In vitro and in vivo activity of hyperimmune globulin preparations against multiresistant nosocomial pathogens

F. S. Rossmann · A. Kropec · D. Laverde · F. R. Saaverda · D. Wobser · J. Huebner

Abstract

Purpose We compared different immunoglobulin preparations containing IgG (Intraglobin/Intratect) or a mixture of IgG, IgA, and IgM (Pentaglobin) to assess the opsonic and protective efficacy of human immunoglobulin preparations against multiresistant nosocomial pathogens.

Materials and methods Clinical isolates of E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, Enterococcus faecium, and Staphylococcus aureus were tested by opsonophagocytic assay using immunoglobulin preparations at dilutions usually obtained in patients. The target antigens of opsonic antibodies were characterized by opsonophagocytic inhibition assays, and the protective efficacy in vivo was tested in a mouse bacteremia model as previously described.

Results All strains were killed to at least 50 % by Pentaglobin. One P. aeruginosa strain was not efficiently killed by Intraglobin (23 %) but the other strains were killed by Intraglobin to a similar degree compared to Pentaglobin. Opsonic IgG antibodies against E. faecalis were directed against LTA, while opsonic antibodies in Pentaglobin were primarily directed against other cell wall carbohydrates. In a mouse bacteremia model, Pentaglobin was more protective than Intratect against Staphylococcus aureus, while Intratect reduced colony counts better than normal rabbit serum or saline.

Conclusions All tested human immunoglobulin preparations contain opsonic and protective antibodies against targets present on multiresistant Gram-positive and Gram-negative bacteria. Enrichment of these preparations with IgM increases the protective efficacy against some strains, probably due to antibodies directed against cell wall carbohydrates.

Keywords Immune globuline preparations · IgG · IgM · Nosocomial pathogens · Opsonic killing · Protective efficacy · Animal model

Introduction

Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics and are therefore one of the most serious problems in modern medicine. A recent report from the Centers for Disease Control and Prevention (CDC) estimates that in the US about two million people acquire infections with resistant bacteria, and that probably about 23,000 patients die each year as a direct consequence of these infections [1]. Gram-positive bacteria account for a large proportion, and staphylococci and enterococci are the most important bacterial species causing these mostly hospital-acquired infections that often lead to extended hospital stay and excess
Advantage of an "innate" immune protection against bacteria. Only IgG but also IgA and IgM may therefore offer the important role and the production of a compound containing not only IgG and IgA but also IgM may therefore offer the advantage of an "innate" immune protection against bacteria.

Materials and methods

Bacterial strains, antibody preparations, and antigens

Bacterial strains, antibodies, and antigens used in this study are listed in Table 1. Immunoglobulin preparations were obtained from Biotest, and antigens were either produced in our lab according to previously described methods (i.e., LTA [9] or purchased from Sigma (St. Louis, MO).

Opsonophagocytic assay

Opsonophagocytic killing was assessed as described by Theilacker et al. [10] using 1.7% baby rabbit serum (Cedarlane) as complement source, and rabbit serum raised against purified lipoteichoic acid (anti-LTA) from E. faecalis 12030 as positive control [11–13]. Bacteria were incubated and grown to mid-exponential phase (OD650nm = 0.400). Equal volumes of bacterial suspension (2.5 × 10^7 per mL), leukocytes (2.5 × 10^7 per mL), complement source (1.7% final concentration), and either anti-LTA rabbit serum, immunoglobulin preparations or heat-inactivated immune rabbit serum (as control) were combined and incubated on a rotor rack at 37 °C for 90 min. After incubation, colony-forming units (CFUs) surviving in the tubes with bacteria were quantified by agar survival assay. Percentage of killing was calculated by comparing the colony counts at 90 min (r90) of a control without PMNs (PMNneg) to the colony counts of a tube that contained all four components using the following formula: \[\frac{[(\text{mean CFU PMN}_{\text{neg}} \text{ at } r90) - (\text{mean CFU at } r90)]}{(\text{mean CFU PMN}_{\text{neg}} \text{ at } r90)} \times 100. \]

Proteinase K and sodium meta-periodate treatment for inhibition experiments

Bacterial strain E. faecalis 12030 was cultured overnight in TSB, harvested by centrifugation (8,000 rpm, 10 min, 4 °C), and washed three times with PBS. Treatment of bacterial cells with proteinase K was performed as described previously [14]. In brief, bacterial cells (≈10^9 cfu/mL) were incubated with proteinase K (Sigma) at a final concentration of 0.1 mg/mL and 5 mM calcium chloride at 54 °C during 4 h. Treated cells were heat inactivated at 65 °C for 1 h, washed three times with PBS, and adjusted to a final concentration of 2.5 × 10^11 cfu/mL in PBS for the opsonophagocytic inhibition assay. For sodium meta-periodate treatment [15],...
In vitro and in vivo activity of hyperimmune globulin

bacterial cells (≈10⁹ cfu/mL) were incubated with sodium meta-periodate at a final concentration of 1 M for 24 h at room temperature in the dark. Sodium meta-periodate was neutralized with an excess of ethylene glycol at a final concentration of 2 M. Treated cells were washed three times with PBS and adjusted to a final concentration of 2.5 × 10¹¹ cfu/mL in PBS for opsonophagocytic inhibition assay.

