Complete mitochondrial genome of the branching octocoral *Paramuricea grayi* (Johnson, 1861), phylogenetic relationships and divergence analysis

Márcio A. G. Coelho, Jean-Baptiste Ledoux, Joana Boavida, Diogo Paulo, Daniel Gómez-Gras, Nathaniel Bensoussan, Paula López-Sendino, Carlo Cerrano, Silvija Kipson, Tatjana Bakran-Petricioli, Joaquim Garrabou, Ester A. Serrão, and Gareth A. Pearson.

Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; MARE - Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Lisboa, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal; Aix Marseille University, Université de Toulon, CNRS, MIO UM 110, Marseille, France; Departamento de Biologia Marina, Instituto de Ciencias del Mar (CSIC), Barcelona, Spain; Departamento de Biología Evolutiva, Ecología i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain; Departamento de Biología, Facultad de Ciencias, University of Zagreb, Zagreb, Croatia; Fano Marine Center, Fano, Italy; Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia; CIBIO/InBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal.

ABSTRACT

The Gray’s sea fan, *Paramuricea grayi* (Johnson, 1861), typically inhabits deep littoral and circalittoral habitats of the eastern temperate and tropical Atlantic Ocean. Along the Iberian Peninsula, where *P. grayi* is a dominant constituent of circalittoral coral gardens, two segregating lineages (yellow and purple morphotypes) were recently identified using single-copy nuclear orthologues. The mitochondrial genomes of 9 *P. grayi* individuals covering both color morphotypes were assembled from RNA-seq data, using samples collected at three sites in southern (Sagres and Tavira) and western (Cape Espichel) Portugal. The complete circular mitogenome is 18,668 bp in length, has an A + T-rich base composition (62.5%) and contains the 17 genes typically found in Octocorallia: 14 protein-coding genes (*atp6*, *atp8*, *cob*, *cox1-3*, *mt-mutS*, *nad1-6*, and *nad4L*), the small and large subunit rRNAs (*rns* and *rnl*), and one transfer RNA (*trnV*). The mitogenomes were nearly identical for all specimens, though we identified a noteworthy polymorphism (two SNPs 9 bp apart) in the *mt-mutS* of one purple individual that is shared with the sister species *P. clavata*. The mitogenomes of the two species have a pairwise sequence identity of 99.0%, with *nad6* and *mt-mutS* having the highest rates of non-synonymous substitutions.

We recently determined the identity of multiple populations of *Paramuricea* in southern and western Portugal previously identified as *P. clavata* to be *P. grayi*, and identified two color morphotypes of *P. grayi* as segregating lineages based on multi-locus genotyping and phylogenomic analyses (Coelho et al. 2022). This highlights the need to further study genetic differentiation between *P. clavata* and *P. grayi*, as well as between the two segregating lineages of *P. grayi* at other mitochondrial genes. Here, we report the complete mitochondrial genome (mitogenome) of *P. grayi* assembled from RNA-seq read data generated in Coelho et al. (2022). In total, we assembled complete/partial mitogenomes of nine individuals of *P. grayi*, including specimens of both the yellow (*n = 7*) and purple (*n = 2*) morphotypes. The samples...
were collected at three sites in southern (Sagres and Tavira) and western (Cape Espichel) Portugal. A specimen of each color morphotype are deposited at the Biogeographical Ecology and Evolution team collection at the Centre of Marine Sciences (email: macoelho@ualg.pt) under voucher IDs 19-0054 and 19-0046. The mitogenomes of *P. clavata* collected in the Mediterranean (Spain, Italy and Croatia; Coelho et al. 2022) and of *P. biscaya* from the Gulf of Mexico (see DeLeo et al. 2018) were also assembled for phylogenetic analysis (see below). For additional information about the origin and collection of samples, as well as about RNA extraction and sequencing see Gómez-Gras et al. (in review), Coelho et al. (2022) and Supplemental Materials Section S1. Quality-filtered, ribosomal RNA-free read data for the samples from Coelho et al. (2022) used here are deposited on NCBI’s Sequence Read Archive (BioProject ID: PRJNA847883).

