Quantitative and distributive measurement of ambient air pollution for global burden of disease

Ning Zhang 1,7*, Wenli Liu 2,7, Sourangsu Chowdhury 3, Hailong Zhao 4, Huabo Duan 5,6
1 Leibniz Institute of Ecological Urban and Regional Development (IOER), 01217 Dresden, Germany
2 Operation Management Department, The People's Hospital of Shifang City, Shifang 618400, China
3 Center for International Climate and Environmental Research (CICERO), University of Oslo, Oslo 0349, Norway
4 State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
5 Underground Polis Academy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
6 Key Lab of Resilient Coastal City Infrastructure, Ministry of Education, Shenzhen 518060, China
7 These authors contributed equally: Ning Zhang, Wenli Liu.

* Corresponding author
E-mail: n.zhang@ioer.de (Ning Zhang)

Abstract
Air quality impacts human health from multiple perspectives. Ambient air pollution (AAP) exposure poses a great contribution to the global burden of disease (BoD). The United Nations launched the Sustainable Development Goals (SDGs) to evaluate sustainability levels and improve human living environments. In particular, the two indicators 3.9.1 and 11.6.2, i.e. fine particulate matters (PM2.5 and PM10) and relative disease mortality are listed to illustrate the development goals for the air environment. At present, countries around the world have adopted measures to mitigate AAP, and a quantitative evaluation of the effectiveness is necessary. Thus, statistics for AAP and BoD across the global 183 countries were analyzed to help assess the gap between the status quo and SDGs in this study. We offer a new perspective on BoD estimation research - proportional data (AAP-caused disease burden / total environment-caused
in grouped global countries (according to their geographical and economic conditions) were adopted to substitute the absolute value in this study, which is more reasonable for comparative analysis. The overlap of economic and geographic distribution shows that the heaviest BoD is concentrated in high-income and Middle Eastern regions. Concerning the type of disease burden, acute lower respiratory infections (ALRI) and ischemic heart disease (IHD) are two major contributors to BoD, and the worldwide deaths and Disability Adjusted Life Years (DALYs) caused by them need to be taken seriously. Generally, this study provides novel evidence for the formulation of air pollution control and management measures to reduce the related disease burden in global regions. To reduce the future BoD, different strategies should be designed depending on the order of driving factors in regions. Even though the triggers of BoD are quite different across the globe, the correlation analysis results inform that reducing emissions along with CO₂ from social operations at the source is the most direct and effective path in areas with a high density of susceptible populations.

Keywords: Ambient air pollution; Particulate matters; Global burden of disease; Sustainable Development Goals.

1. Introduction

Environmental pollution poses a great threat to human health since the industrial revolution (Landrigan et al. 2016). According to the estimation of the World Health Organization (WHO), environment attributable deaths reached 12.6 million in 2012 across the world (WHO 2016a). In contrast to many other environmental problems, exposure to ambient air pollution (AAP) occurs during the whole lifespan and is currently an intractable global problem (Schikowski et al. 2014), especially in emerging countries with dense populations and rapid industrial development (Anser et al. 2020). Exposure to a polluted climatic environment for a long time is the trigger for a series of respiratory and cardiovascular diseases. Currently, the AAP is considered to be one of the major contributors to the global burden of disease (BoD), i.e. lung cancer, stroke, etc. (Hassoun et al. 2019).
Nitrogen dioxide (NO$_2$), sulfur dioxide (SO$_2$), carbon monoxide (CO), particulate matter with a median aerodynamic diameter <10 μm (PM10), and fine particulate matter <2.5 μm (PM2.5) are typical air pollutants that can cause significant negative influences on our ambient air quality (Committee on Environmental Health 2004). Multiple research evidence from global regions has shown that these air pollution factors are closely related to the incidence of diseases. In Iran, PM10 and SO$_2$ with concentrations exceeding 10 μg/m3 increased the hospitalization rate for respiratory disease by 0.44% (Khaniabadi et al. 2019). In China, Liu et al. (2014) studied atmospheric pollution in seven Northeastern Chinese cities and asthma-related symptoms in more than 23,000 Chinese children and found that each 10 μg/m3 increase in NO$_2$ concentration link to an adjusted prevalence of 1.25% for diagnosed asthma in 3 to 6 year-old children. Similar linkages also occur in developed regions. The AAP leads to an annual mortality rate of 133 per 100,000 people and a 2.2-year reduction in the mean life expectancy in EU-28 countries (Lelieveld et al. 2019).

To reduce the concentration of pollutants in the air environment, most global countries have taken the necessary steps to limit and replace human activities that produce serious pollution (Mejia 2020). For instance, the policy evidence in a Tasmanian city shows that replacing burning wood as the main heater with electricity in winter can significantly reduce PM2.5 by about 39% (Fuller and Font 2019). In the UK, the introduction of the UK Clean Air Act has resulted in great mitigation of SO$_2$ from coal-fired power plants (Carnell et al. 2019). On a global scale, Jacobson (2017) has drawn roadmaps to show that by 2050, a transition to 100% clean, renewable, and sustainable power for all energy uses in 139 countries to reduce the excess emission is a feasible schedule. However, there is a gap in a few developing countries to reach this ambitious global project due to their unsatisfactory air pollution control policies (Lelieveld and Pöschl 2017). For instance, Sub-Saharan Africa is a typical region with poor air environment protection policies, city authorities take little management of vehicle emissions, municipal solid waste (MSW), and solid fuel use into their policy decisions, which are major contributors to worsening air pollution (Henneman et al. ...
2016; Amegah and Agyei-Mensah 2017). Beyond the impact on health, economic
development can also be affected by AAP. It is estimated that by 2060, the costs of AAP
control gradually increase to 1% of global GDP, with the highest GDP losses in some
developing regions, e.g. China, the Caspian region, and Eastern Europe (Lanzi et al.
2018).

