AUTOMORPHISM GROUPS OF AFFINE VARIETIES WITHOUT NON-ALGEBRAIC ELEMENTS

ALEXANDER PEREPECHKOa AND ANDRIY REGETA

ABSTRACT. Given an affine algebraic variety X, we prove that if the neutral component $\text{Aut}^0(X)$ of the automorphism group consists of algebraic elements, then it is nested, i.e., is a direct limit of algebraic subgroups. This improves our earlier result \cite{5}. To prove it, we obtain the following fact. If a connected ind-group G contains a closed connected ind-subgroup $H \subset G$ with a geometrically smooth point, and for any $g \in G$ some power of g belongs to H, then $G = H$.

1. Introduction

In this note we work over an algebraically closed field of characteristic zero \mathbb{K}. We study the automorphism groups of affine varieties. It is well known that these groups can be larger than any algebraic group. For example, the automorphism group $\text{Aut}(\mathbb{A}^n)$ of the affine n-space \mathbb{A}^n contains a copy of a polynomial ring in $n - 1$ variables, hence it is infinite-dimensional for $n \geq 2$.

In \cite{9} Shafarevich introduced the notion of the infinite-dimensional algebraic group, which is currently called the ind-group and showed that $\text{Aut}(\mathbb{A}^n)$ has the structure of the ind-group. Later it was shown that $\text{Aut}(X)$ has a natural structure of an ind-group for any affine variety X, see \cite[Section 5]{4} and also \cite[Section 2]{6}.

We call an element g of the automorphism group $\text{Aut}(X)$ algebraic if there is an algebraic subgroup G of the ind-group $\text{Aut}(X)$ that contains g. We also denote by \mathbb{G}_a the additive group of the field and by $\mathcal{U}(X) \subset \text{Aut}(X)$ the (possibly trivial) subgroup generated by all the \mathbb{G}_a-actions. It is usually called the special automorphism group and is also denoted by $\text{SAut}(X)$.

In \cite{5} we proved that for the subgroup $\text{Aut}_{\text{alg}}(X) \subset \text{Aut}(X)$ generated by all connected algebraic subgroups the following conditions are equivalent:

- $\mathcal{U}(X)$ is abelian;
- all elements of $\text{Aut}_{\text{alg}}(X)$ are algebraic;
- the subgroup $\text{Aut}_{\text{alg}}(X) \subset \text{Aut}(X)$ is a closed nested ind-subgroup, i.e., is a direct limit of algebraic subgroups;
- $\text{Aut}_{\text{alg}}(X) = T \ltimes \mathcal{U}(X)$, where T is a maximal subtorus of $\text{Aut}(X)$, and $\mathcal{U}(X)$ is closed in $\text{Aut}(X)$.

In this paper we prove that this result can be partially extended from $\text{Aut}_{\text{alg}}(X)$ to the connected component $\text{Aut}^0(X)$. More precisely, we have the following result which is proved in Section 4.

Theorem 1.1. Let X be an affine variety. The following conditions are equivalent:

1. all elements of $\text{Aut}^0(X)$ are algebraic;
2. the subgroup $\text{Aut}^0(X) \subset \text{Aut}(X)$ is a closed nested ind-subgroup;

aThe research of the first author was carried out at the HSE University at the expense of the Russian Science Foundation (project no. 21-71-00062).
In [6] this theorem is proved for algebraic surfaces with a nontrivial group \(\mathcal{U}(X) \).

The key observation in our proof is as follows. Under condition (1) for any element of \(\text{Aut}^0(X) \) some power of it belongs to \(T \ltimes \mathcal{U}(X) \), see Lemma 4.1. In Section 3 we prove that an ind-group \(G \) coincides with its ind-subgroup \(H \) if for any element of \(G \) some power of it lies in \(H \), see Theorem 3.1. We also need a certain smoothness condition on \(H \), which is fulfilled if \(H \) is nested.

In Section 5 we also state some observations about the group of automorphisms of a rigid affine variety, i.e., an affine variety that admits no \(\mathbb{G}_a \)-actions.

2. Preliminaries

2.1. Ind-groups. The notion of an ind-group goes back to Shafarevich who called these objects infinite dimensional groups (see [9]). We refer to [4] for basic notions in this context.

Definition 2.1. By an affine ind-variety we mean an injective limit \(V = \varinjlim V_i \) of an ascending sequence \(V_0 \hookrightarrow V_1 \hookrightarrow V_2 \hookrightarrow \ldots \) such that the following holds:

1. \(V = \bigcup_{k \in \mathbb{N}} V_k \);
2. each \(V_k \) is an affine algebraic variety;
3. for all \(k \in \mathbb{N} \) the embedding \(V_k \hookrightarrow V_{k+1} \) is closed in the Zariski topology.

