Ultra-wideband low noise amplifier employing noise cancelling and simultaneous input and noise matching technique

Hongmin Zhou, Ying Zhang, and Ying Yu

Abstract An ultra-wideband (UWB) low-noise amplifier (LNA) exploiting noise cancelling and simultaneous input and noise matching (SINM) technique is presented. The common-gate (CG) input stage with noise cancellation topology is utilized for low-noise figure and wideband input matching. To overcome the noise deterioration induced by the noise-cancelling stages and broaden the input-matching bandwidth, simultaneous input and noise matching technique is employed. The circuit is fabricated in 180-nm CMOS technology. The measurement results show that within 3.1–10.6 GHz UWB applications, S11 is lower than −10 dB, the gain (S21) is 12.4–13.6 dB and the noise figure (NF) is 3.3–4.5 dB. It consumes 12 mA under a 1.8 V supply and occupies an area of 0.56 mm².

Keywords: LNA, CMOS, ultra-wideband

1. Introduction

Recently, ultra-wideband (UWB) technology has become more and more popular because it has the advantages of low power, low cost, fading robustness and flexibility [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Ultra-wideband low-noise amplifiers (LNAs) are crucial components in RF front-ends. The LNA should meet some stringent requirements such as wideband input matching to a 50 Ω antenna, low noise figure, flat gain and good linearity within the wideband range. In recent years, several elegant architectures have been studied to improve the performance of the LNA. The distributed amplifier (DA) is one of the most popular structures for providing flat gain, good impedance matching over a wide range of frequencies [5, 6, 7, 8, 9, 10, 11, 12]. However, the DA demands high-quality transmission lines and consumes a great deal of power. The resistive shunt feedback amplifier can provide wideband input matching [13, 14, 15]. However, in order to obtain low NF, the LNA requires large power. The LNA using noise cancelling technique has been widely used in order to release the trade-off between low NF and wideband input matching [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. However, the traditional noise-cancelling technique is hard to eliminate the noises generated by noise-cancelling stages.

In this paper, an UWB LNA exploiting noise cancelling and simultaneous input and noise matching (SINM) technique is proposed, which can effectively restrain noises of the main transistor and noise cancelling stages and can broaden the input-matching bandwidth.

2. Circuit designs

The noise cancellation technique has been widely used to decouple the input-matching and noise figure. The structure is shown in Fig. 1, the channel thermal noise of M1 flowing through RD1 and RS which is modeled by the current source In,M1, produces two anti-phase noise voltages at nodes X and Y. These two voltages are converted to currents by M2 and M3, respectively [17].

![Fig. 1. Principle of the noise-cancelling technique.](image)

At low frequencies, the noise generated by M1 can be cancelled at the output if \(R_{D1}g_{m2} = R_Sg_{m3} \). Wideband input-matching can be obtained by setting \(1/g_{m1} \) to 50 Ω. Assuming that the condition for complete noise cancellation and input-matching are satisfied, the noise factor can be derived by considering the noise contribution from two CS-transistors and load resistor as:

\[
F = 1 + \frac{F_{RD} + F_{R} + F_{M}}{R_{D1} + \frac{g_{m2}R_{D1}}{\alpha} + \frac{g_{m3}R_{S}}{\alpha}}
\]

In the case of the noise cancellation amplifier, its input impedance is

\[
R_{in} = R_{D1} + \frac{g_{m2}R_{D1}}{\alpha} + \frac{g_{m3}R_{S}}{\alpha}
\]
The S11 of the amplifier can be derived from Eq. (2):

$$|S_{11}| = \left| \frac{Z_{in} - Z_s}{Z_{in} + Z_s} \right| = \frac{1 - gmR_s - j\omega(C_{gr1} + C_{gr3})R_s}{1 + gmR_s + j\omega(C_{gr1} + C_{gr3})R_s}$$

