Paediatric Non-Infectious Uveitis in Cape Town, South Africa:
A Retrospective Review of Disease Characteristics and Outcomes on Immunomodulating Treatment

Authors: Waheba Slamang¹,³, Christopher Tinley²,³, Nicola Brice¹,³ and Christiaan Scott¹,³

Institutional Affiliations
¹Department of Paediatric Rheumatology and ²Department of Paediatric Ophthalmology
Red Cross War Memorial Children’s Hospital, Klipfontein Rd, Cape Town, 7700, South Africa
³University of Cape Town South Africa, Rondebosch, Cape Town, South Africa

Corresponding Authors: Christiaan Scott email: chris.scott@uct.ac.za and Waheba Slamang
email: waheba.slamang@gmail.com
ABSTRACT

Background

Non-infectious uveitis is a well-reported cause of blindness in more developed countries, however data from sub-Saharan Africa is lacking. Here we aim to describe the diseases associated with non-infectious uveitis and the impact of currently available treatment in this setting.

Methods

A retrospective observational analysis of children with non-infectious uveitis from January 2010 to December 2017, attending the tertiary paediatric rheumatology and ophthalmology referral units in Cape Town was conducted. Statistical analysis utilizing STATA13 software was performed with p < 0.05 considered significant.

Results

Twenty-nine children were identified: median age at first visit of 74 months (IQR 49–86 months), female to male ratio of 0.9:1, predominantly of mixed race (72.4%).

Juvenile idiopathic arthritis associated uveitis (JIAU) (48.3%) was the most frequent diagnosis. All children with JIAU had chronic anterior uveitis and 3 (21.4%) presented with uveitis before arthritis. There were no differences between children with uveitis and those with arthritis only, for gender (p = 0.68) and race (p = 0.58) but significantly, children with uveitis presented at an overall younger age (p = 0.008), with antinuclear antibody positive (p < 0.001) oligo-articular JIA (p = 0.01). Older age appeared to be protective (p = 0.01 OR1.0 CI 0.6-1.7).

Children with idiopathic uveitis (41.4%) were predominantly male (66.6%), of mixed race (75%), with chronic anterior uveitis (41.7%) and presented with cataracts (100%).
Less commonly, sarcoidosis (6.9%) and Behcet’s disease (3.5%) were diagnosed.

55.2% had complications at presentation, predominantly cataracts (87.5%). 19 children (65.5%) had inactive disease at 12 months from diagnosis. Remission, as assessed at the last clinical visit was achieved in 58.6% on standard initial therapy and in 75% of those on tumour necrosis factor inhibitors. Surgery was needed in 41.4%, primarily in the idiopathic group. Visual acuity improved or was maintained on treatment.

Conclusion

The spectrum and characteristics of immune-mediated non-infectious uveitis are comparable to that reported in more developed countries. Current practice detects children with potentially sight-threatening disease and access to tumour necrosis factor inhibitors has improved outcomes in refractory cases.

KEYWORDS

Non-infectious uveitis children juvenile idiopathic arthritis sub-Saharan Africa
Background

Uveitis broadly describes inflammation of the iris, choroid and retina, occurring when the blood-aqueous and blood-retinal barrier is disrupted by infectious or non-infectious triggers. An important cause of 16–25% of blindness worldwide, the estimated paediatric prevalence of 28:100 000, is at least 4 times lower than in adults (1). However, the sight-threatening consequences due to late presentation and aggressive disease are far-reaching in children, particularly in developing countries where employment opportunities for the visually impaired are limited (2).

Epidemiology studies highlight the paucity of data from Africa and other developing countries, noting potential differences in the prevalence and demographics of underlying aetiologies as well as in outcomes (1,3). Sub-Saharan African countries (SSA) tend to under report uveitis in the context of surveys or studies on blindness, compared to other regions (4-7). In general, active uveitis resulting in visual loss tends to be documented and outcomes including cataracts and glaucoma are recorded, as in South African statistics (8). Additionally, studies predominantly describe adult populations and infectious diseases, where 30 – 50% are caused by herpes, toxoplasmosis, tuberculosis, cytomegalovirus and its association with human immunodeficiency virus (HIV), syphilis and parasites (9-12). Post-streptococcal syndrome and HIV-associated uveitis have also recently been described in children (13-15). Idiopathic uveitis, where an underlying systemic cause cannot be found even when diagnostic ocular paracentesis may be utilized, frequently presents with complications and still accounts for up to 50% of uveitis populations seen at referral centres (16,17,18).

The prevalence of paediatric immune-mediated systemic diseases and the associated uveitis, varies by underlying disease, disease subtype, as well as geographically (23-26).
Notably BD is reported more frequently from countries around the Mediterranean basin and the Far East (1). In JIA, where the highest prevalence is seen in European and western countries, up to 20% of chronic anterior uveitis occurs in the oligo-articular subtype in young girls under 7 years old of Caucasian race, who are ANA positive. Associations with race as a predictor of more aggressive disease and poorer outcomes has been described, although research in this area is ongoing. Acute anterior uveitis may also be seen in enthesitis-related arthritis and psoriatic JIA, as well as in other HLA B27 associated diseases (27-31). The limited data for immune-mediated uveitis in SSA children, describe the association with juvenile idiopathic arthritis (JIA) (19-22).

