Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications

Mahsa Nouri Barkestani1*, Sina Naserian1,2,3*, Georges Uzan1,4# and Sara Shamdani1,3#

Abstract
Due to the current lack of innovative and effective therapeutic approaches, tissue engineering (TE) has attracted much attention during the last decades providing new hopes for the treatment of several degenerative disorders. Tissue engineering is a complex procedure, which includes processes of decellularization and recellularization of biological tissues or functionalization of artificial scaffolds by active cells. In this review, we have first discussed those conventional steps, which have led to great advancements during the last several years. Moreover, we have paid special attention to the new methods of post-decellularization that can significantly ameliorate the efficiency of decellularized cartilage extracellular matrix (ECM) for the treatment of osteoarthritis (OA). We propose a series of post-decellularization procedures to overcome the current shortcomings such as low mechanical strength and poor bioactivity to improve decellularized ECM scaffold towards much more efficient and higher integration.

Keywords
Cartilage tissue engineering, osteoarthritis, decellularized extracellular matrix, post-decellularization

Date received: 22 September 2020; accepted: 6 December 2020

Introduction
Extracellular matrix (ECM) is the non-cellular component present within all tissues and organs. It provides the essential physical scaffold for the cellular constituents and initiates crucial biochemical and biomechanical signals that are required for tissue morphogenesis, differentiation and homeostasis.1 Cartilage is a hyalin and an avascular tissue that consists of an extensive ECM (about 95% such as proteoglycans, glycoproteins, enzymes, communication peptides, and water) that is produced and maintained by chondrocytes (about 5%).1 Cartilage matrix is composed predominantly of proteoglycans, which are made of a core protein bound to multiple chains of glycosaminoglycans (GAG), such as chondroitin sulfate (CS) and keratan sulfate (KS).2 The large aggregating proteoglycan, aggrecan (ACAN), can bind or aggregate to a backbone of hyaluronic acid (HA) forming larger macromolecules.3 Together, these components help to retain water within the ECM, which is critical to maintain its unique mechanical properties.4 Due to the absence of blood vessels and nerves, healthy adult joints cartilage does not have the ability to self-repair leading to degenerative joint disorders like OA. In this setting, because of

1INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
2Université Paris-Saclay, CNRS, Centre de Nanosciences et Nanotechnologies C2N, UMR9001, Palaiseau, France
3CellMedEx, Saint Maur Des Fossés, France
4Paris-Saclay University, Villejuif, France
*Mahsa Nouri Barkestani and Sina Naserian are equally co-first authors.
#Georges Uzan and Sara Shamdani are equally co-last authors.
Corresponding authors:
Sina Naserian, Université Paris-Saclay, CNRS, Centre de Nanosciences et Nanotechnologies C2N, UMR9001, 10 boulevard Thomas Gobret, Palaiseau 91120, France.
Emails: sina.naserian@inserm.fr; sina.naserian@cellmedex.com
Sara Shamdani, INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 12-14 avenue Paul Vaillant Couturier, Villejuif 94800, France.
Emails: sara.shamdani@inserm.fr; sara.shamdani@cellmedex.com
the concurrent changes in matrix composition with increasing calcification, the cartilage progressive destruction happens.\(^5\) Unfortunately, there is no current consensus regarding the ideal treatment to stop gradual loss of articular cartilage resulting in osteoarthritis (OA).\(^5\) However, several treatment methods have been proposed with the aims of pain relief and improvement of patients’ movement abilities. Current treatments are pharmacological methods such as oral, intra-articular injections based on HA and CS and non-pharmacological treatments such as immunotherapy, gene therapy, cellular therapy and eventually surgical interventions. As cartilage ECM is maintained specifically by chondrocytes, their low cell density and avascular properties leads to low cartilage regeneration capacity. Therefore, tissue engineering is considered a promising approach for effective repair of damaged cartilage tissue.\(^6\)\(^,\)\(^7\) Most often, the procedure used in cartilage tissue engineering involves a suitable combination of seeded cells, a biocompatible scaffold, and biological factors that support cartilage formation.\(^8\)

The excised tissue must first be decellularized, a process in which the ECM is depleted from its native cells and genetic materials (such as DNA and RNA found in the nucleus, mitochondria, and cytoplasm) to produce a natural scaffold. The ECM, that ideally retains its indispensable structural, biochemical and biomechanical cues, can then be recellularized to produce a functional tissue or organ.

Even though many articles on decellularization of cartilage for tissue engineering purposes have been already published, this is the first comprehensive review that particularly focuses on cartilage post-decellularization methods. In this review, the methods of decellularization have been sorted into three categories: biological, chemical, and physical. In addition, a summary of cartilage decellularization protocols progressed during several years is also presented. We have summarized different materials and methods concerning the post-decellularization methods that can significantly improve the efficiency of decellularized cartilage ECM. Recellularization is the final step, in which the role of different cell types including stem cells in order to repopulate the acellular ECM scaffolds of cartilage has been discussed. Moreover, a summary of cartilage recellularization protocols evolved during the last years has been provided.

Tissue engineering

Tissue engineering aims at replacing or regenerating human tissues or organs in order to renovate or re-establish their normal function. There are three principle axes in the process of tissue engineering: (1) a scaffold that provides structure and substrate for tissue growth and development, (2) cells to improve required tissue formation, (3) growth factors (GFs) or biophysical stimuli to direct the growth and differentiation of cells within the scaffold. Together, these components create what is known as the tissue engineering triad. Although these factors are separately important, understanding their interactions is also crucial for successful tissue engineering.

Here, we focus on natural ECM as a scaffold that maintains its original 3D architecture for culturing cells or as a mold for organs. To produce ECM scaffolds, tissue must first be decellularized which is obtained by removing the cells and their genetic materials. Therefore, decellularized ECM (dECM) is expected to be an effective scaffold that has suitable components for the construction of tissues. Compared to other methods that completely destroy the ECM, using it as a natural scaffold maintaining most of its original ECM architecture would be a great advantage. In order to improve the decellularization efficiency, several recent studies suggest a complementary post-decellularization process which will be further discussed in detail. These steps will be finalized via recellularization methods. A summarized procedure is depicted in Figure 1.

Decellularization

Different kinds of ECM sources such as tissue, whole organ and cell-culture derived ECM have been investigated in research works. Besides, macromolecular crowding (MMC) which is the addition of inert polydispersed macromolecules has been shown effective for the amplification of ECM deposition in vitro and the production of ECM-rich alternatives.\(^8\)\(^,\)\(^10\) Decellularization is the procedure to maximally remove all cellular and genetic materials from a desired ECM while maintaining its physical structural, biochemical and biomechanical properties including thickness, stiffness, density and 3D configuration.\(^11\) During the past decade different human and animal organs and tissues have been utilized as dECM scaffolds, proving their potential application in tissue engineering (Table 1). The progression of decellularization techniques has been advancing for different tissue and organs like heart,\(^12\)\(^–\)\(^15\) liver,\(^16\)\(^,\)\(^17\) lung,\(^18\)\(^–\)\(^21\) kidney,\(^22\)\(^,\)\(^23\) cornea,\(^24\)\(^,\)\(^25\) skin,\(^26\) skin,\(^26\) brain,\(^28\) adipose tissue.\(^29\)

Decellularization has been performed through chemical, physical, and enzymatic techniques.\(^49\) The chemical decellularization methods function by immersing the tissue in a solution containing an acid, alkaline base, alcohol, chelating agent, or detergents. Common acids include peracetic acid and acetic acid which has been shown to disrupt mainly nucleic acids,\(^50\) sodium, calcium, and ammonium hydroxide that destroy cellular and nuclear components and induce cellular lysis.\(^51\)–\(^54\) Alcohols such as methanol and ethanol are suggested to use for removal of lipids.\(^49\)\(^,\)\(^55\) In addition, it has been reported that alcohols disrupt the actin cytoskeleton network which further contributes to cell detachment by breaking interactions with focal adhesions.\(^56\) Chelating agents like Ethylenediaminetetraacetic acid (EDTA) and Egtazic acid (EGTA) are used with enzymes or detergents to improve cell nuclei removal.\(^53\)\(^,\)\(^57\) However, these agents can inhibit DNase activity which would reduce
the digestion of nucleic acids that is an important step in decellularization process. On the other hand, EDTA application promotes cell detachment by reducing cell-matrix and cell-cell adhesion through the chelation of extracellular Ca$^{2+}$ ions that are necessary for the activation of Ca$^{2+}$ dependent cell adhesion molecules such as integrins and cadherins. Detergents such as sodium deoxycholate (SD) and sodium dodecyl sulfate (SDS) are used to lyse cell membrane, to solubilize membrane proteins and lipids and also to remove cytosolic and genomic material. Enzymatic methods are mainly based on the use of proteases (trypsin, collagenase, thermolysin, and dispase) in addition to other enzymes such as lipase acting mostly by cleaving adhesive proteins like collagens and fibronectin, and cell edhesion molecules like integrins and cadherins while others like nuclease (DNase and RNase) digest nucleic acids.

Decellularization protocols also often include a physical decellularization step such as mechanical agitation, freeze/thaw cycles, hydrostatic pressure, osmotic pressure, perfusion/pressure gradients or exposure to supercritical carbon dioxide (CO$_2$). A summary of various decellularization techniques with their advantages and drawbacks is listed in Table 2.

Chemical and mechanical decellularization factors can be used to decellularize different kind of tissues, such as small intestine, urinary bladder and dermis, to create planar ECM sheets that can be further processed into ECM hydrogels. Whole organs can be decellularized for the bioengineering of transplantable organs such as the kidney, liver, and lung which results in a 3D ECM scaffold that can be repopulated with patient-derived cells to engineer transplantable human organs.

Assessment of decellularization. In order to assess the decellularization process several criteria must be taken into account which among them evaluation of the immunogenicity and the mechanical property of dECM are the most essential. In the next section we discuss these points in detail.

Immunogenicity. One of the most important requirements of decellularization is evaluation of scaffold immunocompatibility and eventually reducing their immunogenicity. The immunological concerns have been a halting point for widespread use of dECM as scaffold in clinical applications. Xenogeneic scaffolds might be ideally the first choice to come into mind since they are abundant and easily obtained. However, xenogenic options might provoke the host immune reaction and if their immunogenicity is not sufficiently controlled, they may be finally rejected, leading to functional failure and the need for immediate replacement or removal. The two main components capable of inducing an immunogenic response include residual genetic materials such as DNA and RNA and antigenic peptides. In this respect, it has been suggested by Crapo et al, and Wendel Q et al, that the dECM containing less than 50 ng dsDNA per mg of ECM and less than 200 bp of DNA in length elicits no significant inflammatory reaction.
Years	Tissue origin	Description
1948	Muscle samples	Pulverization of tissue samples and preparing acellular homogenates of though tissues.
1975	Bovine blood vessel	Solubilizing blood vessels with 4% SD.
1980	Rat liver	Long-term Culture of normal rat hepatocytes on decellularized rat liver ECM.
1995	Porcine-SIS	Using an acellular porcine-SIS, as temporary bioscaffold for treating Achilles tendon defect in the dog. SIS remodeled neotendon and after 8 weeks became degraded.
1996	Cadaveric allograft skin	Acellular allograft dermal matrix used as scaffold and grafted to the excised wound base. After 14 days, neovascularization, neoeptihelialization and infiltration were observed.
1999	Cultured BCE-cells and PF-HR9 endodermal cells	Produce decellularized ECMs by culturing BCE and PF-HR9 endodermal cells. ECM coating on plastic surface was uniform and suitable for HS703T human colon carcinoma cells attachment and spreading.
2000	Human and sheep pulmonary valves	Human and sheep pulmonary valves decellularization using the SynerGraft treatment process and implantation in the right ventricular outflow tract of growing sheep. Human pulmonary valves were implanted in human. They became recellularized with recipient cells without provoking antibody response.
2001	Porcine aortic valves	Porcine aortic valves recellularization by human neonatal fibroblasts cells in a novel bioreactor resulted in a heart valve populated with viable human cells.
2004	Porcine dermal matrix	Decellularization of the porcine dermal matrix used by trypsin and SDS. Cell component was completely removed.
2005	Peripheral nerve tissue	Decellularization of peripheral nerve tissue with Triton X-200, sulfobetaine-10/16 was suited for studying specific aspect of nerve regeneration.
2005	Bovine pericardium	Decellularization of the bovine pericardium with triton-x, SD, SDS, and PAA, which resulted in removal of xenogeneic antigens.
2005	Porcine small bowel	Decellularization of porcine small bowel segments using mechanical, chemical and enzymatic methods. Implantation of tissue in a porcine model after recellularization and vascularization.
2006	Human placenta	Decellularization of human placenta ECM through perfusion via the existing vasculature. An intact vascular network of ECM architecture was preserved.
2007	Chicken tendon	Combining decellularization and chemical oxidation to decellularize chicken Tendon.
2008	Porcine urinary bladder	Enzymatic solubilization of porcine urinary bladder to prepare an injectable gel form of ECM for cultivating smooth muscle cells.
2009	Yorkshire boar Trachea tubular	Yorkshire boar Trachea tubular decellularization using detergent-enzymatic method and implantation into mice. It was mechanically and structurally comparable to the native ECM with no immune response in animal models.
2010	Porcine cornea	Decellularization of porcine cornea by ultrahigh hydrostatic pressure method and implantation into rabbit that was successfully a possible corneal scaffold for an artificial cornea.
2010	Rat liver	Generation of a transplantable rat liver graft by decellularization via portal perfusion with SDS and recellularization of liver matrix with adult hepatocytes.
2013	Pig and human trachea-lung	Decellularization of pig and human trachea-lung using freezing and SDS washes. Recellularization of scaffold with human adult primary alveolar epithelial type II cells supported cell attachment and cell viability.
2014	Human kidney	Decellularization of human kidney with SDS in order to obtain human renal ECM scaffold.
2014	Heart, cartilage and adipose cell-laden ECM	Using decellularized heart, cartilage and adipose cell-laden ECM as a bioink for 3D printing scaffold.
2015	Tumor tissues	Decellularization of tumor tissues for modeling tumor microenvironment. AS49 human pulmonary adenocarcinoma cells implanted into mice were used for decellularization.
2015	Human and rat whole-lung	Decellularization of human and rat whole-lung scaffold by perfusion with SDS and recellularization with iPSCs.
2015	Rat and human lungs	Decellularization of rat and human lungs and Repopulating vascular compartment for regeneration of functional pulmonary vasculature.
2015	Human liver	Decellularization of human liver and repopulation with human hepatic stellate cells (LX2), hepatocellular carcinoma (SK-Hep-1) and hepatoblastoma (HePG2).
2016	Human heart	Heart perfusion-decellularization and recellularization with myocytes derived from human iPSCs.
2017	Cardiac tissue	Cardiac tissue regeneration using hNPCs cell-laden dECM bioinks for 3D printing scaffold. Stem cell patch induced vascularization and tissue matrix formation in vivo.
2018	Human brain	Human brain dECM 3D hydrogel facilitates the direct conversion of fibroblasts into induced neuronal cells.
2020	Human liver	Revascularization of decellularized liver scaffold with human umbilical vein endothelial cells HUVECs using perfusion bioreactor culture and implantation into pig.

