Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner’s reaction matrix for irregular graphs with absorption

Michał Lawniczak\textsuperscript{1}, Oleh Hul\textsuperscript{1}, Szymon Bauch\textsuperscript{1}, Petr Šeba\textsuperscript{2,3}, and Leszek Sirko\textsuperscript{1}

\textsuperscript{1}Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland

\textsuperscript{2}University of Hradec Králové, Hradec Králové, Czech Republic

\textsuperscript{3}Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Praha, Czech Republic

(Dated: April 16, 2008)

Abstract

We present the results of experimental and numerical study of the distribution of the reflection coefficient $P(R)$ and the distributions of the imaginary $P(v)$ and the real $P(u)$ parts of the Wigner’s reaction $K$ matrix for irregular fully connected hexagon networks (graphs) in the presence of strong absorption. In the experiment we used microwave networks, which were built of coaxial cables and attenuators connected by joints. In the numerical calculations experimental networks were described by quantum fully connected hexagon graphs. The presence of absorption introduced by attenuators was modelled by optical potentials. The distribution of the reflection coefficient $P(R)$ and the distributions of the reaction $K$ matrix were obtained from the measurements and numerical calculations of the scattering matrix $S$ of the networks and graphs, respectively. We show that the experimental and numerical results are in good agreement with the exact analytic ones obtained within the framework of random matrix theory (RMT).
Quantum graphs of connected one-dimensional wires were introduced more than sixty years ago by Pauling \cite{1}. Next the same idea was used by Kuhn \cite{2} to describe organic molecules by free electron models. Quantum graphs can be considered as idealizations of physical networks in the limit where the lengths of the wires are much bigger than their widths, i.e. assuming that the propagating waves remain in a single transversal mode. Among the systems modelled by quantum graphs one can find e.g., electromagnetic optical waveguides \cite{3,4}, mesoscopic systems \cite{5,6}, quantum wires \cite{7,8} and excitation of fractons in fractal structures \cite{9,10}. Recently it has been shown that quantum graphs are excellent paradigms of quantum chaos \cite{11,12,13,14,15,16,17,18,19,20,21}. More complicated and thus more realistic systems - microwave networks with moderate absorption strength $\gamma = 2\pi \Gamma / \Delta \leq 7.1$, where $\Gamma$ is the absorption width and $\Delta$ is the mean level spacing, have been experimentally investigated in \cite{22,23}. Other interesting open objects - quantum graphs with leads - have been analyzed in details in \cite{14,15}. However, the properties of networks and graphs with strong absorption have not been studied experimentally neither numerically so far. Therefore, in this paper we study experimentally and numerically the distribution of the reflection coefficient $P(R)$ and the distributions of the Wigner’s reaction matrix \cite{24} (in the literature often called $K$ matrix \cite{25}) for networks (graphs) with time reversal symmetry ($\beta = 1$) in the presence of strong absorption.

In the case of a single channel antenna experiment the $K$ matrix is related to the scattering matrix $S$ by the following relation

\[ S = \frac{1 - iK}{1 + iK}. \]  

Eq. 1 holds for the systems with absorption but without direct processes \cite{25}. It is important to mention that the function $Z = iK$ has a direct physical meaning of the electric impedance that has been recently measured in the microwave cavity experiment \cite{26}. In the one channel case the $S$ matrix can be parameterized as

\[ S = \sqrt{R}e^{i\theta}, \]  

where $R$ is the reflection coefficient and $\theta$ the phase.

Properties of the statistical distributions of the $S$ matrix with direct processes and imperfect coupling have been studied theoretically in several important papers \cite{27,28,29,30,31,32}. Recently the distribution of the $S$ matrix has been also measured experimentally for chaotic microwave cavities with absorption \cite{33}. The distribution $P(R)$ of the reflec-
tion coefficient $R$ and the distributions of the imaginary $P(v)$ and the real $P(u)$ parts of the Wigner’s reaction $K$ matrix are theoretically known for any dimensionless absorption strength $\gamma$ \cite{25, 34}. In the case of time reversal systems (symmetry index $\beta = 1$) $P(R)$ has been studied experimentally by Méndez-Sánchez et al. \cite{35}. The distributions $P(v)$ and $P(u)$ have been studied for chaotic microwave cavities in \cite{26, 36} and for microwave networks for moderate absorption strength $\gamma \leq 7.1$ in \cite{22, 23}. For systems without time reversal symmetry ($\beta = 2$) and a single perfectly coupled channel $P(R)$ was calculated by Beenakker and Brouwer \cite{37} while the exact formulas for the distributions $P(v)$ and $P(u)$ were given by Fyodorov and Savin \cite{25}.

