Herbal medicines and nonalcoholic fatty liver disease

Hong Yao, Yu-Jie Qiao, Ya-Li Zhao, Xu-Feng Tao, Li-Na Xu, Lian-Hong Yin, Yan Qi, Jin-Yong Peng

Herbal medicines and nonalcoholic fatty liver disease (NAFLD), which is characterized by excessive fat accumulation in the liver of patients who consume little or no alcohol, becomes increasingly common with rapid economic development. Long-term excess fat accumulation leads to NAFLD and represents a global health problem with no effective therapeutic approach. NAFLD is considered to be a series of complex, multifaceted pathological processes involving oxidative stress, inflammation, apoptosis, and metabolism. Over the past decades, herbal medicines have garnered growing attention as potential therapeutic agents to prevent and treat NAFLD, due to their high efficacy and low risk of side effects. In this review, we evaluate the use of herbal medicines (including traditional Chinese herbal formulas, crude extracts from medicinal plants, and pure natural products) to treat NAFLD. These herbal medicines are natural resources that can inform innovative drug research and the development of treatments for NAFLD in the future.

Key words: Herbal medicines; Nonalcoholic fatty liver disease; Natural product; Traditional Chinese medicines; Review

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Herbal medicines have gained popularity as potential therapeutic agents for the prevention and treatment of nonalcoholic fatty liver disease (NAFLD), due to their high efficacy and low side effects. This review introduces traditional Chinese herbal formulas, crude extracts from medicinal plants, and pure natural products as new treatments for NAFLD.

Yao H, Qiao YJ, Zhao YL, Tao XF, Xu LN, Yin LH, Qi Y, Peng JY. Herbal medicines and nonalcoholic fatty liver disease. World J Gastroenterol 2016; 22(30): 6890-6905 Available from: URL: http://www.wjgnet.com/1007-9327/full/v22/i30/6890.htm DOI: http://dx.doi.org/10.3748/wjg.v22.i30.6890
INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming a serious global health problem as the prevalence of obesity and type 2 diabetes mellitus (T2DM) rises\(^\text{1-2}\). The term NAFLD refers to a spectrum of liver diseases, ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis, specifically in patients who do not consume excessive amounts of alcohol\(^\text{3-5}\). NAFLD is present in up to one-third of the population, affects all ages and ethnicities, and is the second leading cause of death in the general population\(^\text{6,7}\). At present, the high prevalence and negative pathological consequences of NAFLD represent a significant economic burden for many countries. However, up to now, there is no effective procedure to treat the disease\(^\text{8-10}\). The primary therapeutic approach is to recommend healthy lifestyle strategies that are focused on reducing body weight and increasing insulin sensitivity, including dietary and exercise regimens. Although these strategies are effective in randomized controlled trials, they have limited impact on the incidence and severity of NAFLD in the population level, due to poor patient compliance\(^\text{11-13}\).

NAFLD is believed to be an essential component of the liver metabolic syndrome, including insulin resistance, obesity, hyperlipidemia, dyslipidemia, and hypertension\(^\text{14-16}\) (Figure 1). Although the activity of plasma transaminase enzymes can serve as an early indicator of liver damage, NAFLD cannot be accurately diagnosed with routine blood tests\(^\text{17,18}\). Liver biopsy, accompanied by histological staining and NAFLD activity score, is the standard for NAFLD diagnosis, however, in clinical practice, its use is limited due to invasiveness\(^\text{19}\). In the past 10 years, the association between NAFLD and other chronic diseases, such as chronic liver disease, cardiovascular disease, and T2DM, has been a major focus of NAFLD research\(^\text{20,21}\).

Additionally, increasing attention has also focused on NAFLD-related chronic kidney disease\(^\text{22}\). There is also emerging evidence that NAFLD is linked to other chronic diseases, including sleep apnea, colorectal cancer, osteoporosis, psoriasis, and various endocrinopathies\(^\text{23}\). Hence, there is a huge demand to explore effective approaches to NAFLD treatment.

Due to the key role of lipid accumulation in NAFLD progression, inhibition of lipid accumulation is a major focus of anti-NAFLD drug development. A variety of anti-NAFLD agents are currently in preclinical development. Additionally, metformin, statins, and fibrates, are currently being tested as NAFLD treatments in clinical trials. However, these drugs have significant adverse side effects, including enhanced risk of infection and osteoporosis\(^\text{24-26}\). Hence, novel treatment candidates with high efficacy and minimal side effects are urgently demanded for the treatment of NAFLD\(^\text{27-30}\).

Traditional Chinese medicines (TCM) are abundant sources of biologically active substances that can be applied to prevent human diseases\(^\text{31-34}\). Currently, an increasing number of studies have focused on herbal extracts or natural products, and many of these studies have discovered herbal products with potent effects against NAFLD\(^\text{35,36}\). Thus, herbal medicines are promising candidate drugs for the treatment of NAFLD. The primary aim of this paper is to systematically review the available herbal medicines (including traditional Chinese herbal formulas, crude extracts from medicinal plants, and pure natural products) for the treatment of NAFLD.

UNDERLYING MECHANISMS OF HERBAL MEDICINES AGAINST NAFLD

Due to the current lack of effective therapies, there is a great need to identify dietary approaches to NAFLD prevention and treatment. Evidence from cells and animal studies suggests that many drugs can protect NAFLD and its progression in steatosis. Traditional medicines can prevent NAFLD through a variety of mechanisms, including: (1) depressing lipogenesis through down-regulating sterol regulatory element-binding protein 1c (SREBP-1c); (2) increasing β-fatty acid (FA) oxidation by up-regulating peroxisome proliferator activated receptor α (PPARα); (3) increasing insulin sensitivity and depressing oxidative stress through increased antioxidant levels via nuclear factor-erythroid 2-related factor 2 (Nrf2); and (4) inhibiting activation of inflammatory pathways (Figure 2). Activation of the AMPK/SIRT-1 signaling pathway is the common trigger that regulates all of these molecular processes in recent insights. Nevertheless, more experiments are needed to verify this hypothesis. Moreover, indirect anti-inflammatory and anti-oxidative effects of TCM may also help to improve the symptoms of NAFLD.

TRADITIONAL CHINESE HERBAL FORMULAS

Currently, the use of a traditional Chinese herbal formula is in a dialectical trial to assess its efficacy as an NAFLD treatment method. A traditional Chinese herbal formula consists of two or more appropriate medicinal plants for discretionary use that are selected in accordance with the composition principles of proper compatibility\(^\text{37}\). The formula contains complex chemical constituents with multi-level and multi-target pharmacological activity\(^\text{38,39}\). The traditional Chinese herbal formula prescription consists of four parts: Monarch, Minister, Assistant, and Guide. The Monarch drug, also known as the main drug, is intended to provide the major therapeutic effect to treat the main disease or principal syndrome\(^\text{40}\). The Minister drug, also known as the official medicine adjuvant, strengthens the effect of the auxiliary gentleman medicine drug to treat the main disease or primary
syndrome. The Assistant drug either indirectly treats the primary disease by assisting the Monarch and Minister drugs, or directly treats secondary syndromes. The Guide drug acts as a messenger drug that leads other drugs to the site of disease

Traditional Chinese herbal formulas are developed according to traditional theory, which guides the selection of appropriate medicines according to prescription principles, and determines the dosage and usage of each medicine. Traditional Chinese herbal formulas are developed according to traditional theory, which guides the selection of appropriate medicines according to prescription principles, and determines the dosage and usage of each medicine.

