Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning

Lukas Knoll, Lutz Breuer and Martin Bach
Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
E-mail: Lukas.Knoll@umwelt.uni-giessen.de

Keywords: groundwater quality, nitrate pollution, redox conditions, random forest, uncertainty, large-scale

Abstract
The protection of water resources and development of mitigation strategies require large-scale information on water pollution such as nitrate. Machine learning techniques like random forest (RF) have proven their worth for estimating groundwater quality based on spatial environmental predictors. We investigate the potential of RF and quantile random forest (QRF) to estimate redox conditions and nitrate concentration in groundwater (1 km × 1 km resolution) using the European Water Framework Directive groundwater monitoring network as well as spatial environmental information available throughout Germany. The RF model for nitrate achieves a good predictive performance with an R² of 0.52. Dominant predictors are the redox conditions in the groundwater body, hydrogeological units and the percentage of arable land. An uncertainty assessment using QRF shows rather large uncertainties with a mean prediction interval (MPI) of 53.0 mg l⁻¹. This study represents the first nation-wide data-driven assessment of the spatial distribution of groundwater nitrate concentrations for Germany.

1. Introduction

The increasing use of groundwater as the world’s most important drinking water resource underlines the importance of protecting it from pollution (Foster and Chilton 2003). In Germany and many other countries, the quality of groundwater is affected by elevated nitrate (NO3⁻) concentrations attributed predominantly to diffuse nitrogen losses in agricultural systems (Galloway et al. 2008, EEA 2018). Nitrate pollution of water systems has far-reaching environmental consequences and poses a serious risk to human health (van Grinsven et al. 2006, Erismann et al. 2013, Reis et al. 2016). The EU Water Framework Directive 2000/60/EC (WFD) was introduced for integrated water protection, aimed at maintaining or restoring the ‘good status’ of groundwater bodies. With regard to nitrate pollution, this requires measures to reduce nitrogen inputs to meet the WFD quality standard of <50 mg l⁻¹ NO3⁻.

The EU Member States are obliged to submit a regular inventory of the groundwater status. The latest report shows that 25% of groundwater bodies in the EU have a poor chemical status, 18% primarily due to nitrate pollution (EEA 2018). The responsible authorities need to develop interdisciplinary, integrative and holistic river basin management plans for the implementation of the WFD, which requires comprehensive mapping of the pollution of water systems and identification of areas under significant pressure (Kallis and Butler 2001, Voulvoulis et al. 2017).

Estimating the nitrate concentration in groundwater depends on several factors and processes. Land use patterns and the amount of the nitrogen surplus on agricultural land provide indications of input sources. In addition, the hydrogeological and biogeochemical conditions of the aquifer determine the occurrence of nitrate in the water body. Complex natural attenuation processes occur during the vertical displacement of nitrate in the unsaturated zone and the lateral transport in the aquifer in the direction of groundwater flow (Rivett et al. 2008). Denitrification, as the most significant process of nitrate removal in the groundwater body, depends strongly on the prevailing redox conditions (Korom 1992, Rivett et al. 2008). Denitrification occurs under anaerobic conditions if denitrifying bacteria and electron donors are present (Rivett et al. 2008). Such anaerobic
conditions are characterised by an oxygen (O$_2$) concentration of \leq1–2 mg l$^{-1}$ and iron (Fe) concentration of \geq0.1–0.2 mg l$^{-1}$ (Kunkel et al 2004, 2017, Rivett et al 2008, McMahon and Chapelle 2008). Several studies dealt with the large-scale estimation of redox conditions in groundwater (Tesoriero et al 2015, 2017, Close et al 2016, Rosecrans et al 2017, Koch et al 2019) and Ransom et al (2017) identified it as one of the most important parameters for the estimation of nitrate concentrations.

Data-driven statistical approaches have proven their worth in simulating large-scale groundwater quality. Nationwide groundwater nitrate concentration maps were developed with regression models for China (Gu et al 2013) and for the United States (Nolan et al 2002, Nolan and Hitt 2006). Machine learning (ML) techniques are receiving more and more attention in the field of water research. Khalil et al (2005) showed the strong predictive capabilities in groundwater contamination modelling of different algorithms, e.g. artificial neural networks or support vector machines. As another effective tool, random forest (RF) developed by Breiman (2001) is frequently applied in water resources issues (Tyralis et al 2019). RF is a very powerful tool for modelling and evaluating large complex data sets with nonlinear relationships between both numerical and categorical explanatory variables. It is further characterised by its robustness and increased predictive performance (Tyralis et al 2019). Comparisons of different machine learning techniques in terms of prediction performance have shown that tree-based models such as RF outperform others (Wang et al 2016, Knoll et al 2019). Such tree-based ML techniques have already been used in several studies on large-scale prediction of groundwater nitrate concentrations (Nolan et al 2014, 2015, Rodriguez-Galiano et al 2014, 2018, Wheeler et al 2015, Ransom et al 2017, Tesoriero et al 2017, Knoll et al 2019, Ouedraogo et al 2019). In terms of the estimation of groundwater redox conditions, Close et al (2016) and Wilson et al (2018) performed linear discriminant analyses. Whereas, other studies also made use of ML for predicting groundwater redox conditions or the redox interface (Tesoriero et al 2015, Rosecrans et al 2017, Koch et al 2019, Friedel et al 2020, Wilson et al 2020).

