Passivity Analysis of Singular Neural Systems with Variable Delays

Ya-tao LAI¹,∗ and Xu-Y. LOU¹

¹Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)
Jiangnan University, Wuxi 214122, China
Laiyt_jn@163.com
*Corresponding author

Keywords: Singular neural systems, Passivity, Variable delays, Lyapunov functional.

Abstract. In this paper, some sufficient conditions for singular Hopfield neural networks (SHNNs) with variable delays to be passive are presented. The passivity of delayed singular Hopfield neural networks without uncertainties is studied, and then the result is extended to the case with time-varying parametric uncertainties. The results are based on a Lyapunov functional construction. Numerical examples are also given to demonstrate the effectiveness of the theoretical results. In addition, these criteria possess important leading significance in design and applications of passivity analysis of SHNNs with variable delays.

Introduction

In many applications such as optimization, control and image processing, it is of prime importance to ensure that the designed neural network be stable. Stability of neural networks with time delay are problems of recurring interest and has received a lot of attention (see, for example [1-10]).

The passivity theory intimately related to the circuit analysis methods [11-12] has received a lot of attention from the control community since the 70s (see [13-16], to cite only a few). The passivity theory intimately related to the circuit analysis methods [11] has received a lot of attention in control theory. The passivity theory provides a nice tool for analyzing the stability of systems, and has found applications in diverse areas such as stability, complexity, signal processing, chaos control and synchronization, and fuzzy control. In [17], the authors studied the passivity properties for delayed neural networks and derived the passivity condition for delayed neural networks without uncertainties, and then extend the result to the case with time-varying parametric uncertainties.

In this paper we shall consider the passivity problem based stabilization of delayed singular Hopfield neural networks (DSHNNs) with or without uncertainties. The passivity conditions are presented in terms of linear matrix inequalities (LMIs), which can be easily solved by using the effective interior-point algorithm. The layout of this paper is as follows. Problem formulation and preliminaries are given in Section 2. In Section 3, our results are given to ascertain the passivity of DSHNNs based on Lyapunov method and we give concluding remarks of results. In Section 4, we present an illustrative example. Finally, conclusions are drawn in Section 5.

System Description and Preliminaries

We consider the following DSHNNs model

\[E\dot{x}(t) = -Ax(t) + Bg(x(t)) + Cg(x(t - \tau(t))) + u(t), \quad (1) \]

where \(x(t) = [x_1(t), x_2(t), \cdots, x_n(t)]^T \in \mathbb{R}^n \) is the neuron state vector, \(E \in \mathbb{R}^{n \times n} \) may be singular, that is, \(\text{rank}(E) = r \leq n \), \(A = \text{diag}(a_1, a_2, \cdots, a_n) \) is a positive diagonal matrix, \(B^{n \times m} \) and \(C^{n \times m} \) are interconnection weight matrices, \(0 \leq \tau(t) \leq \tau_0 \) is the time delay, and it is assumed that \(0 \leq \tau \leq \tau^* < 1 \). \(u(t) \) is the input vector, \(g(x) = [g(x_1), g(x_2), \cdots, g(x_n)]^T \) denotes the neuron activation function, and
we let \(y(t) = g(x(t)) \) be the output of the neural networks. As in many papers, we assume that each activation function in (1) satisfies the following sector condition:

\[
 g_j(x_j)(g_j(x_j) - k x_j) \leq 0, \quad j = 1, 2, \ldots, n
\]

(2)

where \(k > 0 \) is a real constant.

Definition 1 [17]. The system (1) is called passive if there exists a scalar \(\gamma \) such that

\[
 2\int_0^t y^T(s)u(s)ds \geq -\gamma\int_0^t u^T(s)u(s)ds
\]

(3)

for all \(t_p \geq 0 \) and for all solution of (1) with \(x_0 = 0 \).

Passivity of DSHNNs without Uncertainties

In this section, we analyze the passivity of delayed singular neural network (1) without uncertainties and give a sufficient condition.

Theorem 1. If there exist symmetric positive definite matrices \(P, Q > 0 \), a positive diagonal matrix \(D = \text{diag}(d_1, d_2, \ldots, d_n) \) and a scalar \(\gamma > 0 \) such that the following LMI holds

\[
 M_1 = \begin{bmatrix}
 -E^T PA - A^T PE & E^T PB & E^T PC & E^T P \\
 B^T PE & -2kDEA + DEB + B^T E^T D + Q & DEC & D - I \\
 C^T PE & C^T E^T D & (1 - \tau^*)Q & 0 \\
 PE & D - I & 0 & -\gamma I \\
 \end{bmatrix} < 0,
\]

(4)

where \(I \) is the identity matrix of appropriate dimension. Then, the DSHNNs (1) is passive in the sense of Definition 1.

