Recent progress and challenges in screening and characterization of UGT1A1 inhibitors

Xia Lva,b,†, Yangliu Xiac,†, Moshe Fineld, Jingjing Wuc, Guangbo Gea,c,e, Ling Yanga

aInstitute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
bKey Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
cDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
dDivision of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland

Received 8 June 2018; received in revised form 16 August 2018; accepted 27 August 2018

Abstract Uridine-diphosphate glucuronosyltransferase 1A1 (UGT1A1) is an important conjugative enzyme in mammals that is responsible for the conjugation and detoxification of both endogenous and xenobiotic compounds. Strong inhibition of UGT1A1 may trigger adverse drug/herb–drug interactions, or result in metabolic disorders of endobiotic metabolism. Therefore, both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have recommended assaying the inhibitory potential of drugs under development on the human UGT1A1 prior to approval. This review focuses on the significance, progress and challenges in discovery and characterization of UGT1A1 inhibitors. Recent advances in the development of UGT1A1 probes and their application for screening UGT1A1 inhibitors are summarized and discussed in this review for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been prepared and analyzed. Challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide guidance for rational use of drugs/herbs in order to avoid the occurrence of adverse effects via UGT1A1 inhibition, as well as presenting methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating investigations on UGT1A1–ligand interactions.

© 2019 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Uridine-diphosphate (UDP) glucuronosyltransferases (UGT) are a superfamily of phase II conjugating enzymes (EC 2.4.1.17) that catalyse the covalent addition of glucuronic acid from the high energy donor uridine-diphosphate glucuronic acid (UDPGA) to a wide range of lipophilic chemicals that contain a suitable acceptor functional group (Fig. 1). In mammals, UGTs play predominant roles in the detoxification of many exogenous and endogenous compounds by generating more polar and water-soluble glucuronides. The glucuronide metabolites are mostly biologically inactive and readily excreted from the cell by efflux transporters and, eventually, from the body via bile or urine. Mammalian UGTs could be divided, based on evolutionary divergence, into two main families, UGT1 and UGT2, which can be further divided into three subfamilies UGT1A, UGT2A and UGT2B. Another family of UDP-sugar transferases that was reported to conjugate xenobiotics is UGT3. This family contains two members and uses other sugar donor than UDPGA, but it will not be further discussed in this review.

Mammalian UGTs are membrane-bound enzymes that are localized in the endoplasmic reticulum (ER) and expressed in a tissue-specific way. Many UGTs are highly expressed in the liver, the most important tissue for xenobiotics metabolism, but some are also expressed in extrahepatic tissues, including intestine, kidney, stomach and lung. In human, ten different UGTs are significantly expressed in the liver at the protein level, namely UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17, of which UGT2B7 is expressed to the highest level, followed in order of expression level by UGT1A1, UGT2B4, UGT2B15, UGT1A4, UGT2B10, UGT1A9, UGT2B17, UGT1A6, and UGT1A3. Six UGTs were detected in the human intestine, UGT1A1, UGT1A10, UGT2B7, UGT2B17 and very low levels of UGT1A3 and UGT1A4, whereas in the human kidney only three UGTs were detected at the protein level, UGT1A9, UGT2B7 and UGT1A6.

Among the human UGTs, UGT1A1 is of particular clinical significance due to its unique activity in the conjugative detoxification of bilirubin, the endogenous by-product of heme metabolism (Fig. 2). Alongside its essential role in bilirubin metabolism, contribution and involvement in the glucuronidation of few other endobiotics, UGT1A1 also participates in the metabolism and detoxification of clinical drugs, such as etoposide, SN-38 (the active metabolite of CPT-11) and other xenobiotics, including environmental toxicants and chemical carcinogens. Importantly, many studies have clearly demonstrated that genetics and environmental factors, could affect the expression or the function of UGT1A1, eventually

![Figure 1](image1.png)

Figure 1 A schematic presentation of UGT-catalysed glucuronidation reactions. Glucuronidation is a bi-substrate reaction that requires an aglycone (for example, a phenol) and a glucuronic acid donor (UDPGA).

![Figure 2](image2.png)

Figure 2 The elimination pathways of bilirubin (a), and disorders associated with UGT1A1 deficiency or absence, including the elevated plasma concentrations and exposure of UGT1A1 substrates, hyperbilirubinemia, and kernicterus (b).
leading to reduced protein level or activity of UGT1A1\(^8\). Notably, UGT1A1 is a highly polymorphic enzyme with more than one hundred variants, some of which are within the promoter region, like the rather common variant UGT1A1*28. Commonly, the polymorphic variants of UGT1A1 result in lower expression level, lower activity of the enzyme or even complete activity loss\(^9\). As shown in Fig. 2, the reduced expression/activity of UGT1A1 may increase the plasma concentrations of unconjugated bilirubin, leading to hyperbilirubinemia\(^10\) from the mild Gilbert’s syndrome up to kernicterus and the potentially fatal Crigler-Najjar syndrome type I\(^11\)-\(^12\). In addition, polymorphic variants of UGT1A1 may lead to drug-induced liver injury. It has been reported that patients possessing the UGT1A1*28 genotype are at a greater risk for irinotecan-induced toxicities, such as severe diarrhea and grades 4 neutropenia\(^15\).

Genetic polymorphisms are important, but are not the only factor and sometimes not the main one, from the general population point of view. Small-molecule inhibitors of UGT1A1 may profoundly influence the catalytic activity of UGT1A1, thereby triggering undesirable effects, like drug/herb–drug interactions (D/HDI) or drug/herb–endobiotic interactions\(^16\). It has been reported that some therapeutic drugs (e.g., indinavir, nilotinib and sorafenib) or herbal extracts (such as milk thistle, green tea and psoralea corylifolia), as well as several natural compounds in herbs or foods (such as amentoflavone, licorichalcone A and emodin) are potent UGT1A1 inhibitors, which could significantly inhibit their activities and lead to undesirable effects\(^7\)-\(^25\). Notably, subjects with UGT1A1 polymorphic variants that already possess lower activity due to lower expression level of the enzyme, such as homozygous carriers of the UGT1A1*28 genotype, might be expected to manifest higher susceptibility to adverse effects when co-administrated with potent UGT1A1 inhibitors\(^26\),\(^27\). Thus, the major regulatory agencies, the Food and Drug Administration (FDA) of US and European Medicines Agency (EMA), have recommended to study the inhibition potentials of investigational new drugs on human UGT1A1 before the drug is approved\(^28\),\(^29\). Considering that UGT1A1 plays a pivotal role in endobiotic homeostasis, in addition to its contribution to xenobiotic disposition and detoxification, it was highly necessary to develop practical methods for precise measurements of UGT1A1 activity in complex biological samples. Probe substrates are often used for sensing the real activities of a target enzyme in complex biological systems under physiological conditions. An ideal probe substrate for a target enzyme is expected to be highly specific and reliable, as well as highly sensitive and capable for high-throughput detection. Unfortunately, currently commercially available substrates for UGT1A1 (such as bilirubin, estradiol, and etoposide) have different limitations, such as poor selectivity, poor chemical stability or their use for high-throughput screening (HTS) is unfeasible\(^30\),\(^31\). Thus, it was necessary to develop one or a few more practical probe substrates for this key conjugative enzyme.

In contrast to non-fluorescent probes, fluorescent substrates for target enzyme(s) have inherent advantages, such as high sensitivity and applicability to HTS\(^32\)-\(^43\). Recently, significant breakthroughs have been made in the development of fluorescent probes for UGT1A1, and several fluorescent probes that are highly selective for UGT1A1 activities in complex biological samples have been successfully developed (Fig. 3\(^44\)). These fluorescent substrates provide novel tools for HTS and characterization of UGT1A1 inhibitors using fluorescence-based assays\(^36\),\(^41\),\(^44\). Furthermore, recent investigations on UGT1A1–ligand interactions have demonstrated that UGT1A1 has multiple ligand-binding sites\(^45\),\(^46\). Thus, developing site-specific probes, i.e., different one for each ligand binding site within UGT1A1, would be highly beneficial for deciphering the interactions between UGT1A1 and its different ligands.

Considering the crucial role of UGT1A1 in bilirubin metabolism, strong inhibition of this conjugative enzyme by xenobiotics,
such as drugs, food/herbal constitutes, and environmental toxins, may trigger hyperbilirubinemia. Furthermore, inhibition of UGT1A1 may also lead to clinically significant DDI/HDI due to the key roles of UGT1A1 in the detoxification of several drugs with narrow therapeutic windows, such as SN-38 and etoposide\(^\text{30,47}\). Over the past twenty years, a variety of probe substrates for UGT1A1 have been reported, making the screening and evaluation of UGT1A1 inhibitors more convenient and efficient.

This review focuses on the significance, progress and challenges in the discovery and characterization of UGT1A1 inhibitors from therapeutic drugs, environmental toxins, herbal extracts and natural compounds. Recent advances in the development of UGT1A1 probe substrates and their applications for screening and characterization of UGT1A1 inhibitors are discussed and summarized for the first time. Furthermore, a long list of UGT1A1 inhibitors, including information on their inhibition potency, inhibition mode, and affinity, has been analysed and summarized. In addition, challenges and future directions in this field are highlighted in the final section. The information and knowledge that are presented in this review provide a good guidance for rational use of clinical drugs or herbal medicines, in order to avoid the occurrence of adverse side effects via UGT1A1 inhibition. The accumulated knowledge is also expected to facilitate investigations on UGT1A1–ligand interactions.

2. Recent progress in the development of UGT1A1 probe substrates

A successful screening for inhibitors of a specific target enzyme(s), and their subsequent and characterization, requires suitable probe substrates. Unfortunately, the number of probe substrates for the human UGT1A1, particularly good ones, was previously very limited since most of them were either not specific enough for use in tissue or cell preparations (such as human liver microsomes, HLM), not sufficiently sensitive, chemically unstable, or too difficult to work with for practical reasons such as poor solubility. The probe substrates that are presented in Fig. 4 and Table 1

Figure 4 Probe substrates for UGT1A1. The blue arrows indicate conjugation sites by UGT1A1.

Table 1 Probe substrates for human UGT1A1.

