A geometric inequality for warped product semi-slant submanifolds of nearly cosymplectic manifolds

Siraj Uddin, Abdulqader Mustafa, Bernardine R. Wong and Cenap Ozel

Abstract

Recently, we have shown that there do not exist the warped product semi-slant submanifolds of cosymplectic manifolds [10]. As nearly cosymplectic structure generalizes cosymplectic ones same as nearly Kaehler generalizes Kaehler structure in almost Hermitian setting. It is interesting that the warped product semi-slant submanifolds exist in nearly cosymplectic case while in case of cosymplectic do not exist. In the beginning, we prove some preparatory results and finally we obtain an inequality such as \[\|h\|^2 \geq 4q \csc^2 \theta \{1 + \frac{1}{9} \cos^2 \theta\} \|\nabla \ln f\|^2 \] in terms of intrinsic and extrinsic invariants. The equality case is also considered.

2010 AMS Mathematics Subject Classification: 53C40, 53C42, 53C15.
Key words: slant submanifold, semi-slant submanifold, nearly cosymplectic manifold, warped products.

1 Introduction

To study the manifolds with negative curvature Bishop and O’Neill introduced the idea of warped products [2]. Afterwards, this idea was used to model the standard space time, especially in the neighborhood of massive stars and black holes [11]. However, warped product spaces were developed in Riemannian manifolds enormously [8, 9]. The geometry of warped product submanifolds is intensified after B.Y. Chen’s work on warped product CR-submanifolds of Kaehler manifolds [8]. Motivated by Chen’s papers, many geometers studied warped product submanifolds in almost Hermitian as well as almost contact metric manifolds [1, 9, 13, 15].

On the other hand, almost contact manifolds with Killing structures tensors were defined in [3] as nearly cosymplectic manifolds. Later on, Blair and Showers [5] studied nearly cosymplectic structure \((\phi, \xi, \eta, g)\) on a Riemannian manifold \(M\) with \(\eta\) closed from the topological viewpoint. An almost contact metric structure \((\phi, \xi, \eta, g)\) satisfying \((\nabla_X \phi)X = 0\) is called a nearly cosymplectic structure. If we consider \(S^5\) as a totally geodesic hypersurface of \(S^6\); then it is known that \(S^5\) has a non cosymplectic nearly cosymplectic structure. It was shown that the normal nearly cosymplectic manifolds are cosymplectic (see [4]).

Next, the slant submanifolds of an almost contact metric manifold were defined and studied by J.L. Cabrerizo et.al [7]. The notion of semi-slant submanifolds of almost Hermitian manifolds was introduced by N. Papaghiuc [12]. In fact, semi-slant submanifolds in almost Hermitian manifolds are defined on the line of CR-submanifolds. In the setting of almost contact metric manifolds, semi-slant submanifolds are defined and investigated by Cabrerizo et. al [6].

Recently, we studied warped product semi-slant submanifolds of cosymplectic manifolds [10]. We have seen that there do not exist warped product semi-slant submanifolds in cosymplectic manifolds. As the nearly cosymplectic structure is generalizes the cosymplectic ones in the same sense as nearly Kaehler
generalizes Kaehler structure. Therefore, the geometric study of warped product semi-slant submanifolds in nearly cosymplectic is interesting. Such type of warped products exist in nearly cosymplectic case while in case of cosymplectic do not exist. In this paper, we prove that the warped product semi-slant submanifolds of the type $N_T \times f N_\theta$ do not exist in a nearly cosymplectic manifold \bar{M}. However, we obtain some interesting results on the existence of the warped product submanifolds of the type $N_T \times f N_\theta$ of a nearly cosymplectic manifold \bar{M}, where N_T and N_θ are the invariant and proper slant submanifolds of \bar{M}, respectively. We also establish a general sharp inequality for squared norm of the second fundamental form in terms of the warping function and the slant angle for the warped product semi-slant submanifolds in the form $N_T \times f N_\theta$ in a nearly cosymplectic manifold \bar{M}.

2 Preliminaries

A $(2n + 1)$–dimensional C^∞ manifold \bar{M} is said to have an almost contact structure if there exist on \bar{M} a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1–form η satisfying [5]

$$\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1. \quad (2.1)$$

There always exists a Riemannian metric g on an almost contact manifold \bar{M} satisfying the following compatibility condition

$$\eta(X) = g(X, \xi), \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \quad (2.2)$$

where X and Y are vector fields on \bar{M} [5].

An almost contact structure (ϕ, ξ, η) is said to be normal if the almost complex structure J on the product manifold $\bar{M} \times \mathbb{R}$ given by

$$J(X, f \frac{d}{dt}) = (\phi X - f \xi, \eta(X)\frac{d}{dt}),$$

where f is a C^∞–function on $\bar{M} \times \mathbb{R}$ has no torsion i.e., J is integrable, the condition for normality in terms of ϕ, ξ and η is $[\phi, \phi] + 2d\eta \otimes \xi = 0$ on \bar{M}, where $[\phi, \phi]$ is the Nijenhuis tensor of ϕ. Finally the fundamental 2-form Φ is defined by $\Phi(X, Y) = g(X, \phi Y)$.

An almost contact metric structure (ϕ, ξ, η, g) is said to be cosymplectic, if it is normal and both Φ and η are closed [5]. The structure is said to be nearly cosymplectic if ϕ is Killing, i.e., if

$$(\nabla_X \phi)Y + (\nabla_Y \phi)X = 0, \quad (2.3)$$

for any X, $Y \in T\bar{M}$, where $T\bar{M}$ is the tangent bundle of \bar{M} and ∇ denotes the Riemannian connection of the metric g. Equation (2.3) is equivalent to $(\nabla_X \phi)X = 0$, for each $X \in T\bar{M}$. The structure is said to be closely cosymplectic if ϕ is Killing and η is closed. It is well known that an almost contact metric manifold is cosymplectic if and only if $\nabla \phi$ vanishes identically, i.e., $(\nabla_X \phi)Y = 0$ and $\nabla_X \xi = 0$.

