The Docking Stage of Yeast Vacuole Fusion Requires the Transfer of Proteins from a cis-SNARE Complex to a Rab/Ypt Protein

Albert Price, Darren Seals, William Wickner, and Christian Ungermann

Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844

Abstract. The homotypic fusion of yeast vacuoles requires Sec18p (NSF)-driven priming to allow vacuole docking, but the mechanism that links priming and docking is unknown. We find that a large multisubunit protein called the Vam2/6p complex is bound to cis-paired SNAP receptors (SNAREs) on isolated vacuoles. This association of the Vam2/6p complex with the cis-SNARE complex is disrupted during priming. The Vam2/6p complex then binds to Ypt7p, a guanosine triphosphate binding protein of the Rab family, to initiate productive contact between vacuoles. Thus, cis-SNARE complexes can contain Rab/Ypt effectors, and these effectors can be mobilized by NSF/Sec18p-driven priming, allowing their direct association with a Rab/Ypt protein to activate docking.

Key words: Vps39/Vam6p • Vps41/Vam2p • Ypt7p • priming • Rab/Ypt effector

Introduction

Regulated fusion of organelle membranes (Rothman, 1994) is essential for subcellular protein compartmentation. The protein and lipid factors that catalyze membrane fusion are being identified and their functional relationships are receiving intense study. Each fusion reaction seems to require integral membrane proteins termed SNAP receptors (SNAREs) (Pfeffer, 1996), which function through the association of their cytoplasmic domains to form coiled-coils. Associated SNAREs, whether in cis (on the same membrane) or in trans (attached to apposed membranes), can be disassembled by the action of the ATP-driven chaperone, N-ethylmaleimide sensitive factor (NSF)/Sec18p, and its cochaperone αSNAP/Sec17p (Söllner et al., 1993; H anson et al., 1995; Ungermann et al., 1998a). SNARE associations are regulated either directly or indirectly by members of the Rab/Ypt family of GTPases and their associated proteins, termed Rab/Ypt effectors (McBride et al., 1999; Carr et al., 1999; Ungermann et al., 1998a). In several systems, Rab/Ypt proteins and their effectors have been shown to mediate a SNARE-independent initial association of membranes, termed tethering, which is the first step of the docking stage (Cao et al., 1998; Ungermann et al., 1998b). Tethering is a necessary prelude to trans-SNARE pairing, which establishes a stably docked organelle pair. The recent finding (McBride et al., 1999) that Rab effectors can directly associate with SNAREs and that this association can be modulated by the chaperone NSF, suggested that these Rab effectors may directly mediate trans-SNARE pairing and the subsequent steps that lead to fusion.

We have studied the homotypic fusion of yeast vacuoles. This reaction occurs in obligately ordered subreactions of priming, docking, and fusion. Five SNAREs on the purified organelle are found in a cis complex with the chaperones Sec18p, Sec17p, and low molecular weight activity #1 (LMA1) (Ungermann et al., 1999). This complex has been viewed as simply the remains of SNARE associations from prior fusion events, though current studies reported below show that it actually has a greater complexity and distinct functions. The cis-SNARE complex is disassembled as Sec18p hydrolyzes ATP during priming (Barnard et al., 1997; Ungermann et al., 1998b). This priming event is necessary for docking (Mayer and Wickner, 1997). Docking occurs in two stages, a reversible vacuole association termed tethering, which depends on the Rab-like GTPase Ypt7p, and the subsequent pairing of SNAREs in trans (Ungermann et al., 1998a). We report that Vam2/Vps41p and Vam6/Vps39p, identified in vacuole protein sorting (vps) screens for defective vacuole protein sorting (Stack et al., 1998a).
et al., 1995) and in vacuole morphology (vam) screens for fragmented vacuole morphology (Wada et al., 1992), are also required for vacuole docking (Price et al., 2000). Docking triggers a brief release of calcium from the vacuole lumen (Peters and Mayer, 1998) which leads to vacuole association of a complex of calmodulin and protein phosphatase 1 (Peters et al., 1999), a dephosphorylation of a vacuolar target protein(s), release of the LMA1 cochiaperone (Xu et al., 1998), and membrane fusion.

