On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize

M.L.N. Gonçalves *

May 10, 2017

Abstract

In this paper, we extend the improved pointwise iteration-complexity result of a dynamic regularized alternating direction method of multipliers (ADMM) for a new stepsize domain. In this complexity analysis, the stepsize parameter can even be chosen in the interval $(0, 2)$ instead of interval $(0, (1 + \sqrt{5})/2)$. As usual, our analysis is established by interpreting this ADMM variant as an instance of a hybrid proximal extragradient framework applied to a specific monotone inclusion problem.

2000 Mathematics Subject Classification: 47H05, 49M27, 90C25, 90C30, 90C60, 65K10.

Key words: alternating direction method of multipliers, hybrid proximal extragradient framework, pointwise iteration-complexity, convex programming.

1 Introduction

We are interested in the following linearly constrained convex problem

$$\min \{ f(x) + g(y) : Ax + By = b, \ x \in \mathbb{R}^n, \ y \in \mathbb{R}^p \} \quad (1)$$

where $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^p \to \mathbb{R}$ are convex functions, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times p}$ and $b \in \mathbb{R}^m$. We assume that the solution set of (1) is nonempty. Convex optimization problems with a separable structure such as (1) appear in many applications areas such as machine learning, compressive sensing and image processing. The augmented Lagrangian method (see, e.g., [1]) attempts to solve (1) directly without taking into account its particular structure. To overcome this drawback, a variant of the augmented Lagrangian method, namely, the alternating direction method of multipliers (ADMM), was proposed and studied in [7, 9]. The ADMM takes full advantage of the special structure of the problem by considering each variable separably in an alternating form and coupling them into the Lagrange multiplier updating; for detailed reviews, see [2, 8].

Recently, several variants of the ADMM for solving (1) have been proposed in the literature; see, for example, [3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 22]. A dynamic regularized ADMM (DR-ADMM) with stepsize $\theta \in (0, (1 + \sqrt{5})/2)$ was proposed by Gonçalves at al. [11] whose the pointwise iteration-complexity is substantially better than ones for the ADMMs. More specifically, for given $\rho > 0$, it was

*IME/UFG- Caixa Postal 131, CEP 74001-970, Goiânia-GO, Brazil. (E-mail: maxlng@ufg.br). The work of this author was supported in part by CNPq Grants 406250/2013-8, 444134/2014-0 and 309370/2014-0.
proved in [11] that the DR-ADMM finds a ρ-approximate solution of (1) in at most $O\left(\rho^{-1} \log(\rho^{-1})\right)$ iterations. Although different criteria are used, in general the ADMM and its variants need $O\left(\rho^{-2}\right)$ iterations to find this same approximate solution (see, e.g., [3, 4, 5, 12, 13, 14, 15, 16, 17, 19]). The main goal of this work is to extend the improved pointwise iteration-complexity result of the DR-ADMM obtained in [11] for a new stepsize domain $\theta \in (0, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2)$, where α is a nonnegative proximal factor associated to the proximal term added to the second subproblem of the method (see the DR-ADMM in Section 3). Since the limit of $(\sqrt{\alpha^2 + 6\alpha + 5} - \alpha)$ as α goes to infinity is 3, the latter stepsize domain becomes $(0, 2)$ (resp. $(0, (1 + \sqrt{5})/2)$) when α is sufficiently large (resp. $\alpha = 0$). It is worth pointing out that the ADMM with a larger stepsize parameter can substantially improve the performance of the method in many applications (see [6, 8] for more details). As in [11], our complexity analysis is done by rewriting problem (1) as a monotone inclusion problem and by analyzing the DR-ADMM in the setting of a generalized hybrid proximal extragradient (HPE). It should be mentioned that paper [10] was the first one to discuss complexity results for the ADMM with stepsize $\theta \in (0, 2)$ for solving non-convex linearly constrained problems and, subsequently, paper [14] studied convergence and complexity results for the ADMM with the same stepsize domain of this paper for the convex case.

Notation: The set of real numbers is denoted by \mathbb{R}. The set of non-negative real numbers and the set of positive real numbers are denoted by \mathbb{R}_+ and \mathbb{R}_{++}, respectively. For $t > 0$, we let $\log^+(t) := \max\{\log t, 0\}$. For a finite-dimensional real vector space X with inner product $\langle \cdot, \cdot \rangle$, its induced norm is denoted by $\|\cdot\|$. Denote by M^+_X the space of selfadjoint positive semidefinite linear operators on X. For each $H \in M^+_X$, the seminorm induced by H on X is defined by $\|\cdot\|_H := \sqrt{\langle H(\cdot), \cdot \rangle}$.

2 Preliminaries results

In this section, we present a dynamic regularized HPE framework and its pointwise iteration-complexity result. This framework is an instance of one studied in [11].

Consider the monotone inclusion problem (MIP)

$$0 \in T(z)$$

where Z is a finite-dimensional real vector space and $T : Z \rightrightarrows Z$ is a maximal monotone operator.\footnote{An operator $T : Z \rightrightarrows Z$ is said to be monotone if $\langle z - z', s - s' \rangle \geq 0$, for every $z, z' \in Z$, $s \in T(z)$ and $s' \in T(z')$. Moreover, T is maximal monotone if it is monotone and, additionally, if S is a monotone operator such that $T(z) \subseteq S(z)$ for every $z \in Z$ then $T = S$.} We assume that the solution set of (2), denoted by $T^{-1}(0)$, is nonempty.

The dynamic regularized HPE framework attempts to solve the inclusion (2) by solving approximately a sequence of regularized MIP of the following form

$$0 \in T(z) + \mu M(z - z_0)$$

where $z_0 \in Z$, $\mu > 0$ and $M \in M^+_X$ are fixed. We also assume that the solution set of (3)

$$\tilde{Z}_\mu(M) := \{z \in Z : 0 \in T(z) + \mu M(z - z_0)\}$$

is nonempty for every $\mu > 0$. It can be shown that if M is positive definite, then the operator $T(\cdot) + \mu M(\cdot - z_0)$ is maximal μ-strongly monotone which in turn implies that the set $\tilde{Z}_\mu(M)$ is
nonempty for every $\mu > 0$ (see, e.g., [21, Corollary 12.44 and Proposition 12.54]). Moreover, the following relation between $\bar{z}(M)$ and $T^{-1}(0)$ holds for every $\mu > 0$:

$$
\|z - \bar{z}\|_{M} \leq \|z - \bar{z}\|_{M} \forall \bar{z} \in \bar{Z}(M), \forall \bar{z} \in T^{-1}(0).
$$

The above relation follows directly from [11, Lemma 3.1] with (\bar{z}, \bar{z}') following relation between \bar{z}, \bar{z}'.