Proposition 2.1 [5]. On a nearly cosymplectic manifold the vector field ξ is Killing.
From the above proposition, we have $g(\nabla_X \xi, X) = 0$, for any vector field X tangent to \tilde{M}, where \tilde{M} is a nearly cosymplectic manifold.

Let M be submanifold of an almost contact metric manifold \tilde{M} with induced metric g and let ∇ and ∇^\perp be the induced connections on the tangent bundle TM and the normal bundle $T^\perp M$ of M, respectively. Denote by $\mathcal{F}(M)$ the algebra of smooth functions on M and by $\Gamma(TM)$ the $\mathcal{F}(M)$-module of smooth sections of TM over M. Then the Gauss and Weingarten formulas are given by

\begin{align}
\nabla_X Y &= \nabla_X Y + h(X, Y) \\
\nabla_X N &= -A_N X + \nabla^\perp_X N,
\end{align}

for each $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^\perp M)$, where h and A_N are the second fundamental form and the shape operator (corresponding to the normal vector field N) respectively for the immersion of M into \tilde{M}. They are related as

\[g(h(X, Y), N) = g(A_N X, Y), \]

where g denotes the Riemannian metric on \tilde{M} as well as induced on M.

For any $p \in M$, let $\{e_1, \ldots, e_m, \ldots, e_{2n+1}\}$ be an orthonormal frame for the tangent space $T_p \tilde{M}$, such that e_1, \ldots, e_m are tangent to M at p. We denote by H the mean curvature vector, that is

\[H(p) = \frac{1}{m} \sum_{i=1}^{m} h(e_i, e_i). \]

Also, we set

\[h_{ij}^r = g(h(e_i, e_j), e_r), \quad i, j \in \{1, \ldots, m\}, \quad r \in \{m + 1, \ldots, 2n + 1\} \]

and

\[||h||^2 = \sum_{i,j=1}^{m} g(h(e_i, e_j), h(e_i, e_j)). \]

For any $X \in \Gamma(TM)$, we write

\[\phi X = PX + FX, \]

where PX is the tangential component and FX is the normal component of ϕX.

Similarly for any $N \in \Gamma(T^\perp M)$, we write

\[\phi N = BN + CN, \]

where BN is the tangential component and CN is the normal component of ϕN. The covariant derivative of the tensor field ϕ is defined as

\[(\nabla_X \phi)Y = \nabla_X \phi Y - \phi \nabla_X Y, \]

for all $X, Y \in \Gamma(TM)$.

Now, denote by $\mathcal{P}_X Y$ and $\mathcal{Q}_X Y$ the tangential and normal parts of $(\nabla_X \phi)Y$, i.e.,

\[(\nabla_X \phi)Y = \mathcal{P}_X Y + \mathcal{Q}_X Y \]
for all $X, Y \in \Gamma(TM)$. Making use of (2.7)-(2.10) and the Gauss and Weingarten
formulae, the following equations may easily be obtained

$$\mathcal{P}_X Y = (\nabla_X P) Y - A_{FY} X - Bh(X,Y) \tag{2.11}$$
$$\mathcal{Q}_X Y = (\nabla_X F) Y + h(X, PY) - Ch(X,Y) \tag{2.12}$$

where the covariant derivative of P and F are defined by

$$(\nabla_X P) Y = \nabla_X PY - P\nabla_X Y \tag{2.13}$$
$$(\nabla_X F) Y = \nabla_X FY - F\nabla_X Y \tag{2.14}$$

for all $X, Y \in \Gamma(TM)$.

Similarly, for any $X \in \Gamma(TM)$ and $N \in \Gamma(T^\perp M)$, denoting the tangential
and normal parts of $(\nabla_X \phi)N$ by $\mathcal{P}_X N$ and $\mathcal{Q}_X N$ respectively, we obtain

$$\mathcal{P}_X N = (\nabla_X B) N + PA_N X - A_C N X \tag{2.15}$$
$$\mathcal{Q}_X N = (\nabla_X C) N + h(BN, X) + FA_N X \tag{2.16}$$

where the covariant derivative of B and C are defined by

$$(\nabla_X B) N = \nabla_X BN - B\nabla_X N \tag{2.17}$$
$$\nabla_X C) N = \nabla_X CN - C\nabla_X N. \tag{2.18}$$

It is straightforward to verify the following properties of \mathcal{P} and \mathcal{Q}, which
we enist here for later use:

$$(p_1) \begin{array}{ll}
(i) & \mathcal{P}_{X+Y} W = \mathcal{P}_X W + \mathcal{P}_Y W, \\
(ii) & \mathcal{Q}_{X+Y} W = \mathcal{Q}_X W + \mathcal{Q}_Y W,
\end{array}$$

$$(p_2) \begin{array}{ll}
(i) & \mathcal{P}_X (Y + W) = \mathcal{P}_X Y + \mathcal{P}_X W, \\
(ii) & \mathcal{Q}_X (Y + W) = \mathcal{Q}_X Y + \mathcal{Q}_X W,
\end{array}$$

$$(p_3) \begin{array}{ll}
(i) & g(\mathcal{P}_X Y, W) = -g(Y, \mathcal{P}_X W), \\
(ii) & g(\mathcal{Q}_X Y, N) = -g(Y, \mathcal{P}_X N),
\end{array}$$

for all $X, Y, W \in \Gamma(TM)$ and $N \in \Gamma(T^\perp M)$.

