Investigation of the effect of ultrasonic shock on corrosion behavior of stainless steel 316L

Nader Bolhassani a, Alireza NezamAbadi b*

a MSc. student, Department of Mechanical Engineering, Faculty of Engineering, Islamic Azad University, Arak Branch, Arak, Iran.
b Assistant Professor, Department of Mechanical Engineering, Faculty of Engineering, Islamic Azad University, Arak Branch, Arak, Iran

Original Article

Citation: Bolhassani N, NezamAbadi A. Investigation of the effect of ultrasonic shock on corrosion behavior of stainless steel 316L. Mechanics of Advanced and Smart Materials. 2022;2(2): 220-235.

https://10.52547/masm.2.2.220

KEYWORDS

Corrosion, Ultrasonic waves, Residual stress, De-tensioning.

ABSTRACT

Refineries and petrochemical industries, due to the presence of all-metal equipment and acidic environment, have high corrosion. This study investigates the effect of ultrasonic shock on the corrosion behavior of 316 stainless steels in order to increasing use of stainless steels in these industries. The aim of this study was to investigate the effect of ultrasonic stress relief method on increasing the strength of parts in corrosive environments. It should be noted that the residual stress in the samples is created by welding. In this study, first the considered sample is De-tensioning using ultrasonic vibration at a frequency of 20 kHz, then the obtained results are compared with the results of samples without De-tensioning operation and also thermal De-tensioning operation. XRD method used to measure the residual stress. The obtained results show that in ultrasonic method and heat treatment, the amount of residual stress is reduced by 58.7% and 54.3%, respectively. It has also been observed that the use of ultrasonic waves has increased the life of the sample in a corrosive environment.

Extended Abstract

1. Introduction

Stress corrosion was first identified in 1965 in the United States during the failure analysis of a gas transmission pipeline. SCC indicates cracking caused by the simultaneous effect of corrosion and stress. The stresses in the parts are applied or residual stresses. Cold forming and deformation, welding, heat treatment and machining are among the factors that cause residual stress. In most cases, the importance and magnitude of these tensions are ignored. This type of stress causes small cracks inside the parts. Under the structure, these cracks can have intergranular or grain boundary morphology. In terms of macro cracks, SCC has a fragile appearance and factors such as temperature, pressure, concentration, pH, viscosity, part material and fluid flow are among the environmental parameters that affect the crack growth rate [1]. This type of corrosion is one of the most common types of corrosion in the industry, in which, in addition to the corrosiveness of the environment, the mechanical stress factor is also a necessary condition for its occurrence. For many years, it has been believed that for the occurrence of stress cracking, the simultaneous presence of three factors: a corrosive environment, the presence of metal with an alloy sensitive to this type of cracking, and the presence of tensile stress on the metal is required [2]. For example, hot aqueous chloride solution can create cracks in stainless steel at a considerable speed, while they do not have such an effect on carbon steel, aluminum and other non-ferrous alloys. In other words, any corrosive environment is capable of creating cracks in a limited number of metals and alloys [3].

There are different methods for stress relief of parts, the most important of which are: natural stress relief, thermal stress relief, vibration stress relief, overloading, shot peening, and stress relief with ultrasonic blows. In this research, two methods of stress relief with ultrasonic and thermal waves are investigated.

2. Materials and methods

The validity of the results of a research is influenced by the validity of the method chosen for the research. The methods of a research are actually tools to achieve reality. Since the purpose of this research is to investigate the effect of ultrasonic...
waves on the corrosion behavior of L316 stainless steel, initially welding method was used to create residual stress. Six samples of pipes welded under the same conditions have been selected. The main purpose of this research is to investigate the effectiveness of the ultrasonic stress relief method and to prevent stress corrosion in a corrosive environment. For this purpose, two samples were subjected to ultrasonic stress relief and thermal stress relief method was used for comparison. Also, a mode without any operation is considered. The residual stress of all six parts has been measured using the XRD method.

