Research Article

Identifying Liver Cancer-Related Enhancer SNPs by Integrating GWAS and Histone Modification ChIP-seq Data

Tianjiao Zhang,1 Yang Hu,2 Xiaoliang Wu,1 Rui Ma,1 Qinghua Jiang,2 and Yadong Wang1

1School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
2School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Qinghua Jiang; qhjiang@hit.edu.cn and Yadong Wang; ydwang@hit.edu.cn

Received 9 April 2016; Revised 30 May 2016; Accepted 1 June 2016

1. Introduction

Single nucleotide polymorphism (SNP) is a variation at a single nucleotide in a DNA sequence [1]. In the last decade, a large number of genome-wide association studies (GWAS) have been published, indicating that thousands of SNPs are associated with diseases. Linkage disequilibrium is the nonrandom association of alleles at different genome locations [2]. There are many SNPs in LD with the causal SNP at specific GWAS locus [3, 4]. Over 90% of these GWAS variants are located in noncoding regions, and approximately 10% are in LD with a protein-coding variant [5, 6]. In protein-coding regions, many studies have shown that some SNPs are associated with numerous diseases by affecting gene expression [7, 8]. However, in noncoding regions, the mechanism of how SNPs contribute to disease susceptibility remains unclear.

Enhancers are the core regulatory components of the genome that act over a distance to positively regulate gene expression [9]. It is estimated that 400,000 to 1 million putative enhancers exist in the human genome [10, 11]. Recently, some studies have shown that disease-related GWAS SNPs are correlated with enhancers marked with special histone modifications [12–15]. Therefore, through integrating GWAS and histone modification ChIP-seq data in a given disorder, we can identify disease-related enhancer SNPs.

We provided a method for identifying liver cancer-related enhancer SNPs through integrating liver cancer GWAS and histone modification ChIP-seq data. We identified 22 liver cancer-related enhancer SNPs, 9 of which were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer.
Identify genome enhancer regions

Human histone modification ChIP-seq data in HepG2

Human GWAS SNPs in liver cancer

Identify LD SNPs

Identify enhancer SNPs

Validation by rVarBase

2.2. Linkage Disequilibrium Analysis with Liver Cancer-Associated SNPs. We obtained 45 liver cancer-associated SNPs from GRASP (Table 1). These SNPs are the raw potential liver cancer-related SNPs. Then, we used LD data from HapMap to achieve liver cancer-associated LD SNPs. The total number of potential liver cancer-related SNPs is 340.

2.3. Identification of Liver Cancer-Related Enhancer SNPs. Previous studies indicated that the enhancer regions are marked by a strong H3K4me1 signal and a relatively weak H3K4me3 signal [19, 20]. Thus, we used histone modification ChIP-seq data to recognize the enhancer regions in liver cancer. Then, we mapped the liver cancer-related GWAS SNPs to the enhancer regions and obtained 22 enhancer SNPs in liver cancer (Table 2).

2.4. Validation as Regulatory SNPs. rVarBase is a database that provides reliable, comprehensive, and user-friendly annotations on variant’s regulatory features [18]. It includes regulatory SNPs (rSNPs), LD-proxies of rSNPs, and genes that are potentially regulated by rSNPs. We used rVarBase to analyze these 22 enhancer SNPs in liver cancer and found that 14 SNPs have evidence of regulatory SNPs and 9 SNPs (rs9494257, rs6903949, rs6996881, rs4739519, rs6988263, rs12156293, rs1568658, rs5994449, and rs5753816) are involved in distal transcriptional regulation (Table 3). Table 4 shows the potential target genes of these 9 SNPs.

3. Materials and Methods

3.1. GWAS and LD Datasets. We downloaded the human liver cancer-related GWAS SNPs from GRASP. The database includes 26 and 19 liver cancer-associated SNPs ($p < 10^{-5}$) from Han Chinese in Beijing, China (CHB), and Japanese in Tokyo, Japan (JPT), respectively. The URL is https://grasp.nhlbi.nih.gov/Overview.aspx. We obtained all SNPs in LD with GWAS-lead SNPs using LD blocks identified with publicly available HapMap data on the CHB and JPT populations. The LD data can be downloaded from http://hapmap.ncbi.nlm.nih.gov/index.html/.