Many traditional Chinese herbal formulas are reported to have significant anti-NAFLD effects. One famous traditional Chinese herbal formula, Yinchengao Decoction (YCHD), first recorded in the "Shen Nong's Herbal Classic", has been used in treatment of gallbladder and liver diseases for centuries. YCHD consists of three medicinal plants: Artemisia capillaris (Thunb), Gardenia jasminoides (Ellis), and Rheum palmatum (L). Recent studies have reported that YCHD can reduce the accumulation of hepatic fat, enhance adiponectin secretion, increase endothelial progenitor cell proliferation, and increase PPAR-γ expression, which is probably responsible for the therapeutic effect of YCHD on NAFLD. Another well-known traditional Chinese herbal formula, Qushi Huayu Decoction (QSHYD), consists of five kinds of medicinal plants: Artemisia capillaris (Thunb), Polygonum cuspidatum Sieb. et Zucc., Hypericum japonicum (Thunb), Curcuma Longa L, and Gardenia jasminoides (Ellis). QSHYD can effectively reverse elevated levels of free fatty acid and total triglycerides (TG), and also can improve hepatic steatosis and inflammation. Furthermore,
PlaNTs may inhibit fat deposition and inflammation through multiple signaling pathways. Apart from these, other traditional Chinese herbal formulas (Table 1), including Danning Tablet, Sini San, Ganzhixiao Decoction, Tangzhiqing Decoction, Hugan Qingzhi tablet, Cigu Xiaozhi Pill, BaiHuJia RenShen Decoction, LiGan ShiLiuBaWei San, Gegenqinlian Decoction, Lingguizhugan Decoction and Huanglian Jiedu Decoction are also effective treatments for NAFLD.

Although academic journals have reported the benefits of many traditional Chinese herbal formulas in NAFLD therapy, there are several issues to note in these recent studies. The efficacy of these drugs is not clear, due to the limitations of the existing non-invasive techniques that are clinically used to assess the extent of inflammation and liver steatosis. Furthermore, the impact of pharmacodynamic interactions between these formulas and other medications should be evaluated further. The molecular targets of these drugs and the signaling transduction pathways involved remain unknown, which further complicates clinicians' ability to predict how these formulas may interact with other medicines. Molecular targets for drug interactions are generally more difficult to predict the pharmacokinetic interactions. All of the issues mentioned above retard the scientific progress of TCM formulas in treating NAFLD.

CRUDE EXTRACTS FROM MEDICINAL PLANTS

Compared with traditional Chinese herbal formulas, the use of crude extracts from medicinal plants represents a fusion of modern pharmaceutical technology with traditional medicine. In this treatment approach, traditional medicinal materials are processed into purified bioactive compounds by leaching, clarification, filtration, evaporation, or other methods of extraction. Extraction of compounds from Chinese herbal medicines is one approach to discover novel drugs. The extraction of active compounds is also important for enhancing our understanding of traditional Chinese medicine. After extraction and separation, crude extracts have higher purity, are easy to administer, and can be subjected to quality control. Thus, use of crude extracts from medicinal plants to treat NAFLD is a feasible approach.

Many crude extracts from medicinal plants have significant anti-NAFLD effects. Polygonum hypoleucum (Ohwi) is the dry root of leguminous plants belonging to the genus Pueraria, which is recorded in the "Treatise on Febrile Diseases". It has been used to treat cancer, arthritis, and nephritis. Extract of P. hypoleucum contains the chemicals epicatechin, emodin, epicatechin-3-O-gallate, catechin and procyanidin B2. P. hypoleucum can also inhibit acetyl-CoA carboxylase (ACC) activity, which plays a key role in FA metabolism. Inhibiting ACC expression has been demonstrated to prevent high-fat diet (HFD)-induced NAFLD and hepatic ischemia-reperfusion (IR). Artemisia Sacrorum Ledeb (ASL) is a TCM used to treat multiple liver diseases. Ethanol extract from ASL can attenuate hepatic lipid accumulation via activating adenosine 5′-monophosphate-activated protein kinase (AMPK) in human HepG2 cells. Besides promoting AMPK and ACC phosphorylation, ethanol extract from ASL down-regulates expression of the lipogenesis gene SREBP-1c, and also decreases the expression of target genes of SREBP-1c, including FA synthase (FAS) and stearoyl-coenzyme A desaturase 1. Conversely, EE also increases the expression of lipolytic genes, including PPAR-α and cluster of differentiation 36 (CD36). Other herbal extracts (shown in Table 2) from Chinese blueberry, Hibiscus sabdariffa L., red grapes, grape skin, coffee, Ribes (Asparagus linearis), Lotus root, Hawthorn leaf, aralia elata, rubus alaeolius, neomangiferin and tea are also effective in treating NAFLD.

On the other hand, extracting bioactive compounds from medicinal plants can be problematic. For example, many active compounds, especially water-insoluble compounds, may be lost during extraction in organic solvents. Furthermore, extraction solvents may react with active ingredients, or high temperatures during extraction may degrade labile compounds. However, breakthroughs in science and technology could overcome these shortcomings in the future.

PURE NATURAL PRODUCTS

The term "pure natural products" refers to clear chemical structures that are different from traditional Chinese medicine formulas and crude extracts. Pure natural products are derived from medicinal plants through extraction, separation, and purification. Many pure natural products, including flavonoids, alkaloids, polysaccharides, volatile oils, quinones, terpenes, coumarins, lignans, saponins, cardiac glycosides, phenolic acids, and amino acids, have been found to have significant therapeutic benefits against NAFLD.

Flavonoids

Flavonoids are compounds with a common basic structure of 15 carbons (C6-C3-C6). Flavonoids found in plants usually combine with sugar to form glycosides, however some remain in free-state (aglycone) form. There is growing evidence that flavonoids (or related compounds) have therapeutic effects on cancer and other chronic diseases, including cardiovascular disease, T2DM, and NAFLD, at least in part through immunomodulatory, anti-inflammatory, and antioxidant properties.

Quercetin (Figure 3A) is a well-known flavonoid that has a wide variety of biological functions. This flavonol is reported to have beneficial effects on lipid
Formula	Composition	Mechanisms	Ref.
Yinchenhao Decoction	*Artemisia capillaries* Thunb. *Gardenia jasminoides* Ellis *Rheum palatum* L.	↓PPARγ expression	[46]
Qushi Huayu Decoction	*Artemisia capillaries* Thunb. *Rheum palmatum* Cuspidati *Hypericum japonicum* Thunb. *Rheum curcumae* Longae *Gardenia jasminoides* Ellis	↓SCD1, ↓FAS, ↑ACAT, ↑CPT expression, ↓Lipid droplets and inflammatory infiltration, ↓TNFα	[50]
Danning Tablet	*Rheum palatum* L. *Polygonum cuspidatum* Sieb.et Zucc. *Citrus reticulata* Bianco *Curcuma tenuijuga* Y.	↓Fat mass, ↓ALT level	[51]
Sini San	*Artemisia capillaries* Thunb. *Bupleurum scorzonerifolium* Willd. *Paonia lactiflora* Pall *Fructus aurantii* Immaturus *Glycyrrhiza uralensis* Fisch	↓ALT, ↓AST level, ↓Steatosis	[52]
Ganzhixiao Decoction	*Artemisia capillaries* Thunb. *Rheum palmatum* Cuspidati *Radix bupleuri* Chinensis	↓ALT, ↓TG, ↓IHCL level, ↑CT value ratio	[53]
Cigu Xiaozhi Pill	*Alium aflatana-sumatrica* Linn *Cnataceus pinnatifida* Bunge *Salvia mitiorrhiza* Bge *Steleophaga plancoyi* Bolemy *Pinellia ternata* Breit	↓ALT, ↓AST level, ↓TG level	[56]
Tangzhaiqing Decoction	*Paonia veitchii* Lynch *Morus alba* L. *Lotus leaf* Tea *Salvia mitiorrhiza* Bge *Glycyrrhiza uralensis* Fisch	↓TC, ↓TG level, ↓LDL-C, ↓HDL-C level, ↓Fat mass, ↓MDA level	[54]
Hugan Qingzhi Tablet	*Alium orientalis* Juzep *Cnataceus pinnatifida* Bunge *Typha orientalis* C. Presl *Nelumbo nucifera* Gaertn	↓ALT, ↓AST level, ↓TG level, ↓TC, ↓IL-6, ↓P65	[55]
BaiHuJia RenFShen Decoction	*Anemarrhena asphodeloides* Bunge *Radix Glycyrrhizae* Preparata *Oryza sativa* L. *Glycyrrhiza uralensis* Fisch	↑p-AMPK level, ↓SCD1, ↓FAS, ↑ACAT, ↑CPT expression	[57]
LiCan ShiLiuBaWei San	*Punica granatum* L. *Cinnamomum tamala* Nees *Alpinia katsumadai* Hayata *Piper longum* Linn *Carthamus tinctorias* L. *Anomum tao-ko* Crevost et Lemaire *Zingiber of-jicinale* Rosc *Myristica fragrans* Houtt.	↓ALT, ↓AST level, ↓TC, ↓TG, ↓FFA, ↓MDA level, ↓PPARγ expression	[58]
Gegenqinlian Decoction	*Pueraria omeiensis* Wang *Scutellaria baicalensis* Georgii *Capsi citrinensis* Franch	↓LDL-C, ↓HDL-C level, ↓PPARγ	[59]
Lingguizhugan Decoction	*Smilax ocreafa* A. *Cinnamomum tamala* Nees *Rhizoma atractylodis* macrocephalae *Glycyrrhiza uralensis* Fisch	↓TC, ↓TG, ↓LDL-C	[60]
Huanglianjiedu Decoction	*Capsi citrinensis* Franch *Scutellaria baicalensis* Georgii *Heteropogon contortus* P. *Gardenia jasminoides* Ellis	↓TC, ↓TG, ↓LDL-C, ↓HDL-C level	[61]
accumulation, inflammation, fibrosis, nitrosative/oxidative stress, and insulin resistance associated with NAFLD\(^{[99]}\). Previously, studies showed that quercetin reduces lipid accumulation in primary hepatocytes in obese mice fed a high-fat diet, through regulation of mitochondrial oxidative metabolism. Therefore, quercetin is a useful dietary additive for reducing obesity-induced hepatosteatosis\(^{[97,98]}\).

