Inverse PCR-based detection reveal novel mobile genetic elements and their associated genes in the human oral metagenome

Supathep Tansirichaiya1,2,3, Endre Winje2, Johannes Wigand2 and Mohammed Al-Haroni2,3*

Abstract
The human oral cavity is one of the hotspots harboring multiple mobile genetic elements (MGEs), which are segments of DNA that can move either within bacterial genomes or between bacterial cells that can facilitate the spreading of genetic materials, including antimicrobial resistance genes. It is, therefore, important to investigate genes associated with the MGEs as they have a high probability of dissemination within the bacterial population under selective pressure from human activities. As one-third of oral bacteria are not yet culturable in the laboratory condition, therefore, in this work, it is aimed to detect and identify the genetic contexts of MGEs in the oral cavity through an inverse PCR (IPCR)-based approach on the oral metagenomic. The human oral metagenome was extracted from saliva samples collected from healthy individuals in Tromsø, Norway. The extracted DNA was partially digested with the HindIII restriction enzyme and self-circularized by ligation. DNA primers targeting each MGE were designed to amplify outwards from the MGEs and used for the IPCR on the circularized DNA products. The IPCR amplicons were cloned into a pCR-XL-2-TOP vector, screened, and sequenced. Out of 40 IPCR amplicons, we confirmed and verified the genetic contexts of 11 samples amplified with primers targeting integron gene cassettes (GCs), IS431 composite transposons, and Tn916 conjugative transposons (tet(M) and xis-int). Novel integron GCs, MGEs, and variants of Tn916 conjugative transposons were identified, which is the first report using the IPCR technique to detect the genetic contexts of MGEs in the oral metagenomic DNA.

Keywords: Oral metagenome, Inverse PCR, Mobile genetic elements, Composite transposons, Tn916 conjugative transposons, Integrons

Introduction
The human oral cavity is the second most complex microbial ecosystem in the human body, inhabited by a comprehensive bacterial flora consisting of more than 700 bacterial species, of which 100–200 usually varies between individuals [60, 62]. The oral cavity has dynamic physio-chemical conditions as it is a major gateway to the human body, so the oral bacteria have to adapt to these changes from food, drink, air, and human-related behaviors such as brushing, smoking, and kissing [25, 28, 49]. Because of the high clearance rate of planktonic bacteria caused by the continuous flow of saliva in the oral cavity, most bacteria live as a structured community inside a matrix of extracellular polysaccharides (EPS) of a biofilm called dental plaque [5, 23]. Biofilm is a well-known virulence factor because of its protective and sustaining nature towards the inhabiting microbes.

*Correspondence: Mohammed.Al-Haroni@uit.no
2 Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, 9037 Tromsø, Norway
Full list of author information is available at the end of the article

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Biofilm was also shown to facilitate a process called horizontal gene transfer (HGT) that bacteria use to exchange their genetic materials, including antimicrobial resistance genes (ARGs) [24, 30, 45]. There are three main types of HGT, including transformation, conjugation, and transduction. For example, a conjugative transposon Tn5397, conferring tetracycline resistance, was shown to be transferred from a nonoral Bacillus subtilis donor to an oral Streptococcus sp. in a mixed-species biofilm [46]. The dynamic change in the oral cavity also provides a selective pressure that drives HGT in the oral community, which is important for their adaptability and evolution, including the spreading of ARGs among the oral commensals and possibly to other pathogens.

HGT has been shown to be facilitated by mobile genetic elements (MGEs), which are segments of DNA that inherit the ability to translocate from one bacterial replicon to another. It could facilitate the transfer either within a bacterial cell or between two different cells. Integrative conjugative elements, including conjugative plasmids and conjugative transposons, can facilitate intercellular transfer through conjugation. Even though the other MGEs, such as insertion sequences (ISs), composite transposons, unit transposons, and integrons, could not facilitate the transfer between cells by themselves. They can move within the bacterial cell, inserting themselves onto ICEs for an intercellular transfer. IS elements are the simplest MGE, containing only gene(s) for their transposition [51]. Other MGEs can carry additional or accessory genes, including ARGs, as part of their structure, such as DNA fragment between two IS elements of composite transposons and gene cassette (GC) array of integrons [38, 47, 54, 57, 58].

Genes associated with MGEs have a higher probability to be disseminated in the bacterial population when the MGEs move. Previously, the spread of ARGs against last-resort drugs was reported to be mediated by MGEs in several studies such as, mcr-1 colistin resistance gene that can be mediated by various plasmid types (IncI2, IncHI2, and IncX4) and transposons (Tn6330 and Tn6390) [32, 35, 53, 63]. For the oral cavity, several resistance genes have also been shown to be associated with MGEs, such as tet(M) tetracycline resistance genes in Tn916-family conjugative transposons, ddl6 D-cycloserine resistance gene in an integron GC, qrg Cetyltrimethylammonium bromide (CTAB) resistance gene on an IS1216 composite transposon, and knr kanamycin resistance gene on IS257 composite transposon [6, 41, 44, 56, 59].

