EXTREMAL K-CONTACT METRICS

MEHDI LEJMI AND MARKUS UPMEIER

Abstract. Extending a result of He to the non-integrable case of K-contact manifolds, it is shown that transverse Hermitian scalar curvature may be interpreted as a moment map for the strict contactomorphism group. As a consequence, we may generalize the Sasaki-Futaki invariant to K-contact geometry and establish a number of elementary properties.

Moreover, we prove that in dimension 5 certain deformation-theoretic results can be established also under weaker integrability conditions by exploiting the relationship between J-anti-invariant and self-dual 2-forms.

1. Introduction

On a symplectic manifold \((M, \omega)\), consider the space \(\mathcal{AC}(\omega)\) of all \(\omega\)-compatible almost-complex structures \(J\) and the subspace \(\mathcal{C}(\omega)\) of integrable ones. A crucial observation due to Fujiki \cite{11} is that \(\mathcal{C}(\omega)\) may be viewed as an infinite-dimensional Kähler manifold and that the natural action of the group of Hamiltonian symplectomorphisms admits a moment map, associating to a complex structure \(J\) the scalar curvature of the metric \(g = \omega(\cdot, J\cdot)\). An important generalization of this result to \(\mathcal{AC}(\omega)\), the non-integrable case, was established by Donaldson \cite{10}.

The critical points of the square-norm of this moment map give canonical representatives of almost-complex structures \(J\) (corresponding to metrics) called extremal almost-Kähler metrics \cite{2, 20}. These metrics are a natural extension of Calabi’s extremal Kähler metrics \cite{7, 8}.

Recently, He \cite{21} introduced a similar moment map picture to Sasakian geometry, which may be viewed as an odd-dimensional counterpart of Kähler geometry. The first goal of this paper is to generalize in Theorem 16 the result of He to the non-integrable case (so-called K-contact structures), as conjectured in \cite[Remark 4.3]{21}. The moment map now takes a K-contact structure to its transverse Hermitian scalar curvature.

We define extremal K-contact metrics again as critical points. Theorem \cite{16} has a number of consequences (such as a K-contact Futaki invariant \cite{5, 6, 13}), which we investigate in Sections \cite{3, 6}. These metrics appear as natural extensions of extremal Sasakian metrics, introduced by Boyer–Galicki–Simanca \cite{5, 6} and motivated by the examples of irregular Sasaki-Einstein metrics (see for instance \cite{19}).

In Sections \cite{3, 6} we consider the deformation-theoretic behaviour of extremal K-contact metrics, leading to the notion of a semi-Sasakian structure. As opposed to the integrable case, our considerations are limited to dimension 5, as we exploit the relationship between J-anti-invariant and self-dual 2-forms. We also generalize the transverse \(\partial\bar{\partial}\)-Lemma \cite{22} to the K-contact case.

Acknowledgements: The first author is very grateful to Christina Tønnesen-Friedman and Charles Boyer for their suggestions on how to construct irregular...
extremal Sasakian metrics. Both authors are thankful to Joel Fine and Weiyong He for several useful discussions.

2. Preliminaries

2.1. K-contact structures. Let (M, η) be a contact manifold of dimension $2n+1$, where η is the contact 1-form satisfying $\eta \wedge (d\eta)^n \neq 0$ at every point of M. The Reeb vector field $\xi \in \frak{x}(M)$ for η is uniquely determined by the requirements

$$\eta(\xi) = 1, \quad \iota_\xi(d\eta) = 0.$$

The corresponding distribution $\mathcal{F}_\xi = \mathbb{R}\xi \subset TM$ defines the characteristic foliation.

Denote by $\frak{Con}(M, \eta)$ the strict contactomorphism group of all diffeomorphisms f satisfying $f^* \eta = \eta$. Its Lie algebra are all vector fields X with $\frak{L}_X \eta = 0$. For M compact, the contact Hamiltonian of X is the unique basic function $f \in C^\infty_B(M)$ satisfying $\eta(X) = f$, $d\eta(X, \cdot) = -df$. This gives an identification

$$\text{Lie} \frak{Con}(M, \eta) \cong C^\infty_B(M), \quad f \leftrightarrow X_f.$$

We use it to transport the metric on $C^\infty_B(M) \subset L^2(M, dv_\eta)$ to $\text{Lie} \frak{Con}(M, \eta)$.

Definition 1. A K-contact structure (η, ξ, Φ) consists of a contact form η on M with Reeb field ξ together with an endomorphism $\Phi : TM \to TM$ satisfying

$$\Phi^2 = -\text{id}_{TM} \pm \xi \otimes \eta, \quad \mathcal{L}_\xi \Phi = 0.$$

We require also the following compatibility conditions with η:

$$d\eta(\Phi X, \Phi Y) = d\eta(X, Y), \quad d\eta(Z, \Phi Z) > 0 \quad \forall X, Y \in TM, Z \in \ker(\eta) \setminus \{0\}$$

Definition 2. Fixing η, the set of K-contact structures Φ on (M, η) is denoted K_η.

From Definition 1 one may deduce $\Phi(\xi) = 0$, $\eta \circ \Phi = 0$. Moreover, to any K-contact structure there belongs a metric $g = g_\Phi$ given by

$$g_\Phi(X, Y) = d\eta(X, \Phi Y) + \eta(X)\eta(Y).$$

The leaves of \mathcal{F}_ξ are geodesics with respect to g and the foliation is Riemannian (see [4, Section 2]). In particular, we have a transverse Levi-Civita connection D^Γ on the normal bundle $\nu = TM/\mathbb{R}\xi$. This is the unique metric, torsion-free connection on ν (i.e. $D^\Gamma_X(\pi Y) - D^\Gamma_Y(\pi X) = \pi[X, Y]$ for the projection $\pi : TM \to \nu$).

Remark 3. A Sasakian structure is a K-contact structure (η, ξ, Φ, g) satisfying the integrability condition $D^\nu_X \Phi = \xi \otimes X^s - X \otimes \eta$ ($\forall X \in \frak{x}(M)$) for the Levi-Civita connection D^g on (M, g) and where $X^s = g(\cdot, X)$. It is well-known that this is equivalent to the almost-Kähler cone $\left(\mathbb{R}_{>0} \times M, dr^2 + r^2 g, d\left(\frac{r^2}{2} \eta\right)\right)$ being Kähler.

