Partial immunization of trees

Mitre C. Dourado1 Stefan Ehard2 Lucia D. Penso2 Dieter Rautenbach2

1 Instituto de Matemática
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, mitre@dcc.ufrj.br
2 Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany,
\{stefan.ehard,lucia.penso,dieter.rautenbach\}@uni-ulm.de

Abstract

For a graph \(G \) and an integer-valued function \(\tau \) on its vertex set, a dynamic monopoly is a set of vertices of \(G \) such that iteratively adding to it vertices \(u \) of \(G \) that have at least \(\tau(u) \) neighbors in it eventually yields the vertex set of \(G \). We study the problem of maximizing the minimum order of a dynamic monopoly by increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase. We solve this problem efficiently for trees, which extends a result of Khoshkhah and Zaker (On the largest dynamic monopolies of graphs with a given average threshold, Canadian Mathematical Bulletin 58 (2015) 306-316).

Keywords: Dynamic monopoly; vaccination

1 Introduction

As a simple model for an infection process within a network \cite{12,13,16} one can consider a graph \(G \) in which each vertex \(u \) is assigned a non-negative integral threshold value \(\tau(u) \) quantifying how many infected neighbors of \(u \) are required to spread the infection to \(u \). In this setting, a dynamic monopoly of \((G,\tau)\) is a set \(D \) of vertices such that an infection starting in \(D \) spreads to all of \(G \), and the smallest order \(\text{dyn}(G,\tau) \) of such a dynamic monopoly measures the vulnerability of \(G \) for the given threshold values.

Khoshkhah and Zaker \cite{17} consider the maximum of \(\text{dyn}(G,\tau) \) over all choices for the function \(\tau \) such that the average threshold is at most some positive real \(\bar{\tau} \). They show that this maximum equals

\[
\max \left\{ k : \sum_{i=1}^{k} (d_G(u_i) + 1) \leq n(G)\bar{\tau} \right\},
\]

where \(u_1, \ldots, u_{n(G)} \) is a linear ordering of the vertices of \(G \) with non-decreasing vertex degrees \(d_G(u_1) \leq \ldots \leq d_G(u_{n(G)}) \). To obtain this simple formula one has to allow \(d_G(u) + 1 \) as a threshold value for vertices \(u \), a value that makes these vertices completely immune to the infection, and forces every dynamic monopoly to contain them. Requiring \(\tau(u) \leq d_G(u) \) for every vertex \(u \) of \(G \) leads to a harder problem; Khoshkhah and Zaker \cite{17} show hardness for planar graphs.
and describe an efficient algorithm for trees. In the present paper we consider their problem with additional vertex-dependent lower and upper bounds on the threshold values. As our main result, we describe an efficient algorithm for trees based on a completely different approach than the one in [17].

In order to phrase the problem and our results exactly, and to discuss further related work, we introduce some terminology. Let G be a finite, simple, and undirected graph. A threshold function for G is a function from the vertex set $V(G)$ of G to the set of integers. For notational simplicity, we allow negative threshold values. Let $\tau \in \mathbb{Z}^{V(G)}$ be a threshold function for G. For a set D of vertices of G, the hull $H_{(G,\tau)}(D)$ of D in (G,τ) is the smallest set H of vertices of G such that $D \subseteq H$, and $u \in H$ for every vertex u of G with $|H \cap N_G(u)| \geq \tau(u)$. Clearly, the set $H_{(G,\tau)}(D)$ is obtained by starting with D, and iteratively adding vertices u that have at least $\tau(u)$ neighbors in the current set as long as possible. With this notation, the set D is a dynamic monopoly of (G,τ) if $H_{(G,\tau)}(D)$ equals the vertex set of G, and $\text{dyn}(G,\tau)$ is the minimum order of such a set. A dynamic monopoly of (G,τ) of order $\text{dyn}(G,\tau)$ is minimum. The parameter $\text{dyn}(G,\tau)$ is computationally hard [5,10]; next to general bounds [1,9,15] efficient algorithms are only known for essentially tree-structured instances [2,5,7,8,10].

We can now phrase the problem we consider: For a given graph G, two functions $\tau,\iota_{\max} \in \mathbb{Z}^{V(G)}$, and a non-negative integer budget b, let $\text{vacc}(G,\tau,\iota_{\max}, b)$ be defined as

$$\max \left\{ \text{dyn}(G, \tau + \iota) : \iota \in \mathbb{Z}^{V(G)}, 0 \leq \iota \leq \iota_{\max}, \text{ and } \iota(V(G)) = b \right\},$$