300 series stainless steels, especially 316 and L316, which are widely used in industry and environments with acidic properties, especially sulfuric acid solutions, were used to select the samples. Stainless steels have an iron base and contain at least 12 percent cream, which can be as high as 30 percent.

The samples used in this research are 2-inch tubes with a thickness of 3.4 mm made of L316 stainless steel, prepared according to the ISO 7S39-8 standard. Welding method is used to create residual stress. Six pipe samples that were welded under the same conditions and selected. It should be noted that tungsten electrode and neutral gas method was used for welding. In this process, different electrodes are used, such as pure tungsten, tungsten with thorium, and tungsten with zirconium. Also, the choice of power source and type of shielding gas is highly effective on the depth of penetration and the shape of the weld cross-section. In the following, Figure 1 shows the preparation of samples for welding operations.

The type of connection used to prepare the samples is chamfer type with an angle of 60 degrees, which is shown in Figure 2.

3. Numerical results

In this section, the results obtained from the samples are analyzed and the results are compared with each other. In order to determine the effectiveness of ultrasonic and thermal stress relief operations, a reference was needed for comparison, and due to time and facilities limitations, it was not possible to conduct XRD tests in large numbers. Therefore, by controlling the welding conditions, two samples without stress relief are considered as reference samples. The results of the XRD test of samples without stress removal are shown in Figure 3.

According to the figure, it can be seen that the residual stress in both pieces was almost the same, which indicates that the preparation conditions for the samples were the same.

In order to investigate the thermal stress relief, two samples have been selected in the same conditions and the residual stress in the samples has been determined using XRD test. The results of the samples that were stressed by the heat treatment method are given in Figure 4. According to the figure, it can be seen that the amount of residual stress in the first and second samples was almost the same.
By comparing the results of residual stress in the heat treatment method and without heat treatment, it can be seen that the average residual stress has decreased by 54%. The results of the XRD test of the stressed samples using the ultrasonic method are shown in Figure 5. According to the figure, it can be seen that the amount of residual stress has decreased by 58% compared to the sample without stress relief operation. Also, the comparison of the results of stress-relieved samples with heat treatment and the use of ultrasonic waves shows that ultrasonic waves have performed better and the amount of residual stress has decreased by about 4% compared to the stress-relieved sample with heat treatment.

4. Conclusion

The aim of the study was to investigate the effect of ultrasonic waves on the corrosion behavior of L316 stainless steel. At first, welding method was used to create residual stress and six samples were prepared in the same conditions. Two samples are stressed by ultrasonic stressing method and the other two samples are de-stressed by heat treatment. The residual stress of all six pieces has been measured by XRD test. At the end, the resistance of the samples stressed by ultrasonic waves and without stress relief in corrosive environment has been compared.
بررسی اثر ضربات امواج اولتراسونیک بر رفتار خوردگی فولاد زنگزنِ۳۱۶

نادر پی‌حسنی(۱) علی‌رضا نظام آبادی(۲)

(۱) دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد اراک، اراک، ایران.
(۲) استادیار، گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد اراک، اراک، ایران.

چکیده
در صنعت پالایشگاه‌ها و پتروشیمی‌ها به دلیل وجود تجهیزات تمام فلزی و محفظه اسیدی خوردگی، تشییع شیمیاء از آن‌ها واقعی است BA توجه به افزایش کاربردن فولادهای زنگزن در صنایع بین‌المللی و بررسی اثر ضربات امواج اولتراسونیک بر رفتار خوردگی فولاد زنگزن (۳۱۶) (S.S316) L یعنی نیاز به آزمایش در مقابل بیشتر این روش بوده است. تحقیقات این روش در زمینه خود را به علم بنام افزایش قطع ظرفیت، تصحیح افتای یکسان، تسریع نهایی نیروی شیمی و متغیرات ساختاری اولتراسون، تسریع نهایی سختی آزمایشی به کار برده شده است. این روش به‌طور عمده برای استفاده در صنایع از کاربرد فولادها تحت فرکانس اولتراسونیک ۲۰ تنش‌زدایی شده است. سپس نتایج بدست‌آمده به تناوبی نمونه‌های مبتنی بر سطحی و معیارهای محاسباتی چسبانده است. در این تحقیق شاخص‌های ت衢ی و حجمی از نظر استانداردهای استانداردهای جهانی به‌کارگرفته شدند که به‌طور کلی اثربخشی در زمینه خوردگی‌ها و عملکرد حرارتی مقدار تشییع سیم ایجاد شد. در این تحقیق با استفاده از نظراتی که از روی ارزیابی طول عمر نمونه‌ها در محیط خوردگی شده است، کاربرد این روش با توجه به ضرورت و ضرورت به‌طور کلی در صنعت‌های مهم مطرح می‌شود.