2.2. Basic Forms and Transverse Structure. Let \mathcal{F} be a foliation on M given by an integrable subbundle $\mathcal{T}\mathcal{F}$ of TM. A p-form α on M is called basic if

$$\iota_\xi \alpha = 0, \quad \mathcal{L}_\xi \alpha = 0 \quad \forall \xi \in \Gamma(M, \mathcal{T}\mathcal{F}).$$

Let $(\Omega^*_B(M), d_B)$ denote the subcomplex of basic forms of the de Rham complex and let $C^\infty_B(M) = \Omega^*_B(M)$. The basic cohomology is $H^*_\mathcal{F}(M) = H^*(\Omega_B(M), d_B)$.

A transverse symplectic, almost-complex, or Riemannian structure is a corresponding structure on the normal bundle ν whose Lie derivative in direction of vectors tangent to the leaves vanishes (see [33]). For example, a K-contact structure (η, ξ, Φ, g) gives a transverse almost complex structure $\Phi^\mathcal{T} = \Phi|_{\nu} \in \text{End}(\nu)$, metric $g^\mathcal{T} = g_\Phi|_{\nu}$, and symplectic form $\omega^\mathcal{T} = d\eta|_{\nu} \in \Gamma(M, \Lambda^2\nu^*)$ for $\mathcal{F} = \mathcal{F}_\xi$.

Definition 4. Fixing \(\xi \) and \(J \in \text{End}(\nu) \), let \(K(\xi, J) \) be the space of all \(K \)-contact structures \((\eta, \xi, \Phi)\) with Reeb field \(\xi \) and induced transverse structure \(\Phi^T = J \).

We briefly describe a \(K \)-contact structure in local coordinates (see [21] and also \cite{15} in the Sasakian case). We may pick contact Darboux coordinates \cite{18} Theorem 2.5.1 which means the contact form may be written as

\[
\eta = dx^n + \sum_{i=1}^{n} x^{2i-1} dx^{2i}, \quad \xi = \partial/\partial x^n.
\]

Then \(\omega^T = \sum_{i=1}^{n} dx^{2i-1} \wedge dx^{2i} \). The subspace \(\ker \eta \), which identifies via \(X \mapsto X - \eta(X)X \) with the normal bundle \(TM/\mathbb{R}\xi = \nu \), is spanned by

\[
e_{2i-1} = \partial/\partial x^{2i-1}, \quad e_{2i} = \partial/\partial x^{2i} - x^{2i-1}\partial/\partial x^n \quad (1 \leq i \leq n)
\]

Using \(\ker(\eta) \perp \xi \), the metric \cite{2} has \(g_{ij} = g(e_i, e_j) = g(\partial/\partial x^i, \partial/\partial x^j) \) for \(i, j \geq 1 \) and \(g_{00} = 1 \). \(\Phi \) is described by the basic functions \(\Phi(e_i) = \Phi^j_i e_j \). We have

\[
\Phi^k_i \Phi^j_k = -\delta^k_i, \quad g_{jk} \Phi^j_k = g_{ij} \Phi^k_i.
\]

Hermitian curvature. The (transverse) Hermitian connection \(\nabla^T \) on \(\nu \) may be defined using the transverse Levi-Civita connection \(D^T \) via

\[
\nabla^T_X Y = D^T_X Y - \frac{1}{2} \Phi^T (D^T_X \Phi^T) Y.
\]

(see \cite{17} \cite{29} and \cite{16} Sections 9.2, 9.3 for details on Hermitian connections.) This gives the unique connection on \(\nu \) with \(\nabla^T h = 0 \), where \(2h = \omega^T - i\omega \), and whose torsion is the transverse Nijenhuis tensor \cite{14}. Let \(\tilde{R}^T \) be the curvature of \(\nabla^T \) and

\[
\tilde{R}^T(X, Y) = -\Lambda_{\omega}(\Phi^T \circ \tilde{R}^T_{X, Y}),
\]

where \(\Lambda_{\omega} \) denotes the adjoint of \(\omega^T \wedge - \) on basic forms, see \cite{16}. The (transverse) Hermitian scalar curvature is defined via the Hermitian Ricci 2-form \(\tilde{\rho}^T \) as

\[
s^T = 2\Lambda_{\omega}(\tilde{\rho}^T).
\]

If \(\eta \) is fixed we shall emphasize the dependence on \(\Phi \) by writing \(s^T_\Phi \).

3. Basic cohomology of \(K \)-contact structures

Throughout this section, fix a compact \(K \)-contact manifold \((M, \eta, \xi, \Phi, g)\) of dimension \(2n + 1 \) with transverse almost complex structure \(J = \Phi^T \). Our first goal is to describe in Theorem \cite{15} the space \(K(\xi, J) \) when \(2n + 1 = 5 \). This requires the development of some machinery of ‘almost Kähler geometry in the transverse,’ for example the transverse \(\partial\bar{\partial}\)-Lemma (generalizing a result of El-Kacimi-Alaoui \cite{22} to the \(K \)-contact case).

3.1. Transverse Almost Kähler Geometry. The endomorphism \(\Phi \) induces an action on basic \(p \)-forms via

\[
(\Phi \alpha)(X_1, \cdots, X_p) = (-1)^p \alpha(\Phi X_1, \cdots, \Phi X_p).
\]

For instance \(\Phi \eta = 0 \). This action preserves basic forms \(\alpha \in \Omega^*_p(M) \) since

\[
i_\xi(\Phi \alpha)(X_2, \cdots, X_p) = (-1)^p \alpha(\Phi \xi, \Phi X_2, \cdots, \Phi X_p) = 0,
\]

\[
\mathcal{L}_\xi(\Phi \alpha) = (\mathcal{L}_\xi \Phi) \alpha = 0.
\]

On \(p \)-forms we have \(\Phi^2|_{\Omega^*_p} = (-1)^p \text{id} \). This action coincides for all \(\Phi \in K(\xi, J) \) and accordingly we may speak just of \(J \)-invariant basic forms.
The twisted exterior derivative on p-forms is $d^c = (-1)^p \Phi d \Phi$ and preserves basic forms. We write $d^c_B = d^c|_{\Omega^p_B}$.

