Surgical and Oncological Outcomes of Robotic Resection for Sigmoid and Rectal Cancer: Analysis of 109 Patients from A Single Center in China

Jianhong Peng
Sun Yat-sen University Cancer Center

Weihao Li (liwh1@sysucc.org.cn)
Sun Yat-sen University Cancer Center
https://orcid.org/0000-0003-4593-4264

Jinghua Tang
Sun Yat-sen University Cancer Center

Yuan Li
Sun Yat-sen University Cancer Center

Xueying Li
Sun Yat-sen University Cancer Center

Xiaojun Wu
Sun Yat-sen University Cancer Center

Zhenhai Lu
Sun Yat-sen University Cancer Center

Junzhong Lin
Sun Yat-sen University Cancer Center

Zhizhong Pan
Sun Yat-sen University Cancer Center

Research

Keywords: sigmoid cancer, rectal cancer, robotic surgery, surgery outcome, oncological outcome, neoadjuvant chemoradiotherapy

DOI: https://doi.org/10.21203/rs.3.rs-150874/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Robotic colorectal surgery has been increasingly performed in recent years. The safety and feasibility of its application has also been demonstrated worldwide. However, limited studies have presented clinical data for patients with colorectal cancer (CRC) receiving robotic surgery in China. The aim of this study is to present short-term clinical outcomes of robotic surgery and further confirm its safety and feasibility in Chinese CRC patients.

Methods: The clinical data of 109 consecutive CRC patients who received robotic surgery at Sun Yat-sen University Cancer Center between June 2016 and May 2019 were retrospectively reviewed. Patient characteristics, tumor traits, treatment details, complications, pathological details, and survival status were evaluated.

Results: Among the 109 patients, 35 (32.1%) had sigmoid cancer, and 74 (67.9%) had rectal cancer. Thirty-seven (33.9%) patients underwent neoadjuvant chemoradiotherapy. Ten (9.2%) patients underwent sigmoidectomy, 38 (34.9%) underwent high anterior resection (HAR), 45 (41.3%) underwent low anterior resection (LAR), and 16 (14.7%) underwent abdominoperineal resection (APR). The median surgical procedure time was 270 min (range 120 - 465 min). Pathologically complete resection was achieved in all patients. There was no postoperative mortality. Complications occurred in 11 (10.1%) patients, including 3 (2.8%) anastomotic leakage, 1 (0.9%) anastomotic bleeding, 1 (0.9%) pelvic hemorrhage, 4 (3.7%) intestinal obstruction, 2 (1.8%) chylous leakage, and 1 (0.9%) delayed wound union. At a median follow-up of 17 months (range 1−37 months), 1 (0.9%) patient developed local recurrence and 5 (4.6%) developed distant metastasis, with one death due to disease progression.

Conclusions: Our results suggest that robotic surgery is technically feasible and safe for Chinese CRC patients, especially for rectal cancer patients who received neoadjuvant treatment. A robotic laparoscope with large magnification showed a clear surgical space for pelvic autonomic nerve preservation in cases of mesorectal edema.

Background

Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer death worldwide (Bray et al., 2018), which is an increasingly important obstacle to gains in life expectancy in China (Chen et al., 2016; Feng et al., 2019; Zhang et al., 2017). Despite improvements in the comprehensive treatment and management of CRC patients in recent years, surgery remains the most effective treatment and offers the possibility of a cure for CRC. The quality of surgery is closely associated with oncological outcome. Therefore, a suitable technique for CRC surgery is urgently needed in clinical practice.

Increasing evidence supported by randomized controlled trials demonstrated that laparoscopic surgery was not inferior to open surgery with respect to short-term surgical outcomes and long-term oncological outcomes (Nelson et al., 2004; Jayne et al., 2007; Guillou et al., 2005; Ng et al., 2008; Lujan et al., 2009), which is becoming the new standard for colorectal cancer treatment. Many advantages of laparoscopic surgery have been reported, including shorter length of stay, smaller scars, and reduced recovery time (Weeks et al., 2002). However, laparoscopic surgery may present some technical drawbacks, such as loss of three-dimensional (3D) view, long instruments that can increase physiological hand tremor, and loss of dexterity. Recently, robot-assisted laparoscopic surgery (RALS) using the Intuitive Surgical®, da Vinci™ surgical system (Intuitive Surgical®, Sunnyvale, CA) was developed to facilitate minimally invasive surgery, and this technique provides a stable 3D view and intuitively transfers movements from the handle to the tip of the instrument with tremor filtering to offer enhanced dexterity (Ballantyne, 2002).