As one-third of the oral bacteria have not been cultured in the laboratory condition yet [11, 61], investigating of MGEs and their associated genes through a culture-independent method like metagenomics would be suitable as it would allow us to study these genes from an entire oral microbiome. Previously, genes associated with integrons and composite transposons in the oral metagenomic DNA have been studied through a PCR-based metagenomic approach [56, 56, 59, 59], [57, 58]. These studies amplified and identified the genetic context of both MGEs by designing DNA primers to amplify in the outward direction from common features flanking the DNA carried by the MGEs (insertion sequences (ISs) for composite transposons and attC recombination sites for integrons).

However, not all MGEs have two common features flanking their cargo DNA, so their genetic context cannot be investigated by conventional PCR. An inverse PCR (IPCR) is a technique that could overcome this limitation as it involves digestion of original template DNA, self-ligation (circularization) of the digested products, and uses these self-circularized DNA molecules as templates for PCR (Fig. 1). Using IPCR on oral metagenomic DNA would therefore allow us to investigate and identify the genetic context upstream and downstream from a known single section of MGEs, which have a high probability to be disseminated in the oral microbiome. It was previously used to investigate the genetic context of resistance genes in sediment metagenome, which they found novel MGEs, and new putative ARGs [37].

In this study, we aimed to investigate the genetic context of MGEs in the human oral cavity through an IPCR-based metagenomic approach. The presence of MGEs in the Norwegian oral metagenome was confirmed by using both previously published primers and newly designed primers. Another set of primers amplifying outwards from the MGEs were then designed and used for the IPCR on the self-circularized oral metagenomic DNA template. Several novel integron GCs and variants of Tn916 were identified.

Materials and methods
Study population, Saliva sample collection and extraction of oral metagenomic DNA
Saliva samples were collected from 50 healthy volunteers between 21 and 65, both male and female, who visited the University Dental Clinic at UiT the Arctic University of Norway. The inclusion criteria include not having been treated with antibiotics in the last 3 months and not having chronic diseases. Participants were asked to abstain from drinking, eating, and brushing their teeth at least one hour before the saliva collection. Ethical approval was obtained from the Regional Committees for Medical and Health Research Ethics (REK) prior to the sample collection (Project number 2018/1373/REK nord). All participants were properly informed and gave their written consent. A paraffin gum was used to stimulate
saliva secretion, and approximately 2 mL of saliva was collected from each participant using Norgen’s Saliva DNA Collection, Preservation and Isolation Kit (Norgen Biotek Corp, Ontario, Canada). All the saliva samples were anonymized and stored at room temperature according to the manufacturer’s instructions.

**Extraction of the oral metagenomic DNA**

750 µL of saliva from each sample was transferred to a 2-mL microcentrifuge tube and mixed with 750 µl of phosphate-buffered saline (PBS). Each tube was then centrifuged for 10 min at 15,700 ×g to pellet the cells. The supernatant was discarded and resuspended the pellet in 125 µl PBS buffer and 25 µl MetaPolyzyme (Sigma-Aldrich, Norway). After incubating the tubes at 35 °C for 4 h, oral metagenomic DNA was extracted from each saliva sample by QIAcube (Qiagen, Norway) and QIAamp® DNA Mini QIAcube Kit. A pooled metagenomic DNA sample was prepared by aliquot and mixing 10 µl of each extracted oral metagenomic DNA in a new Eppendorf tube and kept at −20 °C.

**Confirmation of MGEs in oral metagenomic DNA**

The presence of each MGE in oral metagenomic DNA was first determined by primers listed in Additional file 1: Table S1. Primers targeting plasmids, Tn916-family conjugative transposons, and integrons were selected from previously published studies that had been used to successfully amplify the MGEs based on their conserved genes/sequences. For composite transposons, a list of composite transposons associated with ARGs was
selected from the Transposon Registry [57, 58]. Then, primers were designed to target the conserved regions of their IS elements, identified by aligning available gene sequences from the GenBank nucleotide database and ISFinder [52], using Clustal Omega and Primer3 web-based software (https://bioinfo.ut.ee/primer3-0.4.0/).

PCR reactions of each primer pair were set up, containing 1 µl of the pooled oral metagenomic DNA, 2 µl of each primer (10 µM), 15 µl of 2 × Biomix red (Bioline, Norway), and 10 µl molecular grade water. The PCR cycle was programmed as follows: (i) initial denaturation at 95 °C for 5 min, (ii) denaturation at 95 °C for 1 min, (iii) annealing at 50–65 °C depending on the primers for 30 s, (iv.) elongation at 72 °C for 1 min 30 s, repeated step (ii.)–(iv.) for 35 cycles, and finished with a final elongation at 72 °C for 5 min.

The amplicons were cloned into pCR™-XL-2-TOPO™ vectors through TOPO cloning using the TOPO™ XL-2 Complete PCR Cloning Kit (ThermoFisher, Norway), which is suitable for the cloning of long PCR products (up to 13 kbp), by following the protocol from the manufacturer. The ligated product was then transformed into One Shot™ OmniMAX™ 2 TIR chemically competent Escherichia coli cells using a standard heat shock protocol. The transformants were grown on LB agar supplemented with ampicillin (100 µg/ml) and incubated overnight at 37 °C.