Rutin (Figure 3B), a glycoside of quercetin, is found in many foods such as red wine, apples and onions. Panchal \textit{et al.}\(^{[99]}\) first proved that rutin can decrease adiposity, improve insulin sensitivity, and reduce cardiac remodeling and liver injury in HFD rats\(^{[100]}\). Consistently, in a successive study, rutin effectively inhibited palmitate-induced macrophage activation and reduced liver fat by suppressing transcription of
Yao H et al. Herbal medicines for NAFLD

(A) Quercetin
(B) Rutin
(C) Puerarin
(D) Baicalin
(E) Luteolin
(F) Hydroxysafflor yellow A
(G) Genistein
(H) Silybin
(I) Isorhamnetin
(J) Iridin
(K) Naringin
(L) Shikonin
(M) Apigenin
(N) Kaempferol
(O) Myricetin
(P) Pinocembrin
(Q) Resveratrol
(R) Curcumin
(S) EGCG
(T) Salvianolic acid B
SREBP-1c and CD36 in the liver. Recently, troxerutin was also shown to reduce liver steatosis and improve metabolic syndrome-related pathology in mice fed a high-fat diet, by suppressing oxidative stress-mediated NAD depletion and stimulating fat oxidation. Other flavonoids, including pueraaria, baicalein, luteolin, hydroxysafflor yellow A, genisten, silybin, isorhamnetin, iridin, naringin, shikonin, apigenin, kaempferol, myricetin, and pinocembrin (Figure 3C-P), also play significant roles in the treatment of NAFLD.

Polyphenols

Polyphenols are a group of phenolic compounds from plants. Phenolic compounds are present in a large amount in cereals, vegetables, fruits, and beverages including red wine, coffee and tea. Polyphenols have strong antioxidant effects, and are commonly known as “the seventh kind of nutrient.” How well polyphenols exert antioxidant properties hinges on (1) the extent of their phase 1 and 2 bio-transformation; (2) the amount of conjugated products formed during the absorption of the gastrointestinal tract; and (3) the formation of conjugated products mainly absorbed in the liver.

Resveratrol (Figure 3Q) is contained in red grapes, *Fructus Mori*, *Arachis hypogaea* Linn. and *cacao*. Two seminal studies show the positive effects of resveratrol on metabolic health and aging by activating AMPK and silent mating type information regulation 2 homolog 1 (SIRT1). Further studies suggest that resveratrol can reduce fat accumulation, even in the absence of weight loss. Resveratrol decreases liver fat accumulation through different mechanisms, including decreased lipogenesis and increased FA oxidation.

In addition, resveratrol has been shown to reduce lipid peroxidation by promoting the Nrf2-dependent antioxidative response in high fructose fed rats and improving dysbiosis in the gut microbiome, which is induced by HFD. The proportion of resveratrol to the thick walled bacterial strain of the fungus, which was reduced by the growth of *Lactobacillus* and bacteria, was decreased. Nevertheless, two clinical trials show that the results are contradictory. After 8 wk, the liver fat accumulation and insulin sensitivity showed no improvement compared to the men on 3000 mg of resveratrol. What’s more, no change was observed in the plasma antioxidant activities. Importantly, this study reported that resveratrol supplements increased plasma liver enzyme levels, which showed hepatic stress. However, in a trial, the signature of the liver enzyme with inflammatory cytokines was shown to improve in 50 patients with NAFLD treated with resveratrol 500 mg for 12 wk, although the antioxidant effect was not reported.

Curcumin (Figure 3R), responsible for the yellow colour of the plant *Curcuma Longa* L., is extracted from curry and spice. Its antioxidant properties are widely studied in liver metabolism. Curcumin has also been studied for NASH and metabolic pathologies. Leclercq et al. showed that curcumin improves liver injury by inhibiting nuclear factor-kappa B (NF-κB) activation, which in turn inhibits the expression of NF-κB target genes, including intercellular cell adhesion molecule-1, cyclooxygenase-2, and monocyte chemotactic protein 1. Vizzutti et al. later extended that curcumin can reduce alpha-smooth muscle actin a level in the NASH mice and can reduce the production of reactive oxygen species and tissue inhibitor of metalloproteinases-1 secreting activated hepatic stellate cells. While some dietary supplements containing curcumin are commercially available, it should be emphasized that case-reports and case series provide insufficient clinical evidence to draw firm conclusions. Polyphenols including techin-3-gallate, salvianolic acid B, anthocyanidin, ellagic acid and cyanidin-3-glucoside (Figure 3S-W) also play significant roles in the treatment of NAFLD.

Terpenoids

Terpenoids are compounds with molecular formulas containing multiple hydrocarbon isoprene units and their oxygenated derivatives. These oxygenated derivatives can be alcohols, aldehydes, ketones, carboxylic acids or esters. Terpenoids exist widely in the nature, and are the main components of some plant essence, and pigment resins. Terpenoids have many physiological activities including acting as an expectorant, relieving cough, expelling wind, inducing sweating, acting as an insecticide, and reducing pain.
Betulinic acid (Figure 4A) is a pentacyclic triterpene found in many plants, especially Betula. Betulinic acid can be converted from its precursor, betulin. Betulinic acid plays a significant role in reducing hepatic lipid accumulation through modulation of the AMPK-SREBP signaling pathway[142]. Mice fed an HFD for a three-week period exhibit severe fat accumulation in the liver, significant reductions in hepatic AMPK phosphorylation, and increased activation of SREBP1. Betulinic acid activates AMPK by activating an upstream kinase, calmodulin-dependent protein kinase kinase. Betulinic acid also suppresses mammalian target of rapamycin and S6 kinase-mediated activation of SREBP1 in a human hepatoma cell line, primary rat hepatocytes, and liver tissue of Institute of Cancer Research mice fed an HFD. Treatment with betulinic acid inhibits HFD-induced changes in nuclear SREBP1 activation and consequent hepatic TG accumulation[143]. Other terpenoids, such as ursolic acid[144], gentiopicroside[145] and artemisinin[146] (Figure 4B-D), also play significant roles in the treatment of NAFLD.

