Enterococcus faecalis and pathogenic streptococci inactivate daptomycin by releasing phospholipids

Elizabeth V. K. Ledger, Vera Pader and Andrew M. Edwards*

Abstract

Daptomycin is a lipopeptide antibiotic with activity against Gram-positive bacteria. We showed previously that *Staphylococcus aureus* can survive daptomycin exposure by releasing membrane phospholipids that inactivate the antibiotic. To determine whether other pathogens possess this defence mechanism, phospholipid release and daptomycin activity were measured after incubation of *Staphylococcus epidermidis*, group A or B streptococci, *Streptococcus gordonii* or *Enterococcus faecalis* with the antibiotic. All bacteria released phospholipids in response to daptomycin, which resulted in at least partial inactivation of the antibiotic. However, *E. faecalis* showed the highest levels of lipid release and daptomycin inactivation. As shown previously for *S. aureus*, phospholipid release by *E. faecalis* was inhibited by the lipid biosynthesis inhibitor platensimycin. In conclusion, several pathogenic Gram-positive bacteria, including *E. faecalis*, inactivate daptomycin by releasing phospholipids, which may contribute to the failure of daptomycin to resolve infections caused by these pathogens.

Daptomycin is a lipopeptide antibiotic that is used as a last resort in the treatment of infections caused by methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-intermediate *S. aureus* (VISA) and vancomycin-resistant enterococci (VRE) [1–3]. The use of daptomycin is becoming more common, with prescriptions increasing by 72% between 2012 and 2015 in the UK [4]. Daptomycin is the only lipopeptide antibiotic that is used clinically and it functions in a similar manner to antimicrobial peptides [5]. The antibiotic inserts into the membrane of Gram-positive bacteria by targeting phosphatidylglycerol, where it forms oligomeric complexes [6–8]. The precise mechanism by which the antibiotic kills bacteria is unclear, but it involves depolarization of the bacterial membrane and inhibition of cell wall biosynthesis without causing lysis [8–13]. Although daptomycin resistance is rare, treatment failure occurs in up to 30% of staphylococcal infections and 23% of enterococcal infections [14, 15]. The failure rates are highest in invasive infections such as bacteriaemia or osteomyelitis, with rates of 24 and 33% respectively, resulting in poor patient prognoses [14]. Understanding the reasons for this treatment failure is crucial to improving the effectiveness of daptomycin treatment.

We recently discovered that *S. aureus* has a transient defence mechanism against daptomycin, which contributed to treatment failure in a murine model of invasive infection [16]. In response to the antibiotic, phospholipids were released from the cell membrane, which sequestered daptomycin and abrogated its bactericidal activity [16]. Phospholipid release occurred via an active process, which was blocked by the lipid biosynthesis inhibitor platensimycin [16, 17]. In addition to daptomycin, phospholipid release also provided protection against the antimicrobial peptides nisin and melittin, suggesting a general defence against membrane-targeting antimicrobials [16].

It is currently unknown whether other Gram-positive bacteria release phospholipids in response to daptomycin, although membrane vesicles have been observed on the surface of *Enterococcus faecalis* cells exposed to daptomycin [18]. In addition, there is growing evidence that other Gram-positive pathogens, including group A streptococci (GAS) and group B streptococci (GBS), release phospholipids from their surfaces in the form of extracellular vesicles [19, 20]. Production of these membrane vesicles is increased in the presence of antimicrobials and, at least for GAS, they are rich in phosphatidylglycerol, which was shown to be essential for daptomycin inactivation by *S. aureus* [16, 19, 21]. Therefore, we hypothesized that phospholipid release is a common strategy amongst Gram-positive pathogens to resist membrane-acting antimicrobials.

Given the increasing use of daptomycin to treat enterococcal infections, the primary aim of this work was to...
determine whether enterococci release membrane phospholipids that inactivate the antibiotic. We also examined pathogenic streptococci and S. epidermidis, as the rising tide of antibiotic resistance may necessitate the use of these bacteria to tackle these bacteria in the future.

