Effect of Cerium Oxide Nanoparticles Additive Blended in Palm Oil Biodiesel as Alternative Fuel Used in Diesel Engine

Dr. T Srinivasa Rao¹, Dr. H Suresh Babu Rao²,*, S A K Jilani³ and Avinash Mutluri⁴

¹,²,³,⁴Department of Mechanical Engineering, Vasireddy Venkatadri Institute of Technology, Nambur, Peddakakani Mandal, Guntur District, 522508, Andhra Pradesh, India.
²Department of Mechanical Engineering, Chaitanya Bharathi Institute of Technology, Proddatur, India.

* Corresponding author email: hsbr110479@gmail.com

Abstract

In the present study, the effects of adding of cerium oxide (CeO₂) nanoparticle additive as a fuel additive to a palm oil biodiesel-diesel fuel blend on engine performance, and exhaust emissions were studied in a single cylinder four stroke diesel engine under different torque conditions. The test fuels used were fossil diesel fuels, B20 blend biodiesel (as 20% biodiesel and 80% diesel) with cerium oxide (CeO₂) nanoparticle additive (30ppm, 60ppm, 90ppm and 120ppm). The experimental results demonstrated that B20 blend biodiesel at 90ppm of CeO₂ nanoparticles additive found significant reduction emissions nitrogen oxide (NOX), carbon dioxide (CO), unburnt hydrocarbons (UBHC) and smoke. However, brake specific fuel consumption (BSFC) is decreased with significant from increased brake thermal efficiency (BTE) by doping of CeO₂ from 30ppm to 90ppm. B20 biodiesel blend with 90ppm of CeO₂ nanoparticles additive as optimum blend out of the test blends.

Key words: Biodiesel; Calophyllum inophyllum; Cerium oxide nanoparticle; Performance; Exhaust emissions.

1. Introduction

A diesel engine has higher brake thermal efficiency than a petrol engine. Also, they have an advantage of using lesser fossil fuel. Petroleum diesel plays a significant role in the transportation sector, the agricultural sector and industrial growth. However, the total petroleum reserves are depleting day by day due to indiscriminate extraction and lavish consumption [1, 45, 47]. Therefore, the researchers are suggested that biofuels are a viable alternative to diesel fuel in the diesel engine. Biodiesel can be prepared from various renewable feedstocks like vegetable oils - palm oil, sunflower oil, peanut oil etc., are edible oils and jatropha, calophyllum inophyllum, karanja, cotton seed, waste plastic oil, etc., are non-edible oils [3, 6, 8, 10, 44, 46]. The biodiesel properties are like rich oxygen content, higher kinematic viscosity, reduced smoke emission and diluted level of pollutants from engine exhaust (CO, HC and particulate matter). The biodiesel’s emission characteristics are better than petro-diesel fuel except for NOX emission [13]. To control NOX emissions from the C.I engines, various researchers have been described strategies like engine modification like EGR (Exhaust Gas Recirculation), increasing/decreasing injection timing, injection pressure and
adulteration of fuel [25, 27]. Among these fuel alterations with nanoparticles in biodiesel results in reducing the level of pollutants at the engine exhaust and eventually, increases engine performance. Nanoparticle blended with fuel shown better thermal properties, which is mainly due to the higher surface area to volume ratio of the nanoparticles also resulting in increased oxidation of HC and acting as an oxygen buffer against NOX [19].

Many researchers used different additives to biodiesel and found reduced emissions and increased performance [41, 42, 43]. Acetone blended with Palm biodiesel given a significant reduction in HC, NOX, CO and smoke emissions when compared to palm biodiesel [27, 29]. V Sajith et al., 2010 conducted experiments with cerium oxide as nanoparticle additive in Jatropha biodiesel (20ppm, 40ppm & 80ppm) had shown increased brake thermal efficiency by 1.5% and there is a significant reduction of NO by 30% and hydrocarbon emissions by 40%. Ajin et al., 2011 experimentally observed that the CeO₂ as a nano-additive in diesel improved the BTE by 5% and a reduction of HC and NOX emission by 45% and 30% respectively. From the various metal oxides copper, iron, cerium and cobalt have used as fuel additives. Among all nanoparticle’s additives, cerium oxide has exhibited a high catalytic activity due to its high surface-to-volume ratio, which improves the brake thermal efficiency and reduces the emission [15]. Selvan et al., 2009 experimentally investigated the effect of cerium oxide nanoparticle with diesel and biodiesel as fuel in diesel engine and observed the brake thermal efficiency was increased and a drastic reduction in HC and NOX emission. The performance and emission characteristics of the CI engines improves due to the doping of alumina nanoparticles in the biodiesel emulsion fuels, which leads to ignition delay and reduced peak pressure.

