Switching from Flat to Spatial Motion to 3R Mechatronic Systems

Relly Victoria Petrescu, Raffaella Aversa, Antonio Apicella and Florian Ion Tiberiu Petrescu

ARoTMM-IFTomM, Bucharest Polytechnic University, Bucharest, (CE), Romania
Advanced Material Lab, Department of Architecture and Industrial Design, Second University of Naples, 81031 Aversa (CE), Italy

Abstract: The anthropomorphic robots are part of the classical series of mechatronic systems, being in the form of arms and having at least three space rotation, to which other components may eventually be added, thus lengthening the entire kinematic chain. You can also add all the planetary or spatial rotating arms or others that are translating. At the end we always have the end effector element that can be a manipulator, that is, a hand to grasp the objects, in which case one can speak of a prehensive device, that is a gripping device that today imitates very well a human hand even if it is one mechanical, may also be a painting, cutting or welding device, or one for machining. The base support and schematics of all anthropomorphic robots remain the 3R space system. It has been presented in other works and studied matrix spatially, or more simply in a plan, but in this case, it is necessary to move from the working plane to the real space, or vice versa, passage that we will present in this study. Projections of point M on planar axes will be marked with the higher P (Plan) index to distinguish them from the corresponding space axes. Due to the fact that the vertical projection plane is removed from the Oρ axis with a constant distance $a_2 + a_3$, (the vertical working plane does not project directly on the Oρ axis, but on an axis parallel to it distal to the length $a_2 + a_3$) the projection of the M point on the horizontal plane of the space will not fall in M' but at the point M ''. Therefore, the projections of M on the axes OX and OY will not be those of point M' but those of point M '', according to the relations given by the system (2). We want to remove the angle of 90°C from the relations (2), which had an important explanatory role in the understanding of the phenomenon, to see how the equation of transition from plane to spatial axes is written, here (in the horizontal plane of space) about a rotation, whose relations should not be automatically detained, but deduced logically, which is why we will immediately move from the logically determined system (2) to the convenient system (3), which will now be obtained from (2) the angle of 90°C from the trigonometric relations. Perhaps the method used may seem rather difficult, but compared to spatial matrix methods, it is extremely straightforward and direct, contributing to transforming the space movement into a flat, much easier to understand and studied movement. In the system (4) we centralize all the transition relations from the plane to the spatial movement.

Keywords: Anthropomorphic Mechatronic Systems, Robots, Geometry, Kinematics, Switching from Flat to Spatial Motion
Introduction

Anthropomorphic mechatronic systems are the most widely used robotics systems worldwide today in industry and in all automated environments. These systems are best suited to the modern automation and mechatronisation needs of the modern world, being mobile, dynamic, light, robust, complex, technologically simple, easy to design and manufactured, implemented, maintained and used in almost any industrial site, both in machine building and in special environments, such as chemical, toxic, dyeing, underwater, nuclear, in space.... Anthropomorphic robots are flexible, dynamic, stable, lightweight, fast, fast, inexpensive, easy-to-install, mechanical, mechanical, mechanical and mechanical systems with a pleasant appearance, modern industrial mechanical, mechanical, mechanical and mechanical systems are best suited to the modern automation and machine building and in special environments, such as chemical, toxic, dyeing, underwater, nuclear, in space....

Materials and Methods

Figure 1 shows the kinematic diagram of the planar chain and Fig. 2 shows the kinematic scheme of the space chain.

The transition from the plane to the space movement will then be continued.

The $x_O y_O$ plane dimensions will be projected onto the $z_O p$ axes. Thus, the length on the horizontal vertical axis $O y$ will be projected onto the spatial vertical axis $O z$ by adding the constant $a_1 \phi$ and the length of the horizontal plan axis $O x$ will be projected on the horizontal spatial axis $O p$ by adding the constant d_1, according to the relations given by the system (1):

$$\begin{align*}
\rho_M = d_1 + x_M \\
z_M = a_1 + y_M
\end{align*}$$

Projections of point M on planar axes will be marked with the higher P (Plan) index to distinguish them from the corresponding space axes.

