The Dynamics of Changes in the Concentration of Polluting Components in Discharges of Enterprises of Electrometallurgical Profile and the Development of a Range of Environmental Measures for Wastewater Treatment

A V Zvyagintseva¹, S A Sazonova², V V Kulneva³

¹Candidate of Technical Sciences, Associate Professor, Department of Chemistry and Chemical Technology, Voronezh State Technical University, Voronezh, Russia
²Candidate of Technical Sciences, Associate Professor, Department of Technosphere and Fire Safety, Voronezh State Technical University, Voronezh, Russia
³PhD student, Voronezh State Technical University, Voronezh, Russia

E-mail: zvygincevaav@mail.ru, ss-vrn@mail.ru, vedma_via@mail.ru

Abstract. A study of the dynamics of change in the concentration of pollutants discharges from electrometallurgical enterprises was carried out. Analytical data are presented for the following ingredients: suspended substances, dry residue, chlorides, sulfates, nitrates, nitrites, ammonium nitrogen, fluorides, iron in general. Possible ways of reducing harmful discharges into the water intake facility (Oskol River) have been analyzed, and the most effective method of combating them for the conditions of the Oskolsk electrometallurgical industrial complex (OEMIC) has been chosen. The use of electrolytic hydrogen for the electroflotation of pollutants from aqueous solutions in the technological processes of water treatment for reuse in the water supply systems of electrometallurgical enterprises is proposed.

1. Introduction
Oskol Electrometallurgical industrial complex is a modern enterprise specializing in the production of long products from high-quality structural steels, pipe billet oil and boiler range. OEMIC is located in the Staroskolsky district, 24 km kilometers south of the residential area of the city of Stary Oskol, in the north-east of the Belgorod region (at a distance of about 150 km), on the border with Ukraine.

The assessment of wastewater quality and its impact on the hydrochemical regime of the Oskol river was based on laboratory data on the composition and quality of OEMIC wastewater discharged into the river. Analytical data were analyzed for the following ingredients: suspended solids, dried contaminant, chlorides, sulfates, nitrates, nitrites, ammonium nitrogen, fluorides, total iron, according to [1, 2]. Data on the composition of wastewater were considered in close connection with background concentrations of pollutants in the water of the Oskol river at a point 500 m above the discharge site and at a point 500 m below the discharge site [3]. Since OEMIC wastewater is discharged within the boundaries of a settlement, in accordance with the methodology for calculating the maximum allowable wastewater discharge (MAD), the maximum permissible concentration (MPC) of substances for public water use facilities, C_{MPC}, is taken as a parameter.
The diagram (figure 1) is presented as a percentage, in quantitative terms: Biological oxygen consumption (BOD) - 2.04 mg/l; Dried pollutant - 914 mg/l; Nitrogen nitrate - 8.1 mg/l; Sulfates-186 mg/l; Chlorides - 352 mg/l; Petroleum products - 0.17 mg /l; Chemical oxygen consumption (COC) - 31.2 mg/l; Total iron - 0.17 mg/l; pH - 7.5.

![Diagram showing percentage distribution of pollutants](image)

Figure 1. Relative averages of concentrations of pollutants components in water prior to its purification: biological oxygen consumption - 0.14%; dried pollutant – 61.2%; nitrogen nitrate – 0.54%; sulfates – 12.46%; chlorides – 23.58; petroleum products – 0%; chemical oxygen consumption 2.10; Total iron – 0%.

2. Consider the results of an experiment on the use of hydrogen in local treatment facilities for the removal of organic components contained in wastewater

Waste water electroflotation was performed 3 times, changing the conditions of the experiment. In the first case, waste water electroflotation was performed without pretreatment. For the other two methods, electroflotation of waste water was carried out with the addition of 0.1 g of aluminum sulfate and the same amount of iron (III) chloride as coagulants per 2 liters of waste, respectively.

The most significant results are obtained by adding FeCl₃ to wastewater. The presence of FeCl₃ results in virtually instantaneous coagulation and flaky brown oil precipitate. The electroflotation of such a solution is easier than in the other two cases and a thick brown oil foam is formed after 5 minutes. Subsequent layers of such foam have a darker color than the first case (in the first case the foam was friable and had a brownish shade of the lipid part) and by volume 50% larger. After flotation, the smell of such a solution becomes almost imperceptible (light ether smell), and the solution itself after filtration on filter paper of the FM brand became transparent (in two other cases the solution after filtration had a greenish color and a sharp smell of essential oils). The foam itself contains Fe(OH)₃, which enters into a qualitative reaction with NH₄CNS in an acidic environment. The greenish particles in such a foam indicate the incorporation of Fe(OH)₂, which is contained in the solution after electroflotation (it begins to enter into a qualitative reaction with NH₄CNS after some time, being oxidized in air). A completely different foam is obtained in the presence of Al(OH)₃ (more dense and white compared to the first case) and 20% more in volume than in the first case. Apparently, the white color and the increased volume of the foam is explained by the presence of Al(OH)₃ formed during the electrolysis of the solution.

