Evidence for a $K^\pi = 1/2^+$ isomer in neutron-rich ^{185}Ta

T. Shizuma1,a, T. Ishii2, H. Makii2, T. Hayakawa1, S. Shigematsu2,3, M. Matsuda4, E. Ideguchi5, Y. Zheng5, M. Liu5, and T. Morikawa6

1 Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215, Japan
2 Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
3 Department of Energy Sciences, Tokyo Institute of Technology, Yokohama 226-8502, Japan
4 Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
5 Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan
6 Department of Physics, Kyushu University, Fukuoka 812-8581, Japan

Received: 4 July 2007 / Revised: 7 September 2007
Published online: 4 October 2007 – © Società Italiana di Fisica / Springer-Verlag 2007
Communicated by J. Aystö

Abstract. Excited states in neutron-rich ^{185}Ta have been populated following the one-proton pickup reaction of $^{186}\text{W}(^{18}\text{O},^{19}\text{F})$. In-beam γ-rays were measured in coincidence with scattered particles detected by a high-resolution $\Delta E-E$ Si telescope for reaction channel selection. Several low-lying levels including a $T_{1/2} = 0.9(3)$ μs isomer at 406 keV have been identified. A spin assignment of $I = 3/2$ and the $1/2^+ [411]$ Nilsson configuration are given to the isomer in comparison with the level energy systematics and the isomer decay rates in the region.

PACS. 21.10.Tg Lifetimes – 23.20.Lv γ transitions and level energies – 25.70.Hi Transfer reactions – 27.70.+q 150 $\leq A \leq 189$

In neutron-deficient $A \approx 180$ nuclei, low-lying one-quasiparticle isomers due to the K quantum number conservation (where K is defined as the angular-momentum projection on the nuclear symmetry axis) are systematically observed. This type of isomer is also expected in nuclei at the neutron-rich side of the valley of β stability. The technique using deep inelastic reactions [1–3] and relativistic fragmentation [4] has been developed to access to such nuclei. Recently, 18O-induced transfer reactions were employed to investigate near-yrast structure of neutron-rich nuclei in the $A \approx 180$ [5] and 240 [6–8] regions. In these studies, the two-neutron stripping reaction of 18O,16O) and the two-proton pickup reaction of 12O,20Ne were used. In addition to these reaction channels, neutron-rich isotopes can be produced via the one-proton pickup reaction of 18O,19F). Here we report the identification of several low-lying levels including a new isomer in neutron-rich 185Ta produced following the $^{186}\text{W}(^{18}\text{O},^{19}\text{F})$ one-proton pickup reaction.

The present experiment was performed at the tandem accelerator facility [9] at Japan Atomic Energy Agency. Excited states of 185Ta were populated using the one-proton pickup reaction $^{186}\text{W}(^{18}\text{O},^{19}\text{F})$. A 180 MeV 18O beam was incident on a self-supporting target of ^{186}W enriched to 98.2%. The target was made of two stacked 450 μg/cm2 metallic foils and thick enough to stop target-like nuclei inside the target material. Outgoing ions were detected by four sets of surface barrier Si $\Delta E-E$ detectors with a diameter of 20 mm. These detectors were placed at 28° with respect to the beam direction. Emitted γ-rays were measured with seven HP-Ge detectors, in coincidences, respectively, were collected. The details of the experimental setup are described in ref. [5].

An $E-\Delta E$ plot for outgoing ions measured by the Si detectors is shown in fig. 1. Each ions are clearly separated according to the mass and atomic numbers. The particle

a e-mail: shizuma.toshiyuki@jaea.go.jp
Figure 1. An E-ΔE plot for outgoing ions measured by Si detectors. The enclosed areas represent the gate windows with kinematic energies of 170–178 MeV (a) and 157–169 (b), see fig. 2.

Fig. 2. γ-ray energy spectra gated on 19F ions with kinetic energies of 170–178 MeV (a) and 157–169 MeV (b), corresponding to the gate windows (a) and (b) shown in fig. 1. The γ-rays assigned to 185Ta (a) and 183,184Ta (b) are labeled in units of keV. An intense peak at 197 keV is the transition from the 5/2+ state to the ground state in 19F.

energies were calibrated assuming that the most intense peak in the E-ΔE plot corresponds to elastically scattered events of 18O ions entering at the center of each Si detector. Figure 2 shows a γ-ray energy spectrum gated on 19F ions with different kinetic energies shown in fig. 1. In figs. 2 (a) and (b), γ-ray peaks from 185Ta and 183,184Ta, respectively, are observed. The 183,184Ta nuclei can be produced by two- and one-neutron evaporation from 185Ta when the compound-like 185Ta is excited above the neutron separation energies. Note that an intense 197 keV peak observed in fig. 2 corresponds to the transition from the 5/2+ state to the ground state in 19F.

