Anemia and red blood cell transfusion in neurocritical care

Kramer, Andreas H.; Zygun, David A

BioMed Central

Kramer AH, Zygun DA. "Anemia and red blood cell transfusion in neurocritical care". Critical Care 2009, 13:R89 (11 June 2009) http://hdl.handle.net/1880/47378 journal article

Downloaded from PRISM: https://prism.ucalgary.ca
Research

Anemia and red blood cell transfusion in neurocritical care
Andreas H Kramer¹ and David A Zygun²

¹Departments of Critical Care Medicine & Clinical Neurosciences, University of Calgary, Foothills Medical Center, 1403 29thSt. N.W., Calgary, AB, Canada, T2N 2T9
²Departments of Critical Care Medicine, Clinical Neurosciences, & Community Health Sciences, University of Calgary, Foothills Medical Center, 1403 29thSt. N.W., Calgary, AB, Canada, T2N 2T9

Corresponding author: Andreas H Kramer, andreas.kramer@albertahealthservices.ca

Received: 26 Jan 2009 Revisions requested: 3 Mar 2009 Revisions received: 9 Apr 2009 Accepted: 11 Jun 2009 Published: 11 Jun 2009

Critical Care 2009, 13:R89 (doi:10.1186/cc7916)
This article is online at: http://ccforum.com/content/13/3/R89
© 2009 Kramer and Zygun; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introduction Anemia is one of the most common medical complications to be encountered in critically ill patients. Based on the results of clinical trials, transfusion practices across the world have generally become more restrictive. However, because reduced oxygen delivery contributes to 'secondary' cerebral injury, anemia may not be as well tolerated among neurocritical care patients.

Methods The first portion of this paper is a narrative review of the physiologic implications of anemia, hemodilution, and transfusion in the setting of brain-injury and stroke. The second portion is a systematic review to identify studies assessing the association between anemia or the use of red blood cell transfusions and relevant clinical outcomes in various neurocritical care populations.

Results There have been no randomized controlled trials that have adequately assessed optimal transfusion thresholds specifically among brain-injured patients. The importance of ischemia and the implications of anemia are not necessarily the same for all neurocritical care conditions. Nevertheless, there exists an extensive body of experimental work, as well as human observational and physiologic studies, which have advanced knowledge in this area and provide some guidance to clinicians. Lower hemoglobin concentrations are consistently associated with worse physiologic parameters and clinical outcomes; however, this relationship may not be altered by more aggressive use of red blood cell transfusions.

Conclusions Although hemoglobin concentrations as low as 7 g/dl are well tolerated in most critical care patients, such a severe degree of anemia could be harmful in brain-injured patients. Randomized controlled trials of different transfusion thresholds, specifically in neurocritical care settings, are required. The impact of the duration of blood storage on the neurologic implications of transfusion also requires further investigation.

Introduction

A key paradigm in the management of neurocritical care patients is the avoidance of 'secondary' cerebral insults [1-3]. The acutely injured brain is vulnerable to systemic derangements, such as hypotension, hypoxemia, or fever, which may further exacerbate neuronal damage [4-7]. Thus, critical care practitioners attempt to maintain a physiologic milieu that minimizes secondary injury, thereby maximizing the chance of a favorable functional and neurocognitive recovery.

Anemia is defined by the World Health Organization as a hemoglobin (Hb) concentration less than 12 g/dl in women and 13 g/dl in men [8]. It is one of the most common medical complications encountered in critically ill patients, including those with neurologic disorders. About two-thirds of patients have Hb concentrations less than 12 g/dl at the time of intensive care unit (ICU) admission, with a subsequent decrement of about 0.5 g/dl per day [9-12]. The etiology of ICU-acquired anemia is multifactorial. Systemic inflammation reduces red
blood cell (RBC) development by blunting the production of erythropoietin and interfering with the ability of erythroblasts to incorporate iron [13-17]. RBC loss is accelerated by frequent phlebotomy, reduced RBC survival, and occasional hemorrhage. Large volumes of fluid used during resuscitation, with resultant hemodilution, may also contribute to early reductions in Hb levels [18-22].

Anemia can easily be corrected with the use of allogeneic RBC transfusions. The proportion of patients receiving blood during their ICU stay varies from 20 to 44%, and those who are transfused receive an average of as many as five units [10,11,23,24]. However, two multi-center, randomized controlled trials (RCTs) and two large observational studies have shown the liberal use of blood transfusions, with the goal of maintaining relatively arbitrary Hb concentrations (e.g. 10 g/dl), to not only be ineffective at improving outcomes, but also potentially harmful [10,11,25,26]. Still, because impaired oxygen (O2) delivery is thought to be an important factor in secondary brain injury, it remains uncertain whether these findings can be broadly applied to neurocritical care patients. Accordingly, it remains common practice for clinicians to set target Hb levels at a minimum of 9 to 10 g/dl in this setting [27-29].

Materials and methods
To describe the physiologic and clinical implications of anemia and transfusion in neurocritical care patients, we used the OVID interface to search MEDLINE from its inception until March 9, 2009. We combined the following MESH headings: (anemia OR blood transfusion OR hemodilution OR hematocrit OR hemoglobin) AND (stroke OR craniocerebral trauma OR subarachnoid hemorrhage OR cerebral hemorrhage OR cerebrovascular circulation OR cardiac surgical procedures OR coronary artery bypass). This search yielded 2137 English language publications dealing primarily with adults (>18 years old). Each abstract was reviewed, and both human and animal studies assessing the impact of anemia, hemodilution, or the use of RBC transfusions on a physiologic or clinical outcome were chosen for more detailed review. Relevant review articles and case reports were also included, and the references of selected papers were screened for additional publications. Clinical studies involving specific groups of neurocritical care patients were selected for inclusion in evidentiary tables.

Results and discussion

Physiologic implications of anemia
Cerebral blood flow and oxygen delivery
The amount of oxygen reaching specific organs is the product of local blood flow and the arterial oxygen content (C(O2)A). The latter is dependent on the Hb concentration and the degree to which it is saturated with O2 (S(O2)Hb), with a small amount of O2 also dissolved in blood. Thus, global systemic O2 delivery can be expressed by the following equation:

\[
DO_2 (\text{ml O}_2/\text{min}) = \text{cardiac output} (\text{L/min}) \times \text{Hb g/L} \times (S(O_2)Hb) \times 1.39 \text{ml O}_2/\text{g Hb} \times (0.003 \times \text{PO}_2)
\]

O2 delivery to the brain can be conceptualized using the same equation, but by substituting cerebral blood flow (CBF) for cardiac output (CO). Flow through the cerebral vasculature is determined by the cerebral perfusion pressure (CPP), the length and caliber of the vessels, and the viscosity of blood, as described by the Hagen-Poiseuille equation:

\[
\text{Flow} = \frac{\pi r^4 \Delta P}{8 \eta L}
\]

where \(r \) = radius, \(P \) = pressure, \(L \) = length, and \(\eta \) = viscosity.

Regulation of CBF and cerebral O2 delivery in response to physiologic stressors is achieved largely by homeostatic variations in the caliber of cerebral vessels (the 'r' in the above equation; Figure 1).

CPP is the difference between mean arterial pressure and cerebral venous pressure; intracranial pressure is widely used as a surrogate for the latter. The response of the cerebral vasculature to changes in CPP is referred to as CBF autoregulation ('pressure-reactivity'). Cerebral arterioles vasoconstrict in response to raised CPP and vasodilate when there are reductions, thereby maintaining constant CBF (Figure 1a). Autoregulation is sometimes impaired in neurocritical care patients, such that CBF becomes directly dependent on CPP, making the brain more vulnerable to both hypo- and hyperperfusion [30-32].

There are numerous other stimuli that may modify cerebral vascular resistance and CBF. Both global and regional CBF are tightly coupled to metabolism. Thus, physiologic changes that lead to a reduction in cerebral metabolic rate (CMRO2) (e.g. hypothermia or sedation) will also proportionally reduce CBF (Figure 1b). In addition, CBF is influenced by variations in the partial pressures of carbon dioxide (PCO2; 'CO2-reactivity'), and to a lesser degree, O2 (PO2) (Figures 1c, d). CBF increases in response to a decrease in PO2, although this effect is probably minimal until the level approaches 60 mmHg [30].

In response to worsening anemia, neuronal O2 delivery is initially preserved both by the systemic cardiovascular response and mechanisms that are more specifically neuroprotective.

Cardiovascular response to anemia
A falling Hb concentration is sensed by aortic and carotid chemoreceptors, resulting in stimulation of the sympathetic nervous system, which in turn raises heart rate and contractility, thereby augmenting CO [33-35]. The reduction in blood viscosity results in a corresponding reduction in afterload, as well as enhanced flow through post-capillary venules, greater venous return, and increased preload [36-38]. Thus, stroke volume, CO, and blood pressure (as well as CPP) increase in response to isovolemic anemia. Tissues are further protected from falling O2 delivery because of their capacity to increase O2 extraction and maintain constant O2 consumption. In the brain, irreversible ischemia may not occur until the O2 extrac-
tion fraction (OEF) exceeds 75% [39-43]. Systemic anaerobic metabolism does not develop until the Hb concentration falls well below 5 g/dl in otherwise healthy individuals [44]. On the other hand, many neurocritical care patients have concomitant cardiac disease and left ventricular dysfunction which may prevent an appropriate increase in CO in response to sympathetic stimulation. This is commonly the case even in the absence of pre-existing heart disease; for example, among patients with acute 'high-grade' aneurysmal subarachnoid hemorrhage (SAH) (Hunt-Hess grades 3 to 5), more than one-third have regional left ventricular wall motion abnormalities detectable by echocardiography [45].

Cerebrovascular response to anemia
Apart from the increased flow produced by higher CPP and lower blood viscosity, anemia also induces cerebral vasodilation [46-48]. When Hb (and therefore C\textsubscript{\text{a}}O\textsubscript{2}) falls, there appears to be a disproportionate increase in CBF in relation to other organs (Figure 1d) [49]. The mechanisms underlying this increase in vessel caliber are still being clarified, but include some of the same factors involved in CBF pressure-autoregulation; these have recently been reviewed in detail [46]. Importantly, anemia results in upregulation of nitric oxide (NO) production by perivascular neurons and vascular smooth muscle surrounding cerebral blood vessels. The importance of these pathways is supported by the observation that inhibition of NO synthase blunts hypoxia- and anemia-induced cerebral vasodilatation [50-52]. However, additional factors are undoubtedly involved [53-55]. Sympathetic β2 receptor stimulation is an example of one such mechanism that contributes to vasodilatation and maintenance of CBF [56]. Other biochemical mediators that are upregulated in the brain in response to anemia include vascular endothelial growth factor, hypoxia inducible factor 1α, and erythropoietin [46,57]. Although it seems likely that these mediators are neuroprotective, it remains possible that they could also have harmful pathophysiologic effects [46].