Probe substrate	Reaction product	Reaction detection	Feature
4-MU	4-MU-7-O-glucuronide	UV	Nonspecific, only recombinant UGT1A1 could be as the enzyme source
Bilirubin	Bilirubin-8-O-glucuronide, Bilirubin-12-O-glucuronide	LC–MS/MS	Highly specific, difficult to work with, reaction yields both mono- and di-glucuronides
17β-Estradiol	β-Estradiol-3-O-glucuronide	LC–MS/MS	Conjugated at the 17-OH by UGT2B7 and UGT2B17 in HLM
Ethinylestradiol	Ethinylestradiol-3-O-glucuronide, Ethinylestradiol-4'-O-glucuronide	LC–MS	Reaction yields another 17-O-glucuronide
Etoposide	Etoposide-4-O-glucuronide	LC–MS	Highly specific in HLM, reaction yields another two alcoholic glucuronides in HLM and human intestine microsomes (HIM)
3,3',4'-Trihydroxyflavone	3,3',4'-Trihydroxyflavone-4'-O-glucuronide	UV	Highly specific. Conjugated at both the 3- and 3'-OH in HLM
3,6,4'-Trihydroxyflavone	3,6,4'-Trihydroxyflavone-4'-O-glucuronide	UV	Highly specific. Conjugated at both the 3- and 6-OH in HLM
NCHN	NCHN-4-O-glucuronide	Fluorescence	Highly specific in HLM, the specificity in HIM is currently unclear
NHPN	NHPN-19-O-glucuronide	Fluorescence	Highly specific in HLM, only one conjugation site
include both “classical” substrates, such as bilirubin and ethynylestradiol, as well as the new generation of fluorescent probes, namely N-(3-carboxypropyl)-4-hydroxy-1,8-naphthalimide (NHPN) and N-buty1-4-(4-hydroxyphenyl)-1,8-naphthalimide (NCHN). The kinetic properties of these and the other probes in Fig. 4 and Table 1 are listed in Table 2.30,36,41,44,48,53 As can be seen from Fig. 4, there is a large variability in chemical structure among the UGT1A1 probe substrates, as it might be expected from an enzyme, like UGT1A1, that has a wide spectrum of substrates.

The human UGT1A subfamily members share high amino acid homology (>65%), and their substrate specificity frequently overlap, even if at variable kinetic constants. In fact, many UGT1A1 substrates could be glucuronidated by multiple UGT enzymes, a good example for which is the C-7 phenolic coumarin derivatives, such as 4-methyl-umbelliflorone (4-MU)54. It is also noteworthy that no high-resolution crystal structure of the substrate binding domain of UGT1A1, or any other mammalian UGT, has been reported yet. Some UGT homology models55, were derived from structures of microbial UGTs, but they are not sufficient for the simulation of ligands–UGT1A1 interactions or the design of specific substrates for a given human UGT enzyme. Thus, the rational design and development of highly specific probe substrates for UGT1A1, or other UGT enzymes, are very challenging undertakings. This is further true when the goal is to design optical probe substrates with high specificity and sensitivity, which are suitable for high throughput detection or screening.

Several commercial small molecules that are known to be UGT1A1 substrates, such as bilirubin, estradiol, and ethynylestradiol, have been used and might still be in use for testing its activity, but mostly some disadvantages are associated with them.11,56 The specificity of UGT1A1 for the formation of estradiol-3-O-glucuronide or ethynylestradiol-3-O-glucuronide is poor57. Moreover, when it is tested in a complex system, such as HLM, and the substrate is estradiol, other UGTs conjugate the same “probe” at the 17-OH more efficiently.58 Although bilirubin is a UGT1A1 specific substrate that is hardly conjugated by any other human UGT, it is difficult to use bilirubin as a probe for screening and characterization of UGT1A1 inhibitors due to its high light-sensitivity and the formation of both mono- and di-glucuronides59. Furthermore, the above-mentioned probe substrates for UGT1A1 are non-fluorescent, making them less suitable for HTS. The glucuronidation rates of these commonly used probes were routinely detected by liquid chromatography combined with UV or mass spectrometry detectors, requiring relatively long time for sample preparation and analysis.

In contrast to these commonly used “old generation” probe substrates for UGT1A1, a new generation of fluorescent probes for UGT1A1 has been emerging in recent years, despite great challenges in the design and development of practical fluorescent probes for any given UGT enzyme. Notably, the fluorescence properties of many fluorophores are often “turned-off” or “blue shifted” following O-glucuronidation at the hydroxyl group, which is not highly beneficial for precise measurement of the target enzyme in complex biological samples, due to the background signals from the biological matrix. Five years ago, Terai and coworkers41 have developed the first “turn-on” fluorescent probes for UGT1A1 with high sensitivity, which was a landmark achievement in this field, even if the specificity of these probes toward UGT1A1 of that compound was only partial. This type of fluorescent probes is intensity-based compounds, designed to work by a mechanism of donor-excited photoinduced electron transfer (d-PET), using TokyoGreen as the fluorophore. More recently, a ratiometric fluorescent probe (NCHN) for UGT1A1 has been developed by us, providing a novel tool for rapid screening of UGT1A1 modulators using microplate reader-based assays.46 In HLM, NCHN was highly specific for UGT1A1, even if its affinity for this conjugative enzyme was low.46 This was probably the reason that the binding site of NCHN on UGT1A1 was not highly consistent with that of bilirubin.40 Recent investigations on inhibition kinetics of UGT1A1 clearly demonstrated that the binding site of NCHN on UGT1A1 was distinct from that of the high affinity binding site of bilirubin, the most important

Table 2: Kinetic parameters of probe substrates for human UGT1A130,36,41,44,48–53

Probe substrate	Enzyme source	Kinetic parameter	Kinetic behavior	Ref.	
4-MU	UGT1A1	113 (μmol/L)	308 (μmol/min/mg)	Michaelis-Menten	48
Bilirubin	UGT1A1	0.1 (μmol/L)	70 (μmol/min/mg)	Michaelis-Menten	49
HLM		0.3 (μmol/L)	210 (μmol/min/mg)	Michaelis-Menten	49
17β-Estradiol	UGT1A1	13 (μmol/L)	1300 (μmol/min/mg)	Hill	50
HLM		11 (μmol/L)	820 (μmol/min/mg)	Hill	50
Ethynylestradiol	UGT1A1	9.7 (μmol/L)	600 (μmol/min/mg)	Hill	51
HLM		13 (μmol/L)	1200 (μmol/min/mg)	Hill	51
Etoioside	UGT1A1	285 (μmol/L)	124 (μmol/min/mg)	Michaelis-Menten	30
HLM		530 (μmol/L)	110 (μmol/min/mg)	Michaelis-Menten	30
3,3',4'-Trihydroxyflavone	UGT1A1	1.53 (μmol/L)	1920 (μmol/min/mg)	Substrate Inhibition	53
HLM		1.75 (μmol/L)	1990 (μmol/min/mg)	Substrate Inhibition	53
3,6,4'-Trihydroxyflavone	UGT1A1	0.76 (μmol/L)	340 (μmol/min/mg)	Substrate Inhibition	53
HLM		0.83 (μmol/L)	340 (μmol/min/mg)	Substrate Inhibition	53
2-Me-4-OMe TG	UGT1A1	2.7 (μmol/L)	16.1 (μmol/min/mg)	Michaelis-Menten	41
NHPN	UGT1A1	126.7 (μmol/L)	1303 (μmol/min/mg)	Substrate Inhibition	36
HLM		364.6 (μmol/L)	1556 (μmol/min/mg)	Substrate Inhibition	36
HLM		0.83 (μmol/L)	340 (μmol/min/mg)	Substrate Inhibition	53
NHPN	UGT1A1	0.7 (μmol/L)	561 (μmol/min/mg)	Hill	44
HLM		4.3 (μmol/L)	557 (μmol/min/mg)	Hill	

*nmol/L/s.
physiologically relevant substrate for UGT1A161. Taking into account that UGT1A1 may have multiple ligand binding sites, a second practical and, this time high affinity fluorescent probe for UGT1A1 (NHPN) was subsequently designed and well-characterized by us. Unlike the previous substrate NCHN, the new fluorescent probe, NHPN, could serve as a good surrogate for bilirubin to investigate UGT1A1–ligand interactions44. Now both fluorescent probes, NCHN and NHPN, were successfully applied for selectively sensing UGT1A1 activities and for HTS, including characterization of UGT1A1 modulators in complex biological samples. Nevertheless, this is not the end of the work since the situation in the small intestine, where UGT1A10 is expressed, is followed by molecular docking simulations in which either UGT1A1 modulators or the known substrates were constructed using the crystal structure of UDP-glucuronosyltransferase GtfB (PDB code: 1IIR) as the template, followed by molecular docking simulations in which either bilirubin, NCHN or NHPN was allowed to interact with UGT1A144. The results demonstrated that NCHN and NHPN could bind on UGT1A1, but at two different ligand-binding sites, whereas the ligand-binding site of NHPN on UGT1A1 was identical to that of bilirubin (Fig. 5)44. Nevertheless, it is important to remember that the “useful resolution” of such models for substrates design may be limited.

Another way to try and learn about the binding sites of the fluorescence probes NCHN and NHPN was by docking them into a homology model of the human UGT1A1. Such a model was previously constructed using the crystal structure of UDP-glucosyltransferases from other sources as the template38, and it might help to explore the potential interactions between UGT1A1 and ligands, especially potential ligand binding sites of UGT1A1. Hence, a homology model of the human UGT1A1 was constructed using the crystal structure of UDP-glucuronosyltransferase GtfB (PDB code: 1IIR) as the template, followed by molecular docking simulations in which either bilirubin, NCHN or NHPN was allowed to interact with UGT1A144. The results demonstrated that NCHN and NHPN could bind on UGT1A1, but at two different ligand-binding sites, whereas the ligand-binding site of NHPN on UGT1A1 was identical to that of bilirubin (Fig. 5)44. Nevertheless, it is important to remember that the “useful resolution” of such models for substrates design may be limited.

Another approach is the design and synthesis of a series of derivatives with various hydrophobic, acidic and basic groups. The already available UGT1A1 specific probes are very useful in this respect since they give both some starting points for the synthesis, as well as easy ways to screen the interactions of the products with UGT1A1. In any case, since UGT1A1 was reported to have more than one ligand-binding site31,46, it is advantageous to use multiple probe substrates for screening and characterization of UGT1A1 inhibitors (or activators) for deeper understanding of UGT1A1-mediated D/HDI or drug/herb–endobiotic interactions.

3. UGT1A1 inhibitors

With the development of small molecular probes for UGT1A1, an increasing number of compounds, from different sources and with diverse structures have been discovered and identified as inhibitors of UGT1A1. Due to potent inhibition of the human UGT1A1 by drugs or herb ingredients, several adverse D/HDIs and metabolic disorders that are related to therapeutic drugs and herbs, have been reported. In the present review, we have focused on identified UGT1A1 inhibitors from xenobiotics and their inhibition potency. Thus, many drugs, environmental toxins, herb extracts and natural compounds displaying potent inhibition of UGT1A1 are summarized and discussed.

