Frame-Dragging in Extrasolar Circumbinary Planetary Systems

L. Iorio
Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)-Istruzione Fellow of the Royal Astronomical Society (F.R.A.S.) Viale Unità di Italia 68, 70125, Bari (BA), Italy

October 18, 2022

Abstract

Extrasolar circumbinary planets are so called because they orbit two stars instead of just one; to date, an increasing number of such planets have been discovered with a variety of techniques. If the orbital frequency of the hosting stellar pair is much higher than the planetary one, the tight stellar binary can be considered as a matter ring current generating its own post-Newtonian stationary gravitomagnetic field through its orbital angular momentum. It affects the orbital motion of a relatively distant planet with Lense-Thirring-type precessional effects which, under certain circumstances, may amount to a significant fraction of the static, gravitoelectric ones, analogous to the well known Einstein perihelion precession of Mercury, depending only on the masses of the system’s bodies. Instead, when the gravitomagnetic field is due solely to the spin of each of the central star(s), the Lense-Thirring shifts are several orders of magnitude smaller than the gravitoelectric ones. In view of the growing interest in the scientific community about the detection of general relativistic effects in exoplanets, the perspectives of finding new scenarios for testing such a further manifestation of general relativity might be deemed worth of further investigations.

PACS: 04.80.-y; 04.80.Cc; 97.82.-j

1 Introduction

According to the General Theory of Relativity\footnote{For a recent overview, see, e.g., \cite{1} and references therein.} (GTR), the deformed spacetime generated by a localized, non-static distribution of matter-energy such as a rotating
star affects the orbital motion of a nearby test particle like, e.g., a planet p in such a way that its trajectory is not closed, as in the case of the unchanging Keplerian ellipse of the Newtonian mechanics. Among other things, there are two types of resulting secular effects to the first post-Newtonian (1pN) order: the static “gravitoelectric” (GE) Einstein precession $[2]$ of the pericenter ω_p due solely to the total mass M of the system, and the stationary “gravitomagnetic” Lense-Thirring (LT) precessions $[3]$ of the longitude of the ascending node Ω_p and the pericenter caused by the proper angular momentum J of the spinning central object; see, e.g., $[4,5]$.

In general, the pN gravitomagnetic field is generated by mass-energy currents; for the concept of gravitoelectromagnetism within general relativity, see, e.g., $[6-18]$, and references therein. The gravitoelectric and gravitomagnetic net shifts per orbit of the planet’s pericentre ω_p are $[19,21]$

$$\Delta \omega_{\text{GE}}^p = \frac{6 \pi G M}{c^2 a_p (1 - e_p^2)}, \quad (1)$$

$$\Delta \omega_{\text{LT}}^p = -\frac{4 \pi G J \cdot \left(\frac{2}{c^2} \hat{h}_p + \cot I_p \hat{m}_p\right)}{c^2 n_p a_p^3 \left(1 - e_p^2\right)^{3/2}}, \quad (2)$$

where G is the Newtonian constant of gravitation, c is the speed of light in vacuum, a_p is the planet’s semimajor axis, e_p is the planet’s eccentricity, I_p is the inclination of the planetary orbital plane to the reference $\{x, y\}$ plane, customarily identified with the plane of the sky,

$$n_p = \sqrt{\frac{G M}{a_p^3}} \quad (3)$$

is the planet’s Keplerian mean motion,

$$\hat{h}_p = \{\sin I_p \sin \Omega_p, -\sin I_p \cos \Omega_p, \cos I_p\} \quad (4)$$

is a unit vector directed along the planet’s orbital angular momentum, and

$$\hat{m}_p = \{-\cos I_p \sin \Omega_p, \cos I_p \cos \Omega_p, \sin I_p\} \quad (5)$$

is a unit vector in the planetary orbital plane perpendicular to the line of the nodes, which is the intersection of the orbital plane with the reference $\{x, y\}$ plane $[4,5]$. For the sake of completeness, also the Lense-Thirring node precession is mentioned: its net shift per orbit is $[19,21]$

$$\Delta \Omega_{\text{LT}}^p = \frac{4 \pi G \csc I_p J \cdot \hat{m}_p}{c^2 n_p a_p^3 \left(1 - e_p^2\right)^{3/2}}. \quad (6)$$
As it turns out from eq. (1)-eq. (2), the gravitoelectric effect is, in general, quite larger than the gravitomagnetic one; suffice it to say that in the case of Sun and Mercury it is
\[\left| \frac{\Delta \omega_{LT}^\odot}{\Delta \omega_{GE}^\odot} \right| \approx 3 \times 10^{-5}, \]
while for the Earth and, say, the LAGEOS (L) satellite [22], it is
\[\left| \frac{\Delta \omega_{LT}^L}{\Delta \omega_{GE}^L} \right| \approx 9 \times 10^{-3}. \]
This is why the gravitoelectric precessions have been known since the observations of the then anomalous Mercury’s motion by Le Verrier [23] in the mid-nineteenth century, while the Lense-Thirring effect is still so difficult to measure with both natural and artificial objects [24, 25].