In the experiment quantum graphs can be simulated by microwave networks. The analogy between quantum graphs and microwave networks is based upon the equivalency of the Schrödinger equation describing the quantum system and the telegraph equation describing the microwave circuit \cite{21}.

A general microwave network consists of $N$ vertices connected by bonds e.g., coaxial cables. A coaxial cable consists of an inner conductor of radius $r_1$ surrounded by a concentric conductor of inner radius $r_2$. The space between the inner and the outer conductors is filled with a homogeneous material having a dielectric constant $\varepsilon$. For a frequency $\nu$ below the onset of the next TE$_{11}$ mode only the fundamental TEM mode can propagate inside a coaxial cable. (This mode is in the literature often called a Lecher wave.) The cut-off frequency of the TE$_{11}$ mode is $\nu_c \simeq \frac{\varepsilon}{\varepsilon (r_1 + r_2) \sqrt{\varepsilon}} = 32.9 \text{ GHz} \ [38]$, where $r_1 = 0.05 \text{ cm}$ is the inner wire radius of the coaxial cable (SMA-RG402), while $r_2 = 0.15 \text{ cm}$ is the inner radius of the surrounding conductor, and $\varepsilon \simeq 2.08$ is the Teflon dielectric constant \cite{39, 40}.

From the experimental point of view absorption of the networks can be changed by the change of the bonds’ (cables’) lengths \cite{21} or more effectively by the application of microwave attenuators \cite{22, 23}. In the numerical calculations weak absorption inside the cables can be described with the help of complex wave vector \cite{21}. We will show that strong absorption inside an attenuator can be described by a simple optical potential. The corresponding mathematical theory has been developed in \cite{41}.

The distribution $P(R)$ of the reflection coefficient $R$ and the distributions of the imaginary and real parts of the Wigner’s reaction matrix $K$ for microwave networks with absorption were found using the impedance approach \cite{23, 26, 36}. In this approach the real and imagi-
FIG. 1: (a) The scheme of the experimental set-up for measurements of the scattering matrix $S_n$ of the microwave fully connected networks with absorption. Absorption in the networks was varied by the change of the attenuators. (b) The scheme of the setup used to measure the radiation scattering matrix $S_r$. Instead of a network five 50 Ω loads were connected to the 6-joint.

The binary parts of the normalized impedance $Z$

$$Z = \frac{\text{Re} \, Z_n + i(\text{Im} \, Z_n - \text{Im} \, Z_r)}{\text{Re} \, Z_r}$$

(3)

of a chaotic microwave system are measured, with $Z_n(r) = Z_0(1 + S_{n(r)})/(1 - S_{n(r)})$ being the network (radiation) impedance expressed by the network (radiation) scattering matrix $S_{n(r)}$ and $Z_0$ is the characteristic impedance of the transmission line. The radiation impedance $Z_r$ is the impedance seen at the output of the coupling structure for the same coupling geometry, but with the vertices of the network removed to infinity. The Wigner’s reaction matrix $K$ can be expressed by the normalized impedance as $K = -iZ$. The scattering matrix $S$ of a network for the perfect coupling case (no direct processes present) required for the calculation of the reflection coefficient $R$ (see Eq. (2)) can be finally extracted from the formula $S = (1 - Z)/(1 + Z)$.

Figure 1(a) shows the experimental setup for measuring the single-channel scattering matrix $S_n$ of fully connected hexagon microwave networks necessary for finding of the impedance $Z_n$. We used Hewlett-Packard 8720A microwave vector network analyzer to measure the
scattering matrix $S_n$ of the networks in the frequency window: 7.5–11.5 GHz. The networks were connected to the vector network analyzer through a lead - a HP 85131-60012 flexible microwave cable - connected to a 6-joint vertex. The other five vertices of the networks were connected by 5-joints. Each bond of the network presented in Fig. 1(a) contains a microwave attenuator.

The radiation impedance $Z_r$ was found experimentally by measuring the scattering matrix $S_r$ of the 6-joint connector with five joints terminated by 50 Ω loads (see Figure 1(b)).

