Centralizer of the elementary subgroup of an isotropic reductive group

E. Kulikova, A. Stavrova

December 14, 2010

1 Introduction

Let R be a commutative ring with 1, and let G be an isotropic reductive algebraic group over R. In [5] Victor Petrov and the second author introduced a notion of an elementary subgroup $E(R)$ of the group of points $G(R)$.

More precisely, assume that G is isotropic in the following strong sense: it possesses a parabolic subgroup that intersects properly any semisimple normal subgroup of G. Such a parabolic subgroup P is called strictly proper. Denote by $E_P(R)$ the subgroup of $G(R)$ generated by the R-points of the unipotent radicals of P and of an opposite parabolic subgroup P^-. The main theorem of [5] states that $E_P(R)$ does not depend on the choice of P, as soon as for any maximal ideal M of R all irreducible components of the relative root system of G_{R_M} (see [2, Exp. XXVI, §7] for the definition) are of rank ≥ 2. Under this assumption, we call $E_P(R)$ the elementary subgroup of $G(R)$ and denote it simply by $E(R)$. In particular, $E(R)$ is normal in $G(R)$. This definition of $E(R)$ generalizes the well-known definition of an elementary subgroup of a Chevalley group (or, more generally, of a split reductive group), as well as several other definitions of an elementary subgroup of isotropic classical groups and simple groups over fields. The group $E(R)$ is also perfect under natural assumptions on R [3]. Here we continue this theme by proving that the centralizer of $E(R)$ in $G(R)$ coincides with the group of R-points of the group scheme center $\text{Cent}(G)$ (see [2, Exp. I 2.3] for the definition). Consequendly, both these subgroups also coincide with the abstract group center of $G(R)$. Our result extends the respective theorem of E. Abe and J. Hurly for Chevalley groups [1]; see also [7, Lemma 2] for a slightly more general statement.

Theorem 1. Let G be an isotropic reductive algebraic group over a commutative ring R having a strictly proper parabolic subgroup P. Assume that for any maximal ideal M of R all irreducible components of the relative root system of G_{R_M} are of rank ≥ 2. Then $C_{G(R)}(E(R)) = \text{Cent}(G)(R) = C(G(R))$.

Observe that the condition of the theorem ensures that the elementary subgroup $E(R)$ of $G(R)$ is correctly defined. We refer to [3] for its definition and basic properties, as well as for the preliminaries on relative root subschemes.

Remark. One may ask if the statement holds for $E_P(R)$ instead of $E(R)$, if we do not assume that the local relative rank is at least 2. This seems to hold always except for several natural exceptions, similar to the exception for PGL_2 described in [1]. We plan to address this case in the near future.
2 Preliminary lemmas

We refer to [2] and [3] for the preliminaries and notation.

We include the following obvious lemma for the sake of completeness.

Lemma 1. Let $X = \text{Spec } A$ be an affine scheme over $Y = \text{Spec } R$, and let Z be a closed subscheme of X. Take $g \in X(R)$. Then $g \in Z(R)$ if and only if $g \in Z(R_M)$ for any maximal ideal M of R.

Proof. For any R-module V, the natural map $V \rightarrow \prod V \otimes R_M$, where the product runs over all maximal ideals M of R, is injective (e.g. [8], p. 104, Lemma). Since $g \in Z(R)$ is equivalent to an inclusion between the respective ideals of M over all maximal ideals X subscheme of R.

Proof. For any R-module V, the natural map $V \rightarrow \prod V \otimes R_M$, where the product runs over all maximal ideals M of R, is injective (e.g. [8], p. 104, Lemma). Since $g \in Z(R)$ is equivalent to an inclusion between the respective ideals of M over all maximal ideals X subscheme of R.

Proof. For any R-module V, the natural map $V \rightarrow \prod V \otimes R_M$, where the product runs over all maximal ideals M of R, is injective (e.g. [8], p. 104, Lemma). Since $g \in Z(R)$ is equivalent to an inclusion between the respective ideals of M over all maximal ideals X subscheme of R.

