A review of the possible impacts of climate change on forests in the humid tropics

W.A.J.M. De Costa
Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya.

Abstract: Increased anthropogenic emissions of greenhouse gases (GHGs) have led to gradual warming of the earth’s atmosphere. It is predicted that by the year 2100, the average annual global air temperature will increase by 1.1 – 6.4 °C. This has triggered a series of long-term changes in the atmospheric and soil environments. As forests form a key component of humid tropical ecosystems, the objective of this review is to synthesize the currently available experimental results and offer insights into how forests in the humid tropics would respond and adapt to different aspects of climate change. The atmospheric CO₂ concentration (Cₐ), which is currently at 386 μmol mol⁻¹, is expected to reach at least 600 μmol mol⁻¹ by 2100. As CO₂ is an input in the photosynthetic process, increasing Cₐ increases photosynthetic rates of all plants. In C₃ herbs and woody plants, which dominate humid tropical forests, this is translated into average biomass increases of 45% (maximum 240%) and 48% (maximum 260%) respectively, leading to increased net primary productivity at the ecosystem level. Increasing air temperatures could either enhance or dampen the growth stimulation due to higher Cₐ, depending on the magnitude of temperature increase relative to the optimum temperature for maximum ecosystem productivity. The ability of humid tropical forests to acclimate and adapt to future temperature changes are considered to be lower than that of temperate forests because of the narrower range of seasonal temperatures experienced by forests in the humid tropics. Increasing Cₐ and temperatures could also influence forest ecosystems through significant changes in the soil environment and in the plant-water relations. In all the above-described responses to increased Cₐ and temperature, there is substantial species-to-species variation. Studies on the capacity of tropical forests to sequester carbon and reduce future increases of Cₐ have indicated a substantial capacity for forests in the humid tropics. However, reductions of this capacity have been observed during years of warmer temperatures and lower precipitation resulting from El Niño Southern Oscillation.

Keywords: Carbon dioxide, carbon sequestration, forest ecosystems, net primary productivity, photosynthesis, temperature.

INTRODUCTION

Climate is the totality of the above-ground environment and its variation over time. The term ‘climate change’ has different connotations and interpretations. For example, the Inter-governmental Panel for Climate Change (IPCC) defines climate change as ‘the long-term change in the above-ground environment due to human activity or natural variability’. On the other hand, the United Nations Framework Convention for Climate Change (UNFCC) specifically identifies the human influence and excludes the natural variability in its definition of climate change as ‘change of climate attributed directly or indirectly to human activity that alters the composition of global atmosphere’.

There is increasingly conclusive evidence that long-term, human-induced climate change is taking place (Jones & Mann, 2004; IPCC, 2007). Climate change is triggered by increased atmospheric concentrations of greenhouse gases (GHGs), leading to a continuous, gradual warming of the atmosphere and thereby setting in motion a complex chain of changes in the climate. Although some of these changes have made their presence felt in recent times through increased frequency of extreme climatic events such as hurricanes, floods and droughts, many of the changes in climate are initiated by increased GHGs that occur over longer time scales (i.e. decades and centuries). Forests are extremely important ecosystems because of their multiple functions in biodiversity conservation, ensuring long-term environmental stability while providing a variety of economically-important products and services. Forest ecosystems will definitely experience the gradual, long-term changes in climate because of their long life spans. However, there is only limited research information on the potential impacts of...
climate change on individual plant species in forests and their functioning or on the processes and functioning of forests as ecosystems. A large portion of the limited information that is available is on temperate and boreal forests and their component plant species (Saxe et al., 1998, 2001). Therefore, the present review aims to provide a synthesis of the possible impacts of long-term climate change on forests in the humid tropics. However, because of the paucity of empirical data on tropical forests, we have had to rely on the basic principles of plant physiology and ecology and supporting data, which are predominantly from experiments on temperate plant species.

MAJOR ASPECTS OF LONG-TERM CLIMATE CHANGE

Some of the major aspects of long-term climate change that are likely to influence forest ecosystems are briefly described below:

Increasing concentrations of greenhouse gases in the atmosphere

Greenhouse gases are those that have the ability to absorb certain wavelengths of longwave radiation (i.e. wavelengths greater than 0.7 μm). Carbon dioxide, water vapour, methane, nitrous oxides and halogenated carbons are the GHGs in the earth’s atmosphere. Most of the shortwave radiation coming from the sun passes through the earth’s atmosphere. However most of the longwave radiation emitted from the earth’s surface is absorbed by the GHGs. This leads to a gradual warming of the earth’s atmosphere and this phenomenon is the well-known greenhouse effect (Houghton, 1997). Actual measurements and estimations from proxy sources have shown that the atmospheric concentrations of most GHGs have been rising steadily during the last three centuries, leading to an up-regulation of the greenhouse effect (called the enhanced greenhouse effect) (Houghton, 1997). These increases are beyond the range of fluctuations that these GHGs have shown over longer time scales of thousand/million years. The current atmospheric levels of GHGs are higher than those at any time during the last 650,000 years (Siegenthaler et al., 2005) and they are increasing at a rate of 2.3 μmol mol⁻¹ of CO₂ equivalents per year (IPCC, 2001; Stern, 2007).

Carbon dioxide is the GHG, which contributes most to the enhanced greenhouse effect. Atmospheric CO₂ concentration (Cₐ) was stable around 280 μmol mol⁻¹ for several thousand years up to the beginning of the industrial revolution around 1750. Since then, Cₐ has shown an exponential increase (Figure 1) up to the present level of around 386 μmol mol⁻¹. During the period between 1975 and 2010, Cₐ in the tropics has increased by 14% from 330 to 377 μmol mol⁻¹ (Clark, 2007; IPCC, 2007). In comparison, Cₐ did not exceed 300 μmol mol⁻¹ during the 420,000 year period before industrialization (Petit et al., 1999). As CO₂ is an essential component in photosynthesis, this rise in Cₐ has profound implications on the functioning of forest ecosystems. Hence, the impacts of increasing Cₐ will form a major part of this review.

Increasing air temperatures

When the increases of all GHGs are taken into account, some recent studies have predicted an increase of global mean temperature by 2 to 5 °C by 2030-2060 (Wigley & Raper, 2001; Murphy et al., 2004) (Table 1), which would bring the earth to a global average temperature that has not been reached during the last three million years (Hansen et al., 2006). Moreover, there is a 20% probability of a temperature rise greater than 5 °C by 2050 and a warming of 3-10 °C by 2100 (Meinshausen, 2006; Stern, 2007). Global warming predictions of the Fourth Assessment Report of the IPCC (IPCC, 2007) are given in Table 2. During the 30-year period between 1975 and 2005, temperatures in the tropical regions have increased at a rate of 0.26 ± 0.05 °C per decade (Malhi & Wright, 2006; Stern, 2007). Additionally, increases in air temperatures would influence the rates of a wide range of temperature-dependent processes in plants and soils with profound implications for forests in the humid tropics.

Increased frequency of droughts and other extreme climatic events

Warmer air temperatures will accelerate the hydrologic cycle with significant shifts in the amount and temporal distribution of rainfall. Although there is uncertainty about whether annual total rainfall in the tropical zone would change significantly (Stern, 2007), there is increasing evidence that the same annual rainfall will come in a fewer, more intense rainfall events (Wetherald & Manabe, 2002; Huntington, 2006). On the other hand, annual rainfall is predicted to decrease significantly in Mediterranean climates (Stern, 2007). Globally, the percentage of land area under moderate drought at a given time is expected to increase from the current level of 25% to 50% while the corresponding percentage for extreme drought is projected to increase from 3% to 30% (Burke et al., 2006). Hence, forests in the humid tropics could experience drought of greater intensity and longer duration. During the last three decades,
Figure 1: Long-term variation of the atmospheric carbon dioxide concentration along with predicted increases under different emission scenarios:

A1 – Rapid economic growth, with convergence between different regions of the world. A1F – Economic growth with high dependence on fossil energy sources; A1T – Economic growth with non-fossil energy sources; A1B – Economic growth with a balanced mixture of energy sources; A2 – Regionally-oriented and unevenly-distributed (i.e. divergent) economic growth, which is slower than in A1; B1 – Convergent world which is rapidly moving global solutions to economic, social and environmental sustainability with the introduction of clean and resource-efficient technologies; B2 – Intermediate rates of economic development focusing on environmental protection and social equity, but with emphasis on local solutions and less rapid and more diverse technological change than in B1 and A1; IS92a – ‘Business-as-usual’ scenario.

(Sources: http://www.ipcc.ch/present/graphics.htm; Nakicenovic & Swart, 2001; Metz et al., 2001).

there have been decreases in rainfall over some tropical regions, with tropical Asia recording a marginal decrease while tropical North Africa showing a 3-4% decrease (Houghton et al., 2001; Malhi & Wright, 2004) and Amazonia showing no significant variation (Malhi & Wright, 2004). Furthermore, there has been an increase in the intensity of El Niño events, causing episodes of significant drought and high temperatures. This has also increased the frequency of regional scale forest fires releasing significant quantities of aerosols into the atmosphere and causing up to 65% reduction of incident photosynthetically active radiation in South East Asia (Kobayashi et al., 2005) and Amazonia (Nepstad et al., 2004).
PREDICTION OF THE IMPACTS OF CLIMATE CHANGE ON FOREST ECOSYSTEMS

Experimental approaches

The present review will focus on the impacts of increasing C_a and air temperatures (T_a) and varying water availability on forests in the humid tropics. The type and magnitude of climate change impacts on a given forest ecosystem is partly determined by the environmental factors that control its functioning and productivity. Under the current climatic conditions, for forests in the humid tropics, radiation receipt and temperature are the main factors of control as water and nutrient availability are unlikely to be limiting (Churkina & Running, 1998; Nemani et al., 2003; Running et al., 2004).

It is important, at the outset, to appreciate the practical experimental difficulties involved in collecting valid research data on the impacts of climate change on a complex ecosystem such as a forest. The slow, gradual nature of climate change necessitates observations over a long time period to detect its impacts on a forest ecosystem, which itself is likely to have a rather long response time. Hence, alternative approaches, which would yield valid predictions within a shorter period of time need to be sought. Such an approach is to quantify the response of seedlings of key plant species to certain conditions.

Table 1: Projected increases of global average temperature in response to increasing atmospheric carbon dioxide at various levels of stabilisation

Stabilisation level (ppm CO_2 equivalent)	Temperature increase at equilibrium relative to pre-industrial ($°C$)	Nature and emphasis of future development	
IPCC TAR 2001†	Hadley Centre Ensemble‡	Eleven Studies*	
400	0.8 – 2.4	1.3 – 2.8	0.6 – 4.9
450	1.0 – 3.1	1.7 – 3.7	0.8 – 6.4
500	1.3 – 3.8	2.0 – 4.5	1.0 – 7.9
550	1.5 – 4.4	2.4 – 5.3	1.2 – 9.1
650	1.8 – 5.5	2.9 – 6.6	1.5 – 11.4
750	2.2 – 6.4	3.4 – 7.7	1.7 – 13.3
1000	2.8 – 8.3	4.4 – 9.9	2.2 – 17.1

†Third Assessment Report of the Intergovernmental Panel for Climate Change (Wigley & Raper, 2001), ‡Murphy et al. (2004), *Meinshausen (2006).