The potential risk of amblyopia and poor long-term outcomes secondary to persistent disease activity and prolonged corticosteroid treatment in children is recognized. The standard uveitis nomenclature (SUN) working group classification and screening guidelines, though not formally validated in children, has improved cross-study comparisons. This has aided monitoring of treatment responses and decisions to escalate therapy (32,33) further elaborated in recent management guidelines (34-45)

Understanding the underlying causes of non-infectious, immune-mediated uveitis is essential for appropriate management and to improve overall visual outcomes. However, to date there are no studies reviewing the impact of non-infectious uveitis per se, in children from SSA.

Aim

Here we aim to describe the disease characteristics and outcomes on immunomodulatory treatment, of children with non-infectious uveitis managed at a tertiary paediatric referral center in Cape Town, South Africa.
Methods

Study design

A retrospective case file review of all children ≤16 years managed for non-infectious uveitis by the paediatric ophthalmology and rheumatology units in Cape Town from 1 January 2010 to 31 December 2017 was conducted.

Setting and population

The paediatric rheumatology and ophthalmology tertiary referral units in Cape Town are based at Groote Schuur and Red Cross Children’s Hospitals. These hospitals are the main tertiary referral centers for the Western Cape as well as other provinces in South Africa, where these paediatric services may be minimal or absent. The Western Cape population numbers around 6.2 million and children <15 years constitute 26%. Statistically, the racial profile of the Western Cape region reflects 47.5% people of mixed race and differs from the rest of South Africa, where the black African race group is more common (46). For the purposes of this study, mixed race refers to everyone not identifying themselves as either black African or Caucasian. Race is considered here, as associations with potentially higher risk and poorer outcomes have been described (28,30).

Data collection

1. Children were identified from a review of paediatric rheumatology (PR) and ophthalmology case files which were correlated with clinic attendance books and confirmed on the hospital electronic booking system.

2. Data of patients identified with non-infectious uveitis included
 - Demographics: age, gender, race (self-reported)
 - Clinical presentation
• Date of first presentation, anatomical location of uveitis, visual acuity, (VA) and complications.

• For uniformity, VA was converted from the recorded Snellen (feet, meters or decimal) annotation to the log of the minimal angle of resolution (LogMAR), based on the conversion by Schulze et al (47).

 o Disease characteristics and laboratory investigations
 o Data of children with JIA additionally included JIA subtype, time to uveitis diagnosis and whether JIA remission was achieved on treatment.

Disease definitions

 o **JIA**: as per International League of Associations for Rheumatology criteria (48)
 o **Idiopathic uveitis**: after exclusion of infective and other immune mediated diseases by clinical assessment and laboratory tests including but not limited to:

 • Toxocara and toxoplasma serology, HIV Elisa or polymerase chain reaction (PCR), ANA, anti-double stranded DNA, anti-streptolysin O (ASO) and, anti-deoxyribonuclease B (Anti-DNase B) titres, serum angiotensin converting enzyme, Treponema Pallidum Haemagglutination test and/or Venereal Disease Research Laboratory test, urine dipstix.

 • Ebstein Barr Virus, cytomegalovirus (CMV) and Lyme disease (not endemic in the Western Cape region of South Africa) serology are not routinely requested but may be
Sarcoidosis: Clinical presentation, histology +/- raised serum angiotensin levels

Behcet’s disease: Clinical diagnosis based on Paediatric BD criteria 2015 (49)

Treatment modalities

- Standard Initial Treatment includes corticosteroids (topical and/or systemic) and Methotrexate 10–20mg/m² (maximum dose 20mg orally or 25mg subcutaneously)
- Additional disease modifying anti-rheumatic drug therapy includes azathioprine (1–3mg/kg) and mycophenolate mofetil (250–500mg/m² bd)
- Biologics include TNFi Infliximab 6–10mg/kg iv infusion monthly (after loading) and Adalimumab 20–40mg subcutaneously every second week

Outcome

- Primary Outcome was considered as clinically inactive disease on treatment.
- Ophthalmology assessments were performed at weekly to 3-monthly intervals depending on severity of disease. Disease activity at 12 months and at the last clinical visit was evaluated. Treatment outcome was recorded as at the last clinical visit.
- Anterior chamber disease was assessed utilising the Standard Uveitis Nomenclature (SUN) criteria (33)
 - Response to treatment defined by the SUN criteria as a two-step decrease in inflammation or decrease to Grade 0
 - Active disease defined by the SUN criteria as ≥ Grade 1 (6–15 cells/slitr lamp field and faint anterior chamber flare)
 - Inactive disease defined by the SUN criteria as Grade 0 (<1...
cell/slit lamp field and no anterior chamber flare)

- Remission was defined as ≥ 3 months of inactive disease on treatment
- Secondary Outcome was considered as improvement in visual acuity

Exclusion criteria

- Children managed for < 3 months or were lost to follow-up
- Children with infectious uveitis

Statistical analysis

Statistical analysis was performed utilising STATA13 software.