Despite this progress in defining the components that catalyze each stage of the reaction, the mechanism whereby the different stages are coupled is unknown. One of the most intriguing questions is how the priming of vacuoles leads to their docking. Specifically, how does the disassembly of the cis-SNARE complex lead to the Ypt7p-dependent association of vacuoles, and what are the linking proteins? We now show that this function is fulfilled by a protein complex that contains Vam2/Vps41p and Vam6/Vps39p, termed Vam2/6p, working as a vacuolar Rab/Ypt effector. Vam2p and Vam6p are localized to the vacuole as part of a large complex (Nakamura et al., 1997) that is required for the docking stage of homotypic vacuole fusion (Price et al., 2000). However, unlike other known Rab/Ypt effectors, Vam2/6p is initially bound to the cis-SNARE complex and is released from the SNAREs upon Sec18p-dependent priming. Vam2/6p can only then bind to Ypt7p to initiate docking, providing an important physical and functional link between membrane priming and docking.

Materials and Methods

Biochemical Reagents

Glutathione A- Sepharose CL-4B (Amersham Pharmacia Biotech) using dimethylpimelimidate (Harlow and Lane, 1988). Vacuoles (300 mg) were solubilized in 200 μl of solubilization buffer (20 mM Hepes-KOH, pH 7.4, 150 mM NaCl, 10% [wt/vol] glycerol, 1% [vol/vol] Triton X-100) with protease inhibitor cocktail (Haae, 1995) for 10 min on ice. Insoluble material was removed by centrifugation (14,000 g, 10 min, 4°C). The supernatant was then incubated with protein A-Sepharose immobilized antibodies for 2 h at 4°C in a final volume of 500 μl of solubilization buffer. The beads were washed twice with solubilization buffer and bound proteins were eluted with 0.1 M glycine, pH 2.5. The eluates were then neutralized by the addition of 0.1 M Tris-HCl, pH 9.0, and analyzed by SDS-PAGE and immunoblotting.

Sucrose Velocity Gradients

Vacuoles were sedimented (14,000 g, 10 min, 4°C) and solubilized for 10 min on ice in PS solubilization buffer, which is PS buffer containing 1% (vol/vol) Triton X-100 and protease inhibitor cocktail (Haae, 1995). Insoluble material was removed by sedimentation (14,000 g, 10 min, 4°C). The vacuolar extract was layered onto a 12-ml gradient of 10–40% (wt/vol) sucrose in PS buffer with 1% (vol/vol) Triton X-100 and centrifuged (38,000 rpm, 6 h, 4°C; Beckman SW-41 rotor). Fractions were analyzed by SDS-PAGE followed by immunoblotting. BSA (4S), a2-macroglobulin (205S), and ferritin (65S) were centrifuged in a parallel gradient and analyzed by SDS-PAGE and staining with Coomassie brilliant blue.

Results

Association of Vam2/6p with SNAREs

In accord with earlier studies (Nakamura et al., 1997), Vam2p and Vam6p are associated with each other as part of a large complex, as assayed in Triton X-100 extracts of vacuoles by communoprecipitation (Fig. 1 A, lane 2) and cosedimentation at 65S in sucrose velocity gradients (Fig. 1 B). Gradient fractions were also assayed for the SNARE proteins Nyv1p and Vam3p. Surprisingly, although the cis-SNARE complex (Ungermann et al., 1999) was labile under these conditions, a small fraction of these SNAREs cosedimented with Vam2/6p (Fig. 1 B). This was confirmed directly by observing a communoprecipitation of Vam2p by anti-Vam3p (Fig. 2 A, lane 1), but not by control IgG (Fig. 2 A, lane 4). This association was seen with other members of the SNARE complex, as antibody to the v-SNAREs Vti1p or Ykt6p immunoprecipitate Vam2p (Fig. 2 B, lanes 2 and 3) at least as efficiently as does antibody to Vam3p (Fig. 2 B, lane 1).

