Bio-gasoline and Bio-kerosene Production by Fractional Distillation of Pyrolysis Bio-Oil Açaí Seeds

D. A. R. de Castro; H. J. da Silva Ribeiro; L. H. H. Guerreiro; L. P. Bernar; S. J. Bremer; H. da Silva Almeida; M. C. Santos; S. Duvoisin Jr.; L. E. P. Borges; N. T. Machado

Program of Chemical Engineering-UFPA
Graduate Program of Natural Resources Engineering-UFPA
Faculty of Sanitary and Environmental Engineering-UFPA
Rua Augusto Corrêa N° 1, CEP: 66075-900, Belém-Pará-Brazil

Hochschule für Technik und Wirtschaft Berlin
Wilhelminenhofstrasse 75A, 12459 Berlin-Germany

Faculty of Chemical Engineering-UEA
Avenida Darcy Vargas N°. 1200, CEP: 69050-020 Manaus, Amazonas, Brazil

Laboratory of Catalyst Preparation and Catalytic Cracking
Section of Chemical Engineering-IME
Praça General Tibúrcio N°. 80, CEP: 22290-270, Rio de Janeiro-RJ-Brazil

Abstract

The bio-oil obtained by pyrolysis of Açaí (Euterpe oleracea Mart.) seeds at 450 °C, 1.0 atmosphere, in technical scale, submitted to fractional distillation to produce biofuels-like fractions. The distillation of bio-oil carried out in a laboratory distillation column (Vigreux) of 30 cm. The physical-chemistry properties (density, kinematic viscosity, acid value and refractive index) determined by official methods. The chemical functions present in distillation fractions determined by FT-IR and the chemical composition by GC-MS. The distillation of bio-oil yielded gasoline, light kerosene, and kerosene-like fuel fractions of 16.16, 19.56, and 41.89% (wt.), respectively. All the physical-chemistry properties (density, kinematic viscosity, acid value and refractive index) increase with boiling temperature. The gasoline-like fraction is composed by 64.0% (area.) hydrocarbons and 36.0% (area.) oxygenates, while light kerosene-like fraction by 66.67% (area.) hydrocarbons and 33.33% (area.) oxygenates, and kerosene-like fraction by 19.87% (area.) hydrocarbons and 81.13% (area.) oxygenates.

Keywords: Açaí, Residual Seeds, Pyrolysis, Bio-Oil, Distillation, Bio-gasoline, Bio-kerosene.

1. Introduction

Açaí (Euterpe oleracea Mart.) is a native palm of natural occurrence in tropical Central and South America [1]. The palm gives a dark-purple, berry-like fruit, clustered into bunches [2]. The fresh fruits are traditionally processed by crushing and/or extracting the pulp and skin
with warm water to produce a thick, purple-colored beverage/juice or a paste [3-4]. The fruit is a staple food in rural and urban areas of the Amazon River estuary, particularly in the State Pará (Pará-Brazil), with a great economic importance at both rural livelihoods and regional levels [5]. It has become one of the most important export products of the Amazon River estuary to other parts of Brazil [5], as well as overseas [6].

Of the total 1.228.811 tons/year of fruits produced by the State Pará, between 85% [7] and 83% (wt.) [8], is a residue (Açaí seeds), thus producing between 1.019.913 and 1.044.489 tons/year of a residue. The mechanical processing of Açaí fruits in nature produces around 175.7 tons residue/day in off-season crop and 448.0 tons residue/day in the season crop in the metropolitan region of Belém (Pará-Brazil), posing a complex environmental problem of solid waste management [9, 10]. The Açaí fruit is a small dark-purple, berry-like fruit, almost spherical, weighing between 2.6 to 3.0 g [11], with a diameter around 10.0 and 20.0 mm [11], containing a large core seed that occupies almost 85% (vol./vol.) of its volume [3]. Açaí (Euterpe oleracea Mart.) fruit has an oily-fiber seed, rich in lignin-cellulose material [12–15].

Pyrolysis makes it possible the use of low quality lignin-cellulosic based material to produce not only liquid bio-oils, but also gaseous fuels, and a carbonaceous rich solid phase, as reported in the literature [16-73], and studies include biomass pyrolysis [23-24, 26, 45, 56-57, 62, 67-68], bio-oil chemical upgrading techniques [26, 45, 50], bio-oils physical-chemical properties [21, 25-26, 28, 34-35, 43, 57, 62-63], as well as separation and/or purification processes to improve bio-oils quality [17-22, 30-33, 36-41, 46-48, 51, 53-54, 59-61, 65-66, 70-73].

The bio-oil produced by pyrolysis is a multicomponent liquid mixture presenting water, carboxylic acids, aldehydes, ketones, alcohols, esters, ethers, aliphatic hydrocarbons, aromatic hydrocarbons, anhydrous-sugars, furans, phenols derivatives, among others chemical functions [16-17, 20, 38, 44, 47-48, 53, 60-61, 73]. In addition, its organic fraction has a wide distribution of polarity, molecular weight [47], as well as differences in thermo-physical and transport properties of chemical compounds, as reported by the simulation of organic liquid compounds [74], posing challenges to the efficient separation and/or purification processes [47, 74].

In the last years, several thermal and physical separation processes were applied to remove oxygenates from biomass-derived bio-oils including molecular distillation [30, 33, 36-39, 71], fractional distillation [17-21, 40-41, 46-48, 53, 59-60, 66, 70, 72-73], liquid-liquid extraction [22, 31, 61], and fractional condensation [51, 54, 65]. In addition, chemical methods such as catalytic upgrading of bio-oils vapors have been applied to improve bio-oils quality [19, 29, 64].
The fractional distillation studies were carried out in micro/bench scale [17, 46-47], laboratory scale [41, 53, 66, 70, 72-73], and pilot scale [21], under atmospheric [17-18, 46-48, 53, 66, 70, 72-73], or under vacuum [18-19, 41, 48, 53]. Açaí (Euterpe oleracea, Mart.) seeds are the only fruit specie, whose centesimal and elemental composition is completely different from wood biomass (aspen poplar wood, eucalyptus, maple wood, and softwood bark) [17-19, 21, 53], agriculture residues of cereal grains (corn Stover, rice Rusk) [41, 46-47, 66, 70, 72], jatropha curcas [46], and until horse manure and switch-grass [53]. However, until the moment no systematic study investigated the physicochemical properties (density, kinematic viscosity, refractive index, and acid value) chemical composition of Açaí (Euterpe oleracea, Mart.) seeds bio-oil distillation fractions [73].

In this work, fractional distillation of bio-oil obtained by pyrolysis of Açaí seeds at 450 °C, 1.0 atmosphere, in technical scale, has been investigated systematically using a laboratory-scale column (Vigreux) to produce fuels-like fractions (gasoline, light kerosene, and kerosene), as well as to determine the physical-chemistry properties (density, kinematic viscosity, acid value and refractive index) and chemical composition of distillation fractions.

2. Materials and methods

2.1. Materials, pre-treatment, and characterization of Açaí (Euterpe oleracea, Mart.) seeds in nature

The seeds of Açaí (Euterpe oleracea Mart.) in nature obtained in a small store of Açaí commercialization, located in the City of Belém-Pará-Brazil [73]. The seeds were submitted to pre-treatments of drying and grinding as reported elsewhere [73]. The dried and grinded seeds were physical-chemistry characterized for moisture, volatile matter, ash, fixed carbon, lipids, proteins, fibers, and insoluble lignin according to official methods [73, 75, 76].

