Yeast Nem1-Spo7 Protein Phosphatase Activity on Pah1 Phosphatidate Phosphatase Is Specific for the Pho85-Pho80 Protein Kinase Phosphorylation Sites*

Received for publication, September 26, 2014, and in revised form, October 28, 2014. Published, JBC Papers in Press, October 30, 2014, DOI 10.1074/jbc.M114.614883

Wen-Min Su, Gil-Soo Han, and George M. Carman

From the Department of Food Science, Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901

Background: Pah1 phosphatidate phosphatase translocates to the membrane through its dephosphorylation by the membrane-associated Nem1-Spo7 phosphatase complex.

Results: Nem1-Spo7 phosphatase was characterized for its enzymological, kinetic, and regulatory properties with phosphorylated forms of Pah1.

Conclusion: Nem1-Spo7 phosphatase exhibits the highest specificity for Pah1 phosphorylated by the Pho85-Pho80 protein kinase complex.

Significance: The Nem1-Spo7-mediated dephosphorylation regulates the function of Pah1 in lipid metabolism.

Pah1 is the phosphatidate phosphatase in the yeast Saccharomyces cerevisiae that produces diacylglycerol for triacylglycerol synthesis and concurrently controls the levels of phosphatidate used for phospholipid synthesis. Phosphorylation and dephosphorylation of Pah1 regulate its subcellular location and phosphatidate phosphatase activity. Compared with its phosphorylation by multiple protein kinases, Pah1 is dephosphorylated by a protein phosphatase complex consisting of Nem1 (catalytic subunit) and Spo7 (regulatory subunit). In this work, we characterized the Nem1-Spo7 phosphatase complex for its enzymological, kinetic, and regulatory properties with phosphorylated Pah1. The dephosphorylation of Pah1 by Nem1-Spo7 phosphatase resulted in the stimulation (6-fold) of phosphatidate phosphatase activity. For Pah1 phosphorylated by the Pho85-Pho80 kinase complex, maximum Nem1-Spo7 phosphatase activity required Mg2+ ions (8 mM) and Triton X-100 (0.25 mM) at pH 5.0. The energy of activation for the reaction was 8.4 kcal/mol, and the enzyme was thermally labile at temperatures above 40 °C. The enzyme activity was inhibited by sodium vanadate, sodium fluoride, N-ethylmaleimide, and phenylglyoxal but was not significantly affected by lipids or nucleotides. Nem1-Spo7 phosphatase activity was dependent on the concentrations of Pah1 phosphorylated by Pho85-Pho80, Cdc28-cyclin B, PKA, and PKC with kcat and Km values of 0.29 s−1 and 81 nM, 0.11 s−1 and 127 nM, 0.10 s−1 and 46 nM, and 0.02 s−1 and 38 nM, respectively. Its specificity constant (kcat/Km) for Pah1 phosphorylated by Pho85-Pho80 was 1.6-, 4-, and 6-fold higher, respectively, than that phosphorylated by PKA, Cdc28-cyclin B, and PKC.

Pah1 PAP2 (1), which catalyzes the Mg2+-dependent dephosphorylation of PA to form DAG and P1 (2) (Fig. 1A), has emerged as one of the most highly regulated enzymes of lipid metabolism in the yeast Saccharomyces cerevisiae (3–5). The PAP reaction of Pah1 is governed by a conserved DXDX(T/V) catalytic motif within its haloacid dehalogenase-like domain and a conserved glycine residue within its NLIP domain (1, 6) (Fig. 1B). By the nature of its reaction, PAP affects the levels of PA and DAG, thereby controlling the PA-derived membrane phospholipids and the DAG-derived storage lipid TAG (7, 8). The DAG generated by the PAP reaction may also be used to synthesize phosphatidylcholine and phosphatidylethanolamine via the Kennedy pathway, which is primarily used when yeast cells are supplemented with choline and ethanolamine, respectively (7, 8). The physiological relevance of Pah1 is exemplified by the pah1Δ phenotypes that correlate with the increased level of PA (e.g. derepression of phospholipid synthesis gene expression and the abnormal nuclear/ER membrane expansion) and the decreased levels of DAG and TAG (e.g. susceptibility to fatty acid-induced lipotoxicity and defects in lipid droplet formation) (1, 6, 9–11). The lack of Pah1 also causes defects in cell wall integrity (12, 13) and vacuole homeostasis (14), classic hallmarks of apoptosis (10), temperature sensitivity (1, 9, 15), and the inability to grow on non-fermentable carbon sources (1). The complementation of pah1Δ phenotypes by the loss of Dgk1 DAG kinase (10, 11, 16) indicates that an imbalance in the cellular levels of PA and DAG is the molecular basis for the deleterious physiological defects (5).

Pah1 is conserved in higher eukaryotic organisms, including humans (e.g. lipins 1–3) (1, 17–24). In fact, defects in mammalian lipin PAP enzymes underlie several metabolic disorders

2 The abbreviations used are: PAP, phosphatidate phosphatase; PA, phosphatidate; DAG, diacylglycerol; TAG, triacylglycerol; ER, endoplasmic reticulum; Nem1, nuclear envelope morphology protein 1; Spo7, sporeulation-specific protein 7; CTDNENP1, C-terminal domain nuclear envelope phosphatase 1; NEP1-R1, nuclear envelope phosphatase 1-regulatory subunit 1; 7A, alanine mutations of Pah1 at Ser-110, Ser-114, Ser-168, Ser-602, Thr-723, Ser-744, and Ser-748.

* This work was supported, in whole or in part, by National Institutes of Health Grant GM050679 from the United States Public Health Service.

