Improving Adherence to Heart Failure Management Guidelines via Abductive Reasoning

Zhuo Chen, Elmer Salazar, Kyle Marple, Gopal Gupta, Lakshman Tamil
University of Texas at Dallas, Texas, USA.
(e-mail: {zxc130130, ees101020, kbm072000, gupta, laxman}@utdallas.edu)

Sandeep Das, Alpesh Amin
Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas, USA.
(e-mail: {Sandeep.Das, Alpesh.Amin}@UTSouthwestern.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract
Management of chronic diseases such as heart failure (HF) is a major public health problem. A standard approach to managing chronic diseases by medical community is to have a committee of experts develop guidelines that all physicians should follow. Due to their complexity, these guidelines are difficult to implement and are adopted slowly by the medical community at large. We have developed a physician advisory system that codes the entire set of clinical practice guidelines for managing HF using answer set programming (ASP). In this paper we show how abductive reasoning can be deployed to find missing symptoms and conditions that the patient must exhibit in order for a treatment prescribed by a physician to work effectively. Thus, if a physician does not make an appropriate recommendation or makes a non-adherent recommendation, our system will advise the physician about symptoms and conditions that must be in effect for that recommendation to apply. It is under consideration for acceptance in TPLP.

KEYWORDS: chronic disease management, abduction, answer set programming, knowledge representation

1 Introduction
Heart failure is the inability of the heart to keep up with the demands of the body. As a result, an inadequate amount of blood is supplied to the human body and/or pressures in the heart can rise. This can cause congestion of blood in the lungs, abdomen, legs. All of this culminates in symptoms of exercise intolerance. Half of the people diagnosed with HF die within five years. In U.S. alone there are 5.7 million people currently living with HF (Go et al. 2013).

Optimal management of HF requires adherence to evidence-based clinical practice guidelines. The American College of Cardiology Foundation (ACCF)/American Heart Association (AHA) Guidelines for the Management of Heart Failure have been created by a multi-disciplinary committee of experts and are based on thorough review of best available clinical evidence on the management of heart failure. They represent a consensus among experts on the appropriate treatment and management of HF (Jacobs et al. 2013).

Although evidenced-based guidelines should be the basis for all disease management, physicians’ adherence to those guidelines is poor (Cabana et al. 1999). One of the reasons for this is that guidelines can be quite complex, as is the case for HF management. For example, more than
100 variables have been associated with mortality and re-hospitalization in heart failure patients. In the 2013 ACCF/AHA Guideline for the Management of Heart Failure (Yancy et al. 2013), the variables range from straightforward information like age and sex to sophisticated data like electrocardiogram results and the history of HF-related symptoms and diseases. There are more than 60 complex rules to integrate all these data together. Such complexity can lead to delays in adoption and missed opportunities at giving effective recommendations for even the most experienced healthcare providers (Group 2006).

We have developed a physician advisory system that assists physicians in adhering to the guidelines for managing HF (Chen et al. 2016) based on ASP (Marek and Truszczynski 1999; Niemelä 1999). This system automates the 2013 ACCF/AHA Guideline for the Management of Heart Failure and gives recommendations similar to human physicians that strictly follows the guidelines, even if the information about the patient is incomplete. This system has been implemented using the the s(ASP) system (Marple et al. 2016b), a goal-directed ASP system (Marple et al. 2012). Moreover, knowledge patterns in the guideline were identified and modularized using ASP. An example of the application of knowledge patterns in the system can be found in Sect. 3. The outputs the physician advisory system produces have been found to be consistent with our interpretation of the guidelines. The system has also been tested with the help of our cardiologist co-authors on representative patient data provided by them. These tests showed that the system makes treatment recommendations consistent with physicians’ recommendations. In fact, in some cases the system made treatment recommendations that resulted in physicians revising their original treatment recommendations.

In this paper we build on our previous work and show how abductive reasoning can be employed in our system to help physicians validate their treatment recommendations. In practice, physicians often need to give treatment plans based on incomplete information about a patient, especially in underdeveloped areas where complete information about a patient is not always available. We show how our physician advisory system helps to ensure the compliance with the 2013 ACCF/AHA Guideline for the Management of Heart Failure via abductive reasoning. The core idea is that the (non-adherent) physician-prescribed treatment is treated as an observation and fed as a query to our physician advisory system, which is then run in the abductive mode to discover the necessary evidence that must be available for the given treatment to be applicable. This evidence may be symptoms that the patient must exhibit or the conditions that must apply to the patient for the (non-adherent) physician-prescribed treatment to be applicable. It is likely that the physician overlooked establishing this evidence, which is now produced via abduction. In light of this abduced evidence, the physician may want to re-evaluate his/her treatment recommendation(s).

