Research Article

Understanding a Single-Li-Ion COF Conductor for Being Dendrite Free in a Li-Organic Battery

Yongjiang Sun, Genfu Zhao, Yao Fu, Yongxin Yang, Conghui Zhang, Qi An, and Hong Guo

School of Materials and Energy, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, China

Correspondence should be addressed to Genfu Zhao; 1165158114@qq.com and Hong Guo; guohong@ynu.edu.cn

Received 16 June 2022; Accepted 13 September 2022; Published 6 October 2022

Copyright ©2022 Yongjiang Sun et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0).

In addition to improving ion conductivity and the transference number, single-Li-ion conductors (SLCs) also enable the elimination of interfacial side reactions and concentration difference polarization. Therefore, the SLCs can achieve high performance in solid-state batteries with Li metal as anode and organic molecule as cathode. Covalent organic frameworks (COFs) are leading candidates for constructing SLCs because of the excellent 1D channels and accurate chemical-modification skeleton. Herein, various contents of lithium-sulfonated covalently anchored COFs (denoted as LiO$_3$S-COF1 and LiO$_3$S-COF2) are controllably synthesized as SLCs. Due to the directional ion channels, high Li contents, and single-ion frameworks, LiO$_3$S-COF2 shows exceptional Li-ion conductivity of $5.47 \times 10^{-5} \text{ S cm}^{-1}$, high transference number of 0.93, and low activation energy of 0.15 eV at room temperature. Such preeminent Li-ion-transported properties of LiO$_3$S-COF2 permit stable Li$^+$ plating/stripping in a symmetric lithium metal battery, effectively impeding the Li dendrite growth in a liquid cell. Moreover, the designed quasi-solid-state cell (organic anthraquinone (AQ) as cathode, Li metal as anode, and LiO$_3$S-COF2 as electrolyte) shows high-capacity retention and rate behavior. Consequently, LiO$_3$S-COF2 implies a potential value restraining the dissolution of small organic molecules and Li dendrite growth.

1. Introduction

Due to the high mechanical strength and inflammable features of solid-state electrolytes (SSEs), the solid-state Li metal batteries matched cathode materials with highly specific capacity and SSEs can achieve high-energy density and safety properties. Therefore, SSEs play a crucial role in realizing solid-state batteries [1–5]. Among various SSEs, single-Li$^+$ conductors (SLCs) show high ion conductivity and transference number. Moreover, the polarization of concentration difference can be addressed because there are no randomly removable anion and solvent in SLCs. Notably, the multiple species of freely mobile anion and solvent molecule inevitably trigger ununiform Li$^+$ deposition and dendrite formation on the Li metal surface [6–9]. Consequently, designing and constructing advanced SLCs without anion and solvent are urgently needed.

Two-dimensional covalent organic frameworks (COFs) are popular crystalline materials and show a larger surface area, adjustable skeleton, and easily chemical modification [10–15]. Significantly, the active groups or units are effectively locked into the skeleton of COFs, satisfying a variety of applications [16–21]. These outstanding characteristics provide an ideal setting for creating Li$^+$ conductors with high ion conductivity and transference number [22–24]. Consequently, COFs have been intensively investigated as advanced Li$^+$ SSEs in recent years [25–34].

