New Evidence of the Azimuthal Alignment of Quasars Spin Vector in the LQG U1.28, U1.27, U1.11, Cosmologically Explained.

Reinoud J. Slagter

1 Astronomisch Fysisch Onderzoek Nederland (ASFYON) and University of Amsterdam (on leave)
1405EP Bussum, The Netherlands

Submitted to JCAP

ABSTRACT

There has been observational evidence about spin axes of quasars in large quasar groups correlated over hundreds of Mpc. This is seen in the radio spectrum as well as in the optical range. There is not yet a satisfactory explanation of this "spooky" alignment. This alignment cannot be explained by mutual interaction at the time that quasars manifest themselves optically. A cosmological explanation could be possible in the formation of superconducting vortices (cosmic strings) in the early universe, just after the symmetry-breaking phase of the universe. We gathered from the NASA/IPAC and SIMBAD extragalactic databases the right ascension, declination, inclination, position angle and eccentricity of the host galaxies of 3 large quasar groups to obtain the azimuthal and polar angle of the spin vectors. The alignment of the azimuthal angle of the spin vectors of quasars in their host galaxy is confirmed in the large quasar group U1.27 and compared with two other groups in the vicinity, i.e., U1.11 and U1.28, investigated by Clowes (2013). It is well possible that the azimuthal angle alignment fits the predicted azimuthal angle dependency in the theoretical model of the formation of general relativistic superconducting vortices, where the initial axially symmetry is broken just after the symmetry breaking of the scalar-gauge field.

Keywords: quasar groups – alignment spin vectors – host galaxy – cosmic strings – scalar-gauge field

1. INTRODUCTION

A large quasar group (LQG) is a cluster of quasars that makes the largest astronomical structures in the current universe. Their sizes can be of the order of hundreds of Mpc. Astronomers believe that a quasar is an active galactic nuclei (AGN) with a vibrant eruption of radiation both optical and in radio range originated by a spinning (Kerr-) black hole, surrounded by an accretion disk. According to Taylor and Jagannathan (Taylor & Jagannathan 2016), a LQG has an internal non-uniform distribution of spin vectors seen in the radio spectrum and the optical spectrum as observed by Hutsemekers et al. (Hutsemekers 2014). This coherence is mysterious and cannot be explained by mutual interaction at the time scale of primordial galaxies formation but rather by use of a more advanced method (Slagter 2018). In a recent study, Slagter (Slagter & Miedema 2021) found that the azimuthal angle of the spin vector of quasars in their host galaxies in six quasar groups, show preferred directions. This is demonstrated through an emergent azimuthal angle dependency of the general relativistic Nielsen-Olesen (NO) vortices at the point after the symmetry breaking at grand unified theory (GUT)-scale. This review focuses on three more other LQG, studied by Clowes (Clowes 2012, 2013).

2. RESULTS
From the NASA/IPAC extragalactic database and SIMBAD we extract for the three LQG U1.11, U1.27 and U.28 the right ascension, declination, inclination, position angle and eccentricity of the host galaxies. The 3-D orientation of the spin vectors can then be calculated (Pajowska 2019). In figure 1 and 2 we plotted the azimuthal angle. Without statistical analysis one can conclude that the preferred orientations are evident. In the case of LQG U1.27 (see table 1 and 2 for the data), we fitted two trigonometric functions on the distribution, which can theoretically be explained (section 3).

\[V_i = \sum_{n=0}^{\infty} \frac{1}{\omega^n} F_{i}^{(n)}(x, \xi), \]