Since S11 should be less than −10 dB over the band of interest, i.e.,

$$20\log{|S_{11}|} = 20\log{\left| \frac{1 - gmR_s - j\omega(C_{gr1} + C_{gr3})R_s}{1 + gmR_s + j\omega(C_{gr1} + C_{gr3})R_s} \right|} \leq -10\, \text{dB}$$

From Eq. (4), the corresponding input-matching bandwidth $f_{10\,\text{dB}}$ can be derived as

$$f_{10\,\text{dB}} = \frac{gm}{3\pi(C_{gr1} + C_{gr3})}$$

From Eq. (1), we can observe that the increase of gm_3 can lower the NF. A large gm_3 can be achieved by either increasing the drain current or increasing the ratio of width and length of the transistor. However, large current means more power consumption while a high ratio of width and length introduces larger parasitic capacitance. In addition, since the ratio of F_{M3} to F_{M5} is $F_{M3}/F_{M5} = R_{D3}/R_s > 1$, which indicates that the noise contribution of M_3 is larger than M_5. In this paper, to reduce the noise contribution of the M_3 and broaden the bandwidth, the noise cancelling stage (M3) adopts simultaneous input and noise matching. The proposed LNA is shown in Fig. 2.

![Fig. 2. Complete circuit schematic of the proposed LNA.](image)

The input impedance Z_{in} can be represented as follows:

$$Z_{in} = Z_{in1} \parallel Z_{in2}$$

In which

$$Z_{in1} = \frac{1}{gm_1 + sC_{gr1}}$$

$$Z_{in2} = \frac{1}{gm_2 + sC_{gr2}} + \frac{s}{C_{gr3}} + \omega_T L_4$$

From Eq. (7) and Eq. (8), we can define

$$\omega_0_1 = 0, \quad \omega_0_2 = \frac{1}{\sqrt{(L_3 + L_4)C_{gr3}}}$$

Clearly, if ω_0_2 is not too far away from ω_0_1, then Z_{in} can be expressed as follows at frequency around ω_0_1

$$Z_{in} \approx Z_{in1} = \frac{1}{gm_1 + sC_{gr1}}$$

While at frequency around ω_0_2

$$Z_{in} \approx Z_{in2} = s(L_3 + L_4) + \frac{1}{sC_{gr3}} + \omega_T L_3$$

S_{11} can be expressed as follows at frequency around ω_0_1

$$|S_{11}| = \left| \frac{Z_{in} - Z_s}{Z_{in} + Z_s} \right| = \left| \frac{1 - gm_1R_s - j\omega(C_{gr1} + C_{gr3})R_s}{1 + gm_1R_s + j\omega(C_{gr1} + C_{gr3})R_s} \right|$$

Note that good impedance matching is assumed for simplicity, i.e., $gm_1 \approx 1/R_s$. From Eq. (12), the corresponding lower frequency input-matching bandwidth $f_{10\,\text{dB}-L}$ can be derived as

$$f_{10\,\text{dB}-L} = \frac{gm_1}{3\pi C_{gr1}}$$

At frequency around ω_0_2, S_{11} can be expressed as follows:

$$|S_{11}| = \left| \frac{Z_{in} - Z_s}{Z_{in} + Z_s} \right| = \left| \frac{1 - gm_3R_s - j\omega(C_{gr1} + C_{gr3})R_s}{1 + gm_3R_s + j\omega(C_{gr1} + C_{gr3})R_s} \right|$$

Note that good impedance matching at frequencies around ω_0_2 is also assumed for simplicity, i.e., $\omega_T L_4 \approx R_S$. From Eq. (14), the corresponding upper frequency input-matching bandwidth $f_{10\,\text{dB}-U}$ can be derived as

$$f_{10\,\text{dB}-U} = \frac{R_s}{3\pi(L_3 + L_4)}$$

The overall input-matching bandwidth $f_{10\,\text{dB}}$ of the amplifier can be roughly regarded as the union of $f_{10\,\text{dB}-L}$ and $f_{10\,\text{dB}-U}$ if they overlap.

