Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Introduction

A growing number of studies have attempted to assess the indirect consequences of the COVID-19 pandemic on key health indicators. It has been speculated that 1 of these indirect consequences is an impact on the birth outcomes, including a change in the prevalence of preterm birth. The suggested potential mechanisms for such an impact include hypotheses about improved air quality (because of strict lockdown measures), prevention of infections that may otherwise trigger preterm labour, and changes to health-seeking behavior. In contrast, pregnant women have experienced added anxiety about COVID-19 infection alongside the negative impacts of unemployment and income insecurity, working from home, home-schooling, and reduced social support. In addition, many settings experienced changes in healthcare access and availability. A recent meta-analysis identified 16 studies assessing the impact of the COVID-19 pandemic on preterm birth, 12 of which were conducted in high-income countries (HIC). Although these individual studies reported conflicting findings, a subgroup analysis of the HIC studies suggested some evidence of a significant decrease in the incidence of preterm birth following the start of the COVID-19 pandemic. Most existing studies are based on data from selected healthcare facilities or are limited to regional data, and are therefore, small, potentially underpowered, and not representative of the general population. In addition, temporal and seasonal trends in preterm birth have not always been adequately accounted for. There continues to be insufficient evidence to conclude the impact of COVID-19 mitigation measures on preterm birth, particularly when focusing on longer periods of lockdown and specific preterm birth subtypes.

Norway, Sweden, and Denmark are similar countries in many ways, particularly in terms of universal healthcare, levels of income inequality, and fertility patterns. At the time when COVID-19 was first designated a pandemic by the World Health Organization (March 13, 2020), the COVID-19 rates were similarly low in all the 3 countries. Subsequently, each country pursued policy measures in an attempt to minimize the impact of COVID-19, with both Norway and Denmark introducing relatively strict lockdown measures in mid-March,
Why was this study conducted?
This study aimed to assess the impact of COVID-19 mitigation measures on the incidence of preterm birth.

Key findings
In this difference-in-differences analysis of births in Scandinavia, there was no evidence of a change in the incidence of preterm birth following the initial introduction of COVID-19 mitigation measures in 2020.

What does this add to what is known?
Previous studies have reported conflicting findings. These studies have predominantly been based on data from healthcare facilities and are potentially underpowered and unrepresentative, and they have not always accounted for temporal trends in preterm birth.

This analysis of national registry data from 3 countries with varied levels of “lockdowns” provides no evidence of an indirect impact of the COVID-19 pandemic on preterm birth.

Materials and Methods
Data sources and study population
Records of births at ≥22 weeks’ gestation occurring between January 1, 2014 and December 31, 2020 were obtained from the Medical Birth Registry of Norway,16 the Swedish Pregnancy Register,17 the Danish Medical Birth Register,18 the Danish National Patient Registry,19 and the Danish Civil Registration System.20 In Norway and Denmark, all births are included in the registry sources; in Sweden, 92% of the births are included in the national register. Further details of the data sources are listed in the appendix (Supplemental Table 1). Births with multiples were counted as one record only.

Ethical approval
This study was approved by the Regional Committee for Medical and Health Research Ethics of South/East Norway (approval number 141135) and the Swedish Ethical Review Authority (approval numbers: dnr 2020-01499, dnr 2020-02468, dnr 2021-00274). Each committee provided a waiver of consent for the participants. In Denmark, the study was registered with the Danish Data Protection Agency via the University of Southern Denmark (registration number 564 20/17416) and via Statistics Denmark.

Exposure
The DiD design requires a time point on which to split between an unexposed ‘pre’ period and an unexposed ‘post’ period. Although the intensity and timing of COVID-19 mitigation measures differed between the 3 countries, most of the measures were introduced around March 12, 2020 (Table 1). Thus, March 12, 2020 was used as the cutoff date for all the 3 countries.

Preterm birth
We defined preterm birth as the birth of at least 1 live or stillborn infant before 37 completed weeks of pregnancy. Preterm birth was further stratified into medically indicated preterm birth (resulting from induction of labor or a prelabor cesarean delivery) or spontaneous preterm birth (birth after a spontaneous onset of labor). We included very preterm birth (<32 weeks) as an additional outcome. Further details on the definition of outcomes are included in the appendix (Supplemental Table 1).

Statistical analysis
The DiD design mimics experimental methods by comparing changes in an exposed group with those in an unexposed group.21 Specifically, we exploit the exogenous nature of the mid-March lockdown: everyone is exposed. However, because the exposure is fixed in time (mid-March 2020), the naïve comparison of before and after the introduction of lockdown measures might be confounded by any factor that is correlated with time, e.g. seasonal effects or changes in the characteristics of pregnant women. In the DiD design, this is solved by comparing the changes before and after March 12 not only in 2020 but also in the previous years. In this study, we compared the rate of preterm birth in the weeks before and after the introduction of COVID-19 mitigation measures in 2020 (March 12, difference 1) with the difference in the preterm birth rates before and after March 12 in earlier years (2014–2019, difference 2). The DiD estimate is the difference between these 2 differences, obtained using linear probability models with robust standard errors and presented as a risk difference in points per 1000 births. Statistically, we use an interaction term between pre-post lockdown and year to derive the DiD estimate. By including the year and week fixed effects, this approach accounts for the background trends in the birth outcomes,22 including seasonal trends. The DiD estimate can be interpreted as the change in birth outcomes that are related to the implementation of COVID-19 mitigation measures in the various countries, beyond the background trends in season and year. If there is no relationship between the COVID-19 mitigation measures and the
subsequent birth outcomes, then the DiD estimate would be equal to 0. We accounted for clustering by mother where this information was available (Norway and Sweden). To allow for a time lag between the introduction of the COVID-19 mitigation measures and a potential impact on preterm birth, we modeled 5 different time intervals as follows: 2 weeks after March 12 compared with 2 weeks before and similar comparisons for intervals of 4, 8, 12, and 16 weeks. We first ran a model for any preterm birth, and then we ran additional models for medically indicated preterm birth, spontaneous preterm birth, and very preterm birth. The parallel trends assumption was explored using visual inspection of pre-trends.

Individual data sharing was not possible between countries because of privacy restrictions; therefore, the DiD analyses were conducted within each country separately according to a standardized common study protocol. The pooled DiD estimates were generated using a random-effects meta-analysis with inverse variance weighting of individual-country results. Heterogeneity was assessed using the I² statistic, calculated as 100×(Q−df)/Q, where Q is Cochrane’s heterogeneity statistic and df denotes degrees of freedom.23 The analyses were performed using SAS EG version 9.4 (SAS Institute, Cary, NC) and Stata version 16 (StataCorp, College Station, TX).

Results
There were 1,552,401 births between 2014 and 2020 in the 3 countries. After excluding 32,880 births with missing gestational lengths, gestational age <22 weeks, unknown outcome, or second or higher order births from a multiple pregnancy, 1,519,521 births were included in our study population (392,586 in Norway, 713,121 in Sweden, and 413,814 in Denmark; Supplemental Figure 1). The proportion of preterm birth (<37 completed weeks) was similar across all the 3 countries: 5.6% in Norway, 5.6% in Sweden, and 5.7% in Denmark (Table 2). In all the 3 countries, there was a slight decline in the proportion of preterm birth between 2014 and 2020 (Supplemental Tables 2–4).

Figure 1 presents the weekly incidence (using a 3-week rolling average) of preterm birth between January 2014 and December 2020, with week 11 (which includes the cutoff date, March 12) indicated by a vertical dashed line. There

Mitigation measures	Norway	Sweden	Denmark
Kindergarten or daycare and primary schools closed	March 12	n/a	March 16
High-school and universities closed	March 12	March 17: recommendation	March 13
Restrictions on gathering	March 12	March 11 (500+)	March 11 (100+)
		March 27 (500+)	March 17 (10+)
Workplace closures	March 10:	March 16: recommendation to	March 13:
	recommendation	work from home	non-essential
	to work from		workers in the
	home		public sector
			ordered to stay
			home, private
			sector urged
			to allow home
			working
Non-essential businesses closed	Some closures	—	Some closures
	from March 12		from March 18,
			including
			restaurants/bars
Stay at home recommendations	March 12:	March 16: for over 70s	March 11:
	avoid public	March 19: avoid unnecessary	restrict public
	transport and	travels	transport and
	unnecessary		unnecessary
	travels, March		travels
	19: not allowed		
	to spend night		
	in vacation		
	homes outside		
	home county		
Restriction on internal movement	March 12	March 19	April 9
Restrictions on international travel	March 13:	March 14: advice against	March 11:
	recommendations	all international travel,	flights from
	to avoid all	mandatory quarantine when	high-risk areas
	international	arriving in Norway, isolation	cancelled
	travel,	if symptoms	
	mandatory		
	quarantine when		
	arriving in		
	Norway, isolation		
Cancellation of public events	March 12	March 12	March 13

n/a, not applicable.