(2)

where inequalities between functions are meant pointwise, and $\iota(V(G)) = \sum_{u \in V(G)} \iota(u)$. The function ι is the increment of the original threshold function τ. The final threshold function $\tau + \iota$ must lie between τ and $\tau + \iota_{\max}$, which allows to incorporate vertex-dependent lower and upper bounds. Note that no such increment ι exists if $\iota_{\max}(V(G))$ is strictly less than b, in which case $\text{vacc}(G,\tau,\iota_{\max}, b)$ equals $\max \emptyset = -\infty$. Note that we require $\iota(V(G)) = b$ in (2), which determines the average final threshold as $(\tau(V(G)) + b)/n(G)$. Since $\text{dyn}(G,\rho) \leq \text{dyn}(G,\rho')$ for every two threshold functions ρ and ρ' for G with $\rho \leq \rho'$, for $\iota_{\max}(V(G)) \geq b$, the value in (2) remains the same when replacing '$\iota(V(G)) = b$' with '$\iota(V(G)) \leq b$' provided that $b \leq \iota_{\max}(V(G))$.

The results of Khoshkhah and Zaker [17] mentioned above can be phrased by saying

(i) that $\text{vacc}(G,0,d_G+1,n(G)\bar{\tau})$ equals (1) whenever $n(G)\bar{\tau}$ is a non-negative integer at most

$$\sum_{u \in V(G)} (d_G(u) + 1) = 2m(G) + n(G),$$

where $m(G)$ is the size of G, and

(ii) that $\text{vacc}(T,0,d_T,b)$ can be determined efficiently whenever T is a tree.

Our main result is the following.

Theorem 1.1. For a given tuple (T,τ,ι_{\max}, b), where T is a tree of order n, $\tau,\iota_{\max} \in \mathbb{Z}^{V(G)}$, and b is an integer with $0 \leq b \leq \iota_{\max}(V(T))$, the value $\text{vacc}(T,\tau,\iota_{\max}, b)$ as well as an increment $\iota \in \mathbb{Z}^{V(G)}$ with $0 \leq \iota \leq \iota_{\max}$ and $\iota(V(G)) = b$ such that $\text{vacc}(T,\tau,\iota_{\max}, b) = \text{dyn}(T,\tau + \iota)$ can be determined in time $O\left(n^2(b+1)^2\right)$.

While our approach relies on dynamic programming, Khoshkhah and Zaker show (ii) using the following result in combination with a minimum cost flow algorithm.
Theorem 1.2 (Khoshkhah and Zaker [17]). For a given tree T, and a given integer b with $0 \leq b \leq 2m(T)$, there is a matching M of T such that $\text{vacc}(T, 0, d_T, b) = \text{dyn}(G, \tau_M)$ and $\tau_M(V(T)) \leq b$, where

$$\tau_M : V(T) \rightarrow \mathbb{Z} : u \mapsto \begin{cases} d_T(u) & \text{if } u \text{ is incident with a vertex in } M, \\ 0 & \text{otherwise.} \end{cases}$$

We believe that the threshold function τ_M considered in Theorem 1.2 is a good choice in general, and pose the following.

Conjecture 1.3. For a given graph G, and a given integer b with $0 \leq b \leq 2m(G)$, there is a matching M of G such that $\text{vacc}(G, 0, d_G, b) \leq 2\text{dyn}(G, \tau_M)$ and $\tau_M(V(G)) \leq b$, where τ_M is as in Theorem 1.2 (with T replaced by G).

As a second result we show Conjecture 1.3 for some regular graphs.

Theorem 1.4. Conjecture 1.3 holds if G is r-regular and $b \geq (2r - 1)(r + 1)$.

Before we proceed to the proofs of Theorems 1.1 and 1.4, we mention some further related work. Centeno and Rautenbach [6] establish bounds for the problems considered in [17]. In [14], Ehard and Rautenbach consider the following two variants of (2) for a given triple (G, τ, b), where G is a graph, τ is a threshold function for G and b is a non-negative integer:

$$\max \left\{ \text{dyn}(G - X, \tau) : X \in \binom{V(G)}{b} \right\} \quad \text{and} \quad \max \left\{ \text{dyn}(G, \tau_X) : X \in \binom{V(G)}{b} \right\},$$

where

$$\tau_X(u) = \begin{cases} d_G(u) + 1 & \text{if } u \in X, \\ \tau(u) & \text{if } u \in V(G) \setminus X, \end{cases}$$

and $\binom{V(G)}{b}$ denotes the set of all b-element subsets of $V(G)$. For both variants, they describe efficient algorithms for trees. In [3] Bhawalkar et al. study so-called anchored k-cores. For a given graph G, and a positive integer k, the k-core of G is the largest induced subgraph of G of minimum degree at least k. It is easy to see that the vertex set of the k-core of G equals $V(G) \setminus H_{(G, \tau)}(\emptyset)$ for the special threshold function $\tau = d_G - k + 1$. Now, the anchored k-core problem [3] is to determine

$$\max \left\{ |V(G) \setminus H_{(G, \tau_X)}(\emptyset)| : X \in \binom{V(G)}{b} \right\}, \quad (3)$$

for a given graph G and non-negative integer b. Bhawalkar et al. show that [3] is hard to approximate in general, but can be determined efficiently for $k = 2$, and for graphs of bounded treewidth. Vaccination problems in random settings were studied in [4, 11, 16].

