J/ψ production in NRQCD: A global analysis of yield and polarization

Mathias Butenschön
(Hamburg University)

In Collaboration with Bernd Kniehl
J/ψ Production with NRQCD

Factorization theorem: \(\sigma_{J/\psi} = \sum_n \sigma_{c\bar{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle \)

- **n**: Every possible Fock state, including **color-octet** (CO) states.
- **\(\sigma_{c\bar{c}[n]} \)**: Production rate of \(c\bar{c}[n] \), calculated in perturbative QCD
- **\(\langle O^{J/\psi}[n] \rangle \)**: Long distance matrix elements (LDMEs): describe \(c\bar{c}[n] \rightarrow J/\psi \), universal, extracted from experiment.

Scaling rules: LDMEs scale with definite power of \(v (v^2 \approx 0.2) \):

scaling	\(v^3 \)	\(v^7 \) ("CO states")	\(v^{11} \)
\(n \)	\(3S_1^{[1]} \)	\(1S_0^{[8]}, 3S_1^{[8]}, 3P_J^{[8]} \)	...

- **Double expansion** in \(v \) and \(\alpha_s \)
- Leading term in \(v \) (\(n = 3S_1^{[1]} \)) equals **color-singlet model**.
Global Fit to Unpolarized Data

\[<O^{[1]} S_0^{[8]} > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^3 \]

\[<O^{[3]} S_1^{[8]} > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^3 \]

\[<O^{[3]} P_0^{[8]} > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^5 \]
Global Fit to Unpolarized Data

Fit results after subtracting higher charmonia feed-down contributions from prompt data (pp: 36%, γp: 15%, γγ: 9%, ee: 26%):

\[<O^{[1]S_0^{[8]}}>= (3.04 \pm 0.35) \cdot 10^{-2} \text{ GeV}^3\]
\[<O^{[3]S_1^{[8]}}>= (1.68 \pm 0.46) \cdot 10^{-3} \text{ GeV}^3\]
\[<O^{[3]P_0^{[8]}}>= (-9.08 \pm 1.61) \cdot 10^{-3} \text{ GeV}^5\]

\[<O^{[1]S_0^{[8]}}>= (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^3\]
\[<O^{[3]S_1^{[8]}}>= (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^3\]
\[<O^{[3]P_0^{[8]}}>= (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^5\]
J/ψ Polarization

- **Angular distribution** of decay lepton l^+ in J/ψ rest frame

 Polarization observables λ, μ, ν:

 \[
 \frac{d\Gamma(J/\psi \to l^+l^-)}{d\cos\theta \ d\phi} \propto 1 + \lambda \cos^2\theta + \mu \sin(2\theta) \cos\phi + \frac{\nu}{2} \sin^2\theta \cos(2\phi)
 \]

- Depends on choice of coordinate system:
 - Helicity frame: z axis $\parallel -(\vec{p}_\gamma + \vec{p}_p)$
 - Collins-Soper frame: z axis $\parallel \vec{p}_\gamma/|\vec{p}_\gamma| - \vec{p}_p/|\vec{p}_p|$
 - Target frame: z axis $\parallel -\vec{p}_p$

- **In Calculation**: Plug in explicit expressions for $cc[n]$ spin polarization vectors according to

 \[
 \lambda = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \mu = \frac{\sqrt{2} \text{Re} \ d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \quad \nu = \frac{2 d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}
 \]

- We use the CO LDME set with feed-down contributions subtracted.
J/ψ Polarization in Photoproduction: p_T Distribution

- **Bands:** Uncertainties due to scale variation and CO LDMEs.
- **CSM** predicts **longitudinal** J/ψ at high p_T.
- **CS+CO:** largely **unpolarized** J/ψ at high p_T. α_s expansion converges better.
- **H1 and ZEUS data not precise** enough to discriminate CSM / NRQCD.

M. Butenschön
J/ψ production in NRQCD: A global analysis of yield and polarization
J/ψ Polarization in Photoproduction: z Distribution

- Bands: Uncertainties due to scale variation and CO LDMEs.
- **Scale** uncertainties very large.
- **Error bands** of CSM and NRQCD largely overlap.
- p_T distribution better suited to discriminate production mechanisms than z.

M. Butenschön

J/ψ production in NRQCD: A global analysis of yield and polarization
Helicity frame: NRQCD predicts strong **transverse** polarization at high p_T.

Collins-Soper frame: NRQCD predicts slightly longitudinal J/ψ.

Disagreement with CDF Run II data, rough agreement with early ALICE data.