Due to the complex processes influencing groundwater quality, estimations are accompanied by uncertainties that need to be quantified (Refsgaard et al 2007, Grizzetti et al 2015). As one of the few, Rahmati et al (2019) investigated the uncertainties in machine learning approaches for estimating groundwater nitrate concentrations and showed that it is important to consider both the performance and the uncertainty for model evaluation. Ransom et al (2017) used bootstrapping for a boosted regression tree model and Koch et al (2019) extended RF with geostatistics to assess uncertainties. By modifying RF to quantile random forest (QRF), Meinshausen (2006) provided a method to consider a full conditional distribution for the predictions instead of the mean only. This enables not only the additional output of median predictions, but also to estimate uncertainties by determining prediction intervals. Even though this method is not yet common in water research, it has already been used in digital soil mapping (Vaysse and Lagacherie 2017, Szatmári and Pásztor 2019).

Here, we provide for the first time a data-driven estimation of groundwater nitrate concentrations for the federal state of Germany, which is characterized by a large share of agricultural land use of around 50% of its area (360 000 km2). The objectives of our study are to develop a RF model combined with QRF to: (1) characterise the spatial distribution of redox conditions in groundwater, (2) estimate groundwater nitrate concentrations considering the redox conditions, and (3) determine prediction intervals as an uncertainty assessment.

2. Materials and methods

The general modelling process involves four steps, i.e. setting up a database, data pre-processing, predictive modelling and uncertainty analysis with RF combined with QRF (figure 1). The predictive modelling as well as the uncertainty analysis is performed with R (v. 3.4.1). All spatial data are processed in the Geographical Information System ArcGIS (v. 10.4).

2.1. Database

According to WFD, the chemical status of groundwater is evaluated based on a representative monitoring network on which the EU Member States are required to report regularly. The WFD monitoring includes a surveillance network for the long-term and overall description of the groundwater status and an additional operational network. The monitoring sites selected in the WFD monitoring network represent the qualitative status of the respective groundwater body (EC 2003). As the implementation of the WFD in Germany is the responsibility of the federal states, the design of the monitoring networks varies, which is reflected in particular in the numbers and distribution of the individual monitoring sites. In this study, we use a consolidated data set of groundwater concentration measurements of all WFD monitoring networks of the federal states (hereafter referred as WFD data set), which was provided by the responsible federal authorities. We considered a number of preconditions for the selection of the monitoring sites out of the WFD data set:

- Metadata and information on the sampling depth need to be available.
- Monitoring sites with a depth \geq100 m are excluded to avoid deep aquifers.
- Recent observation period (mean of 2009–2018).
Monitoring sites with strong variations in the annual means are excluded (standard error of the mean (SEM) in the time series is >1 mg l$^{-1}$ for O$_2$ and Fe and >10 mg l$^{-1}$ for NO$_3$) to provide a representative concentration with robust means for the sampling period.

- Outliers in the O$_2$, Fe and NO$_3$ concentrations (>99% percentile) are removed from the data set.

Information on data acquisition and preparation is further described in text S1 of the supplementary material, available at stacks.iop.org/ERL/15/064004/mmedia. The groundwater quality data is statistically summarised in table S1 and figure S1, the spatial distribution of the monitoring sites is mapped in figure S2.

The groundwater concentration measurements (point data) for NO$_3$ ($n = 5414$), O$_2$ ($n = 5837$) and Fe ($n = 5628$) are used as the dependent variables. The redox condition classification is derived from O$_2$ and Fe concentrations and is taken into account in the nitrate model as predictor. To simulate groundwater nitrate concentrations, a set of 21 relevant spatial environmental predictors available throughout Germany is pre-selected according to expert knowledge, including 7 predictors on land use and management, 12 predictors on hydrogeology and hydrochemistry, and 2 predictors on soil conditions (table S2). A description of the data and information on data preparation can be found in text S2 and figures S3–S6.

2.2. Pre-processing

2.2.1. Characterisation of redox conditions

The characterisation of the redox conditions is based on a four-point classification scheme according to LAWA (2018). O$_2$ concentration is the predominant determinant for the occurrence of denitrification, with concentrations <2 mg l$^{-1}$ indicating anaerobic conditions and the occurrence of denitrification (Rivett et al 2008). In this case, two points are assigned to the monitoring site. In the range of 2–5 mg l$^{-1}$ O$_2$, there is only an average probability for the occurrence of denitrification, and one point is assigned. At O$_2$ concentrations >5 mg l$^{-1}$ there are strong aerobic conditions, the probability of denitrification is low and no points are assigned to the monitoring site. Since denitrification preferably occurs...
under the presence of Fe concentrations \(\geq 0.2 \text{ mg l}^{-1}\) (Kunkel et al. 2004, 2017), we added an extra point. This results in four redox classes: (3) strongly anaerobic, (2) anaerobic, (1) intermediate and (0) aerobic (table S3).

2.2.2. Buffer analysis

The point data (\(O_2\), Fe and NO\(_3\)) concentrations are linked with the spatial predictors by means of contributing areas. The contributing area represents the potential catchment area of a monitoring site where the measured groundwater quality can be influenced by environmental factors. Since information on large-scale groundwater flow conditions is limited, we used a simplified procedure to determine contributing areas for each monitoring site, i.e. a circular buffer of 1000 m radius results in best model performances (Knoll et al. 2019). The spatial predictors are compiled within this buffer zone and are linked to the monitoring site. The spatial predictors are assigned to the individual cells of the grid map for Germany (358 171 grid cells) in the same way. The data pre-processing is further described in text S3.

