Improving the sustainability of cultural heritage sites using the INFORM Method

E V Muravyeva¹, E V Arefyeva², N E Danilina³

1Department of Industrial and Environmental Safety, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10, K. Marx St., Kazan 420111, Russia
2Federal State Budgetary Institute" All-Russia Scientific Research Institute on Problems of Civil Defense and Emergency Situation" (Federal Centre of Science and High Technologies, 3, Teatralny passage, Moscow 109012, Russia
3Department of Industrial and Ecological Safety, Federal State Budgetary Educational Institution of Higher Education Togliatti State University, 14 Belorussskaya St., Togliatti 445020, Russia

E-mail: elena-kzn@mail.ru

Abstract. The article presents proposals on the use of the risk index method to determine the sustainability of cultural heritage sites. This INFORM method is based on the assessment of the three risk components by measuring the relevant indicators in each of three directions: the degree of danger; level of vulnerability; counteraction (overcoming) potential. The method includes about 50 different indicators for measuring hazards and impact on them, vulnerability indicators and determining the necessary resources for stopping hazards. The integral risk index is formed as the geometric mean of the component indices: danger, vulnerability and lack of counteraction potential. The application of the INFORM method for the development and adoption of managerial decisions to increase the sustainability and security of cultural and historical heritage sites makes it possible to assess risk, and in the future, planning measures for the restoration and maintenance of cultural heritage sites.

1. Introduction

Against the background of the current state of culture, the problem of preserving and restoring objects of cultural heritage is of particular importance due to the great importance of preserving cultural heritage [1]. However, the complexity of this problem is also in the fact that many cultural heritage sites over the past century have been in a very neglected state, and in order to preserve them, it is necessary to look for new methods for assessing and predicting their condition [2-4].

Over the centuries-old history of cultural heritage monuments, especially the twentieth century subjected them to a test of stability, creating conditions different from normal for the work of supporting structures and soil bases [5]. Radical changes in the environment as a result of human construction and economic activities pose a serious threat to maintaining the sustainability of cultural heritage sites.

The methodological importance, in this case, will be the representation of “danger” as an objective reality (state, property, property of a material object), which is the natural habitat of man and "risk",...
which is used as “probabilistic losses” that can be established by multiplying the probability (frequency) of a negative event by the amount of damage from it [6].

The Handbook for local government leaders, “Making Cities Resilient to Disasters” developed as part of the Worldwide Campaign "Securing cities: my city is preparing", says that cities are considered sustainable where “measures are taken to prevent and mitigate the impact of disasters, monitoring technologies are introduced and early warning to protect infrastructure, the public domain and citizens, including their homes and property, cultural heritage, natural and economic resources, and where camping to minimize the material and social damage caused by extreme weather events, earthquakes or other threats of natural origin or caused by human activity". Thus, the objects of cultural heritage are given special attention.

In the Republic of Tatarstan, which participates in the implementation of the Sendai framework program for disaster risk reduction for the period 2015-2030, great attention is paid to the preservation and restoration of cultural heritage sites, which there are more than 7 thousand in Tatarstan. 1540 objects of cultural heritage are under state protection, 150 of them are of federal significance, 1076 are of republican significance, 314 are of local significance. At the same time, 364 objects are in federal ownership, 200 in the republican, 770 in the municipal, and 206 in private ownership. Of the total number of cultural heritage sites, 513 are situated in Kazan. Observations of their condition in the regions of Tatarstan show that almost all of them are highly susceptible to destruction due to the impact of adverse natural and man-made impacts. In order not to lose the historical past, it is necessary not only to preserve and restore, but also to create conditions for the continued existence of ancient monuments.