SD: sodium deoxycholate; ECM: extracellular matrix; SIS: small intestinal submucosa; BCE: bovine corneal endothelial-cell; SDS: sodium dodecyl sulfate, PLA: poly-L-lactic acid; iPSCs: induced pluripotent stem cells; 3D: three dimension; hNPCs: human cardiac progenitor cells; dECM: decellularized ECM.
Table 2. Methods of tissue, organ, and cell-derived ECM decellularization.

Techniques	Agents	Advantage	Disadvantage	Organ Decellularization	Ref
I. Chemical					
1. Acids	Persacetic acid	Disrupting nucleic acids	Damage the ECM microarchitecture	SIS, urinary bladder	Syed et al.69, Gilbert et al.70 and Yamanaka et al.71
	Acetic acid	Removing cytoplasmic components	Decreasing the collagen content, Decreasing the tissue tensile strength and elasticity	Kidney	Zambon et al.72
		Used as a disinfectant	Alteration of mechanical properties of ECM	Adipose tissue and cornea	Flynn73 and Du et al.74
		Produce a biocompatible scaffold	Not efficient in cell component removal	Heart, kidney, liver, and pancreas	See et al.75, Song et al.76, Kajbafzadeh et al.77, Mirmalek-Sani et al.78, Pang et al.79, Wang et al.80, Zhou et al.81, Syed et al.69, Pellegata et al.84, Baiguera et al.85, Piccoli et al.86, Friedrich et al.87, Dragúňová et al.94, Rahman et al.95, Lin et al.96, and Giraldo-Gomez et al.97
2. Alkaline base	Sodium hydroxide	Destroy cellular and nuclear components	Decrease tissue tensile strength and elasticity	Zambon et al.72	
	Calcium hydroxide	Denaturation of the DNA	Decrease ECM stiffness	Adipose tissue and cornea	Flynn73 and Du et al.74
	Ammonium hydroxide	Disrupting nucleic acids	Degradation collagen fibrils and collagen crosslinks	Heart, kidney, liver, and pancreas	See et al.75, Song et al.76, Kajbafzadeh et al.77, Mirmalek-Sani et al.78, Pang et al.79, Wang et al.80, Zhou et al.81, Syed et al.69, Pellegata et al.84, Baiguera et al.85, Piccoli et al.86, Friedrich et al.87, Dragúňová et al.94, Rahman et al.95, Lin et al.96, and Giraldo-Gomez et al.97
	Sodium sulfide	Disrupting nucleic acids	Change the structure, biomechanical and viscoelastic properties of ECM	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
3. Alcohol	Ethanol	Disinfectant agent	Change the collagen 3D structure by crosslinking the ECM	Blood vessels, tracheae, daphm, scrotic root, and small intestines	Syed et al.69, Pellegrsta et al.68, Baguera et al.85, Piccoli et al.86, and Friedrich et al.87
	Methanol	lysing cells and removing nucleic acids and lipids	Change the collagen 3D structure by crosslinking the ECM	Porcine corneal stromal	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
4. Chelating agents	EDTA	Undermine cell adhesion	Undermine cell adhesion causing cell and ECM dissociation	Adipose tissue and cornea	Flynn73 and Du et al.74
	EGTA	Undermine cell adhesion	Undermine cell adhesion causing cell and ECM dissociation	Adipose tissue and cornea	Flynn73 and Du et al.74
5. Detergents	I. Ionic detergents	Removes GAGs, GFs, and ECM proteins	Removes GAGs, GFs, and ECM proteins	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	SDS	Lyses cells	Lyses cells	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	SD	Solubilize membrane proteins and lipids	Solubilize membrane proteins and lipids	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Sodium	Control protein crystalization	Control protein crystalization	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	N-lauroyl glutamate	Efficiently cell component removal	Efficiently cell component removal	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
II. Zwitterionic detergents	CHAPS	Denatures the protein interaction	Denatures the protein interaction	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Triton X-100	Denature the protein interactions	Denature the protein interactions	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
III. Non-ionic detergents	Triton X-100	Denature the protein interactions	Denature the protein interactions	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Disrupts the DNA, protein and interactions	Disrupts the DNA, protein and interactions	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	High viscosity, no toxicity, and less harmful to ECM	High viscosity, no toxicity, and less harmful to ECM	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Eliminates cellular contents from thick tissues	Eliminates cellular contents from thick tissues	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Cleaves and hydrolyzes proteins	Cleaves and hydrolyzes proteins	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Low potency	Low potency	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Reduces collagen and GAG contents	Reduces collagen and GAG contents	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Disrupts elastin and collagen	Disrupts elastin and collagen	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Low potency	Low potency	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Not efficient for cell removal	Not efficient for cell removal	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93
	Tryptsin	Cleaves and hydrolyzes proteins	Cleaves and hydrolyzes proteins	Porcine cornea, myocardium, heart valve, small intestine, kidney, human vein, heart, kidney, porcine, human lungs	Dong et al.89, Syed et al.69, Ren et al.92, and Meyer et al.93

(Continued)
Table 2. (Continued)

Techniques	Agents	Advantages	Disadvantages	Organ Decellularization	Ref
2. Enzymatic	Nucleases	- Digest and eliminate cellular and nuclear materials			
- Prevent the aggregation of DNA | - Not effective alone
- Prolonged exposure alters mechanical stability of ECM
- High specificity
- Deplates GAG content | Human lung, porcine heart valves, and kidney | Wagner et al.,98 and Ross et al.99 |
| | Lipase | - Catalyze the hydrolysis of cell and phospholipids | - Poor control of enzymatic agents | Human amniotic membrane | Shi et al.100 |
| 3. Physical | Disrupt cellular membrane | - Maintain mechanical strength
- Maintain structure | - Insufficient removal of genetic materials lead to immune rejection
- Ice formation and differences in temperature can disrupt tissue structure | Fibroblast cell sheet | Xing et al.101 |
| 3.1 Freeze/Thaw | | | - Excessive agitation can disrupt ECM
- Unreliable for large animal or human whole organs
- Usually needs increasing times | Heart valves, skeletal muscle, urinary bladder, peripheral nerves, skin, cartilage | Tudorache et al.,102 Borschel et al.,103 Brown et al.,104 Karabekmez et al.,105 Reing et al.,11 and Elder et al.106 |
| 3.2 Emersion/agitation | | - Used when the access to the vasculature is difficult | - Inappropriate perfusion pressures can disrupt ECM
- Needs cannulation of the main organ artery | Heart, lung, liver, kidney, and pancreas | Zambon et al.,12 Ott et al.,14 Bonvillain et al.,107 Kajbafzadeh et al.,108 and Goh et al.109 |
| 3.3 Perfusion | | - Infusion of agents through the organ vasculature
- Preferred for large animal or human organs
- Facilitates removal of cellular content
- Preserves tissue ECM composition and architecture | - Insufficient removal of genetic materials lead to immune rejection | Whole organs and porcine blood vessels | Gropo et al.,11 Bolland et al.,109 and Funamoto et al.67 |
| 3.4 Pressure gradient | | - Denatures cells with pressure
- Sterilizes tissue
- Maintains the GAG and collagen structure
- Short treatment time
- Sterilizing tissue
- Maintains the GAG and collagen structure | - Limited efficacy with small probe
- Sucrose just for soft and loose tissues
- Left behind DNA remnants
- Denatures ECM proteins in high pressure
- Substantial removal of volatile substances
- Dehydration of the scaffold
- Must be performed in the living species
- NA | Liver, lung, cornea and blood vessels | Funamoto et al.,67, Lin et al.,110 McDermott et al.,111 and Adachi et al.112 |
| 3.5 HHP | | | | Cornea | Hoshimoto et al.113 |
| 3.6 Non-thermal electroporation | | | | Adipose tissue, sorta, and heart ECM hydrogel | Wang et al.,114 Guler et al.,115 and Soo et al.75 |
| 3.7 Super critical CO₂ | | | | | |

Notes:
ECM: extracellular matrix; SIS: small intestine submucosa; EDTA: ethylene diamine tetra-acetic acid; EGTA: ethylene glycol-bis ([i-amino ethyl ether]-N,N,N',N'-tetra-acetic acid; 3D: tridimensional; SDS: sodium dodecyl sulfate; SD: sodium deoxycholate; CHAPS: 3-(3-cholamidopropyl) dimethyl ammonium]-1-propane sulfonate; GAG: glycosaminoglycan; GFs: growth factors; HHP: high hydrostatic pressure; NA: not available.
Detergents including SDS and Triton X-100 are able to remove more than 90% of residual DNA. However, solvent/detergent and 3-cholamidopropyl dimethylammonio 1-propanesulfonate (CHAPS), have been shown less successful in this regard. In order to ameliorate this process, endonucleases including DNase and RNase have been used to break down nucleic acid fragments. Although these two enzymes effectively decrease the length of fragments and then prevent significant immunogenic responses, they are not very efficient in separating the fragments from the ECM.

Native antigens are the other critical remnants that must also be reduced in the scaffolds to prevent immune rejection. Hyper-acute rejection of scaffolds, occurring shortly after implantation and caused mostly by host circulating antibodies, and acute rejection, occurring days to weeks after implantation, are of particular concern. Specific components that may be measured are alpha-Gal epitopes, which could potentially activate the immune response and major histocompatibility complexes (MHC) present on the cell membrane, which can consequently lead to T cell and natural killer (NK) cell responses. It has been demonstrated that other ECM structural proteins like collagen VI could also cause immunogenic reactions.

On the contrary, there are some research studies that report lowered immunogenicity of decellularized tissues such as in pericardium implantation of human into mice models, dermal substitute from human placenta for full-thickness wound healing and decellularized human tendons. Besides, several other studies have shown that xenogeneic tissues show residual immunogenicity and may be contaminated with biological agents like prions and retroviruses that are difficult to detect and eliminate. The existence of these limitations associated with the use of decellularization and scaffold acellularity as the only standard measurement for the generation of xenogeneic scaffolds proves that further immunological verifications are extremely necessary. This clarifies the primordial need for improving strategies to remove antigens from xenogeneic tissues and organs, and assess the resultant scaffold residual antigenicity as a more specific immunocompatibility measurement. The antigen removal step avoids inaccurate simplification of the immunogenic issue, as observed with decellularization methods that merely target cell removal as a substitute for antigens removal.

Mechanical properties. One of the most important aspects of tissue or organ regeneration via decellularization techniques is maintaining the mechanical integrity and characteristics of the natural tissue to ensure its proper functionality. Essential properties of interest are elastic modulus, viscous modulus, tensile strength, and yield strength; however, the most crucial properties ultimately depend on the nature of the tissue or organ’s desired function. These properties are principally controlled by the ECM structural proteins such as collagen, laminin, elastin and fibronectin. ECM proteins regulate cell adhesion and differentiation through integrin (adhesion receptor heterodimers) mediated signal transduction. Chondrocytes express several members of the integrin family including α5β1, which is the primary chondrocyte receptor for fibronectin.

Each decellularization strategy has a distinct impact on these proteins. It has been revealed that the mechanical properties of scaffolds can be used to modulate the important aspects of cellular development like adhesion, growth, morphology, signaling, motility, and survival.