Case studies based on this methodology and its results are also presented. Given that compliance with the guidelines is poor (Cabana et al. 1999), we show how abduction can be used to inform a physician about symptoms and conditions that must exist in a patient for a non-guideline-compliant treatment recommendation to be applicable. Our abduction-powered system can also be used as a tool for training physicians for managing HF. The system has been evaluated on ten representative patients, data for which was provided by our cardiologist co-authors. In four of these ten cases our system pointed out symptoms/conditions that may have been overlooked. In three of the ten cases, our system could not abduce anything to validate the original recommendation, indicating that the recommendation should be rejected or closely examined. In three of the cases, the physician’s recommendation were correct, i.e., compliant with the guidelines.

Our research makes the following contribution:
We show how abductive reasoning within ASP can be useful for medical diagnosis, especially, for heart failure management. To the best of our knowledge, our work is the first real-life application of abduction with ASP technology in the very important area of medicine.

Our research illustrates a major advantage of goal-directed ASP systems such as s(ASP), namely, their ability to perform effective abductive reasoning. As explained later, it is difficult to determine the minimum set of abducibles with SAT-solver based ASP systems such as CLASP. In (Chen et al. 2016), we briefly mentioned s(ASP)’s potential to produce abducibles with respect to a query. This paper demonstrates the technical details of the implementation of abductive reasoning in s(ASP). Ten verified experimental results using abduction are also presented.

2 Abductive Reasoning In Goal-directed ASP Systems

Our physician advisory system has been developed on the s(ASP) Predicate Answer Set Programming system. The s(ASP) system also performs abduction under the stable model semantics. We give a brief introduction to both goal-directed execution of answer set programs and abductive reasoning for answer set programming. We assume that the reader is familiar with ASP.

Goal-directed Execution of ASP: With the ability to compute stable models of normal logic programs, goal-directed systems for executing answer set programs adopt a different approach than traditional ASP systems that are almost all based on the use of SAT solvers. Traditional ASP systems find the entire model (answer set) of a given answer set program. Checking if a query Q is satisfied in this program then amounts to checking if Q is present in the computed answer set. In contrast, a goal-directed system is query driven. Given an answer set program P and a query goal Q, a goal-directed system for executing answer set programs will systematically enumerate all answer sets that contain the propositions/predicates in Q. This enumeration employs Coinductive SLD resolution (or Co-SLD resolution), which systematically computes elements of the greatest fixed point (GFP) of a program via backtracking (Marple et al. 2012). With s(ASP), our goal-directed method lifts the restriction that answer set programs must be finitely groundable (Marple et al. 2012).

One ramification of the top-down execution strategy of a goal-directed ASP system is that the answer set produced may be partial (Marple et al. 2012). Consider the following program:

\begin{verbatim}
p :- not q. r :- not s.
q :- not p. s :- not r.
\end{verbatim}

Using a goal-directed ASP system, the query \(\neg q\) will produce \(\{q, \neg p\}\) as the answer because the rules containing r and s are independent of the rules for q and p. Had the query been \(\neg q, s\), the system would give \(\{q, \neg p, s, \neg r\}\) as the result. Hence the part of the answer set we get is determined by the query. The partial answer set essentially contains the elements that are necessary to establish the query.

The Galliwsap system (Marple and Gupta 2012) was the first efficient implementation of the goal-directed method. It is essentially an implementation of A-Prolog (Baral 2003) that uses grounded normal logic programs as input. The underlying algorithm of Galliwsap makes use of

\footnote{Because answer sets are partial, we enumerate elements that are true as well as false in the partial answer set.}
coinduction (Gupta et al. 2007) to find partial answer sets containing a given query. In query-driven, top-down execution, coinduction is helpful in processing *even loops* where cyclical nature of execution needs to be detected and used as a basis for goal-success (Marple and Gupta 2012). Specifically, Galliwasp uses call graphs to classify rules based on two attributes: (i) a rule is said to contain an *odd loop over negation* (OLON) if it can be called recursively with an odd number of negations between the initial call and its recursive invocation, and (ii) it is called an ordinary rule if it has at least one path in the call graph that will not result in such a call. Galliwasp uses ordinary rules to generate candidate answer sets and OLON rules to reject invalid candidate sets. An implementation of Galliwasp is available (Marple and Gupta 2012).