Karsts and landslides characteristic of Tatarstan, including its capital Kazan, pose a serious threat to the historical heritage of our Republic. On the night of April 28, 1977, the most beautiful building of the Alexander Passage collapsed. This was not unexpected, in 1890 the Black Lake block of the Passage building sank by 6 cm. The situation became even more dangerous in 1934 when, due to the Kuibyshev reservoir, the Volga level rose and karst became more active. Attempts to “cure” the building on their own were unsuccessful. Only the Polish company “Budimeks” from Warsaw managed the hole in the Black Lake block. First, builders cleared the rubbish accumulated over many years. Karst voids through pipes lowered to different depths were filled with a special grout. The foundation, without violating the cultural and historical originality of the building, was replaced with a similar but ceramic brick. A 6-meter-thick reinforced concrete slab was placed under the Foundation. The internal floors were planted on a separate frame, and the frame itself was cunningly hidden inside the wall, since its thickness (90–120 cm) made it possible to do this without much difficulty [6-9].

2. Methods
In order to ensure the safety and operational reliability of the cultural and historical heritage of the Republic of Tatarstan, it is necessary to take timely measures to protect such objects from natural and man-made threats.

Cultural and historical objects of the Republic of Tatarstan are located in various zones of natural and man-made risk, have a different degree of preservation. In this regard, in order to develop adequate preventive and protective measures, it is necessary to conduct timely monitoring, evaluation and development of management decisions aimed at increasing the stability and preservation of cultural and historical heritage objects. Therefore, it is advisable to use various international tools to assess the condition of objects and evaluate protection and prevention measures [10-14].

From the authors’ point of view, the most effective method is INFORM (index for risk management), based on an assessment of three risk components by measuring the relevant indicators in each of three directions: the degree of danger; level of vulnerability; counteraction (overcoming) potential [1].

The INFORM method, based on the index method, is the first global, objective toolkit developed in 2012 by the European Commission to understand the risks of humanitarian disasters.
The INFORM integrated risk index includes about 50 different indicators for measuring hazards and their impact, vulnerability indicators and identifying the necessary resources for stopping hazards.

In this case, it is necessary to consider as indicators: the whole range of possible dangers and threats of a natural and man-made nature (danger); the state of the protected object (its vulnerability); the presence and condition of the engineering protection system, emergency response system (overcoming potential).

The main hazards can be considered: floods and surge phenomena; seismic activity; landslides, mudflows, avalanches; natural fires; hurricanes, tornadoes, strong winds; flooding; man-made emergencies at potentially dangerous facilities (radiation, chemical, fire and explosion hazard, hydraulic structures); man-made emergencies in transport communications [13-17].

The vulnerability can be considered: the vulnerability of the population, including vulnerable groups (people with disabilities, children, etc.); the vulnerability of potentially dangerous facilities (including depreciation); vulnerability of housing and communal services (including depreciation); vulnerability of the territory [18-22]. As a counteraction potential, it is recommended to consider: the availability and coverage of warning and information systems; emergency response system; reserves of material and financial resources, medical supplies, etc.

In accordance with the structure of the integrated risk index, indicators are distributed in three dimensions (danger, vulnerability and lack of potential to counter dangers and threats), in each of the three dimensions, the corresponding index is evaluated on a 10-point interval scale [23]. To obtain an integral risk index, instead of the index “counteraction potential”, the index “absence of counteraction potential” is used. This technique allows us to use both averaged formulas (geometric mean, arithmetic mean, etc.) and linear combinations in the calculations of the integral risk index. All indicators are normalized and take values from 0 to 10. The closer the value of the indicator to zero, the more favorable the situation in that area, which is measured by the corresponding indicator [24,25].

Based on particular indicators for the three components of the integral risk index - danger, vulnerability and lack of countermeasures, calculated dependencies are formed for calculating the corresponding indices and the general risk index of the emergency. The integral risk index is formed as the geometric mean of the component indices: danger, vulnerability and lack of counteraction potential [26-28].

\[I = \sqrt[3]{G \times V \times L} \]

where \(G = 0.5(I_{nat} + I_{techno}) \); \(I_{nat}, I_{techno} \) - indices of natural and technogenic hazards; \(V \) - index of vulnerability \((I_{vuln}) \); \(D = 1 - I_{poten} ; I_{poten} \) - is an index of counteraction potential.

