Magnetodielectric effect and optic soft mode behaviour in quantum paraelectric EuTiO$_3$ ceramics

S. Kamba$^1$, D. Nuzhnyy$^1$, P. Vaněk$^1$, M. Savinov$^1$, K. Knížek$^1$, Z. Shen$^2$, E. Šantavá$^1$, K. Maca$^3$, M. Sadowski$^4$ and J. Petzelt$^1$

$^1$Institute of Physics ASCR - v.v.i. Na Slovance 2, 182 21 Prague 8, Czech Republic
$^2$Arrhenius Laboratory, Stockholm University - SE-10691 Stockholm
$^3$Brno University of Technology - Technická 2896/2, 616 69 Brno, Czech Republic
$^4$Grenoble High Magnetic Field Lab, CNRS - 25, avenue des Martyrs, Grenoble Cedex 9, France

received 20 July 2007; accepted in final form 29 August 2007
published online 19 September 2007

PACS 75.80.+q – Magnetomechanical and magnetoelectric effects, magnetostriction
PACS 78.30.-j – Infrared and Raman spectra
PACS 63.20.-e – Phonons in crystal lattices

Abstract – Infrared reflectivity and time-domain terahertz transmission spectra of EuTiO$_3$ ceramics revealed a polar optic phonon at 6–300 K whose softening is fully responsible for the recently observed quantum paraelectric behaviour. Even if our EuTiO$_3$ ceramics show lower permittivity than the single crystal due to a reduced density and/or small amount of secondary pyrochlore Eu$_2$Ti$_2$O$_7$ phase, we confirmed a magnetic field dependence of the permittivity, also slightly smaller than in single crystal. An attempt to reveal the soft phonon dependence at 1.8 K on the magnetic field up to 13 T remained below the accuracy of our infrared reflectivity experiment.

Copyright © EPLA, 2007

Multiferroics exhibiting simultaneously ferroelectric and ferro- or antiferromagnetic order are known since the beginning of the 1960’s, but the pioneering work by Wang et al. [1], who in the BiFeO$_3$ thin films revealed spontaneous polarization and magnetization almost by an order of magnitude higher compared to the bulk samples. Recently, much attention has been paid to the multiferroic materials not only because of their rich and fascinating fundamental physics (questions why only few materials with simultaneous ferroelectric and magnetic order are known, how to explain the coupling of magnetic and ferroelectric order etc.), but also because of the promising potential applications in multiple-state memory elements [2,3]. In magnetoelectrics the polarization can be controlled by the magnetic field as well as the magnetization by the electric field and so magnetic field tuning of the dielectric permittivity $\varepsilon'$ (magnetodielectric effect) is expected. Recently, gigantic proper magnetodielectric effect has been observed e.g. in TbMnO$_3$ [4] and EuTiO$_3$ [5]. Large magnetodielectric effect was recently seen also in BiFeO$_3$ [6], however in this case the change of $\varepsilon'$ with magnetic field is not due to coupling of the polarization and magnetization, but due to combination of inhomogeneous magneto-resistance and Maxwell-Wagner effect [6].

The perovskite EuTiO$_3$ is not a typical multiferroic. It exhibits an antiferromagnetic (AFM) structure below $T_N = 5.3$ K [7], but the ferroelectric order does not take place because the quantum fluctuations prevent the freezing of polarization at low temperatures. Its permittivity increases on cooling similarly to classical quantum paraelectrics [8,9] (incipient ferroelectrics) SrTiO$_3$, KTaO$_3$, etc., but it saturates below $\sim 30$ K and sharply drops down at $T_N$ [5]. The magnetic structure of EuTiO$_3$ was investigated already forty years ago [7] and determined in ref. [10]. A neutron diffraction study of a powder sample revealed a G-type AFM structure [7]. In this magnetic arrangement, there are two interpenetrating $fcc$ sublattices in which a given Eu$^{2+}$ has six nearest-neighbor Eu$^{2+}$ with antiparallel spins and 12 next-nearest-neighbor Eu$^{2+}$ with parallel spins. At 1.3 K the magnetic moment increases linearly with magnetic field up to 1 T and above 1.4 T the moment saturates at 156 mmu/g (6.93 $\mu_B$) [7].