Plasmid isolation and sequencing of the extracted plasmids
The transformants of each MGE were screened by performing colony PCR with T3 and T7 primers and checked the colony PCR products on agarose gels. Colonies with different insert sizes and larger than 1000 bp were selected and subcultured into 5 ml of LB broth supplemented with ampicillin (100 µg/ml), then incubated overnight in a 37 °C shaker (200 rpm). The extracted plasmids were isolated from the overnight culture by using QIAprep Spin Miniprep Kit (QIagen, Norway). All plasmids were sequenced by Sanger sequencing service at the Genewiz, Germany, using M13 Forward and M13 Reverse as initial primers for sequencing. Additional primers were designed and used for additional sequencing for the samples with longer inserts by using Primer3 (https://bioinfo.ut.ee/primer3-0.4.0/).

Bioinformatics analysis
The sequencing data was visualized and assembled with CAP contig function by using BioEdit software version 7.2.0 (http://www.mbio.ncsu.edu/bioedit/bioedit.html) [22]. The contamination of vector sequences was checked and removed by using the VecScreen analysis tool (https://www.ncbi.nlm.nih.gov/tools/vecscreen/). The presence of both forward and reverse primers, and the conserved sequences of each MGE were then identified by searching and comparing the sequences. For the integron gene cassette samples, additional criteria were applied, such as the presence of attC core sites, as described by previous studies [56–59]. The sequences
were compared to the nucleotide and protein databases in GenBank with BlastN and BlastX, respectively [1]. All sequences detected in this study were deposited to the GenBank under accession numbers from OL695865 to OL695875.

Results
Confirmation of MGEs in oral metagenomic DNA
A collection of MGEs, known to be associated with ARGs, was selected to be investigated in this study, including 4 Inc-type plasmids (IncP-1α, IncP-1β, IncP-9, and IncQ), Tn21-related transposons, Tn916-family conjugative transposons, integrons, and 17 composite transposons. Prior to the investigation of the genetic context of MGEs by IPCR, the presence of each MGEs in oral metagenomic DNA was determined through PCR using previously published primers, except for composite transposons, which were detected by using new primers designed to target the IS elements of each composite transposons (Additional file 1: Table S1). Sequencing the amplicons from the IPCR could be either used in the IPCR on the self-circularized oral metagenomic DNA. The amplicons from IPCR could be either used in the IPCR of the confirmed MGEs and the upstream and downstream genetic contexts of a single conserved gene on MGEs.

Screening and bioinformatic analysis confirmed that 11 out of 40 IPCR DNA fragments as true amplicons, not PCR artifacts, with a size between 1.7 and 5 kb. The details and predicted genes on each IPCR amplicon are shown in Table 2. These samples could be divided into two groups. The first group was amplified from two DNA repeats, including 5 integron GC samples and 1 IS431 composite transposon (Fig. 2). All integron gene cassettes were predicted to derive from Treponema species, and most of them, except Flip-MARS-9, contained two GCs. Several proteins were predicted to be encoded by these integron GC samples, such as toxin-antitoxin proteins (Flip-MARS-4 and Flip-MARS-5), endonuclease enzymes (Flip-MARS-3 and Flip-MARS-4), carbon–nitrogen hydrolase (Flip-MARS-9), vicinal oxygen chelate (VOC) family protein, and competence protein TfoX (Flip-MARS-11). Also, IS4 family transposase was identified in the Flip-MARS-11 sample, which was similar to the transposase on ISPca1 with 36% identities based on the BlastX analysis on ISFinder. For the IS431-5 composite transposon sample, it was predicted to contain two hypothetical proteins.

The second group of samples was those amplified from a single conserved gene of MGEs on self-circularized DNA templates. It included the samples amplified by DNA primers targeting Tn916-family conjugative transposons: 4 tet(M) samples and 1 xis-int sample (Fig. 3). HindIII restriction site, which was used for the self-circularization, was identified at the nucleotide position 230 of MFS transporter gene in xis-int sample and the nucleotide position 63 of tet(M) gene of all tet(M) samples. tet(M)-6, tet(M)-9, and xis-int-9 were similar to integrative and conjugative elements ICESpIC1, ICE6B8790 and Tn6822, respectively, which contained Tn916-related structures. For Tet(M)-2, it contained part of IS21-like helper ATPase, which was similar to the helper protein of ISCbe3 with 67% identities based on the BlastX analysis on ISFinder, while tet(M)-6 were shown to contain erythromycin resistance gene erm(B) next to a Tn3-family transposase and resolvase.

Identification and characterization of genes associated with MGEs via IPCR
Another set of primers was designed to amplify outward from the common features of the confirmed MGEs and used in the IPCR on the self-circularized oral metagenomic DNA. The amplicons from IPCR could be either the DNA region flanked by two repeats of MGEs (IS elements of composite transposons) or the upstream and downstream contexts of a single conserved gene on MGEs.

