Figure S1. LC-MS/MS coverage of the EAR28894 protein. Identified peptides mapped across the entirety of the sequence, with the exception of an N-terminal segment consisting of the first 13-27 amino acid residues. Residues highlighted in green represent chemical modifications (e.g., deamidation, oxidation).
Figure S2. Ratio of semi-tryptic to tryptic peptides across all proteins in LC-MS/MS data. EAR28894 deviates from all other proteins in this regard, and therefore is likely to be most heavily processed by non-trypsin proteases.
Figure S3. Pellicle biofilms formed by the WT vs Δslr4 mutant strain. Liquid cultures were grown for 8 hours (shaking) in liquid Difco marine broth media, followed by 72 hours of static (non-shaking) incubation.
Figure S4. TEM micrograph of a *P. tunicata* cell revealing the presence of a putative outermost capsular layer. Scale bar = 500 nm.
Figure S5. TEM micrographs of 48-hr pellicle biofilms (WT versus Δslr4 mutant strain). Top left – dense cell clusters in the WT strain interconnected by biofilm matrix material. Bottom left – a WT cell within a biofilm with extracellular biofilm matrix including fibrous structures coated by S-layer material. Top right – image taken from a Δslr4 biofilm showing a sparser cell distribution that is not connected by S-layer associated matrix material. Bottom right – two examples from the image above of deformed cell shapes. Scale bars are 2 microns, with the exception of the bottom left image where it is 100 nm.
Figure S6. Hypothetical model of Slr4 S-layer lattice assembly (right) compared to rsaA S-layer assembly (left). A smaller (truncated) S-layer subunit relative to rsaA could alter inter-subunit interactions to result in a four-fold symmetric pattern (right) instead of a six-fold hexagonal symmetry (left). The model is consistent with the top-down view of a square lattice as observed in Figs. 3 and 4, as well as the side-view showing V-shaped cups as shown in Fig. 4.
Table S1. Top proteins identified by LC-MS/MS.

Accession	-10lgP	Cov. (%)	#Peptides	#Unique	PTM	Avg. Mass (kDa)	Description
EAR28894.1	468.71	93	111	110	Y	59235	hypothetical protein PTD2_07619
EAR29208.1	170.89	20	12	12	Y	68830	hypothetical protein PTD2_09189
EAR29563.1	133.95	8	3	3	Y	60109	flagellin
							TonB-dependent outer membrane receptor
EAR27917.1	104.01	5	4	4	N	103265	30S ribosomal subunit protein S1
EAR28105.1	75.5	6	3	3	N	61087	139223
EAR30644.1	56.2	0	2	2	Y	8	fibronectin type III domain protein
EAR27255.1	53.86	2	2	1	N	67577	putative lipoprotein
EAR28194.1	50.54	3	2	2	N	82187	TonB-dependent receptor
							sensor histidine kinase/response regulator
EAR26551.1	48.39	3	2	2	Y	105969	
EAR27983.1	44.82	3	1	1	N	63152	putative orphan protein
Table S2. Supporting peptides for EAR28894 identification by LC-MS/MS.