Nevertheless, for planets orbiting a binary star [26, 27], known as circumbinary planets (CBPs), some of which have already been discovered with different techniques [28-48], certain gravitomagnetic effects may be much larger than expected, amounting to about 10% or so of the gravitoelectric ones. The basic idea is as follows. The CBPs discovered so far can be considered as hierarchical triple systems consisting of an inner binary star \(b \) and a distant planet \(p \) that orbits the centre of mass of \(b \). Thus, the two inner stars \(A \) and \(B \) can be approximately considered as a mass current sourcing a gravitomagnetic field much stronger than that due to the individual spins of each star through the binary’s orbital angular momentum
\[J_b = \mu_b \sqrt{G M_b a_b \left(1 - e_b^2 \right)}, \]
where
\[\mu_b = \frac{M_A M_B}{M_b} \]
is the binary’s reduced mass, \(M_b = M_A + M_B \) is the total mass of the binary, \(a_b \) is the binary’s semimajor axis and \(e_b \) is the binary’s eccentricity. Thus, it is expected that eq. (2), calculated with eq. (9), yields a much larger pericenter precession.

Testing relativistic frame dragging in as much ways as possible is important since it is believed to play important roles in several high-energy astrophysical phenomena in strong-field systems [7, 9, 49-53]. Extending relativistic gravitomagnetism with confidence to such relatively unknown scenarios, for which no direct access is available, requires that it is corroborated in more than just a single case [25].

\[^2 \text{In eq. (7)-eq. (8), eq. (2) is computed in a coordinate system whose reference \(\{x, y\} \) plane is aligned with the primary’s equatorial plane, i.e., } J = \{0, 0, 1\}. \]
\[^3 \text{In eq. (1)-eq. (3), } M \text{ is now meant as } M_b + M_p, \text{ where } M_p \text{ is the planet’s mass.} \]
2 The gravitomagnetic precessions due to a matter ring current

By imposing

$$\Delta \omega_{LT}^p = q \Delta \omega_{GE}^p,$$

(11)

with $q > 0$, yields the following condition for the semimajor axis of the planet’s orbit about the inner binary

$$a_p = \frac{16 a_b \left(1 - e_b^2\right) M_A^2 M_B^2}{9 \left(1 - e_p^2\right) M_b (M_b + M_p)^3 q^2}.$$

(12)

As an example, for a binary of two Sun-like stars ($M_A = M_B = M_\odot$) in a circular orbit ($e_b = 0.0$) and a Jupiter-type ($M_p = M_{\text{jupiter}}$) circumbinary planet in a moderately eccentric orbit ($e_p = 0.2$), by imposing

$$q = 0.1$$

(13)

one gets

$$a_p = 11.5 a_b,$$

(14)

which fulfills the assumption that the binary is viewed by the planet as a rotating matter ring. By setting

$$q = 1$$

(15)

in eq. (12), corresponding to

$$\Delta \omega_{LT}^p = \Delta \omega_{GE}^p,$$

(16)

yields

$$a_p = 0.1 a_b,$$

(17)

which implies that the gravitomagnetic precession cannot be as large as the gravitoelectric one. From Figure[1] it turns out that $a_p = a_b$, and $P_p = P_b$, for $q \simeq 0.34$. Thus, for CBPs, this form of Lense-Thirring effect cannot reach the $\simeq 30\%$ of the gravitoelectric one.

According to [54], most of the CBPs exhibit a high degree of coplanarity with the inner binary, i.e. J_b and h_p are almost aligned. Thus, the pericentre change of eq. (2) can be approximated by

$$\Delta \omega_{LT}^p \simeq \frac{8 \pi G J_b}{c^2 n_p a_p^3 \left(1 - e_p^2\right)^{3/2}},$$

