INVARiance OF THE BFV–COMPLEX

FLORIAN SCHÄTZ

ABSTRACT. The BFV-formalism was introduced to handle classical systems, equipped with symmetries. It associates a differential graded Poisson algebra to any coisotropic submanifold S of a Poisson manifold (M, Π).

However the assignment (coisotropic submanifold) \rightsquigarrow (differential graded Poisson algebra) is not canonical, since in the construction several choices have to be made. One has to fix: 1. an embedding of the normal bundle NS of S into M as a tubular neighbourhood, 2. a connection ∇ on NS and 3. a special element Ω.

We show that different choices of a connection and an element Ω – but with the tubular neighbourhood fixed – lead to isomorphic differential graded Poisson algebras. If the tubular neighbourhood is changed too, invariance can be restored at the level of germs.

1. INTRODUCTION

The Batalin-Vilkovisky-Fradkin complex (BFV-complex for short) was introduced in order to understand physical systems with complicated symmetries ([BF], [BV]). The connection to homological algebra was made explicit in [St] later on. We focus on the smooth setting, i.e. we want to consider arbitrary coisotropic submanifolds of smooth finite dimensional Poisson manifolds. Bordemann and Herbig found a convenient adaptation of the BFV-construction in this framework ([B], [He]): One obtains a differential graded Poisson algebra associated to any coisotropic submanifold. In [Sch] a slight modification of the construction of Bordemann and Herbig was presented. It made use of the language of higher homotopy structures and provided in particular a conceptual construction of the BFV-bracket.

Note that in the smooth setting the construction of the BFV-complex requires a choice of the following pieces of data: 1. an embedding of the normal bundle of the coisotropic submanifold as a tubular neighbourhood into the ambient Poisson manifold, 2. a connection on the normal bundle, 3. a special function on a smooth graded manifold, called a BFV-charge.

We apply the point of view established in [Sch] to clarify the dependence of the resulting BFV-complex on these data. If one leaves the embedding

The author acknowledges partial support by the research grant of the University of Zurich, by the SNF-grant 200020-121640/1, by the European Union through the FP6 Marie Curie RTN ENIGMA (contract number MRTN-CT-2004-5652), and by the European Science Foundation through the MISGAM program.
fixed and only changes the connection and the BFV-charge, one simply obtains two isomorphic differential graded Poisson algebras, see Theorem 1 in Section 3. Note that the dependence on the choice of BFV-charge was well understood, see [St] for instance. Dependence on the embedding is more subtle. We introduce the notion of “restriction” of a given BFV-complex to an open neighbourhood of the coisotropic submanifold inside its normal bundle (Definition 2) and show that different choices of embeddings lead to isomorphic restricted BFV-complexes – see Theorem 2 in Section 4. As a Corollary one obtains that a germ-version of the BFV-complex is independent of all the choices up to isomorphism (Corollary 4).

It turns out that the differential graded Poisson algebra associated to a fixed embedding of the normal bundle as a tubular neighbourhood, yields a description of the moduli space of coisotropic sections in terms of the BFV-complex – see [Sch2].

Acknowledgement. I thank Alberto Cattaneo for remarks on a draft of this work. Moreover, I thank the referee for helpful comments.

2. Preliminaries

The purpose of this Section is threefold: to recollect some facts about the theory of higher homotopy structures, to recall some concepts concerning Poisson manifolds and coisotropic submanifolds and to outline the construction of the BFV-complex. More details on these subjects can be found in Sections 2 and 3 of [Sch] and in the references cited therein. We assume the reader to be familiar with the theory of graded algebras and smooth graded manifolds.

2.1. L_{∞}-algebras: Homotopy Transfer and Homotopies. Let V be a \mathbb{Z}-graded vector space over \mathbb{R} (or any other field of characteristic 0); i.e., V is a collection $(V_i)_{i \in \mathbb{Z}}$ of vector spaces V_i over \mathbb{R}. The homogeneous elements of V of degree $i \in \mathbb{Z}$ are the elements of V_i. We denote the degree of a homogeneous element $x \in V$ by $|x|$. A morphism $f : V \to W$ of graded vector spaces is a collection $(f_i : V_i \to W_i)_{i \in \mathbb{Z}}$ of linear maps. The nth suspension functor $[n]$ from the category of graded vector spaces to itself is defined as follows: given a graded vector space V, $V[n]$ denotes the graded vector space corresponding to the collection $V[n]_i := V_{n+i}$. The nth suspension of a morphism $f : V \to W$ of graded vector spaces is given by the collection $(f[n]_i := f_{n+i} : V_{n+i} \to W_{n+i})_{i \in \mathbb{Z}}$. The tensor product of two graded vector spaces V and W over \mathbb{R} is the graded vector whose component in degree k is given by

$$(V \otimes W)_k := \bigoplus_{r+s=k} V_r \otimes W_s.$$

The denote this graded vector space by $V \otimes W$.

The structure of a flat $L_{\infty}[1]$-algebra on V is given by a family of multilinear maps $(\mu^k : V^{\otimes k} \to V[1])_{k \geq 1}$ that satisfies:
(1) $\mu^k(\cdots \otimes a \otimes b \otimes \cdots) = (-1)^{|a||b|} \mu^k(\cdots \otimes b \otimes a \otimes \cdots)$ holds for all $k \geq 1$ and all homogeneous elements a, b of V.

(2) The family of Jacobiators $(J^k)_{k \geq 1}$ defined by

$$J^k(x_1 \cdots x_n) := \sum_{r+s=k} \sum_{\sigma \in \{1, \ldots, k\}_{-\text{shuffles}}} \text{sign}(\sigma) \mu^{s+1}(x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(r)} \otimes x_{\sigma(r+1)} \otimes \cdots \otimes x_{\sigma(n)})$$

vanishes identically. Here sign(\cdot) is the Koszul sign, i.e. the representation of Σ_n on V^\otimes_n induced by mapping the transposition $(2, 1)$ to $a \otimes b \mapsto (1)^{|a||b|} b \otimes a$. Moreover (r, s)-shuffles are permutations σ of $\{1, \ldots, k \equiv r + s\}$ such that $\sigma(1) < \cdots < \sigma(r)$ and $\sigma(r + 1) < \cdots < \sigma(k)$.

Since we are only going to consider flat $L_\infty[1]$-algebras we will suppress the adjective “flat” from now on. In this case the vanishing of the first Jacobiator implies that μ^1 is a coboundary operator. We remark that an $L_\infty[1]$-algebra structure on V is equivalent to the more traditional notion of an L_∞-algebra structure on $V[-1]$, see [MSS] for instance.

Given an L_∞-algebra structure $(\mu^k)_{k \geq 1}$ on V, there is a distinguished subset of V_1 that contains elements $v \in V_1$ satisfying the Maurer-Cartan equation (MC-equation for short)

$$\sum_{k \geq 1} \frac{1}{k!} \mu^k(v \otimes \cdots \otimes v) = 0.$$

This set is called the set of Maurer-Cartan elements (MC-elements for short) of V.

Let V be equipped with an L_∞-algebra structure such that the coboundary operator μ^1 decomposes into $d + \delta$ with $d^2 = 0 = \delta^2$ and $d \circ \delta + \delta \circ d = 0$. i.e. (V, d, δ) is a double complex. Then – under mild convergence assumptions – it is possible to construct an L_∞-algebra structure on $H(V, d)$ that is “isomorphic up to homotopy” to the original L_∞-algebra structure on V ([GL]). More concretely, one has to fix an embedding i of $H(V, d)$ into V, a projection pr from V to $H(V, d)$ and a homotopy operator h (of degree -1) which satisfies

$$d \circ h + h \circ d = id_V - i \circ pr.$$

We will also impose the following side-conditions for the sake of simplicity: 1.) $h \circ h = 0$, 2.) $pr \circ h = 0$ and 3.) $h \circ i = 0$. Then explicit formulae for the structure maps for an L_∞-algebras on $H(V, d)$ can be written down. These are given in terms of rooted planar trees, see [Sch] for a review. We will explain the construction in more detail later on for the examples which are relevant for our purpose.