Peptide	-10gP	Mass	L	ppm	m/z	z	RT	F	Scan	#Spec	Start	End	PTM
RYVMVEGVTAWQSLAAAGIK.D	119.18	2031.025	19	-7.4	1016.512	2	20.76	2	3156	9	491	509	
K.DGLEYTQATALEK	117.52	2605.4	25	-8.2	1303.697	2	22.33	2	3432	45	140	164	
KPIVAVGIGGKY.K	111.23	2047.02	19	-5.9	683.3431	3	20.02	2	3018	5	491	509	
RY.M(+15.99)VEGVI	107.36	2418.162	23	-4.7	1210.083	2	24.78	2	3863	13	517	539	
TAWQSLAAAGIK.D	104.91	1469.722	14	-6.2	735.8639	2	11.4	2	1422	4	477	490	
R.DMG(+15.99)GVT	100.89	1535.765	14	-4.9	768.8862	2	20.01	2	3017	4	413	426	
GSGDDAVATAFDGSG.R	97.12	2403.069	27	-7.9	802.0238	3	14.93	2	2057	9	86	112	
R.DM(+15.99)GLVDT	92.65	2434.157	23	-6.5	1218.078	2	20.99	2	3197	6	517	539	
DALGKEGGYDSSTTG.FK.V	91.34	1631.852	15	-6.5	816.9279	2	19.91	2	Ta	3	298	312	
R.QOFAN(+98)NLTA	90.54	2191.189	21	-7.8	1096.593	2	19.65	2	2941	18	540	560	
DVLAV.K.H	88.79	1551.76	14	-6.3	776.8825	2	18.42	2	2717	3	413	426	
K.TSVTATTAVLQQT	88.03	1728.019	17	-8.1	865.0095	2	19.96	2	3005	2	148	164	
AVK.H	88	2032.009	19	-3.6	1017.008	2	21.43	2	3275	3	491	509	
R.YVMVEGVTAWQ(+98)SLAAAGIK.D	87.8	2131.083	22	-5.6	1066.543	2	22.34	2	3433	4	352	373	
K.LSSAELMAANV.LAGGDDTV.K	87.28	2606.384	25	10.3	652.61	4	22.38	2	3441	12	140	164	
D.GLEYTQATALEK	84.32	1630.868	15	-3.8	816.4381	2	20.18	2	3053	4	298	312	
K.SVTATTAVLQQT	83.11	1861.016	19	-7.8	931.5978	2	18.03	2	2646	3	28	46	
ALGKEGGYDSSTTG.FK.V	83.06	1174.627	11	-5.3	588.3175	2	23.81	2	3689	7	517	527	
K.AEDLTIQFSGAK.L	82.59	1413.678	13	-4.9	707.8427	2	19.86	2	2984	31	165	177	
K.LAAFYGVSLTK.A	82.53	1239.686	12	-6.6	620.8463	2	19.91	2	2993	2	74	85	
K.LSSAELM(+15.99)AANVAVL	81.88	2147.078	22	0.2	1074.546	2	19.61	2	2933	4	352	373	
VK.S	81.48	2768.474	27	-5.8	693.1218	4	16.99	2	2429	5	113	139	
R.LTTVHHTAANAC(+57.02)LATLVPKLS	81.46	1631.852	15	-6.5	816.9279	2	20.55	2	3119	2	298	312	
T.TAAK.D	455	296	352	140	413	2717	426	296					
R.QL(+98)QANNTLTA	80.18	1901.996	17	-4.4	952.001	2	19.83	2	2976	4	296	312	
DVLAV.K.H	79.7	2322.321	22	3.3	775.1131	3	23.76	2	3680	3	455	476	
K.VLAEVNTVPKSK	79.29	2323.294	22	-4.5	775.4351	3	24.08	2	3738	7	455	476	
T.TAAK.D	77.2	1254.718	12	-3.7	419.2451	3	16.45	2	2334	13	540	551	
R.VN(+98)GSGVFGT	76.07	2154.001	24	-5.8	719.0035	3	17.55	2	2553	4	51	74	
AADATNSAANCA.L	75.15	1867.961	18	-2.8	934.9854	2	20.84	2	3171	2	492	509	
Y.MVEGVTAWQSLAAGIK.D	74.87	1470.706	14	-5.4	736.3564	2	11.78	2	1499	3	477	490	
R.JHGLTFK.T	74.7	3059.577	31	-8.3	1020.858	3	25.6	2	4007	17	183	213	
H.LAAADSGSGDVA	74.54	1779.802	20	-7.6	890.9016	2	14.95	2	2061	2	93	112	
TEADGSGR.E	73.72	1757.971	18	-6.2	879.9873	2	15.75	2	2208	4	122	139	
A.ANACLAVKPKVL	71.1	814.470	7	0.2	408.2424	2	14.68	2	2009	5	569	575	
Length	Fraction	Oxidation	Deamidation	Carbamidomethylation									
--------	----------	-----------	-------------	----------------------									
I. HLGTFK.T	31.06	701.386	6	-3.1	351.6992	2	14.66	2	2005	2	570	575	
R. GNGILELSNIFLDS TGLAATTIVSVM(+15.9) 9	30.98	3632.788	36	-7.2	1211.928	3	27.78	2	4376	1	228	263	1
