Papillary thyroid carcinoma (PTC) is heterogeneous and its molecular characteristics remain elusive. We integrated transcriptomic sequencing, genomic analysis and clinicopathologic information from 582 tissue samples of 216 PTC and 75 benign thyroid nodule (BTN) patients. We discovered four subtypes of PTC including Immune-enriched Subtype, BRAF-enriched Subtype, Stromal Subtype and CNV-enriched Subtype. Molecular subtypes were validated in an external cohort of 497 PTC cases from the TCGA. Tumors in the Immune-enriched Subtype showed higher immune infiltration and overexpression of immune checkpoints, whilst BRAF-enriched Subtype showed a higher tendency for extrathyroidal extension and more advanced TNM stage. Key oncogenes including LRRK2, SLC3A4A2, MUC1, FOXO1 and KRT19 were overexpressed and enriched in oncogenic MAPK and PI3K/AKT signaling pathways in BRAF-enriched subtype. Further analysis of BRAF-enriched Subtype identified three subclasses with different degrees of malignancies. We also uncovered the molecular link of the initiation and progression from BTN to subtypes of PTC using trajectory analysis. Moreover, a 20-gene expression signature was generated for differential diagnosis of PTC from BTN patients. Together, our work identified previously unreported molecular subtypes of PTC, offering opportunities to stratify patients into optimal treatment plans based on molecular subtyping.

Oncogene (2022) 41:5121–5132; https://doi.org/10.1038/s41388-022-02499-0

INTRODUCTION

Thyroid cancer, as the most common endocrine cancer, ranks the ninth most common malignant tumor in the world [1], with an annual growth rate of global incidence up to 20% [2]. As the most frequent pathological types, papillary thyroid cancer (PTC) accounts for more than 85% of the thyroid cancer [3]. Usually, PTC has a good prognosis with a 5-year survival rate of more than 90% after surgery, even some of them are considered unnecessary for immediate surgery. However, due to the multifocality and early lymph node metastasis of PTC, its recurrence rate is as high as 35% and the 10-year disease-specific survival rate of advance PTC is less than 50% [4, 5]. At present, TNM staging and recurrence risk stratification based on postoperative pathology are still the major approaches for evaluating the prognosis of PTC. The molecular characteristics of PTC with different biological features are barely known. Therefore, exploring the accurate and effective molecular classification of PTC patients will provide new insights for the prognosis assessment and individualized treatment for PTC patients.

Efforts have been taken to the molecular classification of PTC. The Cancer Genome Atlas (TCGA) project was the first pan-genomic study of thyroid cancer. The recent molecular classifications are based on the most frequent genetic events in PTC (BRAF mutation and RAS mutation) [6, 7]. However, the existing subtyping of thyroid cancer revolves around BRAF mutations and RAS mutations, which could not fully cover the molecular and clinical characteristics of PTC, without considering other genomic changes and the tumor microenvironment. Therefore, a comprehensive analysis that includes PTC patients with varied biological characteristics and combines with the expression profile of benign thyroid nodules (BTN) is needed to produce a model that can be highly correlated with the prognosis and enhance the understanding of the molecular mechanism of the disease.

In this study, we performed a comprehensive RNA sequencing (RNA-seq) in 291 paired tumor and non-tumor tissue samples (216 PTC patients and 75 BTN patients), to reveal their transcriptomic and genomic characteristics. Using consensus non-negative matrix factorization (NMF), we derived and refined 4 novel molecular subtypes in PTC and further validated their reproducibility in TCGA database. We showed that each of the 4 subtypes was associated with distinct genetic and transcriptomic characteristics, immune patterns and clinicopathological features. Besides, we screened...
out marker genes that can distinguish benign and malignant thyroid nodules. These findings will be expected to help optimize the diagnosis and treatment of thyroid cancer.

RESULTS
Landscape of transcriptional and genomic alterations in thyroid nodules
To find the molecular characteristics of benign and malignant thyroid nodules, we conducted a comprehensive bulk RNA-seq analysis of 225 PTC and 77 BTN patients (Fig. 1a). After quality control of RNA sequencing, a total of 216 pairs of PTC and adjacent tissues and 75 pairs of BTN and adjacent tissues were finally admitted for the following analysis. As shown in principle component analysis (Fig. 1b), there was significant separation between BTN and PTC. A total of 3944 genes had their expression levels changed between BTN and PTC (Fig. 1c). Of which, the top 20 differential expressed genes (DEGs) were mainly related to the progression of malignant tumors, including SYT12, CLDN10, COL9A3, SFRP1, MT1G, MTIH, etc. (Fig. 1d).

Besides, we analyzed the gene mutation, gene fusion and copy number variation (CNV) of all samples based on the gene expression profiles (Supplementary Fig. 1a, b). BRAF mutation, account for 44.91% of PTC, was the main mutation in PTC, and almost all the BRAF mutations were T1799A substitutions (BRAFV600E). Since it is difficult to infer the arm-level variations of all chromosome by gene expression profiles, we used the CaSpER method to calculate the copy number variation (CNV) at the gene level, and identified significant losses or gains of 50 genes in 18.4% of PTC cases (Supplementary Fig. 1c). Through the gene fusion analysis, RET fusions were the most frequent type, accounting for 10.19% of PTC (Supplementary Fig. 1d). Among them, we found a novel RET fusion that retained the kinase domain, the KCTD5-RET gene fusion, and which was also verified by RT-PCR and sanger sequencing (Supplementary Fig. 1e, f).

Transcriptome-based molecular classification in thyroid nodules
By performing unsupervised NMF clustering of 291 samples of benign and malignant thyroid nodule, we identified 6 subtypes, four of which dominated by PTC and two of which were mainly BTN (Fig. 2a). Further analysis of the characteristics of the 4 subtypes of PTC (Subtype 2, 3, 4 and 6) found that Subtype 2 had the highest immune score, so-called Immune-enriched Subtype, while Subtype 3 with the highest stromal score was called Stromal Subtype. BRAFV600E mutations were mainly enriched in Subtype 4 (BRAF-enriched Subtype). Meanwhile, the proportion of CNV in Subtype 6 (CNV-enriched Subtype) was significantly higher than that of other subtypes (Fig. 2a). We then performed the clinicopathological data analysis in these 4 subtypes, and observed that PTC in BRAF-enriched Subtype were more prone to extrathyroidal extension than others. Besides, the majority of stage III/IV PTC were also clustered in BRAF-enriched Subtype (Fig. 2b and Supplementary Table 1). In terms of tumor multifocality, lymph node metastasis and distant metastasis, there were no statistically significant differences among these 4 subtypes.