Following high precision LHC data: Confirm/rule out LDME universality!
Polarization in Hadroproduction: Ma et al.

- Chao, Ma, Shao, Wang, Zhang (2012)
- **Fit** to CDF Tevatron J/ψ yield and polarization data with $p_T > 7$ GeV:
 \[
 \langle O_8^{J/\psi(1S_0)} \rangle = 0.089 \text{ GeV}^3 \quad \langle O_8^{J/\psi(3S_1)} \rangle = 0.003 \text{ GeV}^3 \quad \langle O_8^{J/\psi(3P_0)} \rangle = 0.0126 \text{ GeV}^5
 \]
- **Describes** CDF Run II polarization data and J/ψ hadroproduction yield up to **highest measured p_T values**, not below 7 GeV.
- **But:** **Disagreement** with photoproduction at HERA and e^+e^- at BELLE:

Bands: Two alternative LDME sets specified in Ma et al.:

\[
\begin{align*}
\langle O_8^{J/\psi(1S_0)} \rangle &= 0 \\
\langle O_8^{J/\psi(1S_0)} \rangle &= 0.11 \text{ GeV}^3 \\
\langle O_8^{J/\psi(3S_1)} \rangle &= 0 \\
\langle O_8^{J/\psi(3S_1)} \rangle &= 0 \\
\langle O_8^{J/\psi(3P_0)} \rangle &= 0.014 \text{ GeV}^3 \\
\langle O_8^{J/\psi(3P_0)} \rangle &= 0.054 \text{ GeV}^5 \\
\langle O_8^{J/\psi(3P_0)} \rangle &= 0
\end{align*}
\]
Polarization in Hadroproduction: Gong et al.

- Gong, Wan, Wang, Zhang (2012)
- **Fit only hadroproduction yield**, but consider also ψ' and χ_{cj} contributions:
 - Fit χ_{c0} CO LDME to LHCb data
 - Fit ψ' CO LDMEs to CDF and LHCb data ($p_T > 7$ GeV)
 - Subtract ψ' and χ_{cj} feeddowns, fit J/ψ LDMEs to CDF and LHCb data ($p_T > 7$ GeV):
 \[
 \begin{align*}
 \langle O^{J/\psi}_{8'}(1S_0) \rangle &= 0.097 \text{ GeV}^3 \\
 \langle O^{J/\psi}_{8'}(3S_1) \rangle &= -0.0046 \text{ GeV}^3 \\
 \langle O^{J/\psi}_{8}(3P_0) \rangle &= -0.0214 \text{ GeV}^5 \\
 \langle O^{\psi'}_{8}(1S_0) \rangle &= -0.0001 \text{ GeV}^3 \\
 \langle O^{\psi'}_{8}(3S_1) \rangle &= 0.0034 \text{ GeV}^3 \\
 \langle O^{\psi'}_{8}(3P_0) \rangle &= 0.0095 \text{ GeV}^5
 \end{align*}
 \]
- **Predict J/ψ, ψ' and χ_{cj} polarization** in prompt hadroproduction (first time!)
- Predicts **moderate** transverse J/ψ polarization, **contrary to** CDF Run II data
- Also: In disagreement with photoproduction at HERA and e^+e^- at BELLE:
Overview: Three J/ψ Production Works

Butenschön, Kniehl:

\[
(O_0^{W}(S_0)) = 0.0497 \text{ GeV}^2
\]
\[
(O_0^{W}(S_1)) = 0.0022 \text{ GeV}^2
\]
\[
(O_0^{W}(P_0)) = -0.0161 \text{ GeV}^2
\]

Gong, Wan, J.-X. Wang, H.-F. Zhang:

\[
(O_0^{W}(S_0)) = 0.0973 \text{ GeV}^2
\]
\[
(O_0^{W}(S_1)) = -0.0001 \text{ GeV}^2
\]
\[
(O_0^{W}(P_0)) = 0.0046 \text{ GeV}^2
\]
\[
(O_0^{W}(P_1)) = 0.0034 \text{ GeV}^2
\]
\[
(O_0^{W}(P_2)) = -0.0214 \text{ GeV}^2
\]
\[
(O_0^{W}(P_3)) = 0.0095 \text{ GeV}^2
\]
\[
(O_2^{W}(S_1)) = 0.0022 \text{ GeV}^2
\]

Chao, Ma, Shao, K. Wang, Y.-J. Zhang:

\[
(O_0^{W}(S_0)) = 0.089 \text{ GeV}^2
\]
\[
(O_0^{W}(S_1)) = 0.003 \text{ GeV}^2
\]
\[
(O_0^{W}(P_0)) = 0.0126 \text{ GeV}^2
\]
Overview: Three J/ψ Production Works