The experimentally measured fully connected hexagon networks were described in numerical calculations by quantum fully connected hexagon graphs with one lead attached to the 6-joint vertex. In the calculations attenuators (absorbers) were modelled by optical potentials [41]. To be explicit we suppose that the fully connected hexagon graph Υ with one coupled antenna is described in the Hilbert space $L^2(Υ) := \bigoplus_{(j,n)} L^2(0, \ell_{jn}) \bigoplus L^2(0, \infty)$, where $\ell_{jn}$ stays for the lengths of the bond connecting the vertices $j$ and $n$ and the halfline $(0, \infty)$ describes the attached antenna.

We define the Schrödinger operator $H$ by

$$H\psi_{jn} := -\psi''_{jn} + U_{jn}\psi_{jn},$$

with $\psi_{jn} \in L^2(0, \ell_{jn})$ for the bonds and

$$H\psi_{0n} := -\psi''_{0n},$$

with $\psi_{0n} \in L^2(0, \infty)$ describing the wave function of the antenna connected to the vertex $n$ (note that the ”infinite” vertex of the antenna has index 0).

At the vertices the wave functions are linked together with the boundary values

$$\psi_{jn}(j) := \lim_{x \to 0^+} \psi_{jn}(x), \quad \psi'_{jn}(j) := \lim_{x \to 0^+} \psi'_{jn}(x),$$

satisfying boundary conditions $\psi_{jn}(j) = \psi_{jm}(j) =: \psi_j$ for all $n, m$ describing connected vertices, and

$$\sum_{n \in \nu(j)} \psi'_{jn}(j) = 0.$$

The optical potentials $U_{jn}$ are purely imaginary and describe the absorber inserted between the vertices $(j, n)$.  

5
Since the graph $\Upsilon$ is infinite (due to the attached antenna) we can look for solutions of the equation

$$H\psi = k^2\psi,$$  \hfill (8)

referring to the continuous spectrum, where $k$ is the wave vector. For microwaves propagating inside a lossless bond with a dielectric constant $\varepsilon$ the wave vector $k = \frac{2\pi\varepsilon\nu}{c}$, where $\nu$ and $c$ denote the frequency of a microwave field and the speed of light in the vacuum, respectively. To solve this equation we used the graph duality principle \[41\]. According to this principle we need to solve the equation $-f'' + U_{jn} f = k^2 f$ on $[0, \ell_{jn}]$ satisfying the normalized Dirichlet boundary conditions

$$u_{jn}(\ell_{jn}) = 1 - (u_{jn})'(\ell_{jn}) = 0, \quad v_{jn}(0)1 - (v_{jn})'(0) = 0.$$ \hfill (9)

The Wronskian of this solution is naturally equal to $W_{jn} - v_{jn}(\ell_{jn}) = u_{jn}(0)$. Then according to \[41\] the corresponding boundary values (8) satisfy the equation

$$\sum_n \frac{\psi_n}{W_{jn}} - \left( \sum_{n\in\nu(j)} \frac{(v_{jn})'(\ell_{jn})}{W_{jn}} \right) \psi_j = 0.$$ \hfill (10)

Conversely, any solution $\psi_j$ of the system (10) determines a solution of (8) by

$$\psi_{jn}(x) = \frac{\psi_n}{W_{jn}} u_{jn}(x) - \frac{\psi_j}{W_{jn}} v_{jn}(x) \quad \text{if } n = 1, \ldots, 6,$$ \hfill (11)

$$\psi_{jn}(x) = - \frac{\psi_j}{W_{jn}} v_{jn}(x) \quad \text{if } n = 0.$$ \hfill (12)

As already mentioned the microwave attenuators are modelled by optical potentials localized inside the inserted component. It is well known that any smooth and localized potential can be easily approximated by a sequence of delta potentials inside the support of the potential - see \[42\] for details. We will use this fact and express the optical potential as a sum of $N$ delta-potentials with imaginary coupling constants: $U(x) = ib \sum_{r=1}^{N} \delta(x - (r - 1)l_b/(N - 1))$. The delta-potentials were equally spaced inside the length $l_b$ of the absorbing element (attenuator). By changing the number $N$ and the strength $b$ of delta-potentials we were able to vary absorbing properties as well as reflective properties of attenuators. We used $N = 10$ delta-potentials with $b = 0.028 \text{ m}^{-1}$ for simulation of the 1 dB attenuators and $N = 12$
FIG. 2: In the panels (a) and (b) the modulus $|S_n|$ and the phase $\theta$ of the scattering matrix $S$ measured for the network with $\gamma = 19.9$ are plotted in the frequency range 7.5 - 9 GHz. In (c) and (d) $|S_n|$ and $\theta$ of the scattering matrix $S_n$ are plotted for the network with $\gamma = 47.9$ in the same frequency range. The measurements have been done for the two networks which in each bond contained: 1 dB attenuator ((a) and (b)) and 2 dB attenuator ((c) and (d)), respectively. The total “optical” length of the microwave networks including joints and attenuators were 574 cm and 554 cm, respectively.

