Full characterization of graphs having certain normalized Laplacian eigenvalue of multiplicity $n - 3$

Fenglei Tian*, Yiju Wang

School of Management, Qufu Normal University, Rizhao, China.

Abstract: Let G be a connected simple graph of order n. Let $\rho_1(G) \geq \rho_2(G) \geq \cdots \geq \rho_{n-1}(G) > \rho_n(G) = 0$ be the eigenvalues of the normalized Laplacian matrix $\mathcal{L}(G)$ of G. Denote by $m(\rho_i)$ the multiplicity of the normalized Laplacian eigenvalue ρ_i. Let $\nu(G)$ be the independence number of G. In this paper, we give a full characterization of graphs with some normalized Laplacian eigenvalue of multiplicity $n - 3$, which answers a remaining problem in [S. Sun, K.C. Das, On the multiplicities of normalized Laplacian eigenvalues of graphs, Linear Algebra Appl. 609 (2021) 365-385], i.e., there is no graph with $m(\rho_1) = n - 3$ ($n \geq 6$) and $\nu(G) = 2$. Moreover, we confirm that all the graphs with $m(\rho_1) = n - 3$ are determined by their normalized Laplacian spectra.

Keywords: normalized Laplacian; normalized Laplacian eigenvalues; multiplicity of eigenvalues

AMS classification: 05C50

1 Introduction

Throughout, only connected and simple graphs are discussed. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Let $N_G(u)$ be the set of all the neighbors of the vertex u. Then $d_u = |N_G(u)|$ is called the degree of u. For a subset $S \subset V(G)$, S is called a set of twin points if $N_G(u) = N_G(v)$ for any $u, v \in S$. By $u \sim v$, we mean that u and v are adjacent. The distance of two vertices u, v is denoted by $d(u, v)$ and the diameter of a graph G is written as $diam(G)$. A subset S of $V(G)$ is called an independent set of G, if the vertices of S induce an empty subgraph. The cardinality of the maximum independent set of G is called the independence number, denoted by $\nu(G)$. The rank of a matrix M is written as $r(M)$. Let R_{vi} be the row of M indexed by the vertex v_i. The multiplicity of an eigenvalue λ of M is denoted by $m(\lambda)$. Denote by $\mathcal{G}(n, n-3)$ the set of all n-vertex ($n \geq 5$) connected graphs with some normalized Laplacian eigenvalue of multiplicity $n - 3$. Let $A(G)$ and $L(G) = D(G) - A(G)$ be the adjacency matrix and the Laplacian matrix of graph G.

*Corresponding author. E-mail address: tflqfd@qfnu.edu.cn. Supported by ” the Natural Science Foundation of Shandong Province (No. ZR2019BA016) ”.
Theorem 1.1. Let \(\rho \) and \(\nu \) respectively. Then the normalized Laplacian matrix \(L(G) = [l_{uv}] \) of graph \(G \) is defined as
\[
L(G) = D^{-1/2}(G)L(G)D^{-1/2}(G) = I - D^{-1/2}(G)A(G)D^{-1/2}(G),
\]
where
\[
l_{uv} = \begin{cases}
1, & \text{if } u = v; \\
-1/\sqrt{d_u d_v}, & \text{if } u \sim v; \\
0, & \text{otherwise.}
\end{cases}
\]
For brevity, the normalized Laplacian eigenvalues are written as \(L \)-eigenvalues. It is well known that the least \(L \)-eigenvalue of a connected graph is 0 with multiplicity 1 (see \cite{10}). Then let the \(L \)-eigenvalues of a graph \(G \) be
\[
\rho_1(G) \geq \rho_2(G) \geq \cdots \geq \rho_{n-1}(G) > \rho_n(G) = 0.
\]

The normalized Laplacian eigenvalues of graphs have been studied intensively (see for example \cite{1–8}), as it reveals not only some structural properties but also some relevant dynamical aspects (such as random walk) of graphs \cite{10}. Recently, the multiplicity of the normalized Laplacian eigenvalues attracts much attention. Van Dam and Omidi \cite{1} determined the graphs with some normalized Laplacian eigenvalue of multiplicity \(n-1 \) and \(n-2 \), respectively. Tian et al. \cite{11,12} characterized some families of graphs of \(G(n,n-3) \), but the graphs with \(\rho_{n-1}(G) \neq 1 \) and \(\nu(G) = \text{diam}(G) = 2 \) that contain induced \(P_4 \) are not considered, which is the last remaining case. Sun and Das \cite{9} presented the graphs of \(G(n,n-3) \) with \(m(\rho_{n-1}(G)) = n-3 \) and \(m(\rho_{n-2}(G)) = n-3 \) respectively, and gave the following problem.

Problem \cite{9}: Is it true that there exists no connected graph with \(m(\rho_1(G)) = n-3 \ (n \geq 6) \) and \(\nu(G) = 2 \) ?

To answer the above problem, it is urgent to complete the characterization of all the graphs in \(G(n,n-3) \). Note that the authors of \cite{11,12} have obtained the following results.

Theorem 1.1. \cite{11,12} Let \(G \in G(n,n-3) \) be a graph of order \(n \geq 5 \). Then

(i) \(\rho_{n-1}(G) = 1 \) if and only if \(G \) is a complete tripartite graph \(K_{a,b,c} \) or \(K_n - e \), where \(K_n - e \) is the graph obtained from the complete graph \(K_n \) by removing an edge.

(ii) \(\rho_{n-1}(G) \neq 1 \) and \(\nu(G) \neq 2 \) if and only if \(G \in \{G_1,G_2,G_3\} \) (see Fig. 1).

(iii) \(\rho_{n-1}(G) \neq 1 \), \(\nu(G) = 2 \) and \(\text{diam}(G) = 3 \) if and only if \(G = G_4 \) (see Fig. 1).

(iv) \(G \) is a cograph with \(\rho_{n-1}(G) \neq 1 \) and \(\nu(G) = 2 \) if and only if \(G = G_5 \) (see Fig. 1).

Hence, to characterize all graphs of \(G(n,n-3) \) and to address the above problem in \cite{9}, it suffices to consider the graphs that contain induced path \(P_4 \) with \(\rho_{n-1}(G) \neq 1 \) and \(\nu(G) = \text{diam}(G) = 2 \). Here, we obtain the following conclusion.

