Precise Critical Exponents of the O(N)-Symmetric Quantum field Model using Hypergeometric-Meijer Resummation

Abouzeid M. Shalaby∗

Department of Mathematics, Statistics, and Physics,
Qatar University, Al Tarfa, Doha 2713, Qatar

Abstract

In this work, we show that one can select different types of Hypergeometric approximants for the resummation of divergent series with different large-order growth factors. Being of \( n! \) growth factor, the divergent series for the \( \varepsilon \)-expansion of the critical exponents of the \( O(N) \)-symmetric model is approximated by the Hypergeometric functions \( \binom{k+1}{k} F_{k-1} \). The divergent \( \binom{k+1}{k} F_{k-1} \) functions are then resummed using their equivalent Meijer-G function representation. The convergence of the resummation results for the exponents \( \nu \), \( \eta \) and \( \omega \) has been shown to improve systematically in going from low order to the highest known six-loops order. Our six-loops resummation results are very competitive to the recent six-loops Borel with conformal mapping predictions and to recent Monte Carlo simulation results. To show that precise results extend for high \( N \) values, we listed the five-loops results for \( \nu \) which are very accurate as well. The recent seven-loops order (\( g \)-series) for the renormalization group functions \( \beta, \gamma_{\phi^2} \) and \( \gamma_{m^2} \) have been resummed too. Accurate predictions for the critical coupling and the exponents \( \nu \), \( \eta \) and \( \omega \) have been extracted from \( \beta, \gamma_{\phi^2} \) and \( \gamma_{m^2} \) approximants.

PACS numbers: 02.30.Lt,11.10.Kk,11.30.Qc

Keywords: Critical exponents, Resummation Techniques, Hypergeometric Resummation

∗Electronic address: amshalab@qu.edu.qa
I. INTRODUCTION

Quantum field theory (QFT) represents an important tool to study critical phenomena for different physical systems. Critical phenomena is thus offering an indirect experimental test to the validity of QFT. The idea stems from the universal phenomena where a number of different systems can show up the same critical behavior in spite of their different microscopic details. A very clear example is the Ising model from magnetism and the one-component $\phi^4$ model from QFT [1–6]. The more general example of the $\phi^4$ scalar field theory with $O(N)$-symmetry can describe the critical phenomena in many physical systems that share the same respective symmetry. Regarding the $N = 0$, for example, the theory lies in the same universality class with polymers [7] while the $N = 1$ case describes the critical behavior of Ising-like models. For $N = 2$, the model describes a preferred orientation of a magnet in a plane while the case $N = 3$ can describe a rotationally invariant ferromagnet. Besides, the $N = 4$ case can mimic the phase transition in QCD at finite temperature with two light flavors [8].

The study of critical phenomena within quantum field theory has been reinforced by Wilson’s introduction of the famous $\varepsilon$-expansion [9, 10]. Wilson ideas made the renormalization group functions to take a place in the heart of predicting critical exponents from the study of QFT models [1, 3, 4]. However, the series generated by the $\varepsilon$-expansion is well known to be divergent [11] and thus resummation techniques are indispensable to extract reliable results from that series. In Ref. [12] (for instance), Borel transformation with conformal mapping technique has been used to resum divergent series of the critical exponents of the $O(N)$–symmetric model. Also in Ref. [13], the five-loops $\varepsilon$-expansion of the perturbation series for the critical exponents have been resummed using a strong-coupling resummation technique.

Resummation of the series generated by $\varepsilon$-expansion has been shown to be slightly less precise than the resummation of renormalization group functions at fixed dimensions [12]. This fact motivated the authors of the recent work in Ref. [14] to move one step forward toward the improvement of resummation predictions of the critical exponents from $\varepsilon$-expansion. In that reference, the six-loops perturbation series of the $\varepsilon$-expansion for the renormalization group functions of the O(N) model have been obtained and resummed using Borel with conformal mapping resummation algorithm. They obtained accurate results for
the exponents $\nu, \eta$ and $\omega$. However, this algorithm has three free parameters where their variations add to the uncertainty in the calculations. We will show in this work that a simple Hypergeometric-Meijer resummation algorithm [15], which has no free parameters, can result in competitive approximations for the critical exponents from the $\varepsilon$-expansion.

Methods that are using different approach (other than resummation) have been used in literature to extract accurate critical exponents of the $O(N)$ model. Among these successful methods is Monte Carlo simulation which has been used to obtain accurate critical exponents of the $O(N)$ model [16–23]. Besides, in recent years, researchers were able to extend the applicability of conformal bootstrap methods to three dimensions which in turn resulted in very accurate predictions for the critical exponents of the $O(N)$ model too [24–28]. The results of these techniques besides the recent Borel resummation results will be used for comparison with our predictions from Hypergeometric-Meijer resummation of divergent series representing the critical exponents.

The divergence of perturbation series in QFT has been argued for the first time by Dyson [29]. From a mathematical point of view, singularities in the complex-plane are responsible for series divergence even for small argument [30]. The manifestation of divergence in a perturbation series appears in the form of large-order growth factors like $n!$, $(2n)!$ and $(3n)!$ (for instance). The appearance of such large-order behaviors stimulates the need for resummation of such type of perturbation series [31, 32]. The most popular resummation technique is Borel and its different versions. In fact, the knowledge of the large-order behavior of a divergent series is needed not only to accelerate the convergence of resummation results but also to determine the type of the Borel transformation to be used. In our work, we will show that the large-order behavior is also important for our resummation (Hypergeometric-Meijer) algorithm [15] in order to select the suitable relation between the number of numerator and denominator parameters of the used Hypergeometric approximant.

Borel resummation and the Hypergeometric-Meijer algorithms share the need of the large-order behavior of a divergent series to select the suitable Borel-transform and the Hypergeometric approximant respectively. There exist, however, different features for both algorithms. One can get sufficient idea about the features of Borel resummation algorithm by going to its extensive use in literature. For the resummation of divergent series in QFT, one can visit some of past and recent successful studies that dealt with resummation of the divergent series of the renormalization group functions of the $O(N)$-symmetric model.
Although resummation techniques used in literature like Borel and Borel-Padé can give reasonable results for the critical exponents of the $O(N)$ model, these algorithms need a relatively high order of loop calculations which is not an easy task. To get an idea about how hard to have high orders of loops calculations, we assert that it took the researchers like 25 years to move forward from five-loops to six-loops calculations [14, 37]. Even at the level of more simpler theories like the $\mathcal{PT}$-symmetric $i\phi^3$ field theory, the four loops renormalization group functions have been just recently obtained [33]. In going to more complicated theories that have fermionic as well as gauge boson sectors, the calculation of a relatively high loop orders is not an easy task. The Hypergeometric-Meijer algorithm, on the other hand, can give reasonable results even in using few orders from a perturbation series as input. It is thus very suitable for the study of non-perturbative features of a quantum field theory.

In Borel algorithms, results are always achieved via numerical calculations. This feature leads to the resummation of individual physical amplitudes one by one. The existence of a resummation algorithm that avoids this feature might help in getting other amplitudes without further resummation steps. Instead, we can obtain them from simple calculus. For instance, the vacuum energy or equivalently the effective potential is known to be the generating functional of the one-particle-irreducible amplitudes. Accordingly, getting a closed form resummation function for the effective potential enables one to get other amplitudes via functional differentiation [38, 39]. The Hypergeometric-Meijer resummation as we will see can give accurate results as well as being simple and of closed form. Besides, it does not have any free parameters to fix like other resummation algorithms which use optimization tools to fix the introduced free parameters.

The Hypergeometric-Meijer resummation algorithm we use in this work is a development of the recently introduced simple Hypergeometric resummation algorithm [40]. In the Hypergeometric algorithm, the Hypergeometric approximant $\,_{2}F_{1}(a, b; c; \sigma z)$ has been suggested for the resummation of a divergent series. The four parameters $a, b, c$ and $\sigma$ are obtained by comparing the first four orders of the expansion of $\,_{2}F_{1}(a, b; c; \sigma z)$ in the variable $z$ with the four available orders of the divergent series under consideration. To illustrate this more, consider a series representing a physical quantity $Q(z)$ as:

$$
Q(z) = \sum_{0}^{4} c_{i}z^{i} + O\left(z^{5}\right),
$$

(1)
we have also the series expansion of \( c_0 \, _2F_1(a, b; c; \sigma z) \) as:

\[
\begin{align*}
&c_0 \, _2F_1(a, b; c; \sigma z) = c_0 + c_0 \frac{ab\sigma}{c} z + c_0 \frac{a(a + 1)b(b + 1)\sigma^2}{2c(c + 1)} z^2 \\
&+ c_0 \frac{a(a + 1)(a + 2)b(b + 1)(b + 1)\sigma^3}{6c(c + 1)(c + 2)} z^3 \\
&+ c_0 \frac{a(a + 1)(a + 2)(a + 3)b(b + 1)(b + 1)(b + 2)(b + 2)\sigma^4}{24c(c + 1)(c + 2)(c + 3)} z^4 \\
&+ \ldots \ldots \ldots
\end{align*}
\]

(2)

For \( c_0 \, _2F_1(a, b; c; \sigma z) \) to serve as an approximant for \( Q(x) \) we have to set

\[
\begin{align*}
c_1 &= c_0 \frac{ab\sigma}{c} \\
c_2 &= c_0 \frac{a(a + 1)b(b + 1)c\sigma^2}{2c(c + 1)} \\
c_3 &= c_0 \frac{a(a + 1)(a + 2)b(b + 1)(b + 1)\sigma^3}{6c(c + 1)(c + 2)} \\
c_4 &= c_0 \frac{a(a + 1)(a + 2)(a + 3)b(b + 1)(b + 1)(b + 2)(b + 2)\sigma^4}{24c(c + 1)(c + 2)(c + 3)},
\end{align*}
\]

(3)

which can be solved to determine the unknown parameters \( a, b, c, d, \sigma \) in terms of the known coefficients \( c_1, c_2, c_3 \) and \( c_4 \).

To accelerate the convergence of the algorithm, we suggested the employment of parameters from the asymptotic behavior of the perturbation series at large values of the argument \( z \) [41] or equivalently the strong coupling data. Our suggestion is based on the realization that when \( a - b \) is not an integer, the Hypergeometric function has the following asymptotic form [42]:

\[
_2F_1 (a, b; c; g) \sim \lambda_1 g^{-a} + \lambda_2 g^{-b}, \quad |g| \gg 1.
\]

Also the method has been generalized to accommodate higher orders from the perturbation series by using the generalized Hypergeometric function \( _pF_{p-1}(a_1, \ldots a_p; b_1, \ldots b_{p-1}; \sigma z) \) where the \( a_i \) parameters are extracted from the asymptotic behavior of the perturbation series at large \( z \) value.