Table 2: Predicted increases in global mean annual temperature by 2100 under the four SRES scenario families

Distribution of future development	More economic focus	More environmental focus
Globalization (Homogeneous world)	A1 Rapid economic growth	B1 Global environmental sustainability
1.4 – 6.4°C	1.1 – 2.9°C	
Regionalization (Heterogeneous world)	A2 Regionally-oriented economic development	B2 Local environmental sustainability
2.0 – 5.4°C	1.4 – 3.8°C	

(Source: http://en.wikipedia.org/wiki/IPCC#IPCC_Fourth_Assessment_Report:_Climate_Change_2007), †IPCC (2001).
specified increases of C_a and T_a, which are expected to occur during the next 50-100 years. Accordingly, for C_a, elevated levels have ranged from 570 μmol mol$^{-1}$ (a 200 μmol mol$^{-1}$ increase, which is expected to occur in another 40-50 years, IPCC, 2007; Stern, 2007) to 700 μmol mol$^{-1}$ (a doubling of the current ambient C_a, which is expected by 2100) while the temperature elevations growing under elevated C_a are ventilated enclosures with an open top and transparent side walls to simulate ‘near natural’ conditions. A limited number of experiments on forest plants have been conducted in closed top chambers (CTCs) with re-circulation of air (Beerling & Woodward, 1996; Forstreuter, 1996; Tingey et al., 1996). Free Air CO_2 Enrichment (FACE) is a more expensive method of enriching a larger, un-enclosed (open) area with CO_2 to simulate completely natural conditions (Hendrey et al., 1999). A limited number of FACE studies have been carried out on temperate forest stands, but none on tropical forests. Responses to increased T_a have been carried out either in open top chambers heated with heating coils, temperature gradient chambers or in completely enclosed growth chambers.

Quantification of the ecosystem response

Even the few FACE systems are established on monocultures of forest stands. Open top chambers and enclosed growth chambers can only house potted individual seedlings of trees. Extrapolation of plant growth responses obtained under such experimental conditions to predict the response of a complex and multi-species ecosystem such as a forest in the humid tropics is difficult and questionable. A more valid alternative would be to quantify the response of basic plant and soil processes to the different aspects of climate change and use this information to synthesize the ecosystem response (Landsberg, 2003; Mäkelä, 2003). Hence, this approach is followed in the present review. However, even with this approach, the results on many key processes are not unequivocal (Boisvenue & Running, 2006) and therefore, extrapolations, generalizations and predications can be made only with extreme caution (Luo et al., 1999; Beier, 2004). Furthermore, climate change involves the variation of several environmental factors (i.e. C_a, T_a and water availability) simultaneously and complex interactions in their effects. Therefore, the net result of overall climate change on a given forest ecosystem could be site- and environment-specific (Norby & Luo, 2004).

Inter- and intra-species variation in the magnitude of responses

A review of experimental results on the response of trees to different aspects of climate change show clear differences among species and also among provenances/populations/families within a species (Eamus & Jarvis, 1989; Poorter, 1993; Berryman et al., 1994; Battaglia et al., 1996; Beerling, 1996; Basso & Bazzaz, 1998; Faria et al., 1998; Atkin et al., 1999; Jablonski et al., 2002; Arulmageswaran et al., 2003; De Costa et al., 2003; Poorter & Navas, 2003; Körner et al., 2005). These variations have to be taken into consideration when reconstructing ecosystem response from studies on individual processes of single plants.

INFLUENCE OF ELEVATED CARBON DIOXIDE AND TEMPERATURE ON BASIC PLANT AND SOIL PROCESSES

An overview of the inter-connected network of key plant and soil processes that can be influenced by climate change is given in Figure 2.

Response of photosynthesis, respiration and biomass production to increased C_a

Photosynthesis is one of the key processes affected by increasing C_a because CO_2 is an essential input for it. A wide body of evidence has shown that the net photosynthetic rate per unit leaf area (P_n) increases with increasing C_a (Eamus & Jarvis, 1989; Curtis, 1996; Drake et al., 1997; Saxe et al., 1997; Wullschleger et al., 1997; Luo et al., 1999; Nowak et al., 2004). This is primarily because of two reasons. Firstly, a greater CO_2 concentration in the outside air would allow a greater airleaf CO_2 concentration gradient and thereby increase the rate of CO_2 uptake in to the leaves. If the leaves do not have a limitation of photosynthetic structures (i.e. chlorophyll, components of the electron transport pathway, thylakoid membranes etc.) increased uptake of CO_2 would lead to a greater production of primary carbohydrates (i.e. glucose, fructose, sucrose, starch, etc.) through gross photosynthesis. This is called the ‘CO_2 fertilization effect’. Secondly, the greater CO_2 concentration at the
chloroplast partly suppresses photorespiration (Drake et al., 1997) and thereby channels a greater percentage of the absorbed CO$_2$ through photosynthesis, thus increasing \(P_n \). Compilations of responses of a wide range of plant species have shown a significant species-to-species variation in the magnitude of increase of \(P_n \) in response to a doubling of C$_a$. Among the tree species, Saxe et al. (1998) showed that long-term photosynthetic stimulation by elevated C$_a$ was slightly higher for conifers (62%) than for deciduous tree species (53%). Specifically for a selected set of tropical tree species growing in Sri Lanka, De Costa et al. (2003) observed increases of \(P_n \) ranging from 18% to 224% in response to an increase in C$_a$ from 370 to 570 μmol mol$^{-1}$ (Table 3).

This stimulation of photosynthesis by increasing C$_a$ has been shown to be greater for C$_3$ than for C$_4$ plants (Drake et al., 1997; Long et al., 2004). Kranz anatomy and the consequent increase of internal CO$_2$ concentration within the C$_4$ leaves makes CO$_2$ a lesser limitation for C$_4$ photosynthesis (Sage, 2001). In addition to the decrease of photorespiration (\(R_p \)), there is considerable evidence

Figure 2: Network of plant- and soil processes (given within squares) in a forest ecosystem influenced by climate change. Main drivers of climate changes are given within ellipses. Factors modifying the magnitude of response are given within rounded squares. Arrows indicate the direction of influence. Key feedbacks are shown by dotted arrows.
Table 3: Response of leaf net photosynthetic rate (P_{n}) to elevated C_a in seedlings of selected tropical tree species growing in open top chambers at different times after CO$_2$ enrichment (CE). Plants were grown with adequate water and nutrients. P_{n} was measured under saturating light in the youngest fully expanded leaf.

Species	P_{n} (μmol m$^{-2}$ s$^{-1}$) after 75 days of CE	P_{n} (μmol m$^{-2}$ s$^{-1}$) after 105 days of CE
Artocarpus heterophyllus	C$_a$ at 370 μmol mol$^{-1}$ 3.62	C$_a$ at 570 μmol mol$^{-1}$ 9.14
	C$_a$ at 370 μmol mol$^{-1}$ 5.99	C$_a$ at 570 μmol mol$^{-1}$ 7.08
Swietenia mahagony	12.90	16.96
	13.42	11.83
Swietenia macrophylla	3.68	6.73
	3.98	12.90
Tectona grandis	2.47	3.80
	10.65	21.77

(Source: De Costa et al., 2003).

that mitochondrial respiration (R_z) also decreases with increasing C_a (Griffin et al., 1996; Bunch, 1997; Drake et al., 1997; Drake et al., 1999). A review of existing literature incorporating all types of plants has shown that R_z decreases by an average of 17-20% for a doubling of C_a (Eamus & Jarvis, 1989; Drake et al., 1999). This has been attributed to a CO$_2$-induced reduction of the activity of two key enzymes of the respiratory pathway (i.e. cytochrome oxidase and succinate dehydrogenase) (González-Meler et al., 1997) and reduced respiratory cost for tissue synthesis under elevated C_a (Wullschleger et al., 1994; Amthor, 1997). Reductions in R_z in different forest tree species have been observed in several studies (Stewart & Hoddinott, 1993; Karnosky et al., 1999; McDowell et al., 1999). However, CO$_2$-induced reduction of R_z is not as conclusive as the decrease of R_p because there is also evidence against a significant reduction of R_z (Saxe et al., 1998; Ceulemans et al., 1999; Amthor, 2000). For example, Overdieck (1993), Pontailler et al. (1994) and Saxe et al. (1998) have observed increases in R_z due to elevated C_a in *Pinus sylvestris* (13-19%) and *Fagus sylvatica* (53-84%). An increase in R_z under elevated C_a is possible because of increased carbohydrate availability due to increased P_n (Amthor, 1995). Moreover, even if specific R_z (i.e. dark respiration rate per unit plant biomass) may be reduced with increasing C_a, the greater plant biomass produced under elevated C_a could increase total plant R_z because of increased maintenance respiration. In contrast, Martin et al. (1994) concluded that there is no direct effect of elevated CO$_2$ on woody tissue respiration because of the higher CO$_2$ concentrations (i.e. 1%) in wood. However, Carey et al. (1996) observed an increase in R_z per unit volume of stem wood due to elevated C_a. Hence, a clear scientific consensus has not emerged yet on the direction or magnitude of response of R_z to CO$_2$ enrichment (Amthor, 1997; Saxe et al., 1998; Ceulemans et al., 1999).

It is also possible that the response of R_z to elevated C_a depends on the type of tissue. Ryan et al. (1996) showed that in stems and coarse roots, R_z was positively correlated with biomass (resulting in an increase of R_d under elevated C_a) whereas in foliage and fine roots, R_d was directly correlated with N concentration (causing a reduction of R_d with increasing C_a). It is notable that in trees R_z of leaves constitutes more than 50% of total R_z. There is fairly clear evidence that root respiration is greater at elevated C_a (Johnson et al., 1994; Voce et al., 1995; Rouhier et al., 1996). Moussaou (1996) quoted that in model ecosystems, elevated C_a decreased leaf R_z by 28%, increased stem R_z by 40% and reduced root R_z by 13%, when all R_z values are expressed on a per unit dry weight basis. The total stand respiration was increased by 52% primarily because of a 75% increase in total biomass.

Another reason for the conflicting results obtained could be variation in the respiratory response at different stages of tree growth. Wullschleger et al. (1995) observed an increase in R_z in response to increased C_a only during periods of leaf growth. Out of the 111% increase in R_d observed under elevated C_a during the active growing period, a higher proportion was attributed to increased CO$_2$ used for respiration during leaf growth. The direction and magnitude of change in total plant respiration in a future climate will partly determine whether forests would act as a sink or source of atmospheric CO$_2$. Therefore, more research is urgently needed to resolve the uncertainties involved in this response.

The net result of the increased gross photosynthesis and decreased R_z under elevated C_a is an increase in biomass production in plants. A possible reduction of R_d would further increase this stimulation of plant growth at increased C_a. Inter-species variation in the magnitudes
of stimulation of \(P_a \) and reductions of \(R_p \) and \(R_p \) means that a considerable species-to-species variation could be expected in the stimulation of biomass production by elevated \(C_a \). When plants are growing with adequate water and nutrients, for \(C_a \) woody plants, the growth stimulation with a doubling of \(C_a \) has ranged from 0 to 260% with an average of 48% while for \(C_a \) herbs, it has ranged from 0 to 240% with an average of 45%. These values were obtained in a meta-analysis of experimental data for 160 woody plants and 144 herbs (Poorter & Navas, 2003). Curtis and Wang (1998) and Idso (1999) have reported biomass increases up to 30-50% with woody species subjected to long-term \(\text{CO}_2 \) enrichment. Specifically, the inter-species variation in the growth stimulation due to increased \(C_a \) for seedlings of some tropical forest tree species is shown in Figure 3. Schlesinger and Lichter (2001) observed that carbon accumulation in the forest floor was also greater under elevated \(C_a \) as compared to ambient. Moreover, Naumburg and Ellsworth (2000) showed that shaded leaves of saplings under elevated \(C_a \) maintained greater rates of \(P_a \) for longer periods than those of saplings under ambient \(C_a \), indicating that the contribution from the lower vegetation strata of a forest to carbon accumulation could increase in a future climate.

