LETTER

Exploring sources of uncertainty in premature mortality estimates from fine particulate matter: the case of China

Paolo Giani1, Alessandro Anav2, Alessandra De Marco2, Zhaohong Feng3 and Paola Crippa1

1 Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, United States of America
2 National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
3 School of Applied Meteorology, University of Information Science & Technology, Nanjing 210044, People’s Republic of China

E-mail: pgiani@nd.edu

Keywords: WRF-Chem, health impact assessment, particulate matter exposure, China’s air quality, uncertainty quantification, Monte Carlo

Abstract

Atmospheric pollution from fine particulate matter (PM$_{2.5}$) is one of the major concerns in China because of its widespread and harmful impacts on human health. In recent years, multiple studies have sought to estimate the premature mortality burden from exposure to PM$_{2.5}$ to inform policy decisions. However, different modeling choices have led to a wide array of results, with significant discrepancies both in the total mortality burden and in the confidence intervals. Here, we present a new comprehensive assessment of PM$_{2.5}$-related mortality for China, which includes quantification of the main sources of variability, as well as of age and province-specific premature mortality trends during 2015–2018. Our approach integrates PM$_{2.5}$ observations from more than 1600 monitoring stations with the output of a high-resolution (8 km) regional simulation, to accurately estimate PM$_{2.5}$ fields along with their uncertainty, which is generally neglected. We discuss the sensitivity of mortality estimates to the choice of the exposure-response functions (ERFs), by comparing the widely used integrated exposure response functions (IERs) to the recently developed Global Exposure Mortality Models (GEMMs). By propagating the uncertainty in baseline mortalities, PM$_{2.5}$ and ERFs under a Monte Carlo framework, we show that the 95% confidence intervals of mortality estimates are considerably wider than previously reported. We thus highlight the need for more epidemiological studies to constrain ERFs and we argue that uncertainty related to PM$_{2.5}$ estimate should be also incorporated in health impact assessment studies. Although the overall mortality burden remains vast in China (~1.6 million premature deaths, according to GEMMs), our results suggest that 200,000 premature deaths were avoided and 195 billion US dollars were saved in 2018 compared to 2015, bolstering the mounting evidence about the effectiveness of China’s air quality policies.

1. Introduction

Exposure to high concentrations of air pollutants, including fine particulate matter (i.e. PM$_{2.5}$), leads to premature mortality related to cardiovascular and pulmonary diseases, as highlighted by a number of epidemiological studies (Kan et al.2012, Apte et al.2015, Zhang et al.2017). As a result of rapid economic growth, industrialization and urbanization, China is experiencing severely degraded air quality conditions (Li et al.2016a) and ranks first for premature mortality due to air pollution with more than one million deaths per year (Lelieveld et al.2015, Gu et al.2018), followed by India with ~650,000 deaths (Lelieveld et al.2015). In response to this situation, since the year 2010, the Chinese government has implemented clean air policies to reduce air pollution levels (State-Council2013) by imposing more stringent emission standards and by promoting transition to cleaner fuels and/or non-fossil energy sources for the industrial, power, and residential sectors (Zheng et al.2018). These actions will contribute to mitigate not only pollution impacts on air quality (Yang and Zhang 2018), but also those
on climate change (Li et al. 2018). The recent decreasing trend in pollution concentrations (during 2015–2017) has been linked to the effective implementation of emissions reduction strategies by purely observation-based studies (Silver et al. 2018) as well as by model simulations (Ding et al. 2019). Multiple studies have sought to estimate the nationwide mortality burden associated with PM$_{2.5}$ in China, by employing different techniques. Most of these analyses rely on regional chemical transport model (CTMs) simulations, which, however, are subject to significant uncertainties that are often not quantified (Lelieveld et al. 2015, Silva et al. 2016, Butt et al. 2017, Hu et al. 2017, Zheng et al. 2017b, Aunan et al. 2018, Gao et al. 2018). Depending on the simulation setup and the chosen exposure-response functions (ERFs), significantly different estimates of the total premature mortality burden were presented, ranging from 916 000 premature deaths in 2014 (Archer-Nicholls et al. 2016) to 1331 000 in 2013 (Gao et al. 2018). Much larger figures (up to ~2.47 million) are obtained when using the latest exposure response functions from Burnett et al. (2018). Furthermore, the 95% confidence intervals (CI) reported in such studies can be as narrow as (1 090 000–1 190 000) (Aunan et al. 2018) or as wide as (168 000–1 796 000) (Gu et al. 2018). Besides model simulations and ERFs, other sources of uncertainty include baseline mortalities and exposed population estimates (Kodros et al. 2018).

Mortality estimates have also been proposed based on a combination of ground and/or satellite observations (Zhou et al. 2015, 2019, Jerrett et al. 2017, Dong et al. 2018, Huang et al. 2018), despite being mostly focused on geographically limited areas. A few attempts to combine observations—either from monitoring stations or satellites—and CTM results were made to overcome limitations of prior studies, both worldwide (Ford and Heald 2016, Van Donkelaar et al. 2016, Shaddick et al. 2018) and in China (Liu et al. 2016, Liang et al. 2017, Bai et al. 2019, Zou et al. 2019). For instance, multiple studies used different geostatistical techniques to integrate PM$_{2.5}$ ground measurements, CTMs output, satellite observations of AOD and other land use and meteorological factors to estimate PM$_{2.5}$ exposure at different spatial scales, ranging from the city-level (Li et al. 2016b, Tao et al. 2020) to regional and national scales (Liang et al. 2017, Bai et al. 2019, Wei et al. 2019). Although these works improved representation of PM$_{2.5}$ spatial patterns, the uncertainty in PM$_{2.5}$ concentrations—as well as its propagation to the mortality estimate—was not quantified. Using data assimilation techniques, Liu et al. (2016) quantified the PM$_{2.5}$ uncertainty from a CTM and observations, although the resolution of that simulation was rather coarse (45 km).