Saponins

Saponins are glycoside aglycones of three terpenoids or spirostane compounds, mainly found in terrestrial plants[147]. The primary active ingredients in many Chinese traditional herbs, such as *Panax ginseng* (C. A. (analgesia)[141]. Figure 4 Chemical structures of other kinds of pure natural products for the treatment of nonalcoholic fatty liver disease.
Alkaloids

Alkaloids are a group of nitrogenous organic compounds present in nature. They are widely found in dicotyledons. They have many pharmacological activities, such as anti-bacterial, anti-inflammatory, analgesic, anti-tumor, and anti-fungal actions[158,159]. A large number of studies have indicated that alkaloids have significant effects on NAFLD.

Berberine (Figure 4I) is isolated from the herb Coptis chinensis Franch. and widely used to treat diarrhea and other inflammatory diseases in China[160]. Recent studies have proved a new therapeutic function of berberine in metabolic disorders, including obesity and diabetes[161,162]. Berberine can be used as a cholesterol lowering drug, through a unique mechanism distinct from statins[163]. These studies suggested a potential therapeutic activity of berberine for NAFLD. Liver gene expression profile analysis showed that high fat diet induced hepatic steatosis in rats led to global changes in gene expression, and treatment with berberine reversed this process. Several modules of berberine-regulated genes, including abundant long non-coding RNAs (lncRNAs), were identified by bioinformatics analysis. Among these berberine-regulated genes, we found that the lncRNA MRAK052686 and its associated gene Nrf2 are implicated in the pathogenesis of NAFLD[164]. Hence, the study provides a new insight into the mechanism of the pharmacological action of berberine in the prevention and treatment of NAFLD. Other alkaloids such as sophoridine[165], rutecarpine[166] and oxymatrine[167] (Figure 4J-L) also play significant roles in protecting against NAFLD.

Other pure products have been showed to be effective in the treatment of NAFLD, including schisandrin B[168], honokiol[169], rhein[170] and emodin[171] (Figure 4M-P). TCM are worthy of further study. This review only summarizes a drop in the bucket, and more Chinese medicines that are useful for the treatment of NAFLD will come to light in the future.

CONCLUSION

NAFLD, the main cause of chronic hepatic disease, is essentially a condition of over-nutrition, and the effective treatments are limited. Thus, it is very important to search ways to prevent and treat NAFLD. In this review, the experimental evidence has suggested that a number of herbal medicines can prevent steatosis and NAFLD through various underlying mechanisms. However, more convincing experiments are needed to confirm this hypothesis. What’s more, the indirect anti-inflammatory and antioxidant effects of TCM also play an important role in the treatment of NAFLD. But so far, the results of clinical studies are limited and tend to show a subtle influence in comparison with animal models. Further studies on the use of dietary doses of Chinese herbal medicines in rodents and human subjects are necessary.

REFERENCES

1. Schuppan D, Gorrell MD, Klein T, Mark M, Afdhal NH. The challenge of developing novel pharmaceutical therapies for non-alcoholic steatohepatitis. Liver Int 2010; 30: 795-808 [PMID: 20624207 DOI: 10.1111/j.1478-3231.2010.02264.x]
2. Stojasavljević S, Gomećić Palčić M, Virović Jukić L, Smirčić Duvnjak L, Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20: 18070-18091 [PMID: 25561778 DOI: 10.3748/wjg.v20.i48.18070]
3. Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol 2015; 62: S47-S64 [PMID: 25920090 DOI: 10.1016/j.jhep.2014.12.012]
4. Bhatia LS, Curzen NP, Calder PC, Byrne CD. Non-alcoholic fatty liver disease: a new and important cardiovascular risk factor? Eur Heart J 2012; 33: 1190-1200 [PMID: 22408036 DOI: 10.1093/eurheartj/ehr453]
5. Fan JG, Farrell GC. Epidemiology of non-alcoholic fatty liver disease in China. J Hepatol 2009; 50: 204-210 [PMID: 19014878 DOI: 10.1016/j.jhep.2008.10.010]
6. Vajro P, Lenta S, Pignata C, Salerno M, D’Ainello R, De Micco I, Paolella G, Parenti G. Therapeutic options in pediatric non-alcoholic fatty liver disease: current status and future directions. Ital J Pediatr 2012; 38: 55 [PMID: 23075296 DOI: 10.1186/1824-7288-38-55]
7. Tzimalos K, Athyros VG, Paschos P, Karagiannis A. Nonalcoholic fatty liver disease and statins. Metabolism 2015; 64: 1215-1223 [PMID: 26234727 DOI: 10.1016/j.metabol.2015.07.003]
8. Gu Y, Lambert JD. Modulation of metabolic syndrome-related inflammation by cocoa. Mol Nutr Food Res 2013; 57: 948-961 [PMID: 23637048 DOI: 10.1002/mnfr.201300837]
9. Dahlhoff C, Worsch S, Sailer M, Hummel BA, Fiamoncini J, Uebel K, Obeid R, Scherling C, Geisel J, Bader BL, Daniel H. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levels. Mol Metab 2014; 3: 565-580 [PMID: 25061561 DOI: 10.1016/j.molmet.2014.04.010]
10. Day CP. Non-alcoholic fatty liver disease: a massive problem. Clin Med (Lond) 2011; 11: 176-178 [PMID: 21526706]
11. Zelber-Sagi S, Lotan R, Shlomai A, Webb M, Harrari G, Buch A, Nitzan Kalusi D, Halpern Z, Oren R. Predictors for incidence and remission of NAFLD in the general population during a seven-
Hao Y et al. Herbal medicines for NAFLD

year prospective follow-up. J Hepatol 2012; 56: 1145-1151 [PMID: 22245895 DOI: 10.1016/j.jhep.2011.12.011]

12 Haga Y, Kanda T, Sasaki R, Nakamura M, Nakamoto S, Yokosuka O. Nonalcoholic fatty liver disease and hepatic cirrhosis: Comparison with viral hepatitis-associated cirrhosis. World J Gastroenterol 2015; 21: 1299-12995 [PMID: 26675364 DOI: 10.3748/wjg.v21.i46]

13 Jacome-Sosa MM, Borthwick F, Mangat R, Uwiera R, Reaney MJ, Shen J, Quiroga AD, Jacobs RL, Lehner R, Proctor SD, Nelson RC. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome. J Nutr Biochem 2014, 25: 692-701 [PMID: 24775093 DOI: 10.1016/j.jnutbio.2014.02.011]

14 Karlas T, Wiegand J, Berg T. Gastrointestinal complications of obesity: non-alcoholic fatty liver disease (NAFLD) and its sequelae. Best Pract Res Clin Endocrinol Metab 2013; 27: 195-208 [PMID: 23731881 DOI: 10.1016/j.beem.2013.02.002]

15 Li Y, Zhao J, Zheng H, Zhong X, Zhou J, Hong Z. Treatment of Nonalcoholic Fatty Liver Disease with Total Alkaloids in Rubus alaecefolius Poir through Regulation of Fat Metabolism. Evid Based Complement Alternat Med 2014; 2014: 768540 [DOI: 10.1155/2014/768540]

16 Liu X, Gao Y, Li M, Geng C, Xu H, Yang Y, Guo Y, Jiao T, Fang F, Chang Y. Sirt1 mediates the effect of the heme oxygenase inducer, cobalt protoporphyrin, on ameliorating liver metabolic damage caused by a high-fat diet. J Hepatol 2015; 63: 713-721 [PMID: 26026874 DOI: 10.1016/j.jhep.2015.05.018]

17 Martínez-Uña M, Varela-Rey M, Mestre D, Fernández-Ares L, Fresnedo O, Fernández-Ramos D, Gutiérrez-de Juan V, Martín-Guerrero I, García-Orad, A Luka Z, Wagner C, Lu SC, García-Monzón C, Fennell RH, Aurrekoetxea I, Buqué X, Martínez-Chantar ML, Mato JM, Aspichueta P, S-Adenosylmethionine increases circulating very-low density lipoprotein clearance in non-alcoholic fatty liver disease. J Hepatol 2015; 62: 673-681 [PMID: 25457203 DOI: 10.1016/j.jhep.2014.10.019]