Due to the fact that the vertical projection plane is removed from the $O p$ axis with a constant distance $a_1 + a_0$, (the vertical working plane does not project directly on the $O p$ axis, but on an axis parallel to it distal to the length $a_1 + a_0$) the projection of the M point on the horizontal plane of the space will not fall in M but at the point M' (Fig. 2).

Therefore, the projections of M on the axes $O x$ and $O y$ will not be those of point M but those of point M', according to the relations given by the system (2):

$$\begin{align*}
x_M = \rho_M \cdot \cos \phi_0 + (a_2 + a_0) \cdot \cos \left(\frac{\phi_0 + \pi}{2} \right) \\
y_M = \rho_M \cdot \sin \phi_0 + (a_2 + a_0) \cdot \sin \left(\frac{\phi_0 + \pi}{2} \right)
\end{align*}$$

We want to remove the angle of 90°C from the relations (2), which had an important explanatory role in the understanding of the phenomenon, to see how the equation of transition from plane to spatial axes is written, here (in the horizontal plane of space) about a rotation, whose relations should not be automatically detainted, but deduced logically, which is why we will immediately move from the logically determined system (2) to the convenient system (3), which will now be obtained from (2) the angle of 90°C from the trigonometric relations:

$$\begin{align*}
x_M = \rho_M \cdot \cos \phi_0 - (a_2 + a_0) \cdot \sin \phi_0 \\
y_M = \rho_M \cdot \sin \phi_0 + (a_2 + a_0) \cdot \cos \phi_0
\end{align*}$$
Perhaps the method used may seem rather difficult, but compared to spatial matrix methods, it is extremely straightforward and direct, contributing to transforming the space movement into a flat, much easier to understand and studied movement.

In the system (4) we centralize all the transition relations from the plane to the spatial movement:

\[
\begin{aligned}
x_M &= (d_1 + x_M^p) \cos \phi_{30} - (a_2 + a_i) \sin \phi_{30} \\
y_M &= (d_1 + x_M^p) \sin \phi_{30} + (a_2 + a_i) \cos \phi_{30} \\
z_M &= a_i + y_M^p
\end{aligned}
\]

Replacing in (4) the values of \(x_M^p\) and \(y_M^p\), obtaining the system of absolute spatial Equation 5:

\[
\begin{aligned}
x_M &= (d_1 + d_2 \cdot \cos \phi_{30} + d_3 \cdot \cos \phi_{20}) \cdot \cos \phi_{30} - (a_2 + a_i) \cdot \sin \phi_{30} \\
y_M &= (d_1 + d_2 \cdot \cos \phi_{30} + d_3 \cdot \cos \phi_{20}) \cdot \sin \phi_{30} + (a_2 + a_i) \cdot \cos \phi_{30} \\
z_M &= a_i + d_2 \cdot \sin \phi_{30} + d_3 \cdot \sin \phi_{30}
\end{aligned}
\]

For simpler determination of speeds and accelerations in the system (4) from which it departs, it is denoted \(a_2 + a_i\) by \(a\), so that (4) acquires the simplified aspect (6):

\[
\begin{aligned}
x_M &= (d_1 + x_M^p) \cos \phi_{30} - a \cdot \sin \phi_{30} \\
y_M &= (d_1 + x_M^p) \sin \phi_{30} + a \cdot \cos \phi_{30} \\
z_M &= a + y_M^p
\end{aligned}
\]
The spatial positioning system (6) is derived from time and the spatial velocity system (7) is obtained:

\[
\begin{align*}
\dot{x}_M &= \left(d_1 + x'_M\right) \cos \phi_{10} - a \cdot \sin \phi_{10} \\
\dot{y}_M &= \left(d_1 + x'_M\right) \sin \phi_{10} + a \cdot \cos \phi_{10} \\
\dot{z}_M &= a_1 + y'_M
\end{align*}
\] (6)