We initially determined the daptomycin minimum inhibitory concentration (MIC) for a representative panel of Gram-positive pathogens: S. aureus SH1000 [22], S. epidermidis ATCC 2228 [23], GAS strain A40 [24]; GBS strains 515 [25] and COH1 [26]; S. gordonii strain Challis [27]; and E. faecalis strains JH2-2 [28] and OG1X [29]. All bacteria were grown in Müller–Hinton broth and either brain heart infusion broth (BHI) for the enterococci and streptococci or tryptic soy broth (TSB) for the staphylococci, each containing calcium (0.5 mM). The MIC was then determined by the broth microdilution approach [30]. The most susceptible species, with the lowest MIC values (MHB/BHI or TSB), were the pathogenic GAS strain A40 (0.125/0.125 μg ml⁻¹), and GBS strains 515 (0.5/0.25 μg ml⁻¹) and COH1 (0.5/0.5 μg ml⁻¹), whilst S. aureus (1/1 μg ml⁻¹), S. epidermidis (1/1 μg ml⁻¹), S. gordonii Challis (2/4/4 μg ml⁻¹), and E. faecalis strains OG1X (2/2 μg ml⁻¹) and JH2-2 (4/2 μg ml⁻¹) were the least susceptible.

To determine whether E. faecalis or streptococci respond to daptomycin by releasing membrane phospholipids, we exposed streptococci and enterococci (10⁶ c.f.u. ml⁻¹) to various supra-MIC concentrations of the antibiotic (5–40 μg ml⁻¹) in BHI (0.5 mM CaCl₂) broth at 37 °C under static conditions with 5% CO₂ and measured bacterial survival, antibiotic activity and phospholipid release (Fig. 1c–h, k–p, s–x). Staphylococci were also exposed to daptomycin (5–40 μg ml⁻¹), but in TSB containing 0.5 mM CaCl₂ at 37 °C with shaking (180 r.p.m.) (Fig. 1a, b, i, j, q, r).

For all strains, there was a dose-dependent decrease in survival after 8 h exposure to daptomycin, as assessed by c.f.u. counts (Fig. 1a–h). Broadly, the survival of strains exposed to supra-MIC concentrations of daptomycin correlated with the MIC values, with survival of the two enterococcal strains, the staphylococci and S. gordonii, being greater than the survival of the GAS or GBS strains at each of the concentrations of daptomycin examined (Fig. 1a–h).

Next, we explored whether streptococci and enterococci released phospholipids in response to daptomycin challenge, and how this related to the susceptibility of the strains to the antibiotic. Using the phospholipid-reactive fluorescent dye FM-4-64 (Life Technologies), we confirmed our previous observation that wild-type staphylococci released phospholipids in the absence of daptomycin, but this was significantly increased for bacteria exposed to daptomycin (Fig. 1i, j) [16]. By contrast, neither enterococci nor streptococci released phospholipids in the absence of daptomycin (Fig. 1k–p). Upon exposure to daptomycin, however, all of the streptococci and enterococci released phospholipids, albeit to differing levels. The quantity of phospholipid released was much greater for staphylococci than for the other species examined (Fig. 1i–p). However, for both staphylococci and streptococci, the quantity of phospholipid released was lowest when the daptomycin concentration was highest, suggesting that the antibiotic may have killed the bacteria before they could release the lipid (Fig. 1i–p).

To determine whether phospholipid release resulted in the inactivation of daptomycin, the activity of the antibiotic in the culture supernatants was measured using a previously described zone of inhibition assay [16] (Fig. 1q–x). Daptomycin was inactivated to varying degrees by the bacteria, depending on the concentration of the antibiotic used. However, both staphylococcal strains, both enterococcal strains, S. gordonii and the GAS strain completely inactivated daptomycin at 5 μg ml⁻¹, but GBS strains only partially inactivated the antibiotic at this concentration. At 10 μg ml⁻¹ daptomycin, only the staphylococci, S. gordonii and the enterococci showed significant inactivation of the antibiotic, while at a concentration of 20 μg ml⁻¹ daptomycin, only staphylococci and enterococci inactivated the antibiotic to any significant degree, with a loss of 30–60% of antibiotic activity. However, despite triggering phospholipid release, at 40 μg ml⁻¹ daptomycin there was relatively little (<20%) inactivation of the antibiotic by any of the bacteria tested. Therefore, phospholipid release is finite and can be overcome with a sufficiently high dose of daptomycin.