Lemma 2. Let R be any commutative ring, G an isotropic reductive group over R, P a strictly proper parabolic subgroup of G. Take any maximal ideal M of R and any strictly proper parabolic subgroup P' of G_{R_M} contained in P_{R_M}. Then for any $A \in \Phi_P$ there is a system of generators e_{A_i}, $1 \leq i \leq n_A$, of the R_M-module V_A such that for all g in the image of $\text{Cent}_{G(R)}(E_P(R))$ in $G(R_M)$, one has $[g, X_A(e_{A_i})] = 1$, $1 \leq i \leq n_A$.

Proof. We assume from the very beginning that we have passed to a member of the disjoint union

$$\text{Spec}(R) = \bigcup_{i=1}^{m} \text{Spec}(R_i),$$

so that the parabolic subgroup P is also provided with a relative root system Φ_P and corresponding relative root subschemes. Since for any $B \in \Phi_P$ elements of V_B generate $V_B \otimes_R R_M$ as an R_M-module, the claim of the lemma holds if $P' = P_{R_M}$.

By [5] Lemma 12, for any two strictly proper parabolic subgroups $Q \leq Q'$ of a reductive group scheme, one can find such $k > 0$ depending only on rank Φ_Q, that for any relative root $A \in \Phi_Q$ and any $v \in V_A$ there exist relative roots $B_i, C_{ij} \in \Phi_{Q'}$, elements $v_i \in V_{B_i}$, $u_{ij} \in V_{C_{ij}}$, and integers $k_i, n_i, l_{ij} > 0$ ($1 \leq i \leq m$, $1 \leq j \leq m_j$), which satisfy the equality

$$X_A(\xi^k v) = \prod_{i=1}^{m} X_{B_i}(\xi^{k_i} v_i^{n_i}) \prod_{j=1}^{m_j} X_{C_{ij}}(\eta^{l_{ij}} u_{ij})$$

where ξ, η are free variables. Taking $Q = P'$, $Q' = P_{R_M}$, $\xi = 1$, for any element v_i of a generating system of the R_M-module V_A we get a decomposition

$$X_A(\eta^k v) = \prod_{i=1}^{m} X_{B_i}(\eta^{n_i} v_i),$$

for some $B_i \in \Phi_P$ and $v_i \in V_{B_i} \otimes R_M$, $n_i > 0$. Clearly, for any v_i there is an element $s_i \in R \setminus M$ such that $s_i v_i$ belongs to V_{B_i} (strictly speaking, to the image of V_{B_i} in $V_{B_i} \otimes R_M$ under the localisation homomorphism; here and below we allow ourselves this freedom of speech). Set $\eta = s_1 \ldots s_m$. Then $X_A(\eta^k v) \in E_P(R)$, and hence $[g, X_A(\eta^k v)] = 1$ for any $g \in \text{Cent}_{G(R)}(E_P(R))$. Thus, multiplying the elements of a generating system of V_A by certain invertible elements of R_M, we obtain a new generating system of V_A, which is centralised by $\text{Cent}_{G(R)}(E_P(R))$.

Lemma 3. Let R be a local ring (in particular, R can be a field) with the maximal ideal M, and let G be a split reductive group over R. Let P be a parabolic subgroup of G such that $\text{rank } \Phi_P \geq 2$. Assume that $g \in G(R)$ is such that for any $A \in \Phi_P$ there is a system of generators e_{A_i}, $1 \leq i \leq n_A$, of V_A such that $[g, X_A(e_{A_i})] = 1$ for all i. Then $g \in U_P(M)L(R)U_{P\pm}(M)$, where $U_{P\pm}(M) = \langle X_A(MV_A), A \in \Phi_P \rangle$.

2
Proof. First let \(R \) be a field. We need to show that \(g \in L(R) \). We can assume that \(R \) is algebraically closed without loss of generality. Let \(B^\pm \) be opposite Borel subgroups of \(G \) contained in \(P^\pm \), \(U^\pm \) be their unipotent radicals, and \(T \) their common maximal torus. Bruhat decomposition implies that \(g = uhvw \), where \(u \in U^+(R) \), \(h \in T(R) \), \(w \) is a representative of the Weyl group, \(v \in U^+_w(R) = \{ x \in U^+(R) \mid w(x) \in U^-(R) \} \), and this decomposition is unique. We have \(w \in L(R) \) if and only if \(w \) is a product of elementary reflections \(w_\alpha \) for some simple roots \(\alpha_i \) belonging to the root system of \(L \).

