Effect of Activating of Salicylic Acid and Foliar Application with Humic Acid on Some Growth and Yield Characteristics of Sunflower (*Helianthus annuus* L.)

A. G. Nayyef and H. J. Hammadi

1College of Education for Women- Dept. of Biology- University Of Anbar
2Corresponding author's Email: asasmaa703@gmail.com

Abstract. A field experiment was carried out in the Al-Jazeera region of Ramadi city, Anbar Governorate, at the autumn season of 2020 in sandy soil to study the effect of stimulating sunflower seeds with four levels of salicylic acid (0, 125, 250, and 375 mL$^{-1}$) and spraying with humic acid (0, 250, and 500 mL$^{-1}$) where the results showed that the concentration of 375 mL$^{-1}$ of salicylic acid recorded the highest average of the characteristics, the number of seeds per disc and the weight of 1000 grains, and the seed yield was (2034.9 seeds, 80.81 g and 164.97 g. plant$^{-1}$) respectively. While the second treatment of spraying with humic acid recorded the highest mean for the characteristics, the number of seeds per disc and the weight of 1000 g, and the seed yield was the highest average (1752.3 seed. disc, 68.43 g and 124.16 g. plant$^{-1}$).

1. Introduction

Sunflower is one of the oil crops in the world, as it is grown for the purpose of obtaining seeds that contain a high oil content of up to 55%, which considered the best oil consumed in the world [1]. As well as the quantity of seeds that are good fodder for farm animals and poultry due to their high protein content of 36%, carbohydrates 22%, oil 6% and other nutrients [2]. Although the great importance of this crop, its productivity per unit area is still low, not exceeding (2.11 ton. ha$^{-1}$), which is a low production compared to the world production, which exceeded (7.5 ton. ha$^{-1}$). The most important reasons for the lack of productivity of the crop is due to the bad environmental conditions, loss of water, and the causes of salinity in Iraqi soils [3]. Therefore, contemporary research has studied these problems and develop appropriate solutions for them, among these solutions are soaking the seeds of sunflower with salicylic acid. Which contributed the speed of germination seeds and improving them more resistant to environmental conditions [4]. As salicylic acid acts to make the plant benefit from the manufacturing, genetic and functional ability to the best level, in addition to be an environmentally harmless substance, it does not have any effect side or negative effect on humans or animals [5,6]. The spray humic acid activates the physiological characteristics of photosynthesis and enzymes and thus reflected on the increase in the growth and production of sunflower. In addition, it helps the plant adapt to difficult conditions such as drought, heat and salinity, increases soil fertility and activates many vital processes of the plant [7]. Therefore, the aim of the standing to investigate the effect of seed priming with different concentration of salicylic acid and the best spraying level of humic acid which gives the highest rate of grain yield and its components.

2. Material and Methods

A field experiment was carried out in Al-Jazirah region, Ramadi city, Anbar Governorate- Iraq, with the aim of activating sunflower seeds with salicylic acid (0, 125, 250, and 375 mL$^{-1}$) symbolized by (S0, S1, S2 and S3), respectively, and foliar application with humic acid using the concentration (0, 250 and 500 mL$^{-1}$) which are symbolized by (H1, H2 and H3) respectively. To improve some growth characteristics, seed yield and its components, some physiological measures, and in three replications, the experiment was carried out on 12 experimental units in one replicator, so that the total number of the experiment was 36 experimental units. As well as soil was fertilized with nitrogen and phosphate fertilizers according to the required recommendations [5]. Then it was divided into experimental units of (3m x 5m). If the distance between the lines is 50 cm, so the number of lines is 6 lines, but if the distance between the lines is 60 cm, the number of lines becomes 5 lines,) and the distance between one plant and another (25 cm) The experimental units were separated from each other by a space (1 m), the
The experiment was planted at 28/7/2020 for the autumn season, using local variety. The plant density was 80,000 plant ha⁻¹. The required fertilizers of nitrogen fertilizer were added in two doses, the first with planting and the second after a month of planting, and phosphate fertilizer was added in one dose before planting and according to the required recommendations [8]. The following characteristics were studied: leaf area, chlorophyll A, number of seeds per disc, weight of 1000 grains, biological yield and seed yield. The data were analyzed statistically according to the system of factorial experiments in the (RCBD). The significant differences were selected according to the test of less significant difference L.S.D at a probability level of 0.05, statistical analysis was using the program Gen Stat [9].