Consider the characteristics of the individual ingredients discharged with effluents in the river Oskol, in terms of their impact on the body of water.

Dissolved oxygen in wastewater and water of water bodies is spent on the oxidation of organic substances present in water (Figure 2). The oxygen consumed for this is replenished, mainly due to its dissolution from atmospheric air.

Suspended solids may be present in wastewater due to insufficient treatment or re-suspension of precipitation in the water distribution system (Figure 3). To reduce the content of suspended...
substances in the wastewater of the plant, physical and chemical treatment of wastewater by liming with coagulation and subsequent filtration on pressure sand filters is provided.

The dry residue determines the total salinity of soluble solid components, mainly inorganic substances (Figure 4). The discharge of highly saline water into a body of water can lead to a change in the salt composition of the river and to an imbalance in the biocenosis. Chlorides are not highly toxic compounds, however, at high concentrations of chlorides in water, mucous membranes are irritated (Figure 5). Sulfates is one of the least toxic anions, however, at high concentrations of sulfates in water, complete bowel movement, dehydration, and gastrointestinal upsets are observed (Figure 6).

The presence of ammonia nitrogen in the water of reservoirs is an indicator of possible bacterial contamination, the presence of wastewater and livestock waste. Ammonia is a major component of mammalian metabolism (Figures 7, 8).

Chemical oxygen consumption (COD) (Figure 9) is known to be the amount of oxygen (or oxidant per oxygen) in mg/l required to completely oxidize the organic substances contained in the sample. COD is a more complete characterization of wastewater contamination than biological oxygen demand (BOD). Therefore, COD is an important indicator of the quality of wastewater and may indicate the potential danger of potential environmental damage to the water body.

![Figure 2](image2.jpg)

Figure 2. Dynamics of changes in the concentration of dissolved oxygen in wastewater.

![Figure 3](image3.jpg)

Figure 3. Dynamics of changes in the concentration of suspended solids in wastewater.
Figure 4. Dynamics of changes in the concentration of dried pollutant in wastewater.

Figure 5. Dynamics of changes in the concentration of chloride in wastewater.

Figure 6. Dynamics of changes in the concentration of sulfates in wastewater.
Figure 7. Dynamics of changes in the concentration of ammonium cations in wastewater.

Figure 8. Dynamics of changes in the concentration of nitrates in wastewater.

Figure 9. Dynamics of COD changes in wastewater.
Common iron. Iron cations Fe^{2+} and Fe^{3+}, as well as other metals, can enter the chain of biochemical processes and replace other ions of vital metals in protein molecules and products of intermediate biochemical reactions, for example, Ca^{2+} or Mg^{2+} cations, thereby blocking the normal course of biochemical reactions (Figure 10).

![Figure 10. Dynamics of changes in the concentration of iron cations in wastewater.](image)

Summarizing the obtained data, one can note the scatter of excess of the background value for a number of pollutants, moreover, in different months of the year. Further analysis of the dynamics of changes in the concentration of pollutants in wastewater from the enterprises of the electrometallurgical profile and the reasons for their fluctuations by months will be considered in the following publications. When performing the research, the works [4-20] were used.

3. Conclusion

Thus, we can conclude:
- in General, the rational water supply system that exists at the plant, which provides for the use of water in recycling cycles, allows to reduce water consumption;
- the use of electrolytic hydrogen for the processes of electro flotation of pollutants, especially of organic origin from aqueous solutions, can be successfully applied in technological processes of water treatment, for reuse without discharge into the treatment plant system; the use of this technology will increase the efficiency of water supply systems of electrometallurgical enterprises.

