THE CONSTANT IN THE FUNCTIONAL EQUATION AND DERIVED EXTERIOR POWERS

STEPHEN LICHTENBAUM

§0. Introduction

Let X be a regular scheme, projective and flat over Spec \mathbb{Z}, of dimension d. Let $f : X \to \text{Spec } \mathbb{Z}$. The zeta-function $\zeta(X, s)$ of X is defined to be $\prod_x 1/(1 - (Nx)^{-s})$, where the product runs over the closed points x of X, and $N(x)$ is the order of the residue field $\kappa(x)$. This product is known to converge for $\text{Re}(s) > d$. It is conjectured that $\zeta(X, s)$ can be extended to a function meromorphic in the plane.

It is further conjectured [B1] that there is a product of Gamma-functions $\Gamma(X, s)$ and a positive rational number A associated with X such that if $\phi(X, s) = \zeta(X, s)\Gamma(X, s)a^{-s/2}$, then $\phi(X, s) = \pm \phi(X, d - s)$.

Let Ω be the sheaf of Kahler differentials $\Omega_{X/\mathbb{Z}}$ on X. We are going to give a series of conjectures relating A to the étale cohomology of the derived exterior powers of Ω, and a proof of these conjectures for $d = 1$ and $d = 2$.

We begin by reviewing the notion of derived exterior power. If \mathcal{C} is any abelian category, there is an isomorphism of categories N from the category of simplicial objects $\mathcal{S}(\mathcal{C})$ of \mathcal{C} to the category $\mathcal{CH}(\mathcal{C})$ of chain complexes of objects of \mathcal{C} whose degree is bounded below by 0, and an explicit inverse isomorphism K. Now let \mathcal{C} be the category of coherent sheaves on X. Let Λ^k be the usual k-th exterior power on coherent sheaves.

Let E be any coherent sheaf on X. Let P be a finite resolution of E by locally free sheaves, and let the k-th derived exterior power $\check{\Lambda}^k(E)$ in the derived category of coherent sheaves.
sheaves on X be $N\Lambda^k KP$.

This is independent (in the derived category) of the choice of resolution. (See the Appendix, Theorem A.1).

It is easy to see that there is a map ρ^k in the derived category from $\tilde{\lambda}^k E$ to $\Lambda^k E$. Since X is regular and projective over Spec \mathbb{Z}, we can embed X as a locally complete intersection $i : X \to P$ in some projective space P over \mathbb{Z}. If we let I be the sheaf of ideals defining X, we have the exact sequence $0 \to I/I^2 \to i^*\Omega_P/\mathbb{Z} \to \Omega_{X/\mathbb{Z}} \to 0$, where Ω denotes as usual the Kahler differentials.

The sheaf I/I^2 is locally free of rank m, say, and the sheaf $i^*\Omega_P/\mathbb{Z}$ is locally free of rank n, with $n - m = d - 1$. The canonical class $\omega = \omega_{X/\mathbb{Z}}$ may be defined as $\text{Hom}(\Lambda^m I/I^2, \Lambda^n i^*\Omega_P/\mathbb{Z})$, from which we obtain a map from $\Lambda^{d-1}\Omega_{X/\mathbb{Z}}$ to ω.

Composing this with ρ^{d-1}, we obtain a natural map ψ from $\tilde{\lambda}^{d-1}\Omega$ to ω, so we can compose the derived tensor product map from $\tilde{\lambda}^r \Omega \otimes_L \tilde{\lambda}^{d-1-r}\Omega$ to $\tilde{\lambda}^{d-1}\Omega$ with ψ to obtain a map from $\tilde{\lambda}^r \Omega \otimes_L \tilde{\lambda}^{d-1-r}\Omega$ to ω, and hence by adjointness, a map $\phi_{r,d}$ from $\tilde{\lambda}^r \Omega$ to $R\text{Hom}(\tilde{\lambda}^{d-1-r}\Omega, \omega)$. By taking the cone of $\phi_{r,d}$ we obtain an object $C_{r,d}$ of the derived category, defined up to a non-canonical isomorphism.

By Serre duality, $\phi_{r,d}$ is an isomorphism at smooth points of X, so the étale cohomology groups of $C_{r,d}$ have support in the bad fibres of f, hence are finite. So we may define the Euler characteristic $\chi_{r,d}$ of $C_{r,d}$ to be the alternating product of the orders of those étale cohomology groups.

