Opinion

Twin–twin transfusion syndrome: don’t rely on fluids and bladders to catch it early

C. WOHLMUTH1,* and H. M. GARDINER2,*

1 Department of Obstetrics and Gynecology, Paracelsus Medical University, Salzburg, Austria; 2 The Fetal Center, University of Texas, McGovern Medical School, Houston, TX, USA

*Correspondence. (e-mail: christoph.wohlmuth@outlook.com)

Prospective studies suggest that twin–twin transfusion syndrome (TTTS) complicates approximately 10% of all monochorionic pregnancies1. If left untreated, TTTS is associated with mortality rates above 80%.2 In 1999, Quintero et al. proposed a staging system for TTTS based on a theoretical sequence of events: (1) presence of oligo-/polyhydramnios sequence; (2) absent bladder filling in the donor; (3) abnormal Doppler findings in one or both fetuses; (4) hydrops in one or both fetuses; and (5) single or double fetal demise3. It is well-recognized that, particularly before 20 weeks of gestation, Quintero stages may not correspond to the chronological evolution of TTTS (i.e. stages may be skipped) or the criteria for each stage may not be met fully, even in the presence of severe TTTS. Furthermore, these events were defined using absolute values, for example amniotic-fluid depth4, rather than considering relative intertwin differences, which we discuss later in this Opinion.

Prior to advances in fetoscopy, TTTS was treated by serial amnioreduction, which reduced maternal discomfort from excessive polyhydramnios, decreased premature contractions and the resultant transient Doppler changes suggested an improvement in placental circulation5. In 2004, a randomized controlled trial showed that fetoscopic laser coagulation (FLC) of placental vascular anastomoses was a superior treatment approach which improved significantly fetal survival and neurologic outcomes at 6 months of age compared with serial amnioreduction6. In contrast to serial amnioreduction, FLC is a causal treatment approach that leads to rapid normalization of the cardiovascular pathophysiology7 and has become the first-line treatment for TTTS Stage II and higher. Although FLC comes at the cost of potential complications, including preterm prelabor rupture of membranes and miscarriage or premature delivery, survival of at least one fetus can be as high as 90% and of both fetuses as high as 70%, if performed in high-volume centers8.

Improved TTTS survival rates have shifted the research focus towards assessment of the long-term outcomes, particularly neurologic impairment9, but it remains difficult to separate the impact of TTTS itself from the consequences of premature delivery. Currently, the general recommendations suggest offering FLC only after the criteria for Quintero Stage II or above are met1. The question of whether this is truly the optimal timing of FLC, however, remains unanswered. Recently, a multicenter, randomized controlled trial comparing FLC with expectant management in pregnancies with Stage-I TTTS between 16 and 26 weeks’ gestation and cervical length > 15 mm was stopped after 7 years due to slow recruitment. Although almost 60% of the 58 pregnancies randomized to expectant management progressed to higher stages of TTTS, the study could not demonstrate benefit from early intervention10. Based on recent publications on early changes in TTTS, it is reasonable to speculate that assessing more specialized early cardiovascular parameters rather than depending on ‘preserved vs absent bladder filling’ may form a more robust basis on which to offer FLC earlier than currently recommended in these pregnancies.

Pathophysiology of twin–twin transfusion syndrome

Although the exact initiating mechanisms of TTTS remain uncertain, it is universally accepted that unbalanced unidirectional placental vascular anastomoses permit the net transfer of fluid from one fetus (donor) to its cotwin (recipient)11. This results in volume-depletion in the donor that triggers downstream compensatory mechanisms including the activation of the renin–angiotensin–aldosterone system (RAAS)5,12–14. Transfer of vasoactive substances from the donor to the recipient fetus results in increased afterload, thus reducing the recipient fetus’ ability to compensate for the imbalance15. Fluid overload ensues from unbalanced intertwin transfusion and this triggers the secretion of natriuretic peptides resulting in polyuria and subsequently polyhydramnios, followed by inhibition of the RAAS system in the recipient. Studies supporting this sequence of events have documented that vasoactive mediators are equally elevated in recipients and donors, even though mRNA expression of renin is virtually absent in recipients5,12–14. In addition, the placenta itself may serve as a source of vasoactive mediators. Placental tissue has been shown to express RAAS components and differences in RAAS expression have been proposed between the donor and recipient placental portion16,17.