Vacuole cis-SNARE complexes are dissociated by the priming activity of Sec18p (Ungermann et al., 1999). We find that Vam2/6p is released from its association with the cis-SNARE complex during priming. Communoprecipitation of Vam2p with Vam3p is diminished 77% upon incubation at 27°C with ATP (Fig. 2 A, lane 2), and this release is completely blocked by antibody to the priming catalyst Sec18p (Fig. 2 A, lane 2) but not by antibodies that block the SNARE complex (data not shown). Not only do SNAREs cosediment (Fig. 1 B) and communoprecipitate (Fig. 2 A and B) with Vam2/6p, but disruption of the cis-SNARE complex through priming the vacuoles (Fig. 3) causes a shift of the 65S Vam2/6p to a slower sedimenting species of 385S. A Vam2/6p is a peripheral membrane complex (Nakamura et al., 1997), this loss of its association with integral membrane SNAREs, as well as its involvement in the docking reaction (Price et al., 2000), raises the question of the identity of its subsequent physical and functional associations on the vacuole membrane.
Vam2/6p Physically Associates with Ypt7p after Priming

Since both Vam2p and Ypt7p are essential for docking (Mayer and Wickner, 1997; Price et al., 2000), we asked whether Vam2p and Ypt7p are directly associated. We find that antibody to Ypt7p will cross-immunoprecipitate ~13% of the Vam6p from vacuole detergent extracts (Fig. 4A). Moreover, the GTP form of purified recombinant glutathione S-transferase (GST)–Ypt7p will bind the complex containing Vam6p (Fig. 4B, lane 3) and Vam2p (data not shown) from the 38S gradient-purified fractions (Fig. 3) of Vam2/6p complex from primed vacuoles. This association is specific for the nucleotide (Fig. 4B, lanes 2–4) and is not seen with the GTP form of the fusion protein of GST with Ypt1p (Fig. 4B, lane 5), a closely related Rap/Ypt protein required for ER to Golgi traffic. Without priming, the 65S Vam2/6p complex (Fig. 4B, lane 6) does not associate with GST–Ypt7p:GTP above background levels (Fig. 4B, lanes 7–10). These results indicate that the Vam2/6p complex acquires a direct affinity for Ypt7p after priming and establish that Vam2/6p is an important Ypt7p effector.

Ypt7p Regulates the Localization of Vam2/6p to the Vacuole

To investigate whether Vam2p and Vam6p also interact...
with Ypt7p in the cell, we examined the localization of Vam6p in a ypt7Δ strain. Purified vacuoles that lack Ypt7p had very little Vam6p (Fig. 5, lane 4) in comparison with wild-type vacuoles (Fig. 5, lane 3), whereas the amount of the vacuole marker Pho8p is unaffected by the ypt7Δ mutation. The amount of Vam6p is unchanged in whole cell lysates of ypt7Δ cells in comparison with wild-type (Fig. 5, lanes 1 and 2). Therefore, the ypt7Δ mutation affects the vacuolar localization of Vam6p but not its expression, indicating a functional relationship between these components. In contrast, the amount of Ypt7p on the vacuoles is unaffected by the ypt7Δ mutation (see Fig. 3) were brought to final concentration of 150 mM NaCl, 10% glycerol, and 1× protease inhibitor cocktail (Haas, 1995), and incubated for 2 h at 4°C in the presence of 12 μg of glutathione-Sepharose-bound GST-Ypt7p or GST-Ypt1p. (Fusion protein preparation: The fusion proteins were preincubated in PS solubilization buffer containing 2 M NaCl, 10% glycerol, 1 mM DTT, 20 mM EDTA, and 5 mM GDP [PS elution buffer] for 20 min at room temperature with 40 μl [packed volume] glutathione-Sepharose 4B beads [Amersham Pharmacia Biotech]). Beads were sedimented [1 min, 13,000 rpm, 4°C] and resuspended four times as above in 1 ml of PS solubilization buffer containing 150 mM NaCl and 10% glycerol, then incubated in 25 μl of 1.2× PS buffer containing 36 mM TrisCl, pH 8.0, 180 mM KCl, 0.6 mM MnCl2, 6 mM MgCl2, 0.1× protease inhibitor cocktail, 1 mM DTT, and either 4 mM GTPγS, 4 mM GDP, or no nucleotide [-] for 30 min at 27°C. After the incubation of peak fractions and fusion protein beads, beads were collected and suspended twice in 1 ml PS solubilization buffer. Bound proteins were eluted with 500 μl PS elution buffer for 15 min at room temperature and separated from the beads by sedimentation as above. The eluate was TCA-precipitated, the precipitate suspended in 1 ml 80% acetone and collected by sedimentation, and analyzed by SDSPAGE and immunoblotting with antiserum to Vam6p and Vam3p.