In order to externally validate the molecular classification of PTC described, we constructed a molecular classifier composed of a set
of marker genes of each subtype, and verified its specificity for
each subtype through the random forest method. The 497 PTC
cases in TCGA cohort were allocated into 4 subtypes by using this
molecular classifier (Fig. 2c). The characteristics of each subtype
was consistent, implying the robustness of our molecular
classification system.

To identify the potential hub genes of the molecular
characteristics in each PTC subtypes, the ARACNe and GSEA
methods were used to construct a gene-pathway co-expression
network. In the subtypes dominated by BTN (Subtype 1 and 5),
aminic acid metabolism and lipid metabolism pathways were up-
regulated while the MAPK pathway, the JAK-STAT pathway, and various immune cell functions were downregulated, including T
cells, B cells and NK cells (Supplementary Fig. 2a, b). Among the
4 subtypes of PTC, the hub genes of the Stromal Subtype mainly
encode extracellular matrix proteins, which were involved in
regulating a variety of classic oncogenic pathway, including the
MAPK signaling, the Wnt signaling, the TGF-beta signaling
pathway (Supplementary Fig. 3a, c). In CNV-enriched Subtype,
most of the hub genes, including TMSB10, were oncogenes, while
several oncogenic pathways and immune pathways were down-
regulated (Supplementary Fig. 3b, d).

Characteristics of Immune-enriched Subtype

We found that most of the key regulated genes of Immune-
enriched Subtype were related to the function of immune cells, including CORO1A, CD3E, LCPC, ACAP1, HLA-DRA, CCL19 and
RAC2 (Fig. 3a). Similarly, gene set enrichment analysis showed
enrichment of antigen processing and presentation, T cell
differentiation (Th17, Th1 and Th2 differentiation), autoimmune
thyroid disease, the NF-κB signaling, chemokine and cytokine
signaling. Besides, two classical oncogenic pathways, the JAK-STAT
and the MAPK pathway were also activated in Immune-enriched
Subtype (Fig. 3b). We conducted immunophenotyping to gain
further biological insight into the immunologic nature of the
Immune-enriched Subtype (Fig. 3c). Patients belonging to
Immune-enriched, Stromal, and BRAF-enriched subtypes showed
enrichment of immunosuppressive components, such as Treg, M2
macrophages, M-MDSCs and TGF-β signaling. But Immune-
enriched Subtype was also associated with active immune
response, including enrichment of antitumor immune cells (eg,
CD8 T cells, M1 macrophages, NK cells) and overexpression of
adaptive immune response genes (eg, CD8A, TNF, GZMB, PRF1,
IFNG). Besides, the expression of PD-1, PD-L1, CTLA4 and the T cell
inflamed GEP score in Immune-enriched Subtype were higher
than other subtypes (Fig. 3d). The immune infiltration status
among subtypes were further confirmed by miHC, which showed
that the infiltration of CD8 + T cell, FoxP3 + Treg cells, CD86 + M1
macrophages and CD163 + M2 macrophages were significantly
higher in Immune-enriched Subtype than in BRAF-enriched
Subtype and BTN Subtype (Fig. 3e).

Characteristics of BRAF-enriched Subtype

To further analyze the distribution of genetic alterations in PTC
subtypes, we found that a majority of BRAF mutation (73%) and
RET gene fusions were clustered in Subtype 4 (BRAF-enriched
Subtype). Several hub genes of BRAF-enriched Subtype were
closely related to BRAFV600E mutations, including MUC1, LRRK2,
SLC34A2, FOXQ1 and KRT19 (Fig. 4a). Gene set enrichment
analysis identified the classical BRAF mutation related signaling,
the MAPK signaling (Fig. 4b). In addition, the pathways related to
tumor metastasis were also enriched in BRAF-enriched Subtype,
including the Notch signaling and focal adhesion (Fig. 4b).

The expression levels and functions of the key regulatory genes
of BRAF-enriched subtype were explored using IHC and cell
function experiments. It is shown that both LRRK2 and SLC34A2
were highly expressed in BRAF-enriched subtype (Fig. 4c, d). The
effect of LRRK2 on thyroid cancer progression was determined by
series in vivo and in vitro experiments. Two thyroid cancer cell
lines, BCPAP and KHM-5M were transfected with siRNA targeting
LRRK2, and the knockdown efficiency were confirmed by qPCR
and Western blot (Supplementary Fig. 4a, b). Knockdown of
LRRK2 significantly suppressed the growth of thyroid cancer cell
in vitro and in vivo (Supplementary Fig. 4c-f).

PTC patients with BRAF mutation have various clinicopathological
features and clinical outcomes [8]. We conducted a sub-
classification analysis of BRAF-enriched Subtype and identified
three subclasses (Fig. 4e). The subclass 1 (BRAF-enriched-1) had
the highest proportion of extrathyroidal invasion (Fig. 4e). We further
searched whether there are abnormal expressions of certain genes
causing such clinical changes, and found that several oncogenes
were significantly upregulated in BRAF-enriched-1 subtype, including
CST6, NGEF, ETV4 and BNIP1, compared to BRAF-enriched 2
and BRAF-enriched 3 subtypes (Fig. 4f).

Gene expression landscape of benign and malignant thyroid
nodules

The gene expression profiling data of all the thyroid nodules allowed
us to construct the thyroid nodules trajectory to further investigate
the heterogeneity and the potential transition from BTN to PTC. The
pseudotime trajectory axis derived from Monocle indicated that
the BTNs were closed to BTN-adjacent thyroid tissues, which were mostly
located at the beginning of the trajectory (Fig. 5a). Then, they
differentiated into PTCS, and PTCS bifurcated into two diverse
branches in the latter part of the trajectory (Fig. 5a and
Supplementary Fig. 5a). By mapping the TDS in the trajectory, we
found that the decreased differentiation degree of thyroid nodules
along this trajectory (Supplementary Fig. 5b). As we found that
malignant nodules are divided into two branches in the pseudo-
chronological trajectory, we further analyzed the distribution of four
PTC subtypes in the trajectory (Fig. 5a). The immune score increased
along the trajectory and reached the highest at the end of the lower
branch, where the Immune-enriched Subtype was mainly distributed
(Supplementary Fig. 5c). Besides, the BRAF-enriched Subtype was
mainly distributed in the upper branch with lowest TDS (Supple-
mental Fig. 5d).

