Are NOACs as safe and efficient as VKA regarding thromboembolic prophylaxis and major bleeding in patients with surgical bioprosthesis and atrial fibrillation within 3 months of surgery?

Pedro Lamares Magro * and Miguel Sousa-Uva

Department of Cardio-thoracic Surgery, Hospital de Santa Cruz, Carnaxide, Portugal

* Corresponding author. Department of Cardiothoracic Surgery, Hospital de Santa Cruz, Avenida Reinaldo dos Santos, Carnaxide, Portugal. Tel: +351-916490924; e-mail: pedromagro@gmail.com (P.L. Magro).

Received 27 June 2021; received in revised form 24 October 2021; accepted 31 October 2021

Abstract

A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: ‘Are NOACs as safe and efficient as vitamin K antagonist regarding thromboembolic prophylaxis and major bleeding in patients with surgical bioprosthesis and atrial fibrillation within 3 months of surgery?’ Altogether more than 324 papers were found using the reported search, of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. The RIVER and ENAVLE trials showed non-inferiority of rivaroxaban (regarding mean time free from composite of death, major cardiovascular events or major bleeding at 12 months) and edoxaban (composite of death, clinical thromboembolic events or asymptomatic intracardiac thrombosis; and major bleeding) when compared with vitamin K antagonist. These studies include a low number of patients within 3 months of index surgery and overall low statistical power regarding this particular subgroup of patients. Data derived from lower evidence studies are compatible with the aforementioned findings. The available evidence suggests that non-vitamin K antagonist anticoagulants are as safe and as efficient as vitamin K antagonist regarding thromboembolic prophylaxis and bleeding event rates in patients with surgical bioprosthesis within 3 months of bioprosthesis implantation. However, this evidence is derived from a limited number of studies with important methodological limitations. Expanding non-vitamin K antagonist anticoagulant recommendation to the early postoperative period warrants more confirmatory research.

Keywords: Non-vitamin K antagonist anticoagulant • DOAC • Bioprosthesis • Anticoagulation

INTRODUCTION

A best evidence topic was constructed according to a structured protocol. This is fully described in the ICVTS [1].

THREE-PART QUESTION

In [patients with surgical bioprosthesis and atrial fibrillation] is [non-vitamin K antagonist anticoagulant (NOAC) similar to vitamin K antagonist (VKA)] in terms of [safety (major bleeding) and efficacy (thromboembolic prophylaxis)] within 3 months of bioprosthesis implantation.

CLINICAL SCENARIO

A 62-year-old aeroplane pilot with symptomatic aortic stenosis is proposed to surgical valve replacement. Because of his erratic schedules, the patient chooses a bioprosthesis in order to avoid therapeutic drug monitoring. However, in the postoperative period, the patient develops atrial fibrillation refractory to rhythm control attempts. You are tempted to use an NOAC to manage this patient postoperatively, however, your senior consultant reminds you that according to 2020 American College of Cardiology/American Heart Association (ACC/AHA) guidelines VKA should be considered for the first 3 months after bioprosthesis implantation. A review of the current evidence regarding this topic is warranted to validate either approach.

SEARCH STRATEGY

A comprehensive literature review was performed searching Medline from inception to February 2021 using the PubMed interface. The following strategy was used: [(direct oral anticoagulants (DOAC) OR NOAC OR apixaban OR rivaroxaban OR edoxaban OR dabigatran) AND prosthesis]. References of selected
papers were screened for additional relevant papers. The eligible papers were in English.

SEARCH OUTCOME

In total, 324 papers were found using the reported search. From these, 6 papers were identified that provided the best evidence to answer the question. These are presented in Table 1.

RESULTS

The first hint about NOACs potential use in the postoperative period was given by post hoc analysis of the ARISTOTLE [2] and ENGAGE AF-TIMI 48 [3] trials. However, it is unclear to which extent both trials are truly representative of the population in the early postoperative period.