On a submanifold M of a nearly cosymplectic manifold, by equations (2.3) and (2.10) we have

$$(a) \quad \mathcal{P}_X Y + \mathcal{P}_Y X = 0, \quad (b) \quad \mathcal{Q}_X Y + \mathcal{Q}_Y X = 0 \tag{2.19}$$

for any $X, Y \in \Gamma(TM)$.

A submanifold M of an almost contact metric manifold \tilde{M} is said to be
invariant if F is identically zero, that is, $\phi X \notin \Gamma(TM)$ and anti-invariant if P
identically zero, that is, $\phi X \notin \Gamma(T^\perp M)$, for any $X \in \Gamma(TM)$.

We shall always consider ξ to be tangent to the submanifold M. There
is another class of submanifolds that is called the slant submanifold. For each
non zero vector X tangent to M at x, such that X is not proportional to ξ_x, we
denote by $0 \leq \theta(X) \leq \pi/2$, the angle between ϕX and $T_x M$ is called the slant
angle. If the slant angle $\theta(X)$ is constant for all $X \in T_x M - \langle \xi_x \rangle$ and $x \in M$,
then M is said to be slant submanifold [7]. Obviously if $\theta = 0$, M is invariant
and if $\theta = \pi/2$, M is an anti-invariant submanifold. A slant submanifold is said
to be proper slant if it is neither invariant nor anti-invariant submanifold.

We recall the following result for a slant submanifold.
Theorem 2.1 [7] Let M be a submanifold of an almost contact metric manifold \overline{M}, such that ξ is tangent to M. Then M is slant if and only if there exists a constant $\lambda \in [0, 1]$ such that

$$P^2 = \lambda(-I + \eta \otimes \xi)$$ \hspace{1cm} (2.20)

Furthermore, if θ is slant angle of M, then $\lambda = \cos^2 \theta$.

Following relations are straightforward consequences of relation (2.20)

$$g(PX, PY) = \cos^2 \theta (g(X, Y) - \eta(Y)\eta(X))$$ \hspace{1cm} (2.21)

$$g(FX, FY) = \sin^2 \theta (g(X, Y) - \eta(Y)\eta(X))$$ \hspace{1cm} (2.22)

for all $X, Y \in \Gamma(TM)$.

A submanifold M of an almost contact metric manifold \overline{M} is said to be a semi-slant if there exist two orthogonal distributions D_1 and D_2 satisfying:

(i) $T M = D_1 \oplus D_2 \oplus \langle \xi \rangle$

(ii) D_1 is an invariant i.e., $\phi D_1 \subseteq D_1$

(iii) D_2 is a slant distribution with slant angle $\theta \neq \frac{\pi}{2}$.

A semi-slant submanifold M of an almost contact manifold \overline{M} is mixed geodesic if

$$h(X, Z) = 0$$ \hspace{1cm} (2.23)

for any $X \in D_1$ and $Z \in D_2$. Moreover, if μ is the ϕ–invariant subspace of the normal bundle $T^\perp M$, then in case of semi-slant submanifold, the normal bundle $T^\perp M$ can be decomposed as

$$T^\perp M = FD_2 \oplus \mu.$$ \hspace{1cm} (2.24)

3 Warped product semi-slant submanifolds

Bishop and O’Neill [2] introduced the notion of warped product manifolds. These manifolds are natural generalizations of Riemannian product manifolds. They defined these manifolds as: Let (N_1, g_1) and (N_2, g_2) be two Riemannian manifolds and $f > 0$ a differentiable function on N_1. Consider the product manifold $N_1 \times N_2$ with its projections $\pi_1 : N_1 \times N_2 \to N_1$ and $\pi_2 : N_1 \times N_2 \to N_2$. Then the warped product of N_1 and N_2 denoted by $M = N_1 \times_f N_2$ is a Riemannian manifold $N_1 \times N_2$ equipped with the Riemannian structure such that

$$g(X, Y) = g_1(\pi_1 * X, \pi_1 * Y) + (f \circ \pi)^2 g_2(\pi_2 * X, \pi_2 * Y)$$

for each $X, Y \in \Gamma(TM)$ and $*$ is a symbol for the tangent map. Thus we have

$$g = g_1 + f^2 g_2.$$ \hspace{1cm} (3.1)

The function f is called the warping function of the warped product [2, 11]. A warped product manifold $N_1 \times_f N_2$ is said to be trivial if the warping function f is constant. We recall the following general result for a warped product manifold for later use.

Lemma 3.1 [2] Let $M = N_1 \times_f N_2$ be a warped product manifold. Then
(i) $\nabla_X Y \in T N_1$ is the lift of $\nabla_X Y$ on N_1

(ii) $\nabla_X Z = \nabla_Z X = (X \ln f) Z$

(iii) $\nabla_Z W = \nabla^{N_2} Z W - g(Z, W) \nabla \ln f$

for each $X, Y \in \Gamma(T N_1)$ and $Z, W \in \Gamma(T N_2)$ where ∇ and ∇^{N_2} denote the Levi-Civita connections on M and N_2, respectively, and $\nabla \ln f$ is the gradient of $\ln f$.

Let M be a Riemannian manifold of dimension k with the inner product g and $\{e_1, \ldots, e_k\}$ be an orthonormal frame on M. Then for a differentiable function f on M, the gradient ∇f of a function f on M is defined by

$$g(\nabla f, U) = U f,$$

for any $U \in \Gamma(TM)$. As a consequence, we have

$$\|\nabla f\|^2 = \sum_{i=1}^{k} (e_i(f))^2$$

where ∇f is the gradient of the function f on M.