18 Maslak E, Gregorius A, Chlipicki S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted against hepatic steatosis in mice fed a high-fat diet. J Hepatol 2015; 72: 115-124 [PMID: 26187871 DOI: 10.1016/j.jhep.2015.07.012]

19 Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of “Redox Chain” and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89: 99-125 [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012]

20 Woo S, Yoon M, Kim J, Hong Y, Kim MY, Shin SS, Yoon M. The anti-angiogenic herbal extract from Melissa officinalis inhibits adipogenesis in 3T3-L1 adipocytes and suppresses adipocyte hypertrophy in high fat diet-induced obese C57BL/6J mice. J Ethnopharmacol 2016; 178: 238-250 [PMID: 26702505 DOI: 10.1016/j.jep.2015.12.015]

21 Zhang JG, Liu Q, Liu ZL, Li Y, Yi LT. Antihyperglycemic activity of Anoectochilus roxburghii polysaccharide in diabetic mice induced by high-fat diet and streptozotocin. J Ethnopharmacol 2015; 164: 180-185 [PMID: 25660333 DOI: 10.1016/j.jep.2015.01.050]

22 Xia W, Sun C, Zhao Y, Wu L. Hypolipidemic and antioxidant activities of sanchi (radix notoginseng) in rats fed with a high fat diet. Phytotherapy 2011; 18: 516-520 [PMID: 21065682 DOI: 10.1016/j.phymed.2010.09.007]

23 Yuan L, Bambah K. Bile acid receptors and nonalcoholic fatty liver disease. World J Hepatol 2015; 7: 2811-2818 [PMID: 26666962 DOI: 10.4245/wjhf.v7.i28.2811]

24 Xu X, Lu L, Dong Q, Li X, Zhang N, Yin X, Xuan S. Research advances in the relationship between nonalcoholic fatty liver disease and atherosclerosis. Lipids Health Dis 2015; 14: 158 [PMID: 26631018 DOI: 10.1186/s12944-015-0414-z]

25 Yang Y, Li W, Liu Y, Sun Y, Li Y, Yao Q, Li J, Zhang Q, Gao Y, Gao L, Zhao J. Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPK pathway. J Nutr Biochem 2014; 25: 1207-1217 [PMID: 25123628 DOI: 10.1016/j.jnutbio.2014.06.001]

26 Dong SH, Zhang JF, Tang YM, Li J, Xiang YR, Liang QL. Chemical constituents from the tubers of Scirpus yagara and their anti-inflammatory activities. J Asian Nat Prod Res 2016; 18: 791-797 [PMID: 26599690]

27 Li Y, Wang X, He H, Zhang D, Jiang Y, Yang X, Wang F, Tang Z, Song X, Yue Z. Steroidal Sapogenins from the Roots and Rhizomes of Tupistra chinensis. Molecules 2015; 20: 13659-13669 [PMID: 26225948 DOI: 10.3390/molecules200813659]

28 Deng X, Zhang Y, Jiang F, Chen R, Peng P, Wen B, Liang J. The Chinese herb-derived Sparstolonin B suppresses HIV-1 transcription. Viral J 2015; 12: 108 [PMID: 26206295 DOI: 10.1186/s12985-015-0339-8]

29 He Y, Gai Y, Wu X, Wan H. Quantitatively analyze composition principle of Ma Huang Tang by structural equation modeling. J Ethnopharmacol 2012; 143: 851-858 [PMID: 22925947 DOI: 10.1016/j.jep.2012.08.010]
lipid peroxidation and TNF-alpha expression in liver tissues of rats with nonalcoholic steatohepatitis. Zhongguo Zhejiang Jiao Xi Zhi 2010; 35: 1292-1297 [PMID: 20707200]

57 Liu HK, Hung TM, Huang HC, Lee JJ, Chang CC, Cheng JJ, Lin LC, Huang C. Bai-Hu-Lian-Ren-Sheng-Tang Decoction Reduces Fatty Liver by Activating AMP-Activated Protein Kinase In Vivo and In Vivo. Evid Based Complement Alternat Med 2015; 2015: 651734 [PMID: 26508982 DOI: 10.1155/2015/651734]

58 Jiang Y, Chen L, Wang, H, Narisi B, Chen B. Li-Gan-Shi-Liu-Tang: Meta Analysis of anti-inflammatory effects in healthy volunteers. Zhongguo Zhongxi Yixue 2015; 35: 507-510 [PMID: 26692086 DOI: 10.1374/wjg.v21.i27.8352]

59 Wang YL, Liu LJ, Zhao WH, Li JX. Intervening TNF-α via PPARγ with Gegenqinlian Decoction in Experimental Nonalcoholic Fatty Liver Disease. Evid Based Complement Alternat Med 2015; 2015: 715638 [DOI: 10.1155/2015/715638]

60 Yuanyuan W, Linghua J, Lin Z, Suhua L, Jiayu Z, Yongzhi S, Chunya C, Jian Q. Effect of a combination of calorie-restriction therapy and Lingzhihuagan decoction on levels of fasting lipid and inflammatory cytokines in a high-fat diet induced hyperlipidemia rat model. J Tradit Chin Med 2015; 35: 218-221 [PMID: 25975056]

61 Li T, Han JY, Wang BB, Chen B, Li YM, Yu ZJ, Xue X, Zhang JP, Wang XB, Zeng H, Ma YL. [Huanglian jiedu decoction regulated and controlled differentiation of monocytes, macrophages, and foam cells: an experimental study]. Zhongguo Zhejiang Jiao Xi He Zhi Zazhi 2014; 34: 1096-1102 [PMID: 25335334]

62 Xie H, Zhang H, Cao K, He P, Dai H, He S. Analysis of anti-asthmatic drug patents published in China between 2004 and 2013. Expert Opin Ther Pat 2016; 26: 363-376 [PMID: 26742645 DOI: 10.1517/13543776.2016.1136289]

63 Hu SC, Lee IT, Yen MH, Lin CC, Lee CW, Yen FL. Anti-inflammatory activity of Bupleurum chinense, Bupleurum kaoi and nanoparticle formulation of their major bioactive compound saikosaponin-d. J Ethnopharmacol 2016; 179: 432-442 [PMID: 26740471 DOI: 10.1016/j.jep.2015.12.058]

64 Wu H, She S, Liu Y, Xiong W, Guo Y, Fang H, Chen H, Li J. Protective effect of Sijunzi decoction on neuromuscular junction ultrastructure in autoimmune myasthenia gravis rats. J Tradit Chin Med 2013; 33: 669-673 [PMID: 24660594]

65 Liang B, Wei W, Wang J, Zhang M, Xu W, Fu W, Xiao H, Tang L. Protective effects of Semiaquilegia adoxoides n-butanol extract against hydrogen peroxide-induced oxidative stress in human lens epithelial cells. Pharm Biol 2016; Epub ahead of print [PMID: 26704474]

66 Chen Y, Xian Y, Lai Z, Luo S, Chan WY, Lin ZX. Anti-inflammatory and anti-allergic effects and underlying mechanisms of Huang-Lian-Jie-Du extract: Implication for atopic dermatitis treatment. J Ethnopharmacol 2016; 185: 41-52 [PMID: 26976763 DOI: 10.1016/j.jep.2016.03.028]

67 Dong J, Liu S, Zhu XL, Zhang XT, Jiang Y. [Ti-Al artificial membrane compound membrane refining Chinese medicinal materials extract]. Zhong Wai Cai 2014; 37: 1673-1675 [PMID: 25857117]

