A few comments on $N=2$ supersymmetric Landau-Ginzburg theories

A.M. Perelomov

Institute of Theoretical and Experimental Physics,
117 259 Moscow, USSR
and
Max-Planck-Institut für Mathematik,
Gottfried-Claren-Strasse 26, D-5300 Bonn 3, FRG

Abstract

In the present note I give two new examples of Landau-Ginzburg theories considered in detail in recent paper by Cecotti and Vafa.

In the recent very interesting paper by Cecotti and Vafa [1] they have considered $N = 2$ supersymmetric Landau-Ginzburg theories and have showed that in many cases the metric for supersymmetric ground states for special deformations of this metric satisfies the certain system of PDE’s, such as, for example, the Toda equations.

The purpose of the present paper is to give the additional examples of such theories.

1. Let us remind first of all some basic facts from $N = 2$ supersymmetric Landau-Ginzburg theory (for more details, see [1]). The basic quantities here are the chiral fields ϕ_i, the vacuum state $|0\rangle$ and the states

$$|j\rangle = \phi_j |0\rangle.$$

(1)

The action of ϕ_j on this state is given by the formula

$$\phi_i |j\rangle = \phi_i \phi_j |0\rangle = C^{k}_{ij} \phi_k |0\rangle = C^{k}_{ij} |k\rangle.$$

(2)
So, the action of the chiral field ϕ_i in the subsector of vacuum states is given by the matrix $(C_i)_j^k = C_{ij}^k$. Analogously, we have anti-chiral fields $\bar{\phi}_i$ and the states $|\bar{j}\rangle$. So we may define two metric tensors

$$\eta_{ij} = \langle j|i \rangle,$$

(3)

and

$$g_{ij} = \langle \bar{j}|i \rangle$$

(4)

which should satisfy the condition

$$\eta^{-1} g (\eta^{-1} g)^* = 1.$$

(5)

The theory is determined by the superpotential $w(x_a)$ which is holomorphic function of complex variables x_a. The superpotential completely determines the chiral ring

$$\mathcal{R} = \mathbb{C}[x_a]/\partial_a w,$$

(6)

and we may also determine the metric η_{ij} by the formula

$$\eta_{ij} = \langle i|j \rangle = \text{Res}_w [\phi_i \phi_j],$$

(7)

where

$$\text{Res}_w [\phi] = \sum_{dw=0} \phi(x) H^{-1}(x), \quad H = \det (\partial_i \partial_j w).$$

(8)

As for the metric g_{ij}, it depends on the parameters t_1, t_2, \ldots entering to the superpotential $w(x_a)$. As was shown in [1], it should satisfy the zero-curvature conditions

$$\bar{\partial}_i (g \partial_j g^{-1}) - [C_j, g(C_i)^+ g^{-1}] = 0, \quad \partial_i = \frac{\partial}{\partial t_i}, \quad \bar{\partial}_j = \frac{\partial}{\partial \bar{t}_j},$$

(9)

and

$$\partial_i C_j - \partial_j C_i + [g(\partial_i g^{-1}), C_j] - [g(\partial_j g^{-1}), C_i] = 0,$$

(10)

and should satisfy the "reality constraint" (5).

In the paper [1] the many interesting examples of the Landau-Ginzburg theories were considered. In the next sections we consider two new examples of such theories.

2. The model

$$w(x) = t[\exp(x) - x].$$

(11)

Here

$$w'(x) = t[\exp(x) - 1],$$

(12)
and we may identify an element of \mathcal{R} with the set of the values of the function $\phi(x)$ at critical points of $w(x)$:

$$x_j = 2\pi ji, \ j \in \mathbb{Z}, \ \phi(x) \in \mathcal{R} \mapsto \{(\phi)_j\}, \ (\phi)_j = \phi(2\pi ij). \quad (13)$$

The multiplication operation acts componentwise on ϕ and we have also

$$w'' = t \exp(x), \quad (14)$$

and

$$\text{Res}(\phi) = \frac{1}{t} \sum_j (\phi)_j. \quad (15)$$

We choose as basis in \mathcal{R} the elements a_k ($k \in \mathbb{Z}$), such that

$$(a_k)_j = \delta_{kj}. \quad (16)$$

In this basis we have

$$\eta_{kl} = \frac{1}{t} \delta_{kl}. \quad (17)$$

Also,

$$(C)_k^l = (1 - 2\pi ik) \delta_k^l. \quad (18)$$

Let us define

$$g_{jk} = \langle k|j \rangle. \quad (19)$$

Then we can see that $w(x)$ is quasi-invariant relative to the translation operation:

$$T: f(x) \rightarrow f(x + 2\pi i), \quad (20)$$

$$Tw(x) = w(x) - 2\pi i. \quad (21)$$

So, the metric g_{jk} should be invariant under this transformation,

$$g_{jk} = g_{j+1,k+1}, \quad (22)$$

or

$$g_{j,j+k} = g_{0,k} = f_k. \quad (23)$$

Now, instead the set $\{f_k\}$ we may consider the function

$$f(\theta) = \sum_k f_k \exp(2\pi i\theta k), \quad (24)$$
or
\[g_{k,l} = \int_0^1 f(\theta) \exp(-2\pi i(k-l)\theta) \, d\theta. \] (25)