Next, we present the dynamic regularized HPE framework for solving (2), which will be used in order to analyze the ADMM variant of Section 3.

Dynamic regularized HPE (DR-HPE) framework.

1. Let $z_{0} \in Z$, $(\eta_{0}, \sigma, \tau, \rho) \in R_{+} \times (0, 1) \times (0, 1) \times R_{++}$ and $M \in M_{+}^{Z}$ be given, and set $\mu = 1$ and $k = 1$;
2. find $(z_{k}, \bar{z}_{k}, \eta_{k}) \in Z \times Z \times R_{+}$ such that
3. $M(z_{k-1} - z_{k}) \in (T(\bar{z}_{k}) + \mu M(\bar{z}_{k} - z_{0}))$,
 $$
 \|z - \bar{z}_{k}\|_{M} + \eta_{k} \leq \sigma\|z_{k-1} - \bar{z}_{k}\|_{M} + (1 - \tau)\eta_{k-1};
 $$
4. if $\|z_{k-1} - z_{k}\|_{M} \leq \rho/2$, then go to step 3; otherwise, set $k \leftarrow k + 1$ and go to step 1.
5. compute $v_{k} := z_{k-1} - z - \mu(\bar{z}_{k} - z_{0})$; if $\|v_{k}\|_{M} \leq \rho$, then stop and output $(\bar{z}, v) \leftarrow (\bar{z}_{k}, v_{k})$; else, set $\mu \leftarrow \mu/2$ and $k = 1$, and go to step 1.

Remarks.
1. The DR-HPE framework corresponds to the framework 3 in [11] with $\lambda_{k} = 1$, $\varepsilon_{k} = 0$ and $(d w)_{z}(z') = (1/2)\|z' - z\|_{M}^{2}$ for every $z, z' \in Z$. Now, if M is the identity operator and $\eta_{k} = 0$, it becomes the DR-HPE framework in [18] with $\lambda_{k} = 1$ and $\varepsilon_{k} = 0$.
2. The scalar μ plays the role of a regularization parameter which is dynamically adapted in order to control the term $M(\bar{z}_{k} - z_{0})$ in (6).
3. The DR-HPE framework is a general setting which does not specify how to obtain $(z_{k}, \bar{z}_{k}, \eta_{k})$ as in step 1. Specific computation of these elements will depend on implementation of particular instances of the framework and the properties of the operators T and M.
4. If M is positive definite and $\sigma = \eta_{0} = 0$, then (7) implies that $\eta_{k} = 0$ and $z_{k} = \bar{z}_{k}$ for every k, and then (6) reduces to an iteration of the proximal point method (in the metric $\| \cdot \|_{M}$) applied to (3).

The following result gives the pointwise iteration-complexity bound for the DR-HPE framework.

Theorem 2.1. Suppose that $1/(1 - \sigma)$ and $1/\tau$ are $O(1)$. Then, the DR-HPE framework finds a pair (\bar{z}, v) satisfying $Mv \in T(\bar{z})$ and $\|v\|_{M} \leq \rho$, in at most

$$
O \left(\left(1 + \frac{\sqrt{d^{2} + \eta_{0}}}{\rho} \right) \left[1 + \log^{+} \left(\frac{\sqrt{d^{2} + \eta_{0}}}{\rho} \right) \right] \right)
$$

iterations, where $d := \inf \{ \|z_{0} - z\|_{M} : z \in T^{-1}(0) \}$.

Proof. First of all, the DR-HPE framework is a special case of framework 3 in [11] where $\lambda_{k} = 1$, $\varepsilon_{k} = 0$ and $(d w)_{z}(z') = (1/2)\|z' - z\|_{M}^{2}$ for every $z, z' \in Z$. Moreover, it is easy to see that the
distance generating function \(w(\cdot) = (1/2)\|\cdot\|_F^2 \) is an \((1,1)\)-regular with respect to \((Z, \|\cdot\|_M)\) in the sense of [11] Definition 2.2. Hence, the proof follows directly from [11] Theorem 3.3 (see also first remark after [11, Theorem 3.3]) with \(M = m = \lambda = 1, \varepsilon_k = 0, d_0 = d^2/2, \tilde{r} = Mv \) and by taking into account the following property of the dual semi-norm \(\|M(\cdot)\|_M^2 = \|\cdot\|_M \) (see [11] Proposition A1)).

3 DR-ADMM and its pointwise iteration-complexity

In this section, we recall the DR-ADMM for solving [11] and establish its pointwise iteration-complexity result for any stepsize \(\theta \in (0, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2) \), where \(\alpha \) is a nonnegative proximal factor associated to the proximal term added to the second subproblem of the method.

The DR-ADMM for solving [11] is described as follows:

Dynamic regularized ADMM (DR-ADMM).