The s(ASP) predicate ASP system (Marple et al. 2016a; Marple et al. 2016b) operates in a manner similar to its predecessor, Galliwasp, in that rules are classified according to negation (OLON rules and non-OLON rules) and executed in a goal-directed manner. However, s(ASP) completely removes the need to ground input programs. Therefore, unlike Galliwasp and other ASP solvers, s(ASP) programs do not need to have a finite grounding. That is, the s(ASP) system executes *predicate* answer set programs directly, *without grounding them at all*. Unlike traditional ASP systems, s(ASP) programs can contain arbitrary terms; lists, terms and complex data structures can appear as arguments of predicates in s(ASP) programs. Thus, s(ASP) is a much more powerful and expressive system. The introduction of full predicates with terms requires a number of innovative techniques to support them. These techniques include co-SLD resolution (Gupta et al. 2007), constructive negation, and dual rules (Marple et al. 2016a; Marple et al. 2016b). An implementation of the s(ASP) system is available (Marple et al. 2016b) at sourceforge.

**Abduction:** The term *abduction* refers to a form of reasoning that is concerned with the generation and evaluation of explanatory hypotheses. Abductive reasoning leads back from facts to a proposed explanation of those facts. According to (Harman 1965), abductive reasoning takes the following form:

- The fact $B$ is observed.
- But if $A$ were true, $B$ would be a matter of course.
- Hence, there is reason to suspect that $A$ is true.

In this form, $B$ can be either a particular event or an empirical generalization. $A$ serves an explanatory hypothesis and $B$ follows from $A$ combined with relevant background knowledge. Note that $A$ is not necessarily true, but plausible and worthy of further validation. A simple example of abductive reasoning is that one might attribute the symptoms of a common cold to a viral infection.

### 2.1 Abductive Reasoning in ASP

More formally, abduction is a form of reasoning where, given the premise $P \Rightarrow Q$, and the observation $Q$, one surmises (abduces) that $P$ holds (Kakas et al. 1992). More generally, given a theory $T$, an observation $O$, and a set of abducibles $A$, then $E$ is an explanation of $O$ (where $E \subseteq A$) if:

1. $T \cup E \models O$

An even loop occurs when a recursive call is encountered with an even, non-zero number of negations between the call and its ancestor in the call stack. (Marple et al. 2016a)
2. $T \cup E$ is consistent

Generally, $A$ consists of a set of propositions such that if $p \in A$, then there is no rule in $T$ with $p$ as its head. We assume the theory $T$ to be an answer set program. Under a goal-directed execution regime, an ASP system can be extended with abduction by simply adding the following rule:

$$
p ::= \neg \neg p.
\neg p ::= \neg p.
$$

for every $p \in A$. Posing the observation $O$ as a query to this extended answer set program will yield all the explanations as part of a (partial) answer set. The reason why this works is simple: rules of the form above have two answer sets, one in which $p$ is false and another in which $p$ is true. These settings (along with assignments to other propositions) may make the observation $O$ succeed. As an example, consider the program below:

$$
p ::= a, \neg q.
q ::= a, b.
q ::= c.
$$

and the abducibles $\{a, b, c\}$. If we add the clauses below to program above:

$$
a ::= \neg \neg a.
b ::= \neg \neg b.
\neg a ::= \neg a.
\neg b ::= \neg b.
c ::= \neg \neg c.
\neg c ::= \neg c.
$$

then the query (observation) $?- p$ will succeed, producing the answer set $\{p, \neg q, a, \neg b, \neg c\}$ and abducibles $\{a, \neg b, \neg c\}$. First, $\neg a$, $\neg b$ and $\neg c$ are not included in the answer set as they are auxiliary predicates introduced for convenience. Note that s(ASP) omits from output the predicates starting with an underscore (`_`). Second, in goal-directed execution, since the models generated may be partial, propositions/predicates that are known to be true, as well as propositions/predicates known to be false, are shown explicitly in the (partial) answer set.

It should also be noted that abductive reasoning is more precise under goal-directed execution. Other execution strategies, most of which are based around SAT-solvers (e.g., the CLASP system (Gebser et al. 2014)), compute the entire stable model, which can produce confusing answers where it is not clear as to which of the abducibles are involved in the explanation. Consider the example program above. Suppose we extend the set of abducibles to include a new proposition $\{d\}$ and add the two customary rules involving $d$ and $\neg d$. For observation $\{p\}$, if we use a traditional ASP solver, now we will get two answer sets: $\{p, \neg q, a, \neg b, \neg c, d\}$ and $\{p, \neg q, a, \neg b, \neg c, \neg d\}$. These two answer sets essentially are extensions of the single answer set produced by the goal-directed method, however, this answer set has to be replicated twice—once for including $\{d\}$ and once for including $\{\neg d\}$. Thus, if there are irrelevant abducibles, then for a given observation, the number of answer sets will proliferate exponentially. Considerable analysis will be required to extract the true abducibles. The goal-directed execution method does not suffer from this problem, as it only explores the space of knowledge that is relevant to the observation. Thus, only relevant propositions/predicates are abduced.
3 Physician Advisory System for HF management

In this section we discuss the guidelines for HF management, as well as give an overview of our physician advisory system (Chen et al. 2016).

