Robust Surface Hall Effect and Nonlocal Transport in SmB\textsubscript{6}: Indication for an Ideal Topological Insulator

D.J. Kim*, S. Thomas*, T. Grant, J. Botimer, Z. Fisk and Jing Xia

Dept. of Physics and Astronomy, University of California, Irvine, California 92697, USA
(* These authors contributed equally to this work.)

A topological insulator (TI) is an unusual quantum state in which the insulating bulk is topologically distinct from vacuum, resulting in a unique metallic surface that is robust against time-reversal invariant perturbations. When placed in a magnetic field, the two-dimensional surface necessarily leads to a surface Hall effect that is independent of sample thickness. Robust nonlocal transport through the highly conductive surface defies Ohm’s law and could be useful for novel electronic devices. These surface transport properties, however, remains difficult to be isolated from the bulk in existing TI crystals (Bi\textsubscript{2}Se\textsubscript{3}, Bi\textsubscript{2}Te\textsubscript{3} and Sb\textsubscript{2}Te\textsubscript{3}) due to impurity caused bulk conduction. We report in large crystals of topological Kondo insulator (TKI) candidate material SmB\textsubscript{6} the thickness-independent surface Hall effects and nonlocal transport, which are robust against perturbations including mechanical abrasion. These results serve as proof that at low temperatures SmB\textsubscript{6} has a robust metallic surface that surrounds a truly insulating bulk, paving the way for transport studies of the surface state in this proposed TKI material.

Recently discovered1-6 three-dimensional (3D) topological insulators (TI) have generated great excitement. Strong spin-orbit coupling in a TI gives rise to a non-trivial and robust conducting surface state4,5, reminiscent to the edge channel7,8 found in quantum Hall (QH)9,10 and quantum spin Hall (QSH)11,12 states. However, such surface transport properties has remained challenging to separate from residual bulk impurity conduction13-16, promoting us to search for TI materials with a truly insulating bulk. More importantly, so far most theoretical and experimental efforts have been dedicated to materials with the underlying physics of non-interacting electrons1,4,5,11. A big question thus concerns the role of electron interaction and competing orders in new TI materials with strong correlation, from which new types of topological phases are expected to emerge4,5.

Recent seminal theoretical works17,18 have predicted in the strongly correlated material SmB\textsubscript{6} the existence of a topological insulator phase: topological Kondo insulator (TKI). SmB\textsubscript{6} is a heavy fermion material first studied 40 years ago19. In SmB\textsubscript{6} highly renormalized f-electrons, hybridized with conduction electrons, form a completely filled band of quasiparticles with a transport excitation gap Δ of about 40 Kelvin. However, its many exotic properties20-22 still defy a satisfactory understanding within
the framework of conventional insulators. One of these mysteries is the peculiar residual conduction at the lowest temperatures: behaving electronically like an insulator at high temperatures, at low temperature its resistance mysteriously saturates: a curiosity that is usually attributed to the existence of density of states within the band gap. According to the recent TKI theory \(^{17,18,23,24}\), the hybridization and odd parity wavefunction lead to strong spin-orbit coupling in SmB\(_6\) and gives rise to a topological surface state, which naturally explains the origin of the in-gap state and pinpoints its location to be on the surface of SmB\(_6\). Our recent capacitance measurements on high quality SmB\(_6\) crystals revealed intriguing anomalous capacitance effects \(^{25}\) that could be explained by assuming the in-gap-states exist on the surface. In this paper we present evidences of robust surface Hall effect and nonlocal transport in high quality SmB\(_6\) crystals of various geometries and from different growth batches. These results reveal in SmB\(_6\) a perfectly insulating bulk and a robust conducting surface.

