Yoga and heart rate variability: A comprehensive review of the literature

Anupama Tyagi, Marc Cohen
School of Health Sciences, RMIT University, Bundoora, Australia

ABSTRACT
Heart rate variability (HRV) has been used as a proxy for health and fitness and indicator of autonomic regulation and therefore, appears well placed to assess the changes occurring with mind-body practices that facilitate autonomic balance. While many studies suggest that yoga influences HRV, such studies have not been systematically reviewed. We aimed to systematically review all published papers that report on yoga practices and HRV. A comprehensive search of multiple databases was conducted and all studies that reported a measure of HRV associated with any yoga practice were included. Studies were categorized by the study design and type of yoga practice. A total of 59 studies were reviewed involving a total of 2358 participants. Most studies were performed in India on relatively small numbers of healthy male yoga practitioners during a single laboratory session. Of the reviewed studies, 15 were randomized controlled trials with 6 having a Jadad score of 3. The reviewed studies suggest that yoga can affect cardiac autonomic regulation with increased HRV and vagal dominance during yoga practices. Regular yoga practitioners were also found to have increased vagal tone at rest compared to non-yoga practitioners. It is premature to draw any firm conclusions about yoga and HRV as most studies were of poor quality, with small sample sizes and insufficient reporting of study design and statistical methods. Rigorous studies with detailed reporting of yoga practices and any corresponding changes in respiration are required to determine the effect of yoga on HRV.

Key words: Cardio-autonomic; meditation/relaxation; pranayama; vagal tone; yogic.

INTRODUCTION
Heart rate variability: A measure of cardiac autonomic control

There is growing evidence that physiological and psychological stress disrupts autonomic balance and prolonged autonomic imbalance is associated with a wide range of somatic and mental diseases. Such autonomic imbalance is reflected in measures of heart rate variability (HRV), which have been positively associated with aerobic fitness, resilience to stress, and psychological and physiological flexibility and negatively associated with cardiovascular disease, stress, neuronal atrophy, and maladaptive stress responses.

Heart Rate (HR) in healthy humans is influenced by physical, emotional, and cognitive activities and physiological oscillations that lead to variable beat-to-beat fluctuations in HR is known as HRV. HR and HRV are perhaps the most sensitive and easily accessible indicators of autonomic regulation and vagal activity. A high resting HR is a risk factor for cardiac disease and HRV reflects the dynamic balance arising from the coactivation, coinhibition, or reciprocal activation of parasympathetic and sympathetic nervous systems.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Tyagi A, Cohen M. Yoga and heart rate variability: A comprehensive review of the literature. Int J Yoga 2016;9:97-113.
or inhibition of the sympathetic and parasympathetic nervous systems\(^{[1,12]}\) and provides a proxy for the health, adaptability, flexibility, and neural regulation of the cardiovascular system.\(^{[1,7,12]}\)

Quantification of heart rate variability

HRV is measured using the R-R interval (QRS peak) on an electrocardiogram with the beat-to-beat variation reflecting the chaotic properties of the heart. There are a variety of different algorithmic approaches for operationalizing HRV that have been reported elsewhere.\(^{[11,13,14]}\) This section outlays a brief description of time and frequency domain analysis.

It is generally accepted that under resting conditions, HRV in the time domain mainly reflects parasympathetic outflow and there are many time domain measures such as standard deviation of all normal-to-normal “N-N” intervals, root mean square of successive differences of interval (RMSSD), pair of successive normal-to-normal intervals that differ by more than 50 ms (NN50), proportion of NN50 (pNN50) etc. Frequency domain analysis reflects overall autonomic balance\(^{[13,15]}\) and is the most widely used tool to investigate HRV and involves decomposition of sequential R-R intervals into sinusoidal components of different amplitude and frequency.\(^{[13,14]}\)

Power spectrum analysis is most commonly performed using the fast Fourier transformation which allows the classification of HRV into three frequency bands; very low frequency (VLF < 0.04), low frequency (LF - 0.04–0.15 Hz), and high frequency (HF - 0.15–0.4 Hz).\(^{[13,14]}\) The spectral components such as VLF, LF, and HF may be expressed in absolute values of power (ms\(^2\))\(^{[13]}\) while Pagani et al. suggest the use of relative values in the form of normalized units (n.u.) for LF and HF components such as HFn.u. and LFn.u.\(^{[15]}\) The total frequency or variance reflects the net effect of all physiological oscillations contributing to HRV while HR oscillations in the HF band are respiratory-dependent and reflect respiratory sinus arrhythmia (RSA). As RSA is vagally modulated, HF-HRV is often considered an index of parasympathetic activity during spontaneous breathing. However, while RSA and vagal tone are inversely related to respiration rate and directly related to tidal volume under rest conditions,\(^{[11]}\) the assumption that respiration is limited to the HF band has been questioned.\(^{[16]}\)

Just as HF-HRV is related to parasympathetic activity, LF-HRV is often related to sympathetic activity, yet the interpretation and clinical significance of HRV in the LF band have aroused intense controversy.\(^{[16,17]}\) The relationship between the LF band and sympathetic activity has been disputed because LF-HRV has been shown to be partly under parasympathetic control.\(^{[16]}\)

Further, it has been argued that respiratory modulation is frequency-dependent and the impact of respiration on HRV is exacerbated when the respiration rate is between 3 and 9 breaths/min, which is within the LF range.\(^{[12,17]}\) In this case, RSA affects primarily LF-HRV by producing large amplitude HR oscillations in the LF range.

The enormous intra- and inter-individual differences observed in respiratory patterns\(^{[13]}\) under many different conditions\(^{[18]}\) suggest that differences in respiratory patterns may influence the HRV spectra independent of autonomic output.\(^{[17]}\) Large-amplitude HR oscillations occurring in the LF range resulting from breathing at an optimal frequency may reflect resonance, also known as “coherence” occurring due to entrainment between HR, blood pressure (BP), and the relaxation response (RR)\(^{[19]}\) rather than sympathetic tone. While such entrainment of heart rhythm coherence may lead to improved BP control and gas exchange via efficient ventilation/perfusion matching,\(^{[12,19]}\) it obscures the interpretation of LF or LF/HF as measures of sympathetic tone or autonomic balance.

Interpretation of the “VLF” band (Hz) is even less clear than that of the LF band. While it is accepted that the VLF band is related to thermoregulation and is sympathetically mediated,\(^{[11]}\) standardized guidelines on HRV measurement suggest that VLF band measures cannot be accurately assessed from short-term recordings. The VLF band is, therefore, rarely reported in HRV studies.\(^{[11,13]}\)

Yoga and autonomic influence

Yoga involves a diverse range of mind-body practices such as meditation/relaxation techniques (dhyana), breathpractices (pranayama), and physical postures (asana) that aim to integrate the mind and body and bestow the practitioner with physical, mental, intellectual, and spiritual development. Several studies report associations between yoga and markers of autonomic activity such as HR,\(^{[20]}\) baroreflex sensitivity,\(^{[21]}\) galvanic skin resistance,\(^{[22]}\) evoked potentials,\(^{[23]}\) attention,\(^{[24]}\) cognitive ability, emotional regulation,\(^{[25]}\) and mental resilience.\(^{[26]}\) Further studies report that regular yoga practice improves a wide range of clinical conditions associated with autonomic dysfunction, such as hypertension,\(^{[27,28]}\) diabetes,\(^{[29]}\) anxiety,\(^{[28]}\) depression,\(^{[30]}\) and pain.\(^{[31]}\) Furthermore, two systematic reviews report that yoga practices have profound effects on autonomic and metabolic activities\(^{[29,32]}\) and reduce cardiovascular risk.\(^{[28]}\) In contrast, a recently published systematic review and meta-analysis that included 14 randomized clinical trials suggests there is no convincing evidence that yoga modulates HRV.\(^{[33]}\)
Despite the known, strong relationship between autonomic function and HRV, and multiple reports of changes in HRV with yoga practice, the literature on yoga and HRV has not yet been subjected to a comprehensive review. This current paper aims to review the existing literature and document the long- and short-term effects of different yoga practices on HRV.