About palm oil

Oil palm, was growing wild and was a native to West Africa and nowadays it is an agricultural crop. Annually, Oil palm can produce 10 to 34 tons per hectare of oil palm fresh fruit bunches. Palm oil biodiesel has most widely recognized as a potential alternative fuel [2, 13].

Figure 1 shows the various biodiesel feedstock oil yield. Palm oil has shown a high productivity when it is compared to other oils. The palm oil productivity is about 5945 litres per hectare and which is about 14 times higher than soybean oil.

![Figure 1. Various biodiesel feedstock production oil yield [16.]](image-url)
2. Materials and Methods

Preparation of palm oil biodiesel

Different researchers have developed methods for biodiesel preparation from various feedstocks [14, 15, 16]. The following is the process for converting palm oil to biodiesel.

Palm oil is collected and is preheated to 60°C separately. A 0.5g of NaOH and methanol (9:1 methanol to oil ratio) are mixed properly to form Sodium methoxide. The preheated oil is slowly poured in Sodium methoxide, keeping the stirrer on. The mixture is allowed stir in a magnetic stirrer for 1 hour at 400 rpm maintaining 55°C reflux. Then the mixture is poured in separating funnel and left it undisturbed for 1 hour in a separating funnel and thus formed glycerin is removed which are formed at the bottom layer. The top layered oil is required one and it is separated to the next step.

Water washing has done to wash the soaps out of the biodiesel with warm water, 3 to 4 times. Add a small amount of dilute acetic acid in biodiesel before adding the water. Thus, the pH of the solution should be closer to neutral and take out any catalyst suspended in the biodiesel. The biodiesel is water washed gently with warm water at 50°C temperature to remove impurities for three to four times. Then the washed oil is heated above 100°C to remove water particles and excess methanol. Moreover, thus obtained product is the required palm oil biodiesel.

Characterization of Cerium Oxide nanoparticle

There are various methods to synthesis CeO$_2$ precipitation, hydrothermal, sol-gel method, microemulsion method and other methods [23-30]. Among the various preparation methods, microwave-assisted solution method is an inexpensive and simple method to prepare the nanoparticles. The synthesis of CeO$_2$ nanoparticles was done by method - Solvothermal technique [23].

The synthesis of CeO$_2$ nanoparticles has carried out by using Solvothermal technique. X-ray diffraction method (XRD) characteristic peaks corresponding to the (111), (200), (220), (311), (222), (400), (331) and (420) planes are located at 2θ = 28.6°, 33.1°, 47.5°, 56.4°, 59.1°, 69.4°, 76.7° and 79.1° respectively.

![Figure 2. XRD of synthesized cerium oxide nanoparticles.](image-url)
3. Experimental Setup

The experimental investigation was carried out and the properties of modified fuels are compared with diesel fuel. The properties were studied as the calorific value, viscosity, flash point and fire point. The standard ASTM procedures were used during experimentation. The performance tests were conducted on research engine (single cylinder four stroke diesel engine) using test fuels and also, the emission characteristics are studied by using exhaust gas emission analyzer.

A single cylinder, four stroke and water-cooled diesel engine was used to conduct the performance, emission and combustion test. An electrical generator used for loading the engine. AVL 444 N Di-Gas analyzer and AVL 437C Smoke meter were used for emission studies. The following Table 1 is the specifications of the engine:

Table 1: Specifications of the diesel engine.
Type
Single cylinder, four stroke, water cooled
diesel engine
Stroke
110mm
Bore
88mm
Rated output
5.2 kW
Rated speed
1500 rpm
Compression ratio
17.5
Loading device
Electric generator

4. Results & Discussions

The findings of diesel engine performance, combustion, and emission characteristics for the diesel, biodiesel blend B20 and CeO₂ nanoparticle as additive to B20 (30ppm, 60ppm, 90ppm and 120ppm) test fuels are discussed in the subsequent sections.

Properties of fuels used

The properties of the above modified fuels along with diesel fuel are shown in Table 2. The various physicochemical properties of the above modified fuels were carried out and the thus obtained results are compared with the pure diesel (D100). The main objective of the investigation was to find the variations in the properties of the fuels also, the effect of the level of inclusion of CeO₂ nanoparticles added to the B20 biodiesel blend. The tested fuels were shown an increasing trend for the flash and fire points with the increase in dosing level, which indicates a continual decrease in the volatility of the test fuels with increases in the quantity of the CeO₂ nanoparticle additive [5, 8]. The CeO₂ nanoparticles additive to the modified fuels shown that the fluid layer resistance has increased and hence the kinematic viscosity [9] also.
Table 2 Properties of the modified fuels and Diesel.