Compensatory mechanisms eventually fail
As anemia worsens, the resultant increases in CBF and OEF eventually become insufficient to overcome the reduced C\textsubscript{\text{a}}O\textsubscript{2} produced by a low Hb concentration (Figure 2). The point at which this threshold is reached is not clear and probably varies somewhat between patients. A sophisticated mathematical model based on animal data suggested that CMRO\textsubscript{2} is well preserved in normal brain, even with severe reductions in Hb concentration. In contrast, penumbral brain appears to be much more vulnerable, with O\textsubscript{2} delivery and CMRO\textsubscript{2} progressively declining as Hb falls below 10 to 12 g/dl [58-62]. As with cerebral ischemia, impairment of the usual protective mechanisms induced by anemia has also been demonstrated as a result of brain trauma [63].

Figure 1

Physiologic parameters influencing cerebral blood flow (a) The effects of mean arterial blood pressure (MAP) (solid line = normal autoregulation; dashed line = deranged autoregulation), (b) cerebral metabolic rate (CMRO\textsubscript{2}), (c) partial pressure of carbon dioxide (PCO\textsubscript{2}), (d) partial pressure of oxygen (PO\textsubscript{2}) and arterial oxygen content (C\textsubscript{\text{a}}O\textsubscript{2}) (solid curved line = PO\textsubscript{2}; dashed line = C\textsubscript{\text{a}}O\textsubscript{2}) are shown. CBF = cerebral blood flow.
A study of euvolemic hemodilution in healthy human volunteers confirmed that even profound anemia (Hb about 5 g/dl) was relatively well tolerated; however, subtle abnormalities in neuropsychological testing began to emerge when Hb concentrations fell below 7 g/dl [64,65]. The co-existence of other physiologic stressors may also make anemia less tolerable; for example, experimental studies have found that cerebral O$_2$ delivery is preserved in the presence of both severe anemia and hypotension individually, but not when they are both present [66,67]. Additionally, anemia-induced cerebral vasodilatation appears to interfere with the usual response to variations in PCO$_2$ [47,68-70]. These observations raise concerns that relatively inadequate O$_2$ delivery could occur at Hb levels well above 7 g/dl in critical care patients with cerebrovascular disease, pre-existing central nervous system pathology (e.g. an ischemic or 'traumatic' penumbra) or deranged regulation of CBF. Thus, there is strong physiologic rationale for believing that a restrictive transfusion threshold of 7 g/dl, although clearly safe in many critical care patients [25,26], may not be without risk in neurocritical care patients.

Risks of red blood cell transfusion

Even if anemia is harmful, this does not necessarily prove that liberal use of allogeneic RBCs to normalize Hb concentrations is justified. Emerging data indicates that stored blood has important differences from patients’ own blood. A number of changes occur over time as RBCs are being stored; some of these alterations could have important implications after transfusion, and they are collectively referred to as the ‘storage lesion’. Biochemical changes include reductions in ATP, loss of membrane phospholipids, and oxidative damage to proteins. The consequence is a gradual change in RBC appearance from the usual biconcave disc to irreversibly deformed and stellate-shaped spherocytocytes [71,72]. Loss of RBC membrane function, as well as an increased tendency to adhere to endothelium, may interfere with microcirculatory flow [72,73]. RBC 2-3-diphosphoglycerate levels become depleted to the point of being essentially undetectable after one week of storage. Although levels are usually restored within 24 to 72 hours after transfusion, the transiently increased binding affinity of Hb interferes with the release of O$_2$ for use by tissues [74].

Thus, although blood transfusions are generally given with the intention of raising O$_2$ delivery, the storage-induced changes may prevent RBCs from achieving their intended purpose. For example, studies using gastric tonometry parameters as a surrogate for mesenteric perfusion have not shown improvements following transfusion [75,76]. Similarly, RBCs also appear to have little effect on skeletal muscle O$_2$ tension in postoperative patients or on global O$_2$ consumption in the critically ill [77,78].

Transfusion-related acute lung injury is now the most common cause of transfusion-related mortality reported to the Food and Drugs Administration [79]. Transfusion may have immunosuppressive effects, which are thought to be due to concomitant white blood cell transmission. Several studies have suggested a link between the use of allogeneic RBCs and both nosocomial infections and acute respiratory distress syndrome [80-83]. Alternatively, RCTs, where well-matched groups were transfused with differing intensities, have not yet convincingly confirmed these associations [25,26]. Furthermore, the risk of
complications may be less since the implementation of universal leukoreduction in many jurisdictions [84].

It has been suggested that the use of fresher blood might further minimize the risks of transfusion, while also maximizing their physiologic effect. Results have been conflicting, and there is little data specifically in neurocritical care patients [71,75,76]. A recent animal study found fresh blood to be more effective at raising brain tissue oxygen tension (P_{\text{t,O}_2}) and preserving CBF in comparison to stored blood [85]. Alternatively, Weiskopf and colleagues performed isovolemic hemodilution to Hb concentrations of 55 to 74 g/L in healthy volunteers and then transfused them with autologous blood stored for either less than five hours or more than 14 days; neurocognitive test performance did not differ between the two groups [86].

Anemia and RBC transfusion in specific neurocritical care settings

The importance of ischemia in causing secondary brain injury appears to vary for different neurocritical care conditions. For example, cerebral vasospasm and delayed infarction are major causes of neurologic deterioration in the two weeks following a ruptured cerebral aneurysm [87,88]. In contrast, the frequency and relevance of cerebral ischemia in the pathophysiology of traumatic brain injury (TBI) or intracerebral hemorrhage (ICH) continue to be debated [40,89-91]. Accordingly, the significance of anemia and optimal transfusion thresholds may not be consistent from one condition to the next.

Lessons from cardiac surgery

A great deal of what is known about the neurologic effects of anemia has been reported in the cardiac surgical literature. A substantial proportion of patients undergoing cardiac surgery receive blood transfusions, even though large volume hemorrhage is comparatively less common [92]. Perioperative stroke occurs in 1 to 6% of patients and is strongly associated with greater morbidity and mortality [93,94]. An even larger proportion (≥50%) develops at least transient neurocognitive dysfunction that is likely to be, at least in part, due to cerebral ischemia [95,96]. Thus, the prevention and treatment of cerebral ischemia is of major concern in the perioperative period.

We identified 12 studies assessing the association between perioperative Hb concentrations and subsequent neurologic complications (Table 1). When defined as an Hb concentration less than 12.5 g/dl, about one-quarter of patients are anemic preoperatively [97]. Blood loss and hemodilution during cardiopulmonary bypass usually lead to nadir intraoperative Hb concentrations of 7.0 to 8.5 g/dl; levels at ICU admission are typically 8.5 to 9.5 g/dl [98]. Several, but not all, studies have suggested that the degree of Hb reduction is an independent predictor of stroke, delirium, neurocognitive dysfunction, and other adverse outcomes [97-108] (Table 1). Although it has not been proven with certainty that these relations are causative, it seems prudent to avoid major reductions in Hb as best as possible with relevant blood-conservation strategies [109-113].

A recent RCT involving 121 elderly patients undergoing coronary artery bypass compared two intraoperative hematocrit targets (15 to 18% vs. ≥ 27%) [102]. The study was terminated early because of high complication rates in both groups; however, a greater degree of postoperative neurocognitive dysfunction was observed among patients managed with more extreme hemodilution. In addition, although not necessarily directly applicable to adults, further evidence that excessive hemodilution may have harmful neurologic effects comes from the neonatal literature. Combined data from two RCTs suggested that hematocrit levels below 23.5% during cardiopulmonary bypass were associated with impaired psychomotor development at one year of age [114-116]. Whether using RBC transfusions to maintain higher perioperative Hb levels helps avoid neurologic complications remains uncertain. For example, although Karkouti and colleagues found nadir hematocrit levels during cardiopulmonary bypass to be a predictor of stroke in a multivariable analysis, the same was also true for the perioperative use of transfusions [105]. An association between transfusion and focal or global neurologic deficits has been confirmed in numerous other studies (Table 2) [117-125].

One study compared clinical outcomes, including the risk of perioperative stroke, between 49 Jehovah’s Witnesses who underwent cardiac surgery without blood products and a matched control group of 196 patients, in whom RBC transfusions were used. No significant differences were observed; however, only nine patients in total experienced a stroke, such that this study lacked statistical power to detect a difference. The severity of anemia in Jehovah’s Witness patients was not reported [123].

In a large, single-center, retrospective study, Koch and colleagues explored whether the association between RBCs and worse outcomes could be related to the duration of blood storage. Outcomes were compared among cardiac surgical patients depending on whether they were transfused with exclusively ‘newer’ (≤14 days old; median 11 days) or ‘older’ (>14 days old; median 20 days) blood during the perioperative period [126]. In-hospital mortality and postoperative complications, including sepsis, renal failure, and need for mechanical ventilation, were greater among patients receiving older blood. However, there was no significant difference in the incidence of stroke and coma.

