Tongoloa arguta (Apiaceae),
a new species from southwest China

Ling-Jian Gui¹, Jun Wen¹, Yan-Ping Xiao¹,
Ting Ren¹, Hong-Yi Zheng¹, Xing-Jin He¹

¹ Key laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences,
Sichuan University, 610065, Chengdu, Sichuan, China

Corresponding author: Xing-Jin He (xjhe@scu.edu.cn)

Abstract
A new species Tongoloa arguta (Apiaceae) is described and illustrated in this article. The new species grows
in alpine bushes and meadows in south-western China. It resembles T. silaifolia, but differs from the latter
by the length of the stem, ultimate segments of leaf and rays of the umbel. Phylogenetic analysis, based on
nuclear ribosomal DNA internal transcribed spacer (ITS) sequences, is provided, as well as comparative
morphology between related species.

Keywords
Apiaceae, China, new species, phylogeny, Tongoloa

Introduction
Tongoloa H.Wolff (Apiaceae) is a genus comprising about 15–20 species distributed
mainly in southwest China, with a few species extending westwards to central Ne-
pal (Watson 1999; Pan and Watson 2005; Zhou et al. 2009). Tongoloa species are
characterised by having conic taproots, inflated and membranous leaf sheaths, cor-
date fruit base and filiform fruit ribs (Wolff 1925; Mukherjee and Constance 1991;
Pimenov and Kljuykov 2000; Pan and Watson 2005). Some species have been de-
scribed in Pimpinella L. due to the morphological similarity (Boissieu 1902, 1906).
The genus Tongoloa was formally established by Wolff (1925) and accepted as an inde-
ependent genus (Pimenov and Kljuykov 1995; Pimenov 2017). Molecular phylogenetic analyses, based on limited materials of nuclear ribosomal DNA internal transcribed spacer (ITS) and chloroplast markers, indicated that *Tongoloa* is part of the East Asia clade of Apioideae (Apiaceae) (Zhou et al. 2009; Downie et al. 2010).

So far, 15 species of *Tongoloa* have been identified from different regions of China (Pimenov 2017), most of which being known from the Hengduan Mountains. While studying specimens in herbariums (CDBI, PE), we noticed several interesting specimens of *Tongoloa* collected from Sichuan and Yunnan, which have short stems and fewer rays of the umbel (3–8). Through field investigation and anatomical study, we confirmed that this species does not match any previously-published description of *Tongoloa* found from southwest China to central Himalaya. Further molecular analysis revealed significant differences between this species and its relatives. The results allow us to infer that these newly-collected specimens from Sichuan and Yunnan belong to a new species.

Materials and methods

We collected an unknown *Tongoloa* species from several populations in Yunnan and Sichuan Provinces. In addition to the samples collected in the field, the type specimens of *Tongoloa* and high-resolution type specimen photos were examined, including the specimens deposited in K, P, E, B, A, GB, LD, MW, NY, GH, W, US, PE, KUN, CDBI, WUK and HNWP. Considering the similarity between the new species and *T. silaifolia*, as well as other related species, we compared their morphological characteristics. The fresh fruits were preserved with formaldehyde-acetic acid-alcohol (FAA) for anatomical study. The mericarp transverse sections were examined using a stereomicroscope (Nikon SMZ25, Japan) after safranin O-fast green staining.

A plant genomic DNA kit (CWBIO, China) was used to extract total DNA from silica-dried leaves. Referring to the previous studies (White et al. 1990; Zhou et al. 2009), we used nuclear ribosomal DNA internal transcribed spacer (ITS) sequences for phylogenetic inference. Amplification was undertaken using a volume of 30 µl with 15 µl 2 × Taq MasterMix (CWBIO, China), 10 µl ddH$_2$O, 1.5 µl forward primer, 1.5 µl reverse primer and 2 µl total DNA. The PCR reaction was performed in Geneamp PCR System 9700 (USA) with initial denaturation at 95 °C for 2 min, 35 cycles of 94 °C for 60 s, 52.5 °C for 45 s and 72 °C for 60 s and a final extension of 72 °C for 7 min. PCR products were sent to BGI (China) for sequencing. The GenBank accession numbers and sample information of the ITS sequences used in this study are shown in Table 1.