To gain insights into the gene expression dynamics along the
trajectory, we analyzed the expression changes of 2582 top
differential expression genes and observed three gene clusters in
categorized patterns (Fig. 5b). Genes in cluster I (pre-branch) were
largely involved in the biological process of thyroid gland (e.g., TFF3
and TPO) and were gradually downregulated along the trajectory
(Fig. 5c). Cluster II genes were activated at the end of the upper
branch, and most of them were reported to promote PTC
progression (e.g., ARHGAP and CITED1) (Fig. 5c). Finally, the cluster
III genes were mostly related to immune reaction (e.g., CCL19 and
CXCL13) and were upregulated and maintained at high expression
levels until the final stage of lower branch (Fig. 5c). The distribution of four PTC subtypes on the trajectory were also confirmed by pathway
enrichment analysis, as the lower branch genes were mainly
enriched in immune pathways and the upper branch genes displayed an enrichment of classical oncogenic pathways (Supple-
mental Fig. 5e).

A gene signature for the differentiation of PTC from BTN

We next sought to derive gene signatures that could be used to
improve the diagnosis and prognosis assessment of PTC. We
randomly divided all samples into training cohort and validation
cohort according to the ratio of 8:2 and ensured consistent negative
randomly divided all samples into training cohort and validation
cohort according to the ratio of 8:2 and ensured consistent negative
randomly divided all samples into training cohort and validation
cohort according to the ratio of 8:2 and ensured consistent negative
randomly divided all samples into training cohort and validation
cohort according to the ratio of 8:2 and ensured consistent negative
DISCUSSION
Thyroid cancer lacks a mature and practical molecular classification system like other cancers do [6, 7, 9]. To bridge this knowledge gap, we provided an integrative transcriptome and genomic landscape of a large Chinese cohort of PTC and BTN, as well as key clinical traits. By comprehensively analyzing the transcriptome profile of PTC and BTN, 4 molecular subtypes (Immune-enriched, Stromal, BRAF-enriched and CNV-enriched) with identical biological characteristics and driver genes were identified in our cohort and confirmed in TCGA cohort. We found that the pathological characteristics of thyroid carcinomas including extrathyroidal extension and TNM stage were associated with this molecular subtyping system. Furthermore, a 20-gene expression signature was generated for diagnosis of PTC from...
BTN, which can be potentially apply in the clinical practice in the future by less costive qPCR. These data provided a comprehensive elaboration of the molecular portrait of PTC and pave the way for more accurate disease evaluation and treatment.

BTN, which can be potentially apply in the clinical practice in the future by less costive qPCR. These data provided a comprehensive elaboration of the molecular portrait of PTC and pave the way for more accurate disease evaluation and treatment.

It is well established that the two most common mutations, BRAF and RAS mutations, play an important role in the molecular subtyping of PTC [10, 11]. A portion of samples with different molecular characteristics from the former two subtypes, were
classified into a new subtype, named Non-BRAF-Non-RAS subtype [7]. However, gene mutation could not fully explain the molecular features of PTC. Furthermore, tumor microenvironment and other genetic changes also have an important impact on the molecular characteristics and clinical outcomes of PTC, and need to be considered in PTC subtyping. In this regard, we broke the limitations of these mutation types in PTC, and used the NMF method [12, 13] to deconvolute the gene expression data of PTC.
and BTN samples so as to build new features of the PTC molecular landscape. Based on transcriptional landscape, PTC samples were classified as Immune-enriched, Stromal, BRAF-enriched and CNV-enriched subtypes; whilst BTN formed two subtypes. Higher frequency of distant metastasis and extrathyroidal extension were confirmed in the BRAF-enriched subtypes, which was supported by the previously reports [14, 15].

We identified a subgroup of PTCs with high immune cell infiltration and enhanced immune-related signaling, which was defined as Immune-enriched subtype. Its hub genes including LCP1, ACAP1, CCL19, CD3E, HLA-DRA, C1QA and CORO1A, were strongly associated with activities of immune cells. LCP1 was related to tumor infiltrating lymphocytes and plays an important role in lymphocyte formation and anti-cancer immune response [16]. The high expression of ACAP1 is positively associated with a variety of immune-related biological processes and pathways, such as adaptive immune response, T cell activation, and macrophage activation [17]. CCL19, as a candidate immunomodulator, regulates the adaptive immune response by increasing the interaction between dendritic cells, T cells and B cells [18]. As expected, patients with active immune profile were mostly complicated by Hashimoto’s thyroiditis and had a less aggressive pathologic characteristics. Moreover, through evaluating the specific patterns of immune cells infiltrating PTC, we found that the antitumor cells and cytokines were mainly found in Immune-enriched subtype. Whilst the protumor leukocytes were activated in Immune-enriched subtype, BRAF-enriched subtype and stromal subtype, which was supported by previous studies that different types of leukocytes play distinct role in PTC by releasing several cytokines [19, 20]. These findings collectively provided the molecular signature of immune-enriched subtype that may better explain the clinicopathological features of PTC with Hashimoto’s thyroiditis.

In addition, the gene expression of immune checkpoints (PD-1, PD-L1, CTLA-4) and T cells was upregulated in Immune-enriched subtype than other subtypes. Immune checkpoints were thought to be mainly related to self-tolerance [21], several studies indicated that the increased PD-L1 in cytotoxic T cells was induced by the IFN-γ during the anti-tumor immune reaction [22, 23]. A recent study reported that PTC patients with increased expression of immune checkpoint had a relatively better prognosis [22, 23], which supports our findings. Collectively, we identified a distinct Immune-enriched subtype of PTC with specific immune features and a better prognosis.

