Automatic Generation of Precise and Useful Commutativity Conditions

Kshitij Bansal1, Eric Koskinen2, and Omer Tripp1
1 Google, Inc.
2 Stevens Institute of Technology1

\textbf{Abstract.} Reasoning about commutativity between data-structure operations has been, and remains, an important problem with applications including parallelizing compilers, optimistic parallelization and, more recently, Ethereum smart contracts. There have been research results on automatic generation of commutativity conditions, yet we are unaware of any fully automated technique to generate conditions that are both sound and effective (i.e., not overly conservative).

We take a first step in this direction. We have designed such a technique, driven by an algorithm that iteratively refines a conservative approximation of the commutativity (and non-commutativity) condition for a pair of methods into an increasingly precise version. The algorithm terminates if/when the entire state space has been considered, and can be aborted at any time to obtain a partial yet sound commutativity condition. We have generalized our work to left-/right-movers \cite{25} and proved relative completeness. We describe aspects of our technique that lead to \textit{useful} commutativity conditions, including how predicates are selected during refinement and heuristics that impact the output shape of the condition.

We have implemented our technique in a prototype open-source tool called \textsc{Servois}. Our algorithm produces quantifier-free queries that are dispatched to a back-end SMT solver. We evaluate \textsc{Servois} through two case studies: (i) We synthesize commutativity conditions for a range of data structures including Set, HashTable, Accumulator, Counter, and Stack. (ii) We consider an Ethereum smart contract called BlockKing, and show that \textsc{Servois} can detect serious concurrency-related vulnerabilities and guide developers to construct robust and efficient implementations.

\section{Introduction}

Reasoning about the conditions under which data-structure operations commute is an important problem. The ability to derive sound yet effective commutativity conditions unlocks the potential of multicore architectures, including parallelizing compilers \cite{28,32}, speculative execution (\textit{e.g.} transactional memory \cite{17}), peephole partial-order reduction \cite{36}, futures, etc. Another important application domain that has emerged recently is Ethereum smart contracts: efficient execution of such contracts hinges on exploiting their commutativity \cite{12}.

1Support in part by NSF CCF Award \#1618059 and CCF Award \#1421126.
Intuitively, commutativity is an important property because linearizable data-structure operations that commute can be executed concurrently: their effects don’t interfere with each other in an observable way. When using a linearizable HashTable, for example, knowledge that put(x,’a’) commutes with get(y) provided that x ≠ y enables significant parallelization opportunities as both can be performed concurrently. Indeed, it’s important for the commutativity condition to be sufficiently granular so that parallelism can be exploited effectively [10]. At the same time, to make safe use of a commutativity condition, it must be sound [22,21]. Achieving both of these goals using manual reasoning is burdensome and error prone.

In light of that, researchers have investigated ways of verifying user-provided commutativity conditions [20] as well as synthesizing such conditions automatically, e.g. based on random interpretation [6], profiling [31] or sampling [16]. None of these approaches, however, meets the goal of computing a commutativity condition that is both sound and granular in a fully automated manner.

In this paper, we take a first step in this direction. We present a refinement-based technique for generating commutativity conditions. Our technique builds on well-known descriptions and representations of abstract data types (ADTs) in terms of logical (Pre\textsubscript{m}, Post\textsubscript{m}) specifications [18,14,15,7,26,24] for each method m. Our algorithm iteratively relaxes under-approximations of the commutativity and non-commutativity conditions of methods m and n, starting from false, into increasingly precise versions. At each step, we conjunctively subdivide the symbolic state space into regions, searching for areas where m and n commute and where they don’t. Counterexamples to both the positive side and the negative side are used in the next symbolic subdivision. Throughout this recursive process, we accumulate the commutativity condition as a growing disjunction of these regions. The output of our procedure is a logical formula \(\varphi_{n,m} \) specifies when method m commutes with method n. We have proven that the algorithm is sound, and can also be aborted at any time to obtain a partial, yet useful [31,17], commutativity condition. We show that, under certain conditions, termination is guaranteed (relative completeness).

We address several challenges that arise in using an iterative refinement approach to generating precise and useful commutativity conditions. First, we show how to pose the commutativity question in a way that does not introduce additional quantifiers. We also show how to generate the predicate vocabulary for expressing the condition \(\varphi_{n,m} \), as well as how to choose the predicates throughout the refinement loop. A further question that we address is how predicate selection impacts the conciseness and readability of the generated commutativity conditions. Finally, we have generalized our algorithm to left-/right-movers [25], a more precise version of commutativity.

We have implemented our approach as the SERVOIS tool, whose code and documentation are available online [2]. SERVOIS is built on top of the CVC4 SMT solver [8]. We evaluate SERVOIS through two case studies. First, we generate commutativity conditions for a collection of popular data structures, including Set, HashTable, Accumulator, Counter, and Stack. The conditions typically combine
multiple theories, such as sets, integers, arrays, etc. We show the conditions to be comparable in granularity to manually specified conditions [20]. Second, we consider BlockKing [29], an Ethereum smart contract, with its known vulnerability. We demonstrate how a developer can be guided by SERVOS to create a more robust implementation.

Contributions. In summary, this paper makes the following contributions:

– The first sound and precise technique to automatically generate commutativity conditions (Sec. 4).
– Proof of soundness and relative completeness (Sec. 4).
– An implementation that takes an abstract code specification and automatically generates commutativity conditions using an SMT solver (Sec. 5).
– A novel technique for selecting refinement predicates that improves scalability and the simplicity of the generated formulae (Sec. 5).
– Demonstrated efficacy for several key data structures (Sec. 6.1) as well as the BlockKing Ethereum smart contract [29]. (Sec. 6.2).

Related work. The closest to our contribution in this paper is a recent technique by Gehr et al. [16] for learning, or inference, of commutativity conditions based on black-box sampling. They draw concrete arguments, extract relevant predicates from the sampled set of examples, and then search for a formula over the predicates. There are no soundness or completeness guarantees.

Both Aleen and Clark [6] and Tripp et al. [31] identify sequences of actions that commute (via random interpretation and dynamic analysis, respectively). However, neither technique yields an explicit commutativity condition. Kulkarni et al. [23] point out that varying degrees of commutativity specification precision are useful. Kim and Rinard [20] use Jahob to verify manually specified commutativity conditions of several different linked data structures. Commutativity specifications are also found in dynamic analysis techniques [13].

More distantly related is the work on synthesizing program implementations, such as CEGIS [30] and synchronization synthesis [35,34]. Our algorithm uses a form of counterexample-guided abstraction refinement [9].

2 Example

Consider the Set ADT, whose state consists of a single set S that stores an unordered collection of unique elements. Specifying commutativity conditions is generally nontrivial, more importantly it is easy to miss subtle corner cases. Additionally, it has to be done pairwise for all methods. For ease of illustration, we will focus on a relatively simple Set example and one pair of operations: (i) contains (x)/bool, a side-effect-free check whether the element x is in S; and (ii) add (y)/bool adds y to S if it is not already there and returns true, or otherwise returns false. add and contains clearly commute if they refer to different elements in the set. There is another case that is less obvious: add and contains commute if they refer to the same element e, as long as in the prestate $e \in S$. In this case, under both orders of execution, add and contains
leave the set unmodified and return false and true, respectively. The algorithm we describe in this paper takes 3.6s to automatically produce a precise logical formula \(\varphi \) that captures this commutativity condition, i.e. the disjunction of the two cases above: \(\varphi \equiv x \neq y \lor (x = y \land x \in S) \). The algorithm also generates the conditions under which the methods do not commute: \(\tilde{\varphi} \equiv x = y \land x \notin S \). These are precise, since \(\varphi \) is the negation of \(\tilde{\varphi} \).

A more complicated commutativity condition generated by our tool, SERVOIS, for BlockKing (Sec. 6.2) is for method \(\text{enter}(\text{val}, \text{sendr}, \text{bk}1...) \) and completed in 1.4s. It does not commute with itself \(\text{enter}(\text{val}_2, \text{sendr}_2, \text{bk}2...) \) if and only if:

\[
\begin{align*}
\text{val}_1 &\geq 50 \land \text{val}_2 \geq 50 \land \text{sendr}_1 \neq \text{sendr}_2 \\
\text{val}_1 &\geq 50 \land \text{val}_2 \geq 50 \land \text{sendr}_1 = \text{sendr}_2 \land \text{val}_1 \neq \text{val}_2 \\
\text{val}_1 &\geq 50 \land \text{val}_2 \geq 50 \land \text{sendr}_1 = \text{sendr}_2 \land \text{val}_1 = \text{val}_2 \land \text{bk}_1 \neq \text{bk}_2
\end{align*}
\]

Eliding the details for now, this disjunction effectively enumerates the non-commutativity cases. As we will see in Sec. 6.2, this condition directly identifies a vulnerability in BlockKing.

Capturing precise conditions such as these by hand, and doing so for many pairs of operations, is tedious and error prone. This paper instead presents a way to automate this. Our algorithm recursively subdivides the state space via predicates until, at the base case, regions are found that are either entirely commutative or else entirely non-commutative.

Returning to our Set example, the conditions we incrementally generate are denoted \(\varphi \) and \(\tilde{\varphi} \), respectively. The following diagram illustrates how our algorithm proceeds to generate the commutativity conditions for methods add and contains.

In this diagram, each subsequent panel depicts a partitioning of the state space into regions of commutativity (\(\varphi \)) or non-commutativity (\(\tilde{\varphi} \)). The counterexamples \(\chi_c, \chi_{nc} \) give values for the arguments \(x, y \) and the current state of the set \(S \).

