The ratio of CO to total gas mass in high-redshift galaxies

Natalie Mashian,1,2* Amiel Sternberg2* and Abraham Loeb1,2*

1Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
2The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

ABSTRACT

Walter et al. have recently identified the \(J = 6 - 5, 5 - 4, \) and \(2 - 1 \) CO rotational emission lines, and \([C\,\text{II}]\) fine-structure emission line from the star-forming interstellar medium (ISM) in the high-redshift submillimetre source HDF 850.1, at \(z = 5.183 \). We employ large velocity gradient (LVG) modelling to analyse the spectra of this source assuming the \([C\,\text{II}]\) and CO emissions originate from (i) separate virialized regions, (ii) separate unvirialized regions, (iii) uniformly mixed virialized regions and (iv) uniformly mixed unvirialized regions. We present the best-fitting set of parameters, including for each case the ratio \(\alpha \) between the total hydrogen/helium gas mass and the CO(1–0) line luminosity. We also present computations of the ratio of \(\text{H}_2 \) mass to \([C\,\text{II}]\) line luminosity for optically thin conditions, for a range of gas temperatures and densities, for direct conversion of \([C\,\text{II}]\) line luminosities to ‘CO-dark’ \(\text{H}_2 \) masses. For HDF 850.1 we find that a model in which the CO and \(\text{C}^+ \) are uniformly mixed in gas that is shielded from ultraviolet radiation requires a cosmic ray or X-ray ionization rate of \(\zeta \approx 3 \times 10^{-14} \text{ s}^{-1} \), plausibly consistent with the large star formation rate \((\sim 10^3 \, \text{M}_\odot \, \text{yr}^{-1}) \) observed in this source. Enforcing the cosmological constraint posed by the abundance of dark matter haloes in the standard cold dark matter (\(\Lambda \)CDM) cosmology and taking into account other possible contributions to the total gas mass, we find that the two models in which the virialization condition is enforced can be ruled out at the \(\gtrsim 2\sigma \) level, while the model assuming mixed unvirialized regions is less likely. We conclude that modelling HDF 850.1’s ISM as a collection of unvirialized molecular clouds with distinct CO and \(\text{C}^+ \) layers, for which \(\alpha = 1.2 \, \text{M}_\odot \, (\text{K km s}^{-1} \, \text{pc}^2)^{-1} \) for the CO to \(\text{H}_2 \) mass-to-luminosity ratio (similar to the standard ultraluminous infrared galaxy value), is most consistent with the \(\Lambda \)CDM cosmology.

Key words: galaxies: high-redshift – galaxies: ISM – galaxies: luminosity function, mass function – cosmology: theory.

1 INTRODUCTION

Observations of high-redshift CO spectral line emissions have greatly increased our knowledge of galaxy assembly in the early Universe. At redshifts \(z \sim 2 \), this includes the discovery of turbulent star-forming discs with cold-gas mass fractions and star formation rates (SFRs) significantly larger than in present-day galaxies (Daddi et al. 2010; Genzel et al. 2012; Magnelli et al. 2012; Tacconi et al. 2010, 2012). The high SFRs are correlated with large gas masses and luminous CO emission lines (Kennicutt & Evans 2012) observable to very high redshifts. A prominent example is the luminous submillimetre and Hubble Deep Field source HDF 850.1, which is at a redshift of \(z = 5.183 \) as determined by recent detections of CO(6–5), CO(5–4) and CO(2–1) rotational line emissions, and also \([C\,\text{II}]\) fine-structure emission in this source (Walter et al. 2012). The high redshift of HDF 850.1 offers the opportunity of setting cosmological constraints on the conversion factor from CO line luminosities to gas masses, via the implied dark matter masses and the expected cosmic volume density of haloes of a given mass. Such analysis is the subject of our paper.

CO-emitting molecular clouds, which provide the raw material for star formation, are usually assumed to have undergone complete conversion from atomic to molecular hydrogen. However, since \(\text{H}_2 \) has strongly forbidden rotational transitions and requires high temperatures \((\sim 500 \, \text{K}) \) to excite its rotational lines, it is a poor tracer of cold \((\lesssim 100 \, \text{K}) \) molecular gas. Determining \(\text{H}_2 \) gas masses in the interstellar medium (ISM) of galaxies has therefore relied on tracer molecules. In particular, \(^{12}\text{CO} \) is the most commonly employed tracer of ISM clouds; aside from being the most abundant molecule after \(\text{H}_2 \), CO has a weak dipole moment \((\mu_c = 0.11 \, \text{debye}) \) and its rotational levels are thus excited and thermalized by collisions with \(\text{H}_2 \) at relatively low molecular hydrogen densities (Solomon & Vanden Bout 2005).
2 LARGE VELOCITY GRADIENT MODEL

We start by describing our procedure for quantitatively analysing the [C II] and CO emission lines detected at the position of HDF 850.1 using the LVG approximation. We consider a multi-level system with population densities of the rth level given by \(n_r \). The equations of statistical equilibrium can then be written as

\[
\sum_{j \neq i} n_j R_{ij} = \sum_{j \neq i} n_j R_{ji},
\]

where \(l \) is the total number of levels included; since the set of \(l \) statistical equations is not independent, one equation may be replaced by the conservation equation

\[
n_{\text{tot}} = \sum_{j=0}^{l} n_j,
\]

where \(n_{\text{tot}} \) is the number density of the given species in all levels. In our application, \(n_{\text{tot}} = n_{\text{CO}} \). Following the notation of Poelman & Spaans (2005), \(R_{ij} \) is given in terms of the Einstein coefficients, \(A_{ij} \) and \(B_{ij} \), and the collisional excitation \(i < j \) and de-excitation rates \(i > j \) \(C_{ij} \):

\[
R_{ij} = \begin{cases}
A_{ij} + B_{ij} \langle J_i \rangle + C_{ij}, & (i > j) \\
B_{ij} \langle J_i \rangle + C_{ij}, & (i < j)
\end{cases}
\]

where \(\langle J_i \rangle \) is the mean radiation intensity corresponding to the transition from level \(i \) to \(j \) averaged over the local line profile function \(\phi(v_{ij}) \). The total collisional rates \(C_{ij} \) depend on the individual temperature-dependent rate coefficients and collision partners, usually \(\text{H}_2 \) and \(\text{H} \) for CO rotational excitation.