9 V NSFGTNTS GTK.F K. AEDTLTFTQ(+.98) F SGK. L	30.85	1414.662	13	9.7	708.345	2	25.55	2	3999	3	165	177	2
T. TPAN(+.98) DFVR. G	29.92	919.4399	8	-1.2	460.7267	2	13.37	2	1778	1	220	227	2
V. ALEVVTNVPK. D GSGDVATFADGS G.R.E H. TNAGTQGTDITVR. Y	28.96	1295.574	14	-11.1	648.7872	2	13.77	2	1845	1	99	112	
	28.71	1042.53	10	-4.7	522.2696	2	12.13	2	1564	1	113	122	
R. ELTTVHTTA. N R. DM(+15.99) GLVT D A L G G E G Y D S	27.7	1711.798	16	-8.4	856.8988	2	21.26	2	3246	1	517	532	1
K. I T A E G Q D R H I L G T F K. T R. Y M(+15.99) V E G V H T A W Q. S A. T V K P V L S T T A A K. D	27.54	1684.89	15	-4.1	422.2269	4	15.54	2	2167	1	561	575	
R. DM(+15.99) GLVT D A L G G E G Y D S K. I T A E G Q D R H I L G T F K. T R. Y M(+15.99) V E G V H T A W Q. S A. T V K P V L S T T A A K. D	26.23	1241.723	12	-9.6	608.3632	2	14.35	2	1949	1	128	139	
K. N P T S A N V L P A N T T Y. V T. N P M I S V Q D F T V K. V	26.21	1560.778	15	-11.4	781.3875	2	17.88	2	2619	1	316	330	
K. T S V T A T T A V L Q Q T A I G T A K A H A K K. A D G T A A H A V A A D . G	26.18	1214.723	12	-7.5	689.8502	2	20.05	2	3026	1	415	426	
D. I L D I T D S Q R. F K. I T N (+.98) A G T Q (+.98) T D I T V R. Y K. G T N P M(+15.99) J S V Q(+.98) D F T V K. V	25.55	1172.64	10	-7	587.3232	2	17.34	2	2502	2	204	213	
D. I L D I T D S Q R. F K. I T N (+.98) A G T Q (+.98) T D I T V R. Y K. G T N P M(+15.99) J S V Q(+.98) D F T V K. V	25.35	1471.69	14	-0.1	736.8524	2	12.34	2	1601	1	477	490	2
V. F V Y G G A K. I R. E L T V H T T A A N (+.98) A C (+57.02) L	24.66	740.3857	7	-5.8	371.198	2	15.66	2	2190	1	554	560	

* L = Length; F = Fraction; 1 = Oxidation (M); 2 = Deamidation (NQ); 3 = Carbamidomethylation
| Protein sequence (accession #) | Species | Marine Host-associated | Fresh water | Habitat description | Reference/Source |
|--------------------------------|---------|------------------------|-------------|--------------------|------------------|
| WP_055732151.1 | Agarivorans gilvus | Yes | Yes | Seaweed | https://www.ncbi.nlm.nih.gov/pubmed/20369530 |
| WP_026972292.1 | Agarivorans marinus | Yes | | Seawater | https://www.dsmz.de/catalogues/details/culture/DSM-23064.html |
| WP_026957844.1 | Agarivorans taiwanensis | Yes | | Seawater | https://www.ncbi.nlm.nih.gov/pubmed/19567569 |
| WP_091340846.1 | Alkalimonas amylolytica | No | Yes | Lake Chahannor in China | https://www.ncbi.nlm.nih.gov/pubmed/14986177 |
| WP_124748942.1 | Alteromonas facilis | Yes | Yes | Isolated from a sea cucumber culture pond in China Isolated from the alkaline, low-saline ikaita columns in the Ilka Fjord, SW Greenland | https://www.ncbi.nlm.nih.gov/pubmed/30526643 |
| WP_046556214.1 | Arsukibacterium ikkense | Yes | | Seawater samples from the Chukchi Sea in the Arctic Ocean | https://www.ncbi.nlm.nih.gov/pubmed/16790334 |
| WP_085282491.1 | Colwellia chukchiensis | Yes | | Isolated from seawater samples from the mussel Mytilus edulis from the South Sea in Korea | https://www.ncbi.nlm.nih.gov/pubmed/20495042 |
