Success of ceftazidime–avibactam and aztreonam in combination for a refractory biliary infection with recurrent bacteraemia due to \textit{blaIMP-4} carbapenemase-producing \textit{Enterobacter hormaechei} subsp. \textit{oharae}

Genevieve McKew1,2,*, John Merlino1,2, Alicia Beukers2,3, Sebastian van Hal2,3 and Thomas Gottlieb1,2

CASE REPORT

A 45-year-old woman was admitted to the intensive care unit (ICU) for 5 months in December 2017 with protracted status epilepticus due to limbic encephalitis. This was complicated by diffuse intra-hepatic biliary duct dilatation and marked derangement of liver function tests, presumed to be due to antiepileptic medication, with a liver biopsy demonstrating non-inflammatory, non-steatotic hepatocyte injury of unclear aetiology. She also developed sacral pressure ulcers, deep venous thrombosis, an upper gastrointestinal bleed and cardiomyopathy. After resolution of status epilepticus, she had ongoing cognitive impairment and intermittent seizures. She was treated initially with high-dose corticosteroids.

INTRODUCTION

We present a case where treatment with ceftazidime–avibactam and aztreonam in combination was effective in a patient with recurrent and sustained \textit{blaIMP-4}+ \textit{Enterobacter cloacae} complex bacteraemia from an undrainable biliary source, where alternative antibiotic treatment had failed over a 5-month period.
Table 1. Antibiotic treatment regimens, blaIMP-4 status and interval between septic episodes for the first nine E. cloacae complex bloodstream infections

Isolate no.	Date	E. cloacae complex antibiotic resistance	Antibiotic	Days off treatment until recurrence
ECI01	23 December 2017	Wild-type	Gentamicin → meropenem, 14 days	29
ECI02*	7 February 2018	blaIMP-4, CIP intermediate, MDR†	Ciprofloxacin, 12 days	-2
ECI03*	18 February 2018	MDR, except cefepime-susceptible	Meropenem, 5 days	3
ECI04	2 March 2018	blaIMP-4, MDR	PTZ† and amikacin, 19 days	-6
ECI05*	10 March 2018	blaIMP-4, MDR	Aztreonam, 7 days	4
ECI06	24 March 2018	blaIMP-4, MDR	Amikacin 5 days, PTZ† 4 days, aztreonam 14 days	6
ECI07	5 April 2018	MDR	Amikacin 16 days	9
ECI08	1 May 2018	MDR	Amikacin 2 days → meropenem 12 days	13
ECI09	28 May 2018	blaIMP-4, MDR (MER MIC 4 mg l⁻¹)	Amikacin and meropenem 14 days	36
ECI10	18 July 2018	blaIMP-4, MDR	Amikacin 7 days → aztreonam and ceftazidime–avibactam 14 days	No recurrence

*Sequenced isolates. †MDR, resistant to ciprofloxacin, gentamicin, cefepime, trimethoprim–sulphamethoxazole, tigecycline, nitrofurantoin. ‡Piperacillin–tazobactam.

Table 1. Antibiotic treatment regimens, blaIMP-4 status and interval between septic episodes for the first nine E. cloacae complex bloodstream infections

From 2 weeks after admission, over an 8-month period, she had 10 discrete episodes of Gram-negative bacteraemia, all culturing E. cloacae complex (MALDI Biotyper, Bruker) (see Table 1, isolates ECI01–10). These were attributed to cholangitis. She had an endoscopic retrograde cholangiopancreatogram with stenting of the mildly dilated common bile duct, but this did not improve biliary drainage. A magnetic resonance cholangiogram demonstrated a gallstone, gallbladder wall thickening, and moderate irregularity and dilatation of the intrahepatic ducts. Computed tomography demonstrated contrast enhancement of the major ducts consistent with cholangitis. Histopathology of the common bile duct revealed a mild acute inflammatory infiltrate of the mucosa and stroma, with no malignant cells. Positron-emitted tomography revealed diffuse, moderate-to-markedly increased metabolism outlining the biliary tree in both lobes of the liver, consistent with cholangitis, without other abnormalities. She was treated for cholestasis with cholestyramine and ursodeoxycholic acid. Liver transplantation was not considered an option.