Furthermore one obtains L_∞-morphisms between $H(V, d)$ and V that induce inverse maps on cohomology. Such L_∞-morphisms are called L_∞ quasi-isomorphisms.
Consider the differential graded algebra $(\Omega([0,1]),d_{DR},\wedge)$ of smooth forms on the interval $I := [0,1]$. The inclusions of a point $\{s\}$ as $0 \leq s \leq 1$ induces a chain map $ev_s : (\Omega(I),d_{DR}) \to (\mathbb{R},0)$ that is a morphisms of algebras. Given any L_∞-algebra structure on V there is a natural L_∞-algebra structure on $V \otimes \Omega(I)$ defined by

$$\tilde{\mu}^1(v \otimes \alpha) := \mu^1(v) \otimes \alpha + (-1)^{|v|}v \otimes d_{DR}\alpha$$

and

$$\tilde{\mu}^k((v_1 \otimes \alpha_1) \otimes \cdots \otimes (v_k \otimes \alpha_k)) := (-1)^\# \mu^k(v_1 \otimes \cdots \otimes v_k) \otimes (\alpha_1 \wedge \cdots \wedge \alpha_k)$$

for $k \geq 2$. Here $\#$ denotes the sign one picks up by assigning $(-1)^{|v_i+1||\alpha_i|}$ to passing α_i from the left-hand side of v_{i+1} to the right-hand side (and replacing α_{i+1} by $\alpha_i \wedge \alpha_{i+1}$).

Following [MSS], we call two morphisms f and g from an L_∞-algebra A to B homotopic if there exists an L_∞-morphism F from A to $B \otimes \Omega(I)$ such that

- $(\text{id} \otimes ev_0) \circ F = f$ and
- $(\text{id} \otimes ev_1) \circ F = g$ hold.

This defines an equivalence relation on the set of L_∞-morphisms from A to B.

Let F be an L_∞-morphism from A to $B \otimes \Omega(I)$. Consequently $f_s := ev_s \circ F$ is an L_∞ morphism between A and B for any $s \in I$. Given a MC-element v in A one obtains a one-parameter family of MC-elements

$$w_s := \sum_{k \geq 1} \frac{1}{n!} (f_s)_k (v \otimes \cdots \otimes v)$$

of B. Here $(f_s)_k$ denotes the kth Taylor component of f_s.

In the main body of this paper we are only interested in the following particular case: B is a differential graded Lie algebra (i.e. only the first and second structure maps are non-vanishing). Denote the graded Lie bracket by $[\cdot, \cdot]$. Furthermore we assume that the differential D is given by the adjoint action of a degree +1 element Γ that satisfies $[\Gamma, \Gamma] = 0$. The MC-equation for an element w of $(B,D = [\Gamma, \cdot],[\cdot, \cdot])$ reads

$$[\Gamma + w, \Gamma + w] = 0.$$

From the one-parameter family of MC-elements w_s in B one obtains a one-parameter family of differential graded Lie algebras on B by setting

$$D_s(\cdot) := [\Gamma + w_s, \cdot]$$

while leaving the bracket unchanged.

How are the differential graded Lie algebras $(B, D_s, [\cdot, \cdot])$ related for different values of $s \in I$? To answer this question we first apply the L_∞ morphism $F : A \sim B \otimes \Omega(I)$ to v and obtain a MC-element $w(t) + u(t)dt$ in $B \otimes \Omega(I)$.

It is straightforward to check that \(w(s) = w_s \) for all \(s \in I \). Moreover the MC-equation in \(B \otimes \Omega(I) \) splits up into

\[
[\Gamma + w(t), \Gamma + w(t)] = 0
\]

and

\[
\frac{d}{dt} w(t) = [u(t), \Gamma + w(t)].
\]

The second equation implies that whenever the adjoint action of \(u(t) \) on \(B \) can be integrated to a one-parameter family of automorphisms \((U(t))_{t \in I} \), \(U(s) \) establishes an automorphism of \((B, [\cdot, \cdot]) \) that maps \(\Gamma + w(0) \) to \(\Gamma + w(s) \) (for any \(s \in I \)). Consequently:

Lemma 1. Let \(A \) and \((B, [\Gamma, \cdot], [\cdot, \cdot]) \) be differential graded Lie algebras, \(v \) an MC-element in \(A \) and \(F \) an \(L_\infty \) morphism from \(A \) to \(B \otimes \Omega(I) \) such that

\[
\sum_{k \geq 1} \frac{1}{k!} F_k(v \otimes \cdots \otimes v)
\]

is well-defined in \(B \otimes \Omega(I) \). Denote this element by \(w(t) + u(t)dt \). Furthermore the flow equation

\[
X(0) = b, \quad \left. \frac{d}{dt} \right|_{t=s} X(t) = [u(s), X(s)], \quad s \in I
\]

is assumed to have a unique solution for arbitrary \(b \in B \).

Then the one-parameter family \(U(t) \) of automorphisms of \(B \) that integrates the adjoint action by \(u(t) \) maps \(\Gamma + w(0) \) to \(\Gamma + w(t) \). In particular \(U(s) \) is an isomorphisms of differential graded Lie algebras

\[
(B, [\Gamma + w(0), \cdot], [\cdot, \cdot]) \rightarrow (B, [\Gamma + w(s), \cdot], [\cdot, \cdot])
\]

for arbitrary \(s \in I \).

2.2. Coisotropic Submanifolds

We essentially follow [W], where more details can be found. Let \(M \) be a smooth, finite dimensional manifold. The bivector field \(\Pi \) on \(M \) is Poisson if the binary operation \(\{\cdot, \cdot\} \) on \(C^\infty(M) \) given by \((f, g) \mapsto \langle \Pi, df \wedge dg \rangle \) satisfies the Jacobi identity, i.e.

\[
\{\{f, g\}, h\} + \{g, \{f, h\}\} = \{f, \{g, h\}\}
\]

holds for all smooth functions \(f, g \) and \(h \). Here \(\langle -, - \rangle \) denotes the natural pairing between \(TM \) and \(T^*M \). Alternatively one can consider the graded algebra \(\mathcal{V}(M) \) of multivector fields on \(M \) equipped with the Schouten-Nijenhuis bracket \([\cdot, \cdot]_{SN} \). A bivector field \(\Pi \) is Poisson if and only if \([\Pi, \Pi]_{SN} = 0 \).

Associated to any Poisson bivector field \(\Pi \) on \(M \) there is a vector bundle morphism \(\Pi^\#: T^*M \rightarrow TM \) given by contraction. Consider a submanifold \(S \) of \(M \). The annihilator \(N^*S \) of \(TS \) is a subbundle of \(T^*M \). This subbundle fits into a short exact sequence of vector bundles:

\[
0 \longrightarrow N^*S \longrightarrow T^*M|_S \longrightarrow T^*S \longrightarrow 0.
\]
Definition 1. A submanifold \(S \) of a smooth, finite dimensional Poisson manifold \((M, \Pi)\) is called coisotropic if the restriction of \(\Pi^\# \) to \(N^*S \) has image in \(TS \).

There is an equivalent characterization of coisotropic submanifolds: define the vanishing ideal of \(S \) by

\[I_S := \{ f \in \mathcal{C}^\infty(M) : f|_S = 0 \}. \]

A submanifold \(S \) is coisotropic if and only if \(I_C \) is a Lie subalgebra of \((\mathcal{C}^\infty(M), \{\cdot, \cdot\})\).

2.3. The BFV-Complex. The BFV-complex was introduced by Batalin, Fradkin and Vilkovisky with application in physics in mind ([BF], [BV]). Later on Stasheff ([St]) gave an interpretation of the BFV-complex in terms of homological algebra. The construction we present below is explained with more details in [Sch]. It uses a globalization of the BFV-complex for arbitrary coisotropic submanifolds found by Bordemann and Herbig ([B], [He]).

Let \(S \) be a coisotropic submanifold of a smooth, finite dimensional Poisson manifold \((M, \Pi)\). We outline the construction a differential graded Poisson algebra, which we call a BFV-complex for \(S \) in \((M, \Pi)\). The construction depends on the choice of three pieces of data: 1. an embedding of the normal bundle of \(S \) into \(M \) as a tubular neighbourhood, 2. a connection on \(NS \) and 3. a special smooth function, called the charge, on a smooth graded manifold.

Denote the normal bundle of \(S \) inside \(M \) by \(E \). Consider the graded vector bundle \(E^*[1] \oplus E[-1] \to S \) over \(S \) and let \(E^*[1] \oplus E[-1] \to E \) be the pull back of \(E^*[1] \oplus E[-1] \to S \) along \(E \to S \).

We define \(BFV(E) \) to be the space of smooth functions on the graded manifold which is represented by the graded vector bundle \(E^*[1] \oplus E[-1] \) over \(E \). In terms of sections one has \(BFV(E) = \Gamma(\wedge(E) \otimes \wedge(E^*)) \). This algebra carries a bigrading given by

\[BFV^{(p,q)}(E) := \Gamma(\wedge^pE \otimes \wedge^qE^*). \]

In physical terminology \(p / q \) is referred to as the ghost degree / ghost-momentum degree respectively. One defines

\[BFV^k(E) := \bigoplus_{p-q=k} BFV^{(p,q)}(E) \]

and calls \(k \) the total degree (in physical terminology this is the “ghost number”).