METHODOLOGY

For this systematic review, a comprehensive search of multiple databases including Scopus, PubMed, PsycINFO, CINAHL, Cochrane, and Science Direct Database was conducted, and a separate search was performed in Indian medical journals through IndMed, which indexes more than 100 prominent Indian scientific journals. The bibliographies of identified papers were also searched for relevant articles. The search was performed for articles published up to July 2015 and was not otherwise restricted by date or study population. The primary search terms included yoga, yogic, asana/posture, pranayama/breathing, yoga nidra/relaxation, and meditation that included Transcendental, Brahma Kumaris, AUM, mantra and Kundalini, Kriya Yoga, Ananda Yoga, and Sudarshan Kriya with keywords HRV, RSA, autonomic, sympathetic, parasympathetic, and vagal. All studies that reported quantification of HRV in power spectrum frequency band, standard deviation values of beat-to-beat intervals or heart rhythm coherence with any yoga practice including yoga asanas (postures), pranayama (breathing), meditation, and yogic relaxation/nidra practices used either alone or as an integrated practice were included. Studies that included meditative practices directly associated with yoga such as transcendental meditation (TM) were also included in the review.

Studies were excluded if they were not in English, unobtainable, or only involved meditation and relaxation practices that are not directly associated with yoga such as Zazen/Zen, Buddhist, Vipassana or concentrative meditation, g-Tummo yoga, Qigong, RR, progressive muscle relaxation, and autogenic relaxation.

Selected studies were categorized according to the type of intervention: Relaxation/meditation, breathing, and postures/integrated yoga; the quality of the randomized controlled trials (RCT) was assessed using a Jadad score, which is a score from 0 to 5 that provides a measure of methodological rigor based on randomization, masking, and accountability (dropout and withdrawals).^34^

RESULTS

This review included 59 studies involving 2358 experimental subjects with study durations ranging from a single session to 6 months. A total of 16 RCTs were located with all of them having a Jadad score of 3 or less. A flowchart of the study search including the numbers of papers identified is shown in Figure 1. Studies, categorized according to the type of intervention (relaxation/meditation, pranayama practice, and integrated yoga/asana practice), are presented in Tables 1-5.

Heart rate variability and yogic relaxation or meditation

Table 1 summarizes the 12 studies investigating HRV during yoga relaxation and/or meditation. Seven of these studies are laboratory-based studies, of which six studies involved regular yoga/meditation practitioners while one involves non-yoga practitioners including hypertensive patients. Studies are longitudinal studies that include one cohort, one non-RCT (NRCT), and three RCTs that range from 6-week to over 6-month. These studies, which include 581 participants, reported varied outcomes with 8 studies reporting increases in HRV during yoga relaxation and/or meditation and 4 studies reporting no change.

Five of the laboratory-based studies compared HRV at baseline with HRV during or after a single laboratory session of yoga relaxation or meditation practice in regular yoga practitioners while a further study compared HRV during different stages of meditation. A further laboratory study compared HRV between different interventions after a single laboratory session study involving normotensive and hypertensive subjects. Of these studies, four reported reduced LFnu. and increased HFnu. while two different studies of TM in advanced meditators reported increased HF power during periods of meditation compared to baseline eyes closed\(^{127}\) and during periods of transcendental experience compared to other experiences.

Figure 1: Flowchart of study search and included studies
Table 1: Heart rate variability with yoga relaxation and meditation

Study authors and year	Population	Study design	Intervention	Length of intervention	Comparators	HRV* (only statistically significant changes are reported with ↓ decrease and ↑ increase)	Other outcomes	Jadad scale score for RCT
Vempati and Telles 2002[25]	Regular yoga practitioners (n=35)	Multiple practices in multiple session	Yoga beaded relaxation; Supine rest	10 min each session	Baseline versus postintervention	Frequency domain ↓ LFn.u., ↑ HFn.u., ↓ in LF/HF after yoga relaxation	↓ HR and skin conductance after relaxation	-
Markil et al. 2012[26]	Regular Yoga practitioners with experience of >2 months; (n=20)	Multiple practices in multiple session	Hatha Yoga and relaxation (HY&R); yoga relaxation (YR)	90 min each session	Baseline versus postintervention	Frequency domain ↓ LFn.u., ↑ HFn.u. after both the sessions	↓ HR after both HY&R and YR	-
Telles et al. 2013[27]	Regular male Yoga practitioners with >6 months experience (n=30)	Multiple practices in multiple session study	Effortless meditation in "dhyanas;" meditative focusing in "dharana;" nonmeditative thinking in "ekagata;" Random thinking in "ancala"	20 min each session	Baseline versus during intervention	Time domain ↑ in pNN50** after both the sessions	Frequency domain ↓ LFn.u., ↑ HFn.u. during and ↑ in skin resistance and ↑ in duration of dhyanas ekagata and ancala interventions	-
Travis and Wallace 1999[28]	Regular advanced meditators (n=20)	Single session	TM[H]	10 min	Baseline eyes closed versus meditation	Frequency domain ↑ HF amplitude during meditation compared to baseline	↓ HR, BR[22]	-
Travis 2001[30]	Regular advanced meditators (n=30)	Single session	TM	15 min	Two different stages of meditation (transcending versus other inner experience)	Frequency domain ↑ HF amplitude during transcending stage compared to other inner experience	Higher EEG alpha amplitude during transcending stages	-
Vempati and Telles 1999[31]	Regular Yoga practitioner (n=40)	Multiple practices in multiple supine rest sessions	Yoga-based relaxation; Supine rest	10 min each session	Baseline versus postintervention	Frequency domain ↓ LFn.u., ↑ HFn.u., ↓ LH/HF during relaxation compared to supine rest in both population groups	No change in vasomotor tone	-
Santana et al. 2014[32]	Hypertensive patients (n=16) and Normotensive population (n=14)	Multiple practices in multiple supine rest sessions	Yoga bases relaxation; Supine rest	20 min each session	Comparison between intervention	Frequency domain ↓ LFn.u., ↑ HFn.u., ↓ LH/HF after relaxation compared to supine rest in both population groups	No change in vasomotor tone	-
Yunati et al. 2014[33]	Healthy nonmeditators Study >40 years (n=30)	Cohort	Sahaja Yoga meditation	12 weeks	Preintervention versus postintervention	Frequency domain ↑ THms***, ↓ LFms[55]**, ↓ HFn.u. during meditation compared to during meditation	↓ in HR	-
Madanmohan 2004[34]	Healthy adolescents (n=43)	NRCT[11]	Yoga relaxation6 weeks group (n=26) no intervention control (n=17)	12 weeks	Preintervention versus postintervention	Frequency domain ↑ LFms[55]**, ↓ HFn.u. during meditation compared to during meditation	↓ HR following yoga training	-
Monika et al. 2012[35]	Females with menstrual irregularities (n=150)	RCT	Yoga Nidra 6 months (n=75) No intervention control (n=75)	12 weeks	Preintervention versus postintervention	Frequency domain No change in either group	↓ HR and ↓ in SBP***/DBP in yoga group	2

Contd...
during meditation.138 The one study examining HRV during meditation (\textit{dhyana}), focused thinking (\textit{dharana}), nonmeditative thinking (\textit{ekagra}), and random thinking (\textit{cancatla}) reported reduced LF\textit{n.u.} and increase HF\textit{n.u.} during meditation (\textit{dhyana}) and an increased LF\textit{n.u.} and reduced HF\textit{n.u.} during nonmeditative thinking and random thinking.122 Whereas the study examining HRV in normotensive and hypertensive subjects reported decreased LF\textit{n.u.} and increased HF\textit{n.u.} after yoga relaxation compared to supine rest.40 Furthermore, one study that compared HRV at baseline with yoga after yoga relaxation reported no change in HRV.139

A recent 12-week cohort study reported increases in both frequency and time domains41 whereas of the three randomized studies, one study of coronary heart disease patients (with Jadad score 3) reported a marginal increase in absolute power of HF-HRV (HF\textit{ms}^2) after 16-weeks of TM compared to a control group that received health education.45 Of the two RCTs reporting no change in HRV, one (with Jadad score 3) reported no change after 10-weeks of TM44 while another (with Jadad score 2) reported no change in HRV after 6-months of regular yoga relaxation practice.43 Similarly, a NRCT of adolescents reported no change in HRV after 6-weeks of yoga relaxation practice.42

Heart rate variability and yoga breathing

Table 2 summarizes 5 studies that involved rapid breathing practices. Two studies that measured HRV during rapid Kapalbhati breathing reported decreases in LF\textit{ms}^2 and HF\textit{ms}^244,47 while two studies that compared HRV before and after Kapalbhati breathing reported increased LF\textit{n.u.} and reduced HF\textit{n.u.},48 or no change in LF\textit{n.u.} and HF\textit{n.u.} and a reduction in pNN50 after the practice.49 The only longitudinal study was an RCT (with Jadad Score of 2) of elderly people regularly performing Bhastrika (rapid shallow breathing) that compared HRV before and after a 4-month intervention period. This study, which measured HRV during a period of regulated breathing at 12 breaths/min, reported decreases in LF\textit{n.u.} and LF/HF in the breathing group compared to controls.50

Table 3 summarizes the 13 studies that involved slow breathing practices. Of these, ten are laboratory based and three are longitudinal studies that include one cohort, one NRCT, and one RCT that range from 2-month to 5-month.