delta-potentials with $b = 0.045$ m$^{-1}$ for the 2 dB attenuators. In both cases the length of the attenuator was $l_b = 2.65$ cm. Furthermore, in the numerical calculations of the scattering matrices $S_n$ of the graphs the weak absorption inside the microwave cables was taken into account by replacing the real wave vector $k$ by the complex vector $k + i a \sqrt{k}$ [43], where the absorption coefficient was assumed to be $a = 0.009$ m$^{-1/2}$ [21].

In order to find the distribution $P(R)$ of the reflection coefficient $R$ and the distributions of the imaginary and real parts of the K matrix we measured the scattering matrix $S_n$ of 88 and 74 network configurations containing in each bond a single 1 dB and 2 dB microwave SMA attenuator, respectively. The total optical lengths of the microwave networks containing 1 dB attenuators, including joints and attenuators, varied from 574 cm to 656 cm. For the networks with 2 dB attenuators the optical lengths varied from 554 cm to 636 cm. To avoid degeneracy of eigenvalues of the networks the lengths of the bonds were chosen as
incommensurable.

In Figure 2 the modulus $|S_n|$ and the phase $\theta$ of the scattering matrix $S_n$ of the microwave networks with $\gamma = 19.9$ and $47.9$, respectively, are presented in the frequency range $7.5 - 9$ GHz. The measurements were done for two networks containing 1 dB and 2 dB attenuators, respectively. Their total “optical” lengths including joints and attenuators were 574 cm and 554 cm, respectively.

For systems with time reversal symmetry ($\beta = 1$), the explicit analytic expression for the distribution $P(R)$ of the reflection coefficient $R$ is given by

$$P(R) = \frac{2}{(1-R)^2} P_0 \left( \frac{1+R}{1-R} \right).$$

(13)

The probability distribution $P_0(x)$ is given by the expression

$$P_0(x) = -\frac{dW(x)}{dx},$$

(14)

where the integrated probability distribution $W(x)$ is expressed by the formula

$$W(x) = \frac{x+1}{4\pi} \left[ f_1(w)g_2(w) + f_2(w)g_1(w) + h_1(w)j_2(w) + h_2(w)j_1(w) \right]_{w=(x-1)/2}.$$ (15)

The functions $f_1, g_1, h_1, j_1$ are defined as follows

$$f_1(w) = \int_w^\infty dt \frac{\sqrt{t \cdot |t-w| e^{-\gamma t/2}}}{(1+t)^{3/2}} \left[ 1 - e^{-\gamma} + \frac{1}{t} \right],$$

(16)

$$g_1(w) = \int_w^\infty dt \frac{e^{-\gamma t/2}}{\sqrt{t \cdot |t-w|} \cdot (1+t)^{3/2}},$$

(17)

$$h_1(w) = \int_w^\infty dt \frac{\sqrt{t \cdot |t-w| e^{-\gamma t/2}}}{\sqrt{t(t+1)}} \left[ \gamma + (1-e^{-\gamma})(\gamma t - 2) \right],$$

(18)

$$j_1(w) = \int_w^\infty dt \frac{e^{-\gamma t/2}}{\sqrt{t \cdot |t-w|} \cdot (1+t)^{1/2}}.$$ (19)

Their counterparts with the index 2 are given by the same expressions but the integration is performed in the interval $t \in [0, w]$ instead of $[w, \infty)$.  

8
FIG. 3: Experimental distribution $P(R)$ of the reflection coefficient $R$ for the microwave fully connected hexagon networks at $\bar{\gamma} = 19.3$ (open squares) and $\bar{\gamma} = 47.7$ (full squares). The corresponding theoretical distribution $P(R)$ evaluated from the Eq. (13) is marked by the solid line ($\gamma = 19.3$) and dashed line ($\gamma = 47.7$), respectively.