To determine the systematic position of the new species, 37 ITS sequences with accession numbers were obtained from GenBank, including 9 species of *Tongoloa* (Table 1). Taxa of *Chamaesium* clade were selected as the outgroup (Downie et al. 2010). Maximum Likelihood (ML) analyses with GTR + G + I model and 1000 bootstrap (BS) replicates was performed using MEGA7 (Kumar et al. 2016). Bayesian Inference (BI) analysis was conducted with MrBayes version 3.2 (Ronquist et al. 2012) and the Markov Chain Monte Carlo (MCMC) search was performed for 1×10^8 generations.
Table 1. Taxa and voucher information of the used ITS sequences.

Taxon	Locality	Voucher information	GenBank number
Bupleurum chinense	China, Anhui, Dabieshan	CB Wang 09017 (SZ)	GU570615
Bupleurum gibraltaricum	Spain, Sevilla	S.S. Neves 35 (E)	AF479851.1
Bupleurum tenuissimum	Portugal, Beira Litoral	S.S. Neves 22 (E)	AF481932.1
Chaenelmis paradoxum	China, Sichuan, Daosheng-Litang	ZJ0560 (KUN)	EU236161.1
Chaenelmis thalictroides	China, Sichuan, Zhangla-Caowan	ZJ0607 (KUN)	EU236162.1
Chaenelmis wolfianum	China, Yunnan, Shudu Lake	ZJ0525 (KUN)	EU236163.1
Changium myrioides	China, Jiangxi, Jiujiang, Pengze	PZ2 (NAS)	HJ185254.1
Chaunminshen violaceum	China, Sichuan, Cangui, Xinlong nursery	J105 (KUN)	FJ385040.1
Cyclorhiza peucedanifolia	China, Yunnan, YuLong, Daju, Xiahutiao	J034 (KUN)	FJ385042.1
Cyclorhiza wulstonii	China, Sichuan, Derong	ZJ0536 (KUN)	EU236165.1
Hansenia forbesii	China, Qinghai, Maqin	H43 (WNU)	MF78544.1
Hansenia weberbaueriana	China, Yunnan, KIB nursery	ZJ0697 (KUN)	EU236180.1
Haplophraea phaea	China, Yunnan, Shudu Lake	ZJ0521 (KUN)	EU236167.1
Heptaptera anisoptera	Iran, Lorestan	Pimenov et al. 438 (MW)	AY941273.1, AY941301.1
Hymenadamium nanum	Kirghistan, Sarydzhbas basin	Kochevnikova s.s. (LE)	GQ379335.1
Hymenolaena candollei	India, Jammu and Kashmir	Pimenov and Klyuykov 59 (MW)	FJ469958.1, FJ483497.1
Hymenolaena badachshana	Tadiskistan, Badakhshan, Andarob	Sultanov 1121 (LE)	GQ379332.1
Hymenolaena pimpineliformis	Kirghizia, Kyrgyz Ataoo	Pimenov 398 (MW)	FJ469959.1, FJ483498.1
Komarovia anisosperma	Uzbekistan, Zeravschistan	178 (MW)	AF077897.1
Physoperennopsis delavayi	China, Yunnan, YuLong Snow Mt.	J033 (KUN)	FJ385056.1
Pleuropermum anabahile	China, Yunnan, Deqin, Baimaxueshan	GLJ19100605 (SZ)	MT124614
Pleuropermum francetianum	China, Sichuan	YY (WNU)	KY848849.1
Pleuropermum unandense	China, Liaoning	LQX031 (NAS)	FJ778839.1
Perrycyclus angelicus	China, Xizang	G19082501(SZ)	MN689078
Perrycyclus rotundatus	China	G18092501-1 (SZ)	MK078059.1
Sinolimprichtia alpina	China, Yunnan, Deqin, Baimaxueshan	GLJ19100702 (SZ)	MT124613
S. alpina	China, Xizang	GLJ19100702 (SZ)	MT124613
S. alpina Sc.	China, Sichuan, Yajiang, Jiaziwanshan	LH2018081402 (SZ)	MT124609
Tongoloa arguta YN1	China, Yunnan, Shangri-la, Daxueshan	A11 (SZ)	MT124619
T. arguta YN2	China, Yunnan, Deqin, Baimaxueshan	GLJ18082102 (SZ)	MT124599
T. arguta SC1	China, Sichuan, Yajiang, Kazilashan	GLJ18092002 (SZ)	MT124615
T. arguta SC2	China, Sichuan, Yajiang, Jiaziwanshan	GLJ19092802 (SZ)	MT124612
Tongoloa dunnii	China, Hubei, Shennongjia	GLJ18091102 (SZ)	MT124601
Tongoloa elata	China, Sichuan, Songpan, Huangshengguan	GLJ19080404 (SZ)	MT124607
Tongoloa elata	China, Sichuan, Songpan, Huangshengguan	GLJ19080404 (SZ)	MT124607
Tongoloa loloensis	China, Yunnan, Eryuan, Baicaoluou	GLJ18103002_1 (SZ)	MN630615
Tongoloa loloensis	China, Fujian, Taining, Huangranfeng	GLJ18090802_2 (SZ)	MN630614
Tongoloa silatifolia	China, Chongqing, Chengkou	JQP19081607_2 (SZ)	MT124617
Tongoloa sp.	China, Qinghai, Yushu, Jiangxigou	GLJ19092201 (SZ)	MT124610
Tongoloa taeniophylla	China, Sichuan, Kangding, Paomashan	GLJ18082902 (SZ)	MT124598
Tongoloa tenuifolia	China, Yunnan, YuLong Snow Mt.	J075 (KUN)	FJ385066.1
Trachydium roylei	Pakistan, Hazara	B. Dickore, 13244	FJ469972.1, FJ483510.1
Trachydium simplicifolium	China, Yunnan, LiJiang, Yulongxueshan	GLJ19111401 (SZ)	MT124618
Trachydium souliei YN1	China, Yunnan, Deqin, Baimaxueshan	GLJ18082103 (SZ)	MT124603
T. souliei YN2	China, Yunnan, NW part, Degen Co.	Pimenov et al. 472 (MW)	FJ469973.1, FJ483511.1

