A case-control study on the SNP309T → G and 40-bp Del1518 of the MDM2 gene and a systematic review for MDM2 polymorphisms in the patients with breast cancer

Amin Jalilvand1 | Kheirollah Yari1,2 | Mozaffar Aznab3 | Zohreh Rahimi1 | Iman Salahshouri Far4 | Pantea Mohammadi1

1Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Zagros Bioidea Co, Razi University Incubator, Kermanshah, Iran
3Department of Internal Medicine, Medical Oncologist-Hematologist, Kermanshah University of Medical Sciences, Kermanshah, Iran
4Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Correspondence
Kheirollah Yari, Medical Biology Research Center, Medical School, Daneshgah Avenue, Kermanshah, Iran. Emails: kheirollah.yari@yahoo.com; kyari@kums.ac.ir
Mozaffar Aznab, Department of Internal Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. Email: draznab@yahoo.com

Abstract
Objective: The current research was conducted to study the association between the SNP309 and del1518 polymorphisms with the breast cancer in the patients with the Kurdish ethnic background from western Iran. Also, a systematic review of the relevant case-control studies on the MDM2 polymorphisms in the patients with breast cancer was performed.

Methodology: Two mL of peripheral blood was taken from 100 patients with breast cancer and 100 healthy individuals. The frequencies of MDM2 SNP309 and del1518 genotypes and alleles were determined using the PCR-RFLP and PCR methods, respectively.

Results: The frequency of the TT, TG, and GG of MDM2-SNP309 genotypes in the patients was obtained as 23%, 52%, and 25%, and they were equal to 22%, 40%, and 38% in the control group, respectively. Also, considering the MDM2-del1518 polymorphism, the frequencies of ins/ins, ins/del, and del/del genotypes were equal to 52%, 41%, and 7% in the breast cancer group and they were equal to 62, 30, and 8% in the control group, respectively. Analysis of the results indicated that the GG genotype plays a protective role for the breast cancer in the recessive model (GG vs TT + TG) of SNP309 ($\chi^2 = 3.916$, $P = .048$, and OR = 0.54).

Conclusion: Our findings revealed that the GG genotype of MDM2-SNP309 can play a protective role in the breast cancer disease. Also, our systematic review indicated that the SNP309, SNP285, and del1518 of MDM2 gene in different populations mostly did not have a significant association with the risk of breast cancer.

Keywords
Breast cancer, Del1518 variant, Iranian population, MDM2 gene, SNP309 polymorphism, Systematic review
1 | INTRODUCTION

Breast cancer (BC), as the most common type of cancer in the women, is a multi-factorial and heterogeneous malignancy in the world.\(^1\)\(^-\)\(^3\) The crude incidence rate of BC in the Iranian women has raised from 24 cases in 2004 to 33.8 cases per 100 000 in 2018.\(^4\)\(^-\)\(^5\) This cancer is caused by the interaction effects of the genetic, hormonal, and environmental factors.\(^1\)\(^-\)\(^2\)\(^,\)\(^6\)\(^-\)\(^7\) Exposure to the carcinogenic agents, ionizing radiation, diet, physical activity or exercise, gender, woman’s hormonal history, age, and obesity are the main effective risk factors for the breast cancer.\(^8\)\(^-\)\(^9\) Single nucleotide polymorphisms (SNPs) in the functional genes could influence the incidence of breast cancer and its progression.\(^1\)\(^0\)\(^-\)\(^1\)\(^2\) Results of a recent meta-analysis and research studies have confirmed a correlation between the SNPs of candidate genes with the risk of breast cancer.\(^1\)\(^3\)

Main cellular regulatory mechanisms for the arrest of cell cycle and apoptosis in the stressed or damaged cells are involved in the cancer susceptibility.\(^1\)\(^4\) The p53 is a primary regulatory factor that can be expressed in response to the increased expression of oncogenic proteins in the stressed conditions of the cells.\(^1\)\(^4\)\(^-\)\(^1\)\(^6\) Under normal conditions, it is important to keep the p53 at the low level, so human homologue of mouse double minute 2 (MDM2) is a negative regulator of the p53 reducing the p53 level in the cell.\(^1\)\(^7\) The MDM2 controls the expression level of the p53 using two mechanisms: Firstly, it prevents the transcriptional activity of p53 through direct binding as a physical blocker. Secondly, it can be degraded by the proteasome through the ubiquitination of the p53.\(^1\)\(^6\)\(^-\)\(^1\)\(^8\)\(^-\)\(^2\) Mono-ubiquitination causes the p53 to transfer from the nucleus to the cytoplasm and ultimately to be degraded by the proteasome, while poly-ubiquitination targets p53 cause the degradation with the proteasome in the nucleus.\(^1\)\(^7\)

