The complete chloroplast genome of a solid type of *Phyllostachys nidularia* (Bambusoideae: Poaceae), a species endemic to China

Zhou Jie, Hu Yaping, Yu Zhaoyan, Li Jiajia, Xu Mingye and Guo Qirong

Abstract

Phyllostachys nidularia (Bambusoideae: Poaceae), widely distributed in the Yangtze River Basin and various provinces (regions) in southern China, is one of the most important small and medium-sized bamboo species used in both bamboo shoots and timber. In the present study, we assembled a complete chloroplast genome of the economically important bamboo form *Phyllostachys nidularia f. farcta* H.R. Zhao & A.T. Liu using whole genome sequencing data previously reported. The complete chloroplast (cp) genome is 139,706 bp in length. A total of 129 unique genes were annotated, including 82 protein-coding, 39 tRNA, and eight rRNA genes. Phylogenetic analysis results supported that *P. nidularia f. farcta* was closely related to *Phyllostachys reticulata*. This work would help us better understand the evolution of the *Phyllostachys* cp genome.

Keywords:
Chloroplast genome; *Phyllostachys nidularia f. farcta*; phylogeny; whole genome sequencing data

CONTACT Guo Qirong
qrguo@njfu.edu.cn Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
the data several times and found that *Phyllostachys nidularia* and *Phyllostachys reticulata* (MNS37808.1) are more similar based on pairwise genetic distance, and do not show closer *Phyllostachys nigra* var. *henonis* of Sect. *Heteroclada* in genetic distance. Previous studies (Zhang et al. 2019) have revealed that some *Phyllostachys* species may have hybridized during their long evolutionary history, which has deepened our understanding of the phylogeny of *Phyllostachys*.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China [Grant no. 31971648], and the talent introduction project of Nanjing Forestry University “Research on Ginkgo and Other Important Forest Germplasm Resources” [Grant no. GXL2018001].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under the accession no. LC590826. The associated BioProject, SRA and Bio-Sample numbers are PRJNA642983, SRS6922745 and SAMN15402429 in NCBI.

References

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34(17):i884–i890.

Kalyaanamoorthy S, Minh B, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14(6):587–589.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

McClure F. 1956. New species in the bamboo genus *Phyllostachys* and some nomenclatural notes. Journal of the Arnold Arboretum. 37(2):180–196.

Minh, BQ, Schmidt, HA, Chernomor, O, Schrempf, D, Woodhams, MD, Von Haeseler, A, Lanfear, R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular biology and evolution, 37(5):1530–1534.

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq – versatile and accurate annotation of organ-elle genomes. Nucleic Acids Res. 45(W1):W6–W11.

Wu ZY, Raven PH, Hong DY. 2006. Flora of China. Vol. 22: Poaceae. Published on the Internet: http://www.efloras.org. Beijing, China: Science Press; St. Louis, MO: Missouri Botanical Garden Press.

Zhang LN, Ma PF, Zhang YX, Zeng CX, Zhao L, Li DZ. 2019. Using nuclear loci and allelic variation to disentangle the phylogeny of *Phyllostachys* (Poaceae, Bambusoideae). Mol Phylogenet Evol. 137:222–235.

Figure 1. Phylogenetic relationships among *Phyllostachys nidularia f. farcta* and 10 complete chloroplast genomes of bamboo species. Bootstrap support values are given at the nodes.