Transparent glass-ceramics with Yb$^{3+}$,Ho$^{3+}$:YNbO$_4$ nanocrystals for green phosphors

A Volokitina1, P Loiko1,*, O Dymshits2, M Tsenter2, S Zapalova2, K Bogdanov1, A Baranov1 and A Zhilin2

1ITMO University, Kronverkskiy pr., 49, 197101 St. Petersburg, Russia
2NITIOM S.I. Vavilov State Optical Institute, 36 Babushkina St., 192171 St. Petersburg, Russia

Abstract. We report on synthesis, structure, Raman and optical spectroscopy of transparent glass-ceramics (GCs) containing nanocrystals of rare-earth orthoniobates, Yb$^{3+}$,Ho$^{3+}$:YNbO$_4$ and β-quartz solid solution. Under the near-IR excitation, the GCs exhibit intense upconversion luminescence which color properties can be tuned by the heat-treatment regime due to the structural changes in the orthoniobate nanocrystals. The developed GCs are promising as thermal shock resistant green phosphors.

1. Introduction

Materials containing couples of Yb$^{3+}$ ion and other RE$^{3+}$ ion are attractive for the development of upconversion phosphors [1]. In the particular case of RE$^{3+}$ = Er$^{3+}$, Tm$^{3+}$ or Ho$^{3+}$, this is supported by direct and efficient energy-transfer (ET) process Yb$^{3+}$ → RE$^{3+}$ facilitated by the resonance in energy of the excited states of the considered ions. Transparent glass-ceramics (GCs) containing nanosized crystals and an amorphous residual phase are promising matrices for (Yb$^{3+}$,RE$^{3+}$) codoping [2-4]. With a proper selection of the composition of the initial glass and the regime of the secondary heat-treatment leading to crystallization, one can ensure predominant entering of the active ions in the nanocrystalline phase [5]. This opens the possibility of tuning of emission color according to structural transformations of these nanocrystals [6].

Rare-earth orthoniobates, RENbO$_4$ (where RE = La, Y, Gd, and Lu are the host-forming “passive” ions), doped with the active ions as specified above, are promising luminescence materials [7-10]. A clear example of such a material is fergusonite, YNbO$_4$, belonging to the class of ABO$_4$-type oxides, and exhibiting two main modifications, namely the tetragonal (scheelite-like) and monoclinic ones [11,12]. Rare-earth orthoniobates possess low phonon frequencies (for oxide matrices), $\hbar\nu_{ph}$$\sim$800 cm$^{-1}$, they offer high available doping concentrations with a weak quenching of luminescence, long emission lifetimes, strong interionic interactions, high refractive index ($n \sim 2.1$) and relatively broad bandgap of \sim4.3 eV.

GCs containing the nanocrystals of rare-earth orthoniobates, RENbO$_4$, have been recognized as efficient luminescent materials [13,14]. To date, GCs containing Yb$^{3+}$, Er$^{3+}$:YNbO$_4$ and Yb$^{3+}$, Eu$^{3+}$: YNbO$_4$ nanocrystals have been prepared showing intense green and red upconversion luminescence (UCL) under the near-IR excitation by InGaAs laser diodes, respectively. In the present work, we have
developed and studied GCs based on the nanocrystals of Yb$^{3+}$:Ho$^{3+}$:YNbO$_4$ and β-quartz solid solution, for the first time, to the best of our knowledge.

2. Synthesis and structure

The initial glass with the composition of 18 Li$_2$O – 27 Al$_2$O$_3$ – 55 SiO$_2$ (mol%) [13] doped with the rare-earth oxides, 2.2 Y$_2$O$_3$, 0.5 Yb$_2$O$_3$, 0.5 Ho$_2$O$_3$, and niobium oxide, 3.2 Nb$_2$O$_5$ (mol%) was prepared by the melt-quenching technique. Batch to produce 300 g of glass was melted in a quartz ceramic crucible in a laboratory electric furnace at 1580 °C for 4 h with stirring, then the glass melt was bubbled by oxygen for 0.5 h to remove the OH-groups from the melt. The melt was poured onto a metal plate and the as-cast glass was annealed at 620 °C. The initial glass was transparent and had a yellow coloration. The calculated concentration of the RE$^{3+}$ active ions in the initial glass was $N_{Yb} = N_{Ho} = 1.97 \times 10^{20}$ cm$^{-3}$ (measured glass density, $\rho = 2.76$ g/cm3). To produce transparent GCs, the initial glass was heat-treated at temperatures ranging from $T = 720$ to 1000 °C for 6–24 h in air.

![XRD patterns and Raman spectra](image)

Figure 1(a, b). (a) XRD patterns and (b) Raman spectra [combined data for $\lambda_{exc} = 514$ nm (<600 cm$^{-1}$) and 488 nm (>600 cm$^{-1}$)] of the initial glass and GCs containing Yb$^{3+}$:Ho$^{3+}$:YNbO$_4$ nanocrystals. The numbers denote the heat-treatment regime, °C / hours.

