CAR-T Cell Therapy: A Door Is Open to Find Innumerable Possibilities of Treatments for Cancer Patients

CAR-T hücre tedavisi: kanser hastalarına sayısız tedavi olanağı bulunması için kapı aralandı

Lorena Perez-Amill1, Berta Marzal2, Alvaro Urbano-Ispizua1,3, Manel Juan2, Beatriz Martín-Antonio1,3

1Institut d’Investigacions Biomèdiques August Pi i Sunyer Hospital, Clinic of Hematology, Barcelona, Spain
2Institut d’Investigacions Biomèdiques August Pi i Sunyer Hospital, Clinic of Immunology, Barcelona, Spain
3Josep Carreras Leukaemia Research Institute, Barcelona, Spain

Lorena Perez-Amill and Berta Marzal contributed to this article equally.

Abstract

Seven years ago a chronic lymphocytic leukemia patient was for the first time successfully treated with chimeric antigen receptor (CAR)-modified T cells (CAR-T cells) to target CD19 overexpression in tumor cells. This was the beginning of the development of a new type of immunotherapy treatment in cancer patients. Since then, identification of novel antigens expressed in tumor cells and optimization of both CAR constructs and protocols of administration have opened up new avenues for the successful treatment of other hematological malignancies. However, research still continues to avoid some problems such as toxicities associated with the treatment and to find strategies to avoid tumor cell immune evasion mechanisms. On the other hand, for solid tumors, CAR-T therapy results are still in an early phase. In contrast to hematological malignancies, the complex tumor heterogeneity of solid tumors has led to the research of novel and challenging strategies to improve CAR-T cell activity. Here, we will review the main clinical results obtained with CAR-T cells in hematological malignancies, specifically focusing on CAR-T-19 and CAR-T against B-cell maturation antigen (CAR-T-BCMA). Moreover, we will mention the main problems that decrease CAR-T cell activity in solid tumors and the strategies to overcome them. Finally, we will present some of the first clinical results obtained for solid tumors.

Keywords: CAR-T cell immunotherapy, CD19, BCMA, GD2, HER2, EGFRvIII

Introduction: Chimeric Antigen Receptor-T Cell Therapy

The last decade has witnessed a huge increase in new immunotherapy modalities to treat cancer patients, such as the infusion of chimeric antigen receptor (CAR) modified-T cells (CAR-T cells), which represents the most important advance made to treat hematological malignancies in patients with relapsed/refractory (r/r) disease. CARs are composed of different synthetic domains combined into a single functional receptor that provides antigen-binding to an antigen present on the tumor cell and T-cell activation after antigen recognition [1]. Once a specific CAR has been designed, CAR-T cell therapy consists on the ex vivo modification of autologous T cells from the patient to express this CAR on their membranes. Afterwards, CAR-T cells are expanded in vitro for 8-10 days and reinfused into the patient, where they will recognize and kill the tumor cells.

Anahtar Sözcükler: CAR-T hücre immünoterapi, CD19, BCMA, GD2, HER2, EGFRvIII

Yedi senelik kronik lenfositik lösemili bir hasta ilk kez başarılı olarak tümör hücrelerinde aşırı sunulan CD19’u hedefleyen kimerik antijen reseptör (CAR)-ile değiştirilmiş T hücreleri (CAR-T hücreleri) ile tedavi edilmiştir. Bu kanser hastalarında yeni bir tip immünoterapinin gelişiminin başlangıcı olmuştur. Bunun takiben, tümör hücrelerinde sunulan yeni antijenlerin tanımlanması ve CAR yapılırlarının ve uygulama protokolleri diğer hematolojik habis tümörlerin başarı ile tedavi için yeni yollar açılmıştır. Ancak, tedavi ile ilişkili toksisite gibi bazı problemlerin önlenmesi ve tümör hücresinin immün kaçış mekanizmalarıyle baş edilmesi ilgili çalışmalar hala devam etmektedir. Ayrıca, solid tümörler için, CAR-T tedavi sonuçları halen erken dönemdeydi. Hematolojik habis tümörlerin aksine, solid tümörlerin karmaşık tümör heterojenitesi CAR-T hücre aktivitesi artırma yönelik yeni ve zorlayıcı stratejilerini araştırma yapmıştır. Burada, CAR-T hücrelerinin hematolojik habis tümörlerdeki, özellikle de CAR-T-19 ve B-hücre matürasyon antikodunun karşı CAR-T’nin (CAR-T-BCMA) başlica klinik sonuçlarını gözden geçireceğiz. Ayrıca, solid tümörlerde CAR-T hücre aktivitesini azaltan problemlerden ve bunların üstesinden gelmeye yarayan stratejilerden bahsedeceğiz. Son olarak, solid tümörlerdeki ilk klinik çalışmaların bazılarını sunacağız.

DOI: 10.4274/tjh.2018.0196
Turk J Hematol 2018;35:217-228
A CAR is composed of three domains: 1) The extracellular region codes for the single-chain variable fragment (scFv) of an antibody against the antigen present in the tumor cell. In this region, there is a spacer/hinge domain derived from CD8 and from immunoglobulin G (IgG) sequences that profoundly affects CAR function and scFv flexibility [2]. 2) The CAR transmembrane domain, derived from T-cell molecules, such as CD3ζ, CD4, CD8α, or CD28, links the extracellular domain with 3) the intracellular domain, which activates the T cells and is composed of CD3ζ T-cell receptor. This is the structure of the first-generation CAR-T cells, which have the benefit of not requiring antigen processing/presentation by the human leukocyte antigen (HLA), allowing them to bypass HLA-I restriction [3,4].