It is worthy to mention that, different from conventional noise cancellation technology, which presents single notch frequency in the middle band of S_{11} versus frequency characteristics, the proposed LNA can introduce two notch frequencies at the low and high band of S_{11} versus frequency characteristics and achieves wideband input matching.

To evaluate the influence of the SINM topology on input matching, Fig. 3 shows the simulated S_{11} versus frequency characteristics for different values of inductor $L_3 + L_4$. The low frequency (f_{11low}) and high frequency (f_{11high}) form two notch frequency points of S_{11} response. The impedance matching condition can be extended by these two notch responses. Meanwhile, by modifying the high frequency resonance (f_{11high}) bandwidth extension can be further illustrated, as shown in Fig. 3. As can be seen, the higher notch frequency (f_{11high}) and $f_{10\,\text{dB}}$ increase with the decrease of $L_3 + L_4$. Meanwhile, the low notch fre-
frequency point \((f_{\text{f,low}}) \) remains when the inductance of \(L_3 + L_4 \) changes.

3. Experimental results

Based on the proposed circuit topology, the UWB LNA is implemented in a six-metal 0.18-um RF CMOS technology. Fig. 4 shows the die microphotograph. The overall chip area including the RF and DC pads is 0.56 mm\(^2\). The power consumption is 21.6 mW under a 1.8 V supply voltage.

The S-parameters and the noise figure of the LNA are measured with an Agilent E8363B VNA and an Agilent E4440A Spectrum Analyzer, respectively. Fig. 5 shows the measurement results along with the simulation results for the S-parameters versus frequency characteristics of the UWB LNA. As can be seen, flat \(S_{21} \) of 13 ± 0.6 dB was obtained over the 3.1–10.6-GHz band of interest. The LNA achieves \(S_{11} \) smaller than −10 dB and \(S_{22} \) smaller than −15 dB over the 3.1–10.6 GHz band. The NF of the LNA is shown in Fig. 6. The LNA has a minimum NF as 3.3 dB (at 6 GHz) and a maximum NF as 4.5 dB (at 11 GHz), and the average value is 3.9 dB. This optimum selection of the values of \(L_3, L_4 \), the shunt peaking inductor \(L_5 \) and the device size and bias keeps \(S_{21} \) flat while optimizes the NF over the operating bandwidth.

Table I compares the performances of the proposed LNA with the recently reported works. Although the power consumption, noise figure and gain of [8] are approximately equal to this work, in [8] the chip area is 0.88 mm\(^2\) excluding the test pads and a better CMOS technology is used. Compared with all literature lists, the proposed LNA obtains flat and high gain and low noise, and draws 12 mA from a 1.8 V supply voltage. The measurement results of this LNA indicate this topology is suitable for 3.1–10.6 GHz UWB.

	[8]	[28]	[29]	[30]	[30]	This work
Tech CMOS	130 nm	180 nm	90 nm	180 nm	180 nm	180 nm
Freq (GHz)	3–10	3.1–10.6	3–10	2–12	3–12	3.1–10.6
\(S_{21} \) (dB)	14.07 ± 1.69	11.25 ± 0.4	11.5 ± 1.5	10	9	13 ± 0.6
\(S_{11} \) (dB)	<−10	<−9.7	<−9	<−10	<−10	<−10
NF (dB)	2.5–3.1	4.12–5.16	3–7	6.2–8	5.9–7.4	3.3–4.5
Power (mW)	22	22.7	7.2	380	132	21.6
Area (mm\(^2\))	0.88	0.447	0.64	1.89	1.89	0.56
4. Conclusion

In this brief, an UWB LNA operating in the 3.1–10.6 GHz band has been designed and fabricated using a 0.18-μm CMOS process. In order to improve the noise performance and broaden the input-matching bandwidth of the traditional noise-cancelling configuration, the methodology using simultaneous input and noise matching is adopted. A comparison of measurement results with the recently published UWB LNAs shows that the proposed UWB LNA achieves high and flat S_21, wideband input impedance matching and low NF, and is very suitable for UWB system applications.