The difficulty in solving this problem is that the mean intensity at any location in the source is a function of the emission and varying excitation state of the gas all over the rest of the source, and is thus a non-local quantity. To obtain a general solution of the coupled sets of equations describing radiative transfer and statistical equilibrium, we adopt the approach developed by Sobolev (1960) and extended by Castor (1970) and Lucy (1971) and assume the existence of a LVG in dense clouds. This assumption is justified given the interstellar molecular line widths which range from a few up to a few tens of kilometres per second, far in excess of plausible thermal velocities in the clouds (Goldreich & Kwan 1974). They suggest that these observed velocity differences arise from large-scale, systematic, velocity gradients across the cloud, a hypothesis that lies in accordance with the constraints provided by observation and theory.

In the limit that the thermal velocity in the cloud is much smaller than the velocity gradient across the radius of the cloud, the value of \(\langle J_i \rangle \) at any point in the cloud, when integrated over the line profile, depends only upon the local value of the source function and upon the probability that a photon emitted at that point will escape from the cloud without further interaction. Thus, \(\langle J_i \rangle \) becomes a purely local quantity and is given by

\[
\langle J_i \rangle = (1 - \beta_{ij}) S_j + \beta_{ij} B(v_{ij}, T_B),
\]

where \(S_j \) is the line source function,

\[
S_j = \frac{2 \pi h v_{ij}^3}{c^2} \left(\frac{g_j n_j}{g_i n_i} - 1 \right)^{-1},
\]

thus assumed to be constant through the medium. In this expression, \(g_i \) and \(g_j \) are the statistical weights of levels \(i \) and \(j \), respectively, \(\beta_{ij} \) is the ‘photon escape probability’ and \(B(v_{ij}, T_B) \) is the background radiation with temperature \(T_B \). In our models we set \(T_B \) to the cosmic microwave background temperature of 16.9 K at \(z = 5.183 \). We ignore contributions from warm dust (da Cunha et al. 2013).

For a spherical homogenous collapsing cloud, the probability that a photon emitted in the transition from level \(i \) to level \(j \) escapes the cloud is given by

\[
\beta_{ij} = \frac{1 - e^{-\tau_{ij}}}{\tau_{ij}},
\]

where \(\tau_{ij} \) is the optical depth in the line,

\[
\tau_{ij} = \frac{A_{ij} c^3}{8 \pi v_{ij}^2} \frac{n_{\text{tot}}}{dV/dr} \frac{n_j}{g_j} \left(1 - \frac{g_i n_i}{g_j n_j} \right) r (1 - \frac{g_i n_i}{g_j n_j})
\]

Downloaded from https://academic.oup.com/mnras/article-abstract/435/3/2407/1026998 by guest on 16 March 2020
The equations of statistical equilibrium are therefore reduced to the simplified form

$$\sum_{j \neq i} (n_i C_{ij} - n_j C_{ji}) + n_i \sum_{j \neq i} A_{ij} \alpha_j = \sum_{j \neq i} n_j A_{ji} \alpha_j = 0 \quad (8)$$

and can be solved through an iterative process to give the fractional level populations \(n_i/n_{tot}\) (for a given choice of densities for the collision partners, usually \(H_2\) but also \(H\), and kinetic temperature \(T_{k}\)). Assuming that the telescope beam contains a large number of these identical homogeneous collapsing clouds (e.g. Hailey-Dunsheath 2009), the corresponding emergent intensity of an emission line integrated along a line of sight is then simply

$$I_{ij} = \frac{h v_{ij}}{4\pi n_{tot}} A_{ij} \beta_j N_{tot} = \frac{h v_{ij} n_i}{4\pi n} A_{ij} \beta_j \chi N,$$

(9)

where \(\chi\) is the abundance ratio \([\chi \equiv n_{tot}/n\), where \(n\) is the total hydrogen gas volume density \((cm^{-3})\) and \(N\) is the hydrogen column density \((cm^{-2})\).

Given a series of observed lines with frequency \(v_{ij}\), one can identify a set of characterizing parameters that best reproduces the observed line ratios and intensity magnitudes; among these parameters are the cloud’s kinetic temperature \(T_{k}\), velocity gradient \((dv/dr)\), gas density \(n\) and collision partner \((H\) and \(H_2\)\) gas fractions, abundance ratio \(\chi\), and column density \(N\). For a spherical geometry, this column density can then be further related to the molecular gas mass of the cloud in the following way:

$$M = \pi R^2 \mu m N,$$

(10)

where the factor \(\mu = 1.36\) takes into account the helium contribution to the molecular weight and \(R = D_\theta \theta/2\) is the effective radius of the cloud, with \(D_\theta\) being the angular diameter distance to the source and \(\theta\) the beam size of the line observations. \(N\) is defined in terms of the column density obtained from the LVG calculation, \(N = N(1 + z)^4\) where the \((1 + z)^4\) multiplicative factor reflects the decrease in surface brightness of a source at redshift \(z\) in an expanding universe.

