Application of contextual teaching and learning approaches in improving mathematics interest and learning achievement of elementary school students

F Y Velani¹, H Retnawati²

¹,²Department of Mathematics Education, Postgraduate Program Yogyakarta State University, Jl. Colombo No. 1, Karang Malang, Yogyakarta, Indonesia.

Email: faridayesi.2018@student.uny.ac.id¹, heri_retnawati@uny.ac.id²

Abstract: This study aims to determine the effect of applying the Contextual Teaching and Learning approach to student interest and student achievement in mathematics. This type of research used in this study is a quantitative type with a descriptive evaluation design. The evaluation model used is a logic model. The research subjects used were four headmasters, four fifth grade teachers and fifth graders from four elementary schools in Boyolali district Indonesia. Data collected through observation, interviews, and documentation. Analysis of the data used is quantitative descriptive data analysis. The results showed that the application of the Contextual Teaching and Learning approach in mathematics learning in four elementary schools in Boyolali district Indonesia had run well seen from the role of the teacher in implementing all components of Contextual Teaching and Learning, namely finding (inquiry), asking (questioning), the community learning (learning community), modeling, reflection (reflection), and assessment. And student interest and student achievement in following mathematics lessons with the Contextual Teaching and Learning approach with very good and good categories.

1. Introduction
Mathematics is a difficult subject for most students. Difficulties in learning mathematics are generally caused by the nature of mathematics which has abstract objects that can be said to be "opposite" to the child's development. Mathematical difficulties are caused by many factors. Therefore needed to motivate students abilities in solving mathematical problems, such as conceptual understanding, mathematical connections, and identification of mathematical representation abilities [1]. Student make mathematical mistakes or difficulties in reading, understanding, transformation, process skills, and coding [2]. Mathematics is the abstract science of space and number [3]. On the other hand, mathematics is the basis of all exact sciences so every child must learn it. The abstract nature of mathematics makes students less interested in learning mathematics. One of the lessons that discourages students is mathematics [4].

Interest is an important affective factor in carrying out intellectual functions that greatly affect how a person selects and is involved in processing information [5]. It can be said that interest means attraction to an object or activity that is seen as enjoyable or realized as beneficial. Associated with learning, the interest in learning implies an interest in learning activities or objects learned. Interest primarily influences how information is selected and processed or studied. Interest has an effect on how the knowledge function and learning function are carried out [6]. Interest is a spontaneous feeling that goes through a psychological process associated with an interest in a unique aspect of information. Thus,
interest can be grown and enhanced by providing a variety of interesting information. One of the ways that can be used is to create activities that attract students' interests or by giving gifts so that the learning atmosphere becomes enjoyable [7].

Learning environment that is emphasized in an interesting learning environment and aspects of the environment that are easy to manipulate can increase student interest in learning[8]. Interest as an internal factor has a role in supporting student learning achievement, students who are not interested in the subject matter will show an attitude that is less sympathetic, lazy, and not eager to follow the teaching and learning process. To stimulate the attention of students each teacher is required to be able to create an atmosphere of teaching and learning process in such a way that is able to attract students' attention to what is given.

The main problem in our world of education is the low mastery of students in subject matter, especially mathematics. Lack of ability of students in understanding mathematics subject matter is seen from the low mathematics learning achievement achieved by students. Achievement is defined by individual competence gain (individual standard of evaluation) or by mastery of learning material[9]. Student achievement is influenced by several factors both from within students (internal factors) such as intelligence, motivation, interests, and talents as well as factors outside of students (external factors) such as the environment, learning facilities, and teaching methods. Learning achievement is "The value which is the last formulation that can be given by the teacher regarding the progress/student achievement during a certain period" [10].

The success of mathematics learning is influenced by many things, namely: the condition of the child or students, teachers, order and discipline of children at home, books, and other supporting facilities. The teacher arranges when students work individually, in groups or classically with a view to making learning easy for students. The teacher must be able to create a pleasant learning atmosphere. Teachers must always appreciate every effort and work of students, and motivate students to act and think creatively. This shows, teachers can use methods that provide a variety of learning experiences both inside and outside the classroom. Teachers must prepare themselves as well as possible in carrying out learning.