The spatial positioning system (6) can be restricted to the shape (12), with the acceleration rewritten in the simplified form (11) and the acceleration system (10), which by using the notations

\[
\begin{align*}
\dot{x}_M &= w \cdot \cos \phi_{10} - t \cdot \sin \phi_{10} \\
\dot{y}_M &= w \cdot \sin \phi_{10} + t \cdot \cos \phi_{10} \\
\dot{z}_M &= y'_M \\
w &= x'_M - \left(d_1 + x'_M\right) \cdot \dot{\phi}_{10}; \\t &= \left(2 \cdot x'_M - a \cdot \dot{\phi}_{10}\right) \cdot \dot{\phi}_{10}
\end{align*}
\] (12)

Next, we will present the positions, velocities and spatial accelerations, all written down within the system (13):

\[
\begin{align*}
\dot{x}_M &= x'_M \cdot \cos \phi_{10} - \left(d_1 + x'_M\right) \cdot \sin \phi_{10} - a \cdot \cos \phi_{10} - a \cdot \cos \phi_{10} \\
\dot{y}_M &= x'_M \cdot \sin \phi_{10} + \left(d_1 + x'_M\right) \cdot \cos \phi_{10} - a \cdot \sin \phi_{10} - a \cdot \sin \phi_{10} \\
\dot{z}_M &= y'_M
\end{align*}
\] (7)

The space velocity system (7) is restricted to the shape (10), which by using the notations \(u\) and \(v\) is rewritten in the simplified form (11) and the acceleration system (9) can be restricted to the shape (12), with the notations \(w\) and \(t\):

\[
\begin{align*}
\dot{x}_M &= \left(x'_M - a \cdot \phi_{10}\right) \cdot \cos \phi_{10} - \left(d_1 + x'_M\right) \cdot \phi_{10} + a \cdot \sin \phi_{10} \\
\dot{y}_M &= \left(x'_M - a \cdot \phi_{10}\right) \cdot \sin \phi_{10} + \left(d_1 + x'_M\right) \cdot \phi_{10} - a \cdot \cos \phi_{10} \\
\dot{z}_M &= y'_M
\end{align*}
\] (9)

The space velocity system (7) is restricted to the shape (10), which by using the notations \(u\) and \(v\) is rewritten in the simplified form (11) and the acceleration system (9) can be restricted to the shape (12), with the notations \(w\) and \(t\):

\[
\begin{align*}
\dot{x}_M &= u \cdot \cos \phi_{10} - v \cdot \sin \phi_{10} \\
\dot{y}_M &= u \cdot \sin \phi_{10} + v \cdot \cos \phi_{10} \\
\dot{z}_M &= y'_M \\
u &= x'_M - a \cdot \phi_{10}; \quad v = \left(d_1 + x'_M\right) \cdot \dot{\phi}_{10}
\end{align*}
\] (10)

\[
\begin{align*}
\dot{\chi}_M &= \chi'_{10} - \left(d_1 + x'_M\right) \cdot \dot{\phi}_{10} \\
\dot{\chi}_M &= \left(d_1 + x'_M\right) \cdot \dot{\phi}_{10} + a \cdot \dot{\phi}_{10} \\
\dot{\chi}_M &= \chi'_{10} \\
\chi &= w - \left(d_1 + x'_M\right) \cdot \dot{\phi}_{10}; \quad t = \left(2 \cdot x'_M - a \cdot \dot{\phi}_{10}\right) \cdot \dot{\phi}_{10}
\end{align*}
\] (11)

Results

The spatial position vector module of the end effector point \(M\) in the fixed Cartesian space system is given by the relation (14):

\[
r_M = \sqrt{x'_M + y'_M + z'_M} = \sqrt{w^2 + t^2 + y'_M}
\] (14)

The modulus of the absolute speed vector of point \(M\) is obtained with the relation (15):

\[
v_M = \sqrt{x'_M + y'_M + z'_M} = \sqrt{w^2 + t^2 + y'_M}
\] (15)

