Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease

Dong Zheng¹, Qi Cao¹, Vincent W.S. Lee¹, Ya Wang¹, Guoping Zheng¹, YuanMin Wang², Thian Kui Tan¹, Changqi Wang¹, Stephen I. Alexander², David C.H. Harris¹ and Yiping Wang¹

¹Centre for Transplant and Renal Research, Westmead Millennium Institute, The University of Sydney, Sydney, New South Wales, Australia and ²Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, New South Wales, Australia

Plasmacytoid dendritic cells play important roles in inducing immune tolerance, preventing allograft rejection, and regulating immune responses in both autoimmune disease and graft-versus-host disease. In order to evaluate a possible protective effect of plasmacytoid dendritic cells against renal inflammation and injury, we purified these cells from mouse spleens and adoptively transferred lipopolysaccharide (LPS)-treated cells, modified ex vivo, into mice with adriamycin nephropathy. These LPS-treated cells localized to the kidney cortex and the lymph nodes draining the kidney, and protected the kidney from injury during adriamycin nephropathy. Glomerulosclerosis, tubular atrophy, interstitial expansion, proteinuria, and creatinine clearance were significantly reduced in mice with adriamycin nephropathy subsequently treated with LPS-activated plasmacytoid dendritic cells as compared to the kidney injury in mice given naive plasmacytoid dendritic cells. In addition, LPS-pretreated cells, but not naive plasmacytoid dendritic cells, convert CD4⁺CD25⁺/CD102⁻ T cells into Foxp3⁺ regulatory T cells and suppress the proinflammatory cytokine production of endogenous renal macrophages. This may explain their ability to protect against renal injury in adriamycin nephropathy.

Kidney International (2012) 81, 892–902; doi:10.1038/ki.2011.471; published online 8 February 2012

KEYWORDS: adoptive transfer; chronic kidney disease; plasmacytoid dendritic cells
their expression of IL-1, tumor necrosis factor-α, and interferon-γ. In contrast, pDCs modulated by lipopolysaccharide (LPS) have been shown to be capable of suppressing experimental autoimmune encephalomyelitis via enhanced secretion of anti-inflammatory cytokines IL-10, TGF-β, and IL-13. Moreover, human pDCs stimulated with CpG oligodeoxynucleotide have been shown to play important regulatory roles in autoimmune diseases and graft-versus-host diseases. PDCs may also exert effects on regulatory T cells (Tregs); a possible mediator of this effect of pDCs on Tregs is indoleamine 2,3-dioxygenase (IDO). Whereas there is an increasing understanding of pDCs, their role in chronic renal disease remains poorly defined.

Adriamycin nephropathy (AN) is a chronic kidney disease model characterized by proteinuria, progressive glomerulosclerosis, and tubulointerstitial damage, and it mimics human focal segmental glomerulosclerosis. Our previous studies have shown that reconstitution of Tregs expressing high levels of Foxp3 (forkhead box P3) in severe combined immunodeficient (SCID) mice with AN reduced glomerulosclerosis and tubular injury in comparison with control SCID mice with AN. Our studies have also shown that macrophages modulated by IL-10/TGF-β or IL-13/4 are able to reduce renal injury in murine AN. In this study, we sought to determine whether or not adoptive transfer of splenic pDCs that were modified ex vivo to a regulatory phenotype and infused into AN mice could protect mice against progressive renal injury. Our results showed that adoptive transfer of pDCs modulated with LPS can in fact protect mice against AN, and suggested two novel mechanisms of protection. An increase in Foxp3+ Tregs by pDCs was observed and the induction of Tregs was found to be IDO dependent. In addition, proinflammatory cytokine production by endogenous renal macrophages was decreased in mice treated with LPS-pretreated pDCs.

RESULTS

pDC phenotype and function

To characterize the phenotype of pDCs, the expression of the B7-H family of molecules in naive pDCs and LPS-pretreated pDCs was assessed. LPS-pretreated pDCs expressed higher levels of B7-H1 but not B7-H2, B7-H3, or B7-H4 than did naive pDCs (Figure 1; B7-H1 expression relative to β-actin, naive pDCs vs. LPS-pretreated pDCs 1.5 ± 0.3 vs. 13.2 ± 2.7, P < 0.01). In addition, to determine the function of pDCs, the cytokine expression of pDCs was assessed; there was stronger expression of IL-10, TGF-β, and IDO but not IL-12 in LPS-pretreated pDCs and CpG-pretreated pDCs compared with naive pDCs (IDO mRNA expression relative to β-actin naive pDC vs. LPS-pretreated pDC 1.8 ± 0.4 vs. 7.2 ± 1.6, P < 0.01). Also, the protein level of IL-10 and TGF-β of supernatant and cellular IDO from cultured LPS-pretreated pDCs was much higher than those from cultured naive pDCs (P < 0.01; Figure 1d).

pDCs expressed TLR4 after LPS exposure

As TLR4 functions as a LPS-sensing receptor, we tested TLR4 expression and found that TLR4 was expressed on significantly more LPS-pretreated pDCs than naive pDCs (0.6 ± 0.1% vs. 18.2 ± 2.7%, P < 0.01; Figure 2).

