“Was many years ago that I left home and came this way
I was a young man, full of hope and dreams
But now it seems to me that all is lost and nothing gained
Sometimes things ain’t what they seem”

Iron Maiden. “Stranger in A Strange Land”
The Nup214/Nup88 nucleoporin subcomplex is required for CRM1 mediated 60S preribosomal nuclear export*

Rafael Bernad1, Dieuwke Engelsma1, Helen Sanderson1,2, Helen Pickersgill1 and Maarten Fornerod1,3

1The Netherlands Cancer Institute, Dept. of Tumor Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, 2Current address: Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.

Running title: CRM1 NPC transport pathways

INTRODUCTION

Selective communication between the nucleus and the cytoplasm in eukaryotes occurs through nuclear pore complexes (NPC), multiprotein assemblies that transverse the nuclear envelope (NE) (1-3). Each NPC is composed of ~30 proteins, collectively termed nucleoporins (4), and displays an 8-fold horizontal rotational symmetry in relation to the NE (5). The general shape of the NPC is conserved from yeast to humans (4,6,7), but individual nucleoporins differ widely in sequence. A large subset of nucleoporins contains long phenylalanine-glycine dipeptide containing domains (FG-repeats) which are thought to form a hydrophobic/kinetic meshwork creating a barrier to most macromolecules while allowing passage of transport receptor complexes (2,8). These complexes are thought to pass the NPC by interacting with FG-repeats, thus permeating the NPC core (8-11). To achieve nuclear transport, proteins and RNAs bind transport-competent receptors, either directly or indirectly via adaptor proteins (12-16).

Directionality of transport through the NPC is determined by the Ran GTP/GDP gradient which exists between the nucleus and the cytoplasm (17-19) and/or the presence of specific high affinity binding sites for transport receptors located at either the nuclear or cytoplasmic faces of the NPC (20). Although the general NPC architecture is symmetric, the localisation of several nucleoporins is restricted to either the nuclear or the cytoplasmic face of the NPC (7), supporting...
the idea that nucleocytoplasmic asymmetry might be established by asymmetric distribution of specific binding sites at the NPC. Indeed, preferential interactions between several transport receptors and specific FG-containing nucleoporins have been described in vitro (21-24). In contrast, recent studies in yeast show that receptor-mediated nuclear transport is not affected when FG-repeats of asymmetric nucleoporins are absent (25,26), indicating that they are not essential for directional transport and that the FG-domains of different nucleoporins may be functionally redundant. Furthermore, imaging of single molecule translocation through the NPC shows that the most kinetically important interactions during nuclear translocation take place in the central pore and that these interactions exhibit the characteristics of unbiased diffusion indicating that there is no directionality within the NPC itself (27).

Next to permeation, gating is a second proposed mode of energy-dependent NPC translocation. It involves conformational changes of the NPC to achieve transport (28) and it is supported by conformational states that have been detected under various conditions (29-32). The role of individual nucleoporins in this process is unknown.

The Nup214/ Nup88 subcomplex is localized to the cytoplasmic face of the NPC (33). Nup214 is dispensable for in vitro NPC assembly and protein import (34) but it is essential in vertebrate cells and its depletion causes a strong mRNA export defect (35). Nup214 contains two central coiled coils known to interact with Nup88 (21,33) and a long C-terminal FG-repeat that interacts strongly with the transport factor CRM1 in vitro in a RanGTP and cargo stimulated fashion (21,36). These data suggest that Nup214 plays an essential role in CRM1 mediated export. But it remains to be elucidated if and how NPC asymmetry influences transport processes that are initiated on the opposite side of the NPC (37). Recent studies proposed that the FG-rich domain of the asymmetric nuclear Nup153 and cytoplasmic Nup214 can cross the NPC providing a binding site to transport receptors and escorting transport complexes through the NPC (38,39).

CRM1 mediates the nuclear export of proteins bearing a nuclear export signal (NES) by binding cooperatively with RanGTP (13,16,40,41). The nature of NES-containing cargos differs widely. The large subunit of the ribosome is exported to the cytoplasm via the CRM1 pathway, assisted by the transport adaptor NMD3 (42-44).

We have compared the roles of the Nup214/Nup88 and Nup358 complexes in different CRM1 export pathways. We show that the CRM1-mediated export of the 60S ribosomal subunit is dependent on the Nup214/Nup88 subcomplex while that of small NES cargos remains relatively unaffected. We show that the central domain of Nup214 is required for 60S export and Nup88 targeting to the NPC, while the FG repeats are dispensable.

EXPERIMENTAL PROCEDURES

Antibodies

Anti-hNup358/RanBP2 antiserum, anti-hNup358V, and anti-hNup358F were generously provided by V. Cordes (Karolinska Institute, Stockholm, Sweden), A. Gast and F. Melchior (Max Planck Institute for Biochemistry, Munich, Germany), respectively. Antibodies to Nup214 (45) anti-hNup88 (BD Transduction Laboratories), monoclonal antibody (MAb) 414 (Eurogentec/Babco) and anti-HA (12CA5) were previously described.