The first episode of bacteraemia occurred in December 2017. A wild-type E. cloacae complex isolate was cultured. This episode was followed by six further episodes of blaIMP-4+ E. cloacae complex bloodstream infection, over 5 months beginning in February 2018, interspersed with three episodes where ESBL-producing, but blaIMP-4-negative, E. cloacae complex was isolated. All blaIMP-4+ isolates remained amikacin-susceptible (Vitek2, BioMérieux); meropenem Etest MICs (Biomérieux) were >16 mg l⁻¹ for all isolates except for one (ECI09), at 4 mg l⁻¹.

Throughout these episodes she received multiple treatments of varied duration with combinations of antibiotics, including meropenem, amikacin, aztreonam, piperacillin–tazobactam, ciprofloxacin, gentamicin and trimethoprim–sulphamethoxazole (Table 1). Despite responding clinically on each occasion, particularly when amikacin was included in treatment, the septic episodes recurred regularly, usually within 1–2 weeks of antibiotic therapy ceasing. These presented clinically with slight worsening of cognitive status, low-grade fever and gradual increase in C-reactive protein and transaminase levels, without other overt signs or symptoms of typical sepsis.

A 10th episode of E. cloacae complex bacteraemia (blaIMP-4+) occurred on 18 July 2018. To aid treatment of this episode, in vitro synergy testing for the combination of ceftazidime–avibactam (CAZ–AVI) and aztreonam was performed. The patient then received 14 days of CAZ–AVI 2g/0.5g 8-hourly in combination with aztreonam 1g 8-hourly. She had also received amikacin 900mg daily for the previous 7 days. Aztreonam was initially dosed at 2g, but after a seizure, a lower dosage was used because of the risk of provoking seizures with double β-lactam therapy. She tolerated the treatment course without complications.

She has had no further recurrences during 12 months of follow-up, which included 16 separate blood culture collections. Her rectal screening samples continue to culture blaIMP-4+E. cloacae complex.

PHENOTYPIC TESTING AND WHOLE-GENOME SEQUENCING (WGS)

Phenotypic antimicrobial susceptibility testing was performed with Vitek2. The colistin broth microdilution MIC was 0.25 mg l⁻¹ (MERLIN Diagnostika GmbH). Supplementary testing was performed with Etest strips and the individual MIC results were 6mg l⁻¹ for tigecycline, 128mg l⁻¹ for aztreonam and >256mg l⁻¹ for CAZ–AVI. A layered Etest method for synergy between CAZ–AVI and aztreonam demonstrated an MIC of 2mg l⁻¹ for the combination.
WGS was performed on the Illumina MiSeq platform and analysed with the Nullarbor pipeline [1] for three of the isolates. ECI02 was the first non-wild-type isolate, and was blaIMP-4 PCR-positive but still MDR isolate, but notably, ceftipime-susceptible. ECI05 was again blaIMP-4 PCR-positive, and was chosen because treatment with amikacin had failed. Trimmed reads from ECI02, ECI03 and ECI05 were aligned to infer core SNP phylogeny (maximum-likelihood GTR+G4 model) with IQTree (see Fig. 1). ECI05 and ECI03 are more closely related to ECI02 (590 and 645 core-genome SNP differences, respectively) than they are to each other (1120 core-genome SNP difference). Of note, ECI02 and ECI05 are the blaIMP-4-positive isolates, despite their core-genome differences. Species identification (Kraken) [2] for all three isolates was consistent with Enterobacter hormaechei subsp. oharae (part of the E. cloacae complex). They were found to belong to multilocus sequence type 114 (mlst 2.6, http://pubmlst.org/). Sequence data are available in the European Nucleotide Archive (accession PRJEB39176).

Plasmid replicons were detected by uploading assembled contigs (from SPAdes v3.12.0) [3] to PlasmidFinder [4]. Contigs were uploaded to the CARD database to detect antimicrobial resistance genes [5]. The isolates were MDR, and multiple antibiotic resistance genes were detected. All three isolates had a blaTEM-4 class A extended-spectrum beta-lactamase, blaOXA-1 and blaACT-25 beta-lactamases. Two of the isolates (ECI02 and ECI03) carried the IncH2 plasmid replicon, along with blaIMP-4, and a number of plasmid-associated antimicrobial resistance genes [6], which were missing from the carbapenem-susceptible isolate ECI03 (Table 2). This isolate (ECI03), like the two others, carried an IncL/M and colRNAI plasmid replicon, but not IncH2, suggesting that blaIMP-4 was carried on the IncH2 plasmid, whilst the other antimicrobial resistance genes were carried on IncL/M and possibly colRNAI (see Table 3).

