A comprehensive meta-QTL analysis for yield-related traits of durum wheat (Triticum turgidum L. var. durum) grown under different water regimes

Osvin Arriagada1, Agata Gadaleta2, Ilaria Marcotuli2, Marco Maccaferri3, Matteo Campana3, Samantha Reveco1, Christian Alfaro4, Iván Matus5 and Andrés R. Schwember1*

1Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile, 2Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Bari, Italy, 3Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy, 4Centro Regional Rayentue, Instituto de Investigaciones Agropecuarias (INIA), Rengo, Chile, 5Centro Regional Quilamapu, Instituto de Investigaciones Agropecuarias (INIA), Chillán, Chile

Abiotic stress strongly affects yield-related traits in durum wheat, in particular drought is one of the main environmental factors that have effect on grain yield and plant architecture. In order to obtain new genotypes well adapted to stress conditions, the highest number of desirable traits needs to be combined in the same genotype. In this context, hundreds of quantitative trait loci (QTL) have been identified for yield-related traits in different genetic backgrounds and environments. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies for the reliability of their location and effects. MQTL analysis is a useful method to dissect the genetic architecture of complex traits, which provide an extensive allelic coverage, a higher mapping resolution and allow the identification of putative molecular markers useful for marker-assisted selection (MAS). In the present study, a complete and comprehensive MQTL analysis was carried out to identify genomic regions associated with grain-yield related traits in durum wheat under different water regimes. A total of 724 QTL on all 14 chromosomes (genomes A and B) were collected for the 19 yield-related traits selected, of which 468 were reported under rainfed conditions, and 256 under irrigated conditions. Out of the 590 QTL projected on the consensus map, 421 were grouped into 76 MQTL associated with yield components under both irrigated and rainfed conditions, 12 genomic regions containing stable MQTL on all chromosomes except 1A, 4A, 5A, and...
Introduction

Durum wheat (Triticum durum Desf.; 2n = 4 × = 28, AABB) is the 10th most important crop in the world with a cultivated area of 16 million ha and a production of 40 million ton in 2017 (Dahl, 2017). In addition, durum wheat is the most important cereal in the Mediterranean regions since it is deeply connected with the history and culinary tradition in those areas (Martínez-Moreno et al., 2020). This cereal plays a key role in human diet because it is primarily used for making pasta and other semolina-based products, such as frike, couscous, bourghul, and unleavened breads, which are widely consumed in many countries of the world (Sharma et al., 2019). The main producers of durum wheat in the world are Spain, France, Italy, and Greece in southern Europe, Morocco, Algeria, and Tunisia in northern Africa, Turkey, and Syria in southwest Asia, and Canada, United States, and Mexico in North America (Martínez-Moreno et al., 2020), and Argentina and Chile in South America (Colasuonno et al., 2019). Durum wheat is commonly grown in arid and semi-arid regions under rainfed conditions, where the precipitations are scarce and irregular across years (Ayed et al., 2021). The water scarcity combined with high temperatures during grain filling period significantly affects the quality and the yields of durum wheat, causing grain yield losses of up to 50% to farmers (Dettori et al., 2017; Soriano et al., 2021).

According to FAO projections, agricultural production requires to increase about 50% by 2,050 to meet the global rising demand for food (Food and Agriculture Organization of the United Nations [FAO], 2018). In this context, the development of new durum wheat high-yielding cultivars and tolerant to abiotic stresses is highly necessary. Therefore, gaining insight into the genetic basis of the grain yield and their responses to drought stress is an important pre-requisite for improvement of durum wheat genotypes, and plant breeders should look for stable loci to improve yields (Arriagada et al., 2020). The identification of quantitative trait loci (QTL) associated with molecular markers is essential for understanding the genetic basis of important traits, and an effective method for improving selection efficiency in breeding programs (Soriano et al., 2021).

Hundreds of QTLs, using both linkage analysis and genome-wide association studies (GWAS), have been mapped into the durum wheat genome, which have been summarized in previous works considering grain quality (Colasuonno et al., 2019; Maccaferri et al., 2019; Marcovali et al., 2020), and grain yield traits (Maccaferri et al., 2019; Arriagada et al., 2020). Despite these considerable advances in the dissection of the genetic basis for different traits related to quality and yield, only a very small fraction of these QTLs and the associated markers have been utilized in breeding programs (Cobb et al., 2019), due that most of those QTLs have minor effects and their expression is highly affected by the environment, the genetic background and their interactions (Zheng et al., 2021).

Meta-QTL (MQTL) analysis is a powerful tool to facilitate and improve the accuracy of QTL detection which is an important pre-requisite to prioritize and better define the loci and associated molecular markers valuable for marker-assisted selection (MAS). MQTL analysis combines data sets and creates consensus positions for the QTL detected in independent studies for the reliability of their location and effects across different genetic backgrounds and environments (Goffinet and Gerber, 2000; Veyrieras et al., 2007). This method also allows to identify QTL that have pleiotropic effects by determining regions of the genome (MQTL) that contain QTLs for different traits (Said et al., 2013). The identification of MQTL has proven to be an effective tool for use in MAS because the MQTL generally have reduced confidence intervals (CIs) and improved phenotypic variation explained. In addition, the MQTL are useful for the identification of promising candidate genes associated with the target traits (Colasuonno et al., 2021; Saini et al., 2021).

In common wheat (Triticum aestivum L.), several studies have performed MQTL analysis for root-related traits (Soriano and Alvaro, 2019), adaptation to drought and heat stress (Acuña-Galindo et al., 2015; Kumar et al., 2020), resistance against Fusarium head blight (Liu et al., 2009), grain size and shape (Gegas et al., 2010). In contrast, only two studies have performed MQTL analysis in durum wheat. Recently, Soriano et al. (2021) performed a complete analysis to identified MQTL for quality traits, and tolerance to abiotic and biotic stresses. Previously, Soriano et al. (2017) identified MQTL for phenology, biomass and some yield traits including works...
from 2008 to 2015. Considering this previous background for purposes of genetic improvement of grain yield, the most appropriate approach is through the simultaneous selection based on grain-yield related traits (Ramazani and Abdipour, 2019). Grain yield is a complex trait governed by hundreds or thousands of loci. Based on this complexity, the genetic dissection of the grain yield inheritance into grain yield components of lower genetic complexity greatly facilitates the identification of the QTL and therefore the MAS efficiency. The aim of the present study was to perform a complete and comprehensive MQTL analysis for grain-yield related traits in durum wheat using articles published in the last 20 years, in order to identify regions of the genome that are useful for durum wheat breeding programs, in which the objective is to increase grain yields of the crop cultivated under different water regimes.