In the ARISTOTLE subanalysis, 156 bioprosthesis or valve replacement patients with atrial fibrillation (AF) and at least 1 risk factor for stroke were randomized to receive either apixaban or VKA with a follow-up of 1.6 years. Event rate including stroke [hazard ratio (HR), 1.71; 95% confidence interval (CI), 0.31–9.37; \(P = 0.53 \)], major bleeding (HR, 0.88; 95% CI, 0.31–2.52; \(P = 0.82 \)) and all-cause death (HR: 1.02; 95% CI: 0.34–3.04; \(P = 0.98 \)) were statistically similar between the groups. ENGAGE AF-TIMI 48 sub-analysis compared 2 regimens of edoxaban with warfarin in 191 patients with bioprosthesis and moderate-to-high-risk AF, over a median follow-up of 2.8 years; revealing similar stroke or systemic embolic rates with both edoxaban regimes when compared to warfarin (edoxaban 60 mg versus warfarin: HR: 0.37; 95% CI, 0.10–1.42; \(P = 0.15 \); edoxaban 30 mg versus warfarin: HR: 0.53; 95% CI, 0.16–1.78; \(P = 0.31 \)), but lower major bleeding rates with low-dose edoxaban (HR, 0.12; 95% CI, 0.01–0.95; \(P = 0.045 \)) when compared with warfarin. Both analyses comprise a low number of patients and events and more importantly, both studies failed to report time of initiation of anticoagulation after surgery (with ENGAGE AF-TIMI 48 excluding patients in the first month after bioprosthesis implantation). Hence, it is probable that patients depicted in these trials are not representative of the focus of our best evidence topic, which is the early postoperative period.

More representative evidence is given by the RIVER and ENAVLE trials. In the RIVER trial [4], 1005 patients with mitral bioprosthesis and AF were randomized to receive either rivaroxaban \((n = 500) \) or warfarin \((n = 505) \). This multicentric open-label non-inferiority intention-to-treat design trial showed non-inferiority of rivaroxaban for the primary endpoint (mean time free from composite of death, major cardiovascular events or major bleeding at 12 months) (rivaroxaban, 347.5 days; warfarin, 340.1 days; difference, 7.4 days; 95% CI, -1.4 to 16.3; \(P < 0.001 \) for non-inferiority; \(P = 0.10 \) for superiority). Stroke rates at 12 months were statistically different, favouring rivaroxaban (rivaroxaban, 0.6%; warfarin, 2.4%; HR, 0.25; 95% CI, 0.07–0.88). Other secondary endpoints were similar between the true groups including major bleeding, valve thrombosis and death. However, because of the low number of some of these events, any findings should be interpreted with caution. Subgroup analysis showed that the difference between treatments regarding the primary endpoint was specially marked in patients randomized in the first 3 months after bioprosthesis implantation (rivaroxaban, 6.4%; warfarin, 18.9%; HR, 0.31; 95% CI, 0.12–0.79), favouring rivaroxaban. However, these results represent large CIs and lack \(P \) for interaction report, which renders their interpretation cumbersome.

Patients in the warfarin group had an INR in the therapeutic range for only a median of 65.5% of the time which can underestimate warfarin’s true effect. Study methodology permitted patient randomization at any time at least 48 h after surgery. Objectively, only 18.8% of the included patients were randomized in the first 3 months after surgery. This fact may result in misrepresentation of the early postoperative population in this cohort. However, it was also in the group of patients randomized in the first 3 months after surgery that the results favouring rivaroxaban were more evident, despite the aforementioned limitations.

The results of the ENAVLE trial were published by Shim et al. [5]. ENAVLE is a prospective open-label randomized controlled trial with a non-inferiority design which randomized patients to receive either edoxaban \((n = 109) \) or warfarin \((n = 109) \) during the first 3 months after bioprosthesis implantation (aortic = 49%; mitral = 21%) or mitral valve repair (39%). Sixty-one per cent of the included patients presented AF (60% vs 62%). The median time to initiation of anticoagulation was 8 days (interquartile range 7–10) after surgery. The intention-to-treat analysis demonstrated non-inferiority of edoxaban regarding the primary efficacy endpoint (composite of death, clinical thromboembolic events or asymptomatic intracardiac thrombosis) (edoxaban, 0%; warfarin, 3.7%; risk difference (RD), -0.0367; 95% CI, -0.0720 to -0.0014; \(P = 0.001 \) for non-inferiority), as well as the primary safety outcome (major bleeding) (edoxaban, 2.8%; warfarin, 0.9%; RD, 0.0183; 95% CI, -0.0172 to 0.0539; \(P = 0.13 \)). The subgroup analysis of patients with AF is consistent with the main results regarding the primary efficacy endpoint (edoxaban, 0%; warfarin, 3%; RD, -0.0299; 95% CI, -0.0760 to 0.0109; \(P = 0.003 \) for non-inferiority) and the primary safety outcome (edoxaban, 3.1%; warfarin, 1.5%; RD, 0.0158; 95% CI, -0.0352 to 0.0669; \(P = 0.42 \); but no \(P \) for interaction of this subgroup is presented. This is a single-centre analysis including a small heterogeneous population and relatively large non-inferiority boundaries (8%) with limited statistical power, which precludes any definite conclusion without further research.