In [L], I made a very general conjecture giving a formula for the value of the leading term of the Laurent series expansion of $\zeta(X,s)$ at a rational integer r. Roughly speaking, the compatibility of this conjecture with the functional equation would result from knowing the following conjecture.

Conjecture 0.1. : $\chi_{r,d}$ is equal to A if r is odd and equal to A^{1} if r is even.

In this paper we will give a proof of this result if d is equal to 1 or 2. The proof for $d = 2$ relies heavily on deep results of Spencer Bloch [B]. I thank him for many extremely helpful discussions.

§1. Derived Tensor Product
Now assume that X is an arithmetic surface, i. e. $d = 2$.

Theorem 1.1. The Grothendieck group $K(X_{\text{bad}})$ of the category of coherent sheaves on X with support contained in the bad fibers of f is generated by the sheaves $(i_P)_*\kappa(P)$ and $(i_Y)_*O_Y$, where P is a closed point on a bad fiber, $\kappa(P)$ is the residue field at P, and Y is an irreducible component of a bad fiber.

There are surjective maps r_Y from $K(X_{\text{bad}})$ to \mathbb{Z} which take the class of a sheaf E to the length of E where Q is the generic point of Y.

Lemma 1.2. If an element F of $K(X_{\text{bad}})$ is in the kernel $\text{Ker}(X)$ of all the maps r_Y, then F is in the subgroup of $K(X_{\text{bad}})$ generated by the residue fields.

Theorem 1.3. (computation of Euler characteristics of derived tensor products) If P_1 and P_2 are closed points on X the Euler characteristic of $\kappa(P_1) \otimes_L \kappa(P_2)$ is equal to 1, whether or not $P_1 = P_2$. The Euler characteristic of $O_Y \otimes_L \kappa(P)$ is also equal to 1, whether or not P is on Y. The Euler characteristic of $O_{Y_1} \otimes_L O_{Y_2}$ is the intersection number (Y_1, Y_2), whether or not $Y_1 = Y_2$.

Proof If $P \neq Q$ the support of $\kappa(P) \otimes_L \kappa(Q)$ is contained in $P \cap Q = \phi$. To compute $\kappa(P) \otimes_L \kappa(P)$ take the Koszul resolution $0 \to A \to A^2 \to A \to 0$ of $\kappa(P)$ and tensor it with $\kappa(P)$ to obtain $0 \to \kappa(P) \to \kappa(P)^2 \to \kappa(P) \to 0$ which clearly has Euler characteristic equal to 1.

Corollary 1.4. If F_1 and F_2 are in $\text{Ker}(X)$, $\chi(F_1 \otimes_L F_2) = 1$.

§2. Derived Exterior Powers.

We now give the basic lemma ([H], Chapter II, Exercise 5.16) about derived exterior powers:

Lemma 2.1. Let $0 \to E_1 \to E_2 \to E_3 \to 0$ be an exact sequence of coherent locally free sheaves on X. Let $r \geq 1$ be an integer. Then there is a filtration on $\Lambda^r E_2$:

$$0 = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_{r-1} \subseteq G_r = \Lambda^r E_2$$
and exact sequences \(0 \to G_{i-1} \to G_i \to \Lambda^{r-i}E_1 \otimes \Lambda^iE_3 \to 0\). The filtration and the associated maps are functorial in exact sequences.

If \(E\) is a coherent sheaf on \(X\), let \([E]\) denote the class of \(E\) in the Grothendieck group \(K(X)\) of \(X\).

Corollary 2.2. Let \(0 \to E_1 \to E_2 \to E_3 \to 0\) be an exact sequence of coherent sheaves on \(X\). Then \(\lambda^r(E_2) = \sum_{i=0}^r [\lambda^{r-i}(E_1) \otimes_L \lambda^i(E_3)]\) in the Grothendieck group \(K(X)\). If the cohomology groups of all the \(E_i\) are finite, then \(\chi(\tilde{\lambda}^r(E_2)) = \prod_0^r \chi(\tilde{\lambda}^{r-i}E_1)\chi(\tilde{\lambda}^iE_3)\)

Proof. Choose compatible coherent locally free finite resolutions \(P_1, P_2,\) and \(P_3\) of \(E_1, E_2,\) and \(E_3\). Use these resolutions to compute \(\tilde{\lambda}^r\) of \(E_1, E_2,\) and \(E_3\) then there exists a filtration on \(\Lambda^rKP_2\)

\[0 = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_{r-1} \subseteq G_r = \Lambda^rKP_2\]

and exact sequences \(0 \to G_{i-1} \to G_i \to \Lambda^{r-i}KP_1 \otimes_L \Lambda^iKP_3 \to 0\).

