SYSTEMATIC REVIEW

Cardiovascular implications of coronavirus disease 2019: a systematic review [version 1; peer review: 1 not approved]

Ravi Ranjan Pradhan1, Ajay Kumar Yadav1, Shobha Mandal2

1Department of Internal Medicine, Provincial Hospital, Janakpur, Province-2, 0977, Nepal
2Department of Internal Medicine, Robert Packer Hospital, Sayre, Pennsylvania, USA

First published: 04 Aug 2020, 9:899
https://doi.org/10.12688/f1000research.25211.1
Latest published: 04 Aug 2020, 9:899
https://doi.org/10.12688/f1000research.25211.1

Abstract

Background: World Health Organization has declared coronavirus disease 2019 (COVID-19) as a Public Health Emergency of International Concern. It has killed thousands and millions are infected worldwide. Though COVID-19 is supposed to be primarily a disease of the respiratory system, it also has widespread implications on other systems as well. The aim of this systematic review is to summarize the cardiovascular implications of COVID-19.

Methods: PubMed, PubMed Central, EMBASE, and Google Scholar were searched for peer-reviewed articles which aimed to delineate the cardiovascular implications of COVID-19.

Results: A total of six articles (five original articles and one case report) were included. We found diverse cardiovascular implications of COVID-19 ranging from acute cardiac injury to death. New-onset abnormalities in electrocardiogram or echocardiogram, elevated plasma levels of cardiac troponin, NT-proBNP, and D-dimer have role in early identification of acute cardiac injury in such patients. Additionally, cardiac troponin and NT-proBNP can be used to evaluate prognosis and possible need for intensive care in these patients.

Conclusions: Acute cardiac injury is common in patients with COVID-19. Aggressive supportive management based on prognostic indicators along with management of heart failure, arrhythmias, acute coronary syndrome and thrombosis can improve clinical outcomes in such patients.

Keywords
Coronavirus disease 2019, COVID-19, Cardiovascular implications, Acute cardiac injury, Death

This article is included in the Disease Outbreaks gateway.
Corresponding author: Ravi Ranjan Pradhan (drravipradhan@iom.edu.np)

Author roles: Pradhan RR: Conceptualization, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Yadav AK: Project Administration, Writing – Original Draft Preparation, Writing – Review & Editing; Mandal S: Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2020 Pradhan RR et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Pradhan RR, Yadav AK and Mandal S. Cardiovascular implications of coronavirus disease 2019: a systematic review [version 1; peer review: 1 not approved] F1000Research 2020, 9:899 https://doi.org/10.12688/f1000research.25211.1

First published: 04 Aug 2020, 9:899 https://doi.org/10.12688/f1000research.25211.1
Introduction
In late 2019, a cluster of cases of ‘pneumonia of unknown origin’ emerged which was linked to seafood wholesale and wet market in Wuhan, China¹, that heralded the onset of coronavirus disease (COVID-19). The disease has now spread rapidly to several countries around the globe and has been declared a pandemic by WHO². By April 8, 2020, a total of 1,441,589 confirmed cases of COVID-19 with mortality of 82,933 were reported³. COVID-19 is probably the greatest threat to mankind of 21st century; it has not only challenged the current medical practices, but also imposed a huge psychological and socio-economic burden to the entire world.

Coronaviruses are a group of pathogen that primarily target the human respiratory system⁴. However, previous outbreaks of coronaviruses, i.e. severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS), have already shown multisystem involvement, including of the cardiovascular system, as well⁵–⁶. Given the increasing number of confirmed cases and death due to COVID-19, it is important to be acquainted with cardiovascular manifestations induced by this viral infection. However, there is only limited published data pertaining to cardiovascular presentations of COVID-19. The present systematic review aims to describe the cardiovascular implications of COVID-19 and fill the gap in the knowledge regarding understanding of varied cardiovascular manifestations of COVID-19.