(18)
while the node shift of eq. (6) almost vanishes. The precession of eq. (18) is always negative, i.e. the pericentre moves in the opposite direction of the motion of the inner binary. There are some special cases, reported in the literature, where negative orbital plane precessions were reported, e.g. in the presence of a Kerr naked singularity [55] and of a hypothetical gravitomagnetic monopole [56]. Furthermore, [54] remark that the mass of the primary star varies from 0.69 to 1.53 M_\odot, with a mass ratio between 1.03 and 3.76 and eccentricity $0.023 \leq e_b \leq 0.521$. As far as the CMPs are concerned, their orbital periods are in the range $7.44 \text{ d} \leq P_p \leq 41 \text{ d}$, with eccentricities e_p varying from 0.007 to 0.182 [54]. In order to be stable around the binary host, the planet’s orbit must be characterized by $a_p = 2 - 4 a_b$, a condition that is fulfilled by the CBPs considered in [54]. However, from the point of view of a possible detection of the sought effect, the issue of the stability of a discovered CBP is not relevant since its lifetime, even if short in astronomical terms, is certainly much longer than any conceivable time span during which observations are collected. Figure 2 displays $\Delta \omega_p^{LT}$ and $\Delta \omega_p^{GE}$, in arcsec cycle$^{-1}$, as functions of the binary’s orbital period P_b, in d, by imposing the orbital stability condition $a_p = 2 a_b$. For the remaining physical and orbital parameters, the values $M_A = 0.69 M_\odot$, $M_B = 1.03 M_\odot$, $M_p = M_\oplus$, $e_p = 0.521$ were adopted. Among other things, also the binary’s semimajor axis a_b and orbital angular momentum J_b are shown; it can be noted that J_b is about 10^4 times larger than the spin angular momentum of the Sun which is of the order of $J_\odot \simeq 10^{41}$ Js [57]. The size of the Lense-Thirring shift ranges from 0.12 to 0.04 arcsec cycle$^{-1}$, while the gravitoelectric one is in the range $0.45 - 0.15$ arcsec cycle$^{-1}$.
Figure 2: Upper row: binary’s semimajor axis a_b, in au, and orbital angular momentum J_b, in J s, as functions of the binary’s orbital period P_b ranging from 7.44 to 41 d. Lower row: planet’s gravitomagnetic and gravitoelectric net shifts per orbit, in arcsec cycle$^{-1}$, as functions of the binary’s orbital period P_b ranging from 7.44 to 41 d. The orbital stability condition $a_p = 2 a_b$ was adopted along with $M_A = 0.69 M_\odot = 1.03 M_B$, $e_b = 0.023$, $M_p = M_{Jupiter}$, $e_p = 0.521$.

3 Conclusions

So far, a handful of circumbinary planets orbiting different types of stellar pairs, including compact objects as well, have been discovered; although for all of them the matter ring current approximation is substantially valid for their hosting stellar pairs, they are likely too distant from them to allow for a measurement of relativistic effects. Nonetheless, there may be reasons for being somewhat optimistic.

From the one hand, it is not unrealistic to expect that in a not too far future one or more systems with the right characteristics will be at our disposal. On the other hand, there is a growing interest in the community of extrasolar planetary scientists about the possibility of extracting general relativistic signatures in such scenarios as well [58–73].
References

[1] I. Debono and G. F. Smoot. General Relativity and Cosmology: Unsolved Questions and Future Directions. *Universe*, 2:23, September 2016.

[2] A. Einstein. Erklärung der perihelbewegung des merkur aus der allgemeinen relativitätstheorie. *Sitzungsberichte der Preußischen Akademie der Wissenschaften*, 47:831–839, November 1915.

[3] J. Lense and H. Thirring. Über den einfluß der eigenrotation der zentralkörper auf die bewegung der planeten und monde nach der einsteinschen gravitationstheorie. *Physikalische Zeitschrift*, 19:156–163, 1918.

[4] V. A. Brumberg. *Essential Relativistic Celestial Mechanics*. Adam Hilger, Bristol, 1991.

[5] M. H. Soffel and W.-B. Han. *Applied General Relativity*. Astronomy and Astrophysics Library. Springer Nature Switzerland, Cham, 2019.

[6] C. Cattaneo. General relativity: Relative standard mass, momentum, energy and gravitational field in a general system of reference. *Il Nuovo Cimento*, 10(2):318–337, October 1958.

[7] K. S. Thorne, D. A. MacDonald, and R. H. Price, editors. *Black Holes: The Membrane Paradigm*. Yale University Press, Yale, 1986.

[8] K. S. Thorne. Black Holes: The Membrane Viewpoint. In S. L. Shapiro, S. A. Teukolsky, and E. E. Salpeter, editors, *Highlights of Modern Astrophysics: Concepts and Controversies*, pages 103–161. Wiley, NY, 1986.

[9] K. S. Thorne. Gravitomagnetism, jets in quasars, and the Stanford Gyroscope Experiment. In J. D. Fairbank, Jr. Deaver, B. S., C. W. F. Everitt, and P. F. Michelson, editors, *Near Zero: New Frontiers of Physics*, pages 573–586. Freeman, New York, 1988.

[10] Edward G. Harris. Analogy between general relativity and electromagnetism for slowly moving particles in weak gravitational fields. *American Journal of Physics*, 59(5):421–425, May 1991.

[11] Robert T. Jantzen, Paolo Carini, and Donato Bini. The many faces of gravitoelectromagnetism. *Annals of Physics*, 215(1):1–50, April 1992.