Recall that if \(F^\cdot\) and \(G^\cdot\) are simplicial sheaves, the simplicial tensor product of \(F^\cdot\) and \(G^\cdot\) is given by \((F^\cdot \otimes s G^\cdot)^n = F^n \otimes G^n\).

We now apply the inverse functor \(N\) to our filtration, getting

\[0 = NG_0 \subseteq NG_1 \subseteq \cdots \subseteq NG_{r-1} \subseteq NG_r = N\Lambda^rKP_2 = \tilde{\lambda}^rE_2\]

and exact sequences \(0 \to NG_{i-1} \to NG_i \to N(\Lambda^{r-i}KP_1 \otimes s \Lambda^iKP_3) \to 0\). The corollary then follows from the fact ([M], p. 129ff. May proves this for simplicial abelian groups, but the argument is valid for any abelian category with tensor products) that if \(F^\cdot\) and \(G^\cdot\) are simplicial sheaves, \(N(F^\cdot \otimes s G^\cdot)\) is isomorphic in the derived category to \(NF^\cdot \otimes_L NG^\cdot\).

Definition 2.3. Let \(\lambda^k\) be the usual \(k\)-th \(\lambda\) operation on \(K(X)\). Recall that \(\lambda\) is determined by the relations that \(\lambda^k([E]) = [\Lambda^k(E)]\) if \(E\) is locally free and if \(F_2 = F_1 + F_3\) in \(K(X)\), then \(\lambda^r(F_2) = \sum_{i=0}^r \lambda^{r-i}(F_1)\lambda^i(F_3)\).
Theorem 2.4. If E is a coherent sheaf on X, $[\tilde{\lambda}^r(E)] = \lambda^r([E])$.

Proof. This is an easy double induction on r and the length of a locally free resolution of E, using Definition 2.3 and Corollary 2.2.

Theorem 2.5. $\chi(\lambda^2(m)) = \chi(k)$, and $\chi(\lambda^2\kappa(P)) = (\chi(\kappa(P)))^{-2}$.

Proof. Let P be a closed point of X, and let $A = O_{X,P}$ be the local ring of P on X. Let m be the maximal ideal of A, and k the residue field of A. Since A is regular, we have the Koszul resolution of k:

$$0 \to m \to A \to A^2 \to A \to k \to 0.$$

We start with the exact sequence $0 \to m \to A \to k \to 0$.

Since $\lambda^2(A) = 0$ Corollary 2.2 tells us that $\lambda^2(k) + \lambda^2(m) + m \otimes_L k = 0$. We have $\chi(m \otimes_L k) = \chi(A \otimes k) / \chi(k \otimes k)$ which implies because of Theorem 1.3 that $\chi(m \otimes_L k) = \chi(A \otimes_L k) = \chi(k)$, so $\chi(\lambda^2 k) = (\chi(\lambda^2(m)) \chi(k))^{-1}$.

From the exact sequence $0 \to A \to A^2 \to m \to 0$ and Corollary 2.2 we get the triangle in the derived category $0 \to m \to A \to \lambda^2(m) \to 0$, which implies that $\lambda^2(m) = k$, and hence that $\chi(\lambda^2(k)) = \chi(k)^{-2}$.

Corollary 2.6. If F is in $\text{Ker}(X)$, then $\chi(\lambda^2(F)) = \chi(F)^{-2}$.

Proof. If we have the exact sequence $0 \to F_1 \to F_2 \to F_3 \to 0$ with F_i finite then $\chi(\lambda^2(F_2)) = \chi(\lambda^2(F_1)) \chi(\lambda^2(F_3))$. This is an immediate consequence by induction of Corollary 2.2 and Corollary 1.4. The Corollary then follows immediately from Lemma 1.2.

§ 3. The conjecture for $d = 1$.

If $d = 1$, $X = \text{Spec} \ O_F$, with O_F the ring of integers in the number field F. The functional equation is well-known and A is equal to $|d_F|$, where d_F is the discriminant of F. If $r = 0$ our complex $C_{0,1}$ is $O_F \to D^{-1}$, namely the inclusion of the ring of integers in the inverse different. This complex has $H^0 = 0$ and H^1 isomorphic to Ω, which has order equal to $|d_F|$. So $\chi(C_{0,1}) = A^{-1}$.

If $r = 1$, the complex $C_{1,1}$ is $\Omega \to 0$, so $\chi(C_{1,1}) = A$.