Assume first that \(w \notin L \). Then there is a simple root \(\alpha \) not belonging to the root system of \(L \) such that \(w(\alpha) < 0 \). Consider \(A = \pi(\alpha) \). Let \(e_A \in V_A \) be a vector from the generating set existing by the hypothesis of the Lemma such that \(x_\alpha(\xi) = 0 \), occurs in the canonical decomposition of \(x = X_A(e_A) \) into a product of elementary root unipotents from \(U^+ \). Since \([g, x]\) = 1, we have \(x(uhv) = (uhvw)x \). The rightmost factor in the Bruhat decomposition of \(x(uhv) = (xu)hwv \) equals \(v \). However, since \(\alpha \) is a positive root of minimal height, it is clear that the rightmost factor in the Bruhat decomposition of \((uhv)x \) contains \(x_\alpha(\eta + \xi) \) in its canonical decomposition, if \(v \) contains \(x_\alpha(\eta) \). Therefore, this rightmost factor is distinct from \(v \), a contradiction.

Therefore, \(w \in L(R) \). Then for any \(x \in U^+_P(R) \) we have \(w x w^{-1} \in U^+_P(R) \), hence by the definition of the Bruhat decomposition \(v \in L(R) \cap U^+_P(R) \). This means that \(g = uhvw \in U^+_P(R)L(R) = U^+_P(R)(U^+(R) \cap L(R))L(R) = U^+_P(R)L(R) = P(R) \). Since symmetric reasoning implies that \(g \in P^-(R) \), we have \(g \in P(R) \cap P^-(R) = L(R) \).

Now let \(R \) be any local ring. Recall that \(\Omega_p = U_p L U_p \simeq U_p \times L \times U_p \) is a principal open subscheme of \(G \) (e.g. [11] p. 92). Therefore, if the image of \(g \in G(R) \) under the natural homomorphism \(G(R) \to G(R/M) \) is in \(\Omega_p(R/M) \), then \(g \in \Omega_p(R) \). Since by the above the image of \(g \) is in \(L(R/M) \), and \(\ker(U_{P_1}(R) \to U_{P_2}(R/M)) = U_{P_2}(M) \), we have \(g \in U_p(M)L(R)U_{P_2}(M) \).

Lemma 4. Let \(G \) be an isotropic reductive group over a local ring \(R \), \(M \) the maximal ideal of \(R \), \(P \) a parabolic subgroup of \(G \), \(P^- \) an opposite parabolic subgroup. For any \(u \in U^-_P(M) \), \(v \in U^+_P(R) \) there exist \(u' \in U^-_P(M) \), \(v' \in U^+_P(R) \), and \(b \in L(R) \) such that \(uv = v'bu' \).

Proof. The image of \(x = uv \) under \(p : G(R) \to G(R/M) \) equals \(p(v) \text{and thus belongs to } \Omega_p(R/M) \), where \(\Omega_p = U_p L U_p \). Since \(\Omega_p \) is a principal open subscheme of \(G \), this implies that \(x \in \Omega_p(R) \), that is, \(x = v'bu' \). Since \(p(u') = 1 \), we have \(u' \in U^-_P(M) \).

Lemma 5. Let \(G \) be a reductive group over a commutative ring \(R \), \(P \) a parabolic subgroup of \(G \), \(A, B \in \Phi_P \) two non-proportional relative roots such that \(A + B \in \Phi_P \). Assume that \(A - B \notin \Phi_P \), or \(A, B \) belong to the image of a simply laced irreducible component of the absolute root system of \(G \). Take \(0 \neq u \in V_B \). Any generating system \(e_1, \ldots, e_n \) of the \(R \)-module \(V_A \) contains an element \(e_i \) such that \(N_{AB11}(e_i, u) \neq 0 \).