Now, we consider the warped product semi-slant submanifolds tangent to the structure vector field ξ which are either in the form $M = N_T \times_f N_0$ or $M = N_0 \times_f N_T$ in a nearly cosymplectic manifold \bar{M}, where N_T and N_0 are invariant and proper slant submanifolds of a nearly cosymplectic manifold \bar{M}, respectively. On a warped product submanifold $M = N_1 \times_f N_2$ of a nearly cosymplectic manifold \bar{M}, we have the following result.

Theorem 3.1. [15] A warped product submanifold $M = N_1 \times_f N_2$ of a nearly cosymplectic manifold \bar{M} is an usual Riemannian product if the structure vector field ξ is tangent to N_2, where N_1 and N_2 are the Riemannian submanifolds of \bar{M}.

From the above theorem for the existence of warped products we always consider the structure vector field ξ is tangent to the base. Now, we start with the warped product semi-slant submanifolds of the type $M = N_0 \times_f N_T$ of a nearly cosymplectic manifold \bar{M}.

Theorem 3.2 There do not exist the warped product semi-slant submanifolds $M= N_0 \times_f N_T$ of a nearly cosymplectic manifold \bar{M}, where N_0 and N_T are proper slant and invariant submanifolds of \bar{M}, respectively.

Proof. The proof is similar to the semi-invariant case, which we have proved in [15].

Now, we discuss the other case and all results before the geometric inequality are preparatory and we can not skip all these. We shall use these preparatory results in our main theorem.

Lemma 3.2 Let $M = N_T \times_f N_0$ be a warped product semi-slant submanifold of a nearly cosymplectic manifold \bar{M}, where N_T and N_0 are invariant and proper slant submanifolds of \bar{M}, respectively. Then

(i) $\xi \ln f = 0$
(ii) \(g(h(X, Y), FZ) = 0 \)

(iii) \(g(h(PX, Z), FZ) = (X \ln f)\|Z\|^2 \)

(iv) \(g(h(X, Z), FPZ) = -g(h(X, PZ), FZ) \)

(v) \(g(PXZ, PZ) = 2g(h(X, Z), FPZ) \)

for any \(X, Y \in \Gamma(TN_T) \) and \(Z \in \Gamma(TN_\theta) \).

Proof. Let \(M = N_T \times fN_\theta \) be a warped product semi-slant submanifold of a nearly cosymplectic manifold \(\bar{M} \). We assume that the structure vector field \(\xi \) is tangent to \(N_T \), then for any \(Z \in \Gamma(TN_\perp) \), we have

\[
\bar{\nabla}_Z \xi = \nabla_Z \xi + h(Z, \xi).
\]

Taking the inner product with \(Z \) and using Proposition 2.1 and Lemma 3.1 (ii), we obtain

\[
(X \ln f)\|Z\|^2 = 0.
\]

This means that either \(M \) is invariant or \(\xi \ln f = 0 \), which proves (i). Now, we consider \(X, Y \in \Gamma(TN_T) \) and \(Z \in \Gamma(TN_\theta) \), the we have

\[
g(h(X, Y), FZ) = g(\bar{\nabla}_XY, FZ) = -g(Y, \bar{\nabla}_XFZ).
\]

Using (2.7) and then (2.9), we obtain

\[
g(h(X, Y), FZ) = -g(Y, (\bar{\nabla}_X \phi)Z) - g(Y, \phi \bar{\nabla}_XZ) + g(Y, \bar{\nabla}_XPZ).
\]

Then from (2.2), (2.4) and Lemma 3.1 (ii), the second and last terms of right hand side vanish identically and hence by (2.10), we derive

\[
g(h(X, Y), FZ) = -g(Y, PXZ).
\]

Thus, on using the property \(P_3 \) (i), we get

\[
g(h(X, Y), FZ) = g(PXY, Z).
\]

Hence, by skew-symmetry of \(PX \) and symmetry of \(h(X, Y) \), we get the second part of the lemma. For the third part, consider for any \(X \in \Gamma(TN_T) \) and \(Z \in \Gamma(TN_\theta) \), we have

\[
g(h(PX, Z), FZ) = g(\nabla_ZPX, \phi Z - PZ)
\]

\[
= -g(PX, \nabla_Z\phi Z) - g(\nabla_ZPX, PZ).
\]

From (2.4), (2.9) and Lemma 3.1 (ii), the above equation reduced to

\[
g(h(PX, Z), FZ) = -g(PX, (\nabla_Z\phi)Z) - g(PX, \phi \nabla_ZZ) - (PX \ln f)g(Z, PZ).
\]

On using the structure equation of nearly cosymplectic and the fact that \(Z \) and \(PZ \) are orthogonal vector fields, the first and last terms of right hand side are identically zero. Then from (2.2), we derive

