Comparative secretomic and N-glycoproteomic profiling in human MCF-7 breast cancer and HMEpC normal epithelial cell lines using a gel-based strategy

Aik-Aun Tan1, Alan Kang-Wai Mu2, Lik-Voon Kiew4 and Yeng Chen2,3*

Abstract

Background: Concurrent study of secretomic and glycoproteomic profiles in cancer cell lines represents an excellent approach for investigating cancer progression and identifying novel biomarker candidates. In this study, we performed a comparative secretomic and N-glycoprotein profiling from the secretions of normal human mammary epithelial cells (HMEpC) and the MCF-7 human breast cancer cell line.

Method: We analyzed these cell lines using a combined methodology involving glycan-binding lectins and two-dimensional electrophoresis and identified several differentially secreted factors, including osteonectin and haptoglobin.

Result: Notably, comparative analyses also revealed that MCF-7 cells produced differentially N-glycosylated forms of haptoglobin.

Conclusion: The present data suggested that osteonectin and haptoglobin might have potential to be served as potential biomarkers for breast cancer. However, further investigation is needed to validate the findings.

Keywords: Secretomic, Glycoproteomic, Two dimensional electrophoresis, N-glycoprotein, Concanavalin A lectin

Introduction

Breast cancer is one of the most common cancers affecting women worldwide, accounting for almost 23% of all cancers diagnosed in women [1,2]. Although the mortality rate has decreased by 26.58% from 1991 to 2005, breast cancer remains as one of the leading causes of death in women [3]. This is mainly due to late stage diagnosis and lack of effective treatments. Therefore, early detection is critical for successful therapy and ultimate survival of breast cancer patients.

Human breast cancer cell lines provide an excellent tool for investigating tumor progression and therapy. In fact, secretome profiling of cell lines could represent an efficient method for discovering novel biomarkers for early breast cancer detection [4]. According to Lai et al., false positive results obtained from tumor specimens could be minimized through the identification of potential diagnostic proteins that are secreted by cancer cells [5]. During tumorigenesis, it is known that secreted proteins can directly participate in cancer cell migration, invasion, growth control, angiogenesis, matrix degradation, and adhesion [6]. Therefore, analysis of these tumor-secreted factors not only contributes to our knowledge of the molecular mechanisms involved in tumorigenesis and metastasis, but also represents a promising strategy for identifying biomarkers.

Glycosylation is an enzymatic process that attaches glycans to proteins, lipids, or other organic molecules. Glycosylation functionally contributes to protein stability as well as cell–cell recognition and communication [7]. For this reason, modifications in glycans can contribute to tumorigenesis. Changes in glycans include lost or excessive expression of certain structures, incomplete/truncated structures, accumulation of precursors, and/or
altered glycan expression [8]. Indeed, modified glycosylation patterns are associated with cancer invasiveness and metastatic potential [9]. Most of the secreted proteins are known to be N-glycosylated [10]. Therefore, comparative studies of N-glycosylation profiles of secreted proteins in malignant cell lines and normal cell lines could provide important clues related to tumor diagnosis and prognosis.

In this study, we conducted a comparative analysis of N-glycoprotein secretion from normal human mammary epithelial cells (HMEpC) and the MCF-7 human breast cancer cell line, which is of luminal epithelial origin and used as a model for estrogen receptor-positive tumors. To detect N-glycoproteins secreted from these cell lines we utilized Concanavalin A (ConA) extracted from Concanavalis ensiformis, which selectively recognizes alphamannose of N-glycan. Herein, we have coupled the use of these glycan-binding lectins with two-dimensional electrophoresis (2-DE) in order to identify proteins that are aberrantly secreted and/or glycosylated in MCF-7 cells.

Materials and method

Cell culture

The human breast cancer cell line, MCF-7 (catalog number: HTB-22), and human mammary epithelial cell line, HMEpC (catalog number: 830 K-05a), were purchased from American Type Culture Collection (ATCC) and Cell Sciences, respectively.