1 To whom correspondence should be addressed: Dept. of Food Science, Rutgers University, 65 Dudley Rd., New Brunswick, NJ 08901. Tel.: 848-932-5407; E-mail: carman@aesop.rutgers.edu.
Nem1-Spo7 Dephosphorylation of Pah1 Phosphatidate Phosphatase

TABLE 1

Strain or plasmid	Relevant characteristics	Source/reference
Strain	**Pah1**	**Nem1**
E. coli DH5α	F- d980lacZΔM15Δ (lacZYA-argF) U169 deoR recA1 endA1 hsdR17 (rK- mB+) phoA supE44 thi-1 gyrA96 relA1	Ref. 75
BL21(DE3) pLysS	F- ompT hsdSgr (r- mB+) gal dcm (DE3) pLysS	Novagen
BI21(DE3)	F- ompT hsdS6 (r- mB+) gal dcm (DE3)	Invitrogen
S cerevisiae RS453	MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-52	Ref. 76
Plasmid	**PAH1**	**NEM1**
pGH313	PAH1 coding sequence inserted into pET-15b	Ref. 1
EB1164	PHO85-His, derivative of pQE-60	Ref. 61
EB1076	PHO80 derivative of pSBETA	Ref. 16
YCplac111-GAL1/10-NEM1-PtA	NEM1-PtA under control of GAL1/10 promoter inserted in CEN/LEU2 plasmid	Ref. 9
pRS313-GAL1/10-Spo7	SPO7 under control of GAL1/10 promoter inserted in CEN/HIS3 plasmid	Ref. 61

Like Pah1, the yeast Nem1-Spo7 phosphatase is conserved in higher eukaryotes. The orthologous complex in humans, which is composed of CTDNEP1 (catalytic subunit formerly known as Dullard) and NEP1-R1 (regulatory subunit formerly known as TMEM188), complements the yeast nem1Δ spo7Δ mutant with respect to membrane expansion, TAG content, and lipid droplet formation (56). Moreover, when expressed in human cells, the CTDNEP1-NEP1-R1 complex, but not the catalytic subunit alone, dephosphorylates lipid-1 and lipid-2 PAP isoforms (56).

Although the physiological importance of the Nem1-Spo7 phosphatase is well established, little is known about its enzymological, kinetic, and regulatory properties. Progress in this area has been limited by the availability of Pah1 phosphorylated by defined protein kinases. In this work, we took advantage of the protein kinase-Pah1 target site relationships (Fig. 1B) and prepared specifically phosphorylated forms of Pah1. By characterizing the mode of action and specificity of Nem1-Spo7, we advanced the understanding of the protein phosphatase complex that plays a crucial role in the regulation of Pah1 PAP.

EXPERIMENTAL PROCEDURES

Materials—Difco was the source of growth media. Plasmid DNA purification kits and nickel-nitritolriacetic acid–agarose resin were from Qiagen. Carrier DNA for yeast transformation was from Clontech. Reagents for electrophoresis, Western blotting, protein determination, DNA size ladders, and molecular mass protein standards were purchased from Bio-Rad. Phos-tag™ AAL-107 was obtained from Wako Pure Chemical Industries. Radiochemicals and scintillation counting supplies were obtained from PerkinElmer Life Sciences and National Diagnostics, respectively. IgG-Sepharose, Q-Sepharose, PVDF membrane, and the enhanced chemiluminescence Western blotting detection kit were from GE Healthcare. Amicon ultracentrifugal filters were purchased from EMD Millipore. Thermo Scientific was the source of alkaline phosphatase-conjugated goat anti-rabbit IgG antibodies. PKA catalytic subunit and conventional PKC were from Promega. New England BioLabs was the source of cyclin-dependent kinase-cyclin B. Protease inhibitors, Triton X-100, and bovine serum albumin were obtained from Sigma-Aldrich. Lipids were purchased from Avanti Polar Lips. All other chemicals were reagent grade.

Strains, Plasmids, and Growth Conditions—The strains and plasmids used in this study are listed in Table 1. The Escherichia

that include lipodystrophy and insulin resistance, peripheral neuropathy, rhabdomyolysis, and inflammation (18, 25–36). As in yeast (5), these “lipinopathies” appear to be rooted, at least in part, in the molecular function of PAP to control the levels of PA and DAG (27, 37, 38).

Pah1 is regulated by genetic and biochemical mechanisms. The expression of PAH1 is controlled on a transcriptional level by growth phase and nutrient supplementation (39, 40), whereas on a biochemical level, PAP activity is governed by membrane phospholipids and sphingoid bases (41, 42), nucleotides (43), phosphorylation and dephosphorylation (9, 44–49), and proteasome-mediated degradation (50). Of the biochemical regulations, phosphorylation and dephosphorylation have the greatest impact on the physiological functions of Pah1 (4, 5). Pah1 is primarily found in the cytosol as an inactive phosphoprotein but becomes active through its translocation to the nuclear/ER membrane, where its substrate PA resides (9, 44–48) (Fig. 1A). The membrane translocation of Pah1 occurs via its dephosphorylation by the membrane-associated protein phosphatase complex Nem1 (catalytic subunit)-Spo7 (regulatory subunit) (9, 44–47, 51–53) (Fig. 1A). The interaction with Nem1-Spo7 occurs via the acidic tail of Pah1 (53), and the dephosphorylated enzyme interacts with the membrane via its amphipathic helix (52). Phosphorylation and dephosphorylation of Pah1 also regulate its PAP activity as well as its degradation by proteasomes (44, 46, 47, 49, 50).

The phosphatase activity of Nem1, like that of Pah1, is dependent on the DXDX(T/V) catalytic motif (9, 51); both enzymes in the phosphatase cascade are members of the haloacid dehalogenase superfamily (54, 55). Spo7, which binds to the catalytic domain of Nem1, is essential for the phosphatase activity of the complex (9, 51). Because Nem1-Spo7 is required for Pah1 PAP function, cells lacking either subunit (e.g. nem1Δ or spo7Δ) of the phosphatase complex display many of the same phenotypes (e.g. derepression of phospholipid synthesis genes, aberrant expansion of the nuclear/ER membrane, decreased TAG content and lipid droplet formation, and temperature sensitivity) exhibited by pah1Δ mutant cells (9, 39, 45–47, 49, 51, 56). Nevertheless, the expression of phosphorylation-deficient forms of Pah1 complements nem1Δ mutant phenotypes because they allow for membrane association and enzyme activation without the need for dephosphorylation by the Nem1-Spo7 phosphatase (44–46, 48, 52).
coli strain DH5α was used for the propagation of plasmids.