Building from previous attempts to combine observations and modeling results, here we propose a novel approach to quantify the PM$_{2.5}$-related mortality burden and its uncertainty in China. Our methodology integrates ground-based observations from the recently established Chinese monitoring network (>1500 sites) with a high-resolution CTM simulation (8 km). This work aims to:

(a) Provide a multi-year assessment of the mortality burden related to PM$_{2.5}$ (2015–2018) by nudging model results to the observations.

(b) Discuss the effect of using recently revised ERFs (Burnett et al. 2018) in the recent mortality trends.

(c) Overcome key limitations of previous studies on the uncertainty of such estimates.

Specifically, our methodology allows estimating the uncertainty in PM$_{2.5}$ concentrations and its propagation to the final mortality results. We show that confidence intervals of mortality estimates previously reported are likely narrower than the true ones, as they do not take into account PM$_{2.5}$ uncertainty (e.g. Reddington et al. 2019, Zou et al. 2019). We discuss nationwide and province-level mortality trends during 2015–2018 as well as the advantages of using our modeling framework compared to other approaches.

2. Methods

2.1. PM$_{2.5}$ observations

This investigation is based on hourly PM$_{2.5}$ concentrations for Mainland China and Hong Kong. Data are retrieved from online repositories of the Ministry of Ecology and Environment for Mainland China (http://beijingair.sinaapp.com/) and of the Hong Kong Environmental Protection Department (www.epd.gov.hk/epd) for Hong Kong. The monitoring network comprises 1601 and 16 sites for Mainland China and Hong Kong, respectively. PM$_{2.5}$ measurements are acquired and analyzed for four consecutive years, from 2015 to 2018, at hourly resolution. Data are pre-processed for use in the mortality assessment as described in the Supplementary Information.

2.2. WRF-Chem simulation

Hourly PM$_{2.5}$ concentrations are simulated by the Weather Research and Forecasting model with Chemistry (WRF-Chem, version 3.9) (Grell et al. 2005, Skamarock and Klemp 2008) at 8 km resolution. This resolution allows to capture important regional details in complex mountainous areas and resolve atmospheric processes at urban and regional scales including formation/ transformation/removal of air pollutants, thus facilitating the direct comparison between model results and station measurements. Monthly varying anthropogenic emissions are based on the EDGAR-HTAP (Emission Database for Global Atmospheric Research for Hemispheric Transport of
Air Pollution, v2.2 (Janssens-Maenhout et al 2015) inventory which is available on a grid of 0.1° × 0.1° for the year 2010 (latest year available). EDGAR-HTAPv2.2 uses the Model Intercomparison Study for Asia Phase III (MIX) mosaic Asian emission inventory version 1.0 at 0.25° × 0.25° horizontal resolution (Li et al 2017), which incorporates data from the Multiresolution Emission Inventory for China (MEIC, www.meicmodel.org). We select EDGAR-HTAPv2.2 for consistency with the simulation resolution (8 km). Other emission inventories, like ECLIPSE (Klimont et al 2017), provide more up-to-date emissions but at a lower resolution (~50 km), which would cause a mismatch with the resolution applied in our model simulation. The entire 2015 is simulated, with a spin up of 1 month (1–31 December 2014). Details on the simulation setup are provided in the Supplementary Information (table S2).

2.3. Integrating observations and WRF-Chem results

To account for the uncertainty of WRF-Chem results, we introduce a statistical methodology which integrates measured data in the analysis. The novelty of the proposed methodology is three-fold: (i) nudging the CTM results towards the observations, (ii) providing a better quantification of the mortality CI by accounting for PM$_{2.5}$ uncertainty and (iii) estimating a multi-year premature mortality trend using only one year of computationally-expensive WRF-Chem simulations.

The PM$_{2.5}$ concentration field is reconstructed by applying a linear regression model followed by kriging of the residuals (ε) generated by the model:

$$\log z = \beta_0 + \beta_1 x + \varepsilon$$

where z is the corrected annual mean concentration of PM$_{2.5}$ in each grid cell, x is the logarithmically transformed annual mean concentration simulated by WRF-Chem, β_0 and β_1 are parameters to be estimated. In other words, the observed data are first detrended using WRF-Chem results as the only covariate, and then ordinary kriging is performed on the detrended data to include the residual spatial dependence in the model. A logarithmic transformation is used in equation (1) to work under the Gaussianity assumption, as the original data are slightly skewed (figure S1 (stacks.iop.org/ERL/15/064027/mmedia)). Moreover, the logarithmic transformation avoids unphysically negative PM$_{2.5}$ concentrations that could arise from the regression. Since x and ε are Gaussian and the model is additive, we can calculate the variance of the predictions (i.e. the uncertainty in the PM$_{2.5}$ field) by adding the variance related to the linear regression part and the variance arising from the kriging predictions. Details on the calculation of prediction variances for linear regression and ordinary kriging are reported in the Supplementary Information for completeness.

This procedure is applied for each year in the 2015–2018 period, with time-varying coefficients (i.e. β_0, β_1 and the parameters of the variogram are estimated on an annual basis). Linear regression parameters are estimated by maximizing the likelihood of the data, which is equivalent to ordinary least squares for linear models, and the variogram is estimated using a spherical covariance function, which proved to be the most numerically stable covariance function across the years. The values of the estimated parameters can be found in the Supplementary Information (table S1). For comparison with other models, hereinafter we will denote model (1) as 'Regression + Kriging', whereas the same model without kriging on the residuals ε will be denoted as 'Regression-only' (i.e. model (1) where we do not model the spatial structure in ε and we assume that the residuals are instead normally distributed with zero mean and variance σ^2).