Materials and methods
Quantitative trait loci collection and consensus genetic map

An exhaustive literature review was conducted to find studies reporting QTL for grain-yield related traits in durum wheat grown under different water regimes. The QTL identified in each study were classified as follows: (1) QTL under rainfed conditions which correspond to QTL identified under rainfed, water-limited, and drought conditions, and (2) QTL under irrigated conditions that correspond to QTL identified under well-water, optimal, and irrigated conditions as described by the authors in each study. The country, location of each trial, rainfall and type of classification of the QTL is summarized in Supplementary Table 1. A total of 19 traits associated with the two main yield components (grain weight and grains number per unit area) were selected (Table 1). For the MQTL analysis, only studies that showed the following information were considered: (1) type and size of the mapping population, (2) position of QTL (peak position and/or confidence intervals), (3) LOD (logarithm of the odds) score for each QTL, (4) percentage of phenotypic variance explained for each QTL (PVE), (5) LOD (logarithm of the odds) score for each QTL, (4) position of QTL (peak position and/or confidence intervals), (5) number per unit area) were selected (Table 1). For the MQTL analysis, only studies that showed the following information were considered: (1) type and size of the mapping population, (2) position of QTL (peak position and/or confidence intervals), (3) LOD (logarithm of the odds) score for each QTL, (4) percentage of phenotypic variance explained for each QTL (PVE), (5) LOD (logarithm of the odds) score for each QTL, (6) confidence interval (CI, 95%) for the QTL was not reported, (7) QTL was treated as an independent QTL, even if some were detected in multiple environments or genetic backgrounds. If the confidence interval (CI, 95%) for the QTL was not reported, it was calculated using the following formulas (Guo et al., 2006):

\[
CI = \frac{150}{N x R^2}
\]

for back cross (BC) and F_{2} lines

\[
CI = \frac{530}{N x R^2}
\]

for double haploid (DH) lines

\[
CI = \frac{287}{N x R^2}
\]

for Recombinant inbred lines (RIL)

where \(N \) is the population size and \(R^2 \) is the proportion of phenotypic variance of the QTL.

The durum wheat consensus map developed by Maccaferri et al. (2015) was used for QTL projection. The map consisted of 30,144 markers, spanning 2,631 cM, and a density marker of 11 markers per cM.

Projection of quantitative trait loci and meta-QTL analysis

To project the QTL positions detected in the different studies, the original QTL data were projected onto the consensus map following the homothetic approach described by Chardon et al. (2004). The MQTL analysis was conducted with the projected QTL on the consensus map using the software BioMercator V4.2 (Arcade et al., 2004). Two different approaches were performed to MQTL analysis according to the number of QTL per chromosome. When the number of QTL per chromosome was 10 or lower, the approach of Goffinet and Gerber (2000) was carried out. Alternatively, the approach of Veyrieras et al. (2007) was performed when the number of QTL per chromosome was higher than 10. In this case, the best MQTL model was chosen according to Akaike Information Criterion (AIC), corrected Akaike Information Criterion (AICc) and modified AIC with factor 3 (AIC3), Bayesian Information Criterion (BIC) and Average Weight of Evidence (AWE) criteria. The best QTL model was selected when values of the model selection criteria were the lowest in at least three of the five models (Soriano and Alvaro, 2019).

\[
AIC = \text{Akaike information criterion}; \quad \text{AICc} = \text{corrected Akaike's information criterion}; \quad AIC3 = A \text{ variant of AIC that uses 3p as the penalty term.}
\]

Identification of candidate genes

QTL involved in grain-yield related traits in durum wheat grown under different water regimes were projected onto the durum wheat consensus map (Maccaferri et al., 2015) for further comparisons. Gene annotations for the most important marker-trait associations (MTAs) was performed using the high-confidence genes reported for the wheat genome sequence (Svevo browser), available at https://wheat.pw.usda.gov/GG3/jbrowse_Durum_Svevo. The marker locations were defined by flanking marker positions and CI of the MQTL. Gene model regulations were obtained through in-silico expression analysis, using the RNAseq data,\(^1\) filtered for drought and drought combined with heat stress experiments, with the following identification of the up-regulated genes. Primarily, gene models were identified by the “Chinese spring” annotated sequences and subsequently the homologous genes from “Svevo.” Gene models

\(^1\) http://www.wheat-expression.com
involved in drought stress during plant development and spike drought during early booting were analyzed using the in-silico expression data using database (see text footnote 1) within the markers flanking the MQTL.

Results

Quantitative trait loci for yield-related traits under different water regimes

A total of 25 studies identifying QTL for yield components published from 2003 to 2021 based on biparental populations were reviewed in Table 2. The studies comprise 26 different populations with 45 parental lines. A total of 724 QTL distributed throughout all 14 chromosomes (genomes A and B) were collected for the 19 yield-related traits selected. Four hundred sixty-eight QTL were reported under rainfed conditions, and 256 QTL under irrigated conditions (Supplementary Table 2). In general, the number of QTL per chromosome ranged from 21 on chromosome 6A to 76 on chromosomes 2A, with an average of 51 QTL per chromosome (Figure 1A). According to the main yield components, the 53.72% of the QTL (389) were reported for traits related to grains number per area, and the 46.27% of the QTL (335) for grain weight. Specifically, the trait with the highest number of reported QTL was 1,000-grain weight (TGW; 204), whereas the trait with the lowest number of QTL was grain weight per spike (GWPS; 9), whose both traits are associated with the grain weight (Figure 1B). Confidence intervals (CI) ranged from 0 to 145 cM, with an average of 24.3 cM (Figure 1C). The 19.19% of the QTL had a CI lower than 10 cM, and about half (48.20%) had a CI lower than 20 cM. The proportion of phenotypic variance explained (PVE) for each QTL ranged from 0.007 to 0.83, with an average of 0.138 (Figure 1D). Most of the QTL (608) had a PVE lower than 0.20.

Quantitative trait loci projection on the consensus map

A total of 590 out of the 724 collected QTLs were projected on the consensus genetic map (Figure 2). One hundred ninety-six QTLs were projected under irrigated conditions, and 394 QTL under rainfed conditions (Supplementary Table 3). The remaining QTLs (134) were not projected because they lacked common markers between the original and the consensus maps, and/or the QTL showed low PVE causing a large CI (Soriano and Alvaro, 2019).

Under irrigated conditions, the chromosomes 7B (26) and 4A (6) had the highest and lowest number of projected QTL, respectively, with an average of 14 QTL per chromosome (Figure 3A). The trait with the highest number of projected QTL was TGW (66 QTL: Figure 3B). The 49.19% of the projected QTL correspond to the grain weight category while the categories of grains number per area has a total of 99 projected QTL. Under rainfed conditions, the number of QTL per chromosome ranged from 10 on chromosome 6A to 44 on chromosome 1B, with an average of 28 QTL per chromosome (Figure 3C). The trait with the highest number of QTL was TGW (114), while those with the lowest number of QTL were GWPS (1) and SL (3) (Figure 3D). Half of the projected QTL (50%) under rainfed conditions correspond to the grain weight category.