E. coli strain BL21(DE3) pLysS bearing plasmid pGHI313 was used to express His₆-tagged Pah1, and the strain BL21(DE3) bearing plasmids EB1164 and EB1076 was used to express the His₆-tagged Pho85 and Pho80. The bacterial cells were grown at 37 °C in LB medium (1% tryptone, 0.5% yeast extract, 1% NaCl, pH 7.0), and for the selection of cells carrying plasmids, the growth medium was supplemented with antibiotics (ampicillin, 100 µg/ml; chloramphenicol, 34 µg/ml; kanamycin, 50 µg/ml). The expressions of His₆-tagged Pah1, His₆-tagged Pho85, and Pho80 were induced with 1 mM isopropyl β-D-thiogalactoside. The S. cerevisiae strain RS453 bearing the plasmids YCplac111-GAL1/10-NEM1-PtA and pRS313-GAL1/10-SPO7 was used for the expressions of protein A-tagged Nem1 and Spo7. Yeast cells were generally grown at 30 °C in synthetic complete medium containing 2% glucose. Appropriate amino acids were omitted from the growth medium to select for cells carrying specific plasmids (57). For the expressions of protein A-tagged Nem1 and Spo7, cells were first grown to the exponential phase in synthetic complete medium with 2% raffinose as the carbon source and then induced for 8 h by the addition of 2% galactose. Cell numbers in liquid cultures were determined spectrophotometrically at an absorbance of 600 nm.

Purification of Enzymes—All steps were performed at 4 °C. The protein A-tagged Nem1-Spo7 complex was purified from S. cerevisiae by IgG-Sepharose affinity chromatography as described by Siniossoglou et al. (58) with minor modifications. Here, the cell extract was prepared by lysis with glass beads using a Biospec Products Mini Bead Beater-16 (59). Also, the phosphatase complex was eluted from IgG-Sepharose with 50 mM glycine-HCl (pH 3.0) because it could not be dissociated from the resin by treatment with tobacco etch virus protease. The acid-eluted enzyme complex was neutralized with 1 M HCl (pH 7.5), 7 mM 2-mercaptoethanol, and 10% glycerol; the diluted phosphatase was then concentrated with an Amicon ultracentrifugal filter unit. The phosphatase concentration was determined as described above. The yield of purified ³²P-labeled Pah1 was typically 40–70%.

SDS-PAGE and Western Blot Analysis—SDS-PAGE (63) was routinely performed with either 8 or 10% slab gels. Phos-tag™ AAL-107 (50 µM) and MnCl₂ (100 µM) were added to SDS-polyacrylamide gels (5%) for analysis of the Pah1 dephosphorylation. Western blotting (64, 65) with PVDF membrane was performed by standard protocols. Rabbit anti-Pah1 antibodies (45) and alkaline phosphatase-conjugated goat anti-rabbit IgG antibodies were used at a concentration of 1 µg/ml and at a dilution of 1:5,000, respectively. Immune complexes were detected using the enhanced chemiluminescence Western blot detection kit. Fluorimaging was used to acquire images from Western blots, and the signal intensity of the image was analyzed using ImageQuant software. Signals were in the linear range of detectability.

Enzyme Assays—All enzyme assays were conducted in triplicate at 30 °C. Nem1-Spo7 phosphatase activity was routinely measured by following the release of ³²P from [³²P]Pah1. The reaction mixture contained 100 mM sodium acetate (pH 5.0), 10 mM MgCl₂, 0.25 mM Triton X-100, 1 mM DTT, 0.25 µM phosphorylated Pah1, and the indicated amounts of Nem1-Spo7 in a total volume of 50 µl. Following a 10-min incubation, the reaction was terminated by the addition of 0.5 ml of trichloroacetic acid (20% final concentration) and 0.2 ml of bovine serum albumin (0.4 mg/ml final concentration); samples were cooled on ice for 15 min to allow precipitation of proteins. The mixture was centrifuged for 20 min at 15,000 × g to separate the reaction product ³²P from the substrate, and a 0.2-ml aliquot of the supernatant was measured for radioactivity by scintillation counting. The radioactivity detected from the reaction product was at least 2,000 cpm above that (~50 cpm) from the reaction lacking the Nem1-Spo7 phosphatase. The amount of phosphate produced in the reaction was calculated on the basis of the specific activity of the [γ-³²P]ATP used to prepare ³²P-Pah1. A unit of Nem1-Spo7 phosphatase activity was defined as the amount of enzyme that catalyzed the formation of 1 nmol of phosphate/min. PAP activity was measured by following the formation of water-soluble ³²P, from chloroform-soluble ³²P-PAP (10,000–15,000 cpm/nmol) as described by Carman and Lin (66). The reaction mixture contained 50 mM Tris-HCl (pH 7.5), 1 mM MgCl₂, 0.2 mM PA, 2 mM Triton X-100, 20 mM sodium acetate, and 0.2 mM ATP. The reaction was stopped by the addition of 50 µl of 10% trichloroacetic acid.
Nem1-Spo7 Dephosphorylation of Pah1 Phosphatidate Phosphatase

RESULTS

Dephosphorylation of Pah1 by the Nem1-Spo7 Phosphatase and Its Stimulatory Effect on PAP Activity—Purified preparations of the wild type and 7A mutant forms of Pah1, which are endogenously phosphorylated in S. cerevisiae (44), were used as substrates for the Nem1-Spo7 phosphatase. SDS-PAGE analysis indicated that the phosphatase complex preparation used in our experiments was highly purified (Fig. 2A). Quantification of the purified complex by SDS-PAGE analysis indicated a stoichiometry of Nem1 to Spo7 of 1:1. Phos-tag SDS-PAGE (67) was used to separate the phosphorylated and unphosphorylated/ dephosphorylated forms of Pah1. The analysis of the wild type Pah1 and its 7A mutant indicated that they were heterogeneously phosphorylated (Fig. 2B). For the wild type enzyme, this heterogeneity was shown as a very diffuse signal in the Phos-tag gel. Because Pah1–7A contains alanine mutations at the seven sites phosphorylated by the Pho85-Pho80 protein kinase (Fig. 1B), its phosphorylated forms migrated faster than the phosphorylated forms of the wild type enzyme. Upon incubation with the purified Nem1-Spo7 phosphatase, both the wild type and 7A mutant enzymes migrated at the same position as discrete protein bands (Fig. 2B). As described previously (44), the PAP activity of the endogenously phosphorylated 7A mutant enzyme was 3.9-fold higher than that of the endogenously phosphorylated wild type enzyme (Fig. 2C). This result confirms that Pah1 PAP activity is regulated by phosphorylation at the seven sites targeted by the Pho85-Pho80 protein kinase (46). The dephosphorylations of the wild type and 7A mutant enzymes resulted in the stimulations of PAP activity by 6- and 1.7-fold, respectively (Fig. 2C). This result confirmed for the first time that the Nem1-Spo7 phosphatase has a direct stimulatory effect on Pah1 PAP activity. That the PAP activity of the 7A mutant was also stimulated by Nem1-Spo7 phosphatase indicated the inhibitory effect of phosphorylation by other protein kinase(s) (e.g. PKA (47)). The PAP activity of the 7A mutant treated with Nem1-Spo7 phosphatase was only 20% higher than the activity of the wild type enzyme treated with the phosphatase (Fig. 2C), indicating that the extent of dephosphorylation for both forms of Pah1 was about the same.