Acknowledgments

This work has been supported in part by the National Natural Science Foundation of China under grants of 61401226 and 61504061, the Jiangsu Government Scholarship for Overseas Studies and the General Project of Nanjing University of Posts and Telecommunications under grant of NY215167.

References

[1] H. Nam, et al.: “A 1–13 GHz CMOS low-noise amplifier using compact transformer-based inter-stage networks,” IEICE Electron. Express 15 (2018) 20171019 (DOI: 10.1587/exle.14.20171019).
[2] Y.-H. Yu, et al.: “A compact wideband CMOS LNA with gain flatness enhancement,” IEEE J. Solid-State Circuits 45 (2010) 502 (DOI: 10.1109/JSSC.2010.2040111).
[3] H. Zhang, et al.: “A low-power, linearized, ultra-wideband LNA design technique,” IEEE J. Solid-State Circuits 44 (2009) 320 (DOI: 10.1109/JSSC.2008.2101033).
[4] S. Huang, et al.: “An ultra-low-power 2.4 GHz RF receiver in CMOS 55 nm process,” IEICE Electron. Express 15 (2018) 20180016 (DOI: 10.1587/exle.15.20180016).
[5] H.-T. Ahn and D. J. Allstot: “A 0.5–8.5 GHz fully differential CMOS distributed amplifier,” IEEE J. Solid-State Circuits 37 (2002) 985 (DOI: 10.1109/JSSC.2002.809960).
[6] M. Tsai, et al.: “A 70 GHz cascaded multi-stage distributed amplifier in 90 nm CMOS technology,” IEEE ISSCC Dig. Tech. Papers (2005) 402 (DOI: 10.1109/ISSCC.2005.1494039).
[7] B. Ballwearer, et al.: “A fully integrated 0.5–5.5 GHz CMOS distributed amplifier,” IEEE J. Solid-State Circuits 35 (2000) 231 (DOI: 10.1109/9.823448).
[8] Y.-S. Lin, et al.: “Analysis and design of CMOS distributed amplifier using inductively-peaking cascaded gain cell for UWB systems,” IEEE Trans. Microw. Theory Techn. 59 (2011) 2513 (DOI: 10.1109/TMTT.2011.2163726).
[9] X. Guan and C. Nguyen: “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microw. Theory Techn. 54 (2006) 3278 (DOI: 10.1109/TMTT.2006.877812).
[10] R.-C. Liu, et al.: “A 0.5–14 GHz 10.6-dB CMOS cascode distributed amplifier,” IEEE VLSI Symp. Dig. Tech. Papers (2003) 139 (DOI: 10.1099/VLSCIC.2003.1221183).
[11] J.-F. Chang and Y.-S. Lin: “A high-performance distributed amplifier using multiple noise suppression techniques,” IEEE Microw. Compon. Lett. 21 (2011) 495 (DOI: 10.1109/LMWC.2011.2163059).
[12] M.-K. Cho, et al.: “A switchless CMOS bi-directional gain amplifier with multi-octave bandwidth,” IEEE Microw. Compon. Lett. 23 (2013) 611 (DOI: 10.1109/LMWC.2013.2281438).
[13] J.-H. C. Zhan and S. S. Taylor: “A 5 GHz resistive-feedback CMOS LNA for low-cost multi-standard applications,” ISSCC Dig. Tech. Papers (2006) 721 (DOI: 10.1109/ISSCC.2006.1696111).
[14] N. Poobuapheun, et al.: “An inductorless high dynamic range 0.3–2.6 GHz receiver CMOS front-end,” Proc. IEEE Radio Freq. Integr. Circuits Symp. (2009) 397 (DOI: 10.1109/RFIC.2009.5135564).
[15] S.-K. Hampel, et al.: “Wideband inductorless minimal area RF front-end,” Proc. IEEE Eur. Solid-State Circuits Conf. (2009) 96 (DOI: 10.1109/ESSCIRC.2009.5326014).
