ROC Solid: Receiver Operator Characteristic (ROC) Curves as a Foundation for Better Diagnostic Tests

Mark R. J. Junge, BS¹ and Joseph R. Dettori, PhD¹

Keywords
Receiver Operator Curves, ROC, sensitivity, specificity, Area Under the Curve

Introduction
The development of receiver operating characteristic (ROC) curves comes out of signal detection theory, which arose in part as a method to improve the accuracy of radar detection during World War II. With early radar technology, radar operators experienced difficulty distinguishing between “noise” (eg, birds or other environmental objects) and actual enemy aircraft. ROC curves provided both qualitative and quantitative approaches for improving the sensitivity of uncertain events. Later, it became useful in the field of psychophysics. More recently, the technique has been widely used in diagnostic test evaluation. A simple PubMed search reveals that the use of ROC curves in spine research has markedly increased in recent years (Figure 1).

Characteristics of Diagnostic Tests
When evaluating diagnostic tests, one is concerned with both confirming the presence of disease and ruling out disease in healthy individuals. In situations where the outcome of the diagnostic test is dichotomous (positive or negative test result), the conventional approach to assess accuracy of the test is to use sensitivity and specificity compared with a gold standard. This is described using a 2-by-2 table. As Table 1 shows, the columns represent the true status of a disease as assessed by a gold standard. The rows represent the dichotomous outcome of the test result. Cell A contains true positives (TP), individuals with the disease and a positive test result. Cell D represents true negatives (TN), individuals that do not have the disease and the test agrees. Cell B identifies false positives (FP), individuals without disease but for whom the test indicates “disease.” Cell C has the false negatives (FN). The objective is to maximize the true results (cells A and D) and minimize the number false results (cells B and C), which are also commonly referred to as Type I and Type II errors, respectively.

Following from the 2-by-2 table, the primary statistical measures evaluating diagnostic tests are captured in the ratios defined in Table 2.

Figure 1. Number of publications incorporating the use of ROC curves in spine research.

Note that sensitivity and specificity are concerned with the accuracy of a test relative to a reference standard (ie, does the test correspond to the results of the reference standard?). In contrast, positive predictive value (PPV) and negative predictive value (NPV) are concerned with people being assessed (ie, if the person’s test yields a positive or negative result, what is the probability that that person has or does not have the disease?).

Example
Smids et al⁴ evaluated the diagnostic value of magnetic resonance imaging in diagnosing spondylodiscitis in 68 patients. Their results are found in Tables 3 and 4.

Corresponding Author:
Mark R. J. Junge, Spectrum Research, Inc Box 88998, Steilacoom, WA 98388, USA.
Email: jungem12@uw.edu

¹ Spectrum Research, Inc, Steilacoom, WA, USA

Creative Commons Non Commercial No Derivs CC BY-NC-ND: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Conclusion

Using magnetic resonance imaging to diagnose spondylodiscitis results in a moderate sensitivity, missing 33% of the cases (false negative). If a patient is tested positive, the PPV indicates that there is a high probability (92%) that he/she has the disease. However, if the person has a negative test, the NPV suggests that there is a 50% chance that he/she still has the disease.

ROC Curves

Underlying Concept

In the previous section, we discussed the sensitivity and specificity that rely on a single cutoff to classify a test result as positive or negative. But what if the outcome of a test is continuous or ordinal with the possibility of many different cutoffs? How do we determine the best cutoff in this case?

To better understand the dynamics between sensitivity and specificity, it helps to consider the *ideal* diagnostic test. An ideal diagnostic test would be one that returns positive for all patients who are indeed positive (perfect sensitivity or 100% sensitive) while also returning negative for all of the patients that are indeed negative (perfect specificity or 100% specific). Figure 2 illustrates the distribution of test results for each population in an ideal diagnostic test with the area below the curve representing the proportion of patients that received the score as measured along the horizontal axis. For any continuous scaled test, there is likely to be some variation in both groups centered on an average; thus, when plotted it is typical to observe the usual bell-shape. The overarching goal of the test is to systematically ascribe a discrete diagnosis from these naturally ranging values. In the ideal diagnostic test there exists a cutoff value (CV) that separates the 2 populations, positive and negative patients, with no overlap.

Realistically, often tests fall short of the ideal scenario with perfect detection being unfeasible. Frequently the test result distributions look more like Figure 3. Diagnosis is now complicated by the existence of *false regions* (FN and FP) that appear on either side of the CV line. Here positive patients are being identified as negative and negative patients identified as positive.

Table 1. Two-by-Two Table in Evaluating Diagnostic Tests.