2.4. Population exposure and mortality estimates

Long-term premature mortality associated with PM$_{2.5}$ is calculated following a well-established approach (e.g. Burnett et al 2014, Apte et al 2015):

$$M_{adk} = P_{adk} \times B_{adk} \times \frac{RR_{adk} - 1}{RR_{adk}}$$

where M is the estimated premature mortality burden, P is the population count, B is the baseline mortality rate and RR is the relative risk due to exposure to annual mean concentration of PM$_{2.5}$. Subscripts a, d and k refer to the specific age interval, disease and grid cell, respectively. As in previous studies (Gu et al 2018), we consider premature mortality associated to lung cancer (LC), ischemic heart disease (IHD), stroke and chronic obstructive pulmonary diseases (COPD) for individuals above 25 years with 5-years groupings (e.g. 25–30, 31–35, etc.). Spatially resolved population count from the 2017 LandScan High Resolution global Population Data (Rose et al 2018) at ~1 km resolution is regridded to the WRF-Chem grid to match the pollutant field. Population is evolved during 2015–2018 by rescaling Landsat data with the population structure from the Chinese statistical yearbook, as done in Ding et al (2019). China- and age-specific baseline mortality data for 2015, 2016 and 2017 are retrieved from the 2017 Global Burden of Disease (GBD) study (Dicker et al 2018). We linearly extrapolate baseline mortality data for 2018 as they were not available at the time of the analysis.

RRs are computed using the recent cause-specific Global Exposure Mortality Models (GEMMs), which were constructed based on cohort studies of outdoor air pollution only (Burnett et al 2018):

$$RR_k = \exp \left(\frac{\theta \log \left(\frac{2}{\nu} + 1 \right)}{1 + \exp \left(-\frac{2 \nu - \theta}{\nu} \right)} \right)$$

where θ is the relative risk due to exposure to annual mean concentration of PM$_{2.5}$, ν is the standard deviation of the lognormal distribution, ν_0 is the median concentration, ν is the mean concentration and θ is the relative risk associated with a unit increase in exposure.
where θ, α, μ, ν are age and disease-specific parameters, and \tilde{z}_k is the maximum between zero and the difference between the PM$_{2.5}$ concentration in grid cell k and the counterfactual concentration ($z_{cf} = 2.4 \, \mu g \, m^{-3}$), i.e. the minimum concentration below which no impacts are assumed to occur. The parameters were estimated by Burnett et al (2018) using cohort studies that cover the global exposure range, including a Chinese male cohort. For comparison purposes, we also calculate RRs with the traditional IERs (Burnett et al, 2014), which however include risk information from indoor air pollution and secondhand and active smoking:

$$RR_k = 1 + \alpha \left\{ 1 - e^{-\gamma(\tilde{z}_k - z_{cf})^\delta} \right\} \quad (4)$$

where α, γ and δ are age- and disease-specific parameters estimated in the GBD study (Dicker et al, 2018) along with their uncertainty. Equation (4) is valid only if \tilde{z}_k is greater than z_{cf}; otherwise RR is set to 1. The counterfactual concentration for the IERs is uniformly distributed between 2.4 and 5.9 $\mu g \, m^{-3}$. Total mortality is finally computed as the sum for each health endpoint, age group and grid cell:

$$M = \sum_a \sum_d \sum_k M_{adk} \quad (5)$$

We also compute the monetary savings as the difference in mortality between two instances in time multiplied by the value of statistical life (VSL), which is assumed to be equal to 978 219 US dollars (in 2011 values), following previous literature (Zou et al, 2019). A thorough discussion of the monetary evaluation uncertainty exceeds the scope of this work, but could be considered in future investigations.

2.5. Uncertainty quantification

We propagate the uncertainty in the input (i.e. PM$_{2.5}$ fields, baseline mortality and ERFs parameters) to the mortality estimates with a numerical approach. PM$_{2.5}$ fields, baseline mortality and ERFs are assumed to be Gaussian distributions, with parameters (i.e. mean and standard deviations) specified in the Supplementary Information. For each Monte Carlo simulation, we independently sample from such distributions and we apply equations (2) to (5) to calculate the mortality value for that specific simulation. To ensure robustness of our results (i.e. a coefficient of variation of the estimated total mean mortality less than 0.05%), we perform 108 000 simulations (i.e. 4500 simulations per processor distributed on 24 processors) which resulted in 108 000 total mortality values. The mortality central estimate is therefore the mean of the 108 000 mortality estimates, whereas the 95% confidence interval is calculated as the 0.025- and 0.975-quantiles of the empirical distribution obtained with the 108 000 simulations.

To assess the influence of each input (i.e. PM$_{2.5}$, ERFs parameters and baseline mortality) on the total uncertainty, we run four different cases by marginally assuming no uncertainty in some of the input features (i.e. treating that input feature as an exact value rather than a Gaussian random variable): (i) only ERFs parameters are uncertain (ERFs-only), as usually done in previous literature, (ii) only ERFs and baseline mortalities are uncertain (ERFs + BM), (iii) only ERFs and PM$_{2.5}$ are uncertain (ERFs + PM$_{2.5}$) and (iv) all three input features are uncertain (ERFs + BM + PM$_{2.5}$).

3. Results

3.1. Model evaluation

Annual PM$_{2.5}$ concentrations are generally well reproduced by the high-resolution WRF-Chem simulation, with 93.5% of the modeled values being within a factor of 2 of the measured concentrations (figure S2). On average, the model overestimates observations, with a mean bias of 10.16 $\mu g \, m^{-3}$ (figure S2(b)), which is likely related to the mismatch between the simulated year and the emission inventory year. Such overestimation mainly occurs during the summer, when the overall difference between the model and the observations is significant (figure S2(b)). Conversely, the model is negatively biased at most sites measuring extremely high annual average concentrations (i.e. above 100 $\mu g \, m^{-3}$). As clear from figure S3, the most misrepresented areas are the Sichuan province (e.g. Chengdu, which is highly overestimated) and the westernmost cities of China (e.g. Kashgar, which is underestimated). Despite the relatively fine spatial resolution, limitations remain in the model’s ability to capture local scale PM$_{2.5}$ concentrations, particularly over megacities where urban measurements are highly impacted by local emissions and sub-grid scale dispersion processes not resolved by a CTM.