Opsonophagocytic inhibition assay

For inhibition studies, either pre-treated bacterial cells or lipoteichoic acid was used as inhibitor. Pentaglobin (50 mg/mL) and Intratrect (100 mg/mL) were diluted 1:25 and incubated for 60 min at 4 °C with an equal volume of a solution containing 1.25 × 10¹¹ cfu/mL of treated bacterial cells or 100, 20, 4 or 0.08 µg/mL of either lipoteichoic acid purified in our lab from *E. faecalis* 12030 or lipoteichoic acid from *S. faecalis* (E. faecalis) purchased from Sigma (St. Louis, Mo.). Subsequently, the respective mixtures of antibody and inhibitor was used in the opsonophagocytic assay (OPA) as described above. Inhibition assays were performed at serum dilutions yielding 50–80 % killing of the inoculum without the addition of the inhibitor. The percentage of inhibition of opsonophagocytic killing was compared to controls without inhibitor.

Animal experiments

The protective efficacy of the monoclonal antibodies was tested against CA-MRSA strain LAC in a mouse bacteremia model as described previously [11]. Five female BALB/c 6- to 8-week-old mice per group (Charles River Laboratories Germany GmbH) were infected by i.v. injection of CA-MRSA (5.0 × 10⁷ cfu) via the tail vein. Antibodies were given 48 and 24 h i.p. prior to bacterial challenge. Mice were killed 48 h after infection and organs (livers and kidneys) were aseptically removed, weighted and homogenized. Bacterial counts were enumerated after overnight incubation by plating serial dilutions on tryptic soy agar (TSA) plates. Statistical significance was assessed by Mann–Whitney test [12].

All animal experiments were performed in compliance with the German animal protection law (TierSchG). The animals were housed and handled in accordance with good animal practice as defined by FELASA and the national animal welfare body GV-SOLAS. The animal welfare committees of the University of Freiburg (Regierungspräsidium Freiburg Az 35/9185.81/G-12/070) approved all animal experiments. The institutional review board of the University of Freiburg approved the study protocol.

Results

To assess the role of the IgM component with regard to opsonic killing, we compared Pentaglobin (IgG, IgM and IgA) with Intraglobin (only IgG). For the production of Intraglobin the same donor pool was used as for Pentaglobin.

Comparing the IgM-containing compound with the IgG compound against Gram-negative bacteria, significant

Table 1 Bacterial strains, antigens and antisera used in this study

Bacteria	Origin	Reference/provider
E. faecalis 12030	Clinical isolate, Cleveland, OH. (gift from D. Shlaes) [14]	
E. coli 4263	Outbreak isolate, strain collection University Hospital Freiburg	
E. faecium 1162	Isolated from blood in the Netherlands, CC17 [27]	
K. pneumonia 1436	Outbreak isolate, strain collection University Hospital Freiburg	
K. pneumonia 1437 ESBL	Outbreak isolate, strain collection University Hospital Freiburg	
P. aeruginosa 2790 carbapenemase resistant		
S. aureus LAC	CA-MRSA (USA300)	[28]
VRSA-I	Vancomycin-resistant *S. aureus* (NARSA) http://www.niaid.nih.gov/labsandresources/resources/dmid/narsa/Pages	[29]
Antigens		
LTA	Lipoteichoic acid from *E. faecalis* 12030	[9]
LTA	Lipoteichoic acid from *Streptococcus (Enterococcus)* faecalis	Sigma
Antisera		
Intratrect	Contains only IgG (100 mg/mL)	Biotest
Intraglobin	Contains only IgG (50 mg/mL), same donor pool as Pentaglobin (discontinued)	Biotest
Pentaglobin	6 mg IgM, 6 mg IgA and 38 mg IgG (50 mg/mL), same donor pool as Intraglobin	Biotest
killing was seen against ESBL-producing strain *K. pneumoniae* 1437 at a dilution of 1:10 (i.e., 68 % killing with Pentaglobin and 61 % with Intraglobin) (Fig. 1a). Higher killing could be observed in *K. pneumoniae* 1436, which at a dilution of 1:10 showed the best killing using Pentaglobin (83 %) and Intraglobin (95 %) (Fig. 1b). Clearly, less killing was observed in *E. coli* 4263 (47 %) and *P. aeruginosa* 2790 (58.8 %) using Pentaglobin, and even less killing was seen with Intraglobin (28 % for *E. coli* 4263 and 23 % for *P. aeruginosa* 2790) (Fig. 1c, d). Overall, the IVIG preparation containing IgM shows higher killing rates in comparison to pure IVIG preparation Intraglobin against Gram-negative bacteria (Fig. 1).

