A SIMPLE PROOF OF UNIQUE CONTINUATION FOR
J-HOLOMORPHIC CURVES

MICHAEL VANVALKENBURGH

Abstract. In this expository paper, we prove strong unique continuation for J-holomorphic curves by first giving a simple proof of Aronszajn’s theorem in the special case of the two-dimensional flat Laplacian.

1. Introduction

In the study of J-holomorphic curves and symplectic topology as presented by McDuff and Salamon [7], a basic fact is the strong unique continuation property for J-holomorphic curves. In their book, the strong unique continuation property is a first step in a chain of events leading to the proof that, for a generic almost complex structure J, the moduli space \(\mathcal{M}^*(A, \Sigma; J) \) of simple J-holomorphic A-curves is a smooth finite dimensional manifold, and from there to the construction of the Gromov-Witten invariants for a suitable class of symplectic manifolds (see pages 4 and 38 of [7] for the outline of this approach).

McDuff and Salamon give three proofs of the unique continuation property. The first proof is a few lines long but cites Aronszajn’s theorem as proven in [2]. The second and third proofs are given self-contained treatments, and, moreover, the methods find further application in their book. The second proof uses the Hartman–Wintner theorem [6] (proven in McDuff and Salamon’s Appendix E.4), which in fact implies the needed special case of Aronszajn’s theorem, and the third proof uses the Carleman similarity principle and the Riemann-Roch theorem (proven in their Appendix C).

Here we return to the first method of proof, but give a simplified argument. The method is well known in certain branches of partial differential equations; it is the method of weighted integral estimates depending on a parameter. This is also the approach of Aronszajn [2], but it goes back even further, to Carleman [3]. For a general treatment with some historical comments, one may consult Sections 17.1 and 17.2 of Hörmander’s book [9] or his corresponding paper [8]. However, all these references give much more than is needed for our application. Here we present only what is needed for J-holomorphic curves.

We give the full details for the case of \(C^\infty \) J-holomorphic curves; for J-holomorphic curves in Sobolev spaces with minimal assumptions, discussed in McDuff and Salamon’s book, one may find the appropriate modifications in Sections 17.1 and 17.2 of Hörmander’s book [9]. Here we focus on the \(C^\infty \) case, for ease of exposition and since the \(C^\infty \) case is sufficient for

\[\text{Date: May 1, 2009.} \]
many purposes; after all, in Gromov’s original definition all J-holomorphic curves are C^∞ [5].

The weighted integral estimates will depend on a parameter $0 < h \ll 1$ which may be interpreted as “Planck’s constant”, as appearing in the correspondence principle of the old quantum theory, or, more generally, as appearing in semiclassical analysis [4]. The general idea is that as h tends to zero, asymptotic analysis reveals the classical mechanics of the operator’s symbol, interpreted as a Hamiltonian function. Hence symplectic geometry plays a role beneath the surface.

We begin by recalling the basic definitions, so that our presentation is self-contained. Let (Σ, j) be a Riemann surface and (M, J) an almost complex manifold. A smooth function $u : \Sigma \rightarrow M$ is called a J-holomorphic curve if its differential du is a complex linear map with respect to j and J; that is, if

\[J \circ du = du \circ j, \]

or, equivalently,

\[\bar{\partial}_J(u) := \frac{1}{2} (du + J \circ du \circ j) = 0. \]

Unique continuation is a local problem, so for our purposes we may take the domain of u to be a connected neighborhood $X \subset \mathbb{C}$ of the origin, writing the elements of X as $x = x_1 + ix_2$, and we may take M to be \mathbb{C}^n. Hence we are interested in those $u \in C^\infty(X, \mathbb{C}^n)$ satisfying

\[(1) \quad \partial_{x_1} u + J(u) \partial_{x_2} u = 0, \]

where $J : \mathbb{C}^n \rightarrow GL(2n, \mathbb{R})$ is, say, a C^1 function such that $J^2 = -I$.