Sampling of growth medium

Similar amount of MCF-7 and HMEpC cells line were cultured in separate flasks with FBS-containing growth media and human mammary epithelial cell growth medium, respectively. The growth media were removed when cells were approximately 80% confluent (10⁶ cells) in a 75 cm² flask. The cells were then washed three times with phosphate buffered saline (PBS) and incubated for an additional 24 h in serum-free DMEM. Ten milliliters of harvested medium was mixed with 2 ml of ConA Sepharose (GE Healthcare Bio-Sciences) and rotated overnight at 4°C. The mixture was then loaded into a column (0.8 cm × 4 cm) (Bio-Rad Laboratories, Hercules, CA, USA) and equilibrated with equilibration buffer (20 mM Tris-HCl, 0.5 M NaCl, pH 7.4). The column was washed with 50 ml of equilibration buffer to remove non-glycosylated and O-glycosylated proteins, and bound N-glycoproteins were eluted with 0.3 M methyl-α-D-glucopyranoside. Absorbance at 280 nm was measured throughout the chromatographic process. Eluted fractions were concentrated 100 times using Vivaspain concentrators (10,000 molecular weight cut-off; Sartorius) and further desalted with 2-D Clean-Up Kits (GE Healthcare Bio-Sciences) and then subjected to 2-DE analysis.

Silver staining

The 2D-E gels were silver stained as previously described by Heukeshoven and Dernick [12]. For mass spectrometric analysis, gels were silver stained as described by Shevchenko et al. [13].

Concanavalin A chromatography

Ten milliliters of harvested medium was mixed with 2 ml of ConA Sepharose (GE Healthcare Bio-Sciences) and rotated overnight at 4°C. The mixture was then loaded into a column (0.8 cm × 4 cm) (Bio-Rad Laboratories, Hercules, CA, USA) and equilibrated with equilibration buffer (20 mM Tris-HCl, 0.5 M NaCl, pH 7.4). The column was washed with 50 ml of equilibration buffer to remove non-glycosylated and O-glycosylated proteins, and bound N-glycoproteins were eluted with 0.3 M methyl-α-D-glucopyranoside. Absorbance at 280 nm was measured throughout the chromatographic process. Eluted fractions were concentrated 100 times using Vivaspain concentrators (10,000 molecular weight cut-off; Sartorius) and further desalted with 2-D Clean-Up Kits (GE Healthcare Bio-Sciences) and then subjected to 2-DE analysis.

Image analysis

Images of silver-stained 2D-E gels were captured using a LabScan scanner (version 5; Amersham, Germany), and PD-Quest™ 2D gel analysis software (version 8.0.1, Bio-Rad) was used to detect, match, and quantify protein spots. Normalization was achieved by dividing the raw quantity of each spot in the gel by the total intensity of pixels in the image in order to compensate for non-expression related variations in protein spot intensities. The variance ratio test (F) was used to analyse differences among the sample groups. A p-value less than 0.05 was considered statistically significant.