Decellularization of cartilage. OA is a progressive degenerative joint disease affecting articular cartilage, bone and supporting ligaments leading to pain and loss of mobility. Several treatment methods have been used with the aim of pain relief and improvement of patients’ functional abilities. These treatments could be divided into two subcategories: (1) non-pharmacological methods such as physiotherapy, occupational therapy, weight loss and exercise, and (2) pharmacological and innovative methods with a particular aim of cartilage repair like oral and intra-articular administrations, immunotherapy, gene therapy, and cellular therapy including stem cell-based therapies. Nevertheless, current best evidence does not support any of these treatments superior to surgical interventions to repair initial cartilage lesions. Some of the surgical methods are microfracture (MF) (a marrow stimulation technique), autologous and allogeneic chondrocyte implantation (ACI), matrix-associated chondrocyte implantation (MACI), autologous matrix-induced chondrogenesis (AMIC), osteochondral autograft transplantation (OAT), osteochondral allograft transplantation (OCA) and direct cartilage suture repair. In general, MF and OAT are the best choices for smaller lesions (<2 cm²), OAT or ACI treatment options have been shown to be more effective for the intermediate lesions (2–4 cm²) and ACI or OCA were proven to be the better choices for larger lesions (>4 cm²). Due to the limitation of current treatments including complexity and high expenses of surgical interventions, lesions size, patients’ age and etc, the repair of cartilage lesions using tissue-engineering approaches is being extensively explored. To this goal, cartilage ECM could be one of the main candidates providing a natural scaffold for further applications. In order to use its potentials, cartilage ECM should be first decellularized (Figure 2). The presence of cells and cellular components such as antigens within the ECM that are derived from allogeneic and xenogeneic sources might induce the host inflammatory response leading to abnormal tissue remodeling and eventually graft failure. Further non-biological advantages of ECM decellularization are (a) decreased difficulties triggered by the living nature
of the grafts, (b) elevated potential to be industrialized and commercialized and to achieve a ready to use product, and (c) potentially increased storage time that all together expand the operation maneuver for patients.143,144 Nevertheless, no standard method for cartilage decellularization is yet proposed. Previous studies demonstrated that the decellularization process itself could affect the residual matrix components, micro-architecture and micromechanical properties.145 Among them, decrease in sulfated GAGs,146,147 loss of inherent collagen content148, as well as reduced biomechanical properties146 of dECMs have been reported. Optimal decellularization methods that can effectively remove cellular components with only minimal disruption to other components, such as collagen, GAGs, and GFs, can help maintain ECM ultra-structure and micromechanical properties (Figure 2). For instance, chondrocytes grown in collagen microspheres produce GAG-rich ECM leading to promoted chondrogenic differentiation of MSCs upon decellularization.149 Furthermore, it was reported that dECM derived from chondrocytes plays a crucial role during the chondrogenic differentiation of human MSCs.150 Since harvesting chondrocytes from the healthy cartilage is a narrow procedure, other cellular sources including synovial derived stem cells (SDSCs), MSCs and co-culture of chondrocytes and MSCs were also largely studied.151,152 It has been shown that dECM derived from human MSCs maintain stem cell niche and enhance the MSC proliferation capacity.42 Others studies showed that MSC-derived dECM increases cell adhesion, matrix secretion, and chondrogenesis of marrow clots after micro-fracture.153–155 In addition, Guo et al.156 and Jingting Li et al.157 reported that dECM derived from SDSCs increases MSC proliferation and chondrogenic differentiation leading to a better cartilage repair.

As we have already mentioned, elimination of cells, preservation of ECM components, removal of genetic material and maintenance of mechanical properties are the main goals of decellularization procedure which are achieved by a wide variety of techniques such as physical (freeze/thaw cycles), chemical (detergents notably SDS and Triton X-100) and enzymatic treatments (trypsin, DNase) (Table 2). Cartilage ECM represents more than...
90% of the tissue volume and chondrocytes are the only cell type in the cartilage, therefore, for the most efficient preservation of ECM components and optimal cell removal, the most commonly used methods for cartilage decellularization are based on a combination of all those three techniques, which are evaluated and summarized in Table 3.

In several studies, scaffolds were prepared from cartilage which was shattered prior to decellularization. The first step of decellularization consists in cell lysis followed by the extraction of various cellular debris by using detergents like SDS and SD, which can solubilize membrane proteins and lipids and also control protein crystallization. Some research works utilized Triton X-100 as a type of non-ionic detergents, which are able to denaturate protein-protein interactions. Similarly, it can break up lipid-lipid and lipid-protein association. J. Antons et al. used supercritical CO₂ technique to decellularize cartilage tissue engineering have been reported. For organic solvent, good biocompatibility, and biodegradability amino acid, into polyalanine-based thermosensitive hydrogel leads to the enhanced gelation behaviors and upregulated mechanical properties. Moreover, this process led to the enlarged pore size and enhanced mechanical strength of thermogel, followed by the regeneration of hyaline-like cartilage with reduced fibrous tissue formation. More recently, Chenyu Wang et al. reported that the addition of injectable cholesterol to thermogel results in an elevated cartilage repair function such as lower gelation temperature, higher mechanical strength, larger pore size, better chondrocyte adhesion, and slower degradation.

Based on the promising outcomes of these tissue engineering methods, many different devices, scaffolds and injectable solutions has been developed for OA treatment during the last years in which some of them have already received the FDA approval. Table 4 summarizes these devises and their advantages and disadvantages in OA treatment.

Recellularization of cartilage. Recellularization of the dECM must be performed in order to produce a functional tissue or organ before their administration (Figure 2). The cell type used to repopulate the matrix and recellularization methods are largely dependent on the complexity of the cell sheet, tissue, or organ. Stem/progenitor cells for this aspect can be generally classified as fetal cells, adult-derived stem/progenitor cells, adult-derived inducible pluripotent stem cells (iPSCs) and umbilical cord blood cells. Non-stem/progenitor cells used for organ engineering are usually parenchymal and supportive cells such as fibroblasts obtained from the organ of interest via biopsy or surgical harvest. Other cell sources can include endothelial cells (ECs) obtained from easily accessible sources such as peripheral blood or bone marrow. A summary of cartilage recellularization methods is listed in Table 3.

Cellularization of cell sheets can be accomplished by simply applying the cell suspension onto the monolayer surface, and 3D constructs can be created through shifting between the cell suspension and additional cell sheets as in the “sandwich model” for cartilage construction. High numbers of cells are required for the recellularization to produce a functional tissue or organ. In the joint cartilage, there are not enough resident cells available to invade the cell-free scaffold and to colonize it homogeneously. Thus, the cells mostly used in cartilage tissue engineering are MSCs which are multipotent and characterized by a high proliferative activity.

BM-MSCs, AD-MSCs, infrapatellar fat pad stem cells (FP-SCs) and synovium have been proposed for cartilage tissue engineering in order to recellularize the cartilage.
Table 3. Articular Cartilage decellularization and recellularization protocols. The efficacy of cell removal, preservation of biochemical components, and mechanical properties has been evaluated by attributing the following scores: (++++) very effective, (+++)+ effective, (++) intermediate effective and (+) low effective.

ECM origin	Decellularization protocol	Cell removal	ECM biochemical component	ECM mechanical properties	Recellularization protocol	Result	Ref
Porcine articular cartilage	Chemical and enzyme treatment, Freeze-thaw	+ + +	+ + +	+ +	hTMSCs	Supported chondrogenesis differentiation and cell viability	Pati et al.
	Combination with synthetic polymers for cell printing				Suspended cells mixed with ECM pre-gel supplemented with αMEM fetal bovine serum and antibiotics	Did not cause stress-induced apoptosis of the encapsulated cell	
Porcine CMS	Carbon dioxide laser technique	+ + + +	+ +	+ +	Rabbit-derived chondrocytes	Formed cartilage-like tissue in vitro	Li et al.
	Combination with synthetic polymers for cell printing				Cultured for 8 weeks in vitro	Induced neocartilage and structural restoration in vivo	
hBMSC-derived ECM	Triton X-100 Ammonium Hydroxide	+ + + +	+ + +	+ +	Rabbit, ACs or ASCs	Increased proliferation, chondrogenic differentiation, and chondrocytic phenotype	Yang et al.
					Implanted into SCID mice	Cartilage formation with high sGAG deposition in vivo	
Porcine knee articular cartilage	Physical pulverization SDS ribonuclease A	+ + + +	+ + +	+ +	Human MSCs	Enhanced chondrogenic phenotypes without exogenous growth factors	Yin et al.
					Implanted into SCID mice	Microgravity bioreactor induced more significantly the chondrogenicity	
					Cultured under microgravity	AC- and ASC displayed equal levels of hyaline cartilage repair	
					condition in a rotary cell culture system bioreactor or static condition	Seed cells infiltrated into the cartilage deep zone after 28 days	Bautista et al.
					Implanted into rabbit	Better preservation of matrix proteins in water decellularized cartilage	
					Cultured for up to 28 days		
Bovine articular cartilage	Freeze-thaw cycles Chondroitinase ABC SDS	+ +	+ + +	+ +	Human MSCs	Assured successful MSC attachment and proliferation	
					Implanted into rabbit	Most of the cellular material was removed	Antons et al.
					Cultured in DMEM	Preservation of Sample structure and biocompatibility	
						Reduced cartilage elastic modulus	
					Cells adhered to the surface of scaffolds	Shen et al.	
					Complete removal of cells		
					Cultured in high glucose DMEM with fetal bovine serum and Glutamax	Comparable with native ultrastructure and biochemical contents	
						Cells adhered to the scaffold	
					Better preservation of matrix proteins in water decellularized cartilage		
Bovine cartilage	Freeze-thaw Triton X-100 DNase and RNase Pepsin and HCl or 3 M urea dissolved in water	+ +	+ + +	+ +	Human MSCs	Assured successful MSC attachment and proliferation	
					Implanted into rabbit	Most of the cellular material was removed	Rodbrauff et al.
					Cultured in DMEM	Preservation of Sample structure and biocompatibility	
						Reduced cartilage elastic modulus	
					Cells adhered to the surface of scaffolds		
					Complete removal of cells		
					Cultured in high glucose DMEM with fetal bovine serum and Glutamax		
					Better preservation of matrix proteins in water decellularized cartilage		
Human cartilage	Physical pulverization EDTA TritonX-100 DNase and RNase	+	+ + +	+ +	Rabbit ADSCs	Obtained significant and rapid joint function recovery and superior hyaline-like articular cartilage repair in vivo	
					Implanted into rabbit	Most of the cellular material was removed	Kang et al.
					Cultured in DMEM	Preservation of Sample structure and biocompatibility	
						Reduced cartilage elastic modulus	
					Cells adhered to the surface of scaffolds		
					Complete removal of cells		
					Implanted into rabbit models		
					Rabbits knees defects were filled 100% mostly with hyaline cartilage		
					Mechanical properties and biochemical components comparable to native tissue		
Goat knee joint cartilage	Physical pulverization SDS DNase and RNase	+ + + +	+ + + +	+ +	Rat BMSCs	Chondrogenic differentiation after 21 days without the use of exogenous growth factors	Yin et al.
					Implanted into rabbit	Most of the cellular material was removed	
					Cultured in DMEM	Preservation of Sample structure and biocompatibility	
						Reduced cartilage elastic modulus	
					Cells adhered to the surface of scaffolds		
					Complete removal of cells		
					Implanted into rabbit models		
					Rabbits knees defects were filled 100% mostly with hyaline cartilage		
					Mechanical properties and biochemical components comparable to native tissue		
					Implanted into rabbit models		
					Rabbits knees defects were filled 100% mostly with hyaline cartilage		

ECM: extracellular matrix; HCL: hydrochloride; hTMSCs: human turbinate mesenchymal stromal cells; MEM: minimum essential medium; SDS: sodium dodecyl sulfate; CMS: cartilage matrix scaffold; hBMSC: human bone marrow stem cell; SCID: severe combined immunodeficient; GAGs: glycosaminoglycans; ACs: articular chondrocytes; ASCs: adipose-derived stem cells; MSCs: mesenchymal stem cells; DMEM: Dulbecco’s modified Eagle’s medium; ADSCs: adipose-derived stem cells; TGF-β: transforming growth factor beta 1.
Table 4. FDA-approved and commercially available devices for OA treatment. This table describes the advantages, disadvantages, and applications of different devices, scaffolds, and injectable solutions for OA treatment. CS: chondroitin sulfate; AC: articular cartilage; OA: osteoarthritis; HA: hyaluronic acid; ACI: autologous chondrocyte implantation; MSCs: mesenchymal stem cells.