In an analysis of experimental data from different sources, Novak et al. (2004) concluded that the observed increases in tree biomass production in response to elevated \(C_a \), which are largely based on observations on seedlings growing in open top chambers, are adequately supported by observations on mature trees growing under FACE. However, they emphasize that both species composition and resource availability play important roles in determining the magnitude of response. The \(\text{CO}_2 \)-induced growth stimulation of trees occurs because of both increased photosynthetic rate per unit leaf area and increased leaf area per plant (Norby et al., 1992; Ceulemans et al., 1995; Norby et al., 1995).

Implications of the stimulation of biomass production under increased \(C_a \)

Comparison of the inter-species variation in growth stimulation due to increased \(C_a \) has shown that the stimulation is 30% greater for fast-growing plant species (i.e. mainly pioneers in the succession process) as compared to slow-growing species (i.e. mainly late-succession species) (Poorter, 1993; Lovelock et al., 1998; Atkin et al., 1999; Winter & Lovelock, 1999; Poorter & Navas, 2003). This would have important implications for the species composition of forests in the humid tropics. Hence, a discernible shift in species composition in favour of fast-growing pioneers could be expected. As most of the alien invasive species are fast-growing, there could be a greater probability of invasive species degrading the humid tropical forests. This could also result in greater rates of extinction for threatened and endangered species. With the proportion of fast-growing species in the ecosystem increasing, the species turnover in the forest could be faster.

Review of species responses to elevated \(C_a \) has also shown that the photosynthetic and growth response is clearly greater for \(C_a \) plants than for \(C_p \) plants. In the meta-analysis of Poorter and Navas (2003), the estimated biomass increase in response to a doubling of \(C_a \) was only 12% (an average from 40 \(C_a \) species) in \(C_p \) plants as compared to 45% (an average from 160 \(C_a \) species) in \(C_a \) plants. Therefore, over longer time scales, the proportion of \(C_a \) species in a forest ecosystem could decrease along with an increase in the proportion of \(C_p \) species.

A widely-observed response of plants growing under elevated \(C_a \) is that a higher proportion of increased biomass is partitioned to roots (Rogers et al., 1994), especially increasing the fine root biomass (Norby et al., 2000; Pregitzer et al., 2000). In addition, there is greater root branching in trees under elevated \(C_a \) (Ceulemans et al., 1999). These responses increase the capacity of the tree root systems to explore a greater volume of soil and absorb more soil resources such as nutrients and water. Although forests in the humid tropics do not

![Figure 3: Response of biomass production of seedlings of selected tropical forest tree species to elevated \(C_a \) provided over a period of 105 days. Plants were grown in pots and kept within open top chambers. Ambient \(C_a \) ~ 370 \(\mu \text{mol} \text{ mol}^{-1} \); Elevated \(C_a \) ~ 570 \(\mu \text{mol} \text{ mol}^{-1} \). (Source: De Costa et al., 2003).](image-url)
experience substantial shortages of water or nutrients under the current climate, C_4-induced increases in root absorption capacity will enable them to better withstand any shortages of these soil-based resources (especially, the soil water) in a future climate.

Photosynthetic and growth response to elevated C_4 under non-optimum growing conditions

The question of whether the above reported stimulation of P_n and biomass production by increased C_4 under optimum conditions (i.e. when plants are grown with adequate water and nutrients under light and temperature regimes to which they are best-adapted), would occur to the same extent under non-optimum growing conditions have been investigated. A review of results by Poorter and Pérez-Soba (2001) shows that there is a reduction of the photosynthetic and growth stimulation under low nutrient availability and low temperatures. The average magnitude of reduction was 20-22% as compared to the growth stimulation under optimum conditions. Interestingly, Poorter and Navas (2003) show that under low nutrient availability, the greater CO_2-induced growth stimulation of C_4 plants as compared to C_3 plants is nullified. The only exception here is the C_4 legumes, which maintain an advantage over C_3 species because of their N-fixing ability. In an analysis of data from a FACE experiment, with C_4 elevated up to 550 μmol mol^{-1}, CO_2-induced stimulation of net primary productivity (NPP) of *Pinus taeda* were 27% and 19% under high and low N availability (Finzi et al., 2002; Norby et al., 2005). In contrast, growth stimulation due to increased C_4 occurred to the same magnitude under conditions of lower water availability, shade and salinity. However, Oren et al. (2001) concluded that C_4-induced increases in NPP would be minimum or zero under prolonged water deficits on poor soils. Generally, forests in the humid tropics do not experience nutrient shortages because of their closed and efficient recycling of nutrients. Low temperatures would be experienced only in those forests in the humid tropics, which are located at higher elevations. Therefore, it is highly likely that humid tropical forests would show greater rates of biomass production and NPP in a future climate of increased C_4 (Melillo et al., 1993; Field et al., 1998). This is also likely to increase their capacity for carbon sequestration.

Long-term acclimation of photosynthesis to elevated C_4

Analysis of the biochemical composition of plant tissue produced under elevated C_4 has shown a clear increase in the proportion of carbohydrates, and more importantly, a clear decrease in the concentration of nitrogen and hence of proteins (Drake et al., 1997; Cotrufo et al., 1998). In leaves, a reduction in the protein content would mean a reduction of essential photosynthetic enzymes such as Rubisco (ribulose 1,6-bis phosphate carboxylase oxygenase), thus down-regulating the photosynthetic capacity (Gunderson & Wullschleger, 1994; Curtis, 1996). Therefore, if P_n of plants grown under elevated C_4 throughout is measured at ambient C_4, its P_n would be lower than that of a plant grown at ambient C_4 throughout. This is called photosynthetic acclimation. In addition to a reduction in the concentration of Rubisco, a reduction of its activity has also been observed under elevated C_4 (Tissue et al., 1996). Photosynthetic acclimation is thought to occur because of the inability of a plant to utilize the extra carbohydrates produced by photosynthetic stimulation under elevated C_4 (Long & Drake, 1992). As trees have a large capacity for storage of extra carbon in their woody tissue and a large number of growing points, which can act as sinks for additional photosynthates (Wullschleger et al., 1997; Janssens et al., 1999), it is argued that photosynthetic down-regulation is rare in trees (Ceulemans et al., 1999). This is supported by the findings of Idso et al. (1991) who did not observe any down-regulation in either P_n or growth in field-grown orange trees subjected to long-term CO_2 enrichment. The meta-analyses by Curtis (1996) and Curtis and Wang (1998), which involved a wide range of tree species, found only 10% down-regulation. In a review of 16 FACE studies involving different vegetation types, Novak et al. (2004) found that while elevated C_4 reduced leaf N in herbaceous species, there was little change in leaf N in most of the woody species.

In spite of any down-regulation of photosynthetic capacity, the gross and net photosynthetic rates would still be increased under elevated C_4, as compared to ambient C_4, because of the greater magnitude of the CO_2 fertilization effect and suppression of photorespiration. However, the altered biochemical composition of plant tissues produced under elevated C_4 would definitely alter the rates of litter decomposition and nutrient release and thereby influence the nutrient recycling process (Swift et al., 1979; Cotrufo et al., 1994; Berntson & Bazzaz, 1996). Several studies have shown increased C/N (Köner, 2000) and lignin/N ratios in tissues grown under elevated C_4 resulting in lower rates of litter decomposition (Coûteaux et al., 1991; Cotrufo et al., 1994; Boerner & Rebbeck, 1995; Scherzel et al., 1998; De Angelis et al., 2000). On the other hand, Hirschel et al. (1997) found that elevated C_4 had no significant effect on litter decomposition rates of tropical rainforest species. Feeding behaviour and the population of leaf-eating insects could also be affected by the changed leaf biochemical composition (Lindroth et al., 1993). Carbon
inputs to the soil through litter fall and rhizodeposition will increase because of increased biomass production under elevated C_a (Ceulemans et al., 1999).

Some pertinent questions on the predicted increase of forest growth under increased C_a

While predicting an increase of P_o and biomass production and NPP under elevated C_a, some pertinent questions need to be raised as these predictions are based largely on responses observed in seedlings growing in open top or closed chambers. Firstly, the down-regulation of photosynthetic capacity raises several questions of the sustainability of photosynthetic and growth stimulation of elevated C_a in a perennial ecosystem such as a forest: (a) Will there be a point (i.e. a ceiling level of C_a) in a future climate at which the photosynthetic stimulation due to increasing C_a would be limited by the amount of photosynthetic machinery available in leaves? (b) As a consequence, will the growth stimulation level-off at a certain level of C_a? (c) As stimulation of growth has to be supported by increased capture of essential growth resources (i.e. light, water and nutrients), will resource capture be a limitation to further stimulation of growth at a certain point of C_a in the future?

Answers to questions (a) and (b) have to be sought on the physiological basis of photosynthetic acclimation. As the internal CO_2 concentration at the site of photosynthesis (i.e. chloroplast), C_s is sub-optimal in C_3 plants (because of the relatively lower CO_2 concentration in the atmosphere and the absence of a CO_2 concentrating mechanism such as that found in C_4 plants), a greater amount of photosynthetic enzymes (primarily Rubisco) has to be present in the chloroplast to achieve appreciable rates of photosynthesis (Drake et al., 1997; Long et al., 2004). With the elevated C_a increasing the air-leaf CO_2 concentration gradient and thereby increasing C_s, the essential photosynthetic enzymes need not be present at higher concentrations to achieve higher rates of photosynthetic carboxylation. Biosynthesis of proteins require greater respiratory energy (and a greater amount of photosynthates for respiration) than biosynthesis of carbohydrates (Penning de Vries et al., 1974). Hence, with the reduced requirement of photosynthetic enzymes (i.e. proteins) under elevated C_a, allocation of photosynthates in leaves shifts from proteins to carbohydrates, thus causing photosynthetic acclimation. This follows that if the essential photosynthetic enzymes become a limiting factor to achieve the required rates of photosynthesis to utilize the increased CO_2 uptake at a future point, the plants should be able to re-adjust and allocate more photosynthates again to protein synthesis. Hence, it is likely that photosynthetic acclimation may not impose a ceiling on growth stimulation in response to increasing C_a. However, as stated earlier, it is possible that resource limitation [question (c)], especially nutrients, could curtail CO_2-induced growth stimulation, especially in non-leguminous species.

A second pertinent question is whether the growth stimulation observed in the seedlings, which are at the juvenile stage, would be reproduced in fully-grown trees that have come to the reproductive stage. The few FACE studies have shown that the growth stimulation due to increased C_a does occur in fully-grown trees as well. On the other hand, fully-grown trees have a much greater respiration cost (especially maintenance respiration) in order to maintain their large biomass. Therefore, whether mitochondrial respiration is reduced or not by elevated C_a would be a critical factor in determining the magnitude of growth stimulation in fully-grown trees.

RESPONSE OF PHOTOSYNTHESIS, RESPIRATION AND BIOMASS PRODUCTION TO INCREASED AIR TEMPERATURES (T_a)

Long-term, gradual increase of C_a is accompanied by an increase of T_a because of the enhanced greenhouse effect. Hence, plants and their internal processes respond simultaneously to increases of both C_a and T_a. Generally, all plant physiological and metabolic processes respond in a similar manner to increasing T_a (Johnson & Thornley, 1985). When the tissue temperatures (which are closely correlated with T_a) increase from low levels, rates of processes increase (often linearly) until an optimum temperature (T_{jo}) is reached. This is because the reaction molecules would have a greater kinetic energy at higher temperatures. When T_a increases beyond T_{jo}, process rates decrease primarily because of the gradual denaturation of enzymes (Berry & Björkman, 1980) and other effects of heat stress such as damage to thylakoid membranes (Méthy et al., 1997).