	D100	B20	B20+30ppm	B20+60ppm	B20+90ppm	B20+120ppm
Kinematic Viscosity @40°C in cSt	2.5	3.29	3.32	3.38	3.53	3.98
Flash point °C	45	52	56	64	72	74
Fire point °C	56	59	63	72	79	81
Density @15°C in kg/m³	834	852	857	860	863	866
Calorific value in kJ/kg	42,538	41,094	41,162	41,214	41,319	41,325

Performance and emissions of test fuels on diesel engine

Brake Thermal Efficiency (BTE)

The biodiesel’s BTE is less than diesel fuel [3] due to its lower calorific value. Figure 3 shows variations in the BTE with load for the palm oil biodiesel blends doped with CeO₂ nanoparticles and diesel fuel [41]. The result depicted that the BTE of the diesel engine continuously improved by the increased dosing levels of CeO₂ nanoparticles additive in B20 biodiesel blend. The enhancement in BTE for the CeO₂ nanoparticles additive in B20 biodiesel blend doped fuels from 30ppm to 120ppm is mainly due to the occurrence of better fuel combustion and the nanoparticles doping promoted the combustion in the engine [6, 43]. Above 90ppm dosing level of the CeO₂ nanoparticle increased, due to more agglomeration of particles, the catalytic action was lowered and lessens the BTE at 120ppm. The results depicted that the BTE of blend B20+90ppm of CeO₂ has highest efficiency in the modified blends of biodiesel but less than pure diesel i.e., D100 fuel at all loads.
Figure 3. Variation of brake thermal efficiency (BTE) for modified fuels and diesel.

Brake Specific Fuel Consumption (BSFC)

Due to lower calorific value of the biodiesel's, BSFC of the biodiesel is higher when compared to diesel fuel [3]. Figure 4 shows that the variations in BSFC with load for the palm oil biodiesel blends with CeO\(_2\) nanoparticles doped in biodiesel and diesel fuel. Due to increase in dose of CeO\(_2\) nanoparticles in biodiesel from 30ppm to 120ppm, favoured to enhance the combustion. Therefore, the BSFC decreased with the increased in the dosing levels of the particles, except for B20+120ppm, due to more agglomeration and lowered catalytic action. B20+90ppm blend shown the lower BSFC out of other biodiesel blends except for diesel.
Figure 4. Variation of brake specific fuel consumption (BSFC) for the modified fuels and diesel.

Unburned hydrocarbon (UBHC) emission

UBHC emission of biodiesel is lower than diesel fuel due to lower calorific value and incomplete combustion of fuel. Figure 5 illustrates variation in UBHC emission with load for the palm oil biodiesel blends doped with CeO₂ nanoparticles and diesel fuel. Due to CeO₂ nanoparticles additive doped in biodiesel blends from 30ppm to 120ppm increases the oxidation of hydrocarbon. Therefore, a complete combustion is promoted in the engine. For B20+120ppm, due to more agglomeration and lower catalytic action, the UBHC of B20+90ppm blend is lower than other modified fuels and diesel fuel. The chemical reactions during combustion are:

\[
\frac{(2x + y)CeO_2}{2} + \frac{CH}{x} \rightarrow \left[\frac{(2x+y)}{2}\right]Ce_2O_3 + \frac{x}{2}CO_2 + \frac{y}{2}H_2O \tag{1}
\]

\[
4CeO_2 + S_{saso} \rightarrow 2Ce_2O_3 + CO_2 \tag{2}
\]
Due to low calorific value and incomplete combustion, carbon monoxide emission of the biodiesel is less than diesel. Figure 6 shows the variation in CO emission with load for the palm oil biodiesel blends with CeO$_2$ nanoparticles doped and diesel fuel. The additive CeO$_2$ nanoparticles doped in biodiesels promoted better combustion, CO emissions from the diesel engine depends on the fuel properties, due to the ability of nanoparticles to convert CO to CO$_2$. Therefore, CO of B20+90ppm biodiesel blend is lower than other modified fuels (except B20+120ppm biodiesel blends) and diesel fuel.
Figure 6. Variation of carbon monoxide (CO) for the modified fuels and diesel.