Further lower evidence observational studies corroborated the aforementioned findings: Pasciolla et al. [6] conducted a single-centre retrospective analysis of 197 patients who received a bioprosthesis and postoperative anticoagulation for 6 months after bioprosthesis implantation for any additional indication (>90% for AF). The median time to initiation of anticoagulation was 4 days (interquartile range 2–6) after surgery. This analysis included 70 patients receiving warfarin and 127 receiving an NOAC (apixaban: 86; rivaroxaban: 40; dabigatran: 1). During the follow-up period of 6 months after surgery, no statistical difference in major bleeding (NOAC: 7.1%; warfarin: 2.9%; \(P = 0.22 \)) or thrombosis/stroke (NOAC: 2.4%; warfarin: 0; \(P = 0.20 \)) rates were reported. Even though CHA2DS2 VASC and HAS-BLED scores were similar between the two groups this remains an unmatched retrospective analysis with inherent bias and small sample size.

Nauffal et al. [7] published the results of 26 522 patients from the Society of Thoracic Surgeons Adult Cardiac Surgery Database; who were anticoagulated at discharge (NOAC, 9769; warfarin, 16 753) for new-onset AF after a cardiac surgery procedure (including coronary artery bypass grafting and valvular procedures). In the overall cohort, there was no association between type of oral anticoagulant therapy and 30-day mortality (OR,
Study	Design	Country/Region	Duration	Patients	Exclusion Criteria	Medications	Outcomes	Results/Significance
ARISTOTLE	Post hoc	Clin Cardiol Multinacional	(2019)	156	AF/Flutter AND >1 risk factor for stroke AND history of bioprosthesis (n=104) or native valve repair (n=52)	Apixaban:87	Stroke or systemic embolism	Apixaban:2.77% vs Warfarin:2.64% (HR: 1.71 (0.31-9.37), P=0.53)
	analysis of RCT (III)					Warfarin:69	Major bleeding	Apixaban:5.87% vs Warfarin:6.44% (HR: 0.88 (0.31-2.52), P=0.82)
							All patients had AF/Flutter	Apixaban:4.61 vs Warfarin:4.79 (HR: 1.02 (0.34-3.04), P=0.98)
ENGAGE AF-TIMI 48	Post hoc	Circulation USA	(2017)	191	Bioprosthesis (mitral=131; aortic=60) AND AF AND CHADS2 score >=2	Edoxaban 60mg:63	Stroke or systemic embolic event	Edoxaban 60mg vs Warfarin: HR (95% CI): 0.37 (0.10-1.42), p=0.15
Carnicelli et al [3]	analysis of RCT (III)					Edoxaban 30mg:58	Major Bleeding	Edoxaban 30mg vs Warfarin: HR (95% CI): 0.53 (0.16-1.78), p=0.31
						Warfarin: 70	Death from cardiovascular causes or thromboembolic events	Edoxaban 60mg vs Warfarin: HR (95% CI): 0.5 (0.15-1.67), p=0.26
							Stroke	Edoxaban 30mg vs Warfarin: HR (95% CI): 0.12 (0.01-0.95), p=0.045
							Mean time free from primary outcome (composite of death; major cardiovascular events, or major bleeding) At 12 months	Rivaroxaban:347.5 days vs Warfarin: 340.1 days RMST difference, 7.4 days; 95% CI: -1.4 to 16.3, P<0.001 for noninferiority P=0.10 for superiority
							Death	Rivaroxaban:0.6% vs Warfarin:2.4% (HR: 0.25 (0.07-0.88))
							Valve thrombosis	Rivaroxaban:1% vs Warfarin:0.6% (HR: 1.68 (0.40-7.01))
							Major bleeding	Rivaroxaban:1.4% vs Warfarin:2.6% (HR: 0.54 (0.21-1.35))
RIVER	RCT (II)	Brazil	(2020)	1005	Mitral bioprosthesis AND AF/Flutter (n=60)	Rivaroxaban:500	Death	Rivaroxaban:4% vs Warfarin:4% (HR: 1.01 (0.54-1.87))
Guimaraes et al [4]						Warfarin: 505	Stroke	Rivaroxaban:0.6% vs Warfarin:2.4% (HR: 0.25 (0.07-0.88))
							Mean time 8 days after surgery	Only 18.8% of patients randomized in the first 3 months after surgery
							Composite of death, clinical thromboembolic events or asymptomatic intracardiac thrombosis At 3 months	Edoxaban:0% vs Warfarin:3.7% (RD: -0.0367 (-0.0720 to -0.0014), P<0.001 for noninferiority Subgroup of AF patients: Edoxaban:0% vs Warfarin:3% (RD: -0.0299; 95% CI: -0.0706 to 0.0109, P=0.003
ENAVLE	RCT (II)	J Thorac Cardiovasc Surg South Korea	(2021)	218	Aortic (n=49%) or mitral (21%) bioprosthesis or mitral valve repair (n=39%)	Edoxaban: 109	Small number of events	Small number of events
Shim et al [6]						Warfarin: 109		
							Timing of anticoagulation initiation: Mean time 8 days after surgery	