Methods
Protocol and registration
We followed the recommendations established by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement⁷. The systematic review protocol was not registered due to the urgency of the matter and very limited available evidence on the topic.

Assessment of methodological quality and risk of bias
For quality assessment, we used the Newcastle-Ottawa scale (NOS). The total score was found to be 9 and all the studies are of high quality⁸.

Eligibility criteria
Published peer-reviewed articles from January 1, 2020 until June 15, 2020 which aimed to assess cardiovascular implications in patients with COVID-19 were included. Article language restrictions were not imposed. In addition to original articles, case reports, and case series were also included. Editorials, letters to editor, and correspondences were excluded.

Search strategy
We searched standard relevant publications indexed in PubMed, PubMed Central (PMC), EMBASE, and Google Scholar. Databases were searched using the search terms under the two search themes below, combined using the Boolean operator “AND”. For COVID-19, we used “Novel coronavirus”, “Novel coronavirus 2019”, “2019 nCoV”, “Coronavirus Disease 2019”, “COVID-19”, “Wuhan coronavirus,” “Wuhan pneumonia,” and “SARS-CoV-2.” For cardiovascular implications, we used “Cardiovascular implications”, “Acute myocardial injury”, “Acute cardiac injury”, “Arrhythmias”, “Heart failure”, and “Myocardial infarction”. A thorough review of the references revealed further relevant articles.

Study selection and data abstraction
First of all, we screened articles by title and abstract. Then, we examined full texts of relevant articles for inclusion and exclusion criteria. A data abstraction spreadsheet using Microsoft Excel version 2013 was developed, which included the following information: author, year of publication, journal, and country where the study was done, study design, sample size, baseline characteristics and laboratory parameters of the patients and cardiovascular implications of COVID-19. A third researcher checked the article list and data abstraction spreadsheet to ensure there were no duplicate articles. Any duplicated article was counted as a single article.

Results
Study selection
A total of 315 articles were retrieved using the search strategy. After screening by abstract and title, 52 articles were selected for full-text assessment. Of these, 46 articles were excluded as they were not relevant to research aims and objectives (Figure 1).

Study characteristics
All the studies were conducted in China in 2020 and all of them were original articles except for one case report, by Cui et al.¹⁰. Among the original articles, all were retrospective studies except study by Huang et al.¹¹, which was a prospective, observational study. All the studies have categorized patients into two groups: non-ICU/non-critical/without myocardial injury/with normal cardiac Troponin group and ICU/critical and severe/with myocardial injury/with elevated cardiac Troponin group. Critical and severe COVID-19 was defined as presence of one of the following conditions: respiratory failure requiring mechanical ventilation; shock; failure of other organs that requires treatment in ICU. Wang et al.¹² and Huang et al.¹³ defined acute cardiac injury as blood levels of hypersensitive troponin I above the 99th percentile upper reference limit (>28 pg/mL) or new abnormalities shown on electrocardiography and echocardiography. Xingwei et al.¹⁴ defined myocardial injury as blood levels of myocardial troponin ≥3 times the upper reference limit (34.2 ng/L). However, Chen et al.¹⁵ and Guo et al.¹⁶ defined myocardial injury as serum levels of troponin above the 99th percentile upper reference limit (Table 1).

Baseline characteristics and co-morbidities of the patients
The median age of the patients in all the studies was above 50 years, except in the studies by Huang et al.¹¹ (median age, 49 years) and Cui et al.¹⁰ (patient’s age; 55 days). In all studies, patients requiring ICU/critical care or patients with myocardial injury/elevated cardiac troponin were older comparatively, except in study conducted by Huang et al.¹¹ (median ages of patients in non-ICU and ICU groups were same). Male predominance was seen in all studies except those by Cui et al.¹⁰ and Guo et al.¹⁶. All the studies have included the underlying co-morbidities of the patients (Table 2).
Cardiovascular complications associated with COVID-19