Nem1-Spo7 Phosphatase Dephosphorylates Pah1 Phosphorylated by the Pho85-Pho80 Kinase—To utilize a more defined substrate for the Nem1-Spo7 phosphatase, highly purified unphosphorylated Pah1 expressed in E. coli was radioactively phosphorylated (Fig. 3). Of the protein kinases known to phos-

FIGURE 1. Model for the dephosphorylation of Pah1 by Nem1-Spo7 and sites of phosphorylation by Pho85-Pho80, Cdc28-cyclin B, PKA, and PKC. A, Pah1 in the cytosol is phosphorylated (P) on multiple Ser/Thr residues by protein kinases. The phosphorylated enzyme is recruited to the nuclear/ER membrane for its dephosphorylation by Nem1-Spo7 phosphatase complex. The dephosphorylated membrane-associated Pah1 catalyzes the dephosphorylation of PA to produce DAG that is acylated to TAG. B, domain structure of Pah1 showing the positions of the amphipathic helix (Ah) required for interaction with the membrane (52), the NLIP domain containing the conserved glycine (G), the haloacid dehalogenase (HAD)-like domain containing the DxD(T/V) catalytic motif, the acidic tail (AT) required for interaction with Nem1-Spo7 (53), and the serine (S) and threonine (T) residues that are phosphorylated by Pho85-Pho80 (46), Cdc28-cyclin B (45), PKA (47), and PKC (49).

and enzyme protein in a total volume of 100 μl. A unit of PAP activity was defined as μmol/min. The [γ-32P]ATP was used for the assay was enzymatically synthesized from DAG and [γ-32P]ATP using E. coli DAG kinase (66). All enzyme reactions were linear with time and protein concentration.

Analyses of Data—Statistical analyses were performed with SigmaPlot software. The p values of <0.05 were taken as a significant difference. The Enzyme Kinetics module of the SigmaPlot software was used to analyze kinetic data.
Nem1-Spo7 Dephosphorylation of Pah1 Phosphatidate Phosphatase

Enzymological Properties of Nem1-Spo7 Phosphatase—The enzymological properties of the Nem1-Spo7 phosphatase were characterized with radioactively phosphorylated Pah1. The phosphate generated from the enzyme reaction was measured after the removal of Pah1 (both phosphorylated and dephosphorylated forms) by trichloroacetic acid precipitation. This assay was more accurate and convenient to quantify the product formation when compared with Phos-tag SDS-PAGE analysis. The effect of pH on Nem1-Spo7 phosphatase activity was examined with various buffers ranging from pH 4.5 to 7.5. Nem1-Spo7 showed maximum activity at pH 5.0, which was 7-fold higher than the activity at pH 7.5 (Fig. 4A). The phosphatase activity required the divalent cation Mg\(^{2+}\) (Fig. 4B). To a lesser extent (~25%), its requirement was substituted by Mn\(^{2+}\) at lower concentrations. In combination with Mg\(^{2+}\), Triton X-100 stimulated Nem1-Spo7 phosphatase activity by 2.6-fold (Fig. 4, C and D). Triton X-100 was the only detergent tested for eliciting the optimal activity of the enzyme. The alkylating agent N-ethylmaleimide exhibited a 50% inhibition on the phosphatase activity at the concentration of 20 mM (Fig. 5A); in the absence of N-ethylmaleimide, the addition of 0.5 mM DTT (sulphydryl group protective reagent) stimulated activity by 42% (Fig. 5B). Under optimal assay conditions where less than 5% of the substrate was converted to product, the Nem1-Spo7 phosphatase activity followed zero order kinetics with the reaction being linear with respect to time and enzyme concentration (Fig. 6).

Effects of Temperature on Nem1-Spo7 Phosphatase Activity and Stability—The effects of temperature were examined on Nem1-Spo7 phosphatase activity and stability. Maximum
Nem1-Spo7 Dephosphorylation of Pah1 Phosphatidate Phosphatase

FIGURE 5. Effects of N-ethylmaleimide and DTT on Nem1-Spo7 phosphatase activity. Nem1-Spo7 phosphatase activity was measured by following the release of 32P, from $[^{32}P]$Pah1 phosphorylated by Pho85-Pho80. The enzyme activity was measured in the absence and presence of the indicated concentrations of N-ethylmaleimide (A) or DTT (B). The data shown are means ± S.D. (error bars) from triplicate enzyme determinations. Error bars are hidden behind some symbols.

FIGURE 6. Dependence of Nem1-Spo7 phosphatase activity on time and protein content. Nem1-Spo7 phosphatase activity was measured by following the release of 32P, from $[^{32}P]$Pah1 phosphorylated by Pho85-Pho80. The enzyme activity was measured for the indicated time intervals (A) or for 10 min with the indicated amounts of Nem1-Spo7 (B). The data shown are means ± S.D. (error bars) from triplicate enzyme determinations. Error bars are hidden behind some symbols.