We also identified a BRAF-enriched Subtype of PTCs, which augmented with the activated the MAPK signaling, the ErbB signaling and the Notch signaling. BRAF-enriched Subtype had more extrathyroidal extension and was associated with advanced TNM stages compared to other types. BRAF^{V600E} mutation is the most common oncogenic mutation in PTC, which may correlates closely with aggressive tumor behavior and poor clinical outcomes of PTC [24]. BRAF is a serine-threonine kinase that can cause phosphorylation and activation of MAPK kinase and other downstream targets of the MAPK signaling pathway. Elevated

and BTN samples so as to build new features of the PTC molecular landscape. Based on transcriptional landscape, PTC samples were classified as Immune-enriched, Stromal, BRAF-enriched and CNV-enriched subtypes; whilst BTN formed two subtypes. Higher frequency of distant metastasis and extrathyroidal extension were confirmed in the BRAF-enriched subtypes, which was supported by the previously reports [14, 15].

We identified a subgroup of PTCs with high immune cell infiltration and enhanced immune-related signaling, which was defined as Immune-enriched subtype. Its hub genes including LCP1, ACAP1, CCL19, CD3E, HLA-DRA, C1QA and CORO1A, were strongly associated with activities of immune cells. LCP1 was related to tumor infiltrating lymphocytes and plays an important role in lymphocyte formation and anti-cancer immune response [16]. The high expression of ACAP1 is positively associated with a variety of immune-related biological processes and pathways, such as adaptive immune response, T cell activation, and macrophage activation [17]. CCL19, as a candidate immunomodulator, regulates the adaptive immune response by increasing the interaction between dendritic cells, T cells and B cells [18]. As expected, patients with active immune profile were mostly complicated by Hashimoto’s thyroiditis and had a less aggressive pathologic characteristics. Moreover, through evaluating the specific patterns of immune cells infiltrating PTC, we found that the antitumor cells and cytokines were mainly found in Immune-enriched subtype. Whilst the protumor leukocytes were activated in Immune-enriched subtype, BRAF-enriched subtype and stromal subtype, which was supported by previous studies that different types of leukocytes play distinct role in PTC by releasing several cytokines [19, 20]. These findings collectively provided the molecular signature of immune-enriched subtype that may better explain the clinicopathological features of PTC with Hashimoto’s thyroiditis.

In addition, the gene expression of immune checkpoints (PD-1, PD-L1, CTLA-4) and T cells was upregulated in Immune-enriched subtype than other subtypes. Immune checkpoints were thought to be mainly related to self-tolerance [21], several studies indicated that the increased PD-L1 in cytotoxic T cells was induced by the IFN-γ during the anti-tumor immune reaction [22, 23]. A recent study reported that PTC patients with increased expression of immune checkpoint had a relatively better prognosis [22, 23], which supports our findings. Collectively, we identified a distinct Immune-enriched subtype of PTC with specific immune features and a better prognosis.

We also identified a BRAF-enriched Subtype of PTCs, which augmented with the activated the MAPK signaling, the ErbB signaling and the Notch signaling. BRAF-enriched Subtype had more extrathyroidal extension and was associated with advanced TNM stages compared to other types. BRAF^{V600E} mutation is the most common oncogenic mutation in PTC, which may correlates closely with aggressive tumor behavior and poor clinical outcomes of PTC [24]. BRAF is a serine-threonine kinase that can cause phosphorylation and activation of MAPK kinase and other downstream targets of the MAPK signaling pathway. Elevated

and BTN samples so as to build new features of the PTC molecular landscape. Based on transcriptional landscape, PTC samples were classified as Immune-enriched, Stromal, BRAF-enriched and CNV-enriched subtypes; whilst BTN formed two subtypes. Higher frequency of distant metastasis and extrathyroidal extension were confirmed in the BRAF-enriched subtypes, which was supported by the previously reports [14, 15].

We identified a subgroup of PTCs with high immune cell infiltration and enhanced immune-related signaling, which was defined as Immune-enriched subtype. Its hub genes including LCP1, ACAP1, CCL19, CD3E, HLA-DRA, C1QA and CORO1A, were strongly associated with activities of immune cells. LCP1 was related to tumor infiltrating lymphocytes and plays an important role in lymphocyte formation and anti-cancer immune response [16]. The high expression of ACAP1 is positively associated with a variety of immune-related biological processes and pathways, such as adaptive immune response, T cell activation, and macrophage activation [17]. CCL19, as a candidate immunomodulator, regulates the adaptive immune response by increasing the interaction between dendritic cells, T cells and B cells [18]. As expected, patients with active immune profile were mostly complicated by Hashimoto’s thyroiditis and had a less aggressive pathologic characteristics. Moreover, through evaluating the specific patterns of immune cells infiltrating PTC, we found that the antitumor cells and cytokines were mainly found in Immune-enriched subtype. Whilst the protumor leukocytes were activated in Immune-enriched subtype, BRAF-enriched subtype and stromal subtype, which was supported by previous studies that different types of leukocytes play distinct role in PTC by releasing several cytokines [19, 20]. These findings collectively provided the molecular signature of immune-enriched subtype that may better explain the clinicopathological features of PTC with Hashimoto’s thyroiditis.

In addition, the gene expression of immune checkpoints (PD-1, PD-L1, CTLA-4) and T cells was upregulated in Immune-enriched subtype than other subtypes. Immune checkpoints were thought to be mainly related to self-tolerance [21], several studies indicated that the increased PD-L1 in cytotoxic T cells was induced by the IFN-γ during the anti-tumor immune reaction [22, 23]. A recent study reported that PTC patients with increased expression of immune checkpoint had a relatively better prognosis [22, 23], which supports our findings. Collectively, we identified a distinct Immune-enriched subtype of PTC with specific immune features and a better prognosis.

We also identified a BRAF-enriched Subtype of PTCs, which augmented with the activated the MAPK signaling, the ErbB signaling and the Notch signaling. BRAF-enriched Subtype had more extrathyroidal extension and was associated with advanced TNM stages compared to other types. BRAF^{V600E} mutation is the most common oncogenic mutation in PTC, which may correlates closely with aggressive tumor behavior and poor clinical outcomes of PTC [24]. BRAF is a serine-threonine kinase that can cause phosphorylation and activation of MAPK kinase and other downstream targets of the MAPK signaling pathway. Elevated

and BTN samples so as to build new features of the PTC molecular landscape. Based on transcriptional landscape, PTC samples were classified as Immune-enriched, Stromal, BRAF-enriched and CNV-enriched subtypes; whilst BTN formed two subtypes. Higher frequency of distant metastasis and extrathyroidal extension were confirmed in the BRAF-enriched subtypes, which was supported by the previously reports [14, 15].

