Late blight resistance genes in potato breeding

Paulina Paluchowska1 · Jadwiga Śliwka1 · Zhimin Yin1

Received: 28 January 2022 / Accepted: 1 May 2022 / Published online: 16 May 2022 © The Author(s) 2022

Abstract

Main conclusion Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering.

Abstract Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.

Keywords Cultivar · Effector · Genetic engineering · Phytophthora infestans · Solanum tuberosum · Wild crop relatives

Introduction

Potato (Solanum tuberosum L.) plants are cultivated worldwide; the largest areas can be found in Asia and Europe and potato production is systematically increasing in Africa (Haverkort and Struik 2015). Late blight is the most economically important potato disease. Costs associated with crop loss and chemical control of late blight were estimated to be more than € 9 billion per year (Haverkort et al. 2016). Late blight is caused by Phytophthora infestans (Mont.) de Bary, an oomycete within the kingdom Stramenopiles, which also infects tomato (Solanum lycopersicum L.) plants. This pathogen can infect stems, berries, leaves and tubers, which leads to complete crop loss. In the nineteenth century, P. infestans caused severe destruction of potato crops in Europe, especially in Ireland, where potatoes were the staple food (Kamoun et al. 2015). Intensive research on potato late blight has led to the discovery of dominant resistance genes against P. infestans (Rpi genes) in potato wild species. Research was initiated to introduce the Rpi genes from Solanum demissum into potato cultivars (Black et al. 1953; Malcolmson and Black 1966). Potato cultivars carrying resistance genes derived from S. demissum, including Pentland Ace (R3), Pentland Dell (R1, R2 and R3) and Epoka (R4), have been registered and cultivated on a large scale in Europe (Malcolmson 1969; Rudkiewicz 1985). However, Rpi genes introduced from S. demissum were quickly overcome by new virulent P. infestans strains (Jo et al. 2014). Rpi gene introgression from wild relatives of the potato into commercial cultivars through crossing is time-consuming, especially in the case of species separated from potato with crossing barriers such as different endosperm balance numbers (EBNs). For example, the introgression of a single Rpi...
gene (Rpi-blb2) from the wild species Solanum bulbocastanum to potato cultivars Bionica and Toluca necessitated more than 45 years (Haverkort et al. 2016). Compared with conventional breeding, genetic engineering techniques such as cisgenesis facilitate a faster introduction of Rpi genes into commercial cultivars (Ghislain et al. 2019). However, to avoid a rapid overcoming of resistance in newly engineered cultivars, introducing not one but several Rpi genes at a time has been proposed (Haverkort et al. 2016).

In this review, we summarize the knowledge concerning Rpi genes. We discuss the use of Rpi genes in traditional and genetic modification-based breeding as well as their detection in existing potato cultivars. We present new sources of Rpi genes and new methods used to identify them and discuss the interactions between P. infestans and the host.

Sources of Rpi genes

Hawkes’s taxonomy originally distinguished 232 potato wild species (Hawkes 1990). However, recent morphological and molecular studies have reduced the number of potato wild species to 107 (Spooner et al. 2016). These wild species grow in America from the southwestern United States to central Argentina and Chile (Hijmans and Spooner 2001). The highest number of species (93) occurs in Peru, 43 of which can be described as rare. Another country where species richness is particularly high is Mexico, which has 36 potato wild species (Hijmans and Spooner 2001).

Wild relatives of the potato are unique sources of genetic variation. They are characterized as being highly resistant to various diseases, including late blight, and they have been used in breeding programmes for more than 100 years (Machida-Hirano 2015). To date, more than 70 Rpi genes have been identified and mapped in 32 Solanum species (Table 1). Most of the Rpi genes have been derived from tuber-bearing species (25): Mexican (9 species), Bolivian (6), Peruvian (4), Argentine (3), Paraguayan (1), USA (1) and one species found generally in the Andes. Novel Rpi genes were found also in S. tuberosum subspecies andigena and in Hungarian cultivar Sárpó Mira. Six Rpi genes were identified in four non-tuber-bearing species and five from the tomato wild species S. pimpinellifolium. Single resistance genes were identified in 15 potato wild species. Frequently, multiple functional Rpi genes have been found within a single species, e.g., S. demissum (14 Rpi genes), S. bulbocastanum (5), S. berthaultii (5), S. stoloniferum (4), S. edinense (4), S. venturii (4), S. hjertingii (3), S. chacoense (3), S. huancabambense (2), S. pinnatisectum (2) S. schenckii (2) and S. tarijense (2). The Rpi genes were mapped in clusters onto potato chromosomes I, IV, V, VI, VII, VIII, IX, X, and XI. For example, on chromosome IV, a total of 13 Rpi genes from seven potato wild species were found. Several Rpi genes have not yet been mapped, including the following: Rpi-pta2 from S. stoloniferum; R401 and R40A from S. demissum; Rpi-ber1.2, Rpi-ber1.3, and Rpi-ber1.4 from S. berthaultii; Rpi-tar1.3 from S. tarijense, Rpi-nrs1 from S. neorossii and putative novel Rpi genes from S. jamesii and S. tuberosum subsp. andigena (Table 1).

Recently, using advanced techniques, new Rpi genes have been identified. Through genetic linkage analysis and colinearity analysis, a new dominant resistance gene, Rpi2, from the Mexican diploid wild species S. pinnatisectum was mapped onto potato chromosome VII (Yang et al. 2017). The Rpi2 locus is different from the previously reported resistance locus Rpi1, which is on the same chromosome. Rpi2 provides broad-spectrum resistance against various P. infestans isolates, including those that overcome resistance conferred by R9. Resistance gene enrichment sequencing (RenSeq) was used to finely map onto chromosome X, the Rpi-rz1 gene from S. ruiz-cebalsii, which confers high and broad-spectrum resistance to 500 diverse Polish P. infestans isolates, (Jupe et al. 2013; Brylińska et al. 2015). Two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (GenSeq, generic-mapping enrichment sequencing) independently positioned the broad-spectrum resistance gene Rpi-ver1 from the Mexican wild species S. verrucosum on potato chromosome IX (Chen et al. 2018). Diploid wild potato, S. jamesii (JAML-4) is completely resistant to the super virulent P. infestans isolate 2013–18–306, which can overcome the resistance conferred by the genes R1, R2, R3a, R3b, R4, R5, R6, R7, R8, R9, R10, and R11 (Zheng et al. 2020). Diagnostic RenSeq (dRenSeq) analysis demonstrated JAML-4 harbors R3a. However, transgenic Désirée plants containing R3a are susceptible to the isolate 2013–18–306. The authors speculated that resistance in JAML-4 was provided by uncharacterized novel resistance gene(s), Rpi-amr3 from S. americanum was identified and cloned via RenSeq and single-molecule real-time (SMRT) sequencing (SMRT RenSeq) (Witek et al. 2016). Bulked segregant analysis coupled with RenSeq mapped Rpi-amr3 on chromosome IV of the potato reference genome of a doubled monoploid clone of S. tuberosum group Phureja DM1–3 516 R44 (DM). Transgenic diploid potato carrying Rpi-amr3 showed resistance against three P. infestans isolates. Another new Rpi gene from S. americanum Rpi-amr1, was positionally cloned and mapped onto the short arm of chromosome XI (Witek et al. 2021). Using association genomics and long-read RenSeq, the authors identified three allele-specific proteins, which showed 100% identity to Rpi-amr1 protein, from two S. americanum assessments and one S. nodiflorum assessment. Eight additional Rpi-amr1 allele-specific proteins, sharing 90% homology to Rpi-amr1 proteins, were identified from six accesses of S. americanum and two accesses of S. nigrescens and they all conferred late blight resistance.
Table 1 Resistance genes against *Phytophthora infestans* (*Rpi* genes) in *Solanum* species

Rpi gene	Species	Chromosome	Origin	References
Rpi-avl1	*S. avilesii*	XI	Bolivia	Verzaux (2010)
Rpi-ber1; Rpi-ber2	*S. berthaultii*	X		Park et al. (2009)
Rpi-ber1.2; Rpi-ber1.3; Rpi-ber1.4	NA			Monino-Lopez et al. (2021)
Rpi-blh1 (RB)	*S. bulbocastanum*	VIII	Mexico	Naess et al. (2000)
Rpi-blh2	VI		Van der Vossen et al. (2005)	
Rpi-blh3	IV		Park et al. (2005a); Lokossou et al. (2009)	
Rpi-bt1	VII		Oosumi et al. (2009)	
Rpi-chc1.1; Rpi-chc1.2; Rpi-chc2	*S. chacoense*	X	Paraguay	Monino-Lopez et al. (2021); Haverkort et al. (2016)
Rpi-cap1	*S. capsiciibaccatum*	XI	Bolivia	Verzaux et al. (2012)
Rpi-quat1	*S. circarefolium ssp. quinse*	XI		
R1	*S. demissum*	V	Mexico	Ballvora et al. (2002); Lokossou et al. (2009); Dunan et al. (2011)
R2; Rpi-dmfl				
R3a; R3b	XI		El-Kharbotly et al. (1996); Huang et al. (2004)	
R4; *R4MA*	NA		Van Poppel (2010)	
R5	XI		Huang (2005)	
R6; R7	XI		El-Kharbotly et al. (1996); Huang (2005)	
R8 (Rpi-Smira2); *R9a (Rpi-edn2)*	IX		Jo et al. (2011); Vossen et al. 2016; Jo et al. 2015; Keijzer et al. (2021)	
R10; R11			Bradshaw et al. (2006)	
Rpi-edn1.1; Rpi-edn1.2	*S. edinense*	IV		Champouret (2010)
Rpi-edn2 (R9a)	IX		Verzaux (2010); Keijzer et al. (2021)	
Rpi-edn3	XI		Verzaux (2010);	
Rpi-hjt1.1; Rpi-hjt1.2; Rpi-hjt1.3	*S. hjertingii*	IV		Champouret (2010)
Rpi-hcb1.1; Rpi-hcb1.2	*S. huancabambense*	IX	Peru	Aguilera-Galvez et al. (2020)
Novel Rpi gene(s)	*S. jamesii*	NA	USA	Zheng et al. (2020)
Rpi-mch1	*S. michoacanum*	VII	Mexico	Śliwka et al. (2012b)
Rpi-mcd1	*S. microdontum*	IV	Argentina	Sandbrink et al. (2000)
Rpi-mcq1 (Rpi-moc1)	*S. mochiquense*	IX	Peru	Smilde et al. (2005)
Rpi-nrs1	*S. neorossii*	IX	Argentina	Jones et al. (2009)
Rpi-pcs	*S. paucissectum*	XI	Peru	Villamon et al. (2005)
Rpi-phu1 (Rpi-vnt1.1)	*S. phureja*	IX	Andes	Śliwka et al. (2006); Foster et al. (2009)
Rpi1; Rpi2	*S. pinnatisectum*	VII	Mexico	Kuhl et al. (2001); Yang et al. (2017)
Rpi-pur1	*S. piarae*	XI	Peru	Rietman (2011)
Rpi-rec	*S. ruiz-cellosii (S. brevicaule)*	X	Bolivia	Śliwka et al. (2012a)
Rpi-snk1.1; Rpi-snk1.2	*S. schenckii*	IV	Mexico	Champouret (2010)
Rpi-sto1; *Rpi-pta1*	*S. stolomiferum*	VIII		Vleeshouwers et al. (2008); Wang et al. (2008)
Rpi-sto2		XI		Champouret (2010)
Rpi-pta2	NA		Vleeshouwers et al. (2008); Wang et al. (2008)	
Rpi-tar1	*S. tarjense*	X	Bolivia	Haverkort et al. (2016)
Rpi-tar1.3	NA		Monino-Lopez et al. (2021)	
Rpi-Smira1	*S. tuberosum cv. Sárpo Mira*	XI	Hungary	Rietman et al. (2012); Tomczyńska et al. 2014; Vossen et al. 2016
Rpi-Smira2 (R8)		IX		
to *P. infestans* isolate 88069 in transient assays. One homologue, Rpi-amr1-3409 from *S. nigrescens*, was mapped onto chromosome I based on the potato DM reference genome, suggesting that a fragment of DNA from the end of the short arm of chromosome XI in other resistant accessions was translocated to the end of the long arm of chromosome I in *S. nigrescens*. Moreover, the authors identified Rpi-amr1 homologues in hexaploid *S. nigrum* accessions, providing resistance to the *P. infestans* isolate 88069. Previous studies indicated that *S. nigrum* is a non-host to *P. infestans* and *S. americanum* may be the diploid ancestor of hexaploid *S. nigrum* (Colon et al. 1992; Poczai and Hyvönen 2010). The Rpi-amr1 homologues, which confer late blight resistance in *S. nigrum*, were most likely inherited from *S. americanum* (Witek et al. 2021). Rpi-amr1 confers broad-spectrum late blight resistance in cultivated potato. Stably transformed transgenic potato cultivar Maris Piper plants carrying Rpi-amr1, resist 19 *P. infestans* isolates tested, including those overcoming Rpi-vnt1, Rpi-blb1 and Rpi-blb2. In potato wild species *S. chacoense*, two resistance genes, Rpi-chc1.1 and Rpi-chc1.2 have been identified (Monino-Lopez et al. 2021). An allele-mining strategy allowed the identification of Rpi-chc1.1 orthologue in *S. chacoense*, *S. berthaultii* and *S. tarijense* accessions resistant to late blight. For many years, researchers have continued to search for new Rpi genes among wild potato. The largest collections of potato germplasm are available in International Potato Center (CIP) in Peru, the USDA Potato Genebank in Wisconsin, USA, and IPK Gatersleben Genebank in Germany (Karki et al. 2021b). An analysis of resistance to *P. infestans* carried out over a period of more than 20 years has shown that among 34 potato wild relatives there are accessions characterized by a high level of resistance, but the genes underlying this resistance are still unknown (Pérez et al. 1999; Zoteyeva et al. 2012; Khiutti et al. 2015; Bachmann-Pfaebe et al. 2019; Zoteyeva 2020; Karki et al. 2021b). A list of such potato wild relatives is shown in Table 2. These species are native to Mexico, Argentina, Bolivia, Peru, Ecuador and Chile. Research using aggressive *P. infestans* isolates, showed that these species can contribute to development of new durable resistant cultivars. It is worth noting that species having 2EBN and 4EBN (Table 2) can cross with cultivated potato and can be used in potato breeding programs (Karki et al. 2021b). On the other hand, species with 1EBN cannot be crossed with cultivated potato and require application of other methods for the Rpi gene introgression. Recently, 189 potato genotypes, from 20 wild species and cultivated *Solanum tuberosum* from Andigenum and Chilotanum groups, were screened for their resistance against *P. infestans* (Duan et al. 2021). Ten genotypes from five wild species originating in Mexico showed a broad-spectrum resistance to all four *P. infestans* used, suggesting that each of these genotypes contains Rpi gene(s) other than R1-R11. They belong to *S. bulbocastanum* (3 genotypes), *S. cardiophyllum* (4), *S. jamesii* (1), *S. brachycarpum* (1) and *S. trifidum* (1). The other 127 genotypes displayed isolate-specific resistance.

