Radiative Corrections and Z'

Jens Erler

Abstract Radiative corrections to parity violating deep inelastic electron scattering (PVDIS) are reviewed including a discussion of the renormalization group evolution (RGE) of the weak mixing angle. Recently obtained results on hypothetical Z' bosons — for which parity violating observables play an important rôle — are also presented.

Keywords Radiative corrections · Extra neutral gauge bosons

PACS 11.10.Hi · 12.15.Lk · 12.60.Cn · 13.60.-r

1 Effective electroweak interactions

The first two terms of the Lagrangian, \(\mathcal{L} = \mathcal{L}_{\text{fermion}} + \mathcal{L}_{\text{Yukawa}} + \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{Higgs}} \), of the electroweak Standard Model (SM) contain the free fermionic part and the interactions,

\[
\mathcal{L}_A + \mathcal{L}_W + \mathcal{L}_Z = -\frac{g}{2} \left(2 \sin^2 \theta_W J_A^\mu A_\mu + J_W^\mu W^-_\mu + J_W^{\mu+} W^+_\mu + \frac{1}{\cos^2 \theta_W} J_Z^\mu Z_\mu \right),
\]

in terms of the electromagnetic current, \(J_A^\mu = \sum_{i=1}^{3} \left(\frac{2}{3} \bar{u}^i \gamma^\mu u^i - \frac{1}{3} \bar{d}^i \gamma^\mu d^i - \bar{e}^i \gamma^\mu e^i \right) \),

the weak charged current (CC), \(J_W^{\mu \pm} = \sqrt{2} \sum_{i=1}^{3} \left(\bar{u}^{i0} \gamma^\mu P_L d^{i0} + \bar{\nu}^{i0} \gamma^\mu P_L e^{i0} \right) \),

and the weak neutral current (NC), \(J_Z^\mu \equiv N_\psi \sum_{i=1}^{N_\psi} \bar{\psi}^i \gamma^\mu [g_V^i - g_A^i \gamma^5] \psi^i = -2 \sin^2 \theta_W J_A^\mu + \sum_{i=1}^{3} \left(\bar{u}^i \gamma^\mu P_L u^i - \bar{d}^i \gamma^\mu P_L d^i + \bar{\nu}^i \gamma^\mu P_L \nu^i - \bar{e}^i \gamma^\mu P_L e^i \right) \),

where \(P_L \equiv \frac{1 - \gamma^5}{2} \). At the tree-level, the NC couplings, \(g_V^i = \frac{1}{2} \tau_3^i - 2 Q^i \sin^2 \theta_W \) and \(g_A^i = \frac{1}{2} \tau_3^i \), with \(Q^i \) (\(\tau_3 \)) denoting...
Table 1 Numerical contributions to ω_{PVDIS}

	$2 \Delta u - \Delta d$	$2 \Delta u - \Delta d$	ω_{PVDIS}
tree + QED	-0.7060	-0.0715	-0.7660
charge radii	+0.0015	-0.0110	-0.0079
\Box_{WW}	-0.0120	-0.0120	-0.0220
\Box_{ZZ}	-0.0008	-0.0027	-0.0031
other	-0.0009	-0.0011	-0.0018
TOTAL	-0.7184	-0.0983	-0.8010

the electric charge (third Pauli matrix), give rise to the effective 4-Fermi Hamiltonian,

$$H_{\text{eff}} = \frac{1}{2} \left(\frac{g}{2 \cos^2 \theta_W \lambda_2} \right)^2 J^\mu_Z J_{\mu Z} = \frac{G_F}{\sqrt{2}} J^\mu_Z J_{\mu Z} = \frac{G_F}{\sqrt{2}} \sum_{MNI} h_{MN}^{ij} \bar{\psi}^i \gamma^\mu \psi^j \gamma^\nu \psi^j,$$

where $\Gamma^V = \gamma^\mu$, $\Gamma^A = \gamma^\mu \gamma^5$, and $h_{MN}^{ij} = g_M^\nu g_N^\nu$. Unfortunately, there is no generally accepted notation, normalization, and sign convention for the h_{MN}^{ij} in the literature. For parity violating eq interactions one defines $C_{1q} = 2h_{M}^{q}$ and $C_{2q} = 2h_{V}^{q}$. Parity violation in heavy atoms is basically driven by the C_{1q}, while PVDIS determines approximately the combination, $\omega_{\text{PVDIS}} = (2 \Delta u - \Delta d) + 0.84 (2 \Delta u - \Delta d)$.