Robotic colorectal surgery has been increasingly performed in recent years, and the safety and feasibility have also been confirmed in previous studies (Pai et al., 2015; Gomez Ruiz et al., 2016; Shiomi et al., 2014). Limited studies have presented clinical data for patients with CRC receiving robotic surgery in China. The aim of this study is to present short-term surgical and oncological outcomes of robotic surgery and further confirm its safety and feasibility in Chinese patients with sigmoid and rectal cancer.

Patients And Methods

Patient selection

The medical records of 109 consecutive patients were reviewed. All patients were diagnosed with sigmoid colon or rectal cancer and underwent robotic surgery between June 2016 and May 2019 at Sun Yat-sen University Cancer Center (Guangzhou, China). All cases were staged according to the 8th edition American Joint Committee on Cancer (AJCC) staging system. The following inclusion criteria were used: (1) histologically confirmed sigmoid colon or rectal adenocarcinoma; (2) underwent robotic curative resection of tumor using the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), and (3) had a complete record of the whole treatment. The patient demographics, tumor characteristics, type of procedure performed, comorbid conditions, operative variables, including operative time, conversion to open, lymph nodes retrieved, estimated blood loss, and blood transfusion, and postoperative variables, including length of stay, and 30-day mortality were carefully reviewed, and oncological outcomes were assessed. The present study was performed according to the ethical standards of the World Medical Association Declaration of Helsinki and was approved by the Institutional Review Board and Independent Ethics Committees of Sun Yat-sen University Cancer Center. The informed consent requirement was waived based on the nature of this retrospective study, in which patient data were kept confidential.

Surgical Techniques

The exact trocar placement is shown in Fig. 1A. There are 4 trocars placed for the surgery: 1 for the camera, 2 for the robotic arms, and 1 for the assistant. A camera port (12 mm) was placed 3−4 cm above and to the right of the umbilicus. Robotic arm 1 (8 mm) was placed right of the iliac fossa along a line drawn...
from the umbilicus to the anterior superior iliac spine, one third of the way from the anterior superior iliac spine. Robotic arm 2 (8 mm) was placed 3–4 cm below the xiphoid process. An assistant port was placed (12 mm) at the intersection of the vertical line through McBurney’s point and the horizontal line through the camera port.

Total mesorectal excision (TME) and tumor-specific mesorectal excision (TSME) were performed as previously described (Xu and Qin, 2016). The procedure of pelvic autonomic nerves preservation (PANP) was performed at the same time. The sigmoid mesocolon was cut along the right pararectal sulcus using the middle approach, and the inferior mesenteric artery was fully exposed. The inferior mesenteric artery was clamped and cut off approximately 1 cm from the root of the blood vessel in order to protect the superior hypogastric plexus. The “cavity effect” of electric heating equipment was quickly exposed, and Toldt’s plane was subsequently entered. The white filamentous connective tissue in Toldt’s space was cut sharply using an electric knife and kept in the neurosurgical plane of the white filamentous connective tissue at all times. We separated the posterior wall of the rectum closely behind the fascia propria of the rectum under direct vision in order to protect the inferior hypogastric nerve and the anterior sacral vessel. Similarly, sharp separation of the rectal lateral walls was performed near the outer edge of the rectal ligament and the inside edge of the pelvic plexus to protect the pelvic plexus. The anterior rectal space between the anterior and posterior Denonvilliers’ fascia was separated to protect the branches of the pelvic plexus.

Follow-up

Patients were scheduled for subsequent visits every 3 months for 2 years then semiannually until 3 years after surgery. Physical examination, blood tests for carcinoembryonic antigen (CEA) and carbohydrate antigen 19–9 (CA19-9) levels, abdominal ultrasonography, and chest X-rays were performed every 3 months postoperatively. Chest/abdominal/pelvic computed tomography (CT) and colonoscopy were performed annually. Disease-free survival (DFS) was defined as the interval from surgery to disease recurrence, death, or the last follow-up. Overall survival (OS) was defined as the interval from the date of surgery until death of any cause or the last follow-up. Patients without any event (metastasis or death) at the last follow-up date were regarded as random censoring. The last follow-up visit was in July 2019.