We identified a subgroup of PTCs with high immune cell infiltration and enhanced immune-related signaling, which was defined as Immune-enriched subtype. Its hub genes including LCP1, ACAP1, CCL19, CD3E, HLA-DRA, C1QA and CORO1A, were strongly associated with activities of immune cells. LCP1 was related to tumor infiltrating lymphocytes and plays an important role in lymphocyte formation and anti-cancer immune response [16]. The high expression of ACAP1 is positively associated with a variety of immune-related biological processes and pathways, such as adaptive immune response, T cell activation, and macrophage activation [17]. CCL19, as a candidate immunomodulator, regulates the adaptive immune response by increasing the interaction between dendritic cells, T cells and B cells [18]. As expected, patients with active immune profile were mostly complicated by Hashimoto’s thyroiditis and had a less aggressive pathologic characteristics. Moreover, through evaluating the specific patterns of immune cells infiltrating PTC, we found that the antitumor cells and cytokines were mainly found in Immune-enriched subtype. Whilst the protumor leukocytes were activated in Immune-enriched subtype, BRAF-enriched subtype and stromal subtype, which was supported by previous studies that different types of leukocytes play distinct role in PTC by releasing several cytokines [19, 20]. These findings collectively provided the molecular signature of immune-enriched subtype that may better explain the clinicopathological features of PTC with Hashimoto’s thyroiditis.

In addition, the gene expression of immune checkpoints (PD-1, PD-L1, CTLA-4) and T cells was upregulated in Immune-enriched subtype than other subtypes. Immune checkpoints were thought to be mainly related to self-tolerance [21], several studies indicated that the increased PD-L1 in cytotoxic T cells was induced by the IFN-γ during the anti-tumor immune reaction [22, 23]. A recent study reported that PTC patients with increased expression of immune checkpoint had a relatively better prognosis [22, 23], which supports our findings. Collectively, we identified a distinct Immune-enriched subtype of PTC with specific immune features and a better prognosis.

We also identified a BRAF-enriched Subtype of PTCs, which augmented with the activated the MAPK signaling, the ErbB signaling and the Notch signaling. BRAF-enriched Subtype had more extrathyroidal extension and was associated with advanced TNM stages compared to other types. BRAF^{V600E} mutation is the most common oncogenic mutation in PTC, which may correlates closely with aggressive tumor behavior and poor clinical outcomes of PTC [24]. BRAF is a serine-threonine kinase that can cause phosphorylation and activation of MAPK kinase and other downstream targets of the MAPK signaling pathway. Elevated
MAP-kinase activity by BRAFV600E mutations also have a strong positive effect on NOTCH downstream targets in thyroid cancer. We found that several genes, including LRRK2, SLC34A2, MUC1, and KRT19, played key regulatory roles in BRAF-enriched Subtype by targeting the oncogenic pathways. In our study, we confirmed that LRRK2 promote the proliferation of PTC through in vitro and in vivo studies. It was reported that the overexpression of SLC34A2, MUC1 and KRT 19 was significantly related to BRAFV600E mutation and metastasis of PTC [25–27]. Recent studies show that the aggressiveness of BRAFV600E mutation in PTC was impacted by various factors clinically, including age, sex, pathological subtypes, and other genetic alterations [28, 29]. Not all of the BRAFV600E mutated PTC were at a high risk of recurrence [30]. However, the molecular characteristics of these highly aggressive BRAF-mutated PTCs is still unknown. Therefore, we performed additional analyses for the subclassification in BRAF-enriched Subtype and found that BRAF-enriched Subtype can be further divided into three subclasses. PTC with extrathyroidal extension were mainly concentrated in the BRAF-enriched-1, whilst the BRAF-enriched-2 showed increased immune infiltration and better clinicopathological features. Several oncogenes were centralized in the advanced clinical features of BRAF-enriched-1 Subtype, including CST6, NGEF, and ETV4 and BNIPL. Among them, the CST6 and ETV4 were respectively reported as downstream targets of BRAF mutation and involved in the regulation of the progression of PTC [31, 32]. NGEF was identified as a BRAFV600E-associated biomarker with prognostic value as potential BRAFV600E inhibitor joint target [33]. In keeping with our finding, a single-cell RNA sequencing analysis also found the heterogeneity in PTC patients with BRAF mutations [8]. Collectively, our classification within the BRAF-enriched subtype would be helpful for clinical decision-making of BRAF-mutated PTC patients.

To determine the relationship of thyroid normal tissue, BTN and PTC, as well as dissect the evolutionary dynamics of four PTC subtypes, we performed the pseudotemporal trajectory analysis. The transcriptional profiles of BTNs were almost the same as those of BTN-adjacent thyroid tissues, which were located at the early developmental stage followed by PTCs belong to stromal subtype. With the accumulation of oncogenic factors and genes related to the immune microenvironment, PTC was divided into two branches as the immune-enriched subtype at lower branch and BRAF-enriched subtype at upper branch, further confirming the existence of the molecular classification of PTC. Currently, the ecological relationship between BTN and PTC remains unclear and controversial [34, 35]. Previous study suggested that BTN has independent origins different from PTC at the genomic level [34]. Our current study at least in part provides the evidence of the molecular links of the initiation and progression from BTN to subtypes of PTC.

Since distinguishing PTC from BTN is of great importance clinically, molecular diagnostic tests were helpful to improve the diagnostic performance and avoid patients from unnecessary...
thyroid surgery. In this regard, we built up a set of gene markers in our subtyping system for differential diagnosis. Twenty hub genes of these six differed subtypes could significantly differentially expressed between PTC and BTN with AUC up to 98.39% in discovery cohort and AUC of 90.04% at validation cohort. This indicates that the 20-gene expression signature has potential clinical applications in the differential diagnosis of PTC and BTN patients, which can be further verified in the fine needle aspiration biopsy samples in the following research. The most common used thyroid nodules classifiers, ThyroSeq v3 Genomic Classifier and Afirma Genomic Sequencing Classifier were consist of a large panel of genes and mainly used in the US [36]. Therefore, this 20-gene panel we proposed may be expected to provide a widely available solution for thyroid nodules differentiated diagnosis in Chinese population.