The M-point absolute acceleration vector module is obtained with relation (16):

\[
a_M = \sqrt{x'_M + y'_M + z'_M} = \sqrt{w^2 + t^2 + y'_M}
\] (16)

In the system (17) a recapitulation of the three absolute spatial parameters of the M point: Absolute displacement (or absolute position), absolute speed, absolute acceleration is made:
\[
\begin{align*}
\hat{r}_{x} &= \sqrt{x_{x}^2 + y_{x}^2 + z_{x}^2} = \sqrt{x^2 + y^2 + \left(a_{x} + y_{x}
ight)^2} \\
\hat{r}_{y} &= \sqrt{x_{y}^2 + y_{y}^2 + z_{y}^2} = \sqrt{x^2 + y^2 + \left(a_{y} + y_{y}
ight)^2} \\
\hat{r}_{z} &= \sqrt{x_{z}^2 + y_{z}^2 + z_{z}^2} = \sqrt{y^2 + \left(a_{z} + y_{z}
ight)^2}
\end{align*}
\] (17)

Discussion

Simple transition from plan to spatial computing can help us modify our work so that instead of performing all spatial matrices, let’s study the planar system, then add the equation of transition from plane to spatial mode and so the same results will be obtained as if we had all the difficult spatial calculations done, practically just in plan, simplified. Man is accustomed to seeing the plane better than space, but especially to judge and reason more easily the plane phenomena than the spatial phenomena.

Conclusion

The anthropomorphic robots are part of the classical series of mechatronic systems, being in the form of arms and having at least three space rotation, to which other components may eventually be added, thus lengthening the entire kinematic chain. You can also add all the planetary or spatial rotating arms or others that are translating.

At the end we always have the end effector element that can be a manipulator, that is, a hand to grasp the objects, in which case one can speak of a prehensive device, that is a gripping device that today imitates very well a human hand even if it is one mechanical, may also be a painting, cutting or welding device, or one for machining.

The base support and schematics of all anthropomorphic robots remain the 3R space system. It has been presented in other works and studied matrix spatially, or more simply in a plan, but in this case, it is necessary to move from the working plane to the real space, or vice versa, passage that we will present in this study.

Projections of point \(M\) on planar axes will be marked with the higher \(P\) (Plan) index to distinguish them from the corresponding space axes.

Due to the fact that the vertical projection plane is removed from the \(Ox\) axis with a constant distance \(a_{z}\), (the vertical working plane does not project directly on the \(Ox\) axis, but on an axis parallel to it distal to the length \(a_{z}\)) the projection of the \(M\) point on the horizontal plane of the space will not fall in \(M\) but at the point \(M'\).

Therefore, the projections of \(M\) on the axes \(Ox\) and \(Oy\) will not be those of point \(M\) but those of point \(M'\), according to the relations given by the system (2).

We want to remove the angle of 90°C from the relations (2), which had an important explanatory role in the understanding of the phenomenon, to see how the equation of transition from plane to spatial axes is written, here (in the horizontal plane of space) about a rotation, whose relations should not be automatically detained, but deduced logically, which is why we will immediately move from the logically determined system (2) to the convenient system (3), which will now be obtained from (2) the angle of 90°C from the trigonometric relations.

Perhaps the method used may seem rather difficult, but compared to spatial matrix methods, it is extremely straightforward and direct, contributing to transforming the space movement into a flat, much easier to understand and studied movement. In the system (4) we centralize all the transition relations from the plane to the spatial movement.

Acknowledgement

This text was acknowledged and appreciated by Dr. Veturia CHIROIU Honoforic member of Technical Sciences Academy of Romania (ASTR) PhD supervisor in Mechanical Engineering.

Funding Information

Research contract: 1-Research contract: Contract number 36-5-4D/1986 from 24IV1985, beneficiary CNST RO (Romanian National Center for Science and Technology) Improving dynamic mechanisms.