Figure 3 shows a level scheme for 185Ta deduced from the present experimental data. Excited levels in this nucleus have been studied via (t,α) transfer reactions [10] and deep inelastic reactions [11]. Several levels previously identified in the (t,α) transfer reactions are confirmed with the slightly different excitation energies of ΔE ≲ 10 keV. This discrepancy is likely due to the low-energy resolution of the earlier measurement. The ground states in 185Ta and the lighter odd-A Ta isotopes with N ≥ 102 are assigned the 7/2+[404] Nilsson configuration [12]. A 153 keV level which would correspond to a 163 keV state observed in the (t,α) transfer reactions [10] is tentatively assigned as a 9/2+ member of the ground-state band. A Kπ = 9/2− strongly coupled band, based on the 9/2−[514] Nilsson configuration, is known from the previous studies [10,11]. The present data confirm this up to Iπ = (15/2−).

A new level at 418 keV is fed by a 467 keV transition from an 885 keV state which is likely a 890 keV, 7/2+[523] state previously observed in the (t,α) transfer reactions [10]. The γ-ray anisotropy data suggest ΔI = 1 assignments for the 418 and 467 keV transitions, leading an I = 5/2 assignment for the 418 keV state. In 181Ta and 183Ta, I = 5/2 states, assigned the 5/2+[402] Nilsson configuration, are known at 482 and 459 keV, respectively [12]. From this comparison, the 5/2+[402] assignment is preferred for the 418 keV state in 185Ta.

The analysis of delayed coincidence spectra reveals a sub μs isomer, decaying directly to the ground state via a 406 keV transition. The γ-ray anisotropy data are consistent with ΔI = 2 for this transition. This supports an I = 3/2 or 11/2 assignment for the 406 keV isomer. Unresolved I = 1/2 and 3/2 states, based on the 1/2+[411] Nilsson configuration, were previously observed at approximately 409 keV in the transfer reaction experiment [10]. As discussed below, the observed isomer is presumably the I = 3/2, 1/2+[411] state. Note that K = 3/2 and 11/2 states originating from the spherical 2d5/2 and 1411/2 orbitals are expected at high excitation energy and therefore the K = 3/2 or 11/2 assignment is unlikely for the 406 keV isomer.

Above the isomer, several transitions are observed in the delayed γ-ray spectrum gated on the 406 keV transition (see fig. 4). Two transitions at 183 and 189 keV feed the 406 keV isomer from near-degenerate levels at 589 and 595 keV. The γ-ray anisotropy data suggest ΔI = 1 and 2 for the 183 and 189 keV transitions, respectively, supporting I = 5/2 and 7/2 assignments for the 589 and 595 keV states. In the previous transfer reactions [10], a 590 keV level was identified as I = 5/2 or 7/2 doublet states in the 1/2+[411] band. Considering the uncertainty of the measured energies, the 589 and 595 keV states likely correspond to this doublet. The present data add two higher-lying 9/2 and 11/2 members at 888 and 901 keV to this band. In addition, three levels are observed at 734, 810 and 889 keV, forming a rotational-like structure. No detailed information for these transitions are obtained.

The half-life of the 406 keV isomer was determined as T1/2 = 0.9(3) μs from the analysis of particle-γ time difference data shown in the inset of fig. 4. Electromagnetic
transitions involving the K change greater than the transition multipolarity, i.e., $\Delta K > \lambda$, are forbidden in the K selection rule. This type of transitions can be discussed in terms of the hindrance factor $F = T^2_{\gamma/2}/T^2_{W}$ or the hindrance factor per degree of K forbesinmness $f_\nu = F^{1/\nu}$, where $T^2_{\gamma/2}$ is the partial γ-ray half-life, T^2_{W} is the corresponding Weisskopf single-particle estimate, and ν is the order of K forbesinmness ($\nu = \Delta K - \lambda$). The 406 keV isomer decays to the ground state via the K-forbidden $E2$ transition with $\nu = 1$. Assuming that the 406 keV isomer decays only by the 406 keV, pure $E2$ transition, the value of $f_\nu = 1.1 \times 10^{-3}$ is obtained. This is in accordance with the value of $f_\nu = 2.4 \times 10^{-3}$ obtained for the corresponding $\Delta K = 3$, $E2$ transition in 181Ta (The $I = 3/2, 1/2^+[411]$ state in 181Ta has the shorter lifetimes of 87 ns because of a dominant fast decay branch to the $I = 5/2, 5/2^+[402]$ state [12].) This supports the $I = 3/2, 1/2^+[411]$ assignment for the 406 keV isomer.

