Bouncing Loop Quantum Cosmology from $F(T)$ gravity

Jaume Amorós 1*, Jaume de Haro 1† and Sergei D. Odintsov 2,3,4,‡

13th May 2013

1Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
2Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
3Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona), Spain
4Tomsk State Pedagogical University, Tomsk, Russia and Eurasian Nat.University, Astana, Kazakhstan.

Abstract

The big bang singularity could be understood as a breakdown of Einstein’s General Relativity at very high energies. Adopting this viewpoint, other theories, that implement Einstein Cosmology at high energies, might solve the problem of the primeval singularity. One of them is Loop Quantum Cosmology (LQC) with a small cosmological constant that models a universe moving along an ellipse, which prevents singularities like the big bang or the big rip, in the phase space (H, ρ), where H is the Hubble parameter and ρ the energy density of the universe. Using LQC when one considers a model of universe filled by radiation and matter where, due to the cosmological constant, there are a de Sitter and an anti de Sitter solution. This means that one obtains a bouncing non-singular universe which is in the contracting phase at early times. After leaving this phase, i.e., after bouncing, it passes trough a radiation and matter dominated phase and finally at late times it expands in an accelerated way (current cosmic acceleration). This model does not suffer from the horizon and flatness problems as in big bang cosmology, where a period of inflation that increases the size of our universe in more than 60 e-folds is needed in order to solve both problems. The model has two mechanisms to avoid these problems: The evolution of the universe through a contracting phase and a period of super-inflation ($\dot{H} > 0$).

Pacs numbers: 04.50.Kd, 98.80.-k, 98.80. Jk

1 Introduction

When one considers a universe filled by radiation and matter expanding following the standard Einstein Cosmology (EC), i.e. when the dynamics of the universe is dictated by the equations of the General Relativity, coming back in time, one concludes that there exists, at very early times, a primeval singularity named big bang.

The big bang singularity could be seen as a deficiency of EC at high energies, because there is not any objective reason which supports the same physics at high than at low energies. In fact, one can claim that the big bang signals the breakdown of General Relativity at high energy density scales. However, there are

*E-mail: jaume.amoros@upc.edu
†E-mail: jaime.haro@upc.edu
‡E-mail address: odintsov@ieec.uab.es
observational evidences, such as the discovery of the cosmic microwave background (CMB) by Arno Penzias and Robert Wilson in 1964, that the "big bang model" works correctly at scales lower than Planck’s. At those scales, the universe is filled by a hot photon-baryon plasma that could be modelled by a radiation fluid which cools as the universe expands, and non-relativistic matter starts to dominate allowing the formation of structures. A possible solution to the big bang singularity could come from a modification, at high energies, of Einstein’s General Relativity. Since this theory could be understood as a linear teleparallel theory (recall that Einstein used teleparallelism in an unsuccessful attempt to unify gravitation with electromagnetism [1]), because its Lagrangian is a linear function of the spacetime scalar torsion, namely T, one can assume that our universe could be described by non-linear teleparallel theories ($F(T)$ theories) [2, 3, 4, 5], that become nearly linear at low energies.

It is known that $F(T)$ gravity can realize both inflation [6] and the late-time cosmic acceleration [7, 8, 9], revealed by recent observations for example, Type Ia Supernovae [10], baryon acoustic oscillations (BAO) [11], large scale structure (LSS) [12], cosmic microwave background (CMB) radiation [13], and effects of weak lensing [14] (see [15] for a recent review of current cosmic acceleration). In fact, a very large number of recent papers are devoted to investigate diverse properties of $F(T)$ gravity in order to check whether it could be a veritable alternative to General Relativity [16]. Moreover, models of $F(T)$ gravity in which the finite-time future singularities appear have been reconstructed [17].

When one considers an homogeneous and isotropic space-time, i.e., when one considers the Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, the scalar torsion is given by $T = -6H^2$, where H is the Hubble parameter [7], as a very remarkable consequence, $F(T)$ cosmologies entail that the modified Friedmann equation depicts a curve in the plane (H, ρ), where ρ denotes the energy density of the universe. That is, the universe moves along this curve as its dynamics is given by the so-called modified Raychaudhuri equation and the conservation equation. This opens the possibility to build non-singular models of universes with a cosmological constant and filled by radiation and matter. Moreover, $F(T)$ theories could be used to reconstruct cosmologies in two ways: i) Given the scale factor $a(t)$ and the Equation of State (EoS), one can build the corresponding $F(T)$. ii) Given the scale factor $a(t)$ and the $F(T)$ theory one can build the corresponding EoS.

Our main result is to show that, for the flat FRWL geometry, choosing as $F(T)$ theory the effective formulation of Loop Quantum Cosmology (see [13] for papers in effective LQC), the modified Friedmann equation that includes holonomy corrections gives, at early times, a universe in an anti de Sitter phase, which after leaving this phase starts to accelerate leaving the contracting phase to enter in the expanding one (it bounces), then it starts to decelerate and passes trough a radiation and matter dominated phase. Finally, at late times it enters in a de Sitter phase (late time cosmic acceleration). Our model does not suffer the flatness and horizon problems that appear in big bang cosmology, because it has a contracting phase and a super-inflationary period ($\dot{H} > 0$), then in principle, making unnecessary an inflationary epoch such as that of big bang cosmology, where the scale factor increases more that $60 \, \text{e-folds}$ in order to solve these problems. Moreover, the evolution of the universe at early times, in a contracting matter-dominated phase, could produce an scale-invariant spectrum of cosmological perturbations that agrees whit current observations. Finally it is important to stress that our viewpoint of LQC as a $F(T)$ theory opens the possibility to study perturbations in LQC using the perturbation equations in $F(T)$ gravity, recently deduced in [19]. We believe that this fact could be very important because, perturbations with holonomy corrections in LQC were introduced on a phenomenological level by replacing the Ashtekar connection $\gamma \hat{k}$ by $\frac{\sin(n\mu \hat{k})}{\sqrt{m}}$, m being a number (see for example [20]). Moreover, to obtain an anomaly-free perturbation theory some counter-terms must be introduced in the Hamiltonian constraining [21], which for vector perturbations give rise to counter-terms depending on \hat{k}, i.e., they are no longer almost periodic function on \hat{k}, which seems to be in contradiction with the spirit of LQC.

The paper is organized as follows: In Section II we study EC and we discuss the different ways to deal with the avoidance of the big bang singularity. Section III is devoted to the study of LQC, showing that its effective formulation gives a bouncing non-singular model where the universe evolves from a contracting phase to our
current cosmic acceleration. We also show that this model does not suffer the flatness and horizon problems. Finally, in Section IV the reconstruction of cosmologies is considered, in both, via an scalar field and via $F(T)$ theories.