2.2.3. Feature selection

First, a correlation matrix was used to test for strong correlations (pearson correlation coefficient \(r > 0.75\)) between the numerical predictors. This was the case for the leachate rate and the groundwater recharge rate, whereupon we removed the leachate rate from the data set. With the Boruta R package (Kursa and Rudnicki 2010), an all-relevant feature selection algorithm, a final set of relevant predictors was selected, where rock type of the aquifer was removed as well (table S2). Predictor importance plots derived from the Boruta method can be found in figure S7. After feature selection, 11 predictors remain for the \(O_2\) data set, 6 for the Fe data set, and 19 for the NO\(_3\) data set.

2.3. Predictive modelling

For RF model training and evaluation, the data is first split into a training (80%) and test (20%) data set. In order to ensure an approximately equal distribution of the response variable in both data sets, stratified random sampling is applied (Kuhn and Johnson 2013). For spatial prediction, the final model is trained with all data due to the relatively low density of monitoring sites. Details about the RF modelling approach are given in text S4. While RF considers only the conditional mean of a response prediction, QRF keeps all observations in this node and assesses the conditional distribution (Meinshausen 2006). This continuous distribution function describes the range and variation of the response variable around the predicted mean and thus median values or an estimate for the uncertainty of the prediction can be obtained. We use the R package ‘caret’ v. 6.0–82 (Kuhn 2018) for predictive modelling, in which the R package ‘randomForest’ (Liaw and Wiener 2002) (method = ‘rf’) and ‘quantregForest’ (Meinshausen 2017) (method = ‘qrf’) is implemented. In ‘caret’, we define the number of trees in the model (\(ntree = 1000\)) and three times repeated 10-fold cross-validation (method = ‘repeatedcv’, number = 10, repeats = 3) as resampling method in the model training function.

The evaluation of the model performance is based on three objective functions: the root mean squared error (RMSE), coefficient of determination \(R^2\) and mean absolute error (MAE). RMSE and MAE give an expression for the average model prediction error in the unit of the model response, where \(R^2\) is a common measure indicating the variance in the prediction. We determine model performance for the training data set and validate it with the independent test data set. Because RF trees grow to a maximum size, it likely overfits the data in each tree, which results in essentially low prediction errors on the training data. Using cross-validation in the model training process avoids overfitting. Therefore the performance for the finally used model based on all data is determined through cross-validation. The relative predictor importance for each model is evaluated during the model training process by cross-validation based on the training data set with a normalised measure for importance from 0% to 100%, where the most important predictor is set to 100% (Kuhn 2018).

After model training and setup of the grid map data set (1 km \(\times\) 1 km) for Germany, the models are used to estimate the groundwater concentrations for each grid cell according to the assigned predictors. Before applying the model for NO\(_3\) to the grid, the redox conditions must be determined for each grid cell according to the classification scheme based on the predicted \(O_2\) and Fe concentrations (table S3).

2.4. Uncertainty analysis

To evaluate the reliability of the estimates, a prediction interval (PI) can be derived to determine the model uncertainty. The \(p\)-quantile of a distribution corresponds to the value not exceeded by the values of the response variable with a probability \(p\). Based on the \(p\)-quantiles, the PI is defined as the range between the lower (PI\(_{\text{lower}}\)) and upper prediction limit (PI\(_{\text{upper}}\)). A 90%-PI indicates a range from the 5%-quantile to the 95%-quantile \((\frac{1-p}{2} \text{ to } \frac{1+p}{2})\), in which the true value is expected with a high probability \((p = 0.9)\). The mean prediction interval (MPI) and the prediction interval coverage probability (PICP) are suggested as statistical measures to evaluate the uncertainty of QRF (Shrestha and Solomatine 2006, Rahmati et al. 2019). The MPI expresses the average width of all PIs, with lower values indicating lower uncertainties (equation (1)). With the PICP as a validation measure of the model uncertainty, the proportion of observed values \((y_i)\)
within the estimated PI is calculated for a given confidence level p (equation (2)) (Dogulu et al 2015). Ideally, PICP corresponds approximately to the confidence interval p, otherwise the uncertainty is overestimated (PICP > p) or underestimated (PICP < p).

$$\text{MPI} = \frac{1}{n} \sum_{i=1}^{n} (PL_{i}^{\text{upper}} - PL_{i}^{\text{lower}})$$

$$\text{PICP} = \frac{1}{n} \sum_{i=1}^{n} C, \text{ where } C = \begin{cases} 1, & PL_{i}^{\text{lower}} < y_{i} < PL_{i}^{\text{upper}} \\ 0, & \text{otherwise} \end{cases}$$

3. Results

3.1. Spatial distribution of groundwater redox conditions

In the pre-processing step, four classes characterising the prevailing redox conditions were determined based on the measured O_2 and Fe concentrations. Figure 2 shows a distinct influence of redox conditions on groundwater nitrate concentrations with a significant decrease with increasing anaerobic conditions. However, very high nitrate concentrations can still be seen in the anaerobic classes (2) and (3), despite potentially favourable conditions for denitrification. In these cases, either the denitrification potential is exceeded or the denitrification capacity is exhausted due to depleted electron donors (Green et al 2008, Liao et al 2012, Wilde et al 2017).

In order to map the redox conditions, the spatial distribution of O_2 and Fe groundwater concentrations must first be estimated. RF models for both parameters are trained with the pre-selected predictors. The importance of the predictors used in the RF model for O_2 (RF$_{O2}$) and Fe (RF$_{Fe}$) are ranked and depicted in figure 3. For the RF$_{O2}$ model, the hydrogeological units and the groundwater recharge rate are most relevant. In the RF$_{Fe}$ model, the hydrogeological units dominate followed by field capacity. Tesoriero et al (2017, 2015) also concluded that geochemistry and parameters related to groundwater travel times, including groundwater recharge rate, are significant predictors for estimating aerobic conditions.
Table 1: Evaluation of model performance for the RF\textsubscript{O2}, RF\textsubscript{Fe} and RF\textsubscript{NO3} models based on test data, training data and all data of the WFD data set.