Meta-QTL detection

Overall, out of the 590 QTLs projected on the consensus map, 421 were grouped into 76 MQTL. The rest of the QTLs (169) remained as single QTL since they did not overlap with any MQTL interval, the QTL overlapped with more than one MQTL due to their large CI, or because the predicted QTL peaks were not included within any MQTL. Specifically, 28 and 48 MQTL were identified under irrigated and rainfed conditions, respectively (Tables 3,4). Under rainfed conditions, the number of QTL per MQTL varied from 2 on several chromosomes to more than 20 on chromosomes 1B (YIELD_MQTL1B.1_D; 47.7 cM) and 3B (YIELD_MQTL3B.1_D; 9.8 cM), with an average of 5.89 QTL per MQTL. While under irrigation conditions, the number of QTL per MQTL varied from 2 to 8 on chromosome 3B (YIELD_MQTL3B.3_I; 206.94 cM), with

Category	Trait	Abbreviation					
Grains number per area	Grain number per spike	GNPS					
	Grain number per plant	GNP					
	Spike number per plant	SNP					
	Spikelet number per spike	SLNS					
	Grain number per spikelet	GNSL					
	Grain yield	GY					
	Spike number per m²	SNM					
	Harvest index	HI					
	Grain number per m²	GNM					
	Grain yield per spike	GYPS					
	Spike length	SL					
	Spike width	SW					
	Grain length	GL					
	Grain width	GW					
	Thousand grain weight	TGW					
	Test weight	TW					
	Grain perimeter	GP					
	Grain area	GA					
	Grain weight per spike	GWPS					
References	Cross	Type	Size	Trait	N° QTL	Treatment	Env
-----------------------------	------------------------------	--------	-------	------------------	--------	-----------	-----
Avni et al. (2018)	Zavitan × Svevo RIL	RIL	137	TGW	16	Yes	4
Blanco et al. (2012)	Svevo × Ciccio RIL	RIL	120	TGW, GYPS, GNPS	30	No	5
Desiderio et al. (2019)	Iran_249 × Zardak RIL	RIL	118	TGW, GL, GW, GP,	51	No	3
Elouafi and Nachit, 2004	Omrabi 5 × Pt606045 RIL	RIL	114	TGW, TW	3	No	4
Fara et al. (2014)	Ben × PI 41025 RIL	RIL	200	GWPS, TGW, SLNS,	17	No	2
Fatiukha et al. (2020)	Svevo × Y12-3 RIL	RIL	208	TGW	39	Yes	5
Giancaspro et al. (2019)	Saragolla × 02-5B-318 RIL	RIL	135	GYPS	29	No	3
Giunta et al. (2018)	Ofanto × Senatore Cappelli	RIL	98	GNPS, SNP, GNPS,	52	No	2
Golabadi et al. (2011)	Oste-Gata × Massara-1	F2	151	TGW, GWPS, GNPS,	17	Yes	2
Graziani et al. (2014)	Kofa × Svevo RIL	RIL	249	TGW, GNM, GNPS	64	Yes	16
Maccaferri et al. (2016)	Colosseo × Lloyd, Meridiano × Claudio	RIL	176/181	TGW	5	No	2
Maccaferri et al. (2008)	Kofa × Svevo RIL	RIL	249	GY	10	Yes	16
Mangini et al. (2021)	Liberdar × Anco Marzio	RIL	133	GL, GW, GA, TGW	31	No	3
Marcontul et al. (2017)	Duilio × Avonlea RIL	RIL	134	GYPS	7	No	2
Milner et al. (2016)	Neodur, Claudio, Colosseo, Rascon/Tarro MAGIC (RIL)	RIL	338	GY	2	No	8
Nagel et al. (2014)	Omrabi5 × Belkh2 RIL	RIL	114	TGW, GA, GL, GW	8	No	2
Patil et al. (2015)	PDW 233 × Bhalegon 4	RIL	140	TW, TGW, GY, SL, SLNS, GNPS, GWPS	44	No	4
Peleg et al. (2009)	Langdon × G18-16 RIL	RIL	152	GY, HI	34	Yes	2
Peng et al. (2003)	HS2 × Langdon F2	F2	150	GNP, GNSL, GY, SNP, SNPS, GNPS	44	No	1
Rehan Arif et al. (2020)	Omrabi5 × Belkh2 RIL	RIL	114	SW, SL, GNPS, TGW, GY, HI	89	Yes	4
Roncallo et al. (2017)	UC1113 × Kofa RIL	RIL	93	HI, GNPS, SLNS, GY, GNP, GNSL, SNM, SNP, TGW	93	No	6
Russo et al. (2014)	Simeto × Molise Colli	RIL	136	GL, TGW, GW	8	No	2
Thanh et al. (2015)	KU7309 × KU8736A F2	F2	144	SLNS, SNP, TGW	5	No	1
Trzafati et al. (2014)	Langdon × G18-16 RIL	RIL	150	TGW	4	No	2
Zaim et al. (2020)	Four RIL populations*	RIL	576	SNM, TGW, GY	23	Yes	4

*ICamor × Giadar2; Jennah Khetifa × Omrabi5; Algia/Gidar1/Cham1; Omrabi5/Omsnima1/Gidara2; *Irrigated and/or rainfed conditions. Env: environments.

an average of 3.75 QTL per MQTL. The number of MQTL per chromosome varied from 1 on chromosome 1B (under irrigated conditions) to 5 on chromosome 2 (A and B) under rainfed conditions. In addition, no MQTL were detected on chromosome 1A under irrigated conditions. The number of traits involved per MQTL ranged from 1 to 9 in the MQTL YIELD_MQTL1B.1_D (1B), which also contains the largest number of studies (7). Finally, the CI of the MQTL ranged from 0.12 to 25.96 cM with an average of 6.79 cM, which is significantly lower than the average of CI (24.3 cM) considering the original QTL. Interestingly, in 12 regions of the genome (on all chromosomes except 1A, 4A, 5A, and 6B), the MQTL detected under both water conditions were overlapped (Figure 4 and Table 5).

Candidate genes identification for yield-related traits of durum wheat grown under different water regimes

Candidate genes associated with the MQTL detected were identified using the sequences of flanking markers of the CI launched against the genome browser for both “Svevo” (durum...
A total of 44 genes were detected and used to determine differentially expressed genes (DEG) up/down regulated under drought/heat conditions using the RNAseq data available at http://www.wheat-expression.com/.