Against the background of global urban expansion and industrial development, the
outdoor air environment has undergone a great deterioration. The main contributors to
the global AAP are PM2.5 and PM10, and their concentrations showed a trend of
increase or decrease in different countries during the last two decades, which implicitly
affects the dynamic of BoD. As shown in Fig. 1, significant reductions in PM2.5
concentrations were only shown in Australia, Russia, and some European and Southeast
Asian countries. Coincidentally, by comparing the research of Richards and Belcher
(2019) on vegetation coverage in 4,256 cities around the world, we superficially found
that the dynamics in particulate matter and the changes in global urban vegetation
coverage are roughly consistent in geographic space. Overall, the particulate matter
problem may have improved through sustainable human activities, but the current
situation is still far from reaching the goal of risk-free human health.

![global air pollution map](image1)

(a) 1990 annual average of PM2.5
concentrations (μg/m³) (b) 2017 annual average of PM2.5
concentrations (μg/m³)

Figure 1. Global annual mean levels of particulate matter population-weighted
concentrations

2. Literature review

Air environment control and management have become a serious issue and a
research hotspot, as it poses challenges regarding human health and sustainable
development. An increasing number of studies have paid attention to the relations
between human disease burden and AAP, only in the 20 years from 1998 to 2017, 2,179
related researches could be retrieved from the Web of Science Core Collection (Dhital
and Rupakheti 2019).

The previous research on the association between ambient particulate matter and
the disease burden provides a reliable basis for the further analysis of this study. Their
starting point includes two perspectives - environment management and epidemiology.
Their findings explained the links between the diffusion mechanisms of air particulate
matter and the incidence of diseases caused by it. In detail, Kim et al. (2015)
summarized the typical law of the particulate matter impact on health through historical
literature - as particles decrease in size, it is hypothesized to increase their ability to
penetrate the lower airways and burden of respiratory and cardiovascular health.
Hamanaka and Mutlu (2018) also conducted a systematic review and meta-analyze to
link the particulate pollution exposure to morbidity and mortality in the human
cardiovascular system from an endocrinological perspective. Their general evidence
suggests that there is no “safe” level of particulate pollution exposure unless we put
efforts to manage the climatic environment and reduce particulate pollution production
and exposure. Miri et al. (2016) built AirQ models to investigate the health effects of
multiple air pollutants at a city level. The quantitative results showed that suspended
particles of PM2.5 and PM10 have the greatest adverse effect on people’s health (in
terms of respiratory and cardiovascular diseases) between NO2, SO2, O3, and particulate
pollution.

Besides, case studies from countries around the world also prove a strong link
between the two. The U.S. cohort study of Bowe et al. (2019b) illustrated that PM2.5
exposure is associated with the excess burden of death owning to multiple chronic
diseases, and racial and socioeconomic disparities in the burden are evident. The
sources of PM2.5 are almost cigarette smoking, industrial emissions, or the burning of
wood and dung for fuel (Arnold 2014). Evidence from Brazil and China suggested
together that PM10 exposure increases respiratory and cardiovascular morbidity, with years of life lost (YLL) being more sensitive than mortality in the assessment (Chen et al. 2017; Zeng et al. 2017; Abe et al. 2018).

The literature has highlighted high-risk disease burdens caused by AAP in specific geographic regions or countries but without a comprehensive focus on the comparative Global Burden of Disease (BoD) (Kim and Johnston 2011). In 2015, the United Nations Sustainable Development Goals (SDGs) were developed to address challenges related to poverty, inequality, climate change, environmental degradation, prosperity, and peace and justice at the United Nations Sustainable Development Summit (Schmidt-Traub et al. 2017; Haines et al. 2017). The combination concern of air environment quality and human health are included in both goals of “3.9.1 Mortality rate attributed to household and ambient air pollution” and “11.6.2 Annual mean levels of fine particulate matter (e.g. PM2.5 and PM10) in cities (population-weighted)” (UNSD 2017). SDGs put forward strict requirements for air quality. To quantitatively evaluate the status quo of AAP based on the standards proposed by SDGs and offer optimal management measures for the air environment, here we aim to conduct an updated analysis on spatial differences and connections between BoD and AAP on a global scale.

3. Methods

As shown in Fig. 2, it illustrates the system flow from the generation of emissions to effects on human health (Awe et al. 2015). Simply, air pollution derives from the spread of various emissions, and human exposure to ambient pollution further causes health effects. This study gathered AAP data from different emissions and BoD data from various diseases to help clarify their relations.
2.1 The study scope and data source

In this study, spatial and temporal analysis is carried out from AAP and BoD perspectives. The detailed research area is as follows:

(1) Global AAP analysis. The outdoor air pollution data from a total of 193 countries and regions across the world were included in this section. Specifically, following the definition of WHO, in order to provide an accurate figure of BoD attributed to AAP, the measured AAP here is ambient air particulate pollution, and the impacts on health from other air pollutants such as nitrogen oxides and ozone are excluded (WHO 2016b). The air particulate pollution data refers to the population-weighted exposure to ambient PM2.5 and PM10, which is calculated by weighting annual concentrations by the populations of urban and rural areas. The World Bank Open Database (WBOD) and WHO Database (see Tables S.3-S.4 in Supporting Information (SI)) offer the statistics of global PM10 and PM2.5 exposure data with the time ranges from 1990 to 2017 and 1990 to 2011, respectively (see Table 1). Primary data of WHO and WB are derived from official reporting from member countries. The Data Integration Model for Air Quality (DIMAQ) data from over two decades can help depict global dynamics in air particulate pollution (already shown in Fig.1).