FIGURE 7. Effects of temperature on Nem1-Spo7 phosphatase activity and stability. Nem1-Spo7 phosphatase activity was measured by following the release of 32P, from $[^{32}P]$Pah1 phosphorylated by Pho85-Pho80. A, the enzyme activity was measured at the indicated temperatures for 10 min in a temperature-controlled water bath. B, the data in A from 10 to 40 °C were plotted as log Nem1-Spo7 phosphatase activity versus the reciprocal of the absolute temperature. The curve drawn was a result of a least squares analysis of the data. C, the enzyme samples were first incubated for 10 min at the indicated temperatures. After incubation, the samples were cooled in an ice bath to allow for renaturation and were measured for phosphatase activity at 30 °C for 10 min. The data shown are means ± S.D. (error bars) from triplicate enzyme determinations. Error bars are hidden behind some symbols.

activity was observed at 40 °C; the activity was reduced at temperatures above this optimum (Fig. 7A). An Arrhenius plot of the data yielded the activation energy of 8.4 kcal/mol for the phosphatase reaction (Fig. 7B). The thermal stability of Nem1-Spo7 was determined by measuring its enzyme activity after incubation for 10 min at temperatures ranging from 0 to 60 °C. Following the incubation, the samples were cooled on ice to allow for renaturation and then assayed for phosphatase activity at 30 °C. About 75% of the activity was lost after incubation at 40 °C, and total inactivation occurred at 50 °C and higher temperatures (Fig. 7C). The purified Nem1-Spo7 phosphatase was completely stable for at least 2 years of storage at −80 °C and upon three cycles of freezing and thawing.

**Effectors of Nem1-Spo7 Phosphatase Activity—Cations, Phosphatase inhibitors, nucleotides, and lipids were examined for their effects on Nem1-Spo7 phosphatase activity (Tables 2 and 3). The rationale for examining some of these molecules was based on their roles in the regulation of Pah1 PAP activity (4). Monovalent and divalent cations exhibited a relatively small (20–30%) inhibitory effect on Nem1-Spo7 phosphatase activity. Of general phosphatase inhibitors, sodium vanadate (97%) was most potent, followed by sodium fluoride (42%) and phenylglyoxal (37%). Propranolol and the nucleotides ATP and

TABLE 2 Effects of monovalent and divalent cations, phosphatase inhibitors, and nucleotides on Nem1-Spo7 phosphatase activity

Compound	Nem1-Spo7 phosphatase activity
Control	100 ± 2
+ 100 mM NaCl	79 ± 5
+ 100 mM KCl	68 ± 3
+ 1 mM CaCl₂	84 ± 4
+ 1 mM ZnCl₂	80 ± 3
+ 1 mM Na₃VO₄	3 ± 3
+ 10 mM NaF	58 ± 2
+ 10 mM imidazole	86 ± 2
+ 10 mM glycerophosphate	123 ± 7
+ 10 mM propanol	98 ± 3
+ 10 mM phenylglyoxal	63 ± 4
+ 1 mM ATP	114 ± 10
+ 1 mM CTMP	113 ± 3

TABLE 3 Effects of lipids on Nem1-Spo7 phosphatase activity

Lipid	Nem1-Spo7 phosphatase activity
Control	100 ± 4
Neutral lipids	
+ TAG	113 ± 19
+ DAG	103 ± 3
+ monoacylglycerol	69 ± 1
Phospholipids	
+ phosphatidylcholine	105 ± 5
+ phosphatidyethanolamine	98 ± 3
+ phosphatidinositol	89 ± 6
+ phosphatidylserine	80 ± 1
+ phosphatidylglycerol	74 ± 4
+ cardiolipin	82 ± 6
+ CDP-DAG	84 ± 6
Sphingolipids	
+ ceramide	100 ± 3
+ phytosphingosine	100 ± 5
+ sphinganine	88 ± 4
+ sphingosine	115 ± 6
+ sphingosine 1-phosphate	75 ± 6
+ sphingosine 1-phosphate	89 ± 8
The catalytic efficiency of Nem1-Spo7 phosphatase on Pah1 (Fig. 8). The data were analyzed according to the Michaelis-Menten equation using the Enzyme Kinetics module of SigmaPlot software. The sites phosphorylated by each protein kinase are shown in Fig. 1B.

TABLE 4

Kinetic properties of Nem1-Spo7 phosphatase activity on Pah1 phosphorylated by pho85-Pho80, Cdc28-cyclin B, PKA, or PKC

Protein kinase	Nem1-Spo7 phosphatase activity	k_{cat}	K_m	k_{cat}/K_m
Pho85-Pho80		0.29 ± 0.011	81 ± 7	3.6 x 10^6
Cdc28-cyclin B		0.11 ± 0.008	127 ± 19	9.0 x 10^6
PKA		0.10 ± 0.004	46 ± 5	2.2 x 10^6
PKC		0.02 ± 0.001	38 ± 5	0.6 x 10^6

CTP are potent inhibitors of Pah1 PAP activity (1, 43, 68), but they did not affect Nem1-Spo7 phosphatase activity. Of the neutral lipids, monoacylglycerol had a small (31%) inhibitory effect. The PAP product DAG and its acylation product TAG did not affect Nem1-Spo7 phosphatase activity. Likewise, phospholipids (e.g. CDP-DAG, phosphatidylinositol, and cardiolipin) (41) and sphingolipids (e.g. sphingoid bases) (42), which stimulate and inhibit Pah1 PAP activity, respectively, did not have major effects on Nem1-Spo7 phosphatase activity.