Plasmid construction

pSuper-358 (45), pSuper-214, Rev-S1-GFP (24) and HA-Nup153 (46) were described previously. The NLS-eGFP-NES insert containing the SV40 NLS and PKI NES was subcloned from pBSSK (47) into the pcDNA3 vector (Stratagene) using the HindIII NotI restriction sites. The NLS-eGFP insert was amplified by PCR from pBSSK using F primer 5' CCCCTCGAGGTGACGGTATC 3' and R primer containing a NotI site 5' ATATATATAGCGGCCGCTTAGTTTCTAGAC TTGTACAGCTC 3' and subcloned into pCDNA3 by digestion with HindIII and NotI. GFP-NMD3 and rpL29-GFP were a kind gift from U. Kutay (43). To create a RNAi insensitive Nup214 expressing plasmid, DpnI mediated site-directed mutagenesis was performed on pBluescriptKS(-)CAN (48) creating four silent mutations in the target sequence TCACATCCGCTAGC AACAC. Wild type and mutated Nup214 coding sequences were subcloned into the EcoRI sites of pcDNA3 (Stratagene). A DNA oligo, which contained
AgeI, SacII and FseI sites, was cloned into the RNAi insensitive Nup214 XcmI sites, located at positions 6157 and 6253 of the ORF, leading to the parental construct. The AgeI and FseI sites were used to perform unidirectional deletions using the ExoIII/S1 Deletion Kit (Fermentas). To create Nup214-FRB, the FRB domain lacking the HA1 tag from the plasmid pC4-RHE (Regulated Heterodimerization Kit, Argent) was PCR amplified and cloned in-frame into the parental construct using AgeI and SacII sites. To create Nup214-FRB, the FRB domain lacking the HA1 tag from the plasmid pC4-RHE (Regulated Heterodimerization Kit, Argent) was PCR amplified and cloned in-frame into the parental construct using AgeI and SacII sites. To create pcDNA3 HA-Nup214(585-832), HA-Nup214(804-1058) and HA-Nup214(585-1058), Nup214 regions were PCR amplified on pBluescriptKS(-)CAN (48) and cloned into pcDNA3-HA (49). FKBP lacking the HA1 tag and SV40 NLS was PCR amplified from the plasmid pC4EN-F1E (Regulated Heterodimerization Kit, Argent) to clone into pRev(1.4)-GFP (50) using BamHI and AgeI sites; and into GST-NLS-GFP from plamid pEW103 (kind gift of Erik Wiemer, Erasmus University Rotterdam, The Netherlands) using BsrGI and SacII sites. All constructs were sequenced for confirmation.

Cell culture and transfections Low passage HeLa cells and MCF-7 cells (ATCC CCL-2) were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (GibcoBRL) and antibiotics at 37°C and 5% CO2 in a humidified incubator. Transfections were performed using electroporation on MCF-7 cells as described previously (51) or Fugene-6 (Roche) on HeLa cells according to the manufacturer’s instructions. For all RNAi assays in HeLa cells, experiments proceeded for 72 hours and the amount of pSUPER plasmids transfected was 106ng/cm² on 70-80% confluent cells. pSUPER-GFP was a generous gift from Rene Bernards, NKI Amsterdam. For immunofluorescence experiments, NLS-GFP, NLS-GFP-NES and GFP-NMD3 were co-transfected at a maximum of 47ng/cm², pRev-NES-GFP as described (45), pRev-S1-GFP at 21.7ng/cm², rpL29-GFP at 1.2ng/cm², pRev-FKBP-GFP at 1ng/cm² and GST-NLS-GFP-FKBP at 2.3ng/cm². For all rescue experiments pcDNA3 derived plasmids were co-transfected at 5.3ng/cm² except for the heterodimerization assays where Nup214-FRB was co-transfected at 7.3ng/cm² maximum. For western blot analysis, pcDNA3 and pcDNA3-HA derived plasmids were co-transfected at 26.5ng/cm². The non-immunosupresive rapalog AP21967 (Regulated Heterodimerization Kit, Argent) was used at 500nM for 3 h prior to fixation except for Nup214 overexpression, which was at 250nM. Leptomycin B was used for 2 hours at a concentration of 100nM.