3.1. Therapeutic drugs as UGT1A1 inhibitors

3.1.1. Protease inhibitors

Protease inhibitors that were reported to inhibit UGT1A1 are listed in Table 324,42–66, along with the available inhibition properties. Several human immunodeficiency virus (HIV) protease inhibitors, including atazanavir, and indinavir, are associated with unconjugated hyperbilirubinemia44,67. The study by Zucker and coworkers24 discovered that the underlying mechanism of indinavir-induced hyperbilirubinemia in patients was a strong competitive inhibition of UGT1A1, including inhibition of bilirubin-\textit{O}-glucuronidation, with a \(K_i \) value of 183 \(\mu \text{mol/L} \). Subsequently, Zhang and coworkers62 reported that six different HIV protease inhibitors, namely atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir, inhibited UGT1A1, at \(IC_{50} \) values ranging from 2.3 to 87 \(\mu \text{mol/L} \). A mixed-type inhibition kinetic mechanism was observed for UGT1A1 inhibition by atazanavir and indinavir, with \(K_i \) values of 1.9 and 47.9 \(\mu \text{mol/L} \), respectively. In addition, in vitro–in vivo extrapolation (IVIVE) results indicated that atazanavir and indinavir are likely to induce hyperbilirubinemia62. Efavirenz, a non-nucleoside reverse transcriptase inhibitor that is used for the treatment of HIV type 1 infection, was demonstrated to moderately inhibit UGT1A1-mediated estradiol-3-\textit{O}-glucuronidation in HLM in a noncompetitive manner, with a \(K_i \) value of 40.3 \(\mu \text{mol/L} \)61. An [I]/\(K_i \) ratio of 0.32 suggested that the UGT1A1-

![Figure 5](image-url) A structural model showing the proposed binding site of bilirubin, NCHN and NHPN in human UGT1A1. Carbon atoms in the three molecules are colored in magenta, cyan and white, respectively. UDPGA is shown in ball and stick type. (a) A stereo view and (b) a detailed view of the crystal structure of modelling UGT1A1 and the stereo diagram of bilirubin, NCHN and NHPN aligned in its corresponding ligand-binding site. Adapted with permission from the Ref. 44. © 2017 American Chemical Society.
mediated DDI is possible when the high doses of efavirenz are used\(^6^3\). A number of protease inhibitors that are available for hepatitis C virus (HCV) treatment, including faldaprevir, telaprevir, simeprevir, daclatasvir, and asunaprevir, could also trigger unconjugated hyperbilirubinemia in the clinic. Faldaprevir strongly inhibited UGT1A1-mediated estradiol-3-β-glucuronidation, and since the \(IC_{50}\) value was 0.45 \(\mu\)mol/L, that inhibition is likely to contribute significantly to the hyperbilirubinemia that was observed in patients that had been treated with faldaprevir (\(IC_{50}>1\))\(^6^6\). Paritaprevir was reported to competitively inhibit UGT1A1, at a \(K_i\) value of 20 \(\mu\)mol/L\(^6^4\). However, due to the low plasma concentration of paritaprevir, it was unlikely to trigger unconjugated hyperbilirubinemia. Rifabutin and rifampicin, two anti-tuberculosis drugs, exhibited moderate inhibitory effects on UGT1A1, with \(IC_{50}\) values ranging between 0.034 and 0.53 \(\mu\)mol/L. Importantly, the inhibition of UGT1A1 by rifabutin could result in a significant increase in the AUC of SN-38, as well as an increased hyperbilirubinemia at high rate\(^2^3,6^9\). The increased AUC of SN-38 due to nilotinib coadministration may serve as a good example for DDI. Recently, the inhibition of UGT1A1 by icotinib and erlotinib (two compounds with similar chemical structure and physico-chemical properties) were compared and investigated\(^7^2\). Both icotinib and erlotinib inhibited NCHN-O-Glucuronidation by UGT1A1 noncompetitively. In this case the \(K_i\) value displayed by icotinib, 10.04 \(\mu\)mol/L, was clearly higher than the corresponding value of erlotinib, 1.72 \(\mu\)mol/L. IVIVE results indicated that erlotinib had a much higher DDI potential, while icotinib is unlikely to cause a significant DDI via UGT1A1 inhibition\(^7^2\). Both imaﬁnib and lapatinib were reported to be competitive inhibitors of UGT1A1-mediated 4-MU glucuronidation, with \(K_i\) values of 19.1 and 0.5 \(\mu\)mol/L, respectively\(^7^0\). In addition, IVIVE results indicated that coadministration of imaﬁnib or lapatinib at clinical doses might trigger a significant increase in the AUC of drugs that are predominantly cleared by UGT1A1. It was also found that dasatinib and imaﬁnib inhibited UGT1A1-mediated paracetamol glucuronidation, at \(IC_{50}\) values of 2 and 29 \(\mu\)mol/L, respectively\(^7^3\). The \(I/I/K_i\) ratio results indicated that at clinical relevant doses, imaﬁnib could result in a 22% increase in the AUC of coadministered paracetamol via UGT1A1 inhibition, while dasatinib could cause only a slight increase in the AUC (6%)\(^7^3\).
was suspended due to its higher toxicity, and it was replaced by entacapone. We have reported that tolcapone (also) displayed relative stronger inhibitory effects on UGT1A1 in comparison with entacapone, and that the use of tolcapone may result in hyperbilirubinemia or significant increase in AUC of drugs that are primarily metabolized by UGT1A1. Levothyroxine, which is used for the treatment of thyroid hormone deficiency, functions as a competitive inhibitor of UGT1A1-mediated 4-MU-glucuronidation, with an IC50 value of 1.0 μmol/L. Ketoconazole, an antifungal agent, was demonstrated to inhibit UGT1A1 mediated SN-38 glucuronidation in HLM, with an IC50 value of 0.53 μmol/L. The calculated [I]/Ki value of 3.3 suggested that inhibition of UGT1A1 by vitamin A may exist in vivo. It was previously found that among the seven non-steroidal antiinflammatory drugs (NSAID) that were investigated, acetaminophen, diclofenac, diflunisal, indomethacin, ketoprofen, naproxen and niflumic acid, it was niflumic acid that exhibited the highest inhibitory effects on UGT1A1-catalyzed estradiol-3-O-glucuronidation in HLM, with an IC50 value of 22.2 μmol/L. More recently, everolimus, an inhibitor of the mammalian target of rapamycin (mTOR) that is utilized to prevent rejection of organ transplants, was characterized as a UGT1A1 inhibitor, with a Ki value of 2.3 μmol/L. The calculated [I]/Ki value in this case was 0.004, indicating that everolimus is unlikely to cause clinically significant DDI via UGT1A1 inhibition in vivo. Diethylstilbestrol, a widely used toxic synthetic estrogen, is a strong competitive inhibitor of UGT1A1-catalyzed estradiol-3-O-glucuronidation in HLM, with a Ki value of 2.1 μmol/L, and of the UGT1A1-mediated 4-MU-glucoconidation, also competitively, with a Ki value of 3.7 μmol/L. Based on the inhibition constant Ki values of CNF and dapagliflozin (DPF), the first sodium glucose cotransporter 2 inhibitors, were reported to inhibit UGT1A1, but DPF was less potent than CNF in this respect. IVIVE results suggested that CNF could result in a

Inhibitor	Substrate	Enzyme source	IC50 (μmol/L)	Ki (μmol/L)	Inhibition type	Ref.
Nilotinib	4-MU	UGT1A1	–	0.17	Competitive	
	β-Estradiol	HLM	–	0.53	Non-competitive	
	β-Estradiol	UGT1A1	–	0.14	Non-competitive	
	SN-38	HLM	–	0.286	Non-competitive	
	SN-38	UGT1A1	–	0.079	Non-competitive	
Regorafenib	β-Estradiol	HLM	–	0.020	Competitive	
	4-MU	UGT1A1	0.045	–	–	
	NCHN	HLM	0.26	0.48	Non-competitive	
	NCHN	UGT1A1	0.25	0.33	Non-competitive	
	NPHN	HLM	0.40	0.048	Competitive	
	NPHN	UGT1A1	0.17	0.027	Competitive	
	Bilirubin	UGT1A1	0.034	–	–	
Sorafenib	β-Estradiol	HLM	–	0.033	Competitive	
	4-MU	UGT1A1	0.066	–	–	
	Bilirubin	UGT1A1	0.048	–	–	
Pazopanib	β-Estradiol	HLM	–	2.34	Competitive	
	4-MU	UGT1A1	1.1	–	–	
	Bilirubin	UGT1A1	37.34	–	–	
Lapatinib	β-Estradiol	HLM	–	0.567	Competitive	
	4-MU	UGT1A1	0.536	–	–	
	4-MU	UGT1A1	0.5	0.5	Competitive	
	Bilirubin	UGT1A1	0.467	–	–	
Erlotinib	4-MU	UGT1A1	–	0.64	Competitive	
	Bilirubin	HLM	4.19	2.97	Mixed	
	NCHN	UGT1A1	0.68	1.23	Non-competitive	
Gefitinib	4-MU	UGT1A1	–	2.42	–	
Icotinib	NCHN	HLM	5.15	8.55	Non-competitive	
	NCHN	UGT1A1	8.76	10.04	Non-competitive	
Axitinib	4-MU	UGT1A1	–	–	–	
Imatinib	4-MU	UGT1A1	11.0	19.1	Competitive	
Vandetanib	4-MU	UGT1A1	–	–	–	
Dasatinib	4-MU	UGT1A1	2	–	–	

–Not determined.
significant increase in the AUC for exclusive UGT1A1 substrates via UGT1A1 inhibition, while DNF could not inhibit UGT1A1 in vivo.33.

3.2. Environmental toxins as UGT1A1 inhibitors

Environmental toxins that display inhibitory effects on UGT1A1 are listed in Table 6.86,87 Gossypol is a polyphenolic compound that is found in cotton seeds and was used as a male anti-fertility drug for a long time. However, the clinical utilization of gossypol has always been strongly limited due to its toxicity, including hepatotoxicity, pathological changes in rat and human testes, abnormal sperm and enzyme inhibition. In an HLM study, gossypol was found to moderately inhibit estradiol-3-O-glucuronidation, with an IC50 value of 23.5 μmol/L. The inhibition kinetic was noncompetitive inhibition and the Ki value was 34.2 μmol/L.86 The [I]/Ki ratio of 0.56 suggested that the use of gossypol could cause DDI through inhibition of UGT1A186. Four uremic toxins, benzyl alcohol, p-cresol, indoxyl sulfate, hippuric acid, and a combination of these four uremic toxins, were found to inhibit UGT1A1 to variable extents. Among the four uremic toxins, p-cresol was the most potent inhibitor of UGT1A1-mediated estradiol-3-O-glucuronidation in HLM, with a Ki value of 43 μmol/L.86

Inhibitor	Substrate	Enzyme source	IC50(μmol/L)	Ki (μmol/L)	Inhibition type	Ref.
Entacapone	4-MU	UGT1A1	9.10	10.48	Competitive	60.75–83
	Bilirubin	HLM	34.97	30.82	Mixed	
	NCHN	HLM	16.92	14.65	Non-competitive	
	NCHN	UGT1A1	12.24	15.59	Non-competitive	
Tolcapone	4-MU	UGT1A1	2.38	1.77	Competitive	
	Bilirubin	HLM	1.24	0.68	Mixed	
	NCHN	HLM	2.07	1.03	Non-competitive	
	NCHN	UGT1A1	1.30	2.39	Non-competitive	
Levotheroxyline	4-MU	UGT1A1	–	1.0	Competitive	75.76
Ketocnazole	SN-38	UGT1A1	–	3.3	Competitive	
	Bilirubin	HLM	53	–	–	
Vitamin A	4-MU	UGT1A1	–	31.1	Competitive	77
Dichlofenac	β-Estradiol	HLM	60.9	112	Non-competitive	78
	4-MU	UGT1A1	57.5	–	–	
Diflunisal	β-Estradiol	HLM	37.8	–	–	
Indomethacin	β-Estradiol	HLM	51.5	–	–	
Nitric acid	β-Estradiol	HLM	22.2	–	–	
Everolimus	4-MU	UGT1A1	–	2.3	Competitive	79
Diethylstilbestrol	β-Estradiol	HLM	–	2.1	Competitive	80
	4-MU	UGT1A1	–	3.7	Competitive	81
Zafirlukast	4-MU	UGT1A1	0.7	–	–	82
	SN-38	UGT1A1	–	1.2	Non-competitive	
Canagliflozin	β-Estradiol	UGT1A1	–	7.2	Competitive	83
Dapagliflozin	β-Estradiol	HLM	–	9.1	Competitive	
	β-Estradiol	HLM	–	81	Competitive	
	β-Estradiol	HLM	–	81	Competitive	

