GLRX3 Acts as a [2Fe–2S] Cluster Chaperone in the Cytosolic Iron–Sulfur Assembly Machinery Transferring [2Fe–2S] Clusters to NUBP1

Francesca Camponeschi, Nihar Ranjan Prusty, Sabine Annemarie Elisabeth Heider, Simone Ciovitti-Baffoni,* and Lucia Banci*

ABSTRACT: Human cytosolic monothiol glutaredoxin-3 (GLRX3) is a protein essential for the maturation of cytosolic [4Fe–4S] proteins. We show here that dimeric cluster-bridged GLRX3 transfers its [2Fe–2S]2+ clusters to the human P-loop NTPase NUBP1, an essential early component of the cytosolic iron–sulfur assembly (CIA) machinery. Specifically, we observed that [2Fe–2S]2+ clusters are transferred from GLRX3 to monomeric apo NUBP1 and reductively coupled to form [4Fe–4S]2+ clusters on both N-terminal CX13CX2CX5C and C-terminal CPXC motifs of NUBP1 in the presence of glutathione that acts as a reductant. In this process, cluster binding to the C-terminal motif of NUBP1 promotes protein dimerization, while cluster binding to the N-terminal motif does not affect the quaternary structure of NUBP1. The cluster transfer/assembly process is not complete on both N- and C-terminal motifs and indeed requires a reductant stronger than GSH to increase its efficiency. We also showed that the [4Fe–4S]2+ cluster formed at the N-terminal motif of NUBP1 is tightly bound, while the [4Fe–4S]2+ cluster bound at the C-terminal motif is labile. Our findings provide the first evidence for GLRX3 acting as a [2Fe–2S] cluster chaperone in the early stage of the CIA machinery.

INTRODUCTION

The biogenesis of iron–sulfur (Fe–S) proteins is a highly conserved, multistep process involving dedicated machineries.1 In eukaryotes, two distinct machineries are required for the maturation of mitochondrial, cytosolic, and nuclear Fe–S proteins.2 In the current working model, a mitochondrial iron–sulfur cluster (ISC) assembly machinery de novo synthesizes a [2Fe–2S] cluster and then incorporates it into mitochondrial [2Fe–2S] and [4Fe–4S] target proteins.3,4 Another machinery in the cytosol, named cytosolic iron–sulfur assembly (CIA) machinery, is in charge of the maturation of cytosolic and nuclear [4Fe–4S] proteins.5 The CIA machinery has been mostly characterized in yeast, where it was proposed to begin with the assembly of a [4Fe–4S] cluster on a scaffold complex formed by two homologous P-loop nucleoside triphosphatases (NTPases) named Nbp35 and Cfd1.6–8 It was also proposed that the latter process is assisted by a cytosolic electron transfer chain comprising the CIA components dflavin oxidoreductase Tah18 and the Fe–S binding protein Drc2.9 In humans, this first phase of the CIA machinery involves the same set of proteins, which were proposed to perform the same function as their yeast homologues. Both in vivo and in vitro data indicated indeed that a [4Fe–4S] cluster assembly occurs on a scaffold complex formed by the human homologues of yeast Nbp35 and Cfd1, that is, NUBP1 and NUBP2,10,11 and that this process is again assisted by an electron transfer chain composed of the human homologues of yeast Tah18 and Dre2, that is, NDOR1 and anamorsin.12

NUBP1 and NUBP2 share a high degree of sequence identity with Nbp35 and Cfd1, respectively. While the two yeast proteins are known to form homodimeric and heterodimeric/tetrameric complexes able to bind up to a maximum of three [4Fe–4S] clusters per dimer,6,8,12,13 the cluster binding properties and the quaternary structure of NUBP1 and NUBP2 proteins are not so well characterized. We only know that they form a heterocomplex in vivo and that NUBP1 binds the [4Fe–4S] cluster(s),10 but the biophysical data so far available do not permit one to decide how the cluster(s) are associated with NUBP1 and NUBP2. Both NUBP1 and NUBP2 have a CPXC motif in their C-terminal region as present in Nbp35 and Cfd1. This motif was found to be essential for the function of Cfd1 and of Nbp35 in the assembly of cytosolic [4Fe–4S] proteins.12 It coordinates a labile [4Fe–4S] cluster bridging two protein molecules in
homodimeric Nbp35, in homodimeric Cfd1, and in the Cfd1–
Nbp35 heterocomplex.\(^8,12\) Furthermore, NUBP1 and Nbp35
share a conserved N-terminal \(\text{CX}_{2}\text{C}^{\text{X}}\text{CX}_{2}\text{C}^{\text{X}}\text{C}\) motif.\(^6,10,14\)
In Nbp35, this motif was found to be essential for the protein
function and to tightly bind a \([4\text{Fe}−4\text{S}]\) cluster.\(^12\)
How the assembly of the \([4\text{Fe}−4\text{S}]\) clusters at both N- and
C-terminal motifs of the two human NTPases occurs in the
cytoplasm is still elusive. In particular, the source of iron and of
the sulfide provided to the NUBP1–NBP2 heterocomplex to
assemble a \([4\text{Fe}−4\text{S}]\) cluster is still a matter of debate.\(^2,15\)
Functional data clearly showed that, in yeast, Fe−S cluster
assembly on Cfd1 and Nbp35 is independent of the proteins
acting later in the CIA machinery.\(^4\) A possible player of the
CIA machinery responsible for the maturation of the \([4\text{Fe}−
4\text{S}]\) clusters on Cfd1 and Nbp35 is the yeast cytosolic
monothiol glutaredoxin Grx3, which is, indeed, a crucial
component for the assembly of cytosolic Fe−S proteins.\(^6\)
In support of this model, in vivo data showed that Grx3 and its
yeast paralog Grx4 bind a Fe−S cluster central to the \(\text{CIA}\)
machinery.\(^6\) The human proteome contains only one
monothiol glutaredoxin in the cytosol, GLRX3 (also
called PIGOT), which is essential for the maturation of cytosolic \([4\text{Fe}−4\text{S}]\) proteins.\(^7\) GLRX3 has
been shown to be involved in the CIA machinery by
transferring its \([2\text{Fe}−2\text{S}]\) clusters to the CIA component
amansorin, de facto acting as a \([2\text{Fe}−2\text{S}]\) cluster chaperone in
the cytosol.\(^16−20\) Possibly, GLRX3 could transfer its \([2\text{Fe}−2\text{S}]\)
cargo to other targets, and not only to amansorin. However, up
to now, whether GLRX3 provides \([2\text{Fe}−2\text{S}]\) clusters to
NUBP1 and NUBP2 for assembling \([4\text{Fe}−4\text{S}]\) clusters is still
unknown.

In this work, we investigated, through various spectroscopic
techniques, the ability of human GLRX3 to act as a \([2\text{Fe}−2\text{S}]\)
cluster chaperone for NUBP1. We found that GLRX3 transfers
its \([2\text{Fe}−2\text{S}]\)^25 clusters to NUBP1. The \([2\text{Fe}−2\text{S}]\)^25 clusters are received by both N-terminal and C-terminal motifs and
then converted into \([4\text{Fe}−4\text{S}]\)^25 clusters in the presence of
glutathione (GSH), which acts as the reductant. These findings
provide the first evidence for GLRX3 acting as \([2\text{Fe}−2\text{S}]\)
cluster chaperone and assembling \([4\text{Fe}−4\text{S}]\) clusters on
NUBP1.