Chao, Ma, Shao, K. Wang, Y.-J. Zhang:

\(O_{J/ψ}^{1S}(S_1) = 0.089 \text{ GeV}^3\)
\(O_{J/ψ}^{1S}(S_1) = 0.003 \text{ GeV}^3\)
\(O_{J/ψ}^{1P_0} = 0.0126 \text{ GeV}^5\)

AGREEMENT:

Can NOT describe e⁺e⁻, yp, pp yield and CDF polarization with same LDMEs.
Summary

- NRQCD provides rigorous **factorization theorem** for heavy quarkonium production. But: Need to proof **LDME universality**.
- **Combined NLO fit** of NRQCD LDMEs to inclusive \(J/\psi \) production data from ALICE, ATLAS, BELLE, CDF, CMS, DELPHI, H1, LHCb, PHENIX, ZEUS.
- Good agreement for **CS+CO** with data except perhaps for \(\gamma \gamma \rightarrow J/\psi + X \).
- **CSM** predictions fall short of data everywhere except for \(e^+e^- \rightarrow J/\psi + X \).
- Fit constrained. CO LDMEs in accordance with **velocity scaling rules**.
- NLO calculations of **polarized** \(J/\psi \) cross section including CO states: Direct photoproduction at HERA and hadroproduction at Tevatron and LHC.
- **CDF Tevatron** Run II data in disagreement with our NRQCD prediction, early low-\(p_T \) ALICE data however still in agreement.

- Two later analyses also show that \(e^+e^-, \gamma p, pp \) yield and CDF Run II polarization data can **not** be described with same LDME set.
 - Following LHC measurements: Hopefully **clarify** LDME universality!
J/ψ production in NRQCD: A global analysis of yield and polarization

M. Butenschön
Calculate Inclusive J/ψ Production within NRQCD

Factorization formulas (here hadroproduction):

- Convolute partonic cross section with proton PDFs:
 \[\sigma_{\text{hadr}} = \sum_{i,j} \int dx \ dy \ f_{i/p}(x) \ f_{j/p}(y) \cdot \sigma_{\text{part},ij} \]

- NRQCD factorization:
 \[\sigma_{\text{part},ij} = \sum_n \sigma(ij \to c\bar{c}[n]+X) \cdot \langle O^{J/\psi}[n]\rangle \]

Amplitudes for c\bar{c}[n] production by projector application, e.g.:

\[A_{c\bar{c}\{3S_1^{1/2}\}} = \varepsilon_\alpha(m_s) \ Tr \left[C \prod_\alpha A_{c\bar{c}} \right] \big|_{q=0} \]
\[A_{c\bar{c}\{3P_j\}} = \varepsilon_\alpha(m_s) \varepsilon_\beta(m_l) \ \frac{d}{dq_\beta} \ Tr \left[C \prod_\alpha A_{c\bar{c}} \right] \big|_{q=0} \]

- \(A_{c\bar{c}} \): Amputated pQCD amplitude for open c\bar{c} production.
- \(q \): Relative momentum between c and c. \(\varepsilon \): Polarization vectors.
Overview of IR Singularity Structure
In Detail: Hadroproduction (RHIC, Tevatron)

- Color singlet model **not enough** to describe data (although increase from Born to NLO)
- **CS+CO** can describe data.
- $^{3}P_J^{[8]}$ short distance cross section **negative** at $p_T > 7$ GeV.
- But: Short distance cross sections and LDMEs **unphysical**
 - No problem!
In Detail: Photoproduction (ZEUS HERA1)

- **Distributions:** Transverse momentum (p_T), photon-proton c.m. energy (W), and $z = \text{Fraction of photon energy going to } J/\psi$.

- Again: Color singlet alone **below** the data, **CS+CO** describes data well.

- Calculation includes **resolved** photon contributions: Important at low z.