واژگان کلیدی
خوردگی، امواج اولتراسونیک، تنش سیم، تنش‌زا

۱- مقدمه
خوردگی تنشی برای اولین بار در سال ۱۹۶۵ در آمریکا به هنگامی‌ها مشاهده شد. این اثر از آنجایی که تنش‌های کاهشی در ساختار فلزی تهیه شده بود، به اندازه‌ی ۱۰۴۱ در ترس می‌گذشت. این بی‌پی‌های که در زمینه‌ی اولتراسون اتفاق افتاده است که تنش سیم با استفاده از این اثربخشی در زمینه خوردگی‌ها و عملکرد حرارتی مقدار تشییع سیم ایجاد شد. در این تحقیق شاخص‌های ت衢ی و حجمی از نظر استانداردهای جهانی به‌کارگرفته شدند که به‌طور کلی اثربخشی در زمینه خوردگی‌ها و عملکرد حرارتی مقدار تشییع سیم ایجاد شد. در این تحقیق با استفاده از نظراتی که از روی ارزیابی طول عمر نمونه‌ها در محیط خوردگی شده است، کاربرد این روش با توجه به ضرورت و ضرورت به‌طور کلی در صنعت‌های مهم مطرح می‌شود.

5 نویسنده مسئول: تلفن: ۰۹۱۸۶۱۵۱۵۶ آدرس پست الکترونیک: alireza.nezamabadi@gmail.com
روش‌های مختلف برای نشان‌دادن از قطعات موجود دارد که مهم‌ترین آنها عبارتند از: نشان‌دادن شبیه‌سازی خودکار و نشان‌دادن شبیه‌سازی با ضرایب اولتراسونیک. در این پژوهش دو روش نشان‌دادن با اولتراسونیک و حرارتی بررسی می‌شود.

نشان‌دادن حرارتی یکی از مهم‌ترین و شناخته‌شده‌ترین روش‌های آزمایش‌گیری پژوهش‌های ناگهانی شده و سیستمی در زمان مشخص قطعه را به دام داده می‌کند. گرچه حالت به دام داده شده در نتیجه استفاده از این روش مشابه به سیستم‌های اولتراسونیک است، اما به‌طور عمده در سیستم‌های مدرن به کار رفته و بررسی‌های آن‌ها به‌طور مرتب انجام می‌گردد.

روش‌های بررسی ضرایب اولتراسونیک با چک‌کاری فراصوت می‌تواند به دست آورد بررسی قطعات فلزی و شیشه‌ای، که در نتیجه داشت که متغیر اولتراسونیک در این آزمایش‌های انجام شد. نتایج بررسی‌های مسعود ملک، در سال ۲۰۱۳، نشان داد که با استفاده از اولتراسونیک، می‌توان عملکرد ناگهانی و همچنین افزایش استرس را کاهش داد.

در این پژوهش، بررسی ضرایب اولتراسونیک بر روی قطعات فلزی و شیشه‌ای انجام شده است. نتایج نشان‌دادند که با استفاده از اولتراسونیک، می‌توان عملکرد ناگهانی و همچنین افزایش استرس را کاهش داد.