Nitrogen oxides (NOX) emission

Figure 7 illustrates the variation in NOX emission with load for the palm oil biodiesel blends with CeO2 nanoparticles doped and diesel fuel. The CeO2 nanoparticles additive doped in biodiesel blends from 30ppm to 120ppm. The NOX emission has increased, in order to reduce it, CeO2 nanoparticles additive added to B20 biodiesel blend. Due to high thermal stability, oxidation of hydrocarbon forms Ce2O3 is formed equation (2) and again reduction of NO occur due to deoxidizing to CeO2. The chemical reaction during combustion is:

$$Ce_2O_3 + NO \rightarrow 2CeO_2 + \frac{1}{2}N_2$$

(3)

Therefore, due to the CeO2 nanoparticles additive to biodiesel blends, lower NOx emission occurs for the modified fuels doped up to 90ppm, and the NOx emission B20+90ppm biodiesel blend are lower than other modified fuels except for B20+120ppm biodiesel blend.
Figure 7. Variation of Oxides of Nitrogen (NO\textsubscript{x}) for the modified fuels and diesel.

Smoke Emissions

Figure 8 demonstrates the variation in smoke emission with load for the palm oil biodiesel blends with CeO\textsubscript{2} nanoparticles doped and diesel fuel. The CeO\textsubscript{2} nanoparticles additive doped in biodiesel blends from 30ppm to 120ppm, the decreased in smoke emission are detected due to higher surface area to volume ratio and improved combustion. Therefore, with increase in dosing of the nanoparticles, the smoke emission was reduced except for B20+120ppm. Hence, smoke emission of B20+90ppm blend is lower than other modified fuels and diesel fuel.
5. Conclusions

The outcome of the experimental investigation work was observed and the following effects on performance and emission of engine by CeO$_2$ nanoparticles doping in B20 palm oil biodiesel blends at 30ppm to 120ppm:

- A maximum increment of 1.23% in BTE and a maximum of 2.56% decrement in BSFC by CeO$_2$ nanoparticles doping in B20 biodiesel blend palm oil was found in B20+90ppm biodiesel blend at maximum load.
- A maximum reduction in unburned hydrocarbon and carbon monoxide emissions were observed by CeO$_2$ nanoparticles doping in palm oil B20 biodiesel blend is 19.7% and 15.4% respectively.
- Smoke and NOx emissions were reduced by CeO$_2$ nanoparticles doping in palm oil B20 biodiesel blend with maximum reduction of 4.6% and 5.9% respectively in biodiesel blend B20+90ppm.

Therefore, from the experimental investigation work concluded that B20+90ppm of palm oil biodiesel blend as best biodiesel blend of modified fuels and can be considered as an alternative fuel for the diesel engine.

References

[1] Agarwal A K, 2003 Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines Progress in Energy & Combustion Science, 33 231–277.
[2] Mohamad Azri Sukiran, Soh Kheang Loh and Nasrin Abu Bakar 2018 Conversion of pre-treated oil palm empty fruit bunches into bio-oil and bio-char via fast pyrolysis Journal of Oil Palm Research Vol 30 (1), 121–129.

[3] Ambarish Datta and Bijan Kumar Mandal 2012 Biodiesel Production and its Emissions and Performance: A Review International Journal of Scientific & Engineering Research, vol. 3, Issue 6.

[4] Sadhik Basha J, Anand R B 2013 The influence of nano additive blended biodiesel fuels on working characteristics of a diesel engine Journal of Brazilian society of Mechanical Sciences and Engineering, 35 257-264.

[5] Ganesan.S, Dineshbabu Munuswamy, Prabhu Appavu, Arunkumar.T and Yuvarajan Devarajan 2019 Effect of EGR & Nanoparticles on performance and emission characteristics of a Diesel engine fuelled with palm biodiesel and diesel blends Journal of Oil Palm Research, Vol. 31 (1) 130 – 137.

[6] Sajith V, Sobhan C B, Peterson G B 2010 Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Advances Mechanical Engineering 1-6.

[7] Ajin C. Sajeevan and Sajith V 2013 Diesel engine emission reduction using catalytic nanoparticles: An experimental investigation, Journal of Engineering, 589382.

[8] Dutta P, Pal S, Seehra M S, Shi Y, Eyring E M and Erust R D 2006 Concentration of Ce\(^{4+}\) and oxygen vacancies in cerium oxide nanoparticles Chemistry of Materials, vol. 18, no. 21, 5144 – 5146

[9] Selvan V A M, Anand R B and Udayakumar M 2009 Effects of cerium oxide nanoparticle addition in diesel and diesel-biodiesel-ethanol blends on the performance and emission characteristics of a CI engine, Journal of Engineering and Applied Science, vol.4, no. 7.

