Electrogenic L-Glutamate Uptake in Xenopus laevis Oocytes Expressing a Cloned Rat Brain L-Glutamate/L-Aspartate Transporter (GLAST-1)*

(Received for publication, March 30, 1993)

Udo Klockner, Thorsten Storck, Marcus Conradt, and Wilhelm Stoffel

From the Institute of Biochemistry, Medical Faculty of the University of Cologne, Joseph-Stelzmann-Strasse 52, D-5000 Cologne 41, Germany and the Department of Physiology, University of Cologne, Robert-Koestraasse 39, D-5000 Cologne 41, Germany

The transport of L-glutamate into Xenopus laevis oocytes expressing the cloned L-glutamate/aspartate transporter (GLAST-1) from rat brain was studied using the voltage clamp technique. At a holding potential of -90 mV, a bath application of 100 µM L-glutamate induced an inward current (IGLAST) with an amplitude ranging from ~5 to ~30 nA. IGLAST did not require extracellular Ca²⁺, Mg²⁺, or Cl⁻, was larger at negative potentials, and did not reverse up to +80 mV. The current was dependent on external L-glutamate and Na⁺ with half-maximal amplitudes at 11 µM L-glutamate and 41 mM Na⁺. IGLAST saturated at 100 µM L-glutamate and 80 mM Na⁺. The Hill coefficient for Na⁺ and IGLAST was 3.3 and 1.3, respectively, suggesting that 3 Na⁺ accompany the transport of 1 L-glutamate molecule. At low [Na⁺], IGLAST was enhanced by reducing [K⁺]o, an indication for the countertransport of K⁺. Reducing external pH from 7.4 to 6.0 did not change the amplitude of IGLAST. This argues against a glutamate/proton cotransport. The results provide evidence for GLAST-1 carrying out a high affinity, sodium-dependent L-glutamate cotransport with a proposed stoichiometry of 3 Na⁺, 1 L-glutamate⁻/1 K⁺.

L-Glutamate mediates neurotransmission at the vast majority of excitatory synapses in mammalian central nervous system (for review see Collingridge and Lester (1988)). The excitatory action of this amino acid is involved in complex physiological processes like learning and the establishment of memory (Monaghan et al., 1989). On the other hand, L-glutamate has potent excitotoxic properties leading to neurodegeneration and brain damage (for review see Choi (1988)).

To terminate the excitatory signal, L-glutamate is rapidly removed from the synaptic clefts. Sodium-dependent L-glutamate transporters residing in the plasma membranes of the presynaptic nerve ending and surrounding glial cells are thought to be responsible for this transport process (Flott and Seifert, 1991). The structural specificity and ion dependence of this transport system have been investigated by [¹⁴C]glutamate uptake studies using brain slices (Balcar and Johnston, 1972), synaptosomes (Bennett et al., 1973), isolated cells (Gordon and Balass, 1983; Flott and Seifert, 1991), and cell lines (Waniekiewski and Martin, 1984) for more than two decades. Further information about the mechanism of transport is obtained from electrophysiological measurements. It has been shown in Muller cells from salamander retina that L-glutamate evokes an inward current, which is most probably associated with L-glutamate uptake into the cytosol (Brew and Attwell, 1987; Barbour et al., 1988, 1991; Schwartz and Tachibana, 1990). This electrogenic uptake of L-glutamate was dependent on external Na⁺ and internal K⁺ (Barbour et al., 1988, 1991) but see Schwartz and Tachibana (1990).

The recent cloning of cDNAs coding for three rodent L-glutamate transporters offers for the first time the opportunity to investigate independently single members of this family upon expression in heterologous systems (Storck et al., 1992; Pines et al., 1992, Kanai and Hediger, 1992). Using electrophysiological techniques we describe important functional properties of the cloned L-glutamate/aspartate transporter (GLAST-1) from rat brain expressed in Xenopus laevis oocytes. We demonstrate that the cloned transporter is electrogenic and has a high affinity for L-glutamate. The transport of L-glutamate depends on the transmembrane gradients of sodium and potassium ions. There is no evidence for the cotransport of protons.