The main point of this paper is to give a simple, elementary proof of the following strong unique continuation result:

Theorem 1. Let $X \subset \mathbb{C}$ be a connected neighborhood of 0, and suppose $u, v \in C^\infty(X, \mathbb{C}^n)$ satisfy (1) for some C^1 almost complex structure $J : \mathbb{C}^n \rightarrow GL(2n, \mathbb{R})$. If $u - v$ vanishes to infinite order at 0, then $u = v$ in X.

Acknowledgements. I thank Dusa McDuff and Dietmar Salamon for pointing out that the Hartman–Wintner theorem implies the special case of Aronszajn’s theorem. Moreover, it is a pleasure to thank them for their excellent books.

2. **Proof of Unique Continuation**

Let $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2$ be the standard Laplacian. Since $(\partial_{x_1} J) J + J \partial_{x_1} J = 0$, we have that any solution u of (1) is also a solution of

\[\Delta u = (\partial_{x_2} J(u)) \partial_{x_1} u - (\partial_{x_1} J(u)) \partial_{x_2} u. \]
If \(v \) is another such function, then
\[
\Delta(u - v) = (\partial_{x_2}J(u))\partial_{x_1}(u - v) + [\partial_{x_2}(J(u) - J(v))]\partial_{x_1}v
- (\partial_{x_1}J(u))\partial_{x_2}(u - v) - [\partial_{x_1}(J(u) - J(v))]\partial_{x_2}v.
\]
Also, of course,
\[
J(u) - J(v) = \int_0^1 dJ(v + \tau(u - v))d\tau \cdot (u - v).
\]
So, if \(w := u - v \), then for some constant \(C > 0 \) we have
\[
|\Delta w| \leq C(|w| + |\partial_{x_1}w| + |\partial_{x_2}w|).
\]
Since we are considering fixed functions \(u \) and \(v \), the constant is allowed to depend on \(u, v \), and their derivatives.

Thus Theorem 1 is a consequence of the following unique continuation result, a special case of Aronszajn’s theorem [2]. (We follow the presentation of Theorem 17.2.6 in Hörmander’s book [9].)

Theorem 2. Let \(X \subset \mathbb{R}^2 \) be a connected neighborhood of 0, and let \(u \in C^\infty(X, \mathbb{C}^n) \) be such that
\[
|\Delta u| \leq C(|u| + |\partial_{x_1}u| + |\partial_{x_2}u|).
\]
If \(u \) vanishes to infinite order at 0, then \(u = 0 \) in \(X \).

Proof. For notational purposes, we assume \(n = 1 \). The proof works line-by-line for the general case.

We first introduce conformal polar coordinates in \(\mathbb{R}^2 \setminus \{0\} \),
\[
(x_1, x_2) = (e^t \cos \theta, e^t \sin \theta)
\]
with \(t \in \mathbb{R} \) and \(\theta \in S^1 \). Then, in these coordinates,
\[
\partial_{x_1} = e^{-t} \cos \theta \partial_t - e^{-t} \sin \theta \partial_\theta,
\]
\[
\partial_{x_2} = e^{-t} \sin \theta \partial_t + e^{-t} \cos \theta \partial_\theta,
\]
and
\[
\Delta = e^{-2t}(\partial_t^2 + \partial_\theta^2).
\]
Next, we “convexify” the coordinates. Let \(0 < \epsilon < 1 \), and let \(T \) be such that
\[
t = T + e^{\epsilon T}.
\]
As noted by Hörmander [8], this change of coordinates comes from the work of Alinhac and Baouendi [1]. Then
\[
\frac{\partial t}{\partial T} = 1 + \epsilon e^{\epsilon T} > 0,
\]
and \(T < t < T + 1 < T/2 \) when \(T < -2 \). In these coordinates,
\[
\partial_t^2 + \partial_\theta^2 = (1 + \epsilon e^{\epsilon T})^{-2} \partial_T^2 - \epsilon^2(1 + \epsilon e^{\epsilon T})^{-3} e^{\epsilon T} \partial_T + \partial_\theta^2.
\]
Multiplying by \((1 + \epsilon e^{cT})^2\), we get the operator
\[
Q := \partial_T^2 + c(T)\partial_T + (1 + \epsilon e^{cT})^2\partial_\theta^2,
\]
with
\[
c(T) := -\epsilon^2(1 + \epsilon e^{cT})^{-1}e^{cT}.
\]