For the first-generation CAR-T cells, it was observed that even when the CAR-T cell mechanism was active, T cells did not proliferate in vivo, and moreover, a robust cytokine response after recognition of a tumor cell was not observed. This finding led to the addition of costimulatory domains in the CAR construct, giving rise to second- and third-generations CAR-T cells. Initially, CD28 was selected as the costimulatory domain by Savoldo et al. [5], who compared two autologous CAR-T types with the same specificity for CD19, one that encoded CD3ζ and CD28, while the other encoded only CD3ζ. The CAR-T cells containing CD28 showed enhanced expansion and persistence, confirming the requirement of costimulatory domains in the CAR construct. At the same time, Porter et al. [6] observed that the inclusion of 4-1BB as a costimulatory domain increased the antitumor activity and the in vivo persistence of CAR-T cells compared to CAR-T cells with the CD3ζ domain alone. Therefore, costimulatory domains such as CD28, 4-1BB, and OX40 [7,8,9] were included in second-generation CAR-T cells, providing higher in vivo CAR-T cell proliferation than first-generation CAR-T cells. It was observed that whereas CD28 is better to activate T cells, 4-1BB increases CAR-T cell persistence [10]. Therefore, the majority of recent clinical studies on hematological malignancies are infusing CAR-T cells with 4-1BB. Moreover, third- and fourth-generations of CAR constructs have also been added to the CAR-T arsenal. Third-generation CAR-T cells encode more than one costimulatory domain to enhance T-cell activation and proliferation. Fourth-generation CAR-T cells, also known as TRUCKs or "armored CARs", incorporate a constitutive or inducible expression domain for a protein that needs to be induced or constitutively secreted. Therefore, these CARs can deliver a product to the targeted tumor tissue (i.e., a cytokine), but they also could incorporate a peptide to recognize and bind to its ligand (i.e., CD40L) in the target cell, and to interact with other immune cells such as dendritic cells (i.e., 4-1BBL) (Figure 1) [11,12].

Figure 1. Structure of different chimeric antigen receptor (CAR) generations. First-generation CARs contain the single-chain variable fragment bound to the spacer/hinge domain, a transmembrane domain region with CD8 being the most commonly used, and the T-cell receptor CD3ζ domain. Second-generation CARs add one costimulatory domain to the construct, and third-generation CARs contain more than one costimulatory domain. Fourth-generation CARs contain an inducible or constitutive domain for another protein such as cytokines or specific ligand receptors.

scFv: Single-chain variable fragment.
many hospitals. It applies to both early-onset and delayed-onset CRS, and it distinguishes between mild, moderate, severe, and life-threatening CRS [18]. This scale was used in two multicenter phase II trials infusing tisagenlecleucel in r/r ALL patients performed in 11 different countries and nine sites in the United States. At all of these centers, using this scale, 81% of the patients experienced some grade of CRS and 45% suffered grade 3 or 4 CRS [18,19]. In addition, this scale has also been adopted for other CAR constructs against B-cell maturation antigen (BCMA) for multiple myeloma (MM) [20] and against mesothelin in epithelial ovarian cancer [21]. Table 1 summarizes the grading and CRS management adopted by our institution.

From the Initial Stages Infusing CAR-T-19 to a High CAR-T Cell Variety to Treat Different Malignancies

More than 20 years have passed from the first studies with first-generation CAR-T cells [22,23] to the design of second-generation CAR-T cells and finally the first successful clinical study in 2011 to treat a CLL patient with CAR-T-19 cells achieving complete remission (CR) [6]. Since then, an increasing number of clinical studies started to be performed, and today almost 200 clinical trials infusing CAR-T cells are being performed around the world. The greatest results have been obtained with CAR-T-19 in B-cell malignancies. Here, we will review some of the most relevant results obtained with CAR-T-19 and CAR-T-BCMA to treat MM. Moreover, we

Table 1. Grading of cytokine release syndrome and management of complications performed at our institution (Hospital Clinic of Barcelona) based on the grading scales of Lee et al. [16] and UPenn Porter et al. [18] and management recommendations.

Grade	Symptoms	Treatment	
Grade 1	Not life-threatening symptoms: fever, nausea, fatigue, headache, myalgia, malaise	Conventional treatment to decrease temperature (paracetamol, ibuprofen, naproxen)	
		Maintenance by intravenous fluids for hydration	
		Antibiotics in case of infection	
		Avoid immunosuppressors and steroids	
Grade 2	Symptoms require moderate intervention: oxygen requirement <40% or hypotension responsive to fluids or low dose of a vasopressor or Grade 2 organ toxicity	For nonadvanced age and/or without comorbidity:	
		Assess management in intermediate care	
		Manage fever and constitutional symptoms as in Grade 1	
		Fluid bolus to maintain systolic blood pressure at >90 mmHg	
		Supplementary O₂ to maintain O₂sp at >90%	
		Obtain echocardiogram and initiate methods of hemodynamic monitoring	
		For patients with high risk, consider tocilizumab	
		For advanced age and/or cardiopulmonary comorbidity:	
		Assess management in intermediate care	
		Manage fever and constitutional symptoms as in Grade 1	
		Fluid bolus and low noradrenalin doses	
		Supplementary O₂ to maintain O₂sp at >90%	
		Assess tocilizumab administration	
Grade 3	Symptoms require severe intervention: oxygen requirement >40% or hypotension requiring high-dose or multiple vasopressors or Grade 3 organ toxicity	Management in an intensive care unit	
		Management as in Grade 2	
		Supplementary O₂ to maintain O₂sp at >90%	
		Intravenous fluid bolus as needed	
		High doses of vasopressors or multiple vasopressors	
		Tocilizumab ± steroids	
Grade 4	Life-threatening symptoms: requirement for ventilator support or Grade 4 organ toxicity	Management in an intensive care unit	
		Management as in Grade 3	
		Mechanical ventilation	
		Tocilizumab ± steroids	
Neurotoxicity	Headache, altered level of consciousness, confusion, delirium, aphasia, dysmetria, ataxia, hallucinations, tremor, seizures	Neurological assessment every day	
		Cranial computed tomography and magnetic resonance, lumbar puncture	
		Dexamethasone administration	
		In cases of seizures, levetiracetam administration	
		Orotracheal intubation	
		Mechanic ventilation	

CRS: Cytokine release syndrome.
will mention other CAR constructs employed to treat B-cell malignancies not responding to CAR-T-19.

CAR-T-19 for the Treatment of B-Cell Malignancies

Three different institutions, the National Cancer Institute (NCI), UPenn, and the Memorial Sloan-Kettering Cancer Center (MSKCC), have been the pioneering centers performing clinical studies infusing second-generation CAR-T-19 cells to treat ALL, CLL, and lymphoma patients. Whereas the NCI and MSKCC have employed CAR-T-19 with CD28 as a costimulatory domain, UPenn selected 4-1BB. Their results have contributed to defining critical parameters including the best costimulatory domain, viral vector, gene transfer method, T-cell stimuli used during T-cell production, conditioning chemotherapy, and T-cell dose [24]. For instance, direct comparison by the MSKCC of CAR-T-19 with and without conditioning chemotherapy showed increased T-cell persistence and improved outcome with conditioning chemotherapy [25]. Regarding T-cell dose, whereas for CAR-T-19 this parameter is not so relevant [24], for other CAR constructs, such as BCMA in MM, a minimal CAR-T cell dose is required to achieve response [26]. In more detail, we will describe some clinical results obtained with CAR-T-19 to treat B-cell malignancies.