The low-temperature $\varepsilon'$ below $T_N$ exhibits a huge dependence on the magnetic field $B$, giving evidence about a large interaction of magnetic moments with the crystal lattice [5]. $\varepsilon'$ strongly increases even for low $B$ and the drop down in $\varepsilon'$ seen near $T_N$ at 0 T disappears at fields above 1 T so that only a quantum paraelectric behaviour is seen at high magnetic fields.
down to 2 K. Katsufuji and Takagi [5] suggested that the temperature dependence of $\varepsilon'$ above $T_N$ is due to a soft optic phonon reducing its frequency on cooling and the decrease in $\varepsilon'$ below $T_N$ occurs due to the strong coupling of localized spins in the $4f$ states of Eu$^{2+}$ with the soft $F_{1u}$ phonon, which causes its hardening below $T_N$. The transverse-field Ising model and Heisenberg model were successfully applied for explaining the dielectric and magnetic properties of EuTiO$_3$ and Eu$_{1-x}$Ba$_x$TiO$_3$ with and without external magnetic and electric fields [11–15]. Jiang and Wu [11] calculated the soft mode frequency and obtained 8 cm$^{-1}$ at 20 K. Femmi and Rabe [16] calculated the soft mode frequency in the first principles and obtained 77 cm$^{-1}$. They also predicted a remarkable softening of the soft mode and transition into the ferroelectric phase in biaxially strained samples. The strain can be realized in thin films deposited on substrates with slightly mismatched lattice parameters [16]. In such a phase the giant magnetodielectric effect is expected.

The polar soft mode is infrared (IR) active so that the IR spectroscopy is the best tool for the verification of the predicted phonon softening on cooling. In this letter we will show that the soft mode really exhibits the expected softening (from 112 cm$^{-1}$ at 300 K to 82 cm$^{-1}$ at 6 K), in perfect agreement with the predictions from the first-principles calculations [16].

EuTiO$_3$ ceramics was synthesized from the Eu$_2$O$_3$ and Ti$_2$O$_3$ powders using mechanochemical activation in the planetary mill. Fritsch Pulverisette 7. Powder XRD showed strong amorphization —no diffraction lines of Eu$_2$O$_3$ were found but significantly widened peaks of the Ti$_2$O$_3$ and of some unidentified phases. The powder was pressed into pellet in a uniaxial press at 650 MPa (or in an isostatic press at 300 MPa) at room temperature and then annealed at 1500 °C in Ar + 10% H$_2$ atmosphere. The reducing atmosphere is necessary to prevent the formation of pyrochlore Eu$_3^{+}$Ti$_2^{4+}$O$_7$. The powder XRD showed sharp diffraction lines corresponding to single-phase cubic perovskite EuTiO$_3$. No other phase was detected, but the porosity of resulting ceramics was relatively high —20–30%. Therefore we used an additional sample processing: The EuTiO$_3$ pellet was ground and milled again to a fine nanopowder which was sintered by spark plasma sintering at 1150–1200 °C, pressure 75–100 MPa, time 3–5 min. The resulting ceramic samples were more than 91% dense and contained 5% or in one case even 15% of the secondary pyrochlore phase.

The magnetodielectric effect was studied by measuring the changes in permittivity with the magnetic fields up to 14 T (PPMS, Quantum design) at temperatures 2–300 K. The measurements were performed at frequency 1 kHz with ultra-precision capacitance bridge Andeen-Hagerling 2500 A. Details of the dielectric, THz and IR experiments performed without magnetic field are described elsewhere [6]. The IR reflectivity spectra were taken as well at magnetic fields up to 13 T at 1.8 K using a Fourier transform IR spectrometer Bruker IFS 113v. For reduction of the high noise we measured 2000 scans with a resolution of 6 cm$^{-1}$, while the IR spectra in non-magnetic cryostat were taken with a resolution of 2 cm$^{-1}$ at only 128 scans.