We denote by \(H \) the logical formula that describes the current state space at a given recursive call. As expected, we begin with \(H_0 = \text{true} \), \(\varphi = \text{false} \), and \(\tilde{\varphi} = \text{false} \). There are three cases for a given \(H \): (i) \(H \) describes a precondition for \(m \) and \(n \) in which they always commute; (ii) \(H \) describes a precondition for \(m \) and \(n \) in which they never commute; or (iii) neither of the above. The latter case drives the algorithm to subdivide the region by choosing a new predicate.
We detail the run of this refinement loop on our earlier Set example. We reserve elaborating on other subtleties and challenges to the later sections (some are briefly described in the outline below). At each step of the algorithm, we determine which case we are in via carefully designed validity queries to an SMT solver. For H_0, it returns the commutativity counterexample described above: $\chi_c = \{x = 0, y = 0, S = \emptyset\}$ as well as the non-commutativity counterexample $\chi_{nc} = \{x = 0, y = 1, S = \{0\}\}$. Since, therefore, $H_0 = \text{true}$ is neither a commutativity nor a non-commutativity condition, we must refine H_0 into regions (or stronger conditions). In particular, we would like to perform a useful subdivision: Divide H_0 into an H_1 that allows χ_c but disallows χ_{nc}, and an H_1' that allows χ_{nc} but not χ_c. To this end, we must choose a predicate p (from a suitable set of predicates P, discussed later), such that $H_0 \land p \Rightarrow \chi_c$ while $H_0 \land \neg p \Rightarrow \chi_{nc}$ (or vice versa). The predicate $x = y$ satisfies this property. The algorithm then makes the next two recursive calls, adding p as a conjunct to H, as shown in the second column of the diagram above: one with $H_1 \equiv \text{true} \land x = y$ and one with $H_1' \equiv \text{true} \land x \neq y$. Taking the H_1' case, our algorithm makes another SMT query and finds that $x \neq y$ implies that add always commutes with contains. At this point, it can update the commutativity condition φ, letting $\varphi := \varphi \lor H_1'$, adding this H_1' region to the growing disjunction. On the other hand, H_1 is neither a sufficient commutativity nor a sufficient non-commutativity condition, and so our algorithm, again, produces the respective counterexamples: $\chi_c = \{x = 0, y = 0, S = \emptyset\}$ and $\chi_{nc} = \{x = 0, y = 0, S = \{0\}\}$. In this case, our algorithm selects the predicate $x \in S$, and makes two further recursive calls: one with $H_2 \equiv x = y \land x \in S$ and another with $H_2' \equiv x = y \land x \notin S$. In this case, it finds that H_2 is a sufficiently strong precondition for commutativity, while H_2' is a strong enough precondition for non-commutativity. Consequently, H_2 is added as a new conjunct to φ, yielding $\varphi \equiv x \notin y \lor (x = y \land x \in S)$. Similarly, φ' is updated to be: $\varphi' \equiv (x = y \land x \notin S)$. No further recursive calls are made so the algorithm terminates and, as we show in Lemma 1, we have obtained a precise (complete) commutativity/non-commutativity specification: $\varphi \lor \varphi'$ is valid.

While the algorithm outlined so far is a relatively standard refinement loop, the above generated conditions were not immediate. We now discuss the challenges involved in enabling generation of sound yet useful conditions.

Outline. A first question is how to pose the underlying commutativity queries for each subsequent H, which are discharged to an SMT solver. We describe how to pose these queries in a way that avoids the introduction of additional quantifiers, so that we can remain in fragments for which the solver has complete decision procedures. Thus, if the data structure can be encoded using theories that are decidable, then the queries we pose to the SMT solver are guaranteed to be decidable as well. $\text{Pre}_m/\text{Post}_m$ specifications that are partial would introduce quantifier alternation, but we show how this can be avoided by, instead, transforming them into total specifications.

Guarantees (Sec. 4). We have proven that our algorithm is sound, and it produces sound commutativity conditions, even if aborted or the ADT descrip-
tion involves undecidable theories. We further show that termination implies completeness, and specify broad conditions that imply termination (i.e., relative completeness).

A second challenge is to prioritize predicates during the refinement loop. This choice impacts not only the algorithm’s performance, but also the quality (or conciseness) of the resulting conditions. Our choice of next predicate p is governed by two requirements. First, for progress, $p/\neg p$ must eliminate the counterexamples to commutativity/non-commutativity due to the last iteration. This may still leave multiple choices, and we propose two heuristics—called simple and poke—with different trade-offs to break ties. This is discussed in Sec. 5, along with other practical considerations.

We conclude with an evaluation on a range of popular data structures (Sec. 6.1) and a case study on boosting the security of an Ethereum smart contract (Sec. 6.2).

3 Preliminaries

States, actions, methods. We will work with a state space denoted Σ, with decidable equality and a set of actions A. For each $\alpha \in A$, we have a transition function $\langle \alpha \rangle : \Sigma \to \Sigma$. We denote a single transition as $\sigma \xrightarrow{\alpha} \sigma'$. We assume that each such action arc completes in finite time. Let $T \equiv (\Sigma,A,\langle \cdot \cdot \rangle)$. We say that two actions α_1 and α_2 commute [13], denoted $\alpha_1 \bowtie \alpha_2$, provided that $\langle \alpha_1 \rangle \circ \langle \alpha_2 \rangle = \langle \alpha_2 \rangle \circ \langle \alpha_1 \rangle$. Note that \bowtie is with respect to $T = (\Sigma,A,\langle \cdot \cdot \rangle)$. Our formalism, implementation, and evaluation all extend to a more fine-grained notion of commutativity: an asymmetric version called left-movers and right-movers [25], where a method commutes in one direction and not the other. For ease of presentation, the formal detail in the body of this paper discusses only commutativity, but a discussion of how our technique generalizes can be found in Apx B. Also, in our evaluation (Sec. 6) we show left-/right-mover conditions that were generated by our implementation.

An action $\alpha \in A$ is of the form $m(\bar{x})/\bar{r}$, where m, \bar{x} and \bar{r} are called a method, arguments and return values respectively. As a convention, for actions corresponding to a method n, we use \bar{y} for arguments and \bar{s} for return values. In our context, the set of methods will be finite, inducing a finite partitioning of A. We refer to an action, say $m(\bar{a})/\bar{v}$, as corresponding to method m (where \bar{a} and \bar{v} are vectors of values). The set of actions corresponding to a method m, denoted A_m, might be infinite as the arguments and return values may be from an infinite domain. A given method corresponds to many possible actions.

Definition 1 (Method Commutativity). For m and n,

$$m \bowtie n = \forall \bar{x} \, \exists \bar{y} \, \exists \bar{s}. \, m(\bar{x})/\bar{r} \bowtie n(\bar{y})/\bar{s}$$

Above we have quantified over all actions corresponding to m and n. That is, the quantification $\forall \bar{x} \bar{r}$ means $\forall m(\bar{x})/\bar{r} \in A_m$, i.e., all vectors of arguments and return values that constitute an action in A_m.

Abstract specifications. We describe the actions of a method m symbolically as pre-condition Pre_m and post-condition $Post_m$. Pre-conditions are logical
formulæ over method arguments and the initial state, and post-conditions are over method arguments, and return values, initial state and final state:

\[\text{Pre}_m : \bar{x} \rightarrow \Sigma \rightarrow \mathbb{B} \quad \text{Post}_m : \bar{x} \rightarrow \bar{r} \rightarrow \Sigma \rightarrow \Sigma \rightarrow \mathbb{B} \]

Given \((\text{Pre}_m, \text{Post}_m)\) for every method \(m\), we define a transition system \(\Sigma = (\Sigma, A, (\bullet \|))\) such that \(\sigma \frac{m(\bar{x})}{\bar{r}} \sigma'\) iff \([\text{Pre}_m] \bar{x} \sigma\) and \([\text{Post}_m] \bar{x} \bar{r} \sigma \sigma'\).

Since our approach works on deterministic transition systems, we have implemented a check (discussed in Sec. 6) that ensures the input transition system is deterministic. Deterministic specifications were sufficient to model the Set, HashTable, Accumulator, Counter, and Stack data structures. This is unsurprising given the inherent difficulty of creating efficient concurrent implementations of nondeterministic operations, whose effects are hard to characterize. Reducing nondeterministic data-structure methods to deterministic ones through symbolic partial determinization \([5,11]\) is left as future work.

Logical commutativity formulæ. We will work with, and generate, a commutativity condition for methods \(m\) and \(n\) as formulæ over initial states and the arguments/return values of the methods. We denote a logical commutativity formula as \(\varphi\) and assume a decidable interpretation of formulæ: \([\varphi] : (\sigma, \bar{x}, \bar{y}, \bar{r}, \bar{s}) \rightarrow \mathbb{B}\). (We tuple the arguments for brevity.) The first argument is the initial state. Commutativity post- and mid-conditions can also be written \([20]\), but here, for simplicity, we focus only pre-conditions. Throughout this paper, we may write \([\varphi]\) as simply \(\varphi\) when it is clear from context that \(\varphi\) is meant to be interpreted.

We say that \(\varphi^n_m\) is a sound commutativity condition, and \(\varphi^n_{m}^-\) a sound non-commutativity condition resp., for \(m\) and \(n\) provided that

\[
\forall \sigma \bar{x} \bar{y} \bar{r} \bar{s}. \ [\varphi^n_m] \sigma \bar{x} \bar{y} \bar{r} \bar{s} \Rightarrow m(\bar{x})/\bar{r} \triangleright n(\bar{y})/\bar{s}, \text{ and} \\
\forall \sigma \bar{x} \bar{y} \bar{r} \bar{s}. \ [\varphi^n_m^-] \sigma \bar{x} \bar{y} \bar{r} \bar{s} \Rightarrow \neg(m(\bar{x})/\bar{r} \triangleright n(\bar{y})/\bar{s}), \text{ resp.}
\]

3.1 Commutativity without Quantifier Alternation

Def. 1 requires showing equivalence between different compositions of potentially partial functions. That is, \(\langle \alpha_1 \rangle \circ \langle \alpha_2 \rangle = \langle \alpha_2 \rangle \circ \langle \alpha_1 \rangle\) if and only if:

\[
\forall \sigma_0 \sigma_1 \sigma_{12}. \ (\langle \alpha_1 \rangle \sigma_0 = \sigma_1 \land (\langle \alpha_2 \rangle \sigma_1 = \sigma_{12}) \Rightarrow \exists \sigma_3. \ (\langle \alpha_2 \rangle \sigma_0 = \sigma_3 \land (\langle \alpha_1 \rangle \sigma_3 = \sigma_{12})
\]

(and a symmetric case for the other direction)

Even when the transition relation can be expressed in a decidable theory, because of \(\forall \exists\) quantifier alternation in the above encoding (which is undecidable in general), any procedure requiring such a check would be incomplete. SMT solvers are particularly poor at handling such constraints.