Device type	Trade name	Company	Components	Device indication to use	Advantage	Disadvantage	Ref
Natural injectable scaffolds	GENVISC® 850, HYMOS®a, TRILURON™™	OrthogenRx INC, Fidia Farmaceutici S.p.A	HA, Sodium hyaluronate	Pain relief in knee OA	Absorbable, Easy to use, Easily accessible	Low mechanical stability, Low chondrogenicity	Doros et al.174 and Henrotin et al.175
Natural injectable scaffolds	TrVisc®	OrthogenRx, Inc.	Sodium hyaluronate	Supplement the viscous fluid in the knee and relieve knee pain due to OA	Chondral knee defects		Becker et al.177
Natural injectable scaffolds	CaReS	Arthro Kinetics	Collagen type I gel matrix				Roessler et al.178
Natural non-injectable scaffolds	Chondro-Gide	Geistlich Biomaternal	Bilayer collagen type VIII scaffold	Scaffold-associated chondrocyte implantation	Biocompatible, Easily accessible, Bio-derived, Cell-free, Biodegradable	Low mechanical stability, Invasive surgical procedures	Steinwachs et al.179
Natural non-injectable scaffolds	DeNovo®NT	Zimmer	Hydrogel	AC repair and cartilage restoration.			Yanke et al.180
Natural non-injectable scaffolds	ChondroGide	Geistlich	Porcine Collagen bilayer VIII	Cartilage regeneration with a smooth, compact top layer, and a rough, porous bottom layer	Biocompatible, Easily accessible, Biodegradable	Low mechanical stability, Invasive surgical procedures	Haddo et al.181
Natural non-injectable scaffolds	HyloFast	Anika	Single 3D fibrous layer HA-based scaffold	Entrap MSC to arthroscopically treat chondral and osteochondral lesions	Biodegradable, Strong safety profile		Gobbi et al.182
Synthetic injectable scaffolds	NeoCart	Histogenex	Collagen on 3D scaffold	Rebuild knee cartilage	Biodegradable	Low mechanical stability, Invasive surgical procedures	DeBerardino et al.183
Synthetic injectable scaffolds	HyaSt I I	Fidia advanced biopolymer	Collagen on HA-based polymeric scaffold	Rebuild knee cartilage	Biodegradable	Low mechanical stability, Invasive surgical procedures	Turner et al.184
Synthetic injectable scaffolds	Macic®	Vericel Corporation	Porcine collagen scaffold	Repair of symptomatic, full-thickness cartilage defects of the knee in adult patients	Biodegradable, Strong safety profile	Low mechanical stability, Invasive surgical procedures	Nixon et al.185
Synthetic injectable scaffolds	Novocart 3D	Ttec	Collagen—CS Scaffold	Treatment of chondral knee defects	Biodegradable, Strong safety profile	Low mechanical stability, Invasive surgical procedures	Zak et al.186
Synthetic injectable scaffolds	Chondron	Sewon CellOnTech	Autologous chondrocyte implantations	Chondral knee defects			Choi et al.187
Synthetic injectable scaffolds	Carticel	Genzyme	Expanded chondrocytes from patient’s knee	Repair of symptomatic cartilage defects of the femoral condyle, caused by acute or repetitive trauma			Manfredini et al.188
Synthetic non-injectable scaffolds	Augment Bone Graft®	Biomimetic therapeutics, LLC	Beta-Tricalcium Phosphate + bovine collagen + human platelet-derived growth factor	Alternative autograft in arthrodesis of the ankle and hind foot due to OA		Low mechanical stability, Donor site morbidity	Solchaga et al.189
Synthetic non-injectable scaffolds	R3 delta ceramic hip system	SMITH & NEPHEW, INC.	Ceramic-on-ceramic hip prosthesis	Use in skeletally mature patients requiring primary total hip arthroplasty due to non-inflammatory OA		Low mechanical stability, Donor site morbidity	Lee et al.190
Synthetic non-injectable scaffolds	Cartiva®	Cartiva, Inc.	Polyvinyl alcohol and saline synthetic implant	Treatment of patients with degenerative or post-traumatic OA	Easily handled, Mechanical stability	Low mechanical stability, Invasive surgical procedures (scaffolds), Risk of allergy	Chang et al.191
Synthetic non-injectable scaffolds	BioSeed-C	Biotissue	Collagen on 3D synthetic polymer scaffold	AC defects treatment in the knee			Kreuz et al.192

*FDA-approved devices.
dECM. AD-MSCs and BM-MSCs are easily and abundantly accessible.66 BM-MSCs and AD-MSCs have been seeded in a variety of 3D culture systems in an effort to generate cartilage-like tissue, including natural biopolymers such as collagen, silk fibroin and chitosan, hydrogels such as alginate, gelatin, agarose, silk fibroin, hyaluronan, and hybrids of synthetic and natural materials.201 It is important to mention that some of these culture systems are composed of synthetic materials that have never been exposed to a cellular environment. Therefore, the addition of cells will lead to neo-cellularization rather than re-cellularization. Cartilage-like tissue formation can be induced using these MSCs as evidenced by type II collagen, ACAN expression and accumulation of both cartilage markers in vitro and in vivo.202 Moreover, it has been observed that chondrogenic differentiation and ECM deposition are superior in BM-MSCs compared to expanded and de-differentiated chondrocytes.203 The addition of GFs such as transforming growth factor beta 1 (TGF-β1) or TGF-β3, fibroblast growth factors (FGFs) and Wnts superfamily members facilitates the expression of cartilaginous ECM and chondrogenesis, mediated by the transcription factor Sox9.204–206 BM-MSCs have a high proliferative activity, plasticity and release many trophic and bioactive factors.207 In addition, they synthesize stimulatory ECM components, which are critical for the use of in vitro produced MSC-derived cell- free ECM, mediating the capacity to differentiate into connective tissue cells (chondrogenic, osteogenic, adipogenic, and tenogenic lineage).208,209 Due to the lack of expression of co-stimulatory molecules and the production of several anti-inflammatory mediators, MSCs are immunoprivileged, immunosuppressive and possess immunomodulatory properties.211–213 Both immunomodulatory capacity and low immunogenicity are highly advantageous regarding MSCs as a cell source for reseeding decellularized scaffolds. MSCs cultured on the dECM scaffolds could enhance the biocompatibility of the constructs. In addition, the localized, sustained GF release of MSCs should promote cell proliferation, differentiation and ECM production in the scaffolds. The native cartilage ECM might still contain factors and structural stimuli inducing them into a specific and appropriate chondrogenic lineage.166,196 Furthermore, they can be harvested, enriched and seeded directly on the implanted ECM in a one-step surgical procedure.214

Post-decellularization procedures to improve cartilage dECM scaffold performance. Conventional cartilage tissue engineering procedure consists of a scaffold decellularization and cell-recellularization steps. However, lack of mechanical properties, load bearing capacity, rapid biodegradation, and contraction of these scaffolds in culture limits further applications.215 In this review we propose a series of post-decellularization procedures to overcome these shortcomings of each biomaterial including low mechanical strength and poor bioactivity to improve dECM scaffold towards much more efficient and higher integration. To achieve this aim, ECM-derived biomaterials can be crosslinked via different factors such as: cross-linking agents, natural and synthetic polymers, new synthetic polymers, cell-encapsulating injectable hydrogel microparticles, and platelet-rich plasma (PRP) (Figure 3).

Hybridization of dECM with cross-linking agents. One of the approaches to ameliorate ECM-derived biomaterials is crosslinking by physical and chemical methods (Figure 3(a)) which includes irradiation, dehydrothermal treatment (DHT), and chemical crosslinkers such as carbodiimide and genipin. Each of these methods can provide different crosslinking density and protein denaturation, which affect scaffold contraction, cell infiltration and cell-matrix interactions, mechanical properties and enzymatic degradation. A common method for cross-linking of proteins such as collagen and also some polymeric materials such as polyvinyl alcohol (PVA) is the DHT treatment. In this technique, water molecules in polymer chains are removed by increasing temperature under reduced pressure. However, denaturation of biological components such as collagen chains during heating process, that may induce immunogenicity, is considered as an undesirable outcome in the DHT treatment. UV irradiation has also been performed to crosslink PVA hydrogel and as well as ECM based materials to function as vitreous implants or scaffolds for biomedical applications. To generate soft hydrogels; physical cross-linking of PVA has been also obtained by freezing and thawing cycles. Genipin is a natural crosslinker with cytotoxicity about 10,000 times lower than glutaraldehyde. Many studies explored the use of genipin in biomedical applications such as a crosslinker of tissue engineering scaffolds, to decrease immunogenicity of the scaffolds previous to implantation, for its anti-inflammatory properties, and for controlled release of GFs. The crosslinking mechanism of genipin is mediated via linking to primary amine groups of hydroxylsine or lysine residues on the polypeptide or proteoglycan chains, which results in the dark blue pigments formed in the matrix.

Some studies showed that genipin is able to decrease Interleukin 1 beta (IL-1β) production in inflammatory diseases. Also, it has been demonstrated that genipin cross-linked tracheae can reduce inflammatory reactions in the xenograft models. Wang et al. reported that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized porcine whole-liver ECM scaffolds by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines.

Hybridization of dECM with natural and synthetic polymers. Biomaterials must be biocompatible, biodegradable, and mechanically stable to be used for tissue engineering.
Figure 3. Cartilage tissue engineering process. In the first step, cartilage ECM is selected from different sources such as cartilage tissue or cell-culture-derived ECM. Thereafter, the decellularization process is performed to remove cells and their genetic materials. (a) dECM content is mixed with cross-linking agents, (b) polymers, (c) polymers via cross-linking agents, (d) cell encapsulated injectable hydrogel microparticles, and (e) platelet-rich plasma. After the post-decellularization procedures, cells are implanted into the final scaffold in a recellularization process. In the end, the cartilage tissue engineering product is ready for application.

perposes. Generally, synthetic and natural polymers are used to engineer biomedical scaffolds (Figure 3(b)). Synthetic polymers such as polyesters, polyglycolic acid, polylactic acid, and polycaprolactone (PCL) provide a wide range of benefits including high mechanical properties, controllable degradation, and high reproducibility. However, lack of biological properties is a widely known disadvantage of synthetic polymers. On the other hand, natural polymers such as fibrin, collagen, alginate, hydrogels and gelatin provide proper biological features, but their inadequate mechanical properties are recognized as major shortcomings.

Based on the fact that the dECM provides outstanding cellular activities, it has been widely applied in cell-activating components in hybrid scaffolds or biocomposites, however, it lacks sufficient mechanical properties. In the following paragraphs, we mention some research studies that used biocomposite consisting of natural and synthetic polymers, which can be combined to dECM, to enhance post-decellularization techniques.

Collagen is known as the most abundant protein in mammalian tissues, such as bone, cartilage, tendon, and skin and it has been broadly applied in tissue engineering because of its exceptional biocompatibility. However, due to its low mechanical properties, collagen is not the optimal choice for bone and cartilage tissue regeneration; thus it has been a challenge to build a desired 3D porous structure with appropriate mechanical strength. Unlike collagen, silk fibroin (SF) has relatively high mechanical properties. SF was shown to be highly biocompatible and biodegradable. However, it is difficult to process SF solution due to its low viscosity. In recent, hybridization (or composite) of two or more types of biomaterials has been extensively studied to overcome the shortcomings of each biomaterial including low mechanical strength and poor bioactivity.
Lee et al. used a low temperature printing process to create a 3D porous scaffold consisting of collagen, dECM to induce high cellular activities, and SF to reach the proper mechanical strength.244 O’Brien et al. developed a porous collagen/ hydroxyapatite (HA) composite and immersed it in SBF to increase the mechanical stiffness by 3.9-fold.245 Zhang et al. enhanced the mechanical strength (3.7-fold) of the alginate scaffold by adding chitosan.246 Furthermore, in order to provide cell friendly environment to synthetic polymers, Cheng et al.247 and Sousa et al.248 immobilized collagen on the surface of the hydrophobic PCL surface.

Hye Sung Kim et al. showed that cartilaginous dECM-decorated nanofibrils induced in vitro differentiation of AD-MSCs into chondrogenic lineage even without any additional exogenous GFs and cytokines.249 Another study investigated 3D bioprinting scaffolds for cartilage tissue by combining collagen type I or Agarose (AG) with sodium alginate (SA) incorporated with chondrocytes.250 The results showed that the addition of collagen or AG had a little impact on the gelling behavior and can improve the mechanical strength when compared to SA alone. Furthermore, the presence of collagen facilitated cell adhesion, accelerated cell proliferation, and enhanced the expression of the cartilage specific genes, namely Acan, Sox9, and Col2a1. 250

Hydrogels are other biopolymers having a great potential, due to their structural resemblance to the ECM and their sponge framework, which enables cell transplantation, adhesion, differentiation and proliferation.251 Combination of hydrogels, dECM and other types of structures can therefore enhance their functionality and significantly improve the overall features of a 3D system.252

Gels of cytoskeletal proteins display particular mechanical responses (stress stiffening) that until now have been absent in synthetic polymeric and low-molar-mass gels. In one study, synthetic gels mimic in nearly all aspects gels prepared from intermediate filaments. They are prepared from polysioycanopeptides grafted with oligo (ethylene glycol) side chains. These responsive polymers possess a stiff and helical architecture, and show a tunable thermal transition where the chains bundle together to generate transparent gels at extremely low concentrations. Polysioycanide polymers are readily modified, giving a starting point for functional biomimetic hydrogels; these biomaterials include chitosan,256 collagen or gelatin,257 alginate,258 hyaluronic acid,259 heparin,260 CS,261 PEG, and PVA (Figure 3(d)).262

Hydrogel microparticles (HMPs) are promising tools for biomedical applications, ranging from the therapeutic delivery of cells and drugs to the production of scaffolds for tissue repair and bioinks for 3D printing. Cells and drugs can be encapsulated into HMPs of predefined shapes and sizes. HMPs can be formulated in suspensions to deliver therapeutics, as aggregates of particles (granular hydrogels) to form microporous scaffolds that promote cell infiltration or embedded within a bulk hydrogel to obtain multiscale behaviors. HMP suspensions and granular hydrogels can be injected for minimally invasive delivery of active products, and they exhibit modular properties when composed of mixtures of distinct HMP populations. One major advantage of using HMPs for cell delivery is that cells are protected during the delivery process. Although bulk hydrogels may be injectable by exploiting shear thinning (decreasing the viscosity to increase shear rate), shear forces during injection may impact cells viability.263 Owing to their high water content and similarity to the native ECM, hydrogels are used as substrates for cell culture,264 biomaterials for tissue engineering265 and vehicles for drug and protein delivery.266

Traditionally, hydrogels are crosslinked into continuous
volumes (bulk hydrogels) with external dimensions at the millimeter scale or larger and a mesh size at the nanometer scale that permits molecule diffusion.267

Hybridization of dECM with Platelet-Rich Plasma. Platelet-rich plasma (PRP) is a blood product, which contains a high concentration of platelets268 with the ratio between two and eight folds compared to normal platelet concentration in adult peripheral blood.269 PRP was first introduced in regenerative medicine in the 1980s and 1990s, with the earliest documented uses for treatment of cardiac disease, dental damage, and maxillofacial surgery.270 Since then, it has also been used as a cell culture supplement for the expansion of stem and progenitor cells for tissue engineering applications in the context of muscle,271 bone,272 cartilage,273 skin,274 and soft tissue repair.275

PRP contains a mix of different cytokines and GFs, including platelet-derived growth factor (PDGF) which is a protein that stimulates the proliferation and synthesis of new collagen formation; TGFβ-1 that counteracts the catabolic effects of IL-1 on tissues such as cartilage, by increasing chondrocyte synthesis as well as by increasing ECM production; FGF that is able to promote tissue healing by activating anabolic pathways; and finally hepatocyte growth factor (HGF) which increases tissue repair by promoting angiogenesis, as well as chemotaxis of MSCs, along with subchondral progenitor cells to promote chondral matrix formation and remodeling.269 Due to their high GFs content in platelet, PRP has been shown to improve cell growth in different research studies. Pham et al. showed an increased AD-MSC proliferation treated with PRP in standard medium after 24 h, compare to customary medium alone.276 In addition, Lucarelli et al.277 investigated the ex vivo influence of 1% and 10% PRP as platelet gel on BM-MSCs, showing a dose-dependent effect of PRP on cell proliferation.

