Safety and efficacy of intracoronary infusion of mobilized peripheral blood stem cell in patients with myocardial infarction: MAGIC Cell-1 and MAGIC Cell-3-DES-trials

Hyun-Jae Kang¹ and Hyo-Soo Kim¹,²*

¹Internal medicine, Seoul National University Hospital, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, Seoul 110-744, Republic of Korea
²National Research Laboratory in Cardiovascular Stem Cell, Seoul, Republic of Korea

Previous clinical studies evaluating granulocyte-colony stimulating factor (G-CSF)-based stem-cell therapy showed inconsistent outcomes. We evaluated G-CSF-based stem-cell therapy in patients with acute myocardial infarction (AMI) and old myocardial infarction (OMI) in ‘Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intracoronary Stem Cell Infusion (MAGIC Cell)’ trials. In MAGIC Cell-1 trial, intracoronary infusion of mobilized stem cell by G-CSF is superior to G-CSF alone for improvement of left ventricular (LV) systolic function till 2 years follow-up. In MAGIC Cell-3-Drug eluting stent (DES) trial, cell infusion showed better improvement of LV systolic function and remodelling than control in AMI patients at 6 months follow-up. However, stem-cell therapy does not improve LV systolic function in OMI patients. G-CSF-based stem-cell therapy does not aggravate de novo progression of atherosclerosis while DES efficiently prevents G-CSF-based stem-cell-therapy-related restenosis. Longer-term follow-up is required to confirm prognostic impacts of stem-cell therapy in patients with myocardial infarction. Combination strategy with stem cell therapy with cytokines and genes should be introduced to enhance efficacy of current stem-cell therapy.

KEYWORDS
Myocardial infarction; G-CSF; Peripheral blood stem cell

Introduction
Therapeutic application of granulocyte-colony stimulating factor (G-CSF) for stem-cell therapy has been evaluated by preclinical and clinical trials.¹⁻⁴ In addition to well-known, stem-cell mobilizing effects of G-CSF, G-CSF also has several beneficial effects on salvage and healing of infarcted myocardium.⁵,⁶ Although most of preclinical studies showed favourable outcomes for improvement of cardiac function with G-CSF-based stem-cell therapy, results from clinical trials were inconsistent and rather disappointing.²⁻⁴ We evaluated G-CSF-based stem-cell therapy in clinical trial since 2003 in ‘Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intracoronary Stem Cell Infusion’ (MAGIC Cell) trials.²⁻⁹ In this article, we will present our data from clinical and preclinical studies and discuss the lessons from clinical trials and future directions of stem-cell therapy.

Findings from MAGIC Cell trials
MAGIC Cell-1 trial is a randomized controlled trial to evaluate the safety and effects of G-CSF-based stem-cell
therapy on improvement of left ventricular (LV) systolic function in patients with myocardial infarction. In MAGIC Cell-1 trial, patients were randomized into one strategy among three: (i) G-CSF mobilization alone after PCI ($n = 10$); (ii) intracoronary infusion of mobilized peripheral blood stem cell (PBSC) by G-CSF after PCI ($n = 10$); and (iii) control PCI alone ($n = 10$).7–9 G-CSF was administered at a dose of $10 \mu g/kg/day$ for 4 days before coronary stent implantation. To our knowledge, this is the only study to directly compare the strategy of G-CSF mobilization alone and that of intracoronary infusion of mobilized PBSCs. Enrolment of this study was terminated early due to concerns that G-CSF-based stem-cell therapy might increase restenosis after coronary stent implantation. However enrolled patients were followed till 2 years after randomization. During 2 years follow-up evaluation, patients in the intracoronary cell infusion group showed better improvements of LV systolic function and remodelling compared with patients in the G-CSF alone group. Discrepancy in outcomes between G-CSF alone and intracoronary cell infusion group might come from differences in retention efficacy of stem cells to infarcted myocardium.10 Patients who received intracoronary cell infusion showed selective retention of infused stem cells, but patients who received intravenous infusion of stem cells did not (retention rate 2 h after intracoronary infusion vs. intravenous infusion = 1.5 ± 0.8 vs. 0 ± 0% of infused PBSCs). Change of LV systolic function and volume was measured by myocardial SPECT. On the basis of the results from MAGIC Cell-1 trial, we decided not to evaluate G-CSF mobilization-alone strategy in the next-phase larger randomized clinical trial named MAGIC Cell-3-Drug eluting stent (DES) trial.9