Remark 5. For a basic function f we have

$$[(d^c_B d_B + d_B d^c_B) f](X,Y) = d^c_B f(N\Phi(X,Y)),$$

using the transverse Nijenhuis tensor

$$(4) \quad N\Phi(X,Y) = [\Phi X, \Phi Y] + \Phi^2 [X,Y] - \Phi [\Phi X, Y] - \Phi [X, \Phi Y].$$

Furthermore, when the K-contact structure (η, ξ, Φ, g) is Sasakian, $N\Phi = -2\xi \otimes d\eta$ (see for instance [4, p. 204]) and thus $d^c_B d_B + d_B d^c_B = 0$.

The transverse Hodge star operator $\tilde{*}$ (see [11, p. 215] or [33]) is defined in terms of the usual Riemannian Hodge operator $*$ by setting

$$\tilde{*}\alpha = * (\eta \wedge \alpha) = (-1)^p \iota_\xi (*\alpha), \quad \alpha \in \Omega^p_B.$$

In particular, it maps basic forms to themselves and on p-forms we have

$$(\tilde{*})^2|_{\Omega^p_B} = (-1)^p.$$

As in almost Kähler geometry, define also adjoint differentials by $\delta_B = -\tilde{*} d_B \tilde{*}$ and $\tilde{\delta}^c_B = -\tilde{*} d^c_B \tilde{*}$. The basic (twisted) Laplacian is then given by

$$\Delta_B = d_B \delta_B + \delta_B d_B, \quad \Delta^c_B = d^c_B \delta_B + \delta_B d^c_B.$$

One can easily check the following (similarly to the almost-Kähler case, see [16]):

Lemma 6. Let ∇ be a torsion free connection on M with $\nabla(d\eta) = 0$. For a local, positively oriented, g-orthonormal basis ξ, e_1, \ldots, e_{2n} of TM we have

$$\delta^c_B \alpha = -\sum_{i=1}^{2n} \iota_{\Phi e_i} (\nabla_{e_i} \alpha), \quad \alpha \in \Omega^p_B.$$

(such a connection ∇ can be constructed similarly to the Levi-Civita connection.)

We introduce also the adjoint operators $L: \Omega^p_B \to \Omega^{p+2}_B$ and $\Lambda: \Omega^{p+2}_B \to \Omega^p_B$ by

$$(6) \quad L(\alpha) = \alpha \wedge d\eta, \quad \Lambda = -\tilde{*} L \tilde{*}.$$

Proposition 7. We have the Kähler identities on basic forms:

$$\ell [L, \delta^c_B] = -d_B, \quad [L, \delta_B] = d^c_B, \quad [\Lambda, \delta^c_B] = \delta_B, \quad [\Lambda, d_B] = -\delta^c_B.$$

Proof. Using $\Phi^2 \alpha = (\tilde{*})^2 \alpha = (-1)^p \alpha$, we reduce to proving only the first identity. Choose an oriented, local, g-orthonormal basis $\{\xi, e_i\}$. For a basic p-form α we
then compute, using Lemma 8 and a torsion free connection ∇ preserving dη:

\[
[\delta^c_{\infty}, L] \alpha = \delta^c_B (\alpha \wedge d\eta) - d\eta \wedge \delta^c_B \alpha \\
= \sum_{i=1}^{2n} -\iota_{\Phi_{\alpha}} (\nabla_{e_i} (\alpha \wedge d\eta)) + d\eta \wedge \iota_{\Phi_{\alpha}} (\nabla_{e_i} \alpha) \\
= \sum_{i=1}^{2n} -\iota_{\Phi_{\alpha}} (\nabla_{e_i} \alpha \wedge d\eta) + d\eta \wedge \iota_{\Phi_{\alpha}} (\nabla_{e_i} \alpha) \\
= \sum_{i=1}^{2n} -\iota_{\Phi_{\alpha}} (d\eta) \wedge \nabla_{e_i} \alpha \\
= \sum_{i=1}^{2n} e^c_i \wedge \nabla_{e_i} \alpha = d_B \alpha.
\]

Note here that the expression for dα in terms of covariant derivatives reduces on basic forms to the last equation since ∇ξ α = 0 for basic α. To see this, note that ∇(dη) = 0 implies dη(∇Xξ, Z) = 0 for any X, Z and the Reeb field ξ. Therefore ∇Xξ is a multiple of ξ, so for basic forms i∇Xξ α = 0. Using that ∇ is torsion free,

\[0 = \mathcal{L}_\xi \alpha (X_1, \ldots, X_p) = \nabla_\xi \alpha (X_1, \ldots, X_p) + \sum_{k=1}^{n} (-1)^k \alpha (\nabla X_k \xi, X_1, \ldots, \hat{X}_k, \ldots, X_p),\]

for arbitrary tangent vectors X_k, and ∇ξ α = 0 follows. □

Remark 8. It follows from Remark 6 and the Kähler identities (7) that Δ_B = Δ^c_B whenever the K-contact structure (η, ξ, Φ, g) is Sasakian.

The Laplacians (8) are basic transversely elliptic operators (see [22]). Hence they are Fredholm operators, so we get basic Green operators G_B and G^c_B with

\[G_B \Delta_B \alpha = \Delta_B G_B \alpha = \alpha + (\alpha)_H, \quad G^c_B \Delta_B \alpha = \Delta^c_B G^c_B \alpha = \alpha + (\alpha)_H,\]

where (α)_H, (α)_H^c are orthogonal projections onto Δ_B and Δ^c_B harmonic forms. Recall that G_B, Δ_B commute with d_B, δ_B, while G^c_B, Δ^c_B commute with d^c_B, δ^c_B.