Nine laboratory-based studies compared HRV before and either during or after various slow breathing practices. Of these, two studies reported increases in LF\textit{ms}^244,47 and two reported increases in LF\textit{n.u.} with increase in LF/HF observed during breathing practice,54,56 while one study reported increased HR oscillations in the LF band.51 Similarly increased HR oscillations in the LF band and significant decreases in respiratory frequency were also reported during mantra chanting and rosary prayer compared to post-session spontaneous breathing.52 One study that examined extremely slow breathing at one breath/min in a single practitioner reported an increase in VLF\textit{ms}^2 and LF/HF and corresponding increases in HR while also reporting reductions in LF\textit{ms}^2 and HF\textit{ms}^2.55 Furthermore, a recent study of slow yoga breathing in regular yoga practitioners reported no change in frequency measures compared to baseline despite improvement in time domain measures.59 In addition,
Table 2: Heart rate variability and yoga rapid breathing

Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV* (only statistically significant changes are reported with ‘↓’ decrease and ‘↑’ increase)	Other outcomes	Jadad scale score for RCT†	
Stancá and Cohen, 1999	Regular yoga practitioners (n = 17)	Single practice in single session	Kapalbhati at 120 breaths/min	15 min (3 periods of 5 min each separated with 3 spontaneous breathing cycles)	Baseline vs. during intervention	Frequency domain↓ VLFms², ↓ LFms², ↓ HFms²	↑ HR**, ↑ SBP*/DBP* during Kapalbhati; ↓ BRS** during breathing	↑ HR	-
Peng et al. 2004	Experienced Kundalini yoga meditators (n = 11)	Multiple practices in single session	Kapalbhati (rapid breath at 120 breaths/min)	10 min	Baseline vs. during intervention	Frequency domain↓ LFms² (P<0.05), ↓ HFms² (P<0.05), ↑ LF/HF (P<0.01)	No change in HR with either breathing	-	
Raghuraj et al. 1998	Regular male yoga practitioners (n = 12)	Multiple practices in multiple session	Kapalbhati (120 breaths/min): ANB	1 min Kapalbhati: 15 min ANB	Baseline vs. post-intervention	Frequency domain↑ LFm.u.↑, ↓ HFm.u.*** and ↑ LF/HF after Kapalbhati	No significant change after ANB	-	
Telles et al. 2011	Regular male yoga practitioners (n = 38)	Multiple practices in multiple session	Kapalbhati at 60 breaths/min breath awareness	15 min session (three periods of 5 min each intermittent with 1 minute pause)	Baseline vs. during and post intervention	Frequency domain↑ LFm.u↑, ↓ LF/HF in breathing group	↑ HR post-Kapalbhati and breath awareness	-	
Santaella et al. 2011	Elderly population >60 years (n = 29)	RCT 4 months	Bhasrika breathing - rapid shallow breathing (n=15); control - stretching (n=14)	4 months	Pre- versus post-intervention	Frequency domain↓ LFm.u, ↓ LF/HF in breathing group	No significant change in controls	Improved respiratory variables (P<0.005) in breathing group	2

*HRV = Heart rate variability, RCT = Randomized controlled trial, *VLFms² = Very low frequency power, LFms² = Low frequency absolute value, HFms² = High frequency absolute value, **HR = Heart rate, *SBP = Systolic blood pressure, *DBP = Diastolic blood pressure, *BRS = Baroreflex sensitivity, |LFm.u. = Low frequency normalized unit, ***HFm.u. = High frequency unit, *pNNS0 = Proportion of NNS0

Similar improvements in time domain measures have been reported in regular yoga practitioners compared to non-yoga practitioners during slow yoga breathing regulated at 6 breaths/min. [88]

Three studies examined combinations of breathing that include both fast and slow breathing practices. Of these, two studies reported increased LFm.s² and reduced RMSSD during the practices [57] and decreased sympathovagal balance with increased HFm.u. and reduced LFm.u. after 2-month of regular practice. [60] Additionally, a 5-month RCT involving healthy non-yoga participants reported no change in frequency measures of HRV with Sudarshan Kriya. [62] A similar findings are reported in a 3-month NRCT involving chronic obstructive pulmonary disease patients with yoga breathing practice. [61]

Heart rate variability, yoga postures and integrated yoga practices

Table 4 summarizes 27 studies that investigated either yoga postures or integrated yoga practices that combine postures breathing and meditation. The majority of these studies reported enhanced autonomic balance.

Of the seven reported (3 with Jadad score of 3) ranging from 4-week to 36-week, two RCTs each with more than 20 healthy non-yoga practitioners [80,81] and four RCTs each with more than 60 participants [79,81-83] reported increased HFm.u., decreased LFm.u, and LF/HF with integrated yoga practices. While one RCT with 239 sedentary non-yoga practitioners reported increased heart rhythm coherence after 12 weeks of Vinyasa yoga. [85] A decrease in LFm.s²
Table 3: Heart rate variability (HRV) and yoga slow breathing

Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV* (only statistically significant changes are reported with ↑ increase and ↓ decrease)
Tyagi and Cohen: Yoga and heart rate variability 2013	Tyagi and Cohen: Yoga and heart rate variability 2013	Tyagi and Cohen: Yoga and heart rate variability 2013	Tyagi and Cohen: Yoga and heart rate variability 2013	Tyagi and Cohen: Yoga and heart rate variability 2013	Tyagi and Cohen: Yoga and heart rate variability 2013	Tyagi and Cohen: Yoga and heart rate variability 2013
Peng et al. 1999(1)	Kundalini meditators (n=4)	Single practice in single session	Kundalini meditation group: Slow breathing and chanting	Single session	Baseline versus during intervention	Frequency domain ↑ LFms(2) (higher amplitude of HR during both meditation)
Bernardi et al. 2001(2)	Healthy non-yoga practitioners (n=23)	Single practice in single session	Mantra chanting Ave Maria rosary	Single session	During intervention versus postintervention	Frequency domain ↑ LFms(2) (higher amplitude of HR oscillations in LF band during mantra chanting and Ave Maria rosary (high peaks in LF band)
Peng et al. 2004(3)	Experienced Kundalini yoga meditators (n=11)	Multiple practices in single session	Mindful, slow breathing with equal inhalation and exhalation	10 min each practice with equal duration of baseline	Baseline versus during intervention	Frequency domain ↑ LFms(2) in slow breathing and mantra focusing ↑ LF/HF during mantra focusing
Ghiya and Lee 2012(4)	Non-yoga practitioners (n=20)	Multiple practices in multiple session	ANB(7) and paced breathing (5 breaths/min)	15 min	Baseline versus postintervention	Frequency domain ↑ TFms(2), ↑ LFms(2), ↑ HFms(2) after ANB and paced breathing session ↑ HR after both the breathing session ↑ SBP/DBP during ANB ↓ in BR during all breathing practices
Raghuraj and Telles 2008(5)	Regular male yoga practitioners (n=21)	Multiple practices in multiple session	ANB; RNB(1), LNB(3)	Each sequence for 45 min	Baseline versus intervention	Frequency domain ANB: ↑ LF, n.u., ↓ HF, ↑ LF/HF during breathing ranging to <10 breaths/min No significant change in frequency domain during RNB and LNB breathing ↑ HR during breathing
Jovanov 2005(6)	Single male yoga practitioner (n=1)	Single practice in single session	ANB at 1 breath/ min	10 min excluding baseline	Baseline versus intervention	Frequency domain ↑ VLFms(2), ↓ LFms(2), ↓ HFms(2), ↑ LF/HF ↑ HR during breathing
Raghavendra et al. 2013(7)	Regular male yoga practitioners (n=50)	Multiple practices in multiple session	Relaxation with breath regulation and breath regulation	12 min each session	Baseline versus intervention	Frequency domain ↑ LFms(2), ↓ LFms(2), ↑ LFms(2) during relaxation with breath regulation ↓ HR during relaxation with breath regulation
Selvaraj et al. 2008(8)	Regular male yoga practitioners (n=8)	Single practice in single session	Shambhavi Mahamudra (incorporates sukh pranayama, aum chanting, rapid breathing and relaxed sitting)	15 min	Baseline versus intervention	Frequency domain ↑ LF/HF ↑ RMSSD(4), ↓ in pNN50(4) ↑ HR during pranayama, aum chanting and rapid breathing and ↓ in HR during relaxed sitting
Muralikrishnan et al. 2012(9)	Regular yoga practitioners (n=14) Non-yoga practitioners (n=14)	Multiple practices in single session	Deep breathing at 6 breaths/min	1 min	Comparison between group	Time domain ↑ SDNN(4), ↑ RMSSD, ↑ NN50(4), ↑ pNN50 in yoga practitioners compared to non-yoga practitioners ↓ HR in yoga practitioners compared to non-yoga practitioners