2 Radiative corrections

Including one-loop electroweak radiative corrections one obtains the expressions

$$2 \Delta u - \Delta d = -\frac{3}{2} \left[\rho_{\text{NC}} - \frac{\alpha}{2 \pi} \right] \left[1 - \frac{20}{9} \left(\sin^2 \theta_W(0) - \frac{2\pi}{9\pi} \right) + \Box_{WW} + \Box_{ZZ} + \Box_{ZZ} \right] + \frac{5\hat{\alpha}}{9\pi} \left[1 - 4 \sin^2 \theta_W(M_Z) \right] \left[\ln \frac{M_Z}{m_e} + \frac{1}{12} \right], \quad (1)$$

$$2 \Delta u - \Delta d = -\frac{3}{2} \left[\rho_{\text{NC}} - \frac{\alpha}{6\pi} \right] \left[1 - 4 \left(\sin^2 \theta_W(0) - \frac{2\pi}{9\pi} \right) + \Box_{WW} + \Box_{ZZ} + \Box_{ZZ} \right] + \frac{5\hat{\alpha}}{9\pi} \left[1 - \frac{12}{5} \sin^2 \theta_W(M_Z) \right] \left[\ln \frac{M_Z}{m_q} + \frac{1}{12} \right] - \frac{8\hat{\alpha}}{9\pi} \left[\ln \frac{M_W}{m_q} + \frac{1}{12} \right], \quad (2)$$

where $\rho_{\text{NC}} \approx 1.0007$ collects various propagator and vertex corrections relative to μ-decay, and the second lines are from the e and q charge radii. With $s^2 = \sin^2 \theta_W(M_Z)$,

$$\Box_{WW} = -\frac{9\hat{\alpha}}{8\pi s^2} \left[1 - \frac{\alpha_s(M_W)}{3\pi} \right], \quad \Box_{ZZ} = -\frac{3\hat{\alpha}}{4\pi} \left[1 - 4s^2 \right] \left[\ln \frac{M_Z}{M_{\rho}} + \frac{3}{4} \right], \quad \Box_{ZZ} \ll \Box_{WW}$$

are the box contributions except that for $2 \Delta u - \Delta d$ the α_s correction to the WW-box is not yet known and \Box_{ZZ} is obtained from above by replacing $4s^2$ by $28s^2/9$ and the constant $3/4$ by $5/12$. The numerical results are summarized in Table 1.

Eqs. (1) and (2) were originally obtained for atomic parity violation. For PVDIS, the one-loop expressions with the full kinematical dependence (in analogy with Ref. 5 for polarized Møller scattering) need to be computed, plus the α_s corrections to \Box_{WW} and \Box_{ZZ}. In practice, one would want to define new C_{2q} at these kinematics since these would supersede the ones at very low Q^2 with their large hadronic uncertainties.
The \(\overline{\text{MS}} \) scheme (marked by a caret) weak mixing angle enters Eqs. 1 and 2 evaluated at the renormalization scale \(\mu = 0 \). Introducing the quantity \(\hat{X} \equiv \sum_i N^C_i \gamma_i \hat{g}_i Q_i \), where \(N^C_i = 3 \) (1) for quarks (leptons) and \(\gamma_i = 4 \) (22) for chiral fermions (gauge bosons), one can show that \(d\hat{X}/X = d\hat{\alpha}/\alpha \), i.e., the RGE for \(\hat{\alpha}(\mu) \) implies that for \(\sin^2 \theta_W(\mu) \) (see Fig. 1) including experimental constraints from \(e^+e^- \) annihilation and \(\tau \) decays that enter the dispersion integral for the non-perturbative regime, provided that any one of the following conditions is satisfied: (i) no mass threshold is crossed; (ii) perturbation theory applies (\(W^\pm \), leptons, \(b \) and \(c \) quarks); (iii) equal coefficients (like for \(d \) vs. \(s \) quarks); or (iv) symmetries like \(SU(2) \) or \(SU(3) \) may be applied.

