POSITIVITY CONSTRAINTS
FOR SPIN-DEPENDENT PARTON
DISTRIBUTIONS

Jacques SOFFER

Abstract

We derive new positivity constraints on the spin-dependent structure
functions of the nucleon. These model independent results reduce con sider-
ably their domain of allowed values, in particular for the chiral-odd parton
distribution $h_1(x)$.

PACS Numbers : 12.90+b, 12.40.Aa, 13.88+e
Key-Words : Positivity, polarized quark distributions.

Number of figures : 3

September 1994
CPT-94/P.3059

anonymous ftp or gopher: cpt.univ-mrs.fr

* Unité Propre de Recherche 7061
The nucleon parton distributions are important physical quantities which contain crucial informations about the fundamental properties of the nucleon structure. A precise knowledge of the parton distributions is also needed if one wants to explore hard scattering processes at future hadron colliders. For many years, spin-independent parton distributions have been accurately measured in a large number of experiments, in particular deep inelastic scattering, and they are now known in a wide kinematic range. The experimental program going on at HERA will further increase this kinematic domain with smaller x and larger Q^2. The situation is rather different for spin-dependent parton distributions whose experimental determination has been improved only recently with some new measurements[1] of $g_1^p(x)$ and $g_1^n(x)$ both at CERN and SLAC by means of proton and neutron polarized deep inelastic scattering. These polarized structure functions provide us with some insight into the quark (or antiquark) helicity distributions usually called $\Delta q(x)$ (or $\Delta q(x)$). But in addition to the spin average quark distributions $q(x)$ and to these helicity distributions $\Delta q(x)$, there is a third class of quark distributions called transversity distributions and denoted $h_1^q(x)$. These physical quantities which violate chirality[2,3,4] decouple from deep inelastic scattering but can be measured in Drell-Yan processes with both beam and target transversely polarized. So far there is no experimental data on these distributions $h_1^q(x)$ (or $h_1^q(x)$), but there are some attempts to calculate them either in the framework of the MIT bag model[3] or by means of QCD sum rules[5].
The purpose of this letter is to use positivity to derive model-independent constraints on $h_1^q(x)$ which will restrict substantially the domain of allowed values\cite{6}. Similar constraints can be obtained for higher-twist parton distributions, as we will see below.

Let us consider quark-nucleon elastic scattering $q(h) + N(H) \to q(h') + N(H')$ (h, h' and H, H' are the helicities of quark and nucleon respectively) which is described in terms of five s-channel helicity amplitude, denoted by $\langle h'H'|hH \rangle$\cite{7}. In the forward direction, as a consequence of helicity conservation, only three independent amplitudes are non-vanishing, namely $\varphi^s_1 = \langle ++|++ \rangle$, $\varphi^s_3 = \langle + -|+ - \rangle$ and $\varphi^s_2 = \langle + -|-- \rangle$, whose imaginary parts are simply related to total cross sections by the optical theorem.

The forward quark-nucleon amplitude is a 4×4 matrix M in the space where the basis states are $|++\rangle$, $|+-\rangle$, $|-+\rangle$ and $|--\rangle$. Positivity requires that $a^+Ma \geq 0$ where “a” is any 4 component vector in this space. This implies essentially three conditions\cite{8},

\begin{equation}
Im\varphi^s_1|_{t=0} \geq 0, \quad Im\varphi^s_3|_{t=0} \geq 0
\end{equation}

and

\begin{equation}
Im\varphi^s_3|_{t=0} \geq |Im\varphi^s_2|_{t=0}|
\end{equation}

Now the three quark distributions considered above $q(x)$, $\Delta q(x)$ (denoted $f_1(x)$ and $g_1(x)$ in ref. [3]) and $h_1^q(x)$ are defined by the light-cone Fourier transformation of bilinear quark operators between nucleon states\cite{3}. In fact
these quark distributions are related to the corresponding u-channel quark-nucleon helicity amplitudes φ_u^s’s which are simply obtained from the φ_i^s’s by quark line reversal and we have

\[
q(x) = \frac{1}{2} \text{Im}(\varphi_1^u + \varphi_3^u)|_{t=0},
\]
\[
\Delta q(x) = \frac{1}{2} \text{Im}(\varphi_3^u - \varphi_1^u)|_{t=0},
\]
\[
h_1^q(x) = \frac{1}{2} \text{Im}\varphi_2^u|_{t=0}.
\]