Contd...
Table 3: Contd...

Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV (only statistically significant changes are reported)	Other outcomes	Jadad scale score for RCT*	
Tyagi and Cohen (2014)[59]	Breathing group - Regular male yoga practitioners (n=26)	Multiple practices in single session	Breathing group - ANB and BA ****	25 min Baseline versus pre-intervention	Frequency domain ↓ ANB, ↑ SBP during ANB, ↓ SBP during ANB	↓ BR during ANB, ↑ SBP during ANB, ↓ SBP during ANB, ↑ SBP during ANB	-	-	
Jaju et al. (2014)[61]	Healthy non-yoga practitioners (n=59)	Cohort study	Yogic breathings - (Kapalbhati, Ujjayi, right nostril breathing, Sitkari and Shitali)	2 months Pre versus post-intervention	Frequency domain ↓ LF/HF, ↑ HFn.u., and LF/HF	No change in HR	-	-	
Bhimani et al. (2011)[60]	Healthy non-yoga practitioners (n=15)	NRCT	ANB at 5 breaths/min	3 months Pre versus post-intervention	Frequency domain ↓ ANB	No significant change in either group	Improvement in respiratory parameters in both groups	-	-
Kharya et al. (2014)[62]	Healthy non-yoga practitioners (n=50)	RCT	Sudarshan Kriya (Rapid breathing, slow breathing and Om chanting) (n=19) Prana yoga (n=16) Controls leisure walk (n=20)	5 months Pre versus post-intervention	Frequency domain No significant difference in either group	Profound improvement in depression, anger and stress coping behavior in Sudarshan Kriya group	1	-	

*HRV = Heart rate variability, RCT = Randomized controlled trial, LFms² = Low frequency absolute value, HF = Heart rate, BRS = Baroreflex sensitivity, BR = Breath rate, LF = High frequency, RNB = Right nostril breathing, **LBN = Left nostril breathing, **ANB = Alternate nostril breathing, **TF = Total frequency, **SBP = Systolic blood pressure, **DBP = Diastolic blood pressure, **VLFms² = Very low frequency absolute value, **LFn.u. = Low frequency normalized units, **HFn.u. = High frequency normalized units, **RMSSD = Root mean square of successive differences of intervals, ***pNNSO = Proportion of NNSO, **SDNN = Standard deviation of NN intervals, ****NNSO = Pair of successive NN intervals that differ by more than 50 ms, ****NRCT = Nonrandomized controlled trial

Table 4: Heart rate variability, yoga postures, and integrated yoga

Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV* (only statistically significant changes are reported with ‘↓’ decrease and ‘↑’ increase)	Other outcomes	Jadad scale score for RCT*
Howorka et al. (1995)[63]	Healthy non-yoga practitioners (n=not reported)	Multiple practices in multiple session	Yoga session (headstand, shoulder stand and forward bend postures); aerobic exercise’ rest	10 min each intervention Baseline versus postintervention	Frequency domain ↓ LFms², ↑ HFn.u., ↓ LF/HF after yoga	No change either after aerobic or rest	-	-
Manjunath and Telles (2003)[64]	Regular male yoga practitioners (n=40)	Multiple practices in single session	Headstand without support (n=20) Headstand with support (n=20)	Single session Baseline versus postintervention	Frequency domain ↑ HFn.u. and ↑ LF/HF after headstand without support	Similar less significant change after headstand with support	-	-
Pitale et al. (2015)[65]	Regular yoga practitioners (n=12)	Multiple practices in single session	Yoga session (standing, forward bend and inverted - shoulder and head stand postures)	Single session Baseline versus intervention	Frequency domain ↑ LF and ↑ HF during standing postures	↓ LF, ↑ HF during inverted and forward bend postures	-	-

International Journal of Yoga - Vol. 9 - Jul-Dec-2016

Contd...
Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV (only statistically significant changes are reported)	Other outcomes	Jadad scale score for RCT*	
Melville et al. 2012[66]	Sedentary healthy office employees (n=20)	Multiple practices in multiple session	Chair-based gentle integrated yoga; guided meditation Control during routine office work	15 min each intervention	Comparison between interventions	Frequency domain ↑ LFn.u., ↑ LF/HF during yoga compared to control session Time domain ↑ in SDNN during yoga compared to control session ↑ BR** during yoga and meditation compared to control ↑ HR during yoga, ↓ in HR during meditation compared to control ↓ stress scores during yoga and meditation	↑ in BR during CM and ↓ in HR and BR after CM	-	
Sarang and Telles 2006[67]	Regular male yoga practitioner (n=42)	Multiple practices in multiple session	CM§§; supine rest	Multiple sessions	Baseline versus during and postintervention	Frequency domain ↑ LFn.u., ↑ LF/HF during postural sequences of CM ↓ in LFn.u., ↑ HFn.u., ↓ LF/HF after CM No significant change with supine rest ↑ in HR and BR during CM and ↓ in HR and BR after CM		-	
Vempati and Telles 2000[68]	Non-yoga practitioners with occupational stress (n=26)	Multiple practices in multiple session	CM with yoga philosophy including yogic management techniques CM; supine rest	2 days	Pre- versus post-intervention	Frequency domain ↑ in HFn.u., ↓ LF/HF ↓ LFn.u	↓ BR after yoga intervention		-
An et al. 2010[69]	Healthy females non-yoga practitioners (n=28)	Multiple practices in multiple session	CM; supine rest	Multiple sessions	Baseline versus postintervention	Frequency domain ↑ LFn.u., ↑ HFn.u., ↓ LF/HF after CM Time domain ↑ pNN50 and RMSSD after CM No significant change in either domain with supine rest ↑ in HFn.u., ↓ LF/HF after CM	↓ HR and respectively after CM and supine rest		-
Patra and Telles 2010[70]	Regular yoga male practitioners (n=30)	Multiple practices in multiple session	CM; Supine rest	Multiple session	Comparison between intervention	Frequency domain ↑ LFn.u., ↓ LF/HF during sleep after CM compared to supine rest Time domain ↑ pNN50 during sleep after CM compared to supine rest Time domain ↑ RMSSD, ↑ pNN50 with yoga practice compared to walking Frequency domain ↓ in LFms²	↓ HR during sleep after CM	-	
Khattab et al. 2007[71]	Regular yoga practitioners (n=11)	Multiple practices in multiple session	Iyengar yoga, walking	Multiple sessions	Comparison between intervention	Time domain ↑ RMSSD, ↑ pNN50 with yoga practice compared to walking Frequency domain ↓ in LFms²	↓ HR with yoga compared to walking Improvements in the scores of depression; hostility trait anxiety and anger		-
Shapiro et al. 2007[72]	Unipolar major depressive patients (n=17)	Cohort study	Iyengar yoga	8 weeks	Baseline versus postintervention	Time domain ↑ RMSSD, ↑ pNN50 with yoga practice compared to walking Frequency domain ↓ in LFms²		-	

Contd...
Table 4: Contd...

Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV (only statistically significant changes are reported)	Other outcomes	Jadad scale score for RCT*
Dolgoff-Kasper et al. 2012[81]	Patients awaiting organ transplant (n=6)	Cohort study	Laughter yoga - integrated gentle yoga practices with unconditional laughter for 3 weeks control period with open discussion for 1 week	4 weeks	Baseline versus postintervention	Time domain ↑ SDNN, ↑ RMSSD after yoga intervention compared to control period	Significant improvements in the scores of mood states, anxiety scores after yoga intervention compared to the control period	-
Papp et al. 2013[84]	Participants with elevated blood pressure (n=12)	Cohort study	Yoga postures (general, semi inversion and inversion)	8 weeks	Baseline versus postintervention	Time domain ↑ pNN50 after yoga intervention	No change in BP**	-
Shankarappa and Prabha 2013[87]	Non-yoga practitioners (n=50)	Cohort study	Integrated yoga (yoga stretching, asana, and pranayama)	90 min daily/6 days a week (12 months)	Pre- versus post-intervention	Time domain ↑ in SDNN	No change in BP**	-
Singh and Telles 2009[88]	Hypertensive patients (n=11) and diabetic patients (n=6)	Cohort study	Integrated yoga (asana, pranayama, and meditation)	7 days	Pre- versus post-intervention	No significant change in yoga group with integrated yoga in frequency and time domain in either group	No change in BP**	-
Venkatesh et al. 2014[87]	Healthy female participants (n=22)	Cohort study	Integrated yoga (asana, pranayama, and meditation)	30 days	Pre- versus post-intervention	Frequency domain ↓ in LFms** Time domain ↑ in SDNN	↑ FVC***; ↑ PEFR**§§§	-
Niranjan et al. 2009[89]	Hypertensive and normotensive (n=31)	NRCT*	Yoga group integrated yoga practice (n=16); exercise group - warming and treadmill (n=16) Yoga + exercise (n=15) Normotensive control (no intervention - n=31)	9 months	Pre- versus post-intervention	Time domain ↑ in inter-beat interval in exercise + yoga group after intervention and in exercise group No change in yoga group	No change in BP** in exercise + yoga group and exercise group	-
Satyapriya et al. 2009[90]	Non-yoga females in 18-20 weeks of pregnancy (n=90)	RCT	Integrated yoga and deep relaxation for second and third trimester (n=45) Control with prenatal exercises and supine rest (n=45)	Up to 36th week of pregnancy	Pre- versus post-intervention for each group	Frequency domain ↑ Hf, ↓ Lf, ↓ H/L after yoga and relaxation group Similar less significant changes in control group	↓ subjective stress scores yoga group	2
Patil et al. 2013[91]	Non-yoga junior athletes (n=24)	RCT	Integrated yoga intervention - asana, pranayama relaxation and meditation (n=12) Control - routine practice	4 weeks	Pre- versus post-intervention	Frequency Domain ↑ in Hf, ↓ Lf, ↓ H/L in LF/HF yoga group; no significant change in control	↓	2
Huang et al. 2013[92]	Healthy non-yoga female practitioners (n=63)	RCT	Integrated yoga practice (n=30) No intervention control (n=33)	8 weeks	Pre- versus post-intervention for each group	Frequency domain ↑ Hf, ↓ Lf, ↓ H/L in yoga group No change in control group	↓	2

Contd...
Table 4: Contd...

Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV (only statistically significant changes are reported)	Other outcomes	Jadad scale score for RCT*
Krishna et al. 2014[82]	Congestive heart failure patients (n=92)	RCT	Yoga group integrated yoga practice with standard medical therapy (n=44); Control group with standard medical therapy (n=48)	12 weeks (60 min session thrice weekly)	Pre- versus post-intervention and comparison between groups	Frequency domain ↑ HF, ↓ LF, ↓ LF/HF after yoga intervention group and in control group	Profound improvements in yoga group compared to control group	2
Sawane and Gupta 2015[83]	Sedentary healthy participants (n=81)	RCT	Yoga intervention – (Iyengar)-asana and pranayama (n=41); Control-swimming (n=40)	12 weeks (60 min session, 6 days/week)	Pre- versus post-intervention and comparison between groups	Frequency domain ↑ HFn. u., ↓ LFn. u., ↓ LF/HF in both groups No significant difference between groups	Time domain ↑ SDNN, ↑ RMSSD ↑ pNN50 in both groups Improvement were more profound in yoga group	3
Nagendra et al., 2015[84]	Non-yoga healthy student (n=30)	RCT	Yoga intervention group – integrated yoga practices (n=15) Control group – no intervention (n=15)	5 months (90 min/day)	Pre- versus post-intervention	Frequency domain ↑ HFn. u., ↓ LFn. u., ↓ LF/HF in yoga group No change in controls	Time domain ↑ SDNN, ↑ RMSSD in yoga group No change in controls	3
Wolever et al. 2012[85]	Sedentary healthy office employees (n=239)	RCT	Yoga intervention (Vinyasa) - asana, pranayama, relaxation (n=90); mindfulness-based techniques (n=96) No intervention control (n=53)	12 weeks	Pre- versus post-intervention and comparison between groups	↑ heart rhythm coherence in both intervention group compared to control No significant change in inter-beat interval in either group	↓ perceived stress in both intervention group compared to control	3
Bowman et al. 1997[86]	Healthy sedentary elderly >62 years (n=40)	RCT	Integrated yoga group (n=20) Aerobic group (n=20)	6 weeks	Pre- versus post-intervention for each group	Frequency domain No change in either group	↓ HR following yoga training	1
Telles et al. 2010[87]	Posttraumatic stress symptom male patients (n=22)	RCT	Integrated yoga practice (n=11) Waitlist control (n=11)	7 days	Pre- versus post-intervention for each group	No change in frequency and time domain in either group	↓ in sadness score	2
Bidwell et al. 2012[88]	Mild to moderate female asthmatic patients; (n=19)	RCT	Integrated yoga twice weekly with home practice (n=12) No intervention control (n=8)	10 weeks	Comparison between groups	Frequency domain No change between group	↑ quality of life score in yoga group compared to control	2

Contd...
Table 4: Contd...

Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV (only statistically significant changes are reported)	Other outcomes	Jadad scale score for RCT*
Cheema et al. 2013(58)	Sedentary healthy office employees (n=37)	RCT	Yoga intervention (Vinyasa) - asana pranayama and relaxation (n=18)	10 weeks	Pre- versus post-intervention and comparison between groups	No change in time and frequency domain compared to control	↑ flexibility in yoga group compared to control	3

*HRV = Heart rate variability, RCT = Randomized controlled trial, LF n.u. = Low frequency normalized unit, HF n.u. = High frequency normalized unit, LF/HF = Low frequency to high frequency ratio, RMSSD = Root mean square of successive difference of interval, FVC = Forced vital capacity, PEFR = Peak expiratory flow rate, NRCT = Nonrandomized controlled trial, SBP = Systolic blood pressure, DBP = Diastolic blood pressure, EEG = Electroencephalogram