For example, the index of natural and technological hazards for objects of cultural and historical heritage can be determined by the formula:

\[I_{pr} = \sum_{i=1}^{m} \lambda_i I_i \]

where \(\sum_{i=1}^{m} \lambda_i = 1; \lambda_i > 0 \), \(\lambda_i \) - weights that reflect the significance of the hazard; \(I_i \) - hazardous process index; \(m \) - the number of hazardous processes most significant for the municipality (M), N - total number of population living in the territory of the municipality, people.

3. Results

The use of the INFORM method for developing and making management decisions to improve the sustainability and security of cultural and historical heritage objects makes it possible to assess the risk, which is that most of the information for filling the database can be performed automatically or filled in by the operator from open databases.

The INFORM risk assessment technology algorithm for historical built-up areas includes:
the formation of an annual database of indicators of dangers, vulnerability and countermeasures for the objects of historical and cultural heritage of the Republic of Tatarstan;

interconnected methods and calculation formulas for calculating hazard indices, vulnerabilities and countermeasures for a specific historical built-up territory;

analysis and assessment of the current situation, assessment of vulnerability, forces and means in the subject, and in individual municipalities and determination of the integral risk index based on the components of the risk index;

ranking of historical territories by indicators of the integral risk index, individual components of the integral risk index;

identification of lagging municipalities by component risk indices and the definition of advanced municipalities;

recommendations for improving risk indicators by selecting effective preventive and protective measures based on hazard index indicators (natural and man-made fires, earthquakes; geological hazards, meteorological conditions; hydrological and hydrogeological conditions, as well as man-made hazards.), indicators for the formation of the vulnerability index (socio-economic development of the locality; depreciation of fixed assets, dependence on external assistance, etc.), the main indicators for the formation of the counteraction potential index (fire protection measures; seismic protection of buildings and structures; landslide and anti-settlement measures; anti-karst and anti-shrinkage measures; measures against meteorological hazards; anti-hydrological measures, etc.).

4. Conclusions

Thus, using the INFORM method, it is possible to make a reasonable forecast on the current state of the cultural heritage object, to give forecasts on its state in time, for carrying out preventive work and the possibility of restoration.

References

[1] Index for risk-management. Results INFORM 2015

[2] Arefyeva E V, Muravyeva E V 2019 On the problems of the built-up territories of the Republic of Tatarstan associated with their periodic flooding International Research Journal Eurasian Union of Scientists. DOI:10.31618/esu.2411-6467.8.53.1

[3] Arefyeva E V, Muravyeva E V 2019 The issues of sustainability of historical and cultural areas associated with their periodic underflooding and solutions IOP Conf. Ser.: Mater. Sci. Eng. 687 066031

[4] Arefyeva E V, Oltyan I Yu, Faleev M I, Bolgov M I 2018 Methodology and technology of remote risk assessment Problems of risk analysis 4(15) 18–30

[5] Alekseyeva E I 2015 The state of the objects of historical and cultural heritage as an indicator of the level of environmental and technological safety in Kazan Kazan Pedagogical Journal 1(108) 167–172

[6] Galimova A I, Shakurov R F, Sitnikov O R, Sabitova A F 2018 Investigation of the Influence of Acoustic Oscillation Parameters on the Mechanism of Waste Rubber Products Combustion IOP Conf. Series: Materials Science and Engineering 317(2018) 012061

[7] Romanovsky V L, Zagrebina E I, Nikandrova M V, Gorina L N, Zimina L A, Afanasiev V M 2018 Using the method of tree structure for an analysis of the impact on the environment Modern Journal of Language Teaching Methods 8(8) 48–60

[8] Gumerov T Yu, Gorina L N, Gabdukaeva L Z 2019 Assessment of risk associated with drinking water with respect to indicators of olfactory and reflex effect IOP Conference Series: Materials Science and Engineering 687 27–33
[9] Gumerov T Yu, Mukhametkhanov A E, Muravyeva E V, Reshetnik O A 2019 Assessment of the environment radiation environment during short-term releases of radioactive substances *Bulletin of the Scientific Center of Life Safety* **1(39)** 101–106