DISCUSSION

This case contributes to the literature on the use of ceftazidime–avibactam and aztreonam combination therapy in the treatment of serious infections due to metallo-β-lactamase (MBL)-producing organisms, in the presence of other beta-lactamases. The distinguishing feature of this case is that our patient had limited surgical options for source control. Despite multiple recurrences of infection due to a persistent biliary focus over more than 7 months, and sustained treatment failure using alternative active antibiotics, the patient was successfully treated with a single limited 14-day course of CAZ–AVI–AZT treatment.

Ceftazidime–avibactam is a successful option for treatment of carbapenemase-producing enterobacteria (CPE) infections, especially those caused by blaKPC- and blaOXA-48-producing...
organisms. Avibactam is a beta-lactamase inhibitor with activity against Ambler class A ESBLs and carbapenemases, Ambler class C-producing AmpC beta-lactamases and blaOXA-48-like carbapenemases, but not MBLs [7]. Thus, the management of sepsis caused by MBL-producing CPE, such as blaNDM and blaIMP-4, remains unsatisfactory. Aztreonam is a beta-lactam antibiotic that also inhibits MBLs, and its addition to another beta-lactam antibiotic may overcome this problem [7].

Although MBLs do not hydrolyze aztreonam, which then retains activity, MBL-producing isolates may also co-produce ESBLs that confer resistance to aztreonam. The use of aztreonam–avibactam may potentially counter this, but as this drug combination is not commercially available, the combination of ceftazidime–avibactam and aztreonam has increasingly been utilized in the treatment of infection caused by MBL-producing organisms [7–10]. In this case, phenotypic detection of ESBL was confirmed by genomic analysis.

In vitro data using the layered Etest and chequerboard methodology has demonstrated reduction in ceftazidime–avibactam MICs by the addition of aztreonam in enterobacterales isolates with MBLs and ESBLs [11]. Isolates included in the published literature have harboured blaNDM or blaVIM alone, or in combination with blaOXA-48, blaOXA-181 or blaKPC-2, as well as various ESBLs. Synergy has also been demonstrated in disc diffusion assays, in agar dilution, in time–kill studies and in mouse neutropenic thigh infection models [7].

In vivo, the utility of this combination has been demonstrated in a prospective observational study, individual case studies and series with a range of treatment duration from 10 days to greater than 6 weeks [8]. The combination was curative in cases of blaNDM-1-producing Enterobacter cloacae and ESBL-producing Klebsiella pneumoniae arthroplasty infection [7], blaOXA-48 and blaNDM-1-producing persistent Klebsiella pneumoniae bacteraemia [9], blaNDM-1-producing Pseudomonas aeruginosa lung abscess [9] and extensive osteomyelitis due to blaNDM-1- and blaOXA-181-producing Klebsiella pneumoniae, which also required aggressive surgical management [12]. There was a 60% reduction in the risk of mortality compared to treatment with other active antibiotics [10].

Table 3. Plasmid replicons detected in the three sequenced isolates and their blaIMP4 status

Isolate	Antibiotic susceptibility profile	IncI/M	coI/1A	IncHI2	blaIMP4 gene
ECI02	blaIMP-4, CIP intermediate, MDR*	Positive	Positive	Positive	Positive
7 February 2018					
ECI03	MDR, except cefepime-susceptible	Positive	Positive	Negative	Negative
18 February 2018					
ECI05	blaIMP-4, MDR	Positive	Positive	Positive	Positive
10 March 2018					

*MDR, resistant to ciprofloxacin, gentamicin, cefepime, trimethoprim-sulphamethoxazole, tigecycline, nitrofurantoin.