In the case where the emitting molecular clouds are gravitationally bound, applying the virial theorem to a homogenous spherical body yields the following constraint (Goldsmith 2001):

$$\frac{dv}{dr} \approx \sqrt{\frac{G \pi \mu m n}{15}} \approx a \sqrt{\frac{n}{(cm^{-3})}} \text{ km s}^{-1} \text{ pc}^{-1},$$

(11)

where \(a = 7.77 \times 10^{-3}\) if \(n = n_{h},\) and \(a = 5.50 \times 10^{-3}\) if \(n = n_{h}\). The velocity gradient is inversely proportional to the dynamical time-scale. In models where the clouds are assumed to be virialized, \(dv/dr\) and \(n\) are no longer independent input parameters of the model, but rather vary according to equation (11).

For the optically thick CO \(J = 1 \rightarrow 0\) transition line \((\beta \approx 1/\tau)\), carrying out the LVG calculations with this additional virialization condition leads to a simple relation between the gas mass and the CO\((1-0)\) line luminosity,

$$a_{(CO)} = \frac{M_{H_2}}{L_{CO(1-0)}} = 8.6 \sqrt{\frac{n_{H_2}/(cm^{-3})}{T_{exc}/(K)}} M_\odot (K \text{ km s}^{-1} \text{ pc}^{-2})^{-1},$$

(12)

where the excitation temperature \(T_{exc} \approx T_{kin}\) when the emission line is thermalized. (In this expression we assume complete conversion to \(H_2\) so that the gas mass is the \(H_2\) mass.)

Empirically, the Galactic value of this mass-to-luminosity ratio for virialized objects bound by gravitational forces is \(a = M_{H_2}/L_{CO(1-0)} = 4.6 M_\odot (K \text{ km s}^{-1} \text{ pc}^{-2})^{-1}\) (Solomon & Barrett 1991), corresponding to \(\sqrt{n_{H_2}/T} \approx 0.5 \text{ cm}^{-3}/\text{K}^{-1}\).

3 ANALYSIS OF HDF 850.1

3.1 Properties of the Galaxy

HDF 850.1, the brightest submillimetre source in the Hubble Deep Field at a wavelength of 850 \(\mu\)m, was discovered by Hughes et al. (1998). A full-frequency scan of this source by Walter et al. (2012) using the IRAM (Institut de Radioastronomie Millimetrique) Plateau de Bure Interferometer and the National Radio Astronomy Observatory (NRAO) Jansky Very Large Array has detected three CO lines, identified as the CO(2–1) 230.5 GHz, CO(5–4) 576.4 GHz and CO(6–5) 691.5 GHz rotational transitions. [C\(\\alpha\)] 1900.1 GHz (158 \(\mu\)m), one of the main cooling lines of the star forming in the stellar medium, has also been detected (Table 1). These lines have placed HDF 850.1 in a galaxy overdensity at \(z = 5.183\), a redshift higher than those of most of the hundreds of submillimetre-bright galaxies identified thus far.

Walter et al. (2012) used an LVG model to characterize the CO SED of HDF 850.1 and found that the observed CO line intensities could be fitted with a molecular hydrogen density of \(10^{12} \text{ cm}^{-3}\), a velocity gradient of \(1.2 \text{ km s}^{-1} \text{ pc}^{-1}\) and a kinetic temperature of 45 K. Then, assuming \(a = 0.8 M_\odot (K \text{ km s}^{-1} \text{ pc}^{-2})^{-1}\) as for ULIRGs, they used the 1–0 line luminosity inferred from their LVG computation to infer that \(M_{H_2} = 3.5 \times 10^8 M_\odot\). However, as Papadopoulos et al. (2012) argue, adopting a uniform value of \(a\) for ULIRGs neglects its dependence on the density, temperature and kinematic state of the gas; this may limit the applicability of computed conversion factors to other systems in the local or distant Universe.

Here, we broaden the LVG analysis carried out in Walter et al. (2012) and use the LVG-modelled column density to estimate the total gas mass of the source. We present several alternative models, each subject to a slightly different constraint. In particular, we first consider the case where the CO and [C\(\\alpha\)] lines originate from different regions of the molecular cloud. This picture is consistent with the standard structure of photoionized regions (PDRs) in which there is a layer of almost totally ionized carbon at the outer edge, intermediate regions where the carbon is atomic and

Line	\(\nu_{obs}\) (GHz)	Integrated flux density \((Jy \text{ km s}^{-1})\)	Luminosity \((\times 10^{10} \text{ K km s}^{-1} \text{ pc}^{-2})\)	Intensity \((\text{erg s}^{-1} \text{ cm}^{-2} \text{ sr}^{-1})\)
CO(2–1)	37.286	0.17 ± 0.04	4.1 ± 0.9	(2.16 ± 0.51) \times 10^{-9}
CO(5–4)	93.202	0.5 ± 0.1	1.9 ± 0.4	(1.59 ± 0.32) \times 10^{-8}
CO(6–5)	111.835	0.39 ± 0.1	1.0 ± 0.3	(1.49 ± 0.82) \times 10^{-8}
[C\(\\alpha\)]	307.383	14.6 ± 0.3	5.0 ± 0.1	(1.5 ± 0.03) \times 10^{-6}