During the exposure to water stress conditions, the 15 most expressed genes (Figure 5), showing the higher expression level (tmp > 3) were associated to MQTL under both irrigated and rainfed conditions. In particular, the following genes were identified: CBL-interacting protein kinase 2-like and endo-1,4-beta-xylanase 1-like on chromosome 2A (YIELD_MQTL2A.2_D and YIELD_MQTL2A.3_D, respectively), zinc finger CCCH domain-containing protein 13-like and cysteine-rich and transmembrane domain-containing protein WHI1-like all on chromosome 3A (YIELD_MQTL3A.2_D and YIELD_MQTL3A.4_D, respectively), DExH-box ATP-dependent RNA helicase DExH3-like, alpha-xylosidase 1-like and ADP-ribosylation factor GTPase-activating protein AGD11 on chromosome 3B (YIELD_MQTL3B.1_D, YIELD_MQTL3B.2_D, and YIELD_MQTL3B.4_D, respectively), heat stress transcription factor A-9-like on chromosome 4B (YIELD_MQTLAB2.2_D), disease resistance protein RGA3 like on chromosome 5A (YIELD_MQTL5A.1_D), two disease resistance protein RGA4-like on chromosome 5B (YIELD_MQTL5B.2_D and YIELD_MQTL5B.2_I), transcriptional regulator SLK3 on 7A (YIELD_MQTL7A.1_I), disease resistance protein RGA5-like and methyltransferase on chromosome 7B (YIELD_MQTL7B.1_D and YIELD_MQTL7B.3_D, respectively).

Discussion

Quantitative trait loci for yield component in durum wheat

Increasing productivity under drought stress conditions is one of the main objectives of breeders of staple crops including wheat, due to the need to maintain a sufficient food supply for a growing world population considering the impacts of global warming (Shew et al., 2020). The adaptation to abiotic stress conditions is extremely challenging due to the quantitative genetic basis of the molecular mechanisms adopted by plants to respond to stress (Reynolds et al., 2005). Given that the grain yield components have a quantitative inheritance, and therefore are highly affected by the environment (Nehe et al., 2019), the development of high-yielding varieties must incorporate and accumulate loci associated with yield components that allow them to tolerate the scarcity of water, without affecting significantly their growth and yield. In this sense, numerous studies have been carried out to identify loci associated with the...
main yield components under irrigated and rainfed conditions in bread wheat (Gupta et al., 2020), and to a lesser extent in durum wheat (Maccaferri et al., 2019; Arriagada et al., 2020).

Grain yield components and their interactions determine the wheat yield (Li et al., 2019). According to our results, among the grain yield components, grain weight is the component most...
studied in the QTL studies of durum wheat, being TGW the trait most evaluated. This result agrees with the MQTL analyses carried out in bread wheat, in which grains number per spike (GNPS) and TGW are the most evaluated traits under different environmental conditions (Zhang et al., 2010; Gupta et al., 2020). These results can be explained because the main approach to augmenting crop yield is to increase the number and the weight of grains. In fact, TGW is the most important limiting factor affecting wheat yield (Liang et al., 2017). The weight of the grain is the last component of the yield that is formed, and it is highly dependent on the speed and the duration of the grain filling period (Takai et al., 2005), and it is greatly affected by the environment (Li et al., 2019). Therefore, exploring the genetic basis of TGW and its related traits is an effective approach to increase wheat yields (Würschum et al., 2018). According to the distribution of QTLs through the durum wheat genome, the chromosomes with the highest number of QTLs were 2A (76), 2B (71), and 3B (71), whereas chromosome 6A was the one with the lowest number of QTLs (21). These chromosomes consistently contain the greatest number of QTLs for root-related traits (Soriano and Alvaro, 2019), and for quality-related traits, as well as abiotic and biotic stress in durum wheat (Soriano et al., 2021).

Meta-QTL for yield under different water regimens in durum wheat

In the last decades, many QTL studies have been performed to identify loci associated with grain-yield related traits in bread and durum wheat. However, only a small fraction of these QTLs and the associated markers have been utilized in breeding programs (Cobb et al., 2019), due that most of those QTLs have minor effects and their expression is greatly affected by the environment and the genetic background (Zheng et al., 2021). In this sense, the MQTL analysis has been widely used for collecting data and information of QTL from different populations with different sizes and evaluated under different environmental conditions to identify stable QTL in the plant genomes (Shariatipour et al., 2021). This method allows to identify genome regions (MQTL) implicated in trait variation and reducing the confidence intervals of the QTL. Therefore, the MQTL are useful in marker-assisted breeding programs. In addition, it allows the identification of candidate genes within the MQTL detected in the genome of the target species (Veyrieras et al., 2007).

Several MQTL analyzes have been performed on several important crops such as rice (Islam et al., 2019), maize (Martinez et al., 2016), and barley (Zhang et al., 2017). In wheat, the highest number of MQTL analyzes have been performed in common wheat (Quraishi et al., 2011; Tyagi et al., 2015; Kumar et al., 2020; Zheng et al., 2021). In durum wheat, there are few previous studies of MQTL analysis (Soriano et al., 2017, 2021). In the present paper, we compared the genomic regions involved in durum wheat yield performance under rainfed and irrigated conditions, comparing MQTL in order to identify the most import regions associated to stress tolerance and the candidate genes underlying them. The number of MQTL detected under irrigated conditions is
lower than those detected under rainfed conditions, because most durum wheat is sown under rainfed conditions. Twelve regions of the genome overlapping for both rainfed and irrigated conditions. A new MQTL was detected on chromosome 5A (YIELD_MQTL5A.1_D), underlying genes activated only during stress conditions. QTL for stress condition were reported also by Soriano et al. (2021) on chromosome 5A. The chromosome 5A seems to have an important role in yield and adaptation trait, and this can be due to the presence of the vernalization genes Vrn-A1, favorable alleles for this gene during breeding helps develop spring habit without cold requirements for flowering, thus this can be used as a strategy for introgressing important target traits from non-adapted pre-breeding materials combining the most favorable vernalization alleles (Soriano et al., 2021).

In the present study, an interesting MQTL on chromosome 2A YIELD_MQTL2A.2_D (map position 51.86 cM) linked to TGW and HI was co-localized with a MQTL previously described for different traits in durum wheat by Soriano et al. (2021). These authors, in fact, identified a MQTL on the chromosome 2A at 50.8 cM (durumMQTL2A.3) associated with traits related to abiotic stress. Specifically, normalized difference vegetation index (NDVI) and chlorophyll content (SPAD) were identified in that genetic region, which are associated to grain yield under drought stress (Cairns et al., 2012). Considering the map position of the two MQTL could be coincident, this