2-Contract research integration. 19-91-3 from 29.03.1991; Beneficiary: MIS; TOPIC: Research on designing mechanisms with bars, cams and gears, with application in industrial robots.

3-Contract research. GR 69/10.05.2007: NURC in 2762; theme 8: Dynamic analysis of mechanisms and manipulators with bars and gears.

4-Labor contract, no. 35/22.01.2013, the UPB, "Stand for reading performance parameters of kinematics and dynamic mechanisms, using inductive and incremental encoders, to a Mitsubishi Mechatronic System" "PN-II-IN-CI-2012-1-0389".

All these matters are copyrighted! Copyrights: 394-qodGnhhtje, from 17-02-2010 13:42:18; 463-ytpstuCGsly, from 20-03-2010 12:45:30; 631-suQgqvtutm, from 24-05-2010 16:15:22; 933-CrDzEfqw, from 07-01-2011 13:37:52.

Author’s Contributions

This section should state the contributions made by each author in the preparation, development and publication of this manuscript.

Ethics

Authors should address any ethical issues that may arise after the publication of this manuscript.
References

Antonescu, P. and F. Petrescu, 1985. An analytical method of synthesis of cam mechanism and flat stick. Proceedings of the 4th International Symposium on Theory and Practice of Mechanisms, (TPM' 85), Bucharest.

Antonescu, P. and F. Petrescu, 1989. Contributions to kinetoplast dynamic analysis of distribution mechanisms. Bucharest.

Antonescu, P., M. Oprean and F. Petrescu, 1985a. Contributions to the synthesis of oscillating cam mechanism and oscillating flat stick. Proceedings of the 5th Conference of Engines, Automobiles, Tractors and Agricultural Machines, (TAM’ 58), I-motors and cars, Brasov.

Antonescu, P., M. Oprean and F. Petrescu, 1988. Projection of the profile of the rotating camshaft acting on the oscillating plate with disengagement. Proceedings of the 3rd National Computer-aided Design Symposium in the field of Mechanisms and Machine Parts, (MMP’ 86), Brasov.

Antonescu, P., M. Oprean and F. Petrescu, 1987. Dynamic analysis of the cam distribution mechanisms. Proceedings of the 7th National Symposium on Industrial Robots and Space Mechanisms, (RSM’ 87), Bucharest.

Antonescu, P., M. Oprean and F. Petrescu, 1988. Analytical synthesis of Kurz profile, rotating the flat cam. Mach, Build. Rev.

Antonescu, P., F. Petrescu and O. Antonescu, 1994. Contributions to the synthesis of rotating cam mechanism and the tip of the balancing tip. Brasov.

Antonescu, P., F. Petrescu and D. Antonescu, 1997. Geometrical synthesis of the rotary cam and balance tappet mechanism. Bucharest. 3: 23-23.

Antonescu, P., F. Petrescu and O. Antonescu, 2000a. Contributions to the synthesis of the rotary disc-cam profile. Proceedings of the 8th International Conference on the Theory of Machines and Mechanisms, (TMM’ 00), Liberec, Czech Republic, pp: 51-56.

Antonescu, P., F. Petrescu and O. Antonescu, 2000b. Synthesis of the rotary cam profile with balance follower. Proceedings of the 8th Symposium on Mechanisms and Mechanical Transmissions, (MMT’ 00), Timişoara, pp: 39-44.

Antonescu, P., F. Petrescu and O. Antonescu, 2001. Contributions to the synthesis of mechanisms with rotary disc-cam. Proceedings of the 8th IFToMM International Symposium on Theory of Machines and Mechanisms, (TMM’ 01), Bucharest, ROMANIA, pp: 31-36.

