Identification of Rice Hybrids and Restorer Line Using Microsatellite Markers

Alice Xalxo, Prabha R. Chaudhari*, Deepak Sharma, Ritu R. Saxena, Satyapal Singh and Aashish Tiwari

Department of Genetics and Plant breeding, College of Agriculture Raipur, IGKV, (C.G.), India

*Corresponding author

ABSTRACT

Twenty four hybrids developed from three CMS lines viz. IR79156A, CRMS 31A and CRMS 32A and eight diverse rice genotypes were included in the present study. Molecular marker assisted identification with high power of genetic resolutions has emerged as a robust technique for cultivar fingerprinting, identity profiling, estimating and comparing genetic similarity, and variety protection. Out of sixteen, ten SSR markers produced polymorphic bands in the rice genotypes.RM171 and RM 216 were successfully recognized as hybrid and was discriminated from its parental lines (with same alleles).PCR based markers RM171 linked to Rf4 respectively, found to be more accurate compared to other linked markers in identifying restorers and differentiating maintainers from others. Molecular screening with RM171 for fertility restoration can be a useful tool for identifying restorers from breeding lines of unknown restoration status with 100% efficiency without making and evaluating large number of test crosses. These markers are useful in marker assisted identification of Rf genes in back cross breeding program to develop near isogenic lines with multiple Rf genes towards the development of superior restorer lines.

Keywords: Rice, Identification Restorers, Molecular Marker, Rf4.

Introduction

Rice yields have been reported to be stagnant due to genetic ceiling and it is opposite to human population which increases steadily. Alternative technologies are needed to overcome barriers to increase rice productivity viz. new plant type, hybrid rice and molecular breeding. Among these hybrid rice technology is an important approach for improving rice production. Whereas the first progeny will perform better than their parent lines. Hybrid rice known having 15-25% higher yield advantage than inbred rice. This technology is not contributing to food security but also beneficial to the environment.

The fingerprinting of rice hybrids and identification of their genetic relationships are very important for quality hybrid seed and plant yield improvement. Accordingly, clear-cut identification of elite crop varieties and hybrids is essential for protection and prevention of unauthorized commercial use (Nandakumr et al., 2004). In rice, it was reported that 1% impurity in hybrid seeds caused the yield reduction of 100 kg per hectare, hence, determination of seed genetic purity in hybrid crops is crucial to confirm the hybridization and resulted increased grain yields through heterosis.
Conventional characterization of hybrids based on specific morphological and agronomic data is time-consuming, restricted to a few characteristics, influenced by environmental condition and are inefficient. Molecular marker assisted identification with high power of genetic resolutions has emerged as a robust technique for cultivar fingerprinting, identity profiling, estimating and comparing genetic similarity, and variety protection.

SSR has much more polymorphism than most of other DNA markers, and is co-dominant and large in quantity. Therefore, SSR has become an ideal molecular marker for identification of plant variety and for genetic purity testing of hybrids

In hybrid rice technology maintainer and restorer lines will be identified by crossing parental (testers) lines with a CMS line and evaluating the F₁ for pollen and spikelet fertility. This system of restorer identification is time consuming and labour intensive. CMS line can be restored by nuclear genes governing fertility restoration (Rf genes) (Nematzadeh and Kiani, 2010). Among five fertility restorer genes identified for WA (wild abortive) cytoplasm. Among these Rf₃ and Rf₄ genes reported to be of more value for identification of restorers (Revathi et al., 2013). Several DNA markers closely linked to Rf genes have been reported (Ahmadakhah et al., 2007, Bazrkar et al., 2008, Alavi et al., 2009, Neeraja et al., 2009, Sheeba et al., 2009 and Grishma Shah et al., 2012) which are useful in marker assisted identification of restorers in rice germplasm and further use in hybrid breeding program. This information in normal breeding the reported markers need to be validated. In order to utilize present study was undertaken to DNA profiling of hybrids rice, their parental lines and to screen of restorer line markers linked with fertility restoration.

Materials and Methods

The present investigation was conducted at Research cum Instructional farm and molecular biology laboratory of department of Genetics and Plant breeding, College of Agriculture, IGKV Raipur during Kharif, 2014.

Plant Material and Genomic DNA isolation

The experimental materials for the present investigation comprises of three CMS lines and eight testers. Total 24 hybrids were developed in line X tester fashion. Out of 24 hybrids, eight hybrids were included in the study. Details of these lines are presented in the Table 1.

Total rice genomic DNA extracted from young succulent, disease and insect free seedlings by mini prep method. Genomic DNA was isolated from young leaves of 10 plants of each parent lines while the leaves of individual plant were used for hybrids. DNA was extracted to given by Doyle and Doyle, 1987procedure with minor modification.

