13. Abelian extensions of absolutely unramified complete discrete valuation fields

Masato Kurihara

In this section we discuss results of [K]. We assume that \(p \) is an odd prime and \(K \) is an absolutely unramified complete discrete valuation field of mixed characteristics \((0, p)\), so \(p \) is a prime element of the valuation ring \(\mathcal{O}_K \). We denote by \(F \) the residue field of \(K \).

13.1. The Milnor \(K \)-groups and differential forms

For \(q > 0 \) we consider the Milnor \(K \)-group \(K_q(K) \), and its \(p \)-adic completion \(\widehat{K}_q(K) \) as in section 9. Let \(U_1\widehat{K}_q(K) \) be the subgroup generated by \(\{1 + p\mathcal{O}_K, K^*, \ldots, K^*\} \).

Then we have:

Theorem. Let \(K \) be as above. Then the exponential map \(\exp_p \) for the element \(p \), defined in section 9, induces an isomorphism

\[
\exp_p: \widehat{\Omega}_{\mathcal{O}_K}^{q-1}/pd\widehat{\Omega}_{\mathcal{O}_K}^{q-2} \rightarrow U_1\widehat{K}_q(K).
\]

The group \(\widehat{K}_q(K) \) carries arithmetic information of \(K \), and the essential part of \(\widehat{K}_q(K) \) is \(U_1\widehat{K}_q(K) \). Since the left hand side \(\widehat{\Omega}_{\mathcal{O}_K}^{q-1}/pd\widehat{\Omega}_{\mathcal{O}_K}^{q-2} \) can be described explicitly (for example, if \(F \) has a finite \(p \)-base \(I \), \(\widehat{\Omega}_{\mathcal{O}_K}^{1} \) is a free \(\mathcal{O}_K \)-module generated by \(\{dt_i\} \) where \(\{t_i\} \) are a lifting of elements of \(I \)), we know the structure of \(U_1\widehat{K}_q(K) \) completely from the theorem.

In particular, for subquotients of \(\widehat{K}_q(K) \) we have:

Corollary. The map \(\rho_m: \Omega_F^{q-1} \oplus \Omega_F^{q-2} \rightarrow \text{gr}_mK_q(K) \) defined in section 4 induces an isomorphism

\[
\Omega_F^{q-1}/B_{m-1}\Omega_F^{q-1} \rightarrow \text{gr}_mK_q(K).
\]
where $B_{m-1}\Omega_F^{q-1}$ is the subgroup of Ω_F^{q-1} generated by the elements $a^p d \log a \wedge d \log b_1 \wedge \cdots \wedge d \log b_{q-2}$ with $0 \leq j \leq m-1$ and $a, b_i \in F^\ast$.

13.2. Cyclic p-extensions of K

As in section 12, using some class field theoretic argument we get arithmetic information from the structure of the Milnor K-groups.

Theorem. Let $W_n(F)$ be the ring of Witt vectors of length n over F. Then there exists a homomorphism

$$\Phi_n: H^1(K, \mathbb{Z}/p^n) = \text{Hom}_{cont}(\text{Gal}(\overline{K}/K), \mathbb{Z}/p^n) \rightarrow W_n(F)$$

for any $n \geq 1$ such that:

1. The sequence
 $$0 \rightarrow H^1(K_{ur}/K, \mathbb{Z}/p^n) \rightarrow H^1(K, \mathbb{Z}/p^n) \xrightarrow{\Phi_n} W_n(F) \rightarrow 0$$
 is exact where K_{ur} is the maximal unramified extension of K.

2. The diagram
 $$
 \begin{array}{ccc}
 H^1(K, \mathbb{Z}/p^{n+1}) & \xrightarrow{p} & H^1(K, \mathbb{Z}/p^n) \\
 \downarrow{\Phi_{n+1}} & & \downarrow{\Phi_n} \\
 W_{n+1}(F) & \xrightarrow{F} & W_n(F)
 \end{array}
 $$
 is commutative where F is the Frobenius map.

3. The diagram
 $$
 \begin{array}{ccc}
 H^1(K, \mathbb{Z}/p^n) & \xrightarrow{\Phi_n} & H^1(K, \mathbb{Z}/p^{n+1}) \\
 \downarrow{\Phi_{n+1}} & & \downarrow{\Phi_n} \\
 W_n(F) & \xrightarrow{V} & W_{n+1}(F)
 \end{array}
 $$
 is commutative where $V((a_0, \ldots, a_{n-1})) = (0, a_0, \ldots, a_{n-1})$ is the Verschiebung map.