Table 1 List of MGEs that were presence in the extracted oral metagenome

| MGEs          | Name/Types of MGEs                        |
|---------------|-----------------------------------------|
| Plasmids      | IncP-1α                                  |
|               | IncP-1β                                  |
|               | IncP-9                                   |
| IS elements   | IS1                                      |
|               | IS26                                     |
|               | IS431                                    |
|               | IS1182                                   |
|               | IS1216                                   |
|               | IS4351                                   |
|               | IS6700                                   |
|               | ISAb1                                    |
| Transposons   | Tn21-related transposons                 |
|               | Tn916-family conjugative transposons      |
| Integrons     | Integron gene cassette (attC)            |
| Sample name (Accession number) | Primer pair | Size (bp) | BlastN | BlastX |
|--------------------------------|-------------|-----------|--------|--------|
|                                |             |           | Closest homologue | ORF size (bp) | Closest homologue | ORF size (bp) |
|                                |             |           | Percentage identity (%) | Coverage (%) | Percentage identity (%) | Coverage (%) | Position on sample | Accession number of the homologous proteins (BlastN) | Accession number of the homologous proteins (BlastX) |
| Flip-MARS-3 (OL695865)         | MARS2-MARS5 | 1824      | Uncultured bacterium clone MMU-PRO-6-gene cassette | 91 | 38 | MH536761.1 | 852 | 55 | 996 | 211–1062 | MBOG200054.1 |
| Flip-MARS-4 (OL695866)         | MARS2-MARS5 | 2355      | Treponema sp. OMZ 804 chromosome, complete genome | 91.9 | 42 | CP048020.1 | 387 | – | – | 67–453 | – |
| Flip-MARS-5 (OL695867)         | MARS2-MARS5 | 1704      | Treponema sp. OMZ 838, complete genome | 95 | 45 | CP009227.1 | 609 | 91 | 100 | 116–724 | WP_024468093.1 |

*Flip-MARS-3, Flip-MARS-4, and Flip-MARS-5 are different samples from the human oral metagenome.*

*Table 2: Details of MGEs detected from the human oral metagenome by IPCR.*
### Table 2 (continued)

| Sample name (Accession number) | Primer pair | Size (bp) | BlastN |  | BlastX |
|-------------------------------|-------------|-----------|--------|------------------|------------------|
|                               |             |           | Closest homologue | Percentage identity (%) | Coverage (%) | Accession number of the homologous DNA (BlastN) | Closest homologue | ORF size (bp) | Percentage identity (%) | Coverage (%) | Position on sample | Accession number of the homologous proteins (BlastX) |
| Flip-MARS-9 (OL695868)        | MARS2-MARS5 | 1912      | Treponema denticola ATCC 35,405, complete genome | 94.4 | 53 | AE017226.1 | Hypothetical protein [Treponema sp. OMZ 804] | 774 | 91 | 100 | 75–848 | WP_162662615.1 |
|                               |             |           | | | | | Carbon–nitrogen hydrolase family protein [Treponema denticola] | 894 | 98 | 100 | 998–1891 | WP_187115772.1 |
| Flip-MARS-11 (OL695869)       | MARS2-MARS5 | 2890      | Uncultured bacterium clone SSU24 gene cassette SSU24.1 genomic sequence | 99 | 33 | KT921490.1 | Vicinal oxygen chelate (VOC) family protein [Treponema denticola] | 393 | 100 | 100 | 68–460 | WP_002683256.1 |
| IS431-5 (OL695870)            | IS431-Reverse-F-IS431-inverse-R | 1735 | Staphylococcus capitis strain FDAARGOS_753 chromosome | 91 | 100 | CP053957.1 | No significant similarity found | 345 | – | – | – | – |
| tet(M)-1 (OL695871)           | tet(M)-inverse-F-tet(M)-inverse-R | 5054 | Neisseria sicca ATCC 29,236 chromosome | 98 | 100 | CP079820.1 | Murein transglycosylase A [unclassified Neisseria] | 1323 | 99 | 100 | 901–2223 | WP_070606572.1 |
|                               |             |           | | | | | Hypothetical protein | 711 | 100 | 100 | 3456–2746 | WP_070606574.1 |
|                               |             |           | | | | | Holliday junction branch migration protein RuvA [unclassified Neisseria] | 585 | 100 | 100 | 4342–3758 | WP_070606583.1 |
| Sample name (Accession number) | Primer pair | Size (bp) | BlastN | % | BlastX | % | Accession number of the homologous proteins (BlastX) |
|--------------------------------|-------------|-----------|--------|---|--------|---|---------------------------------------------------|
| tet(M)-2 (OL695872) | tet(M)-inverse-F-tet(M)-inverse-R | 2456 | Streptococcus agalactiae strain GBS6 | 99.6 | 85 | CP007572.1 | Hypothetical protein [Streptococcus pneumoniae] |
|                          |             |          |        |   |        |   | Hypothetical protein AZK08_11845, partial [Streptococcus pneumoniae] |
|                          |             |          |        |   |        |   | IS21-like element helper ATPase IstB [Streptococcus parasanguinis] |
| tet(M)-6 (OL695873) | tet(M)-inverse-F-tet(M)-inverse-R | 4683 | Streptococcus pneumoniae integrative and conjugative element ICESpnIC1, isolate 9611 +04,103 | 100 | 100 | HG799494.1 | Hypothetical protein [Streptococcus pneumoniae] |
|                          |             |          |        |   |        |   | Hypothetical protein HMPREF1885_00780 [Streptococcus agalactiae] |
|                          |             |          |        |   |        |   | 23S rRNA (adenine(2058)-N(6))-methyltransferase Erm(B) [Streptococcus] |
|                          |             |          |        |   |        |   | Resolvase [Streptococcus pneumoniae] |
|                          |             |          |        |   |        |   | Tn3 family transposase [Enterococcus faecalis] |
| Sample name (Accession number) | Primer pair | Size (bp) | BlastN | BlastX |
|-------------------------------|-------------|-----------|--------|--------|
|                              |             |           | Closest homologue | ORF size (bp) | Percentage identity (%) | Coverage (%) | Position on sample | Accession number of the homologous proteins (BlastX) |
| tet(M)-9 (OL695874)          | tet(M)-inverse-F-tet(M)-inverse-R | 2329   | Streptococcus pneumoniae integrative and conjugative element (ICE68ST90), isolate IC161 | 99.8 | HG799499.1 | 186 | 95 | 100 | 910–1095 | KAF1190941.1 |
|                              |             |           |                  | Conjugational transfer protein [Streptococcus agalactiae] | 354 | 100 | 100 | 1508–1155 | WP_001227347.1 |
|                              |             |           |                  | Helix-turn-helix transcriptional regulator [Bacteria] (orf9 Tn916) | 230 | 95 | 40.3 | 1134–905 | QWL83132.1 |
| xis-int-9 (OL695875)         | xis-int--inverse-F-xis-int-inverse-R | 3,704  | Streptococcus pneumoniae strain 080,217 transposon Tn6822 | 90 | MT489699.1 | 192 | 98 | 100 | 1258–1449 | WP_001860868.1 |
|                              |             |           |                  | MFS transporter [Streptococcus sp. ZB1999] | 354 | 100 | 100 | 1862–1509 | WP_001227347.1 |
|                              |             |           |                  | Cysteine-rich KTR domain-containing protein [Bacteria] | 147 | 100 | 100 | 1992–2138 | ACA36714.1 |
|                              |             |           |                  | Conserved hypothetical protein [Streptococcus pneumoniae] (orf10 Tn916) | 423 | 99 | 100 | 2367–2789 | WP_196313264.1 |
|                              |             |           |                  | Sigma-70 family RNA polymerase sigma factor [Streptococcus] (orf17 Tn916) | 231 | 100 | 100 | 2786–3016 | WP_000857133.1 |
|                              |             |           |                  | Helix-turn-helix domain [Bacteria] (orf18 Tn916) | 252 | 100 | 100 | 3493–3242 | WP_001845478.1 |
movement of these genes from oral microflora to clinical pathogens but also have the potential to transfer their genes to other microbiomes as well. In our study, it is the first report that showed the uses of the IPCR-based approach to investigate the genetic contexts of MGEs in the oral metagenome, where several variants of Tn916 conjugative transposons and novel integron genes cassettes were identified.