The extracted DNA content was quantified and parental polymorphism studies done through 16 SSRs primers. PCR mix for one reaction (volume 20 µl) contained 2 µl DNA, Sterile and Nanopure water 13.5 µl, 10x Assay buffer, 1 µl dNTP, 0.5 ul of each forward and reverse primer, 0.5 ulTaq DNA polymerase.

PCR Amplification was performed with the following steps: predenaturing at 94°C for 4 min, followed by 35 cycles of 94°C for 1min, 55°C for 1min, and 72°C for 2 min, and last step is 5min at 72°C.

Amplified products were analyzed using 5% polyacrylamide gel. Electrophores is done for 1hr at 199 volts. The gel along with the DNA
sample then stained with Ethidium bromide (10 µg/10ml) for 40-45 mins. Gel was visualized on UV- transilluminator and image can be seen in computer.

SSR assay

PCR analysis was done using a set of 16 SSR (simple sequence repeat) markers (Table 2) to identify the parental polymorphism between three lines (IR 79156A, CRMS31A and CRMS 32A and eight testers viz., Jawapool, Swarna sub 1, R-1656-2816-9-3223-1, NPT-1, NPT-2, NPT-4, NPT-17, NPT-38. The genotypic dataset was generated based on the PCR amplification Profile by scoring presence and absence of specific allele with specific base pair (bp) size for all the samples. Validation of linked markers was carried out using for identified restorers.

Results and Discussion

Eight hybrids along with their respective parents were analyzed with ten most informative SSR markers and hybrids, those showing bands for both the parents (cytoplasmic male sterile lines and restorer lines) were identified as pure hybrid.

Genetic purity testing

Being co-dominant, polymorphic SSR markers were used to test the seed purity of rice hybrids. As expected, when polymorphic bands detected for two parent [CMS line (A) and restorer line(R)], two alleles were observed in F1 hybrid individuals, while off type seeds had only one allele. In this study, Seed purity test was carried out with individual seedlings in each hybrid by respected polymorphic markers.

Table.1 Rice hybrids and their parental lines used in this study

S. No.	Hybrids / Parent lines	Type	Source
1	IR 79156A (WA)	CMS	IRRI, Manila, Philippines
2	CRMS 31A (Kalinga)	CMS	CRRI, Cuttack
3	CRMS 32A (Kalinga)	CMS	CRRI, Cuttack
4	Jawapool	Tester	IGKV, Raipur, C.G.
5	Swarna-sub-1	Tester	CRRI, Cuttack
6	R-1656-2816-9-3223-1	Tester	IGKV, Raipur, C.G.
7	NPT-1	Tester	IGKV, Raipur, C.G.
8	NPT-2	Tester	IGKV, Raipur, C.G.
9	NPT-4	Tester	IGKV, Raipur, C.G.
10	NPT-17	Tester	IGKV, Raipur, C.G.
11	NPT-38	Tester	IGKV, Raipur, C.G.
12	IR79156A / Swarna sub 1	Hybrid	IGKV, Raipur C.G.
13	IR79156A / NPT-38	Hybrid	IGKV, Raipur C.G.
14	CRMS31A / R-1656-2816-9-3223-1	Hybrid	IGKV, Raipur C.G.
15	CRMS31A / NPT-4	Hybrid	IGKV, Raipur C.G.
16	CRMS31A / NPT-17	Hybrid	IGKV, Raipur C.G.
17	CRMS32A / Jawapool	Hybrid	IGKV, Raipur C.G.
18	CRMS32A / NPT-1	Hybrid	IGKV, Raipur C.G.
19	CRMS32A / NPT-2	Hybrid	IGKV, Raipur C.G.
Table 2 List of SSR markers used to detect polymorphism among the parents (A and R lines)