In summary, there remains uncertainty concerning optimum Hb levels for neuroprotection of patients undergoing cardiac surgery. Many intensivists routinely employ a postoperative
Table 1
Adult studies assessing the association between anemia and the development of perioperative stroke or cognitive dysfunction among patients undergoing cardiac surgery

Study	Patients	Design and setting	Multivariable analysis	Exposure	Outcome	Main result
Karkouti and colleagues [97]	10,179	Retrospective (prospective database)	Logistic regression	Maximum decrease intraoperative Hb compared with baseline	Composite of in-hospital death, stroke (new persistent postoperative neurologic deficit), or dialysis-dependent renal failure	>50% decrement in Hb independently associated with composite outcome
Bell and colleagues [98]	36,658 (CABG)	Retrospective (prospective database)	Logistic regression	Preoperative Hb	Postoperative stroke (not further defined)	No significant association between Hb and stroke
Karkouti and colleagues [99]	3286	Retrospective	Logistic regression and propensity scores	Preoperative anemia (Hb <12.5 g/dl)	Postoperative stroke (new neurologic deficit)	Risk of stroke 1.1% in non-anemic pts vs. 2.8% in anemic patients
Trend towards more stroke among anemic patients in propensity-matched analysis						
Chang and colleagues [100]	288	Retrospective	Logistic regression	Postoperative Hct <30%	Delirium (DSM-IV criteria)	Postoperative hct <30% associated with development of delirium (OR = 2.2, $P = 0.02$)
Kulier and colleagues [101]	4804	Retrospective (prospective database)	Logistic regression	Preoperative Hb	'Cerebral outcomes' = stroke or encephalopathy (not further defined)	Each 10 g/L Hb reduction associated with 15% increase in risk of non-cardiac (renal or CNS) complications
Association stronger for renal complications						
Matthew and colleagues [102]	121 (CABG; age >65)	Prospective RCT	Logistic regression	Comparison of hemodilution to hct of ≥27% vs. 15 to 18%	Six-week postoperative neurocognitive function (battery of 5 tests)	Trial stopped early because of unusually high rate of complications in both groups
Significant interaction between age and hct; more neurocognitive deficits among older patients with low hct						
Cladellas and colleagues [103]	201 (VR)	Retrospective (prospective database)	None	Preoperative anemia (Hb <12 g/dl)	New permanent stroke or transient ischemic attack (not further defined)	Risk of TIA or stroke 9.5% in anemic patients vs. 4.4% in non-anemic
Giltay and colleagues [104]	8139 (CABG)	Retrospective	Logistic regression	Lowest hematocrit first 24 hours ICU	Psychotic symptoms (hallucinations and/or delusions)	Hct <25% associated with psychosis (OR = 2.5 vs. hct >30%, CI 1.2 to 5.3)
transfusion threshold of 7 g/dl, although this may not be the optimum Hb level for the avoidance of neurologic complications. By necessity, the recommendations of published consensus guidelines are relatively non-specific, and state that it is "not unreasonable to transfuse red cells in certain patients with critical noncardiac end-organ ischemia whose Hb levels are as high as 10 g/dl" [111]. Funding was recently secured in the UK for a multi-center RCT comparing transfusion triggers of 7.5 vs. 9 g/dl [92].

Traumatic brain injury
The majority of patients dying from severe TBI have histologic evidence of ischemic damage [127]. Early global CBF reductions occur in many patients, often to levels that are considered to be in the ischemic range [128,129]. Reductions in both jugular venous O₂ saturation (SjvO₂) and PbtO₂ are not only common, but their frequency and depth are predictive of worse outcomes [130-133]. However, the fall in CBF may be appropriate for a corresponding drop in metabolic rate [134,135]. Recent studies using positron emission tomography (PET) have suggested that although ischemia does occur, it is less common than previously thought. Furthermore, much of the 'metabolic distress' detected by multimodal monitoring (SjvO₂, PbtO₂, and microdialysis parameters) is not necessarily attributable to classical ischemia [39,134,135].

On the other hand, there appears to be a great deal of regional heterogeneity in CBF and CMRO₂ [136]. Even if the overall ischemic brain volume is relatively small, certain vulnerable regions may still benefit from enhanced O₂ delivery [137]. As with cardiac surgical patients, relatively extreme reductions in Hb are likely to be deleterious. A recent animal model found that although isovolemic hemodilution to Hb concentrations of 5 to 7 g/dl resulted in an overall increase in CBF, it produced larger contusion volumes, more apoptosis, and lower PbtO₂ [138].

Potentially beneficial physiologic effects of transfusion have been shown in four studies of patients with severe TBI [139-142], each of which demonstrated that PbtO₂ increases following the administration of RBCs (Table 3) [139]. However, this increment was inconsistent, relatively small and often of questionable clinical importance. Of concern, in some cases there was even a reduction in PbtO₂. It is possible that some of the variation in the cerebral effects of transfusion could be, in part, attributable to the variable age of transfused blood. Leal-
Table 2

Adult studies assessing the association between transfusion and the development of perioperative stroke or cognitive dysfunction among patients undergoing cardiac surgery

Study	Patients	Design and setting	Multivariable analysis	Exposure	Outcome	Main result
Brevig and colleagues [117]	2531	Retrospective (prospective database) Single-center	None	Any blood product transfusion	Postoperative CVA (not further defined)	Despite reduction in proportion of patients transfused over time (43% in 2003 vs. 18% in 2007), no change in proportion of patients with CVA (0.8 to 1.5%)
Ngaage and colleagues [118]	383 (≥80 years old)	Retrospective (prospective database) Single-center	Logistic regression	Any blood product transfusion	Neurologic complications (confusion/agitation, seizures, TIA, RIND, stroke, or coma)	Transfusion associated with neurologic complications (OR = 3.6 vs. no transfusion, P = 0.003)
Murphy and colleagues [119]	8518	Retrospective Single-center	Logistic regression and propensity scores	Any perioperative RBC transfusion	Composite of MI, stroke (permanent or transient), or renal failure	RBC transfusion was associated with composite outcome (OR = 3.35 for transfusion vs. no transfusion; P < 0.0001)
Whitson and colleagues [120]	2691	Retrospective (prospective database) Single-center	Logistic regression	Any RBC transfusion	CVA (not further defined)	RBC transfusion was associated with CVA (OR = 1.7, P = 0.01)
Norkiene and colleagues [121]	1367	Retrospective Single-center	Logistic regression	Any RBC transfusion	Delirium (DSM-IV criteria)	Postoperative RBC transfusion was associated with delirium (OR = 4.6, P < 0.001)
Koch and colleagues [122]	11,963 (CABG)	Retrospective (prospective database) Single-center	Logistic regression	Total number of units of RBCs transfused	Focal or global neurologic deficits or death without awakening	RBC transfusion was associated with stroke (OR = 1.73 for each unit RBCs; P < 0.0001)
Stamou and colleagues [123]	49 JW patients	Retrospective Single-center	Logistic regression and propensity scores	Any RBC transfusion Nadir Hb not reported	Perioperative stroke	No statistically significant difference in risk of stroke between JW's refusing RBCs and transfused control patients
Karkouti and colleagues [105]	10,949	Retrospective (prospective database) Single-center	Logistic regression	Total number of units of blood product	New perioperative persistent postoperative neurological deficit	Transfusion was associated with stroke (OR = 1.02 for each unit RBCs; P = 0.01)
Bucerius and colleagues [124]	16,184	Retrospective (prospective database) Single-center	Logistic regression	Any perioperative RBC transfusion	Temporary or permanent focal or global neurologic deficit	'High transfusion requirement' (≥1000 ml) was associated with stroke (OR = 6.04; P < 0.0001)
Noval and colleagues recently found that only those patients having received RBCs less than 14 days old had a statistically significant improvement in P_{b}O$_2$ one hour after transfusion [141]. Although these results are intriguing, they are too premature to influence clinical practice and require confirmation in larger studies. Just because P_{b}O$_2$ rises, does not necessarily mean that CMRO$_2$ has increased. On the contrary, Zygun and colleagues found no improvement in cerebral lactate to pyruvate ratio (LPR – a marker of ischemia and 'metabolic distress') in response to transfusion, despite an increment in P_{b}O$_2$ [142].

In a retrospective study of 169 patients with TBI, Carlson and colleagues found nadir hematocrit levels to be associated with a worse Glasgow Outcome Scale at hospital discharge. However, the association between RBC transfusion and poor outcome was even stronger [143]. Other observational studies have reached similar conclusions (Table 4) [144-151]. Unfortunately, there are no large RCTs to guide practice at this time. How-ever, the association between RBC transfusion and poor outcome has not conclusively been proven to be causative.

As in other settings, several studies have also shown a strong association between transfusion and unfavorable outcomes following SAH (Table 5) [28,157-160]. One unconfirmed report suggested that the use of RBCs could contribute to the development of cerebral vasospasm, perhaps by promoting inflammation or depleting endogenous NO supplies [160]. A recent observational study found no difference in complications based on the transfusion of older (>21 days) compared with newer (≤21 days) units of blood, although this assessment was based on only 85 transfused patients [28].

Hemodilution, together with hypervolemia and hypertension, has been used as part of ‘triple H therapy’, a therapeutic strategy to improve CBF in patients with vasospasm [161]. One study used 133Xenon injections to assess global CBF in eight patients with SAH. As expected, isovolemic hemodilution from a mean Hb of 11.9 to 9.2 g/dl produced an increase in global CBF and a reduction in cerebral vascular resistance. However, the increase in CBF was not sufficient to overcome the reduction in C_{O_2}, such that global O_2 delivery fell and ischemic brain volume actually increased [162]. Complimentary findings were subsequently reported by Muench and colleagues, who used aggressive volume expansion on days 1, 3, and 7, which produced a concomitant reduction in Hb concentration ranging from 1.3 to 2.0 g/dl. Although this intervention consistently produced a small increment in CBF, it actually caused a proportionally larger decline in P_{b}O$_2$ (Table 3) [163].

In a retrospective study of 169 patients with TBI, Carlson and colleagues found similar conclusions (Table 4) [144-151]. Unfortu-nately, there are no large RCTs to guide practice at this time. However, the association between RBC transfusion and poor outcome was even stronger [143]. Other observational studies have reached similar conclusions (Table 4) [144-151]. Unfortunately, there are no large RCTs to guide practice at this time. How-ever, the association between RBC transfusion and poor outcome has not conclusively been proven to be causative.

As in other settings, several studies have also shown a strong association between transfusion and unfavorable outcomes following SAH (Table 5) [28,157-160]. One unconfirmed report suggested that the use of RBCs could contribute to the development of cerebral vasospasm, perhaps by promoting inflammation or depleting endogenous NO supplies [160]. A recent observational study found no difference in complications based on the transfusion of older (>21 days) compared with newer (≤21 days) units of blood, although this assessment was based on only 85 transfused patients [28].

Hemodilution, together with hypervolemia and hypertension, has been used as part of ‘triple H therapy’, a therapeutic strategy to improve CBF in patients with vasospasm [161]. One study used 133Xenon injections to assess global CBF in eight patients with SAH. As expected, isovolemic hemodilution from a mean Hb of 11.9 to 9.2 g/dl produced an increase in global CBF and a reduction in cerebral vascular resistance. However, the increase in CBF was not sufficient to overcome the reduction in C_{O_2}, such that global O_2 delivery fell and ischemic brain volume actually increased [162]. Complimentary findings were subsequently reported by Muench and colleagues, who used aggressive volume expansion on days 1, 3, and 7, which produced a concomitant reduction in Hb concentration ranging from 1.3 to 2.0 g/dl. Although this intervention consistently produced a small increment in CBF, it actually caused a proportionally larger decline in P_{b}O$_2$ (Table 3) [163].