Model	Test data		Training data		All data cross-validation				
	RMSE [mg l\(^{-1}\)]	\(R^2\)	MAE [mg l\(^{-1}\)]	RMSE [mg l\(^{-1}\)]	\(R^2\)	MAE [mg l\(^{-1}\)]	RMSE (±sd) [mg/l]	\(R^2\) (±sd)	MAE (±sd) [mg l\(^{-1}\)]
RF\textsubscript{O2}	2.50	0.53	1.87	1.32	0.89	0.97	2.49 ± 0.09	0.53 ± 0.03	1.86 ± 0.06
RF\textsubscript{Fe}	3.09	0.24	1.65	1.62	0.84	0.88	3.00 ± 0.25	0.26 ± 0.05	1.66 ± 0.11
RF\textsubscript{NO3}	20.90	0.51	12.97	8.66	0.93	5.39	20.12 ± 0.97	0.52 ± 0.04	12.71 ± 0.51

The results of the predictive performances of the RF models are summarised in Table 1. The RF\textsubscript{O2} model shows a very good predictive performance for the training data set. The RF\textsubscript{O2} model based on all data after cross-validation still achieves a good predictive performance (RMSE = 2.49 mg l\(^{-1}\), \(R^2 = 0.53\), MAE = 1.86 mg l\(^{-1}\)) similar to that of the test data set. The RF\textsubscript{Fe} model also shows very good predictive performance for the training data set. However, for the independent test data, the RF\textsubscript{Fe} model only has a reasonable predictive performance as has the RF\textsubscript{Fe} model based on all data after cross-validation (RMSE = 3.00 mg l\(^{-1}\), \(R^2 = 0.26\), MAE = 1.66 mg l\(^{-1}\)). Similar studies, e.g. Tesoriero et al. (2017) and Rosecrans et al. (2017) can hardly be compared with our results, as they predict the probabilities of exceeding certain thresholds. Predictions versus observations for groundwater \(O_2\) and Fe concentrations of the test data are shown in Figure 4. Despite its lower predictive performance compared to oxygen, iron provides an important additional contribution to the classification of the redox conditions.

The predicted grid maps of the groundwater concentrations of the redox parameters \(O_2\) and Fe can be found in figures S8 and S9. Density plots of the predicted redox parameters can be found in Figure S11. The MPI of 7.4 mg l\(^{-1}\) for the RF\textsubscript{O2} model and 6.0 mg l\(^{-1}\) for the RF\textsubscript{Fe} model indicate a very high uncertainty in the model prediction. The PICP values of 0.89 for RF\textsubscript{O2} and 0.90 for RF\textsubscript{Fe} correspond to \(p(0.90)\), thus indicating that the uncertainties of the predictions are correctly assessed with QRF.

According to the classification scheme in Table S3, the spatial distribution of the redox condition is determined with the estimated \(O_2\) and Fe concentrations in groundwater. Due to the low model performance of the RF\textsubscript{Fe} model and its rather large uncertainties this could lead to misclassifications, especially in line with the low Fe concentration threshold for anaerobic conditions. As Fe concentrations show a strongly right skewed distribution, we use the median in favour of the average to describe the expected response. The resulting map of the derived redox conditions is shown in figure 5. In the northern part of Germany as well as in some lowlands in the central and southern part predominantly strongly anaerobic to intermediate redox conditions occur. The southern part of Germany is dominated by intermediate to mostly aerobic redox conditions. This distribution indicates a higher denitrification potential in the unconsolidated aquifers of the North German Plain and local lowlands than in the consolidated units of central and southern Germany.
3.2. Spatial distribution of groundwater nitrate concentration

The RF model training for the NO$_3$ model (RF$_{NO3}$) is based on a more comprehensive set of predictors compared to RF$_{O2}$ and RF$_{Fe}$ (table S2). In addition to available spatial predictors, information on redox conditions derived from monitoring data of O$_2$ and Fe concentration (figure 5) is used. The variable importance of the predictors used in the RF$_{NO3}$ model is ranked in figure 3. The redox condition is by far the most relevant predictor, followed by the hydrogeological units and the percentage of arable land. The high relevance of the hydrogeological units and the percentage of arable land has also been found in Knoll et al. (2019). Ransom et al. (2017) used the redox parameters manganese and oxygen for nitrate prediction, which in that case turned out to be the most relevant predictors. Contrary to our expectations, the groundwater residence time within the RF$_{NO3}$ model is less relevant. Ransom et al. (2017) added the groundwater age as a predictor and significantly improved the predictive performance of their groundwater nitrate model. However, the rather coarse resolution of groundwater age might be the reason for the low impact in our study.