Effect of pDCs on renal structural injury

At 4 weeks after adriamycin, we examined the effect of pDCs on renal structural injury. In AN, renal injury is characterized by glomerulosclerosis, tubular atrophy, interstitial volume expansion, and interstitial fibrosis. Glomerulosclerosis was significantly reduced in AN mice transfused with LPS-pretreated pDCs compared with AN mice transfused with naive pDCs and untransfused AN mice (Figure 3). Similarly, tubulointerstitial injury was significantly improved in AN mice transfused with LPS-pretreated pDCs compared with mice transfused with naive pDC and untransfused AN mice (Figure 3; normal vs. AN control vs. AN + naive pDC vs. AN + LPS-pretreated pDC: glomerulosclerosis 2.3 ± 0.3 vs. 28.0 ± 4.6 vs. 28.4 ± 3.7 vs. 12.6 ± 1.8%, P < 0.01, tubular cell height 7.3 ± 0.4 vs. 1.5 ± 0.2 vs. 1.1 ± 0.3 vs. 5.7 ± 0.9 μm, P < 0.05, interstitial volume 1.8 ± 0.6 vs. 26.8 ± 1.1 vs. 28.3 ± 2.5 vs. 12.6 ± 1.0%, P < 0.01, interstitial fibrosis 2.3 ± 0.6 vs. 20.1 ± 0.5 vs. 18.9 ± 1.4 vs. 12.3 ± 1.0%, P < 0.01). These results indicate that LPS-pretreated pDCs protected against renal injury in AN.

Effect of pDCs on renal function

To explore the effect of pDCs on renal function, serum creatinine and urinary protein were measured in each group at 4 weeks after adriamycin. In AN mice, serum creatinine and urinary protein excretion were significantly increased compared with normal mice, and were significantly improved in AN mice transfused with LPS-pretreated pDCs compared with transfused naive AN mice or those transfused with naive pDCs. Creatinine clearance was also improved after pDC transfusion (normal vs. AN vs. AN + naive pDC vs. AN + LPS-pretreated pDC: serum creatinine 5.1 ± 0.5 vs. 16.5 ± 2.3 vs. 18.7 ± 3.8 vs. 11.5 ± 1.4 μmol/l, P < 0.05; urinary protein 50.7 ± 26.3 vs. 403.5 ± 104.3 vs. 458.8 ± 49.2 vs. 134.5 ± 23.6 μg/12 h, P < 0.01; creatinine clearance 34.0 ± 4.1 vs. 14.6 ± 1.5 vs. 15.1 ± 2.6 vs. 24.5 ± 3.0 μl/min, P < 0.05; urine protein/urine creatinine ratio 20.8 ± 2.6 vs. 938.4 ± 98.4 vs. 1068.5 ± 123.4 vs. 551.1 ± 76.2 μg/mmol, P < 0.01; Figure 3).

Leukocyte infiltration

In AN, focal segmental glomerulosclerosis is accompanied by interstitial inflammation. Therefore, renal leukocyte infiltration at week 4 after adriamycin was examined using anti-F4/80, -CD4, and -CD8 antibodies. The numbers of macrophages, CD4+ T cells, and CD8+ T cells were increased in all AN mice. However, the numbers of these cells were markedly reduced in AN mice transfused with LPS-pretreated pDCs compared with untransfused AN mice and AN mice transfused with naive pDCs (Figure 4).

pDC tracking in lymph nodes and kidneys

To determine whether a difference in access to organs of interest explained the effects of LPS-pretreated vs. naive...
pDCs, tracking studies were performed. At day 28, fluorescently labeled cells were seen in kidney, kidney-draining lymph nodes (KDLNs), and spleen of AN mice transfused with LPS-pretreated pDCs and naive pDCs. Both DiI-stained LPS-pretreated pDCs and naive pDCs were located mostly in kidney interstitium and in paracortex of KDLNs in similar numbers (Figure 5). Thus, the protective effect of LPS-pretreated pDCs vs. naive pDCs was not explained by a difference in access.