For simplicity we will call an affine ind-variety simply an ind-variety. An ind-variety \(V \) has a natural topology: a subset \(S \subset V \) is called open (resp. closed) if \(S_k := S \cap V_k \subset V_k \) is open (resp. closed) for all \(k \in \mathbb{N} \). A closed subset \(S \subset V \) has a natural structure of an ind-variety and is called an ind-subvariety.

The product of ind-varieties \(X = \varinjlim X_i \) and \(Y = \varinjlim Y_i \) is defined as \(\varinjlim X_i \times Y_i \). A morphism between ind-varieties \(V = \bigcup_k V_k \) and \(W = \bigcup_m W_m \) is a map \(\phi : \hat{V} \to W \) such that for every \(k \in \mathbb{N} \) there is an \(m \in \mathbb{N} \) such that \(\phi(V_k) \subset W_m \) and that the induced map \(V_k \to W_m \) is a morphism of algebraic varieties. This allows us to give the following definition.

Definition 2.2. An ind-variety \(G \) is said to be an ind-group if the underlying set \(G \) is a group such that the map \(G \times G \to G, (g,h) \mapsto gh^{-1} \), is a morphism.

A closed subgroup \(H \) of \(G \) is a subgroup that is also a closed subset. Then \(H \) is again an ind-group with respect to the induced ind-variety structure. A closed subgroup \(H \) of an ind-group \(G = \varinjlim G_i \) is called an algebraic subgroup if \(H \) is contained in some \(G_i \).

The next result can be found in [1, Section 5].

Proposition 2.3. Let \(X \) be an affine variety. Then \(\text{Aut}(X) \) has the structure of an ind-group such that a regular action of an algebraic group \(G \) on \(X \) induces a homomorphism of ind-groups \(G \to \text{Aut}(X) \).

Two ind-structures \(V = \varinjlim V_i \) and \(V' = \varinjlim V'_i \) are called equivalent, if the identity map \(\varinjlim V_i \to \varinjlim V'_i \) is an isomorphism of ind-varieties. One also calls \(\varinjlim V'_i \) an admissible filtration of the ind-variety \(V = \varinjlim V_i \).

Definition 2.4 ([3, Definition 1.9.4]). A point \(p \) in an ind-variety \(V \) is called geometrically smooth, if there exists an admissible filtration \(V = \varinjlim V_i \) such that \(p \) is a smooth point of \(V_i \) for each \(i \).
An element \(g \in \text{Aut}(X) \) is called \emph{algebraic} if there is an algebraic subgroup \(G \subset \text{Aut}(X) \) such that \(g \in G \). An ind-group \(G = \varprojlim G_i \) is called \emph{nested} if \(G_i \) is an algebraic group for \(i = 1, 2, \ldots \).

2.2. Lie algebras of ind-groups. For an ind-variety \(V = \bigcup_{k \in \mathbb{N}} V_k \) we can define the tangent space in \(x \in V \) in the obvious way: we have \(x \in V_k \) for \(k \geq k_0 \), and \(T_x V_k \subset T_x V_{k+1} \) for \(k \geq k_0 \), and then we define

\[
T_x V := \bigcup_{k \geq k_0} T_x V_k,
\]

which is a vector space of at most countable dimension.

For an ind-group \(G \), the tangent space \(T_e G \) has a natural structure of a Lie algebra which is denoted by \(\text{Lie} G \), see [7, Section 4] and [4, Section 2] for details.

2.3. \(\mathbb{G}_a \)-actions. Given an affine variety \(X \), we denote by \(\text{Aut}_{\text{alg}}(X) \subset \text{Aut}(X) \) the subgroup generated by all connected algebraic subgroups of the automorphism group \(\text{Aut}(X) \).

An element \(u \in \text{Aut}(X) \) is called \emph{unipotent} if \(u \) belongs to an algebraic subgroup of \(\text{Aut}(X) \) isomorphic to \(\mathbb{G}_a \). We denote the automorphism subgroup of \(\text{Aut}(X) \) generated by all the unipotent elements by \(U(X) \).

3. IND-SUBGROUP WITH POWERS OF ELEMENTS

In this section we explore the situation when an ind-subgroup contains some power of any element of the ind-group and prove Theorem 3.1.

