Review

Quantitative Approaches to Study Retinal Neurogenesis

Diego Pérez-Dones 1,2, Mario Ledesma-Terrón 1,2 and David G. Míguez 1,2*

1 Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid
2 Física de la Materia Condensada and IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid.
* Correspondence: david.miguez@uam.es

Abstract: The study of the development of the vertebrate retina can be addressed from several perspectives: from purely qualitative to a more quantitative approach that takes into account its spatiotemporal features, its three dimensional structure and also the regulation and properties at the systems level. Here we review the ongoing transition towards a full four-dimensional characterization of the developing vertebrate retina, focusing on the challenges at the experimental, image acquisition, image processing and quantification. Using the developing zebrafish retina, we illustrate how quantitative data extracted from these type of highly dense three-dimensional tissues depends strongly on the image quality, image processing and algorithms used to segment and quantify. Therefore, we propose that the scientific community that focuses on developmental systems could strongly benefit from a more detailed disclosure of the tools and pipelines used to process and analyze images from biological samples.

Keywords: Retinogenesis; Quantitative Biology; Imaging

1. Introduction

During embryogenesis, the vast majority of the functional neurons that form the central nervous system are generated from pools of undifferentiated neural progenitor cells [1]. This process is tightly regulated at many levels by signaling pathways that are highly conserved across vertebrates. One of the main focus in the field of Developmental Biology is to understand how these molecular features orchestrate neurogenesis towards the correct final form, shape and function of the organs and tissue that form the central nervous system.

Since this regulation is also highly conserved across different neurogenic tissues, the neural retina has been often used as a model system to study vertebrate neurogenesis, due mainly to its accessibility and simple structure [2,3]. The developing neural retina is a pseudostatified neuroepithelium where several major types of neurons are generated: retinal ganglion cells, cones and rods photoreceptors, amacrine, horizontal, bipolar, and Muller glia [4,5]. Cells in the developing vertebrate retina are organized in three main layers, and this structure is also highly conserved: photoreceptors localize at the outermost layer, the innermost layer is formed mostly by retinal ganglion cells, and the remaining four cell types form the inner nuclear layer (INL) [6,7].

From a structural and dynamic point of view, morphogenesis in the vertebrate retina follows a well established spatiotemporal organization along three major axis (Figure 1A): dorso-ventral, latero-medial and naso-temporal [8]. The sequence starts in a patch of progenitor cells often referred as the ventronasal centre [9]. This initial group of cells start to perform proliferative symmetric divisions, initiating a wave of proliferation that moves from central to peripheral and from nasal to temporal areas [10]. In zebrafish, this proliferative wave covers the whole embryonic retina in around 16 hours [11]. Later on development, differentiation of Retinal progenitor cells (RPC) into terminally differentiated neurons also takes place as a wave, starting again at the ventronasal centre and moving out towards the ventrotemporal periphery [12,13].
At the cellular level, the structure of neural retina has a marked apicobasal polarity. This asymmetrical organization of the cell membrane, the intracellular organelles and the cytoskeleton results in very important properties and consequences at the biochemical and even physical level. One of the most striking features is the movement of the nuclei in correlation with the cell cycle of retinal progenitors, known as interkinetic nuclear migration. During this process, cycling cells divide mostly when nuclei are localized at apical pole, then travel to the basal zone during G1 phase, and come back to the apical surface during G2 [14].

This multiple layers of organization, from sub-cellular to systems level, the sequential generation of several neuronal subtypes, the wave-like proliferation and differentiation, and the interplay between many signaling cascades attracts the attention of scientists from molecular [15], cell and evolutionary biology background [16], but also researchers with a more theoretical, computational and image analysis approach [17].

Earlier studies approached the developing vertebrate retina focusing on key aspects at the genetic and/or molecular level, providing a highly important but mostly qualitative characterization of the processes, signals and regulation involved in the retinal specification [18]. This basic qualitative knowledge provided the foundation for more recent contributions that study retinogenesis from a quantitative spatial and dynamics perspective, taking advantage more powerful and specialized tools, both at the software and hardware levels [19].

In this review we focus in these early and recent contributions in the field of retinal neurogenesis of vertebrates with a clear quantitative perspective. As studies focused more on the spatial and/or temporal characteristics of the developing retina, the amount of data and information obtained increases very fast, requiring statistical analysis and automated segmentation methods to derive robust conclusions (Figure 1B). Finally, in the last section, we propose an unified approach towards a full four-dimensional characterization of vertebrate retinogenesis.

Figure 1. A. Three-dimensional reconstruction (using FIJI plug-in 3DViewer) from confocal sections of a zebrafish retina at 44 hours post fertilization. The tissue was mounted and stained with Topro3 (DNA marker) *in toto*. Three-dimensional reconstruction generated . The three axis that define the developing retina are represented in three colors. B. Illustration representing the shift from qualitative to quantitative studies in retinal neurogenesis. As spatial and/or temporal dimensions are taken into account, the amount of data generated and processed to obtain reliable and robust quantification increases.

2. From qualitative to quantitative

As explained previously, many very important discoveries of how the early vertebrate retina is formed have been based on simply qualitative observations. For instance, the determination of the main genetic and molecular signaling pathways that regulate retinal development [20], and the important identification of potential therapeutic targets within the molecules involved in these pathways [21] where based mainly on visual ob-
ervation. For instance, careful *de visu* inspection and analysis was sufficient to establish that, in the zebrafish retina, the shift from progenitor to a terminally differentiated fate was mainly determined by intrinsic factors, instead of input by neighbour cells [22]. In addition, a clever qualitative approach was key to establish the role of the mouse *atsonal* (*ato*) homologue *math5* in the fate of RPCs [23].

These and other similarly important studies have contributed to uncover the regulatory networks of interactions that drive the organization of retinogenesis, also showing that the molecules involved in this regulation is highly conserved in different animal model systems and tissues [24–26]. These scientific contributions constitute clear examples that experimental results are sometimes so evident that a careful and exhaustive quantification or statistical analysis is not essential, and sometimes does not enhance substantially the quality and integrity of the results reported.

Unfortunately, this is not always the case, and some early and recent studies that rely on just qualitative observations would strongly benefit from a more quantitative approach. For instance, studies based on visual exploration of histological sections show that proliferation of RPCs depends critically on Cyclin D1 levels, since retinas appear smaller when Cyclin D1 is downregulated. Based on this observations, authors speculated that proliferation of RPCs in the neural retina is driven by unusually high levels of Cyclin D1.

