Research progress in photoelectric materials of CuFeS$_2$

Mingxing Jing1,2, Jing Li2,1, Kegao Liu2,1

1Co-Innovation Center for Green Building of Shandong Province, Shandong Jianzhu University, Fengming Road, Jinan 250101, China

2School of Materials Science and Engineering, Shandong Jianzhu University, Fengming Road, Jinan 250101, China

blijing_ck@sdjzu.edu.cn, cliukg163@163.com

Abstract. CuFeS$_2$ as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS$_2$ has attracted extensive attention of scientists. Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method. In this paper, the development of CuFeS$_2$ thin films prepared by co-reduction method and co-reduction method is introduced. In this paper, the structure and development of solar cells, advantages of CuFeS$_2$ as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS$_2$, preparation process analysis of CuFeS$_2$ thin film, research and development of CuFeS$_2$ in solar cells is included herein. Finally, the development trend of CuFeS$_2$ optoelectronic materials is analyzed and further research directions are proposed.

1. Introduction

With the increasingly energy crisis and environmental pollution, the use of solar energy resources has become the focus of contemporary research, and solar cells are the most important form of solar energy utilization. Through the market survey found that 80% of people hope and willing to use solar energy as a new energy source[1-6]. Dating back to the development of solar cells, In 1839, the photovoltaic effect is discovered in dilute acid liquid for the first time by Alexander E. Becquerel. In 1905, German physicist Einstein's paper on the photovoltaic effect was published, and won the Nobel prize in physics in 1921. In 1949, W. Shockley, J. Bardeen, W. H. Brattain invented the transistor, and gave the p-n junction physical explanation, since then, semiconductor device era began. In 1954, The first practical monocrystalline silicon p-n junction solar cell which 4.5% efficiency have been discovered by D. M. Chapin, C. S. Fuller and G. L. Pearson in Bell laboratory in the United States. After several months, the efficiency reached 6% and reached 10% in a few years. Today, the total installed capacity of photovoltaic power generation in China is 43 million 180 thousand kilowatts, which has become the largest country in the global photovoltaic power generation capacity. Because of photovoltaic power generation is safe, reliable, pollution-free and rich in resources, solar cells have been applied to all aspects of life since human discovery and utilization of solar energy.

The structure of solar cell mainly consists of electrode, antireflection layer, window layer, buffer layer, absorbing layer, back electrode, substrate and so on. As the most important part of solar cells, the absorption layer has become the focus of research[7]. According to the difference of absorbing layer
materials, Solar cells are mainly divided into silicon solar cells, multi-comp-onent thin film solar cells, polymer multilayermodified electrode type solar cells and nanocrystalline photovoltaic solar cells.Compared with traditional silicon solar cells and GaAs,CdS,CdTe,CuInSe\textsubscript{2} thin film batteries,CuFeS\textsubscript{2} has the advantages of low price, abundant reserves and non-toxic.

2. background
Chalcopyrite compounds, such as CuAlS\textsubscript{2}, CuInS\textsubscript{2}, CuGaS\textsubscript{2}, CuInS\textsubscript{2} and CuFeS\textsubscript{2} have a wide band distribution, from 0.6eV-3.5eV, which belong to the three element sulfur group compounds.In recent years, CuFeS\textsubscript{2} thin films, nanowires, nanorods, spherical particles, nanocrystals in solar panels, thermoelectric devices and spintronic devices have attracted extensive attention of scientist. As a photoelectric material, CuFeS\textsubscript{2} is a ternary I–III–VI\textsubscript{2} group compound semiconductor, which has the structure of chalcopyrite and sphalerite[8]. The crystal structure of CuFeS\textsubscript{2} is tetragonal, the lattice constant a=0.5289nm, c=1.0423nm, and its c/a constant is slightly changed by the material preparation process[9]. CuFeS\textsubscript{2} is the only magnetic semiconductor material with ferromagnetic properties below 190K, and ferromagnetism between 190K and 823K. When TN is close to 823K, the structure of CuFeS\textsubscript{2} transforms from tetragonal chalcopyrite to cubic sphalerite, the copper and iron ions are disordered in tetragonal lattice. In the literature[10], the thermoelectric properties of CuFeS\textsubscript{2} doped with Co and Zn were compared with those of CuFeS\textsubscript{2} without doping any elements. The results show that the magnetic properties of CuFeS\textsubscript{2} can be changed by doping, which affects the thermoelectric properties of CuFeS\textsubscript{2}.