(0) Let an initial point \((x_0, y_0, \gamma_0) \in \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^m\), positive parameters \(\beta \) and \(\theta \), a tolerance \(\rho > 0 \), a proximal factor \(\alpha \geq 0 \), and matrices \(R \in \mathcal{M}_{\mathbb{R}^n}^n \) and \(S \in \mathcal{M}_{\mathbb{R}^p}^p \) be given, and set \(\mu = 1 \) and \(\bar{k} = 1 \);

(1) set \(\beta_1 := \beta/(\theta + \mu), \beta_2 := \beta(1 + \mu), \hat{x}_{k-1} := (x_{k-1} + \mu x_0)/(1 + \mu) \) and \(\hat{\gamma}_{k-1} := (\theta \gamma_{k-1} + \mu \gamma_0)/(\theta + \mu) \) and compute \(x_k \in \mathbb{R}^n \) as

\[
 x_k \in \arg\min_x \left\{ f(x) - \langle \hat{\gamma}_{k-1}, Ax \rangle + \frac{\beta_1}{2} \|Ax + By_{k-1} - b\|^2 + \frac{1 + \mu}{2} \|x - \hat{x}_{k-1}\|_R^2 \right\}; \quad (8)
\]

(2) set \(\hat{\gamma}_k := \hat{\gamma}_{k-1} - \beta_1(Ax_k + By_{k-1} - b), \hat{y}_{k-1} := (y_{k-1} + \mu y_0)/(1 + \mu) \) and \(u_k := \hat{\gamma}_k + \beta_2(Ax_k + By_{k-1} - b) \), and compute \((y_k, \gamma_k) \in \mathbb{R}^p \times \mathbb{R}^m\) as

\[
 y_k \in \arg\min_y \left\{ g(y) - \langle u_k, By \rangle + \frac{\beta_2}{2} \left[\|Ax_k + By - b\|^2 + \alpha \|By - \hat{y}_{k-1}\|^2 \right] \right\}; \quad (9)
\]

\[
 \gamma_k := \gamma_{k-1} - \theta \beta \left[Ax_k + By_k - b + \mu(\hat{\gamma}_k - \gamma_0)/(\beta \theta) \right]; \quad (10)
\]

(3) If

\[
 \left(\|\Delta x_k\|_R^2 + (1 + \alpha)\beta \|B \Delta y_k\|_S^2 + \|\Delta y_k\|_S^2 + \left(1/(\beta \theta) \right) \|\Delta \gamma_k\|_S^2 \right)^{1/2} \leq \rho/2, \quad (11)
\]

where

\[
 \Delta x_k := x_{k-1} - x_k, \quad \Delta y_k := y_{k-1} - y_k, \quad \Delta \gamma_k := \gamma_{k-1} - \gamma_k, \quad (12)
\]

then go to step 4; else set \(k \leftarrow k + 1 \) and go to step 1;

(4) set \(v^x_k := \Delta x_k - \mu(x_k - x_0), v^y_k := \Delta y_k - \mu(y_k - y_0) \) and \(v^\gamma_k := \Delta \gamma_k - \mu(\hat{\gamma}_k - \gamma_0); \) if

\[
 \left(\|v^x_k\|_R^2 + (1 + \alpha)\beta \|B v^y_k\|_S^2 + \|v^y_k\|_S^2 + \left(1/(\beta \theta) \right) \|v^\gamma_k\|_S^2 \right)^{1/2} \leq \rho, \quad (13)
\]

then stop and output \((x, y, \hat{\gamma}, v^x, v^y, v^\gamma) \leftarrow (x_k, y_k, \hat{\gamma}_k, v^x_k, v^y_k, v^\gamma_k)\); otherwise, set \(\mu \leftarrow \mu/2 \) and \(k = 1 \), and go to step 1.

Remarks. 1) The DR-ADMM is equivalent to the DR-ADMM in [11] with an appropriate choice
of linear operator G. It should be noted, however, that the complexity result presented there does not establish any relationship between the stepsize θ and proximal term defined by G. 2) As in the DR-HPE framework, the scalar μ in the DR-ADMM can be seen as a regularization parameter. 3) Suitable choices of R and S may become the subproblems in (8) and (9) easier to solve or even have a closed-form solutions (see [15, 23] for more details). 4) For convenience, the term “cycle” will be used to refer to an execution of steps 1-3 of the DR-ADMM with a fixed μ.

In what follows, we show that the DR-ADMM with $\theta \in (0, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2)$ is still a special case of the DR-HPE framework applied to a specific monotone inclusion problem. As a consequence, its pointwise iteration-complexity result will follows from Theorem 2.1.

Let us first deduce the aforementioned monotone inclusion problem. It is well known that a pair (\bar{x}, \bar{y}) is a solution of (11) if and only if $(\bar{x}, \bar{y}, \gamma)$ satisfies

$$0 \in \partial f(\bar{x}) - A^*\gamma, \quad 0 \in \partial g(\bar{y}) - B^*\gamma, \quad Ax + By = b.$$

Since it is assumed that the solution set of (11) is nonempty, the existence of the Lagrange multipliers for problem (11) is guaranteed; see, for example, [20, Corollary 28.2.2]. Hence, we may solve (11) by means of obtaining a triple $(\bar{x}, \bar{y}, \gamma)$ satisfying the following monotone inclusion problem

$$0 \in T(x, y, \gamma) := \begin{bmatrix} \partial f(x) - A^*\gamma \\ \partial g(y) - B^*\gamma \\ Ax + By - b \end{bmatrix}.$$

(14)

In order to analyze the DR-ADMM in the setting of Section 2 consider the vector space $Z := \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^m$ and the following linear operator

$$Q := \begin{pmatrix} R & 0 & 0 \\ 0 & (1 + \alpha)\beta B^*B + S & 0 \\ 0 & 0 & (\theta\beta)^{-1}I \end{pmatrix} : Z \to Z$$

(15)

where I is the $m \times m$ identity operator. We assume that the set $\tilde{Z}_\mu(Q)$ as defined in (14) with $z_0 = (x_0, y_0, \lambda_0)$, T and Q as in (14) and (15), respectively, is nonempty for every $\mu > 0$. We mention that this assumption is not restrictive. Indeed, it is easy to see that a triple $(x, y, \gamma) \in \tilde{Z}_\mu(Q)$ if and only if (x, y, γ) satisfies the inclusions

$$0 \in \partial f(x) - A^*\gamma + \mu R(x - x_0), \quad 0 \in \partial g(y) - B^*\gamma + \mu[(1 + \alpha)\beta B^*B(y - y_0) + S(y - y_0)], \quad 0 = Ax + By - b + \mu(\gamma - \gamma_0)(\beta\theta)^{-1},$$

which is equivalent to the pair (x, y) be a solution and γ an associated Lagrange multiplier of the following optimization problem

$$\min_{(x, y, u)} \left\{ f(x) + g(y) + \frac{\mu}{2}\|x - x_0, y - y_0, u(\theta\beta/\mu) + \gamma_0\|_Q^2 : Ax + By + u = b \right\}.$$

Therefore, any classical condition guaranteeing solution of the above problem implies that $\tilde{Z}_\mu(Q)$ is nonempty. For instance, coerciveness of f and g, or positive definiteness of R and S and injectiveness of B (which is equivalent to Q be definite positive).