Note: Province's names were indicated near the names of the species if two or several different samples were used for the molecular analysis. YN = Yunnan, SC = Sichuan, XZ = Xizang (Tibet).
Results and discussion

Phylogenetic analysis

The total length of ITS sequence alignment with gaps was 467 bp (without 5.8S rDNA genes). *Tongoloa arguta* yielded high sequence divergence values with related species, such as *T. silaifolia* (3.2%–4.0%), *T. elata* (3.7%–4.6%) and *T. taeniophylla* (5.0%–5.5%). Analysis of the data using ML and BI methods obtained similar trees with high ML BS and BI posterior probability (PP). Phylogeny reconstruction showed that *T. arguta* positioned in the *Tongoloa* clade and different populations of this species formed a strongly-supported monophyletic group (ML BS ≥ 90% and BI PP ≥ 0.90) (Fig. 1).

These results supported *T. arguta* as an undescribed and distinct species of *Tongoloa*.

Taxonomy treatment

Tongoloa arguta L.J.Gui & X.J.He, sp. nov.

urn:lsid:ipni.org:names:77212299-1

Figs 2, 3, Table 2

Type. China. Sichuan: Kangding, Zheduoshan Pass, 4300 m alt., 30°4’N, 101°48’E, 26 Sep 2019, Lingjian Gui GLJ19092601 (holotype: SZ).

Diagnosis. *Tongoloa arguta* sp. nov. is morphologically similar to *T. silaifolia*. However, the new species can be distinguished from the latter by its short stems (10–50 cm), while *T. silaifolia* has longer ones (28–60 cm); The ultimate segments of the lower leaf of *T. arguta* are acute and short (1–4 mm), while those of *T. silaifolia* are linear and longer (5–18 mm). The umbels of *T. arguta* have 3–8 rays, which are significantly less than those of *T. silaifolia* (8–22).