Therefore, the direction and magnitude of photosynthetic and growth response to a simultaneous increase of T_a and C_a would be determined by the respective T_{jo} and the magnitude of increase of T_a in relation to T_{jo}. If the increase of T_a occurs within the sub-optimal range of temperatures for photosynthesis and biomass production, the rates of these processes would be further stimulated by increased T_a. This is most likely to occur in the forests of the humid tropics, which are located at higher altitudes (situation a in Figure 4). In a review of 27 studies of temperature effects on net photosynthesis of different tree species, Saxe et al. (2001) concluded that the temperature increases that are expected to occur during this century would increase the net photosynthesis.
of 66% of the 27 studies reviewed. This review largely focused on species growing in temperate environments, which are equivalent to high altitudes of humid tropics, at least in terms of the temperature regime.

On the other hand, if the future increases of T_a occur around T_a, increased T_o would not cause a significant change in process rates with only the growth stimulation occurring (situation b in Figure 4). However, if the T_o is pushed beyond T_e during future warming of the atmosphere, increased T_o would have a negative effect on the rates of photosynthesis and biomass production. Therefore, in a future climate where C_o is increased along with an increase of T_a above T_e, the direction and magnitude of change in the rates of photosynthesis and biomass production would be determined by the relative magnitudes of the positive effect of increasing C_o and the negative effect of increasing T_o (situation c in Figure 4). For most processes of tropical plant species, T_o is within the range of 25 – 32 °C (Squire, 1990). At present, most lowland forests within the humid, tropical zone experience an average air temperature of about 26 – 28 °C throughout the year. This is just below or near the T_e for most physiological processes responsible for plant growth. Therefore, it is likely that increases in T_e in the near future (i.e. the next 10–20 years) may not cause significant changes in the biomass production rates of forests located at lowlands in the humid tropics. During the same period increasing C_o is likely to cause an increase in growth rates (situation b in Figure 4). However, it is also highly probable that at some point in the future (i.e. probably in the next 50–60 years), the T_o would be pushed significantly beyond T_e, bringing the lowland humid tropical forests into situation c in Figure 4. Several global ecosystem process models (White et al., 2000; Cramer et al., 2001; Fung et al., 2005) have predicted that the productivity of tropical forests would decrease with increasing T_o. There are also predictions of substantial die-off of tropical forests from mid-century onwards (Jones et al., 2003; Cowling et al., 2004). Leverenz et al. (1999) have shown that even in temperate tree species, photosynthesis could be decreased when the increase in T_o is greater than 2-3 °C above the summer ambient.

On the other hand, because the increase in T_o is gradual, plant processes and ecosystems can adapt to increasing T_e to a certain extent. For example, Battaglia et al. (1996) showed that T_e for maximum light-saturated photosynthesis (P_{max}) of Eucalyptus can be increased by up to 10 °C due to acclimation to high temperatures. If this happens the majority of plant species in forests of the humid tropics could remain in situations a or b for a longer period. Increasing T_e in the range between 20 and 30 °C has been reported to have positive impacts on tree photosynthesis by increasing the contents of photosynthetic pigments (Ormrod, 1999) and increasing the apparent quantum yield of photosynthesis (i.e. net photosynthetic rate per unit of radiation absorbed) (Wang et al., 1996; Lewis et al., 1999; Saxe et al., 2001).

It is also important to note that the response of photosynthesis to temperature involves interactions with other environmental factors such as vapour pressure deficit and irradiance and plant factors such as leaf temperature and stomatal conductance. For example, Bassow and Bazzaz (1998) showed that variation of photosynthesis in four temperate deciduous tree species was only weakly correlated with variation in leaf temperature and that when averaged over a season, temperature variations explained only a small percentage of the variation in photosynthesis. Beyond certain thresholds, both higher and lower temperatures could lead to partial stomatal closure (Jarvis, 1976). When combined with high irradiance, lower stomatal conductance could lead to formation of reactive oxygen species and phototoxic damage to the photosynthetic tissue (i.e. photoinhibition) (DeLucia et al., 1991; Saxe et al., 2001). Increases in T_e could also cause stomatal closure due to increased water deficits in leaves (Jarvis, 1976) and thereby reduce photosynthesis and accelerate in photoinhibition. However, some tree species already have the capability of evolving photo-protection mechanisms to avoid photoinhibition (Faria et al., 1998) and avoid potential adverse effects of higher T_o.
Inter-species variation in T_o and the magnitude of response to increasing T_a and its implications

Experimental work has shown considerable species-to-species variation in T_o and temperature-sensitivity (Table 4) (Saxe et al., 2001; Battaglia et al., 1996; Mebrahtu et al., 1991; Sun & Sweet, 1996; Arulmageswaran et al., 2003). Very often, plant species that are adapted to grow at higher temperatures (i.e. low altitudes in the tropics) have higher T_o values than those that are adapted to grow under cooler temperatures (i.e. higher altitudes in the tropics). This inter-species variation in T_o could modify or shift the responses shown in Table 4. A higher T_o for species growing in a lowland forest would make them less vulnerable to future increases in T_a as it would take a longer duration for T_a to be pushed significantly above T_o. On the other hand, a lower T_o for species growing in high altitude forests would make them more vulnerable to future increases of T_a as T_o could be increased above T_o within a shorter period.

Inter-species variation in T_o within a given forest ecosystem would mean that with time, the ecosystem composition would shift in such a way that the proportion of species adapted to warmer temperatures (i.e. having higher T_o) would increase at the expense of those adapted to relatively cooler temperatures (i.e. having lower T_o), which may become threatened and endangered. Accordingly, the ecosystem boundaries could also shift, with especially the high altitude forests shrinking in area.

However, the capacity of an individual species or a whole ecosystem to adapt to environmental change should not be discounted. As the increase of T_o due to enhanced greenhouse effect occurs at a very gradual rate, at least some individual species and ecosystems may have the capacity to adapt to the gradually-increasing temperatures. However, in this regard, it has been shown that tropical forest species have a lower capacity for adaptation to higher temperatures than temperate forest species (Cunningham & Read, 2003). This is not surprising as temperate species experience a much greater fluctuation in temperature, both within a 24-hour day and during a year, even at present. Therefore, temperate species have developed internal mechanisms and adaptations to withstand these temperature fluctuations. In contrast, such mechanisms and adaptations are largely absent in tropical species, which experience only a narrow range of temperatures both diurnally and annually.

INFLUENCE OF INCREASING C_a AND T_a ON PLANT WATER RELATIONS

Both increasing C_a and T_a have important influences on water relations of forests in the humid tropics. However, it should be noted that under the current climatic conditions water is not a serious limiting factor for forest growth, reproduction and ecosystem function in humid tropics where rainfall exceeds evapotranspiration almost throughout the year. However, with the predicted increase in the frequency of high rainfall episodes and the associated probability of longer rainless periods in a future climate, forests in the humid tropics could also experience water deficits for at least short periods of the year. Hence, the effects of C_a and T_a on processes determining the water balance of forest plants could increase in importance in a future climate.

Table 4: Response of absolute and relative growth rates to a 4 °C increase in air temperature in seedlings of selected tropical tree species growing in controlled environmental growth chambers. Plants were grown with adequate water and nutrients. Growth rates were computed for a 100 - day (-100 day period) period from the time of imposing temperature treatments.

Species	Absolute growth rate (g d⁻¹)	Relative growth rate (g g⁻¹ d⁻¹)
	28 °C	32 °C
Chloroxylon swietenia	8.71	31.5
Artocarpus heterophyllus	30.59	1.02
Swietenia mahogany	186.04	173.30
Swietenia macrophylla	48.71	107.80
Tectona grandis	99.10	86.33

(Source: Arulmageswaran et al., 2003).
Both C₄ and Tₛ primarily influence plant water relations by influencing the rate of transpiration. As transpiration occurs through the stomata, stomatal conductance (i.e. a measurement of how easily water is able to move through the stomata in the vapour phase) has a direct relationship with transpiration rate. Stomatal conductance (gₛ) is determined by the stomatal density (i.e. the number of stomata per unit leaf area) and the degree of stomatal opening. Increasing Cₛ has been shown to decrease gₛ in a range of tree species (Mousseau & Saugier, 1992; Berryman et al., 1994; Field et al., 1995). However, the magnitude of reduction of gₛ has been found to be lower in trees (i.e. around 20%, Field et al., 1995) as compared to herbaceous plants in which the reduction is around 40% (Morison, 1987). Moreover, the magnitude of CO₂-induced change in gₛ has shown considerable variation between species (Field et al., 1995; De Costa et al., 2003; Norby & Luo, 2004) with the gₛ of some species showing no response (Curtis, 1996; Eamus, 1996) or even an increase (Barton et al., 1993; Heath & Kerstiens, 1997). A significant contribution to the above decreases of gₛ has been the reduction of stomatal densities with increasing Cₛ. Analysis of fossilized plant samples that grew several hundred to thousand years ago at a lower Cₛ has shown higher stomatal densities as compared to those grown in recent times at higher Cₛ (Woodward, 1987; Van de Water et al., 1994; Beierling, 1996; Heatherington & Woodward, 2003). However, further studies have shown that stomatal densities are much less sensitive to increases of Cₛ from the current ambient levels upwards than they have been to historical increases in Cₛ (Woodward & Bazzaz, 1988). However, gₛ could still decrease with future increases of Cₛ through reduced stomatal apertures as a direct response of guard cells to increased intercellular CO₂ concentration (Morison, 1987; Mansfield et al., 1990; Mott, 1990). Interestingly, different ecotypes of a given species or genus growing across an altitude gradient have shown a gradient in stomatal density and gₛ with both showing an increasing trend with increasing altitude (Woodward et al., 2002). This has been shown to be a response to the natural decrease of Cₛ with increasing altitude.

As elevated Cₛ causes a simultaneous increase of the net photosynthetic rate per unit leaf area (Pₛ), transpiration efficiency, i.e. the ratio between Pₛ and Eₛ and sometimes called water use efficiency, is increased with increasing Cₛ (Morison, 1993; Drake et al., 1997). Significant increases in water use efficiency with increasing Cₛ have been shown for forest trees growing under natural conditions (Fernandez et al., 1998; Feng, 1999). This means that at elevated Cₛ, plants are able to produce more biomass per unit of water used as transpiration, thus increasing their ability to tolerate water-limited periods.

While increasing Cₛ reduces transpiration rates, simultaneous increases of Tₛ tend to increase Eₛ. This is primarily because of the increased leaf-to-air vapour pressure gradient at increased Tₛ. As increases of Tₛ beyond Tₛ would also decrease Pₛ, the predicted increases of transpiration efficiency with increasing Cₛ would be dampened down by the simultaneous increase of Tₛ. Here again, this dampening down of transpiration efficiency is most likely to be felt by the forests in the lowlands of humid tropics, which already experience Tₛ levels that are closer to Tₛ. Because of the inherent ability of Cₛ plant species to function at higher temperatures, CO₂-induced increases of transpiration efficiency of Cₛ plants (which is higher than that of C₄ plants at the current levels of Cₛ and Tₛ) are less likely to be reduced by increasing Tₛ.