Although COF-based SLCs have been reported and studied such as TpPa-SO$_3$Li with ion conductivity of $2.7 \times 10^{-5} \text{ S cm}^{-1}$ and transference number of 0.9 [32] as well as LiCON-3 with ion conductivity of $3.21 \times 10^{-5} \text{ S cm}^{-1}$ and transference number of 0.92 [33], the ion conductivity and transference number are still far below expectations. The main reason is that finite active site is anchored onto COFs, generating a lower Li$^+$ content [35, 36]. Besides, these Li$^+$-conducting COFs are established by injecting Li salts or solvent molecules into the frameworks (Figure S1a and 1b), resulting in anion-caused interfacial side reactions, which impedes the Li$^+$ movement [37–39]. Furthermore, the multicomponent of solvent and anion in the COF-based
SSEs might generate ambiguously interfacial reaction mechanism [40–42]. Therefore, it is critically necessary to accurately modify and design a multiactive center for increasing ion conductivity and transference number. Herein, we designed various COF-based SLCs by covalent modification of active-site SO_3Li into the pores of COFs without additional padding Li salts (Figure S1c). The synthetic route and chemical structure of single-ion COF conductors ($\text{LiO}_3\text{S-COF1}$ and $\text{LiO}_3\text{S-COF2}$) are provided in Figure 1. Particularly, the anionic framework could avoid the interfacial side-reaction and restrain dendrite growth. As a result, $\text{LiO}_3\text{S-COF2}$ permits stable Li^+ plating/stripping in Li/Li symmetric battery. Furthermore, the Li^+ migration’s dynamics and distance are improved. It leads to big ion...
conductivity and small activation energy. The Li\(^{+}\) migration behaviors are fully deduced by DFT theoretical calculation. Moreover, the electrolyte is successfully implemented in solid-state organic Li battery. This strategy can hinder Li dendrite growth and avoid the organic cathode dissolution, leading to excellently cyclic and rate performances. We therefore anticipate that this study will lead to the development of a new technology that will enable COF-based single-ion conductors in solid-state batteries.

2. Results and Discussions

2.1. Structural and Morphological Characterizations. As shown in Figures 1(a) and 1(b), LiO\(_3\)S-COF1 and LiO\(_3\)S-COF2 are synthesized by condensation 1,3,5-triformylphloroglucinol (Tp), 2,5-diaminobenzenesulfonic acid (Pa-1SO\(_3\)H), and 2,5-diaminobenzene-1,4-disulfonic acid (Pa-2SO\(_3\)H) at mixed solvents of mesitylene, 1,4-dioxane, and CH\(_3\)COOH. Subsequently, the sulfonic acid groups are easily reacted with Li\(^{+}\) to form lithium-sulfonated COFs of LiO\(_3\)S-COF1 and LiO\(_3\)S-COF2. Both the intermediate products of HO\(_3\)S-COF1 and HO\(_3\)S-COF2 are connected by the C-N bond. Therefore, the characteristic peak of C-N is detected by the Fourier transform infrared (FT-IR) spectrum. Figure S2-S3 display obvious peaks for HO\(_3\)S-COF1 and HO\(_3\)S-COF2. It is ascribed to the stretching vibration of C-N [43]. The C-N bonds indicate successful condensation reaction between −CHO and −NH\(_2\) groups and complete conversion into COFs. Moreover, the complete chemical conversion is further proved by the C=C bonds (1572 cm\(^{-1}\) for HO\(_3\)S-COF1 and 1576 cm\(^{-1}\) for HO3S-COF2) [44, 45].

The crystallinity of obtained HO\(_3\)S-COF1 and HO\(_3\)S-COF2 is investigated with powder X-ray diffraction (PXRD) measurements. For HO\(_3\)S-COF1, Figure 2(a) shows three obvious peaks at 2θ of 4.76, 8.05, and 26.4°. They are attributed to the (100), (110), and (001) faces [43]. For further study structure, Pawley refinement is implemented. Low values of R\(_{wp}\) = 2.67% and R\(_p\) = 2.08% (Figure 2(a), pink) suggest high in accordance with experiment (Figure 2(a), green). In comparison with alternative AA and AB models, the HO\(_3\)S-COF1 adopts the AA stacking (Figure S4). No peaks of starting materials of Tp and Pa-1SO\(_3\)H appear in HO\(_3\)S-COF1 (Figure S5), demonstrating complete conversion. Consequently, the synthesis of the targeted sample of LiO\(_3\)S-COF1 is implemented by suspending the HO\(_3\)S-COF1 and Li\(_2\)CO\(_3\). The LiO\(_3\)S-COF1 (Figure S6) has similar PXRD with HO\(_3\)S-COF1 after replacement of H atom by Li\(^{+}\). For the HO\(_3\)S-COF2, two obvious peaks at
4.49 and 26.12° can be observed in Figure 2(b). The two peaks are attributed to (100) and (001) faces [46, 47]. Moreover, the Pawley refinement (Figure 2(b), pink) with low values of $R_{wp} = 2.57\%$ and $R_p = 1.98\%$ indicates a good structure consistent with experimental data (Figure 2(b), green). HO$_3$S-COF2 has AA stacking structure (Figure S7). No peaks of starting materials of Tp and Pa-2SO$_3$H exist in the HO$_3$S-COF2 (Figure S8). And the PXRD pattern of lithium-sulfonated LiO$_3$S-COF2 has a similar profile to HO$_3$S-COF2 (Figure S9). Moreover, the solid-state 13C NMR for HO$_3$S-COF1 (Figure 2(c)) and HO$_3$S-COF2 (Figure 2(d)) can further prove the C=O at ~ 174 ppm and C-N bond at ~ 137 ppm. The solid-state 13C NMR result is consistent with the aforementioned analyses, indicating the successful preparation of sulfonated COF materials.