4. References

[1] Instructions for the technical operation of water treatment (OEMIC) (129EH – 589 – 95)
[2] Hygienic Conclusion “On the impact of wastewater discharges of OJSC(OEMIC) on water quality and sanitary condition of the Oskol River” 2010 State Sanitary and Epidemiological Service of the Ministry of Health of the Russian Federation (certificate of accreditation N GSEN.RU.TSOA.138 dated 17.03.2003)
[3] Harmful chemicals in industry 1982 Reference book (Moscow: Medicine Press)
[4] Zvyagintseva A V, Sazonova S A and Kulneva V V 2020 Measures to Improve Working Conditions and Reduce Dust and Gas Emissions in the Quarries of the Mining and Processing Plant IOP Conference Series: Earth and Environmental Science. International science and technology conference "FarEastCon-2019" 459 p 052047
[5] Zvyagintseva A V and Shalimov Y N 2014 On the stability of defects in the structure of electrochemical coatings Surface Engineering and Applied Electrochemistry vol 50 6 pp 466-477
[6] Zvyagintseva A V 2017 Hydrogen permeability of nanostructured materials based on nickel, synthesized by electrochemical method Proceedings of the 2017 IEEE 7th International Conference on Nanomaterials: Applications & Properties (NAP-2017) IEEE Catalog Number: CFP17F65-ART - Part 2 - 02NTF41-1-02NTF41-5

[7] Zvyagintseva A V, Bogdanovich E V and Dorokhina M V 2015 Evaluation of the content of pollutant emissions into the atmosphere on objects of a special purpose Complex problems of Technosphere Safety: proceedings of the international. Scientific Conf. (Voronezh: Voronezh State Technical University) part I pp 111-121

[8] Artemyev A S vol and Zvyagintseva A V 2011 Possibilities of geoinformation modeling in predicting the distribution of pollutants of industrial emissions of the technosphere objects in the environment Bulletin of Voronezh State Technical University vol 7 11 pp 106-110

[9] Yakovlev D V and Zvyagintseva A V 2012 Construction of an interbranch integrated geographic information system of the Voronezh region Izvestia of the Samara Scientific Center of the Russian Academy of Sciences 1-3 pp 923-930

[10] Zvyagintseva A V, Sazonova S A and Kulneva V V 2019 Modeling of fugitive emissions of dust and gases into the atmosphere in open pits mining and processing plants, and improving measures to improve working conditions Proceedings of the Seventh International Environmental Congress (Ninth International Scientific-Technical Conference) "Ecology and Life Protection of Industrial-Transport Complexes" ELPI 2019 pp 212-226

[11] Zvyagintseva A V, Sazonova S A and Kulneva V V 2020 Measures to Improve Working Conditions and Reduce Dust and Gas Emissions in the Quarries of the Mining and Processing Plant IOP Conference Series: Earth and Environmental Science. International science and technology conference "FarEastCon-2019" 459 p 052047

[12] Dolzhenkova V V and Zvyagintseva A V 2015 Prospects the use of GIS floodmap technologies for predicting the risk of flooding on water objects of the Voronezh region Bulletin of the Samara Scientific Center of the Russian Academy of Sciences vol 17 6 pp 70-81

[13] Boldyreva O N and Zvyagintseva A V 2009 Technological risk regulation through optimization of equipment maintenance program Bulletin of the Voronezh State Technical University vol 5 12 pp 76-78.

[14] Zvyagintseva A V 2008 Interaction peculiarities of hydrogen and Ni-B galvanic alloys NATO Science for Peace and Security Series C: Environmental Security vol Part F2 pp 437-442

[15] Zvyagintseva A V, Shalimov Yu N and Lutovats M V 2015 To the feature of behavior of hydrogen in the metals and alloys, got electrolysis, and possibility of their application in alternative energy sources International Scientific Journal "Alternative Energy and Ecology" (ISIAEE) 21(185) pp 107-111

[16] Avdyushina A E and Zvyagintseva A V 2010 Localization of objects in a distributed video surveillance system Information and security vol 13 4 pp 583-586

[17] Avdyushina A E and Zvyagintseva A V 2010 Video surveillance system and localization of natural objects Bulletin of the Voronezh State Technical University vol 6 12 pp 107-109

[18] Neyizhmak A N, Zvyagintseva A V and Rastorguev I P 2008 Recognition of dangerous meteorological events of convective origin for aviation management Bulletin of the Voronezh State Technical University vol 4 10 pp 135-139

[19] Arzhanykh Yu P, Dolzhenkova V V and Zvyagintseva A V 2014 Prediction of hydrological situation during floorage at water bodies of the Voronezh region using geographical information systems Heliogeophysical studies 9 pp 89-98

[20] Avdyushina A E and Zvyagintseva A V 2014 Analysis of statistics of aircraft collisions with birds for 2002-2012 and modern means of providing ornithological safety of flights Heliogeophysical studies 9 pp 65-77