The Hypergeometric algorithm either the version in Ref.[40] or Ref.[41] cannot accommodate the large order data available for many perturbation series in physics. The point is that the series expansion of the Hypergeometric function \( _2F_1(a, b; c; \sigma z) \) has a finite radius of convergence while it has been used for the resummation of a divergent series with zero
radius of convergence. This means that the large order behavior of the expansion of the function \( _2F_1(a, b; c; \sigma z) \) can not account explicitly for the \( n! \) growth factor characterizing a perturbation series with zero radius of convergence. In fact, in the Hypergeometric algorithm, the parameter \( \sigma \) ought to take large values to compensate for that \([43, 44]\) but itself cannot be considered as a large-order parameter. Indeed, employing parameters from large-order behavior is well known to accelerate the convergence of resummation algorithms (Borel for instance). Moreover, one can not apply the suitable Borel transform (divide by \( n! \) for instance ) unless we know the large order behavior of the perturbation series. These facts led us to develop the Hypergeometric algorithm \([15]\) by using the approximants \( _pF_{p-2}(a_1, a_2, ..., a_p; b_1, b_2, ..., b_{p-2}; \sigma z) \) instead of \( _2F_1(a, b; c; \sigma z) \). The Hypergeometric functions \( _pF_{p-2}(a_1, a_2, ..., a_p; b_1, b_2, ..., b_{p-2}; \sigma z) \) are all sharing the same analytic properties (with respect to \( z \)) and all have expansions of zero-radius of convergence as well as having an \( n! \) growth factor. Possessing the main features of the divergent series under consideration, the Hypergeometric function \( _pF_{p-2}(a_1, a_2, ..., a_p; b_1, b_2, ..., b_{p-2}; \sigma z) \) is thus an ideal candidate for the resummation of that series.

The structure of the paper is as follows. In sec\( \text{II} \) we introduce the generalized Hypergeometric-Meijer algorithm for the resummation of a divergent series with a growth factor of the form \( ((p-q-1)n)! \). In sec\( \text{III} \) we use the algorithm to resum the \( \epsilon \)--expansions of the exponents \( \nu(\nu^{-1}), \eta \) and \( \omega \) and the critical coupling up to five-loops of the \( O(N) \)-symmetric model. The resummation results for the recent six-loops order is presented for the exponents \( \nu(\nu^{-1}), \eta \) and \( \omega \) in sec\( \text{IV} \). Resummation of the seven-loops of the \( g \)--expansion of the renormalization group functions, which has no resummation trials in literature so far, is presented in sec\( \text{V} \). Summary and conclusions will follow in sec\( \text{VI} \).

II. THE GENERALIZED HYPERGEOMETRIC-MEIJER RESUMMATION ALGORITHM

Consider a divergent series that represents a physical amplitude \( Q(z) \) as

\[
Q(z) = \sum_{n=0}^{M} c_n z^n + O(z^{M+1}),
\]  
(4)

where the first \( M + 1 \) orders are known. Assume that the large-order behavior of that series takes the form:
\[
c_n \sim \alpha n!(-\sigma)^n n^b \left( 1 + O \left( \frac{1}{n} \right) \right), \quad n \to \infty.
\]
(5)

In Ref. [15], we showed that when \( p = q + 2 \), the perturbative expansion of the Hypergeometric function \( _pF_q(a_1, \ldots a_p; b_1, \ldots b_q; -\sigma z) \) which has a zero-radius of convergence can be parametrized to give the same large-order behavior of the above perturbation series. Accordingly, one sets the constraint
\[
\sum_{i=1}^p a_i - \sum_{i=1}^{q+2} b_i - 2 = b,
\]
besides the constraints set by matching the perturbation expansion of \( _pF_q(a_1, \ldots a_p; b_1, \ldots b_q; -\sigma z) \) with the available orders of the divergent series. Then the parametrized divergent series of \( _pF_q(a_1, \ldots a_p; b_1, \ldots b_q; \sigma z) \) is resummed using its representation in terms of Meijer-G function as follows [42]:
\[
_pF_q(a_1, \ldots a_p; b_1, \ldots b_q; z) = \frac{\prod_{k=1}^q \Gamma (b_k)}{\prod_{k=1}^p \Gamma (a_k)} G_{p,q+1}^{1,p} \left( \begin{array}{c} 1-a_1, \ldots, 1-a_p \\ 0, 1-b_1, \ldots, 1-b_q \end{array} \bigg| z \right).
\]
(6)

Note that the authors in Ref. [44] used a Borel-Padé algorithm that leads to Meijer-G approximants parametrized by weak-coupling information.

One can generalize the idea of our previous work in Ref. [15] to other types of divergent series with growth factors other than \( n! \). For instance, the divergent series of the ground state energy of the sextic anharmonic oscillator has a zero radius of convergence but the growth factor is \( (2n)! \) while it is \( (3n)! \) for the octic anharmonic oscillator [45]. Knowing that the asymptotic form of the ratio of two \( \Gamma \) functions is given by [46]:
\[
\frac{\Gamma (n + \alpha)}{\Gamma (n + \beta)} = n^{\alpha - \beta} \left( 1 + \frac{(\alpha - \beta)(-1 + \alpha + \beta)}{n} + O \left( \frac{1}{n^2} \right) \right),
\]
(7)

one can easily conclude that either the Hypergeometric approximants \( _pF_{p-1}(a_1, \ldots a_p; b_1, \ldots b_{p-1}; \sigma z) \) used in Ref. [41] or \( _pF_{p-2}(a_1, \ldots a_p; b_1, \ldots b_{p-2}; \sigma z) \) used in Ref. [15] cannot account for the growth factors of the sextic or octic ground state energies. Accordingly, one can accept that there exists more than one type of Hypergeometric functions (different \( S = p - q \)) that are needed to approximate different divergent series in physics with different large-order growth factors.

Based on the idea that the large-order asymptotic behavior is responsible for the selection of the suitable Hypergeometric approximant for a perturbation series, one can list different \( _pF_q(a_1, \ldots a_p; b_1, \ldots b_q; -\sigma z) \) approximants for different growth factors as follows:

1. for divergent series that has the large-order behavior in Eq. (5) \((n! \text{ growth factor})\), the suitable resummation function is \( _pF_{p-2}(a_1, \ldots a_p; b_1, \ldots b_{p-2}; \sigma z) \).
2. For a series that has a large-order behavior like \( \gamma \Gamma \left( 2n + \frac{1}{2} \right) (-\sigma)^n n^b \), \( n \to \infty \), the suitable one is \( _pF_{p-3}(a_1, ... a_p; b_1, ..., b_{p-3}; -\sigma z) \). This is because one can easily show that for \( p = q + 3 \), one can get a similar large-order behavior. An example of such divergent series is the ground state energy of the sixtic anharmonic oscillator [45].

3. For the ground state energy of the octic anharmonic oscillator, the large order behavior is given by \( \sim \delta \Gamma \left( 3n + \frac{1}{2} \right) (-\sigma)^n n^b \), \( n \to \infty \), which can be reproduced by the generalized Hypergeometric function \( _pF_{p-4}(a_1, ... a_p; b_1, ..., b_{p-4}; -\sigma z) \).

4. For a divergent series that has a finite radius of convergence, the suitable resummation function is \( _pF_{p-1}(a_1, ... a_p; b_1, ..., b_{p-1}; \sigma z) \). An example of such series is the ground state energy of the Yang-Lee model (Eq.(86) in Ref.[2]).

Based on this classification, knowing the large order behavior of a divergent series is essential not only to accelerate the convergence of the resummation algorithm but also to determine the suitable Hypergeometric approximant. A note to be mentioned is that, for \( p \geq q + 2 \), the Hypergeometric function \( _pF_q(a_1, ... a_p; b_1, ..., b_q; \sigma z) \) has a zero radius of convergence but it can be resumed using the closely related Meijer-G function (see Eq.(6)) which has the integral form [42]:

\[
\mathcal{G}_{p,q}^{m,n}(c_1, ..., c_p | d_1, ..., d_q | z) = \frac{1}{2\pi i} \int_C \prod_{k=1}^n \Gamma \left( s - c_k + 1 \right) \Gamma \left( d_k - s \right) \prod_{k=m+1}^q \Gamma \left( s - d_k + 1 \right) z^s ds. \tag{8}
\]

The Hypergeometric-Meijer algorithm which will be used in this work to resum the divergent series representing the critical exponents of the \( O(N) \) vector model can be thus summarized in two simple steps [15]:

1. Parametrize the Hypergeometric function \( _pF_{p-2}(a_1, ... a_p; b_1, ..., b_{p-2}; \sigma z) \) using both weak-coupling and large-order data of the series under consideration (for \( \varepsilon \)-expansion, the strong coupling data represented by the numerator parameters \( a_i \) is not known yet).

2. Resum the divergent \( _pF_{p-2}(a_1, ... a_p; b_1, ..., b_{p-2}; \sigma z) \) function using the representation in terms of the Meijer-G function in Eq.(6).

There exist some technical issues when applying the algorithm. The first issue is that for high orders, computer can take a relatively long-time to solve the set of equations like the
one in Eq. (3). To overcome this problem, we generated the ratio $R_n = \frac{c_n}{c_{n-1}}$ and then solve the set of equations:

$$R_n = \frac{1}{n} \prod_{i=1}^{p} (a_i + n - 1)$$

$$= \prod_{j=1}^{n-q} (b_j + n - 1)$$

For example, the approximant $pF_q(a_1, \ldots a_p; b_1, \ldots b_q; \sigma z)$ generates the following set of equations:

$$R_1 = \frac{a_1 a_2 \ldots \ldots a_p}{b_1 b_2 \ldots \ldots b_q} \sigma$$

$$R_2 = \frac{(a_1 + 1)(a_2 + 1) \ldots \ldots (a_p + 1)}{2 (b_1 + 1) \ldots \ldots (b_q + 1)} \sigma$$

$$\ldots$$

$$R_{p+q} = \frac{(a_1 + p + q - 1) \ldots \ldots (a_p + p + q - 1)}{(p+q)(b_1 + p + q - 1) \ldots \ldots (b_q + p + q - 1)} \sigma.$$ 

This trick decreases the degree of non-linearity in the set of equations and thus saves the computational time.

The other issue regarding the application of the Hypergeometric-Meijer algorithm is that at some orders one might find no solution for the set of equations defining the parameters in the Hypergeometric function. In this case, one resorts to a successive subtraction of the perturbation series. This trick is well known in resummation algorithms \[4, 44\]. However, the subtracted series will have a different large-order $b$ parameter where it increases by one per each subtraction (see for instance sec.16.6 in Ref. \[4\]).

### III. HYPERGEOMETRIC-MEIJER RESUMMATION FOR THE $\varepsilon$– EXPANSION OF CRITICAL EXPOENTS AND COUPLING UP TO FIVE LOOPS

The Lagrangian density of the $O(N)$-vector model is given by:

$$\mathcal{L} = \frac{1}{2} (\partial \Phi)^2 + \frac{m^2}{2} \Phi^2 + \frac{\lambda}{4!} \Phi^4,$$ (11)

where $\Phi = (\phi_1, \phi_2, \phi_3, \ldots \ldots \phi_N)$ is an N-component field with $O(N)$ symmetry such that $\Phi^4 = (\phi_1^2 + \phi_2^2 + \phi_3^2 + \ldots \ldots \phi_N^2)^2$. At the fixed point, the $\beta$-function is zero which sets a
critical coupling as a function of $\varepsilon = 4 - d$. Accordingly, one can obtain the renormalization group functions as power series in $\varepsilon$. In the following parts of this section, we list the resummation results (up to five loops) for the exponents $\nu, \eta$ and $\omega$ as well as the critical coupling of that model.