Note: Detection of four lines tracing the star-forming interstellar medium in HDF 850.1 (Walter et al. 2012).
internal regions where the carbon is locked into CO (Sternberg & Dalgarno 1995; Tielens & Hollenbach 1985; Wolfire et al. 2010). In this picture then, the hydrogen is fully molecular in the CO-emitting regions. We then consider models in which the CO molecules and C+ ions are uniformly mixed, such that the line emissions originate in gas at the same temperature and density. These models resemble conditions found in ultraviolet (UV)-opaque cosmic ray dominated dark cores of interstellar molecular clouds where the chemistry is driven entirely by cosmic ray ionization. For HDF 850.1, the ionization rates could be significantly higher than in the Milky Way, leading to enhanced C+ in the UV-shielded regions. In both instances, we perform our LVG computations assuming (a) virialized clouds for which the virialization condition (equation 11) has been imposed and (b) gravitationally unbound clouds.

To carry out these computations, we use the Mark & Sternberg LVG radiative transfer code described in Davies, Mark & Sternberg (2012). Energy levels, line frequencies and Einstein A coefficients are taken from the Cologne Database for Molecular Spectroscopy (CDMS). The excitation and de-excitation rates of the CO rotational levels that are induced by collisions with H2 are taken from Yang et al. (2010), while the C+ collisional rate coefficients come from Flower & Launay (1977) and Launay & Roueff (1977).

3.2 Separate CO, C+ virialized regions

We first consider a model in which the CO and [C II] emission lines detected at the position of HDF 850.1 originate in separate regions of the molecular gas cloud, regions which are not necessarily at the same temperature and number density. For self-gravitating clouds in virial equilibrium, the velocity gradient is no longer an independent input parameter of the LVG model, but varies with \(n_{H_2} \) according to equation (11). To find the unique solution that yields the two observed line ratios, \(I_{\text{CO}(6-5)}/I_{\text{CO}(2-1)} \) and \(I_{\text{CO}(6-5)}/I_{\text{CO}(5-4)} \), we assume a canonical value of \(\chi_{\text{CO}} = 10^{-4} \) for the relative CO to H2 abundance and vary the remaining two parameters, temperature and molecular hydrogen density, over a large volume of the parameter space. We find, under this virialization constraint, that the observed CO lines are best fitted with a kinetic temperature of 70 K and a molecular hydrogen number density of \(10^4 \) cm\(^{-3} \) (with a corresponding velocity gradient of \(\approx 0.16 \) km s\(^{-1} \) pc\(^{-1} \)). The column density that yields the correct line intensity magnitudes is \(4.2 \times 10^{19} \) cm\(^{-2} \), corresponding to a molecular hydrogen gas mass of \(M_{\text{H}_2} \approx 2.13 \times 10^{11} \) M\(_\odot\). The H2 mass to CO luminosity conversion factor obtained in this model is \(\alpha = 5.1 \) M\(_\odot\) (K km s\(^{-1}\) pc\(^2\))\(^{-1} \), a value similar to the Galactic conversion factor observed for virialized molecular clouds in the Milky Way, suggesting that HDF 850.1 may have some properties in common with our Galaxy.

Reducing the relative CO to H2 abundance by a factor of 2, to \(\chi_{\text{CO}} = 5 \times 10^{-5} \), results in a best-fitting solution with a molecular hydrogen gas mass of \(M_{\text{H}_2} \approx 2.68 \times 10^{11} \) M\(_\odot\), nearly 25 per cent larger than the value obtained assuming \(\chi_{\text{CO}} = 10^{-4} \). Ranges on the fit parameter consistent with the observational uncertainties are listed in Table 2.

3.3 Separate CO, C+ unvirialized regions

We then consider a model in which the CO and [C II] emission lines are assumed to originate from separate regions of gravitationally unbound molecular clouds. Since unvirialized clouds generally demonstrate a higher degree of turbulence relative to their virialized counterparts, we expect the velocity gradient in this model to be greater than the velocity gradient obtained for the virialized model. \(\langle dv/dr \rangle_{\text{virialized}} \approx 0.16 \) km s\(^{-1}\) pc\(^{-1} \). We therefore fix the velocity gradient to be 10 times the virialized value, \(\langle dv/dr \rangle_{\text{unvirialized}} = 1.6 \) km s\(^{-1}\) pc\(^{-1} \), and, assuming a canonical value of \(\chi_{\text{CO}} = 10^{-4} \), find the solution that yields the two observed line ratios by varying \(T \) and \(n_{H_2} \). We find, under these assumptions, that the CO SED is best fitted with a molecular hydrogen density of \(10^3 \) cm\(^{-3} \) and a kinetic temperature of 100 K. For this set of parameters, the beam-averaged H2 column density is \(N_{\text{H}_2} \approx 1.0 \times 10^{19} \) cm\(^{-2} \), giving an associated molecular gas mass of \(M_{\text{H}_2} \approx 5.16 \times 10^{10} \) M\(_\odot\). This estimate of the gas mass is nearly 50 per cent larger than that obtained by Walter et al. (2012) by applying the H2 mass-to-CO luminosity relation with the typically adopted conversion factor for ULIRGs, \(\alpha = 0.8 \) M\(_\odot\) (K km s\(^{-1}\) pc\(^2\))\(^{-1} \). Given our inferred H2 gas mass and predicted CO(1–0) line luminosity from our LVG fit, we find that \(\alpha = 1.2 \) M\(_\odot\) (K km s\(^{-1}\) pc\(^2\))\(^{-1} \) in this model.