3. Results and Discussion

3.1 Growth indicators

It was evident from the results of Table (1) that the concentration of 375 mL⁻¹ of salicylic acid was higher in the characteristic of the leaf area, as this treatment gave the highest average of (7432 cm² plant⁻¹) compared to the comparison treatment (S0), which recorded the lowest Mean of (3409 cm² plant⁻¹). The results showed significant differences between the averages of the leaf area characteristic of the plant when spraying with humic acid, as the concentration 500 mL⁻¹ was higher by giving it the highest average of (5290 cm² Plant⁻¹) compared to the comparison treatment that recorded the lowest average for this characteristic amounted to (5179 cm² Plant⁻¹). The results of Table (2) showed that the concentration of salicylic acid 375 mL⁻¹ recorded the highest average for the characteristic of chlorophyll A, reaching (25.02 mg⁻¹ wet. weight) compared to the comparison treatment S0, which recorded the lowest average for the characteristic of chlorophyll A was (17.68 mg-¹ wet. weight). While the treatment H2 concentration (500 mL⁻¹) achieved the highest average of a chlorophyll A trait when spraying the plant with humic acid, it reached (22.91 mg⁻¹ wet. weight) compared to the comparison treatment H0, which recorded the lowest rate of chlorophyll A which was (16.36 mg⁻¹ wet. weight) [9].

3.2 Yield and yield its components

Results of (Table 3) showed the superiority of salicylic acid at a concentration of 375 mL⁻¹ as it gave the highest average characteristic of the number of seeds per disc, as this treatment was recorded (2034.9 grain disc⁻¹) compared to the comparison treatment S0, which recorded the lowest rate for this characteristic of (1370.8 grain disc⁻¹). The reason for the difference is due to the difference in its content of hormones that increase the absorption of the nutrient due to it containing more hormones than the concentration that gave the least number [8-9]. As for when spraying the plant with humic acid, it was found that there are significant differences between them, as the H2 concentration (500 mL⁻¹) was recorded by giving it the highest average number of seeds per disc amounted to 1752.3 grain disc⁻¹ compared to the comparison treatment that recorded the lowest rate for this characteristic reached (1675.9 grain disc⁻¹). The reason for this is that the (H2 concentration) caused a change that stimulated photosynthesis, increased the number of live cells, encouraged tissue growth, and thus increased the number of seeds in disc [14,11]. The results of (Table 4) indicated the found of significant differences between the different concentrations of humic acid, as the concentration (500 mL⁻¹) was recorded by giving it the highest average for a 1000-grain weight trait, which reached (58.53 g) compared to the comparison treatment that recorded the lowest average for this trait, reaching (58.53 g). The reason for the increase in this treatment is due to the positive effect of humic acid, which acted on increasing the biological interactions within the plant tissues, which led to an increase in the vegetative growth indicator most of it, especially the leaf area (table 1), and increased its efficiency in intercepting light and its translocation from the leaves and its accumulation in the seeds. These results agreed with [15, 16]. The results of Table (5) showed the biological yield of plants using different concentrations of salicylic acid, as the concentration of S3 (375 mL⁻¹) was recorded by giving it the highest average for this characteristic of (325.34 g. plant⁻¹) compared to the comparison treatment S0, which recorded the lowest average for this trait, which amounted to 213.77 g. plant⁻¹). The superiority of this treatment is due to the physiological effect of salicylic acid on the different growth traits. The results of this trait agree this result of other researchers [8, 17, 18, 19]. (Table 6) indicates the found of significant differences in the seed yield of the plant, where the S3 concentration (375 mL⁻¹) was recorded by giving it the highest seed yield average of the plant, which reached (164.97 g plant⁻¹). Compared to the comparison treatment S0, which gave the lowest average for this trait (70.25 g. plant⁻¹). This increase was a positive result of the role of salicylic acid in increasing some indicators of growth and yield, which were all reflected.
in the increase in seed yield. The results are in agreement with \[10,12\]. As well as (Table 6) showed a significant effect of humic acid, as the concentration of H2 (500 mL\(^{-1}\)) was recorded giving it the highest average of the seed yield characteristic of the plant, which reached (6124.1 g Plant\(^{-1}\)). The reason for the increase in the seed yield of the plant for the sunflower crop was attributed to the positive effect of humic acid, which worked on increasing the growth and development of the crop, which was positively reflected on the metabolic activities and the morphology of the plant \[20\].

