Research Article

Fuzzy Nano δ-locally Closed Sets, Extremally Disconnected Spaces, Normal Spaces, and Their Application

R. Thangammal, M. Saraswathi, A. Vadivel, Samad Noeiaghdam, C. John Sundar, V. Govindan, and Aiyared Iampan

1 Department of Mathematics, Selvamm College of Technology, Namakkal - 637 003, India
2 Department of Mathematics, Kandaswami Kandar's College P-Velur, Tamil Nadu-638 182, India
3 PG and Research Department of Mathematics, Government Arts College (Autonomous), India and Department of Mathematics, Annamalai University, Karur - 639 005, India
4 Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, Irkutsk, 664074, Russia
5 Department of Applied Mathematics and Programming, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russia
6 Department of Business Administration, Selvamm Arts and Science College (Autonomous), Namakkal-637 003, India
7 Department of Mathematics, Dmi St John The Baptist University, Mangochi, Malawi
8 Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand

Correspondence should be addressed to V. Govindan; govindoviya@gmail.com

Received 21 January 2022; Accepted 7 April 2022; Published 11 May 2022

Academic Editor: Antonin Dvorák

Copyright © 2022 R. Thangammal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we introduce fuzzy nano (resp. δ, δS, P and Z) locally closed set and fuzzy nano (resp. δ, δS, P and Z) extremally disconnected spaces in fuzzy nano topological spaces. Also, we introduce some new spaces called fuzzy nano (resp. δ, δS, P and Z) normal spaces and strongly fuzzy nano (resp. δ, δS, P and Z)-open sets in fuzzy nano topological space. Numerical data is used to quantify the provided features. Furthermore, using fuzzy nano topological spaces, an algorithm for multiple attribute decision-making (MADM) with an application in medical diagnosis is devised.

1. Introduction

Through his significant theory on fuzzy sets, Zadeh [1] made the first effective attempt in mathematical modeling to contain non-probabilistic uncertainty, i.e. uncertainty that is not caused by randomness of an event. The study of fuzzy calculus plays a vital role in the field of mathematics due to its useful applications in variety of scientific domains including statistics, applied mathematics, dynamics and mathematical biology. Many applications of fuzzy mathematics can be found in engineering, bio-mathematics and basic sciences. A novel technique to solve the fuzzy system of equations has been presented by Mikaeilvand et al. [2]. Also many applications of fuzzy integral equations have been presented by various authors [3, 4]. A fuzzy set is one in which each element of the universe belongs to it, but with a value or degree of belongingness that falls between 0 and 1, and these values are referred to as the membership value of each element in that set. Chang [5] was the first to propose the concept of fuzzy topology later on.

Pawlak [6] introduces Rough set theory in 1992 as a substitute mathematical tool for describing reasoning and deciding how to handle vagueness and uncertainty. This theory uses equivalence relations to approximate sets, and it is used in conjunction with the principal non-statistical techniques to data analysis. Lower and upper
approximations are two definite sets that commonly characterise a rough set. The greatest definable set included inside the given collection of objects is the lower approximation, whereas the smallest definable set that contains the provided set is the upper approximation. Rough set concepts are frequently stated in broad terms using topological operations such as interior and closure, which are referred to as approximations.

Lellis Thivagar [7] introduced a new topology called nano topology in 2013, which is an extension of rough set theory. He also created Nano topological spaces, which are defined in terms of approximations and the boundary region of a subset of the universe using an equivalence relation. The Nano open sets are the constituents of a Nano topological space, while the Nano closed sets are their complements. The term "nano" refers to anything extremely small. Nano topology, then, is the study of extremely small surfaces. Nano topology is based on the concepts of approximations and indiscernibility relations. In addition, in [8], nano delta open sets in nano topological space were investigated.

This paper follows the definition of Lellis Thivagar et al. [9]. Generalizations of (fuzzy nano) open sets are a major topic in (fuzzy nano) topology. One of the important generalizations is a Z-open sets [10] which was studied in classical topology by El-Magharabi and Mubarki. Later on, many studies which investigated a nano topologies have been done such as nano M-open sets [11], nano Z-open sets [12], Z-closed sets in double fuzzy topological spaces [13, 14] and Z-open sets in a fuzzy nano topological spaces by Thangamalal et al. [15].

Kuratowski and Sierpinski [16] explored the difference of two closed subsets of a n-dimensional Euclidean space in 1921, and the notion of a locally closed subset of a topological space was a key instrument in their work. Ganster and Reilly [17] defined LC-continuity in a topological space using locally closed sets in 1989.

Multiple attribute decision-making (MADM) is a decision-making process that takes into account the best possible options. Decisions were taken in mediavical times without taking into account data uncertainties, which could lead to a potential outcome. Inadequate outcomes have real-life consequences. If we deduced the consequence of obtained data without hesitancy, the results would be ambiguous, indeterminate, or incorrect. Without hesitation, I determined the result of the obtained data. MADM had a significant impact on Management, disease diagnosis, economics, and industry are examples of real-world problems. Each decision maker makes hundreds of decisions each time to carry out the key component. It should be a logical assessment of his or her job. MADM is a programme that helps you tackle difficult problems. For this, there are complex problems with a variety of parameters. The problem must be identified in MADM by defining viable alternatives, assessing each alternative against the criteria established by the decision-maker or community of decision-makers, and finally selecting the optimal alternative. To deal with the complications and complexity of MADM problems, a range of useful mathematical methods such as fuzzy sets, neutrosophic sets, and soft sets were developed.