where ω represents a dimensionless parameter ("frequency"), which will be large. Further, \(\xi = \omega \Theta(x) \), with Θ a scalar (phase) function on the manifold. The small parameter \(\frac{1}{\omega} \) can also be the ratio of the characteristic wavelength of the perturbation to the characteristic dimension of the background. On warped spacetimes it could also be the ratio of
the extra dimension to the background dimension. In the vacuum case, we expand the metric
\[g_{\mu\nu} = \bar{g}_{\mu\nu} + \frac{1}{\omega} h_{\mu\nu}(x, \xi) + \frac{1}{\omega^2} k_{\mu\nu}(x, \xi) + \ldots, \]
where we defined
\[\frac{dg_{\mu\nu}}{dx^\sigma} = g_{\mu\nu,\sigma} + \omega l_\sigma \dot{g}_{\mu\nu}, \quad g_{\mu\nu,\sigma} = \frac{\partial g_{\mu\nu}}{\partial x^\sigma}, \quad \dot{g}_{\mu\nu} = \frac{\partial g_{\mu\nu}}{\partial \xi}, \]
with \(l_\mu = \frac{\Theta}{\omega} \). One then says that
\[V_i = \sum_{n=m}^{\infty} \frac{1}{\omega^n} F_i^{(n)}(x, \xi) \]
is an approximate wavelike solution of order \(n \) of the field equation, if \(F_i^{(n)} = 0, \forall n \). One can substitute the expansion into the field equations. The Ricci tensor then expands as
\[R_{\mu\nu} \rightarrow \omega R_{\mu\nu}^{(-1)} + \left(\ddot{R}_{\mu\nu} + R_{\mu\nu}^{(0)} \right) + \frac{1}{\omega} R_{\mu\nu}^{(1)} + \ldots \]
By equating the subsequent orders to zero, we obtain
\[R_{\mu\nu}^{(-1)} = 0 = \frac{1}{2} g^{\beta\lambda} (l_\lambda l_\mu \ddot{h}_{\beta\nu} + l_\nu l_\beta \ddot{h}_{\mu\lambda} - l_\lambda l_\beta \ddot{h}_{\mu\nu} - l_\nu l_\lambda \ddot{h}_{\beta\mu}), \]
\[R_{\mu\nu}^{(0)} + \dot{R}_{\mu\nu} = 0, \quad R_{\mu\nu}^{(1)} = 0, \ldots \]
Here we used \(l_\mu l^\mu = 0 \). The rapid variation is observed in the direction of \(l_\mu \). In the radiative outgoing Eddington-Finkelstein coordinates, we have \(x^1 = u = \Theta(x) = t - r \) and \(l_\mu = (1, 0, 0, 0) \), while the bar stands for the background.

3.1. Formation of vortices

In a recent study (Slagter 2016, 2017; Slagter & Miedema 2021) we applied this non-linear approximation scheme on a FLRW spacetime. We considered the matter contribution of a gauged complex scalar (Higgs) field. Physicists
are now convinced that this field plays a fundamental role in the early universe and is responsible for the symmetry breaking in the Standard Model of particle physics. The experimental verification came by the recently observed Higgs particle at CERN. The same field has lived up to its reputation in superconductivity, where the field act as an order parameter to describe the formation of Cooper pairs. The scalar field is combined with a gauge field, parameterized by $A_\mu = \bar{A}_\mu(x) + \frac{1}{\omega} B_\mu(x,\xi) + \frac{1}{\omega^2} C_\mu(x,\xi) + ...$, where we write the subsequent orders of the scalar field as $\bar{\Phi} = \eta \bar{X}(t,r) e^{in_1 \varphi}$, $\Psi = Y(t,r,\xi) e^{in_2 \varphi}$, $\Xi = Z(t,r,\xi) e^{in_3 \varphi}$, with n_1, n_2, n_3 the winding numbers.

3.2. The azimuthal angle dependency: breaking the axial symmetry

The azimuthal angle φ does not reach the partial differential equations (PDE) in the unperturbed case. By quantum fluctuations, the vortex excite in higher n-state and will dissociate into n well separated $n = 1$ vortices, because the energy of the configuration is proportional with n^2. The topological characterization is a set of isolated points with winding numbers n_i (the zeros of Φ), with $n = n_1, n_2, ...$. This n-vortices solution represents a finite energy configuration. However, an imprint will be left over of the azimuthal dependency of the orientation of the clustering of Abrikosov vortices lattice in the general relativistic situation. So the axial symmetry is dynamically broken. The azimuthal dependency emerge already to first order in the approximation. For example, the energy-momentum tensor $T_{t\varphi} = 0$, while the first order perturbation becomes

