Introduction

In the last decades, glucose 5% injections have gained more interest [1-3]. Some have even compared its effectiveness to corticosteroid injections [4]. To bring more attention to this new technique, the term Glucopuncture was introduced in January 2021. Glucopuncture is a medical procedure which applies isotonic glucose injections for the management of non-rheumatic musculoskeletal conditions [5]. The technique consists of multiple injections of G5W (Glucose 5% in Water) in the region of complaint. Intradermal injections are given for pain modulation, intralesional injections are given in, for example, muscles, tendons, and ligaments to stimulate tissue repair. One can also apply these injections adjacent to peripheral nerve endings [6] or in the epidural space [7]. In this case report, both intradermal and intraligamentous injections were applied.

Mechanism of action

Pain modulation and tissue repair

Most hypotheses about glucose injections are focused on pain modulation (e.g., vanilloid receptors, neural inflammation, gate control). But these theories do not explain the beneficial effects of Glucopuncture on tissue repair. Apparently, local glucose injections support cellular function and consequently lead to less stiffness when injecting into muscle, and more joint stability when injecting into collateral bands or ligaments. To explain this functional component, a new hypothesis has been proposed, the ATP hypothesis.

The ATP hypothesis

Glucose is the major energy source for cellular health. One glucose molecule gives rise to more than 30 ATP molecules during the aerobic respiration. The conversion of ATP into ADP releases about 30 kJ/mol energy to the cells. In other words, glucose can be considered as a direct provider of energy (one molecule delivers more than 900 kJ/mol) to cell metabolism.

When tissues are damaged because of trauma, overuse or other causes, the cells need to regenerate as quickly as possible. This physiological tissue regeneration requires an additional amount of energy in the cells. In normal circumstances, energy supply is abundant to meet the higher demand. But when the need for ATP is elevated after an injury, there may be a temporary lack of ATP and as a result physiological recovery of that tissue may become impossible. The latter may lead to poor tissue healing. Providing extra glucose to the cells during these moments of repair might lead to extra ATP production. In this sense, it is hypothesized that Glucopuncture improves tissue repair of, for example, muscles, tendons, and ligaments. Unfortunately, there is not much research regarding the effects of ATP for pain modulation. However, it has been illustrated that ATP injection increases expression of several markers for regenerative activity in sensory neurons, including phospho-STAT3 and GAP43 [8].

The effect of glucose on tiny nerve branches

Especially peripheral nerve endings seem to respond well to adjacent glucose injections. One can approach the peripheral nerves directly, for example, when injecting close to the supraorbital nerve, suprascapular nerve, median nerve (carpal tunnel) or greater occipital nerve. But clinical experience has illustrated that it is not always necessary to inject adjacent to peripheral nerves. Injecting near finer nerve branches with glucose seems to be very interesting as well. These extremely tiny nerve endings are present in muscles, tendons, ligaments, and so on. These branches are not mentioned in the anatomy textbooks because they are extremely thin. That is why multiple injections are given in the entire region.

The effect of glucose on dermal sensory nociceptors

Sensory receptors are found everywhere in the body [9]. They are also abundant in dermis. These receptors include mechanoceptors, nociceptors, and thermoreceptors. Especially dermal nociceptors are important to explain the pain modulating effects of Glucopuncture while injecting glucose intradermally.

Glucose transport across the cell membrane

Glucose is transported across the cell membrane [10] by a specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLT1s) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient.

Nonspecific effects of Glucopuncture

The nonspecific effects of Glucopuncture include all clinical effects which are not related to the glucose itself. These explain why dry needling and water injections also have temporary effects on pain modulation.

Needle effect

Dry needling may act by reducing dorsal horn neuron activity, and by modulating brainstem areas [11]. Some articles [12] suggest that the physiological mechanism of dry needling includes a combination of peripheral effects (such as spinal [i.e., gate control] and supraspinal [i.e., endogenous opioid system] mechanisms). It is hypothesized that dry needling may activate the serotonergic (5-HT) and noradrenergic descending inhibitory systems, which in turn may decrease pain [13]. However, effects are usually seen at short-term and effect sizes are rather small [14].

*Correspondence to: Jan Kersschot MD, private medical practice, Antwerp, Belgium, E-mail: jan@kersschot.com

Received: April 29, 2021; Accepted: May 09, 2021; Published: May 16, 2021

Med Case Rep Rev, 2021 doi: 10.15761/MCRR.1000167
Sensitization of the transient receptor potential ion channel vanilloid 1 (TRPV1) is critically involved in inflammatory pain [15]. Recent data demonstrate that TRPV1 is crucial for the needle effect and that it can initiate the excitatory pNR1-pCaMKII pathway, at peripheral DRG and central SC-SCC level [16]. Dry needling might downregulate proinflammatory neuropeptides, proinflammatory cytokines, and neurotrophins, and modulating transient receptor potential vanilloid [17-21].