There are controversial findings regarding the association of the SNP309 and del1518 of the MDM2 gene with the breast cancer in different populations. On the other hand, there are big ethnicities in the Iran’s population. Also, the frequency and association of these two main polymorphisms of the MDM2 gene together have not been investigated in the patients with breast cancer among the Kurdish population so far. Therefore, the current study was conducted for the first time to investigate the SNP309T>G and del1518 of the MDM2 gene in the patients with breast cancer and healthy individuals with the Kurdish ethnic background from western Iran. Also, a systematic review was designed and the case-control studies on evaluating the effect of all the investigated MDM2 variations on the breast cancer risk were perused for the first time.

2 | PATIENTS AND METHODOLOGY

2.1 | Patients

Two mL of the blood samples in tubes was obtained from every 100 patients with breast cancer (mean age ± SD of 48 ± 11 years old, with the age range of 24-71 years old) and 100 age-matched (≤5 years) healthy individuals as the control group, with no history of cancer. The sampling was carried out from September 2017 to May 2018. Patients with a history of other types of cancer and fibroadenoma were excluded from the study. Also, all the cases and controls had the Kurdish ethnicity and were from the western Iran. Information on the age onset of the disease, first-degree family history of breast cancer, and a first-degree family of other types of cancer, estrogen receptor (ER), HER’s-2 expression, progesterone receptor (PgR), P53, Ki-67, lymph node metastasis, and tumor grade was obtained from the patients’ medical history. Tumor grading was carried out according to the pathologists’ report. HER-2 was tested by the immunohistochemistry (IHC) method, and the samples with score of 2+ were then checked by the FISH protocol. Scores of 3+ and 2+ with the positive FISH report were recorded as the HER-2 positive.\(^2\)\(^2\) The sample size of the study was defined based on the MDM2 genotype frequency data presented in the studies by Akisik et al (2011)\(^1\)\(^1\) and Alshatwi et al (2012)\(^2\)\(^3\) using the following formula:

\[
n = \frac{z_{\alpha/2} + z_{\beta}}{\delta^2 \left(p_1q_1 + p_2q_2\right)}/\left(p_1 - p_2\right)^2
\]

A sample size of \(-80\) was calculated for each study group considering the alpha value of 0.01 and beta value of 0.05, but to ensure regarding the sample adequacy, a sample size of 100 was studied in each group.

2.2 | Selection of the SNPs and bioinformatics analysis

The SNPs were selected based on the reported studies on the main polymorphisms in the promoter region of the MDM2 gene in the different populations of breast cancer worldwide. Also, the selected SNPs were checked in some web servers and online prediction tools. SNP309T>G (rs2279744) and del1518 (rs3730485) were checked by the Variant Effect Predictor (Ensembl Tools) (https://www.ensembl.org/Homo_sapiens/Tools/VEP), SNPBase 3.1 (http://rsnp3.psyich.ac.cn/), SNP Function Prediction (https://snpinfo.nih.gov/snpfunc.html), TFBIND (http://tfbind.hgc.jp/), and MethPrimer 2.0 (http://www.uogene.org/methprimer2/).

2.3 | DNA extraction

DNA was extracted from the blood samples using the DNA extraction kit based on the manufacturer’s instructions (Zagros Bioidea Co., Iran). Concentration and purity of the extracted DNA were evaluated using a NanoDrop (Thermo-2000/2000c, USA).\(^2\)\(^4\)