[12] B. Mashhoon. Gravitoelectromagnetism. In J. F. Pascual-Sánchez, L. Floría, A. San Miguel, and F. Vicente, editors, *Reference Frames and Gravitomagnetism*, pages 121–132. World Scientific, Singapore, July 2001.
[13] W. Rindler. Relativity: special, general, and cosmological. Oxford University Press, Oxford, 2001.

[14] B. Mashhoon. Gravitoelectromagnetism: A Brief Review. In L. Iorio, editor, The Measurement of Gravitomagnetism: A Challenging Enterprise, pages 29–39. Nova Science, New York, 2007.

[15] L. Filipe O. Costa and Carlos A. R. Herdeiro. Gravitoelectromagnetic analogy based on tidal tensors. Physical Review D, 78(2):024021, July 2008.

[16] L. Filipe O. Costa and José Natário. Gravito-electromagnetic analogies. General Relativity and Gravitation, 46:1792, October 2014.

[17] L. Filipe. O. Costa and José Natário. Frame-Dragging: Meaning, Myths, and Misconceptions. Universe, 7(10):388, October 2021.

[18] Matteo Luca Ruggiero. A Note on the Gravitoelectromagnetic Analogy. Universe, 7(11):451, November 2021.

[19] B. M. Barker and R. F. O’Connell. Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Physical Review D, 12(2):329–335, July 1975.

[20] T. Damour and G. Schäfer. Higher-order relativistic periastron advances and binary pulsars. Il Nuovo Cimento B, 101:127–176, February 1988.

[21] L. Iorio. Post-Keplerian perturbations of the orbital time shift in binary pulsars: an analytical formulation with applications to the galactic center. European Physics Journal C, 77(7):439, July 2017.

[22] D. M. Lucchesi, L. Anselmo, M. Bassan, C. Magnafico, C. Pardini, R. Peron, G. Pucacco, and M. Visco. General Relativity measurements in the field of Earth with laser-ranged satellites: state of the art and perspectives. Universe, 5(6):141, June 2019.

[23] U.-J. Le Verrier. Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 49:379–383, Juillet-Décembre 1859.

[24] G. Renzetti. History of the attempts to measure orbital frame-dragging with artificial satellites. Central European Journal of Physics, 11(5):531–544, May 2013.
[25] C. W. F. Everitt, D. B. Debra, B. W. Parkinson, J. P. Turneaure, J. W. Conklin, M. I. Heifetz, G. M. Keiser, A. S. Silbergleit, T. Holmes, J. Kolodziejczak, M. Al-Meshari, J. C. Mester, B. Muhlfelder, V. G. Solomonik, K. Stahl, Jr. Worden, P. W., W. Bencze, S. Buchman, B. Clarke, A. Al-Jadaan, H. Al-Jibreen, J. Li, J. A. Lipa, J. M. Lockhart, B. Al-Suwaidan, M. Taber, and S. Wang. Gravity probe b: Final results of a space experiment to test general relativity. Physical Review Letters, 106(22):221101, June 2011.

[26] N. Haghighipour, editor. Planets in Binary Star Systems, volume 366 of Astrophysics and Space Science Library. Springer, Berlin, 2010.

[27] P. Thebault and N. Haghighipour. Planet Formation in Binaries. In S. Jin, N. Haghighipour, and W.H. Ip, editors, Planetary Exploration and Science: Recent Results and Advances, pages 309–340. Springer, Heidelberg, 2015.

[28] S. E. Thorsett, Z. Arzoumanian, and J. H. Taylor. PSR B1620-26 - A binary radio pulsar with a planetary companion? The Astrophysical Journal Letters, 412(1):L33–L36, July 1993.

[29] A. C. M. Correia, S. Udry, M. Mayor, J. Laskar, D. Naeß, F. Pepe, D. Queloz, and N. C. Santos. The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet? Astronomy and Astrophysics, 440(2):751–758, September 2005.

[30] J. W. Lee, S.-L. Kim, C.-H. Kim, R. H. Koch, C.-U. Lee, H.-I. Kim, and J.-H. Park. The sdB+M Eclipsing System HW Virginis and its Circumbinary Planets. The Astronomical Journal, 137(2):3181–3190, February 2009.

[31] S.-B. Qian, W.-P. Liao, L.-Y. Zhu, and Z.-B. Dai. Detection of a Giant Extrasolar Planet Orbiting the Eclipsing Polar DP Leo. The Astrophysical Journal Letters, 708(1):L66–L68, January 2010.

[32] K. Beuermann, F. V. Hessman, S. Dreizler, T. R. Marsh, S. G. Parsons, D. E. Winget, G. F. Miller, M. R. Schreiber, W. Kley, V. S. Dhillon, S. P. Littlefair, C. M. Copperwheat, and J. J. Hermes. Two planets orbiting the recently formed post-common envelope binary NN Serpentis. Astronomy and Astrophysics, 521:L60, October 2010.