RESULTS

Hall effect measurements were carried out in wedge-shaped SmB\(_6\) crystals. As depicted in the inset in Fig. 1(a), the sample is placed in a perpendicular magnetic field \(B\) and current \(I\) flows between the two ends of the wedge. The Hall resistances \(R_{xy} = V_{xy}/I\) are measured at different thicknesses \(d\) to distinguish between surface and bulk conduction. For bulk conduction \(R_{xy}/B \propto 1/d\), while \(R_{xy}/B\) is \(d\)-independent if surface conduction dominates. The Hall voltage \(V_{xy}\) is found to be linear with \(B\) (Fig. 1(c) (d)) at small fields at all temperatures, but becomes significantly nonlinear around 5K, indicating a temperature regime of multichannel conduction. At high (20 K) or low (2K) temperatures, the extreme linearity of the Hall effect indicates single channel conduction, either it is the bulk or surface. For the simplest case of two independent channels with Hall coefficients \(R_1, R_2\) and resistivity \(\rho_1, \rho_2\), the Hall resistivity \(\rho_{xy}\) at magnetic field \(B\) is \(\rho_{xy} = [(R_1\rho_1^2 + R_2\rho_2^2)B + R_1 R_2 (R_1 + R_2) B^3]/[(\rho_1 + \rho_2)^2 + (R_1 + R_2)^2 B^2]\).

Nonlinearity is expected at large \(B\), but at small fields it simplifies to \(\rho_{xy}/B = (R_1\rho_1^2 + R_2\rho_2^2)/(\rho_1 + \rho_2)^2\), which indeed gives thickness independent \(R_{xy}/B\) if both channels are of surface nature. From \(B < 1 T\) data we extract the value \(R_{xy}/B\) at various temperatures \(T\). Representative results in sample \(S1\) are plotted in Fig. 1(a) for \(d = 120, 270 and 320 \mu m\) respectively, showing clearly that while at high temperatures \(R_{xy}/B\) differ at different \(d\), they converge to a same universal value of \(0.3 \Omega/T\) below 4 Kelvin, in consistence with surface conduction. Since more than one surface channels may exist, as predicted by theory \(^{23,24}\), it is difficulty to quantitatively extract the surface carrier density and mobility at this stage. Replotting the Hall resistance ratios \(R_{xy}(d_1)/R_{xy}(d_2)\) in Fig. 1(b), we found these ratios to be equal to \(d_2/d_1\) at high \(T\) and become unity at low \(T\), proving the crossover from 3D to 2D Hall effects.
when T is lowered. The temperature dependence is well described by a two-channel (bulk and surface) conduction model in which the bulk carrier density decrease exponentially with temperature with an activation gap $\Delta = 38 K$. Using this simple model, we could reproduce the curious “peak” in R_{xy}/B at 4 K (solid lines in Fig. 1(a)), which lacks a good explanation until now.

Surface dominated conduction could also be demonstrated at zero magnetic field with so-called “nonlocal” transport, in the spirit of nonlocal transports experiments performed in QH and QSH states that have served as evidences for the existence of the topological edge states that are one-dimensional analogues to the surface state in a TI. The highly metallic surface conduction in a TI would necessarily invalid Ohm’s law and introduce large nonlocal voltages, which we have indeed found in SmB$_6$ samples. Fig. 2(a) shows a schematic of the nonlocal measurement in sample $S4$. Current I_{16} flows between current leads 1 and 6 at the centers on opposite faces of the crystal. Contacts 2 and 3 are located close to contact 1 for the detection of “local” voltage V_{23}. Contacts 4 and 5 are put near the sample edge far away from the current leads to detect “nonlocal” voltage V_{45}. As shown in the inset in Fig. 2(b), in the case of bulk conduction, current will concentrate in the bulk near the current leads 1 and 6, resulting in negligibly small nonlocal voltage $V_{45} \ll V_{23}$. If surface conduction dominates, however, current will be forced to flow between contacts 1 and 6 via the surface, making V_{45} large. Fig. 2(a) shows as a function of temperature the measured V_{45} and V_{23} divided by I_{16}, both agreeing qualitatively with our finite element simulations (Supplementary Information) incorporating the aforementioned simple model. The ratio V_{45}/V_{23} is replotted in Fig. 2(b). At low temperature when surface conduction dominates the nonlocal voltage V_{45} becomes large and even surpasses the local voltage V_{23}. Above $T = 5 K$ when bulk conduction dominates, the magnitude of V_{45}/V_{23} is very small. The negative sign of V_{45}/V_{23} is due to the small misalignment of contacts (Supplementary Information). The change of both magnitude and sign of V_{45}/V_{23} is reproduced by our simulation and highlights the distinction between high T bulk conduction and low T surface conduction.