Lemma 9. For any d_B-exact, d^c_B-closed α ∈ Ω^p_B there exists ψ ∈ Ω^{p-2}_B with

\[\alpha = G_B d_B d^c_B \psi = d_B G^c_B d_B d^c_B \psi.\]

Proof. This is an analogue of [22] Lemma 3.1. Decomposing α with respect to Δ_B using (8) gives α = d_B δ_B G_B α. With respect to Δ^c_B we have α = (α)_H + d^c_B δ^c_B G^c_B α. Now we apply the Kähler identities (7) to deduce

\[\alpha = d_B \delta_B G_B \alpha = d_B \delta_B G_B [(\alpha)_H + d^c_B \delta^c_B G^c_B \alpha] \\
= d_B G_B \delta_B (\alpha)_H + d^c_B G_B \delta_B d_B \delta^c_B G^c_B \alpha \\
= d_B G_B [\Lambda, d_B] (\alpha)_H - d_B G_B d_B \delta^c_B \delta^c_B G^c_B \alpha \\
= -d_B G_B d_B \delta^c_B \Lambda (\alpha)_H - d_B G_B d_B \delta^c_B \delta^c_B G^c_B \alpha \\
= d_B G_B d_B \delta^c_B (-(\Lambda) (\alpha)_H), \quad \square\]

Corollary 10. Suppose ω_1, ω_2 ∈ Ω^2_B are d_B-closed, J-invariant, and basic cohomologous. Then there exists a smooth basic function f with ω_2 = ω_1 + d_B G_B d^c_B f.

Remark 11. Corollary 10 generalizes the transverse ∂̅-Lemma [22]. Indeed, Remark 8 implies that in the Sasakian case ω_2 = ω_1 + d_B G_B d^c_B f.
3.2. The Space $\mathcal{K}(\xi, J)$ in Dimension 5. In dimension $2n + 1$ the bundle Λ^2_B of basic 2-forms decomposes into ± 1-eigenspaces of the transverse Hodge operator

$$\Lambda^2_B = \Lambda^+ B \oplus \Lambda^- B.$$

Similarly $\Lambda^2_B = \Lambda^+_B \oplus \Lambda^+ B$ into the ± 1-eigenspaces of J. In dimension 5 we have

$$\Lambda^+_B = \mathbb{R}. \, d\eta \oplus \Lambda^+ J, \quad \Lambda^- B = \Lambda^+ B,$$

where $\Lambda^+ J$ is the subbundle of J-invariant 2-forms pointwise orthogonal to $d\eta$.

We denote by b^+_B (resp. b^-_B) the dimension of the space of Δ_B-harmonic $\bar{\partial}$-self-dual (resp. $\bar{\partial}$-anti-self-dual) basic 2-forms. Since Δ_B-harmonic basic 2-forms are preserved by the $\bar{\partial}$-operator, the dimension of the basic cohomology is

$$b^2_B := \dim H^2_B(M) = b^+_B + b^-_B.$$

Let h^+_B be the dimension of the Δ_B-harmonic J-anti-invariant basic 2-forms. It is easy to see that this definition agrees with that in [9].

Proposition 12. Let (M, η, ξ, Φ, g) be a 5-dimensional compact K-contact manifold. If $h^+_B = b^+_B - 1$, then for any basic function f, $d_B \mathbb{G}_B d^-_B f$ is J-invariant.

Proof. The proof is similar to that of [28, Proposition 2], so we only sketch the argument. Beginning with (10), a computation using the Kähler identities (7) shows that the J-anti-invariant part of $d_B \mathbb{G}_B d^-_B f$ is

$$(d_B \mathbb{G}_B d^-_B f)^+_J = \frac{1}{2}(f_0 d\eta)_H - \frac{1}{4} g((f_0 d\eta)_H, d\eta) d\eta,$$

for the orthogonal projection f_0 of f onto the complement of the constants and the Δ_B harmonic part $(f_0 d\eta)_H$. The condition $h^+_B = b^+_B - 1$ implies $(f_0 d\eta)_H = 0$. \hfill \Box

Using Remark [8] we see $h^+_B = b^+_B - 1$ when the K-contact structure is Sasakian. It is well-known that an almost complex structure is integrable precisely when $(dd^c + d^c d)f$ is J-invariant for every function f. The condition $h^+_B = b^+_B - 1$ appears therefore as a semi-integrability condition.

Definition 13. A K-contact structure is semi-Sasakian if $h^+_B = b^+_B - 1$ holds.

Remark 14. Under a smooth variation of the transverse almost-complex structure J_t, the dimension h^+_B is a semi-continuous function of t. To see this, consider the family of basic transversally strongly elliptic differential operators

$$P_t : \Omega^+ B \rightarrow \Omega^+ B, \quad \alpha \mapsto (d_B^t \alpha)^+ B.$$

Here, $\Omega^+ B$ are basic J_t-anti-invariant 2-forms, $(\cdot)^+ B$ is the projection, and $d^t B$ is the adjoint of d_B with respect to the K-contact metric induced by J_t. Then h^+_B is the kernel of P_t, whose dimension is an upper semi-continuous function (using [23, Theorem 6.1], an adaptation of [24, Theorem 4.3], see also [9]).

We may now generalize [1] Proposition 7.5.7] to the semi-Sasakian case:

Theorem 15. Let (M, η, ξ, Φ, g) be a 5-dimensional compact semi-Sasakian manifold with transverse structure $J = \Phi^\top$. Then we have a diffeomorphism

$$\mathcal{K}(\xi, J) \simeq \mathcal{H} \times C^\infty_{B,0}(M) \times \mathcal{H}^1(M, \mathbb{R}),$$

for the basic functions with zero integral $C^\infty_{B,0}(M)$ and where

$$\mathcal{H} = \{ f \in C^\infty_{B,0}(M) \mid (d\eta + d_B \mathbb{G}_B d^-_B f)(X, \Phi X) > 0 \ \forall X \in \ker (\eta + \mathbb{G}_B d^-_B f) \}.$$
Theorem 16. (see [21, Remark 4.3]) The action of $\mathfrak{Con}(M, \eta)$ on K_η is Hamiltonian. The moment map $\mu: K_\eta \rightarrow \text{Lie} \mathfrak{Con}(M, \eta)^* \cong C^\infty_B(M)^*$ is

$$
\mu(\Phi)(f) = - \int_M s^\Phi(f) \, d\eta,
$$

for the transverse Hermitian scalar curvature s^Φ of Φ and where we use [11].
Proof. The infinitesimal action of $X \in \mathrm{LieCon}(M, \eta)$ at a point $\Phi \in \mathcal{K}_\eta$ is given by $\mathcal{L}_X(\Phi) = -s_X(\Phi)$. For a tangent vector $A \in T_{\Phi} \mathcal{K}_\eta$ let $Q(A) \in C_m^\infty$ be the derivative of the map $\Phi \mapsto \Phi^A$ in direction A. We must show

$$\Omega_{\Phi}(\mathcal{L}_{X^f} \Phi, A) = -\int_M f \cdot Q(A) dv_\eta.$$ \hfill (12)

We do local computations as in [21]. Pick local coordinates as in Subsection 2.2. We shall write $f_k = f_{,k} = \partial f / \partial x^k$ and $f_{,k}$ for covariant differentiation.