The RF$_{NO3}$ model results in a good predictive performance for the training data set (table 1). For the independent test data set, the model still provides good predictive performance as well as for the model based on all data after cross-validation (RMSE = 20.12 mg l$^{-1}$, $R^2 = 0.52$, MAE = 12.71 mg l$^{-1}$). Predictions versus observations for groundwater nitrate concentrations of the test data are shown in figure 4. The RF$_{NO3}$ model tends to underestimate high concentrations (>50 mg l$^{-1}$) and has problems in the prediction of extreme values >100 mg l$^{-1}$. However, the performance of the model can be regarded as good, especially with respect to the large scale of the application and the relatively low density of monitoring sites. Other studies on large-scale prediction of groundwater nitrate concentrations result in comparable model performances (Nolan et al. 2015, Wheeler et al. 2015, Ransom et al. 2017, Knoll et al. 2019). The predicted grid map of the NO$_3$ concentration in groundwater is shown in figure 6, a corresponding density plot can be found in figure S11. As shown before, results of the RF$_{Fe}$ and the RF$_{O2}$ models contain partly large uncertainties. This could lead to misclassifications of the redox classes used for the NO$_3$ prediction. Since the redox condition is the most relevant predictor, we analysed its spatial sensitivity. In short, we added a random error of 5%–30% to all classes in figure 5, see details in text S5 and figure S12. The mean predicted NO$_3$ concentration varies more with an increase in misclassification. But even an assumed misclassification as large as 30% does not lead to a general questioning of our results. The predicted mean NO$_3$ concentration...
across Germany of 22.7 mg l\(^{-1}\) ranges within 21.0 to 24.9 mg l\(^{-1}\) under this assumption.

The QRF model is also used to determine the upper and the lower prediction limits for the RF\(_{\text{NO3}}\) model. The derived 90%-PI is shown in figure 6. Based on the test data, the MPI of 53.0 mg l\(^{-1}\) for the RF\(_{\text{NO3}}\) model indicates a very high uncertainty in the model prediction. The PICP values for the RF\(_{\text{NO3}}\) model of 0.91 corresponds to \(p(0.90)\), indicating correctly assessed prediction uncertainties with QRF. Other studies on prediction of groundwater nitrate concentration determined uncertainties in a similar range (Ransom et al. 2017, Rahmati et al. 2019).

Koch et al. (2019) pointed out that the uncertainty can be significantly reduced with a more comprehensive data set. In line with this, we also tested a data set with additional monitoring sites (\(n = 13\) 038 for NO\(_3\)) operated by several federal states in Germany, which resulted in a reduced, but still high uncertainty (MPI = 41.9 mg l\(^{-1}\)). Anyway, as these sites are not part of the WFD monitoring program, they were not further considered in this study.

4. Discussion

The high relevance of the redox conditions in the estimation of nitrate concentrations underlines the importance of a precise estimation of the hydrogeochemical conditions in the aquifers. Since hydrogeological units (figure S4) provide a decisive predictor for the estimation of the redox parameters, it is obvious that they are also of high relevance for the estimation of groundwater nitrate concentrations. Nevertheless, the anthropogenic impact on nitrate loads can only be represented properly if the inputs of nitrogen to the groundwater are correct. Thus, knowledge about percentage of agricultural land, the nitrogen surplus and the seepage rate are essential. Although natural turnover processes in the groundwater body are the most important determinant with regard to the groundwater pollution, the starting point for mitigation measures is to reduce the input, especially with regard to a finite reduction potential in the groundwater body.

It is apparent that the redox conditions are roughly divided into two regions (figure 5). In the North German Plain and in some lowlands, anaerobic to strongly anaerobic conditions and thus preferably denitrifying conditions predominate. Conversely, aerobic to intermediate redox conditions tend to dominate in the southern and central German mountain regions. Similar findings are described in Kunkel et al. (2004) who conclude that aquifers with reduced nitrate degrading capacity occur in the
North German Plain, while non-nitrate-degrading conditions prevail in aquifers of consolidated units. Hannappel et al. (2018) also found that the denitrification potential in quaternary and tertiary unconsolidated rocks is clearly higher than in the consolidated units.

The north-eastern part of Germany shows predominantly unpolluted areas in glacially formed Late Pleistocene units. These largely confined aquifers are characterised by low flow velocities, long groundwater residence times and strongly anaerobic conditions due to thick covering till layers and are therefore well protected against contamination (Wendland et al. 2008, Merz et al. 2009). Merz et al. (2009) also describe aerobic areas in groundwater recharge regions with high NO$_3$ concentrations, which only in places are identified by the predictions of the RF$_{NO3}$ model. However, predictions are accompanied by rather high uncertainties, so that higher concentrations are at least within the confidence limits of the model. In the north-western part of Germany, high NO$_3$ concentrations occur in the Geest regions formed in the Middle Pleistocene, whereas in the lowlands the groundwater is almost nitrate-free, which is in line with Wriedt et al. (2019). The redox conditions tend to be less anaerobic to intermediate in the Geest areas in contrast to the lowlands where strong anaerobic conditions prevail, which was also reported by Eschenbach et al. (2018). Conversely, lowlands with sand and gravel deposits in the middle and southern part of Germany often show nitrate-polluted groundwater, due to a lack of cover layer, weakly anaerobic to intermediate redox conditions and intensive agricultural land use (Grimm-Strele et al. 2008, Wendland et al. 2008, Kuhr et al. 2013, Knoll et al. 2019). For the pore aquifers of the northern Alpine foothills, the RF$_{NO3}$ model predicts large areas of nitrate-polluted groundwater, despite generally well-developed cover layers and the associated high protective function of the aquifers in this region. The tendency to overestimate groundwater nitrate concentration in this region can be due to the very low density of monitoring sites. The uncertainties in this area are also high. In the consolidated units of central and southern Germany, fractured and karst aquifers are generally more vulnerable to contamination and predominantly indicate higher groundwater nitrate concentrations, which is also in line with a lower nitrate reduction potential due to aerobic to intermediate redox conditions (Hannappel et al. 2018). In these consolidated regions, the high nitrate concentrations in the groundwater correspond to areas with high nitrogen surpluses caused by intensively agriculturally used depressions. Only the mountain regions with extensive forest cover usually show no groundwater nitrate pollution. Based on the described approach, about 10% of the area of Germany exceed the threshold of 50 mg l$^{-1}$ NO$_3$.