CONCLUSION

Infections due to MBLs are becoming a significant problem, with organisms producing blaNDM and blaIMP-4 causing increasing numbers of community- and healthcare-associated infections, and antibiotic treatment options are limited. Aztreonam combined with avibactam presents an increasingly useful therapeutic choice, and though currently not commercially available as a combination, the use of CAZ–AVI with aztreonam provided a safe and effective cure in this difficult biliary infection.

Acknowledgements

We acknowledge the staff at the Sydney Informatics Hub at The University of Sydney for assistance and resources and QFAB Bioinformatics (qfab.org) for assistance with uploading data to the European Nucleotide Agency.

Author contributions

G.M.: conceptualization, formal analysis, investigation, data curation, writing – original draft preparation, review and editing. J.M.: investigation. A.B.: investigation. S.v.H.: investigation, resources, writing – review and editing. T.G.: conceptualization, writing – review and editing, supervision.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical statement

The Sydney Local Health District Human Research Ethics Committee – Concord Repatriation and General Hospital approved this work.
(CH62/6/20201-001). Informed consent was obtained from the patient’s next of kin.

References
1. Seemann T, Goncalves da Silva A, Bulach DM, Schultz MB, Kwong JC, et al. Nullarbor. 2021. https://github.com/tseemann/nullarbor
2. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014;15:R46.
3. Bankevich A, Nurk S, Antipov D. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:445–477.
4. Carattoli A, Zankari E, García-Fernández A. In silico detection and typing of plasmids using PlasmidFinder and plasmid multi-locus sequence typing. Antimicrob Agents Chemother (Bethesda) 2014;58:3895–3903.
5. Alcock BP, Raphenya RA, Lau TTY, Tsang KK, Bouchard M, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020;48:D517–D525.
6. Abraham S, O’Dea M, Trott DJ. Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats. Sci Rep 2016;6:35527.
7. Marshall S, Hujer AM, Rojas LJ. Can ceftazidime-avibactam and aztreonam overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother 2017;61.
8. Mojica MF, Ouellette CP, Leber A, Becknell MB, Ardura MI, et al. Successful treatment of bloodstream infection due to metallo-beta-lactamase-producing Stenotrophomonas maltophilia in a renal transplant patient. Antimicrob Agents Chemother 2016;60:5130–5134.
9. Davido B, Fellous L, Lawrence C, Maxime V, Rottman M, et al. Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017;61.
10. Falcone MD, Tiseo G, Bassoulis D, Giordano C, Gallo V, et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by MBL-producing Enterobacteriaceae. Clin Infect Dis 2020.
11. Davido B, Batista R, Michelon H, Lepainteur M, Bouchard F, et al. Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? J Hosp Infect 2017;95:433–437.
12. Mittal J, Szymczak WA, Guo Y. Two for the price of one: emerging carbapenemases in a returning traveller to New York City. BMJ Case Rep 2018;2018.
13. Leung GH, Gray TJ, Cheong EY. Persistence of related bla-IMP-4 metallo-beta-lactamase producing Enterobacteriaceae from clinical and environmental specimens within a burns unit in Australia - a six-year retrospective study. Antimicrob Resist Infect Control 2013;2:35.
14. Marmor A, Daveson K, Harley D. Two carbapenemase-producing Enterobacteriaceae outbreaks detected retrospectively by whole-genome sequencing at an Australian tertiary hospital. Infect Dis Health 2020;25:30–33.
15. BellJM, Gottlieb T, Daley DA, Coombs GW. Australian Group on Antimicrobial Resistance (AGAR) Australian Gram-negative Sepsis Outcome Programme (GNSOP) Annual Report 2017. Canberra: Australian Government; 2019, pp. 1–9.
16. Roberts LW, Catchpole E, Jennison AV. Genomic analysis of carbapenemase-producing Enterobacteriaceae in Queensland reveals widespread transmission of blalMP-4 on an IncHI2 plasmid. Microb Genom 2020;6.
17. Kizny Gordon A, Phan HTT, Lipworth SI, Cheong E, Gottlieb T, et al. Genomic dynamics of species and mobile genetic elements in a prolonged blalMP-4-associated carbapenemase outbreak in an Australian hospital. J Antimicrob Chemother 2020;75:873–882.

Five reasons to publish your next article with a Microbiology Society journal
1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.