From $d\eta(X_f, \cdot) = -df$ we have (we adopt the summation convention that roman indices, if appearing twice, range over $1, \ldots, n$, i.e. excluding zero)

$$X_f = -\frac{1}{2} \Phi^i_k g^{k i} f_j \frac{\partial}{\partial x^j} + f \frac{\partial}{\partial x^i}$$ \hfill (13)

Since Φ is basic, we may locally write

$$\mathcal{L}_{X_f} \Phi = B^i_j \frac{\partial}{\partial x^j} \otimes dx^i.$$

The local coordinate formula for the Lie derivative combined with (13) gives

$$B^i_j = -\frac{1}{2} \Phi^i_k g^{k i} f_j + \frac{1}{2} \Phi^i_p \left(\Phi^k_l g^{k i} f_1 \right)_,p - \frac{1}{2} \Phi^i_l \left(\Phi^k_j g^{k p} f_1 \right)_,l.$$

From (3) we see then

$$\Phi^i_k B^i_j = -\frac{1}{2} \Phi^i_k \Phi^j_p \Phi^p_l g^{k j} f_1 + \frac{1}{2} \Phi^i_k \Phi^j_p \left(\Phi^k_l g^{k i} f_1 \right)_,p - \frac{1}{2} \Phi^i_k \left(\Phi^k_j g^{k p} f_1 \right)_,l.$$

Therefore we have

$$\Omega_{\Phi}(\mathcal{L}_{X_f} \Phi, A) = \int_M \text{trace}(\Phi \circ \mathcal{L}_{X_f} \Phi \circ A) dv_\eta$$

$$= \int_M \left(-\frac{1}{2} \Phi^i_k g^{k j} f_1 A^j_k + \frac{1}{2} \Phi^i_p \left(\Phi^k_l g^{k i} f_1 \right)_,p A^j_k + \frac{1}{2} \left(\Phi^i_k g^{k j} f_1 \right)_,l A^j_k \right) dv_\eta.$$ \hfill (13)

Let $C^i_j = \Phi^i_k \Phi^j_p \Phi^p_l g^{k j} f_1$. Using (3) and its derivative one checks $g_{s} C^s_j = -g_{sj} C^s_i$, so C is g^T-anti-symmetric. On the other hand, A^j_k is g^T-symmetric and so the trace $C^j_k A^j_k$, the first summand in the bracket, vanishes.

The second and third summand are equal (from $\Phi^j_k A^j_k = -\Phi^j_k A^j_k$) so

$$\Omega_{\Phi}(\mathcal{L}_{X_f} \Phi, A) = \int_M \left(\Phi^i_k g^{k j} f_1 \right)_,l A^j_k dv_\eta.$$ \hfill (14)

The variation of the transverse Hermitian scalar curvature (see [14]) is given in terms of the variation of Φ along A by

$$\hat{s}^T = Q(A) = -(g^{k s} \Phi^i_k (A^j_s)_,j)_,l.$$

Using integration by parts twice (justified as in [21]), we conclude the proof of (12):

$$\int_M \left(\Phi^i_k g^{k j} f_1 \right)_,l A^j_k dv_\eta = -\int_M \Phi^i_k g^{k j} f_1 (A^j_k)_,j dv_\eta = \int_M f \left(\Phi^i_k g^{k j} (A^j_s)_,j \right)_,l dv_\eta.$$

Much of the above works in greater generality; instead of a contact manifold, begin with a closed manifold M and closed 2-form ω with ω^q never zero and $\omega^{q+1} = 0$. This amounts to a codimension 2 foliation $\mathcal{T}F = \text{ker} \omega$ with transverse symplectic structure. The argument of Proposition 7 gives Kähler identities on basic forms. One may then define a Fréchet space $\mathcal{AC}(\omega)$ of ω-compatible transverse almost complex structures J, which has a Kähler structure. Combining J with ω yields
a bundle-like metric g, so again we obtain a transverse Levi-Civita connection D^T and Hermitian connection and corresponding scalar curvatures.

Introducing the variation of connection δA in direction $A \in T_A\mathcal{AC}(\omega)$ in the standard way (see [10] Section 9.5) defines, using that the connection is basic (see [33] Proposition 3.6), a basic 1-form. The Mohsen formula $2\delta A = g(\delta A, \cdot)$ for $\delta A = -\sum_k e_k D^T_{e_k} A$, summing over an orthonormal frame e_k of the normal bundle, can be established using the argument of [10] Proposition 9.5.1. The variation δA being basic, the Kähler identities then give $s^2_{\mathcal{C}} = -\delta J(\delta A)^2$.

It is not hard to define a transverse Hamiltonian group that acts on $\mathcal{AC}(\omega)$. As in Theorem [10] this action is Hamiltonian with moment map $J \mapsto s^2_{\mathcal{C}}$.

Definition 17. The square-norm of the moment map defines a functional
\[
\mathcal{C}: \mathcal{K}_\eta \to \mathbb{R}, \quad \mathcal{C}(\Phi) = ||\mu(\Phi)||^2 = \int_M (s^2_{\mathcal{C}})^2 \, dv_\eta.
\]

The critical points of this functional are called *extremal K-contact metrics*.

Given a K-contact structure (η, ξ, Φ, g), we denote by $X_{\mathcal{C}} \in \text{Lie}\text{Conn}(M, \eta)$ the vector field belonging via [1] to the scalar curvature $s^2_{\mathcal{C}}$.

Proposition 18. Φ is extremal if and only if $X_{\mathcal{C}}$ is a Killing vector field with respect to the metric g_Φ induced by Φ (equivalently, when $\mathcal{L}_{X_{\mathcal{C}}} \Phi = 0$).

Proof. This follows from the moment map set-up (see [2] [26] in the case of extremal almost-Kähler metrics). For $A \in T_\Phi \mathcal{K}_\eta$ the differential of (14) in direction A is
\[
\mathcal{C}_{\bullet, \Phi}(A) = 2(\mu_{\bullet, \Phi}(A), \mu(\Phi)) = 2d||\mu||^2(\Phi) = 2\Omega_{\Phi}(\mathcal{L}_{X_{\mathcal{C}}} \Phi, A),
\]
where we write $\mu_f = \mu(\cdot)(f)$. The last equality is by Theorem [10].