Table 5: Heart rate variability, yoga postures, and integrated yoga

Author	Population	Study design	Intervention	Length of intervention	Comparators	Outcome HRV* (only statistically significant changes are reported)	Other outcomes	Jadad scale score for RCT*
Chaya et al., 2008(59)	Regular male yoga practitioners (n=15); male non-yoga practitioners (n=15)	Multiple practices in single session	Integrated yoga practices	-	Yoga practitioners versus non-yoga practitioners	Frequency domain ↑ LF n.u., ↓ HF n.u., ↑ LF/HF in yoga practitioners compared to non-yoga practitioners	No significant difference in HR	-
Muralikrishnan et al. 2012(59)	Regular yoga practitioners (n=14); non-yoga practitioners (n=14)	Multiple practices in single session	Yoga practices, Isha yoga (sun salutation, static postures, purifying techniques and Shambhavi mahamudra)	-	Yoga practitioners versus non-yoga practitioners	Frequency domain ↑ HF n.u., ↓ LF n.u., and ↓ LF/HF in yoga practitioners in resting state compared to non-yoga practitioners	No significant difference in HR	-
Fris and Sollers lli 2013(59)	Regular yoga practitioners (n=18); Metabolically matched non-yoga practitioners (n=17), aerobically fit participant (n=19)	Multiple practices in single session	Yoga practices, Single session	-	Comparison between the groups	Time domain resting pNN50** higher in yoga practitioners compared to aerobic group and non-yoga practitioners	Resting HR lower in aerobic group compared to yoga practitioners and non-yoga	-
Satin et al. 2014(60)	Regular yoga practitioners (n=47); Regular runners (n=46); Sedentary individuals (n=52)	Multiple practices in single session	Integrated yoga practices with minimum 2 years’ experience; running practice with minimum 2 years’ experience	Single Session	Comparison between groups	Frequency domain resting HFn.u. higher in yoga practitioners and runners compared to sedentary HR lower in yoga practitioners and runners compared to sedentary and runners	-	

*HRV = Heart rate variability, RCT = Randomized controlled trial, LF n.u. = Low frequency normalized unit, HF n.u. = High frequency normalized unit, LF/HF = Low frequency to high frequency ratio, RMSSD = Root mean square of successive difference of interval, FVC = Forced vital capacity, PEFR = Peak expiratory flow rate, NRCT = Nonrandomized controlled trial, SBP = Systolic blood pressure, DBP = Diastolic blood pressure, EEG = Electroencephalogram

is also reported in a 4-week longitudinal cohort study of healthy female participants practicing integrated yoga(61) and an 8-week study of depressive patients practicing Iyengar yoga.(62) Furthermore, increase in pNN50 is reported after 8-week in patients with elevated BP after practicing inverted or semi-inverted yoga postures.(63)
Of the reviewed laboratory studies, four involved cyclic meditation, which involves a series of postures interspersed with relaxation practices. Three of these studies reported increased LF/Hf and decreased LF/HF along with decreased LH/HF post-intervention compared to baseline, while one reports higher sympathovagal balance and lower LF/HF during sleep after the practice of cyclic medication compared to rest.

Further laboratory studies report decreased LF and increased HF with yoga inversion postures. In addition, laboratory studies also report decreased HF and increased LF/HF with yoga inversion postures and increased time domain indicators of vagal activities with iyengar yoga, laughter yoga, chair-based yoga practice, and integrated yoga. Other studies report no change in HRV with various yoga practices. These include four RCTs of integrated practices (only one of which had a Jadad score of 3) involving <40 subjects, one NRCT with hypertensive patients, and a small cohort study of 11 hypertensive patients and 6 diabetic patients practicing integrated yoga for 7 days.

Table 5 summarizes four studies comparing HRV in the resting state in non-yoga practitioners versus regular yoga practitioners. Three of these studies reported enhanced parasympathetic activity measured in the time and/or frequency domain in the regular yoga practitioners, while one study reported lower parasympathetic activity in regular practitioners.

DISCUSSION

The reviewed studies suggest that yoga can affect cardiac autonomic regulation. Most of these studies however, are of poor quality with few studies providing robust statistical analysis or estimation of effect sizes. Furthermore, as in many other studies of HRV, few studies on yoga and HRV provide details of respiratory rate making it extremely difficult to distinguish changes in HRV due to changes in autonomic cardiac control and changes in HRV due to changes in respiration. This is compounded by the differences in yoga practices, procedures and their duration. Many yoga practices also, involve altered respiration and differences in instructions to subjects, the type of training given, and the respiration rates achieved, could lead to large differences in HRV measures.

Experimental and cohort studies report vagal dominance in both time and frequency domains, during and after various yoga practices including meditation, relaxation, breathing, and integrated practices. The reviewed studies further report that regular yoga practice increases vagal tone in yoga practitioners compared to non-yoga practitioners, sedentary individuals, and individuals who regularly practice aerobic exercise. In addition, yoga is reported to improve vagal outflow in sedentary individuals and to enhance vagal and inhibit sympathetic activity in congestive heart failure patients.

Although the mechanism by which yoga influences autonomic activity is not well understood, some yoga practices appear to directly stimulate the vagus nerve and enhance parasympathetic output leading to parasympathetic dominance and enhanced cardiac function, mood, and energy states, as well as enhanced neuroendocrine, metabolic, cognitive, and immune responses. While the bidirectional flow of the vagus nerve allows adaptive and flexible interaction between the amygdala, prefrontal cortex, and the peripheral organs, an extensive body of literature suggests that this interaction also mediates cognitive behavioral and emotional responses. HRV, therefore, appears well placed to reflect the emotional and cognitive influences on organ function and the mind-body integration that occurs with many yoga practices by directly linking the input and output of the central nervous system.

The present review suggests that yoga breathing practices, which involve a variety of breathing patterns at frequencies ranging from <1 to >120 BPM, can have profound effects on HRV and RSA, both of which are highly sensitive to breath-rate. Studies of HF Kapalbhati breathing at either 120 BPM or 60 BPM are reported to decrease vagal activity measured in either the frequency and/or time domain, with reductions being maintained after the practice. In contrast, slow yoga breathing practices are reported to increase HR fluctuations in the LF band and/or increase the LF/HF ratio, with some studies reporting simultaneous increases in HR. It is interesting to note that some slow breathing practices increase HR, while some meditation practices associated with slow breathing can reduce HR. This may be due to slow breathing being an active process that is associated with heightened attention and an increased metabolic rate while meditation is a passive practice that is associated with diminished attention and reduced metabolic rate.

High-amplitude peaks in the LF range during rhythmic slow breathing between 4.5 and 6.5/min may reflect resonance characteristics of the cardiovascular system where RSA interacts with the baroreflex. Breathing at this resonant frequency, or other rhythmic stimulation at this frequency such as rhythmic skeletal muscle contraction may increase HRV and be reflected in large increases in the LF band and simultaneous decreases in the HF band. Such resonance effects are reported with yoga slow breathing practices as well as with yoga mantra chanting and some meditative practices. There is strong evidence that when the system is stimulated at this frequency, a phase relationship occurs between HR and
BP oscillations (at 180°) and between HR oscillations and respiration (at 0°) generating high-amplitude HR peaks in the LF range that account for higher total HRV as well as a decrease in HR. Thus, when people breathe at this rate, gas exchange is most efficient, leading to better oxygen saturation and enhanced tolerance to exercise and altitude. Regular practice of such breathing may also lead to changes in resting RSA and improved baroreceptor activity with positive autonomic effects, such as those observed with HRV-biofeedback training and regular yoga practice.

While slow breathing leads to resonance in the LF range, very slow breathing may lead to resonance in the VLF range and activation of sympathetically mediated thermoregulatory mechanisms. This is suggested by one of the reviewed studies that reports feelings of warmth and reduced LF and increased “VLF” (0.0003–0.04 Hz) power in an advanced yoga breathing at a frequency of around 1 BPM. This is further supported by another study of advanced Zen meditators who reported feelings of warmth while displaying increased oscillatory peaks in both LF and VLF bands accompanied with reductions in HR during meditation.

It is interesting to note that advanced meditators appear to be able to voluntarily manipulate what are often considered involuntary autonomic functions such as peripheral temperature. For example, one advanced yoga practitioner is reported to voluntarily produce a temperature difference of 11°F on different parts of the same palm. A further report suggests that advanced g-Tummo meditators are able to produce dramatic increases of up to 8.3°C in peripheral body temperature (finger and toes) and use their body heat to dry previously wet bed-sheets placed over their shoulders in a 40°F room without shivering. While the mechanisms behind conscious control over autonomic functions such as vasodilation and vasoconstriction remain unexplained, previous studies have shown that yoga practices can have profound effects on autonomic activity as well as on oxygen consumption and metabolic rate.