We observe that when the transition system is specified as \(\text{Pre}_m\) and \(\text{Post}_m\) conditions, and the \(\text{Post}_m\) condition is consistent with \(\text{Pre}_m\), then it is possible to avoid quantifier alternation. By consistent we mean that whenever \(\text{Pre}_m\) holds, there is always some state and return value for which \(\text{Post}_m\) holds.

\[
\forall \bar{a} \sigma. \ \text{Pre}_m(\bar{a}, \sigma) = \text{true} \Rightarrow \exists \sigma' \bar{r}. \ \text{Post}_m(\bar{a}, \bar{r}, \sigma, \sigma').
\]
In particular, this assumption holds for all of the specifications in the examples we considered (see Sec. 6). This allows us to perform a simple transformation on transition systems to a lifted domain, and enforce a definition of commutativity in the lifted domain denoted \(n \otimes m \) that is equivalent to Eqn. 1. This new definition requires only universal quantification, and as such, is better suited to automation of SMT-backed algorithms (e.g. Sec. 4).

For lack of space, we have deferred the technical details of this lifting transformation denoted \(\text{Lift} \) to Apx. A. If the reader prefers, it suffices instead to simply think of a lifted transition system \(\hat{T} = (\hat{\Sigma}, A, (\cdot \bullet)) \) as a normal transition system, except with the guarantee that \((\cdot \bullet)\) is total. The transformation involves introducing a special state called \(\text{Err} \), and mapping any undefined states in \((\cdot \bullet)\) to \(\text{Err} \), as well as mapping \(\text{Err} \) to \(\text{Err} \). We also use notations \((\hat{\text{Pre}}, m, \hat{\text{Post}}) \) and \(\hat{\otimes} \) when considering commutativity in the lifted domain.

4 Iterative Refinement

We now present an iterative refinement strategy that, when given a lifted abstract transition system, generates the commutativity and the non-commutativity conditions. We then discuss soundness and relative completeness and, in Secs. 5 and 6, several challenges involved in enabling this refinement to generate precise and useful commutativity conditions.

The refinement algorithm symbolically searches the state space for regions where the operations commute (or do not commute) in a conjunctive manner, adding on one predicate at a time. We add each subregion \(H \) (described conjunctively) in which commutativity always holds to a growing disjunctive description of the commutativity condition \(\varphi \), and each subregion \(H \) in which commutativity never holds to a growing disjunctive description of the non-commutativity condition \(\hat{\varphi} \).

The algorithm in Fig. 1 begins by setting \(\varphi = \text{false} \) and \(\hat{\varphi} = \text{false} \). \text{Refine} begins a symbolic binary search through the state space \(H \), starting from the entire state: \(H = \text{true} \). It also may use a collection of predicates \(P \) (discussed
later). At each iteration, \textsc{Refine} checks whether the current \(H \) represents a region of space for which \(m \) and \(n \) always commute: \(H \Rightarrow m \bowtie n \) (described below). If so, \(H \) can be disjunctively added to \(\varphi \). It may, instead be the case that \(H \) represents a region of space for which \(m \) and \(n \) never commute: \(H \Rightarrow m \bowtie n \). If so, \(H \) can be disjunctively added to \(\tilde{\varphi} \). If neither of these cases hold, we have two counterexamples. \(\chi_c \) is the counterexample to commutativity, returned if the validity check on Line 2 fails. \(\chi_{nc} \) is the counterexample to \textit{non}-commutativity, returned if the validity check on Line 4 fails.

We now need to subdivide \(H \) into two regions. This is accomplished by selecting a new predicate \(p \) via the \textsc{Choose} method. For now, let the method \textsc{Choose} and the choice of predicate vocabulary \(\mathcal{P} \) be parametric. \textsc{Refine} is sound regardless of the behavior of \textsc{Choose}. Below we give the conditions on \textsc{Choose} that ensure relative completeness, and in Sec. 6 we discuss our particular strategy. Regardless of what \(p \) is returned by \textsc{Choose}, two recursive calls are made to \textsc{Refine}, one with argument \(H \land p \), and the other with argument \(H \land \neg p \).

The refinement algorithm generates commutativity conditions that are in disjunctive normal form. Hence, any (finite) logical formula can be represented. This logical language is more expressive than previous commutativity logics that, because they were designed for run-time purposes, were restricted to conjunctions of inequalities [23] and boolean combinations of predicates over finite domains [13].

\textbf{Checking a candidate} \(H^m_n \). Our algorithm involves checking whether \((H^m_n \Rightarrow m \bowtie n) \) or \(((H^m_n \Rightarrow m \bowtie n) \). As shown in Sec. 3.1, we can check whether \(H^m_n \) specifies conditions under which \(m \bowtie n \) via an SMT query that does not introduce quantifier alternation. For brevity, we define:

\[
\text{valid}(H^m_n \Rightarrow m \bowtie n) \equiv \text{valid}\left(\forall \sigma_0 \bar{x} \bar{y} \bar{r} \bar{s}.\ H^m_n(\sigma_0, \bar{x}, \bar{y}, \bar{r}, \bar{s}) \Rightarrow m(\bar{x})/\bar{r} n(\bar{y})/\bar{s} \sigma_0 = n(\bar{y})/\bar{s} m(\bar{x})/\bar{r} \sigma_0 \right)
\]

Above we assume as a black box an SMT solver providing \textsc{valid}. Here we have lifted the universal quantification within \(\bowtie \) outside the implication.

We can similarly check whether \(H^m_n \) is a condition under which \(m \) and \(n \) do \textit{not} commute. First, we define negative analogs of commutativity:

\[
\alpha_1 \bowtie \alpha_2 \equiv \forall \sigma_0.\ \sigma_0 \neq Err \Rightarrow (\llbracket \alpha_2 \rrbracket \llbracket \alpha_1 \rrbracket \sigma_0 \neq \llbracket \alpha_1 \rrbracket \llbracket \alpha_2 \rrbracket \sigma_0
\]

\[
m \bowtie n \equiv \forall \bar{x} \bar{y} \bar{r} \bar{s}.\ m(\bar{x})/\bar{r} \bowtie n(\bar{y})/\bar{s}
\]

We thus define a check for when \(\varphi^m_n \) is a \textit{non}-commutativity condition with:

\[
\text{valid}(H^m_n \Rightarrow m \bowtie n) \equiv \text{valid}\left(\forall \sigma_0 \bar{x} \bar{y} \bar{r} \bar{s}.\ H^m_n(\sigma_0, \bar{x}, \bar{y}, \bar{r}, \bar{s}) \Rightarrow \sigma_0 \neq Err \Rightarrow m(\bar{x})/\bar{r} n(\bar{y})/\bar{s} \sigma_0 \neq n(\bar{y})/\bar{s} m(\bar{x})/\bar{r} \sigma_0 \right)
\]

The following theorem shows that \(\varphi \) is a sound approximation of when \(m \bowtie n \) always holds (and similarly for \(\tilde{\varphi} \)).

\textbf{Theorem 1 (Soundness).} Each \textsc{Refine} \(_n^m \) iter., \(\varphi \Rightarrow m \bowtie n \), and \(\tilde{\varphi} \Rightarrow m \bowtie n \).
Soundness holds regardless of what `Choose` returns (not surprising since updates to \(\phi \) and \(\tilde{\phi} \) are guarded by validity checks) and even when the theories used to model the underlying data-structure are incomplete. Next we show that termination implies completeness:

Lemma 1. If `Refine\(_m^m \)` terminates, then \(\phi \lor \tilde{\phi} \).

Theorem 2 (Conditions for Termination). `Refine\(_m^m \)` terminates if:

1. \textbf{(expressiveness)} the state space \(\Sigma \) is partitionable into a finite set of regions \(\Sigma_1, ..., \Sigma_N \), each described by a finite conjunction of predicates \(\psi_i \), such that either \(\psi_i \Rightarrow m \nvdash \nvdash n \) or \(\psi_i \Rightarrow m \nvdash \nvdash n \); and

2. \textbf{(fairness)} for every \(p \in \mathcal{P} \), `Choose` eventually picks \(p \) (note that this does not imply that \(\mathcal{P} \) is finite).

Note that while these conditions ensure termination, the bound on the number of iterations depends on the predicate language and behavior of `Choose`.

5 The Servois tool and practical considerations

Input. We use an input specification language building on YAML (which has parser and printer support for all common programming languages) with SMTLIB as the logical language. This format is human readable and can be automatically generated relatively easily, thus enabling the integration with other tools [18,14,15,7,26,24]. See Apx. D.1 for the Counter ADT specification, which was derived from the Pre and Post conditions used in earlier work [20].

The states (state) of a transition system describing an ADT are encoded as list of variables (each as a name, type pair), and each method (method) specification requires a list of argument types (args), return type (return), and Pre (requires) and Post (ensures) conditions. For an example (Counter [20]), see Apx. D.1.

Implementation. We have developed the open-source Servois tool [3], which implements `Refine`, `Lift`, predicate generation, and a method for selecting predicates (Choose) discussed below. Servois uses CVC4 [8] as a backend SMT solver. Servois begins by performing some pre-processing on the input transition system. It checks that the transition system is deterministic. Next, in case the transition system is partial, SERVOIS performs the Lift transformation (Sec. 3.1 and Apx. A). An example of Lift applied to Counter is in Apx. D.2.

Next, SERVOIS automatically generates the predicate language (in addition to user-provided hints). As discussed in Sec. 4, if the predicate vocabulary is not sufficiently expressive, then the algorithm would not be able to converge on precise commutativity and non-commutativity conditions. We generate predicates by using terms and operators that appear in the specification, and generating well-typed atoms not trivially true or false. As we demonstrate in Sec. 6, this strategy works well in practice. An intuitive explanation is that the Pre and Post formulas suffice to express the footprint of an operation, and so the atoms
comprising them are an effective vocabulary to express when operations do, or
do not, interfere.