The ongoing shift of fluid and vasoactive mediators results in deterioration of the recipient’s cardiovascular system with increasing intracardiac filling pressures and diastolic dysfunction, followed by the more readily appreciated findings of decreasing cardiac contractility, systolic dysfunction, atroventricular valve regurgitation

© 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Cardiovascular pathophysiology of twin–twin transfusion syndrome. \(\Delta \), difference; A-A, arterioarterial anastomoses; A-V, arteriovenous anastomoses; AFAC, aortic fractional area change; ANP, atrial natriuretic peptide; AREDF, absent or reversed end-diastolic flow; AT-II, angiotensin-II; AV, atrioventricular valve; BNP, B-type natriuretic peptide; DV, ductus venosus; RAAS, renin–angiotensin–aldosterone system; V-V, venovenous anastomoses.

and, ultimately, cardiac failure\(^5\)\(^7\). A summary of the proposed cardiovascular pathophysiology of TTTS is shown in Figure 1.

Cardiovascular assessment in twin–twin transfusion syndrome

Several groups have proposed the use of cardiovascular parameters to guide surveillance and treatment in evolving TTTS. A cardiovascular scoring system was developed by the group at the Children’s Hospital of Philadelphia (CHOP) to grade the severity of cardiovascular involvement in TTTS\(^18\). However, the CHOP score mainly incorporated findings that occur relatively late in TTTS and/or are already included in the Quintero staging system for TTTS (abnormal umbilical artery Doppler, umbilical venous pulsations, absent or reversed ductus venosus (DV) a-wave, ventricular hypertrophy, atrioventricular valve regurgitation or fusion of E and A waves)\(^18\). In subsequent studies, the CHOP score has not proven to be predictive of outcome in TTTS\(^19\). Similarly, the modification of the Quintero staging system proposed by the group at the University of Cincinnati in Ohio included only parameters that are typically observed in advanced TTTS, which may again explain why it has not been incorporated into routine practice\(^20\).

A number of potentially more useful cardiovascular parameters have been investigated, including measures of preload (DV time intervals)\(^21\),\(^22\), afterload (aortic distension)\(^7\),\(^21\) and cardiac function (long-axis function and strain)\(^7\). Results suggest that discordance in twin-pair measurements may be a practical indicator of intertwin cardiovascular imbalance and emerging TTTS.

Preload

While an absent or negative a-wave of the DV is seen in Stage-III TTTS and reflects imminent cardiac failure, it occurs relatively late in the disease process. However, measurement of time intervals of the DV waveform permit a much more refined assessment of the cardiovascular system and are relatively straightforward to obtain using standard ultrasound Doppler equipment.
The unique DV waveform reflects four distinct phases of the cardiac cycle: S1, acceleration time during ventricular systole; S2, deceleration time during end-systolic ventricular relaxation; eT, early diastolic filling time, measured from the peak of systole to the nadir during atrial contraction; aT, late diastolic filling time, obtained by subtracting eT from FT. Relative time intervals are calculated by dividing the time interval by the total cardiac cycle length:

- S1 (ms)/cardiac cycle length (ms)
- S2 (ms)/cardiac cycle length (ms)
- eT (ms)/cardiac cycle length (ms)
- aT (ms)/cardiac cycle length (ms)
- FT (ms)/cardiac cycle length (ms)
- Systolic (ms)/cardiac cycle length (ms)

The unique DV waveform shows acquisition of time intervals. S1, acceleration time during ventricular systole, measured from the nadir of the a-wave to the peak of systole; S2, deceleration time during end-systolic ventricular relaxation, measured from the peak of systole to the nadir between systole and diastole; Systolic, sum of S1 and S2; eT, early diastolic filling time, measured from the onset of diastolic filling to the beginning of the fast deceleration caused by atrial contraction; FT, total diastolic filling time, measured from the onset of diastolic filling to the beginning of the end-systolic ventricular relaxation; aT, late diastolic filling time, obtained by subtracting eT from FT. Relative time intervals are calculated by dividing the time interval by the total cardiac cycle length:

- S1 (%) = S1 (ms)/cardiac cycle length (ms)
- S2 (%) = S2 (ms)/cardiac cycle length (ms)
- eT (%) = eT (ms)/cardiac cycle length (ms)
- aT (%) = aT (ms)/cardiac cycle length (ms)
- FT (%) = FT (ms)/cardiac cycle length (ms)
- Systolic (%) = Systolic (ms)/cardiac cycle length (ms)

(Figure 2)© 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

Cardiac function

Measurements of cardiac contractility and systolic function, including long-axis function, appear to change later in the disease process and systolic function tends to diminish only in more advanced disease stages. In a prospective study evaluating global longitudinal ventricular strain in monochorionic pregnancies undergoing routine biweekly surveillance, with the observer blinded to twin pairing and outcome, intertwin discordance in ventricular strain values was seen in those that developed TTTS. Unlike Doppler recordings of the DV waveform, which are easier to obtain and more reproducible, a shortcoming of strain is lack of reproducibility due to technical difficulties with its measurement; hence, although strain is an interesting parameter to increase knowledge of the pathophysiology of TTTS, it is difficult to support its adoption into routine clinical practice.