2 Proofs of Theorem 1.1 and Theorem 1.4

Throughout this section, let T be a tree rooted in some vertex r, and let $\tau, \iota_{\max} \in \mathbb{Z}^{V(T)}$ be two functions. For a vertex u of T, and a function $\rho \in \mathbb{Z}^{V(T)}$, let V_u be the subset of $V(T)$ containing
implies ι of (T_{monopoly}), if x equals ι where, if possible, let ι be such that then let ι is, the index 0 or 1 indicates the amount of help that b be the set of ordered partitions of u for the following two quantities: For a vertex u, b write ' ρ be the subtree of ρ function with ρ Below we consider threshold functions of the form $\rho|_{V_u} + \rho'|_{V_u}$ for the subtrees T_u, where ρ and ρ' are defined on sets containing V_u. For notational simplicity, we omit the restriction to V_u and write ' $\rho + \rho'$' instead of ' $\rho|_{V_u} + \rho'|_{V_u}$' in these cases. For an integer k and a non-negative integer b, let $[k]$ be the set of positive integers at most k, and let

$$P_k(b) = \{(b_1, \ldots, b_k) \in \mathbb{N}_0^k : b_1 + \cdots + b_k = b\}$$

be the set of ordered partitions of b into k non-negative integers.

Our approach to show Theorem 1.1 is similar as in [14] and relies on recursive expressions for the following two quantities: For a vertex u of T and a non-negative integer b, let

- $x_0(u, b)$ be the maximum of $\text{dyn}(T_u, \tau + \iota)$ over all $\iota \in \mathbb{Z}^{V_u}$ with $0 \leq \iota(v) \leq \iota_{\text{max}}(v)$ for every $v \in V_u$, and $\iota(V_u) = b$, and

- $x_1(u, b)$ be the maximum of $\text{dyn}(T_u, (\tau + \iota)^{-u})$ over all $\iota \in \mathbb{Z}^{V_u}$ with $0 \leq \iota(v) \leq \iota_{\text{max}}(v)$ for every $v \in V_u$, and $\iota(V_u) = b$.

The increment ι captures the local increases of the thresholds within V_u. The value $x_1(u, b)$ corresponds to a situation, where the infection reaches the parent of u before it reaches u, that is, the index 0 or 1 indicates the amount of help that u receives from outside of V_u.

Note that $x_j(u, b) = -\infty$ if and only if $b > \iota_{\text{max}}(V_u)$ for both j in $\{0, 1\}$. If $b \leq \iota_{\text{max}}(V_u)$, then let $\iota_0(u, b), \iota_1(u, b) \in \mathbb{Z}^{V_u}$ with $0 \leq \iota_j(u, b) \leq \iota_{\text{max}}$, and $\iota_j(u, b)(V_u) = b$ for both $j \in \{0, 1\}$, be such that

$$x_0(u, b) = \text{dyn}(T_u, \tau + \iota_0(u, b))$$

$$x_1(u, b) = \text{dyn}(T_u, (\tau + \iota_1(u, b))^{-u})$$

where, if possible, let $\iota_0(u, b) = \iota_1(u, b)$. As we show in Corollary 2.3 below, $\iota_0(u, b)$ always equals $\iota_1(u, b)$, which is a key fact for our approach.

Lemma 2.1. $x_0(u, b) \geq x_1(u, b)$, and if $x_0(u, b) = x_1(u, b)$, then $\iota_0(u, b) = \iota_1(u, b)$.

Proof. If $x_1(u, b) = -\infty$, then the statement is trivial. Hence, we may assume that $x_1(u, b) > -\infty$, which implies that the function $\iota_1(u, b)$ is defined. Let D be a minimum dynamic monopoly of $(T_u, \tau + \iota_1(u, b))$. By the definition of $x_0(u, b)$, we have $x_0(u, b) \geq |D|$. Since D is a dynamic monopoly of $(T_u, (\tau + \iota_1(u, b))^{-u})$, we obtain $x_0(u, b) \geq |D| \geq \text{dyn}(T_u, (\tau + \iota_1(u, b))^{-u}) = x_1(u, b)$. Furthermore, if $x_0(u, b) = x_1(u, b)$, then $x_0(u, b) = |D| = \text{dyn}(T_u, \tau + \iota_1(u, b))$, which implies $\iota_0(u, b) = \iota_1(u, b)$. \qed
Lemma 2.2. If \(u \) is a leaf of \(T \), and \(b \) is an integer with \(0 \leq b \leq \tau_{\text{max}}(u) \), then, for \(j \in \{0, 1\}, \)
\[
x_j(u, b) = \begin{cases} 0 & \text{if } \tau(u) + b - j \leq 0, \\ 1 & \text{otherwise, and} \end{cases}
\]
\[
\iota_j(u, b)(u) = b.
\]