The temperature dependence of $\varepsilon'$ below 90 K measured at various magnetic fields is plotted in fig. 1. At higher temperature the sample becomes slightly conducting [17], therefore $\varepsilon'$ increases to huge values (not shown in fig. 1) due to Maxwell-Wagner polarization mechanism. Below 85 K, one can see an increase in intrinsic permittivity on cooling and its saturation below ~25 K due to quantum fluctuations. The shape of the $\varepsilon'(T)$ curve down to 6 K is the same as in classical quantum paraelectric SrTiO$_3$ [8], but with much lower value. Sharp drop appears in $\varepsilon'(T)$ below AFM phase transition at $T_N = 5.3$ K, although the sample remains paraelectric. At high magnetic fields above 1 T the AFM phase transforms to the ferromagnetic one, the drop-down in $\varepsilon'(T)$ disappears and a pure incipient ferroelectric behaviour, i.e. continuous increase of $\varepsilon'(T)$ on cooling is seen. We note that the same temperature and magnetic field dependencies of $\varepsilon'$ were observed independently of orientation of magnetic B and measuring electric E fields (i.e. both geometries E//B and E⊥B gave the same $\varepsilon'(T,B)$ results as in fig. 1). Similar $\varepsilon'(T,B)$ was observed by Katsufuji and Takagi on EuTiO$_3$ single crystal, but the value of permittivity was more than twice higher compared with our values obtained on the ceramics of 80% density. This discrepancy could be due to the porosity which may cause a 50% decrease in the permittivity [18].

$\varepsilon'$ decreases with the AFM ordering of Eu spins whereas it increases with their ferromagnetic arrangement under magnetic field. Therefore Katsufuji and Takagi suggested that the $\varepsilon'(B)$ is dominated by the pair correlation of the Eu neighbouring spins $\langle S_i \cdot S_j \rangle$ and successfully fitted the experimental $\varepsilon'(T)$ data by the formula

$$\varepsilon'(T,B) = \varepsilon'_0(T)(1 + \alpha \langle S_i \cdot S_j \rangle),$$  

(1)
where $\varepsilon'_0(T)$ is the dielectric constant in the absence of a spin correlation and $\alpha$ is the coupling constant between correlated spins and permittivity. The same authors also suggested that the value of static permittivity is only due to contributions of polar optic phonons and the temperature dependence of $\varepsilon'_0$ is caused by softening of one of the phonons, similarly as in SrTiO$_3$. Our radio-frequency dielectric measurements without magnetic field really did not reveal any frequency dispersion in $\varepsilon'$ and only negligible dielectric losses between 100 Hz and 1 MHz.

For confirmation of the anomalous polar phonon we performed THz transmission and IR reflectivity measurements between 6 and 300 K. IR spectra show strong dependence on the density of the ceramics as well as on the amount of pyrochlore Eu$_2$Ti$_2$O$_7$ secondary phase (see fig. 2). Low-dense pure perovskite ceramics shows a large diffuse scattering, which rises with increasing temperature and deteriorates the IR reflectivity. 93.6% dense EuTiO$_3$ ceramics with 15% of Eu$_2$Ti$_2$O$_7$ secondary phase exhibits no diffuse scattering but additional reflection bands between 100 and 450 cm$^{-1}$, corresponding to polar phonons of the pyrochlore phase, while in the perovskite cubic phase only 3 IR active phonons are allowed. As an optimal compromise we decided to present here the low-temperature spectra of the sample with 5% of pyrochlore phase (91% density) which exhibits only weak diffuse scattering and the bands from pyrochlore phase are also very weak (see figs. 2 and 3).

Figure 3 shows corresponding IR reflectivity spectra at selected temperatures. One can see an increase of reflectivity on cooling due to the reduced phonon damping at low temperatures, as well as the shift of the first reflection band (i.e. the soft mode) to lower frequencies on reducing temperature. Complex permittivity $\varepsilon^*(\omega) = \varepsilon'(\omega) - i\varepsilon''(\omega)$ is related to the reflectivity $R(\omega)$ by

$$ R(\omega) = \frac{\sqrt{\varepsilon^*(\omega)} - 1}{\sqrt{\varepsilon^*(\omega)} + 1}^2. \quad (2) $$

For the fit of the IR and THz spectra we used a generalized-oscillator model with the factorized form of the complex permittivity [19]:

$$ \varepsilon^*(\omega) = \varepsilon_\infty \prod_j \frac{\omega_{LOj}^2 - \omega^2 + i\gamma_{LOj}}{\omega_{TOj}^2 - \omega^2 + i\gamma_{TOj}}. \quad (3) $$

where $\omega_{TOj}$ and $\omega_{LOj}$ denotes the transverse and longitudinal frequency of the $j$-th polar phonon, respectively, and $\gamma_{TOj}$ and $\gamma_{LOj}$ denotes their corresponding damping constants. The high-frequency permittivity $\varepsilon_\infty$ resulting from the electron absorption processes was obtained from the room-temperature frequency-independent reflectivity tail above the phonon frequencies and was assumed temperature independent.