Kinetic Properties of Nem1-Spo7 Phosphatase Activity on Pah1 Phosphorylated by Pho85-Pho80, Cdc28-Cyclin B, PKA, or PKC—The dependence of Nem1-Spo7 phosphatase activity on Pah1 phosphorylated by Pho85-Pho80, Cdc28-cyclin B, PKA, or PKC was examined to assess whether the enzyme exhibited specificity for the sites phosphorylated by each of these protein kinases. Nem1-Spo7 phosphatase activity was dependent on the concentrations of each of the four phosphorylated forms of Pah1 (Fig. 8). The data were analyzed according to the Michaelis-Menten equation using the Enzyme Kinetics module of SigmaPlot software, and the results are summarized in Table 4. The catalytic efficiency of Nem1-Spo7 phosphatase on Pah1 phosphorylated by Pho85-Pho80 and Cdc28-cyclin B, which have three target sites in common (e.g. Ser-602, Thr-723, and Ser-744, Fig. 1B), differed significantly. The k_{cat} and K_m values using the Pho85-Pho80-phosphorylated substrate were 2.6-fold higher and 1.5-fold lower, respectively, than the kinetic values obtained using the Cdc28-cyclin B-phosphorylated substrate. Consequently, the specificity constant k_{cat}/K_m (69) was 4-fold greater with Pah1 phosphorylated by Pho85-Pho80 when compared with the substrate phosphorylated by Cdc28-cyclin B. This result indicated that one or more of the four sites (i.e. Ser-110, Ser-114, Ser-168, and Ser-748) uniquely phosphorylated by Pho85-Pho80 has a positive effect on Nem1-Spo7 phosphatase activity. PKA and PKC also have three phosphorylation sites in common, namely Ser-677, Ser-773, and Ser-788 (Fig. 1B). Whereas the K_m values of Nem1-Spo7 for the PKA- and PKC-phosphorylated substrates were similar, the k_{cat} value for the PKA-phosphorylated substrate was 5-fold higher than the substrate phosphorylated by PKC. This result indicates that Ser-769, the unique PKC site, has a negative effect on the catalytic efficiency of the Nem1-Spo7 phosphatase, or the unique PKA sites (Ser-10 and Ser-774) have a positive effect on the phosphatase activity. The identification of the specific site(s) involved and how the site(s) regulate activity will require additional studies. The K_m values for the PKA- and PKC-phosphorylated substrates were 2–3-fold lower than that of the substrates phosphorylated with Pho85-Pho80 or Cdc28-cyclin B. Overall, Pho85-Pho80-phosphorylated Pah1 was the preferred substrate for Nem1-Spo7 phosphatase; the specificity constant of this substrate was 1.6-, 4-, and 6-fold greater, respectively, than that of the substrates phosphorylated by PKA, Cdc28-cyclin B, and PKC (Table 4).

DISCUSSION

The Pah1 PAP enzyme has emerged as a key lipid homeostatic enzyme in the yeast *S. cerevisiae* (4, 5, 7, 8). Its phosphorylation and dephosphorylation play a major role in controlling its cellular location, enzymatic activity, and stability (9, 44–47, 49, 50, 52, 53). In particular, the dephosphorylation of Pah1 by Nem1-Spo7 phosphatase is crucial for its PAP activity on the nuclear/ER membrane. In this work, using the protein kinase-target site relationship confirmed in previous studies (Fig. 1B), we developed an assay system with the specific kinase-phosphorylated Pah1 as a substrate and characterized Nem1-Spo7 phosphatase with respect to its enzymological, kinetic, and regulatory properties.

The enzymological properties of Nem1-Spo7 phosphatase showed that its maximal activity depends on Mg$^{2+}$ ions and Triton X-100 at the pH optimum of 5.0. The Mg$^{2+}$ ion requirement, like that for PAP activity (1), is characteristic of the DXDX(T/V)-containing enzymes in the haloacid dehalogenase superfamily (54, 55). Triton X-100 is required to solubilize the phosphatase complex consisting of the integral membrane protein subunits in the nuclear/ER membrane (51). Compared with the alkaline pH of 7.5 for Pah1 PAP activity (1), the acidic pH of 5.0 is optimal for Nem1-Spo7 phosphatase activity. The different pH optima for these two enzymes are unexpected but are also shown for the human orthologs, namely the pH optimum of 5.5 for CTDNPE1 and pH optimum of 7.5 for lipin-1 PAP (17, 70). In *S. cerevisiae*, Pah1 PAP activity as monitored by TAG synthesis increases as cells progress into the stationary phase (39). During the growth transition, the intracellular pH is decreased from ~7.0 to ~5.5 (71). Thus, it is speculated that the acidic environment results in the activation of Nem1-Spo7 phosphatase activity and thereby an increase in Pah1 PAP activity. The inhibitory effect of N-ethylmaleimide suggests that the
Nem1-Spo7 Dephosphorylation of Pah1 Phosphatidate Phosphatase

The sulphydryl group is required for the catalysis of Nem1-Spo7 phosphatase.

We initiated studies to examine regulatory effects of cellular components on Nem1-Spo7 phosphatase activity. Effector molecules (e.g. phospholipids, sphingoid bases, and nucleotides), which are known to modulate Pah1 PAP activity (41–43), did not have any effect on Nem1-Spo7 phosphatase activity. Thus, the molecules in the biochemical regulation of lipid synthesis are confined to the Pah1 component of the Nem1-Spo7/Pah1 phosphatase cascade. Like Pah1 PAP, Nem1-Spo7 phosphatase is subject to phosphorylation (72). Recently, Nem1-Spo7 phosphatase activity was measured using a synthetic phosphopeptide substrate mimicking phospho-Pah1 substrates were about 3 orders of magnitude lower than those of truncated CTDNEP1 using the phosphopeptide substrate (73). These differences may be a reflection of the substrates used (e.g. authentic phospho-Pah1 versus synthetic peptides) and/or the enzyme states (e.g. full-length Nem1-Spo7 versus truncated CTDNEP1 without NEP1-R1). Alternatively, these differences in the kinetic properties may simply indicate a difference between the orthologous enzymes, and the yeast Nem1-Spo7 phosphatase has a greater specificity for its substrate phospho-Pah1 when compared with its human counterpart phosphatase for its substrate phospholipin-1.

As discussed above, the loss of Pah1 or either subunit of the Nem1-Spo7 complex results in several deleterious phenotypes, indicating the importance of the Nem1-Spo7/Pah1 phosphatase cascade in lipid metabolism and cell physiology (1, 6, 9–11, 14, 15, 39, 45–47, 49, 51, 56). Nevertheless, the overexpression of the Nem1-Spo7 phosphatase or the hyperactive 7A mutant causes a lethal phenotype (9, 44), indicating that an excess level of PAP activity is also detrimental to cell physiology. We postulate that Nem1-Spo7 phosphatase plays a major role in limiting PAP activity by serving as a rate-limiting step in the phosphatase cascade. For example, the abundance of Nem1 (377 molecules/cell) is 10-fold less than that of Pah1 (3,910 molecules/cell) (74), and the turnover number (kcat) of Nem1-Spo7 phosphatase (0.29 s⁻¹) is 80-fold lower than that of Pah1 PAP activity (23 s⁻¹). In addition, the differences in pH optima of Nem1-Spo7 phosphatase and Pah1 PAP in connection with changes in cellular pH during growth indicate an additional level of regulation mediated by the Nem1-Spo7 phosphatase.