3.3. Herbal extracts that inhibit UGT1A1

Many studies have investigated the inhibitory effects of herb extracts on UGT1A1 activity (Table 7).20,21,88–93. For example, inhibitors were tested among the following eight commonly used herbal extracts, milk thistle, saw palmetto, echinacea, green tea epigallocatechingallate, garlic, ginseng, black cohosh, and valerian, of which milk thistle, saw palmetto, echinacea, and epigallocatechingallate exhibited the highest inhibition potency of UGT1A1-mediated estradiol-3-O-glucuronidation, with IC50 values between 7.8 and 211.7 μg/mL.21. A volume per dose index (VDI) values suggested that inhibition of intestinal UGT1A1 by epigallocatechingallate and milk thistle, and to a lesser extent by saw palmetto and echinacea, may be clinically relevant21. Andrographis paniculata and Orthosiphon stamineus extracts displayed inhibitory effects on UGT1A1-mediated 4-MU-glucuronidation, with IC50 values of 5.0 and 24.65 μg/mL, respectively.88 Polygonum multiflorum extracts exhibited strong inhibitory effects on UGT1A1-mediated bilirubin glucuronidation in HLM and in rat liver microsomes (RLM), with Ki values of 1.6 and 0.3 μmol/L, respectively.89. Herbal extract of Daio, Kanzo, Keihi, and Ogon strongly inhibited UGT1A1-mediated estradiol-3-O-glucuronidation in HLM.

Inhibitor	Substrate	Enzyme source	IC50(μmol/L)	Ki (μmol/L)	Inhibition type	Ref.
Gossypol	β-Estradiol	HLM	23.5	34.2	Non-competitive	86.75
P-Cresol	β-Estradiol	HLM	–	43	Competitive	87

~Not determined.
glucuronidation and UGT1A1-mediated SN38-O-glucuronidation in HLM, with K_i values between 23 and 105 μg/mL. Blueberry, a commonly consumed berry, weakly and competitively inhibited UGT1A1 at a K_i value of 53.1 μg/mL. IVIVE results suggested that blueberry is unlikely to cause HDI via UGT1A1 inhibition in vivo. Dioscorea nipponica extract very weakly inhibited UGT1A1 activity with an IC50 value of 302.4 μg/mL, whereas ginseng extract inhibited UGT1A1-mediated estradiol-3-O-glucuronidation in HLM, with an IC50 value of 14.5 μg/mL. Based on their VDI values, it was suggested that both Dioscorea nipponica extract and ginseng extract were unlikely to cause clinically significant HDI via UGT1A1 inhibition in vivo.

It was also found that the crude extract of Fructus psoraleae (FP, also named Bu-gu-zhi in Chinese) could inhibit UGT1A1 at an IC50 value of 12.5 μg/mL. Subsequently, the LC–UV fingerprinting analysis combined with UGT1A1 inhibition profiling was successfully used to identify and characterize the naturally occurring inhibitors of UGT1A1. Five major constituents from FP, namely bavachin, corylifol A, neobavaisoflavone, isobavachalcone, and bavachinin, were identified as inhibitors of UGT1A1. This study was a good case study.

Inhibitor Substrate Enzyme source	IC50 (μg/mL)	K_i (μg/mL)	Inhibition type	Ref.
Milk thistle β-Estradiol HLM	30.4	–	–	21
Saw palmetto β-Estradiol HLM	55.2	–	–	
Echinacea β-Estradiol HLM	211.7	–	–	
Epigallocatechingallate β-Estradiol HLM	7.8	–	–	
Ginseng β-Estradiol HLM	603	–	–	
Black cohosh β-Estradiol HLM	299	–	–	
Valerian β-Estradiol HLM	562	–	–	
Psoraleae Fructus NCHN HLM	12.5	–	–	20
Andrographis paniculata 4-MU UGT1A1	5.0	–	–	88
Orthosiphon stamineus 4-MU UGT1A1	24.65	–	–	
Polygonum multiflorum Bilirubin HLM	–	1.6	Competitive	89
Rhei Rhizoma (Daio) β-Estradiol HLM	–	30	Mixed	90
Glycyrrhiza Radix (Kanzo) SN-38 HLM	–	68	Mixed	
Cinnamomum Cortex (Keihi) SN-38 HLM	–	95	Mixed	
Scutellariae Radix (Ogon) SN-38 HLM	–	105	Mixed	
Blueberry β-Estradiol HLM	62.4	53.1	Competitive	91
Dioscorea nipponica β-Estradiol HLM	302.4	–	–	92
Ginseng β-Estradiol HLM	14.5	–	–	93

–Not determined.
*Estimated IC50.
Unit in μmol/L.

It was also found that the crude extract of Fructus psoraleae (FP, also named Bu-gu-zhi in Chinese) could inhibit UGT1A1 at an IC50 value of 12.5 μg/mL. Subsequently, the LC–UV fingerprinting analysis combined with UGT1A1 inhibition profile was successfully used to identify and characterize the naturally occurring inhibitors of UGT1A1 in FP (Fig. 6). The LC fractions of the FP extract were collected and assayed by a fluorescence-based high-throughput screening method for the discovery of UGT1A1 inhibitors, using NCHN as the specific fluorescent probe substrate for UGT1A1 and HLM as enzyme sources. Five major constituents from FP, namely bavachin, corylifol A, neobavaisoflavone, isobavachalcone, and bavachinin, were identified as inhibitors of UGT1A1. This study was a good case study.

Figure 6 The strategy that was employed for the discovery of natural UGT1A1 inhibitors, guided by chemical fingerprint combined with UGT1A1 enzymatic inhibition profile. Note that the K_i values of the five identified compounds were determined using NCHN as the probe substrate and HLM as the enzyme source. Adapted from the Ref. 20 with permission. © 2015 Elsevier B.V.
for the discovery of UGT1A1 inhibitors from medicinal plants, which would be very helpful for future investigations on UGT1A1-mediated herb–drug interactions.

3.4. Natural products as UGT1A1 inhibitors

3.4.1. Fatty acids

Fatty acids, an important class of natural products, are carboxylic acids with long straight-aliphatic chains, either saturated or unsaturated, ranging from 4 to 28 carbon atoms in length. The inhibitory effects of 15 saturated and unsaturated fatty acids on UGT1A1-catalyzed estradiol-3-O-glucuronidation were investigated. Among the 15 tested fatty acids, 7 displayed strong inhibition, including oleic acid, linoleic acid, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoleic acid, arachidonic acid, and ω3-linolenic acid, with IC50 values between 11.6 and 37.1 μmol/L (Table 8)94. In addition, oleic acid, linoleic acid, and DHA noncompetitively inhibited estradiol-3-O-glucuronidation mediated by both recombinant UGT1A1 and HLM, with Ki values between 1.8 and 29.3 μmol/L. Unlike oleic acid and linoleic acid, however, DHA has a potency to noncompetitively inhibit intestinal estradiol-3-O-glucuronidation, with a Ki value of 5.2 μmol/L, probably indicating inhibition of UGT1A105. Interest-ingly, unsaturated fatty acids exerted strong inhibition against UGT1A1 activity, whereas saturated fatty acid only poorly inhibited UGT1A1 activity. An in vivo study demonstrated that low concentrations of DHA result in a significant increase in serum bilirubin via UGT1A1 inhibition, while high concentrations of oleic acid, linoleic acid, and DHA cause a decrease in serum bilirubin via UGT1A1 induction18.

3.4.2. Flavonoids

Flavonoids that display inhibitory effects on UGT1A1 are listed in Table 918,20,25,95–105. Flavonoids are a class of polyphenolic compounds that are widely distributed in nature and have been developed into drugs, cosmetics and health food due to various pharmacological properties106. Five major flavonoids components of FP, bavachin, corylifol A, neobavaisoflavone, isobavachalcone, and bavachin (see Fig. 5 for their analysis), exhibited strong to moderate inhibitory effects on UGT1A1-mediated NCHN-O-glucuronidation in HLM, with Ki values ranging between 1.18 and 9.86 μmol/L.20. The [I]/Ki value of bavachinin was calculated to be greater than 0.1, indicating that inhibition of UGT1A1 in vivo seems likely. However, the [I]/Ki values of the other four compounds that were identified from FP could not be estimated due to the lack of their plasma concentrations20. In addition, bavachalcone and corylin, two other major bioactive flavonoids from FP, were examined for UGT1A1 inhibition. Buvachalcone inhibited the 4-MU glucuronidation activity of the enzyme noncompetitively, with a Ki value of 5.41 μmol/L while corylin did not inhibit UGT1A195. Recent studies have demonstrated that some important flavonoid ingredients of licorice, including licochalcone A (LCA), isoliquiritigenin, and liquiritigenin, inhibit UGT1A1 with Ki values below 10 μmol/L18,96,107. Furthermore, LCA, isoliquiritigenin, and liquiritigenin inhibited the UGT1A1-mediated 4-MU glucuronidation competitively, whereas LCA inhibited it noncompetitively, at least when the substrate was NCHN18,96,107. In addition, IVIVE results indicated that LCA could increase the AUC of UGT1A1 substrates by 71%–341% via UGT1A1 inhibition, while isoliquiritigenin was unlikely to inhibit UGT1A1 in vivo18,96. Several other flavonoids, including wogonin, scutellarein, baicalein, alpinetin, genkwanin, apigenin, hesperetin, and naringenin were reported to strongly inhibit UGT1A1, with Ki values between 0.02 and 16.47 μmol/L. Kinetics analyses of these inhibitions demonstrate that wogonin, scutellarein, baicalein, and apigenin are competitive inhibitors of UGT1A1-mediated 4-MU glucuronidation, while hesperetin, and naringenin are noncompetitive inhibitors. Genkwanin and apigenin are competitive inhibitors of bilirubin glucuronidation in HLM103. IVIVE results indicated that scutellarein was highly likely to cause clinically significant HDI via UGT1A1 inhibition in vivo, while hesperetin and naringenin might not98,100.

