Persistent post-surgical pain and neuropathic pain after total knee replacement

Georgios I Drosos, Triantafilia Triantafilidou, Athanasios Ververidis, Cristina Agelopoulou, Theodosia Vogiatzaki, Konstantinos Kazakos

Georgios I Drosos, Triantafilia Triantafilidou, Athanasios Ververidis, Konstantinos Kazakos, Department of Orthopaedic Surgery, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece

Cristina Agelopoulou, Department of Neurology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece

Theodosia Vogiatzaki, Department of Anaesthesia, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece

Author contributions: Drosos GI, Triantafilidou T and Agelopoulou C contributed to conception and design of the study; Drosos GI, Triantafilidou T and Ververidis A contributed to acquisition; analysis and interpretation of data; Drosos GI, Triantafilidou T and Agelopoulou C contributed to drafting the article; Ververidis A, Vogiatzaki T and Kazakos K contributed to revising the article; all the authors read and approved the final manuscript.

Conflict-of-interest statement: All the authors declare that there is no conflict of interest for this work. They have received no funds from any commercial party in relation to this work.

Data sharing statement: It does not apply in this study.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Georgios I Drosos, MD, PhD, Assistant Professor, Department of Orthopaedic Surgery, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece. drosos@otenet.gr

Telephone: +30-6944-380694
Fax: +30-25513-30339

Received: March 5, 2015
Peer-review started: March 8, 2015
First decision: April 10, 2015
Revised: May 16, 2015
Accepted: June 1, 2015
Article in press: June 2, 2015
Published online: August 18, 2015

Abstract

AIM: To study the prevalence of persistent post-surgical pain (PPSP) and neuropathic pain (NP) after total knee replacement (TKR).

METHODS: MEDLINE and Embase databases were searched for articles published until December 2014 in English language. Published articles were included if they referred to pain that lasts at least 3 mo after primary TKR for knee osteoarthritis, and measured pain with pain specific instruments. Studies that referred to pain caused by septic reasons and implant malignment were excluded. Both prospective and retrospective studies were included and only 14 studies that match the inclusion criteria were selected for this review.

RESULTS: The included studies were characterized by the heterogeneity on the scales used to measure pain and pre-operative factors related to PPSP and NP. The reported prevalence of PPSP and NP seems to be relatively high, but it varies among different studies. There is also evidence that the prevalence of post-surgical pain is related to the scale used for pain measurement. The prevalence of PPSP is ranging at 6 mo from 16% to 39% and at 12 mo from 13.1% to 23% and even 38% of the patients. The prevalence of NP at 6 mo post-operatively is ranging from 5.2% to...
Although the cause of PPSP is not known, it seems that represents an important cause for patients’ dissatisfaction.

CONCLUSION: No firm conclusions can be reached regarding the prevalence of PPSP and NP and the related factors due to the heterogeneity of the studies.

Key words: Total knee replacement; Pain; Chronic pain; Neuropathic pain; Post-operative pain; Persistent post-surgical pain

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Persistent post-surgical pain (PPSP) is reported in a significant proportion of patients after total knee replacement. This proportion varies between the different studies and different factors have been implicated including the instrument used to measure pain. It is also obvious that in some of these patients the pain is neuropathic (NP) in origin or the NP pain coexists. Nevertheless, due to the heterogeneity of the studies, mainly on the scales used to assess pain and preoperative factors, we are unable to reach firm conclusions concerning the prevalence, and the risk factors of PPSP pain after total knee replacement. Additional studies focused on the prevalence and risk factors related to PPSP are needed.

Drosos GI, Triantafilidou T, Ververidis A, Agelopoulou C, Vogiatzaki T, Kazakos K. Persistent post-surgical pain and neuropathic pain after total knee replacement. World J Orthop 2015; 6(7): 528-536 Available from: URL: http://www.wjgnet.com/2218-5836/full/v6/i7/528.htm DOI: http://dx.doi.org/10.5312/wjo.v6.i7.528

INTRODUCTION

Total knee replacement (TKR) is a treatment of knee osteoarthritis to alleviate pain symptoms and improve mobility and physical functioning when other conservative treatments have failed. It is a very common and successful procedure since 1970s for late stage osteoarthritis and there is a continuously increasing number in demand for primary TKR performed worldwide each year. However, not all patients are satisfied after TKR. Pain after TKR is stronger determinant of satisfaction than function. An unfavorable pain outcome was seen in at least 8.0% and up to 26.5% of patients and contribute to functional disability after TKR.