In conclusion, we demonstrated the transcriptional and genomic landscape of PTC and BTN. PTC could be classified as four molecular subtypes (Immune, Stromal, BRAF, and CNV-enriched) based on gene expression profiles that associated with clinical-pathological features. Our integrative molecular analysis of the subtypes provides a new insight into the molecular features and links of the disease progression from BTN to PTC. We have also identified the novel gene-signature for distinguishing PTC from BTN.

METHODS
Patients and samples
We retrospectively selected patients with thyroid surgery in the First Affiliated Hospital of Sun Yat-sen University or Sun Yat-sen University Cancer Center from 2011 to 2019, including 225 cases of PTC and 77 cases of BTN. When the thyroid tissue was excised in the operating room, the nodule and paramodular tissue were cut into particles with a length of less than 1 across all samples. To remove spurious fusions, we filtered all fusions which gene pair distance was less than 10Kb that annotated as (X) Primer. At last, PCR products were purified (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 system.

Quality control
Raw data (raw reads of fastq format) were firstly processed through in-house per l scripts. In this step, clean data (clean reads) were obtained by removing reads containing adapter, reads containing ploy-N and low-quality reads from raw data. At the same time, Q20, Q30 and GC content were calculated. All the downstream analyses were based on the clean data of high quality. After quality control, we finally included 216 cases of PTC and 75 cases of BTN into the subsequent analysis.

Quantification of gene expression level
Human reference genome (hg19) and gene model annotation files were downloaded from UCSC. Index of the reference genome was built and paired-end clean reads were aligned to the reference genome using HISAT2 with default parameters. RsQc was used to measure gene expression abundance as reads per kilobase per million mapped reads (RPKM).

Fusion analysis
We used STAR-Fusion v1.9.1 to detect genes that are fused, require at least 5 split reads and 2 read-pairs spanning the fusion event to filter out low confident fusion event. To reduce the false positive fusion events, we removed any fusions where expression of both genes in the gene pair was found to be RPKM (Reads per kilo base per million mapped reads) value less than 1 across all samples. To remove spurious fusions, we filtered all fusions which gene pair distance was less than 10Kb that annotated as read-through event.

Mutation detection
Somatic mutations were detected by MuTect based on alignment file and high confident somatic mutations were met defined as follows: (I) both the tumor and normal samples should be covered sufficiently (>10x) at the genomic position; (II) the variants should be supported by at least 5% of the total reads in the tumor while less than 1% in the normal; (III) the variants should be supported by at least five reads in the tumor. All high confident somatic mutations were filtered out by the dbSNP (version 135) site which is commonly polymorphic without known medical impact. The remaining mutations were annotated with ANNOVAR and subjected to subsequent analyses.

Copy number variation analysis
We used CaSpER [38] to identify and visualize copy number variations (CNV), which is a signal processing tool that uses RNA-seq information to detect focal and large-scale CNV events in multiscale resolution. B-allele frequencies were generated from RNA-seq data to decipher allelic imbalances in sample. CNVs were called based on expression level and B-allele frequencies information.

Identification of molecular subtypes
To perform unsupervised clustering, a series of genes were filtered using the following criteria: (1) genes expressed at low levels (RPKM < 1.0) in more than half of samples, and (2) genes of low variance across samples (coefficient of variation <0.8). The remaining 1585 genes were log-transformed and used for subsequent unsupervised clustering. The unsupervised consensus NMF was performed on the selected gene-by-sample matrix with the number of factors set to 6. Once the mRNA expression matrix was deconvoluted by NMF, we listed a set of distinct exemplar genes for the 8th factor and the largest loading value not in the 8th factor of the loading matrix. To further characterize the molecular functions of each subtype, we then calculated the expression fold-change of each gene between a specific subtype and other subtypes. Genes were then sorted in descending order according to
their expression fold-change, and GSEA analysis in pre-rank mode was performed to infer enriched pathways for each subtype.

To identify gene markers that can distinguish different molecular subtypes, random forest models were trained for each subtype. For each subtype, we first classified the whole patients into two groups, that is patients classified as the given subtype or patients that are not classified as the given subtype. Using the previous exemplar genes as feature vector, random forest model was established and the importance of each inputted genes was evaluated. Using a feature permutation test [39], we selected genes with adjusted P-value lower than 0.05 as significant markers for each molecular subtype.

Validation in TCGA database

The reliability of our molecular subtype was further validated in the thyroid cancer cohort from TCGA project. We downloaded the mRNA raw sequencing data from GDC data portal, and performed quantification analysis followed the previous mentioned procedure. Using the derived marker genes of each molecular subtype, the Nearest Template Prediction (NTP) algorithm was applied to classify the TCGA samples into corresponding molecular subtype.

Calculation of thyroid differentiation score (TDS)

The thyroid differentiation score (TDS) was calculated to quantify relationships between thyroid differentiation and diverse genetic or epigenetic events. 16 thyroid function genes were selected to calculate the TDS score according to previous literatures [6]. For each of the 16 selected genes, we first calculated the median value of log2 RPKM across samples. Then, the expression level of the 16 thyroid function genes was median centered, and summed up to produce the TDS score in each sample.

Immune score and stromal score

To quantify the activity of immune system, an immune-related gene set that comprised 66 immune cell surface markers and immune regulation genes were collected from published literatures [40, 41]. The gene set variation analysis (GSVA) was applied on each sample based on the collected immune-related gene set. The GSVA score was taken as an indicator for quantifying the activity of immune system, and defined as immune score. A higher immune score corresponded to more active immunological effects. Using the ABSOLUTE [42] software, we also calculated the stromal score for each sample.

Hub genes analysis

To identify hub genes that highly correlated with marker genes in each molecular subtype, an analysis pipeline was performed as below. We first constructed a transcriptional interactions network using the ARACNe (Algorithm for Reconstruction of Accurate Cellular Networks) method [43] in our patient cohort. The previously identified subtype marker genes were treated as hubs in the ARACNe mutual information (MI) calculation. Adaptive Partitioning was then applied to find downstream co-expression genes of the inputted hub markers. The final constructed network was subsequently inputted to Cytoscape [44]. Based on the transcriptional interactions network, we used the Maximal Clique Centrality (MCC) algorithm in cytoHubba [45] to identify top hub genes in the network. Given these top hub genes, the first-layer neighbors were extracted from the transcriptional interactions network and visualized by Cytoscape. To reveal the downstream regulated pathway of the identified hub genes, we performed GSEA analysis for their downstream regulated genes. Specifically, the downstream regulated genes were first ranked by their fold-change of expression values in the corresponding subtype relative to other subtypes. Then, enriched pathways were identified using the pre-rank module in GSEA package. The interactions between hub genes and downstream regulated pathways were quantitatively defined by their average normalized enrichment score, and visualized by Cytoscape.