(2) AAP attributable BoD. The assessment of environment- and AAP-associated BoD is available for 183 countries and regions (see Table 1). Geographically, it includes 47 Asian countries, 39 European countries, 54 African countries, 21 North American countries, 12 South American countries, and 10 Oceanian countries. According to the income classification of WB, it includes 30 low-income countries, 52 lower-middle-income countries, 51 upper-middle-income countries, and 50 high-income countries.

When comparing and analyzing the BoD results, we follow the classification method proposed by the WHO, which is death and Disability Adjusted Life Year (DALY). Compared with the death that can directly assess the health impact caused by AAP, DALY is an indicator that reflects the long-term impact of AAP on human health.
As for the type of BoD, based on the statistical approach of WHO provided by epidemiologists, ALRI (acute lower respiratory infections), lung cancer, COPD (chronic obstructive pulmonary disease), stroke, and IHD (ischemic heart disease) are chosen as the BoD assessment indicators with enough epidemiological evidence.

Table 1 Detailed study scope and data categories

Data type	Data sub-type	Time frame	Classification	Sub-classification
(1) AAP data*	PM2.5	1990-2017	Geographical**	Asia, Europe, Africa, North America, South America, Oceania
	PM10	1990-2011		
(2) BoD data*	Death	2016	Income** (based on world bank regions)	Low income, Lower middle income, Upper middle income, High income
	DALY			
	Lung cancer, Cataract, IHD, Stroke, COPD, ALRI			

* Data sources: AAP data gathered from World Bank Open Database and WHO Database, BoD 2016 data collected from WHO Database.

** The detailed country list can be found in Tables S.1-S.2 in SI.

2.2 Data analysis

Based on the ground measurement data for PM2.5 and PM10, derived from monitors in global 2972 cities or towns, therefore, the ambient air quality measurements can cover almost all major regions and countries of the world. Similar to BoD exposure estimation in previous years, the mean of gridded values is also used in order to provide estimates at a high spatial resolution - 0.1° x 0.1° resolution globally. According to the description in Table 1, the linkage between disease burden and AAP is assessed via AAP attributable BoD, and its spatial dynamics are discussed in terms of disease type, geographical regions, and income distributions.

In the temporal analysis of exposure AAP, Eq.1 shows the dynamic of AAP value over time in a specific area.

\[
V_{i-x-mn} = \frac{A_{i-x-n}}{A_{i-x-m}} - 1 \quad (1)
\]
where V refers to the dynamic of population-weighted concentration of type i AAP in region x between two statistical years (year m and n, $n > m$). A is the population-weighted concentration of type i AAP (namely PM2.5 or PM10 in this study) in region x in year m and n.

In the spatial analysis of BoD, Eq.2 shows the contribution of AAP to the BoD in a single year as a percentage of the BoD caused by the total environment. As the total population of different countries and regions varies greatly, this study uses the proportion of BoD caused by AAP in the BoD caused by the total environmental impact instead of the absolute number, which can produce a more reasonable comparison.

$$R_{ho \rightarrow x \rightarrow m} = \frac{B_{AAP \rightarrow ho \rightarrow x \rightarrow m}}{B_{Envi \rightarrow ho \rightarrow x \rightarrow m}} \tag{2}$$

where R refers to the ratio of AAP attributable to different health impacts to environmental attribution. Similarly, subscripts of disease burden (B) mean the attribution factors of the burden of disease (APP or environment) and their health impact (ho, death or DALY) in region x in year m.

After the calculation in different regions, the linkage between BoD and AAP can be shown in comparisons.

2.3 Correlation analysis

The AAP from complex sources indirectly leads to BoD. After a general understanding of BoD distribution, the identification of possible drivers for BoD is the purpose of correlation analysis. The analysis is to test whether there is some dependency relation between the driving factor variables (X_1–X_7) and the burden of disease (Y_1–Y_2) and to determine the degree of the dependency relation (Zhao et al. 2016). As the BoD analysis in this study adopts calculated proportion, the potential factors are also selected using ratio data rather than absolute data. We compiled data on population density (X_1) (UN DESA 2019), Human Development Index (HDI, X_2) (UNDP 2020), Gini coefficient (X_3) (WBOD 2020), urbanization rate (by urban population rate) (X_4) (US CIA 2020), forest coverage rate (X_5) (UN FAO 2020), and fossil CO2 emissions (t CO2 emissions per km2 land area and t CO2 emissions per capita, X_6 and X_7) from global countries to cover socioeconomic and natural factors (European Commission 2018).
Subsequently, the correlations between these factors and AAP attributable death rate and DALY rate are calculated respectively.

3 Results

According to the spatio-temporal dynamics of AAP attributable to BoD, the spread of results among regions and economies highlights the impacts of AAP on human health.