The mitogenomes were assembled with MITGARD (Mitochondrial Genome Assembly from RNA-seq Data) using default parameters (Nachtigall et al. 2021). MITGARD is an automated pipeline that allows mitochondrial sequence reads to be retrieved from RNA-seq data using a reference mitogenome as bait to subsequently generate de novo contigs and a consensus mitogenome assembly. We used the mitogenome sequence of *P. clavata* as a reference (Genbank Accession: NC_034749). The assembled mitogenomes were then visually curated by examining the alignment files of mapped reads, as well as of the assembled contigs and consensus mitogenome, onto the population consensus sequences (*P. clavata*: VAC, ALT and BALU; *P. grayi*: BAL; see Section S1 for details on population codes), as well as against a mitogenome assembled with long-read sequencing data for *P. grayi* (Costa et al. unpublished data). The assembled mitogenomes of both *P. grayi* and *P. clavata* were annotated using MITOS2 (Donath et al. 2019). Genes that were not identified (only rns), as well as gene boundaries in disagreement with available references (e.g. cox1 and rnl) were manually added in Geneious Prime. Finally, we performed a maximum likelihood (ML) phylogenetic analysis in IQ-TREE 2 (Minh et al. 2020) based on the mitogenomes of multiple octocorals (for details see Supplemental Materials, Section S3); and calculated the rate of synonymous (dS) and non-synonymous (dN) substitutions for protein-coding genes between *P. grayi* and *P. clavata* (NC_034749) using the online platform PAL2NAL (Suyama et al. 2006).

The complete circular mitogenome of *P. grayi* is 18,668 bp in length, has an A+T-rich base composition (62.5%) and contains the 17 genes typically found in Octocorallia: 14 protein-coding genes, including 13 energy pathway proteins (atp6, atp8, cob, cox1-3, nad1-6, and nad4L) and the mitochondrial homologue of the DNA mismatch repair MutS-like protein (mt-mutS); the small and large subunit rRNAs, rns and rnl, respectively; and one transfer RNA (trnM; methionine) (Figure 2). Like other members of family Paramuriceidae (formerly Plexauridae; see McFadden et al. 2022), *P. grayi* has the presumed ancestral octocoral gene order A (Brockman and McFadden 2012), with 12 genes encoded in the heavy strand (cox1-rns-nad1-cob-nad6-nad3-nad4L-mt-mutS-rnl-nad2-nad5-nad4) and 5 genes in the light strand (trnM-cox3-3atp6-atp8-cox2). In total, the intergenic regions (IGR) accounted for 618 bp of the mitogenome, ranging between 5 bp (rns-nad1 and rnl-nad2 IGRs) and 112 bp (cox2-cox1 IGR). The gene boundaries of nad2 and nad5 overlapped by 12 bp (Figure 2; Supplemental Materials, Section S4). The partial/complete mitogenome sequences of *P. grayi* were nearly identical for all nine individuals, including across the two segregating color morphotypes. Notable exceptions included low-confidence regions with low/no read coverage (Section S2); one single nucleotide polymorphism (SNP) in nad6 for one of the

Figure 1. Colonies of *Paramuricea grayi* belonging to the purple (A) and yellow (B) morphotypes corresponding to the segregating lineages identified in Coelho et al. (2022). Colonies were photographed at two distinct sites off Cape Espichel in western Portugal. The colonies of both color morphs tend to have relatively thin branches compared to the Mediterranean sister species *P. clavata* (though colonies with thick branches can also be observed in *P. grayi*, especially in the purple morphotype) and change color when dried or preserved (e.g. in etOH 96%), turning into a black/dark brown coloration. Photo credits: A.C. Ferreira.
seven individuals of the yellow lineage (BAL_8; 439 X coverage); and two SNPs 9 bp apart in mt-mutS for one of the two purple individuals (59X and 56X coverage), a polymorphism shared with P. clavata. Like previous studies, our ML analysis based on mitogenome sequence data show that recently diverged sister species (Poliseno et al. 2017; Coelho additional information about gene boundaries see Supplemental Materials, Section S5). In contrast, none of the mutations observed in cox1 resulted in amino acid replacements, whereas mt-mutS had 12 non-synonymous mutations (dN = 0.0058). Surprisingly, for the P. grayi-P. clavata comparison nad6 had the highest dN of all protein-coding genes (0.0071; Section S4), and together with cox2 the highest dN/dS ratios (Section S4; for a comprehensive overview of the evolution of mitochondrial protein-coding genes in octocorals see Muthye et al. 2022). With the rapid expansion of next- and third-generation sequencing projects, data from RNA-seq represent an underused, but valuable resource to assemble octocoral mitochondrial genomes and more broadly to study the evolution of the eukaryotic powerhouse.
Acknowledgements

