Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications

Ahmed Salah¹, Hao Wang¹,²,³, Yanqin Li¹, Meng Ji², Wen-Bin Ou¹, Nianmin Qi²,³* and Yuehong Wu¹*

¹ Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China, ² Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China, ³ Asia Stem Cell Therapies Co., Limited, Shanghai, China

Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators of naïve T cells. Therefore, they act as a connective ring between innate and adaptive immunity. DC subsets are heterogeneous in their ontogeny and functions. They have proven to potentially take up and process tumor-associated antigens (TAAs). In this regard, researchers have developed strategies such as genetically engineered or TAA-pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical and preclinical models. Here, we review DC classification and address how DCs are skewed into an immunosuppressive phenotype in cancer patients. Additionally, we present the advancements in DCs as a platform for cancer immunotherapy, emphasizing the technologies used for in vivo targeting of endogenous DCs, ex vivo generated vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived DCs (iPSC-DCs) to boost antitumoral immunity.

Keywords: dendritic cells, cancer vaccines, cancer immunotherapy, induced pluripotent stem cells, iPSC-DCs

INTRODUCTION

Cancer evades immune surveillance as one of its hallmarks and prevents the immune system from tumor eradication (Hanahan and Weinberg, 2011; Mittal et al., 2014). Thus, immunotherapy, relying on cell therapy, cancer inhibitory signal antagonists, nanoparticle-based vaccines, oncolytic viruses, and immunogenic cell death-inducing agents, is considered a cornerstone in cancer treatment (Helmy et al., 2013; Yang, 2015; Kranz et al., 2016; Van der Jeught et al., 2018; Riley et al., 2019; Vanmeerbeek et al., 2020; Malvehy et al., 2021). In general, cell-based cancer immunotherapy can be divided into two subclasses, active and passive immunotherapies. Active immunotherapy utilizes antigen-presenting cells (APCs) such as dendritic cells (DCs) to boost patients’ immune system to fight against cancer (Van Lint et al., 2014; Jansen et al., 2020). However, passive immunotherapy mostly involves immunization with T cells to induce immune-mediated tumor rejection, including adoptive transfer of tumor-infiltrating lymphocytes or chimeric antigen receptor T (CAR-T) cell therapy, which has shown significant outcomes in treating hematological malignancies (Rosenberg et al., 2011; Fry et al., 2018; Depil et al., 2020). Cancer vaccines are one type of immunotherapeutic strategies that have shown promising results in a personalized manner. GVAX is one of the first tested vaccines against pancreatic cancer, and it is composed of the
irradiated tumor cell-expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) (Le et al., 2015; Yarchoan et al., 2020).

Dendritic cells are a type of innate immune cells and are potent APCs. They play a central role in immune-mediated cancer elimination through antigen presentation and T-cell priming (Steinman, 2007, 2012; Eisenbarth, 2019; Sa-Nunes and Oliveira, 2021). After tumor-associated antigen (TAA) phagocytosis, antigens are processed by two pathways, the cytosolic pathway and vacuolar pathway, by which they are digested into peptides and loaded onto the major histocompatibility complex (MHC) class I. The TAA–MHC I complex is then transported to the DC surface. When DC-presenting TAA migrates and reaches the lymph nodes, they are capable of priming T cells and triggering antitumor immunity (Joffre et al., 2012; Perez and De Palma, 2019). Before maturation, DCs have a high phagocytic capacity. On the other hand, mature DCs have a lower endocytic ability; express greater levels of co-stimulatory molecules [such as cluster of differentiation 80 (CD80)] in vast amounts from CD14+ monocytes or CD34+ hematopoietic stem cells through culturing with IL-4 and GM-CSF (Collin and Bigley, 2018). MoDCs are generated ex vivo in vast amounts from CD14+ monocytes or CD34+ hematopoietic stem cells through culturing with IL-4 and GM-CSF (Mastelic-Gavillet et al., 2019), which allows for a better understanding of DC biology.

DC SUBSETS

DC subpopulations are classified according to their ontogeny, morphology, function, marker expression, and cytokine secretion into three main subtypes: MoDCs, plasmacytoid DCs (pDCs), and conventional DCs (cDCs), which are further divided into type 1 (cDC1s) and type 2 (cDC2s).

MoDCs

In response to inflammation, monocytes are differentiated into DCs (Collin and Bigley, 2018). MoDCs are generated as a single therapy or in combination with other treatment regimens. This review provides a brief overview of the main DC subsets and illustrates how DC and cancer cell crosstalk in the tumor microenvironment (TME) correlates with a positive or negative prognosis. Lastly, we discuss the cutting-edge approaches to using DCs in cancer immunotherapy.
expansion and induced their differentiation toward Th1 cells (Kai sho and Akira, 2003; Michiels et al., 2006). Electroporation of MoDCs with CD40L and/or constitutively active TLR4 (caTLR4) encoding mRNA, but not with CD70 mRNA, induces CD4+ T-cell differentiation into Th1 cells. However, electroporation of DCs with CD40L, CD70, and caTLR4 mRNA (TriMixDC) in addition to melan A antigen mRNA induces antigen-specific CD8+ cytotoxic T cells. Additionally, MoDCs treated with curdlin, a dectin-1 agonist, induce CD4+ T-cell skewing toward Th1 and Th17 cells (Bonehill et al., 2008, 2009; Dragicevic et al., 2012). However, ex vivo generated MoDCs are transcriptionally distinct from their primary counterparts (Helft et al., 2015), and their migration capacity and efficacy are debated (Morse et al., 1999; Shinde et al., 2018); nevertheless, they remain the cornerstone of cancer vaccine studies due to their accessibility, rapid differentiation, and maturation protocols compared with other subsets (Shinde et al., 2018; Tanyi et al., 2018). Ontogeny studies revealed that inflammatory DCs are the closest phenotype to MoDCs (Segura et al., 2013; Reynolds and Haniffa, 2015).

pDCs

Plasmacytoid DCs are one type of bone marrow-derived DCs (BMDCs), which arise from common DC precursors and lymphoid precursors (Naik et al., 2007; Geissmann et al., 2010; Rodrigues et al., 2018). pDCs are known for their ability to produce high levels of type I interferon (IFN) upon stimulation of TLR7 and TLR9, and they play a crucial role during viral infections (Reizis et al., 2011; Mitchell et al., 2018). They are characterized by the expression of CD4, CD123, CD303, CD304, blood-derived cell antigen-2 (BDCA-2), human leukocyte antigen-DR (HLA-DR), and TLR7/TLR9 (Swiecki and Colonna, 2015; Villani et al., 2017; Wculek et al., 2020). Matsui et al. (2009) showed that pDCs are further divided into two subtypes.