Statistical analysis

All statistical analyses were performed using IBM SPSS statistics software, version 21.0 (IBM Corp., Armonk, NY, USA). All of the continuous data are expressed as the means with standard deviation and range. All of the categorical data were calculated as numbers and percentages. The 2-year OS rate and 2-year DFS rate were calculated using the Kaplan-Meier method.

Results

Patient characteristics

Over a 3-year period, 10 (9.2%) patients underwent sigmoidectomy, 38 (34.9%) underwent high anterior resection (HAR), 45 (41.3%) underwent low anterior resection (LAR), and 16 (14.7%) underwent abdominoperineal resection (APR) (Fig. 1). Their demographic features and clinicopathological characteristics are summarized in Table 1. Of the total 109 patients, 35 (32.1%) patients presented with sigmoid colon cancer and 74 (67.9%) patients had rectal cancer. Seventy-five patients (68.8%) were males, and 34 (31.2%) were females, with a median age of 59 years (range, 31–82 years). The mean body mass index (BMI) was 22.8 ± 3.0 and comparable between the patients with sigmoid cancer and rectal cancer. Preoperative clinical stage included 17 (15.6%) stage I, 43 (39.4%) stage II, 45 (41.3%) stage III, and 4 (3.7%) stage IV. Ten (9.2%) patients underwent sigmoidectomy. Thirty-eight (34.9%) of the 74 patients with rectal cancer, 37 (50%) received neoadjuvant chemoradiotherapy (CRT) and 4 (5.4%) received neoadjuvant chemotherapy.
Table 1
Clinical characteristics of the study population

Variables	Total (n = 109)	Sigmoid cancer (n = 35)	Rectal cancer (n = 74)
Age [median (range), years]	59 (31–82)	60 (34–82)	57 (31–73)
Age > 65 years (n,%)	30 (27.5)	10 (28.6)	20 (27.0)
Male sex (n,%)	75 (68.8)	25 (71.4)	50 (67.6)
BMI (mean ± SD, kg/m²)	22.8 ± 3.0	22.7 ± 2.8	22.9 ± 3.2
< 18.5	5 (4.6)	1 (2.9)	4 (5.4)
18.5–23.9	63 (57.8)	23 (65.7)	40 (54.1)
24–27.9	36 (33.0)	10 (28.6)	26 (35.1)
≥ 28	5 (4.6)	1 (2.9)	4 (5.4)
ASA classification (n,%)			
1	18 (16.5)	5 (14.3)	13 (17.6)
2	84 (77.1)	26 (74.3)	58 (78.4)
3	7 (6.4)	4 (11.4)	3 (4.1)
Smoking history (n,%)	23 (21.1)	7 (20.0)	16 (21.6)
Hypertension (n,%)	29 (26.6)	11 (31.4)	18 (24.3)
Diabetes mellitus (n,%)	14 (12.8)	4 (11.4)	10 (13.5)
Bowel obstruction (n,%)	3 (2.8)	2 (5.7)	1 (1.4)
Weight loss within 6 months (n,%)	27 (24.8)	10 (28.6)	17 (23.0)
Hemoglobin (mean ± SD, g/dL)	132.2 ± 17.6	133.2 ± 20.2	131.7 ± 16.4
Severe anemia (n,%)	2 (1.8)	1 (2.9)	1 (1.4)
Albumin (mean ± SD, g/dL)	41.8 ± 3.6	41.8 ± 4.2	41.9 ± 3.4
Median DAV [median (range), cm]	10 (1–30)	20 (16–30)	7 (1–15)
> 15	35 (32.1)	35 (100)	0
11–15	13 (11.9)	0	13 (17.6)
6–10	35 (32.1)	0	35 (47.3)
≤ 5	26 (23.9)	0	26 (35.1)
Preoperative TNM stage (n,%)			
I	17 (15.6)	4 (11.4)	13 (17.6)
II	43 (39.4)	15 (42.9)	28 (37.8)
III	45 (41.3)	15 (42.9)	30 (40.5)
IV	4 (3.7)	1 (2.9)	3 (4.1)
Neoadjuvant CRT (n,%)	37 (33.9)	0	37 (50.0)
Neoadjuvant chemotherapy (n,%)	4 (3.7)	0	4 (5.4)