The next result shows that the DR-ADMM generates a suitable pair (z_k, \tilde{z}_k) satisfying the inclusion (6) with T as in (14) and $M = Q$, where Q is as is in (15).
Proposition 3.1. Let \(\{(x_k, y_k, \gamma_k, \bar{\gamma}_k)\} \) be the \(k \)th iterate of a cycle of the DR-ADMM and let \(\{\Delta x_k, \Delta y_k, \Delta \gamma_k\} \) be as in (12). Then,
\[
Q \begin{pmatrix} \Delta x_k \\ \Delta y_k \\ \Delta \gamma_k \end{pmatrix} \in \begin{pmatrix} \partial f(x_k) - A^*\bar{\gamma}_k \\ \partial g(y_k) - B^*\bar{\gamma}_k \\ Ax_k + By_k - b \end{pmatrix} + \mu Q \begin{pmatrix} x_k - x_0 \\ y_k - y_0 \\ \bar{\gamma}_k - \gamma_0 \end{pmatrix}
\] (16)
where \(Q \) is as in (15). As a consequence, \(z_k = (x_k, y_k, \gamma_k) \) and \(\bar{z}_k = (x_k, y_k, \bar{\gamma}_k) \) satisfy the inclusion (6) with \(M = Q \) and \(T \) as in (14).

Proof. From the optimality condition for (8) and definitions of \(\bar{\gamma}_k \) and \(\bar{z}_{k-1} \), we have
\[
0 \in \partial f(x_k) - A^*(\bar{\gamma}_{k-1} - \beta_1(Ax_k + By_{k-1} - b)) + (1 + \mu)R(x_k - \bar{x}_{k-1})
= \partial f(x_k) - A^*\bar{\gamma}_k + R(x_k - x_{k-1}) + \mu R(x_k - x_0).
\] (17)
Now, from the optimality condition for (9) and definition of \(u_k \), we obtain
\[
0 \in \partial g(y_k) - B^*(u_k - \beta_2(Ax_k + By_{k-1} - b)) + (1 + \mu)\alpha \beta B^*B(y_k - \hat{y}_{k-1}) + (\beta_2/\beta)S(y_k - \hat{y}_{k-1})
= \partial g(y_k) - B^*\bar{\gamma}_k + [(1 + \mu)\alpha \beta + \beta_2]B^*B(y_k - \hat{y}_{k-1}) + (\beta_2/\beta)S(y_k - \hat{y}_{k-1})
= [(1 + \alpha)\beta B^*B + S](y_k - y_{k-1}) + \partial g(y_k) - B^*\bar{\gamma}_k + \mu [(1 + \alpha)\beta B^*B + S](y_k - y_0)
\] (18)
where the last equality is due to definitions of \(\beta_2 \) and \(\hat{y}_{k-1} \). On the other hand, definition of \(\gamma_k \) in (10) implies that
\[
0 = (\gamma_k - \gamma_{k-1})/(\beta \theta) + Ax_k + By_k - b + \mu(\bar{\gamma}_k - \gamma_0)/(\beta \theta).
\]
Hence, the inclusion (16) follows from the last equality, (17), (18) and definitions in (12) and (15).

The second part of the proposition follows immediately from (16) and definitions of \(z_k, \bar{z}_k, M \) and \(T \).

The following lemma describes some important properties of the sequences generated during a cycle of the DR-ADMM.

Lemma 3.2. Let \(\{(x_k, y_k, \gamma_k, \bar{\gamma}_k)\} \) be the \(k \)th iterate of a cycle of the DR-ADMM and let \(\{\Delta x_k, \Delta y_k, \Delta \gamma_k\} \) be as in (12). Then, the following statements hold:
(a) \(\bar{\gamma}_k - \gamma_{k-1} = -\beta B \Delta y_k - \Delta \gamma_k/\theta \);
(b) if \(k = 1 \) and \(\theta \in [1, 2) \), then
\[
\frac{1}{\theta} \langle B \Delta y_1, \Delta \gamma_1 \rangle \geq \frac{1}{2} \|\Delta y_1\|_{\alpha \beta B^*B + S}^2 - \frac{2\theta d_0}{2 - \theta}
\]
where \(d_0 := \inf \{\|\langle x_0, y_0, \gamma_0 \rangle - (x, y, \gamma)\|_Q : (x, y, \gamma) \text{ is solution of (14)}\} \);
(c) if \(k \geq 2 \), then
\[
2\langle B \Delta y_k, \Delta \gamma_k \rangle \geq 2(1 - \theta) \langle B \Delta y_k, \Delta \gamma_{k-1} \rangle + \theta \|\Delta y_k\|_{\alpha \beta B^*B + S}^2 - \theta \|\Delta y_{k-1}\|_{\alpha \beta B^*B + S}^2.
\]
Proof. (a) Definitions of γ_k, $\tilde{\gamma}_k$ and β_1 in the DR-ADMM imply that

\[
\gamma_k = \gamma_{k-1} - \mu(\tilde{\gamma}_k - \gamma_0) - \theta \beta(Ax_k + By_{k-1} - b) - \beta \beta B(y_k - y_{k-1})
\]

\[
= \gamma_{k-1} - \mu(\tilde{\gamma}_k - \gamma_0) + (\theta + \mu)(\tilde{\gamma}_k - \tilde{\gamma}_{k-1}) - \theta \beta B(y_k - y_{k-1})
\]

\[
= (1 - \theta)\gamma_{k-1} + \theta \tilde{\gamma}_k - \theta \beta B(y_k - y_{k-1})
\]

where the last equality is due to definition of $\tilde{\gamma}_k$. Hence, item (a) follows by simple calculus and (12).