Wang et al.12 established that among the 138 patients, acute cardiac injury was seen in \(n=10\) (7.2%), shock in \(n=12\) (8.7%), and arrhythmia in \(n=23\) (16.7%) patients. ICU patients were more likely to have one of these complications than non-ICU patients \((p < 0.001)\) [Table 3]. ICU patients demonstrated significantly high levels of creatine phosphokinase myocardial band (CPK-MB), cardiac troponin I (cTnI) and D-dimer. Similarly, the number of patients who had procalcitonin levels >0.05 ng/mL was higher in the ICU group compared with the non-ICU group \((n=27 [75\%] vs n=22 [21.6\%])\) [Table 4].

The study conducted by Huang et al.11 found that among the 41 patients, acute cardiac injury was seen in \(n=5\) (12\%) and shock in \(n=3\) (7\%) patients. Acute cardiac injury \(n=4\) ([31\%] vs \(n=1\) [4\%]) and shock \((n=3 [23\%] vs n=0 [0\%])\) were seen more commonly in ICU patients compared with non-ICU patients [Table 3]. Besides, ICU patients demonstrated significantly high levels of creatine phosphokinase (CPK), and D-dimer. Number of patients who had procalcitonin levels >0.05 ng/mL and cTnI >28 pg/mL (99th percentile) were more in ICU group compared with non-ICU group [Table 4].

Similarly, Chen et al.14 observed that among the \(n=150\) patients, \(n=22\) (7.1\%) had acute cardiac injury. In the same study, out of \(n=24\) patients in the critical group, \(n=15\) (62.5\%) had acute cardiac injury and \(n=7\) (5.6\%) out of 126 patients in non-critical group had acute cardiac injury and the difference was...
Author	Year	Country	Journal	Sample size	Study design	Objectives	Inclusion criteria	Exclusion criteria
Wang, et al.	2020	China	JAMA	138; non-ICU group: 102, ICU group: 36	Retrospective	To describe the epidemiological and clinical characteristics of novel coronavirus–infected pneumonia.	Patients with novel coronavirus–infected pneumonia diagnosed according to WHO interim guidance. Acute cardiac injury was defined if blood levels of hypersensitive troponin I above the 99th percentile upper reference limit (>28 pg/mL) or new abnormalities shown on electrocardiography and echocardiography.	NA
Huang, et al.	2020	China	Lancet	41; non-ICU group: 28, ICU group: 13	Prospective, observational	To describe epidemiological, clinical, laboratory, and radiological characteristics, treatment, and outcomes of patients confirmed to have 2019-novel coronavirus infection, and to compare the clinical features between ICU and non-ICU patients.	Real-time RT-PCR confirmed cases of 2019-novel coronavirus. Acute cardiac injury was defined if blood levels of hypersensitive troponin I above the 99th percentile upper reference limit (>28 pg/mL) or new abnormalities shown on electrocardiography and echocardiography.	NA
Chen, et al.	2020	China	Chinese J Card Dis	150; non-critical group: 126, critical group: 24	Retrospective	Analysis of myocardial injury and cardiovascular disease in critically ill patients with new coronavirus pneumonia.	Patients of new Coronavirus pneumonia clinically typified according to the “Diagnosis and Treatment Scheme for New Coronavirus Infection Pneumonia (Trial Version 6)”. Critically ill patients were defined by one of the following conditions: respiratory failure requiring mechanical ventilation, shock, and multi-organ failure requiring ICU admission. Acute cardiac injury was defined if blood levels of hypersensitive troponin I above the 99th percentile upper reference limit (>26.3 pg/mL).	Patients of acute myocardial injury diagnosed by clinical chest pain symptoms and ECG changes.
Author	Year	Country	Journal	Sample size	Study design	Objectives	Inclusion criteria	Exclusion criteria
---------------	------	------------------	-----------------	---	---------------	--	--	--
Xingwei, et al.	2020 March	China	Chinese J Card Dis.	54; Group with myocardial injury: 24, Group without myocardial injury: 30	Retrospective	To know the impact of complicated myocardial injury on the clinical outcome of severe or critically ill COVID-19 patients.	(1) 2019-nCoV nucleic acid test positive cases, and meeting the diagnostic criteria for severe / critically severe cases; (2) Critical and severe COVID-19 is defined in accordance with any of the following: (a) respiratory failure requiring mechanical ventilation; (b) shock; (c) combined with other organ failure requiring ICU monitoring and treatment; (3) Complete clinical data and at least two cardiac troponin test results. (4) Myocardial injury was defined as blood levels of myocardial troponin ≥ 3 times the upper reference limit (34.2 ng / L).	(1) Non-2019-nCoV infection confirmed cases; (2) patients with acute myocardial infarction, decompensated heart failure, and chronic renal failure; (3) missing clinical data.
Cui, et al.	2020 March	China	J Inf Dis.	1	Case report	To highlight that child with COVID-19 can also present with multiple organ damage and rapid disease changes.	NA	NA
Guo, et al.	2020 March	China	JAMA	187; Group normal cardiac troponin: 135, Group with elevated cardiac troponin: 52	Retrospective	To evaluate the association of underlying cardiovascular disease and myocardial injury with fatal outcomes in patients with COVID-19.	Patients with COVID-19 who were diagnosed as per WHO interim guideline, and who were either treated and discharged or died during hospitalization. Myocardial injury was defined by serum levels of troponin T were above the 99th percentile upper reference limit.	NA
Table 2. Baseline characteristics and co-morbidities of the patients.