\[
g(h(PX, Z), FZ) = g(\phi^2 X, \nabla_ZZ).
\]
Using (2.1), we get
\[g(h(PX, Z), FZ) = -g(X, \nabla_Z Z) + \eta(X)g(\xi, \nabla_Z Z). \]
By the property of Riemannian connection \(\nabla \), the above equation takes the form
\[g(h(PX, Z), FZ) = g(\nabla_Z X, Z) - \eta(X)g(\nabla_Z \xi, Z). \]
Then from (2.4), Proposition 2.1 and Lemma 3.1 \((ii)\), we obtain
\[g(h(PX, Z), FZ) = (X \ln f)\|Z\|^2, \]
which is third part of the lemma. For the other parts, consider
\[g(\nabla_{PZ}\phi X, Z) = g(\nabla_{PZ}\phi X, Z) \]
for any \(X \in \Gamma(TN_T) \) and \(Z \in \Gamma(TN_T) \). Using the property of Riemannian connection \(\nabla \) and Lemma 3.1 \((ii)\), we get
\[(\phi X \ln f)g(Z, PZ) = -g(\phi X, \nabla_{PZ} Z). \]
Using the fact that \(Z \) and \(PZ \) are orthogonal vector fields, the above equation reduces to
\[0 = g(X, \phi\nabla_{PZ} Z). \]
Then from (2.9), we derive
\[0 = g(X, \phi \nabla_{PZ} Z) - g(X, (\nabla_{PZ}\phi) Z). \]
By (2.7) and (2.10), we obtain
\[0 = g(X, \nabla_{PZ} PZ) + g(X, \nabla_{PZ} FZ) - g(X, P_{PZ} Z). \]
Using (2.4), (2.5) and (2.19) \((a)\), we get
\[0 = -g(\nabla_{PZ} X, PZ) - g(X, A_{PZ} PZ) + g(X, P_{PZ} PZ). \]
Then from the property \(p_3 \((i)\) and Lemma 3.1 \((ii)\), we obtain
\[0 = -(X \ln f)g(PZ, PZ) - g(h(X, PZ), FZ) - g(P_{PZ} X, PZ). \]
Again using (2.19) \((a),\) (2.21) and the fact that \(\xi \) is tangent to \(N_T \), we derive
\[g(PX Z, PZ) = (X \ln f)\cos^2 \theta\|Z\|^2 + g(h(X, PZ), FZ). \quad (3.4) \]
Interchanging \(Z \) by \(PZ \) and then using (2.20), (2.21) and the fact that \(\xi \) is tangent to \(N_T \), we obtain
\[-\cos^2 \theta g(PX Z, PZ) = (X \ln f)\cos^4 \theta\|Z\|^2 - \cos^2 \theta g(h(X, Z), FPZ). \]
By the property \(p_3 \((i)\), the above equation will be
\[g(PX Z, PZ) = (X \ln f)\cos^2 \theta\|Z\|^2 - g(h(X, Z), FPZ). \quad (3.5) \]
Thus, the fourth part of the lemma follows from (3.4) and (3.5). Now, for the part \((v)\), we consider
\[g(h(X, PZ), FZ) = g(\nabla_X PZ, FZ) \]
for any $X \in \Gamma(T_{N_T})$ and $Z \in \Gamma(T_{N_\theta})$. Using the property of Riemannian connection ∇ and then using (2.7), we have

$$g(h(X, PZ), FZ) = -g(PZ, \nabla_X PZ) + g(PZ, \nabla_X PZ).$$

Using (2.9), Lemma 3.1 (ii), (2.21) and the fact that ξ is tangent to N_T, we obtain

$$g(h(X, PZ), FZ) = -g(PZ, \phi \nabla_X Z) - g(PZ, (\nabla_X \phi)Z) + (X \ln f) \cos^2 \theta \|Z\|^2.$$

Then from (2.2) and (2.10), we get

$$g(h(X, PZ), FZ) = -g(PZ, \phi \nabla_X Z) - g(PZ, \phi \nabla_X Z) + (X \ln f) \cos^2 \theta \|Z\|^2.$$

Using (2.4) and (2.7), we derive

$$g(h(X, PZ), FZ) = g(P^2 Z, \nabla_X Z) + g(h(X, Z), F P Z) - g(PZ, \phi Z) + (X \ln f) \cos^2 \theta \|Z\|^2.$$

Again, from the fact that ξ is tangent to N_T and using (2.20), the above equation reduces to

$$g(P_X Z, PZ) = g(h(X, Z), F P Z) - g(h(X, PZ), FZ). \quad (3.6)$$

Thus, the fifth part of the lemma follows from (3.6) and the fourth part of this lemma. This proves the lemma completely. ■

Theorem 3.3 Let $M = N_T \times f N_\theta$ be a warped product semi-slant submanifold in a nearly cosymplectic manifold \bar{M}, where N_T and N_θ are invariant and proper slant submanifolds of \bar{M}, respectively. Then,

$$g(P_X Z, PZ) = \frac{2}{3} (X \ln f) \cos^2 \theta \|Z\|^2$$

for any $X \in \Gamma(T_{N_T})$ and $Z \in \Gamma(T_{N_\theta})$.

Proof. From (3.4) and (3.5), we have

$$2g(P_X Z, PZ) = 2(X \ln f) \cos^2 \theta \|Z\|^2 + g(h(X, Z), F P Z) - g(h(X, PZ), FZ). \quad (3.7)$$

Then, by Lemma 3.2 (iv), we obtain

$$2g(P_X Z, PZ) = 2(X \ln f) \cos^2 \theta \|Z\|^2 - 2g(h(X, Z), F P Z). \quad (3.8)$$

Thus, from Lemma 3.2 (v) and (3.8), we obtain the desire result. ■

From the above theorem we have the following consequence.

Corollary 3.1 A warped product semi-slant submanifold $M = N_T \times f N_\theta$ of a nearly cosymplectic manifold \bar{M} is simply a Riemannian product of N_T and N_θ if and only if $\mathcal{P}_{\bar{X}} Z \in \Gamma(T_{N_T})$, for any $X \in \Gamma(T_{N_T})$ and $Z \in \Gamma(T_{N_\theta})$.

9
Theorem 3.4 Let $M = N_T \times \tilde{N}_\theta$ be a warped product semi-slant submanifold in a nearly cosymplectic manifold \bar{M}, where N_T and N_θ are invariant and proper slant submanifolds of \bar{M}, respectively. Then,

$$g(h(X, Z), FP Z) = - g(h(X, P Z), F Z) = \frac{1}{3} (X \ln f) \cos^2 \theta \|Z\|^2,$$

for any $X \in \Gamma(TN_T)$ and $Z \in \Gamma(TN_\theta)$.