Description. Plants 10–50 cm. Root usually long-conic. Stem thinly ribbed, glabrous, purplish to green, branched. Leaf sheaths inflated, membranous; blade triangular in outline, 3–5 × 2–3.5 cm, 2–3-ternate/pinnate; ultimate segments lanceolate, 1–4 × 1–2 mm, apex acute. Umbels terminal or lateral; bracts often absent or sometimes 1, leaf-like, ca. 2–4 × 1 cm, bracteoles absent; rays 3–8; umbellules 13–25-flowered. Calyx teeth minute; petals obovate, white to purple, apex obtuse; stylodium depressed, dark purple; styles short, reflexed. Fruit broadly ovoid, ca. 2 × 1.7 mm, base cordate; ribs 5, filiform; vittae 3 in each furrow, ca. 4 on commissure. Ventral surface of endosperm slightly concave to plane.

Etymology. The species epithet “arguta” was given to describe the acute tips of the ultimate segments of leaves.

Phenology. The species was observed flowering from August to September and fruiting from September to October.
Figure 1. Phylogenetic tree of *Tongoloa* and related groups inferred from ITS based on ML and BI methods. ML BS / BI PP values were shown above the branches. Asterisks (*) denoted strong support (ML BS ≥ 90% and BI PP ≥ 0.90).

Distribution and habitat. *Tongoloa arguta* is distributed from Sichuan (Kangding, Yajing) to Yunnan (Deqin, Shangri-la) in south-western China. It grows in alpine bushes and meadows from 4000 m up to 4500 m alt.

Additional specimens examined. China. Sichuan: Kangding, Xinduqiao, Zheduoshan, 4000 m alt., 3 Sep 1982, *Taichang Wei* 29664 (CDBI0095011);
Kangding, north slope of Zheduoshan, 4000 m alt., 22 Sep 1984, Yongjiang Li 454 (CDBI0172327); Yajiang County, Jianziwanshan, 4400 m alt., 28 Sep 2019, Lingjian Gui & Chang Peng GLJ19092802 (SZ); Yajiang County, Kazilashan, 4400 m alt., 20 Sep 2018, Lingjian Gui GLJ18092002 (SZ). Yunnan: Deqin County, Baimaxueshan pass, 4350 m alt., 21 Aug 2018, Lingjian Gui GLJ18092002 (SZ); Shangri-la, Daxueshan pass, 4340 m alt., Yanping Xiao A11 (SZ); Zhongdian, Deqen, Beima Shan, on the south side of road, 4675 m alt., 25 Sep 1994, ACE 1287 (PE00755697).

Figure 2. *Tongoloa arguta* sp. nov. **A** species habitat (Mt. Jianziwanshan, Sichuan, China) **B** plant in the bush surrounded by snow **C** plant **D–F** roots **G, H** basal leaf, ventral and dorsal view **I** membranous sheath of basal leaves **J** middle leaf **K** upper leaf with membranous petiole **L** umbel and bract **M–O** flowers; **P–R** fruits **S** mericarp transverse section.
Conservation status. *Tongoloa arguta* is common in some alpine bushes and meadows at an altitude of about 4300 m in Yunnan and Sichuan, where human activities and especially yak grazing pose a potential threat to its survival. We categorise *T. arguta* as Near Threatened (NT), according to IUCN (2019).
Acknowledgements

The authors thank Alexander P. Sukhorukov for his assistance in revising this paper. Thanks to Bing-yan Chen for her drawing and Wei Gou for his assistance in collecting literature. This research was supported by the National Natural Science Foundation of China (Grant No. 31872647), the Chinese Ministry of Science and Technology through the “National Science and Technology Infrastructure Platform” project (Grant No. 2005DKA21403-JK), Sichuan Science and Technology Program (Grant No. 2018TJPT0027) and the fourth national survey of traditional Chinese medicine resources (Grant No. 2019PC002).