From the post-surgical pain that is a result of a specific cause, some patients suffer from a persistent post-surgical pain (PPSP) with no specific origin that represents an important cause for patients’ dissatisfaction. Although the cause of PPSP is not known, it seems that some of the patients with PPSP after TKR suffer from neuropathic pain (NP). The International Association for the Study of Pain (IASP) defines: (1) as PPSP the pain that is being developed after surgery and exists beyond the time for normal healing and is present for at least 3-6 mo; and (2) NP is also defined by the IASP as the pain caused by a lesion or a disease of the somatosensory nervous system (IASP website, http://www.iasp-pain.org/). A wide variety of scores-tools have been used in order to assess the outcome postoperatively. Almost all scores or instruments -either objective (clinician-based) or subjective (patient-reported) or disease specific - being used for the study of the outcome, function and satisfaction after TKR, include some kind of pain assessment. However, a standard definition of pain severity at follow-up considered a difficult issue to be applied and the need to improve assessment and measurement of musculoskeletal pain in the clinical setting is recognized.

The purpose of this study is to present a review of the existing literature concerning the existence of PPSP and NP after TKR for at least 3 mo, including studies with main purpose the prevalence of the PPSP and NP after TKR using pain-specific instruments and not through other scores or instruments measuring functional outcome.

MATERIALS AND METHODS

Literature search

MEDLINE and Embase databases were searched for articles published until December 2014. The keywords “TKR”, “total knee arthroplasty”, “chronic postoperative pain”, “NP” and synonyms were used to maximize the efficiency of the search. Both prospective and retrospective studies were included.

Inclusion and exclusion criteria

Published articles were included only if they referred to pain that lasts at least 3 mo after primary TKR and if the main reason of TKR was knee OA. Studies were excluded if they were abstracts, case studies, reviews, editorials and if they referred to pain caused by septic reasons and implant malalignment. Studies that assessed a mixed cohort of patients (e.g., knee and hip replacement patients) were included in the review and only data relevant to the TKR patients were extracted. Studies in other language than English were excluded.

A total of 112 articles were found. Only 14 studies that match the inclusion criteria and measured pain with pain specific instruments were selected for this review.

RESULTS

PPSP after TKR (Table 1)

Studies: We identified 5 prospective and 3 retrospective studies. Three of the studies found to have as primary aim the documentation of the existence and the prevalence of PPSP after TKR, while another
Table 1 Total knee replacement and chronic (persistent) post-surgical pain