In general, the uncertainties are large (MPI = 53.0 mg l$^{-1}$), especially in the regions where nitrate concentrations are high or where strong variations between very high and low concentrations exist. Ransom et al. (2017) also determined the highest uncertainties in the nitrate-polluted areas.

A possible source for prediction errors and high uncertainties is linked to the available predictors. A more precise assessment of groundwater residence times could lead to better results and lower uncertainty. However, there is no nation-wide detailed database on the depth to the groundwater surface and flow conditions or the thickness of cover layers, which would be important indicators for residence times and the protective function of the aquifer. In addition, the integration of further predictors, such as a detailed description of the geochemical character of the aquifer or detailed information on input sources (that are currently not available on large scales) could improve the model performance. Uncertainties and prediction errors may also arise from the underlying dependent variable. Investigations of the spatial distribution of redox conditions in aquifers have shown a decrease in aerobic conditions with depth (Close et al. 2016, Rosecrans et al. 2017). Due to this hydrogeochemical zoning of aquifers, the concentrations of the groundwater samples strongly depend on the horizon in which the wells are screened and generally the NO$_3$ concentrations decrease with increasing well depth (Wheeler et al. 2015, Ransom et al. 2017). Tesoriero et al. (2017) also showed a higher probability for high nitrate concentrations near the groundwater surface. Wriedt et al. (2019) reported a decrease in nitrate concentrations with depth, but they concluded that a vertical gradation of depth horizons cannot adequately describe the hydrogeochemical zoning of the aquifers. Long screened sections can also lead to mixing of groundwater from the aerobic and anaerobic zone during sampling. Adjacent measuring points, which supply samples from different horizons, thus lead to variations in the data set, likely causing high prediction uncertainties.

Finally, it should be pointed out that the results of the regionalized groundwater nitrate concentration, and thus the identified areas with NO$_3$ $>$ 50 mg l$^{-1}$ (10%), presented in this study cannot be compared one-to-one with studies focusing on other research questions. The classification of the chemical status of the groundwater in Germany according to the WFD showed that even 27.1% of the groundwater bodies did not meet the WFD quality standard for nitrate (UBA. 2017). It should be taken into account that the WFD-assessment is based on the precautionary principle, i.e. the results consider extreme concentrations which are potentially harmful. Accordingly a groundwater body (average size around 316 km2) is entirely classified as ‘poor status’ if even one of the monitoring sites or a defined proportion of the area within the groundwater body does not meet the quality standard (GrWV 2010). Thus, a much
higher proportion of the area is designated as nitrate-polluted compared to our analysis, where the spatial assessment is based on a much higher resolution and mean values excluding outliers. In the authors’ view, which methodology most adequately characterises groundwater quality (with regard to nitrate) depends on the scientific context and the research objective.

5. Conclusion

This study shows the potential of machine learning applications such as RF and QRF in the field of water research on a national scale. We presented the first Germany-wide assessment of groundwater redox conditions and nitrate concentrations with a resolution of 1 km × 1 km using a uniform data-driven approach based on spatial environmental predictors. In addition to a large influence of redox conditions, hydrogeological units and the percentage of arable land on nitrate estimation, high prediction uncertainties were determined. A more detailed and comprehensive database stratified according to well depths would likely enhance the prediction of NO₃ concentrations in groundwater. Adaptations of national groundwater monitoring networks with extensive monitoring in different depth horizons would be a major step forward, not only for Germany. However, the results of this study can contribute to further research on nation-wide scales, e.g. the calculation of national nitrogen targets or quantifying nitrogen flows from groundwater into surface waters and for the identification of vulnerable regions in which detailed investigations regarding the implementation of mitigation measures are necessary.

Acknowledgments

The project underlying this publication was coordinated and funded by the German Environment Agency in the framework of the environment research plan of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Project No. 3715 22 2200). We are very grateful to German Working Group on water issues of the Federal States and the Federal Government-Committee for Groundwater and Water supply (LAWA-AG) and the Water Management Authorities of the federal states for providing the groundwater data. We also declare that no conflicts of interest exist in the submission of this manuscript.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID iDs

Lukas Knoll https://orcid.org/0000-0001-7928-0778
Lutz Breuer https://orcid.org/0000-0001-9720-1076
Martin Bach https://orcid.org/0000-0002-8695-7529