Induction of Tregs

To further explore the mechanism by which LPS-pretreated pDCs was protective in AN, the number of Foxp3+ CD4+ cells was examined and found to be significantly increased in KDLNs and kidney of AN mice transfused with LPS-pretreated pDCs compared with those treated with naive pDCs or untransfused AN mice (naive pDCs vs. LPS-pretreated pDCs in KDLNs 6.67 ± 0.8% vs. 18.69 ± 2.5%, P < 0.01; Figure 6a and b). In vitro, LPS-pretreated pDCs significantly increased the percentage of Foxp3+ T cells when cocultured with CD4+ CD25− T cells for 7 days, whereas naive pDCs had no effect. This effect was found to be contact dependent in Transwell experiments (Figure 6c and d). The blockade of IDO expression on modified DCs with 1-methyl-D-tryptophan (D-1MT) eliminated induction of Foxp3+ T cells by LPS-pretreated pDCs, whereas blockade with antibodies against IL-10, TGF-β, or B7-H1 had no effect (Figure 6e). This suggested that at least part of the protective effect of LPS-pretreated pDCs in AN could be due to induction of Tregs in KDLNs and kidney in an IDO-dependent manner.

Deactivation of effector macrophages in vitro and macrophage phenotype in vivo

In addition to induction of Foxp3+ Tregs, we explored other potential protective mechanisms by examining the interaction of pDCs with macrophages both in vitro and in vivo. LPS-pretreated pDCs suppressed proinflammatory cytokine production of effector macrophages (M1) in vitro and in vivo.
as shown by suppression of mRNA expression of pro-inflammatory cytokines tumor necrosis factor-α, IL-12, and inducible nitric oxide synthase, whereas naive pDCs had no effect. However, there were no differences in the expression of markers of protective macrophage (M2) mannose receptor, arginase, IL-10, and TGF-β on M1 cocultured with naive pDCs versus LPS-pretreated pDCs (Figure 7a). Endogenous macrophages isolated from kidneys of each of the four groups were examined. Similar to the in vitro studies, the mRNA expression of tumor necrosis factor-α, IL-12, and inducible nitric oxide synthase of endogenous kidney macrophages was reduced significantly in AN mice receiving LPS-pretreated pDCs, but not naive pDCs, and there was no change in expression of M2 macrophages markers (Figure 7b). Together, these data suggested a further mechanism by which LPS-pretreated pDCs could prevent renal injury, that is, by deactivation of host macrophages.

DISCUSSION

In this study, the effects of splenic pDCs were examined in murine AN. We demonstrated that splenic pDCs are able to reduce renal structural and functional injury and monocyte infiltration in AN. The mechanisms by which pDCs protected against renal injury appeared to involve their ability to convert CD4+CD25− T cells into CD4+CD25+Foxp3+ Tregs in KDLNs and kidney via increasing the expression of IDO and to suppress proinflammatory cytokine production of endogenous renal macrophages.

DCs largely reside in renal tubulointerstitium, forming an intricate immune sentinel network. A quantitative evaluation of DC subsets has shown that both mDCs and pDCs participate in inflammatory renal injury, suggesting that both mDCs and pDCs play a role in tubulointerstitial injury under pathophysiological conditions. In addition, a significant number of pDCs have been found at sites of inflammation in lupus nephritis. Inhibition of interferon-α produced by pDCs with a specific TLR7 inhibitor IRS954 has been shown to ameliorate disease progression in lupus-prone mice. Moreover, Coates et al. demonstrated that Fms-like tyrosine kinase 3 ligand increased the number of CD11c+CD45RA+pDCs in glomeruli and interstitium of kidneys and that these pDCs were functionally immature and exhibited suppressive features. In general, pDCs play crucial roles in the development and resolution of renal inflammation. DCs are able to induce dynamic alterations in their function and phenotype to induce or suppress immune responses. For example, depletion of renal DCs enhanced renal injury in nephrotoxic nephritis and impaired recovery from ischemia/reperfusion injury, indicating a protective role of DCs. However, depletion of renal activated DCs rapidly resolved established renal immunopathology in a mouse model of glomerular injury, suggesting a facilitatory role for DCs in the progression of renal diseases. In the study of nephrotoxic nephritis, all DCs were depleted at an early point of disease and therefore the resident DCs were also removed. It is possible that depletion of only these resident DCs was responsible for the worse renal injury. Thus, the effect of DCs in kidney may depend on the particular type of renal disease (for example, immune vs. nonimmune) or the functional state of renal DCs (for example, activated or resting; mature or immature). An alternative way to clarify the role of DCs in renal disease is the use of adoptive transfer.
We adoptively transferred unstimulated (naive) and pDCs stimulated with LPS into AN mice, and showed protective effects with stimulated but not naive pDCs. pDCs modified by CpG have been shown to induce allogeneic T-cell hyporesponsiveness and prolong cardiac graft survival. Furthermore, pDCs modified by LPS have also...
been shown to be capable of suppressing experimental autoimmune encephalomyelitis.12 In this study, we examined the suppressive capacity of both LPS-pretreated and naive pDCs. pDCs pretreated with LPS showed high expression of B7-H1, IDO, and the anti-inflammatory cytokines IL-10 and TGF-\(\beta\). Both CpG- and LPS-pretreated pDCs expressed high levels of B7-H1. B7-H1 has been shown to down-regulate T-cell activation.33,34 Increasing B7-H1 expression in pDCs has been shown to induce allogeneic T-cell hyporesponsiveness and prolong graft survival.10 pDCs also express high levels of IDO after LPS or CpG stimulation.37 IDO is a component of the enzymatic pathway involved in the catabolism of tryptophan. Tryptophan depletion has been shown to suppress proliferation of activated T cells.35,36 The role of IDO in regulatory function of pDCs has been addressed previously.37 CpG oligodeoxynucleotide activation of pDCs significantly increased their expression of IDO and resulted in the generation of inducible Tregs from CD4\(^+\)CD25\(-\) T cells.38 In this study, we found that LPS-modulated pDCs also expressed high levels of IDO.