The smooth graded manifold \(E^*[1] \oplus E[-1] \) comes equipped with a Poisson bivector field \(G \) given by the natural fibre pairing between \(E \) and \(E^* \), i.e. it is defined to be the natural contraction on \(\Gamma(E) \otimes \Gamma(E^*) \) and extended to a graded skew-symmetric biderivation of \(BFV(E) \).

Choice 1. Embedding.

Fix an embedding \(\psi : E \hookrightarrow M \) of the normal bundle of \(S \) into \(M \). Hence
the normal bundle E inherits a Poisson bivector field which we also denote by Π. (Keep in mind that Π depends on ψ!)

Choice 2. Connection.

Next choose a connection on the vector bundle $E \to S$. This induces a connection on $\wedge E \otimes \wedge E^* \to S$ and via pull back one obtains a connection ∇ on $\wedge \mathcal{E} \otimes \wedge \mathcal{E}^* \to E$. We denote the corresponding horizontal lift of multivector fields by

$$\iota_{\nabla}: \mathcal{V}(E) \to \mathcal{V}(\mathcal{E}^*[1] \otimes \mathcal{E}[-1]).$$

It extends to an isomorphism of graded commutative unital associative algebras

$$\varphi: A := C^\infty(T^*[1]E \oplus \mathcal{E}^*[1] \oplus \mathcal{E}[-1] \oplus \mathcal{E}[0] \oplus \mathcal{E}^*[2]) \to \mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1]).$$

Using φ we lift Π to a bivector field on $\mathcal{E}^*[1] \oplus \mathcal{E}[-1]$. Since φ fails in general to be a morphism of Gerstenhaber algebras, $\varphi(\Pi)$ is not a Poisson bivector field. Similarly the sum $G + \varphi(\Pi)$ fails to be a Poisson bivector field in general. However the following Proposition provides an appropriate correction term:

Proposition 1. Let \mathcal{E} be a finite rank vector bundle with connection ∇ over a smooth, finite dimensional manifold E. Consider the smooth graded manifold $\mathcal{E}^*[1] \oplus \mathcal{E}[-1] \to E$ and denote the Poisson bivector field on it coming from the natural fibre pairing between \mathcal{E} and \mathcal{E}^* by G.

Then there is an L_∞ quasi-isomorphism L_{∇} between the graded Lie algebra

$$(\mathcal{V}(E)[1], [\cdot, \cdot]_{SN})$$

and the differential graded Lie algebra

$$(\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN}).$$

A proof of Proposition 1 can be found in [Sch]. It immediately implies

Corollary 1. Let $\mathcal{E} \to E$ be a finite rank vector bundle with connection ∇ over a smooth, finite dimensional Poisson manifold (E, Π). Consider the smooth graded manifold $\mathcal{E}^*[1] \oplus \mathcal{E}[-1] \to E$ and denote the Poisson bivector field on it coming from the natural fibre pairing between \mathcal{E} and \mathcal{E}^* by G.

Then there is a Poisson bivector field $\tilde{\Pi}$ on $\mathcal{E}^*[1] \oplus \mathcal{E}[-1]$ such that

$$\tilde{\Pi} = G + \varphi(\Pi) + \Delta$$

for $\Delta \in \mathcal{V}^{(1,1)}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$.

For a proof we refer the reader to [Sch] again.

We remark that $\mathcal{V}^{(1,1)}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$ is the ideal of $\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$ generated by multiderivations which map any tensor product of functions of total bidegree (p, q) to a function of bidegree (P, Q) where $P > p$ and $Q > q$. In general, let $\mathcal{V}^{(r,s)}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$ be the ideal generated by multiderivations of $C^\infty(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$ with total ghost degree larger than or equal to r and total ghost-momentum degree larger than or equal to s, respectively.

The bivector field $\tilde{\Pi}$ from Corollary 1 equips $\mathcal{E}^*[1] \oplus \mathcal{E}[-1]$ with the structure of a graded Poisson manifold. Consequently $BFV(E)$ inherits a graded
Poisson bracket which we denote by $[\cdot, \cdot]_{BFV}$. It is called the BFV-bracket. Keep in mind that the BFV-bracket depends on the connection on $E \to S$ we have chosen.

Choice 3. Charge.

The last step in the construction of the BFV-complex is to provide a special solution to the MC-equation associated to $(BFV(E), [\cdot, \cdot]_{BFV})$, i.e. one constructs a degree +1 element Ω that satisfies

$$[\Omega, \Omega]_{BFV} = 0.$$

Additionally, one requires this element Ω to contain the tautological section of $\mathcal{E} \to E$ as the lowest order term. To be more precise, recall that

$$BFV^1(E) = \bigoplus_{k \geq 0} \Gamma(\wedge^k \mathcal{E} \otimes \wedge^{k-1} \mathcal{E}^*).$$

Hence any element of $BFV^1(E)$ contains a (possibly zero) component in $\Gamma(\mathcal{E})$. One requires that the component of Ω in $\Gamma(\mathcal{E})$ is given by the tautological section of $\mathcal{E} \to E$. A MC-element satisfying this requirement is called a BFV-charge.

Proposition 2. Let (E, Π) be a vector bundle equipped with a Poisson bivector field and denote its zero section by S. Fix a connection on $E \to S$ and equip the ghost/ghost-momentum bundle $\mathcal{E}^*[1] \oplus [1] \to E$ with the corresponding BFV-bracket $[\cdot, \cdot]_{BFV}$.

1. There is a degree +1 element Ω of $BFV(E)$ whose component in $\Gamma(\mathcal{E})$ is given by the tautological section Ω_0 and that satisfies

$$[\Omega, \Omega]_{BFV} = 0$$

if and only if S is a coisotropic submanifold of (E, Π).

2. Let Ω and Ω' be two BFV-charges. Then there is an automorphism of the graded Poisson algebra $(BFV(E), [\cdot, \cdot]_{BFV})$ that maps Ω to Ω'.

See [St] for a proof of this proposition.

Given a BFV-charge Ω one can define a differential $D_{BFV}(\cdot) := [\Omega, \cdot]_{BFV}$, called BFV-differential. It is well-known that the cohomology with respect to D is isomorphic to the Lie algebroid cohomology of S (as a coisotropic submanifold of (E, Π)).

By the second part of Proposition 2, different choices of the BFV-charge lead to isomorphic differential graded Poisson algebra structures on $BFV(E)$. In the next Section we will establish that different choices of connection on $E \to S$ lead to differential Poisson algebras that lie in the same isomorphism class. The dependence on the embedding of the normal bundle of S is more subtle and will be clarified in Section 4.
3. Choice of Connection

Consider a vector bundle E equipped with a Poisson bivector field Π such that that zero section S is coisotropic. The aim of this Section is to investigate the dependence of the differential graded Poisson algebra $(BFV(E), D_{BFV}, [\cdot, \cdot]_{BFV})$ constructed in Subsection 2.3 on the choice of a connection ∇ on $E \to S$.

Recall that in order to lift the Poisson bivector field Π to a bivector field on $E^* \oplus E[-1]$, a connection ∇ on $E \to S$ was used. Furthermore the L_∞ quasi-isomorphism between $(\mathcal{V}(E)[1], [\cdot, \cdot]_{SN})$ and $(\mathcal{V}(E^*[1] \oplus E[-1])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN})$ in Proposition 1 depends on ∇ too. Consequently so does the graded Poisson bracket $[\cdot, \cdot]_{BFV}$.

Let ∇_0 and ∇_1 be two connections on a smooth finite rank vector bundle $E \to E$. By Proposition 1 we obtain two L_∞ quasi-isomorphisms L_{∇_0} and L_{∇_1} from $(\mathcal{V}(E)[1], [\cdot, \cdot]_{SN})$ to $(\mathcal{V}(E^*[1] \oplus E[-1])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN})$. Although these morphisms depend on the connections, this dependence is very well-controlled:

Proposition 3. Let E be a smooth finite rank vector bundle over a smooth, finite dimensional manifold E equipped with two connections ∇_0 and ∇_1. Denote the associated L_∞ quasi-isomorphisms between $(\mathcal{V}(E)[1], [\cdot, \cdot]_{SN})$ and $(\mathcal{V}(E^*[1] \oplus E[-1])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN})$ from Proposition 1 by L_0 and L_1 respectively.

Then there is an L_∞ quasi-isomorphism

$$\hat{L} : (\mathcal{V}(E)[1], [\cdot, \cdot]_{SN}) \sim (\mathcal{V}(E^*[1] \oplus E[-1]) \otimes \Omega(I), [G, \cdot]_{SN} + d_{DR}, [\cdot, \cdot]_{SN})$$

such that $(id \otimes ev_0) \circ \hat{L} = L_0$ and $(id \otimes ev_1) \circ \hat{L} = L_1$ hold.