Moreover, PRP has been utilized for the delivery of GFs and/or cells within tissue-engineered constructs, often in combination with biomaterials. For example, in bone tissue engineering, El Backly et al.278 reported that the combination of rabbit PRP with biodegradable freeze-dried gelatin hydrogels had the potential to increase bone repair in vivo.

Some studies have investigated the effect of PRP in osteochondral and cartilage repair. In this setting, most studies utilized PRP as a carrier for chondrocytes, progenitor cells or stem cells such as MSCs. For instance, Xie et al.279 published a testing PRP-delivered BM-MSCs and AD-MSCs in terms of their regenerative potential for osteochondral repair. PRP has been shown to induce MSCs to specially differentiate into chondrocytes and osteocytes in vitro via increasing chondrogenic (SOX9 and ACAN) and osteogenic (type I and type II collagen) markers in synovial tissue.280 Injections of PRP over 3 months in one study showed significant decreases in synovial fluid volume, as well as pro-inflammatory markers including apolipoprotein A1 (apo-A1), haptoglobin, immunoglobulin kappa constant (IGKC), matrix metalloproteinases (MMPs), notably MMP-13, and transferrin in mild to moderate OA.279

Besides, PRP has been shown to significantly reduce chondrocyte hypertrophy, a known step in the pathophysiologic degeneration of cartilage in OA.280 As part of its anti-inflammatory effects, PRP-rich environments have been shown to reduce IL-1β expression in chondrocytes, a known inhibitor of type II collagen and ACAN gene expression, as well as an inducer of MMP and nuclear factor kappa-light chain enhancer of activated B cells (NFκB), a major contributor to inflammation and the pathogenesis of OA.281

PRP has been also locally applied by means of scaffolds. Several pre-clinical evidences have shown a positive effect of PRP in association with different materials. Besides its application as an augmentation procedure, PRP itself has been modified to become a scaffold with the purpose of vehiculating cells and providing biological stimulation at the same time. Low immunogenicity and optimal biocompatibility, together with the clotting properties of PRP, make this product an interesting carrier for tissue engineering.282 Qi et al. have tested autologous PRP vehiculated by a collagen matrix for the treatment of patellar groove osteochondral lesions in the rabbit knee; they achieved better histological and mechanical results compared to collagen matrix alone.283 A further trial by Sun et al. evaluated the contribution of PRP added to a microporous PLGA scaffold to treat osteochondral defects created in the patellar groove in the rabbit model. This PRP-augmented scaffolds was tested against the scaffold alone and results were quite significant.284

PRP can be utilized as an injection, or as a matrix adhered to a scaffold which can be introduced directly to damaged tissues.285 It has shown efficacy in treating many knee conditions, but by far has been studied most extensively in the treatment of OA of the knee. When compared with hyaluronic acid286 and CS,287 PRP shows improved clinical effects as well as a longer duration of action, potentially delaying the need for total joint replacement.

Post-decellularization procedures to improve dECM scaffold performance in other tissues. The interesting advantages of post-decellularization methods are not limited to cartilage tissue and OA treatment. Several other studies have demonstrated the promising impact of post-decellularization procedures on other tissues that are briefly discussed in this section.

In case of heart failure, individually alginate hydrogels and myocardial matrix-based therapies have been shown an interesting option for myocardial infarction (MI) treatment. Clive J Curley et al.,288 have successfully developed a production method for hybridization of dECM with alginate hydrogels. They demonstrated that the minimally
invasive delivery of dual acting alginate-based hydrogels to heart results in appropriate rheological and mechanical properties.

In addition, in a model of tissue-engineered tracheal replacement, Yi Zhong et al. have shown that the trachea of rabbit that was decellularized by detergent-enzymatic method (DEM) had better biocompatibility and lower immunogenecity than that by Triton-X 100-processed method, and the structural and mechanical characteristics of the acellular matrix were effectively improved after cross-linking by genipin. Furthermore, in a study comparing the ECM derived from human umbilical cord, crosslinked by genipin and N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) for neural tissue application, authors demonstrated that genipin, rather than EDC, improved the bio-stability of injectable ECM hydrogel in biocompatible concentration.

In another example, Yizhong Peng et al. established an injectable genipin-crosslinked decellularized annulus fibrosus (dAF) hydrogels and showed that they are better in case of formability, biocompatibility, bioactivity, and mechanical strength in comparison to non-crosslinked dAF.

Amnion is another tissue with potentially interesting properties to be used as scaffold. While it has a high risk of immunological rejection and infection, its decellularized form showed better compatibility. Amnion scaffold post-decellularization with PRP and calcium chloride composition has been shown to support better adherence to the wound than amnion alone. They can release GFs including VEGF, TGF, PDGF, and EGF, which increase the bioactive properties of PRP and thus amnion scaffold. Hybridization of amnion scaffold with PRP successfully interfered with the immune barrier and decreased the chances of immune rejection. The same positive effect was reported for decellularized bone matrix scaffolds (DBMs) showing that its hybridization with PRP can serve as a promising bone regeneration material such as improved cell adhesion and the capacity of DBMs for osseointegration with reduced immune rejection probability.

Conclusion and perspective

In the absence of satisfying outcome by classical treatments, tissue engineering has emerged as a very attractive approach for cartilage repair utilizing natural and synthetic biomaterial scaffolds as well as xenogenic, allogeneic and autologous sources of cells and chondro-inductive GFs. In this review, we have highlighted the important considerations that have to be taken into account for a successful application of these highly variable and challenging techniques and products. Conventional procedures such as decellularization and recellularization have been already reported as standard methods for cartilage regeneration. Decellularization employs detergents, salts, enzymes, and/or physical means to remove cells from tissues or organs while preserving the ECM composition, architecture, bioactivity, and mechanics.

Here, we have mentioned in detail, specific roles, advantages and adverse effects of many agents and physical methods for using in decellularization protocols (Table 2).

These protocols are mostly a combination of several agents and physical methods; therefore, their efficacy for decellularization is severely dependent on the combinations of materials and methods, duration of exposure, type of tissue and organ, temperature and different other factors. Thus, we believe that it is more reliable to assess the general effects of these protocols on the main and comprehensive results of decellularization such as ECM alteration, cell removal, immunogenecity and ECM mechanical properties, rather than proposing the best-established method. It is also important to note that the optimal procedure may be different for each organ due to their unique anatomy.

In the case of cartilage tissue engineering, plenty of decellularization methods exist for different applications. The Supercritical CO2 physical technique, however, is one of the best methods for tissue decellularization. Because CO2 is diffusive, the commonly used solvents such as surfactants can be released quietly fast and does not remain in ECM, preventing the need for extensive wash procedures. Supercritical CO2 is even more efficient in cell removal by addition of ethanol avoiding harsh detergents’ application. Hence, instead of using SDS as detergent which can cause immense ECM damage and requires extensive wash process, we suggest employing other kind of mild detergent such as SD and CHAPS to reduce the elimination of GAGs, GFs, and ECM proteins and consequently mechanical properties alteration. The key criteria for comparing cartilage decellularization methods are the efficiency of cell removal and the adequacy of ECM retention including its biochemical components and mechanical properties (Table 3).

Nevertheless, lacking a complete satisfaction using classical decellularization methods, we propose here, five complementary approaches including the hybridization of dECM with cross-linking agents, natural and synthetic polymers, new synthetic polymers using cross-linking agents, cell encapsulated injectable hydrogel microparticles and finally PRP for post-decellularization of ECM scaffolds that has been shown to have improving impact on cartilage tissue engineering outcome.

The introduction of post-decellularization methods including their hybridization with different agents turns back to very recent research studies most of them in their initial in vitro phases. Therefore, except for the hybridization of dECM with cross-linking agents such as genipin and some natural and synthetic polymers like hydrogel and the hybridization of dECM with PRP, no further clinical
studies with improved cartilage repair outcome have been reported yet. Among the clinically assessed post-decellularization methods, however, we believe that PRP has much greater clinical potential since its administration was shown to be very effective in cartilage repair and eventually the treatment of OA and other inflammatory joint disorders. Due to its high concentration of platelets, PRP is a saturated source of important GFs and cytokines including but not limited to PDGF, TGFβ, HGF, and FGF that counteract the catabolic effects of IL-1 and other inflammatory mediators that contribute to the OA progress and at the same time increases chondrocyte synthesis. Besides, PRP has been used as a natural scaffold for vehiculating cells and providing biological stimulation at the same time. The interesting point to use PRP in comparison to other post-decellularization techniques is that PRP is considered as a non-modified blood product that according to medical regulatory authorities does not need many regulatory steps and procedures before its administration to the patients.

In the end, PRP has been administered for various tissue-engineering applications with encouraging outcomes. We believe that according to different important PRP effects such as anti-inflammatory properties, cell proliferation induction, differentiation induction, regeneration potentials, protective effects on chondrocytes, delivery of GFs, as well as in anabolic/ anti-catabolic pathways and ability to have a positive effect with other biomaterials, it will be an optimal choice to add to the dECM for future cartilage tissue engineering.

Acknowledgements
We would like to acknowledge Mr Asghar NASERIAN, the head of the board of directors of SivanCell Company for the financial support.

Authors’ contribution
M.N.B, S.N and S.SH wrote the manuscript. S.N, S.SH and G.U reviewed and revised the manuscript.

Declaration of conflicting interests
The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Dr Sina NASERIAN is the CEO of CellMedEx company. The rest of authors declare no conflict of interest.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Miss Mahsa NOURI BARKESTANI was supported by a grant from SivanCell Company with the grant number: SC_FR-010919. Dr Sina NASERIAN was supported by a governmental grant via “l’Agence Nationale de la Recherche” in the form of “programme d’Investissements d’avenir” with the grant number: ANR_15-RHUS60002.

Dr Sara Shamdani was supported by a grant via “la Fondation de la Maison de la Chimie” for the project R20150LL with the grant number: RAK20150LLA.