4. Let E be the fraction field of the completion of the localization $O_K[T]_{(p)}$ (so the residue field of E is $F(T)$). Let
 $$\lambda: W_n(F) \times W_n(F(T)) \xrightarrow{\Phi_n} p^n \text{Br}(F(T)) \oplus H^1(F(T), \mathbb{Z}/p^n)$$
 be the map defined by $\lambda(w, w') = (i_2(p^{n-1}wdw'), i_1(w'w'))$ where $p^n \text{Br}(F(T))$ is the p^n-torsion of the Brauer group of $F(T)$, and we consider $p^{n-1}wdw'$ as an element of $W_n\Omega^1_{F(T)}$ ($W_n\Omega^1_{F(T)}$ is the de Rham Witt complex). Let
 $$i_1: W_n(F(T)) \rightarrow H^1(F(T), \mathbb{Z}/p^n)$$

Geometry & Topology Monographs, Volume 3 (2000) – Invitation to higher local fields
be the map defined by Artin–Schreier–Witt theory, and let
\[i_2: W_n \Omega^1_{F(T)} \to p^n \text{Br}(F(T)) \]
be the map obtained by taking Galois cohomology from an exact sequence
\[0 \to (F(T)_{\text{sep}})^* / ((F(T)_{\text{sep}})^*)^p \to W_n \Omega^1_{F(T)_{\text{sep}}} \to W_n \Omega^1_{F(T)_{\text{sep}}} \to 0. \]

Then we have a commutative diagram
\[
\begin{array}{ccc}
H^1(K, \mathbb{Z}/p^n) \times E^*/(E^*)^p & \xrightarrow{\cup} & \text{Br}(E) \\
\Phi_n \downarrow & & \uparrow i \\
W_n(F) \times W_n(F(T)) & \xrightarrow{\lambda} & p^n \text{Br}(F(T)) \oplus H^1(F(T), \mathbb{Z}/p^n)
\end{array}
\]
where \(i \) is the map in subsection 5.1, and
\[
\psi_n((a_0, \ldots, a_{n-1})) = \exp \left(\sum_{i=0}^{n-1} \sum_{j=1}^{n-i} p^{i+j} \tilde{a}_i p^{n-i-j} \right)
\]
(\(\tilde{a}_i \) is a lifting of \(a_i \) to \(\mathcal{O}_K \)).

(5) Suppose that \(n = 1 \) and \(F \) is separably closed. Then we have an isomorphism
\[\Phi_1: H^1(K, \mathbb{Z}/p) \simeq F. \]
Suppose that \(\Phi_1(\chi) = a \). Then the extension \(L/K \) which corresponds to the character \(\chi \) can be described as follows. Let \(\tilde{a} \) be a lifting of \(a \) to \(\mathcal{O}_K \). Then \(L = K(x) \) where \(x \) is a solution of the equation
\[X^p - X = \tilde{a}/p. \]

The property (4) characterizes \(\Phi_n \).

Corollary (Miki). Let \(L = K(x) \) where \(x^p - x = a/p \) with some \(a \in \mathcal{O}_K \). \(L \) is contained in a cyclic extension of \(K \) of degree \(p^n \) if and only if
\[a \mod p \in F_{p^{n-1}}. \]

This follows from parts (2) and (5) of the theorem. More generally:

Corollary. Let \(\chi \) be a character corresponding to the extension \(L/K \) of degree \(p^n \), and \(\Phi_n(\chi) = (a_0, \ldots, a_{n-1}) \). Then for \(m > n \), \(L \) is contained in a cyclic extension of \(K \) of degree \(p^m \) if and only if \(a_i \in F_{p^{m-n}} \) for all \(i \) such that \(0 \leq i \leq n - 1 \).

Remarks.

(1) Fesenko gave a new and simple proof of this theorem from his general theory on totally ramified extensions (cf. subsection 16.4).
For any \(q > 0 \) we can construct a homomorphism
\[
\Phi_n : H^q(K, \mathbb{Z}/p^n(q-1)) \to W_n^q \Omega^{q-1}_F
\]
by the same method. By using this homomorphism, we can study the Brauer group of \(K \), for example.

Problems.
1. Let \(\chi_K \) be the character of the extension constructed in 14.1. Calculate \(\Phi_n(\chi_K) \).
2. Assume that \(F \) is separably closed. Then we have an isomorphism
\[
\Phi_n : H^1(K, \mathbb{Z}/p^n) \simeq W_n(F).
\]
This isomorphism is reminiscent of the isomorphism of Artin–Schreier–Witt theory. For \(w = (a_0, \ldots, a_{n-1}) \in W_n(F) \), can one give an explicit equation of the corresponding extension \(L/K \) using \(a_0, \ldots, a_{n-1} \) for \(n \geq 2 \) (where \(L/K \) corresponds to the character \(\chi \) such that \(\Phi_n(\chi) = w \)?)

References

[K] M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field, Invent. math., 93 (1988), 451–480.