A more accurate PM$_{2.5}$ field can be obtained by integrating observations with the model results, as described in section 2.3. According to the calibration/validation procedure described in the Supplementary Information, the ‘Regression + Kriging’ statistical model is the most suitable to reproduce the actual observations (figure 1 and table S3). Major improvements to the WRF-Chem results are thus achieved when integrated with observations, even with a simple linear regression only (the mean bias decreases from 10.2 $\mu g \, m^{-3}$ to −2.50 $\mu g \, m^{-3}$ and Root Mean Square Error (RMSE, defined in the Supplementary Information) from 24.87 $\mu g \, m^{-3}$ to 15.62 $\mu g \, m^{-3}$). However, by also relaxing the assumption of iid residuals (ϵ in equation 1) and modeling the spatial dependence via a kriging procedure, we can accomplish almost zero bias with a threefold decrease in RMSE compared to the WRF-Chem model results. More complex statistical models were
also investigated but did not provide significantly more accurate results despite the additional complexity (Supplementary Information).

3.2. Premature mortality estimates

The long-term premature mortality burden during 2015–2018 is reported in table 1. Age- and disease-specific premature mortality estimates indicate that IHD and stroke are responsible for most premature deaths attributable to PM$_{2.5}$ (36.3% and 32.0% of total PM$_{2.5}$ related deaths, respectively), especially among the young population (figure 2). More than 50% premature deaths due to LC, IHD, COPD and stroke are attributable to PM$_{2.5}$ exposure (i.e. RR \geq 2, using GEMMs) for adults less than 40 years old. This percentage decreases with age, as other medical conditions leading to those diseases may dominate for the elderly population (figure 2). Given the rather short timeframe considered in this work, the premature mortality distribution by age groups remains almost constant in time (figure S5), i.e. both the baseline mortality and the total population distributions do not vary considerably during the years of study.

Since on average our WRF-Chem simulation overestimates PM$_{2.5}$ concentrations, likely because of the mismatch in the emission inventory year, among other reasons, the use of model output only—as done in prior studies with non-zero biases (e.g. Reddington et al 2019)—would overestimate the total annual premature mortality burden by almost 140 000 deaths in 2015 in our work (table 1), compared to the bias-correction methodology (Regression + Kriging).

According to the Regression + Kriging methodology, we estimate that in 2018 around 200 000 premature deaths were avoided compared to 2015. Several factors have contributed to this trend. During 2015–2018, population growth (+1.4% during 2015–2018) and ageing of the Chinese population (+1 year of median age) have slightly offset the reduction in premature deaths due to better air quality conditions,
Table 1. Central estimate (mean) of long-term premature mortality associated with PM$_{2.5}$ during 2015–2018 for Mainland China and Hong Kong, using GEMMs.

	2015	2016	2017	2018
Regression + Kriging	1 656 500	1 579 600	1 527 100	1 424 800
Regression-only	1 641 400	1 552 800	1 520 800	1 438 600
WRF-Chem-only	1 785 800	—	—	—

Figure 2. (a) Age- and disease-specific total mortality estimates due to PM$_{2.5}$ and (b) fraction of premature deaths attributable to PM$_{2.5}$ calculated using global exposure mortality models (GEMMs) for 2015.

Figure 3. Per capita difference between long-term annual premature mortality between 2018 and 2015, estimated with the Regression + Kriging methodology, using GEMMs. Negative values (blue color scale) indicate avoided deaths in 2018 with respect to 2015, whereas positive values (red color scale) indicate additional premature deaths. Values should be interpreted as premature deaths per grid cell per 100 000 inhabitants.

whereas the decrease in baseline mortality rates positively reinforced such trend. Without any variations in the population age distribution and in baseline mortality, 20 000 additional deaths would have been avoided in 2018 compared to 2015, i.e. changes in population structure outweighed the benefits deriving from improved health conditions.

The major improvements in terms of avoided premature deaths are concentrated in major urban areas (e.g. Beijing, Shanghai, Changchun, figure 3).
Figure 4. Provincial-level subdivision of the long-term premature mortality burden due to PM$_{2.5}$ in 2015 (green) and 2018 (red), estimated with the regression + Kriging methodology, using GEMMs. Panel (a) refers to the total premature mortality, whereas panel (b) shows the mortality per 100,000 inhabitants. Error bars indicate the 95% confidence interval of the 2018 estimates. Vertical lines represent the mortality average among provinces.

Figure 5. Numerical probability density functions obtained by the Monte Carlo assessment (using GEMMs), considering only the uncertainty in relative risk as done in previous literature (red) and adding the PM$_{2.5}$ and baseline mortality layers of uncertainty (blue), in 2018.
Nonetheless, some other areas have experienced a slight worsening of their mortality burden in the last few years. The most notable examples are the urban area of Xi’An and the westernmost cities of China, coherently with the findings (in terms of air quality) reported in Silver et al (2018). The spatial distribution of the difference in terms of total mortality values can be found in the Supplementary Information (figure S6).

The provincial-level partitioning of the total mortality burden indicates that the most populated provinces of Shandong and Henan are characterized by the highest premature mortality due to PM$_{2.5}$ (figure 4), although Shandong province achieved the largest improvements between 2015 and 2018 (25 000 avoided premature deaths, −18%). When normalizing by mortality, the highest reduction was around −28%, accomplished in the Jilin province in only four years. The leading coal producing regions of Shanxi and Shaanxi instead rank last for health improvements, with almost a zero net change during the study period, as also reported by Zou et al (2019). On the other hand, major steel-related industrial provinces (e.g. Hebei and Jiangsu, Reddington et al 2019) achieved important reductions of 13% and 10%, respectively. The northern, western and central provinces where the residential sector is a major contributor to poor air quality (Tao et al 2020) also showed a considerable decrease (e.g. Beijing, 21%, Sichuan, 11% and Hubei, 16%).