Zafer et al. [18] introduced and developed the MADM method based on rough fuzzy information. Several mathematicians have worked on correlation coefficients, similarity measurements, aggregation operators, topological spaces, and decision-making applications in this area. These structures feature better decision-making solutions and provide distinct formulas for diverse sets. It has a wide range of applications in domains such as medical diagnosis, pattern identification, social sciences, artificial intelligence, business, and multi-attribute decision making. The problems associated with these cases are interesting, and developing a hypothesis for them has prompted many scholars [19–21] to pay attention to them. Motivation and objective. No investigation on fuzzy nano Z locally closed set, fuzzy nano Z extremely disconnected spaces, fuzzy nano Z normal spaces and strongly fuzzy nano Z normal spaces in fuzzy nano topological space has been reported in the fuzzy literature. We present this innovative notion of fuzzy nano topological space and apply it to the MADM issue based on the concepts of fuzzy sets [1], nano topological spaces [7], and neutrosophic nano topological space [9]. The enlarged and hybrid motivation and goal work is described in detail throughout the article. Under certain conditions, we ensure that other FS hybrid systems are special FNts. Our proposed model and techniques are discussed in terms of their robustness, durability, superiority, and simplicity. This is the most prevalent model, and it is used to collect vast amounts of data in AI, engineering, and medical applications. Similar research can simply be duplicated in the future using alternative methodologies and hybrid structures.

The following is how this article is organised: Section 2 is devoted to discussing various fuzzy set theory and fuzzy nano topology definitions and results. In Section 3, we introduce the notion of fuzzy nano Z locally closed set and establish some of characteristics. The concept of fuzzy nano Z extremely disconnected spaces is introduced in fuzzy nano topological spaces and also gives some properties and theorems of such concepts in Section 4. In Sections 5 and 6, fuzzy nano Z normal space and strongly fuzzy nano Z normal spaces are introduced and proved many theorems. As a numerical example, in Sections 7 & 8, we devised a method for solving the MADM issue related to Medical Diagnosis utilising FNs. We also discussed the algorithms’ efficiency, advantage, consistency, and validity. In Section 9, the work’s conclusion is fundamentally summarised, and the next field of research is offered.

2. Preliminaries

This part explains the concepts and findings that we need to know in order to comprehend the manuscript.

Definition 1 (see [1]). A function f from X into the unit interval I is called a fuzzy set (briefly, $\mathcal{F}S$) in X.

Definition 2 (see [1]). If G and H are any two fuzzy subsets (briefly, $\mathcal{F}S$ subs) of a set X, then

(i) $G \leq H$ iff $\mu_G(l) \leq \mu_H(l)$, $\forall l$ in X.
(ii) $G = H$, if $G(l) = H(l)$, $\forall l$ in X.
(iii) $(G \vee H)(l) = \max(G(l), H(l))$, $\forall l$ in X.
(iv) $(G \wedge H)(l) = \min(G(l), H(l))$, $\forall l$ in X.

Definition 3 (see [1]). The complement of a \(F_{\text{sub}}G \) in X, denoted by \(1 - G \), is the \(F_{\text{sub}} \) of X defined by \(1 - G (l), \forall l \) in X.

Definition 4 (see [9]). Let U be a non-empty set and R be an equivalence relation on \(U \). Let \(F \) be a \(F \)s in \(U \) with the membership function \(\mu_F \). The fuzzy nano lower (upper) approximations and fuzzy nano boundary of \(F \) in the approximation \((U, R) \) denoted by \(\underbar{F} \mu(F), \bar{F} \mu(F) \) and \(B_{\mu}(F) \) are respectively defined as follows: (i) \(\underbar{F} \mu(F) = \{ l, \mu_{F(R)}(l)/y \in [l]_R, l \in U \} \) (ii) \(\bar{F} \mu(F) = \{ l, \mu_{F(R)}(l)/y \in [l]_R, l \in U \} \) (iii) \(\mu_B(F) = \bar{F} \mu(F) - \underbar{F} \mu(F) \) where \(\mu_{F(R)}(l) = \land y \in [l]_R \mu_{F}(y), \mu_{F(R)}(l) = \lor y \in [l]_R \mu_{F}(y) \). The collection \(\tau_{\mu}(F) = \{ \omega_0, 1_\tau, \underbar{F} \mu(F), \bar{F} \mu(F), B_{\mu}(F) \} \) forms a topology called as fuzzy nano topology and \((U, \tau_{\mu}(F)) \) as fuzzy nano topological space (briefly, \(F \)nts). The elements of \(\tau_{\mu}(F) \) are called fuzzy nano open (briefly, \(F \)os) sets. Elements of \(\tau(F) \) are called fuzzy nano closed (briefly, \(F \)cs) sets.

3. Fuzzy nano \(Z \) locally closed sets

The idea of fuzzy nano \(Z \) locally closed sets, which represents a class of generalisations of fuzzy nano \(Z \) open sets, is introduced in this section. The main features of fuzzy nano \(Z \) closed sets are established, as well as certain characterizations.

