Supporting information

Unusually Slow Internal Conversion in N-Heterocyclic Carbene/Carbanion Cyclometallated Ru(II) Complexes: A Hammett Relationship

William T. Kender and Claudia Turro*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210

Table of Contents

Synthetic schemes, NMR, and mass spectrometry data for 1 – 6 S2 – S11
Crystallographic data ... S12 – S21
DFT and Time-Dependent DFT Calculations .. S21–30
Spectroelectrochemistry ... S31
Nanosecond Transient Absorption Spectroscopy S32
Femtosecond Transient Absorption Spectroscopy S33 – S38
Time-Resolved IR Spectroscopy .. S39 – S43
Scheme S1. General synthetic scheme for 1 – 6 where (i) excess glyoxal, RT, overnight followed by NH₄Cl, formaldehyde H₃PO₄ for 6hrs, (ii) 40°C, Mel (neat) for 2 hr, (iii) 1.1 eq (RuCl₂(p-cymene))₃, excess Cs₂CO₃, 6 hr, and (iv) 3 eq bpy in minimal CH₃CN, reflux overnight followed by water, hexanes, and excess NH₄PF₆.

The complete syntheses of complexes 1₁, 3₁, 2 and 6₁ were accomplished following methods previously described, while 2, 4, and 5 were prepared using a modified version of the published routes for the ruthenium synthesis. The syntheses of the ligands for 2₃, 4₄ and 5₅ have been previously described.

The general reaction scheme for the conversion of dichloro(p-cymene)ruthenium(II) dimer to the cyclometallated p-cymene piano stool complex is as follows: The imidazolium salt (~0.5 mmol) and ruthenium starting material (~0.25 mmol) were added to a round bottom flask with Cs₂CO₃ (~1 mmol). Dried and degassed THF was added and the reaction was left to reflux overnight under the positive pressure of argon. The next day the solution was a dark orange color.
in all cases. This was passed through two short plugs of neutral alumina with dichloromethane as the solvent. The orange fractions were collected and concentrated to give an orange solid.

Synthesis of Ru(II)(p-cymene)(NHC-Me)Cl

The –Me substituent complex used 106 mg (0.17 mmol) ruthenium(p-cymene) dimer, 87 mg (0.29 mmol) ligand, and 541 mg of Cs₂CO₃ (1.66 mmol) to give a final weight of 118 mg (0.27 mmol, 77% yield). ^1^H NMR (400 MHz, CDCl₃) shown in Figure S1: 7.84 (1H, d, 1.3 Hz), 7.30 (1H, d, 2.1Hz), 6.96 (1H, d, 6.4Hz), 6.95 (1H, s), 6.70 (1H, dd, 1.2/7.0 Hz), 5.50 (1H, d, 6.0 Hz), 5.45 (1H, d, 6.1 Hz), 5.43 (1H, d, 6.1 Hz), 5.40 (1H, d, 6.0 Hz), 4.04 (3H, s), 2.32 (7H, m), 0.92 (3H, d, 6.9 Hz), 0.82 (3H, d, 6.9 Hz). MS-ESI monoisotopic weight of [M-Cl]^+ : Found – 407.14, Calculated – 407.11 shown in Figure S2.

![Figure S1](image_url)
Figure S1. ^1^H NMR data (400 MHz, CDCl₃) of Ru(II)(p-cymene)(NHC-Me)Cl
Figure S2. MS-ESI data of Ru(II)(p-cymene)(NHC-Me)⁺

Synthesis of Ru(II)(p-cymene)(NHC-Cl)Cl

The –Cl substituent complex used 174 mg (0.28 mmol) ruthenium(p-cymene) dimer, 183 mg (0.57 mmol) ligand, and 562 mg of Cs₂CO₃ (1.72 mmol) to give a final weight of 186 mg (0.40 mmol, 71% yield). ¹H NMR (400 MHz, CDCl₃) shown in Figure S3: 7.96 (1H, d, 2.3 Hz), 7.30 (1H, d, 2.0Hz), 6.98 (1H, d, 3.0 Hz), 6.97 (1H, d, 3.0 Hz), 6.87 (1H, dd, 7.9/2.2 Hz), 5.52 (1H, d, 6.1Hz), 5.47 (1H, d, 5.6Hz), 5.45 (1H, d, 5.6Hz), 5.41 (1H, d, 6.1 Hz), 4.03 (3H, s), 2.33 (4H, m), 0.92 (3H, d, 7.0 Hz), 0.81 (3H, d, 7.0 Hz). Add in MS-ESI data here. MS-ESI monoisotopic weight of [M-Cl]⁺: Found – 427.09, Calculated – 427.05 shown in Figure S4.
Figure S3. 1H NMR data (400 MHz, CDCl$_3$) of Ru(II)(p-cymene)(NHC-Cl)Cl

Figure S4. MS-ESI data of Ru(II)(p-cymene)(NHC-Cl)$^+$
Synthesis of Ru(II)(p-cymene)(NHC-CO₂Et)Cl

The –CO₂Et substituent complex used 197 mg (0.32 mmol) ruthenium(p-cymene) dimer, 168 mg (0.47 mmol) ligand, and 247 mg of Cs₂CO₃ (0.76 mmol) to give a final weight of 135 mg (0.27 mmol, 42% yield). ¹H NMR (400 MHz, CDCl₃) shown in Figure S5: 8.71 (1H, d, 1.8 Hz), 7.65 (1H, dd, 1.8/8.0Hz), 7.38 (1H, d 2.1 Hz), 7.09 (1H, d, 8.0 Hz), 7.00 (1H, d, 2.1 Hz), 5.58 (1H, d, 6.1 Hz), 5.53 (1H, d, 6.1 Hz), 5.51 (1H, d, 5.9 Hz), 5.42 (1H, d, 5.9Hz), 4.38 (2H, q, 7.1 Hz), 4.06 (3H,s), 2.35 (m 1H 3.3Hz), 2.33 (3H, s), 1.42 (3H, t, 7.1Hz), 0.92 (3H, d, 7.0 Hz), 0.80 (3H, d, 7.0 Hz). MS-ESI monoisotopic weight of [M-Cl]⁺: Found – 465.15, Calculated – 465.11 shown in Figure S6.