The uses of IPCR technique with metagenomic DNA has only been used previously to study the genetic context of resistance genes in the sediment metagenome, which was shown to be a cost-efficient method with higher sensitivity compared to the metagenomic sequencing approach [37]. With metagenomic sequencing, it requires the metagenome to have a deep enough sequencing depth to perform assembly properly, especially for the MGEs with low abundance, which increases the sequencing cost [3, 4]. Also, the structures of MGEs, which contain both conserved and variable regions, and multiple insertions of the same MGEs in bacterial genomes or bacterial cells in an environment increase the challenges for the assembly algorithms. IPCR could bypass these issues as the target DNA are enriched by the amplification of the low abundance MGEs, and the cloning of IPCR amplicons into vector allows us to use primer walking for sequencing, which are cheaper and the sequencing data can be analyzed through simple bioinformatic tools.

The detected integron GC and composite transposon samples were amplified from two DNA repeats of IS elements and attC, respectively, which could be amplified either from undigested linear or self-circularized oral metagenome. The amplification of genes between attC has been used commonly to investigate integron GCs in various environmental samples such as wastewater, soil, marine, and saliva [2, 14, 21, 56, 59]. All integron samples were related to Treponema species, corresponding to the design of MARS2 and MARS5 primers that was based on the attC sequence of the reverse integron of T. denticola ATCC 35,405 [9]. However, all samples detected by this primer pair in the previous studies contained single GC [56–59], but we identified 4 integron samples containing 2 GCs (including interspersed attC sites) in our study, which is the first time that double cassettes were
recovered from the oral metagenome by PCR approach. It could occur from the additional gel extraction step to include only IPCR amplicons larger than 1 kb prior to the cloning step, which was not performed in the previous studies, in which the integron amplicons size from previous studies was 425–1263 bp, while the size of integron samples in this study was 1704–2890 bp. Several PCR-based studies on integron in other environmental samples also recovered amplicons with multiple GCs previously marine sediment and deep-sea hydrothermal vent samples, where they found 44% and 32.5% of the samples to contain multiple GCs [13, 14]. This is possible as integrons can carry from a dozen of GCs in mobile integrons to hundreds of GCs in sedentary chromosomal integrons where each GC is separated by \( \text{attC} \) recombination sites (59–120 bp) with similar sequences to each other [17]. Therefore, multiple GCs can be recovered if DNA primers bind to \( \text{attC} \) that are not adjacent but bind to the \( \text{attC} \) located further instead.