Proof. Given two connections ∇_0 and ∇_1, one can define a family of connections $\nabla_s := \nabla_0 + s(\nabla_1 - \nabla_0)$ parametrized by the closed unit interval I. Consequently we obtain a one-parameter family of isomorphisms of graded algebras

$$\varphi_s : A := \mathcal{C}^\infty(T^*[1]E \oplus E^*[1] \oplus E[-1] \oplus E[0] \oplus E^*[2]) \xrightarrow{\sim} \mathcal{V}(E^*[1] \oplus E[-1]),$$

extending the horizontal lifting with respect to the connection $\nabla_s \oplus \nabla^*_s$. Via this identification, A inherits a one-parameter family of Gerstenhaber brackets which we denote by $[\cdot, \cdot]_s$. and a differential \tilde{Q} which can be checked to be independet from s in local coordinates.
For arbitrary $s \in I$ these structures fit into the following commutative diagram:

\[
\begin{array}{c}
\text{(A[1],} \hat{Q}, [\cdot, \cdot]_0) \\
\text{(V(E)[1],} [\cdot, \cdot]_{SN}) \\
\text{(A[1],} \hat{Q}, [\cdot, \cdot]_s) \\
\end{array}
\]

\[
\begin{array}{c}
\text{Pr} \quad \psi_s \\
\varphi_0 \\
\varphi_s \\
\end{array}
\]

where $\psi_s := \varphi_0^{-1} \circ \varphi_s$ is a morphism of differential graded algebras and of Gerstenhaber algebras. Pr denotes the natural projection.

It is straightforward to show that the cohomology of (A, \hat{Q}) is $V(E)$ and that the induced L_∞ algebra coincides with $(V(E)[1], [\cdot, \cdot])$, see the proof of Proposition 1 in [Sch]. Hence we obtain a one-parameter family of L_∞ quasi-isomorphisms $\mathcal{K}_s : (V(E)[1], [\cdot, \cdot]_{SN}) \sim (A[1], \hat{Q}, [\cdot, \cdot]_s)$. Composition with ψ_s yields a one-parameter family of L_∞ quasi-isomorphisms

\[
\mathcal{K}_s : (V(E)[1], [\cdot, \cdot]_{SN}) \sim (A[1], \hat{Q}, [\cdot, \cdot]_0).
\]

We remark that the composition of \mathcal{K}_s with φ_s yields the L_∞ quasi-isomorphism \mathcal{L}_s between $(V(E), [\cdot, \cdot]_{SN})$ and $(V(E^*[1] \oplus E[-1]), [G, \cdot]_{SN}, [\cdot, \cdot]_{SN})$ associated to the connection ∇_s from Proposition 1. Consequently $\mathcal{L}_0 (\mathcal{L}_1)$ is the composition of $\mathcal{K}_0 (\mathcal{K}_1)$ with φ_0.

Next, consider the differential graded Lie algebra $(A[1] \otimes \Omega(I), \hat{Q} + d_{DR}, [\cdot, \cdot]_0)$. To prove Proposition 1, a homotopy \tilde{H} for \hat{Q} was constructed in [Sch] such that

\[
\hat{Q} \circ \tilde{H} + \tilde{H} \circ \hat{Q} = id - \iota \circ Pr
\]

is satisfied. Here, ι denotes the natural inclusion $V(E) \hookrightarrow A$. One defines a one-parameter family of homotopies $\tilde{H}_s := \psi_s \circ \tilde{H} \circ \psi_s^{-1}$ and checks that

\[
\hat{Q} \circ \tilde{H}_s + \tilde{H}_s \circ \hat{Q} = id - \psi_s \circ \iota \circ Pr
\]

holds.

We define $\tilde{Pr} : A \otimes \Omega(I) \to V(E) \otimes \Omega(I)$ to be $Pr \otimes id$ and $i : V(E) \otimes \Omega(I) \to A \otimes \Omega(I)$ to be $i := (\psi_s \circ \iota) \otimes id$. Clearly $\tilde{Pr} \circ i = id$ and \tilde{H}_s provides a homotopy between id and $i \circ \tilde{Pr}$. Moreover the side-conditions $\tilde{H}_s \circ \tilde{H}_s = 0$, $\tilde{Pr} \circ \tilde{H}_s = 0$ and $\tilde{H}_s \circ i = 0$ are still satisfied. We summarize the situation in the following diagram:

\[
(V(E) \otimes \Omega(I), 0) \xrightarrow{i_{\hat{Q}}} (A \otimes \Omega(I), \hat{Q}) \xrightarrow{\tilde{Pr}} (A \otimes \Omega(I), \tilde{H}_s).
\]
Finally, we define the straightforward to show that $(\break)

We define C instead. The leaves (the exterior vertices with the root excluded) are decorated by i, the root by Pr, the interior bivalent vertices by d_{DR}, the interior trivalent vertices by $[,]_0$ and the interior edges (i.e. the edges not connected to any exterior vertices) by $-\tilde{H}_s$. One then composes these maps in the order given by the orientation towards the root. The associated L_∞ quasi-isomorphism is constructed in the same manner, however, the root is not decorated by Pr but by $-\tilde{H}_s$ instead.

Recall that $\mathcal{V}(r,s)(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$ is the ideal generated by multiderivations of $\mathcal{C}^\infty(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$ with total ghost degree larger than or equal to r and total ghost-momentum degree larger than or equal to s, respectively. One can check inductively that trees decorated with e copies of $-\tilde{H}_s$ increase the filtration index by (e,e). Moreover trees containing more than one interior bivalent vertex do not contribute since d_{DR} increases the form-degree by 1. These facts imply that 1. the induced structure is given by $(\mathcal{V}(E)[1] \otimes \Omega(I), d_{DR},[,\cdot]_{SN})$ and 2. there is an L_∞ quasi-isomorphism

$$(\mathcal{V}(E)[1] \otimes \Omega(I), d_{DR},[,\cdot]_{SN}) \sim (\mathcal{A}[1] \otimes \Omega(I), \hat{Q} + d_{DR}, [-,-]_0).$$

We define

$$\hat{K} : (\mathcal{V}(E)[1],[,\cdot]_{SN}) \sim (\mathcal{V}(\mathcal{A}[1] \otimes \Omega(I), \hat{Q} + d_{DR},[,\cdot]_{SN})$$

to be the composition of this L_∞ quasi-isomorphism and the obvious L_∞ quasi-isomorphism $(\mathcal{V}(E)[1],[,\cdot]_{SN}) \sim (\mathcal{V}(E)[1] \otimes \Omega(I), d_{DR},[,\cdot]_{SN})$.

The composition of \hat{K} with $id \otimes ev_s : \mathcal{A} \otimes \Omega(I) \rightarrow \mathcal{A}$ can be computed as follows: first of all only trees without any bivalent interior edges contribute since all elements of form-degree 1 vanish under $id \otimes ev_s$. Using the identities $\psi_s^{-1}([-,-])_s = [-,-]_s, \tilde{H}_s = \psi_s \circ \tilde{H} \circ \psi_s^{-1}$ and $i = \psi_s \circ i$ it is a straightforward to show that $(id \otimes ev_s) \circ \hat{K} = \psi_s \circ K_s$. Hence

$$\varphi_0 \circ (id \otimes ev_s) \circ \hat{K} = \varphi_s \circ K_s = \mathcal{L}_s.$$

Finally, we define the L_∞ quasi-isomorphism $\hat{\mathcal{L}}$ between $(\mathcal{V}(E)[1],[,\cdot]_{SN})$ and $(\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1] \otimes \Omega(I), [G,\cdot]_{SN} + d_{DR},[,\cdot]_{SN})$ to be $(\varphi_0 \otimes id) \circ \hat{K}$. By construction $(id \otimes ev_0) \circ \hat{\mathcal{L}} = \mathcal{L}_0$ and $(id \otimes ev_1) \circ \hat{\mathcal{L}} = \mathcal{L}_1$ are satisfied.