Chr	MQTL	Peak (cM)	CI (95%)	N QTL	N studies	Traits	Left marker	Right marker
1B	YIELD_MQTL1B.1_I	42.27	8.43	4	4	HL, SLNS, TGW	IWB31228	IWB57547
2A	YIELD_MQTL2A.1_I	49.12	3.65	3	2	TGW, GNM	IWB54033	IWB3216
	YIELD_MQTL2A.2_I	105.91	5.5	2	2	HL, GW	IWB73852	IWB40575
	YIELD_MQTL2A.3_I	139.11	3.74	2	2	TGW, GY	IWB72154	IWB7051
2B	YIELD_MQTL2B.1_I	56.12	15.49	3	2	TGW, HI	IWB69396	IWB5893
	YIELD_MQTL2B.2_I	102.87	6.33	4	2	GNPS, GWPS, TGW	IWA772	IWB15509
	YIELD_MQTL2B.3_I	140.5	10.56	3	2	HI, GY	wPt-11586	IWR2762
3A	YIELD_MQTL3A.1_I	53.85	2.58	7	2	GNPS, TGW, SW, SL, GY	IWB68183	IWB71974
	YIELD_MQTL3A.2_I	75.82	6.09	2	2	GY, TGW	IWB6187	IWA234
3B	YIELD_MQTL3B.1_I	67.78	19.82	3	3	HL, GNPS, SLNS	wPt-10530	IWB1111
	YIELD_MQTL3B.2_I	160.29	11.99	3	3	HI, TGW, SNM	IWB50437	IWB10030
	YIELD_MQTL3B.3_I	206.94	3.9	8	3	TGW, GNPS, SW, GY	IWB152	IWB7870
4A	YIELD_MQTL4A.1_I	118.62	7.17	3	2	GY, SL, HI	wmc283	IWB1566
4B	YIELD_MQTL4B.1_I	26.92	11.02	4	2	TGW, TW, SNP	wmc710	IWB58189
	YIELD_MQTL4B.2_I	48.41	12.2	2	2	TGW, SL	IWB68116	IWB74693
	YIELD_MQTL4B.3_I	80.85	4.86	3	2	TGW, GY	IWB52747	IWB47175
5A	YIELD_MQTL5A.1_I	102.83	11.68	3	2	TGW, GY	IWB33346	IWB47051
	YIELD_MQTL5A.2_I	173.27	2.11	3	2	TGW, SL	fcp550	IWB68028
5B	YIELD_MQTL5B.1_I	44.52	18.42	4	2	GNPS, SL, TGW	IWB64981	IWB56439
	YIELD_MQTL5B.2_I	100.76	7.57	5	3	GNPS, GWPS, HI	IWB12094	IWR21820
6A	YIELD_MQTL6A.1_I	56.81	6.63	5	3	GNPS, TGW	IWB60744	IWR39171
6B	YIELD_MQTL6B.1_I	53.39	4.71	7	3	SLNS, SNP, HI, TGW	barc14	IWB56048
	YIELD_MQTL6B.2_I	130.89	5.73	3	3	GY, SNP, TGW	IWB7417	IWR19986
7A	YIELD_MQTL7A.1_I	81.89	10.29	4	2	TW, GWPS, GNPS, TGW	IWB27983	IWA4180
	YIELD_MQTL7A.2_I	119.88	14.89	2	2	TGW, GY	IWB1318	IWR2933
	YIELD_MQTL7A.3_I	164.14	9.43	3	3	TGW, SLNS	IWB7435	IWB52522
7B	YIELD_MQTL7B.1_I	9.05	4.46	7	4	HI, GNM, SLNS, GY	IWB30314	IWB6455
	YIELD_MQTL7B.2_I	50.13	9.01	3	2	SLNS, SL, SNP	IWB34143	IWA7589

Chr: chromosome; CI: confidence interval.
Chr	MQTL	Peak (cM)	CI (95%)	N QTL	N studies	Traits	Left marker	Right marker
1A	YIELD_MQTL1A.1_D	28.78	2.54	5	2	HI, SLNS, GYPS	IW814137	IW86107
	YIELD_MQTL1A.2_D	119.16	8.12	8	2	TGW, SNM, GNMP	dupq938	bac213
	YIELD_MQTL1A.3_D	141.65	3.05	4	2	TGW	iP7724	IW864946
1B	YIELD_MQTL1B.1_D	47.7	0.53	24	7	GL, TGW, GNMP, GW, GY, SNP, SNM, GNMP, GYPS	IW88804	IW812485
	YIELD_MQTL1B.2_D	71.45	5.31	5	3	GNP, GY, GYMP, TGW	IW51605	IW86504
	YIELD_MQTL1B.3_D	124.34	2.07	12	4	GY, GNP, TGW, GNSL, GNS, SNP, SLNS	wPt-5034	IW89116
2A	YIELD_MQTL2A.1_D	35.9	0.38	7	3	GL, TGW, GR, GY, GW	IW81465	SRG_1442
	YIELD_MQTL2A.2_D	51.89	5.38	4	2	TGW, HI	IW81246	IW83663
	YIELD_MQTL2A.3_D	88.61	0.84	10	2	SNP, TGW, GW, GL	gwm275	IW3194
	YIELD_MQTL2A.4_D	139.29	7.4	2	2	TGW, SNP	IW587154	IW871648
	YIELD_MQTL2A.5_D	203.93	3.38	8	4	SNP, GNP, GNMP, GNNS, GY	IW812337	IW829474
2B	YIELD_MQTL2B.1_D	28.89	7.1	5	3	GNP, GYPS, HI, GNMP	IW843306	IW812400
	YIELD_MQTL2B.2_D	51.04	6.27	7	2	GNSL, SLNS, HI, GY	IW855936	IW813631
	YIELD_MQTL2B.3_D	69.59	11.86	2	2	SL, GY	IW846777	IW833866
	YIELD_MQTL2B.4_D	89.08	5.55	4	2	GP, GNP, GA, TGW	IW858691	IW819700
	YIELD_MQTL2B.5_D	182.93	6.55	2	2	GR, TGW	IW8166	wPt-3755
3A	YIELD_MQTL3A.1_D	21.21	0.8	3	3	TGW, GR, GL	IW826667	IW873310
	YIELD_MQTL3A.2_D	55.55	4.8	2	4	TGW, GW, SMN, SW, GNMP, HI	IW874013	IW819794
	YIELD_MQTL3A.3_D	91.82	9.24	6	2	GY, GNP, TGW, GNSL, GNMP, GY	IW821831	IW841640
3B	YIELD_MQTL3B.1_D	194.66	2.75	3	2	TGW, GNSL, GNP, GNNS	SRG_109559	IW83613
	YIELD_MQTL3B.2_D	130.68	2.52	2	2	TGW, SNP	IW822148	IW3799
	YIELD_MQTL3B.3_D	25.42	6.34	4	3	GNP, GY, GYPS	IW864404	SRG_116252
4A	YIELD_MQTL4A.1_D	36.95	0.38	7	3	GL, GNP, GNMP, GY	IW817754	IW82565
	YIELD_MQTL4A.2_D	94.45	6.7	7	3	HI, SLNS, GY, TGW	IW871653	IW87100
5A	YIELD_MQTL5A.1_D	36.63	7.14	4	3	GNP, GL, GNMP, SW	IW822285	SRG_117464
	YIELD_MQTL5A.2_D	65.46	9.32	2	2	GY, SLNS	IW828350	bac240
	YIELD_MQTL5A.3_D	82.78	9.2	2	2	TGW, GNMP	wPt-4248	IW86959
	YIELD_MQTL5A.4_D	146.45	2.43	5	3	GNP, GW, TGW	IW855921	IW84276
5B	YIELD_MQTL5B.1_D	104.63	11.79	6	4	HI, TGW, GY	IW864691	IW84094
	YIELD_MQTL5B.2_D	161.97	8.18	3	2	GA, GNP, GL	IW8166	wPt-3213
6A	YIELD_MQTL6A.1_D	3.1	2.52	2	2	TGW	IW863240	IW877288
	YIELD_MQTL6A.2_D	58.04	2	2	2	TGW	IW873438	IW86638
	YIELD_MQTL6A.3_D	87.6	2.37	4	3	GY, GW, TW, TGW	IW846361	bac204
6B	YIELD_MQTL6B.1_D	33.73	17.9	2	2	TGW	IW85507	gwm808
	YIELD_MQTL6B.2_D	74.09	5.15	5	3	TGW, GA, TW	IW836159	IW8571
	YIELD_MQTL6B.3_D	101.13	0.12	18	6	SLNS, GA, GNP, GNNS, GR, TGW	IW870152	wPt-3581
7A	YIELD_MQTL7A.1_D	60.93	9.94	3	3	GYP, TW, SLNS	IW859818	IW864911
	YIELD_MQTL7A.2_D	94.92	9.35	7	5	GNP, GL, SNP, HI, GNS, GY	IW847576	IW87751
7B	YIELD_MQTL7B.1_D	157.17	25.96	3	3	TGW, GY, SL	IW83767	IW84620
	YIELD_MQTL7B.2_D	9.02	4.55	8	5	TGW, GY, HI	IW827108	IW85455
	YIELD_MQTL7B.3_D	89.61	3.87	10	5	GNP, GYPS, TGW, GY	IW873443	IW863652
7B	YIELD_MQTL7B.3_D	142.8	1.35	4	2	SLNS, TGW, GY	IW868926	IW817987