Mass spectrometric analysis and protein identification

Highly resolved spots of interest were excised and subjected to in-gel tryptic digestion using ProteoExtract™ All-in-One Trypsin Digestion Kit (Calbiochem, Darmstadt, Germany). The trypsin-digested peptides were desalted and concentrated using C18 Zip Tip Pipette Tips (Merck Millipore, Billerica, MA, USA). Mass spectrometric analysis was performed at the Proteomic Centre, Department of Biological Sciences, National University of Singapore. The digested peptides were mixed with 1 μl of CHCA matrix solution (5 mg/ml ɑ-cyano-4-hydroxycinnamic acid in 0.1% trifluoroacetic acid and 50% acetonitrile in ultrapure
water) and spotted onto a matrix-assisted laser desorption/ionization (MALDI) target plate. Mass spectra were obtained using an ABI 4800 Proteomics Analyzer MALDI-TOF/TOF Mass Spectrometer (Applied Biosystems, Framingham, MA, USA). The five most intense ions obtained from mass spectrometry (MS) were subsequently subjected to MS/MS analysis using air with collision energy of 2 kV and a collision gas pressure of $\sim1\times10^{-6}$ Torr. Stop conditions specified 2,000–3,000 shots, depending on the quality of the spectra. For protein identification, mass spectra were compared with the National Center for Biotechnology Information non-redundant (NCBI nr) protein database for Homo sapiens using the MASCOT search engine (version 2.1; Matrix Science, London, UK). Searches were performed with fixed modification on carboxamidomethylation of cysteines and variable modification of methionine oxidation. The following parameters were used in the MASCOT peptide mass fingerprint search: (i) enzyme: trypsin; (ii) one missed cleavage allowed; (iii) mass value: monoisotopic; (iv) peptide mass tolerance: ±0.1 Da; and (v) peptide charge state: 1+. The same parameters were used in the MASCOT ion search, except peptide mass tolerance and fragment mass tolerance were set at 100 ppm and 0.2 Da, respectively. Search scores >50 indicated identity or extensive homology (p < 0.05).

Figure 1 Typical 2-DE growth medium profiles. Panel A and panel B refer to typical 2-DE growth medium profiles of HMEpC and MCF-7 cell line, respectively. Acidic side of the gel is to the left and relative molecular mass declines from the top. ON was detected in the growth media of HMEpC cell line, but not in the growth media of MCF-7 cells.
Results
Comparison of the MCF-7 and HMEpC growth media profiles
Separation of MCF-7 media by 2D-E resulted in a high-resolution protein profile, which was comprised of various secreted factors (Figure 1B). However, we observed a considerably low proteins profile when HMEpC media was analyzed by 2D-E and silver staining. A protein cluster was solely detected in HMEpC media but was absent in MCF-7 media. It was then identified as osteonectin (Figure 1A and Table 1) when subjected to MS/MS analysis.

Detection of N-glycoproteins using ConA chromatography
We next investigated changes in oligosaccharide moieties on secreted proteins using a combined methodology, which coupled Con A chromatography for enrichment of N-glycoproteins based on alpha-mannose residues followed by 2-DE analysis. Using these techniques, we analyzed media harvested from MCF-7 and HMEpC cell lines and observed differential N-glycoprotein profiles. Image analysis of ConA chromatography of MCF-7 media demonstrated that the volumes of almost all matched spots were comparable except haptoglobin glycoforms, which was detected to be in low level compared to the total growth media profile (Figure 2 and Table 1). The volumes of other matched spots were comparable in both profiles. On the other hand, osteonectin was not observed in the N-glycosylation profile of HMEpC media although it is known to contain N-glycan (not shown) [14].

Discussion
Breast cancer cells acquire aberrant protein expression, which can subsequently lead to alterations in post-translational modifications. Glycosylation is a common modification made to secreted proteins, which are involved in a variety of physiological processes, such as cancer cell signaling, matrix remodeling, and metastasis [15]. Therefore, changes in glycosylation or glycan composition occurring during tumorigenesis can ultimately contribute to cancer progression. In this study, we have analyzed the secretory profile of the MCF-7 breast cancer cell line in order to identify aberrantly secreted and/or glycosylated proteins.

