Edited by a recognized leader in the field, Herbicide-Resistant Crops is the first book to cover all of the issues related to the controversial topic of herbicide-resistant crops. It provides extensive discussions of the modern biotechnological methods that have been used to develop such crops, and reviews the implications - both positive and negative - of developing crops that are resistant to herbicides. The creation and anticipated applications of specific herbicide-resistant crops are also discussed. In addition, the book covers the potential impact of herbicide-resistant crops on weed management practices and the environment, and presents issues related to the regulation and
economics of these crops. The editor has brought together a diverse group of professionals, representing the several distinct areas impacted by the new technology of herbicide-resistant crops. The wide range of viewpoints presented in this book creates a balanced and complete survey, providing a notable contribution to the literature.

Molecular Biology of Plant Nuclear Genes

Technology is rapidly advancing in all areas of society, including agriculture. In both conventional and organic systems, there is a need to apply technology beyond our current approach to improve the efficiency and economics of management. Weeds, in particular, have been part of cropping systems for centuries often being ranked as the number one production cost. Now, public demand for a sustainably grown product has created economic incentives for producers to improve their practices, yet the development of advanced weed control tools beyond biotech has lagged behind. An opportunity has been created for engineers and weed scientists to pool their knowledge and work together to ‘fill the gap’ in managing weeds in crops. Never before has there been such pressure to produce more with less in order to sustain our economies and environments. This book is the first to provide a radically new approach to weed management that could change cropping systems both now and in the future.

Biology and Management of Problematic Crop Weed Species

Biology and Management of Horseweed

This book provides a comprehensive and in-depth discussion on the development of herbicide resistance during the past 50 years, emphasizing the biochemical pathways of herbicide resistance in weeds. It discusses the principles of plant genetics, different methods of genetic engineering, making of transgenic plants, various transgenic crops conferred

Chromosome Biology

Despite the continuing effort to develop more environmentally friendly alternatives, traditional herbicides continue to be the major weapon against weeds in North America. The contribution made by herbicides to modern crop production in North America is spectacular and in order for effective
development of new, safer agrochemicals to be formulated, it is essential for researchers to understand how these compounds work in plants and their surrounding environment. Although herbicides may be marketed internationally under different trade names in different countries, they are often generically identical. Hence the information drawn together in this book will be of interest on both sides of the Atlantic.

Weed and Crop Resistance to Herbicides

Herbicides continue to make a spectacular contribution to modern safe crop production. It is essential to understand how these compounds work in plants and their surroundings to properly facilitate the development of more effective and safer agrochemicals. This book provides that information in a succinct and user-friendly way. The second edition of this very well-received and highly thought of book has been fully up-dated with much new information of relevance to the subject, particularly in the areas of cell and molecular biology.

Herbicide Resistance, 1970-1986

Methods in Plant Molecular Biology and Biotechnology emphasizes a variety of well-tested methods in plant molecular biology and biotechnology. For each detailed and tested protocol presented, a brief overview of the methodology is provided. This overview considers why the protocol is used, what other comparable methods are available, and what limitations can be expected with the protocol. Other chapters in the book present overviews regarding how to approach particular problems and introduce unique methods - such as how to use computer methodology to study isolated genes. The book will be a practical reference for plant physiologists, plant molecular biologists, phytopathologists, and microbiologists.

The Triazine Herbicides

Few individuals can be unmoved by the impact of molecular biology. Advances in the discipline over four decades have progressed at a rate unrivalled in other scientific areas. In its formative years, molecular biology examined the chemical and physical structures of biological molecules, subsequently elucidated the nature and function of DNA and evolved into molecular genetics. From this exponential growth of scientific knowledge, tremendous opportunities were created for the application of molecular approaches to solve problems in applied biology. This book describes the new productive association
between novel state-of-the-art molecular biology and crop protection, a
discipline with a sound heritage in traditional applied biology and chemistry.
Never before has crop protection faced such diverse challenges. It is charged
with improving global food supplies and with the pressure of population
increases of one billion in the next decade. But to consider protection of crops
simply in terms of weed, pest and disease control would be a gross
oversimplification of the mission. Rather, crop protectionists must develop
measures which will maintain crop yield and quality without harm to the
environment. Chemical, cultural and biological approaches to crop protection
must also fulfil evolving legislative demands and address the issues which
confer public acceptability.

