Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Letter to the Editor

Cytokine levels in sputum, not serum, may be more helpful for indicating the damage in the lung and the prognosis of severe COVID-19 – A case series

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause cytokine storm and acute respiratory distress syndrome (ARDS) or even death. IL-6 and TNF-α levels in serum are independent and important predictors of coronavirus disease 2019 (COVID-19) severity and death. Our research finds that IL-6 and IL-10 are involved in the deterioration of COVID-19. IL-6 levels in bronchoalveolar lavage fluid (BALF) and in the pleural effusion of COVID-19 patients are significantly higher than that in peripheral blood. We aim to explore the relationship between the severity of lung damage and cytokine levels in sputum, BALF and serum. Here we analyze eight severe patients with SARS-CoV-2.

Methods

From January 2021 to March 2021, eight severe COVID-19 patients were admitted and evaluated at COVID-19 Critical Care Center in Heilongjiang Province, China. According to the treatment guidelines of China’s national COVID-19 intensive care expert group, all patients received oxygen therapy, expectoration, daily prone ventilation for 12–20 h, anti-infection, anticoagulant, and symptomatic treatment. Serum samples were collected, and bronchoscopy was performed within 24 h after mechanical ventilation. During the process of bronchoscopy, sputum samples from both lungs were taken, and bronchoscopy alveolar lavage was performed. Cytokine levels were detected by ELISA. Chest computed tomography (CT) examination was performed within 24 h before or after mechanical ventilation.

Results

The median age of the eight patients is 72 years (range 54–79 years) and the median intensive care unit (ICU) hospitalization days is 40.5 days (range 29–66 days). Seven of them have chronic diseases. The most common symptoms before admission are fever (N = 7), fatigue (N = 5), cough (N = 5), sputum (N = 3), and pharyngalgia (N = 3); medium common symptoms are dyspnea (N = 2), dizziness (N = 2). The patients usually take one or two weeks to become severe after the symptom’s onset. Three of them had thrombocytopenia (#1, #2, #5). All of the cases require supplemental oxygen and underwent high-flow oxygen inhalation or non-invasive mechanical ventilation, and finally mechanical ventilation. Except for #4, all patients had a tracheotomy.

Some patients received antibody plasma (#8), glucocorticoid therapy (#1), continuous renal replacement therapy (CRRT) (#7, #8), and extracorporeal membrane oxygenation (ECMO) (#1, #4, #7, #8). So far, four patients have finally recovered, and four patients died (#4, #5, #7, #8), but #8 was died of tumor-related complications after treating COVID-19 successfully and removing the ventilator (Table 1).

The levels of IL-6, IL-10, and TNF-α in sputum and in BALF from both lungs were detected. The sputum sample of patient #3 and the sputum sample from the left bronchus of patient #8 was not obtained during bronchoscopy. Except for #1, IL-6 and TNF-α levels in sputum are slightly higher than that in BALF with small differences but significantly higher than that in serum. The IL-6 levels in BALF and in sputum of three patients who died of COVID-19 are 4.63 to 27.16 times and 13.06 to 37.82 times higher than that in serum, respectively (#4, 4.63 & 13.06; #5, 13.42 & 25.05; #7, 27.16 & 37.82). Levels of IL-6 in BALF and in sputum of COVID-19 recovered patients are 0.57 to 8.84 times and 0.32 to 4.72 times higher than that in serum (#1, 0.57 & 0.32; #2, 1.76 & 2.88; #3, 8.84 & NA; #6, 3.28 & 4.72; #8, 1.33 & 2.43) (Table 2). In addition, levels of IL-6 and TNF-α in sputum and in BALF are related to the severity of lung injury. Except for #7 (CT shows both lungs are extensively affected, but cytokine levels of the left lung are higher than that of the right lung), the cytokine levels in sputum from infected lung (left/right) are consistent with the severity of the corresponding CT imaging. Compared with in sputum, IL-6 and TNF-α levels in BALF from #4 and #5 show some deviation. (Table 3, Fig. 1)

Discussion

The systemic levels of cytokines caused by COVID-19 may be lower than sepsis, but the local response is more intense. Cytokine levels in circulation may not accurately reflect that in local tissue. The samples from BALF have the highest positive rate of detecting SARS-CoV-2, followed by sputum samples from the lower respiratory tract. Most COVID-19 patients are accompanied by elevated serum IL-6 before their lung lesions becoming worse, and the consistently high IL-6 level may be a risk factor for persistent lung injury. The lung is the core site of SARS-CoV-2 infection that may cause a different mechanism from the other cytokine storm-related diseases. Recently, the intervention methods through the respiratory tract attract more attention. In one animal experiment, intranasal administration of specific dimer lipopeptides can effectively block the host SARS-CoV-2 virus replication. And to inhale

Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; BAL, bronchoalveolar lavage; BALF, bronchoalveolar lavage fluid; CRRT, continuous renal replacement therapy; ECMO, extracorporeal membrane oxygenation; CT, computed tomography; ICU, intensive care unit.
Table 1
Patient characteristics and treatment.

Characteristics	Patient	#1	#2	#3	#4	#5	#6	#7	#8
Sex		F	M	F	M	M	M	M	M
Age, y		72	76	66	54	77	72	72	79
Comorbidity		HT, DM, AF, CI, CH	AF, HT, CI	HT	None	HT, COPD	CI, Lung carcinoma, Chronic bronchitis	HT, DM, CI	HT, DM, Renal carcinoma, Lung metastases, Emphysema, Fatigue, Pharyngalgia
Symptom		Fatigue, Dyspnea	Fever, Fatigue	Fever, Cough, Fatigue, Pharyngalgia, Dizziness	Fever	Fever, Cough, Sputum, Pharyngalgia, Dizziness	Fever, Cough, Sputum	Fever, Cough, Fatigue	
Severity on diagnosis of pneumonia		Severe	Severe	Moderate	Moderate	Moderate	Moderate	Moderate	Severe
Disease presentation and course									
Interval between symptom onset and ICU admission		5	6	10	7	18	11	15	10
ICU hospitalization days		48	29	33	42	62	39	37	66
Steroids		Methylprednisolone	None	None	None	None	None	None	None
Convalescent Plasma		None	None	None	None	None	None	None	None
Etezavimab (LY-CoV016, 600 mg, 6 ml)		30ml	30ml	29ml	None	None	None	None	None
Treatment									
Other		ECMO Recovered	None	Recovered	None	ECMO Death	None	ECMO&CRRT	ECMO&CRRT
Outcome									

F, female; M, male; HT = hypertension; DM = diabetes mellitus; AF = atrial fibrillation; CI = cerebral infarction; CH = cerebral hemorrhage; ICU = intensive care unit; CRRT = continuous renal replacement therapy; ECMO = extracorporeal membrane oxygenation.
Table 2
Clinical characteristics and Laboratory findings.

Variables	Patient	#1	#2	#3	#4	#5	#6	#7	#8
Clinical characteristics									
Body temperature, °C		37.2	37.3	37.3	37.6	38.1	37.8	36.9	37.4
PaO2/FiO2		100	167.2	168	117.2	216.3	152	123.6	82.7
Mechanical ventilation, d		26	16	15	36	59	27	33	63
ECMO, d		16	NA	NA	24	NA	NA	20	21
Laboratory findings									
Serum									
IL-6 (1.18–5.3 pg/ml)		92.65	2512.21	85.06	311.76	300.11	323.98	197.09	765.86
IL-10 (0.19–4.91 pg/ml)		3.78	27.19	6.63	16.34	9.38	7.35	3.23	9.63
TNF-α (0.1–2.31 pg/ml)		1.43	1.04	1.5	1.18	1.95	1.37	0.84	0.8
C-reactive protein (0–10 mg/L)		96.85	234.64	52.85	242.68	227.04	228.96	122.38	180.73
Sputum									
IL-6 (1.18–5.3 pg/ml)		5.69	7227.85	NA	889.08	7517.66	777.46	7454.47	NA
Right		29.90	1907.96	NA	4072.92	3113.14	1529.61	5111.11	1859.87
TNF-α (0.1–2.31 pg/ml)		12.63	244.02	NA	73.78	21.71	6.58	712.30	NA
Left		213.55	40.94	NA	286.76	17.88	37.7	421.76	127.26
BALF									
IL-6 (1.18–5.3 pg/ml)		44.13	4434.00	373.30	1444.92	1473.43	367.08	5352.55	363.26
Right		52.76	2518.69	751.52	411.39	4026.66	1062.52	4750.29	1018.25
TNF-α (0.1–2.31 pg/ml)		17.10	123.05	55.39	87.38	10.22	16.55	92.55	4.19
Left		17.96	66.56	136.86	26.93	15.82	28.38	29.38	33.53
CT Left/Right serious									
Right									
Left									
BALF = bronchoalveolar lavage fluid; ECMO = extracorporeal membrane oxygenation.									