[33] L. R. Doyle, J. A. Carter, D. C. Fabrycky, R. W. Slawson, S. B. Howell, J. N. Winn, J. A. Orosz, A. Prsa et al. W. F. Welsh, S. N. Quinn, D. Latham, G. Torres, L. A. Buchhave, G. W. Marcy, J. J. Fortney, A. Shporer, E. B. Ford, J. J. Lissauer, D. Ragozzine, M. Rucker, N. Batalha, J. M. Jenkins, W. J. Borucki, D. Koch, C. K. Middour, J. R. Hall, S. McCauliff, M. N.
Fanelli, E. V. Quintana, M. J. Holman, D. A. Caldwell, M. Still, R. P. Stefanik, W. R. Brown, G. A. Esquerdo, S. Tang, G. Furesz, J. C. Geary, P. Berlind, M. L. Calkins, D. R. Short, J. H. Steffen, D. Sasselov, E. W. Dunham, W. D. Cochran, A. Boss, M. R. Haas, D. Buzasi, and D. Fischer. Kepler-16: A Transiting Circumbinary Planet. Science, 333(6049):1602–1606, September 2011.

[34] Jerome A. Orosz, William F. Welsh, Joshua A. Carter, Erik Brugamyer, Lars A. Buchhave, William D. Cochran, Michael Endl, Eric B. Ford, Phillip MacQueen, Donald R. Short, Guillermo Torres, Gur Windmiller, Eric Agol, Thomas Barclay, Douglas A. Caldwell, Bruce D. Clarke, Laurance R. Doyle, Daniel C. Fabrycky, John C. Geary, Nader Haghighipour, Matthew J. Holman, Khadeejah A. Ibrahim, Jon M. Jenkins, Karen Kinemuchi, Jie Li, Jack J. Lissauer, Andrej Prša, Darin Ragozzine, Avi Shporer, Martin Still, and Richard A. Wade. The Neptune-sized Circumbinary Planet Kepler-38b. The Astrophysical Journal, 758(2):87, October 2012.

[35] Jerome A. Orosz, William F. Welsh, Joshua A. Carter, Daniel C. Fabrycky, William D. Cochran, Michael Endl, Eric B. Ford, Nader Haghighipour, Phillip J. MacQueen, Tsevi Mazeh, Roberto Sanchis-Ojeda, Donald R. Short, Guillermo Torres, Eric Agol, Lars A. Buchhave, Laurance R. Doyle, Howard Isaacson, Jack J. Lissauer, Geoffrey W. Marcy, Avi Shporer, Gur Windmiller, Thomas Barclay, Alan P. Boss, Bruce D. Clarke, Jonathan Fortney, John C. Geary, Matthew J. Holman, Daniel Huber, Jon M. Jenkins, Karen Kinemuchi, Ethan Kruse, Darin Ragozzine, Dimitar Sasselov, Martin Still, Peter Tenenbaum, Kamal Uddin, Joshua N. Winn, David G. Koch, and William J. Borucki. Kepler-47: A Transiting Circumbinary Multiplanet System. Science, 337(6101):1511, September 2012.

[36] S. B. Qian, L. Y. Zhu, Z. B. Dai, E. Fernández-Lajús, F. Y. Xiang, and J. J. He. Circumbinary Planets Orbiting the Rapidly Pulsating Subdwarf B-type Binary NY Vir. The Astrophysical Journal Letters, 745(2):L23, February 2012.

[37] S. B. Qian, L. Liu, L. Y. Zhu, Z. B. Dai, E. Fernández Lajús, and G. L. Baume. A circumbinary planet in orbit around the short-period white dwarf eclipsing binary RR Cae. Monthly Notices of the Royal Astronomical Society, 422(1):L24–L27, May 2012.

[38] W. F. Welsh, J. A. Orosz, J. A. Carter, D. C. Fabrycky, E. B. Ford, J. J. Lissauer, A. Prša, S. N. Quinn, D. Ragozzine, D. R. Short, G. Torres, J. N. Winn, L. R. Doyle, T. Barclay, N. Batalha, S. Bloemen, E. Brugamyer, L. A.
Buchhave, C. Caldwell, D. A. Caldwell, J. L. Christiansen, D. R. Ciardi, W. D. Cochran, M. Endl, J. J. Fortney, T. N. Gautier, III, R. L. Gilliland, M. R. Haas, J. R. Hall, M. J. Holman, A. W. Howard, S. B. Howell, H. Isaacson, J. M. Jenkins, T. C. Klaus, D. W. Latham, J. Li, G. W. Marcy, T. Mazeh, E. V. Quintana, P. Robertson, A. Shporer, J. H. Steffen, G. Windmiller, D. G. Koch, and W. J. Borucki. Transiting circumbinary planets Kepler-34 b and Kepler-35 b. *Nature*, 481(7382):475–479, January 2012.