The predominant phospholipid in the membrane of Gram-positive bacteria is phosphatidylglycerol, with much smaller quantities of cardiolipin and/or lysyl-phosphatidylglycerol also present [31]. Our previous work using purified phospholipids revealed that, at physiologically-relevant concentrations, phosphatidylglycerol is the only component of the membrane that can inactivate daptomycin [16]. Therefore, whilst we did not identify the particular species of phospholipid released from enterococci or streptococci, the ability of released lipids to inactivate daptomycin demonstrates the presence of phosphatidylglycerol.

These data extend our previous finding that S. aureus releases phosphatidylglycerol in response to daptomycin, and that this results in inactivation of the antibiotic by revealing a very similar phenotype for S. epidermidis. Further, these findings also support the previous observation that E. faecalis releases phospholipids in response to daptomycin [18], and show that this phospholipid release correlates with daptomycin inactivation and bacterial survival. Streptococci, particularly S. gordonii, also released phospholipids and inactivated daptomycin, albeit less efficiently than E. faecalis. Therefore, daptomycin-induced phospholipid release appears to be a conserved mechanism across Gram-positive pathogens.
Next, we wanted to explore whether the mechanism of phospholipid release and daptomycin inactivation by enterococci and streptococci was similar to that of *S. aureus*. Therefore, we undertook further experiments with *E. faecalis*, which was the most efficient of the enterococci and streptococci at releasing phospholipids and inactivating daptomycin, and *S. aureus*, in which daptomycin-triggered phospholipid release has been well characterized [16].

In *S. aureus*, daptomycin-triggered phospholipid release is an active process that requires energy, as well as protein and lipid biosynthesis [16]. To determine whether phospholipid release by *E. faecalis* exposed to daptomycin was occurring via an active process, or simply as a consequence of membrane damage caused by the antibiotic, bacteria were exposed to the antibiotic in the presence or absence of a sub-inhibitory concentration of the phospholipid biosynthesis inhibitor, platensimycin [17]. As described previously, the exposure of *S. aureus* to daptomycin (10 µg ml⁻¹) resulted in increased phospholipid in the supernatant, but this was significantly reduced in the presence of platensimycin at half the MIC (0.25 µg ml⁻¹) (Fig. 2a). Similarly, phospholipid was released upon the exposure of *E. faecalis* to daptomycin (10 µg ml⁻¹), but this was blocked when platensimycin was present at half the MIC (0.5 µg ml⁻¹) (Fig. 2b). The presence of platensimycin prevented *S. aureus* from inactivating daptomycin (Fig. 2c) and significantly reduced the ability of *E. faecalis* to inactivate daptomycin (Fig. 2d). This confirmed that daptomycin-induced phospholipid release by *E. faecalis* is an active process that requires de novo lipid biosynthesis and is not simply a consequence of membrane damage caused by the antibiotic. The ability of platensimycin to block phospholipid release and prevent daptomycin inactivation by *E. faecalis* also provided strong evidence that, as for *S. aureus*, daptomycin activity is blocked by the phospholipid in the supernatant. However, it was necessary to rule out an alternative hypothesis; that the loss of daptomycin activity was simply due to binding of the antibiotic to the bacterial surface.

To measure the binding of daptomycin to bacteria, daptomycin was labelled with the BODIPY fluorophore (Life
After 8 h incubation with BODIPY antibiotic with the bacteria studied. IPY label does not significantly affect the interaction of the phospholipids released from in the assays. However, as a final confirmation that phospholipid release system works in bacteria that are resistant to vancomycin or daptomycin, which typically results in alterations to the cell membrane or wall [1, 2]. Changes to the membrane may also occur in vivo due to the utilization of host-derived fatty acids or in response to environmental stress, such as the presence of antimicrobial peptides, and so these factors will also need to be considered [31, 33, 34].