| WP_085298075.1 | Colwellia mytili | Yes | Yes | Seawater Marine sediment, Pacific Ocean: the Tonga Trench marine sediment metagenome; deep-sea hydrothermal vent sediments from dive 4571_4 depth 0-3 cm | https://www.ncbi.nlm.nih.gov/pubmed/27902189 |
| WP_118961217.1 | Colwellia sp. RSH04 | Yes | | Seawater | https://www.ebi.ac.uk/biosamples/samples/SAMN09916314 |
| WP_057830656.1 | Colwellia sp. TT2012 | Yes | | | https://www.ncbi.nlm.nih.gov/pubmed/20495042 |
| RL6B9876.1 | Deltaproteobacteria bacterium | Yes | | | https://www.ncbi.nlm.nih.gov/protein/RLB69876.1 |
| PCH94196.1,PCI39289.1 | Gammaproteobacteria bacterium | Yes | | Mediterranean seawater-France isolated from sea-ice cores collected from coastal areas of eastern Antarctica | https://www.uniprot.org/taxonomy/1805126 |
| WP_040521162.1, WP_070111740.1 | Glaciecola punicea | Yes | | | https://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.022970-0 |
| GAB56998.1 | Glaciecola punicea ACAM 611 | Yes | | Antarctic sea ice | https://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.000619 |
| PTB83247.1,PTB83248.1,PTB83653 | Idiomarina aestuarii | Yes | | Isolation of the type strain from shallow coastal seawater. | https://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.002970-0 |
| 0.1,PTB835125.1,PTB835126.1,UR04164 | Idiomarina aquatica | Yes | | Isolated from salterns isolated from the reef-building coral Isopora palifera | https://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.035592-0 |
| 1646.1,UR04164 | Idiomarina aquimaris | Yes | Yes | | https://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.000619 |
| 7.1,UR041648.1 | Idiomarina atlantica | Yes | | Isolated from the deep sea sediment of the North Atlantic Ocean | https://link.springer.com/article/10.1007/s210482014-0337-7 |
| GenBank Accession | Species | Isolated From | Description |
|-------------------|---------|---------------|-------------|
| RUO53158.1, WP126763865.1, WP126763868.1, WP126763869.1, WP13056263.1, WP126771356.1, WP126771358.1, WP126771362.1 | Idiomarina halophila | Yes | isolated from the saltpond located in Gomso, Republic of Korea |
| RUO62606.1, WP126753970.1 | Idiomarina homiensis | Yes | isolated from seashore sand in Korea |
| WP_026861598.1, WP_126775152.1 | Idiomarina sediminum | Yes | isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago |
| MBG23301.1 | Idiomarina insulisalsae | Yes | isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago |
| WP_088331539.1 | Idiomarina sp. | Yes | marine metagenome from a Mediterranean Sea water sample |
| WP_031571199.1 | Parachaeoarchaeum t covidensis | No | Yes | USA: Spring Lake; San Marcos; Texas marine metagenome from a South Atlantic Ocean water sample |
| MBU77382.1 | Pseudoalteromonas nudaicae | Yes | marine metagenome from a South Atlantic Ocean water sample |
| WP_077560941.1, WP_010361438.1 | Pseudoalteromonas norvegica | Yes | Sea of Japan, Pacific Ocean marine metagenome from a South Atlantic Ocean water sample |