Analyzing the detected integron GCs from the oral metagenome predicted several interesting proteins encoding by these GCs. Toxin-antitoxin proteins were detected in Flip-MARS-4 and Flip-MARS-5 GCs, same as in the previous studies using the MARS2-MARS5 primers [56–59]. The presence of toxin-antitoxin containing GCs is common for sedentary chromosomal integrons like \( T. denticola \) integrons as their function is to prevent random deletion of GCs and ensure the stability of the large GC arrays [19, 33, 48, 55]. Endonucleases were also predicted to be encoded by Flip-MARS-3 and Flip-MARS-4 GCs, which were also found in another study that performed an in silico analysis on metagenomic datasets of the Human Microbiome Project to identify integrons associated with \( T. denticola \) spp [66]. The function of endonuclease enzymes in integrons has been suggested to involve in the cassette neoformation process [31]. Another gene, encoding VOC family protein, was also identified from Flip-MARS-11. Proteins in this family are metalloenzyme catalyzing diverse reactions through the formation of the partially closed beta-sheet barrel, which is formed by two \( \beta\alpha\beta\beta \) units, wrapping around the metal ions [20]. The important members of

---

**Fig. 3** The predicted structures of the genetic context of Tn916-like elements detected from the oral metagenome by IPCR. Gene associated with Tn916-like elements (blue open arrows) were amplified outwards from either tet(M) (green open boxes) or xis-int (yellow open boxes). The location of HindIII restriction sites (AAGCTT) used in the self-circularization of the partial digested oral metagenome is indicated with dashed lines.
VOC family include glyoxalases I, fosfomycin resistance proteins and bleomycin resistance proteins [20, 27, 50].

Tn916-family conjugative transposons are one of the largest families of ICEs. They can be found either as a linear form in a bacterial genome or as a circular intermediate in which their backbones contain conjugative transfer, transcriptional regulation, and recombination modules. Many of the Tn916 members also carry tet(M) as part of the accessory module. Tn916, the first and smallest member of this family, was isolated from Enterococcus faecalis DS16 [15], which later has been found in over 30 different bacterial genera [6, 43]. For the human oral cavity, Tn916-like elements have been found predominantly in oral streptococci, Veillonella spp., and Neisseria spp [29, 34, 42]. In our study, we used primers targeting tet(M) and xis-int genes on Tn916, which we identified 3 Tn916-like elements that were likely to derive from Streptococcus pneumoniae based on BlastN results.

The genes associated with the detected Tn916 variants were including erm(B) erythromycin resistance gene, Tn3 family transposase and resolvase genes (tnpA and tnpR), and MFS transporter gene. The presence of erm(B) has been found in several members of the Tn916 family, such as Tn3872, Tn1545, and Tn6003 [8, 36]. However, the structure that tnpA and tnpR genes located downstream from erm(B) in tet(M)-6 sample was similar to a Tn171 unit transposon structure, and the only transposon in the transposon registry that Tn917 located next to tet(M) was Tn3872 [36]. The presence of Tn917 containing erm(B) on Tn916-family conjugative transposon represents the phenomenon where ARGs could be moved onto ICEs with the help of other non-conjugative elements, allowing these ARGs to be subsequently moved to other bacterial cells by the activity of ICEs. For the MFS transporter in the xis-int-9 sample, it is an efflux pump, which can be found in all phyla, from bacteria to mammals [39]. Their main function involves the uptake of sugars, but some are also involved in multidrug resistance (MDR), virulence, and biofilm formation in bacteria [40]. Examples of MFS transporter conferring MDR are LmrP protein in Lactococcus lactis conferring lincosamides, macrolides and streptogramins resistance, and MdfA protein in E. coli conferring chloramphenicol, erythromycin, ciprofloxacin and rifampicin resistance [10, 65].

MGEs were also identified in the detected MGEs, including IS4-family transposase in the Flip-MARS-11 sample and Tn3-family tnpA-tnpR in the tet(M)-6 sample. As the core structures of integrons do not have genes to catalyze their interchromosomal mobility, they have to rely on transposase or recombinase from other sources [16]. The IS4-family transposase detected in Flip-MARS-11 could be kept in an integron cassette array in the oral cavity for such a purpose as well. It is also the first time that IS element was found in a cassette array in the oral metagenome. The presence of transposase genes in cassette array was previously reported in Xanthomonas integrons [18]. For the tet(M)-2 sample, even though it was not amplified from Tn916-like elements, it contained the IS21-family helper protein next to the tet(M) gene. Therefore, there was a high probability for the tet(M) in this sample to be disseminated with the help of its associated IS21-family element, similar to the previous report that showed that IS21-558 involved in the movement of cfr multidrug resistance gene [26].

Our study showed that the human oral microbiome is also one of the hot spots that contained a diverse pool of MGEs, which is consistent with other previous studies, where each MGE can be associated with various genes. For example, previous studies reported several different structures of IS1216 composite transposons in the oral microbiome, containing qrg antiseptic resistance gene and universal stress protein A (uspA) gene [6, 56, 59]. Multiple Tn916-Tn1545 family conjugative transposons were also identified from the oral bacteria, especially Streptococcus spp. such as Tn6002 from Streptococcus cristasit, Tn6815 from Streptococcus mitis, and Tn6816 from Streptococcus constellatus [7, 34, 64], where their transferability between oral streptococci were also confirmed. As all uses of antimicrobials provide selective pressure for bacteria to develop and increase the transfer of these MGEs, the oral microbiome, as a major gateway to the whole body, have a high potential to act as a reservoir for the spread of antimicrobial resistance to other microbiomes through a myriad of MGEs [12]. Therefore, the oral microbiome is an important part that needs to be understood on a functional level for us to fully understand the antibiotic resistance crisis.