Aversa, R., R.V.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2017a. Nano-diamond hybrid materials for structural biomedical application. Am. J. Biochem. Biotechnol., 13: 34-41. DOI: 10.3844/ajbjbsp.2017.34.41

Aversa, R., V.V. Petrescu, B. Akash, R.B. Bucinell and J.M. Corchado et al., 2017b. Kinematics and forces to a new model forging manipulator. Am. J. Applied Sci., 14: 60-80. DOI: 10.3844/ajassp.2017.60.80

Aversa, R., F.I.T. Petrescu, A. Apicella, I.T.F. Petrescu and J.K. Calautit et al., 2017c. Something about the V engines design. Am. J. Applied Sci., 14: 34-52. DOI: 10.3844/ajassp.2017.34.52

Aversa, R., D. Parcesepe, R.V.V. Petrescu, F. Berto and G. Chen et al., 2017d. Process ability of bulk metallic glasses. Am. J. Applied Sci., 14: 294-301. DOI: 10.3844/ajassp.2017.294.301

Aversa, R., R.V.V. Petrescu, B. Akash, R.B. Bucinell and J.M. Corchado et al., 2017e. Something about the balancing of thermal motors. Am. J. Eng. Applied Sci., 10: 200.217. DOI: 10.3844/ajassp.2017.200.217

Aversa, R., F.I.T. Petrescu, R.V.V. Petrescu and A. Apicella, 2016a. Biomimetic FEA bone modeling for customized hybrid biological prostheses development. Am. J. Applied Sci., 13: 1060-1067. DOI: 10.3844/ajassp.2016.1060.1067

Aversa, R., D. Parcesepe, R.V.V. Petrescu, G. Chen and F.I.T. Petrescu et al., 2016b. Glassy amorphous metal injection molded induced morphological defects. Am. J. Applied Sci., 13: 1476-1482. DOI: 10.3844/ajassp.2016.1476.1482

Aversa, R., R.V.V. Petrescu, F.I.T. Petrescu and A. Apicella, 2016c. Smart-factory: Optimization and process control of composite centrifuged pipes. Am. J. Applied Sci., 13: 1330-1341. DOI: 10.3844/ajassp.2016.1330.1341

Aversa, R., F. Tamburrino, R.V.V. Petrescu, F.I.T. Petrescu and M. Artur et al., 2016d. Biomechanically inspired shape memory effect machines driven by muscle like acting NiTi alloys. Am. J. Applied Sci., 13: 1264-1271. DOI: 10.3844/ajassp.2016.1264.1271

Aversa, R., E.M. Buzea, R.V.V. Petrescu, A. Apicella and M. Neacsa et al., 2016e. Present a mechatronic system having able to determine the concentration of carotenoids. Am. J. Eng. Applied Sci., 9: 1106-1111. DOI: 10.3844/ajeassp.2016.1106.1111

Aversa, R., R.V.V. Petrescu, R. Sorrentino, F.I.T. Petrescu and A. Apicella, 2016f. Hybrid ceramo-polymeric nanocomposite for biomimetic scaffolds design and preparation. Am. J. Eng. Applied Sci., 9: 1096-1105. DOI: 10.3844/ajeassp.2016.1096.1105

Aversa, R., V. Perrotta, R.V.V. Petrescu, C. Misiano and F.I.T. Petrescu et al., 2016g. From structural colors to super-hydrophobicity and achromatic transparent protective coatings: Ion plating plasma assisted TiO2 and SiO2 Nano-film deposition. Am. J. Eng. Applied Sci., 9: 1037-1045. DOI: 10.3844/ajeassp.2016.1037.1045
Aversa, R., R.V. Petrescu, F.I.T. Petrescu and A. Apicella, 2016h. Biomimetic and evolutionary design driven innovation in sustainable products development. Am. J. Eng. Applied Sci., 9: 1027-1036. DOI: 10.3844/ajeassp.2016.1027.1036

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016i. Mitochondria are naturally micro robots-a review. Am. J. Eng. Applied Sci., 9: 991-1002. DOI: 10.3844/ajeassp.2016.991.1002

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016j. We are addicted to vitamins C and E-A review. Am. J. Eng. Applied Sci., 9: 1003-1018. DOI: 10.3844/ajeassp.2016.1003.1018