The units used through the paper are $c = h = 8\pi G = 1$.

2 Einstein cosmology: radiation plus matter plus cosmological constant

Assuming that, at large scales, our universe is homogeneous and isotropic leads us to consider a flat FLRW space-time, which metric is given by

$$ds^2 = -dt^2 + a^2(t)(dx^2 + dy^2 + dz^2),$$

where a is the scale factor: the quantity that "measures" the distance between points along time.

For this metric we consider a universe filled by radiation plus dust matter, which means that the energy density is given by $\rho = \rho_r + \rho_m$, where ρ_r is the energy density of the radiation and ρ_m is the energy density of the matter. Here, as usually we assume that matter is dust (cold dark matter).

For this kind of fluids their pressures satisfy $P_r = \frac{1}{3}\rho_r$ and $P_m = 0$. From the first principle of thermodynamics or conservation equation $d(\rho V) = -PdV$ ($V = a^3$ being the volume), one obtains the following solutions

$$\rho_r = \rho_{r,0} V^{-4/3} \quad \text{and} \quad \rho_m = \rho_{m,0} V^{-1},$$

where the subindex 0 means that the quantity is evaluated at the present time, and where we have taken $V_0 \equiv 1$.

Now we consider the so-called Benchmark model, where EC with an small cosmological constant Λ is used to study our universe filled by radiation plus matter $\rho = \rho_r + \rho_m$.

Note that, EC can be seen as a linear teleparallel theory with Lagrangian [22]

$$L_E(T) = \frac{1}{2}TV - (\rho + \Lambda)V,$$

where $T = -6H^2$ is the so-called scalar torsion. Or in its more conventional form

$$L_E(R) = \frac{1}{2}RV - (\rho + \Lambda)V,$$

where $R = 6(\dot{H} + 2H^2)$ is the scalar curvature.

In spite that both formulations are equivalent, it is important to recall that teleparallel theories are constructed from the Weitzenböck connection obtaining an space-time with vanishing curvature (the Riemann tensor vanishes) but not torsion free, in contrast with the standard Levi-Civita connection which gives a curved torsion-free space-time.

From these Lagrangians one easily obtains the Hamiltonian constraint that leads to the basic equation in cosmology: The so-called Friedmann equation, which in EC is given by

$$H^2 = (\rho + \Lambda)/3,$$

depicting a parabola in the plane (H, ρ), i.e., the evolution of the universe follows this parabola, and its dynamics is given by the system (which could be easily obtained from the conservation and Friedmann equations)

$$\begin{cases}
\dot{H} = -\frac{3\rho_r}{3} - \frac{\rho_m}{2} \\
\dot{\rho} = -4H\rho_r - 3H\rho_m,
\end{cases}$$
provided that the universe moves along the parabola $H^2 = (\rho + \Lambda)/3$, and that ρ_r and ρ_m satisfy equation (2). In (6) the first equation is the so-called Raychaudhuri equation, and the second one is an equivalent form of the conservation equation $d(\rho V) = -PdV$.

Equation (6) is a first order two-dimensional dynamical system. This kind of systems have a very simple dynamics that could be easily understood calculating their critical points (points in the phase-space (H, ρ) satisfying $\dot{H} = \dot{\rho} = 0$), which are stationary solutions.

The system (6), in the expanding phase ($H > 0$), has a unique critical point ($H = \sqrt{\Lambda/3}, \rho = 0$) which is a global attractor (from the second equation of (6) one easily deduces that ρ decreases with time). This means that the universe enters in a de Sitter phase at late times (the late time cosmic acceleration).

On the other hand, at early times the universe is dominated by ρ_r and ρ_m. Since we are in the expanding phase $H > 0$, the volume V is an increasing function of the time. As a consequence, one deduces from (2) that at very early times the universe is radiation dominated, and when the energy density reaches the value $\rho = 2\rho_{m,0}/\rho_{r,0}$ it changes to a matter-dominated phase.

Note also that, since the parabola is an unbounded curve, there is only a critical point of the system and ρ is a decreasing function. The interesting point is to know if the universe reaches the singularity ($\rho = \infty$) in a finite or infinite time. Solving the system (6), using that at early times the universe is in the radiation dominated phase, gives as a solution

$$H(t) = \frac{H_0}{1 + 2H_0(t - t_0)}.$$

(7)

From this solution one concludes that the time from the big bang to the present is $t_0 - t_{\text{big bang}} = \frac{1}{2H_0}$.

Figure 1: The different epochs of the Universe in Einstein Cosmology: a radiation-dominated expansion phase following the Big Bang, a matter-dominated expansion phase following it, and a final phase describing the current accelerating expansion.

2.1 What does exactly the big bang mean?

At $t_{\text{big bang}}$ the energy density diverges ($\rho \to \infty$). This could be understood as a deficiency of Einstein Cosmology and not as the beginning of our universe, because Einstein’s General Theory of Relativity is, in principle, a low energy theory. Thus, there is no objective reason to use this theory at high energies.
The big bang was discussed towards 1970, when the idea emerged that quantum effects could be important at very high energies, leading to a universe without a primeval singularity [23]. Efforts in this direction gave rise to the so-called semi-classical gravity, where quantum effects due to fields coupled with gravity are taken into account at early times (see for instance [24]). The most successful model was the so-called "Starobinsky model" [25] where the author obtained an unstable nonsingular model in which the universe starts in the de Sitter phase and ends in a matter dominated phase (the accelerated expansion of the universe had not been discovered yet at that moment).

Another step in order to deal with the universe at early time was the "inflation theory" [26]. A beginning of the universe seems incompatible with its homogeneity and isotropy (the horizon problem), and it is also very difficult, from a beginning, to understand the present spatial flatness of the universe (the flatness problem). The underlying idea behind inflation in EC is that, at early times, the universe had a period where the quantity aH increased considerably. Since in EC, when the universe is not phantom dominated, H is a decreasing function, to achieve the increase of aH one looks for a mechanism so that our universe remains, for a brief period of time, in a quasi de Sitter phase. Then H is nearly constant and the increase of the scale factor is exponential. The best way to achieve this quasi de Sitter period is by means of a field called inflaton, rolling very slowly according to a potential at very early times (Planck epoch or later, for example, at grand unified theories (GUTs) epoch), producing the accelerated expansion of the universe. At the end of this inflationary epoch the inflaton field decays creating the matter of the universe which thermalizes, being the universe in the radiation dominated phase. Finally, at that epoch, the model matches with the standard big bang theory. (It is always said that the inflationary paradigm is not a theory itself but an implementation to the standard big bang theory). Here, it is important to realize that the inflationary theory does not deal with the problem of a initial singularity of our universe because the theory starts at Planck epoch or, in some models, later. (Sometimes it is argued that before Planck epoch there is no classical description of the universe, and only a quantum description of it is possible).