Our main tool is the following estimate:

Proposition 3. For some \(T_0 < 0\) and some \(h_0 > 0\) we have

\[
h \int \int (|U|^2 + |h\partial_T U|^2 + |h\partial_\theta U|^2 + |h^2 \partial_T^2 U|^2 + |h^2 \partial_T \partial_\theta U|^2 + |h^2 \partial_\theta^2 U|^2) e^{-2T/h + \epsilon T} d\theta dT
\leq C \int \int |P^2 \partial_T U|^2 e^{-2T/h} d\theta dT
\]

for all \(U \in C_0^\infty((-\infty, T_0) \times S^1)\), and for all \(h \in (0, h_0)\). (The constant \(C > 0\) is independent of \(h\).)

Proof. (of the Proposition.) We set \(U := e^{T/h}V\) and let
\[
\tilde{Q} := h^2 e^{-T/h} \circ Q \circ e^{T/h}.
\]
That is,
\[
\tilde{Q} = (h\partial_T + 1)^2 + hc(T)(h\partial_T + 1) + (1 + \epsilon e^{cT})^2h^2\partial_\theta^2.
\]

Then the estimate (3) is equivalent to

\[
h \int \int (|V|^2 + |h\partial_T V|^2 + |h\partial_\theta V|^2 + |h^2 \partial_T^2 V|^2 + |h^2 \partial_T \partial_\theta V|^2 + |h^2 \partial_\theta^2 V|^2) e^{cT} d\theta dT
\leq C \int \int |\tilde{Q}V|^2 d\theta dT
\]

for all \(V \in C_0^\infty((-\infty, T_0) \times S^1)\).

For bookkeeping purposes, we write \(\tilde{Q}\) as the sum of its symmetric and antisymmetric parts,
\[
\tilde{Q} = A + B,
\]
where
\[
A = h^2 \partial_T^2 + (1 + hc - \frac{1}{2}h^2 c') + (1 + \epsilon e^{cT})^2h^2\partial_\theta^2,
\]
and
\[
B = (2 + hc)h\partial_T + \frac{1}{2}h^2 c'.
\]
Hence, using the usual inner product notation on \(L^2\), and with \([A, B] = AB - BA\) denoting the commutator,
\[
\int \int |\tilde{Q}V|^2 d\theta dT = ||AV||^2 + ||BV||^2 + \langle [A, B]V, V \rangle.
\]
Repeated integration by parts gives
\[||AV||^2 = ||h^2 \partial^2_T V||^2 \]
(5)
\[+ ||(1 + hc - \frac{1}{2} h^2 c')V||^2 \]
(6)
\[+ ||(1 + \epsilon e^T)^2 h^2 \partial_\theta^2 V||^2 \]
\[+ h^3 \langle V, (c'' - \frac{1}{2} hc''' - V) \rangle \]
\[- 2 \langle h \partial_T V, (1 + hc - \frac{1}{2} h^2 c') h \partial_T V \rangle \]
\[- 2 \epsilon^3 h^2 \langle h \partial_\theta V, (1 + 2 \epsilon e^T) e^T h \partial_\theta V \rangle \]
\[+ 2 \langle h^2 \partial^2_\theta V, (1 + \epsilon e^T)^2 h^2 \partial^2_\theta V \rangle \]
(7)
\[- 2 \langle h \partial_\theta V, (1 + hc - \frac{1}{2} h^2 c') (1 + \epsilon e^T)^2 h \partial_\theta V \rangle, \]
and
\[||BV||^2 = ||(2 + hc) h \partial_T V||^2 - \frac{1}{4} h^4 ||c' V||^2 - \frac{1}{2} h^4 \langle V, c'' V \rangle \]
\[- h^3 \langle V, c''' V \rangle, \]
and
\[\langle [A, B] V, V \rangle = -2 h^2 \langle c' h \partial_T V, h \partial_T V \rangle \]
\[- 2 h^2 \langle c' V, V \rangle + h^3 \langle (c'' - cc') V, V \rangle + \frac{1}{2} h^4 \langle (cc'' + c''' V, V \rangle \]
(8)
\[+ 2 h \epsilon^2 \langle (2 + hc) (1 + \epsilon e^T) e^T h \partial_\theta V, h \partial_\theta V \rangle. \]