ORCID iD
Sina Naserian https://orcid.org/0000-0003-3604-8375

References
1. Järveläinen H, Sainio A, Koulu M, et al. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2009; 61(2): 198–223.
2. Ehrlich S, Wolff N, Schneiderman R, et al. The osmotic pressure of chondroitin sulphate solutions: experimental measurements and theoretical analysis. Biorheology 1998; 35(6): 383–397.
3. Hunziker EB, Michel M and Studer DUltrastructure of adult human articular cartilage matrix after cryotechnical processing, Microsc Res Tech 1997; 37(4): 271–284.
4. Fox AJS, Bedi A and Rodeo SAThe basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1(6): 461–468.
5. Vinatier C and Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthriti-
6. Becker K, Jähring N, Saghafi S, et al. Chemical clearing and dehydration of GFP expressing mouse brains. PLoS ONE 2012; 7(3): e33916.
7. Smith BD and Grande DA. The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 2015; 11(4): 213–222.
8. Ertürk A and Bradke F. High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp Neurol 2013; 242: 57–64.
9. Satyam A, Kumar P, Fan X, et al. Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Adv Mater 2014; 26(19): 3024–3034.
10. Chen C, Loe F, Blocki A, et al. Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Adv Drug Deliv Rev 2011; 63(4–5): 277–290.
11. Crapo PM, Gilbert TW and Badylok SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32(12): 3233–3243.
12. Jang J, Park H-J, Kim S-W, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 2017; 112: 264–274.
13. Guyette JP, Charest JM, Mills RW, et al. Bioengineering human myocardium on native extracellular matrix. Circ Res 2016; 118(1): 56–72.
14. Ott HC, Matthiesen TS, Goh S-K, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14(2): 213–221.
15. Sánchez PL, Fernández-Santos ME, Costanza S, et al. Acellular human heart matrix: a critical step toward whole heart grafts. Biomaterials 2015; 61: 279–289.
31. Meezan E, Hjelle JT, Brendel K, et al. A simple, versatile,
cellular tumor extracellular matrix as a three-dimensional
culture of normal rat hepatocytes. *J Cell Biol* 1980; 87(1):
255–263.
32. Badylak SF, Tullius R, Kokini K, et al. The use of xenogenic
small intestinal submucosa as a biomaterial for Achilles
tendon repair in a dog model. *J Biomed Mater Res* 1995; 29(8):
977–985.
33. Chen R-N, Ho H-O, Tsai Y-T and Sheu M-T. Process
development of an acellular dermal matrix (ADM) for
bio biomedical applications. *Biomaterials* 2004; 25(13):
2679–2686.
34. Zelingier J, Landeen LK, Alexander HG, et al. Development
and characterization of tissue-engineered aortic valves. *Tissue Eng* 2001; 7(1): 9–22.
35. Hudson TW, Liu SY and Schmidt CE. Engineering an
improved acellular nerve graft via optimized chemical
process. *Tissue Eng* 2004; 10(9–10): 1346–1358.
36. Gonçalves AC, Griffiths LG, Anthony RV, et al.
Decellularization of bovine pericardium for tissue-engi
neering by targeted removal of xenoantigens. *J Heart Valve Dis* 2005; 14(2): 212–217.
37. Schultheiss D, Gabouev AI, Cebotari S, et al. Biological
vascularized matrix for bladder tissue engineering: matrix
preparation, reseeding technique and short-term implanta
tion in a porcine model. *J Urol.* 2005; 173(1): 276–280.
38. Flynn L, Semple JL and Woodhouse KA. Decellularized
placental matrices for adipose tissue engineering. *J
Biomed Mater Res A* 2006; 79(2): 359–369.
39. Whิตlock PW, Smith TL, Poehling GG, et al. A naturally
derived, cytocompatible, and architecturally optimi
ized scaffold for tendon and ligament regeneration.
Biomaterials. 2007; 28(29): 4321–4329.
40. Freytes DO, Martin J, Velankar SS, et al. Preparation and
reheological characterization of a gel form of the por
cine urinary bladder matrix. *Biomaterials* 2008; 29(11):
1630–1637.
41. Chen X-D, Dusevich V, Feng QJ, et al. Extracellular
matrix made by bone marrow cells facilitates expansion
of marrow-derived mesenchymal progenitor cells and pre
vents their differentiation into osteoblasts. *J Bone Miner
Res* 2007; 22(12): 1943–1956.
42. Jungebluth P, Go T, Asnaghi A, et al. Structural and mor
phologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix. *J Thorac Cardiovasc Surg* 2009; 138(3): 586–593; discussion 592–593.
43. Nichols JE, Niles J, Riddle M, et al. Production and
assessment of decellularized pig and human lung sca
folds. *Tissue Eng Part A* 2013; 19(17–18): 2045–2062.
44. Orlando G, Booth C, Wang Z, et al. Discarded human kid
neys as a source of ECM scaffold for kidney regeneration
technologies. *Biomaterials* 2013; 34(24): 5915–525.
45. Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reen
gineering through development of a transplantable recel
ularized liver graft using decellularized liver matrix. *Nat Med* 2010; 16(7): 814–820.
16. Shaheen MF, Joo DJ, Ross JJ, et al. Sustained perfusion of
revascularized bioengineered livers heterotopically trans
planted into immunosuppressed pigs. *Nat Biomed Eng*
2020; 4(4): 437–445.
17. Elkins RC, Dawson PE, Goldstein S, et al. Decellularized
human valve allografts. *Ann Thorac Surg* 2001; 71(5 Suppl); S428–S432.
18. Nichols JE, Niles J, Riddle M, et al. Production and
assessment of decellularized pig and human lung sca
folds. *Tissue Eng Part A* 2013; 19(17–18): 2045–2062.
19. Gilpin SE, Ren X, Okamoto T, et al. Enhanced lung epi
thelial specification of human induced pluripotent stem
cells on decellularized lung matrix. *Ann Thorac Surg*
2014; 98(5): 1721–1729; discussion 1729.
20. Ren X, Moser PT, Gilpin SE, et al. Engineering pulmo
 nary vasculature in decellularized rat and human lungs.
Nat Biotechnol 2015; 33(10): 1097–1102.
21. Orlando G, Booth C, Wang Z, et al. Discarded human kid
neys as a source of ECM scaffold for kidney regeneration
technologies. *Biomaterials* 2013; 34(24): 5915–525.
22. Rojkind M, Gatmaitan Z, Mackensen S, et al. Connective
tissue biomatrix: its isolation and utilization for long-term
cultures of normal rat hepatocytes. *J Cell Biol* 1980; 87(1):
255263.
23. Vlodavsky I. Preparation of extracellular matrices pro
duced by cultured corneal endothelial and PF-HR9 endo
dermal cells. *Curr Protoc Cell Biol* 2001; Chapter 10: Unit
10.4.
24. Sasaki S, Funamoto S, Hashimoto Y, et al. In vivo evalu
ation of a novel scaffold for artificial corneas prepared by
using ultrahigh hydrostatic pressure to decellularize por
cine corneas. *Mol Vis* 2009; 15: 2022–2028.
25. Wainwright D, Madden M, Luterman A, et al. Clinical
evaluation of an acellular allograft dermal matrix in full-thick
ness burns. *J Burn Care Rehabil* 1996; 17(2): 124–136.
26. Khan U and Bayat A. Microarchitectural analysis of decel
larised unscarred and scarred dermis provides insight
into the organisation and ultrastructure of the human skin
with implications for future dermal substitute scaffold
design. *J Tissue Eng* 2019; 10: 2041731419843710.
27. Jin Y, Lee JS, Kim J, et al. Three-dimensional brain-like
microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. *Nat Biomed Eng*
2018; 2(7): 522–539.
28. Lin M, Ge J, Wang X, et al. Biochemical and biomechani
cal comparisons of decellularized scaffolds derived from
porcine subcutaneous and visceral adipose tissue. *J Tissue Eng* 2019; 10: 2041731419888168.
29. Poel WE. Preparation of acellular homogenates from mus
cle samples. *Science* 1948; 108(2806): 390–391.
30. Meezan E, Hjelle JT, Brendel K, et al. A simple, versatile,
nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several
tissues. *Life Sci* 1975; 17(11): 1721–1732.
31. Rojkind M, Gatmaitan Z, Mackensen S, et al. Connective
tissue biomatrix: its isolation and utilization for long-term
cultures of normal rat hepatocytes. *J Cell Biol* 1980; 87(1):
255–263.
49. Keane TJ, Swinehart IT and Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. *Methods* 2015; 84: 25–34.

50. Hodde J, Janis A, Ernst D, et al. Effects of sterilization on an extracellular matrix scaffold: part I. Composition and matrix architecture. *J Mater Sci Mater Med* 2007; 18(4): 537–543.

51. Reing JE, Brown BN, Daly KA, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. *Biomaterials* 2010; 31(33): 8626–8633.

52. Prasertsung I, Kanokpanont S, Bunaprasert T, et al. Development of acellular dermis from porcine skin using periodic pressurized technique. *J Biomed Mater Res Part B Appl Biomater* 2008; 85(1): 210–219.

53. Paulo Zambon J, Atala A and Yoo JJ. Methods to generate tissue-derived constructs for regenerative medicine applications. *Methods* 2020; 171: 3–10.

54. Kim H, Kim Y, Fendereski M, et al. Recent advancements in decellularized matrix-based biomaterials for musculoskeletal tissue regeneration. *Adv Exp Med Biol* 2018; 1077: 149–162.

55. Brown BN, Freund JM, Han L, et al. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. *Tissue Eng Part C Methods* 2011; 17(4): 411–421.

56. Sarmah S, Muralidharan P, Curtis CL, et al. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects. *Biol Open* 2013; 2(10): 1013–1021.

57. Yang B, Zhang Y, Zhou L, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. *Tissue Eng Part C Methods* 2010; 16(5): 1201–1211.

58. Barra GB, Santa Rita TH, de Almeida Vasques J, et al. EDTA-mediated inhibition of DNases protects circulating cell-free DNA from ex vivo degradation in blood samples. *Clin Biochem* 2015; 48(15): 976–981.

59. Hong X, Jiang F, Kalkanis SN, et al. Determining the optimal decellularization and sterilization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. *Acta Biomater* 2014; 10(12): 5043–5054.

60. Gilbert TW, Wognum S, Joyce EM, et al. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. *Biomaterials* 2008; 29(36): 4775–4782.

61. Yu JE, Han S-Y, Wolfson B, et al. The role of endothelial cells and keratocytes. *Histol Histopathol* 2018; 33(1): 1–10.

62. Olsen JV, Ong S-E and Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. *Mol Cell Proteomics* 2004; 3(6): 608–614.

63. Baiguera S, Jungebluth P, Burns A, et al. Tissue engineered human tracheas for in vivo implantation. *Biomaterials* 2010; 31(34): 8931–8938.

64. Badylak SF, Lantz GC, Coffey A, et al. Small intestinal submucosa as a large diameter vascular graft in the dog. *J Surg Res* 1989; 47(1): 74–80.

65. Nonaka PN, Campillo N, Uriarte JJ, et al. Effects of freezing/thawing on the mechanical properties of decellularized lungs. *J Biomed Mater Res A* 2014; 102(2): 413–419.

66. Burk J, Erbe I, Berner D, et al. Freeze-thaw cycles enhance decellularization of large tendons. *Tissue Eng Part C Methods* 2014; 20(4): 276–284.

67. Funamoto S, Nam K, Kimura T, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. *Biomaterials* 2010; 31(13): 3590–3595.

68. Xu CC, Chan RW and Tirunagari N. A biodegradable, acellular xenogeneic scaffold for regeneration of the vocal fold lamina propria. *Tissue Eng* 2007; 13(3): 551–566.

69. Syed O, Walters NJ, Day RM, et al. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. *Acta Biomater* 2014; 10(12): 5043–5054.

70. Nonaka PN, Campillo N, Uriarte JJ, et al. Effects of freezing/thawing on the mechanical properties of decellularized lungs. *J Biomed Mater Res A* 2014; 102(2): 413–419.
organ engineering using a high-throughput system. *Biomaterials* 2012; 33(31): 7756–7764.
83. Schaner PJ, Martin ND, Tulenko TN, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. *J Vasc Surg*. 2004; 40(1): 146–153.
84. Pellegrata AF, Asnaghi MA, Stefani I, et al. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. *Biomed Res Int* 2013; 2013: 918753.
85. Baiguera S, Del Gaudio C, Kuevda E, et al. Dynamic decellularization and cross-linking of rat tracheal matrix. *Biomaterials* 2014; 35(24): 6344–6450.
86. Piccoli M, Urbani L, Alvarez-Fallas ME, et al. Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch. *Biomaterials*. 2016; 74: 245–255.
87. Friedrich LH, Jungebluth P, Sjöqvist S, et al. Preservation of aortic root architecture and properties using a detergent-enzymatic perfusion protocol. *Biomaterials*. 2014; 35(6): 1907–1913.
88. Dong M, Zhao L, Wang F, et al. Rapid porcine corneal decellularization through the use of sodium N-lauroyl glutamate and supernuclease. *J Tissue Eng*. 2019; 10: 2041731419875876.
89. Gilpin SE, Guyette JP, Gonzalez G, et al. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. *J Heart Lung Transplant* 2014; 33(3): 298–308.
90. O’Neill JD, Anfang R, Anandappa A, et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. *Ann Thorac Surg*. 2013; 96(3): 1046–1055; discussion 1055–1056.
91. Xu H, Xu B, Yang Q, et al. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. *PLoS One* 2014; 9(1): e86723.
92. Ren H, Shi X, Tao L, et al. Evaluation of two decellularization methods in the development of a whole-organ decellularized rat liver scaffold. *Liver Int* 2013; 33(3): 448–458.
93. Meyer SR, Chiu B, Churchill TA, et al. Comparison of aortic valve allograft decellularization techniques in the rat. *J Biomed Mater Res A* 2006; 79(2): 254–262.
94. Draguñořá J, Kabat P, Babíl P, et al. Development of a new method for the preparation of an acellular allogermus, quality control and cytotoxicity testing. *Cell Tissue Bank*. 2017; 18(2): 153–166.
95. Rahman S, Griffin M, Naik A, et al. Optimising the decellularization of human elastic cartilage with trypsin for future use in ear reconstruction. *Sci Rep* 2018; 8(1): 3097.
96. Lin C-H, Kao Y-C, Ma H, et al. An investigation on the correlation between the mechanical property change and the alterations in composition and microstructure of a porcine vascular tissue underwent trypsin-based decellularization treatment. *J Mech Behav Biomed Mater* 2018; 86: 199–207.
97. Giraldo-Gomez DM, Leon-Mancilla B, Del Prado-Audelo ML, et al. Trypsin as enhancement in cyclical tracheal decellularization: Morphological and biophysical characterization. *Mater Sci Eng C Mater Biol Appl* 2016; 59: 930–937.
98. Wagner DE, Bonenfant NR, Parsons CS, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. *Biomaterials*. 2014; 35(10): 3281–3297.
99. Ross EA, Abrahamsson DR, St John P, et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. *Organogenesis* 2012; 8(2): 49–55.
100. Shi P, Gao M, Shen Q, et al. Biocompatible surgical meshes based on decellularized human amniotic membrane. *Mater Sci Eng C Mater Biol Appl* 2015; 54: 112–119.
101. Xing Q, Yates K, Tahtinen M, et al. Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. *Tissue Eng Part C Methods* 2015; 21(1): 77–87.
102. Tudorache I, Cebotari S, Sturz G, et al. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. *J Heart Valve Dis* 2007; 16(5): 567–573; discussion 574.
103. Borschel GH, Dennis RG and Kuzon WM. Contractile skeletal muscle tissue-engineered on an acellular scaffold. *Plast Reconstr Surg* 2004; 113(2): 595–602; discussion 603–604.
104. Brown BN, Buckenmeyer MJ and Prest TA. Preparation of decellularized biological scaffolds for 3D cell culture. *Methods Mol Biol*. 2017; 1612: 15–27.
105. Karabekmez FE, Duyucz A and Moran SL. Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand. *Hand (N Y)* 2009; 4(3): 245–249.
106. Elder BD, Kim DH and Athanasou KA. Developing an articular cartilage decellularization process toward facet joint cartilage replacement. *Neurosurgery* 2010; 66(4): 722–727; discussion 727.
107. Bonvillain RW, Danchuk S, Sullivan DE, et al. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. *Tissue Eng Part A* 2012; 18(23–24): 2437–2452.
108. Goh S-K, Bertera S, Olsen P, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. *Biomaterials*. 2013; 34(28): 6760–6772.
109. Bolland F, Korossis S, Wilshaw S-P, et al. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. *Biomaterials* 2007; 28(6): 1061–1070.
110. Lin P, Chan WCW, Badyak SF, et al. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. *Tissue Eng* 2004; 10(7–8): 1046–1053.
111. McDermott NC, Hayes DP, al-Sader MH, et al. Identification of vertical growth phase in malignant melanoma. A study of interobserver agreement. *Am J Clin Pathol* 1998; 110(6): 753–757.
112. Adachi J, Mizoi Y, Naito T, et al. Determination of beta-carbolines in foodstuffs by high-performance liquid chromatography and high-performance liquid chromatography-mass spectrometry. *J Chromatogr* 1991; 538(2): 331–339.
113. Hashimoto Y, Funamoto S, Sasaki S, et al. Preparation and characterization of decellularized cornea using high-
hydrostatic pressurization for corneal tissue engineering. *Biomaterials*. 2010; 31(14): 3941–3948.
114. Wang JK, Luo B, Guneta V, et al. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue. *Mater Sci Eng C Mater Biol Appl* 2017; 75: 349–358.
115. Guler S, Aslan B, Hosseinian P, et al. Supercritical carbon dioxide-assisted decellularization of aorta and cornea. *Tissue Eng Part C Methods* 2017; 23(9): 540–547.
116. Montoya CV and McFetridge PS. Preparation of ex vivo-based biomaterials using convective flow decellularization. *Tissue Eng Part C Methods* 2009; 15(2): 191–200.
117. Badylak SF, Taylor D and Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. *Annu Rev Biomed Eng* 2011; 13: 27–53.
118. Faulk DM, Wildemann JD and Badylak SF. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. *J Clin Exp Hepatol* 2015; 5(1): 69–80.
119. Nichols JE, La Francesca S, Vega SP, et al. Giving new life to old lungs: methods to produce and assess whole human paediatric bioengineered lungs. *J Tissue Eng Regen Med* 2017; 11(7): 2136–2152.
120. Remlinger NT, Czajka CA, Juhas ME, et al. Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. *Biomaterials*. 2010; 31(13): 3520–3526.
121. Gilbert TW, Freund JM and Badylak SF. Quantification of DNA in biologic scaffold materials. *J Surg Res* 2009; 152(1): 135–139.
122. Sun WQ and Leung P. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. *Acta Biomater*. 2008; 4(4): 817–826.
123. Jank BJ, Xiong L, Moser PT, et al. Engineered composite tissue as a bioartificial limb graft. *Biomaterials* 2015; 61: 246–256.
124. Wong ML and Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. *Acta Biomater* 2014; 10(5): 1806–1816.
125. Boeer U, Buettner FFR, Klingenberg M, et al. Immunogenicity of intensively decellularized equine carotid arteries is conferred by the extracellular matrix protein collagen type VI. *PLoS ONE* 2014; 9(8): e105964.
126. Mitsadraee S, Wilcox HE, Watterson KG, et al. Biocompatibility of acellular human pericardium. *J Surg Res* 2007; 143(2): 407–414.
127. Vinci MC, Tessitore G, Castiglioni L, et al. Mechanical compliance and immunological compatibility of fixative-free decellularized/cryopreserved human pericardium. *PLoS ONE* 2013; 8(5): e64769.
128. Choi JS, Kim JD, Yoon HS, et al., Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. *Tissue Eng Part A* 2013; 19(3–4): 329–339.
129. Raghavan SS, Woon CYL, Kraus A, et al. Human flexor tendon tissue engineering: decellularization of human flexor tendons reduces immunogenicity in vivo. *Tissue Eng Part A* 2012; 18(7–8): 796–805.
between devitalized and decellularized cartilage encapsulated in hydrogel pastes. *Tissue Eng Part A* 2016; 22(7–8): 665–679.