To compare the IgM-containing compound with the pure IgG preparation against Gram-positive bacteria, killing rates of Pentaglobin and Intraglobin were also compared against several nosocomial Gram-positive pathogens. Killing against vancomycin-resistant *S. aureus* was significantly higher with Pentaglobin (71 %) at a 1:10 dilution in comparison to Intraglobin (41 %) (Fig. 2a). However,
In vitro and in vivo activity of hyperimmune globulin

opsonic killing against CA-MRSA, *E. faecalis* as well as *E. faecium* was higher with Intraglobin (80–84 %) in comparison to Pentaglobin (73–74 %) (Fig. 2).

To assess the bacterial targets of the opsonic antibodies in the various immunoglobulin preparations, Pentaglobin and Intratect (the current commercially available IgG preparation), were used in an opsonophagocytic inhibition assay [16]. Since our previous results indicated that the glycerol phosphate backbone of LTA is the predominant target of protective antibodies against Gram-positive bacteria [12], we used an LTA preparation for absorptions, indicating that opsonic IgG antibodies against *E. faecalis* in Intratect are directed against this epitope. Using the IgM-containing compound, only minimal absorption of killing was observed with purified LTA, indicating that the majority of opsonic antibodies in this preparation are not directed against this antigen (Fig. 3a). Opsonic killing activity of Intratect was inhibited with bacterial cells either treated with sodium metaperiodate or proteinase K, suggesting that about 70 % of the antibodies of Intratect are directed against a polysaccharide target and 30 % against bacterial protein antigens. In contrast, opsonic antibodies in Pentaglobin are only partially absorbed by bacterial cells treated with NaIO₄ indicating that the majority of the antibodies are directed against polysaccharides and some are directed against protein antigens. The *gray bar* shows Killing against *E. faecalis* 12030 when sera raised against LTA from *E. faecalis* 12030 were used and represent the positive control within this experiment. Intratect and Pentaglobin were diluted 1:25 for the inhibition assay.

Discussion

The concept of using polyclonal human antibody preparations in vivo (Fig. 4). Numbers of bacteria in liver and kidney of animals infected with MRSA strain LAC were significantly lower (1.0 × 10⁴ cfu/g kidney and 1.9 × 10⁴ cfu/g liver) when animals received the IgG/IgM preparation Pentaglobin (300 mg/kg) compared to animals treated with Intratect (4.5 × 10⁴ cfu/g kidney and 4.0 × 10⁴ cfu/g liver).

Using a previously described mouse sepsis model, we assessed the protective efficacy of the two antibody preparations in vivo (Fig. 4).
Only one commercially available antibody preparation, Pentaglobin, contains significant amounts (12 %) of IgM. In one study, this compound significantly reduced mortality, but had no overall effect on ICU length of stay [23]. On the other hand, Tugrul and colleagues [24] did not see such an effect and concluded that Pentaglobin did not have a positive effect on morbidity, incidence of septic shock, and mortality. Berlot et al. [20] pointed out that in general, the timing of the application of IVIG preparations is probably related to efficiency, similar to broad-spectrum antibiotics. The effect of IgM may also not be only directed against bacterial pathogens but may in addition lead to a modified anti-inflammatory response, such as up-regulation of IL-10 or down-regulation of IL-1β [25]. The selection of the study population and the overall study design seem to be of importance, because there are strong indications that certain subgroups, such as patients with streptococcal toxic shock syndrome caused by group A streptococcus, will benefit [26], while other more heterogeneous study populations may not exhibit positive results.

In our study, both antibody preparations showed broadly cross-reactive antibodies against the most notorious multiresistant pathogens, leading to significant opsonic killing of 50 % and higher at concentrations of 1.25 mg/mL against most of the strains tested. This amount corresponds to the human situation where similar amounts of immunoglobulin should be obtained with the recommended doses of Pentaglobin or Intratect. Pentaglobin clearly showed better protection at lower dilutions (as low as 125 µg/mL), while Intraglobin did not show significant killing at these dilutions. Since the only difference between these preparations is the IgM (and IgA) content of Pentaglobin, this may indicate that the opsonic and protective antibodies are IgM.