Table 1 (continued)

Rpi gene	Species	Chromosome	Origin	References
Novel Rpi gene(s)	*S. tuberosum* subsp. andigena	NA	South America	Duan et al. (2020)
Rpi-vnt1,1 (Rpi-phu1); Rpi-vnt1,2; Rpi-vnt1,3*	*S. venturii*	IX	Argentina	Foster et al. (2009); Śliwka et al. (2006)
Rpi-vnt2				
Rpi-ver1	*S. verrucosum*	IX	Mexico	Chen et al. (2018)
Non-tuber-bearing *Solanum* species				
Rpi-amr1,3*	*S. americanum*	IV	Mexico	Witek et al. (2016)
Rpi-amr1-2273*		XI	NA	Witek et al. (2021)
Rpi-amr1-3409*	*S. nigrescens*	I	NA	
Rpi-dlc1	*S. dulcamara*	IX	Mexico	Golas et al. (2010)
Rpi-dlc2		X		Golas et al. (2013)
Rpi-crp1	*S. caripense*	IX	Andes	Naitandwe (2007)
Wild tomato relatives				
Ph-1	*S. pimpinellifolium*	VII	Peru; Ecuador	Bonde and Murphy (1952)
Ph-2		X		Gallegly and Marvel (1955)
Ph-3		IX		Chunwongse et al. (2002)
Ph-5.1		I		Merk and Foolad (2012)
Ph-5.2		X		

NA, not available

Rpi genes described as providing durable resistance against late blight in literature
Table 2 New sources of late blight resistance in Solanum species, where the underlying genes have not been described

Species	Accession	Endosperm Balance Number	Origin	# Tested plants	# Resistant plants	P. infestans isolate/clonal lineage	Resistance	Score	References
S. albornozii	561636	2	Ecuador	5	1	US-23	7–9		Karki et al. (2021b)
S. agrimonifolium	545748	2	Mexico	5	3	US-23	7–9		
S. acaule	30040	2	Bolivia	NA	NA	NA	7		Bachmann-Pfabe et al. (2019)
	30044	2	NA	NA	NA	NA	2.7		
	30052	2	NA	NA	NA	NA	5.9		
S. albicans	NA	4	Ecuador	NA	NA	US-23	8.3		Khiutti et al. (2015)
S. antipovichii	Buk 59b	NA	Mexico	NA	NA	MP-324	6.8		Zoteyeva et al. (2012)
S. chomatophilum	275202	2	Peru	5	5	US-23	7–9		Karki et al. (2021b)
S. ehrenbergii	184762	1	Mexico	5	1	US-23	7–9		
	255519	2	Mexico	5	2	US-23; NL13316	7–9		
S. fendleri	CIP 761921	2	Mexico	48	6	PCO002	NA		Pérez et al. (1999)
	CIP 761923	45	NA	NA	NA	PCO002	NA		
	CIP 761926	48	NA	NA	NA	PCO002	NA		
S. gourlayi	NA	4	Argentina	45*	3	NA	6–9		Zoteyeva (2020)
S. guerreroense	PI 473088	4	Mexico	NA	NA	MP322	8.0		Zoteyeva et al. (2012)
S. hougasii	CIP 761902	4	Mexico	48	12	PCO002	NA		Pérez et al. (1999)
	CIP 761899	48	NA	11	PCO002	NA	NA		
S. hypacararhnum	473477	1	Peru	5	5	US-23	7–9		Karki et al. (2021b)
S. inmote	NA	4	Peru	NA	NA	US-23	8.4		Khiutti et al. (2015)
S. iopetalum	CIP 761928	4	Mexico	48	0	PCO002	NA		Pérez et al. (1999)
	CIP 761923	48	NA	PCO002	NA	PCO002	NA		
	CIP 761926	48	16	PCO002	NA	PCO002	NA		
S. kurzianum	NA	2	Argentina	82*	1	NA	6–9		Zoteyeva (2020)
S. lesteri	NA	1	Mexico	NA	NA	US-23	8.6		Khiutti et al. (2015)
S. megistacrolobum	35387	2	Bolivia	NA	NA	NA	8.0		Bachmann-Pfabe et al. (2019)
S. morelliforme	275222	NA	Mexico	5	3	US-23; NL13316	7–9		Karki et al. (2021b)
	545774	5	2	US-23; NL13316	7–9				
S. neoantipovichii	NA	NA	Mexico	20	NA	NA	6.5		Zoteyeva et al. (2012)
S. neocardensasi	498129	NA	Bolivia	5	2	US-23; NL13316	7–9		Karki et al. (2021b)
S. oplocense	NA	NA	Bolivia	32*	2	NA	6–9		Zoteyeva (2020)
S. oxyacarpum	NA	2	Mexico	2	2	NA	6–9		
S. palustre	473401	1	Chile	5	1	US-23	7–9		Karki et al. (2021b)
	558169	5	5	US-23	7–9				
S. papita Rydb	Japa, W 273	2	Mexico	18	NA	NA	5.8		Zoteyeva et al. (2012)
S. papita	PI 251740	18	NA	NA	NA	NA	6.4		
	PI 251741	12	NA	NA	NA	NA	6.8		
	PI 283105	9	NA	NA	NA	6			
S. polytrichon	GLKS 62.102.6.3	2	Mexico	30	NA	NA	4.6		
Rydb									
S. polytrichon	Germany, plt. 102	22	NA	NA	NA	5.9			
	PI 255545	6	NA	NA	NA	7.5			
S. raphanifolium	NA	2	Peru	6*	1	NA	6–9		Zoteyeva (2020)
S. sparsipillum	NA	2	NA	39*	10	NA	6–9		
S. spagazzinii	NA	2	Argentina	58*	7	NA	6–9		
Structure of Rpi genes and their distribution in the potato genome

Most of the plant resistance (R) genes are members of a large gene family that encodes nucleotide-binding site and leucine-rich repeat (NB-LRR; NLR) domain-containing proteins (Lozano et al. 2015). On the basis of the structure of NLR proteins, two main groups can be distinguished. The first is the so-called TIR-NB-LRRs (TNLs) with N-terminal domain homologous to the Drosophila Toll domain and human interleukin-1 receptor. The second group is non-TIR-NB-LRRs known as CNLs, which contains coiled coil (CC) structure or leucine zipper (LZ) motif in N-terminal region (Ballvora et al. 2002; Sekhwal et al. 2015).

Genome sequencing revealed that the diploid potato clone RH89-039-15 (S. tuberosum ssp. tuberosum) contains 738 partial or full-length NLR sequences (Bakker et al. 2011). In the potato reference genome DM, 438 out of 40,000 identified genes contain the characteristic NB-LRR domain (Jupe et al. 2012). The use of RenSeq led to an increase in the number of identified NLR in the DM reference genome from 438 to 755 (Jupe et al. 2013). All twelve potato chromosomes contain genes belonging to the CNL and TNL groups, except for chromosomes III and X, on which genes from the TNL group are not found. The majority of NLR genes were found on chromosomes IV (57) and XI (54). The fewest number of NLR genes (3) was found on chromosome III. Moreover, the greatest number of NLR gene clusters is on chromosome IV. There are 4.7 times more CNL genes than TNL genes in the analyzed potato genome (Jupe et al. 2012).

Recently, using Illumina HiSeq 2000 technology, 585 NBS domains, including 11 not previously described, were analyzed in 96 potato genomes (Prakash et al. 2020).

To date, nearly 50 Rpi genes that are from Solanum species have been cloned. Most of the cloned genes belong to the CNL family, but several NLR genes remain unclassified (Table 3). The size and structure of different Rpi genes, as well as of different alleles of the same Rpi gene, are diverse. Examples of the longest Rpi genes include Rpi-amr1-2307 (7277 bp) from S. americanum and Rpi-blb2 from S. bulbocastanum (4858 bp) belonging to the CC-NB-LRR class, and R1 from S. demissum (4102 bp) which is part of LZ-NB-LRR group. The shortest genes include R2 family members, e.g., R2 from S. demissum (2538 bp), Rpi-edn1.1 from S. edinense (2544 bp), Rpi-hjt1.1, Rpi-hjt1.2 and Rpi-hjt1.3 from S. hjertingii (2544 bp). These genes are located on chromosome IV and are members of the LZ-NB-LRR group. Most of the Rpi genes are intron-free. Variation in the size and structure of Rpi gene alleles is well described for Rpi-amr1. The size of the identified alleles of this gene ranged from 2768 to 7277 bp and the number of introns range from one to four (Table 3). The listed homologues of the Rpi-amr1 gene have been identified in different species and in different accessions. Molecular cloning of the Rpi genes facilitates studies at the molecular level of the control of resistance to potato late blight (Ballvora et al. 2002). The cloned genes can be used in genetic engineering to develop late blight resistant cultivars.