Using eq.\((3) \), the constraints (1) and (2) read in terms of the parton distributions

\[
q(x) \geq 0, \quad q(x) \geq |\Delta q(x)|
\]

and

\[
q(x) + \Delta q(x) \geq 2|h_1^q(x)|.
\]

Whereas the first two constraints (4) are familiar and quite obvious, the third constraint (5), which is much less trivial, was ignored so far. We show in fig. 1 the region allowed by eq.\((3) \) which is half the region obtained by considering instead,

\[
q(x) \geq |h_1^q(x)|.
\]

as proposed in ref. \[3\].

Clearly the same constraint \((5) \) holds for all quark flavor $q = u, d, s$, etc... and for their corresponding antiquarks. Obviously any theoretical model should satisfy these constraints. In a toy model\[9\] where the proton is composed of a quark and a scalar diquark one obtains the equality in
eq.(5)[10]. In the MIT bag model, let us recall that these distributions read[3]
\begin{align*}
q(x) &= f^2(x) + g^2(x), \\
\Delta q(x) &= f^2(x) - 1/3g^2(x) \quad \text{and} \\
h_1^q(x) &= f^2(x) + 1/3g^2(x)
\end{align*}
(7)
and they also saturate (5). In this case, we observe that
h_1^q(x) \geq \Delta q(x) \quad \text{but this situation cannot be very general because of eq.(5).}

As an example let us assume
h_1^q(x) = 2\Delta q(x).

Such a relation cannot hold for all \(x \) and we see that eq.(5), in particular if \(\Delta q(x) > 0 \), implies \(q(x) \geq 3\Delta q(x) \). This is certainly not satisfied for all \(x \) by the present determination of the \(u \) quark helicity distribution, in particular for large \(x \) where \(A_1^u(x) \) is large[1].

The simplifying assumption
h_1^q(x) = \Delta q(x),

based on the non-relativistic quark model, which has been used in some recent calculations[11,12] is also not acceptable for all \(x \) values if \(\Delta q(x) < 0 \) because of eq.(5). To illustrate the practical use of eq.(5), let us take, as an example, the simple relation
\[\Delta u(x) = u(x) - d(x) \]
(8)
proposed in ref. [13] and which is well supported by the data[1]. It is then possible to obtain the allowed range of values for \(h_1^u(x) \), namely
\[u(x) - \frac{1}{2}d(x) \geq |h_1^u(x)| \]
(9)
which is shown in fig.2, where ref. [13] was used to evaluate \(u(x) \) and \(d(x) \).

In this case, we see that for \(x > 0.5 \), both the results of the MIT bag model[3] and the QCD sum rule[5] violate our positivity bound, combined with low
Q^2 data. A similar calculation can be done for the d quarks and the allowed region for $h_1^d(x)$ is shown in fig.3.

We also want to remark that eq.(5) puts a bound on the "tensor charge" δq whose expression in terms of $h_1^q(x)$ and $h_1^q(x)$ is

$$\int_0^1 [h_1^q(x) - h_1^q(x)] dx = \delta q. \quad (10)$$

Since the sea quarks do not contribute to δq, as a consequence of eq.(5) one has

$$|\delta q| \leq \frac{1}{2} \int_0^1 [q_{val}(x) + \Delta q_{val}(x)] dx. \quad (11)$$

For u quarks we get

$$|\delta u| \leq 1 + \frac{1}{2} \int_0^1 \Delta u_{val}(x) dx \quad (12)$$

and for d quarks

$$|\delta d| \leq \frac{1}{2} + \frac{1}{2} \int_0^1 \Delta d_{val}(x) dx. \quad (13)$$