Disease Status	Positive	Negative	Total
Test Results			
Positive	A—True positive (TP)	B—False positive (FP)	Total test positive
Negative	C—False negative (FN)	D—True negative (TN)	Total test negative
Total	Total_disease	Total_non-disease	Total

Table 2. Definition, Related Terms, and and Formula of Key Concepts.

Terminology	Equivalent	Definition	Formula
Sensitivity	True positive (TP) rate	Proportion of positive patients who are accurately diagnosed as positive	\(\frac{A}{A+C} = \frac{TP}{TP+FN} \)
Specificity	True negative (TN) rate	Proportion of negative patients who are accurately diagnosed as negative	\(\frac{D}{D+B} = \frac{TN}{TN+FP} \)
Type I error (1 – Specificity)	False positive (FP) rate	Proportion of negative patients who are inaccurately diagnosed as positive	\(\frac{B}{D+B} = \frac{FP}{TN+FP} = (1 – TN) \)
Type II error (1 – Sensitivity)	False negative (FN) rate	Proportion of positive patients who are inaccurately diagnosed as negative	\(\frac{C}{A+C} = \frac{FN}{TP+FN} = (1 – TP) \)
Positive predictive value (PPV)	Positive precision	The proportion of patients with a positive test that actually have disease	\(\frac{A}{A+B} = \frac{TP}{TP+FP} \)
Negative predictive value (NPV)	Negative precision	The proportion of patients with a negative test that are truly disease free	\(\frac{D}{D+C} = \frac{TN}{TN+FN} \)

Table 3. Results From Smids et al

Disease Status	Positive	Negative	Total
Test results			
Positive	33	3	36
Negative	16	16	32
Total	49	19	68

Table 4. Statistics From Smids et al

Statistic	Formula	Result
Sensitivity	\(\frac{(A+C)}{B} \)	33/49 = 67%
Specificity	\(\frac{(B+D)}{B} \)	16/19 = 84%
PPV	\(\frac{(A+B)}{A} \)	33/36 = 92%
NPV	\(\frac{(C+D)}{D} \)	16/32 = 50%

Abbreviations: PPV, positive predictive value; NPV, negative predictive value.
There is the possibility of reducing the amount of false read-

ings for a particular positive/negative group; however, it comes

at the cost of increasing the number of false readings for the

other positive/negative group. In Figure 3, moving, for exam-

ple, the CV to the left, the number of false negatives (FN) will

decrease, that is, patients who are in fact positive will be more

likely classified correctly as such. Put another way, true posi-

tives (TP) will be detected with greater sensitivity. At the same

time though, moving the CV to the left leads to more negative

patients falsely testing positive (FP). By shifting the CV to the

right, the opposite is also true. Here lies the driving principle

behind the ROC curve.

Definition of ROC Curve

An ROC curve describes the relationship between the sen-

sitivity and specificity of a test by plotting the two against

one another while varying the CV, which determines the

outcome of a test. The two are inversely related—as one

increases the other decreases. Conventionally, since both

values range between 0 and 1, the sensitivity (true positive

rate) is plotted against 1 minus the specificity (false pos-

itive rate). The plot is, therefore, in essence, a representa-

tion of the tradeoff between detecting true and false

positive cases.

Figure 4 shows the derivation of an ROC curve (right) for a

moderately well-performing test. From the distribution of test

scores there is a clear overlap that indicates the inevitable

presence of false regions. The placement of the CV line deter-

mines how the total error is distributed. Placing the CV at Point

E, there is a 0 FP rate and 0 TP rate (sensitivity). Therefore, the

test has no applicable value—everyone is testing negative.

Likewise, at the other extreme (Point A), the sensitivity is 1

and the FP rate approaches 1. The optimal balance lies some-

where between the two, such as Point C where the majority of

patients are receiving accurate results. The overall contour of

the ROC curve is dictated by the overlap of the 2 patient popu-

lations test scores distributions.

Applications and Analysis Using ROC Curves

Example

Suppose it is necessary to determine if a patient is suffering

from Disease X. There is a test available that returns a score

between 0 and 100. Further suppose that from an earlier study it

was found that patients with Disease X received an average of

70 (95% confidence interval = 40-100) and patients who did

not have Disease X had a mean score of 35 (95% confidence

interval = 10-60). The distributions of test result for Disease X

are depicted in Figure 5. In this example, there are patients

without the disease who scored higher than those with the
disease and vice versa. What CV should be chosen to determine

if the patient has Disease X or not?
Conclusion

When setting the CV = 50 the errors are optimally balanced; however, there will continue to be both false positives and false negatives. Administrators of the test could decide that circumstances suggest a more appropriate CV would be 40. By doing so, the test would capture the vast majority of patients with Disease X. However, it would also mean more patients who do not have Disease X would test positive. Alternatively, shifting the CV to 60 would mean almost no patients without the disease would test positive, yet at the same time more would go undiagnosed. Therefore, setting the best CV may involve additional considerations.