منابع

- Ultrasonic
- Martensitic transformation
مقاومت خوردگی مواد پیشرفته و هوشمند/ سال 104/ دوره 2/ شماره 2

نادر بوالحسن، علیرضا نظام آباد

221

در این پژوهش به بررسی تأثیر تنش‌زدایی جوش با استفاده از عملیات حرارتی و همچنین امواج اولتراووئیک برداخته و نتایج به دست آمده دو عملیات تنش‌زدایی مقایسه شده است. همچنین تأثیر استفاده از امواج اولتراووئیک بر افزایش عمر قطعه در محیط‌های خوردگی بررسی شده است.

2- مواد و روش‌ها

اعتبار استنداردهای یک پژوهش تحت تأثیر اعتبار روش است که برای پژوهش برگزیده شده است. روش‌های درآمدی ابزارها و حرفه‌ای به واقعیت به شمار می‌روند. از آنجا که هدف این پژوهش بررسی اثر ضربات امواج اولتراووئیک بر رفتار خوردگی فولاد زنگ نزن L016 باشد در ابتدا برای ایجاد تنش پسماند از روش جوشکاری استفاده شده است. شش نمونه لوله که تحت شرایط یکسان جوشکاری شده، انتخاب گردیده است. هدف اصلی این پژوهش بررسی از روش تنش‌زدایی جوش با استفاده امواج اولتراووئیک و جلوگیری از خوردگی است. برای انجام این امر دو نمونه تحت تنش‌زدایی حرارتی استفاده شده است. همچنین یک حالت نیز بدون هیچگونه عملیاتی در نظر گرفته شده است. شش نمونه در هر شرایط با استفاده از روش XRD* اندازه‌گیری شده است.

برای انتخاب جنس نمونه‌ها از فولادهای زنگ نزن سری 200 مخصوصاً 316 و 316L که به‌طور گسترده‌ای در صنعت و محیط‌های با خواص اسیدی به‌خصوص محلول‌های اسید سولفوریک کاربرد دارد استفاده شده است. فولادهای زنگ نزن دارای باهی آهسته‌تر و حداقل دارای 12 درصد کربن بوده که این مقدار می‌تواند به 0.6 درصد نیز نیز برسد.

1-1- روش جوشکاری

نمونه‌های استفاده‌شده در این پژوهش از نوع سیلیسیک، براز و صاف و در برداشت و ضخامت 3-4 میلی‌متر در جنس فولاد زنگ نزن L016. است که طبق استاندارد ISO 7839-8 آماده شده است. برای ایجاد تنش پسماند از روش جوشکاری استفاده شده است. شش نمونه لوله که تحت شرایط یکسان جوشکاری شده و انتخاب گردیده است. لازم به ذکر است که از روش الکترود تنگستن و گاز خنثی برای جوشکاری استفاده شده است. در این فرآیند از الکترودهای مختلفی مانند تنگستن خالص، تنگستن از تری‌بلوک و تنگستن زیرکونیوم در استفاده می‌شود. این محدودیت انجام ممکن با توجه به محدودیت ماده اصلی و شکل مقطع جوش مؤثر است. در ادامه در شکل 1 آماده‌سازی نمونه‌ها جهت انجام عملیات جوشکاری نشان داده شده است. نتایج انجام عملیات جوشکاری به توجه نمونه‌هایی از نوع بی‌پایه 0.6 درجی می‌باشد که در شکل 2 به نمایش گذاشته شده است.

* X-ray Powder Diffraction

شکل 1 آماده سازی نمونه‌ها جهت انجام عملیات جوشکاری
پرسی اثر ضربات امواج اولتراسونیک بر رفرنس خورداری فولاد زنگ نزن

در شکل ۲ نمونه‌ای از قطعه جوشکاری شده قبل از تیمیزکاری ارائه شده است.

شکل ۳ نمونه جوشکاری شده قبل از تیمیزکاری

کمیتهای استفاده‌شده در جوش کاری در جدول ۱ آورده شده است.