The ability of yoga to influence autonomic function has been the subject of numerous studies that suggest that yoga practices reduce autonomic arousal and assist with a wide range of stress-related disorders. This may be mediated by increased parasympathetic activity as indicated by the increased HF observed during TM. Yoga practices have also been reported to reduce anxiety and induce relaxation, with effects comparable to other stress-reducing techniques such as cognitive behavioral therapy and African dance. While at least some of the stress-relieving effects of yoga may be related to altered autonomic arousal, clinical improvements with yoga are not necessarily reflected by changes in HRV. For example, yoga practices are reported to reduce HR, without corresponding changes in HRV. Improvements in high frontal coherence with TM and improvements in quality of life, flexibility, and mood with various yoga practices are also reported despite no change in HRV. It may be that many of the positive effects of yoga on autonomic function are due to resonance effects produced by changes in respiration or by other mechanism such as rhythmical skeletal muscle tension occurring during various yoga postures that may lead to vagal dominance and enhanced baroreflex gain without corresponding changes in HRV.

While the finding of increased HRV and improved vagal tone with yoga are consistent across most studies, it is premature to draw firm conclusions about the influence of yoga on HRV. Not all studies report HRV changes with yoga and the quality of most studies published to date is poor with few studies providing adequate reporting of study design, study population, yoga practices, methods of measurements, or statistical methods. Furthermore, the majority of studies to date have been performed in India with small numbers of adult yoga practitioners without matched comparison groups, making it difficult to extrapolate results to other populations. Most studies also lack the standardized conditions required for accurate measurement of HRV and do not express HRV spectral components in n.u. as per international convention. A lack of methodological rigor has also been noted within RCTs of yoga and HRV. Further studies are therefore needed that include more rigorous disclosure about the study methodology, the population involved, and the yoga practices being performed before more definitive conclusions about the effects of yoga and HRV can be made.

CONCLUSIONS

Yoga practices, including meditation, relaxation, yoga postures, breathing, and integrated practices, appear to improve autonomic regulation and enhance vagal dominance as reflected by HRV measures; however, it is difficult to make conclusive statements about yoga and HRV as existing studies are of poor quality and use a range of heterogeneous measures. Changes in HRV with yoga may reflect resonance effects between respiration, muscle contractions, HR, and baroreflexes that enhance autonomic efficiency. More rigorous studies are required to elucidate the autonomic and clinical benefits of such practices and it is vital that future studies of yoga and HRV include detailed reporting of the yoga practices used and any corresponding changes in respiration.

Acknowledgment

The authors would like to acknowledge the assistance of Karen McVean at the RMIT library for helping to source and obtain the articles for review.
Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Thayer JF, Ahs F, Fredriksen M, Sollers JJ 3rd, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 2012;36:747-56.

2. Verlind D, Beekers F, Ramaekers D, Aubert AE. Wavelet decomposition analysis of heart rate variability in athletic autones. Auton Neurosci 2001;90:138-41.

3. Oldehinkel AJ, Verhulst FC, Orelm J. Low heart rate: A marker of stress resilience. The TRAILS study. Biol Psychiatry 2008;63:1141-6.

4. Souza GG, Mendonça‑de‑Souza AC, Barros EM, Coutinho EF, Oliveira L, Mendelowicz MV, et al. Resilience and vagal tone predict cardiac recovery from acute social stress. Stress 2007;10:368-74.

5. Jarczok MN, Jarczok M, Mauss D, Koenig J, Li J, J, Herr RM, et al. Autonomic nervous system activity and workplace stressors – A systematic review. Neurosci Biobehav Rev 2013;37:1810-23.

6. Porges SW. The Polyvagal Theory: Neurophysiological Foundations of Emotions, Attachment, Communication, and Self‑Regulation. New York: W. W. Norton; 2011.

7. Thayer JF, Hansen AL, Saus‑Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self‑regulation, adaptation, and health. Ann Behav Med 2009;37:141-53.

8. Montano N, Porta A, Cogliati C, Costantino G, Tobaldini E, Casali K, et al. Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neurosci Biobehav Rev 2009;33:71-80.

9. Habib GB. Reappraisal of heart rate as a risk factor in the general population. Eur Heart J Suppl 1999;1:H2-10.

10. Kelley DE. Skeletal muscle fat oxidation: Timing and flexibility are everything. J Clin Invest 2005;115:1699-702.

11. Bernston GG, Bigger JT Jr., Eckberg DL, Grossman P, Kaufmann PG, Malik M, et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997;34:623-48.

12. Lehrer PM, Woolfolk RL, Sime WE. Principles and Practice of Stress Management. New York: Guilford Press; 2007.

13. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996;93:1043-65.

14. Acharya UR, Joseph KP, Kannathal N, Min LC, Suri JS. Heart rate variability. In: Acharya UR, Suri JS, editors. Advances in Cardiac Signal Processing. New York: Springer; 2007.

15. Pagani M, Malliani A, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991;84:482-92.

16. Rayes del Paso GA, Langewitz W, Mulder LJ, van Roon A, Duscheck S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013;50:477-87.

17. Beda A, Simpson DM, Carvalho NC, Carvalho AR. Low‑frequency heart rate variability is related to the breath‑to‑breath variability in the respiratory pattern. Psychophysiology 2014;51:197-205.

18. Bernardi L, Wdowczyk‑Szulc J, Valenti C, Castoldi S, Passino C, Spadacini G, et al. Effects of controlled breathing, mental activity and mental stress with or without verbalization on heart rate variability. J Hypertens 2000;18:1462-9.
42. Madanmohan, Bhavananı AB, Prakash ES, Kamath MG, Arudakkam J. Effect of six weeks of shavasana training on spectral measures of short-term heart rate variability in young healthy volunteers. Indian J Physiol Pharmacol 2004;48:370-3.

43. Monika, Singh U, Ghildiyal A, Kala S, Srivastava N. Effect of Yoga Nidra on physiological variables in patients of menstrual disturbances of reproductive age group. Indian J Physiol Pharmacol 2012;56:161-7.

44. Travis F, Haaga DA, Hagelin J, Tanner M, Nidich S, Gaylord-King C, et al. Effects of Transcendental Meditation practice on brain functioning and stress reactivity in college students. Int J Psychophysiol 2009;71:170-6.

45. Paul-Labrador M, Polk D, Dwyer JH, Velasquez I, Nidich S, Rainforth M, et al. Effects of a randomized controlled trial of transcendental meditation on components of the metabolic syndrome in subjects with coronary heart disease. Arch Intern Med 2006;166:1218-24.

46. Stancák A Jr., Kuna M, Srinivasan, Dostálek C, Vishnudevananda S. Kapalabhati – Yogic cleansing exercise. II. EEG topography analysis. Homeost Health Dis 1991;33:182-9.

47. Peng CK, Henry IC, Mietus JE, Hausdorff JM, Khalsa G, Benson H, et al. Heart rate dynamics during three forms of meditation. Int J Cardiol 2004;95:19-27.

48. Raghuraj P, Ramakrishnan AG, Nagendra HR, Telles S. Effect of II selected yogic breathing techniques of heart rate variability. Indian J Physiol Pharmacol 1998;42:467-72.

49. Telles S, Singh N, Balkrishna A. Heart rate variability changes during high frequency yoga breathing and breath awareness. Biopsychosoc Med 2011;5:4.

50. Santealla DF, Devesa CR, Rojo MR, Amato MB, Drager LF, Casali KR, et al. Yoga respiratory training improves respiratory function and cardiac sympathovagal balance in elderly subjects: A randomised controlled trial. BMJ Open 2011;1:e000085.

51. Patra S, Telles S. Heart rate variability during sleep following the practice of cyclic meditation and supreme rest. Appl Psychophysiol Biofeedback 2010;35:135-40.

52. Khattab K, Khattab AA, Orak J, Richardt G, Bonnemeier H. Iyengar yoga increases cardiac parasympathetic nervous modulation among healthy yoga practitioners. Evid Based Complement Alternat Med 2007;4:511-7.

53. Raghavendra B, Telles S, Manjunath N, Deepak K, Naveen K, Subramanya P. Voluntary heart rate reduction following yoga using different strategies. Int J Yoga 2013;6:26-30.

54. Jovanov E. On spectral analysis of heart rate variability during very slow yogic breathing. Ann Int Conf IEEE Eng Med Biol Proc 2005;7:2467-70.

55. Telles S, Singh N, Deepak K, Kaveen K, Subramanya P. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability. J Ayurveda Integr Med 2012;3:91-6.