CuFeS\textsubscript{2} is a direct band gap semiconductor material with a band gap of 0.6eV and a high optical absorption coefficient[11], which is very useful for broadening the absorption range and reducing the loss of carrier. The structure morphology, crystallinity, crystal defects, grain boundaries and elemental components have great influence on the optical properties of CuFeS\textsubscript{2}. Literature research shows that the composition of the material and the stoichiometric deviation of the smaller, the more regular morphology, crystal defects, the better the optical absorption characteristics. The absorption characteristics of CuFeS\textsubscript{2} thin films with a single chalcopyrite structure better than non single structure. The band gap of CuFeS\textsubscript{2} is mainly affected by the change of crystal lattice parameters and the change of structure[12-13]. The electrical properties of CuFeS\textsubscript{2} are determined by inherent defects, impurities and grain boundaries in the films. CuFeS\textsubscript{2} exists as a n-type system due to the narrow band, and it is formed heterojunction solar cells with wide band system resin[14]. In 1917, the structure of CuFeS\textsubscript{2} was studied by Burdick and Ellis, indicating that the structure of chalcopyrite is similar to that of sphalerite structure, that is, cuprous ion and iron ion in chalcoprite structure are correspond to two zinc ions in phalerite structure[15]. In 1987, CuFeS\textsubscript{2} as cathode materials for lithium batteries was studied by Fong and Eda, it was found that Li/CuFeS\textsubscript{2} battery forming a discharge platform in 1.5V at room temperature[16]. In 2011, CuFeS\textsubscript{2} as cathode materials for lithium batteries was studied by Ding Wei. After studying the discharge at room temperature, it was found that there are two discharge platforms at 1.75V and 1.5V[17]. In 2014, CuFeS\textsubscript{2} nanoparticles was prepared by Zhang Zhuolei with high temperature oil phase thermal injection method, the test results show that CuFeS\textsubscript{2} nanoparticles have a certain photoelectric response ability.

To produce a high-efficiency CuFeS\textsubscript{2} solar cells, the key is to obtain the maximum short-circuit current and the maximum open circuit voltage[18]. On the one hand, it is necessary to increase the absorption coefficient of light. In the literature[10], changed the magnetic properties of CuFeS\textsubscript{2} by doping appropriate amount of Co, thereby the thermoelectric merit ZT of CuFeS\textsubscript{2} is changed to improve the absorption coefficient of light. The study shows that the energy band of nanoparticles chalcopyrite is 1.2eV, and the energy band of bulk chalcopyrite is 0.6eV. Therefore, the power factor of nanoparticles chalcopyrite is higher than that of bulk chalcopyrite, the thermal conductivity decreases greatly, and the efficiency increases by 77 times[19]. On the other hand, it is necessary to reduce the recombination current as much as possible, reducing the concentration of defect states in the material can effectively reduce the recombination of photogenerated carriers[20-23]. It is necessary to find the appropriate preparation method to reduce the defects in the material and obtain uniform morphology to reduce the surface recombination.
3. methods
Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method. Electrodeposition is a commonly used method for preparing semiconductor thin film materials. It has high controllability, simple process, less investment, environmental protection and economy, suitable for commercial operation, no requirement for deposition matrix structure, but with low degree of crystallization and deficit hyperactivity. At present, the preparation of CuFeS$_2$ photoelectric film by electrodeposition has not been reported. Sputtering method means that in the vacuum, the target surface is hit by high energy particles, the atoms or molecules in the target are ejected and deposited on the substrate. It has good adhesion with the substrate, thin film material can be controlled, suitable for large area production, process parameters, easy to control, but the sputtering needs harsh conditions, expensive equipment and high cost. Practice has proved that the sputtering method is not suitable for CuFeS$_2$ photoelectric film preparation. Thermal evaporation method means that putting the raw materials of high purity into the vacuum conditions of container, it makes the sublimation and evaporation deposition onto the surface of the substrate specific. The co-reduction method is a recently popular method for the preparation of solar cells, which is mainly a method of occurring the reduction reaction under a certain temperature and pressure. Compared with other methods, it has many advantages. Firstly, it can directly get good crystalline powder and is no need for high temperature ignition to avoid the agglomeration of powders which may be formed during the burning process. Secondly, powder crystal phase and morphology related to hydrothermal reaction conditions. Finally, the preparation process is relatively simple, low cost. At present, the most common method for preparing CuFeS$_2$ photoelectric film is the co-reduction method. In 1999, Hu Junqing prepared CuFeS$_2$ nanorods with photoelectric properties by co-reduction method, which materials such as CuCl$_2$, FeCl$_2$, 6H$_2$O, (NH$_4$)$_2$S$^{[27]}$. In 2013, Igor S. Lyubutin prepared self-organized single-crystalline nanobricks of chalcopyrite CuFeS$_2$ by co-reduction method, which materials such as (Cu(COOCH$_3$)$_2$, H$_2$O), (Fe(COOCH$_3$)$_2$)$^{[19]}$. In 2016, K.M. Deen, E. Asselin prepared CuFeS$_2$ nanopowders by co-reduction method, which materials such as (CuCl$_2$, 2H$_2$O), (FeCl$_2$, 4H$_2$O), (CS(NH$_2$)$_2$)$^{[15]}$.