جدول ۱ کمیتهای جوش کاری

کمیته	اندازه
	شدت جریان
	ولت
نوع الکترود جوشکاری	16 ولت زنگ نزن
قطر الکترود	2/4 میلی‌متر
پیش گرم الکترود	دستی
سرعت جوشکاری	80 درجه
فواصل ورق یا یکیدگر	3 میلی‌متر
تعداد پاس‌های جوشکاری	3 پاس

بعد از جوشکاری نمونه‌ها با استاندارد ASTM-A380 اسید شویی به صورت زیر می‌باشد:

- چرب‌زدایی
- رسوب‌زدایی
- خنثی سازی
- شستشو

بعد از عملیات جوش کاری نمونه‌ها طبق استاندارد ۱۰۰ درصد اسید شویی شده است. محلول قلیایی شامل ۱۰۰ درصد اسید شویی است. مخلوط قلیایی با دماهای مخصوص و به مدت‌زمان ۱۰ دقیقه انجام می‌شود. سپس با استفاده از محلول اسید نیتریک ۲۰ درصد در دماهای مخصوص به مدت‌زمان ۳۰ دقیقه خنثی سازی انجام شده است.
یکی از روش‌های مؤثر که با حذف یا کاهش تنش‌های کششی پسماند و ایجاد تنش پسماند فشاری در اتصالات جوش سبب افزایش استحکام جوش می‌شود، روش اولتراسونیک پینینگ است. امواج اولتراسونیک امواج با فرکانس بالا هستند که قادرند از درون مواد فیزیکی عبور کرده و اثراتی را منتقل کنند. طیف امواج اولتراسونیک به‌طور بیشتری و می‌توانند در همه مواد شامل جامد، مایع و گاز تولید شوند. اولتراسونیک پینینگ روش جدیدی برای استحکام خستگی سازه‌های جوشی بوده که بر اساس حذف تنش‌های کششی مضر و ایجاد تنش‌های پسماند فشاری در سطح فلزات و آلیاژها عمل می‌کند و نتیجه‌گیری می‌شود. امواج اولتراسونیک پینینگ به خصوصیات مواد، نوع جوش مورد استفاده، باره‌ای وارد و بستگی دارد.

در شکل 4 تصویری از تجهیزات لازم برای روش اولتراسونیک پینینگ نشان داده شده است.

![عکس]

شکل 4 تجهیزات اولتراسونیک پینینگ

برای ایجاد امواج اولتراسونیک از یک زننر الکترونیک استفاده می‌شود این روش توانایی کنترل انرژی ترانسداوسور را داراست. ترانسداوسور و سیستم‌های می‌باشد که برتری می‌داند کنترل الکتریکی با غیر از راه کنترل الکتریکی همان ضریب تنبلی می‌کند. جهت انتقال امواج مکانیکی ترانسداوسور به ابزار مورد استفاده از انتقال دهنده استفاده می‌شود که این انتقال ممکن است با کاهش های افزایش سطح اثراتی همراه باشد. در هنگام افزایش دهنده ضریب حاصل را به چشم وارد می‌کند. جنس این ابزار به نوع کاربرد دستگاه اولتراسونیک بستگی دارد. ابزار مورد استفاده در این روش با ابزار سختی داشته باشد تا قطعه کار را تغییر شکل دهد و خود دچار تغییر شکل پلاستیک شود. در ادامه و در شکل‌های 5 تا 11 ابزار اولتراسونیک پینینگ نشان داده شده است.