The 2013 ACCF/AHA Guideline for the Management of Heart Failure is based on four progressive stages of heart failure. Stage A includes patients at risk of heart failure who are asymptomatic and do not have structural heart disease. Stage B describes asymptomatic patients with structural heart diseases; it includes New York Heart Association (NYHA) class I, in which ordinary physical activity does not cause symptoms of heart failure. Stage C describes patients with structural heart disease who have prior or current symptoms of heart failure; it includes NYHA class I, II (slight limitation of physical activity), III (marked limitation of physical activity) and IV (unable to carry on any physical activity without symptoms of heart failure, or symptoms of heart failure at rest). Stage D describes patients with refractory heart failure who require specialized interventions; it includes NYHA class IV. Interventions at each stage are aimed at reducing risk factors (stage A), treating structural heart disease (stage B) and reducing morbidity and mortality (stages C and D).

The treatment recommendations in these four stages are articulated in the ACCF/AHA Class of Recommendation (COR) and Level of Evidence (LOE). COR is an estimate of the size of the treatment effect considering risks versus benefits in addition to evidence and/or agreement that a given treatment or procedure is or is not useful/effective or in some situations may cause harm. COR is summarized as follows:

- Class I recommendation: the treatment is effective and should be performed.
- Class IIa recommendation: the treatment can be useful and is probably recommended.
- Class IIb recommendation: the treatment’s usefulness is uncertain and it might be considered.
- Class III recommendation: the treatment is harmful or unhelpful and should be not administered.

One rule for treatment recommendations in the guideline looks as follows:

“Aldosterone receptor antagonists are recommended to reduce morbidity and mortality following an acute MI in patients who have LVEF of 40% or less who develop symptoms of HF or who have a history of diabetes mellitus, unless contraindicated.”

To overcome the difficulties that physicians face in implementing the guidelines, we have developed a physician advisory system that automates the 2013 ACCF/AHA Guideline for the Management of Heart Failure. Our physician advisory system is able to give recommendations with justifications like a real human physician who strictly follows the guidelines, even under the condition of incomplete information about the patient.

The physician advisory system for HF management consists of the rule database and a fact table. The rule database covers all the knowledge in the 2013 ACCF/AHA Guideline for the Management of Heart Failure. The fact table contains the relevant information of the patient with heart failure such as demographics, history of present illness, daily symptoms, medication intolerance, known risk factors, measurements as well as ACCF/AHA stage and NYHA class (Yancy et al. 2013). These rules and facts can be loaded into the ASP system, and the query ?- recommendation(Treatment, Recommendation$class) posed to find possible treatments for this patient. There may be more than one potential treatment that can be discovered via backtracking.
The rules above can be grounded, and then the grounded program can be run on the CLASP system (Gebser et al. 2014) as well. Note that SAT-based ASP systems such as CLASP will report all the recommendations *in a single answer set*, as they cannot distinguish between treatments that are in the same model but are independent of each other. However, knowing all applicable recommendations for a patient is useful, as will be discussed later. These applicable recommendations are pharmaceutical treatments, management objectives and device/surgical therapies. s(ASP) is able to generate all valid recommendations for a given patient as well, however, CLASP is much faster in terms of execution efficiency. The main advantage of the s(ASP) system for our HF application is that it is able to generate individual recommendations separately along with all the predicates/propositions needed to support that recommendation.

The guideline rules are fairly complex and require the use of negation as failure, non-monotonic reasoning and reasoning with incomplete information. A fairly common situation in medicine is that a drug can only be recommended if its use is not contraindicated (i.e., the use of the drug will not have an adverse impact on that patient). Contraindication is naturally modeled via negation as failure. The ability of answer set programming to model defaults, exceptions, weak exceptions, preferences, etc., makes it ideally suited for coding these guidelines. Not surprisingly, the program for the physician advisory system is unstratified. Both odd and even loops over negation occur in the program. As an example, the indispensable choice knowledge pattern (Chen et al. 2016) used in our system contains an even loop. As a concrete example of non-stratification, consider the following rule from ACCF/AHA stage C (Yancy et al. 2013):

“In patients with a current or recent history of fluid retention, beta blockers should not be prescribed without diuretics.”