| WP_091983032.1 | Pseudoalteromonas denitrificans | Yes | Marine |
| SFC52264.1 | Pseudoalteromonas denitrificans DSM 6059 | Yes | Marine |
| KID36130.1 | Pseudoalteromonas ealykovi | Yes | Marine |
| CCQ10312.1, WP_010368594.1, WP_045962959.1, WP_045987911.1, WP_088531627.1, WP_117332793.1 | Pseudoalteromonas piscicida | Yes | Marine |
| WP_119852593.1 | Pseudoalteromonas profundis | Yes | Marine |
| WP_022946007.1 | Pseudoalteromonas ruthenica | Yes | Marine |
| WP_130050461.1 | Pseudoalteromonas shioyasakiensis | Yes | Marine |
| MAD02172.1 | Pseudoalteromonas sp. | Yes | Marine |
| MBD58444.1 | Pseudoalteromonas sp. | Yes | Marine |
| Accession | Taxonomy | Isolated From | Source | Reference |
|-----------|----------|---------------|--------|-----------|
| WP_042150686.1 | *Pseudoalteromona* sp. '520P1 No. 412' | Yes | Marine | https://mra.asm.org/content/2/6/e01346-14 |
| WP_042150686.1 | *Pseudoalteromona* sp. '520P1 No. 423' | Yes | Marine | Isolated from gut of comb jelly | https://www.uniprot.org/proteomes/UP000941313 |
| WP_0690000079.1 | *Pseudoalteromona* sp. BMB | Yes | Octocoral | https://onlinelibrary.wiley.com/doi/full/10.1002/jobm.201800087 |
| WP_130151616.1 | *Pseudoalteromona* sp. CO133X | Yes | Octocoral | Isolated from Northern Yellow Sea | https://www.ncbi.nlm.nih.gov/nuccore/NZ_NHNM00000000.1 |
| WP_130151616.1 | *Pseudoalteromona* sp. CO302Y | Yes | Host-associated (Muricea sp.), Panama: Coiba National Park | https://www.ncbi.nlm.nih.gov/nuccore/NZ_RCSQ00000000.1 |
| WP_099029058.1 | *Pseudoalteromona* sp. GCY | Yes | Isolated from surface of crustose coralline alga | https://www.ncbi.nlm.nih.gov/nuccore/NZ_RJHW00000000.1 |
| WP_125251093.1 | *Pseudoalteromona* sp. CO342X | Yes | Isolated from surface saline water | Isolation source (ocean), host - Hymeniacidon perleve (marine sponge) | https://www.ncbi.nlm.nih.gov/nuccore/NZ_AKXJ00000000.1 |
| WP_086997608.1 | *Pseudoalteromona* sp. JB197 | No | Isolated from cheese rind | https://www.ncbi.nlm.nih.gov/nuccore/NZ_NRGZ00000000.1 |
| WP_119861005.1 | *Pseudoalteromona* sp. MSK9-3 | Yes | Isolated from surface saline water | https://www.ncbi.nlm.nih.gov/nuccore/NZ_MJET00000000.1 |
| WP_017217139.1 | *Pseudoalteromona* sp. NJ631 | Yes | Isolated from host: Neogoniolithon solubile, USA: reef near Looe Key | https://www.ncbi.nlm.nih.gov/nuccore/NZ_BCSQ00000000.1 |
| WP_128731076.1 | *Pseudoalteromona* sp. J010 | Yes | Seawater (Indian Ocean) | https://www.ncbi.nlm.nih.gov/nuccore/NZ_SAMD00039894 |
| WP_053910113.1 | *Pseudoalteromona* sp. SW0106-04 | Yes | Marine | Isolated from gut of comb jelly | https://www.uniprot.org/proteomes/UP000941313 |
| Genbank Accession | Species | Isolated From | Original Isolation | Source Link |
|-------------------|---------|---------------|--------------------|-------------|