Definition 5. Let \((U, \tau_{\mu}(F)) \) be a \(F \)nts with respect to \(F \) where \(F \) is a fuzzy subset of \(U \). Let \(S \) be a fuzzy subset of \(U \). Then fuzzy nano

(i) interior of \(S \) (briefly, \(F \)nt(S)) is represented as \(F \)nt(S) = \(\lor \{ O: O \subseteq S \& O \) is a \(F \)o set in \(U \})

(ii) closure of \(S \) (briefly, \(F \)cl(S)) is represented as \(F \)cl(S) = \(\land \{ L: L \subseteq S \& L \) is a \(F \)c set in \(U \})

(iii) regular open (briefly, \(F \)ro) set if \(S = F \)nt(\(F \)cl(S))

(iv) regular closed (briefly, \(F \)rc) set if \(S = F \)cl(\(F \)nt(S))

(v) \(F \)nt(S) = \(\lor \{ O: O \subseteq S \& O \) is a \(F \)o set in \(U \})

(vi) \(F \)cl(S) = \(\land \{ L: L \subseteq S \& L \) is a \(F \)c set in \(U \})

(vii) \(F \)nto set if \(S = F \)nt(\(F \)nt(S))

(viii) \(F \)nto set if \(S \subseteq F \)cl(\(F \)nt(S))

(ix) \(F \)nt(S) set if \(S \subseteq F \)cl(\(F \)nt(S))

(x) \(F \)nto set if \(S \subseteq F \)nt(\(F \)nt(S))

(xi) \(S \) semi closure of \(S \) (briefly, \(F \)cl(S)) is represented as \(F \)cl(S) = \(\land \{ L: L \subseteq S \& L \) is a \(F \)c set in \(U \})

(xii) pre interior of \(S \) (briefly, \(F \)nt(S)) is represented as \(F \)nt(S) = \(\lor \{ O: O \subseteq S \& O \) is a \(F \)o set in \(U \})

(xiii) pre closure of \(S \) (briefly, \(F \)nt(S)) is represented as \(F \)nt(S) = \(\lor \{ O: O \subseteq S \& O \) is a \(F \)o set in \(U \})

The complement of an \(F \)nts (resp. \(F \)nto, \(F \)nt(S)) is called a fuzzy nano \(\delta \) (resp. fuzzy nano \(\delta \)-semi & fuzzy nano pre) closed (briefly, \(F \)nts (resp. \(F \)nto (U, A)) in \(U \). Definition 6. Let \((U, \tau_{\mu}(F)) \) be a \(F \)nts. Then a fuzzy subset \(S \) in \(U \) is said to be a fuzzy nano

(i) \(Z \) open (briefly, \(F \)nto) set if \(S \subseteq F \)nt(\(F \)nt(S))

(ii) \(Z \) closed (briefly, \(F \)nto) set if \(F \)nt(S) \(\subseteq F \)nt(\(F \)nt(S))

(iii) \(Z \) interior (resp. closure) of \(S \) is the union (resp. intersection) of all \(F \)nto (resp. \(F \)nto) sets contained in \(O \) and denoted by \(F \)nto(S) (resp. \(F \)nto(S)).

All \(F \)nto (resp. \(F \)nto) sets of a space \((U, \tau_{\mu}(F)) \) will be denoted by \(F \)nto(U, A) (resp. \(F \)nto(U, A)).

Remark 1. The following diagram shows the relationship between any set in \(F \)nt(mts of \(F \)nts of \(F \)nts).

Definition 7. A function \(h: (U_1, \tau_{\mu}(F_1)) \rightarrow (U_2, \tau_{\mu}(F_2)) \) is said to be fuzzy

(i) \(\delta \) continuous (briefly, \(F \)ntcs) (resp. \(F \)ntc) if \(F \)nto set \(M \) \(F \)nto set \(U_2 \) \(h^{-1} \) \(M \) \(F \)nto set \(U_1 \)

(ii) \(\delta \) irresolute (briefly, \(F \)ntc) function, if \(\forall F \)nto subset \(M \) \(F \)nto set \(U_2 \) \(h^{-1} \) \(M \) \(F \)nto subset \(U_1 \)

(iii) \(\delta \) open (resp. \(\delta \) open) map (briefly, \(F \)nt and \(F \)nt) if the image of each \(F \)nt set \(U_1 \) \(F \)nt set \(U_2 \)

(iv) \(\delta \) open (resp. \(\delta \) open) map (briefly, \(F \)nt and \(F \)nt) if the image of each \(F \)nt set \(U_1 \) \(F \)nt set \(U_2 \)

Definition 8. Let A and B be any two fuzzy subsets of a \(F \)nts. Then A is fuzzy nano \(\delta \), \(\delta \)S, P and Z) \(\delta \)-neighbourhood (briefly, \(F \)ntq-nbh \(\delta \), \(F \)ntq-s \(\delta \), \(F \)ntq-s \(\delta \), \(F \)ntq-nbh \(\delta \), \(F \)ntq-nbh \(\delta \) with B if there exists a \(F \)nt and \(F \)nt set \(O \) with \(Q \) set \(B \).