Figure S5. ¹H NMR data (400 MHz, CDCl₃) of Ru(II)(p-cymene)(NHC-CO₂Et)Cl
The general reaction scheme for the conversion of the cyclometallated p-cymene piano stool complex to the cyclometallated bipyridine complex is as follows: 2,2’bipyridine (0.53 mmol), and the p-cymene complex (0.20 mmol) were added to a 1:1 water/acetonitrile mixture (15 mL). This was refluxed for 5 hours while monitoring via alumina TLC (eluting with dichloromethane/acetonitrile 10:1). When the reaction had completed, the heat was turned off and hexanes was added to the solution (30 mL). Then ammonium hexafluorophosphate was added to the solution (1 mmol) and a purple precipitate formed rapidly. This was then filtered, washed with hexanes and water, and dried under reduced pressure. The complexes were then dissolved in acetonitrile and crystalized via the slow diffusion of diethyl ether. This yielded single crystal diffraction quality crystals all of which were purple in color.
Synthesis of Ru(II)(bpy)$_2$(NHC-Me)PF$_6$

The –Me substituent complex used 78 mg (0.18 mmol) of Ru(II)(p-cymene)(NHC-Me)Cl, 56 mg (0.36 mmol) 2,2'-bipyridine, and 1.6 g of NH$_4$PF$_6$ (1 mmol) for a final weight of 100 mg (0.14 mmol, 78% yield). 1H NMR (400 MHz, CD$_3$CN) shown in Figure S7: 8.37 (1H, dt, 1.1/8.2 Hz), 8.33 (2H, dq, 0.9/8.3), 8.26 (1H, dt, 0.9/8.2 Hz), 8.05 (1H, dq, 0.8/5.8 Hz), 7.99 (1H, d, 5.6 Hz), 7.89 (3H, m), 7.81 (1H, dt, 1.5/7.86 Hz), 7.72 (1H, td, 1.5/7.8 Hz), 7.68 (1H, d, 2.0 Hz), 7.53 (1H, dq, 5.4 Hz/0.8), 7.30 (2H, m), 7.17 (3H, m), 6.94 (1H, d, 2.1 Hz), 6.62 (1H, d, 7.4 Hz), 6.07 (1H, s), 2.99 (3H, s), 1.98 (3H, s). MS-ESI monoisotopic weight of M$^+$: Found – 585.184, Calculated – 585.134 shown in Figure S10.

Figure S7. 1H NMR data (400 MHz, CD$_3$CN) of complex 2
Synthesis of Ru(II)(bpy)_2(NHC-Cl)PF_6

The –Cl substituent complex used 94 mg (0.20 mmol) Ru(II)(p-cymene)(NHC-Cl)Cl, 96 mg (0.61 mmol) 2,2'-bipyridine, and 1.6 g of NH_4PF_6 (1 mmol) for a final weight of 10 mg (0.013 mmol, 7% yield). ^1H NMR (400 MHz, CD_3CN) shown in Figure S8: 8.31 (3H, m), 8.29 (1H, dt, 8.2/1.1 Hz), 8.01 (1H, dq, 5.8/0.7 Hz), 7.99 (1H, dq, 5.9/0.6 Hz), 7.90 (3H, m), 7.84 (1H, td, 7.7/1.5 Hz), 7.77 (1H, td, 7.9/1.5 Hz), 7.70 (1H, d, 2.1 Hz), 7.53 (1H, qd, 0.8/5.6 Hz), 7.32 (2H, m), 7.25 (1H, d, 8.2 Hz), 7.20 (2H, m), 6.98 (1H, d, 2.1 Hz), 6.83 (1H, dd, 2.4/8.2 Hz), 6.16 (1H, d, 2.3 Hz), 3.0 (3H, s). MS-ESI monoisotopic weight of M^+: Found – 605.1141, Calculated – 605.0794 shown in Figure S10.

![Figure S8. ^1H NMR data (400 MHz, CD_3CN) of complex 4](image-url)
Synthesis of Ru(II)(bpy)$_2$(NHC-CO$_2$Et)PF$_6$

The –CO$_2$Et substituent complex used 64 mg (0.13 mmol) Ru(II)(p-cymene)(NHC-CO$_2$Et)Cl, 54 mg (0.35 mmol) 2,2’-bipyridine, and 1.6 g of NH$_4$PF$_6$ (1 mmol) for a final weight of 20 mg (0.025 mmol, 20% yield). 1H NMR (400 MHz, CD$_3$CN) shown in Figure S9: 8.36 (3H, m), 8.26 (1H, m), 8.02 (1H, d, 5.6 Hz), 7.94 (4H, m), 7.83 (1H, dt, 1.9/7.8 Hz), 7.77 (1H, d, 2.2 Hz), 7.74 (1H, dt, 1.1/8.0 Hz), 7.56 (1H, d, 5.7 Hz), 7.51 (1H, dd, 1.6/7.6 Hz), 7.34 (3H, m), 7.0 (1H, d, 2.1 Hz), 6.92 (1H, d, 1.5 Hz), 4.11 (2H, dq, 1.5/7.3 Hz), 3.03 (3H, s), 1.2 (3H, 7.3 Hz).

MS-ESI monoisotopic weight of M$: Found – 643.1972, Calculated – 643.1395 shown in Figure S10.

Figure S9. 1H NMR data (400 MHz, CD$_3$CN) of complex 5
Figure S10. MS-ESI for complexes 1-6
Crystallography

Table S1. Crystallographic details for 1 (CCDC 1894199).

Property	Value
Empirical formula	C_{34}H_{33}F_{6}N_{6}O_{2}PRu
Formula weight	803.70
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.2133(3)
b/Å	13.1226(4)
c/Å	15.7060(5)
α/°	111.0380(10)
β/°	93.8870(10)
γ/°	106.1970(10)
Volume/Å³	1671.83(9)
Z	2
ρ_{calc}/g/cm³	1.597
μ/mm⁻¹	0.593
F(000)	816.0
Crystal size/mm³	0.31 × 0.12 × 0.08
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.874 to 55.806
Index ranges	-12 ≤ h ≤ 12, -17 ≤ k ≤ 17, -20 ≤ l ≤ 20
Reflections collected	100732
Independent reflections	7985 [R_{int} = 0.0257, R_{sigma} = 0.0119]
Data/restraints/parameters	7985/0/611
Goodness-of-fit on F²	1.062
Final R indexes [I>=2σ(I)]	R₁ = 0.0203, wR₂ = 0.0527
Final R indexes [all data]	R₁ = 0.0212, wR₂ = 0.0535
Largest diff. peak/hole / e Å⁻³	0.53/-0.54

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 1. U_{eq} is defined as 1/3 of of the trace of the orthogonalized U_{ij} tensor.