The frequencies of categorical variables were recorded, and descriptive statistics employed to determine measures of central tendency. Chi squared (or Fisher exact tests if frequencies were <5) and t-tests (or Wilcoxon sum rank tests for non-parametric data) for comparisons between groups, were used as appropriate to evaluate associations with p < 0.05 considered significant. Odds ratios for statistically significant variables were calculated to evaluate associated risk. Cox regression model was used to assess time to inactive disease and time to uveitis from JIA diagnosis.

Results

Thirty-four children were referred for management of uveitis. One with toxocariasis, 2 with post-streptococcal syndrome and 2 with HIV-associated uveitis were excluded, resulting in 29 children meeting inclusion criteria. The overall group had a 0.9:1 female to male ratio, median age at first visit of 74 months (IQR 49–86 months) and were predominantly of mixed race (72.4%). Bilateral (75.9%), chronic anterior uveitis (72.4%) was most frequent. Complications
at presentation (55.2%) were predominantly cataracts (87.5%) and there was an overall clinical improvement in visual acuity (VA) (Table 1). The median time to inactive disease was 7 months (IQR 6-15 months) (Fig. 1.a.). There was no statistical difference ($p = 0.28$) between JIAU and idiopathic uveitis for overall time to inactive disease (Fig. 1.b.). Nineteen (65.5%) children had inactive disease at 12 months after commencement of treatment, including 3 who had been started on TNFi subsequent to failure of earlier therapy (Fig. 1.c.). Twenty-seven (93.1%) children achieved remission, 1 (3.5%) had clinically inactive disease for <3 months and 1 (3.5%) had ongoing active disease at the last clinical visit (Table 2).
JIAU (48.3%) was the most common diagnosis in a female to male ratio of 1:0.75, at a median age of 55 months (IQR 34–86 months), in children predominantly of mixed race (71.4%), with chronic anterior uveitis (100%).

Further analysis in relation to the overall JIA cohort managed during the study period was undertaken (Table 3). 229 patients were assessed for JIA of which 12 were excluded according to ILAR criteria. 217 were evaluated, with a consequent JIAU clinic prevalence of 6.5%. Three children had uveitis for 12, 9 and 4 months prior to the diagnosis of JIA, the majority developed uveitis within a year (Figure 1.d.). Comparisons for gender (p = 0.68) and race (p = 0.58) were not statistically significant. No children older than 144 months were diagnosed (p = 0.01) with uveitis but young age ≤84 months (p = 0.01), oligo-JIA subtype (p = 0.01) and positive ANA (p < 0.001) were significant. Univariate analysis showed odds ratios (OR) for possible risk factors associated with uveitis as oligo-articular subtype (OR 4.45 CI 1.35–14.7) and positive ANA (OR 33.3, CI 6.83–162.09). Older age at diagnosis, 145–192 months (OR1.0 CI 0.6– 1.7) appeared to be protective. Reduced VA at presentation was mostly due to cataracts (71.4%).

Seven (50%) children had complications with no statistical difference between those diagnosed pre-JIA and on screening (p = 0.28). At 12 months from diagnosis, 9 (64.3%) children on standard initial treatment and one on TNFi had inactive disease. 57.1% achieved uveitis remission on standard initial treatment, 14.3% on additional DMARDs and the refractory 28.6% on TNFi treatment. Three were originally commenced on Infliximab and 2 were switched to Adalimumab due to lack of efficacy. Of these, one was diagnosed 12 months before arthritis. All children in the Adalimumab group achieved remission. Three children had surgery including one pars planar vitrectomy/ lensectomy.
Idiopathic uveitis (41.4%) was the next frequent diagnosis, presenting in males (66.6%), median age 76.5 months (IQR 49–156 months) of mixed race (75%). Both eyes were affected in 66.6% with chronic anterior uveitis (50%). All children presented with cataracts with median VA LogMAR 0.95 (0.55–2.45). Four children (33.3%) had inactive disease on standard initial treatment and 2 (16.7%) on TNFi at 12 months. Remission was achieved in 50% on standard initial treatment, 16.6% on Infliximab and 33.3% on Adalimumab as assessed at the last clinical visit. 75% of children required surgery. One child did not respond to therapy, was ANA positive and needed evisceration of one eye due to painful glaucoma. The overall improvement in VA for the remaining children was statistically significant (p = 0.001).

Sarcoidosis (6.9%) was diagnosed in 2 females. One presented at 49 months, was of mixed race and had posterior uveitis. The other, presented at 156 months, was black African and presented with acute anterior uveitis. Both had bilateral uveitis and no complications at presentation. Both had inactive disease by 12 months, achieved remission on standard initial therapy and had preserved vision.

The 120-month old male of mixed race with BD presented with unilateral chronic anterior uveitis, had no complications and responded to standard therapy within 3 months.

Table 1: Comparison of JIA arthritis only and JIAU

Discussion

Non-infectious immune-mediated uveitis remains an important cause of ocular morbidity in children and despite some advances in the understanding of the underlying pathophysiology, sight-threatening complications are still frequently reported (50,51). The dearth of literature from Africa and other developing countries, reinforces the perception that these diseases are rare or non-existent in children from this setting.
Although this assumption has recently been challenged (52-54), advocacy for treatment strategies deemed too expensive, regardless of proven efficacy elsewhere, is still hindered.