Osteonectin (also known as secreted protein acidic and rich in cysteine [SPARC]) is a secreted, phosphorylated, and calcium-binding glycoprotein that was first isolated from bone [16]. It plays a role in regulating cell adhesion, proliferation, migration, and tissue remodeling [17]. Osteonectin overexpression was reported to be associated with malignancy in various tumors, including breast, brain, and prostate carcinoma [18]. However, there have also been reports of decreased osteonectin expression being associated with tumorigenesis in human ovarian cancer [19] and poor prognosis in breast cancer patients [20]. Thus, these studies have collectively

Spot name	Protein name	MASCOT accession number	Theoretical pI	Theoretical mass (Da)	No. of peaks matched	Search score	
HP	Haptoglobin	gi	223976	6.23	42,344	2	70
ON	Osteonectin	gi	338325	4.70	35,260	1	81

Table 1 Mass spectrometric identification of protein spots from MCF-7 and HMEpC media using MASCOT search engine and the NCBI database

Figure 2 Haptoglobin glycoforms. Panel A and panel B demonstrates the cropped image of β chain of haptoglobin glycoforms obtained from 2-DE total growth medium profile and N-glycoproteins profiles of MCF-7, respectively. It is a 45 kDa homotetramer with pI ranged from 5.5 to 6.5.
suggested a context-dependent role for osteonectin during tumorigenesis. We believe that these disparate findings might relate to osteonectin isoforms, which could be differentially expressed in various disease states. Our findings indicated that osteonectin was secreted from HMEpC, but not by MCF-7 cells. Osteonectin was not detected in N-glycoprotein profiles of HMEpC, although previous studies have reported that it is a N-glycoprotein [14]. Future studies will be needed to determine the functional role and the N-glycosylation structure of osteonectin in breast cancer.

Haptoglobin is a glycoprotein that is mainly produced by hepatocytes. It binds to free hemoglobin to form stable haptoglobin–hemoglobin complexes that help to maintain iron ions in the blood. It also functions as an acute-phase reactant, and a tumor variant of haptoglobin maintains iron ions in breast cancer.[23]. In this study, we only analyzed the secreted protein, its level should be equal to its glycosylated forms [26]. However, the present findings demonstrated that β-haptoglobin glycoforms secreted by MCF-7 cells lacked N-glycosylation. This change in haptoglobin N-glycosylation could affect extracellular matrix interactions and/or contribute to immunosuppression of lymphocytes for promoting cancer. Therefore, we propose that the tumor variant of haptoglobin undergoes both structural and post-translational changes that are advantageous to cancer cells during tumorigenesis.

Conclusion

Our combined secretomic and glycoproteomic study of the MCF-7 breast cancer cell line has yielded promising results. Comparative analyses have indicated that differentially glycosylated forms of haptoglobin were secreted by MCF-7 cells. This differentially secreted factor may play a role in tumorigenesis and could represent useful biomarkers for future breast cancer research and detection.

Competing interest
The authors have declared no conflict of interest.

Authors’ contribution
AAT carried out the experiments, analyzed the data and drafted the manuscript; AKWM critically revised the manuscript; LVK and YC contributed to the design of the study and critically revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was funded by UMIRG (No.RG454-12HTM) grants from University of Malaya.

Author details
1 Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia. 2 Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia. 3 Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia. 4 Department of Pharmacology, Faculty of Medicine Building, University of Malaya, Kuala Lumpur 50603, Malaysia.