In MAGIC Cell-3-DES trial, we evaluated efficacy of intracoronary infusion of mobilized PBSC in patients with acute myocardial infarction (AMI, cell infusion vs. control: $n = 27$ vs. $n = 29$) and old myocardial infarction (OMI, $n = 20$ vs. $n = 20$). Change of LV systolic function and volume was measured by cardiac MRI at 6 months follow-up. After revascularization with DES for culprit coronary vessels, patients in the cell-infusion group received 3 days of $5 \mu g/kg$ G-CSF twice daily. Then PBSC was collected and infused via intracoronary balloon catheter. In AMI patients, the cell infusion group showed better improvement of LV systolic function (change of LV ejection fraction: $+5.1 \pm 9.1$ vs. $-0.2 \pm 8.6\%$, $P < 0.05$) and remodelling (change of LV end-systolic volume: -5.4 ± 17.0 vs. $+6.5 \pm 21.9 \text{mL}$, $P < 0.05$) compared with the control group.9 Cell infusion also reduced infarcted myocardial volume measured by late enhancement ($P = 0.01$) and restored LV synchronous contraction measured by Doppler tissue imaging ($P < 0.05$, unpublished data) in AMI patients.9 However control group did not show improvements. In contrast to AMI patients, no differences in change of LV systolic function and remodelling was observed between the control group and the cell infusion group in OMI patients. However cell infusion improved microcirculatory function measured by coronary flow reserve (baseline vs. follow-up: 1.97 ± 0.60 vs. 2.70 ± 0.88, $P < 0.01$) and reduced infarcted myocardial volume measured by late enhancement ($P = 0.06$) in OMI as well as AMI patients.9

No improvement was observed in OMI control group.

Regarding the safety issues, G-CSF-mediated inflammation and restenosis can be discussed. In MAGIC Cell-1 trial, we suggested potential risk of G-CSF-mediated restenosis in patients with myocardial infarction (restenosis rate of G-CSF group vs. cell infusion group vs. control = 50 vs. 50 vs. 30%, $P = 0.375$).

We evaluated underlying mechanisms of G-CSF-mediated restenosis and tested paclitaxel eluting stents as a preventive measurement in animal study.11 Animal experiments showed that paclitaxel eluting stent can prevent G-CSF-mediated neointimal growth and G-CSF can enhance endothelial recovery of drug eluting stent. On the basis of the results of animal study, we adopted DES exclusively in MAGIC Cell-3-DES trial. At 6 months follow-up of MAGIC Cell-3-DES trial, no differences in the development of restenosis and de novo progression of atherosclerosis were observed between the cell infusion group and the control group. Although G-CSF can mildly aggravate inflammation in patients with myocardial infarction, G-CSF did not increase the risk of myocardial ischaemia and did not deteriorate endothelial function measured by flow-mediated dilation (unpublished data). Recently, Steinwender et al.12 reported three cases of late stent thrombosis from a cohort of 24 patients who underwent bare-metal stent implantation and intracoronary infusion of mobilized PBSC by G-CSF. However we did not observe additional risk of late stent thrombosis in patients who received G-CSF-based stem-cell therapy in MAGIC Cell studies. Occurrence of death, myocardial infarction, and hospitalization due to angina were not significantly different between the cell-infusion group and the control group.