EXPERIMENTAL SECTION

Cloning, Overexpression, and Purification of wtNUBP1, NUBP1-C325A/C328A and NUBP1-C235A/C238A Mutant in Their Apo and Holo Forms. The gene coding for human NUBP1 (UniProtKB/ Swiss-Prot: P53384), inserted into the pUC-57 plasmid, was acquired from Sigma-Aldrich. The genes of wild-type NUBP1 (wtNUBP1, hereafter) and of a NUBP1 construct restricted to residues 38−320, containing only the C-terminal motif (NUBP1(C38−320, hereafter), were amplified by PCR and inserted into the pETDuet-1 expression vector using EcoRI and HindIII FastDigest restriction enzymes (Thermo-Fisher Scientific). The NUBP1-C325A/C328A mutant was obtained through site-directed mutagenesis (Agilent QuikChange II site-directed mutagenesis kit) performed on pETDuet-1 wtNUBP1 according to the producer’s manual. His\(_4\)-tagged wtNUBP1 and His\(_4\)-tagged NUBP1-C325A/C328A were overexpressed in BL21
(DE3) and His\(_6\)-tagged NUBP1(C38−320 in BL21(DE3) Codon Plus RPL competent E. coli cells (Novagen). Cells were grown in Luria–Bertani containing 1 mM ampicillin at 37 °C under vigorous shaking up to a cell OD\(_{600}\) of 0.6. Protein expression was induced by adding 0.5 mM IPTG and 0.25 mM FeCl\(_3\). Cells were grown overnight at 21 °C (wtNUBP1 and NUBP1-C325A/C328A) and at 25 °C (NUBP1(C38−320). Cells were harvested by centrifugation at 7500g and resuspended in lysis buffer (40 mM sodium phosphate buffer pH 8.0, 400 mM NaCl, 5 mM imidazole, containing 0.01 mg/mL DNAase, 0.01 mg/mL lysozyme, 1 mM MgSO\(_4\) and 5 mM dithiothreitol (DTT)). Cell disruption was performed on ice by sonication, and the soluble extract was obtained by ultracentrifugation at 40 000g. The following purification steps were performed aerobically to obtain the apo protein, while in an anaerobic chamber (\(O_2 < 1\) ppm) to isolate the protein in its holo form. The soluble fraction was loaded on a HisTrap FF column (GE Healthcare). The protein was eluted with 40 mM sodium phosphate buffer pH 8.0, 400 mM NaCl, and 400 mM imidazole, concentrated with Amicon Ultra-
15 Centrifugal Filter Units with a MWCO of 10 kDa (Millipore), and the buffer was exchanged by a PD-10 desalting column in 40 mM sodium phosphate buffer pH 8.0, 400 mM NaCl, 5 mM imidazole. When required, cleavage of the His\(_6\) tag was performed by TEV protease overnight at room temperature. The protein mixture was then loaded on a HisTrap FF column (GE Healthcare) to separate the digested protein from the His\(_6\) tag.

The apo protein in the monomeric state was obtained by
incubating overnight the aerobically purified protein at room
temperature in 25 mM MOPS, 100 mM pyridine-2,6-dicarboxylic
acid, at pH 7.0.

Chemical reconstitution was performed inside an anaerobic
chamber (\(O_2 < 1\) ppm), by incubating overnight at room temperature the monomeric apo protein in degassed 50 mM Tris, 100 mM NaCl, 5 mM DTT, at pH 8.0 with up to a 12-fold excess of FeCl\(_3\) and Na\(_2\)S. Excess of FeCl\(_3\) and Na\(_2\)S was anaerobically removed by passing the mixture on a PD-10 desalting column, and the holo protein was recovered. Production of [2Fe−2S]GLRX3−GSH, GLRX3 was expressed, purified, and chemically reconstituted following previously reported procedures.\(^21\)

Protein, Iron, and Acid-Labile Sulfide Quantification. Protein
quantification was carried out with the Bradford protein assay, using
BSA as a standard. Nonheme iron and acid-labile sulfide content
were determined as described previously.\(^21\)

Biochemical and Spectroscopic UV–Vis, CD, EPR, and NMR
Methods. The quaternary structure of the proteins was analyzed
through analytical gel filtration on a Superdex 200 10/300 Increase
column (GE Healthcare). Column was calibrated with a gel filtration
marker calibration kit, 6500−66 000 Da (Sigma-Aldrich), to obtain
the apparent molecular masses of the detected species. Samples in
degassed 50 mM phosphate buffer pH 7.0, 200 mM NaCl, 5 mM
DTT (plus 5 mM GSH for [2Fe−2S]GLRX3−GSH, were loaded on
the pre-equilibrated column. Elution profiles were recorded at 280 nm with a flow rate of 0.65 mL/min.

UV–visible (UV–vis) spectra were anaerobically acquired on a
Cary 50 Eclipse spectrophotometer in degassed 50 mM phosphate
buffer pH 7.0 (plus 5 mM GSH for [2Fe−2S]GLRX3−GSH,).

Circular dichroism (CD) spectra were acquired on a JASCO J-810
spectropolarimeter in 20 mM phosphate buffer pH 7.0.

CW EPR spectra were recorded before and after the anaerobic
reduction of the cluster(s) by addition of up to 5 mM sodium
dithionite. Protein concentration was in the range 0.5−0.7 mM, in
degassed 50 mM Tris buffer pH 8.0, 100 mM NaCl, 5 mM DTT, and
10% glycerol. EPR spectra were acquired at 14 and 45 K, using a
Bruker Elexsy 580 spectrometer working at a microwave frequency
of ca. 9.36 GHz, equipped with a SHQ cavity and a continuous flow He
cryostat (ESR900, Oxford instruments) for temperature control.

Acquisition parameters were as follows: microwave frequency, 9.36
GHz; microwave power, 1 mW at 10 K and 0.12 mW at 45 K;
modulation frequency, 100 kHz; modulation amplitude, 10 G;
acquisition time constant, 163.84 ms; number of points 1024;
number of scans 4; field range 2000−4000 G.

Paramagnetic 1D \(^1\)H NMR experiments were performed on a
Bruker Avance spectrometer operating at 400 MHz. \(^1\)H Larmor
frequency and equipped with a \(^1\)H dedicated 5 mm probe. Water
signal was suppressed via fast repetition experiments and water
selective irradiation.\(^22\) Experiments were typically performed using
an acquisition time of 50 ms and an overall recycle delay of 80 ms.
Sample concentration was in the range 0.5−0.7 mM, in degassed 50
paramagnetic 1D 1H NMR spectra. Acid-labile sulfi degassed bu was exchanged by a PD-10 desalting column in the appropriate Concentrations. His6-tagged monomeric apo wtNUBP1 was baseline correction was performed using polynomial functions.

Figure 1. NUBP1 binds [4Fe−4S]$^{2+}$ clusters at both N-terminal and C-terminal motifs. UV−vis spectra of (A) wtNUBP1, (B) NUBP1-C235A/C238A, and (C) NUBP1₃₈₋₁₃₀ aerobically purified (black line), anaerobically purified (red line), and chemically reconstituted (blue line). ε values are based on monomeric (NUBP1-C235A/C238A) or dimeric protein (wtNUBP1 and NUBP1₃₈₋₁₃₀) concentration. CW X-band EPR spectra of anaerobically purified wtNUBP1 (D), anaerobically purified NUBP1-C235A/C238A (E), and chemically reconstituted NUBP1₃₈₋₁₃₀ (F), after reduction with sodium dithionite, at 10 K (black line) and at 45 K (red line).