The porosity of prepared COFs is investigated by N$_2$ sorption/desorption isotherms. The samples of HO$_3$S-COF1 and HO$_3$S-COF2 show a surface area of 109 and 114 m2/g$^{-1}$ according to N$_2$ sorption/desorption isotherms at 77 K (Figures 2(e) and 2(f)), respectively. The HO$_3$S-COF1 and HO$_3$S-COF2 (Figures 2(e) and 2(f) inset) exhibit a micropore feature with a cavity size of 1.3 nm. The value is in high accordance with the simulated model (Figures 1(c) and 1(d)). X-ray photoelectron spectroscopy (XPS) is applied to detect the element species of COFs. The XPS spectra of S 2p of COFs (Figure S10–13) suggest the complete structure of COFs. Moreover, the Li 1s for LiO$_3$S-COF1 and LiO$_3$S-COF2 (Figure S14–15) reveals that the LiO$_3$S-COF2 sample has higher Li content than that of the LiO$_3$S-COF1. The Li content can be further proved by inductively coupled plasma detection for LiO$_3$S-COF1 (2.01 wt%) and LiO$_3$S-COF2 (2.89 wt%). Thermogravimetric analysis (TGA) of LiO$_3$S-COF1 and LiO$_3$S-COF2 (Figure S16) indicates high thermal stability.

The microstructures of prepared COFs are studied by a scanning electron microscope (SEM) and transmission electron micrographs (TEM). Wirelike micrographs of HO$_3$S-COF1 can be found in SEM and TEM images (Figure S17a–d). After lithiation, the wirelike morphology is not changed (Figure S17b–d) and the high-resolution TEM of the LiO$_3$S-COF1 image shows a smooth structure, indicating no Li metal nanoparticles or clusters on the LiO$_3$S-COF1 surface. The EDS mappings of LiO$_3$S-COF1 can also suggest that the elements are uniformly distributed (Figure S17g–l). For the HO$_3$S-COF2 and LiO$_3$S-COF2, a similar morphology can be observed in SEM and TEM images (Figures 3(a)–3(f)). In addition, the C, N, O, and S elements are uniformly distributed (Figures 3(g)–3(l)).
obvious micrograph changes of the prepared COF before and after lithiation suggest outstanding structure stability.

2.2. Electrochemical Performances. According to the above result, the SLCs of LiO$_3$S-COFn are successfully synthesized. In order to detect the chemical environment of Li$^+$ in LiO$_3$S-COF2, the solid-state 7Li NMR spectrum is used and illustrates a singlet at 1.03 ppm (Figure 4(a)). This result proves an equivalent chemical environment [33, 34]. In addition, the single peak demonstrates Li$^+$ dissociation, fast diffusion, and migration [48]. The electrochemical performance for LiO$_3$S-COF2 is studied. The self-standing pellet is obtained by the cold-pressing method. Electrochemical impedance spectroscopy (EIS) is employed to investigate the Li$^+$ transportation ability of LiO$_3$S-COF2. Nyquist plots of LiO$_3$S-COF2 are recorded under various temperatures (20 to 80°C) (Figure 4(b)). The EIS curve shows a semicircular profile made by plots of real component (Z) versus the frequency.

