular PCR in detecting \textit{C. burnetii} in both serum and milk samples of lactating cow, and documentation some positive PCR strains in the National Centers for Biotechnology Information (GenBank-NCBI) for the first time in Iraq. This study also targeted to correlate their positivity associated with the clinical data of reproductive system.

MATERIALS AND METHODS

Animals and Sample Collection

The present study is approved and performed under the Council of College of Veterinary Medicine, and the authority of the Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Baghdad. A total of 130 lactating cows from many areas in Wasit province, and of different ages and breeds were subjected for this study during the period extended from November 2018 to May 2019. Under aseptic conditions, approximately 50 mL of milk was collected directly from udder quarters of each cow into a plastic container that was labeled, noted, and kept into a cooled icebox. Furthermore, 10 mL of jugular venous blood was drained by a disposable syringe into free-anticoagulant glass gel tube. At laboratory, blood samples were centrifuged (4000 rpm, 5 min), and sera were preserved in 1.5 mL labeled Eppendorf tubes. Both sera and milk tubes were frozen at -20 °C until be tested by ELISA and PCR, respectively. Case history data concerning to age, breed, tick infestation, and other animals’ data at same herds/pasture, herd size, reproductive performance, and milk production were detected.

Serology by Indirect ELISA

Using a commercially available indirect ELISA (Sunlong Biotech, China) Kit, serum samples and buffer diluents were prepared and diluted. Following the manufacturer’s instruction, a total 10 μL of each serum sample from each sample was used for detecting specific IgG antibodies against Phase I and Phase II antigen of \textit{C. burnetii}. After the final step of ELISA procedure and adding of Stop Solution, absorbance (OD) was measured at a wavelength of 450nm using an ELISA microplate reader (BioTek, USA). Critical value (CUT OFF) was calculated as the following formula: CUT OFF= Average value of Negative Control + 0.15. Sample is considered positive when OD value ≥ CUT OFF; and negative when OD value < CUT OFF.

Molecular Conventional PCR Assay

Using 200 μL of each milk sample, DNAs were extracted following the Protocol A of G-spin™ Total DNA extraction (Intron, Biotechnology, South Korea) Kit. Concentration and purification of extracted DNAs were checked by Nanodrop spectrophotometer (Thermo-Scientific, UK) at an absorbance of A260/A280nm; and estimated as approximately as 6 μg for concentration and 1.6-1.9 nm for purification.

For PCR amplification, one set of primers [(F: 5′-TAT GTA TCC ACC GTA GCC AGT C-3′) and (R: 5′-CCC AAC AAC ACC TCC TTA TTC-3′)] targeting \textit{IS1111A transposase} gene was designed as previously described (17, 18), and provided by the Macrogen Company (South Korea). A ready AccuPower PCR-PreMix (Bioneer, South Korea) Kit was used to prepare the PCR-Master mix at a final volume of 20 μL (5 μL DNA template, 1 μL F-Primer, 1 μL R-Primer, and 13 μL free-nuclease water) for each sample. For PCR reaction and Thermal Cycler (Bio-Rad, USA) conditions were as follows: initial denaturation (98 °C, 30 sec) 1 cycle; denaturation (98 °C, 7 sec), annealing (60 °C, 20 sec), extension (72 °C, 20 sec) 30 cycles, final extension (72 °C, 7 min) 1 cycle, and hold (4 °C, Forever). At 100 volt and 80 mA for 1 hour, 1.5% agarose gel-electrophoresis stained
with ethidium bromide to analyze the PCR-products that were visualized under UV illuminator (Clinx Science, China). According to standard size of the band of Ladder Marker (100-1500 bp), the samples of PCR product were considered positives at an amplicon size of 687 bp.

To confirm local C. burnetii strains, two positive PCR products were sent for phylogenetic analysis at Macrogen Company (South Korea). Sequencing results were received by private mail were analyzed by the Multiple Sequence Alignment Program, and phylogenetic tree was constructed using of MEGA-6 software; and homology identity between the local strains C. burnetti and GenBank-NCBI strains/isolates was detected.

Statistical Analysis

All collected data were documented and tabulated using the Microsoft Office Excel (version 2016) and analyzed statistically by IBM/SPSS (version 23). Chi-square (χ^2) test and one-way analysis of variance (ANOVA) were applied for the finding of ELISA and PCR, and for the risk factors, respectively. Differences were considered significant at P<0.05 (19, 20).