More recently, Dhar and colleagues assessed the effects of transfusion in patients with SAH using PET [164]. PET scans were performed before and after the administration of one unit of RBCs to patients with pre-transfusion Hb concentrations less than 10 g/dl. Although no change in CMRO$_2$ was
Table 3
Clinical studies assessing the impact of anemia or RBC transfusions on P_bO$_2$ and other physiologic parameters in brain-injured patients

Study	Patients	Design	Baseline	Intervention	Main findings
Smith and colleagues [139]	23 TBI	Retrospective	Hb = 8.7 g/dl	Any RBC transfusion (number of units not specified a prior; 80% received ≥1 unit; mean Hb increased to 10.2 g/dl) General transfusion threshold Hb <10 g/dl or hct <30%	- Mean increment in P_bO$_2$ 3.2 mmHg (19%)
- Increment not related to baseline P_bO$_2$
- P_bO$_2$ decreased in 9/35 patients (26%) |
| Leal-Noval and colleagues [140] | 51 TBI | Prospective | Hb = 9.0 g/dl | 1 or 2 units RBCs (number of units not specified a prior; 52% received 2 units; mean Hb increased to 10.6 g/dl) General transfusion threshold Hb <10 g/dl | - Mean increment in P_bO$_2$ 3.8 mmHg (16%)
- Increment larger at lower baseline P_bO$_2$
- P_bO$_2$ decreased in 13/51 patients (25%) |
| Leal-Noval and colleagues [141] | 66 TBI (males) | Prospective | Hb = 8.9 g/dl P_bO$_2$ = 21.3 to 26.2 mmHg | 1 or 2 units RBCs number of units not specified a prior; 59% received 2 units; mean Hb increased to 10.2 g/dl General transfusion threshold Hb <39.5 g/dl | - Newer units of blood (<14 days) resulted in greater mean increment in P_bO$_2$ (3.3 mmHg (16%) vs. 2.1 mmHg (8%))
- P_bO$_2$ decreased only in patients receiving older blood (>19 days) |
| Zygun and colleagues [142] | 30 TBI | Prospective RCT | Hb = 8.2 g/dl P_bO$_2$ = 18.8 mmHg | Randomized to transfusion thresholds of 8, 9, or 10 g/dl; 2 units RBCs administered over 2 hours (mean Hb increased to 10.1 g/dl) | - Mean increment in P_bO$_2$ 2.2 mmHg (12%)
- Increment in P_bO$_2$ most prominent when LPR >25
- P_bO$_2$ decreased in 13/30 patients (43%)
- No effect on S$_{jv}$O$_2$ or microdialysis parameters |
| Ekelund and colleagues [162] | 8 SAH (TCD-vaso-spasm) | Prospective | Hb = 11.9 g/dl Isovolemic hemodilution (venesection with infusion of dextran 70 and 4% albumin) | Isovolemic hemodilution (venesection with infusion of dextran 70 and 4% albumin) to mean Hb of 9.2 g/dl | - Outcomes (using 133Xenon and SPECT):
- Increased global CBF (52.3 to 58.6 ml/100 g/min)
- Reduced cerebral vascular resistance
- Reduced oxygen delivery
- Increased ischemic brain volume |
| Muench and colleagues [163] | 10 SAH | Prospective | Hb = 10.6 g/dl P_bO$_2$ = 24.8 mmHg | Volume expansion with HES ± crystalloid to achieve ITBVI >1000 ml/m2; this produced a decline in Hb of 1.3 to 2.0 g/dl (on various days) | - Although hypervolemic/hemodilution produced a slight increment in CBF P_bO$_2$ decreased by an average of 0 to 5 mmHg
- Only induced hypertension was consistently effective at raising P_bO$_2$ |
observed, OEF dropped from 49 to 41%. Thus, it is possible that in vulnerable regions of the brain with relatively high OEF, RBC transfusions could help avoid irreversible infarction. Another recent study of 20 SAH patients found Hb concentrations less than 9 g/dl to be associated with lower \(P_b\text{O}_2 \) and higher LPR [165].

In summary, there is now extensive data to suggest that even moderate degrees of anemia are associated with worse physiologic parameters and clinical outcomes in patients with SAH. However, it is not clear that the use of RBC transfusions can modify these associations. An adequately powered, RCT comparing different transfusion thresholds is urgently required, especially in light of the vulnerability of these patients to delayed cerebral ischemia and the frequency with which they develop anemia.

Ischemic stroke

Because of the known inverse relation between hematocrit and CBF, there has long been interest in the clinical use of hemodilution in the management of acute ischemic stroke [166]. Some studies have suggested that relatively high Hb concentrations may predispose to the development of strokes [167-173], as well as contribute to worse outcomes when cer-
Table 4

Clinical studies assessing the association between hemoglobin concentrations, anemia, or transfusion and subsequent outcomes among patients with traumatic brain injury

Study	Patients	Design and setting	Exposure	Pre-transfusion Hb or Hct	Analysis (variables)	Main result	
Carlson and colleagues [143]	169	Retrospective	Number of days hct <30%	Not reported	Linear regression assessing GOS as continuous variable	- Number of RBC units, lowest hct associated with worse discharge outcome	
		Single-center	Nadir hct				- Number of days hct <30% associated with better outcome
			RBC transfusion				
Steyerberg and colleagues [144]	3554	Post hoc analysis	Admission Hb (median 12.7 g/dl)	Not relevant	Logistic regression (10 covariates)	- Lower Hb associated with poor 3 to 6 month outcome (OR for 14.3 g/dl vs. 10.8 g/dl = 0.78, 0.70 to 0.87)	
		of several RCTs					- Laboratory variables (Hb and glucose) improved prognostic models
		Multi-center					
Duane and colleagues [145]	788	Retrospective	Hb in first 72 hours	Not reported	Logistic regression (age, ISS, total blood products)	- Minimum hemoglobin in first 72 hours associated with hospital mortality	
		Single-center	RBC transfusion				(OR = 0.86, 0.73 to 1.0 per g/dl increment)
							- RBC transfusions not associated with mortality, but with nosocomial infection
Salim and colleagues [146]	1150	Retrospective	Anemia (Hb <9 g/dl; occurred in 46%) and RBC transfusion (46%)	Not reported	Logistic regression (10 covariates)	- RBC transfusion associated with hospital mortality (OR = 2.2, P = 0.004) and complications (OR = 3.7, P < 0.0001)	
		(prospective database)					- Anemia associated with adverse outcomes only when transfusion not included in model
		Single-center					
George and colleagues [147]	82 (Hb 8.0 to 10.0 g/dl)	Retrospective	RBC transfusion (52%)	8.6 g/dl	Cox proportional hazard regression (age, motor GCS, blood ethanol, lowest Na⁺, complications)	RBC transfusion predicted mortality (P < 0.05)	
#Van Beek and colleagues [148]	3872	Post hoc analysis	Admission Hb	Not relevant	Logistic regression (age, motor score, pupil reactivity)	- Lower Hb associated with higher risk of death/vegetative state at 3 to 6 months (OR = 0.69, 0.60 to 0.81, for 75th percentile vs. 25th percentile)	
		of several RCTs					
		Multi-center					
was also supported by a study using ^{133}Xe to assess CBF in hematocrit levels of about 42 to 45% [172,175]. This range outcomes have generally been observed with mid-range [175,177,179-184]. The lowest risk of stroke and the best associated with larger infarct size and worse outcomes the reduction in hematocrit induced by the highest doses of rather than only hemodilution. In a phase II dose-finding study, reductions in hematocrit with the use of colloids and/or phlebotomy, the reductions were relatively modest, generally not beyond 37 to 38% [192-196].

More recently, several animal studies and phase II human trials have suggested that hemodilution with relatively high doses of albumin may reduce infarct size and enhance the efficacy of thrombolytic therapy [197-200]. It is likely that this effect was observed, in part, because of the unique properties of albumin, rather than only hemodilution. In a phase II dose-finding study, the reduction in hematocrit induced by the highest doses of albumin averaged 6 to 10% [198,199].

In summary, there is currently no routine role for hemodilution in the management of acute ischemic stroke. Whether transfusing anemic stroke patients with Hb concentrations lower than 9 to 11 g/dl is beneficial has not been well evaluated.

Intracerebral hemorrhage

There has been controversy regarding the importance of cerebral ischemia in causing secondary brain injury after ICH. Early studies had suggested that an expanding intracerebral hematoma could cause mechanical compression and vasoconstriction of the surrounding vasculature, thereby producing a ’perihematoma penumbra’ [201-203]. Imaging with PET, CT perfusion scans, and MRI have confirmed that the majority of patients with ICH have a surrounding rim of hypoperfusion [91,204-206]. The biochemistry of this region appears to be similar to that of traumatic cerebral contusions [207]. However, OEF is not increased in the perihematomatous tissues, suggesting that this hypoperfusion is due to reduced cerebral metabolism, rather than true ischemia [91]. Thus, mild reductions in Hb concentration are unlikely to have a major impact in contributing to neuronal death. Nevertheless, it remains

debatable whether absolute values of OEF, rather than comparison to baseline values, are critical for clinical decision-making in this patient population.