INFLUENCE OF INCREASING Cₛ AND Tₛ ON REPRODUCTIVE BIOLOGY

Effects of climate change on reproductive biology of plant species in a forest will have important implications for possible long-term shifts in the species composition of the ecosystem. A meta-analysis by Jablonski et al. (2002) using the wide range of plant species has shown that increasing Cₛ within the range of 500 – 800 μl l⁻¹ (ppm by volume) has increased flowering by an average of 19%, fruiting by 18% and seed production by 16%. The individual seed weight also has shown an average increase of 4%. Although these increases in the reproductive effort were proportionately lower than the 31% increase observed for the total biomass of the same set of species used in the meta-analysis, long-term increases in Cₛ are likely to have a positive influence on the reproductive biology of plants, irrespective of the species. Notably, with the exception of leguminous species, the seed nitrogen concentration decreased with increasing Cₛ by an average of 14%.

While the influence of increasing Cₛ on reproductive biology appears to be positive, increasing Tₛ could have both positive and negative effects. All plants have to complete a specific, genetically-determined thermal
duration before flowers or other forms of reproductive structures are initiated (Roberts et al., 1997; Saxe et al., 2001). With increasing T, this specific thermal duration requirement would be fulfilled within a shorter period of time. In plant species, which flower seasonally, this could prompt earlier flowering than at present. Hence, flowering and fruiting periods for different species within a humid tropical forest ecosystem could undergo temporal shifts in a future, warmer environment. This could set off a chain of events by influencing the behavioural patterns of the fauna, which depend on the fruits of different plant species within the ecosystem.

In addition to its influence on the thermal duration requirement, increasing T could influence the processes of flower development, pollination and seed/fruit formation. Generally, these stages are highly sensitive to supra-optimal temperatures. Therefore, increasing T beyond a genetically-determined optimum could adversely affect the development of reproductive structures. However, there can be substantial variation in the degree of heat tolerance between different species. Accordingly, species with a relatively greater heat tolerance, especially at the reproductive phase, could increase proportionately and change the composition of future forest ecosystems in the humid tropics.

INFLUENCE OF INCREASING C, AND T ON SOIL PROCESSES

Soil is the major source of nutrients to plants in a forest ecosystem and nutrient recycling plays a major role in supporting the rich diversity of flora and fauna in forests of the humid tropics. Several processes related to nutrient recycling are affected by increasing C and T. The increased biomass production under elevated C would increase the addition of organic material to the soil (Ceulemans et al., 1999). Proportionately greater stimulation of root biomass by elevated C would increase the organic matter inputs to the soil through root exudates and through root decomposition and turnover (Norby, 1994). However, decomposition rates of litter produced under higher C would be slower because of its greater carbon and lower nitrogen concentrations (i.e. higher C:N ratio) (O’Neill & Norby, 1996). In lowland forests of the humid tropics, where the temperatures are higher, slowing down of the litter decomposition may be an advantage because it would lead to slower release of nutrients and lower leaching losses caused by higher rainfall. However, the increase of T that accompanies the increase of C would ultimately result in soil temperatures (T) also increasing. This, in turn, will increase the rates of litter decomposition in forests of the humid tropics located at all altitudes. Increased T would also result in greater mineralization rates for nutrients (i.e. N and P) that are fixed in soil minerals. The resulting increase in nutrient availability in the soil could support the increased nutrient demand required for CO₂-induced stimulation of photosynthesis and biomass production. These changes in the soil environment could also modify its microbial population and their activity (O’Neill, 1994; Sadovsky & Schortemeyer, 1997). Because of the longer time scales involved, there could be many positive and negative feedbacks between these interacting processes.

POTENTIAL FOR CARBON SEQUESTRATION BY FORESTS IN THE HUMID TROPICS

The longevity and favourable conditions for plant growth of forests in the humid tropics allows significant potential for carbon sequestration in their biomass and soil in a future high C environment (Dixon et al., 1994; Grace et al., 1995; Naburrs & Mohren, 1995; Lloyd & Farquhar, 1996; Chambers et al., 1998; Phillips et al., 1998; Prentice et al., 2001; Schimel et al., 2001) and slow down the pace of climate change (Cramer et al., 2001; Clark, 2004a; Thompson et al., 2004). In fact, Phillips et al. (1998) showed that increased biomass in tropical forests during the last 40 years accounted for 40% of the missing carbon in the carbon balance of the entire world. Therefore, afforestation and prevention of deforestation have been identified as measures for mitigation of climate change (IPCC, 2007). However, there have been uncertainties on the capacity of tropical forests as carbon sinks (Pearce, 1999; Clark, 2002, 2004b; Houghton, 2003, 2005). Firstly, carbon sequestration capacity may be reduced when forest ecosystems approach the mature, climax stage (Pregitzer & Euskirchen, 2004) and when the ontogenetic development is accelerated by elevated C (Hättenschwiler et al., 1997). Some experiments have shown that the CO₂-induced growth stimulation of forests is transient and diminishes when trees transfer from juvenile to mature stage (McConnaughay et al., 1996; Tissue et al., 1997). Secondly, increasing deforestation and burning of biomass in the tropics could add significant amounts of CO₂ to the atmosphere. Moreover, on re-analyzing Phillips et al. (1998)’s data, Clark (2002) contends that the data do not indicate a significant biomass carbon sink in old-growth forests of the humid Neotropics.

Analyzing the results of four FACE experiments on temperate forest stands, Norby et al. (2005) showed a 23 ± 2% median increase in NPP in response to elevated C up to 550 μmol mol⁻¹ and concluded that this response is highly conserved across a broad range of productivity. Norby et al. (2005) further showed that at low canopy leaf area index (LAI) values (i.e. juvenile forests), elevated C
increases NPP by increasing LAI and thereby increasing the amount of photosynthetically-active radiation (PAR) captured. On the other hand, after the LAI reaches a maximum (i.e. mature forests), elevated C_a increases NPP by increasing the efficiency at which absorbed PAR is converted to biomass (i.e. Radiation or Light Use Efficiency). The measured NPP increase of Norby et al. agreed closely with the predicted average increase of 22% for six dynamic global vegetation systems in response to an increase of C_a up to 550 μmol mol⁻¹ expected to occur by 2049 (Houghton et al., 2001). The observation by Körner et al. (2005) that physiological responses (i.e. photosynthesis, leaf N and non-structural carbohydrate concentrations) to CO₂ enrichment of older and larger trees are similar to younger trees adds support to the view that carbon sequestration capacity is maintained in mature forests as well. In a review involving results from 49 studies on the impacts of climate change (i.e. increased C_a and T_e and changes in precipitation, incident solar radiation and various other atmospheric and soil factors) during the last 55 years on forest productivity, Boisvenue and Running (2006) showed an increasing trend in NPP in 37 of the studies. They further showed that the combination of changes in various climatic factors since the middle of the 20th century has had a positive impact on forest productivity when water is not limiting. As water is rarely a limiting factor in forests of the humid tropics, this analysis confirms the predictions based on fundamental physiological processes. Four (Phillips et al., 1998; Malhi & Grace 2000; Baker et al., 2004; Lewis et al., 2004) out of the five tropical forest ecosystems considered in the study of Boisvenue and Running (2006) had shown increases in NPP or net biome production (NBP) in response to climate change that had occurred during the latter half of the 20th century. In fact, Nemani et al. (2003) estimated that tropical ecosystems accounted for a major portion of the 6% increase in global NPP that occurred during the period from 1982-1999, with the Amazon accounting for 42%. This increased NPP in tropical forest ecosystems is attributed to increased C_a and T_e (Lewis et al., 2004) and decreased cloud cover (Wielicki et al., 2002; Wild et al., 2005) in these radiation-limited forest ecosystems (Graham et al., 2003).

However, despite the overall increasing trend in NPP in tropical forests during the last 50 years, lower tree growth rates have been recorded in years with higher temperatures (Clark & Clark, 1994; Clark et al., 2003; Clark, 2004b). These warmer years have coincided with the El Niño Southern Oscillation (ENSO), which is a major determinant of temperature and precipitation variation in the tropics (Nemani et al., 2003). Episodes of ENSO have also caused substantial tree mortality, especially larger trees, which store a greater proportion of carbon, due to drought and forest fires (Williamson et al., 2000; Clark, 2004b).

In addition to the NPP, the partitioning of CO₂-induced increases of biomass also determines the capacity of a forest ecosystem for carbon sequestration and mitigation of climate change (Dufresne et al., 2002; Luo et al., 2003). Biomass partitioned to above-ground vegetation can be sequestered in stem wood while that partitioned to roots can ultimately be stored as soil C. Chambers et al. (1998) have shown that some of the trees in the Amazon that have lived well over a millennium have been capable of growth and carbon sequestration for over 1,400 years. Idso (1999) has cited data that suggest even after 100 years of exposure to elevated C_a, trees will still be removing more carbon from the air than they would be able to do if atmospheric C_a remained at the current level. Similarly, the soil C that gets sequestered in the recalcitrant soil C pool has residence times of the same scale as that of wood C (Leavitt et al., 1994; Parton et al., 1994). Studies at the single species level show a clear preference for greater partitioning of CO₂-induced biomass to roots (Rogers et al., 1994). However, available experimental results and model predictions at the ecosystem level do not show any consistent preference in C sequestration towards either vegetation or soil. In the study by Norby et al. (2005) percentage NPP gain partitioned to stem wood ranged from 11% to 93%. In global productivity models (Dufresne et al., 2002), the fraction of C stored in vegetation has varied from 35% to 85%. On the other hand, Post and Kwon (2000) concluded that in the terrestrial ecosystems of the Northern Hemisphere, the potential for carbon sequestration in vegetation biomass is much greater than in soil.

Acknowledgement

The author acknowledges the IPCC and Wikipedia for Figure 1 and Table 2 used in this article.

REFERENCES

1. Amthor J.S. (1995). Terrestrial higher-plant responses to increasing atmospheric CO₂ in relation to the global carbon cycle. Global Change Biology 1: 243–274.
2. Amthor J.S. (1997). Plant respiratory responses to elevated CO₂ partial pressure. Advances in Carbon Dioxide Effects Research (eds. L.H.J. Allen, M.B. Kirkham, D.M. Olszyck & C.E. Williams) pp. 35–77. American Society of Agronomy Special Publication, No. 61, Madison, Wisconsin, USA.
3. Amthor J.S. (2000). Direct effect of elevated CO₂ on nocturnal in situ leaf respiration in nine temperate
deciduous tree species is small. *Tree Physiology* **20**: 139–144.

4. Arulmageswaran S., De Costa W.A.J.M. & Surenthran P. (2003). Response of selected forest tree species in Sri Lanka to increasing air temperature. *Proceedings of the Ninth Annual Forestry and Environment Symposium 2003*, University of Sri Jayewardenepura, Sri Lanka, p. 27.

5. Atkin O.K., Schortemeyer M., McFarlane N. & Evans J.R. (1999). The response of fast- and slow-growing *Acacia* species to elevated atmospheric CO$_2$: an analysis of the underlying components of relative growth rate. *Oecologia* **120**: 544 – 554.

6. Baker T.R., Phillips O.L., Malhi Y., Almeida S., Arroyo L., Di Fiore A., Erwin T., Higuchi N., Killeen T.J., Laurance S.G.G., Laurance W.F., Lewis S.L., Monteagudo A., Neill D.A., Núñez P.V., Pitman N.C.A., Silva J.N.M. & Vásquez Martínez R. (2004). Increasing biomass in Amazonian forest plots. *Philosophical Transactions of the Royal Society of London, Series B* **359**: 353–365.