3.1 AAP-caused BoD distribution

As the description in the previous section (Materials and methods), the BoD analysis is divided into death and DALY. The two types of AAP-caused BoD distributions are displayed in Figs.3-4. As shown in Fig.3, AAP poses a greater threat to human health than other environmental factors. The highest mortality is over 50% in 2016 (AAP caused / total environment caused), and it generally concentrates on the Middle East (part of West Asia and Northern Africa) and some of Eastern Europe and South America (Peru, Chile, and Suriname) regions, in Lebanon even reaches 79%. While the lowest is under 20%, mainly in the Central and East Africa region. The potential attribution of high AAP-caused mortality burden in partial areas mainly to the following reasons: (1) As shown in Fig.1, Southeast Asia and the Middle East are the worst regions affected by PM2.5 as well as PM10 pollution, and fine particulate matters have been identified is one of the major threats to the atmospheric environment and sources of human premature mortality (Lelieveld et al. 2015; Cheng et al. 2016). (2) Most countries in South America and the Middle East region are under accelerated industrial development or intensive construction, which leads to the expansion of cities and the increase of population density in urban areas, and urban metabolism and industrial production are the main sources of particulate matter emissions (Yang et al. 2018). (3) The age structure of the population is also a driving factor (Dicker et al. 2018), evidence has shown that AAP exposure caused premature mortality in adults is higher than in children (Chowdhury et al. 2020). (4) Other factors e.g. lower government expenditure on public health and air environment protection, serious desertification in the Middle East, and relatively less-developed health system in some South America and Eastern Europe regions such as Peru and Ukraine (Luck et al. 2014;
In Fig. 3, the proportion of AAP attributable deaths in the total environment attributable deaths is shown. In Fig. 4, compared to the mortality burden, the situation of AAP-caused DALY is at a more acceptable level. The distribution shows that the highest DALY loss rate of over 30% (AAP caused / total environment caused) still occurs in the Middle East area, it even reached 55% in Kuwait. Whilst the lowest is under 10% in Canada, Nordic, and the Southern Africa region. As one of the reasons mentioned earlier, the urban environment of these Middle Eastern countries is characterized by desertification and aridity, and these geographical characteristics can easily lead to a series of dust events (Castree et al. 2018). There is no doubt that high concentrations of particulate matter owing to dust events cause health impacts, for instance, the high particulate matter concentration brought by the Middle East Dust event in Ahvaz, Iran (from April to September 2010), resulted in total estimated mortality of 1,131 cases and morbidity of 8,157 cases (Shahsavani et al. 2012; Bowe et al. 2019a). The main result of AAP-caused DALYs is the incidence of chronic disease (e.g. COPD and asthma), and early diagnosis of chronic diseases often place higher requirements on the local medical and health conditions, which are all objective causes in this region (Ginsberg et al. 2016; Lelieveld 2017).
et al. 2018; Eguiluz-Gracia et al. 2020).

Figure 4. The proportion of AAP attributable DALYs in the total environment attributable DALYs

3.2 BoD 2016 analysis

In the previous section, the general outline of AAP-caused BoD is introduced. In fact, the multiple diseases caused by BoD are also closely related to the geographical, political, economic, and other factors in different regions of the world.

3.2.1 Geographic-based analysis

As illustrated in Fig. 5, the overall distribution of death and DALY is analogous. Nevertheless, the situation of death owing to AAP exposure is more serious than DALY across the world, and the gap between these two proportions is even over 16% in Europe (16.1%) and South America (16.5%). Even if high mortality and DALY loss rates have been noted in some regions, AAP poses a higher human health risk in Europe and Asia in terms of overall geographic distribution. Similar results also appeared in the research of other scholars, the calculation of Lelieveld et al. (2015) showed that outdoor air pollution (mostly by PM2.5) leads to 3.3 million premature deaths per year worldwide, predominantly in Asia. PM2.5 pollution is the most elementary environmental threat factor for deaths and DALYs from respiratory and cardiovascular diseases, which tend to occur a high incidence of these two types of disease in densely populated areas such
as Asia and aging population areas such as Europe (Small et al. 2018; Marois et al. 2020). As the research of Rajagopalan et al. (2018) estimates, short-term elevations in PM2.5 concentration increase the cardiovascular diseases risk by 1% to 3% within several days. Whilst the region with the highest disease burden includes North Africa, the situation in Africa as a whole is more optimistic due to the neutralization of the low burden value of the vast African regions below North Africa (see Figs. 3-4).

Figure 5. AAP attributable burden of disease by geographical distribution

Specifically, the incidence of the diseases triggered by particulate pollution varies among regions, mainly cardiovascular and respiratory diseases (see Fig. 6). ALRI and IHD are the two leading AAP-caused BoD that poses the greatest threat to human health, regardless of the region. It is worth noting that in Africa, the ALRI has a huge contribution to DALY and mortality burden, which are approximately 70% and 50% respectively. One of the underlying reasons may be that frequent desert dust events in Africa have contributed to the increase of ambient particulate matter concentration and thus affected human respiratory health (De Longueville et al. 2014). As for the other diseases, IHD poses the highest health risk in all continents except Africa, and epidemiological statistics have proved that both long-term and short-term ambient particulate matter exposure will increase the risk for IHD {Citation}. Lung cancer is a serious disease, equipped with complex pathogenesis, and is often caused by the accumulation and deterioration of other relative diseases, its contribution to BoD is only the most insignificant proportion (Durham and Adcock 2015; King 2015).
3.2.2 Income-based analysis