Table 4 (Continued)

Clinical studies assessing the association between hemoglobin concentrations, anemia, or transfusion and subsequent outcomes among patients with traumatic brain injury

Study	Methodology	Outcome Measure	Analysis Details	Outcomes
Schirmer-Makalsen and	Retrospective Single-	Hb ever <8 g/dl (22%)	Logistic regression (10 covariates)	A single Hb <8 g/dl did not predict adverse outcome
McIntyre and colleagues	center			
		Comparison of transfusion	Logistic regression (age, APACHE II, PAC use)	• 30-day mortality 17% in restrictive group vs. 13% in liberal group (P = 0.64)
		thresholds of 7.0 g/dl vs. 10.0 g/dl		Development of MOD and ICU LOS similar in both groups
Robertson and colleagues	Prospective Single-	Hb at time of CBF determination	Logistic regression (age, CBF, GCS, CPP, CMRO2)	• Lower Hb associated with unfavorable GOS after 3 months
	center			

‡ Based, in part, on same datasets

APACHE = Acute Physiology and Chronic Health Evaluation; CBF = cerebral blood flow; CMRO2 = cerebral metabolic rate; CPP = cerebral perfusion pressure; GCS = Glasgow Coma Scale; GOS = Glasgow Outcome Scale; Hb = hemoglobin; hct = hematocrit; ICU = intensive care unit; ISS = injury severity score; LOS = length of stay; MOD = multiple organ dysfunction; OR = odds ratio; PAC = pulmonary artery catheter; RBC = red blood cell; RCT = randomized controlled trial.
Table 5

Clinical studies assessing the association between hemoglobin concentrations, anemia, or transfusion and subsequent outcomes among patients with aneurysmal subarachnoid hemorrhage

Study	Patients	Design and setting	Exposure	Mean pre-transfusion Hb/Hct	Analysis (variables)	Main result
‡Kramer and colleagues [28]	245	Retrospective Single-center	Anemia (nadir Hb <10 g/dl) - RBC transfusion (35%)	9.5 g/dl No transfusion protocol	Logistic regression (WFNS score, age, vasospasm, modified Fisher score)	- Anemia and transfusion associated with poor 6 week outcome (association stronger for transfusion) - RBCs associated with nosocomial infection - Age of blood not associated with complications
#Kramer and colleagues [154]	245	Retrospective Single-center	Daily nadir Hb over 2 weeks	9.5 g/dl No transfusion protocol	GEE to account for correlated data (WFNS score, age, vasospasm, modified Fisher score)	- Hb and decline in Hb over time predict poor outcome - Association between Hb and outcome stronger among high grade patients
†Naidech and colleagues [155]	611	Retrospective (prospective database) Single-center	Mean and nadir Hb over 2 weeks - 39% transfused	Not reported No transfusion protocol	Multinomial regression (Hunt-Hess, age, cerebral infarction)	Higher nadir (but not mean) Hb associated with better outcome after 3 months (OR = 0.57 per 10 g/dl increase; P = 0.04)
Naidech and colleagues [156]	103	Retrospective (prospective database) Single-center	Mean Hb over 2 weeks - 47% transfused	9.2 g/dl No transfusion protocol	Logistic regression (Hunt-Hess, age, angiographic vasospasm)	Higher 2 week mean Hb associated with better outcome at discharge (OR = 1.8; P = 0.02)
Tseng and colleagues [157]	160	Post hoc analysis 2 RCTs Single-center	RBC transfusion (19%)	Not reported No transfusion protocol	Logistic regression (age, WFNS, IVH, postoperative deficits, sepsis, DIDs)	Transfusion associated with worse outcome at discharge (OR = 4.5, P = 0.04) but not 6 months - More colloid use predicted lower hct and need for transfusion
†Wartenberg and colleagues [158]	576	Retrospective (prospective database) Single-center	Anemia (Hb <9 g/dl treated with transfusion; 36% of cohort)	Not reported No transfusion protocol	Logistic regression (Hunt-Hess, age, cerebral infarction, re-bleeding, aneurysm size >10 mm)	Anemia associated with worse 3 month outcome (OR = 1.8; P = 0.02)
* DeGeorgia and colleagues [159]	166	Retrospective Single-center	RBC Transfusion (49%)	Not reported No transfusion protocol	Logistic regression (Hunt-Hess, APACHE II)	Transfusion associated with worse outcome at discharge among patients with vasospasm, not without (OR = 2.9, CI = 1.1 to 7.8)
Smith and colleagues [160]	441	Retrospective (prospective database) Single-center	RBC transfusion (61%)	Intra-operative: 38.6% Post-operative: 32.0% No transfusion protocol	Logistic regression (Hunt-Hess, Fisher, smoking, intra-operative rupture, delay to surgery)	- Intraoperative transfusion associated with poor 6 month outcome (OR = 2.4, CI = 1.3 to 4.5) - Postoperative transfusion associated with angiographic vasospasm (OR = 1.7, CI = 1.0 to 2.6)

‡ & †: studies used same datasets; *: published only as abstract

APACHE = Acute Physiology and Chronic Health Evaluation; CI = 95% confidence intervals; DID = delayed ischemic deficit; GEE = generalized estimating equation; Hb = hemoglobin; hct = hematocrit; IVH = intraventricular hemorrhage; OR = odds ratio; RBC = red blood cell; RCT = randomized controlled trial; WFNS = World Federation of Neurological Surgeons score.
Table 6

Studies assessing the association between hemoglobin concentrations or anemia and subsequent clinical outcomes among patients with acute ischemic stroke

Study	Patients	Design and setting	Exposure	Outcome	Main result	Comment
Sacco and colleagues [174]	3481 ischemic stroke	Retrospective	Baseline hct (patients divided into quartiles)	Death at 28 days	Hct >46% associated with death, but only among women	Hct ≤40% represented lowest quartile; effects of more extreme anemia not reported
Diamond and colleagues [175]	1012 ischemic stroke	Retrospective	Baseline hct (median 41%; inter-quartile range 38 to 44%)	Discharge home (rather than nursing facility)	High and low hct associated with worse outcome (U shaped curve) Optimal hct 45%	Only 2% of patients had hct <30% at time of their stroke
Lowe and colleagues [177]	270 ischemic stroke	Retrospective	Baseline hct	Death in hospital	Patients with high hct (≥50%) had higher mortality (66 to 71%)	Elderly (≥75) with hct <40% also had higher mortality (65%)
Allport and colleagues [178]	64 ischemic stroke	Prospective	Baseline hct (median 42%; range 33 to 48%)	Reperfusion, infarct growth on serial MRI	Higher hct associated with less reperfusion (OR = 0.53, P < 0.0001) and more infarct growth (OR = 1.26, P < 0.05)	This was a study of the effects of high hct; few patients were anemic
†Huang and colleagues [179]	774 ischemic stroke	Prospective	Anemia (Hb <13 g/dl for men, <12 g/dl for women) (21%)	Death and mRS ≥3 at 3 years	Anemic patients more likely to die (OR = 2.2, P = 0.02) and to have a poor neurological outcome (87% vs. 60%, P = 0.07)	Numerous potential confounders not adjusted for; severity of anemia not well characterized
†Huang and colleagues [180]	66 ischemic stroke	Prospective	Anemia (Hb <13 for men, <12 for women)	Death or recurrent stroke at 2 years	Anemia associated with death or recurrent stroke at 2 years (OR = 5.1, P = 0.012)	Numerous potential confounders not adjusted for; severity of anemia not well characterized
Nybo and colleagues [181]	250 ischemic stroke	Retrospective	Anemia (Hb <13 g/dl for men, <12 g/dl for women) (15%)	Death at 6 months	Anemia associated with greater risk of death (OR = 3.6, CI = 1.4 to 9.3)	Numerous potential confounders not adjusted for; severity of anemia not well characterized
Bhatia and colleagues [182]	116 ischemic or hemorrhagic stroke	Retrospective	Baseline Hb	Death at 30 days	Hb not associated with risk of death	Degree of anemia relatively mild
Wade and colleagues [183]	1377 symptomatic cerebrovascular disease	Retrospective (post hoc review of prospective RCT)	Hb ≥15 g/dl vs. ≥15 g/dl at study entry	Stroke	Patients with Hb ≥15 had similar outcomes to patients with Hb <15 g/dl	This was a study of the effects of high Hb; few patients were anemic
LaRue and colleagues [184]	2077 ischemic or hemorrhagic stroke	Retrospective (prospective database)	Baseline hct (patients divided into quartiles)	Death in hospital	Hct not predictive of death (neither when high nor low)	Neurologic outcomes (other than death) not reported

CI = confidence interval; Hb = hemoglobin; hct = hematocrit; ICA = internal carotid artery; MRI = magnetic resonance imaging; mRS = modified Rankin scale; OR = odds ratio; RCT = randomized controlled trial
uncertain whether perihematomal tissues tolerate anemia as well as healthy brain.

Use of hemoglobin-based blood substitutes

Hb-based blood substitutes (HBBS) have theoretical advantages over other fluids in the resuscitation of neurocritical care patients, because they have the potential to achieve the CBF-enhancing effects of hemodilution, while concomitantly maintaining, or even raising, \(\text{C}_2\text{O}_2 \). Several animal studies performed in the setting of experimental ischemic stroke, TBI, and SAH-induced vasospasm have supported this concept [208-221]. Alternatively, free Hb may also have numerous deleterious effects, probably mediated, in large part, by scavenging of NO [222]. Although not all products are identical, a recent meta-analysis of RCTs suggested that their use is associated with an increased risk of death and myocardial infarction [223]. One phase II RCT involving 85 patients with ischemic stroke reported worse neurological outcomes with the use of diaspirlin cross-linked Hb [224]. Of the five RCTs involving trauma patients, none specifically assessed the subgroup of patients with TBI, although the largest study reported no statistically significant interaction between HBBS and admission Glasgow coma scale on mortality [225-229]. Two of the three RCTs in the setting of cardiac surgery reported the occurrence of perioperative stroke; there were no differences between HBBS-treated and control patients [230,231]. Thus, although the use of HBBS in neurocritical care should be further investigated, there is currently no role for the routine use of these products.

Conclusions

Anemia is common in neurocritical care patients, is associated with worse outcomes, and should be avoided as much as possible with blood conservation strategies. Although Hb concentrations as low as 7 g/dl are well tolerated by most critically ill patients [25], there is ample data from animal studies, as well as human physiologic and observational studies to suggest that such a severe degree of anemia could be harmful in the brain-injured patient. Thus, in our practice, we frequently transfuse selected patients with Hb concentrations less than 8 to 9 g/dl. However, because allogeneic RBCs have multiple potentially deleterious effects, it cannot be assumed that the use of transfusions to ‘correct’ Hb levels alters the association between anemia and adverse outcomes. The impact of the duration of blood storage on the neurologic implications of transfusion requires further investigation. Unfortunately, existing guidelines provide little guidance to clinicians in deciding when to transfuse anemic stroke and neurocritical care patients [232-236]; clearly, RCTs are needed.

Competing interests

The authors declare that they have no competing interests.