The pattern describes a case in which if a choice is made, some other choices must also be made; if those choices can’t be made, then the first choice is revoked (Chen et al. 2016). Note that Prolog conventions are followed (variables begin with an upper case letter).

```
recommendation(beta_blockers, class_1) :-
    not absent_indispensable_choice(beta_blockers),
    not rejection(beta_blockers), evidence(accf_stage_c),
    diagnosis(hf_with_reduced_ef).

absent_indispensable_choice(beta_blockers) :-
    not recommendation(diuretics, class_1),
    diagnosis(hf_with_reduced_ef), evidence(accf_stage_c),
    current_or_recent_history_of_fluid_retention.
```

```
recommendation(diuretics, class_1) :-
    recommendation(beta_blockers, class_1),
    diagnosis(hf_with_reduced_ef),
    not rejection(diuretics), evidence(accf_stage_c),
    current_or_recent_history_of_fluid_retention.
```

This paper focuses on the physician advisory system’s ability to perform abductive reasoning. Using this abductive capability, a physician can, for example, figure out the symptoms that a particular patient must exhibit for a given treatment recommended by the doctor (so that this
treatment is consistent with the 2013 ACCF/AHA Guideline for the Management of Heart Failure). The automatic checking for compliance using the physician advisory system is discussed in detail in Sect. [4]

4 Automatic Checking of Adherence to Guidelines

Abductive Reasoning in s(ASP): Abductive reasoning is supported by the s(ASP) system, where the abducibles predicates are specified as follows, for example:

A #abducible goal(X).
This declaration means that the specified goal may be abduced when failure of the query would otherwise occur during execution. Specifically, s(ASP) creates the following rules for the declaration statement above:

goal(X) :- not _neggoal(X), abducible(goal(X)).
_neggoal(X) :- not goal(X).
abducible(goal(X)) :- not _negabducible(goal(X)).
_negabducible(goal(X)) :- not abducible(goal(X)).

Case Study: As mentioned earlier, many times available patient information is incomplete or guidelines are not complied with. A physician may give prescriptions using his/her intuitions based on incomplete information about a patient. In such a case, the physician’s recommendation can be run in the s(ASP) system in the abductive mode where the physician’s recommendation is posed as a query. The system will then tell the physician, via abduction, any symptoms, conditions, or required evidence that must be present for the recommendation to be correct. The physician can then work on ascertaining the presence of those symptoms, conditions, etc., or revise their recommendation if those symptoms/conditions are not present. So in this case, while the physician may have made an incorrect recommendation, it can still be applicable if the abduced symptoms/conditions/evidence were to be present. In contrast, if the query representing the physician’s recommendation fails, then it means that the physician’s recommendation is incorrect with respect to the guidelines, and should be rejected or carefully re-evaluated.

Our aim, thus, is to help improve compliance with the clinical practice guidelines via abductive reasoning. This is achieved as follows: all guideline-compliant treatment recommendations are first generated in a single answer set with the help of the CLASP system. Any treatment recommendation made by a doctor that is not among the recommendations made by CLASP system is considered a non-guideline-compliant treatment recommendation. A non-guideline-compliant treatment recommendation made by a physician is posed as an observation and fed as a query to s(ASP) system, which is then run in the abductive mode to discover the necessary evidence that must be available for the given treatment to be applicable.

Figure 1 displays the fact table distilled from the profile of one of the 10 representative patients. The representative patients’ data were provided by the University of Texas Southwestern Medical Center.

According the patient’s profile, her doctor prescribed the combination of hydralazine and isosorbide dinitrate (isordil/hydralazine) to this patient, However, we know that the recommendation of isordil/hydralazine is not reasonable for this patient under the guidelines once we run the CLASP system on the data.

Since isordil/hydralazine is highly effective in treating HF for African Americans, we want to
%doctor’s assessments

evidence(accf_stage_c).
evidence(nyha_class_3).

%history of the patient
diagnosis(hf_with_reduced_ef).
diagnosis(dilated_cardiomyopathy).
history(standard_neurohumoral_antagonist_therapy).

%measurements from the lab
measurement(potassium, 3.0).
measurement(lvef, 0.16).
measurement(creatinine, 1.49).
measurement(non_lbbb, 110).
measurement(nt_pro_bnp, 5051).
measurement(glomerular_filtration_rate, 44).

%contraindications
contraindication(crt).

make sure we did not miss any vital information regarding their recommendation. The applicable rules for this class I recommendation of isordil/hydralazine is reproduced below (Yancy et al. 2013):

“Class I: The combination of hydralazine and isosorbide dinitrate is recommended to reduce morbidity and mortality for patients self-described as African Americans with NYHA class III-IV HFrEF receiving optimal therapy with ACE inhibitors and beta blockers, unless contraindicated.”