We remark that Propositions 1 and 3 seem to permit “higher analogous”, where one incorporates the differential graded algebra of differential forms on the n-simplex $\Omega(\Delta^n)$ instead of just $\Omega(\{\ast\}) = \mathbb{R}$ (Proposition 1) or $\Omega(I)$ (Proposition 3) – see [Co], where this idea was worked out in the context of the BV-formalism.
Corollary 2. Let \mathcal{E} be a finite rank vector bundle over a smooth, finite dimensional Poisson manifold (E, Π). Suppose ∇_0 and ∇_1 are two connections on $\mathcal{E} \to E$. Denote the associated L_∞ quasi-isomorphisms between $(\mathcal{V}(E)[1], [\cdot, \cdot]_{SN})$ and $(\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN})$ from Proposition 1 by \mathcal{L}_0 and \mathcal{L}_1, respectively. Applying these L_∞ quasi-isomorphisms to Π yields two MC-elements Π_0 and Π_1 of $(\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN})$. Hence $\Pi_0 := G + \Pi_0$ and $\Pi_1 := G + \Pi_1$ are MC-elements of $(\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1], [\cdot, \cdot]_{SN})$, i.e. Poisson bivector fields on $\mathcal{E}^*[1] \oplus \mathcal{E}[-1]$.

There is a diffeomorphism of the smooth graded manifold $\mathcal{E}^*[1] \oplus \mathcal{E}[1]$ such that the induced automorphism of $\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$ maps Π_0 to Π_1. Moreover, this diffeomorphism induces a diffeomorphism of the base E which coincides with the identity.

Proof. Apply the L_∞ quasi-isomorphism $\hat{\mathcal{L}}$ from Proposition 3 to Π and add G to obtain a MC-element $\hat{\Pi}_s = \hat{\Pi} + \hat{Z}dt$ of $(\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1], [G, \cdot]_{SN})$. Let \mathcal{L}_s denote the L_∞ quasi-isomorphism from Proposition 1 constructed with the help of the connection $\nabla_0 + s(\nabla_1 - \nabla_0)$. Recall that $(id \otimes ev_s) \circ \hat{\mathcal{L}} = \mathcal{L}_s$ holds for all $s \in I$.

We set $\Pi_s := (id \otimes ev_s)(\hat{\Pi})$ and $\hat{Z}_s := (id \otimes ev_s)(\hat{Z})$. Proposition 3 implies that this definition of Π_s is compatible with Π_0 and Π_1 defined in the Corollary.

We want to apply Lemma 1 to $A := (\mathcal{V}(E)[1], [\cdot, \cdot]_{SN}), B := (\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN})$ and $F := \hat{\mathcal{L}}$. To do so, it remains to show that the flow of \hat{Z}_s is globally well-defined for $s \in [0, 1]$. Recall that \hat{Z} is the one-form part of the MC-element constructed from the Poisson bivector field Π on E with help of the L_∞ quasi-isomorphism $\hat{\mathcal{L}} : (\mathcal{V}(E)[1], [\cdot, \cdot]_{SN}) \to (\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1] \otimes \Omega(I), [G, \cdot]_{SN} + d_{DR}, [\cdot, \cdot]_{SN})$. Only trees with exactly one bivalent interior vertex give non-zero contributions because the form degree must be one. Consequently there is at least one homotopy in the diagram and by the degree estimate in the proof of Proposition 3 this implies that \hat{Z} is contained in $\mathcal{V}^{(1,1)}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1]) \otimes \Omega(I)$. Hence the derivation $[\hat{Z}, -]_{SN}$ is nilpotent and can be integrated. Furthermore the degree estimate directly implies the last claim of the Corollary.

The following is an immediate consequence of the previous Corollary:

Corollary 3. Let (E, Π) be a vector bundle $E \to S$ equipped with a Poisson structure Π such that S is a coisotropic submanifold. Fix two connections ∇_0 and ∇_1 on $E \to S$ and denote the corresponding graded Poisson brackets on $BFV(E)$ by $[\cdot, \cdot]_{BFV}$ and $[\cdot, \cdot]_{BFV}^1$ respectively.

There is an isomorphism of graded Poisson algebra

$$(BFV(E), [\cdot, \cdot]_{BFV}^0) \xrightarrow{\cong} (BFV(E), [\cdot, \cdot]_{BFV}^0).$$

Moreover the induced automorphism of $C^\infty(E)$ coincides with the identity.

Combining Proposition 2 and Corollary 3 we obtain
Theorem 1. Let E be a vector bundle equipped with a Poisson bivector Π such that the zero Section S is a coisotropic submanifold. Recall that the pull back of $E \to S$ by $E \to S$ is denoted by $E \to E$ and

$$BFV(E) := C^\infty(E^*[-1] \oplus E[-1]) = \Gamma(\wedge E \otimes \wedge E^*)$$

Different choices of a connection ∇ on $E \to S$ and of a degree $+1$ element Ω of $(BFV(S), [-, -]_{BFV})$ satisfying

1. the lowest order term of Ω is given by the tautological Section Ω_0 of $E \to E$
2. $[\Omega, \Omega]^\nabla_{BFV} = 0$,

lead to isomorphic differential graded Poisson algebras $(BFV(E), [\cdot, \cdot]_{BFV}^\nabla, [-, -]_{BFV})$.

Proof. Pick two connections ∇_0 and ∇_1 on $E \to S$ and consider the two associated graded Poisson algebras $(BFV(E), [\cdot, \cdot]_{BFV}^0)$ and $(BFV(E), [\cdot, \cdot]_{BFV}^1)$, respectively. By Corollary 3 there is an isomorphism of graded Poisson algebras

$$\gamma : (BFV(E), [\cdot, \cdot]_{BFV}^0) \xrightarrow{\cong} (BFV(E), [\cdot, \cdot]_{BFV}^1)$$

Moreover the induced automorphism of $C^\infty(E)$ is the identity.

Assume that Ω and $\tilde{\Omega}$ are two BFV-charges of $(BFV(E), [\cdot, \cdot]_{BFV}^0)$ and $(BFV(E), [\cdot, \cdot]_{BFV}^1)$, respectively. Applying the automorphism γ to Ω yields another element of $(BFV(E), [\cdot, \cdot]_{BFV}^1)$, which can be checked to be a BFV-charge again. By Proposition 2 this implies that there is an inner automorphism β of $(BFV(E), [\cdot, \cdot]_{BFV}^1)$ which maps $\gamma(\Omega)$ to $\tilde{\Omega}$.

Hence

$$\beta \circ \gamma : (BFV(E), [\cdot, \cdot]_{BFV}^0) \xrightarrow{\cong} (BFV(E), [\cdot, \cdot]_{BFV}^1)$$

is an isomorphism of graded Poisson algebras which maps Ω to $\tilde{\Omega}$. □

4. Choice of Tubular Neighbourhood

Let S be a coisotropic submanifold of a smooth, finite dimensional Poisson manifold (M, Π). Throughout this Section, E denotes the normal bundle of S inside M. As explained in subsection 2.3, the first step in the construction of the BFV-complex for S inside (M, Π) is the choice of an embedding $\psi : E \hookrightarrow M$. Such an embedding equips E with a Poisson bivector field Π_ψ, which is used to construct the BFV-bracket on the ghost/ghost-momentum bundle, see Subsection 2.3.

Let us first consider the case where the embedding is changed by composition with a linear automorphism of the normal bundle E:

Lemma 2. Let

$$(BFV(E), [\Omega, \cdot]_{BFV}, [\cdot, \cdot]_{BFV})$$
be a BFV-complex corresponding to some choice of tubular neighbourhood $\psi : E \hookrightarrow M$, while

$$(BFV(E), [\cdot, \cdot]_{BFV})$$

is a BFV-complex corresponding to the embedding $\psi \circ g : E \hookrightarrow M$, where $g : E \to E$ is a vector bundle isomorphism covering the identity.

Then there is an isomorphism of graded Poisson algebras

$$(BFV(E), [\cdot, \cdot]_{BFV}) \to (BFV(E), [\cdot, \cdot]_{BFV}^g)$$

which maps Ω to Ω^g.

Proof. Let Π / Π^g be the Poisson bivector field on E obtained from $\psi : E \hookrightarrow M / \psi \circ g : E \hookrightarrow M$, respectively. Clearly $\Pi^g = (g)_* \Pi$.

Choose some connection ∇ of E, which is used to construct the L_∞ quasi-isomorphism

$$L : (V(\cdot), [\cdot, \cdot]_{SN}) \sim (V(\cdot)^*[1] \oplus E[-1])[1], [-, -]_{SN}, [G, -]_{SN}).$$

Plugging in Π results into the BFV-bracket $[\cdot, \cdot]_{BFV}$. On the other hand, we can use $\nabla^g := (g^{-1})^* \nabla$ to construct another L_∞ quasi-isomorphism L^g.

Plugging in Π^g results into another BFV-bracket $[\cdot, \cdot]_{BFV}^g$.