Proof. Assume that \(N_{AB11}(e_i, u) = 0 \) for all \(1 \leq i \leq n \). Consider an affine fpqc-covering \(\coprod \text{Spec } S_i \to \text{Spec } R \) that splits \(G \). There is a member \(S_\pi = S \) of this covering such that the image of \(X_B(u) \) under \(G(R) \to G(S) \) is non-trivial. Write

\[
X_B(u) = \prod_{\pi(\beta)=B} x_\beta(a_\beta) \cdot \prod_{i \geq 2} \prod_{\pi(\beta_i)=iB} x_\beta(c_{\beta_i}),
\]

where \(\pi : \Phi \to \Phi_P \) is the canonical projection of the absolute root system of \(G \) onto the relative one, \(x_\beta \) are root subgroups of the split group \(G_S \), and \(a_\beta \subseteq S \). Since \(X_B(u) \neq 0 \), the definition of \(X_B \) implies that there exists \(a_\beta \neq 0 \). Let \(\beta_0 \in \pi^{-1}(B) \) be the root of minimal height with this property. By Lemma 4 there exists a root \(\alpha \in \pi^{-1}(A) \) such that \(\alpha + \beta_0 \in \Phi \). Let \(v \in V_A \otimes_R S \) be such that \(X_A(v) = x_\alpha(1) \prod_{i \geq 2} \prod_{\pi(\gamma)=iA} x_\gamma(d) \), for some \(d_\gamma \subseteq S \). Then the (usual) Chevalley commutator formula implies that \([X_A(v), X_B(u)]\)
contains in its decomposition a factor $x_{\alpha+\beta}(\lambda a_{\beta_0})$, where $\lambda \in \{\pm 1, \pm 2, \pm 3\}$. However, since either α, β belong to a simply laced root system, we have $\lambda = \pm 1$. Then $N_{AB11}(v, u) \neq 0$, a contradiction.

Recall [5] that any relative root $A \in \Phi_{I,G}$ can be represented as a (unique) linear combination of simple relative roots. The level $\text{lev}(A)$ of a relative root A is the sum of coefficients in this decomposition.

Lemma 6. Let R be a local ring with the maximal ideal M, and let G be a reductive group over R. Let P be a parabolic subgroup of G such that rank $\Phi_P \geq 2$, and the type of P occurs in the type of a minimal parabolic subgroup of some reductive group over a local ring (not necessarily over R). Assume that $g \in G(R)$ is such that for any $A \in \Phi_P$ there is a system of generators $e_{A_i}, 1 \leq i \leq n_A$, of V_A such that $|g, X_A(e_{A_i})| = 1$ for all i. If $g \in U_P(M)L(R)U_P(M)$, then $g \in L(R)$.

Proof. Write $g = xhy$, where $x \in U_P(M), h \in L(R), y \in U_P(M)$. We have $\prod_{A \in \Phi_P^+, X_A(u_A), y} = \prod_{A \in \Phi_P^+, X_A(u_A), y}$, where the product is taken in any fixed order.

Let $A \in \Phi_P$ be such that $u_A \neq 0$, and $|\text{lev}(A)|$ is minimal among the levels of relative roots with this property. We are going to deduce a contradiction, thus showing that A cannot occur in the decomposition of g.

Assume that $A \in \Phi_P^+$; the other case is treated symmetrically. Since the type of P coincides with the type of a minimal parabolic subgroup, Φ_P^+ is isomorphic to a root system as a set with two partially defined operations—addition and multiplication by integers. Then the standard properties of a root system imply that one can find a simple root or a minus simple root $B \in \Phi_P^+, \Phi_P$ containing A is not of type G_2, we can, and we will, choose B so that $A - B \notin \Phi_P$. If it is of type G_2, this may be impossible; then we stipulate that we take B positive. The classification of Tits indices over local rings [6] also implies that in this case the respective irreducible component of the absolute root system of G is either simply laced or itself of type G_2. Assume for now that the latter does not take place; we will treat this exceptional case in the very end of this proof. Then by Lemma [5] one can find an element e of a generating system of V_B centralized by g such that $N_{AB11}(u_{AB}, e) \neq 0$.