TABLE 1 | Clinical trials utilizing DC vaccines in cancer immunotherapy.

Intervention	Cancer type	Clinical response	References
Autologous DCs loaded with vaccinia-CEA-MUC-1-TRICOM (PANVAC-V) + autologous DCs loaded with fowl pox-CEA-MUC-1-TRICOM (PANVAC-F)	Resected hepatic or pulmonary metastases of colorectal carcinoma	13 of 16 patients achieved 2 years of recurrence-free survival	Morse et al., 2013
Sipuleucel-T	Prostate cancer	Median OS in treated patients is 25.8 months compared to 21.7 in placebo	Small et al., 2014
Autologous DCs loaded with TAAs	Melanoma	Out of 14 patients, 4 achieved PFS (12–35 months), 5 showed OS (22–40 months), and 4 achieved SD	Schreibelt et al., 2016
TrifMixDC-MEL	Melanoma	-71% of the treated patients were alive and disease free vs. 35% of the control. -The median time to non-salvageable disease recurrence in treated patients were higher than in control	Jansen et al., 2020
TrifMixDC-MEL	Melanoma	-Out of 15 patients, 2 achieved CR, 4 achieved SD, and 7 showed PD. Five out of 15 patients achieved PFS (23.6–34 months)	Wilgenhof et al., 2013
WT1 mRNA-electroporated DCs	Acute myeloid leukemia	-Six of 30 patients achieved CR. 107.6 (months median duration), and 19 had a disease relapse. -15 of these 19 had a salvage therapy, and 73.3% of them achieved a second CR	Anguille et al., 2017
Autologous DCs loaded with allogeneic non-small-cell lung cancer cells	Non-small-cell lung cancer	-20 of 32 patients were alive 5 years post vaccination. -22 of 32 showed immunologic response within 6 months of vaccination	NCT00103116
Peptide-pulsed DCs + indinavir	Ewing's sarcoma and rhabdomyosarcoma	43% of the treated patients achieved a 5-year OS, and 31% achieved a 5-year EFS	NCT00001566
Adenovirus-p53-transduced DCs + 1-methyl-d-tryptophan	Breast cancer	1 of 21 patients achieved complete response, 7 showed partial response, and 2 achieved stable disease	NCT01042535
CEA mRNA-pulsed DCs	CEA-expressing cancer	3 of 23 showed SD, 1 showed CR, and 18 showed PD	Morse et al., 2003
Tumor mRNA-pulsed DCs	Brain cancer	2 of 5 patients achieved SD, none showed PR, and 3 showed PD	Caruso et al., 2004
Peptide-loaded DCs + dasatinib administered at the same time	Metastatic melanoma	-Four of six patients had partial response, and 2 out of 6 had progressed disease. -The calculated ORR in 6 participants is 0.6667	NCT01876212

OS, overall survival; CR, complete remission; SD, stable disease; PD, progressed disease; PR, partial progression; PFS, progression-free survival; EFS, event-free survival; ORR, overall response rate; CEA, carcinoembryonic antigen.
based on the expression of CD2, in which the CD2 (high) pDC subpopulation expresses higher levels of CD80 and IL-12 p40. pDCs have limited antigen-presenting potential (Chiang et al., 2016), and their presence in the TME is associated with poor cancer prognosis as they induce tumor progression through stimulation of ICOSL, which in turn stimulates regulatory T (Treg) cells (Conrad et al., 2012; Lombardi et al., 2015). On the other hand, stimulated pDCs have shown promising results as cancer vaccines. In clinical and preclinical melanoma models, different strategies of antigen delivery or loading onto pDCs resulted in significant type I IFN production, antigen-specific T-cell priming, and superior chemoattractive properties to cDC2s, eliciting antitumor activity (Tel et al., 2013; Kranz et al., 2016; van Beek et al., 2020). Conversely, Salio et al. (2004) showed that T-cell priming is independent of type I IFN production. Another study suggested that the presence of pre-classical DCs (pre-CDCs), the intermediate precursors to cDC1s and cDC2s, in the pDC subpopulation might reflect the responsibility for Th1-cell induction and cross-presentation capability (Patente et al., 2018).

cDC1s

Similar to pDCs, cDC1s, and cDC2s arise from common dendritic progenitors (CDPs) (Patente et al., 2018). cDC1s express CD141, XCR1, and CLEC9A (Poulin et al., 2010; Wculek et al., 2020). They have superior antigen presentation activity on MHC I to cytotoxic T cells (Palucka et al., 2010), thus activating Th1 and CD8+ cells (Martinez-Lopez et al., 2015; Laouli et al., 2016). cDC1s have profound antitumor functions, and their presence in the TME correlates with better prognosis and survival rate (Sluijter et al., 2015; Bottcher et al., 2018; Cancel et al., 2019; Zilionis et al., 2019). In this light, the need to generate cDC1s in vitro that resemble primary cDC1s in a suitable quantity has gained researchers’ interest. The Notch signaling pathway was identified as a potent inducer of cDC differentiation (Martin-Gayo et al., 2017). Culturing of bone marrow progenitors in a medium containing FMS-like tyrosine kinase 3 ligand (FLT3L) for 3 days followed by co-culturing on monolayers of OP9 stromal cells expressing the Notch ligand Delta-like 1 (OP9-DL1) induced cDC1 differentiation with marker expressions (CD103+ Dec205+, and CD8α+) resembling wild-type cDC1s. The presence of OP9-DL1 produced cDC1s with preferential migration potential compared to other methods (Lee et al., 2015; Kirkling et al., 2018).