Figure 4: Solid-state 7Li NMR characterization of LiO$_3$S-COF2 solid-state electrolyte (a); EIS measurements made over a range of temperatures from 20 to 80°C (b); the Arrhenius plot of ionic conductivity as a function of temperature for LiO$_3$S-COF1 and LiO$_3$S-COF2 (c); comparison of the Li-ion transference number of our study with other works (d); Li stripping-plating test of Li | LiO$_3$S-COF2 | Li at the current density of 50 μA cm$^{-2}$ for 1 h per cycle (e); cycling performance of AQ | LiO$_3$S-COF2 | Li and AQ | LiTFSI | Li batteries at the current density of 500 mA g$^{-1}$ (f).
imaginary component \((Z'') \). Based on curves, the calculated resistances of \(\text{LiO}_3\text{S-COF2} \) are 450, 365, 202, 81, 62, and 40 \(\Omega \) at 20, 30, 40, 50, 60, 70, and 80°C, respectively. Accordingly, the investigated \(\text{Li}^+ \) conductivities are \(4.46 \times 10^{-5} \), \(5.47 \times 10^{-5} \), \(9.9 \times 10^{-5} \), \(1.63 \times 10^{-4} \), \(2.47 \times 10^{-4} \), \(3.23 \times 10^{-4} \), and \(5.06 \times 10^{-4} \) S cm\(^{-1} \) at 20, 30, 40, 50, 60, 70, and 80°C, respectively, according to the impedance result and equation (described in the Supporting Information). It is worth noticing that the \(\text{LiO}_3\text{S-COF2} \) shows a high \(\text{Li}^+ \) conductivity of \(5.06 \times 10^{-4} \) S cm\(^{-1} \) at 80°C.

For the \(\text{LiO}_3\text{S-COF1} \), the EIS is displayed in Figure S18. It is obviously found that \(\text{LiO}_3\text{S-COF1} \) exhibits larger resistances than \(\text{LiO}_3\text{S-COF2} \). Consequently, the calculated \(\text{Li}^+ \) conductivity at 20°C is \(2.67 \times 10^{-5} \) S cm\(^{-1} \) according to impedance results as shown in Table S1. According to the Arrhenius plots (Figure 4(c)), \(\text{LiO}_3\text{S-COF2} \) and \(\text{LiO}_3\text{S-COF1} \) show low \(\text{Ea} \) value of 0.15 eV and 0.18 eV, respectively. The obtained small \(\text{Ea} \) is adjacent to other \(\text{Li}^+ \) conductors, certifying the directional \(\text{Li}^+ \) migration channel. \(\text{LiO}_3\text{S-COF2} \) has Higher transference number \((\text{Li}^+) \) is measured to be 0.93 for \(\text{LiO}_3\text{S-COF2} \) and 0.91 for \(\text{LiO}_3\text{S-COF1} \) (Figure S19) at 20°C using potentiostatic polarization means, demonstrating \(\text{Li}^+ \) contribution to the ion conductivity [49]. Besides, the electrochemical window is studied by the linear sweep voltammetry (LSV). The LSV is recorded under a sweep rate of 10 mV s\(^{-1} \) in a voltage range from 0.5 to 6.0 V (vs. \(\text{Li} / \text{Li}^+ \)) at room temperature. As demonstrated in Figure S20, the current density keeps constant until the voltage is a higher than 4.3 V for \(\text{LiO}_3\text{S-COF2} \). Thus, \(\text{LiO}_3\text{S-COF2} \) exhibits an electrochemical window of 4.3 V than \(\text{LiO}_3\text{S-COF1} \) (4 V) within published work [33], indicating a wide range of working voltage. The \(\text{Ea} \), \(\text{Li}^+ \) conductivity, and \(t_{\text{Li}^+} \) for \(\text{LiO}_3\text{S-COF1} \) and \(\text{LiO}_3\text{S-COF2} \) are compared and displayed in Table S1. The \(\text{LiO}_3\text{S-COF2} \) conductor shows better electrochemical behaviors than \(\text{LiO}_3\text{S-COF1} \), mainly caused by the more active-center content on the \(\text{LiO}_3\text{S-COF2} \). More notably, the comparison of \(\text{Li}^+ \) conductivity, \(\text{Ea} \), and \(t_{\text{Li}^+} \) indicates distinctly better electrochemical performance for \(\text{LiO}_3\text{S-COF2} \) than other reported materials (Table S2). Compared with Li ion conductors with propylene carbonate (PC), ethylene carbonate (EC) solvent, and Li salt (Table S2), \(\text{LiO}_3\text{S-COF2} \) presents remarkable \(\text{Li}^+ \) conductivity. This is because \(\text{LiO}_3\text{S-COF2} \) has numerous easily accessible sites and well-designed directional \(\text{Li}^+ \) ion channel. \(\text{LiO}_3\text{S-COF2} \) has Higher \(t_{\text{Li}^+} \) than others (Figure 4(d)), implying that it has outstanding single-\(\text{Li}^+ \) conducting behavior.