Ref.	Design/patients	Aim of the study	Scores-scales	Follow-up	Pain	Factors
Brander et al[19] Prospective n = 116	To describe the natural history of pain after TKR To identify factors predicting excessive post-surgical pain	VAS and other measures of patient health	Pre-op.	Pre-op.: 72.3%	Factors related with post-op pain at 12 mo (1) Pre-operative pain; and (2) Pre-operative depression and anxiety	
Forsythe et al[20] Prospective n = 55	To document: the prospective pain experience following TKR To determine if: (1) comorbidities; (2) preoperative pain; or (3) preoperative pain catastrophizing scores are predictors of chronic pain after TKR	MPQ PCS	Pre-op.	Significant reduction only between pre-op and 3-mo post-op values. After 3-mo pain had reached a plateau Pain catastrophizing scores didn't show any significant differences	Predictive of chronic postoperative pain: (1) No. of comorbidities and (2) Pre-operative pain catastrophizing scores	
Ritter et al[21] Retrospective n = 7326	To quantify the effect of sex on the clinical outcome and survivorship of a specific TKR AGC, Biomet, Warsaw, Ind	KSS PS	Throughout 5 yr Pain after TKR was less for men but there was no statistically significant difference between men and women	Improvement after TKR is similar for men and women No significant difference in post-operative pain between men and women	Significant and independent postoperative determinants of number of PPSP: (1) No. of pain problems elsewhere; and (2) The presence of major depression	
Wykle et al[22] Retrospective n = 632	To assess the (1) prevalence; (2) severity; (3) sensory qualities; and (4) postoperative determinants of persistent pain after primary THR and TKR	WOMAC Pain Scale SFMPQ pD-Q Two-item Patient Health Questionnaire (PHQ-2)	Median: 41 mo Range: 34-49 mo Persistent post-surgical pain (PPSP): 44% Severe-extreme PPSP: 15% Constant PPSP: 5% Likely neuropathic pain: 6%	No significant difference in post-operative pain between men and women Significant and independent postoperative determinants of number of PPSP: (1) No. of pain problems elsewhere; and (2) The presence of major depression		
Polkowski et al[23] Prospective n = 309	To explore the relationship between early-grade preoperative OA with pain and dissatisfaction after TKR	Group A: Pain after TKR Group B: Consecutive series of 100 TKR’s performed the same period by the same surgeon Group C: Asymptomatic TKR Group D: Symptomatic TKR performed the same period Pain Intensity rating: NRS QST Anxiety Form of the State Trait Anxiety Inventory	1-5 yr Early-grade OA pre-op: Group A: 4.9% Group B: 5% Group C: 6% Group D: 10%.	A high percentage of patients referred for unexplained pain after TKR had early-grade OA pre-operatively		
Noiseux et al[24] Prospective n = 215	To discover whether any preoperative assessment could predict high pain scores and functional limitations postoperatively	Group: Pre-op. Post-op.: 6 mo Moderate to severe pain At rest: Pre-op.: 17% Post-op.: 5% With range-of-motion: Pre-op.: 52% Post-op.: 16%	Significant predictors (for moderate or severe TKR pain with knee motion after 6 mo): (1) Severe preoperative knee pain with range-of-motion; and (2) Anxiety			
Pérez-Prieto et al[25] Prospective n = 716 Depressed: n = 200	To evaluate quality of life, function, pain and satisfaction outcomes in patients, with and without depression, undergoing TKR	Group: Depressed patients reported significant higher pain scores than non-depressed patients pre- and post-operatively Net changes (postoperative - preoperative): No significant difference Depression leads to (1) Poorer preoperative and postoperative scores in all but the mental domains; and (2) But similar net score changes (improvement) with a high rate of patient satisfaction				
one assessed PPSP retrospectively in patients after both TKR and THR.9

Factors-variables related to PPSP: Multiple variables have been considered to play an important role at persistent postoperative pain. At times, different aspects of risk factors have been examined. In these studies, preoperative factors that were examined were comorbidities, preoperative pain scores20,21, and pain catastrophizing scores20,21. But only one study found to quantify the effect of sex on postoperative pain outcomes24 while another one assessed the relationship of PPSP and the Grade of knee osteoarthritis according to the scale of Kellgren and Lawrence23. Quality of life, pain and satisfaction were measured in depressed and non-depressed patients to identify differences that might exist in the scores22.

Pain scales or scores: Pain intensity mainly was measured using validated patient reported measures of pain, the most common were the Visual Analogue Scale (VAS)19,23, which is a well evaluated tool, the McGill pain questionnaire (MPQ)9,20, the Knee Society Score22,24 and the Numerical Rating Scale (NRS)21. To cover the influence of psychological factors on TKR outcomes Pain Catastrophizing Scale (PCS) was used to measure pain catastrophizing20,21, while the Two-item Patient Health Questionnaire (PHQ-2)22, Geriatric Depression Scale21,22, Medical Outcomes Study 36-Item Short Form Health, Mental Composite Score22 and Anxiety Form of the State Trait Anxiety Inventory (STAI)22 were used to measure depression and anxiety.

A recent study25 evaluated the tools that used to measure pain intensity, Knee injury and Osteoarthritis Outcome Score (KOOS) and VAS and how they affect the pain outcomes.

Pain assessment times and post-operative follow-up: At the most of the studies there was a continuous follow-up. Assessments took place preoperatively20,21,25 and postoperatively at 1 mo19,29, 3 mo19,30, 6 mo19,22,21, 12 mo20,21,22,24 and up to 1 year postoperatively19,21,22,25.