MATERIALS AND METHODS

20–72 h after injection of GLAST-1 cRNA (Storck et al., 1992) the oocytes were superfused by gravity flow with a solution composed of (mM): NaCl (120), CaCl₂ (1.8), KCl (2), HEPES-Tris (10), pH 7.4. Oocytes were voltage-clamped using a two-electrode voltage clamp amplifier (Warner Instruments Corp., Hamden, CT). Microelectrodes filled with 3 M KCl had resistances ranging from 1 to 2 mCoulombs. The software and hardware package ISO1 (MFK, Frankfurt, Germany) was used to generate the voltage commands to acquire and evaluate the data. Data were filtered at 10 Hz (-3 dB) and digitized at 100 Hz. Assuming that L-glutamate has no other electrical effects apart from activating the transporter, IGLAST can be obtained as the difference of the membrane current before and during application of L-glutamate.

In experiments in which the sodium or chloride concentrations of the bath solution were varied, these were equimolarly substituted by choline or methanesulfonate, respectively. All measurements were done at room temperature (20–22 ºC). Data are expressed if not otherwise noted as mean ± S.D. All chemicals were purchased from Sigma.

RESULTS

The Glutamate-induced Inward Current Is Generated by the Activity of GLAST-1. Bath application of 100 µM L-glutamate induced an inward current into Xenopus oocytes (stage V–VI) that peaked within 2 to 8 min and remained stable up to 2 h as long as L-glutamate was present in the bath with less than a 20% decline in amplitude (Fig. 1A). Upon washout of L-glutamate the inward current disappeared. No inward currents were observed upon L-glutamate application in oocytes injected with water (n = 8, per batch) or in non-injected oocytes (n = 5, per batch).

The L-glutamate-induced current did not depend on extracellular Ca²⁺, Mg²⁺, or Cl⁻, suggesting that inward current did not flow through L-glutamate-gated channels. Under control conditions 100 µM L-glutamate induced a current with a mean am-

The abbreviations used are: GLAST-1, a L-glutamate/aspartate transporter; MES, 2-(N-morpholino)ethanesulfonic acid.
When plotted as a function of the L-glutamate concentration to the maximal current induced with 316 pM L-glutamate.

Fig. 1C shows the concentration response curve for each oocyte normalized to the current amplitude at 120 mM [Na+] estimated from the data by minimizing squared errors according to the equation shown in Eq. 1.

$$I = I_{\text{max}}[\text{L-glutamate}]^n[\text{L-glutamate}]^n + K_c^n$$

where I_{max} is the normalized maximum current amplitude, [L-glutamate] the L-glutamate concentration in the bath, K_c the apparent affinity constant, and n the Hill coefficient. The best fit was obtained with a K_c of 11 nM and $n = 1.3$. This result is compatible with the hypothesis that L-glutamate interacts with one high affinity binding site per transporter.

Dependence of I_{GLAST} on External Ions—Exchanging extracellular Na$^+$ with choline$^+$ completely blocked I_{GLAST} induced by bath application of 15 pM L-glutamate. At [Na$^+$]$_e$ greater than 10 mM, the current rose steeply and saturated at [Na$^+$]$_e$ greater than 90 mM (Fig. 2A). The relation between the amplitude of I_{GLAST} and [Na$^+$]$_e$ could be best described by the following equation.

$$I = I_{\text{max}}[\text{Na}]^n/[\text{Na}]^n + K_c^n$$

The best fit yielded a K_c of 41 mM and a Hill coefficient of 3.3, suggesting that L-glutamate is cotransported with 3 sodium ions.