3.3. Uncertainty quantification

All the results presented above are related to the estimated mean of the mortality burden. However, such estimates are affected by three layers of uncertainty, associated with the PM$_{2.5}$ concentration fields, the RR values and the baseline mortality. Here, we identify the full probability distribution of the mortality estimates for the four different cases presented in section 2.5. Although all the numerical probability distributions are approximately Gaussian (even if some skewness is present, figure 5), the standard deviations are remarkably different. This implies that the traditional 95% confidence interval, computed only with the ERFs uncertainty, is narrower of about 700 000 premature deaths with respect to the case where the uncertainty in PM$_{2.5}$ fields, baseline mortality and ERFs is considered (table 2 and figure 8).

Table 2. Central estimates and 95% confidence intervals (CI) for the long-term premature mortality burden due to PM$_{2.5}$ during 2015–2018, for the four different cases presented in section 2.5, using GEMMs.
Central estimate (mean)
All cases
95% Confidence Interval
ERFs-only
ERFs + BM
ERFs + PM$_{2.5}$
ERFs + BM + PM$_{2.5}$

Figure 6. Comparison between the distributions of total annual premature mortality due to PM$_{2.5}$ using GEMMs and IERs from the Monte Carlo simulations. The green and red lines represents the mean of the distributions of GEMMs and IERs results, respectively. The whiskers extend to the most extreme data point which is no more than two times the interquartile range from the 25th and 75th percentiles (lower and upper bounds of the box, respectively).
Because of a combination of the large sensitivity of GEMMs at high PM$_{2.5}$ concentrations and the log-normality of PM$_{2.5}$ concentrations, both the lower bound (2.5% percentile) and the upper bound (97.5% percentile) are significantly sensitive to the addition of the PM$_{2.5}$ layer of uncertainty. On the other hand, the baseline mortality does not play a major role in the premature mortality confidence intervals as it is known with higher accuracy (the average coefficient of variation of age- and disease-specific baseline mortality rates is approximately 3%).

Finally, figure 6 shows the comparison between the mortality estimates using GEMMs and the traditional IERs. The discrepancy between the two methods is significant, with the upper bound of IERs mortality estimates being approximately the mean of the GEMMs mortality distribution. Because the GEMMs relationship between PM$_{2.5}$ and mortality is much stronger at high PM$_{2.5}$ concentrations, the difference is more pronounced in the regions where PM$_{2.5}$ concentrations are particularly large (e.g. urban areas).

4. Discussion and conclusions

In this study, we quantify the long-term health burden associated with PM$_{2.5}$ exposure in China during 2015–2018. To our knowledge, this is the one of the first studies that integrates ground-based observations and high-resolution model output to accurately estimate the trend of nationwide premature mortality due to PM$_{2.5}$ for China. Our approach improves fidelity of premature mortality estimates by accounting and correcting for potential model biases in representing PM$_{2.5}$ concentrations. In addition, we present a novel methodology both to account for the uncertainty in CTM results (Solazzo and Galmarini 2016) and to properly quantify the confidence intervals of the premature mortality estimates. Despite many attempts to validate and improve CTM results (Vautard et al 2007), inaccuracies in CTM output systematically occur due to improper spatial resolution (Crippa et al 2017), lack of accurate input data (e.g. emissions estimates (Zheng et al 2017a)), uncertain initial and boundary conditions (Georgiou et al 2018), and incomplete understanding of some physical-chemical processes (e.g. formation of secondary organic aerosol (Giani et al 2019)). These issues can lead to potentially large biases in mortality estimates and thus we stress the importance of data assimilation techniques in calculating the mortality burden.

The statistical methodology presented in this work also allows for an improved characterization of the confidence intervals of mortality estimates, by considering and propagating multiple sources of uncertainty. We show that most of the uncertainty in mortality estimates is associated with the uncertainty in PM$_{2.5}$ fields and ERFs parameters, whereas baseline mortality is known with higher accuracy and therefore entails a minor impact on mortality confidence intervals. Hence, we argue that (i) uncertainty related to PM$_{2.5}$ estimate should be considered in mortality assessments, (ii) improving CTM results can considerably narrow the confidence intervals in mortality estimates and (iii) that some of the variability in mortality estimates presented in previous literature is likely coming from the neglected PM$_{2.5}$ uncertainty.

Results from our analyses suggest that 1 656 500 people prematurely died in 2015 due to PM$_{2.5}$ exposure, although a steady decline is estimated during 2015–2018 (~200 000 avoided deaths in 2018 with respect to 2015 over the entire China, which corresponds to an estimated saved monetary value of 195 billion US dollars). Using GEMMs instead of IERs leads to a significantly larger premature mortality burden compared to previous estimates (which usually range between 900 000 and 1 300 000, Reddington et al (2019)), as also highlighted by other studies, e.g. Burnett et al (2018) and Xue et al (2019b). The uncertainty related to the total premature deaths attributable to PM$_{2.5}$ remains vast, especially when taking into account different exposure response functions as well as the uncertainty related to PM$_{2.5}$ levels. If we consider both the results obtained with IERs and GEMMs together (i.e. assigning an uninformative prior probability of 50% to each of the two models), the range of our estimate (95% confidence interval) would be 574 000–2078 700 in 2018, which is much wider than previously reported. Although GEMMs are likely to be more representative of the health response to ambient PM$_{2.5}$ concentrations than IERs, as the former only include cohort studies of outdoor air pollution, there is no clear evidence of GEMMs providing more reliable results than IERs yet (Xue et al 2019b). More research and epidemiological studies are thus needed to constrain and evaluate the different exposure response functions as well as to narrow the current confidence intervals. Nonetheless, the trend of avoided deaths in recent years (~200 000 avoided deaths in 2018 compared to 2015, or 50 000 avoided deaths per year) is coherent with recent findings (42 800 avoided deaths per year, between 2013 and 2017, Zou et al (2019)), where estimates were derived from the use of a corrected version of the IERs to take into account exposure-related human activity patterns. Despite a considerably different total mortality burden, a similar trend in recent years was also found also in Ding et al (2019) (57 400 avoided deaths per year, between 2013 and 2017), which however relied on CTM simulations only, without any observations. The similarity of these three results, obtained with three independent methodologies, bolsters the robustness of the estimated trends.