Lessons from MAGIC Cell trials and future directions

There are controversies whether G-CSF alone can improve cardiac function in patients with AMI. The results of MAGIC Cell trial7–9 and evaluation of retention efficacy of infused-stem cells10 strongly suggested that direct local delivery of stem cell is required to induce retention of stem cells to infarcted myocardium and improve cardiac function. Our study is insufficient to conclude effectiveness of G-CSF alone to improve cardiac function due to small sample size and heterogeneous characters of patients of the study, and relatively short duration of G-CSF treatment. However, we believe that there are evidences from lots of studies that at least intracoronary infusion of peripheral blood or bone-marrow stem cell is more reliable protective mechanisms for myocardial damage in ischaemic damage,5,6 G-CSF-mediated inflammation and its potential deteriorating effects of atherosclerotic disease may discourage long-term use of high-dose
Table 1 Clinical trials with G-CSF-based stem cell therapy in patients with acute myocardial infarction

Design	G-CSF dose and duration	Numbers of infused cells	Follow-up duration (month)	Study group	Baseline left ventricular ejection fraction	Change of left ventricular ejection fraction	P-value	Evaluation of left ventricular ejection fraction
G-CSF vs. control								
MAGIC Cell-1,8	Randomized open label	10 μg/kg/day for 4 days	24	G-CSF=10	53.0	+0.1	NS	SPECT
				Control=10	44.4	+6.9		
				Cell infusion=10	48.9	+10.0		
				G-CSF=11	NA	NA	NS	SPECT
Suzuki et al.13	Randomized open label	10 days (peripheral blood leukocyte=30 000/μL)	1	G-CSF=11	NA	NA	NS	SPECT
Takano et al.14	Randomized single blinded, placebo controlled	2.5 μg/kg/day for 5 days	6	Control=11	47.2	+4.6	NA	SPECT
Valgimigli et al.15	Randomized single blinded, placebo controlled	5 μg/kg/day for 4 days	6	G-CSF=19	45.6	+3.4	+22	NS SPECT
Ellis et al.16	Randomized, double blinded, placebo controlled	5 or 10 μg/kg/day for 5 days	1	Control=10	36.8	+14	NS	Echo
				G-CSF=6				
				G-CSF=6	38.7	+5.2		
				Control=6	33.7	+8.0		
				G-CSF=25	48	+6	<0.001	Echo
FIRSTLINE-AMI3	Randomized, open label	10 μg/kg/day for 6 days	6	Control=25	51.2	+8.5	NS	MRI
STEMMI2	Randomized, double blinded, placebo controlled	10 μg/kg/day for 6 days	6	G-CSF=37	47	-4	+8.5	NS MRI
				Control=6	51.2	-4	+8.5	NS MRI
				G-CSF=25	51.3	+8.0	NS	MRI
REVIVAL-24	Randomized, double blinded, placebo controlled	10 μg/kg/day for 5 days	6	Control=33	55.7	+8.0	NS	MRI
				G-CSF=56	51.3	+0.5		MRI
				Control=58	51.3	+8.0	NS	MRI
				G-CSF=19	41	+2.0		MRI
				Control=18	44	+5.3		MRI

Continued
G-CSF in patients with myocardial infarction. We believed that G-CSF should be considered primarily as a stem-cell mobilizer to avoid invasive bone-marrow harvest and used the shortest duration to mobilize adequate numbers of PBSC for local cell infusion.

Effects of intracoronary infusion of mobilized PBSC by G-CSF to improve LV systolic function in AMI patients is consistent through MAGIC Cell-1 and MAGIC Cell-3-DES trials. However the degree of improvement of LV systolic function is modest, and influences on clinical outcome cannot be adequately evaluated in our studies like most of other clinical trials of stem-cell therapy. Especially therapeutic efficacy of current strategy for OMI patients was very limited and should be enhanced. There are several aspects to be considered to enhance the therapeutic efficacy. First, enhancement of retention efficacy can be a reasonable strategy. In our study, only <5% of infused cells can be observed in infarcted myocardium. Poor retention efficacy can be responsible for limited efficacy of current stem-cell therapy. We tried to develop methods to pre-treat target tissue or stem cell to enhance retention. We have evaluated the role of magnetic nanoparticles to enhance homing and retention of infused stem cells to target tissues. Secondly, improvement of stem-cell function can be achieved by pre-treatment of patients and stem cells. We have studied pre-treatment of stem cells with genes like integrin-linked kinase, glycogen synthase kinase-3beta, beta-catenin, and small molecules such as angiopoetin-1, erythropoietin, peroxisome proliferators-activated receptors agonists in preclinical studies. In early 2007, we launched a clinical trial named MAGIC Cell-5-combicytokine trial to evaluate the efficacy of combination therapy with erythropoietin and intracoronary infusion of mobilized PBSC by G-CSF to improve cardiac function in patients with AMI.