Ex vivo loading of primary cDC1s with tumor cell lysates induced CD8+ and CD4+ T-cell infiltration and reduced tumor progression in engrafted tumor models (Wculek et al., 2019). IFN regulatory factor 8 (Irfl8) (Guilliams et al., 2016) and basic leucine zipper transcriptional factor ATF-like 3 (Batf3) (Poulin et al., 2012; Grajales-Reyes et al., 2015) are critical transcriptional factors in the development of cDC1s and are essential for tumor rejection (Theisen et al., 2019). In Batf3−/− mice, DCs were not able to mediate rejection of highly immunogenic tumors as they lack cross-presentation potential with subsequent impairment of cytotoxic T-cell activity (Hildner et al., 2008). Transgenic expression of Irfl8 into Batf3-deficient mice allowed the development of cDC1s and restored their cross-presentation function. However, these DCs failed to mediate rejection of fibrosarcoma (Theisen et al., 2019). These results indicate that immunogenic rejection of tumors is Batf3 dependent but not limited to DC ability to cross-present tumor antigens, and there might be other mechanisms involved, such as the ability of cDC1s to communicate with other immune cells through the secretion of CXC-chemokine ligand 9 (CXCL9) and CXCL10, which induce recruitment and infiltration of T cells at the tumor site (Perez and De Palma, 2019). Immune rejection of tumors also lay under the effect of CCR7 expression on cDC1s. CCR7 expression promotes TAA-carrying cDC1 migration to draining the lymph node where CD8+ priming occurs, boosting antitumor response (Roberts et al., 2016; Wang et al., 2016).

cDC2s

cDC2 distribution is found to be lower than that of other DC types. They are characterized by CD172a, CD11c, CD11b, and CD1c (O’Keeffe et al., 2015; Wculek et al., 2020). Like cDC1s, cDC2s have shown antitumor efficacy. They act via antigen presentation on MHC II to CD4+ T cells, promoting T-cell differentiation into Th1, Th2, and Th17 cells (Leal Rojas et al., 2017; Eisenbarth, 2019). Studies have shown that Irg4 is essential for cDC2 activity and Th2-cell differentiation, which stimulates humoral immunity and promotes B-cell proliferation (Schlitzer et al., 2013). In mouse models, loss of Irg4 reduced cDC2 function and defected Th2-cell differentiation (Schlitzer et al., 2013; Williams et al., 2013; Binnewies et al., 2019). In the context of the cDC2 ability to induce antitumor responses, cDC2s were found to efficiently prime CD4+ T cells in vaccinated mice and induce Th17-cell differentiation, and most notably, they were able to repolarize tumor-associated macrophages (TAMs) from M2 protumoral phenotype into M1 antitumor phenotype (Laouli et al., 2016). Additionally, cDC2 vaccines pulsed with tumor antigens were tested in clinical trials, and they showed effective and safe antitumor responses against metastatic melanoma and metastatic prostate cancer (Prue et al., 2015; Schreibelt et al., 2016).

DC MALFUNCTION IN CANCER PATIENTS

It is well known that tumors and TME manipulate the immune system to favor their persistence and progression. In the case of colorectal cancer, the presence of elevated numbers of tumor-associated DCs correlated with poor prognosis (Jochems and Schlom, 2011). Several mechanisms were found to perturb DC functions. For example, PD-L1 is highly expressed in tumor-infiltrating DCs, inhibiting T-cell activation and cytokine production. DC activity was restored upon PD-1/PD-L1 blockade (Salmon et al., 2016). Another mechanism is through upregulation of T-cell immunoglobulin and mucin domain-containing-3 (TIM-3) protein on DCs, which inhibits sensing of danger signals (Maurya et al., 2014; de Mingo Pulido et al., 2018). Michielsen et al. (2011) reported that VEGF, CCL1, CCL2, and CXCL5 presence in conditioned medium from colorectal cancer explants inhibited DC maturation and IL-12p production while increasing IL-10 secretion. Melanomas
expressing β-catenin were found to induce resistance to immunotherapeutics, reduce infiltrating cDC1s and T cells, and promote tumor growth (Spranger et al., 2015). Moreover, the presence of prostaglandin E2 (PGE2) stimulated tumor growth by impairing the accumulation of intratumoral CD103+ DCs (Zelenay et al., 2015).

Metabolic dysfunction can also influence DC maturation in cancer patients. Hypoxia, lactic acid production, and decreased pH impair normal DC function. In vitro cultures of prostate cancer or melanoma cells produced high levels of lactic acid, which was associated with modulation of DC differentiation and maturation (Gottfried et al., 2006). Other TME-derived products induce lipid peroxidation, which activates the endoplasmic reticulum stress response factor via spliced X-box-binding protein 1, leading to lipid accumulation in DCs (Tyrin et al., 2011; Cubillos-Ruiz et al., 2015). Accumulation of lipid particles inhibits the peptide–MHC I complex migration to the DC surface and impairs cross-presentation potential to T cells, blocking their activity (Herber et al., 2010; Ramakrishnan et al., 2014; Veglia et al., 2016).

Infiltrating pDCs are incapable of type I IFN production and can also stimulate Treg-cell expansion through the expression of indoleamine 2,3-dioxygenase (IDO) and ICOSL, which enhance tumor progression (Ito et al., 2007; Aspord et al., 2013). In many cancer patients, high levels of infiltrating pDCs are linked to poor prognosis (Lombardi et al., 2015; Saadeh et al., 2016). Tumor DCs have shown lower antigen-traffic potential due to controlled CCR7 expression (Roberts et al., 2016), resulting in decreased ability to prime T cells in lymph nodes. Moreover, signal transducer and activator of transcription 3 (STAT3) phosphorylation, activated by IL-6 and IL-10 in chronic lymphocytic leukemia patients’ sera, induces suppressor of cytokine signaling 5 expression, which in turn inhibits STAT6 activation (an essential molecule for MoDC differentiation), preventing monocyte differentiation and maturation (Toniolo et al., 2016; Kitamura et al., 2017).

DCs IN CANCER IMMUNOTHERAPY

As previously mentioned, DCs are the most potent APCs that promote cellular and humoral antitumor immunity, making immunotherapy-based DC vaccines, with either ex vivo generated DCs or in vivo targeting modalities, an active area of research (Figure 2). That’s why researchers are working to augment their efficacy, providing new paradigms of cancer vaccines, which could be considered as potential candidates in various clinical settings.

MoDC Vaccines

Based on the understanding of DC biology and their antigen presentation and T-cell activation potential, numerous preclinical and clinical studies utilizing DCs in cancer immunotherapy have been undertaken (Steinman and Banchereau, 2007). Most clinical trials relied on DCs generated ex vivo from blood monocytes. Usually, IL-4 and GM-CSF are used to induce DC differentiation from monocytes in 5–7 days (Dauer et al., 2003; Mohy et al., 2003) or 2 days as in the case of FastDCs (Dauer et al., 2005). Other differentiation protocols include culturing peripheral blood mononuclear cells (PBMCs) with IFN-β and either IL-3 or GM-CSF (Breckpot et al., 2005; Mazouz et al., 2005). However, the best maturation cocktail is yet to be defined. Immature DCs have less potential to induce effector immune cells as they do not produce stimulatory cytokines and express less levels of co-stimulatory molecules (Steinman and Swanson, 1995; Trombetta and Mellman, 2005). Different maturation cocktails were tested, such as TLR agonists, CD40 ligand (CD40L), and other cytokines to identify the ideal combination. Vopenkova et al. (2012) have compared various maturation signals’ effect on MoDC functions and stated that lipopolysaccharide and IFN-γ could give the highest response.