We further assess the application of \(\text{LiO}_3\text{S-COF2} \) in solid-state Li metal batteries. The prepared \(\text{LiO}_3\text{S-COF2} \) SSE film shows high flexibility (exhibited in Figure 4(e) inset). As shown in Figure 4(e), the Li metal electrode assembled by symmetric lithium metal battery configuration (inset of Figure 4(e)) is made to assess the practical use of the \(\text{LiO}_3\text{S-COF2} \) conductor. So, the galvanostatic Li plating/stripping is studied under a current density of 50 μA cm\(^{-2} \) for 1 h each cycle. Figure 4(e) demonstrates stable Li plating/stripping behaviors more than 450 h without obvious fluctuation of potential. The prominent result is caused by the single-Li-ion-conducting behavior. The stability of the framework for \(\text{LiO}_3\text{S-COF2} \) after electrochemical measurement is investigated by PXRD and FT-IR. From the FT-IR (Figure S21) and PXRD (Figure S22) patterns before and after the test, no obvious changes can be observed. This result implies that \(\text{LiO}_3\text{S-COF2} \) has excellent skeleton stability.

The potential application of \(\text{LiO}_3\text{S-COF2} \) is further evaluated by constructing an organic battery. Universally, the organic carbonyl cathodes cause plentiful attentions in green electrode for rechargeable Li-ion batteries [50–52], as these compounds show eco-friendly and renewable great preponderance. However, the dissolution of this electrode material in liquid electrolyte will inevitably cause fast decay of specific capacity and hinder cyclability and rate behaviors. This issue could be resolved by fabricating solid-state batteries. Therefore, the performance of \(\text{LiO}_3\text{S-COF2} \) is further evaluated in the Li-organic battery. The organic battery is made of Li metal as anode and anthraquinone (AQ) as cathode. The AQ has ultrahigh capacity in traditional LIBs. Nevertheless, the capacity of AQ cathode decays distinctly and shows poor performances. This issue can be worked out in the solid-state LIBs [33]. Therefore, we assemble AQ | \(\text{LiO}_3\text{S-COF2} \) | Li solid cell and measure its electrochemical performances. Liquid electrolyte (10 μL LiPF\(_6\) in EC/DEC v/v = 1 : 1) is added to the electrode surface to improve interface contact [30]. Figure S23 exhibits the galvanostatic charging-discharging curves at a current density of 500 mA g\(^{-1} \), lightly lower than the liquid cell AQ | LiTFSI | Li with 278 mA g\(^{-1} \). Additionally, the AQ | \(\text{LiO}_3\text{S-COF2} \) | Li has better rate behaviors (Figure S24) and cycling stability (Figure 4(f)) than AQ | LiTFSI | Li battery (Figure 4(f) and Figure S25). The excellent cycling stability of AQ[\(\text{LiO}_3\text{S-COF2}\)Li is caused by restraining the dissolution of AQ cathode in liquid electrolyte.