(b) Let a point $\tilde{z}_\mu := (\tilde{x}_\mu, \tilde{y}_\mu, \tilde{\gamma}_\mu) \in Z_\mu(Q)$ (see the assumption following (15)) and define

\[
z_1 = (x_1, y_1, \gamma_1) \quad \text{and} \quad z_k = (x_k, y_k, \gamma_k), \quad k = 0, 1.
\]

Using (12), the fact that $-2 \langle a, b \rangle \leq ||a||^2 + ||b||^2 \forall a, b \in \mathbb{R}^m$, and $\theta \geq 1$, we obtain

\[
\frac{1}{2}||\Delta y_1||_a^2 B^* B + S - \frac{1}{\theta}(B \Delta y_1, \Delta \gamma_1) \leq \frac{1}{2}\left(1 + \alpha\right)\beta||B(y_1 - y_0)||^2 + \frac{1}{\beta \theta}||\gamma_1 - \gamma_0||^2
\]

\[
\leq (1 + \alpha)\beta \left(||B(y_1 - \bar{y}_\mu)||^2 + ||B(y_0 - \bar{y}_\mu)||^2\right) + \frac{1}{\beta \theta}||\gamma_1 - \gamma_0||^2
\]

which, combined with (15), yields

\[
\frac{1}{2}||\Delta y_1||_a^2 B^* B + S - \frac{1}{\theta}(B \Delta y_1, \Delta \gamma_1) \leq ||z_1 - \tilde{z}_\mu||_Q^2 + ||z_0 - \tilde{z}_\mu||_Q^2.
\]

On the other hand, note that

\[
||z_1 - \tilde{z}_\mu||_Q^2 = ||z_0 - \tilde{z}_\mu||_Q^2 + ||z_1 - \bar{z}_1||_Q^2 + ||z_0 - \bar{z}_1||_Q^2 + 2 \langle Q(z_1 - z_0), \bar{z}_1 - \tilde{z}_\mu \rangle.
\]

As $0 \in T(\bar{z}_\mu) + \mu Q(\bar{z}_\mu - z_0)$ and $Q(z_0 - z_1) \in (T(\bar{z}_1) + \mu Q(\bar{z}_1 - z_0))$ (see Proposition 3.1 with $k = 1$), we have $\langle Q(z_1 - z_0), \bar{z}_1 - \tilde{z}_\mu \rangle \leq 0$. This inequality together with (21) imply that

\[
||z_1 - \tilde{z}_\mu||_Q^2 \leq ||z_0 - \tilde{z}_\mu||_Q^2 + ||z_1 - \bar{z}_1||_Q^2 + ||z_0 - \bar{z}_1||_Q^2.
\]

Now, using the definitions in (15) and (19), we have

\[
||z_1 - \bar{z}_1||_Q^2 - ||z_0 - \bar{z}_1||_Q^2 \leq \frac{1}{\beta \theta^2}||\gamma_1 - \gamma_0||^2 - ||B(y_1 - y_0)||^2 + \frac{1}{\beta \theta^2}||\gamma_1 - \gamma_0||^2
\]

\[
= \frac{\theta - 2}{\beta \theta^2}||\gamma_1 - \gamma_0||^2 - \frac{2}{\theta} \beta ||B(y_1 - y_0), \gamma_1 - \gamma_0|| - \beta ||B(y_1 - y_0)||^2
\]

\[
= \frac{\theta - 1}{\beta \theta^2}||\gamma_1 - \gamma_0||^2 - ||B(y_1 - y_0) + \gamma_1 - \gamma_0||^2,
\]

where the first equality is due to item (a) with $k = 1$. Therefore,

\[
||z_1 - \tilde{z}_\mu||_Q^2 - ||z_0 - \tilde{z}_\mu||_Q^2 \leq \frac{\theta - 1}{\beta \theta^2}||\gamma_1 - \gamma_0||^2 \leq \frac{2(\theta - 1)}{\theta} \left(\frac{||\gamma_1 - \tilde{\gamma}_\mu||^2}{\beta \theta} + \frac{||\gamma_0 - \tilde{\gamma}_\mu||^2}{\beta \theta}\right)
\]

\[
\leq \frac{2(\theta - 1)}{\theta} \left(||z_0 - \tilde{z}_\mu||_Q^2 + ||z_1 - \tilde{z}_\mu||_Q^2\right)
\]
Using (12) and the previous inclusion for \(j \) yields item (c).

\[
\|z_1 - \tilde{z}_\mu\|_Q \leq \frac{\theta}{2 - \theta} \left(1 + \frac{2(\theta - 1)}{\theta} \right) \|z_0 - \tilde{z}_\mu\|_Q = \frac{3\theta - 2}{2 - \theta} \|z_0 - \tilde{z}_\mu\|_Q.
\]

Therefore, statement (b) follows from (20), the last inequality, (5) with \(M = Q \), and the definition of \(d_0 \).

(c) From (16) and definitions in (12) and (15), we obtain

\[
B^*(\gamma_j - (1 + \alpha)B(y_j - y_{j-1})) - S(y_j - y_{j-1}) \in \partial g_{\mu,\beta}(y_j) \quad \forall j \geq 1,
\]

where \(g_{\mu,\beta}(y) := g(y) + (\mu/2)\|y - y_0\|^2_{(1+\alpha)\beta B^* B + S} \) for every \(y \in \mathbb{R}^p \). Hence, using item (a), we have

\[
(1/\theta)B^*(\gamma_j - (1 - \theta)\gamma_{j-1}) - (\alpha B^*B + S)(y_j - y_{j-1}) \in \partial g_{\mu,\beta}(y_j) \quad \forall j \geq 1.
\]

Using (12) and the previous inclusion for \(j = k-1 \) and \(j = k \), it follows from the monotonicity of the subdifferential of \(g_{\mu,\beta} \) that

\[
0 \leq \langle B^* \Delta\gamma_k, \Delta y_k \rangle - (1 - \theta)\langle B^* \Delta\gamma_{k-1}, \Delta y_{k-1} \rangle - \theta \|\Delta y_k\|_{\alpha B^* B + S}^2 + \theta \langle (\alpha B^* B + S)\Delta y_{k-1}, \Delta y_{k-1} \rangle
\]

which, combined with the fact that \(2\langle (\alpha B^*B + S)\Delta y_{k-1}, \Delta y_{k-1} \rangle \leq \|\Delta y_k\|_{\alpha B^* B + S}^2 + \|\Delta y_{k-1}\|_{\alpha B^* B + S}^2 \), yields item (c).