Theorem 3.1. Let \(G \) be a connected ind-group and \(H \subset G \) be a closed connected ind-subgroup with a geometrically smooth point. Assume that for any \(g \in G \) there exists \(d \in \mathbb{N} \) such that \(g^d \in H \). Then \(G = H \).

By [4, Theorem 0.1.1] and [4, Remark 2.2.3] there exist ind-structures \(G = \varprojlim G_i \) and \(H = \varprojlim H_i \) such that each \(G_i \) and \(H_i \) is an irreducible subset containing the identity. Moreover, since there exists a geometrically smooth point \(p \in H \), then every point in \(H \) is geometrically smooth, and we may assume that each \(H_i \) is smooth at the identity.

Remark 3.2. Any nested ind-group is geometrically smooth at each point. However, to our knowledge, this property is not proven for arbitrary ind-groups. For example, a stronger property of being \emph{strongly smooth} does not hold for the ind-group \(\text{Aut} (\mathbb{A}^2) \), see [4, Corollary 14.1.2]. More generally, this group does not admit a filtration by normal varieties.

Consider the multiplication map

\[
\mu_d: G^d = G \times \cdots \times G \to G, \ (g_1, \ldots, g_d) \mapsto g_1 \cdots g_d.
\]

Its differential is the linear map

\[
d\mu_d: (\text{Lie} G)^d = \text{Lie} G \times \cdots \times \text{Lie} G \to \text{Lie} G.
\]

We have the following statement.

Lemma 3.3. Given \((x_1, \ldots, x_d) \in (\text{Lie} G)^d\), the following holds:

\[
d\mu_d((x_1, \ldots, x_d)) = x_1 + \cdots + x_d.
\]
Proof. By linearity,
\[d\mu_d((x_1, \ldots, x_d)) = \sum_i d\mu_d((0, \ldots, 0, x_i, 0, \ldots, 0)). \]
We claim that \(d\mu_d((0, \ldots, 0, x_i, 0, \ldots, 0)) = x_i \). Indeed, let us denote
\[s_i: G \to \underbrace{G \times \cdots \times G}_{d \text{ times}}, \quad g \mapsto (id, \ldots, g_{\text{i-th position}}, \ldots, id). \]
The composition \(\mu \circ s_i \) is the trivial automorphism of \(G \). Hence,
\[d(\mu \circ s_i): \text{Lie } G \to \underbrace{\text{Lie } G \oplus \cdots \oplus \text{Lie } G}_{d \text{ times}} \]
is the identity map, where the first map in (2) is given by the embedding into the i-th coordinate. Therefore, we conclude that \(d\mu_d((0, \ldots, 0, x_i, 0, \ldots, 0)) = x_i \). Now, from (1) it follows that
\[d\mu_d((x_1, \ldots, x_d)) = \sum_i x_i. \]
□

Definition 3.4. We denote \(\phi_d: G \to G, \ g \mapsto g^d \). It is an endomorphism of an ind-variety.

Corollary 3.5. The differential \(d\phi_d: \text{Lie } G \to \text{Lie } G \) satisfies
\[d\phi_d(x) = d \cdot x \]
for any \(x \in \text{Lie } G \).

Proof. Consider an embedding
\[s: G \to \underbrace{G \times \cdots \times G}_{d \text{ times}}; \quad g \mapsto (g, \ldots, g). \]
Its differential is the embedding
\[ds: \text{Lie } G \to \underbrace{\text{Lie } G \oplus \cdots \oplus \text{Lie } G}_{d \text{ times}}; \quad x \mapsto (x, \ldots, x). \]
Since \(\phi_d = \mu_d \circ s \), by Lemma 3.3
\[d\phi_d(x) = d\mu_d((x, \ldots, x)) = d \cdot x. \]
□

Definition 3.6. For each \(d, k \in \mathbb{N} \) we denote
\[X_{d,k} = \phi_d^{-1}(H_k) = \{ g \in G \mid g^d \in H_k \} \subset G. \]

Lemma 3.7. (1) The subset \(X_{d,k} \) is closed in \(G \) for any \(d, k \in \mathbb{N} \).
(2) For any closed algebraic subset \(A \subset G \) there exist \(d, k \in \mathbb{N} \) such that \(A \subset X_{d,k} \).

Proof. The map \(\phi_d \) is a morphism of ind-varieties, so the first statement follows from \(X_{d,k} = \phi_d^{-1}(H_k) \).