4. Summary
CuFeS$_2$ has excellent photoelectric and magnetic properties as a solar cell material. This paper mainly introduces the structure of solar cell and the development of solar cell at domestic and foreign, as a solar thin film cell, CuFeS$_2$ has high optical absorption coefficient, and is a direct gap semiconductor with good thermal stability and no light fading effect. Recent studies have shown that CuFeS$_2$ has the photoelectric response ability in solar cells, and can be used as thin film solar cells. In this paper, the preparation technology of CuFeS$_2$ solar thin film and the research progress of various preparation processes are introduced. Finally, the development trend of CuFeS$_2$ photoelectric materials is analyzed and further research directions are proposed. Chalcopyrite CuFeS$_2$ is abundant in nature, cheap and non-toxic. If it can be widely used in solar cells, which will completely solve the human energy problems. So CuFeS$_2$ thin film battery will certainly go to people's line of sight. It's very important for us to adopt new methods and new technologies.

References
[1] B Rajanarayan Prusty and Debashisha Jena 2017 A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach Renewable and Sustainable Energy Reviews 69 1286-302
[2] Yanfa Yan and Mowafak M. Al-Jassim 2012 Transmission electron microscopy of chalcogenide thin-film photovoltaic materials Curr. Opin. Solid State Mater. Sci. 16 39-44
[3] M. Boccard, P. Cuony and M. Despeisse 2011 Substrate dependent stability and interplay between optical and electrical properties in μc-Si:H single junction solar cells. Sol. Energy Mater. Sol. Cells 95 195-8
[4] Bin Liu and Eray S. Aydil 2009 Growth of oriented single-crystalline rutile TiO$_2$ nanorods on transparent conducting substrates for dye-sensitized solar cells *J. Am. Chem. Soc.* **131** 3985-90

[5] Zion Tachan, Sven Rühlle and Arie Zaban 2010 Dye-sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing *Sol. Energy Mater. Sol. Cells* **94** 317-22

[6] Yanlai Wang, Hongbo Nie, Peiran Ni, Yimin Wang and Shiju Guo 2009 Preparation of CuInSe$_2$ thin films by four-step process *INT J MIN MET MATER* **16** 439-43

[7] QI Lei, ZHANG Chunmei and CHEN Qiang 2014 Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells *Plasma Sci. Technol.* **16** 45-9

[8] Amir Hossein Cheshme khavar, Alireza Mahjoub, Fazl Safi Samghabadi and Nima Taghavinia 2017 Fabrication of selenization-free superstrate-type CuInS$_2$ solar cells based on all-spin-coated layers *Mater. Chem. Phys.* **186** 446-55

[9] Wei Ding, Xin Wang, Huifen Peng and Linna Hu 2013 Electrochemical performance of the chalcopyrite CuFeS$_2$ as cathode for lithium ion battery *Mater. Chem. Phys.* **137** 872-6

[10] D. Bertheband, O. I. Lebedev and A. Maignan 2015 Thermoelectric properties of n-type cobalt doped chalcopyrite Cu$_{1.5}$Co$_{1.2}$Fe$_2$S$_8$ and p-type eskebornite Cu$_{2.25}$Fe$_{1.75}$S$_8$ *J. Mater. Chem. Phys.* **6** 68-74