Proof. The first equality is nothing but Lemma 3.2 (iv) and the second equality is directly followed by the equation (3.8) and Lemma 3.2 (v). \blacksquare

From the above theorem we have the following corollaries.

Corollary 3.2 A semi-slant warped product submanifold $M = N_T \times \tilde{N}_\theta$ of a nearly cosymplectic manifold is simply a Riemannian product of N_T and N_θ if and only if $h(X, Z) \in \Gamma(\mu)$, for all $X \in \Gamma(TN_T)$ and $Z \in \Gamma(TN_\theta)$, where μ is the invariant normal subbundle of $T^\perp M$.

Corollary 3.3 There does not exist a mixed geodesic warped product semi-slant submanifold of a nearly cosymplectic manifold.

From Lemma 3.2 (i), (iv) and Theorem 3.4, we obtain

$$g(h(\xi, Z), FP Z) = g(h(\xi, P Z), F Z) = 0,$$

for any $Z \in \Gamma(TN_\theta)$.

Using the previous results, we derive the following geometric inequality for the length of second fundamental form.

Theorem 3.5 Let $M = N_T \times \tilde{N}_\theta$ be a warped product semi-slant submanifold of a nearly cosymplectic manifold \bar{M}, where N_T and N_θ are invariant and proper slant submanifolds of \bar{M}, respectively. Then

(i) The squared norm of the second fundamental form h satisfies

$$\|h\|^2 \geq 4q \csc^2 \theta \{1 + \frac{1}{9} \cos^2 \theta\}\|\nabla \ln f\|^2$$

(3.10)

where $\nabla \ln f$ is the gradient of $\ln f$ and $2q$ is the dimension of N_θ.

(ii) If the equality sign of (3.10) holds, then N_T is totally geodesic in \bar{M} and N_θ is a totally umbilical submanifold of \bar{M}. Moreover, M is a minimal submanifold of \bar{M}.

Proof. Let \bar{M} be a $(2n + 1)$-dimensional nearly cosymplectic manifold and let $M = N_T \times \tilde{N}_\theta$ be a warped product semi-slant submanifold of \bar{M}. Let us denote by \mathcal{D} and \mathcal{D}_θ the tangent bundles on N_T and N_θ, respectively and let $\dim N_T = 2p + 1$ and $\dim N_\theta = 2q$, then $m = 2p + 2q + 1$. Let $\{X_1, \ldots, X_p, X_{p+1} = \phi X_1, \ldots, X_{2p} = \phi X_p, X_{2p+1} = \xi\}$ and $\{Z_1, \ldots, Z_q, Z_{q+1} = \sec \theta P Z_1, \ldots, Z_{2q} = \sec \theta P Z_q\}$ be the local orthonormal frames of \mathcal{D} and \mathcal{D}_θ, respectively. Then, the orthonormal frames of FD_θ and μ are $\{Z_1^* = \csc \theta FZ_1, \ldots, Z_q^* = \csc \theta FZ_q, Z_{q+1}^* = \csc \theta \sec \theta FZ_1, \ldots, Z_{2q}^* = \csc \theta \sec \theta FZ_q\}$ and $\{N_{m+2q+1}, \ldots, N_{2n+1}\}$, respectively, where N is the normal vector in the invariant normal subbundle of $T^\perp \bar{M}$. The dimensions of FD_θ
and μ will be $2q$ and $2n + 1 - m - 2q$, respectively. The length of second fundamental form h is defined as

$$\|h\|^2 = \sum_{r=m+1}^{m+2q} \sum_{i,j=1}^{m} g(h(U_i, V_j), N_r)^2$$

for any vector fields U_i, V_j tangent to M and N_r normal to M. Now, for the assumed frames of $F\mathcal{D}_\theta$ and μ, the above equation can be written as

$$\|h\|^2 = \sum_{r=m+1}^{m+2q} \sum_{i,j=1}^{m} g(h(U_i, V_j), Z_r^*)^2 + \sum_{r=m+2p+1}^{m+2q} \sum_{i,j=1}^{m} g(h(U_i, V_j), N_r^*)^2.$$ \hspace{1cm} (3.12)

The first term in the right hand side of the above equation is the $F\mathcal{D}_\theta$-component and the second term is μ-component. Here, we equate only $F\mathcal{D}_\theta$-component term, thus we have

$$\|h\|^2 \geq \sum_{r=m+1}^{m+2q} \sum_{i,j=1}^{m} g(h(U_i, V_j), Z_r^*)^2.$$ \hspace{1cm} (3.13)

Thus, for the given frames of \mathcal{D} and \mathcal{D}_θ, the above equation will be

$$\|h\|^2 \geq \sum_{r=1}^{2q} \sum_{i,j=1}^{2q+1} g(h(X_i, X_j), Z_r^*)^2 + 2 \sum_{r=1}^{2q} \sum_{i=1}^{2q+1} \sum_{j=1}^{2q} g(h(X_i, Z_j), Z_r^*)^2$$

$$+ \sum_{r=1}^{2q} \sum_{i,j=1}^{2q} g(h(Z_i, Z_j), Z_r^*)^2.$$ \hspace{1cm} (3.14)

By Lemma 3.2 (ii), the first term of the right hand side is identically zero and we shall compute the next term and leave the third term

$$\|h\|^2 \geq 2 \sum_{r=1}^{2q} \sum_{i=1}^{2q} \sum_{j=1}^{2q} g(h(X_i, Z_j), Z_r^*)^2.$$ \hspace{1cm} (3.15)