RESULTS

Of 130 tested sera using indirect ELISA, 21 (16.15%) cows were positive to IgG antibodies against C. burnetii. Whilst the results of PCR assay showed that among 130 milk samples tested, 13 (10%) samples were positive for IS1111A transposase gene (Table 1, Figure 1). Statistically, ELISA positivity was higher than that detected in PCR assay (P<0.05). In addition, ODs’ levels of seropositive study cows were showed significant differences in their values (Figure 2).

Table 1. Total positive results of ELISA and PCR among 130 study cows

Test	Total No.	Positives	Negatives
ELISA	130	21 (16.15%) *	109
PCR	130	13 (10%)	117

*Significant (P<0.05)

Regarding to clinical data, significant increases (P<0.05) in positive cows by both assays were reported in cows of >5 years of age, crossbred, infested with ticks, lived with sheep, and raised in a herd of >25 cattle. As well as a significant elevation (P<0.05) in positivity was detected in cows suffering from low milk production and abortion (Table 3).

Genomic DNAs for two PCR-positive samples of IS1111A transposase gene were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnetii IQ-No.6, and recorded in GenBank under an accession numbers of MN473204.1 and MN473205.1, respectively. Comparative analysis of IS1111A transposase nucleotides sequence of study samples with number of C. burnetii strains present in the GenBank database was constructed using the ClustalW Alignment of MEGA software. The results showed that there were nucleotide alignment similarities (*) and substitution mutations in IS1111A transposase gene (Figure 3).

Comparative identity for genetic variations between the local strains and NCBI-BLAST strains/isolates was showed similarity of 97%; whereas, the total genetic mutations/changes were 0.1-0.6% (Figure 4, Table 4).
Table 3. Association of clinical data to positive results of ELISA and PCR assay

Factor	ELISA	PCR
Age (year)		
≤ 3-4	0/21 (0%)	0/13 (0%)
> 4-5	4/21 (19.05%) *	4/13 (30.77%)
> 5	17/21 (80.95%) *	9/13 (69.23%) *
Breed		
Local	2 (9.52%)	0/13 (0%)
Crossbred	19 (90.48%) *	13/13 (100%) *
Pure	0 (%)	0/13 (0%)
Tick infestation		
Infested	21 (100%) *	13/13 (100%) *
Non-infested	0 (%)	0 (0%)
Other animals at same pasture		
Sheep	17 (80.95%) *	13 (100%) *
Goats	14 (66.67%)	11 (84.62%) *
Herd size		
<10	2 (9.52%)	0 (0%)
10-25	4 (19.05%) *	2 (15.38%)
>25	15 (71.43%) *	11 (84.62%) *
Reproductive and milk		
Abortion	8 (38.10%) *	4 (30.77%)
Low milk	9 (42.86%)	8 (61.54%) *

*Significant (P<0.05)

Figure 3. Multiple sequence alignment analysis similarity
Table 4. Phylogenetic tree analysis based on IS1111A transposase gene

Numbers	Country	Identity (%)	
C. burnetii IQ-No.5 16S ribosomal RNA gene, partial sequence	Iraq	IQ-5	IQ-6
C. burnetii IQ-No.6 16S ribosomal RNA gene, partial sequence	Iraq	100	-
C. burnetii strain 3345937 sequence	Netherlands	97.10	97.06
C. burnetii strain ATCC VR-615 16S ribosomal RNA, partial sequence	USA	96.74	96.67
C. burnetii strain nine mile phase II chromosome, complete genome	China	96.74	96.63
C. burnetii Chb175 Guyana, complete genome	Guyana	96.74	96.64
C. burnetii 16S ribosomal RNA	USA	96.74	96.68
C. burnetii isolate IxR-92 16S ribosomal RNA gene, partial sequence	Russia	96.72	96.69
C. burnetii isolate Bulg-Phtr 16S ribosomal RNA gene, partial sequence	Russia	96.44	96.43
C. burnetii isolate IxP-LO116 16S ribosomal RNA gene, partial sequence	Russia	96.44	96.43
C. burnetii strain Scurry Q217 chromosome	Netherlands	96.44	96.42
C. burnetii strain TO-98 16S ribosomal RNA, partial sequence	USA	94.33	94.32

Table 5. NCBI-BLAST Homology Sequence identity (%)
NCBI-BLAST Homology Sequence recorded that there was a high significant identity (P<0.05) between the local, *C. burnetii* IQ-No.5 and *C. burnetii* IQ-No.6 strains and *C. burnetii* 3345937 (CP014354.1) of Netherlands isolates at 99.10% and 99.06% respectively (Table 5).