[11] Yuri L. Mikhlin, Yevgeny V. Tomashevich, Igor P. Asanov, Alexander V. Okotrub, Vladimir A. Varnek and Denis V. Vyalikh 2004 Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite(CuFeS$_2$) reacted in acidic solutions *Appl. Surf. Sci.* **225** 395-409

[12] M.X. Wang, L.S. Wang, G.H. Yue, X. Wang, P.X. Yan and D.L. Peng 2009 Single crystal of CuFeS$_2$ nanowires synthesized through solvothermal process *Mater. Chem. Phys.* **115** 147-50

[13] K.M. Deen and E. Asselin 2016 Differentiation of the non-faradaic and pseudocapacitive electrochemical response of graphite felt/CuFeS$_2$ composite electrodes *Electrochim. Acta* **212** 979-91

[14] S.K. Pradhan, B. Ghosh and L.K. Samanta 2006 Mechanosynthesis of nanocrystalline CuFeS$_2$ chalcopyrite *Physica. E* **33** 144–6

[15] A.J. Nozik 2008 Nanoscience and Nanostructures for Photovoltaics and Solar Fuels *Chem. Phys. Lett.* **457** 3

[16] EDA N, FUJII T and KOSHINA H 1987 Effects of an additive material, CuFeS$_2$, on Li/CuO battery performance *J. Power Sources* **20** 119-26

[17] Jianhui Li, Qing Tan and Jing-Feng Li 2013 Synthesis and property evaluation of CuFeS$_2$$_x$ as earth-abundant and environmentally-friendly thermoelectric materials *J. Alloys Compd.* **551** 143-9

[18] Liang Shi, Congjian Pei and Quan Li 2010 Fabrication of ordered single-crystalline CuInS$_2$ nanowire arrays *Cryst. Eng. Comm.* **12** 3882-85

[19] Igor S. Lyubutin, Chun-Rong Lin, Sergey S, Starchikov and Yu-Jhan siao 2013 Synthesis, structural and magnetic properties of self-organized single-crystalline nanobricks of chalcopyrite CuFeS$_2$ *Acta Mater.* **61** 3956-62

[20] Qingyou Liu and He ping Li 2011 Electrochemical behaviour of chalcopyrite (CuFeS$_2$) in FeCl$_3$ solution at room temperature under differential stress *Int. J. Miner. Process.* **98** 82-8

[21] Claudia L. Aguirre, Norman Toro, Norma Carvajal, Helen Watling and Carolina Aguirre 2016 Leaching of chalcopyrite (CuFeS$_2$) with an imidazolium-based ionic liquid in the presence of chloride *Miner. Eng.* **99** 60-6

[22] Animesh Layek, Somnath Middya, Arka Dey, Mrinmay Das, Joydeep Datta, Chandan Banerjee, and Partha Pratim Ray 2014 Study of resonance energy transfer between MEH-PPV and CuFeS$_2$ nanoparticle and their application in energy harvesting device *J. Alloys Compd.* **613** 364-9
[23] Yuri Mikhlin, Alexander Romanchenko, Yevgeny Tomashevich and Valentin Shurupov 2016 Near-surface regions of electrochemically polarized chalcopyrite (CuFeS$_2$) as studied using XPS and XANES Sci. Direct. 84 390-6

[24] Yunhui Wang, Xue Li, Yiyong Zhang, Xinyi He and Jinbao Zhao 2015 Ether based electrolyte improves the performance of CuFeS$_2$ spike-like nanorods as a novel anode for lithium storage Electrochim. Acta 158 368-73

[25] Kuan-ting Chen, Chung-Jie Chiang and Dahtong Ray 2013 Hydrothermal synthesis of chalcopyrite using an environmental friendly chelating agent Mater. Lett. 98 270-2

[26] Xiankuan Meng, Hongmei Deng, Qiao Zhang, Lin Sun, Pingxiong Yang a and Junhao Chu 2017 Investigate the growth mechanism of Cu$_2$FeSnS$_4$ thin films by sulfurization of metallic precursor Mater. Lett. 186 138-41

[27] Junqing Hu, Qingyi Lu and Bin Deng 1999 A hydrothermal reaction to synthesize CuFeS$_2$ nanorods Inorg. Chem. Commun. 2 569–71