To date, the first and only FDA-approved DC vaccine (Provenge) consists of autologous APCs loaded with a recombinant fusion protein antigen, which is composed of GM-CSF and prostatic acid phosphatase (PAP). Provenge synthesis requires 4 days for maturation. It increased the median survival by 4 months in patients with metastatic castration-resistant prostate cancer (Anassi and Ndefo, 2011; Cheever and Higano, 2011). Accordingly, researchers have been developing strategies to acquire DCs with the ability to express TAAs through different techniques (Saxena and Bhardwaj, 2018; Perez and De Palma, 2019). One TAA-loading method is through pulsing DCs with certain epitopes to promote T-cell activity, which was tested in melanoma patients (Carreno et al., 2015). MUC1-pulsed DCs derived from PBMCs were tested in phase
cancer vaccines. Researchers utilized small-interfering RNAs (siRNAs) to knock down PD-L1 and PD-L2 genes in DCs. PD-L1-silenced DCs increased T-cell expansion and IFN-γ and IL-12 production (Hobo et al., 2010; van der Waart et al., 2015).

iPSC-Derived DC Vaccines

Genetically engineered DC vaccines expressing TAAs showed significant effectiveness against many cancer types (Ojima et al., 2007, 2008; Miyazawa et al., 2011). These strategies rely mostly on either primary DCs or ex vivo generated MoDCs, which require leukapheresis. Therefore, they are patient inconvenient, and their clinical application is restrained. Also, DCs exist as small populations in the blood (Jongbloed et al., 2010), and their number is further reduced in cancer patients (Beckebaum et al., 2004; Satthaporn et al., 2004; Poschke et al., 2012). Therefore, iPSCs are considered an unlimited and potential source to provide DCs (iPSC-DCs) in a suitable quantity.

Scientists have designed protocols to differentiate mouse and human iPSCs into DCs (Senju et al., 2009, 2011a; Li et al., 2014). For example, Silk et al. (2012) generated CD141+XCR1+ DCs from iPSCs using a protocol that is free from animal-derived products, making them compatible with clinical applications. These iPSC-DCs were able to cross-present melan A antigen (melanoma antigen) and prime CD8+ T cells (Silk et al., 2012). To increase the yield of iPSC-DCs, researchers generated proliferating iPSC-derived myeloid cells (iPSC-pMLs) through the insertion of the c-MYC gene into iPSC-derived myeloid cells (iPSC-MLs). iPSC-pMLs were then differentiated into iPSC-DCs through culturing in a medium containing IL-4 and GM-CSF for 3 days. iPSC-pMLs loaded with the OVA257-264 peptide were able to prime CD8+ T cells in a syngeneic mouse model. Primed antigen-specific CD8+ T cells isolated from mouse spleen killed MO4 cells (OVA-expressing melanoma cells) in vitro. OVA257-264 peptide-loaded iPSC-DCs provided immunization for 3 months with no adverse effects (Zhang et al., 2015). To further increase iPSC-pML potency, iPSC-pMLs were virally transduced with the IFN-α gene. In a bilateral melanoma transplantation model, local administration of IFN-α-expressing iPSC-pMLs inhibited the tumor growth at treatment and remote sites, in addition to inhibition of lung metastasis (Tsuchiya et al., 2019).

In another study, researchers produced iPSC-DCs expressing carcinoembryonic antigen (CEA) (iPSDCs-CEA) and stimulated them using a maturation cocktail composed of recombinant human IL-6, IL-1β, TNF-α, and PGE2 for 2 days. iPSDCs-CEA was structurally similar to MoDCs, and the expression levels of CD80 and CD83 co-stimulatory molecules were comparable to those of MoDCs. Mature iPSCDs-CEA and MoDCs produced high levels of IFN-γ and IL-12 with no significant difference in secretion levels between both cell types. Moreover, when iPSCDs-CEA were cultured with different cell lines expressing the HLA-A24 allele (MKN1, MKN45, HT29, and LCL-CEA652 cells), they were able to induce CD8+ T cells against MKN45, HT29, and LCL-CEA cells (CEA-expressing cells) but not MKN1 (lacking endogenous CEA). These results indicate that iPSCDs-CEA is able to stimulate human cytotoxic T cells with great specificity against gastrointestinal cancers expressing CEA (Kitadani et al., 2018).
Iwamoto et al. (2014) generated iPSC-DCs and BMDCs. Mature iPSC-DCs expressed high levels of CD80, CD86, CD11c, and MHC II, similar to mature BMDCs. The migratory capacity of mature iPSC-DCs identified by the expression of CCR7 was analyzed and showed comparable results to those of mature BMDCs. In this study, using a gene-based vaccination strategy, researchers imparted both iPSC-DCs and BMDCs the ability to express hgp100 (human melanoma antigen) through transduction with a recombinant adenoviral vector. Tetramer and 11Cr-release assays revealed induction of cytotoxic T cells against B16 cells (melanoma cell line) in mice immunized with iPSC-DCs-hgp100 and BMDCs-hgp100. Additionally, iPSC-DCs-hgp100 administration significantly inhibited tumor growth in mice with subcutaneous B16 cells compared to phosphate-buffered saline, iPSC-DCs-LacZ, and BMDCs-LacZ as negative controls, suggesting that iPSC-DCs could be a promising approach in clinical practice as cancer vaccines (Iwamoto et al., 2014).

To enhance the antitumor potential of iPSC-DCs, Mashima et al. (2020) generated proliferating and GM-CSF-producing myeloid cells (GM-iPSC-pMLs) through the insertion of Cs/h2 and c-MYC genes into iPSC-MLs by a lentivirus vector. Similar to BMDCs, GM-iPSC-pMLs were able to stimulate cytotoxic T-cell proliferation. Additionally, when GM-iPSC-pMLs were pulsed with an OVA peptide, they were able to prime and stimulate antigen-specific cytotoxic T cells, indicating that GM-iPSC-MLs had cross-presentation capacity like DCs. Interestingly, in a prophylactic experiment, administration of GM-iPSC-pMLs loaded with the OVA peptide were able to inhibit tumor growth when taken 7 days before the mice were injected with subcutaneous MO4 cells.