$$T_{t\varphi}^{(0)} = \bar{X} \bar{P} \bar{Y} n_1 \sin(n_2 - n_1) \varphi$$

However, in $T_{t\varphi}^{(1)}$ there appears terms like $\cos(n_2 - n_1) \varphi$ and $\sin(n_3 - n_1) \varphi$. The perturbative appearance of a nonzero energy-momentum component $T_{t\varphi}$ can be compared with the phenomenon of bifurcation along the Maclaurin-Jacobi sequence of equilibrium ellipsoids of self-gravitating compact objects, signalling the onset of secular instabilities (Gondek-Rosinska & Gourgoulhon 2002). This shows a similarity with the Goldstone-boson modes of spontaneously broken symmetries of continuous groups. The recovery of the SO(2) symmetry from the equatorial eccentricity takes place at a time comparable to the emission of gravitational waves.

The particular ellipsoid orientation in the frame (r, φ, z) expressed as $\varphi_0 \equiv \varphi(t_0)$, is at $t > t_0$ and determined by the transformation $\varphi \rightarrow \varphi_0 - Jt$, where J is the rotation frequency (circulation or "angular momentum") of the coordinate system. The angle φ_0 is fixed arbitrarily at the onset of symmetry breaking.

1 The stability of the configuration depends on parameter λ (Weinberg 2012)
3.3. The pure gravitational radiation case

So far, we found that temporarily off-diagonal terms occurred in the perturbative approach of the Einstein scalar gauge field. What remains unclear is if the breaking of the axially symmetry already appears in the vacuum case like in the vicinity of the black hole spacetime. It is conjectured that the formation of primordial (Kerr-) black holes (and so quasars) happened in the early stages of the evolution of the universe before the stars were formed. Therefore, consider the radiative Vaidya spacetime in Eddington-Finkelstein coordinates

\[ds^2 = -(1 - 2M(u))/r) du^2 - 2dudr + r^2(d\theta^2 + \sin^2 \theta d\varphi^2), \]

(12)

which is the Schwarzschild black hole spacetime with \(u = t - r - 2M \log(\frac{r}{2M} - 1) \). Here we used \(l_\mu l^\mu = 0 \). In the radiative coordinates, we have \(x^1 = u = \Theta(x) \) and \(l_\mu = (1, 0, 0, 0) \). From Eq.(6) we obtain

\[h_{rr} = h_{\theta\theta} = 0, \quad h_{r\varphi} = -\sin^2 \theta h_{\theta\theta}. \]

(13)

From the zero-order equations Eq.(7) we obtain

\[\dot{k}_{rr} = 0, \quad \dot{h}_{\theta\theta} = r\partial_r h_{\theta\theta}, \quad \dot{h}_{\varphi\varphi} = r\partial_r h_{\varphi\varphi}. \]

(14)

So one writes

\[h_{\theta\theta} = r\alpha(u, \theta, \varphi, \xi), \quad h_{\varphi\varphi} = r\beta(u, \theta, \varphi, \xi), \quad h_{r\varphi} = -r\alpha \sin^2 \theta. \]

(15)

Further, we have

\[\ddot{k}_{rr} = \frac{1}{r}\left(2\dot{\alpha} \cot \theta + \partial_\theta \dot{\alpha} + \frac{1}{\sin^2 \theta} \partial_\varphi \dot{\beta}\right), \]

\[\ddot{k}_{r\varphi} = \frac{1}{r}\left(\dot{\beta} \cot \theta - \partial_\varphi \dot{\alpha} + \partial_\theta \dot{\beta}\right), \]

(16)