Predicate selection (Choose). Even though the number of computed
predicates is relatively small, since our algorithm is exponential in number of predi-
cates it is essential to be able to identify *relevant* predicates for the algorithm. To
this end, in addition to filtering trivial predicates, we prioritize predicates based
on the two counterexamples generated by the validity checks in Refine. Predi-
cates that distinguish between the given counter examples are tried first (call
these *distinguishing* predicates). More formally, **Choose** must return a predicate
such that $\chi_c \Rightarrow H \land p$ and $\chi_{nc} \Rightarrow H \land \neg p$. This guarantees progress on both
recursive calls. When combined with a heuristic to favor less complex atoms,
this ensured termination in a reasonable amount of time on our examples. We
refer to this as the *simple heuristic*.

Though this produced precise conditions, they were not always very concise.
While not an issue from a correctness standpoint, it is desirable for human
understanding, and inspection purposes. We thus introduced a new heuristic
which significantly improves the *qualitative* aspect of our synthesis algorithm.
We found that doing a lookahead (recurses on each predicate one level deep,
or *poke*) and computing the number of distinguishing predicates for the two
branches as a good indicator of *importance* of the predicate. More precisely,
we pick the predicate with lowest sum of remaining number of distinguishing
predicates by the two calls. As an aside, those familiar with decision tree learning,
might see a connection with the notion of entropy gain. This requires more calls
to the SMT solver at each call, but it cuts down the total number of branches
to be explored. Also, all individual queries were relatively simple for CVC4. The
heuristic converges much faster to the relevant predicates, and produces smaller,
concise conditions.

6 Case studies

6.1 Common Data-Structures

We applied **Servois** to Set, HashTable, Accumulator, Counter, and Stack. The
generated commutativity conditions for these data structures typically combine
multiple theories, such as sets, integers and arrays. We used the quantifier-free
integer theory in SMTLIB to encode the abstract state and contracts for the
Counter and Accumulator ADTs. For Set, the theory of finite sets for tracking
elements along with integers to track size; for HashTable, finite sets to track keys,
and arrays for the HashMap itself. For Stack, we observed that for the purpose of
pairwise commutativity it is sufficient to track the behavior of boundedly many
top elements. Since two operations can *at most* either pop the top two elements
or push two elements, tracking four elements is sufficient. The full specifications
in Servois input format can be found in the Appendix D.

Depending on the pair of methods, the number of predicates generated by
PGen were (count after filtering in parentheses): Counter: 25-25 (12-12), Accu-
Fig. 2. Automatically generated commutativity conditions are shown in column φ_m^n. When right-moverness (\triangleright) conditions are same for a pair of methods, we show them together in one row (\(\bowtie\)). Q_s specifies the number of SMT queries made, and running time in seconds in parentheses.
```c
int warrior, warriorGold, warriorBlock, callback_result, king, kingBlock;

void enter(int val, int sendr, int bk, int rnd) {   
  if (val < 50) { send(sendr,val); return; } 
  warrior = sendr; 
  warriorGold = val; 
  warriorBlock = bk; // write global variables 
  rpc_call("random number generator", _callback,res); 
  // Another call to enter() can execute while waiting for RPC 
  function _callback(int resRN) { 
    // Most recent writer to warrior now reaps benefit of every callback 
    if (modFun(warriorBlock) == resRN) { 
      king = warrior; // winner 
      kingBlock = warriorBlock; 
    } 
  } } 
```

Fig. 3. Simplified code for BlockKing in a C-like language.

mulator: 1-20 (0-20), Set: 17-55 (17-34), HashTable: 18-36 (6-36), Stack: 41-61 (41-42). We did not provide any hints to the algorithm for this case study.

On all our examples, the simple heuristic terminated with precise commutativity conditions. In Fig. 2, we give the number of solver queries and total time (in paren.) consumed by this heuristic. The experiments were run on a 2.53 GHz Intel Core 2 Duo machine with 8 GB RAM. The conditions in Fig.2 are those generated by the poke heuristic, and interested reader may compare them with the simple heuristic in Apx D.

On the theoretical side, our CHOOSE implementation is fair (satisfies condition 2 of Thm. 2, as Lines 9-10 of the algorithm remove from P the predicate being tried). From our experiments we conclude that our choice of predicates satisfies condition 1 of Thm. 2.

Validation. Although our algorithm is sound, we manually validated the implementation of SERVOIS by examining its output and comparing the generated commutativity conditions with those reported by prior studies. In the case of Accumulator and Counter, our commutativity conditions were identical to those given in [20]. For the Set data structure, the work of [20] used a less precise Set abstraction, so we instead validated against the conditions of [23]. As for HashTable, we validated that our conditions match those by Dimitrov et al. [13].

Our implementation is relatively complete because it (and the examples we examined) satisfy the requirements of Thm. 2 as follows.

6.2 The BlockKing Ethereum smart contract

We further validated our approach by examining a real-world situation in which non-commutativity opens the door for attacks that exploit interleavings. We examined “smart contracts”, which are programs written in the Solidity programming language [4] and executed on the Ethereum blockchain [1]. Eliding many details, smart contracts are like objects, and blockchain participants can
invoke methods on these objects. Although the initial intuition is that smart contracts are executed sequentially, practitioners and academics [29] are increasingly realizing that the blockchain is a concurrent environment due to the fact the execution of one actor’s smart contract can be split across multiple blocks, with other actors’ smart contracts interleaved. Therefore, the execution model of the blockchain has been compared to that of concurrent objects [29]. Unfortunately, many smart contracts are not written with this in mind, and attackers can exploit interleavings to their benefit.

As an important example of this, we study the BlockKing smart contract. Fig. 3 provides a simplification of its description, as discussed in [29]. This is a simple game in which the players—each identified by an address sendr—participate by making calls to BlockKing.enter(), sending money val to the contract. (The grey variables are external input that we have lifted to be parameters. bk reflects the caller’s current block number and rnd is the outcome of a random number generation, described shortly.) The variables on Line 1 are globals, writable in any call to enter. On Line 4 there is a trivial case when the caller hasn’t put enough value into the game, and the money is simply returned. Otherwise, the caller stores their address and value into the shared state. A random number is then generated and, since this requires complex algorithms, it is done via a remote procedure call to a third-party on Line 8, with a callback method provided on Line 10. If the randomly generated number is equal to a modulus of the current block number, then the caller is the winner, and warrior’s (caller’s) details are stored to king and kingBlock on Line 14.

The fact that random number generation is done via an RPC call means that players’ invocations of enter can be interleaved. Moreover, these calls all write sendr and val to shared variables, so the RPC callback will always roll the dice for whomever most recently wrote to warriorBlock. An attacker can use this to leverage other players’ investments into the game to increase his/her own chance to win.

We now explore how SERVOIS can aid a programmer in developing a more secure implementation. We observe that, as in traditional parallel programming contexts, if smart contracts are commutative then these interleavings are not problematic. Otherwise, there is cause for concern. To this end, we translated the BlockKing game into SERVOIS format (see Apx. E.2). SERVOIS took 1.4s (on machine with 2.4 GHz Intel Core i5 processor and 8 GB RAM) and yielded the following non-commutativity condition for two calls to enter:

\[
\text{enter}(val_1, sendr_1, bk_1, rnd_1) \not\sim \text{enter}(val_2, sendr_2, bk_2, rnd_2)
\]

iff

\[
\left\{ \begin{array}{l}
val_1 \geq 50 \land val_2 \geq 50 \land sendr_1 \neq sendr_2 \\
val_1 \geq 50 \land val_2 \geq 50 \land sendr_1 = sendr_2 \land val_1 \neq val_2 \\
val_1 \geq 50 \land val_2 \geq 50 \land sendr_1 = sendr_2 \land val_1 = val_2 \land bk_1 \neq bk_2
\end{array} \right.
\]

This disjunction effectively enumerates cases under which they contract calls do not commute. Of particular note is the first disjunct. From this first disjunct, whenever sendr_1 \neq sendr_2, the calls will not commute. Since in practice sendr_1
will always be different from $sendr_2$ (two different callers) and $val_1 \geq 50 \land val_2 \geq 50$ is the non-trivial case, the operations will almost never commute. This should be immediate cause for concern to the developer.

A commutative version of BlockKing would mean that there are no interleavings to be concerned about. Indeed, a simple way to improve commutativity is for each player to write their respective $sendr$ and val to distinct shared state, perhaps via a hashtable keyed on $sendr$. To this end, we created a new version $enter_fixed$ (see Apx. E.1 and the input to SERVOIS in Apx. E.3). SERVOIS generated the following non-commutativity condition after 3.5s.

$$
\begin{align*}
enter_fixed(val_1, sendr_1, bk_1, rnd_1) \not\leq enter_fixed(val_2, sendr_2, bk_2, rnd_2) \\
\iff \\
\begin{cases}
val_1 \geq 50 \land val_2 \geq 50 \land val_1 = val_2 \land bk_1 \neq bk_2 \land sendr_1 = sendr_2 \\
val_1 \geq 50 \land val_2 \geq 50 \land val_1 \neq val_2 \land sendr_1 = sendr_2 \\
val_1 \geq 50 \land val_2 \geq 50 \land md(bk_2) = rnd_2 \land md(bk_1) = rnd_1 \land sendr_1 \neq sendr_2
\end{cases}
\end{align*}
$$

In the above non-commutativity condition, md is shorthand for $modFun$. In the first two disjuncts above, $sendr_1 = sendr_2$ which is, again, a case that will not occur in practice. All that remains is the third disjunct where $md(bk_2) = rnd_2$ and $md(bk_1) = rnd_1$. This corresponds to the case where both players have won. In this case, it is acceptable for the operations to not commute, because whichever won more recently will store their address and block to the shared state $king$ and $kingBlock$.