References

BKG 2017 Verwaltungsgebiete 1:250 000 (Ebenen), Stand 01.01. (VG250 01.01.) Bundesamt für Kartographie und Geodäsie, Frankfurt am Main (https://gdz.bkg.bund.de/index.php/default/open-data/verwaltungsgebiete-1-250-000-ebenen-stand-01-01-vg250-ebenen-01-01.html)
Breiman L 2001 Random Forests Mach. Learn. 45 5–32
Close M E, Abraham P, Humphries B, Lilburne L, Cuthill T and Wilson S 2016 Predicting groundwater redox status on a regional scale using linear discriminant analysis J. Contam. Hydrol. 191 19–32
Dogulu N, López López P, Solomatine D P, Weerts A H and Shrestha D L 2015 Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments Hydrof. Earth Syst. Sci. 19 3181–201
EC 2003 Guidance no 7—monitoring under the Water Framework Directive (https://circabc.europa.eu/sd/a/6377f15f-0f45-4955-b7cb-58ca30e4a8/ Guidance%20No%207%20-%20Monitoring%20(WG%20207).pdf)
EEA 2018 European waters—assessment of status and pressures 2018 Ear. Environ. Agency (https://www.eea.europa.eu/publications/state-of-water)
Erisman J W, Galloway J N, Seitzinger S, Bleeker A, Disc N B, Petrescu A M R, Leach A M and de Vries W 2013 Consequences of human modification of the global nitrogen cycle Phil. Trans. R. Soc. B 368 20130116
Eschenbach W, Budziak D, Elbracht J, Hoyer H, Krienen L, Kunkel R, Meyer K, Well R and Wendland F 2018 Possibilities and limitations of validating modelled nitrate inputs into groundwater at the macroscale using the N2/Ar-method Grundwasser 23 125–39
Foster S S D and Chilton P J 2003 Groundwater: the processes and global significance of aquifer degradation Phil. Trans. R. Soc. A 358 1957–72
Friedel M J, Wilson S R, Close M E, Buscema M, Abraham P and Banasiak I 2020 Comparison of four learning-based methods for predicting groundwater redox status J. Hydrol. 580 124200
Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z, Freney J R, Martinelli L A, Seitzinger S P and Sutton M A 2008 Transformation of the nitrogen cycle: recent trends, questions, and potential solutions Science 320 889–92
Green C T, Puckett I J, Boihke J K, Bekins B A, Phillips S P, Kaufman I J, Denver J M and Johnson H M 2008 Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States J. Environ. Qual. 37 994–1009
Grimm-Strele J, Casper M, van Dijk P, Finck M, Guderia T and Korte S 2008 Modelling system MoNit for simulation of groundwater pollution by nitrate of the Upper Rhine valley aquifer Wasserwirtschaft 98 55–59
van Grinsven H J, Ward M H, Benjamin N and de Kok T M 2006 Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water? Environ. Health 5 26
Grizzetti B, Passy P, Billen G, Bouraoui F, Garnier J and Lassaletta L 2015 The role of water nitrogen retention in integrated nutrient management: assessment in a large basin
using different modelling approaches Environ. Res. Lett. 10 065008

GeweV 2010 Grundwasserverordnung vom 9 November 2010 (BGBl. I. S. 1515), zuletzt geändert durch Artikel 1 der Verordnung vom 4. Mai 2017, BGBl. I. S. 1044 (http://www.gesetze-im-internet.de/geweV_2010/GeweV.pdf)

Gu B, Ge Y, Chang S X, Luo W and Chang J 2013 Nitrates in groundwater of China: sources and driving forces Glob. Environ. Change 23 1112–21

Hannappel S, Koepp C and Bach T 2018 Characterization of the denitrification potential of aquifers in Saxony-Anhalt Grundwasser 23 311–21

Kallis G and Butler D 2001 The EU water framework directive: measures and implications Water Policy 3 125–42

Khalili A, Almasri M N, Mckee M and Kaharachchi J 2005 Applicability of statistical learning algorithms in groundwater quality modelling Water Resour. Res. 41

Knoll L, Breuer L and Bach M 2019 Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning Sci. Total Environ. 668 1317–27

Koch J, Sisens S, Refsgaard J C, Ernstsen V, Jakobsen P R and Højberg A L 2019 Modeling depth of the redox interface at high resolution at national scale using Random Forest and Residual Gaussian simulation Water Resour. Res. 55 1451–69

Korom S F 1992 Natural denitrification in the saturated zone: a review Water Resour. Res. 28 1657–68

Kuhn M 2018 Caret: classification and regression training, R package version 6.0-82 (https://cran.r-project.org/web/packages/caret/index.html, https://cran.r-project.org/web/packages/caret.pdf)

Kuhn M and Johnson K 2013 Applied Predictive Modeling (New York: Springer-Verlag) (http://www.springer.com/de/book/9781461468486)

Kuhn P, Haider J, Kreins P, Kunkel R, Tetzlaff B, Vereecken H and Wendland F 2013 Model based assessment of nitrate pollution of water resources on a federal state level for the dimensioning of agro-environmental reduction strategies Water Resour. Manage. 27 885–909

Kunkel R, Bach M, Behrendt H and Wendland F 2004 Groundwater-borne nitrate intakes into surface waters in Germany Water Sci. Technol. 49 11–19

Kunkel R, Herrmann F, Kape H E, Keller L, Koch F, Tetzlaff B and Wendland F 2017 Simulation of terrestrial nitrogen fluxes in Mecklenburg-Vorpommern and scenario analyses how to reach N-quality targets for groundwater and the coastal waters Environ. Earth Sci. 76 146

Kursa M B and Rudnicki W R 2010 Feature selection with the Boruta package J. Stat. Softw. 36 1–13

LAWA 2018 Konzept zur Beurteilung der Grundwassergüte anhand weiterer Stoffgehalte unter Berücksichtigung eines möglichen Nitratabbaus. Bund/Länder-Arbeitsgemeinschaft Wasser (German Working Group on Water Issues), Städiger Ausschuss „Grundwasser und Wasserversorgung (ag)“, Stand 06 (https://www.lawa.de/documents/lawa_bericht_beurteilung_gw-geue_2_1552302188.pdf)

Liao L, Green C T, Bekins B A and Böhlke J K 2012 Factors controlling nitrate fluxes in groundwater in agricultural areas Water Resour. Res. 48 W00109