7. Barton C.V.M., Lee H.S.J. & Jarvis P.G. (1993). A branch bag and CO$_2$ control system for long-term CO$_2$ enrichment of mature sitka spruce (*Picea sitchensis* (Bong.) Carr.). *Plant, Cell and Environment* **16**: 119 – 1148.

8. Basso S.L. & Bazzaz F.A. (1998). How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species. *Ecology* **79**: 2660 – 2675.

9. Battaglia M., Beadle C. & Loughhead S. (1996). Photosynthetic temperature responses of *Eucalyptus globulus* and *Eucalyptus nitens*. *Tree Physiology* **16**: 81 – 89.

10. Beerling D.J. (1996). Ecophysiological responses of woody plants to past CO$_2$ concentrations. *Tree Physiology* **16**: 389 – 396.

11. Beerling D.J. & Woodward F.I. (1996). In situ gas exchange responses of boreal vegetation to elevated CO$_2$ and temperature: first season results. *Global Ecology and Biogeography Letters* **5**: 117 – 127.

12. Beier C. (2004). Climate change and ecosystem function – full-scale manipulations of CO$_2$ and temperature. *New Phytologist* **162**: 243 – 251.

13. Berntson G.M. & Bazzaz F.A. (1996). Below-ground positive and negative feedbacks on CO$_2$ growth enhancement. *Plant and Soil* **187**: 119 – 131.

14. Berry J. & Björkman O. (1980). Photosynthetic response and adaptation to temperature in higher plants. *Annual Review of Plant Physiology* **31**: 491 – 543.

15. Berryman C.A., Eamus D. & Duff G.A. (1994). Stomatal responses to a range of variables in two tropical tree species growth with CO$_2$ enrichment. *Journal of Experimental Botany* **45**: 539 – 546.

16. Boerner R.E.J. & Rebbeck J. (1995). Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O$_2$ and/or CO$_2$. *Plant and Soil* **170**: 149 – 157.

17. Boivin C. & Running S.W. (2006). Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century. *Global Change Biology* **12**: 862 – 882.

18. Bunje J.A. (1990). Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. *Annals of Botany* **65**: 637 – 642.

19. Burke E.J., Brown S.J. & Christidis N. (2006). Modelling the recent evolution of global drought and projections for the 21st century with the Hadley Centre Climate Model. *Journal of Hydrometeorology* **7**: 1113 – 1125.

20. Carey E.V., DeLucia E.H. & Ball J.T. (1996). Stem maintenance and construction respiration in *Pinus ponderosa* grown in different concentrations of atmospheric CO$_2$. *Tree Physiology* **16**: 125 – 130.

21. Ceulemans R., Janssens I.A. & Jach M.E. (1999). Effects of CO$_2$ enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. *Annals of Botany* **84**: 577 – 590.

22. Ceulemans R., Jiang X.N. & Shao B.Y. (1995). Growth and physiology of one-year old poplar (*Populus*) under elevated atmospheric CO$_2$ levels. *Annals of Botany* **75**: 609 – 617.

23. Chambers J.Q., Higuchi N. & Schimel J.P. (1998). Ancient trees in Amazonia. *Nature* **391**: 135 – 136.

24. Churkina G. & Running S.W. (1998). Contrasting climatic controls on the estimated productivity of global terrestrial biomes. *Ecosystems* **1**: 206 – 215.

25. Clark D.A. (2002). Are tropical forests an important carbon sink? reanalysis of the long-term plot data. *Ecological Applications* **12**: 7 – 7.

26. Clark D.A. (2004a). Tropical forests and global warming: slowing it down or speeding it up? *Frontiers of Ecology and Environment* **2**: 73 – 80.

27. Clark D.A. (2004b). Sources or sinks? the responses of tropical forests to current and future climate and atmospheric composition. *Philosophical Transactions of the Royal Society of London, Series B* **369**: 477 – 491.

28. Clark D.A. (2007). Detecting tropical forests' responses to 20th century with the Hadley Centre Climate Model. *Philosophical Transactions of the Royal Society of London, Series B* **369**: 477 – 491.
simulated past and future responses of the Amazon rainforest to atmospheric change. *Philosophical Transactions of the Royal Society of London, Series B*: 539–547.

35. Cramer W., Bondeau A., Woodward F.I., Prentice I.C., Betts R.A., Brovkin V., Cox P.M., Fisher V., Foley J.A., Friend A.D., Kucharik C., Lomas M.R., Ramankutty, N., Stich S., Smith B., White A. & Young-Molling C. (2001). Global response of terrestrial ecosystem structure and function to CO₂ and climate change: results from six dynamic global vegetation models. *Global Change Biology* 7: 357–373.

36. Cunningham S.C. & Read J. (2003). Do temperate rainforest trees have a greater ability to acclimate to changing temperatures than tropical rainforest trees? *New Phytologist* 157: 55–64.

37. Curtis P.S. (1996). A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. *Plant, Cell and Environment* 19: 127–137.

38. Curtis P.S. & Wang X. (1998). A meta-analysis of elevated CO₂ effects on woody plant mass, form, and physiology. *Oecologia* 113: 299–313.

39. De Angelis P., Chigwerewe K.S. & Mugnozza G.E.S. (2000). Litter quality and decomposition in a CO₂-enriched Mediterranean forest ecosystem. *Plant and Soil* 224: 31–41.

40. De Costa W.A.J.M., Ekanayake A.T., Chinthaka K.G.R. & Surenthran P. (2003). Screening of selected forest tree species of Sri Lanka for their response to increasing atmospheric carbon dioxide. *Proceedings of the Ninth Annual Forestry and Environment Symposium*, University of Sri Jayewardenapura, Sri Lanka, pp. 2.

41. DeLucia E.H., Day T.A. & Öquist G. (1991). The potential for photo-inhibition of *Pinus sylvestris* L. seedlings exposed to high light and low soil temperature. *Journal of Experimental Botany* 42: 611–617.

42. Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Tresler M.C. & Wisniewski J. (1994). Carbon pools and flux of global forest ecosystems. *Science* 263: 185–190.

43. Drake B.G., Azcon-Bieto J., Berry J., Bunce J., Dijkstra P., Farrar J., Gifford R.M., Gonzalez-Meler M.A., Koch G., Lambers H., Siedo J. & Wullschleger S. (1999). Does elevated atmospheric CO₂ inhibit mitochondrial respiration in green plants? *Plant, Cell and Environment* 22: 649–657.

44. Drake B.G., González-Meler M.A. & Long S.P. (1997). More efficient plants: a consequence of rising atmospheric CO₂? *Annual Review of Plant Physiology and Plant Molecular Biology* 48: 609–639.

45. Dufresne J.L., Friedlingstein P., Barthelot M., Bopp L., Ciais P., Fairhead L., Le Treut H. & Monfray P. (2002). On the magnitude of positive feedback between future climate change and the carbon cycle. *Geophysical Research Letters* 29: 1405.

46. Eamus D. (1996). Responses of field grown trees to CO₂ enrichment. *Commonwealth Forestry Review* 75: 39–47.

47. Eamus D. & Jarvis P.G. (1989). The direct effects of increase in global atmospheric CO₂ concentration on natural and commercial temperate trees and forests. *Advances in Ecological Research* 19: 1–55.

48. Ellsworth D.S., Oren R., Huang C., Phillips N. & Hendry G.R. (1995). Leaf and canopy responses to elevated CO₂ in a pine forest under free-air CO₂ enrichment. *Oecologia* 104: 139–146.

49. Faría T., Silvério D., Breia E., Cabral R., Abadia A., Abadia J., Pereira J.S. & Chaves M.M. (1998). Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. *Physiologia Plantarum* 102: 419–428.

50. Feng X. (1999). Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: a response to atmospheric CO₂ concentration. *Geochimica et Cosmochimica Acta* 63: 1891–1903.

51. Fernandez M.D., Pieters A., Donoso C., Tezara W., Azuke M., Herrera C., Rengifo E. & Herrera A. (1998). Effects of a natural source of very high CO₂ concentration on the leaf gas exchange, xylem water potential and stomatal characteristics of plants of Spatiphylum cannifolium and Bauhinia multinervia. *New Phytologist* 138: 689–697.

52. Field C.B., Behrenfeld M.J., Randerson J.T. & Falkowski P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. *Science* 281: 237–240.

53. Field C.B., Jackson R.B. & Mooney H.A. (1995). Stomatal responses to increased CO₂: implications from the plant to the global scale. *Plant, Cell and Environment* 18: 1214–1225.

54. Finzi A.C., DeLucia E.H., Hamilton J.G., Richter D.D. & Schlesinger W.H. (2002). The nitrogen budget of a pine forest under free air CO₂ enrichment. *Oecologia* 132: 567–578.

55. Forstreuter M. (1996). What can we learn from microcosms? *ECOCRATF: The likely impact of rising CO₂ and temperature on European forests* (ed. P.G. Jarvis), pp. 277–296, Final Report, EU Environmental R&D EV5V-CT92-0127, CIPD-CT92-5025.

56. Fung I.Y., Doney S.C., Lindsay K. & John J. (2005). Evolution of carbon sinks in a changing climate. *Proceedings of the National Academy of Sciences, USA* 102: 11101–11206.

57. González-Meler M.A., Ribas-Carbó M., Siedo J.N. & Drake B.G. (1997). The direct inhibition of plant mitochondrial respiration by elevated CO₂. *Plant Physiology* 112: 1349–1355.

58. Grace J., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S., Nobre C.R., Moncrieff J., Wright I. & Gash J.H.C. (1995). Net carbon dioxide uptake by undisturbed tropical forest in 1992/93. *Science* 270: 778–780.

59. Graham E.A., Mulkey S.S., Kitajima K., Phillips N.G. & Wright S.J. (2003). Cloud cover limits net CO₂ uptake and growth of a rainforest tree during tropical rainy seasons. *Proceedings of the National Academy of Sciences, USA* 100: 572–576.

60. Griffin K.L., Ball T.J. & Strain B.R. (1996). Direct and indirect effects of elevated CO₂ on whole-shoot respiration in ponderosa pine seedlings. *Tree Physiology* 16: 33–41.

61. Gunderson C.A. & Wullschleger S.D. (1994). Photosynthetic acclimation in trees to rising atmospheric
CO$_2$: a broader perspective. *Photosynthesis Research* **39**: 369–388.

62. Hansen J., Sato M., Ruedy R., Lo K., Lea D.W. & Medina-Elizade M. (2006). Global temperature change. *Proceedings of the National Academy of Sciences, USA* **103**: 14288–14293.

63. Hättenschwiler S., Miglietta F., Raschi A. & Körner C. (1997). Thirty years of *in situ* tree growth under elevated CO$_2$: a model for future forest responses? *Global Change Biology* **2**: 377–387.

64. Heath J. & Kerstiens G. (1997). Effects of elevated CO$_2$ on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech. *Plant, Cell and Environment* **20**: 57–67.

65. Heatherington A.M. & Woodward F.I. (2003). The role of stomata in sensing and driving environmental change. *Nature* **424**: 901–908.

66. Hendrey G.R., Ellsworth D.S., Lewin K.F. & Nagy J. (1999). A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO$_2$. *Global Change Biology* **5**: 293–310.

67. Hirschl G., Korner C. & Arnone III J.A. (1997). Will rising atmospheric CO$_2$ affect leaf litter quality and *in situ* decomposition rates in native plant communities? *Oecologia* **110**: 387–392.

68. Houghton J.T. (1997). *Global Warming: The Complete Briefing*. Cambridge University Press, Cambridge, UK.

69. Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K. & Johnson C.A. (2001). *Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge, UK.