Acknowledgments—We thank Symeon Siniossoglou for supplying Pah1 and Pah1-7A purified from yeast and the plasmids used to express the Nem1-Spo7 phosphatase complex. We also thank Erin O’Shea for the plasmids to express the Pho85-Pho80 protein kinase complex.

REFERENCES

1. Han, G.-S., Wu, W.-L., and Carman, G. M. (2006) The Saccharomyces cerevisiae lipin homolog is a Mg²⁺-dependent phosphatase phosphatase enzyme. J. Biol. Chem. 281, 9210–9218
2. Smith, S. W., Weiss, S. B., and Kennedy, E. P. (1957) The enzymatic dephosphorylation of phosphatidic acids. J. Biol. Chem. 228, 915–922
3. Carman, G. M., and Han, G.-S. (2006) Roles of phosphatase phosphatase enzymes in lipid metabolism. Trends Biochem. Sci. 31, 694–699
4. Carman, G. M., and Han, G.-S. (2009) Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J. Biol. Chem. 284, 2593–2597
5. Pascual, F., and Carman, G. M. (2013) Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim. Biophys. Acta 1831, 514–522
6. Han, G.-S., Siniossoglou, S., and Carman, G. M. (2007) The cellular functions of the yeast lipin homolog Pah1p are dependent on its phosphatase phosphatase activity. J. Biol. Chem. 282, 37026–37035
7. Carman, G. M., and Han, G.-S. (2011) Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Ann. Rev. Biochem. 80, 859–883
8. Henry, S. A., Kohlwein, S. D., and Carman, G. M. (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190, 317–349
9. Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., and Siniossoglou, S. (2005) The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931–1941
10. Fakas, S., Qiu, Y., Dixon, J. L., Han, G.-S., Ruggles, K. V., Garbarino, J., Sturley, S. L., and Carman, G. M. (2011) Phosphatidate phosphatase ac-
Nem1–Spo7 Dephosphorylation of Pah1 Phosphatidate Phosphatase

Phosphatidate phosphatase enzymes play a key role in protection against fatty acid-induced toxicity in yeast. *J. Biol. Chem.*, **286**, 29074–29085

11. Adeyo, O., Horn, P. J., Lee, S., Binns, D. D., Chandrasah, A., Chapman, K. D., and Goodman, J. M. (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. *J. Cell Biol.*, **192**, 1043–1055

12. Lussier, M., White, A. M., Sheraton, J., di Paolo, T., Treadwell, J., Southard, S. B., Horenstein, C. I., Chen-Weiner, J., Ram, A. F., Kaptayn, J. C., Roemer, T. W., Vo, D. H., Bondoc, D. C., Hall, J., Zhong, W. W., Sdicu, A. M., Davies, J., Klis, F. M., Robbins, P. W., and Bussey, H. (1997) Large scale identification of genes involved in cell surface biosynthesis and architecture in *Saccharomyces cerevisiae*. *Genetics* **147**, 435–450

13. Ruiz, C., Cid, V. J., Lussier, M., Molina, M., andNombrada, C. (1999) A large-scale sonication assay for cell wall mutant analysis in yeast. *Yeast* **15**, 1001–1008

14. Sasser, T., Qiu, Q. S., Karunakaran, S., Padolina, M., Reyes, A., Flood, B., Smith, S., Gonzalez, C., and Fratti, R. A. (2012) The yeast lipin 1 orthologue Pah1p regulates vacuole homeostasis and membrane fusion. *J. Biol. Chem.* **287**, 2221–2236

15. Irie, K., Takase, M., Araki, H., and Oshima, Y. (1993) A gene, SMP2, involved in plasmid maintenance and respiration in *Saccharomyces cerevisiae* encodes a highly charged protein. *Mol. Gen. Genet.* **236**, 283–288

16. Han, G.-S., O’Hara, L., Carman, G. M., and Siniossoglou, S. (2008) An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. *J. Biol. Chem.* **283**, 20433–20442

17. Han, G.-S., and Carman, G. M. (2010) Characterization of the human LPIN1-encoded phosphatidate phosphatase isoforms. *J. Biol. Chem.* **285**, 14628–14638

18. Pétery, M., Phan, J., Xu, P., and Reue, K. (2001) Lipodystrophy in the fdl mouse results from mutation of a new gene encoding a nuclear protein, lipin. *Nat. Genet.* **27**, 121–124

19. Donkor, J., Sariahmetoglu, M., Dewald, J., Brindley, D. N., and Reue, K. (2007) Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. *J. Biol. Chem.* **282**, 3450–3457

20. Valente, V., Maia, R. M., Vianna, M. C., and Paçô-Larson, M. L. (2010) *Drosophila melanogaster* lipins are tissue-regulated and developmentally regulated and present specific subcellular distributions. *FEBS J.* **277**, 4775–4788

21. Ugrankar, R., Liu, Y., Provanzir, J., Schmitt, S., and Lehrmann, M. (2011) Lipin is a central regulator of adipose tissue development and function in *Drosophila*. *Mol. Cell. Biol.* **31**, 1646–1656

22. Golden, A., Liu, J., and Cohen-Fix, O. (2009) Inactivation of the *C. elegans* lipin homolog leads to ER disorganization and to defects in the breakdown and reassembly of the nuclear envelope. *J. Cell Sci.* **122**, 1970–1978

23. Nakamura, Y., Koizumi, R., Shui, G., Shimojima, M., Wenko, M. R., Ito, T., and Ohta, H. (2009) *Arabidopsis* lipids mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 20978–20983

24. Eastmond, P. J., Quettier, A. L., Kroon, J. T., Cragg, B., Adams, N., and Slabas, A. R. (2010) Photophosphatidate phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in *Arabidopsis*. *Plant Cell* **22**, 2796–2811

25. Phan, J., and Reue, K. (2005) Lipin, a lipodystrophy and obesity gene. *Cell Metab.* **1**, 73–83

26. Lindegaard, B., Larsen, L. F., Hansen, A. B., Gerstoft, J., Pedersen, B. K., and Reue, K. (2007) Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy. *Int. J. Obes.* **31**, 449–456

27. Nadra, K., de Pueyrros, A. S., Médard, J.-S., Hendrikse, W. T., Han, G.-S., Grès, S., Carman, G. M., Saulnier-Blache, J. S., Meijer, D., Chrust, R., and Cuppen, E. (2011) A hypomorphic mutation in *LPIN1* induces progressively improving neurophysiology and lipodystrophy in the rat. *J. Biol. Chem.* **286**, 26781–26793