The increasing sequence of closed subsets
\[X_{d,1} \subset X_{d,2} \subset \ldots \subset X_{d,i} \subset \ldots \]
exhausts \(G \), hence \(A \subset X_{d,i} \) for some \(i \in \mathbb{N} \). We may take \(d = i! \) and \(k = i \) to get the second assertion. See also [4 Theorem 1.3.3].
□
Proof of Theorem 1.1. Denote the restriction of $\phi_d: G \to G$, $g \mapsto g^d$, to $X_{d,k}$ by $\phi_{d,k}$. Then

$$\phi_{d,k}: X_{d,k} \to H_k, \ g \mapsto g^d.$$

Its differential map at the identity,

$$d(\phi_{d,k})_{\text{id}}: T_{\text{id}}X_{d,k} \to T_{\text{id}}H_k,$$

is given by $x \mapsto d \cdot x$ due to Corollary 3.3. This map has trivial kernel and is surjective due to $H_k \subset X_{d,k}$. So, $\dim T_{\text{id}}X_{d,k} = \dim T_{\text{id}}H_k$.

Since H_k is smooth at the identity, $\dim T_{\text{id}}H_k = \dim H_k$. Let Y be the union of irreducible components of $X_{d,k}$ containing the identity. From $H_k \subset Y$ and $\dim T_{\text{id}}Y = \dim H_k$ we infer that $Y = H_k$. Thus, the set $X_{d,k}$ contains H_k as an irreducible component, and other components do not contain the identity.

By Lemma 3.7 for any $i \in \mathbb{N}$ there exist $d, k \in \mathbb{N}$ such that $G_i \subset X_{d,k}$. Since G_i is irreducible and contains the identity, G_i is a subset of the only irreducible component of $X_{d,k}$ which contains the identity, namely, H_k. We conclude that $G \subseteq H$. \qed

4. Neutral component without non-algebraic elements

In this section we assume that $\text{Aut}^\circ(X)$ consists of algebraic elements. By [5, Main Theorem], $\mathcal{U}(X)$ is an abelian unipotent ind-group (which is trivial, one-dimensional, or infinite-dimensional), and the subgroup $\text{Aut}_{\text{alg}}(X)$ generated by connected algebraic subgroups equals $T \times \mathcal{U}(X)$, where T is a maximal algebraic torus.

Lemma 4.1. For any algebraic element $g \in \text{Aut}^\circ(X)$ there exists $d \in \mathbb{N}$ such that $g^d \in T \times \mathcal{U}(X)$.

Proof. The Zariski closure of $\{g^n \mid n \in \mathbb{Z}\}$ is an abelian algebraic group, which we denote by G. The subgroup G° is of finite index in G, so we may denote $d = |G/G^\circ|$ and we have $g^d \in G^\circ$. Since G° is a connected algebraic group, $G^\circ \subset T \times \mathcal{U}(X)$. The claim follows. \qed

Remark 4.2. By [2, Theorem 1.1], for any algebraic group G there is a finite subgroup $H \subset G$ such that $G = H \cdot G^\circ$. Thus, any algebraic element of $\text{Aut}(X)$ is a product of an element of $\text{Aut}_{\text{alg}}(X)$ and a finite order one.

As we have mentioned above, $\mathcal{U}(X)$ is a direct limit of its unipotent algebraic subgroups, i.e., $\mathcal{U}(X) = \lim \mathcal{U}(X)_k$, where each $\mathcal{U}(X)_k$ is a closed unipotent algebraic subgroup of $\mathcal{U}(X)$. We set $\overline{\mathcal{U}(X)}_k = \mathcal{U}(X)$ for each k if $\mathcal{U}(X)$ is itself an algebraic group.

Proof of Theorem 1.1. Assume that all elements of $\text{Aut}^\circ(X)$ are algebraic. By [5, Theorem 1.3], $\text{Aut}_{\text{alg}}(X)$ equals $T \times \mathcal{U}(X)$. By Lemma 4.1 we may apply Theorem 3.1 to $G = \text{Aut}^\circ(X)$ and $H = T \times \mathcal{U}(X)$ and conclude that $\text{Aut}^\circ(X) = T \times \mathcal{U}(X)$. This proves the implication $(1) \Rightarrow (3)$. The implications $(3) \Rightarrow (2) \Rightarrow (1)$ are obvious. \qed

Corollary 4.3. Let X be an affine algebraic variety without \mathbb{G}_a-actions such that $\text{Aut}^\circ(X)$ consists of algebraic elements. Then $\text{Aut}^\circ(X)$ is an algebraic torus of dimension at most $\dim X$.