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016k. Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am. J. Eng. Applied Sci., 9: 962-972. DOI: 10.3844/ajeassp.2016.962.972

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016l. One can slow down the aging through antioxidants. Am. J. Eng. Applied Sci., 9: 1112-1126. DOI: 10.3844/ajeassp.2016.1112.1126

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016m. About homeopathy or Similia similibus curruntur. Am. J. Eng. Applied Sci., 9: 1164-1172. DOI: 10.3844/ajeassp.2016.1164.1172

Aversa, R., R.V. Petrescu, A. Apicella and F.I.T. Petrescu, 2016n. The basic elements of life's structural representation and digital-analysis platform for symmetrical parallel mechanisms. Int. J. Adv. Robotic Sys. DOI: 10.5772/56380

Cao, W., H. Ding, Z. Bin and C. Ziming, 2013. New structural representation and digital-analysis platform for symmetrical parallel mechanisms. Int. J. Adv. Robotic Sys. DOI: 10.5772/56380

Comanescu, A., 2010. Bazele Modelarii Mecanismelor. 1st Edn., E. Politeh. Press, Bucureşti, pp: 274.

Dong, H., N. Giakoumidis, N. Figueroa and N. Mavridis, 2013. Approaching behaviour monitor and vibration indication in developing a General Moving Object Alarm System (GMOAS). Int. J. Adv. Robotic Sys. DOI: 10.5772/56586

Franklin, D.J., 1930. Ingenious Mechanisms for Designers and Inventors. 1st Edn., Industrial Press Publisher.

He, B., Z. Wang, Q. Li, H. Xie and R. Shen, 2013. An analytic method for the kinematics and dynamics of a multiple-backbone continuum robot. IJARS. DOI: 10.5772/54051

Lee, B.J., 2013. Geometrical derivation of differential kinematics to calibrate model parameters of flexible manipulator. Int. J. Adv. Robotic Sys. DOI: 10.5772/55592

Lin, W., B. Li, X. Yang and D. Zhang, 2013. Modelling and control of inverse dynamics for a 5-DOF parallel kinematic polishing machine. Int. J. Adv. Robotic Sys. DOI: 10.5772/54966

Liu, H., W. Zhou, X. Lai and S. Zhu, 2013. An efficient inverse kinematic algorithm for a PUMA560-structured robot manipulator. IJARS. DOI: 10.5772/56403

Mirsayar, M.M., V.A. Joneidi, R.V.V. Petrescu, F.I.T. Petrescu and F. Berto, 2017. Extended MTSN criterion for fracture analysis of soda lime glass. Eng. Fracture Mech., 178: 50-59. DOI: 10.1016/j.engfracmech.2017.04.018

Padula, F. and V. Perdereau, 2013. An on-line path planner for industrial manipulators. Int. J. Adv. Robotic Sys. DOI: 10.5772/55063

Perumaal, S. and N. Jawahar, 2013. Automated trajectory planner of industrial robot for pick-and-place task. IJARS. DOI: 10.5772/53940

Petrescu, F. and R. Petrescu, 1995a. Contributions to optimization of the polynomial motion laws of the stick from the internal combustion engine distribution mechanism. Bucharest, 1: 249-256.

Petrescu, F. and R. Petrescu, 1995b. Contributions to the synthesis of internal combustion engine distribution mechanisms. Bucharest, 1: 257-264.

Petrescu, F. and R. Petrescu, 1997a. Dynamics of cam mechanisms (exemplified on the classic distribution mechanism). Bucharest, 3: 353-358.

Petrescu, F. and R. Petrescu, 1997b. Contributions to the synthesis of the distribution mechanisms of internal combustion engines with a Cartesian coordinate method. Bucharest, 3: 359-364.

Petrescu, F. and R. Petrescu, 1997c. Contributions to maximizing polynomial laws for the active stroke of the distribution mechanism from internal combustion engines. Bucharest, 3: 365-370.