Liaw A and Wiener M 2002 Classification and regression by randomForest R News 6 18–22

McMahon P B and Chapelle F H 2008 Redox processes and water quality of selected principal aquifer systems Groundwater 46 259–71

Meinshausen N 2006 Quantile regression forests J. Mach. Learn. Res. 7 983–99

Meinshausen N 2017 QuantregForest: quantile regression forests (available at: https://CRAN.R-project.org/package=quantregForest)

Merz C, Steidl J and Dannowski R 2009 Parameterization and regionalization of redox based denitrification for GIS-embedded nitrate transport modeling in Pleistocene aquifer systems Environ. Geol. 58 1587

Nolan B T, Fienen M N and Lorenz D L 2015 A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA J. Hydrol. 531 902–11

Nolan B T, Gronberg J M, Faunt C C, Eberts S M and Belitz K 2014 Modeling nitrate at domestic and public-supply well depths in the Central Valley, California Environ. Sci. Technol. 48 5643–51

Nolan B T and Hitt K J 2006 Vulnerability of shallow groundwater and drinking water wells to nitrate in the United States Environ. Sci. Technol. 40 7834–40

Nolan B T, Hitt K J and Ruddy B C 2002 Probability of nitrate contamination of recently recharged groundwater in the conterminous United States Environ. Sci. Technol. 36 2138–45

Ouedraogo I, Defourny P and Vanclooster M 2019 Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continental scale Hydrogeol. J. 27 1081–98

Rahmati O et al 2019 Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods Sci. Total Environ. 688 855–68

Ransom K et al 2017 A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA Sci. Total Environ. 601–602 1160–72

Refsgaard J C, van der Sluijs J P, Højberg A L and Vanrolleghem P A 2007 Uncertainty in the environmental modelling process—a framework and guide Environ. Model. Softw. 22 1543–56

Reis S, Bekunda M, Howard C M, Karanja N, Winiwarter W, Yan X, Bleeker A and Sutton M A 2016 Synthesis and review: tackling the nitrogen management challenge: from global to local scales Environ. Res. Lett. 11 120205

Rivett M O, Buss S R, Morgan P, Smith J W N and Bennetton C D 2008 Nitrate attenuation in groundwater: a review of biogeochemical controlling processes Water Res. 42 4213–32

Rodriguez-Galiano V F, Luque-Espinar J A, Chica-Olmo M and Mendes M P 2018 Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods Sci. Total Environ. 624 661–72

Rodriguez-Galiano V F, Mendes M P, Garcia-Soldado M J, Chica-Olmo M and Ribeiro L 2014 Predictive modeling of groundwater nitrate pollution using Random Forest and multivariate related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain) Sci. Total Environ. 476–477 189–206

Rosenbusch C G, Nolan B T and Gronberg J M 2017 Prediction and visualization of redox conditions in the groundwater of Central Valley, California J. Hydrol. 546 341–56

Shrestha D L and Solomon D P 2006 Machine learning approaches for estimation of prediction interval for the model output Neural Netw. 19 225–35

Sztamari G and Pasztor L 2019 Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms Geoderma 337 1329–40

Tesoriero A J, Gronberg J A, Juckem P F, Miller M P and Austin B P 2017 Predicting redox-sensitive contaminant concentrations in groundwater using random forest classification Water Resour. Res. 53 7316–31

Tesoriero A J, Terziotti S and Abrams D B 2015 Predicting redox-sensitive contaminant concentrations in groundwater using Random Forest and multivariate related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain) Sci. Total Environ. 476–477 189–206

Tyralis H, Rashid G, Langousis A and Grahame A 2019 A brief review of random forests for water scientists and practitioners and their recent history in water resources Water 11 910

UBA 2017 Gewässer in Deutschland: Zustand und Bewertung (Dessau-Roßlau: Umweltbundesamt) (http://www.gewaesser-bewertung.de/files/170829_uba_fachbroschuer_wasse_rwirtschafi_mit_anduerung_bf_pdf)
Vaysse K and Lagacherie P 2017 Using quantile regression forest to estimate uncertainty of digital soil mapping products Geoderma 291 55–64

Voulvoulis N, Arpon K D and Giakoumis T 2017 The EU Water Framework Directive: from great expectations to problems with implementation Sci. Total Environ. 575 358–66

Wang B, Oldham C and Hipsey M R 2016 Comparison of machine learning techniques and variables for groundwater dissolved organic nitrogen prediction in an urban area Procedia Eng. 154 1176–84

Wendland F et al 2008 European aquifer typology: a practical framework for an overview of major groundwater composition at European scale Environ. Geol. 55 77–85

Wheeler D C, Nolan B T, Flory A R, Dellavalle C T and Ward M H 2015 Modeling groundwater nitrate concentrations in private wells in Iowa Sci. Total Environ. 536 481–8

Wilde S, Hansen C and Bergmann A 2017 Decreasing denitrification capacity in aquifers: scaled model-based evaluation Grundwasser 22 293–308

Wilson S R, Close M E and Abraham P 2018 Applying linear discriminant analysis to predict groundwater redox conditions conducive to denitrification J. Hydrol. 556 611–24

Wilson S R, Close M E, Abraham P, Sarris T S, Banasiak L, Stenger R and Hadfield J 2020 Achieving unbiased predictions of national-scale groundwater redox conditions via data oversampling and statistical learning Sci. Total Environ. 705 135877

Wriedt G, de Vries D, Eden T and Federolf C 2019 Mapping groundwater nitrate concentrations in Lower Saxony Grundwasser 24 27–41