S. No.	Primer	Forward/Reverse	Sequence 5'-----------> 3'	Polymorphic/Monomorphic	Position
1	RM-1	Forward	GCAGAAACACAATGCAAAAA	Polymorphic	1
		Reverse	GCGTTGTTGGACCTGAC		
2	RM-154	Forward	ACCCTCTCCGCTCGCTCCTC	Polymorphic	2
		Reverse	CTCTCTCTCCTCGGACGGCTCC		
3	RM-263	Forward	CCCAGGCAGTCATGAACC	Polymorphic	
		Reverse	GCTACGTTTGAAGCTACCAGG		
4	RM55	Forward	CGTGCGGGATAGAGAAGG	Monomorphic	3
		Reverse	CCCGGTTATTTAAGGCG		
5	RM 514	Forward	AGATTTGACTCCCCCTTCCTCC	Monomorphic	3
		Reverse	CACGAGCATATTACATGTG		
6	RM-168	Forward	TGCTGCTGCTGCTGCTTTT	Polymorphic	
		Reverse	GAAACGGATATTAATCCAGG		
7	RM 307	Forward	GTACTACGACCCTACGTTTCAC	Monomorphic	4
		Reverse	GACAGATATGAATCCAGG		
8	RM 124	Forward	ATCGTCTCGTGCGGCCTGCTG	Monomorphic	4
		Reverse	CATGATCAGGGAGCTCCCCCCC		
9	RM-164	Forward	TCTTGCCCGTGCTAGAGATACC	Polymorphic	5
		Reverse	GCAGCCCTAAATGCTACATTCCTCC		
10	RM 454	Forward	TCAGACGCTTACGCTGCTG	Monomorphic	6
		Reverse	GTCATTGATGACCATAGCCG		
11	RM 510	Forward	AACGGGATAGTTTCTGCCC	Monomorphic	6
		Reverse	TGAGGACGAGGAGCAGATTCC		
12	RM-337	Forward	GTAAGAAAGGGAGGAGCGAG	Polymorphic	8
		Reverse	CGATAGATAGCTAGATGAGCCGCG		
13	RM-171	Forward	ACGGCGAGAAGACGTACCTAC	Polymorphic	10
		Reverse	ACAGGATACGTAGGCGCTTTTG		
14	RM-216	Forward	GATGCGAATGTAGCTGTAAG	Polymorphic	10
		Reverse	TGTATGAAAAACACACGGCCA		
15	RM-228	Forward	CGGCGATTACGTACCTTG	Polymorphic	10
		Reverse	GCTGGCGGCCCTGCTGCTAC		
16	RM-6100	Forward	TCTCTACCAGAGACCAGCACC	Polymorphic	10
		Reverse	GCTGGATACAGATGCTAC		

Table 3 Pollen fertility and spikelet fertility percentage of different CMS based hybrids in rice

S.No.	Genotypes	IR-79156A	CRMS 31A	CRMS 32A			
		SF %	PF %	SF %	PF %	SF %	PF %
1	Jawaphool	67.81	69.50	68.19	70.74	42.33	44.71
2	Swarna sub-1	76.54	78.54	63.66	64.92	72.51	74.75
3	R-1656-2816-9-3223-1	61.61	62.67	78.28	62.67	67.88	70.60
4	NPT-1	60.01	59.40	62.13	63.71	66.40	68.72
5	NPT-2	75.87	78.77	77.47	79.71	49.28	54.30
6	NPT-4	77.47	80.07	**79.32**	**81.32**	**77.15**	**82.51**
7	NPT-17	50.12	53.66	77.11	79.73	52.67	50.59
8	NPT-38	73.24	75.77	76.60	78.46	68.85	70.53

Note: (Pollen fertility % >80 and spikelet fertility % >75) Potential Restorer
Table 4 Gel image label description of Fig.1

56	IR79156A
31	CRMS31A
32	CRMS32A
96	Swrna sub 1
110	NPT 38
126	R 1656-2816-9-3223-1
132	NPT-4
136	NPT-17
146	Jawaphool
154	NPT 1
156	NPT 2

Table 5 Gel image label description of Fig.2

31A	136	135	32A	154	153	32A	156	155
RM 171								
Out of ten polymorphic markers, only two primers viz. RM 216 and RM171 have shown bands in both the parents (A lines and R lines), which indicating their absolute purity. Two primers were amplified as both alleles of their respective parents in RM 216 for a hybrid (IR 79156 A x Swarna Sub-1) hybrid and RM 171 for three hybrids viz. CRMS 31A/NPT-17, CRMS 32A/NPT 1 and CRMS 32A/NPT2, (Figs. 1 and 2). Identification and use of such hybrid specific markers can effectively reduce the cost and simplify the procedures of hybrid identification. Maintenance of hybrid seeds conformity in high level is essential for exploitation of hybrid vigor. Therefore, testing the hybrid seed purity is necessarily required before its release into the market. RM216 and RM171 markers for genetic purity test for three hybrids were recomended. Similar findings also reported by Yashitola et al., (2002), Rajendrakumar et al., (2007), Nandkumar et al., (2004) and Sundaram et al., (2008).

One DNA markers (RM 171) reported to be linked with restorer genes Rf4 of WA cytoplasm among eight tester lines. In present study RM171 showed efficiency in restorer identification whereas non-restorers also identified with higher selection accuracy in comparison with pollen and spikelet fertility (Table 3). These results are in close confirmation earlier reports Hashemi et al., (2013) found PCR based markers RM171 and exhibiting efficiency in restorer identification. In the present study heterozygous individual, RM171 and RM 216 were successfully recognized as hybrid and was discriminated from its parental lines (with same alleles) and molecular screening with RM171 for fertility restoration can be a useful tool for identifying restorers from breeding lines of unknown restoration status with 100% efficiency without attempting and evaluating large number of test crosses. Thus use of molecular markers linked to Rf genes would save time and cost besides adding accuracy in identification of restorers. This marker are useful in marker assisted identification of Rf genes in recurrent back cross breeding program to develop near isogenic lines with multiple Rf genes towards the development of superior restorer lines.