Atom	x	y	z	U(eq)	
Ru(1)	3049.2(2)	5916.8(2)	8147.4(2)	16.30(4)	
P(1)	-426.5(5)	1557.8(3)	3833.1(3)	30.42(9)	
F(3)	-1773.4(12)	604.2(9)	2998.0(7)	41.7(2)	
F(5)	928.8(14)	2508.2(9)	4662.3(7)	49.2(3)	
N(3)	2446.1(12)	5855.1(9)	9391.9(7)	17.9(2)	
N(5)	757.1(13)	4989.6(9)	7422.5(7)	19.2(2)	
N(4)	2856.5(12)	7526.2(9)	8803.2(7)	18.1(2)	
N(6)	3072.1(13)	4241.5(9)	7593.9(7)	19.4(2)	
----	----	----	----	----	----
F(6)	-725.7(16)	758.6(10)	4401.3(9)	63.8(4)	
F(1)	-113.5(15)	2380.1(11)	3272.2(8)	54.0(3)	
F(2)	799.7(14)	1000.8(11)	3360.2(9)	58.4(3)	
O(1)	8060.3(12)	7955.5(10)	10956.5(8)	33.5(2)	
N(1)	5565.1(14)	6698.8(10)	7274.8(8)	19.8(2)	
F(3)	799.7(14)	1000.8(11)	3360.2(9)	58.4(3)	
O(2)	8060.3(12)	7955.5(10)	10956.5(8)	33.5(2)	
N(2)	5565.1(14)	6698.8(10)	7274.8(8)	19.8(2)	
C(1)	3997.8(16)	6189.0(11)	7089.0(9)	20.9(2)	
C(2)	436.6(15)	3831.1(11)	6965.2(8)	21.6(2)	
C(3)	4888(2)	6296.0(13)	5803.6(11)	31.5(3)	
C(4)	6337.3(16)	7044.3(11)	8201.1(9)	21.3(2)	
C(5)	5334.4(15)	6705(1)	8764.9(9)	19.2(2)	
C(6)	6027.0(15)	7039.5(11)	9686.3(9)	21.6(2)	
C(7)	7587.0(16)	7657.9(12)	8511(1)	25.5(3)	
C(8)	8533.1(16)	7980.5(12)	9442.3(11)	26.2(3)	
C(9)	7888.2(16)	7657.9(12)	8511(1)	25.5(3)	
C(10)	2028(2)	5403.2(15)	5803.6(11)	31.5(3)	
C(11)	2500.5(14)	6888.0(11)	10044.7(9)	18.6(2)	
C(12)	2268.8(17)	7008.3(12)	10936.5(9)	24.1(3)	
C(13)	1933.1(18)	6050.5(14)	11159(1)	27.9(3)	
C(14)	1860.3(17)	2249.3(12)	6672.3(10)	26.6(3)	
C(15)	2135.7(16)	4932.4(12)	9624.1(10)	22.5(3)	
C(16)	2782.9(14)	7837.4(11)	9721.5(9)	18.2(2)	
C(17)	3997.8(16)	6189.0(11)	7089.0(9)	20.9(2)	
C(18)	3081.4(16)	9790.3(12)	10493.8(10)	25.1(3)	
C(19)	3054.1(17)	9455.8(12)	8971.9(10)	25.4(3)	
C(20)	2957.7(16)	8331.2(12)	9642.1(10)	22.7(3)	
C(21)	436.6(15)	3831.1(11)	6965.2(8)	21.6(2)	
C(22)	4257.0(18)	2774.5(13)	7360.5(11)	29.7(3)	
C(23)	4527.0(18)	7371.1(9)	7371.1(9)	23.4(3)	
C(24)	-1846.5(17)	4772.0(13)	6868.5(10)	26.7(3)	
C(25)	-379.9(16)	5436.8(12)	7371.1(9)	23.4(3)	
C(26)	5334.4(15)	6705(1)	8764.9(9)	19.2(2)	
C(27)	1630.0(18)	2249.3(12)	6672.3(10)	26.6(3)	
C(28)	2902.0(19)	1929.5(12)	6823.4(11)	30.4(3)	
C(29)	4257.0(18)	7371.1(9)	7371.1(9)	23.4(3)	
C(30)	4301.9(17)	3913.1(12)	7729.9(10)	25.3(3)	
C(31)	9553.7(19)	8747.4(17)	11377.8(12)	37.3(4)	
C(32)	-3749(2)	65.9(15)	6459.7(14)	44.7(4)	
C(33)	-4577(11)	-569(10)	7016(8)	40.8(17)	
C(34A)	-3439(16)	1115(3)	6743(7)	67(2)	
C(34)	-3540(20)	-610(13)	5467(11)	55(3)	
C(33A)	-3730(40)	-620(20)	5555(19)	50(5)	
O(2A)	-2680(20)	1021(8)	6945(5)	58(4)	
Table S3. Crystallographic details for 2 (CCDC 1894201).

Property	Value
Empirical formula	C$_{34}$H$_{33}$F$_{6}$N$_{6}$OPRu
Formula weight	787.70
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.1317(4)
b/Å	13.2504(6)
c/Å	15.7409(7)
α/°	112.344(2)
β/°	93.886(2)
γ/°	106.329(2)
Volume/Å³	1657.51(13)
Z	2
ρcalc g/cm3	1.578
μ/mm$^{-1}$	0.594
F(000)	800.0
Crystal size/mm3	0.35 \times 0.12 \times 0.04
Radiation	MoKα ($λ = 0.71073$)
2Θ range for data collection/°	5.708 to 55.776
Index ranges	-12 ≤ h ≤ 12, -17 ≤ k ≤ 17, -20 ≤ l ≤ 20
Reflections collected	100150
Independent reflections	7891 [R$_{int} = 0.0325$, R$_{sigma} = 0.0131$]
Data/restraints/parameters	7891/0/602
Goodness-of-fit on F2	0.848
Final R indexes [I>=2σ (I)]	R$_1 = 0.0228$, wR$_2 = 0.0862$
Final R indexes [all data]	R$_1 = 0.0251$, wR$_2 = 0.0909$
Largest diff. peak/hole / e Å3	0.50/-0.44

Table S4. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 2. U$_{eq}$ is defined as 1/3 of of the trace of the orthogonalized U$_{ij}$ tensor.