III.1. Two, three, four and five loops resummation for the exponent $\nu$

Up to five-loops, the power series for the reciprocal of the critical exponent $\nu$ is given by

$$\nu^{-1} \approx 2 + \sum_{i=1}^{5} c_i \varepsilon^i,$$

where

\begin{align}
c_1 &= \frac{N + 2}{N + 8} \\
c_2 &= -\frac{(N + 2)(13N + 44)}{2(N + 8)^3} \\
c_3 &= \frac{(N + 2)}{8(N + 8)^5}\{3N^3 - 452N^2 + 96(N + 8)(5N + 22)\zeta(3) - 2672N - 5312\} \\
c_4 &= \frac{(N + 2)}{32(N + 8)^7}\{3N^5 + 398N^4 - 12900N^3 - 1280(N + 8)^2(2N^2 + 55N + 186)\zeta(5) \\
&\quad + 16(N + 8)(3N^4 - 194N^3 + 148N^2 + 9472N + 19488)\zeta(3) \\
&\quad - 81552N^2 - 219968N + \frac{16}{5}\pi^4(N + 8)^3(5N + 22) - 357120\} \\
c_5 &= \frac{(N + 2)}{128(N + 8)^9}\{3N^7 - 1198N^6 - 27484N^5 - 1055344N^4 - 5242112N^3 \\
&\quad - 5256704N^2 + 56448(N + 8)^3(14N^2 + 189N + 526)\zeta(7) \\
&\quad + 6999040N - 626688 - \frac{1280}{189}\pi^6(N + 8)^4(2N^2 + 55N + 186) \\
&\quad + 256(N + 8)^2\zeta(5)(155N^4 + 3026N^3 + 989N^2 - 66018N - 130608) \\
&\quad - 1024(N + 8)^2(2N^4 + 18N^3 + 981N^2 + 6994N + 11688)\zeta(3)^2 \\
&\quad + \frac{8}{15}\pi^4(N + 8)^3(3N^4 - 194N^3 + 148N^2 + 9472N + 19488) \\
&\quad - 16(N + 8)\zeta(3)[13N^6 - 310N^5 + 19004N^4 + 102400N^3 - 381536N^2 \\
&\quad - 2792576N - 4240640]\}. \
\end{align}
The large-order parameters takes the form in Eq.(5) where
\[ \sigma = \frac{3}{N + 8} \quad \text{and} \quad b = 4 + \frac{N}{2}. \]

The suitable Hypergeometric approximant is thus \( _pF_{p-2}(a_1, \ldots a_p; b_1, \ldots b_{p-2}; -\sigma z) \) where it can reproduce the large order behavior in Eq.(5). The number of unknown parameters in \( _pF_{p-2}(a_1, \ldots a_p; b_1, \ldots b_{p-2}; -\sigma z) \) is \( 2p - 2 \) and thus we need an even number of equations to determine the unknown parameters. So we have two options:

- **Even number of loops as input**: In this case we incorporate an even number \((2p - 2)\) of terms from the perturbation series to match with corresponding terms from the expansion of \( _pF_{p-2}(a_1, \ldots a_p; b_1, \ldots b_{p-2}; -\sigma z) \).

- **Odd number of loops as input**: in this case we take odd number \((2p - 1)\) of loops to build odd number of equations and one equation from the large-order constraint:

\[
\sum_{i=1}^{p} a_i - \sum_{i=1}^{p-2} b_i - 2 = b,
\]

so determine the unknown numerator and denominator parameters.

So we list resummation results that involve odd or even number of perturbative terms separately.

### III.1.1. Two-loops Resummation for \( \nu \)

For \( p = q + 2 \), the lowest order Hypergeometric approximant for \( \nu^{-1} \) is thus:

\[
2_2F_0 \left( a_1, a_2; - \frac{3}{N + 8} \varepsilon \right) = \frac{2}{\Gamma(a_1) \Gamma(a_2)} G_{1,2}^{1,2} \left( 1-a_1,1-a_2; - \frac{3}{N + 8} \varepsilon \right). \tag{14}
\]

For this resummation function, one needs to determine the two parameters \( a_1 \) and \( a_2 \) by matching the perturbative expansion of \( 2_2F_0(a_1, a_2; - \frac{3}{N + 8} \varepsilon) \) with the first two terms in the perturbation series in Eq.(12). In this case we get:

\[
-\frac{6a_1a_2}{N + 8} = -\frac{N + 2}{N + 8},
\]

\[
\frac{9a_1(a_1 + 1)a_2(a_2 + 1)}{(N + 8)^2} = -\frac{(N + 2)(13N + 44)}{2(N + 8)^3}, \tag{15}
\]

11
from which we obtain the results:

\[
a_1 = \frac{-N^2 - \sqrt{N^4 + 60N^3 + 1636N^2 + 10464N + 20032} - 42N - 152}{12(N + 8)} \tag{16}
\]

\[
a_2 = \frac{1}{12(N + 8)} \left( \frac{N^3}{N+8} + \frac{50N^2}{N+8} - 2N^2 + \frac{\sqrt{N^4 + 60N^3 + 1636N^2 + 10464N + 20032}}{N+8} + \frac{488N}{N+8} - 84N + \frac{1216}{N+8} - 304 \right) \tag{17}
\]

To test the accuracy of this two-loops resummation function, let us note that for \(N = 1\), the recent Monte Carlo calculation \([16]\) gives \(\nu = 0.63002(10)\). Our two-loops Hypergeometric-Meijer resummation gives the result \(\nu = 0.66209\). This result is very reasonable in taking into account that the algorithm is fed with only the first two orders from the perturbation series as input. For \(N = 0\), the a recent accurate prediction is listed in Ref. \([19]\) as \(\nu = 0.5875970(4)\) while our two loops resummation gives \(\nu = 0.60890\). For \(N = 2\), Monte Carlo calculations gives \(\nu = 0.6690\) \([16]\) while the two-loops gives \(\nu = 0.711526\). So it seems that the simple Hypergeometric-Meijer resummation algorithm we follow in this work gives reasonable results even with very low orders of perturbation series as input. It is expected that the resummation of higher orders will improve the accuracy of the results which we will do in the following subsections.

### III.1.2. Three-loops resummation for \(\nu\)

For more accurate results, one can go to the higher three-loops order of Hypergeometric-Meijer approximants \(\text{}_3F_1(a_1, a_2, a_3; b_1; \frac{3}{N+8} \xi)\). Although it is parametrized by four parameters \((a_1, a_2, a_3\) and \(b_1)\), the use of the large order constraint \([15]\):

\[
\sum_{i=1}^{p} a_i - \sum_{i=1}^{p-2} b_i - 2 = b,
\]

leads to the need of three terms only from perturbation series to determine the parameters. So to determine them \((a_1, a_2, a_3\) and \(b_1)\), we solve the set of equations:
The predictions of this order are given in table I for different $N$ values and compared to two, four and five loops resummation results and to the Janke-Kleinert resummation (up to five-loops) in Ref. [4] and the Borel-with conformal mapping in Refs. [12, 14]. One can easily realize that the convergence has been greatly improved when moved from two-loops to the three-loops resummation.

The obvious acceleration of the convergence of the algorithm from two to three loops is strongly recommending the Hypergeometric-Meijer resummation algorithm to take a place.
among the preferred algorithms to resum divergent series with large order behavior of the form in Eq.\([5]\). Other features that recommend it for resummation of divergent series is that it does not include any free parameters and of closed form as well.

### III.1.3. Four-loops Resummation for \(\nu\)

The Hypergeometric approximants _3F_1\((a_1, a_2, a_3; b_1; -\frac{3}{N+8} \varepsilon)\) can also be used to resum the perturbation series up to four loops but in this case we have to solve the set of equations:

\[
\begin{align*}
    c_1 &= \frac{2a_1a_2a_3}{b_1} \sigma \\
    c_2 &= \frac{a_1(a_1+1)a_2(a_2+1)a_3(a_3+1)}{b_1(b_1+1)} \sigma^2 \\
    c_3 &= \frac{a_1(a_1+1)(a_1+2)a_2(a_2+1)(a_2+2)a_3(a_3+1)(a_3+2)}{3b_1(b_1+1)(b_1+2)} \sigma^3 \\
    c_4 &= \frac{a_1(a_1+1)(a_1+2)(a_1+3)a_2(a_2+1)(a_2+2)(a_2+3)a_3(a_3+1)(a_3+2)(a_3+3)}{12b_1(b_1+1)(b_1+2)(b_1+3)} \sigma^4.
\end{align*}
\]

The prediction of this order of resummation is also listed in table\([I]\) where it shows that the accuracy is improving in a systematic way when moving to higher orders.

### III.1.4. Five-loops resummation for \(\nu\)

In this case we use the approximants _4F_2\((a_1, ..., a_4; b_1...b_4; -\frac{3}{N+8} \varepsilon)\) where the unknown parameters are determined from the set of equations:

\[
\begin{align*}
    c_1 &= \frac{2a_1a_2a_3a_4}{b_1b_2} \sigma \\
    c_2 &= \frac{2a_1(a_1+1)a_2(a_2+1)a_3a_4(a_3a_4+1)}{b_1(b_1+1)b_2(b_2+1)} \sigma^2 \\
    c_3 &= \frac{a_1(a_1+1)(a_1+2)a_2(a_2+1)(a_2+2)a_3a_4(a_3a_4+1)(a_3a_4+2)}{3b_1(b_1+1)(b_1+2)b_2(b_2+1)(b_2+2)} \sigma^3 \\
    c_4 &= \frac{a_1(a_1+1)(a_1+2)(a_1+3) ... a_4(a_4+1)(a_4+2)(a_4+3)}{12b_1(b_1+1)(b_1+2)(b_1+3)b_2(b_2+1)(b_2+2)(b_2+3)} \sigma^4, \\
    c_5 &= \frac{a_1(a_1+1)(a_1+2)(a_1+3)(a_1+4) ... a_4(a_4+1)(a_4+2)(a_4+3)(a_4+4)}{60b_1(b_1+1)(b_1+2)(b_1+3)(b_1+4)b_2(b_2+1)(b_2+2)(b_2+3)(b_2+4)} \sigma^5. \tag{20}
\end{align*}
\]

\[b = a_1 + a_2 + a_3 + a_4 - b_1 - b_2 - 2.\]

For this order, we get even more precise results for the \(\nu\)-exponent which are also presented in table\([I]\) and compared to the five-loops resummation from other algorithms in Refs.\([4, 12]\).
Also to compare with other recent theoretical predictions, for $N = 0$, we get the result $\nu = 0.587142$ compared to the recent accurate Monte Carlo simulation prediction from Ref. [19] as $\nu = 0.587597(4)$. For $N = 1$ our five-loops result gives $\nu = 0.62818$ that can be compared to Monte Carlo calculation that gives $\nu = 0.63002(10)$ [16]. The $N = 2$ five-loops resummation in this work gives $\nu = 0.667225$ which is competitive to Monte Carlo calculations of $\nu = 0.6690$ in Ref. [16]. Also, for $N = 3$, our five-loops resummation gives $\nu = 0.703644$ while the recent Monte Carlo prediction gives $\nu = 0.7116(10)$ [17]. These results show clearly that our five-loops resummation results are competitive either to five-loops resummation from other algorithms or to recent numerical methods.