[10] Sadhik Basha J and Anand R B 2011 Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine Journal of Renewable and Sustainable Energy 3, 023106.

[11] Ashraful A M 2014 Production and comparison of fuel properties, engine performance and emission characteristics of biodiesel from various non-edible vegetable oils: A review, Energy Conversion and Management, 80 202-228.

[12] Suresh Babu Rao H, Dr. Venkateswara Rao T and Dr. Hema Chandra Reddy K, 2013 Palm oil and Calophyllum inophyllum inophyllum oil are Potential feed stocks for future biodiesel in compression ignition engines: A Review International Journal of Mechanical Engineering & Technology (IJMET), vol.4, Issue. 5, 301-312.

[13] Girdhar Joshi, Jitendra K. Pandey, Sravendra Rana, Devendra S. Rawat 2017 Challenges and opportunities for the application of biofuel, Renewable and Sustainable Energy Reviews 79 850–866.

[14] Sahoo PK, Das LM 2009 Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils Fuel 88(9):1588–94.

[15] Sahoo PK, Das LM, Babu MKG, Naik SN 2007 Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine Fuel 86 (3):448–54.

[16] Ong H C, Silintona A C, Masjuki H H, Mahlia, Chong, Boosroh 2013 Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra Energy Conversion and Management 73 245–255.

[17] Ganapathy T, Gakkhar R P, Murugesan K 2011 Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine, Appl. Energy 88 (12) 4376–4386.

[18] Ashok B, Nanthagopal K, Thundil Karuppa Raj R, Pradeep Bhasker J, Sakti Vignesh D 2017 Influence of injection timing and exhaust gas recirculation of a Calophyllum inophyllum methyl ester fuelled CI engine, Fuel Processing Technology 167 18-30.

[19] Murugesan A, Subramaniam D, Vijayakumar C, A. Avinash, N. Neduzechzian 2012 Analysis on performance, emission and combustion characteristics of diesel engine fueled with methyl–ethyl esters J. Renewable and Sustainable Energy. 4 (6) 063116.

[20] Rashidul H.K., MasjukiH.H., KalamM.A, AshrafurAlM., Ashrafur RahmanS.M., ShahirS.A. 2014 The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine, Energy Conversion and Management 88 348-364.

[21] Bhupeenda Singh Chauhan, Naveen Kumar, Haeng Muk Cho, Hee Chang Lim 2013 A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends, Energy 56 1-7.
[22] Palash S M, Masjuki H H, Kalam M A, Masum B M, Sanjid A, Abedin M J 2013 State of the art of NOx mitigation technologies and their effect on the performance and emission characteristics of biodiesel-fueled Compression Ignition engines, *Energy Convers. Manag.* **76**: 400–420.

[23] Kumar E, Selvarajan P, Muthuraj D 2013 Synthesis and Characterization of CeO₂ nanocrystal by Solvothermal route, *Materials Research* **16**(2): 269 – 276.

[24] Chen PL and Chen IW 1999 Reactive Cerium (IV) Oxide Powders by the Homogeneous Precipitation Method. *Journal of American Ceramic Society* **76**:1577-1583.

[25] Djuricic B and Pickering S 1999 Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders. *Journal of the European Ceramic Society*.

[26] Wu NC, Shi EW, Zheng YQ and Li WJ.2002 Effect of pH of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium (IV) Oxide Powders. *Journal of American Ceramic Society*.85:2462-2468.

[27] Hirano M and Kato E 1996 The hydrothermal synthesis of ultrafine cerium(iii) oxide powders. *Journal of Materials Science Letters* **15**:1249-1250.

[28] Li LP, Lin XM and Li GS, Inomata H 2001 Solubility and transport properties of Ce₁−ₓN₂xO₂−y oxide powders. *Journal of American Ceramic Society* **84**:3207-3213.

[29] Masui T, Fujiwara K, Machida KI, Adachi GY, Sakata T and Mori H. 1997 Characterization of Cerium (IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles. *Chemistry of Materials*.

[30] Sumalin Phoka, Paveena Laokul, Ekaphan Swatsitang, Vinich Promarak, Supapan Seraphin, Santi Maensiria 2009 Synthesis, structural and optical properties of CeO₂ nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route, *Materials Chemistry and Physics* **115**:423-428.