Atom	x	y	z	U(eq)
Ru(1)	8134.2(2)	5972.9(2)	8171.6(2)	14.66(6)
P(1)	4489.1(5)	1493.6(4)	3787.2(3)	29.12(11)
F(5)	3089.0(15)	522.5(11)	2958.9(8)	42.4(3)
F(3)	5890.4(15)	2462.6(11)	4613.3(9)	47.3(3)
N(3)	7555.4(15)	5937.2(11)	9424.7(9)	17.6(2)
F(6)	4253.6(18)	710.5(12)	4352.9(10)	56.5(4)
N(6)	8145.4(15)	4293.8(11)	7598.2(9)	18.2(2)
N(5)	5801.2(15)	5022.8(11)	7454.0(9)	17.7(2)
N(4)	7930.8(14)	7577.6(11)	8843.7(9)	16.9(2)
F(1)	4743.8(17)	2306.7(12)	3233.1(9)	49.4(3)
---	---	---	---	---
N(1)	10589.9(1)	6715.0(11)	7247.7(9)	20.9(3)
F(4)	5697.5(18)	935.6(14)	3276.1(11)	55.7(4)
F(2)	3289.9(17)	2075.1(13)	4287.7(10)	53.6(3)
N(2)	8540.9(16)	5954.5(12)	6167.6(9)	23.7(3)
C(5)	10474.2(18)	6782.8(13)	8761.9(11)	17.7(3)
C(21)	5473.2(17)	3862.4(12)	6972.1(10)	17.8(3)
C(16)	7771.3(16)	7888.2(12)	9753.7(10)	17.5(3)
C(11)	7493.8(16)	6949.9(13)	10069.2(10)	17.7(3)
C(1)	9009.9(18)	6209.9(13)	7086.6(11)	19.1(3)
C(26)	6790.9(17)	3448.9(12)	6435.8(11)	23.0(3)
C(22)	4009.8(18)	3139.8(14)	6435.8(11)	23.0(3)
C(4)	11422.7(17)	7081.8(13)	8443.0(11)	25.0(3)
C(17)	7841.4(17)	9005.7(13)	10326.6(11)	21.0(3)
C(18)	8038.6(18)	9830.1(13)	9965.6(11)	23.4(3)
C(15)	7283.3(18)	5027.9(13)	9655.5(11)	22.0(3)
C(9)	13008.2(18)	7699.4(14)	8443.0(11)	25.0(3)
C(6)	11255.6(17)	7149.3(12)	9685.1(11)	19.6(3)
C(20)	8065.1(18)	8382.5(13)	8492.0(11)	21.4(3)
C(14)	6931.1(19)	5076.5(15)	10505.6(12)	25.5(3)
C(25)	4650.4(18)	5464.0(14)	7413.8(11)	22.0(3)
C(19)	8116.1(19)	9499.1(14)	9026.1(13)	24.8(3)
C(12)	7158.5(18)	7057.4(14)	10940.0(11)	23.1(3)
C(30)	9399.8(18)	3974.6(14)	7730.8(12)	23.0(3)
C(27)	6673(2)	2290.3(13)	6669.5(11)	24.7(3)
C(7)	12848.9(18)	7770.0(13)	9995.1(12)	23.7(3)
C(24)	3164.9(18)	4788.1(15)	6900.8(12)	24.6(3)
C(29)	9344(2)	2834.7(14)	7354.2(13)	27.2(3)
C(8)	13715.8(18)	8036.7(15)	9367.0(13)	27.2(3)
C(13)	6862(2)	6108.9(16)	11158.9(12)	26.2(3)
C(23)	2842.8(19)	3610.8(15)	6395.8(12)	26.0(3)
C(2)	11100(2)	6761.6(16)	6448.3(13)	28.1(3)
C(28)	7969(2)	1977.1(14)	6815.5(12)	26.9(3)
C(10)	6938(2)	5414.8(18)	5649.6(13)	30.6(4)
C(3)	9823(2)	6291.6(16)	5777.2(13)	29.3(3)
O(1)	1509(10)	1142(4)	6704(6)	59.0(13)
C(31)	13622(2)	8171.6(18)	10999.9(14)	32.1(4)
C(32)	1227(2)	100.7(17)	6433.7(15)	37.9(4)
C(33)	570(8)	-541(7)	7016(5)	32.9(15)
C(34)	1423(8)	-616(5)	5485(4)	41.9(17)
O(1A)	2150(70)	1079(15)	6862(15)	77(11)
C(33A)	420(40)	-380(30)	6890(30)	59(7)
C(34A)	1400(60)	-450(50)	5300(40)	121(14)
Table S5. Crystallographic details for 4 (CCDC 1894198).

Parameter	Value
Empirical formula	C₃₂H₂₇ClF₆N₇PRu
Formula weight	791.09
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.3307(4)
b/Å	13.2508(7)
c/Å	14.7242(8)
α/°	67.278(2)
β/°	84.131(2)
γ/°	73.857(2)
Volume/Å³	1612.96(14)
Z	2
ρcalc g/cm³	1.629
µ/mm⁻¹	0.689
F(000)	796.0
Crystal size/mm³	0.31 × 0.15 × 0.08
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.692 to 55.762
Index ranges	-12 ≤ h ≤ 12, -17 ≤ k ≤ 17, -19 ≤ l ≤ 19
Reflections collected	97311
Independent reflections	7689 [Rint = 0.0291, Rsigma = 0.0125]
Data/restraints/parameters	7689/0/565
Goodness-of-fit on F²	1.108
Final R indexes [I>=2σ(I)]	R₁ = 0.0348, wR₂ = 0.0938
Final R indexes [all data]	R₁ = 0.0370, wR₂ = 0.0960
Largest diff. peak/hole / e Å⁻³	2.17/-0.98

Table S6. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 4. Ueq is defined as 1/3 of of the trace of the orthogonalized Uij tensor