Theorem 1.2. Let \(G \in G(n,n-3) \) be a graph of order \(n \geq 5 \). Then \(G \) contains induced path \(P_4 \) with \(\rho_{n-1}(G) \neq 1 \) and \(\nu(G) = \text{diam}(G) = 2 \) if and only if \(G \) is the cycle \(C_5 \).
Remark 1.3. Combining Theorems 1.1 and 1.2, all graphs of $G(n, n - 3)$ are determined. As a result, the above problem in [4] is answered, that is, there is no connected graph with $m(\rho_1(G)) = n - 3$ $(n \geq 6)$ and $\nu(G) = 2$. Now, we can also confirm the uncertain result in [4] that if G is the graph with $m(\rho_1(G)) = n - 3$ then G is determined by its normalized Laplacian spectrum.

![Fig. 1: The graphs G_i (1 ≤ i ≤ 5).](image)

The rest of the paper is arranged as follows. In Section 2, some lemmas are introduced. In Section 3, the proof of Theorem 1.2 is presented.

2 Preliminaries

For brevity, let Ω be the set of graphs of $G(n, n - 3)$ that contain induced path P_4 with $\rho_{n-1}(G) \neq 1$ and $\nu(G) = \text{diam}(G) = 2$. We always let θ be the L-eigenvalue of G with multiplicity $n - 3$.

Lemma 2.1. [7] Let G be a connected graph with order $n \geq 4$. If $G \not\cong K_{p,q}, K_a \vee (n-a)K_1$ $(p+q = n, a \geq 2)$, then $\rho_2(G) \geq \frac{n-1}{n-2}$.

Lemma 2.2. [2] Let $G \not\cong K_n$ be a connected graph with order $n \geq 2$. Then $\rho_{n-1}(G) \leq 1$.

Lemma 2.3. [5] Let G be a graph with n vertices. Let $K = \{v_1, \ldots, v_q\}$ be a clique in G such that $N_G(v_i) - K = N_G(v_j) - K (1 \leq i, j \leq q)$, then $1 + \frac{1}{d_{v_i}}$ is an L-eigenvalue of G with multiplicity at least $q - 1$.

Lemma 2.4. [11] Let $G \in \mathcal{G}(n, n - 3)$ with $\rho_{n-1}(G) \neq 1$, then $\theta \neq 1$.

Lemma 2.5. [12] Let $G \in \Omega$ with an induced path $P_4 = v_1v_2v_3v_4$. Then

$$(1 - \theta)^4d_{v_1}d_{v_2}d_{v_3}d_{v_4} - (d_{v_1}d_{v_2} + d_{v_3}d_{v_4} + d_{v_1}d_{v_4})(1 - \theta)^2 + 1 = 0. \quad (1)$$

Moreover, if there is a vertex u_1 (resp., u_2) such that $u_1v_2v_3v_4$ (resp., $v_1u_2v_3v_4$) is also an induced path, then $d_{v_1} = d_{u_1}$ (resp., $d_{v_2} = d_{u_2}$).

The following lemma is useful for us to complete the proof of Theorem 1.2.

Lemma 2.6. Let $G \in \Omega$ and H_i (1 ≤ i ≤ 5) be the graphs as shown in Fig. 2. Then the following assertions hold.

(i) If G contains H_1 as an induced subgraph, then $1 - \theta = -\frac{1}{d_{v_1}} = -\frac{1}{d_{v_5}}$.

(ii) If G contains H_2 as an induced subgraph, then $1 - \theta = -\frac{1}{d_{v2}} = -\frac{1}{d_{v3}}$.

(iii) If G contains H_3 as an induced subgraph, then

$$(1 - \theta)^2d_{v1}d_{v2} + (1 - \theta)d_{v4} - 1 = 0.$$

(iv) If G contains H_4 as an induced subgraph, then

$$
\begin{align*}
(1 - \theta) &= -\frac{d_{v3} + d_{v4}}{d_{v3}d_{v2}} = -\frac{d_{v3} + d_{v4}}{d_{v3}d_{v2}} \\
(1 - \theta)^2d_{v1}(d_{v3} + d_{v4}) + (1 - \theta)d_{v3} - 1 &= 0.
\end{align*}
$$

(v) If G contains H_5 as an induced subgraph, then

$$(1 - \theta) = -\frac{d_{v3} + 2d_{v4}}{d_{v3}(d_{v2} + d_{v5})} = -\frac{d_{v3} + 2d_{v4}}{d_{v3}(d_{v2} + d_{v5})}.$$

(vi) If G contains H_6 as an induced subgraph, then $1 - \theta = -\frac{1}{d_{v1}} = -\frac{1}{d_{v4}}$.

Proof. We first show the proof of assertion (i).

Since $m(\theta) = n - 3$, then $r(L(G) - \theta I) = 3$. Lemma 2.4 indicates that $\theta \neq 1$. Denote by M_1 the principal submatrix of $L(G) - \theta I$ indexed by the vertices of H_1, then

$$M_1 = \begin{pmatrix}
1 - \theta & -1 & 0 & 0 & -1 \\
-1 & 1 - \theta & \sqrt{d_{v1}d_{v2}} & 0 & 0 \\
0 & -1 & 1 - \theta & \sqrt{d_{v2}d_{v3}} & 0 \\
0 & 0 & -1 & 1 - \theta & 0 \\
-1 & -1 & 0 & 0 & 1 - \theta
\end{pmatrix}.$$

One can easily obtain that the first three rows of M_1 are linearly independent (considering the minor indexed by the first three rows and the middle three columns of M_1), which yields that the rows R_{v1}, R_{v2}, R_{v3} of $L(G) - \theta I$ are linearly independent, and then R_{v5} can be written as a linear combination of R_{v1}, R_{v2}, R_{v3}. Let

$$R_{v5} = aR_{v1} + bR_{v2} + cR_{v3}, \quad (2)$$
then
\[
\begin{pmatrix}
 a(1 - \theta) - \frac{b}{\sqrt{d_{e_1}d_{e_2}}} &=& \frac{-1}{\sqrt{d_{e_1}d_{e_5}}}, \\
 \frac{-a}{\sqrt{d_{e_1}d_{e_2}}} + b(1 - \theta) - \frac{c}{\sqrt{d_{e_2}d_{e_3}}} &=& \frac{-1}{\sqrt{d_{e_2}d_{e_5}}}, \\
 -\frac{b}{\sqrt{d_{e_2}d_{e_3}}} + c(1 - \theta) &=& 0, \\
 -\frac{c}{\sqrt{d_{e_3}d_{e_4}}} &=& 0
\end{pmatrix}
\tag{3}
\]

The fourth equation of (3) implies that \(c = 0 \), and further \(b = 0 \) from the third one. Recalling that \(d_{e_1} = d_{e_5} \) by Lemma 2.5, then we have \(a = 1 \) from the second of (3), and thus \(1 - \theta = \frac{-1}{d_{e_1}} = \frac{-1}{d_{e_5}} \) by the first of (3).