Multi-year assessments of premature mortality usually require (i) large computational power to run expensive multi-year simulations and (ii) accurate and up-to-date emission inventories at fine...
resolution. Whilst computational power has been increasingly more accessible in recent years, CTM-ready official emission inventories are often available for discontinuous years and released belatedly. The main advantage of our approach is that it partly compensates the need for large computational power (thus allowing for very high resolution in space) and it does not require yearly varying emission inventories which generally require considerable processing before utilization as input to CTMs. Moreover, the presented methodology allows the calculation of the uncertainty in PM$_{2.5}$ spatio-temporal fields and its propagation to the mortality estimates, which overcomes the limitations of deterministic CTM output. However, we acknowledge that our methodology should be used for limited and consecutive years (e.g. 4 years, in our work), to ensure that the base case simulation provides reasonable results for different meteorological and emission conditions. This procedure can thus be intended to fill the gaps for those years where official emission inventories are not available, provided that observations of PM$_{2.5}$ are accessible. Future investigations should be devoted to the refinement of the presented methodology, for example using non-parametric approaches to estimate the PM$_{2.5}$ field and uncertainty (e.g. with machine learning techniques (Bai et al 2019, Xue et al 2019a)). Population uncertainty, estimated with different global products (e.g. the Gridded Population of the World, v4), can also be included in the Monte Carlo assessment, even though we anticipate that its impact would be of the same order of the baseline mortality. Furthermore, this methodology could prove useful to quantify mortality trends in highly populated regions where the health impacts of air quality have been only partially quantified.

Although we find substantial reductions in the premature mortality rates associated with PM$_{2.5}$ during 2015–2018, and this trend has been reported since 2013 (Zheng et al 2017b), the health burden is still vast and multiple challenges await China in the near future. Climate change is expected to lead to more intense and frequent stagnation events and heat waves, which can exacerbate the PM$_{2.5}$ related premature mortality (Hong et al 2019). Even though emission reduction policies might be strengthened in the near future (Peng et al 2017), the premature mortality burden could still be negatively affected by the predicted population growth and ageing (Madaniyat et al 2015, Cohen et al 2017), i.e. a slight reduction in PM$_{2.5}$ concentration could be more than compensated by an increase in the exposed population. Furthermore, socioeconomic factors like economic growth, industrialization and urbanization will strongly influence PM$_{2.5}$ concentrations (Li et al 2016a). As the economic growth is a vital goal in China’s 13th five-year plan (Aglietta and Bai 2016), the government is urged to find a way to decouple the effects of economic growth on PM$_{2.5}$ pollution.

In light of our findings and other recent studies (Silver et al 2018), we conclude that China is headed in the right direction towards the decoupling of these two vital aspects, even though more stringent emission reduction policies will be needed to cope with all the challenges highlighted above.

Acknowledgments

This work makes use of the LandScan (2017)$^\text{TM}$ High Resolution global Population Data Set copyrighted by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with the United States Department of Energy. The authors would like to thank the ECMWF who freely distribute the ERA5 dataset.

The computing resources and the related technical support used for this work have been provided by CRESCO/ENEAGRID High Performance Computing infrastructure and its staff. CRESCO/ENEAGRID High Performance Computing infrastructure is funded by ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development and by Italian and European research programmes, see www.cresco.enea.it/english for information.

Data Availability Statement

The data that support the findings of this study are available upon request from the authors.

ORCID iDs

Paolo Giani https://orcid.org/0000-0002-2538-3082
Alessandro Anav https://orcid.org/0000-0002-4217-7563
Alessandra De Marco https://orcid.org/0000-0001-7200-2257
Paola Crippa https://orcid.org/0000-0003-3248-9675

References

Aglietta M and Bai G 2016 China’s 13th Five-Year Plan. In Pursuit of a ’Moderately Prosperous Society’ CEPII research center
Apte J S, Marshall J D, Cohen A J and Brauer M 2015 Addressing global mortality from ambient PM$_{2.5}$ Environ. Sci. Technol. 49 8937–46
Archer-Nicholls S, Carter E, Kumar R, Xiao Q, Liu Y, Frostad J, Forouzanfar M H, Cohen A, Brauer M and Baumgartner J 2016 The regional impacts of cooking and heating emissions on ambient air quality and disease burden in China Environ. Sci. Technol. 50 9416–23
Aunan K, Ma Q, Lund M T and Wang S 2018 Population-weighted exposure to PM$_{2.5}$ 5 pollution in China: an integrated approach Environ. Int. 120 111–20
Bai K, Li K, Chang N-B and Gao W 2019 Advancing the prediction accuracy of satellite-based PM$_{2.5}$ concentration mapping: a perspective of data mining through in situ PM$_{2.5}$ measurements Environ. Pollut. 254 113047

In light of our findings and other recent studies (Silver et al 2018), we conclude that China is headed in the right direction towards the decoupling of these two vital aspects, even though more stringent emission reduction policies will be needed to cope with all the challenges highlighted above.

Acknowledgments

This work makes use of the LandScan (2017)$^\text{TM}$ High Resolution global Population Data Set copyrighted by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with the United States Department of Energy. The authors would like to thank the ECMWF who freely distribute the ERA5 dataset.

The computing resources and the related technical support used for this work have been provided by CRESCO/ENEAGRID High Performance Computing infrastructure and its staff. CRESCO/ENEAGRID High Performance Computing infrastructure is funded by ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development and by Italian and European research programmes, see www.cresco.enea.it/english for information.

Data Availability Statement

The data that support the findings of this study are available upon request from the authors.