Proof. These equalities follow immediately from the definitions. \(
\)

Lemma 2.3. Let \(u \) be a vertex of \(T \) that is not a leaf, and let \(b \) be a non-negative integer. If \(v_1, \ldots, v_k \) are the children of \(u \), and \(\iota_0(v_i, b_i) = \iota_1(v_i, b_i) \) for every \(i \in [k] \) and every integer \(b_i \) with \(0 \leq b_i \leq \tau_{\text{max}}(V_{v_i}) \), then, for \(j \in \{0, 1\}, \)
\[
x_j(u, b) = z_j(u, b), \quad \iota_0(u, b) = \iota_1(u, b), \quad \text{if } b \leq \tau_{\text{max}}(V_u),
\]
where \(z_j(u, b) \) is defined as
\[
\max \left\{ \delta_j(b_u, b_1, \ldots, b_k) + \sum_{i=1}^{k} x_1(v_i, b_i) : (b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b) \text{ with } b_u \leq \tau_{\text{max}}(u) \right\},
\]
and, for \((b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b) \) with \(b_u \leq \tau_{\text{max}}(u), \)
\[
\delta_j(b_u, b_1, \ldots, b_k) := \begin{cases} 0 & \text{if } \left\{ i \in [k] : x_0(v_i, b_i) = x_1(v_i, b_i) \right\} \geq \tau(u) + b_u - j, \text{ and} \\ 1 & \text{otherwise.} \end{cases}
\]

Proof. By symmetry, it suffices to consider the case \(j = 0 \).

First, suppose that \(b > \tau_{\text{max}}(V_u) \). If \((b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b) \) with \(b_u \leq \tau_{\text{max}}(u) \), then \(b_i > \tau_{\text{max}}(V_{v_i}) \) for some \(i \in [k] \), which implies \(z_0(u, b) = -\infty = x_0(u, b). \)

Now, let \(b \leq n(T_u) \), which implies \(x_0(u, b) > -\infty \). The following two claims complete the proof of (4).

Claim 1. \(x_0(u, b) \geq z_0(u, b) \).

Proof of Claim [7]. It suffices to show that \(x_0(u, b) \geq \delta_0(b_u, b_1, \ldots, b_k) + \sum_{i=1}^{k} x_1(v_i, b_i) \) for every choice of \((b_u, b_1, \ldots, b_k) \) in \(\mathcal{P}_{k+1}(b) \) with \(b_u \leq \tau_{\text{max}}(u) \) and \(b_i \leq \tau_{\text{max}}(V_{v_i}) \) for every \(i \in [k] \). Let \((b_u, b_1, \ldots, b_k) \) be one such an element. Let \(\iota_u \in ZV_u \) be defined as
\[
\iota_u(v) = \begin{cases} b_u & \text{if } v = u, \text{ and} \\ 0 & \text{otherwise,} \end{cases}
\]
and let \(\iota = \iota_u + \sum_{i=1}^{k} \iota_1(v_i, b_i) \), where \(\iota_1(v_i, b_i)(u) \) is set to 0 for every \(i \in [k] \). Since \(\iota(V_u) = b \) and \(0 \leq \iota \leq \tau_{\text{max}} \), we have \(x_0(u, b) \geq \text{dyn}(T_u, \tau + \iota) \).

Let \(D \) be a minimum dynamic monopoly of \((T_u, \tau + \iota) \), that is, \(|D| \leq x_0(u, b) \). For each \(i \in [k] \), it follows that the set \(D_i = D \cap V_{v_i} \) is a dynamic monopoly of \((T_{v_i}, (\tau + \iota)^{v_i}) \). Since,
restricted to $V_{u,i}$, the two functions $(\tau + i)^{\rightarrow x_i}$ and $(\tau + \ell_1(v_i, b_i))^{\rightarrow x_i}$ coincide, we obtain
\[
|D_i| \geq \text{dyn}\left(T_{v_i}, \left(\tau + \ell_1(v_i, b_i)\right)^{\rightarrow x_i}\right) \geq x_1(v_i, b_i).
\]
If $\delta_0(b_u, b_1, \ldots, b_k) = 0$, then $|D| \geq \sum_{i=1}^{k} |D_i| \geq \delta_0(b_u, b_1, \ldots, b_k) + \sum_{i=1}^{k} x_1(v_i, b_i)$. Similarly, if $u \in D$, then $|D| = 1 + \sum_{i=1}^{k} |D_i| \geq \delta_0(b_u, b_1, \ldots, b_k) + \sum_{i=1}^{k} x_1(v_i, b_i)$. Therefore, we may assume that $\delta_0(b_u, b_1, \ldots, b_k) = 1$ and that $u \notin D$. This implies that there is some $\ell \in [k]$ with $x_0(v_{\ell}, b_{\ell}) > x_1(v_{\ell}, b_{\ell})$ such that $D_\ell = D \cap V_{v_\ell}$ is a dynamic monopoly of $(T_{v_\ell}, \tau + \ell)$. Since, by assumption, $\ell_0(v_{\ell}, b_{\ell}) = \ell_1(v_{\ell}, b_{\ell})$, we obtain that, restricted to V_{v_ℓ}, the two functions $\tau + \ell$ and $\tau + \ell_0(v_{\ell}, b_{\ell})$ coincide, which implies $|D_\ell| \geq \text{dyn}(T_{v_\ell}, \tau + \ell_0(v_{\ell}, b_{\ell})) = x_0(v_{\ell}, b_{\ell}) \geq 1 + x_1(v_{\ell}, b_{\ell})$. Therefore, also in this case, $|D| = |D_\ell| + \sum_{i \in [k] \setminus \{\ell\}} |D_i| \geq \delta_0(b_u, b_1, \ldots, b_k) + \sum_{i=1}^{k} x_1(v_i, b_i).$