In summary, if we assume that $sendr_1 \neq sendr_2$, the non-commutativity of the original version is $val_1 \geq 50 \lor val_2 \geq 50$ (very strong). By contrast, the non-commutativity of the fixed version is $val_1 \geq 50 \land val_2 \geq 50 \land md(bk_2) = rnd_2 \land md(bk_1) = rnd_1$. We have thus demonstrated that the commutativity (and non-commutativity) conditions generated by SERVOIS can help developers understand the model of interference between two concurrent calls.

7 Conclusions and Future Work

This paper demonstrates that it is possible to automatically generate sound and effective commutativity conditions, a task that has so far been done manually or without soundness. Our commutativity conditions are applicable in a variety of contexts including transactional boosting [17], open nested transactions [27], and other non-transactional concurrency paradigms such as race detection [13], parallelizing compilers [28,33], and, as we show, robustness of Ethereum smart contracts [29]. It has been shown that understanding the commutativity of data-structure operations provides a key avenue to improved performance [10] or ease of verification [22,21].

One avenue for future research is how to leverage the internal state of the SMT solver (beyond counterexamples) in order to generate new predicates, perhaps using existing techniques from other contexts [19]. We also plan to explore strategies to compute commutativity conditions directly from the program’s code, without the need for an intermediate abstract representation [33].
References

1. Ethereum. https://ethereum.org/.
2. Servois homepage. http://cs.nyu.edu/~kshitij/projects/servois.
3. Servois source code. https://github.com/kbansal/servois.
4. Solidity programming language. https://solidity.readthedocs.io/en/develop/.
5. M. Abadi and L. Lamport. The existence of refinement mappings. *Theoretical Computer Science*, 82:253–284, May 1991.
6. F. Aleen and N. Clark. Commutativity analysis for software parallelization: letting program transformations see the big picture. In *Proceedings of the 14th international conference on Architectural support for programming languages and operating systems (ASPLOS-XII)*, pages 241–252. ACM, 2009.
7. M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming system: An overview. In *Proceedings of the 2004 International Conference on Construction and Analysis of Secure, Secure, and Interoperable Smart Devices, CASSIS*’04, pages 49–69, 2005.
8. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors, *Proceedings of the 23rd International Conference on Computer Aided Verification (CAV ’11)*, volume 6806, pages 171–177. Springer, July 2011.
9. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In *Computer aided verification*, pages 154–169. Springer, 2000.
10. A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The scalable commutativity rule: Designing scalable software for multicore processors. *ACM Trans. Comput. Syst.*, 32(4):10, 2015.
11. B. Cook and E. Koskinen. Making prophecies with decision predicates. In *Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011*, pages 399–410, 2011.
12. T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen. Adding concurrency to smart contracts. In *Proceedings of the ACM Symposium on Principles of Distributed Computing*, PODC ’17, pages 303–312, New York, NY, USA, 2017. ACM.
13. D. Dimitrov, V. Raychev, M. T. Vechev, and E. Koskinen. Commutativity race detection. In M. F. P. O’Boyle and K. Pingali, editors, *ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14*, Edinburgh, United Kingdom - June 09 - 11, 2014, page 33. ACM, 2014.
14. G. W. Ernst and W. F. Ogden. Specification of abstract data types in modula. *ACM Trans. Program. Lang. Syst.*, 2(4):522–543, Oct. 1980.
15. L. Flon and J. Misra. A unified approach to the specification and verification of abstract data types. In *Proc. Specifications of Reliable Software Conf.*, IEEE Computer Society, 1979.
16. T. Gehr, D. Dimitrov, and M. T. Vechev. Learning commutativity specifications. In *Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I*, pages 307–323, 2015.
17. M. Herlihy and E. Koskinen. Transactional boosting: A methodology for highly concurrent transactional objects. In *Proceedings of the 13th ACM SIGPLAN symposium on Principles and practice of parallel programming (PPoPP’08)*, 2008.
18. C. A. R. Hoare. Software pioneers. In M. Broy and E. Denert, editors, *Software Pioneers*, chapter Proof of Correctness of Data Representations, pages 385–396. Springer-Verlag New York, Inc., New York, NY, USA, 2002.
19. Y. Hu, C. Barrett, and B. Goldberg. Theory and algorithms for the generation and validation of speculative loop optimizations. In *Proceedings of the 2nd IEEE International Conference on Software Engineering and Formal Methods (SEFM ’04)*, pages 281–289. IEEE Computer Society, Sept. 2004.
20. D. Kim and M. C. Rinard. Verification of semantic commutativity conditions and inverse operations on linked data structures. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, pages 528–541. ACM, 2011.

21. E. Koskinen and M. J. Parkinson. The push/pull model of transactions. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’15, Portland, OR, USA, June, 2015, 2015.

22. E. Koskinen, M. J. Parkinson, and M. Herlihy. Coarse-grained transactions. In M. V. Hermenegildo and J. Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, pages 19–30. ACM, 2010.

23. M. Kulkarni, D. Nguyen, D. Prountzos, X. Sui, and K. Pingali. Exploiting the commutativity lattice. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, pages 542–555. ACM, 2011.

24. K. R. M. Leino. Specifying and verifying programs in spec#. In Proceedings of the 6th International Perspectives of Systems Informatics, Andrei Ershov Memorial Conference, PSI 2006, page 20, 2006.

25. R. J. Lipton. Reduction: a method of proving properties of parallel programs. Commun. ACM, 18(12):717–721, 1975.

26. B. Meyer. Applying "design by contract". IEEE Computer, 25(10):40–51, 1992.

27. Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss, B. Saha, and T. Skpeisman. Open nesting in software transactional memory. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP 2007, pages 68–78. ACM, 2007.

28. M. C. Rinard and P. C. Diniz. Commutativity analysis: A new analysis technique for parallelizing compilers. ACM Transactions on Programming Languages and Systems (TOPLAS), 19(6):942–991, November 1997.

29. I. Sergey and A. Hobor. A concurrent perspective on smart contracts. In 1st Workshop on Trusted Smart Contracts, 2017.

30. A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching concurrent data structures. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation PLDI 2008, pages 136–148, 2008.

31. O. Tripp, R. Manevich, J. Field, and M. Sagiv. Janus: Exploiting parallelism via hindsight. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, pages 145–156, New York, NY, USA, 2012. ACM.

32. O. Tripp, G. Yorsh, J. Field, and M. Sagiv. Hawkeye: Effective discovery of dataflow impediments to parallelization. In Proceedings of the 2011 ACM International Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA ’11, pages 207–224, New York, NY, USA, 2011. ACM.

33. O. Tripp, G. Yorsh, J. Field, and M. Sagiv. HAWKEYE: effective discovery of dataflow impediments to parallelization. In Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011, pages 207–224, 2011.

34. M. T. Vechev and E. Yahav. Deriving linearizable fine-grained concurrent objects. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, pages 125–135, 2008.

35. M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of synchronization. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, pages 327–338, 2010.

36. C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole partial order reduction. Tools and Algorithms for the Construction and Analysis of Systems, pages 382–396, 2008.
Appendix

A Lifting transition systems

Definition 2 (Lifted transition function). For \(\bar{\mathcal{T}} = (\Sigma, A, \bullet) \), we lift \(\bar{\mathcal{T}} \) to \(\hat{\mathcal{T}} = (\hat{\Sigma}, A, \bullet, \bullet) \) where \(\hat{\Sigma} = \Sigma \cup \{ \text{Err} \} \), \(\text{Err} \notin \Sigma \), and \(\langle \alpha \rangle : \hat{\Sigma} \to \hat{\Sigma} \), as:

\[
\langle \alpha \rangle \hat{\sigma} = \begin{cases}
\text{Err} & \text{if } \hat{\sigma} = \text{Err} \\
\langle \alpha \rangle \hat{\sigma} & \text{if } \hat{\sigma} \in \text{dom}(\langle \alpha \rangle) \\
\text{Err} & \text{otherwise}
\end{cases}
\]

Intuitively, \(\langle \alpha \rangle \) wraps \(\langle \alpha \rangle \) so that \(\text{Err} \) loops back to \(\text{Err} \), and the (potentially partial) \(\langle \alpha \rangle \) is made to be total by mapping elements to \(\text{Err} \) when they are undefined in \(\langle \alpha \rangle \). Note that it is not necessary to lift the actions (or, indeed, the methods), but only the states and transition function. Once lifted, for a given state \(\hat{\sigma}_0 \), the question of some successor state becomes equivalent to all successor states because there is exactly one successor state.

Abstraction. Pre-/post-conditions \((\hat{\pre}_{m}, \hat{\post}_m) \) are suitable for specifications of potentially partial transition systems. One can translate these into a new pair \((\hat{\pre}_m, \hat{\post}_m) \) that induces a corresponding lifted transition system that (i) is total and (ii) remains deterministic. These lifted specifications have types over lifted state spaces:

\[
\hat{\pre}_m : \hat{x} \to \hat{\Sigma} \to \mathbb{B} \quad \hat{\post}_m : \hat{x} \to \hat{r} \to \hat{\Sigma} \to \hat{\Sigma} \to \mathbb{B}
\]

Our implementation performs this lifting via translation from \((\pre_m, \post_m) \) to:

\[
\hat{\pre}_m(\hat{x}, \hat{\sigma}) \equiv \text{true} \\
\hat{\post}_m(\hat{x}, \hat{r}, \hat{\sigma}, \hat{\sigma}') \equiv \bigvee \left\{ \begin{array}{l}
\hat{\sigma} = \text{Err} \land \hat{\sigma}' = \text{Err} \\
\hat{\sigma} \neq \text{Err} \land \pre_m(\hat{x}, \hat{\sigma}) \land \hat{\sigma}' \neq \text{Err} \land \post_m(\hat{x}, \hat{r}, \hat{\sigma}, \hat{\sigma}') \\
\hat{\sigma} \neq \text{Err} \land \neg \pre_m(\hat{x}, \hat{\sigma}) \land \hat{\sigma}' = \text{Err}
\end{array} \right.
\]

(We abuse notation, giving \(\hat{\sigma} \) as an argument to \(\hat{\pre}_m \), etc.) It is easy to see that the lifted transition system induced by this translation \((\hat{\Sigma}, \bullet) \) is of the form given in Def. 2. In the Appendix, we show how our tool transforms a counter specification (Apdx. D.1) into an equivalent lifted version (Apdx. D.2). Notice that this specification is now a total transition system.