Stimulation of DCs in vivo

Since *ex vivo* generated MoDCs have limited migration potential, it is crucial to focus on other research lines that involve systemic activation of *in vivo* DCs. Historically, researchers used immune activators such as bacterial products (Coley, 1910; Bernardes et al., 2010), TLR agonists (Adams, 2009; Chi et al., 2017), and bacillus Calmette–Guérin (BCG) (Kamat et al., 2017) to elicit antitumor activity. Immune activators have been found to induce antitumor immune response via DC activation (Kuhn et al., 2013) followed by CD8+ T-cell priming (Kuhn et al., 2015), and this approach is likely only functional when acting on DCs that already acquired tumor antigens, such as tumor-associated DCs. TGF-β (Pu et al., 2018), 1-methyl-tryptophan (IDO inhibitor) (Li et al., 2010), and inhibiting IL-10 antibody (Marvel and Finn, 2014) have proven to act synergistically with DC vaccines in inhibiting pancreatic cancer growth. Intratumoral injection of cyclic diguanylate monophosphate (STING agonist) or cytosine-phosphorothioate-guanine oligodeoxynucleotide (TLR agonist) enhanced T-cell activation and stimulated *in situ* DC maturation (Kawarada et al., 2001; Ohkuri et al., 2014). Imiquimod, a TLR7/TLR8 agonist, promotes pDC-mediated antitumor activity, and it is approved for the treatment of non-melanoma skin cancer (Drobits et al., 2012). Poly[I:C] and its derivatives have been used in different cancer vaccination studies and have shown significant outcomes (Martins et al., 2015).

In a melanoma mouse model, co-administration of Poly[I:C] and FLT3L enhanced CD103+ DC expansion and CD8+ T-cell recruitment at the tumor site and synergized PD-L1 antitumor activity (Salmon et al., 2016). The FDA granted an orphan drug designation to a rabies vaccine combined with poly[I:C], named YS-ON-001, for the treatment of pancreatic cancer and hepatocellular carcinoma (Goyvaerts and Breckpot, 2018). Importantly, in an ovarian cancer model, *in situ* co-administration of CD40 and TLR3 agonists has induced the polarization of tumor-infiltrating DCs into an immune stimulatory phenotype that was able to produce type I IFN and IL-12 p70, resulting in tumor remission (Scarlett et al., 2009). Interestingly, Penafuerte et al. developed FIST, a fusion protein of IL-2 and the ectodomain of TGF-β receptor II, to block immunosuppression activity of locally secreted TGF-β and to activate IL-2 receptor-expressing lymphocytes. Administration of this fusokine recruited immune cells at the tumor site and stimulated IFN-γ secretion (Penafuerte and Galipeau, 2012). Likewise, Van der Jeught et al. (2014) developed mRNA encoding IFN-β and the ectodomain of TGF-β receptor II fusokine, named Fβ2. When this mRNA was taken up by DGs and translated into the functioning protein, it stimulated DCs and induced antitumor immunity. Other strategies for intratumoral delivery of immunostimulatory signals such as TNF-α, IL-12, and TGF-β and IL-10 neutralization are extensively reviewed elsewhere (Van der Jeught et al., 2015).

Cancer stem cells (CSCs) play a critical role in cancer progression and metastasis. CSCs are resistant to treatment since they possess antigens different from those present in differentiated tumor cells (Reya et al., 2001). Therefore, vaccination strategies relying on cells expressing stem cell antigens have gained researchers’ interest (Dashki et al., 2016; Zhao et al., 2017). For instance, scientists have developed next-generation cancer vaccines that are more potent and targeted than conventional treatments. Mackiewicz et al. (1995) have developed a genetically engineered whole-tumor cell vaccine expressing hyper-IL-6 against melanoma, named AG1-101H, which has a melanoma stem cell-like phenotype (Mackiewicz and Mackiewicz, 2009). In clinical trials, this vaccine increased the survival of patients with advanced-stage melanoma (Mackiewicz et al., 2015, 2018). Genetically modified B16F10 (melanoma cell line) expressing hyper-IL-6 mixed with murine iPSCs increased DCs, natural killer (NK)-cell infiltration, and IFN-γ and IL-12 p70 production at the tumor site in a mouse model. The vaccines also inhibited the number of infiltrating Treg cells at TME and increased serum level of specific IgG against tumor cells, resulting in a significant reduction of tumor growth with a subsequent increase in the survival rate of the treated mice (Gabka-Buszek et al., 2020).

Targeting of DCs *in vivo* is another strategy that has shown promising results. DEC205 and CLEC9A are receptors that only DCs express. Antibodies targeting these receptors are efficient delivery molecules (Kreutz et al., 2013; Tullet et al., 2016). Mahnke et al. (2005) conjugated melanoma antigens with a DEC205 antibody. The conjugate selectively delivered the neoantigens to DCs, which stimulated CD4+ and CD8+ T-cell responses, leading to tumor regression (Mahnke et al., 2005). In a
Dendritic cell vaccines are found to be feasible, safe, and immunogenic in clinical trials, making them an active area of research. For example, TriMixDC-MEL has shown promising results in inducing antitumor immunity, and it is being tested in clinical trials against melanoma. Moreover, strategies to deliver antibody-loaded neoantigens, activation signals, or nanobodies carrying SLPS or mRNA to induce DC activation in vivo have proven their efficacy in preclinical and clinical settings. On the other hand, some DC vaccine approaches have shown suboptimal antitumor activity, which could be due to improper DC generation protocol, maturation cocktail, or antigen loading strategy is ideal for producing optimal efficacy. Notably, all DC subsets contribute to antitumor immunity. That’s why a better understanding of DC biology could pave the way to developing multiplexed DC vaccines, leveraging the crosstalk among DC subpopulations.

Interestingly, the advancement in stem cell-based research provided a template for the development of personalized iPSC-DC vaccines. Furthermore, targeting strategies of DCs in vivo to selectively deliver molecules to certain primary DC subsets offer a substitute for the laborious, time-consuming, and costly ex vivo generation, antigen loading, and maturation of DCs. Overall, taking into consideration the pros and cons of DC vaccines, it remains tempting to continue researching this field, aiming to provide innovative strategies to enhance their clinical efficacy.

AUTHOR CONTRIBUTIONS

AS, NQ, and YW contributed to the study conception and design. AS, HW, YL, MJ, and W-BO performed data collection and analysis. AS wrote the first draft of the manuscript. All authors read and approved the final manuscript.