Definition 9. Let \((U, \tau_{\mu}(F)) \) be a \(F \)nts is called fuzzy nano (resp. \(\delta \), \(\delta \)S, P and Z) locally closed (briefly, \(F \)ntc.
(resp. $\mathcal{F} N \delta$, $\mathcal{F} N \delta^{0}$, $\mathcal{F} N Z o a$ and $\mathcal{F} N Z L C$) set if $A = B \cap C$ where B is a $\mathcal{F} N o$ (resp. $\mathcal{F} N \delta$, $\mathcal{F} N \delta^{0}$, $\mathcal{F} N Z o$ and $\mathcal{F} N Z o$) set and C is a $\mathcal{F} N c$ (resp. $\mathcal{F} N \delta$, $\mathcal{F} N \delta^{0}$, $\mathcal{F} N Z o$, $\mathcal{F} N Z o$ a and $\mathcal{F} N Z L C$) set.

Example 1. Assume $U = \{s_1, s_2, s_3, s_4\}$ and $U/\mathcal{R} = \{(s_1, s_2), \{(s_3), \{s_4\}\}$ be a $\mathcal{F} N \delta$ set.

Let $S \subseteq \{(s_1, 0.2), (s_2, 0.3), (s_3, 0.4), (s_4, 0.1)\}$ be a $\mathcal{F} N \delta$ set.

\[
\begin{align*}
\mathcal{F} N (S) &= \left\{ \frac{s_1 + s_2}{0.1}, \frac{s_2 + s_3}{0.3}, \frac{s_3 + s_4}{0.4} \right\}, \\
\mathcal{F} N (S) &= \left\{ \frac{s_1 + s_2}{0.2}, \frac{s_2 + s_3}{0.3}, \frac{s_3 + s_4}{0.4} \right\}, \\
B_{\mathcal{F} N} (S) &= \left\{ \frac{s_1 + s_2}{0.2}, \frac{s_1 + s_3}{0.3}, \frac{s_3 + s_4}{0.4} \right\}.
\end{align*}
\]

Then $\tau_{\mathcal{F} N} (S) = \{0, 1, \nu_{\mathcal{F} N} (S), \nu_{\mathcal{F} N} (S) = B_{\mathcal{F} N} (S)\}$.

Remark 2. The converse of the preceding proposition does not have to be true, as the following example demonstrates.

Example 2. In Example 1, $C = A \cap B = \{(s_1, s_2, 0.4), (s_2, 0.6), (s_3, 0.5)\} \cup \{(s_1, s_2, 0.3), (s_2, 0.7), (s_3, 0.4)\} = \{(s_1, s_2, 0.3), (s_2, 0.6), (s_3, 0.4)\}$. Then C is $\mathcal{F} N Z L C$ but not $\mathcal{F} N L C$.

Theorem 1. Let $(U, \tau_{\mathcal{F} N} (F))$ be a $\mathcal{F} N ts$. Then O is a $\mathcal{F} N Z L C$, $\mathcal{F} N L C$ set.

Proof. Let O be a $\mathcal{F} N Z L C$ set. Then O is a $\mathcal{F} N Z L C$ set.

4. Fuzzy nano Z extremely disconnected space

In this section, we introduce fuzzy nano Z extremely disconnected space and we obtain several characterizations based on fuzzy set.

Definition 10. Let $(U, \tau_{\mathcal{F} N} (F))$ be a $\mathcal{F} N ts$ is called fuzzy nano (resp. δ, δ^{0}, \vee, and Δ) extremely disconnected (briefly, $\mathcal{F} N Z L C$ on ($\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on), $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on) space if the $\mathcal{F} N$ (resp. $\mathcal{F} N ts$, $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on) closure of every $\mathcal{F} N o$ (resp. $\mathcal{F} N ts$, $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on) space is in $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on, $\mathcal{F} N Z L C$ on).

Example 3. In Example 1, $\mathcal{F} N Z L C$ closure of every $\mathcal{F} N Z L C$ set in U is $\mathcal{F} N Z L C$ set in U.

Remark 3. Every $\mathcal{F} N Z L C$ on space is $\mathcal{F} N Z L C$ on space.

Theorem 2. Let $(U, \tau_{\mathcal{F} N} (F))$ be a $\mathcal{F} N ts$. Then the following are similar.

(i) U is a $\mathcal{F} N Z L C$ on space.

(ii) $\mathcal{F} N Z L C$ on space, for each $\mathcal{F} N Z L C$ set of U.

(iii) $\mathcal{F} N Z L C$ on space, for each $\mathcal{F} N Z L C$ set of U.

Proof. Let A be a $\mathcal{F} N c$ set in U. Then A can be written as $A = A \cap \mathcal{F} N c$, where A is a $\mathcal{F} N Z L C$ set and $\mathcal{F} N c$ is a $\mathcal{F} N Z L C$ set. Therefore A is a $\mathcal{F} N Z L C$ set. The rest of the cases are the same.

Proposition 1. Let $(U, \tau_{\mathcal{F} N} (F))$ be a $\mathcal{F} N ts$. (i) Every $\mathcal{F} N Z L C$ (resp. $\mathcal{F} N Z L C$) set is $\mathcal{F} N Z L C$ set. (ii) Every $\mathcal{F} N c$ (resp. $\mathcal{F} N o$) set is $\mathcal{F} N Z L C$ set. (iii) Every $\mathcal{F} N \delta$ (resp. $\mathcal{F} N \delta^{0}$) set is $\mathcal{F} N \delta^{0}$ set. (iv) Every $\mathcal{F} N \delta^{0}$ (resp. $\mathcal{F} N \delta^{0}$) set is $\mathcal{F} N \delta^{0}$ set. (v) Every $\mathcal{F} N \delta^{0}$ (resp. $\mathcal{F} N \delta^{0}$) set is $\mathcal{F} N \delta^{0}$ set.