Also, we recall that
\[c(T) = -\epsilon^2 e^T (1 + \epsilon e^T)^{-1} \]
so that
\[c'(T) = -\epsilon^3 e^T (1 + \epsilon e^T)^{-2} \]
is also a negative quantity.

Most of the terms in the above expansions may be absorbed into other terms when we take \(0 < h \) to be sufficiently small. It is only the term (7) that gives some difficulty. We write (7) as
\[(7') - 2 \langle h \partial_\theta V, (1 + \lambda hc) (1 + \epsilon e^T)^2 h \partial_\theta V \rangle - 2 \langle h \partial_\theta V, ((1 - \lambda) hc - \frac{1}{2} h^2 c') (1 + \epsilon e^T)^2 h \partial_\theta V \rangle. \]
Here \(\lambda \in \mathbb{R} \) is to be determined; as we will see, any \(2 < \lambda < 3 \) will suffice.
For the first term of (7), we use the elementary inequality
\[2 \langle (1 + \lambda hc)^{1/2} V, (1 + \lambda hc)^{1/2} (1 + \epsilon e^T)^2 h^2 \partial_\theta^2 V \rangle \geq -\langle (1 + \lambda hc) V, V \rangle \]
(9)
\[- \langle (1 + \lambda hc) (1 + \epsilon e^T)^2 h^2 \partial_\theta^2 V, (1 + \epsilon e^T)^2 h^2 \partial_\theta^2 V \rangle. \]
(10)
Now (9) is absorbed into (5) when \(\lambda > 2 \), and (10) may be absorbed into (6) when \(\lambda > 0 \) (in both cases we are left with an order \(h \) term).

As for the second term in (7), it may be absorbed into (8) as long as \(\lambda < 3 \). All the terms are thus accounted for, completing the proof of (4) and of the proposition. \(\square \)

End of proof of Theorem 2. We write \(U(T, \theta) := u(x_1, x_2) \). Since we are only considering \(T < T_0 (\ll 0) \), our hypothesized upper bound (2) gives
\[|QU| \leq C e^T (|U| + |\partial_T U| + |\partial_\theta U|). \]
Now we let \(\psi \in C^\infty(\mathbb{R}) \) be such that
\[\begin{align*}
\psi &= 1 \quad \text{in } (-\infty, T_0 - 1) \\
\psi &= 0 \quad \text{in } (T_0, \infty),
\end{align*} \]
and we set
\[U^\psi(T, \theta) = \psi(T) U(T, \theta). \]