(17)

\[\frac{dM}{du} = -\frac{\dot{k}_{\phi\phi} + \sin^2 \theta \partial_{\theta\theta} \dot{k}_{\theta\theta}}{4 \sin^2 \theta} = -\frac{1}{2} \dot{r} h_{uu} - \frac{1}{4} \left(\dot{\alpha}^2 + \frac{\dot{\beta}^2}{\sin^2 \theta}\right) + \frac{1}{4} \left(\ddot{\alpha}^2 + \frac{\ddot{\beta}^2}{\sin^2 \theta}\right). \]

(18)

Not all the components of \(h_{\mu\nu} \) and \(k_{\mu\nu} \) are physical, so one needs some extra gauge conditions. Suitable choice of \(\alpha \) and \(\beta \) (Choquet-Bruhat uses, for example, \(\alpha = 0, \beta = g(u)h(\xi) \sin \theta \)), leads to a solution to second order which is in general not axially symmetric. We can integrate these zero order equations with respect to \(\xi \). One obtains then some conditions on the background fields, because terms like \(\int \dot{\alpha} d\xi \) disappear. From Eq.(18), we obtain

\[\frac{dM}{du} = -\frac{1}{4\tau} \int_0^\tau \left(\dot{\alpha}^2 + \frac{\dot{\beta}^2}{\sin^2 \theta}\right) d\xi, \]

(19)

which is the back-reaction of the high-frequency disturbances on the mass \(M \). \(\tau \) is the period of \(h_{\mu\nu} \). This expression can be substituted back into Eq.(18). However, in the non-vacuum case, the right-hand side will also contain contributions from the matter fields. In order to obtain propagation equations for \(h_{\mu\nu} \) and \(k_{\mu\nu} \), one proceeds with the next order equation \(R_{\mu\nu}^{(1)} = 0 \). First of all, Eq.(16), (17) are consistent with \(R_{r\varphi}^{(1)} = 0 \) and \(R_{r\theta}^{(1)} = 0 \). Further, one obtains propagation equations for \(\alpha \) and \(\beta \) and for some second order perturbations, such as \(k_{\varphi\varphi} \). Moreover, the \((\varphi, \theta) \)-dependent part of the PDE’s for \(\alpha \) and \(\beta \) (say \(A(\theta, \varphi), B(\theta, \varphi) \)) can be separated (for the case \(k_{\varphi\varphi} \neq 0 \)):

\[\partial_\varphi B + 2 \sin \theta \cos \theta A + \sin^2 \theta \partial_\theta A = 0, \]

(20)

\[\sin^2 \theta \partial_\theta A + 7 \sin \theta \cos \theta \partial_\theta A + 4 \cot \theta \partial_\varphi B + 2(5 \cos^2 \theta - 1) A + 2 \partial_\varphi B = 0. \]

(21)

A non-trivial simple solution is

\[A = \frac{\cos \theta (\sin \varphi + \cos \varphi)}{\sin^3 \theta}, \quad B = \frac{\sin \varphi - \cos \varphi}{\sin^2 \theta} + G(\theta), \]

(22)

with \(G(\theta) \) arbitrary. So the breaking of the spherically and axially symmetry is evident.

\[\text{This spacetime is also applied to describe the evaporation of a black hole by hawking radiation in a quantum mechanical way.} \]
4. CONCLUSIONS

There is clear new observational evidence for the azimuthal alignment of the spin vectors of quasars in three new studied LQG. This research presents a new argument about the theoretical explanation of the axial symmetry breaking in a non-linear perturbation scheme considering a vacuum black hole spacetime in radiative coordinates. The recently discovered 13 billion years old quasar P172+18 powered by a supermassive black hole, is all the more reason to believe that the formation of these objects took place in the very early universe.

5. APPENDIX: THE DATA

The data of LQG U1.27 underlying this article are gathered in Table 1 and 2.