Here, we have shown that the spectrum and disease characteristics associated with non-infectious uveitis are comparable to that of developed countries, yet dissimilar to reports from North Africa, where BD (23,24) is more common. Importantly, 54.5% of our cohort presented with easily identifiable cataracts and posterior synechiae, attesting to significant delays in diagnosis.

Juvenile Idiopathic Arthritis

Comparison with two studies from developed countries (Table 4), the large multicentre Canadian Research in Arthritis in Canadian Children emphasizing Outcomes (ReaCCH-out) study cohort and a single centre Atlanta study (27,55), shows similarities in median age of JIA presentation, relative frequencies of poly-articular RF negative JIA subtype and ANA positivity. However, an older age at JIAU presentation and a lower frequency of oligo-articular JIA is seen in our cohort. The prevalence of JIAU here (6.5%) is also lower than reported in those studies (8.5% and 18%), as well as other developed country descriptions of up to 20% (31). However, our clinic prevalence seems to be in keeping with the few published studies from SSA (15, 20, 21, 56).

The chronic anterior uveitis, presenting at a younger mean age, significantly in the ≤ 84-month age group (p = 0.001), also fits developed country descriptions. Potentially increased risk associated with female gender, Caucasian race, oligo-arthritis subtype and positive ANA, need further prospective studies to elucidate the role of these variables in our cohort. The majority of children with JIAU were ANA positive (78.6%). However, this is in contrast to previous studies from South Africa, where children with uveitis had...
polyarthritis and were ANA negative. The differences could possibly be ascribed to race as the children in our study were predominantly of mixed race, compared to the other South African studies, where race was reported as black African (15,19).

A high percentage (21.4%), compared to the 3–7% generally described (57), developed uveitis before arthritis was diagnosed. Eleven were detected on screening and half presented with complications, 71.4% of which were cataracts. This raises further concerns of diagnostic delays in our setting. Notably, treatment was escalated to manage uveitis as arthritis was in remission.

Idiopathic

In our study, idiopathic uveitis (36.3%) had a relatively lower frequency, reflecting the small number of referred patients. As in other descriptions, refractory disease (58%) with chronic anterior and panuveitis, complications and the need for surgery (75%) is noted (58,59). Similar severity and poorer outcome were reported in black South African children in a historical study by Freedman et al (60), prior to the availability of TNFi. Here, children with refractory disease showed significant improvement in disease activity and VA on TNFi treatment.

Sarcoidosis

Sarcoidosis is rare in children, may affect the uveal tract and while African American females have a ten times increased risk for the development of sarcoidosis, information for African children is lacking. In our cohort, both cases were female. The early onset case was diagnosed on bone marrow biopsy. NOD2 testing was not available at the time. The second case, a black African female presented with late onset sarcoidosis diagnosed by clinical features and persistently raised serum angiotensin converting enzyme levels.
Biopsy results could not be found for this case. Both responded well to systemic corticosteroid treatment and methotrexate. TNFi except etanercept, are used in refractory sarcoid uveitis as a second or third line agent. In limited data, most cases show an overall improvement in disease activity, although follow up times are relatively short. Escalation to TNFi was not needed here (61-64).

Behcet’s disease

North African studies in adults, describe a high prevalence of BD (6.25–13%) compared to North American and other European populations (0–0.7%) and case series from SSA, highlight severe skin and ocular manifestations (24,25,65). Paediatric BD, however, is rarely reported from countries outside the geographical area of the former silk route. The case of clinical BD in our cohort partially fulfilled paediatric BD 2015 criteria (49). HLAB51 testing was not done and as far as was known, he was not of Mediterranean nor Eastern descent. In contrast to case series from North Africa, (25,66,67), our patient had few recurrences, no complications and near normal vision at the last clinical assessment.

Other immune mediated diseases including Vogt Koyanagi Harada syndrome, tubulointerstitial nephritis associated uveitis, uveitis with SLE and other autoinflammatory disorders- were not represented in this study.

Treatment outcome

Overall, remission on standard initial uveitis treatment (58.6%) endorses its use as first line therapy in our resource limited setting. Azathioprine and MMF were used less frequently due to gastrointestinal adverse effects and perceived lower efficacy. Neither cyclosporine nor intraocular corticosteroid injections were used in our cohort, as low
evidence and side effect profile in young children were considered to outweigh the benefit (36,45,68,69). TNFi were only used in refractory cases due to availability and cost and showed good efficacy. Adalimumab was used in conjunction with methotrexate in all our patients and while outcomes appeared better than that reported in meta-analyses of previous studies (26,38), this may be due to small sample size. Further research into the use of these agents in our setting is needed.
Selection bias

Not all children with immune-mediated uveitis may have been referred, thus community prevalence is not reflected. Children with JIA are routinely assessed for uveitis screening and may be over-represented in this sample.

Limitations

This retrospective case file review was dependent on the availability and accuracy of the medical records reviewed. The small sample size limits inferences that can be made from these results.