RESULTS

The Nup214/Nup88 subcomplex is dispensable for basic NES-mediated nuclear export – The strong in vitro interaction between Nup214 and CRM1 (21,36), suggests that this nucleoporin has an important role in NES-mediated nuclear export (20,36). To test this, we depleted Nup214 by expression of Nup214-specific shRNAs in human cells and recorded nucleocytoplasmic localisation of NES-reporter proteins. To confirm efficient depletion, Western blot analyses were performed on knocked-down cells lysates. As shown in Fig 1E, Nup214-shRNA resulted in strong depletion of Nup214 (lane 1), while shRNA directed to Nup358 (lane 2) or GFP (lane 3) had no effect. As expected from previous studies, knockdown of Nup214 caused a strong depletion of Nup88, indicating that the stability of these two nucleoporins is co-dependent (45). We first tested a NES-reporter protein consisting of the NES derived from PKI (52) fused to GFP. Import activity of this protein is provided by an SV40 nuclear localization signal (NLS). In control cells, this reporter protein is excluded from the nuclei, indicating that the stability of these two nucleoporins is co-dependent (45). We first tested a NES-reporter protein consisting of the NES derived from PKI (52) fused to GFP. Import activity of this protein is provided by an SV40 nuclear localization signal (NLS). In control cells, this reporter protein is excluded from the nuclei, indicating that the NES is active and prevails over the NLS activity. Nuclear accumulation of this protein was detectable when cells were treated with the CRM1 inhibitor Leptomycin B, indicating that NLS-GFP-NES is exported via...
Figure 1. Wild type levels of the Nup214/Nup88 subcomplex are not required for basic NES-mediated nuclear export. Subcellular distribution of the NES reporter proteins NLS-GFP-NES (A-C) and Rev(1.4)-NES-GFP (D) depleted for Nup214/Nup88 (A,C and D) or Nup358 (B,C and D) in HeLa and MCF-7. Cells were immunolabelled with anti-hNup214 (A2 and A4) and anti-hNup358F (B2 and B4) primary antibodies and Texas Red labelled secondary antibodies. Scale bars represent 20µm. (C), (D). Quantification of the subcellular distribution of NLS-GFP-NES and Rev(1.4)-NES-GFP on knocked down cells. 100 fluorescent cells per condition were scored for predominantly nuclear (Nuc>Cyt), equal (Nuc=Cyt) or predominantly cytoplasmic (Nuc<Cyt) GFP fluorescence intensity. The mean distribution is shown and error bars represent standard errors. (E). Western Blot of HeLa cells transfected with pS-Nup214 (lane 1), pS-Nup358 (lane 2) and pS-GFP (lane 3). Blots were probed for Nup358, Nup214, Nup153 and Nup88 using anti-Nup358V, anti-hNup214, MAb 414 and anti-hNup88 respectively. Note that knock-down protein levels are an underestimate of true knock-down efficiency, due to incomplete targeting of the cell population by transient transfection, especially noticeable for Nup358.
CRM1 nuclear export pathways

Figure 2. The Nup214/Nup88 subcomplex is required for CRM1-mediated 60S preribosome export. (A), (B). Subcellular distribution of GFP-NMD3 and RpL29-GFP expressing HeLa cells 72 hours after co-transfection with pSUPER control (A1:2, A7:8 and B1:2) or shRNAs expression plasmids targeting Nup214 (A3:4 and A9:10) or Nup358 (B3:4). Cells were fluorescently labelled with anti-hNup214 (A2, A4, A6, A8 and A10) and anti-hNup358F (B2, B4 and B6) primary antibodies and Texas Red labeled secondary antibodies. HeLa cells expressing GFP-NMD3NES represent maximum nuclear accumulation (A5, and B5). Scale bars, 10\(\mu \)m. (C) Quantification of results illustrated in (A) and (B) showing percentages of cells presenting nuclear accumulation (Nuc>Cyt) of GFP-NMD3, GFP-NMD3NES and rpL29-GFP as well as those for the supraphysiological NES reporter Rev(1.4)GFP-S1. Error bars represent standard errors.

The Nup214/Nup88 subcomplex is required for CRM1-mediated 60S preribosome export—Considering the discrepancy between the strong binding *in vitro* between CRM1 and Nup214 and the weak effects of Nup214 depletion on NES-mediated export *in vivo*, we hypothesized that Nup214 might be required for certain classes of CRM1-dependent nuclear export substrates. It has been previously shown that the large 60S preribosome subunit is exported via CRM1 and the transport adaptor NMD3 (43,53). We therefore investigated the role of the Nup214/Nup88 subcomplex in 60S preribosomal nuclear export by studying the localisation of GFP-tagged NMD3 (43).

In control cells, GFP-NMD3 was largely excluded from the nucleus (Fig. 2A and C). This cytoplasmic localisation of NMD3 was strictly dependent on its NES (Fig. 2A and 2C). Depletion of the Nup214/Nup88 subcomplex resulted in a striking nuclear redistribution of GFP-NMD3 (Fig. 2A and C). In contrast, Nup358 deficient cells showed no difference to the control (Fig. 2B and C). The localisation of the NMD3NES remained unchanged in Nup214-shRNA or...
Nup358-shRNA expressing cells, indicating that NMD3 nuclear import was not impaired by depletion of the Nup214/Nup88 subcomplex or Nup358 (data not shown). To confirm that nuclear accumulation of GFP-NMD3 reflected a 60S preribosomal export defect, the localisation of the preribosomal component rpL29 was assessed in wild-type or Nup214/Nup88 depleted cells. Apart from the accumulation at the nucleoli, which is also observed in control cells, depletion of Nup214/Nup88 resulted in a strong nuclear accumulation of GFP-tagged rpL29 (Fig 2A8, 10 and C). In vitro, certain recombinant versions of NMD3 possess a very high affinity for CRM1 (43), approximately 100-fold higher than regular NESs. To test whether the export defect due to depletion of Nup214/Nup88 was specific for high affinity NESs, we determined the nuclear export driven by an NES of a similar affinity, the supraphysiological S1 NES (24). Depletion of Nup214/Nup88 did not induce nuclear accumulation of this reporter protein, indicating that the effects were not related to high-affinity CRM1 binding of NMD3 (Fig 2C).