2.2. Fractional distillation of bio-oil

2.2.1. Distillation: Experimental apparatus and procedures

The fractional distillation of bio-oil was performed by using an experimental apparatus and procedures described elsewhere [73, 77-78]. The aqueous phase presented in the distillation fractions was separated from the organic phase by decantation using a 250 ml glass separator funnel. Afterwards, filtration was applied to remove small solid particles present in the organic phase.

2.3. Physical-chemistry analysis and chemical composition of distillation fractions

2.3.1. Physical-chemistry analysis of distillation fractions

The distillation fractions were (gasoline, light kerosene, and kerosene) physical-chemistry characterized for acid value (AOCS Cd 3d-63), density (ASTM D4052) at 25°C,
kinematic viscosity (ASTM D445/D446) at 40°C, and refractive index (AOCS Cc 7-25) [81]. The analysis of chemical functions (carboxylic acids, aliphatic and aromatic hydrocarbons, ketones, phenols, aldehydes, furans, esters, ethers, etc.) present in distillation fractions determined by FT-IR [73, 77].

2.3.2. Chemical composition of distillation fractions

The chemical composition of distillation fractions determined by CG-MS and the equipment and operational procedures described in details elsewhere [73].

3. Results and discussions

3.1. Material balances and yields of fractional distillation

Table 1 summarizes the material balance and yields by fractional distillation of bio-oil, and the distillation fractions and bottoms are illustrated in Figure 1. The yields of fuel-like fractions (gasoline, light kerosene, and kerosene) were 16.16, 19.56, and 41.89% (wt.), respectively, giving a total distillation yield of 77.61% (wt.). The results are according to similar studies for distillation of biomass derived bio-oil in the literature [17-19, 21, 41, 46-48, 53, 66, 70, 72]. The yield of distillation fractions, is higher than those reported in the literature for both atmospheric and vacuum conditions [17-19, 21, 41, 46-48, 53, 66, 70, 72].

Table 1: Material balance and yields by fractional distillation of bio-oil.

Distillation: Vigreux Column (30°C-215°C)	Bio-Oil [g]	Gas [g]	Raffinate [g]	Distillates [g]	Yield [wt.%]
	H₂O G LK K LD				
	307.53	69.87	49.48	128.27	16.16

G = Gasoline, LK = Light Kerosene, K = Kerosene, LD = Light Diesel.

Zheng and Wei [41] reported by distillation of fast pyrolysis bio-oil at 80°C under vacuum (15 mmHg), a distilled bio-oil yield of 61% (wt.). Zhang et. al. [47] reported by atmospheric distillation of fast pyrolysis bio-oil, an accumulated distillate of 51.86% (wt.). Zhang et. al. [47] observed that as the distillation temperature reached 240°C, condensation reactions take place, generating water, a behavior not observed during the course of distillation as illustrated in Table 1. Capunitan and Capareda [48] reported for the distillation at atmospheric condition, an organic phase (Distillates) yield of 15.0% (wt.) at 100°C, 4.7% (wt.) between 100°C < T_{Boiling} < 180°C, and 45.3% (wt.) between 180°C < T_{Boiling} < 250°C, while vacuum distillation yielded 10.3% (wt.) of an organic phase at 80°C, 5.9% (wt.) between 80°C < T_{Boiling} < 160°C, and 40.9% (wt.) between 160°C < T_{Boiling} < 230°C. Elkasabi et. al. [53] reported by distillation of tail-gas reactive pyrolysis (TGRP) bio-oil, yields ranging from 55 to 65% (wt.).
Figure 1: Distillation fractions [gasoline (yellow), light kerosene (red), and kerosene (red dark)-like boiling range temperature fossil fuels] and bottoms [Raffinate (black solid)] obtained by fractional distillation of bio-oil produced by pyrolysis of Açaí (*Euterpe oleracea*, Mart.) seeds at 450 °C and 1.0 atmosphere, in pilot scale.

3.2. Physical-chemical properties of distillation fractions

The physical-chemical properties of distillation fractions (gasoline, 80-175°C; light kerosene, 175-200°C; and kerosene-like fraction, 200-215°C) of bio-oil are illustrated in Table 2.

Table 2: Physical-chemical properties of distillation fractions of bio-oil.

Physico-chemical Properties	450 °C	ANP Nº 65	
	G	LK	K
ρ [g/cm³], 30°C	0.9146	0.9191	0.9816
I. A [mg KOH/g]	14.94	61.08	64.78
I. R[-]	1.455	1.479	1.497
ν [mm²/s], 40°C	1.457	3.106	4.040

I.A=Acid Value, I.R=Refractive Index.

It can be observed that acidity of distillation fractions increases with boiling temperature. However, the acidity of gasoline-like fraction is much lower than that of raw bio-oil (70.26 mg KOH/g), as described in Table 3. The high acid value of bio-oil is due to the
presence of 78.48% (area.) oxygenates, as shown in Table 4. The same behavior was observed for the densities, kinematic viscosities, and refractive indexes of gasoline, light kerosene, and kerosene-like like fractions with increasing boiling temperature. This is probably due to the high concentration of higher-boiling-point compounds in the distillate fractions, such as phenols, cresols (p-cresol, o-cresol), and furans, as the concentration of those compounds in the distillation fractions increases with increasing boiling temperature as reported elsewhere [66, 70, 72], corroborate in Tables 5, 6, and 7.

The gasoline, light-kerosene, and kerosene-like fuel densities were 0.9146, 0.9191, and 0.9816 g/mL. The gasoline-like fuel density (fractions (40°C < T_{Boiling} < 175°C), higher, but close to the density of distillation fraction of 0.8733 g/mL (T_{Boiling} < 140°C) for jatropha curcas cake pyrolysis bio-oil reported by Majhi et. al. [46]. This is probably due to the high lipids content between 14-18% (wt.) and 10-10.9% (wt.) fiber, thus producing a bio-oil similar to lipid-based pyrolysis organic liquid products [77-78]. The gasoline, light-kerosene, and kerosene-like fuel kinematic viscosities were 1.457, 3.106, and 4.040 mm²/s, lower than the distillation fraction kinematic viscosity of 2.350 mm²/s (T_{Boiling} < 140°C) for jatropha curcas cake pyrolysis bio-oil reported by Majhi et. al. [46].

The acid value of gasoline, light-kerosene, and kerosene-like fuel fractions were 14.94, 61.08, and 64.78 mg KOH/g, lower than the distillation fraction acid value of 0.05 mg KOH/g (T_{Boiling} < 140°C) for jatropha curcas cake pyrolysis bio-oil distillation reported by Majhi et. al. [46], the organic phases (distillates) acid values of 4.1 (100°C < T_{Boiling}), 15.1 (100°C < T_{Boiling} < 180°C), and 7.41 (180°C < T_{Boiling} < 250°C) mg KOH/g, for corn Stover bio-oil atmospheric distillation reported by Capunitan and Capareda [48], the organic phases (distillates) acid values of 3.0 (80°C < T_{Boiling}), 13.9 (80°C < T_{Boiling} < 160°C), and 5.0 (160°C < T_{Boiling} < 230°C) mg KOH/g, for corn Stover bio-oil vacuum distillation reported by Capunitan and Capareda [48], the acid values of 13.5 mg KOH/g (T_{Boiling} = 192°C) and 5.3 mg KOH/g (T_{Boiling} = 220°C) of distillation fractions F_3 and F_4 of TGRP_1, and the acid value of 11.1 mg KOH/g (T_{Boiling} = 235°C) of distillation fraction F_5 of TGRP_2, for tail-gas reactive pyrolysis of horse manure (TGRP_1), switch grass (TGRP_2), and eucalyptus (TGRP_3), reported by Elkasabi et. al. [53].