Some diet-derived constituents including kaempferol, and epigallocatechin gallate (EGCG) also inhibited UGT1A1, but none of them was predicted to inhibit UGT1A1 in vivo104. It is worth noting that deglycosylation of liquiritigenin into liquiritigenin, of scutellarein into scutellarin, and of baicalein into baicalin was shown to significantly increase their inhibitory effects towards UGT1A1. The inhibition profiles of several other flavonoids, including daidzein, genistein, biochanin A, chrysin, apigenin and naringenin against UGT1A1-mediated SN38-O-glucuronidation were examined in UGT1A1-overexpressing Hela cells, resulting in a range of IC50 values between 0.37 and 5.85 μmol/L102. Recent studies demonstrated that amentoflavone and scidadopisynin, two natural biflavonoid distributed in many medicinal plants, are strong

Inhibitor	Substrate	Enzyme source	IC50 (μmol/L)	Ki (μmol/L)	Inhibition type	Ref.
Oleic acid	β-Estradiol	UGT1A1	31.6	23.4	Non-competitive	94
Linoleic acid	β-Estradiol	UGT1A1	33.1	22.1	Non-competitive	-
Palmitoleic acid	β-Estradiol	UGT1A1	37.1	-	Non-competitive	-
α-Linolenic acid	β-Estradiol	UGT1A1	26.1	-	Non-competitive	-
Arachidonic acid	β-Estradiol	UGT1A1	22.7	-	Non-competitive	-
DHA	β-Estradiol	UGT1A1	11.6	1.8	Non-competitive	-
EPA	β-Estradiol	UGT1A1	19.9	-	Non-competitive	-
Stearic acid	β-Estradiol	UGT1A1	> 50	-	Non-competitive	-
Decanoic acid	β-Estradiol	UGT1A1	> 50	-	Non-competitive	-

– Not determined.
Inhibitor	Substrate	Enzyme source	IC_{50} (μmol/L)	K_i (μmol/L)	Inhibition type	Ref.
Bavachin	4-MU	UGT1A11	1.79	1.08	Competitive	20
	NCHN	HLM	1.85	1.18	Non-competitive	
	NCHN	UGT1A11	0.75	0.04	Non-competitive	
Neobavaisoflavone	4-MU	UGT1A11	1.80	11.96	Competitive	
	NCHN	HLM	2.42	9.86	Non-competitive	
	NCHN	UGT1A11	2.25	3.95	Non-competitive	
Isobavachalcone	4-MU	UGT1A11	13.04	10.93	Competitive	
	NCHN	HLM	4.43	4.13	Non-competitive	
	NCHN	UGT1A11	3.40	4.09	Non-competitive	
Bavachinin	4-MU	UGT1A11	1.99	2.22	Competitive	
	NCHN	HLM	4.16	7.89	Non-competitive	
Corylifol A	4-MU	UGT1A11	1.27	0.47	Competitive	
	NCHN	HLM	1.48	1.46	Non-competitive	
	NCHN	UGT1A11	0.65	0.79	Non-competitive	
Licochalcone A	4-MU	UGT1A11	0.97	0.78	Competitive	18
	NCHN	HLM	0.84	0.54	Non-competitive	
	NCHN	UGT1A11	0.13	0.23	Non-competitive	
Bavachalcone	4-MU	UGT1A11	11.3	5.41	Competitive	95
Corylin	4-MU	UGT1A11	–	–	–	
Liquiritigenin	4-MU	UGT1A11	–	9.1	Competitive	107
Liquiritin	4-MU	UGT1A11	–	–	–	
Isoliquiritigenin	4-MU	UGT1A11	–	0.7	Competitive	96
Wogonin	4-MU	UGT1A11	–	1.40	Competitive	97
Scutellarin	4-MU	UGT1A11	–	0.02	Competitive	98
Scutellarin	4-MU	UGT1A11	–	>100	–	
Baicalein	4-MU	UGT1A11	–	1.2	Competitive	99
Baicalin	4-MU	UGT1A11	–	>100	–	
Hesperetin	4-MU	UGT1A11	–	4.75	Non-competitive	100
Naringenin	4-MU	UGT1A11	8.58	7.61	Non-competitive	
\(\beta\)-Estradiol	UGT1A1	–	4.89	–	–	101
\(\beta\)-Estradiol	SN-38	UGT1A1	4.24	–	–	
Alpinetin	4-MU	UGT1A11	–	1.58	–	
Genkwanin	Bilirubin	HLM	23.21	16.47	Competitive	103
Apigenin	Bilirubin	HLM	12.40	4.08	Competitive	101
\(\beta\)-Estradiol	UGT1A1	–	0.47	–	–	
Hela1A1	–	Hela1A1	0.33	–	–	
Table 9 (continued)

Inhibitor	Substrate	Enzyme source	IC$_{50}$ (μmol/L)	K_i (μmol/L)	Inhibition type	Ref.
SN-38	UGT1A1		0.72	--	--	
	Hela1A1		0.48	--	--	
Naringin	4-MU	UGT1A1	14.8	--	--	104
Kaempferol	4-MU	UGT1A1	7.9	--	--	
EGCG	4-MU	UGT1A1	26.2	--	--	
Daidzein	β-Estradiol	UGT1A1	52.1	--	--	101
	Hela1A1		67.1	--	--	
	SN-38	UGT1A1	5.01	--	--	
	Hela1A1		5.85	--	--	
Genistein	β-Estradiol	UGT1A1	1.83	--	--	
	Hela1A1		0.94	--	--	
SN-38	UGT1A1		0.98	--	--	
	Hela1A1		1.43	--	--	
Biochanin A	β-Estradiol	UGT1A1	1.58	--	--	
	Hela1A1		0.84	--	--	
SN-38	UGT1A1		0.42	--	--	
	Hela1A1		0.37	--	--	
Chrysin	β-Estradiol	UGT1A1	2.02	--	--	
	Hela1A1		0.98	--	--	
SN-38	UGT1A1		1.16	--	--	
	Hela1A1		1.26	--	--	
Phloretin	β-Estradiol	UGT1A1	2.17	--	--	
	Hela1A1		1.66	--	--	
SN-38	UGT1A1		1.96	--	--	
	Hela1A1		2.84	--	--	
Amentoflavone	4-MU	UGT1A1	0.78	2.21	Competitive	25
	NCHN	HLM	0.21	0.24	Non-competitive	
Sciadopitysin	4-MU	UGT1A1	0.14	0.27	Non-competitive	
	NCHN	HLM	0.65	0.54	Competitive	105
	NCHN	UGT1A1	0.35	0.41	Non-competitive	
	NCHN	UGT1A1	0.31	0.45	Non-competitive	

-- Not determined.
competitive inhibitors of UGT1A1-mediated 4-MU glucuronidation, but function as noncompetitive inhibitors in both UGT1A1 and HLM when the substrate was NCHN25,105. IVIVE results suggested that the use of sciadopitysin could result in a significant increase in the AUC of UGT1A1 substrates via UGT1A1 inhibition.

3.4.3. Quinones
Quinones are widely distributed in plant species and have multiple pharmacological activities106,109. Quinones that display inhibitory effects on UGT1A1 are listed in Table 11101,110,111. It was recently demonstrated that 10 major quinone constituents of Polygonum multiflorum, namely cis-emodindianthrones, trans-emodindianthrones, emodin-8-O-gl, polygonummonolide C2, emodin, polygonummonolide C3, citreorosein, polygonummonolide C4, physcion, and rhein, are naturally occurring potent inhibitors of UGT1A1, with K_i values ranging between 0.863 to 127.3 μmol/L.19. The inhibition of UGT1A1 activity by these quinones might be one of the reasons for P. multiflorum-associated adverse effects, particularly elevated bilirubin levels and liver injury.15. Another study demonstrated that emodin competitively inhibited UGT1A1 activity in three model systems, HLM, RLM and recombinant UGT1A1, with K_i values of 5.40, 10.02 and 4.85 μmol/L, respectively.110. In addition, emodin displayed strong inhibitory effects in the UGT1A1/HelaA1 system when estradiol-3-O-glucuronidation and SN-38-O-glucuronidation activities were examined (IC50 < 2 μmol/L).110. It should be added, however, that emodin is probably a broad specificity inhibitor and it is shown to inhibit UGT1A10 and/or UGT1A8112, and perhaps other UGTs as well. Tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone I are major quinone constituents of Danshen that displayed moderate inhibitory effects on UGT1A1 (IC50>40 μmol/L).111. Furthermore, since the C_{max} values of cryptotanshinone and dihydrotanshinone I were much lower than their IC50 values, it was concluded that both of them could not inhibit UGT1A1 in vivo.

3.4.4. Lignans
Lignans that were shown to display inhibitory effects on UGT1A1 are listed in Table 11101,104,113-118. Lignans are a large group of natural products that are widely spread in the plant kingdom. Milk thistle flavonolignans (silybin A, silybin B, isosilybin B, isosilychristin, and silydianin) were demonstrated to inhibit UGT1A1-mediated 4-MU glucuronidation, at IC50 values ranging between 5.3 and 53.5 μmol/L. This resulted in a prediction that none of them was likely to inhibit UGT1A1 in vivo.104. It was previously reported that silybin inhibits the UGT1A1-mediated 7-hydroxy-4-trifluoromethylcoumarin glucuronidation, at an IC50 value of 1.4 μmol/L, whereas the metabolite, silybinin-glucuronide was found in another study to inhibit rat UGT1A1 in RLM, with a K_i value of 16 μg/mL. Podophyllotoxin, an important lignan that is found in multiple plants, was demonstrated to inhibit the UGT1A1-mediated 4-MU-glucuronidation competitively, with a K_i value of 4.0 μmol/L. However, 1, 10 and 100 μmol/L of podophyllotoxin did not really inhibited HLM-catalyzed SN-38 glucuronidation, since the residual activities were 109.7%, 103.8%, and 64.1% of the negative control, respectively. At the same concentrations, podophyllotoxin also had barely a minor effect on HLM-catalyzed estradiol-3-O-glucuronidation, with residual activities being 95.1%, 89.1%, and 84.1% of the negative control, respectively.115. Thus, inhibition of UGT1A1 by podophyllotoxin is substrate-dependent and mostly mild, namely medium and weak inhibition towards HLM-mediated estradiol-3-O-glucuronidation and SN-38-O-glucuronidation, respectively.115. Honokiol, another plant lignan, was found to slightly inhibit UGT1A1-mediated estradiol-3-O-glucuronidation, with an IC50 value of 50.5 μmol/L. Magnolol and macelignan, two lignans that are found in multiple plants, exhibited similar inhibitory effects on estradiol-3-O-glucuronidation and SN-38-O-glucuronidation, regardless of whether recombinant UGT1A1, or over-expressing Hela cells were the enzyme source.