In this work, we focussed on daptomycin because it is a last-resort antibiotic and is associated with high rates of treatment failure. However, whilst daptomycin use is increasing, it is very unlikely to have provided the selection pressure for the evolution of the phospholipid release defence mechanism described here and previously [16]. Since cationic

Fig. 2. De novo lipid biosynthesis is required for enterococcal inactivation of daptomycin. Phospholipid concentration (RFU) in culture supernatants from S. aureus (a) or E. faecalis OG1X (b) incubated for 8 h in media containing daptomycin (10 µg ml⁻¹) only (dap) or both daptomycin and 0.5 X MIC platensimycin (dap + pla). (c, d) Relative % daptomycin activity in supernatants from cultures described in (a) and (b), respectively. The data in (a) and (b) were analysed using a one-way ANOVA with Tukey’s post hoc test. The data in (c) and (d) were analysed by Student’s t-test. *P<0.05.
antimicrobial peptides (CAMPs) act via a similar mechanism to daptomycin in targeting the Gram-positive cell membrane [5] we hypothesize that these host defence molecules have likely driven the evolution of phospholipid release as a defence mechanism.

The discovery of phospholipid release in several Gram-positive pathogens has expanded our growing appreciation of the broad-spectrum extracellular defence mechanisms that protect bacteria against antibiotics or host defences. For example, previous work has shown that the production of outer-membrane vesicles by Escherichia coli can protect against membrane-acting antimicrobials such as polymixin E and colistin [35], whilst another report revealed that lipochalins released by Burkholderia can sequester several different antibiotics [36]. These findings underline the complex nature of innate antibiotic resistance, but also provide opportunities for mechanistic insights and improved therapeutic approaches. For example, in this report and previously, we have shown that inhibition of phospholipid biosynthesis using platensimycin prevents the inactivation of

Fig. 3. Loss of daptomycin activity in supernatant is not due to antibiotic binding to bacteria. (a) Percentage survival of *E. faecalis* OG1X incubated with various concentrations of daptomycin (dapt) or BODIPY–daptomycin (BODIPY–dapt) for 8 h. (b) Relative percentage daptomycin activity in culture supernatants described in (a). (c) Binding of Bodipy-daptomycin to *S. aureus* or *E. faecalis* OG1X after 8 h incubation in media containing the indicated concentration of the labelled antibiotic. (d) Quantification of BODIPY–daptomycin (RFU) remaining in culture supernatants from *S. aureus* or *E. faecalis* OG1X after 8 h incubation with BODIPY–daptomycin as described in (c). * indicates significantly different from 0 h time point. (e) Relative percentage activity of daptomycin (5 µg ml⁻¹) activity in BHI only (BHI +dapt), in the supernatant from *E. faecalis* incubated with daptomycin for 8 h (s/n) and after the addition of 5 µg ml⁻¹ daptomycin to the supernatant from *E. faecalis* incubated with daptomycin for 8 h (s/n+dapt). The data in (d) and (e) were analysed by a two-way ANOVA with Tukey’s post hoc test. The graphs show the mean average and, where shown, error bars represent the SD of the mean. For each panel *P<0.05.
daptomycin by both *S. aureus* and *E. faecalis* [16]. Although platensimycin has not entered clinical trials due to poor pharmacokinetic properties [17, 37], other inhibitors of lipid biosynthesis are in clinical development [38]. Therefore, the use of daptomycin in combination with lipid biosynthesis inhibitors may provide an effective way of enhancing treatment outcomes compared to the lipopeptide antibiotic alone.

In summary, we have demonstrated that *E. faecalis* releases phospholipids in response to daptomycin via an active mechanism requiring *de novo* lipid biosynthesis and that these phospholipids inactivate daptomycin. Pathogenic streptococci also appear to be capable of inactivating daptomycin by releasing phospholipids, indicating that this mechanism is conserved amongst Gram-positive pathogens.