The results reported by Elkasabi et. al. [53], show that fractional distillation was not effective to diminish the acid values of TGRP bio-oil with initial high acid values, what does not agree with the results reported by Capunitan and Capareda [48], as well as those presented in Table 2, showing that the acid values of distillation fractions are lower than that of raw bio-oil, proving that distillation was effective.
Table 3: Physical-chemical properties of bio-oil, compared to similar studies reported in the literature [21, 25, 28, 47, 69, 79-80].

Physicochemical Properties	450 ºC [21]	[25]	[28]	[47]	[69]	[79]	[80]	ANP Nº 65	
ρ [g/cm³], 30°C	1.043	1.066	1.250	1.140	1.190	1.1581	1.200	1.030	0.82-0.85
I. A [mg KOH/g]	70.26	-	-	-	-	-	-	-	
I. R [-]	ND	-	-	-	-	-	-	-	
ν [mm²/s], 40°C, *60°C	68.34	38.0	148.0	13.2	40.0*	5.0-13.0	12.0	-	2.0-4.5

IA = Acid Value; IR = Refractive Index; ANP: Brazilian National Petroleum Agency, Resolution Nº 65 (Specification of Diesel S10); ND = Not Determined.

3.3. FT-IR and GC-MS analyses of bio-oil and distillation fractions

3.3.1. FT-IR spectroscopy of bio-oil and distillation fractions

By the FT-IR analysis of bio-oil and distillation fractions (gasoline: 40-175 °C, light kerosene: 175-200 °C, and kerosene-like fraction: 200-215 °C), summarized in Figure 2, the identification of absorption bands/peaks was performed according to previous studies [28, 48, 59, 73, 77-78, 80, 81]. The FT-IR spectroscopy of bio-oil and distillation fraction identify the presence of hydrocarbons (alkanes, alkenes, and aromatic hydrocarbons) and oxygenates (phenols, cresols, carboxylic acids, alcohols, ethers, ketones, and furans).

Figure 2: FT-IR of Açaí seeds bio-oil and distillation fractions.
3.3.2. Chemical compositional of bio-oil and distillation fractions by GC-MS

3.3.2.1 Chemical compositional of bio-oil by GC-MS

The chromatogram of bio-oil is shown in Figure 3. The peaks are concentrated between retention times of 8.0 and 22.0 minutes, with the highest one around 12.5 minutes. The GC-MS identified hydrocarbons (alkanes, alkenes, aromatic hydrocarbons, and cycloalkenes) and oxygenates (esters, phenols, cresols, carboxylic acids, ketones, furans, and aldehydes) in bio-oil, being composed of 21.52% (area.) hydrocarbons and 78.48% (area.) oxygenates [73]. The high acidity of bio-oil, described in Table 3, is probably due to the presence of carboxylic acids, ketones, aldehydes, phenols and cresols confer the high acidity of bio-oil.

Figure 3: GC-MS of bio-oil.

The composition of bio-oil shows similarity to those reported in the literature [27, 34, 41, 47-48, 53, 61], showing the presence of hydrocarbons, phenols, cresols, furans, carboxylic acids, and esters, among other classes of compounds [73]. The identification of hydrocarbons with carbon chain length between C$_{11}$ and C$_{15}$, shows the presence of heavy gasoline...
compounds with C$_{11}$ (C$_5$-C$_{11}$), light kerosene-like fractions (C$_{11}$-C$_{12}$), and light diesel-like fractions (C$_{13}$-C$_{15}$), according to Table 4.

Table 4: Classes of compounds, summation of peak areas, CAS number, and retention times of chemical compounds identified by CG-MS in bio-oil.

Class of Compounds: Chemical Compounds	RT [min]	CAS	α% (Area)
Alkanes			
Undecane	10.622	1120-21-4	1.124
Tridecane	13.870	629-50-5	2.481
Pentadecane	16.744	629-62-9	2.290
Dodecane, 5,8-diethyl	19.326	24251-86-3	1.626
Σ (Area.%) =			7.521
Alkenes			
6-Tridecene, (Z)-	1.626	6508-77-6	2.118
Σ (Area.%) =			2.118
Cycloalkenenes			
Megastigma-4,6(E), 8 (Z)-trien	13.440	5298-13-5	1.847
Σ (Area.%) =			1.847
Aromatic Hydrocarbons			
Naphthalene	12.262	91-20-3	4.399
Naphthalene, 1-methyl	14.046	90-12-0	2.390
1H-Indene, 1-ethyliidine	14.296	2471-83-2	3.249
Σ (Area.%) =			10.038
Esters			
Undecanoic acid, 10-methyl-, methyl ester	17.049	5129-56-6	1.096
Methyl tetradecanoate	19.620	124-10-7	2.969
Σ (Area.%) =			4.065
Carboxylic Acids			
Dodecanoic acid	17.648	334-48-5	4.307
Tetradecanoic acid	20.677	544-63-8	4.216
Σ (Area.%) =			8.523
Ketones			
2-Pentanone, 4-hydroxy-4-methyl	5.886	123-42-2	1.878
2-Cyclopenten-1-one, 2,3-dimethyl	9.552	1121-05-7	1.655
Σ (Area.%) =			3.533
Phenols			
Phenol	8.469	108-95-2	15.932
Phenol, 2-methoxy	10.446	90-05-1	4.583
Phenol, 2,6-dimethyl	10.805	576-26-1	1.991
Phenol, 2,4-dimethyl	11.469	105-67-9	2.034
Phenol, 2,5-dimethyl	11.502	95-87-4	2.215
Phenol, 3,4-dimethyl	11.821	95-65-8	3.845
Phenol, 4-ethyl-2-methoxy	13.571	2785-89-9	4.567
Σ (Area.%) =			35.167
Cresols			
p-Cresol	9.818	108-39-4	6.331
m-Cresol	10.198	106-44-5	11.054
Cresol	12.210	93-51-3	3.141
Σ (Area.%) =			20.526
Furans			
Benzofuran, 2-methyl	10.879	4265-26-2	1.879
Furan, 2-(2 furanylmethyl)-5-methyl	11.946	13678-51-8	2.089
Benzofuran, 4,7-dimethyl	12.700	28715-26-6	1.783
Σ (Area.%) =			5.751
Aldehyds			
Cinnamaldehyde, β-methyl-	12.654	1196-67-4	0.910
Σ (Area.%) =			0.910
3.3.2.2 Chemical compositional of distillation fractions by GC-MS

The chromatogram of bio-oil distillation fractions (gasoline: 40-175°C, light kerosene: 175-200°C, and kerosene-like fraction: 200-215°C) are shown in Figures 4, 5, and 6, respectively. One observes that the spectrum of peaks is moving to the right, showing that distillation was effective to fractionate the bio-oil.