68 Santamarina AB, Oliveira JL, Silva FP, Carlier J, Menniti LV, Santana AA, de Souza GH, Ribeiro EB, Oller do Nascimento CM, Lira FS, Oyama LM. Green Tea Extract Rich in Epigallocatechin-3-Gallate Prevents Fatty Liver by AMPK Activation via LKB1 in Mice Fed a High-Fat Diet. PLoS One 2015; 10: e0141227 [PMID: 26735464 DOI: 10.1371/journal.pone.0141227]

69 Nair VY, Balakrishnan N, Antony Santiago JV. Petroselinum crispum extract attenuates hepatic steatosis in rats fed with fructose enriched diet. Bratisl Lek Listy 2015; 116: 547-553 [PMID: 26435020]

70 Kuo CY, Sun CM, Ou JC, Tsai WJ. A tumor cell growth inhibitor from Polygonum hydropneum Onh. Life Sci 1997; 61: 2335-2344 [PMID: 9408056]

71 Chen CH, Chang MY, Lin YS, Lin DG, Chen SW, Chao PM. A herbal extract with acetyl-coenzyme A carboxylase inhibitory activity and its potential for treating metabolic syndrome.
Metabolism 2009; 58: 1297-1305 [PMID: 19500808 DOI: 10.1016/j.metabol.2009.04.012]

Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikennov TE, Kordari P, Chirala SS, Heid WC, Walij SK. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci USA 2006; 103: 8552-8557 [PMID: 16717184]

Savage DB, Choi CS, Samuel VT, Liu Z, Zhang D, Wang A, Zhang XM, Cline GW, Yu XX, Geiser JG, Bhanot S, Monia BP, Shulman GI. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 2006; 116: 817-824 [PMID: 16485939]

Chao PM, Kuo YH, Lin YS, Chen CH, Chen SW, Kuo YH. The metabolic benefits of Polygonum hypotenatum Ohwi in HepG2 cells and Wistar rats under lipogenic stress. J Agric Food Chem 2010; 58: 5174-5180 [PMID: 20230058 DOI: 10.1021/jf100046h]

Fiintini D, Chinnal M, Cafiero G, Espósito C, Giordano U, Turchetta A, Pescosolido S, Pongiglione G, Nobili V. Early left ventricular abnormality/dysfunction in obese children affected by NALFD. Nutr Metab Cardiovasc Dis 2014; 24: 72-74 [PMID: 24119987 DOI: 10.1016/j.numecd.2013.06.005]

Yuan HD, Huang YH, Chung SH, Jin GZ, Piao GC. An active part of Artemisia sacorum Ledebe. attenuates hepatic lipid accumulation through activating AMP-activated protein kinase in human HepG2 cells. Biosci Biotechnol Biochem 2010; 74: 322-328 [PMID: 20139613]

Liu Y, Wang D, Zhang D, Lv Y, Wei Y, Wu W, Zhou F, Tang M, Mao T, Li M, Ji B. Inhibitory effect of blackberry polyphenolic compounds on oleic acid-induced hepatic steatosis in vitro. J Agric Food Chem 2011; 59: 12254-12263 [PMID: 21999238 DOI: 10.1021/jf203136j]

Lee CH, Kuo CY, Wang CJ, Wang CP, Lee YR, Hung CN, Lee HJ. A polyphenol extract of Hibiscus sabdariffa L. ameliorates acetaminophen-induced hepatic steatosis by attenuating the mitochondrial dysfunction in vivo and in vitro. Biosci Biotechnol Biochem 2012; 76: 646-651 [PMID: 22484925]

Aoun M, Michel F, Fourret G, Casas F, Jullien M, Wurtzack-Cabelló C, Ramos J, Cristol JP, Coudray C, Carbonneau MA, Feillet-Coudray C. A polyphenol extract modifies quantity but not quality of liver fatty acid content in high-fat-high-sucrose diet-fed rats: possible implication of the sirtuin pathway. Br J Nutr 2010; 104: 1760-1770 [PMID: 20673376 DOI: 10.1017/S0007114510001500]

Park HJ, Jung UJ, Lee MK, Cho SJ, Jung HK, Hong JH, Park YB, Kim SR, Shim S, Jung J, Choi MS. Modulation of lipid metabolism by polyphenol-rich grape skin extract improves liver steatosis and adiposity in high fat fed mice. Mol Nutr Food Res 2013; 57: 360-362 [PMID: 23109491 DOI: 10.1002/mnr.200447]

Vitaglione P, Morisco F, Mazzone G, Amoruso DC, Ribero MT, Romano A, Fogliano V, Caporaso N, D’Argenio G. Coffee reduces body weight and adiposity in high fat fed mice. Fundam Clin Pharmacol 2015; 29: 297-304 [PMID: 25431018 DOI: 10.1111/fcp.12409]

Zhang T, Yang L, Jiang GS. Bioactive comparison of main components from unripe fruits of Rubus chinensis Hu and identification of the effective component. Food Funct 2015; 6: 2205-2214 [PMID: 26053738 DOI: 10.1039/c5fo00406c]

Wang Y, Li JY, Han M, Wang WL, Li YZ. Prevention and treatment effect of total flavonoids in Stellera chamaejasme L. on nonalcoholic fatty liver in rats. Lipo phosphatidyl ethanolamine (Phytopharm 2015; 18: 85 [PMID: 26453492 DOI: 10.1136/pharmacoepidemiology-2015-007924]

Qin N, Chen Y, Jin MN, Zhang C, Qiao W, Yue XL, Duan HQ, Niu WY. Anti-obesity and anti-diabetic effects of flavonoid derivative (Fla-CN) via microRNA in high fat diet induced obesity mice. Eur J Pharm Sci 2016; 52: 56-63 [PMID: 26598088 DOI: 10.1016/j.ejps.2015.11.013]

Kim CS, Kwon Y, Choe SY, Hong SM, Yoo H, Goto T, Kawada T, Choi HS, Joe Y, Chung HT, Yu R. Quercetin reduces obesity-induced hepatoesthenosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr Metab (Lond) 2015; 12: 33 [PMID: 26445592 DOI: 10.1186/s1296-015-0030-5]

Mohan SK, Veeraraghavan VP, Jaimi E. Effect of pioglitazone, quercetin and hydroxy cistric acid on extracellular matrix components in experimentally induced non-alcoholic steatohepatitis. Iran J Basic Med Sci 2015; 18: 832-836 [PMID: 26557974]

Pisonero-Vaquerio S, Martinez-Ferrerás A, García-Medialva MV, Martinez-Florez S, Fernández A, Benet M, Olcoz JL, Jover R, González-Gallego J, Sánchez-Camps S. Quercetin ameliorates dysregulation of lipid metabolism genes via the P38/PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease. Mol Nutr Food Res 2015; 59: 879-893 [PMID: 25712622 DOI: 10.1002/mnr.20143]

Panchal SK, Poudyal H, Arumugam TV, Brown L. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J Nutr 2011; 114: 1062-1069 [PMID: 21508207 DOI: 10.3945/jn.111.137877]
100 OK HM, Gebreammanuel MR, Oh SA, Jeon H, Lee WJ, Kwon O. A Root-Based Combination Supplement Containing Pueraaria lobata and Rehmannia glutinosa and Exercise Preserve Bone Mass in Ovariectomized Rats Fed a High-Fat Diet. Calcif Tissue Int 2015; 96: 632-633 [PMID: 26319677 DOI: 10.1007/s00223-015-0057-7]

101 Fu Y, Luo J, Jia Z, Zhen W, Zhou K, Gilbert E, Liu D. Baicalin Protects against Type 2 Diabetes via Promoting Igf-1 signaling Function in Obese Diabetic Mice. Int J Endocrinol 2014; 2014: 846742 [PMID: 25147566 DOI: 10.1155/2014/846742]

102 Gao M, Ma Y, Liu D. Rutin suppresses palmitic acids-triggered inflammation in macrophages and blocks high fat diet-induced obesity and fatty liver in mice. Pharm Res 2013; 30: 2940-2950 [PMID: 23783345 DOI: 10.1007/s11095-013-1125-1]