Structure of Human NUBP1. The characterization of the Fe−S cluster binding properties and quaternary structure of NUBP1 is an essential prerequisite to investigate in detail Fe−S cluster transfer from GLRX3 to NUBP1. For this purpose, in addition to wild-type NUBP1 (wtNUBP1, hereafter), we produced a construct where the first 37 N-terminal residues were deleted (NUBP1₃₈₋₁₃₀ hereafter), which thus contains only the C-terminal CPXC motif, and a mutant containing only the N-terminal CX₁₃CX₂CX₅C motif, by mutating the two cysteines of the CPXC motif, that is, C235 and C238, into alanines (NUBP1_{C235A/C238A}, hereafter). The N-terminal deletion of NUBP1 as well as C235A/C238A mutations did not affect protein folding, as shown by circular dichroism and 1D 1H NMR spectroscopy (Figure S1). UV−vis spectra of anaerobically purified wtNUBP1 and NUBP1-C235A/C238A exhibit a broad absorption band at ~410 nm, which is characteristic of a [4Fe−4S]$^{2+}$ cluster³³ (Figure 1A and B). The samples are EPR silent, as expected for the S = 0 ground state of an oxidized [4Fe−4S]$^{2+}$ cluster.³⁴ Chemical reduction with sodium dithionite of both samples gave rise to similar intense rhombic EPR signals at 10 K, with g values of 2.05, 1.92, and 1.86, which broadened beyond detection at 45 K (Figure 1D and E), in agreement with the presence of [4Fe−4S]$^{2+}$ clusters. These results compare quite well with what was previously observed for the yeast NUBP1 homologue Nlp35.⁸

RESULTS

Fe−S Cluster Binding Properties and Quaternary Structure of Human NUBP1. The characterization of the Fe−S cluster binding properties and quaternary structure of NUBP1 is an essential prerequisite to investigate in detail Fe−S cluster transfer from GLRX3 to NUBP1. For this purpose, in addition to wild-type NUBP1 (wtNUBP1, hereafter), we produced a construct where the first 37 N-terminal residues were deleted (NUBP1₃₈₋₁₃₀ hereafter), which thus contains only the C-terminal CPXC motif, and a mutant containing only the N-terminal CX₁₃CX₂CX₅C motif, by mutating the two cysteines of the CPXC motif, that is, C235 and C238, into alanines (NUBP1_{C235A/C238A}, hereafter). The N-terminal deletion of NUBP1 as well as C235A/C238A mutations did not affect protein folding, as shown by circular dichroism and 1D 1H NMR spectroscopy (Figure S1). UV−vis spectra of anaerobically purified wtNUBP1 and NUBP1-C235A/C238A exhibit a broad absorption band at ~410 nm, which is characteristic of a [4Fe−4S]$^{2+}$ cluster³³ (Figure 1A and B). The samples are EPR silent, as expected for the S = 0 ground state of an oxidized [4Fe−4S]$^{2+}$ cluster.³⁴ Chemical reduction with sodium dithionite of both samples gave rise to similar intense rhombic EPR signals at 10 K, with g values of 2.05, 1.92, and 1.86, which broadened beyond detection at 45 K (Figure 1D and E), in agreement with the presence of [4Fe−4S]$^{2+}$ clusters. These results compare quite well with what was previously observed for the yeast NUBP1 homologue Nlp35.⁸
Anaerobically purified wtNUBP1 and NUBP1-C235A/C238A showed differences in their quaternary structure, as determined by analytical gel filtration: wtNUBP1 is dimeric, whereas NUBP1-C235A/C238A is monomeric (Figure 2A and B). Anaerobically purified wtNUBP1 and NUBP1-C235A/C238A contained 0.9 and 0.3 [4Fe−4S] clusters per dimer and monomer, respectively, according to protein, acid-labile sulfide, and iron analysis (Table 1). These data indicate the presence of substoichiometric amounts of cluster(s) in anaerobically purified wtNUBP1 and NUBP1-C235A/C238A (0.9 vs 3 clusters and 0.3 vs 1 cluster, respectively).

Contrary to wtNUBP1 and NUBP1-C235A/C238A, anaerobically purified NUBP1_{38−320} was essentially colorless, contained less than 5% of [4Fe−4S] cluster (Table 1), and showed no signals in the UV−vis spectrum (Figure 1C) as well as in the paramagnetic 1D 1H NMR spectra of (a) anaerobically purified and (b) chemically reconstituted wtNUBP1, (c) anaerobically purified NUBP1-C235A/C238A, and (d) chemically reconstituted NUBP1_{38−320}.

Paramagnetic 1D 1H NMR spectroscopy showed that NUBP1 binds [4Fe−4S]^{2+} clusters. Paramagnetic 1D 1H NMR spectra of these samples showed four intense hyperfine shifted signals in the 18−11 ppm spectral region (Figure 3, traces a and c), whose chemical shift values and line widths are typical of βCH₂ of cysteines bound to a [4Fe−4S]^{2+} cluster.25,26 The anti-Curie temperature dependence of these signals further confirms the presence of an oxidized [4Fe−4S]^{2+} cluster (Figure S2). Moreover, the observation that the paramagnetic 1D 1H NMR spectrum of anaerobically purified wtNUBP1 is almost superimposable to that of anaerobically purified NUBP1-C235A/C238A (Figure 3), which can only bind a [4Fe−4S]^{2+} cluster at the N-terminal motif, indicates that the [4Fe−4S]^{2+} clusters in the anaerobically purified wtNUBP1 are bound to the N-terminal motif, and thus the occupancy of the C-terminal site by [4Fe−4S]^{2+} clusters is very low.

Table 1. Iron and Acid-Labile Sulfide Quantification of Anaerobically Purified and Chemically Reconstituted Proteins

sample	Fe^{a} ± S^{a}	[4Fe−4S]
wtNUBP1* anaerobically purified	3.6 ± 0.1	0.90
wtNUBP1* chemically reconstituted	5.3 ± 0.1	1.30
NUBP1-C235A/C238A** anaerobically purified	1.2 ± 0.1	0.30
NUBP1-C235A/C238A** chemically reconstituted	3.1 ± 0.1	0.80
NUBP1_{38−320}* anaerobically purified	0.2 ± 0.1	0.04
NUBP1_{38−320}* chemically reconstituted	2.2 ± 0.1	0.50

^{a}Fe and acid-labile S measurements are reported as mol Fe or S per mol of dimeric* or monomeric** protein. Data are the average of three independent samples.

Figure 2. The C-terminal motif of NUBP1 promotes protein dimerization. Analytical gel filtration profiles of (A) wtNUBP1, (B) NUBP1-C235A/C238A, and (C) NUBP1_{38−320}, anaerobically purified (red line), chemically reconstituted from the monomeric apo form (blue line), and after treatment of the anaerobically/aerobically purified form with pyridine-2,6-dicarboxylic acid (PDC) to remove metals (black line).

Figure 3. Paramagnetic NMR spectroscopy showed that NUBP1 binds [4Fe−4S]^{2+} clusters. Paramagnetic 1D 1H NMR spectra of (a) anaerobically purified and (b) chemically reconstituted wtNUBP1, (c) anaerobically purified NUBP1-C235A/C238A, and (d) chemically reconstituted NUBP1_{38−320}.
with pyridine-2,6-dicarboxylic acid (PDC), a strong divalent transition metal chelator, led to their monomerization (Figure 2A and C). This indicates that their dimerization is promoted, not only by the binding of a bridged Fe/S cluster, but also by the binding of an adventitious metal ion(s), shared by C235 and/or C238 from each subunit of the dimer. Consistent with this behavior, the treatment of both anaerobically and aerobically purified NUBP1-C235A/C238A with PDC does not affect the quaternary structure that is always monomeric (Figure 2B). Upon chemical reconstitution of monomerized apo wtNUBP1, monomeric apo NUBP1-C235A/C238A, and monomerized apo NUBP138 were eluted in two fractions: the one eluting at smaller elution volume (at ∼15 mL), that is, the dimeric species, has a dark brown color and thus contains a dimeric [4Fe–4S]2+ NUBP1 species, while the fraction eluting at ∼16 mL, that is, the monomeric species, is colorless and thus contains the apo protein. This result indicates that cluster binding to the C-terminal motif induces protein dimerization by bridging two C-terminal motifs, as was previously observed in yeast Nbp35. Moreover, the presence of the monomeric apo species in the gel filtration profiles of the chemically reconstituted monomerized apo proteins (Figure 2) is in agreement with the partial cluster loading resulting from the iron and acid-labile sulfide quantification data (Table 1). Taking into account the molar fractions of holo apo NUBP1 versus the apo form in the chemically reconstituted sample (i.e., 0.6 and 0.4, respectively, estimated from the gel filtration profile, Figure 2A) and the cluster content (Table 1), we estimated that 2.2 of [4Fe–4S] clusters were bound to the fraction of dimeric apo wtNUBP1, indicating that the three cluster binding sites in the dimeric holo wtNUBP1 species, that is, two N-terminal and one C-terminal, are partially occupied by [4Fe–4S] clusters. Considering the observed kinetic lability of the [4Fe–4S] cluster binding to the C-terminal motif, it is reasonable to conclude that, in the dimeric chemically reconstituted holo wtNUBP1 species, the two N-terminal cluster binding sites are essentially fully occupied by [4Fe–4S] clusters, while the C-terminal cluster binding site is occupied at very low extent, that is, ∼20% occupied. This model is supported by the paramagnetic 1D 1H NMR spectra of freshly prepared chemically reconstituted NUBP138 and wtNUBP1. The first showed very weak hyperfine shifted signals at 12 and 10 ppm in the spectral region typical of βCH2 of cysteines bound to a [4Fe–4S]2+ cluster (Figure 3, trace d), and their very low signal intensity agrees with a very low [4Fe–4S] cluster occupancy at the C-terminal site, as a consequence of the [4Fe–4S]2+ cluster binding lability at this motif. The second showed very intense hyperfine shifted signals of cysteines bound to the N-terminal cluster, and a very weak hyperfine shifted signal at 10 ppm diagnostic of a C-terminal bound cluster, which is indicative of a low [4Fe–4S] cluster occupancy at the C-terminal site (Figure 3, trace b). This signal was not observed in anaerobically purified wtNUBP1 (Figure 3, trace a), which confirms that the C-terminal site was not occupied by [4Fe–4S] clusters in the latter sample.