![عکس]

شکل 5 کلکی دستگاه ضربه زندگی و انواع ضربه‌های زنده‌های میله‌ای

Ultrasonic peening
Heat-affected zone
Transducer
بررسی اثر ضربات امواج اولتراسونیک بر رفتار خوردگی فولاد زنگین

شکل ۶ مقطع ماده بهبود یافته به‌وسیله اولتراسونیک بینینگ

شکل ۷ پروفیل اصلاح‌شده پاشنه جوش به کمک فرازای اولتراسونیک

شکل ۸ تجهیزات استفاده‌شده در عملیات اولتراسونیک بینینگ

شکل ۹ هندسه نوک ضربه زن استفاده‌شده در پژوهش
برای تنظیمِ بیشتری اولتراسونیک از روش پیپینگ استفاده شده است. در این روش اعمالات اولتراسونیک ایجادشده به ابزار ضربه زنده انتقال یافته و از طریق نیماس اندازه‌گیری شکل پلیتیستک در قطعه رخ داده و تنظیم‌های پسماند یا نیماس و قطعه می‌شود. منبع تغذیه استفاده شده در این عملیات ۱۰۰ وات بوده و از توان ۱۰۰۰ وات آن در این پژوهش استفاده شده است. همچنین دستگاه در فرکانس خروجی ۶۵ کیلوهertz تنظیم شده است. آب شیرین ضربه زنده در این پژوهش از جنس آلومینیوم بوده و نقطه نیماس آن شکل گلو اشتته است و به منظور افزایش عملیات پیپینگ مطلوب از ضربه زنده با پرده‌ای استفاده شده است.

تنش و ضرایب حرارتی نیز با توجه به استاندارد ASM انجام شده که نرخ گرماده به قطعه در کوره ۵ درجه سلسیوس در دقیقه بوده و دمای قطعه تا ۹۰۰ درجه سلسیوس افزایش یافته و به مدت یک ساعت در دمای ۹۰۰ درجه سلسیوس تهقریب شده است. در عملیات خنک کاری، قطعه با نرخ ۱ درجه سلسیوس در دقیقه سرد شده است. لازم به ذکر است که محیط کوره با گاز آرگون پر شده و عاری از هرگونه گاز دیگر بوده است.

بعد از آماده‌سازی پهلوی در آزمایشگاه تنظیم‌های پسماند قطعات اندازه‌گیری شده است. برای اندازه‌گیری تنظیم و خوردنی از نیروگاه SCC و از استاندارد NACE TM0177 استفاده شده است.

جدول ۲ مشخصات دستگاه XRD

مدل	طول موج L1.5405 A⁰
PHILIPS PW3040	
10010 mm²	
عمق پندازه	۱۰۰ میکرومتر
شدت تغذیه	۳۰۰۰ نانومتر

مکانیک مواد پیشرفته و هوشمند سال ۲۰۱۰/۱ دوره ۳/ شماره ۲
3- بررسی نتایج
در این بخش به بررسی نتایج به دست آمده از نمونه‌ها پرداخته و نتایج با یکدیگر مقایسه شده است. برای مشخص شدن اثری خاصی بر عملیات امواج اولتراسونیک و حرارتی، نیاز به مرجع برای مقایسه بهره‌اتن و به دلیل محصولات بنیان و امکانات، ممکن انجام آزمون‌های ایکس آر دی به تعداد زیاد از نمونه مورد است. از این رو با کنترل شرایط جوشکاری دو نمونه بدون عملیات تنش‌دازی به‌عنوان نمونه مرجع در نظر گرفته شده است. نتایج حاصل از آزمون ایکس آر دی نمونه‌های بدون عملیات تنش‌گیری در شکل 12 اورد شده است.

شکل 12 نتایج آزمون ایکس آر دی نمونه‌های بدون تنش بستن

با توجه به شکل مشاهده می‌شود که نشان پسماند در هر دو قطعه تقیب‌اکسکان بوده است که این امر نشان می‌دهد که شرایط آماده‌سازی برای نمونه‌ها یکسان بوده است.

به منظور بررسی تنش‌دازی حرارتی دو نمونه در شرایط یکسان انداخته شده است و نشان پسماند در نمونه‌ها با استفاده از آزمایش ایکس آر دی مشخص شده است. نتایج نمونه‌هایی که به روش عملیات حرارتی تنش‌گیری شده است در شکل 13 اورد شده است. با توجه به شکل مشاهده می‌شود که مقدار تنش پسماند در نمونه‌های اول و دوم تقیب‌اکسکان بوده است.