28. Zeharia, A., Houtkooper, R. H., Hindi, T., de Lonlay, P., Erez, G., Hubert, L., Saada, A., de Keyzer, Y., Eshel, G., Vaz, F. M., Pines, O., and Elpeleg, O. (2008) Mutations in *LPIN1* cause recurrent acute myoglobinuria in childhood. *Am. J. Hum. Genet.* **83**, 489–494

29. Choi, H.-S., Su, W.-M., Morgan, J. M., Han, G.-S., Xu, Z., Karanasios, E., Siniossoglou, S., Djouadi, F., Carman, G. M., Romero, N., de Keyzer, Y., and de Lonlay, P. (2013) Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. *Biochim. Biophys. Acta* **1832**, 2103–2114

30. Elpeleg, O. (2008) Mutations in *LPIN1* cause recurrent acute myoglobinuria in childhood. *Am. J. Hum. Genet.* **83**, 489–494
tase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast. J. Biol. Chem. 287, 33364–33376

48. Xu, Z., Su, W.-M., and Carman, G. M. (2012) Fluorescence spectroscopy measures yeast PAH1-encoded phosphatidate phosphatase interaction with liposome membranes. J. Lipid Res. 53, 522–528

49. Su, W. M., Han, G. S., and Carman, G. M. (2014) Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in Saccharomyces cerevisiae. J. Biol. Chem. 289, 18818–18830

50. Pascual, F., Hsieh, L.-S., Soto-Cardalda, A., and Carman, G. M. (2014) Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation. J. Biol. Chem. 289, 9811–9822

51. Siniossoglou, S., Santos-Rosa, H., Rappoliter, J., Mann, M., and Hurt, E. (1998) A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J. 17, 6449–6464

52. Karanasios, E., Han, G.-S., Xu, Z., Carman, G. M., and Siniossoglou, S. (2010) A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc. Natl. Acad. Sci. U.S.A. 107, 17539–17544

53. Karanasios, E., Barbosa, A. D., Sembongi, H., Mari, M., Han, G.-S., Reggiori, F., Carman, G. M., and Siniossoglou, S. (2013) Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p. Mol. Biol. Cell 24, 2124–2133

54. Madera, M., Vogel, C., Kummerfeld, S. K., Chothia, C., and Gough, J. (2004) The SUPERFAMILY database in 2004: additions and improvements. Nucleic Acids Res. 32, D235–D239

55. Koonin, E. V., and Tatusov, R. L. (1994) Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search. J. Mol. Biol. 244, 125–132

56. Han, S., Bahmanyar, S., Zhang, P., Grishin, N., Oegema, K., Crooke, R., Graham, M., Reue, K., Dixon, J. E., and Goodman, J. M. (2012) Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J. Biol. Chem. 287, 3123–3137

57. Rose, M. D., Winston, F., and Heiter, P. (1990) Methods in Yeast Genetics: A Laboratory Course Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

58. Siniossoglou, S., Hurt, E. C., and Pelham, H. R. (2000) Psl1p/Psr2p: two plasma membrane phosphatases with an essential DXD(T/V) motif required for sodium stress response in yeast. J. Biol. Chem. 275, 19352–19360

59. Klig, L. S., Homann, M. J., Carman, G. M., and Henry, S. A. (1985) Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: pleiotropically constitutive opj1 mutant. J. Bacteriol. 162, 1135–1141

60. Han, G.-S., Sreenivas, A., Choi, M. G., Chang, Y. F., Martin, S. S., Baldwin, E. P., and Carman, G. M. (2005) Expression of human CTP synthetase in Saccharomyces cerevisiae reveals phosphorylation by protein kinase A. J. Biol. Chem. 280, 38328–38336

61. Jeffery, D. A., Springer, M., King, D. S., and O’Shea, E. K. (2001) Multi-site phosphorylation of Pho4 by the cyclin-CDK Pho80-Pho85 is semi-parallel with site preference. J. Mol. Biol. 306, 997–1010

62. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254

63. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685

64. Burnette, W. (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112, 195–203

65. Haid, A., and Suisa, M. (1983) Immunochromatographic identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methods Enzymol. 96, 192–205

66. Carman, G. M., and Lin, Y.-P. (1991) Phosphatidate phosphatase from yeast. Methods Enzymol. 197, 548–553

67. Kinoshita, E., Kinoshita-KikutA, E., Takiyama, K., and Koike, T. (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell Proteomics 5, 749–757

68. Morlock, K. R., McLaughlin, J. J., Lin, Y.-P., and Carman, G. M. (1991) Phosphatidate phosphatase from Saccharomyces cerevisiae: isolation of 45-kDa and 104-kDa forms of the enzyme that are differentially regulated by inositol. J. Biol. Chem. 266, 3586–3593

69. Brot, F. E., and Bender, M. L. (1969) Use of the specificity constant of α-chymotrypsin. J. Am. Chem. Soc. 91, 7187–7191

70. Kim, Y., Gentry, M. S., Harris, T. E., Wiley, S. E., Lawrence, J. C., Jr., and Dixon, J. E. (2007) A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc. Natl. Acad. Sci. U.S.A. 104, 6596–6601

71. Oriji, R., Urbanus, M. L., Vizeacoumar, F. J., Giaever, G., Boone, C., Nislow, C., Brul, S., and Smits, G. J. (2012) Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae. Genome Biol. 13, 880

72. Dubots, E., Cottier, S., Peli-Gulli, M. P., Jaquenoud, M., Bontron, S., Schneiter, R., and De Verígi, C. (2014) TORC1 regulates Pah1 phosphatidate phosphatase activity via the Nem1/Spo7 protein phosphatase complex. PLoS One 9, e104194

73. Wu, R., Garland, M., Dunaway-Mariano, D., and Allen, K. N. (2011) Homo sapiens Dullard protein phosphatase shows a preference for the insulin-dependent phosphorylation site of lipin1. Biochemistry 50, 3045–3047

74. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O’Shea, E. K., and Weissman, J. S. (2003) Global analysis of protein expression in yeast. Nature 425, 737–741

75. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

76. Wimmer, C., Fritsch, V., and Mantei, T. (1998) Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J. Biol. Chem. 287, 3123–3137