The increase in molecular hydrogen density and the reduction in inferred mass (relative to the values obtained in the previous model where the virialization condition was imposed) arise from our assumption that the velocity gradient in this model is greater than the velocity gradient obtained in the virialized case. For a fixed \(\chi \), the optical depth drops with increasing \(dv/dr \) (equation 7); since \(\beta \), the probability of an emitted photon escaping, correspondingly increases, the radiation is less ‘trapped’ and a higher density, \(n_{H_2} \), is required to produce the observed CO excitation lines. Furthermore, since \(L_{ij} \propto \beta \alpha M \), a larger \(\beta \) implies that less mass is required to reproduce an observed set of line intensities. Therefore, assuming \(\langle dv/dr \rangle_{\text{unvirialized}} = 10 \langle dv/dr \rangle_{\text{virialized}} \) causes the optical depth, and consequently, the inferred mass, to drop by a factor of nearly 4 in this model.

3.4 Optically thin [C II]

In the two models above, where the CO and [C II] lines are assumed to be emitted from separate regions of the molecular clouds, the single detected ionized carbon line is insufficient in constraining the parameters of the LVG-modelled [C II] region. We thus consider the optically thin regime of the [C II] line (\(\beta \approx 1 \)), such that

\[
I_{ij} \approx \frac{h\nu_{ij}}{4\pi} A_{ij} x_{\text{C}^+} N_{\text{H}_2} \rightarrow \frac{M_{\text{H}_2}}{L_{\text{[C II]}}} \Rightarrow \frac{\mu m_{\text{H}}(1+z)^2}{h\nu_{ij} A_{ij} x_{\text{C}^+}} = \frac{L_{\text{[C II]}}}{M_{\text{H}_2}}. \tag{13}
\]

where \(x_{\text{C}^+} \) is the C+ to H2 abundance ratio (fixed at a value of \(10^{-4} \) in these calculations) and \(x \) represents the fraction of ionized carbon molecules in the \(i \)th energy level. Assuming that the fine-structure transition \(J = 3/2 \rightarrow 1/2 \) is due solely to spontaneous emission processes and collisions with ortho- and para-H2, the equations of statistical equilibrium reduce to a simplified form and can be solved to obtain \(x_{\text{C}^+} \sim 3/2 \) as a function of temperature and H2 number density. In Fig. 1, we have plotted the resulting mass-to-luminosity ratio, \(M_{\text{H}_2}/L_{\text{[C II]}} \), as a function of the kinetic temperature for several different values of \(n_{H_2} \). Given the high [C II]/far-infrared luminosity ratio of \(L_{\text{[C II]}}/L_{\text{FIR}} = (1.7 \pm 0.5) \times 10^{-5} \) in HDF 850.1 (Walter et al. 2012), it is reasonable to assume that the ionized carbon is emitting efficiently and to thus consider the high-temperature, large number density limit (\(T_{\text{kin}} \approx 500 \) K, \(n_{H_2} \approx 10^{10} \) cm\(^{-3} \)). In this limit, the mass-to-luminosity ratio is \(\approx 1.035 \) M\(_\odot\) (K km s\(^{-1}\) pc\(^2\))\(^{-1} \) and the corresponding molecular gas mass of the C+ region, using the detected line intensity of the ionized carbon line \(L_{\text{[C II]}} = 1.1 \times 10^{10} \) L\(_\odot\), is found to be \(M_{\text{H}_2} \approx 5.2 \times 10^{10} \) M\(_\odot\).
3.5 Uniformly mixed CO, C\(^+\) virialized region

We next consider models in which the CO molecules and C\(^+\) ions are mixed uniformly, such that the corresponding line emissions originate in gas at the same temperature, density and velocity gradient. For these conditions, the chemistry is driven by cosmic ray ionization and the density fractions \(n/H\) for CO and C\(^+\) depend on a single parameter, the ratio of the cloud density to the cosmic ray ionization rate \(\zeta\) (Boger & Sternberg 2005). For Galactic conditions with \(\zeta \sim 10^{-16}\) s\(^{-1}\), the C\(^+\)-to-CO ratio is generally very small. However, in objects such as HDF 850.1 where the ionization rate may be much larger due to high SFRs, this ratio may be enhanced significantly.

Assuming a virialized cloud with \(\chi_{\text{CO}} + \chi_{\text{C}^+} = 10^{-4}\), the unique LVG fit for the observed set of line intensity ratios, \(\{I_{\text{CO}}/I_{\text{CO(2-1)}}, I_{\text{C}^+}/I_{\text{CO(2-1)}}, I_{\text{C}^+}/I_{\text{CO(3-2)}}, I_{\text{C}^+}/I_{\text{CO(3-2)}}, I_{\text{C}^+}/I_{\text{CO(6-5)}}, I_{\text{C}^+}/I_{\text{CO(6-5)}}\}\) = \(\{7.08 \pm 1.67, 0.96 \pm 0.19, 1.03 \pm 0.2\}\) \(\times 10^2\) (Walter et al. 2012), yields \(T_{\text{kin}} = 160\) K, \(n = 10^4\) cm\(^{-3}\) and a C\(^+\)-to-CO abundance ratio of 13. To estimate the ionization rate required to produce this C\(^+\)/CO abundance ratio, we employed the Boger & Sternberg (2005) chemical code that captures the C\(^+\)-C–CO interconversion in a purely ionization-driven chemical medium.