To get an impression about the stability of the algorithm predictions for higher $N$ values, we list in Table II our five-loops resummation ($\text{$_4$F$_2$}(a_1, a_2, a_3, a_4; b_1, b_2 ; -\sigma z)$) results for $N = 6, 8, 10, 12$ and compared them to other theoretical predictions.

TABLE II: The 5-loops Hypergeometric-Meijer resummation ($\text{$_4$F$_2$}$ approximant) of the critical exponent $\nu$ for the $O(N)$ model for $N = 6, 8, 10$ and $12$ compared to other theoretical predictions. Ref. [50] used the strong coupling resummation and Ref. [24] is a conformal bootstrap calculation where we used $\Delta_s = 2 - 3/\nu$ to get the listed results. In Ref. [49], numerical calculations are used to predict the critical exponents and in Ref. [48] the the optimally truncated direct summation of pseudo-$\epsilon$ expansion ($\tau$OTDS) has been used where we obtained the listed result via the relation $\alpha = 2 - D\nu$.

| $N$ | 6   | 8   | 10  | 12  |
|-----|-----|-----|-----|-----|
| This work | $4F_2 : \varepsilon^5$ | 0.79331 | 0.83692 | 0.88809 | 0.89472 |
| Other calculations | 0.790$_{+0.032}^{-0.033}$ [24] | 0.829$_{+0.032}^{-0.033}$ [24] | 0.866$_{+0.032}^{-0.033}$ [24] | 0.890$_{+0.032}^{-0.033}$ [24] |

III.2. Resummation of Four and Five-loops series for $\eta$ exponent

For the critical exponent $\eta$ of the $O(N)$ model, the $\varepsilon$-expansion up to five loops is given by [4]

$$
\eta = \varepsilon^2 \left( d_2 + d_3 \varepsilon + d_4 \varepsilon^2 + d_5 \varepsilon^3 \right) + O(\varepsilon^6)
$$

(21)

where
\[ d_2 = \frac{(N + 2)}{2(N + 8)^2} \]
\[ d_3 = \frac{(N + 2)(-N^2 + 56N + 272)}{8(N + 8)^4} \]
\[ d_4 = \frac{(N + 2)}{32(N + 8)^6} \left\{ -5N^4 - 230N^3 + 1124N^2 - 384(N + 8)(5N + 22)\zeta(3) + 17920N + 46144 \right\} \]
\[ d_5 = -\frac{(N + 2)}{128(N + 8)^8} \left\{ 13N^6 + 946N^5 + 27620N^4 + 121472N^3 - 262528N^2 - 2912768N \right. \\
- 5120(N + 8)^2 \left( 2N^2 + 55N + 186 \right) \zeta(5) \frac{64}{5} \pi^4(N + 8)^3(5N + 22) - 5655552 \\
- 16(N + 8) \left( N^5 + 10N^4 + 1220N^3 - 1136N^2 - 68672N - 171264 \right) \zeta(3) - 5655552 \right\} \]

and the large-order for \( \eta \) of this model takes the form in Eq. (22) where

\[ \sigma = \frac{3}{N + 8} \quad \text{and} \quad b = 3 + \frac{N}{2}. \]

Note that the factored series \((d_2 + d_3\varepsilon + d_4\varepsilon^2 + d_5\varepsilon^3) + O(\varepsilon^6)\) has the large-order parameters \(4\)

\[ \sigma = \frac{3}{N + 8} \quad \text{and} \quad b = 5 + \frac{N}{2}. \]

The lowest order approximant is thus \(2F_0\) which in this case is a four-loops approximant.

**III.2.1. Four-loops resummation for \( \eta \)**

The Hypergeometric-Meijer approximant is then:

\[ \eta = d_2(N)\varepsilon^2 2F_0(a_1, a_2; -\sigma\varepsilon) \]
\[ = \frac{d_2(N)\varepsilon^2}{\Gamma(a_1)\Gamma(a_2)} G_{1,2}^{1,2} \left( \begin{array}{c} 1-a_1,1-a_2 \\ 0 \end{array} \right) \left( -\frac{3}{N + 8}\varepsilon \right) \]

The resummation results of that order are shown in table III. The results are reasonable but since the Hypergeometric approximant \(2F_0\) has few number of parameters, it is expected that the improvement of the results needs higher loops to be incorporated.

**III.2.2. The \( \eta \) five-loop resummation**

In this case the Hypergeometric approximant is

\[ \eta = d_2(N)\varepsilon^2 3F_1(a_1, a_2, a_3; b_1; -\sigma\varepsilon). \]
To determine the four unknown parameters we use the equations:

\begin{align*}
    d_3 &= d_2 \frac{a_1 a_2 a_3}{b_1} \sigma \\
    d_4 &= d_2 \frac{a_1 (1 + a_1) a_2 (1 + a_2) a_3 (1 + a_3)}{b_1 (1 + b_1)} \sigma \\
    d_5 &= d_2 \frac{a_1 (1 + a_1) (2 + a_1) a_2 (1 + a_2) (2 + a_2) a_3 (1 + a_3) (2 + a_3)}{b_1 (1 + b_1) (2 + b_1)} \sigma \\
    5 + \frac{N}{2} &= a_1 + a_2 + a_3 - b_1 - 2.
\end{align*}

(25)

Accordingly, the Hypergeometric-Meijer approximant for this order is given by:

\begin{align*}
    \eta &= d_2 (N) \varepsilon^2 \, {}_3F_1(a_1, a_2, a_3; b_1; -\sigma \varepsilon) \\
    &= d_2 (N) \varepsilon^2 \frac{\Gamma(b_1)}{\Gamma(a_1) \Gamma(a_2) \Gamma(a_3)} G_{3,2}^{1,3} \left( \begin{array}{c}
    1-a_1, 1-a_2, 1-a_3 \\
    0, 1-b_1
\end{array} \middle| -\frac{3}{N+8} \varepsilon \right) \\
\end{align*}

(26)

Our predictions that incorporate the fourth and fifth orders of divergent series of the \(\eta\)-exponent are listed in table [III]. It is very clear that the simple algorithm we follow gives accurate results for few terms from the perturbation series as input. This can be more elaborated by looking at the large number of estimates for critical exponents in Ref. [47] too. In fact, for the same order of perturbation series involved, the precision of resummation results for \(\eta\) are always less than that in \(\nu\) or \(\omega\) because the lowest order in the perturbation series of \(\eta\) is \(\varepsilon^2\) and thus always approximated by Hypergeometric approximants of fewer parameters than that for \(\nu\) or \(\omega\).

III.3. Resummation of the exponent \(\omega\)

For the exponent \(\omega\) we have the five-loops perturbation series as:

\[ \omega = \varepsilon + e_2 \varepsilon^2 + e_3 \varepsilon^3 + e_4 \varepsilon^4 + e_5 \varepsilon^5 + O(\varepsilon^6), \]

(27)

where [2]
TABLE III: The four and five-loops ($\varepsilon$-expansion) Hypergeometric-Meijer resummation for the critical exponent $\eta$ for the $O(N)$ model. We compared the results to Janke-Kleinert Resummation for five-loops $\varepsilon$-expansion in Ref.\[4\] and the Borel with conformal mapping resummation from Ref.\[12\] (first) and Ref.\[14\] (second).

| N | This work | JK\[4\] | BCM \[12\]-\[14\] |
|---|-----------|---------|-----------------|
|   | $2F_0: \varepsilon^4$ | $3F_1: \varepsilon^5$ | $\varepsilon^5$ | $\varepsilon^5$ |
| 0 | 0.02804   | 0.03111 | 0.0344(42)      | 0.0300 ± 0.0060 |
|   |           |         |                 | 0.0314(11)      |
| 1 | 0.03286   | 0.03615 | 0.0395(43)      | 0.0360 ± 0.0060 |
|   |           |         |                 | 0.0366(11)      |
| 2 | 0.03475   | 0.03791 | 0.0412(41)      | 0.0385 ± 0.0065 |
|   |           |         |                 | 0.0384(10)      |
| 3 | 0.03498   | 0.03781 | 0.0366(20)      | 0.0380 ± 0.0060 |
|   |           |         |                 | 0.0382(10)      |
| 4 | 0.034274  | 0.03668 | ———             | 0.036 ± 0.004   |
|   |           |         |                 | 0.0370(9)       |
\[
e_2 = -\frac{3(3N + 14)}{(N + 8)^2},
\]
\[
e_3 = \frac{(33N^3 + 53N^2 + 4288N + 9568 + \zeta[3](N + 8)96(5N + 22))}{4(N + 8)^4},
\]
\[
e_4 = \frac{1}{16(N + 8)^6} \left\{ 5N^5 - 1488N^4 - 46616N^3 - 1920(N + 8)^2 (2N^2 + 55N + 186) \zeta(5) \\
- 41528N^2 - 96(N + 8) (63N^3 + 548N^2 + 1916N + 3872) \zeta(3) \\
- 1750080N + \frac{16}{5} \pi^4(N + 8)^3(5N + 22) - 2599552 \right\},
\]
\[
e_5 = \frac{1}{64(N + 8)^8} \left\{ 13N^7 + 7196N^6 + 240328N^5 + 3760776N^4 + 38877056N^3 \\
+ 112896(N + 8)^3 (14N^2 + 189N + 526) \zeta(7) + 223778048N^2 \\
+ 660389888N + 752420864 - \frac{640}{63} \pi^6(N + 8)^4 (2N^2 + 55N + 186) \\
- \frac{16}{5} \pi^4(N + 8)^3 (63N^3 + 548N^2 + 1916N + 3872) \\
+ 256(N + 8)^2 \zeta(5) \left( 305N^4 + 7386N^3 + 45654N^2 + 143212N + 226992 \right) \\
- 768(N + 8)^2 \left( 6N^4 + 107N^3 + 1826N^2 + 9008N + 8736 \right) \zeta(3)^2 \\
- 16(N + 8) \zeta(3)[9N^6 - 1104N^5 - 11648N^4 - 243864N^3 - 2413248N^2 \\
- 9603328N - 14734080] \right\} 
\] (28)

and the large-order parameters for that exponent are
\[
\sigma = \frac{-3}{N + 8} \quad \text{and} \quad b = 5 + \frac{N}{2}.
\]

The two-loops resummation gives reasonable but not precise results so in the following, we shall list the resummation of three, four and five loops.