An important aspect of TI is the topological protection of the surface state against time-reversal invariant perturbations. The robustness against perturbation distinguishes a topological surface state from “accidental” surface conduction. We found the above surface Hall effect and nonlocal transport are recurrent phenomena in various samples and are robust to chemical and mechanical sample treatments. As an illustration, we mechanically cut and scratched the surface of sample $S10$ (Fig. 3 inset) and performed Hall measurements before and after surface abrasion. We found the low temperature Hall resistance R_{xy}/B remain unchanged (Fig. 3(c)), indicating that the surface carrier density n_S was not affected by abrasion. The abrasion does reduce the surface mobility μ_S though, as reflected by the height
of R_{xy}/B “peak” at $T = 4\; K$, presumably due to greatly enhanced geometric roughness. As shown in Fig. 3 (a) (b), the surface dominated conduction persists after abrasion as demonstrated by thickness-independent Hall effect below 4K.

DISCUSSION
The experimental identification of robust thickness-independent surface Hall effect and nonlocal transport serve as strong evidence that SmB$_6$ has a robust metallic surface state surrounding a truly insulating bulk. The characterization of energetics of the surface state and hence direct tests of the topological nature, however, awaits future investigations using energy and spin resolved techniques like ARPES 2,3 and STM 27,28. Unlike weakly interacting TI materials, the strong electron correlation in SmB$_6$ could give rise to exotic emergent phases 4,5 with exciting new physics.

Note added: During initial submission of the manuscript, we became aware of a related work3,29 in which evidence for surface conduction was provided in a SmB$_6$ sample with contacts arranged in a unique configuration, and a point contact measurement 9,10,30 that excludes the possibility that the in-gap state is located in the bulk of SmB$_6$.

METHODS
High quality SmB$_6$ crystals were grown using the aluminium flux method. The surfaces of these crystals were carefully etched using hydrochloric acid and then cleaned using solvents to remove possible oxide layer or aluminium residues. These crystals are then inspected using X-ray analysis to make sure SmB$_6$ is the only content. Samples used in the experiments were made from these crystals either by mechanical cleaving or polishing using polishing films containing diamond particles. The exposed surfaces are (100) planes. Gold and platinum wires are attached to the samples using micro spot welding and/or silver epoxy, with no discernable differences in measurements. Low frequency transport measurements were carried out in dilution fridges and helium cryostats using either standard low frequency ($37 \; \text{Hz}$) lock-in techniques with 50 nA excitation currents or with a resistance bridge.