REFERENCES

Abrikosov, A. A. 1957, Sov. Phys. JETP, 5, 1174
Choquet-Bruhat, Y. 1968, Commun. math. Phys., 12, 16
Clowes, R. G. e. a. 2012, Mon. Not. R. Astron. Soc., 419, 556
Clowes, R. G. e. a. 2013, Mon. Not. R. Astron. Soc., 429, 2910
Felsager, B. 1998, Geometry, Particles and Fields (Odense Univ. Press, Odense)
Garfinkle, D. 1985, Phys. Rev. D. 32, 1323
Ginzberg, V. L. & Landau, L. D. 1950, Zh.Eksp.Teor.Fiz., 20,1064
Gondek-Rosinska, D. & Gourgoulhon, E. 2002, Phys. Rev. D66, 044021
Hutsemekers, D., e. a. 2014, A&A, 572, A18
Pajowska, P., e. a. 2019, J. Cosm. Astroparticles, 02, 005
Slagter, R. J. 1986, Astrophys. J., 307, 20
Slagter, R. J. 2016, Journal of Modern Physics, 08, 163
Slagter, R. J. 2017, Journal of Modern Physics, 08, 163
Slagter, R. J. 2018, Int. J. Mod. Phys. D, 27, 1850094
Slagter, R. J. & Miedema, P. G. 2021, Mon. Not. Roy. Astron. Soc., 501, 3054
Taylor, A. R. & Jagannathan, P. 2016, Mon. Not. R. Astron. Soc., 459, L36
Vilenkin, A. & Shellard, E. P. S. 1994, Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, Cambridge)
Weinberg, E. J. 2012, Classical Solutions in Quantum Field Theory (Cambridge Univ. Press, Cambridge)
Table 1. Data for the LQG U1.27 (N=71) from NASA/IPAC and SIMBAD. The successive columns represent: right ascension, declination, redshift, inclination, eccentricity, position angle, azimuthal angle and polar angle.