Key messages

- Despite an increment in cerebral blood flow, even moderate reductions in Hb concentration lead to less overall cerebral oxygen delivery, resulting in lower \(\text{P}_{\text{a}}\text{O}_2 \) and ‘metabolic distress’ (higher OEF and LPR).
- Although the relation has not been proven with certainty to be causative, anemia is consistently associated with worse outcomes among neurocritical care patients.
- Despite some beneficial physiologic effects (increased \(\text{P}_{\text{a}}\text{O}_2 \) and reduced OEF), it remains uncertain whether transfusion can improve cerebral metabolism and help salvage tenuous ‘penumbral’ brain tissue, thereby improving neurologic recovery.
- Although a transfusion threshold of 7 g/dl is safe in many general critical care patients, it remains unclear if this is also true in neurocritical care patients.
- The duration of red blood cell storage may have implications on the cerebral consequences of transfusion.

Authors’ contributions

AHK was responsible for the conception and design of the study, the analysis and interpretation of the data, and the drafting and revision of the manuscript. DAZ was responsible for the analysis and interpretation of data, and the revision of the manuscript. Both authors approved the final version of the manuscript.

References

1. Al Thanayan E, Bolton C, Hichici D, Savard M, Teitelbaum J, Young B, Zygun D: Neurocritical care in Canada: evolving streams in a new discipline. Can J Neurol Sci 2008, 35:405-408.
2. Elf K, Nilsson P, Enblad P: Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit Care Med 2002, 30:2129-2134.
3. Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinson PJ, Kirkpatrick P: Specialist neurocritical care and outcome from head injury. Intensive Care Med 2002, 28:547-553.
4. Miller JD, Sweet RC, Narayan R, Becker DP: Early insults to the injured brain. JAMA 1978, 240:459-442.
5. Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA: The role of secondary brain injury in determining outcome from severe head injury. J Trauma 1993, 34:216-222.
6. McHugh GS, Engel DC, Butcher I, Steyerberg EW, Lu J, Mushkudiani N, Hernandez AV, Marmarou A, Maas AI, Murray GD: Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma 2007, 24:287-293.
7. Henzler D, Cooper DJ, Tremayne AB, Rossaint R, Higgins A: Early modifiable factors associated with fatal outcome in patients with severe traumatic brain injury: a case control study. Crit Care Med 2007, 35:1027-1031.
8. Iron Deficiency Anemia Assessment, Prevention, and Control: A guide for programme managers [http://www.idac.org/2001/WHO_IDA_HIB_01.3.pdf]
9. Rodriguez RM, Corwin HL, Gettinger A, Conwin MJ, Gubler D, Pearl RG: Nutritional deficiencies and blunted erythropoietin response as causes of anemia of critical illness. J Crit Care 2001, 16:36-41.
10. Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs L, Webb A, Meier-Hellmann A, Nollet G, Peres-Bota D: Anemia and blood
transfusion in critically ill patients. JAMA 2002, 288:1499-1507.

11. Corwin HL, Gettings A, Pearl PG, Fink MP, Levy MM, Abraham E, MacIntyre NR, Shabot MM, Duh MS, Shapiro MJ: The CRIT Study: Anemia and blood transfusion in the critically ill—current practice in the United States. Crit Care Med 2004, 32:39-52.

12. Nguyen BV, Bota DP, Melot C, Vincent JL: Time course of hemoglobin concentrations in nonbleeding intensive care unit patients. Crit Care Med 2003, 31:406-410.

13. Scharte M, Fink MP: Red blood cell physiology in critical illness. Crit Care Med 2003, 31:S561-S567.

14. Rogiers P, Zhang H, Leeman M, Nagler J, Neels H, Melot C, Vincken JL: Erythropoietin response in blunted in critically ill patients. Intensive Care Med 1997, 23:159-162.

15. van Iperen CE, Gkala CA, Kraaijgenhagen RJ, Braam BG, Marx JJ, Wiel A van de: Response of erythropoiesis and iron metabolism to anemia in critically ill patients. Transfusion 2003, 43:1213-1223.

16. Darveau M, Denault AY, Blais N, Notebaert E: Is the timing of red cell transfusions in critical illness important? Crit Care Med 2004, 32:2773-2778.

17. Darveau M, Denault AY, Blais N, Notebaert E: Bench-to-bedside review: Iron metabolism in critically ill patients. Crit Care Med 2004, 32:36-42.

18. Walsh TS, Saleh EE, Blais N, Notebaert E: Anemia during critical illness. Crit Care Med 2004, 32:1197-1204.

19. Smoller BR, Kruskall MS: Phlebotomy for diagnostic laboratory testing in critically ill patients: Patterns of usage and effects on transfusion requirements. N Engl J Med 1986, 314:1233-1235.

20. Tarpey J, Lawler PG: Is trophic erythropoiesis in critical illness? A survey of venesection in patients in the intensive therapy unit. Anesthesia 1990, 45:396-398.

21. Zoniaris JE, Seneff MG, Sn X, Wagner DP, Knaus WA: Evaluating laboratory usage in the intensive care unit: patient and institutional characteristics that influence frequency of blood sampling. Crit Care Med 1997, 25:737-748.

22. Berna LA, Zents SB, Kopcaska VL, Novodvorskha IS, Krsanova L, Delch A, Delch E, Delch M, Delch G: Morphologic changes of red blood cells during hemorragic shock replicate changes of aging. Shock 2001, 15:467-470.

23. Walsh TS, Garrioch M, Maciver C, Lee RJ, MacKirdy F, McClelland DB, Kinless J, Wallis JR: Transfusion requirements for intensive care units adhering to evidence-based transfusion guidelines. Transfusion 2004, 44:1405-1411.

24. French CJ, Bellomo R, Finer SR, Lipman J, Chapman M, Boyce NW: Appropriateness of red blood cell transfusion in Australasian intensive care practice. Med J Aust 2002, 177:548-551.

25. Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E: A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators; Canadian Critical Care Trials Group. Transfusion 1999, 39:409-417.

26. Lacroix J, Hebert PC, Hutchison JS, Hume HA, Tucci M, Ducruet T, Gauvin F, Collet JP, Toledano BJ, Robillard P, Joffe A, Barient D, Meert K, Peters MJ: TRIPICU Investigators; Canadian Critical Care Trials Group; Pediatric Acute Lung Injury and Sepsis Investigators Network. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 2007, 356:1609-1619.

27. Sera MJ, Rivers RM, Muizelaar JP, Battistella FD, Utter GH: Transfusion practices for acute traumatic brain injury: a survey of physicians at US trauma centers. Intensive Care Med 2009, 35:480-488.

28. Kramer AH, Gurka MJ, Nathan B, Dumont AS, Kassell NF, Bleck TP: Complications associated with anemia and blood transfusion in patients with aneurismal subarachnoid hemorrhage. Crit Care Med 2006, 34:2070-2075.

29. Pendem S, Rana S, Manno EM, Gajic O: A review of red cell transfusion in the neurological intensive care unit. NeuroCrit Care 2006, 4:35-67.

30. Vavilala MS, Lee LA, Lam AM: Cerebral blood flow and vascular physiology. Anesthesiol Clin North America 2002, 20:274-264.

31. Marshall RS: The functional relevance of cerebral hemodynamics: why blood flow matters to the injured and recovering brain. Curr Opin Neurol 2004, 17:705-709.

32. Udomhorn Y, Armstead WM, Vavilala MS: Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatr Neurol 2008, 38:229-234.

33. Hatcher JD, Chiu LK, Jennings DB: Anemia as a stimulus to aerobic and carotid chemoreceptors in the cat. J Appl Physiol 1978, 44:986-970.

34. Chapler OF, Cain SM: The physiologic reserve in oxygen carrying capacity: studies in experimental hemodilution. Can J Physiol Pharmacol 1985, 64:7-12.

35. Habler OP, Kleen MS, Podstakhsche AH, Hutter JW, Tiede M, Kemmig GL, Welte MW, Corso CC, Messmer KE: The effect of acute normovolemic hemodilution (ANH) on myocardial contractility in anesthetized dogs. Anesth Analg 1996, 82:451-458.

36. Murray JF, Escobar E, Rapaport E: Effects of blood viscosity on hemodynamic responses in acute normovolemic anemia. Am J Physiol 1969, 216:638-642.

37. Forget NO: Relationship between residual viscosity and cardiac output in acute experimental anemia. J Appl Physiol 1975, 45:453-456.

38. Hebert PC, Linden P Van der, Biro G, Hu LQ: Physiologic aspects of anemia. Crit Care Clin 2004, 20:187-212.

39. Vespa PM: The implications of cerebral ischemia and metabolic dysfunction for treatment strategies in neurointensive care. Curr Opin Crit Care 2006, 12:119-123.

40. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA: Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 2005, 25:763-774.

41. Senda M, Alpert NM, Mackay BC, Buxton RB, Correia JA, Weise SB, Ackerman RH, Dorer D, Buonanno FS: Evaluation of the 11C P02 positron emission tomographic method for measuring brain pH. II. Quantitative pH mapping in patients with ischemic cerebrovascular diseases. J Cereb Blood Flow Metab 1989, 9:859-873.

42. Coles JP, Fryer TD, Smielewski P, Rice K, Clark JC, Pickard JD, Menon DK: Defining ischemic burden after traumatic brain injury using 18F PET. J Neurol Neurosurg Psychiatry 2004, 74:21-101.

43. Sakoh M, Oстерgaard L, Rohl L, Smith DF, Simonsen CZ, Sorenson JC, Poulsen PV, Glydensted C, Sakaki S, Gjedda A: Regional cerebral perfusion and acute cerebral hyperemia as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first six hours after stroke in pigs. J Neurosurg 2000, 93:647-657.

44. Verspohl RB, Viele M, Ajzenstein I, Goldberg S, Leung JM, Fisher DM, Drew B, Foster E, Zaroff JG: Human cardiovascular and metabolic response to acute, severe isovolemic anemia. JAMA 1998, 279:217-231.

45. Kotheaveale A, Banki NM, Kopelnik A, Ylaragadda S, Lawton MT, Ko N, Smith WS, Drew B, Zaroff JC, Pescovitz OH: Regional and whole body perfusion abnormalities after subarachnoid hemorrhage. Neurocrit Care 2006, 4:199-205.

46. Hare GM, Tait AKY, McLaren AT, Ragoonanan TE, Yu J, Mazer CD: Anemia and blood loss in 2008, 107:1356-1370.

47. Bruder N, Cohen B, Pellissier D, Francois G: The effect of hemodilution on cerebral blood flow velocity in anesthetized patients. Anesth Analg 1998, 86:320-324.

48. Rebel A, Ulatowski JA, Kwanska H, Bucci E, Koehler RC: Cerebrovascular response to acute, severe isovolemic hypotension, plasma viscosity, and CO2. Am J Physiol Heart Circ Physiol 2003, 285:H1600-H1608.