DISCUSSION

Coxiellois in cattle herds is known to be widespread and enzootic (3). The diagnosis of *C. burnetii* infection in animals is of great importance not only to identify the infected herds/flocks but also to determine the risk of disease transmission to humans (21, 22). In Iraq, there is limited information about this organism in humans and livestock populations. In cattle, only one serological report was carried out previously (23). Serologically, ELISA finding of our study was higher than what was reported in Iraq (7.37%), (23); and Albania (7.9%), (24); compatible with that was recorded in Germany (14.8%), (25); Australia (16.8%), (26); and Egypt (19.3%), (27); and lower than was observed in Iran (27.83%), (28); and Turkey (29%), (18).

To the best of our knowledge, this is the first Iraqi molecular study performed to investigate the prevalence of bovine coxiellois in lactating cows. In comparison to other studies, the finding of present study was higher than what it was reported in Turkey (1.42%), (18); and Iran (6.2%), (29); compatible with that was reported in Italy (11.9%), (30); and lower than what it was confirmed in France (21.1%), (11); and Netherlands (56.6%), (31).

Significant increases in positive findings of ELISA comparing to PCR were reported; and this could be because of presence of more chronic infections than acute cases due to a host or seasonal factors. Astobiza et al. (2012) detected that serological results should be further analyzed with caution, and that other complementary analysis needed to be done (32). Therefore, our results were in expectation since PCR was more sensitive and greatly specific than ELISA in detecting of *C. burnetii* (33, 34). There was a high possibility of false positive or negative ELISA can be resulted due to insufficient blocking of immobilized antigen, antibody instability, seroconversion, and cross-reaction of the secondary antibody (35). For PCR, false negative results might be caused by many factors correlated with the type of tested sample, method for collection, preservation, and DNA extraction, type of PCR assay, targeted gene, and length of designed primers (36).

Among seropositive cows, a significant variation in levels of ODs, showed in this study, may represent different phases of infection among the studied animals. High values of OD indicated a recent chronic phase of disease; whereas lower values referred to either early acute phase of infection where there was limit development for IgG antibodies, or the terminal period of chronic phase of *C. burnetii* infection. Combination of ELISA and PCR in current study showed that a number of study cows were positives by both assays. It is suggested in this study that these animals are of great importance as they represent the source of potential risk to other animals, as well as, for their owners. In addition, combination of ELISA and PCR can be used as a gold standard method for more reliable detection of infections, and for increasing the sensitivity and specificity of diagnosis.

As shown in present study, positive percentage of ELISA and PCR were revealed a significant elevation in their values with increasing the age of a cow, crossbreed animals, tick infestation, presence of sheep at the same pasture, and cows within a herd size of >25 ones. Although several studies have identified the risk factors of infection in cattle, their respective quantitative contributions to the transmission or spreading of infection are still unknown (37, 38). Regarding to age, Seo et al. (2017) referred to that the early exposure and continues infection in addition to occupational or environmental influences, breeding may play a role in development of infection (39). In this study, it is suggested that diminishing immunity can occur along with increasing the age as a result concurrent different infection, and high level of stress particularly in cows due to large milk production and pregnancies. However, all these reasons might act together for increasing of susceptibility. Crossbreed study cows were showed a high positivity rather than local and pure breeds; and this might belong to that different breeds might have variation in genetic map which was reflected on their sensitivity or resistance to infection in addition to management factors that played a great role in controlling of a disease.

Although, ticks were not essential in the natural cycle of *C. burnetii* in livestock, they formed part of the transmission cycle of the organism from animals to animals and from animals to humans (40, 41). Mediannikov et al. (2010) reported that at least viable *Coxiella* might survive for a long time in ticks, particularly soft tick, and transmit of organism transovarially and transstadially, and may secret via feces, saliva, and coxal fluid (42). Pandit et al. (2016) found that among all the new herd infection, 925 were attributed to an airborne transmission and the rest to cattle trade (3).