The FG-repeat domain of Nup214 cannot access the nucleus– It has been proposed recently that the FG-domain of Nup214 could access the nuclear compartment providing a binding site for export complexes. This mechanism would explain how a cytoplasmic localised nucleoporin can mediate export (38,39). In order to examine this possibility (Fig. 3A1), we have tested accessibility of the carboxy-terminal domain of Nup214 to the nuclear compartment in vivo. For this, we used a rapamycin-dependent heterodimerizer system (54). The small (95 amino acids) FRB protein, one of the two heterodimerizing components, was fused to the C-terminus of the RNAi-insensitive Nup214. The other heterodimerizing component, FKBP, was fused to either GST-NLS-GFP or the NES-deficient Rev(1.4)-GFP, two constitutively nuclear proteins that cannot freely diffuse across the NPC. As depicted in Figure 3A2-3, rapamycin-dependent dimerization would occur only if the C-terminal FRB containing domain of Nup214 could reach the nuclear compartment. Expression of Nup214-FRB rescued the effects of shRNA-induced Nup214/Nup88 depletion in Nup214 expression (Fig 3 B3,4 and C3,4) and NMD3 nuclear export (Fig 3 E). This indicates that the Nup214-FRB RNAi-insensitive derivative of Nup214 is correctly expressed, targeted to the NE and functional. Previous studies have shown that a fusion protein consisting of a FRB and Rev NES is small enough (~11.5 kD) and capable to diffuse freely through the NPC, indicating that the FRB component would not prevent the capacity of Nup214 C-terminus to cross the NPC (55). When Nup214-FRB and GST-NLS-GFP-FKBP were highly overexpressed (Fig 3D1:6), the two proteins colocalized in cytoplasmic dots in a rapamycin-dependent manner (Fig 3D2-3,5-6,8-9), providing a control for rapamycin-induced heterodimerization. Furthermore, small amounts of cytoplasmic GST-NLS-GFP-FKBP were sufficient to induce a visible colocalization with Nup214 (Fig 3D1,4,7). However, no rapamycin-induced heterodimerization was detected when the nuclear reporter proteins were confined to the nucleus, using either GST-NLS-GFP-FKBP or Rev(1.4)-GFP-FKBP protein (Fig 3B2,4,6 and Fig 3C2,4,6). These results indicate that the FG-repeat
Figure 4. Nup214 FG repeats are dispensable for 60S preribosomal nuclear export. (A) Rescue of GFP-NMD3 nuclear export and Nup214 expression in Nup214/Nup88 depleted HeLa cells by exogenous Nup214. HeLa cells were transfected with Nup214-shRNA expression plasmids (right) or control plasmids (left) and co-transfected with RNAi sensitive or insensitive versions of a Nup214 expression plasmid as indicated below the graph. White bars represent percentages of cells showing cytoplasmic GFP-NMD3 staining greater or equal to nuclear staining. Black bars represent percentages of cells showing Nup214 staining at the nuclear envelope. Error bars represent standard errors. (B) Rescue of GFP-NMD3 nuclear export in Nup214/Nup88 depleted HeLa cells by Nup214 deletion mutants. Nup214 deletion constructs are represented as horizontal bars. Dark boxes indicate central coiled coil domains; vertical bars, FG repeats; arrow, RNAi target. A black oval denotes a mutated RNAi target. Amino acid positions of Nup214 are shown at the bottom 1-2090 (asterisk). Bars graph at the right show the percentage of rescue obtained for each construct relative to the parental deletion construct (dashed line). Error bars represent standard error.
domain of Nup214 is not able to access the nuclear compartment from its cytoplasmic site.

Nup214 FG repeats are dispensable for 60S preribosomal nuclear export—In order to determine which region of Nup214 was required for preribosomal nuclear export, we designed several deletion constructs of Nup214 and expressed them in Nup214/Nup88 depleted cells. In order to ensure expression of the re-introduced Nup214 proteins, we designed four silent point mutations in the nucleotide sequence that is targeted by the Nup214 shRNA. To determine the extent of rescue that can be obtained in this setup, we transfected HeLa cells expressing GFP-NMD3 under normal or Nup214/Nup88-depleted conditions with plasmids expressing either RNAi sensitive or insensitive Nup214 (Fig. 4A). In control cells, efficient nuclear export of NMD3 was found in 84% cells and 86% of the cells showed a clear NE staining of Nup214. These scores were not significantly altered when wild type or RNAi-insensitive Nup214 were exogenously expressed. Upon depletion of Nup214/Nup88, only 23% of cells showed efficient nuclear export of GFP-NMD3. Concomitantly, the presence of Nup214 at the NE was reduced to 28% of cells. Neither GFP-NMD3 export nor the expression of Nup214 were significantly enhanced when an RNAi-sensitive Nup214 mRNA was overexpressed, indicating that the exogenous Nup214 transcript was recognised and degraded by the RNAi machinery. In contrast, when the RNAi-insensitive version was re-introduced, 46% of cells were able to export GFP-NMD3. This coincided with a significant increase of Nup214 expression (Fig. 4A). These data indicated specific rescue of shRNA-mediated depletion of Nup214/Nup88 by exogenous Nup214 DNA constructs and defined the dynamic range of the assay to be roughly from 25 to 50% of wild-type.