In fact, teachers in schools, especially teachers in elementary schools, have not practiced mathematics learning approaches that involve students' experiences so that mathematics seems monotonous and less attractive to students. However, preliminary studies in a number of elementary schools in Boyolali District of Indonesia show that there are some teachers who use innovative and creative learning approaches, one of which is the contextual teaching and learning (CTL) approach. Learning with the CTL approach gives students the opportunity to place the material learned as part of or related to students' daily activities. Students feel learning activities as part of the construction of their experiences so students feel the need to involve themselves in these experiences and try to understand what they are learning. Students feel that learning activities are a part of daily life in the family, school, community, nation and state environment [11]. CTL strategy is a connection to the real world context where students are given the opportunity to search for learning content in the surrounding environment. The involvement of students in the learning process that uses content around them that they normally encounter makes students want to receive content and pay more attention to learning [12]. Learning methods using the CTL approach make students more active role in the teaching and learning process. In each activity students will work more and play their own role [13].

The context of students' daily experiences can be presented by directly interacting with the real environment or by presenting these experiences through learning media such as pictures, videos, and so on. Real or direct experience makes students learn through exploration, discovery, investigation, research and so on. In fact, teachers find it difficult to always use a contextual approach in every learning activity because not all material can be linked to student experiences easily[14]. The CTL system is an educational process that aims to help students see meaning in the academic material they are studying by connecting academic subjects with the context of their daily lives, that is, the context of their personal social and cultural circumstance. To achieve this aim, the system encompasses the following eight components: making meaningful connections, doing significant work, self-regulated learning,
collaborating, critical and creative thinking, nurturing the individual, reaching high standards, using authentic assessment [15].

CTL learning activities make students not get bored easily because students are actively involved in learning activities. The problem is, according to the CTL approach, the teacher takes a lot of time while the teacher is chased by the target to complete a subject matter. This is the reason why not many teachers use the CTL approach in learning mathematics. Rarely CTL is used in line with the problem so far, namely the lack of quality learning process and learning achievement achieved by students in Mathematics learning is still worrying. As an illustration, many students' learning achievement in SD Negeri 2 Singosari is still below the KKM which is only 59. The mathematics learning achievement of elementary students is still incomplete, even though the KKM is only 45. This shows the learning approach need to be evaluated.

Teachers at SDN 2 Singosari, SDN 3 Tambak, SDN 2 Manggis, and SDN 1 Tambak in Boyolali have actually received CTL approach exercises, but only occasionally apply CTL in mathematics learning. Besides this, CTL learning has never been evaluated either by the teacher or by the school supervisor. Rarely does mathematics learning use CTL for a variety of reasons above encourage research to find out the true picture of how CTL is implemented in schools that apply CTL in their learning.

2. Methods
This type of research used in this study is a quantitative type with a descriptive evaluation design. Qualitative research is used because the evaluation requires data in the form of a description of sentences or words that explain how the application of the CTL approach in learning mathematics in grade 5 elementary school. The evaluation design was chosen because this study aimed to evaluate the learning approach applied in schools. The evaluation model used is a logic model, which is an evaluation that bases itself on 5 components: situation, input, activity, output and outcome. Evaluation of logic models in this study, modify the logic model [16]. This model illustrates the relationship between program resources, activities, outputs and short-term, medium-term and long-term outcomes.

Data collection is adjusted with data collection techniques, namely by testing, observation, interview and documentation. Instruments are needed for tests and observations only, while interviews and documentation do not require instruments. The instrument for observation is in the form of an observation checklist based on the object evaluated by a logical model. Scoring in this evaluation uses a scale of 5, namely, 1, 2, 3, 4 and 5. In assessing the data obtained through validation of observations made by looking at the level of tendency. To determine the level of tendency of each component is done by categorizing the level of tendency. For this reason, an ideal average (Mi) and ideal standard deviation (Sbi) are required, the highest and lowest ideal scores that can be achieved by the instrument as a criterion [17].

3. Results
The implementation of mathematics learning with the contextual teaching learning (CTL) approach was carried out in grade 5 in each of the schools studied. Evaluation of the logic model of mathematics learning using CTL is done by first determining the criteria of each component of the logic model evaluation.