Plant R genes encode proteins that directly or indirectly detect effector proteins introduced by pathogens (Sekhwal et al. 2015). This leads to the activation of effector-triggered immunity (ETI) and results in reactive oxygen species (ROS) production, callose deposition, and programmed cell death through the hypersensitive response (HR) (Turnbull et al. 2019). The mechanism of potato Rpi gene activation by P. infestans effectors is poorly understood. Studies conducted on Arabidopsis thaliana show that the conformation of NLR
Table 3 Sequenced resistance genes against Phytophthora infestans (Rpi genes)

Rpi gene	Class of NB-LRR protein	Accession/patent number	CDS (bp)	Number of introns	References
R1	LZ	AF447489.1	4102	2	Ballvora et al. (2002)
R2	LZ	FI536325.1	2538	0	Lokossou et al. (2009)
R3a	CC	AY849382.1	3849	0	Huang et al. (2005)
R3b	CC	JP900492.1	3582	0	Li et al. (2011)
R8	CC	KU530153.1	3738	0	Vossen et al. (2016)
R9a	CC	NA	2593	NA	Jo (2013)
Rpi-albp	LZ	FI536324.1	2538	0	Lokossou et al. (2009)
Rpi-amr1-1032	CC	MW345287.1	5120	4	Witek et al. (2021)
Rpi-amr1-1101	CC	MW345288.1	5126	4	
Rpi-amr1-1123	CC	MW345289.1	5128	4	
Rpi-amr1-2271a	CC	MW345290.1	2768	1	
Rpi-amr1-2272	CC	MW345291.1	5056	4	
Rpi-amr1-2273	CC	MW345286.1	4810	3	
Rpi-amr1-2300	CC	MW345292.1	5125	4	
Rpi-amr1-2307	CC	MW345293.1	7277	4	
Rpi-amr1-3408	CC	MW345294.1	3749	3	
Rpi-amr1-3409	CC	MW345295.1	5130	4	
Rpi-amr3	CC	KT373889.1	2664	0	Witek et al. (2016)
Rpi-ber1.1,94-2031	CC	MW410790.1	3909	0	Monino-Lopez et al. (2021)
Rpi-ber1.2,493-7a	CC	MW410793.1	3912	0	
Rpi-ber1.3	CC	MW410798.1	3912	0	
Rpi-ber1.4	CC	MW410802.1	3898	0	
Rpi-blb1	CC	AY426259.1	3592	1	Van der Vossen et al. (2003)
Rpi-blb2	CC	DQ122125.1	4858	2	Van der Vossen et al. (2005)
Rpi-blb3	LZ	FJ536346.1	2544	0	Lokossou et al. (2009)
Rpi-bt	NA	FJ188415.1	3379	1	Oosumi et al. (2009)
Rpi-chc1.1	CC	MW383255.1	3909	0	Monino-Lopez et al. (2021)
Rpi-chc1.2a	CC	MW410797.1	3912	0	
Rpi-edn1.1	LZ	GU563963.1	2544	0	Champouret (2010)
Rpi-edn1.2	NA	NA	NA	NA	
Rpi-edn2	CC	US20140041072A1	2593	NA	De Vetten et al. (2014)
Rpi-hcb1.1	CC	NA	NA	NA	Aguilera-Galvez et al. (2020)
Rpi-hcb1.2	CC	NA	NA	NA	
Rpi-hj1.1	LZ	GU563971.1	2544	0	Champouret (2010)
Rpi-hj1.2	LZ	GU563972.1	2544	0	
Rpi-hj1.3	LZ	GU563973.1	2544	0	
Rpi-mcd1	NA	NA	NA	NA	Lokossou (2010)
Rpi-mcq1	CC	WO2009013468A2	NA	NA	Jones et al. (2009)
Rpi-nrs1	CC	WO2009013468A2	NA	NA	
Rpi-pta1	NA	EU884422.1	3592	1	Vleeshouwers et al. (2008)
Rpi-snk1.1	LZ	GU563975.1	2544	0	Champouret (2010)
Rpi-snk1.2	LZ	GU563976.1	2535	0	
Rpi-sto1	NA	EU884421.1	3592	1	Vleeshouwers et al. (2008)
Rpi-sto2	CC	NA	NA	NA	Champouret (2010)
Rpi-tar1.1,852-5	CC	MW390807.1	3912	0	Monino-Lopez et al. (2021)
Rpi-tar1.3	CC	MW410799.1	3912	0	
Rpi-vnt1.1	CC	FJ423044.1	2676	0	Foster et al. (2009)
Rpi-vnt1.2	CC	FJ423045.1	2718	0	
Rpi-vnt1.3	CC	FJ423046.1	2718	0	
Ph-3	CC	KJ569333.1	2556	0	Zhang et al. (2014)

*aNon-functional/susceptible homolog

bp, base pairs; CDS, coding sequence; LZ, leucine zipper motif; CC, coiled coil motif; NA, not available
proteins may influence their function. The *A. thaliana* NLR protein *Peronospora parasitica* 1 protein (RPP1), which recognizes the ATR1 effector from *Peronospora parasitica*, remains in an inactive form in the absence of an effector in the cell environment. Binding of the effector to the LRR domain leads to oligomerization and activation of the RPP1 protein (Schreiber et al. 2016). Another *A. thaliana* NLR protein, ZAR1, in an inactive form, forms a multicomponent complex with resistance-related kinase 1 (RKS1) (Wang et al. 2019). Inactive ZAR1-RKS1 complex is activated by the effector AvrAC from *Xanthomonas campestris*. AvrAC uridylates the PBL2 kinase to produce PBL2UMP. Interactions between PBL2UMP and the inactive ZAR1-RKS1 complex then lead to conformational changes and the formation of the active pentameric ZAR1 resistosome (ZAR1-RKS1-PBL2UMP). The active resistosome has a funnel-shaped structure required for AvrAC-induced ZAR1 plasma membrane association, cell death, and resistance to *X. campestris*. Nonetheless, how widespread these models are and whether the mechanism of action is the same in potato are unknown (Wang et al. 2019). Activation of Rpi genes may also depend on external factors. Rpi-vnt1.1 requires light to confer resistance against *P. infestans*. In the dark, plants produce shortened chloroplast protein glycylate 3-kinase (GLYK), which does not bind Avrvt1 and that results in a lack of activation of the Rpi-vnt1.1 protein (Gao et al. 2020).

Arms race

The host immune response against pathogen invasion can be summarized by the zig-zag model, which involves two steps. The first step relates to the detection of the conserved pathogen-associated molecular pattern (PAMP) which triggers PAMP-triggered immunity (PTI). To avoid PTI, the pathogen secretes effector proteins into the host cells to disrupt the immune response. Effectors are detected by the host's NLRs, leading to activate more robust and faster response termed ETI, which represents the second level of activation the host immune response. Interactions between R genes and effectors represent host–pathogen molecular co-evolution when effectors evolve to evade detection and R proteins evolve to establish or retain detection (Hein et al. 2009; Naveed et al. 2020).

During the pathogenesis of *P. infestans*, a key step is the formation of haustorium in potato tissue through which the pathogen secretes effectors. These proteins manipulate and alter the host's immune response to promote infection. Genes encoding pathogen effectors that induce R gene response are defined as avirulence (Avr) genes (Qutob et al. 2006). Cytoplasmic effectors secreted by *P. infestans* can be divided into two classes, CRN (crinkling, necrosis) and RxLR effectors. The effectors of RxLR type possess arginine-any amino acid residue-leucine–arginine motifs in N-terminal region. All known *P. infestans* effectors, which are recognized by the products of corresponding potato *Rpi* genes, belong to the RxLR class (Martynov and Chizhik 2020). The RxLR effectors contain the highly conserved N-terminal RxLR motif involved in the translocation of *P. infestans* effector proteins into plant cells, and the heterogeneous C-terminal region that can be recognized by plant *R* gene products (Dou et al. 2008).

The function of the *P. infestans* effector in the infection process has been defined for only a few examples. Avr2, by interacting with members of the BR11-suppressor 1-like family proteins (BSL1, BSL2 and BSL3) from potato, inhibits the activity of the oomycete effector 1 (INF1); as a result, programmed cell death does not occur (Turnbull et al. 2019). Avr3 inactivates the host ubiquitin E3 ligase CMPG1, leading to programmed cell death inhibition (Bos et al. 2010). The effector Avr3a-like, by stabilizing host cinnamyl alcohol dehydrogenase 7 (CAD7), limits the activation of defense mechanisms, such as callose deposition, the ROS burst and WRKY33 expression (Li et al. 2019).

In the genome of *P. infestans*, 563 effector genes with the RxLR motif have been identified (Haas et al. 2009). For 15 of them, the respective potato *Rpi* genes have been identified (Table 4). According to the gene-for-gene concept, specific pathogen effectors activate corresponding host plant *R* proteins (Flor 1971). However, some effectors can be recognized by products of multiple *Rpi* genes, or vice versa, a specific *Rpi* gene product can detect multiple effectors from the same or different Phytophthora pathogens. The Avr2 effector can be recognized by not only R2 protein from *S. demissum* but also by Rpi-blb3 from *S. bulbocastanum*, Rpi-mcq1 from *S. mochiquense*, Rpi-hcb1.1 and Rpi-hcb1.2 from *S. huanacambense* (Aguilera-Galvez et al. 2018, 2020). The *Rpi* genes encoding these proteins are located on different chromosomes, R2 and Rpi-blb3 on chromosome IV, Rpi-mcq1, Rpi-hcb1.1 and Rpi-hcb1.2 on chromosome IX (Table 1). *Rpi-amr1* from *S. americanum* recognizes the effector Avramr1 from *P. infestans* but also the Avramr1 homologues from *Phytophthora parasitica* and *Phytophthora cactorum* (Witek et al. 2021). Likewise, recognition of Avramr3 by *Rpi-amr3* from *S. americanum* activates resistance against not only *P. infestans* but also against other economically important Phytophthora pathogens, including *P. parasitica* and *Phytophthora palmivora* (Lin et al. 2021). The authors suggest that *Rpi-amr1* and *Rpi-amr3* provide non-host type resistance to multiple Phytophthora pathogens in *S. americanum* (Lin et al. 2021; Witek et al. 2021). In some cases, different alleles from the same *Rpi* gene can recognize different effectors which belong to the same RxLR family (Monino-Lopez et al. 2021). Protein products of *Rpi- chc1.1* and *Rpi- chc1.2* which are allelic variants recognize two different effectors within the same effector class Avr chc1.1 and
Avrhc1.2, respectively. The LRR domain is involved in the recognition of cognate effector and changes in its structure may lead to the loss of the ability to recognize the effector or to shift the recognition ability from one effector to another. The exchange of the LRR domain in the chimeric receptors changed the recognition spectrum of the Avrchc1.1 to Avrchc1.2 (Monino-Lopez et al. 2021).