The GC-MS identified in gasoline-like fraction hydrocarbons (alkanes, alkenes, and aromatic hydrocarbons) and oxygenates (esters, phenols, alcohols, ketones, furans, and aldehydes). The gasoline-like fraction contains 64.0% (area.) hydrocarbons (13.27% alkenes, 9.41% alkanes, and 41.32% aromatic hydrocarbons) and 36.0% (area.) oxygenates (5.50% esters, 2.61% ketones, 1.35% phenols, 6.05% alcohols, 13.24% furans, and 7.25% aldehydes). The absence of carboxylic acids confers the low acidity of gasoline-like fraction, as summarized in Table 5.

Figure 4: GC-MS of gasoline-like fraction (40°C-175°C).
Table 5: Classes of compounds, summation of peak areas, CAS number, and retention times of chemical compounds identified by CG-MS in gasoline-like fraction (40°C-175°C).

Class of Compounds: Chemical Compounds	RT [min]	CAS	% (Area)
Alkanes			
Undecane	10.548	1120-21-4	3.19
Tridecane	13.794	629-50-5	3.93
Tetradecane	15.276	629-59-4	0.75
Pentadecane	16.744	629-62-9	1.55
∑ (Area.%) =	9.41		
Alkenes			
p-Mentha-1,5,8-triene	9.861	21195-59-5	2.254
1-Undecene	10.402	821-95-4	2.776
1-Dodecene	12.088	112-41-4	3.034
Bicyclo[6.4.0]dodeca-9,11-diene	13.291	-	0.614
1-Tridecene	13.672	2437-56-1	2.098
Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene	14.286	2443-46-1	1.380
1-Tetradecene	15.167	1120-36-1	1.111
∑ (Area.%) =	13.267		
Aromatic Hydrocarbons			
Benzene, 1,3-dimethyl-	6.247	108-38-3	0.578
Benzene, propyl-	7.995	103-65-1	0.516
Benzene, 1-ethyl-3-methyl-	8.128	620-14-4	0.686
Benzene, 1-ethyl-2-methyl-	8.193	611-14-3	0.593
Trimethylbenzene	8.283	108-67-8	0.566
Benzene, (1-methylethyl)-	8.454	98-82-8	1.050
Benzene, 1,2,4-trimethyl-	8.738	95-63-6	2.107
Benzene, 1-ethenyl-2-methyl-	8.770	526-73-8	1.297
Benzene, 1,2,3-trimethyl-	9.255	538-68-1	2.205
Benzene, pentyl-	11.607	4544-28-9	0.875
Benzene, (1-methyl-2-propynyl)-	11.646	65051-83-4	1.927
Benzene, (1-methyl-2-cyclopropen-1-yl)	11.685	63051-83-4	1.441
o-Xylene	6.413	95-47-6	1.135
p-Xylene	6.834	106-42-3	2.080
6,7-Dimethyl-3,5,8,8a-tetrahydro-1H-2-benzopyran	10.368	110028-10-9	1.243
2,4-Dimethylstyrene	11.371	2234-20-0	0.703
1H-Indene, 1-methyl-	11.547	767-58-8	1.830
Napthalene	12.217	91-20-3	10.81
1H-Indene, 2,3-dihydro-4,7-dimethyl-	12.533	6682-71-9	0.760
Benzoisocycloheptatriene	14.038	264-09-5	1.401
Indane	9.516	496-11-7	0.763
Indene	9.699	95-13-6	6.702
∑ (Area.%) =	41.322		
Esters			
Hexanoic acid, 2-phenylethyl ester	6.917	72934-12-4	0.494
2-Furanacarboxylic acid, 3-phenylpropyl ester	8.536	-	0.645
Carbonic acid, octadecyl phenyl ester	8.616	-	1.937
Acetic acid, 2-methylene-bicyclo[3.2.1]oct-6-en-8-yl ester	9.379	-	0.644
1-hydroxy-1,2,3,4-tetrahydroxynaphthalene trifluoroacetate ester	11.850	134563-46-5	0.526
∑ (Area.%) =	5.502		
Ketones			
5H-Inden-5-one, 1,2,3,6,7,7a-hexahydro-	9.975	1489-28-7	1.630
Tricyclo[4.2.1.1(2,5)]deca-3,7-dien-9-one, 10-hydroxy-10-methyl-	11.767	70220-88-1	0.983
∑ (Area.%) =	2.613		
Phenols			
Phenol	8.704	108-95-2	0.741
2-(2-Hydroxyphenyl)buta-1,3-diene	12.450	90-05-1	0.608
∑ (Area.%) =	1.349		
Alcohols			
Compound	Area	Retention Time (min)	Area. %
--	-------	----------------------	---------
2-heptanol	5.906	543-49-7	0.366
1-Hexadecanol, 2-methyl-	16.583	2490-48-4	0.849
Carveol	10.263	99-48-9	1.259
2-Indanol	9.760	4254-29-9	0.568
2,6,8-Trimethylbicyclo[4.2.0]oct-2-ene-1,8-diol	10.484	-	1.505
1-Naphthalenol, 1,2,3,4-tetrahydro-3-methyl-	13.388	3344-45-4	0.427
2-Naphthalenol, 1,2-dihydro-, acetate \ 3-	12.300	132316-80-4	1.073
Methoxymethoxy-1,5,5-trimethyl-cyclohexene			

Sum (Area. %) = 6.047

Furans

Compound	Area	Retention Time (min)	Area. %
Benzofuran	8.816	271-89-6	3.746
Benzofuran, 2-methyl	10.838	4265-25-2	4.997
Furan, 2-(2 furanylmethyl)-5-methyl	11.922	13678-51-8	1.209
Benzofuran, 4,7-dimethyl	12.739	28715-26-6	3.287

Sum (Area. %) = 13.239

Aldehyds

Compound	Area	Retention Time (min)	Area. %
Myrtenal	10.034	564-94-3	1.724
Cinnamaldehyde	12.654	104-55-2	5.523

Sum (Area. %) = 7.247

Figure 5: GC-MS of light kerosene-like fraction (175°C-200°C).

The GC-MS identified in light kerosene-like fraction hydrocarbons (alkanes, alkenes, and aromatic hydrocarbons) and oxygenates (esters, carboxylic acids, phenols, alcohols, ketones, furans, and aldehydes). The light kerosene-like fraction is composed of 66.67% (area.) hydrocarbons (17.60% alkenes, 32.65% alkanes, and 16.42% aromatic hydrocarbons) and
33.33% (area.) oxygenates (6.16% esters, 4.24% ketones, 3.26% carboxylic acids, 7.13% phenols, 8.30% alcohols, 2.39% furans, and 1.86% aldehydes). The presence of carboxylic acids, ketones, furans, and phenols is associated to the high acidity of light kerosene-like fraction, as shown in Table 6.

Table 6: Classes of compounds, summation of peak areas, CAS number, and retention times of chemical compounds identified by CG-MS in light kerosene-like fraction (175°C-200°C).