In conclusion, wtNUBP1 binds three [4Fe–4S]2+ clusters, two, as stable, at each N-terminal CX13CX2CX5C motif, and one at the C-terminal CPXC motif, which is labile and essential for promoting protein dimerization. This behavior is the same as that observed for the yeast homologue of NUBP1, that is, Nbp35.

[2Fe–2S]2+-GLRX32-GS4 Transfers Its Clusters to NUBP1. GLRX3 consists of three domains: one N-terminal thioredoxin domain and two monothiol glutaredoxin domains, each able to bind a glutathione-coordinated [2Fe–2S]2+ cluster via protein dimerization ([2Fe–2S]2-GLRX3:GS4, hereafter). Various amounts of [2Fe–2S]2-GLRX3-GS4 were incubated with monomerized apo wtNUBP1, or with monomeric apo NUBP1-C235A/C238A, or with monomerized apo NUBP138 under anaerobic conditions and in the presence of 5 mM GSH, and, for each experiment, the two proteins in the mixture were separated through nickel-affinity
The cluster transfer/assembly reaction is relatively fast, as it occurs within 1 h after the mixing of the two proteins. Acid-labile sulfide and iron analysis on NUBP1-C235A/C238A, isolated after incubation with 1 equiv of [2Fe−2S]2−GLRX32−GS0 showed that NUBP1-C235A/C238A contains 0.5 [4Fe−4S] clusters per monomer (Table 2), consistent with a [4Fe−4S] cluster assembly efficiency of ~60% with respect to chemical reconstitution. The absorbance peaks in the UV−vis spectra of [2Fe−2S]2−GLRX32−GS0, once incubated with apo NUBP1-C235A/C238A and then isolated, were significantly reduced with respect to the starting material (Figure 4C). However, their intensities were not completely bleached at any protein ratio, being higher as they went from substoichiometric ratios to the 1:1 ratio (Figure 4C). This result indicates no complete cluster transfer/assembly reaction. An excess of [2Fe−2S]2−GLRX32−GS0 (2.5 equiv of [2Fe−2S]2−GLRX32−GS0 per monomeric apo NUBP1-C235A/C238A) was not able to increase the [4Fe−4S] incorporation into NUBP1-C235A/C238A; that is, the absorbance band at ~410 nm did not increase in intensity in the isolated NUBP1-C235A/C238A protein. Acid-labile sulfide and iron analysis on the residual [2Fe−2S]2−GLRX32−GS0, isolated after incubation with 1 equiv of NUBP1-C235A/C238A, showed that [2Fe−2S]2−GLRX32−GS0 contains ~0.9 [2Fe−2S]2−GLRX32−GS0 clusters per dimer (Table 2). These data indicate that ~50% of [2Fe−2S]2−GLRX32−GS0 clusters were released from [2Fe−2S]2−GLRX32−GS0 at the 1:1 ratio, corresponding to the formation of ~0.5 [4Fe−4S] clusters.

NUBP1-C235A/C238A isolated from the same mixture contains, indeed, 0.5 [4Fe−4S] clusters, indicating that all of the three independent samples.

The cluster transfer/assembly reaction is relatively fast, as it occurs within 1 h after the mixing of the two proteins. Acid-labile sulfide and iron analysis on NUBP1-C235A/C238A, isolated after incubation with 1 equiv of [2Fe−2S]2−GLRX32−GS0 showed that NUBP1-C235A/C238A contains 0.5 [4Fe−4S] clusters per monomer (Table 2), consistent with a [4Fe−4S] cluster assembly efficiency of ~60% with respect to chemical reconstitution. The absorbance peaks in the UV−vis spectra of [2Fe−2S]2−GLRX32−GS0, once incubated with apo NUBP1-C235A/C238A and then isolated, were significantly reduced with respect to the starting material (Figure 4C). However, their intensities were not completely bleached at any protein ratio, being higher as they went from substoichiometric ratios to the 1:1 ratio (Figure 4C). This result indicates no complete cluster transfer/assembly reaction. An excess of [2Fe−2S]2−GLRX32−GS0 (2.5 equiv of [2Fe−2S]2−GLRX32−GS0 per monomeric apo NUBP1-C235A/C238A) was not able to increase the [4Fe−4S] incorporation into NUBP1-C235A/C238A; that is, the absorbance band at ~410 nm did not increase in intensity in the isolated NUBP1-C235A/C238A protein. Acid-labile sulfide and iron analysis on the residual [2Fe−2S]2−GLRX32−GS0, isolated after incubation with 1 equiv of NUBP1-C235A/C238A, showed that [2Fe−2S]2−GLRX32−GS0 contains ~0.9 [2Fe−2S]2−GLRX32−GS0 clusters per dimer (Table 2). These data indicate that ~50% of [2Fe−2S]2−GLRX32−GS0 clusters were released from [2Fe−2S]2−GLRX32−GS0 at the 1:1 ratio, corresponding to the formation of ~0.5 [4Fe−4S] clusters.

NUBP1-C235A/C238A isolated from the same mixture contains, indeed, 0.5 [4Fe−4S] clusters, indicating that all of the three independent samples.

The cluster transfer/assembly reaction is relatively fast, as it occurs within 1 h after the mixing of the two proteins. Acid-labile sulfide and iron analysis on NUBP1-C235A/C238A, isolated after incubation with 1 equiv of [2Fe−2S]2−GLRX32−GS0 showed that NUBP1-C235A/C238A contains 0.5 [4Fe−4S] clusters per monomer (Table 2), consistent with a [4Fe−4S] cluster assembly efficiency of ~60% with respect to chemical reconstitution. The absorbance peaks in the UV−vis spectra of [2Fe−2S]2−GLRX32−GS0, once incubated with apo NUBP1-C235A/C238A and then isolated, were significantly reduced with respect to the starting material (Figure 4C). However, their intensities were not completely bleached at any protein ratio, being higher as they went from substoichiometric ratios to the 1:1 ratio (Figure 4C). This result indicates no complete cluster transfer/assembly reaction. An excess of [2Fe−2S]2−GLRX32−GS0 (2.5 equiv of [2Fe−2S]2−GLRX32−GS0 per monomeric apo NUBP1-C235A/C238A) was not able to increase the [4Fe−4S] incorporation into NUBP1-C235A/C238A; that is, the absorbance band at ~410 nm did not increase in intensity in the isolated NUBP1-C235A/C238A protein. Acid-labile sulfide and iron analysis on the residual [2Fe−2S]2−GLRX32−GS0, isolated after incubation with 1 equiv of NUBP1-C235A/C238A, showed that [2Fe−2S]2−GLRX32−GS0 contains ~0.9 [2Fe−2S]2−GLRX32−GS0 clusters per dimer (Table 2). These data indicate that ~50% of [2Fe−2S]2−GLRX32−GS0 clusters were released from [2Fe−2S]2−GLRX32−GS0 at the 1:1 ratio, corresponding to the formation of ~0.5 [4Fe−4S] clusters.