Table 3
The cytokines level in Sputum and BALF associated with CT images.

Variables	Patient	#1	#2	#3	#4	#5	#6	#7	#8
IL-6 and TNF-α in Sputum		L	H	NA	L	H	L	H	NA
Left		H	L	NA	H	L	H	L	H
Right		H	L	H	L	H	L	H	H
IL-6 and TNF-α in BALF		L	H	L	H	L	H	L	H
Left		H	L	H	L	H	L	H	H
Right		L	H	NA	L	H	NA	L	H
CT Left/Right serious		Left Right	Right	Right Left	Right Both	Right			
Right		Left Right	Right Right	Left Right Both Right					

BALF = bronchoalveolar lavage fluid; CT = computed tomography; L = lower, H = higher, compare with the contralateral lung.

![Fig. 1. CT imaging of eight COVID-19 patients.](image-url)
CD24 protein by exosomes into the lungs may inhibit the cytokine storm.

Conclusion

The inflammatory response plays a key role in COVID-19 and the cytokine storm aggravates the severity of patients. Compared with in serum, IL-6 and TNF-α in sputum and in BALF may be more directly reflect the severity of COVID-19 critical patients. Cytokine levels in the sputum may be helpful for indicating the extent of damage in the lung and IL-6 may predict the prognosis of patients with severe COVID-19. Local intervention through the respiratory tract may be a reasonable treatment for high-risk patients with severe COVID-19.

Funding

This study supported by Dr. Wang's grant: Provincial Natural Science Foundation Outstanding Youth Project (NO. JQ2021H003).

Availability of data and materials

The datasets used and/or analyzed during this study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Human research ethics committee approval for the study was provided by local institution. Patients informed consent. Not applicable.

Consent for publication

Not applicable.

Declaration of Competing Interest

None of the authors reports any competing interests.

CRediT authorship contribution statement

Changsong Wang: Methodology. Kai Kang: Methodology. Xiwen Lan: Writing – original draft. Dongsheng Fei: Writing – original draft. Qian Wang: Writing – original draft. Xianyong Li: Writing – review & editing. Yang Chong: Writing – review & editing. Yan Gao: Writing – review & editing. Huaqian Wang: Writing – review & editing. Xueling Li: Writing – review & editing. Mingyan Zhao: Writing – review & editing. Kaijiang Yu: Writing – review & editing.

Acknowledgments

We thank the study participants, all field staff, the investigators, patients who contributed to the study.

References

1. Del Valle DM, Kim-Schulze S, Huang HB, Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020;26(10):1636–43.
2. Wang C, Kang K, Gao Y, Ye M, Lan X, Li X, Zhao M, Yu K. Cytokine levels in the body fluids of a patient with COVID-19 and acute respiratory distress syndrome: a case report. Ann Intern Med 2020;173(6):499–501.
3. Investigators R-C, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, Annane D, Beane A, van Bentum-Puijk W, et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med 2021;384(16):1491–502.
4. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323(18):1843–4.
5. Liao B, Liu Z, Tang L, Li L, Gan Q, Shi H, Jiao Q, Guan Y, Xie M, He X, et al. Longitudinal clinical and radiographic evaluation reveals interleukin-6 as an indicator of persistent pulmonary injury in COVID-19. Int J Med Sci 2021;18(1):29–41.
6. de Vries RD, Schmitz KS, Bovier FT, Predella C, Khao J, Noack D, Haagsmans BL, Herfst S, Searnes KN, Drew-Bear J, et al. Intranasal fusion inhibitor lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science 2021;371(6536):1379–82.
7. Evaluation of the Safety of CD24-Exosomes in Patients With COVID-19 Infection. In: https://clinicaltrials.gov/ct2/show/study/NCT04747574.

Changsong Wang
Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China

Kai Kang
Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China

Xianyong Li, Yang Chong
Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China

Yan Gao
Department of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University Harbin, Heilongjiang, China

Huaqian Wang
Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China

Xueling Li
Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China

Mingyan Zhao*, Kaijiang Yu
Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China

*Corresponding authors. E-mail addresses: mingyan1970@163.com (M. Zhao), drkaijiang@163.com (K. Yu)

1 These authors have contributed equally to this work.