This leaves as the only problem area the treatment of the \(u \) vs. the \((d, s) \) quark thresholds, or—considering that \(m_s \neq m_d \approx m_u \) — the separation of the \(s \) quark from the \((u, d) \) doublet. Our strategy [6] is to define threshold masses (absorbing QCD matching effects), \(\bar{m}_q = \xi_q M_1 S/2 \), in terms of \(1S \) resonance masses. The \(\xi_q \) are between 0 (chiral limit) and 1 (infinitely heavy quarks). One expects \(\xi_b > \xi_c > \xi_s > \xi_d > \xi_u \) and we explicitly verified \(\xi_b > \xi_c \) in perturbative QCD. Now, \(\xi_s = \xi_c \) defines the heavy quark limit for the \(s \) quark, implying \(\bar{m}_s < 387 \text{ MeV} \). On the other hand, \(\xi_s = \xi_d \approx \xi_u \) together with the dispersion result for the three-flavor RGE for \(\hat{\alpha} \) below \(\mu = \bar{m}_c \), \(\Delta \hat{\alpha}^{(3)}(\bar{m}_c) \), yields an upper limit on the \(s \) quark contribution and \(\bar{m}_s > 240 \text{ MeV} \). Besides parametric uncertainties from the input values of \(\bar{m}_b \), \(\bar{m}_c \), and \(\hat{\alpha} \), this procedure introduces an experimental error through \(\Delta \hat{\alpha}^{(3)}(\bar{m}_c) \) (\(\pm 3 \times 10^{-5} \)), \(SU(3)_F \) breaking masses, \(\bar{m}_u = \bar{m}_d \neq \bar{m}_s (\pm 5 \times 10^{-5}) \), and \(SU(2)_I \) breaking masses, \(\bar{m}_u \neq \bar{m}_d (\pm 8 \times 10^{-6}) \). Starting at three-loop order there is also the (OZI rule violating) singlet (QCD annihilation) contribution to the RGE for \(\hat{\alpha} \) (but by virtue of \(Q_u + Q_d + Q_s = \tau_3^{uu} + \tau_3^{dd} = 0 \) not present in \(\hat{X} \)) introducing another \(\pm 3 \times 10^{-5} \) error.
3 Z' physics: the search for a fifth force

Extra Z' bosons are predicted in virtually all scenarios for TeV scale physics beyond the SM, including grand unified theories, left-right models, superstrings, technicolor, large extra dimensions and little Higgs theories and in all these cases one expects $M_{Z'} = \mathcal{O}(\text{TeV})$ and 100 (1,000) fb$^{-1}$ of LHC data will explore $M_{Z'}$ values up to 5 (6) TeV [4]. Angular distributions of leptons may help to discriminate spin-1 (Z') against spin-0 (sneutrino) and spin-2 (Kaluza-Klein graviton) resonances [5]. The LHC will also have some diagnostic tools to narrow down the underlying Z' model by studying, e.g., leptonic forward-backward asymmetries and heavy quark final states [9,10].