3.2. Histone Modification Datasets. We downloaded the human histone modification ChIP-seq datasets in the HepG2 cell line from the ENCODE Production Data/Broad Institute. The URL is http://genome.ucsc.edu/ENCODE/downloads.html.

3.3. Linkage Disequilibrium Analysis. In the genome, SNPs located in close proximity tend to be in linkage disequilibrium with each other. The International HapMap Project has established linkage disequilibrium of human genome SNPs. We used LD data from HapMap to achieve liver cancer-associated LD SNPs ($R^2 > 0.8$).

3.4. Identify Enhancer Regions and Enhancer SNPs. Firstly, we downloaded the human histone modification BAM files (H3K4me1 and H3K4me3) in the HepG2 cell line from the ENCODE project. Then, we used BEDtools [21] to count read coverage for every position of the genome. Through calculating the ratio H3K4me1/H3K4me3 and picking up the regions with $\log_2(H3K4me1/H3K4me3) > 1.2$, we identified the potential enhancer regions. Finally, we mapped the potential LD SNPs to these enhancer regions and achieved liver cancer-related enhancer SNPs.
Table 1: Summary of liver cancer-associated SNPs from GRASP database.

SNP ID	p value	Chromosome	Populations	PMID
rs17401966	1.20E−19	1	CHB	20676096
rs1249458	8.30E−06	2	CHB	22807686
rs1714259	1.10E−06	2	CHB	22807686
rs2396470	5.10E−07	2	CHB	20676096
rs7424161	8.80E−06	2	CHB	22807686
rs7574865	1.70E−11	2	CHB	23242368
rs3905886	3.70E−06	3	CHB	22807686
rs1073547	6.80E−06	4	CHB	22807686
rs7821974	7.00E−06	8	CHB	22807686
rs7898005	7.00E−08	10	CHB	20676096
rs10160758	6.00E−06	11	CHB	22807686
rs12682266	6.70E−06	8	CHB	22174901
rs1573266	7.40E−06	8	CHB	22174901
rs2275959	6.40E−06	8	CHB	22174901
rs9272105	3.30E−23	6	CHB	22807686
rs9275319	8.70E−19	6	CHB	23242368
rs9494257	1.10E−14	6	CHB	20676096
rs12682266	6.70E−06	8	CHB	22174901
rs1573266	7.40E−06	8	CHB	22174901
rs2275959	6.40E−06	8	CHB	22174901
rs9272105	3.30E−23	6	CHB	22807686
rs9275319	8.70E−19	6	CHB	23242368
rs9494257	1.10E−14	6	CHB	20676096
rs12682266	6.70E−06	8	CHB	22174901
rs1573266	7.40E−06	8	CHB	22174901
rs2275959	6.40E−06	8	CHB	22174901
rs9272105	3.30E−23	6	CHB	22807686
rs9275319	8.70E−19	6	CHB	23242368
rs9494257	1.10E−14	6	CHB	20676096
rs12682266	6.70E−06	8	CHB	22174901
rs1573266	7.40E−06	8	CHB	22174901
rs2275959	6.40E−06	8	CHB	22174901
rs9272105	3.30E−23	6	CHB	22807686
rs9275319	8.70E−19	6	CHB	23242368
rs9494257	1.10E−14	6	CHB	20676096
rs12682266	6.70E−06	8	CHB	22174901
rs1573266	7.40E−06	8	CHB	22174901
rs2275959	6.40E−06	8	CHB	22174901
rs9272105	3.30E−23	6	CHB	22807686
rs9275319	8.70E−19	6	CHB	23242368
rs9494257	1.10E−14	6	CHB	20676096

4. Discussion

Through integrating liver cancer GWAS SNPs from GRASP, LD data from HapMap, and histone modification ChIP-seq data from ENCODE, we explored liver cancer-related enhancer SNPs. We compared our results with rVarBase and found that 9 SNPs (rs9494257, rs6903949, rs6996881, rs4739519, rs6988263, rs12156293, rs1568658, rs5994449,
Table 2: Summary of predicted enhancer SNPs in liver cancer.