Conclusion

The spectrum of immune mediated non-infectious uveitis is comparable to that reported in developed countries. While current practice detects children with potentially sight-threatening disease, delays in diagnosis are a concern. Here, access to tumour necrosis factor inhibitors has improved outcomes in refractory cases. Further prospective studies to establish the role of associated risk factors, particularly in JIAU and the efficacy of biologics are needed.
	Abbreviations	
18	**ANA** Anti-Nuclear Antibody	
451	**ANA HEp2** Anti-Nuclear Antibody Human Epithelial cell indirect immuno-	
453	fluorescence test	
454	**AntiDNAse B** Anti-Deoxyribonuclease B	
455	**ASOT** Anti-Streptolysin O titres	
456	**ARVs** Antiretroviral therapy	
457	**BD** Behcet’s Disease	
458	**CMV** Cytomegalovirus	
459	**DMARDs** Disease Modifying Anti- Rheumatic Drugs	
460	**ERA** Enthesitis Related Arthritis	
461	**FHI** Fuch’s Heterochromic Iridocyclitis	
462	**HIV** Human Immunodeficiency Virus	
463	**HLAB27** Human Leukocyte Antigen B27	
464	**IL** Interleukin	
465	**ILAR** International League of Associations for Rheumatology	
466	**IQR** Interquartile Range	
467	**ISG** International Study Group	
468	**JIA** Juvenile Idiopathic Arthritis	
469	**JIAU** Juvenile Idiopathic Arthritis associated Uveitis	
470	**LogMAR** Log of the minimal angle of resolution	
471	**MMF** Mycophenolate Mofetil	
472	**ReaCCH-out** Research in Arthritis in Canadian Children emphasizing Outcomes	
473	RF	Rheumatoid Factor
-----	----	------------------
474	SSA	sub-Saharan Africa
475	SUN	Standard Uveitis Nomenclature
476	TB	Tuberculosis
477	TINU	Tubulo-Interstitial Nephritis associated Uveitis
478	TNFi	Tumour Necrosis Factor Inhibitors
479	VA	Visual Acuity
480	VKH	Vogt Koyonagi Harada Syndrome
481		
Declarations

Ethics approval
Ethics approval for data collection was obtained from the university of Cape Town human research ethics committee, HREC no: 692/2018

Consent for publication
Not applicable

Availability of data and material
Privacy and confidentiality
Data was anonymised and collected in accordance with the principles of Helsinki and GCP.

Data is stored in a password-protected database to which only the PI and sub-investigator has access.

The data is available from the corresponding authors upon reasonable request and is stored as part of the paediatric rheumatology database and repository at the University of Cape Town.

Competing interests
WS has received sponsorships from Pfizer and Abbvie for conference attendance
CS has received conference attendance sponsorships and speaker fees from Abbvie, Pfizer and Roche
CT and NB declare no competing interests

Funding
This is a non-funded study

Authors Contributions
WS conceptualised the study, drafted the protocol, performed data collection, statistical analysis and prepared the manuscript.

CT and NB provided diagnostic and management expertise.

CS supervised the study, reviewed the protocol, provided input and management expertise.

All authors reviewed the final manuscript.

Acknowledgements

We would like to thank Drs K. Webb, L. O’kongo, A. Fadmolela, Y. Fuseini, S. Akhalwaya and N. Freeman, as well as the administrative and nursing staff at Red Cross War Memorial Children’s Hospital for their ongoing assistance in the management of our patients.
1. Tsirouki T, Dastiridou A, Symeonidis C, Tounakaki O, Brazitikou I, Kalogeropoulos C, et al. A Focus on the Epidemiology of Uveitis. Ocular Immunology and Inflammation. 2016 Aug 2;26(1):2–16.

2. Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017 Sep;5(9):e888–97. DOI:10.1016/S2214-109X(17)30293-0

3. Miserocchi E et al. Review on the Worldwide Epidemiology of Uveitis. European Journal of Ophthalmology 2013 Aug 1:1–13.

4. Richard AI. Monocular blindness in Bayelsa state of Nigeria. Pan Afr Med J. 2010 Feb 12;4:6.

5. Potter AR. Causes of blindness and visual handicap in the Central African Republic. Br J Ophthalmol. 1991 Jun;75(6):326–8.

6. Sherwin JC, Dean WH, Metcalfe NH. Causes of blindness at Nkhoma Eye Hospital, Malawi. European Journal of Ophthalmology. 2008 Nov;18(6):1002–6.

7. Carreras FJ, Rodriguez-Hurtado F, David H. Ophthalmology in Luanda (Angola): a hospital based report. Br J Ophthalmol. 1995 Oct;79(10):926–33.

8. Statistics South Africa; Profile of persons living with disability 2016 https://www.statssa.gov.za/publications/P03012016 Accessed October 2019.
9. London NJS, Rathinam SR, Cunningham ET. The Epidemiology of Uveitis in Developing Countries. International Ophthalmology Clinics. 2010;50(2):1–17.

10. Wade PD, Ramyil AV. Aetiology of Uveitis in the Gambia, West Africa. Journal of Ophthalmology of Eastern Central and Southern Africa; 2015 July 19 (1) 4-8.

