Detection of Malignant Cells in Pleural Fluid or Ascites by CD44v8-10/CD44v10 competitive RT-PCR

Myung-Ju Ahn¹, Yun-Hee Noh², Ho-Ju Yoon¹, Suck-Cheol Yang¹, Jang-Won Sohn¹, Jung-Hae Choi¹, Young-Yeul Lee¹, Il-Young Choi¹, In-Soon Kim¹, Yong-Sung Lee¹ and Chan-Kum Park²

Department of Internal Medicine¹, Biochemistry¹ and Pathology¹, College of Medicine, Hanyang University, Department of Biochemistry², College of Medicine, Konkuk University

Background: CD44 is a cell surface adhesion molecule which has been implicated in various biological functions such as lymphocyte homing and activation, cellular migration and extracellular matrix adhesion. Over-expression of CD44v8-10 has been found in several cancers and is considered to be associated with tumor progression and metastasis. Recently, a novel molecular method, CD44v8-10/CD44v10 competitive reverse transcription-polymerase chain reaction (RT-PCR) has been developed for detecting cancer cells over-expressing CD44v8-10.

Methods: We analyzed from benign and malignant pleural effusion and ascites by CD44 competitive RT-PCR and compared to the conventional cytology.

Results: The CD44 competitive RT-PCR analysis showed that all the 24 samples associated with benign disease presented a predominant expression of the CD44v10 transcript (v8-10/v10 ratio: 0.126-0.948), whereas 6 of 7 malignant pleural samples associated with cytology positive cancer expressed the CD44v8-10 transcript (v8-10/v10 ratio > 1.00).

Conclusion: These results indicate that CD44 competitive RT-PCR assay is a useful and adjunct to cytological examination in cancer diagnosis, especially in detecting exfoliated cancer cells in pleural effusion.

Key Words: Malignant effusion; Malignant ascites; CD44v8-10/CD44v10 competitive reverse transcription-polymerase chain reaction

Introduction

Many patients with non-small cell lung cancer or gastrointestinal tract cancer have pleural effusion or ascites at diagnosis. Generally, cytological examination is the most common method to detect malignant cells in pleural fluid or ascites, however, the technique is known to miss up to more than 50% of tumors. It is crucial to detect malignant cells in pleural fluid or ascites for staging work-up and for decision of treatment strategy.

Address reprint requests to: Myung-Ju Ahn, M.D., Section of Hematology-Oncology Department of Internal Medicine Hanyang University KURI Hospital, 249-1, Kyoung-dong, KURI-si 471-020, Kyunggi-do, KOREA
Detection of Malignant Cells in Pleural Fluid or Ascites by CD44v8-10/CD44v10 competitive RT-PCR

been associated with over-expression of CD44 variant isoforms, and widespread attention has been focused on CD44 variant isoforms as a candidate marker for detection of cancer10-14. However, the variant exons that have been associated with cancer have been detected in corresponding normal tissues in other studies15,16. Recently, a novel molecular approach, CD44v8-10/CD44v10 competitive RT-PCR17, has been developed for the detection of cancer cells over-expressing CD44v8-10. This method is based on the concept that the relative expression of CD44v8-10 transcripts to CD44v10 transcripts can be quantified by using the endogenous CD44v10 transcripts as a source of internal standard competitor RNA. We analyzed from benign and malignant pleural effusion and ascites by CD44 competitive RT-PCR for the detection of cancer cells over-expressing CD44v8-10.

MATERIALS AND METHODS

1. Cancer cell lines

AGS, a human gastric adenocarcinoma cell line (Korean Cell Line Bank, Seoul, South Korea) was maintained in RPMI supplemented with 10% heat-inactivated fetal calf serum (FCS), 100 unit/ml penicillin and 0.1 mg/ml streptomycin at 37 °C in an atmosphere containing 5% CO2.

2. Pleural fluid or Ascites

The pleural fluid or ascites were obtained from 11 patients with malignant disease (5 non-small cell lung cancer, 5 gastric cancer, 1 pancreatic cancer) and 24 patients with benign disease (14 Tbc pleurisy, 10 liver cirrhosis), who were treated at Hanyang Medical Center (Table 1, 2, 3). Cellular components from pleural fluid or ascites were examined by both cytological and competitive RT-PCR analysis. For competitive RT-PCR analysis, 25 ml of pleural fluid or ascites samples obtained from patients were centrifuged at 3,000 rpm for 10 min and the precipitated cells were washed with phosphate-buffered saline (PBS) and stored at -70 °C until use.