with the cis-SNAREs (data not shown). Thus, Vam2p and Vam6p remain together throughout priming and extraction by loss of their Ypt7p anchor. We also observed that some Vam2p is covalently modified upon release and mi-
grates at a slightly lower mobility, though the nature of this modification and its significance have not yet been determined. The removal of Ypt7p from the vacuole by Gdi1p is dose-dependent and there is a corresponding release of Vam6p (data not shown). However, measurement of release as a function of reaction time shows that Ypt7p is removed very rapidly from the vacuoles by Gdi1p, whereas the loss of Vam6p occurs gradually (Fig. 6 B). Ypt7p is specifically required for the retention of Vam6p on the vacuole, since addition of inhibitory anti-Ypt7p IgG (Haas et al., 1995) causes 27% release of Vam6p (Fig. 6 A, lane 6), and is thus as effective as Gdi1p in releasing Vam6p, whereas preimmune IgG has no effect (Fig. 6 A, lane 8). However, unlike Gdi1p, anti-Ypt7p does not remove Ypt7p from the vacuole membrane (Fig. 6 A, lanes 5 and 6). Therefore, it is the loss of full Ypt7p function and not its removal from the vacuole membrane that causes release of the Vam2 and Vam6 proteins.

Although ATP is not required for the extraction of Ypt7p by Gdi1p, ATP is required for the release of Vam2p and Vam6p by either Gdi1p or anti-Ypt7 (Fig. 6 A, lanes 2–6). To determine whether ATP is needed at the same time as Gdi1p to promote Vam2/6p release, a two-stage reaction was performed. Vacuoles were first incubated with Gdi1p to remove Ypt7p, then resolated to remove the Gdi1p. The vacuoles were then incubated with or without ATP and sedimented to allow assay of released Vam6p (Fig. 6 C). ATP alone in the second incubation is sufficient to extract Vam6p after Gdi1p treatment in the first incubation (Fig. 6 C, lane 4). However, whereas complete release of Ypt7p is achieved in the absence of ATP in the first 10-min incubation (Fig. 6 C, lane 3), little Vam6p is released in this short incubation even when both Gdi1p and ATP are present (Fig. 6 C, lane 5). Therefore, the ATP requirement for the release of Vam6p cannot be simply due to effects it might have on Ypt7p, and may not simply reflect a need for priming, which is usually complete by 10 min (Mayer et al., 1996; Price et al., accompanying manuscript). The role of ATP in Gdi1p-mediated release of Vam2/6p remains to be determined.

Sec18-primed Vacuoles must Dock to Retain the Vam2/6 Complex

Since Ypt7p supports vacuole docking (Mayer and Wick-
ner, 1997; Ungermann et al., 1998b), we asked whether inhibition of docking itself would influence Vam2/6p localization. 20-fold dilution of the vacuoles, a non-pharmacological treatment that prevents vacuole docking (Mayer and Wickner, 1997), promotes Vam6p release from the vacuoles (Fig. 7, lane 4). Like the Vam6p release promoted by Ypt7p inhibitors, ATP is required for Vam6p release upon dilution (Fig. 7, lane 3 vs. lane 4). Dilution does not cause release of Ypt7p (data not shown). This Vam6p release requires the normal priming action of Sec18p, as addition of anti-Sec18p blocks Vam6p release upon dilution of the fusion reaction (Fig. 7, lane 5), whereas preimmune IgG had no effect (Fig. 7, lane 7). The anti-Sec18p blockage of this reaction was relieved by the addition of excess Sec18 protein (Fig. 7, lane 6), demonstrating that the effect of the antibody and the promotion of Vam6p release is specifically due to the activity of Sec18p. Therefore, after priming releases Vam2/6p from its association with the cis-SNARE complex, vacuole docking must occur to avoid Vam2/6p release.

Discussion

Our current studies suggest a working model (Fig. 8) of how Vam2/6p links priming and docking. In this model, Sec18p-dependent priming releases Vam2/6p from its association with the cis-SNARE complex (Fig. 8A), freeing it to interact with Ypt7p (Fig. 8B) and other docking components. After priming, Vam2/6p is needed for docking (Fig. 8C) and docking is needed for the continued vacuole association of Vam2/6p (Figs. 5–7), suggesting that Vam2/6p is at the docking site (Fig. 8C). Since Vam2/6p is required on both partner vacuoles (Price et al., 2000), Vam2/6p complexes from apposing vacuoles may contact one another during docking, although their function may also require other associated proteins. Vam2/6p may promote trans-SNARE pairing (Fig. 8D) largely through working together with Ypt7p to mediate tethering. In this model, Vam2/6p regulates docking through its cycle of associations. It remains on the vacuole in vivo and during standard fusion reactions, yet after priming, even dilution is sufficient to cause its release. The inability of Ypt7p, which is not released upon dilution, to anchor Vam2/6p to diluted primed vacuoles suggests that Vam2/6p is directly involved in trans interactions.