In the same direction, the interaction between Cyclin D1 and p27 during retinogenesis was analyzed based on visual characterization of histological sections of the developing mouse retina [27]. Another study [28] used as similar approach to concluded that expression of Cyclin D1 may alter photoreceptor cell differentiation and retina development by potentially affecting the cell cycle. Focusing also in Cyclin D1, Locker *et al.* [24] concluded that Hh signaling decreases the expression of Cyclin D1 in the *Xenopus* retina. Here, quantification of the intensity levels on microscope images of histological sections of *in situ* hybridization staining is presented, but the details of how these numbers are obtained are not described.

These examples of the early characterization of the developing vertebrate retina represented important contributions to the field, but they may have benefited by a more extensive quantification and analysis. In addition, a more detailed explanation of how values are obtained will arguably result in increased reliability of the data and more robust conclusions. Moreover, careful statistical analysis of the data could reveal even more relevant conclusions than simple eye inspection. For instance, in the same topic of the role of Cyclin D1, the potential of a more quantitative type of approach is very well illustrated in the studies by Bienvenu *et al.* [29]. In this study, authors combined microarrays, ChiP and Rt-PCR to show that in the mouse retina, Cyclin D1 acts at the level of the promoters, serving as an activator and repressor of gene expression, and that reduction in the proliferation of NPCs takes place via an inteplay with the Notch signaling.

These types of molecular biology tools and techniques represent a step forward in terms of quantitative data, allowing us to perform statistical analysis, and data processing to extract relevant information. On the other hand, they do not provide spatial and/or temporal information of how the neurogenesis in the vertebrate retina is orchestrated. As discussed in the introduction, the morphogenesis of the retina depends strongly on spatial and temporal cues, therefore a more complete and powerful approach should take into account information about time and/or location.

3. 2D Quantitative data

In the context of the developing vertebrate retina, spatial quantitative data commonly relies on features identified by *in situ* hybridization, immunostaining, thimidine analog incorporation, fluorescent labeling and other common techniques. Almost all of them require, at some point, the use of a microscope to visualize and register features at the subcellular, cellular or tissue level.
Extracting quantitative data from images from biological samples can be defined as an issue that involves concepts of microscopy, computer vision and/or bioimaging. The key step to distinguish individual entities (such as cells, nuclei, organelles...) in an image is segmentation, i.e., the process of separating background (noise) from foreground (information) to identify the different objects in the image [30]. Image segmentation is often regarded as the cornerstone of image analysis, and several reviews have focused on this issue in the context of biological images [31,32] Segmentation of the objects of an image can be done manually, semi-automatically or automatically, and there are free and commercially available tools that segment images, requiring different levels of interaction and expertise by the user.

Unfortunately, images from biological tissues such as the developing retina are sub-optimal in terms of signal-to-background ratio, contrast and resolution, so to obtain an accurate segmentation of the objects is not straightforward, specially when images are taken in vivo. Free and commercial general purpose tools for image segmentation are not normally designed to work in conditions of high cellular density and low contrast, and therefore can introduce a large number of segmentation errors, compromising the quantification process. To illustrate this, we show in Figure 2A a confocal section of a developing zebrafish retina at 44 hours post fertilization (HPF) stained with nuclei marker and imaged in toto using a confocal microscope. Figure 2B shows the output of a standard algorithm for automated segmentation (watershed) applied to this image. To illustrate the errors in the segmentation of the image, nuclei identified incorrectly are highlight in color in both panels.

![Automated Segmentation of images from developing zebrafish retina. A) Section of a developing zebrafish retina at 44 hours post fertilization stained with nuclear marker Topro3 (see Methods). B) Segmentation of the same section using using Fiji base algorithms (auto-threshold + watershed). Individual objects not correctly identified are highlighted with different colors. C) Image segmentation of a section of a developing zebrafish retina at 44 HPF (using FIJI base algorithms) following the pipeline: 1. Automatic thresholding; 2. Binary morphological opening (Open function); 3. Binary morphological closure (Close-function); 4. Watershed algorithm (Watershed function). D) Segmentation using the exact same filters, with the only difference that order between closing and opening filters is reversed. Nuclei segmented differently by these two very similar pipelines are highlighted in colors.](image-url)
Due to the difficulty to accurately segment images from dense developing biological tissues, manual quantification is often the preferred method when working in the vertebrate retina. For instance, manual quantification has been part of the pipeline used to establish the link between the mammalian homolog of Inscuteable (mInsc) and the orientation of the mitotic spindle in rat retinal explants [33]. Quantitative data extracted from manual or semi-automatic analysis is also the approach used to identify the role of Sonic hedgehog (Shh) in promoting the cell-cycle exit [34] in the developing zebrafish retina, contrary to its role in promoting proliferation in other organs. Also, the link between Shh, Gli, and Hes1 in the regulation of progenitor cell behavior [35] has been established based on manual quantification of proliferation dynamics in sections of the mouse developing retina. In addition, in the same topic of regulation of the balance between proliferation and differentiation, the role of the tumor suppressor Zac1 in promoting cell cycle exit cell fate specification and differentiation in retinal progenitors of Xenophus [36], the spindle orientation effect in the fate of cells after division in neonatal rat retinas [37], the fate of Ath5-expressing progenitors in a zebrafish embryos using time-lapse movies [38], as well as the generation of Retinal Ganglion Cells and photoreceptors mediated by Notch signaling [39] have been established using manual quantification.

The advantage of direct counting or quantification of a given output value is that it can be performed by any trained scientist with no expertise in image analysis. The main disadvantage is that it introduces a new variable in the data: the human factor. In other words, the data is inherently biased because it depends on the perception of the person, and therefore, reproducibility is compromised. To illustrate this, we provided the same image of a developing zebrafish retina to a number of scientists familiar with biological images, and ask them to manually count the number of nuclei of the same section (assisted by the Cell Counter plugin from FIJI). Results (Fig 3A) show that the difference between values extracted can be up to 35% of the mean value, evidencing that de visu quantification, when applied to the developing retina, depends strongly on the person that performs the analysis, reducing this way the reliability of the data.

Another limitation of manual analysis is sample size. It is well known that the dynamics of developmental processes are very variable between individuals in the same experiment. To account for this intrinsic variability, the number of independent repeats required to obtain a reliable quantification should be substantially high (ideally, higher
than the three independent repeats of a typical experimental design). Performing manual quantification becomes unattainable when using large datasets, or several independent repeats for a single data point, specially when the numbers of objects to count is well above the three digits, as when working with mammalian retina sections.

In conclusion, manual counting might be a reasonable strategy when the images are very clear and the number of features or entities to measure is reduced. On the other hand, these are also the same conditions when direct automated segmentation performed by conventional tools produces optimal results. Therefore, when working with sections with good signal-to-noise ratio that can be counted manually, automated image analysis should still be the preferred option, because its accurate performance, it reduces the human bias and providing the possibility to quantify a large number independent repeats and perform statistical analysis to reduce the effect of variability.