**III.3.1. Three-loops Resummation for \( \omega \)**

The three-loops Hypergeometric approximant is:
\[
\omega \approx {}_3F_1(a_1, a_2, a_3; b_1; -\sigma \varepsilon) - 1, \quad \text{ (29)}
\]
where

\[
1 = \frac{a_1a_2a_3}{b_1b_2},
\]

\[
e_2 = \frac{a_1(a_1 + 1) a_2 (a_2 + 1) a_3 (a_4 + 1) \sigma^2}{2b_1 (b_1 + 1) b_2 (b_2 + 1)},
\]

\[
e_3 = \frac{a_1(a_1 + 1) (a_1 + 2) a_2 (a_2 + 1) (a_2 + 2) a_3 (a_3 + 1) (a_3 + 2) \sigma^3}{6b_1 (b_1 + 1) (b_1 + 2)},
\]

\[
b = a_1 + a_2 + a_3 - b_1 - b_2 - 2.
\]  

(30)

The solutions of these equations are then substituted in the following Meijer-G function:

\[
\omega \approx \frac{\Gamma(b_1)}{\Gamma(a_1) \Gamma(a_2) \Gamma(a_3)} G^{1,3}_{3,2} \left( \begin{array}{c} 1-a_1, 1-a_2, 1-a_3 \\ 0, 1-b_1 \end{array} \right) - \frac{3}{N + 8 \varepsilon} - 1
\]  

(31)

III.3.2. The \( \omega \) four-loops Resummation

In this case also we use the approximant \( \binom{4}{2} F_1(a_1, a_2, a_3; b_1; -\sigma \varepsilon) \) but we replace the fourth equation in the set in Eqs.(30) by:

\[
e_4 = \frac{a(a + 1)(a + 2)(a + 3)b(b + 1)(b + 2)(b + 3)c(c + 1)(c + 2)(c + 3)}{12d(d + 1)(d + 2)(d + 3)} \sigma^4
\]  

(32)

III.3.3. \( \omega \) five-loops approximant

The Hypergeometric function that can accommodate five-loops is  
\( \binom{4}{2} F_2(a_1, a_2, a_3, a_4; b_1, b_2; -\sigma \varepsilon) \) where we use the constraint on the large order parameters:

\[
b = a_1 + a_2 + a_3 + a_4 - b_1 - b_2 - 2.
\]

Accordingly, the fifth order resummation for \( \omega \) is

\[
\omega \approx \left( \frac{\Gamma(b_1)\Gamma(b_2)}{\Gamma(a_1) \Gamma(a_2) \Gamma(a_3) \Gamma(a_4)} G^{1,4}_{4,3} \left( \begin{array}{c} 1-a_1, 1-a_2, 1-a_3, 1-a_4 \\ 0, 1-b_1, 1-b_2 \end{array} \right) - \frac{3}{N + 8 \varepsilon} - 1 \right)
\]  

(33)

In table IV we compared our results to predictions from the Janke-Kleinert Resummation for five-loops \( \varepsilon \)-expansion in Ref.[4] and Borel with conformal mapping in Refs.[12, 14] for \( N = 0, 1, 2, 3 \) and 4. Again, the comparison shows that the algorithm we follow gives very accurate results from few orders of the perturbation series as input.
### TABLE IV: The three, four and five-loops Hypergeometric-Meijer resummation for the critical exponent \( \omega \) compared to five-loops resummation from Ref.[4] (fifth column) and the Borel with conformal mapping resummation (sixth column) from Refs.[12, 14].

| N | \( 3F_1 \) This work: \( \varepsilon^3 \) | \( 4F_2 \) This work: \( \varepsilon^5 \) | JK[4]: \( \varepsilon^5 \) | BCM[12,14]: \( \varepsilon^5 \) |
|---|---|---|---|---|
| 0 | 0.86128 | 0.85086 | 0.817(21) | 0.828 ± 0.023 |
| 1 | 0.85628 | 0.83178 | 0.806(13) | 0.814 ± 0.018 |
| 2 | 0.85233 | 0.81329 | 0.800(13) | 0.802 ± 0.018 |
| 3 | 0.84979 | 0.79928 | 0.796(11) | 0.794 ± 0.018 |
| 4 | 0.910678 | 0.79249 | — | 0.795 ± 0.030 |

### III.4. Resummation of the \( \varepsilon \)-expansion for the critical coupling

In the way to get the \( \varepsilon \)-expansion for the critical exponents one has to obtain the dependance of the critical coupling on \( \varepsilon \) first. The expansion for the critical coupling \( g_c \) up to fifth order is given by [4]:

For \( N = 0 \) \( g_c(\varepsilon) \approx 0.375\varepsilon + 0.246\varepsilon^2 - 0.180\varepsilon^3 + 0.368\varepsilon^4 - 1.258\varepsilon^5 \),

For \( N = 1 \) \( g_c(\varepsilon) \approx 0.333\varepsilon + 0.210\varepsilon^2 - 0.138\varepsilon^3 + 0.269\varepsilon^4 - 0.8445\varepsilon^5 \),

For \( N = 2 \) \( g_c(\varepsilon) \approx 0.3\varepsilon + 0.18\varepsilon^2 - 0.108\varepsilon^3 + 0.205\varepsilon^4 - 0.591\varepsilon^5 \),

For \( N = 3 \) \( g_c(\varepsilon) \approx 0.273\varepsilon + 0.156\varepsilon^2 - 0.086\varepsilon^3 + 0.162\varepsilon^4 - 0.430\varepsilon^5 \),

For \( N = 4 \) \( g_c(\varepsilon) \approx \frac{1}{4}\varepsilon + \frac{13}{96}\varepsilon^2 - 0.0707\varepsilon^3 + 0.130\varepsilon^4 - 0.322\varepsilon^5 \),

(34)

while the large order parameters are \( \sigma = \frac{3}{N+\varepsilon} \) and \( b = 4 + \frac{N}{2} \). The third order approximation takes the form \( 3F_1(a_1, a_2, a_3; \varepsilon^3) - 1 \) while the fourth order takes the same form except in the equations determining the parameters we use the large order constraint \( a_1 + a_2 + a_3 - \)
\( b_1 - 2 = b \). For the five-loops resummation we resummed the series
\[
\frac{g_c(\varepsilon)}{\varepsilon} = f_1 + f_2 \varepsilon + f_3 \varepsilon^2 + f_4 \varepsilon^3 + f_5 \varepsilon^4,
\] (35)
for \( N = 1, 2, 3 \) and 4 using the Hypergeometric approximant \( f_1 \ {}_3F_1(a_1, a_2, a_3; b_1; \sigma \varepsilon) \). For \( N = 0 \), however, we resummed the subtracted series \( \frac{g_c(\varepsilon) - f_1}{f_2 \varepsilon} = 1 + f_3 \varepsilon + f_4 \varepsilon^2 + f_5 \varepsilon^3 \) using the Hypergeometric approximant:
\[
g_c(\varepsilon) = f_1 \varepsilon + f_2 \varepsilon^2 {}_3F_1(a_1, a_2, a_3; b_1; \sigma \varepsilon),
\] (36)
with the constraint \( a_1 + a_2 + a_3 - b_1 - 2 = b + 2 \). Such technical steps are well known in resummation techniques [4, 44] which can be used in case no solution has been found for the equations defining the parameters. The prediction of these orders are shown in table-V and compared with other resummation results from Refs. [4, 12, 35, 50].

TABLE V: The three, four and five-loops Hypergeometric-Meijer resummation of the critical coupling \( g_c \) for the \( O(N) \)-model with \( N = 0, 1, 2, 3 \) and 4. The result from Ref. [12] in the last column (scaled by a factor \( \frac{3}{N+8} \) because of different normalizations) and \( SC \) refers to strong coupling resummation algorithm.

| \( N \) | \( {}_3F_1 \) This work: \( \varepsilon^3 \) | \( {}_3F_1 \) This work: \( \varepsilon^4 \) | \( {}_3F_1 \) This work: \( \varepsilon^5 \) | \( JK \) \( SC \) [4] | \( BCM \) [4] |
|---|---|---|---|---|---|
| 0 | 0.54035 | 0.54684 | 0.49007 | 0.5408(83), JK | 0.52988 ± 0.00225 |
| 1 | 0.47883 | 0.48475 | 0.48462 | 0.4810(91), JK | 0.47033 ± 0.001 |
| 2 | 0.42779 | 0.43322 | 0.43429 | 0.5032(239), JK | 0.4209 ± 0.001 |
| 3 | 0.36955 | 0.39006 | 0.39214 | 0.3895(71), JK | 0.37936 ± 0.001 |
| 4 | 0.34921 | 0.35187 | 0.35638 | 0.34375, SC | 0.34425 ± 0.00125 |

IV. SIX-LOOPS HYPERGEOMETRIC-MEIJER RESUMMATION OF THE CRITICAL EXPOENTIALS \( \nu, \eta \) AND \( \omega \)

In Ref. [14], the six-loops order of the renormalization group functions has been obtained and resummed using Borel with conformal mapping algorithm. The work led to the improvement of the previous resummation predictions of the five-loops order in Refs. [4, 12]. This six-loops order of perturbation series represents a good test for the accuracy and stability.
of our resummation algorithm. We shall thus extend our work in the previous section to incorporate the six-loops weak-coupling data to compare with the recent results of Borel resummation and numerical predictions.

TABLE VI: The six-loops Hypergeometric-Meijer resummation (first) for the critical exponent $\nu$, $\eta$ and $\omega$ for $O(N)$-model with $N = 0, 1, 2, 3$ and 4. The results are compared to recent Borel with conformal mapping (second) resummation in Ref.[14] and also recent Monte Carlo simulations methods (third).

| $N$ | $\nu$      | $\eta$     | $\omega$    | Reference |
|-----|------------|------------|-------------|-----------|
| 0   | 0.58744    | 0.03034    | 0.85559     | This work |          |
|     | 0.5874(3)  | 0.0310(7)  | 0.841(13)   | [14]     |          |
|     | 0.5875970(4)| 0.031043(3)| 0.904(5)    | [19]     |          |
| 1   | 0.62937    | 0.03545    | 0.82929     | This work |          |
|     | 0.6292(5)  | 0.0362(6)  | 0.820(7)    | [14]     |          |
|     | 0.63002(10)| 0.03627(10)| 0.832(6)    | [16]     |          |
| 2   | 0.66962    | 0.03733    | 0.80580     | This work |          |
|     | 0.6690(10) | 0.0380(6)  | 0.804(3)    | [14]     |          |
|     | 0.6717(1)  | 0.0381(2)  | 0.785(20)   | [20]     |          |
| 3   | 0.70722    | 0.037301   | 0.79272     | This work |          |
|     | 0.7059(20) | 0.0378(5)  | 0.795(7)    | [14]     |          |
|     | 0.7116(10) | 0.0378(3)  | 0.791(22)   | [17]     |          |
| 4   | 0.74151    | 0.03621    | 0.76793     | This work |          |
|     | 0.7397(35) | 0.0366(4)  | 0.794(9)    | [14]     |          |
|     | 0.750(2)   | 0.0360(3)  | 0.817 (30)  | [17]     |          |

A different $\varepsilon$ has been used in Ref.[14] as the space-time dimension has been set as $d - 2\varepsilon$. Accordingly, the $n^{th}$ coefficients in each perturbation series has to be divided by $2^n$ to keep the definition used in our work ($d - \varepsilon$). For the critical exponent $\nu$ we then have

$$\nu^{-1} = 2 + \sum_{i=1}^{6} c_i \varepsilon^i + O(\varepsilon^7),$$

(37)

where the first five coefficients ($c_i$) are given by Eq.(13) while the sixth coefficients are given in table VII. Accordingly we use the approximant $\hypergeom{2}{4}{a_1, a_2, a_3, a_4; b_1, b_2; -\sigma\varepsilon}$ for the resummation of the $\nu^{-1}$ series above. In table VI one can realize that our six-loop
TABLE VII: The coefficients of the sixth order in the $\varepsilon$-expansion from Ref. [14] but scaled properly to match with the choice $d - \varepsilon$ of the space-time dimension in our work while in Ref. [14] the choice was $d - 2\varepsilon$. In this table $c_6$ for $\nu^{-1}$, $d_6$ for $\eta$ and $e_6$ for $\omega$ series respectively.

| N  | 0   | 1   | 2   | 3   | 4   |
|----|-----|-----|-----|-----|-----|
| $c_6$ | -3.856 | -3.573 | -3.103 | -2.639 | -2.234 |
| $d_6$ | -0.0907 | -0.0813 | -0.0686 | -0.0570 | -0.0474 |
| $e_6$ | -130.00 | -93.111 | -68.777 | -52.205 | -40.567 |

Resummation for the critical exponent $\nu$ is very competitive either to the six-loops Borel with conformal mapping algorithm in Ref. [14] or Monte Carlo calculations (ours are closer to numerical results).