149. Cheng H-W, Tsui Y-K, Cheung KMC, et al. Decellularization of chondrocyte-encapsulated collagen microspheres: a three-dimensional model to study the effects of acellular matrix on stem cell fate. *Tissue Eng Part C Methods* 2009; 15(4): 697–706.

150. Park Y-B, Seo S, Kim J-A, et al. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells. *Biomed Mater* 2015; 10(3): 035014.

151. Levorson EJ, Mountziaris PM, Hu O, et al. Cell-derived polymer/extracellular matrix composite scaffolds for cartilage regeneration, part 1: investigation of co-cultures and seeding densities for improved extracellular matrix deposition. *Tissue Eng Part C Methods* 2014; 20(4): 340–357.

152. Zhu W, Cao L, Song C, et al. Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair. *Int J Artif Organs*. 2020; 2019; 39139820953866.

153. Xu Y, Xu G, Tang C, et al. Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds. *J Biomed Mater Res B Appl Biomater* 2015; 103(3): 670–678.

154. Pei M. Environmental preconditioning rejuvenates adult stem cells’ proliferation and chondrogenic potential. *Biomaterials* 2017; 117: 10–23.

155. Wei B, Jin C, Xu Y, et al. Chondrogenic differentiation of marrow clots after microfracture with BMSC-derived ECM scaffold in vitro. *Tissue Eng Part A* 2014; 20(19–20): 2646–2655.

156. Wang Y, Jiang C, Cong S, et al. Extracellular matrix deposited by Wharton’s jelly mesenchymal stem cells enhances cell expansion and tissue specific lineage potential. *Am J Transl Res* 2018; 10(11): 3465–3480.

157. Li J, Narayanan K, Zhang Y, et al. Role of lineage-specific matrix in stem cell chondrogenesis. *Biomaterials* 2020; 231: 119681.

158. Li Y, Xu Y, Liu Y, et al. Decellularized cartilage matrix scaffolds with laser-machined micro pores for cartilage regeneration and articular cartilage repair. *Mater Sci Eng C Mater Biol Appl* 2019; 105: 110139.

159. Yang Y, Lin H, Shen H, et al. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. *Acta Biomater* 2018; 69: 71–82.

160. Yin H, Wang Y, Sun X, et al. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. *Acta Biomater* 2018; 77: 127–141.

161. Bautista CA, Park HJ, Mazur CM, et al. Effects of chondroitinase ABC-mediated proteoglycan digestion on decellularization and recellularization of articular cartilage. *PLoS One* 2016; 11(7): e0158976.

162. Antons J, Marasco MG, Aebherhard P, et al. Decellularised tissues obtained by a CO2-phile detergent and supercritical CO2. *Eur Cell Mater* 2018; 36: 81–95.

163. Shen W, Berning K, Tang SW, et al. Rapid and detergent-free decellularization of cartilage. *Tissue Eng Part C Methods* 2020; 26(4): 201–206.

164. Rothrauff BB, Yang G and Tuan RS. Tissue-specific bioactivity of soluble tendon-derived and cartilage-derived extracellular matrices on adult mesenchymal stem cells. *Stem Cell Res Ther* 2017; 8(1): 133.

165. Kang H, Peng J, Lu S, et al. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. *J Tissue Eng Regen Med* 2014; 8(6): 442–453.

166. Yin H, Wang Y, Sun Z, et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. *Acta Biomater* 2016; 33: 96–109.

167. Huang Z, Godkin O and Schulze-Tanzil G. The challenge in using mesenchymal stromal cells for recellularization of decellularized cartilage. *Stem Cell Res Rep* 2017; 13(1): 50–67.

168. Li X, Ellman MB, Kroin JS, et al. Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family. *J Cell Biochem* 2012; 113(7): 2532–2542.

169. Scarritt ME, Pashos NC and Bunnell BA. A review of recellularization strategies for tissue engineering of whole organs. *Front Bioeng Biotechnol* 2015; 3: 43.

170. Moon HJ, Ko DY, Park MH, et al. Temperature-responsive compounds as in situ gelling biomedical materials. *Chem Soc Rev* 2012; 41(14): 4860–4883.

171. Ding J, Xiao C, He C, et al. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. *Nanotechnology* 2011; 22(49): 494012.

172. Liu H, Cheng Y, Chen J, et al. Component effect of stem cell-loaded thermosensitive polypeptide hydrogels on cartilage repair. *Acta Biomater* 2018; 73: 103–111.

173. Wang C, Feng N, Chang F, et al. Injectable cholesterol-enhanced stereocomplex polylactide thermogel loading chondrocytes for optimized cartilage regeneration. *Adv Healthcare Mater* 2019; 8(14): e1900312.

174. Doros G, Lavin PT, Dalsey M, et al. A method for establishing class III medical device equivalence: sodium hyaluronate (GenVisc 850) for the treatment of knee osteoarthritis. *Med Devices (Auckl)* 2016; 9: 205–211.

175. Henrotin Y, Bannuru R, Malaise M, et al. Hyaluronan derivative HYMOVIS® increases cartilage volume and type II collagen turnover in osteoarthritic knee: data from MOKHA study. *BMC Musculoskeletal Disord* 2019; 20(1): 293.

176. Berenbaum F, Grifka J, Cazzaniga S, et al. A randomised, double-blind, controlled trial comparing two intra-articular hyaluronic acid preparations differing by their molecular weight in symptomatic knee osteoarthritis. *Ann Rheum Dis* 2012; 71(9): 1454–1460.

177. Becker LC, Bergfeld WF, Belsito DV, et al. Final report of Becker LC, Bergfeld WF, Belsito DV, et al. Final report of the safety assessment of hyaluronic acid, potassium hyaluronate, and sodium hyaluronate. *Int J Toxicol* 2009; 28(4 Suppl): 5–67.

178. Roessler PP, Pfister B, Gesslein M, et al. Short-term follow up after implantation of a cell-free collagen type I matrix for the treatment of large cartilage defects of the knee. *Int Orthop* 2015; 39(12): 2473–2479.
179. Steinwachs MR, Gille J, Volz M, et al. Systematic review and meta-analysis of the clinical evidence on the use of autologous matrix-induced chondrogenesis in the knee. Cartilage. 2019; 2019: 194760351807846.

180. Yanke AB, Tilton AK, Wetters NG, et al. DeNovo NT particulated juvenile cartilage implant. Sports Med Arthrosc Rev 2015; 23(3): 125–129.

181. Haddock O, Mahroof S, Higgs D, et al. The use of chondrgrid membrane in autologous chondrocyte implantation. Knee. 2004; 11(1): 51–55.

182. Gobbi A, Scotti C, Karnatzikos G, et al. One-step surgery for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc 2017; 25(8): 2494–2501.

183. DeBerardino TM. NeoCart update: review of technique and early clinical results. Sports Med Arthrosc Rev 2015; 23(3); e23–e24.

184. Turner NJ, Kiely CM, Walker MG, et al. A novel hyaluronan-based biomaterial (HyAff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 2004; 25(28):5955–5964.

185. Nixon AJ, Sparks HD, Begum L, et al. Matrix-induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J Bone Joint Surg Am 2017; 99(23): 1987–1998.

186. Zak L, Albrecht C, Wondrasch B, et al. Results 2 years after matrix-associated autologous chondrocyte transplantation using the novocart 3D scaffold: an analysis of clinical and radiological data. Am J Sports Med 2014; 42(7): 1618–1627.

187. Choi N-Y, Kim B-W, Yeo W-J, et al. Gel-type autologous chondrocyte (Chondron) implantation for treatment of articular cartilage defects of the knee. BMC Musculoskelet Disord 2010; 103.

188. Manfredini M, Zerbinati F, Gildone A, et al. Autologous chondrocyte implantation: a comparison between an open peristeo-covered and an arthroscopic matrix-guided technique. Acta Orthop Belg, 2007; 73(2): 207–218.

189. Solchaga LA, Hee CK, Aguiar DJ, et al. Augment bone graft products compare favorably with autologous bone graft in an ovine model of lumbar interbody spine fusion. Spine (Phila Pa 1976) 2012; 37(8): E461–E467.

190. Lee YK, Ha YC, Yoo J-I, et al. Mid-term results of the BIOLOX delta ceramic-on-ceramic total hip arthroplasty. Bone Joint J 2017; 99-B(6): 741–748.

191. Chang TJ. The role of polyvinyl alcohol in cartilage repair of the ankle and first metatarsophalangeal joint. Clin Podiatr Med Surg 2018; 35(1): 133–143.

192. Kreuz PC, Müller S, Ossendorf C, et al. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res Ther 2009; 11(2): R33.

193. Xue JX, Gong YY, Zhou GD, et al. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials 2012; 33(24): 5832–5840.

194. Gong YY, Xue JX, Zhang WJ, et al. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 2011; 32(9): 2265–2273.

195. Lynch K and Pei M. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis. 2014; 10(3): 289–298.

196. Zheng L, Fan HS, Sun J, et al. Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A 2010; 93(2): 783–792.

197. Bhurdwaj N and Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials 2012; 33(10): 2848–2857.

198. Eslaminejad MB, Mirzadeh H, Mohamadi Y, et al. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds. J Tissue Eng Regen Med 2007; 1(6): 417–424.

199. Yodmuang S, McNamara SL, Nover AB, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 2015; 11: 27–36.

200. Chungh C and Burdick JA. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A 2009; 15(2): 243–254.

201. Han Y, Wei Y, Wang S, et al. Cartilage regeneration using adipose-derived stem cells and the controlled-released hybrid microspheres. Joint Bone Spine 2010; 77(1): 27–31.

202. Zimoch-Korzycka A, Bobak I and Jarmoluk A. Antimicrobial and antioxidant activity of chitosan/hydroxypropyl methylcellulose film-forming hydrogels hydrolyzed by cellulase. Int J Mol Sci 2016; 17: 9.

203. Rackwitz L, Djouad F, Janjanin S, et al. Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthr Cartil. 2014; 22(8): 1148–1157.

204. Chimal-Monroy J and Díaz de León L. Expression of N-cadherin, N-CAM, fibronectin and tenasin is stimulated by TGF-beta1, beta2, beta3 and beta5 during the formation of precartilage condensations. Int J Dev Biol 1999; 43(1): 59–67.

205. O’Sullivan J, D’Arcy S, Barry FP, et al. Mesenchymal chondroprogenitor cell origin and therapeutic potential. Stem Cell Res Ther 2011; 2(1): 8.