Even though most of the recent human outbreaks were known to originate from small ruminants (sheep and goats), the considered role of these animals in transmission of infection to other domestic animals remained to be elucidated. In this study, the finding showed that there was a high positive rate of infected cows that lived and fed at the same pasture. Intensive cattle farming with high prevalence of infection could become a concern for public health. In this study, a large herd size was associated with *C. burnetii* positivity, consistent with other studies (22, 43).

Although there was no evidence for *C. burnetii* being associated with herd outbreaks of abortion in cattle, number of studies concluded that this organism was an infrequent cause of abortion in cattle (44, 45). In Iraq, brucellosis has been recognized as the main causes of...
decreased reproductive efficiency and abortions in cattle as well as in sheep (46, 47). For this reason, many abortion cases attributed to brucellosis might be largely correlated with coxiellosis. In a recent study, the authors showed that the prevalence of brucellosis in cattle was 0.97%, while 3.23% of which were positives to Coxiella (49). Other study detected no positive results for B. Abortus, but a high prevalence for C. burnetii (52.9%) was found in group of cattle (49). Low milk production detected in positive study cows was one of the most clinical signs that reported in cattle infected by brucellosis (50). These findings indicated that the clinical signs of reproductive pathogens might be shared leading to misdiagnosis of the real pathogenic cause.

In this study, phylogenetic analysis of local C. burnetii strains was revealed on a high relative identity with GenBank-NCBI Netherland strains/isolates NL3262 which originated from the largest Global human outbreak (51). These findings indicated that the local strains might be descended from the ancestor of Dutch strains/isolates and that certain factors might be played a role in distribution of the ancestor around the world such as moving of animals and humans in addition to importation and exportation processes.

The positive findings of present study demonstrated that the percentage of infected cows in Iraq is relatively high. ELISA and PCR can provide more reliable findings. Age, breed, ticks, sheep, and herd size as risk factors showed a significant association with bovine coxiellosis. Further assessment needs to be performed to ensure the correct identification and areas subjected to the increased risk of C. burnetii infections. Coxiella should also be listed as abortive pathogen. There is a high level of identity detected between the local C. burnetii strains reported in this study and GenBank-NCBI Dutch strains/isolates. Additional studies in other areas/herds are required to establish epidemiological database.

CONTRIBUTIONS

This work was part of PhD thesis in the Department of Internal and Preventive Veterinary Medicine, University of Baghdad (Baghdad, Iraq). Hasanain AJ, Gharban was responsible on the work as a PhD student and Prof. Dr. Afaf Abdulrahman Yousif as the supervisor.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. Dr. Hameed Ali Kadhim (Dean of the College of Veterinary Medicine/University of Baghdad) and Prof. Dr. Saleem Amin Hasso (Head of Department of Internal and Preventive Veterinary Medicine) for the fund and completion this work.

FUNDING

Authors declare that above-submitted work was not funded by any governmental or private funding source nor supported by any financial projects.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