Continued
1.08; 95% CI 0.80–1.45; P = 0.64), rehospitalization rates for stroke or transitory ischaemic attack (OR, 0.94; 95% CI, 0.53–1.67; P = 0.84) or rehospitalization for major bleeding complications (OR, 0.76; 95% CI, 0.49–1.18; P = 0.22). The subgroup analysis of valvular patients revealed non-significant P for interaction for the 3 aforementioned outcomes (30-day mortality, P = 0.65; rehospitalization for stroke/transitory ischaemic attack, P = 0.12; rehospitalization for major bleeding, P = 0.19), thus, rendering the overall results applicable to the subgroup of valvular patients. This is an observational non-randomized study with inherent bias and multiple exclusion criteria including preoperative AF and preoperative anticoagulation. Additionally, the reported outcomes are limited to a 30-day follow-up period and events that required rehospitalization.

CLINICAL BOTTOM LINE

The available evidence suggests that NOAC are as safe and as efficient as VKA regarding thromboembolic prophylaxis and bleeding event rates in patients with surgical bioprosthesis and AF within 3 months of index surgery. However, there is a significant lack of evidence regarding this specific period, as the available data may be influenced by the heterogeneity of pharmacological agents and bioprosthesis position/manufacturer used, timing of anticoagulation initiation, small and heterogeneous cohorts, and overall limited statistical power. Expanding NOAC recommendation to the early postoperative period calls for more confirmatory evidence, therefore, further research is warranted.

Conflict of interest

none declared.

Reviewer information

Interactive CardioVascular and Thoracic Surgery thanks Milan Milojevic and the other anonymous reviewers for their contribution to the peer review process of this article.

REFERENCES

[1] Dunning J, Prendergast B, Mackway JK. Towards evidence-based medicine in cardiothoracic surgery: best BETS. Interact CardioVasc Thorac Surg 2003;2:405–9.

[2] Guimarães PO, Polorney SD, Lopes RD, Wojdyla DM, Gersh BJ, Gicewszka A et al: Efficacy and safety of apixaban vs warfarin in patients with atrial fibrillation and prior bioprosthetic valve replacement or valve repair: insights from the ARISTOTLE trial. Clin Cardiol 2019;42:568–71.
Carnicelli AP, De Caterina R, Halperin JL, Renda G, Ruff CT, Trevisan M et al. ENGAGE AF-TIMI 48 Investigators. Edoxaban for the prevention of thromboembolism in patients with atrial fibrillation and bioprosthesis valves. Circulation 2017;135:1273–5.

Guimarães HP, Lopes RD, de Barros E Silva PGM, Liporace IL, Sampaio RO, Tarasoutchi F, Hoffmann-Filho CR et al. RIVER Trial Investigators. Rivaroxaban in patients with atrial fibrillation and a bioprosthesis mitral valve. N Engl J Med 2020;383:2117–26.

Shim CY, Seo J, Kim YJ, Lee SHD, Caterina, R Lee, S Hong, GR; Explore the Efficacy and Safety of Edoxaban in Patients after Heart Valve Repair or Bioprosthesis Valve Replacement (ENAVLE) study group. Efficacy and safety of edoxaban in patients early after surgical bioprosthesis valve implantation or valve repair: a randomized clinical trial. J Thorac Cardiovasc Surg 2021;S0022-5223(21)00228-2.

Pasciolla S, Zizza LF, Le T, Wright K. Comparison of the efficacy and safety of direct oral anticoagulants and warfarin after bioprosthesis valve replacements. Clin Drug Investig 2020;40:839–45.

Nauffal V, Trinquart L, Osho A, Sundt TM, Lubitz SA, Ellinor PT. Non-vitamin K antagonist oral anticoagulant vs warfarin for post cardiac surgery atrial fibrillation. Ann Thorac Surg 2021;112:1392–1401.