Prevalence of pain: A significant reduction of pain after TKR was observed between preoperative scores and postoperative scores; from 72% to 44%.19 A further reduction was observed up to 3 mo postoperatively where pain reached a plateau20. At 6 mo post-operatively, pain at movements was found in 16% of patients21 while pain at rest was significantly reduced in 5% of the patients.21 Others found PPSP in 18.4% of the patients at 6 mo19. PPSP has been reported at 1 year post-operatively in 13.1% of the patients29 while in another study, 44% of the patients reported to had PPSP at a mean of 4 years after TKR9. Interestingly, in one study where the same patients were tested using two different scales at one year post-operatively, the prevalence of PPSP was different; in 25% of the patients using the KOOS and in 52% using the VAS26.

Factors related to PPSP: Preoperative factors that affected pain scores were depression scores9,19, affecting both preoperative and postoperative pain scores22, early grade...
of osteoarthritis, number of comorbidities and pain problems elsewhere. Gender didn’t seemed to affect postoperative outcomes at all. A high correlation was found between preoperative pain catastrophizing scores and the existence of PPSP and its intensity. Which is in accordance with other reviews that is referred that patient’s pain catastrophizing might play an important role in chronic pain intensity.

NP after TKR (Table 2)

Studies: The existence and prevalence of NP have been reported by a small number of studies. Three prospective studies with the study population ranged from 77 to 120 patients, and 1 retrospective study with a number of 632 patients were designed for this purpose. However, other studies that aimed to evaluate specific treatments for NP recorded its prevalence too.

Pain scales or scores: Scores, initially were used to establish the existence of pain in some of these studies. These scores were Mpg, VAS and NRS.

Additionally, NP was assessed by painDetect Questionnaire (PD-Q), Leeds Assessment of Neuropathic Symptoms and Signs scale and MpQ. The contribution of depression’s and anxiety’s presence and severity to the existence of NP were examined. PHQ-2, Beck Depression Inventory (BDI), the Hospital Anxiety and Depression score and the STAI were used for this purpose.

Pain assessment times and post-operative follow-up: Pain assessment at these studies took place preoperatively, and postoperatively at 3-5 d, 6 wk, 1 mo, 3, 6 and 9 mo and up to 1 year postoperatively.

NP prevalence: A high correlation was found between VAS pain scores and NP at 3 mo, 1 year and 3 years post-op. Six weeks postoperatively a peak at the graph was observed with 27% having possible and 8% of the patients having likely NP. At 3 mo that proportion reduced to 19% with possible and 4% with likely NP.

Buvanendran et al. identified a rate of NP of 5% at 6 mo postoperatively, while in another study was found 13% of the patients having Complex Regional Pain Syndrome after TKR at both 3 and 6 mo. It is reported that at mean 4 years after TKR 6% of the patients have pain of likely neuropathic origin. The use of perioperative pregabalin reduced the incidence of NP at 0%, while placebo pregabalin didn’t seem to reduce NP.

Studies including TKR patients concerning the existence, prevalence and etiology of NP (Table 3)

Studies: A retrospective study assessed the existence and the preoperative predictors of NP in 632 TKR patients and 662 THR patients, and two prospective studies in 100 TKR patients and 89 patients after breast surgery. Another prospective study, also examined the relationship between postoperative trajectories and NP, in 112 TKR and UKR patients.

Pain scales or scores: Scores that used to assess NP were PD-Q and Diagnosing Neuropathic Pain Questionnaire, Shortform McGill Pain Questionnaire, NRS and Brief Pain Inventory were used to define the existence of pain postoperatively.

Factors studied: Preoperative factors of NP that were examined were depression, anxiety, pain catastrophizing, cognitive and emotional functioning. Depression was assessed with PHQ-2 and STAI. Spielberger STAI and PCS were used to assess anxiety and pain catastrophizing. Cognitive functioning was assessed with Trail-Making Test A + B, Rey-Osterrieth Complex Figure-copy and immediate recall, Coping Strategies Questionnaire and Brief Version of the Survey of Pain Attitudes.