[39] Megan E. Schwamb, Jerome A. Orosz, Joshua A. Carter, William F. Welsh, Debra A. Fischer, Guillermo Torres, Andrew W. Howard, Justin R. Crepp, William C. Keel, Chris J. Lintott, Nathan A. Kaib, Dirk Terrell, Robert Gagliano, Kian J. Jek, Michael Parrish, Arfon M. Smith, Stuart Lynn, Robert J. Simpson, Matthew J. Giguere, and Kevin Schawinski. Planet Hunters: A Transiting Circumbinary Planet in a Quadruple Star System. *The Astrophysical Journal*, 768(2):127, May 2013.

[40] Adam L. Kraus, Michael J. Ireland, Lucas A. Cieza, Sasha Hinkley, Trent J. Dupuy, Brendan P. Bowler, and Michael C. Liu. Three Wide Planetary-mass Companions to FW Tau, ROXs 12, and ROXs 42B. *The Astrophysical Journal*, 781(1):20, January 2014.

[41] V. B. Kostov, P. R. McCullough, J. A. Carter, M. Deleuil, R. F. Díaz, D. C. Fabrycky, G. Hébrard, T. C. Hinse, T. Mazeh, J. A. Orosz, Z. I. Tsvetanov, and W. F. Welsh. Kepler-413b: A Slightly Misaligned, Neptune-size Transiting Circumbinary Planet. *The Astrophysical Journal*, 784(1):14, March 2014.

[42] William F. Welsh, Jerome A. Orosz, Donald R. Short, William D. Cochran, Michael Endl, Erik Brugamyer, Nader Haghighipour, Lars A. Buchhave, Laurence R. Doyle, Daniel C. Fabrycky, Tobias Corneliussen Hinse, Stephen R. Kane, Veselin Kostov, Tsevi Mazeh, Sean M. Mills, Tobias W. A. Müller, Billy Quarles, Samuel N. Quinn, Darin Ragozzine, Avi Shporer, Jason H. Steffen, Lev Tal-Or, Guillermo Torres, Gur Windmiller, and William J. Borucki. Kepler 453 b - The 10th Kepler Transiting Circumbinary Planet. *The Astrophysical Journal*, 809(1):26, August 2015.

[43] D. P. Bennett, S. H. Rhie, A. Udalski, A. Gould, Y. Tsapras, D. Kubas, I. A. Bond, J. Greenhill, A. Cassan, N. J. Rattenbury, T. S. Boyajian, J. Luhn, M. T. Penny, J. Anderson, F. Abe, A. Bhattacharya, C. S. Botzler, M. Donachie, M. Freeman, A. Fukui, Y. Hirao, Y. Itow, N. Koshimoto, M. C. A. Li, C. H. Ling, K. Masuda, Y. Matsubara, Y. Muraki, M. Nagakane, K. Ohnishi, H. Oyokawa, Y. C. Perrott, To. Saito, A. Sharan, D. J. Sullivan, T. Sumi,
D. Suzuki, P. J. Tristram, A. Yonehara, P. C. M. Yock, MOA Collaboration, M. K. Szymański, I. Soszyński, K. Ulaczyk, Ł. Wyrzykowski, OGLE Collaboration, W. Allen, D. DePoy, A. Gal-Yam, B. S. Gaudi, C. Han, I. A. G. Monard, E. Ofek, R. W. Pogge, μFUN Collaboration, R. A. Street, D. M. Bramich, M. Dominik, K. Horne, C. Snodgrass, I. A. Steele, Robonet Collaboration, M. D. Albrow, E. Bachelet, V. Batista, J. P. Beaulieu, S. Brion, J. A. R. Caldwell, A. Cole, C. Coutures, S. Dieters, D. Dominis Prester, J. Donatowicz, P. Fouqué, M. Hundertmark, U. G. Jørgensen, N. Kains, S. R. Kane, J. B. Marquette, J. Menzies, K. R. Pollard, C. Ranc, K. C. Sahu, J. Wambgsanss, A. Williams, M. Zub, and PLANET Collaboration. The First Circumbinary Planet Found by Microlensing: OGLE-2007-BLG-349L(AB)c. The Astronomical Journal, 152(5):125, November 2016.

[44] Veselin B. Kostov, Jerome A. Orosz, William F. Welsh, Laurance R. Doyle, Daniel C. Fabrycky, Nader Haghighipour, Billy Quarles, Donald R. Short, William D. Cochran, Michael Endl, Eric B. Ford, Joao Gregorio, Tobias C. Hinse, Howard Isaacson, Jon M. Jenkins, Eric L. N. Jensen, Stephen Kane, Ilya Kull, David W. Latham, Jack J. Lissauer, Geoffrey W. Marcy, Tsevi Mazeh, Tobias W. A. Müller, Joshua Pepper, Samuel N. Quinn, Darin Ragozzine, Avi Shporer, Jason H. Steffen, Guillermo Torres, Gur Windmiller, and William J. Borucki. Kepler-1647b: The Largest and Longest-period Kepler Transiting Circumbinary Planet. The Astrophysical Journal, 827(1):86, August 2016.