For assertion (ii), let
\[
M_2 = \begin{pmatrix}
1 - \theta & -\frac{1}{\sqrt{d_{e_1}d_{e_2}}} & 0 & 0 & \frac{-1}{\sqrt{d_{e_1}d_{e_5}}} \\
-\frac{1}{\sqrt{d_{e_1}d_{e_2}}} & 1 - \theta & \frac{-1}{\sqrt{d_{e_2}d_{e_3}}} & 0 & \frac{-1}{\sqrt{d_{e_2}d_{e_5}}} \\
0 & \frac{-1}{\sqrt{d_{e_2}d_{e_3}}} & 1 - \theta & \frac{-1}{\sqrt{d_{e_3}d_{e_4}}} & \frac{-1}{\sqrt{d_{e_3}d_{e_5}}} \\
0 & 0 & \frac{-1}{\sqrt{d_{e_3}d_{e_4}}} & 1 - \theta & 0 \\
-\frac{1}{\sqrt{d_{e_1}d_{e_5}}} & \frac{-1}{\sqrt{d_{e_2}d_{e_5}}} & \frac{-1}{\sqrt{d_{e_3}d_{e_5}}} & 0 & 1 - \theta
\end{pmatrix}
\]

be the principal submatrix of \(L(G) - \theta I \) indexed by the vertices of \(H_2 \). Similar as above discussion, one can assume that the Eq. (2) still holds. Then
\[
\begin{pmatrix}
 a(1 - \theta) - \frac{b}{\sqrt{d_{e_1}d_{e_2}}} &=& \frac{-1}{\sqrt{d_{e_1}d_{e_5}}}, \\
 \frac{-a}{\sqrt{d_{e_1}d_{e_2}}} + b(1 - \theta) - \frac{c}{\sqrt{d_{e_2}d_{e_3}}} &=& \frac{-1}{\sqrt{d_{e_2}d_{e_5}}}, \\
 -\frac{b}{\sqrt{d_{e_2}d_{e_3}}} + c(1 - \theta) &=& \frac{-1}{\sqrt{d_{e_3}d_{e_4}}}, \\
 -\frac{c}{\sqrt{d_{e_3}d_{e_4}}} &=& 0.
\end{pmatrix}
\tag{4}
\]

By the fourth equation of (4), we see \(c = 0 \). Further, recalling that \(d_{e_2} = d_{e_5} \) for \(H_2 \) by Lemma 2.5 we get \(b = 1 \) from the third one. Then \(a = 0 \) from the first of (4), and thus \(1 - \theta = -\frac{1}{d_{e_1}} = \frac{-1}{d_{e_5}} \) by the second one.

For assertion (iii), let
\[
M_3 = \begin{pmatrix}
1 - \theta & -\frac{1}{\sqrt{d_{e_1}d_{e_2}}} & 0 & 0 & \frac{-1}{\sqrt{d_{e_1}d_{e_5}}} \\
-\frac{1}{\sqrt{d_{e_1}d_{e_2}}} & 1 - \theta & \frac{-1}{\sqrt{d_{e_2}d_{e_3}}} & 0 & \frac{-1}{\sqrt{d_{e_2}d_{e_5}}} \\
0 & \frac{-1}{\sqrt{d_{e_2}d_{e_3}}} & 1 - \theta & \frac{-1}{\sqrt{d_{e_3}d_{e_4}}} & \frac{-1}{\sqrt{d_{e_3}d_{e_5}}} \\
0 & 0 & \frac{-1}{\sqrt{d_{e_3}d_{e_4}}} & 1 - \theta & 0 \\
-\frac{1}{\sqrt{d_{e_1}d_{e_5}}} & \frac{-1}{\sqrt{d_{e_2}d_{e_5}}} & \frac{-1}{\sqrt{d_{e_3}d_{e_5}}} & 0 & 1 - \theta
\end{pmatrix}
\]

be the principal submatrix of \(L(G) - \theta I \) indexed by the vertices of \(H_3 \). Clearly, the middle three rows of \(M_3 \) are linearly independent, which yields that the rows \(R_{e_2}, R_{e_3}, R_{e_4} \) of \(L(G) - \theta I \)
are linearly independent, and then we set

\[R_{v_1} = aR_{v_2} + bR_{v_3} + cR_{v_4}. \]

(5)

Applying (5) to the columns of \(M_3 \), we get

\[
\begin{align*}
-a \sqrt{d_{v_3}d_{v_5}} &= 1 - \theta \\
-b \sqrt{d_{v_2}d_{v_3}} &= \frac{-1}{\sqrt{d_{v_1}d_{v_2}}} \\
-c \sqrt{d_{v_3}d_{v_4}} &= \frac{-1}{\sqrt{d_{v_1}d_{v_3}}} \\
-a \sqrt{d_{v_2}d_{v_3}} + c(1 - \theta) &= 0 \\
-b \sqrt{d_{v_3}d_{v_4}} + c(1 - \theta) &= 0 \\
-c \sqrt{d_{v_4}d_{v_5}} &= \frac{-1}{\sqrt{d_{v_1}d_{v_5}}}.
\end{align*}
\]

(6)

The first and the fourth equations of (6) tell us that \(a = -(1 - \theta) \sqrt{d_{v_1}d_{v_2}} \) and \(c = \sqrt{d_{v_4}d_{v_1}} \), and further \(b = (1 - \theta) d_{v_4} \sqrt{d_{v_2}d_{v_1}} \) from the third one. Taking the values of \(a, b, c \) into the second of (6), we derive that \((1 - \theta)^2 d_{v_1}d_{v_2} + (1 - \theta)d_{v_4} - 1 = 0 \), as required.