Pain assessment times and post-operative follow-up: Assessments took place preoperatively, at day 1 to 8, 3 mo, 6 mo, 12 mo and 3 to 4 years postoperatively.

Factors: Acute postoperative pain, cognitive functioning, pain coping, emotional functioning and problems of pain elsewhere found to be predictors of PPSP and NP.

Prevalence: Seventy five percent of the patients seen to have NP preoperatively, according to Attal et al., 2014, while in another study NP seemed to appear on 30.7% of the patients. At 3 mo postoperatively, NP ranged between 11% and 42.2% of the patients. Six and 12 mo postoperatively patients with NP reduced at 32% and 26%, respectively. At 3 to 4 years postoperatively only 6% of TKR patients had NP.

DISCUSSION

The number of the 14 studies that used pain-specific instruments to measure pain after TKR is small and studies that approach and record NP after TKR are much less.

According to these studies, a significant proportion of patients have persistent post-operative pain for years after TKR and part of these patients suffer from pain of neuropathic origin.

Factors found to be related to persistent postoperative pain after TKR include emotional functioning such as depression and pain catastrophizing, number of comorbidities and pain problems elsewhere and operations in knees with early grade of osteoarthritis.

Nevertheless, due to the heterogeneity of the studies, mainly on the scales used to assess pain and
Table 2 Total knee replacement and neuropathic pain

Ref.	Design	No. of patients	Aim of the study	Scores/scales	Follow-up	Pain Factors	
Harden et al.	Prospective	77	Preoperative emotional distress and pain intensity and would predict the occurrence of signs and symptoms of CRPS following TKR	CRPS: IASP criteria (signs/symptoms) Beck Depression Inventory State Trait Anxiety Inventory McGill Pain Questionnaire-Short Form	Pre-op. Post-op.: (1) 1 mo; (2) 3 mo; and (3) 6 mo	1 mo: 21.0% Post-op.: 3 mo: 13.0% 6 mo: 12.7% CRPS-like phenomena: (1) In a significant number of patients after TKR; (2) No association with significantly greater complaints of postoperative pain Prediction by preoperative distress and pain: Modest utility	
Buvanendran et al.	Prospective	Control: 120, Pregabalin: 120	To examine if perioperative treatment with pregabalin, would reduce the incidence of postsurgical NP	NRS, LANS scale, Osteoarthritis Outcome Score—Physical function Short-form (KOOS-PS)	Pre-op. Post-op.: (1) 1 mo; and (2) 6 mo	Study group: 0% Placebo group: (1) 3 mo: 8.7%; (2) 6 mo: 5.2%	Postoperative pregabalin administration reduces the incidence of chronic NP after TKR In the doses tested, it is associated with a higher risk of early postoperative sedation and confusion
Wykle et al.	Retrospective	632	To assess: (1) prevalence; (2) severity; (3) sensory qualities; and (4) postoperative determinants of persistent pain after primary THR and TKR	WOMAC Pain Scale SF-MPQ PainDetect Questionnaire Two-item PHQ-2	Median: 41 mo Range: 34-49 mo Persistent postsurgical pain (PPSP): 44% Constant PPSP: 15% Likely NP: 6%	Significant and independent postoperative determinants of number of PPSP: (1) No of pain problems elsewhere; and (2) The presence of major depression	
Phillips et al.	Prospective	94	To record the prevalence of pain and NP To establish predictive factors that could be used to identify patients who were likely to have high levels of pain or NP	VAS HADS score pD-Q score OKS	Pre-op. Post-op.: (1) 3-5 d; (2) 6 wk; (3) 3 mo; (4) 6 mo; (5) 9 mo; (6) 1 yr; and (7) 46 mo	VAS (value) Pre-op.: 5.8 Post-op.: (1) 3-5 d: 4.5; (2) 6 wk: 3.2; (3) 3 mo: 2.4; (4) 6 mo: 2.0; (5) 9 mo: 1.7; (6) 1 yr: 1.5; and (7) 46 mo: 2.0	High correlation between the mean VAS scores for pain and the mean painDetect scores at 3 mo, 1 yr and 3 yr post-operatively No correlation between the pre-operative scores and any post-operative scores at any time point NP is an underestimated problem in patients after TKR