We have $1 = [X_B(e), g] = [X_B(e), x][X_B(e), hy][x^{-1}]$. This is equivalent to

$$1 = (x^{-1}[X_B(e), x][X_B(e), hy]) = [x^{-1}, X_B(e)][X_B(e), hy].$$

By [5] Th. 2 we can write

$$x^{-1} = X_A(-u_A) \prod_{C \in \Phi_P^+, C \neq A, \text{lev}(C) \geq \text{lev}(A)} X_C(v_C) = X_A(-u_A) \cdot x_1,$$

and thus

$$[x^{-1}, X_B(e)] = [X_A(-u_A)x_1, X_B(e)]$$

$$= [X_A(-u_A), x_1, X_B(e)] \cdot [X_A(-u_A), X_B(e)] = [X_A(-u_A), X_B(e)].$$

Case 1: B is positive, that is, B is a simple root. We study the factor $[X_B(e), hy]$ of [1]. Write $[X_B(e), hy] = X_B(e)h(yX_B(e)X_B(e)^{-1}y^{-1})h^{-1}$, and

$$y = \prod_{C \in \Phi_P^+, C \neq B} X_C(v_C) \cdot \prod_{i > 0} X_{-iB}(u_{-iB}) = y_1y_2.$$

Using Lemma [4] we obtain $yX_B(e)^{-1} = y_1(y_2X_B(e)^{-1}) = y_1 \cdot \prod_{i > 0} X_iB(w_{iB}) \cdot b \cdot \prod_{i > 0} X_{-iB}(w_{iB})$, where $b \in L(R)$. Since relative roots proportional to B does not occur in the decompo-
summing up, the only factor of the form $X_A \sqrt{G}$ component of the absolute root system of A_1 with u and x of Chevalley commutator formula, implies that $X_B(e)^{-1} \in \left(\prod_{i>0} X_B(w_{iB}) \right) P^{-} (R)$, and also

$$[X_B(e), h y] \in X_B(e) h \left(\prod_{i>0} X_B(w_{iB}) \right) h^{-1} P^{-} (R) = \left(\prod_{i>0} X_B(z_{iB}) \right) P^{-} (R).$$

Now we consider the first factor $[x^{-1}, X_B(e)]$ of the right side of (1). The generalized Chevalley commutator formula, applied to (2), says that

$$[x^{-1}, X_B(e)] = \prod_{D \in \Phi^+_P} X_D(w_D).$$

Moreover, $D = A + B$ is a root of minimal height in the decomposition (2) satisfying $w_D \neq 0$; in fact, $w_{A+B} = N_{AB11}(-u_A, e)$. Hence, the whole product

$$[x^{-1}, X_B(e)], [X_B(e), h y] \in X_{A+B}(N_{AB11}(-u_A, e)) \cdot \left(\prod_{i>0} X_B(z_{iB}) \right) \cdot \prod_{C \in \Phi^+_P, \lev(C) \geq \lev(A+B)} X_C(t_C) \cdot P^{-} (R)$$

does not equal 1, a contradiction.

Case 2: B is negative, that is $B' = -B$ is a simple root. In this case the generalized Chevalley commutator formula immediately implies $[X_B(e), h y] \in P^{-} (R)$. We study (2). Note that the decomposition of x_1 does not contain $X_B(v_{B'})$, and, if $2B' \in \Phi_P$, also does not contain $X_{2B'}(v_{2B'})$. Indeed, in the first case we would have $\lev(A) = 1$, hence A is a simple relative root, hence $A + B = A - B'$ is not a relative root. In the second case we would have $\lev(A) = 2$, and, since $A + B \in \Phi_P$, $A = A' + B'$ for a simple relative root A'. Since in this case we are in the irreducible component of Φ_P of type BC_n, and B' is an extra-short simple root, we also have $A' + 2B' = A - B \in \Phi_P$. But then by our algorithm we would have taken $(-A')$ instead of B, since $A - (-A') = 2A' + B' \notin \Phi_P$.

The above, together with the fact that $B' = -B$ is a simple root, and the generalized Chevalley commutator formula, implies that $[x_1, X_B(e)] = \prod_{D \in \Phi^+_P} X_D(w_D)$. Moreover, if $w_D \neq 0$, then $D \neq A+B$, since $A - B$ is not a relative root by our assumptions, and obviously D is not proportional to B. Further, we see that for any relative root D, occurring in the decomposition of $[X_A(-u_A), [x_1, X_B(e)]]$ or $[X_A(-u_A), X_B(e)]$, the coefficient near any simple root $A_0 \neq B'$ in the decomposition of D is greater or equal to that in the decomposition of A. Summing up, the only factor of the form $X_{A-B}(u)$ in the decompositions of the expressions $[X_A(-u_A), [x_1, X_B(e)]]$, $[x_1, X_B(e)]$, $[X_A(-u_A), X_B(e)]$ is the factor $X_{A-B}(N_{AB11}(-u_A, e))$ in the third one, and no commutator of the factors can give a new factor of the form $X_{A-B}(u)$ with $u \neq 0$. Hence, $[x^{-1}, X_B(e)]$ contains $X_{A-B}(N_{AB11}(-u_A, e)) \neq 1$ in its decomposition, and