To date, several mechanisms have been identified that allow effectors to avoid recognition by corresponding host R proteins. The products of such unrecognized alleles act as virulence factors. *P. infestans* virulence can arise in multiple ways (Huang et al. 2019). The simplest one involves point mutations, e.g., the *P. infestans* effector Avr3a. In tested *P. infestans* populations, two alleles of Avr3a differing at the protein level by only two amino acids can be distinguished. Avr3aKL activates the potato resistance gene R3a, leading to a HR, while Avr3aEM is not recognized by the product of the R3a gene, leading to infection (Armstrong et al. 2005). Isolates with truncated Avr4 protein resulting from a frameshift generated by two single deletions are not detected by the product of the R4 gene in potato. Functional analysis shows that two single deletions do not affect the elicitor activity of the Avr4 protein (Van Poppel et al. 2008). *P. infestans* isolates that possess the Avr1 homologue Avr1-like (A-L) do not induce a resistance response in R1 potato. The sequence of the Avr1-like (A-L) effector is in 82% identical to that of the Avr1 protein but is truncated by the T region at the C-terminal end of Avr1 (Du et al. 2018). Due to changes in expression regulation, the Avrvnt1 effector is not detected by Rpi-vnt1 plants (Stefaniczyk et al. 2017; Pais et al. 2018). Expression of Avrchc1.2 effector is rapidly downregulated in the first hours after inoculation with *P. infestans* isolates, which explains why the presence of Rpi-chc1.2 in the potato plants does not provide resistance to late blight (Monino-Lopez et al. 2021). The Rpi-blb1 protein recognizes ipiO (Avrblb1) effectors from classes I and II, resulting in a HR. Effectors from class III, i.e., ipiO4, are not recognized by the Rpi-blb1 protein and inhibit HR caused by classes I and II of the effector (Champouret 2010). Potentially, the effectors that are essential for infection could not be mutated without a fitness cost and loss of pathogenicity. R proteins recognizing such essential effectors would likely provide broad-spectrum and durable resistance. *P. infestans* Avr3a, especially virulent allele Avr3aEM, may be an example of an essential effector since this gene is conserved among diverse *P. infestans* strains and is highly expressed at the early stage of infection (Yin et al. 2017). Further searching and functional characterization of conserved effectors and corresponding Rpi genes may inform strategies for obtaining durable late blight resistance.

The adaptation of potato to the continuous evolution of the pathogen is through the diversification of *R* genes by recombination, gene conversion, duplication and/or selection (Jupe et al. 2012). While some of the *S. demissum* Rpi genes were found to be race-specific and rapidly became ineffective, the following genes have been described as providing a broad-spectrum of resistance against *P. infestans*: Rpi-blb1, Rpi-blb2 and Rpi-blb3 from *S. bulbocastanum*; R8 and R9 from *S. demissum* and Rpi-vnt1.1 from *S. venturii* (Vleeshouwers et al. 2011; Vossen et al. 2016). However, these genes have not yet been widely introduced into potato cultivars, in part because of crossing barriers. This continuous co-evolution of pathogen effectors and plant *R* genes

Table 4 *Phytophthora infestans* genes encoding RxLR effectors and corresponding resistance genes (Rpi genes) in host plants

P. infestans effectors	Corresponding Rpi gene(s)	References
Avr1	R1	Van der Lee et al. (2001)
Avr2	R2; Rpi-mcq1; Rpi-hbl3; Rpi-hcb1.1; Rpi-hcb1.2	Aguilera-Galvez et al. (2018); Aguilera-Galvez et al. (2020)
Avr3a	R3a	Armstrong et al. (2005)
Avr3b	R3b	Rietman et al. (2012)
Avr4	R4	Van Poppel et al. (2008)
Avr8	R8	Vossen et al. (2016)
Avrbllb1(ipiO)	Rpi-blb1	Song et al. (2003)
Avrbllb2	Rpi-blb2	Van der Vossen et al. (2005)
Avrvnt1	Rpi-vnt1.1	Pais et al. (2018)
AvrsMir1	Rpi-Smira1	Rietman et al. (2012)
AvrsMir2	Rpi-Smira2	
Avrhccl.1	Rpi-chc1.1: Rpi-ber1.1	Monino-Lopez et al. (2021)
Avrhccl.2	Rpi-chc1.2: Rpi-ber1.2	
Avrarmr1	Rpi-armr1	Witek et al. (2021)
Avrarmr3	Rpi-armr3	Lin et al. (2021)
represents a so-called arms race between plants and pathogens (Khavkin 2015).

Rpi genes in potato cultivars and breeding lines

Breeding potato cultivars with resistance genes against *P. infestans* gives opportunities to limit the use of fungicides (Haverkort et al. 2016). However, breeders often do not know what *R* genes are present in existing potato cultivars and which of them are effective against local *P. infestans* populations. Some potato cultivars show moderate or high levels of resistance to late blight, but the basis of their resistance remains unknown. Various methods, including PCR, effectomics, transcriptomics, single nucleotide polymorphism (SNP) array genotyping or dRenSeq, have been used to determine which *Rpi* genes are present in potato cultivars (Table 5). Frequently, a combination of more than one method was used.

Analysis of 600 potato cultivars from Europe, Asia, and South America by PCR using gene-specific primers, allowed to detect *R1* in 135 potato genotypes (Gebhardt et al. 2004). Using gene-specific markers, it was possible to confirm the presence of the *R1* and *R2-like* genes in the Polish cultivar Bzura showing a high level of field resistance (Plach et al. 2015). The Mastenbroek potato late blight differential set is a group of 11 potato genotypes (MaR1-MaR11) expected to contain 11 individual *S. demissum* *Rpi* genes (Mastenbroek 1952). However, studies using *Rpi* gene-specific markers and agroinfiltration assay showed that differential plants harbor more than one *Rpi* gene. MaR8 and MaR9 plants, which have a broad-spectrum resistance in both the field and the greenhouse, contain four (*R3a, R3b, R4, R8*) and seven (*R1, Rpi-abpt, R3a, R3b, R4, R8, R9*) *Rpi* genes, respectively (Kim et al. 2012; Zhu et al. 2015). *R1* was additionally found in MaR5 and MaR6 genotypes. These findings are consistent with those of Trognitz and Trognitz (2007), who found *R1* in the *R5, R6* and *R9* plants also within the Scottish Black’s differential set. The *Rpi-vnt1* gene from *S. venturii* and *Rpi-phal* from *S. phureja* were mapped to the same region on the potato chromosome IX and the nucleotide sequences of both genes are identical (Śliwka et al. 2006; Foster et al. 2009). The *Rpi-vnt1.1* confers resistance to a wide range of *P. infestans* strains, except isolates EC1 and EC3626 from Ecuador (Foster et al. 2009; Witek et al. 2021). The presence of the *Rpi-vnt1.1* gene has been confirmed in Dutch cultivar Alouette and in Polish cultivar Gardena using the PCR marker *phu1_2069* (Stefańczyk et al. 2020). The *Rpi-vnt1.1* have been also found in six other cultivars (Table 5). It is worth underlining that PCR markers designed on the basis of gene sequence may display low specificity. Detection of the *Rpi-vnt1* gene in late blight susceptible cultivars, including Bintje and Early Rose, is most likely due to use of non-specific markers and the detection of non-functional homologues (Rogozina et al. 2021). Detection of the presence *Rpi* genes in potato cultivar with the use of PCR markers requires additional methods confirming resistance to *P. infestans*, as it is prone to false-positive results.

Another strategy is the effectomics approach, where effectors are functionally tested in potato germplasms for their response to cognate *R* gene using agroinfiltration assay (Domazakis et al. 2017). More than 200 predicted *RxLR* effectors selected from *P. infestans* genome sequence were used in an agroinfiltration test, which allowed to detect five effective *Rpi* genes (*R3a, R3b, R4, Rpi-Smira1, Rpi-Smira2*) in the Sárpo Mira cultivar characterized by a high level of field resistance (Rietman et al. 2012). Four of them were pyramided qualitative *Rpi* genes. The remaining one, *Rpi-Smira2*, provides a quantitative field resistance, and its presence in potato cultivar can only be detected in field tests. *R8* with nucleotide sequence identical to that of *Rpi-Smira2* can be found also in the resistant potato cultivars Jacqueline Lee, Missaukee, PB-06 and S-60, by long-range PCR (Vossen et al. 2016). Agroinfiltration with ten *P. infestans* effectors revealed that *Avr4* and *Avr8* effector induce HR in potato cultivar Qingshu9, *Avrvt1.1* induces *HR* in Longshu7, *Avr3aEM* effector (i.e., virulent allele of *Avr3a*) induces *HR* in cultivars Qingshu9 and Longshu7 (Elmahal et al. 2020). Screening with over 50 different *P. infestans* *RxLR* effectors has shown a specific response to *Avr2*, which confirms that *SW93-1015* contains a functional homologue of the *R2* gene. Out of *R2* gene homologues cloned from *SW93-1015*, one encoded a protein identical to Rpi-abpt. Transgenic potato cultivar Désirée with this gene was resistant to *P. infestans* (Lenman et al. 2016).

Analysis of the transcriptome of the Chinese cultivar Cooperation 88 (C88), which has been characterized as displaying durable late blight resistant for 20 years, revealed the presence of multiple *Rpi* genes (Hao et al. 2018). This cultivar is highly resistant to two super virulent *P. infestans* strains, IPO 428–2 and XA-4. Within 5 days of inoculation with XA-4, a change in the expression of *Rpi* genes was noted. These genes can be classified as *R1, R2, R3a, Rpi-blb1, Rpi-blb2* and *Rpi-vnt1* homologues (Hao et al. 2018).

SNP array genotyping can also be used to detect the *R* genes in the cultivated potato (Karki et al. 2021a). F1 population containing 79 progeny clones derived from crossing Payette Russet with A0012–5 was screened for resistance to the US-23 genotype of *P. infestans* in detached leaf assay. Linkage mapping using markers from the potato SNP array confirmed the presence of a single resistant gene on the short arm of chromosome IV of cultivar Payette Russet, in the same locus as that for *R2, Rpi-abpt*, and *Rpi-blb3*. Using the primers for *Rpi-blb3*, a PCR product of the expected size (~2500 bp) was obtained and sequenced. The *Rpi* gene allele
Year of registration	Cultivar	Rpi gene	Methods of detection	References
Europe				
2014	Alouette	Rpi-vnt1.3; R3a; R3b	dRenSeq	Armstrong et al. (2019)
1925	Alpha^a	R8	PCR markers; DLA; field trials; pedigree	Rogozina et al. (2021)
NA	Avora	R8/Rpi-bb1; Rpi-sto1	PCR markers; sequencing	Antonova et al. (2018)
1910	Bińtje^a	Rpi-vnt1.3	PCR markers; DLA; field trials; pedigree	Rogozina et al. (2021)
2004	Biogold	Rpi-abpt	NA	Park et al. (2005b)
2008	Bionica	Rpi-bb2; Rpi-abpt; R3a; R3b	dRenSeq; pedigree	Havekort et al. (2009); Armstrong et al. (2019)
1983	Bzura	R1; R2-like	PCR markers; field trials; DLA; sequencing; pedigree	Gebhardt et al. (2004); Plich et al. (2015)
1973	Cara	R1; R3a; R3b	dRenSeq	Armstrong et al. (2019)
1941	Craigs Snow White	R1		
1961	Dorita	R3b	PCR markers; DLA; field trials; pedigree	Brown-Donovan et al. (2021)
1892	Eersteling^a	R8	PCR markers; DLA; field trials; pedigree	Rogozina et al. (2021)
1999	Innovator	R1; R2-like; R3a; R3b	dRenSeq	Armstrong et al. (2019)
1908	Jbel	R1; R2; R8; Rpi-bb2; Rpi-vnt1.3	PCR markers; DLA; field trials; pedigree	Rogozina et al. (2021)
NA	Nayada	R1; R2; Rpi-bb3; R8; Rpi-bb2		
NA	Negr^a	R2		
NA	Ognivo	R8/Rpi-bb1; Rpi-sto1	PCR markers; sequencing	Antonova et al. (2018)
1952	Pentland Ace^a	R3a; R3b	dRenSeq	Armstrong et al. (2019)
1961	Pentland Dell	R1; R3a; R3b; Rpi-abpt		
1994	Picasso	R1; R3a; R3b		
1976	Pirola	Rpi-phu1	PCR markers; DLA; field trials; pedigree	Brown-Donovan et al. (2021)
NA	Priekul'skij rannij	R8; Rpi-bb1		Rogozina et al. (2021)
1926	Robijn	R2		
NA	Särpo Axona	R3a; R3b; Rpi-vnt1.3		
2003	Särpo Mira	R3a; R3b; R4; Rpi-Smir1; Rpi-Smir2	Effectoromics; DLA	Rietman et al. (2012)
1968	Spunta	R1	dRenSeq	Armstrong et al. (2019)
1991	Stirling	R1; R3b	PCR markers; DLA; field trials; pedigree	Brown-Donovan et al. (2021)
NA	Svitanok kievskij	R2; Rpi-bb3; R3a; R3b; R8; Rpi-bb1		Rogozina et al. (2021)
2006	Toluca	Rpi-bb2	dRenSeq; pedigree	Havekort et al. (2009); Armstrong et al. (2019)
1988	Torridon	R1; R3b	PCR markers; DLA; field trials; pedigree	Brown-Donovan et al. (2021)
North America				
1970	Abnaki^a	R1	PCR markers; DLA; field trials; pedigree	Brown-Donovan et al. (2021)
NA	Atzimba	R8; Rpi-bb1; Rpi-bb2		Rogozina et al. (2021)
1867	Early Rose^a	Rpi-bb2; Rpi-vnt1.3		
1999	Jacqueline Lee	R8	Long-range PCR; sequencing	Vossen et al. (2016)
2009	Missaukee	R8		
from Payette Russet is identical to the \textit{Rpi-abpt} sequence except for a synonymous C to T substitution at position 87 (Karki et al. 2021a).