U1.27	RA	Dec	z	inc	ecc	PA(deg)	ϕ(rad)	θ(rad)
1	160.413150	14.591740	1.221	.830	.69	87	± .298	± .427
2	160.840103	14.600057	1.271	.606	.83	113	± .371	± .427
3	161.128848	16.045854	1.233	.526	.87	45	± .343	± .782
4	161.187666	15.317133	1.237	.741	.75	68	± .049	± .763
5	161.335962	14.290068	1.270	.586	.84	63	± .063	± .678
6	161.516893	14.044789	1.290	.547	.86	6	± .227	± .889
7	161.567993	16.753510	1.282	.772	.73	48	± .186	± 1.04
8	161.601093	14.502540	1.372	.660	.80	60	± .007	± .775
9	162.056815	14.680304	1.290	.506	.88	170	± .82	± .215
10	162.248981	12.889527	1.368	.677	.79	99	± .419	± .156
11	162.344193	15.726700	1.263	.772	.73	42	± .257	± 1.05
12	162.351272	15.698897	1.301	.435	.91	8	± .129	± .762
13	162.409269	21.808144	1.235	.526	.87	33	± .127	± .849
14	162.423677	15.306867	1.341	.676	.79	3	± .379	± 1.00
15	162.449082	16.371282	1.300	.566	.85	142	± .745	± .225
16	162.505093	15.565017	1.255	.357	.94	17	± .038	± .671
17	162.676146	16.015594	1.269	.771	.73	125	± .744	± .340
18	162.767371	16.316926	1.253	.287	.96	170	± .592	± .004
19	162.820881	13.193341	1.337	.483	.89	102	± .400	± .175
20	162.831696	14.436524	1.315	.659	.80	54	± .084	± .812
21	162.845783	11.981222	1.309	.437	.91	159	± .707	± .132
22	162.857213	12.796204	1.283	.641	.81	139	± .779	± .275
23	162.884258	14.937553	1.367	.756	.74	94	± .354	± .211
24	162.918357	20.655882	1.174	.567	.85	49	± .062	± .799
25	162.937035	12.974699	1.316	.461	.90	110	± .455	± .107
26	163.041780	16.928818	1.339	.436	.91	59	± .077	± .576
27	163.092251	12.515036	1.316	.355	.94	21	± .035	± .647
28	163.098712	14.090468	1.256	.622	.82	101	± .415	± .127
29	163.100377	20.776172	1.203	.504	.88	25	± .160	± .827
30	163.190868	13.682636	1.356	.482	.89	60	± .057	± .590
31	163.238226	10.992647	1.266	.483	.89	89	± .285	± .305
32	163.242363	20.284854	1.253	.356	.94	41	± .026	± .611
33	163.552829	14.959790	1.231	.678	.79	120	± .625	± .184
34	163.591268	21.358676	1.257	.606	.83	120	± .579	± .164
35	163.648532	10.304548	1.260	.858	.93	16	± .084	± .671
36	163.677979	10.722398	1.335	.725	.76	144	± .872	± .393
37	163.694730	19.952953	1.220	.566	.85	20	± .246	± .889
38	163.845984	13.102997	1.358	.588	.84	11	± .295	± .889
39	163.854942	19.298998	1.201	.773	.73	146	± .906	± .531
40	163.857047	11.617507	1.293	.527	.87	119	± .538	± .027
cont.	RA (deg)	Dec (deg)	z	inc	ecc	PA (deg)	φ (rad)	θ (rad)
-------	---------	-----------	---	-----	-----	---------	----------------	---------------
41	163.924334	11.298378	.845	.68	88	.249 / .335	.648 / 1.042	
42	163.984288	18.788475	.277	.355	.94	87	.262 / .305	.027 / .683
43	164.046989	17.140997	.344	.845	.68	72	.012 / .780	.505 / 1.066
44	164.091276	14.566966	.243	.207	.98	129	.409 / .138	.412 / -.091
45	164.156218	15.013202	.371	.787	.72	109	.541 / .147	.979 / .483
46	164.158278	10.052025	.273	.435	.91	128	.544 / .023	.507 / .170
47	164.230688	14.829509	.229	.625	.82	133	.696 / .257	.208 / .671
48	164.308435	18.798158	.285	.382	.91	152	.614 / .106	-.133 / .484
49	164.521321	20.061417	.273	.587	.94	72	.095 / .549	.211 / .895
50	164.633936	17.082247	.286	.462	.90	17	.175 / .750	-.139 / .398
51	164.668752	17.904320	.269	.527	.87	50	.062 / .700	.101 / .684
52	164.730550	8.230752	.246	.677	.79	8	.401 / .953	-.025 / .199
53	164.869078	16.782794	.300	.623	.82	116	.533 / .122	.272 / .829
54	165.025092	9.444098	.252	.567	.85	65	.019 / .556	.348 / .666
55	165.070384	19.606880	.240	.832	.69	114	.597 / .372	.423 / 1.040
56	165.166670	16.952878	.300	.802	.71	127	.739 / .454	.354 / .851
57	165.452792	8.368669	1.196	.413	.92	9	.153 / .671	-.071 / .197
58	165.676552	8.655867	1.240	.411	.92	60	.046 / .481	.205 / .500
59	166.268588	8.759810	1.241	.566	.85	57	.072 / .606	.322 / .610
60	166.589189	8.868458	1.244	.548	.86	53	.098 / .618	.286 / .571
61	166.902560	9.020778	1.228	1.02	.55	87	.161 / .347	.860 / 1.175
62	166.935900	9.924171	1.225	.383	.93	14	.143 / .613	-.071 / .251
63	167.532914	10.802888	1.211	.248	.97	129	.374 / .052	.006 / .378
64	167.539961	7.868564	1.208	.740	.75	10	.508 / .967	.015 / .219
65	168.567405	10.390996	1.210	.693	.78	151	.803 / .472	.168 / .460
66	168.938775	8.249943	1.194	.547	.86	106	.349 / .012	.381 / .665
67	169.508801	10.550690	1.215	.526	.87	134	.548 / .234	.196 / .540
68	169.596744	9.084715	1.197	.787	.72	98	.303 / .018	.620 / .934
69	170.081761	8.984773	1.229	.641	.81	56	.193 / .613	.373 / .662
70	170.246993	10.185907	1.208	.384	.93	77	.085 / .271	.196 / .551
71	170.290711	7.999635	1.141	.461	.90	93	.195 / .143	.320 / .599