FIG. 4: Numerical distribution $P(R)$ of the reflection coefficient $R$ for fully connected hexagon quantum graphs at $\bar{\gamma} = 19.3$ (open circles) and $\bar{\gamma} = 47.7$ (full circles). The corresponding theoretical distribution $P(R)$ evaluated from the Eq. (13) is marked by the solid line ($\gamma = 19.3$) and dashed line ($\gamma = 47.7$), respectively.
The distributions of the imaginary and the real parts $P(v)$ and $P(u)$ of the $K$ matrix can be also expressed by the probability distribution $P_0(x)$:

$$P(v) = \frac{\sqrt{2}}{\pi v^{3/2}} \int_0^\infty dq P_0 \left[ q^2 + \frac{1}{2} \left( v + \frac{1}{v} \right) \right],$$

(20)

and

$$P(u) = \frac{1}{2\pi \sqrt{u^2 + 1}} \int_0^\infty dq P_0 \left[ \sqrt{u^2 + 1} \left( q + \frac{1}{q} \right) \right],$$

(21)

where $-v = \text{Im } K < 0$ and $u = \text{Re } K$ are, respectively, the imaginary and real parts of the $K$ matrix.

Figure 3 shows the experimental distributions $P(R)$ (squares) of the reflection coefficient $R$ for two mean values of the parameter $\bar{\gamma}$, viz., 19.3 and 47.7. The distribution for $\bar{\gamma} = 19.3$ is obtained by averaging over 88 realizations of the microwave networks containing 1 dB attenuators. The distribution for $\bar{\gamma} = 47.7$ is obtained by averaging over 74 realizations of the microwave networks containing 2 dB attenuators. The experimental values of the $\gamma$ parameter were estimated for each realization of the network by adjusting the theoretical mean reflection coefficient $\langle R \rangle_{\text{th}}$ to the experimental one $\langle R \rangle = \langle SS^\dagger \rangle$, where

$$\langle R \rangle_{\text{th}} = \int_0^1 dRRP(R).$$

(22)

Figure 3 also presents the corresponding distributions $P(R)$ (solid and dashed lines, respectively) evaluated from Eq. (13). A good overall agreement of the experimental distributions $P(R)$ with their theoretical counterparts is seen.

Figure 4 shows the numerically evaluated distributions $P(R)$ (circles) of the reflection coefficient $R$ for the graphs at $\bar{\gamma} = 19.3$ and 47.7 compared to the theoretical ones evaluated from the formula Eq. (13). The numerical distributions are the result of averaging over 162 and 214 realizations of the graphs with optical potentials simulating 1 dB and 2 dB attenuators, respectively. The numerical values of $\gamma$ parameter were also estimated by adjusting the theoretical mean reflection coefficient to the numerical one. The agreement between the numerical results for $\bar{\gamma} = 47.7$ and the theoretical ones (dashed line) is good. However, for $\bar{\gamma} = 19.3$ for $R < 0.15$ some discrepancies between the numerical results and the theoretical ones (solid line) are visible.

In Figure 5 the experimental distribution $P(v)$ of the imaginary part of the $K$ matrix is shown for the two mean values of the parameter $\bar{\gamma} = 19.3$ and 47.7, respectively. The distribution is the result of averaging over 88 and 74 realizations of the networks with the
FIG. 5: Experimental distribution $P(v)$ of the imaginary part of the $K$ matrix for the two values of the mean absorption parameter: $\bar{\gamma} = 19.3$ (open squares) and $\bar{\gamma} = 47.7$ (full squares), respectively. The corresponding theoretical distribution $P(v)$ evaluated from the Eq. (20) is marked by the solid line ($\gamma = 19.3$) and dashed line ($\gamma = 47.7$), respectively.

FIG. 6: Numerical distribution $P(v)$ of the imaginary part of the $K$ matrix for the two values of the mean absorption parameter: $\bar{\gamma} = 19.3$ (open circles) and $\bar{\gamma} = 47.7$ (full circles), respectively. The corresponding theoretical distribution $P(v)$ evaluated from the Eq. (20) is marked by the solid line ($\gamma = 19.3$) and dashed line ($\gamma = 47.7$), respectively.
attenuators 1 dB and 2 dB, respectively. The experimental results in Figure 5 are in general in good agreement with the theoretical ones. However, both experimental distributions are slightly higher than the theoretical ones in the vicinity of their maxima.