The reality condition (5) now takes the form
\[|t|^2 |f(\theta)|^2 = 1. \] (26)

Hence,
\[f(\theta) = \frac{1}{|t|} \exp[i\varphi(t, \bar{t}; \theta)]. \] (27)

For (9) we have
\[\bar{\partial} (f \partial f^{-1}) - [C, fC^+ f^{-1}] = 0, \quad \partial = \frac{\partial}{\partial t}, \quad \bar{\partial} = \frac{\partial}{\partial \bar{t}}. \] (28)

Now
\[C^+ f^{-1} = [C^+, f^{-1}] + f^{-1} C^+. \] (29)

Hence we have
\[\bar{\partial} (f \partial f^{-1}) - [C, f[C^+, f^{-1}] - [C, C^+] = 0, \] (30)

but
\[[C^+, f^{-1}] = \frac{d}{d\theta} (f^{-1}). \] (31)

Hence we have
\[\bar{\partial} (f \partial f^{-1}) + \frac{d}{d\theta} \left(f \frac{d}{d\theta} (f^{-1}) \right) = 0, \] (32)

or
\[\bar{\partial} \partial \varphi + \frac{d^2}{d\theta^2} \varphi = 0. \] (33)

Finally
\[f = f(t, \bar{t}; \theta) = \frac{1}{|t|} \exp[i\phi(t, \bar{t}; \theta)], \] (34)

\[\triangle_3 \varphi = 0, \] (35)

\[\varphi = \varphi(t, \bar{t}; \theta), \quad \varphi(t, \bar{t}; \theta + 1) = \phi(t, \bar{t}; \theta), \] (36)

\[\triangle_3 = \frac{\partial^2}{\partial t_1^2} + \frac{\partial^2}{\partial t_2^2} + \frac{\partial^2}{\partial \theta^2}, \quad t = t_1 + it_2. \] (37)

Note, that the variables may be separated in this equation and if you know \(\phi(0, 0; \theta) \) or \(\phi(t, \bar{t}; \theta) \) we may solve this equation explicitly as \(|t| \to \infty \).
3. The model

\[w = w_c = t \left[\frac{1}{2} \exp(2x) - 2c \exp(x) + x \right], \quad c > 1. \]

(38)

Here

\[w'(x) = t[\exp(2x) - 2c \exp(x) + 1] \]
\[= 2t \exp(x) (\cosh x - c) \]
\[= 2t \exp(x) (\cosh x - \cosh \gamma), \quad c = \cosh \gamma. \]

(39)

We may identify an element of \(\mathcal{R} \) with the set of its values of the function \(\phi(x) \) at critical points \(w(x) \):

\[\{x_j\} = \{a_j, b_j\}, \quad a_j = -\gamma + 2\pi ij, \quad b_j = \gamma + 2\pi ij, \]

(40)

\[\phi(x) \in \mathcal{R} \mapsto \{(\phi)^{a,b}_j\}, \quad (\phi)^{a,b}_j = \phi(\mp \gamma + 2\pi ij). \]

(41)

The multiplication operation acts componentwise on \(\phi \) and we have also

\[w'' = 2t \exp(x) [\exp(x) - c] = 2t \exp(x) [\exp(x) - \cosh \gamma]. \]

(42)

At \(x = a_j \) we have \(w'' = -2t \exp(-\gamma) \sinh \gamma \). At \(x = b_j \) we have \(w'' = 2t \exp(\gamma) \sinh \gamma \).

Here

\[\text{Res}(\phi) = \frac{1}{2t \sinh \gamma} \sum_j [-\exp(\gamma) \phi(a_j) + \exp(-\gamma) \phi(b_j)]. \]

(43)

We choose the basis in \(\mathcal{R} \) related to \(a_j \) and \(b_k \) and in this basis we have

\[\eta^{a,b}_{k,l} = + \frac{1}{2t \sinh \gamma} \exp(\pm \gamma) \delta_{k,l}. \]

(44)

Also

\[(w_j)^{a,b} = t (A \pm B + 2\pi ij), \]

(45)

where

\[A = -(1 + \frac{1}{2} \cosh 2\gamma), \quad B = \frac{1}{2} \sinh 2\gamma - \gamma. \]

(46)

Hence,

\[C = \begin{pmatrix} C^a & 0 \\ 0 & C^b \end{pmatrix}. \]

(47)
\[(C^a)^k_l = (A + B + 2\pi i k) \delta^l_k, \quad (C^b)^k_l = (A - B + 2\pi i k) \delta^l_k. \quad (48)\]