In the next lemma, we establish a technical result which will be used in order to prove that the DR-ADMM with \(\theta \in [1, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2] \) is a special case of the DR-HPE framework.

Lemma 3.3. Assume that \(\theta \in [1, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2] \). Then, there exists a parameter \(\bar{\tau} \in (0, 1/2) \) such that

\[
\bar{\tau} := \frac{b + \sqrt{b^2 - 4ac}}{2a} \in (0, 1),
\]

where \(a := (1 - \bar{\tau})(1 + \alpha)(1 + \theta) - \alpha - (1 - \theta)^2, c := \left[1 - \bar{\tau} - \alpha \bar{\tau}(1 - \theta) - (1 - \theta)^2 \right] (1 - \theta)^2 \) and \(b := \left[(1 - \bar{\tau})(1 + \alpha)(1 + \theta) - \alpha - 2(1 - \theta)^2 \right] (1 - \theta)^2 - \alpha\bar{\tau}(1 - \theta) + 1 - \bar{\tau} \). Moreover,

\[
\max \left\{ (1 - \theta)^2, \frac{\bar{\tau}(\theta - 1)}{(1 - \bar{\tau})\theta - \bar{\tau}}, \frac{1 - \bar{\tau}[1 + \alpha(1 - \theta)]}{(1 - \bar{\tau})(1 + \alpha)(1 + \theta) - \alpha} \right\} \leq \bar{\sigma},
\]

and the matrix

\[
G(\sigma) = \begin{bmatrix}
(1 - \bar{\tau})[\sigma(1 - \theta) - 1] + \alpha[\theta\sigma - \bar{\tau}(\sigma + \theta + \sigma\theta - 1)] & (\sigma + \theta - 1)(1 - \theta) \\
(\sigma + \theta - 1)(1 - \theta) & \sigma - (1 - \theta)^2
\end{bmatrix}
\]

is positive semidefinite for \(\sigma = \bar{\sigma} \).

Proof. First of all, if \(\theta = 1 \), then \(\bar{\sigma} \in (0, 1) \) for any \(\bar{\tau} \in (0, 1/2) \). Let us now assume that \(\theta \in (1, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2) \). Note that, if \(\bar{\tau} = 0 \), then

\[
a = \theta[3 - \theta + \alpha] > 0, \quad b = \theta[(3 + \alpha)(1 - \theta)^2 + 2 - \theta] > 0, \quad a - b + c = \theta^2[1 + 2\alpha + (1 - \alpha)\theta - \theta^2] > 0,
\]

8
where the last inequality is due to the fact that \(\theta \in (1, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2) \). Moreover,
\[
b^2 - 4ac = h(\alpha) := (5 + 6\alpha + \alpha^2)(1 - \theta)^4 + 2(3 + \alpha)(1 - \theta)^3 - (1 + 2\alpha)(1 - \theta)^2 - 2(1 - \theta)^2 + 1 > 0,
\]
where the above inequality follows from the fact that the minimum value of \((15)\) in iterate of a cycle of the DR-ADMM and let
\[
\{G, \sigma, \theta\}
\]
where the above inequality follows from the fact that \(\bar{\sigma} = (5 + 6\alpha + \alpha^2)(1 - \theta)^4 + 2(3 + \alpha)(1 - \theta)^3 - (1 + 2\alpha)(1 - \theta)^2 - 2(1 - \theta)^2 + 1 > 0\),
which in turn implies \(\bar{\sigma} \in (0, 1)\), concluding the proof of the first part of the lemma.

It is a simple algebraic computation to see that \(\bar{\sigma}\) is the largest root of the second-order equation \(\det(G(\sigma)) = 0\) and \(\det(G(\sigma)) > 0\) for every \(\sigma > \bar{\sigma}\). Moreover, since \(\det(G(\sigma)) \leq 0\) for \(\sigma\) equal to \((1 - \theta)^2\) and \([1 - \tau(1 + \alpha(1 - \theta))]/[(1 - \tau)(1 + \alpha)(1 + \theta) - \alpha]\), and
\[
\tau(\theta - 1)/[(1 - \tau)\theta - \bar{\tau}] \leq [1 - \tau(1 + \alpha(1 - \theta))]/[(1 - \tau)(1 + \alpha)(1 + \theta) - \alpha]
\]
we obtain (21) holds. Therefore, since \(\det(G(\bar{\sigma})) = 0\), the diagonal entries of \(G(\bar{\sigma})\) are positive, and \(G(\bar{\sigma})\) is symmetric, we conclude that \(G(\bar{\sigma})\) is positive semidefinite.

In next proposition, we will prove that the sequences \(\{z_k\}\) and \(\{\tilde{z}_k\}\) as in proposition 3.1 satisfy the error condition (17) with \(M = Q\) and appropriate choices of \(\tau, \sigma\) and \(\{\eta_k\}\).

Proposition 3.4. Assume that \(\theta \in (0, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2)\). Let \(\{(x_k, y_k, \gamma_k)\}\) be the \(k\)th iterate of a cycle of the DR-ADMM and let \(\{(\Delta x_k, \Delta y_k, \Delta \gamma_k)\}\) be as in (12). Consider \(Q\) and \(d_0\) as in (15) and Lemma 3.2(b), respectively. Let \(\tau, \sigma\) and \(\{\eta_k\}\) as

(i) any \(\tau \in (0, 1)\), \(\sigma = \theta + (\theta - 1)^2\), and \(\eta_k = 0\) for all \(k \geq 0\), if \(\theta \in (0, 1)\);

(ii) \(\tau = \bar{\tau}\) and \(\sigma = \bar{\sigma}\), where \(\bar{\tau}\) and \(\bar{\sigma}\) are given by Lemma 3.3 and

\[
\eta_0 = \frac{4(\bar{\sigma} + \theta - 1)d_0}{(2 - \theta)(1 - \bar{\tau})}, \quad \eta_k = \frac{[\sigma - (\theta - 1)^2]}{\beta\theta^4}||\Delta \gamma_k||^2 + \frac{[\sigma + \theta - 1]}{\theta(1 - \bar{\tau})}||\Delta y_k||^2_{\alpha_\beta B^* B + S}, \forall k \geq 1,
\]

if \(\theta \in [1, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2)\).