Genetically Modified Crops

Herbicides and Plant Metabolism

Developments in the understanding of herbicide activity and toxicology have
expanded tremendously in the past fifteen years. Research on the mechanism of
action of most major classes of herbicide chemistry has provided scientists with
excellent insight into enzyme targets. More recently, developments in molecular
biology have provided information about herbicide action at the genetic level.
Less well understood are the toxicological aspects of herbicide activity that
culminate in plant injury or death. Toxicology, Biochemistry and Molecular
Biology of Herbicide Activity is a review of the recent literature on most of the
major classes of herbicide chemistry in commercial use. The chapters include
information about different aspects of herbicide activity related to
photosynthesis, inhibition of amino acid biosynthesis, disruption of cell division
and microtubule assembly, activity of phytohormone (auxin) mimics, inhibition
of fatty acid biosynthesis and some developments in the understanding of
herbicide resistance.

Herbicides and Plant Physiology

Genetic Engineering of Crop Plants is a proceeding of The 49th Nottingham
Easter School in Agricultural Science, which was held at Sutton Bonington on
April 17-21, 1989. This symposium discussed progress in the generation of crop
species resistant to herbicides, viruses, and insects. The book discusses topics
such as the genetic manipulation in plants; genetic engineering of crops for
insect and herbicide resistance; the expression of heat shock gene in transgenic
plants; and tuber-specific gene expression. The book also covers topics such as regulation of gene expression in transgenic tomato plants; the molecular biology of pea seed development; and the regulatory elements of maize storage protein genes. The text is recommended for experts in the field of botany, agriculture, and genetics who would like to know more about the improvement of crop plants through genetics.

Fundamentals of Weed Science

Weeds hold an enigmatic and sometimes-controversial place in agriculture, where they are generally reviled, grudgingly tolerated, and occasionally admired. In most cases, growers make considerable effort to reduce the negative economic impact of weeds because they compete with crops for resources and hinder field operations, thereby affecting crop productivity and quality, and ultimately the sustainability of agriculture. Weed control in production agriculture is commonly achieved through the integration of chemical, biological, and mechanical management methods. Chemicals (herbicides) usually inhibit the growth and establishment of weed plants by interfering with various physiological and biochemical pathways. Biological methods include crop competition, smother crops, rotation crops, and allelopathy, as well as specific insect predators and plant pathogens. Mechanical methods encompass an array of tools from short handled hoes to sophisticated video-guided robotic machines. Integrating these technologies, in order to relieve the negative impacts of weeds on crop production in a way that allows growers to optimize profits and preserve human health and the environment, is the science of weed management.

Herbicide Resistance in Plants

Molecular Biology of Weed Control

Volume 58 contains seven reviews covering key contemporary topics on crop and soil sciences. Three of these reviews focus upon soils; in particular, biodegradation of soil pollutants, modelling of solute transport in soils, and the analysis of soil salinity. The other four papers deal especially with crops: herbicide resistance, silicon and rice production, the use of tissue cultures for crop improvement, and crop water relations. With this latest volume, Advances in Agronomy continues to be recognized as a leading reference and as a first-rate source of the latest research in agronomy, crop science, and soil science.
Herbicides make a spectacular contribution to modern crop production. Yet, for the development of more effective and safer agrochemicals, it is essential to understand how these compounds work in plants and their surroundings. This expanded and fully revised second edition of Herbicides and Plant Physiology provides a comprehensive and up-to-date account of how modern herbicides interact with target plants, and how they are used to manage crop production. In addition, the text: Provides a current account of the importance of weeds to crop yield and quality; Describes how new herbicides are discovered and developed; Examines precise sites of herbicide action and mechanisms of herbicide selectivity and resistance; Reviews commercial and biotechnological applications, including genetically engineered herbicide resistance in crops; Suggests new areas for future herbicide development; Includes many specially prepared illustrations. As a summary of diverse research information, this second edition of Herbicides and Plant Physiology is a valuable reference for students and researchers in plant physiology, crop production/protection, plant biochemistry, biotechnology and agriculture. All libraries in universities, agricultural colleges and research establishments where these subjects are studied and taught will need copies of this excellent book on their shelves.

Biology and Management of Horseweed and Hairy Fleabane in California

Weed Biology and Management

In recent decades, repeated use of herbicides in the same field has imposed selection for resistance in species that were formerly susceptible. On the other hand, considerable research in the private and public sectors has been directed towards introducing herbicide tolerance into susceptible crop species. The evolution of herbicide resistance, understanding its mechanisms, characterisation of resistant weed biotypes, development of herbicide-tolerant crops and management of resistant weeds are described throughout the 36 chapters of this book. It has been written by leading researchers based on the contributions made at the International Symposium on Weed and Crop
Resistance to Herbicides held at Córdoba, Spain. This book will be a good reference source for research scientists and advanced students.