49. van Bommel J, Trouwborst A, Schwarte L, Siegemund M, Ince C, Henny C: Intestinal and cerebral oxygenation during severe isovolemic hemodilution and subsequent hyperoxic ventilation in a pig model. Anesthesiology 2002, 97:660-670.

50. Hudetz AG, Wood JD, Kampine JP: 7-Nitroindazole impedes erythrocyte flow response to isovolemic hemodilution in the cerebral capillary circulation. J Cereb Blood Flow Metab 2000, 20:220-224.

51. Hudetz AG, Shen H, Kampine JP: Nitric oxide from neuronal NOS plays critical role in cerebral flow response to hypoxia. Am J Physiol 1998, 274:H982-989.

52. Hare GM, Mazer CD, Mak W, Garczyński RM, Hum KM, Kim SY, Wylard L, Ban A, Qu R, Baker AJ: Hemodilutional anemia is...
associated with increased cerebral neuronal nitric oxide synthase gene expression. J Appl Physiol 2003, 94:2058-2067.

53. Pluchtl W, Lian BL, Cook BJ, Oreszczuk TA: Cerebral response to hemodilution during cardiopulmonary bypass in dogs: the role of nitric oxide synthase. Br J Anaesth 1999, 82:237-243.

54. Ulatowski JA, Buccu E, Nishikawa T, Rzynska Y, Williams MA, Takeshima R, Traystman RJ, Koehler RC: Cerebral O2 transport with hematocrit reduced by cross-linked hemoglobin transfusion. Am J Physiol 1996, 270:H446-475.

55. Todd MM, Farrell S, Wu B: Cerebral blood flow during hypoxemia and hemodilution in rabbits: different roles for nitric oxide? J Cereb Blood Flow Metab 1997, 17:134-139.

56. Hare GM, Worrall JM, Baker AJ, Liu E, Sikich N, Mazer CD: Beta2 adrenergic antagonist inhibits cerebral cortical oxygen delivery after severe hemodilution in rats. Br J Anaesth 2006, 97:617-623.

57. Korosue K, Heros RC: Mechanism of cerebral blood flow augmentation by hemodilution in rabbits. Stroke 1992, 23:1487-1492.

58. Cole DJ, Drummond JC, Patel PM, Marcantonio S: Effects of viscosity and oxygen content on cerebral blood flow in ischemic and normal rat brain. J Neurol Sci 1994, 124:15-20.

59. Tu YK, Kuo MF, Liu HM: Cerebral oxygen transport and metabolism during graded isovolemic hemodilution in experimental global ischemia. J Neurosci Res 1997, 46:270:2025-2031.

60. Tu YK, Maraden PA, Mazer CD, Baker AJ, Stewart DJ, Tsui AK, Li X, Yucey R, Robb M, Boyd SR, Liu E, Yu J, Hare GM: Increased expression of HIF-1alpha, nNOS, and VEGF in the brain oxygenation in anemic critically ill patients. J Cereb Blood Flow Metab 2007, 27:R403-414.

61. Weiskopf RB, Kramer JH, Viele M, Neumann M, Feiner JR, Watson JJ, Hopf HW, Toy P: Acute severe isovolemic anemia impairs cognitive function and memory in humans. Anesthesiology 2000, 92:1646-1652.

62. Weiskopf RB, Toy P, Hopf HW, Feiner J, Finlay HE, Takahashi M, Borgen A, Struppler C, Amoroff MF: Acute isovolemic anemia impairs central processing as determined by P300 latency. Clin Neurophysiol 2005, 116:1028-1032.

63. Ge YL, Lv R, Zhou W, Ma XX, Zhong TD, Duan ML: Brain damage following severe acute normovolemic hemodilution in combination with controlled hypotension in rats. Acta Anaesthesiol Scand 2007, 51:1313-1337.

64. Lee LA, Deem S, Glenny RW, Townsend I, Moulding J, An D, Treggiari MM, Lam A: Effects of anemia and hypotension on porcine optic nerve blood flow and oxygen delivery. Anesthesiology 2008, 108:34-47.

65. Czinn EA, Salem MR, Crystal GJ: Hemodilution impairs hypocapnia-induced vasconstrictor responses in the brain and spinal cord in dogs. Anesthesiol Analg 1995, 80:492-498.

66. Tu YK, Liu HM: Effects of isovolemic hemodilution on hemodynamics, cerebral perfusion, and cerebral vascular reactivity. Stroke 1996, 27:441-445.

67. Kuwabara Y, Sasaki M, Hirakata H, Koga H, Nakagawa M, Chen T, Kaneko K, Masuda K, Fujishima M: Cerebral blood flow and vasodilator capacity in anemia secondary to chronic renal failure. Kidney Int 2002, 61:564-569.

68. Timmous A, Fergusson D, Yee IC, Hebert PC: ABLE Investigators; Canadian Critical Care Trials Group. Clinical consequences of red cell storage in the critically ill. Transfusion 2006, 46:2141-2147.

69. Bolozzini TA, Zaets SB, Morgan C, Spillert CR, Kamiyama M, Spolarics Z, Deitich EA, Machiedo GW: Influence of storage on red blood cell rheological properties. J Surg Res 2002, 102:6-12.

70. Tsiac AG, Cabralles P, Intaglietta M: Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion 2004, 44:1626-1634.

71. Heaton A, Keegan T, Holme S: In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells. Br J Haematol 1989, 71:131-136.

72. Marik PE, Sibbald WJ: Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 1993, 269:3024-3029.

73. Walsh TS, McArdle F, McLellans SA, Maciver C, Maginnins M, Prescott RJ, McClelland DB: Does the storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients? Crit Care Med 2002, 30:864-70.

74. Suttner S, Piper SN, Kumbel B, Lang K, Rohn KD, Isfog, Boldt J: The influence of allogeneic red blood cell transfusion compared with 100% oxygen ventilation on systemic oxygen transport and skeletal muscle oxygen tension after cardiac surgery. Anesth Analg 2004, 99:247-252.

75. Todd MM, Farrell S, Wu B: Cerebral blood flow during hypoxemia and hemodilution in rabbits: different roles for nitric oxide? J Cereb Blood Flow Metab 1997, 17:134-139.

76. Hare GM, Worrall JM, Baker AJ, Liu E, Sikich N, Mazer CD: Beta2 adrenergic antagonist inhibits cerebral cortical oxygen delivery after severe hemodilution in rats. Br J Anaesth 2006, 97:617-623.

77. Marik PE, Sibbald WJ: Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 1993, 269:3024-3029.

78. Suttner S, Piper SN, Kumbel B, Lang K, Rohn KD, Isfog, Boldt J: The influence of allogeneic red blood cell transfusion compared with 100% oxygen ventilation on systemic oxygen transport and skeletal muscle oxygen tension after cardiac surgery. Anesth Analg 2004, 99:247-252.
128. Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatourou P, Young HF: Ultra-early evaluation of reional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 1992, 77:360-368.

129. Marion DW, Darby J, Yonas H: Acute regional cerebral blood flow changes caused by severe head injuries. J Neurosurg 1991, 74:407-414.

130. Gopinath SP, Robertson CS, Contant CF, Hayes C, Feldman Z, Narayan RK, Grossman RG: Jugular venous desaturation and outcome after head injury. J Neurosurg Psychiatry 1994, 57:717-723.

131. Van Santbrink H, Maas AI, Avezaat CJ: Continuous monitoring of partial pressure of brain oxygen tension in patients with severe head injury. Neurosurgery 1996, 38:21-31.

132. Valadka AB, Gopinath SP, Contant CF, Uzura M, Robertson CS: Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med 1998, 26:1576-1581.

133. Brink WA van den, van Santbrink H, Steyerberg EW, Avezaat CJ, Suazo JA, Hogesteger C, Jansen WJ, Koos LM, Vermeulen J, Maas AI: Brain oxygen tension in severe head injury. Neurosurgery 2000, 46:868-876.

134. Citerio GM, Vinec TO, Yundt K, Zazulia AR, Ayagariyar V, Dacey RG Jr, Grubb RL, Powers WJ: Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J Neurosurg 2002, 96:103-108.

135. Coles JP: Regional ischemia after head injury. Curr Opin Crit Care 2004, 10:20-27.

136. Abate MG, Trivedi M, Fryer TD, Smielewski P, Chatfield DA, Wilkins GB, Aigbirhio F, Carpenter TA, Pickard JD, Menon DK, Coles JP: Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care 2008, 9:319-325.

137. Nortje J, Coles JP, Timmofeev I, Fryer TD, Aigbirhio F, Smielewski P, Outtrim JG, Chatfield DA, Pichard JD, Hutchinson PJ, Gupta AK, Menon DK: Effect of hypoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med 2008, 36:273-281.

138. Hare GM, Mazer CD, Hutchison JS, McLaren AT, Liu E, Rassouli AK: The effect of anemia and hypertension on regional cerebral blood flow, intracranial pressure, and outcome, poor outcome, and death after subarachnoid hemorrhage. Neurosurgery 2008, 59:775-779.

139. Ekelund A, Reinstrup P, Rydina E, Ancelin R: MR imaging of the brain 1 year after aneurysmal subarachnoid hemorrhage: randomized study comparing surgical with endovascular treatment. Radiology 2008, 246:543-552.

140. Schirmer-Makalsen K, Vik A, Gisvold SE, Skandsen T, Hynne H, Kleppstad P: Critical Care 2009, 717-723.

141. Kramer AH, Zygyn DA, Bleck TP, Dumont AS, Kassell NF, Nathan BH: Relationship between hemoglobin concentrations and outcomes across subgroups of patients with aneurysmal subarachnoid hemorrhage. Neurosurg 2009, 10:20-27.

142. Naidich AM, Drescher J, Ault ML, Shaibani A, Batjer HH, Alberts MJ: Higher hemoglobin is associated with less cerebral infarction, poor outcome, and death after subarachnoid hemorrhage. Neurosurgery 2008, 59:775-779.

143. Naidich AM, Jovanovic B, Wartenberg KE, Parra A, Ostadpovich N, Connolly ES, Mayer SA, Commichau C: Higher hemoglobin is associated with improved outcome after subarachnoid hemorrhage. Crit Care Med 2007, 35:2383-2389.

144. Kramer AH, Zygyn DA, Bleck TP, Dumont AS, Kassell NF, Nathan BH: Relationship between hemoglobin concentrations and outcomes across subgroups of patients with aneurysmal subarachnoid hemorrhage. Neurosurg 2009, 10:20-27.