Then, \(z_k = (x_k, y_k, \gamma_k)\), \(\tilde{z}_k = (x_k, y_k, \tilde{\gamma}_k)\), \(\eta_{k-1}\) and \(\eta_k\) satisfy the error condition (17) with \(M = Q\).

Proof. Using definitions of \(z_k, \tilde{z}_k\) and \(\Delta y_k\), and the fact that \(M = Q\), we have
\[
\sigma||z_{k-1} - \tilde{z}_k||^2_M - ||z_k - \tilde{z}_k||^2_M \geq (1 + \alpha)\sigma\beta||B\Delta y_k||^2 + \sigma||\Delta y_k||^2_S + \frac{\sigma}{\beta\theta}||\gamma_{k-1} - \tilde{\gamma}_k||^2 - \frac{1}{\beta\theta}||\tilde{\gamma}_k - \gamma_k||^2,
\]
which, combined with (12) and Lemma 3.2(a), yields
\[
\sigma||z_{k-1} - \tilde{z}_k||^2_M - ||z_k - \tilde{z}_k||^2_M \\
\geq (1 + \alpha)\sigma\beta||B\Delta y_k||^2 + \sigma||\Delta y_k||^2_S + \frac{\sigma}{\beta\theta}||\beta B\Delta y_k + \frac{\Delta \gamma_k}{\theta}||^2 - \frac{1}{\beta\theta}||\beta B\Delta y_k + \frac{(1 - \theta)\Delta \gamma_k}{\theta}||^2 \\
= [(1 + \alpha)\theta\sigma + \sigma - 1]\frac{\beta||B\Delta y_k||^2}{\theta} + \sigma||\Delta y_k||^2_S + [\sigma - (1 - \theta)^2]\frac{||\Delta \gamma_k||^2}{\beta\theta^3} + \frac{2(\sigma + \theta - 1)}{\theta^2}(\Delta \gamma_k, B\Delta y_k).
\]

(28)
If \(\theta \in (0, 1) \), then the last inequality and \(\sigma = \theta + (\theta - 1)^2 \) imply that

\[
\sigma\|z_{k-1} - \bar{z}_k\|_M^2 - \|z_k - \bar{z}_k\|_M^2 \geq \theta + (\theta - 1)^2\|\Delta y_k\|_{\alpha \beta B^* B + S} + \left\| \theta \sqrt{\beta} B \Delta y_k + \frac{\Delta y_k}{\sqrt{\beta}} \right\|_2^2 \geq 0,
\]

which, combined with definition of \(\{\eta_k\} \), proves the desired inequality.

Assume now that \(\theta \in [1, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2) \). Let us consider two cases: \(k = 1 \) and \(k > 1 \).

Case 1 \((k = 1)\): It follows from Lemma 3.2(b), definition of \(\eta_0 \) in (27), and \(\theta \geq 1 \) that

\[
\frac{2(\bar{\sigma} + \theta - 1)}{\theta^2} (B\Delta y_1, \Delta \gamma_1) \geq \frac{(\bar{\sigma} + \theta - 1)}{\theta} \left(\alpha \beta \|B\Delta y_1\|^2 + \|\Delta y_1\|^2_S \right) - (1 - \bar{\tau})\eta_0
\]

which, combined with (28) with \(k = 1 \) and definitions \(\sigma, \tau \) and \(\eta_1 \), yields

\[
\sigma\|z_0 - \bar{z}_1\|_M^2 - \|z_1 - \bar{z}_1\|_M^2 + (1 - \tau)\eta_0 - \eta_1
\]

where the last inequality is due to inequality (24). Thus, the error condition (7) holds for \(k = 1 \).

Case 2 \((k > 1)\): Combining estimate (28) with Lemma 3.2(c), we have

\[
\sigma\|z_{k-1} - \bar{z}_k\|_M^2 - \|z_k - \bar{z}_k\|_M^2 \geq \left((1 + \alpha)(\bar{\sigma} + \sigma + \theta - 1) - \frac{\beta}{\theta} \left\| B \Delta y_k \right\|_2^2 \right) + \left(\bar{\eta}_\sigma + \sigma + \theta - 1 \right) \left\| \Delta y_k \right\|_S^2
\]

From the last inequality and definition of \(\{\eta_k\} \) in (27), we obtain

\[
\sigma\|z_{k-1} - \bar{z}_k\|_M^2 - \|z_k - \bar{z}_k\|_M^2 + (1 - \tau)\eta_{k-1} - \eta_k
\]

where \(G(\bar{\sigma}) \) is as in (25), \(w_1 = (\sqrt{\beta} \theta / (1 - \tau)) B \Delta y_k \) and \(w_2 = (\sqrt{(1 - \tau) / (\theta \beta)}) \Delta \gamma_{k-1} \). Hence, the error condition (7) for \(k > 1 \) now follows from Lemma 3.3.

We are now ready to prove the main result of this section.

Theorem 3.5. Assume that \(\theta \in (0, (1 - \alpha + \sqrt{\alpha^2 + 6\alpha + 5})/2) \) and let \(Q \) be as in (15). Then, the DR-ADMM is an instance of the DR-HPE framework for solving problem (14) with inputs \(z_0 = (x_0, y_0, \gamma_0) \), \(M = Q \), and parameters \(\tau, \sigma \) and \(\eta_0 \) as defined in Proposition 3.4. As a consequence, it terminates in at most

\[
O\left(\left(1 + \frac{d_0}{\rho} \right) \left[1 + \log^+ \left(\frac{d_0}{\rho} \right) \right] \right)
\]
iterations with \((x, y, \tilde{\gamma}, v^x, v^y, v^\gamma)\) satisfying
\[
Q \begin{pmatrix} v^x \\ v^y \\ v^\gamma \end{pmatrix} \in \begin{pmatrix} \partial f(x) - A^* \tilde{\gamma} \\ \partial g(y) - B^* \tilde{\gamma} \\ Ax + By - b \end{pmatrix} \quad \text{and} \quad \| (v^x, v^y, v^\gamma) \|_Q \leq \rho,
\] (30)
where \(d_0\) is as in Lemma 3.2(b).