It has been shown that pDC were able to suppress autoimmune encephalomyelitis following their exposure to LPS,12 and to induce tolerance in experimental models of asthma, and in allogeneic hematopoietic stem cell, heart, and liver transplantation.10,39–41 However, whether pDCs can be used to treat chronic kidney disease is unknown. This study, for first time, showed that LPS-pretreated pDCs can reduce glomerulosclerosis, tubulointerstitial injury, and interstitial fibrosis, and improve renal function in a model of chronic proteinuric renal disease. pDCs, both naive and pretreated with LPS, were able to reach the site of injury within kidneys, and to migrate to KDLNs. However, pDCs modified with LPS ex vivo into a regulatory phenotype, but not unstimulated pDCs, could ameliorate renal injury and reduce renal infiltration with inflammatory cells. Thus, it is their phenotype and not access to sites of inflammation that distinguishes LPS-pretreated pDCs from naive pDCs, and determines their protective effect.

In this study, LPS-pretreated pDCs showed inhibitory functions, yet the mechanism underlying pDC modulation by LPS into a regulatory phenotype is unknown. We found

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{Quantitative analysis of renal cortical inflammatory cells. (a) Cells expressing CD4, CD8, and F4/80 (brown) were stained on immunohistological sections from all four groups (\(\times\) 100). (b, c) The number of F4/80\(^+\) macrophages, CD4\(^+\) T cells, and CD8\(^+\) T cells in (b) interstitium and (c) glomeruli were quantified by point counting. hpf, high-power field. Data represent the mean \(\pm\) s.d. of each group. **\(P<0.01\) and *\(P<0.05\) lipopolysaccharide (LPS)-pretreated plasmacytoid dendritic cells (pDCs) vs. AN control and AN + naive pDCs.}
\end{figure}
Endogenous renal macrophages have been demonstrated to be important mediators of renal inflammation and fibrosis in many types of chronic kidney disease.45-47 Endogenous renal macrophages suppressed by LPS-pretreated pDCs secreted less proinflammatory cytokines that in turn could have reduced accumulation of T cells and macrophages. In this study we did not find any evidence that LPS-pretreated pDCs were able to convert CD4+ CD25− T cells into Foxp3+ Tregs. When IDO was blocked, LPS-pretreated pDCs did not increase the number of Foxp3+ Tregs, suggesting that the effects of pDCs on T cells are IDO dependent. This result recalls previous studies in which human pDCs activated by human immunodeficiency virus induced Tregs through an IDO-dependent mechanism.48,49

In conclusion, we have demonstrated that LPS-pretreated pDCs can protect against renal functional and histological injury in mice with AN. The mechanisms underlying the protective effects of LPS-pretreated pDCs may involve their IDO-dependent ability to transform naive T cells into Tregs in kidney and lymph nodes and to suppress proinflammatory cytokine production of macrophages. The regulatory ability of pDCs may provide a novel and effective therapeutic approach for chronic kidney disease.