Example 19. Calabi’s extremal problem [7] [8] was extended to Sasaki geometry by Boyer–Galicki–Simanca in [5] [6] where they introduce the notion of *extremal Sasakian metrics*. This notion generalizes *Sasaki-Einstein metrics* (more generally the so-called η-Einstein metrics, see for instance [32]) and constant scalar curvature Sasaki metrics. From Proposition [13] extremal Sasaki metrics Φ are extremal K-contact metrics. Indeed, when Φ is Sasakian the Riemannian scalar curvature coincides with the Hermitian scalar curvature s^2.

Remark 20. Extremal K-contact metrics are a natural extension of extremal Sasaki metrics [5] [6] to K-contact geometry. Given a background Sasaki structure (η, ξ, Φ, g), Boyer–Galicki–Simanca consider the space $\mathcal{S}(\xi, J)$, of Sasaki structures with common Reeb vector field ξ and transverse *integrable* almost-complex structure $J = \Phi^T$, arising from deforming the contact form η by $\eta \mapsto \eta_t = \eta + t\alpha$, where α is a basic 1-form with respect to the characteristic foliation \mathcal{F}_ξ. Hence, by *Gray’s Stability Theorem* (see [21] or for instance [21] p. 190), there exist a *diffeomorphism* γ such that $\gamma^* \eta_t = \eta_t$ for any $(\eta', \xi', \Phi', g') \in \mathcal{S}(\xi, J)$. This gives a new Sasaki structure $(\eta, \xi, \gamma^{-1}_* \Phi', \gamma^* g')$ with $\gamma^{-1}_* \Phi' \gamma \in \mathcal{K}_\eta$.

5. A K-contact Futaki invariant

We continue to draw consequences of Theorem [10]. In this section, we generalize the Futaki invariant from [5] [13] to the non-integrable K-contact setting. Fix throughout a $(2n + 1)$-dimensional compact contact manifold (M, η) with volume form $dv_\eta = (2n)!^{-1} \eta \wedge (d\eta)^{2n}$. Moreover, we shall assume $\mathcal{K}_\eta \neq \emptyset$. In this case
where different maximal tori are not necessarily conjugate.

Since G is compact, an averaging argument shows that the subspace $\mathcal{K}^G_\eta \subset \mathcal{K}_\eta$ of G-invariant K-contact structures is contractible as well.

Let Π^G be the orthogonal projection from $C_B^\infty(M)$, the space of basic functions, onto \mathfrak{g}_η the contact Hamiltonians of $\text{Lie}(G)$, recalling the identification \cite{11}.

As a generalization of \cite{11} in the Kähler case we find:

Proposition 21. For every smooth curve $\Phi_t \in \mathcal{K}^G_\eta$ the projection of the Hermitian scalar curvature $\Pi^G(s^T_\Phi) \in \mathfrak{g}_\eta$ is independent of t.

Proof. We may equivalently show that $\mu|_{\mathcal{K}^G_\eta}(\Phi_t)(X)$ is constant for any $X \in \text{Lie}(G)$:

$$\left. \frac{d}{dt} \right|_{t_0} \mu(\Phi_t)(X) = d\mu(\Phi_t)(X) = \Omega_{\Phi_{t_0}}(\dot{\Phi}(0), \dot{X}(\Phi_{t_0})) = 0,$$

using that the infinitesimal action $\dot{X} = \left. \frac{d}{dt} \right|_{t_0} X(\Phi_{t_0})$ vanishes (Φ_{t_0} being G-invariant). \square

Definition 22. For fixed $G \subset \text{Con}(M, \eta)$, we define the vector field $Z^G_\eta \in \text{Lie}(G)$ corresponding to the contact Hamiltonian $z^G_\eta = \Pi^G s^T_\Phi \in \mathfrak{g}_\eta$, via \cite{11}, using an arbitrary K-contact structure $\Phi \in \mathcal{K}^G_\eta$.

By Proposition 21 and $\mathcal{K}^G_\eta \simeq \{ \text{pt} \}$, the extremal vector field Z^G_η is well-defined (see \cite{14} in the Kähler case).

Proposition 23. A K-contact structure $\Phi \in \mathcal{K}^G_\eta$ is extremal precisely when

$$s^T_\Phi = z^G_\eta. \quad (15)$$

Proof. Suppose (η, ξ, Φ, g) is extremal. By Proposition 18 $X_{\mathfrak{x}\mathfrak{t}}$ is a G-invariant Killing field. Φ being G-invariant, G is a subgroup of the isometry group for (M, g_Φ). Consider the connected Lie subgroup $H \subset \text{Isom}(M, g)$ belonging to the abelian subalgebra $\text{Lie}(G) + \mathbb{R} \cdot X_{\mathfrak{x}\mathfrak{t}}$. The closure \overline{H} is a torus in $\text{Isom}(M, g) \cap \text{Con}(M, \eta)$ (and also in $\text{Con}(M, \eta)$), containing G. By maximality, $G \subset H = \overline{H} \subset G$, so $X_{\mathfrak{x}\mathfrak{t}} \in \text{Lie}(G)$ and \cite{15} follows. Conversely, from \cite{15} we have $s^T_\Phi \in \text{Lie}(G) \subset \text{Lie}(\text{Isom}(M, g))$ so $X_{\mathfrak{x}\mathfrak{t}}$ is a Killing field and Φ is extremal by Proposition 18. \square

Consider the ‘angle’ map (\cdot, Z^G_η) on $\text{Lie}(G)$. If (M, η) admits an extremal metric Φ, then by the previous proposition the angle map completely determines its scalar curvature s^T_Φ. A more explicit definition of this map is as follows:

Definition 24. The K-contact Futaki invariant relative to the group G is the map

$$\mathfrak{F}_{K^G} : \text{Lie}(G) \to \mathbb{R}, \quad X \mapsto \int_M \eta(X)s^T_\Phi dv_\eta,$$

where $s^T_\Phi = s^T_\Phi - \int_M s^T_\Phi dv_\eta$ is the zero integral part (for $\Phi \in \mathcal{K}^G_\eta$ arbitrary).