Intraoperative Outcomes
The intraoperative outcomes are presented in Table 2. The median operative time for robotic surgery was 270 min, with a range of 120 min to 465 min. Median intraoperative transfusion volume for the total cohort was 2000 ml (range 1000–4500 ml). Median intraoperative urine volume for the cohort was 400 ml (range 100–2100 ml). Median estimated blood loss for the cohort was 50 ml (range 20–400 ml). Three patients had blood transfusion, including 2 patients in the APR group (12.5%) and 1 patient in the sigmoidectomy and HAR group (2.1%). None of the cases was converted to an open or laparoscopic procedure, and no intraoperative ureteral injury occurred. Twenty-two patients underwent preventive ileostomy, including 4 patients in the sigmoidectomy and HAR group (8.3%) and 18 patients in the LAR group (40.0%).
Table 2
Intraoperative outcomes of patients

Variables	Total (n = 109)	Sigmoidectomy + HA (n = 48)	LAR (n = 45)	APR (n = 16)
Procedure time [median (range), minutes]	270 (120–465)	240 (120–435)	300 (165–450)	295 (170–465)
Intraoperative transfusion volume [median (range), mL]	2000 (1000–4500)	2000 (1000–3500)	2000 (1000–4500)	2500 (1500–3300)
Intraoperative urine volume [median (range), mL]	400 (100–2100)	400 (100–1600)	350 (100–2100)	500 (200–2000)
Estimated blood loss [median (range), mL]	50 (20–400)	50 (20–300)	50 (50–400)	100 (30–300)
Blood transfusion, n (%)	3 (2.8)	1 (2.1)	0	2 (12.5)
Conversion, n (%)	0	0	0	0
Ureteral injury, n (%)	0	0	0	0
Preventive ileostomy, n (%)	22(20.2)	4 (8.3)	18 (40.0)	0

Pathological Outcomes

The pathological outcomes are presented in Table 3. Pathological stages were stage 0 in 12 patients, stage I in 27 patients, stage II in 38 patients, stage III in 28 patients and stage IV in 4 patients. There were 41 patients with rectal cancer who had received neoadjuvant treatment, and 11 of these patients exhibited a pathologically complete response (pCR). Pathological complete resection was achieved in all cases.
Variables	Total $(n = 109)$	Sigmoid colon cancer $(n = 35)$	Rectal cancer Without neoadjuvant treatment $(n = 33)$	Rectal cancer With neoadjuvant treatment $(n = 41)$
Tumor size [median (range), cm]	2.5 (0.5–13.0)	4 (10.0–13.0)	2.7 (1.5–6.5)	1.5 (0.5–5.5)
Tumor differentiation, n (%)				
No tumor cells	18 (16.5)	4 (11.4)	1 (3.0)	13 (31.7)
Well-differentiated carcinoma	0	0	0	0
Moderate carcinoma	76 (69.7)	28 (80.0)	25 (75.8)	23 (56.1)
Poor carcinoma	14 (12.8)	3 (8.6)	7 (21.2)	4 (9.8)
Mucous carcinoma	1 (0.9)	0	0	1 (2.4)
Pathological T stage, n (%)				
Tis	1 (0.9)	1 (2.9)	0	0
T0	12 (11.0)	0	0	12 (29.3)
T1	12 (11.0)	4 (11.4)	8 (24.2)	0
T2	22 (20.2)	2 (5.7)	9 (27.3)	11 (26.8)
T3	52 (47.7)	24 (68.6)	13 (39.4)	15 (36.6)
T4a	8 (7.3)	3 (8.6)	3 (9.1)	2 (4.9)
T4b	2 (1.8)	1 (2.9)	0	1 (2.4)
Pathological N stage, n (%)				
N0	79 (72.5)	22 (62.9)	21 (63.6)	36 (87.8)
N1a	13 (11.9)	5 (14.3)	6 (18.2)	2 (4.9)
N1b	5 (4.6)	1 (2.9)	2 (6.1)	2 (4.9)
N1c	6 (5.5)	4 (11.4)	1 (3.0)	1 (2.4)
N2a	4 (3.7)	2 (5.7)	2 (6.1)	0
N2b	2 (1.8)	1 (2.9)	1 (3.0)	0
Pathological TNM stage, n (%)				
0	12 (11.0)	1 (2.9)	0	11 (26.8)
I	27 (24.8)	5 (14.3)	12 (36.4)	10 (24.4)
II	38 (34.9)	16 (45.7)	9 (27.3)	13 (31.7)
III	28 (25.7)	12 (34.3)	12 (36.4)	4 (9.8)
IV	4 (3.7)	1 (2.9)	0	3 (7.3)
Positive/total harvested lymph nodes [median (range), n]	0 (0–22) /12 (1–51)	0 (0–14) /16 (3–33)	0 (0–22) /15 (5–51)	0 (0–2) /5 (1–23)
Positive/total central harvested lymph nodes [median (range), n]	0 (0–3) /3 (0–26)	0 (0–3) /4 (0–12)	0 (0) /4 (0–26)	0 (0) /2 (0–8)
Positive/total intermediate harvested lymph nodes [median (range), n]	0 (0–3) /3 (0–16)	0 (0–3) /4 (0–9)	0 (0–2) /4 (0–16)	0 (0) /2 (0–9)
Positive/total para-intestinal harvested lymph nodes [median (range), n]	0 (0–22) /4 (0–23)	0 (0–8) /7 (1–15)	0 (0–22) /6 (1–23)	0 (0–2) /2 (0–12)
Distance of distal resection margin [median (range), cm]	5 (1.0–10.0)	8 (5.0–10.0)	5 (1.0–10.0)	2.5 (1.0–10.0)
Postoperative Outcomes