NUBP1-C235A/C238A isolated from the same mixture contains, indeed, 0.5 [4Fe−4S] clusters, indicating that all of the three independent samples.
the [2Fe−2S] clusters released from [2Fe−2S]2−GLRX32−GS4 are coordinated to NUBP1 with the formation of [4Fe−4S] clusters, and thus no cluster is lost in solution in the cluster transfer/assembly process. These observations suggest that, upon addition of [2Fe−2S]2−GLRX32−GS4, there is a transfer of [2Fe−2S] clusters to NUBP1 with the concomitant assembly of [4Fe−4S] clusters, although this process is not complete.

Addition of 5 mM of DTT, that is, a reductant stronger than GSH although not physiologically relevant,30–32 to the 1:1 mixture promotes the formation of [4Fe−4S] clusters as indicated by a further increase in the intensities of the band at 410 nm in the UV–vis spectra (Figure S4). At the same time, the intensity of the UV–vis signals of GLRX3, isolated after incubation with NUBP1 C235A/C238A in the presence of 5 mM GSH and separation on Ni-NTA column, is lower than that observed in the absence of DTT (Figure S4). Overall, these data indicate that, upon DTT addition, more [2Fe−2S] clusters are released from GLRX3 and concomitantly more [4Fe−4S] clusters assembled on NUBP1 C235A/C238A. This effect can be rationalized considering the higher reduction potential of DTT ($E_{\text{red}} = −0.366 \text{ mV}$)33 than that of GSH ($E_{\text{red}} = −0.299 \text{ mV}$),18 which thus can drive a more efficient reductive coupling of two [2Fe−2S]2+ clusters to form a [4Fe−4S]2+ cluster on NUBP1 C235A/C238A. In conclusion, the incomplete [4Fe−4S] cluster assembly on the N-terminal motif could be due to the fact that GSH reduction potential is not sufficient to efficiently drive [4Fe−4S] cluster formation on NUBP1 C235A/C238A, regardless of any excess of [2Fe−2S]2−GLRX32−GS4 added to the mixture.

After incubation of NUBP138–320 with increasing amounts of [2Fe−2S]2−GLRX32−GS4, up to the NUBP138–320:2Fe−2S]2−GLRX32−GS4 1:0.5 ratio (the latter is the stoichiometric amount required to form one [4Fe−4S] cluster on dimeric NUBP138–320), the UV–vis spectrum of NUBP138–320 separated from the mixture (Figure 5A) did not match that of the reconstituted [4Fe−4S]2+ NUBP138–320 (Figure 1C), because it showed bands at 320, 510, and 580 nm, which are typical of a [2Fe−2S]2+ cluster.35 These bands increased in intensity upon increasing amounts of [2Fe−2S]2−GLRX32−GS4 (Figure S5), indicating a stepwise formation of [2Fe−2S]2+ NUBP138–320. Even longer incubation times, up to 4 h, did not promote the formation of a [4Fe−4S] cluster on the C-terminal site. SDS-PAGE analysis allowed us to exclude the presence of traces of coeluted [2Fe−2S]2−GLRX32−GS4 in the fraction containing NUBP138–320 (Figure S5), thus confirming that the [2Fe−2S]2+ cluster observed in the UV–vis spectra of NUBP138–320 separated from the mixture is exclusively bound to NUBP138–320. The 1H NMR spectrum of NUBP138–320 after incubation and separation from [2Fe−2S]2−GLRX32−GS4 showed a broad unresolved signal in the 30–20 ppm spectral region and a sharper signal at 10 ppm (Figure 5B). These two signals are typical of βCH3 and αCH3, respectively, of cysteines bound to a [2Fe−2S]2+ cluster.35,36 Analytical gel filtration data showed that cluster transfer from [2Fe−2S]2−GLRX32−GS4 to monomerized apo NUBP138–320 induces stepwise

Figure 5. [2Fe−2S]2−GLRX32−GS4 transfers a [2Fe−2S]2+ cluster to NUBP138–320. (A) UV–vis spectra of NUBP138–320 before (black line) and after incubation with 0.15 equiv (red line), 0.30 equiv (blue line), and 0.50 equiv (green line) of [2Fe−2S]2−GLRX32−GS4. (B) Paramagnetic 1D 1H NMR spectrum of NUBP138–320 obtained after reaction with 0.50 equiv of [2Fe−2S]2−GLRX32−GS4 in the presence of 5 mM GSH. (C) Analytical gel filtration of NUBP138–320 before (black line) and after incubation with 0.15 equiv (red line), 0.30 equiv (blue line), and 0.50 equiv (green line) of [2Fe−2S]2−GLRX32−GS4. (D) UV–vis spectra of chemically reconstituted [2Fe−2S]2−GLRX32−GS4 before (black line) and after incubation with NUBP138–320 at the 0.15:1.0 (red line), 0.3:1.0 (blue line), and 0.5:1.0 (green line) [2Fe−2S]2−GLRX32−GS4:NUBP138–320 ratios. ε values are based on dimeric protein concentration.
protein dimerization (Figure 5C). The cluster transfer/assembly reaction is relatively fast as it occurs within 1 h after the mixing of the two proteins. Acid-labile sulfide and iron analysis of NUBP138-320, isolated from the 1:0.5 apo NUBP138-320/[2Fe–2S]2+GLRX32-GS4 mixture, showed that NUBP138-320 contains ∼0.5 [2Fe–2S] clusters per dimer (Table 2), indicating an incomplete [2Fe–2S] cluster transfer reaction at the [2Fe–2S]2+GLRX32-GS4 stoichiometric amount required to fully saturate NUBP138-320 with a [4Fe–4S] cluster. The observed partial cluster transfer could be possibly due to similar [2Fe–2S] cluster binding affinities between the C-terminal motif of NUBP138-320 and the two CGFS motifs of GLRX3. Consistent with the observed partial cluster transfer, the absorbance peaks of the [2Fe–2S]2+ clusters of [2Fe–2S]2+GLRX32-GS4, once incubated with NUBP138-320 and then separated, were significantly reduced in the UV–vis spectra with respect to the starting material, but their intensities were not completely bleached in the UV–vis spectra at all protein ratios and increased in intensity when moving from substoichiometric ratios to the 1:0.5 ratio (Figure 5D). Acid-labile sulfide and iron analysis on [2Fe–2S]2+GLRX32-GS4, isolated from the 1:0.5 apo NUBP138-320/[2Fe–2S]2+GLRX32-GS4 mixture, showed that [2Fe–2S]2+GLRX32-GS4 contains ∼1.2 [2Fe–2S] clusters per dimer (Table 2). Thus, ∼30% of [2Fe–2S] clusters per dimer were released from [2Fe–2S]2+GLRX32-GS4 at the 1:0.5 ratio, corresponding to ∼0.5 [2Fe–2S] clusters, which is the amount experimentally determined on NUBP138-320 isolated from the mixture (Table 2). This indicates that [2Fe–2S] clusters are not lost in solution during the cluster transfer reaction, but are transferred to NUBP138-320. In conclusion, [2Fe–2S]2+GLRX32-GS4 is able to transfer its [2Fe–2S]2+ clusters to the C-terminal motif by inducing NUBP1 dimerization, but no formation of a [4Fe–4S]2+ cluster is observed, even when 5 mM DTT was added to the mixture (Figure S4).