11. Schaftenaar E, Meenken C, Baarsma GS, Khosa NS, Luijendijk A, McIntyre JA, et al. Uveitis is predominantly of infectious origin in a high HIV and TB prevalence setting in rural South Africa. Br J Ophthalmol. 2016 Sep 22;100(10):1312–6.

12. Ronday MJ, Stilma JS, Barbe RF, McElroy WJ, Luyendijk L, Kolk AH, et al. Aetiology of uveitis in Sierra Leone, West Africa. Br J Ophthalmol. BMJ Publishing Group; 1996 Nov;80(11):956–61.

13. Tinley C, Van Zyl L, Grötte R. Poststreptococcal syndrome uveitis in South African children Br J Ophthalmol. 2011 Dec 12;96(1):87–9.

14. Zaborowski AG, Parbhoo D, Chinniah K, Visser L. Uveitis in children with human immunodeficiency virus–associated arthritis. YMPA. American Association for Pediatric Ophthalmology and Strabismus; 2008 Dec 1;12(6):608–10.

15. Chinniah K, Mody GM, Bhimma R, Adhikari M. Arthritis in association with human immunodeficiency virus infection in Black African children: causal or coincidental? Rheumatology. 2005 Apr 12;44(7):915–20.

16. Rautenbach W, Steffen J, Smit D, Lecuona K, Esterhuizen T. Patterns of Uveitis at Two University-Based Referral Centres in Cape Town, South Africa. Ocular Immunology and Inflammation. Taylor & Francis; 2017 Nov 9;00(00):1–7.
17. Chronopoulos A, Roquelaure D, Souteyrand G, Seebach JD, Schutz JS, Thumann G. Aqueous humor polymerase chain reaction in uveitis – utility and safety. BMC Ophthalmology; 2016 Oct 26;1–7.

18. Damato EM, Angi M, Romano MR, Semeraro F, Costagliola C. Vitreous Analysis in the Management of Uveitis. Mediators of Inflammation. 2012;2012(1):1–7.

19. Haffejee IE, Raga J, Coovadia HM. Juvenile chronic arthritis in black and Indian South African children. S Afr Med J. 1984 Mar 31;65(13):510–4.

20. Chipeta J, Njobvu P, Wa-Somwe S, Chintu C, McGill PE, Bucala R. Clinical patterns of juvenile idiopathic arthritis in Zambia. Pediatric Rheumatology. BioMed Central; 2013 Sep 14;11(1):33–6.

21. Adelowo OO, Umar A. Juvenile idiopathic arthritis among Nigerians: a case study. Clin Rheumatol. 4 ed. 2010 Mar 1;29(7):757–61.

22. Olaosebikan BH, Akintayo RO, Animashaun BA, Adelowo OO. Juvenile Idiopathic Arthritis in A New Rheumatology Clinic in Nigeria. JARS. Open Access Pub; 2017 Aug 25;1(1):1.

23. Khairallah M, Attia S, Zaouali S, Yahia SB, Kahloun R, Messaoud R, et al. Pattern of Childhood-Onset Uveitis in a Referral Center in Tunisia, North Africa. Ocular Immunology and Inflammation. 2009 Jul 8;14(4):225–31.

24. Allali F, Benomar A, Karim A, Lazrak N, Mohcine Z, Yahyaoui El M, et al. Behçet's disease in Moroccan children: a report of 12 cases. Scandinavian Journal of Rheumatology. 2009 Jul 12;33(5):362–3.
25. Khairallah M, Accorinti M, Muccioli C, Kahloun R, Kempen JH. Epidemiology of Behçet Disease. Ocular Immunology and Inflammation. 2012 Sep 13;20(5):324–35.

26. Jari M, Shiari R, Salehpour O, Rahmani K. Epidemiological and advanced therapeutic approaches to treatment of uveitis in pediatric rheumatic diseases: a systematic review and meta-analysis. Orphanet Journal of Rare Diseases. BioMed Central; 2020 Feb 4;15(1):41–12.

27. Angeles-Han ST, McCracken C, Yeh S, Jenkins K, Stryker D, Rouster-Stevens K, et al. Characteristics of a cohort of children with Juvenile Idiopathic Arthritis and JIA-associated Uveitis. Arthritis Research & Therapy 2015 May 28;13(1):1–10.

28. Angeles-Han ST, Pelajo CF, Vogler LB, Rouster-Stevens K, Kennedy C, Ponder L, et al. Risk Markers of Juvenile Idiopathic Arthritis-associated Uveitis in the Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry. The Journal of Rheumatology. 2013 Dec 1;40(12):2088–96.

29. Heiligenhaus A, Heinz C, Edelsten C, Kotaniemi K, Minden K. Review for Disease of the Year: Epidemiology of Juvenile Idiopathic Arthritis and its Associated Uveitis: The Probable Risk Factors. Ocular Immunology and Inflammation. 2013 May 29;21(3):180–91.

30. Angeles-Han ST, McCracken C, Yeh S, Jenkins K, Stryker D, Travers C, et al. The Association of Race With Childhood Uveitis. American Journal of Ophthalmology. 2015 Nov;160(5):919–928.