Results of the numerical calculations of the distributions $P(v)$ are shown in Figure 6 for two mean values of the parameter $\bar{\gamma} = 19.3$ and 47.7, respectively. They are compared to the theoretical ones evaluated from the formula Eq. (20). Figure 6 shows also a good agreement between the numerical and theoretical results, which confirms usefulness of the optical potential approach in describing the microwave attenuators.

Measurements of the distribution $P(u)$ of the real part of the Wigner’s reaction matrix give an additional test of the consistency of the $\gamma$ evaluation. In Figure 7 we show this distribution obtained for two values of $\bar{\gamma} = 19.3$ and 47.7, respectively, compared to the theoretical ones evaluated from the formula Eq. (21). Also here we observe good overall agreement between the experimental and theoretical results. However, Figure 7 shows that for the networks with 2 dB attenuators the theoretical distribution is in the middle ($-0.1 < u < 0.1$) slightly higher than the experimental one. According to the definition of the $K$ matrix (see Eq. (1)) such a behavior of the experimental distribution $P(u)$ suggests deficiency of small values of $|\text{Im}S|$, whose origin is not known. Moreover, the experimental distribution $P(u)$ obtained for the networks assembled with 1 dB attenuators is slightly asymmetric for $|u| > 0.5$.

In Figure 8 the comparison of the numerical distribution $P(u)$ obtained for two values of $\bar{\gamma} = 19.3$ and 47.7, respectively, to the theoretical one evaluated from the formula Eq. (21) is presented. In this case we see a good overall agreement between the numerical and theoretical results.

In spite of the above mentioned discrepancies which appeared mainly in the case of the experimental distribution $P(u)$ the overall good agreement between the experimental and theoretical results justifies a posteriori the chosen procedure of calculating the experimental $\gamma$. The same is true also for the numerical simulations.

In summary, we measured and calculated numerically the distribution of the reflection coefficient $P(R)$ and the distributions of the imaginary $P(v)$ and the real $P(u)$ parts of the Wigner’s reaction $K$ matrix for irregular fully connected hexagon networks and graphs in the presence of strong absorption. In the case of the microwave networks consisting of SMA cables and attenuators the application of attenuators allowed for effective change of
FIG. 7: Experimental distribution \( P(u) \) of the real part of the \( K \) matrix for the two values of the mean absorption parameter: \( \bar{\gamma} = 19.3 \) (open squares) and \( \bar{\gamma} = 47.7 \) (full squares), respectively. The experiment is compared to the theoretical distribution \( P(u) \) evaluated from the Eq. (21): solid line (\( \gamma = 19.3 \)) and dashed line (\( \gamma = 47.7 \)).

FIG. 8: Numerical distribution \( P(u) \) of the real part of the \( K \) matrix for the two values of the mean absorption parameter: \( \bar{\gamma} = 19.3 \) (open circles) and \( \bar{\gamma} = 47.7 \) (full circles), respectively. The numerical results are compared to the theoretical distributions \( P(u) \) evaluated from the Eq. (21): solid line (\( \gamma = 19.3 \)) and dashed line (\( \gamma = 47.7 \)).
absorption in the graphs. In the numerical calculations absorption in an attenuator was modelled by an optical potential. We showed that in the case of the time reversal symmetry ($\beta = 1$) the experimental and numerical results for $P(R)$, $P(v)$ and $P(u)$ are in good overall agreement with the theoretical predictions. The agreement of the numerical and theoretical results strongly confirms the usefulness of the optical potential approach in the description of the microwave attenuators.

Acknowledgments. This work was partially supported by Polish Ministry of Science and Higher Education grant No. N202 099 31/0746 and by the Ministry of Education, Youth and Sports of the Czech Republic within the project LC06002.