Different mixtures of wtNUBP1 and [2Fe–2S]2+GLRX32-GS4 (0.50, 1.0, and 1.5 equiv of [2Fe–2S]2+GLRX32-GS4 per monomerized wtNUBP1, with 1.5 equiv being the stoichiometric amount required to form three [4Fe–4S] clusters on dimeric wtNUBP1) were then analyzed following the same approach as that used for the two mutants, and similar conclusions were drawn. Indeed, the UV–vis and paramagnetic 1D 1H NMR spectra indicated a stepwise and relatively fast assembly of a [4Fe–4S]2+ cluster bound to the N-terminal motif of wtNUBP1 (Figure 6A and B). Analytical gel filtration showed that cluster transfer induces protein dimerization (Figure 6C), indicating that Fe/S cluster binding also occurs at the C-terminal motif of wtNUBP1, that is, the motif exclusively found to promote NUBP1 dimerization. UV–vis spectra collected on [2Fe–2S]2+GLRX32-GS4, once incubated and separated from wtNUBP1 (Figure 6D), as well as acid-labile sulfide and iron analysis on wtNUBP1 and [2Fe–2S]2+GLRX32-GS4 indicated an incomplete cluster transfer/assembly reaction; that is, ∼0.6 [4Fe–4S] clusters are bound to dimeric wtNUBP1 (Table 2) consistent with a [4Fe–4S] cluster assembly efficiency of ∼50% with respect to chemically reconstituted wtNUBP1. [4Fe–4S]2+ cluster assembly is more efficient in the presence of 5 mM DTT, a condition that gives
rise to a more intense band at 410 nm (Figure S4). In the wtNUBP1:GLRX3 reaction, however, at variance with what occurs with the two mutants, the amount of released [2Fe−2S] clusters from [2Fe−2S]−GLRX3−GS₄ does not correspond to the amount of Fe/S cluster bound to wtNUBP1. Indeed, ~50% of [2Fe−2S]− clusters were released from [2Fe−2S]−GLRX3−GS₄ at the final 1.5:1.0 ratio (Table 2), corresponding to an expected formation of ~1.3 [4Fe−4S] clusters. wtNUBP1 isolated from the same mixture contains, however, 0.6 [4Fe−4S] clusters (Table 2) only. The [4Fe−4S]²⁺ cluster binding lability detected at the C-terminal motif of wtNUBP1 can be considered the cause of the ~0.7 [4Fe−4S] cluster difference. These data suggest that a [4Fe−4S]²⁺ cluster is assembled on the C-terminal motif of wtNUBP1, but, because it is not stably bound to it, it is lost upon protein isolation. The formation of a [4Fe−4S]²⁺ cluster on the C-terminal motif is confirmed by the paramagnetic 1D ¹H NMR spectrum of wtNUBP1 isolated from the mixture and [2Fe−2S]−GLRX3−GS₄ final mixture. Indeed, a paramagnetic signal having the same chemical shift, that is, 10 ppm (Figure 6B), and intensity as that present in the paramagnetic 1D ¹H NMR spectrum of the chemically reconstituted [4Fe−4S]²⁺ wtNUBP1₃₈−₅₂₀ (Figure 3, trace d), which exclusively contains a [4Fe−4S] cluster bound at the C-terminal motif, is detected. Moreover, the intensity of this signal is much lower than that of the signals due to the N-terminal [4Fe−4S] bound cluster (Figure 6B), according to a low cluster [4Fe−4S] occupation at the C-terminal cluster binding site, determined by the [4Fe−4S] cluster binding lability at the C-terminal motif. This lability was detected only upon wtNUBP1 and wtNUBP1 and [2Fe−2S]−GLRX3−GS₄. Indeed, the [2Fe−2S]²⁺ cluster bound to the C-terminal motif (i.e., in the reaction occurring between wtNUBP1₃₈−₅₂₀ and [2Fe−2S]−GLRX3−GS₄) was not lost in solution, at variance with what occurs for the [4Fe−4S]²⁺ cluster (i.e., in the reaction occurring between wtNUBP1 and [2Fe−2S]−GLRX3−GS₄).

To investigate the role of GSH as the reductant promoting the [4Fe−4S]²⁺ cluster assembly on wtNUBP1, we performed the reaction between [2Fe−2S]−GLRX3−GS₄ and monomerized apo wtNUBP1 at the 1:5:1 stoichiometric ratio using different GSH concentrations (0, 1, 5, and 10 mM). The UV−vis spectrum, collected on wtNUBP1 isolated from the reaction mixture at 0 mM GSH, showed bands at 320, 420, 510, and 800 nm (Figure S6), which are typical of a [2Fe−2S]²⁺ cluster. By addition of up to 10 mM GSH, changes in the UV−vis spectra of wtNUBP1 isolated from the mixture were observed: the bands at 320, 510, and 800 nm decreased in intensity, and a broad unresolved band at 410 nm increased in intensity (Figure S6). These changes indicated that (i) [2Fe−2S]²⁺ clusters are transferred from GLRX3 to wtNUBP1 forming [2Fe−2S]²⁺-bound wtNUBP1 species in the absence of GSH; and (ii) the latter species is then transformed into [4Fe−4S]²⁺-bound wtNUBP1 species upon the addition of increasing amounts of the GSH reductant.

DISCUSSION

In this work, we showed that [2Fe−2S]−GLRX3−GS₄ is able to transfer its [2Fe−2S]²⁺ cargo to NUBP1 in its monomeric apo form (Figure 7). Although a dimeric apo state of NUBP1 was purified from E. coli cells, we showed that this species was induced by the presence of adventitious metal ion(s) bridging two NUBP1 molecules. Thus, it is likely that the monomeric apo NUBP1 is a potential physiologically relevant species accepting [2Fe−2S] clusters from GLRX3. Our data showed that cluster transfer from [2Fe−2S]−GLRX3−GS₄ to monomeric apo NUBP1 occurs on both N-terminal and C-terminal motifs, with GLRX3 thus acting as a [2Fe−2S] cluster chaperone for both cluster binding sites. The proposed chaperone function is in agreement with the functional data available on yeast Nbp35. Indeed, it was observed that depletion of Nbp35 resulted in an increase of iron level in Grx3/4, as, when the [2Fe−2S] cluster from Grx3/4 is not transferred anymore to Nbp35, iron accumulates on the Grx3/4 proteins as a [2Fe−2S] cluster. A similar effect has been also observed in the ISC assembly machinery. Depletion of the ISC components Ssq1, Jac1, and Grx5, which are
involved in the transfer of the [2Fe–2S] cluster from Isu1 to target proteins, leads to an accumulation of iron on Isu1, likely in the form of a [2Fe–2S] cluster. The role of GLRX3 in chaperoning [2Fe–2S] clusters to NUBP1 is also supported by other in vivo findings in yeast, showing that Nbp35 was dispensable for iron incorporation into Cbd1, and vice versa, suggesting that [4Fe–4S] cluster assembly on Cbd1 or Nbp35 does not depend on the other P-loop NTase partner, but depends on Grx3/4 only.6

The kinetic lability observed for the C-terminal [4Fe–4S] cluster with respect to that provided by NDOR1-anamorsin electron reductant might be determined by its higher redox potential of −415 mV, much lower than that of GSH, which was required to reduce the [2Fe–2S] cluster of Dre2, which is the terminus of the Tah18–Dre2 electron transfer chain and thus the redox center expected to provide the electrons to reductively couple two [2Fe–2S] clusters into a [4Fe–4S] cluster on the N-terminal site. A GSH-driven assembly of a [4Fe–4S] cluster via a reductive [2Fe–2S] cluster coupling process also occurs at the C-terminal motif of NUBP1 (Figure 7), although the lability of the cluster binding to the C-terminal motif determines a low [4Fe–4S] cluster occupancy at that site. In the latter reaction, cluster binding to the C-terminal motif of NUBP1 promotes protein dimerization, at variance with cluster binding to the N-terminal motif, which, indeed, does not affect the quaternary structure of NUBP1 (Figure 7). However, at variance with what is observed in the formation of the [4Fe–4S] cluster at the N-terminal motif, we found that [2Fe–2S] clusters were not converted in a [4Fe–4S] cluster at the C-terminal motif once the N-terminal motif was absent. This suggests a cooperativity effect between the N- and the C-terminal motifs in the formation of a [4Fe–4S] cluster at the C-terminal motif, but not in the formation of a [4Fe–4S] cluster at the N-terminal motif. It is possible that the presence of a [4Fe–4S] cluster bound at the N-terminal site is required to drive [4Fe–4S] cluster formation at the C-terminal site, but not vice versa. A possible mechanism might require that the [4Fe–4S] cluster bound at the N-terminal site would receive the electrons from the NDOR1-anamorsin electron transfer chain, and then transfer them to the C-terminal site, thus assembling a [4Fe–4S] cluster on it. In such a case, the [4Fe–4S] N-terminal cluster is therefore playing an electron transfer role instead of a structural role. In yeast, it was proposed that the Tah18–Dre2 electron transfer chain is not required for the insertion of the [4Fe–4S] cluster into the C-terminal motif.9 This interpretation was based on the fact that depletion of Tah18 and Dre2 does not abolish iron incorporation on the C-terminal motif of Cbd1, but even increases iron incorporation on Cbd1. However, we have now observed that [2Fe–2S]–GLRX3–GS4 can transfer a [2Fe–2S] cluster to the C-terminal motif of NUBP1, which stably binds it without releasing it in solution. Thus, iron accumulation on Cbd1 upon depletion of Tah18 and Dre22 can be now interpreted as a consequence of the lack of the electron transfer chain required for assembling a [4Fe–4S] cluster on the C-terminal motif. According to our data, Grx3/4 proteins would transfer the [2Fe–2S] cluster to Cbd1, and the [2Fe–2S] cluster remains then stacked on Cbd1 and accumulates on it in the absence of the electrons required to transform the [2Fe–2S]-bound cluster into a labile [4Fe–4S] cluster. Only the assembled [4Fe–4S] cluster, and not the [2Fe–2S] cluster, would be indeed expected to be released from the C-terminal motif in the following steps of the CIA machinery. The observed higher lability of [4Fe–4S] cluster binding with respect to [2Fe–2S] cluster binding at the C-terminal motif of NUBP1 supports this model.