Li dendrite growth and dead Li on the Li metal electrode surface are the major threats and challenges of Li metal batteries. Therefore, the surface morphology of Li metal electrodes in a symmetric battery, quasi-state-solid battery, and liquid battery is investigated by SEM technique. As shown in Figure 5(a), for the Li metal surface of symmetric battery Li | \(\text{LiO}_3\text{S-COF2} \) | Li, no dead Li can be observed. The result suggests that Li-ion is uniformly deposited to the surface of metal Li in \(\text{LiO}_3\text{S-COF2} \). For the AQ | LiTFSI | Li liquid battery, the inhomogeneous Li deposition is obviously observed by SEM after cycling (Figure 5(b)). That is because there is no functional material to guide the uniform Li-ion flux (Figure S26a). However, due to the well-defined channels, COF materials can achieve uniform Li\(^+\) deposition (Figure S26b). Hence, no dead Li or dendrite after cycles for AQ|\(\text{LiO}_3\text{S-COF2}\)|Li is supported by SEM (Figure 5(c)), implying homogeneous Li\(^+\) deposition. The aforementioned phenomenon demonstrates that \(\text{LiO}_3\text{S-COF2} \) displays well-done single-Li-ion conductor behavior, which can avoid unwanted side reactions [37–40]. As a consequence, the single-Li-ion conductor \(\text{LiO}_3\text{S-COF2} \) has potential value in a solid-state Li metal battery.

2.3. Mechanism Studies. The density functional theory (DFT) calculation is carried out to study the Li-ion
migration routes in LiO₃S-COF2. LiO₃S-COF2 is a 2D-extended material. Generally, two routes are parallel and perpendicular for Li⁺ migration, which are divided into planar and axial approaches (Figures 6(a) and 6(b)), respectively. Different pathways for Li⁺ migration are expounded by evaluation of migratory barriers at rate-determining steps for planar and axial. Figure S27 shows the optimized Li⁺ geometries. The oxygen atom of keto-form groups in COF promotes for the migration of Li⁺ via the cation-dipole interaction [53, 54]. As shown in Figures 6(d) and 6(f), axial shows a lower migratory barrier of 0.245 eV than planar of 0.85 eV (Figures 6(c) and 6(e)). Some conditions are beneficial for Li⁺ migration with axial. Firstly, the pore of LiO₃S-COF2 results in an entered condition than interplanar distance. The pore size (1.3 nm) of LiO₃S-COF2 is larger than the Li⁺ radius (0.076 nm) than interplanar distance (0.48 nm), as shown in Figure S27. Therefore, Li-ion migrates in the pore. Secondly, the distance of the axial pathway is shorter than the planar pathway (Figure S28). Beyond all question, the C=O groups provide electrostatic interaction and accelerate the dissociation of SO_3Li^-, which plays an important role for promoting Li⁺ migration. To sum up, the above theoretical analyses and experimental results demonstrate that Li⁺
directionally transports across the stacked channel of LiO$_2$S-COF2 under the reliable assistance of O atoms and the π-electronic system.

3. Conclusion

In conclusion, a novel lithium-sulfonated covalent organic framework is successfully prepared as single-Li$^+$ SSE. The active center of –SO$_2$Li is covalently tethered into the 1D porous channel of COF to achieve single-ion behaviors. The unique framework structure and abundant active centers are beneficial for Li$^+$ migration. Thus, LiO$_2$S-COF2 has high conductivity and transference number. Li-ion migration behaviors and routes are thoroughly studied and illustrated using DFT. Based on directional ion channel, the Li-ion conductor has exceptional electrochemical performance in quasi-solid-state batteries. This strategy can solve the crucial issue of the organic cathode dissolution in liquid electrolyte. Therefore, our work might accelerate the advancement of COF-based solid-state electrolyte.

4. Materials and Methods

4.1. Chemicals. The chemical reagents and characterized apparatus are described in the supporting information.

4.2. Electrochemical Measurements. All the electrochemical measurements are provided in the supporting information.

Data Availability

The data used to support the findings of this study are included within the article and the supplementary information file.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Authors’ Contributions

Y.J. conceived and supervised the research. G.F. and Y.F. designed the experiments. Y.X., C.H., and Q.A. performed most of the experiments and data analysis. Y.J. and Q.A. participated in various aspects of the experiments and discussions and performed TEM experiments. Y.J., G.F., and H.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Acknowledgments

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (52064049), Key National Natural Science Foundation of Yunnan Province (2018FA028 and 2019FY03023), International Joint Research Center for Advanced Energy Materials of Yunnan Province (202003AE140001), and key laboratory of solid state ions for green energy of Yunnan University (2019).