Conclusion

To summarize, we have determined that genes associated with MGEs in the oral metagenome can be investigated through an IPCR-based approach, which requires less cost and simpler bioinformatic analysis compared to the metagenomic sequencing approach. As a result, several novel integron GCs, novel MGEs, and variants of Tn916 were recovered from the oral metagenome.

Abbreviations

IPCR: Inverse PCR; EPS: Extracellular polysaccharides; ARGs: Antimicrobial resistance genes; HGT: Horizontal gene transfer; MGEs: Mobile genetic elements; ISS: Insertion sequences; GCs: Gene cassettes.
Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12903-022-02209-y.

Additional file 1: Primers used in this study.

Acknowledgements

We would like to thank the staff at the university dental clinics for facilitating the collection of saliva samples. The publication charges for this article have been funded by a grant from the publication fund at UiT The Arctic University of Norway.

Author contributions

Collection of clinical samples and design of experiments were conceived by MAL and SUP. JOW and ENW collected the clinical samples and performed the laboratory work. SUP supervised the laboratory work and MAL did the overall supervision. Manuscript was drafted by SUP and critically reviewed by MAL and ENW. All authors read and approved the final manuscript.

Funding

Open Access funding provided by UiT The Arctic University of Norway. The current study is supported by the Department of Clinical Dentistry, Faculty of Health Sciences, UiT The Arctic University of Norway.

Availability of data and materials

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The current study and method were carried out according to the current role and regulation and the ethical approval was obtained from the Regional Committees for Medical and Health Research Ethics in Norway (Project number 2018/1373/REK nord). All participants volunteered and signed an informed consent form to use their saliva samples in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. 2Department of Clinical Dentistry, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway. 3Centre for New Antimicrobial Strategies, UiT the Arctic University of Norway, Tromsø, Norway.

Received: 9 December 2021 Accepted: 3 May 2022

Published online: 27 May 2022

References

1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
2. An X-L, Chen Q-L, Zhu D, Zhu Y-G, Gillings MR, Su J-Q, Elliot MA. Impact of multidrug transporter LmrP suggests a mechanism for polyspecificity. Nat Struct Mol Biol. 2020;27:829–35.
3. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakhmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.
4. Guerout AM, Iqbal N, Mine N, Ducos-Galand M, Van Melderen L, Mazel D. Novel and diverse integron integrate genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Environ Microbiol. 2006;258:257–62.
5. Guerout AM, Iqbal N, Mine N, Ducos-Galand M, Van Melderen L, Mazel D. Novel and diverse integron integrate genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Environ Microbiol. 2006;258:257–62.
6. Guerout AM, Iqbal N, Mine N, Ducos-Galand M, Van Melderen L, Mazel D. Novel and diverse integron integrate genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Environ Microbiol. 2006;258:257–62.
7. Guerout AM, Iqbal N, Mine N, Ducos-Galand M, Van Melderen L, Mazel D. Novel and diverse integron integrate genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Environ Microbiol. 2006;258:257–62.
28. Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G. Shaping the oral microbiota through intimate kissing. Microbiome. 2014;2:41.

29. Lancaster H, Ready D, Mullany P, Spatt D, Bedi R, Wilson M. Prevalence and identification of tetracycline-resistant oral bacteria in children not receiving antibiotic therapy. FEMS Microbiol Lett. 2003;228:99–104.

30. Lecuyer F, Bourassa JS, Gelinas M, Charon-Lamoureux V, Burnus V, Beu‑ regard PB. Biofilm formation drives transfer of the conjugative element ICEB1 in bacillus subtilis. mSphere. 2018;3:e00473‑18.

31. Léon G, Roy PH. Potential role of group IIC‑transferase inorganic cation‑transportation system in cyanobacteria. J Bacteriol. 2009;191:6040‑51.

32. Liang R, Roberts AP, Xu X, et al. Transferable plasmid‑borne mcr‑1 confers colistin‑resistant Shigella flexneri. Isolate. Appl Environ Microbiol. 2018;84:e02655‑e12617.

33. Loot C, Nivina A, Cury J, Escudero JA, Ducos‑Galand M, Bikard D, Rocha EP. M. Evaluating the mobility potential of antibiotic resistance genes in the oral environment resistomes without metagenomics. Sci Rep. 2016;6:35790.

34. Matamoros S, van Hattem JM, Arcilla MS, et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr‑1 gene indicates bacterial diversity but plasmid restriction. Sci Rep. 2017;7:5364.

35. McDougall LK, Tenover FC, Lee LN, Rasheed JK, Patterson JE, Jorgensen JH, LeBlanc DJ. Detection of mcr‑1 like sequences within a Tn1961 like conjugative transposon (Tn3872) in erythromycin‑resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1998;42:2312‑3.

36. Parnänen K, Karkman A, Tamminen M, Lyra C, Hultman J, Paulin L, Virta M. Evaluating the mobility potential of antibiotic resistance genes in environmental resistomes without metagenomics. Sci Rep. 2016;6:35790.

37. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements. Trends Microbiol. 2009;17:251–8.

38. Pärnänen K, Karkman A, Tamminen M, Lyra C, Hultman J, Paulin L, Virta M. Evaluation of novel, and likely ancestral, composite transposons and translocatable units from oral metagenomic DNA. FEMS Microbiol Lett. 2017;38:62296‑16.

39. Lancaster H, Ready D, Mullany P, Spatt D, Bedi R, Wilson M. Prevalence and identification of tetracycline-resistant oral bacteria in children not receiving antibiotic therapy. FEMS Microbiol Lett. 2003;228:99–104.

40. Leclerc F, Lecuyer F, Bourassa JS, Gelinas M, Charon-Lamoureux V, Burnus V, Beu‑ regard PB. Biofilm formation drives transfer of the conjugative element ICEB1 in bacillus subtilis. mSphere. 2018;3:e00473‑18.

41. Léon G, Roy PH. Potential role of group IIC‑transferase inorganic cation‑transportation system in cyanobacteria. J Bacteriol. 2009;191:6040‑51.

42. Liang R, Roberts AP, Xu X, et al. Transferable plasmid‑borne mcr‑1 confers colistin‑resistant Shigella flexneri. Isolate. Appl Environ Microbiol. 2018;84:e02655‑e12617.

43. Loot C, Nivina A, Cury J, Escudero JA, Ducos‑Galand M, Bikard D, Rocha EP. M. Evaluating the mobility potential of antibiotic resistance genes in the oral environment resistomes without metagenomics. Sci Rep. 2016;6:35790.

44. Roberts AP, Mullany P. A modular master on the move: the Tn916‑like element. mBio. 2018;9:e02381‑02317.

45. Roberts AP, Kreth J. The impact of horizontal gene transfer on the evolution of antibiotic resistance. eLife. 2021;10:e62474.

46. Roberts AP, Pratten J, Wilson M, Mullany P. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett. 2011;38(Suppl 11):7–16.

47. Roberts AP, Chandler M, Courvalin P, et al. Revised nomenclature for mobile genetic elements. Trends Microbiol. 2009;17:251–8.

48. Roberts AP, Pratten J, Wilson M, Mullany P. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett. 2011;38(Suppl 11):7–16.

49. Roberts AP, Mullany P, Roberts AP. Detection of novel integrons in the metagenome of human saliva. PLoS ONE. 2011;6:1:e0157605.

50. Roberts AP, Mullany P, Roberts AP. Detection of novel integrons in the metagenome of human saliva. PLoS ONE. 2011;6:1:e0157605.

51. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38:886‑91.

52. Siguier P, Pochon J, Lebrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32‑36.

53. Sn高清d, E.McGann P, Chandler M, Novick RP, Olaz F, Partridge S, Doi Y. The birth and demise of the ISap1‑mcr‑1‑Isap1? composite transposon: the vehicle for transferable colistin resistance. mBio. 2018;9:e02381‑02317.

54. Souque C, Escudero JA, MacLean RC. Integron activity accelerates the evolution of antibiotic resistance. elife. 2021;10:e62474.

55. Szekeres S, Dauti M, Wilde C, Mazel D, Rowe‑Magnus DA. Chromosomal toxin‑antitoxin loci can diminish large‑scale genome reductions in the absence of selection. Mol Microbiol. 2007;63:1588‑605.

56. Tansirichaiya S, Mullany P, Roberts AP. (2016) PCR‑based detection of composite transposons and translocatable units from oral metagenomic DNA. FEMS Microbiol Lett.

57. Tansirichaiya S, Rahman MA, Roberts AP. The transposon registry. Mobile DNA. 2019;10:40.

58. Tansirichaiya S, Mullany P, Roberts AP. Promotion activity of ORF‑less gene cassettes isolated from the oral metagenome. Sci Rep. 2019;9:8388.

59. Tansirichaiya S, Rahman MA, Antepovitcz A, Mullany P, Roberts AP. Detection of novel integrons in the metagenome of human saliva. PLoS ONE. 2016;11:e0157605.

60. Wade W, Thompson H, Rybalka A, Vartoukian S. Uncultured members of the oral microbiome. J Calif Dent Assoc. 2016;44:447‑56.

61. Wade WG. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? J Clin Periodontol. 2011;38(Suppl 11):7–16.

62. Wade WG. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? J Clin Periodontol. 2011;38(Suppl 11):7–16.

63. Wang R, van Dorp L, Shaw LP, et al. The global distribution and spread of the mobilized colistin resistance gene mcr‑1. Nat Commun. 2018;9:1179.

64. Warburton PJ, Palmer RM, Munson MA, Wade WG. Demonstration of in vivo transfer of doxycycline resistance mediated by a novel transposon. J Antimicrob Chemother. 2007;60:973‑80.

65. Wu H‑H, Symersky J, Lu M. Structure of an engineered multidrug efflux pump. Nature. 2006;440:917‑23.

66. Wu YW, Rho M, Doak TG, Ye Y. Oral spirochetes implicated in dental diseases are widespread in normal human subjects and carry extremely diverse integron gene cassettes. Appl Environ Microbiol. 2012;78:5288‑96.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.