Components Program Evaluation	Kriteria	Less	Very Poor	
Input	Very Good	81 – 100%	20 - 40%	≤ 20
Activity	Good	61 – 80%	20 - 40%	≤ 20
Output	Sufficient	41 - 60%	20 - 40%	≤ 20

Table 1. Assessment Criteria Table
Percentages obtained from the cumulative percentage of very good and good categories or very adequate and adequate of each component are evaluated using the logic model. CTL implementation can be seen from the evaluation components of the input program, activities and outputs from each school can be seen in Table 2.

Table 2. Percentage of Components Included in the Excellent and Good (Cumulative) Category in Evaluating the CTL Model Learning Program.

Components Program Evaluation	SDN 2 Singosari	SDN 3 Tambak	SDN 2 Manggis	SDN 1 Tambak
INPUT				
Availability of learning and utilizations of infrastructure and facilities	60.0	70.0	70.0	70.0
The Teacher’s role as administrator	50.0	40.0	50.0	60.0
The Teacher’s role as facilitator	60.0	60.0	70.0	70.0
Potential Students	40.0	40.0	50.0	50.0
Average Input	**52.5**	**52.5**	**60.0**	**62.5**
ACTIVITY				
The Teacher’s role as a source of learning	60.0	60.0	70.0	70.0
The Teacher’s role as communicator	50.0	50.0	60.0	60.0
The Teacher’s role as manager	40.0	50.0	50.0	60.0
The Teacher’s role as counselor	40.0	40.0	40.0	50.0
The Teacher’s role as motivator	40.0	50.0	50.0	50.0
The Teacher’s role as model	50.0	50.0	60.0	60.0
The Teacher’s role as an evaluator	50.0	60.0	50.0	60.0
Average Activity	**47.1**	**51.4**	**54.3**	**58.6**
OUTPUT				
Students Interest	46.4	48.3	53.6	57.1
Academic competence (Students achievement)	28.6	31.0	39.3	46.4
Average Output	**37.5**	**39.7**	**46.5**	**51.8**

The application of mathematics learning with the CTL approach at SDN 2 Singosari is seen from the input side of 52.5%, the activity reaches 47.1%, the output in the form of interest and achievement reaches 37.5%. The application of mathematics learning with the CTL approach in SDN 3 Tambak is seen from the input side reaching 52.5%, the activity reaches 51.4%, the output in the form of interest and achievement is 39.7%. The application of mathematics learning with the CTL approach at SDN 2 Manggis viewed from the input side reached 60.0%, the activity reached 54.3%, the output in the form of interest and achievement reached 46.5%. The application of mathematics learning with the CTL approach at SDN 1 Tambak is seen from the input side reaching 62.5%, the activity reaches 58.6%, the output in the form of interest and achievement reaches 51.8%.

4. Discussion
The discussion of CTL learning by following the logic evaluation model is presented in accordance with the components in the logical model, namely: Situations, Inputs, Activities, Outputs, Outcoms as follows:
4.1. Situation
The situation of the school in the village, far from the city crowd produces a conducive and calm learning atmosphere. Adequate learning facilities for learning mathematics and supporting facilities are sufficient to support learning. Even though they are in the village, the teacher is able to relate mathematics subject matter to the village context.

4.2. Input
CTL learning inputs include infrastructure, the role of the teacher, and student potential. The need for learning infrastructure (50%) is very adequate, and 20% is adequate. This shows that in all schools studied there were good CTL learning facilities. Input in the form of facilities can be easily provided because CTL is implemented using the context of students' daily lives at school. Learning tools used are rulers, chalk boxes, dosgrips, pencils, and chalks, rectangular shaped objects such as books, tables, cabinets, blackboards, classrooms, dosgrep, rulers, triangular shaped objects such as rulers, angles desk, corner of the classroom. Interest in learning can be developed from history-based teaching such as pictures, biographies, animations, social engagements, and others [18].

The activeness of students in learning CTL still requires the presence of a teacher. The teacher is a very important input in learning. As input, the teacher has the role of preparing lesson plans and notes during learning. Teacher input was adequate, seeing 40% of teachers were considered adequate and there were 20% of teachers very adequate in carrying out the role of learning administration. The role of the teacher as a facilitator during learning is very good (40%) and good (20%). This shows the teacher is an important learning input.