Choosing the Cutoff Value

A number of statistical software packages can be used to mathematically determine the “optimal” CV—the value that numerically maximizes sensitivity and specificity. However, as seen from the example above, the question of “optimal” is often less a mathematical one and more so a clinical matter. Many factors should be considered when defining the most appropriate CV. The invasiveness of subsequent interventions, the loss of health caused by a false negative result, the financial cost of treatment along with other considerations should be made. If the health consequences are high from missing a positive diagnosis (a false negative), it stands to reason that the CV should be set lower, thereby creating less false negatives and increasing the sensitivity and positive predictive value. Conversely, if the medical intervention following a false positive is painfully invasive or comes at a high financial cost, then there exists an argument for increasing the CV so that there are less false positives. Ultimately, it is a balancing act that involves considering the impact of many competing assumptions, but this is precisely why the ROC curve is a valuable tool.

Reading the Curve

ROC curves serve many functions. They can help determine the optimal CV; provide a logical, qualitative comparison for...
competing tests; and assess the accuracy and validity of a diagnostic test. When working in the ROC space the uppermost left-hand corner (coordinate [0, 1]) is the optimal point. It is here that the sensitivity and specificity both equal 1 (remembering that the horizontal axis measures 1 minus Sensitivity). Furthermore, no ROC curve will ever cross below the 45° line (the random chance line), recognizing that even without any test, patients could be classified with at least 50% accuracy. Figure 6 contains 3 ROC curves—I, II, and III. Curve I represents a very strong test, Curve II a moderate test, and Curve III is a test of no utility. Possible distributions from which the ROC curves are derived from are given on the left.

Area Under the Curve (AUC)

An important feature of ROC curves is that they can naturally be reduced to a single quantitative, index measure for assessing the performance of a diagnostic test. ROC curves occupy the upper diagonal half of the unit square. As the shape of the curve approaches the upper left corner [0, 1], the sensitivity and specificity both are approaching 1 and the area under the curve (AUC) similarly approaches 1. As the true positive rate and false positive rate approach each other—anywhere along the 45° line—the AUC approaches its minimum 0.5. It follows that the AUC will always be between 0.5, a test that performs equally well as assigning a diagnosis at random, and 1.0, an ideal diagnostic test that correctly classifies all patients.

Precautions in Reading the Curve

Sensitivity and specificity are influenced by many factors. Any bias that affects either of these 2 values will in turn affect the shape of the ROC curve. Of first and foremost concern relates to the decisions surrounding the derivation and selection of the gold standard, the measure of which all subsequent measures are based on. If an imprecise or inaccurate gold standard is used, the shape of the curve will be biased. In addition, verification and selection bias should also be reviewed both relating to a consistency of care that is given in an independent manner. And last, test review bias, where the one administering the test has a preconceived notion of the outcome.

Summary

- An ROC curve describes the relationship between the sensitivity and specificity of a test by plotting the two against one another while varying the CV. It is helpful when the outcome of a diagnostic test is continuous or ordinal.
- The key to an effective diagnostic test is to accurately classify 2 distinct populations into their respective groups of diseased versus nondiseased. Choosing the optimum CV is a tradeoff between the sensitivity (true positive rate) and the false positive rate.
- ROC curves are an important tool in evaluating the shape of uncertainty and are a valuable method in characterizing the strengths and weaknesses of diagnostic tests.
- The AUC provides a single quantitative, index measure for assessing the performance of a diagnostic test. They also provide an intuitive, qualitative assessment of the interrelated dynamics influencing decisions behind diagnostic tests. Their effectiveness spans multiple fields of study and their presence in modern diagnostic analysis is likely only to grow.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Spectrum Research, Inc. received financial support for the writing of this article.

References

1. Marcum JI. A Statistical Theory of Target Detection by Pulsed Radar. Santa Monica, CA: RAND Corporation; 1947. https://www.rand.org/pubs/research_memoranda/RM754.html. Accessed December 29, 2017.

2. Peterson W, Birdsall T, Fox W. The theory of signal detectability. Trans IRE Prof Group Inform Theory. 1954;4:171-212.

3. Green DM, Swets JA. Signal Detection Theory and Psychophysics. Oxford, England: John Wiley; 1966.

4. Smids C, Kouijzer IJ, Vos FJ, et al. A comparison of the diagnostic value of MRI and 18F-FDG-PET/CT in suspected spondylodiscitis. Infection. 2017;45:41-49.

5. Zhou XH, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. 2nd ed. Hoboken, NJ: Wiley; 2011: 545.