Proof. (i) Let A be a $\mathcal{F} N Z L C$ set in U. Then A can be written as $A = A \cap \mathcal{F} N c$, where A is a $\mathcal{F} N Z L C$ set and $\mathcal{F} N c$ is a $\mathcal{F} N Z L C$ set. Therefore A is a $\mathcal{F} N Z L C$ set. The rest of the cases are the same.

Proposition 2. Let $(U, \tau_{\mathcal{F} N} (F))$ be a $\mathcal{F} N ts$. Every $\mathcal{F} N L C$ set is $\mathcal{F} N Z L C$ (resp. $\mathcal{F} N Z L C$ and $\mathcal{F} N Z L C$) set.

Proof. Let A be a $\mathcal{F} N L C$ set in U. Then A can be written as $A = A \cap U \cap V$, where U is a $\mathcal{F} N o$ set and V is a $\mathcal{F} N c$ set. Since every $\mathcal{F} N o$ (resp. $\mathcal{F} N c$, $\mathcal{F} N Z L C$) set is $\mathcal{F} N Z L C$ set, A is the intersection of $\mathcal{F} N Z L C$ set and $\mathcal{F} N Z L C$ set and hence A is $\mathcal{F} N Z L C$ set. The rest of the cases are the same.
Proof. (i) ⇒ (ii) Let A be a \(F_N Zc \) set of \(U \). Then \(A^c \) is \(F_N Zc \) set of \(U \). Since \(U \) is \(F_N Zc(\vec{D}) \) set, \(F_N Zc(A^c) \) is a \(F_N Zc \) set. But \(F_N Zc \) set \(F_N Zc (A^c) = (F_N Zc (A))^c \). Therefore \(F_N Zc (A) \) is \(F_N Zc \) set. (ii) ⇒ (iii) Suppose that A is a \(F_N Zc \) set of \(U \). Then \(F_N Zc (F_N Zc (A))^c = F_N Zc (F_N Zc (A^c))^c \). By assumption, \(F_N Zc (F_N Zc (A))^c = F_N Zc (F_N Zc (A))^c \). So, \(F_N Zc (F_N Zc (A))^c = F_N Zc (A) \). Hence \(F_N Zc (B) = F_N Zc (A) \). Thus \(F_N Zc (A) \) is a \(F_N Zc \) set of \(A \). Then \(U \) is \(F_N Zc(\vec{D}) \) on space.

Remark 4. The Theorem 2 also holds for \(F_N ZN o r \) and \(F_N Zc \) sets.

Theorem 3. Let \((U, \tau_F (D))\) be a \(F_N M \)s is \(F_N Zc(\vec{D}) \) set on space and if only if \(F_N Zc (A) = F_N Zc (A) \). Conversely, let A be a \(F_N Zc \) set of \(U \). Then \(B = (F_N Zc (A))^c \). From the assumption, we obtain \(B = (F_N Zc (A))^c \). So, \((F_N Zc (B))^c = F_N Zc (A) \). Hence \(F_N Zc (B) = F_N Zc (A) \). Thus \(F_N Zc (A) \) is a \(F_N Zc \) set of \(A \). Then \(U \) is \(F_N Zc(\vec{D}) \) on space.

5. Fuzzy nano Z normal spaces

In this section, we first present fuzzy nano Z normal spaces and scrutinize their essential properties.

Definition 11. Let \((U, \tau_F (D))\) be a \(F_N M \)s is said to be fuzzy nano (resp. \(\delta_S, \beta_S \) and \(Z \)) normal (briefly, \(F_N Zc(\vec{D}) \), \(F_N Zc(\vec{D}) \), \(F_N Zc(\vec{D}) \)) normal if for any two disjoint \(F_N Zc \)s (resp. \(F_N Zc(\vec{D}) \) and \(F_N Zc(\vec{D}) \)) sets A and B, \(\exists \) disjoint \(F_N Zc(\vec{D}) \) (resp. \(F_N Zc(\vec{D}) \) and \(F_N Zc(\vec{D}) \)) sets \(L \) and \(M \) such that \(A \subseteq L \) and \(B \subseteq M \).

Proposition 3. Every \(F_N Zc(\vec{D}) \) is \(F_N Zc(\vec{D}) \).
Theorem 6. For a Fuzzy sets (U, τ F (F)), the following are comparable: (i) U is FuzzyNor. (ii) For any two Fuzzy sets L & M whose union is 1N, ∃ FuzzyZS subsets A of L & B of M whose union is also U.

Proof. (i) ⇒ (ii): Let L & M be two Fuzzy sets in a FuzzyNor space U ⊇ 1N = LV M. Then L', M' are disjoint Fuzzy sets. Since U is FuzzyNor, then ∃ disjoint Fuzzy sets G1 & G2 ⊆ L' ≤ G1 and M' ≤ G2. Let A = G1 and B = G2. Then A & B are FuzzyZS subsets of L & M respectively ⇒ AvB = 1N. This proves (ii). (i) ⇒ (ii): Let A & B be disjoint Fuzzy sets in U. Then A' & B' are Fuzzy sets whose union is 1N. By (ii), there exists FuzzyZS sets F1 & F2 ≥ F1 ≤ A', F2 ≤ B' and F1 ∨ F2 = 1N. Then F1 & F2 are disjoint FuzzyZS sets containing A and B respectively. Therefore U is FuzzyNor.