The first treated CLL patient received 1.46×10^6 CAR-T-19 cells/kg split into three doses. CAR-T cells persisted for 6 months and remission was ongoing for 10 months. Because of this low CAR-T cell dose, CRS was reported 14 days after the first infusion, coinciding with peak levels of CAR-T-19 in peripheral blood (PB) [6]. Afterwards, two pediatric r/r ALL patients were treated with CAR-T-19. The first patient received 1.2×10^9 CAR-T-19 cells/kg for three consecutive days without lymphodepletion. Patient 2 received 1.4×10^9 CAR-T-19 cells/kg in a single dose and etoposide-cyclophosphamide was administered the week before. In both patients, expansion of CAR-T-19 was detected, and CR occurred the first month. However, whereas patient 1 had ongoing CR for 11 months, patient 2 had a CD19-negative relapse 2 months after treatment [14]. This was the first study describing CD19-negative relapses, one of the main problems after CAR-T-19 immunotherapy, which occurs in 78% of relapsed patients [27]. This year updated results on 75 children and young adults receiving CAR-T-19 (tisagenlecleucel) to treat ALL have shown overall response (OR) of 81% within 3 months, including 60% CR. CRS occurred in 77% of patients [27]. These results provided the basis for the approval of the first gene therapy product in the United States in 2017, tisagenlecleucel, commercialized by Novartis to treat B-cell precursor ALL patients up to 25 years old [28].

Recently, the MSKCC published results for CAR-T-19 with CD28 in 53 adult r/r ALL patients. At 29 months 83% CR was obtained, while median disease-free survival (DFS) and overall survival (OS) were 6.1 and 12.9 months, respectively. Severe CRS occurred in 26% of patients. Patients with low disease burden showed higher remission rates with 20.1 and 10.6 months of OS and DFS, respectively, and lower CRS than patients with higher disease burden [29].

Whereas results in ALL have been remarkable, in CLL and lymphoma cases the clinical results have been poorer. Comparison of 14 phase I clinical trials between 1991 and 2014 including 119 patients demonstrated that the OR rate was 73%, with 93% of responses in ALL patients, followed by CLL with 62% and lymphoma patients with 36%. Moreover, lymphodepletion, higher CAR-T cell dose, and no interleukin (IL)-2 administration were associated with better responses [30]. Interestingly, a more recent study of 24 CLL patients showed that CAR-T-19 is highly effective in high-risk CLL relapsed patients after ibrutinib treatment, showing OR of 71% and 83% CRS [31].

The CAR-T-19 from UPenn was used in 28 patients with r/r diffuse large B-cell lymphoma (DLBCL) or follicular lymphoma with CAR-T cell doses from 1×10^6 to 5×10^6, CRS occurred in 18% of patients while 90% CR was obtained after 1 month. The CR rate at 3 months was 43% and 71% in DLBCL and follicular lymphoma patients, respectively. At 28.6 months, sustained remissions were maintained in 86% of DLBCL and in 89% of follicular lymphoma patients [32].

On the other hand, the CAR-T-19 from the NCI with CD28 was employed in a phase I study of 7 patients with r/r DLBCL. Patients received 2×10^6 CAR-T-19 cells/kg. One patient (14%) experienced grade 4 CRS. Grade ≥3 CRS and neurotoxicity were observed in 14% and 57% of patients, respectively. OR and CR were 71% and 57%, respectively. At 12 months, 43% of patients remained in CR [33]. Based on these results, a multicenter phase 2 study was performed to treat 101 r/r patients with DLBCL, primary mediastinal B-cell lymphoma, or transformed follicular lymphoma. Patients received 2×10^6 CAR-T-19 cells/kg. Grade 3 or higher CRS and neurologic events occurred in 13% and 28% of the patients, respectively. OR was 82% and CR was 54%. At 15.4 months, 42% of the patients continued having a response, with a 40% rate of CR. OS at 18 months was 52%. Of the patients who showed disease progression, 27% of them showed CD19-negative disease [34]. Based on these results, the Food and Drug Administration approved the first CAR-T-19 cell product, called axicabtagene ciloleucel (Yesclarta, Kite Pharma), to treat DLBCL, primary mediastinal large B-cell lymphoma, and high-grade B-cell lymphoma [35].

Other CAR Constructs Employed to Treat B-Cell Malignancies Not Responding to CAR-T-19

Other CAR constructs, such as CAR-T cells against CD30 (CAR-T-30), have been used to treat to treat Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL), which do not
express CD19. Recently, the induction of CR in 9 r/r patients with HL (7 patients) and ALCL (2 patients) even in the absence of a conditioning regimen was reported without CAR-related toxicities. Patients received from 0.2x10^8 to 2x10^8 of CAR-T-30 cells/m². Seven of 9 patients received two or more infusions of CAR-T-30. Fourteen percent of HL patients entered CR lasting more than 2.5 years after the second infusion, 14% remained in CR for almost 2 years, and 43% had transient stable disease. For ALCL, one patient had CR for 9 months after the fourth infusion of CAR-T cells. Interestingly, although CD30 may be expressed by normal activated T cells, no patients developed impaired virus-specific immunity [36].

** CAR-T-BCMA for MM and Other B-Cell Malignancies

BCMA has appeared as a promising target to treat MM patients due to specific BCMA expression in plasma cells and its absence in most tissues [37]. Currently, more than 20 clinical trials are infusing CAR-T-BCMA for MM treatment. Due to the restricted BCMA expression pattern, BCMA was defined as the most suitable antigen to treat MM, and the design of novel and effective CAR-T-BCMA with CD28 [38] opened the path for a clinical trial in MM patients in 2016. This study infused CAR-T-BCMA in 12 r/r MM patients. Patients received different CAR-T-BCMA cell doses (0.33x10^6, 1x10^6, 3x10^6, and 9x10^6 CAR-T-BCMA cells/kg). The 2 lowest doses achieved limited responses. At the third dose, a partial loss of BCMA expression in MM cells was detected in one patient, and one patient (25%) obtained very good partial response (VGPR). At the highest dose, one patient (50%) achieved CR for 17 weeks before relapse, and the other patient showed VGPR for 28 weeks. Both patients developed CRS [26]. These results were extended to perform a multicenter study to treat 21 patients in a dose-escalation study. CD28 was changed by 4-1BB and the CAR-T-BCMA was now called bb2121. It was found that 71% of patients developed CRS. The lowest dose (50x10^6 cells) infused in three patients was not active. The other 18 patients receiving 150x10^6 (6 patients), 450x10^6 (9 patients), and 800x10^6 cells (3 patients) showed 94% OR, 89% VGPR, and 56% CR. Durable responses were ongoing over 1 year, and more importantly, responses continued to improve over time from VGPR to CR [39].