SNP ID	Chromosome	Start	End	Chain	Populations
rs12751375	chr1	10291873	10291874	+	CHB
rs6700866	chr1	10306037	10306038	+	CHB
rs9494257	chr6	13582747	13582747	+	CHB
rs17064474	chr6	13568013	13568013	+	CHB
rs17721919	chr6	13574892	13574892	+	CHB
rs17721931	chr6	13574977	13574978	+	CHB
rs6903949	chr6	13582106	13582106	+	CHB
rs6996881	chr8	37407919	37407920	+	CHB
rs4739519	chr8	37412858	37412859	+	CHB
rs6988263	chr8	37414659	37414660	+	CHB
rs12156293	chr8	37419921	37419922	+	CHB
rs6928810	chr6	31410523	31410524	+	JPT
rs3869132	chr6	31410947	31410948	−	JPT
rs2596562	chr6	31354594	31354595	−	JPT
rs2523475	chr6	31361709	31361710	−	JPT
rs2523467	chr6	31362929	31362930	−	JPT
rs9501387	chr6	31364458	31364459	+	JPT
rs1568658	chr7	29141557	29141558	−	JPT
rs1794304	chr16	12625394	12625395	+	JPT
rs5994449	chr22	32304178	32304179	+	JPT
rs5753816	chr22	32312841	32312842	+	JPT
rs5749339	chr22	32315734	32315735	+	JPT

Table 3: Summary of liver cancer-related regulatory SNPs validated by rVarBase.

SNP ID	Regulatory SNP	Distal regulation	Chromatin state	Related regulatory elements
rs12751375	Yes	No	Inactive region	n/a
rs6700866	Yes	No	Weak transcription; ZNF genes and repeats; strong transcription; enhancers	n/a
rs9494257	Yes	Yes	Enhancers; flanking active TSS; weak transcription	Chromatin interactive region
rs17064474	Yes	No	Weak transcription; active TSS; flanking active TSS; enhancers	n/a
rs17721919	Yes	No	Weak transcription	n/a
rs17721931	Yes	No	Weak transcription	n/a
rs6903949	Yes	Yes	Weak transcription; enhancers	TF binding region; chromatin interactive region
rs6996881	Yes	Yes	Weak transcription; enhancers	Chromatin interactive region
rs4739519	Yes	Yes	Enhancers; weak transcription	Chromatin interactive region
rs6988263	Yes	Yes	Enhancers; weak transcription; genic enhancers; bivalent enhancer; flanking active TSS	Chromatin interactive region
rs12156293	Yes	Yes	Enhancers; weak transcription; bivalent enhancer; genic enhancers	Chromatin interactive region
rs1568658	Yes	Yes	Weak transcription; enhancers; strong transcription	Chromatin interactive region
rs5994449	Yes	Yes	Weak transcription; strong transcription; ZNF genes and repeats	Chromatin interactive region
rs5753816	Yes	Yes	Weak transcription; enhancers; flanking active TSS	Chromatin interactive region
Table 4: Summary of liver cancer-related regulatory SNPs and potential target genes validated by rVarBase.