For a full overview of acknowledgements regarding help provided during lab work and field collections of samples used here see Coelho et al. (2022). The authors thank C. Linares and E. Ferretti for assistance collecting data, and A.C. Ferreira for providing photographs of P. grayi.

Author contributions

M.C., J.-B.L., J.G., E.S., and G.P. conceived the study. M.C., J.-B.L., J.B., D.P., D.G.-G., N.B., P.L.-S., C.C., S.K., and T. B.-P. contributed to data acquisition, including sample collection of the original study. M.C. and G.P analyzed the data. J.G. and E.S. contributed funding. M.C. drafted the manuscript. All authors critically revised the content of the manuscript, gave their approval for publication of the final version and agreed to be accountable for all aspects of the work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was funded by program BIOMARES, a Pew Marine Fellowship, and FCT - Foundation for Science and Technology [UIDB/04326/2020, UIDP/04326/2020, LA/P/0101/2020, PTDC/BIAB/6515/2020]; EU-BiodivEra BiodivRestore-253 [FCT: DivRestore/0013/2020]; and the EU Horizon 2020 research and innovation programme [MERCES; Grant no. 689518]. M.C. was supported by postdoctoral fellowships of projects HABMAR [Grant No. MAR-01.04.02-FEAMP-0018] co-financed by the European Maritime and Fisheries Fund of the Operational Program MAR 2020 for Portugal (2020-2020), and BiodivAMP [Grant no. FA_06_2017_045] financed by the Directorate-General for Sea Policy of the Ministry of Economy and Sea for Portugal under the Operational Program Fundo Azul.

ORCID

Mário A. G. Coelho http://orcid.org/0000-0001-7832-5241
Carlo Cerrano http://orcid.org/0000-0001-9580-5546
Ester A. Serrão http://orcid.org/0000-0003-1136-658X
Gareth A. Pearson http://orcid.org/0000-0002-0768-464X

Data availability statement

Raw RNA-seq read data are available at NCBI’s SRA database (BioProject ID: PRJNA478883). The complete assembled mitogenomes of P. grayi (specimen BAL 3; Biosample [SRA] accessions: SAMN2889305 [SRR19977458] and SAMN2889308 [SRR19977454]) and P. clavata (specimen VAC_1; Biosample accessions: SAMN2889326 [SRR19977435] and SAMN28899232 [SRR19977438]) have been submitted to GenBank under accession numbers OP205061 and OP205062, respectively. Partial/com- plete mitogenome sequences of all the assemblies performed here (including P. biscaya) are available on Figshare (DOI: 10.6084/m9.figshare.20526978).