MATERIALS AND METHODS

Murine AN model

Male BALB/c mice, 6 to 8 weeks old, obtained from the Animal Resources Centre (Perth, Australia) were used in this study. The Animal Ethics Committee of Westmead Hospital approved all procedures. Adriamycin (9.8 mg/kg) was injected once via the tail vein of each non-anesthetized BALB/c mouse 5 days before all procedures. Adriamycin (Invitrogen, Carlsbad, CA), and real-time PCR using the SYBR Green I dye (Invitrogen). The analysis method has been described previously.50

Quantitative reverse transcription–PCR

RNA was isolated and reverse-transcribed with cDNA synthesis kit (Invitrogen, Carlsbad, CA), and real-time PCR using the SYBR (Invitrogen). The analysis method has been described previously.50 The PCR primer sequences are presented in Table 1.
Enzyme-linked immunosorbent assay (ELISA)

IL-12, TGF-β, and IL-10 protein levels were measured in culture supernatants using IL-12, TGF-β, and IL-10 ELISA kits (R&D Systems, Minneapolis, MN), and for IDO measurement, the cellular extracts were obtained by lysis of 1/C2105 pDCs in lysis buffer and assessed with IDO ELISA kit (antibodies-online GmbH, Atlanta, GA) according to the manufacturer’s instructions.

Flow cytometry analysis

Naive pDCs were suspended in fluorescence-activated cell sorter wash buffer (phosphate-buffered saline) and CD32/16 Fc block (eBiosciences, San Diego, CA). To analyze purity of naive pDCs, cells were stained with fluorescein isothiocyanate-conjugated anti-mouse B220 (Miltenyi Biotec, Bergisch Gladbach, Germany), CD49b (Biolegend, San Diego, CA), CD4 (BD Biosciences, San Jose, CA), CD8 (eBiosciences), and phycoerythrin-conjugated anti-mouse CD11c (eBiosciences) and CD11b (eBiosciences). To analyze pDC surface antigen expression, phycoerythrin-conjugated anti-B7-H1, B7-H2, and B7-H4 (all from eBiosciences) were used. For intracellular staining of Foxp3, T cells were fixed and stained with phycoerythrin-Cy5-conjugated anti-mouse Foxp3 (eBiosciences). Armenian hamster IgG was used as control antibody for CD11c; rat IgG2a for the antibodies to CD19, B7-H1, B7-H2, and Foxp3; and rat IgG2b for antibodies to CD11b, B7-H3, and B7-H4. Flow cytometry was performed using a fluorescence-activated cell sorter Calibur cytometer (BD Biosciences). Percentage of positive cells was analyzed using Cellquest software and FlowJo (Tree Star, Ashland, OR) in comparison with fluorescence-labeled isotype controls.

Figure 6 | Induction of regulatory T cells (Tregs) in vivo and in vitro. (a) Foxp3+ staining of kidney and kidney-draining lymph nodes (KDLNs) of all four groups (×200). (b) Numbers of Foxp3+ cells in KDLN and kidney were assessed quantitatively. **P < 0.01 vs. adriamycin nephropathy (AN) and AN + naive plasmacytoid dendritic cell (pDC) group. hpf, high-power field. (c, d) Naive pDCs and lipopolysaccharide (LPS)-pretreated pDCs were cocultured with CD4 + CD25− T cells (CD4) in vitro. The percentage of Foxp3+ cells among total CD4 + T cells was measured by fluorescence-activated cell sorting (FACS). Transwell was used to examine dependency on cell contact. (e) Neutralizing antibodies (Abs) and isotype antibody against interleukin-10 (IL-10), transforming growth factor-β (TGF-β) or B7-H1, indoleamine 2,3-dioxygenase (IDO) blockade reagent 1-methyl-D-tryptophan (D-1MT), or a mixture of all four inhibitors (mix) were used to block the effects of LPS-pretreated pDCs in inducing Foxp3 expression on CD4 + CD25− T cells in coculture (CD4). Data represent the mean ± s.d. of three separate experiments. **P < 0.01 vs. anti-IL-10, anti-TGF-β and anti-B7-H1 groups.
To pH 7.4, and stored at 4°C for pDCs for 7 days. For transwell experiments, CD4+ T cells were cocultured with freshly isolated naive pDCs or LPS-pretreated pDCs. **Figure 7** Lipopolysaccharide (LPS)-pretreated plasmacytoid dendritic cell (pDC) suppression of effector macrophages (M1) *in vitro* and *in vivo*. (a) M1 were cocultured with pDCs in vitro for 24 h. The mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), inducible nitric oxide synthase (iNOS), mannose receptor, arginase, IL-10, and transforming growth factor-β (TGF-β) of M1 was examined by real-time PCR. **P < 0.01 vs. M1 and M1 + naive pDCs. (b) Endogenous macrophages (EMs) were isolated from kidney of each of the four groups. The mRNA expression of TNF-α, IL-12, iNOS, mannose receptor, arginase, IL-10, and TGF-β of macrophages was examined by real-time PCR.