We next tested GFP-NMD3 nuclear export of Nup214/Nup88 depleted cells that lacked FG-repeats to a varying extent (Fig. 4B). These derivatives were created by ExoIII deletion from a parental construct which had a small deletion from amino acid position 2055 to 2076 of the Nup214 sequence. This parental construct was able to rescue NMD3 export to levels comparable to the full length rescue plasmid. Interestingly, most FG-repeat deletions rescued to similar levels as the parental construct, and two constructs encoding Nup214 versions lacking the entire FG repeat domain (Nup214₈₀₄₋₁₀₅₈ and Nup214₅₈₅₋₈₃₂) containing the CRM1 binding site were not significantly different in their capacity to rescue than the parental construct. Expression of Nup214₅₈₅₋₁₀₅₈, Nup214₁₋₁₁₄₃ or HA-Nup153 did not rescue expression of endogenous Nup214 (Fig 5A, B and not shown). We conclude that Nup214, but not its FG-repeat region, is essential for 60S preribosome export.

Nup214 central coiled coil domains are sufficient for 60S preribosomal nuclear export—We have shown that Nup214 domain can not access the nuclear compartment. In addition, we have excluded the possibility that Nup214 function in 60S preribosomal export is mediated by any carboxy-terminal mediated interaction. These facts suggest that Nup214 does not interact directly with the 60S export complex. In order to further test this possibility, we have expressed three versions of the central Nup214 coiled coil domains. These domains are required to mediate interaction with Nup88 and with the NPC (56,57). Incorporation of the HA1-tagged coiled coil domains into the NPC was analyzed by immunofluorescence and confocal microscopy imaging in Nup214-depleted HeLa cells. As shown before (56), while the first and second Nup214 coiled coils showed no or low NE staining (Fig 5A, 14 and 15 respectively), the protein containing both domains was targeted to the NE very efficiently (Fig 5A, 16). Analogously, Nup88 NE staining was found as high as wild type levels only when the construct containing both coiled coils of Nup214 was expressed (Fig 5C, D). Next, we analyzed NMD3 export by confocal microscopy imaging. While cells expressing the first or second coiled coil domains (Fig 5B) of Nup214 elicited no or little rescue on NMD3 export assays (Fig 5A6,7), cells expressing the complete central domain (585-1058) rescued NMD3 export capacity to the same extent as the Nup214 RNAi insensitive construct (Fig 4B and 5A8). Western blot analysis of HeLa cell extracts expressing shRNAi targeting Nup214 and co-transfected with HA-Nup153, Nup214₅₈₅₋₁₀₅₈, Nup214₅₈₅₋₈₃₂, Nup214₅₈₅₋₁₀₅₈ or Nup214₅₈₅₋₁₀₅₈ (Fig 5B, lanes 2-6 respectively)
Figure. 5. Nup214 central coiled coil domains are sufficient for 60S preribosomal nuclear export. (A). Subcellular distribution of GFP-NMD3 expressing HeLa cells 72 hours after co-transfection with pSUPER control (A1,9:5,13) or pS-Nup214; and with empty pcDNA (A2,10) or Nup214 rescue plasmids expressing Nup214\(^{1637-2075}\) (A3,11), Nup214\(^{1-1143}\) (A4,12), Nup214\(^{585-832}\) (A6,14), Nup214\(^{804-1058}\) (A7,15) and Nup214\(^{585-1058}\) (A8,16). Cells were fluorescently labelled with anti-hNup214 (A9:12) and anti-HA 12CA5 (A13:16) primary antibodies and Texas Red labeled secondary antibodies. (B). Western Blot of HeLa cells transfected with pSUPER empty (lane 7) or pS-Nup214 (lanes 1:6). HA-Nup153 (lane 2), Nup214\(^{1637-2075}\) (lane 3), Nup214\(^{585-1058}\) (lane 4), Nup214\(^{804-1058}\) (lane 5) and Nup214\(^{585-832}\) (lane 6) were co-transfected. Blots were probed for Nup214, Nup153 using MAb 414, for Nup214\(^{1637-2075}\) using anti-hNup214 and for HA1 using 12CA5. (C) Nup214 coiled-coil region is sufficient to target Nup88 to the NPC. Graphic representation showing fluorescence levels of endogenous Nup88 as a percentage of the empty pSUPER negative control after knockdown of Nup214 and co-expression of the indicated plasmids. Representative images are shown in (D); note that absence of Nup214 reduces endogenous levels of Nup88 (see also Fig. 1E).
showed that endogenous Nup214 levels continued to be significantly reduced, indicating that their expression did not interfere with Nup214 RNAi. HA-Nup153 expression also did not rescue NMD3 export (data not shown). These results indicate that Nup214 function in 60S export is mediated by the central domain of Nup214, which interacts with Nup88.