Proof: Consider a Lyapunov functional

\[
 V(t) = (Ex(t))^T PEx(t) + 2\sum_{i=1}^n d_i \sum_{j=1}^n e_{ij} \int_0^{\tau(t)} g_i(s)ds + \int_{\tau(t)}^t g^T(x(s))Qg(x(s))ds.
\]

(5)

Calculating the derivative of the Lyapunov functional \(V \) along the solution of (1), we obtain that
\[\dot{V}(t) - 2y^T(t)u(t) - \gamma u^T(t)u(t) \]

\[= (Ex(t))^TPEx(t) + (Ex(t))^TPEx(t) \]

\[+ 2g^T(x(t))DE\dot{x}(t) + g^T(x(t))Qg(x(t)) \]

\[- (1 - \dot{\tau}(t))g^T(x(t - \tau(t)))Qg(x(t - \tau(t))) \]

\[- 2y^T(t)u(t) - \gamma u^T(t)u(t) \]

\[\leq -x^T(t)(E^TPA + A^TPE)x(t) + 2x^T(t)E^TPB(x(t)) \]

\[+ 2x^T(t)E^TPCg(x(t - \tau(t))) + x^T(t)E^TPu(t) + u^TPEx(t) \]

\[- 2g^T(x(t))DEAx(t) + 2g^T(x(t))DEB(x(t)) \]

\[+ 2g^T(x(t))DECG(x(t - \tau(t))) + 2g^T(x(t))DEu(t) \]

\[+ g^T(x(t))Qg(x(t)) - (1 - \tau^*)g^T(x(t - \tau(t)))Qg(x(t - \tau(t))) \]

\[- 2g^T(x(t))u(t) - \gamma u^T(t)u(t). \] \hspace{1cm} (6)

Let \(z = [x^T(t), g^T(x(t)), g^T(x(t - \tau(t))), u^T(t)]^T \), we get

\[\dot{V}(t) - 2y^T(t)u(t) - \gamma u^T(t)u(t) \leq z^TM_1z. \] \hspace{1cm} (7)

Using the LMI (4), it follows

\[\dot{V}(t) - 2y^T(t)u(t) - \gamma u^T(t)u(t) < 0. \] \hspace{1cm} (8)

By integrating (8) with respect to \(t \) over the time period \(0 \rightarrow t_p \), we have

\[2\int_0^{t_p} y^T(s)u(s)ds \geq V(x(t_p)) - V(x(0)) - \gamma \int_0^{t_p} u^T(s)u(s)ds \] \hspace{1cm} (9)

for \(x(0) = 0 \), we have \(V(x(0)) = 0 \), so (3) holds, and hence the neural network (1) is passive in the sense of Definition 1.
Passivity of DSHNNs with Parametric Uncertainties

In this section, we extend the result of the above section to the case with time-varying parametric uncertainties, that is, we consider the following DSHNNs

\[
\dot{x}(t) = -(A + \Delta A(t))x(t) + (B + \Delta B(t))g(x(t)) + (C + \Delta C(t))g(x(t - \tau(t))) + u(t),
\]

where \(\Delta A(t), \Delta B(t), \Delta C(t) \) are time-varying parametric uncertainties and are defined by

\[
\Delta A(t) = L_0 F_0(t) H_0, \quad \Delta B(t) = L_1 F_1(t) H_1, \quad \Delta C(t) = L_2 F_2(t) H_2,
\]

where \(L_0, L_1, L_2, H_0, H_1, H_2 \) are known constant matrices of appropriate dimensions, and \(F_0(t), F_1(t), F_2(t) \) are unknown time-varying matrices with Lebesgue measurable elements bounded by

\[
F_0^T(t) F_0(t) \leq I, \quad F_1^T(t) F_1(t) \leq I, \quad F_2^T(t) F_2(t) \leq I.
\]