“The combination of hydralazine and isosorbide dinitrate should not be used for the treatment of HFrEF in patients who have no prior use of standard neurohumoral antagonist therapy and should not be substituted for ACE inhibitor or ARB therapy in patients who are tolerating therapy without difficulty.”

Now we declare all possible abducibles which are not shown in the patient’s profiles (this step can be automated using simple string matching):

#abducible contraindication(beta_blockers).
#abducible contraindication(icd).

...#abducible diagnosis(atrial_fibrillation).
#abducible diagnosis(hypertension).

...#abducible evidence(fluid_retention).
#abducible evidence(sleep_apnea).

...#abducible history(angioedema).
#abducible history(thromboembolism).

Abducibles involving numeric values are declared as textual propositions, e.g., “lvef_less_than_30”, “mi_post_40_days”, etc. And corresponding auxiliary rules are introduced. For example:

lvef_less_than_30:- measurement(lvef, Data), Data =< 30.
m_i_post_40_days:- measurement(mi, Data), Data >= 40.
The declaration of abducibles should be placed after facts and rules in s(ASP) since we do not want to abduce known facts or deducible facts. This arrangement guarantees that whatever s(ASP) abduces leads us to overlooked or missed evidence which is indispensable to justify the treatment recommendation in question.

Then we pose the following query (the observation) to the s(ASP) system with the abductive reasoning flag set:

\[ \text{recommendation(hydralazine\_and\_isosorbide\_dinitrate, class\_1)} \]

With the abducibles declared, s(ASP) may abduce them when failure of the query would otherwise occur. In this case, s(ASP) returns false, which means there is truly nothing we can do to make class I recommendation of isordil/hydralazine, given the patient’s data.

Next we want to know if it is possible to make class IIa recommendation of isordil/hydralazine. The relevant rules in the guideline (Yancy et al. 2013) regarding the class IIa recommendation of isordil/hydralazine are shown below:

“Class IIa : A combination of hydralazine and isosorbide dinitrate can be useful to reduce morbidity or mortality in patients with current or prior symptomatic HFrEF who cannot be given an ACE inhibitor or ARB because of drug intolerance, hypotension, or renal insufficiency, unless contraindicated.”

Next, we pose the following query (the observation) to s(ASP) running in abductive mode:

\[ \text{recommendation(hydralazine\_and\_isosorbide\_dinitrate, class\_2a)} \]

One of the answer sets as well as the list of abducibles given by s(ASP) are displayed in Fig. 2.

We immediately know from Fig. 2 that two things are abduced by the system: 1) the contraindication of ARBs and 2) the history of angioedema. It is clear from the Fig. 1 that both of the abducibles are not in the patient’s profile. With some medical knowledge, we know that the history of angioedema is an indication for the contraindication of ACE inhibitors, which is listed in the fact sheet. It is reasonable for us to make a class IIa recommendation once we confirm the intolerance of ARBs for this patient. In this case, the patient’s profile says nothing about her intolerance of ARBs. Thus, the doctor could look for this piece of information elsewhere to ensure that she does not miss useful information regarding the recommendation of isordil/hydralazine.
Once she has done that, she will have the justification for the original recommendation of isordil/hydralazine.

Our experiments were done on a set of ten representative patients. For these ten patients, we had detailed patient data, as well as physician’s recommendation. Table 1 displays the experimental results for seven of these patients. The remaining three patients are not shown in the table because the physician’s prescriptions (recommendation) for them are compliant with the guidelines. Thus there is no need to perform abductive reasoning for them. The first column presents the patient number. The second column shows the non-guideline-compliant treatment recommendations given by physicians. The third column displays the abducibles (symptoms, conditions, etc.) that must be established before the recommendation shown in the second column can be regarded as compliant with the guidelines. It is worth noting that for patients No.4, No.8 and No.10, the system produced a failure (i.e., it failed to abduce anything). This implies that the original recommendation made by the physician in each of these cases was incorrect. In the case No.4, the patient data shows no sign of atrial fibrillation or cardioembolic source, which makes anticoagulants unhelpful. In both case No.8 and No.10, the latest lab results say their potassium level is greater than 5.0 mEq/L, which makes aldosterone antagonists harmful to them. The cardiologist co-authors of this paper agree with the system’s conclusions for these cases.