For assertion (iv), let

\[
M_4 = \begin{pmatrix}
1 - \theta & -1 & 0 & 0 & -1 \\
\frac{-1}{\sqrt{d_{v_1}d_{v_2}}} & 1 - \theta & -1 & 0 & -1 \\
0 & \frac{-1}{\sqrt{d_{v_2}d_{v_3}}} & 1 - \theta & -1 & 0 \\
0 & 0 & \frac{-1}{\sqrt{d_{v_3}d_{v_4}}} & 1 - \theta & -1 \\
\frac{-1}{\sqrt{d_{v_1}d_{v_5}}} & \frac{-1}{\sqrt{d_{v_2}d_{v_5}}} & 0 & \frac{-1}{\sqrt{d_{v_3}d_{v_5}}} & 1 - \theta
\end{pmatrix}
\]

be the principal submatrix of \(\mathcal{L}(G) - \theta I \) indexed by the vertices of \(H_4 \). It is clear that the first three rows of \(M_4 \) are linearly independent, which indicates that the rows \(R_{v_1}, R_{v_2}, R_{v_3} \) of \(\mathcal{L}(G) - \theta I \) are linearly independent. Let

\[R_{v_5} = aR_{v_1} + bR_{v_2} + cR_{v_3}. \]

(7)

Applying (7) to the columns of \(M_4 \), we have

\[
\begin{align*}
-a \frac{1}{\sqrt{d_{v_1}d_{v_2}}} &= (1 - \theta) \\
-b \frac{1}{\sqrt{d_{v_2}d_{v_3}}} &= \frac{-1}{\sqrt{d_{v_1}d_{v_2}}} \\
-c \frac{1}{\sqrt{d_{v_3}d_{v_4}}} &= \frac{-1}{\sqrt{d_{v_1}d_{v_3}}} \\
-a \frac{1}{\sqrt{d_{v_2}d_{v_3}}} + c(1 - \theta) &= 0 \\
-b \frac{1}{\sqrt{d_{v_3}d_{v_4}}} + c(1 - \theta) &= 0 \\
-c \frac{1}{\sqrt{d_{v_4}d_{v_5}}} &= \frac{-1}{\sqrt{d_{v_1}d_{v_5}}}.
\end{align*}
\]

(8)
Combining the last three equations of (8), it follows that
\[a = -\sqrt{d_{v_1}d_{v_5}}(1 - \theta)(\frac{d_{v_2}}{d_{v_5}} + 1), \quad b = d_{v_3}(1 - \theta)\sqrt{\frac{d_{v_2}}{d_{v_5}}}, \quad c = \sqrt{\frac{d_{v_3}}{d_{v_5}}}. \]

Taking the values of \(a, b, c \) into the first and second equations of (8) respectively, one can easily derive that
\[
\begin{align*}
(1 - \theta)^2 d_{v_1}(d_{v_3} + d_{v_5}) + (1 - \theta)d_{v_3} - 1 &= 0 \\
(1 - \theta) &= -\frac{d_{v_3} + d_{v_5}}{d_{v_3}d_{v_5}}.
\end{align*}
\]

Moreover, by the symmetry between \(v_2 \) and \(v_5 \) (resp., \(v_3 \) and \(v_4 \)) in \(H_4 \), we can also get
\[
(1 - \theta) = -\frac{d_{v_3} + d_{v_5}}{d_{v_3}d_{v_5}}.
\]

At last, we prove assertion (v). Let the principal submatrix of \(\mathcal{L}(G) - \theta I \) indexed by the vertices of \(H_5 \) be \(M_5 \), then
\[
M_5 = \begin{pmatrix}
1 - \theta & -1 & \frac{d_{v_1}}{d_{v_2}} & 0 & 0 & \frac{1}{\sqrt{d_{v_1}d_{v_5}}} \\
-1 & 1 - \theta & \frac{1}{\sqrt{d_{v_2}d_{v_3}}} & 0 & \frac{1}{\sqrt{d_{v_2}d_{v_5}}} & -1 \\
0 & -1 & 1 - \theta & \frac{1}{\sqrt{d_{v_3}d_{v_4}}} & \frac{1}{\sqrt{d_{v_3}d_{v_5}}} & -1 \\
0 & 0 & -1 & 1 - \theta & \frac{1}{\sqrt{d_{v_4}d_{v_5}}} & -1 \\
-1 & 1 & \frac{1}{\sqrt{d_{v_5}d_{v_2}}} & \frac{1}{\sqrt{d_{v_5}d_{v_3}}} & \frac{1}{\sqrt{d_{v_5}d_{v_4}}} & 1 - \theta
\end{pmatrix}.
\]

Similar as the discussion in assertion (iv), the Eq. (7) can still hold. Then applying (7) to the columns of \(M_5 \), we obtain
\[
\begin{align*}
\begin{cases}
\begin{aligned}
a(1 - \theta) - \frac{b}{\sqrt{d_{v_1}d_{v_2}}} & = -\frac{1}{\sqrt{d_{v_1}d_{v_5}}} \\
-\frac{b}{\sqrt{d_{v_2}d_{v_3}}} + c(1 - \theta) & = -\frac{1}{\sqrt{d_{v_3}d_{v_5}}} \\
-\frac{c}{\sqrt{d_{v_3}d_{v_4}}} & = -\frac{1}{\sqrt{d_{v_3}d_{v_5}}} \\
-\frac{a}{\sqrt{d_{v_4}d_{v_5}}} - \frac{b}{\sqrt{d_{v_2}d_{v_5}}} - \frac{c}{\sqrt{d_{v_3}d_{v_5}}} & = 1 - \theta.
\end{aligned}
\end{cases}
\end{align*}
\]

It follows from the first three equations of (9) that
\[
\begin{align*}
a &= \frac{d_{v_3}}{d_{v_1}d_{v_5}}, \quad b = \sqrt{d_{v_2}d_{v_3}}((1 - \theta)\sqrt{\frac{d_{v_3}}{d_{v_5}}} + \frac{1}{\sqrt{d_{v_2}d_{v_5}}}), \quad c = \sqrt{\frac{d_{v_3}}{d_{v_5}}}.
\end{align*}
\]

Taking the values of \(a, b, c \) into the last of (9), one can derive
\[
(1 - \theta) = -\frac{d_{v_3} + 2d_{v_1}}{d_{v_1}(d_{v_3} + d_{v_5})}.
\]
Furthermore, the symmetry of H_5 implies that

$$(1 - \theta) = - \frac{d_{v_2} + 2d_{v_4}}{d_{v_4}(d_{v_2} + d_{v_4})},$$

as required.

For assertion (vi), one can refer to the process of proving Claim 1 of Lemma 3.2 in [12]. □

3 Proof of Theorem 1.2

Let $G \in \Omega$, i.e., G is a graph of $G(n, n - 3)$ containing induced path P_4 with $\rho_{n-1}(G) \neq 1$ and $\nu(G) = diam(G) = 2$. Suppose $m(\theta) = n - 3$ in G. Now we prove Theorem 1.2.