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
was a clear general seasonal trend in preterm birth, with the incidence peaking in the early winter months, and the lowest levels observed in late summer and early fall. Notably, in most years, the incidence of preterm birth steadily declined during the first 3 months of each year.

The DiD analyses included 895,945 births occurring in the period 16 weeks before and after March 12 from 2014 to 2020 (234,517 in Norway, 421,544 in Sweden, and 239,884 in Denmark). There was no evidence that the parallel trends assumption was violated in any of the 3 countries (Figure 2; Supplemental Figure 2). The DiD estimates for preterm birth with different weekly intervals are presented in Figure 3 (source data in Supplemental Tables 5–7). For all time intervals, there was no discernible difference in the country-specific incidence of preterm birth after lockdown. There was no evidence of heterogeneity in the meta-analysis, and pooled estimates did not show an overall decrease across the 3 countries.

Similarly, when preterm birth was stratified into medically indicated or spontaneous, there was no convincing difference in the country-specific prevalence following March 12, 2020 in any of the 3 countries (Figure 4). As with the overall preterm birth analysis, there was

| TABLE 2 |
| Characteristics of included births from 2014 to 2020 in Norway, Sweden, and Denmark |
Characteristics	Norway	(%)	Sweden	(%)	Denmark	(%)
All births	392,586	()	713,121	()	413,814	()
Gestational age (wk)						
Extremely preterm <28	1449	(0.4)	2670	(0.4)	1620	(0.4)
Very preterm 28–<32	2123	(0.5)	3912	(0.5)	2393	(0.6)
Moderate/late preterm 32–<37	18,256	(4.7)	33,264	(4.7)	19,411	(4.7)
Term 37–<42	354,821	(90.4)	636,182	(89.2)	381,218	(92.1)
Postterm ≥42	15,937	(4.1)	36,113	(5.1)	9172	(2.2)
Maternal age						
<20	3710	(0.9)	7266	(1.0)	3296	(0.8)
20–24	41,279	(10.5)	75,668	(10.6)	41,652	(10.1)
25–29	126,280	(32.2)	223,444	(31.3)	138,920	(33.6)
30–34	139,841	(35.6)	246,949	(34.6)	144,304	(34.9)
35–39	66,785	(17.0)	128,099	(18.0)	69,390	(16.8)
≥40	14,690	(3.7)	31,484	(4.4)	16,252	(3.9)
Missing	1	(0.0)	211	(0.0)		
Parity						
0	166,742	(42.5)	306,085	(42.9)	190,650	(46.1)
≥1	225,844	(57.5)	402,892	(56.5)	223,120	(53.9)
Missing	4144	(0.6)	44	(0.0)		
Multiple birth						
Yes	6107	(1.6)	10,072	(1.4)	6768	(1.6)
No	386,479	(98.4)	703,049	(98.6)	407,046	(98.4)
Season of conception a						
Winter	90,360	(23.0)	186,013	(26.1)	105,919	(25.6)
Spring	92,381	(23.5)	189,348	(26.6)	97,751	(23.6)
Summer	102,690	(26.2)	170,177	(23.9)	100,506	(24.3)
Fall	107,155	(27.3)	167,583	(23.5)	109,638	(26.5)

a Winter (December–February); Spring (March–May); Summer (June–August); Fall (September–November).

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
no evidence of heterogeneity, and pooled estimates did not provide evidence of a change in the incidence of either medically indicated or spontaneous preterm birth.

The introduction of COVID-19 mitigation measures had no impact on the incidence of very preterm birth (<32 completed weeks) in any of the 3 countries (Supplemental Figure 3).

Results in the context of what is known
There have been reports of a decline in preterm births after the onset of the COVID-19 pandemic in HICs, although findings are inconsistent. Pooled estimates from a recent meta-analysis suggest a modest decrease in overall preterm birth in HICs only and also a reduction in spontaneous preterm birth but not medically indicated preterm birth, although the latter finding rests on the results from only 2 hospital-based studies. Notably, an earlier analysis of Danish data comparing births in the month following lockdown to births in the same interval in earlier years concluded that there was a decrease in extremely preterm birth after lockdown but no similar trend for later preterm births. However, this was on the basis of only 1 extremely preterm birth recorded for the 2020 study period. A short report comparing births in Sweden before and after the start of the COVID-19 pandemic did not find any association between birth during the COVID-19 pandemic and preterm birth, which is consistent with the findings reported here. The general inconsistency in results across previous studies likely reflects methodological heterogeneity, selection criteria, and a lack of ability to minimize bias caused by existing seasonal and time trends in preterm birth, and also low power for rare outcomes such as preterm birth subtypes. In addition, inconsistencies in the results may reflect heterogeneity in the mitigation measures and differing population and health system characteristics.
Although the 3 Scandinavian countries have a similar culture, populations, and healthcare systems, at the beginning of the pandemic, there was a major difference in the approach to policies and interventions designed to mitigate the COVID-19 pandemic.12,13 Both the Norwegian and Danish governments swiftly introduced emergency legislative powers, allowing them to implement domestic restrictions that would otherwise be constitutionally unlawful. One key difference between the 3 countries relates to education closures: in mid-March 2020, all schools were closed in Norway and Denmark, whereas Sweden followed some days later with only a recommendation for high schools and universities to close. There was also stronger advice to work from home in both Norway and Denmark. Although the 3 countries had similar rates of COVID-19 cases on March 12, by July 2—16 weeks into the pandemic—the cumulative confirmed COVID-19 deaths per million people was 46.3 in Norway, 104.62 in Denmark, and 535.8 in Sweden.14 Trust in the government is generally high across all the 3 countries,43 and there is evidence of high compliance with the mitigation measures that were introduced as a result of the pandemic.44 Adherence to public health recommendations around social distancing and hygiene almost certainly contributed to an abrupt end to the 2019/20 influenza season in the 3 countries,45 with some evidence that these measures also contributed to a decrease in non-COVID-19 respiratory infections.46 Although there were likely some changes to healthcare in the 3 countries immediately following the start of the pandemic, these were likely to predominantly be reflected in reductions in elective care rather than changes in the provision of essential maternal health services.

Clinical and research implications
Although there are some well-known risk factors for preterm birth, the biologic mechanisms behind preterm birth

FIGURE 3

Meta-analyses of difference-in-differences estimates for preterm birth

	Events 2020 n (%)	Events 2014-19 n (%)	DID per 1000 births (95% CI)	% Weight
16 weeks				
Norway	1850 (5.8)	11647 (5.7)	-3.6 (-9.2 to 2.0)	26.59
Sweden	3436 (5.5)	20591 (5.7)	-0.3 (-4.7 to 4.0)	43.61
Denmark	2060 (5.7)	11930 (5.9)	-2.2 (-7.4 to 3.1)	29.80
(t = 0.0%, p = 0.647)			-1.8 (-4.6 to 1.1)	100.00
12 weeks				
Norway	1408 (5.9)	8854 (5.7)	-5.0 (-11.4 to 1.4)	24.67
Sweden	2562 (5.5)	15672 (5.7)	-0.2 (-4.8 to 4.4)	47.94
Denmark	1504 (5.6)	9000 (5.8)	-3.7 (-8.8 to 2.4)	27.39
(t = 0.0%, p = 0.425)			-2.3 (-5.5 to 0.8)	100.00
5 weeks				
Norway	944 (5.8)	5911 (5.6)	-5.2 (-12.9 to 2.6)	24.07
Sweden	1749 (5.5)	10524 (5.6)	1.4 (-4.1 to 6.8)	49.09
Denmark	975 (5.6)	6001 (5.8)	-2.3 (-9.6 to 5.1)	26.84
(t = 0.0%, p = 0.376)			-1.2 (-5.0 to 2.6)	100.00
4 weeks				
Norway	447 (5.6)	2966 (5.7)	0.0 (-7.8 to 7.9)	47.33
Sweden	905 (5.7)	5184 (5.6)	0.3 (-3.9 to 10.6)	27.88
Denmark	460 (5.5)	3001 (5.8)	-0.1 (-5.5 to 5.3)	100.00
(t = 0.0%, p = 0.985)				
2 weeks				
Norway	211 (5.3)	1426 (5.6)	6.3 (-8.7 to 21.3)	24.78
Sweden	433 (5.5)	2605 (5.6)	3.3 (-7.8 to 14.1)	47.28
Denmark	217 (5.0)	1470 (5.7)	2.1 (-12.0 to 16.2)	27.95
(t = 0.0%, p = 0.918)			3.7 (-3.8 to 11.1)	100.00