The vanishing hypothesis on \(u \) says that for every \(N \) there exists a constant \(C_N \) such that
\[|u(x)| \leq C_N |x|^N \]
in a neighborhood of the origin, so that, in the new coordinates, for any \(N \) we have
\[|U(T, \theta)| \leq C_N e^{NT} \]
for \(T \) in a neighborhood of \(-\infty \). Therefore
\[\int \int |U^\psi|^2 e^{-NT} d\theta dT < \infty \]
for any \(N \). The same argument holds for all derivatives of \(U^\psi \). We then let \(\chi \in C^\infty(\mathbb{R}) \) be such that
\[\begin{align*}
\chi &= 0 \quad \text{in } (-\infty, -2) \\
\chi &= 1 \quad \text{in } (-1, \infty),
\end{align*} \]
and for \(R > 0 \) we let \(\chi_R(T) = \chi(T/R) \). We may apply Proposition 3 to \(\chi_R(T) U^\psi(T, \theta) \) and take the limit as \(R \to \infty \); by the Dominated Convergence Theorem, Proposition 3 thus holds for \(U^\psi \).
The righthand side of (3) is then
\[\int \int \left| h^2 QU^{\psi} \right|^2 e^{-2T/h} d\theta dT = h^4 \int \int \left| \psi QU + \psi'' U + 2 \psi' \partial_T U + c \psi' U \right|^2 e^{-2T/h} d\theta dT \]
(11)
\[\leq Ch^4 \int \int e^{2T} (\left| U^{\psi} \right|^2 + \left| \partial_T U^{\psi} \right|^2 + \left| \partial_\theta U^{\psi} \right|^2) e^{-2T/h} d\theta dT \]
(12)
\[+ Ch^4 \int \int_{T_0-1} T_0 \left(\left| U \right|^2 + \left| \partial_T U \right|^2 \right) e^{-2T/h} d\theta dT. \]

Since \(2T < \epsilon T \), the term (11) is bounded by
\[Ch^2 \int \int (\left| U^{\psi} \right|^2 + \left| h \partial_T U^{\psi} \right|^2 + \left| h \partial_\theta U^{\psi} \right|^2) e^{-2T/h + \epsilon T} d\theta dT, \]
and hence can be absorbed into the lefthand side of (3) when \(h > 0 \) is sufficiently small.

Since \(U \) and \(\partial_T U \) are bounded, the term (12) is bounded by
\[Ch^5 e^{-2(T_0-1)/h}. \]

Hence we have
\[h \int \int \left(\left| U^{\psi} \right|^2 + \left| h \partial_T U^{\psi} \right|^2 + \left| h \partial_\theta U^{\psi} \right|^2 + \left| h^2 \partial_T^2 U^{\psi} \right|^2 + \left| h^2 \partial_\theta^2 U^{\psi} \right|^2 + \left| h^2 \partial_T \partial_\theta U^{\psi} \right|^2 \right) e^{-2T/h + \epsilon T} d\theta dT \]
\[\leq Ch^5 e^{-2(T_0-1)/h}. \]
Letting \(h \to 0 \), we see that \(U = 0 \) when \(T < T_0 - 1 \), as otherwise the left side grows faster than the right side. Hence the original function \(u \) vanishes in a neighborhood of the origin.

We have thus shown that the set of points where \(u \) vanishes to infinite order is an open set. The complement is obviously also an open set, so by the connectedness of \(X \) we have that \(u = 0 \) in \(X \). This concludes the proof of the theorem. \(\square \)

References
[1] S. Alinhac and M. S. Baouendi. Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities. Amer. J. Math. 102 (1980), no. 1, 179–217.
[2] N. Aronszajn. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9) 36 (1957), 235–249.
[3] T. Carleman. Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes. (French) Ark. Mat., Astr. Fys. 26, (1939), no. 17, 9 pp.
[4] L. C. Evans and M. Zworski. Semi-classical analysis, Edition 0.3. www.math.berkeley.edu/~zworski/semiclassical.pdf, 2007.
[5] M. Gromov. Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82 (1985), no. 2, 307–347.
[6] P. Hartman and A. Wintner. On the local behavior of solutions of non-parabolic partial differential equations. Amer. J. Math. 75 (1953), 449–476.
[7] D. McDuff and D. Salamon. J-holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, 52. American Mathematical Society, Providence, RI, 2004.

[8] L. Hörmander. Uniqueness theorems for second order elliptic differential equations. Comm. Partial Differential Equations 8 (1983), no. 1, 21–64.

[9] L. Hörmander. The analysis of linear partial differential operators. III. Pseudodifferential operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 274. Springer-Verlag, Berlin, 1985.

UCLA Department of Mathematics, Los Angeles, CA 90095-1555, USA

E-mail address: mvanvalk@ucla.edu