Theorem 7. Let f: (U1, τ F (F1)) → (U2, τ F (F2)) be a function. (i) If f is injective, FuzzyNor, FuzzyNor ⊆ U1 is FuzzyNor then U2 is FuzzyNor. (ii) If f is FuzzyNor, FuzzyZS and U2 is FuzzyNor then U1 is FuzzyNor.

Theorem 8. If given a pair of disjoint Fuzzy sets A, B of (U, τ F (F)), there is a FuzzyZS sets function f such that f(A) = 0N and f(B) = 1N, then (U, τ F (F)) is FuzzyNor.

Theorem 9. Let f: (U1, τ F (F1)) → (U2, τ F (F2)) be a function. If f is a Fuzzy sets bijection of a FuzzyNor space U1 into a space U2 and if every FuzzyNor set in U2 is Fuzzy, then U2 is FuzzyReg.

Proof. Let M1 and M2 be Fuzzy sets in U2. Then by assumption, M2 is Fuzzy in U2. Since f is a Fuzzy bijection, f⁻¹(M1) and f⁻¹(M2) is a Fuzzy set in U1. Since U1 is FuzzyNor, there exist disjoint Fuzzy sets L1 and L2 in U1 such that f⁻¹(M1) ≤ L1 and f⁻¹(M2) ≤ L2. Since f is Fuzzy, f(L1) and f(L2) are disjoint Fuzzy sets in U2 containing M1 and M2 respectively. Hence U2 is FuzzyNor.

Remark 5. Theorems 4, 5, 6, 7, 8 & 9 are also holds for FuzzyZS and FuzzyZS sets.

6. Strongly fuzzy nano Z normal spaces

The principles of strongly fuzzy nano Z normal spaces are introduced in this section. We describe each of these notions and show how they are related to one another.

Definition 12. A Fuzzy sets (U, τ F (F)) is said to be strongly fuzzy nano Z (resp. δ, 8S, P) normal (briefly, SFRFuzzyNor) (resp. FuzzyNor and FuzzyZS and FuzzyNor) if for every pair of disjoint Fuzzy sets A & B in U, there are disjoint Fuzzy sets (resp. FuzzyNor and FuzzyNor) sets L and M in U containing A & B respectively.

Example 4. In Example 1, A = {〈s1, s1/0.8), 〈s2, 0.7), 〈s3/0.6)}. B = {〈s1, s1/0.9), 〈s2, 0.7), 〈s3, 0.6)} are Fuzzy sets. L = {〈s1, s1/0.8), 〈s2, 0.7), 〈s3, 0.6)} M = {〈s1, s1/0.9), 〈s2, 0.7), 〈s3, 0.7)} are Fuzzy sets in U containing A & B respectively.

Theorem 10. Let (U, τ F (F)) − b ± √b² − 4ac/2a be a Fuzzy sets. Every FuzzyNor space is stFSFRFuzzyNor.

Proof. Suppose U is FuzzyNor. Let A & B be disjoint Fuzzy sets in U. Then A & B are Fuzzy sets in U. Since U is FuzzyNor, ∃ disjoint Fuzzy sets L & M containing A and B respectively. Since, every Fuzzy is FuzzyNor, L and M are FuzzyNor in U. This implies that U is stFSFRFuzzyNor.

Theorem 11. In a Fuzzy sets (U, τ F (F)), the following are comparable: (i) U is stFSFRFuzzyNor. (ii) ∀ Fuzzy set F in U and every Fuzzy set L containing F, there exists a Fuzzy set M containing F ⊆ Fuzzy set M ⊆ L. (iii) For each pair of disjoint Fuzzy sets M1 & M2 in U, there exists a Fuzzy set L containing M1 ∨ Fuzzy set L = 0N.

Proof. (i) ⇒ (ii): Let L be a Fuzzy set containing the Fuzzy set F. Then H = L' is a Fuzzy set disjoint from F. Since U is stFSFRFuzzyNor, ∃ disjoint Fuzzy sets M and W containing F & H respectively. Then Fuzzy set M is disjoint from H, since if y ≥ H, the set W is a Fuzzy set containing y disjoint from M. Hence Fuzzy set M ≤ L. (ii) ⇒ (iii): Let M1 & M2 be disjoint Fuzzy sets in U. Then M1 ∨ M2 is a Fuzzy set containing M1. (ii) ⇒ (iii): Let M1 & M2 be disjoint Fuzzy sets in U. Then M1 & M2 is a Fuzzy set containing M1. (iii) ⇒ (i): Let M1 & M2 be disjoint Fuzzy sets in U. Then M1 & M2 is a Fuzzy set containing M1, M2 respectively. Thus U is stFSFRFuzzyNor.

Theorem 12. For a Fuzzy sets (U, τ F (F)), then the following are comparable: (i) U is stFSFRFuzzyNor. (ii) For any two Fuzzy sets L & M whose union is 1N, ∃ Fuzzy sets subsets M1 of L and M2 of M whose union is also 1N.

Proof. (i) ⇒ (ii): Let L & M be two Fuzzy sets in a FuzzyNor space U ⊇ 1N = LV M. Then L', M' are disjoint Fuzzy sets. Since U is stFSFRFuzzyNor, ∃ disjoint Fuzzy sets L & M containing A and B respectively. Since, every Fuzzy is FuzzyNor, L and M are FuzzyNor in U. This implies that U is stFSFRFuzzyNor.