Real and imaginary parts of $\varepsilon^*(\omega)$ obtained from the fits to IR reflectivity are shown together with the experimental THz spectra in fig. 4. The maxima in $\varepsilon''(\omega)$ correspond roughly to the phonon eigenfrequencies. One can clearly see the increase in static permittivity on cooling (zero frequency values in the top part of fig. 4) due to the phonon softening.

It is worth to note that for the fits we used the factorized form of $\varepsilon^*$ (eq. (3)) instead of more frequently used classical damped harmonic oscillators model [19]

$$ \varepsilon^*(\omega) = \varepsilon_\infty + \sum_{j=1}^{n} \frac{\Delta\varepsilon_j \omega_{LOj}^2}{\omega_{TOj}^2 - \omega^2 + i\omega\gamma_{TOj}}, \quad (4) $$

where the dielectric strength $\Delta\varepsilon_j$ means the contribution of the $j$-th mode to the static permittivity and the rest of the parameters in eq. (4) has the same meaning as in eq. (3). Equation (3) is more suitable than eq. (4) for the
Fig. 4: (Color online) Complex dielectric spectra of EuTiO$_3$ ceramics obtained from the fits of the IR reflectivity at selected temperatures. Spectra above 250 cm$^{-1}$ are not plotted since they show negligible temperature dependence. Dots correspond to the data evaluated from the THz spectra.

fits of IR reflectivity spectra of EuTiO$_3$, because it exhibits large TO-LO splitting, which cannot be well fitted with eq. (4). Dielectric strength $\Delta \varepsilon$ can be obtained from the formula [19]

$$\Delta \varepsilon_j = \varepsilon_\infty \omega_{TOj}^2 \prod_{k \neq j} \omega_{LOk}^2 - \omega_{TOj}^2 \prod_{k \neq j} \omega_{TOj}^2.$$  \hspace{1cm} (5)

It follows from very general summation rules [20] that the sum $f$ of all oscillator strengths $f_j = \Delta \varepsilon_j \omega_{TOj}$ is temperature independent (i.e. $f(T) = \sum_{j=1}^{n} f_j(T) = \text{const}$). In the case of uncoupled phonons each oscillator strength $f_j$ should remain temperature independent (i.e. $\Delta \varepsilon_j(T) \cdot \omega_{TOj}(T) = \text{const}$). It means that each decrease of phonon frequency $\omega_{TOj}$ should be accompanied by increase of dielectric strength $\Delta \varepsilon_j$. Figure 5 shows that the dielectric strength $\Delta \varepsilon_{SM}$ of the lowest frequency mode (i.e. the soft mode) remarkably increases on cooling. However, the oscillator strength $f_{SM}$ of the soft mode increases on cooling as well, which gives evidence about the coupling of the soft mode with other higher-frequency modes. It means that the soft modes receive some part of its dielectric strength from higher-frequency modes, predominantly from second perovskite (TO2) phonon (see in fig. 4 the shift of second peak in $\varepsilon''$ with temperature). Simultaneously, fig. 5 shows that the sum rule of oscillator strengths is valid, because $\sum_{j=1}^{n} f_j(T) = \text{const}$ within accuracy of our measurements.