Herbicide Resistance and World Grains

Over the past 50 years, triazines have made a great impact on agriculture and world hunger by assisting in the development of new farming methods, providing greater farming and land use capabilities, and increasing crop yields. Triazines are registered in over 80 countries and save billions of dollars a year. The Triazine Herbicides is the one book that presents a comprehensive view of the total science and agriculture of these chemicals. With emphasis on how the chemicals are studied and developed, reviewed, and used at the agricultural level this book provides valuable insight into the benefits of triazine herbicides for sustainable agriculture. * Presents previously unpublished information on the discovery, development and marketing of herbicides * Includes a vital section on the origin, use, economics and fate of triazine herbicides * Covers benefits of triazines in corn and sorghum, sugarcane, citrus, fruit and nut crops * Establishes best management practice and environmental benefits of use in conservation tillage

Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants

Herbicides and Plant Physiology

This book addresses herbicides and their use as an important aspect of modern weed management and strives to place them in an ecological framework. Many weed scientists believe agriculture is a continuing struggle with weeds--without good weed control, good and profitable agriculture is impossible. Each agricultural discipline sees itself as central to agriculture's success and continued progress, and weed science is no exception. While not denying the importance of weed management to successful agriculture, this book places it in a larger ecological context. The roles of culture, economics, and politics in weed management are also discussed, enabling scientists and students to understand the larger effects on society. Information on New herbicides included, along with the old herbicides that are important for understanding the history New section on weed resistance to herbicides and genetic engineering New information on invasive plants Expanded chapters on Biological Control, Pesticide Legislation and Regulation, Weed Management
Herbicide Activity

Written by experts from across the globe, Herbicide Resistance and World Grains evaluates the weed and herbicide management systems in major world grain crops such as soybean, maize, rice, and canola. The book examines the impact of transgenic crops and new technology on resistance management. It provides background information and offers practical

Automation: The Future of Weed Control in Cropping Systems

The NATO Advanced Research Workshop (ARW) on "Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants" intended to provide a forum to scientists from academia, industry, and government for discussing and critically assessing recent advances in the field of xenobiotic metabolism in plants and for identifying new directions for future research. Plants function in a chemical environment made up of nutrients and xenobiotics. Xenobiotics (foreign chemicals) are natural or synthetic compounds that can not be utilized by plants for energy-yielding metabolism. Plants may be exposed to xenobiotics either deliberately, due to their use as pesticides or accidentally, from industrial, agricultural, and other uses. Plants, like most other organisms, evolved a remarkable battery or metabolic reactions to defend themselves against the potentially toxic effects of xenobiotics. The main enzymatic reactions utilized by plants for xenobiotic detoxification include oxidation, reduction, hydrolysis and conjugation with glutathione, sugars (e.g., glucose), and amino acids. Eventually, xenobiotic conjugates are converted to insoluble bound residues or to secondary conjugates, which are deposited in the vacuole of plant cells.

Methods in Plant Molecular Biology and Biotechnology

Weeds are the main biological constraint to crop production throughout the year. Uncontrolled weeds could cause 100% yield loss. In Australia, the overall cost of weeds to Australian grain growers was estimated at AU $ 3.3 billion annually. In terms of yield losses, weeds amounted to 2.7 million tonnes of
grains at a national level. In the USA, weeds cost US$ 33 billion in lost crop production annually. In India, these costs were estimated to be much higher (US$ 11 billion). These studies from different economies suggest that weeds cause substantial yield and economic loss. Biology and Management of Problematic Weed Species details the biology of key weed species, providing vital information on seed germination and production, as well as factors affecting weed growth. These species include Chenopodium album, Chloris truncata and C. virgate, Conyza bonariensis and C. canadensis, Cyperus rotundus, and many more. This information is crucial for researchers and growers to develop integrated weed management (IWM) strategies. Written by leading experts across the globe, this book is an essential read to plant biologists and ecologists, crop scientists, and students and researchers interested in weed science. Provides detailed information on the biology of different key weed species Covers weed seed germination and emergence Presents the factors affecting weed growth and seed production

Herbicides and Plant Physiology

Molecular Genetics of Drug Resistance forms a vital and timely review of the genetic processes behind drug resistance. Starting with an overview of the area, each chapter focuses on a particular target with important sections on drug resistance in malaria and in cancer.