However, although the inflationary paradigm is the most popular and used by the majority of cosmologists, it has some problems: i) Inflation deals with the singularity problem in an unconventional way, it effaces all the early history of our universe being itself as a beginning of the universe. In this sense, one could understand the beginning of the inflation as the beginning of our universe, and it seems impossible to form a previous idea of the universe before inflation. ii) The amplitude problem related with the power spectrum of the cosmological perturbation, as we have seen in chaotic inflation. In a wide class of inflationary models, the potential of the inflation field and the change of inflation field during inflation, namely $\Delta \phi$, must satisfy the relation $V(\phi)/(\Delta \phi)^4 \leq 10^{-12}$, what imposes a hierarchy in energy scales. iii) The trans-Planckian problem, that could be formulated as follows: Inflation provides a mechanism to produce structure formation based on the fact that scales currently observable were originated by wavelengths smaller than the Hubble radius at the beginning of inflation. This typically requires that inflation lasts past the scale factor increases 60 e-folds. However, if the period of inflation was longer, which happens in the majority of current models, then the wavelengths of all observable scales would be smaller than the Planck length at the beginning of inflation, but we do not know what kind of physics operates at that scales (see, for instance, [27]).

Another completely different way to deal with the initial singularity problem is to assume EC is only right at low energies, and then, in the Lagrangian T has to be changed by $F(T)$ or in R by $F(R)$ where F must be a nearly linear functions for small values of its argument, to understand this theory as an implementation of EC at high energies.

The field equations of the teleparallel Lagrangian are of second order, which is a great advantage compared to the Lagrangian constructed with the scalar curvature R, whose fourth-order equations lead to pathologies like instabilities or large corrections to Newton’s law [8].

This is a good reason to use $F(T)$ teleparallel theories instead the $F(R)$ ones (see [28] for a recent review of $F(R)$ gravity), because their simplicity gives rise to modified Friedmann equations depicting curves in the plane (H, ρ). According to these theories the universe moves along a curve, and its dynamics is given by the
so-called "modified Raychaudhuri equation" and the conservation equation.

3 Loop quantum cosmology: radiation plus matter plus cosmological constant

The standard viewpoint of LQC assumes, at quantum level, a discrete nature of space which leads to a quadratic modification \(\rho^2 \) in its effective Friedmann equation at high energies \cite{29}. This modified Friedmann equation depicts the following ellipse in the plane \((H, \rho)\) (see for details \cite{30})

\[
\frac{H^2}{\rho_c/12} + \frac{\left(\rho + \Lambda - \frac{\rho_c}{2}\right)^2}{\rho_c^2/4} = 1,
\]

(8)

where \(\rho_c \equiv \frac{2\sqrt{3}}{\gamma} \approx 258.51 \) is the so-called critical density, with \(\gamma \simeq 0.2375 \) being the so-called Barbero-Immirzi parameter \cite{31}. Note that, in units used through this paper, Planck’s density has the numeric value \(\rho_{\text{Planck}} = 64\pi^2 \approx 631.61 \) which is greater than \(\rho_c \), and thus, a classical description of the universe seems possible because its energy density will never exceed Planck’s scale’s.

Here an important remark is in order: Equation (8) could be obtained considering the regularized Hamiltonian

\[
H_{\text{LQC}} = -\frac{2V}{\gamma^2\lambda^4} \sum_{i,j,k} \epsilon^{ijk} Tr \left[h_i(\lambda)h_j(\lambda)h_k^{-1}(\lambda)h_k^{-1}(\lambda)\{h_k^{-1}(\lambda), V\} \right] + \rho V,
\]

(9)

where \(h_j(\lambda) \equiv e^{-\lambda \sigma_j} \) are holonomies being \(\lambda = \sqrt{\frac{\sqrt{3}}{\gamma}} \) a parameter with dimensions of length \cite{29}, and \(\beta \) is the canonically conjugate variable to the volume \(V \) satisfying \(\{\beta, V\} = \frac{\gamma}{2} \).

An explicit calculation of this hamiltonian were done in \cite{32} giving as a result

\[
H_{\text{LQC}} = -3V \frac{\sin^2(\lambda\beta)}{\gamma^2\lambda^2} + \rho V.
\]

(10)

Then the Hamilton equation \(\dot{V} = \{V, H_{\text{LQC}}\} \) is equivalent to the identity \(H = \frac{\sin(2\lambda\beta)}{\gamma^2\lambda^2} \) that, combined with the Hamiltonian constrain \(H_{\text{LQC}} = 0 \) give rise to the modified Friedmann equation (8) (see for instance, \cite{30}).

The dynamics is now given in LQC by the system

\[
\begin{align*}
\dot{H} &= -\frac{4\rho_r + 3\rho_m}{6} \left(1 - \frac{2(\rho + \Lambda)}{\rho_c}\right) \\
\dot{\rho} &= -4H\rho_r - 3H\rho_m.
\end{align*}
\]

(11)

In order to understand the dynamics of the system it is very useful to introduce the following parameter

\[
\omega_{\text{eff}} \equiv -1 - \frac{2H}{3H^2},
\]

which in LQC becomes

\[
\omega_{\text{eff}} = -1 + \frac{4\rho_r + 3\rho_m}{3(\rho + \Lambda)} \frac{\rho_c - 2(\rho + \Lambda)}{\rho_c - (\rho + \Lambda)}.
\]

(12)

This quantity is related to the expansion of the universe. Actually, when \(\omega_{\text{eff}} < -1/3 \) (respectively \(\omega_{\text{eff}} > -1/3 \)) the universe accelerates (respectively decelerates). In fact, one can see the universe filled by an effective fluid that drives its dynamics, and whose pressure and energy density are related by \(\omega_{\text{eff}} = P/\rho \).
Coming back to the system (11), note first that at low energies ($\rho \ll \rho_c$) it coincides with the system (6), which means that at low energies LQC coincides with EC, and it could be understood as an implementation of EC at high energies. In fact, writing (11) in its more usual form

$$H^2 = \frac{\rho + \Lambda}{3} \left(1 - \frac{\rho + \Lambda}{\rho_c}\right),$$

(13)

one can see that for the current value of the energy density ρ_0, which satisfy $\frac{\rho_0}{\rho_c} \sim 10^{-120}$, one has $H^2 = \frac{\rho + \Lambda}{3}$, what means that nowadays there is no any visible difference with standard ΛCDM cosmology.