- **Good description at high z:** No increase like in older Born analyses!
Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low-\(p_T\) cut:

\(p_T > 1 \text{ GeV}\)	\(p_T > 2 \text{ GeV}\)	\(p_T > 3 \text{ GeV}\)	\(p_T > 5 \text{ GeV}\)	\(p_T > 7 \text{ GeV}\)	
\(<O[1S_0^{[8]}]> [10^{-2} \text{ GeV}^3]\)	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
\(<O[3S_1^{[8]}]> [10^{-3} \text{ GeV}^3]\)	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
\(<O[3P_0^{[8]}]> [10^{-2} \text{ GeV}^5]\)	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50
\(M_0 [10^{-2} \text{ GeV}^3]\)	2.25 ± 0.12	3.51 ± 0.19	3.29 ± 0.20	5.50 ± 0.29	8.24 ± 0.58
\(M_1 [10^{-3} \text{ GeV}^3]\)	6.37 ± 0.19	5.80 ± 0.19	5.54 ± 0.20	3.27 ± 0.29	1.63 ± 0.43

- **Fit underconstrained.** Therefore give two linear combinations of Ma et al.:

 \[M_0 = \langle O(1S_0^{[8]}) >= 3.9 \langle O(3P_0^{[8]}) \rangle / m_c^2\]
 \[M_1 = \langle O(3S_1^{[8]}) > - 0.56 \langle O(3P_0^{[8]}) \rangle / m_c^2\]

- **Fit results depend strongly** on low-\(p_T\) cut.

Agreement with Ma et al.’s fit to Tevatron run II data with \(p_T > 7 \text{ GeV}\):

Default: Include feed-downs, directly fit \(M_0\) and \(M_1\):	\(M_0\) = \(7.4 ± 1.9\) \(10^{-2} \text{ GeV}^3\)	\(M_1\) = \(0.5 ± 0.2\) \(10^{-3} \text{ GeV}^3\)
Ignore feed-downs, directly fit \(M_0\) and \(M_1\):	\(M_0\) = \(8.92 ± 0.39\) \(10^{-2} \text{ GeV}^3\)	\(M_1\) = \(1.26 ± 0.23\) \(10^{-3} \text{ GeV}^3\)
Ignore feed-downs, \(M_0\) and \(M_1\) from 3-parameter fit:	\(M_0\) = \(8.54 ± 1.02\) \(10^{-2} \text{ GeV}^3\)	\(M_1\) = \(1.67 ± 1.05\) \(10^{-3} \text{ GeV}^3\)

[Ma, Wang, Chao: Table 1 of PRL 106, 042002 and Equation (18) of PRD 84, 114001]
Hadroproduction-only Fit

Global fit to hadroproduction data alone, vary low-\(p_T\) cut:

\(p_T > 1\) GeV	\(p_T > 2\) GeV	\(p_T > 3\) GeV	\(p_T > 5\) GeV	\(p_T > 7\) GeV	
\(<O[^1S_0[8]]> [10^{-2} GeV^3]\)	8.54 ± 0.52	16.85 ± 1.23	11.02 ± 1.67	1.68 ± 2.20	2.18 ± 2.56
\(<O[^3S_1[8]]> [10^{-3} GeV^3]\)	-2.66 ± 0.69	-13.36 ± 1.60	-5.56 ± 2.19	8.75 ± 2.98	10.34 ± 3.55
\(<O[^3P_0[8]]> [10^{-2} GeV^5]\)	-3.63 ± 0.23	-7.70 ± 0.61	-4.46 ± 0.87	2.20 ± 1.23	3.50 ± 1.50

\(M_0 [10^{-2} GeV^3]\): 2.25 ± 0.12 3.51 ± 0.19 3.29 ± 0.20 5.50 ± 0.29 8.24 ± 0.58

\(M_1 [10^{-3} GeV^3]\): 6.37 ± 0.19 5.80 ± 0.19 5.54 ± 0.20 3.27 ± 0.29 1.63 ± 0.43

- **Fit underconstrained.** Therefore give two linear combinations of Ma et al.:
 \[
 M_0 = \langle O[^1S_0[8]]\rangle + 3.9 \langle O[^3P_0[8]]\rangle / m_c^2 \quad M_1 = \langle O[^3S_1[8]]\rangle - 0.56 \langle O[^3P_0[8]]\rangle / m_c^2
 \]
- **Fit results depend strongly** on low-\(p_T\) cut.

Agreement with Ma et al.’s fit to Tevatron run II data with \(p_T > 7\) GeV:

| Default: Include feed-downs, directly fit \(M_0\) and \(M_1\): | \(M_0 = (7.4 ± 1.9) \times 10^{-2} \text{ GeV}^3\) | \(M_1 = (0.5 ± 0.2) \times 10^{-3} \text{ GeV}^3\) |
|---|--|
| Ignore feed-downs, directly fit \(M_0\) and \(M_1\): | \(M_0 = (8.92 ± 0.39) \times 10^{-2} \text{ GeV}^3\) | \(M_1 = (1.26 ± 0.23) \times 10^{-3} \text{ GeV}^3\) |
| Ignore feed-downs, \(M_0\) and \(M_1\) from 3-parameter fit: | \(M_0 = (8.54 ± 1.02) \times 10^{-2} \text{ GeV}^3\) | \(M_1 = (1.67 ± 1.05) \times 10^{-3} \text{ GeV}^3\) |