Author	Age (years)	Male percentage	Hypertension (%)	Cardiovascular disease (%)	Diabetes (%)	Malignancy (%)	Cerebrovascular disease (%)	COPD (%)	CKD (%)	CLD (%)	HIV infection (%)
Wang, et al.	Median: 56; non-ICU group: 51, ICU group: 66	54.3	31.2	14.5	10.1	7.2	5.1	2.9	2.9	2.9	1.4
Huang, et al.	Median: 49; non-ICU group: 49, ICU group: 49	73	15	15	20	2	NA	NA	2	2	NA
Chen, et al.	Mean: 59; non-critical group: 57.1, critical group: 68.5	56	32.6	6	13.3	2	NA	NA	1.3	NA	NA
Xingwei, et al.	Median: 68; Group without myocardial injury 67, Group with myocardial injury 68.5	63	44.4	14.8	24.1	3.7	5.6	3.7	NA	NA	NA
Cui, et al.	55 days	Female	NA	NA	NA	NA	NA	NA	NA	NA	NA
Guo, et al.	Mean: 58.5; Group normal cardiac troponin: 53.53, Group with elevated cardiac troponin: 71.4	48.7	32.6	15.5	15	7	NA	2.1	3.2	NA	NA

ICU: Intensive Care Unit
NA: Not available
Table 3. Cardiovascular complications associated with COVID-19.

Author	Complications	All patients (%)	ICU patients (%)	Non-ICU patients (%)	p-value
Wang, et al.	Shock	8.7	30.6	1	< 0.001
	Acute cardiac injury	7.2	22.2	2	< 0.001
	Arrhythmia	16.7	44.4	6.9	< 0.001
	Death	4.3	NA	NA	NA
Huang, et al.	Shock	7	23	0	0.027
	Acute cardiac injury	12	31	4	0.017
	Death	15	38	4	NA
Chen, et al.	Acute cardiac injury	7.1	62.5	5.6	<0.001
	Death	7.3	41.7	0.8	<0.001
Xingwei, et al.	Acute cardiac injury	44.4	NA	NA	NA
	Death	48.1	75	26.7	0.001
Cui, et al.	Death	Patient recovered	NA	NA	NA
Guo, et al.	Acute cardiac injury	27.8	NA	NA	NA
	Arrhythmia	5.9	17.3	1.5^b	<0.001
	Death	23	59.6	8.9^d	<0.001

^a Group with myocardial injury
^b Group without myocardial injury
^c Group with elevated cardiac troponin T
^d Group without elevated cardiac troponin T
NA: not available.