1. Mori M, Mertens K, Cutler SJ, Santos AS. Critical aspects for detection of Coxiella burnetii. Vector Borne Zoonotic Dis. 2017; 17(1): 33-41.
2. Keshavamurthy R, Singh BB, Kalambhe DG, Aulakh RS, Dhand NK. Prevalence of Coxiella burnetii in cattle and buffalo populations in Punjab, India. Prev Vet Med. 2019; 166(1): 16-20.
3. Pandit P, Hoch T, Ezanno P, Beadeau F, Vergu E. Spread of Coxiella burnetii between dairy cattle herds in an enzootic region: modelling contributions of airborne transmission and trade. Vet Res. 2016; 47(1): 1-16.
4. Lee KH, Lee HK, Baek KH, Oem JG, Kim HY. Abortion caused by Coxiella burnetii in a cow and oat in Korea. J Vet Sci Tech. 2018; 9(1): 1-3.
5. Mohammed OB, Jarelahi AA, Ajumah RS, Alshaika MA, Bakheit AO, Omer SA, Hussein MF. Coxiella burnetii, the causative agent of Q fever in Saudi Arabia: molecular detection from camel and other domestic livestock. Asian Pac J Trop Med. 2014; 7(9): 715-9.
6. Gourcoul A, Monod H, Nielen M, Klinkenberg D, Hogerwel F, Beadeau F, Vergu E. Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis. J Theor Biol. 2011; 284(1): 130-41.
7. De Biase D, Costagliola A, Del Piero F, Di Palo R, Coronati D, Galiere G, Raoul D. Coxiella burnetii in infertile dairy cattle with chronic endometritis. Vet Pathol. 2018; 55(4): 539-42.
8. Duron O, Noël V, Mc Coy KD, Sidi-Boumedine K, Morel O, Arnathau C. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathog. 2015; 11(5): 1-23.
9. Betancur CA, Rubio M, Barrera J, Bedoya JC. Seroprevalence of Coxiella burnetii in cattle farm workers in the department of Antioquia. Acta Med Colomb. 2015; 40(1): 20.
10. Barandika JF, Álvarez-Alonso R, Jado I, Hurtado A, Garcia-Pérez AL. Viable Coxiella burnetii in hard cheeses made with unpasteurized milk. Int J Food Microbiol. 2019; 303 (1): 42-5.
11. Guatteo R, Seegers H, Taurel AF, Joly A, Beadeau F, Prevalence of Coxiella burnetii infection in domestic ruminants: a critical review. Vet Microbiol. 2011; 149(1-2): 1-16.
12. Melenotte C, Million M, Raoul D. New insights in Coxiella burnetii infection: diagnosis and therapeutic update. Expert Rev Anti Infect Ther. 2020; 18(1): 75-86.
13. Francis R, Mioulane M, Le Bideau M, Mati MC, Fournier PE, Raoul D, La Scola B. High Content Screening, a reliable system for Coxiella burnetii isolation from clinical samples. bioRxiv.org. 2019; 4 (1): 42-5.
14. Anderson A, Bijmer H, Fournier PE, Graves S, Hartzell J, Kersh GJ, Nicholson WL. Diagnosis and management of Q fever United States, 2013: recommendations from CDC and the Q Fever Working Group. MMWR Recomm Rep. 2013; 62(3): 1-29.
15. Plummer PJ, McClure JT, Menzies P, Morley PS, Van den Brom R, Van Metre DC. Management of Coxiella burnetii infection in livestock populations and the associated zoonotic risk: A consensus statement. J Vet Intern Med. 2018; 32(5): 1481-94.
16. Capuano F, Proroga VR, Mancusi A, Perugini AG, Berri M. Evaluation of DNA preparation methods combined with different PCR-based assays for Coxiella burnetii detection in milk. Large Anim Rev. 2016; 22 (1): 59-62.

17. Borji S, Jamshidi A, Khazdadi S, Razmbar J. Detection of Coxiella burnetii and sequencing the IS1111 gene fragment in bulk tank milk of dairy herds. Iran J Vet Sci Technol. 2015; 6 (2): 21-8.

18. Saglam AG, Sahin M. Coxiella burnetii in samples from cattle herds and sheep flocks in the Kars region of Turkey. Vet Med. 2016; 61 (1): 17-22.

19. George D, Mallery P. SPSS® for Windows® step by step: A simple guide and reference. 4th ed. Boston: Allyn and Bacon; 2003. P. 35-79.

20. Neyloff JL, Fuchs SC, Moreira LB. Meta-analyses and Forest plots using a microsoft excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Res Notes. 2012; 5 (1), 1-6.

21. Knobel DL, Maina AN, Kutler SJ, Ogola E, Feikin DR, Junghe M, Njonga MK. Coxiella burnetii in humans, domestic ruminants, and ticks in rural western Kenya. The Am J Trop Med Hyg. 2013; 88 (3): 513-8.

22. Schimmer B, Schotten N, Van Engelen E, Schneeeberger PM, Van Duijnhoven YTHP. Coxiella burnetii seroreivalence and risk for humans on dairy cattle farms, the Netherlands, 2010–2011. Emerg Infect Dis. 2014; 20 (3): 417-25.

23. Abed J, Salih AA, Abd-ul-lasien A. Seroreivalence Coxiella burnetii among cows and sheep in Thai-Pror Province/ Iraq. Al-Qadisiyah J Vet Med Sci. 2010; 9 (2): 26-30.