SNP ID	Gene symbol	Ensemble ID	Regulation type
rs9494257	BCLAF1	ENSG00000029363	Distal transcriptional regulation
rs9494257	AHI1	ENSG000000135541	Distal transcriptional regulation
rs9494257	LINC00271	ENSG000000231028	Distal transcriptional regulation
rs6903949	MYB	ENSG00000018513	Distal transcriptional regulation
rs6903949	BCLAF1	ENSG00000029363	Distal transcriptional regulation
rs6903949	AHI1	ENSG000000135541	Distal transcriptional regulation
rs6903949	LINC00271	ENSG000000231028	Distal transcriptional regulation
rs6996881	ZNF703	ENSG000000183779	Distal transcriptional regulation
rs6996881	ERLIN2	ENSG00000147475	Distal transcriptional regulation
rs6996881	Null	ENSG000000183154	Distal transcriptional regulation
rs6996881	Null	ENSG000000231361	Distal transcriptional regulation
rs4739519	ZNF703	ENSG000000183779	Distal transcriptional regulation
rs4739519	Null	ENSG000000254290	Distal transcriptional regulation
rs6988263	ZNF703	ENSG000000183779	Distal transcriptional regulation
rs6988263	Null	ENSG000000254290	Distal transcriptional regulation
rs12156293	ZNF703	ENSG000000183779	Distal transcriptional regulation
rs12156293	Null	ENSG000000254290	Distal transcriptional regulation
rs12156293	ERLIN2	ENSG000000147475	Distal transcriptional regulation
rs12156293	Null	ENSG000000183154	Distal transcriptional regulation
rs1568658	Null	ENSG000000228421	Distal transcriptional regulation
rs1568658	TRIL	ENSG000000176734	Distal transcriptional regulation
rs1568658	Null	ENSG000000255690	Distal transcriptional regulation
rs5994449	DEPDC5	ENSG000000100150	Distal transcriptional regulation
rs5994449	FBXO7	ENSG000000100225	Distal transcriptional regulation
rs5994449	SYN3	ENSG000000185666	Distal transcriptional regulation
rs5994449	PRRI4L	ENSG000000183530	Distal transcriptional regulation
rs5994449	PISD	ENSG000000241878	Distal transcriptional regulation
rs5994449	EIF4ENIF1	ENSG000000184708	Distal transcriptional regulation
rs5994449	RNU6-28	ENSG000000199248	Distal transcriptional regulation
rs5994449	SFI1	ENSG000000198089	Distal transcriptional regulation
rs5753816	YWHAH	ENSG000000128245	Distal transcriptional regulation
rs5753816	C22orf24	ENSG000000128254	Distal transcriptional regulation
rs5753816	PISD	ENSG000000241878	Distal transcriptional regulation
rs5753816	DEPDC5	ENSG000000100150	Distal transcriptional regulation
rs5753816	RNU6-28	ENSG000000199248	Distal transcriptional regulation
rs5753816	SFI1	ENSG000000198089	Distal transcriptional regulation
rs5753816	EIF4ENIF1	ENSG000000184708	Distal transcriptional regulation
rs5753816	RPL3S	ENSG000000205853	Distal transcriptional regulation
rs5753816	Null	ENSG000000230736	Distal transcriptional regulation
rs5753816	Null	ENSG000000231361	Distal transcriptional regulation
rs5753816	Null	ENSG0000002243519	Distal transcriptional regulation
rs5753816	Null	ENSG000000241954	Distal transcriptional regulation
rs5753816	SYN3	ENSG000000185666	Distal transcriptional regulation

and rs5753816 were regulatory SNPs involved in distal transcriptional regulation. The results highlight that these enhancer SNPs may play important roles in liver cancer.

Compared with protein-coding regions in the human genome, noncoding regions contain much more genetic variations. Some important regulation regions, such as enhancers, have great influence on target gene expression. SNPs located in these regions may disturb gene expression and even cause diseases. Thus, the identification of SNPs in enhancer regions is helpful to understand the mechanism of association between SNPs and diseases.

We presented a method to identify disease-related SNPs located in enhancer regions that gives a new solution to investigate the relationship between SNPs and diseases. The
presented method can also be applied to other diseases and will enable biologists to investigate the mechanism of disease risk associated with SNPs.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

Authors’ Contributions

Tianjiao Zhang collected the data, designed the computational experiments, carried out the statistical analysis, and wrote the paper. Qingshua Jiang participated in the design of the study. Yang Hu, Xiaoliang Wu, and Rui Ma participated in the revision of this paper. Yadong Wang gave comments and revisions to the final version of this paper. All authors read and approved the final paper. Tianjiao Zhang and Yang Hu equally contributed to this paper.

Acknowledgments

This work was partially supported by the National High-Tech Research and Development Program (863) of China (2012AA02A601, 2012AA02A602, 2012AA020404, 2012AA020409, 2012AA02A604, 2014AA021505, 2015AA020101, and 2015AA020108), National Science and Technology Major Project [no. 2013ZX03005012], and the National Natural Science Foundation of China (2012AA02A601, 2012AA02A602, 2012AA020404, 2012AA02A604, 2014AA021505, 2015AA020101, and 2015AA020108), National Natural Science Foundation of China (61571152, 31301089).

References

[1] R. Sachidanandam, D. Weissman, S. C. Schmidt et al., “A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms,” Nature, vol. 409, no. 6822, pp. 928–933, 2001.