For the critical exponent $\eta$, we have the series up to fifth order in Eq. (21) and we add the sixth coefficient from Ref. [14] as shown in Table VII. The Hypergeometric approximant $3F_1$ has been used for the resummation of the six-loops perturbation series of $\eta$ and its resummation results are presented in Table VI too.

For the critical exponent $\omega$, the sixth coefficients $e_6$ are listed in Table VII. In this case we use the approximant $4F_2(a_1, a_2, a_3, a_4; b_1, b_2; -\sigma\varepsilon) - 1$ which in turn results in the last column in Table VI. Note that when there exist no solution for the set of equations determining the parameters we resort to successive subtraction of the perturbation series [4, 44].

V. RESUMMATION OF THE THE SEVEN-LOOPS COUPLING-SERIES FOR $\beta$, $\gamma_{m^2}$ AND $\gamma_\phi$ RENORMALIZATION GROUP FUNCTIONS

In the minimal subtraction scheme, Oliver Schnetz has obtained the seven-loops order of the renormalization group functions $\beta$, $\gamma_{m^2}$ and $\gamma_\phi$ for the $O(N)$-symmetric model [51]. Here $\gamma_{m^2}$ is the mass anomalous dimension while $\gamma_\phi$ represents the field anomalous dimension. In the following we list our resummation results for $N = 0, 1, 2, 3$ and 4 while the results are compared to recent calculations from different techniques in tables VIII, IX, X, XI and XII. Note that for the $g$-series, the large order parameters for the $O(N)$-symmetric model are $\sigma = 1$ and $b_\beta = 3 + N/2$, $b_\omega = 4 + N/2$, $b_{\gamma_\phi} = 2 + N/2$ and $b_{\gamma_{m^2}} = 3 + N/2$ [4] where $\omega = \beta'_g$.
V.1. Resummation results for self-avoiding walks ($N = 0$)

For $N = 0$ and in three dimensions, the seven-loops order for the $\beta$-function is given by:

$$\beta \approx -g + 2.667g^2 - 4.667g^3 + 25.46g^4 - 200.9g^5 + 2004g^6 - 23315g^7 + 303869g^8. \quad (38)$$

We resummed this series using the approximant $\left(5F_3(a_1, a_2, a_3, a_4, a_5; b_1, b_2, b_3; -g) - 1\right)$ which resulted in the Meijer-G approximant of the form:

$$\beta = \frac{\Gamma(b_1)\Gamma(b_2)\Gamma(b_3)}{\Gamma(a_1)\Gamma(a_2)\Gamma(a_3)\Gamma(a_4)\Gamma(a_5)}G_{5,4}^{1,5}\left(\frac{1-a_1,1-a_2,1-a_3,1-a_4,1-a_5}{0,1-b_1,1-b_2,1-b_3} \mid -g\right) - 1. \quad (39)$$

The critical coupling is obtained from the zero of the $\beta$-function where we found $g_c = 0.53430$. The series for correction to scaling critical exponent $\omega$ is obtained from differentiating the above series with respect to $g$ and it has been resummed using the approximant $\left(-5F_3(a_1, a_2, a_3, a_4, a_5; b_1, b_2, b_3; -g_c)\right)$ where the large-order constraint $\sum a_i - \sum b_i - 2 = b_\omega$ has been employed and we found the result $\omega = 0.85650$. This result can be compared with the recent Monte Carlo simulations calculations in Ref.[19] that predicts the result $\omega = \Delta_{\nu} = 0.899(12)$ (see table-VIII for comparison with different methods).

The field anomalous dimension is also given by:

$$\gamma_\phi \approx 0.05556g^2 - 0.03704g^3 + 0.1929g^4 - 1.006g^5 + 7.095g^6 - 57.74g^7. \quad (40)$$

The suitable Hypergeometric approximant used is

$$\gamma_\phi = {}_4F_2\left(a_1, a_2, a_3, a_4; b_1, b_2; -1\right) - \left(1 + g\frac{a_1a_2a_3a_4}{b_1b_2}\right). \quad (41)$$

The critical exponent $\eta$ is obtained from the relation $\eta = 2\gamma_\phi(g_c)$ where we get the result $\eta = 0.03129$. In a recent conformal bootstrap calculation the result $\eta = 2\Delta_\phi - 1 = 0.0282(4)$ has been obtained [32] while the Monte Carlo result is $\eta = 0.031043(3)$ in Refs. [14, 18].

For the mass anomalous dimension $\gamma_{m^2}$, the series up to seven-loops order is given by:

$$\gamma_{m^2} \approx -0.6667g + 0.5556g^2 - 2.056g^3 + 10.76g^4 - 75.70g^5 + 636.7g^6 - 6080g^7. \quad (42)$$

The Hypergeometric approximant used is $\left(5F_3(a_1, a_2, a_3, a_4, a_5; b_1, b_2, b_3; -g) - 1\right)$ which corresponds to the Meijer-G function:

$$\gamma_{m^2} = \left(\frac{\Gamma(b_1)\Gamma(b_2)\Gamma(b_3)}{\Gamma(a_1)\Gamma(a_2)\Gamma(a_3)\Gamma(a_4)\Gamma(a_5)}G_{5,4}^{1,5}\left(\frac{1-a_1,1-a_2,1-a_3,1-a_4,1-a_5}{0,1-b_1,1-b_2,1-b_3} \mid -g\right) - 1\right). \quad (42)$$
The critical exponent $\nu$ is then obtained as $\nu = (2 + \gamma_m^2 (g_c))^{-1}$ which yields the result $\nu = 0.58723$. This result can be compared with conformal bootstrap prediction $\nu = 0.5877(12)$ in Ref.~52 and the Monte Carlo result $\nu = 0.5875970(4)$ in Ref.~19.

### TABLE VIII: The seven-loops (7L) Hypergeometric-Meijer resummation for the critical exponents $\nu, \eta$ and $\omega$ of the self-avoiding walks model ($N = 0$). Here we compare with our results from previous section($\varepsilon^6$), conformal bootstrap (CB) calculations 52, Monte Carlo simulation (MC) for $\nu$ from Ref. 14, 18 and $\eta$ from Ref. 19. The six-loops Borel with conformal mapping (BCM) resummation ($\varepsilon^6$) from Ref.14 and five-loops ($\varepsilon^5$) from same reference.

| Method    | $\nu$       | $\eta$       | $\omega$   |
|-----------|-------------|---------------|-------------|
| 7L: This Work | 0.58723    | 0.03129       | 0.85650     |
| $\varepsilon^6$: This Work | 0.58744 | 0.03034       | 0.85559     |
| CB         | 0.5877(12)  | 0.0282(4)     | —           |
| MC         | 0.5875970(4) | 0.031043(3)  | 0.899(12)   |
| $\varepsilon^6$: BCM | 0.5874(3) | 0.0310(7)     | 0.841(13)   |
| $\varepsilon^5$: BCM | 0.5873(13) | 0.0314(11)    | 0.835(11)   |

### V.2. Resummation results for Ising universality class ($N = 1$)

For $N = 1$, the seven-loops $\beta-$ function that has been recently obtained 51 is given by:

$$\beta \approx -\varepsilon g + 3.000g^2 - 5.667g^3 + 32.55g^4 - 271.6g^5 + 2849g^6 - 34776g^7 + 474651g^8. \quad (43)$$

The suitable approximant for this series is $(\varepsilon F_3(a_1, a_2, a_3, a_4, a_5; b_1, b_2, b_3; -g) - 1)$ which we used to obtain the critical coupling $g_c$ at which $\beta = 0$. In three dimensions ($\varepsilon = 1$), the predicted critical coupling is $g_c = 0.47947$. This value can be compared with the five-loops resummation in table-V. The critical exponent $\omega$ also predicted to have the value 0.82790. The conformal bootstrap calculation gives the result $\omega = 0.8303(18)$ in Ref.26 while Monte Carlo simulations result is $\omega = 0.832(6)$ 16.

The seven-loops perturbation series for the anomalous mass dimension $\gamma_m$ has been obtained in the same reference 51 where:

$$\gamma_m \approx -g + 0.8333g^2 - 3.500g^3 + 19.96g^4 - 150.8g^5 + 1355g^6 - 13760g^7. \quad (44)$$
We used \( _5F_3(a_1, a_2, a_3, a_4, a_5; b_1, b_2, b_3; -g) - 1 \) too for the resummation of this series. The \( \nu \)-exponent is then

\[
\nu = (2 + \gamma m^2 (g_c))^{-1} = 0.62934.
\]

The recent Monte Carlo prediction gives the value \( \nu = 0.63002(10) \) in Ref. [16] while in Ref. [26] one can find the result \( \nu = 0.62999(5) \) using conformal bootstrap calculations.

The seven-loops order of the perturbation series for the field anomalous dimension \( \gamma_\phi \) is also obtained in Ref. [51] as:

\[
\gamma_\phi \approx 0.08333g^2 - 0.06250g^3 + 0.3385g^4 - 1.926g^5 + 14.38g^6 - 124.2g^7. \tag{45}
\]

We used the Hypergeometric approximant”:

\[
\gamma \approx _4F_2 (a_1, a_2, a_3, a_4; b_1, b_2; (-g)) - (1 - \frac{a_1a_2a_3a_4}{b_1b_2}(-g)) \tag{46}
\]

to resum that series and the exponent \( \eta \) is obtained from the relation \( \eta = 2\gamma(g_c) \). We get the result \( \eta = 0.03684 \). This result is compatible with the recent conformal bootstrap calculation of \( \eta = 0.03631(3) \) [26] and Monte Carlo simulation result of \( \eta = 0.03627(10) \) in Ref. [16].