4. Automated Image Analysis

The field of automated image processing and analysis of biological and biomedical data is very active, and many recent publications present updated tools and/or propose new methods based on state-of-the-art algorithms [19,40,41] designed to overcome the typical limitations of images from biological samples.

Careful automated image analysis has been used to measure the total number of cells and retinal ganglion cells in mice [42] and rat developing retinas [43]. Also, the contribution of cell proliferation to the isotropic growth of the zebrafish developing retina [44], the contribution of the retinal pigmented epithelium in the formation of the optic cup [45], the role of retinoic acid [46] and the effect of ethanol-exposure during retinogenesis [47,48], used automated quantitative tools.

When working with automated segmentation tools, such as the commonly used watershed or other model based methods [49–53], one has to take into account that the output will depend strongly on the quality and resolution of the image. Therefore, to optimize the process of automated image segmentation and to facilitate the job of the algorithm, images are often pre-processed with a sequence of filters and transformations designed to enhance the contrast and to increase the signal-to-background ratio.

Unfortunately, this pre-processing impacts strongly the output of the segmentation, and it has to be done carefully. To illustrate this, we show in Figure 2C-D two different segmentation outputs from a section of a zebrafish retina (44 HPF, stained with nuclear marker ToPro3), using the exact same algorithms and parameters. The only difference between left and right panels is a change in the order of application of opening and closing filters (two of the most common filters used for image processing). The large number of mismatches between the segmentation of the two almost identical pipelines (colored cells in Figures 2C-D) illustrates the importance of the pre-processing design when automatically segmenting dense images (of course, more important differences in the processing would result in larger differences).

Despite this strong impact in the quantification, the processing pipeline and/or the parameters applied are rarely described as part of the Methods sections in scientific papers. One of the main reasons for this is that the pre-processing and segmentation methods in commercial tools are proprietary and, therefore, are not fully disclosed to protect the intellectual property of manufacturers. Unfortunately, this lack of transparency impacts the reproducibility (and therefore the reliability) of the results. We strongly suggest that, similarly to the detailed explanation of all experimental methodologies, reagents and protocols, image processing pipelines should be also thoroughly explained in the Methods section of scientific manuscripts, including a detailed description of the filters and transformations applied, their sequence and the parameter values used. This information will ultimately facilitate other researchers to carry on similar studies.
5. The developing vertebrate retina in three-dimensions

The type of quantitative analysis highlighted in the previous section focuses on comparison between still images of developing retinas at different time points or different experimental conditions. The images used are often obtained from histological sections or from single confocal planes of tissues imaged in toto. As explained in the introduction, the formation, growth and specification of the vertebrate retina does not occur homogeneously in space. Several studies have reported sequential spatially asymmetric waves of proliferation and differentiation [11–13]. Consequently, the spatial location of a cell at a given time strongly determines its fate as cycling progenitor or as any type of the seven differentiated neuron subtypes that compose the vertebrate retina.

For the sake of simplicity, most studies do not take into account this heterogeneity and approach their studies focusing on representative histological sections of the developing retina. The advantage is that quasi-2D sections are easier to image, process and quantify than 3D images. The main disadvantage is that the information encoded spatially during the formation of the retina is lost when focusing in one single representative section. Moreover, the fact that differentiation and proliferation take place as a spatio-temporal three-dimensional wave makes impossible to define what can be really considered a "representative" section of the developing retina.

On top of this, the size of the retina is also non homogeneous, and therefore, the number of cells in the image depends on where in the retina the image has been taken. To illustrate this, we show in Figure 3C three different values of the number of cells performed in three different sections of same zebrafish retina at 44 HPF (nuclei stained with ToPro3). Automated quantification of the number of nuclei shows variations of 44 % of the mean value, between different sections of the same 3D image. Therefore, an increase or decrease in the cell numbers associated to two different experimental conditions can be easily confused with variations in in the sections being processed and quantified. Quantification of the cell density also shows variations between the planes (Figure 3D), this is important because it directly affects the performance of the segmentation algorithms, resulting in important changes in the accuracy of the data depending on the section selected. Based on this, we suggest that the optimal way to correctly quantify an heterogeneous tissue such as the developing retina is a three-dimensional approach.

The shift form 2D to 3D in many areas of biosciences and biomedical research is already in progress, taking advantage of improved hardware and software tools [54]. At the experimental level, one of the main problems when imaging thick whole-mount three-dimensional tissues is absorption and scattering of photons when traveling through the sample. This results in blurred, noisier images as we focus in regions deep into the organ. Fortunately, this can be minimized in vitro by using mounting solutions that improve the transparency of biological tissues [55]. These mounting solutions or treatments can reduce the differences in the refractive index (RI) between the tissue and the surrounding medium. Also, they can modify the size and structure of biological molecules responsible for light-scattering, such as collagen [56,57]. Finally, tissue dehydration may be also contributing to the clearing process, affecting the density and molecular organization, and therefore, decreasing light scattering [58].

To minimize loss of resolution due to light absorption, chemical treatment is often applied to de-colorize the tissue. In the context of the developing retina, melanin is one of the main molecules that absorbs light. In zebrafish and other organisms, phenylthiourea (PTU) is often added to the media where animals are developing to inhibit melanization and reduce the opacity of the tissue, although it may have side effects in other aspects of the developmental processes [59].

From the hardware perspective, several recent tools have been developed and improved that facilitated the acquisition of data and image from large dense samples with quantitative quality. Conventional or two-photon confocal microscopy can be used to perform 3D optical sectioning on whole mount tissues. One of their main limitations
is speed, because images are registered based on point-scanning (i.e., voxel-by-voxel). This increases the exposure of the sample to a highly energetic laser to cover all confocal sections of a thick sample, resulting in increased photobleaching and phototoxicity that can damage the tissue and affect the quality of the image [60].

Due to these limitations, light-sheet fluorescence microscopy (t) arises as the optimal approach when working with thick 3D samples. In these systems, excitation light and emission light are emitted and captured respectively by two different lens, while the sample or the light source rotates to image the whole tissue.

This way, instead of the point-scanning method of confocal microscopy, a whole section can be imaged and registered at once, resulting in much higher acquisition speed. Also, by using two objectives instead of one, photons only have to make travel trough the sample once, minimizing photobleaching, phototoxicity, light absorption and light dispersion [61].

In the context of vertebrate retinogenesis, LSFM has been already used used to reconstruct the early development of zebrafish embryos at an speed of 1.5 billion voxels per minute to study global cell division patterns [62]. Also, selective plane illumination microscopy (SPIM) has been used to study characteristic migration patterns and global tissue remodelling in the early endoderm [63] of zebrafish embryos.