Class of Compounds: Chemical Compounds	RT [min]	CAS	% (Area)
Alkanes			
Undecane	10.558	1120-21-4	2.115
Dodecane	12.222	112-40-3	1.608
Tridecane	13.793	629-50-5	7.177
Tetradecane	15.266	629-59-4	2.550
Pentadecane	16.668	629-62-9	8.424
Hexadecane	17.987	544-76-3	1.236
Heptadecane	19.266	629-78-7	8.974
Tetradacane, 2,6,10-trimethyl-	20.485	14005-56-7	0.562
∑ (Area.%%)			32.646
Alkenes			
1-Dodecene	12.096	112-41-4	2.077
1-Tridecene	13.668	2437-56-1	1.225
1-Tetradecene	15.157	13360-61-7	3.279
1-Pentadecene	16.576	13360-61-7	2.925
1-Heptadecene	17.896	6765-39-5	1.105
3-Heptadecene,(Z)-	18.991	-	2.914
8-Heptadecene	19.060	2579-04-6	5.701
∑ (Area.%%)			17.596
Aromatic Hydrocarbons			
Naphthalene, 2-methyl-	14.023	91-57-6	1.141
Naphthalene, 1-methyl-	14.265	90-12-0	1.582
Benzcycloheptatriene	14.923	264-09-5	1.633
Naphthalene, 1-ethyl-	15.483	1127-76-0	2.301
Naphthalene, 1,3-dimethyl-	15.679	575-41-7	3.739
Naphthalene, 1-(2-propenyl)-	16.732	2489-86-3	1.010
Naphthalene, 2-ethyl-	16.806	827-54-3	1.997
1-Isopropenynaphthalene	17.145	1855-47-6	0.848
Fluorene	18.197	86-73-7	1.722
Fluorene, 9-methyl-	18.415	2523-37-7	0.445
∑ (Area.%%)			16.418
Esters			
Dodecanoic acid, methyl ester	16.987	111-82-0	3.801
Methyl tetradecanoate	19.580	124-10-7	2.358
∑ (Area.%%)			6.159
Carboxylic Acids			
4,5-Dichlorothiophene-2-carboxylic acid	14.766	31166-29-7	1.198
Erucic acid	18.864	112-86-7	0.450
Propanoic acid, 2-methyl- (dodehydro-6a-hydroxy-9a-methylene-2,9-dioxoazuleno)	19.435	33649-17-1	0.925
Cis-5,8,11,14,17-Eicosapentaenoic acid	20.403	10417-94-4	0.692
∑ (Area.%%)			3.265
Ketones			
Cyclopenta[1,3]cyclopropa[1,2]cyclohepten-3(3aH)-one, 1,2,3b,6,7,8-hexahydro 4-(2,4,4-Trimethyl-1-cyclohexa-1,5-dienyl)-but-3-en-2-one	14.851	91531-58-7	1.013
1,2,3b,6,7,8-hexahydro 4-(2,4,4-Trimethyl-1-cyclohexa-1,5-dienyl)-but-3-en-2-one	15.980	-	0.966
Cyclopenta[1,3]cyclopropa[1,2]cyclohepten-3(3aH)-one, 1,2,3b,6,7,8-hexahydro-1,2,3b 2,4,6-Cycloheptatrien-1-one,2-hydroxy-5-(3-methyl-2-butenyl)-4-(1-methylethenyl)-	16.330	91531-58-7	0.879
2,4,6-Cycloheptatrien-1-one,2-hydroxy-5-(3-methyl-2-butenyl)-4-(1-methylethenyl)-	16.887	552-96-5	1.382
By the GC-MS analysis of kerosene-like fraction, hydrocarbons (alkanes, alkenes, and aromatic hydrocarbons) and oxygenates (esters, ethers, phenols, alcohols, ketones, furans, and aldehydes) were identified.

Figure 6: GC-MS of kerosene-like fraction (200°C-215°C).
The kerosene-like fraction is composed of 19.87% (area.) hydrocarbons (2.79% alkenes, 4.20% alkanes, and 12.88% aromatic hydrocarbons) and 81.13% (area.) oxygenates (2.06% esters, 0.80% ethers, 3.50% ketones, 60.79% phenols, 0.96% alcohols, 8.99% furans, and 3.22% aldehydes). The presence of ketones, furans, ethers, esters, aldehydes, and phenols confer the high acidity of kerosene-like fraction, as summarized in Table 7. Finally, the content of hydrocarbons within the distillation fractions (gasoline: $40^\circ\text{C} < T_{\text{Boiling}} < 175^\circ\text{C}$; light kerosene: $175^\circ\text{C} < T_{\text{Boiling}} < 200^\circ\text{C}$; and kerosene-like fraction: $200^\circ\text{C} < T_{\text{Boiling}} < 215^\circ\text{C}$) are higher than those reported in the literature [17-19, 46-48, 66, 70, 72], showing that was effective not only to diminish the acidity, but also to concentrate hydrocarbons.

Table 7: Classes of compounds, summation of peak areas, CAS number, and retention times of chemical compounds identified by CG-MS in kerosene-like fraction (200°C-215°C).

Class of Compounds: Chemical Compounds	RT [min]	CAS	ω [Area %]
Alkanes			
Tridecane	13.792	629-50-5	2.023
Tetradecane	15.276	629-59-4	0.752
Pentadecane	16.675	629-62-9	1.422
\sum (Area %)			4.20
Alkenes			
Tetracyclo[5.3.0.0<2,6>.0<3,10>]deca-4,8-diene	11.546	34324-40-8	0.981%
Bicyclo[6.4.0]dodeca-9,11-diene	13.288	-	0.389%
1-Tetradecene	15.166	1120-36-1	1.027%
1-Pentadecene	16.586	13360-61-7	0.390%
\sum (Area %)			2.787
Aromatic Hydrocarbons			
Benzene, 1-ethynyl-4-methyl-	9.708	766-97-2	1.148
1H-Indene, 2,3-dihydro-4-methyl-	11.370	824-22-6	0.288
Napthalene	12.213	91-20-3	9.719
Napthalene, 1-methyl	14.043	90-12-0	0.842
Napthalene, 2-methyl	14.290	91-57-6	0.883
\sum (Area %)			12.880
Alcohol			
1,3-Cyclohexadiene-1-methanol, α,2,6,6-tetramethyl-	11.764	102676-97-1	0.773
9-Heptadecene-4,6-diyn-3-ol	13.386	1242413-82-6	0.187
\sum (Area %)			0.960
Ether			
p-Propargyloxytoluene	12.431	5651-90-1	0.803
\sum (Area %)			0.803
Ketones			
2-Cyclopenten-1-one, 2-methyl-	7.237	1120-73-6	0.447
Ethanone, 1-(2-furanyl)-	7.366	1192-62-7	0.178
2-Cyclopenten-1-one, 2,3-dimethyl	9.609	1121-05-7	0.735
Benzoin	10.144	119-53-9	0.511
8-Decen-2-one, 9-methyl-5-methylene-	12.090	130876-97-0	0.354
Bicyclo[8.2.0]dodecan-11-one, 12,12-dichloro-,(1R*,10S*)-	13.672	110079-11-3	1.078
\sum (Area %)			3.503
Phenols			
Phenol	8.860	108-95-2	31.258
Phenol, 2-methyl-	9.861	95-48-7	8.621
Phenol, 3-methyl-	9.995	108-39-4	13.132
Phenol, 2-methoxy	10.442	90-05-1	5.554
Phenol, 2,5-dimethyl	11.645	95-87-4	2.229
\sum (Area %)			60.794
4. Conclusions

The yield of distillation fractions (gasoline, light kerosene, and kerosene-like like fractions), 77.61% (wt.), is higher but according than those reported in the literature for both atmospheric and vacuum conditions [17-19, 21, 41, 46-48, 53, 66, 70, 72]. The acid values of distillation fractions increase with increasing boiling temperature. However, the acidity of gasoline-like fraction is much lower than that of raw bio-oil (70.26 mg KOH/g). The same behavior was observed for the densities, kinematic viscosities, and refractive indexes of gasoline, light kerosene, and kerosene-like like fractions with increasing boiling temperature.