[2] M. Slatkin, “Linkage disequilibrium—understanding the evolutionary past and mapping the medical future,” Nature Reviews Genetics, vol. 9, no. 6, pp. 477–485, 2008.

[3] J. Peng, S. Uygur, T. Kim, Y. Wang, S. Y. Rhee, and J. Chen, “Measuring semantic similarities by combining gene ontology annotations and gene co-function networks,” BMC Bioinformatics, vol. 16, no. 1, article 44, 2015.

[4] J. Peng, T. Wang, J. Wang, Y. Wang, and J. Chen, “Extending gene ontology with association networks,” Bioinformatics, vol. 32, no. 8, pp. 1185–1194, 2016.

[5] M. T. Maurano, R. Humbert, E. Rynes et al., “Systematic localization of common disease-associated variation in regulatory DNA,” Science, vol. 337, no. 6099, pp. 1190–1195, 2012.

[6] M. A. Schaub, A. P. Boyle, A. Kundaje, S. Batzoglou, and M. Snyder, “Linking disease associations with regulatory information in the human genome,” Genome Research, vol. 22, no. 9, pp. 1748–1759, 2012.

[7] L. A. Hindorff, P. Sethupathy, H. A. Junkins et al., “Potential etiologic and functional implications of genome-wide association loci for human diseases and traits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 23, pp. 9362–9367, 2009.

[8] Q. Zou, J. Li, Q. Hong et al., “Prediction of microRNA-disease associations based on social network analysis methods,” BioMed Research International, vol. 2015, Article ID 805514, 9 pages, 2015.

[9] J. Banerji, S. Rusconi, and W. Schaffner, “Expression of a β-globin gene is enhanced by remote SV40 DNA sequences,” Cell, vol. 27, no. 2, pp. 299–308, 1981.

[10] C. Buecker and J. Wysocka, “Enhancers as information integration hubs in development: lessons from genomics,” Trends in Genetics, vol. 28, no. 6, pp. 276–284, 2012.

[11] W. Xie and B. Ren, “Developmental biology. Enhancing pluripotency and lineage specification,” Science, vol. 341, no. 6143, pp. 245–247, 2013.

[12] S. Heinz, C. Benner, N. Spann et al., “Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities,” Molecular Cell, vol. 38, no. 4, pp. 576–589, 2010.

[13] J. Ernst, P. Kheradpour, T. S. Mikkelsen et al., “Mapping and analysis of chromatin state dynamics in nine human cell types,” Nature, vol. 473, no. 7345, pp. 43–49, 2011.

[14] B. Akhtar-Zaidi, R. Cowper-Sallari, O. Corradin et al., “Epigenomic enhancer profiling defines a signature of colon cancer,” Science, vol. 336, no. 6082, pp. 736–739, 2012.

[15] G. Trynka, C. Sandor, B. Han et al., “Chromatin marks identify critical cell types for fine mapping complex trait variants,” Nature Genetics, vol. 45, no. 2, pp. 124–130, 2013.

[16] R. Leslie, C. J. O’Donnell, and A. D. Johnson, “GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database,” Bioinformatics, vol. 30, no. 12, pp. i85–i94, 2014.

[17] The International HapMap Consortium, “The international HapMap project,” Nature, vol. 426, no. 6968, pp. 789–796, 2003.

[18] L. Guo, Y. Du, S. Qu, and J. Wang, “rVarBase: an updated database for regulatory features of human variants,” Nucleic Acids Research, vol. 44, no. 1, pp. D888–D893, 2016.

[19] F. de Santa, I. Barozzi, F. Mietton et al., “A large fraction of extragenic RNA Pol II transcription sites overlap enhancers,” PLoS Biology, vol. 8, no. 5, article e1000384, 2010.

[20] A. C. Marques, J. Hughes, B. Graham, M. S. Kowalczyk, D. R. Higgs, and C. P. Ponting, “Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs,” Genome Biology, vol. 14, no. 11, article R31, 2013.

[21] A. R. Quinlan, “UNIT 11.12 BEDTools: the swiss-army tool for genome feature analysis,” Current Protocols in Bioinformatics, vol. 47, pp. i11.2.1–i11.2.34, 2014.