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
FIGURE 4
Meta-analyses of difference-in-differences estimates

For (A) medically indicated preterm birth and (B) spontaneous preterm birth.

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
remain poorly understood, and identifying additional factors that could influence preterm risk is of great interest, as preterm births represent a substantial burden for the children themselves, the parents, and society. Early reports of a decrease in preterm birth following the onset of the COVID-19 pandemic have therefore ignited much interest, and this is likely in part because of the well-established challenge of further reducing preterm birth incidence in countries with already low rates of preterm birth. Further research could usefully investigate the extent to which the impact of COVID-19 mitigation measures may be mediated by contextual factors such as existing trends in preterm birth and characteristics of healthcare systems.

Strengths and limitations

This study used national registry data covering more than 1.5 million births in the 3 Scandinavian countries from 2014 through 2020. We captured all births in Norway and Denmark in this time period, and 92% of births in Sweden. Approximately 8% of births were missing because of incomplete electronic data transfer in 3 of Sweden’s 21 counties. The missing registrations did not depend on the birth outcomes and would not bias associations. By comparing the births around March 2020 with those in the same seasonal period in the previous years, we could account for discernible seasonal and yearly trends in preterm birth. Prospective and well-established routine collection of data reduces bias from reporting, and our primary outcome (preterm birth) is an objective outcome based on gestational age estimates derived predominantly from ultrasonography.

The COVID-19 pandemic arguably represents the most important natural experiments of our time and is well suited to the application of quasi-experimental methods. DiD methods are designed to minimize the effect of any unmeasured confounding. Nevertheless, unbiased DiD estimates hinge on the assumption of parallel preterntrends. Visual inspection of plots did not suggest that the parallel trends assumption was violated. The validity of the approach also depends on the “common shocks” assumption, which can be defined as the assumption that any other event that occurs during or following the intervention should affect each group equally. The common shocks assumption is essentially an untestable assumption involving any exogenous shocks that may be unknown. However, the use of data from the 3 countries with comparable findings suggest that this is not the cause of our findings.

A strength of our study was that we could subdivide preterm births into those with a spontaneous onset and those that were medically indicated. We could also assess very preterm birth (<32 weeks) as a standalone outcome. However, the number of country-specific events by week was insufficient to assess any impact on less common preterm birth subtypes such as extremely preterm birth (<28 completed weeks). We could not therefore use our DiD approach to confirm the suggested decreased incidence of extremely preterm birth found in a previous Danish study.

This study aimed to assess the indirect consequences of the COVID-19 pandemic on preterm birth, and we, therefore, did not include information on SARS-CoV-2 infection in pregnancy. There is emerging evidence that SARS-CoV-2 infection is associated with an increased risk of preterm birth. However, given the generally low level of testing among asymptomatic and mild cases, these findings predominantly relate to more severe infections, so it is expected that confounding by indication will bias the estimates toward an association. The impact of any direct effect of SARS-CoV-2 infection on preterm birth in Scandinavia is likely to be minimal, given the still comparatively low rates of infection in these countries during the study period.

Conclusion

The indirect impacts of the COVID-19 pandemic are far-reaching and are still only beginning to be understood. Using robust population-based data from 3 high-income countries with varying levels of COVID-19 mitigation measures, we found no strong evidence of a decline in preterm birth following the onset of the COVID-19 pandemic in March 2020.

References

1. Naurin E, Markstedt E, Stolle D, et al. Pregnant under the pressure of a pandemic: a large-scale longitudinal survey before and during the COVID-19 outbreak. Eur J Public Health 2021;31:7–13.
2. Perera F, Barberian A, Cooley D, et al. Potential health benefits of sustained air quality improvements in New York City: a simulation based on air pollution levels during the COVID-19 shutdown. Environ Res 2021;193:110555.
3. Philip RK, Purtil H, Reidy E, et al. Unprecedented reduction in births of very low birthweight (VLBW) and extremely low birthweight (ELBW) infants during the COVID-19 lockdown in Ireland: a ‘natural experiment’ allowing analysis of data from the prior two decades. BMJ Glob Health 2020;5:e003075.
4. Hessami K, Ronanelli C, Chiurazzi M, Cozzolino M. COVID-19 pandemic and maternal mental health: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2020 [Epub ahead of print].
5. Label C, Mackinnon A, Bagshawe M, Tomfohr-Madsen L, Giesbrecht G. Elevated depression and anxiety symptoms among pregnant individuals during the COVID-19 pandemic. J Affect Disord 2020;277:5–13.
6. Ceulemans M, Foulon V, Ngo E, et al. Mental health status of pregnant and breastfeeding women during the COVID-19 pandemic—a multinational cross-sectional study. Acta Obstet Gynecol Scand 2021;100:1219–29.
7. Townsend R, Chmielewska B, Barratt I, et al. Global changes in maternity care provision during the COVID-19 pandemic: a systematic review and meta-analysis. EClinicalMedicine 2021;37:100947.
8. Chmielewska B, Barratt I, Townsend R, et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob Health 2021;9:e759–72.
9. Strand LB, Barnett AG, Tong S. The influence of season and ambient temperature on birth outcomes: a review of the epidemiological literature. Environ Res 2011;111:451–62.
10. Goldenberg RL, McClure EM. Have coronavirus disease 2019 (COVID-19) community lockdowns reduced preterm birth rates? Obstet Gynecol 2021;137:399–402.
11. Ludvigsson JF. The first eight months of Sweden’s COVID-19 strategy and the key actions and actors that were involved. Acta Pædiatr 2020;109:2459–71.
12. Mens H, Koch A, Chanie M, Andersen AB. The hammer vs mitigation—a comparative retrospective register study of the Swedish and Danish national responses to the COVID-19 pandemic in 2020. APMS 2021;129:384–92.
13. Yarmol-Matusiak EA, Cipriano LE, Stranges S. A comparison of COVID-19
incidence of preterm birth: a national quasi-experimental study. Lancet Public Health 2020;15:100330.
23. Matheson A, McGannon CJ, Malhotra A, et al. Prematurity rates during the coronavirus disease 2019 (COVID-19) pandemic lockdown in Melbourne, Australia. Obstet Gynecol 2021;137:1050–7.
24. Meyer R, Bart Y, Tsar A, et al. A marked decrease in preterm deliveries during the coronavirus disease 2019 pandemic. Am J Obstet Gynecol 2021;224:234–7.
25. De Curtis M, Villani L, Polo A. Increase of stillbirth and decrease of late preterm infants during the COVID-19 pandemic lockdown. Arch Dis Child Fetal Neonatal Ed 2021;106:466.
26. Simpson AN, Snelgrove JW, Sutradhar R. Changes in live births, preterm birth, low birth weight, and cesarean deliveries in the United States during the SARS-CoV-2 pandemic. medRxiv. Preprint posted online March 25, 2021. https://doi.org/10.1101/2021.03.02.21253990.
27. Hoivik CL, Matheson A, Liu Y, et al. Impact of COVID-19 pandemic restrictions on pregnancy duration and outcome in Melbourne, Australia. Ultrasound Obstet Gynecol 2021;58:677–87.
28. Einarsdóttir K, Swift EM, Zoega H. Changes in obstetric interventions and preterm birth during COVID-19: a nationwide study from Iceland. Acta Obstet Gynecol Scand 2021;100:1924–30.
29. Handley SC, Mullin AM, Elovitz MA, et al. Changes in preterm birth phenotypes and stillbirth at 2 Philadelphia hospitals during the SARS-CoV-2 pandemic, March–June 2020. JAMA 2021;325:87–9.
30. Khali A, von Dadaslen P, Draycott T, Ugwumadu A, O’Brien P, Magee L. Change in the incidence of stillbirth and preterm delivery during the COVID-19 pandemic. JAMA 2020;324:705–6.
31. Main EK, Chang SC, Carpenter AM, et al. Singleton preterm birth rates for racial and ethnic groups during the coronavirus disease 2019 pandemic in California. Am J Obstet Gynecol 2021;224:239–41.
32. Richter F, Strasser AS, Suarez-Farinae M, et al. Neonatal outcomes during the COVID-19 pandemic in New York City. Pediatr Res 2021 [Epub ahead of print].
33. wood R, Sinnott C, Goldfarb I, Clapp M, McErla T, Little S. Preterm birth during the coronavirus disease 2019 (COVID-19) pandemic in a large hospital system in the United States. Obstet Gynecol 2021;137:403–4.
34. Pasternak B, Neovius M, Soderling J, et al. Preterm birth and stillbirth during the COVID-19 pandemic in Sweden: a nationwide cohort study. Ann Intern Med 2021;174:873–5.