DISCUSSION

In this study we have assessed the role of the Nup214/Nup88 complex in CRM1-mediated nuclear export. Human CRM1 was first identified as a Nup214 co-precipitating protein that interacted specifically with the C-terminal FG-repeat of this nucleoporin (21). In vitro, this interaction is enhanced by RanGTP and cargo, suggesting a role in translocation through the NPC or disassembly of export complexes (36). It was therefore surprising that depletion of the Nup214/Nup88 subcomplex had little or no effect on CRM1-dependent nuclear export of simple export cargos. In yeast, a relatively strong in vitro interaction between Nup159 and Xpo1 exists as well (26), suggesting that this interaction has an important evolutionary conserved function. However, removal of the high affinity domain in Nup159 does not significantly affect nuclear export of an NES-GFP-NLS reporter protein (26) or cell viability. Furthermore, studies in yeast indicate that a significant fraction of FG-repeats can be removed from the NPC before cell viability is compromised (25). Therefore, the in vivo significance of the high affinity CRM1/Nup214 interaction remains unknown.

In addition to contributing to the hydrophobic inner core of the NPC (8), the FG-repeat region of Nup214 has recently been proposed to move cargo through the NPC from the nuclear to the cytoplasmic face of the NE (38,39). In fact, the FG-repeat region of Nup214 is able to cross the NPC by itself (58), is predicted to be unstructured (59), and long enough to cross the NPC from a cytoplasmic anchoring point. In addition, overexpression of Nup214 results in a presence of this nucleoporin at both sides of the NPC (60). But, irrespective of such a system operating, our Nup214 depletion data indicate that it is not essential for CRM1-mediated nuclear export in cultured cells. To examine whether the C-terminal tail of Nup214 reaches the nuclear face of the NPC in vivo, we provided GFP reporter proteins and the C-terminal tail of Nup214 with rapamycin-dependent heterodimerizing tags. Using this system, we only detect NPC localization of the reporter proteins when they are in the cytoplasm, indicating that the FG repeat region of Nup214 can access the cytoplasm but not the nucleoplasm.

We found that the presence of the Nup214/Nup88 subcomplex was required for CRM1-mediated nuclear export of 60S preribosomal subunits. This indicates that different cargos served by the same transport receptor have different nucleoporin requirements, which complements earlier observations that different nucleoporins serve distinct nucleocytoplasmic transport pathways (61-64). Because depletion of Nup214 has no general effect on nuclear protein import (34), or export (this study), the observed preribosomal nuclear export defect is likely not a consequence of pleiotropic effects on other nuclear transport pathways.

The mechanism by which large ribonuclear protein complexes translocate though the NPC remains largely unknown. The size of a 60S preribosomal particle (25 nm) is approximately 100-fold a GFP molecule and close to the upper NPC size limit for a non-deformable cargo (65) suggesting that a significant conformational change of the NPC should occur during its translocation. Recent analysis using cryoelectron tomography of functional Dytistelium NPCs has revealed distinct structural states correlating with a variable central volume that likely represented large cargo in transit (32).

In yeast, nuclear export of 40S and 60S preribosomes was reported to require the Nup159p/Nup82p/Nsp1p subcomplex (37), which is the proposed yeast homologue of the vertebrate Nup214/Nup88/Nup62 subcomplex (57). Both Nup214/Nup88/Nup62 and Nup159/Nup82/Nsp1 subcomplexes are associated through interactions of coiled-coil domains (56,57) and these domains in Nup159p and Nsp1p are necessary and sufficient for cell viability (66,67). We find that in vertebrate cells, the requirement of the Nup214/Nup88 subcomplex for 60S preribosomal export is dependent on the central coiled coils domain that contains the Nup88 and possibly...
Nup62 interaction domains but not on its N-terminus nor its large FG repeats region. Because of the structural characteristics of the Nup214 central domain and its role in correctly positioning the cytoplasmic Nup214/Nup88 subcomplex, it is likely part of the cytoplasmic structures of the NPC. Furthermore, this region lacks FG repeats, thought to be essential for CRM1 interaction. Therefore, we consider it unlikely that a direct interaction between Nup214 and the 60S preribosomal export complex is required for 60S export. We rather propose that the Nup214/Nup88 core domain plays a structural role in large scale conformational changes required for 60S preribosome export, perhaps functioning in a hinge-like manner. This is consistent with deletion analysis in yeast, indicating that only the coiled-coil domain of Nup159, the closest yeast homologue of Nup214, is required for 40S preribosomal nuclear export (37). Further evidence that the Nup214/Nup88 subcomplex is required for nuclear export of large cargoes is the strong mRNA export defect of depletion of Nup214 and Nup88 (35,68), or their yeast equivalents Nup159 and Nup82 (61,62,69).