For solar abundances of the heavy elements (\(Z = 1\)), a fairly reasonable assumption given the high SFR observed in HDF 850.1, the cosmic ray ionization rate required to achieve this high C\(^+\) to CO ratio in a cloud with temperature \(T = 160\) K and density \(n_H = 10^3\) cm\(^{-3}\) is of the order of \(\zeta \approx 2.5 \times 10^{-14}\) s\(^{-1}\) (Fig. 2). This is significantly enhanced compared to the Milky Way value, \(\zeta \sim 10^{-16}\) s\(^{-1}\), and is plausibly consistent with the fact that HDF 850.1 has an SFR of 850 solar masses per year, a value which is larger than the measured Galactic SFR by a factor of 10\(^3\) (Walter et al. 2012).

Furthermore, for such a high cosmic ray ionization rate of this magnitude, the hydrogen is primarily atomic for the implied LVG gas density. We find that the ratio of molecular hydrogen to atomic hydrogen in the interstellar clouds is \(n_H/n_\text{H}\) \(\approx 0.4\) (Fig. 2). We thus replace H\(_2\) with H as the dominant collision partner. Given the uncertain CO–H rotational excitation rates (see Sheple et al. 2007), we assume that the rate coefficients are equal to the rates for collisions with ortho-H\(_2\) (Flower & Pineau Des For 2010). We find that the...
Figure 1. The gas mass to [C II] luminosity ratio for a C$^+$ to H$_2$ abundance ratio of $\chi_{C^+} = 10^{-4}$ as a function of the kinetic temperature T_{kin} at a molecular hydrogen number density of $n_{H_2} = 10^2$, 10^3 and 10^4 cm$^{-3}$. Calculations were made in the optically thin regime, assuming that the fine-structure transition $J = 3/2 \rightarrow 1/2$ is due solely to spontaneous emission processes and collisions with ortho- and para-H$_2$.

Figure 2. Dependence of the density ratios, n_{C^+}/n_{CO} (solid line) and n_{H_2}/n_H (dashed line), on the H$_2$ ionization rate ζ at a fixed solar metallicity $Z' = 1$, for our best-fitting LVG parameters $T_{\text{kin}} = 160$ K and $n_{H_2} = 10^3$ cm$^{-3}$. As ζ increases, the abundance of C$^+$ relative to CO in the cosmic ray dominated dark cores of interstellar clouds grows while that of H$_2$ to atomic hydrogen decreases. The desired value $n_{C^+}/n_{\text{CO}} \approx 13$ is obtained for $\zeta \approx 2.5 \times 10^{-14}$ s$^{-1}$, at which point $n_{H_2} \approx 0.4n_H$.

observed CO and [C II] lines together are best fitted with a temperature of 160 K, an atomic hydrogen number density of $n_H = 10^3$ cm$^{-3}$ (with a corresponding velocity gradient of 0.17 km s$^{-1}$ pc$^{-1}$) and an abundance ratio (relative to H) of 9.3×10^{-5} and 7×10^{-6} for C$^+$ and CO, respectively. The column density that yields the correct line intensity magnitudes is 8.5×10^{19} cm$^{-2}$, corresponding to an atomic hydrogen gas mass of $M_H \approx 2.14 \times 10^{11}$ M$_\odot$. The molecular hydrogen mass is then $M_{H_2} = 2(n_{H_2}/n_H)M_H \approx 1.72 \times 10^{11}$ M$_\odot$ and the total gas mass estimate is $M_{\text{gas}} \approx 3.86 \times 10^{11}$ M$_\odot$. The corresponding conversion factor in this model is $\alpha = 9.8$ M$_\odot$(K km s$^{-1}$ pc2)$^{-1}$, where α is now defined as the total gas mass to CO luminosity ratio.
Reducing the fixed sum of abundance ratios (relative to H) of CO and C\(^+\) by a factor of 2, to \(\chi_{\text{CO}} + \chi_{\text{C}^+} = 5 \times 10^{-5}\), results in a best-fitting solution with a total gas mass of \(M_{\text{gas}} \approx 4.57 \times 10^{11}\) M\(_{\odot}\), nearly 20 per cent larger than the value obtained assuming \(\chi_{\text{CO}} + \chi_{\text{C}^+} = 10^{-4}\).

3.6 Uniformly mixed CO, C\(^+\) unvirialized region

In the case where we assume gravitationally unbound molecular clouds, we again find a best-fitting model with a C\(^+\)-to-CO ratio of \(\chi_{\text{C}^+}/\chi_{\text{CO}} \approx 13\), indicating that atomic hydrogen is the dominant collision partner in the LVG calculations. We thus calculate a three-dimensional grid of model CO and [C\(\text{ii}\)] lines, varying \(T_{\text{kin}}, n_{\text{H}}\), and the relative abundances \(\chi_{\text{C}^+}\) and \(\chi_{\text{CO}}\), with the constraints that \(\chi_{\text{CO}} + \chi_{\text{C}^+} = 10^{-4}\) and (\(\text{d}V/\text{d}r\))\(_{\text{unvirialized}} = 10(\text{d}V/\text{d}r)_{\text{virialized}} = 1.7\) km s\(^{-1}\) pc\(^{-1}\). The observed set of CO and [C\(\text{ii}\)] lines, assumed to have been emitted from the same region, are fitted best with a temperature of 180 K, an atomic hydrogen number density of \(10^{14}\) cm\(^{-3}\) and an abundance ratio of \(9.3 \times 10^{-5}\) and \(7 \times 10^{-6}\) for C\(^+\) and CO, respectively. For this set of parameters, the beam-averaged H column density is nearly 20 per cent larger than the value obtained assuming this set of parameters, the beam-averaged H column density is well fitting solution with a total gas mass of \(\sim 0.32\)\(M_{\odot}\) and \(\sim 0.70\)\(M_{\odot}\) and \(\sim 0.73\)\(M_{\odot}\) of dark matter haloes of a given mass can be inferred from the halo mass function. The Sheth–Tormen mass function, which is based of dark matter haloes observed within solid angle \(\Omega_{\text{halo}}\times\chi_{4.57}\)\(M_{\odot}\)\(\times\chi_{4.57}\)\(M_{\odot}\) of observation follows a Poisson distribution, the probability of observing at least one such object in the field is then \(P = 1 - F(0, N)\) where \(F(0, N)\) is the Poisson cumulative distribution function with a mean of \(N\). Given the detection of HDF 850.1, we can say that out of the hundreds of submillimetre-bright galaxies identified so far, at least one has been detected in the Hubble Deep Field at a redshift \(z > 5\) with a halo mass greater than or equal to the halo mass associated with this source. This observation, taken together with the theoretical number density predicted by the Sheth–Tormen mass function, implies that an atomic model that yields an expectation value \(N\) can be ruled out at a confidence level of