31. Heiligenhaus A, Minden K et al Uveitis in juvenile idiopathic arthritis. Deutches Ärzteblatt International, 2015; 112:92-100 doi:10.3238arztebl.20150092.
Khairallah M. Are the Standardization of the Uveitis Nomenclature (SUN) Working Group criteria for Codifying the Site of Inflammation Appropriate for All Uveitis Problems? Limitations of the SUN Working Group Classification. Ocular Immunology and Inflammation. 2010 Feb 3;18(1):2–4.

Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. American Journal of Ophthalmology 2005 Sep;140(3):509–16.

Constantin T, Foeldvari I, Anton J, de Boer J, Czitrom Guillaume S, Edelsten C, et al. Consensus-based recommendations for the management of uveitis associated with juvenile idiopathic arthritis: The SHARE initiative. Ann Rheum Dis. 2018 Mar 28:annrheumdis–2018–213131–12.

Angeles-Han ST, Ringold S, Beukelman T, Lovell D, Cuello CA, Becker ML, et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Screening, Monitoring, and Treatment of Juvenile Idiopathic Arthritis–Associated Uveitis. Arthritis Care Res. 2019 May 10;71(6):703–16.

Heiligenhaus A, Minden K, Tappeiner C, Baus H, Bertram B, Deuter C, et al. Update of the evidence based, interdisciplinary guideline for anti-inflammatory treatment of uveitis associated with juvenile idiopathic arthritis. Seminars in Arthritis and Rheumatism. Elsevier Inc; 2019 Jul 12;49(1):1–13.

Wulffraat NM, Vastert B, SHARE consortium. Time to share. Pediatric Rheumatology. BioMed Central; 2013 Feb 15;11(1):5–5.
Ramanan AV, Dick AD, Jones AP, McKay A, Williamson PR, Compeyrot-Lacassagne S, et al. Adalimumab plus Methotrexate for Uveitis in Juvenile Idiopathic Arthritis. N Engl J Med. 2017 Apr 27;376(17):1637–46.

Quartier P, Baptiste A, Despert V, Allain-Launay E, Koné-Paut I, Belot A, et al. ADJUVITE: a double-blind, randomised, placebo-controlled trial of adalimumab in early onset, chronic, juvenile idiopathic arthritis-associated anterior uveitis. Ann Rheum Dis. 2018 Jun 12;77(7):1003–11.

Miserocchi E, Modorati G, Berchicci L, Pontikaki I, Meroni P, Gerloni V. Long-term treatment with rituximab in severe juvenile idiopathic arthritis-associated uveitis. Br J Ophthalmol. 2016 May 20;100(6):782–6.

Heiligenhaus A, Miserocchi E, Heinz C, Gerloni V, Kotaniemi K. Treatment of severe uveitis associated with juvenile idiopathic arthritis with anti-CD20 monoclonal antibody (rituximab). Rheumatology. 2011 Jul 11;50(8):1390–4.

Kenawy N, Cleary G, Mewar D, Beare N, Chandna A, Pearce I. Abatacept: a potential therapy in refractory cases of juvenile idiopathic arthritis-associated uveitis. Graefes Arch Clin Exp Ophthalmol. 2010 Oct 5;249(2):297–300.

Tappeiner C, Mesquida M, Adán A, Anton J, Ramanan AV, Carreno E, et al. Evidence for Tocilizumab as a Treatment Option in Refractory Uveitis Associated with Juvenile Idiopathic Arthritis. The Journal of Rheumatology. 2016 Dec 1;43(12):2183–8.

Lopalco G, Fabiani C, Sota J, Lucherini OM, Tosi GM, Frediani B, et al. IL-6 blockade in the management of non-infectious uveitis. Clinical Rheumatology; 2017 May 20:1–11.
Gaggiano C, Rigante D, Tosi GM, Vitale A, Frediani B, Grosso S, et al. Treating juvenile idiopathic arthritis (JIA)-related uveitis beyond TNF-α inhibition: a narrative review. Clin Rheumatol. 2020 Feb; 39(2):327–37.

Statistics South Africa: Community survey provincial profile Western Cape 2016
http://cs2016.statssa.gov.za/wp-content/uploads/2018/07/WesternCape.pdf
Accessed October 2019

Schulze-Bonsel K, Feltgen N, Burau H, Hansen L, Bach M. Visual Acuities “Hand Motion” and ‘Counting Fingers’ Can Be Quantified with the Freiburg Visual Acuity Test. Invest Ophthalmol Vis Sci. 2006 Mar 1;47(3):1236–5.

Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. Vol. 31, The Journal of rheumatology. 2004. pp. 390–2.

Koné-Paut I. Behçet’s disease in children, an overview. Pediatric Rheumatology; 2016 Feb 16:1–8.

Busch M, Wefelmeyer KL, Walscheid K, Rothaus K, Bauer D, Deeg CA, et al. Identification of Ocular Autoantigens Associated With Juvenile Idiopathic Arthritis-Associated Uveitis. Front Immunol. 2019 Aug 6;10:390–12.

Vastert SJ, Bhat P, Goldstein DA. Pathophysiology of JIA-associated Uveitis. Ocular Immunology and Inflammation. 2014 Sep 17;22(5):414–23.
52. Olaosebikan BH, Adelowo OO, Animashaun BA, Akintayo RO. Spectrum of paediatric rheumatic diseases in Nigeria. Pediatric Rheumatology; 2017 Jan 27: 1–6.