Inhibitor	Substrate	Enzyme source	IC50 (μmol/L)	K_i (μmol/L)	Inhibition type	Ref.
cis-Emodin dianthrones	Bilirubin	RLM	–	0.8630	Competitive	19
trans-Emodin dianthrones	Bilirubin	RLM	–	1.083	Competitive	
Emodin-8-O-gl	Bilirubin	RLM	–	3.425	Competitive	
Polygonummonolide C2	Bilirubin	RLM	–	4.291	Non-competitive	
Polygonummonolide C3	Bilirubin	RLM	–	12.89	Non-competitive	
Polygonummonolide C4	Bilirubin	RLM	–	77.42	Un-competitive	
Physcion	Bilirubin	RLM	–	94.75	Non-competitive	
Emodin	Bilirubin	RLM	–	10.01	Competitive	
Rhein	Bilirubin	RLM	–	127.3	Mixed	
Citreorosein	Bilirubin	RLM	–	18.56	Mixed	
Emodin	Bilirubin	UGT1A1	–	4.85	Competitive	110
Emodin	Bilirubin	HLM	–	5.40	Competitive	
Emodin	Bilirubin	RLM	–	10.02	Competitive	
β-Estradiol	UGT1A1	HelaA1	1.27	–	–	101
SN-38	UGT1A1	HelaA1	0.77	–	–	
Tanshinone I	4-MU	UGT1A1	77.2	–	–	111
Tanshinone IIA	4-MU	UGT1A1	69.8	–	–	
Cryptotanshinone	4-MU	UGT1A1	43.5	–	–	
Dihydrotanshinone I	4-MU	UGT1A1	67.3	–	–	

–Not determined.
3.4.5. Other natural compounds

Alongside the above listed, widely occurring plant compounds, there are other plant compounds that are frequently found, such as polyphenolic acids, polyphenolics, terpenoids, coumarins and alkaloids, that were reported to inhibit UGT1A1 (Table 1290,104,113–116). Salvianolic acids A and B, two major polyphenolic acids ingredients in Danshen, strongly inhibited UGT1A1-catalyzed bilirubin glucuronidation, via mixed type inhibition kinetics, with a K_i value of 0.22 and 4.50 μmol/L, respectively18. Demethylezylasteral, a triterpenoid that is isolated from Tripterygium wilfordii Hook F, functions as a non-competitive inhibitor of the UGT1A1-mediated 4-MU-glucuronidation, with a K_i value of 21.7 μmol/L120, and PPT, a triterpenoid component that is isolated from Ginseng, exerted strong noncompetitive inhibition towards UGT1A1, with a K_i value of 8.8 μmol/L121. The inhibition profile of these compounds on intracellular UGT1A1, either due to inherited mutation(s), or inhibition by drugs or other xenobiotics, could be detected in the clinic based on their effects on the plasma levels of unconjugated bilirubin. The levels of total blood bilirubin and unconjugated bilirubin are often determined in routine clinical testing. Many UGT1A1 inhibitors, such as several flavonoids and pentacyclic triterpenoids, that were identified from in vitro assays, turned out to be ineffective in vivo. Poor cell permeability and poor metabolic stability of these natural compounds, together leading to poor bioavailability, are probably the major causes of their ineffectiveness in vivo. Notably, the majority of the data presented in the review was derived from in vitro assays, and often the inhibitor concentration was much higher than the expected plasma concentration. In other words, the inhibitory effects of these compounds on intracellular UGT1A1, may also inhibit the enzyme.

Table 11

Inhibitor	Substrate	Enzyme source	IC_{50} (μmol/L)	K_i (μmol/L)	Inhibition type	Ref.
Silibinin-glucuronide	Bilirubin	RLM	–	16a	Competitive	113
Silibin A	4-MU	HIM	64.8			104
Silibin B	4-MU	UGT1A1	28.8			
		HLM	87.3			
		HIM	46.9			
		UGT1A1	27.5			
Isosilybin B	4-MU	HLM	–	–	–	
		HIM	187	–	–	
		UGT1A1	51.1	–	–	
Isosilychristin	4-MU	HLM	–	–	–	
		HIM	–	–	–	
		UGT1A1	53.5	–	–	
Silydianin	4-MU	HLM	97.7	–	–	
		HIM	–	–	–	
Silybin	7-Hydroxy-4-trifluoromethylcoumarin	UGT1A1	1.4	–	–	114
Podophyllotoxin	4-MU	UGT1A1	4.0	Competitive	115	
Honokiol	β-Estradiol	HLM	50.5	–	–	116
Magnolol	β-Estradiol	UGT1A1	36.8	–	–	101
		Hela1A1	22.6	–	–	
		UGT1A1	13.2	–	–	
		Hela1A1	16.4	–	–	
Macelignan	β-Estradiol	UGT1A1	7.40	–	–	
		Hela1A1	5.33	–	–	
		UGT1A1	4.73	–	–	
		Hela1A1	2.71	–	–	

aUnit in μg/mL.

4. Further challenges and future directions

From the physiological function point of view, UGT1A1 is one of the most important mammalian UGTs, due to its essential role in bilirubin metabolism. In most cases, dysfunction or strong inhibition of UGT1A1, either due to inherited mutation(s), or inhibition by drugs or other xenobiotics, could be detected in the clinic based on their effects on the plasma levels of unconjugated bilirubin. The levels of total blood bilirubin and unconjugated bilirubin are often determined in routine clinical testing. Many UGT1A1 inhibitors, such as several flavonoids and pentacyclic triterpenoids, that were identified from in vitro assays, turned out to be ineffective in vivo. Poor cell permeability and poor metabolic stability of these natural compounds, together leading to poor bioavailability, are probably the major causes of their ineffectiveness in vivo. Notably, the majority of the data presented in the review was derived from in vitro assays, and often the inhibitor concentration was much higher than the expected plasma concentration. In other words, the inhibitory effects of these compounds on intracellular UGT1A1,
particularly their in vivo potency against UGT1A, have not been well investigated. In order to make in the future such studies more meaningful, it is necessary to develop new or refined test methods. Among the issues to be considered in future inhibition assays are keeping the inhibitor concentration low, which is close to its plasma concentration. Further investigations on the design and development of fluorescent probes for UGT1A1 with high specificity, high sensitivity, good practicability and excellent optical properties (such as long wavelength probes), and their applications in HTS of UGT1A1 inhibitors in complex biological systems are still highly desirable.

In contrast to a wide range of structurally diverse UGT1A1 inhibitors, UGT1A1 inducers or simulators are rarely reported and most studies focus on transcriptional regulation of the UGT1A1 gene. Induction of UGT1A1 expression by synthetic or natural compounds in a clinical setting to treat UGT1A1 deficiencies, such as phenobarbital treatment, is common in neonates. It is less clear, but an interesting idea, whether having an activity stimulating compound for UGT1A will be effective in prevention of CPT-11/SN-38 toxicity, for patients who are homozygous carriers of the polymorphic variant UGT1A1*28. To this end, it is necessary to develop methods for HTS of UGT1A1 inducers or simulators in living systems such as cryo-preserved human hepatocytes. Although the newly developed fluorescent probes for UGT1A1 (NCHN and NHPN) have been used for rapid screening of UGT1A1 inducers at the function level, the poor cell

Table 12: The inhibitory effects of other natural compounds on UGT1A1

Inhibitor	Substrate	Enzyme source	IC_{50} (μmol/L)	K_i (μmol/L)	Inhibition type	Ref.
Salvianolic Acid A	Bilirubin	UGT1A1	1.13	0.22	Mixed	118
Salvianolic Acid B	Bilirubin	UGT1A1	10.87	4.50	Mixed	
Protocatechuic aldehyde	Bilirubin	UGT1A1	738.01	–	–	
Rosmarinic acid	Bilirubin	UGT1A1	149.53	–	–	
Danshensu	Bilirubin	UGT1A1	340.20	–	–	
Demethylzeylasteral	4-MU	UGT1A1	–	21.70	Non-competitive	119
β-Cryptoxanthin	β-Estradiol	HLM	18.8	12.2	Competitive	120
Lutein	β-Estradiol	HLM	45.5	–	–	
Cantaxanthin	β-Estradiol	HLM	38.5	–	–	
Astaxanthin	β-Estradiol	HLM	> 50	–	–	
Zeaxanthin	β-Estradiol	HLM	> 50	–	–	
20(S)-Protopanaxatriol	4-MU	UGT1A1	–	8.8	Non-competitive	121
Glycyrrhetinic acid	β-Estradiol	HLM	–	28.8	Mixed	90
Glycyrrhetinic acid	SN-38	HLM	–	25.4	Mixed	
Brachyantheraose A2	4-MU	UGT1A1	–	9.3	Competitive	122
20(S)-Ginsenoside Rg3	β-Estradiol	HLM	89.0	–	–	93
20(S)-Ginsenoside Rh2	β-Estradiol	HLM	54.5	–	–	
Psoralidin	β-Estradiol	UGT1A1	2.21	–	–	101
Psoralidin	SN-38	UGT1A1	0.86	–	–	
SN-38	Hela1A1		1.07	–	–	
6-Shogaol	β-Estradiol	UGT1A1	8.46	–	–	
6-Shogaol	SN-38	UGT1A1	1.52	–	–	
6-Shogaol	Hela1A1		1.08	–	–	
6-Gingerol	β-Estradiol	UGT1A1	135	–	–	
6-Gingerol	SN-38	UGT1A1	80.1	–	–	
6-Gingerol	Hela1A1		77.3	–	–	
8-Gingerol	β-Estradiol	UGT1A1	17.2	–	–	
8-Gingerol	SN-38	UGT1A1	14.2	–	–	
10-Gingerol	β-Estradiol	UGT1A1	10.2	–	–	
10-Gingerol	SN-38	UGT1A1	5.09	–	–	
10-Gingerol	Hela1A1		5.76	–	–	
Resveratrol	β-Estradiol	UGT1A1	3.42	–	–	
Resveratrol	SN-38	UGT1A1	1.85	–	–	
Capsaicin	β-Estradiol	UGT1A1	51.3	–	–	
Capsaicin	SN-38	UGT1A1	23.3	–	–	
Corydaline	β-Estradiol	HLM	137.1	57.6	Mixed	123

Not determined.
permeability of NCHN and the short emission wavelength of their glucuronides make them unsuitable probe substrates for screening UGT1A1 inducers or simulators in hepatocyte culture. Hence, cell-based assays in combination with highly sensitive and practical fluorescence detection for HTS of UGT1A1 inducers or simulators are one of the challenging objectives in both academic research and for drug development.

Besides UGT1A1, other human UGT enzymes also play important roles in the metabolism and detoxification of therapeutic drugs and other xenobiotics. For example, UGT1A4 plays a major role in the metabolism of trifluoperaziné, a drug that was first used for the treatment of schizophrenia and later, more broadly, epilepsy. UGT1A4 can be specifically inhibited by hecogenin (a compound from sisal plant), which may trigger potential risks of HDI. UGT2B7 is perhaps the most important human UGT enzyme in drug metabolism, since it is involved in the conjugation of many drugs including the HIV/AIDS (acquired immunodeficiency syndrome) drugs (such as zidovudine) and the opioids (such as codeine and morphine). Therefore, attention should be paid to screening and characterization inhibitors of other human UGTs, since UGT-mediated DDI and HDI usually involve multiple UGT enzymes rather than UGT1A1 only. In contrast to UGT1A1, the specific substrates for some other human UGT enzymes are rarely reported, due to the common overlapping substrate specificity of UGTs.