We use the notation \(\bowtie \) to mean \(\bowtie \) but over lifted transition system \(\hat{\mathcal{T}} \). Since \(\bowtie \) is over total, deterministic transition functions, \(\alpha_1 \bowtie \alpha_2 \) is equivalent to:

\[
\forall \hat{\sigma}_0. \hat{\sigma}_0 \neq \text{Err} \Rightarrow (\langle \alpha_2 \rangle \langle \alpha_1 \rangle \hat{\sigma}_0 = (\langle \alpha_1 \rangle \langle \alpha_2 \rangle \hat{\sigma}_0)
\]

The equivalence above is in terms of state equality. Importantly, this is a universally quantified formula that translates to a ground satisfiability check in an SMT solver (modulo the theories used to model the data structure). In our refinement algorithm (Sec. 4), we will use this format to check whether candidate logical formulæ describe commutative subregions.

Lemma 2. \(m \bowtie n \) if and only if \(m \bowtie n \). (All proofs in Apdx. C.)
B Right-/Left-movers

Definition 3 (Action right-mover [25]). We say that an action α_1 moves to the right of action α_2 commute, denoted $\alpha_1 \triangleright \alpha_2$, provided that $\langle \alpha_2 \rangle \circ \langle \alpha_1 \rangle \subseteq \langle \alpha_1 \rangle \circ \langle \alpha_2 \rangle$.

Note that left-movers can be defined as right-movers, but with arguments swapped.

Definition 4 (Method right-mover). For m and n,

$$ m \triangleright n \equiv \forall \bar{x} \bar{y} \bar{r} \bar{s}. \ m(\bar{x})/\bar{r} \triangleright n(\bar{y})/\bar{s} $$

A logical right-mover condition denoted Ψ^n_m has the same type as a commutativity condition and, again $[\Psi^n_m]$ denotes interpretations of Ψ^n_m. Moreover, we say that Ψ^n_m is a right-mover condition for m and n provided that

$$ \forall \sigma_0 \bar{x} \bar{y} \bar{r} \bar{s}. \ [\Psi^n_m] \sigma_0 (m(\bar{x})/\bar{r}) (n(\bar{y})/\bar{s}) = \text{true} \Rightarrow m \triangleright n $$

and similar for a non-right-mover condition.

Checking whether $H^n_m \Rightarrow m \triangleright n$. After performing the lifting transformation, we again are able to reduce the question of whether a formula H^n_m is a right-mover condition to a validity check that does not introduce quantifier alternation.

valid

$$ \begin{align*}
\forall \sigma_0 \bar{x} \bar{y} \bar{r} \bar{s}. \\
\varphi^n_m (\sigma_0, \bar{x}, \bar{y}, \bar{r}, \bar{s}) \Rightarrow \\
\sigma_0 \neq \text{Err} \Rightarrow \\
\langle n(\bar{y})/\bar{s} \rangle \langle m(\bar{x})/\bar{r} \rangle \sigma_0 \neq \text{Err} \Rightarrow \\
\langle n(\bar{y})/\bar{s} \rangle \langle m(\bar{x})/\bar{r} \rangle \sigma_0 = \langle m(\bar{x})/\bar{r} \rangle \langle n(\bar{y})/\bar{s} \rangle \sigma_0.
\end{align*} $$

Notice that this is a generalization of the validity check for commutativity.
C Proofs

Lemma 2.

Proof. Follows from classical reasoning, functional extensionality and case analysis on totality-vs-partiality.

Theorem 1.

Proof. By induction. Initially, false is a suitable condition for when commutativity holds. false is also a suitable condition under which commutativity does not hold. At each iteration, \(\varphi \) or \(\neg \varphi \) may be updated (not both, but for soundness this does not matter). Consider \(\varphi \). It must also be the case that \((\varphi \lor H) \Rightarrow m \bowtie n \) because we know that \(\varphi \Rightarrow m \bowtie n \) (from the previous iteration) and that \(H \Rightarrow m \bowtie n \) (from the valid check at Line 2). Analogous reasoning for \(\neg \varphi \).

Lemma 1.

Proof. The recursive calls of the REFINE algorithm induce a binary tree \(T \), where nodes are labeled by the conjunction of predicates. If REFINE terminates, then \(T \) is finite, and each node is labeled with a finite conjunction \(p_0 \land \ldots \land p_n \).

Claim. The disjunction of all leaf node labels is valid. Pf. By induction on the tree. Base case: a single-node tree has label true. Inductive case: for every new node created, labeled with a new conjunct \(\ldots \land p \), there is a sibling node with label \(\ldots \land \neg p \).

Each leaf node of tree \(T \), labeled with conjunction \(\gamma \), arises from REFINE reaching a base case where, by construction, the conjunction \(\gamma \) is disjunctively added to either \(\varphi \) or \(\neg \varphi \). Since REFINE terminates, all conjunctions are added to either \(\varphi \) or \(\neg \varphi \), and thus \(\varphi \lor \neg \varphi \) must be valid.

Theorem 2.

Proof. By contradiction. As in the proof for Lemma 1, we represent the algorithm’s execution as a binary tree \(T \), induced by the recursive REFINE calls, whose nodes are labeled by the conjunction of predicates (Lines 9 and 10 in Algorithm 1). Assume there exists an infinite path along \(T \), and let its respective labels be \(\pi = p_0, p_0 \land p_1, p_0 \land p_1 \land p_2, \ldots \).

Claim. There is no finite prefix of \(\pi \) that contains all the predicates \(\psi_i \). Pf. Had there been such a prefix \(\pi \), by the expressiveness assumption the running condition \(H \) would satisfy one of the validity checks at lines 2 and 4 within, or immediately after, \(\pi \). This is because \(H \) would be equal to, or stronger than, the conjunction of the predicates \(\psi_i \). This would have made \(\pi \) finite, as \(\pi \) is extended only if both of the validity checks fail, where we assume \(\pi \) is infinite.

By the above claim, at least one of the predicates \(\psi_i \) is not contained in any finite prefix of \(\pi \). This contradicts the fairness assumption, whereby any predicate \(p \in P \) is chosen after finitely many CHOOSE invocations (provided the algorithm hasn’t terminated).
D Data Structure Representations

D.1 Counter

Counter data structure's abstract definition

name: counter

state:
 - name: contents
type: Int

states_equal:
definition: (= contents_1 contents_2)

methods:
 - name: increment
 args: []
 return:
 - name: result
type: Bool
 requires: []
 ensures: []
 (and (= contents_new (+ contents 1))
 (= result true))
 terms:
 Int: [contents, 1, (+ contents 1)]
 - name: decrement
 args: []
 return:
 - name: result
type: Bool
 requires: []
 ensures: []
 (and (= contents_new (- contents 1))
 (= result true))
 terms:
 Int: [contents, 1, (- contents 1), 0]
 - name: reset
 args: []
 return:
 - name: result
type: Bool
 requires: []
 ensures: []
 (and (= contents_new 0)
 (= result true))
 terms:
 Int: [contents, 0]
 - name: zero
 args: []
 return:
 - name: result
type: Bool
 requires: []
 ensures: []
 (and (= contents_new contents)
 (= result (= contents 0)))
 terms:
 Int: [contents, 0]

predicates:
 - name: "="
\textbf{type}: [Int, Int]

- \textit{decrement} \triangleright \textit{decrement}

 Simple:

 true

 Poke:

 true

- \textit{increment} \triangleright \textit{decrement}

 Simple:

 \[1 = \text{contents} \]
 \[\lor \neg (1 = \text{contents}) \land \neg (0 = \text{contents}) \]

 Poke:

 \neg (0 = \text{contents})

- \textit{decrement} \triangleright \textit{increment}

 Simple:

 true

 Poke:

 true

- \textit{decrement} \triangleright \textit{reset}

 Simple:

 false

 Poke:

 false

- \textit{decrement} \triangleright \textit{zero}

 Simple:

 \neg (1 = \text{contents})

 Poke:

 \neg (1 = \text{contents})

- \textit{increment} \triangleright \textit{increment}

 Simple:

 true

 Poke:

 true

- \textit{increment} \triangleright \textit{reset}

 Simple:

 false

 Poke:

 false

- \textit{increment} \triangleright \textit{zero}

 Simple:

 \[1 = \text{contents} \]
 \[\lor \neg (1 = \text{contents}) \land \neg (0 = \text{contents}) \]

 Poke:

 \neg (0 = \text{contents})

- \textit{reset} \triangleright \textit{reset}

 Simple:

 true

 Poke:

 true

- \textit{reset} \triangleright \textit{zero}

 Simple:

 \neg (1 = \text{contents}) \land 0 = \text{contents}

 Poke:

 0 = \text{contents}

- \textit{zero} \triangleright \textit{zero}

 Simple:

 true

 Poke:

 true
D.2 Counter (lifted, auto-generated)

methods:
 - args: []
 ensures: "(or (and err err_new)\n (and (not err) (not err_new) (> contents 0)\n \ (and (= contents_new (+ contents 1))\n \ (= result true))\n \ (and (not\n \ err) err_new (not (> contents 0))))\n name: increment
 requires: ‘true’
 return:
 - name: result
 type: Bool
 terms: Int:
 - contents
 - 1
 - (+ contents 1)
 - args: []
 ensures: "(or (and err err_new)\n (and (not err) (not err_new) (> contents 1)\n \ (and (= contents_new (- contents 1))\n \ (= result true))\n \ (and (not\n \ err) err_new (not (> contents 1))))\n name: decrement
 requires: ‘true’
 return:
 - name: result
 type: Bool
 terms: Int:
 - contents
 - 1
 - (- contents 1)
 - 0
 - args: []
 ensures: "(or (and err err_new)\n (and (not err) (not err_new) (> contents 0)\n \ (and (= contents_new 0)\n \ (= result true))\n \ (and (not\n \ err) err_new (not (> contents 0))))\n name: reset
 requires: ‘true’
 return:
 - name: result
 type: Bool
 terms: Int:
 - contents
 - 0
 - args: []
 ensures: "(or (and err err_new)\n (and (not err) (not err_new) (> contents 0)\n \ (and (= contents_new contents)\n \ (= result (= contents 0))\n \ (and\n \ (not err) err_new (not (> contents 0))))\n name: zero
 requires: ‘true’
 return:
 - name: result
 type: Bool
 terms: Int:
 - contents
 - 0
 name: counter
predicates:
 - name: ‘=’
 type: Int
 - Int
state:
 - name: contents
 type: Int
 - name: err
type: Bool
states_equal:
definition: '(or (and err_1 err_2) (and (not err_1) (not err_2))
 (= contents_1 contents_2))'