Z' models based on the gauge group E_6 without kinetic mixing correspond to extending the SM by a $U(1)' = \cos \beta U(1)_X + \sin \beta U(1)_Y$ ($-90^\circ < \beta \leq 90^\circ$). Particular values for β give Z' models of special interest, namely (i) $\beta = 0^\circ \Rightarrow Z'$ and is defined by the breaking of $SO(10) \rightarrow SU(5) \times U(1)_X$; (ii) $\beta = 90^\circ \Rightarrow Z_\psi$ defined by the breaking of $E_6 \rightarrow SO(10) \times U(1)_Y$; (iii) $\beta \approx -52.2^\circ \Rightarrow Z_\eta$ and appears in a class of heterotic string models compactified on Calabi-Yau manifolds; (iv) $\beta \approx 37.8^\circ \Rightarrow Z_{1/2} \perp Z_\eta$ and is hadrophobic in that it doesn’t couple to up-type quarks; (v) $\beta \approx 23.3^\circ \Rightarrow Z_S$ and gives rise to the so-called secluded $U(1)'$ breaking model addressing both the little hierarchy problem ($M_Z \ll M_{Z'}$) [11] and electroweak baryogenesis [12]; and (vi) $\beta \approx 75.5^\circ \Rightarrow Z_N$ with no couplings to right-handed neutrinos and therefore allowing the (ordinary) see-saw mechanism. Adding kinetic mixing is equivalent to considering the more general combination, $Z' = \cos \alpha \cos \beta Z_X + \sin \alpha \cos \beta Z_Y + \sin \beta Z_\psi$. Then the values (vii) $(\alpha, \beta) \approx (50.8^\circ, 0^\circ) \Rightarrow Z_R$ defined by the breaking of $SU(2)_R \rightarrow U(1)_R$; (viii) in left-right symmetric models appears the $Z_{LR} \approx 1.53 Z_R - 0.33 Z_{B-L}$, where $(\alpha, \beta) \approx (-39.2^\circ, 0^\circ) \Rightarrow Z_{B-L} \perp Z_R$; while (ix) $(\alpha, \beta) \approx (28.6^\circ, -48.6^\circ) \Rightarrow Z_E$ with no couplings to charged leptons and left-handed neutrinos. Finally, (x) the sequential Z_{SM} couples like and could be an excited state of the ordinary Z boson.

Z' bosons can have various effects on precision observables. The $Z-Z'$ mixing angle, $\theta_{ZZ'}$, is strongly constrained by the M_W-M_Z interdependence (even for the Z_E) and by the Z-pole (because $\theta_{ZZ'}$ affects the very precisely measured Z couplings to fermions). Conversely, if $\theta_{ZZ'} = 0$ the Z pole observables are rather blind to Z' physics because the Z and Z' amplitudes are almost completely out of phase and one needs to go off-peak, i.e., to LEP 2 and low energies. There are also loop effects which are small but not necessarily negligible. E.g., the M_W-G_F relation, parametrized by $\Delta \hat{r}_W$, is shifted,

$$\delta(\Delta \hat{r}_W) = \frac{5}{2} \frac{\alpha}{\pi \cos^2 \theta_W} \lambda^\ell_\psi \epsilon_\mu \epsilon^\mu_\ell \frac{M^2_W}{M^2_{Z'}} \ln \frac{M^2_{Z'}}{M^2_W} \ln \frac{M^2_{Z'}}{M^2_W} \ln \frac{M^2_{Z'}}{M^2_W} \ln \frac{M^2_{Z'}}{M^2_W} \ln \frac{M^2_{Z'}}{M^2_W} \ln$$

where the ϵ^μ_ℓ denote $U(1)'$ charges and λ is a model dependent parameter of $\mathcal{O}(1)$. Z' bosons would also yield an apparent violation of first row CKM unitarity, $\delta(U^2_{ud} + V^2_{us} + V^2_{ub})$, given by the r.h.s. of Eq. (3) upon replacing ϵ^μ_ℓ by $-2(\epsilon^\mu_\ell - \epsilon^\mu_\mu)$. Finally, the muon anomalous magnetic moment [13] would receive a (usually tiny) correction, $\delta a_\mu = 5/36 \alpha/\pi \cos^2 \theta_W \lambda (V^2_{\mu} - 5 A^2_{\mu}) m^2_{\mu}/M^2_{Z'}$, with some interest for the Z_ψ which is insensitive to most other precision data (since it does not possess any vector couplings V_μ) while the axial coupling A_μ comes enhanced in δa_μ.

Results from a global analysis [14] are shown in Table 2. Some Z' models give a fairly low minimum χ^2, especially the Z_ψ and Z_R. Technically, there is a 90% C.L. upper bound on the Z_R mass of about 29 TeV. Of course, at present there is little significance to this observation since there are two additional fit parameters ($M^2_{Z'}$ and
Table 2 95% C.L. lower mass limits (in GeV) on extra Z' bosons and lower and upper limits for $\theta_{ZZ'}$ from electroweak precision data, assuming 114.4 GeV $< M_H < 1$ TeV. Also shown are for comparison (where applicable) the limits obtained by CDF (they assume that no supersymmetric or exotic decay channels are open; otherwise the limits would be moderately weaker) and LEP 2 (constraining virtual Z' bosons by their effects on cross sections and angular distributions of di-leptons, hadrons, $b\bar{b}$ and $c\bar{c}$ final states). CDF sees a significant excess at a di-electron invariant mass of 240 GeV, but this is not confirmed in the $\mu^+\mu^-$ channel. The result for the leptophobic Z_E (in parentheses) in the electroweak column assumes a specifically chosen Higgs sector. The CDF number refers to the Z_{SM} limit from the di-jet channel and should give a rough estimate of the sensitivity to our specific Z_L. The various mass limits are highly complementary (e.g., unlike Tevatron limits, electroweak and LEP 2 limits scale with the coupling strength). The last column indicates the χ^2 minimum for each model.