ORCID iDs

Paolo Giani https://orcid.org/0000-0002-2538-3082
Alessandro Anav https://orcid.org/0000-0002-4217-7563
Alessandra De Marco https://orcid.org/0000-0001-7200-2257
Paola Crippa https://orcid.org/0000-0003-3248-9675

References

Aglietta M and Bai G 2016 China’s 13th Five-Year Plan. In Pursuit of a ’Moderately Prosperous Society’ CEPII research center
Apte J S, Marshall J D, Cohen A J and Brauer M 2015 Addressing global mortality from ambient PM$_{2.5}$ Environ. Sci. Technol. 49 8937–46
Archer-Nicholls S, Carter E, Kumar R, Xiao Q, Liu Y, Frostad J, Forouzanfar M H, Cohen A, Brauer M and Baumgartner J 2016 The regional impacts of cooking and heating emissions on ambient air quality and disease burden in China Environ. Sci. Technol. 50 9416–23
Aunan K, Ma Q, Lund M T and Wang S 2018 Population-weighted exposure to PM$_{2.5}$ 5 pollution in China: an integrated approach Environ. Int. 120 111–20
Bai K, Li K, Chang N-B and Gao W 2019 Advancing the prediction accuracy of satellite-based PM$_{2.5}$ concentration mapping: a perspective of data mining through in situ PM$_{2.5}$ measurements Environ. Pollut. 254 113047
Burnett R, Chen H, Szyzkowicz M, Fann N, Hubbell B, Pope C A, Apte J S, Brauer M, Cohen A and Weichenthal S 2018 Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter Proc. Natl Acad. Sci. 115 9592–7

Burnett R T, Pope III C A, Ezzati M, Olives C, Lim S S, Mehta S, Shin H H, Singh G, Hubbell B and Brauer M 2014 An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure Environ. Health Perspect. 122 397–403

Butt E W, Turnock S T, Rigby R, Reddington C L, Yoshioka M, Johnson J S, Regayre L A, Pringle K J, Mann G W and Spracklen D V 2017 Global and regional trends in particulate air pollution and attributable health burden over the past 50 years Environ. Res. Lett. 12 104017

Cohen A J, Brauer M, Burnett R, Anderson H R, Frostad J, Estep K, Balakrishnan K, Beunekreeft B, Dandona L and Dandona R 2017 Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015 Lancet 389 1907–18

Crippa P, Sullivan R C, Thota A and Pryor S C 2017 The impact of resolution on meteorological, chemical and aerosol properties in regional simulations with WRF-Chem Atmos. Chem. Phys. 17 2

Dicker D, Nguyen G, Abate D, Abate K H, Ayah S M, Abbafati C, Abbasi N, Abbas tabar H, Abd-Allah F and Abdela J 2018 Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the global burden of disease study 2017 The Lancet 392 1684–735

Ding D, Xing J, Wang S, Liu K and Hao J 2019 Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM 2.5 and PM 2.5-related mortality in China, 2013–2017 Environ. Health Perspect. 127 067009

Dong X et al 2018 Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study Atmos. Chem. Phys. 18 15581–600

Ford B and Heald C L 2016 Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter Atmos. Chem. Phys. 16 3499

Gao M, Beig G, Song S, Zhang H, Hu J, Ying Q, Liang F, Liu Y, Wang H and Lu X 2018 The impact of power generation emissions on ambient PM 2.5 pollution and human health in China and India Environ. Int. 121 250–9

Georgiou G K, Christoudias T, Proestos Y, Koutsa T, Hadjinicolaou P and Lelieveld J 2018 Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison Atmos. Chem. Phys. 18 1555–71

Giani P, Balzarini A, Pirovano G, Khalil I, Collombi C, Gianelle V L, Belis C A, Po luzzi V and Lonati G 2019 Influence of semi-and intermediate-volatile organic compounds (SVOC) parameterizations, volatility distributions and aging schemes on organic aerosol modelling in winter conditions Atmos. Environ. 241 11–24

Grell G A, Peckham S E, Schmitz R, Mckeen S A, Frost G, Skaromin W C and Eder B 2005 Fully coupled “online” chemistry within the WRF model Atmos. Environ. 39 6957–75

Gu Y, Wong T W, Law C K, Dong G H, Ho K F, Yang Y and Yim S H L 2018 Impacts of sectoral emissions in China and the implications: air quality, public health, crop production, and economic costs Environ. Res. Lett. 13 088008

Hong C, Zhang Q, Zhang Y, Davis S J, Tong D, Zheng Y, Liu Z, Guan D, He K and Schellnhuber H J 2019 Impacts of climate change on future air quality and human health in China Proc. Natl Acad. Sci. 116 17193–200

Hu J, Huang L, Chen M, Liao H, Zhang H, Wang S, Zhang Q and Ying Q 2017 Premature mortality attributable to particulate matter in China: source contributions and responses to reductions Environ. Sci. Technol. 51 9950–9

Huang J, Pan X, Guo X and Li G 2018 Health impact of China’s air pollution prevention and control action plan: an analysis of national air quality monitoring and mortality data Lancet Planet. 2 e131–23

Janssens-Maenhout G et al 2015 HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution Atmos. Chem. Phys. 15 11411–32

Jerrett M et al 2017 Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates Environ. Health Perspect. 125 552–9

Kan H, Chen R and Tong S 2012 Ambient air pollution, climate change, and population health in China Environ. Int. 42 10–19

Klimont Z, Kupiainen K, Heyes C, Purohit P, Coñada J, Rafaj P, Borken-Kleefeld J and Schöpp W 2017 Global anthropogenic emissions of particulate matter including black carbon Atmos. Chem. Phys. 17 8681–723

Kodros J, Carter E, Brauer M, Volckens J, Bilbsk K, L’Orange C, Johnson M and Pierce J 2018 Quantifying the contribution to uncertainty in mortality attributed to household, ambient, and joint exposure to PM 2.5 from residential solid fuel use GeoHealth 2 25–39

Lelieveld J, Evans J S, Finais M, Giannadaki D and Pozzer A 2015 The contribution of outdoor air pollution sources to premature mortality on a global scale Nature 525 367