Table 1. Effect of activating of salicylic acid and foliar application with humic acid of leaf area cm\(^2\)

Sal.	Hum.	S0	S1	S2	S3	mean
H0	3339	4096	6171	7108	5179	
H1	3662	4032	5572	7581	5212	
H2	3225	4032	6297	7606	5290	
mean	3409	4053	6013	7432		
LSD=0.05	H=60.7	S*H=121.4	S= 70.1			

Table 2. Effect of activating of salicylic acid and foliar application with humic acid of chlorophyll A

Sal.	Hum.	S0	S1	S2	S3	mean
H0	13.33	16.72	18.82	21.86	17.68	
H1	17.39	20.71	23.99	25.98	22.02	
H2	18.36	20.99	25.05	27.22	22.91	
mean	16.36	19.47	22.62	25.02		
LSD=0.05	H=0.87	S*H=1.755	S= 1.01			

Table 3. Effect of activating of salicylic acid and foliar application with humic acid of No. of seeds per disc

Sal.	Hum.	S0	S1	S2	S3	mean
H0	1324.2	1533.3	1796	2050.3	1675.9	
H1	1442.3	1561.0	1834.7	2022.7	1715.2	
H2	1346.0	1739.3	1892.0	2031.7	1752.3	
mean	1370.8	1611.2	1840.0	2034.9		
LSD=0.05	H=10.72	S*H=21.44	S=12.38			

Table 4. Effect of activating of salicylic acid and foliar application with humic acid of weight 1000 seed g.

Sal.	Hum.	S0	S1	S2	S3	mean
H0	46.57	48.54	62.43	76.58	58.53	
H1	52.49	54.26	65.37	79.29	62.85	
H2	53.29	56.18	77.68	86.57	68.43	
mean	50.78	52.99	68.49	80.81		
LSD=0.05	H= 0.028	S*H= 0.056	S= 0.033			
Table 5. Effect of activating of salicylic acid and foliar application with humic acid of biological yield g. plant$^{-1}$

Sal.	Hum.	S0	S1	S2	S3	mean
		201.07	219.33	257.9	303.06	245.34
H1		218.18	235.21	274.35	323.44	262.29
H2		222.09	254.44	312.08	349.51	284.54
mean		213.77	235.65	281.44	325.34	
LSD=0.05	H=3.43	$S^*H=6.87$	$S=3.97$			

Table 6. Effect of activating of salicylic acid and foliar application with humic acid of plant yield g. plant$^{-1}$

Sal.	Hum.	S0	S1	S2	S3	mean
		62.34	76.28	114.25	155.27	102.04
H1		74.89	85.23	118.34	163.27	110.43
H2		73.54	98.37	148.34	176.37	124.16
mean		70.25	86.62	126.97	164.97	
LSD=0.05	H=0.34	$S^*H=0.68$	$S=0.39$			

4. Conclusion

Through reviewing the previous results, we can conclude that sunflower responds to foliar application in its different stages of growth and that the best concentration of salicylic acid for soaking the seeds was (375 mL^{-1}) which recorded the highest average for all traits. It was also found that the foliar application with humic acid by treatment (500 mL^{-1}) which recorded high average for most of the characteristics. This indicates the possibility of using higher concentrations in other studies and different sites.

References

[1] Abu Al-Yazid, A. 2011. Importance of using vitamins to improve the growth and productivity of agricultural and horticultural crops. Egyptian Agriculture Network - World of Agriculture.

[2] Al-Beiruti, R. Z. A. 2001. Effect of the overlap between the concentrations and dates of foliar fertilization with boron on the sunflower (Helianthus annuus L.) in Abu Gharib. Master's thesis. College of Agriculture - University of Baghdad.