1. Fu, L. & Kane, C. Topological insulators with inversion symmetry. Phys Rev B 76, (2007).
2. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).
3. Chen, Y. L. et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi$_2$Te$_3$. Science 325, 178–181 (2009).
4. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev Mod Phys 83, 1057–1110 (2011).
5. Hasan, M. & Kane, C. Colloquium: Topological insulators. Rev Mod Phys 82, 3045–3067 (2010).
6. Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. Phys Rev B 79, 195322 (2009).
7. McEuen, P. et al. New resistivity for high-mobility quantum Hall conductors. Phys Rev Lett 64, 2062–2065 (1990).
8. Roth, A. et al. Nonlocal Transport in the Quantum Spin Hall State. Science 325, 294–297 (2009).
9. Klitzing, von, K., Dorga, G. & Pepper, M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys Rev Lett 45, 494–497 (1980).
10. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys Rev Lett 48, 1559–1562 (1982).
11. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757–1761 (2006).
12. Koenig, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).
13. Peng, H. et al. Aharonov-Bohm interference in topological insulator nanoribbons. Nat Mater 9, 225–229 (2009).
14. Checkelsky, J., Hor, Y., Cava, R. & Ong, N. Bulk Band Gap and Surface State Conduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi$_2$Se$_3$. Phys Rev Lett 106, 196801 (2011).
15. Analytis, J. G. et al. Two-dimensional surface state in the quantum limit of a topological insulator. Nat Phys 6, 960–964 (2010).
16. Taskin, A. & Ando, Y. Quantum oscillations in a topological insulator Bi1–xSbx. Phys Rev B 80, 085303 (2009).
17. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo Insulators. Phys Rev Lett 104, (2010).
18. Dzero, M., Sun, K., Coleman, P. & Galitski, V. Theory of topological Kondo insulators. Phys Rev B 85, (2012).
19. Menth, A., Buehler, E. & Geballe, T. Magnetic and Semiconducting Properties of SmB$_6$. Phys Rev Lett 22, 295–297 (1969).
20. Nickerson, J. et al. Physical Properties of SmB$_6$. Phys Rev B 3, 2030–2042 (1971).
21. Barla, A. et al. High-Pressure Ground State of SmB6: Electronic Conduction and Long Range Magnetic Order. Phys Rev Lett 94, (2005).
22. Derr, J. et al. From unconventional insulating behavior towards conventional magnetism in the intermediate-valence compound SmB6. Phys Rev B 77, (2008).
23. Lu, F., Zhao, J., Weng, H., Fang, Z. & Dai, X. Correlated Topological Insulators with Mixed Valence. Phys Rev Lett 110, 096401 (2013).
24. Alexandrov, V., Dzero, M. & Coleman, P. Cubic Topological Kondo Insulators. arXiv cond-mat.str-el, (2013).
25. Kim, D., Grant, T. & Fisk, Z. Limit Cycle and Anomalous Capacitance in the Kondo Insulator SmB$_6$. Phys Rev Lett 109, 096601 (2012).
26. Cooley, J., Aronson, M., Fisk, Z. & Canfield, P. SmB6: Kondo Insulator or Exotic Metal? Phys Rev Lett 74, 1629–1632 (1995).
27. Alpichshev, Z. et al. STM Imaging of Electronic Waves on the Surface of Bi$_2$Te$_3$: Topologically Protected Surface States and Hexagonal Warping Effects. Phys Rev Lett 104, (2010).
28. Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).
29. Wolgast, S. et al. Discovery of the First True Three-Dimensional Topological Insulator: Samarium Hexaboride. arXiv:1211.5104 (2012).
30. Zhang, X. et al. Hybridization, Inter-Ion Correlation, and Surface States in the Kondo Insulator SmB$_6$. Phys. Rev. X 3, 011011 (2013).
Acknowledgements We thank T.H. Geballe and A. Kapitulnik for useful discussions. This work was supported by UC Irvine CORCL Grant MIIG-2011-12-8, Sloan Research Fellowship (J. X.) and NSF grant #DMR-0801253.

Author Contributions J.X conceived the project. D.J.K, T.G. and Z.F. grew the crystals. D.J.K., S.T., J.B., and J.X. fabricated the samples and performed the measurements. T.G. performed X-ray analysis of the crystals. S.T. and J.X. performed the simulations. All authors analysed the data and wrote the manuscript.

Author Information Correspondence and requests for materials should be addressed to J.X. (xia.jing@uci.edu).
Figure 1 | Surface Hall effect. a, Markers, Hall resistances R_{xy} divided by magnetic field B versus temperature T at three different thicknesses d in a wedge shaped sample $S1$. Lines are simulations using a two conduction channel model (see text). Left inset, picture of the crystal before wiring. Right inset, measurement schematic.

b, Markers, ratios between Hall resistances R_{xy} at different d, showing the transition from bulk to surface conduction as temperature is lowered. Lines are calculated from simulations as in a.

c, R_{xy} versus B at various T for $d = 120$ µm, showing nonlinearity at around 5 K.

d, R_{xy} /B normalized to small field values to demonstrate the nonlinearity.
Figure 2 | Nonlocal transport due to surface conduction. a, Markers, nonlocal resistance \(\frac{V_{45}}{I_{16}} \) and local resistance \(\frac{V_{23}}{I_{16}} \) versus temperature \(T \). Dashed lines are finite element simulations. Inset is a schematic of the measurement configuration on sample S4. b, Ratio between nonlocal and local voltages \(\frac{V_{45}}{V_{23}} \) versus \(T \). Dashed lines are finite element simulations. Inset, cartoons for current distribution in sample cross-section for surface and bulk dominated conductions.
Figure 3 | Robustness of the surface state. a, Markers, Hall resistances R_{xy} divided by magnetic field B versus temperature T at three different thicknesses d in a wedge shaped sample S10, after intentional chemical etching and cutting. b, Markers, ratios between Hall resistances R_{xy} at different d, showing the transition from bulk to surface conduction as temperature is lowered. c, Solid lines, Hall resistance R_{xy} divided by magnetic field B versus temperature T, before and after surface abrasion. Dashed lines are simulations assuming abrasion only reduces the effective surface mobility μ_S. Inset, picture of sample S10 during abrasion.