Received: 2 December 2013 Accepted: 30 October 2014

Published online: 30 November 2014

References

1. Sasco AJ, Kaaks R, Little RE: Breast cancer: occurrence, risk factors and hormone metabolism. Expert Rev Anticancer Ther 2003, 3(4):546–562.
2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010, 127(12):2893–2917.
3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin 2009, 59(4):229–249.
4. Kulasingam V, Diamandis EP: Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Molecular & cellular proteomics: MCP 2007, 6(11):1997–2011.
5. Lai TC, Chou HC, Chen YW, Lee TR, Chan HT, Shen HH, Lee WT, Lin ST, Lu YC, Wu CL, Chan HL: Secretomic and proteomic analysis of potential breast cancer markers by two-dimensional differential gel electrophoresis. J Proteome Res 2010, 9(3):1302–1322.
6. Mbeuniku F, Fotsiad O, Pannell LK: Secretory protein enrichment and analysis: an optimized approach applied on cancer cell lines using 2D LC-MS/MS. J Proteome Res 2006, 5(4):859–906.
7. Varki A: Biological roles of oligosaccharides: all of the theories are correct. Glyobiology 1993, 3(9):127–130.
8. Varki A, Kannagi R, Tooze BP: Glycosylation Changes in Cancer. In Essentials of Glyobiology. 2nd edition. Edited by Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009.
9. Kobata A, Amano J: Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 2005, 83(4):429–439.
10. Gao J, Shen C, Wang H, Shen H, Chen Y, Nie A, Yan G, Lu H, Liu Y, Yang P: Identification of N-glycosylation sites on secreted proteins of human hepatocellular carcinoma cells with a complementary proteomic approach. J Proteome Res 2009, 8(2):652–672.
11. Chen Y, Lim BK, Peh SC, Abdul-Rahman PS, Hashim OH: Profiling of serum and tissue high abundance acute-phase proteins of patients with epithelial and germ line ovarian carcinoma. Proteome Sci 2008, 6:20.
12. Heukeshoven J, Dernick R: Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 1985, 6:103–112.
13. Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68(5):850–858.
14. Xie RL, Long GL: Role of N-linked glycosylation in human osteonectin: effect of carbohydrate removal by N-glycanase and its directed mutagenesis on structure and binding of type V collagen. J Biol Chem 1995, 270(39):23212–23217.
15. Pavlou MP, Diamandis EP: The cancer cell secretome: a good source for discovering biomarkers? J Proteome 2010, 73(10):1896–1906.
16. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR: Osteonectin, a bone-specific protein linking mineral to collagen. Cell 1981, 26(1 Pt 1):99–105.
17. Sage H, Vernon RB, Funk SE, Everitt EA, Angello J: SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca²⁺-dependent binding to the extracellular matrix. J Cell Biol 1989, 109(1):341–356.

18. Framson PE, Sage EH: SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 2004, 92(6):79–850.

19. Said N, Najwer I, Motamed K: Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. Am J Pathol 2007, 170(3):1054–1063.

20. Nagai MA, Gerhard R, Fregnanii JH, Nonogaki S, Renger RB, Netto MM, Soares FA: Prognostic value of NDRG1 and SPARC protein expression in breast cancer patients. Breast Cancer Res Treat 2011, 126(1):1–14.

21. Elg SA, Carson LF, Fowler JM, Twigg LR, Moradi MM, Ramakrishnan S: Ascites levels of haptoglobin in patients with ovarian cancer. Cancer 1993, 71(12):3938–3941.

22. Oh SK, Very DL, Walker J, Raam S, Ju ST: An analogy between fetal haptoglobin and a potent immunosuppressant in cancer. Cancer Res 1987, 47(19):5120–5126.

23. Hankey JM, Heath EC: A novel proteolytic activity in serum processes rat prohaptoglobin. Arch Biochem Biophys 1985, 239(2):404–419.

24. Kuhajda FP, Kumatuluwa AI, Pasterick CR: Expression of haptoglobin-related protein and its potential role as a tumor antigen. Proc Natl Acad Sci U S A 1989, 86(4):1186–1192.

25. Hanley JM, Heath EC: A novel proteolytic activity in serum processes rat prohaptoglobin. Arch Biochem Biophys 1985, 239(2):404–419.

26. Chen R, Tan Y, Wang M, Wang F, Yao Z, Dong L, Ye M, Wang H, Zou H: Development of glycoprotein capture based label free method for the high throughput screening of differential glycoproteins in hepatocellular carcinoma. Mol Cell Proteomic 2011, 10:7–7.

doi:10.1186/s12935-014-0120-x

Cite this article as: Tan et al.: Comparative secretomic and N-glycoproteomic profiling in human MCF-7 breast cancer and HMEpC normal epithelial cell lines using a gel-based strategy. Cancer Cell International 2014 14:120.