The FT-IR analysis of bio-oil and distillation fraction identify the presence of hydrocarbons (alkanes, alkenes, and aromatic hydrocarbons) and oxygenates (phenols, cresols, carboxylic acids, alcohols, ethers, ketones, and furans). The bio-oil is composed of 21.52% (area) hydrocarbons and 78.48% (area) oxygenates. The presence of carboxylic acids, as well as phenols and cresols is associated to the high acidity of bio-oil.

The gasoline-like fraction is composed by 64.0% (area.) hydrocarbons and 36.0% (area.) oxygenates, while light kerosene-like fraction by 66.67% (area.) hydrocarbons and 33.33% (area.) oxygenates, and kerosene-like fraction by 19.87% (area.) hydrocarbons and 81.13% (area.) oxygenates. The content of hydrocarbons within the distillation fractions are higher than those reported in the literature [17-19, 46-48, 66, 70, 72], showing that distillation was effective not only to diminish the acidity, but also to concentrate hydrocarbons.

References

[1] Jonny Everson Scherwinski-Pereira; Rodrigo da Silva Guedes; Ricardo Alexandre da Silva; Paulo César Poeta Fermino Jr.; Zanderlue Gomes Luis; Elínea de Oliveira Freitas. Somatic embryogenesis and plant regeneration in açai palm (Euterpe oleracea). Plant Cell Tiss Organ Cult (2012) 109:501–508, DOI 10.1007/s11240-012-0115-z
[2] Alexander G. Schauss; Xianli Wu; Ronald L. Prior; Boxin Ou; Dinesh Patel; Dejian Huang; James P. Kababick. Phytochemical and Nutrient Composition of the Freeze-Dried Amazonian Palm Berry, *Euterpe oleraceae* Mart. (Acai). *J. Agric. Food Chem.* 2006, 54, 22, 8598-8603

[3] Sara Sabbe; Wim Verbeke; Rosires Deliza; Virginia Matta; Patrick Van Damme. Effect of a health claim and personal characteristics on consumer acceptance of fruit juices with different concentrations of açaí (*Euterpe oleracea* Mart.). *Appetite* 53 (2009) 84–92, doi: 10.1016/j.appet.2009.05.014

[4] Lisbeth A. Pacheco-Palencia; Christopher E. Duncan; Stephen T. Talcott. Phytochemical composition and thermal stability of two commercial açaí species, *Euterpe oleracea* and *Euterpe precatoria*. *Food Chem.* 115 (2009) 1199-1205, doi: 10.1016/j.foodchem.2009.01.034

[5] Eduardo S. Brondízio; Carolina A. M. Safar; Andréa D. Siqueira. The urban market of Açaí fruit (*Euterpe oleracea* Mart.) and rural land use change: Ethnographic insights into the role of price and land tenure constraining agricultural choices in the Amazon estuary. *Urban Ecosystems* (2002) 6-67, https://doi.org/10.1023/A:1025966613562

[6] Elisabeth dos Santos Bentes; Alfredo Kingo Oyama Homma; César Augusto Nunes dos Santos. Exportações de Polpa de Açaí do Estado do Pará: Situação Atual e Perspectivas. In: Anais Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural, 55, Santa Maria, RS, Brazil, 2017, https://www.researchgate.net/publication/319465735_Exportacoes_de_Polpa_de_Acai_do_Estado_do_Para_Situacao_Atual_e_Perspectivas.

[7] Ana Victoria da Costa Almeida; Ingrid Moreira Melo; Isis Silva Pinheiro; Jessyca Farias Freitas; André Cristiano Silva Melo. Revalorização do caroço de açaí em uma beneficiadora de polpas do município de Ananindeua/PA: proposta de estruturação de um canal reverso orientado pela PNRS e logística reversa. *GEPROS. Gestão da Produção, Operações e Sistemas*, Bauru, Ano 12, N° 3, jul-set/2017, 59-83. DOI: 10.15675/gepros.v12i3.1668

[8] Claudio Ramalho Townsend; Newton de Lucena Costa; Ricardo Gomes de Araújo Pereira; Clóvis C. Diesel Senger. Características químico-bromatológica do caroço de açaí. COMUNICADO TÉCNICO Nº 193 (CT/193), EMBRAPA-CPAF Rondônia, ago./01, 1-5. ISSN 0103-9458, https://ainfo.cnptia.embrapa.br/digital/bitstream/item/100242/1/Cot193-acai.pdf

[9] Carlos Fioravanti. Açaí: Do pé para o lanche. *Revista Pesquisa Fapesp*, Vol. 203, Janeiro de 2013, 64-68, http://revistapesquisa.fapesp.br/2013/01/11/folheie-a-edicao-203/
[10] Antônio Cordeiro de Santana; Ádamo Lima de Santana; Ádina Lima de Santana; Marcos Antônio Souza dos Santos; Cynthia Meireles de Oliveira. Análise Discriminante Múltipla do Mercado Varejista de Açai em Belém do Pará. Rev. Bras. Frutic., Jaboticabal - SP, Vol. 36, Nº 3, 532- 541, Setembro 2014, http://dx.doi.org/10.1590/0100-2945-362/13

[11] José Dalton Cruz Pessoa; Paula Vanessa da Silva e Silva. Effect of temperature and storage on açai (Euterpe oleracea) fruit water uptake: simulation of fruit transportation and pre-processing. Fruits, 2007, Vol. 62, 295–302; DOI: 10.1051/fruits:2007025 www.fruits-journal.org

[12] Cordeiro M. A. Estudo da hidrólise enzimática do caroço de açai (Euterpe oleracea, Mart) para a produção de etanol. Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia Química, UFPA-Brazil. Marcio de Andrade Cordeiro; 2016

[13] Tamiris Rio Branco da Fonseca; Taciana de Amorim Silva; Mircella Marialva Alecrim; Raimundo Felipe da Cruz Filho; Maria Francisca Simas Teixeira. Cultivation and nutritional studies of an edible mushroom from North Brazil. African Journal of Microbiology Research. 2015;9(30):1814-1822

[14] Kababacknik A; Roger H. Determinação do poder calorífico do caroço do açai em três distintas umidades, 38th Congresso Brasileiro de Química, São Luiz-MA-Brazil; 1998

[15] Altman R. F. A. O Caroço de açaí (Euterpe oleracea, Mart). Vol. 31. Belém-Pa, Brasil: Boletim Técnico do Instituto Agronômico do Norte; 1956, 109-111

[16] Diadem Özçimen; Ayşegül Ersoy-Meriçboyu. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, June 2010;35(6):1319-1324

[17] John D. Adjaye; Ramesh K. Sharma; Narendra N. Bakhshi. Characterization and stability analysis of wood-derived bio-oil. Fuel Processing Technology 31 (1992) 241-256