epidemiological indicators in Sweden, Norway, Denmark, and Finland. Scand J Public Health 2021;49:69–78.
14. Roser M, Ritchie H, Ortiz-Ospina E, Hasell J. Coronavirus pandemic (COVID-19). 2020. Available at: https://ourworldindata.org/coronavirus. Accessed April 26, 2020.
15. Zhang L, Brikell I, Dalsgaard S, Chang Z. Public mobility and social media attention in response to COVID-19 in Sweden and Denmark. JAMA Netw Open 2021;4:e2033478.
16. Irgens LM. The Medical Birth Registry of Norway. Epidemiological research and surveillance throughout 30 years. Acta Obstet Gynecol Scand 2000;79:435–9.
17. Stephansson O, Petersson K, Björk C, Conner P, Wikström AK. The Swedish Pregnancy Register - for quality of care improvement and research. Acta Obstet Gynecol Scand 2019;98:467–76.
18. Blidadal M, Broe A, Pottegård A, Olsen J, Langhoff-Roos J. The Danish medical birth register. Eur J Epidemiol 2018;33:27–36.
19. Schmidt M, Schmidt SAJ, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol 2015;7:449–90.
20. Pedersen CB, Gøtzsche H, Møller JO, Mortensen PB. The Danish Civil Registration System. A cohort of eight million persons. Dan Med Bull 2006;52:441–9.
21. Dimick JB, Ryan AM. Methods for evaluating changes in health care policy: the difference-in-differences approach. JAMA 2014;312:2401–2.
22. Wing C, Simon K, Bello-Gomez RA. Designing difference in difference studies: best practices for public health policy research. Annu Rev Public Health 2018;39:453–69.
23. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
24. Been JV, Burgos Ochoa L, Bertens LCM, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol 2015;7:449–90.
25. Pedersen CB, Gøtzsche H, Møller JO, Mortensen PB. The Danish Civil Registration System. A cohort of eight million persons. Dan Med Bull 2006;52:441–9.
26. Dimick JB, Ryan AM. Methods for evaluating changes in health care policy: the difference-in-differences approach. JAMA 2014;312:2401–2.
27. Wing C, Simon K, Bello-Gomez RA. Designing difference in difference studies: best practices for public health policy research. Annu Rev Public Health 2018;39:453–69.
28. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
29. Been JV, Burgos Ochoa L, Bertens LCM, Schoenmakers S, Steegers EPA, Reiss IKM. Impact of COVID-19 mitigation measures on the incidence of preterm birth: a national quasi-experimental study. Lancet Public Health 2020;5:e604–11.
30. Berghella V, Boellig R, Roman A, Burd J, Anderson K. Decreased incidence of preterm birth during coronavirus disease 2019 pandemic. Am J Obstet Gynecol MFM 2020;2:100258.
31. Gallo LA, Gallo TF, Borg DJ, Moritz KM, Clifton VL, Kumar S. Not spontaneous, preterm birth rates in a large Australian tertiary maternity centre during COVID-19 mitigation measures. Aust N Z J Obstet Gynaecol 2021 [Epub ahead of print].
32. Hedermann G, Hedley PL, Baekvad-Hansen M, et al. Danish premature birth rates during the COVID-19 lockdown. Arch Dis Child Fetal Neonatal Ed 2021;106:93–5.
33. Kasuga Y, Tanaka M, Oehda D. Preterm delivery and hypertensive disorder of pregnancy were reduced during the COVID-19 pandemic: a single hospital-based study. J Obstet Gynaecol Res 2020 [Epub ahead of print].
34. Saunes IV, Vrangbæk K, Byrkjefflot H, et al. Nordic responses to Covid-19: governance and policy measures in the early phases of the pandemic. Health Policy 2021 [Epub ahead of print].
35. Helsingen L, Reilani EM, Gjøstein DK, et al. The COVID-19 pandemic in Norway and Sweden - threats, trust, and impact on daily life: a comparative survey. BMC Public Health 2020;20:1597.
36. Embom H-D, Carmanah A, Bragstad K, et al. Abrupt termination of the 2019/20 influenza season following preventive measures against COVID-19 in Denmark, Norway and Sweden. Euro Surveill 2021;26:2001160.
37. Bodilsen J, Nielsen PB, Søgaard M, et al. Hospital admission and mortality rates for non-covid diseases in Denmark during covid-19 pandemic: nationwide population based cohort study. BMJ 2021;373:n1135.
38. Cobo T, Kacerovsky M, Jacobsson B. Risk factors for spontaneous preterm delivery. Int J Gynaecol Obstet 2020;150:17–23.
39. Chang HH, Larson J, Blencowe H, et al. Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index. Lancet 2013;381:223–34.
40. Wei SQ, Bilodeau-Bertrand M, Liu S, Auger N. The impact of COVID-19 on pregnancy outcomes: a systematic review and meta-analysis. CMAJ 2021;193:E540–8.
41. Norman M, Navler L, Söderling J, et al. Association of maternal SARS-CoV-2 infection in pregnancy with neonatal outcomes. JAMA 2021;325:2076–86.

Author and article information
From the Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom (Dr Oakley); Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway (Drs Oakley, Kinge, Magnus, and Håberg); Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden (Drs Örtqvist, Söderling, and Stephansson); Department of Obstetrics and Gynaecology, Visby County Hospital, Visby, Sweden (Dr Örtqvist); Department of Obstetrics and Gynaecology, Visby County Hospital, Visby, Sweden (Dr Örtqvist); University of Oslo, Oslo, Norway (Drs Kinge); Department of Public Health, University of Copenhagen, Copenhagen, Denmark (Drs Hansen and Nybo Andersen); Statistics Denmark, Copenhagen, Denmark (Drs Hansen and Mortensen); Open Patient Data Explorative Network, Odense University Hospital, Odense, Denmark (Dr Petersen); Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway (Drs Telle and Magnus); MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom (Dr Magnus); Population Health Sciences, Bristol Medical School, Bristol, United Kingdom (Dr Mortensen); and Department of Women’s Health, Karolinska University Hospital, Solna, Stockholm, Sweden (Dr Stephansson).
Received Aug. 9, 2021; revised Oct. 26, 2021; accepted Nov. 3, 2021.
The authors report no conflict of interest.
This research was supported by NordForsk (project number 105645) and the Research Council of Norway.
through its Centres of Excellence funding scheme (project number 262700). L.H.M is supported in part by grants from the Novo Nordisk Foundation (NNF17OC0027594, NNF17OC0027812). T.G.P is supported via funding awarded by the Danish Ministry of Higher Education and Science.