Table 4. Inflammatory and cardiac biomarkers of the patients.

Author	Parameters	Normal range	All patients	Patients with severe disease or non-ICU patients	Patients with very severe disease or ICU patients	p-value
Wang, et al.	CPK-MB (U/L)	< 25	14	13	18	< 0.001
	Procalcitonin (ng/mL) ≥0.05, No. (%)	< 0.05	49 (35.5)	22 (21.6)	27 (75)	< 0.001
	Troponin I (pg/mL)	< 26.2	6.4	5.1	11	0.004
	D-dimer (mg/L)	0-500	203	166	414	<0.001
Huang, et al.	CPK (U/L)	≤185	132·5	133	132	0.31
	Procalcitonin (ng/mL) ≥0.05, No. (%)	< 0.05	3 (8)	0	3 (25)	NA
	Troponin I (pg/mL), >28 (99th percentile)	NA	5/41 (12%)	1/28 (4%)	4/13 (31%)	0.017
	D-dimer (mg/L)	NA	0.5	0.5	2.4	0.0042
Chen, et al.	hsCRP (mg/L)	NA	NA	30.9	84.9	<0.001
	NT-proBNP (ng / L)	NA	NA	83	1030	<0.001
	Troponin I (ng/L)	NA	NA	4.5	68.5	<0.001
Xingwei, et al.	CRP (mg/L)	10	NA	62.9^a	135^a	0.007
	NT-proBNP (ng/L)	<486	NA	201^b	971^a	<0.001
Cui, et al.	CRP (mg/L)	0-5	0.56	NA	NA	NA
	Procalcitonin (ng/mL)	0-0.046	0.15	NA	NA	NA
	CPK-MB (U/L)	0-25	46	NA	NA	NA
	Troponin I (ugm/L)	0-0.0156	0.025	NA	NA	NA
Table 3

Author	Parameters	Normal range	All patients	Patients with severe disease or non-ICU patients	Patients with very severe disease or ICU patients	p-value
Guo, et al. 16	hsCRP (mg/dL)	NA	4.04	3.13 d	8.55 d	<0.001
	Procalcitonin (ng/mL)	NA	0.08	0.05 d	0.21 d	<0.001
	Globulin (g/L)	NA	27.7	27.4 d	29.7 d	<0.001
	CPK-MB (ng/mL)	NA	1.14	0.81 d	3.34 d	<0.001
	Myoglobin (ug/L)	NA	38.5	27.2 d	128.7 d	<0.001
	NT-proBNP (pg/mL)	NA	268.4	141.4 d	817.4 d	<0.001
	d-dimer (ug/mL)	NA	0.43	0.29 d	3.85 d	<0.001

CPK-MB: Creatine phosphokinase myocardial band; CPK: Creatine phosphokinase; hsCRP: Hypersensitive C-reactive protein; NT-proBNP: N-terminal-pro brain natriuretic peptide.

a Group with myocardial injury
b Group without myocardial injury
c Group with elevated cardiac troponin T
d Group without elevated cardiac troponin T

statistically significant (p-value <0.001) (Table 3). Hypersensitive C-reactive protein (hs-CRP), N-terminal-pro brain natriuretic peptide (NT-proBNP) and cTnI levels of the patients were significantly higher in critical care cases than in mild cases (p-value <0.001) (Table 4). On univariate logistic regression analysis, critical disease status had a significant correlation with age, male gender, elevated NT-proBNP, elevated cTnI, elevated hs-CRP, hypertension, and coronary artery disease (all p<0.05). Multivariate logistic regression analysis revealed that elevated cTnI (OR=26.909, 95%CI 4.086–177.226, p=0.001) and NT-proBNP levels (β = 0.613, p < 0.001) were the independent risk factors of critical disease status.