Claim 2. $x_0(u, b) \leq z_0(u, b)$.

Proof of Claim 2. Let $i = \iota_0(u, b)$, that is, $x_0(u, b) = \text{dyn}(T_u, \tau + i)$. Let $b_i = \iota(V_{v_i})$ for every $i \in [k]$, and let $b_u = b - \sum b_i$. Clearly, $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ and $b_u \leq \iota_{\text{max}}(u)$. Let D_i be a minimum dynamic monopoly of $(T_{v_i}, (\tau + i)^{\rightarrow x_i})$ for every $i \in [k]$. By the definition of $x_1(v_i, b_i)$, we obtain $|D_i| \leq x_1(v_i, b_i)$. Let $D = \{u\} \cup \bigcup_{i=1}^{k} D_i$. The set D is a dynamic monopoly of $(T_u, \tau + i)$, which implies $x_0(u, b) \leq |D|$. If $\delta_0(b_u, b_1, \ldots, b_k) = 1$, then
\[
x_0(u, b) \leq |D| = 1 + \sum_{i=1}^{k} |D_i| \leq \delta_0(b_u, b_1, \ldots, b_k) + \sum_{i=1}^{k} x_1(v_i, b_i) \leq z_0(u, b).
\]
Therefore, we may assume that $\delta_0(b_u, b_1, \ldots, b_k) = 0$. By symmetry, we may assume that $x_0(v_i, b_i) = x_1(v_i, b_i)$ for every $i \in [\tau(u) + b_u]$. Let D'_i be a minimum dynamic monopoly of $(T_{v_i}, \tau + i)$ for every $i \in [\tau(u) + b_u]$. By the definition of $x_0(v_i, b_i)$, we obtain $|D'_i| \leq x_0(v_i, b_i) = x_1(v_i, b_i)$. Let $D' = \bigcup_{i \in [\tau(u) + b_u]} D'_i \cup \bigcup_{i \in [k] \setminus [\tau(u) + b_u]} D_i$. The set D' is a dynamic monopoly of $(T_u, \tau + i)$. This implies
\[
x_0(u, b) \leq |D'| = \sum_{i \in [\tau(u) + b_u]} |D'_i| + \sum_{i \in [k] \setminus [\tau(u) + b_u]} |D_i| \leq \sum_{i \in [k]} x_1(v_i, b_i) \leq z_0(u, b),
\]
which completes the proof of the claim.

It remains to show (5). If $x_0(u, b) = x_1(u, b)$, then (5) follows from Lemma 2.1. Hence, we may assume that $x_0(u, b) > x_1(u, b)$. Since, by definition,
\[
\delta_1(b_u, b_1, \ldots, b_k) \leq \delta_0(b_u, b_1, \ldots, b_k) \leq \delta_1(b_u, b_1, \ldots, b_k) + 1
\]
for every $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ with $b_u \leq \iota_{\text{max}}(u)$, we obtain $z_1(u, b) \leq z_0(u, b) \leq z_1(u, b) + 1$.

6
Together with (4), the inequality \(x_0(u, b) > x_1(u, b) \) implies that

\[
x_0(u, b) = z_0(u, b) > z_1(u, b) = x_1(u, b) \quad \text{and} \quad z_1(u, b) = z_0(u, b) - 1.
\]

Let \((b_u, b_1, \ldots, b_k) \in P_{k+1}(b)\) with \(b_u \leq \tau_{\text{max}}(u)\) be such that

\[
z_0(u, b) = \delta_0(b_u, b_1, \ldots, b_k) + \sum_{i=1}^k x_1(v_i, b_i).
\]

We obtain

\[
z_1(u, b) \geq \delta_1(b_u, b_1, \ldots, b_k) + \sum_{i=1}^k x_1(v_i, b_i)
\]

\[
\geq \delta_0(b_u, b_1, \ldots, b_k) - 1 + \sum_{i=1}^k x_1(v_i, b_i)
\]

\[
= z_0(u, b) - 1
\]

\[
= z_1(u, b),
\]

which implies \(z_1(u, b) = \delta_1(b_u, b_1, \ldots, b_k) + \sum_{i=1}^k x_1(v_i, b_i) \), that is, the same choice of \((b_u, b_1, \ldots, b_k)\) in \(P_{k+1}(b)\) with \(b_u \leq \tau_{\text{max}}(u)\) maximizes the terms defining \(z_0(u, b)\) and \(z_1(u, b)\).