CRPS: Complex regional pain syndrome; NP: Neuropathic pain; Pre-op: Preoperatively; Post-op: Postoperatively; LANS: Leeds Assessment of Neuropathic Symptoms and Signs; NRS: Numerical Rating Scale; WOMAC: Western Ontario and McMaster Universities Index of Osteoarthritis; SF-MPQ: Short-Form McGill Pain Questionnaire; PHQ-2: Patient Health Questionnaire; VAS: Visual Analogue Score; HADS: Hospital Anxiety and Depression; pD-Q: PainDetect; OKS: Oxford Knee score.
Table 3 Studies including total knee replacement patients concerning the prevalence and etiology of neuropathic pain

Ref.	Design	No. of patients	Aim of the study	Scores-scales	Follow-up	Pain	Factors
Wylde et al.	Retrospective	632	To assess: 1. prevalence; 2. severity; 3. sensory qualities; 4. postoperative determinants of persistent pain after primary THR and TKR.	Western Ontario and McMaster Universities; Index of Osteoarthritis; Pain Scale; Short-Form McGill Pain; Pain DETECT;uestionnaire; Two-item Patient Health	Pre-op: Post-op: (1) 2 d; 3 mo	PPSP: 44% Severe-extreme PPSP: 15% Constant PPSP: 5% Likely NP: 6%	Significant and independent postoperative determinants of number of PPSP: (1) No. of pain problems elsewhere; and (2) The presence of major depression
Masselin-Dubois et al.	Prospective	TKR patients: 89 breast cancer surgery patients: 100	To assess the predictive value of: 1. Anxiety; 2. Depression; 3. Pain catastrophizing; and 4. Baseline pain intensity for chronic postsurgical pain. The existence of neuropathic pain.	BPI; Neuropathic Pain Diagnostic Questionnaire (DN4); Spielerberger STAI 13-item BDI PCS; CopeSTAI for Adults	Pre-op: Post-op: (1) 2 d; 3 mo	TKR patients: (1) Pre-op: 84% at least moderate pain (2) 2 d: 46.9%; and (3) 3 mo: 50.6% Neuropathic pain TKR patients: (1) Pre-op: 30.7% (2) 3 mo: 42.2%	Regardless the type of surgery, state anxiety, pain catastrophizing (especially pain magnification) and acute post-surgical pain are predictive of persistent post-surgical pain. Acute post-surgical pain was also predictive of NP pain. Baseline pain intensity, trait anxiety and depression had no independent impact on post-surgical pain (considering low baseline scores for depression in this study)
Lavand’homme et al.	Prospective	TKR and UKR patients: 120	To examine the relationship between postoperative pain trajectories and persistent pain, specifically neuropathic pain.	NRS; Neuropathic Pain Diagnostic Questionnaire (DN4); PCS; Spielerberger STAI for Adults	Pre-op: Post-op: (1) Day 1 to Day 8; (2) 3 mo	At 3 mo post-op: (1) 42% patients were pain free (2) 47% patients with persistent pain without NP pain; and (3) 11% patients with persistent pain involving neuropathic component	No differences found among pain trajectories for pain at rest
Attal et al.	Prospective	TKR patients: 89 If: breast cancer surgery patients: 100	If: 1. cognitive functioning (2) emotional functioning and pain coping are predictors of persistent postsurgical pain and neuropathic pain.	BPI; Neuropathic Pain Diagnostic Questionnaire (DN4); TMT A; TMT B; ROCF-copy; ROCF-immediate recall; Spielberger STAI CSQ; Brief Version of the SOPA-B	Pre-op: Post-op: (1) 1 mo; and (2) 1 d; 6 mo: 39%; and (3) 12 mo: 38%; Neuropathic pain TKR patients: (1) Pre-op: 75 patients; (2) 6 mo: 32 patients; and (3) 12 mo: 26 patients	TKR patients: (1) Pre-op: 84%; (2) 6 mo: 39%; and (3) 12 mo: 38%; Neuropathic pain TKR patients: (1) Pre-op: 75 patients; (2) 6 mo: 32 patients; and (3) 12 mo: 26 patients	Cognitive functioning, emotional functioning and pain coping made an independent contribution to the prevalence and severity of persistent postsurgical pain, as well as its neuropathic quality. Results at ROCF-copy and ROCF-immediate recall test seemed to be predictors of pain with neuropathic nature