The matrix \(g \) has now the block form
\[g = \begin{pmatrix} g^{aa} & g^{ab} \\ g^{ba} & g^{bb} \end{pmatrix}, \quad g^{aa} = \{g^{a,a}_{j,k}\}, \ldots. \quad (49)\]

The invariance group in this case is generated by the translation
\[T: x \rightarrow x + 2\pi i. \quad (50)\]

Hence
\[g^{a,a}_{j+l,k+l} = g^{a,a}_{j,k}, \ldots, \quad (51)\]

and
\[g^{aa}(\theta) = \sum \exp(2\pi i (k - j) \theta) g_{j,k}, \ldots, \quad g(\theta) = \begin{pmatrix} g^{aa}(\theta) & g^{ab}(\theta) \\ g^{ba}(\theta) & g^{bb}(\theta) \end{pmatrix}. \quad (52)\]

In these notations,
\[\eta = \frac{1}{2t \sinh \gamma} \begin{pmatrix} -\exp(\gamma) & 0 \\ 0 & \exp(-\gamma) \end{pmatrix}, \quad (53)\]

\[C = \left(AI + B \Sigma_3 + \frac{d}{d\theta} \right), \quad C^+ = \left(AI + B \Sigma_3 - \frac{d}{d\theta} \right). \quad (54)\]

The reality condition should be taken in the form
\[(\eta^{-1} g(\theta)) (\eta^{-1} g(-\theta))^* = I. \quad (55)\]

It is easy to show that this condition is equivalent to
\[(\eta_0^{-1} \tilde{g}(\theta)) (\eta_0^{-1} \tilde{g}(-\theta))^* = I, \quad \eta_0 = \frac{1}{2t \sinh \gamma} (-\Sigma_3). \quad (56)\]

Here
\[g = D\tilde{g}D, \quad D = \begin{pmatrix} \exp \left(-\frac{1}{2} \gamma \right) & 0 \\ 0 & \exp \left(\frac{1}{2} \gamma \right) \end{pmatrix}. \quad (57)\]

So, up to a normalization factor, we may consider that \(\tilde{g} \in SU(1,1) \).

The equation (3) may be reduced now to the equation for the matrix \(\tilde{g} \):
\[\tilde{\partial} (\tilde{g} \tilde{g}^{-1}) - [C, \tilde{g} [C^+, \tilde{g}^{-1}]] = 0, \quad C = \frac{d}{d\theta} + B \Sigma_3, \quad C^+ = -\frac{d}{d\theta} + B \Sigma_3, \quad (58)\]
or
\[\bar{\partial} (\tilde{g} \partial \tilde{g}^{-1}) + \left[\frac{d}{d\theta} + B \Sigma_3, \tilde{g} \left[\frac{d}{d\theta} - B \Sigma_3, \tilde{g}^{-1} \right] \right] = 0. \tag{59}\]

Let
\[\tilde{g} \partial \tilde{g}^{-1} = A_t, \quad \tilde{g} \frac{d}{d\theta} \tilde{g}^{-1} = A_\theta. \tag{60}\]

We have also
\[\frac{d}{d\theta} \tilde{g}^{-1} = \tilde{g}^{-1} A_\theta, \quad \frac{d}{d\theta} \tilde{g} = -A_\theta \tilde{g}. \tag{61}\]

Finally we have
\[\bar{\partial} A_t + \frac{d}{d\theta} A_\theta - B \left[(\tilde{g} \Sigma_3 \tilde{g}^{-1} - \Sigma_3), A_\theta \right] - B^2 \left[\Sigma_3, \tilde{g} \Sigma_3 \tilde{g}^{-1} \right] = 0, \tag{62}\]

where
\[A_t = \tilde{g} \partial \tilde{g}^{-1}, \quad A_\theta = \tilde{g} \frac{d}{d\theta} \tilde{g}^{-1}, \quad B = \frac{1}{2} \sinh 2\gamma - \gamma, \]
\[\tilde{g} \in SU(1,1), \quad A_t, A_\theta \in su(1,1), \]
\[\tilde{g} \Sigma_3 \tilde{g}^{-1} \in su(1,1). \tag{63}\]

Note that for \(B \to 0\) (this corresponds to the case of one chain with double zeros) we obtain the equation for the principal chiral field in three dimensions with coordinates \(t_1, t_2\) and \(\theta\) for the group \(SU(1,1)\) (see [1]):
\[\partial_\mu \tilde{g} \partial_\mu \tilde{g}^{-1} = 0, \quad \mu = 1, 2, 3. \tag{64}\]

Here we considered the case of two chains of zeros. The consideration of an arbitrary finite number of chains gives an analogous equation for some real simple Lie algebra.

This work was finished during the author’s stay at the Max-Planck-Institut für Mathematik. I would like to thank Professor F.Hirzebruch for his kind hospitality and Prof. C.Vafa for bringing problems of Landau-Ginzburg theories to my attention.

References

[1] Cecotti S. and Vafa C., Nucl.Phys. B367 (1991), 359