Atom	x	y	z	U(eq)																																																																																																										
Ru(1)	6211.8(2)	6089.8(2)	6859.4(2)	21.90(7)																																																																																																										
Cl(1)	1901.6(9)	7983.6(7)	3636.7(6)	50.93(19)																																																																																																										
N(4)	6615(2)	7664.6(15)	6212.9(14)	25.0(4)																																																																																																										
N(5)	8218(2)	5161.7(16)	7680.2(14)	26.3(4)																																																																																																										
N(3)	7291(2)	6009.6(16)	5560.2(14)	24.5(4)																																																																																																										
N(6)	5970(2)	4462.5(16)	7453.7(14)	24.8(4)																																																																																																										
C(5)	4158(2)	6824.0(17)	6182.1(16)	23.6(4)																																																																																																										
N(1)	3435(2)	6861.7(18)	7752.3(16)	32.7(4)																																																																																																										
C(6)	3762(3)	7103.8(19)	5208.6(18)	29.1(5)																																																																																																										
C(26)	7062(3)	3653.7(18)	8075.2(16)	25.4(4)																																																																																																										
	N(2)	C(17)	C(21)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)	C(13)	C(14)	C(16)	C(4)	C(12)	C(11)	C(20)																																				
---	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------
N(2)	5038(3)	6357(2)	8891.3(17)	40.9(5)																																																																																																										
C(17)	7336(3)	9009(2)	4725(2)	32.1(5)																																																																																																										
C(21)	8340(3)	4042.1(19)	8191.9(16)	25.9(4)																																																																																																										
C(20)	6232(3)	8488(2)	6588.7(19)	31.2(5)																																																																																																										
C(13)	8707(3)	6112(3)	3785(2)	36.7(5)																																																																																																										
C(14)	8343(3)	5130(2)	4411(2)	34.8(5)																																																																																																										
C(16)	7190(2)	7923.3(18)	5287.8(17)	25.4(4)																																																																																																										
C(4)	2977(3)	7126.8(19)	6780.1(18)	28.1(4)																																																																																																										
C(12)	8349(3)	7046(2)	4051.7(18)	33.5(5)																																																																																																										
C(11)	7628(2)	8488(2)	6588.7(19)	31.2(5)																																																																																																										
C(15)	7643(3)	5111(2)	5285.5(18)	29.6(5)																																																																																																										
C(1)	4935(3)	6416.8(19)	7954.5(17)	29.0(5)																																																																																																										
C(9)	1521(3)	7663(2)	6446(2)	37.1(6)																																																																																																										
C(30)	4765(3)	4154(2)	7320.2(18)	33.3(5)																																																																																																										
C(25)	9346(3)	5584(2)	7747(2)	33.4(5)																																																																																																										
C(19)	6389(3)	9571(2)	6069(2)	36.7(5)																																																																																																										
C(7)	2318(3)	7641(2)	4871(2)	36.0(5)																																																																																																										
C(18)	6933(3)	9840(2)	5120(2)	37.7(6)																																																																																																										
C(8)	1190(3)	7927(2)	5474(2)	41.9(6)																																																																																																										
C(27)	6922(3)	2557(2)	8593.8(18)	34.1(5)																																																																																																										
C(22)	9569(3)	3344(2)	8789.2(19)	35.6(5)																																																																																																										
C(29)	4572(3)	3081(2)	7819(2)	39.1(6)																																																																																																										
C(3)	3622(4)	6759(3)	9248(2)	51.2(8)																																																																																																										
C(24)	10594(3)	4930(3)	8325(2)	40.7(6)																																																																																																										
C(10)	6412(4)	6042(3)	9426(2)	54.2(8)																																																																																																										
C(2)	2633(4)	7070(3)	8534(2)	45.6(7)																																																																																																										
C(28)	5652(3)	2274(2)	8481(2)	39.2(6)																																																																																																										
C(23)	10701(3)	3795(3)	8859(2)	42.7(6)																																																																																																										
N(7)	8838(4)	7799(3)	8450(3)	73.4(10)																																																																																																										
C(32)	8490(4)	8613(3)	8555(3)	55.9(8)																																																																																																										
C(31)	8060(11)	9670(5)	8682(5)	141(3)																																																																																																										
P(1)	7022(2)	9864.1(9)	1552.3(7)	51.5(5)																																																																																																										
F(1)	7606(7)	10234(5)	2294(3)	101.2(17)																																																																																																										
F(4)	8376(18)	8807(5)	1773(8)	167(6)																																																																																																										
F(5)	7878(12)	10603(4)	693(3)	58(3)																																																																																																										
F(3)	6139(4)	9120(2)	2407.6(19)	74.4(12)																																																																																																										
F(2)	5661(8)	10971(4)	1386(6)	87(3)																																																																																																										
F(6)	6369(11)	9548(7)	781(3)	151(5)																																																																																																										
P(1A)	8094(8)	9650(4)	1271(4)	59(2)																																																																																																										
F(3A)	7440(20)	8798(18)	1370(30)	209(19)																																																																																																										
F(4A)	9420(50)	8741(14)	1878(14)	110(10)																																																																																																										
F(6A)	9010(30)	9379(17)	337(13)	119(11)																																																																																																										
F(1A)	7900(50)	9630(30)	2225(14)	156(19)																																																																																																										
F(2A)	6160(40)	10585(19)	890(20)	272(17)																																																																																																										
F(5A)	8630(60)	10664(19)	792(16)	135(10)																																																																																																										
Table S7. Crystallographic details for 5 (CCDC 1894200).

Property	Value
Empirical formula	C_{33}H_{29}F_{6}N_{6}O_{2}PRu
Formula weight	787.66
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	13.7995(5)
b/Å	14.5814(6)
c/Å	19.5017(7)
α/°	72.9320(10)
β/°	71.4990(10)
γ/°	84.0230(10)
Volume/Å³	3557.1(2)
Z	4
ρ calc g/cm³	1.471
μ/mm⁻¹	0.555
F(000)	1592.0
Crystal size/mm³	0.31 × 0.23 × 0.04
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.658 to 55.018
Index ranges	-17 ≤ h ≤ 17, -18 ≤ k ≤ 18, -25 ≤ l ≤ 25
Reflections collected	155023
Independent reflections	16307 [R_int = 0.0308, R_sigma = 0.0159]
Data/restraints/parameters	16307/0/1031
Goodness-of-fit on F²	1.062
Final R indexes [I>=2σ (I)]	R_I = 0.0329, wR_2 = 0.0882
Final R indexes [all data]	R_I = 0.0385, wR_2 = 0.0931
Largest diff. peak/hole / e Å⁻³	1.43/-0.80