| WP_105171055.1 | Pseudoalteromonas sp. T1lg24 | Isolated from sea water (sediment depth) | Yes | https://www.ncbi.nlm.nih.gov/nuccore/NZ_PQCB00000000.1 |
| WP_024611180.1 | Pseudoalteromonas sp. TB64 | Isolated from a sponge, Antarctica | Yes | https://www.ncbi.nlm.nih.gov/nuccore/NZ_AUTQ00000000.1 |
| WP_010561444.1, | Pseudoalteromonas sp. spongiae | Isolated from the surface of the sponge Mycale adhaerens in Hong Kong waters | No, Yes | https://www.ncbi.nlm.nih.gov/pubmed/16014487 |
| WP_009838156.1, | Pseudoalteromonas sp. tunicata | Marine organism originally isolated from tunicates | Yes | https://www.ncbi.nlm.nih.gov/pubmed/9828422 |
| WP_009838156.1, | Pseudoalteromonas sp. ulvae | Isolated from surface of marine alga | Yes | https://www.ncbi.nlm.nih.gov/pubmed/11491351 |
| WP_134053939.1 | Rheinheimera aquimartis | Isolated from seawater of the East Sea in Korea | Yes | https://www.ncbi.nlm.nih.gov/pubmed/17625162 |
| WP_019674711.1 | Rheinheimera perlucida | Isolated from surface water from Baltic Sea | Yes | https://www.ncbi.nlm.nih.gov/pubmed/16957117 |
| WP_132584183.1 | Rheinheimera sp. D18 | Isolated from yellow sea (China) | Yes | https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP037745.1 |
| WP_127697655.1 | Rheinheimera sp. KYP3 | Isolated from freshwater stream | No, Yes | http://link-springer-com-443.webvpn.jxust.edu.cn/article/10.1007%2Fs00203-019-01657-5 |
| WP_068063761.1 | Rheinheimera sp. SA_1 | Isolated from "iron backwash sludge of a waterworks in Germany" | No, Yes | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991719/ |
| Accession | Name | Isolated from | Source Information |
|------------|-----------------------------|--------------------------------|--|
| PHS21107.1 | Robiginitomaculum sp. | from Antarctic seawater | http://www.bacterio.net/robiginitomaculum.html |
| WP_10933887.1 | Salinimonas sp. HMF8227 | Isolated from saltern in South Korea | https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP029347.1 |
| WP_11997519.1 | Shewanella algidipiscicola | isolated from marine fish of the Danish Baltic Sea | https://www.ncbi.nlm.nih.gov/pubmed/17267977 |
| WP_05974416.1 | Shewanella frigidermarina | Isolated from Antarctic coastal areas | https://www.ncbi.nlm.nih.gov/pubmed/11837303 |
| WP_10894712.1 | Shewanella halifaxensis | Isolated from marine sediment | https://www.ncbi.nlm.nih.gov/pubmed/16403888 |
| WP_11540597.1 | Shewanella putrefaciens | Associated with spoiled fish | https://www.ncbi.nlm.nih.gov/pubmed/2641275 |
| WP_01214335.1 | Shewanella sediminis | Isolated from marine sediment | https://www.ncbi.nlm.nih.gov/pubmed/1604474 |
| WP_07641100.1 | Shewanella sp. UCD-KL12 | Isolated from seagrass | https://www.ncbi.nlm.nih.gov/pubmed/28360178 |
| WP_02877174.1 | Shewanella waksmanii | Marine strain isolated from sipuncula | https://www.ncbi.nlm.nih.gov/pubmed/13130035 |
| WP_04483070.1 | Thalassomonas actiniarum | Isolated from marine animals | https://www.ncbi.nlm.nih.gov/pubmed/19325582 |