Li G, Fang C, Wang S and Sun S 2016a The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM 2.5) concentrations in China Environ. Sci. Technol. 50 11452–9

Li M, Zhang D, Li C-T, Mulveany K M, Selin N E and Karplus V J 2018 2018 Air quality co-benefits of carbon pricing in China Nat. Clim. Chang. 8 398–403

Li M, Zhang Q, Kurokawa J-I, Woo J-H, He K, Lu Z, Ohara T, Song Y, Streets D G and Carmichael G R 2017 MIA: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP Atmos. Chem. Phys. 17

Li S, Ma Z, Xiong X, Christiani D C, Wang Z and Liu Y 2016b Satellite and ground observations of severe air pollution episodes in the winter of 2013 in Beijing, China Aerosol Air Qual. Res. 16 977–89

Liang F, Gao M, Xiao Q, Carmichael G R, Pan X and Liu Y 2017 Evaluation of a data fusion approach to estimate daily PM 2.5 levels in North China Environ. Res. 158 54–60

Liu J, Han Y, Wang S and Liu T 2016 Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM 2.5 exposure estimates based on a ground monitoring network Sci. Total Environ. 568 1253–62

Madaniyazi L, Nagashima T, Guo Y, Yu W and Tong S 2015 Projecting fine particulate matter-related mortality in East China Environ. Sci. Technol. 49 11141–50

Peng W, Yang J, Wagner F and Maue rall D L 2017 Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China Sci. Total Environ. 598 1076–84

Reddington C L, Conibear L, Knote C, Silver B J, Arnold S R and Spracklen D V 2019 Exploring the impacts of anthropogenic emission sectors on PM 2.5 and human health in South and East Asia Atmos. Chem. Phys. 19 11887–910

Rose A N, Mckee J L, Urban M L and Bright E A 2018 LandScan 2017 (Oak Ridge, TN: O. R. N. Laboratory)

Shaddick G, Thomas M L, Amini H, Broday D, Cohen A, Frostad J, Green A, Guns M, Liu Y and Martin R V 2018 Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment Environ. Sci. Technol. 52 9069–78

Silva R A, Adelman Z, Fry M M and West J J 2016 The impact of individual anthropogenic emissions sectors on the global
burden of human mortality due to ambient air pollution
Environ. Health Perspect. 124 1776–84
Silver B, Reddington C L, Arnold S R and Spracklen D V 2018
Substantial changes in air pollution across China during
2015–2017 Environ. Res. Lett. 13 114012
Skamarock W C and Klemp J B 2008 A time-split nonhydrostatic
atmospheric model for weather research and forecasting
applications J. Comput. Phys. 227 3465–85
Solazzo E and Galmarini S 2016 Error apportionment for
atmospheric chemistry-transport models—a new approach
to model evaluation Atmos. Chem. Phys. 16 6263–83
State-Council 2013 National Action Plan on Prevention and
Control Air Pollution (available at: www.gov.cn/
zwgk/2013-09/12/content_2486773.htm)
Tao H, Xing J, Zhou H, Pleim J, Ran L, Chang X, Wang S, Chen F,
Zheng H and Li J 2020 Impacts of improved modeling
resolution on the simulation of meteorology, air quality, and
human exposure to PM2. 5, O3 in Beijing, China J. Clean. Prod. 243 118574
Van Donkelaar A, Martin R V, Brauer M, Hsu N C, Kahn R A,
Levy R C, Lyapustin A, Sayer A M and Winker D M 2016
Global estimates of fine particulate matter using a combined
geophysical-statistical method with information from
satellites, models, and monitors Environ. Sci. Technol. 50 3762–72
Vautard R, Builjtes P H, Thunis P, Cuvelier C, Bedogni M,
Bessagnet B, Honore C, Moussiopoulos N, Piromano G and
Schaap M 2007 Evaluation and intercomparison of Ozone
and PM10 simulations by several chemistry transport
models over four European cities within the CityDelta
project Atmos. Environ. 41 173–88
Wei J, Li Z, Guo J, Sun L, Huang W, Xue W, Fan T and Cribb M
2019 Satellite-derived 1-km-resolution PM1 concentrations
from 2014 to 2018 across China Environ. Sci. Technol. 53 13265–74
Xue T, Zheng Y, Tong D, Zheng B, Li X, Zhu T and Zhang Q 2019a
Spatiotemporal continuous estimates of PM2. 5
concentrations in China, 2000–2016: a machine learning
method with inputs from satellites, chemical transport
model, and ground observations Environ. Int. 123 345–57
Xue T, Zhu T, Zheng Y, Liu J, Li X and Zhang Q 2019b Change in
the number of PM2. 5-attributed deaths in China from 2000
to 2010: comparison between estimations from
census-based epidemiology and pre-established
exposure-response functions Environ. Int. 129 430–7
Yang J and Zhang B 2018 Air pollution and healthcare
expenditure: implication for the benefit of air pollution
control in China Environ. Int. 120 443–55
Zhang Q et al 2017 Transboundary health impacts of transported
global air pollution and international trade Nature 543 705
Zheng B et al 2018 Trends in China’s anthropogenic emissions
since 2010 as the consequence of clean air actions Atmos. Chem. Phys. 18 14095–111
Zheng B, Zhang Q, Tong D, Chen C, Hong C, Li M, Geng G, Lei Y,
Huo H and He K 2017a Resolution dependence of
uncertainties in gridded emission inventories: a case study
in Hebei, China Atmos. Chem. Phys. 17 921–33
Zheng Y, Xue T, Zhang Q, Geng G, Tong D, Li X and He K 2017b
Air quality improvements and health benefits from China’s
clean air action since 2013 Environ. Res. Lett. 12 114020
Zhou M et al 2015 Smog episodes, fine particulate pollution and
mortality in China Environ. Res. 136 396–404
Zou B, You J, Lin Y, Duan X, Zhao X, Fang X, Campen M J and Li
S 2019 Air pollution intervention and life-saving effect in
China Environ. Int. 125 529–41