Supplementary Materials

The chemical reagents, characterized instruments, electrochemical tests, DFT calculation details, tables, and other materials are provided in the supporting information. (Supplementary Materials)

References

[1] H. Wang, Y. Sun, Q. Liu et al., “An asymmetric bilayer polymer-ceramic solid electrolyte for high-performance sodium metal batteries,” Journal of Energy Chemistry, vol. 74, pp. 18–25, 2022.
[2] X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, “Toward safe lithium metal anode in rechargeable batteries: a review,” Chemical Reviews, vol. 117, no. 15, pp. 10403–10473, 2017.
[3] L. Kahle, A. Marcolongo, and N. Marzari, “High-throughput computational screening for solid-state Li-ion conductors,” Energy Environmental Science, vol. 13, no. 3, pp. 928–948, 2020.
[4] A. Manthiram, X. Yu, and S. Wang, “Lithium battery chemistries enabled by solid-state electrolytes,” Nature Reviews Materials, vol. 2, no. 4, p. 16103, 2017.
[5] R. Chen, Q. Li, X. Yu, L. Chen, and H. Li, “Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces,” Chemical Reviews, vol. 120, no. 14, pp. 6820–6877, 2020.
[6] H. Zhang, C. Li, M. Piszcz et al., “Single lithium-ion conducting solid polymer electrolytes: advances and perspectives,” Chemical Social Review, vol. 46, no. 3, pp. 797–815, 2017.
[7] N. Meng, F. Lian, and G. Cui, “Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries,” Small, vol. 17, no. 3, pp. 2005762–2005785, 2021.
[8] H.-D. Nguyen, G.-T. Kim, J. Shi et al., “Nanostructured multiblock copolymer single-ion conductors for safer high-performance lithium batteries,” Energy Environmental Science, vol. 11, no. 11, pp. 3298–3309, 2018.
[9] G. Zhao, Z. Mei, L. Duan et al., “COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries,” Carbon Energy, 2022.
[10] P. J. Waller, F. Gándara, and O. M. Yaghi, “Chemistry of covalent organic frameworks,” Accounts. Chemical Research, vol. 48, no. 12, pp. 3053–3063, 2015.
[11] S. Kandambeth, K. Dey, and R. Banerjee, “Covalent organic frameworks: chemistry beyond the structure,” Journal of the American Chemical Society, vol. 141, no. 5, pp. 1807–1822, 2019.
[12] K. Geng, T. He, R. Liu et al., “Covalent organic frameworks: design, synthesis, and functions,” Chemical Reviews, vol. 120, no. 16, pp. 8814–8933, 2020.
[13] Q. An, H. Wang, G. Zhao et al., “Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes,” Energy & Environmental Materials, 2022.
[14] S. Xia, Y. Cai, L. Yao et al., “Nitrogen-rich two-dimensional π-conjugated porous covalent quinazoline polymer for lithium storage,” Energy Storage Materials, vol. 50, pp. 225–233, 2022.
[15] Y. Li, W. Chen, G. Xing, D. Jiang, and L. Chen, “New synthetic strategies toward covalent organic frameworks,” Chemical Socical Review, vol. 49, no. 10, pp. 2852–2868, 2020.
[16] X. Yu, C. Li, J. Chang et al., “Gating effects for ion transport in three-dimensional functionalized covalent organic frameworks,” *Angewandte Chemie International Edition*, vol. 61, no. 13, p. e202200820, 2022.

[17] C. Yuan, X. Wu, R. Gao et al., “Nanochannels of covalent organic frameworks for chiral selective transmembrane transport of amino acids,” *Journal of the American Chemical Society*, vol. 141, no. 51, pp. 20187–20197, 2019.

[18] S. Wang, Q. Wang, P. Shao et al., “Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries,” *Journal of the American Chemical Society*, vol. 139, no. 12, pp. 4258–4261, 2017.

[19] G. Wang, N. Chandrasekhar, B. P. Biswal et al., “A crystalline, 2D polyarylimide cathode for ultrafast and ultrafast Li storage,” *Advanced Materials*, vol. 31, no. 28, pp. 1901478–1901483, 2019.

[20] H. Gao, Q. Zha, A. R. Neale et al., “Integrated covalent organic framework/carbon nanotube composite as Li-ion positive electrode with ultra-high rate performance,” *Advanced Energy Materials*, vol. 11, no. 39, pp. 2011880–2011890, 2021.