[18] Carazza F; Rezende M. E. A; Pasa V. M. D; Lessa A. Fractionation of wood tar. Proc Adv Thermochem Biomass Convers 1994; 2:465

[19] J. D. Adjaye; N. N. Bakhshi. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts. Fuel Processing Technology 45 (1995) 161-183
[20] Xu B. J; Lu N. Experimental research on the bio-oil derived from biomass pyrolysis liquefaction. Trans Chin Soc Agr Eng 1999;15:177–81

[21] Boucher M. E; Chaala A; Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 2000;19:337–50

[22] Oasmaa A; Kuoppala E; Gust S; Solantausta Y. Fast pyrolysis of forestry residue. 1. Effect of extractives on phase separation of pyrolysis liquids. Energy & Fuels. 2003;17(1): 1-12

[23] Czernik S; Bridgwater A. V. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels. 2004;18:590-598

[24] Mohan D; Pittman C. U. Jr; Steelee P. H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels. 2006; 20:848-889

[25] Fei Yu; Shaobo Deng; Paul Chen; Yuhuan Liu; Yiquin Wan; Andrew Olson; David Kittelson; Roger Rua. Physical and Chemical Properties of Bio-Oils From Microwave Pyrolysis of Corn Stover. Applied Biochemistry and Biotechnology 136–140 (2007) 957-970

[26] Zhang Qi; Chang Jie; Wang Tiejun; Xu Ying. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management 48 (2007) 87-92

[27] Boateng A. A; Mullen C. A; Goldberg N; Hicks K. B. Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis. Industrial and Engineering Chemistry Research. 2008;47:4115-4122

[28] Lu Qiang; Yang Xu-lai; ZhuXi-feng. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. Journal of Analytical and Applied Pyrolysis 82 (2008) 191-198

[29] Xu Junming; Jiang Jianchun; SunYunjuan; LuYanju. Bio-Oil Upgrading by means of Ethyl Ester Production in Reactive Distillation to Remove Water to Improve Storage and Fuel Characteristics. Biomass and Bioenerg 32 (2008) 1056-1061

[30] Guo Z.; Wang S.; Zhu Y.; Luo Z.; Cen K. Separation of acid compounds for refining biomass pyrolysis oil. Journal of Fuel Chemistry and Technology. 2009;7(1):49-52

[31] Vispute T. P; Huber G. W. Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chemistry. 2009;11:1433-1445

[32] Song Q; Nie J; Ren M; Guo Q. Effective phase separation of biomass pyrolysis oils by adding aqueous salt solutions. Energy & Fuels. 2009;23:3307-3312
[33] Shurong Wang; Yueling Gu; Qian Liu; YanYao; Zuogang Guo; Zhongyang Luo; Kefa Cen. Separation of bio-oil by molecular distillation. Fuel Processing Technology 90 (2009) 738-745

[34] Oasmaa A; Elliott D. C; Korhonen J. Acidity of biomass fast pyrolysis bio-oils. Energy & Fuels. 2010;24(12):6548-6554

[35] Michael W. Nolte; Matthew W. Liberatore. Viscosity of Biomass Pyrolysis Oils from Various Feedstocks. Energy Fuels 2010, 24, 12, 6601-6608

[36] Guo X.; Wang S.; Guo Z.; Liu Q.; Luo Z.; Cen K. Pyrolysis characteristics of bio-oil fractions separated by molecular distillation. Applied Energy. 2010;87(9):2892-2898

[37] Guo Z.; Wang S.; Gu Y.; Xu G.; Li X.; Luo Z. Separation characteristics of biomass pyrolysis oil in molecular distillation. Separation and purification. 2010;76(1):52-57

[38] Xiujuan Guo; Shurong Wang; Zuogang Guo; Qian Liu; Zhongyang Luo; Kefa Cen. Pyrolysis characteristics of bio-oil fractions separated by molecular distillation. Applied Energy 87 (2010) 2892-2898

[39] Zuogang Guo; Shurong Wang; Yueling Gu; Guohui Xu; Xin Li; Zhongyang Luo. Separation characteristics of biomass pyrolysis oil in molecular distillation. Separation and Purification Technology 76 (2010) 52-57

[40] Christensen E. D; Chupka G. M; Smurthwaite J. L. T; Alleman T. L; Lisa K; Franz J. A; Elliott D. C; Mc Cormick R. L. Analysis of oxygenated compounds in hydrotreated biomass fast pyrolysis oil distillate fractions. Energy & Fuels. 2011;25(11):5462-5471

[41] Ji-Lu Zheng; Qin Wei. Improving the quality of fast pyrolysis bio-oil by reduced pressure distillation. Biomass and Bioenergy 35 (2011) 1804-1810

[42] A. S. Pollard; M. R. Rover; R. C. Brown. Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties. Journal of Analytical and Applied Pyrolysis 93 (2012) 129-138

[43] Ajay Shah; Matthew J. Darr; Dustin Dalluge; Dorde Medic; Keith Webster; Robert C. Brown. Physicochemical properties of bio-oil and biochar by fast pyrolysis of stored single-pass corn Stover and cobs. Bioresource Technology 125 (2012) 348-352

[44] Tahmina Imam; Sergio Capareda. Characterization of bio-oil, syn-gas and bio-char from switch grass pyrolysis at various temperatures. Journal of Analytical and Applied Pyrolysis 93 (2012) 170-177
[45] Shuangning Xiu; Abolghasem Shahbazi. Bio-oil production and upgrading research. A Review. Renewable and Sustainable Energy Reviews 16 (2012) 4406-4414

[46] Arakshita Majhi; Y. K. Sharma; D. V. Naik. Blending optimization of Hempel distilled bio-oil with commercial diesel. Fuel 96 (2012) 264-269

[47] Xue-Song Zhang; Guang-Xi Yang; Hong Jiang; Wu-Jun Liu; Hong-Sheng Ding. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis. Scientific Reports. 2013;3:1-7. Article Number 1120

[48] Jewel A. Capunitan; Sergio C. Capareda. Characterization and separation of corn stover bio-oil fractional distillation. Fuel 112 (2013) 60-73

[49] Yining Sun; Bin Gao; YingYao; June Fang; Ming Zhang; Yanmei Zhou; Hao Chen; Liuyan Yang. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal 240 (2014) 574-578

[50] Huijun Yang; Jingang Yao; Guanyi Chen; Wenchao Ma; BeibeiYan; YunQi. Overview of upgrading of pyrolysis oil of biomass. Energy Procedia 61 (2014) 1306-1309

[51] Akhil Tumbalam Gooty; Dongbing Li; Franco Berruti; Cedric Briens. Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors. Journal of Analytical and Applied Pyrolysis 106 (2014) 33-40

[52] C. H. Biradar; K. A. Subramanian; M. G. Dastidar. Production and fuel upgrading of pyrolysis bio-oil Jatropha Curcas de-oiled seed cake. Fuel 119 (2014) 81-89

[53] Elkasabi Y; Mullen C. A; Boateng A. A. Distillation and isolation of commodity chemicals from bio-oil made by tail-gas reactive pyrolysis. Sustainable. Chem. Eng. 2014;2:2042-2052