Inference of the pseudotemporal trajectory for benign and malignant thyroid nodules

To uncover the potential molecular developmental process of thyroid nodules from benign status to malignant status, a pseudotemporal trajectory analysis were performed in our study. By assuming that each collected patient may have different progression of disease, the analysis was performed based on each sequencing sample. Using the highly variable expression genes selected from previous step, we constructed a transcriptional profile for each sample. Monocle2 [46] was adopted to infer pseudotemporal trajectory in our cohort using BTN-adjacent samples as starting point (which considered as normal thyroid tissue). A Reversed Graph Embedding algorithm was performed to reduce the data’s dimensionality. With the expression data projected into a lower dimension, the trajectory was built to describe how patient samples transit from one state into another. To identify genes that were differentially expressed in the decision point of pseudotemporal trajectory, branched expression analysis modeling (BEAM) was performed. By filtering with FDR q-value <0.05, a series of fate-decision genes were found and visualized in an expression heatmap. To reveal the progression stages, the molecular subtypes, TDS, immune enrichment score and BRAF mutation status were manually mapped and visualized in the trajectory.

Identification of potential markers for malignant thyroid nodules diagnosis

In order to identify potential markers for distinguishing malignant thyroid nodules from benign nodules, we performed an analysis approach using hub genes identified from the previously constructed molecular subtypes. From all available samples, 80% were used for the training set, and the remaining 20% were randomly selected for the external test set. Notably, to maintain the original distribution, the ratio of benign nodules to malignant nodules was kept the same as in the original data set for both training and test set. Using the training data set, we first constructed a classification model by the Logistic Regression (LR) algorithm. Recursive feature elimination (RFE) was then applied to find the optimal number of marker genes. By recursively eliminating a small number of genes per loop, RFE attempts to eliminate dependencies and collinearity that may exist in the model. We used cross-validation to score different gene subsets and select the best scoring collection of genes during the recursive procedure. After finding the optimal subset of markers, 4,6,8,10-fold cross-validation was performed on the training set to evaluate the prediction performance, and the Receiver Operator Characteristic (ROC) curves were drawn. Also, using the external test set, we assessed the robustness of our constructed model by computing the area under ROC curve (AUC). Finally, the expression level of the selected panel was visualized in a heatmap, and the fold change (FC) between malignant nodules and benign nodules was also presented. To further validate the stability of our selected marker genes, prediction models for distinguishing benign nodules and malignant nodules were also constructed using Support Vector Machine (SVM), Naïve Bayes (NB), Random Forest (RF) and K-Nearest Neighbor (KNN) algorithm. The performances in training set and independent test set were evaluated as described above.

Immunohistochemistry (IHC) and fluorescent multiplexed immunohistochemistry (mIHC)

Paraffin-embedded thyroid nodule tissues were sliced into 4 um thickness. After deparaffinization, the slides were blocked with 20% goat serum. The sections were then incubated with primary antibodies of SLC34A2 (Cell Signaling Technology) and LRRK2 (Cell Signaling Technology) at 4°C overnight followed by secondary antibody incubation. For mIHC, the slides were then nurtured in a secondary horseradish peroxidase-conjugated polymer to induce the binding of different fluorophores via tyramide signal amplification (Panovue). The protein expression of CD163, CD86, CD8, Foxp3 were evaluated.

Quantitative real-time PCR (qRT-PCR)

cDNA was synthesized by reverse transcription from total RNA using a PrimeScript™ RT-PCR Kit (TaKaRa, CA). qRT-PCR was then performed using SYBR Premix Ex Taq™ (TaKaRa, CA) on a LightCycler 480 system. GAPDH was used as an internal control to normalize the expression levels of mRNA. Relative mRNA expression were analyzed by the 2−ΔΔCT method.

Western blot analysis

Protein was extracted by RIPA lysis buffer with Protease and Phosphatase Inhibitor Cocktail, and protein concentration were measured by the BCA Protein Assay Kit (ZJ102, Epsylme). Proteins of each sample was separated by polyacrylamide gel and transferred onto PVDF membranes. After blocking by 5% skim milk in TBS-T at room temperature, the membranes were incubated with primary antibody at 4°C overnight, including LRRK2 (91882, Cell Signaling Technology) and GAPDH (as a
Small interfering RNA (siRNA), short hairpin RNA (shRNA) transfection
The siRNA and shRNA targeting LRRK2 and negative control were purchased from GenePharma (Shanghai, China) and Genechem (Shanghai, China) respectively. Thyroid cancer cells were seeded in 6-wells plates and cultured for 24 h, and then transfected with siRNA or lentivirus with shRNA using Lipo3000 Transfection Kit (Invitrogen). After transfection, the cells were harvested for further experiments.

Cell culture and proliferation assays
The thyroid cancer cell lines BCPAP and KHM-5M were purchased from the Cell Culture Collection of the Chinese Academy of Sciences (Shanghai, China), and both were cultured in RPMI-1640 (Gibco) with 10% fetal bovine serum (Gibco). Cells were cultivated at 37 °C with 5% CO2. For colony formation assay, cells were seeded in 6-wells plate for 2 weeks. Colonies were then fixed with 4% paraformaldehyde for 15 min and stained with crystal violet for 10 min. For cell proliferation assay, cells were plated in 96-well plates, and incubated with Cell Counting kit-8 assay (CCK8, Dojindo Laboratories) for 2 h. We recorded the absorbance of each well with a Multimode Microplate Reader (Thermo).

Xenograft tumor model in mice
To establish xenograft tumor models, KHM-5M (5 × 106/mouse) with stable LRRK2-knockdown or negative control were subcutaneously injected into the flank of 4-weeks old female BALB/c nude mice. All mice were randomized into control and experimental groups. Tumor sizes were measured every 3 days and calculated according to the formula: length × width2 × 0.5. Tumor were token photos and weighted after sacrifice of mice. Animal studies were approved by the Animal Experimentation Ethical Committee of The First Affiliated Hospital of Sun Yat-sen University.