The structure of GCs was studied with X-ray diffraction (XRD) and Raman spectroscopy, figure 1. The initial glass is X-ray amorphous. Crystals of RENbO$_4$ with a disordered fluorite-type cubic structure (T$^\text{I}$) (sp. gr. $Fm\bar{3}m$) evolve in the glass heat-treated at 720 °C for 6 h, see figure 1(a). The prolongation of this heat-treatment for 24 h leads to crystallization of tetragonal phase with orthorhombic distortion (T) RENbO$_4$ (sp. gr. $Im\bar{a}2$); traces of β-quartz solid solution (ss) appear as well. For T-phase, the RE$^{3+}$ cations occupy the S_1 symmetry site with an VIII-fold O$^2-$coordination. After heat-treatments at 800–1000 °C, the GCs contain two crystalline phases, RENbO$_4$, and β-quartz ss. High thermal shock resistance of GCs is ensured by crystallization of the latter phase. Monoclinic (M) RENbO$_4$ crystals (fergusonite-type structure, sp. gr. $I2/a$) appear additionally to the distorted tetragonal ones after heat-treatment at 1000 °C. For M-phase, the RE$^{3+}$ cations occupy the C_2 symmetry site also with an VIII-fold O$^2-$coordination. The large RE$^{3+}$-RE$^{3+}$ distances for the RENbO$_4$ crystals and the closeness of ionic radii of Y$^{3+}$ (1.019 Å), Yb$^{3+}$ (0.985 Å) and Ho$^{3+}$ (1.015 Å) [15] determine the possibility for the active ions to enter easily into the YNbO$_4$ lattice where they are expected to replace the Y$^{3+}$ "passive" ones.

Raman spectra of the initial glass and GCs are shown in figure 1(b). Raman spectra of the initial glass contains two broad bands centered at ~472 cm$^{-1}$ and 860 cm$^{-1}$. Heat-treatment at 720 °C / 6 h induces the modification of the spectrum due to precipitation of RENbO$_4$ nanocrystals with a disordered fluorite-type cubic structure. After the heat-treatment at 720 °C / 24 h, the Raman spectra show enhanced 801 cm$^{-1}$ band and some other signs of the T-RENbO$_4$ crystals, namely several low-frequency bands at 121-344 cm$^{-1}$ [16]. The increase of the heat-treatment temperature to 800 °C leads to the appearance of two bands at 482 cm$^{-1}$ and at 1086 cm$^{-1}$ indicative for β-quartz ss [17]. Finally,
the heat-treatment at 1000 °C results in the appearance of several bands at 238, 426, 442, 690 and 802 cm\(^{-1}\) representing precipitation of M-RENbO\(_4\) crystals [18].

3. Optical spectroscopy

The absorption spectra of the initial glass and GCs containing absorption bands of the Yb\(^{3+}\) and Ho\(^{3+}\) ions are shown in Figure 2. The spectra vary accordingly to the structural transformations of the GCs. This proves that the active ions, Ho\(^{3+}\) and Yb\(^{3+}\), are embedded in the YNbO\(_4\) nanocrystals.

As for Yb\(^{3+}\) ions, the broad absorption band spanning from 850 nm to 1050 nm is due to the \(^{2}\text{F}_{7/2} \rightarrow ^{2}\text{F}_{5/2}\) transition, and it can be used for their excitation with the InGaAs laser diodes. For the initial glass, the maximum absorption cross-section of Yb\(^{3+}\) ions is \(\sigma_{abs} = \alpha_{abs}/N_{Yb} = 2.1 \times 10^{-20}\) cm\(^2\) at 977.1 nm (zero-phonon line, ZPL). For GCs obtained by heat-treatment at 1000 °C, the position of the ZPL shifts to 974.5 nm, accompanied by the rise of absorption at shorter wavelengths, so that the maximum \(\sigma_{abs} = 1.29 \times 10^{-20}\) cm\(^2\) at 953.2 nm. For Ho\(^{3+}\) ions, the maximum \(\sigma_{abs} = 0.43 \times 10^{-20}\) cm\(^2\) at 1947 nm (for the initial glass) and it increases to \(0.60 \times 10^{-20}\) cm\(^2\) at 1936 nm (for GCs obtained by heat-treatment at 1000 °C).

![Figure 2(a, b). Absorption spectra of the initial glass and GCs containing Yb\(^{3+}\), Ho\(^{3+}\):YNbO\(_4\) nanocrystals (a) in the visible and (b) in the near-IR. The numbers denote the heat-treatment regime, °C / hours. Each spectrum is shifted on 0.5 cm\(^{-1}\) (a) or 0.2 cm\(^{-1}\) (b) for the convenience of observation.](image)

![Figure 3(a, b). (a) Scheme of the energy-levels of Yb\(^{3+}\) and Ho\(^{3+}\) ions with the relevant processes: GSA and ESA – ground- and excited-state absorption, respectively, NR – non-radiative relaxation, UCL – upconversion luminescence, ET – energy-transfer. (b) Upconversion luminescence spectra for the initial glass and GCs containing Yb\(^{3+}\), Ho\(^{3+}\):YNbO\(_4\) nanocrystals, \(\lambda_{exc} = 960\) nm (the spectra are normalized to unity).](image)