PPSP: Persistent post-surgical pain; BPI: Brief Pain Inventory; NRS: Numerical Rating Scale; STAI: State-Trait Anxiety Inventory; PCS: Pain Catastrophizing Scale; BDI: Beck Depression Inventory; TMT: Trail Making Test A; ROCF-copy: Rey-Osterrieth Complex Figure-copy; ROCF-immediate recall: Rey-Osterrieth Complex Figure-immediate recall; CSQ: Coping Strategies Questionnaire; SOPA-B: Survey of Pain Attitudes.

preoperative factors, we are unable to reach firm conclusions concerning the prevalence, and the risk factors of persistent post-operative pain after TKR. Additional studies focused on the prevalence and risk factors related to persistent postoperative pain are needed.

COMMENTS

Background

Persistent-post-surgical pain of unknown origin and neuropathic pain (NP) is considered a major underestimated problem for patients and for clinicians too.

There are several studies that measure pain with a wide variety of scores-tools.

Research frontiers

According to our acknowledgment this is the first review that analyses the prevalence of both persistent post-surgical pain (PPSP) and NP after total knee replacement (TKR), while pain is measured only with pain-specific instruments. Risk factors that might play an important role in the prediction and the prevalence of persistent postoperative pain were also analyzed.

Innovations and breakthroughs

PPSP measured by pain-specific instruments only by a few studies. From this review, it is obvious that post-surgical pain and NP exists in a significant
REFERENCES

1 Kennedy LG, Newman JH, Ackroyd CE, Dieppe PA. When should we do knee replacements? Knee 2003; 10: 161-166 [PMID: 12788000]

2 Fortin PR, Clarke AE, Joseph L, Liang MH, Tanzer M, Ferland D, Phillips C, Partridge AJ, Bélisle P, Fossel AH, Mahomed N, Sledge CB, Katz JN. Outcomes of total hip and knee replacement: preoperative functional status predicts outcomes at six months after surgery. Arthritis Rheum 1999; 42: 1722-1728 [PMID: 10446873 DOI: 10.1002/1529-0131(199908)42:8<1722::AID-AMJ22>3.0.CO;2-r]

3 Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt AW, Ruh EL, Barrack TN, Nunley RM, Barrack RL. Assessment of patients about total knee replacement. J Bone Joint Surg Br 1998; 80: 63-69 [PMID: 9469055]

4 Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS)–development of a self-administered outcome measure. J Orthop Sports Phys Ther 1998; 28: 88-96 [PMID: 9699138 DOI: 10.2519/jospt.1998.28.2.88]

5 Wylde V, Bruce J, Beswick A, Elvers K, Gooberman-Hill R. Assessment of chronic postsurgical pain after knee replacement: a systematic review. Arthritis Care Res (Hoboken) 2013; 65: 1795-1803 [PMID: 23740860 DOI: 10.1002/acr.22650]

6 Mackichan F, Wylde V, Dieppe P. The assessment of musculoskeletal pain in the clinical setting. Rheum Dis Clin North Am 2008; 34: 311-330 [PMID: 18638679 DOI: 10.1016/j.rdc.2008.03.002]

7 Brander VA, Stulberg SD, Adams AD, Harden RN, Bruehl S, Stanos SP, Houle T. Predicting total knee replacement pain: a prospective, observational study. Clin Orthop Relat Res 2003; 416: 27-36 [PMID: 14646737 DOI: 10.1097/01.blo.0000092983.12414.e9]

8 Forsythe ME, Dunbar MJ, Hennigaw AW, Sullivan MJ, Gross M. Prospective relation between catastrophizing and residual pain following knee arthroplasty: two-year follow-up. Pain Res Manage 2008; 13: 335-341 [PMID: 18719716]

9 Noisoux NO, Callaghan JJ, Clark CR, Zimmerman MB, Shua KA, Rakel BA. Preoperative predictors of pain following total knee arthroplasty. J Arthroplasty 2014; 29: 1383-1387 [PMID: 24630598 DOI: 10.1016/j.arth.2014.01.034]