شکل 13 نتایج حاصل از آزمون ایکس آر دی در نمونه‌ها با عملیات تنش‌دازی حرارتی

با مقایسه نتایج تنش پسماند در روش عملیات حرارتی و بدون عملیات حرارتی می‌توان مشاهده کرد که میانگین تنش پسماند 54 درصد کاهش یافته است.

نتایج حاصل از آزمون ایکس آر دی در نمونه‌ها با عملیات تنش‌دازی حرارتی

با مقایسه نتایج تنش پسماند در روش اولتراسونیک و بدون عملیات اولتراسونیک می‌توان مشاهده کرد که میانگین تنش پسماند 58 درصد کاهش یافته است. با توجه به شکل مشاهده می‌شود که مقدار تنش پسماند 58 درصد کاهش یافته است. با مقایسه نتایج نمونه‌های اولتراسونیک و حرارتی کاهش یافته است. همچنین مقایسه نتایج نمونه‌های اولتراسونیک و حرارتی و استفاده از امواج اولتراسونیک نشان می‌دهد که امواج اولتراسونیک عملکرد بهتری داشته و مقدار تنش پسماند حدود 40 درصد کاهش یافته است. با عملیات حرارتی کاهش یافته است.
شکل 13 نتایج حاصل از آزمون ایکس آ‌ر در نمونه‌ها با عملیات تنش‌دادن حرارتی

شکل 14 نتایج آزمون ایکس آ‌ر در نمونه‌های تنش‌دادنی تکه‌ای با استفاده از امواج اولتراسونیک

در ادامه در شکل‌های 15 تا 17 به بررسی کمی تنش‌گیری‌های پرداخته شده است. همان‌گونه که در شکل 15 مشاهده می‌شود مقدار کاهش تنش پسماند در روش حرارتی نسبت به نمونه بدون تنش‌گیری حدود 54 درصد کاهش یافته است.

شکل 16 مقایسه تنش پسماند در نمونه‌های بدون تنش گیری و نمونه با تنش گیری حرارتی

در شکل 16 مقایسه کاهش تنش پسماند در روش اولتراسونیک نسبت به نمونه بدون تنش گیری نشان داده شده است. که این مقادیر در حدود 59 درصد می‌باشند.

شکل 17 مقایسه تنش پسماند در نمونه‌های بدون تنش گیری و نمونه با تنش گیری اولتراسونیک
بررسی اثر ضربات امواج اولتراسونیک بر رفتار خوردگی فولاد زنگنزن
مکانیک مواد بیشتره و هوشمند/ سال 1401/ دوره 2/ شماره 2

در شکل 17 مقایسه تنش‌های پسماند در سه حالت مختلف داده شده است. نشان داده شده است که در نمونه تنش‌گیری اولتراسونیک، نشان‌گیری تنش پسماند بیشتری نسبت به حالت حرارتی حذف گردیده است.

برای بررسی تأثیر تنش‌زدایی بر خورداری از آزمون SCC از امواج اولتراسونیک و بدون عملیات تنش‌زدایی در محیط خوردگی قرار داده شده است. برای آزمون SCC از لوله نمونه‌برداری انجام شده است. نمونه‌برداری به‌صورت طولی از جوش انتخاب و برخ داده‌شده و نمونه‌ها در آزمودن بارگذاری 39 فاز مشاهده شدند.

نتایج آزمون تنش‌زا داده که تنش‌زدایی با استفاده از امواج اولتراسونیک سبب کاهش تنش پسماند به مقدار 95 درصد شده است. این نتیجه به نتیجه‌گیری آزمون SCC است. از این رو برخی از امواج اولتراسونیک برای تنش‌زدایی از قطعات پیشنهاد می‌شود.