A new tool used for genetic mapping, searching, and testing the functionality of resistance genes in cultivars and breeding lines is dRenSeq (Armstrong et al. 2019). dRenSeq has been used to identify and validate all currently known NLRs effective against potato virus X, the potato cyst nematode \textit{Globodera pallida} and \textit{P. infestans}. Screening by dRenSeq for the presence of 22 functional \textit{Rpi} genes in 11 potato cultivars and one late blight differential line 2573 led to the identification of one to seven \textit{Rpi} genes in each tested genotype (Table 5). Single \textit{Rpi} genes were found in cultivars Craig’s Snow White, Spunta and Toluca. Seven \textit{Rpi} genes, i.e., \textit{R1}, \textit{R1}^{\text{T4109}}, \textit{R3a}, \textit{R3b}^{G1069G311}, \textit{R8}, \textit{R9a}, and \textit{Rpi-abpt}^{T86}, have been identified in the differential line 2573 (Armstrong et al. 2019).

Genetic improvement for durable \textit{P. infestans} resistance

The introgression of \textit{Rpi} genes into susceptible potato cultivars is limited by long breeding cycles and the high level of heterozygosity across the potato genome (Jo et al. 2014). An attempt to introgress the \textit{Rpi} genes from \textit{S. bulbocastanum} began in 1959. In the first step, a cross was made between \textit{S. bulbocastanum} (B, 2x) bearing \textit{Rpi-blb2} and \textit{S. acaule} (A, 4x) to obtain an AB (3x) plants, which after polyploidisation to the hexaploid level, was crossed with \textit{S. phureja} (P, 2x) resulting in ABP (4x) material. Successive rounds of bridge crosses between ABP (4x) and \textit{S. tuberosum}, led to produce ABPT plants which, after three backcrossing to \textit{S. tuberosum}, eventually led to registration in 2006 and 2008 of two \textit{P. infestans} resistant cultivars Toluca and Bionica (Haverkort et al. 2016). Another example of the introduction of \textit{Rpi} genes into the potato gene pool is the 11-year-long project Bioimpuls, which resulted in the development of true seed population with single or multiple \textit{Rpi} genes against late blight through classical breeding (Keijzer et al. 2021). In this project, three groups of sources of resistance to \textit{P. infestans} were distinguished. The first group includes cultivars and advanced breeding clones containing the \textit{R8}, \textit{Rpi-cap1}, \textit{Rpi-chl1}, \textit{Rpi-vnt1} and \textit{Rpi-blb2} genes that is ready for the commercial crossing. The second group includes breeding clones with \textit{R9} and \textit{Rpi-edn2} genes which require one or two rounds of backcrossing. The third group is potato wild species that have not been used so far, including \textit{S. brachycarpum}, \textit{S. bukasovii}, \textit{S. iopetalum}, \textit{S. multiinterruptum}, and \textit{S. sucrense}. This group needs two or three additional rounds of backcrossing to be used for commercial crosses (Keijzer et al. 2021).

Different approaches have been developed to overcome crossing barriers and to shorten the time for introducing

Year of registration	Cultivar	\textit{Rpi} gene	Methods of detection	References
2015	Payette Russet	\textit{R2}	SNP array genotyping; DLA; KASP markers	Karki et al. (2021a)
1950	Pungo	\textit{R1}	PCR markers; DLA; field trials; pedigree	Brown-Donovan et al. (2021)
NA	Saginaw Chipper	\textit{R2}		
1980	Tollocon	\textit{R3b}		
2006	Yukon Gem			
Asia	Cooperation 88 (C88)	\textit{R1}; \textit{R2}; \textit{R3a}; \textit{Rpi-blb1}; \textit{Rpi-blb2}; \textit{Rpi-vnt1}	RNA-seq; DLA	Hao et al. (2018)
NA	Longshu 7	\textit{R3a}; \textit{Rpi-vnt1.1}	PCR markers; agroinfiltration assay; pedigree	Elnahal et al. (2020)
NA	PB-06	\textit{R8}	Long-range PCR; sequencing	Vossen et al. (2016)
NA	Qingshu 9	\textit{R3a}; \textit{R4}; \textit{R8}	PCR markers; agroinfiltration assay; pedigree	Elnahal et al. (2020)
1961	Rishiri	\textit{R1}	Pedigree	Akino et al. (2014)
NA	S-60	\textit{R8}	Long-range PCR; sequencing	Vossen et al. (2016)
1976	Toyoshiro	\textit{R1}	Pedigree	Akino et al. (2014)
1958	Yoraku	\textit{R4}		

*PCR marker detected, but the cultivar is described in literature as susceptible to late blight

Year of registration	Cultivar	\textit{Rpi} gene	Methods of detection	References
1958	Yoraku	\textit{R4}		

\textit{dRenSeq}, diagnostic resistance gene enrichment sequencing; DLA, detached leaf assay; SNP, single-nucleotide polymorphism; NA, not available
Rpi genes into susceptible cultivars, including the use of somatic hybrids, hybrid breeding and genetic engineering. To transfer late blight resistance from S. michoacanum to the gene pool of cultivated potato, somatic hybridization and backcrossing (BC) have been used (Smyda et al. 2013; Smyda-Dajmund et al. 2017). The genetic composition of the obtained somatic hybrids was analyzed using diversity array technology (DArT) (Smyda-Dajmund et al. 2016). Using somatic hybridization, crossing and backcrossing, four Rpi genes (Rpi-blb1, Rpi-blb3, R3a, R3b) were introduced into cultivated potato (Rakosy-Tican et al. 2020). The presence of these genes in the back-crossed progeny (BC1 and BC2) was confirmed via gene-specific markers. In addition, the functionality of Rpi-blb1, Rpi-blb3, R3a and R3b was confirmed via agroinfiltration with the corresponding Avr effectors (Avrblb1, Avr2, Avr3a, Avr3b).

Another method to facilitate transfer of resistance to late blight to potato cultivar is hybrid breeding. This method enables obtaining plants with single or pyramided Rpi genes without disrupting the genetic composition of the parental breeding lines that have good agronomic performance. Su et al. (2020) described the introgression of Rpi genes into homozygous diploid potato. First, four different Rpi genes, which were derived from S. avilesii, S. tarijense, S. venturii and S. chacoense, were introduced in three highly homozygous (e.g., with homozygosity scores as 88%, 88% and 79%) diploid potato breeding lines via marker-assisted introgression. After two backcrosses supported with marker selection and one selfing, parents with the homozygous resistance allele were produced and were used for crossing. The two backcrossing steps ensured the removal of most of the genome of the donor wild species parent, and the selfing step helped to remove any remaining unwanted introgressions. The hybrids were made by crossing two homologous parents, each having a different Rpi gene. Finally, hybrids with single Rpi gene (Rpi-avv1, Rpi-tar1, Rpi-vnt1.1, Rpi-chc1.1) and hybrids with combination of two Rpi genes (Rpi-avv1 and Rpi-chc1, Rpi-avv1 and Rpi-tar1, Rpi-avv1 and Rpi-vnt1.1, Rpi-tar1 and Rpi-vnt1.1, Rpi-vnt1.1 and Rpi-chc1) were obtained. The hybrids were tested for resistance to P. infestans in three separate field trials. The hybrids with two resistance genes were more resistant compared to the ones with the respective single Rpi gene. Hybrid breeding with the use of existing elite material and marker-assisted introgression allows obtaining resistant plants in a relatively short time (Su et al. 2020).

An alternative approach involves genetic engineering, which significantly shortens the long time to introgress resistance genes through breeding cycle for tetraploid potato plants (Van Esse et al. 2020). One such method is cisgenesis, i.e., the introduction of genetic material from the same species or from a crossable species (Hou et al. 2014). Transformed potato cultivars obtained by genetic engineering are shown in Table 6. Single Rpi genes have been introduced into several potato cultivars. Rpi-vnt1.1 or Rpi-sto1 have been introduced separately into the cultivars Atlantic, Bintje and Pota9 (Jo et al. 2014). The obtained transgenic plants were evaluated for late blight resistance in detached leaf assay and agroinfiltration assay using five P. infestans isolates. Transgenic Atlantic, Bintje and Pota9 with Rpi-sto1 were resistant to all tested isolate except pic99189. Transgenic Atlantic and Bintje with Rpi-vnt1.1 gene were resistant to all tested isolate except EC1 (Jo et al. 2014). Rpi-vnt1.1 and Rpi-mcq1 have been transformed separately into the cultivar Désirée and tested in field experiment (Jones et al. 2014). All transgenic plants with the Rpi-mcq1 gene were susceptible to late blight. Transformed Désirée plants with the Rpi-vnt1.1 gene remain fully resistant to P. infestans or have reduced disease severity compared to susceptible controls (Jones et al. 2014). In another study, whole-plant resistance assays were carried out in the confined biosafety greenhouse to evaluate the late blight resistance of the Désirée plants transformed with Rpi-vnt1 (Roman et al. 2017). Unexpectedly, 5 out of 52 transgenic events showed resistance to two Peruvian P. infestans isolates belonging to the EC-1 lineage. As reported previously, a different isolate of the EC-1 lineage (isolate EC1 from Ecuador, the only one tested from the lineage), in which the cognate effector gene Avrvnt1 was not expressed, was able to break the resistance conditioned by the Rpi-vnt1 gene in transformed Désirée plants based on a detached leaf assay (Foster et al. 2009; Pel et al. 2009. The authors inferred the EC-1 isolates used in Peru may differ in virulence within the EC-1 lineage (Roman et al. 2017).

The resistance provided by a single Rpi gene can be quickly overcome by an adapted P. infestans strain. A promising breeding approach involves pyramiding several different Rpi genes in one potato cultivar. In 2006, a Durable Resistance in potato against Phytophthora (DuRPh) project has been initiated at Wageningen University and aimed at developing durable resistance in existing potato cultivars by pyramiding Rpi genes via cisgenesis (Haverkort et al. 2009, 2016). Transgenic Désirée potato plants with two Rpi genes (Rpi-blb3:sto1, Rpi-vnt1:ch1 or Rpi-vnt1:sto1) and with three Rpi genes (Rpi-blb3:vnt1:sto1) have been produced. These plants have not been infected by P. infestans during the two-year field tests (Haverkort et al. 2016). Transgenic potato cultivar Désirée with three Rpi genes (Rpi-blb3, Rpi-vnt1.1 and Rpi-sto1) was obtained also by Haesaert et al. (2015). Plants with these genes showed complete resistance to late blight during two-year field trials in Belgium and the Netherlands (Haesaert et al. 2015). In another study, successful stacking of RB and Rpi-blb2 from S. bulbocastanum and Rpi-vnt1.1 from S. venturii in the susceptible potato cultivars Désirée and Victoria resulted in complete resistance to late blight (Ghislain et al. 2019). Compared with
those with a single \textit{Rpi} gene (\textit{RB}, \textit{Rpi-blb2} or \textit{Rpi-vnt1.1}), transgenic plants with three \textit{Rpi} genes showed a significantly higher level of resistance. In three-year field trials involving transgenic plants in southwestern Uganda, no isolate of \textit{P. infestans} that could overcome the resistance provided by the three \textit{Rpi} genes was found (Ghislain et al. 2019). The same three \textit{Rpi} genes, \textit{RB}, \textit{Rpi-blb2} and \textit{Rpi-vnt1.1}, were stacked in two popular Kenyan potato cultivars Tigoni and Shangi (Webi et al. 2019).