3. RNA Preparation and Competitive RT-PCR

Total RNA was obtained by the thiocyanate, phenol-chloroform method described previously18. Total RNA was spectrophotometrically quantified at 260/280 nm and its quality was tested in 1% agarose gel to find intact 28S, and 18S RNAs. cDNA was synthesized from 5 μg of total RNA in a 25μl reaction mixture containing 5μl of 5 x reverse transcriptase reaction buffer, 200μM dNTP, 100μM of random hexamer, 50 units of RNasin, 2μl of 0.1 M dithiothreitol, and 200 units of Moloney leukemia virus reverse transcriptase. The mixture was incubated at 37 °C for 60 min, heated to 95 °C for 10 min, and then chilled on ice. The competitive RT-PCR was performed by using the sense primer, S2 (5'-GACAGAATCCCTGCTACCAATA-3') and the antisense primer, AS2 (5'-ATGTGTCTTGGTCTCCTGATAA-3') that were designed to amplify both CD44v8-10 and CD44v10 cDNA, simultaneously, by utilizing sequence identity(17). Five microliters of cDNA were transferred into

| Table 1. CD44v8-10/CD44v10 ratio in pleural fluid from benign disease |
|--------------------------|---------------|-------------------|------------------|
| Patient | Age/Sex | Disease | Cytology | CD44v8-10/CD44v10 ratio |
| 1 | 32/F | Tbc | negative | 0.219 |
| 2 | 64/M | Tbc | negative | 0.338 |
| 3 | 32/F | Tbc | negative | 0.423 |
| 4 | 68/M | Tbc | negative | 0.448 |
| 5 | 22/M | Tbc | negative | 0.948 |
| 6 | 27/F | Tbc | negative | 0.367 |
| 7 | 34/M | Tbc | negative | 0.387 |
| 8 | 52/F | Tbc | negative | 0.419 Range: 0.219-0.948 |
| 9 | 29/M | Tbc | negative | 0.429 |
| 10 | 66/M | Tbc | negative | 0.570 |
| 11 | 24/F | Tbc | negative | 0.222 |
| 12 | 24/M | Tbc | negative | 0.706 |
| 13 | 60/M | Tbc | negative | 0.562 |
| 14 | 82/M | Tbc | negative | 0.710 |

Tbc: tuberculosis

| Table 2. CD44v8-10/CD44v10 ratio in ascites from benign disease |
|--------------------------|---------------|-------------------|------------------|
| Patient | Age/Sex | Disease | Cytology | CD44v8-10/CD44v10 ratio |
| 1 | 72/F | LC | negative | 0.168 |
| 2 | 70/F | LC | negative | 0.662 |
| 3 | 57/F | LC | negative | 0.676 |
| 4 | 73/F | LC | negative | 0.126 |
| 5 | 49/M | LC | negative | 0.359 Range: 0.126-0.756 |
| 6 | 72/F | LC | negative | 0.330 |
| 7 | 42/M | LC | negative | 0.148 |
| 8 | 48/M | LC | negative | 0.756 |
| 9 | 41/M | LC | negative | 0.264 |
| 10 | 62/M | LC | negative | 0.481 |

LC: liver cirrhosis
Table 3. CD44v8-10/CD44v10 ratio in malignant pleural effusion or ascites

Patient	Age/Sex	Disease	Source	Cytology	CD44v8-10/CD44v10 ratio
1	69/M	AGC	PE	adenocarcinoma	6.49
2	59/F	AGC	PE	adenocarcinoma	1.055
3	42/M	NSCLC	PE	adenocarcinoma	1.69
4	70/M	NSCLC	PE	adenocarcinoma	1.125
5	72/M	NSCLC	PE	adenocarcinoma	5.179
6	67/M	NSCLC	PE	adenocarcinoma	1.354
7	61/M	NSCLC	PE	adenocarcinoma	0.871
1	56/M	AGC	Ascites	adenocarcinoma	2.06
2	62/M	Pancr	Ascites	adenocarcinoma	0.744
3	67/F	AGC	Ascites	adenocarcinoma	0.883
4	58/F	AGC	Ascites	adenocarcinoma	0.385

AGC: advanced gastric cancer; NSCLC: non-small cell lung cancer; Pancr: pancreatic cancer; PE: pleural effusion

an eppendorf tube containing 200 μM dNTP, 1.5 mM MgCl₂, 2.5 U Taq polymerase and 20 pmols of primer S2 and AS2. Thirty-five cycles of amplification were performed in a thermocycler (Robocycler 40: Stratagene, La Jolla, CA) at 94°C for 1 min, 56°C for 1 min, and 72°C for 1 min, with a final extension step performed for 10 min at 72°C. To ensure the RNA was of sufficient purity for RT-PCR, a PCR assay with primers specific for the gene β-actin cDNA was carried out in each case. The primer sequences for β-actin primers were as follows: 5' - TGACGGGGTCACCCACACTGTGCCCATCTA - 3" and 5' - CTAGAAGCATTGCGGTGGACGATGGAGGG - 3". Each series of RT-PCR reactions included mononuclear cell samples from peripheral blood as a negative control and AGS cell samples as a positive control, respectively. The PCR products were electrophoresed on a 15% agarose gel and visualized by ethidium bromide staining followed by UV transillumination. The resulting images were density scanned and peak intensity of each band corresponding to the amplimers of CD44v8-10 and CD44v10 were then quantified by use of image analyzer, and CD44v8-10/CD44v10 (v8-10/v10) ratio was calculated (Biond, Fluor-S image analyzer, BMS, USA). All the samples were assessed in 2 independent PCR reactions, and the reported v8-10/v10 ratios represent the mean values from these duplicate determinations.