Theorem 13. Let h: (U1, τ F (F1)) → (U2, τ F (F2)) be a function. (i) If h is injective, Fuzzy sets FuzzyNor and U1 is
Table 1: Fuzzy values for patients.

Symptoms/ Patient	Pat 1	Pat 2	Pat 3	Pat 4	Pat 5
Weight gain	0.9	0.8	0.0	0.3	0.3
Tiredness	0.0	0.1	0.8	0.1	0.6
Myalgia	0.3	0.8	0.3	0.2	0.3
Swelling of legs	0.9	0.4	0.2	0.4	0.4
Mensus Problem	0.2	0.3	0.4	0.9	0.7

7. Fuzzy score function

We provide a fuzzy scoring function for decision-making problems using fuzzy information in this part, which is based on a methodical approach.

Definition 13. Let $S: M \rightarrow [0, 1]$. The Fuzzy score function (in short, FSF) is $S(M) = 1/k \sum_{i=1}^{k} \mu_M$ that represents the average of positivity of the fuzzy component μ_M.

Remark 6. Theorems 10, 11, 12 & 13 are also holds for \mathcal{FN}Nor and \mathcal{FNC} sets.

Step 6: Organize the fuzzy score values of the alternatives $\tau_1 \leq \tau_2 \leq \cdots \leq \tau_n$ and the attributes $v_1 \leq v_2 \leq \cdots \leq v_p$. Choose the attribute v_k for the alternative τ_1 and v_{k-1} for the alternative τ_2 etc. If $n < p$, then ignore v_k, where $k = 1, 2, \ldots, n - p$.

7.1. Numerical example. New medical breakthroughs have expanded the number of data available to clinicians, which includes vulnerabilities. The process of grouping multiple sets of symptoms under a single term of illness is extremely challenging in medical diagnosis. In this section, we use a medical diagnosis problem to demonstrate the usefulness and applicability of the above-mentioned approach.

Step 1: Problem field selection: Consider the following tables, which provide information from five patients who were consulted by physicians, Patient 1 (Pat 1), Patient 2 (Pat 2), Patient 3 (Pat 3), Patient 4 (Pat 4), and Patient 5 (Pat 5) and symptoms and weights are Weight gain (Wg), Tiredness (Td), Myalgia (Ml), Swelling of legs (Sl), Mensus Problem (Mp). We need to find the patient and to find the disease such as Lymphedema, Insomnia, Hypothyroidism, Menarche, Arthritis of the patient. The data in Tables 1 and 2 are explained by the membership, the indeterminacy and the non-membership functions of the patients and diseases respectively.

Step 2: Construct the in-discriminability relation for the correlation between the symptoms is given as $U/R = \{[Wg], [Ml], [Td], [Sl], [Mp]\}$.

Step 3: From fuzzy nano topologies for (τ_j) and (v_k):

(i) $\tau_1 = \{0.7, 1.0, 0.9, 0.3, 0.2\}$.
(ii) $\tau_2 = \{0.9, 1.0, 0.8, 0.1, 0.4, 0.3\}$.
(iii) $\tau_3 = \{0.5, 1.0, 0.8, 0.0, 0.4, 0.7\}$.
(iv) $\tau_4 = \{0.1, 0.3, 0.1, 0.2, 0.4, 0.9\}$.
(v) $\tau_5 = \{0.1, 0.3, 0.6, 0.4, 0.7\}$.

(i) $v_1 = \{0.8, 1.0, 0.2, 0.7, 0.9\}$.
(ii) $v_2 = \{0.0, 1.0, 0.9, 0.2\}$.
(iii) $v_3 = \{0.5, 1.0, 0.9, 0.1, 0.2\}$.
(iv) $v_4 = \{0.9, 0.6, 0.1, 0.2, 0.0\}$.
(v) $v_5 = \{0.1, 0.9, 0.1, 0.4, 0.3\}$.

Step 5: Find fuzzy nano scores for the alternatives $\tau_1, \tau_2, \tau_3, \tau_4, \tau_5$ and the attributes v_i.
Table 2: Fuzzy values for disease.

Symptoms/patients	Weight gain	Tiredness	Myalgia	Swelling of legs	Mensus problem
Lymphedema	0.0	0.2	0.7	0.9	0.2
Insomnia	0.0	0.9	0.2	0.2	0.2
Hypothyroidism	0.9	0.1	0.0	0.1	0.2
Menarche	0.6	0.1	0.2	0.2	0.9
Arthritis	0.0	0.1	0.9	0.4	0.3

8.8, 3, 4, 5 in ascending order. We get the following sequences \(\tau_5 \leq \tau_1 \leq \tau_3 \leq \tau_2 \leq \tau_4 \) and \(\nu_5 \leq \nu_2 \leq \nu_4 \leq \nu_3 \leq \nu_3 \). Thus the patient Pat5 suffers from Hypothyroidism, the patient Pat5 suffers from Arthritis, the patient Pat5 suffers from Menarche, the patient Pat5 suffers from Lymphedema and the patient Pat5 suffers from Insomnia. The results are presented in Figures 2 and 3.