Studying (11) as a dynamical system we can see that it has two critical points $p_f \equiv \left(\sqrt{\frac{2}{3}} \sqrt{1 - \frac{\Lambda}{\rho_c}}, 0\right)$ and $p_i \equiv \left(-\sqrt{\frac{2}{3}} \sqrt{1 - \frac{\Lambda}{\rho_c}}, 0\right)$. The first one is a de Sitter solution and the second one is an anti de Sitter solution. The universe moves along the ellipse from p_i to p_f in a clockwise sense (this comes from the second equation of (11), because in the contracting phase the energy density is an increasing function and in the expanding one it is decreasing). At very early times the size of the universe was very large and it contracts with positive acceleration because for $\rho \sim 0$ one has $\omega_{eff} \sim -1 < -1/3$. When the cosmological constant Λ stops its domination, the universe enters in a contracting matter dominated phase ($\omega_{eff} \sim 0$) because the volume is still big enough. Then the volume decreases and the universe enters in the contracting radiation dominated phase ($\omega_{eff} \sim 1/3$). In the contracting phase, as we have already showed, ρ is an increasing function and when $\rho \sim \rho_c/3$ one has $\omega_{eff} \sim -1/3$ which means that the universe accelerates (that is, it contracts in a decelerating way). This behavior is due to the form of the ellipse and it could be understood as a sort of dark energy that drives our universe to this accelerated phase. In this phase, when it arrives at the point $p_1 = (\rho_c - \Lambda, 0)$ (the top of the ellipse), it bounces leaving the contracting phase and entering in the expanding one where the density starts to decrease. At that moment one has $\omega_{eff} \ll -1/3$ and thus the universe expands in an accelerating way, it is in a super-inflationary phase that only increases the size of the universe by a small number of e-folds, which is not enough to solve the flatness and horizon problems that appear in EC. However, as we will show in next Section, our model does not suffer from these problems. This accelerating period finishes when the universe arrives at $p_2 \equiv (\rho_c/3, \rho_c/3)$. At that moment, it starts to decelerate and when the density satisfies $\rho_c \ll \rho \ll \Lambda$ the universe enters first in a radiation dominated phase, which it leaves when $\rho = 2\rho_{m_0}^4/\rho_{r_0}^3$, to enter in a matter dominated one ($\omega_{eff} \cong 0$). Finally, after leaving this phase, it enters in an accelerated phase when $\rho = \Lambda/2$ ($\omega_{eff} < -1/3$) and goes asymptotically, at late times, to the point p_f (de Sitter phase that mimics the late time accelerated cosmic expansion).

3.1 Does this model need an inflationary epoch as in EC?

In our model the inflationary epoch in the expanding phase starts at bouncing time, namely t_i, when the universe has energy density $\rho_c - \Lambda \cong \rho_c$. At that moment the scale factor is minimum, and thus, we can assume that the universe is radiation dominated. As we have seen the universe stops accelerating when the energy density is approximately equal to $\rho_c/3$. Let t_f be the time when inflation ends, then from (2) one deduces $a(t_f) = 3^{1/4}a(t_i)$. But in EC, to solve the horizon and flatness problem one needs and amount in the scale factor greater than 60 e-folds [26], what clearly does not happen in our model.

In fact, for a fluid with linear EoS $P = \omega\rho$ where $\omega > -2/3$, the accelerated expansion ends when $\rho \cong 2(1 + 3\omega)\rho_{r_0}^3$. Then, a simple calculation yields

$$a(t_f) = \left(\frac{2(2 + 3\omega)}{1 + 3\omega}\right)^{\frac{1}{3\omega+1}} a(t_i),$$

(14)
Figure 2: The different epochs of the Universe in Loop Quantum Cosmology: after a contracting phase and an accelerated expansion phase, the Universe enters a decelerating expansion phase as in Einstein Cosmology.

which means that to obtain 60 e-folds one needs a value of ω very close to $-2/3$. Note also that for fluids with $\omega > 0$ one obtains a "bad inflation" (an inflation with a small increase of the scale factor).

However, it is important to realize that in our model these problems do not appear. i) First, we start with the horizon problem. To simplify the calculation we assume a matter dominated universe. The particle horizon in the contracting phase is

$$d_{\text{hor}} = a(t_c) \int_{-\infty}^{t_c} \frac{dt}{a(t)},$$

where t_c is the bouncing time.

Using the identity $\rho(t) V(t) = \rho(t_c) V(t_c)$ and the conservation equation $\dot{\rho} = -3H\rho$ one obtains

$$d_{\text{hor}} = \frac{\rho_c}{\rho^{1/3}(t_c)} \int_0^{\rho_c - \Lambda} \frac{d\rho}{(\rho + \Lambda) \rho^{2/3}(\rho_c - (\rho + \Lambda))} \sim \frac{1}{\rho_c} \int_{\rho_c - \Lambda}^{\rho_c - (\rho + \Lambda)} \frac{d\rho}{(\rho_c - (\rho + \Lambda))} = +\infty.$$

which means that, when the universe enters in the expanding phase, all the points of it are in causal contact and, thus, the universe has had enough time to be homogeneous and isotropic when it bounces. Note that, the same result was deduced in [6] where the authors studies the teleparallel version of the Born-Infeld Lagrangian, $L_{BI} = \frac{1}{2} V \lambda \left[\sqrt{1 + \frac{2H}{\lambda}} - 1 \right]$, with λ being a parameter introduced with the aim of smoothing singularities. ii) The flatness problem in EC goes as follows: For a spatially curved FLRW space-time the Friedmann equation,
in EC, can be written as

$$\Omega - 1 = \frac{1}{a^2} = \frac{1}{a^2 H^2},$$

(17)

where $\Omega = \frac{\rho + \Lambda}{3H^2}$. In EC cosmology a^2 is a decreasing function because $\frac{d}{dt} \dot{a}^2 = 2 \ddot{a} \dot{a} < 0$. Since nowadays one has $|\Omega - 1| \leq 0.2$ one easily deduces that at Planck scales $|\Omega - 1| \sim 10^{-60}$. From this result it seems that it would be far better to find a physical mechanism for flattening the universe, instead of relying on contrived initial conditions at Planck epoch. In EC this problem is solved with a brief period of inflation ($\bar{a} > 0$) after Planck’s epoch. If the number of e-folds is large enough, then assuming that $|\Omega - 1| \sim 1$ at Planck’s epoch one obtains, for the majority of current inflationary models, $|\Omega - 1| \ll 10^{-60}$. However, our model contains its own mechanism to solve that problem. Namely, we consider in order to simplify a matter-dominated universe without cosmological constant (although our reasoning is completely general). Then the solution of the system (11) is given by [33]

$$H(t) = \frac{\rho_c t/2}{3 \rho_c t^2/4 + 1}, \quad \rho(t) = \frac{\rho_c}{3 \rho_c t^2/4 + 1},$$

(18)

where here we have chosen as a bouncing time $t = 0$. From these values one easily find the following scale factor $a(t) = a(0) (\rho(t)/\rho_c)^{-1/3}$.