Considering the inherent advantages of fluorescent probe substrates, such as highly sensitivity, and applicability to HTS assay, there is a clear advantage in the design and development of practical and highly specific fluorescent probe substrates for a target UGT enzyme. Notably, the design principles are already available and experience in the design and development of specific fluorescent substrates for UGT1A1 will surely assist us and other researchers in developing new specific fluorescent substrates for other UGTs. In fact, several groups have already tried in the past to develop fluorescent substrates for other human UGTs, as well as to construct efficient fluorescence-based assays for HTS of inhibitors toward target enzyme. For instance, 1-naphthol was found to be a good fluorescent substrate for UGT1A6, which can be used for HTS of UGT1A6 inhibitors using recombinant enzyme as an enzyme source. However, 1-naphthol can be conjugated by other human UGTs as well, limiting its applications to the recombinant enzyme, rather than use in more complex system such as HLM. Very recently, a set of fluorescent 7-hydroxyxcoumarine derivatives have been developed as specific substrates for UGT1A10 (an extrahepatic UGT) and at least two of them (compound 2 and 4), appear to work well in tissue preparations. All these findings are very helpful for the design and development of fluorescent probes for different human UGTs, and we hope that more practical fluorescent probes for human UGT enzymes will be successfully developed and used in the near future.

5. Concluding remarks

The key roles of UGT1A1 in both endobiotic homeostasis and xenobiotic metabolism have drawn much attention from both academic and drug industry scientists. Now the US FDA and other regulatory agencies have recommended that the inhibition potentials of investigational new drugs on the human UGT1A1 should be evaluated before approval. In this review, the significance, progress and challenges in the discovery and characterization of UGT1A1 inhibitors, as well as recent advances in the development of UGT1A1 probe substrates for screening and characterization of UGT1A1 inhibitors, have been described. The tools for UGT1A1-related investigations, such as probe substrates and specific inhibitors of this key conjugative enzyme, have been summarized for the first time. More importantly, lists of UGT1A1 inhibitors, along with detail information that includes their inhibition potency, mode of inhibition, and affinity (when available), have been prepared and presented. The information and knowledge that are given in this review are expected to provide guidance for rational use of clinical drugs or herbal medicines in order to avoid the occurrence of adverse side effects via UGT1A1 inhibition, as well present practical methods for rapid screening and characterization of UGT1A1 inhibitors and for facilitating the investigations on UGT1A1–ligand interactions. We hope that this review will also facilitate the development of more specific and practical tools for other human UGTs in the near future.

Acknowledgments

This work was supported by the NSF of China (81773687, 81703606, 81573501, 81473181), the National Key Research and Development Program of China (2017YFC0700020 and 2017YFC1702000), the Fundamental Research Funds for the Central Universities (wd01185), and the National S&T Major Projects of China (2017ZX09101004), Program of Shanghai Academic/Technology Research Leader (18XD1403600), the Innovative Entrepreneurship Program of High-level Talents in Dalian (2016RQ025 & 2017RQ121), and the Doctoral Scientific Research Foundation of Liaoning Province, China (20170520059).

References

1. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013;45:1121–32.
2. Oda S, Fukushima T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and ferestases for drug development. Drug Metab Pharmacokinet 2015;30:30–51.
3. Meech R, Mackenzie PI. UGT3A: novel UDP-Glycosyltransferases of the UGT superfamily. Drug Metab Rev 2010;42:43–54.
4. Saiio Y, Nagata M, Tetsuka K, Tamura K, Miyashita A, Kawamura A, et al. Optimized methods for targeted peptide-based quantification of human uridine 5'-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 2014;42:885–9.
5. Bosma PJ. Inherited disorders of bilirubin metabolism. J Hepatol 2003;38:107–17.
6. Bock KW. Roles of human UDP-glucuronosyltransferases in clearance and homeostasis of endogenous substrates, and functional implications. Biochem Pharmacol 2015;96:77–82.
7. Kiang TK, Ensom MH, Chang TK. UDP-glucuronosyltransferases and clinical drug–drug interactions. Pharmacol Ther 2005;106:97–132.
8. Court MH. Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metab Rev 2010;42:209–24.
9. Sin SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J 2013;13:1–11.
10. Kadakol A, Ghosh SS, Sappal BS, Sharma G, Chowdhury JR, Chowdhury NR. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing crigler-najjar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat 2000;16:297–306.
11. McDonagh AF. Bilirubin toxicity to human erythrocytes: a more sanguine view. *Pediatrics* 2007;120:175–8.

12. Sicova E, Jirs M. New insights in bilirubin metabolism and their clinical implications. *World J Gastroenterol* 2013;19:6398–407.

13. Geisinger S, Arias IM, Dhmneaux D. Inherited disorders of bilirubin transport and conjugation: new insights into molecular mechanisms and consequences. *Gastroenterology* 2014;146:1625–38.

14. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. *Ann Rev Pharmocol Toxicol* 2000;40:581–616.

15. Ginsberg G, Guyton K, Johns D, Schimek J, Angle K, Sonawane B. Genetic polymorphism in metabolism and host defense enzymes: implications for human health risk assessment. *Crit Rev Toxicol* 2010;40:575–619.

16. Wang L, Chan CE, Wong AL, Wong FC, Lim SW, Chinnathambi A, et al. Combined use of irinotecan with histone deacetylase inhibitor belinostat could cause severe toxicity by inhibiting SN-38 glucuronidation via UGT1A1. *Oncotarget* 2017;8:41572–81.

17. Goon CP, Wang LZ, Wong FC, Thuya WL, Ho PC, Goh BC. UGT1A1 mediated drug interactions and its clinical relevance.*'Curr Drug Metab* 2016;17:100–6.

18. Xin H, Qi XY, Wu JJ, Wang XX, Li Y, Hong JY, et al. Assessment of the inhibition potential of licochalcone A against human UDP-glucuronosyltransferases. *Food Chem Toxicol* 2016;90:112–22.

19. Wang Q, Wang Y, Li Y, Wen B, Dai Z, Ma S, et al. Identification and characterization of the structure–activity relationships involved in UGT1A1 inhibition by antraquinone and dianthrone constituents of *Polygonum multiflorum*. *Sci Rep* 2017;7:17952.

20. Wang XX, Lv X, Li SY, Hou J, Ning J, Wang JY, et al. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-Cu-Zhi). *Toxicol App Pharm* 2015;289:70–8.

21. Mohamed ME, Teng T, Frye RE. Inhibitory effects of commonly used herbal extracts on UGT1A1 enzyme activity. *Xenobiotica* 2010;40:663–9.

22. Peer CJ, Sissung TM, Kim A, Jain L, Woo S, Gardner ER, et al. Sorafenib is an inhibitor of UGT1A1 but is metabolized by UGT1A9: implications of genetic variants on pharmacokinetics and hyperbilirubinemia. *Clin Cancer Res* 2012;18:2099–107.

23. Singer JB, Shou Y, Giles F, Kantarjian HM, Hsu F, Robeva AS, et al. UGT1A1 promoter polymorphism increases risk of nitinolinduced hyperbilirubinemia. *Leukemia* 2007;21:2311–5.

24. Zuck SD, Qin X, Rouster SD, Yu F, Green RM, Keshavan P, et al. Mechanism of indinavir-induced hyperbilirubinemia. *Proc Natl Acad Sci U S A* 2001;98:12671–6.

25. Lv X, Zhang JB, Wang XX, Hu WZ, Shi YS, Liu SW, et al. Amentoflavone is a potent broad-spectrum inhibitor of human UDP-glucuronosyltransferases. *Chem Biol Interact* 2018;284:48–55.

26. Gammal RS, Court MH, Haidar CE, Iwuchukwu OF, Gaur AH, Alvarellos M, et al. Clinical pharmacogenetics implementation consortium (Cpc) guideline for UGT1A1 and atazanavir prescribing. *Clin Pharmacol Ther* 2016;99:363–9.

27. Saif MW, Smith MH, Maloney A, Diasio RB. Iatminib-induced hyperbilirubinemia with UGT1A1 (∗28) promoter polymorphism: first case series in patients with gastrointestinal stromal tumor. *Ann Gastroenterol* 2016;29:551–6.

28. US Food and Drug Administration. Guidance for industry: drug interaction studies—study design, data analysis, implications for dosing and labeling recommendations; Draft guidance. Available from: <http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf> (2012).

29. European Agency Medicines. Guideline on the investigation of drug interactions. Available from: <http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129006.pdf> (2012).

30. Wen Z, Tallman MN, Ali SY, Smith PC. UDP-glucuronosyltransferase 1A1 is the principal enzyme responsible for etoposide glucuronidation in human liver and intestinal mesosomes: structural characterization of phenolic and alcoholic glucuronides of etoposide and estimation of enzyme kinetics. *Drug Metab Dispos* 2007;35:371–80.

31. Zhou J, Tracy TS, Remmel RP. Correlation between bilirubin glucuronidation and estradiol-3-gluronidation in the presence of model UDP-glucuronosyltransferase 1A1 substrates/inhibitors. *Drug Metab Dispos* 2011;39:322–9.

32. Zou LW, Wang P, Qian XK, Feng L, Yu Y, Wang DD, et al. A highly specific ratometric two-photon fluorescent probe to detect dip Yepilid peptide IV in plasma and living systems. *Biosens Bioelectron* 2017;90:283–9.

33. Wang P, Xia YL, Zou LW, Qian XK, Dou TY, Jin Q, et al. An optimized two-photon fluorescent probe for biological sensing and imaging of catechol-O-methyltransferase. *Chem Eur J* 2017;23:10800–7.

34. Dai ZR, Feng L, Jin Q, Cheng H, Li Y, Ning J, et al. A practical strategy to design and develop an isomorf-specific fluorescent probe for a target enzyme: CYPIA1A as a case study. *Chem Sci* 2017;8:2795–803.

35. Jin Q, Feng L, Wang DD, Wu JJ, Hou J, Dai ZR, et al. A highly selective near-infrared fluorescent probe for carb oxysterase 2 and its bioimaging applications in living cells and animals. *Biosens Bioelectron* 2016;83:193–9.

36. Lv X, Ge GB, Feng L, Troberg J, Hu LH, Hou J, et al. An optimized ratometric fluorescent probe for sensing human UDP-glucuronosyltransferase 1A1 and its biological applications. *Biosens Bioelectron* 2015;72:261–7.

37. Jin Q, Feng L, Wang DD, Dai ZR, Wang P, Zou LW, et al. A two-photon ratiometric fluorescent probe for imaging car boxysterase 2 in living cells and tissues. *ACS Appl Mater Interfaces* 2015;7:28474–81.

38. Feng L, Liu ZM, Hou J, Lv X, Ning J, Ge GB, et al. A highly selective fluorescent esipt probe for the detection of human car boxysterase 2 and its biological applications. *Biosens Bioelectron* 2015;65:9–15.

39. Dai ZR, Ge GB, Feng L, Ning J, Hu LH, Jin Q, et al. A highly selective ratiometric two-photon fluorescent probe for human cytochrome P450 1A. *J Am Chem Soc* 2015;137:14488–95.