Proof of Theorem 1.2 By direct calculation, the normalized Laplacian spectrum of the cycle C_5 is $\{0.691^2, 1.809^2, 0\}$, then it follows that $G \in \Omega$. Thus the sufficiency is clear.

In the following, we present the necessity part. Suppose that $G \in \Omega$ and $m(\theta) = n - 3$ in G, then $\theta \neq 1$ from Lemma 2.4. Denote by $P_4 = v_1v_2v_3v_4$ an induced path of G. Assume that $U \subseteq V(P_4)$ and

$$S_U = \{u \in V(G) \setminus V(P_4) : N_G(u) \cap V(P_4) = U\}.$$

It follows from $\nu(G) = 2$ that any vertex out of $V(P_4)$ must be adjacent to at least two of $V(P_4)$ and $S_{\{v_1,v_3\}} = S_{\{v_2,v_4\}} = S_{\{v_2,v_3\}} = \emptyset$. Further, since $diam(G) = 2$, then $d(v_1, v_4) = 2$, and thus there exists a vertex, say v_5, adjacent to v_1 and v_4. Note that v_5 maybe belong to $S_{\{v_1,v_4\}}$, $S_{\{v_1,v_2,v_4\}}$, $S_{\{v_1,v_3,v_4\}}$ or $S_{\{v_1,v_2,v_3,v_4\}}$. Accordingly, the remaining proof can be divided into the following cases.

Case 1. Suppose that $v_5 \in S_{\{v_1,v_4\}}$, i.e., $S_{\{v_1,v_4\}} \neq \emptyset$.

We will complete the discussion of this case by the following claims.

Claim 1.1 $|S_{\{v_1,v_4\}}| = 1$ and $S_{\{v_1,v_2\}} = S_{\{v_3,v_4\}} = \emptyset$.

Suppose that $|S_{\{v_1,v_4\}}| \geq 2$, then all the vertices of $S_{\{v_1,v_4\}}$ induce a clique (otherwise, $\nu(G) \geq 3$, a contradiction). Then G contains an induced subgraph isomorphic to X_1 in Fig. 3. Similarly, one can obtain that if $S_{\{v_1,v_2\}} \neq \emptyset$ or $S_{\{v_3,v_4\}} \neq \emptyset$, G also contains an induced subgraph isomorphic to X_1. Since X_1 contains H_1 as an induced subgraph, then by Lemma 2.6 (i)

$$1 - \theta = - \frac{1}{d_{v_1}}. \quad (10)$$

Moreover, C_5 (i.e., H_3) is an induced subgraph of X_1, then by Lemma 2.6 (iii)

$$(1 - \theta)^2d_{v_1}d_{v_2} + (1 - \theta)d_{v_4} - 1 = 0. \quad (11)$$

Combining (10) and (11), we get

$$d_{v_2} = d_{v_1} + d_{v_4}. \quad (12)$$
It is not hard to see that
\[
\begin{cases}
 d_{v_2} = |S_{\{v_1,v_2\}}| + |S_{\{v_1,v_2,v_3\}}| + |S_{\{v_1,v_2,v_4\}}| + |S_{\{v_1,v_2,v_3,v_4\}}| + 2 \\
 d_{v_1} = |S_{\{v_1,v_2\}}| + |S_{\{v_1,v_3\}}| + |S_{\{v_1,v_2,v_3\}}| + |S_{\{v_1,v_2,v_3,v_4\}}| + 1 \\
 d_{v_4} = |S_{\{v_3,v_4\}}| + |S_{\{v_4\}}| + |S_{\{v_2,v_3,v_4\}}| + |S_{\{v_2,v_3,v_4\}}| + 1
\end{cases}
\]

(13)

It follows from (12) and (13) that \(|S_{\{v_1,v_4\}}| = 0\), a contradiction.

Claim 1.2 \(S_{\{v_1,v_2,v_3\}} = S_{\{v_2,v_3,v_4\}} = \emptyset\).

It suffices to prove that \(S_{\{v_1,v_2,v_3\}} = \emptyset\). Suppose for a contradiction that \(S_{\{v_1,v_2,v_3\}} \neq \emptyset\) and \(v_6 \in S_{\{v_1,v_2,v_3\}}\). If \(v_5 \sim v_6\), then the vertices \(v_i \ (1 \leq i \leq 6)\) induce a subgraph isomorphic to \(X_1\). One can obtain a contradiction by similar discussion as above. If \(v_5 \sim v_6\), then \(X_2\) in Fig. 3 is an induced subgraph of \(G\). Deleting \(v_3\) with the incident edges from \(X_2\), we also get (10) by Lemma 2.6 (ii). Analogous discussion as Claim 1.1, the Eq. (12) still holds. As \(|S_{\{v_1,v_4\}}| = 1\) and \(S_{\{v_1,v_2\}} = S_{\{v_3,v_4\}} = \emptyset\) from Claim 1.1, then
\[
\begin{cases}
 d_{v_2} = |S_{\{v_1,v_2,v_3\}}| + |S_{\{v_2,v_3,v_4\}}| + |S_{\{v_2,v_3,v_4\}}| + |S_{\{v_1,v_2,v_3,v_4\}}| + 2 \\
 d_{v_1} = |S_{\{v_1,v_4\}}| + |S_{\{v_1,v_2,v_3\}}| + |S_{\{v_1,v_2,v_3,v_4\}}| + |S_{\{v_1,v_2,v_3,v_4\}}| + 1 \\
 d_{v_4} = |S_{\{v_1,v_4\}}| + |S_{\{v_2,v_3,v_4\}}| + |S_{\{v_2,v_3,v_4\}}| + |S_{\{v_2,v_3,v_4\}}| + 1
\end{cases}
\]

which, together with (12), yields that \(|S_{\{v_1,v_4\}}| = 0\), a contradiction.

Claim 1.3 \(S_{\{v_1,v_2,v_4\}} = S_{\{v_1,v_3,v_4\}} = \emptyset\).

We only need to show \(S_{\{v_1,v_2,v_4\}} = \emptyset\). Assume that \(S_{\{v_1,v_2,v_4\}} \neq \emptyset\) and \(v_6 \in S_{\{v_1,v_2,v_4\}}\), then \(v_5 \sim v_6\) (otherwise \(\nu(G) \geq 3\), a contradiction). Thus \(X_3\) in Fig. 3 is an induced subgraph of \(G\). Removing \(v_4\) with the incident edges from \(X_3\), we get (10) again by Lemma 2.6 (ii). By analogous discussion as above, one can easily obtain a contradiction.