After image acquisition, the next challenge is the quantification of these 3D images. 3D reconstructions either from confocal or LSFM can illustrate very beautifully the shape and organization of the tissue, but translating all this information into numbers is virtually impossible without the help of specialized software. Several commercial and open-source computational tools have been developed and are widely used in this context. Again, similarly to what occurs in two-dimensions, the output of the quantification depends strongly on the quality of the image, the processing pipeline, the parameters and the type of algorithm for segmentation, and ultimately the software used.

Different computational tools produce different output because they rely of different approaches, from conventional mathematical operations designed to filter and segment objects, to state-of-the-art deep learning neural networks [64] that identify objects based on hundreds of features or rules. Some deep-learning implementation are focused on task such as object detection [65,66], image segmentation [67,68], object tracking [69,70], object classification [71] or combinations of the above [72–76].

Due to this core differences, a given algorithm or tool may work better in one type of three-dimensional images than others. Also, these tools have been mainly designed to quantify images with large empty spaces between objects, or very good signal-to-background ratio. Unfortunately, images from three-dimensional dense biological tissues such as the developing vertebrate retina, often have a resolution and contrast that is far from optimal, specially when imaged in vivo. In these conditions, conventional tools do not produce accurate results, so the full potential of a three-dimensional approach can be compromised by the lack of reliable quantification tools.

In this direction, we have recently developed OSCAR: an Object segmentation Counter and Analysis Resource that is designed to work with three-dimensional images where resolution is low and/or object density is high [19]. Our tool combines nonlinear fitting algorithms with statistical analysis to bypass segmentation errors that frequently take place when segmenting automatically low resolution images. In brief, OSCAR reconstructs the three-dimensional objects by taking advantage of the three-dimensional information in the image and correct the mistakes that may occur in the segmentation process. An illustration of the process performed by OSCAR is shown in Figure 4. The three-dimensional image is processed, filtered, enhanced and segmented in a plane-by-plane basis. Next, objects identified in neighboring planes are connected based on statistical analysis and nonlinear fitting algorithms. Finally, a digital representation is generated based on the geometry of the objects detected. Our results show that OSCAR is able to outperform other tools used commonly for image analysis in conditions of low
resolution and low signal-to-background, typical of biological 3D images registered in toto or in vivo [19].

Figure 4. Schematic representation of the pipeline followed to reconstruct objects in three-dimensional images by OSCAR. Left: 3D Representation of the original image (Fiji-3D Viewer). Center: Representation of how neighboring sections from the same 3D object are connected. Each coloured line follows the trajectory of a given nuclei along the z-axis. Right: 3D Representation of the reconstructed 3D image. Colored objects represent the nuclei that correspond to the colored lines in the central panel. A processing and segmentation pipeline is applied to the original image in order to obtain a more reliable reconstruction (Gaussian blur sigma = 20pix; Minimum filter sigma = 20pix; Maximum filter sigma = 20pix; Image Calculator-Original image subtract filtered; Manual thresholding; Binary Open; Watershed; 3D Objects Counter; 3D Draw Shape-All 3D objects represented as 10pix radius spheres; 3D Viewer).

6. The developing vertebrate retina in four-dimensions

Neurogenesis is a highly dynamic process, with many signals and events that depend on time. Before neurogenesis starts, neural stem cells are organized in a single pseudostratified layer of neuroepithelial cells [45,77]. After the formation of the primordium of the central nervous system as a neural tube, two protuberances appear at the sides of the future brain, called optic vesicles (lobes in zebrafish). Later on, this regions differentiate into the neural retina, the retinal pigmented epithelium (RPE) and the optic cup. Finally, the interplay between the formation of the RPE and the invagination of the optic lobe ultimately shapes the whole optic cup [78,79].

Another very direct indication that illustrates how the core features of retinogenesis depend on time is the changes in the differentiation probability of the retinal progenitor cells into the different subtypes of terminally differentiated neurons. These type of decisions have been show to follow an stochastic pattern in the vertebrate developing retina, with the probabilities of differentiation occurring in a well conserved sequential order [80,81]: the initial wave of differentiation into retinal ganglion cells is followed by a second wave in which horizontal cells and cones are originated, that then partially overlaps in time with the following wave of retinogenesis giving rise to amacrine cells, also overlapping with the differentiation stage into rods and, during a shorter period, bipolar cells. Finally, a last wave of differentiation originates Müller glia [80–82].

Interkinetic nuclear migration (INM) is another very important process with a strong dynamic component. This coupling between nuclei displacement and cell cycle progression is driven mainly by forces acting at the cytoskeleton level, and the causes and consequences of INM are still being elucidated [83].

These three illustrations of highly important dynamic processes that shape the growth, formation and specification of the vertebrate retina suggest that at a full quantitative characterization has to take into account the temporal variable. At the tissue levels, a quantitative characterization of the dynamics can be based on data acquisition
and different time points, while, at cellular level, it involves time lapse movies and cell tracking tools.

Automated cell tracking of all cells in a three-dimensional tissue such as the developing retina is a difficult task, and requires a very accurate three-dimensional segmentation combined with algorithms to correlate the position and fate of the objects in consecutive time frames. This is a powerful and very informative approach, but the amount of data that has to be processed is large. Taking the development of the zebrafish retina as example, a 24h period is needed to account for the complete developmental process. Assuming a rather conservative 10 minutes spacing between frames, 1a time lapse movie should contain a minimum of 44 frames. From each time-frame, a minimum of 100 slices are needed to a proper 3D reconstruction of a single retina. As a result, a minimum of 14400 slices have to be segmented and processed. The typical three independent repeats for a given experiment will result in more than 40000 frames for a single experimental condition.

At the cellular level, the position of each cell in the 3D space has to be processed to connect objects in consecutive frames. Assuming that a zebrafish retina if formed by around 5000 at the time the first wave of differentiation finishes (at around 44 HPF), tracking all the cells during 24 hours will require the processing of above 2e6 data points (three spatial coordinates per cell). Fig 3B shows an estimation of how the number of the data increases as we take into account more dimensions, with an increase of one order of magnitude from 2D sections to the 3D full tissue. The data processed increases by two extra orders of magnitude when the temporal dimension is added.

To date, these type of full four-dimensional characterization has not been attempted in the vertebrate developing retina, but it has been succesfully implemented for segmenting 4D images of cardiac magnetic resonances [84], for assessing the whole embryonic development of the zebrafish [85], for establishing the trichome patterning of Arabidopsis thaliana trough 4D confocal images [86] or for quantitatively analyzing 4D confocal images of anchor-cell invasion in Caenorhabditis elegans [87].