103 Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM, Shan Q, Hu B. Troxerutin improves hepatic lipid homeostasis by restoring NAD(+) depletion-mediated dysfunction of lipin 1 signaling in high-fat diet-treated mice. Biochem Pharmacol 2014; 91: 74-86 [PMID: 25026599 DOI: 10.1016/j.bcp.2014.07.002]

104 Liu Y, Fu X, Lan N, Li S, Zhang J, Wang S, Li C, Zhang Y, Huang T, Zhang L. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 2014; 267: 178-188 [PMID: 24466364 DOI: 10.1016/j.bbr.2014.02.040]

105 Liu Q, Wang CY, Liu Z, Ma XS, Ye YH, Chen SS, Bai XY. Hydroxysafflor yellow A suppresses liver fibrosis induced by carbon tetrachloride with high-fat diet by regulating PPAR-γ/p38 MAPK signaling. Pharm Biol 2014; 52: 1085-1093 [PMID: 24618007 DOI: 10.3109/13880209.2013.877491]

106 Susuertepanya W, Werawatganon D, Siriviriyakul P, Klaikeaw C, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Adibi P, Rafiei R, Hekmatdoost A. Resveratrol improves memory deficit in mice fed a high-fat, high-sucrose diet. Nutr Res Pract 2014; 8: 544-549 [PMID: 25324935 DOI: 10.14162/nrp.2014.8.5.544]

107 Song H, Yuan N, Yao S, Li F, Wang J, Fang Y, Qin S. Inhibitory effect of the combination therapy of simvastatin and pinocembrin on atherosclerosis in Apo-E deficient mice. Lipoic Acid Health Dis 2012; 11: 166 [PMID: 23216643 DOI: 10.1186/511x-11-166]

108 Faghihzadeh F, Adibi P, Rafiei R, Hekmatdoost A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res 2014; 34: 837-843 [PMID: 25311610 DOI: 10.1016/j.nutres.2014.09.005]

109 Peluso I, Manafikhi H, Reggi R, Palmeri M. Effects of red wine on postprandial stress: potential implication in non-alcoholic fatty liver disease development. Eur J Nutr 2015; 54: 497-507 [PMID: 25772634 DOI: 10.1007/s00394-015-0877-2]

110 Frémont L. Biological effects of resveratrol. Life Sci 2000; 66: 663-673 [PMID: 10680575]

111 Baur JA, Pearson KJ, Price NL, Jamieson HA, Lin C, Kalra A, Prabhuv VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Posasla S, Becker KG, Boss O, Owim D, Wang M, Ramsawamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Nasav P, Puisgver P, Ingram UK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 441: 337-342 [PMID: 17086191]

112 Shang J, Chen LL, Xiao FX, Sun H, Ding HC, Xiao H. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin 2008; 29: 698-706 [PMID: 18501156 DOI: 10.1111/j.1744-7548.2008.00807.x]

113 Jeon BT, Jeong EA, Shin H, Lee Y, Lee DH, Kim HJ, Kang SS, Cho GJ, Choi WS, Roh GS. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 2012; 61: 1444-1454 [PMID: 22362175 DOI: 10.2337/db11-1498]

114 Choi JJ, Ahn JY, Kim S, Choi MS, Ha TY. Resveratrol attenuates the expression of HMGCoa reductase mRNA in hamsters. Biochem Biophys Res Commun 2008; 367: 190-194 [PMID: 18166149 DOI: 10.1016/0006-291X(79)90308-2]

115 Gómez-Zorita S, Fernández-Qintela A, Macarrulla MT, Aguirre L, Hijon A, Bujanda L, Milagro F, Martinez JA, Portillo JP, Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 2012; 107: 202-210 [PMID: 21733326 DOI: 10.1017/S000711451002753]

116 Alberdi G, Rodrigo VM, Macarrulla MT, Miranda J, Churuca L, Portillo JP. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition 2013; 29: 562-567 [PMID: 23274094 DOI: 10.1016/j.nut.2012.09.011]

117 Bagul PK, Middella H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarthy S, Banerjee SK. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol Res 2012; 66: 260-268 [PMID: 22627169 DOI: 10.1016/j.phrs.2012.05.003]

118 Alkalidhy H, Moore W, Zhang Y, McMillan R, Wang A, Ali M, Suh KS, Zhen W, Cheng Z, Jia Z, Huver M, Liu D. Small Molecule Kaempferol Promotes Insulin Sensitivity and Protected Pancreatic β-Cells in Middle-Aged Obese Diabetic Mice. J Diabetes Res 2015; 2015: 532984 [PMID: 26064984 DOI: 10.1155/2015/532984]

119 Choi HN, Kang MJ, Lee SJ, Kim JI. Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet. Nutr Res Pract 2014; 8: 339-346 [PMID: 25365763 DOI: 10.4162/nrp.2014.8.4.339]
129 Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. *Food Funct* 2014; 5: 1241-1249 [PMID: 24702755 DOI: 10.1039/c4fo00399a]

130 Chachay VS, Macdonald GA, Martin JH, Whitehead JP, O’Moore-Sullivan TM, Lee P, Franklin M, Klein K, Taylor PJ, Ferguson M, Coombes JS, Thomas GP, Cowin CJ, Kirkpatrick CM, Prins JB, Hickman IJ. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. *Clin Gastroenterol Hepatol* 2014; 12: 2092-2103. e1-6 [PMID: 24582567 DOI: 10.1016/j.cgh.2014.02.024]

131 Noorafshan A, Ashkani-Esfahani S. A review of therapeutic effects of curcumin. *Curr Pharm Des* 2013; 19: 2032-2046 [PMID: 23116311]

132 Pan MH, Lai CS, Tsai ML, Ho CT. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. *Mol Nutr Food Res* 2014; 58: 147-171 [PMID: 24302567 DOI: 10.1002/mnfr.201300522]

133 Leclercq IA, Farrell GC, Sempoux C, dela Peña A, Horsmans Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. *J Hepatol* 2004; 41: 926-934 [PMID: 15582125]

134 Vizzutti F, Provenzano A, Galastri S, Milani S, Delogu W, Novo E, Caligiuri A, Zamara E, Arena U, Laffi G, Parola M, Pinzani M, Marra F. Curcumin limits the fibrogenic evolution of experimental steatohepatitis. *Lab Invest* 2010; 90: 104-115 [PMID: 19901911 DOI: 10.1038/labinvest.2009.112]

135 Kuzu N, Bahcecioglu IH, Dagli AF, Ozercan IH, Ustündag B, Bahcecioglu AM, Azak M, Demir E. The effects of *Orthosiphon stamineus* extract decreases body weight in high-fat diet fed mice. *Eur J Nutr* 2016; 55: 2092-2103. [PMID: 26949253 DOI: 10.1007/s00394-015-0910-x]

136 Wang YC, Chachay VS, Chen Y, Kim S, Kim J, Kim B, Wu C, Lee JH, Jun HJ, Kim N, Lee D, Lee J. Ursolic acid improves lipid and glucose metabolism in high-fat-fed C57BL/6j mice by activating peroxisome proliferator-activated receptor alpha and hepatic autophagy. *Mol Nutr Food Res* 2015; 59: 344-354 [PMID: 25418615 DOI: 10.1002/mnfr.201403995]

137 Wang CH, Wang ZT, Bligh SW, White KN, White CJ. Pharmacokinetics and tissue distribution of gentiopicroside following oral and intravenous administration in mice. *Eur J Drug Metab Pharmacokinet* 2004; 29: 199-203 [PMID: 15537172]

138 Kim KE, Ko KH, Heo RW, Yi CO, Shin HJ, Kim JY, Park JH, Nam S, Kim H, Roh GS. Artemisia annua Leaf Extract Attenuates Hepatic Steatosis and Inflammation in High-Fat Diet-Fed Mice. *J Med Food* 2016; 19: 290-299 [PMID: 26741655 DOI: 10.1089/jmf.2015.3527]

139 Li J, Wang RF, Yang L, Wang ZT. [Structure and biological action on cardiovascular systems of saponins from Panax notoginseng]. *Zhongguo Zhong Yao ZaZhi* 2015; 40: 3480-3487 [PMID: 26978992]