In study performed by Xingwei et al. 13, among the n=54 severe/critically severe patients, acute myocardial injury was discovered in 24 (44.4%) patients while 26 (48.1%) patients died during hospital stay. The in-hospital mortality rate was significantly higher in the myocardial injury group compared to the group without myocardial injury (75.0% (18/24) vs. 66.7% (8/30), p-value = 0.001). In myocardial injury group, C-reactive protein (CRP) and NT-proBNP levels were also found to be statistically significant (p-value <0.001) compared with patients without myocardial injury (all p<0.05).

Cui et al. 10 described a case report of acute cardiac injury in an infant infected with COVID-19 as suggested by elevated plasma levels of CPK-MB, and cTnI.

Guo et al. 15 observed that among the n=187 patients, n=52 (27.8%) exhibited acute cardiac injury as indicated by elevated cardiac troponin T (cTnT) levels. During hospitalization, arrhythmias were seen in n=11 (5.9%) patients. Patient with elevated cTnT levels had more frequent malignant arrhythmias compared with normal cTnT (n=9 [17.3%] vs n=2 [1.5%]). The overall mortality rate was 23% (43 patients died) (Table 4). The mortality rates were 7.62% (8 of 105), 13.33% (4 of 30), 37.50% (6 of 16), 69.44% (25 of 36) for patients without underlying cardiovascular disease (CVD) and normal cTnT levels, with underlying CVD and normal cTnT levels, without underlying CVD but elevated cTnT levels, and with underlying CVD and elevated cTnT levels, respectively. Elevated cTnT levels was seen more commonly in patients with underlying CVD compared with patients without CVD (36 [54.5%] vs 16 [13.2%]). A significant positive linear correlation of plasma cTnT levels with plasma hsCRP levels (β = 0.530, p<0.001) and NT-proBNP levels (β = 0.613, p < 0.001) was also observed.

Discussion

In previous outbreaks of influenza and coronavirus (i.e. MERS and SARS coronavirus), cardiovascular implications like myocarditis, acute myocardial infarction, and acute exacerbation of heart failure (both systolic and diastolic) are well-recognized6–10 (Table 5). Based on the studies analyzed, we found that patients with COVID-19 have diverse cardiovascular implications ranging from acute cardiac injury to death. The incidence of acute cardiac injury ranges from 7 to 44% in different studies and the incidence were higher in patients admitted to ICU compared with non-ICU patients (Table 3). Additionally, cardiovascular involvement was more commonly seen in elderly males. Patients with underlying coronary artery disease, hypertension, cardiomyopathy and other co-morbidities are more prone to experience myocardial injury during the course of COVID-19. In these patients, superimposed viral illness damages the myocardial cells by enhancing the systemic inflammatory responses, aggravating hypoxia, and destabilizing coronary plaque. The exact pathophysiology of myocardial injury in previously healthy patients with COVID-19 infection is not fully understood. Cardiac injury can occur via direct or indirect mechanisms (Figure 2). Direct mechanism is exhibited by infiltration of virus into myocardial cells and myocardial inflammation, resulting into cardiomyocyte death. Indirect mechanisms include respiratory failure and hypoxemia, multi-organ dysfunction, hyper-inflammation accompanied by cytokine storm, which ultimately lead to myocardial injury20.
Table 5. Cardiovascular implications of SARS-CoV and MERS-CoV.

Outbreak	Author	Journal	Sample size	Cardiovascular implications
SARS	Yu, et al.⁴	BMJ	121	Hypotension, tachycardia, bradycardia, cardiomegaly, and arrhythmia
	Pan, et al. ⁷	Chinese J Tuberculosis and Respiratory Dis	15	Cardiac arrest
	Li, et al.⁸	Circulation	46	Sub-clinical diastolic impairment without systolic involvement on echocardiography
MERS	Alhogbani⁹	Annals Saudi Med.	1	Acute myocarditis and acute-onset heart failure

SARS: severe acute respiratory syndrome; MERS: Middle East respiratory syndrome; BMJ: British Medical Journal.