Each aspect of this model (Fig. 8) is supported by our current studies. Vam2/6p is initially in a complex with SNAP-25 homologue Vam7p, respectively. Y7, Ypt7p; 2/6, Vam2/6 complex. See text for details.
absence of Ypt7p due to the deletion of its gene leads to a loss of Vam2p6p from the vacuole fraction (Fig. 5).

The 38S Vam2p6p complex from primed vacuoles will bind to GST-Ypt7p-GTP S, as judged by recovery of Vam2p and Vam6p from the bound fraction (Fig. 4). Though little of the endogenous Ypt7p cosediments with Vam2p6p at 38S (data not shown), this may reflect a limited binding affinity and high dilution during purification that is overcome in experiments that employ glutathione-Sepharose beads with high levels of bound recombinant GST-Ypt7p. Recent studies (Seals, D., G. Eitzen, W. Wickner, and A. Price, manuscript in preparation) have shown that this bound complex, and the 65S and 38S complexes from which it derives, also include the four class C VPS proteins, Vps11p, Vps16p, Vps18p, and Vps33p. However, we cannot infer from these data which subunit or subunits of the 38S complex directly interact with Ypt7p, and which are only associated because they are part of the complex but perform Rab/Ypt effector functions. Further studies will be required to determine these functional distinctions.

Our current findings and the model that they suggest have several novel aspects. The cis-SNARE complex is seen to not just be a left-over from trans-SNARE complexes after membrane fusion is completed, but rather is embedded in a 65S complex, which has a vital signaling role, mediated by Vam2p6p, and triggered by the action of Sec18p and Sec17p. It will certainly be important to study the pathway and regulation of 65S complex assembly. Vam2p6p fulfills the definition of a Rab effector, yet it associates with a cis-SNARE complex upstream of its transfer to Ypt7p. The action of Sec18p and Sec17p is required for this transfer, providing the first functional evidence linking the priming factors with Rab/Ypt GTPases and their effectors. It will be important to determine whether the association of Rab effectors with their cognate SNAREs in other systems is with cis- or trans-SNARE complexes and whether it occurs before or after Rab association.

Vam2p6p functions on the vacuole with the Rab GTPase Ypt7p as a site-specific element for docking. It is, in this regard, functionally analogous to the plasma membrane–localized exocyst complex in yeast and mammals (Bowser et al., 1992; TerBush et al., 1996; K ee et al., 1997; F igner et al., 1998; G rindstaff et al., 1998), the cis-Golgi–localized transport protein particle (TRAPP) complex in yeast (S cher et al., 1998), and early endosomal autoantigen 1 (EEA 1) proteins in homotypic endosome–endosome fusion (Stemmer et al., 1995; Christoforidis et al., 1999; M cBride et al., 1999). In addition, we propose that it functions as a link between priming and docking and suggest that other Rab/Ypt effector proteins may also fulfill these functions. Indeed, these complexes share a number of features. Like the TRAPP and exocyst complexes, purified from cytosol (Bowser and N ovick, 1988; S cher et al., 1998), the soluble Vam2p6p complex released by Gdi1p migrates at ~20 S by gradient sedimentation (our unpublished data). We have shown biochemical interactions between the Vam2p6p complex, the SNAREs, and Ypt7p, whereas the TRAPP and exocyst complexes have been shown to interact genetically with homologous factors (Bowser et al., 1992; S cher et al., 1998). The Rab5p effector EEA 1 can also interact with NSF and with syntaxin 6, and with complexes containing syntaxin 13 (McBride et al., 1999; Simon en et al., 1999), and thus there may be similarities to the functions of EEA 1 and Vam2p6p. The yeast exocyst component Sec15p has also been shown to function with the plasma membrane Rab GTPase Sec4p (Guo et al., 1999), and Cao et al. (1998) have shown that the activity of Ypt1p is required for the proper localization of Uso1p to the cis-Golgi membrane in yeast. Like components of the TRAPP and exocyst complexes, Vam2p6p has homologues in other organisms, including worms, flies, plants, and mammals (N akamura et al., 1997; Radisky et al., 1997; W arner et al., 1998). Significantly, the light gene product, the Drosophila VAM 2 homologue, plays a role in protein trafficking to pigment granules, specialized lysosomes in the Drosophila eye, suggesting a conserved mode of action in lysosome biogenesis (Warner et al., 1998; L oyd et al., 1998).