Since \(z_0(u, b) > z_1(u, b)\), we obtain \(\delta_1(b_u, b_1, \ldots, b_k) = 0\) and \(\delta_0(b_u, b_1, \ldots, b_k) = 1\), which, by the definition of \(\delta_j\), implies that there are exactly \(\tau(u) + b_u - 1\) indices \(i\) in \([k]\) with \(x_0(v_i, b_i) = x_1(v_i, b_i)\). By symmetry, we may assume that \(x_0(v_i, b_i) = x_1(v_i, b_i)\) for \(i \in [\tau(u) + b_u - 1]\) and \(x_0(v_i, b_i) > x_1(v_i, b_i)\) for \(i \in [k] \setminus [\tau(u) + b_u - 1]\).

Let \(\iota = \iota_u + \sum_{i=1}^k \iota_0(v_i, b_i)\), where \(\iota_0(v_i, b_i)(u)\) is set to 0 for every \(i \in [k]\) and \(\iota_u\) is as in (6). Note that, by assumption, we have \(\iota = \iota_u + \sum_{i=1}^k \iota_1(v_i, b_i)\). Let \(D\) be a minimum dynamic monopoly of \((T_u, \tau + \iota)\). By the definition of \(x_0(u, b)\), we have \(|D| \leq x_0(u, b)\). Let \(D_i = D \cap V_{v_i}\) for every \(i \in [k]\). Since \(D_i\) is a dynamic monopoly of \((T_{v_i}, (\tau + \iota)^{+v_i})\) for every \(i \in [k]\), we obtain \(|D_i| \geq x_1(v_i, b_i)\). Note that

- either \(u \in D\),
- or \(u \not\in D\) and there is some index \(\ell \in [k] \setminus [\tau(u) + b_u - 1]\) such that \(D_{\ell} = D \cap V_{v_\ell}\) is a dynamic monopoly of \((T_{v_\ell}, \tau + \iota)\).

In the first case, we obtain

\[
z_0(u, b) = x_0(u, b) \geq |D| = 1 + \sum_{i=1}^k |D_i| \geq 1 + \sum_{i=1}^k x_1(v_i, b_i) = z_0(u, b),
\]
and, in the second case, we obtain $|D| \geq x_0(v_\ell, b_\ell) \geq x_1(v_\ell, b_\ell) + 1$, and, hence,

$$z_0(u, b) = x_0(u, b) \geq |D| = |D_\ell| + \sum_{i \in [k] \setminus \{\ell\}} |D_i| \geq 1 + \sum_{i=1}^k x_1(v_i, b_i) = z_0(u, b).$$

In both cases we obtain $|D| = x_0(u, b)$, which implies that $\mu_0(u, b)$ may be chosen equal to ℓ.

Now, let D^- be a minimum dynamic monopoly of $(T_u, (\tau + \ell)^{-\infty})$. By the definition of $x_1(u, b)$, we have $|D^-| \leq x_1(u, b)$. Let $D^- = D^- \cap V_{\ell}$ for every $i \in [k]$. Since D^-_i is a dynamic monopoly of $(T_{\ell}, (\tau + \ell)^{-\infty})$ for every $i \in [k]$, we obtain $|D^-_i| \geq x_1(v_i, b_i)$. Now,

$$z_1(u, b) = x_1(u, b) \geq |D^-| \geq \sum_{i=1}^k x_1(v_i, b_i) = z_1(u, b),$$

which implies that $|D^-| = x_1(u, b)$, and that $\mu_1(u, b)$ may be chosen equal to ℓ. Altogether, the two functions $\mu_0(u, b)$ and $\mu_1(u, b)$ may be chosen equal, which implies \mathcal{M}.

Applying induction using Lemma 2.2 and Lemma 2.3, we obtain the following.

Corollary 2.4. $\mu_0(u, b) = \mu_1(u, b)$ for every vertex u of T, and every integer b with $0 \leq b \leq \mu_{\text{max}}(V_u)$.

Apart from the specific values of $x_0(u, b)$ and $x_1(u, b)$, the arguments in the proof of Lemma 2.3 also yield feasible recursive choices for $\mu_0(u, b)$. In fact, if

$$x_0(u, b) = \delta_0(b_u, b_1, \ldots, b_k) + \sum_{i=1}^k x_1(v_i, b_i) > -\infty$$

for $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ with $b_u \leq \mu_{\text{max}}(u)$, and μ_u is as in \mathcal{M}, then $\mu_u + \sum_{i=1}^k \mu_0(v_i, b_i)$ is a feasible choice for $\mu_0(u, b)$.