نتایج ارزیابی اثر ضربات امواج اولتراسونیک بر رفتار خوردگی فولاد زنگنزن
316.jpg

نتایج به‌دست آمده نشان می‌دهد که:
- تنش‌زدایی با استفاده از عملیات حرارتی مقدار نشان‌گیری بیشتری در نمونه به مقدار 54 درصد کاهش داده است.
- تنش‌زدایی با استفاده از امواج اولتراسونیک سبب کاهش نشان‌گیری به مقدار 58 درصد شده است و در مقایسه با تنش‌زدایی با عملیات حرارتی تنش‌پسماند را به مقدار بیشتری کاهش داده است. از این رو استفاده از امواج اولتراسونیک برای تنش‌زدایی از قطعات پیشنهاد می‌شود.

نتایج آزمون SCC نشان داد که تنش‌زدایی با استفاده از امواج اولتراسونیک سبب افزایش طول عمر نمونه در محیط خوردگی شده است. این امر به‌ویژه در شکل 17 مشاهده شده است. نشان داده شده است که در نمونه تنش‌گیری اولتراسونیک، نشان‌گیری تنش پسماند بیشتری نسبت به حالت حرارتی حذف گردیده است.
نمودار دما‌ی در زمان آزمون SCC

شکل 12 ترک‌های ایجادشده پس از 230 ساعت در نمونه بدون نش‌گیری

مراجع

[1] Shahriari A, Shahrabi T, Oskuie AA. A study on stress corrosion cracking of X70 pipeline steel in carbonate solution by EIS. Journal of materials engineering and performance. 2013;22:1459-70.

[2] Ige OO, Umoru LE. Effects of shear stress on the erosion-corrosion behaviour of X-65 carbon steel: A combined mass-loss and profilometry study. Tribology International. 2016;94:155-64.

[3] Cao L, Frankel GS, Sridhar N. Effect of chloride on stress corrosion cracking susceptibility of carbon steel in simulated fuel grade ethanol. Electrochimica Acta. 2013;104:255-66.

[4] Hirai S, Aoki S. Reducion of Residual Stress by Ultrasonic Surface Vibration. Elektronika ir Elektrotechnika. 2003;45:64-7.

[5] Guide for application of ultrasonic impact treatment improving fatigue life of welded structure. Northern scientific & Technology Company.

[6] Zandian V. Investigation of residual stresses in stress-relieved samples by heat treatment and ultrasonic methods using hole-drilling method. Modares Mechanical Engineering. 2015;14:273-8.

[7] Munsi A, Waddell AJ, Walker CA. The influence of vibratory treatment on the fatigue life of welds: A comparison with thermal stress relief. Strain. 2001;37:141-9.

[8] Shalvandi M, Hojjat Y, Abdullah A, Asadi H. Experimental evaluation of ultrasonic stress relieving on steel specimens considering grain size effect. 2012.
[9] Mordyuk BN, Prokopenko GI, Vasylyev MA, Iefimov MO. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel. Materials Science and Engineering: A. 2007;458:253-61.

[10] Kudryavtsev Y, Kleiman J, Prokopenko G, Knysh V, Gimbrede L. Effect of Ultrasonic Peening on microhardness and residual stress in materials and welded elements.

[11] Jang C, Cho P-Y, Kim M, Oh S-J, Yang J-S. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds. Materials & Design. 2010;31:1862-70.

[12] Lee H-s, Kim D-s, Jung J-s, Pyoun Y-s, Shin K. Influence of peening on the corrosion properties of AISI 304 stainless steel. Corrosion science. 2009;51:2826-30.

[13] Badreddine J, Gallitelli D, Rouhoud E, Micoulaut M, Remy S, François M, et al. Complete simulation of ultrasonic shot peening process. p. 1-11.

[14] Malaki M, Ding H. A review of ultrasonic peening treatment. Materials & Design. 2015;87:1072-86.

[15] Shalvandi M, Hojjat Y, Abdullah A, Asadi H. Influence of ultrasonic stress relief on stainless steel 316 specimens: A comparison with thermal stress relief. Materials & Design. 2013;46:713-23.