The previous discussion implies (see \cite{3} Proposition 5.2) in the Sasakian case:

Proposition 25. If (M, η) admits an extremal K-contact metric, the following are equivalent:

1. Every (some) extremal metric has constant Hermitian scalar curvature.
2. $\mathfrak{F}_{K^G} \equiv 0.$
Proposition 26. The vector field Z^G_η is invariant under G-invariant strict contact isotopy of η.

Proof. Suppose that we have a smooth G-invariant family of contact forms η_t with the same Reeb vector field ξ (such that $\eta_0 = \eta$). Then, by Gray’s Stability Theorem, there exists a smooth family of diffeomorphisms γ_t such that $\gamma_0 = \text{id}$ and $\gamma_t^* \eta_t = \eta$. Then, $\gamma_t^* (Z^G_\eta) = Z^G_{\eta_t}$. Moreover, using the G-invariance of the vector field generating γ_t^*, we have $\gamma_t^* (Z^G_\eta) = Z^G_{\eta_t}$. □

On a compact contact manifold (M, η) consider the space $K^G(\xi)$ of all G-invariant K-contact structures with contact forms strictly isotopic to η and common Reeb field ξ. One easily deduces the following: if $K^G(\xi)$ contains a K-contact metric with constant transverse Hermitian scalar curvature then $Z^G_\eta = 0$. Conversely, if $Z^G_\eta = 0$, any extremal K-contact metric in $K^G(\xi)$ is of constant transverse Hermitian scalar curvature.

Since the Reeb field ξ lies in $\text{Lie}(G)$ it follows that

$$\int_M s^\nabla^T dv_\eta = \int_M Z^G_\eta dv_\eta$$

so that

$$\mathfrak{F}_{K^G_\eta}(Z^G_\eta) = \int_M \eta(Z^G_\eta)s^\nabla^T dv_\eta = \int_M z^G_\eta s^\nabla^T dv_\eta = \int_M (z^G_\eta)^2 dv_\eta - \frac{(\int_M s^\nabla^T dv_\eta)^2}{\int_M dv_\eta}.$$

We obtain a lower bound for the functional (14):

Proposition 27. Let $S_\eta = \int_M s^\nabla^T dv_\eta$ and $V_\eta = \int_M dv_\eta$. For all $\Phi \in K^G_\eta$ we have

$$\int_M (s^\nabla^T)^2 dv_\eta \geq \mathfrak{F}_{K^G_\eta}(Z^G_\eta) + \frac{S_\eta^2}{V_\eta}.$$

Equality holds if and only if $\Phi \in K^G_\eta$ induces an extremal metric.

Proof. The inequality follows from the above discussion. Moreover, equality holds if and only if $s^\nabla^T = z^G_\eta$, i.e. by Proposition 23 when Φ is extremal. □

6. Deformations of Extremal K-contact Metrics in Dimension 5

In the Sasakian setting, Boyer-Galicki-Simanca developed the notion of Sasakian cone [5, 6] and proved in [5] that the existence of extremal Sasakian metrics is an open condition in the Sasakian cone, as in the Kähler set-up [25, 30, 12].

In this section, we show that a similar result holds in the semi-Sasakian case. Let $K^G_{\eta, \text{semi}}$ be the subspace of K^G_{η} of those Φ that are semi-Sasakian (see Definition 13).

Theorem 28. Let (M, η) be a 5-dimensional compact contact manifold and G be a maximal torus in $\text{Con}(M, \eta)$. Let Φ_t be a smooth curve in $K^G_{\eta, \text{semi}}$ with Φ_0 an extremal Sasakian metric. Then there exists a smooth curve Φ_t of G-invariant extremal K-contact metrics with $\Phi_0 = \Phi_0$ and Φ_t diffeomorphic to Φ_t.

Proof. We follow mainly Boyer–Galicki–Simanca proof [5]. However, in our case, $J_t = \Phi_t^T$ may vary. Let $g_\eta = \{\eta(X) \mid X \in \text{Lie}(G)\}$ be the space of contact Hamiltonian functions associated to $\text{Lie}(G)$. Using Theorem 15, we consider the deformations...
of \((\eta, \xi, \Phi_0, g_0)\) defined by

\[
\begin{align*}
\eta_{t,\phi} &= \eta + \mathcal{G}_t d^*_t \Delta_{B,t} \phi, \\
\Phi_{t,\phi} &= \Phi_t - (\xi \otimes (\eta_{t,\phi} - \eta)) \circ \Phi_t, \\
g_{t,\phi} &= d\eta_{t,\phi} \circ (\text{id} \otimes \Phi_{t,\phi}) + \eta_{t,\phi} \otimes \eta_{t,\phi},
\end{align*}
\]

where \(\mathcal{G}_t\) is the Green’s operator associated to the basic Laplacian \(\Delta_{B,t}\), with respect to the \(K\)-contact metric \((\eta, \xi, \Phi_t, g_t)\), \(\phi\) is an element of the space \(C^\infty_{G,\perp}\) of smooth \(G\)-invariant basic functions which are \(L^2\)-orthogonal (with respect to \(dv_\eta\)) to \(g_\eta\). Here, \(d^*_t\) stands for \(\Phi_t d_B\).

Denote by \(\Pi_{\eta,\phi}\) the \(L^2\)-orthogonal projection of basic functions on the space \(g_{\eta,\phi} = \{\eta_t(X) | X \in \text{Lie}(G)\}\) with respect to the volume form \(dv_{\eta,\phi}\). Let \(\mathcal{W}^{p,k}\) be the Sobolev completion of \(C^\infty_{G,\perp}\) involving derivatives up to order \(k\).

Let \(U \subset \mathbb{R} \times \mathcal{W}^{p,k}\) be a neighborhood of \((0,0)\) such that \((\eta_{t,\phi}, \xi, \Phi_{t,\phi}, g_{t,\phi})\) is a \(K\)-contact structure for any \((t, \phi) \in U\) and that \(\ker(\text{id} - \Pi_\eta) \circ (\text{id} - \Pi_{\eta,\phi}) = \ker(\text{id} - \Pi_{\eta,\phi})\) (by possibly shrinking \(U\)). Consider then the map (defined by extension)

\[
\Psi : U \subset \mathbb{R} \times \mathcal{W}^{p,k+4} \longrightarrow \mathbb{R} \times \mathcal{W}^{p,k}
\]

\[
(t, \phi) \longmapsto (t, (\text{id} - \Pi_\eta) \circ (\text{id} - \Pi_{\eta,\phi}) \tilde{s}^T_t(\eta, \xi, \Phi_{t,\phi}, g_{t,\phi}),
\]

where \(\tilde{s}^T_t(\eta, \xi, \Phi_{t,\phi}, g_{t,\phi})\) is the transverse Hermitian scalar curvature of \((\eta_{t,\phi}, \xi, \Phi_{t,\phi}, g_{t,\phi})\). The map is well defined for \(pk > 5\).