Conclusions

Effective therapy is available for TTTS but there is considerable morbidity and mortality if treatment is delayed. The Quintero criteria have enabled implementation of universal screening for TTTS outside dedicated fetal treatment centers and will, therefore, continue to form the basis of screening of monochorionic pregnancies. However, there is sufficient evidence base to refine the diagnostic tools we use to screen pregnancies at high risk for progression of TTTS, thereby enabling earlier referral, diagnosis and treatment.
therapy. To achieve this goal, intertwin differences in cardiovascular parameters as early signs of cardiovascular imbalance (e.g., DV time intervals) could be assessed. Only when we systematically incorporate cardiovascular parameters that show discordance early in the disease process into screening programs and subsequent management decisions, will we be able to identify pregnancies that may benefit from early FLC in future randomized controlled trials. We propose to include these parameters into ongoing multi-institutional efforts for core TTTS parameters. As Mark Twain once said: ‘The secret of getting ahead is getting started’.

REFERENCES

1. Wohlmuth C, Agarwal A, Stevens B, Johnson A, Moise KJ, Papanna R, Donepudi R, Bell CS, Avramis IE, Gardiner HM. Fetal ventricular strain in uncomplicated and selective growth-restricted monochorionic diamniotic twin pregnancies and cardiovascular response in pre-twin–twin transfusion syndrome. Ultrasound Obstet Gynecol 2020; 56: 694–704.

2. Choswick M. Assessing outcomes in twin–twin transfusion syndrome. Arch Dis Child Fetal Neonatal Ed 2006; 91: F165–167.

3. Quintero RA, Morales WJ, Allen MH, Bornick PW, Johnson PK, Kruger M. Staging of twin–twin transfusion syndrome. J Perinatol 1999; 19: 550–555.

4. Khalid A, Rodgers M, Raschat A, Bhide A, Goutzouros E, Hecher K, Kilby MD, Lewi L, Nicolaides KH, Oepkes D, Raine-Fenning N, Reed K, Salomon LJ, Sotiriadis A, Thilaganathan B, Ville Y. ISUG Practice Guidelines: role of ultrasound in twin pregnancy. Ultrasound Obstet Gynecol 2016; 47: 247–263.

5. Wohlmuth C, Gardiner HM, Dieder W, Hecher K. Fetal cardiovascular hemodynamics in twin–twin transfusion syndrome. Acta Obstet Gynecol Scand 2016; 95: 664–671.

6. Senat MV, Deprest J, Boulvain M, Paape A, Winer N, Ville Y. Endoscopic laser surgery versus serial amnioreduction for severe twin–twin transfusion syndrome. N Engl J Med 2004; 351: 136–144.

7. Wohlmuth C, Boudreaux D, Moise KJ, Johnson A, Papanna R, Bebbington M, Gardiner HM. Cardiac pathophysiology in twin–twin transfusion syndrome: New insights into its evolution. Ultrasound Obstet Gynecol 2018; 51: 341–348.

8. Diehl W, Diemer A, Grassi D, Sehner S, Wegscheider K, Hecher K. Feticide laser coagulation in H200 pregnancies with and without twin–twin transfusion syndrome demonstrates improvement in double-twin survival rate. Ultrasound Obstet Gynecol 2017; 50: 728–735.

9. Hecher K, Gardiner HM, Diemer A, Barman P. Long-term outcomes for monochorionic twins after laser therapy in twin–twin transfusion syndrome. Lancet Child Adolesc Heal 2018; 2: 525–535.

10. Stirnemann J, Slaghekke F, Khalek N, Winer N, Johnson A, Lewi L, Massoud M, Rissier L, Aegerter P, Hecher K, Senat M-V, Ville Y. Intrauterine fetoscopic laser surgery versus expectant management in stage 1 twin–twin transfusion syndrome: an international randomized trial. Am J Obstet Gynecol 2021; 224: 328.e1–12.

11. Lewis L, Deprest J, Hecher K. The vascular anastomoses in monochorionic twin pregnancies and their clinical consequences. Am J Obstet Gynecol 2013; 208: 260–270.