40. Liu ZM, Feng L, Ge GB, Lv X, Hou J, Cao YF, et al. A highly selective ratiometric fluorescent probe for in vitro monitoring and cellular imaging of human carboxysterase 1. *Biosens Bioelectron* 2014;57:5–10.

41. Terai T, Tomiyasu R, Ota T, Ueno T, Komatsu T, Hanaoka K, et al. Tokyo green derivatives as specific and practical fluorescent probes for UDP-glucuronosyltransferase (UGT) 1A1. *Chem Commun* 2013;49:3101–3.

42. Feng L, Liu ZM, Xu L, Lv X, Ning J, Hou J, et al. A highly selective long-wavelength fluorescent probe for uridine diposphate glucuronosyltransferase 1A1: a good surrogate for bilirubin. *J Med Chem* 2017;60:9664–75.

43. Ciotti M, Owens IS. Evidence for overlapping active sites for 17α-ethylidenestradiol and bilirubin in the human major bilirubin UDP-glucuronosyltransferase. *Biochemistry* 1996;35:10119–24.

44. Rios GR, Tephy TR. Inhibition and active sites of UDP-glucuronosyltransferases 2B7 and 1A1. *Drug Metab Dispos* 2002;30:1364–7.

45. Gagné JF, Montmény V, Belanger P, Journault K, Gaucher G, Guillemette C. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). *Mol Pharmacol* 2002;62:608–17.

46. Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galeatin A, Houston JB, et al. Human UDP-glucuronosyltransferases: isomorf selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by dichlofenac and probenecid. *Drug Metab Dispos* 2004;32:413–23.

47. Wang Q, Dai Z, Wen BY, Ma SC, Zhang YJ. Estimating the differences of UGT1A1 activity in recombinant UGT1A1 enzyme, human liver microsomes and rat liver microsome incubation systems in vitro. *Biol Pharm Bull* 2015;38:1910–7.
Miners JO, Bauman JN, Bourcik K, Giddens G, Lapham K, Negahban A, et al. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. *Drug Metab Dispos* 2012;40:1051–65.

Soans MG, Ring BJ, Wighton SA. The effect of incubation conditions on the enzyme kinetics of UDP-glucuronosyltransferases. *Drug Metab Dispos* 2003;31:762–7.

Wang LZ, Ramírez J, Yeo W, Chan MY, Thuya WL, Lau JY, et al. Glucuronidation by UGT1A1 is the dominant pathway of the metabolic disposition of belinostat in liver cancer patients. *PLoS One* 2013;8:e54522.

Wu B, Zhang S, Hu M. Evaluation of 3,3′,4′-trihydroxyflavone and 3,6,4′-trihydroxyflavone (4′-O-glucuronidation) as the *in vitro* functional markers for hepatic UGT1A1. *Mol Pharm* 2011;8:2379–89.

Xia YL, Ge GB, Wang P, Liang SC, He YQ, Ning J, et al. Structural modifications at the C-4 position strongly affect the glucuronidation of 6,7-Dihydroxycurarin. *Drug Metab Dispos* 2015;43:553–60.

Laakkonen L, Finel M. A molecular model of the human UDP-glucuronosyltransferase 1A1, its membrane orientation, and the interactions between different parts of the enzyme. *Mol Pharmacol* 2010;77:931–9.

Gradinaru J, Romand S, Geisser L, Carrupt PA, Rudaz S. Inhibition screening method of micromolar UGTs using the cocktail approach. *Eur J Pharm Sci* 2015;71:35–45.

Zhang D, Zhang D, Cui D, Gambardella J, Ma L, Barros A, et al. Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism. *Drug Metab Dispos* 2007;35:2270–80.

Itaaho K, Mackenzie PI, Ikushiro SI, Miners JO, Finel M. The configuration of the 17-hydroxy group variably influences the glucuronidation of β-estradiol and epiestradiol by human UDGUCruronosyltransferases. *Drug Metab Dispos* 2009;36:2307–15.

Zhou J, Tracy TS, Remmell RP. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1. *Drug Metab Dispos* 2010;38:1907–11.

Lv X, Wang XX, Hou J, Fang ZZ, Wu JJ, Cao YF, et al. Comparison of the inhibitory effects of tolcapone and entacapone against human UDP-glucuronosyltransferases. *Toxicol Appl Pharmacol* 2016;301:42–9.

Troberg J, Järvinen E, Ge GB, Yang L, Finel M. UGT1A10 is a high activity and important extrahepatic enzyme: why has its role in glucuronidation been frequently underestimated?. *Mol Pharmacol* 2017;81:2855–63.

Zhang D, Zhang D, Cui D, Gambardella J, Ma L, Barros A, et al. Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism. *Drug Metab Dispos* 2007;35:2270–80.

Itaaho K, Mackenzie PI, Ikushiro SI, Miners JO, Finel M. The configuration of the 17-hydroxy group variably influences the glucuronidation of β-estradiol and epiestradiol by human UDGUCruronosyltransferases. *Drug Metab Dispos* 2009;36:2307–15.

Zhou J, Tracy TS, Remmell RP. Bilirubin glucuronidation revisited: proper assay conditions to estimate enzyme kinetics with recombinant UGT1A1. *Drug Metab Dispos* 2010;38:1907–11.

Lv X, Wang XX, Hou J, Fang ZZ, Wu JJ, Cao YF, et al. Comparison of the inhibitory effects of tolcapone and entacapone against human UDP-glucuronosyltransferases. *Toxicol Appl Pharmacol* 2016;301:42–9.

Troberg J, Järvinen E, Ge GB, Yang L, Finel M. UGT1A10 is a high activity and important extrahepatic enzyme: why has its role in intestinal glucuronidation been frequently underestimated?. *Mol Pharmacol* 2017;81:2855–63.

Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WR. *In vivo* inhibition of UDP glucuronosyltransferases by azatadine and other HIV protease inhibitors and the relationship of this property to *in vivo* bilirubin glucuronidation. *Drug Metab Dispos* 2005;33:1729–39.

Ji HY, Lee H, Lim SR, Kim JH, Lee HS. Effect of efavirenz on UDP-glucuronosyltransferase 1A1, 1A4, 1A6, and 1A9 activities in human liver microsomes. *Molecules* 2012;17:851–60.

Alam N, Angelii MG, Greenblatt DJ. Mechanism of *in vitro* inhibition of UGT1A1 by paroxetine. *J Pharm Pharmacol* 2017;69:1794–801.

Cao L, Greenblatt DJ, Kwar A. Inhibitory effects of selected antituberculosis drugs on common human hepatic cytochrome P450 and UDP-glucuronosyltransferase enzymes. *Drug Metab Dispos* 2017;45:1035–43.

Sane RS, Steinmann GG, Huang Q, Li Y, Podila L, Meese K, et al. Mechanism of amoxicillin and reversible unconjugated hyperbilirubinemia observed with faldaprevir administration in hepatitis C virus patients. *J Pharm Pharmacol* 2014;65:351:403–12.

McDonald C, Uy J, Hu W, Wirtz V, Juethner S, Butcher D, et al. Clinical significance of hyperbilirubinemia among HIV-1-infected patients treated with atazanavir/ritonavir through 96 weeks in the CASTLE study. *AIDS Patient Care STDS* 2012;26:259–64.

Miners JO, Chau N, Rowland A, Burns K, McKinnon RA, Mackenzie PI, et al. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: implications for hyperbilirubinemia. *Biochem Pharmacol* 2017;129:85–95.
88. Ismail S, Hanapi NA, Ab Halim MR, Uchaipichat V, Mackenzie PI. Effects of Andrographis paniculata and Orthosiphon stamineus extracts on the glucuronidation of 4-methylumbelliflone in human UGT isoforms. Molecules 2016;21:3578–92.

89. Wang Q, Dai Z, Zhang YJ, Shaungchengu M. The research of the inhibitory potential of bavachalcone and corylin against UDP-glucuronosyltransferase (UGT) isoforms. Food Chem Toxicol 2014;72:13–9.

90. Ji HY, Liu KH, Kong TY, Jeong HU, Choi SZ, Son M, et al. Evaluation of the inhibitory effect of main flavonoids of Orthosiphon stamineus on the glucuronidation of 4-methylumbelliflone in human UGT1A1 and UGT2B7. Phytother Res 2013;27:1232–6.

91. Wang XX, Hou J, Ding J, Pan YQ, Hong M, Guo B. Inhibition of sciacdopitoxin against UDP-glucuronosyltransferases. Acta Pharm Sin Acta Pharm Sin B 2016;51:749–55.

92. Wang Q, Dai Z, Zhang YJ, Shaungchengu M. The research of the inhibitory potential of bavachalcone and corylin against UDP-glucuronosyltransferase (UGT) isoforms. Phytother Res 2013:27:1232–6.

93. Zheng YF, Min JS, Kim D, Park JB, Choi SW, Lee ES, et al. Effect of herbal products (elderberry, and raspberry ketones) commonly used as herbal supplements on the glucuronidation of 4-methylumbelliferone in human liver microsomal UGTs and UGT1A1 activities. Acta Pharm Sin B 2016;55:1703–9.

94. Guo B, Pan XR, Fang ZZ, Cao YF, Hu CM, Yang JL, et al. Evaluation of inhibition of UDP-glucuronosyltransferase (UGT) isoforms. Acta Pharm Sin Acta Pharm Sin B 2016;51:749–55.

95. Hao DC, Gu X, Xiao P. Anemone medicinal plants: ethnopharmacology, phytochemistry and biology. Acta Pharm Sin Acta Pharm Sin B 2017;7:342–63.
126. Sugatani J. Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. *Drug Metab Pharmacokinet* 2013;28:83–92.

127. Aoshima N, Fujie Y, Itoh T, Tukey RH, Fujiwara R. Glucose induces intestinal human UDP-glucuronosyltransferase (UGT) 1A1 to prevent neonatal hyperbilirubinemia. *Sci Rep* 2014;4:6343.

128. Uchaipichat V, Mackenzie PI, Elliot DJ, Miners JO. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenonic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfipyrazone) “probes” for human UDP-glucuronosyltransferases. *Drug Metab Dispos* 2006;34:449–56.

129. Barbier O, Turgeon D, Girard C, Green MD, Tephly TR, Hum DW, et al. 3’-azido-3’-deoxythymidine (Azt) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). *Drug Metab Dispos* 2000;28:497–502.

130. Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, von Moltke LL, et al. Evaluation of 3’-azido-3’-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. *Drug Metab Dispos* 2003;31:1125–33.

131. Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, et al. Recent developments in multimodality fluorescence imaging probes. *Acta Pharm Sin B* 2018;8:320–38.

132. Soikkeli A, Kurkela M, Hirvonen J, Yliperttula M, Finel M. Fluorescence-based high-throughput screening assay for drug interactions with UGT1A6. *Assay Drug Dev Technol* 2011;9:496–502.

133. Juvonen RO, Rauhamaki S, Kortet S, Niinivehmas S, Troberg J, Petsalo A, et al. Molecular docking-based design and development of a highly selective probe substrate for UDP-glucuronosyltransferase 1A10. *Mol Pharm* 2018;15:923–33.