In terms of BoD’s distribution from the economic perspective, Figs. 7-8 indicate the details. It can be seen in Fig. 7, that the death rate due to AAP-caused disease is proportional to income globally, and the peak of DALY is concentrated in developing regions. One of the reasons for the significant differences in the burden of disease among income groups is that environmental threats in low-income countries are complex compared with high-income countries. Overall environmental health impacts are higher in low-income countries, but multi-source environmental factors diluted shares of AAP. For instance, the degree of water pollution in an area is generally considered to be inversely proportional to the development of the area (Schwarzenbach et al. 2010). Another non-negligible driving factor is booming industrial development in middle-income countries, cheap conventional energy structures are used in industrial production, which has caused the air pollution emission plight of these countries (Kofi Adom et al. 2012). London used to be a proper example, in the early twentieth century, a type of air pollution called the London Fog due to the extensive use of coal in the field of daily life and industrial production, and Hanlon (2018) counted that high-pollution air exposure accounted for at least one out of every 200 deaths in London during that
period. Besides, it is noteworthy that the gap between AAP-caused mortality and DALY burden is inversely proportional to the national economy. The mainstays of chronic disease treatment are standard and low-cost medications that are sadly insufficiently used in patients who live in low- and middle-income regions. The fiscal revenue of these countries to support the establishment of a complete health system is obstructive, and followed citizens cannot enjoy regular public medical services for their chronic diseases (Moran et al. 2014).

Also, we consider that some interfering and co-existing factors in alliance with AAP cause chronic diseases and affect the results of the disease burden, such as COPD and smoking, IHD, and obesity, which may contribute to the higher burden in high-income countries (Yusuf et al. 2020).

AAP attributable deaths / Total environment attributable deaths	AAP attributable DALYs / Total environment attributable DALYs
Low income	10%
Lower middle income	20%
Upper middle income	30%
High income	40%

Figure 7. AAP attributable burden of disease by income distribution

Combined with the results in Fig.8, it can be seen that the mortality and DALY loss rate of serious diseases caused by AAP (such as lung cancer) are both proportional to income, which is one of the reasons for the results of high mortality in high-income regions (see Fig.7). In the analysis of DALYs and deaths, it can be seen that their distribution is roughly similar except for the slight difference in proportion. Obviously, the distribution of disease burden is closely related to income (see Fig.8).

The distribution of the major AAP-caused disease burdens has shown regularity across world economies. The burden of IHD & lung cancer, COPD & stroke, and ALRI
are prevalent in high-income, middle-income, and low-income, respectively. The death and DALY burden of AAP-caused IHD both have reached 46% in high-income regions, and ALRI is the contributor to half of the burden in low-income regions (70% and 48% to DALY and death burden respectively). In 2018, the WHO estimated the global health situation and IHD ranked first among the top 20 causes. However, when subdivided into different economies, the impact of IHD on health is not significant in low-income countries, which is similar to the BoD caused by AAP (WHO 2018). According to the findings of Shi et al. (2017), ALRI tends to occur in people with weakened immune systems. In low-income regions, exposure to AAP and a certain percentage of the undernourished population allows ALRI to infect. Due to the lack of a well-developed health care system, many patients who cannot be treated in time could pose a significant impact on BoD in low-income regions. Besides, previous research told that low socioeconomic status is also associated with BoD, compared with higher socioeconomic status, the mortality of ALRI significantly increased by 62% odds among young patients (Sonego et al. 2015).

Figure 8. Distribution of disease by income distribution

3.3 Correlations

Combining the display of Fig.9 and Figs.3-4, a consistent result can be found that
the high-income region of Asia, particularly the Middle East (including Egypt, UAE, Saudi Arabia, and Lebanon), is still the "worst-hit" region in terms of disease burden. Fig.9(a) and (b) also confirm the changes in Fig.5 and Fig.7, they suggest that AAP-caused two types of disease burden (death and DALY) are well correlated in all regions. In other words, changes in mortality and DALY loss rates generally follow the same trend. In the previous part, the underlying causes of the death and DALY burden are analyzed in combination with the disease type and distribution area. A more detailed driver correlation analysis is shown in Figs.10-11.

Figure 9. Correlation between AAP attributable death rate and DALY rate by geographical and income distribution (countries without available data for correlations are not shown in this Figure)

The correlations between the BoD and various factors are shown in Figs.10, and they may help further mathematically verify the speculation of BoD causes in previous sections. The Y_1 and Y_2 are death rate and DALY rate, respectively. Among these correlation analyses, the correlation coefficients vary in different country groups. As shown in Fig.10a, among the considered socioeconomic and natural possible drivers, the highest correlated factors with disease burden in Asia, Europe, Africa, North America, South America, and Oceania are urbanization rate (X_4), HDI (X_2, negative
correlation), per capita fossil CO\(_2\) emissions \((X_7)\), per km\(^2\) land area fossil CO\(_2\) emissions \((X_6)\), per capita fossil CO\(_2\) emissions \((X_7)\), and population density \((X_1)\), respectively. The per capita fossil CO\(_2\) emissions \((X_7)\) show the strongest comprehensive correlation with the burden of disease (the sum of the absolute values of the correlations) in contrast to the other columns, which may potentially be because the emissions of CO\(_2\) and particulate matter from social operations are mixed and accompanied. In addition, the total correlations of various factors are most significant in terms of mortality in Asia and DALY rates in North America from the horizontal perspective.