Claim 1.4 \(S_{\{v_1,v_2,v_3,v_4\}} = \emptyset\).

Combining the first three claims, we see that if \(S_{\{v_1,v_2,v_3,v_4\}} \neq \emptyset\), then all the vertices of \(V(G) \setminus \{v_1, \cdots, v_5\}\) belong to \(S_{\{v_1,v_2,v_3,v_4\}}\). Then
\[
d_{v_1} = d_{v_2} = d_{v_3} = d_{v_4}.
\]

(14)

Since \(G\) now contains \(H_5\) (see Fig. 2) as an induced subgraph, then by Lemma 2.6 (v)
\[
(1 - \theta) = -\frac{d_{v_2} + 2d_{v_4}}{d_{v_3}(d_{v_2} + d_{v_4})},
\]
which is a rational number. Furthermore, since G contains an induced C_5, then by (11) and (14) we derive that
\[(1 - \theta) = \frac{-1 \pm \sqrt{5}}{2d_{v_1}},\]
which is an irrational number, a contradiction.

The above four claims indicate that if $S_{\{v_1, v_4\}} \neq \emptyset$, then $|S_{\{v_1, v_4\}}| = 1$ and $|V(G)| = 5$, i.e., G is the cycle C_5.

Case 2. Suppose that $v_5 \in S_{\{v_1, v_2, v_4\}}$, i.e., $S_{\{v_1, v_2, v_4\}} \neq \emptyset$ and $S_{\{v_1, v_4\}} = \emptyset$.

The following claims will help us complete the discussion of this case.

Claim 2.1 $S_{\{v_1, v_2\}} = S_{\{v_3, v_4\}} = \emptyset$.

We first demonstrate $S_{\{v_1, v_2\}} = \emptyset$. If $S_{\{v_1, v_2\}} \neq \emptyset$, say $v_6 \in S_{\{v_1, v_2\}}$, then by Lemma 2.6 (i), the Eq. (10) holds. Since G contains H_4 (see Fig. 2) as an induced subgraph, then by Lemma 2.6 (iv)
\[
\begin{align*}
(1 - \theta)^2d_{v_1}(d_{v_3} + d_{v_5}) + (1 - \theta)d_{v_3} - 1 &= 0 \\
(1 - \theta) &= -\frac{d_{v_3} + d_{v_5}}{d_{v_4}d_{v_5}}.
\end{align*}
\]
By (10) and the first equation of (15), we get $d_{v_1} = d_{v_5}$, which implies that $(1 - \theta) = -\frac{1}{d_{v_5}}$. Hence, by the second equation of (15), we have $d_{v_2} = 0$, a contradiction.

Next, we prove that $S_{\{v_3, v_4\}} = \emptyset$. Suppose that $S_{\{v_3, v_4\}} \neq \emptyset$ and $v_6 \in S_{\{v_3, v_4\}}$, then Lemma 2.6 (i) indicates that
\[(1 - \theta) = -\frac{1}{d_{v_4}}.
\]
It follows from (16) and the second equation of (15) that $d_{v_2} + d_{v_3} = d_{v_5}$. Note that any vertex out of $V(P_2)$ must be adjacent to v_2 or v_4 (thanks to $\nu(G) = 2$). Thus
\[d_{v_5} = d_{v_2} + d_{v_4} \geq 3 + 3 + n - 6 = n,
\]
a contradiction. Therefore, $S_{\{v_1, v_2\}} = S_{\{v_3, v_4\}} = \emptyset$, as required.

Claim 2.2 $S_{\{v_1, v_2, v_3\}} = S_{\{v_2, v_3, v_4\}} = \emptyset$.

If $S_{\{v_1, v_2, v_3\}} \neq \emptyset$, then G contains H_2 and H_4 as induced subgraphs. Thus, from Lemma 2.6 (ii) and (iv),
\[
\begin{align*}
(1 - \theta) &= -\frac{1}{d_{v_2}} \\
(1 - \theta) &= -\frac{d_{v_3} + d_{v_5}}{d_{v_3}d_{v_5}},
\end{align*}
\]
which yield that $d_{v_5} = 0$, a contradiction.

Similarly, if $S_{\{v_2, v_3, v_4\}} \neq \emptyset$, then from Lemma 2.6 (ii) and (iv),
\[
\begin{align*}
(1 - \theta) &= -\frac{1}{d_{v_3}} \\
(1 - \theta) &= -\frac{d_{v_2} + d_{v_5}}{d_{v_2}d_{v_5}},
\end{align*}
\]
which yield that $d_{v_2} + d_{v_5} = d_{v_2}$. Notice that any vertex distinct with v_3 and v_5 must be
adjacent to v_3 or v_5 (thanks to $\nu(G) = 2$). Therefore,

$$d_{v_2} = d_{v_3} + d_{v_5} \geq 3 + 3 + n - 6 = n,$$

a contradiction.

Claim 2.3 $S\{v_1, v_3, v_4\} = \emptyset$.

Assume that $S\{v_1, v_3, v_4\} \neq \emptyset$ and $v_6 \in S\{v_1, v_3, v_4\}$. If $v_5 \sim v_6$, then X_4 (see Fig. 3) is an induced subgraph of G. By observation, X_4 contains an induced subgraph (by deleting v_4 with incident edges) isomorphic to H_6 (see Fig. 2), then from Lemma 2.6 (vi)

$$(1 - \theta) = -\frac{1}{d_{v_5}}, \quad (17)$$

Combining (17) and the second equation of (15), we obtain that $d_{v_2} = 0$, a contradiction.