As shown in Table 4, the median length of stay (LOS) was 7 (range, 4–30) days. There was no postoperative mortality within 30 days. Eleven (10.1%) patients suffered complications after surgery, including 3 (2.8%) patients with anastomotic leakage, 1 (0.9%) patient with anastomotic bleeding, 1 (0.9%) patient with pelvic hemorrhage, 4 (3.7%) patients with intestinal obstruction, 2 (1.8%) patients with chylous leakage, and 1 (0.9%) patient with delayed wound healing. Only 5 (4.6%) and 8 (7.3%) patients developed urinary and sexual dysfunction, respectively. Details about the complication events are presented in Table 5. Among the patients who suffered postoperative complications, 2 patients required surgery, and 9 patients received conservative treatment. All of these patients achieved recovery after intervention.

Table 4

Variables	Total (n = 109)	Sigmoidectomy + HAR (n = 48)	LAR (n = 45)	APR (n = 16)
LOS after surgery [median (range), days]	7 (4–30)	7 (4–12)	7 (4–24)	8 (6–30)
30 day mortality	0	0	0	0
Postoperative complication	11 (10.1)	2 (4.2)	7 (15.6)	2 (12.5)
Anastomotic leakage	3 (2.8)	0	3 (6.7)	0
Anastomotic bleeding	1 (0.9)	1 (2.1)	0	0
Pelvic hemorrhage	1 (0.9)	0	1 (2.2)	0
Intestinal obstruction	4 (3.7)	0	3 (6.7)	1 (6.3)
Chylous leakage	2 (1.8)	1 (2.1)	1 (2.2)	0
Delayed wound healing	1 (0.9)	0	0	1 (6.3)
Defecation dysfunction	38 (34.9)	9 (18.8)	29 (64.4)	0
Urinary dysfunction	5 (4.6)	0	1 (2.2)	4 (25.0)
Sexual dysfunction	8 (7.3)	0	4 (8.9)	4 (25.0)
Alive (NED)	102 (93.6)	45 (93.8)	41 (91.1)	16 (100)
Alive with tumor	6 (5.5)	2 (4.2)	4 (8.9)	0
Death due to tumor	1 (0.9)	1 (2.1)	0	0
Local recurrence	1 (0.9)	1 (2.1)	0	0
Distant metastasis	5 (4.6)	2 (4.2)	3 (6.7)	0

Table 5. Summary of postoperative complication events
Survival Analysis

The median follow-up period for all patients was 17 months (range 1–37 months). One hundred and two patients (93.6%) in our study cohort were alive with no evidence of disease. One (0.9%) patient developed local recurrence, and 5 (4.6) patients developed distant metastasis. One patient died due to disease progression. The 2-year OS rate of all patients ($n=109$) was 97.2% (Fig. 3A), and the 2-year DFS rate of nonmetastatic patients ($n=104$) was 92.9% (Figure. 3B). The 2-year DFS rate of patients in stages 0, I, II, and III were 100%, 95.5%, 90.5%, and 88.8%, respectively (Figure. 3C).