D.3 Accumulator

Accumulator abstract definition
name: accumulator
state:
 - name: contents
type: Int
options:

states_equal:
definition: (= contents_1 contents_2)

methods:
 - name: increase
 args:
 - name: n
type: Int
 return:
 - name: result
type: Bool
 requires: |
 true
 ensures: |
 (and (= contents_new (+ contents n))
 (= result true))
terms: [
 Int: [$1, contents, (+ contents $1)]
]
 - name: read
 args: []
 return:
 - name: result
type: Int
 requires: |
 true
 ensures: |
 (and (= contents_new contents)
 (= result contents))
terms:
 Int: [contents]
predicates:
 - name: "="
type: [Int, Int]

 - increase ⊲ increase
 Simple:
 true
 Poke:
 true
D.4 Set

name: set

preamble: |
(declare-sort E 0)

state:
- name: S
 type: (Set E)
- name: size
 type: Int

states_equal:
definition: (and (= S_1 S_2) (= size_1 size_2))

methods:
- name: add
 args:
 - name: v
 type: E
 return:
 - name: result
 type: Bool
 requires: |
 true
 ensures: |
 (ite (member v S)
 (and (= S_new S)
 (= size_new size)
 (not result))
 (and (= S_new (union S (singleton v)))
 (= size_new (+ size 1))
 result))

 terms:
 E: [1]
 Int: [size, 1, (= size 1)]
 (Set E): [S, (singleton 1), (union S (singleton 1))]

- name: remove
 args:
 - name: v
 type: E
 return:
 - name: result
 type: Bool
 requires: |
 true
 ensures: |
 (ite (member v S)
 (and (= S_new (setminus S (singleton v)))
 (= size_new (- size 1))
 result)
 (and (= S_new S)
 (= size_new size)
 (not result)))
terms:
E: [size, 1, (= size 1)]
Int: [size, (singleton $1), (setminus S (singleton $1))]
 - name: contains
 args:
 - name: v
 type: E
 return:
 - name: result
 type: Bool
 requires: | true
 ensures: |
 (and (= S_new S)
 (= size_new size)
 (= (member v S) result))

terms:
E: [size]
Int: [size]
 (Set E): [S, (singleton $1), (setminus S (singleton $1))]
 - name: getsize
 args: []
 return:
 - name: result
 type: Int
 requires: | true
 ensures: |
 (and (= S_new S)
 (= size_new size)
 (= size result))

terms:
Int: [size]
predicates:
 - name: "="
 type: [Int, Int]
 - name: "="
 type: [E, E]
 - name: "="
 type: [(Set E), (Set E)]
 - name: "member"
 type: [E, (Set E)]
 - add \sqcup add
 Simple:
 [y1 = x1 \land y1 \in S]
 \lor \neg(y1 = x1)
 Poke:
 [y1 = x1 \land y1 \in S]
 \lor \neg(y1 = x1)
 - add \sqcup contains
 Simple:
 [y1 = x1 \land y1 \in S]
 \lor \neg(y1 = x1)
 Poke:
 [x1 \in S]
 \lor \neg(x1 \in S) \land \neg(y1 = x1)]
 - add \sqcup getsize
 Simple:
 x1 \in S
 Poke:
 x1 \in S
 - add \sqcup remove
 Simple:
 \neg(y1 = x1)
 Poke:
 \neg(y1 = x1)
-- contains ⊲ contains
Simple:
true
Poke:
true
-- contains ⊲ getsize
Simple:
true
Poke:
true
-- contains ⊲ remove
Simple:
\[y_1 = x_1 \land 1 = \text{size} \land \neg(1 \land \neg(y_1 \in S)) \]
\lor \[y_1 = x_1 \land \neg(1 \land \neg(y_1 \in S)) \]
\lor \[\neg(y_1 = x_1) \]
Poke:
\[S\{x_1\} = \{y_1\} \]
\lor \[\neg(S\{x_1\} = \{y_1\}) \land y_1 \in \{x_1\} \land \neg(y_1 \in S) \]
\lor \[\neg(S\{x_1\} = \{y_1\}) \land \neg(y_1 \in \{x_1\}) \]
-- getsize ⊲ getsize
Simple:
true
Poke:
true
-- getsize ⊲ remove
Simple:
\[1 = \text{size} \land \neg(y_1 \in S) \]
\lor \[\neg(1 = \text{size}) \land \neg(y_1 \in S) \]
\lor \[\neg(y_1 \in S) \]
-- remove ⊲ remove
Simple:
\[1 = \text{size} \land y_1 = x_1 \land \neg(y_1 \in S) \]
\lor \[1 = \text{size} \land \neg(y_1 = x_1) \]
\lor \[\neg(1 = \text{size}) \land y_1 = x_1 \land \neg(y_1 \in S) \]
\lor \[\neg(1 = \text{size}) \land \neg(y_1 = x_1) \]
Poke:
\[S\{y_1\} = \{x_1\} \]
\lor \[\neg(S\{y_1\} = \{x_1\}) \land y_1 \in \{x_1\} \land \neg(y_1 \in S) \]
\lor \[\neg(S\{y_1\} = \{x_1\}) \land \neg(y_1 \in \{x_1\}) \]

D.5 HashTable

Hash table data structure's abstract definition

name: HashTable

preamble: |
(declare-sort E 0)
(declare-sort F 0)

state:
- name: keys
type: (Set E)
- name: H
type: (Array E F)
- name: size
type: Int

states_equal:
definition: |
(and (= keys_1 keys_2)
 (= H_1 H_2)
 (= size_1 size_2))

methods:
- name: haskey
args:
- name: k0
type: E
return:
- name: result
type: Bool
requires: |
true
ensures: |
(and (= keys_new keys)
 (= H_new H)
 (= size_new size)
 (= (member k0 keys) result))
}
terms:
Int: [size]
E: [$1]
(Set E): [keys]
(Array E F): [H]
- name: remove
args:
- name: v
type: E
return:
- name: result
type: Bool
requires: |
true
ensures: |
(ite (member v keys)
 (and (= keys_new (setminus keys (singleton v)))
 (= size_new (- size 1))
 (= H_new H)
 result)
 (and (= keys_new keys)
 (= size_new size)
 (= H_new H)
 (not result)))
}
terms:
Int: [size, 1, (- size 1)]
E: [$1]
(Set E): [keys, (singleton $1), (setminus keys (singleton $1))]
(Array E F): [H]
- name: put
args:
- name: k0
type: E
- name: v0
type: F
return:
- name: result
type: Bool
requires: |
true
ensures: |
(ite (member k0 keys)
 (and (= keys_new keys)
 (= size_new size)
 (ite (= v0 (select H k0))
 (and (not result)
 (= H_new H))
 (and result
 (= H_new (store H k0 v0))))
 (and (= keys_new (insert k0 keys))
 (= size_new (+ size 1))
 result
 (= H_new (store H k0 v0))))
}
terms:
Int: [size, 1, (+ size 1)]
E: [$1]
F: [$2, (select H $1)],
(Set E): [keys, (insert $1 keys)]
(Array E F): [H, (store H $1 $2)]

- name: get
 args:
 - name: k0
 type: E
 return:
 - name: result
 type: F
 requires: |
 (member k0 keys)
 ensures: |
 (and (= keys_new keys)
 (= H_new H)
 (= size_new size)
 (= (select H k0) result)
)

terms:
 Int: [size]
 E: [$1]
 F: [(select H $1)]
 (Set E): [keys]
 (Array E F): [H]

- name: size
 args: []
 return:
 - name: result
 type: Int
 requires: |
 true
 ensures: |
 (and (= keys_new keys)
 (= H_new H)
 (= size_new size)
 (= size result))

terms:
 Int: [size]
 (Set E): [keys]
 (Array E F): [H]

predicates:
- name: "="
 type: [Int, Int]
- name: "="
 type: [E, E]
- name: "="
 type: [F, F]
- name: "="
 type: [(Set E), (Set E)]
- name: "="
 type: [(Array E F), (Array E F)]
- name: "member"
 type: [E, (Set E)]

- get ⊲ get
 Simple: true
 Poke: true
- get ⊲ haskey
 Simple: true
 Poke: true
- put ▷ get
 Simple:
 \[x_2 = H[y_1] \land y_1 \in \text{keys} \]
 \[\lor \neg(x_2 = H[y_1]) \land \neg(y_1 = x_1) \]
 Poke:
 \[H[x_1 = x_2] = H \land y_1 \in \text{keys} \]
 \[\lor \neg(H[x_1 = x_2] = H) \land \neg(y_1 = x_1) \]

- get ▷ put
 Simple:
 \[H[y_1] = y_2 \]
 \[\lor \neg(H[y_1] = y_2) \land \neg(y_1 = x_1) \]
 Poke:
 \[H[y_1] = y_2 \]
 \[\lor \neg(H[y_1] = y_2) \land \neg(y_1 = x_1) \]

- remove ▷ get
 Simple:
 true
 Poke:
 true

- get ▷ remove
 Simple:
 \[1 = \text{size} \land \neg(y_1 = x_1) \]
 \[\lor \neg(1 = \text{size}) \land \neg(y_1 = x_1) \]
 Poke:
 \[\neg(y_1 = x_1) \]

- haskey ▷ size
 Simple:
 true
 Poke:
 true

- haskey ▷ haskey
 Simple:
 true
 Poke:
 true

- haskey ▷ put
 Simple:
 \[y_1 = x_1 \land y_1 \in \text{keys} \]
 \[\lor \neg(y_1 = x_1) \]
 Poke:
 \[y_1 \in \text{keys} \]
 \[\lor \neg(y_1 \in \text{keys}) \land \neg(y_1 = x_1) \]