FUNDING

This work was supported by grants from the Zhejiang Province Natural Science Foundation (no. LY17C120001) and the Enterprise Commissioned R&D Project (grant no. 16040135-J).

Anassi, E., and Ndefo, U. A. (2011). Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. PT 36, 197–202.

Anguille, S., Smits, E. L., Lion, E., van Tendeloo, V. F., and Berneman, Z. N. (2014). Clinical use of dendritic cells for cancer
Kordalivand, N., Tondini, E., Lau, C. Y. J., Vermonden, T., Mastrobattista, E., Hennink, W. E., et al. (2019). Cationic synthetic long peptides-loaded nanogels: an efficient therapeutic vaccine formulation for induction of T-cell responses. J Control Release 315, 114–125. doi: 10.1016/j.jconrel.2019.10.048

Kranz, L. M., Diken, M., Haas, H., Kreiter, S., Loquai, C., Reuter, K. C., et al. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401. doi: 10.1038/nature18300

Kreutz, M., Tacken, P. J., and Fidgör, C. G. (2013). Targeting dendritic cells—why bother? Blood 121, 2836–2844. doi: 10.1182/blood-2012-09-452078

Kuhn, S., Hyde, E. J., Yang, J., Rich, F. J., Harper, L. J., Kirman, J. R., et al. (2013). Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents. J. Immunol. 191, 1984–1992. doi: 10.4049/jimmunol.1301135

Kuhn, S., Yang, J., and Ronchese, F. (2015). Monocyte-derived dendritic cells are essential for CD8(+) T cell activation and antitumor responses after local immunotherapy. Front. Immunol. 6:584. doi: 10.3389/fimmu.2015.00584

Laoui, D., Keirse, J., Morias, Y., Van Overmeire, E., Geeraerts, X., Elkrinm, Y., et al. (2016). The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat. Commun. 7:13720. doi: 10.1038/ncomms13720

Le, D. T., Wang-Gillam, A., Picozzi, V., Greten, F. T., Crocenzi, T., Springett, K., Yang, J., and Ronchese, F. (2015). Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic melanoma in mice. Cancer Res. 75, 7007–7012. doi: 10.1158/0008-5472.CAN-15-0938

Malvehy, J., Samoylenko, I., Schadendorf, D., Guterm, R., Grob, J. J., Sacco, J. J., et al. (2021). Talimogene laherparepvec upregulates immune-cell populations in non-injected lesional findings from a phase II multicenter, open-label study in patients with stage III-B/IV Melanoma. J. Immunother. Cancer 9:e001621. doi: 10.1136/jitc-2020-001621

Martinez-Maza, L., and Ronchese, F. (2015). Batf3-dependent CD103+ dendritic cells are major producers of IL-17 that drive local Th1 immunity against Leishmania major infection in mice. Eur. J. Immunol. 45, 119–129. doi: 10.1002/eji.20144651

Martin-Gayo, E., Gonzalez-Garcia, S., Garcia-Leon, M. J., Murcia-Ceballos, A., Alcain, J., Garcia-Peydro, M., et al. (2017). Spatially restricted JAG1-Notch signaling in human thymus provides suitable DC developmental niches. J. Exp. Med. 214, 3361–3379. doi: 10.1084/jem.20161564

Matsui, T., Connolly, J. E., Michnevitz, M., Chauassel, D., Yu, C. I., Glaser, C., et al. (2016). The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat. Commun. 7:13720. doi: 10.1038/ncomms13720

Marvel, D. M., and Finn, O. J. (2014). Global inhibition of DC priming capacity in the spleen of self-antigen vaccinated mice requires IL-10. Front. Immunol. 5:59. doi: 10.3389/fimmu.2014.00059

Mashima, H., Zhang, R., Kobayashi, T., Hagiya, Y., Tsukamoto, H., Liu, T., et al. (2020). Generation of GM-CSF-producing antigen-presenting cells that induce a cytotoxic T cell-mediated antitumor response. Oncoimmunology 9:1814620. doi: 10.2217/1222402X.2020.1814620

Mastelic-Gavillet, B., Balint, K., Boudousquipe, C., Gannon, P. O., and Kandalaft, L. E. (2019). Personalized dendritic cell vaccines-recent advances and encouraging breakthroughs and encouraging clinical results. Front. Immunol. 10:766. doi: 10.3389/fimmu.2019.00766

Matsui, T., Connolly, J. E., Michnevitz, M., Chauassel, D., Yu, C. I., Glaser, C., et al. (2009). CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J. Immunol. 182, 6815–6823. doi: 10.4049/jimmunol.0802008

Maurya, N., Gujar, R., Gupta, M., Yadav, V., Verma, S., and Sen, P. (2014). Immunoregulation of dendritic cells by the receptor T cell Ig and mucin protein-3 via Bruton’s tyrosine kinase and c-Src. J. Immunol. 193, 3417–3425. doi: 10.4049/jimmunol.1400395

Mazouz, N., Detournay, O., Buelens, C., Renneson, J., Trakatelli, M., Lambermont, M., et al. (2005). Immunostimulatory properties of human dendritic cells generated using IFN-beta associated either with IL-3 or GM-CSF. Cancer Immunol. Immunother. 54, 1010–1017. doi: 10.1007/s00262-005-0667-6

Michielens, I., Breckpot, K., Corbals, J., Tuyaerts, S., Bonehill, A., Heirman, C., et al. (2006). Induction of antigen-specific CD8+ cytotoxic T cells by dendritic cells co-electroporated with a dsRNA analogue and tumor antigen mRNA. Gene Ther. 13, 1027–1036. doi: 10.1038/sj.gnt.3302750

Michiels, A. J., Hogan, A. E., Marbley, J., Tosetto, M., Cox, F., Hyland, J. M., et al. (2011). Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One 6:e27944. doi: 10.1371/journal.pone.0027944

Mitchell, D., Chintala, S., and Dey, M. (2018). Plasmacytoid dendritic cell in immunity and cancer. J. Neuroimmunol. 322, 63–73. doi: 10.1016/j.jneuroim.2018.06.012

Mittal, D., Gubin, M. M., Schreiber, R. D., and Smyth, M. J. (2014). New insights into cancer immunoeediting and its three component phases—elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25. doi: 10.1016/j.coi.2014.01.004

Miyazawa, M., Iwashashi, M., Ojima, T., Katsuda, M., Nakamura, M., Nakamori, M., et al. (2011). Dendritic cells adenovirally-transduced with full-length mesothelin cDNA elicit mesothelin-specific cytotoxicity against pancreatic cancer cell lines in vitro. Cancer Lett. 305, 32–39. doi: 10.1016/j.canlet.2011.02.013

Mohiy, M., Vialle-Castellano, A., Nunes, J. A., Isnardon, D., Olive, D., and Gaugler, E. (2003). IFN-alpha skewes monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities. J. Immunol. 171, 3385–3393. doi: 10.4049/jimmunol.171.7.3385
Morse, M. A., Coleman, R. E., Akabani, G., Niehaus, N., Coleman, D., and Lyerly, H. K. (1999). Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res. 59, 56–58.