Chr: chromosome; CI: confidence interval.
Identify strong MQTL for stress and yield under rainfed conditions can be useful in durum wheat breeding programs, in which the objective is to increase grain yield under drought conditions.

Identification of candidate genes underlying the stable meta-QTL

This is the first study that identifies and compares wheat MQTL associated with yield components under irrigated and rainfed conditions. Many different genes have been detected and associated to MQTL for yield-related traits grown under different water regimes, some of them related directly to water stress, some others related to secondary mechanism activated by stresses, and finally genes associated to plant development and differentiation.

A gene model identified on chromosome 2A and associated with a MQTL for harvest index and spike length was the CBL-interacting protein kinase 2-like involved in the CIPK serine-threonine protein kinases interaction with the activation of the kinase in a calcium-dependent manner. This gene plays a positive regulatory effect in drought stress response, in fact, Wang et al. (2016) found that the over-expression of the TaCBL-CIPK2 gene confers drought tolerance in transgenic tobacco plants, by regulating stomatal closure. Another detected important gene on chromosome 2A was endo-1,4-beta-xylanase 1-like, involved in the hydrolyzation of the xylan backbones into shorter and soluble xylo-oligo saccharides. The xylanase is strongly expressed in tolerant barley genotype under drought stress for the mobilization of the nutrients from the aleurone layer and endosperm to the developing seed (Hajibarat et al., 2022). Among the gene models detected, different disease
resistance protein RGA were identified and specifically RGA3, and RGA4 (two different), and RGA5 on chromosomes 5A, 5B, and 7B under both irrigated and rainfed condition. The RGA genes have been identified primarily in response to biotic stresses such as fungal pathogens (Huang and Gill, 2001; Cesari et al., 2014) and subsequently for drought stress, due to the interaction with other proteins, which positively affect the ABA biosynthesis in seed germinations (Skubacz et al., 2016) and flag leaves (Onyemaobi et al., 2021).

On chromosome 3A, we reported the zing finger CCCH domain protein 13-like which was found to have a function on plant development and tolerance to abiotic stresses such as salt, drought, flooding, cold temperatures and oxidative stress (Han et al., 2021). In addition, we identified cysteine-rich and transmembrane domain-containing protein WIHI-like, which is involved in megasporogenesis and germ cell formation from somatic precursor cells (Lieber et al., 2011). A DExH-box ATP-dependent RNA helicase DExH3-like (DExH-RHs) gene, which is involved in biotic and abiotic stresses response as well as plant development, was also identified and associated to MQTL on chromosome 3B for most of the traits for grain weight and grain number per area which have been considered. Recently, the relationship between DExH-box RHs and temperature stress tolerance has been reported in Arabidopsis (Liu and Imai, 2018). Another gene model detected on chromosome 3B was the α-xylosidase 1-like, which contributes to maintain the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. Additionally, in Arabidopsis mutant for α-xylosidase the expression of genes encoding specific asbiscic acid and gibberellin enzymes was altered in accordance with the aberrant germination phenotype (Shigeyama et al., 2016). Considering that the asbiscic acid is involved in plant adaptation to environmental stresses (Audran et al., 2001), we can assume an indirect correlation between the expression of the α-xylosidase 1-like in response to water regimes. One additional gene identified on chromosome 3B was ADP-ribosylation factors GTPase-activating protein AGD11, which has a function in diverse physiological and molecular activities and recently an involvement on conferring tolerance to biotic and abiotic stresses in in rice and foxtail millet (Muthamilarasan et al., 2016).

The heat stress transcription factors have been detected for MQTL on chromosome 4B. These factors have been largely studied in plants and play a crucial role in response to high temperature, salinity, and drought because they adversely affect the survival, growth, and reproduction by regulating the expression of stress-responsive genes, such as heat shock proteins (Guo et al., 2016).

One gene was identified on chromosome 7A associated with a MQTL for TW, GWPS, GNPS, TGW, the transcriptional regulator SLK3, which encodes a regulator of AGAMOUS gene and functions together with a repressor of the AGAMOUS gene, the LEUNIG gene. One experiment in Arabidopsis with loss-of-function mutants of the AGAMOUS, showed that the repression of the gene by transcriptional regulator SLK3 induced a replacement of the stamens with the petals, and carpels with a new flower (Franks et al., 2001). On chromosome 7B, a methyltransferase involved in DNA methylation at cytosine residues and required for gene expression control and genome stability (Thomas et al., 2014), was detected and it correlates to a MQTL for TGW, GL, SLNS. This gene has been characterized and appeared to be express as a response to stress for the regulation of developmental events such as dormancy (Gianoglio et al., 2017), and against stress-inducing treatment, such as damaged proteins (Krzewska et al., 2021).

TABLE 5 Regions of the genome where MQTL identified under both water regimes overlap.