Table 2 presents the running time of the physician advisory system to obtain all applicable treatment recommendations using CLASP and performing abductive reasoning via s(ASP) for all ten cases. As can be seen, the execution times are quite acceptable.
Table 2. Running time of the physician advisory system

| Patient Number | Obtaining applicable recommendations (CLASP) | Computing abducibles (s(ASP)) |
|----------------|---------------------------------------------|------------------------------|
| No.1           | 0.021s                                      | 3.451s                       |
| No.2           | 0.021s                                      | N/A                          |
| No.3           | 0.020s                                      | N/A                          |
| No.4           | 0.020s                                      | 0.965s                       |
| No.5           | 0.020s                                      | 3.440s                       |
| No.6           | 0.021s                                      | 3.041s                       |
| No.7           | 0.020s                                      | 3.053s                       |
| No.8           | 0.021s                                      | 0.291s                       |
| No.9           | 0.020s                                      | N/A                          |
| No.10          | 0.020s                                      | 0.214s                       |

5 Related Works

There has been a lot of work on applying abduction within logic programming as well as ASP (Inoue 1991; Satoh and Iwayama 1991; Baral 2003; Kakas et al. 1992). Our work shows how abduction can be fruitfully employed within the context of goal-directed ASP to solve problems related to compliance in medicine.

In other works, Chesani et al. (2007) describe an approach to perform the conformance verification of careflow process executions. The approach translates clinician’s workflow into a formal language based on computational logic and abductive logic programming. A graphical language was developed to specify careflow models. Given a set of events that have taken place, expectations are generated which can be compared with the actual participants’ behavior. If a participant does not behave as expected with respect to the model, a violation will be raised by the procedure.

Temporal logic is used to identify ways a treatment can be non-compliant with clinical guidelines (Groot et al. 2009). One of possible reasons for a non-compliant treatment is relevant findings are missing in patient data. Those missing relevant parameters in records can be found using the proposed critiquing method.

PROforma (Fox et al. 1998) is a knowledge representation language that is based on classical predicate calculus augmented by first-order logic. In PROforma, an application such as a protocol or clinical guideline is modeled as a plan made up of one or more tasks. PROforma is able to recognize clinical problems and identify possible solutions to them. It can also assess the strengths and weaknesses of alternative solutions, yielding a preference order on the set of alternatives.
Spiotta et al. (2015) proposes an approach for analyzing conformance of ASP execution traces for patient treatment with respect to clinical guidelines and basic medical knowledge. Basic medical knowledge may be used to justify deviations from the application of guidelines.

The above approaches, including ours, capture clinical expertise in a form which can be directly applied by one agent (such as a machine) on behalf of another (such as an expert physician). However, our system does not require complete information when performing abductive reasoning, thanks to use of negation as failure and ASP. The ability to perform reasoning with incomplete information is highly valuable in a real world setting.

6 Conclusions and Future Work

In this paper we show how our physician advisory system for heart failure management, extended with abductive reasoning, can be used to improve adherence to clinical practice guidelines. With the multitude and complexity of clinical guidelines, the adherence to the guidelines in any one particular chronic disease state is an error-prone task even for the best-intentioned physicians. Moreover, the fact that complex clinical practice guidelines are updated every few years compounds the compliance problem in the heart failure management community. Our system takes advantage of the abductive reasoning support in s(ASP) and provides physicians with cognitive assistance for the rationale behind their treatment choices. Given the patient’s data, the intended treatment and the abducibles, the physician advisory system is able to give the conditions that must hold in order for the intended treatment to be legitimate. We showed how our physician advisory system for heart failure management uses abductive reasoning to discover the conditions and symptoms that a patient must exhibit for a given treatment recommendation to apply. Such ability is valuable in helping physicians validate their decisions for treatment and provide optimal, evidence-based care in both training sessions and real-world settings.

Future work is planned in the following directions:

- Extending the system to cover the clinical practice guidelines of other co-morbid diseases: HF is usually accompanied by other diseases such as MI, diabetes, etc.
- Introducing pruning techniques in the s(ASP) system: the non-ground abducibles result in a massive number of ways to prove the same goal. Addition of suitable pruning operators to s(ASP) will mitigate this problem.
- Field Trial: conducting a field trial for a large number of patients to validate our system.
- Integrating with electronic medical records (EMR) and telemedicine platform: an adapter may be needed to enable the physician advisory system to recognize vocabularies of other systems which use different medical terms than 2013 ACCF/AHA Guideline for the Management of Heart Failure.
- Displaying the justifications for a query: Researching the best way to show the justifications, including cyclical reasoning due to coinduction.

Acknowledgments: This research is supported by NSF (Grant No. 1423419) and the Texas Medical Research Collaborative.

References

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press.
CABANA, M. D., RAND, C. S., POWE, N. R., and ET AL. 1999. Why don’t physicians follow clinical practice guidelines?: A framework for improvement. JAMA 282, 15, 1458–1465. /data/Journals/JAMA/4708/JRV90041.pdf.