The level of resistance to late blight in transgenic plants not only is dependent on the recognition spectrum and activity of \textit{Rpi} gene(s), but also can depend on the genetic background of the recipient genotype (Shandil et al. 2017). Potato F1 progenies, obtained from crossing transgenic cultivar Katahdin carrying an \textit{RB} gene with non-transgenic susceptible cultivar Kufri Bahar or resistant cultivar Kufri Jyoti, were screened for resistance to late blight by whole plants assay. The cultivar Kufri Jyoti is late blight resistant, with resistance inherited from \textit{S. demissum} containing three \textit{Rpi} genes (\textit{R3}, \textit{R4}, \textit{R7}). A high level of resistance was observed in the 85.2\% of progeny plants from the cross with resistant cultivar Kufri Jyoti, while only 36.4\% of progeny were resistant in a cross with the susceptible one. A few F1 genotypes with the \textit{RB} transgene were highly resistant to late blight, while others were completely susceptible, despite having the \textit{RB} transgene. The authors explain that by the effects of diversity in genetic background of parental cultivars including the genes involved in signal transduction cascade and encoding pathogenesis-related proteins (Shandil et al. 2017).

Gene editing techniques are an alternative approach to introducing \textit{Rpi} genes into potato cultivar by conventional methods or by genetic engineering. Gene editing can be used to repair non-functional alleles of \textit{Rpi} genes. In the study by Van Doorn (2020), a non-functional allele of the \textit{Rpi-chc1} was used from two, susceptible to late blight, cultivars

\textit{Rpi} gene(s)	Transformed cultivar	Assessment of resistance	References	
		Laboratory assay	Field trials	
\textit{Rpi-vnt1.1}	Atlantic	R	NA	Jo et al. (2014)
	Bintje	R	NA	
	Potae9	R	NA	
\textit{Rpi-sto1}	Atlantic	R	NA	
	Bintje	R	NA	
	Potae9	R	NA	
\textit{Rpi-nt1.1}	Désirée	NA	R	Jones et al. (2014)
\textit{Rpi-mcq1}	Désirée	NA	S	
\textit{Rpi-blb2}	Désirée	R	NA	Orbegozo et al. (2016)
\textit{Rpi-sto1}	Désirée	R	R	Haesaert et al. (2015)
\textit{Rpi-vnt1.1}	Désirée	R	R	
\textit{Rpi-blb3; Rpi-vnt1; Rpi-sto1}	Désirée	R	R	Haverkort et al. (2016)
\textit{Rpi-blb3; Rpi-sto1}	Désirée	NA	R	
\textit{Rpi-vnt1; Rpi-chc1}	Désirée	NA	R	
\textit{Rpi-vnt1; Rpi-sto1}	Désirée	NA	R	
\textit{Rpi-blb3; Rpi-vnt1; Rpi-sto1}	Désirée	NA	R	
\textit{Rpi-vnt1.1}	Désirée	R	NA	Roman et al. (2017)
\textit{RB; Rpi-blb2; Rpi-vnt1.1}	Désirée	NA	R	Ghislain et al. (2019)
	Victoria	NA	R	
\textit{RB; Rpi-blb2; Rpi-vnt1.1}	Tigoni	R	NA	Webi et al. (2019)
	Shangi	R	NA	
\textit{Rpi-ber1.1_94-2031}	Désirée	R	NA	Monino-Lopez et al. (2021)
\textit{Rpi-tar1.1_852-5}	Désirée	NA	R	
\textit{Rpi-chc1.1}	Désirée	R	NA	
\textit{Rpi-amr1-2272}	Maris Piper	R	NA	Witek et al. (2021)
\textit{Rpi-amr1-2273}	Maris Piper	R	NA	

R, resistant; S, susceptible; NA, not available

Table 6 Resistance genes against \textit{Phytophthora infestans} (\textit{Rpi} genes) transferred to potato cultivars by genetic engineering
Colombia and Altus. A chimeric receptor was created with exchanges in the LRR domain between the susceptible allele of the Rpi-chc1 gene and the functional Rpi-chc1.1 and Rpi-chc1.2 alleles from S. chacoense. This resulted in the restoration of the recognition of P. infestans effectors Avr-chc1.1 and Avr-chc1.2, which was associated with resistance to late blight (Van Doorn 2020).

Currently, transgenic potato is not available on the European market. In 2003, the transgenic potato cultivar Fortuna carrying Rpi-blb1 and Rpi-blb2 from S. bulbocastanum, which was produced by a German company BASF, was not approved for introduction in Europe (Storck et al. 2012). The American company Simplot developed Innate technology, which is used to improve known potato cultivars through genetic engineering. The second-generation Innate transgenic potato lines containing Rpi- vnt1.1 are resistant to P. infestans (Richael 2021).

In conclusion, searching for new Rpi genes among potato wild relatives and then applying these genes in potato cultivars represents an alternative to the use of fungicides for late blight control. Due to rapid evolution of new virulent isolates of P. infestans, potato breeding for durable late blight resistance is challenging. The use of Rpi genes recognizing conservative, essential effectors of P. infestans and the construction of Rpi gene pyramids may help to achieve durable, broad-spectrum late blight resistance, which could be accelerated through genetic engineering.

Author contribution statement PP performed the literature analysis and wrote the manuscript. JS and ZY reviewed and corrected the manuscript. All authors contributed to the conception and design of the review.

Funding The research leading to these results has received funding from the Norwegian Financial Mechanism 2014–2021, project DivGene: UMO-2019/34/H/NZ9/00559. The work was supported by a statutory subvention from Polish Ministry of Education and Science for Plant Breeding and Acclimatization Institute-National Research Institute. In particular, PP was supported by project for young scientists 1-1-00-1-04 MN.

Availability of data and material Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aguilera-Galvez C, Champouret N, Rietman H, Lin X, Wouters D, Chu Z, Jones JDG, Vossen JH, Visser RGF, Wolters PJ, Vleeshouwers V (2018) Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato. Stud Mycol 89:105–115. https://doi.org/10.1016/j.simyco.2018.01.002

Aguilera-Galvez C, Chu Z, Omy SH, Wouters D, Gilroy EM, Vossen JH, Visser RGF, Birch P, Jones JDG, Vleeshouwers VGAA (2020) The Rpi-mcg1 resistance gene family recognizes Avr2 of Phytophthora infestans but is distinct from R2. bioRxiv. https://doi.org/10.1101/2020.08.01.331181

Akino S, Takemoto D, Hosaka K (2014) Phytophthora infestans: a review of past and current studies on potato late blight. J Gen Plant Pathol 80:24–37. https://doi.org/10.1007/s10327-013-0495-x

Antonova O, Klimenko N, Evdokimova Z, Kostina L, Gavrilenko T (2018) Finding RB/Rpi-blb1/Rpi-sto1-like sequences in conventionally bred potato varieties. Vavilov J Genet Breed 22:693–702. https://doi.org/10.18699/vj18.412

Armstrong MR, Whisson SC, Pritchard L, Bos JL, Venter E, Avrova AO, Rehmany AP, Böhme U, Brooks K, Cherevach I, Hamlin N, White B, Fraser A, Lord A, Quail MA, Churcher C, Hall N, Berriman M, Huang S, Kamoun S, Beynon JL, Birch PRJ (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci 102:7766–7771. https://doi.org/10.1073/pnas.0500113102

Armstrong MR, Vossen J, Lim TY, Hutten RCB, Xu J, Strachan SM, Harrower B, Champouret N, Gilroy EM, Hein I (2019) Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol J 17:540–549. https://doi.org/10.1111/pbi.12997

Bachmann-Pfabe S, Hammann T, Kruse J, Dehmer KJ (2019) Screening of wild potato genetic resources for combined resistance to late blight on tubers and pale potato cyst nematodes. Euphytica 215:48. https://doi.org/10.1007/s10681-019-2364-y

Bakker E, Born T, Prins P, van der Vossen E, Uenk G, Arens M, de Boer J, van Eck H, Muskens M, Vossen J, van der Linden G, van Ham R, Klein-Lankhorst R, Visser R, Smant G, Bakker J, Govers A (2011) A genome-wide genetic map of NB-LRR disease resistance loci in potato. Theor Appl Genet 123:493–508. https://doi.org/10.1007/s00122-011-1602-z

Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 30:361–371. https://doi.org/10.1046/j.1365-313x.2001.01292.x

Black W, Mastenbroek C, Mills WR, Peterson LC (1953) A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica 2:173–179. https://doi.org/10.1007/BF00053724

Bonde R, Murphy EF (1952) Resistance of certain tomato varieties and crosses to late blight. Maine Agr Exp Stu Bull 497:5–15
Bos JI, Armstrong MR, Gilroy EM, Boevink PC, Hein I, Taylor RM, Zhendong T, Engelhardt S, Vetukuri RR, Harrower B, Dixeleus C, Bryan G, Sadanandom A, Whisson SC, Kamoun S, Birch PRJ (2010) *Phytophthora infestans* effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. *Proc Natl Acad Sci* 107:9909–9914. https://doi.org/10.1073/pnas.0914480107

Bradshaw JE, Bryan GJ, Lees AK, Solomon-Blackburn Bos JI, Armstrong MR, Gilroy EM, Boevink PC, Hein I, Taylor RM, Planta (2022) 255:127

Brown-Donovan KM, Porter GA, Tan EH (2021) Late blight resistance mediated by recognition of *Phytophthora infestans* effector gene AVR3a in potato. *Front Plant Sci* 12:710468. https://doi.org/10.3389/fpls.2021.710468

El-Kharbotly A, Palomino-Sánchez C, Salaminii F, Jacobsen E, Gebhardt C (1996) R6 and R7 alleles of potato conferring race-specific resistance to *Phytophthora infestans* (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI. *Theor Appl Genet* 92:880–884. https://doi.org/10.1007/bf00221901

Elnahal ASM, Li J, Wang X, Zhou C, Wen G, Wang J, Lindqvist-Kreuze H, Meng Y, Shan W (2020) Identification of natural resistance mediated by recognition of *Phytophthora infestans* effector gene AVR3a in potato. *Front Plant Sci* 11:919. https://doi.org/10.3389/fpls.2020.00919

Foster SJ, Park TH, Pel M, Brigneti G, Sliwka J, Jagger L, Van der Vossen E, Jones JD (2009) *Rpi-vnt1.1*, a *Tm-2*-homolog from *Solanum venturii*, confers resistance to potato late blight. *Plant Microbe Interact* 22:589–600. https://doi.org/10.1094/PMPI-22-5-0589

Gallegly M, Marvel M (1955) Inheritance of resistance to tomato race 0 of *Phytophthora infestans*. *Phytopathology* 45:103–109

Gao C, Xu H, Huang J, Sun B, Zhang F, Savage Z, Duggan C, Yan T, Wu C, Wang Y, Vleeshouwers VGAA, Kamoun S, Bozkurt TO, Dong S (2020) Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. *Proc Nat Acad Sci USA* 117:9613–9620. https://doi.org/10.1073/pnas.2002759117

Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schuler K (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potato tubers with quantitative variation of resistance to late blight and maturity type. *Mol Breed* 12:591–607. https://doi.org/10.1023/B:MOBL.0000012878.89855.d4