Additional studies with CAR-T-BCMA have been also successful. Cohen et al. [40] treated 21 r/r MM patients with CAR-T-BCMA in split-doses (10% on day 0, 30% on day 1, and 60% on day 2). Patients were assigned to three cohorts: 1-5x10^6 CAR-T cells (cohort 1: 9 patients), cyclophosphamide (CTX) 1.5 g/m² + 1-5x10^7 CAR-T cells (cohort 2: 5 patients), and CTX 1.5 g/m² + 1-5x10^8 CAR-T cells (cohort 3: 7 patients). Cohort 1 showed the highest CRS at 89% and 1 patient had ongoing CR at 21 months. Cohorts 2 and 3 showed 75% CRS. Cohort 2, with the lowest CAR-T dose, showed the lowest response (40%), which progressed at 4 and 2 months. Cohort 3, with a high CAR-T dose, at 1 month of follow-up showed 83% of any type of response. Interestingly, in 83% of the patients with ≥PR, MM cells showed decreased BCMA intensity [40]. More recently, a human CAR-T-BCMA was developed at the MSKCC, which hopefully will avoid early disappearance of CAR-T cells. Clinical results with this human CAR construct were recently published [41].

At our institution (Hospital Clinic), we have designed a highly effective CAR-T-BCMA. Moreover, we have also humanized the scFv, confirming its high efficacy, and in the next few months it will be used in a multicenter phase I study to treat r/r MM patients.

Moreover, Friedman et al. [42], who designed the CAR-T-BCMA (bb2121) [26], identified BCMA expression in primary lymphoma and CLL cells and confirmed the high efficacy of CAR-T-BCMA against models of MM, Burkitt lymphoma, and mantle cell lymphoma, suggesting that this CAR construct could be also efficient for these malignancies.

One of the problems observed in CAR-T immunotherapy for MM is the proportion of relapsed patients no longer having BCMA expression. Different options to avoid this, such as the use of dual CAR constructs targeting two different antigens, are being tested. Lee et al. [16] confirmed that 100% of primary MM cells expressed BCMA, and 78% of them also expressed TACI. Therefore, they successfully tested a third-generation dual CAR-T-APRIL (a ligand for BCMA and TACI), which eliminated MM cells expressing either BCMA or TACI and demonstrated tumor control in the absence of BCMA [43].

The impressive results in r/r MM patients targeting BCMA [39] suggest that after CAR-T-19, BCMA will be the next area where CAR-T therapy will have a high clinical impact. However, some problems still need to be addressed, such as the high CAR-T cell dose required to achieve responses, which could cause high CRS rates. New clinical protocols will aim to ameliorate severe CRS. Interestingly, for other CAR constructs such as CAR-T-20, Watanabe et al. [44] observed that the threshold of antigen density in the tumor required to induce CAR-T cell lytic activity was around 200 molecules per target cell, and for cytokine production it was 10-fold higher, suggesting a range for antigen density in the tumor cell where cytotoxicity can be performed without development of CRS. Second, the loss of BCMA expression in MM cells after CAR-T-BCMA treatment is impaired virus-specific immunity [36].

Homemade CARs: A Reality?

As previously mentioned, CAR-T-19 cell products have been commercialized by pharmaceutical companies, with prices of...
Table 2. Clinical trials ongoing at other institutions other than the National Cancer Institute, University of Pennsylvania, and Memorial Sloan Kettering Cancer Center targeting CD19, CD20, and CD22 for B-cell malignancies, and other targets in other hematological malignancies.