145. Zygyn DA, Bleck TP, Dumont AS, Commichau C: Higher hemoglobin is associated with improved outcome after subarachnoid hemorrhage. Crit Care Med 2007, 35:2383-2389.

146. Smith MJ, Le Roux PD, Elliott JP, Winn HR: Blood transfusion and increased risk for vasospasm and poor outcome after subarachnoid hemorrhage. J Neurosurg 2004, 101:1-7.

147. Sen J, Bello A, Albon H, Morgan L, Petzold A, Kitchen N: Triple-H therapy in the management of aneurysmal subarachnoid hemorrhage. Lancet Neurol 2003, 2:614-621.

148. Deodar A, Reinsph R, Tew MD, Sheline RE: Predicting outcome after subarachnoid hemorrhage. Acta Neurochir 2002, 20-27.

149. Muench E, Horn P, Baulau C, Roth H, Philips P, Hermann P, Quintel M, Schmiedek P, Vajkoczy P: Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Acta Neurochir 2002, 204:703-712.

150. Dhari R, Zazulia A, Veeden T, Dringer M: Red blood cell transfusion increases cerebral oxygen delivery after subarachnoid hemorrhage. Neurocrit Care 2008, 9:55.

151. Oddo M, Milby A, Chatterjee K, Matichay-Wilensky E, Stiefel M, Kolke WA, Levine JM, Le Roux PD: Hemoglobin level and cerebral metabolism in patients with aneurysmal subarachnoid
hemorrhage: a microdialysis study. Stroke 2009, 40:1275-1281.

166. Grotta J, Ackerman R, Correa J, Fallick G, Chang J: Whole blood viscosity parameters and cerebral blood flow. Stroke 1982, 13:296-301.

167. Roh JK, Kang DW, Lee SH, Yoon BW, Chang KH: Significance of acute multiple brain infarction on diffusion-weighted imaging. Stroke 2000, 31:688-694.

168. Arauz A, Murillo L, Cantu C, Barinagarrementeria F, Higuera J: Prospective study of single and multiple lacunar infarcts using magnetic resonance imaging: risk factors, recurrence, and outcome in 175 consecutive cases. Stroke 2003, 34:2453-2458.

169. Kannel WB, Gordon T, Wolf PA, McNamara P: Elevated hematocrit is associated with a higher mortality from cardiovascular disease. Stroke 1983, 14:784-786.

170. Huang WY, Chen IC, Meng L, Weng WC, Peng TI: The influence of hematocrit on carotid stenosis and cerebral infarction. Lancet 1981, 8114-115.

171. Nybo M, Kristensen SR, Mickley H, Jensen JK: Hemodilution for brain protection in a canine model of focal cerebral ischemia. J Neurosurg 2000, 92:429-434.

172. Bhatia RS, Garg RK, Gaur SP, Kar AM, Shukla R, Agarwal A, Verma R: Predictive value of routine hematological and biochemical parameters on 30-day fatality in acute stroke. Neurol India 2004, 52:220-223.

173. Wade JP, Taylor DW, Barnett HJ, Hachinski VC: Hemoglobin concentration and prognosis in symptomatic obstructive cerebrovascular disease. Stroke 1989, 18:80-81.

174. Lee SH, Heros RC, Mullan JC, Koroske K: Optimum degree of hemodilution for brain protection in a canine model of focal cerebral ischemia. J Neurosurg 1994, 80:469-475.

175. Reasoner DK, Ryu KH, Hindman BJ, Cutkomp J, Smith T: Marked hemodilution increases neurologic injury after focal cerebral ischemia in rabbits. Anesth Analg 1996, 82:561-67.

176. Kusonoki M, Kimura K, Murakami M, Kameyama M: Importance of the hematocrit as a risk factor in cerebral infarction. Stroke 1994, 25:163-168.

177. Tohgi H, Yamanouchi H, Murakami M, Kameyama M: Combined neuroprotection and reperfusion therapy for stroke. Effect of luteolizole and diapirin cross-linked hemoglobin in experimental focal ischemia. Stroke 1996, 27:1571-1576.

178. Bowes MP, Burhop KE, Zvin JA: Osmotic cross-linked hemo-

Available online http://ccforum.com/content/1/3/R89
221. Cole DJ, Nary JC, Reynolds LW, Patel PM, Drummond JC: Effects of diaspirin cross-linked hemoglobin on cerebral hypoperfusion.

220. Cole DJ, Reynolds LW, Nary JC, Drummond JC, Patel PM, Jacob- Kerby JD, Sainz JG, Zhang F, Hutchings A, Sprague S, Farrokhi FR, Rosenthal G, Morabito D, Cohen M, Roeytenberg A, Derugin N, Baron JF, Przybelski RJ, for the DCLHb Cardiac Surgery Trial Collaborative Group: Randomized trial of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology 2000, 92:646-656.

218. Koenigerg MD, Bickell WH, Chang JJ, Youn TS, Benson D, Mattick H, Andrade BA, Harper MS, Somanetics INVOS 5100C after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2008, 9:221-230.

217. Bederson JB, Connolly ES, Batjer HH, Dacey RG, Dion JE, Dir- inger MN, Duldner JE, Harbaugh RE, Patel AB, Rosenwasser RH: Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke 2009, 40:3094-1025.

216. Broderick JC, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, Mayberg M, Morgenstern L, Ogilvy CS, Vespa P, Zuccarello M, American Association of Neurological Surgeons; Congress of Neurological Surgeons; American Academy of Neurology; American Heart Association; American Stroke Association Stroke Council; Clinical Cardiology Council; Cardiovascular Radiology and Intervention Council; Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: Guidelines for the management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council; Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology confirms the value of this guideline as an educational tool for neurologists. Stroke 2007, 38:1655-1711.

215. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons: Guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007, 24:S1-106.

214. Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Mor- genstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF, American Heart Association; American Stroke Association Stroke Council; Clinical Cardiology Council; Cardiovascular-based oxygen carrying compound-201 to improve resuscitation parameters and prevent secondary brain injury in a swine model of traumatic brain injury and hemorrhage; laboratory investiga- tion. J Neurosurg 2008, 108:575-587.

213. Kerby JD, Sainz JG, Zhang F, Hutchings A, Sprague S, Farrokhi FR, Son M, Reynolds LW, Patel PM, Drummond JC: Effects of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology 2000, 92:646-656.

212. Saxena R, Wihnhoud AD, Carton H, Hacke W, Kaste M, Przybelski RJ, Stern KN, Koudstaal PJ: Controlled safety study of a hemo- globin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke 1999, 30:993-996.

211. Mito T, Nemoto M, Kwansa H, Sameki K, Habeeb M, Murphy SJ, Bucc E, Koehler RC: Decreased damage from transient focal cerebral ischemia by transfusion of high O2-affinity recombinant hemoglobin polymers in mouse. Stroke 2000, 31:138-142.

210. Saxena R, Wihnhoud AD, Carton H, Hacke W, Kaste M, Przybelski RJ, Stern KN, Koudstaal PJ: Controlled safety study of a hemo- globin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke 1999, 30:993-996.

209. Moore EE, Moore FA, Fabian TC, Bernard AC, Fulda GJ, Hoyt DB, Duane TM, Weireter LJ, Gomez GA, Cipolle MD, Rodman GH, Malangoni MA, Hides GA, Omett LA, Gould SA: Human polym- erized hemoglobin for the treatment of hemorrhagic hypovolemic shock when blood is unavaliable: the USA multicenter trial. J Am Coll Surg 2009, 208:1-13.

208. Lamy ML, Daily EK, Brichant JF, Larbuisson RP, Demeyere RH, Vande melierss EA, Lehto J, Parloe MR, Berridge JC, Sinclair CJ, Baron JF, Przybelski RJ, for the DCLHb Cardiac Surgery Trial Collaborative Group: Randomized trial of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology 2000, 92:646-656.

207. Hill SE, Gottschalk UI, Grinchik N: Safety and preliminary effi- cacy of hemoglobin raffimer for patients undergoing coronary artery bypass surgery. J Cardiothorac Vasc Anesth 2002, 16:695-702.

206. Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Mor- genstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF, American Heart Association; American Stroke Association Stroke Council; Clinical Cardiology Council; Cardiovascular-based oxygen carrying compound-201 to improve resuscitation parameters and prevent secondary brain injury in a swine model of traumatic brain injury and hemorrhage; laboratory investiga- tion. J Neurosurg 2008, 108:575-587.

205. Kerby JD, Sainz JG, Zhang F, Hutchings A, Sprague S, Farrokhi FR, Son M, Reynolds LW, Patel PM, Drummond JC: Effects of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology 2000, 92:646-656.

204. Cole DJ, Reynolds LW, Nary JC, Drummond JC, Patel PM, Jacob- Kerby JD, Sainz JG, Zhang F, Hutchings A, Sprague S, Farrokhi FR, Son M, Reynolds LW, Patel PM, Drummond JC: Effects of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology 2000, 92:646-656.

203. Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Mor- genstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF, American Heart Association; American Stroke Association Stroke Council; Clinical Cardiology Council; Cardiovascular-based oxygen carrying compound-201 to improve resuscitation parameters and prevent secondary brain injury in a swine model of traumatic brain injury and hemorrhage; laboratory investiga- tion. J Neurosurg 2008, 108:575-587.

202. Kerby JD, Sainz JG, Zhang F, Hutchings A, Sprague S, Farrokhi FR, Son M, Reynolds LW, Patel PM, Drummond JC: Effects of diaspirin cross-linked hemoglobin solution as an alternative to blood transfusion after cardiac surgery. Anesthesiology 2000, 92:646-656.

201. Saxena R, Wihnhoud AD, Carton H, Hacke W, Kaste M, Przybelski RJ, Stern KN, Koudstaal PJ: Controlled safety study of a hemo- globin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke 1999, 30:993-996.

200. Saxena R, Wihnhoud AD, Carton H, Hacke W, Kaste M, Przybelski RJ, Stern KN, Koudstaal PJ: Controlled safety study of a hemo- globin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke 1999, 30:993-996.

199. Saxena R, Wihnhoud AD, Carton H, Hacke W, Kaste M, Przybelski RJ, Stern KN, Koudstaal PJ: Controlled safety study of a hemo- globin-based oxygen carrier, DCLHb, in acute ischemic stroke. Stroke 1999, 30:993-996.