$$[x^{-1}, X_B(e)][X_B(e), h y] \in X_{A-B}(N_{AB11}(-u_A, e)) \cdot \prod_{F \in \Phi^+_P, F \neq A-B} X_F(t_F) \cdot P^{-} (R)$$

cannot equal 1, a contradiction.

Case G_2. We are left with the case when Φ_P is of type G_2, and moreover the relevant component of the absolute root system of G is also of type G_2. Then we can assume without loss of generality that all components of the absolute root system are of type G_2, and consequently G is quasi-split. There exists a canonical étale extension R' of R such
that \(G \) is a Weil restriction of a split group \(G' \) of type \(G_2 \) over \(R' \), see [2, Exp. XXIV Prop. 5.9]. Then \(G_{R'} \) is a direct product of \(k \) split groups \(G_i \) of type \(G_2 \). To show that \(g \in L(R) \), it is enough to show that the image \(g' \) of \(g \) in \(G(R') \) is in \(L(R') \). We know that \(P_{R'} \) is a Borel subgroup of \(G_{R'} \), and, since \(\Phi_P \) has no multiple roots, for any \(A \in \Phi_P \) we can identify the root subscheme \(X_A(V_A \otimes R') \) with the direct product of \(k \) elementary root subgroups \(x_\alpha(\mathfrak{g}) \) of the groups \(G_i \). Considering the relevant projections of \(g \) and the generating systems of \(V_A \), we are reduced to proving the following: if a point \(h \in H(S) \) of a split reductive group \(H \) of type \(G_2 \) centralizes \(x_\alpha(\mathfrak{g}) \) for some \(\alpha \in \Psi \), for any root \(\alpha \in \Psi \), where \(\Psi \) is the root system of \(H \), then \(h \) belongs to the corresponding split maximal torus. By Lemmas [1, 3] we can also assume that the ring \(\mathfrak{g} \) is the root system of \(H \), then \(h \) belongs to the corresponding split maximal torus. By Lemmas [1, 3] we can also assume that the ring \(\mathfrak{g} \) is the root system of \(H \), then \(h \) belongs to the corresponding split maximal torus.

Lemma 7. Let \(G \) be an isotropic reductive algebraic group over a commutative ring \(R \), \(P \) a parabolic subgroup of \(G \), \(L \) a Levi subgroup of \(P \). Assume that \(g \in G(R) \) is such that for any \(A \in \Phi_P \) there is a system of generators \(e_{A_i} \), \(1 \leq i \leq n_A \), of \(V_A \) such that \([g, X_A(e_{A_i})] = 1 \) for all \(i \). If \(g \in L(R) \), then \([g, E_P(R)] = 1 \).

Proof. We show that \([g, X_A(V_A)] = 0 \) for any \(A \in \Phi_P \) by descending induction on the height of \(A \); the case \(A \in \Phi_P \) is symmetric. By [3, Th. 2] for any \(g \in L(S) \) and any \(A \in \Phi_P \) there exists a set of homogeneous polynomial maps \(\varphi^i_{g,A} : V_A \rightarrow V_{iA}, i \geq 1 \), such that for any \(v \in V_A \) one has

\[
gX_A(v)g^{-1} = \prod_{i \geq 1} X_{iA}(\varphi^i_{g,A}(v)).
\]

Since \(\varphi^i_{g,A} \) are homogeneous, \([g, X_A(v)] = 1 \) for \(v \in V_A \) implies \([g, X_A(\lambda v)] = 1 \) for any \(\lambda \in \mathfrak{g} \). Also by [3, Th. 2], there exist a set of homogeneous polynomial maps \(q^i_A : V_A \times V_A \rightarrow V_{iA}, i \geq 1 \), such that

\[
X_A(v)X_A(w) = X_A(v + w) \prod_{i \geq 1} X_{iA}(q^i_A(v, w))
\]

for all \(v, w \in V_A \). Assume that \([g, X_A(v)] = [g, X_A(v)] = 1 \). Then

\[
gX_A(v + w)g^{-1} = gX_A(v)X_A(w)g^{-1} \cdot g \left(\prod_{i \geq 1} X_{iA}(q^i_A(v, w)) \right)^{-1} g^{-1} = 1,
\]

since by inductive hypothesis \(g \) centralizes \(X_{iA}(V_{iA}) \) for all \(i > 0 \). \(\square \)