CONCLUSIONS

We propose that [2Fe–2S]–GLRX3–GS4 acts as a component of the CIA machinery at its early stage by transferring [2Fe–2S] clusters to NUBP1 and by assembling [4Fe–4S] clusters on both N-terminal and C-terminal motifs of NUBP1, which bind, respectively, a stable and a kinetic labile [4Fe–4S] cluster. Our results allowed us to interpret and rationalize in...
vivo data previously reported for the components of the early stage of the CIA machinery.

ASSOCIATED CONTENT

1 Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c02266.

Six figures reporting the CD and NMR spectra of wild-type NUBP1 and of NUBP1-C235A/C238A and NUBP1S38-320 mutants; the temperature dependence of the paramagnetic 1D 1H NMR signals of anaerobically purified [4Fe-4S]-wtNUBP1 and [4Fe-4S]-NUBP1-C235A/C238A; the kinetic lability of the [4Fe-4S] cluster bound to chemically reconstituted NUBP1S38-320, the comparison of the UV–vis spectra of wtNUBP1, NUBP1-C235A/C238A, and NUBP1S38-320 before and after mixing with [2Fe-2S]−GLRX3−GS1 in the presence and in the absence of DTT; SDS-PAGE of [2Fe-2S]−GLRX3−GS1 wtNUBP1, NUBP1-C235A/C238A, and NUBP1S38-320 after cluster transfer reaction; and the effect of GSH on cluster transfer/assembly on NUBP1 (PDF)

AUTHOR INFORMATION

Corresponding Authors

Lucia Banci — Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Florence S0019, Italy; orcid.org/0000-0003-0562-5774; Email: banci@cerm.unifi.it

Simone Ciofi-Baffoni — Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Florence S0019, Italy; orcid.org/0000-0002-2376-3321; Email: ciofi@cerm.unifi.it

Authors

Francesca Camponeschi — Magnetic Resonance Center CERM, University of Florence, Florence S0019, Italy; orcid.org/0000-0002-4122-4508

Nihar Ranjan Prusty — Magnetic Resonance Center CERM, University of Florence, Florence S0019, Italy; orcid.org/0000-0003-3322-1566

Sabine Annemarie Elisabeth Heider — Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Florence S0019, Italy; orcid.org/0000-0002-5114-654X

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/jacs.0c02266

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the support and the use of resources of Instruct-ERIC, a landmark ESFRI Research Infrastructure, and specifically of the CERM/CIRMMP Italy Centre.

REFERENCES

(1) Lill, R. Function and Biogenesis of Iron-Sulphur Proteins. *Nature* 2009, 460 (7257), 831–838.

(2) Ciofi-Baffoni, S.; Nasta, V.; Banci, L. Protein Networks in the Maturation of Human Iron–Sulfur Proteins. *Metalloviches 2018*, 10 (1), 49–72.

(3) Maio, N.; Rouault, T. A. Iron-Sulfur Cluster Biogenesis in Mammalian Cells: New Insights into the Molecular Mechanisms of Cluster Delivery. *Biochim. Biophys. Acta, Mol. Cell. Res.* 2015, 1853 (6), 1493–1512.

(4) Braymer, J. J.; Lill, R. Iron-Sulfur Cluster Biogenesis and Trafficking in Mitochondria. *J. Biol. Chem. 2017*, 292 (31), 12754–12763.

(5) Netz, D. J. A.; Mascarenhas, J.; Stehling, O.; Pierik, A. J.; Lill, R. Maturation of Cysotocin and Nuclear Iron-Sulfur Proteins. *Trends Cell Biol.* 2014, 24 (5), 303–312.

(6) Hausmann, A.; Aguilar Netz, D. J.; Balk, J.; Pierik, A. J.; Mühlenhoff, U.; Lill, R. The Eukaryotic P Loop NTPase Nbp35: An Essential Component of the Cysotocin and Nuclear Iron-Sulfur Protein Assembly Machinery. *Proc. Natl. Acad. Sci. U. S. A.* 2005, 102 (9), 3266–3271.

(7) Roy, A.; Solodovnikova, N.; Nicholson, T.; Antholine, W.; Walden, W. E. A Novel Eukaryotic Factor for Cystolic Fe-S Cluster Assembly. *EMBO J.* 2003, 22 (18), 4826–4835.

(8) Netz, D. J. A.; Pierik, A. J.; Stümpf, M.; Mühlenhoff, U.; Lill, R. The Cdfl-Nbp35 Complex Acts as a Scaffold for Iron-Sulfur Protein Assembly in the Yeast Cysotol. *Nat. Chem. Biol.* 2007, 3 (5), 278–286.

(9) Netz, D. J. A.; Stümpf, M.; Doré, C.; Mühlenhoff, U.; Pierik, A. J.; Lill, R. Tah18 Transfers Electrons to Dre2 in Cystolic Iron-Sulfur Protein Biogenesis. *Nat. Chem. Biol.* 2010, 6 (10), 758–765.

(10) Stehling, O.; Netz, D. J. A.; Niggemeyer, B.; Rösser, R.; Eisenstein, R. S.; Puccio, H.; Pierik, A. J.; Lill, R. Human Nbp35 Is Essential for Both Cystolic Iron-Sulfur Protein Assembly and Iron Homeostasis. *Mol. Cell. Biol.* 2008, 28 (17), 5517–5528.

(11) Stehling, O.; Jeoung, J.-H.; Freibert, S. A.; Paul, V. D.; Bünfer, S.; Niggemeyer, B.; Rösser, R.; Dobbeck, H.; Lill, R. Function and Crystal Structure of the Dimeric P-Loop ATPase CFD1 Coordinating an Exposed [4Fe-4S] Cluster for Transfer to Apoproteins. *Proc. Natl. Acad. Sci. U. S. A.* 2018, 115 (39), E9085–E9094.

(12) Netz, D. J. A.; Pierik, A. J.; Stümpf, M.; Bill, E.; Sharma, A. K.; Pallesen, L. J.; Walden, W. E.; Lill, R. A Bridging [4Fe-4S] Cluster and Nucleotide Binding Are Essential for Function of the Cdfl-Nbp35 Complex as a Scaffold in Iron-Sulfur Protein Maturation. *J. Biol. Chem.* 2012, 287 (15), 12365–12378.

(13) Camire, E. J.; Grossman, J. D.; Thole, G. J.; Fleischmann, N. M.; Perleth, D. L. The Yeast Nbp35-Cfd1 Cytosolic Iron-Sulfur Protein Scaffold Is an ATPase. *J. Biol. Chem.* 2015, 290 (39), 32793–32802.