Ghosh S, Alvarado L, Anderson VL, Armstrong MR, Avotha G, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JJ, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti ML, Tovar JC, Gamboa S, Forbes GA, Kreuze JF, Breyke A, Kiggundu A (2019) Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. *Plant Biotechnol* 17:1119–1129. https://doi.org/10.1111/pbi.13042

Golms TM, Sikkema A, Gros J, Pena RM, Van der Berg RG, Van der Weerd GM, Mariani C, Allefs JJ (2010) Identification of a resistance gene *Rpi-dlc1* to *Phytophthora infestans* in European accessions of *Solanum dulcamara*. *Theor Appl Genet* 120:797–808. https://doi.org/10.1007/s00122-009-1202-3

Golms TM, Van de Geest H, Gros J, Sikkema A, D’Agostino N, Nap JP, Mariani C, Allefs JJ, Rieu I (2013) Comparative next-generation mapping of the *Phytophthora infestans* resistance gene *Rpi-dlc2* in a European accession of *Solanum dulcamara*. *Theor Appl Genet* 126:59–66. https://doi.org/10.1007/s00122-012-1959-7

Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaello S, Torto-Alarico T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avotha G, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JJ, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti ML, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad L, Costanza
DH, Jones AM, Jones JD, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC, McDonald H, McWalters J, Meijer HJ, Morgan W, Morris PF, Munro CA, O’Neill K, Osama-Giraldo M, Pinzón A, Pritchard L, Ramasahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savadori A, Schornack S, Schwartz DC, Schumann UD, Schussengruber B, Seyler L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJ, Pirumutari V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PR, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen *Phytophthora infestans*. Nature 461:393–398. https://doi.org/10.1038/nature08358

Haaeert G, Vossen IH, Custers R, De Loose M, Haverkort A, Herembans B, Hutten K, Kussel G, Landschoot S, Van Droogenbroeck B, Visser RGF, Ghyselen G (2015) Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop Prot 77:163–175. https://doi.org/10.1016/j.cropro.2015.07.018

Hao D, Yang J, Long W, Yi J, VanderZaag P, Li C (2018) Multiple *R* genes and phenolic compounds synthesis involved in the durable resistance to *Phytophthora infestans* in potato cv. Cooperation 88. Agri Gene 8:28–36. https://doi.org/10.1016/j.aggene.2018.04.001

Haverkort AJ, Struik PC (2015) Yield levels of potato crops: recent achievements and future prospects. Field Crop Res 182:76–85. https://doi.org/10.1016/j.fcr.2015.06.002

Haverkort AJ, Struik PC, Visser RGF, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by *Phytophthora infestans*. Potato Res 52:249–264. https://doi.org/10.1007/s11540-009-9136-3

Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Vossen JH, Visser RGF (2016) Durable late blight resistance in potato through dynamic varieties obtained by cgsisense: scientific and societal advances in the DuRPh project. Potato Res 59:35–66. https://doi.org/10.1007/s11540-015-9312-6

Hawkes J (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London

Hein I, Gilroy EM, Armstrong MR, Birch PR (2009) The zig-zag-zig in oomycete–plant interactions. Mol Plant Pathol 10:547–562. https://doi.org/10.1111/j.1364-7370.2009.00547.x

Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88:2101–2112. https://doi.org/10.2307/358435

Hou H, Atlithn N, Lu ZX (2014) New biotechnology enhances the application of ciganesis in plant breeding. Front Plant Sci 5:389. https://doi.org/10.3389/fpls.2014.00389

Huang S, Vleeshouwers VGAA, Werijs JS, Hutten RC, Van Eck HJ, Visser RG, Jacobsen E (2004) The *R* resistance to *Phytophthora infestans* in potato is conferred by two closely linked *R* genes with distinct specificities. Mol Plant Microbe Interact 17:428–435. https://doi.org/10.1094/mpi.2004.17.4.428

Huang S, Van der Vossen EA, Kuang H, Vleeshouwers VGAA, Zhang X, Borm TJ, Van Eck HJ, Baker B, Jacobsen E, Visser RG (2005) Comparative genomics enabled the isolation of the *R3a* late blight resistance gene in potato. Plant J 42:251–261. https://doi.org/10.1111/j.1365-313X.2005.02365.x

Huang G, Liu Z, Gu B, Zhao H, Jia J, Fan G, Meng Y, Du Y, Shan W (2019) An RXLR effector secreted by *Phytophthora parasitica* is a virulence factor and triggers cell death in various plants. Mol Plant Pathol 20:356–371. https://doi.org/10.1111/mpp.12760

Huang S (2005) Discovery and characterization of the major late blight resistance complex in potato: genomic structure, functional diversity, and implications. PhD thesis, Wageningen University

Jo KR, Arens M, Kim TY, Jongsma MA, Visser RG, Jacobsen E, Vossen JH (2011) Mapping of the *S. demissum* late blight resistance gene *R9* to a new locus on chromosome IX. Theor Appl Genet 123:1331–1340. https://doi.org/10.1007/s00122-011-1670-0

Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M, Jongsmma MA, Visser RG, Jacobsen E, Vossen JH (2014) Development of late blight resistant potatoes by cigsaw stacking. BMC Biotechnol 14:50. https://doi.org/10.1186/1472-6750-14-50

Jo KR, Visser RG, Jacobsen E, Vossen JH (2015) Characterization of the late blight resistance in potato differential *MaR9* reveals a qualitative resistance gene, *R9u*, residing in a cluster of *Tm*-2 homologs on chromosome IX. Theor Appl Genet 128:931–941. https://doi.org/10.1007/s00122-015-4280-6

Jo KR (2013) Unveiling and deploying durability of late blight resistance in potato from natural stacking to cigsaw stacking. PhD thesis, Wageningen University

Jones JDG, Witek K, Verweij W, Jupe F, Cooke D, Dorling S, Tomlinson L, Smoker M, Perkins S, Foster S (2014) Elevating crop disease resistance with cloned genes. Philos Trans R Soc Lond B Biol Sci 369:20130087. https://doi.org/10.1098/rstb.2013.0087

Jones JDG, Foster S, Zhu C, Park T, Van der Vossen E, Pel M, Visser R (2009) Late blight resistance genes and methods. WO/2009/013468A2

Jupe F, Pritchard L, Etherington GJ, Mackenzie K, Cock PJ, Wright F, Sharma SK, Boliser D, Bryan GJ, Jones JD, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genom 13:75. https://doi.org/10.1186/1471-2164-13-75

Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, Cardle L, Hein I, Jones JDG (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76:530–544. https://doi.org/10.1111/pj.12307

Kamoun S, Furzer O, Jones JD et al (2015) The top 10 oomycete pathogens in molecular plant pathology. Mol Plant Pathol 16:413–434. https://doi.org/10.1111/mpp.12190

Karki HS, Halterman DA, Endelman JB (2021a) Characterization of a late blight resistance gene homologous to *R2* in potato variety Payette Russet. Am J Potato Res 98:78–84. https://doi.org/10.1007/s12230-020-10888-0

Karki HS, Jansky SH, Halterman DA (2021b) Screening of wild potatoes identifies new sources of late blight resistance. Plant Dis 105:368–376. https://doi.org/10.1094/pdis-06-20-1367-re

Keijzer P, van Buenen ET, Engelen CIM, Hutten RCB (2021) Breeding late blight resistant potatoes for organic farming—a collaborative model of participatory plant breeding: the Bioimplts project. Potato Res. https://doi.org/10.1007/s11540-021-09519-8

Khavkin EE (2015) Potato late blight as a model of pathogen-host plant coevolution. Russ J Plant Physiol 62:408–419. https://doi.org/10.1134/S1021443715030103

Khiuti A, Spooner DM, Jansky SH, Halterman DA (2015) Testing taxonomic predictivity of foliar and tuber resistance to *Phytophthora infestans* in wild relatives of potato. Phytopathology 105:1198–1205. https://doi.org/10.1094/phyto-02-15-0046-r

Kim JH, Lee HR, Jo KR, Mortazavian SM, Huigen DJ, Evenhuis B, Kessel G, Visser RG, Jacobsen E, Vossen JH (2012) Broad spectrum late blight resistance in potato differential set plants *MaR8* and *MaR9* is conferred by multiple stacked *R* genes. Theor Appl Genet 124:923–935. https://doi.org/10.1007/s00122-011-1757-7

Kuhl JC, Hanneman RE Jr, Havey MJ (2001) Characterization and mapping of *Rpi1*, a late-blight resistance locus from diploid (*IEBN*) *Mexican Solanum pinnatisectum*. Mol Genom 265:977–985. https://doi.org/10.1007/s00438-00100490

Lenman M, Ali A, Mühltenbock P, Carlson-Nilsson U, Liljeroth E, Champouret N, Vleeshouwers VG, Andreasson E (2016)
Effector-driven marker development and cloning of resistance genes against *Phytophthora infestans* in potato breeding clone SW93-1015. Theor Appl Genet 129:105–115. https://doi.org/10.1007/s00122-015-2613-y

Li G, Huang S, Guo X, Li Y, Yang Y, Guo Z, Huang M, Huang G, Schäfer P, Meng Y, Tyler BM, Shan W (2019) Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple *Phytophthora* Avr3a-like effectors. New Phytol. https://doi.org/10.1111/nph.16139

Lin X, Olave-Achury A, Heal R, Witek K, Karki H, Song T, Wu CH, Merk HL, Foolad MR (2012) Parent–offspring correlation estimate of *Phytophthora* resistance genes show sequence and functional divergence. Mol Plant Microbe Interact 24:1132–1142. https://doi.org/10.1094/ mpmi-11-10-0276

Li T, Wang Q, Feng R, Li L, Ding L, Vleeshouwers VGAA, van der Vossen EAG, Qu D, Visser RGF, Jacobsen E, Vossen JH (2011) Cloning and characterization of R3b; members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Mol Plant Microbe Interact 24:1132–1142. https://doi.org/10.1094/ mpmi-11-10-0276

Lokossou AA, Park TH, Van Arkel G, Arens M, Ruyter-Spira C, Morales J, Whisson SC, Birch PR, Visser RG, Jacobsen E, Van der Vossen EA (2009) Exploiting knowledge of *R*/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol Plant Microbe Interact 22:630–641. https://doi.org/10.1094/ mpmi-22-6-0630

Lokossou A (2010) Dissection of the major late blight resistance cluster on potato linkage group IV. PhD thesis, Wageningen University

Lozano R, Hamblin MT, Prochnik S, Jannink JL (2015) Identification and distribution of the NBS-LRR gene family in the *Casava* genome. BMC Genom 16:360. https://doi.org/10.1186/ s12864-015-1554-9

Machida-Hirano R (2015) Diversity of potato genetic resources. Breed Sci 65:26–40. https://doi.org/10.1270/jsbbs.65.26

McKelman JF (1969) Races of *Phytophthora infestans* occurring in Great Britain. Trans Br Mycol Soc 53:417–423. https://doi.org/10.1016/ S0007-1536(69)80099-9

McKelman JF, Black W (1966) New *R* genes in *Solanum demissum* lindl. And their complementary races of *Phytophthora infestans* (Mont.) de bary. Euphytica 15:199–203. https://doi.org/10.1007/ BF00022324

Martynov V, Chizhik V (2020) Genetics of pathogen–host interaction by the example of potato late blight disease. Russ J Genet 56:261–268. https://doi.org/10.1134/S1022795420030102

Mastenbroek C (1952) Over de differentiatie van *Phytophthora* in *Solanum* demissum Lindl. PhD thesis, Fytopathologie, Landbouwhogeschool Wageningen, Wageningen, The Netherlands

Merk HL, Foolad MR (2012) Parent–offspring correlation estimate of late blight resistance conferred by an accession of *Solanum berthaultii* are located on chromosome 10. Euphytica 165:269–278. https://doi.org/10.1007/ s10681-008-9784-4