![Figure 10. Detailed correlations between AAP-caused BoD and socioeconomic and natural factors (a) by geographical distribution; (b) by income distribution](image)

Since the country groups by income are more compact than those by geography, the correlation analysis results are more obvious. In Fig.10b, urbanization rate \((X_4)\) correlate very weakly with BoD longitudinally, in contrast to the strong correlation between per capita fossil CO\(_2\) emissions \((X_7)\) and BoD. Besides, the Gini coefficient \((X_3)\) and forest coverage rate \((X_5)\) present the negative correlations with disease burden. In terms of row order, the negative relation is striking, with the Gini coefficient \((X_3)\), forest coverage rate \((X_5)\), Gini coefficient \((X_3)\), and HDI \((X_2)\) contributing the greatest
correlation with disease burden in low-, lower-middle-, upper-middle-, and high-income countries, respectively. The combined results of Figs.10 may reflect that the BoD of the income-based group is more sensitive to socioeconomic factors, whilst the geographical group is to natural factors.

4 Discussion

In recent decades, there is a great improvement in our air environment. It can be seen in Table 2, that PM10 and PM2.5 pollution have changed in a positive direction in most areas. The PM pollution in Europe has been mitigated dramatically, whilst the PM concentrations in lower-middle-income and African regions are no sign of improvement. Compared with the target value of the WHO, PM2.5 and PM10 are both substandard, although PM concentrations in some regions (income distribution) are well above the WHO's proposed minimum requirement (IT-1, 35 μg/m³), and according to the target proposed by SDG 11.6.2, there is still a long way to reach the goal of air environment sustainability.

Table 2 Variations of PM10 and PM2.5 concentration (population-weighted) in different global regions

Region	PM10 (μg/m³)	Change (%)	PM2.5 (μg/m³)	Change (%)				
	2010	2015	1990	2000	2010	2017		
Low income	N/A	267.8	N/A	42.9	42.8	41.3	43.2	0.7
Lower middle income	92.1	101.9	10.9	60.4	61.7	67.3	64.4	6.6
Upper middle income	59.7	50.5	(15.0)	43.1	44.8	49.4	38.7	(10.1)
High income	36.3	39.1	8.3	16.6	16.2	16.7	14.7	(11.7)
Asia	93.8	99.1	5.7	39.0	38.9	40.6	37.0	(5.3)
Europe	33.8	28.8	(14.8)	19.0	17.3	17.2	14.2	(25.1)
Africa	94.3	96.0	1.8	38.5	37.8	34.8	38.5	0.0
North America	38.7	39.9	3.1	21.2	21.8	21.7	17.6	(16.7)
South America	53.5	44.9	(16.1)	20.7	21.5	22.2	17.5	(15.5)
Oceania	14.1	12.8	9.2	12.6	12.9	12.9	10.6	(16.4)
WHO interim target-1 (IT-1)	70			35				
WHO interim target-2 (IT-2)	50			25				
WHO interim target-3	30			15				
(IT-3)	20	10						
--------	----	----						
WHO air quality guideline (AQG)								

For the indicator of SGD 3.9.1, the results in Fig.5 and Fig.7 show that the AAP-caused death burden is still high and the high mortality caused by AAP-caused diseases such as IHD and ALRI should be taken seriously, and worse, Lelieveld et al. (2015) project the AAP-caused premature mortality could double by 2050 under a business-as-usual particulate matter emission scenario. Besides, the health risks for children caused by AAP should not be ignored either (Lee and Kim 2018), Lelieveld et al. (2018) estimated that AAP-caused children under-five mortality accounted for 5% of the total AAP-caused mortality.

Some researchers have estimated that future PM concentrations will continue to increase in emerging regions (Chowdhury et al. 2018). Meanwhile, the threat to human health posed by the AAP-caused BoD is also unoptimistic in the future. There are multiple proven factors are driving the results, e.g. indiscriminate burning of waste outdoors in India (Jerrett 2015), massive dust carried by winds from the Sahara and lacking enough health interventions in Africa (Heft-Neal et al. 2018), and the public health system and citizen income of low-income regions are not enough to support long-term treatment of AAP-caused chronic diseases (Nugent 2019). Local authorities should put control policies for these obstacles forward immediately. The Massachusetts case shows a negative relation between PM2.5 concentration and the recycling rate of MSW. Governments should take responsibility for better management of waste to improve air quality (Giovanis 2015). Evidence from Africa and Iraq suggests that in reducing particulate matter policies should be made for controlling the further expansion of deserts and reducing the eco-hazardous human activity, e.g. over-burning of agricultural biomass (Chudnovsky et al. 2017; Bauer et al. 2019). With the more national and regional governments enqueue to reduce AAP and the associated BoD, higher requirements for industrial production and human activity will be put forward.

By summarizing the pollution process in Fig.2, it is found that reducing emissions
and controlling human exposure risk are two options that should be two significant
paths to reduce the APP-caused burden of disease. The control of land desertification
to reduce the frequency of dust events and the use of clean energy can significantly
reduce particulate matter at the source. But the growing global aging has provided
increased susceptible populations to pollution (Wang et al. 2019). The extension of the
healthcare coverage and provision of affordable diagnosis and treatment of related
chronic diseases are the basic remedy to lighten BoD in the hard-to-change aging
situation.