We claim that $[\cdot, \cdot]_{BFV}$ and $[\cdot, \cdot]_{BFV}^g$ are isomorphic graded Poisson brackets. First, observe that the isomorphism $g : E \to E$ lifts to an vector bundle isomorphism $E^\hat{g} \to E$, such that the tautological section gets mapped to itself under $(\hat{g})^*$. We denote the induced automorphism of $E^*[1] \oplus E[-1]$ by \hat{g} as well.

By naturality of the pull back of connections, we obtain the commutative diagram

$$\begin{array}{ccc}
\mathcal{E} & \xrightarrow{\hat{g}^*} & \mathcal{E} \\
\downarrow & & \downarrow \\
E & \xrightarrow{g} & E,
\end{array}$$

such that the tautological section gets mapped to itself under $(\hat{g})^*$. We denote the induced automorphism of $E^*[1] \oplus E[-1]$ by \hat{g} as well.

By naturality of the pull back of connections, we obtain the commutative diagram

$$\begin{array}{ccc}
\mathcal{V}(E) & \xrightarrow{\iota_{\nabla}} & \mathcal{V}(E^*[1] \oplus E[-1]) \\
\downarrow & & \downarrow \\
\mathcal{V}(E) & \xrightarrow{\iota_{\nabla^g}} & \mathcal{V}(E^*[1] \oplus E[-1]),
\end{array}$$

where ι_{∇} (ι_{∇^g}) is the horizontal lift induced by ∇ (∇^g). Using this together with the explicit description of the L_∞ quasi-isomorphism L from Proposition 1 contained in [Sch], or in the proof of Proposition 3, one concludes that

$$(L^g)_k = (\hat{g})_* \circ (L)_k \circ (g^{-1}_*) \circ \cdots \circ (g^{-1}_*)$$

Here, $(L)_k$ denotes the kth structure map of the L_∞ quasi-isomorphism L.

14
This immediately implies that \(\hat{g} \) induces an isomorphism between \([\cdot , \cdot]_{BFV}^g\) and \([\cdot , \cdot]_{BFV}^g\), respectively. Moreover, since \(\hat{g} \) maps the tautological section to itself, it maps any BFV-charge to another one.

Finally, Theorem 1 implies the statement of Lemma 2.

In general, a different choice of embedding can cause drastic changes in the associated BFV-complexes. Consider \(S = \{0\} \) inside \(M = \mathbb{R}^2 \) equipped with the smooth Poisson bivector field

\[
\Pi(x, y) := \begin{cases}
0 & x^2 + y^2 \leq 4 \\
\exp\left(-\frac{1}{x^2+y^2-4}\right) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} & x^2 + y^2 \geq 4
\end{cases}
\]

Let \(\psi_0 \) be the embedding of \(E \cong \mathbb{R}^2 \) into \(\mathbb{R}^2 \) given by the identity and \(\psi_1 \) the embedding given by \((x, y) \mapsto \frac{1}{\sqrt{1+x^2+y^2}}(x, y)\).

The image of \(\psi_1 \) is contained in the disk of radius 1. Hence \(\Pi\psi_0 \) vanishes identically whereas \(\Pi\psi_1 \) does not.

The ghost/ghost-momentum bundle \(\mathcal{E}^*[-1] \) is of the very simple form

\[
\mathbb{R}^2 \times ((\mathbb{R}^2)^*[-1] \oplus \mathbb{R}^2[-1]) \rightarrow \mathbb{R}^2.
\]

Denote the Poisson bivector field coming from the natural pairing between \((\mathbb{R}^2)^*[-1] \oplus \mathbb{R}^2[-1]\) by \(G \). We choose the standard flat connection on the bundle \(\mathbb{R}^2 \rightarrow 0 \). Then the Poisson bivector fields for the BFV-brackets \([\cdot , \cdot]_{BFV}^0\) and \([\cdot , \cdot]_{BFV}^1\) are simply given by the sums \(G + \Pi\psi_0 \) and \(G + \Pi\psi_1 \), respectively.

Any isomorphism of graded Poisson algebras between \((BFV(E), [\cdot , \cdot]_{BFV}^0)\) and \((BFV(E), [\cdot , \cdot]_{BFV}^1)\) yields an induced isomorphism of Poisson algebras between \((\mathcal{C}^\infty(\mathbb{R}^2), [\cdot , \cdot]_{\Pi\psi_0})\) and \((\mathcal{C}^\infty(\mathbb{R}^2), [\cdot , \cdot]_{\Pi\psi_1})\). Since \(\Pi\psi_1 \) vanishes, the induced automorphism would have to map something non-vanishing to 0, which is a contradiction. Hence there is no isomorphism of graded Poisson algebras between \((BFV(E), [\cdot , \cdot]_{BFV}^0)\) and \((BFV(E), [\cdot , \cdot]_{BFV}^1)\).

Although different choices of embeddings can lead to differential graded Poisson algebras that are not isomorphic, it is always possible to find appropriate “restrictions” of the BFV-complexes such that the corresponding differential graded Poisson algebras are isomorphic. To this end we define

Definition 2. Let \(E \) be a finite rank vector bundle over a smooth manifold \(S \). Assume \(E \) is equipped with a Poisson bivector field \(\Pi \) such that \(S \) is a coisotropic submanifold of \(E \). Moreover let \((BFV(E), D_{BFV}, [\cdot , \cdot]_{BFV})\) be a BFV-complex for \(S \) in \((E, \Pi)\) and \(U \) an open neighbourhood of \(S \) inside \(E \).

Then the restriction of the BFV-complex on \(U \) is the differential graded Poisson algebra

\[
(BFV^U(E), D_{BFV}^U) = ([\Omega^U, \cdot]_{BFV}^U, [\cdot , \cdot]_{BFV}^U)
\]

given by the following data:
(a) $BFV^U(E)$ is the space of smooth functions on the graded vector bundle $(E^*[1] \oplus E[-1])|_U$ fitting into the following Cartesian square:

\[
\begin{array}{c}
E^*[1] \oplus E[-1]|_U \\
\downarrow
\end{array}
\begin{array}{c}
E^*[1] \oplus E[-1]
\end{array}
\begin{array}{c}
\downarrow
\end{array}
\begin{array}{c}
E.
\end{array}
\]

(b) $BFV^U(E)$ inherits a graded Poisson bracket $[\cdot, \cdot]_{BFV}^U$ from $BFV(E)$: one restricts the Poisson bivector field corresponding to $[\cdot, \cdot]_{BFV}$ to the graded submanifold $(E^*[1] \oplus E[-1])|_U$ of $E^*[1] \oplus E[-1]$.

(c) An element Ω^U of $BFV^U(E)$ is called a restricted BFV-charge if $[\Omega^U, \Omega^U]_{BFV} = 0$ holds and the component of Ω^U in $\Gamma(E)|_U$ is equal to the restriction of the tautological section $\Omega_0 \in \Gamma(E)$ to U.

Proposition 4. Let S be a coisotropic submanifold of a smooth, finite dimensional Poisson manifold (M, Π). Denote the normal bundle of S by E and fix a connection ∇ on E. Moreover let ψ_0 and ψ_1 be two embeddings of E into M as tubular neighbourhoods of S.

Using these data one constructs two graded Poisson algebra structures on $BFV(E)$ following subsection 2.3 (in particular one applies Proposition 1). Denote the two corresponding graded Poisson brackets by $[\cdot, \cdot]_{BFV}^0$ and $[\cdot, \cdot]_{BFV}^1$ respectively.

Then there are two open neighbourhoods A_0 and A_1 of S in E such that an isomorphism of graded Poisson algebras

\[
(BFV^{A_0}(E), [\cdot, \cdot]_{BFV}^0) \cong (BFV^{A_1}(E), [\cdot, \cdot]_{BFV}^1)
\]

exists.

Proof. We make use of the fact that any two embeddings of E as a tubular neighbourhood are homotopic up to inner automorphisms of E, i.e. given two embeddings ψ and ϕ of E into M as a tubular neighbourhood, one can find

- a vector bundle isomorphism g of E and
- a smooth map $F : E \times I \to M$

satisfying

- $F|_{E \times \{0\}} = \psi$ and $F|_{E \times \{1\}} = \phi \circ g$,
- $\psi_s := F|_{E \times \{s\}} : E \to M$ is an embedding for all $s \in I$ and
- $\psi_s|_S = id_S$ for all $s \in I$.

The construction of F can be found in [Hi] for instance.

Since vector bundle automorphisms of E yield isomorphic BVF-complexes by Lemma 2, we can assume without loss of generality that the two embeddings $\psi := \psi_0$ and $\phi =: \psi_1$ are homotopic (i.e. $g = id$).