Discussion

In this retrospective study, we investigated the surgical and oncological outcomes of robotic resection for sigmoid and rectal cancer in Chinese patients. Our data found that robotic surgery had a low conversion rate, low morbidity rate, and remarkable oncological outcomes, which confirms its safety and feasibility in Chinese patients with sigmoid and rectal cancer.

Rectal cancer resection is very difficult to perform using traditional laparotomy, but laparoscopic surgery has an advantage for rectal surgery under a clearer view despite the narrow and deep pelvic space. Several studies(Pai et al., 2015; Gomez Ruiz et al., 2016; Shiomi et al., 2014; Tang et al., 2017; Park et al., 2011) confirmed that laparoscopic surgery presented better short-term outcomes and comparable long-term outcomes compared to traditional laparotomy. The surgical advantages and comparable oncological outcomes of laparoscopic surgery were clearly demonstrated in patients with locally advanced rectal cancer after preoperative chemoradiotherapy in the COREAN trial(Jeong et al., 2014). Because of the features of robotic technology, robotic surgery is much more advantageous, especially for patients with locally advanced rectal cancer after treatment with preoperative chemoradiotherapy. In our study, 37.6% patients presented with a BMI ≥ 24 kg/m², and 55.4% patients with rectal cancer received neoadjuvant treatment. No conversion occurred with a median procedure time of 270 min, a median estimated blood loss of 50 ml and a median length of stay of 7 days. Only 11 patients (10.1%) experienced postoperative complications, which shows the remarkable surgical advantages of robotic surgery in patients with rectal cancer who received neoadjuvant treatment.

As previously reported, the most commonly encountered complication was anastomotic leakage, and its average occurrence rate was 8.6% (range from 1.2–20.5%) (Trastulli et al., 2012; Cong et al., 2013) and 1.8 to 13.6% in robotic surgery(Kwak et al., 2011; Baik et al., 2009). Its occurrence affects the patient’s quality of life, increases hospitalization costs, delays the implementation of adjuvant chemotherapy, and shortens the overall survival(Baik et al., 2009; Kulu et al., 2015). Eleven patients (10.1%) had postoperative complications, which included 3 patients who suffered anastomotic leakage. Due to the advantages of
robotic surgery, such as 3D magnified view, wristed instruments and stable camera platform, surgeons are able to maintain the sufficient surgical dissection plane down to the pelvic floor, which minimizes damage to marginal vessels and allows performance of the rectal division and reconstruction efficiently and safely to shorten the procedure time.

More precise surgery also helps protect the autonomic nerves and reduce the occurrence of long-term postoperative complications, including defecation, urinary and sexual dysfunction(Shiomi et al., 2014). Jiang and coworkers(Wang et al., 2017) described a significant increase in International Prostate Symptom Score (IPSS) after surgery in the laparoscopic group, and more patients in the laparoscopic group (34.8%) perceived a severe damage in their overall level of sexual function following surgery than the patients in the robotic group (18.3%). Several studies(Kim et al., 2012; Luca et al., 2013) also claimed that robotic TME improved the preservation of urinary and sexual functions because the arms of the robotic device are stable and highly flexible in the separation and exposure of tissues. With the high-resolution lens of the da Vinci surgical system to effectively recognize the nerve, the application of the PANP technique resulted in a significant reduction in the incidence of urinary dysfunction (4.6%) and sexual dysfunction (7.3%) in our study.