**TABLE IX:** The seven-loops Hypergeometric-Meijer resummation for the critical exponents \( \nu, \eta \) and \( \omega \) of the \( O(1) \)-symmetric model. Here we compare with our results from previous section (\( \varepsilon^6 \)), conformal bootstrap calculations from Ref. [26] and Monte Carlo simulation (MC) from Ref. [16]. The six-loop Borel with conformal mapping (BCM) resummation (\( \varepsilon^6 \)) from Ref. [14] and five-loops (\( \varepsilon^5 \)) from same reference. The very recent calculations of critical exponents using nonperturbative renormalization group (NPRG) [54] is listed last where results for \( \nu \) and \( \eta \) are up to \( O(\partial^6) \) while for \( \omega \) is up to \( O(\partial^4) \).

| Method     | \( \nu \)   | \( \eta \)   | \( \omega \)  |
|------------|--------------|--------------|--------------|
| 7L: This Work | 0.62934      | 0.03684      | 0.82790      |
| \( \varepsilon^6 \): This Work | 0.62937      | 0.03545      | 0.82929      |
| CB         | 0.62999(5)   | 0.03631(3)   | 0.8303(18)   |
| MC         | 0.63002(10)  | 0.03627(10)  | 0.832(6)     |
| \( \varepsilon^6 \): BCM | 0.6292(5)    | 0.0362(6)    | 0.820(7)     |
| \( \varepsilon^5 \): BCM | 0.6290(20)   | 0.0366(11)   | 0.818(8)     |
| NPRG       | 0.63012(16)  | 0.0361(11)   | 0.832(14)    |
V.3. Resummation results for $N = 2$ (XY universality class)

In this case, the seven-loops $\beta$-function is given by:

$$\beta \approx -g + 3.333g^2 - 6.667g^3 + 39.95g^4 - 350.5g^5 + 3845g^6 - 48999g^7 + 696998g^8. \quad (47)$$

This series is resummed using the approximant $(-g \left(F_3(a_1, a_2, a_3, a_4, a_5; b_1, b_2, b_3; -g)\right)$ which gives the critical coupling value $g_c = 0.43292$. Resuming the $g$-differentiated series yields the result $\omega = 0.80233$. The value $\omega = 0.789$ has been adopted using a recent high-precision Monte Carlo calculations \[53\] while the conformal bootstrap calculations gives $\omega = 0.811(10) \quad [14, 27]$.

The mass anomalous dimension has the seventh loop result as:

$$\gamma_m^2 \approx -1.333g + 1.111g^2 - 5.222g^3 + 31.87g^4 - 255.8g^5 + 2434g^6 - 26086g^7, \quad (48)$$

where we resummed it using $\left(5F_3(a_1, a_2, a_3, a_4; b_1, b_2, b_3; -g) - 1\right)$. This led to the result $\nu = 0.66953$. The recent Monte Carlo result is $\nu = 0.67183(18) \quad [53]$ while the conformal bootstrap gives $\nu = 0.6719(11) \quad [28]$.

For the field anomalous dimension $\gamma_\phi$ we have:

$$\gamma_\phi \approx 0.11111g^2 - 0.09259g^3 + 0.5093g^4 - 3.148g^5 + 24.71g^6 - 224.6g^7, \quad (49)$$

The corresponding Hypergeometric approximant is $0.11111g^2 \left(4F_2(a_1, a_2, a_3; b_1, b_2; -g)\right)$ with the result $\eta = 0.03824$. For that exponent, the recent Monte Carlo simulations in Ref.\[53\] gives $\eta = 0.03853(48)$ while conformal bootstrap gives the result $\eta = 0.03852(64) \quad [28]$.

V.4. Resummation results for Heisenberg universality class ($N = 3$)

The seven-loops $\beta$-function for $N = 3$ is given by:

$$\beta \approx -g + 3.667g^2 - 7.667g^3 + 47.65g^4 - 437.6g^5 + 4999g^6 - 66243g^7 + 978330g^8. \quad (50)$$

To resum this series, we used the Hypergeometric approximant $(-g + 3.667g^2 - 7.667g^3(4F_2(a_1, a_2, a_3, a_4; b_1, b_2; -g))$ which predicts the
TABLE X: The seven-loops Hypergeometric-Meijer resummation for the critical exponents $\nu$, $\eta$ and $\omega$ of the $O(2)$-symmetric model. For comparison, other predictions are listed from previous section ($\varepsilon^6$), conformal bootstrap calculations \[28\] for $\nu$ and $\eta$, while $\omega$ from Ref. \[14, 27\]. MC calculations from Ref. \[53\]. The six-loop BCM resummation ($\varepsilon^6$) from Ref. \[14\] and five-loops ($\varepsilon^5$) from same reference while NPRG results up to $O(\partial^4)$ \[54\] are listed last.

| Method | $\nu$     | $\eta$   | $\omega$ |
|--------|-----------|----------|----------|
| 7L: This Work | 0.66953 | 0.03824 | 0.80233 |
| $\varepsilon^6$: This Work | 0.66962 | 0.03733 | 0.80580 |
| CB     | 0.6719(11)| 0.03852(64)| 0.811(10)|
| MC     | 0.67183(18)| 0.03853(48)| 0.789 |
| $\varepsilon^6$: BCM | 0.6690(10) | 0.0380(6) | 0.804(3) |
| $\varepsilon^5$: BCM | 0.6687(13) | 0.0384(10) | 0.803(6) |
| NPRG   | 0.6716(6) | 0.0380(13) | 0.791(8) |

Critical coupling value $g_c = 0.39363$ while the resummation of the $\omega$-series gives the value 0.78683. Conformal bootstrap result is $\omega = 0.791(22)$ \[14, 27\] and the Monte Carlo result is $\omega = 0.773$ \[21\].

The series representing the mass anomalous dimension up to seven-loop order is:

$$\gamma_{m^2} \approx -1.667g + 1.389g^2 - 7.222g^3 + 46.64g^4 - 394.9g^5 + 3950g^6 - 44412g^7,$$

which has been resummed using $(5F3(a_1, a_2, a_3, a_4, a_5; b_1, b_2, b_3; -g) - 1)$ that gives the result $\nu = 0.70810$. In Ref. \[28\], conformal bootstrap calculations gives the value $\nu = 0.7121(28)$ and the Monte Carlo simulations in Ref. \[17\] gives $\nu = 0.7116(10)$.

The field anomalous dimension $\gamma_{\phi}$ has the seventh order perturbative form:

$$\gamma_{\phi} \approx 0.1389g^2 - 0.1273g^3 + 0.6993g^4 - 4.689g^5 + 38.44g^6 - 365.9g^7,$$

which approximated by $(g(4F2(a_1, a_2, a_3, a_4; b_1, b_2; -g) - 1))$ and gives the result $\eta = 0.03795$. To compare with other recent results, the bootstrap calculations in Ref. \[28\] gives $\eta = 0.0386(12)$ and the Monte Carlo results gives $\eta = 0.0378(3)$ \[17\].

V.5. Resummation results for the $O(4)$-symmetric case

The seven-loops $\beta$-function for $N = 4$ is shown to be:
TABLE XI: The seven-loops Hypergeometric-Meijer resummation for the critical exponents $\nu$, $\eta$ and $\omega$ of the $O(3)$-symmetric model. The results are compared with our results from previous section ($\varepsilon^6$), conformal bootstrap calculations from Ref. [28] for $\nu$ and $\eta$, while $\omega$ from Refs[14,27]. For MC simulations $\omega$ is taken from from Ref.[21] while $\nu$ and $\eta$ are taken from from Ref.[17]. The six-loop BCM resummation is taken from Ref.[14] and five-loops from same reference. The very recent calculations NPRG [54] is listed last and up to $O(\partial^4)$.

| Method   | $\nu$    | $\eta$    | $\omega$  |
|----------|----------|------------|------------|
| 7L: This Work | 0.70810  | 0.03795    | 0.78683    |
| $\varepsilon^6$: This Work | 0.70722  | 0.037301   | 0.79272    |
| CB       | 0.7121(28)| 0.0386(12) | 0.791(22)  |
| MC       | 0.7116(10)| 0.0378(3)  | 0.773      |
| $\varepsilon^6$: BCM | 0.7059(20)| 0.0378(5)  | 0.795(7)   |
| $\varepsilon^5$: BCM | 0.7056(16)| 0.0382(10) | 0.797(7)   |
| NPRG     | 0.7114(9) | 0.0376(13) | 0.769(11)  |

$\beta \approx -g + 4.000g^2 - 8.667g^3 + 55.66g^4 - 533.0g^5 + 6318g^6 - 86768g^7 + 1.326 \times 10^6 g^8$. \hspace{1cm} (53)

The corresponding approximant is $(-g(5F_3(a_1,a_2,a_3,a_4,a_5;b_1,b_2,b_3;-g)))$ which yields $g_c = 0.36662$ while resumming the $\omega$-series gives the result $\omega = 0.80325$. Monte Carlo Methods in Ref.[21] gives $\omega = 0.765$ while conformal bootstrap calculations predict the result $\omega = 0.817(30)$ \hspace{1cm} (54)

The anomalous mass dimension is given by:

$$\gamma_{m^2} \approx -2.000g + 1.667g^2 - 9.500g^3 + 64.39g^4 - 571.9g^5 + 5983g^6 - 70240g^7,$$

which has been approximated by $5F_3(a_1,a_2,a_3,a_4,a_5;b_1,b_2,b_3;-g) - 1$ and gives $\nu = 0.75093$. This result is very close to the Monte Carlo result $\nu = 0.750(2)$ in Ref.[17] and the conformal bootstrap result $\nu = 0.751(3)$ in Ref.[27].

Likewise, the field anomalous dimension up to seven loops is given by:

$$\gamma_{\phi} \approx 0.1667g^2 - 0.1667g^3 + 0.9028g^4 - 6.563g^5 + 55.93g^6 - 555.2g^7,$$

which is approximated by $g(4F_2(a_1,a_2,a_3,a_4;b_1,b_2;-g) - 1)$ and gives the result $\eta = 0.03740$. Again the Monte Carlo simulations in Ref.[17] gives the values $\eta = 0.0365(3)$. Also Monte
Carlo simulations and finite-size scaling of 3D Potts Models in Ref. [23] gives the result \( \eta = 5 - 2y_h = 0.036(6) \) and the conformal bootstrap calculations is 0.0378(32) [25].

TABLE XII: The seven-loops Hypergeometric-Meijer resummation for the critical exponents \( \nu \), \( \eta \) and \( \omega \) of the \( O(4) \)-symmetric model. Here we compare with our results from previous section (\( \varepsilon^6 \)), conformal bootstrap calculations [14, 27] for \( \nu \) and \( \omega \), while \( \eta \) from Ref. [23]. MC simulations for \( \omega \) is taken from Ref. [21] while \( \nu \) and \( \eta \) are from Ref. [17]. The six-loop BCM resummation (\( \varepsilon^6 \)) is taken from Ref. [14] and five-loops (\( \varepsilon^5 \)) from same reference. NPRG results up to \( O(\partial^4) \) [54] are shown in the last row.

| Method    | \( \nu \)     | \( \eta \)     | \( \omega \)   |
|-----------|----------------|----------------|----------------|
| 7L: This Work | 0.750935   | 0.03740    | 0.80325       |
| \( \varepsilon^6 \): This Work | 0.74151    | 0.03621    | 0.76793       |
| CB        | 0.751(3)  | 0.0378(32) | 0.817(30)     |
| MC        | 0.750(2)  | 0.0360(3)  | 0.765(30)     |
| \( \varepsilon^6 \): BCM | 0.7397(35) | 0.0366(4)  | 0.794(9)      |
| \( \varepsilon^5 \): BCM | 0.7389(24) | 0.0370(9)  | 0.795(6)      |
| NPRG      | 0.7478(9) | 0.0360(12) | 0.761(12)     |

A note to be mentioned is that one should not judge the convergence of the seven-loops resummation results by comparing with six-loops resummation or lower order resummation in this work. The point is that the seven-loops resummation in this work applied for the \( g \)-series but for the other orders we resummed the \( \varepsilon \)-series. Our aim behind resumming both available series is to test our algorithm using different types of perturbation series. To have an idea about the good convergence of our algorithm for the resummation of the \( g \)-series one should look at different orders of resummation of the \( g \)-series itself. For instance, for \( N = 4 \), we get \( \omega = 0.77963 \) from five-loop resummation of the \( g \)-series, \( \omega = 0.78162 \) from six loops compared to the seven-loops result in table-XII as \( \omega = 0.80325 \).