As $j, r = 1, \cdots, 2q$, then the above equation can be written for one summation as

$$\|h\|^2 \geq 2 \sum_{i=1}^{2q} \sum_{j=1}^{2q} g(h(X_i, Z_j), Z_r^*)^2.$$ \hspace{1cm} (3.16)

Separating the $h(\xi, Z)$-components, the above inequality will be

$$\|h\|^2 \geq 2 \sum_{i=1}^{2p} \sum_{j=1}^{2q} g(h(X_i, Z_j), Z_r^*)^2 + 2 \sum_{j=1}^{2q} g(h(\xi, Z_j), F Z_j)^2.$$ \hspace{1cm} (3.17)

Now, we solve the second term of right hand side of (3.17) as follows

$$\sum_{j=1}^{2q} g(h(\xi, Z_j), F Z_j)^2 = \csc^2 \theta \sum_{j=1}^{q} g(h(\xi, Z_j), F Z_j)^2$$

11
\[
+ \csc^2 \theta \sec^4 \theta \sum_{j=1}^{q} g(h(\xi, PZ_j), FPZ_j)^2
\]
\[
+ \csc^2 \theta \sec^2 \theta \sum_{j=1}^{q} g(h(\xi, Z_j), FPZ_j)^2
\]
\[
+ \csc^2 \theta \sec^2 \theta \sum_{j=1}^{q} g(h(\xi, PZ_j), FZ_j)^2.
\]
(3.16)

From (3.9), the last two terms of right hand side of (3.16) are identically zero and we will compute the first two terms as follows. We know that
\[
g(h(\xi, Z), FZ) = g(\nabla_Z \xi, FZ) = -g(\xi, \nabla_Z FZ).
\]
Using (2.7) and then (2.9), we obtain
\[
g(h(\xi, Z), FZ) = -g(\xi, (\nabla_Z \phi)Z) - g(\xi, \phi \nabla_Z Z) + g(\xi, \nabla_Z PZ).
\]
Using the nearly cosymplectic character the first term of right hand side is zero, second and last terms are also zero by using (2.1), property of Riemannian connection and either orthogonality of vectors \(Z\) and \(PZ\) or the fact that \(\xi \ln f = 0\) or both, hence
\[
g(h(\xi, Z), FZ) = 0.
\]
(3.17)
If we interchange \(Z\) by \(PZ\), then \(g(h(\xi, PZ), FPZ) = 0\). Put all these values in (3.16), we obtain
\[
\sum_{j=1}^{2q} g(h(\xi, Z_j), FZ_j)^2 = 0.
\]
(3.18)
Thus, from (3.15) and (3.18), we derive
\[
\|h\|^2 \geq 2 \sum_{i=1}^{2p} \sum_{j=1}^{2q} g(h(X_i, Z_j), Z_j^*)^2.
\]
Using the frame of \(FD_\theta\), the above inequality can be written as
\[
\|h\|^2 \geq 2 \sum_{i=1}^{2p} \sum_{j=1}^{2q} g(h(X_i, Z_j), FZ_j)^2
\]
\[
+ 2 \csc^2 \theta \sec^4 \theta \sum_{i=1}^{2p} \sum_{j=1}^{2q} g(h(X_i, PZ_j), FPZ_j)^2
\]
\[
+ 2 \csc^2 \theta \sec^4 \theta \sum_{i=1}^{2p} \sum_{j=1}^{2q} g(h(\phi X_i, Z_j), FZ_j)^2
\]
\[
+ 2 \csc^2 \theta \sec^4 \theta \sum_{i=1}^{2p} \sum_{j=1}^{2q} g(h(\phi X_i, PZ_j), FPZ_j)^2
\]
\[
+ 2 \csc^2 \theta \sec^2 \theta \sum_{i=1}^{2p} \sum_{j=1}^{2q} g(h(X_i, PZ_j), FZ_j)^2
\]
\[+ 2 \csc^2 \theta \sec^2 \theta \sum_{i=1}^{p} \sum_{j=1}^{q} g(h(X_i, Z_j), FPZ_j)^2 \]
\[+ 2 \csc^2 \theta \sec^2 \theta \sum_{i=1}^{p} \sum_{j=1}^{q} g(h(\phi X_i, PZ_j), FZ_j)^2 \]
\[+ 2 \csc^2 \theta \sec^2 \theta \sum_{i=1}^{p} \sum_{j=1}^{q} g(h(\phi X_i, Z_j), FPZ_j)^2. \] (3.19)