Pel MA, Foster SJ, Park TH, Rietman H, Van der Vossen EAG, Jacobsen E, Visser RGF, Van Der Vossen EAG (2009) Mapping and cloning of late blight resistance genes from *Solanum venturii* using an interspecific candidate gene approach. Mol Plant Microbe Interact 22:601–615

Pérez W, Salas A, Raymundo R, Huaman Z, Nelson R, Bonierbale M (1999) Evaluation of wild potato species for resistance to late blight. CIP Program Rep 2000:49–62

Pich J, Tatarauskas B, Lebecka R, Śliwka J, Zimnoch-Guzewska E, Flis B (2015) R2-like gene contributes to resistance to *Phytophthora infestans* in polish potato cultivar Bzura. Am J Potato Res 92:350–358. https://doi.org/10.1007/s12230-015-9437-9

Poczai P, Hyvönen J (2010) On the origin of *Solanum nigrum*; can networks help? Mol Biol Rep 37:1171–1185. https://doi.org/10.1007/ s11033-010-0215-y

Van Poppel PM (2010) The *Phytophthora infestans* avirulence gene *Avr4* and its potato counterpart *R4*. PhD thesis, Wageningen University

Prakash C, Trojanitz FC, Venuhuizen P, Von Haeseler A, Trojanitz B (2020) A compendium of genome-wide sequence reads from NBS (nucleotide binding site) domains of resistance genes in the common potato. Sci Rep 10:11392. https://doi.org/10.1038/ s41598-020-6784-z

Qutob D, Tedman-Jones J, Gijzen M (2006) Effector-triggered immunity by the plant pathogen *Phytophthora*. Trends Microbiol 14:470–473. https://doi.org/10.1016/j.tim.2006.09.004

Rakosy-Tican E, Thieme R, König J, Nachtgall M, Hammann T, Denes TE, Krupka K, Molnár-Láng M (2020) Introduction of two broad-spectrum late blight resistance genes, *Rpi-Bib1* and...
Rietman H, Bijsterbosch G, Cano LM, Lee HR, Vossen JH, Jacobsen E, Richael CM (2021) Development of the genetically modified Innate® potato. Plant Breed Rev 44:57–78

Rietman H, Bijsterbosch G, Cano LM, Lee HR, Vossen JH, Jacobsen E, Visser RG, Kamoun S, Vleeshouwers VGAA (2012) Qualitative and quantitative late blight resistance in the potato cultivar Sárpó Mira is determined by the perception of five distinct RXLR effectors. Mol Plant Microbe Interact 25:910–919. https://doi.org/10.1094/mppmi-01-12-0010-r

Rietman H (2011) Putting the genome sequence at work: multiple novel avirulence and potato resistance gene candidates revealed. PhD thesis, Wageningen University

Rogozina EV, Beketova MP, Muratova OA, Kuznetsova MA, Khavkin Planta (2022) 255:127

Sandbrink J, Colon L, Wolters P, Stiekema WJ (2000) Two related clonal lineage EC-1. Plant Cell Tiss Organ Cul 131:259–268. https://doi.org/10.1007/s11240-017-1281-9

Rudkiewicz F (1985) Zaraza ziemniaka (Phytophthora infestans) Sect. Petota and Etuberosum). Syst Bot Monogr 100:240

Roman ML, Izarra M, Lindqvist-Kreuzhe H, Rivera C, Gamboa S, Tovar JC, Forbes GA, Krauze KF, Ghislain M (2017) R/Avr gene expression study of Rpi-vnl. 1 transgenic potato resistant to the Phytophthora infestans clonal lineage EC-1. Plant Cell Tiss Organ Cul 131:259–268. https://doi.org/10.1007/s11240-017-1281-9

Smyda-Dajmund P, Śliwka J, Wasilewicz-Flis I, Jakuczun H, Zimnoch-Guzowska E (2016) Genetic composition of interspecific potato somatic hybrids and autofused 4x plants evaluated by DAfT and cytoplasmic DNA markers. Plant Cell Rep 35:1345–1358. https://doi.org/10.1007/s00299-016-1966-2

Smyda-Dajmund P, Śliwka J, Wasilewicz-Flis I, Jakuczun H, Zimnoch-Guzowska E (2017) BC1 and F1 progeny from Solanum × michoacanum (+) S. tuberosum somatic hybrids, autofused 4x S. michoacanum and cultivated potato. Am J Potato Res 94:323–333. https://doi.org/10.1007/s12230-017-9568-2

Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133. https://doi.org/10.1073/pnas.1533501100

Smyda-Dajmund P, Saka In, Pich J, Janiszewska M, Smyda-Dajmund I, Śliwka J (2017) Expression of the potato late blight resistance gene Rpi-phu1 and Phytophthora infestans effectors in the compatible and incompatible interactions in potato. Phytopathology 107:740–748. https://doi.org/10.1094/phyto-09-16-0328-x

Stefanaczyk E, Pich J, Janiszewska M, Smyda-Dajmund I, Pich J, Janiszewska M, Smyda-Dajmund I, Śliwka J (2020) Marker-assisted pyramiding of potato late blight resistance genes Rpi-rzc1 and Rpi-phu1 on di- and tetraploid levels. Mol Breed 40:89. https://doi.org/10.1007/s11032-020-01169-x

Storch T, Böhme T, Schultheiss H (2012) Status and perspectives of GM approaches to fight late blight. In: Schepers HTAM (ed) Thirteenth EuroBlight workshop. PPO Publications, St. Peters burg, pp 45–48

Su Y, Viquez-Zamora M, den Uil D, Sinnige J, Kruyt H, Vossen J, Lindhout P, van Heusden S (2020) Introgression of genes for resistance against Phytophthora infestans in diploid potato. Am J Potato Res 97:33–42. https://doi.org/10.1007/s12230-019-09741-8

Tovar JC, Forbes GA, Krauze KF, Ghislain M (2017) AVR2 targets BSL family members, which act as susceptibility factors to suppress host immunity. Plant Physiol 180:571–581. https://doi.org/10.1104/pp.18.01143

Trognitz BR, Trognitz FC (2007) Occurrence of the R allele conferring resistance to late blight in potato R-gene differentials and commercial cultivars. Plant Pathol 56:150–155. https://doi.org/10.1111/j.1365-3059.2006.01489.x

Turnbull D, Wang H, Breen S, Malec M, Naqvi S, Yang L, Welsh L, Hemsley P, Zhendong T, Brunner F, Gilroy EM, Birch PRJ (2019) AVR2 targets BSL family members, which act as susceptibility factors to suppress host immunity. Plant Physiol 180:571–581. https://doi.org/10.1104/pp.18.01143

Van der Lee T, Robold A, Testa A, Van’t Klooster JW, Govers F (2001) Mapping of avirulence genes in Phytophthora infestans with amplified fragment length polymorphism markers selected by bulked segregant analysis. Genetics 157:949–956. https://doi.org/10.1093/genetics/157.3.949

Van der Vossen EAG, Sikkema A, Hekkert B, Groen J, Stevens P, Mus- kens M, Wouters D, Pereira A, Steekwa M, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882. https://doi. org/10.1046/j.1365-313x.2003.01934.x

Rpi-Blb3, from Solanum bulbocastanum dun plus race-specific R genes into potato pre-breading lines. Front Plant Sci 11:699. https://doi.org/10.3389/fpls.2020.00699

Wasilewicz-Flis I, Zimnoch-Guzowska E (2006) The novel, major locus Rpi-moc1 confers broad spectrum resistance to potato late blight. Mol Breed 15:353–365. https://doi.org/10.1007/s11032-005-0090-8

Su Y, Viquez-Zamora M, den Uil D, Sinnige J, Kruyt H, Vossen J, Lindhout P, van Heusden S (2020) Introgression of genes for resistance against Phytophthora infestans in diploid potato. Am J Potato Res 97:33–42. https://doi.org/10.1007/s12230-019-09741-8

Tomczyńska I, Stefaniaczyk E, Chmielarz M, Karasiewicz B, Kamiński P, Jones JDG, Lees AK, Śliwka J (2014) A locus conferring effective late blight resistance in potato cultivar Sárpó Mira maps to chromosome XI. Theor Appl Genet 127:647–657. https://doi.org/10.1007/s00299-013-1422-5

Tovar JC, Forbes GA, Krauze KF, Ghislain M (2017) AVR2 targets BSL family members, which act as susceptibility factors to suppress host immunity. Plant Physiol 180:571–581. https://doi.org/10.1104/pp.18.01143

Van der Lee T, Robold A, Testa A, Van’t Klooster JW, Govers F (2001) Mapping of avirulence genes in Phytophthora infestans with amplified fragment length polymorphism markers selected by bulked segregant analysis. Genetics 157:949–956. https://doi.org/10.1093/genetics/157.3.949

Van der Vossen EAG, Sikkema A, Hekkert B, Groen J, Stevens P, Muskens M, Wouters D, Pereira A, Steekwa M, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882. https://doi.org/10.1046/j.1365-313x.2003.01934.x

Springer

Planta (2022) 255:127

Page 19 of 20 127
Van der Vossen EAG, Gros J, Sikkema A, Musken M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-bib2 gene from *Solanum bulbocastanum* is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. *Plant J* 44:208–222. https://doi.org/10.1111/j.1365-313X.2005.02527.x

Van Doorn B (2020) Editing of inactive late blight resistance genes in *Solanum tuberosum*. PhD thesis, Wageningen University.

Van Esse HP, Reuber TL, Van der Does D (2020) Genetic modification of inactive late blight resistance genes in *Solanum tuberosum*. PhD thesis, Wageningen University.

Van der Vossen EAG, Gros J, Sikkema A, Musken M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-bib2 gene from *Solanum bulbocastanum* is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. *Plant J* 44:208–222. https://doi.org/10.1111/j.1365-313X.2005.02527.x

Van Doorn B (2020) Editing of inactive late blight resistance genes in *Solanum tuberosum*. PhD thesis, Wageningen University.

Van Esse HP, Reuber TL, Van der Does D (2020) Genetic modification of inactive late blight resistance genes in *Solanum tuberosum*. PhD thesis, Wageningen University.

Witek K, Lin X, Karki HS et al (2021) A complex resistance locus in *Solanum americanum* recognizes a conserved *Phytophthora* effector. *Nat Plants* 7:198–208. https://doi.org/10.1038/s41477-021-00854-9

Yang L, Wang D, Xu Y, Zhao H, Wang L, Cao X, Chen Y, Chen Q (2017) A new resistance gene against potato late blight originating from *Solanum phureja* located on potato chromosome 7. Front Plant Sci 8:1729. https://doi.org/10.3389/fpls.2017.01729

Zhang C, Liu B, Huang G, Tian Y, Quan J, Lindqvist-Kreuze H, Shan W (2017) Conserved RXLR effector genes of *Phytophthora infestans* expressed at the early stage of potato infection are suppressive to host defense. Front Plant Sci 8:2155. https://doi.org/10.3389/fpls.2017.02155

Zhang C, Liu B, Huang G, Tian Y, Quan J, Lindqvist-Kreuze H, Shan W (2017) Conserved RXLR effector genes of *Phytophthora infestans* expressed at the early stage of potato infection are suppressive to host defense. Front Plant Sci 8:2155. https://doi.org/10.3389/fpls.2017.02155

Zhu S, Vossen JH, Bergervoet M, Nijenhuis M, Kodde L, Kessel GJ, Vleeshouwers V, Visser RG, Jacobsen E (2015) An updated consensus genome of *Solanum tuberosum* and allelic variation in broad-spectrum resistance genes. *Theor Appl Genet* 127:1353–1364. https://doi.org/10.1007/s00122-014-2303-1

Zotenya VM (2020) Late blight resistance of wild potato species under field conditions in the Northwest of Russia. Proc Appl Bot Genet Breed 180:159–169. https://doi.org/10.30901/2227-8834-2019-4-159-169

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.