Due to the already mentioned accessibility of the retina, we believe that a full four-dimensional characterization of its development at single cell resolution is highly possible. An even more powerful approach will be to perform these type of time-lapse movies in animals where the fate of the cells can be identified in vivo using fluorescent reporters of differentiation such as the Tg (ATH5:GFP) zebrafish line to monitor RPCs differentiation [38], the Fucci system to monitor cell cycle progression [88,89] or the markers of mode of division [90]. A combination of a four-dimensional approach with these type of molecular biology tools would provide us with the ultimate weapon to study fully characterize the developing vertebrate retina.

7. Conclusions

The developing retina is an optimal model to study the dynamics and the balance between proliferation and differentiation during neurogenesis at a system level and single cell resolution. The size and accessibility allows us to obtain in toto images and time-lapse movies with quantitative detail. Combined with antibody stating or fluorescent reporters of cell fate, this approach should provide a clear multi-level perspective of how the retina forms in vertebrates. Moreover, comparison of normal development with conditions where some of the signaling pathways are disrupted by small molecule inhibition can show us the true role of each signaling network, and how some of them can interplay during the orchestration of the multiple spatial and temporal processes that take place and ultimately result in a fully functional retina. This approach, when combined with the potential and simplicit of in vitro retinal organoids from IPS cells, could serve as initial framework to study the formation of the human retina.

In this direction, we believe that it is important to define a well structured pipeline at all levels, from the embryo manipulation, mounting, staining, to the microscope, image processing and image analysis. In this direction, we have generated our tool...
OSCAR [19] to serve as the final step in the process, since it is specifically designed to perform well with less than optimal images.

The effort in trying to set the ground for a general image segmentation pipeline optimized for each biological conditions is large, and perhaps bioimaging is still far from this objective. We think that the field of Development Biology, and in particular retinal neurogenesis, can become an example of good practices when studying heterogeneous tree-dimensional tissues from a quantities perspective, and with good spatial and temporal resolution. To move into this direction, a good start will be an increased effort in describing with sufficient detail the pipelines and tools used in the acquisition, processing, quantification, and data analysis. Only as a collective effort, we can achieve a full four dimensional characterization of the developing vertebrate retina.

8. Methods

8.1. Animals

Experiments were conducted in wild type zebrafish embryos, sustained according to the standard procedures and protocols. All the images showing zebrafish retina images were experimentally obtained by our group. All experimental protocols are in accordance with the guidelines of the European Communities Directive (2012/63/EU) and the actual Spanish legislation (Real Decreto 53/2013).

8.2. Sample preparation

Embryos are incubated in E3 1x fish medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl$_2$, 0.33 mM MgSO$_4$) supplemented with Methylene Blue (Sigma) at 28°C. At 24 hours post fertilization (hpf), medium is supplemented with 0.003% Phenylthiourea (Sigma, 103-85-5) to block eye pigmentation. Embryonic stage is determined by controlling birth hour and by visual appreciation. Embryos are then fixed with a 10% Formaline solution (Sigma, HT501128) by incubation overnight at 4°C or 2-3 hours at room temperature. Finally, embryos are washed with Phosphate Buffer Saline (PBS) 1x three times 5 minutes each.

8.3. Immunostaining and mounting

First, embryos are exposed to proteinase K (10 µg / mL; Wagen-Biotech, 505-PKP). Different exposure times are selected according to embryonic stage of the sample, ranging from 10 (24 hpf) to 45 minutes (48 hpf). Then, a short fixation with 10% Formaline is carried out, to prevent from mechanical incidents during the experimental procedure. After the Formaline solution is washed, embryos are incubated, during 1 hour at room temperature or at 4°C overnight, with a blocking solution of Fetal Bovine Serum (FBS) 10% in PBS 1x and 0.6% Triton (PBT 0.6%) to prevent subsequent non-specific interactions. Once removed the blocking solution, embryos are incubated with primary antibodies diluted in a solution of FBS 2% in PBT 0.6% at 4°C overnight in an agitator. Primary antibodies used were chicken anti-GFP (1:1000; Abcam, ab137827) and rabbit anti-Sox2 (1:1000; GeneTex, GTX124477). Finally, embryos are incubated with secondary antibodies and other fluorescent dyes diluted in a solution of FBS 2% in PBT 0.6%. Secondary antibodies used were goat anti-chicken-488 (1:500; ThermoFisher, A-11039) and donkey anti-rabbit-555 (1:500; ThermoFisher, A-31573). Total nuclei were stained with To-Pro3 (1:500; ThermoFisher, T-3605). After immunostaining, embryos heads are manually dissected from their bodies and eyes are separated by sectioning the middle line. Embryos eyes are mounted in RapiClear 1.49 (SunJin Lab) medium to minimize refraction, scattering and dispersion.

8.4. Image acquisition

Images of confocal planes of the sample (1024x1024 pixel resolution) were taken in a Leica SM800 confocal microscope, using 1 µm of pinhole. An overlapping region
between confocal slices of 0.2 µm is established to ensure a correct reconstruction of the tissue in three dimensions.

Each channel was acquired separately and then, channels were splitted (FIJI; Color-Split Channels), to work only with the total nuclei channel, stained with To-Pro3.

8.5. Object density analysis

To assess the density of the different focal planes presented, a small code in Julia Programming Language was used. Object’s centroids were obtained from FIJI’s Analyze Particles output. Each centroid in pixels was transformed to µm by multiplying the value in pixels by the known value in microns according to the image acquisition settings. For each object, 5 nearest neighboring objects were found based on distance from centroid to centroid. An arithmetic mean was obtained from each object and, then, the represented mean was calculated for all the objects in each image.

Author Contributions: Conceptualization DGM, MLD and DPD; methodology, DGM, MLD and DPD; software, DGM, MLD and DPD; validation, DGM, MLD and DPD; formal analysis, DGM, MLD and DPD; resources, DGM; data curation, DGM, MLD and DPD; writing—original draft preparation, DGM and DPD; writing—review and editing, DGM and DPD; visualization, DGM and DPD; supervision, DGM; project administration, DGM; funding acquisition, DGM. All authors have read and agreed to the published version of the manuscript.

Funding: Please add: “This research received no external funding” or “This research was funded by NAME OF FUNDER grant number XXX.” and and “The APC was funded by XXX”. Check carefully that the details given are accurate and use the standard spelling of funding agency names at https://search.crossref.org/funding, any errors may affect your future funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Ethics Committee of the Centro de Biologia Molecular Severo Ochoa.

Acknowledgments: DGM acknowledges funding to the Spanish Ministerio de Economía y Competitividad (BFU2014-53299-P, RTI2018-096953-B-I00) and funding to IFIMAC-UAM, through the ‘María de Maeztu’ Programme for Units of Excellence in R&D from the Spanish Ministerio de Economía y Competitividad (CEX2018-000805-M). Institutional grants by Fundación Ramón Areces and Banco de Santander to the CBMSO are also acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds, and code used are available from the authors.