The $I = 1/2, 1/2^+[411]$ bandhead has not been identified. The decay of this state would require γ-ray transitions of $M3$ or higher multipolarity, and from the partial half-life of the corresponding transitions in 177,179Lu and 181Ta [12], the half-life of the unobserved $1/2^+[411]$ bandhead in 185Ta would be expected to be in the milliseconds range. Since the measurable half-life of isomers in the present experimental setup is limited to less than $\sim 5 \mu$s, on account of the 1 μs TAC range, such long-lived isomers cannot be observed.

The $1/2^+[411]$ bandhead and its rotational levels have been identified in 177,179Ta as well as odd-A Tm and Lu isotopes [12]. As the decoupling parameter for this band typically ranges from -0.61 to -0.99 [13], the $I = 1/2$ and 3/2 rotational members have a small energy spacing. Similarly, the $I = 5/2$ and 7/2 band members are almost degenerate as the case of 185Ta. The observed lowest three levels of the $1/2^+[411]$ band in 185Ta give the decoupling parameter of $a = -0.96$. The decrease of the decoupling parameter with increasing the mass number in the Ta isotopes ($a = -0.79$ for 177Ta and $a = -0.85$ for 179Ta [13]) is characteristics known for the $1/2^+[411]$ band in the Tm and Lu isotopes [13].

In fig. 5, the decoupling parameters in Ta isotopes are compared with values predicted by the Nilsson model. The Nilsson parameters were taken from ref. [14] and the $\Delta N_{osc} \neq 0$ couplings resulting from the hexadecapole deformation were neglected. The quadrupole (ϵ_2) and hexadecapole (ϵ_4) deformation parameters were extracted by the potential energy surface calculation using the standard Nilsson-Strutinsky method. The decreasing trend of the decoupling parameter with increasing the mass num-
ber, largely due to the deformation changes (see the caption to fig. 5), is reproduced by the present Nilsson model calculation. The energy spacing between the $I = 3/2$ and unobserved $I = 1/2$ states in 185Ta is also deduced from the observed level energies as $\Delta E = 2.4$ keV. This is consistent with the trend in the lighter Ta isotopes for increasing mass number and the smaller energy spacing ($\Delta E = 9.8$ keV for 177Ta, $\Delta E = 7.3$ keV for 179Ta and $\Delta E = 3.8$ keV for 181Ta [12]).

In summary, a $T_{1/2} = 0.9(3)$ μs isomer at 406 keV has been identified in neutron-rich 185Ta via the one-proton pickup reaction of 186W(18O,19F). From the comparison with the previous transfer reaction data, the $I = 3/2, 1/2^+[411]$ assignment has been given to this isomer. The decoupling parameter extracted for the $1/2^+[411]$ band lies in the trend known for the odd-A Tm, Lu and Ta isotopes in the region. The small energy spacing of $\Delta E = 2.4$ keV was also deduced between the $I = 1/2$ and $3/2$ states in the $1/2^+[411]$ band. The unobserved $I = 1/2, 1/2^+[411]$ bandhead is expected to decay to the $7/2^+[404]$ ground state via $M3$ or higher multipole transitions, with a long half-life in the millisecond range.

We thank G. Sletten for the preparation of the 186W target and Y.R. Shimizu for the theoretical calculation. We also thank the staff of the JAEA tandem accelerator facility for providing the 18O beam.

References

1. C. Wheldon et al., Eur. Phys. J. A 20, 365 (2004).
2. T. Shizuma et al., Eur. Phys. J. A 20, 207 (2004).
3. T. Shizuma et al., Phys. Rev. C 71, 067301 (2005).
4. Zs. Podolyák et al., Phys. Lett. B 491, 225 (2000).
5. T. Shizuma et al., Eur. Phys. J. A 30, 391 (2006).
6. T. Ishii et al., Phys. Rev. C 72, 021301(R) (2005).
7. T. Ishii et al., J. Phys. Soc. Jpn. 75, 043201 (2006).
8. T. Ishii et al., Phys. Rev. C 76, 011303(R) (2007).
9. S. Takeuchi et al., Nucl. Instrum. Methods Phys. Res. A 382, 153 (1996).
10. G. Løvøiden et al., Phys. Scr. 22, 203 (1980).
11. C. Wheldon et al., Eur. Phys. J. A 5, 353 (1999).
12. ENSDF, NNDC Online Data Service, ENSDF database, http://www.nndc.bnl.gov/ensdf /.
13. K. Jain et al., Rev. Mod. Phys. 62, 393 (1990).
14. T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985).