Proof. Let \(\{(x_k, y_k, \gamma_k, \tilde{\gamma}_k)\}\) be the sequence generated by a cycle of the DR-ADMM and consider the sequences \(\{z_k\}\) and \(\{\tilde{z}_k\}\) defined by
\[
z_{k-1} = (x_{k-1}, y_{k-1}, \gamma_{k-1}), \quad \tilde{z}_k = (x_k, y_k, \tilde{\gamma}_k), \quad \forall k \geq 1.
\] (31)
It follows from Propositions 3.1 and 3.4 that the sequences \(\{z_k\}\) and \(\{\tilde{z}_k\}\) satisfy inclusion (6) and the error condition (7) with \(M\) as in (14), \(M = Q\), and \(\tau, \sigma\) and \(\{\eta_k\}\) as defined in Proposition 3.4. Moreover, using \(M = Q\) and (31), it is easy to see that steps 3 and 4 of the DR-ADMM correspond to steps 2 and 3 of the DR-HPE framework, respectively. Therefore, the first statement of the theorem is proved.

Now, since \(\eta_0 = 0\) or \(\eta_0 = O(d_0^2)\), the second part of the theorem follows from the first one and Theorem 2.1 with \(M = Q\), \(T\) as in (14), \(v = (v^x, v^y, v^\gamma)\), \(\tilde{z} = (x, y, \tilde{\gamma})\) and \(d = d_0\). \qed

We end this section by making two remarks. 1) As already mentioned in Section 1 if \(\alpha\) is sufficiently large (resp. \(\alpha = 0\)), then the stepsize \(\theta\) belongs to the interval \((0, 2)\) (resp. \((0, (1 + \sqrt{5})/2)\)).

2) Note that (30) can be seen as an optimality/feasibility measure of (11). Indeed, since \(Q\) is symmetric semidefinite positive, if \(\|(v^x, v^y, v^\gamma)\|_Q = 0\), then the left-hand side of the inclusion in (30) is zero, and hence the pair \((x, y)\) is a solution of (11) and \(\tilde{\gamma}\) is an associated Lagrange multiplier.

References

[1] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic Press, New York, 1982.
[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):1–122, 2011.
[3] Y. Cui, X. Li, D. Sun, and K. C. Toh. On the convergence properties of a majorized ADMM for linearly constrained convex optimization problems with coupled objective functions. J. Optim. Theory Appl., 169(3):1013–1041, 2016.
[4] W. Deng and W. Yin. On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput., pages 1–28, 2015.
[5] E. X. Fang, B. He, H. Liu, and X. Yuan. Generalized alternating direction method of multipliers: new theoretical insights and applications. Math. Prog. Comp., 7(2):149–187, 2015.
[6] M. Fazel, T. K. Pong, D. Sun, and P. Tseng. Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl., 34(3):946–977, 2013.
[7] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems by finite element approximation. Comput. Math. Appl., 2:17–40, 1976.
[8] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer-Verlag, 1984.
[9] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par penalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO Anal. Numér., 9:41–76, 1975.
[10] M. L. N. Gonçalves, J. G. Melo, and R. D. C. Monteiro. Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems. Available on https://arxiv.org/abs/1702.01850.
[11] M. L. N. Gonçalves, J. G. Melo, and R. D. C. Monteiro. Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-euclidean HPE framework. SIAM J. Optim., 27(1):379–407, 2017.
[12] Y. Gu, B. Jiang, and H. Deren. A semi-proximal-based strictly contractive Peaceman-Rachford splitting method. Available on https://arxiv.org/abs/1506.02221.
[13] W. W. Hager, M. Yashtini, and H. Zhang. An O(1/k) convergence rate for the variable stepsize Bregman operator splitting algorithm. SIAM J. Numer. Anal., 54(3):1535–1556, 2016.
[14] B. He and F. Ma. Convergence study on the proximal alternating direction method with larger step size. Available on http://www.optimization-online.org/DB_FILE/2017/02/5856.pdf
[15] B. He and X. Yuan. On the $O(1/n)$ convergence rate of the Douglas-Rachford alternating direction method. *SIAM Journal on Numer. Anal.*, 50(2):700–709, 2012.

[16] B. He and X. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. *Numer. Math.*, 130(3):567–577, 2015.

[17] T. Lin, S. Ma, and S. Zhang. An extragradient-based alternating direction method for convex minimization. *Found. Comput. Math.*, pages 1–25, 2015.

[18] M. Marques Alves, R. D. C. Monteiro, and B. F. Svaiter. Regularized HPE-type methods for solving monotone inclusions with improved pointwise iteration-complexity bounds. *SIAM J. Optim.*, 26(4):2730–2743, 2016.

[19] R. D. C. Monteiro and B. F. Svaiter. Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. *SIAM J. Optim.*, 23(1):475–507, 2013.

[20] R. T. Rockafellar. *Convex Analysis*. Princeton University Press, Princeton, 1970.

[21] R. T. Rockafellar and R. J.-B. Wets. *Variational analysis*. Springer, Berlin, 1998.

[22] O. Sarmiento, E.A. Papa Quiroz, and P.R. Oliveira. A proximal multiplier method for separable convex minimization. *Optimization*, 65(2):501–537, 2016.

[23] X. Wang and X Yuan. The linearized alternating direction method of multipliers for dantzig selector. *SIAM J. Sci. Comput.*, 34(5):2792–2811, 2012.

[24] J. Yang and X. Yuan. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. *Math. Comput.*, 82(281):301–329, 2013.