8. Final thoughts and future work

This paper adds to the growing body of knowledge about fuzzy nano topological spaces. The obtained results show that most of the offered concepts' nano topological features are kept in the framework of fuzzy nano topologies, implying that some topological prerequisites are unnecessary. Because the study’s limitations are relaxed, exploring nano topological notions using fuzzy nano topologies has a benefit. On the other hand, by extending fuzzy nano Z locally closed sets, a few characteristics of particular topological concepts are partially lost. We will finish introducing the main fuzzy nano topological concepts using fuzzy nano Z open sets, such as fuzzy nano Z locally continuous, respective mappings and homomorphisms, separation axioms, compactness and connectedness in fuzzy nano topological spaces, in this work. Our study plan also includes testing the concepts and results presented here with various generalisations of fuzzy nano Z open sets, such as fuzzy nano e open and fuzzy nano Z* open sets. Furthermore, we will use these expansions of fuzzy nano Z open sets to present new types of rough approximations and apply them to improve set accuracy metrics.

Data Availability

Data used to support this study are included within this paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[2] N. Mikaelivand, Z. Noeiaghdam, S. Noeiaghdam, and J. J. Nieto, “A novel technique to solve the fuzzy system of equations,” Mathematics, vol. 8, no. 5, p. 850, 2020.
[3] S. Noeiaghdam, M. A. Fariborzi Araghi, and S. Abbasbandy, “Valid implementation of Sinc-collocation method to solve the fuzzy Fredholm integral equation,” Journal of Computational and Applied Mathematics, vol. 370, p. 112632, 2020.
[4] M. A. F. Araghi and S. Noeiaghdam, “A valid scheme to evaluate fuzzy definite integrals by applying the CADNA library,” International Journal of Fuzzy System Applications, vol. 6, no. 4, pp. 1–20, 2017.
[5] C. L. Chang, “Fuzzy topological spaces,” Journal of Mathematical Analysis and Applications, vol. 24, no. 1, pp. 182–190, 1968.
[6] Z. Pawlak, “Rough sets,” Rough Sets and Data Mining, vol. 11, pp. 3–7, 1997.
[7] M. Lellis Thivagar and C. Richard, “On nano forms of weekly open sets,” Int. J. Math. Stat. Invention, vol. 1, no. 1, pp. 31–37, 2013.
[8] V. Pankajam and K. Kavitha, “-Open sets and -continuity in -nano topological spaces,” Int. J. Innovative Sci. Research Tech., vol. 2, no. 12, pp. 110–118, 2017.
[9] M. Lellis Thivagar, S. Jafari, V. Sutha Devi, and V. Antonysamy, “A novel approach to nano topology via neutrosophic sets,” Neutrosophic Sets Syst., vol. 20, pp. 86–94, 2018.
[10] A. I. El-Magharabi and A. M. Mubarki, “Open sets and -continuity in topological spaces,” Int. J. Math. Archive, vol. 2, no. 10, pp. 1819–1827, 2011.
[11] A. Padma, M. Saraswathi, A. Vadivel, and G. Saravanakumar, “New notions of nano SMS-open sets-open sets,” Malaya Journal of Matematik, vol. 5, no. 01, pp. 656–660, 2019.
[12] X. Arul Selvaraj and U. Balakrishna, “-Open sets in nano topological spaces,” AIP Conference Proceedings, vol. 2364, Article ID 20037, 2021.
[13] S. Sathaananthan, S. Tamilselvan, A. Vadivel, and G. Saravanakumar, “Fuzzy closed sets in double fuzzy topological spaces,” AIP Conference Proceedings, vol. 2277, Article ID 90001, 2020.

[14] S. D. Sathaananthan, A. Vadivel, S. Tamilselvan, and G. Saravanakumar, “Generalized fuzzy closed sets in double fuzzy topological spaces,” Advances in Mathematics: Science Journal, vol. 9, no. 4, pp. 2107–2112, 2020.

[15] R. Thangammal, M. Saraswathi, A. Vadivel, and C. J. Sundar, “Fuzzy nano-open sets in fuzzy nano topological spaces,” Journal of Linear and Topological Algebra, vol. 11, no. 1, pp. 27–38, 2022.

[16] C. Kuratowski and W. Sierpinski, “Sur les différences de deux ensembles fermes,” Tohoku Mathematical Journal, vol. 20, p. 22—25, 1921.

[17] M. Ganster and I. L. Reilly, “Locally closed sets and LC-continuous functions,” International Journal of Mathematics and Mathematical Sciences, vol. 12, no. 3, pp. 417–424, 1989.

[18] F. Zafar and M. Akram, “A novel decision-making method based on rough fuzzy information,” International Journal of Fuzzy Systems, vol. 20, no. 3, pp. 1000–1014, 2018.

[19] D. Ajay, J. J. Charisma, T. Petaratip et al., “Pythagorean nanogeneralized closed sets with application in decision-making,” Journal of Function Spaces, vol. 2021, pp. 1–8, 2021.

[20] D. Ajay, J. J. Charisma, N. Boonsatit, P. Hammachukiattikul, and G. Rajchakit, “Neutrosophic semiopen hypersoft sets with an application to MAGDM under the COVID-19 scenario,” Journal of Mathematics, vol. 2021, pp. 1–16, Article ID 5583218, 2021.

[21] I. Alshammari, P. Mani, C. Ozel, and H. Garg, “Multiple attribute decision making algorithm via picture fuzzy nano topological spaces,” Symmetry Plus, vol. 13, no. 1, p. 69, 2021.