The funders had no role in the study design; the collection, analysis, and interpretation of data; writing of the report; or in the decision to submit the article for publication.

Corresponding author: Laura L. Oakley, PhD. laura.oakley@lsehm.ac.uk
SUPPLEMENTAL FIGURE 1
Study flowchart

1,552,401 births between 1 January, 2014 and 31 December, 2020
(402,652 in Norway, 723,390 in Sweden, 426,359 in Denmark)

2453 births excluded due to pregnancy outcome unknown or ineligible
(2011 in Norway, 0 in Sweden, 442 in Denmark)

7053 births excluded as gestational age <22 weeks or missing
(1875 in Norway, 28 in Sweden, 5150 in Denmark)

23,374 births excluded as they relate to the second or subsequent birth in a multiple pregnancy
(6180 in Norway, 10,241 in Sweden, 6953 in Denmark)

1,519,521 eligible births between 1 January, 2014 and 31 December, 2020
(392,586 in Norway, 713,121 in Sweden, 413,814 in Denmark)

623,576 births occurring outside the time period of interest for the difference-in-differences analysis
(158,069 in Norway, 291,577 in Sweden, 173,930 in Denmark)

895,945 births contributing to the 16 week interval difference-in-differences analysis
(234,517 in Norway, 421,544 in Sweden, 239,884 in Denmark)

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
SUPPLEMENTAL FIGURE 2
Preterm birth by month and year in Norway, Sweden, and Denmark, 2014—2020

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
SUPPLEMENTAL FIGURE 3
Meta-analyses of difference-in-differences estimates for very preterm birth

SUPPLEMENTAL TABLE 1
Outcome definitions and data sources

Data sources or outcome	Norway	Sweden	Denmark
Data sources	Medical Birth Registry of Norway	Swedish Pregnancy Register	Danish National Patient Register
			The Danish Civil Registration System
			Danish Medical Birth Register
Preterm birth	Live birth or stillbirth <259 d^a	1) ICD-10 O60.1 (Spontaneous preterm labor with preterm delivery) or 2) live birth or stillbirth <259 d^a	Live birth or stillbirth <259 d^a
Medically-indicated preterm birth	Live birth or stillbirth <259 d with induced labor or cesarean delivery without labor	1) ICD-10 O60.3 (Preterm birth without spontaneous start of labor) or 2) live birth or stillbirth <259 d with induced labor or cesarean delivery without labor	Live birth or stillbirth <259 d with induced labor, or cesarean delivery without labor. If there is a code indicating rupture of membranes without regular contractions, the birth is reclassified as spontaneous preterm.
Spontaneous preterm birth	Live birth or stillbirth <259 d with spontaneous start of labor	1) ICD-10 O60.1 (Spontaneous preterm labor with preterm delivery) or 2) live birth or stillbirth <259 d with spontaneous start	Live birth or stillbirth <259 d that is not classified as induced (provided above) and is unclassifiable
Very preterm birth	Live birth or stillbirth <223 d	Live birth or stillbirth <223 d	Live birth or stillbirth <223 d

^a Gestational age is based on routine ultrasound measurements when this is available (approximately 98% of births); otherwise, the last menstrual period is used.

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
Characteristics of births in Norway by year, 2014 to 2020

Characteristics	All	2014	2015	2016	2017	2018	2019	2020
	n (%)	n (%)	n (%)					
All births	392,586	58,548	58,417	58,563	56,123	54,734	54,053	52,148
Gestational age (wk)								
Extremely preterm < 28	1449 (0.4)	250 (0.4)	232 (0.4)	209 (0.4)	203 (0.4)	195 (0.4)	194 (0.4)	166 (0.3)
Very preterm 28 –< 32	2123 (0.5)	324 (0.6)	316 (0.5)	339 (0.6)	281 (0.5)	268 (0.5)	311 (0.6)	284 (0.5)
Moderate or late preterm 32 –< 37	18,256 (4.7)	2685 (4.6)	2750 (4.7)	2789 (4.8)	2587 (4.6)	2539 (4.6)	2506 (4.6)	2400 (4.6)
Term 37 –< 42	354,821 (90.4)	53,200 (90.9)	52,848 (90.5)	52,873 (90.3)	50,448 (89.9)	49,397 (90.2)	48,665 (90.0)	47,390 (90.9)
Postterm ≥ 42	15,937 (4.1)	2089 (3.6)	2271 (3.9)	2353 (4.0)	2604 (4.6)	2335 (4.3)	2377 (4.4)	1908 (3.7)
Maternal age								
< 20	3710 (0.9)	808 (1.4)	741 (1.3)	659 (1.1)	489 (0.9)	414 (0.8)	349 (0.6)	250 (0.5)
20–24	41,279 (10.5)	7474 (12.8)	7097 (12.1)	6618 (11.3)	5790 (10.3)	5395 (9.9)	4755 (8.8)	4150 (8.0)
25–29	126,280 (32.2)	18,765 (32.1)	19,179 (32.8)	19,224 (32.8)	18,553 (33.1)	17,641 (32.2)	16,896 (31.3)	16,022 (30.7)
30–34	139,841 (35.6)	19,852 (33.9)	19,593 (33.5)	20,243 (34.6)	19,820 (35.3)	19,999 (36.5)	20,254 (37.5)	20,080 (38.5)
35–39	66,785 (17.0)	9558 (16.3)	9733 (16.7)	9666 (16.5)	9356 (16.7)	9295 (17.0)	9623 (17.8)	9554 (18.3)
≥ 40	14,690 (3.7)	2091 (3.6)	2074 (3.6)	2152 (3.7)	2115 (3.8)	1990 (3.6)	2176 (4.0)	2092 (4.0)
Parity								
0	166,742 (42.5)	24,754 (42.3)	24,920 (42.7)	24,901 (42.5)	23,624 (42.1)	23,168 (42.3)	22,999 (42.5)	22,376 (42.9)
≥ 1	225,844 (57.5)	33,794 (57.7)	33,497 (57.3)	33,662 (57.5)	32,499 (57.9)	31,566 (57.7)	31,054 (57.5)	29,772 (57.1)
Multiple birth								
Yes	6107 (1.6)	937 (1.6)	982 (1.7)	935 (1.6)	898 (1.6)	821 (1.5)	826 (1.5)	708 (1.4)
No	386,479 (98.4)	57,611 (98.4)	57,435 (98.3)	57,628 (98.4)	55,225 (98.4)	52,913 (96.7)	53,227 (98.5)	51,440 (98.6)