The first four terms of above inequality will be solved as follows. From Lemma 3.2 (iii), we have
\[g(h(\phi X, Z), FZ) = (X \ln f)g(Z, Z). \] (3.20)
Interchanging \(X \) by \(\phi X \) and then using (2.1), we derive
\[-g(h(X, Z), FZ) + \eta(X)g(h(\xi, Z), FZ) = (\phi X \ln f)g(Z, Z). \]
But from (3.17), the second term of left hand side of above equation vanishes identically, thus we obtain
\[g(h(X, Z), FZ) = -(\phi X \ln f)g(Z, Z). \] (3.21)
Interchanging \(Z \) by \(PZ \) in (3.20) and (3.21) and using (2.21) and the fact that \(\xi \) is tangent to \(N_T \), thus we obtain the following equations, respectively
\[g(h(\phi X, PZ), FPZ) = (X \ln f) \cos^2 \theta g(Z, Z) \] (3.22)
and
\[g(h(X, PZ), FPZ) = -(\phi X \ln f) \cos^2 \theta g(Z, Z). \] (3.23)
The last four terms of (3.19) will be solved by Theorem 3.4 as follows
\[g(h(X, Z), FPZ) = -g(h(X, PZ), FZ) = \frac{1}{3}(X \ln f) \cos^2 \theta g(Z, Z). \] (3.24)
Interchanging \(X \) by \(\phi X \) in (3.24), we obtain
\[g(h(\phi X, Z), FPZ) = -g(h(\phi X, PZ), FZ) = \frac{1}{3}(\phi X \ln f) \cos^2 \theta g(Z, Z). \] (3.25)
Put all these values in (3.19), we derive
\[\|h\|^2 \geq 4 \csc^2 \theta \sum_{i=1}^{p} \sum_{j=1}^{q} \left(1 + \frac{1}{9} \cos^2 \theta \right) (X_i \ln f)^2 g(Z_j, Z_j)^2 \]
\[+ 4 \csc^2 \theta \sum_{i=1}^{p} \sum_{j=1}^{q} \left(1 + \frac{1}{9} \cos^2 \theta \right) (\phi X_i \ln f)^2 g(Z_j, Z_j)^2. \]
Hence, from (3.3) the above expression will be
\[\|h\|^2 \geq 4 \csc^2 \theta \sum_{j=1}^{q} \left(1 + \frac{1}{9} \cos^2 \theta \right) \|\nabla \ln f\|^2 g(Z_j, Z_j)^2 \]
\[= 4q \csc^2 \theta \{1 + \frac{1}{9} \cos^2 \theta\} \| \nabla \ln f \|^2, \]

which is the inequality (3.10). If the equality holds in (3.10), then by (3.12) and (3.14), we obtain
\[h(D, D) = 0, \quad h(D_\theta, D_\theta) = 0, \quad h(D, D_\theta) \subset F D_\theta. \quad (3.26) \]

Now, for any \(Z, W \in \Gamma(D_\theta) \) and \(X \in \Gamma(D) \), we have
\[g(h^*(Z, W), X) = g(\nabla_Z W, X) = -g(W, \nabla_Z X) = -(X \ln f) g(Z, W) \]
where \(h^* \) is the second fundamental form of \(N_\theta \) in \(M \). Using (3.2), we obtain
\[g(h^*(Z, W), X) = -g(Z, W) g(\nabla \ln f, X), \]
where \(\nabla \ln f \) is the gradient of \(\ln f \). Thus from the last relation, we get
\[h^*(Z, W) = -\nabla \ln f g(Z, W). \quad (3.27) \]

Since \(N_T \) is totally geodesic submanifold in \(M \) (by Lemma 3.1 (i)), using this fact with the first condition of (3.26), we get \(N_T \) is totally geodesic in \(\bar{M} \). Also, the second condition of (3.26) with (3.27) implies that \(N_\theta \) is totally umbilical in \(M \). Moreover all conditions of (3.26) imply that \(M \) is a minimal submanifold of \(\bar{M} \). This completes the proof of the theorem. ■

If we consider \(\theta = \frac{\pi}{2} \), then the inequality (3.10) generalizes the inequality which we have obtained for contact CR-warped products in [16].

References

[1] M. Atceken, Contact CR-warped product submanifolds in cosymplectic space forms, Collect. Math. 62 (2011), 17-26.
[2] R.L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
[3] D.E. Blair, Almost contact manifolds with killing structure tensors I, Pac. J. Math. 39 (1971) 285-292.
[4] D.E. Blair and K. Yano, Affine almost contact manifolds and f-manifolds with affine killing structure tensors, Kodai Math. Sem. Rep. 23 (1971) 473-479.
[5] D.E. Blair and D.K. Showers, Almost contact manifolds with killing structures tensors II, J. Differ. Geom. 9 (1974), 577-582.
[6] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Semi-slant submanifolds of a Sasakian manifold, Geom. Dedicata 78 (1999), 183-199.
[7] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J. 42 (2000), 125-138.
[8] B.Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, Monatsh. Math. 133 (2001), 177-195.
[9] I. Hasegawa and I. Mihai, Contact CR-warped product submanifolds in Sasakian manifolds, Geom. Dedicata 102 (2003), 143-150.

[10] K.A. Khan, V.A. Khan and Siraj Uddin, Warped product submanifolds of cosymplectic manifolds, Balkan J. Geom. Appl. 13 (2008), 55-65.

[11] B. O’Neill, Semi-Riemannian geometry with application to Relativity, Academic Press, New York, 1983.

[12] N. Papaghiuc, Semi-slant submanifolds of Khaelerian manifolds, Ann. St. Univ. Iasi, 9 (1994), 55-61.

[13] Siraj Uddin, V.A. Khan and K.A. Khan, A note on warped product submanifolds of cosymplectic manifolds, Filomat 24 (2011), 95-102.

[14] Siraj Uddin and K.A. Khan, Warped product CR-submanifolds of cosymplectic manifolds, Ricerche di matematica 60 (2011), 143-149.

[15] Siraj Uddin, S. H. Kon, M. A. Khan and Khushwant singh, Warped product semi-invariant submanifolds of nearly cosymplectic manifolds, Math. Probl. Eng. 2011 (2011).

[16] Siraj Uddin and Khalid Ali Khan, An inequality for contact CR-warped product submanifolds of nearly cosymplectic manifolds, J. Inequal. Appl. 304 (2012).

Author’s address:

Siraj Uddin
Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
E-mail: siraj.ch@gmail.com

Abdulqader Mustafa
Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
E-mail: abdulqader.mustafa@yahoo.com

Berardine Renaldo Wong
Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
E-mail: bernardr@um.edu.my

Cenap Ozel
Department of Mathematics, Abant Izzet Baysal University, 14280 Bolu, Turkey
E-mail: cenap.ozel@gmail.com