[10] Sibgatulina D Sh, Shakirova A I, Danilina N E 2019 Rationale for engineering activities to prevent and reduce adverse impact of accidents at low-head hydraulic structures *IOP Conf. Ser.: Mater. Sci. Eng.* **687** 066058

[11] Shakirova A I 2019 Technology for Reducing the Risks of Emergency Situations on Hydraulic Structures Using Fiber Optic Systems *Vestnik NTsBZhD* **1(39)** 144–153 (In Russ)

[12] Muraveva E V, Shakirova A I, Romanovskii V L, Zagrebian E I, Abrosimov I A, Golovko M V, Gorina L N 2019 Environmental Safety of Hydraulic Structures of the Republic of Tatarstan *Ekolagi* **107** 4955–4960 e107562

[13] Muraveva E V, Sibgatulina D Sh, Galimova A I 2017 Risks of Functioning of the Hydraulic Engineering Structures - Reservoir of Industrial Waste: Problems and Solutions *Life Safety* **5(197)** 52–58

[14] Muraveva E V, Stepuschenko O A, Sibgatulina D Sh, Galimova A I, Vinoradov V Yu 2017 Provision of Ecological Safety of Water Supplying System of Industrial Enterprises *Proceedings of the Sixth International Environmental Congress (Eighth International Scientific-Technical Conference) Ecology and Life Protection of Industrial-Transport Complexes* ELPIT pp 217–229

[15] Aref'eva E V 2007 Regulation of ground water conditions in case of project and built-up area inundation *Industrial and Civil Engineering* **11** 47–48

[16] Aref'eva E V 2016 Information Support of Modeling and Forecasting of the Hazards Associated with Underground Hydrosphere Built-up Area *Civil Security Technology* **1** 28–34

[17] Zagrebin E I 2014 Modern technologies for informing and warning the public in emergency situations Search for effective solutions in the process of creating and implementing scientific developments in the Russian aviation and rocket and space industry *International scientific and practical conference* pp 261–264

[18] Kuzmin A V 2014 The Use of Innovative Methods of Risk Analysis to Reduce Emergencies on the Roads of the Republic of Tatarstan *Vestnik NtsBZhD* **3(21)** 14–19

[19] Muravieva E V, Romanovsky V L, Kuzmin A V 2016 Applied technosphere riskology - management of technosphere complexes *Quality and Life* **2(10)**

[20] Romanovsky V L 2007 Graph-Based Risk Analysis by Means of Tree Structures *Izvestia of Samara Scientific Center of the Russian Academy of Sciences*. Special issue: ELPIT-2007. Series Mechanical Engineering and Ecology **2**

[21] Romanovsky V L, Muraveva Ye V 2007 *Applied technosphere riskology: a monograph* (Kazan: RIC School)

[22] Romanovsky V L, Muraveva E V 2007 *Applied technosphere riskology: scientific publication* (Kazan: RRC School)

[23] Samorodova V V, Muraveva E V, Shakirova A I 2020 Improving The Level Of Life Safety In The University European *Proceedings of Social and Behavioural Sciences* EpSBS **50** 391–397

[24] Arefyeva E V, Ziganshin A I, Rybakov A V 2012 Situational-optimization model for identifying hazards for built-up areas *Scientific and educational problems of civil protection, scientific journal* **1** 31–37

[25] Arefyeva E V 2004 *System for the prevention and liquidation of emergencies caused by flooding of objects and territories* (Moscow: Academy of Civil Defense, EMERCOM of Russia) p 143

[26] Vinoradov V Yu, Morozov O G, Anfinogentov V I et al 2019 Aero-acoustic Cartography as Nondestructive Method for Turbomachine Rotor Blade Monitoring Based on Fiber Optic
Sensors Localized at a Nozzle Cross Section Optical Technologies for Telecommunications 2018 Proc. SPIE 11146 111461K

[28] Methodological materials on risk analysis and damage assessment from natural and man-made emergencies 2008