[45] A. K. Getley, B. Carter, R. King, and S. O’Toole. Evidence for a planetary mass third body orbiting the binary star KIC 5095269. Monthly Notices of the Royal Astronomical Society, 468(3):2932–2937, July 2017.

[46] Chetana Jain, Biswajit Paul, Rahul Sharma, Abdul Jaleel, and Anjan Dutta. Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658–298. Monthly Notices of the Royal Astronomical Society, 468(1):L118–L122, June 2017.

[47] R. Asensio-Torres, M. Janson, M. Bonavita, S. Desidera, C. Thalmann, M. Kuzuhara, Th. Henning, F. Marzari, M. R. Meyer, P. Calissendorff, and T. Uyama. SPOTS: The Search for Planets Orbiting Two Stars. III. Complete sample and statistical analysis. Astronomy and Astrophysics, 619:A43, October 2018.

[48] Veselin B. Kostov, Brian P. Powell, Jerome A. Orosz, William F. Welsh, William Cochran, Karen A. Collins, Michael Endl, Coel Hellier, David W. Latham, Phillip MacQueen, Joshua Pepper, Billy Quarles, Lalitha Sairam,
Guillermo Torres, Robert F. Wilson, Serge Bergeron, Pat Boyce, Allyson Bieryla, Robert Buchheim, Caleb Ben Christiansen, David R. Ciardi, Kevin I. Collins, Dennis M. Conti, Scott Dixon, Pere Guerra, Nader Haghighipour, Jeffrey Herman, Eric G. Hintz, Ward S. Howard, Eric L. N. Jensen, John F. Kielkopf, Ethan Kruse, Nicholas M. Law, David Martin, Pierre F. L. Maxted, Benjamin T. Montet, Felipe Murgas, Matt Nelson, Greg Olmschenk, Sebastian Otero, Robert Quimby, Michael Richmond, Richard P. Schwarz, Avi Shporer, Keivan G. Stassun, Denise C. Stephens, Amaury H. M. J. Triaud, Joe Ulowetz, Bradley S. Walter, Edward Wiley, David Wood, Mitchell Yenawine, Eric Agol, Thomas Barclay, Thomas G. Beatty, Isabelle Boisse, Douglas A. Caldwell, Jessie Christiansen, Knicoile D. Colón, Magali Deleuil, Laurance Doyle, Michael Fausnaugh, Gábor Fűrész, Emily A. Gilbert, Guillaume Hébrard, David J. James, Jon Jenkins, Stephen R. Kane, Jr. Kidwell, Richard C., Ravi Kopparapu, Gongjie Li, Jack J. Lissauer, Michael B. Lund, Steve R. Majewski, Tsevi Mazeh, Samuel N. Quinn, Elisa Quintana, George Ricker, Joseph E. Rodriguez, Jason Rowe, Alexander Santerne, Joshua Schlieder, Sara Seager, Matthew R. Standing, Daniel J. Stevens, Eric B. Ting, Roland Vanderspek, and Joshua N. Winn. TIC 172900988: A Transiting Circumbinary Planet Detected in One Sector of TESS Data. The Astronomical Journal, 162(6):234, December 2021.

[49] James M. Bardeen and Jacobus A. Petterson. The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes. The Astrophysical Journal, 195:L65–L67, January 1975.

[50] Luigi Stella and Mario Vietri. Lense-Thirring Precession and Quasi-periodic Oscillations in Low-Mass X-Ray Binaries. The Astrophysical Journal Letters, 492(1):L59–L62, January 1998.

[51] R. Penrose. “Golden Oldie”: Gravitational Collapse: The Role of General Relativity. General Relativity and Gravitation, 34(7):1141–1165, July 2002.

[52] Gerhard Schäfer. Gravitomagnetism in Physics and Astrophysics. Space Science Reviews, 148(1-4):37–52, December 2009.

[53] L. Stella and A. Possenti. Lense-Thirring Precession in the Astrophysical Context. Space Science Reviews, 148(1-4):105–121, December 2009.

[54] William F. Welsh, Jerome A. Orosz, Joshua A. Carter, and Daniel C. Fabrycky. Recent Kepler Results On Circumbinary Planets. In Nader Haghighipour, editor, Formation, Detection, and Characterization of Extrasolar Hab-
itable Planets, volume 293, pages 125–132. Cambridge University Press, Cambridge, April 2014.