RESULTS

1. Quantitation of CD44v8-10 variant by CD44v8-10/CD44v10 competitive RT-PCR

To examine the validity of the RT-PCR method as a quantitative assay, 2×10⁶ normal mononuclear cells were mixed in separate tests with an increasing number of AGS gastric cancer cells expressing CD44v8-10. The resultant mixtures were subjected to competitive RT-PCR. As shown in Fig. 1 when the v8-10/v10 ratios were plotted against the number of added AGS cells, linear relationships were observed.

2. Competitive RT-PCR for pleural samples

Twenty one samples, 14 from patients with benign pleural fluid and 7 from patients with malignant effusion were analyzed by competitive RT-PCR by using the set of primers, S2 and AS2, that can co-amplify CD44v8-10 and CD44v10. The CD44v10 transcript was predominantly expressed in comparison with the CD44v8-10 transcript in all 14 of the pleural effusion samples from patients with benign disease (v8-10/v10 ratio: 0.219-0.948).
Detection of Malignant Cells in Pleural Fluid or Ascites by CD44v8-10/CD44v10 competitive RT-PCR

Figure 2. Competitive reverse transcription-polymerase chain reaction (CC-RT-PCR) products were electrophoresed on ethidium bromide-stained 2% agarose gels from benign diseases (tuberculosis and liver cirrhosis). M: 1-kilobase molecular weight markers. The CD44v8-10/CD44v10 ratios for each sample are also shown.

Figure 3. Competitive reverse transcription-polymerase chain reaction (CC-RT-PCR) products were electrophoresed in ethidium bromide-stained 2% agarose gels from malignant pleural effusion and malignant ascites. M: 1-kilobase molecular weight markers. The CD44v8-10/CD44v10 ratios for each sample are also shown.

whereas 6 of 7 samples from patients with malignant cancers (5 non-small cell lung cancer, 2 gastric cancer) presented a predominant expression of CD44v8-10 transcript (Table 1). The representative data are shown in Figure 2 and 3. When we place the diagnostic cutoff value for the v8-10/v10 ratio at 1.0, the sensitivity and specificity of competitive RT-PCR were 85.7% and 100%, respectively.

3. Competitive RT-PCR for ascites samples

Fourteen samples, 10 from patients with benign ascites (10 liver cirrhosis) and 4 from patients with malignant ascites (3 gastric cancer, 1 pancreatic cancer) were analyzed as previously described. All the ascites samples from patients with benign disease showed CD44 v8-10/CD44v10 ratio < 1.0 (range: 0.126-0.756). However, only one of four malignant ascites (gastric cancer) revealed > 1.0 (Table 2). The representative data are shown in Figures 2 and 3.

DISCUSSION

It has been known that conventional cytological analysis does not have high sensitivity to detect malignant cells in pleural fluid or ascites\(^{1,2}\). At present, there is no reliable biological marker that is used for routine clinical examinations. Recently, molecular biological techniques make it possible to detect cancer cells in those samples.

Since it has been reported that a CD44 splice variant containing variant exon 6 could confer metastatic potential on rat pancreatic adenocarcinoma cells\(^{19}\), a great deal of interest was focused on the CD44 splice variants expression in human malignant tumors. Many investigators reported that the expression of specific CD44 variant exons was detected in human carcinomas, such as bladder cancer, non-small cell lung cancer and breast cancer, indicating that molecular approaches of CD44 splice variant might be a promising tool for cancer diagnosis\(^{12-15}\).

Other investigators demonstrated that among the CD44 splice variants, CD44v8-10 was predominantly expressed in human colon cancer and non-small cell lung cancer by RT-PCR using the set of primers that are able to amplify all CD44 variant isoforms and DNA sequence analysis\(^{20-21}\). However, CD44v10 was also expressed in normal leukocytes, so the discrimination method should be needed. Recently, Okamoto et al\(^{17}\) developed noble competitive RT-PCR with which to quantify the relative expression of CD44v8-10 transcripts to CD44v10 transcripts. The endogenous CD44v10 transcripts, which were identified as the predominant CD44 splice variants in leukocytes, were used as internal standard, competitor RNAs for measuring the expression level of CD44v8-10 transcripts.