[Ma, Wang, Chao: Table 1 of PRL 106, 042002 and Equation (18) of PRD 84, 114001]
Global Fit: Dependence on Low-p_T Cuts (1)

Global fit: Vary low-p_T cut on hadroproduction data:

hadroproduction data left	$p_T > 1$ GeV (148 points)	$p_T > 2$ GeV (134 points)	$p_T > 3$ GeV (119 points)	$p_T > 5$ GeV (86 points)	$p_T > 7$ GeV (60 points)
$<O[^1S_0^{[8]}]> [10^{-2} \text{ GeV}^3]$	5.68 ± 0.37	4.25 ± 0.43	4.97 ± 0.44	4.92 ± 0.49	3.91 ± 0.51
$<O[^3S_1^{[8]}]> [10^{-3} \text{ GeV}^3]$	0.90 ± 0.50	2.94 ± 0.58	2.24 ± 0.59	2.23 ± 0.62	2.96 ± 0.64
$<O[^3P_0^{[8]}]> [10^{-2} \text{ GeV}^5]$	-2.23 ± 0.17	-1.38 ± 0.20	-1.61 ± 0.20	-1.59 ± 0.22	-1.16 ± 0.23
$M_0 [10^{-2} \text{ GeV}^3]$	1.81 ± 0.09	1.85 ± 0.09	2.18 ± 0.10	2.17 ± 0.12	1.89 ± 0.12
$M_1 [10^{-3} \text{ GeV}^3]$	6.46 ± 0.17	6.37 ± 0.17	6.25 ± 0.17	6.18 ± 0.17	5.86 ± 0.18

- **Stabilizing** influence of photoproduction data.
- Fit **constrained** enough: Can now extract 3 CO LDMEs.
- Fit results now **almost independent** of low-p_T cut.
- Fit less stable with low-p_T cut below 2 GeV (nonperturbative effects).
Global Fit: Dependence on Low-p_T Cuts (2)

Global fit: Vary low-p_T cut on photoproduction (including γγ-scattering):

- **Fit stable** against varying low-p_T cut in region $1 \text{ GeV} \sim 3 \text{ GeV}$.
- Just 5 or 1 photoproduction against 119 hadroproduction points not enough to stabilize the fit. **Not stable** with low-p_T cut much larger than 3 GeV. (Would need more high-p_T photoproduction data.)

photoproduction data left	$p_T > 1 \text{ GeV}$	$p_T > 2 \text{ GeV}$	$p_T > 3 \text{ GeV}$	$p_T > 5 \text{ GeV}$	$p_T > 7 \text{ GeV}$
$<O[1S_0^{[8]}]> [10^{-2} \text{ GeV}^3]$	4.97 ± 0.44	5.10 ± 0.92	4.05 ± 1.17	5.44 ± 1.27	9.56 ± 1.59
$<O[3S_1^{[8]}]> [10^{-3} \text{ GeV}^3]$	2.24 ± 0.59	2.11 ± 1.22	3.52 ± 1.56	1.73 ± 1.68	-3.66 ± 2.09
$<O[3P_0^{[8]}]> [10^{-2} \text{ GeV}^5]$	-1.61 ± 0.20	-1.58 ± 0.48	-0.97 ± 0.63	-1.63 ± 0.68	-3.73 ± 0.83

$M_0 [10^{-2} \text{ GeV}^3]$ | 2.18 ± 0.10 | 2.36 ± 0.12 | 2.37 ± 0.13 | 2.62 ± 0.15 | 3.10 ± 0.19 |

$M_1 [10^{-3} \text{ GeV}^3]$ | 6.25 ± 0.17 | 6.05 ± 0.18 | 5.94 ± 0.19 | 5.78 ± 0.20 | 5.62 ± 0.20 |

Our default fit
Polarization in Hadroproduction: Contributions

- **First**: Sum up contributions of intermediate states:

 \[\sum \text{ intermediate states } \]

 Helicity frame:

 ![Helicity frame graphs]

 Collins-Soper frame:

 ![Collins-Soper frame graphs]

- **Then**: \(\lambda_\theta = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}} \), \(\lambda_{\theta\phi} = \frac{\sqrt{2} \text{Re} d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}} \), \(\lambda_{\phi} = \frac{d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}} \)