- haskey ▷ remove
 Simple:
 \[y_1 = x_1 \land 1 = \text{size} \land \neg(y_1 \in \text{keys}) \]
 \[\lor y_1 = x_1 \land \neg(1 = \text{size}) \land \neg(y_1 \in \text{keys}) \]
 \[\lor \neg(y_1 = x_1) \]

- haskey ▷ size
 Simple:
 true
 Poke:
 true

- put ▷ put
 Simple:
 \[x_2 = y_2 \land x_2 = H[y_1] \land y_1 \in \text{keys} \]
 \[\lor x_2 = y_2 \land x_2 = H[y_1] \land \neg(y_1 \in \text{keys}) \land \neg(y_1 = x_1) \]
 \[\lor \neg(x_2 = y_2) \land \neg(y_1 = x_1) \]
 Poke:
 \[H[y_1] = y_2 \land x_2 = H[x_1] \land \text{size} + 1 = 1 \land y_1 \in \text{keys} \]
 \[\lor H[y_1] = y_2 \land x_2 = H[x_1] \land \text{size} + 1 = 1 \land \neg(y_1 \in \text{keys}) \land \neg(y_1 = x_1) \]
 \[\lor H[y_1] = y_2 \land x_2 = H[x_1] \land \neg(y_1 \in \text{keys}) \land \neg(y_1 = x_1) \]
 \[\lor H[y_1] = y_2 \land \neg(x_2 = H[x_1]) \land \neg(y_1 = x_1) \]
 \[\lor \neg(H[y_1] = y_2) \land \neg(y_1 = x_1) \]
\[\begin{align*}
\text{Simple:} & \quad \neg(y_1 = x_1) \\
\text{Poke:} & \quad \neg(y_1 = x_1)
\end{align*}\]

\[\begin{align*}
\text{Simple:} & \quad x_1 \in \text{keys} \\
\text{Poke:} & \quad x_1 \in \text{keys}
\end{align*}\]

\[\begin{align*}
\text{Simple:} & \quad [1 = \text{size} \land y_1 = x_1 \land \neg(y_1 \in \text{keys})] \\
\text{Poke:} & \quad \neg(y_1 \in \text{keys}) \\
\text{Simple:} & \quad \neg(1 = \text{size} \land \neg(y_1 = x_1))
\end{align*}\]

\[\begin{align*}
\text{Simple:} & \quad [x_1 \in \text{keys}] \\
\text{Poke:} & \quad \neg(x_1 \in \text{keys}) \\
\text{Simple:} & \quad \text{true}
\end{align*}\]

\[\begin{align*}
\text{Simple:} & \quad \text{true}
\end{align*}\]

D.6 Stack

Stack definition

name: stack

preamble: |
 (declare-sort E 0)

state:
- name: size
type: Int
- name: top
type: E
- name: nextToTop
type: E
- name: secondToTop
type: E
- name: thirdToTop
type: E

states_equal:
 definition:
 (and (= size_1 size_2) \\
 (or (= size_1 0) \\
 (and (= size_1 1) (= top_1 top_2)) \\
 (and (= top_1 top_2) (= nextToTop_1 nextToTop_2))))

methods:
- name: push
 args:
 - name: v
type: E
 return:
- name: result
type: Bool
requires: | (>= size 0)
ensures: | (and (= size_new (+ size 1))
 (= top_new v)
 (= nextToTop_new top)
 (= secondToTop_new nextToTop)
 (= thirdToTop_new secondToTop)
 (= result true))
terms:
 Int: [size, 1, (+ size 1)]
 E: [top, nextToTop, secondToTop, thirdToTop, $1]
- name: pop
 args: []
 return:
 - name: result
type: E
requires: | (>= size 1)
ensures: | (and (= size_new (- size 1))
 (= result top)
 (= top_new nextToTop)
 (= nextToTop_new secondToTop)
 (= secondToTop_new thirdToTop))
terms:
 Int: [size, 1, (- size 1), 0]
 E: [top, nextToTop, secondToTop, thirdToTop]
- name: clear
 args: []
 return:
 - name: result
type: Bool
requires: | (>= size 0)
ensures: | (and (= size_new 0)
 (= result true))
terms:
 Int: [size, 0]
 E: [top, nextToTop, secondToTop, thirdToTop]
predicates:
 - name: "="
type: [Int, Int]
 - name: "="
type: [E, E]
nextToTop = top
Poke:
nextToTop = top
push ⊳ pop
Simple:
\[
\begin{align*}
1 = size \land nextToTop = top \land nextToTop = thirdToTop \land nextToTop = x1 \\
\lor 1 = size \land nextToTop = top \land \lnot(nextToTop = thirdToTop) \land nextToTop = x1 \\
\lor 1 = size \land \lnot(nextToTop = top) \land nextToTop = thirdToTop \land nextToTop = secondToTop \land top = x1 \\
\lor 1 = size \land \lnot(nextToTop = top) \land nextToTop = thirdToTop \land \lnot(nextToTop = secondToTop) \land top = x1 \\
\lor 1 = size \land \lnot(nextToTop = top) \land \lnot(nextToTop = thirdToTop) \land nextToTop = secondToTop \land top = x1 \\
\lor 1 = size \land \lnot(nextToTop = top) \land \lnot(nextToTop = thirdToTop) \land \lnot(nextToTop = secondToTop) \land top = x1 \\
\lor \lnot(0 = size) \land nextToTop = thirdToTop \land nextToTop = secondToTop \land top = x1 \\
\lor \lnot(0 = size) \land nextToTop = thirdToTop \land nextToTop = secondToTop \land \lnot(nextToTop = secondToTop) \land top = x1 \\
\lor \lnot(0 = size) \land \lnot(nextToTop = thirdToTop) \land nextToTop = secondToTop \land top = x1 \\
\lor \lnot(0 = size) \land \lnot(nextToTop = thirdToTop) \land \lnot(nextToTop = secondToTop) \land top = x1 \\
\lor \lnot(0 = size) \land \lnot(nextToTop = thirdToTop) \land \lnot(nextToTop = secondToTop) \land \lnot(nextToTop = secondToTop) \land top = x1 \\
\end{align*}
\]
E textsbf{BlockKing}

E.1 Fixed version of BlockKing

The following is simplified pseudo-code for a fixed version of BlockKing in a C-like language.

```c
1 struct storage {
2     int warrior;
3     int warriorGold;
4     int warriorBlock;
5     int res;
6 }
7
8 hashtable[int,struct storage] scratch = ...;
9 int king, kingBlock;
10
11 void entered(int val, int sendr, int bk, int rnd) {
12     if (val < 50) { send(sendr,val); return; }
13     scratch[sendr].warrior = sendr;
14     scratch[sendr].warriorGold = val;
15     scratch[sendr].warriorBlock = bk;
16     // callback generates the random number in scratch[sendr]
17     rpc_call("random number generator",callback,scratch[sendr].res);
18     function callback() {
19         if (modFun(scratch[sendr].warriorBlock) == scratch[sendr].res) {
20             king = scratch[sendr].warrior; // winner
21             kingBlock = scratch[sendr].warriorBlock;
22         }
23     }
24 }
```

E.2 BlockKing: YML representation

```yaml
name: blockking

preamble: |
| (declare-fun modFn (Int) Int)

state: |
- name: warrior
type: Int
- name: warriorGold
type: Int
- name: warriorBlock
type: Int
- name: king
type: Int
- name: kingBlock
type: Int

methods: |
- name: enter
args: |
- name: msg_value
type: Int
- name: msg_sender
type: Int
- name: block_number
type: Int
- name: random
type: Int

return: |
- name: result
type: Bool
requires: |
| true
ensures: |
| (and result
```
(ite (< msg_value 50)
 (states_equal warrior warrior_Gold warrior_Block
 king king_Block err
 warrior_new warrior_Gold_new warrior_Block_new
 king_new king_Block_new err_new)
 (and (= warrior_new msg_sender)
 (= warrior_Gold_new msg_value)
 (= warrior_Block_new block_number)
 (ite (= (modFn warrior_Block_new) random)
 (and (= king_new warrior_new)
 (= king_Block_new warrior_Block_new))
 (and (= king_new king)
 (= king_Block_new king_Block)))
)
)
)
)

Predicates:
(= x1 y1)
(= x2 y2)
(= x3 y3)
(= (modFn x3) x4)
(= (modFn y3) y4)
(< x1 50)
(< y1 50)

E.3 BlockKing Fixed: YML representation

name: blockking_fixed

preamble: |
 (declare-fun modFn (Int) Int)

state:
 - name: warrior
 type: (Array Int Int)
 - name: warriorGold
 type: (Array Int Int)
 - name: warrior_Block
 type: (Array Int Int)
 - name: king
 type: Int
 - name: king_Block
 type: Int

methods:
 - name: enter
 args:
 - name: msg_value
 type: Int
 - name: msg_sender
 type: Int
 - name: block_number
 type: Int
 - name: random
 type: Int
 return:
 - name: result
 type: Bool
 requires: |
 true
 ensures: |
 (and result
 (ite (< msg_value 50))

35
(states_equal warrior warriorGold warriorBlock
 king kingBlock err
 warrior_new warriorGold_new warriorBlock_new
 king_new kingBlock_new err_new)
(and (= warrior_new (store warrior msg_sender msg_sender))
 (= warriorGold_new (store warriorGold msg_sender msg_sender))
 (= warriorBlock_new (store warriorBlock msg_sender block_number))
 (ite (= (modFn (select warriorBlock_new msg_sender)) random)
 (= king_new (select warrior_new msg_sender))
 (= kingBlock_new (select warriorBlock_new msg_sender)))
 (= king_new king)
 (= kingBlock_new kingBlock))
)
)
)
)

Predicates:

(= x1 y1)
(= x2 y2)
(= x3 y3)
(= (modFn x3) x4)
(= (modFn y3) y4)
(< x1 50)
(< y1 60)