Supplemental information:
For the case of two independent channels with Hall coefficients R_1, R_2 and resistivity ρ_1, ρ_1, the Hall resistivity ρ_{xy} at magnetic field B is:

$$\rho_{xy} = [(R_1\rho_1^2 + R_2\rho_2^2)B + R_1 R_2 (R_1 + R_2) B^3] / [(\rho_1 + \rho_2)^2 + (R_1 + R_2)^2 B^2]$$

Nonlinearity is expected at large B, but at small fields it simplifies to:

$$\rho_{xy}/B = (R_1\rho_1^2 + R_2\rho_2^2) / (\rho_1 + \rho_2)^2.$$

To first order, we assume in SmB$_6$ the transport is governed by a temperature dependent bulk channel, and a temperature independent surface channel. Note that it is still possible to have multiple surface channels, thus we take the effective 2D resistivity as ρ_S, and Hall resistance as R_S, but can’t infer carrier density or mobility until more information is known on the surface carrier types (electrons, holes or both).

The bulk is a gapped insulator with an indirect activation gap $\Delta = 38 K$, as calculated from temperature dependence of Hall effect at high temperatures. The bulk carrier density n_B thus follows activation law of an insulator: $n_B = n_0^B \exp (-\Delta/k_B T)$, where k_B is the Boltzmann’s constant and n_0^B is a constant. In the simplified case of temperature independent mobility, this gives activated Hall coefficient $R_B = R_0^B \exp (\Delta/k_B T)$ and resistivity $\rho_B = \rho_0^B \exp (\Delta/k_B T)$.

For a sample with length, width and thickness of $L, w d$ respectively. The longitudinal resistance is just the parallel resistance of the surface and bulk channels:

$$R_{xx} = \frac{L}{w (2/\rho_S + d/\rho_B)} = \frac{L}{w (\frac{2}{\rho_S} + d/\rho_B^0 B \exp (\Delta/k_B T))}$$

The factor 2 comes due to the fact there are bottom and top surfaces.

And the Hall resistance in the small field limit is:

$$R_{xy} = B \frac{\frac{R_0^B}{\rho_B^0 B}}{(2/\rho_S + d/\rho_B^0 B)^2} = B \frac{(\frac{2}{\rho_S} + d/\rho_B^0 B \exp (\Delta/k_B T))^2}{(2/\rho_S + d/\rho_B^0 B \exp (\Delta/k_B T))^2} = B \frac{(\frac{\frac{R_0^B}{\rho_B^0 B}}{(\frac{R_0^B}{\rho_B^0 B})^2})^{\Delta/k_B T}}{(\frac{\frac{R_0^B}{\rho_B^0 B}}{(\frac{R_0^B}{\rho_B^0 B})^2})^{\Delta/k_B T}}$$
Using this simple model we could calculate temperature dependences of R_{xx} and R_{xy}/B, e.g. as shown in Fig. S1. We could also perform finite element simulations for the transport in more complicated geometries. Fig. S2 and Fig. S3 show the simulated surface potential profiles at 300 K and 0 K for the nonlocal transport experiment in a sample with thin plate geometry. The simulation curves in Fig. 3 in the main text are generated using this finite element simulation.
Figure S1 | Simple Transport Model. a, b, Calculated R_{xy} and R_{xx} using the simple model of two channel conduction.
Figure S2 | Simulation of Nonlocal Transport at 300 K.

(a) Finite elements simulation of the surface potential profile in the nonlocal transport. As the conduction is dominated by the bulk, the nonlocal voltage V_{45} is much smaller than V_{23}.

(b) Zoom in views for contact 4 and 5, showing V_{45} is a small negative value due to slight misalignment of contacts.
Figure S3 | Simulation of Nonlocal Transport at 0 K. a, Finite elements simulation of the surface potential profile in the nonlocal transport. Due to surface conduction, the nonlocal voltage V_{45} is large and is comparable to V_{23}.