At 120 mM [Na$^+$]$_e$, raising [K$^+$]$_e$ from 2 to 32 mM had no effect on I_{GLAST}. At 2 mM [K$^+$]$_e$, 100 pM L-glutamate induced a current with a mean amplitude of -8.8 ± 1.2 nA ($n = 5$), elevating [K$^+$]$_e$ to 32 mM resulted in an I_{GLAST} of -8.6 ± 1.1 nA, and reducing its concentration back to 2 mM [K$^+$]$_e$, left I_{GLAST} with a mean amplitude of -9.2 ± 1.2 nA. However, at reduced [Na$^+$]$_e$, I_{GLAST} did depend on the K$^+$ gradient. In order to further reduce the sodium gradient the Na$^+$/K$^+$ pump was inhibited by storing the oocytes overnight at 4°C. At 20 mM [Na$^+$]$_e$ and 2 mM [K$^+$]$_e$, application of 100 pM L-glutamate evoked a current with an

![Image](image.png)
amplitude of -1.7 nA (Fig. 2B, left). Under these conditions, however, the omission of K+ from the bath solution produced dramatic changes in \(I_{GLAST}\). Applying L-glutamate induced a current with an amplitude of -7.2 nA. In five similar experiments at reduced [K+], \(I_{GLAST}\) was enhanced by a factor of 3.5 ± 0.8. Changing back to control conditions (120 mM Na+, 2 mM K+) resulted in an inward current with an amplitude of -8.5 nA (Fig. 2B, right).

Reducing extracellular pH has no effect on the amplitude of \(I_{GLAST}\). At pH 7.4 100 \(\mu M\) L-glutamate induced a current with an amplitude of -21.2 nA (Fig. 2C, left). Changing pH to 6.0 (10 mM MES buffer) has no appreciable effect on the amplitude of \(I_{GLAST}\) (~22.3 nA, Fig. 2C, right). This finding suggests that GLAST-1 does not transport protons together with L-glutamate into the cell.

DISCUSSION

Our results demonstrate for the first time that the GLAST-1-induced transport of L-glutamate in _X. laevis_ oocytes is electrogenic. Application of 100 \(\mu M\) L-glutamate induced an inward current that is independent of extracellular Ca\(^{2+}\), Mg\(^{2+}\), or Cl-. This suggests that the current did not result from the opening of glutamate-gated channels but reflects the L-glutamate uptake into the oocytes. The current flowing through glutamate-gated unselective cation channels has a reversal potential around 0 mV (for review see Monaghan et al. (1989)). In contrast, the current studied here did not reverse up to +80 mV. A similar voltage dependence has been shown for the glutamate uptake into glial cells of the salamander retina (Barbour et al., 1988, 1991; Schwartz and Tachibana, 1990).

At a holding potential of -90 mV the half-maximal current was obtained at a L-glutamate concentration of 11 \(\mu M\). This value is lower than the value estimated from tracer flux measurements (77 ± 27 \(\mu M\) (Storch et al., 1992)) but similar to the 6.9 \(\mu M\) reported for a cloned intestinal L-glutamate transporter (Kanai and Hediger, 1992) or the 5-20 \(\mu M\) reported for salamander glial cells (Barbour et al., 1991). The low \(K_m\) of 11 \(\mu M\) indicated that the GLAST-1 from rat brain has a high affinity for L-glutamate.

There is evidence that the transport of L-glutamate depends on the presence of extracellular Na+ (for review see Nicholls and Attwell (1990)). Also the electrogenic uptake of L-glutamate into glial cells depends on the presence of extracellular Na+ with half-maximal inhibition at 43–50 mM (Barbour et al., 1991; Schwartz and Tachibana, 1990), with Hill coefficients between 2 and 3. Our results fit best with a curve showing half-maximal inhibition at 41 \(\mu M\) [Na+] with a Hill coefficient of 3.3, suggesting that the transport of L-glutamate might go along with the binding of 3 Na+. These results cannot exclude the possibility that only 2 Na+ are transported in countertransport of pH changing anions as proposed by Bouvier et al. (1992).

From tracer flux studies it is evident that the uptake of L-glutamate depends on [K+], (Kanner and Sharon, 1978; Nicholls and Attwell, 1990). However, voltage clamp experiments gave conflicting results. Barbour et al. (1991) reported that K+ is necessary for the L-glutamate-induced current, while in the same preparation Schwartz and Tachibana (1990) did not find any influence of K+. Our finding that \(I_{GLAST}\) is unimpaired by high [K+] at saturating "physiological" [Na+], does not exclude K+ as a countertransported ion. With 120 mM Na+ and 100 \(\mu M\) L-glutamate the transporter is maximally stimulated so that increasing [K+], is not sufficient to decrease the high transport rate. The situation is different when the transport rate is not maximally stimulated, e.g. at reduced [Na+]. Now a reduction of [K+], dramatically increases \(I_{GLAST}\) suggesting that K+ is countertransported. Since the inward current associated with the uptake of L-glutamate requires the translocation of 1 netto positive charge, at least 3 Na+ per molecule of L-glutamate have to be transported into the oocyte 1 in countertransport of 1 K+.