Abbreviations
The following abbreviations are used in this manuscript:

RPC Retinal progenitor cell
HPF Hours post fertilization
mInsc Mammalian homolog of Inscuteable
SPIM Selective plane illumination microscopy
LSFM Light sheet fluorescence microscopy

References
1. Toma, K.; Wang, T.C.; Hanashima, C. Encoding and decoding time in neural development. Development, growth & differentiation 2016, 58, 59–72.
2. Wallace, V.A. Concise review: making a retina—from the building blocks to clinical applications. Stem Cells 2011, 29, 412–417.
3. Centanin, L.; Wittbrodt, J. Retinal neurogenesis. Development 2014, 141, 241–244.
4. Hamon, A.; Roger, J.E.; Yang, X.J.; Perron, M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Developmental Dynamics 2016, 245, 727–738.
5. Ji, S.L.; Tang, S.B. Differentiation of retinal ganglion cells from induced pluripotent stem cells: a review. International journal of ophthalmology 2019, 12, 152.
6. Thoreson, W.B. The vertebrate retina. In Neuroimmune Pharmacology; Springer, 2017; pp. 55–68.
7. Baden, T.; Euler, T.; Berens, P. Understanding the retinal basis of vision across species. Nature Reviews Neuroscience 2020, 21, 5–20.
8. Valdivia, L.E.; Lamb, D.B.; Horner, W.; Wierzbicki, C.; Tafessu, A.; Williams, A.M.; Gestri, G.; Krasnow, A.M.; Vleeshouwer-Neumann, T.S.; Givens, M.; others. Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish. Development 2016, 143, 1087–1098.
9. Wycliffe, R.; Plaisancie, J.; Leaman, S.; Santis, O.; Tucker, L.; Cavieres, D.; Fernandez, M.; Weiss-Garrido, C.; Sobarzo, C.; Gestri, G.; others. Developmental delay during eye morphogenesis underlies optic cup and neurogenesis defects in mab21l2u517 zebrafish mutants. International Journal of Developmental Biology 2020, 65, 289–299.
10. Vleeshouwer-Neumann, C.J.; Nueseisln-Volhard, C. Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 2000, 289, 2137–2139.
11. He, J.; Zhang, G.; Almeida, A.D.; Cayouette, M.; Simons, B.D.; Harris, W.A. How variable clones build an invariant retina. Neuron 2012, 75, 786–798.
12. Hu, M.; Easter Jr, S.S. Retinal neurogenesis: the formation of the initial central patch of postmitotic cells. Developmental biology 1999, 207, 309–321.
13. Neumann, C.J.; Nueseisln-Volhard, C. Patterning of the zebrafish retina by a wave of sonic hedgehog activity. Science 2000, 289, 2137–2139.
14. Bone, C.R.; Starr, D.A. Nuclear migration events throughout development. Journal of cell science 2016, 129, 1951–1961.
15. Zhou, J.; Benito-Martín, A.; Mighty, J.; Chang, L.; Ghoroghi, S.; Wu, H.; Wong, M.; Guariglia, S.; Baranov, P.; Young, M.; others. Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins. Scientific reports 2018, 8, 1–15.
16. Damsgaard, C.; Lauridsen, H.; Funder, A.M.; Thomsen, J.S.; Desvignes, T.; Crossley II, D.A.; Möller, P.R.; Huong, D.T.; Phuong, N.T.; Detrich III, H.W.; others. Retinal oxygen supply shaped the functional evolution of the vertebrate eye. Elife 2019, 8, e52153.
17. Ghosh, S.K.; Ghosh, A. A novel retinal image segmentation using SVM boosted convolutional neural network for exudates detection. Biomedical Signal Processing and Control 2021, 68, 102785.
18. Serirtrakul, P.; Gross, J.M. Genetic and epigenetic control of retinal development in zebrafish. Current opinion in neurobiology 2019, 59, 120–127.
19. Ledesma-Terrón, M.; Pérez-Dones, D.; Miguez, D.G. OSCAR: a framework to identify and quantify cells in densely packed three-dimensional biological samples. bioRxiv 2021, [https://www.biorxiv.org/content/early/2021/06/27/2021.06.25.449919.full.pdf]. doi: 10.1101/2021.06.25.449919.
20. Agathocleous, M.; Harris, W.A. From progenitors to differentiated cells in the vertebrate retina. Annual Review of Cell and Developmental Biology 2020, 25, 45–69.
21. Lamba, D.; Karl, M.; Reh, T. Neural regeneration and cell replacement: a view from the eye. Cell stem cell 2008, 2, 538–549.
22. Kay, J.N.; Link, B.A.; Baier, H. Staggered cell-intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina. Development 2005, 132, 2573–2585.
23. Yang, Z.; Ding, K.; Pan, L.; Deng, M.; Gan, L. Math5 determines the competence state of retinal ganglion cell progenitors. Developmental biology 2003, 264, 240–254.
24. Locker, M.; Agathocleous, M.; Amato, M.A.; Parain, K.; Harris, W.A.; Perron, M. Hedgehog signaling and the retina: insights into the mechanisms controlling the proliferative properties of neural precursors. Genes & Development 2006, 20, 3036–3048.
25. Pandit, T.; Jidigam, V.K.; Patthey, C.; Gunhaga, L. Neural retina identity is specified by lens-derived BMP signals. Development 2015, 142, 1850–1859.
26. Steinfield, J.; Steinfield, I.; Bausch, A.; Coronato, N.; Hampel, M.L.; Depner, H.; Layer, P.G.; Vogel-Höpker, A. BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling. Biology open 2017, 6, 979–992.
27. Geng, Y.; Yu, Q.; Sicinska, E.; Das, M.; Bronson, R.T.; Sicinski, P. Deletion of the p27kip1 gene restores normal development in cyclin D1-deficient mice. Proceedings of the National Academy of Sciences 2001, 98, 194–199.
28. Skapek, S.X.; Lin, S.C.J.; Jablonski, M.M.; McKeller, R.N.; Tan, M.; Hu, N.; Eva, Y.; Lee, H. Persistent expression of cyclin D1 disrupts normal photoreceptor differentiation and retina development. Oncogene 2001, 20, 6742–6751.

29. Bienvenu, F.; Jarrahiatotai, S.; Elias, J.E.; Meyer, C.A.; Mizeracka, K.; Marson, A.; Frampton, G.M.; Cole, M.F.; Odom, D.T.; Odajima, J.; others. Transcriptional role of cyclin D1 in development revealed by a genetic–proteomic screen. Nature 2010, 463, 374–378.

30. Mabaso, M.A.; Withey, D.J.; Twala, B. Spot detection methods in fluorescence microscopy imaging: a review. Image Analysis & Stereology 2018, 37, 173–190.