\[
F[0, N(5, M_{\text{b,min}})]).
\]

where the solid angle covered by the original Submillimetre Common User Bolometer Array field in which HDF 850.1 was discovered is \(\sim 9\) arcmin\(^2\) (Hughes et al. 1998) and a \(\Lambda\)CDM cosmology is assumed with \(H_0 = 70\) km s\(^{-1}\) Mpc\(^{-1}\), \(\Omega_M = 0.73\) and \(\Omega_{\Lambda} = 0.27\) (Komatsu et al. 2011). \(M_{\text{b,min}}\), the minimum inferred halo mass for HDF 850.1, is related to the halo’s minimum baryonic mass component, a quantity derived in Section 3 via the LVG technique, in the following way:

\[
M_{\text{b,min}} = \frac{\Omega_M}{\Omega_b} M_{\text{halo}}.
\]

The confidence with which models can be ruled out on this basis is plotted as a function of the minimum baryonic mass estimated by the model (solid curve in Fig. 3). To check the consistency of the four LVG models considered in Section 3 with these results, dashed lines representing the masses derived from each model are included in the plot (upper left-hand panel). Assuming that the CO and [C\(\text{ii}\)] molecules are uniformly mixed in virialized clouds results in a baryonic mass \(M_{\text{b,min}} = 3.86 \times 10^{11}\) M\(_{\odot}\). The probability of observing at least one such source, with a corresponding halo mass \(M_{\text{h}} \geq 2.1 \times 10^{12}\) M\(_{\odot}\), is \(\sim 7 \times 10^{-3}\); this model can thus be ruled out at the 1.8\(\sigma\) level (solid). The model which postulate separate virialized regions (dashed) can be ruled out with relatively less certainty, at the 1\(\sigma\) level. On the other hand, modelling the CO and [C\(\text{ii}\)] emission lines as originating from mixed (dotted) or separate (dash–dotted) unvirialized regions results in minimum baryonic masses which are consistent with the constraint posed by equation (15). We expect to find \(N \sim 1.5\) and 10 such haloes, respectively, at a redshift \(z \geq 5\). The fact that the expected average number of observed sources for the latter model is much higher than the actual number of sources observed may be due to the incompleteness of the conducted survey and is therefore not grounds for ruling out this model.

The baryonic masses, obtained via the LVG method, represent conservative estimates of the total baryonic content associated with HDF 850.1. In particular, mass contributions from any ionized gas or stars residing in the galaxy are not taken into account, and in the models where a layered cloud structure is assumed, the atomic hydrogen mass component is left undetermined. Furthermore, ejection of baryons to the intergalactic medium through winds may result in a halo baryon mass fraction that is smaller than the cosmic ratio, \(\Omega_b/\Omega_{\Lambda}\), used in this paper, resulting in a conservative estimate of the minimum halo mass. We therefore consider the effects on the predicted number of observed haloes, \(N(M_{\text{b,min}})\), if the minimum baryonic mass derived for each model is doubled, e.g. assuming a molecular-gas mass fraction of \(\sim 1/2\) (Tacconi et al. 2013). Using these more accurate estimates of HDF 850.1’s baryonic mass, we
Figure 3. \(N\) represents the expectation value of the number of haloes one expects to find with mass \(M_h \geq M_{h,\text{min}}/f_b\) at a redshift \(z \geq 5\) within a solid angle of \(A_{\text{HDF}} \approx 9\) arcmin\(^2\). Assuming that the number of galaxies in a field of observation follows a Poisson distribution, the probability of observing at least one such object in the field with \(M_h \geq M_{h,\text{min}}/f_b\) at a redshift \(z \geq 5\) is \(1 - P(0, N(z, M_{h,\text{min}}))\) where \(P(0, N)\) is the Poisson cumulative distribution function with a mean of \(N\). The confidence with which an LVG model can be ruled out as a function of the minimum baryonic mass derived from the model is therefore \(P = P(0, N)\) (solid curve). Upper left-hand panel: the vertical lines represent the mass values obtained for each of the four models presented in Section 3: (a) separate and virialized (dashed), (b) separate and unvirialized (dash–dotted), (c) mixed and virialized (solid), and (d) mixed and unvirialized regions (dotted). In models (a) and (b), \(M_{h,\text{min}} = M_{H_2}\) while in models (c) and (d), \(M_{h,\text{min}} = M_{H_2} + M_{H_1}\). Upper right-hand panel: the minimum baryonic masses obtained for each model were doubled to account for neglected contributions to the total gas mass; models (a) and (c) can now be ruled out at the 2\(\sigma\) and 2.7\(\sigma\) levels, respectively. Lower left-hand panel: the vertical lines represent the mass values implied by the predicted CO(1–0) line luminosities from models (a) and (b) with a \(\alpha = 0.8\) and 4.6\(M_\odot (\text{K km s}^{-1} \text{pc}^2)^{-1}\) adopted as the conversion factor. If these minimum baryonic mass values are then doubled (lower right-hand panel), both models can be ruled out at the \(\sim 1.8\sigma\) level in the case where \(\alpha = 4.6\)\(M_\odot (\text{K km s}^{-1} \text{pc}^2)^{-1}\) is adopted as the conversion factor.