We are only beginning to learn the full structural and functional complexity of the cis-SNARE complex. The core of this and other SNARE complexes is undoubtedly composed of a four-helix bundle (Katz et al., 1998; Poirier et al., 1998; Sutton et al., 1998) with a t-SNARE, v-SNARE, and s-SNARE. However, these core elements may be insufficient for function. The vacuole 65S complex contains the cis-SNARE complex, consisting of Vam3p, Vam7p, N v1p, V t1p, Y k6p, Sec17p, Sec18p, and L M A 1, and Vam2p6p itself contains additional subunits (Seals, D., G. Eitzen, W. Wickner, and A. Price, manuscript in preparation). Thus far, these multiple subunits do not appear to be redundant, as deletion or antibody inhibition of each of them (after priming, when the constituent subunits are separated from one another) has a major deleterious effect on the reaction (Nichols et al., 1997; Ungermann and Wickner, 1998; Ungermann et al., 1999). We find a smaller percent of SNAREs in complex with Vam2p6p (Fig. 3 B) than the percent of Vam2p6p that is associated with SNAREs (Fig. 3 D), suggesting that there are extra cis-SNARE complexes without Vam2p6p. This fits with the observation that trans-SNARE complexes, which need Vam2p6p to form, only encompass a small percent of the SNAREs (Ungermann et al., 1998b), and with observations in other systems such as yeast plasma membrane t-SNAREs being all over the bud rather than exclusively at the fusion site at the bud tip (B renwald et al., 1994), and in neurons where t-SNAREs are not exclusively at the synapse (Garcia et al., 1995). Vam2p6p is localized in vivo to one or two discrete spots per vacuole (N akamura et al., 1997), suggesting that like the exocyst on the plasma membrane, the localization of this complex determines the site of membrane docking. Critical testing of these ideas must await the determination of whether the same SNAREs that are in complex with Vam2p6p are those that form the trans-SNARE pairs.

We thank Dr. Y oh W ada for providing the HA-VAM 6 plasmid, Dr. G ary Eitzen for the pGST-Y pt7 construct, and Dr. G reg Payne for anti-Kex2p. We thank Drs. C harles B arlowe, J erry E ichler, G ary Eitzen, D aniel K lionsky, Z yuuo Xu, and especially Dr. T om R apoport for helpful discussions, and Dr. S cott E m r for communicating unpublished results. We thank L i W ang for generously sharing preliminary results.

This research was supported by a grant from the National Institute of General Medical Sciences. C. Ungermann was supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG).
References

Barnard, R.J.O., A. Morgan, and R.D. Burgoyne. 1997. Stimulation of NSF ATPase activity by α-SNAP is required for SNAP complex disassembly and exocytosis. J. Cell Biol. 139:875–883.

Bowser, R., and P. Novick. 1998. Sec15 protein, an essential component of the exocytotic apparatus, is associated with the plasma membrane and with a soluble 19.5S particle. J. Cell Biol. 112:1117–1131.

Bowser, R., H. Muller, B. Govindan, and P. Novick. 1992. Sec1p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J. Cell Biol. 118:1041–1056.

Brennwald, P., B. Kamek, K. Champion, S. Keranen, V. Bankaitis, and P. Novick. 1999. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion. J. Biol. Chem. 274:16955–16961.

Nichols, B.J., C. Ungermann, H.R.B. Pelham, W.T. Wickner, and A. Haass. 1997. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature. 387:199–202.

Novick, P., and M. Zerial. 1997. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9:496–504.

Peters, C., and A. Mayer. 1998. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature. 396:575–580.