24. Çekan M, Papa A, Kote M, Velo E, Berzhiki K. Report of a serological study of Coxiella burnetii in domestic animals in Albania. Vet J. 2008; 175 (2): 276-8.

25. Böttcher J, Vossen A, Janowitz B, Gangl A, Randt A, Meier N. Insights into the dynamics of endemic Coxiella burnetii infection in cattle by application of phase-specific ELISAs in an infected dairy herd. Vet Microbiol. 2011; 151 (3-4): 291-300.

26. Cooper A, Hedlefs R, McGowan M, Ketheessen N, Govan B. Serological evidence of Coxiella burnetii infection in beef cattle in Queensland. Aust Vet J. 2011; 89 (7): 260-4.

27. Klemmer J, Njeru J, Emam A, El-Sayed A, Misawad AA, Henking K, El-Diasty MM. Q fever in Egypt: Epidemiological survey of Coxiella burnetii specific antibodies in cattle, buffaloes, sheep, goats and camels. PloS ONE. 2018; 13 (2): 1-12.

28. Esmaeili S, Pourhossein B, Gouya MM, Amiri FB, Mostafavi E. Seroepidemiological survey of Q fever and brucellosis in Kurdistan Province, western Iran. Vector Borne Zoonotic Dis. 2014; 14 (1): 41-5.

29. Rahimi E, Doosti A, Ameri M, Kabiri E, Sharifian B. Detection of Coxiella burnetii by nested PCR in bulk milk samples from dairy bovine, ovine, and caprine herds in Iran. Zoonoses Public Health. 2010; 57 (7-8): e38-e41.

30. Parisi A, Fracalvieri R, Cafferio M, Miccolluo A, Padalino I, Montagna C, Sottili R. Diagnosis of Coxiella burnetii-related abortion in Italian domestic ruminants using single-tube nested PCR. Vet Microbiol. 2006; 118 (1-2): 101-6.

31. Muskens J, Van Engelen E, Van Maanen C, Bartels C, Lam TM. Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA. Vet Rec. 2011; 168 (1): 79-84.

32. Astobiza I, Ruiz-Fons F, Pinero A, Barandika JF, Hurtado A, Garcia-Perez AL. Estimation of Coxiella burnetii prevalence in dairy cattle in intensive systems by serological and molecular analyses of bulk-tank milk samples. J Dairy Sci. 2012; 95 (4): 1632-8.

33. Kargar M, Rashidi A, Doosti A, Najafi A, Ghorbani-Dalini S. The sensitivity of the PCR method for detection of Coxiella burnetii in the milk samples. Zahedan J Res Med Sci. 2015; 17 (6): e988-e992.
التحري المصلي والجزيئي الجيني للكوكسيلا بورنيتي في الأبقار المُدرة للحليب، العراق

حسنين عبد الحسين جعفر غربان، وعفاف عبد الرحمن يوسف
فرع الطب الباطني والوقائي البيطري، كلية الطب البيطري، جامعة بغداد، بغداد، العراق

الخلاصة

تعد الkoksiella burnetii (kk) نباً عالمياً يُصيب الأبقار، والحليب الذي يُحُزُّ من الابقار المصابة يُمثل مصدرًا مُهمًا لتكاثر وانتشار الkk. لذلك، من الضروري تحديد نسبة انتشار الkk في الأبقار والبحث عن طرق للتحكم في انتشارها. تهدف الدراسة الحالية إلى تحديد نسبة انتشار الkk في الأبقار المُدرة للحليب باستخدام تقنيات تفاعل البلمرة المتسلسل (TBM) وقياس الاليزا. استُخرجت نتائج الدراسة أن 17.6% من الأبقار تم التطور بهاء الاليزا، و11.5% تمت تفاعل البلمرة المتسلسل. استُخلصت نتائج الدراسة أن هناك علاقة معنوية بين النتائج وبيانات السريرية. تم توثيق نتائج الدراسة الأخرى في المركز الوطني لمعلومات التكنولوجيا الحيوية (NCBI) بنمط DNA 111A transposase. كلمة المفتاحية: الكوكسيلا بورنيتي، الأبقار، العراق.