Denote the images of ψ_s by V_s. Since ψ_s is an embedding of a manifold of the same dimension as M, the image V_s is an open subset of M. Moreover
$S \subset V_s$ holds for arbitrary $s \in I$, i.e. V_s is an open neighbourhood of S in M. Because F is continuous, one can find an open neighbourhood V of S in M which is contained in $\bigcap_{s \in I} V_s$.

One defines $\tilde{F} : E \times I \to M \times I$, $(e, t) \mapsto (F(e, t), t)$ and checks that \tilde{F} is an embedding, hence its image is a submanifold W of $M \times I$ and \tilde{F} is a diffeomorphism between $E \times I$ and W. Consider the restriction of $\tilde{F}^{-1} : W \cong E \times I$ to $V \times I$ which we denote by G. If one restricts G to “slices” of the form $V \times \{s\}$ one obtains $\psi_s^{-1}|_V$. The images of $\psi_s^{-1}|_V$ are denoted by W_s. By continuity of G there is an open neighbourhood W of S in E which is contained in $\bigcap_{s \in I} W_s$.

We define the following one-parameter family of local diffeomorphisms of E:

$$\phi_s : W_0 \xrightarrow{\psi_0|_W} V \xrightarrow{(\psi_s|_V)^{-1}} W_s,$$

Moreover E inherits a one-parameter family of Poisson bivector fields defined by $\Pi_s := (\psi_s|_V^{-1})_* (\Pi|_V)$. The restriction $\Pi_s|_W$ is equal to $(\psi_s|_V^{-1})_* (\Pi|_V)$. Consequently

$$\Pi_s|_W = (\phi_s)_* (\Pi_0|_{W_0})$$

holds for all $s \in I$.

Differentiating ϕ_s yields a smooth one-parameter family of local vector fields $(Y_s)_{s \in I}$ on E. By (1) the smooth one-parameter family

$$\Pi_t|_W - Y_t|_W dt$$

is a MC-element of $(\mathcal{V}(W)[1] \otimes \Omega(I), d_{DR}, [\cdot, \cdot]_{SN})$.

The L_∞ quasi-isomorphism

$$\mathcal{L}_\nabla : (\mathcal{V}(E)[1], [\cdot, \cdot]_{SN}) \sim (\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN})$$

from Proposition 1 restricts to an L_∞ quasi-isomorphism

$$\mathcal{L}_\nabla|_W : (\mathcal{V}(W)[1], [\cdot, \cdot]_{SN}) \sim (\mathcal{V}((\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[W])[1], [G, \cdot]_{SN}, [\cdot, \cdot]_{SN}).$$

Hence we obtain an L_∞ quasi-isomorphism

$$\mathcal{L}_\nabla|_W \otimes id : (\mathcal{V}(W)[1] \otimes \Omega(I), d_{DR}, [\cdot, \cdot]_{SN}) \sim (\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[W][1] \otimes \Omega(I), d_{DR} + [G, \cdot]_{SN}, [\cdot, \cdot]_{SN}).$$

Applying $\mathcal{L}_\nabla|_W \otimes id$ to the MC-element $\Pi_t|_W - Y_t|_W dt$ and adding G yields a MC-element $\tilde{\Pi}_t - \tilde{Y}_t dt$ of $(\mathcal{V}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])[W][1] \otimes \Omega(I), d_{DR}, [\cdot, \cdot]_{SN})$.

It is straightforward to check that $\tilde{\Pi}_s$ is the restriction of $\mathcal{L}_\nabla(\sum_{k \geq 1} \frac{1}{k!} \Pi_s^k)$ to W and that \tilde{Y}_s is the sum of the horizontal lift $\nu\nabla(Y_s)$ of Y_s with respect to ∇ restricted to W plus a part in $\mathcal{V}^{(1,1)}(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])$ (that acts as a nilpotent derivation).

Using parallel transport with respect to ∇, $(\nu\nabla(Y_t))_{t \in I}$ can be integrated to a one-parameter family of vector bundle automorphisms

$$\hat{\phi}_s : \mathcal{E}^*[1] \oplus \mathcal{E}[-1]|_{W_0} \to \mathcal{E}^*[1] \oplus \mathcal{E}[-1]|_{W_s}$$
covering $\phi_s : W_0 \to W_s$ for arbitrary $s \in I$. Similar to the construction of V and W one finds an open neighbourhood A_0 of S in W such that $\phi_t|_{A_0} : A_0 \xrightarrow{\sim} A_t$ with $\bigcup_{s \in I} A_s \subset W$. So the restriction of $\hat{\phi}_s$ to $\mathcal{E}^*[1] \oplus \mathcal{E}[-1]|_{A_0}$ has image $\mathcal{E}^*[1] \oplus \mathcal{E}[-1]|_{A_s}$ which is a submanifold of $\mathcal{E}^*[1] \oplus \mathcal{E}[-1]|_W$ for arbitrary $s \in I$.

Hence the one-parameter family of local vector fields

$$(i\nabla(Y_t))|_{(\mathcal{E}^*[1] \oplus \mathcal{E}[-1])|_{A_t}} \in I$$

can be uniquely integrated to a one-parameter family of local diffeomorphisms $(\hat{\phi}_t)_{t \in I}$ and consequently the one-parameter family of local vector fields $(Y_t|_{A_t})_{t \in I}$ can be uniquely integrated to a one-parameter family of local diffeomorphisms which we denote by

$$\varphi_s : (\mathcal{E}^*[1] \oplus \mathcal{E}[-1])|_{A_0} \to (\mathcal{E}^*[1] \oplus \mathcal{E}[-1])|_{A_s}$$

for $s \in I$.

Applying Lemma 1 shows that $\hat{\Pi}_s|_{A_s} = (\varphi_s)_*(\hat{\Pi}_0|_{A_0})$ holds for all $s \in I$. Hence

$$(\varphi_1)_* : \mathcal{C}^\infty(\mathcal{E}^*[1] \oplus \mathcal{E}[-1]|_{A_0}) \to \mathcal{C}^\infty(\mathcal{E}^*[1] \oplus \mathcal{E}[-1]|_{A_1})$$

is an isomorphism of Poisson algebras. \hfill \Box

Theorem 2. Let S be a coisotropic submanifold of a smooth, finite dimensional Poisson manifold (M, Π). Suppose $(\text{BFV}(E), D^0_{\text{BFV}}, [\cdot, \cdot]_{\text{BFV}})$ and $(\text{BFV}(E), D^1_{\text{BFV}}, [\cdot, \cdot]_{\text{BFV}})$ are two BFV-complexes constructed with help of two arbitrary embeddings of E into M, two arbitrary connections on $E \to S$ and two arbitrary BFV-charges.

Then there are two open neighbourhoods B_0 and B_1 of S in E such that an isomorphism of differential graded Poisson algebras

$$(\text{BFV}^{B_0}(E), D^0_{\text{BFV}}, [\cdot, \cdot]_{\text{BFV}}) \xrightarrow{\sim} (\text{BFV}^{B_1}(E), D^1_{\text{BFV}}, [\cdot, \cdot]_{\text{BFV}})$$

exists.

Proof. By Theorem 1 we can assume without loss of generality that the two chosen connections coincide. Furthermore it suffices to prove that there is an isomorphism of graded Poisson algebras from some restriction of $(\text{BFV}(E), [\cdot, \cdot]_{\text{BFV}})$ to some restriction of $(\text{BFV}(E), [\cdot, \cdot]_{\text{BFV}})$ which maps a restricted BFV-charge to another restricted BFV-charge. This is a consequence of the fact that Theorem 1 holds also in the restricted setting as long as the open neighbourhood U of S in E, to which we restrict, is contractible to S along the fibres of E.

By Lemma 2, we may assume without loss of generality that the two embeddings under consideration are homotopic. Hence there is a smooth one-parameter family of isomorphisms of graded Poisson algebras

$$(\varphi_s)_* : (\text{BFV}^{A_0}(E), [\cdot, \cdot]_{\text{BFV}}) \to (\text{BFV}^{A_s}(E), [\cdot, \cdot]_{\text{BFV}}),$$

where s denotes the parameter.
which we constructed in the proof of Proposition 4. The smoothness of this family and the fact that the zero section \(S \) is fixed under \((\varphi_s)s\in I\) imply that there is a open neighbourhood \(A \) of \(S \) in \(E \) satisfying \(A \subset \bigcap_{s\in I} A_s \).

Fix a restricted BFV-charge \(\Omega \) of \((BFV^A,\{\cdot,\cdot\}^A)\). The restriction of

\(\Omega(t) := (\varphi_t)_* (\Omega)\) \(t\in I\)

to \(A \) yields a smooth one-parameter family of sections of \(\bigwedge \mathcal{E} \otimes \bigwedge \mathcal{E}^*|_A \).