[55] Chandrachur Chakraborty, Prashant Kocherlakota, Mandar Patil, Sudip Bhattacharyya, Pankaj S. Joshi, and Andrzej Królak. Distinguishing Kerr naked singularities and black holes using the spin precession of a test gyro in strong gravitational fields. Physical Review D, 95(8):084024, April 2017.

[56] Chandrachur Chakraborty and Sudip Bhattacharyya. Does the gravitomagnetic monopole exist? A clue from a black hole x-ray binary. Physical Review D, 98(4):043021, August 2018.

[57] F. P. Pijpers. Helioseismic determination of the solar gravitational quadrupole moment. Monthly Notices of the Royal Astronomical Society, 297(3):L76–L80, July 1998.

[58] L. Iorio. Are we far from testing general relativity with the transiting extrasolar planet HD 209458b “Osiris”? New Astronomy, 11(7):490–494, May 2006.

[59] A. Jordán and G. Á. Bakos. Observability of the General Relativistic Precession of Periastra in Exoplanets. The Astrophysical Journal, 685(1):543–552, September 2008.

[60] A. Pál and B. Kocsis. Periastron precession measurements in transiting extrasolar planetary systems at the level of general relativity. Monthly Notices of the Royal Astronomical Society, 389(1):191–198, September 2008.

[61] A. Jordán and G. Á. Bakos. Observability of the General Relativistic Precession of Periastra in Exoplanets. In IAU Symposium, volume 253 of IAU Symposium, pages 492–495, February 2009.

[62] D. Ragozzine and A. S. Wolf. Probing the Interiors of very Hot Jupiters Using Transit Light Curves. The Astrophysical Journal, 698(2):1778–1794, June 2009.

[63] C. Damiani and A. F. Lanza. Prospecting transit duration variations in extrasolar planetary systems. Astronomy & Astrophysics, 535:A116, November 2011.

[64] A. Fukui, N. Narita, P. J. Tristram, T. Sumi, F. Abe, Y. Itow, D. J. Sullivan, I. A. Bond, T. Hirano, M. Tamura, D. P. Bennett, K. Furusawa, F. Hayashi, J. B. Hearnshaw, S. Hosaka, K. Kamiya, S. Kobar a, A. Korpela, P. M. Kilmartin, W. Lin, C. H. Ling, S. Makita, K. Masuda, Y. Matsubara, N. Miyake,
Y. Muraki, M. Nagaya, K. Nishimoto, K. Ohnishi, K. Omori, Y. Perrott, N. Rattenbury, T. Saito, L. Skuljan, D. Suzuki, W. L. Sweatman, and K. Wada. Measurements of Transit Timing Variations for WASP-5b. *Publications of the Astronomical Society of Japan*, 63(1):287–300, February 2011.

[65] L. Iorio. Classical and relativistic node precessional effects in WASP-33b and perspectives for detecting them. *Astrophysics and Space Science*, 331(2):485–496, February 2011.

[66] L. Iorio. Classical and relativistic long-term time variations of some observables for transiting exoplanets. *Monthly Notices of the Royal Astronomical Society*, 411(1):167–183, February 2011.

[67] M. T. Eibe, L. Cuesta, A. Ullán, A. Pérez-Verde, and J. Navas. Analysis of variations in transit time and transit duration in WASP-3. Evidence of secular perturbations reconsidered. *Monthly Notices of the Royal Astronomical Society*, 423(2):1381–1389, June 2012.

[68] Stephen R. Kane, Jonathan Horner, and Kaspar von Braun. Cyclic Transit Probabilities of Long-period Eccentric Planets due to Periastron Precession. *The Astrophysical Journal*, 757(1):105, September 2012.

[69] Lin-Sen Li. Parameterized post-Newtonian orbital effects in extrasolar planets. *Astrophysics and Space Science*, 341(2):323–330, October 2012.

[70] Shan-Shan Zhao and Yi Xie. Parametrized post-Newtonian secular transit timing variations for exoplanets. *Research in Astronomy and Astrophysics*, 13(10):1231–1239, October 2013.

[71] Luc Blanchet, Guillaume Hébrard, and François Larrouyrou. Detecting the general relativistic orbital precession of the exoplanet HD 80606b. *Astronomy & Astrophysics*, 628:A80, August 2019.

[72] G. Antoniciello, L. Borsato, G. Lacedelli, V. Nascimbeni, O. Barragán, and R. Claudi. Detecting general relativistic orbital precession in transiting hot Jupiters. *Monthly Notices of the Royal Astronomical Society*, 505(2):1567–1574, August 2021.

[73] Xirui Gou, Xinyue Pan, and Le Wang. General Relativity Testing in Exoplanetary Systems. In *IOP Conference Series: Earth and Environmental Science*, volume 658 of *IOP Conference Series: Earth and Environmental Science*, page 012051, February 2021.