Chr	Peak (cM)	Interval (cM)	Left marker	Right marker
1B	47.6	47.1–48.1	IWA107	IWB63524
2A	49.55	46.6–52.5	IWB71496	IWA6478
2B	138.7	136.0–141.1	IWB72154	IWB64479
3A	50.85	45.3–52.5	IWB72351	IWA1664
3B	53.65	52.0–55.3	wmc503	IWB71974
5B	55.95	48.6–63.3	IWA6478	IWB64601
6B	57.95	56.8–59.1	IWB43195	IWA1664
7A	163.65	155.9–171.4	IWB7649	IWB29747
7B	7.55	4.9–10.2	IWB72000	IWB6355
Conclusion

In conclusion, the yield components are complex traits controlled by many QTLs with small effect. In this sense, the MQTL studies provide valuable information for QTL fine mapping and key genes for cloning. We performed the first meta-analysis study that identifies and compares durum wheat MQTL associated with yield components under irrigated and rainfed conditions. In this study, a total of 74 MQTLs were detected, where a total of 35 candidate genes associated with drought stress tolerance and yield were identified. A valuable novel aspect of this work was the identification of 12 genomic regions containing stable MQTLs on all chromosomes, except 1A, 4A, 5A, and 6B. Finally, 15 correlated genes that were differentially expressed under drought were reported, which can be very useful in durum wheat breeding programs to increase the grain yields regardless of the water regime used.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number (s) can be found in the article/Supplementary material.

Author contributions

OA and AS contributed for the conception and design of the study, organized the database and performed all data analysis, and wrote the first draft of the manuscript. AG and IlM performed the analysis and identification of candidate genes and wrote sections of the manuscript. MM, MC, SR, CA, and IvM made important improvements to the manuscript through their revisions and feedback. All authors revised and edited the manuscript, read, and approved the final manuscript.

Funding

This article processing charge was funded by the Agencia Nacional de Investigación y Desarrollo de Chile (ANID) (Fondecyt Regular n° 1210092 grant). This work was partially supported by the ANID (grants Fondecyt Regular n° 1210092 [AS, IvM, and CA] and Fondecyt Postdoctorado n° 3200981 [OA]). This research was also partially funded by the project “CerealiMed”—Enhancing diversity in Mediterranean cereal farming systems, project funded by PRIMA Section 2—Multi-topic 2019 and MUR (Ministero dell’Università e della Ricerca), the Attraction and International Mobility PON-AIM Project AIM1812334 (Ministero dell’Istruzione, dell’Università e della Ricerca, Italy); PSR Puglia 2014–2020, sottomisura 16.2, “FILIERA FRUMENTO DURO: INNOVAZIONE VARIETALE, QUALITA’ E TRACCIABILITA’ DELLE PRODUZIONI PUGLIANE”/IPERDURUM DDS N. 130 del 30/06/2020 CUP: B39J20000160009 (AG and IIM).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.984269/full#supplementary-material

References

Acuña-Galindo, M. A., Mason, R. E., Subramanian, N. K., and Hays, D. B. (2015). Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci. 55, 477–492. doi: 10.2135/cropsci2013.11.0793

Arcade, A., Labourdette, A., Falque, M., Mangin, B., Chardon, P., Charcosset, A., et al. (2004). BioMercator: Integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20, 2324–2326. doi: 10.1093/bioinformatics/bth230

Arriagada, O., Marcotuli, I., Gadaleta, A., and Schwember, A. R. (2020). Molecular mapping and genomics of grain yield in durum wheat: A review. Int. J. Mol. Sci. 21,7821. doi: 10.3390/ijms21197821

Audran, C., Liotenberg, S., Gonneau, M., North, H., Frey, A., Tap-Waksman, K., et al. (2001). Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Funct. Plant Biol. 28, 1161–1173. doi: 10.1071/PP00134
Arias, R., Oren, L., Shahbaty, G., Assuli, S., Pozniak, C., Hale, I., et al. (2018). Genome-based meta-QTL analysis of grain weight in tetraploid wheat identifies rare alleles associated with larger grain size. *Genome* 69, 636-656.

Ayd, S., Othmani, A., Bouhaouel, L. and Teixeira da Silva, J. A. (2021). Multi-Environment screening of durum wheat genotypes for drought tolerance in changing climatic events. *Agronomy* 11, 1875. doi: 10.3390/agronomy110801875.

Blanco, A., Mangini, G., Giancaspuro, A., Grose, S., Colasalvawon, P., and Simone, R. (2012). Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. *Mol. Breed.* 30, 79-92.

Cairms, J. E., Sanchez, C., Vargas, M., Ordoñez, R., and Araus, J. L. (2014). Dissecting maize productivity: Idiotype associated with grain yield under drought stress and well-watered conditions. *J. Integr. Plant Biol.* 56, 1007-1020. doi: 10.1111/jipb.12491.

Ciarò, S., Kanzaki, H., Fujitawa, T., Bernoux, M., Chalvon, V., Kawano, Y., et al. (2014). The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. *EMBO J.* 33, 1941-1959. doi: 10.1038/emboj.2014.92.

Chardon, F., Virlon, B., Moreau, L., Falque, M., Joets, J., Decourest, L., et al. (2004). Genetic architecture of flowering time in maize as inferred from quantitative trait locus meta-analysis and sympathy conservation with the rice genome. *Genetics* 168, 2169-2185. doi: 10.1534/genetics.104.032375.

Cob, J. N., Biswas, P. S., and Platten, J. D. (2019). Back to the future: Revisiting MAS as a tool for modern plant breeding. *Theor. Appl. Genet.* 136, 647-667. doi: 10.1007/s00122-018-2366-4.

Coletta, P., Marcott, L., Blanco, A., Maccaferri, M., Condorelli, G. E., Tuberous, R., et al. (2019). Creosotolen pigment content in durum wheat (*Triticum dicocoides* L. var. durum): An overview of quantitative trait loci and candidate genes. *Front. Plant Sci.* 10, 1347. doi: 10.3389.fpls.2019.001347.

Colasalvawon, P., Marcott, L., Gadaleta, A., and Soriano, J. M. (2021). From genetic maps to QTL cloning: An overview for durum wheat. *Plants* 10, 3135. doi: 10.3390/plants10110335.

Dahl, C. (2017). *Global Durum Outlook*: Available online at: <http://www.intanlopsa.com/wp-content/uploads/2017/05/1411_all-1.pdf> (accessed on 15 Aug, 2021).

Desiderio, F., Zarei, L., Liicciardello, S., Cheghamizar, K., Farshadfar, E., Virzi, N., et al. (2019). Genomic regions from an Iranian landrace increase kernel size in durum wheat. *Front. Plant Sci.* 10, 448. doi: 10.3389/fpls.2019.00448.

Dettori, M., Cesarcacio, C., and Duce, P. (2017). Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model. *Field Crop Res.* 206, 43-53. doi: 10.1016/j.fcr.2017.02.013.

El-Sharkawy, I., and Nachit, M. M. (2004). A genetic linkage map of the *Durum × Triticum dicoccoides* backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. *Theor. Appl. Genet.* 108, 401-413. doi: 10.1007/s00122-003-1440-8.

Faris, J. D., Zhang, Q., Chao, S., Zhang, Z., and Xu, S. S. (2014). Analysis of agronomic and domestication traits in a durum × cultivated emmer wheat population using a high-density single nucleotide polymorphism-based linkage map. *Theor. Appl. Genet.* 127, 2333-2348. doi: 10.1007/s00122-014-2380-1.