56. Telles S, Sharma SK, Balkrishna A. Blood pressure and heart rate variability during yoga-based alternate nostril breathing practice and breath awareness. Med Sci Monit Basic Res 2014;20:184-93.

57. Bhimani NT, Kalkarni NB, Kowale A, Salvi S. Effect of Pranayama on stress and cardiovascular autonomic function. Indian J Physiol Pharmacol 2011;55:370-7.

58. Satarpani M, Nagendra HR, Nagarathna R, Padmalatha V. Effect of integrated yoga on stress and heart rate variability measures in pregnant women. J Chin Clin Obstet 2009;104:218-22.

59. Bhavanani AB, Prakash ES, Kamath MG, Arudakkam J. Effect of six weeks of shavasana training on spectral measures of short-term heart rate variability in young healthy volunteers. Indian J Physiol Pharmacol 2004;48:370-3.

60. Monika, Singh U, Ghildiyal A, Kala S, Srivastava N. Effect of Yoga Nidra on physiological variables in patients of menstrual disturbances of reproductive age group. Indian J Physiol Pharmacol 2012;56:161-7.

61. Travis F, Haaga DA, Hagelin J, Tanner M, Nidich S, Gaylord-King C, et al. Effects of Transcendental Meditation practice on brain functioning and stress reactivity in college students. Int J Psychophysiol 2009;71:170-6.

62. Paul-Labrador M, Polk D, Dwyer JH, Velasquez I, Nidich S, Rainforth M, et al. Effects of a randomized controlled trial of transcendental meditation on components of the metabolic syndrome in subjects with coronary heart disease. Arch Intern Med 2006;166:1218-24.

63. Stancák A Jr., Kuna M, Srinivasan, Dostálek C, Vishnudevananda S. Kapalabhati – Yogic cleansing exercise. II. EEG topography analysis. Homeost Health Dis 1991;33:182-9.

64. Peng CK, Henry IC, Mietus JE, Hausdorff JM, Khalsa G, Benson H, et al. Exaggerated heart rate oscillations during two meditation techniques. Int J Cardiol 1999;70:101-7.

65. Bernardi L, Sletten P, Bandinelli G, Cencetti S, Fattorini L, Wdowczyc-Szulc J, et al. Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: Comparative study. BMJ 2001;323:1446-9.

66. Ghiya S, Lee CM. Influence of alternate nostril breathing on heart rate variability in non-practitioners of yogic breathing. Int J Yoga 2012;5:66-9.

67. Selvaraj D, Devesa CR, Rojo MR, Amato MB, Drager LF, Casali KR, et al. Yoga respiratory training improves respiratory function and cardiac sympathovagal balance in elderly subjects: A randomised controlled trial. BMJ Open 2011;1:e000085.

68. Chavanani A, Mietus JE, Liu Y, Khalsa G, Douglas PS, Benson H, et al. Exaggerated heart rate dynamics during two meditation techniques. Int J Cardiol 1999;70:101-7.

69. Satarpani M, Nagendra HR, Nagarathna R, Padmalatha V. Effect of integrated yoga on stress and heart rate variability measures in pregnant women. J Chin Clin Obstet 2009;104:218-22.

70. Satarpani M, Nagendra HR, Nagarathna R, Padmalatha V. Effect of integrated yoga on stress and heart rate variability measures in pregnant women. J Chin Clin Obstet 2009;104:218-22.

71. Bhavanani AB, Prakash ES, Kamath MG, Arudakkam J. Effect of six weeks of shavasana training on spectral measures of short-term heart rate variability in young healthy volunteers. Indian J Physiol Pharmacol 2004;48:370-3.
intervention. Comput Math Methods Med 2015;2015:821061.

85. Wolever RQ, Bobinet KJ, McCabe K, Mackenzie ER, Fekete E, Kusnick CA, et al. Effective and viable mind-body stress reduction in the workplace: A randomized controlled trial. J Occup Health Psychol 2012;17:246-58.

86. Telles S, Singh N, Joshi M, Balkrishna A. Post traumatic stress symptoms and heart rate variability in Bihar flood survivors following yoga: A randomized controlled study. BMC Psychiatry 2010;10:18.

87. Bidwell AJ, Yazel B, Davin D, Fairchild TJ, Kanaley JA. Yoga training improves quality of life in women with asthma. J Altern Complement Med 2012;18:749-55.

88. Cheema BS, Houridis A, Busch L, Raschke-Cheema V, Melville GW, Marshall PW, et al. Effect of an office worksite-based yoga program on heart rate variability: Outcomes of a randomized controlled trial. BMC Complement Altern Med 2013;13:82.

89. Chaya MS, Ramakrishnan G, Shastry S, Kishore RP, Nagaratha R, et al. Insulin sensitivity and cardiac autonomic function in young male practitioners of yoga. Natl Med J India 2008;21:217-21.

90. Friis AM, Sollers III JJ. Yoga improves autonomic control in males: A preliminary study into the heart of an ancient practice. J Evid Based Complement Alternat Med 2013;18:76-82.

91. Satin JR, Linden W, Millman RD. Yoga and psychophysiological determinants of cardiovascular health: Comparing yoga practitioners, runners, and sedentary individuals. Ann Behav Med 2014;47:231-41.

92. Lehrer P, Vaschillo E, Trost Z, France CR. Effects of rhythmical muscle tension at 0.1 Hz on cardiovascular resonance and the baroreflex. Biol Psychol 2009;81:24-30.

93. Vaschillo EG, Vaschillo B, Pandina RJ, Bates ME. Resonances in the cardiovascular system caused by rhythmical muscle tension. Psychophysiology 2011;48:927-36.

94. Lehrer PM, Vaschillo E, Vaschillo B. Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Appl Psychophysiol Biofeedback 2000;25:177-91.

95. Wang SZ, Li S, Xu XY, Lin GP, Shao L, Zhao Y, et al. Effect of slow abdominal breathing combined with biofeedback on blood pressure and heart rate variability in prehypertension. J Altern Complement Med 2010;16:1039-45.

96. Vaschillo EG, Vaschillo B, Lehrer PM. Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl Psychophysiol Biofeedback 2006;31:129-42.

97. Bernardi L, Gabutti A, Porta C, Spicuzza L. Slow breathing reduces chemoreflex response to hypoxia and hypercapnia, and increases baroreflex sensitivity. J Hypertens 2001;19:2221-9.

98. Spicuzza L, Gabutti A, Porta C, Montano N, Bernardi L. Yoga and chemoreflex response to hypoxia and hypercapnia. Lancet 2000;356:1495-6.

99. Lehrer P, Sasaki Y, Saito Y. Zazen and cardiac variability. Psychosom Med 1999;61:812-21.

100. Green EG. Self regulation: East and west. Beyond biofeedback. New York: Delacorte Press/S. Lawrence; 1977.

101. Benson H. Body temperature changes during the practice of g Tum‑mo yoga. Nature 1982;298:402.

102. Kozhevnikov M, Elliott J, Shephard J, Gramann K. Neurocognitive and somatic components of temperature increases during g‑tummo meditation: Legend and reality. PLoS One 2013;8:e58244.

103. Cromie WJ. Meditation change temperature. Harvard University Gazette [Internet]. 2002. Available from: http://news.harvard.edu/gazette/2002/04.18/09‑tummo.html. [Cited on 2015 April 10].

104. Khalsa SB. Yoga as a therapeutic intervention: A bibliometric analysis of published research studies. Indian J Physiol Pharmacol 2004;48:269-85.

105. Chong CS, Tsunaka M, Tsang HW, Chan EP, Cheung WM. Effects of yoga on stress management in healthy adults: A systematic review. Altern Ther Health Med 2011;17:32-8.

“Quick Response Code” link for full text articles

The journal issue has a unique new feature for reaching to the journal’s website without typing a single letter. Each article on its first page has a “Quick Response Code”. Using any mobile or other hand-held device with camera and GPRS/other internet source, one can reach to the full text of that particular article on the journal’s website. Start a QR-code reading software (see list of free applications from http://tinyurl.com/yzh2tc) and point the camera to the QR-code printed in the journal. It will automatically take you to the HTML full text of that article. One can also use a desktop or laptop with web camera for similar functionality. See http://tinyurl.com/2bw7fn3 or http://tinyurl.com/3ysr3me for the free applications.