Near the bouncing time $t \sim 0$, thus $a(t) \approx a(0)$ and $H(t) \approx \rho_c t/2$ and consequently

$$\Omega - 1 \approx \frac{4}{a^2(0) \rho_c^2 t^2} \gg 1,$$

(19)

that is, the fine tuning of $\Omega - 1$ is not needed at any scale.

As one can easily see, this situation is very different from inflation in EC. Since in EC H decreases for non-phantom universes, one needs a brief period of time where the Hubble parameter is nearly constant and the scale factor sustains a huge increase. In LQC, at high energies the universe is in a super-inflationary phase ($\dot{H} > 0$). Then to solve the flatness (and also the horizon) problems one only needs a huge increase of aH. In fact, to solve these problems one needs that $\bar{N} \equiv \ln \frac{a(t_f)}{a(t_i)} H(t_f) \approx 60$, where t_i and t_f are, respectively, the beginning and end of the inflationary period [34, 35]. And, since in LQC $H \approx 0$ near the bounce, one always obtains $\bar{N} \gg 1$. Finally, note that if inflation was produced in a quasi de Sitter phase, \bar{N} will coincide with the standard quantity that measures the number of e-folds in inflationary EC. I.e., \bar{N} will coincide with $N \equiv \ln \frac{a(t_f)}{a(t_i)}$.

Dealing with the problem of the origin of density perturbations is a different subject. One can assume initial conditions, at very early times, for the density perturbations and one shows that, at late times, they evolve into a scale-invariant spectrum, or one has to look for a mechanism that produces an almost scale-invariant spectrum of cosmological perturbations. In this second case, one may consider a condensate scalar field (the inflaton field), and use its quantum fluctuations at high energy scales in order to explain the generation of large-scale perturbations. The fact that $H(t)$ is almost constant during the slow-roll period means that it is possible to generate scale-invariant density perturbations on large scales.

The alternative possibility we propose is to consider initial perturbations, for example given by quantum fluctuations due to a very light field minimally coupled with gravity (the quantum fluctuations of the inflaton and the quantum fluctuations of a massless minimally coupled field satisfy the same Klein-Gordon equation), in our model.

Since in a contracting, matter-dominated phase of a bouncing universe, cosmological perturbations, have been studied in the last decade, showing analytically and numerically in some toy models that they evolve into a scale-invariant spectrum of cosmological perturbations at late times (after the bounce) [36, 37, 38, 39]. In
our model we can consider, at very early times, quantum fluctuations that at the contracting matter dominated phase would produce on long wavelengths (at scales larger than the Hubble radius) an scale-invariant spectrum which would survive after the bounce. This is, of course, a topic that needs future detailed investigation, but in principle, from previous works, it seems plausible that our model provides a scale-invariant spectrum after the bounce.

All these reasons indicate that models such as non-singular bouncing cosmologies, where inflation is not needed, should be taken into account in order to explain the evolution of our universe.

4 Reconstructing cosmologies

In this section we take another viewpoint: Given the evolution of our universe, i.e., choosing the evolution of scale factor, we will construct the Lagrangian whose dynamical equations have as a solution the chosen scale factor.

4.1 Reconstruction via an scalar field

First at all, we consider, in EC, a scalar field ϕ with energy density and pressure given by

$$\rho = \frac{1}{2} \omega(\phi) \dot{\phi}^2 + V(\phi), \quad P = \frac{1}{2} \omega(\phi) \dot{\phi}^2 - V(\phi),$$

(20)

where ω and V are functions of the field ϕ. After some algebra one obtains the relations

$$\omega(\phi) \dot{\phi}^2 = -2 \dot{H}, \quad V(\phi) = 3 H^2 + \dot{H}.$$

(21)

Equation (21) has two different solutions. i) If one takes $\omega(\phi) \equiv 1$ then one has

$$V(t) = 3 H^2 + \dot{H}, \quad \phi(t) = \int dt \sqrt{-2 \dot{H}}.$$

(22)

These equations determine $\phi(t)$ and $V(t)$ in terms the scale factor, thereby implicitly determining $V(\phi)$. ii) Taking $\phi = t$ (21), which gives

$$V(t) = 3 H^2 + \dot{H}, \quad \omega(t) = -2 \dot{H},$$

(23)

once again, any cosmology with scale factor $a(t)$ is realized by the potential V.

As an example, a power law expansion $a(t) = a_0 |t/t_0|^p$ is obtained using formulas (21) from an exponential potential of the form

$$V(\phi) = e^{-\sqrt{2} \phi}.$$

(24)

However, realistic cosmologies require very complicated potentials that in general do not have a minimum as that of potentials used in inflation. Then, in general, the scalar field does not oscillate around the minimum and consequently does not release its energy producing light particles that thermalize our universe as occurs in inflationary cosmologies. In order to obtain a realistic re-heating theory, one has to use gravitational particle production. Gravitational particle production due to a transition from a de Sitter to a radiation phase has been studied extensively in the past. Given a consistent re-heating temperature [42, 43, 44], then it seems mandatory that, reconstructing models via a scalar field, this transition occurs.

Different examples reconstructing the history of our universe are given in [45]. Here we study one of them in order to show the complicated potentials obtained:
The dynamics \(H(t) = \frac{H_i + \lambda e^{\alpha t}}{1 + e^{\alpha t}} \), where \(\lambda, H_i \) and \(\alpha \) are constants satisfying \(\alpha, \lambda \ll H_i \) so that slow-roll conditions can be satisfied, describes a universe which at early times is dominated by an effective cosmological constant with value \(3H_i^2 \) driven inflation, and at late times is dominated by another cosmological constant with value \(3\lambda^2 \) given the current accelerated expansion of our universe. Then, using (23) one obtains the following complicated quantities

\[
\omega(\phi) = \frac{\alpha(H_i - \lambda)e^{\alpha \phi}}{1 + e^{\alpha \phi}}^2,
\]

\[
V(\phi) = \frac{3H_i^2 + [6H_i\lambda - \alpha(H_i - \lambda)]e^{\alpha \phi} + \lambda^2 e^{2\alpha \phi}}{(1 + e^{\alpha \phi})^2}.
\]

(25)

4.2 Reconstruction via \(f(T) \) gravity

In a flat FLRW space-time filled by a perfect fluid with energy density \(\rho \), general teleparallel theories are obtained from the Lagrangian

\[\mathcal{L} = VF(T) - V\rho. \]

(26)

The conjugate momentum is then given by \(p_V = \frac{\partial \mathcal{L}}{\partial \dot{V}} = -4HF'(T) \), and thus the Hamiltonian is

\[\mathcal{H} = \dot{V}p_V - \mathcal{L} = (2TF'(T) - F(T) + \rho)V. \]

(27)

In general relativity the Hamiltonian is constrained to be zero, what leads to the modified Friedmann equation

\[\rho = -2F'(T)T + F(T) \equiv G(T), \]

(28)

which is a curve in the plane \((H, \rho)\).