A positive circumferential margin or insufficient harvested lymph nodes leads to local recurrence(Marinatou et al., 2014). Although the relationship between sufficiently harvested lymph nodes and local recurrence rate is controversial, the guidelines list the harvesting of < 12 lymph nodes as risk factor and noted that the performance of TME with clear surgical margins and adequate lymph node dissection were related to lower recurrence rate(Benson et al., 2018a; Benson et al., 2018b). In our study, the median positive total harvested lymph nodes was 0 (range 0–22), and the total harvested lymph nodes was 12 (range 1–51). The 2-year DFS of patients in stages 0, I, II, and III were 100%, 95.5%, 90.5%, and 88.8%, respectively, and the 2-year DFS of patients in stage III was slightly better than previous studies (65.2% – 82.8%)(Pai et al., 2015; Gomez Ruiz et al., 2016; Park et al., 2011). The high quality of the procedure (no positive resection distal margin and sufficient harvested lymph nodes) and neoadjuvant treatment contributed to the remarkable oncological outcomes.

Several limitations should be acknowledged in the present study. First, this retrospective descriptive study included an uncontrolled, single-arm methodology and a limited number of patients from a single cohort. Although our study confirms the safety and feasibility of robotic surgery in Chinese CRC patients, the findings must be validated in a prospective, multicenter clinical trial with a large population in the future. Second, the short follow-up duration was insufficient to evaluate 5-year survival outcomes, which may have led to a misestimation of the effect of robotic surgery on OS and DFS. Additionally, selective bias undeniably exists in our cohort.

Conclusion

Robotic surgery is technically feasible and safe for Chinese CRC patients, especially for rectal cancer patients receiving neoadjuvant treatment because a robotic laparoscope with large magnification shows a clear surgical space for tumor resection in cases of mesorectal edema. Due to the advantages of robotic surgery, surgeons are able to perform the procedure efficiently and safely and help protect marginal vessels and the autonomic nerves, which reduces the occurrence of short-term and long-term postoperative complications and ensures clear surgical margins and adequate lymph node dissection.

Declarations

Ethics approval and consent to participate

The present study was performed according to the ethical standards of the World Medical Association Declaration of Helsinki and was approved by the Institutional Review Board and Independent Ethics Committees of Sun Yat-sen University Cancer Center. The informed consent requirement was waived by the ethics committees based on the nature of this retrospective study, in which patient data were kept confidential.

Availability of data and material

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request. The authenticity of this article has been validated by uploading the key raw data onto the Research Data Deposit public platform (www.researchdata.org.cn).

Competing interests

The authors declare that they have no competing interests.

Funding

This work was funded by grants from the National Natural Science Foundation of China (grant No. 81772595), the Science and Technology Planning Project of Guangdong Province (grant No. 2013B090800047) and Guangzhou Science and Technology Plan Projects (Health Medical Collaborative Innovation Program of Guangzhou) (grant No. 201803040019).

Authors’ contributions

Jianhong Peng and Weihao Li analyzed and interpreted the data. Junzhong Lin and Zhizhong Pan were the chief surgeons who performed the surgery and the chemotherapy, and all authors participated. Jianhong Peng, Weihao Li, Junzhong Lin, and Zhizhong Pan were major contributors in writing the manuscript. Jianhong Peng, Weihao Li, Jinghua Tang, Yuan Li, Xueying Li, Xiaojun Wu, Zhenhai Lu, Junzhong Lin, Zhizhong Pan read and approved the final manuscript.

Acknowledgments
We deeply appreciate the help from all of our colleagues of the Department of Colorectal Surgery at Sun Yat-sen University Cancer Center who were involved in performing the treatments for the current study. Part of the results and abstract of presenting research have been published as meeting conference papers in the 11th Worldwide Congress of Clinical Robotic Surgery Association and the EUROPEAN COLORECTAL CONGRESS 2019.

References

Baik SH, Kwon HY, Kim JS, et al. (2009) Robotic versus laparoscopic low anterior resection of rectal cancer: short-term outcome of a prospective comparative study. *Ann Surg Oncol* 16: 1480-1487.

Ballantyne GH. (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring. Review of early clinical results. *Surg Endosc* 16: 1389-1402.

Benson AB, Venook AP, Al-Hawary MM, et al. (2018a) NCCN Guidelines Insights: Colon Cancer, Version 2.2018. *J Natl Compr Canc Netw* 16: 359-369.

Benson AB, Venook AP, Al-Hawary MM, et al. (2018b) Rectal Cancer, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. *J Natl Compr Canc Netw* 16: 874-901.