Transgenic Herbicide Resistance in Plants

Although plant genes were first isolated only some twelve years ago and transfer of foreign DNA into tobacco cells first demonstrated some eight years ago, the application and extension of biotechnology to agricultural problems has already led to the field-testing of genetically modified crop plants. The promise of tailor-made plants containing resistance to pests or diseases as well as many other desirable characteristics has led to the almost compulsory incorporation of molecular biology into the research programs of chemical and seed companies as well as Governmental agricultural agencies. With the routine transformation of rice and the early evidence of transformation of maize the possibility of the world's major cereal crops being modified for improved nutritional value or resistance characteristics is now likely in the next few years. The increasing number of cloned plant genes and the increasing sophistication of our knowledge of the major developmental and biochemical pathways in plants should eventually allow us to engineer crop plants with higher yields and with less detrimental impact on the environment than now
occurs in our current high input agricultural systems. This book draws together many of the expanding areas of plant molecular biology and genetic engineering that will make a substantial contribution to the development of the more productive and efficient crop plants that the world's farmers will be planting in the next decade.

Molecular Genetics of Drug Resistance

Herbicide Resistance in Weeds and Crops is a collection of papers presented at the 11th Long Ashton International Symposium in September 1989. The said symposium is held to study about the increasing incidence of herbicide-resistant weeds and the consideration of the production of herbicide-resistant crops. The book includes studies that suggest the delay and prevention of herbicide resistance; the gravity of the infestation of different herbicide-resistant weed; the management of herbicide resistance; and the mechanisms of herbicide tolerance. Also covered in the book are the improvement of different herbicides, as well as the prospective development of genetically engineered herbicide-resistant plants. Botanists, biochemists, and farmers would greatly benefit from the text, especially those who would like to explore and study the phenomenon.

Herbicide-Resistant Crops

Cell Culture and Somatic Cell Genetics of Plants, Volume 6: Molecular Biology of Plant Nuclear Genes focuses on the spectacular and rapid advances in the molecular biology and genetics of plants. This book consists of 19 chapters. Chapters 1 to 5 describe the most commonly used approaches for the genetic transformation of plants. The light-inducible and tissue-organ-specific genes are discussed in Chapters 6 to 11. In Chapters 12 to 14, the genes regulating phytohormone synthesis, heat shock proteins, and nodulation in legume roots are treated, while in Chapters 15 to 16, the relationship between chromatin structure and gene expression and molecular biology of plant RNA viruses are analyzed. The development of transgenic plants resistant to viruses, insects, and herbicides is dealt with in the last three chapters. This volume is suitable for plant molecular biologist, genetic engineers, and researchers concerned with plant cell and tissue culture.

A Waterhemp Saga: Seed Production, Genetics, Hybridization, and the Creation and Discovery of Quad-stack Individuals
Plant molecular biology came to the fore in the early 1980s and there has been tremendous growth in the subject since then. The study of plant genes and genomes and the development of techniques for the incorporation of novel or modified genes into plants eventually led to the commercialisation of genetically modified (GM) crops in the mid-1990s. This was seen as the start of a biotechnological revolution in plant breeding. However, plant biotechnology has become one of the hottest debates of the age and, in Europe at least, one of the greatest challenges that plant scientists have ever faced. This book covers the history and development of the science and techniques that underpin plant biotechnology. It describes the GM crops that are or have been grown commercially around the world, including failures as well as successes, and the new varieties that are being developed. The safety record of GM crops is reviewed together with the legislation that has been adopted to cover their use. The book also deals with the concerns of consumers, the GM crop debate and the prospects for the technology. In the second edition, sections on current GM crops and future developments in plant biotechnology have been greatly expanded, while those on techniques, legislation and the GM crop debate have also been updated. The book is a concise, comprehensive and readable study that is accessible to a general readership with a scientific background but also provides useful information for the specialist.