Then, given a curve of the form \(\rho = G(T) \) for some function \(G \), a first way to reconstruct the Lagrangian \((26)\) consists in integrating the modified Friedmann equation \((28)\), obtaining as a result

\[F(T) = -\frac{\sqrt{-T}}{2} \int \frac{G(T)}{T\sqrt{-T}}dT. \]

(29)

The simplest example is to take as a curve a parabola, for example,

\[\rho = \bar{\rho} \left(1 - \frac{3H^2}{\Lambda}\right), \]

(30)

which models for a non-phantom universe, i.e., for \(\frac{\rho}{\bar{\rho}} \geq -1 \), a universe that moves clockwise from \((-\sqrt{\Lambda/3}, 0)\) to \((\sqrt{\Lambda/3}, 0)\), bouncing when \((0, \bar{\rho})\). Using the formula \((29)\) one obtains

\[F(T) = \bar{\rho} \left(1 - \frac{T}{2\Lambda}\right). \]

(31)

In this case, if one considers a matter dominated universe and inserts in the conservation equation \(\dot{\rho} = -3H\rho \) the value of \(H \) as a function of \(\rho \), one obtains a solvable differential equation whose solution is

\[\rho(t) = \bar{\rho} \frac{4e^{-\sqrt{3\Lambda}t}}{(1 + e^{-\sqrt{3\Lambda}t})^2}, \quad H_{\pm}(t) = \pm \sqrt{\frac{\Lambda}{3\bar{\rho}}} \left(1 - e^{-\sqrt{3\Lambda}t}\right), \]

(32)
where we have chosen as a bouncing time $t = 0$.

As a second example we consider LQC, where the curve (30) can be written in two pieces $\rho = G_{-}(T)$ (which corresponds to energy densities below $\rho_{c}/2-\Lambda$) and $\rho = G_{+}(T)$ (which corresponds to energy densities between $\rho_{c}/2-\Lambda$ and $\rho_{c}-\Lambda$), where

$$G_{\pm}(T) = -\Lambda + \frac{\rho_{c}}{2} \left(1 \pm \sqrt{1 + 2T \rho_{c}} \right).$$

Then, using formula (29) one gets

$$F_{\pm}(T) = \pm \sqrt{-\frac{T \rho_{c}}{2}} \arcsin \left(-\frac{2T \rho_{c}}{\rho_{c}} + 1 \pm \sqrt{1 + 2T \rho_{c}} \right) - \Lambda.$$

From this formula one obtains, in LQC, the Lagrangian that models a universe with cosmological constant filled by radiation and matter

$$\mathcal{L} (V, \dot{V}) = \begin{cases} F_{-}(T)V - \rho_{r,0} V^{-1/3} - \rho_{m,0} & \text{for} \quad 0 \leq \rho_{r,0} V^{-4/3} + \rho_{m,0} V^{-1} \leq \rho_{c}/2 - \Lambda \\ F_{+}(T)V - \rho_{r,0} V^{-1/3} - \rho_{m,0} & \text{for} \quad \rho_{c}/2 - \Lambda < \rho_{r,0} V^{-4/3} + \rho_{m,0} V^{-1} \leq \rho_{c} - \Lambda, \end{cases}$$

which shows that the effective formulation of LQC can be considered as a teleparallel theory.

Coming back to Formula (29), it seems very useful to construct simple bouncing models. One only has to consider a closed curve in the phase-space (H, ρ). This curve has to be symmetric with respect to the axe $H = 0$. Splitting the curve in some points as we have done in LQC, one will easily obtain a $F(T)$ theory for each part of the curve.

A second way to reconstruct a model using $f(T)$ theories is as follows: given the scale factor $a(t)$, the conservation equation $d(\rho V) = -P d(V)$ and the Equation of State $P = P(\rho)$, one obtains the energy density as a function of time $\rho(t)$. From the scale factor $a(t)$ one also obtains the scalar torsion as a function of time $T = T(t) = -6 \left(\frac{\dot{a}(t)}{a(t)} \right)^{2}$. Then performing the change of variable $T = T(t)$ in (29) one obtains

$$F(T) = -\frac{\sqrt{-T}}{2} \int^{t(T)} \frac{\rho(s) \dot{T}(s)}{T(s) \sqrt{-T(s)}} ds,$$

where the time t as a function of T, i.e. $t(T)$, was to be obtained inverting the equation $T = T(t)$.

Finally, note that as in the case of an scalar field, formula (36) shows that realistic cosmologies, i.e. realistic $a(t)$ will require of a very complicated $f(T)$ theory.

The last way to construct models has recently been introduced in [30]. The idea is that given a scale factor $a(t)$, from the modified Friedmann and Raychaudhuri equations of a $F(T)$ theory, one can build the corresponding equation of state (EoS) that we will assume has the form $P(\rho) = -\rho - f(\rho)$. To be precise, taking the derivative with respect to time in (28) and using the conservation equation one obtains the Raychaudhuri equation

$$\dot{H} = -\frac{f(\rho)}{4} (G^{-1})'(\rho).$$

Then, from (28) one obtains the time $t(\rho)$ as a function of the energy density. Inserting this expression in (37) one finally obtains $f(\rho)$, and thus, one has built the EoS that gives the dynamics $a(t)$ in the corresponding $F(T)$ theory.

As an example we consider in EC ($F(T) = T/2$), the dynamics

$$H(t) = H_i + H_1 e^{-\gamma (t - t_i)}, \text{ for } t_i \leq t \leq 60H_i^{-1} + t_i,$$

(38)
where we assume $H_1 \ll H_i$ and $\gamma H_i^{-1} \ll 1/60$, which means that $H(t)$ is nearly constant during this period of time, and consequently the scale factor increases the required 60 e-folds to solve the horizon and flatness problems.