In addition to the above factors, this study also sorted out the spatial drivers of AAP-
caused disease burden according to the correlation analysis. Reducing CO\textsubscript{2} emissions
is feasible to access for countries around the world to ease the burden of disease. In
particular, recently some great powers have put forward their ambitious plans to control
CO\textsubscript{2} emissions, which are expected to provide a great opportunity to reduce the AAP-
caused burden of disease. For instance, China has announced an aim to hit peak
emissions before 2030 and for carbon neutrality by 2060 (Mallapaty 2020). When the
statistical data are further refined, the correlation analysis including medical conditions,
population age structure, and other factors can also be carried out systematically. But
we should at least attach importance to the factors that have been tested so far that harm
air quality, and work to reduce the burden of disease caused by air pollution.

In conclusion, the global air pollution statistics combined with the relative disease
data have been used in this study to analyze the AAP and BoD situation and distribution.
The results show that the BoD caused by AAP (including ALRI, lung cancer, COPD,
stroke, and IHD) is related to geography and income distribution. ALRI and IHD are
two main AAP-caused diseases that contribute to BoD around the world. Generally, the
burden of the disease tends to increase in affluent areas, but the reason is complex, it
might include the level of CO\textsubscript{2} emissions, forest coverage rate, population density
government policies, etc. These negative circumstances show that there is still a
distance to reach the SDGs and fully protect human health from the adverse effects of
air pollution, lots further studies need to be developed in the near future.
Funding
There is no funding for this research.

Competing Interests
The authors declare no competing interests.

Availability of data and materials
The data of the study are available on request.

References
Abe KC, Santos GMS dos, Coelho M de SZS, Miraglia SGEK (2018) PM10 Exposure and Cardiorespiratory Mortality – Estimating the Effects and Economic Losses in São Paulo, Brazil. Aerosol Air Qual Res 18:3127–3133. https://doi.org/10.4209/aqr.2018.05.0161

Amegah AK, Agyei-Mensah S (2017) Urban air pollution in Sub-Saharan Africa: Time for action. Environmental Pollution 220:738–743. https://doi.org/10.1016/j.envpol.2016.09.042

Anser MK, Hanif I, Vo XV, Alharthi M (2020) The long-run and short-run influence of environmental pollution, energy consumption, and economic activities on health quality in emerging countries. Environ Sci Pollut Res 27:32518–32532. https://doi.org/10.1007/s11356-020-09348-1

Arnold C (2014) Disease Burdens Associated with PM2.5 Exposure: How a New Model Provided Global Estimates. Environ Health Perspect 122: https://doi.org/10.1289/ehp.122-A111

Awe Y, Nygard J, Larsen S, et al (2015) Clean air and healthy lungs: enhancing the World Bank’s approach to air quality management. World Bank

Bauer SE, Im U, Mezuman K, Gao CY (2019) Desert Dust, Industrialization, and Agricultural Fires: Health Impacts of Outdoor Air Pollution in Africa. J Geophys Res Atmos 124:4104–4120. https://doi.org/10.1029/2018JD029336

Bowe B, Xie Y, Li T, et al (2019a) Estimates of the 2016 global burden of kidney disease attributable to ambient fine particulate matter air pollution. BMJ Open 9:e022450. https://doi.org/10.1136/bmjopen-2018-022450

Bowe B, Xie Y, Yan Y, Al-Aly Z (2019b) Burden of Cause-Specific Mortality Associated With PM2.5 Air Pollution in the United States. JAMA Netw Open 2:e1915834. https://doi.org/10.1001/jamanetworkopen.2019.15834

Carnell E, Vieno M, Vardoulakis S, et al (2019) Modelling public health improvements as a result of air pollution control policies in the UK over four decades—1970 to 2010. Environ Res Lett 14:074001. https://doi.org/10.1088/1748-9326/ab1542

Castree N, Hulme M, Proctor JD (eds) (2018) Companion to environmental studies. Routledge, London ; New York
Haines A, Amann M, Borgford-Parnell N, et al (2017) Short-lived climate pollutant mitigation and the Sustainable Development Goals. Nature Clim Change 7:863–869. https://doi.org/10.1038/s41558-017-0012-x

Hamanaka RB, Mutlu GM (2018) Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front Endocrinol 9:680. https://doi.org/10.3389/fendo.2018.00680

Hanlon WW (2018) London Fog: A Century of Pollution and Mortality, 1866-1965. National Bureau of Economic Research, Cambridge, MA

Hassoun Y, James C, Bernstein DI (2019) The Effects of Air Pollution on the Development of Atopic Disease. Clin Rev Allergy Immunol 57:403–414. https://doi.org/10.1007/s12016-019-08730-3

Heft-Neal S, Burney J, Bendavid E, Burke M (2018) Robust relationship between air quality and infant mortality in Africa. Nature 559:254–258. https://doi.org/10.1038/s41586-018-0263-3

Henneman LRF, Rafaj P, Annegarn HJ, Klausbruckner C (2016) Assessing emissions levels and costs associated with climate and air pollution policies in South Africa. Energy Policy 89:160–170. https://doi.org/10.1016/j.enpol.2015.11.026

Jacobson MZ (2017) Roadmaps to Transition Countries to 100% Clean, Renewable Energy for All Purposes to Curtail Global Warming, Air Pollution, and Energy Risk: 100% CLEAN, RENEWABLE ENERGY SYSTEMS. Earth’s Future 5:948–952. https://doi.org/10.1002/2017EF000672

Jerrett M (2015) The death toll from air-pollution sources. Nature 525:330–331. https://doi.org/10.1038/525330a

Khaniabadi YO, Sicard P, Takdastan A, et al (2019) Mortality and morbidity due to ambient air pollution in Iran. Clinical Epidemiology and Global Health 7:222–227. https://doi.org/10.1016/j.cegh.2018.06.006