| WP_04483657.1 | Thalassomonas viridans | isolated from oysters off the Mediterranean coast | https://www.ncbi.nlm.nih.gov/pubmed/11491324 |
| WP_11599956.1, WP_11600723.1, WP_116007235.1, WP_116014431.1 | Thalassotalea euphylliae | Isolated from coral | https://www.ncbi.nlm.nih.gov/pubmed/27582443 |
| WP_074500610.1 | Thalassotalea sp. PP2-459 | Isolated from clam larvae in shellfish hatchery in Spain | https://www.ncbi.nlm.nih.gov/pubmed/23743010 |
| Accession | Species | Is Pathogen | Isolated From | Source Link |
|-------------|---------------------|-------------|---------------|-------------|
| WP_074191941.1 | *Vibrio antiquarius* | Yes | Isolated from deep sea hydrothermal vent | https://www.pnas.org/content/112/21/E281 |
| WP_104968991.1 | *Vibrio diabolicus* | Yes Yes | Isolated from a deep-sea hydrothermal vent annelid worm | https://www.ncbi.nlm.nih.gov/pubmed/9336897 |
| WP_005434363.1 | *Vibrio harveyi* | Yes Yes | Pathogen of marine vertebrates and invertebrates | https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1472-765X.2006.01989.x |
| WP_038864853.1, WP_045422135.1 | *Vibrio jasicida* | Yes Yes | Isolated from marine vertebrates and invertebrates | https://www.ncbi.nlm.nih.gov/pubmed/21984666 |
| WP_088881413.1 | *Vibrio rotiferianus* | Yes Yes | Marine pathogen | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133291/ |
| WP_095760150.1 | *Vibrio sp. V1B* | Yes Yes | Isolated from gut of saltwater clam | https://www.ncbi.nlm.nih.gov/pubmed/29051252 |
Table S4. Oligos used for plasmid construction

Oligo ID	Sequence
JC467	TCAGTTTCATGAAAACCTGGGAGAATGCTGAGTAAGCAACCGCTAAGTTTAAGTGT
JC468	ACTACTAAAACCTTAGCGGTTGTCTTTACTGCAATTCATTCTCCAAGTTCATGAAACTGA
JC470	CGGCAAGGCTTAAACTTTGCTGCGTT
JC491	GCAGGATCCAAACAAATTATTTTAGGTTGTTAATTAG
JC492	GCAGGAAGCCTTGCGGATTAATGGACACAGTGTCAAC
Supplementary Text

>Protein PTD2_07619 (EAR28894)
MEIMFKTLALLAİTÇVSVAAANAVKTSVTATAVLQQTAIGTAKAHAKGTLGASGVFGTAADATNSANCKALAA FYGVSLTKAĐCTAAHAVAADGSGDVTADFSGRELÀTTVHANACLYKPVLSSTTAADKGLEYQTATALEIKPV VIVAGIGGYKAEDLTIFQFSAGKDLTTKTTAPSTVIVAAGAAGAVFĐIDLĐTĐQRIFTKVATTTPANDFVRGNI LELESNIFLDSTGLAATSVMSAVKSFVATĐSATIVSLLPQYTTEVTTLSDFIVĐVDKQRQFANNLTADV LAVKHTKNSANVLPANTTVVTVGDŚWVAPSVTDNKDGKLSSAELMAANVLAGGĐTVSKLALNATNTLETVNIVGALĐANTÍTFTVFYGĐSGKGTNPMSIȘQDVČTVKDĐMSKSVKAVNSŁAKTAAGTWKLNŚVČVY VYVPFGPÁTQFJLRHólnAGTQGDĐTIVYMVEVHAGWQALSAAIKĐAPKGVĐMLGLVTDĐLGEĐGĐTSTTTFK VÀLEVDÖNSKDVFGVYAGKITAEGQDRHĠTFFKTNNV

> PTD2_07619 (EAR28894) deletion/replacement
MHQ

> PTD2_07619 (EAR28894) gene
ATGGAAATTATGTTGCTCAAGAAGACCTCAGTACAGCAATCTAGTCTTGTTTCTCTGTTAGCAGCTAAATGCATCTGCT TTTTATCTGGTTTCTATTAACTAAGCTGATGCTACAGTCTGCTACCTGTCGGTACAGCTGCTACGCTAATCTTGGTGC TAAÅCCAGTCTCCTACCTACAGTGCTAAGATGCTTTCTTGTGTTAGCTAAGCTAAGCTGCTTAATACTAAAAATGCTGCT TTTTATCTCATCGTTCTAGTTTAAGATGCTTTCTTGTGTTAGCTAAGCTAAGCTGCTTAATACTAAAAATGCTGCT TTTTATCTCATCGTTCTAGTTTAAGATGCTTTCTTGTGTTAGCTAAGCTAAGCTGCTTAATACTAAAAATGCTGCT

> PTD2_07619 (EAR28894) deletion/replacement
ATGCT

ATGCTGAGTAA