From (28) and (37) one easily obtains the following nonlinear EoS

$$f(\rho) = 2\gamma H_i \left(1 - \sqrt{\rho/(3H_i^2)}\right),$$

when $\rho \in \left[3(H_i + H_1)^2, 3(H_i + H_1 e^{-60\gamma H_i^{-1}})^2\right]$. This opens the possibility to consider models where the EoS is nonlinear. One of these models was studied in [22], where in EC with a small cosmological constant Λ, the following EoS was considered: $f(\rho) = -\rho (1 - \rho/\rho_i)$. In this case the point $(\sqrt{(\rho_i + \Lambda)/3}, \rho_i)$ is a de Sitter solution, and the universe evolves from it, passing through a matter-dominated phase, to the point $(\sqrt{\Lambda/3}, 0)$ which mimics the late time cosmic acceleration. In this case $\omega_{eff} = P(\rho)/\rho = -\rho/\rho_i$, which means that the universe accelerates when $\rho \in [\rho_i/3, \rho_i]$ and decelerates when $\rho \in [0, \rho_i/3]$. Finally, note that this model does not contain the horizon and flatness problems. The first one is avoided because at the end of the accelerating phase all the points of the universe are in causal contact ($d_{hor} = +\infty$), and the second one due to the accelerated period that reduces the value of $|\Omega - 1|$ at early times.

To finish, we consider once again the dynamics $H(t) = \frac{H_i + \lambda e^{\alpha t}}{1 + e^{\alpha t}}$ in EC, and we try to find the EoS. From the Friedmann equation one obtains

$$e^{\alpha t} = \frac{H_i - \frac{\rho}{3\lambda^2} \lambda \sqrt{H_i - 1}}{3\lambda^2 - 1}.$$

Then, inserting this value in the Raychaudhuri equation $\dot{H} = \frac{f(\rho)}{2}$ one obtains the function $f(\rho)$. The calculation is easy but cumbersome, and the final result is a non-linear EoS given by

$$P(\rho) = -\rho + 2\alpha \left(\sqrt{\frac{\rho}{3}} - \lambda\right) \frac{H_i - \sqrt{\frac{\rho}{3}}}{H_i - \lambda}, \quad \text{for} \quad 3\lambda^2 \leq \rho \leq 3H_i^2. \quad (41)$$

5 Conclusions

A large number of models describing non-singular universes could be constructed in $F(T)$ gravity. In this paper we have chosen LQC (a $F(T)$ theory as we have already showed) with an small cosmological constant to propose a non-singular bouncing universe filled by radiation and matter, which at late times mimics the current cosmic acceleration. Our model does not suffer the horizon and flatness problems, so it does not need a quasi de Sitter phase producing a huge increase in the scale factor as it must happen in EC. Moreover, since at early times our model passes through a contracting matter-dominated phase it could, although this is a complicated point that deserves future investigations, be possible to generate an scale-invariant spectrum of perturbations.

The development of LQC as a $F(T)$ theory allows the study of LQC perturbations using the perturbation equations in $F(T)$ gravity. This is an alternative to the study of perturbations in LQC up to the present, which is based on phenomenological corrections. The authors will pursue this topic in a subsequent work.

However, teleparallel theories are based in an arbitrary choice of an orthonormal basis, namely $\{e_j : j = 0, 1, 2, 3\}$, in each point of the space-time. For example the particular choice of the basis $\{e_0 = \partial_t, e_1 = a^{-1}(t)\partial_x, e_2 = a^{-1}(t)\partial_y, e_3 = a^{-1}(t)\partial_z\}$, where $\partial_t, \ldots, \partial_z$ are the vectors corresponding to the cartesian axis in coordinates (t, x, y, z), gives as a result the scalar torsion $T = -6H^2$, but other different choices (local choices) give another different scalar torsion [46], and thus, other completely different cosmologies.
Fortunately, cosmology based in \(F(T) \) gravity does not need that election. Effectively, in cosmology one assumes, at large scales, an homogeneous space-time, which means that the basis \(\{\mathbf{e}_j : j = 0, 1, 2, 3\} \) could only have a time dependence, because the scalar torsion must be only a function of the time. As a consequence, all admissible bases are related by time-dependent Lorentz transformations, i.e., by transformations of the form \(\Lambda^k_j(t) \), and for these admissible basis it is easy to show that \(T \) is invariant with the value \(T = -6H^2 \).

Acknowledgments The authors want to thank M. Bojowald and E.N. Saridakis for correspondence and useful comments about cosmological perturbations. This investigation has been supported in part by MINECO (Spain), project MTM2011-27739-C04-01, MTM2012-38122-C03-01 and FIS2010-15640, and by AGAUR (Generalitat de Catalunya), contracts 2009SGR 345, 994 and 1284.

References

[1] A. Einstein, Math. Annal. **102**, 685 (1930).

[2] K. Hayashi and T. Shirafuji, Phys. Rev. **D19**, 3524 (1979) [Addendum-ibid. **D24**, 3312 (1982)].

[3] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick and J. M. Nester, Rev. Mod. Phys. **48**, 393 (1976).

[4] E. E. Flanagan and E. Rosenthal, Phys. Rev. **D75**, 124016 (2007).

[5] J. Garecki, [arXiv:1010.2654](http://arxiv.org/abs/1010.2654)[gr-qc].

[6] R. Ferraro and F. Fiorini, Phys. Rev. **D75**, 084031 (2007).
R. Ferraro and F. Fiorini, Phys. Rev. **D78**, 124019 (2008).

[7] G. R. Bengochea and R. Ferraro, Phys. Rev. **D79**, 124019 (2009).

[8] E. V. Linder, Phys. Rev. D **81**, 127301 (2010) [Erratum-ibid. **D82**, 109902 (2010)].

[9] K. Bamba, C. Q. Geng, C. C. Lee and L. W. Luo, JCAP **1101**, 021 (2011).
K. Bamba, C. Q. Geng and C. C. Lee, [arXiv:1008.4036](http://arxiv.org/abs/1008.4036)[astro-ph.CO];
K. Bamba, [arXiv:1202.4317](http://arxiv.org/abs/1202.4317)[gr-qc].

[10] S. Perlmutter et al. [SNCP Collaboration], Astrophys. J. **517**, 565 (1999).
A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. **116**, 1009 (1998).

[11] D. J. Eisenstein et al. [SDSS Collaboration], Astrophys. J. **633**, 560 (2005).

[12] M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D **69**, 103501 (2004). U. Seljak et al. [SDSS Collaboration], Phys. Rev. D **71**, 103515 (2005).

[13] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. **148**, 175 (2003). D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. **170**, 377 (2007).

[14] B. Jain and A. Taylor, Phys. Rev. Lett. **91**, 141302 (2003).