By Proposition \[23\] \(\Psi(t, \phi) = (t, 0)\) if and only if \((\eta_{t,\phi}, \xi, \Phi_{t,\phi}, g_{t,\phi})\) is an extremal \(K\)-contact structure. Hence, by hypothesis, \(\Psi(0,0) = (0,0)\).

\(\Psi\) is a \(C^1\) map. Indeed, the dimension of the kernel of the basic Laplacian, with respect to the metric \((\eta, \xi, \Phi_t, g_t)\), applied on 1-forms, is equal to the dimension of \(H^1(M, \mathbb{R})\) (see \[4\] Proposition 7.2.3) and so the dimension of the kernel of \(\Delta_{B,t}\) is independent of \(t\). Thus, \(\mathcal{G}_t\) is a \(C^1\) map (see \[23\] Theorem 6.1) and consequently \(\Psi\) is. The linearization of \(\Psi\) at \((0,0)\) is given by (see \[5\] Proposition 7.3)

\[
(D\Psi)_{(0,0)}(t, \phi) = (t, t(\ast) - 2(\text{id} - \Pi_\eta)L_B^0(\phi)),
\]

where \(L_B^0(\phi) = \delta_B^0 \delta_B^0 \left(D_B^0 d_B^0\right) J_0^{-1}\) is a basic self-adjoint transversally elliptic differential operator of order 4 (here, \((\ast)\) denotes some expression depending on \(\frac{d}{dt}|_{t=0} \Phi_t\)). By the standard arguments (see \[5\] Proposition 7.5 and \[1\] Lemma 4) and the main result of \[22\], \((D\Psi)_{(0,0)}\) is an isomorphism.

It follows from the Inverse Function Theorem for Banach spaces that there exists a neighborhood \(V \subset \mathbb{R} \times \mathcal{W}^{p,k+4}\) of \((0,0)\) and \(\epsilon > 0\) such that, for \(|t| < \epsilon\), \((\eta_{\Psi^{-1}_{\beta}(t,0)}, \xi, \Phi_{\Psi^{-1}_{\beta}(t,0)}, g_{\Psi^{-1}_{\beta}(t,0)})\) is an extremal \(K\)-contact metric.

By a standard bootstrapping argument (used for instance in \[27\]), we get then a smooth family of \(G\)-invariant extremal \(K\)-contact metrics defined for a sufficiently small \(t\). Theorem \[23\] now follows from Gray’s Stability Theorem.

\[\square\]

Remark 29. Suppose that at time \(t = 0\) we have \(b_B^+ = 1\). Then, using \[23\] Theorem 6.1, \(b_B^+ = 1\) for small \(|t| < \epsilon\). Remark \[14\] now implies that \(\Phi_t\) is automatically semi-Sasakian for small values of \(|t|\).
References

[1] V. Apostolov, D. M. J. Calderbank, P. Gauduchon and C. W. Tønnesen-Friedman, Extremal Kähler metrics on projective bundles over a curve, Adv. Math. 227 (2011), no. 6, 2085–2424.

[2] V. Apostolov and T. Drăghici, The curvature and the integrability of almost-Kähler manifolds: a survey, Fields Inst. Commun. Series 35, AMS (2003), 25–53.

[3] C. P. Boyer, Maximal Tori in Contactomorphism Groups, Differential Geom. Appl. 31 (2013), no. 2, 190–216.

[4] C. P. Boyer and K. Galicki, Sasakian geometry, Oxford Mathematical Monographs. Oxford University Press, Oxford (2008).

[5] C. P. Boyer, K. Galicki and S. R. Simanca, Canonical Sasakian metrics, Comm. Math. Phys. 279 (2008), no. 3, 705–733.

[6] E. Calabi, Extremal Kähler metrics, in Seminar of Differential Geometry, S. T. Yau (eds), Annals of Mathematics Studies 102, Princeton University Press (1982), 259–290.

[7] A. Fujiki and G. Schumacher, The moduli space of extremal compact Kähler manifolds and generalized Weil–Petersson metrics, Publ. Res. Inst. Math. Sci. 26 (1990), no. 1, 101–183.

[8] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437–443.

[9] A. Futaki and T. Mabushi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), 199–210.

[10] K. Kodaira and J. Morrow, Complex manifolds, Holt, Rinehart and Winston (1971).

[11] C. LeBrun and S. R. Simanca, On the Kähler Classes of Extremal Metrics, Geometry and Global Analysis (Sendai, Japan 1993), FirstMath. Soc. Japan Intern. Res. Inst. Eds. Kotake, Nishikawa and Schoen.

[12] M. Lejmi, Extremal almost-Kähler metrics, Internat. J. Math. 21 (2010), no. 12, 1639–1662.

[13] Stability under deformations of extremal almost-Kähler metrics in dimension 4, Math. Res. Lett. 17 (2010), no. 4, 601–612.
[28] _____, Stability under deformations of Hermite-Einstein almost-Kähler metrics, To appear at Annales de l’institut Fourier, 64 (2014).

[29] P. Libermann, Sur les connexions hermitiennes, C. R. Acad. Sci. Paris 239 (1954), 1579–1581.

[30] S. R. Simanca, Canonical metrics on compact almost complex manifolds, Publicações Matemáticas do IMPA, IMPA, Rio de Janeiro (2004), 97 pp.

[31] _____, Heat Flows for Extremal Kähler Metrics, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (2005), 187–217.

[32] J. Sparks, Sasakian-Einstein manifolds, arXiv:1004.2461.

[33] P. Tondeur, Geometry of Riemannian foliations, volume 20 of Seminar on Mathematical Sciences. Keio University, Department of Mathematics, Yokohama (1994).