Herbicide Resistance in Plants

The term biotechnology refers to any technology, process or practice that modifies or harnesses any living organism or system to be useful to any human purpose. Plant biotechnology is essentially genetic engineering related to botanical science. Botany, branch of biology that deals with the study of plants, including their structure, properties, and biochemical processes. Also included are plant classification and the study of plant diseases and of interactions with the environment. The principles and findings of botany have provided the base for such applied sciences as agriculture, horticulture, and forestry. Modern biological systematics integrates a diverse array of disciplines ranging from molecular, cell and developmental biology, to ecology and evolutionary biology. Data-gathering techniques include DNA sequencing, protein electrophoresis, electron and light microscopy, controlled growth experiments, and field studies of ecology and distribution. The present book will be useful for the researchers to update their information on the topics dealt within this book. Book will be also useful to students, teachers, and, researchers in the field of biotechnology and plant biology. This book provides excellent glimpses on the current trends of plant biology.
Herbicide Tolerance/resistance in Plants

In recent decades, repeated use of herbicides in the same field has imposed selection for resistance in species that were formerly susceptible. On the other hand, considerable research in the private and public sectors has been directed towards introducing herbicide tolerance into susceptible crop species. The evolution of herbicide resistance, understanding its mechanisms, characterisation of resistant weed biotypes, development of herbicide-tolerant crops and management of resistant weeds are described throughout the 36 chapters of this book. It has been written by leading researchers based on the contributions made at the International Symposium on Weed and Crop Resistance to Herbicides held at Córdoba, Spain. This book will be a good reference source for research scientists and advanced students.

Molekulare Biotechnologie

A review of the most important areas of the biochemistry of herbicide action. The introductory chapter begins with the field of herbicide discovery, followed by chapters dealing with the herbicidal inhibition of photosynthesis, carotenoid biosynthesis, lipid biosynthesis, and amino acid biosynthesis. The metabolism of herbicides is discussed with particular reference to the formation of toxic components from non-toxic chemicals, and also the inactivation of toxic chemicals as a basis for selectivity. The final chapters are concerned with mechanisms of herbicide resistance in plants and the possibility of transferring resistance to susceptible crops. A glossary of the most important herbicidal chemicals mentioned in the text is included.

Biotechnology and Plant Biology

The late 1980s saw an explosion in the amount and diversity of herbicide resistance, posing a threat to crop production in many countries. The rapid escalation in herbicide resistance worldwide and in the understanding of resistance at the population, biochemical, and molecular level is the focus of this timely book. Leading researchers from North America, Australia, and Western Europe present lucid reviews that consider the population dynamics and genetics, biochemistry, and agro-ecology of resistance. Resistance to various herbicides is discussed in detail, as well as the mechanisms responsible for cross resistance and multiple resistance. This reference is invaluable to those interested in evolution and the ability of species to overcome severe environmental stress.
Waterhemp is an old weed posing new problems for corn and soybean producers in the midwestern United States. The weed is indigenous to the Midwest, but has only become a major problem within the last two decades, and it is now one of the most prevalent weeds in Illinois. One of the most troubling aspects of this species is its propensity to evolve resistance to herbicides—a feat which it has now accomplished for herbicides with four different modes of action, with the evolution of resistance to other herbicide modes of action expected in the future. Options for chemical control of this species—particularly for postemergence control in soybean—are rapidly declining. In fact, of the four herbicide chemistries currently available for broadleaf control in soybean, some waterhemp populations have evolved resistance to three. This thesis addresses several facets of this fascinating species, beginning with a literature review in Chapter 1 on the history of weed control, some background on how weeds evolve resistance to herbicides, the biology of waterhemp, and the evolution of herbicide resistance within waterhemp specifically. Chapter 2 addresses a study on an aspect of the reproductive biology of waterhemp—namely the amount of time required for female plants to produce mature seeds after pollination. It was found that some seeds may become viable in as little as 70-39 days after pollination, and that seed dormancy drops if seeds remain on the plant for at least 150-330 days after pollination. These findings could be helpful in future studies requiring the crossing of waterhemp, such as the study reported in Chapter 3, in which the inheritance and genetics of glyphosate resistance in a Missouri waterhemp population are investigated. Glyphosate resistance was determined to be a nuclear-inherited dominant or partially dominant trait, although the number of genes involved could not be determined. Investigations into gene amplification of EPSPS, which has been shown to confer glyphosate resistance in the related species, Palmer amaranth, did reveal elevated copy number in the Missouri population. However, analysis of copy number in F1 and F2 populations showed that copy number does not strictly cosegregate with resistance level, indicating that at least one other factor is necessary for resistance. Several of the F2 populations created for the study in Chapter 3 (involving the crossing of a population resistant to ALS inhibitors, PPO inhibitors and PS II inhibitors with the glyphosate-resistant Missouri population) were investigated in Chapter 4 for the presence of four types of resistance, and individual plants were
identified containing all four resistance types, indicating no significant barriers to the combination of four herbicide resistance types within a single plant. Further studies showed tight linkage between ALS and PPO resistance, but no linkage among other types of resistance was detected. In Chapter 5, two waterhemp populations collected from fields in Illinois are examined for multiple herbicide resistance. One population was found to be resistant to glyphosate as well as ALS inhibitors, and the other population was found to be resistant to glyphosate, ALS inhibitors, PPO inhibitors, and PS II inhibitors. Individuals from this population were also identified as being four-way resistant, thus confirming what was observed in greenhouse experiments in the previous chapter. Chapter 6 addresses an attempt at transferring glyphosate resistance from plants of the Missouri waterhemp population into smooth pigweed through hybridization. Progeny were confirmed as hybrids by use of ITS markers, and hybrid plants were found to be resistant to glyphosate. Hybrids were backcrossed (BC) to smooth pigweed, but produced very few seed, preventing the screening of the BC progeny. The BC progeny were again backcrossed to smooth pigweed and found to segregate for seed production, although little seed was produced overall. Although incomplete, this study suggests that such transferal of glyphosate resistance in nature is unlikely. Finally, Chapter 7 discusses concluding remarks, implications and future research.

