A Simple Proof that Major Index and Inversions are Equidistributed

Michael J. Collins
Daniel H. Wagner Associates
mjcollins10@gmail.com
July 13, 2022

Abstract

We present a short proof of MacMahon’s classic result that the number of permutations with \(k \) inversions equals the number whose major index (sum of positions at which descents occur) is \(k \).

1 Introduction

Let \(p = p_0p_1 \cdots p_{n-1} \) be a permutation of \([n] = \{0, 1, \cdots, n-1\} \). A descent of \(p \) is an index \(i \) at which \(p_{i-1} > p_i \), and an inversion of \(p \) is a pair of indices \(i < j \) with \(p_i > p_j \). Define \(\text{inv}(p) \) to be the number of inversions in \(p \), and define \(\text{maj}(p) \), the “major index” of \(p \), to be the sum of all descent positions (so for instance \(\text{maj}(241350) = 2 + 5 = 7 \)). See (\[1, 4\]) for other standard definitions and results regarding permutations.

MacMahon (\[3\]) proved that \(\text{inv} \) and \(\text{maj} \) are equidistributed: the number of length-\(n \) permutations with \(\text{inv}(p) = k \) equals the number of such permutations with \(\text{maj}(p) = k \). This common value is denoted \(b(n,k) \). MacMahon originally proved this by showing that the generating functions coincide, and Foata (\[2\]) gave a bijective proof; in this note we present a simpler proof.

2 Proof of Equidistribution

An inversion table of length \(n \) is an \(n \)-tuple of nonnegative integers \((a_0, a_1, \cdots, a_{n-1})\) such that \(a_j \leq j \) for all \(j \). Clearly there are \(n! \) inversion tables, and each represents a distinct permutation of \([n] \) as follows: starting with the empty permutation, we repeatedly insert \(j \) so that it will have \(a_j \) items to its right.\(^1\) For instance the inversion table \((0,1,0,3,3)\)

\(^1\)to simplify our presentation we have reversed the usual convention which would have \(a_j \leq n - j \)
yields the permutation 31402, building it as

\[
\begin{array}{c}
0 \\
10 \\
102 \\
3102 \\
34102
\end{array}
\]

The insertion of \(j \) creates \(a_j \) inversions, proving the well-known result that \(b(n,k) \) is the number of inversion tables whose elements sum to \(k \). To prove equidistribution, we reinterpret \((a_0, a_1, \ldots a_{n-1}) \) as meaning repeated insertion of \(j \) at a position that will increase the major index by \(a_j \). Finding such a position is always possible. For instance (using boldface to emphasize descents) we have \(\text{maj}(24130) = 2 + 5 = 7 \), and the possibilities for insertion of 6 are:

\[
\begin{align*}
\text{maj}(241306) &= 7 + 0 = 2 + 5 \\
\text{maj}(241350) &= 7 + 1 = 2 + 6 \\
\text{maj}(241356) &= 7 + 6 = 2 + 5 + 6 \\
\text{maj}(241635) &= 7 + 5 = 2 + 4 + 6 \\
\text{maj}(246135) &= 7 + 2 = 3 + 6 \\
\text{maj}(264135) &= 7 + 4 = 2 + 3 + 6 \\
\text{maj}(624135) &= 7 + 3 = 1 + 3 + 6
\end{align*}
\]

In general, say the \(\kappa \) inversions of a permutation of \([j]\) occur at positions \(d_\kappa < d_{\kappa-1} < \cdots < d_1 \). Inserting \(j \) at the rightmost position will not change the major index. Insertion at \(d_t \) \((1 \leq t \leq \kappa)\) will create no new descents, but the descents at \(d_t \) through \(d_1 \) will be shifted to positions \(d_t + 1, \cdots d_1 + 1 \), so \(\text{maj} \) will increase by \(t \). Finally, consider inserting \(j \) at the \(r^{\text{th}} \) position (from the left) which is \textit{not} a descent: if there are \(r' \) descents to the left of this position, we create a new descent at \(r + r' \) and shift \(\kappa - r' \) old descents to the right, increasing the major index by \(\kappa + r \). Thus the number of permutations with \(\text{maj}(p) = k \) is again the number of inversion tables with entries summing to \(k \).

3 Symmetric Joint Distribution

Our proof of equidistribution is simpler than Foata’s, but the machinery of Foata’s proof can be used to prove the stronger result that \(\text{maj} \) and \(\text{inv} \) have a \textit{symmetric joint distribution} \((2, 4)\): for any pair of integers \(k, k' \) the number of \(p \) with \(\text{inv}(p) = k, \text{maj}(p) = k' \) equals the number with \(\text{inv}(p) = k', \text{maj}(p) = k \). We now note that this result can be stated entirely in terms of inversion tables.

To do this we define another way to interpret an inversion table \((a_0, \cdots a_{n-1})\) as a way to build a permutation, one which makes the relationship between \(\text{inv} \) and \(\text{maj} \) more direct. Now \(a_j \) will mean “put \(j - a_j \) in the rightmost position, and increment all other elements
which are greater than or equal to $j - a_j$. More formally, if $(a_0 \cdots a_{j-1})$ generates the permutation $p_0 \cdots p_{j-1}$ then $(a_0 \cdots a_j)$ generates the permutation p' with $p'_j = j - a_j$ and otherwise

$$p'_k = p_k + [p_k > j - a_j]$$

Here we make use of the “Iverson bracket” notation, where $[S] = 1$ if the statement S is true, 0 if it is false.

In fact this just yields the inverse of the permutation generated by reading $(a_0, \cdots a_{n-1})$ as an inversion table. For instance our previous example of $(0, 1, 0, 3, 3)$ now yields the permutation 32401, building it as

$$0$$

$$10$$

$$102$$

$$2130$$

$$32401$$

At step j we create a_j new inversions; the increments do not change any existing inversions, since a pair $r < s$ is either unchanged or becomes $r + 1 < s + 1$ or $r < s + 1$. Furthermore we create a descent at position j if and only if $a_j > a_{j-1}$ (i.e. if position j is an ascent of a), and similarly the increments do not destroy or create any descents. So the resulting permutation p has

$$\text{inv}(p) = \sum a_j$$

$$\text{maj}(p) = \sum_{a_j > a_{j-1}} j$$

Therefore, since inv and maj are eqidistributed over permutations, the “sum of elements” and “sum of ascent positions” are eqidistributed over the set of all inversion tables.

References

[1] Miklos Bona. *Combinatorics of Permutations*, volume 1 of *Discrete Mathematics and its Applications*. Chapman and Hall/CRC, 3 edition, 2022.

[2] Dominique Foata. On the netto inversion number of a sequence. *Proceedings of the American Mathematical Society*, 19(1):236–240, 1968.

[3] P. MacMahon. Two applications of general theorems in combinatory analysis. *Proceedings of the London Mathematical Society*, 15:314–321, 1916.

[4] Richard P. Stanley. *Enumerative Combinatorics*, volume 1 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, New York, NY, 2 edition, 2012.