Erecinska et al. (1983) have reported that protons were transported together with aspartate whereas according to Gazzola et al. (1981) L-glutamate is transported as an anion without a proton. Using a \(pK_a\) for the γ-carboxyl group of the L-glutamate group of 4.31, one can calculate that at a pH of 7.4 the ratio of protonated to deprotonated L-glutamate is approximately 1:1230, i.e. when adding 100 \(\mu M\) L-glutamate to the bath 0.08 \(\mu M\) is protonated. At pH 6.0 this relation is 1:49. Assuming that L-glutamate is transported as a zwitterion the amplitude \(I_{GLAST}\) should dramatically increase at acid pH because the amount of the protonated form has increased by a factor of 25. If L-glutamate is transported as an anion, there should be no appreciable influence on the amplitude of the current, because the amount of the protonated L-glutamate decreases only from 100 to 98 \(\mu M\). Since acid pH has no detectable influence on the amplitude of \(I_{GLAST}\) it is likely that L-glutamate is transported as a negatively charged molecule. This hypothesis is in accordance with the result reported by Schwartz and Tachibana (1990) in salamander glial cells.

In this study we have characterized basic functional properties of the GLAST-1 cloned from rat brain and expressed in X. laevis oocytes. Our results provide evidence that GLAST-1 is a high affinity sodium-dependent L-glutamate transporter with a stoichiometry of 3 Na+, 1 L-glutamate/2 K+.

REFERENCES

Balcar, V. J., and Johnston, G. A. (1972) J. Neurochem. 19, 2657–2666
Barbour, B., Brew, H., and Attwell, D. (1988) Nature 338, 433–435
Barbour, B., Brew, H., and Attwell, D. (1991) J. Physiol. (Lond.) 438, 169–193
Bennett, J. P., Logan, W. J., and Snyder, S. H. (1973) J. Neurochem. 21, 1533–1550
Bouvier, M., Statzkowski, M., Amato, A., and Attwell, D. (1992) Nature 356, 471–474
Brew, H., and Attwell, D. (1987) Nature 327, 707–709
Choi, D. W. (1988) Neuron 1, 623–634
Collingridge, G. L., and Lester R. A. J. (1988) Pharmacol. Rev. 40, 143–210
Erecinska, M., Wantorsky, D., and Wilson D. F. (1983) J. Biol. Chem. 258, 9069–9077
Flah, B., and Seifert, W. (1991) Glia 4, 293–304
Gazzola, G. C., Dell’Asta, V., Bussolati, O., Makowske, M., and Christensen, H. N. (1981) J. Biol. Chem. 256, 6064–6059
Gordon, R. D., and Balazs, B. (1980) J. Neurochem. 40, 1090–1099
Kanai, Y., and Hediger, M. A. (1992) Nature 356, 467–471
Kanner, B. I., and Sharon, I. (1978) Biochemistry 17, 3949–3953
Lazan, M. T., Bridges, R. J., and Cotman, C. W. (1989) Annu. Rev. Pharmacol. Tox. 29, 365–402
Nicholls, D., and Attwell, D. (1990) Trends Pharmacol. Sci. 11, 62–68
Pines, G., Danbolt, N. C., Rijster, M., Chang, Y., Benschahan, A., Eide, L., Koegel, H., Storm-Mathis, J., Seeberg, E., and Kanner, B. I. (1992) Nature 360, 494–497
Schwartz, E. A., and Tachibana, M. (1990) J. Physiol. (Lond.) 426, 43–80
Storch, T., Schulte, S., Hofmann, K., and Steffel, W. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 10955–10959
Waniek, R. A., and Martin, D. L. (1984) J. Neurosci. 4, 2237–2246