[1] L. Pauling, J. Chem. Phys. 4, 673 (1936).
[2] H. Kuhn, Helv. Chim. Acta, 31, 1441 (1948).
[3] C. Flesia, R. Johnston, and H. Kunz, Europhys. Lett. 3, 497 (1987).
[4] R. Mitra and S.W. Lee, *Analytical techniques in the Theory of Guided Waves* (Macmillan, New York, 1971).
[5] Y. Imry, *Introduction to Mesoscopic Systems* (Oxford, New York, 1996).
[6] D. Kowal, U. Sivan, O. Entin-Wohlman, Y. Imry, Phys. Rev. B 42, 9009 (1990).
[7] E.L. Ivchenko, A.A. Kiselev, JETP Lett. 67, 43 (1998).
[8] J.A. Sanchez-Gil, V. Freilikher, I. Yurkevich, and A. A. Maradudin, Phys. Rev. Lett. 80, 948 (1998).
[9] Y. Avishai and J.M. Luck, Phys. Rev. B 45, 1074 (1992).
[10] T. Nakayama, K. Yakubo, and R.L. Orbach, Rev. Mod. Phys. 66, 381 (1994).
[11] T. Kottos and U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997).
[12] T. Kottos and U. Smilansky, Annals of Physics 274, 76 (1999).
[13] T. Kottos and U. Smilansky, Phys. Rev. Lett. 85, 968 (2000).
[14] T. Kottos and H. Schanz, Physica E 9, 523 (2003).
[15] T. Kottos and U. Smilansky, J. Phys. A 36, 3501 (2003).
[16] F. Barra and P. Gaspard, Journal of Statistical Physics 101, 283 (2000).
[17] G. Tanner, J. Phys. A 33, 3567 (2000).
[18] P. Pakoński, K. Życzkowski and M. Kuś, J. Phys. A 34, 9303 (2001).
[19] P. Pakoński, G. Tanner and K. Życzkowski, J. Stat. Phys. 111, 1331 (2003).
[20] R. Blümel, Yu Dabaghian, and R.V. Jensen, Phys. Rev. Lett. 88, 044101 (2002).
[21] O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, and L. Sirko, Phys. Rev. E 69, 056205 (2004).
[22] O. Hul, O. Tymoshchuk, Sz. Bauch, P.M. Koch and L. Sirko, J. Phys. A 38, 10489 (2005).
[23] O. Hul, S. Bauch, M. Lawniczak, and L. Sirko, Acta Phys. Pol. A 112, 655 (2007).
[24] G. Akguc and L.E. Reichl, Phys. Rev. E 64, 056221 (2001).
[25] Y.V. Fyodorov and D.V. Savin, JETP Letters 80, 725 (2004).
[26] S. Hemmady, X. Zheng, E. Ott, T.M. Antonsen, and S.M. Anlage, Phys. Rev. Lett. 94, 014102 (2005).
[27] G. López, P.A. Mello, and T.H. Seligman, Z. Phys. A 302, 351 (1981).
[28] E. Doron and U. Smilansky, Nucl. Phys. A 545, 455 (1992).
[29] P.W. Brouwer, Phys. Rev. B 51, 16878 (1995).
[30] D.V. Savin, Y.V. Fyodorov, and H.-J. Sommers, Phys. Rev. E 63, 035202 (2001).
[31] Y.V. Fyodorov, JETP Letters 78, 250 (2003).
[32] Y.V. Fyodorov, D.V. Savin, and H.-J. Sommers, J. Phys. A 38, 10731 (2005).
[33] U. Kuhl, M. Martinez-Mares, R.A. Méndez-Sánchez, and H.-J. Stöckmann, Phys. Rev. Lett. 94, 144101 (2005).
[34] D.V. Savin, H.-J. Sommers, and Y.V. Fyodorov, JETP Letters 82, 544 (2005).
[35] R.A. Méndez-Sánchez, U. Kuhl, M. Barth, C.V. Lewenkopf, and H.-J. Stöckmann, Phys. Rev. Lett. 91, 174102-1 (2003).
[36] S. Hemmady, X. Zheng, T.M. Antonsen Jr., E. Ott, and S.M. Anlage, Acta Physica Polonica A 109, 65 (2006).
[37] C.W.J. Beenakker and P.W. Brouwer, Physica E 9, 463 (2001).
[38] D.S. Jones, Theory of Electromagnetism (Pergamon Press, Oxford, 1964), p. 254.
[39] K. H. Breeden and A. P. Sheppard, Microwave J. 10, 59 (1967); Radio Sci. 3, 205 (1968).
[40] N. Savytskyy, A. Kohler, S. Bauch, R. Blümel, and L. Sirko, Phys. Rev. E 64, 036211 (2001).
[41] P. Exner, Ann. Inst. H. Poincaré: Phys. Théor. 66, 359 (1997)
[42] Y.N. Demkov, Ostrovskij V.N.: Metod potencialov nulevovo radiusa v atomnoj fizike, Izd. Leningradskogo Universiteta 1975
[43] G. Goubau, Electromagnetic Waveguides and Cavities (Pergamon Press, Oxford, 1961).