Table S8. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 5. U(eq) is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	x	y	z	U(eq)	
Ru(1)	6418.9(2)	3101.4(2)	6452.9(2)	21.16(5)	
Ru(1X)	-985.0(2)	7346.6(2)	7901.7(2)	24.44(5)	
P(1X)	-3202.1(5)	8902.9(5)	5377.1(4)	37.77(14)	
P(1)	-2808(4)	10107(3)	10328(2)	43.4(7)	
N(4X)	-315.7(13)	7974.4(13)	6779.5(10)	25.5(4)	
N(3)	7331.3(13)	2005.5(12)	6901.5(10)	24.2(3)	
F(1X)	-3428.9(15)	8107.8(11)	5033.7(11)	55.4(4)	
N(4)	6022.9(13)	3148.2(13)	7544.3(10)	24.9(3)	
N(3X)	-124.3(14)	8430.2(14)	7929.9(10)	28.0(4)	
Element (X)	Atomic Number (Z)	Atomic Mass (Da)	Position	Structure	
------------	------------------	------------------	----------	-----------	
N(6)	7	6801.4(13)	2855.5(12)	5409.9(10)	23.0(3)
N(5)	7	5315.6(13)	2077.3(12)	6617.2(10)	24.3(3)
O(1)	8	10890.0(16)	9700.5(12)	4602.5(11)	57.5(5)
F(3X)	9	-2333.0(13)	8230.2(14)	8023.9(11)	28.0(4)
N(6X)	7	-1650.0(15)	6967.1(15)	9043.9(11)	32.2(4)
O(2)	8	10517.3(14)	3532.4(15)	6210.0(11)	47.0(5)
C(5)	6	7548.3(17)	4079.2(15)	6173.2(11)	25.9(4)
N(2)	7	4768.7(16)	4681.7(15)	6046.2(12)	35.0(4)
N(1)	7	6243.8(16)	5168.3(15)	5929.0(11)	30.9(4)
F(6X)	9	-901.3(18)	5382.8(15)	7826.3(11)	37.7(5)
N(1X)	7	-901.3(18)	5382.8(15)	7826.3(11)	37.7(5)
C(26)	6	6245.0(15)	2194.0(14)	5334.6(12)	23.0(4)
F(2X)	9	-4395.3(16)	9084.0(17)	5655.7(15)	80.5(7)
F(5X)	9	-3217(3)			
F(4X)	9	-2009.3(16)	8733.2(17)	5043.2(17)	85.6(7)
C(21)	6	5424.5(16)	1745.2(14)	6016.5(12)	23.7(4)
C(27)	6	6444.9(17)	1973.7(16)	4654.9(13)	27.3(4)
C(4)	6	7266.3(18)	5049.5(16)	5944.5(13)	29.5(4)
N(2X)	7	-2397.0(17)	5853.5(15)	7759.6(12)	37.9(5)
C(9)	6	7922(2)	5811.4(17)	5745.2(14)	36.6(5)
C(11X)	6	511.4(16)	8905.7(16)	7250.4(13)	28.5(4)
C(1)	6	5700.9(17)	4346.8(16)	6112.0(12)	27.8(4)
F(6)	9	-2204(6)	11101(6)	9773(4)	59.8(16)
C(28)	6	7229.0(18)	2435.5(16)	4038.6(13)	29.5(4)
C(1X)	6	-1537.1(19)	6168.6(17)	7808.7(12)	32.0(5)
C(18X)	6	632.6(19)	8962.3(18)	5287.0(13)	35.4(5)
C(5X)	6	245.5(18)	6416.7(18)	7890.8(12)	32.5(5)
C(17X)	6	838.1(19)	9190.6(17)	5864.1(14)	32.9(5)
C(7)	6	9237.5(18)	4665.5(18)	5983.2(13)	33.4(5)
C(30)	6	7565.4(16)	3301.0(16)	4799.7(12)	27.0(4)
C(15)	6	8043.8(18)	1489.6(16)	6511.2(14)	31.1(5)
C(11)	6	7278.2(17)	1898.6(15)	7626.2(13)	27.9(4)
C(16)	6	6507.0(17)	2513.0(16)	8000.6(13)	29.1(4)
C(6)	6	8559.1(17)	3915.1(16)	6182.4(13)	28.7(4)
C(29X)	6	-3518(2)	9414(2)	7607.1(18)	41.0(6)
C(29)	6	7789.6(17)	3109.8(17)	4115.7(13)	29.8(4)
O(2X)	8	3196.1(16)	6906(2)	7732.3(16)	77.9(8)
C(30X)	6	-2667.4(18)	8821.8(18)	7470.7(15)	32.9(5)
C(10)	6	3906(2)	4088(2)	6195.5(17)	43.4(6)
C(8)	6	8915(2)	5611.0(18)	5764.0(14)	37.5(5)
C(20)	6	5320.1(17)	3751.4(17)	7852.8(14)	31.1(5)
O(1X)	8	3698.5(19)	5407(3)	7876.5(17)	100.9(12)
C(25)	6	4595.3(17)	1683.1(17)	7263.6(13)	30.2(5)
------	------	------	------	------	------
C(24)	3965.3(18)	962.2(18)	7339.7(14)	36.3(5)	
C(20X)	-494.5(19)	7760.8(18)	6203.2(13)	31.7(5)	
C(15X)	-54.1(19)	8618(2)	8549.6(14)	39.2(6)	
C(22)	4803.8(18)	1029.4(16)	6055.0(14)	30.6(5)	
C(12)	7930(2)	1279.0(19)	7968.7(15)	38.3(5)	
C(6X)	4803.8(18)	1029.4(16)	6055.0(14)	30.6(5)	
C(13)	8665(2)	1279.0(19)	7968.7(15)	38.3(5)	
C(31)	10293(2)	4471(2)	6034.4(14)	40.5(6)	
F(1)	-3474(5)	9173(8)	10873(5)	73.1(16)	
C(21X)	-2468.9(18)	7516.3(19)	9315.6(14)	34.7(5)	
C(17)	6288(2)	2468.7(19)	8754.9(14)	41.4(6)	
C(24X)	-1678(2)	6150(3)	10309.5(16)	56.1(8)	
C(25X)	-1280(2)	6295(2)	9540.9(15)	44.6(6)	
C(27X)	-3708(2)	8803(2)	10582.7(16)	60.3(9)	
C(19)	5081(2)	3740(2)	8598.7(15)	40.0(6)	
C(4X)	88(2)	5499.8(19)	7845.2(13)	39.0(6)	
C(12X)	1236.1(19)	9540(2)	7192.1(15)	39.3(6)	
C(28X)	-4036(2)	9408(2)	8338.1(19)	48.3(7)	
C(7X)	1992(2)	5836(3)	7846.1(14)	51.4(8)	
F(4)	-2221(9)	9611(9)	9689(6)	104(4)	
C(2)	5651(2)	5986.6(18)	5760.7(16)	40.6(6)	
C(2X)	-1367(3)	4606.3(19)	7791.0(16)	50.2(7)	
C(18)	5568(2)	3090(2)	9057.7(15)	47.2(7)	
C(14X)	641(2)	9248(2)	8525.2(16)	49.3(7)	
C(23X)	-2483(3)	6712(3)	10582.7(16)	60.3(9)	
C(3X)	-2298(3)	4900(2)	7746.1(16)	48.0(7)	
C(9X)	822(3)	4775(2)	7802.1(16)	52.0(8)	
C(8X)	1780(3)	4954(2)	7802.0(16)	58.0(9)	
C(22X)	-2884(2)	7398(2)	10086.2(16)	49.6(7)	
C(13X)	1305(2)	9707(2)	7836.6(17)	48.6(7)	
C(32)	11528(2)	3258(3)	6280.1(18)	54.0(8)	
C(10X)	-3302(2)	6423(2)	7703.4(18)	49.0(7)	
C(31X)	3032(2)	5984(3)	7823.4(19)	66.4(11)	
F(3)	-3524(7)	10264(5)	9818(4)	118(3)	
C(33)	11581(3)	2195(3)	6487(3)	81.1(12)	
F(5)	-2122(5)	9862(5)	10874(3)	93(2)	
F(2)	-3544(5)	10665(4)	10863(5)	110(3)	
C(32X)	4216(3)	7134(5)	7685(4)	113(2)	
C(33X)	4229(5)	8051(6)	7622(6)	188(5)	
P(1A)	-2576(8)	10060(6)	10337(5)	80(3)	
Density Functional Theory

Calculated electron densities of ground and triplet states of 1 – 6.

![Graphical representation of electron density plots for the ground state frontier molecular orbitals of 1.](image)

Figure S11. Electron density plots for the ground state frontier molecular orbitals of 1.
Figure S12. Electron density plots for the ground state frontier molecular orbitals of 3.

Figure S13. Electron density plots for the ground state frontier molecular orbitals of 4.
Figure S14. Electron density plots for the ground state frontier molecular orbitals of 5.