In conclusion, we have shown that the Nup214/Nup88 subcomplex is required for CRM1-mediated export of a specific cargo, the 60S preribosome, in a process independent of strong CRM1-FG interactions.

REFERENCES
1. Allen, T. D., Cronshaw, J. M., Bagley, S., Kiseleva, E., and Goldberg, M. W. (2000) J Cell Sci 113 (Pt 10), 1651-1659
2. Rout, M. P., and Aitchison, J. D. (2001) J Biol Chem 276(20), 16593-16596
3. Suntharalingam, M., and Wente, S. R. (2003) Dev Cell 4(6), 775-789
4. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T., and Matunis, M. J. (2002) J Cell Biol 158(5), 915-927.
5. Goldberg, M., and Allen, T. (1996) Journal of Molecular Biology 257, 848-865
6. Yang, J., Barde, E. S., Moore, J. D., Brennan, J., Powers, M. A., and Kornbluth, S. (1998) Genes Dev 12(14), 2131-2143
7. Rout, M. P., Aitchison, J. D., Suprapto, A., Hjertaas, K., Zhao, Y., and Chait, B. T. (2000) J Cell Biol 148(4), 635-651
8. Ribbeck, K., and Görlich, D. (2001) Embo J 20(6), 1320-1330
9. Bayliss, R., Corbett, A. H., and Stewart, M. (2000) Traffic 1(6), 448-456
10. Allen, N. P., Huang, L., Burlingame, A., and Rexach, M. (2001) J Biol Chem 276(31), 29268-29274
11. Stewart, M., Baker, R. P., Bayliss, R., Clayton, L., Grant, R. P., Littlewood, T., and Matsuura, Y. (2001) FEBS Lett 498(2-3), 145-149
12. Arts, G. J., Kuersten, S., Romby, P., Ehresmann, B., and Mattaj, I. W. (1998) Embo J 17(24), 7430-7441
13. Fornerod, M., Ohno, M., Yoshiida, M., and Mattaj, I. W. (1997) Cell 90(6), 1051-1060
14. Kaffman, A., Rank, N. M., O'Neill, E. M., Huang, L. S., and O'Shea, E. K. (1998) Nature 396(6710), 482-486
15. Lipowsky, G., Bischoff, F. R., Schwarzmaier, P., Kraft, R., Kostka, S., Hartmann, E., Kutay, U., and Görlich, D. (2000) Embo J 19(16), 4362-4371
16. Stade, K., Ford, C. S., Guthrie, C., and Weis, K. (1997) Cell 90(6), 1041-1050
17. Richards, S. A., Carey, K. L., and Macara, I. G. (1997) Science 276(5320), 1842-1844
18. Izaurrelde, E., Kutay, U., von Kobbe, C., Mattaj, I. W., and Görlich, D. (1997) EMBO J 16(21), 6535-6547
19. Weis, K., Dingwall, C., and Lamond, A. I. (1996) Embo J 15(24), 7120-7128
20. Ben-Efraim, I., and Gerace, L. (2001) J Cell Biol 152(2), 411-417
21. Fornerod, M., van-deursen, J., van-Baal, S., Reynolds, A., Davis, D., Murti, K. G., Fransen, J., and Grosveld, G. (1997) The EMBO Journal 16(4), 807-816
22. Bayliss, R., Ribbeck, K., Akin, D., Kent, H. M., Feldherr, C. M., Görlich, D., and Stewart, M. (1999) J Mol Biol 293(3), 579-593
23. Bayliss, R., Leung, S. W., Baker, R. P., Quinby, B. B., Corbett, A. H., and Stewart, M. (2002) Embo J 21(12), 2843-2853
24. Engelsma, D., Bernad, R., Calafat, J., and Fornerod, M. (2004) Embo J 23(18), 3643-3652
25. Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S., and Wente, S. R. (2004) Nat Cell Biol 6(3), 197-206
26. Zeitler, B., and Weis, K. (2004) J Cell Biol 167(4), 583-590
27. Yang, W., Gelles, J., and Musser, S. M. (2004) Proc Natl Acad Sci U S A 101(35), 12887-12892
28. Becskei, A., and Mattaj, I. W. (2005) Curr Opin Cell Biol 17(1), 27-34
29. Akey, C. W. (1990) Biophys J 58(2), 341-355
CRM1 nuclear export pathways