Figure 2. Pathophysiology of myocardial injury in patients with COVID-19.
Cytokine storm during infection possibly causes a reduction in coronary blood flow, destabilization of coronary plaque and microthrombogenesis. Inflammatory markers like CRP/hs-CRP, and procalcitonin were found to be significantly elevated in patients with myocardial injury/critical patients/ICU patients; suggesting a role for inflammation in COVID-19-mediated cardiac injury. Increased plasma levels of cardiac troponin, NT-proBNP, and D-dimer or new onset abnormalities in electrocardiogram or echocardiogram can be helpful in early identification of acute cardiac injury in patients of COVID-19. Besides, cardiac troponin and NT-proBNP may have a role in prognostication and possible need for intensive care in such patients. Aggressive supportive management based on prognostic indicators can improve clinical outcomes in such patients. Management of heart failure, arrhythmias, acute coronary syndrome and thrombosis is important.

Limitations of the review

Our review has included limited number of available studies with small sample size. Hence, the result of our systematic review should be considered with caution. All studies included in our review were conducted in China and most of them were retrospective. Thus, our review lacks heterogeneous and diverse population. We recommend multicenter, multi-national, prospective studies be carried on cardiovascular implications of COVID-19. It is difficult to postulate myocardial injury as the sole cause of death as it may have occurred due to multi-organ dysfunction.

Conclusion

Acute cardiac injury is common in patients with COVID-19 and when it occurs, has a poor prognosis. Monitoring of myocardial injury markers and cardiac function is of utmost importance, and attention should be paid to the early identification and comprehensive management of myocardial injury in such patients.

Data availability

Underlying data

All data underlying the results are available as part of the article and no additional source data are required.

Reporting guidelines

Figshare: PRISMA checklist for ‘Cardiovascular implications of coronavirus disease 2019: a systematic review’. https://doi.org/10.6084/m9.figshare.12658409.v1

The completed PRISMA checklist is available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