[54] Akhil Tumbalam Gooty; Dongbing Li; Cedric Briens; Franco Berruti. Fractional condensation of bio-oil vapors produced from birch bark pyrolysis. Separation and Purification Technology 124 (2014) 81-88

[55] Shurong Wang; Qinjie Cai; Xiangyu Wang; Li Zhang; Yurong Wang; Zhongyang Luo. Biogasoline production from the co-cracking of the distilled fraction of bio-oil and ethanol. Energy Fuels, 2014, 28 (1), 115–122

[56] Sadegh Papari; Kelly Hawboldt. A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models. Renewable and Sustainable Energy Reviews 52 (2015) 1580-1595
[57] Harpreet Singh; Kambo Animesh Dutta. A comparative review of biochar and hydro-char in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews 45(2015) 359-378

[58] Shushil Kumar; Jean-Paul Lange; Guus Van Rossum; Sascha R. A. Kersten. Bio-oil fractionation by temperature-swing extraction: Principle and application. Biomass and Bioenergy 83 (2015) 96-104

[59] Yaseen Elkasabi; Akwasi A. Boateng; Michael A. Jackson. Upgrading of bio-oil distillation bottoms into biorenewable calcined coke. Biomass and Bioenergy 81 (2015) 415-423

[60] Yaseen Elkasabi; Charles A. Mullen; Michael A. Jackson; Akwasi A. Boateng. Characterization of fast-pyrolysis bio-oil distillation residues and their potential applications. Journal of Analytical and Applied Pyrolysis 114 (2015) 179-186

[61] Kanaujia P. K; Naik D. V; Tripathi D; Singh R; Poddar M. K; Siva Kumar Konathala L. N; Sharma Y. K. Pyrolysis of Jatropha Curcas seed cake followed by optimization of liquid–liquid extraction procedure for the obtained bio-oil. Anal. Appl. Pyrolysis. 2016;118:202-224

[62] Tao Kan; Vladimir Strezov; Tim J. Evans. Lignocellulose biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews 57 (2016) 1126-1140

[63] Junmeng Cai; Scott W. Banks; Yang, Surila Darbar; Tony Bridgwater. Viscosity of Aged Bio-Oils from Fast Pyrolysis of Beech Wood and Miscanthus: Shear Rate and Temperature Dependence. Energy Fuels 2016, 30, 6, 4999-5004

[64] Yunwu Zheng; Fei Wang; Xiaoqin Yang; Yuanbo Huang; Can Liu; Zhifeng Zheng; Jiyou Gu. Study on aromatics production via catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. Journal of Analytical and Applied Pyrolysis 126 (2017) 169-179

[65] Ann Christine Johansson; Kristiina Iisa; Linda Sandström; Haoxi Ben; Heidi Pilath; Steve Deutch; Henrik Wiinikka; Olov G. W. Öhrman. Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis. Journal of Analytical and Applied Pyrolysis 123 (2017) 244-254
[66] Hsiu-Po Kuo; Bo-Ren Hou; An-Ni Huang. The influence of the gas fluidization velocity on the properties of bio-oils from fluidized bed pyrolyzer with in-line distillation. Applied Energy 194 (2017) 279-286

[67] Raquel Escrivani Guedes; Aderval S. Luna; Alexandre Rodrigues Torres. Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis 129 (2018) 134-149

[68] Vaibhav Dhyani; Thallada Bhaskar. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy 129 (2018) 695-716

[69] Wenfei Cai; Ronghou Liu; Yifeng He; Meiyun Chai; Junmeng Cai. Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor. Fuel Processing Technology 171 (2018) 308-317

[70] Ni Huang; Chen-Pei Hsu; Bo-Ren Hou; Hsiu-Po Kuo. Production and separation of rice husk pyrolysis bio-oils from a fractional distillation column connected fluidized bed reactor. Powder Technology 323 (2018) 588-593

[71] Shofur Rahman; Robert Helleur; Stephanie MacQuarrie; Sadegh Papari; Kelly Hawboldt. Upgrading and isolation of low molecular weight compounds from bark and softwood bio-oils through vacuum distillation. Separation and Purification Technology 194 (2018) 123–129

[72] An-Ni Huang; Chen-Pei Hsua; Bo-Ren Houa; Hsiu-Po Kuo. Production and separation of rice husk pyrolysis bio-oils from a fractional distillation column connected fluidized bed reactor. Powder Technology Volume 323, 1 January 2018, 588-593

[73] D. A. R. de Castroa; H. J. da Silva Ribeiro; C. C. Ferreira; L. H. H. Guerreiroa; M. de Andrade Cordeiro; A. M. Pereira; W. G. dos Santos; F. B. de Carvalho; J. O. C. Silva Jr.; R. Lopes e Oliveira; M. C. Santos; S. Duvoisin Jr; L. E. P. Borges; N. T. Machado. Fractional Distillation of Bio-Oil Produced by Pyrolysis of Açaí (Euterpe oleracea) Seeds. Editor Hassan Al-Haj Ibrahim: Fractionation, Intechopen ISBN: 978-1-78984-965-3, DOI: 10.5772/intechopen.79546

[74] E. C. Costa; C. C. Ferreira; A. L. B. dos Santos; H. da Silva Vargens; E. G. O. Menezes; V. M. B. Cunha; M. P. da Silva; A. A. Mâncio; N. T. Machado; M. E. Araújo. Process simulation of organic liquid products fractionation in countercurrent multistage columns using CO₂ as solvent with Aspen-Hysys. The Journal of Supercritical Fluids Volume 140, October 2018, 101-115
[75] Standards T. Acid-Insoluble Lignin in Wood and Pulp. Tappi Method T 222 Om-06. Atlanta, GA: Tappi Press. 2006

[76] Buffiere P; Loisel D. Dosage des fibres Van Soest. Weened, Laboratoire de Biotechnologie de l’Environnement. INRA Narbonne. 2007:1-14

[77] da Mota S. A. P; Mâncio A. A; Lhamas D. E. L; de Abreu D. H; da Silva M. S; dos Santos W. G; de Castro D. A. R; de Oliveira R. M; Araújo M. E; Borges L. E. P; Machado N. T. Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant. Journal of Analytical and Applied Pyrolysis. 2014;110:1-11

[78] Ferreira C. C; Costa E. C; de Castro D. A. R; Pereira M. S; Mâncio A. A; Santos M. C; Lhamas D. E. L; da Mota S. A. P; Leão A. C; Duvoisin S. Jr; Araújo M. E; Borges L. E. P; Machado N. T. Deacidification of organic liquid products by fractional distillation in laboratory and pilot scales. Journal of Analytical and Applied Pyrolysis. 2017;127:468-489

[79] Tuya Ba. Abdelkader Chaala; Manuel Garcia-Perez; Denis Rodrigue; Christian Roy. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energy Fuels 2004;18:704–12

[80] Sathish K. Tanneru; Divya R. Parapati; Philip H. Steele. Pretreatment of bio-oil followed by upgrading via esterification to boiler fuel. Energy 73 (2014) 214-220

[81] Seshadri K. S; Cronauer D. C. Characterization of coal-derived liquids by 13C N.M.R. and FT-IR Spectroscopy. Fuel. 1983;62:1436-1444

Thermodynamic Studies. J. Chem. Eng. Data 2016, 61, 213–219, DOI: 10.1021/acs.jced.5b00481