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
Characteristics	All	2014	2015	2016	2017	2018	2019	2020								
	n	(%)	n	(%)	n	(%)	n	(%)								
Country of birth																
Norway	275,365	(70.1)	41,835	(71.5)	41,230	(70.6)	41,124	(70.2)	38,758	(69.1)	37,862	(69.2)	37,688	(69.7)	36,868	(70.7)
Other Scandinavia	8228	(2.1)	1213	(2.1)	1210	(2.1)	1243	(2.1)	1154	(2.1)	1155	(2.1)	1179	(2.2)	1074	(2.1)
Outside Scandinavia	107,318	(27.3)	15,187	(25.9)	15,703	(26.9)	15,957	(27.2)	15,953	(28.4)	15,526	(28.4)	14,982	(27.7)	14,010	(26.9)
Missing	1675	(0.4)	313	(0.5)	274	(0.5)	239	(0.4)	258	(0.5)	191	(0.3)	204	(0.4)	196	(0.4)
Maternal education status (y)																
≤9	58,273	(14.8)	8910	(15.2)	9037	(15.5)	8911	(15.2)	8477	(15.1)	8175	(14.9)	7773	(14.4)	6990	(13.4)
10–12	85,421	(21.8)	13,806	(23.6)	13,507	(23.1)	13,095	(22.4)	12,109	(21.6)	11,404	(20.8)	11,118	(20.6)	10,382	(19.9)
>12	218,689	(55.7)	32,129	(54.9)	32,045	(54.9)	32,287	(55.1)	31,039	(55.3)	30,441	(55.6)	30,620	(56.6)	30,128	(57.8)
Missing	30,203	(7.7)	3703	(6.3)	3828	(6.6)	4270	(7.3)	4498	(8.0)	4714	(8.6)	4542	(8.4)	4648	(8.9)
Season of conceptiona																
Winter	90,360	(23.0)	13,352	(22.8)	13,492	(23.1)	13,304	(22.7)	12,928	(23.0)	12,648	(23.1)	12,580	(23.3)	12,056	(23.1)
Spring	92,381	(23.5)	13,979	(23.9)	13,628	(23.3)	13,772	(23.5)	13,198	(23.5)	12,837	(23.5)	12,789	(23.7)	12,178	(23.4)
Summer	102,690	(26.2)	15,405	(26.3)	15,081	(25.8)	15,641	(26.7)	14,734	(26.3)	14,271	(26.1)	13,946	(25.8)	13,612	(26.1)
Fall	107,155	(27.3)	15,812	(27.0)	16,216	(27.8)	15,846	(27.1)	15,263	(27.2)	14,978	(27.4)	14,738	(27.3)	14,302	(27.4)
BMI (kg/m²)																
<18.5	12,941	(3.3)	1777	(3.0)	1858	(3.2)	1973	(3.4)	1984	(3.5)	1884	(3.4)	1821	(3.4)	1644	(3.2)
18.5–<25	200,623	(51.1)	26,170	(44.7)	27,091	(46.4)	29,939	(51.1)	29,713	(52.9)	29,851	(54.5)	29,724	(54.6)	28,335	(54.3)
25–<30	73,321	(18.7)	9008	(15.4)	9385	(16.1)	10,553	(18.0)	10,653	(19.0)	11,121	(20.3)	11,306	(20.9)	11,295	(21.7)
≥30	41,315	(10.5)	5047	(8.6)	5060	(8.7)	5665	(9.7)	5901	(10.5)	6230	(11.4)	6657	(12.3)	6755	(13.0)
Missing	64,386	(16.4)	16,546	(28.3)	15,023	(25.7)	10,433	(17.8)	7872	(14.0)	5648	(10.3)	5746	(10.6)	4119	(7.9)
Smoking in early pregnancy																
No	342,517	(87.2)	48,487	(82.8)	50,595	(86.6)	51,729	(88.3)	49,308	(87.9)	48,488	(88.6)	48,104	(89.0)	46,006	(88.2)
Yes	15,199	(3.9)	3678	(6.3)	2941	(5.0)	2530	(4.3)	1993	(3.6)	1665	(3.0)	1301	(2.4)	1091	(2.1)
Missing	34,870	(8.9)	6383	(10.9)	4881	(8.4)	4304	(7.3)	4822	(8.6)	4781	(8.7)	4648	(8.6)	5051	(9.7)

BMI: body mass index.

a Winter (December—February); Spring (March—May); Summer (June—August); Fall (September—November).

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
SUPPLEMENTAL TABLE 3
Characteristics of births in Sweden by year, 2014 to 2020

Characteristics	All	2014	2015	2016	2017	2018	2019	2020
	n (%							
All births	713,121	89,437	102,483	107,877	104,314	104,556	102,937	101,517
Gestational age (wk)								
Extremely preterm < 28	2670	(0.4)	374	(0.4)	401	(0.4)	432	(0.4)
Very preterm 28–<32	3912	(0.5)	537	(0.6)	579	(0.6)	601	(0.6)
Moderate or late preterm 32–<37	33,264	(4.7)	4231	(4.7)	4869	(4.8)	5095	(4.7)
Term 37–<42	636,182	(89.2)	79,221	(88.6)	90,605	(88.4)	95,382	(88.9)
Postterm ≥42	36,113	(5.1)	5074	(5.7)	6029	(5.9)	6367	(5.9)
Maternal age								
<20	7266	(1.0)	1078	(1.2)	1139	(1.1)	1332	(1.2)
20–24	75,668	(10.6)	10,980	(12.3)	12,347	(12.0)	12,560	(11.6)
25–29	223,444	(31.3)	27,130	(30.3)	32,283	(31.5)	34,390	(31.9)
30–34	246,949	(34.6)	30,619	(34.2)	34,198	(33.4)	35,722	(33.1)
35–39	128,099	(18.0)	15,742	(17.6)	18,126	(17.7)	19,087	(17.7)
≥40	31,484	(4.4)	3846	(4.3)	4350	(4.2)	4739	(4.4)
Missing	211	(0.0)	42	(0.0)	40	(0.0)	47	(0.0)
Parity								
0	306,085	(42.9)	38,527	(43.1)	43,770	(42.7)	45,903	(42.6)
≥1	402,892	(56.5)	49,654	(55.5)	57,305	(55.9)	60,709	(56.3)
Missing	4144	(0.6)	1256	(1.4)	1408	(1.4)	1265	(1.2)
Multiple birth								
Yes	10,072	(1.4)	1278	(1.4)	1490	(1.5)	1553	(1.4)
No	703,049	(98.6)	88,159	(98.6)	100,993	(98.5)	106,324	(98.6)
Country of birth								

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022. (continued)
SUPPLEMENTAL TABLE 3
Characteristics of births in Sweden by year, 2014 to 2020 (continued)

Characteristics	All (n = 8498)	2014 (n = 67790)	2015 (n = 73923)	2016 (n = 74370)	2017 (n = 75057)	2018 (n = 76193)	2019 (n = 76065)	2020 (n = 75844)
Scandinavian	467,815 (65.6)	60,828 (68.0)	67,377 (65.7)	69,920 (64.8)	67,965 (65.2)	68,250 (65.3)	67,212 (65.3)	66,263 (65.3)
Outside Scandinavia	179,445 (25.2)	18,114 (20.3)	22,380 (21.8)	27,908 (25.9)	27,816 (26.7)	28,306 (27.1)	28,165 (27.4)	26,756 (26.4)
Missing	65,861 (9.2)	10,495 (11.7)	12,726 (12.4)	10,049 (9.3)	8533 (8.2)	8000 (7.7)	7560 (7.3)	8498 (8.4)
Maternal education status (y)								
≤9	51,858 (7.3)	5755 (6.4)	6980 (6.8)	8559 (7.9)	8358 (8.0)	7991 (7.6)	7432 (7.2)	6783 (6.7)
10–12	224,867 (31.5)	27,970 (31.3)	32,128 (31.3)	34,644 (32.1)	33,884 (32.5)	33,877 (32.4)	32,363 (31.4)	30,001 (29.6)
>12	312,802 (43.9)	36,877 (41.2)	41,699 (40.7)	46,019 (42.7)	46,105 (44.2)	47,504 (45.4)	46,928 (45.6)	47,670 (47.0)
Missing	123,594 (17.3)	18,835 (21.1)	21,676 (21.2)	18,655 (17.3)	15,967 (15.3)	15,184 (14.5)	16,214 (15.8)	17,063 (16.8)
Season of conception^a								
Winter	186,013 (26.1)	21,807 (24.4)	26,372 (25.7)	28,483 (26.4)	27,433 (26.3)	27,811 (26.6)	27,198 (26.4)	26,909 (26.5)
Spring	189,348 (26.6)	25,970 (29.0)	26,713 (26.1)	28,191 (26.1)	27,303 (26.2)	27,457 (26.3)	27,164 (26.4)	26,550 (26.2)
Summer	170,177 (23.9)	23,824 (26.6)	24,751 (24.2)	25,388 (23.5)	24,377 (23.4)	24,336 (23.3)	23,824 (23.1)	23,677 (23.3)
Fall	167,583 (23.5)	17,836 (19.9)	24,647 (24.0)	25,815 (23.9)	25,201 (24.2)	24,952 (23.9)	24,751 (24.0)	24,381 (24.0)
BMI (kg/m²)								
<18.5	17,126 (2.4)	2321 (2.6)	2555 (2.5)	2595 (2.4)	2361 (2.3)	2525 (2.4)	2479 (2.4)	2290 (2.3)
18.5—<25	376,453 (52.8)	50,470 (56.4)	56,329 (55.0)	57,239 (53.1)	52,041 (49.9)	54,522 (52.1)	53,377 (51.9)	52,475 (51.7)
25—<30	175,120 (24.6)	20,763 (23.2)	24,398 (23.8)	25,938 (24.0)	24,557 (23.5)	26,380 (25.2)	26,518 (25.8)	26,566 (26.2)
30—<35	67,469 (9.5)	7599 (8.5)	9042 (8.8)	9567 (8.9)	9682 (9.3)	10,446 (10.0)	10,386 (10.1)	10,747 (10.6)
≥35	29,541 (4.1)	3027 (3.4)	3826 (3.7)	4179 (3.9)	4225 (4.1)	4558 (4.4)	4749 (4.6)	4977 (4.9)
Missing	47,412 (6.6)	5257 (5.9)	6333 (6.2)	8359 (7.7)	11,448 (11.0)	6125 (5.9)	5428 (5.3)	4462 (4.4)
Smoking in early pregnancy								
No	655,643 (91.9)	83,360 (0.0)	95,519 (93.2)	99,123 (91.9)	90,388 (86.6)	97,014 (92.8)	95,835 (93.1)	94,404 (93.0)
Yes	30,331 (4.3)	4529 (0.0)	5031 (4.9)	4789 (4.4)	4272 (4.1)	4219 (4.0)	3874 (3.8)	3617 (3.6)
Missing	27,147 (3.8)	1548 (0.0)	1933 (1.9)	3965 (3.7)	9654 (9.3)	3323 (3.2)	3228 (3.1)	3496 (3.4)