Volume effect

Injecting a certain amount of liquid into the extracellular space creates a temporary local expansion and thus change of the extracellular pressure. The latter may influence the peripheral nerve endings in the extracellular matrix (ECM). This may explain partly the temporary pain modulating effects of intradermal water injections [22-25]. The extracellular matrix is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans, elastin, fibronectin, and several other glycoproteins [26]. Recently, it has been investigated in more detail how extracellular matrix remodeling, ligand binding, and hemostasis are regulated by mechanical forces [27]. The viscoelasticity of the ECM plays a major role on cell behavior [28].

Bleeding effect

Each soft tissue injection can create a tiny bruising when the needle injures a blood vessel, small or large. This is especially true when injecting in muscular tissue. The more injections one gives and the thicker the needle, the more bleeding may occur in the tissue, thus creating a small amount of whole blood in the extracellular matrix. Blood contains platelets and growth factors, which may play a role in tissue regeneration [29]. It is widely accepted that platelets release substances that promote tissue repair and influence the reactivity of vascular and other blood cells in angiogenesis and inflammation [30]. Platelets contain storage pools of growth factors including PDGF, TGF-beta and VEGF as well as cytokines including proteins such as PF4 and CD40L [31].

Gate control effect

The gate control theory of pain describes the modulation of sensory nerve impulses by inhibitory mechanisms in the central nervous system [32]. Other important features include the convergence of small and large sensory inputs on spinal neurons that transmit the sensory information to the forebrain as well as the ability of descending control pathways to affect the biasing established by the gate [33]. The gate control theory according to Melzack and Wall proposes that Aδ mechanoreceptor inputs to spinal pain transmission T neurons are ‘gated’ (downregulated) via feedforward inhibition. Peripheral nerve stimulation exhibits its neuromodulatory effect both peripherally and centrally [34]. Prolonged relief may require the disruption of reverberatory neural circuits responsible for the “memory” of pain [35].

Placebo effect

Placebo is the use of a substance or procedure without specific activity for the condition that is trying to be treated [36]. Placebo effects are embodied psycho-neurobiological responses capable of modulating pain and producing changes at neurobiological and cognitive levels [37]. Over the past decades, the mechanisms underlying placebo effects have begun to be identified in more detail [38]. At the same time, placebo effects are also found in surgical trials, thereby posing the question whether non-pharmacological interventions such as surgical interventions should be placebo-controlled to a greater extent [39].
indicate that the injections are not only working on pain modulation but also on tissue repair.

On the fourth visit (April 15), he received again intradermal injections (SC) with G5W into the pain region, and intraligamentous injections (IL) with G5W (less than 1 cm deep). Again, no local anesthetics were added. After these injections (5 x 1 mL), he was pain free for a whole week. The clicking in the dorsal back had disappeared completely.

On the fifth visit (April 22), he was still pain free. In other words, his pain had disappeared after three Glucopuncture sessions. He did not receive further treatment for that lesion at the fifth visit. The patient was asked to send an email when the pain would reoccur. During the fifth visit, he was treated for a new injury (muscle tear). Long term follow-up was planned to check out the effects of G5W on the long term. If the complaints would recur, an MRI would be interesting to rule out underlying pathologies which require a more specific treatment.

Conclusion

As dorsal back pain is very prevalent, it is important that patients have access to treatment modalities which are safe and effective. Several clinicians worldwide have experienced that glucose 5% injections are useful for treatment of non-rheumatic musculoskeletal conditions. More clinical research is necessary to confirm its use to indicate that the injections are not only working on pain modulation and antihyperalgesic effects of acupuncture. Evid Based Complement Alternat Med 15: 975632.

García-Triana SA, Toro-Sashida MF, Larios-González XV, Fuentes-Orozco C, Mares-Martinez EA, Iniguez-Cano F, Sánchez-González J, Caballero-Perdomo A, Mazari-López J, Álvarez-Borrego L, Cortés-Carvajal A, Reyes-Alarcón J, Beltrán-Neila M, Espinosa-Castillo C, Sánchez-Leal E (2020) Intraneural injection of ATP stimulates nociceptors and dorsal horn neurons. Pain. 160: 508-527.

Chen HC, Chen MY, Hsieh CL, Wu SY, Hsu HC (2018) TRPV1 is a responding channel for acupuncture manipulation in mice peripheral and central nervous system. Cell Physiol Biochem 49: 1813-1824.

Huang W, Kutter N, Bliwise D (2013) Complexity of sham acupuncture. JAMA Intern Med 22: 173. [CrossRef]

Dimitrova A, Murchison C, Oken B (2017) Acupuncture for the treatment of peripheral neuropathy: A systematic review and meta-analysis. J Altern Complement Med 23: 164-179.

Mårtensson L, Nyberg K, Wallin G (2000) Subcutaneous versus intracutaneous dextrose epidural injection for chronic low back pain. A randomized controlled trial. Midwifery 25: 585-591.