When we applied the competitive RT-PCR assay to pleural fluid and ascites, our results showed that the
v8-10/v10 ratios in all the samples associated with benign disease were less than < 1.0, whereas malignant diseases revealed significantly higher than those associated with benign diseases. Although the v8-10/v10 ratio displayed large variation between the benign diseases, the ratios were consistently low in various benign diseases suggesting that the v8-10/v10 ratio might be a useful molecular marker for cancer diagnosis. However, in malignant ascites only one sample showed dominant CD44v8-10. This discrepant result should be elucidated with a large number of samples from ascites. These findings indicate that the CD44v8-10/v10 ratio may be an important molecular marker for cancer diagnosis, especially in exfoliated cells from pleural fluid.

CONCLUSION

CD44 competitive RT-PCR assay is a useful and adjunct to cytological examination in cancer diagnosis, especially in detecting exfoliated cancer cells in pleural effusion. To determine the exact role of CD44 variant in the diagnosis of exfoliated cells from pleural fluid or ascites, further studies with a large number of samples are needed.

ACKNOWLEDGMENT

This work was supported by Hanyang University, Korea, made in the program year of 1999.

REFERENCES

1. Light RW. Pleural effusions. Med Clin North Am 61:1339-1352, 1977
2. Sahn SA. Pleural effusion in lung cancer. Clin Chest Med 14:189-200, 1993
3. Menzies R, Charbonneau M. Thoracoscopy for the diagnosis of pleural disease. Ann Intern Med 114:271-276, 1991
4. Seth A, Gote L, Nagarhatti M, Nagarhatti PS. T-cell receptor independent activation of cytolytic activity of cytotoxic T lymphocytes mediated through CD44 and gp90MEL-1. Proc Natl Acad Sci USA 88:7877-7881, 1991
5. Stamenkovic I, Amiot M, Pesando JM, Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56:857-862, 1989
6. Andolf A, Stamenkovic I, McNich M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate.
7. Cell 61:E03-E12, 1990
8. Thomas L, Byers HR, Vink J, Stamenkovic I. CD44H regulates tumor cell migration on hyaluronate-coated substrate. J Cell Biol 118:971-977, 1991
9. Jackson DG, Boully J, Bell JI. Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J Biol Chem 267:472-479, 1992
10. Screaton GR, Bell MV, Jackson DG, Comelis FR, Geth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 89:2160-2164, 1992
11. Cotley DC, Fawcett J, Walsh MD, Reeder JA, Simmons DL, Antalis TM. Alternatively spliced variants of the cell adhesion molecule CD44 and tumor progression in colorectal cancer. Br J Cancer 74:342-351, 1996
12. Hofmann M, Rudy W, Zoller M Tolg C, Ponta H, Henrich P, Gunther U. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res 51:2592-2597, 1991
13. Muller JW, Knecht PM, Sewnath M, Oetting J, Seidenfisch CA, Weide WF, Offerhaus GJ, Pak ST. Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet 344:470-472, 1994
14. Rodriguez C, Monges G, Rouanet P, Dutrillaux B, Lefrancois D, Theillet C. CD44 expression patterns in breast and colon tumors: a PCR-based study of splice variants. Int J Cancer 64:347-354, 1995
15. Wong LS, Cantrell JE, Morris AG, Frasier PA. Expression of CD44 splice variants in colorectal cancer. Br J Surg 84:363-367, 1997
16. Jackson DG, Screaton GR, Bell MV, Bell JI. CD44 and cancer. Lancet 344:228-232, 1993
17. Fox SB, Gatter KC, Jackson DG, Screaton GR, Bell MV, Bell JI, Harris AL, Simmons D, Fawcett J, CD44 and cancer screening. Lancet 342:548-549, 1993
18. Okamoto I, Misaki T, Sasaki J, Miyake H, Morisaki T, Suga M, Ando M, Saya H. Molecular detection of cancer cells by competitive reverse transcription-polymerase chain reaction analysis of specific CD44 variant RNAs. J Nat Cancer Inst 90:307-315, 1998
19. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156-159, 1987
20. Gunthert U, Stauder R, Mayer B, Terpe HI, Finke L, Friedrichs K. Are CD44 variant isoforms involved in human tumor progression? Cancer Surv 24:181-192, 1995
21. Tanabe KK, Ellis LM, Saya H. Expression of CD44R1 adhesion molecule in colon carcinomas and metastases. Lancet 344:725-726, 1993
Detection of Malignant Cells in Pleural Fluid or Ascites by CD44v8-10/CD44v10 competitive RT-PCR

21. Sasaki JI, Tanabe KK, Takahashi K, Okamoto I, Fujimoto H, Matsumoto M, Suga M, Ando M, Saya H. Expression of CD44 splicing isoforms in lung cancers: dominant expression of CD44v8-10 in non-small cell lung carcinomas. Int J Oncol 12: 525-533, 1998