Proof. In this case $\text{Lie Aut}^\circ(X) = t$, so $\text{Aut}^\circ(X)$ is finite-dimensional. Then $\text{Aut}^\circ(X)$ is a connected algebraic group and is defined by Lie T. \qed

Remark 4.4. If X does not admit \mathbb{G}_a- and \mathbb{G}_m-actions, then Theorem 1.1 can be obtained from [1, Proposition 3.6]. Indeed, in this case all elements of $\text{Aut}^\circ(X)$ are of finite order. Hence, for some $n \in \mathbb{N}$ the subset of elements of order at most n, which is a closed, contains the identity as a limit point.
5. THE AUTOMORPHISM GROUP OF A RIGID VARIETY

In this section we do not assume that $\text{Aut}^o(X)$ consists of algebraic elements. Assume that an affine variety X is rigid, i.e., admits no \mathbb{G}_a-actions. By [5, Main Theorem], all \mathbb{G}_m-actions on X commute, hence $\text{Aut}_{\text{alg}}(X) = T$ is an algebraic torus.

Proposition 5.1. Each element of $\text{Aut}^o(X)$ commutes with T.

Proof. The torus T is a normal closed subgroup in $\text{Aut}^o(X)$. Consider the action of $\text{Aut}^o(X)$ on T by conjugations. Since the group of automorphisms of the algebraic torus T of dimension n seen as an algebraic group is isomorphic to $\text{GL}(n, \mathbb{Z})$, we obtain the homomorphism $\text{Aut}^o(X) \to \text{GL}(n, \mathbb{Z})$. Since $\text{GL}(n, \mathbb{Z})$ is discrete, the image of $\text{Aut}^o(X)$ is trivial. The assertion follows. □

Corollary 5.2. Each element of $\text{Aut}^o(X)$ is contained in an abelian group $A \times T$, where A is a cyclic group.

Remark 5.3. Any maximal abstract abelian subgroup G of $\text{Aut}^o(X)$ is an at most countable extension of T. Indeed, G coincides with its centralizer, hence is a closed ind-subgroup ([8, Lemma 2.4]). Further, G contains T, and by [3, Theorem B] the connected component G^o is algebraic. So, $G^o = T$.

In particular, the only maximal connected abelian ind-subgroup of $\text{Aut}^o(X)$ is T.

Question 5.4. Given a rigid affine variety X, what can we say about the subset of algebraic elements of $\text{Aut}^o(X)$?

References

[1] H. Bergner, S. Zimmermann, *Properties of the Cremona group endowed with the Euclidean topology*, preprint, arXiv:2108.13096.

[2] M. Brion, *On extensions of algebraic groups with finite quotient*, Pacific J. Math. (Robert Steinberg Memorial Issue) 279 (2015), 135-153.

[3] S. Cantat, A. Regeta, and J. Xie, *Families of commuting automorphisms, and a characterization of the affine space*, to appear in Amer. J. Math, arXiv:1912.01567.

[4] J.-P. Furter, H. Kraft, *On the geometry of the automorphism groups of affine varieties*, preprint, arXiv:1809.04175.

[5] A. Perepechko, A. Regeta, *When is the automorphism group of an affine variety nested?*, to appear in Trans. Groups, arXiv:1910.07699.

[6] S. Kovalenko, A. Perepechko, and M. Zaidenberg, *On automorphism groups of affine surfaces*, in: Algebraic Varieties and Automorphism Groups, Advanced Studies in Pure Mathematics 75 (2017), 207–286.

[7] S. Kumar, *Kac-Moody Groups, Their Flag Varieties and Representation Theory*, Progress in Mathematics, Vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002.

[8] A. Liendo, A. Regeta, and C. Urech, *Characterisation of affine surfaces by their automorphism groups*, to appear in Ann. Sc. Norm. Super. di Pisa, arXiv:1805.03994, doi: 10.2422/2036-2145.201905_009.

[9] I. R. Shafarevich, *On some infinite-dimensional groups*, Rend. Mat. e Appl. (5) 25 (1966), no. 1-2, 208–212.

KHARKEVICH INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS, 19 BOLSHOY KARETNY PER., 127994 MOSCOW, RUSSIA

NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS, 20 MYASNITSKAYA ULITSA, MOSCOW 101000, RUSSIA

Email address: a@perep.ru

INSTITUT FÜR MATHEMATIK, FRIEDRICH-SCHILLER-UNIVERSITÄT JENA, JENA 07737, GERMANY

Email address: andriyregeta@gmail.com