Theorem 2. If there exist symmetric positive definite matrices \(P, Q > 0 \), a positive diagonal matrix \(D = \text{diag}(d_1, d_2, \ldots, d_n) \), and a scalar \(\gamma > 0 \) such that the following LMI holds

\[
M_2 = \begin{bmatrix}
-E^T PA - A^T PE & E^T PB & E^T PC & -E^T PL_0 & E^T PL_1 & E^T PL_2 & E^T P \\
B^T PE - DA & D E^T C & (1 - \tau^*) Q & 0 & 0 & 0 & 0 \\
C^T PE & D^T E^T C & (1 - \tau^*) Q & 0 & 0 & 0 & 0 \\
-L_0^T PE & -L_0^T E^T D & 0 & 0 & 0 & 0 & 0 \\
L_1^T PE & L_1^T E^T D & 0 & 0 & 0 & 0 & 0 \\
L_2^T PE & L_2^T E^T D & 0 & 0 & 0 & 0 & 0 \\
PE & D - I & 0 & 0 & 0 & 0 & -\gamma I \\
\end{bmatrix} < 0,
\]

then the DSHNNs (1) is passive in the sense of Definition 1.

Proof: Consider a Lyapunov functional as

\[
V(t) = (Ex(t))^T PEx(t) + 2 \sum_{i=1}^{n} d_i \sum_{j=1}^{n} e_{ij} \int_{0}^{x(t)} g_i(s)ds + \int_{t-\tau(t)}^{t} g^T(x(s))Qg(x(s))ds.
\]

Then, we have that
\[V(t) - 2y^T(t)u(t) - \gamma u^T(t)u(t) \]
\[= (Ex(t))^T P\dot{x}(t) + (Ex(t))^T PEx(t) \]
\[+ 2g^T(x(t))DE\dot{x}(t) + g^T(x(t))Qg(x(t)) \]
\[-(1-\tau(t))g^T(x(t-\tau(t)))Qg(x(t-\tau(t))) \]
\[-2y^T(t)u(t) - \gamma u^T(t)u(t) \]
\[\leq -x^T(t)(E^T PA + A^T PE)x(t) + 2(Ex(t))^T PBg(x(t)) \]
\[+ 2(Ex(t))^T PCg(x(t-\tau(t))) + (Ex(t))^T Pu(t) + u^T P(Ex(t)) \]
\[-x^T(t)(E^T PL_0F_0^T(t)H_0 + (L_0F_0(t)H_0)^T PEx(t) \]
\[+ (Ex(t))^T P(L_1F_1^T(t)H_1)g(x(t)) + g^T(x(t))(L_1F_1^T(t)H_1)^T P(Ex(t)) \]
\[+ (Ex(t))^T P(L_2F_2^T(t)H_2)g(x(t-\tau(t))) \]
\[+ g^T(x(t-\tau(t)))(L_2F_2^T(t)H_2)^T P(Ex(t)) \]
\[+ (Ex(t))^T Pu(t) + u^T P(Ex(t)) \]
\[-2g^T(x(t))DEAx(t) - 2g^T(x(t))DE(L_0F_0(t)H_0)x(t) \]
\[+ 2g^T(x(t))DEB(x(t)) + 2g^T(x(t))DE(L_1F_1^T(t)H_1)g(x(t)) \]
\[+ 2g^T(x(t))DE(L_2F_2^T(t)H_2)g(x(t-\tau(t))) \]
\[+ 2g^T(x(t))DECg(x(t-\tau(t))) + 2g^T(x(t))Du(t) \]
\[+ g^T(x(t))Qg(x(t)) - (1-\tau^*)g^T(x(t-\tau(t)))Qg(x(t-\tau(t))) \]
\[-2y^T(t)u(t) - \gamma u^T(t)u(t). \quad (15) \]

Let
\[
z = [x^T(t), g^T(x(t)), g^T(x(t-\tau(t))), (F_0^T(t)H_0x(t))^T, \]
\[
(F_1^T(t)H_1g(x(t)))^T, (F_2^T(t)H_2g(x(t-\tau(t))))^T, u^T(t)]^T.
\]

One can have
\[V(t) - 2y^T(t)u(t) - \gamma u^T(t)u(t) \leq z^TMz. \quad (16) \]

Using the LMI (13), it follows that
\[V(t) - 2y^T(t)u(t) - \gamma u^T(t)u(t) < 0. \quad (17) \]
By integrating (17) with respect to t over the time period $0 \sim t_p$, we have

$$2\int_0^{t_p} y^T(s)u(s)ds \geq V(x(t_p)) - V(x(0)) - \gamma \int_0^{t_p} u^T(s)u(s)ds$$

(18)

for $x(0) = 0$, we have $V(x(0)) = 0$, so (3) holds, and hence the neural network (10) is passive in the sense of Definition 1.