[3] Al-Fahdawi, M. I.K. 2016. Activation of seeds and foliar nutrition to improve the content of antioxidants, some physiological measures and productivity of sunflower plant. PhD thesis. Field Crops Department - College of Agriculture - Anbar University.

[4] Alrawi, A. N. T. M. 2014. Effect of salicylic acid concentration and irrigation periods on growth, yield and quality of cotton. Master Thesis. College of Agriculture - Anbar University.

[5] Al-Shammari, A. M. M A. & Al-Zubaidi, N.A.J .2017. Effect of foliar application with humic acid on some growth traits of (Helianthus annus L.) Journal of Agricultural, Environmental and Veterinary Sciences, 1(4), 7-8.

[6] Al-Sumaida'i, L. J. S. 2011. Effect of the level and source of zinc and the method of its addition on the growth and yield of sunflower grown in desert soil. Master thesis. Department of Education - College of Agriculture - Anbar University.

[7] Attia, H. A., & S. H. Kazem .2017. Response of some growth characteristics to two genotypes of sunflower and the number of sprays with humic acid. Karbala Journal of Agricultural Sciences, 4(1), 14-26.

[8] Emam, S., & Awad, A. 2017. Impact of Plant Density and Humic Acid Application on Yield, Yield Components and Nutrient Uptakes of Sunflower (Helianthus annuus L.) Grown in a Newly Reclaimed Soil. Journal of Soil Sciences and Agricultural Engineering, 8(11), 635-642.

[9] Hatami, H. 2017. The effect of zinc and humic acid applications on yield and yield components of sunflower in drought stress. Journal of Advanced Agricultural Technologies, 4.
[10] Kadioglu, A., Saruhan, N., Saglam, A, Terzi, R. & Acet T. 2011. Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. *Plant grow. Regul.*, 64, 27 - 37

[11] Karimian, M. A., Dahmardeh, M. & Bidarnamani, F. 2015. Assessment Quantitative and qualitative factors of peanut (*Helianthus annuus* L.) under drought stress and salicylic acid treatments. *Biol. Forum. Intl. J.*, 7(1), 871-878.

[12] Khan, W., Prithiviraj B. & Smith K. 2018. Photosynthetic response of sunflower and soybean to foliar application of salicylic. *J. plant physiol.*, 160, 485-492.

[13] Mervat, S., Abd El-Monem, A.A., Bassiouny, H.M.S. & Nadia, M.B. 2016. Physiological response of sunflower (*Helianthus annuus* L.) to exogenous arginine and humic acid under salinity Stres. *journal of Applied Sciences Research*, 8(10), 4943-4957

[14] Muhanna, A.A., Soliman, M.M., & Khudair, W.S. 2015. Effect of humic acid and nitrogen fertilization on some characteristics of the Maize crop components (*Zea mays* L) and their production. *Jordanian Journal of Agricultural Sciences*. 1(1), 145-155.

[15] Nasrallah, A.Y., Al-Halfi, I.H., Al-Aboudi, H.M., Muhammad A.A. & Mahmoud, A.M. 2014. Effect of spraying some plant extracts and antioxidants on sunflower growth and yield. *Iraqi Journal of Agricultural Sciences*. 45(7), 651-659.

[16] Saidi, I., Yousfi, N., & Borgi, M. A. 2017. Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (*Helianthus annuus*) seedling. *Journal of Plant Nutrition*, 40(16), 2326-2335.

[17] Scartazza, A., Fambrini, M., Mariotti, L., Picciarelli, P., & Pugliesi, C. 2020. Energy conversion processes and related gene expression in a sunflower mutant with altered salicylic acid metabolism. *Plant Physiology and Biochemistry*, 148, 122-132.

[18] Steel, R.G.D., & Torrie J.H., 1980. Principles and procedures of statistics. *Abiometrical approach* 2nd, Ed. Mc Graw Hill book Co., NY. U.S.A

[19] Tan, H. K. 2014. Humic matter in soil and the environment principles and controversies. Library of congress. NY. USA.