Our next lemma explains how to efficiently compute the expressions in Lemma 2.3.

Lemma 2.5. Let u be a vertex of T that is not a leaf, let b be an integer with $0 \leq b \leq \mu_{\text{max}}(V_u)$, and let v_1, \ldots, v_k be the children of u. If the values $x_1(v_i, b_i)$ are given for every $i \in [k]$ and every integer b_i with $0 \leq b_i \leq \mu_{\text{max}}(V_v)$, then $x_0(u, b)$ and $x_1(u, b)$ can be computed in time $O(k^2(b + 1)^2)$.

Proof. By symmetry, it suffices to explain how to compute $z_0(u, b)$.

For $p \in \{0\} \cup [k]$, an integer p_ℓ, an integer $b_\ell' \in \{0\} \cup [b]$, and $b_u \in \{0\} \cup [\min\{\mu_{\text{max}}(u), b_\ell'\}]$, let $M(p, p_\ell, b_\ell', b_u)$ be defined as the maximum of the expression $\sum_{i=1}^p x_1(v_i, b_i)$ over all $(b_1, \ldots, b_p) \in \mathcal{P}_p(b_\ell' - b_u)$ such that p_ℓ equals $\left|\{i \in [p] : x_0(v_i, b_i) = x_1(v_i, b_i)\}\right|$. Clearly, $M(p, p_\ell, b_\ell', b_u) = -\infty$ if $p < p_\ell$ or $p_\ell < 0$ or $b_\ell' - b_u > \sum_{i=1}^p \mu_{\text{max}}(V_{v_i})$, and

$$M(0, 0, b_\ell', b_u) = \begin{cases} 0, & \text{if } b_\ell' = b_u, \\ -\infty, & \text{otherwise.} \end{cases}$$
For $p \in [k]$, the value of $M(p, p_\equiv, b', b_u)$ is the maximum of the following two values:

- The maximum of $M(p - 1, p_\equiv - 1, b_{\leq p - 1}, b_u) + x_1(v_p, b_p)$ over all $(b_{\leq p - 1}, b_p) \in \mathcal{P}_2(b' - b_u)$ with $x_0(v_p, b_p) = x_1(v_p, b_p)$, and
- the maximum of $M(p - 1, p_\equiv, b_{\leq p - 1}, b_u) + x_1(v_p, b_p)$ over all $(b_{\leq p - 1}, b_p) \in \mathcal{P}_2(b' - b_u)$ with $x_0(v_p, b_p) > x_1(v_p, b_p),$

which implies that $M(p, p_\equiv, b', b_u)$ can be determined in $O(b' + 1)$ time given the values $M(p - 1, p_\equiv - 1, b_{\leq p - 1}, b_u), M(p - 1, p_\equiv, b_{\leq p - 1}, b_u), x_0(v_p, b_p)$, and $x_1(v_p, b_p)$.

Altogether, the values $M(k, p_\equiv, b, b_u)$ for all $p_\equiv \in \{0\} \cup [k]$ can be determined in time $O\left(k^2(b + 1)\right)$.

For $b_u \in \{0\} \cup [\min\{\ell_{\text{max}}(u, b)\}]$, let $m(b_u)$ be the maximum of the two expressions

$$1 + \max\left\{M(k, p_\equiv, b, b_u) : p_\equiv \in \{0\} \cup [\tau(u) - b_u - 1]\right\}$$

and

$$\max\left\{M(k, p_\equiv, b, b_u) : p_\equiv \in [k] \setminus [\tau(u) - b_u - 1]\right\}.$$

Now, by the definition of $\delta_0(b_u, b_1, \ldots, b_k)$, the value of $z_0(u, b)$ equals $\max\left\{m(b_u) : b_u \in \{0\} \cup [\min\{\ell_{\text{max}}(u, b)\}]\right\}$. Hence, $z_0(u, b)$ can be computed in time $O\left(k^2(b + 1)^2\right)$.

We proceed to the proof of our first theorem.

Proof of Theorem 1.1. Given $(T, \tau, \ell_{\text{max}}, b)$, Lemma 2.2 to Lemma 2.3 imply that the values of $x_0(u, b')$ and of $x_1(u, b')$ for all $u \in V(T)$ and all $b' \in \{0\} \cup [b]$ can be determined in time

$$O\left(\sum_{u \in V(T)} d_T(u)^2(b + 1)^2\right).$$

It is a simple folklore exercise that $\sum_{u \in V(T)} d_T(u)^2 \leq n^2 - n$ for every tree T of order n, which implies the statement about the running time. Since $\text{vacc}(T, \tau, \ell_{\text{max}}, b) = x_0(r, b)$, the statement about the value of $\text{vacc}(T, \tau, \ell_{\text{max}}, b)$ follows. The statement about the increment ℓ follows easily from the remark after Corollary 2.4 concerning the function $\ell_0(u, b)$, and the proof of Lemma 2.3, where, next to the values $M(p, p_\equiv, b', b_u)$, one may also memorize suitable increments.