(14) Vitale, G.; Fabre, E.; Hurt, E. C. Nbp35 Encodes an Essential and Evolutionary Conserved Protein in Saccharomyces Cerevisiae with Homology to a Superfamily of Bacterial ATPases. *Gene.* 1996, 178 (1–2), 97–106.

(15) Paul, V. D.; Lill, R. Biogenesis of Cysotocin and Nuclear Iron-Sulfur Proteins and Their Role in Genome Stability. *Biochim. Biophys. Acta, Mol. Cell Res.* 2015, 1853 (6), 1528–1539.

(16) Mühlenhoff, U.; Möllik, S.; Godoy, R. J.; Uzarska, M. A.; Richter, N.; Seubert, A.; Zhang, Y.; Stubbe, J.; Pierrel, F.; Herrero, E.; Lillig, C. H.; Lill, R. Cysotocin Monothiol Glutaredoxins Function in Intracellular Iron Sensing and Trafficking via Their Bound Iron-Sulfur Cluster. *Cell Metab.* 2010, 12 (4), 373–385.

(17) Haunhorst, P.; Hanschmann, E.-M.; Brüttigam, L.; Stehling, O.; Hoffmann, B.; Mühlenhoff, U.; Lill, R.; Berndt, C.; Lillig, C. H. Crucial Function of Vertebrate Glutaredoxin 3 (PICOT) in Iron Homeostasis and Hemoglobin Maturation. *Mol. Biol. Cell 2013*, 24 (12), 1895–1903.

(18) Banci, L.; Ciofi-Baffoni, S.; Gajda, K.; Muzzioli, R.; Peruzzini, R.; Winkelman, J. N-Terminal Domains Mediate [2Fe-2S] Cluster Transfer from Glutaredoxin-3 to Anamorsin. *Nat. Chem. Biol.* 2015, 11 (10), 772–778.

(19) Banci, L.; Camponeschi, F.; Ciofi-Baffoni, S.; Muzzioli, R. Elucidating the Molecular Function of Human BOLA2 in GRX3-Dependent Anamorsin Maturation Pathway. *J. Am. Chem. Soc.* 2015, 137 (51), 16133–16143.

(20) Frey, A. G.; Palenchar, D. J.; Wildemann, J. D.; Philpott, C. C. A Glutaredoxin-Bola Complex Serves as an Iron-Sulfur Cluster
Chaperone for the Cytosolic Cluster Assembly Machinery. *J. Biol. Chem.* 2016, 291 (43), 23244–23256.

(21) Banci, L.; Bertini, I.; Ciofi-Baffoni, S.; Boscaro, F.; Chatzi, A.; Mikolajczyk, M.; Tokatlidis, K.; Winkelmann, J. Anamorsin Is a [2Fe-2S] Cluster-Containing Substrate of the Mia40-Dependent Mitochondrial Protein Trapping Machinery. *Chem. Biol.* 2011, 18 (6), 794–804.

(22) Patt, S. L.; Sykes, B. D. Water Eliminated Fourier Transform NMR Spectroscopy. *J. Chem. Phys.* 1972, 56 (6), 3182–3184.

(23) Crack, J. C.; Munnoch, J.; Dodd, E. L.; Knowles, F.; Al Bassam, M. M.; Kamali, S.; Hamilton, A. A.; Cramer, S. P.; Hamilton, C. J.; Johnson, M. K.; Thomson, A. J.; Hutchings, M. I.; Le Brun, N. E. NsRr from Streptomycetes Coelicolor Is a Nitric Oxide-Sensing [4Fe-4S] Cluster Protein with a Specialized Regulatory Function. *J. Biol. Chem.* 2015, 290 (20), 12689–12704.

(24) Hagen, W. R. EPR Spectroscopy of Complex Biological Iron-Sulfur Systems. *JBIC, J. Biol. Inorg. Chem.* 2018, 23 (4), 623–634.

(25) Banci, L.; Camponeschi, F.; Ciofi-Baffoni, S.; Piccioli, M. The NMR Contribution to Protein-Protein Networking in Fe-S Protein Maturation. *JBIC, J. Biol. Inorg. Chem.* 2018, 23 (4), 665–685.

(26) Bertini, I.; Capozzi, F.; Luchinat, C.; Piccioli, M.; Vila, A. J. The Fe-S Centers in Ferredoxins Studied through Proton and Carbon Hyperfine Coupling. Sequence-Specific Assignments of Cysteines in Ferredoxins from Clostridium Acidi Urici and Clostridium Pasteuriunum. *J. Am. Chem. Soc.* 1994, 116 (2), 651–660.

(27) Li, H.; Outten, C. E. Monothiol CGFS Glutaredoxins and BabA-like Proteins: [2Fe-2S] Binding Partners in Iron Homeostasis. *Biochemistry* 2012, 51 (22), 4377–4389.

(28) Li, H.; Mapolelo, D. T.; Randeniya, S.; Johnson, M. K.; Outten, C. E. Human Glutaredoxin 3 Forms [2Fe-2S]-Bridged Complexes with Human BabA2. *Biochemistry* 2012, 51 (8), 1687–1696.

(29) Haunhorst, P.; Berndt, C.; Eitner, S.; Godoy, J. R.; Lillig, C. H. Characterization of the Human Monothiol Glutaredoxin 3 (PICOT) as Iron-Sulfur Protein. *Biochem. Biophys. Res. Commun.* 2010, 394 (2), 372–376.

(30) Vanish, J. N.; Russell, W. K.; Yu, L. E.; Cox, R. M.; Russell, D. H.; Barondeau, D. P. Fluorescent Probes for Tracking the Transfer of Iron-Sulfur Cluster and Other Metal Cofactors in Biosynthetic Reaction Pathways. *J. Am. Chem. Soc.* 2015, 137 (1), 390–398.

(31) Wollers, S.; Layer, G.; Garcia-Serres, R.; Signor, L.; Clemanecy, M.; Latour, J.-M.; Fontecave, M.; Ollagnier de Choudens, S. Iron-Sulfur (Fe-S) Cluster Assembly: The SuBCCD Complex Is a New Type of Fe-S Scaffold with a Flavin Redox Cofactor. *J. Biol. Chem.* 2010, 285 (30), 23331–23341.

(32) Gao, H.; Azam, T.; Randeniya, S.; Couturier, J.; Rouhier, N.; Johnson, M. K. Function and Maturation of the Fe-S Center in Dihydroxyacid Dehydratase from Arabidopsis. *J. Biol. Chem.* 2018, 293 (12), 4422–4433.

(33) Cleland, W. D. DITHIOHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. *Biochemistry* 1964, 3, 480–482.

(34) Schafer, F. Q.; Buettner, G. R. Redox Environment of the Cell as Viewed through the Redox State of the Glutathione Disulfide/ Glutathione Couple. *Free Radical Biol. Med.* 2001, 30 (11), 1191–1212.

(35) Banci, L.; Brancaccio, D.; Ciofi-Baffoni, S.; Del Conte, R.; Gadepalli, R.; Mikolajczyk, M.; Neri, S.; Piccioli, M.; Winkelmann, J. [2Fe-2S] Cluster Transfer in Iron-Sulfur Protein Biogenesis. *Proc. Natl. Acad. Sci. U. S. A.* 2014, 111 (17), 6203–6208.

(36) Banci, L.; Bertini, I.; Luchinat, C. The 1H NMR Parameters of Magnetically Coupled Dimers—The Fe2S2 Proteins as an Example. *Bioorganic Chemistry: Structure and Bonding*: Springer: Berlin, Heidelberg, 1990; pp 113–136.

(37) Mühlendorff, U.; Geber, J.; Richhardt, N.; Lill, R. Components Involved in Assembly and Dislocation of Iron-Sulfur Clusters on the Scaffolding Protein Isu1p. *EMBO J.* 2003, 22 (18), 4815–4825.

(38) Pallesen, L. J.; Solodovnikova, N.; Sharma, A. K.; Walden, W. E. Interaction with Cdp1 Increases the Kinetic Lability of FeS on the Nbp35 Scaffold. *J. Biol. Chem.* 2013, 288 (32), 23358–23367.