Disease	Type of CAR and/or dose: target	Clinical trial code / location	Phase/n patients [ref]
r/r NHL	Multiple CAR-T cell infusion: CD19, CD20, CD22, CD30	NCT03196830 / First Affiliated Hospital of Soochow University	II/10
DLBCL	Sequential CAR-T cell infusion: CD19 and CD20	NCT02737085 / Southwest Hospital of Third Medical University	I-II/40
B-cell malignancies	CD20	NCT02710149 / Biotherapy Center of Southwest Hospital	I-II/45
r/r BCL	Sequential CAR-T infusion: CD19 and CD20	NCT03207178 / Shanghai Longyao Biotechnology Inc.	I-II/20
r/r NHL	CD20	NCT03576807 / Shanghai Longyao Biotechnology Inc.	I/20
r/r hematological malignancies	Bi-specific CAR-T: CD19 and CD20 or CD22	NCT03399867 / Chinese PLA General Hospital	I-II/80
r/r NHL	CD20	NCT03277729 / Fred Hutchinson Cancer Research Center	I-II/30
r/r B-cell leukemia or lymphoma	Bi-specific CAR-T: CD19/CD20	NCT03097770 / Chinese PLA General Hospital	I/20
r/r CD19+ and CD20+ BCL, ALL, and CLL	Bi-specific CAR-T: CD19/CD20	NCT03271515 / Beijing Doing Biomedical Co.	I/20
CD20+ BCL	CD20	NCT02965157 / Beijing Biohealthcare Biotechnology Co	I-II/15
r/r CD19 or CD20+ B-cell malignancies	Bi-specific CAR-T: CD20/CD19	NCT03019055 / Medical College of Wisconsin	I/24
r/r B-cell leukemia or lymphoma	Bi-specific CAR-T: CD19/CD22	NCT03185494 / Chinese PLA General Hospital	I-II/30
r/r myeloid malignancies	CD33	NCT02958397 / Southwest Hospital	I-II/45
r/r AML	CD33	NCT03126864 / MD Anderson Cancer Center	I/30
r/r AML	Single or double CAR-T cells combining different antigens: Muc1, CD33, CD38, CD56, CD123	NCT03222674 / Shenzhen Geno-Immune Medical Institute	I-II/10
r/r AML	Single or double CAR-T cells combining different antigens: CD38, CD33, CD56, CD123, CD117, CD34, CD133, Muc1	NCT03473457 / Zhujiang Hospital	I-II
r/r myeloid malignancies	CD123	NCT02937103 / Southwest Hospital	I-II/45
r/r BPCDCN	Universal CAR-T cells: CD123	NCT03203369 / Cellectis S.A.	I/72
r/r AML	Universal CAR-T cells: CD123	NCT03190278 / Cellectis S.A.	I/156
r/r B cell malignancies	CD19 plus one of CD123, CD20, CD22, CD38, CD70, or I-Cas9	NCT03125577 / Shenzhen Geno-Immune Medical Institute	I-II/100
r/r AML	CD123	NCT03559682 / Affiliated Hospital of the Chinese Academy of Military Medical Sciences	I-II/10
AML	Donor CAR-T cells after allo-SCT: CD123-EGFRt	NCT03114670 / Affiliated Hospital of the Academy of Military Medical Sciences	I/20
r/r AML, BPCDCN	CD123-EGFRt	NCT02159495 / City of Hope Medical Center	I/60
r/r MM	CD38	NCT03469416 / University of Pennsylvania, Sorrento Therapeutics Inc.	I/72
r/r MM	Single or double CAR-T cells: BCMA/CD138/CD38/CD56	NCT03473496 / Zhujiang Hospital	I-II/50
r/r MM	Multiple CAR-T cells: BCMA/CD138/CD38/CD56	NCT03271632 / Shenzhen Geno-Immune Medical Institute	I-II/20
r/r HL and NHL	CD30	NCT01316146 / UNC Lineberger Comprehensive Cancer Center	I/10 [36]
r/r AML	CD33	NCT01864902 / Chinese PLA General Hospital	I-II/10 [68]
r/r HL, CD30+ lymphoma	Dose escalation of CAR-T cells: CD30	NCT03049449 / National Cancer Institute	I/76
r/r CD30+ HL and NHL	CD30	NCT02690545 / UNC Lineberger Comprehensive Cancer Center	I-II/34
$475,000 for tisagenlecleucel and $373,000 for Yescarta. If the positive results obtained continue this trend, hopefully CAR-T-BCMA will also be approved for use in MM patients. Unfortunately, these prices are not affordable for many public national health systems. In this sense, at our institution, we have manufactured our CAR-T-19 cell product. This process requires having a good manufacturing practice facility to perform the viral production. Afterwards, the T-cell transfection is performed in the Prodigy device (Miltenyi, Biotec), a sterile isolated system, which performs all the steps required, starting from the apheresis product to the final product of CAR-T cells. This option provides much more affordable prices that can be assumed by a public national health system. With these CAR-T-19 cells (called ARI-0001), 18 patients with r/r B-cell malignancies have already been treated and a phase II clinical trial is about to start.

CAR-T Cells for the Treatment of Solid Tumors

Contrary to hematological malignancies, severe side effects, lack of persistence and effectiveness of CAR-T cells, immunosuppression in the tumor microenvironment, lack of homing, and tumor-off/target-on effects occurring in solid tumors decrease the success of CAR-T therapy for these malignancies [45]. Some strategies employed to improve these problems include the following: 1) Fourth-generation CAR-T cells, by incorporating additional features, such as costimulatory ligands next to the CAR receptor and more than one costimulatory domain, improve the lack of persistence and efficacy of CAR-T cells. In this sense, combining CD28 with OX40 blocks IL-10 production, increasing persistence and conferring higher efficacy to the CAR-T cells [45,46,47]. Combination of CAR-T cells with oncolytic viruses has also been suggested to improve CAR-T efficacy [48]. 2) To overcome the immunosuppressive microenvironment, the preselection of virus-specific CTLs before CAR-T cell transduction achieves a double CAR-T stimulation, either by the TCR or by the CAR, appearing as an option to avoid loss of expression of the tumor antigen [49]. Another option being tested is the combination of CAR-T cells with immunon checkpoint inhibitors, which seems to improve the potency of CAR-T cells [47]. In addition, fourth-generation CAR-T cells can modulate

Disease	Type of CAR and/or dose: target	Clinical trial code / location	Phase/n patients
r/r HL and NHL	CD30	NCT02917083 / Baylor College of Medicine	I / 18
AML, MDS, r/r MM	Dose escalation with 4 cohorts, from 1x10^6 to 3x10^8 CAR-T cells; CS1	Dana-Farber Cancer Institute, NHLBI	I / 12
AML/MM	Lewis Y antigen	NCT01716364 / Peter MacCallum Cancer Centre	I / 6

Disease	Target / CAR-T cell dose	N patients / clinical outcome	Clinical trial code / location [ref]
r/r HL	CD30 / On day 0; 3.2x10^6 CAR-T/kg; from day 3 to 5, 5-fold increments	18.39% PR, 33% SD	NCT0259556 / Chinese PLA General Hospital [69]
r/r AML	CD33 / 1.12x10^6 CAR-T cells; dose escalation over 4 days (1x10^6 day 1, 1.2x10^6 day 2, 4x10^6 day 3, and 5x10^6 day 4)	1 / Grade IV toxicity, response at 2 weeks with progression at 9 weeks	NCT01864902 / Chinese PLA General Hospital [70]
r/r CD20+ BCL	CD20 / Escalating doses split into 3–5 doses on consecutive days; total dose from 0.41x10^6 to 1.46x10^8 cells/kg	11 / OR 81.8%, 6 CR and 3 PR; no severe toxicity observed; PFS >6 months, 1 patient CR >27 months	NCT01735604 / Chinese PLA General Hospital [71]
r/r AML	Lewis Y / 1.1x10^6 T cells (ranging from 5x10^5 to 1.3x10^6)	5 / III-IV grade toxicity not observed; 1 patient with cytogenetic remission, 1 with reduction in peripheral blood, 1 protracted remission	NCT01716364 / University of Melbourne, Australia, Heidelberg-Australia [72]
r/r B-cell and mantle lymphoma	CD20 / 3 infusions of escalating doses of 10^8, 10^7, and 3.3x10^6 cells/m²	4 / 2 patients with PFS of 12 and 24 months; 1 patient in OR and relapsed after 12 months	NCT00621452 / Fred Hutchinson Cancer Research Center, Seattle, WA, USA [73]
r/r HL and ALC	CD30 / 3 doses from 0.2x10^6 to 2x10^6 CAR-T cells/m²	9 / No toxicities; 7 patients with HL, 1 CR >2.5 years, 1 CR >2 years, 3 transient SD; 2 patients with ALC, 1 CR >9 months	NCT01316146 / UNC Lineberger Comprehensive Cancer Center [36]

1/ [47]. In addition, fourth-generation CAR-T cells can modulate interactions with immunosuppressive factors. This approach involves the use of CAR-T cells with additional ligands that can modulate T-cell function and enhance their antitumor activity. These ligands include OX40 and 4-1BB, which are costimulatory receptors expressed on T-cells. The interaction of CAR-T cells with these receptors can further activate the T-cells and improve their efficacy against tumor cells.