Input in the form of student potential can be seen from the cognitive abilities of most students in the sufficient category (46.9%). The cognitive abilities of students in good standing are 17% and very good at 13 % which means that cognitive abilities are in an adequate condition around 30% of all students. Overall, CTL learning can be seen from the input aspect into an adequate or very adequate category with an average percentage reaching 57%.

4.3. Activity
CTL learning activities are characterized by activities: 1) finding (inquiry), 2) asking questions (questioning), 3) learning community (learning community), 4) modeling, 5) reflection (reflection) and 6) assessment. At each stage of CTL, the teacher takes various roles according to the situation and conditions of learning.

4.3.1. Inquiry activity.
When inquiry activities take place, the teacher facilitates students in finding activities, gives information only when students are unable to answer, speaks clearly and fluently during CTL learning, helps students who have difficulty finding, encourages students during discovery activities, gives examples by finding objects around the classroom / school, the teacher records the findings of students and provides an assessment of the findings.

4.3.2. Questioning activity
During the activity of asking questions, both in class or in groups, the teacher exemplifies how to make questions, ask students to ask questions and find answers with the group, provoke the discovery process by asking students, provide questions that are easy for students to understand, help difficulties students, remind, all questions must have an answer, and the teacher asks about the findings obtained by students.

4.3.3. Learning Community Activities
The role of the teacher in learning community activities, including: arranging the class to form groups, directing students how to discuss in groups, involve themselves in each group's activities even if only briefly, explaining how to discuss groups, help solve problems in each group, giving encouragement
during the course of group work, exemplifying the way of cooperation in groups, evaluating student learning activities.

4.3.4. Modeling
Modeling activities in the CTL approach appear when the teacher directs how to form groups, gives examples of how to appreciate the opinions of others, how to express opinions, how to draw conclusions, involve themselves in the activities of each group even if only briefly, give examples of how to discuss groups, and give examples how to solve the problem.

4.3.5. Reflection
Reflection activities in the CTL approach are carried out by recording feedback from students, guiding students to provide an assessment, advantages and disadvantages of CTL, explaining the meaning of learning from daily life, helping students to reflect, giving appreciation for the processes and achievements of students during CTL, giving explanations all must go through the learning process and invite students to correct the course of learning.

4.3.6. Assessment
The role of the teacher in the assessment activities as part of the CTL learning stage is seen from the teacher's role in noting important things during the course of the CTL, the learning process, assessing the process from the positive side, explaining that all through the process have been wrong during, assessing whether students have absorbed material well. In this case, the teacher assesses the learning process and student learning outcomes.

During carrying out learning activities with the CTL approach, the teacher plays a role as a source of learning, as a communicator, manager, counselor, motivator, model and evaluator. Applying a contextual approach can change the habits of teacher as a facilitator and mediator that becomes active and creative in improving student learning activities [20]. During CTL learning, students show good interest. Teacher activities as learning resources are generally very good (50%) and good (20%). That is, the teacher is able to carry out the role as a source of learning well. Teacher activities as communicators are generally very good (30%) and good (30%). That is, the activity of the teacher as a communicator during the course of learning is good. Activities as learning managers fall into the good (40%) and very good (20%) categories. Activity as a counselor is generally good (40%) and very good (10%). Activities as a good motivator (30%) and very good (20%) are very good, meaning that in general the teacher has performed the role of a motivator well.

Activity as a model is very good (30%) and good (30%) meaning that teachers generally play a role as a model in CTL learning. Activities as evaluators are very good (30%) and good (30%) meaning that teachers generally carry out the role of evaluators in learning CTL well.

The success of CTL learning is strongly influenced by student involvement during learning. Students with a good interest in learning will be followed by good activities as well. The students' interest during CTL learning was in the good category at 35% and in the very good category at 39.80%. That is, students generally show a good interest in learning.

Overall, CTL learning seen from the aspect of interest that is categorized as adequate or very adequate reaches an average percentage of 53%. This is consistent with research (13, p. 7) which states that learning using the CTL approach is effective in terms of achievement and student interest.