Now let $r \geq 2$. Applying Corollary 2.2 to the sequence $0 \to D \to A \to \Omega$ gives 0, and calling that both $\Lambda^r A$ and $\Lambda^r D$ are 0 for $r \geq 2$ yields $[\lambda^r \Omega] + [\lambda^{r-1} \Omega] = 0$, which of course implies
\(\chi(\lambda^r[\Omega])\chi(\lambda^{r-1}[\Omega]) = 1. \)

If \(r < 0 \), the complex \(C_{r,1} \) becomes \(0 \to \text{RHom}(\tilde{\lambda}^{-r}, \omega) \) (since \(\tilde{\lambda}^r = 0 \) if \(r < 0 \)) and then the result follows by Serre duality from the cases where \(r \geq 1 \).

\(\S \) 4 The conjecture for \(d = 2 \)

From now on in this paper we will assume \(d = 2 \).

Proposition 4.1. Conjecture 0.1 is true for \(r = 0 \) and \(r = 1 \).

Proof. If \(r = 1 \), the complex \(C_{1,2} \) is \(\Omega \to \omega \), which is the complex called \(C \) in \([B]\). Bloch proves in \([B]\) that \(\chi(C) = A \)

If \(r = 0 \), \(C_{0,2} \) is \(O_X \to \text{RHom}(\Omega, \omega) \) and the conjecture follows from the conjecture for \(r = 1 \) and Serre duality.

If \(P \) is a closed point of \(X \) let \(B = O_{X,P}, m \) be the maximal ideal of \(B \), and \(k = \kappa(P) \) be the residue field of \(B \).

Lemma 4.2. Let \(r \geq 2 \). Then \(\lambda^r[(m)] = (-1)^r[k] \) in \(K(X) \), hence \(\chi([\lambda^r(m)]) = (\chi([k]))^{(-1)^r}. \)

Proof. Applying Corollary 2.2 to the exact sequence \(0 \to B \to B^2 \to m \to 0 \), \(r \geq 3 \) implies that \([\lambda^r(m)] + [\lambda^{r-1}(m)] = 0 \), so \(\chi([\lambda^r(m)])\chi([\lambda^{r-1}(m)]) = 1 \), and hence since Theorem 2.1 tells us that \(\chi([\lambda^2(m)]) = \chi([k]) \), Lemma 4.2 follows by induction.

Lemma 4.3. \(\chi([\lambda^r(k)]) = (\chi([k]))^r \) if \(r \) is odd and \((\chi([k]))^{-r} \) if \(r \) is even.

Proof. Applying Corollary 2.2 to the exact sequence \(0 \to m \to B \to k \to 0 \), we obtain \(\chi(\lambda^{r+1}(m))\chi(\lambda^r(k))\chi(\lambda^{r+1}(k)) = 1 \) (Note that Lemma 4.2 implies that \(\lambda^j(m) \) is in \(\text{Ker}(X) \) for \(j \geq 2 \), and hence Corollary 1.4 implies that \(\chi(\lambda^j(m) \otimes L \lambda^{r-j}(k)) = 1 \) for \(2 \leq j \leq r-1 \.) Induction using Lemma 4.2 now completes the proof.

Proposition 4.4. If \(F \) is in \(\text{Ker}(X) \), then \(\chi(\lambda^r(F)) = (\chi(F))^r \) if \(r \) is odd and \(\chi(F)^{-r} \) if \(r \) is even.

Proof. The proof is the same as the proof of Corollary 2.6, starting from Lemma 4.3.

Corollary 4.5. \(\chi([\lambda^r([C])]) = A^r \) if \(r \) is odd and \(A^{-r} \) if \(r \) is even.
Proof. Since \(r_Y(\Omega) \) and \(r_Y(\omega) \) are both 1 for all \(Y \), \([C] \) is in \(\text{Ker}(X) \). Then use Proposition 4.1.

Theorem 4.6. Conjecture 0.1 is true for \(r \geq 2 \) and \(r < 0 \).

Proof. Since \(\omega \) differs from \(B \) by something in \(\text{Ker}(X) \), \(\chi([\omega \otimes_L C]) = \chi([B \otimes_L C]) = \chi([C]) \). Then Corollary 2.2 applied to the triangle \(C \to \Omega \to \omega \to C[1] \) tells us that if \(r \geq 2 \), \(\chi([\tilde{\lambda}^r(\Omega)]) = \chi([\tilde{\lambda}^r(C)]) \chi([\tilde{\lambda}^{r-1}(C)]) \) and Conjecture 0.1 follows. The case when \(r < 0 \) follows from Serre duality.