Conclusion

Intracoronary infusion of mobilized PBSC by G-CSF can improve LV systolic function and remodelling in patients with AMI. However efficacy of the current strategy of G-CSF-based stem-cell therapy should be improved especially in patients with OMI. Influences on clinical outcomes should be evaluated in longer-term follow-up study.

Funding

This work was supported by grants from National Research Laboratory for Cardiovascular Stem Cell, Ministry of Science and Technology (H.-S.K.), and Innovative Research Institute for Cell Therapy, Ministry of Health and Welfare, Korea (A062260, H.-J.K. and H.-S.K.).

Conflict of interest: none declared.
References

1. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001;98:10344–10349.

2. Ripa RS, Jørgensen E, Wang Y, Thune JJ, Nilsson JC, Søndergaard L, Johnsen HE, Kaber L, Grande P, Kastrup J. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006;113:1983–1992.

3. Ince H, Petzsch M, Kleine HB, Schmidt H, Rehders T, Körber T, Schümchen M, Freund M, Nienaber CA. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte colony-stimulating factor (FIRSTLINE-AMI). Circulation 2005;112:3097–3106.

4. Zohlnhofer D, Dibra A, Koppara T, de Waha A, Ripa RS, Kastrup J. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction. JAMA 2006;295:1003–1010.

5. Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H, Ohtsuka M, Matsuura K, Sano M, Nishi J, Iwanaga K, Akazawa H, Kunieda T, Zhu W, Hasegawa H, Kunisada K, Nagai T, Nakaya H, Yamachi-Takihara K, Komuro I. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 2005;11:305–311.

6. Minatoguchi S, Takemura G, Chen XH, Wang N, Uno Y, Koda M, Arai M, Misao Y, Lu C, Suzuki K, Goto K, Komada A, Takahashi T, Kosai K, Fujiwara T, Fujisawa H. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 2004;109:2572–2580.

7. Kang HJ, Kim HS, Zhang SY, Park KW, Choi HJ, Koo BK, Kim YJ, Soo Lee D, Sohn DW, Han KS, Oh BH, Lee MM, Park YB. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004;363:751–756.

8. Kang HJ, Kim HS, Koo BK, Kim YJ, Lee D, Sohn DW, Oh BH, Park YB. Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-Year follow-up results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial. Am Heart J 2007;153:237.e1–237.e8.

9. Kang HJ, Lee HY, Na SH, Chang SA, Park KW, Kim HK, Kim SY, Chang HJ, Lee W, Kang WJ, Koo BK, Kim YJ, Lee DS, Sohn DW, Han KS, Oh BH, Park YB, Kim HS. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC cell–3 DES randomized controlled trial. Circulation 2006;114:145–151.

10. Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS. Tissue distribution of F-18 FDG labeled peripheral hematopoietic stem cell after intracoronary transplantation in patients with myocardial infarction. J Nucl Med 2006;47:1295–1301.

11. Cho HJ, Kim TY, Cho HJ, Park KW, Zhang SY, Kim KH, Kim SH, Hahn JY, Kang HJ, Park YB, Kim HS. The effect of stem cell mobilization by granulocyte-colony stimulating factor on neointimal hyperplasia and endothelial healing after vascular injury with bare-metal versus paclitaxel-eluting stents. J Am Coll Cardiol 2006;48:366–374.