[16] F. Brucoleri, et al.: “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits 39 (2004) 275 (DOI: 10.1109/JSSC.2003.821786).
[17] B.-Q. Guo, et al.: “A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations,” IEEE J. Solid-State Circuits 52 (2017) 1331 (DOI: 10.1109/JSSC.2017.2657598).
[18] D. Im, et al.: “A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner,” IEEE J. Solid-State Circuits 44 (2009) 686 (DOI: 10.1109/JSSC.2008.2108084).
[19] S. C. Blaakmeer, et al.: “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,” IEEE J. Solid-State Circuits 43 (2008) 1341 (DOI: 10.1109/JSSC.2008.922736).
[20] H.-H. Yu, et al.: “A 0.444-mm² 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-canceling LNA achieving a flat NF of 3.3 ± 0.45 dB,” IEEE Trans. Circuits Syst. II, Exp. Briefs 66 (2019) 71 (DOI: 10.1109/TCSI.2018.2833553).
[21] S. C. Blaakmeer, et al.: “A wideband noise-canceling CMOS LNA exploiting a transformer,” Proc. IEEE Radio Frequency Integrated Circuits Symp. (2006) 1 (DOI: 10.1109/RFIC.2006.1651110).
[22] H.-R. Wang, et al.: “A wideband inductorless LNA with local feedback and noise cancelling for low-power low-voltage applications,” IEEE Trans. Circuits Syst. I, Reg. Papers 57 (2010) 1993 (DOI: 10.1109/TCSI.2010.2042997).
[23] H.-H. Yu, et al.: “A 0.444-mm² 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-canceling LNA achieving a flat NF of 3.3 ± 0.45 dB,” IEEE Trans. Circuits Syst. II, Exp. Briefs 66 (2019) 71 (DOI: 10.1109/TCSI.2018.2833553).
[24] S. C. Blaakmeer, et al.: “A wideband noise-canceling CMOS LNA exploiting a transformer,” Proc. IEEE Radio Frequency Integrated Circuits Symp. (2006) 1 (DOI: 10.1109/RFIC.2006.1651110).
[25] H.-R. Wang, et al.: “A wideband inductorless LNA with simultaneous output balancing noise-canceling and distortion-canceling,” IEEE J. Solid-State Circuits 43 (2008) 1341 (DOI: 10.1109/JSSC.2008.922736).
[26] J. Jussila and P. Sivonen: “A 1.2-V highly linear balanced noise-canceling LNA in 0.13-μm CMOS,” IEEE J. Solid-State Circuits 43 (2008) 579 (DOI: 10.1109/JSSC.2007.916582).
[27] M. El-Nozahi, et al.: “An inductor-less noise-canceling broadband low noise amplifier with composite transistor pair in 90 nm CMOS technology,” IEEE J. Solid-State Circuits 46 (2011) 1111 (DOI: 10.1109/JSSC.2011.2183130).
[28] W. Zhao, et al.: “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 52 (2005) 875 (DOI: 10.1109/TCSI.2005.858966).
[29] C.-C. Chen, et al.: “Low-noise-figure P2 AA mesh inductors for CMOS UWB RFC applications,” IEEE Trans. Electron Devices 55 (2008) 3542 (DOI: 10.1109/TED.2008.2066537).
[30] G. Sapon and G. Palmisano: “A 3–10-GHz low-power CMOS low noise amplifier for ultra-wideband communication,” IEEE Trans. Microw. Theory Techn. 59 (2011) 678 (DOI: 10.1109/TMTT.2010.2090357).
[31] A. Alizadeh, et al.: “Design of a 2–12-GHz bidirectional distributed amplifier in a 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Techn. 67 (2019) 754 (DOI: 10.1109/TMTT.2018.2883956).