Table 2. Continued

Disease	Type of CAR and/or dose: target	Clinical trial code / location	Phase/n patients
r/r HL and NHL	CD30	NCT02917083 / Baylor College of Medicine	I / 18
AML, MDS, r/r MM	Dose escalation with 4 cohorts, from 1x10^6 to 3x10^8 CAR-T cells; CS1	Dana-Farber Cancer Institute, NHLBI	I / 12
AML/MM	Lewis Y antigen	NCT01716364 / Peter MacCallum Cancer Centre	I / 6
the tumor environment through the secretion of IL-12 and can also increase tumor cell-CAR-T cell contact by the release of adhesion molecules or enzymes that degrade the extracellular matrix [50,51]. CRISPR/CAS9 technology appears as a further option to generate CAR-T cells resistant to exhaustion and inhibition [52]. Moreover, the high tumor-off/target-on effect occurring in solid tumors can be ameliorated by variations in the administration route for CAR-T cells, cell dose, reduction of scFv affinity, use of “switchable CARs”, and the discovery of specific tumor-associated antigens [45,53]. Additional proposals for CAR construct design include the insertion of caspase 9 into the CAR construct, which after administration of a small molecule (API903) to the patient will induce apoptosis of 99% of CAR-T cells [54]. Inducible caspase 9 is already being used in clinics, demonstrated to be safe (Table 4). Moreover, the design of transient CAR-T cells by introducing CAR-T mRNA by electroporation has shown antitumor activity in CAR-T-19 for CLL patients [55] and CAR-T-mesothelin for solid tumors [56], and it is being employed in clinical trials (Table 4). Due to all these limitations, positive clinical results with CAR-T cells in solid tumors are scarce, most of them in phase I trials. We will now mention some of the most interesting results obtained with CAR-T cells in solid tumors.

Specific disialoganglioside 2 (GD2) expression in tumor cells and slight expression in normal cells [57] makes GD2 a good candidate for CAR-T therapy, specifically for neuroblastoma. Eight neuroblastoma patients receiving Epstein-Barr virus (EBV)-virus-specific CTLs with CAR-T-GD2 showed evidence of tumor necrosis and one patient remained in CR, suggesting that virus-specific CTLs expressing CAR-T-GD2 show higher persistence in contrast to virus-nonspecific CAR-T cells [49].

Human epidermal growth factor receptor 2 (HER2) is not detected in normal brain tissues, being overexpressed in 25%-30% of breast and ovarian cancers, 60% of osteosarcomas, 80% of glioblastoma multiforme (GBM) cases, and 40% of medulloblastomas [51]. Although HER2 has been successfully targeted with anti-HER2-antibodies (trastuzumab and pertuzumab) in HER2/neu+ breast cancer, the first breast cancer patient treated with CAR-T-HER2 died because of severe toxicity related to tumor-off/target-on effect [58]. In contrast, gliomas, glioblastomas, GBM, and medulloblastomas showing lower levels of HER2 than breast cancer are not efficiently treated with trastuzumab. Therefore, 17 GBM patients received from 10^6 to 10^8 cells/m2 of intravenous polyclonal EBV-cytomegalovirus and adenovirus-specific T cells transduced with CAR-T-HER2 (CAR-T-FRP5). Median OS was 11 months, no serious side effects were reported, and CAR-T cells were detected in PB 12 months later [59].

IL-13 receptor alpha-2 (IL-13Rα_2) is overexpressed in 75% of glioblastoma patients [60,61,62]. The first study in 3 glioblastoma patients receiving up to 12 local intracranial infusions of virus-specific CTL clones transduced with CAR-IL-13Rα_2 (E13Y-zetakine CAR) showed minimal side effects and transient responses in 2 patients [63]. Afterwards, the CAR construct was modified to incorporate 4-1BB and a mutated IgG4-Fc linker to reduce tumor-off/target-on effect. At a dose of 2×10^6 these CAR-T cells were administrated by intracranial infusion to one glioblastoma patient, followed by five additional infusions of 10^6 CAR-T cells. Severe toxicities did not develop.

Table 4. Clinical trials incorporating inducible caspase 9 in CAR-T cells or performing mRNA electroporation to induce the CAR.

Location / NCT code	Antigen (method employed for temporary CAR-T expression)	Malignancy	Phase
MSKCC / NCT02414269	Mesothelin (iCasp9)	Malignant pleural disease, mesothelioma, metastases, LC, BC	I
BCM / NCT01822652	GD2 (iCasp9)	Neuroblastoma	I
MSKCC / NCT02792114	Mesothelin (iCasp9)	BC, metastatic HER2-negative BC	I
Shenzhen Geno-Immune Medical Institute / NCT02992210	GD2 (iCasp9)	Solid tumor	I/II
NCI / NCT02107963	GD2 (iCasp9)	Sarcoma, osteosarcoma, NB, melanoma	I
BCM / NCT01822652	GD2 (iCasp9)	NB	I
Bambino Gesù Hospital / NCT03373097	GD2 (iCasp9)	NB	I/II
BCM / NCT01953900	GD2/VZV vaccine (iCasp9)	Sarcomas	I
Abramson Cancer Center of UPenn / NCT01897415	Mesothelin (mRNA)	PDA	I
UPenn / NCT01837602	cMet (mRNA)	BC, triple negative BC	I
UPenn / NCT03060356	cMet (mRNA)	Melanoma, BC	I

MSKCC: Memorial Sloan Kettering Cancer Center, BCM: Baylor College of Medicine, NCI: National Cancer Institute, UPenn: University of Pennsylvania, PDA: pancreatic ductal adenocarcinoma, BC: breast cancer, VZV: Varicella zoster virus.
and regression of intracranial and spinal tumors during 7.5 months was observed [64].