If $v_5 \not\sim v_6$, then the principal submatrix, say M_6, of $L(G) - \theta I$ indexed by $\{v_1, \cdots, v_6\}$ can be written as the following block form

$$M_6 = \begin{pmatrix} M_4 & \alpha \\ \alpha^T & 1 - \theta \end{pmatrix},$$

where M_4 has been given in the proof of Lemma 2.6 (iv) and

$$\alpha = \left(\frac{-1}{\sqrt{d_{v_1}d_{v_6}}}, 0, \frac{-1}{\sqrt{d_{v_3}d_{v_6}}}, \frac{-1}{\sqrt{d_{v_4}d_{v_6}}}, 0 \right)^T,$$

a column vector. Obviously, the Eq. (7) still holds here, and by applying it to the columns of M_6, we get the equations of (8) and

$$\frac{-a}{\sqrt{d_{v_1}d_{v_6}}} - \frac{c}{\sqrt{d_{v_3}d_{v_6}}} = 0. \quad (18)$$

Then from (18) and the values of a and c obtained before

$$a = -\sqrt{d_{v_1}d_{v_5}}(1 - \theta)(\frac{d_{v_3}}{d_{v_5}} + 1), \quad c = \sqrt{\frac{d_{v_3}}{d_{v_5}}},$$

it follows that $\frac{d_{v_3}}{d_{v_5}} = \sqrt{d_{v_1}d_{v_5}}(1 - \theta)(\frac{d_{v_3}}{d_{v_5}} + 1)$, which yields $(1 - \theta) > 0$, contradicting with Lemma 2.6 (iv).

Claim 2.4 $S\{v_1, v_2, v_3, v_4\} = \emptyset$.

Assume that there is a vertex, say v_6, in $S\{v_1, v_2, v_3, v_4\}$. If $v_5 \sim v_6$, then X_5 (see Fig. 3) is an induced subgraph of G. Deleting the vertex v_3 with the incident edges from X_5, the resultant graph is isomorphic to H_6 in Fig. 2. Then from Lemma 2.6 (vi), $(1 - \theta) = -\frac{1}{d_{v_2}}$, which together with $(1 - \theta) = -\frac{d_{v_3} + d_{v_5}}{d_{v_3}d_{v_2}}$ (thanks to Lemma 2.6 (iv)) indicates that $d_{v_5} = 0$, a contradiction.

If $v_5 \sim v_6$, then the principal submatrix, say M_7, of $L(G) - \theta I$ indexed by $\{v_1, \cdots, v_6\}$
can be written as

\[M_7 = \begin{pmatrix} \frac{M_4}{\beta T} & \beta \\ \beta T & 1 - \theta \end{pmatrix}, \]

where \(M_4 \) is as above and

\[\beta = \begin{pmatrix} -\frac{1}{\sqrt{d_{v_1}d_{v_6}}} & -\frac{1}{\sqrt{d_{v_2}d_{v_6}}} & -\frac{1}{\sqrt{d_{v_3}d_{v_6}}} & -\frac{1}{\sqrt{d_{v_4}d_{v_6}}} & -\frac{1}{\sqrt{d_{v_5}d_{v_6}}} \end{pmatrix}^T, \]

a column vector. Applying (7) to the last column of \(M_7 \), we get

\[\frac{a}{\sqrt{d_{v_1}}} + \frac{b}{\sqrt{d_{v_2}}} + \frac{c}{\sqrt{d_{v_3}}} = \frac{1}{\sqrt{d_{v_5}}}, \] (19)

which together with the second equation of (8) yields that

\[b\left(\frac{1}{\sqrt{d_{v_2}}} + \sqrt{d_{v_2}(1 - \theta)}\right) = 0. \]

Since \(b \neq 0 \) obtained before, then we have \((1 - \theta) = -\frac{1}{d_{v_2}}, \) and thus \(d_{v_5} = 0 \) (thanks to \((1 - \theta) = -\frac{d_{v_2} + d_{v_5}}{d_{v_2}d_{v_5}} \) in Lemma 2.6 (iv)), a contradiction.

In this case, combining Claims 2.1-2.4, we see that all the vertices out of \(V(P_4) \) belong to \(S_{\{v_1,v_2,v_4\}} \). Furthermore, it is obvious that \(S_{\{v_1,v_2,v_4\}} \) induces a clique of \(G \), as \(\nu(G) = 2 \). Hence, the structure of \(G \) is clear now, and \(d_{v_2} = n - 2, d_{v_3} = 2, d_{v_4} = n - 3 \) and \(d_{v_5} = n - 2 \). From Lemma 2.6 (iv),

\[(1 - \theta) = -\frac{d_{v_2} + d_{v_4}}{d_{v_2}d_{v_4}} = \frac{-(2n-5)}{(n-2)(n-3)} = \frac{-n}{2(n-2)}, \]

which implies that \(n = 5 \), i.e., \(G = H_4 \). However, \(H_4 \notin \Omega \) by direct calculation. Therefore, \(S_{\{v_1,v_2,v_4\}} = \emptyset \), and by symmetry we get \(S_{\{v_1,v_3,v_4\}} = \emptyset \).

Case 3. Suppose that \(v_5 \in S_{\{v_1,v_2,v_3,v_4\}} \) (i.e., \(S_{\{v_1,v_2,v_3,v_4\}} \neq \emptyset \)) and \(S_{\{v_1,v_4\}} = S_{\{v_1,v_2,v_4\}} = S_{\{v_1,v_3,v_4\}} = \emptyset \).

If this is the case, then the vertices of \(V(G) \setminus \{V(P_4) \cup S_{\{v_1,v_2,v_3,v_4\}}\} \) belong to \(S_{\{v_1,v_2}\}}, \(S_{\{v_3,v_4\}} \), \(S_{\{v_1,v_3,v_2\}} \) or \(S_{\{v_2,v_3,v_4\}} \). Then we have the following claims.

Claim 3.1 \(S_{\{v_1,v_2\}} = S_{\{v_3,v_4\}} = \emptyset \).

It suffices to show that \(S_{\{v_1,v_2\}} \neq \emptyset \). Suppose \(S_{\{v_1,v_2\}} \neq \emptyset \) and \(v_6 \in S_{\{v_1,v_2\}}, \) then

\[(1 - \theta) = -\frac{1}{d_{v_1}} \] (20)

from Lemma 2.6 (i). Since

\[(1 - \theta) = -\frac{d_{v_2} + 2d_{v_4}}{d_{v_4}(d_{v_2} + d_{v_5})} = -\frac{d_{v_2} + 2d_{v_4}}{d_{v_1}(d_{v_3} + d_{v_5})} \] (21)