Z'	electroweak	CDF	LEP 2	$\theta_{\min}^{ZZ'}$	$\theta_{\max}^{ZZ'}$	χ^2_{\min}
Z_N	1,141	892	673	-0.0016	0.0006	47.3
Z_N'	147	878	481	-0.0018	0.0009	46.5
Z_L	427	982	434	-0.0047	0.0021	47.7
Z_I	1,204	789		-0.0005	0.0012	47.4
Z_Z	1,257	821		-0.0013	0.0005	47.3
Z_R	623	861		-0.0015	0.0007	47.4
Z_{LR}	442			-0.0015	0.0009	46.1
$Z_{R'}$	998	630	804	-0.0013	0.0006	47.3
$Z_{R'}$	(803)	(740)		-0.0094	0.0081	47.7
Z_{SM}	1,403	1,030	1,787	-0.0026	0.0006	47.2

$\theta_{ZZ'}$ and various adjustable charges (like the angles α and β). Still this surprises given that the SM fit is quite good with $\chi^2_{\text{min}} = 48.0/45$ (with M_H unconstrained). It is interesting that the improvement, $\Delta \chi^2_{\text{min}} = -2.9$, is mainly from PAVI observables, namely from polarized Møller [15] (-1.7) and e^--hadron scattering [16] (-0.9). The best fit with $M_{Z'} = 667$ GeV implies shifts in the so-called weak charges, $|\delta Q_W(e,p)| = -0.0073$, corresponding to 6.6$\sigma$ and 2.5σ, respectively, for the proposed MOLLER [17] and Qweak [18] experiments at JLab. Similarly, expect $|\delta |\omega_{PVDIS}| = -0.0200$ (4.2σ).

Acknowledgements It is a pleasure to thank Paul Langacker, Shoaib Munir and Eduardo Rojas for collaboration. This work is supported by CONACyT project 82291–F.

References
1. D. Budker, these proceedings
2. SOLID Collaboration: P. Souder et al., these proceedings
3. W.J. Marciano and A. Sirlin, Phys. Rev. D 27, 552 (1983) and ibid. 29, 75 (1984)
4. J. Erler, A. Kurylov and M.J. Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003)
5. A. Czarnecki and W.J. Marciano, Phys. Rev. D 53, 1066 (1996)
6. J. Erler and M.J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005)
7. S. Godfrey, [arXiv:hep-ph/0201093] proceedings of Snowmass 2001
8. P. Ostand, A.A. Pankov, A.V. Tsytrinov and N. Paver, Phys. Rev. D 79, 115021 (2009)
9. V. Barger, T. Han and D.G.E. Walker, Phys. Rev. Lett. 100, 031801 (2008)
10. S. Godfrey and T.A.W. Martin, Phys. Rev. Lett. 101, 151803 (2008)
11. J. Erler, P. Langacker and T. Li, Phys. Rev. D 66, 015002 (2002)
12. J. Kang, P. Langacker, T. Li and T. Liu, Phys. Rev. Lett. 94, 061801 (2005)
13. New (g–2) Collaboration: D. Hertzog et al., these proceedings
14. J. Erler, P. Langacker, S. Munir and E. Rojas, JHEP 0908, 017 (2009)
15. SLAC E158 Collaboration: P.L. Anthony et al., Phys. Rev. Lett. 95, 081601 (2005)
16. R.D. Young, R.D. Carlini, A.W. Thomas and J. Roche, Phys. Rev. Lett. 99, 122003 (2007)
17. MOLLER Collaboration: K. Kumar et al., these proceedings
18. Qweak Collaboration: S. Page et al., these proceedings