We conclude with the proof of our second theorem.

Proof of Theorem 1.4. Let G be an r-regular graph of order n, and let b be an integer with $(2r - 1)(r + 1) \leq b \leq rn = 2m(G)$.

Let $\ell \in \ell(G)$ with $0 \leq \ell \leq d_G$ and $\ell(V(G)) = b$ be such that $\text{vacc}(G, 0, d_G, b) = \text{dyn}(G, \ell)$. By a result of Ackerman et al. [1],

$$\text{vacc}(G, 0, d_G, b) = \text{dyn}(G, \ell) \leq \sum_{u \in V(G)} \frac{\ell(u)}{d_G(u) + 1} = \frac{\ell(V(G))}{r + 1} = \frac{b}{r + 1}. $$
First, suppose that the matching number ν of G satisfies $2r\nu > b$. In this case, G has a matching M with $\tau_M(V(G)) = 2r|M| \leq b$ and $2r(|M| + 1) \geq b + 1$, where τ_M is as in the statement. We obtain $2\text{dyn}(G, \tau_M) \geq 2|M| \geq 2 \left(\frac{b+1}{2r} - 1 \right) \geq \frac{b}{r+1} \geq \text{vacc}(G, 0, d_G, b)$. Next, suppose that $2r\nu \leq b$. If M is a maximum matching and D is a minimum vertex cover, then $|D| \leq 2|M|$. Since D is a dynamic monopoly of (G, d_G), we obtain $2\text{dyn}(G, \tau_M) \geq 2|M| \geq |D| \geq \text{dyn}(G, d_G) \geq \text{vacc}(G, 0, d_G, b)$, that is, $2\text{dyn}(G, \tau_M) \geq \text{vacc}(G, 0, d_G, b)$ holds in both cases.

References

[1] E. Ackerman, O. Ben-Zwi, G. Wolfovitz, Combinatorial model and bounds for target set selection, Theoretical Computer Science 411 (2010) 4017-4022.

[2] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, I. Newman, Treewidth governs the complexity of target set selection, Discrete Optimization 8 (2011) 87-96.

[3] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, A. Sharma, Preventing unraveling in social networks: the anchored k-core problem, SIAM Journal on Discrete Mathematics 29 (2015) 1452-1475.

[4] T. Britton, S. Janson, A. Martin-Löf, Graphs with specified degree distributions, simple epidemics, and local vaccination strategies, Advances in Applied Probability 39 (2007) 922-948.

[5] C.C. Centeno, M.C. Dourado, L.D. Penso, D. Rautenbach, J.L. Szwarcfiter, Irreversible conversion of graphs, Theoretical Computer Science 412 (2011) 3693-3700.

[6] C.C. Centeno, D. Rautenbach, Remarks on dynamic monopolies with given average thresholds, Discussiones Mathematicae Graph Theory 35 (2015) 133-140.

[7] C.-Y. Chiang, L.-H. Huang, B.-J. Li. J. Wu, H.-G. Yeh, Some results on the target set selection problem, Journal of Combinatorial Optimization 25 (2013) 702-715.

[8] F. Cicalese, G. Cordasco, L. Gargano, M. Milanič, J. Peters, U. Vaccaro, Spread of influence in weighted networks under time and budget constraints, Theoretical Computer Science 586 (2015) 40-58.

[9] C.-L. Chang, Y.-D. Lyuu, Triggering cascades on strongly connected directed graphs, Theoretical Computer Science 593 (2015) 62-69.

[10] N. Chen, On the approximability of influence in social networks, SIAM Journal on Discrete Mathematics 23 (2009) 1400-1415.

[11] M. Deijfen, Epidemics and vaccination on weighted graphs, Mathematical Biosciences 232 (2011) 57-65.

[12] P. Domingos, M. Richardson, Mining the network value of customers, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2001) 57-66.
[13] P.A. Dreyer Jr., F.S. Roberts, Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion, Discrete Applied Mathematics 157 (2009) 1615-1627.

[14] S. Ehard, D. Rautenbach, Vaccinate your trees!, arXiv:1801.08705.

[15] M. Gentner, D. Rautenbach, Dynamic monopolies for degree proportional thresholds in connected graphs of girth at least five and trees, Theoretical Computer Science 667 (2017) 93-100.

[16] D. Kempe, J. Kleinberg, E. Tardos, Maximizing the spread of influence through a social network, Theory of Computing 11 (2015) 105-147.

[17] K. Khoshkhah, M. Zaker, On the largest dynamic monopolies of graphs with a given average threshold, Canadian Mathematical Bulletin 58 (2015) 306-316.