References

Altuna A. 1991. On the presence of Paramuricea grayi (Johnson, 1861) (Cnidaria, Anthozoa), in the Basque Coast. Munibe. 43:85–90.
Brockman SA, McFadden CS. 2012. The mitochondrial genome of Paraminabaei aldersloei (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as the primary mechanism of gene rearrangement in octocoral mitochondrial genomes. Genome Biol Evol. 4(9):994–1006.
Calderón I, Garrabou J, Aurelle D. 2006. Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol. 336(2):184–197.
Coelho MAG, Pearson G, Boavida J, Paulo D, Aurelle D, Arnaud-Haond S, Gómez-Gras D, Bensoussan N, López-Sendino P, Cerrano C, et al. 2022. No out of the Mediterranean: Atlantic populations of the gorgonian Paramuricea clavata are a separate sister species under further lineage diversification. Authorea. DOI: 10.22541/au.165544523.32209087/v1
DeLeo DM, Herrera S, Lengyl SD, Quattrini AM, Kulathinal RJ, Cordees EE. 2018. Gene expression profiling reveals deep-sea coral response to the Deepwater Horizon oil spill. Mol Ecol. 27(20):4066–4077.
Dias V, Oliveira F, Boavida J, Serrão EA, Gonçalves JMS, Coelho MAG. 2020. High coral bycatch in bottom-set gillnet coastal fisheries reveals rich coral habitats in Southern Portugal. Front Mar Sci. 7:1.
Donath A, Jüling F, Al-Arab M, Bembhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M. 2019. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47(20):10543–10552.
Gómez-Gras D, Bensoussan N, Ledoux JB, López-Sendino P, Cerrano C, Ferretti E, Bakran-Petricoli SK, Cruz T, Gómez-Garrido F, Alito J, et al. in review. Exploring the response of a key Mediterranean habitat-forming gorgonian to heat stress across biological and spatial scales. Sci Rep.
Grashoff M. 1977. Die Gorgonarien des östlichen Nordatlantik und des Mittelmeeres III. Die Familie Paramuriceidae (Cnidaria, Anthozoa). Meteor Forsch-Ergebnisse. 27:5–76.
Grashoff M. 1992. Die Flachwasser-Gorgonarien von Europa und Westafrika (Cnidaria, Anthozoa). Courier Forsch-Inst Senckenberg. 149: 1–135.
Hooper L, Jenkins TL, Griffiths AM, Moore KA, Stevens JR. 2021. The complete mitochondrial genome of the pink sea fan, Eunicella verrucosa (Pall, 1766). Mitochondrial DNA B Resour. 6(11):3309–3311.
McFadden CS, van Ofwegen LP, Quattrini AM, 2022. Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. B Soc Syyst Biol. 1:8735.
Minho BQ, Schmidt HA, Chenornom O, Schrempl D, Woodhams MD, Haeseler AV, Lanfear R, Teeling E. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 37(5):1530–1534.
Muthye V, Mackereth CD, Stewart JB, LaVrov DV. 2022. Large dataset of octocoral mitochondrial genomes provides new insights into mt-mutS evolution and function. DNA Repair. 110:103273.
Nachtigall PG, Grazziotin FG, Junqueira-De-Azevedo ILM. 2021. MITGARD: an automated pipeline for mitochondrial genome assembly in eukaryotic species using RNA-seq data. Brief Bioinform. 22(5):1–15.
Nestorowicz I-M, Oliveira F, Monteiro P, Bentles I, Henriques NS, Aguilar R, Costa BE, Gonzãles JMS. 2021. Identifying habitats of conservation priority in the Sáo Vicente Submarine Canyon in Southwestern Portugal. Front Mar Sci. 8:672850.
Pulosno A, Altuna A, Cerrano C, Wörheide G, Vargas S. 2017. Historical biogeography and mitogenomics of two endemic Mediterranean gorgonians (Holoxanla, Plexauridae). Org Divers Evol. 17(2):365–373.
Quattrini AM, Herrera S, Adams JM, Grinyo J, Louise AA, Shuler A, Wirshing HH, Cordes EE, McFadden CS. 2022. Phylogeography of Paramuricea: the role of depth and water mass in the evolution and distribution of deep-sea corals. Front Mar Sci. 9:849402.
Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34(Web Server issue):W609–W612.
Thoma J. 2013. [Molecular and morphological diversity of sea fans with emphasis on deep-sea octocorals of the order Alcyonacea Lamouroux, 1812] [PhD dissertation]. Lafayette (LA): University of Louisiana Lafayette.
Walting L, France SC, Pante E, Simpson A. 2011. Chapter 2: biology of deep-water octocorals. In: Lesser MP, editors. Advances in marine biology. Vol. 60. London: Elsevier Ltd; p. 41–122.