EuTiO$_3$ crystallizes in the cubic $Pm\bar{3}m$ structure, which allows $3F_{1u}$ IR active phonons and no Raman active mode. Our Raman spectra really revealed no first-order peak. In IR spectra we see three distinct reflection bands corresponding to phonon frequencies at 82, 153 and 539 cm$^{-1}$ (at 6 K), however the fits were performed on the whole with 12 (mostly weak) modes, which account for the small rippled shape of reflectivity (mostly between 100 and 450 cm$^{-1}$). The additional modes stem apparently from the secondary pyrochlore Eu$_2$Ti$_2$O$_7$ phase since they are better resolved in the sample with 15% pyrochlore phase (fig. 2). We studied also temperature dependence of IR reflectivity of the 80%-dense single phase perovskite sample used for the magnetodielectric experiment in fig. 1. The spectra yield the same temperature dependence of the soft mode, however, we do not present the spectra because of the deteriorated reflectance above 200 cm$^{-1}$.

In fig. 6 the temperature dependence of the soft mode frequency $\omega_{SM}$ is plotted. The soft mode softens from 112 cm$^{-1}$ (300 K) down to 82 cm$^{-1}$ (6 K) and below 50 K is seen the saturation of $\omega_{SM}(T)$. The low-temperature value of $\omega_{SM}$ reasonably corresponds to the soft mode frequency obtained from the first principle calculations.
of low quality since the experimental ω

at 1 T transition larger than the value estimated by Jiang and Wu [11].

Notethat the A which is in our case negative indicating the tendency to

ture below which the quantum fluctuations start to play a

words, above 6 K, the Barrett formula [21] and

to the low accuracy of IR reflectivity measurements in the

magnetic cryostat. The effect is expected to be larger in a

single crystal or strained thin films, which will be subject of

our next studies.

***

The work was supported by the Grant Agency of the Czech Republic (Project No. 202/06/0403, AV0Z1010520, Ministry of Education (OC101 and OC102-COST539) and European grant RITA-CT-2003-505474. The authors are grateful to V. STUDNÍČKA for the XRD analysis.

REFERENCES

[1] Wang J. et al., Science, 299 (2003) 1719.
[2] Fennie C. J., Phys. D, 38 (2005) R123.
[3] Cheong S.-W. and Mostovoy M., Nat. Mater., 6 (2007) 13.
[4] Kimura T., Goto T., Shintani H., Ishizaka K., Aribi T. and Tokura Y., Nature, 426 (2003) 55.
[5] Katsufuji T. and Takagi H., Phys. Rev. B, 64 (2001) 054415.
[6] Kamba S. et al., Phys. Rev. B, 75 (2007) 024403.
[7] McGuire T. R. et al., J. Appl. Phys., 37 (1966) 981.
[8] Müller K. A. and Burkard H., Phys. Rev. B, 19 (1979) 3593.
[9] Samara G. A., Solid State Physics, Advances in Research and Applications, Vol. 56 (Academic Press, San Diego) 2001, pp. 240-458 and references therein.
[10] Chien Ch.-L., DeBenedetti S. and Barros F. D. S., Phys. Rev. B, 10 (1974) 3913.
[11] Jiang Q. and Wu H., J. Appl. Phys., 93 (2003) 2121.
[12] Gong S. J. and Jiang Q., Phys. Status Solidi (b), 241 (2004) 3033.
[13] Wu H., Jiang Q. and Shen W. Z., Phys. Lett. A, 330 (2004) 358.
[14] Wu H., Jiang Q. and Shen W. Z., Phys. Rev. B, 69 (2004) 041404.
[15] Wu H. and Shen W. Z., Solid State Commun., 133 (2005) 487.
[16] Fennie C. J. and Rabe K. M., Phys. Rev. Lett., 97 (2006) 267602.
[17] Katsufuji T. and Tokura Y., Phys. Rev. B, 60 (1999) R15021.
[18] Rychetský I., Petzelt J. and Ostapchuk T., Appl. Phys. Lett., 81 (2002) 4224.

[19] Gervais F., High Temperature Infrared Reflectivity Spectroscopy by Scanning Interferometry, in Infrared and Millimeter Waves, edited by Button K. J., Vol. 8 (Academic Press, New York) 1983, Chapt. 7, p. 279.

[20] Smith D. Y., Dispersion Theory, Sum Rules, and Their Application to the Analysis of Optical Data, in Handbook of Optical Constants of Solids, edited by Palik E. D. (Academic Press, Inc., London) 1985, p. 35.

[21] Minaki Y. et al., J. Korean Phys. Soc., 42 (2003) S1290.