Figure S15. Electron density plots for the ground state frontier molecular orbitals of 6.
Figure S16. Electron density plots for lowest optimized triplet state molecular orbitals of 1.

Figure S17. Electron density plots for lowest optimized triplet state molecular orbitals of 2.

Figure S18. Electron density plots for lowest optimized triplet state molecular orbitals of 3.
Figure S19. Electron density plots for lowest optimized triplet state molecular orbitals of 4.

Figure S20. Electron density plots for lowest optimized triplet state molecular orbitals of 5.

Figure S21. Electron density plots for lowest optimized triplet state molecular orbitals of 6.
Table S9. Summary Singlet Excited State Transitions from TD-DFT Calculations for 1.

Excited State	Transition	Coefficient	Parentage	Energy (eV)	λ (nm)	Oscillator Strength (f)
1	137→140	-0.12003	HOMO-2→LUMO	1.96	634	0.0060
	139→140	0.67118	HOMO→LUMO			
	139→1401	0.13785	HOMO→LUMO+1			
5	137→140	0.36795	HOMO-2→LUMO	2.39	519	0.0991
	137→1401	0.20871	HOMO-2→LUMO+1			
	138→140	-0.15359	HOMO-1→LUMO			
	138→141	0.52204	HOMO-1→LUMO+1			
	139→140	0.11120	HOMO→LUMO			
6	137→141	0.55717	HOMO-2→LUMO+1			
	138→140	0.27999	HOMO-1→LUMO			
	138→141	-0.17728	HOMO-1→LUMO+1			
	139→141	0.19012	HOMO→LUMO			
	139→144	-0.10378	HOMO→LUMO+4			
15	137→143	0.17315	HOMO-2→LUMO+3			
	138→143	0.66216	HOMO-1→LUMO+3			
	139→145	0.10770	HOMO→LUMO+5			
19	137→144	0.16674	HOMO-2→LUMO+4			
	137→145	0.65873	HOMO-2→LUMO+5			
	138→145	-0.11906	HOMO-1→LUMO+5			
20	137→143	0.25978	HOMO-2→LUMO+3			
	137→144	0.40720	HOMO-2→LUMO+4			
	138→145	0.38647	HOMO-1→LUMO+5			
	139→144	-0.10339	HOMO→LUMO			
	139→146	0.11514	HOMO→LUMO+6			

Table S10. Summary Singlet Excited State Transitions from TD-DFT Calculations for 2.

Excited State	Transition	Coefficient	Parentage	Energy (eV)	λ (nm)	Oscillator Strength (f)
1	135→136	0.67282	HOMO→LUMO	1.94	638	0.0058
	135→137	-0.15803	HOMO→LUMO+1			
5	133→136	0.31584	HOMO-2→LUMO	2.39	519	0.0947
	133→137	-0.27572	HOMO-2→LUMO+1			
	134→136	0.20683	HOMO-1→LUMO			
	134→137	0.50482	HOMO-1→LUMO+1			
6	133→136	-0.24241	HOMO-2→LUMO	2.55	487	0.0516
	133→137	0.49196	HOMO-2→LUMO+1			
	134→136	0.16032	HOMO-1→LUMO			
Table S11. Summary Singlet Excited State Transitions from TD-DFT Calculations for 3.						
-----------------------------------	-----------------	---	-----------------	-----------------	-----------------	
Excited State	Transition	Coefficient	Description	Energy (eV)	λ (nm)	Oscillator Strength (f)
1	131→132	0.67105	HOMO→LUMO	1.96	632	0.0052
131→133	-0.17303	HOMO→LUMO+1				
5	129→132	0.25625	HOMO-2→LUMO	2.40	516	0.0982
129→133	-0.38512	HOMO-2→LUMO+1				
130→132	0.28022	HOMO-1→LUMO				
130→133	0.42633	HOMO-1→LUMO+1				
6	129→132	-0.28000	HOMO-2→LUMO	2.56	484	0.0521
129→133	0.40596	HOMO-2→LUMO+1				
130→132	0.10631	HOMO-1→LUMO				
130→133	0.41856	HOMO-1→LUMO+1				
131→133	-0.15579	HOMO→LUMO+1				
131→136	0.11223	HOMO→LUMO+4				
21	128→133	0.37257	HOMO-3→LUMO+1	3.61	343	0.1104
129→135	0.16503	HOMO-2→LUMO+3				
129→137	-0.29490	HOMO-2→LUMO+5				
129→138	0.10730	HOMO-2→LUMO+6				
130→135	0.16502	HOMO-1→LUMO+3				
130→136	0.29135	HOMO-1→LUMO+4				
131→136	0.10839	HOMO→LUMO+4				
138→132	0.20555	HOMO→LUMO+6				
Table S12. Summary Singlet Excited State Transitions from TD-DFT Calculations for 4.

Excited State	Transition	Coefficient	Parentage	Energy (eV)	λ (nm)	Oscillator Strength (f)
1	139→140	0.68088	HOMO→LUMO	2.02	615	0.0058
1	139→141	-0.11856	HOMO→LUMO+1			
5	137→140	-0.27603	HOMO-2→LUMO	2.44	508	0.0978
5	137→141	0.37557	HOMO-2→LUMO+1			
5	138→140	0.25969	HOMO-1→LUMO			
5	138→141	0.44043	HOMO-1→LUMO+1			
6	137→140	0.24478	HOMO-2→LUMO	2.60	477	0.0536
6	137→141	0.43043	HOMO-2→LUMO+1			
6	138→140	-0.14617	HOMO-1→LUMO			
6	138→141	-0.40536	HOMO-1→LUMO+1			
6	139→141	-0.16175	HOMO-1→LUMO+1			
6	139→144	0.11068	HOMO-1→LUMO+1			

Table S13. Summary Singlet Excited State Transitions from TD-DFT Calculations for 5.