30. Kiseleva, E., Goldberg, M. W., Allen, T. D., and Akey, C. W. (1998) J Cell Sci 111 (Pt 2), 223-236
31. Stoffler, D., Fahrenkrog, B., and Aebi, U. (1999) Curr Opin Cell Biol 11(3), 391-401
32. Beck, M., Forster, F., Ecke, M., Plitzko, J. M., Melchior, F., Gerisch, G., Baumeister, W., and Medalia, O. (2004) Science 306(5700), 1387-1390
33. Bastos, R., Ribas de Pouplana, L., Enarson, M., Bodoor, K., and Burke, B. (1997) J Cell Biol 137(5), 989-1000
34. Walther, T. C., Pickersgill, H. S., Cordes, V. C., Goldberg, M. W., Allen, T. D., Mattaj, I. W., and Fornerod, M. (2002) J Cell Biol 158(1), 63-77.
35. van-Deursen, J., Boer, J., Sauder, U., and Aebi, U. (2002) J Struct Biol 140(1-3), 254-267
36. Paulillo, S. M., Phillips, E. M., Sauder, U., Ullman, K. S., and Aebi, U. (2005) J Mol Biol 351(4), 784-798.
37. Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M., and Nishiida, E. (1997) Nature 390(6657), 308-311
38. Ossareh-Nazari, B., Bacheriele, F., and Dargemont, C. (1997) Science 278(5335), 141-144
39. Gadal, O., Strauss, D., Kesl, J., Trumpower, B., Tollervey, D., and Hurt, E. (2001) Mol Cell Biol 21(10), 3405-3415.
40. Thomas, F., and Kutay, U. (2003) J Cell Sci 116(Pt 12), 2409-2419
41. Hedges, J., West, M., and Johnson, A. W. (2005) Embo J 24(3), 567-579
42. Bernad, R., Van Der Velde, H., Fornerod, M., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
43. Bastos, R., Lin, A., Enarson, M., and Burke, B. (1996) J Cell Biol 134(5), 1141-1156
44. Roth, P., Xylourgidis, N., Sabri, N., Uv, A., Fornerod, M., and Samakovlis, C. (2003) J Cell Biol 163(4), 701-706
45. von Lindern, M., Fornerod, M., Van Baal, S., Jaegle, M., De Wit, T., Buijs, A., and Grosveld, G. (1992) Mol Cell Biol 12(4), 1687-1697
46. Matos, P., Collard, J. G., and Jordan, P. (2003) J Biol Chem 278(50), 50442-50448
47. Henderson, B. R., and Eleftheriou, A. (2000) Exp Cell Res 256(1), 213-224
48. Agami, R., and Bernards, R. (2000) Cell 102(1), 55-66.
49. Wen, W., Meinikoth, J. L., Tsien, R. Y., and Taylor, S. S. (1995) Cell 82(3), 463-473
50. Trotta, C. R., Lund, E., Kahan, L., Johnson, A. W., and Dahlberg, J. E. (2003) Embo J 22(11), 2841-2851
51. Klemm, J. D., Schreiber, S. L., and Crabtree, G. R. (1998) Annu Rev Immunol 16, 569-592
52. Klemm, J. D., Beals, C. R., and Crabtree, G. R. (1997) Curr Biol 7(9), 638-644
53. Fornerod, M., Boer, J., van-Baal, S., Morreau, H., and Grosveld, G. (1996) Oncogene 13, 1801-1808
54. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L., and Rexach, M. (2003) Proc Natl Acad Sci U S A 100(5), 2450-2455
55. Boer, J., Bonten-Surtel, J., and Grosveld, G. (1998) Mol Cell Biol 18(3), 1236-1247
56. Hurwitz, M., and Blobel, G. (1995) The Journal of Cell Biology 130(6), 1275-1281
57. Hurwitz, M. E., Strambio-de-Castillia, C., and Blobel, G. (1998) Proc Natl Acad Sci U S A 95(19), 11241-11245
58. Doye, V., Wepf, R., and Hurt, E. C. (1994) Embo J 13(24), 6062-6075
59. Walther, T. C., Fornerod, M., Pickersgill, H., Goldberg, M., Allen, T. D., and Mattaj, I. W. (2001) Embo J 20(20), 5703-5714
60. Feldherr, C. M., and Akey, C. W. (1998) Proc Natl Acad Sci U S A 95(19), 11241-11245
61. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
62. Bastos, R., Lin, A., Enarson, M., and Burke, B. (1996) J Cell Biol 134(5), 1141-1156
63. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
64. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
65. Doye, V., Wepf, R., and Hurt, E. C. (1994) Embo J 13(24), 6062-6075
66. Feldherr, C. M., and Akey, C. W. (1998) Proc Natl Acad Sci U S A 95(19), 11241-11245
67. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
68. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
69. Email, R., and Akey, C. W. (1998) Proc Natl Acad Sci U S A 95(19), 11241-11245
70. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
71. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
72. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
73. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
74. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
75. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
76. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
77. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
78. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
79. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
80. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
81. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
82. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
83. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
84. Del Priore, V., Heath, C., Snavely, C., and Pickersgill, H. (2004) Mol Cell Biol 24(6), 2373-2384.
85. Nehr, B., and Hurt, E. C. (1994) J Cell Biol 126(6), 2373-2384.
68. Formerod, M., van Baal, S., Valentine, V., Shapiro, D. N., and Grosveld, G. (1997) *Genomics* 42(3), 538-540

69. Gorsch, L. C., Dockendorff, T. C., and Cole, C. N. (1995) *J Cell Biol* 129(4), 939-955