4.3.7. The output
Learning output with the CTL model can be seen from the cognitive abilities of students after attending CTL. Learning outcomes show 20.4% of students have excellent grades of more than 80 and there are 22.1% of students achieving good grades, and sufficient grades of 41.6%. This indeed does not seem to be in line with expectations, but compared to the results of daily tests before CTL learning has been done there is a significant improvement as shown in the following table:
Table 3. Comparison of CTL learning potentials and outputs.

Classification	Value	Potential F	%	Output CTL F	%
Very Good	> 80	15	13.3	23	20.4
Good	60-80	20	17.7	25	22.1
Sufficient	40-60	53	46.9	47	41.6
Less	20-40	25	22.1	18	15.9
Very Poor	≤ 20	-	-	-	-
	Amount	113	100	113	100

It can be said that learning mathematics with the CTL approach can increase students' cognitive potential as reflected by an increase in the number or percentage of students who achieve excellent and good grades.

5. Conclusions
Based on the discussion of the application of CTL in mathematics learning, it was concluded that the application of the CTL approach in mathematics learning at SDN 2 Singosari, SDN 3 Tambak, SDN 2 Manggis, and SDN 1 Tambak in Mojosongo District, Boyolali District had run well in terms of the teacher's role in implementing all components of CTL: 1) finding (inquiry), 2) asking questions (questioning), 3) learning community (learning community), 4) modeling, 5) reflection (reflection) and 6) assessment. In each component of CTL learning, the teacher takes various roles according to the learning situations and conditions. Judging from the aspects of input, activity, and output shows that:

5.1. The application of mathematics learning using CTL approach at SDN 2 Singosari
The application of mathematics learning with the CTL approach at SDN 2 Singosari is seen from the side of (1) input: the availability of learning infrastructure and facilities reaches 60%, the role of the teacher as administrator reaches 50%, the role of the teacher as a facilitator reaches 60%, the student potential reaches 40%, with an average input reaching 52.5%, (2) activity: the teacher as a learning resource reaches 60%, the teacher as a communicator reaches 50%, the teacher as the manager reaches 40%, the teacher as a counselor reaches 40%, the teacher as the motivator reaches 40%, the teacher as a model reaches 50%, the teacher as an evaluator reaches 50%, with an average activity reaching 47.1%, (3) output: student interest reaches 46.4%, and achievement reaches 28.6%, with the average output reaches 37.5%.

5.2. Application of mathematics learning with CTL approach in SDN 3 Tambak
The application of mathematics learning with the CTL approach at SDN 3 Tambak is seen from the side of (1) input: the availability of learning infrastructure and facilities reaches 70%, the role of the teacher as administrator reaches 40%, the role of the teacher as a facilitator reaches 60%, the student potential reaches 40%, with an average input reaching 52.5%, (2) activity: the teacher as a learning resource reaches 60%, the teacher as a communicator reaches 50%, the teacher as the manager reaches 50%, the teacher as a counselor reaches 40%, the teacher as the motivator reaches 50%, the teacher as a model reaches 50%, the teacher as an evaluator reaches 60%, with an average activity reaching 51.4%, (3) output: student interest reaches 48.3%, and achievement reaches 31.0%, with the average output reached 39.7%.

5.2.1. Application of mathematics learning using CTL approach at SDN 2 Manggis
The application of mathematics learning with the CTL approach in SDN 2 Manggis is seen from the side of (1) input: the availability of learning infrastructure and facilities reaches 70%, the role of the teacher as administrator reaches 50%, the role of the teacher as a facilitator reaches 70%, the potential of students reaches 50%, with an average input reached 60.0%, (2) activities: the teacher as a learning resource reaches 70%, the teacher as a communicator reaches 60%, the teacher as a manager reaches 50%, the teacher as a counselor reaches 40%, the teacher as the motivator reaches 50%, the teacher as a
model reaches 60%, the teacher as an evaluator reaches 50%, with an average activity reaching 54.3%, (3) output: student interest reaches 53.6%, and achievement reaches 39.3%, with the average output reaches 46.5%.