VI. SUMMARY AND CONCLUSIONS

We show that divergent series with different large-order behaviors can be approximated by different generalized Hypergeometric functions \( \binom{p}{q}(a_1, \ldots, a_p; b_1, \ldots, b_q; \sigma z) \). The relation between the number of numerator and denominator parameters (\( p \) and \( q \)) is determined.
from the growth factor in the large-order behavior of the divergent series. For a divergent series with a growth factor \( n! \), the series expansion of the Hypergeometric function \( _pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; \sigma z) \) where \( p = q + 2 \) can reproduce a large-order behavior with same growth factor. Accordingly, the Hypergeometric function \( _pF_{p-2}(a_1, \ldots, a_p; b_1, \ldots, b_{p-2}; \sigma z) \) is the suitable candidate to approximate such type of divergent series. Since the function

\( _pF_{p-2}(a_1, \ldots, a_p; b_1, \ldots, b_{p-2}; \sigma z) \)

possesses an expansion of zero-radius of convergence, a representation in terms of Meijer-G function is capable to resum the divergent Hypergeometric series.

For divergent series that have growth factors \((2n)!\) and \((3n)!\), Hypergeometric functions with \( p = q + 3 \) and \( p = q + 4 \), respectively, can reproduce such large order behaviors and thus are suitable approximants for such perturbation series. On the other hand, one might have a divergent series with finite radius of convergence which has a large order behavior with a growth factor of 1. To mimic such type of large order behavior, the Hypergeometric function \( _pF_{p-1}(a_1, \ldots, a_p; b_1, \ldots, b_{p-1}; \sigma z) \) can be used as suitable approximant for such kind of divergent series.

The large-order behavior of the \( \varepsilon \)-expansion of the renormalization group functions for the \( O(N) \)-symmetric model has a growth factor of \( n! \). Accordingly, we used the Hypergeometric function \( _pF_{p-2}(a_1, \ldots, a_p; b_1, \ldots, b_{p-2}; \sigma z) \) to approximate the respective divergent series. Since the strong-coupling data is not yet known for such expansion, we use weak-coupling and large-order data to parametrize the Hypergeometric function \( _pF_{p-2}(a_1, \ldots, a_p; b_1, \ldots, b_{p-2}; \sigma z) \). The parametrization of the Hypergeometric function is then followed by the resummation step of using a representation in terms of Meijer-G function. We applied the algorithm to resum the divergent series representing critical exponents \( \nu (\nu^{-1}) \), \( \eta \) and \( \omega \) as well as the critical coupling up to \( \varepsilon^5 \) order as input. For \( N \) equals 0, 1, 2, 3 and 4, the results ought to be reasonable even for very low order of perturbation used to parametrize the Hypergeometric approximant. The results are greatly improved in using third order and being more precise in going to fourth order while the fifth order offers very competitive predictions when compared to other resummation algorithms in literature.

To show that the precise results extends to higher \( N \) values, we resummed the perturbation series for the exponent \( \nu \) for \( N = 6, 8, 10 \) and 12. The precision of the results can be seen from table-II where we listed the 5th order resummation results for the exponent \( \nu \) and compared it with other methods.
All the Hypergeometric functions $\,_{p}F_{p-2}(a_1, \ldots a_p; b_1, \ldots b_{p-2}; \sigma z)$ share the same analytic behavior. Accordingly, one expects no surprises in going to higher orders of resummation. To test this clear fact as well as to seek more improved results, we resummed the six-loops order for the perturbation series for the exponents $\nu, \eta$ and $\omega$ for $N = 1, 2, 3$ and $4$. The results are showing improved predictions for those exponents. When compared to other calculations, our results for the critical exponents are compatible with the recent six-loops BC resummation method in Ref [14], MC simulations calculations [16, 17, 20–23, 53] and conformal bootstrap methods [24, 24, 25, 27, 28, 52].

The very recent seven-loops order (coupling-series) for the renormalization group functions $\beta, \gamma_\phi$ and $\gamma_{m^2}$ has been resummed too. Up to the best of our knowledge, no other resummation algorithm has been used to resum this order. Very accurate results for the critical coupling and the exponent $\nu$ have been extracted from the resummed functions.

In all of our calculations, we used weak-coupling and large-order data as input. The $a_i$ parameters in the Hypergeometric functions $\,_{p}F_{q}(a_1, \ldots a_p; b_1, \ldots b_{p-2}; \sigma z)$ are well known to represent the strong-coupling data [15]. However, the strong coupling expansion for the series under consideration has not been obtained yet (up to the best of our knowledge). Accordingly, we cannot get benefited from this fact in further acceleration of the convergence of the resummation algorithm. However, the expansion coefficients of the Hypergeometric function depend on the strong-coupling parameters and they in turn constrained to match the weak-coupling and large-order data. Accordingly, this algorithm is linking the unknown strong-coupling parameters to the known weak-coupling and large-order data. Thus the algorithm has the ability to predict the non-perturbative asymptotic strong-coupling behavior of a quantum field theory from knowing the weak coupling and large-order data. In other algorithms, this asymptotic behavior is predicted from optimization techniques and different optimizations can even lead to different results for the same theory.

**Acknowledgment**

We are very grateful to Oliver Schnetz for making the access to his maple package for the generation of the seven-loops $g$-series available and for his valuable advice about how to
run the code.

[1] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics Vol. 113, 4th ed. (Clarendon Press, Oxford, 2002).
[2] Jean Zinn-Justin and Ulrich D. Jentschura, J. Phys. A: Math. Theor. 43, (2010).
[3] E. Brézin and G. Parisi, J. Stat. Phys. 19, 3 (1978).
[4] H. Kleinert and V. Schulte-Frohlinde, Critical Properties of $\phi^4$-Theories, World Scientific, Singapore) (2001).
[5] H. Kleinert, S. Thoms and W. Janke, Phys. Rev. A 55, 915 (1997).
[6] Florian Jasch and Hagen Kleinert, J. Math. Phys. 42, 1 (2001).
[7] P.G. de Gennes, Phys. Lett. A 38, 339 (1972).
[8] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).
[9] K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).
[10] E. Brézin, J. Stat. Phys.157 (2014).
[11] E. Brézin, J. C. Le Guillou, J. Zinn-Justin, and B. G. Nickel, Phys. Lett. A 44, 227 (1973).
[12] R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).
[13] H. Kleinert, V. Schulte-Frohlinde, J. Phys. A 34, 1037 (2001).
[14] Mikhail V. Kompaniets and Erik Panzer, Phys.Rev. D.96, 036016 (2017).
[15] Abouzeid Shalaby, Weak-Coupling, Strong-Coupling and Large-Order Parametrization of the Hypergeometric-Meijer Approximants, March 2019 (submitted).
[16] M. Hasenbusch, Phys.Rev. B 82, 174433 (2010).
[17] M. Hasenbusch and E. Vicari, Phys. Rev. B 84, 125136 (2011).
[18] N. Clisby, J. Phys. A50, 264003 (2017).
[19] N. Clisby and B. Dunweg, Phys. Rev. E 94, 052102 (2016).
[20] M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari, Phys. Rev. B 74, 144506 (2006).
[21] M. Hasenbusch J. Phys. A 34, 8221 (2001).
[22] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 65, 144520 (2002).
[23] Ding, C., Blote, H.W.J. and Deng,Y. , Physical Review B 94, 104402 (2016).
[24] Filip Kos, David Poland and David Simmons-Duffin, JHEP 06,091 (2014).
[25] Filip Kos, David Poland and David Simmons-Duffin, JHEP 11,106 (2015).

[26] Sheer El-Showk, Miguel F. Paulos, David Poland, Slava Rychkov, David Simmons-Duffin and Alessandro Vichi, J. Stat. Phys.157:869914 (2014)

[27] A. C. Echeverri, B. von Harling, and M. Serone, JHEP 09, 097 (2016).

[28] Filip Kos, David Poland, David Simmons-Duffin and Alessandro Vichi, JHEP. 08, 036 (2016).

[29] F. J. Dyson, Phys.Rev. 85, 631 (1952).

[30] John P. Boyd, Acta Applicandae Mathematicae 56: 1–98 (1999).

[31] J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21, 3976 (1980).

[32] George A. Baker, Jr., Bernie G. Nickel, Melville S. Green, and Daniel I. Meiron Phys. Rev. Lett. 36, 1351 (1976).

[33] J. A. Gracey, Phys. Rev. D 92, 025012 (2015).

[34] J Zinn-Justin, Phys. Rep. 344, Issue 4-6, 159-178, April (2001).

[35] S.A. Antonenko and A.I. Sokolov, Phys. Rev. E 51, 1894 (1995).

[36] J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977).

[37] H. Kleinert, J. Neu, V. Schulte-Frohlinde, K. G. Chetyrkin and S. A. Larin, Phys. Lett. B 272, 39 (1991); Erratum, Phys. Lett. B 319, 545(E) (1993).

[38] Michael E. Peskin and Daniel V. Schroeder, An Introduction To Quantum Field Theory (Addison-Wesley Advanced Book Program) (1995).

[39] Abouzeid M. Shalaby, arXiv:1911.03571

[40] Héctor Mera, Thomas G. Pedersen, and Branislav K. Nikolić, Phys. Rev.Lett. 115, 143001 (2015).

[41] Abouzeid M. Shalaby, arXiv:1811.10998

[42] Harry Bateman, HIGHER TRANSCENDENTAL FUNCTIONS, Volume I, McGRAW-HILL BOOK COMPANY, INC. (1953).

[43] Thomas Garm Pedersen, Héctor Mera and Branislav K. Nikolić, Phys.Rev. A 93, 013409 (2016).

[44] Héctor Mera, Thomas G. Pedersen, and Branislav K. Nikolić, Phys.Rev. D.97.105027 (2018).

[45] Ernst Joachim Weniger, Ann. Phys. (NY), 246, pp. 133-165 (1996).

[46] A. Laforgia, P. Natalini, J. Math. Anal. Appl. 389, 833–837 (2012).

[47] Andrea Pelissetto and Ettore Vicari, Phys. Rept.368:549-727 (2002).

[48] M. A. Nikitina and A. I. Sokolov Theor. Math. Phys. 186, 192 (2016).
[49] J. J. Godina, L. Li, Y. Meurice, and M. B. Oktay, Phys. Rev. D 73, 047701 (2006).

[50] H. Kleinert, Phys. Rev. D 57, 2264 (1998).

[51] Oliver Schnetz, Phys. Rev. D 97, 085018 (2018); Maple package HyperlogProcedures, which is available on the Oliver Schnetz’s homepage https://www.math.fau.de/person/oliver-schnetz/

[52] Hirohiko Shimada and Shinobu Hikami, J. Stat. Phys. 165, 1006 (2016).

[53] Wanwan Xu, Yanan Sun, Jian-Ping Lv, and Youjin Deng, Phys. Rev. B 100, 064525 (2019).

[54] Gonzalo De Polsi, Ivan Balog, Matthieu Tissier and Nicols Wschebor, Phys. Rev. E 101, 042113 (2020).