70. Houghton R.A. (2003). Why are estimates of the terrestrial carbon balance so different? *Global Change Biology* **9**: 500–509.

71. Houghton R.A. (2005). Above-ground forest biomass and the global carbon balance. *Global Change Biology* **11**: 945–958.

72. Huntington T.G. (2006). Evidence for intensification of the global water cycle: review and synthesis. *Journal of Hydrology* **319**: 1–13.

73. Idso S.B. (1999). The long-term response of trees to atmospheric CO$_2$ enrichment. *Global Change Biology* **5**: 493–495.

74. Idso S.B., Kimball B.A. & Allen S.G. (1991). CO$_2$ enrichment of sour orange trees: 2.5 years into a long-term experiment. *Plant, Cell and Environment* **18**: 703–707.

75. IPCC (2001). *Special Report on Emissions Scenarios* (eds. N. Nakicenovic & R. Swart). IPCC/Cambridge University Press, Cambridge, UK.

76. IPCC (2007). *Climate Change 2007: The Physical Science Basis*. *Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change* (eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averly, M. Tignor & H.L. Miller). Cambridge University Press, Cambridge, UK and New York, USA.

77. Jablonski L.M., Wang X. & Curtis P.S. (2002). Plant reproduction under elevated CO$_2$ conditions: a meta-analysis of reports on 79 crop and wild species. *New Phytologist* **156**: 9–26.

78. Janssens I.A., Mousseau M. & Ceulemans R. (1999). Crop ecosystem responses to global climate change: tree crops. *Climate Change and Global Crop Productivity* (eds. K.R. Reddy & H.F. Hodges), pp. 245–270. CAB International, Wallingford, UK.

79. Jarvis P.G. (1976). The interpretation of the variation in leaf water potential and stomatal conductance found in canopies in the field. *Philosophical Transactions of the Royal Society of London, Series B* **273**: 593–610.

80. Johnson D., Geisinger D., Walker R., Newman J., Voce J., Elliot K. & Ball T. (1994). Soil pCO$_2$, soil respiration, and root activity in CO$_2$-fumigated and nitrogen-fertilized ponderosa pine. *Plant and Soil* **165**: 129–138.

81. Johnson I.R. & Thomley J.H.M. (1985). Temperature dependence of plant and crop processes. *Annals of Botany* **55**: 1–24.

82. Jones C.D., Cox P.M., Essery R.L.H., Roberts D.L. & Woodage M.J. (2003). Strong carbon cycle feedbacks in a climate model with interactive CO$_2$ and sulphate aerosols. *Geophysical Research Letters* **30**: 1479.

83. Jones P.D. & Mann M.E. (2004). Climate over the past millenia. *Reviews of Geophysics* **42**: 16.

84. Kaminsky D.F. Mankovska B., Percy K., Dickson R.E., Podila G.K., Sober J., Noormets A., Hendrey G., Coleman M.D., Kubiske M., Pregitzer K.S. & Isebrands J.G. (1999). Effects of tropospheric O$_3$ on treemapping aspen and interaction with CO$_2$: results from an O$_3$-gradient and a FACE experiment. *Water, Air, and Soil Pollution* **116**: 311–322.

85. Kobayashi H., Matsunaga T. & Hoyana A. (2005). Net primary production in Southeast Asia following a large reduction in photosynthetically active radiation owing to smoke. *Geophysical Research Letters* **32**: L02403.

86. Köner C. (2000). Biosphere responses to CO$_2$ enrichment. *Ecological Applications* **10**: 1590–1619.

87. Körner C., Ashhoff R. & Bignucolo O. (2005). Carbon flux and growth in mature deciduous forest trees exposed to elevated CO$_2$. *Science* **309**: 1360–1362.

88. Landsberg J.J. (2003). Physiology in forest models: history and the future. *Forest Biometrics, Modelling and Information Science* **1**: 49–63.

89. Leavitt S.W., Paul E.A., Kimball B.A., Hendrey G.R., Maenly J.R., Rauschkolb R., Rogers H., Lewin K.F., Nagy J., Pinter Jr. P.J. & Johnson H.B. (1994). Carbon isotope dynamics of free-air CO$_2$-enriched cotton and soils. *Agricultural and Forest Meteorology* **70**: 87–101.

90. Leverenz J., Bruhn D. & Saxe H. (1999). Responses of two provenances of *Fagus sylvatica* seedlings to a combination of four temperature and two CO$_2$ treatments during their first growing season: gas exchange of leaves and roots. *New Phytologist* **144**: 437–454.

91. Lewis J.D., Olzyk D. & Tinge D.T. (1999). Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO$_2$ and temperature. *Tree Physiology* **19**: 243–252.

92. Lewis S.L., Phillips O.L., Baker T.R., Lloyd J., Malhi Y.,
Impacts of climate change on forests

104. Lindroth A. (1996). Will rising levels of atmospheric CO$_2$ and temperature lead to enhanced or suppressed rates of evapotranspiration? *Weather* 51: 185–186.

105. Lindroth R.L., Kinney K.K. & Platzer C.L. (1993). Responses of deciduous trees to elevated atmospheric CO$_2$: productivity, phytochemistry, and insect performance. *Ecology* 74: 763–777.

106. Lloyd J. & Farquhar G.D. (1996). The CO$_2$ dependence of photosynthesis, plant growth responses to elevated atmospheric CO$_2$ concentrations and their interaction with soil nutrient status. I. general principles and forest ecosystems. *Functional Ecology* 10: 4–32.

107. Long S.P., Ainsworth E.A., Rogers A. & Ort D.R. (2004). Rising atmospheric carbon dioxide: plants FACE the future. *Annual Review of Plant Biology* 55: 591–628.

108. Long S.P. & Drake B.G. (1992). Photosynthetic CO$_2$ assimilation and rising atmospheric CO$_2$ concentrations. *Crop Photosynthesis: Spatial and Temporal Determinants* (eds. N.R. Baker & H. Thomas), pp. 69–103. Elsevier Science Publishers BV, New York, USA.

109. Lovelock C.E., Winter K., Mersits R. & Popp M. (1998). Responses of communities of tropical tree species to elevated CO$_2$ in a forest clearing. *Oecologia* 116: 207–218.

110. Luo Y., Reynolds J., Wang Y.P. & Wolfe D. (1999). A search for predictive understanding of plant responses to elevated CO$_2$. *Global Change Biology* 5: 143–156.

111. Luo Y., White L.W., Canadell J.G., DeLucia E.H., Ellsworth D.S., Finzi A., Lichter J. & Schlesinger W.H. (2003). Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. *Global Biogeochemical Cycles* 17 (1): 10.

112. Mäkelä A. (2003). Process-based modeling of tree and scale processes. *Canadian Journal of Forest Research* 33: 398–409.

113. Malhi Y. & Grace J. (2000). Tropical forests and atmospheric carbon dioxide. *Trends in Ecology and Evolution* 15: 332–337.

114. Malhi Y. & Wright J. (2004). Spatial patterns and recent trends in the climate of tropical forest regions. *Philosophical Transactions of the Royal Society of London, Series B* 359: 311–329.

115. Mansfield T.A., Hetherington A.M. & Atkinson C.J. (1990). Some current aspects of stomatal physiology. *Annual Review of Plant Physiology and Plant Molecular Biology* 41: 55–75.

116. Martin T.A., Teskey R.O. & Dougherty P.M. (1994). Movement of respiratory CO$_2$ in stems of loblolly pine (*Pinus taeda* L.) seedlings. *Tree Physiology* 14: 481–495.

117. McConnaughay K.D.M., Bernston G.M. & Bazzaz F.A. (1996). Rooting volume, nutrient availability, and CO$_2$-induced growth enhancements in temperate forest tree seedlings. *Ecological Applications* 6: 619–627.

118. McDowell N.G., Marshall J.D., Qi J. & Mattson K. (1999). Direct inhibition of maintenance respiration in western hemlock roots exposed to ambient soil carbon dioxide concentrations. *Tree Physiology* 19: 599–605.

119. Mebrahtu T., Hanover J.W., Layne D.R. & Flore J.A. (1991). Leaf temperature effects on net photosynthesis, dark respiration, and photorespiration of seedlings of black locust families with contrasting growth rates. *Canadian Journal of Forest Research* 21: 1616–1621.

120. Meinshausen M. (2006). What does a 2°C target mean for greenhouse gas concentrations? a brief analysis based on multi-gas emission pathways and several climate sensitivity uncertainty estimates. *Avoiding Dangerous Climate Change* (eds. H.J. Schellnhuber et al.) pp. 265–280. Cambridge University Press, Cambridge, UK.

121. Melillo J.M., McGuire A.D., Kicklighter D.W., Moore III B., Vorosmarty C.J. & Schloss A.L. (1993). Global climate change and terrestrial net primary production. *Nature* 363: 234–240.

122. Méthy M., Dillon D. & Houssard C. (1997). Temperature-induced changes of photosystem II activity in *Quercus ilex* and *Pinus halepensis*. *Canadian Journal of Forest Research* 27: 31–38.

123. Metz B., Davidson O., Swart R. & Pan J. (2001). *Climate Change 2001: Mitigation*. Cambridge University Press, Cambridge, UK.

124. Morison J.I.L. (1987). Intercellular CO$_2$ concentration and stomatal responses to CO$_2$. *Stomatal Function* (eds. E. Zeiger, G.D. Farquhar & I.R. Cowan) pp. 229–251. Stanford University Press, Stanford, USA.

125. Morison J.I.L. (1993). Responses of plants to CO$_2$ under water-limited conditions. *Vegetatio* 104/105: 193–209.

126. Mott K.A. (1990). Sensing of atmospheric CO$_2$ by plants. *Plant, Cell and Environment* 13: 731–737.

127. Mousseau M. (1996). Is dark respiration rate changed? *ECOCRAFT: The likely impact of rising CO$_2$ and temperature on European forests* (ed. P.G. Jarvis) pp. 79–94, Final Report, EU Environmental R&D EV5V-CT92-0127, CIPD-CT92-5025.

128. Mousseau M. & Saugier B. (1992). The direct effect of CO$_2$ concentration on multi-gas emission pathways and several climate sensitivity uncertainty estimates. *Journal of Experimental Botany* 43: 1121-1130.

129. Murphy J.M., Sexton D.M.H., Bennett D.N., Jones G.S., Webb M.J., Collins M. & Stainforth D.A. (2004). Quantification of modeling uncertainties in a large ensemble of climate change simulations. *Nature* 430: 768–772.

130. Naburrs G.J. & Mohren G.M.J. (1995). Modelling analysis of potential carbon sequestration in selected forest types. *Canadian Journal of Forest Research* 25: 1157–1172.

131. Nakicenovic N. & Swart R. (eds.)(2001). *IPCC Special Report on Emissions Scenarios*. Cambridge University Press, Cambridge, UK.

132. Naumburg E. & Ellsworth D.S. (2000). Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO$_2$ in FACE. *Oecologia* 122: 163–174.

Journal of the National Science Foundation of Sri Lanka 39 (4) December 2011
122. Nemani R.R., Keeling C.D., Hashimoto H., Jolly W.M., Piper S.C., Tucker C.J., Myeni R.B. & Running S.W. (2003). Climate driven increases in global terrestrial net primary production from 1982 to 1999. *Science* **300**: 1560–1563.

123. Nepstad D., Lefebvre P., Da Silva U.L., Ella J.T., Schlesinger P., Solorzano L., Moutinho P., Ray D. & Guerreiro Benito J. (2004). Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. *Global Change Biology* **10**: 704–717.