5.3. The application of mathematics learning using CTL approach in SDN 1 Tambak

The application of mathematics learning with the CTL approach in SDN 1 Tambak is seen from the side of (1) input: the availability of learning infrastructure and facilities reaches 70%, the role of the teacher as administrator reaches 60%, the role of the teacher as a facilitator reaches 70%, the student potential reaches 50%, with an average input rate of 62.5%, (2) activities: the teacher as a learning resource reaches 70%, the teacher as a communicator reaches 60%, the teacher as a manager reaches 60%, the teacher as a counselor reaches 50%, the teacher as the motivator reaches 50%, the teacher as a model reaches 60%, the teacher as an evaluator reaches 60%, with an average activity reaching 58.6%, (3) output: student interest reaches 57.1%, and achievement reaches 46.4%, with the average output reached 51.8%.

Reference
[1] Samsul H, Heri R, S Munadi, Ezi A, and Nidya F W 2018 The Difficulties of High School Students in Solving Higher-Order Thinking Skills Problems In The 21st Century 76
[2] Ezi A and Heri R 2017 Developing Instructional Design To Improve Mathematical Higher Order Thinking Skills of Students Journal of Physics MSCE IS 812
[3] Suyitno A 2004 Dasar-dasar dan proses pembelajaran matematika I Semarang: FMIPA UNNES.
[4] Firngadi S 1997 Mengatasi Belajar Pada Anak. Kliping Pendidikan Salatiga: UKSW.
[5] Hidi S and Anderson V 1992 Situational interest and its impact on reading and expository writing, in K. Ann Renninger, Suzanne Hidi and Andreas Krapp 1992 Role of Interest in Learning and Development: Lawrence Erlbaum Associates.
[6] Hidi S 1990 Interest and its contribution as a mental resource for learning Review of educational research, 60 549-571.
[7] Lawson A E 1995 Science teaching and the development of thinking California: Wadsworth Publishing Company.
[8] Reinhard P 2006 The Control-Value Theory of Achievement Emotions: Assumptions, Corollaries, and Implications for Educational Research and Practice Germany Educ Phycol 18 315-341
[9] Suryabrata S 2006 Psikologi Pendidikan Jakarta: Rajawali Press.
[10] Depdiknas 2002 Pendekatan kontekstual (contextual teaching and learning) Dirjen Pendidikan Dasar dan Menengah Direktorat Pendidikan Lanjutan Pertama. Jakarta.
[11] Shawn M G and Linda KW 2004 Contextual Teaching And Learning Of Science In Elementary School. Journal Of Elementary Science Education. Springer. Western Illinois University 16 51-63.
[12] D Selvianiresa and S Prabawanto 2017 Contextual Teaching and Learning Approach of Mathematics in Primary Schools International Conference on Mathematics and Science Eduction 895
[13] Yeni R E dan Idris H 2014 Keefektifan Pendekatan Open- Ended Dan CTL Ditinjau Dari Hasil Belajar Kognitif Dan Efektif Jurnal Riset Pendidikan matematika 1 113-126
[14] Johnson E B 2012 Contextual Teaching and Learning Menjadikan kegiatan belajar-mengajar menjadi mengasyikkan dan bermakna (Terjemahan Ibnu Setiawan) Thousand Oaks: Convin Press, Inc. (Buku asli diterbitkan tahun 2002).
[15] Mc Cawley P F 1997 The Logic Model for program planning and evaluation, Moscow: University of Idaho.
[16] Widoyoko E P 2011 Evaluasi Program Pembelajaran. Yogyakarta: Pustaka Pelajar.
[17] Nevi R 2017 Komparasi Pembelajaran Statistika Melalui Pendekatan CTL Dan Problem-Posing Ditinjau Dari Prestasi Belajar Dan minat Belajar Siswa. Jurnal Riset Pendidikan Matematika.
467-77

[18] Bulet P and Nursen A 2018 History-Based Instruction Enriched with Various Sources of Situational Interest on the Topic of the Atom: the Effect on Students’ Achievement and Interest Springer Science and Business Media B.V., part of Springer Nature

[19] Krisnandari E, Muhammad D, H. M. D. Pua Upa and Suradi T 2015 The Application of Contextual Approach in Learning Mathematics to Improve Students Motivation At SMPN 1 Kupang 2015 International Education Studies Canadian Center of Science and Education