Appendix (Derived tensor products and derived exterior powers)

The key to defining derived functors (both additive and non-additive) in the absence of projectives is contained in the classic paper \([BS]\) of Borel and Serre. The basic point is that if \(F \) is a coherent sheaf and \(P^\bullet \to F \) and \(Q^\bullet \to F \) are two finite resolutions of \(F \) by coherent locally free sheaves, there exists a finite resolution \(R^\bullet \to F \) by coherent locally free sheaves which dominates both \(P^\bullet \to F \) and \(Q^\bullet \to F \). (\(R^\bullet \to F \) dominates \(P^\bullet \to F \) if there is a surjective map of complexes from \(R^\bullet \to F \) to \(P^\bullet \to F \) which is the identity on \(F \).) This result follows immediately by induction from Lemma 14 of Borel-Serre.

Let \(L^\bullet \) be the kernel of the map from \(R^\bullet \to F \) to \(P^\bullet \to F \), Then \(L^\bullet \) is acyclic and locally free, so if \(G \) is any coherent sheaf \(L^\bullet \otimes G \) is acyclic. It immediately follows that the map from \(R^\bullet \otimes G \) to \(P^\bullet \otimes G \) is a quasi-isomorphism, and so \(P^\bullet \otimes G \) and \(Q^\bullet \otimes G \) are isomorphic in the derived category. So we may define the derived tensor product \(F \otimes^L G \) to be \(P^\bullet \otimes G \) and this is independent of the choice of the locally free resolution \(P^\bullet \).

We wish to define derived exterior powers in an analogous fashion. Let \(N \) be the functor which takes simplicial sheaves to bounded below complexes of sheaves, and \(K \) be its inverse functor. Let \(\Lambda^k \) denote the kth exterior power. We would like to define \(\tilde{\lambda}^k F \) to be \(N\Lambda^k K P^\bullet \), where \(P^\bullet \) is a resolution of \(F \), so we have to show that in the derived category this is independent of the choice of resolution.

Theorem A,1. \(N\Lambda^k K P^\bullet \) is independent (in the derived category) of the choice of locally free resolution \(P^\bullet \) of \(F \).
Lemma A.2. If R^\bullet is a finite acyclic complex of locally free sheaves on a noetherian scheme X, $\Lambda^k K R^\bullet$ is acyclic for all $k \geq 1$.

Proof. Since exterior powers commute with restriction to open sets, we may assume X is affine. But then the locally free sheaves are projective, and an acyclic projective complex is homotopically trivial. The functors K, and Λ^k preserve homotopy, so the resulting complex is still homotopically trivial, so acyclic.

Proof of Theorem A.1 Again, by using Lemma 14 of [BS], we reduce to the case where we have a surjective map f from P^\bullet to Q^\bullet, where both P^\bullet and Q^\bullet are finite locally free resolutions of the coherent sheaf F. Let R^\bullet be the kernel of f, R^\bullet is clearly acyclic, so by the lemma $\Lambda^i K R^\bullet$ is acyclic, for all $i \geq 1$. We have the exact sequence of simplicial sheaves $0 \to K R^\bullet \to K P^\bullet \to K Q^\bullet \to 0$. Then $\Lambda^k K P^\bullet$ has a filtration whose associated graded pieces are $\Lambda^i K R^\bullet \otimes \Lambda^j K Q^\bullet$ for $i + j = k$. Since $\Lambda^i K R^\bullet$ is acyclic for $i \geq 1$ we get that f induces a quasi-isomorphism from $\Lambda^k P^\bullet \to \Lambda^k Q^\bullet$. Since N preserves quasi-isomorphisms we obtain the desired result.

References

[B] Bloch, S. De Rham cohomology and conductors of curves. Duke Math. J. 54 (1987), no. 2, 295-308.

[BS] Borel, A.; Serre, J.-P. Le thorme de Riemann-Roch. Bull. Soc. Math. France 86 (1958) 97-136.

[H] Hartshorne, R. Algebraic Geometry., Springer-Verlag (1977)

[L] Lichtenbaum, S. Special Values of Zeta Functions of Schemes arXiv: 1704.00062

[M] May, Simplicial Objects in Algebraic Topology, Chicago (1967)

[S] Serre, J.-P., Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures) Séminaire Delange-Pisot-Poitou, (1969/70), no. 19 581-592