31. Meijering, E. Cell segmentation: 50 years down the road [life sciences]. IEEE Signal Processing Magazine 2012, 29, 140–145.

32. Chen, W.; Li, W.; Dong, X.; Pei, J. A review of biological image analysis. Current Bioinformatics 2018, 13, 337–343.

33. Žigman, M.; Cayouette, M.; Charalambous, C.; Schleiffer, A.; Hoeller, O.; Duncan, D.; McCudden, C.R.; Finnbrog, N.; Barres, B.A.; Siderovski, D.P.; others. Mammalian inscutable regulates spindle orientation and cell fate in the developing retina. Neuron 2005, 48, 539–545.

34. Shukumata, A.; Neumann, C.J. Shh directs cell-cycle exit by activating p57Kip2 in the zebrafish retina. EMBO reports 2005, 6, 563–569.

35. Wall, D.S.; Mears, A.J.; McNeill, B.; Mazerolle, C.; Thrurig, S.; Wang, Y.; Kageyama, R.; Wallace, V.A. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Her1 activity. The journal of cell biology 2009, 184, 101–112.

36. Ma, L.; Cantrup, R.; Varrault, A.; Colak, D.; Klein, N.; Götz, M.; McFarlane, S.; Journot, L.; Schuurmans, C. Zac1 functions through TGFβ/II to negatively regulate cell number in the developing retina. Neural development 2007, 2, 1–22.

37. Cayouette, M.; Raff, M. The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 2003, 130, 2329–2339.

38. Poggi, L.; Vitorino, M.; Masai, I.; Harris, W.A. Influences on neural lineage and mode of division in the zebrafish retina in vivo. The journal of cell biology 2005, 171, 991–999.

39. Riesenberg, A.N.; Liu, Z.; Kopan, R.; Brown, N.L. Rbpj cell autonomous regulation of retinal ganglion cell and cone photoreceptor fates in the mouse retina. Journal of Neuroscience 2009, 29, 12865–12877.

40. Schmidt, U.; Weigert, M.; Broadus, C.; Myers, G. Cell detection with star-convex polygons. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2018, pp. 265–273.

41. Scherr, T.; Streule, K.; Bartschat, A.; Böhland, M.; Stegmaier, J.; Reischl, M.; Orian-Rousseau, V.; Mikut, R. BeadNet: deep learning-based bead detection and counting in low-resolution microscopy images. Bioinformatics 2020, 36, 4668–4670.

42. Salinas-Navarro, M.; Jiménez-López, M.; Valiente-Soriano, F.; Alarcón-Martínez, L.; Avilés-Trigueros, M.; Mayor, S.; Holmes, T.; Lund, R.; Villegas-Pérez, M.; Vidal-Sanz, M. Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vision research 2009, 49, 637–647.

43. Salinas-Navarro, M.; Mayor-Torroglosa, S.; Jimenez-Lopez, M.; Avilés-Trigueros, M.; Holmes, T.; Lund, R.; Villegas-Pérez, M.; Vidal-Sanz, M. A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats. Vision research 2009, 49, 115–126.

44. Matejčíč, M.; Salbreux, G.; Norden, C. A non-cell-autonomous adriamycin redistribution enables isotropic retinal growth. PLoS biology 2018, 16, e2006018.

45. Moreno-Mármol, T.; Ledesma-Terrón, M.; Tabanera, N.; Martín-Bermejo, M.J.; Cardozo, M.J.; Cavodeassi, F.; Bovolenta, P. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis. bioRxiv 2020.

46. Carreño, H.; Santos-Ledo, A.; Velasco, A.; Lara, J.M.; Aijón, J.; Arévalo, R. Effects of retinoic acid exposure during zebrafish retinogenesis. Neurotoxicology and teratology 2013, 40, 35–45.

47. Kashyap, B.; Frederickson, L.C.; Stenkamp, D.L. Mechanisms for persistent microphalma following ethanol exposure during retinal neurogenesis in zebrafish embryos. Visual neuroscience 2007, 24, 409.

48. Santos-Ledo, A.; Arenzana, F.; Porteros, A.; Lara, J.; Velasco, A.; Aijón, J.; Arévalo, R. Cytoarchitectonic and neurochemical differentiation of the visual system in ethanol-induced cyclopic zebrafish larvae. Neurotoxicology and teratology 2011, 33, 686–697.

49. Abdel-Khalek, S.; Ishak, A.B.; Omer, O.A.; Obada, A.S. A two-dimensional image segmentation method based on genetic algorithm and entropy. Optik 2017, 131, 414–422.
50. Chen, J.; Zheng, H.; Lin, X.; Wu, Y.; Su, M. A novel image segmentation method based on fast density clustering algorithm. *Engineering Applications of Artificial Intelligence* **2018**, *73*, 92–110.

51. Shan, P. Image segmentation method based on K-mean algorithm. *EURASIP Journal on Image and Video Processing* **2018**, *2018*, 1–9.

52. Wang, X.; Zhao, X.; Zhu, Y.; Su, X. NSST and vector-valued C–V model based image segmentation algorithm. *IET Image Processing* **2020**, *14*, 1614–1620.

53. Chuy, S.K.; Ng, T.C.; Yu, C. Unsupervised fuzzy model-based image segmentation. *Signal Processing* **2020**, *171*, 107483.

54. Zhang, S. Beyond the Petri dish. *Nature biotechnology* **2004**, *22*, 151–152.

55. Vigouroux, R.J.; Belle, M.; Chédotal, A. Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. *Molecular brain* **2017**, *10*, 1–10.

56. Susaki, E.A.; Ueda, H.R. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. *Cell chemical biology* **2016**, *23*, 137–157.

57. Yeh, A.T.; Hirshburg, J. Molecular interactions of exogenous chemical agents with collagen—implications for tissue optical clearing. *Journal of biomedical optics* **2006**, *11*, 014003.

58. Yu, T.; Wen, X.; Luo, Q.; Zhu, D.; Tuchin, V.V. Quantitative analysis of dehydration in porcine embryonic skin for assessing mechanism of optical clearing. *Journal of biomedical optics* **2011**, *16*, 095002.

59. Li, Z.; Pak, D.; Zhang, L.; Walls, E.K.; Zhong, W.; Leung, Y.F. Phenyliothiourea specifically reduces zebrafish eye size. *Plos One* **2012**, *7*, e40132.

60. Keller, P.J.; Ahrens, M.B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. *Neuron* **2015**, *85*, 462–483.

61. Lazzari, G.; Vinciguerra, D.; Balasso, A.; Nicolas, V.; Goudin, N.; Garfa-Traore, M.; Fehéř, A.; Dinnyés, A.; Nicolas, J.; Couvreur, P.; others. Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. *European Journal of Pharmaceutics and Biopharmaceutics* **2019**, *142*, 195–203.