Fukita, A., Filler, N., Lupoi, L., Lidhargesky, G., Rylmiak, V., Korol, A. B., et al. (2020). Grain protein content and thousand kernel weight QTLs identified in a durum × wild emmer wheat mapping population tested in five environments. *Theor. Appl. Genet.* 133, 119-131. doi: 10.1007/s00122-019-04344-8.

Food and Agriculture Organization of the United Nations [FAO] (2018). *The Future Of Food And Agriculture Alternative Pathways To 2050*. Rome: Food and Agriculture Organization of the United Nations.

Frankis, M. G., Wang, C., Levin, J. Z., and Liu, Z. (2001). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG Development. 129, 253-263. doi: 10.1242/dev.129.1.253.

Gegas, V. C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., et al. (2010). A genetic framework for grain size and shape variation in wheat. *Plant Cell* 22, 1046-1056. doi: 10.1105/tpc.110.071453.

Giancaspuro, A., Grove, S. J. Z., Zachoia, S. A., Blanco, A., and Gadaleta, A. (2019). Genetic variation for protein content and yield-related traits in a durum population derived from an inter-specific cross between hexaploid and tetraploid wheat cultivars. *Front. Plant Sci.* 10, 1569. doi: 10.3389/fpls.2019.01569.

Gianoli, S., Moglia, A., Acquasado, A., Comino, C., and Portis, E. (2017). The genome-wide identification and transcriptional level of DNADNtransferases and demethylases in glioakheta. *PLoS One* 12,e0181669. doi: 10.1371/journal. pone.0181669.

Giunta, F., De Vita, P., Mastrangelo, A. M., Sanna, G., and Mottori, R. (2018). Environmental and genetic variation for yield-related traits of durum wheat as affected by development. *Front. Plant Sci.* 9.8. doi: 10.3389/fpls.2018.00008.
Candidate genes and quantitative trait loci for grain yield and seed size in durum wheat. Plan. Sci. 210, 312. doi: 10.1007/s10231-012

Marciutti, I., Colasurdo, P., Hsieh, Y. S. Y., Fincher, G. B., and Gadaleta, A. (2020). Non-starch polysaccharides in durum wheat: A review. Int. J. Mol. Sci. 21, 743–748. doi: 10.3390/ijms21122487

Martinez, A. K., Soriano, J. M., Tuberosa, R., Koumproglou, R., Jahrmann, T., and Salvi, S. (2016). Yield QTL distribution correlates with gene density in maize. Plant Sci. 242, 300–309. doi: 10.1016/j.plantsci.2015.09.022

Martínez-Moreno, F., Solís, I., Noguero, D., Blanco, A., Oterko, I., Nsaarfel, N., et al. (2020). Durum wheat in the mediterranean rim: Historical evolution and genetic resources. Genet. Resour. Crop Evol. 67, 1415–1436.

Milner, S. G., Maccarferri, M., Huang, B. E., Mantovani, P., Massi, A., and Frascaroli, E. (2016). A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnol. J. 14, 735–748. doi: 10.1111/pbtj.12244

Muthumalairasanan, M., Vang, R. R., Sundararami, H., Prasad, M., and Baisakh, N. (2016). Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice. Sci. Rep. 6:24008.

Nagel, M., Navakode, S., Sreebhal, V., Baum, M., Nacht, M., Rüder, M. S., et al. (2014). The genetic basis of durum wheat germination and seedling growth under osmotic stress. Biol. Plant. 58, 681–688. doi: 10.1007/s10535-014-0436-3

Nehe, A., Akin, B., Sanal, T., Evičte, A. K., Ünsal, R., Dincer, N., et al. (2019). Genotype x environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2018. PLoS One 14:e0219432. doi: 10.1371/journal.pone.0219432

Omyenaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., et al. (2021). Reproductive stage drought tolerance in wheat: Importance of stomatal conductance and plant growth regulators. Genes 12:1742. doi: 10.3390/genes12111747

Patil, R. M., Tambhanker, S. A., Oak, M. D., Raut, A. L., Honrao, B. K., Rao, V. S., et al. (2013). A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). J. Exp. Bot. 64, 2107–2118. doi: 10.1093/jxb/erq329

Thanh, P. T., Vladut, C. I., Kuanian, S. F. Thanh, P. T., Ishii, T., Nitta, M., et al. (2013). Molecular genetic analysis of domestication traits in emmer wheat I. Map construction and QTL analysis using an F2 population. Biotechnol. Biotechnol. Equip. 27, 3627–3637. doi: 10.5504/BBEQ.2013.0008

Thomas, M., Pingault, L., Poullet, A., Duarte, J., Throude, M., Faure, S., et al. (2014). Evolutionary history of molybdenum transporter genes in wheat. BMC Genomics 15:922. doi: 10.1186/1471-2164-15-922

Tyagi, S., Mir, R. B., Bhatnagar, H. S., and Gupta, P. K. (2015). Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Eur. J. Agron. 67, 1415–1436. doi: 10.1016/j.eja.2015.09.022

Vaara, F., Balyan, H. S., and Gupta, P. K. (2015). Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Eur. J. Agron. 67, 1415–1436. doi: 10.1016/j.eja.2015.09.022

Wang, Y., Sun, T., Li, T., Wang, M., Yang, G., and He, G. (2016). A CBL-1 Protein Kinase TaCIPK24 confers drought tolerance in transgenic tobacco plants through regulating the stomatal movement. PLoS One 11:e0178290. doi: 10.1371/journal.pone.0178290

Würschum, T., Leiser, W. L., Langer, S. M., Tucker, M. R., and Longin, C. F. H. (2018). Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theor. Appl. Genet. 131, 2071–2084. doi: 10.1007/s00122-018-2133-3

Zaim, M., Kababbi, H., Kebei, Z., Gorjanc, G., Filali-Maltouf, A., Bellkadi, B., et al. (2021). Combining QTL analysis and genomic predictions for four durum wheat populations under drought conditions. Front. Genet. 11:316. doi: 10.3389/fgene.2020.00316

Zhang, L., Liu, D. C., Guo, X. L., Yang, W. L., Sun, J. Z., Wang, D. W., et al. (2010). Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J. Integr. Plant Biol. 52, 996–1007. doi: 10.1111/j.1744-7909.2010.00967.x

Zhang, X., Shabala, S., Koutoulis, A., Shabala, L., and Zhou, M. (2017). Meta-analysis of major QTL for abiotic stress tolerance in barley and barley for abiotic stress resistance. Planta 245, 393–395. doi: 10.1007/s00425-016-2605-4

Zheng, T., Hua, C., Li, L., Sun, Z., Yuan, M., Bai, G., et al. (2021). Integration of meta-QTL discovery with omics: Towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop J. 9, 739–749. doi: 10.1016/j.cjp.2020.10.006