[31] Can O, Oztürk E, Solmaz H, Aksoy F, Çinar C, Yücesu H S 2016 Combined effects of soybean biodiesel fuel addition and EGR application on the combustion and exhaust emissions in a diesel engine, *Appl. Therm. Eng.* **95**:115–124.

[32] Qi D, Leick M, Liu Y, Chia-fon F L 2011 Effect of EGR and injection timing on combustion and emission characteristics of split injection DI-diesel engine fueled with biodiesel, *Fuel* **90**(5):1884–1891.

[33] Arul Prakasajothi Mahalingam, Dinesh Babu Munuswamy, Yuvarajan Devarajan and Santhanakrishnan Radhakrishnan 2018 Investigation on the emission reduction technique in Acetone-Biodiesel aspirated diesel engine”. *Journal of Oil Palm Research Vol* **30**(2) 345–349.

[34] Yung Chee Liang, Harrison Lau Lik Nang and Choo Yuen May 2013 Physico-chemical properties of biodiesel produced from Jatropha curcas oil and palm oil *Journal of Oil Palm Research Vol* **25**(2):159 – 164.

[35] Ulf Neuling and Martin Kaltschmitt 2017 Review of biofuel production – feedstock, processes and markets *Journal of Oil Palm Research Vol* **29**(2) 137 – 167.

[36] Adee K Hayyan, Shahidah Nusailah Rashid, Maan Hayyan, M Y Zulkifliy, Mohd Ali Hashim and Nurul Alfaa Osman 2017 Synthesis of novel eutectic catalyst for the esterification of crude palm oil mixed with sludge palm oil *Journal of Oil Palm Research Vol* **29**(3) 373 – 379.

[37] Denis J Murphy 2014 The future of oil palm as a major global crop: opportunities and challenges *Journal of Oil Palm Research Vol* **26**(1):1–24.

[38] Mirzajan-zadeh M, Meisam Tabatabaee, Mehdi Ardjmand, Alimorad Rashidi, Barat Gholbadian, Mohammad Barkhi, Mohammad Pazouki, 2015 A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions, *Fuel* **139**:374–382.

[39] Sai-fuddin M, Goh P E, Moneruzzaman W. S. H, K. M. and Fatima A, 2014 Biodiesel Production from Waste Cooking Palm Oil and Environmental Impact Analysis, *Bulgarian Journal of Agricultural Science*, **20** (No 1) 186-192.

[40] Sanjid A, MasjukiH. H., KalamM. A, Ashrafir Rahman S. M. AbedinM.J. PalashS. M 2013 Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine *Renewable and Sustainable Energy Reviews* **27** 664–682.

[41] Devarajan Y, Jayabal R K, Ragupathy D and Venu H 2016 Emissions analysis on second generation biodiesel. *Frontiers Environ. Sci. Eng.*., **11**(1),3.

[42] Venkata Ramanan M and Yuvarajan D 2016 Emission analysis on the influence of magnetite nanofluid on methyl ester in diesel engine. *Atoms. Pollution Res.*, **7**(3); 477-481.
[43] Shaafi T, Sairam K, Gopinath A, Kumaresan G, Velraj R 2015 Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—A review, Renewable and Sustainable Energy Reviews 49 563–573.

[44] Radha Krishna Gopidesi, Goli Ravi Sankar, Appana Durga Pavan Kumar, Alladi Sukhesh Kumar and Bondalapati Srimal 2019 Evaluating the Performance and Emission Characteristics of Ci Engine with Waste Plastic Oil, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 9 (No 3) 1015-1020.

[45] Avinash Mutluri, Radha Krishna Gopidesi and Srinivas Viswanath Valeti 2020 A Research on the Performance, Emission and Combustion Parameters of the Hydrogen and Biogas Dual Fuel Engine, Incas Bulletin, 12 (No 3) 129 – 136.

[46] Radha Krishna Gopidesi and S.R. Premkartikkumar 2019 Performance, emission and combustion analysis of diesel engine fuelled with emulsified biodiesel, Progress in Industrial Ecology – An International Journal, 13 (No. 3) 292–301.

[47] Radha Krishna Gopidesi, Srinivas Viswanth Valeti, Nagarjuna Kumma, Avinash Mutluri and Borigora Venu 2019 Evaluation Dual Fuel Engine Fuelled With Hydrogen and Biogas as Secondary Fuel, International Journal of Recent Technology and Engineering (IJRTE), 8 (No 2) 1902-1905.