12. Steinwender C, Hofmann R, Kypka A, Gabriel C, Leisch F. Late stent thrombosis after transcatheter transplantation of granulocyte-colony stimulating factor-mobilized peripheral blood stem cells following primary percutaneous intervention for acute myocardial infarction. Int J Cardiol 2007;122:248–249.

13. Zuki K, Nagashima K, Arai M, Uno Y, Miasa Y, Takemura G, Nishigaki K, Minatoguchi S, Watanabe S, Tei C, Fujihara H. Effect of granulocyte colony-stimulating factor treatment at a low dose but for a long duration in patients with coronary heart disease. Circ J 2006;70:430–437.

14. Takano H, Hasegawa H, Kuwabara Y, Nakayama T, Matsuino K, Miyazaki Y, Yamamoto M, Fujimoto Y, Okada H, Okubo S, Fujita M, Shindo S, Kobayashi Y, Komiyama N, Takekoshi N, Imai K, Himi T, Ishibashi I, Komuro I. Feasibility and safety of granulocyte colony-stimulating factor treatment in patients with acute myocardial infarction. Int J Cardiol 2007;122:41–47.

15. Valigianni M, Rigolin GM, Cittanti C, Malagutti P, Curello S, Percogli B, Polop RJ. Effects of peripheral blood stem cell mobilization with granulocyte–colony stimulating factor and their transcoronary transplantation after primary stent implantation for acute myocardial infarction. Am Heart J 2006;151:e7–e13.

16. Choi JH, Choi J, Lee WS, Rhee I, Lee SC, Gwon HC, Lee SH, Choe YH, Kim DW, Suh W, Kim DK, Jeon ES. Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction. Circ J 2007;71:486–494.

17. Schächinger V, Erbs S, Elaesser A, Haberbosch W, Hambrecht R, Hölschermann Y, Yu J, Corti R, Mathey DG, Hamm CW, Süsselbeck T, Assmus B, Tonin T, Dimmelser S, Zeiler A, REPAIR-AMI Investigators. Intra coronary bone marrow-derived progenitor cells in myocardial infarction. N Engl J Med 2006;355:1210–1211.

18. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995–4021.

19. Lee SP, Youn SW, Cho HJ, Li L, Kim TY, Yook HS, Chung JW, Hur JY, Yoon CH, Park KW, Oh BH, Park YB, Kim HS. Integrin-linked kinase, a hypoxia-responsive molecule, controls postnatal vasculogenesis by recruitment of endothelial progenitor cells to ischemic tissue. Circulation 2006;114:150–159.

20. Choi JH, Youn SW, Cheon SI, Kim TY, Hur J, Zhang SY, Lee SP, Park KW, Lee MM, Choi YS, Park YB, Kim HS. Regulation of endothelial cell and endothelial progenitor cell survival and vasculogenesis by integrin-linked kinase: protection from anchorage- or nutrient-deprived stress. Arterioscler Thromb Vasc Biol 2005;25:1154–1160.

21. Choi JH, Hur J, Yoon CH, Kim JH, Lee CS, Youn SW, Oh IY, Skurk C, Muroharah T, Park YB, Walsh K, Kim HS. Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem 2004;279:49430–49438.

22. Kim KI, Choi HJ, Hahn JY, Kim TY, Park KW, Koo BK, Shin CS, Kim CS, Oh BH, Lee MM, Park YB, Kim HS. β-catenin overexpression augments angiogenesis and myocyte regeneration through dual mechanism of vegf-mediated endothelial cell proliferation and progenitor cell mobilization. Arterioscler Thromb Vasc Biol 2006;26:91–98.

23. Cho CH, Kammerer RA, Lee HJ, Steinmetz MO, Ryu YS, Lee SH, Yasunaga K, Kim KT, Choi HH, Kim W, Kim SH, Park SK, Lee GM, Koh GY. COMP-Ang1: a designed angiopeptin-1 variant with nonleaky angiogenic activity. PNAS 2004;101:5547–5552.