Excited State	Transition	Coefficient	Description	Energy (eV)	λ (nm)	Oscillator Strength (f)
1	150→151	0.67300	HOMO→LUMO	2.02	614	0.0054
1	150→152	-0.16469	HOMO→LUMO+1			
5	148→151	-0.21784	HOMO-2→LUMO	2.45	507	0.0925
5	148→152	0.43746	HOMO-2→LUMO+2			
5	149→151	-0.28697	HOMO-1→LUMO			
5	149→152	-0.39359	HOMO-1→LUMO+2			
6	148→151	-0.27252	HOMO-2→LUMO	2.60	477	0.0580
6	148→152	0.37032	HOMO-2→LUMO+1			
6	149→152	0.46113	HOMO-1→LUMO+1			
6	150→152	0.15643	HOMO→LUMO+1			
6	150→156	-0.10080	HOMO→LUMO+1			
30	143→152	0.15361	HOMO-7→LUMO+1	4.32	287	0.0815
30	144→151	-0.33324	HOMO-6→LUMO			
30	145→151	0.57545	HOMO-5→LUMO			
Excited State	Transition	Coefficient	Parentage	Energy (eV)	λ (nm)	Oscillator Strength (f)
--------------	------------	-------------	-----------	------------	--------	------------------------
1	141→144	-0.10120	HOMO-1→LUMO+1	2.08	595	0.0085
	142→143	-0.40970	HOMO→LUMO			
	142→144	0.55898	HOMO→LUMO+1			
8	140→144	-0.15329	HOMO-2→LUMO+1	2.51	493	0.0846
	140→145	0.50978	HOMO-2→LUMO+2			
	141→144	-0.36096	HOMO-1→LUMO+1			
	141→145	-0.24246	HOMO-1→LUMO+2			
21	139→143	-0.22597	HOMO-3→LUMO	3.65	340	0.110
	140→147	-0.10574	HOMO-2→LUMO+4			
	140→149	0.47729	HOMO-2→LUMO+6			
	141→147	-0.20371	HOMO-1→LUMO+4			
	141→148	-0.31781	HOMO-1→LUMO+5			
22	139→143	0.61092	HOMO-3→LUMO	3.75	331	0.1215
	139→144	-0.15860	HOMO-3→LUMO+1			

Table S14. Summary Singlet Excited State Transitions from TD-DFT Calculations for 6.
Orbital	Atom	OMe	Me	H	Cl	CO₂Et	NO₂
HOMO-2	Ru	0.74	0.72	0.70	0.74	0.67	0.72
HOMO	Ru	0.54	0.59	0.61	0.61	0.64	0.66
LUMO	Ru	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
LUMO+1	Ru	<0.03	0.07	0.07	0.07	0.07	<0.03

Table S15. Percent Contribution from the Ruthenium Center to Frontier Orbitals from NBO Calculations for the Ground State of 1.

MO	1	2	3	4	5	6
HOMO-2	74	72	70	74	67	72
HOMO	54	59	61	61	64	66
LUMO	3	3	3	3	3	3
LUMO+1	3	7	7	7	7	3

Table S16. Percent Ru Contribution to Frontier Orbitals in the Ground State of 1 – 6 from Mulliken Population Analysis.

Orbital	Spin	Atom	OMe	Me	H	Cl	CO₂Et	NO₂
HSOMO	α	Ru	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
LSOMO	α	Ru	0.04	0.10	0.18	0.11	0.18	0.29

Table S17. Percent Contribution from the Ruthenium Center to Frontier Orbitals from NBO Calculations for the Lowest Triplet Excited State of 1.
Figure S22. Difference spectra upon oxidation (black) and reduction (red) of (a) 1, (b) 2, (c) 3, (d) 4, and (e) 6 at the indicated potentials vs Fe$^{+/0}$ in degassed CH$_3$CN (0.1 M N$^\text{Bu}_4$PF$_6$).
Nanosecond Transient Absorption Spectroscopy

Figure S23. Nanosecond transient absorption spectra of (a) 1 with $\lambda_{exc} = 575$ nm, (b) 2 with $\lambda_{exc} = 550$ nm, (c) 3 with $\lambda_{exc} = 550$ nm (lifetime measured at 585 nm), and (d) 4 with $\lambda_{exc} = 575$ nm (lifetime measured at 545 nm) in degassed CH$_3$CN at 298 K.
Figure S24. Femtosecond transient absorption spectra of 1 in CH$_3$CN at 298 K collected at various delay times following (a) 550 nm, (b) 640 nm, and (c) 670 nm excitation (irf = 85 fs).
Figure S25. Femtosecond transient absorption spectra of 2 in CH$_3$CN at 298 K collected at various delay times following (a) 400 nm, (b) 550 nm, (c) 620 nm, and (d) 670 nm excitation (irf = 85 fs).
Figure S26. Femtosecond transient absorption spectra of 3 in CH$_3$CN at 298 K collected at various delay times following (a) 400 nm, (b) 550 nm, (c) 620 nm, and (d) 650 nm excitation (irf = 85 fs).
Figure S27. Femtosecond transient absorption spectra of 4 in CH$_3$CN at 298 K collected at various delay times following (a) 400 nm, (b) 550 nm, (c) 600 nm, and (d) 640 nm excitation (irf = 85 fs).
Figure S28. Femtosecond transient absorption spectra of 5 in CH$_3$CN at 298 K collected at various delay times following (a) 400 nm, (b) 550 nm, (c) 600 nm, and (d) 650 nm excitation (irf = 85 fs).
Figure S29. Femtosecond transient absorption spectra of 5 in CH$_3$CN at 298 K collected at various delay times following (a) 400 nm, (b) 550 nm, (c) 620 nm, and (d) 650 nm excitation (irf = 85 fs).
Figure S30. TRIR difference spectra of 1 in CD$_3$CN at various delay times following (a) 400 nm and (b) 585 nm (irf = 185 fs).
Figure S31. TRIR difference spectra of 2 in CD$_3$CN at various delay times following (a) 400 nm and (b) 585 nm (irf = 185 fs).
Figure S32. TRIR difference spectra of 3 in CD$_3$CN at various delay times following (a) 400 nm and (b) 585 nm (irf = 185 fs).
Figure S33. TRIR difference spectra of 4 in CD$_3$CN at various delay times following (a) 400 nm and (b) 585 nm (irf = 185 fs).

References

(S1) Schleicher, D.; Leopold, H.; Borrmann, H.; Strassner, T. Ruthenium(II) Bipyridyl Complexes with Cyclometalated NHC Ligands. *Inorg. Chem.* **2017**, *56* (12), 7217–7229.

(S2) Aghazada, S.; Nazeeruddin, M. K. Ruthenium Complexes as Sensitizers in Dye-Sensitized Solar Cells. *Inorganics* **2018**, *6* (2), 52.

(S3) Unger, Y.; Meyer, D.; Molt, O.; Schildknecht, C.; Münder, I.; Wagenblast, G.; Strassner, T. Green-Blue Emitters: NHC-Based Cyclometalated [Pt(C^C*)(acac)] Complexes. *Angew. Chem. Int. Ed.* **49** (52), 10214–10216.

(S4) Tronnier, A.; Poethig, A.; Herdtweck, E.; Strassner, T. C\(\wedge\)C* Cyclometalated Platinum(II) NHC Complexes with β-Ketoimine Ligands. *Organometalics* **2014**, *33* (4), 898–908.

(S5) Fuertes, S.; Chueca, A. J.; Perálvarez, M.; Borja, P.; Torrell, M.; Carreras, J.; Sicilia, V. White Light Emission from Planar Remote Phosphor Based on NHC Cycloplatinated Complexes. *ACS Appl. Mater. Interfaces* **2016**, *8* (25), 16160–16169.