Herbicide Resistance in Weeds and Crops

Grundlage aller biotechnologischen Prozesse sind molekularbiologische und genetische Regelmechanismen. Deshalb behandelt dieses neuartige Lehrbuch beides: die molekularbiologischen Grundlagen und die Anwendungen. Spannend und aktuell werden die Teilgebiete der Biotechnologie und das jeweils erforderliche molekularbiologische Grundwissen beschrieben. Der Bogen wird gespannt von der Nanobiotechnologie über Stoffwechseltechnologie, Genomics und Umweltbiotechnologie bis hin zur Gentherapie.

Are Superweeds an Outgrowth of USDA Biotech Policy?

"Weeds are rarely considered a priority despite the fact that all active farmers know that the majority of their variable costs and time are devoted to eradicating them. Even most crop losses due to pests can be traced directly back to weeds, which harbor the pests as secondary hosts. In the Molecular Biology of Weed Control, Jonathan Gressel focuses attention upon the tools of
molecular biology that can be used effectively in the science of weed control. Always keeping his perspective congruent with that of the working farmer, Gressel explains how weed biologists and ecologists are beginning to use recently developed tools to control intransigent weed species in modern as well as less developed areas of the world. With his usual candor, Gressel evaluates past efforts, while also exploring future prospects for replacing chemical herbicides with genetic engineering, to improve a crop's ability to compete against its feral cousins for light, nutrients, and water. Like much of Gressel's work, this book should be mandatory reading for all agriculturists and plant scientists, so that they employ and encourage what is truly effective and efficient in meeting one of this century's most critical challenges: maximizing agricultural productivity.

Molecular Approaches to Crop Improvement

Chromosome biology has been brought to a golden age by phenomenal advanced in molecular genetics and techniques. This is true in the plant arena, and it is becoming increasingly true in animal studies, where chromosomes are more difficult to work with. With advanced knowledge of transformation, scientists can tell exactly where a new element enters a chromosome. Conversely, molecular biologists can make large mistakes if they do not understand the behavior of chromosomes. Written by internationally recognized experts in the field, this book is the most authoritative work on the subject to date. Students of genetics, crop science and plant breeding, entomology, animal science, and related fields will benefit from this comprehensive and practical textbook.

How Herbicides Work

New technologies are becoming available for managing glyphosate resistant (GR) weeds and reducing their spread. GR crop technology has revolutionized crop production in the developed world and the benefits are gradually spilling over to the developing world. In order to sustain an effective, environmentally safe herbicide such as glyphosate and the GR crop technology well in to the future, it is imperative that the issue of GR weeds be comprehensively understood. This book provides such an essential, up-to-date source of information on glyphosate resistance for researchers, extension workers, land managers, government personnel, and other decision makers. Provides comprehensive coverage of the intensely studied topic of glyphosate resistant (GR) in crops Details the development of glyphosate resistance and how to
detect and manage the problem in crops Helps standardize global approaches to glyphosate resistance Encompasses interdisciplinary approaches in chemistry, weed science, biochemistry, plant physiology, plant biotechnology, genetics, ecology Includes a chapter on economic analysis of GR impact on crops

Advances in Agronomy

Genetic Engineering of Crop Plants

Horseweed and hairy fleabane are showing increased resistance to chemical controls, including glyphosate. By learning about their biology and other control alternatives, you can do a better job of keeping on top of this pest problem.

Copyright code: 968c4e1abaa3560ceaaac226bfefa38c