Under the excitation by a commercial InGaAs laser diode emitting at ~962 nm (to the \(^{2}\text{F}_{5/2}\) state of the Yb\(^{3+}\) ion), intense visible emission is detected from the initial glass and GCs, see figure 3(b). It is
related to the upconversion in the (Yb$^{3+}$, Ho$^{3+}$) ion couple, see figure 3(a). This process includes ground-state absorption (GSA) by Yb$^{3+}$ ions, energy-transfer (ET) $2F_{22}(Yb^{3+}) \rightarrow 5I_6(Ho^{3+})$, excited-state absorption (ESA) from the $5I_6$ and $5I_7$ intermediate states, and emission from the higher-lying $5F_5$ and $5S_2+5F_4$ excited-states of Ho$^{3+}$. A remarkable feature of the GCs is the redistribution of intensity between the green (535-555 nm, the $5S_2+5F_4 \rightarrow 5I_6$ transition) and red (635-670 nm, the $5F_5 \rightarrow 5I_6$ transition) upconversion luminescence (UCL) with the heat-treatment thus leading to the tunability of color properties.

The color coordinates (Commission internationale de l’eclairage, CIE 1931) for UCL of the initial glass are $x = 0.534$, $y = 0.441$ (dominant wavelength, $\lambda_d = 584$ nm, color purity, $p = 93\%$, orange-yellow color) and for the GCs prepared by the heat-treatment at 1000 °C, they are $x = 0.317$, $y = 0.648$ ($\lambda_d = 553$ nm, $p = 99\%$, green color).

4. Conclusion
Transparent thermal shock resistant glass-ceramics containing (Yb$^{3+}$, Ho$^{3+}$) ion couple entering the fluorite-type, distorted tetragonal and monoclinic yttrium orthoniobate nanocrystals, YNbO$_4$, are synthesized for the first time, to the best of our knowledge. The possibility to excite intense color-tunable (orange-green) upconversion luminescence is demonstrated with the synthesized GCs. Such materials are of interest for green phosphors. Further work will focus on the determination of the efficiency of the Yb$^{3+}$ → Ho$^{3+}$ ET.

Acknowledgments
This work was partly supported by the RFBR (Grant 16-03-01130). P.L. acknowledges financial support from the Government of the Russian Federation (Grant 074-U01) through ITMO Post-Doctoral Fellowship scheme.

References
[1] Auzel F 2004 Chem. Rev. 104 139
[2] Wang Y and Ohwaki J 1993 Appl. Phys. Lett. 63 3268
[3] Biswas A, Maciel G S, Friend C S and Prasad P N 2003 J. Non-Cryst. Solids 316 393
[4] Dymshits O S, Loiko P A, Skoptsov N A, Malyarevich A M, Yumashev K V, Zhilin A A, Alekseeva I P, Tsenter M Ya and Bogdanov K 2015 J. Non-Cryst. Solids 409 54
[5] de Pablos-Martin A, Patzig C, Höche T, Durán A and Pascual M J 2013 Cryst. Eng. Comm. 15 6979
[6] Lu J, Ma E, Chen D, Yu Y and Wang Y 2006 J. Phys. Chem. B 110 20843
[7] Nazarov M, Kim Y J, Lee E Y, Min K I, Jeong M S, Lee S W and Noh D Y 2010 J. Appl. Phys. 107 103104.
[8] Liu X, Lü Y, Chen C, Luo S, Zeng Y, Zhang X, Shang M, Li C and Lin J 2014 J. Phys. Chem. C 118 27516
[9] Li K, Zhang Y, Li X, Shang M, Lian H and Lin J 2015 Phys. Chem. Chem. Phys. 17 4283
[10] Liu Y, Tang X, Yan L, Li K, Liu X, Shang M, Li C and Lin J 2013 J. Phys. Chem. C 117 21972
[11] Blasse G and Bril A 1970 J. Lumin. 3 109
[12] Mather S A and Davies P K 1995 J. Amer. Ceram. Soc. 78 2737
[13] Dymshits O S, Alekseeva I P, Zhilin A A, Tsenter M Ya, Loiko P A, Skoptsov N A, Malyarevich A M, Yumashev K V, Mateos X and Baranov A V 2015 J. Lumin. 160 337
[14] Loiko P A, Dymshits O S, Alekseeva I P, Zhilin A A, Tsenter M Ya, Vilejshikova E V, Bogdanov K V, Mateos X and Yumashev K V 2016 J. Lumin. 179 64
[15] Shannon R D 1976 Acta Cryst. A32 751
[16] Blasse G 1972 J. Solid State Chem. 7 169
[17] Chuvaeva T I, Dymshits O S, Petrov V I, Tsenter M Ya, Shaskin A V, Zhilin A A and Golybkov V V 2001 J. Non-Cryst. Solids 282 306
[18] Yashima M, Lee J-H, Kakihana M and Yoshimura M 1997 J. Phys. Chem. Solids 58 1593