[21] Z. Lei, Q. Yang, Y. Xu et al., “Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry,” *Nature Communications*, vol. 9, no. 1, pp. 576–588, 2018.

[22] X. Liang, Y. Tian, Y. Yuan, and Y. Kim, “Ionic covalent organic frameworks for energy devices,” *Advanced Materials*, vol. 33, no. 52, pp. 2105647–2105676, 2021.

[23] X. Li and K. P. Loh, “Recent progress in covalent organic frameworks as solid-state ion conductors,” *ACS Materials Letters*, vol. 1, no. 3, pp. 327–335, 2019.

[24] Z. Gao, Q. Liu, G. Zhao, Y. Sun, and H. Guo, “Covalent organic frameworks for solid-state electrolytes of lithium metal batteries,” *Journal of Materials Chemistry A*, vol. 10, no. 14, pp. 7497–7516, 2022.

[25] W. Sun, J. Zhang, M. Xie et al., “Ultrathin aramid/COF heterolayered membrane for solid-state Li-metal batteries,” *Nano Letters*, vol. 20, no. 11, pp. 8120–8126, 2020.

[26] H. W. Chen, H. Y. Tu, C. J. Hu et al., “Cationic covalent organic framework nanosheets for fast Li-ion conduction,” *Journal of the American Chemical Society*, vol. 140, no. 3, pp. 896–899, 2018.

[27] Z. Li, Z. W. Liu, Z. J. Mu et al., “Cationic covalent organic framework based all-solid-state electrolytes,” *Materials Chemistry Frontiers*, vol. 4, no. 4, p. 11641173, 2020.

[28] S. Ashraf, Y. Zuo, S. Li et al., “Crystalline anionic germanate covalent organic framework for high CO2 selectivity and fast Li ion conduction,” *Chemistry-A European Journal*, vol. 25, no. 59, pp. 13479–13483, 2019.

[29] Z. Li, Z.-W. Liu, Z. Li et al., “Defective 2D covalent organic frameworks for postfunctionalization,” *Advanced Functional Materials*, vol. 30, no. 10, pp. 1909267–1909275, 2020.

[30] C. Niu, W. Luo, C. Dai, C. Yu, and Y. Xu, “High-voltage tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes,” *Angewandte Chemie International Edition*, vol. 60, no. 47, pp. 24915–24923, 2021.

[31] Y. Du, H. Yang, J. M. Whiteley et al., “Ionic covalent organic frameworks with spiroborate linkage,” *Angewandte Chemie International Edition*, vol. 55, no. 5, pp. 1737–1741, 2016.
[48] C. Hu, Y. B. Shen, M. Shen et al., “Superionic conductors via bulk interfacial conduction,” *Journal of the American Chemical Society*, vol. 142, no. 42, pp. 18035–18041, 2020.

[49] G. Zhao, L. Xu, J. Jiang et al., “COFs-based electrolyte accelerates the Na$^+$ diffusion and restrains dendrite growth in quasi-solid-state organic batteries,” *Nano Energy*, vol. 92, p. 106756, 2022.

[50] H. Wang, C.-J. Yao, H.-J. Nie et al., “Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs),” *Journal of Materials Chemistry A*, vol. 8, no. 24, pp. 11906–11922, 2020.

[51] H. Yang, J. Lee, J. Y. Cheong et al., “Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges,” *Energy Environmental Science*, vol. 14, no. 8, pp. 4228–4267, 2021.

[52] L. M. Zhu, G. C. Ding, L. L. Xie et al., “Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries,” *Chemistry of Materials*, vol. 31, no. 21, pp. 8582–8612, 2019.

[53] Q. Xu, S. Tao, Q. Jiang, and D. Jiang, “Ion conduction in polyelectrolyte covalent organic frameworks,” *Journal of the American Chemical Society*, vol. 140, no. 24, pp. 7429–7432, 2018.

[54] G. Zhang, Y.-L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, and S. Horike, “Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li$^+$ electrolyte,” *Journal of the American Chemical Society*, vol. 141, no. 3, pp. 1227–1234, 2019.