Statistical analysis
All data analyses were conducted in R 4.0.3. The comparison of immune enrichment scores, expression levels of immune check point genes and GEP score were performed using Wilcoxon rank sum test. The correlation analysis between clinical features and molecular subtypes was conducted with Chi-square independence test. Statistical significance was defined as a two-sided \(P \) value of less than 0.05.

DATA AVAILABILITY
The raw RNA-sequencing data generated in this study will be deposited in approved database with accession number at the time of publication. The TCGA THCA dataset were used in this study. Additional data related to this article will be shared on reasonable request to the corresponding author.

CODE AVAILABILITY
The custom computer code will be shared on reasonable request to the corresponding author.

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
2. Global Burden of Disease Cancer C, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lahijani M, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1:505–27.
3. Howlader N, Noone AM, Krapcho M, D'Onofrio B, Borlstadt S, Herlitz A, et al. SEER Cancer Statistics Review, 1975-2016, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2016/, based on November 2018 SEER data submission, posted to the SEER web site, April 2019.
4. Tuttle RM, Haugen B, Perrier ND. Updated American Joint Committee on Cancer/Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What Changed and Why? Thyroid. 2017;27:751–6.
5. Brown RL, de Souza JA, Cohen EE. Thyroid cancer: burden of illness and management of disease. J Cancer. 2011;2:193–9.
6. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.
7. Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10:2764.
8. Pu W, Shi X, Yu P, Zhang M, Lü Z, Tan L, et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat Commun. 2021;12:6058.
9. Liang J, Cai W, Feng D, Teng H, Mao F, Jiang Y, et al. Genetic landscape of papillary thyroid carcinoma in the Chinese population. J Pathol. 2018;244:215–26.
10. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.
11. Fagin JA, Wells SA Jr. Biologic and Clinical Perspectives on Thyroid Cancer. N Engl J Med. 2016;375:1054–67.
12. Pei X, Wu T, Chen C. Automated graph regularized projective nonnegative matrix factorization for document clustering. IEEE Trans Cyber. 2014;44:1821–31.
13. Liu D, Yao J, Martínez-Quetglas I, Kuchuk O, Villacorta-Martín C, Castro de Moura M, et al. Identification of an Immune-Specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology. 2017;153:812–26.
14. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2003;90:6373–9.
15. Elisei R, Ugolini C, Viola D, Lupi C, Biagni A, Giannini R, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93:3943–9.
16. Zeng Q, Li L, Feng Z, Luo L, Xiong J, Jie Z, et al. LCP1 is a prognostic biomarker correlated with immune infiltrates in gastric cancer. Cancer Biomark. 2021;30:105–25.
17. Zhang J, Zhang Q, Zhang J, Wang Q. Expression of ACAP1 Is Associated with Tumor Immune Infiltration and Clinical Outcome of Ovarian Cancer. DNA Cell Biol. 2020;39:1545–57.
18. Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K, CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer. 2021;18:188499.
19. Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, et al. Immune and inflammatory cells in thyroid cancer microenvironment. Int J Mol Sci. 2019;20:4413–15.
20. Noureldine SI, Tufano RP. Association of Hashimoto’s thyroiditis and thyroid cancer. Curr Opin Oncol. 2015;27:21–5.
21. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2018;19:10.
22. Mimura K, Teh JL, Okaymer H, Shiraiishi K, Kusa LF, Koh V, et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci. 2018;109:43–53.
23. Shin JH, Park HB, Choi K. Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy. Immune Netw. 2016;16:134–9.
24. Carolia LM, Phay JE, Shah MH. Role of BRAF in oncogenesis. Clin Cancer Res. 2011;17:7511–7.
25. Renaud F, Gennmi V, Devos P, Aubert S, Crepin M, Coppin L, et al. MUC1 expression in papillary thyroid carcinoma is associated with BRAF mutation and lymph node metastasis; the latter is the most important risk factor of relapse. Thyroid. 2014;24:1373–84.
26. Wang X, Xu X, Peng C, Qin Y, Gao T, Jing J, et al. BRAF(V600E)-induced KRT19 expression in thyroid cancer promotes lymph node metastasis via EMT. Oncol Lett. 2019;18:927–35.
27. He J, Zhou M, Li X, Gu S, Cao Y, Xing T, et al. SLC34A2 simultaneously promotes papillary thyroid carcinoma growth and invasion through distinct mechanisms. Oncogene. 2020;39:2658–75.
28. Chmielik E, Rusinek D, Oczko-Wojciechowska M, Jarzab M, Krajewska J, Cassier J, et al. Heterogeneity of Thyroid Cancer. Pathobiology. 2018;85:117–29.
29. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.
30. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133.
31. Oler G, Camacho CP, Hojaj FC, Michaltur P Jr, Riggins GJ, Cerutti JM. Gene expression profiling of papillary thyroid carcinoma identifies transcripts correlated with BRAF mutational status and lymph node metastasis. Clin Cancer Res. 2008;14:4735–42.

Oncogene (2022) 41:5121 – 5132
S. Hong et al.
ACKNOWLEDGEMENTS

We thank Yingzong Hou and Xuejie Wang for help with the sample collection. We thank Huanjing Hu for assistance with bioinformatics analysis, and thank Yijia Sun and Jiawei Ge for help with the fluorescent multiplexed immunohistochemistry (mIHC) and functional studies. This work was supported by the grants from National Natural Science Foundation of China (grant number 81772850 to H.X. and 82072956 to S.H.).

AUTHOR CONTRIBUTIONS

Conceptualization: HX, JY, WL, SH, YX, ZC, JL. Resources: HX, WL, SH, JL, ZG. Methodology: JY, YX, ZC, WH, SP, LX. Investigation: SH, YX, ZC, JL, SY, MH, TX. Formal Analysis: SH, YX, ZC, WH, JY, HX. Validation: SH, ZC, JY, WL, YZ, JW. Data Curation: YX, JL, HX, JY, OZ. Visualization: SH, YX, ZC. Writing-Original Draft: SH, YX, ZC. JY. Writing-Review & Editing: HX, JY, WL, SH, RL. Supervision: HX, JY, WL, YL.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41388-022-02499-0.

Correspondence and requests for materials should be addressed to Weiming Lv, Jun Yu or Haipeng Xiao.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.