References

Boissieu HD (1902) Note sur quelques Ombellifères de Chine d’après les collections du Muséum d’Histoire naturelle de Paris. Bulletin de l’Herbier Boissier 2(2): 801–810.
Boissieu HD (1906) Note sur quelques Ombellifères de la Chine, d’après les collections du Muséum d’Histoire naturelle de Paris. Bulletin de la Société Botanique de France 53(6): 418–437. https://doi.org/10.1080/00378941.1906.10831189
Downie SR, Spalik K, Katz-Downie DS, Reduron JP (2010) Major clades within Apiaceae subfamily Apiioideae as inferred by phylogenetic analysis of nrDNA ITS sequences. Plant Diversity and Evolution 128(1–2): 111–136. https://doi.org/10.1127/1869-6155/2010/0128-0005
IUCN (2019) Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Subcommittee, Cambridge. https://www.iucn-redlist.org/resources/redlistguidelines
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054

Table 2. Morphological comparison between *Tongoloa arguta* and similar species.

Characters	*T. arguta*	*T. silatifoila*	*T. elata*	*T. gracilis*
Height	10–50 cm	28–60 cm	20–75 cm	25–75 cm
Root	long-conic	conic	conic	slender
Stem	purplish	purplish	purplish	purplish
Lower leaves	2–3-ternate/pinnate, ultimate segments lanceolate, 1–4 mm, apex acute	2–3-ternate/pinnate, ultimate segments linear, 5–18 mm, apex acute	3–4-ternate/pinnate, ultimate segments linear, 5–15 mm	3-ternate/pinnate, ultimate segments linear-lanceolate, 3–15 mm
Bracts	often absent, sometimes 1, leaf-like	absent	absent	absent
Bracteoles	absent	usually absent or 1–5, linear	absent	absent
Rays	3–8	8–22	6–16	5–11
Petal	apex obtuse	apex obtuse	apex obtuse-rounded	apex with incurved tips
Fruit	broadly ovoid	broadly ovoid	broadly ovoid	oblong-ellipsoid
Ribs	filiform	filiform	slender	filiform
Tongoloa arguta (Apiaceae), a new species

Mukherjee PK, Constance L (1991) New taxa and transfers in Indian Umbelliferae. Edinburgh Journal of Botany 48(1): 41–44. https://doi.org/10.1017/S0960428600003589

Pan ZH, Watson MF (2005) Tongoloa. In: Wu ZY, Peter HR, Hong DY (Eds) Flora of China, Vol. 14. Science Press & Missouri Botanical Garden Press, 34–37.

Pimenov MG (2017) Updated checklist of Chinese Umbelliferae: Nomenclature, synonymy, typification, distribution, distribution. Türczaninowia 20(2): 106–239. https://doi.org/10.14258/turczaninowia.20.2.9

Pimenov MG, Kljuykov EV (1995) Notes on Himalayan Schulzia (Umbelliferae). Kew Bulletin 50(3): 637–644. https://doi.org/10.2307/4110340

Pimenov MG, Kljuykov EV (2000) Taxonomic revision of Pleurospermum Hoffm. and related genera of Umbelliferae II. The genera Pleurospermum, Pterocyclus, Trachydium, Keraymonia, Pseudotrachydium, Aulacospermum, and Hymenolaena. Feddes Repertorium 111(7–8): 517–534. https://doi.org/10.1002/fedr.4911110718

Ronquist F, Teslenko M, Mark PVD, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Watson MF (1999) Tongoloa. In: Grierson AJC, Long DG (Eds) Flora of Bhutan, Vol. 2, Part 2. Royal Botanic Garden Edinburgh and Royal Government of Bhutan, 478–479.

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR Protocols: A Guide to Methods and Applications. Academic Press Inc, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wolff H (1925) Neue Umbelliferen-Gattung aus Ostasien. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem 9(84): 275–280. https://doi.org/10.2307/3994550

Zhou J, Gong X, Downie SR, Peng H (2009) Towards a more robust molecular phylogeny of Chinese Apiaceae subfamily Apioideae: Additional evidence from nrDNA ITS and cpDNA intron (rpl16 and rps16) sequences. Molecular Phylogenetics and Evolution 53(1): 56–68. https://doi.org/10.1016/j.ympev.2009.05.029