Morse, M. A., Nair, S. K., Mosca, P. J., Hobeika, A. C., Clay, T. M., Deng, Y., et al. (2003). Immunotherapy with autologous, human dendritic cells transactivated with carboxyamino-butyric acid mRNA. Cancer Invest. 21, 341–349. doi: 10.1080/073282503100013838

Morse, M. A., Niedzwiecki, D., Marshall, J. L., Garrett, C., Chang, D. Z., Akilu, M., et al. (2013). A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann. Surg. 258, 879–886. doi: 10.1097/SLA.0b013e3182922919

Naik, S. H., Sath, P., Park, H. Y., Metcalf, D., Frojotti, A. I., Dakic, A., et al. (2007). Development of plasmacytoid and conventional dendritic cell subtypes from single progenitor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226. doi: 10.1038/ni01522

Nestle, F. O., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., et al. (2007). Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int. J. Cancer 120, 585–593. doi: 10.1002/ijc.22298

Ojima, T., Iwahashi, M., Nakamura, M., Matsuda, K., Nakamori, M., Ueda, K., et al. (2007). Streptococcal preparation OK-432 promotes the capacity of dendritic cells (DCs) to prime carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocyte responses induced with genetically modified DCs that express CEA. Int. J. Oncol. 32, 459–466. doi: 10.3892/ijo.32.2.2459

Ohkuri, T., Ghosh, A., Kosaka, A., Zhu, J., Ikeura, M., David, M., et al. (2014). STING contributes to anti-tumor immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol. Res. 2, 1199–1208. doi: 10.1158/2326-6066.CIR-14-0099

Ojima, T., Iwahashi, M., Nakamura, M., Matsuda, K., Nakamori, M., Ueda, K., et al. (2016). Critical role of CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336. doi: 10.1016/j.ccell.2016.06.003

Pu, N., Zhao, G., Gao, S., Cui, Y., Xu, Y., Lv, Y., et al. (2018). Neutralizing TGF-beta promotes anti-tumor immunity of dendritic cells against pancreatic cancer by regulating T lymphocytes. Cent. Eur. J. Immunol. 43, 123–131. doi: 10.5114/ceji.2018.77381

Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L., and Sisirak, V. (2011). Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163–183. doi: 10.1146/annurev-immunol-031210-101345

Salio, M., Palmowski, M. J., Atzberger, A., Hermans, I. F., and Cerundolo, V. (2014). Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nature Immunol. 19, 711–722. doi: 10.1038/ni.3300

Sachs, M., Frickel, S., Raffeld, M., and Karmakar, S. (2004). CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J. Exp. Med. 199, 163–183. doi: 10.1084/jem.20031059

Santti, P., Mäkelä, M. I., Autio, P. P., and Saarnio, T. (2011). CCR7 contributes to tumor antigen-specific CD8+ T cell responses in patients with metastatic melanoma. J. Immunol. 187, 6052–6063. doi: 10.4049/jimmunol.1302801

Saarnio, M., and Bhadwaj, N. (2018). Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer 4, 119–137. doi: 10.1016/j.trecan.2017.12.007

Scarlett, U. K., Cubillos-Ruiz, J. R., Nesbith, Y. C., Martinez, D. G., Engle, X., Watir, G., et al. (2009). In situ stimulation of CD4+ and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells into immunosuppressive...
to immunostimulatory cells. Cancer Res. 69, 7329–7337. doi: 10.1158/0008-5472.CAN-09-0835
Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., et al. (2013). IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983. doi: 10.1016/j.immuni.2013.04.011
Schreibelt, G., Bol, K. F., Westdorp, H., Wimmers, F., Aarntritten, E. H., Duivenande Boer, T., et al. (2016). Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin. Cancer Res. 22, 2155–2166. doi: 10.1158/1078-0432.CCR-15-2205
Segura, E. and Amigorena, S. (2013). Inflammatory dendritic cells in mice and humans. Trends Immunol. 34, 440–445. doi: 10.1016/j.it.2013.06.001
Segura, E., Touzot, M., Bohineust, A., Cappuccio, A., Chiocchia, G., Hosmalin, A., et al. (2013). Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38, 336–348. doi: 10.1016/j.immuni.2012.10.018
Senju, S., Haruta, M., Matsunuma, K., Matsunaga, Y., Fukushima, S., Ikeda, T., et al. (2011a). Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy. Gene Ther. 18, 874–883. doi: 10.1038/gt.2011.22
Senju, S., Haruta, M., Matsunaga, Y., Fukushima, S., Ikeda, T., Takahashi, K., et al. (2009). Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells 27, 1021–1031. doi: 10.1002/stem.33
Senju, S., Matsunaga, Y., Fukushima, S., Hirata, S., Motomura, Y., Fukuma, D., et al. (2011b). Immunotherapy with pluripotent stem cell-derived dendritic cells. Semin Immunopathol. 33, 603–612. doi: 10.1007/s00281-011-0263-y
Sharma, P. K., Dmitriev, I. P., Kashentseva, E. A., Raes, G., Li, L., Kim, S. W., et al. (2018). Development of an adenosine vector vaccine platform for targeting dendritic cells. Cancer Gene Ther. 25, 27–38. doi: 10.1038/s41417-017-0002-1
Shinde, P., Fernandes, S., Melinkeri, S., Ohpir, E., Tuyaerts, S., Roberti, A., Genolet, R., et al. (2018). Senju, S., Haruta, M., Matsunuma, K., Fukushima, S., Ikeda, T., Takahashi, K., et al. (2010). Semi mature blood dendritic cells exist in patients with ductal pancreatic adenocarcinoma owing to inflammatory factors released from the tumor. PLoS One 5:e13441. doi: 10.1371/journal.pone.0013441
Toniolo, P. A., Liu, S., Yeh, J. E., Ye, D. Q., Barbuto, J. A., and Frank, D. A. (2016). Deregulation of SOCS5 suppresses dendritic cell function in chronic lymphocytic leukemia. Oncotarget 7, 46301–46314. doi: 10.18632/oncotarget.10093
Trombetta, E. S., and Mellman, I. (2005). Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028. doi: 10.1146/annurev.immunol.23.101703.104538
Touchiya, N., Zhang, R., Iwama, T., Ueda, N., Liu, T., Tsutsumi, M., et al. (2019). Type I interferon delivery by ipsc-derived myeloid cells elicits antitumor immunity via XCR1(+)/dendritic cells. Cell Rep. 29, 162-175.e16. doi:10.1016/j.celrep.2019.08.086
Tulliet, K. M., Leah Rojas, I. M., Minoda, Y., Tan, P. S., Zhang, J. G., Smith, C., et al. (2016). Targeting CLEC9A delivers antigen to human CD141(+)/DC for CD4(+) and CD8(+) T cell recognition. JCI Insight 1:e87102. doi: 10.1172/jci.insight.87102
Tyurin, V. A., Cao, W., Tyurina, Y. Y., Gabrilovich, D. I., and Kagan, V. E. (2011). Mass-spectrometric characterization of peroxidized and hydrolyzed lipids in plasma and dendritic cells of tumor-bearing animals. Biochim. Biophys. Res. Commun. 413, 149–153. doi: 10.1016/j.bbrc.2011.08.074
Van de Jeught, F., Juffermans, N., Kab柁iskey, A., Joch, K., Perche, F., et al. (2018). Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Immunostimulatory Activity. ACS Nano 12, 9815–9829. doi: 10.1021/acsnano.8b03996
Van de Jeught, K., Deckers, S., Bialkowski, L., Heirman, C., Tjok Joe, P., Perche, F., et al. (2015). Intratumoral Delivery of TriMix mRNA Results in T-cell Activation in ovarian cancer. Sci. Transl. Med. 10:eaa5931. doi:10.1126/scitranslmed.aaa5931
Tel, J., Aarntritten, E. H., Baba, T., Schreibelt, G., Schulte, R. M., Benitez-Ribas, D., et al. (2013). Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 73, 1063–1075. doi: 10.1158/0008-5472.CAN-12-2583
Theisen, D. J., Ferris, S. T., Bitseno, C. G., Kretzer, N., Iwata, A., Murphy, K. M., et al. (2019). Batf3-dependent genes control tumor rejection induced by dendritic cells independently of cross-presentation. Cancer Immunol. Res. 7, 29–39. doi: 10.1158/2326-6066.CIR-18-0138
Tomsland, V., Spangueus, A., Sandstrom, P., Borch, K., Messmer, D., and Larsson, M. (2010). Semi mature blood dendritic cells exist in patients with ducal pancreatic adenocarcinoma owing to inflammatory factors released from the tumor. PLoS One 5:e13441. doi: 10.1371/journal.pone.0013441
by Cross-Presenting Dendritic Cells. *Cancer Immunol Immunother* 4, 146–156. doi: 10.1158/2326-6066.CIR-15-0163