At least against *E. faecalis*, the target of opsonic IgG antibodies seems to be lipoteichoic acid, since absorption with purified LTA abrogated killing of this strain. For Pentaglobin, absorption with LTA did not result in significant inhibition of killing, although the majority of killing was abrogated after absorption with proteinase-treated bacterial cells. This indicates that the targets of protective antibodies of both preparations differ to some extent, but are mainly directed against carbohydrate antigens (such as capsular polysaccharides). Kicking in the opsonophagocytic assay is usually expressed in percent, although the effect is logarithmic. This explains the observation that inhibition with proteinase-K-treated bacteria treated with Na-periodate does not add up to 100 %. The animal model clearly shows protection against bacterial infections by both antibody preparations, although lower bacterial counts were observed with Pentaglobin, compared to Intratect. Together, our data indicate that human immunoglobulin preparations contain opsonic and protective antibodies against targets present on multiresistant Gram-positive and Gram-negative bacteria. Enrichment of these preparations with IgM increases the protective efficacy, probably due to antibodies directed against cell wall carbohydrates. Additional studies in well-defined clinical settings should confirm these findings.

Acknowledgments The authors wish to thank Prof. D. Jonas (Institute for Environmental Health Sciences and Hospital Infection Control, University Hospital Freiburg) for strains.

Conflict of interest This study was supported by a grant from Biotest, Dreieich (Germany) to the University Hospital Freiburg.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Centers for Disease Control and Prevention CDC. Antibiotic resistance threats in the United States 2013 Internet www.cdc.gov 2013 cited 2014 Jul 3, pp. 1–114. Available from: http://www.cdc.gov/drugresistance/threat-report-2013/.
In vitro and in vivo activity of hyperimmune globulin

17. Wilson PC, Andrews SF. Tools to therapeutically harness the human antibody response. Nat Rev Immunol. Nature Publishing Group; 2012;12:709–19.

18. Hufnagel M, Sixel K, Hammer F, Kropec A, Sava IG, Theilacker C, et al. Detection of opsonic antibodies against Enterococcus faecalis cell wall carbohydrates in immune globulin preparations. Infection. Springer Berlin Heidelberg; 2014;42:749–55.

19. Ohlsson A, Lacy JB. Intravenous immunoglobulin for preventing infection in preterm and/or low birth weight infants. In: Ohlson A, editor. Cochrane database of systematic reviews (Online). Chichester: John Wiley & Sons, Ltd; 2013;7:CDOI00361.

20. Berlot G, Vassallo MC, Busetto N, Bianchi M, Zornada F, Rosato I, et al. Relationship between the timing of administration of IgM and IgA enriched immunoglobulins in patients with severe sepsis and septic shock and the outcome: a retrospective analysis. J Crit Care. 2012;27:167–71.

21. Grünewall C, Vas J, Silverman GJ. Protective roles of natural IgM antibodies. Front Immunol. 2012;3:66.

22. Mond JJ, Lees A, Snapper CM. T cell-independent antigens type 2. Annu Rev Immunol. 1995;13:655–92.

23. Neilson AR, Burchardi H, Schneider H. Cost-effectiveness of immunoglobulin M-enriched immunoglobulin (Pentaglobin) in the treatment of severe sepsis and septic shock. J Crit Care. 2005;20:239–49.

24. Tugrul S, Ozcan PE, Akinci O, Seyhun Y, Cakar N, et al. The effects of IgM-enriched immunoglobulin preparations in patients with severe sepsis [ISRCTN28863830]. Crit Care. 2002;6:357–62.

25. Barratt-Due A, Sokolov A, Gustavsen A, Hellebø BC, Egge K, Pischke SE, et al. Polyvalent immunoglobulin significantly attenuated the formation of IL-1β in Escherichia coli-induced sepsis in pigs. Immunobiology. Elsevier GmbH; 2013;218:683–9.

26. Norrborg-Teglund A, Koth M. Cytokine patterns in severe invasive group A streptococcal infections. In: Koth M, Calandra T, editors. Cytokines and chemokines in infectious diseases handbook. Humana Press Inc; 2003. pp. 77–92.

27. Heikens E, Bonten MJM, Willems RJL. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol. 2007;189:8233–40.

28. Pang YY, Schwartz J, Thoendel M, Ackermann LW, Horswill AR, Nauseef WM. agr-Dependent interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J Innate Immun. 2010;2:546–59.

29. Saravolatz LD, Pawlak J, Johnson LB. In vitro susceptibilities and molecular analysis of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus isolates. Clin Infect Dis. 2012;55:582–6.