Theocharis AD, Skandalis SS, Gialeti C, Karanamos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97: 4-27.

Hoffmann GA, Wong JY, Smith ML (2019) On force and form: Mechano-biochemical regulation of extracellular matrix. Biochemistry 58: 4710-4720.

Chaudhuri O, Cooper-White J, Janney PA, Mooney DJ, Shenoy VB (2020) Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584: 533-546. [CrossRef]

Amabile PR, Carias RB, Teixeira MV, da Cruz Pacheco I, Corrêa do Amaral RJ (2013) Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther 4: 67.

Antuña E, Andia I, Ardanza B, Norden P, Norden AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91: 4-15.

Antuña E, Andia I, Ardanza B, Norden P, Norden AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91: 4-15.

Melzack R (1981) Myofascial trigger points: relation to acupuncture and mechanisms of pain. Arch Phys Med Rehabil 62: 114-117.

Mendell LM (2014) Constructing and deconstructing the gate theory of pain. Anesth Pain Med 10: 498867.

Webster J, Beckmann M, Gibbons K, Smith T (2013) Comparison of a single vs. four intradermal sterile water injection for relief of lower back pain for women in labour: a randomised controlled trial. Midwifery 29: 585-591.

Marsden L, Nyberg K, Wallin G (2000) Subcutaneous versus intracutaneous injections of sterile water for labour analgesia: a comparison of perceived pain during administration. Br J Obstet Gynaecol 7: 1248-1251.

Lee N, Kildea S, Stapleton H (2017) “No pain, no gain”: The experience of women using sterile water injections. Women and Birth 30: 153-158.

Almassinokiani F, Amani N, Akbari P, Rahimzadeh P, Akbari H (2020) Comparative analgesic effects of intradermal and subdermal injection of sterile water on active labor pain. Anesth Pain Med 10: 498867.

Kerschot J (2021) Treatment of Dorsal Back Pain with Glucopuncture. Med Case Rep Rev 2021, 6: 173. [CrossRef]

Chen HC, Chen MY, Hsieh CL, Wu SY, Hsu HC (2018) TRPV1 is a responding channel for acupuncture manipulation in mice peripheral and central nervous system. Cell Physiol Biochem 49: 1813-1824.

Huang W, Kutter N, Bliwise D (2013) Complexity of sham acupuncture. JAMA Intern Med 22: 173. [CrossRef]

Dimitrova A, Murchison C, Oken B (2017) Acupuncture for the treatment of peripheral neuropathy: A systematic review and meta-analysis. J Altern Complement Med 23: 164-179.

Mårtensson L, Nyberg K, Wallin G (2000) Subcutaneous versus intracutaneous dextrose epidural injection for chronic low back pain. A randomized controlled trial. Midwifery 25: 585-591.

Theocharis AD, Skandalis SS, Gialeti C, Karanamos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97: 4-27.

Hoffmann GA, Wong JY, Smith ML (2019) On force and form: Mechano-biochemical regulation of extracellular matrix. Biochemistry 58: 4710-4720.

Chaudhuri O, Cooper-White J, Janney PA, Mooney DJ, Shenoy VB (2020) Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584: 533-546. [CrossRef]

Amabile PR, Carias RB, Teixeira MV, da Cruz Pacheco I, Corrêa do Amaral RJ (2013) Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther 4: 67.

Antuña E, Andia I, Ardanza B, Norden P, Norden AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91: 4-15.

Antuña E, Andia I, Ardanza B, Norden P, Norden AT (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 91: 4-15.

Melzack R (1981) Myofascial trigger points: relation to acupuncture and mechanisms of pain. Arch Phys Med Rehabil 62: 114-117.

Mendell LM (2014) Constructing and deconstructing the gate theory of pain. Pain 155: 210-216.
34. Zhang Y, Liu S, Zhang YQ, Goulding M, Wang YQ (2018) Timing mechanisms underlying gate control by feedforward inhibition. *Neuron* 99: 941-955.

35. Melzack R (1981) Myofascial trigger points: relation to acupuncture and mechanisms of pain. *Arch Phys Med Rehabil* 62: 114-117.

36. Dobrila-Dintinjana R, Nacinović-Duletić A (2011) Placebo in the treatment of pain. *Coll Antropol* 2: 319-323.

37. Rossettini G, Carlino E, Testa M (2018) Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain. *BMC Musculoskelet Disord* 19: 27.

38. Damien J, Colloca L, Belki-Rodriguez CÉ, Marchand S (2018) Pain modulation: From conditioned pain modulation to placebo and nocebo effects in experimental and clinical pain. *Int Rev Neurobiol* 139: 255-296. [Crossref]

39. Vase L, Wartolowska K (2019) Pain, placebo, and test of treatment efficacy: a narrative review. *Br J Anaesth* 123: e254-e262.

Copyright: ©2021 Kersschot J. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.