Coculture experiments

For Foxp3+ Treg induction experiments, CD4+ T cells were cocultured with freshly isolated naive pDCs or LPS-pretreated pDCs for 7 days. For transwell experiments, CD4+ T cells and LPS-pretreated pDCs were cocultured in 24-well plates and placed separately in transwell chambers (0.4 μm, Milipore, Kilsy, VIC, Australia). For neutralizing antibody blocking, CD4+ T cells and LPS-pretreated pDCs were cocultured in 24-well plates in the presence of IL-10-, TGF-β-, and B7-H1-neutralizing antibodies (10 μg/ml each) for 7 days. D-1MT (Sigma-Aldrich, St Louis, MO) was prepared as a 20 mmol/l stock solution in 0.1 M NaOH, adjusted to pH 7.4, and stored at −20°C protected from light. For *in vitro* use, D-1MT was added in a final concentration of 100 μM into coculture medium. After incubation, CD4+ T cells were stained with Foxp3 antibody and analyzed by fluorescence-activated cell sorting. Splenic macrophages were separated by CD11b microbeads (Mitenyi Biotec, Bergisch Gladbach, Germany) and were grown on the bottom of a 24-well plate with LPS for 2 h to become effector macrophages (M1). pDCs were added onto the same plate and cocultured with M1 for 24 h. After incubation, expression of markers of effector (M1) and protective (M2) macrophages were examined.

pDC Dil labeling and adoptive transfer to BALB/c mice

Naive pDC and LPS-pretreated pDCs were labeled with Dil (Invitrogen). One million cells were transferred into AN-treated mice by a single tail vein injection at day 5 after adriamycin administration.

Renal function

All urine and blood samples were prepared and examined by the Institute of Clinical Pathology and Medical Research (Westmead Hospital, Sydney, Australia).

Histology

Coronal sections of renal tissue were immersion-fixed in 10% neutral buffered formalin and embedded in paraffin. Sections 5 μm thick were stained with periodic acid–Schiff or trichrome. To quantify tubular atrophy, the tubule cell height of individual cortical tubules was measured using line morphometry (magnification × 200) by computer image analysis software (Image). The tubular diameter was defined as the length of a straight line that passed through the center of a symmetrically sectioned tubule and joining two points on the tubular circumference. A total of 50 randomly selected cortical tubules in 10 nonoverlapping fields (magnification × 200) were measured, and the mean cross-sectional tubule cell height was determined for each section. The cortical interstitial volume included the tubular basement membrane and peritubular capillaries. To quantify this area, cortical fields (magnification × 200) were viewed on a video screen, and the area of interstitial space was determined with image analysis software and was expressed as a percentage of the total area of the field. The mean percentage area of five non-overlapping cortical fields was calculated for each section. Interstitial fibrosis was assessed and quantified on

Table 1 | Real-time PCR primers

Gene	Primer sequence (5′-3′)	Product
IL-10 (F)	CCAGTAGCCGCCGGAAGACCA	121
IL-10 (R)	CAGCTGCTGCTTGGTTAAAAAGA	
TGF-β (F)	TTAGAAAGAACCTGTGGTGA	121
TGF-β (R)	AGGGCAAGACCTGTGCTGA	
TNF-α (F)	GCTGAGCTCAAAACCCTGA	118
TNF-α (R)	CCGCTCAGCAGAAGCTCAAG	
iNOS (F)	CACCTTGAGTACCCAGCAAT	170
iNOS (R)	ACCACTGTGCTTGGAGTGC	
IDO (F)	AGGGGCTTCTTCCTGCTGCTC	200
IDO (R)	AAAAAATGCTGTGGTCCAC	
IL-12 (F)	ACGGCCAGGAAAGAAGTGA	218
IL-12 (R)	CTACAAAGGCAAGGGCTAT	
IFN-α (F)	CTAGTGGCCAACCTGCTCTC	258
IFN-α (R)	TCTCATGACGAGTAGATGC	

Abbreviations: F, forward; IDO, indoleamine 2,3-dioxygenase; IFN-α, interferon-α; IL-10, interleukin-10; iNOS, inducible nitric oxide synthase; R, reverse; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α.
trichrome-stained sections by point counting using ImageJ software in each of 10 non-overlapping randomly selected cortical fields. Points falling within blue areas (fibrosis) were considered as positive. Scores derived from 10 fields per kidney section (3 sections/per mouse) were collected for the analyses.