62. Keller, P.J.; Schmidt, A.D.; Wittbrodt, J.; Stelzer, E.H. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. *science* **2008**, *322*, 1065–1069.

63. Schmid, B.; Shah, G.; Scherf, N.; Weber, M.; Thierbach, K.; Campos, C.P.; Roeder, I.; Aanstad, P.; Huisken, J. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. *Nature communications* **2013**, *4*, 1–10.

64. Meijering, E. A bird’s-eye view of deep learning in bioimage analysis. *Computational and Structural Biotechnology Journal* **2020**, *18*, 2312.

65. Xie, Y.; Xing, F.; Shi, X.; Kong, X.; Su, H.; Yang, L. Efficient and robust cell detection: A structured regression approach. *Medical image analysis* **2018**, *44*, 245–254.

66. Yuan, P.; Rezvan, A.; Li, X.; Varadarajan, N.; Van Nguyen, H. Phasetime: Deep learning approach to detect nuclei in time lapse phase images. *Journal of clinical medicine* **2019**, *8*, 1159.

67. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. *IEEE transactions on pattern analysis and machine intelligence* **2017**, *39*, 2481–2495.

68. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. *IEEE transactions on pattern analysis and machine intelligence* **2017**, *40*, 834–848.

69. Arts, M.; Smal, I.; Paul, M.W.; Wyman, C.; Meijering, E. Particle mobility analysis using deep learning and the moment scaling spectrum. *Scientific reports* **2019**, *9*, 1–10.

70. Wang, J.; Su, X.; Zhao, L.; Zhang, J. Deep Reinforcement Learning for Data Association in Cell Tracking. *Frontiers in bioengineering and biotechnology* **2020**, *8*, 298.

71. Inés, A.; Domínguez, C.; Heras, J.; Mata, E.; Pascaul, V. DeepClas4Bio: Connecting bioimaging tools with deep learning frameworks for image classification. *Computers in biology and medicine* **2019**, *108*, 49–56.

72. Phan, H.T.H.; Kumar, A.; Feng, D.; Fulham, M.; Kim, J. Unsupervised two-path neural network for cell event detection and classification using spatiotemporal patterns. *IEEE transactions on medical imaging* **2018**, *38*, 1477–1487.

73. Oktay, A.B.; Gurses, A. Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images. *Micron* **2019**, *120*, 113–119.

74. Wang, E.K.; Zhang, X.; Pan, L.; Cheng, C.; Dimitrakopoulos-Struass, A.; Li, Y.; Zhe, N. Multi-path dilated residual network for nuclei segmentation and detection. *Cells* **2019**, *8*, 499.
75. Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhmer, A.; Deubner, J.; Jäckel, Z.; Seiwald, K.; others. U-Net: deep learning for cell counting, detection, and morphometry. *Nature methods* 2019, 16, 67–70.

76. Lugagne, J.B.; Lin, H.; Dunlop, M.J. DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning. *PLoS computational biology* 2020, 16, e1007673.

77. Götz, M.; Huttner, W.B. The cell biology of neurogenesis. *Nature reviews Molecular cell biology* 2005, 6, 777–788.

78. Simó, R.; Villarroel, M.; Corraliza, L.; Hernández, C.; Garcia-Ramírez, M. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier—implications for the pathogenesis of diabetic retinopathy. *Journal of Biomedicine and Biotechnology* 2010, 2010.

79. Malicki, J.; Pooranachandran, N.; Nikolaev, A.; Fang, X.; Avanesov, A. Analysis of the retina in the zebrafish model. *Methods in cell biology* 2016, 134, 257–334.

80. Clark, B.S.; Stein-O’Brien, G.L.; Shiau, F.; Cannon, G.H.; Davis-Marcisak, E.; Sherman, T.; Santiago, C.P.; Hoang, T.V.; Rajaii, F.; James-Esposito, R.E.; others. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. *Neuron* 2019, 102, 1111–1126.

81. Lu, Y.; Shiau, F.; Yi, W.; Lu, S.; Wu, Q.; Pearson, J.D.; Kallman, A.; Zhong, S.; Hoang, T.; Zuo, Z.; others. Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. *Developmental cell* 2020, 53, 473–491.

82. Oliveira-Valença, V.M.; Bosco, A.; Vetter, M.L.; Silveira, M.S. On the generation and regeneration of retinal ganglion cells. *Frontiers in Cell and Developmental Biology* 2020, 8, 970.

83. Azizi, A.; Herrmann, A.; Wan, Y.; Buse, S.J.; Keller, P.J.; Goldstein, R.E.; Harris, W.A. Nuclear crowding and nonlinear diffusion during interkinetic nuclear migration in the zebrafish retina. *Elife* 2020, 9, e58635.

84. Lorenzo-Valdés, M.; Sanchez-Ortiz, G.I.; Elkington, A.G.; Mohiaddin, R.H.; Rueckert, D. Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. *Medical Image Analysis* 2004, 8, 255–265.

85. Megason, S.G. In toto imaging of embryogenesis with confocal time-lapse microscopy. In *Zebrafish*; Springer, 2009; pp. 317–332.

86. Bensch, R.; Ronneberger, O.; Greese, B.; Fleck, C.; Wester, K.; Hulskamp, M.; Burkhardt, H. Image analysis of arabidopsis trichome patterning in 4D confocal datasets. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2009, pp. 742–745.

87. Kelley, L.C.; Wang, Z.; Hagedorn, E.J.; Wang, L.; Shen, W.; Lei, S.; Johnson, S.A.; Sherwood, D.R. Live-cell confocal microscopy and quantitative 4D image analysis of anchor-cell invasion through the basement membrane in Caenorhabditis elegans. *Nature protocols* 2017, 12, 2081–2096.

88. Sakaue-Sawano, A.; Kurokawa, H.; Morimura, T.; Hanyu, A.; Hama, H.; Osawa, H.; Kashiwagi, S.; Fukushima, K.; Miyata, T.; Miyoshi, H.; others. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. *Cell* 2008, 132, 487–498.

89. Sugiyama, M.; Sakaue-Sawano, A.; Iimura, T.; Fukushima, K.; Kitaguchi, T.; Kawakami, K.; Okamoto, H.; Higashijima, S.I.; Miyawaki, A. Illuminating cell-cycle progression in the developing zebrafish embryo. *Proceedings of the National Academy of Sciences* 2009, 106, 20812–20817.

90. Saade, M.; Gutiérrez-Vallejo, I.; Le Dréau, G.; Rabadán, M.A.; Miguez, D.G.; Buceta, J.; Martí, E. Sonic hedgehog signaling switches the mode of division in the developing nervous system. *Cell reports* 2013, 4, 492–503.