12. Kilby MD, Platt C, Whittle MJ, Oxley J, Lindop GB. Renin gene expression in fetal kidney of pregnancies complicated by twin–twin transfusion syndrome. Pediatr Dev Pathol 2001; 4: 175–179.

13. Mahieu-Caputo D, Muller F, Joly D, Gubler MC, Leboeuf J, Lamon J, Dumez Y, Donnemorges M. Pathogenesis of twin–twin transfusion syndrome: The renin–angiotensin system hypothesis. Fetal Diagn Ther 2001; 16: 241–244.

14. Mahieu-Caputo D, Meulmans A, Martinovic J, Gubler MC, Delezende AL, Muller F, Mladenov P, Fisk NM, Donnemorges M. Paradoxic activation of the renin–angiotensin system in twin–twin transfusion syndrome: An explanation for cardiovascular disturbances in the recipient. Pediatr Res 2005; 58: 685–688.

15. Fisk NM, Duconche GJ, Sullivan MH. The Basic and Clinical Science of Twin–Twin Transfusion Syndrome. Placenta 2009, 30: 379–390.

16. Pan N, Frome WL, Dott RA, Tekkabolu D, Luo J. Expression of the renin–angiotensin system in a human placental cell line. Clin Med Res 2013; 11: 1–6.

17. Galea P, Bargyre O, Wree L, Jain V, Sullivan M, Fisk NM. The Placenta Contributes to Activation of the Renin Angiotensin System in Twin–Twin Transfusion Syndrome. Placenta 2008; 29: 734–742.

18. Rychik J, Tian Z, Bebbington M, Xu F, McCann M, Mann S, Wilson RD, Johnson MP. The twin–twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease. Am J Obstet Gynecol 2007; 197: 392.e1–8.

19. Stirnemann J, Nasr N, Proulx F, Essouli M, Ville Y. Evaluation of the CHOP cardiovascular score as a prognostic predictor of outcome in twin–twin transfusion syndrome after laser coagulation of placental vessels in a prospective cohort. Ultrasound Obstet Gynecol 2010; 36: 52–57.

20. Harkness UF, Crombleholme TM. Twin–twin transfusion syndrome: Where do we go from here? Semin Perinatol 2005; 29: 294–304.

21. Wohlmuth C, Osei FA, Moise KJ, Wieser I, Johnson A, Papanna R, Bebbington M, Gardiner HM. Changes in ductus venous flow profile in twin–twin transfusion syndrome: role in risk stratification. Ultrasound Obstet Gynecol 2016; 48: 744–751.

22. Takano M, Nakata M, Nakaigaki S, Sakuma J, Morita M. Prediction of Twin-to-Twin Transfusion Syndrome Using Characteristic Waveforms of Ductus Venous in Recipient Twins. Twin Res Huma Genet 2020; 23: 292–297.

23. Wohlmuth C, Osei FA, Moise KJ, Johnson A, Papanna R, Bebbington M, Gardiner HM. Aortic distensibility as a surrogate for intertwin pressure difference in monochorionic pregnancies with and without twin–twin transfusion syndrome. Ultrasound Obstet Gynecol 2006; 28: 193–199.

24. Mahieu-Caputo D, Salomon LJ, Le Bidos J, Fermon L, Brounes A, Jouvet P, Dumez Y, Donnemorges M. Fetal hypertension: An insight into the pathogenesis of the twin–twin transfusion syndrome. Fetal Diagn Ther 2003; 23: 640–645.

25. Wohlmuth C, Moise Jr, KJ, Papanna R, Gheorghe C, Johnson A, Morales Y, Gardiner HM. The Influence of Blood Pressure on Fetal Aortic Distensibility: An Animal Validation Study. Fetal Diagn Ther 2018; 43: 226–230.

26. Cheung YF, Taylor MJ, Fisk NM, Redington AN, Gardiner HM. Fetal origins of reduced arterial distensibility in the donor twin in twin–twin transfusion syndrome. Lancet 2000; 355: 1157–1158.

27. Gardiner HM, Taylor MJ, Karatza A, Vanderheyden T, Huber A, Greenwald SE, Fisk NM, Hecher K. Twin–twin transfusion syndrome: The influence of intrauterine laser photocoagulation on arterial distensibility in childhood. Circulation 2013; 127: 1906–1911.

28. Gardiner H, Maras A, Matsui H, Diemer A, Taylor MJ, Preece J, Gordon F, Greenwald SE, Hecher K. Vascular programming in twins: the effects of choriornity and fetal therapy for twin–twin transfusion syndrome. J Dev Orig Health Dis 2012; 3: 182–189.