Immunohistochemistry

For immunohistochemical staining of macrophages, CD4 +, and CD8 + cells, rat anti-mouse F4/80, CD4, and CD8 antibodies (BD Pharmingen, Franklin Lakes, NJ) were used as the primary antibodies. Biotinylated peroxidase (ZYMED, South San Francisco, CA) and Streptavidin (ZYMED) were used for the secondary antibodies. Kidney sections were placed in optimal cutting temperature compound (Sakura Fintek, Torrance, CA). Sections of 3 μm were cut, dried overnight, and fixed in cold acetone for 15 min when incubating the slides. Biotin Blocking System (Dako, Carpinteria, CA) was used to block endogenous avidin-binding activity. Normal rat immunoglobulin was used for control sections. Sections were incubated with biotinylated polyclonal rabbit anti-rat immunoglobulin (Dako Corporation, Glostrup, Denmark) or RTU (natural interferon-alpha/beta-producing cells) accumulate in cutaneous T cell lesions by promoting tolerogenic dendritic cells and regulatory T cells. *J Immunol* 2009; 183: 298–309.

REFERENCES

1. Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. *Nat Immunol* 2004; 5: 1219–1226.
2. Nakano H, Yanagita M, Gunn MD. CD11c+CD24+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. *J Exp Med* 2001; 194: 1171–1178.
3. Salio M, Palmowski MJ, Atzwanger A et al. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. *J Exp Med* 2004; 199: 567–579.
4. Steinbrink K, Wolff M, Jonuleit H et al. Induction of tolerance by IL-10-treated dendritic cells. *J Immunol* 1997; 159: 4772–4780.
5. Gonzalez-Rey E, Chorny A, Fernandez-Martín A et al. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. *Blood* 2006; 107: 3632–3638.
6. Ilaregui JM, Croci DO, Bianco GA et al. Tolerogenic signals delivered by dendritic cells to T cells through a galecin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. *Nat Immunol* 2009; 10: 981–991.
7. Boonstra A, Asselin-Paturel C, Gilliet MC et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential Toll-like receptor ligation. *J Exp Med* 2003; 197: 101–109.
8. Zuniga EI, McGavern DB, Pruneda-Paz JL et al. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. *Nat Immunol* 2004; 5: 1227–1234.
9. Ito T, Amakawa R, Inaba M et al. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. *J Immunol* 2004; 172: 4253–4259.
10. Abe M, Wang Z, de Creus A et al. Plasmacytoid dendritic cell precursors induce alloantigen T-cell hyporesponsiveness and prolong heart graft survival. *Am J Transplant* 2005; 5: 1808–1819.
11. Zwiorek K, Bourquin C, Battany J et al. Delivery by cationic gelatin nanoparticles strongly increases the immunostimulatory effects of CpG oligonucleotides. *Pharm Res* 2008; 25: 551–562.
12. Ellesstad KD, Tsutsui S, Noorbakhsh F et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. *J Immunol* 2009; 183: 298–309.
13. Mazariegos GV, Zahorchak AF, Reyes J et al. Dendritic cell subset ratio in peripheral blood correlates with successful withdrawal of immunosuppression in liver transplant patients. *Am J Transplant* 2003; 3: 689–696.
14. Woller EK, Rosenthal H, Jones TW et al. Larger numbers of CD4(bright) dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. *Blood* 2001; 97: 2948–2956.
15. Farkas L, Beiske K, Lund-Johansen F et al. Plasmacytoid dendritic cells (natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. *Am J Pathol* 2001; 159: 237–243.
16. Hadeiba H, Sato T, Habtezion A et al. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. *Nat Immunol* 2008; 9: 1253–1260.
17. Bailey-Bucktrout SL, Calkins SC, Goings G et al. Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. *J Immunol* 2008; 180: 6457–6461.
18. Moseman EA, Liang X, Dawson AJ et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. *J Immunol* 2004; 173: 4433–4442.
19. Mellor AL, Baban B, Chandler P et al. Cutting edge: induced indoleamine 2,3-dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. *J Immunol* 2003; 171: 1652–1655.
20. Munn DH, Sharma MD, Hou D et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. *J Clin Invest* 2004; 114: 280–290.
21. Mahajan D, Wang Y, Qin X et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. *J Am Soc Nephrol* 2006; 17: 2731–2741.
22. Cao Q, Wang Y, Zheng D et al. IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. *J Am Soc Nephrol* 2010; 21: 933–942.
23. Wang Y, Wang YP, Zheng G et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. *Kidney Int* 2007; 72: 290–299.
24. Kruger T, Benke D, Eiter F et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. *J Am Soc Nephrol* 2004; 15: 613–621.
25. Wolpert AM, de Fijter JW, Zuidwijk K et al. Delivery of dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. *Blood* 2001; 97: 2948–2956.
26. Krueger T, Benke D, Eiter F et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. *J Am Soc Nephrol* 2004; 15: 613–621.
27. Woltman AM, de Fijter JW, Zuidwijk K et al. Delivery of dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. *Blood* 2001; 97: 2948–2956.
28. Woltman AM, de Fijter JW, Zuidwijk K et al. Delivery of dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. *Blood* 2001; 97: 2948–2956.
29. Scholz J, Lukacs-Kornek V, Engel DR et al. Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis. *J Am Soc Nephrol* 2008; 19: 527–537.
30. Tadagavadi RK, Reeves WB. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. *J Am Soc Nephrol* 2010; 21: 53–63.
31. Kim MG, Su BC, Sook KY et al. Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury. *Nephrol Dial Transplant* 2010; **25**: 2908–2921.

32. Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. *J Clin Invest* 2009; **119**: 1286–1297.

33. Gao W, Demirci G, Strom TB et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. *Science* 1998; **281**: 1191–1193.

34. Tokita D, Mazariegos GV, Zahorchak AF et al. Distinct pathways for NF-kappa B regulation are associated with aberrant macrophage IL-12 production in lupus- and diabetes-prone mouse strains. *Kidney Int* 2000; **58**: 1664–1676.

35. Thai MW, Zandi-Nejad K, Weening B et al. Proinflammatory gene expression and macrophage recruitment in the rat remnant kidney. *Kidney Int* 2008; **76**: 994–999.

36. Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. *J Clin Invest* 2009; **119**: 1286–1297.

37. Fallarino F, Asselin-Paturel C, Vacca C et al. Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. *J Immunol* 2004; **173**: 3748–3754.

38. Chen W, Liang X, Peterson AJ et al. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. *J Immunol* 2008; **181**: 5396–5404.

39. de Heer HJ, Hammad H, Soullie T et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. *J Exp Med* 2004; **200**: 89–98.

40. Arpinati M, Chirumbolo G, Urbini B et al. Role of plasmacytoid dendritic cells in immunity and tolerance after allogeneic hematopoietic stem cell transplantation. *Transpl Immunol* 2003; **11**: 345–356.

41. Tokita D, Mazariegos GV, Zahorchak AF et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. *Transplantation* 2008; **85**: 369–377.

42. Castellana E, Sumpter TL, Chen L et al. NOD2 ligation subverts IFN-alpha production by liver plasmacytoid dendritic cells and inhibits their T cell allostimulatory activity via B7-H1 up-regulation. *J Immunol* 2009; **183**: 6922–6932.

43. Okada T, Lian ZX, Naiki M et al. Murine thymic plasmacytoid dendritic cells. *Eur J Immunol* 2003; **33**: 1012–1019.

44. Kahler DJ, Mellor AL. T cell regulatory plasmacytoid dendritic cells expressing indoleamine 2,3 dioxygenase. *Handb Exp Pharmacol* 2009; **188**: 165–196.

45. Dziallas MA, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. *Cell Res* 2008; **181**: 3431–3439.

46. Liu J, Beller DI. Distinct pathways for NF-kappa B regulation are associated with aberrant macrophage IL-12 production in lupus- and diabetes-prone mouse strains. *J Immunol* 2003; **170**: 4489–4496.

47. Ogawa D, Shikata K, Matsuda M et al. Protective effect of a novel and selective inhibitor of inducible nitric oxide synthase on experimental crescentic glomerulonephritis in WKY rats. *Nephrol Dial Transplant* 2002; **17**: 2117–2121.

48. Toftum J, Hong Y, Mercuri M et al. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. *Blood* 2007; **109**: 3351–3359.

49. Manches O, Munn D, Fallahi A et al. HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. *J Clin Invest* 2008; **118**: 3431–3439.

50. Cao Q, Wang L, Du F et al. Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells. *Cell Res* 2007; **17**: 627–637.

51. Blumenthal R, Sarkar DP, Durell S et al. Dilution of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events. *J Cell Biol* 1996; **135**: 63–71.

52. Rangan GK, Tesch GH. Quantification of renal pathology by image analysis. *Nephrology (Carlton)* 2007; **12**: 553–558.