CHEN, Z., MARPLE, K., SALAZAR, E., GUPTA, G., and TAMIL, L. 2016. A physician advisory system for chronic heart failure management based on knowledge patterns. TPLP 16, 5-6, 604–618.

CHESANI, F., MELLO, P., MONTALI, M., and STORARI, S. 2007. Testing careflow process execution conformance by translating a graphical language to computational logic. In Artificial Intelligence in Medicine, 11th Conference on Artificial Intelligence in Medicine, AIME 2007, Amsterdam, The Netherlands, July 7-11, 2007, Proceedings. 479–488.

DOUVEN, I. 2011. Abduction. In The Stanford Encyclopedia of Philosophy, Spring 2011 ed., E. N. Zalta, Ed.

FOX, J., JOHNS, N., and RAHMANZADEH, A. 1998. Disseminating medical knowledge: the proforma approach. Artificial Intelligence in Medicine 14, 1-2, 157–182.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., and SCHAUB, T. 2014. Clingo = ASP + control: Preliminary report. CoRR abs/1405.3694.

GELFOND, M. and LIFSCHITZ, V. 1988. The stable model semantics for logic programming. MIT Press, 1070–1080.

GO, A. S., MOZAFFARIAN, D., BENJAMIN, E. J., and ET AL. 2013. Heart disease and stroke statistics 2013 update: a report from the american heart association. Tech. rep.

GROOT, P., HOMMERSOM, A., LUCAS, P. J., MERK, R.-J., TEN TEIJ, A., VAN HARMELIEN, F., and SERBAN, R. 2009. Using model checking for critiquing based on clinical guidelines. Artificial Intelligence in Medicine 46, 1, 19–36.

GROUP, T. M. N. 2006. Enhancing the use of clinical guidelines: a social norms perspective. Journal of the American College of Surgeons 202, 5, 826–836.

GUPTA, G., BANSAL, A., MIN, R., SIMON, L., and MALLYA, A. 2007. Coinductive logic programming and its applications. In Logic Programming, 23rd International Conference, ICLP 2007, Porto, Portugal, September 8-13, 2007, Proceedings. 27–44.

HARMAN, G. H. 1965. The inference to the best explanation. The Philosophical Review 74, 1, 88–95.

INOUYE, K. 1991. Extended logic programs with default assumptions. In Logic Programming, Proceedings of the Eighth International Conference, Paris, France, June 24-28, 1991. 490–504.

JACOBS, A. K., KUSNER, F. G., and ET AL. 2013. ACCF/AHA clinical practice guideline methodology summit report: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Journal of the American College of Cardiology 61, 2, 213–265. /data/Journals/JAC/926164/09025.pdf.

KAKAS, A. C., KOWALSKI, R. A., and TONI, F. 1992. Abductive logic programming. J. Log. Comput. 2, 6, 719–770.

MAREK, V. W. and TRUSZCZYŃSKI, M. 1999. Stable models and an alternative logic programming paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, K. R. Apt, V. W. Marek, M. Truszczynski, and D. S. Warren, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 375–398.

MARPLE, K., BANSAL, A., MIN, R., and GUPTA, G. 2012. Goal-directed execution of answer set programs. In Principles and Practice of Declarative Programming, PPDP ’12, Leuven, Belgium - September 19 - 21, 2012. 35–44.

MARPLE, K. and GUPTA, G. 2012. Galliwasp: A goal-directed answer set solver. In Logic-Based Program Synthesis and Transformation, 22nd International Symposium, LOPSTR 2012, Leuven, Belgium, September 18-20, 2012, Revised Selected Papers. 122–136.

MARPLE, K., SALAZAR, E., and GUPTA, G. 2016a. Computing Stable Models of Normal Logic Programs Without Grounding. Forthcoming.

MARPLE, K., SALAZAR, E., and GUPTA, G. 2016b. s(ASP). https://sourceforge.net/projects/sasp-system/.

NIEMELÄ, I. 1999. Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intel!. 25, 3-4, 241–273.
SATOH, K. AND IWAYAMA, N. 1991. Computing abduction by using the TMS. In Logic Programming, Proceedings of the Eighth International Conference, Paris, France, June 24-28, 1991. 505–518.

SPIOTTA, M., TERENZIANI, P., AND DUPRÉ, D. T. 2015. Answer set programming for temporal conformance analysis of clinical guidelines execution. In KR4HC/ProHealth.

YANCY, C. W., JESSUP, M., AND ET AL. 2013. 2013 ACCF/AHA guideline for the management of heart failure: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Journal of the American College of Cardiology 62, 16, e147.