Kim AS, Johnston SC (2011) Global Variation in the Relative Burden of Stroke and Ischemic Heart Disease. Circulation 124:314–323. https://doi.org/10.1161/CIRCULATIONAHA.111.018820

Kim K-H, Kabir E, Kabir S (2015) A review on the human health impact of airborne particulate matter. Environment International 74:136–143. https://doi.org/10.1016/j.envint.2014.10.005

King PT (2015) Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clinical and Translational Medicine 4:. https://doi.org/10.1186/s40169-015-0068-z

Kofi Adom P, Bekoe W, Amuakwa-Mensah F, et al (2012) Carbon dioxide emissions, economic growth, industrial structure, and technical efficiency: Empirical evidence from Ghana, Senegal, and Morocco on the causal dynamics. Energy 47:314–325. https://doi.org/10.1016/j.energy.2012.09.025

Landrigan PJ, Sly JL, Ruchirawat M, et al (2016) Health Consequences of Environmental Exposures: Changing Global Patterns of Exposure and Disease. Annals of Global Health 82:10. https://doi.org/10.1016/j.aog.2016.01.005

Lanzi E, Dellink R, Chateau J (2018) The sectoral and regional economic consequences of outdoor air pollution to 2060. Energy Economics 71:89–113.
Nugent R (2019) Preventing and managing chronic diseases. BMJ 1459.
https://doi.org/10.1136/bmj.l459

Rajagopalan S, Al-Kindi SG, Brook RD (2018) Air Pollution and Cardiovascular Disease. Journal of the American College of Cardiology 72:2054–2070.
https://doi.org/10.1016/j.jacc.2018.07.099

Richards DR, Belcher RN (2019) Global Changes in Urban Vegetation Cover. Remote Sensing 12:23. https://doi.org/10.3390/rs12010023

Schikowski T, Mills IC, Anderson HR, et al (2014) Ambient air pollution: a cause of COPD? European Respiratory Journal 43:250–263.
https://doi.org/10.1183/09031936.00100112

Schmidt-Traub G, Kroll C, Teksoz K, et al (2017) National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nature Geosci 10:547–555. https://doi.org/10.1038/ngeo2985

Schwarzenbach RP, Egli T, Hofstetter TB, et al (2010) Global Water Pollution and Human Health. Annu Rev Environ Resour 35:109–136. https://doi.org/10.1146/annurev-environ-100809-125342

Shahsavani A, Naddafi K, Jafarzade Haghighifard N, et al (2012) The evaluation of PM10, PM2.5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010. Journal of Arid Environments 77:72–83. https://doi.org/10.1016/j.jaridenv.2011.09.007

Shi T, McAllister DA, O’Brien KL, et al (2017) Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. The Lancet 390:946–958. https://doi.org/10.1016/S0140-6736(17)30938-8

Small C, Sousa D, Yetman G, et al (2018) Decades of urban growth and development on the Asian megadeltas. Global and Planetary Change 165:62–89. https://doi.org/10.1016/j.gloplacha.2018.03.005

Sonego M, Pellegrin MC, Becker G, Lazzerini M (2015) Risk Factors for Mortality from Acute Lower Respiratory Infections (ALRI) in Children under Five Years of Age in Low and Middle-Income Countries: A Systematic Review and Meta-Analysis of Observational Studies. PLoS ONE 10:e0116380. https://doi.org/10.1371/journal.pone.0116380

UN DESA (2019) World population prospects – population division. United Nations Department of Economic and Social Affairs, New York, the US

UN FAO (2020) Global forest resources assessment 2020 - main report. Food and Agriculture Organization of the United Nations, Rome, Italy

UNDP (2020) Human Development Index (HDI), Human Development Reports. United Nations Development Programme, New York, the US

UNSD (2017) Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development. United Nations Statistics Division, New York, the US

US CIA (2020) The world factbook urbanization. Central Intelligence Agency, Washington, DC, the US
Wang Q, Wang J, Zhou J, et al (2019) Estimation of PM2.5-associated disease burden in China in 2020 and 2030 using population and air quality scenarios: a modelling study. The Lancet Planetary Health 3:e71–e80. https://doi.org/10.1016/S2542-5196(18)30277-8

WBOD (2020) World Bank GINI index (World Bank estimate). World Bank Open Data, Washington, DC, the US

WHO (2016a) Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. World Health Organization, Geneva, Switzerland

WHO (2016b) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization, Geneva, Switzerland

WHO (2018) Projections of mortality and causes of death, 2016 to 2060. World Health Organization, Geneva, Switzerland

Yang D, Ye C, Wang X, et al (2018) Global distribution and evolvement of urbanization and PM2.5 (1998–2015). Atmospheric Environment 182:171–178. https://doi.org/10.1016/j.atmosenv.2018.03.053

Yusuf S, Joseph P, Rangarajan S, et al (2020) Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. The Lancet 395:795–808. https://doi.org/10.1016/S0140-6736(19)32008-2

Zeng Q, Wu Z, Jiang G, et al (2017) The association between ambient inhalable particulate matter and the disease burden of respiratory disease: An ecological study based on ten-year time series data in Tianjin, China. Environmental Research 157:71–77. https://doi.org/10.1016/j.envres.2017.05.004

Zhao JS, Yuan L, Zhang M (2016) A study of the system dynamics coupling model of the driving factors for multi-scale land use change. Environ Earth Sci 75:529. https://doi.org/10.1007/s12665-015-5165-1