Most GBM patients overexpress the mutated epidermal growth factor receptor (EGFR) variant III (EGFRvIII), which is associated with tumor progression and poor prognosis [65]. Comparison of humanized second- and third-generation CAR-T cells with 4-1BB and/or CD28/4-1BB against EGFRvIII in vitro and in vivo demonstrated higher efficacy for the third-generation CAR-T cells. Moreover, a lower-affinity scFv was designed to minimize the tumor-off/target-on effects, and finally this CAR-T cell combined with temozolomide was the optimal strategy in a xenograft glioblastoma model [66]. Based on these results, UPenn conducted the first study with 10 newly diagnosed patients with recurrent GBM with residual disease infusing intravenous CAR-T-EGFRvIII cells. No evidence of off-tumor toxicity or CRS was observed. One patient had residual stable disease for over 18 months. All patients demonstrated transient expansion and trafficking of CAR-T cells to regions of active GBM. However, expression of inhibitory molecules and regulatory T-cell infiltration after CAR-T-EGFRvIII infusion was detected in the tumor environment [67]. Many other ongoing clinical studies targeting EGFRvIII, GD2, and HER2 are summarized in Table 5.

Conclusion

In summary, CAR-T immunotherapy has achieved remarkable results in the treatment of hematological malignancies, leading to the commercialization of CAR-T cells as pharmaceutical products. Despite positive results, problems such as loss of expression of the target antigen and CRS could be improved. In solid tumors, additional complications due to intratumoral cell heterogeneity cause low responses and high toxicities. Novel

Location / NCT code	Antigen	Malignancy	Phase
Zhujiang Hospital / NCT02765243	GD2	NB	II
NCI / NCT02107963	GD2	NB	I
BCM / NCT03294954	GD2	NB	I
Cancer Research UK / NCT02761915	GD2	NB	R
Bambino Gesù Hospital / NCT03373097	GD2	NB	R
Seattle Children's Hospital / NCT02311621	CD171/EGFRt	NB, GNB	R
Chinese PLA General Hospital, Beijing / NCT01935843	HER2	Advanced HER2-positive ST	I/II
The Methodist Hospital; Center for Cell and Gene Therapy, BCM; Texas Children's Hospital / NCT0109095	HER2	GB	I
Seattle Children's Hospital / NCT03500991	HER2	Pediatric CNST	I
Fuda Cancer Hospital, Guangzhou / NCT02547961	HER2	BC	I/II
Southwest Hospital, China / NCT02713984	HER2	BC, OC, LC, GC, colorectal, glioma, PC	I/II
Hospital of Harbin Medical University / NCT03267173	HER2	PC	I
Xuanwu Hospital, Beijing / NCT03423992	HER2	Glioma	I
City of Hope Medical Center / NCT03389230	HER2/CD19t	GB, glioma	I
BCM / NCT00902044	HER2	Sarcomas	I
Duke University Medical Center / NCT02664363	EGFRvIII	GB	I
NCI / NCT01454596	EGFRvIII	Glioma, GB, BC, gliosarcoma	I/II
Beijing Sanbo Brain Hospital / NCT02844062	EGFRvIII	GBM	I
NCI, Duke Cancer Institute / NCT03283631	EGFRvIII	GBM	I
Shenzhen Geno-Immune Medical Institute / NCT03170141	EGFRvIII	GBM	I/II
Xuanwu Hospital, Beijing / NCT03423992	EGFRvIII	Glioma	I
NCI / NCT01454596	EGFRvIII	Glioma, GB, BC, gliosarcoma	I/II
Duke University Medical Center / NCT02664363	EGFRvIII	GB	I
UPenn, UCA / NCT02209376	EGFRvIII	GB	I

Table 5. Clinical trials targeting disialoganglioside 2, human epidermal growth factor receptor 2, and epidermal growth factor receptor variant III.

BCM: Baylor College of Medicine; NCI: National Cancer Institute; UPenn: University of Pennsylvania; UCA: University of California; R: recruiting; GB: glioblastoma, GBM: glioblastoma multiforme, PC: pancreatic cancer, LC: lung cancer, BC: breast cancer, OC: ovarian cancer, GC: gastric cancer, BC: brain cancer, NB: neuroblastoma, GNB: ganglioneuroblastoma, ST: solid tumors, CNST: central nervous system tumor, PLA: People’s Liberation Army Hospital, GD2: disialoganglioside 2, HER2: human epidermal growth factor receptor 2, EGFRvIII: epidermal growth factor receptor variant III.
CAR designs, modification of clinical protocols, discovery of novel tumor-specific antigens, and novel molecular strategies will improve clinical results for both hematological and solid tumors.

Ethics

Ethics Committee Approval: Hospital Clinic of Barcelona, approval number: HCB/2017/0438.

Authorship Contributions

Concept: L.P.A., B.M.; Design: L.P.A., B.M.; Literature Search: L.P.A., B.M.; Writing: L.P.A., B.M., B.M.A., M.J., A.U.I.

Conflict of Interest: The authors of this paper have no conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

Financial Disclosure: Celgene and Institute of Health Carlos III (projects PI14/00798 and PI17/01043) provided funding for all studies.