140 Liu X, Yu JL, Liu M, Shu JC, Huang HL. Research progress of bioactivity of steroidal saponins in recent ten years. *Zhongguo Zhong Yao ZaZhi* 2014; 35: 2518-2523 [PMID: 26697672]

141 Zhang ZY, Wu JP, Gao BB, Ren HT, Liu YL, Li XR, Li KP, Xu QM, Yang SL. Two new 28-nor-oleane-type triterpene saponins from roots of Camellia oleifera and their cytotoxic activity. *J Asian Nat Prod Res* 2016; 18: 669-676 [PMID: 26982333]

142 Yin LH, Xu LN, Wang XN, Lu BN, Liu YT, Peng JY. An Economical method for isolation of saponin from Dioscorea zingiberensis Makino by HSCCC coupled with ELSD, and a computer-aided UNIFAC mathematical model. *Chromatographia* 2009; 71: 15-23 [DOI: 10.3635/s10337-009-1407-2]

143 Hsieh MJ, Tsai TL, Hsieh YS, Wang CJ, Chiao HL. Diosin-induced autophagy mitigates cell apoptosis through modulation of PI3K/Akt and ERK and JNK signaling pathways in human lung cancer cell lines. *Arch Toxicol* 2013; 87: 1927-1937 [DOI: 10.1007/s00204-013-1141-6]

144 Li H, Huang W, Wen Y, Gong G, Zhao Q, Yu G. Anti-thrombotic activity and chemical characterization of steroidal saponins from *Dioscorea zingiberensis* C.H. Wright. *Fittoterapia* 2010; 81: 1147-1156 [PMID: 20695357 DOI: 10.1016/j.fitote.2010.07.016]

145 Li M, Han X, Yu B. Synthesis of monomethylylated dioscin derivatives and their antitumor activities. *Carbohydr Res* 2003; 338: 117-121 [PMID: 12526835]

146 Liu M, Xu L, Yin L, Qi Y, Xu Y, Han X, Zhao Y, Sun H, Hao J, Lin Y, Liu K, Peng J. Potent effects of dioscin against obesity in mice. *Sci Rep* 2015; 5: 7973 [PMID: 25609476 DOI: 10.1038/srep07973]

147 Shen L, Xiong Y, Wang DQ, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMP-activated protein kinase in obese rats. *J Lipid Res* 2013; 54: 1430-1438 [PMID: 23434611 DOI: 10.1194/jlr.M035907]

148 Yu H, Zhen J, Yang Y, Gu J, Wu S, Liu Q. Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model. *J Cell Mol Med* 2016; 20: 623-631 [PMID: 26869403 DOI: 10.1111/jcmm.12739]

149 Wang T, Choi RC, Li J, Bi CW, Ran W, Chen X, Dong TT, Bi K, Tsim KW. Trillin, a steroidal saponin isolated from the rhizomes of *Dioscorea nipponica*, exerts protective effects against hyperlipidemia and oxidative stress. *J Ethnopharmacol* 2012; 139: 214-220 [PMID: 22100563 DOI: 10.1016/j.jep.2011.11.001]

150 Stegelmeier BL, Brown AW, Welch KD. Safety concerns of herbal products and traditional Chinese herbal medicines: dehydroepiandrosterone and aromatase inhibitors. *J Agric Food Chem* 2015; 63: 1433-1437 [PMID: 26152912 DOI: 10.1021/jf511902z]

151 Kukula-Koch W, Koch W, Angelis A, Halabalaki M, Aliagnnis N. Application of pH-zone refining hydrostatic countercurrent chromatography (hCCC) for the recovery of antioxidant phenolics and the isolation of alkaloids from Siberian barberry herb. *Food Chem* 2016; 203: 394-401 [PMID: 26948630 DOI: 10.1016/j.foodchem.2016.02.096]

152 Zhang J, Cao H, Zhang B, Cao H, Xu X, Ruan H, Yi T, Tan L, Qu R, Song G, Wang B, Hu T. Berberine potently attenuates...
intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling. *J Cell Mol Med* 2013; 17: 1484-1493 [PMID: 24015932 DOI: 10.1111/jcmm.12119]

Zhang H, Wei I, Xue R, Wu JD, Zhao W, Wang ZZ, Wang SK, Zhou ZX, Song DQ, Wang YM, Pan HN, Kong WJ, Jiang JD. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. *Metabolism* 2010; 59: 285-292 [PMID: 19800084 DOI: 10.1016/j.metabol.2009.07.029]

Zhou L, Wang X, Yang Y, Wu L, Li F, Zhang R, Yuan G, Wang N, Chen M, Ning G. Berberine attenuates cAMP-induced lipolysis via reducing the inhibition of phosphodiesterase in 3T3-L1 adipocytes. *Biochim Biophys Acta* 2011; 1812: 527-535 [PMID: 20969954 DOI: 10.1016/j.bbadis.2010.10.001]

Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. *Nat Med* 2004; 10: 1344-1351 [PMID: 15531889]

Yuan X, Wang J, Tang X, Li Y, Xia P, Gao X. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. *J Transl Med* 2015; 13: 24 [PMID: 25623289 DOI: 10.1186/s12967-015-0383-6]

Zhang Y, Wang S, Li Y, Xiao Z, Hu Z, Zhang J. Sophocarpine and matrine inhibit the production of TNF-alpha and IL-6 in murine macrophages and prevent cachexia-related symptoms induced by colon26 adenocarcinoma in mice. *Int Immunopharmacol* 2008; 8: 1767-1772 [PMID: 18775799 DOI: 10.1016/j.intimp.2008.08.008]

Kim SJ, Lee SJ, Lee S, Chae S, Han MD, Mar W, Nam KW. Rutecarpine ameliorates bodyweight gain through the inhibition of orexigenic neuropeptides NPY and AgRP in mice. *Biochem Biophys Res Commun* 2009; 389: 437-442 [PMID: 19732749 DOI: 10.1016/j.bbrc.2009.08.161]

Shi L, Shi L, Zhang H, Hu Z, Wang C, Zhang D, Song G. Oxymatrine ameliorates non-alcoholic fatty liver disease in rats through peroxisome proliferator-activated receptor-α activation. *Mol Med Rep* 2013; 8: 439-445 [PMID: 23754536 DOI: 10.3892/mmr.2013.1512]

Kwan HY, Niu X, Dai W, Tong T, Chao X, Su T, Chan CL, Lee KC, Fu X, Yi H, Yu H, Li T, Tse AK, Fong WF, Pan SY, Lu A, Yu ZL. Lipidomic-based investigation into the regulatory effect of Schisandrin B on palmitic acid level in non-alcoholic steatotic livers. *Sci Rep* 2015; 5: 9114 [PMID: 25766252 DOI: 10.1038/srep09114]

Lee JH, Jung JY, Jang EL, Jegal KH, Moon SY, Ku SK, Kang SH, Cho IJ, Park SJ, Lee JR, Zhao RJ, Kim SC, Kim YW. Combination of honokiol and magnolol inhibits hepatic steatosis through AMPK-SREBP-1c pathway. *Exp Biol Med* (Maywood) 2015; 240: 508-518 [PMID: 25125496 DOI: 10.1177/1535370214547123]

Zhang Y, Fan S, Hu N, Gu M, Chu C, Li Y, Lu X, Huang C. Rhein Reduces Fat Weight in db/db Mouse and Prevents Diet-Induced Obesity in C57Bl/6 Mouse through the Inhibition of PPARy Signaling. *PPAR Res* 2012; 2012: 374936 [PMID: 23049539 DOI: 10.1155/2012/374936]

Li J, Ding L, Song B, Xiao X, Qi M, Yang Q, Yang Q, Tang X, Wang Z, Yang L. Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway. *Eur J Pharmacol* 2016; 779: 99-109 [PMID: 26626587 DOI: 10.1016/j.ejphar.2015.11.045]