Van Lint, S., Wilgenhof, S., Heirman, C., Corthals, J., Breckpot, K., Bonehill, A., et al. (2014). Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. *Cancer Immunol Immunother.* 63, 959–967. doi: 10.1007/s00262-014-1558-3

Van Nuffel, A. M., Corthals, J., Neyns, B., Heirman, C., Thielemans, K., and Bonehill, A. (2010). Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. *Methods Mol. Biol.* 629, 405–452. doi: 10.1007/978-1-60761-657-3_27

VandenDriessche, T., Thorrez, L., Naldini, L., Follenzi, A., Moons, L., Berneman, Z., et al. (2002). Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. *Blood* 100, 813–822. doi: 10.1182/blood.v100.3.813

Vanmeerebeek, J., Sprooten, J., De Ruysser, D., Teijpar, S., Vandenbergh, P., Fucikova, J., et al. (2020). Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. *Oncoimmunology* 9:1703449. doi: 10.1080/2162402X.2019.1703449

Varypati, E. M., Silva, A. L., Barriner-Quer, C., Collin, N., Ossendorp, F., and Jiskoot, W. (2016). Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: a comparative study of cationic liposomes and PLGA nanoparticles. *J. Control Release* 226, 98–106. doi: 10.1016/j.jconrel.2016.02.018

Veglia, F., Tyrin, V. A., Mohammadzayan, D., Blasi, M., Duperret, E. K., Donthiiredly, L., et al. (2017). Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. *Nat. Commun.* 8:2122. doi: 10.1038/s41467-017-02186-9

Verbeke, R., Lentacker, I., Breckpot, K., Janssens, J., Van Calenbergh, S., and Sancho, D. (2019). Effective cancer immunotherapy by natural mouse dendritic Cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated colorectal cancer. *Cancer Immunol Res* 7:e1232223. doi: 10.1158/2326-6066.CIR-12-0212

Wen, J., Yuan, Y., Chen, Z., et al. (2016). Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. *Science* 356:eaah4573. doi: 10.1126/science.aaq4573

Vopenkova, K., Mollova, K., Buresova, I., and Michalek, J. (2012). Complex discrimination of human monocyte-derived dendritic cells, myeloid, and plasmacytoid dendritic cells by a high throughput platform. *J. Cell Mol Med.* 16, 2827–2837. doi: 10.1111/j.1582-4934.2012.01614.x

Wu, L., Xiong, Y., et al. (2016). miRNA-155 deficiency impairs dendritic cell function in breast cancer. *Oncoimmunology* 5:1232223. doi: 10.1080/2162402X.2016.1232223

Wu, S., K., Amores-Iniesta, J., Conde-Garrosa, R., Khouli, S. C., Melero, I., and Sancho, D. (2019). Effective cancer immunotherapy by natural mouse conventional type-I dendritic cells bearing dead tumor antigen. *J. Immunother.* Cancer 7:100. doi: 10.1186/s40425-019-0565-5

Wu, S. K., Cueto, F. J., Mujal, A. M., Melero, I., Krummel, M. F., and Sancho, D. (2020). Dendritic cells in cancer immunology and immunotherapy. *Nat. Rev. Immunol.* 20, 7–24. doi: 10.1038/s41577-019-0210-z

Wilgenhof, S., Corthals, J., Heirman, C., van Baren, N., Lucas, S., Kröstboglob, P., et al. (2016). Phase II study of autologous monocyte-derived mRNA electroporated dendritic Cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. *J. Clin. Oncol.* 34, 1330–1338. doi: 10.1200/JCO.2015.63.4121

Copyright © 2021 Salah, Wang, Li, Ji, Ou, Qi and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.