References

1. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov 2015;3:388–398.
2. Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst 2016;108:diw439.
3. Chang ZL, Chen YY. CARs: Synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med 2017;23:430–450.
4. Hartmann J, Schüller-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017;9:1183–1197.
5. Savolbo D, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kambre RT, Boillard CM, Goe AP, Mei Z, Liu H, Grilely B, Rooney CM, Heslop HE, Brenner MK, Dotti G. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 2011;121:1822–1826.
6. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365:725–733.
7. Zhong XS, Matsuhashita M, Plotkin J, Riviere I, Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3K/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther 2010;18:413–420.
8. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varello-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 2009;106:3360–3365.
9. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005;12:933–941.
10. Long AH, Haso WM, Shehn IF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwar RA, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015;21:581–590.
11. Chmielewski M, Akhon H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 2015;15:1145–1154.
12. Yeku O0, Brentjens RJ. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans 2016;44:412–418.
13. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 2014;20:119–122.
14. Grupp SA, Kalos M, Barrett D, Aplanc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368:1509–1518.
15. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinheier P, Juric J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013;5:177–184.
16. Lee DW, Gardner R, Porter DL, Louis CJ, Ahmed N, Jensen M, Grupp SA, Mackall CL. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124:188–195.
17. Maude SL, Grupp SA. Pulsipher MA, Rives R, Myers GD, Verneris MR, Buechner J, Laetsch TW, Bittencourt H, Boyer M, De Moerloose B, Qayed M, Davies S, Martin PL, Bader P, Schliss K, Wood P, Taran T, Zhang Y, Leung M, June CH, Levine J. Analysis of safety data from 2 multicenter trials of CTL019 in pediatric and young adult patients with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL). European Hematology Association 2017;P517.
18. Cohen AD, Garfall AL, Stadtmauer EA, Lacey SF, Lancaster E, Vogl DT, Dengel K, Ambrose DE, Chen F, Plessa G, Kulikovskaya I, Gonzalez VE, Gupta M, Young RM, Carey T, Fertthio R, Weiss BM, Richardson C, Isaaas RE, Melenhorst JJ, Levine BL, June CH, Milone MC. B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) for multiple myeloma (MM): initial safety and efficacy from a phase I study. Blood 2016;128:1147.
19. Tanyi JL, Haas AR, Beatyi GL, Shwastich CJ, O’Hara MH, Morgan MA, Porter DL, Melenhorst JJ, Plessa G, Lacey SF, June CH. Anti-mesothelin chimeric antigen receptor T cells in patients with epithelial ovarian cancer. J Clin Oncol 2016;34:5511a (abstract).
20. Brocker T, Karjalainen K. Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med 1995;181:1653–1659.
21. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, Varello-Rohena A, Haines KM, Heitjan DF, Albelda SM, Carroll RG, Riley JL, Pastan I, June CH. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A 2009;106:3360–3365.
22. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005;12:933–941.
23. Long AH, Haso WM, Shehn IF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwar RA, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015;21:581–590.
chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2014;2:112-120.

57. Doronin II, Vishnyakova PA, Khodolenko IV, Ponomarev ED, Ryazantsev DY, Molotkovskaya IM, Khodolenko RV. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer 2014;14:295.

58. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010;18:843-851.

59. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, Ghazi A, Gerken C, Yi Z, Ashoori A, Wu MF, Liu H, Rooney C, Dotti G, Gee A, Su J, Kew Y, Baskin D, Zhang YJ, New P, Grilley B, Stojakovic M, Hicks J, Powell SZ, Brenner MK, Heslop HE, Grossman R, Wels WS, Gottschalk S. HER2-Specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 2017;3:1094-1101.

60. Jain M, Zhang L, He M, Patterson EE, Nilubol N, Fojo AT, Joehnke B, Puri R, Kebebew E. Interleukin-13 receptor alpha2 is a novel therapeutic target for human adrenocortical carcinoma. Cancer 2012;118:5698-5708.

61. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13Rs receptor alpha2 is involved in induction of TGF-β1 production and fibrosis. Nat Med 2006;12:99-106.

62. Bagley SJ, Desai AS, Linette GP, June CH, O'Rourke DM. CAR T cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol 2018.

63. Brown CE, Badie B, Ostberg ME, Weng L, Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, Yi Z, Ashoori A, Wu MF, Liu H, Rooney C, Dotti G, Gee A, Su J, Kew Y, Baskin D, Zhang YJ, New P, Grilley B, Stojakovic M, Hicks J, Powell SZ, Brenner MK, Heslop HE, Grossman R, Wels WS, Gottschalk S. HER2-Specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 2017;3:1094-1101.

64. Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, Chen K, Shin M, Zhang WY, Chen MX, Zhang Y, Feng KC, Liu Y, Li SX, Yang QM, Han WD. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res 2017;23:1156-1166.

65. Wang QS, Wang Y, Lv HY, Han OW, Fan H, Guo B, Wang LL, Han WD. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 2015;23:184-191.

66. Johnsen LA, Scholler J, Ohkuri T, Kosaka A, Patel PR, McGettigan SE, Nace AK, Dementev T, Thekkat P, Loew A, Boesteanu AC, Cogdill AP, Chen T, Friaotta JK, Koss CC, Posey AD Jr, Engels B, Singh R, Ezell T, Idamakanti N, Ramones MH, Li N, Zhou L, Pesa G, Seykora JI, Okada H, June CH, Brodgon JL, Maus MV. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2017;2:725ra22.

67. O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrisey JJD, Martinez-Lage M, Brem S, Maloney E, Shen A, Isaacs R, Mohan S, Pesa G, Lacey SF, Navenot J, Zheng Z, Levine BL, Okada H, June CH, Brodgon JL, Maus MV. A single dose of peripherally infused EGFRVIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9:9084.

68. Wang QS, Wang Y, Lv HY, Han OW, Fan H, Guo B, Wang LL, Han WD. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 2015;23:184-191.

69. Wang ZM, Wu ZQ, Wang Y, Guo YL, Dai HR, Wang XH, Li X, Zhang YJ, Zhang WY, Chen MX, Zhang Y, Feng KC, Liu Y, Li SX, Yang QM, Han WD. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res 2017;23:1156-1166.

70. Wang QS, Wang Y, Lv HY, Han OW, Fan H, Guo B, Wang LL, Han WD. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 2015;23:184-191.

71. Zhang WY, Wang Y, Guo YL, Dai HR, Yang QM, Zhang YJ, Zhang Y, Chen MX, Wang Y, Feng KC, Li SX, Liu Y, Shi FX, Luo C, Han WD. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase Ia trial report. Signal Transduct Target Ther 2016;1:16002.

72. Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, Chen K, Shin M, Wall DM, Höhengaö P, Gambell P, Westwood DA, Haurot J, Westwood JA, Scott AM, Kravets I, Dickinson M, Trapani JA, Smyth MJ, Darby PK, Kershaw HM, Prince HM. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 2013;21:2122-2129.

73. Till BG, Jensen MC, Wang J, Qian X, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Richmond AK, Jensen MC, Barish ME, Chen M, Portnow J, Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. Interleukin-13 receptor alpha2 is a novel therapeutic target for human adrenocortical carcinoma. Cancer 2012;118:5698-5708.