10 Pérez-Prieto D, Gil-González S, Pelfort X, Leal-Blanquet J, Puig-Verdí L, Hinarejos P. Influence of depression on total knee arthroplasty outcomes. J Arthroplasty 2014; 29: 44-47 [PMID: 23702267 DOI: 10.1016/j.arth.2013.04.030]

11 Polkowski GG, Ruh EL, Barrack TN, Nunley RM, Barrack RL. Is pain and dissatisfaction after TKA related to early-grade preoperative osteoarthritis? Clin Orthop Relat Res 2013; 471: 166-168 [PMID: 22923315 DOI: 10.1007/s11999-012-2465-6]

12 Ritter MA, Wing JT, Berend ME, Davis KE, Meding JB. The clinical effect of gender on outcome of total knee arthroplasty. J Arthroplasty 2008; 23: 331-336 [PMID: 18385368 DOI: 10.1016/j.arth.2007.10.031]

13 W-Dahl A, Sundberg M, Lidgren L, Ranstam J, Robertson O. An examination of the effect of different methods of scoring pain after total knee replacement on the number of patients who report unchanged or worse pain. Bone Joint J 2014; 96-B: 1222-1226 [PMID: 25183594 DOI: 10.1302/0301-620x.96b12.122246]

14 Sullivan MJ, Thorn B, Haythornthwaite JA, Keefe F, Martin M, Bradley LA, Lefebvre JC. Theoretical perspectives on the relationship between catastrophizing and pain. Clin J Pain 2001; 17: 52-64 [PMID: 11289089]

15 Jensen MP, Turner JA, Romano JM, Karoly P. Coping with chronic pain: a critical review of the literature. Pain 1991; 47: 249-283 [PMID: 1784498]

16 Harden RN, Bruehl S, Stanos S, Brander V, Chung OY, Sultz S, Adams A. Stulberg SD. Prospective examination of pain-related and psychological predictors of CRPS-like phenomena following total knee arthroplasty: a preliminary study. Pain 2003; 106: 393-400 [PMID: 14695252]

17 Phillips JR, Hopwood B, Arthur C, Stroud R, Toms AD. The natural history of pain and neuropathic pain after knee replacement:
a prospective cohort study of the point prevalence of pain and neuropathic pain to a minimum three-year follow-up. *Bone Joint J* 2014; 96-B: 1227-1233 [PMID: 25183595 DOI: 10.1302/0301-620 x.96b9.33756]

30 **Buvanendran A**, Kroin JS, Della Valle CJ, Kari M, Moric M, Tuman KJ. Perioperative oral pregabalin reduces chronic pain after total knee arthroplasty: a prospective, randomized, controlled trial. *Anesth Analg* 2010; 110: 199-207 [PMID: 19910619 DOI: 10.1213/ANE.0b013e3181c4273a]

31 **Masselin-Dubois A**, Attal N, Fletcher D, Jayr C, Albi A, Fermanian J, Bouhassira D, Baudic S. Are psychological predictors of chronic postsurgical pain dependent on the surgical model? A comparison of total knee arthroplasty and breast surgery for cancer. *J Pain* 2013; 14: 854-864 [PMID: 23685186 DOI: 10.1016/j.jpain.2013.02.013]

32 **Attal N**, Masselin-Dubois A, Martinez V, Jayr C, Albi A, Fermanian J, Bouhassira D, Baudic S. Does cognitive functioning predict chronic pain? Results from a prospective surgical cohort. *Brain* 2014; 137: 904-917 [PMID: 24441173 DOI: 10.1093/brain/awt354]

33 **Lavand’homme PM**, Grosu I, France MN, Thienpont E. Pain trajectories identify patients at risk of persistent pain after knee arthroplasty: an observational study. *Clin Orthop Relat Res* 2014; 472: 1409-1415 [PMID: 24258688 DOI: 10.1007/s11999-013-3389-5]

P- Reviewer: Franklyn MJ, Hasegawa M, Huang TW, Sano H
S- Editor: Ji FF
L- Editor: A
E- Editor: Jiao XK