3 The proof

Proof of Theorem [1]. Let \(g \in G(R) \) centralize \(E(R) = E_Q(R) \), where \(Q \) a strictly proper parabolic subgroup of \(G \). We are going to show that \(g \in \text{Cent}(G)(R) \). By Lemma [1] it is enough to show that \(g \in \text{Cent}(G)(R_M) \) for any maximal ideal \(M \) of \(R \). Fix an ideal \(M \), and set \(R' = R_M \). Let \(P \) be a minimal parabolic subgroup of \(G_{R'} \). By Lemma [2] for any \(A \in \Phi_P \) there is a system of generators \(e_{A_i} \), \(1 \leq i \leq n_A \), of the \(R' \)-module \(V_A \) such that \([g, X_A(e_{A_i})] = 1 \), \(1 \leq i \leq n_A \). Note that \(\Phi_P \) is a root system by [2, Exp. XXVI, §7], and by the assumption of the theorem all irreducible components of \(\Phi_P \) are of rank \(\geq 2 \).

Let \(\prod \text{Spec } S_\tau \rightarrow \text{Spec } R' \) be an fpqc-covering such that \(G \) splits over each \(\text{Spec } S_\tau \). It is enough to check that \(g \in \text{Cent}(G)(S_\tau) \) for every \(\tau \) (here we identify \(g \) with its image under \(G(R') \rightarrow G(S_\tau) \)). Fix one \(\tau \), and set \(S = S_\tau \) for short. Again by Lemma [1] it is enough to show that \(g \in \text{Cent}(G)(S_N) \) for any maximal ideal \(N \) of \(S \).

Since a system of generators \(e_{A_i} \), \(1 \leq i \leq n_A \), of the \(R' \)-module \(V_A \), also generates \((V_A \otimes_R S) \otimes S_N \) as an \(S_N \)-module, \(g \) satisfies the conditions of Lemmas [3, 4, 5] for the base
ring S_N); hence $g \in L(S_N)$, where L is a Levi subgroup of P. By Lemma 7 this implies that g centralizes $E(S_N)$. Since G_{S_N} is split, it has a Borel subgroup B, and $E(S_N) = E_B(S_N)$.

Applying Lemmas 3 and 6 to B instead of P, we get that $g \in T(S_N)$ for a split maximal subtorus T of G_{S_N}. Hence $g \in \text{Hom}(\Lambda/\Lambda_r, S_N) \subseteq \text{Hom}(\Lambda, S_N) = T(S_N)$, where Λ is the weight lattice of G, and Λ_r is the root sublattice. Therefore, $g \in \text{Cent}(G)(S_N)$. \hfill \qed

References

[1] E. Abe, J. F. Hurley, Centers of Chevalley groups over commutative rings, Comm. in Algebra 16 (1988), 57–74.

[2] M. Demazure, A. Grothendieck, Schémas en groupes, Lecture Notes in Mathematics, Vol. 151–153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[3] A. Luzgarev, A. Stavrova, Elementary subgroup of an isotropic reductive group is perfect, http://arxiv.org/abs/1001.1105, to appear in St. Petersburg Mathematical Journal.

[4] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. de l’É.N.S. 4e série, tome 2, n. 1 (1969), 1–62.

[5] V. Petrov, A. Stavrova, Elementary subgroups of isotropic reductive groups, St. Petersburg Math. J. 20 (2009), 625–644.

[6] V. Petrov, A. Stavrova, Tits indices over semilocal rings, to appear in Transformation Groups.

[7] A. Stavrova, Normal structure of maximal parabolic subgroups in Chevalley groups over rings, Algebra Colloq. 16 (2009), 631–648.

[8] W. C. Waterhouse, Introduction to affine group schemes, Springer-Verlag, New York, 1979.