Bray F, Ferlay J, Soerjomataram I, et al. (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 68: 394-424.

Chen W, Zheng R, Baade PD, et al. (2016) Cancer statistics in China, 2015. *CA Cancer J Clin* 66: 115-132.

Cong ZJ, Hu LH, Bian ZQ, et al. (2013) Systematic review of anastomotic leakage rate according to an international grading system following anterior resection for rectal cancer. *PLoS One* 8: e75519.

Feng RM, Zong YN, Cao SM, et al. (2019) Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? *Cancer Commun (Lond)* 39: 22.

Gomez Ruiz M, Alonso Martin J, Cagigas Fernandez C, et al. (2016) Short- and mid-term outcomes of robotic-assisted total mesorectal excision for the treatment of rectal cancer. Our experience after 198 consecutive cases. *Eur J Surg Oncol* 42: 848-854.

Guillou PJ, Quirke P, Thorpe H, et al. (2005) Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. *Lancet* 365: 1718-1726.

Jayne DG, Guillou PJ, Thorpe H, et al. (2007) Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. *J Clin Oncol* 25: 3061-3068.

Jeong SY, Park JW, Nam BH, et al. (2014) Open versus laparoscopic surgery for mid-rectal or low-rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): survival outcomes of an open-label, non-inferiority, randomised controlled trial. *Lancet Oncol* 15: 982-989.

Kim JY, Kim NK, Lee KY, et al. (2012) A comparative study of voiding and sexual function after total mesorectal excision with autonomic nerve preservation for rectal cancer: laparoscopic versus robotic surgery. *Ann Surg Oncol* 19: 2485-2493.

Kulu Y, Tarantio I, Warschkow R, et al. (2015) Anastomotic leakage is associated with impaired overall and disease-free survival after curative rectal cancer resection: a propensity score analysis. *Ann Surg Oncol* 22: 2059-2067.

Kwak JM, Kim SH, Kim J, et al. (2011) Robotic vs laparoscopic resection of rectal cancer: short-term outcomes of a case-control study. *Dis Colon Rectum* 54: 151-156.

Luca F, Valvo M, Ghezzi TL, et al. (2013) Impact of robotic surgery on sexual and urinary functions after fully robotic nerve-sparing total mesorectal excision for rectal cancer. *Ann Surg* 257: 672-678.

Lujan J, Valero G, Hernandez Q, et al. (2009) Randomized clinical trial comparing laparoscopic and open surgery in patients with rectal cancer. *Br J Surg* 96: 982-989.

Marinatou A, Theodoropoulou GE, Karanika S, et al. (2014) Do anastomotic leaks impair postoperative health-related quality of life after rectal cancer surgery? A case-matched study. *Dis Colon Rectum* 57: 158-166.

Nelson H, Sargent DJ, Wieand HS, et al. (2004) A comparison of laparoscopically assisted and open colectomy for colon cancer. *N Engl J Med* 350: 2050-2059.

Ng SS, Leung KL, Lee JF, et al. (2008) Laparoscopic-assisted versus open abdominoperineal resection for low rectal cancer: a prospective randomized trial. *Ann Surg Oncol* 15: 2418-2425.

Pai A, Marecik SJ, Park JJ, et al. (2015) Oncologic and Clinicopathologic Outcomes of Robot-Assisted Total Mesorectal Excision for Rectal Cancer. *Dis Colon Rectum* 58: 659-667.
Figures

Figure 1

Histogram depicting year-wise distribution of robotic sigmoidectomy, HAR (high anterior resection), LAR (low anterior resection) and APR (abdominoperineal resection) for colorectal cancer.
Figure 2

Key techniques of total mesorectal excision after chemoradiotherapy for pelvic autonomic nerve preservation. (A) Operation room setup (B) Inferior mesenteric nerve (white arrow) preservation (C) Hypogastric nerves (black arrow) preservation (D) Pelvic plexus (blue arrow) preservation.
Figure 3
Kaplan-Meier curves of the patients with colorectal cancer underwent robotic surgery. (A) 2-year overall survival for whole study population. (B) 2-year disease-free survival for non-metastatic patients. (C) 2-year disease-free survival by pathologic stage.