Funding information
E.V.K.L. is supported by a Wellcome Trust four-year PhD studentship (203812/Z/16/Z). A.M.E. acknowledges funding from the Royal Society, Department of Medicine and from the Imperial NIHR Biomedical Research Centre, Imperial College London.

Acknowledgements
Mal Horsburgh (University of Liverpool) and Angela Nobbs (University of Bristol) are acknowledged for kindly providing strains.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Humphries RM, Pollett S, Sakouls G. A current perspective on daptomycin for the clinical microbiologist. *Clin Microbiol Rev* 2013; 26:759–780.
2. Purrello SM, Garau J, Giamarellos B, Mascali T, Pea F et al. Methicillin-resistant *Staphylococcus aureus* infections: a review of the currently available treatment options. *J Glob Antimicrob Resist* 2016; 7:178–186.
3. Seaton RA, Gonzalez-Ruiz A, Cleveland KO, Couch KA, Pathan R et al. Real-world daptomycin use across wide geographical regions: results from a pooled analysis of CORE and EU-CORE. *Ann Clin Microbiol Antimicrob* 2016; 15:18.
4. Public Health England. *England Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR)*. 2016.
5. Straus SK, Hancock RE. Mode of action of the new antibiotic for gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. *Biochim Biophys Acta* 2006; 1758:1215–1223.
6. Muraih JK, Pearson A, Silverman J, Palmer M. Oligomerization of daptomycin on membranes. *Biochim Biophys Acta* 2011; 1808: 1154–1160.
7. Muraih JK, Harris J, Taylor SD, Palmer M. Characterization of daptomycin oligomerization with perylene eximer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. *Biochim Biophys Acta* 2012; 1818: 673–678.
8. Taylor SD, Palmer M. The action mechanism of daptomycin. *Bioorg Med Chem* 2016; 24:6253–6268.
9. Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in *Staphylococcus aureus*. *Antimicrob Agents Chemother* 2003; 47: 2538–2544.
10. Cotroneo N, Harris R, Perlmutter N, Beveridge T, Silverman JA. Daptomycin exerts bactericidal activity without lysis of *Staphylococcus aureus*. *Antimicrob Agents Chemother* 2008; 52:2223–2225.
11. Pogliano J, Pogliano N, Silverman JA. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. *J Bacteriol* 2012; 194:4494–4504.
12. Müller A, Wenzel M, Strahl H, Grein F, Saaki TN et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. *Proc Natl Acad Sci USA* 2016; 113:E7077–E7086.
13. Pader V, Edwards AM. Daptomycin: new insights into an antibiotic of last resort. *Future Microbiol* 2017; 12:461–464.
14. Seaton RA, Menichetti F, Dalekos G, Beiras-Fernandez A, Nacinovich F et al. Evaluation of effectiveness and safety of high-dose daptomycin: results from patients included in the European Cubicin® outcomes registry and experience. *Adv Ther* 2015; 32: 1192–205.
15. Tran TT, Munita JM, Arias CA. Mechanisms of drug resistance: daptomycin resistance. *Annu Rev Microbiol* 2015; 69:32–53.
16. Pader V, Hakim S, Painter KL, Wigneshwararaj S, Clarke TB et al. *Staphylococcus aureus* inactivates daptomycin by releasing phospholipids. *Nat Microbiol* 2016; 2:16196.
17. Wang J, Soisson SM, Young K, Shoop W, Kodali S et al. Plateinomyein is a selective FabF inhibitor with potent antibiotic properties. *Nature* 2006; 441:358–361.
18. Wale LJ, Shelton AP, Greenwood D. Scanning electron microscopy of *Staphylococcus aureus* and *Enterococcus faecalis* exposed to daptomycin. *J Med Microbiol* 1989; 30:45–49.
19. Biagini M, Garibaldi M, Aprea S, Pizzicoli A, Doro F et al. The human pathogen *Streptococcus pyogenes* releases lipoproteins as lipoprotein-rich membrane vesicles. *Mol Cell Proteomics* 2015; 14: 2138–2149.
20. Surve MV, Anil A, Kamath KG, Bhutada S, Sthanam LM et al. Membrane vesicles of group B *Streptococcus* disrupt feto-maternal barrier leading to preterm birth. *PLoS Pathog* 2016; 12:e1005816.
21. Uhmann J, Rohde M, Siemens N, Kreikemeyer B, Bergman P et al. LL-37 triggers formation of *Streptococcus pyogenes* extracellular vesicle-like structures with immune stimulatory properties. *J Innate Immun* 2016; 8:243–257.
22. Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK et al. Sig-maB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from *Streptococcus aureus* 8325–4. *J Bacteriol* 2002; 184:5457–5467.
23. Zhang YQ, Ren SX, Li HL, Wang YX, Fu G et al. Genome-based analysis of virulence genes in a non-biofilm-forming *Staphylococcus epidermidis* strain (ATCC 12228). *Mol Microbiol* 2003; 49:1577–1593.
24. Molinari G, Talay SR, Valentin-Weigand P, Rohde M, Chhatwal GS. The fibronectin-binding protein of *Streptococcus pyogenes*, Sfb1, is involved in the internalization of group A streptococci by epithelial cells. *Infect Immun* 1997; 65:1357–1363.
25. Wessels MR, Paolletti LC, Rodewald AK, Michon F, Difabio J et al. Stimulation of protective antibodies against type Ia and Ib group B streptococci by a type Ia polysaccharide-tetanus toxoid conjugate vaccine. *Infect Immun* 1993; 61:4760–4766.
26. Wilson CB, Weaver WM. Comparative susceptibility of group B streptococci and *Staphylococcus aureus* to killing by oxygen metabolites. *J Infect Dis* 1985; 152:323–329.
27. Cisar JO, Kolenbrander PE, McIntire FC. Specificity of coaggregation reactions between human oral streptococci and strains of *Actinomyces viscosus* or *Actinomyces naeslundii*. *Infect Immun* 1979; 24:742–752.
28. Jacob AE, Hobbs SJ. Conjugal transfer of plasmid-borne multiple antibiotic resistance in *Streptococcus faecalis* var. *zymogenes*. *J Bacteriol* 1974; 117:360–372.
29. Ike Y, Craig RA, White BA, Yagi Y, Clewell DB. Modification of *Streptococcus faecalis* sex pheromones after acquisition of plasmid DNA. *Proc Natl Acad Sci USA* 1983; 80:5369–5373.
30. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. CLSI Document M07-A9. Wayne, PA; 2012.

31. Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2016;40:133–159.

32. King A, Phillips I. The in vitro activity of daptomycin against 514 gram-positive aerobic clinical isolates. J Antimicrob Chemother 2001;48:219–223.

33. Harp JR, Saito HE, Bourdon AK, Reyes J, Arias CA et al. Exogenous fatty acids protect Enterococcus faecalis from daptomycin-induced membrane stress independently of the response regulator LiaR. Appl Environ Microbiol 2016;82:4410–4420.

34. Sen S, Sirobhushanam S, Johnson SR, Song Y, Tefft R et al. Growth-environment dependent modulation of Staphylococcus aureus branched-chain to straight-chain fatty acid ratio and incorporation of unsaturated fatty acids. PLoS One 2016;11:e0165300.

35. Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 2011;11:258.

36. El-Halfawy OM, Klett J, Ingram RJ, Loutet SA, Murphy ME et al. Antibiotic capture by bacterial lipocalins uncovers an extracellular mechanism of intrinsic antibiotic resistance. MBio 2017;8:e00225-17.

37. Martens E, Demain AL. Platensimycin and platencin: promising antibiotics for future application in human medicine. J Antibiot 2011;64:705–710.

38. Yao J, Rock CO. Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta 2016, in press. doi:10.1016/j.bbalip.2016.09.014.

Edited by: M. Holden and T. Msadek

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.