[15] K. Bamba, S. Capozziello, S. Nojiri and S.D. Odintsov, Astrophys. Space. Sci **342**, 155 (2012).
[16] P. Wu and H.W. Yu, Phys. Lett. B693, 414 (2010).
R. Myrzakulov, Eur. Phys. J. C71, 1752 (2011).
P. Wu and H.W. Yu, Eur. Phys. J. C71, 1552 (2011).
C. Q. Geng, C. C. Lee and E. N. Saridakis, JCAP 1201, 002 (2012).
C. Q. Geng, C. C. Lee, E. N. Saridakis and Y. P. Wu, Phys. Lett. B704, 384 (2011).
T. Wang, Phys. Rev. D84, 024042 (2011).
M.E. Rodrigues, M.J.S. Houndjo, D. Sáez-Gómez and F. Rahaman, Phys. Rev. D86, 104059 (2012).
M. Jamil, D. Momeni and R. Myrzakulov, Eur. Phys. J. C72, 1959 (2012).
Y. Zhang, H. Li, Y. Gong and Z.H. Zhu, JCAP 1107, 015 (2011).
C.G. Boehmer, T. Harko and F.S. Lobo, Phys. Rev. D85, 044033 (2012).
S. Chattopadhyay and U. Debnath, Int. J. Mod. Phys. D20, 1135 (2011).
M. Sharif and S. Rani, Mod. Phys. Lett A26, 1657 (2011).
H. Wei, X.P. Ma and H.Y. Qi, Phys. Lett. B703, 74 (2011).
C. G. Boehmer, A. Mussa and N. Tamanini, Class. Quant. Grav. 28, 245020 (2011).
S. Capozziello, V. F. Cardone, H. Farajollahi and A. Ravanpak, Phys. Rev. D84, 043527 (2011).
L.R.A. Belo, E.P. Spaniol, J.A. de Deus and V.C. de Andrade, Adv. Studies Theor. Phys. 6, 325 (2012).

[17] K. Bamba, R. Myrzakulov, S. Nojiri and S. D. Odintsov, Phys. Rev. D 85, 104036 (2012).

[18] A. Ashtekar, Nuovo Cim. B122, 135 (2007).
P. Singh, Phys. Rev. D 73, 063008 (2006).
A. Corichi and P. Singh, "A geometric perspective on singularity resolution and uniqueness in loop quantum cosmology ", [arXiv:0905.4949] [gr-qc].
P. Singh, K. Vandersloot and G. V. Vereshchagin, Phys. Rev. D 74, 043510 (2006).
P. Singh, Class. Quant. Grav. 26, 125005 (2009).
A. Ashtekar, T. Pawlowski and P. Singh, Phys. Rev. D74, 084003 (2006).
M. Bojowald, Class. Quant. Grav. 26, 075020 (2009).
E. J. Copeland, D. J. Mulryne, N. J. Nunes and M. Shaeri, Phys. Rev. D77, 023510 (2008).
D. Samart and B. Gumjudpai, Phys. Rev. D76, 043514 (2007).
T. Naskar and J. Ward, Phys. Rev. D76, 063514 (2007).
M. Sami, P. Singh and S. Tsujikawa, Phys. Rev. D74, 043514 (2006).

[19] Y.F. Cai, S.H. Chen, J.B. Dent, S. Dutta and E.N. Saridakis, Class. Quant. Grav. 28, 215011 (2011).
S.H. Chen, J.B. Dent, S. Dutta and E.N. Saridakis, Phys. Rev. D83, 023508 (2011).
J.B. Dent, S. Dutta and E.N. Saridakis, JCAP 1101: 009 (2011).

[20] M. Bojowald and G.M. Hossain, Class. Quant. Grav. 24, 4801 (2007).
M. Bojowald and G.M. Hossain, Phys. Rev. D77, 023508 (2008).
J. Mielczarek, Phys. Rev. D79, 123520 (2009).

[21] T. Cailleteau, J. Mielczarek, A. Barrau and J. Grain, Class. Quant. Grav. 29, 095010 (2012).
T. Cailleteau, J. Mielczarek, A. Barrau and J. Grain, Class. Quant. Grav. 29, 085009 (2012).

[22] J. de Haro and J. Amorós, Phys. Rev. Lett. 110, 071104 (2013).

[23] L. Parker and S.A. Fulling, Phys. Rev. 7, 2357 (1973).
L. Parker and S.A. Fulling, Phys. Rev. 9, 341 (1974).

[24] P.C.W. Davies, Phys. Lett. B68, 402 (1977).
[25] A.A. Starobinsky, Phys. Lett. B91, 99 (1980).
[26] A. Guth, Phys. Rev. D23, 347 (1981).
[27] J. Martin and R. H. Brandenberger, Phys. Rev. D63, 123501 (2001).
[28] S. Nojiri and S.D. Odintsov, Phys. Rept. 505, 59 (2011).
[29] P. Singh, J. Phys. Conf. Ser. 140, 012005 (2009).
[30] K. Bamba, J. de Haro and S.D. Odintsov, JCAP 02 008 (2013).
[31] A. Ashtekar and P. Singh, Class. Quant. Grav. 28, 212001 (2011).
[32] J. Haro and E. Elizalde, EPL 89, 69001 (2010).
 P. Dzierzak, P. Malkiewicz and W. Piechocki, Phys. Rev. D 80, 104001 (2009).
[33] J. de Haro, JCAP 07 007 (2012).
[34] A.R. Liddle, P. Parson and J.D. Barrow, Phys. Rev. D50, 7222 (1994).
[35] E.J. Copeland, D.J. Mulryne, N.J. Nunes and M. Shaeri, Phys. Rev. D77, 023510 (2008).
[36] D. Wands, Phys.Rev. 60, 023507 (1999).
[37] R. H. Brandenberger, Alternatives to the inflationary paradigm of structure formation, hep-th: 0902.4731 (2009).
[38] P. Peter and N. Pinto-Neto, Phys. Rev. D78, 063506 (2008).
[39] P. Peter and N. Pinto-Neto, Phys. Rev. D66, 063509 (2002).
[40] T. Padmanabhan, Phys. Rev. D66, 021301 (2002).
[41] S. Nojiri and S.D. Odintsov, Gen. Rel. Grav. D38, 1285 (2006).
[42] T. Damour and A. Vilenkin, Phys. Rev. D53, 2981 (1996).
[43] B. Spokoiny, Phys. Lett. B315, 40 (1993).
[44] P.J.E. Peebles and A. Vilenkin, Phys. Rev. D59, 063505 (1999).
[45] E. Elizalde, S. Nojiri, S.D. Odintsov, D. Sáez-Gómez and V. Faraoni, Phys. Rev. D77, 106005 (2008).
[46] B. Li, T. P. Sotiriou and J. D. Barrow, Phys. Rev. D 83, 064035 (2011).