5 SUMMARY

In this paper, we employed the LVG method to explore alternate model configurations for the CO and \(C^+\) emission lines regions in the high-redshift source HDF 850.1. In particular, we considered emissions originating from (i) separate virialized regions, (ii) separate unvirialized regions, (iii) uniformly mixed virialized regions and (iv) uniformly mixed unvirialized regions. For models (i) and (ii) where separate CO and \(C^+\) regions were assumed, the kinetic temperature, \(T_{\text{kin}}\), and the molecular hydrogen density, \(n_{H_2}\), were fitted to reproduce the two observed line ratios, \(I_{\text{CO}(6-5)}/I_{\text{CO}(2-1)}\) and \(I_{\text{CO}(6-5)}/I_{\text{CO}(6-4)}\), for a fixed canonical value of the CO abundance (relative to \(H_2\)), \(\chi_{\text{CO}} = 10^{-4}\). The column density of molecular hydrogen, \(N_{H_2}\), was then fitted to yield the correct line intensity magnitudes and the molecular gas mass was derived for each respective model. In models (iii) and (iv) where the CO molecules

find that the two models in which the virialization condition is enforced can be ruled out at the \(\sim 2.7\sigma\) and 2\(\sigma\) level for the mixed and separate models, respectively (upper right-hand panel). For comparison, we also consider the gas masses implied by the CO(1–0) line luminosities predicted by the two models where distinct CO and \(C^+\) layers are assumed (lower left-hand panel). Adopting a CO-to-\(H_2\) conversion factor of \(\alpha = 0.8\) (\(\text{K km s}^{-1} \text{pc}^2\))\(^{-1}\), we find that enforcing the cosmological constraint posed by the abundance of dark matter haloes does not rule out either of the two models in which separate CO and \(C^+\) regions were assumed, even if the minimum baryonic masses are doubled to account for neglected contributions to the total gas mass (lower right-hand panel). If a conversion factor of \(\alpha = 4.6\) (\(\text{K km s}^{-1} \text{pc}^2\))\(^{-1}\) is used, then both models can be ruled out at the \(\sim 1\sigma\) level and increasing these obtained masses by a factor of 2 drives up the \(\sigma\) levels to \(\sim 1.8\sigma\) for both models.
and C⁺ ions were assumed to be uniformly mixed with abundance ratios that satisfied the constraint, $\chi_{CO} + \chi_{C⁺} = 10^{-4}$, we found that a relatively high-ionization rate of $\zeta \approx 2.5 \times 10^{-14}$ s⁻¹ is necessary to reproduce the set of observed line ratios, $\{I_{[CII]}/I_{CO(2-1)}, I_{[CII]}/I_{CO(6-5)} \}$. Since the hydrogen in a cloud experiencing an ionization rate of this magnitude is primarily atomic, two additional parameters, n_H and N_{HI}, were introduced and the set of LVG parameters, $\{T_{kin}, n_H, N_{HI}, \chi_{CO}, \chi_{C⁺}, N_{H₂}, N_{HI}\}$, were fitted and used to obtain both a molecular and an atomic hydrogen gas mass for each model. The gas masses derived by employing the LVG technique thus represent conservative estimates of the minimum baryonic mass associated with HDF 850.1.

These estimates were then used, together with the Sheth–Tormen mass function for dark matter haloes to calculate the average number of haloes with mass $M_h \geq M_{h, \text{min}}$ that each model predicts to find within the HDF survey volume. Given that at least one such source has been detected, we found that models (i) and (iii) can be ruled out at the 1σ and 1.8σ levels, respectively. The confidence with which these models are ruled out increases if a less conservative estimate of the baryonic mass is taken; increasing the LVG-modelled gas masses by a factor of 2 to account for neglected contributions to the total baryonic mass drives up these σ levels to ~2σ and 2.7σ, respectively. Furthermore, model (iv) can now be ruled out at the 1σ level as well. We are therefore led to the conclusion that HDF 850.1 is modelled best by a collection of unvirialized molecular clouds with distinct CO and C⁺ layers, as in PDR models. The LVG technique thus represent conservative estimates of the minimum baryonic mass associated with HDF 850.1.

ACKNOWLEDGEMENTS

We thank Dean Mark for his assistance with the LVG computations. This work was supported by the Raymond and Beverly Sackler Tel Aviv University–Harvard/ITC Astronomy Program. AL acknowledges support from the Sackler Professorship by Special Appointment at Tel Aviv University. This work was also supported in part by NSF grant AST-0907890 and NASA grants NNX08AL496 and NNA09DB30A (for AL).

REFERENCES

Bloemen J. B. et al., 1986, A&A, 154, 25
Boger G. I., Sternberg A., 2005, ApJ, 632, 302

This paper has been typeset from a \TeX file prepared by the author.