Although \([\Omega(s)|_A,\Omega(s)|_A]^A_{BFV} = 0\) holds for all \(s \in I \), \(\Omega(s)|_A \) is in general not a BFV-charge since its component in \(\Gamma(\mathcal{E}|_W) \) is \(\Omega_0(s) := (\varphi_s)_*(\Omega_0) \) which does not need to be equal to \(\Omega_0 \) as required – see Definition 2. In particular \(\Omega(1) \) might not be a restricted BFV-charge of \((BFV(E),\{\cdot,\cdot\}^A_{BFV})\). However we will show that \(\Omega(1) \) can be “gauged” to a BFV-charge in the remainder of the proof.

We have to recall some of the ingredients involved in the proof of Proposition 2. The first observation is that \(\delta := [\Omega_0,\cdot]_G \) is a differential. Here \(\Omega_0 \) denotes the tautological section of \(\mathcal{E} \to E \), \(G \) is the Poisson bivector field associated to the fibre pairing between \(\mathcal{E} \) and \(\mathcal{E}^* \), and \([\cdot,\cdot]_G \) denotes the graded Poisson bracket on \(BFV(E) \) corresponding to \(G \). Second it is possible to construct a homotopy \(h \) for \(\delta \), i.e. a degree \(-1\) map satisfying

\[
\delta \circ h + h \circ \delta = id - i \circ pr
\]

where \(i \) is an embedding of the cohomology of \(\delta \) into \(BFV(E) \) and \(pr \) is a projection from \(BFV(E) \) onto cohomology. We remark that \(h \) does not restrict to arbitrary open neighbourhoods of \(S \) in \(E \). However one can check that it does restrict to open neighbourhoods that can be contracted to \(S \) along the fibres of \(E \). Without loss of generality we can assume that \(A \) has this property.

We are interested in the smooth one-parameter family

\[h(\Omega_0(s)) \in \Gamma(\mathcal{E} \otimes \mathcal{E}^*|_A) \cong \Gamma(\text{End}(\mathcal{E}|_A))\]

with \(s \in I \). Since \(\Omega_0 \) intersects the zero section of \(\mathcal{E} \to E \) transversally at \(S \), so does \(\Omega_0(s) \) for arbitrary \(s \in I \). This implies 1.) the evaluation of \(\Omega_0(s) \) at \(S \) is zero and 2.) \(h(\Omega_0(s))|_S \in \Gamma(\mathcal{E} \otimes \mathcal{E}^*|_S) \) is fibrewise invertible, i.e. it is an element of \(\Gamma(GL(\mathcal{E}|_S)) \).

For any \(s \in I \) we have \(\delta h(\Omega_0(s)) = [\Omega_0,\Omega_0(s)]_G = 0 \) since both \(\Omega_0 \) and \(\Omega_0(s) \) are sections of \(\mathcal{E}|_A \) and \(G \) is the Poisson bivector given by contraction between \(\mathcal{E} \) and \(\mathcal{E}^* \). Moreover \((i \circ pr)(\Omega_0(s)) = 0 \) since the projection \(pr \) involves evaluation of the section at \(S \), where \(\Omega_0(s) \) vanishes. Consequently (2) reduces to \(\delta h(\Omega_0(s)) = 0 \) for all \(s \in I \). However this means that if we interpret \(h(\Omega_0(s)) \) as a fibrewise endomorphism of \(\mathcal{E}|_A \) the image of \(\Omega_0 \) under \(-h(\Omega_0(s))\) is \(\Omega_0(s) \).

We define \(M_s := -h(\Omega_0(s)) \) – as already observed, \((M_t)_{t\in I} \) is a smooth one-parameter family of sections of \(\text{End}(\mathcal{E}|_A) \) and the restriction to \(S \) is
a smooth one-parameter family of $GL(\mathcal{E}|_S)$. By smoothness of the one-parameter family it is possible to find an open neighbourhood B of S in E such that the restriction of $(M_t)_{t \in I}$ to B is always fibrewise invertible. Since $M_0 = \text{id}|_A$ we know that $(M_t|_B)_{t \in I}$ is a smooth one-parameter family of sections in $GL_+(\mathcal{E}|_B)$, i.e. fibrewise invertible automorphisms of $E|_B$ with positive determinant. In particular $M_1 \in \Gamma(GL_+(\mathcal{E}|_B))$.

Consider the smooth one-parameter family $(m_t)_{t \in I}$ of sections of $\text{End}(\mathcal{E}|_B)$ given by

$$m_t := -M_t^{-1} \circ \left(\frac{d}{dt} M_t \right).$$

It integrates to a smooth one-parameter family of sections of $GL_+(\mathcal{E}|_B)$ that coincides with $(M_t)_{t \in [0,1]}$. The adjoint action of m_t on $(BFV^B(E),[\cdot,\cdot]_{BFV}^B)$ can be integrated to an automorphism of $(BFV^B(E),[\cdot,\cdot]_{BFV}^B)$ and this automorphism maps the restriction of $\Omega_0(1)$ to B to the restriction of Ω_0 to B. Hence $(\exp(m) \circ (\varphi_1)_*)$ maps the restricted BFV-charge Ω to another restricted BFV-charge of $(BFV^B(E),[\cdot,\cdot]_{BFV}^B)$.

Definition 3. Let $(BFV(E),D_{BFV},[\cdot,\cdot]_{BFV})$ be a BFV-complex associated to a coisotropic submanifold S of a smooth Poisson manifold (M,Π). We define a differential graded Poisson algebra $(BFV^g(E),D^g_{BFV},[\cdot,\cdot]_{BFV}^g)$ as follows:

(a) $BFV^g(E)$ is the algebra of equivalence classes of elements of $BFV(E)$ under the equivalence relation: $f \sim g :\iff$ there is an open neighbourhood U of S in E such that $f|_U = g|_U$.

(b) $D^g_{BFV}([\cdot]) := [D_{BFV}(\cdot)]$ where $[\cdot]$ denotes the equivalence class of \cdot under \sim.

(c) $[\cdot,\cdot]_{BFV}^g := ([\cdot,\cdot]_{BFV})$.

Given a differential graded Poisson algebra with unit $(A,\wedge,d,[\cdot,\cdot])$ we define the corresponding abstract differential graded Poisson algebra with unit $[(A,\wedge,d,[\cdot,\cdot]])$ to be the isomorphism class of $(A,\wedge,d,[\cdot,\cdot])$ in the category of differential graded Poisson algebras with unit. In particular $[(A,\wedge,d,[\cdot,\cdot])]$ is an object in the category of differential graded Poisson algebras with unit up to isomorphisms.

Theorem 2 immediately implies

Corollary 4. Consider a coisotropic submanifold S of a smooth, finite dimensional Poisson manifold (M,Π) and let $(BFV(E),D_{BFV},[\cdot,\cdot]_{BFV})$ be a BFV-complex associated to S inside (M,Π).

The abstract differential graded Poisson algebra

$$[(BFV^g(E),D^g_{BFV},[\cdot,\cdot]_{BFV}^g)]$$

is independent of the specific choice of a BFV-complex and hence is an invariant of S as a coisotropic submanifold of (M,Π).
REFERENCES

[BF] I.A. Batalin, E.S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. 122B (1983), 157–164
[BV] I.A. Batalin, G.S. Vilkovisky, Relativistic S-matrix of dynamical systems with bosons and fermion constraints, Phys. Lett. 69B (1977), 309–312
[B] M. Bordemann, The deformation quantization of certain super-Poisson brackets and BRST cohomology, math.QA/0003218
[Co] K. Costello, Renormalization in the BV-Formalism, math/0706.1533
[GL] A.K.A.M. Gugenheim, L.A. Lambe, Perturbation theory in differential homological algebra I, II. J. Math., 33 (1989)
[He] H.-C. Herbig, Variations on homological Reduction, Ph.D. Thesis (University of Frankfurt), arXiv:0708.3598
[Hi] M. Hirsch, Differential Topology, Graduate Texts in Mathematics 33, Springer Verlag, New York (1994).
[MS] M. Markl, S. Schnider, and J. Stasheff, Operads in Algebra, Topology and Physics, volume 96 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, Rhode Island (2002)
[Sch] F. Schätz, BFV-complex and higher homotopy structures, Commun. Math. Phys. 286 (2009), Issue 2, 399–443
[Sch2] F. Schätz, Moduli of coisotropic Sections and the BFV-Complex, preprint, available as arXiv:0903.4074
[St] J. Stasheff, Homological reduction of constrained Poisson algebras, J. Diff. Geom. 45 (1997), 221–240
[W] A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705–727

Institut für Mathematik, Universität Zürich–Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
E-mail address: florian.schaetz@math.uzh.ch