12
from Lemma 2.6 (v), then by (20) and (21) we derive that
\[
\begin{align*}
d_{v_2}d_{v_1} + 2d_{v_1}d_{v_4} &= d_{v_2}d_{v_4} + d_{v_4}d_{v_5} \\
2d_{v_1} &= d_{v_5},
\end{align*}
\]
which implies that \(d_{v_1} = d_{v_4}\). As \(G\) contains an induced \(P_4\), then the equation (1) holds from Lemma 2.5. It follows from (1), (20) and \(d_{v_1} = d_{v_4}\) that
\[
d_{v_1}(d_{v_2} + d_{v_3}) = d_{v_2}d_{v_3}.
\]
Now we say that \(S\{v_2,v_3,v_4\} = \emptyset\), otherwise \((1 - \theta) = -\frac{1}{d_{v_2}}\) from Lemma 2.6 (ii), and then \(d_{v_1} = d_{v_3}\) from (20). Thus the equation (22) can be simplified as \(d_{v_3} = 0\), a contradiction. Analogously, one can derive that \(S\{v_1,v_2,v_3\} = \emptyset\). As a result, \(d_{v_2} = d_{v_1} + 1\). Recalling that \(d_{v_1} = d_{v_4}\), then \(|S\{v_1,v_2\}| = |S\{v_3,v_4\}|\), and thus \(d_{v_2} = d_{v_3}\). Considering (22) again, one can obtain that \(d_{v_1} = 1\), a contradiction.

Claim 3.2 \(S\{v_1,v_2,v_3\} = S\{v_2,v_3,v_4\} = \emptyset\).

It suffices to show that \(S\{v_1,v_2,v_3\} = \emptyset\). Suppose on the contrary that \(S\{v_1,v_2,v_3\} \neq \emptyset\), then \(d_{v_2} = d_{v_3}\) by observation. From Lemma 2.6 (ii), we have \(1 - \theta = -\frac{1}{d_{v_2}}\). Thus the equation (1) of Lemma 2.5 can be simplified as
\[
d_{v_1} + d_{v_4} = d_{v_2}.
\]
It is not hard to see that
\[
\begin{align*}
d_{v_1} &= |S\{v_1,v_2,v_3\}| + |S\{v_1,v_2,v_3,v_4\}| + 1 \\
d_{v_4} &= |S\{v_2,v_3,v_4\}| + |S\{v_1,v_2,v_3,v_4\}| + 1 \\
d_{v_2} &= |S\{v_1,v_2,v_3\}| + |S\{v_2,v_3,v_4\}| + |S\{v_1,v_2,v_3,v_4\}| + 2,
\end{align*}
\]
which together with (23) implies that \(|S\{v_1,v_2,v_3,v_4\}| = 0\), a contradiction. Therefore, the results of Claim 3.2 hold.

Now we are in a position to complete Case 3. Combining Claims 3.1 and 3.2, we see that all vertices out of \(V(P_4)\) belong to \(S\{v_1,v_2,v_3,v_4\}\). Then \(d_{v_2} = d_{v_1} + 1\). We claim that \(S\{v_1,v_2,v_3,v_4\}\) induces a clique of \(G\). Otherwise, there exist two vertices, say \(v_5\) and \(v_6\), of \(S\{v_1,v_2,v_3,v_4\}\), which are not adjacent. Then the subgraph induced by \(\{v_1,v_2,v_4,v_5,v_6\}\) is isomorphic to \(H_6\) in Fig. 2. Hence by Lemma 2.6 (vi), \(1 - \theta = -\frac{1}{d_{v_1}} = -\frac{1}{d_{v_2}}\), which indicates that \(d_{v_2} = d_{v_1}\), contradicting with \(d_{v_2} = d_{v_1} + 1\). As a result, if \(|S\{v_1,v_2,v_3,v_4\}| \geq 3\), then \(1 + \frac{1}{n-1}\) is an \(L\)-eigenvalue of \(G\) with multiplicity at least 2. Since \(G \not\cong K_n\), then \(\rho_{n-1}(G) \leq 1\) by Lemma 2.2. Clearly, \(G \not\cong K_{p,q}, K_a \vee (n-a)K_1\), then \(\rho_2(G) \geq \frac{n-1}{n-2}\) by Lemma 2.1. Noting that \(\rho_n(G) = 0\), we obtain \(G \not\in \Omega\). For the case of \(|S\{v_1,v_2,v_3,v_4\}| \leq 2\), one can get \(G \not\in \Omega\) by direct calculation.

The necessity part can be proved by Cases 1-3, and then the proof is completed. \(\Box\)

Acknowledgements
The authors thank the anonymous referees for their valuable comments of this paper. This
work is supported by the Natural Science Foundation of Shandong Province (No. ZR2019BA016).

References

[1] E.R. van Dam, G.R. Omidi, Graphs whose normalized Laplacian has three eigenvalues, Linear Algebra Appl. 435 (2011) 2560-2569.
[2] J. Li, J.M. Guo, W.C. Shiu, Bounds on normalized Laplacian eigenvalues of graphs, J. Inequal. Appl. 316 (2014) 1-8.
[3] R.O. Braga, R.R. Del-Vecchio, V.M. Rodrigues, V. Trevisan, Trees with 4 or 5 distinct normalized Laplacian eigenvalues, Linear Algebra Appl. 471 (2015) 615-635.
[4] J. Guo, J. Li, W.C. Shiu, The largest normalized Laplacian spectral radius of non-bipartite graphs, Bull. Malaysian Math. Sci. Soc. 39 (1) (2016) 77-87.
[5] K.C. Das, S. Sun, Extremal graph on normalized Laplacian spectral radius and energy, Elect. J. Linear Algebra, 29 (2016) 237-253.
[6] X. Huang, Q. Huang, On graphs with three or four distinct normalized Laplacian eigenvalues, Algebra Colloquium, 26:1 (2019) 65-82.
[7] S. Sun, K.C. Das, On the second largest normalized Laplacian eigenvalue of graphs, Appl. Math. Comput. 348 (2019) 531-541.
[8] S. Sun, K.C. Das, Normalized Laplacian spectrum of complete multipartite graphs, Discrete Appl. Math. 284 (2020) 234-245.
[9] S. Sun, K.C. Das, On the multiplicities of normalized Laplacian eigenvalues of graphs, Linear Algebra Appl. 609 (2021) 365-385.
[10] F.R. Chung, Spectral Graph Theory, American Mathematical Society, Providence, RI, 1997.
[11] F. Tian, D. Wong, S. Wang, Characterization of graphs with some normalized Laplacian eigenvalue of multiplicity $n - 3$, Linear Algebra Appl. 606 (2020) 127-143.
[12] F. Tian, J. Cai, Z. Liang, X. Su, On graphs with some normalized Laplacian eigenvalue of extremal multiplicity, arXiv:2007.11844v1.
[13] A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer, New York, 2012.