Illustrative Example

Example 1. Consider a delayed singular Hopfield neural network (1) without uncertainties, whose activation function is $y_j = g(x_j(t)) = \tanh(x_j(t))$, $j = 1, 2, 3$. Obviously, this activation function satisfies the sector condition (2) with $k \equiv 1$. We let $u_1 = u_2 = u_3 = 1$, $v_1 = v_2 = v_3 = 2$,

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ -0.5 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0.1 & 0.5 & 0 \\ 0 & 0.4 & 0 \\ 0 & 0 & 0.3 \end{bmatrix}.$$

and let the time delay be $\tau(t) = 0.5 + 0.1\cos(t)$. So, we have $\tau^* = 0.1 < 1$. Applying Theorem 1 to this example and using the MATLAB LMI toolbox, we can obtain the following feasible solutions for the LMI (4)

$$P = \begin{bmatrix} 0.3796 & -0.0599 \\ -0.0599 & 0.3796 \end{bmatrix} > 0, Q = \begin{bmatrix} 1.2258 & -0.2007 \\ -0.2007 & 1.1715 \end{bmatrix} > 0, D = \begin{bmatrix} 0.7837 & 0 \\ 0 & 1.0991 \end{bmatrix} > 0,$$

and $\gamma = 1.2151 > 0$,

which means that the above neural network is passive in the sense of Definition 1.

Conclusions

In this paper, the problem of passivity analysis for singular Hopfield neural networks with variable delays is investigated. Based on Lyapunov stability theory and some analysis techniques, the passivity conditions are given in terms of linear matrix inequalities. The proposed approach is more flexible in computation. A numerical example is also given to illustrate the effectiveness of the theoretical results. In addition, these criteria possess important leading significance in design and applications of passivity analysis of SHNNs with variable delays.

References

[1] Cao J. Global Exponential Stability and Periodic Solutions of Delayed Cellular Neural Networks. Journal of Computer and System Sciences 2000; 60(1): 38-46.

[2] Huang H., Cao J.D., Qu Y.Z. Global robust stability of delayed neural networks with a class of general activation functions. Journal of Computer and System Sciences 2004; 69(4): 688-700.

[3] Jiang H., Teng Z. Global exponential stability of cellular neural networks with time-varying coefficients and delays. Neural Networks 2004; 17: 1415-1425.

[4] Gong W.Q., Liang J.L., Cao J.D. Matrix measure method for global exponential stability of complex-valued recurrent neural networks with time-varying delays. Neural Networks 2015; 70: 81-89.
[5] Yang L., Li Y.K. Existence and exponential stability of periodic solution for stochastic Hopfield neural networks on time scales. Neurocomputing 2015; 167: 543-550.

[6] Samli R., Yucel E. Global robust stability analysis of uncertain neural networks with time varying delays. Neurocomputing 2015; 167: 371-377.

[7] Ding Y.C., Shi K.B., Liu H. Improved exponential stability criteria for time-varying delayed neural networks. Original Research Article Neurocomputing 2015; 168: 283-297.

[8] Zheng Y., Chen T. Global exponential stability of delayed periodic dynamical systems. Physics Letters A 2004; 322: 344-355.

[9] Chen A., Cao J., Huang L. Exponential stability of BAM neural networks with transmission delays. Neurocomputing 2004; 57: 435-454.

[10] Li X. Global stability of cellular neural networks with constant and variable delays. Nonlinear Analysis 2003; 53: 319-333.

[11] Belevich V. Classical Network Synthesis. New York: Van Nostrand, 1968.

[12] Brune O. Synthesis of a finite two terminal network whose driving point impedance is a prescribed function of frequency. J Math Physics 1931; 10: 191-236.

[13] Hill P., Moylan P. The stability of nonlinear dissipative systems. IEEE Trans Automat Contr 1976; AC-21: 708-711.

[14] Lozano R., Joshi S. Strictly positive real transfer functions revisited. IEEE Trans Automat Contr 1990; 35: 1243 -1245.

[15] Willems J. Dissipative dynamical systems Part I: General theory. Arch Ration Mech Anal 1972; 45: 321-351.

[16] Willems J. Dissipative dynamical systems. Part II: Linear systems with quadratic supply rates. Arch Ration Mech Anal 1972; 45: 352-393.

[17] Li C., Liao X. Passivity Analysis of Neural Networks with Time Delay. Transactions on Circuits and Systems II: Express Briefs: Accepted for future publication 2005; 99: 1-4.