124. Norby R.J. (1994). Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. *Plant and Soil* **165**: 9–20.

125. Norby R.J., DeLucia E.H., Gielen B., Calafio C., Giardina C.P., King J.S., Ledford J., McCarthy H.R., Moore D.J.P., Reilly C.D., Miller N.E. & O'Neill E.G. (2004). Fine-root production dominates response to rising atmospheric CO2. *New Phytologist* **160**: 529–534.

126. Overdieck D. (1993). Effects of atmospheric CO2 enrichment on exchange rates of beech stands in small model ecosystems. *Water, Air and Soil Pollution* **70**: 259–277.

127. Parton W.J., Woomer P.L. & Martin A. (1994). Modelling soil organic matter dynamics and plant productivity in tropical ecosystems. *The Biological Management of Tropical Soil Fertility* (eds. P.L. Woomer & M.J. Swift), pp.171-188. John Wiley & Sons, Chichester, UK.

128. Pearce F. (1999). That sinking feeling. *New Scientist* **164** (2209): 20–21.

129. Penning de Vries F.W.T., Brunsting A.H.M. & van Laar H.H. (1974). Products, requirements and efficiency of biosynthesis: a quantitative approach. *Journal of Theoretical Biology* **45**: 339–377.

130. Petit J.R., Jouzei J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Benders M., Chapellaz J., Davis M., Delaygue G., Delmotte M., Kotiyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Salzman E. & Steivenard M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. *Nature* **339**: 429–436.

131. Phillips O.L., Malhi Y., Higuchi N., Laurance W.F., Núñez P.V., Vásquez R.M., Laurance S.G., Ferreira L.V., Stern M., Brown S. & Grace J. (1998). Changes in the carbon balance of tropical forests: evidence from long-term plots. *Science* **282**: 439 – 442.

132. Pontailler J.Y., Dufêne E., Saugier B. & Samain E. (1999). Long-term CO2 enrichment and gas exchange measurement on branches of mature beeches (*Fagus sylvatica* L.). *Responses of Trees and Forests to Global Change*. ECOCRAFT/ICAT International Symposium, p. 41.

133. Poorter H. (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. *Vestigatio* **104/105**: 77–97.

134. Poorter H. & Navas M-L. (2003). Plant growth and competition at elevated CO2: on winners, losers and functional groups. *New Phytologist* **157**: 175–198.

135. Ormrod D.P., Lesser V.M., Olszyk D.M. & Tingeý D.T. (1999). Elevated temperature and carbon dioxide affect chlorophyll and carotenoids in Douglas-fir seedlings. *International Journal of Plant Science* **160**: 529–534.

136. Poorter H. & Perez-Soba M. (2001). The growth response of plants to elevated CO2 under non-optimal environmental conditions. *Oecologia* **129**: 1–20.

137. Post W.M. & Kwon K.C. (2000). Soil carbon sequestration and land-use change: processes and potential. *Global Change Biology* **6**: 317–327.

138. Pregitzer K.S. & Euskirchen E.S. (2004). Carbon cycling and storage in world forests: biome patterns related to forest age. *Global Change Biology* **10**: 2052–2077.

139. Pregitzer K.S., Zak D.R., Maziaasz J., DeForest J., Curtis P.S. & Lussenhop J. (2000). Interactive effects of atmospheric CO2 and soil-N availability on fine roots of *Populus tremuloides*. *Ecological Applications* **10**: 18–33.

140. Prentice C.I., Farquhar G.D., Fasham M.J.R., Goulden M.L., Heimann M., Jaramillo V.J., Khatg H.S., Le Quéré C., Scholes R.J. & Wallace D.W.R. (2001). The
carbon cycle and atmospheric carbon dioxide. *Climate Change 2001: The Scientific Basis* (eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell & C.A. Johnson). pp. 183-237 Cambridge University Press, Cambridge, UK.

150. Roberts E.H., Summerfield R.J., Ellis R.H., Crafurfd P.Q & Wheeler T.R. (1997). The induction of flowering. *The Physiology of Vegetable Crops* (ed. H.C. Wien), pp. 69–100. CAB International, Wallingford, UK.

151. Rogers H.H., Runion G.B. & Krupa S.V. (1994). Plant responses to atmospheric CO$_2$ enrichment with emphasis on roots and the rhizosphere. *Environmental Pollution* 83: 155–189.

152. Roulier H., Billès G., Billès L. & Bottner P. (1996). Carbon fluxes in the rhizosphere of sweet chestnut seedlings (*Castanea sativa*) grown under two atmospheric CO$_2$ concentrations: 13C partitioning after pulse labeling. *Plant and Soil* 180: 101–111.

153. Running S.W., Nemani R.R., Heinsch F.A., Zhao M., Reeves M. & Hashimoto H. (2004). A continuous satellite-derived measure of global terrestrial primary production. *BioScience* 54: 547–560.

154. Ryan M.G., Hubbard R.M., Pongracic S., Raison R.J. & McMurtrie R.E. (1996). Foliar, fine-root, woody-tissue and stand respiration in *Pinus radiata* in relation to nitrogen status. *Tree Physiology* 16: 333–343.

155. Sadowsky M.J. & Schortemeyer M. (1997). Soil microbial responses to increased concentrations of atmospheric CO$_2$. *Global Change Biology* 3: 217–224.

156. Sage R.F. (2001). Environmental and evolutionary responses to increased concentrations of atmospheric CO$_2$: a four year experiment in *Pinus taeda* needles. *Forest Ecology and Management* 109: 355–366.

157. Schimmel S.D., House J.I., Hibbard K.A., Bousquet P., Ciais P., Peypin, J. Braswell B.H., Apps M.J., Baker D., Bonneau A., Canadell J., Churkina G., Cramer W., Denning A.S., Field C.B., Friedlingstein P., Gourley C., Heimann M., Houghton R.A., Meillo J.M., Moore III B., Murdiyarso D., Noble I., Pacala S.W., Prentice I.C., Raupach M.R., Rayner P.J., Scholes R.J., Steffen W.L., & Wirth C. (2001). Recent patterns and mechanisms of carbon exchange by tropical ecosystems. *Nature* 414: 169–172.

158. Schlesinger W.H. & Lichter J. (2001). Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO$_2$. *Nature* 411: 466–469.

159. Siegenthaler U., Stocker R.F., Monnin E., Lüthi D., Schwander J., Stauffer B., Raynald D., Barnola J.-M., Fischer H., Masson-Delmotte V. & Jouzel J. (2005). Stable carbon cycle-climate relationship during the late Pleistocene. *Science* 310: 1313–1317.

160. Squire G.R. (1990) *The Physiology of Tropical Crop Production*. CAB International, Wallingford, UK.

161. Stern N. (2007). *The Economics of Climate Change: The Stern Review*. Cambridge University Press, Cambridge, UK.

162. Stewart J.D. & Hoddinott J. (1993). Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV-radiation in *Pinus banksiana*. *Physiologia Plantarum* 88: 493–500.

163. Sun O.J. & Sweet G.B. (1996). Genotypic variation in light and temperature responses of photosynthesis in *Nothofagus solandri* var. *cliffortioides* and *N. menziesii*. *Australian Journal of Plant Physiology* 23: 421–428.

164. Swift M.J., Heal O.W. & Anderson J.M. (1979). Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford, UK.

165. Thompson S.L., Govindasamy B., Mirin A., Caldeira A., Delire C., Milovich J., Wickett M. & Erickson D. (2004). Quantifying the effects of CO$_2$-fertilized vegetation on future global climate and carbon dynamics. *Geophysical Research Letters* 31: L23211.

166. Tingey D.T., McCecy B.D., Waschmann R., Johnson M.G., Phillips D.L., Rygiewicz P.T. & Olszyk D.M. (1996). A versatile sun-lit controlled-environment facility for studying plant and soil processes. *Journal of Environmental Quality* 25: 614–625.

167. Tissue D.T., Thomas R.B. & Strain B.R. (1996). Growth and photosynthesis of loblolly pine (*Pinus taeda*) seedlings. *Plant, Cell and Environment* 19: 859–865.

168. Tissue D.T., Thomas R.B. & Strain B.R. (1997). Atmospheric CO$_2$ enrichment increases growth and photosynthesis of *Pinus taeda*: a four year experiment in the field. *Plant, Cell and Environment* 20: 1123–1134.

169. van de Water P.K., Leavitt S.W. & Betancourt J.L. (1994). Trends in stomatal density and 13C/12C ratios of *Pinus flexilis* needles during last glacial-interglacial cycle. *Science* 264: 239–243.

170. Veose J.M., Elliot K.J., Johnson D.W., Walker R.F., Johnson M.G. & Tingey D.T. (1995). Effects of elevated CO$_2$ and N fertilization on soil respiration from ponderosa pine (*Pinus ponderosa*) in open-top chambers. *Canadian Journal of Forest Research* 25: 1243–1251.

171. Wang K.Y., Kellomäki S. & Laitinen K. (1996). Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO$_2$. *Agricultural and Forest Meteorology* 82: 195–217.
178. Wielicki B.A., Wong T., Allan R.P., Slingo A., Kiehl J.T., Soden B.J., Gordon C.T., Miller A.J., Yang S-K., Randall D.A., Robertson F., Susskind J. & Jacobowitz H. (2002). Evidence for large decadal variability in the tropical mean radiative energy budget. *Science* **295**: 841–844.

179. Wigley T.M.L. & Raper S.C.B. (2001). Interpretation of high projections for global-mean warming. *Science* **293**: 451–454.

180. Wild M., Gilgen H., Roesch A., Atsumu Ohmura A., Long C.N., Dutton E.G., Forgan B., Kallis A., Russak V. & Tsvetkov A. (2005). From dimming to brightening: decadal changes in solar radiation at Earth’s surface. *Science* **308**: 847–850.

181. Williamson G.B., Laurance S.G., Oliveira A.A., Delamônica P., Gascon C., Lovejoy T.E. & Pohl L. (2000). Amazonian tree mortality during the 1997 El Niño drought. *Conservation Biology* **14**: 1538–1542.

182. Winter K. & Lovelock C.E. (1999). Growth responses of seedlings of early and late successional tropical forest trees to elevated atmospheric CO$_2$. *Flora* **194**: 221–227.

183. Woodward F.I. (1987). Stomatal numbers are sensitive to increases in CO$_2$ from pre-industrial levels. *Nature* **327**: 617–618.

184. Woodward F.I. & Bazzaz F.A. (1988). The response of stomatal density to CO$_2$ partial pressure. *Journal of Experimental Botany* **39**: 1771–1781.

185. Woodward F.I., Lake J.A. & Quick W.P. (2002). Stomatal development and CO$_2$: ecological consequences. *New Phytologist* **153**: 477–484.

186. Wullschleger S.D., Norby R.J. & Gunderson C.A. (1997). Forest trees and their response to atmospheric CO$_2$ enrichment: a compilation of results. *Advances in Carbon Dioxide Effects Research* (eds. L.H.J. Allen, M.B. Kirkham, D.M. Olszyck & C.E. Williams), pp. 79–100. American Society of Agronomy Special Publication, No. 61, Madison, Wisconsin, USA.

187. Wullschleger S.D., Norby R.J. & Hanson P.J. (1995). Growth and maintenance respiration in stems of *Quercus alba* for four years of CO$_2$ enrichment. *Physiologia Plantarum* **93**: 47–54.

188. Wullschleger S.D., Ziska L.H. & Bunce J.A. (1994). Respiratory responses of higher plants to atmospheric CO$_2$ enrichment. *Physiologia Plantarum* **90**: 221–229.