Peters, C., P.D. Andrews, M.J.R. Stark, S. Cesaro-Tadic, A. Glatz, A. Podtelejnikov, M. Mann, and A. Mayer. 1999. Control of the terminal step of intra-cellular membrane fusion by protein phosphatase 1. Science. 285:1084–1087.

Pfeffer, S.R. 1996. Transport vesicle docking: SNAREs and associates. Annu. Rev. Cell Dev. Biol. 12:441–461.

Poirier, M.A., W. Xiao, J.C. Macosko, C. Chan, Y.K. Shin, and M.K. Bennett. 1998. The synaptic SNAP-25 complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5:765–769.

Price, A., W. Wickner, and C. Ungermann. 2000. Proteins needed for vesicle budding from the Golgi are also required for the docking step of homotypic vacuole fusion. J. Cell Biol. 148:1223–1229.

Radisky, D.C., W.B. Snyder, S.D. Emr, and J. Kaplan. 1997. Characterization of VPS41, a gene required for vacuolar trafficking and high-affinity iron transport in yeast. Proc. Natl. Acad. Sci. USA. 94:5662–5666.

Rothman, J.E. 1994. M machineries of intracellular protein transport. Nature 372:55–63.

Sacher, M., Y. Jiang, J. Barrowman, A. Scarpa, J. Burston, L. Zhang, D. Schietz, J.R. Yates, H. A, bellovich, and S. Ferro-Novick. 1998. TRAP α, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO (Eur. Mol. Biol. Organ.) J. 17:2494–2503.

Simonsen, A., J.-M. Gauthier, A. D’Ariro, and H. Stenmark. 1999. The Rab5 effector EEA1 interacts directly with Syntaxin 6. J. Biol. Chem. 274:28857–28860.

Söllner, T., M.K. Bennett, S.W. Whiteheart, R.H. Scheller, and J.E. Rothman. 1993. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 75:409–419.

Stack, J.H., B. Horazdovsky, and S.D. Emr. 1995. Receptor-mediated protein sorting to the vacuole in yeast. Annu. Rev. Cell Dev. Biol. 11:1–33.

Stenmark, H., G. Vitale, O. Ulrich, and M. Zerial. 1995. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane protein transport. Cell. 83:423–432.

Sutton, R.B., D. Fashahuer, J. Rahn, and A.T. Brunger. 1998. Crystal structure of a SNAP-25 complex involved in synaptic exocytosis at 2.4Å resolution. Nature. 395:347–353.

Lloyd, V., M. Ramanamani, and H. Kramer. 1998. Not just pretty eyes: Drosophila eye-color mutations and lysosomal dysfunction. Trends Cell Biol. 8:289–291.

Mayer, A., and W. Wickner. 1997. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt1p after symmetric priming by Sec1p. EMBO (Eur. Mol. Biol. Organ.) J. 16:5258–5270.

Ungermann, C., K. Sato, and W. Wickner. 1998. Vam3p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO (Eur. Mol. Biol. Organ.) J. 17:6483–6494.

Ungermann, C., and W. Wickner. 1999. Mutations in the v-SNARE Vam6/Vps39p are components of a protein complex on the vacuolar membrane and involved in the vacuolar fusion in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272:11344–11349.

Nichols, B.J., C. Ungermann, H.R.B. Pelham, W.T. Wickner, and A. Haass. 1997. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature. 387:199–202.

Novick, P., and M. Zerial. 1997. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9:496–504.

Peters, C., and A. Mayer. 1998. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature. 396:575–580.

Pfeffer, S.R. 1996. Transport vesicle docking: SNAREs and associates. Annu. Rev. Cell Dev. Biol. 12:441–461.

Poirier, M.A., W. Xiao, J.C. Macosko, C. Chan, Y.K. Shin, and M.K. Bennett. 1998. The synaptic SNAP-25 complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5:765–769.

Price, A., W. Wickner, and C. Ungermann. 2000. Proteins needed for vesicle budding from the Golgi are also required for the docking step of homotypic vacuole fusion. J. Cell Biol. 148:1223–1229.

Radisky, D.C., W.B. Snyder, S.D. Emr, and J. Kaplan. 1997. Characterization of VPS41, a gene required for vacuolar trafficking and high-affinity iron transport in yeast. Proc. Natl. Acad. Sci. USA. 94:5662–5666.

Rothman, J.E. 1994. M machineries of intracellular protein transport. Nature 372:55–63.