BMI: body mass index.

^a Winter (December—February); Spring (March—May); Summer (June—August); Fall (September—November).

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
Characteristics	All	2014	2015	2016	2017	2018	2019	2020
	n (%)							
All births	413,814	56,049	57,423	60,676	60,451	60,699	59,224	59,292
Gestational age (wk)								
Extremely preterm								
<28	1620 (0.4)	218 (0.4)	234 (0.4)	250 (0.4)	270 (0.4)	269 (0.4)	212 (0.4)	167 (0.3)
Very preterm 28—<32	2393 (0.6)	329 (0.6)	335 (0.6)	366 (0.6)	354 (0.6)	352 (0.6)	336 (0.6)	321 (0.5)
Moderate or late preterm 32—<37	19,411 (4.7)	2707 (4.8)	2717 (4.7)	2889 (4.8)	2847 (4.7)	2816 (4.6)	2719 (4.6)	2716 (4.6)
Term 37—<42	381,218 (92.1)	51,684 (92.2)	52,908 (92.1)	55,774 (91.9)	55,616 (92.0)	55,890 (92.1)	54,565 (92.1)	54,781 (92.4)
Postterm ≥42	9172 (2.2)	1111 (2.0)	1229 (2.1)	1397 (2.3)	1364 (2.3)	1372 (2.3)	1392 (2.4)	1307 (2.2)
Maternal age (y)								
<20	3296 (0.8)	629 (1.1)	583 (1.0)	604 (1.0)	480 (0.8)	407 (0.7)	325 (0.5)	268 (0.5)
20–24	41,652 (10.1)	6255 (11.2)	6325 (11.0)	6631 (10.9)	6522 (10.8)	6008 (9.9)	5320 (9.0)	4591 (7.7)
25–29	138,920 (33.6)	17,965 (32.1)	18,813 (32.8)	20,383 (33.6)	20,515 (33.9)	20,670 (34.1)	20,311 (34.3)	20,263 (34.2)
30–34	144,304 (34.9)	19,083 (34.0)	19,575 (34.1)	20,455 (33.7)	20,502 (33.9)	21,231 (35.0)	21,329 (36.0)	22,129 (37.3)
35–39	69,390 (16.8)	9967 (17.8)	9924 (17.3)	10,302 (17.0)	10,013 (16.6)	9940 (16.4)	9560 (16.1)	9684 (16.3)
≥40	16,252 (3.9)	2150 (3.8)	2203 (3.8)	2301 (3.8)	2419 (4.0)	2443 (4.0)	2379 (4.0)	2357 (4.0)
Missing								
Parity								
0	190,650 (46.1)	25,247 (45.0)	26,081 (45.4)	28,315 (46.7)	28,222 (46.7)	28,289 (46.6)	27,473 (46.4)	27,023 (45.6)
≥1	223,120 (53.9)	30,802 (55.0)	31,342 (54.6)	32,361 (53.3)	32,229 (53.3)	32,410 (53.4)	31,751 (53.6)	32,225 (54.3)
Missing	44 (0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	44 (0.1)	
Multiple birth								
Yes	6768 (1.6)	1066 (1.9)	972 (1.7)	1039 (1.7)	1044 (1.7)	921 (1.5)	881 (1.5)	845 (1.4)
No	407,046 (98.4)	54,983 (98.1)	56,451 (98.3)	59,637 (98.3)	59,407 (98.3)	59,778 (98.5)	58,343 (98.5)	58,447 (98.6)
Season of conceptiona								
Winter	105,919 (25.6)	14,290 (25.5)	15,063 (26.2)	15,752 (26.0)	15,514 (25.7)	15,146 (25.0)	15,170 (25.6)	14,984 (25.3)
Spring	97,751 (23.6)	13,287 (23.7)	13,644 (23.8)	14,062 (23.2)	14,454 (23.9)	14,401 (23.7)	13,959 (23.6)	13,944 (23.5)
Summer	100,506 (24.3)	13,648 (24.4)	13,536 (23.6)	14,726 (24.3)	14,750 (24.4)	15,176 (25.0)	14,261 (24.1)	14,409 (24.3)
Fall	109,638 (26.5)	14,824 (26.4)	15,180 (26.4)	16,136 (26.6)	15,733 (26.0)	15,976 (26.3)	15,834 (26.7)	15,955 (26.9)

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
SUPPLEMENTAL TABLE 4
Characteristics of births in Denmark by year, 2014 to 2020 (continued)

Characteristics	All	2014	2015	2016	2017	2018	2019	2020
	n (%)							
BMI (kg/m²)								
<18.5								
	17,330 (0.6)	2479 (4.4)	2611 (4.5)	2631 (4.3)	2577 (4.3)	2431 (4.0)	2265 (3.8)	2336 (3.9)
18.5—<25								
	233,608 (7.8)	32,283 (57.6)	32,871 (57.2)	33,978 (56.0)	32,866 (54.4)	32,916 (54.2)	34,450 (58.2)	34,244 (57.8)
25—<30								
	96,071 (3.1)	12,960 (23.1)	13,400 (23.3)	14,120 (23.3)	14,271 (23.6)	14,660 (24.2)	13,218 (22.3)	13,442 (22.7)
30—<35								
	37,343 (1.2)	4855 (8.7)	4961 (8.6)	5370 (8.9)	5550 (9.2)	5566 (9.2)	5532 (9.3)	5509 (9.3)
≥35								
	25,747 (0.6)	2619 (4.7)	2694 (4.7)	2942 (4.8)	3149 (5.2)	3302 (5.4)	5532 (9.3)	5509 (9.3)
Missing								
	8589 (0.2)	853 (1.5)	886 (1.5)	1635 (2.7)	2038 (3.4)	1824 (3.0)	760 (1.3)	593 (1.0)

Smoking in early pregnancy								
No								
	359,664 (86.9)	49,311 (88.0)	50,738 (88.4)	53,143 (87.6)	52,267 (86.5)	53,906 (88.8)	47,160 (79.6)	53,139 (89.6)
Yes								
	37,978 (9.2)	6257 (11.2)	6232 (10.9)	5997 (9.9)	5537 (9.2)	5028 (8.3)	4333 (7.3)	4594 (7.7)
Missing								
	16,172 (3.9)	481 (0.9)	453 (0.8)	1536 (2.5)	2647 (4.4)	1765 (2.9)	7731 (13.1)	1559 (2.6)

* BMI, body mass index.

* Winter (December—February); Spring (March—May); Summer (June—August); Fall (September—November).