206. Chen MJ, Whiteley JP, Please CP, et al. Identifying chondrogenesis strategies for tissue engineering of articular cartilage. J Tissue Eng 2019; 10: 2041731419842431.

207. Murphy MB, Moncivais K and Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013; 45(11): e54.

208. Cameron TL, Belluocci D, Farlie PG, et al. Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol 2009; 9: 20.

209. Le H, Xu W, Zhuang X, et al. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng. 2020; 11: 2041731420943839.
Arinzech TL. Mesenchymal stem cells for bone repair: preclinical studies and potential orthopedic applications. *Foot Ankle Clin* 2005; 10(4): 651–65, viii.

Beldi G, Khosravi M, Abdelgawad ME, et al. TNFa/TNFf2 signaling pathway: an active immune checkpoint for mesenchymal stem cell immunoregulatory function. *Stem Cell Res Ther* 2020; 11(1): 281.

Ozawa K, Sato K, Oh I, et al. Cell and gene therapy using mesenchymal stem cells (MSCs). *J Autoimmun* 2008; 30(3): 121–127.

Beldi G, Bahiraii S, Lezin C, et al. Chondrogenesis of human adipose derive mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly(vinyl alcohol)/fibron] hybrid scaffolds. *Eur Polym J* 2011; 54(7): 797–802.

Setayeshmehr M, Esfandiari E, Hashemibeni B, et al. TNFR2 signaling pathway: an active immune checkpoint for mesenchymal stem cell immunoregulatory function. *Stem Cell Res Ther* 2020; 11(1): 281.

Steinwachs MR, Waibl B and Niemeyer P. Use of human progenitor cells in the treatment of cartilage damage. *Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz* 2011; 54(7): 797–802.

Li C, Vepari C, Jin H-J, et al. Electrospun silk-BMP-2 scaffold derived from native articular cartilage extracellular matrix. *Tissue Eng Part A* 2009; 15(2): 231–241.

Spiller KL, Liu Y, Holloway JL, et al. A novel method for the direct fabrication of growth factor-loaded microspheres with porous nondegradable hydrogels: controlled release for cartilage tissue engineering. *J Control Release* 2012; 157(1): 39–45.

Sung H-W, Chang W-H, Ma C-Y, et al. Crosslinking of biological tissues using genipin and/or carbodiimide. *J Biomed Mater Res A* 2003; 64(3): 427–438.

Liang H-C, Chang Y, Hsu C-K, et al. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. *Biomaterials* 2004; 25(17): 3541–3552.

Moffat KL and Marra KG. Biodegradable poly(ethylene glycol) hydrogels crosslinked with genipin for tissue engineering applications. *J Biomed Mater Res Part B Appl Biomater* 2004; 71(1): 181–187.

Koo H-J, Song YS, Kim H-J, et al. Antiinflammatory effects of genipin, an active principle of gardenia. *Eur J Pharmacol* 2004; 495(2–3): 201–208.

Ferretti M, Marra KG, Kobayashi K, et al. Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. *Tissue Eng* 2006; 12(9): 2657–2663.

Lima EG, Tan AR, Ta T, et al. Genipin enhances the mechanical properties of tissue-engineered cartilage and protects against inflammatory degradation when used as a medium supplement. *J Biomed Mater Res A* 2009; 91(3): 692–700.

Yu S-X, Du C-T, Chen W, et al. Genipin inhibits NLRP3 and NLRC4 inflammasome activation via autophagy suppression. *Sci Rep* 2015; 5: 17935.

Sun F, Jiang Y, Xu Y, et al. Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications. *Sci Rep* 2016; 6: 24429.

Wang Y, Bao J, Wu X, et al. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. *Sci Rep* 2016; 6: 24779.

Seliktar D. Designing cell-compatible hydrogels for biomedical applications. *Science* 2012; 336(6085): 1124–1128.

Malafaya PB, Silva GA and Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. *Adv Drug Deliv Rev* 2007; 59(4–5): 207–233.

Gunatillake PA and Adhikari R. Biodegradable synthetic polymers for tissue engineering. *Eur Cell Mater* 2003; 5: 1–16; discussion 16.

Kim BS, Baez CE and Atala A. Biomaterials for tissue engineering. *World J Urol* 2000; 18(1): 2–9.

Chan BP and Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. *Eur Spine J* 2008; 17(Suppl 4): 467–479.

Li C, Vepari C, Jin H-J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. *Biomaterials* 2006; 27(16): 3115–3124.

Cao Y and Wang B. Biodegradation of silk biomaterials. *Int J Mol Sci* 2009; 10(4): 1514–1524.
for bone tissue engineering. *Biomaterials* 2006; 27(18): 3413–3411.

244. Lee H, Yang GH, Kim M, et al. Fabrication of micro/nanoporous collagen/ECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. *Mater Sci Eng C Mater Biol Appl* 2018; 84: 140–147.

245. Al-Munajjed AA, Plunkett NA, Gleeson JP, et al. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. *J Biomed Mater Res Part B Appl Biomater* 2009; 90(2): 584–591.

246. Kepler TB, Abbott LF and Marder E. Reduction of contraction-based neuron models. *Biol Cybern* 1992; 66(5): 381–387.

247. Cheng Z and Teoh S-H. Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen. *Biomaterials* 2004; 25(11): 1991–2001.

248. Sousa I, Mendes A, Pereira RF, et al. Collagen surface modified poly(e-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. *Mater Lett.* 2014; 134: 263–267.

249. Kim HS, Mandakhbayar N, Kim H-W, et al. Protein-reactive nanofibers decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. *Biomaterials*. 2020; 2020: 120214.

250. Yang X, Lu Z, Wu H, et al. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. *Mater Sci Eng C Mater Biol Appl* 2018; 83: 195–201.

251. Slaughter BV, Khurshid SS, Fisher OZ, et al. Hydrogels in regenerative medicine. *Adv Mater Weinheim* 2009; 21(32–33): 3307–3329.

252. Daly AC and Kelly DJ. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. *Biomaterials* 2019; 197: 194–206.

253. Hirst AR, Escuder B, Miravet JF, et al. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. *Angew Chem Int Ed Engl* 2008; 47(42): 8002–8018.

254. Setayeshmehr M, Esfandiari E, Rafieinia M, et al. Hybrid and composite scaffolds based on extracellular matrices for cartilage tissue engineering. *Tissue Eng Part B Rev* 2019; 25(3): 202–224.

255. He X, Lu H, Kawazoe N, et al. A novel cylinder-type poly(L-lactic acid)-collagen hybrid sponge for cartilage tissue engineering. *Tissue Eng Part C Methods* 2010; 16(3): 329–338.

256. Jin R, Moreira Teixeira LS, Dijkstra PJ, et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. *Biomaterials*. 2009; 30(13): 2544–2551.

257. Zheng L, Liu S, Cheng X, et al. Intensified stiffness and photodynamic provocation in a collagen-based composite hydrogel drive chondrogenesis. *Adv Sci (Weinh).* 2019; 6(16): 1900099.

258. Bidarra SJ, Barrias CC and Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. *Acta Biomater* 2014; 10(4): 1646–1662.

259. Dorsey SM, McGarvey JR, Wang H, et al. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. *Biomaterials* 2015; 69: 65–75.

260. Sim HJ, Thambi T and Lee DS. Heparin-based temperature-sensitive injectable hydrogels for protein delivery. *J Mater Chem B* 2015; 3(45): 8892–8901.

261. Wang F, Li Z, Khan M, et al. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. *Acta Biomater* 2010; 6(6): 1978–1991.

262. Ma R, Xiong D, Miao F, et al. Friction properties of novel PVP/PVA blend hydrogels as artificial cartilage. *J Biomed Mater Res Part A* 2010; 93(3): 1016–1019.

263. Chen MH, Wang LL, Chung JJ, et al. Methods to assess shearing-thinning hydrogels for application as injectable biomaterials. *ACS Biomater Sci Eng* 2017; 3(12): 3146–3160.

264. Caliari SR and Burdick JA. A practical guide to hydrogels for cell culture. *Nat Methods* 2016; 13(5): 405–414.

265. Van Vlierberge S, Dubrue B and Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. *Biomacromolecules*. 2011; 12(5): 1387–1408.

266. Li J and Mooney DJ. Designing hydrogels for controlled drug delivery. *Nat Rev Mater* 2016; 1: 12.

267. Wade RJ, Bassin EJ, Rodell CB, et al. Protease-degradable electroporus fibrous hydrogels. *Nat Commun* 2015; 6: 6639.

268. Dohan Ehrenfest DM, Rasmusson L and Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). *Trends Biotechnol* 2009; 27(3): 158–167.

269. Shahid M and Kundra R. Platelet-rich plasma (PRP) for knee disorders. *EFTOR Open Rev* 2017; 2(1): 28–34.

270. Wu PI-K, Diaz R and Borg-Stein J. Platelet-rich plasma. *Phys Med Rehabil Clin N Am* 2016; 27(4): 825–853.

271. Hsu WK, Mishra A, Rodeo SR, et al. Platelet-rich plasma in orthopaedic applications: evidence-based recommendations for treatment. *J Am Acad Orthop Surg* 2013; 21(12): 739–748.

272. El Backly RM, Zaky SH, Canciani B, et al. Platelet-rich plasma enhances osteoconductive properties of a hydroxyapatite-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects. *J Craniomaxillofac Surg* 2014; 42(5): e70–e79.

273. Xie X, Wang Y, Zhao C, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. *Biomaterials* 2012; 33(29): 7008–7018.

274. Harj T, Kakudo M, Morimoto N, et al. Platelet-rich plasma stimulates human dermal fibroblast proliferation via a Ras-dependent extracellular signal-regulated kinase 1/2 pathway. *J Artif Organs.* 2016; 19(4): 372–377.

275. Rohman G, Languet C, Ramtani S, et al. The use of platelet-rich plasma to promote cell recruitment into low-molecular-weight fucoidan-functionalized poly(ester-urea-urethane) scaffolds for soft-tissue engineering. *Polymers (Basel)* 2019; 11: 6.

276. Pham PV, Vu NB, Pham VM, et al. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells. *J Transl Med* 2014; 12: 56.
277. Lucarelli E, Beccheroni A, Donati D, et al. Platelet-derived growth factors enhance proliferation of human stromal stem cells. *Biomaterials* 2003; 24(18): 3095–3100.

278. Mishra A, Tummala P, King A, et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. *Biomaterials* 2003; 24(18): 3095–3100.

279. Chen CPC, Cheng C-H, Hsu C-C, et al. The influence of platelet rich plasma on synovial fluid volumes, protein concentrations, and severity of pain in patients with knee osteoarthritis. *Exp Gerontol* 2017; 93: 68–72.

280. Xie X, Zhang C and Tuan RS. Biology of platelet-rich plasma and its clinical application in cartilage repair. *Arthritis Res Ther* 2014; 16(1): 204.

281. van Buul GM, Koevoet WLM, Kops N, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. *Am J Sports Med* 2011; 39(11): 2362–2370.

282. Wu W, Zhang J, Dong Q, et al. Platelet-rich plasma - a promising cell carrier for micro-invasive articular cartilage repair. *Med Hypotheses* 2009; 72(4): 455–457.

283. Qi YY, Chen X, Jiang YZ, et al. Local delivery of autologous platelet in collagen matrix simulated in situ articular cartilage repair. *Cell Transplant* 2009; 18(10): 1161–1169.

284. Sun Y, Feng Y, Zhang CQ, et al. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. *Int Orthop* 2010; 34(4): 589–597.

285. Fekete N, Gadelorge M, Fürst D, et al. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. *Cytotherapy* 2012; 14(5): 540–554.

286. Guler O, Mutlu S, Isyar M, et al. Comparison of short-term results of intraarticular platelet-rich plasma (PRP) and hyaluronic acid treatments in early-stage gonarthrosis patients. *Eur J Orthop Surg Traumatol* 2015; 25(3): 509–513.

287. Forogh B, Mianehsaz E, Shoaei S, et al. Effect of single injection of platelet-rich plasma in comparison with corticosteroid on knee osteoarthritis: a double-blind randomized clinical trial. *J Sports Med Phys Fitness* 2016; 56(7–8): 901–908.

288. Curley CJ, Dolan EB, Otten M, et al. An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure. *Drug Deliv Transl Res* 2019; 9(1): 1–13.

289. Zhong Y, Jiang A, Sun F, et al. A comparative study of the effects of different decellularization methods and genipin-cross-linking on the properties of tracheal matrices. *Tissue Eng Regen Med* 2019; 16(1): 39–50.

290. Výborný K, Vallová J, Kočí Z, et al. Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair. *Sci Rep* 2019; 9(1): 10674.

291. Peng Y, Huang D, Li J, et al. Genipin-crosslinked decellularized annulus fibrosus hydrogels induces tissue-specific differentiation of bone mesenchymal stem cells and intervertebral disc regeneration. *J Tissue Eng Regen Med* 2020; 14(3): 497–509.

292. Augustine R, Kalarikkal N and Thomas S. Advancement of wound care from grafts to bioengineered smart skin substitutes. *Prog Biomater* 2014; 3(2–4): 103–113.

293. Shershagar J, Kshirsagar R, Desai S, et al. Decellularized amnion scaffold with activated PRP: a new paradigm dressing material for burn wound healing. *Cell Tissue Bank* 2018; 19(3): 423–436.

294. Leng Y, Ren G, Cui Y, et al. Platelet-rich plasma-enhanced osseointegration of decellularized bone matrix in critical-size radial defects in rabbits. *Ann Transl Med* 2020; 8(5): 198.

295. Gilpin A and Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. *Biomed Res Int* 2017; 2017: 9831534.