By using the results of ref.[13] one obtains

$$|\delta u| \leq \frac{3}{2} \text{ and } |\delta d| \leq \frac{1}{3}. \quad (14)$$

So far we have only considered the three twist-two quark (antiquark) distributions, but the above results, and in particular eq.(5), are also valid for higher-twist distributions, which have been identified in ref. [3]. So it is clear that we have the following constraints for the twist-three distributions

$$e(x) + h_L(x) \geq 2|g_T(x)| \quad (15)$$
and for the twist-four distributions

\[f_4(x) + g_3(x) \geq 2|h_3(x)|, \]

(16)

where we have used the notations of ref. [3]. There are theoretical calculations based on the MIT bag model[3,14] for the twist-three distributions and we hope they satisfy the constraint (15).

None of the above generalized distributions, which are associated to quark-gluon dynamics, have been measured so far. As discussed in ref. [3], the most natural place to learn about them is probably unpolarized and polarized Drell-Yan and semi inclusive processes. We hope much extensive studies both theoretical and experimental will be undertaken in the future, where full use of our new significant constraints (5), (15) and (16) will be made.

Acknowledgments

The author would like to thank C. Bourrely, R.L. Jaffe, D. Sivers and T.T. Wu for useful discussions at various stages of this work.
References

[1] J. Ashman \textit{et al.}, (European Muon Collaboration), Phys. Lett. \textbf{B206}, 364 (1988); Nucl. Phys. \textbf{B328}, 1 (1989).

P.L. Anthony \textit{et al.}, (E142 Collaboration), Phys. Rev. Lett. \textbf{71}, 959 (1993).

B. Adeva \textit{et al.}, (Spin Muon Collaboration), Phys. Lett. \textbf{B302}, 533 (1993).

D. Adams \textit{et al.}, (Spin Muon Collaboration), Phys. Lett. \textbf{B329}, 399 (1994).

K. Abe \textit{et al.}, (E143 Collaboration), Preprint SLAC-PUB 6508.

[2] J.P. Ralston and D.E. Soper, Nucl. Phys. \textbf{B152}, 109 (1979).

[3] R.L. Jaffe and X. Ji, Phys. Rev. Lett. \textbf{67}, 552 (1991); Nucl. Phys. \textbf{B375}, 527 (1992). X. Ji, Nucl. Phys. \textbf{B402}, 217 (1993).

[4] J.L. Cortes, B. Pire and J.P. Ralston, Z. Phys. \textbf{C55}, 409 (1992).

[5] B.L. Ioffe and A. Khodjamarian, Preprint University of München LMU-01-94.

[6] For off-shell Compton scattering amplitudes, positivity imposes also some non-trivial restrictions; see M.G. Doncel and E. de Rafael, Nuovo Cimento \textbf{4A}, 363 (1971).
[7] C. Bourrely, E. Leader and J. Soffer, Phys. Reports 59, 95 (1980).

[8] Similar constraints were obtained for the forward proton-proton elastic amplitude expressed in Pauli form. See J. Soffer and D. Wray, Phys. Lett. B43, 514 (1973).

[9] X. Artru and M. Mekhfi, Z. Phys. C45, 669 (1990).

[10] We thank X. Artru for making this remark which led to the correct version of eq.(3).

[11] X. Ji, Phys. Lett. B234, 137 (1992).

[12] C. Bourrely and J. Soffer, Nucl. Phys. B423, 329 (1994).

[13] C. Bourrely and J. Soffer, Preprint CPT-94/P.3032.

[14] R.L. Jaffe and X. Ji, Phys. Rev. D43, 724 (1991).
Figure Captions

Fig.1 The striped area represents the domain allowed by positivity.

Fig.2 The striped area represents the domain allowed for $h_1^u(x)$ using eq.(4) and ref. [13].

Fig.3 The striped area represents the domain allowed for $h_1^l(x)$ using eq.(3) and ref. [13].
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9409254v2
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9409254v2