53. Weakley K, Esser M, Scott C. Juvenile idiopathic arthritis in two tertiary centres in the Western Cape, South Africa. Pediatric Rheumatology; 2012 Oct 10;10(1):1–1.

54. Bhimma R, Coovadia HM, Adhikari M. Improved outcome of systemic lupus erythematosus among children in Durban, South Africa. Annals of Tropical Paediatrics. 2016 Jul 13; 14(2):119–24.

55. Lee JJY, Duffy CM, Guzman J, Oen K, Barrowman N, Rosenberg AM, et al. Prospective Determination of the Incidence and Risk Factors of New-Onset Uveitis in Juvenile Idiopathic Arthritis: The Research in Arthritis in Canadian Children Emphasizing Outcomes Cohort. Arthritis Care Res. 2019 Nov; 71(11):1436–43.

56. Oyoo GO, Genga EK, Otieno FO, Omondi EA. Clinical patterns of juvenile idiopathic arthritis: A single tertiary center experience in Kenya. African Journal of Rheumatology. African League of Associations for Rheumatology (AFLAR); 2016; 4(2):66–71.

57. Clarke SLN, Sen ES, Ramanan AV. Juvenile idiopathic arthritis-associated uveitis. Pediatric Rheumatology; 2016 Apr 26; 1–11.

58. Latif El EA, Goubran WF, Din M El Gemai El E, Habib AE, Abdelbaki AM, Ammar H, et al. Pattern of Childhood Uveitis in Egypt. Ocular Immunology and Inflammation. Taylor & Francis; 2018 Aug 25; 00(00):1–7.
59. Freedman J. Incidence of uveitis in Bantu-speaking negroes of South Africa. Br J Ophthalmol. 1974 Jun; 58(6):595–9.

60. Freedman J. Anterior uveitis in Bantu children. Br J Ophthalmol. BMJ Publishing Group; 1973 May; 57(5):355–8.

61. Pasadhika S, Rosenbaum JT. Ocular Sarcoidosis. Clinics in Chest Medicine. 2015 Dec; 36(4):669–83.

62. Wouters CH, Maes A, Foley KP, Bertin J, Rose CD. Blau Syndrome, the prototypic autoimmune inflammatory granulomatous disease. Pediatric Rheumatology. 2014 Aug 6; 12(1):689–9.

63. Nathan N, Marcelo P, Houdouin V, Epaud R, de Blic J, Valeyre D, et al. Lung sarcoidosis in children: update on disease expression and management. Thorax. 2015 Jun; 70(6):537–42.

64. Hoover DL, Khan JA, ophthalmology JGSO, 1986. Pediatric ocular sarcoidosis. Elsevier 1986 Jan; 30(4):215–28.

65. Ajose FOA, Adelowo O, Oderinlo O. Clinical presentations of Behçet's disease among Nigerians: a 4-year prospective study. Int J Dermatol; 2015 Aug; 54(8):889–97.

66. Ghembaza MEA, Lounici A. Relationship between age at onset and clinical characteristics of Behçet’s disease. Acta Dermatovenerologica Alpina Pannonica et Adriatica. 2018 Dec 31; 27(4):1–3.
Ezzahri M, Amine B, Rostom S, Rifay Y, Badri D, Mawani N, et al. The uveitis and its relationship with disease activity and quality of life in Moroccan children with juvenile idiopathic arthritis. Clin Rheumatol. 2013 May 2; 32(9):1387–91.

Kilmartin DJ, Forrester JV, Dick AD. Cyclosporin A therapy in refractory non-infectious childhood uveitis. Br J Ophthalmol. 1998 Jul 1; 82(7):737–42.

Mathews D, Mathews J, Jones NP. Low-dose cyclosporine treatment for sight-threatening uveitis: Efficacy, toxicity, and tolerance. Indian J Ophthalmol. 2010; 58(1):55–4.

List of Tables

- **Table 1**: Disease characteristics
- **Table 2**: Treatment
- **Table 3**: Comparison of JIA arthritis only and JIAU
- **Table 4**: Comparison of SSA and developed countries

List of Figures

- **Fig. 1.a**: Time to inactive Disease: n=28, Median time to inactive disease: 7months (IQR 6-15mths)
- **Fig. 1.b**: Time to inactive disease by diagnosis: n=28; Bechet’s disease 3 months, Sarcoidosis median 7 months (IQR 6-8mths), JIA median 6 months (IQR 4-15months) Idiopathic median 10.5 months (IQR 6-16.5mths)
Fig. 1.c: Inactive disease at 12 months: n=19; Standard initial treatment n=16: JIA(9)
 idiopathic(4) Bechet’s(1) Sarcoidosis (2) TNF-inhibitors: n=3: idiopathic(2)
 JIA(1)

Fig.1.d: Time to Uveitis from JIA diagnosis: n=11 Two children were diagnosed at first screen, Eight children developed uveitis within 1 year of JIA diagnosis detected at routine screening, one child developed uveitis 4 years after initial JIA diagnosis, detected at routine screening. Three children had uveitis before JIA diagnosis and were excluded from the model.