References

Ahmadikhah A, Karlov GI, Nematzadeh GH, GhasemiBezdi K (2007) Inheritance of the fertility restoration and genotyping of rice lines at the restoring fertility (Rf) loci using molecular markers. Int J Plant Prod 1(1):13–21.

Alavi, M., Ahmadikhah, A., Kamkar, B. and Kalateh, M. 2009. Mapping Rf3 locus in rice by SSR and CAPS markers. Int. J. Genet. Mole. Biol., 1: 121-126.

Bazrkar L, Ali AJ, Babaeian NA, Ebadi AA, Allahgholipour M, Kazemitavar K, Nematzadeh G (2008) Tagging of four fertility restorer loci for wild abortive cytoplasmic male sterility system in rice (Oryza sativa L.) using microsatellite markers. Euphytica 164:669–677.

Doyle, J.J. and Doyle, J.L. 1987. A rapid DNA
isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 19: 11-15.

Grishma Shah, Sasidharan, Sudeshna Chakraborty, N., Ruchi Trivedi, Rallapalli Ravikiran and Deeti Davla. 2012. Genetic diversity and molecular analysis for fertility restorer genes in Rice (Oryza sativa L.) for wild abortive (WA) cytoplasm using microsatellite markers. J. Agri. Tech., 8(1): 261-171.

Hashemi, S.H., Mohammad, S.A., Nematzadeh, G.A. and Arzani, A. 2009. Identification of rice hybrids using microsatellite and RAPD markers. African Journal of Biotechnology, 8(10): 2094-2101.

Nandakumar, N., Singh, A.K., Sharma, R.K., Mohapatra, T., Prabhu, K.V. and Zaman, F.U. 2004. Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers. Euphytica, 136(3): 257-264.

Neeraja, C. N., P. Balaji Suresh, N. Dharika, M.S. Ramesha, L. R. Vemireddy, R. M. Sundaram, and B. C. Viraktamath. 2009. Fine mapping of fertility restoration loci Rf3 and Rf4 for WA-CMS of rice. In 7th International Symposium on Rice Functional Genomics, 16–19 November 2009, Manila, Philippines, P. 5-15.

Nematzadeh GA, JuharAli A, Sattari M, Valizadeh A, Alinejad E, Nouri MZ (2006). Relation between different allogamic associated trait characteristics of the five newly developed cytoplasmic male sterile (CMS) lines in rice. Centr. Eur. Agric. J. 7: 49-56.

Revathi, P., PavaniMedoju, Arun Kumar Singh, R. M. Sundaram, SravanRaju, P., Senguttuvel, K., B. Kemparaju, A.S. Hariprasad, M. S. Ramesha, C. N. Neeraja, N. Shobha Rani and B. C. Viraktamath. 2013. Efficiency of molecular markers in identifying fertility restoration trait of WA-CMS system in rice. Indian J. Genet., 73(1): 89-93.

Sheeba N. K., Viraktamath B. C., Sivaramakrishnan S., Gangashetti M. G., Pawan Khera and Sundaram R. M. 2009. Validation of molecular markers linked to fertility restorer gene(s) for WA-CMS lines of rice. Euphytica, 167: 217-227.

Sundaram R.M., Naveenkumar, B., Biradar, S.K., Balachandran, S.M., Mishra, B., Ilyasahmed, M., Viraktamath, B.C., Ramesha, M.S. and Sharma, N.P. 2008. Identification of informative SSR marker capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment. Euphytica, 163: 215-224.

Virmani SS, Mao CX, Hardy B (eds) (2003) Hybrid rice for food security, poverty alleviation, and environmental protection. Proceedings of the 4th international symposium on hybrid rice, Hanoi, Vietnam, 14–17 May 2002. Los Banos (Philippines): IRRI, 407 pp.

Virmani SS, Viraktamath BC, Casa CL, Toledo RS, Lopez MT, Manalo JO (1997) Hybrid rice breeding manual. IRRI, Philippines, p 139.

Yashitola, J., Thirumurgan, T., Sundaram, R.M., Naseerullah, M.K., Ramesha, M.S., Sarma, N.P. and Santi, R.V. 2002. Assessment of purity of rice hybrid using microsatellite and STS markers. Crop Sci., 42: 1369-1373.

How to cite this article:

Alice Xalxo, Prabha R. Chaudhari, Deepak Sharma, Ritu R. Saxena, Satyapal Singh and Aashish Tiwari. 2017. Identification of Rice Hybrids and Restorer Line Using Microsatellite Markers. Int.J.Curr.Microbiol.App.Sci. 6(11): 3405-3411.

doi: https://doi.org/10.20546/ijcmas.2017.611.399