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
Events	2020 After March 12	2020 Before March 12	2014–2019 After March 12	2014–2019 Before March 12
	n (%)	n (%)	n (%)	n (%)
16 wk				
All births	16,879 (5.4)	14,960 (6.2)	111,027 (5.6)	91,651 (6.0)
Preterm birth	919 (5.4)	931 (6.2)	6181 (5.6)	5466 (6.0)
Medically- indicated	417 (2.5)	416 (2.8)	2571 (2.3)	2263 (2.5)
Spontaneous	502 (3.0)	515 (3.4)	3610 (3.3)	3203 (3.5)
Very preterm birth	156 (0.9)	157 (1.0)	996 (0.9)	918 (1.0)
12 wk				
All births	12,487 (5.5)	11,488 (6.3)	82,158 (5.6)	72,844 (5.9)
Preterm birth	685 (5.5)	723 (6.3)	4580 (5.6)	4274 (5.9)
Medically indicated	316 (2.5)	326 (2.8)	1931 (2.4)	1769 (2.4)
Spontaneous	369 (3.0)	397 (3.5)	2649 (3.2)	2505 (3.4)
Very preterm birth	122 (1.0)	115 (1.0)	776 (0.9)	710 (1.0)
8 wk				
All births	8190 (5.6)	7971 (6.1)	54,359 (5.6)	51,521 (5.6)
Preterm birth	457 (5.6)	487 (6.1)	3032 (5.6)	2879 (5.6)
Medically indicated	218 (2.7)	230 (2.9)	1287 (2.4)	1194 (2.3)
Spontaneous	239 (2.9)	257 (3.2)	1745 (3.2)	1685 (3.3)
Very preterm birth	70 (0.9)	84 (1.1)	533 (1.0)	480 (0.9)
4 wk				
All births	3939 (5.5)	4080 (5.7)	26,440 (5.6)	25,668 (5.7)
Preterm birth	216 (5.5)	231 (5.7)	1493 (5.6)	1473 (5.7)
Medically- indicated	95 (2.4)	97 (2.4)	650 (2.5)	611 (2.4)
Spontaneous	121 (3.1)	134 (3.3)	843 (3.2)	862 (3.4)
Very preterm birth	39 (1.0)	42 (1.0)	263 (1.0)	245 (1.0)
2 wk				
All births	1941 (5.7)	2065 (4.8)	12,964 (5.7)	12,596 (5.5)
Preterm birth	111 (5.7)	100 (4.8)	739 (5.7)	687 (5.5)
Medically- indicated	48 (2.5)	39 (1.9)	311 (2.4)	272 (2.2)
Spontaneous	63 (3.2)	61 (3.0)	428 (3.3)	415 (3.3)
Very preterm birth	20 (1.0)	17 (0.8)	128 (1.0)	116 (0.9)

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
Events	2020		2014—2019	
	2020 After March 12	Before March 12	2014—2019 After March 12	Before March 12
	n (%)		n (%)	
16 wk				
All births	32,693 (5.3)	29,656 (5.8)	195,802 (5.5)	163,393 (6.0)
Preterm birth	1728 (5.3)	1708 (5.8)	10,866 (5.5)	9725 (6.0)
Medically indicated	591 (1.8)	592 (2.0)	3400 (1.7)	3050 (1.9)
Spontaneous	1137 (3.5)	1116 (3.8)	7466 (3.8)	6675 (4.1)
Very preterm birth	269 (0.8)	293 (1.0)	1798 (0.9)	1642 (1.0)
12 wk				
All births	24,477 (5.3)	22,869 (5.6)	146,034 (5.6)	128,528 (5.9)
Preterm birth	1298 (5.3)	1284 (5.6)	8110 (5.6)	7562 (5.9)
Medically indicated	439 (1.8)	447 (2.0)	2546 (1.7)	2338 (1.8)
Spontaneous	859 (3.5)	837 (3.7)	5564 (3.8)	5224 (4.1)
Very preterm birth	210 (0.9)	222 (1.0)	1368 (0.9)	1277 (1.0)
8 wk				
All births	16,108 (5.5)	15,732 (5.5)	96,458 (5.6)	90,502 (5.7)
Preterm birth	890 (5.5)	859 (5.5)	5399 (5.6)	5125 (5.7)
Medically indicated	315 (2.0)	310 (2.0)	1741 (1.8)	1609 (1.8)
Spontaneous	575 (3.6)	549 (3.5)	3658 (3.8)	3516 (3.9)
Very preterm birth	134 (0.8)	144 (0.9)	920 (1.0)	885 (1.0)
4 wk				
All births	7868 (5.8)	7876 (5.7)	47,134 (5.6)	45,895 (5.6)
Preterm birth	454 (5.8)	451 (5.7)	2636 (5.6)	2548 (5.6)
Medically indicated	145 (1.8)	164 (2.1)	852 (1.8)	798 (1.7)
Spontaneous	309 (3.9)	287 (3.6)	1784 (3.8)	1750 (3.8)
Very preterm birth	58 (0.7)	79 (1.0)	442 (0.9)	461 (1.0)
2 wk				
All births	3937 (5.7)	3987 (5.3)	23,386 (5.6)	23,135 (5.6)
Preterm birth	223 (5.7)	210 (5.3)	1318 (5.6)	1287 (5.6)
Medically indicated	78 (2.0)	79 (2.0)	438 (1.9)	400 (1.7)
Spontaneous	145 (3.7)	131 (3.3)	880 (3.8)	887 (3.8)
Very preterm birth	35 (0.9)	41 (1.0)	220 (0.9)	227 (1.0)

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.
SUPPLEMENTAL TABLE 7
Births and events included in difference-in-differences analysis, Denmark

Events	2020 After March 12	2020 Before March 12	2014—2019 After March 12	2014—2019 Before March 12
	n (%)	n (%)	n (%)	n (%)
16 wk				
All births	18,152 (5.6)	18,272 (5.7)	107,551 (5.8)	95,909 (5.9)
Preterm birth	1017 (5.6)	1043 (5.7)	6290 (5.8)	5640 (5.9)
Medically indicated	329 (1.8)	346 (1.9)	2153 (2.0)	1913 (2.0)
Spontaneous	688 (3.8)	697 (3.8)	4137 (3.8)	3727 (3.9)
Very preterm birth	161 (0.9)	165 (0.9)	1101 (1.0)	1024 (1.1)
12 wk				
All births	13,214 (5.5)	13,470 (5.7)	79,414 (5.8)	74,718 (5.8)
Preterm birth	733 (5.5)	771 (5.7)	4636 (5.8)	4364 (5.8)
Medically indicated	246 (1.9)	257 (1.9)	1586 (2.0)	1508 (2.0)
Spontaneous	487 (3.7)	514 (3.8)	3050 (3.8)	2856 (3.8)
Very preterm birth	115 (0.9)	114 (0.8)	816 (1.0)	791 (1.1)
8 wk				
All births	8664 (5.6)	8894 (5.7)	52,167 (5.8)	51,853 (5.7)
Preterm birth	482 (5.6)	493 (5.5)	3039 (5.8)	2962 (5.7)
Medically indicated	161 (1.9)	172 (1.9)	1047 (2.0)	997 (1.9)
Spontaneous	321 (3.7)	321 (3.6)	1992 (3.8)	1965 (3.8)
Very preterm birth	76 (0.9)	68 (0.8)	523 (1.0)	539 (1.0)
4 wk				
All births	4207 (5.4)	4469 (5.2)	25,828 (5.8)	26,236 (5.7)
Preterm birth	228 (5.4)	232 (5.2)	1495 (5.8)	1506 (5.7)
Medically indicated	70 (1.7)	89 (2.0)	502 (1.9)	518 (2.0)
Spontaneous	158 (3.8)	143 (3.2)	993 (3.8)	988 (3.8)
Very preterm birth	35 (0.8)	29 (0.6)	275 (1.1)	288 (1.1)
2 wk				
All births	2101 (5.1)	2269 (4.8)	12,923 (5.7)	12,984 (5.7)
Preterm birth	108 (5.1)	109 (4.8)	733 (5.7)	737 (5.7)
Medically indicated	39 (1.9)	34 (1.5)	245 (1.9)	243 (1.9)
Spontaneous	69 (3.3)	75 (3.3)	488 (3.8)	494 (3.8)
Very preterm birth	17 (0.8)	20 (0.9)	128 (1.0)	151 (1.2)

Oakley et al. Preterm birth and COVID-19 mitigation measures in Scandinavia. Am J Obstet Gynecol 2022.