References

1. Zhu N, Zhang D, Wang W, et al.: A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. 2020; 382(8): 727–733. PubMed Abstract | Publisher Full Text | Free Full Text
2. Shohab C, Atalbi Z, O’Neill N, et al.: World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020; 76: 71–76. PubMed Abstract | Publisher Full Text | Free Full Text
3. Rothan HA, Byrareddy SN: The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020; 109: 102433. PubMed Abstract | Publisher Full Text | Free Full Text
4. Yu C, Wong RS, Wu E, et al.: Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J. 2006; 82(964): 140–4. PubMed Abstract | Publisher Full Text | Free Full Text
5. Poutanen SM, Low DE, Henry B, et al.: Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003; 348(20): 1995–2005. PubMed Abstract | Publisher Full Text
6. Khalid M, Khan B, Al Rabiah F, et al.: Middle Eastern respiratory syndrome coronavirus (MERS-CoV): case reports from a tertiary care hospital in Saudi Arabia. Ann Saudi Med. 2014; 34(5): 396–400. PubMed Abstract | Publisher Full Text
7. Moher D, Liberati A, Tetzlaff J, et al.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6(7): e1000097. PubMed Abstract | Publisher Full Text | Free Full Text
8. Pradhan R, Ajay Kumar Y, Shobha M: Cardiovascular implications of coronavirus disease 2019 (COVID-19): a systematic review. Figshare. Dataset. 2020. http://www.doii.org/10.6084/m9.figshare.12558409.v1
9. Peterson J, Welch V, Losos M, et al.: The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute. 2011. Reference Source
10. Cui Y, Tian M, Huang D, et al.: A 55-Day-Old Female Infant Infected With 2019 Novel Coronavirus Disease: Presenting With Pneumonia, Liver Injury, and Heart Damage. J Infect Dis. 2020; 221(11): 1775–1781. PubMed Abstract | Publisher Full Text | Free Full Text
11. Huang C, Wang Y, Li X, et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. PubMed Abstract | Publisher Full Text | Free Full Text
12. Wang D, Hu B, Hu C, et al.: Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–1069. PubMed Abstract | Publisher Full Text | Free Full Text
13. He X, Lai J, Cheng J, et al.: [Impact of complicated myocardial injury on the clinical outcome of severe or critically ill COVID-19 patients]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020; 48: E011. PubMed Abstract | Publisher Full Text
14. Chen C, Yan JT, Zhou N, et al.: [Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020; 48: E008. PubMed Abstract | Publisher Full Text
15. Guo T, Fan Y, Chen M, et al.: Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(7): 1–8. PubMed Abstract | Publisher Full Text | Free Full Text
16. Nguyen JL, Yang W, Io K, et al.: Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol. 2016; 1(3): 274–81. PubMed Abstract | Publisher Full Text | Free Full Text
17. Pan S, Zhang H, Li C, et al.: [Cardiac arrest in severe acute respiratory syndrome: analysis of 15 cases]. Zhonghua Jie He He Hu Xi Za Zhi. 2003; 26(10): 602–5. PubMed Abstract
18. Li SSL, Cheng CW, Fu CL, et al.: Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003; 108(15): 1798–803. PubMed Abstract | Publisher Full Text
19. Alhogybani T: Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann Saudi Med. 2016; 36(1): 78–80. PubMed Abstract | Publisher Full Text | Free Full Text
20. Akhrorov A, Marban E: COVID-19 and the Heart. Circ Res. 2020; 126(10): 1443–55. PubMed Abstract | Publisher Full Text
21. Huang C, Wang Y, Li X, et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✗

Version 1

Reviewer Report 14 September 2020

https://doi.org/10.5256/f1000research.27822.r70363

© 2020 Byrareddy S. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Siddappa N. Byrareddy
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA

Pradhan et al. used six articles to review the idea that cardiovascular issues can predict the severity of a COVID-19 diagnosis, or that COVID-19 infection can lead to heart conditions. Major strengths of this review is authors clearly said in discussion that very small number of papers to make clear conclusions. They also used several evidences to convenience readers. However, this manuscript has several weakness and need to be addressed.

1. On page four in the section “cardiovascular complications associated with COVID-19 patients”, it mentions that patients admitted to the ICU had a higher rate of cardiovascular complications but doesn't give a number to that stat until the very end. Will be good to say it upfront.

2. Also in the same paragraph, authors mention lot of chemicals like “procalcitonin levels, NT-proBNP”. Would it make sense to describe in more detail?

3. In discussion, it would make more sense to have two separate sections detailing patients with COVID-19 who developed heart conditions vs patients with underlying heart conditions who became infected with COVID-19?

4. The article Cui et al. describing the infant with COVID-19 and myocardial injury, but it got missed and no further discussion on that and hardly referenced in the actual review.

5. It is bit misleading the first sentence of their conclusion is indicative of what they wrote about “Acute cardiac injury is common in patients with COVID-19 and when it occurs, has a poor prognosis”. Because most of the paper was dedicated to people already suffering from cardiovascular issues before being infected with COVID-19.

6. It will be good to mention section of myocardial injury in younger populations?

7. Adding more papers and including some mechanistic angle is needed in order to
strengthen the review.

8. There are several papers published on this topic, therefore it is advised to include better key words and perform better systematic review.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Partly

Is the statistical analysis and its interpretation appropriate?
Partly

Are the conclusions drawn adequately supported by the results presented in the review?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: SARS-CoV-2; Cardiovascular diseases; COVID-19.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com