2.4 | Genotype analysis

The PCR-RFLP and PCR techniques were carried out to investigate the distribution of MDM2 SNP309 and del1518 genotypes,
respectively. The final volume was equal to 25 μL for each PCR process, containing 12 μL of Master Mix PCR (SinaClon Co., Iran), 100-500 ng of the extracted DNA and 400 nmol/L of each specific primer. The sequences of the primers were checked and confirmed using the UCSC In-Silico PCR (http://genome.ucsc.edu/). Amplification conditions of the SNP309 were as follows: first denaturation cycle at 95°C and 5 minutes, 40 cycles: 35 seconds at 94°C, 35 seconds at 59°C and 30 seconds at 72°C, followed by a final extension (72°C for 10 minutes). Also, PCR parameters for del1518 were as follows: initial denaturation cycle for 5 minutes at 94°C, then 35 cycles: 30 seconds at 94°C, 30 seconds at 58°C, 30 seconds at 72°C, followed by a final extension cycle for 10 minutes at 72°C. The amplified fragment of MDM2-SNP309 with 352 bps was digested by two units of restriction enzyme, MspAII (New England Biolabs, Ipswich, MA) for 15 hour of incubation period at 37°C. Then, the obtained fragments of MDM2-SNP309 and amplified products of MDM2-del1518 were electrophoresed on the 2% and 2.5% agarose gels and were stained by the GelRed, respectively. An amount of 5% of MDM2-SNP309 and MDM2-del1518 genotypes in the patients was randomly selected and identified by the DNA sequencer (BiONEER, South Korea).

2.5 | Statistical analysis

Frequencies of the genotypes in the studied SNPs were analyzed using the online Hardy-Weinberg equilibrium calculator. The genotype frequencies were compared using the Pearson’s chi-squared test.
test in the IBM SPSS software (version 16). Analysis of the odds ratios and 95% confidence intervals were done by the online MedCalc statistical software (MedCalc, Ostend, Belgium). Haplotype analysis was carried out using a web-based application.28 The analysis of the age onset of the disease was done by the one-way analysis of variance (ANOVA).

2.6 | Search strategy, inclusion and exclusion criteria, and data extraction

The relevant papers were selected from the PubMed and Scopus databases. A time limit was set in the searches up to August 7, 2019 (last updated search). The terms of (MDM2 OR "mouse double minute 2" OR "murine double minute 2" OR HDM2) and (breast) and (polymorphism OR SNP OR variant) were used to search in the Scopus database, and the used terms in the PubMed database were (MDM2 OR mouse double minute 2 homolog OR human homolog of mouse double minute 2 OR HDM2 OR murine double minute 2) AND (breast cancer OR breast carcinoma OR breast neoplasm) AND (single nucleotide polymorphism OR SNP OR polymorphism OR variant).

Inclusion criteria in this systematic review were as follows: (a) original studies investigated the MDM2 gene variations by the experimental methods for genotyping of the patients with breast cancer, (b) using the blood or tissue of the human samples, and (c)
evaluating both case and control groups. Exclusion criteria were as follows: (a) cell line surveys; (b) studies that did not report the association of SNP status at least with one of the BC risk, IHC/outcome, or onset age variables; (c) review and meta-analysis papers; (d) lack of reporting the frequency of each genotype; (e) papers that had the full text in a non-English language; (f) the conference, letter, note, and editorial papers; and (g) history of cancer in the individuals of control groups (Figure 1). Full text of the eligible papers was checked. Information on the studied variation, country, geographic area of the population, ethnicity, sample size, main case background, matching in case-control studies, source of samples, and the associated risk with BC, IHC/outcome and onset age was obtained from the selected papers. In some included studies, the corresponding author or co-authors were contacted (email) to complete the study information.

RESULTS

3.1 Population specifications

Among the patients, there were 98 females and 2 males. A family history (breast cancer) was detected among 7.4% of the patients. Among 94 patients with the recorded breast cancer history in the first-degree relative, 80.4% of them were positive. Also, the frequency of IHC markers including ER+, PgR+, and P53+ was equal to 69.4%, 62.4%, and 48.6%, respectively. Patients were classified into four groups of Luminal A, Luminal B, HER2-enriched, and Basal-like based on the tumor markers with the values of 14.6%, 54.9%, 24.4%, and 6.1%, respectively. These molecular subclasses were classified according to the presentations provided in the IMPAKT Breast Cancer Conference in Brussels, Belgium, on May 2012.29

TABLE 1

Variable	SNP309	SNP309	SNP309			
	TG	TT + GG	P-value* (χ^2)	GG	TT + TG	P-value* (χ^2)
Family history of other types of cancer cancer						
No	43	31	.142 (2.155)	13	61	.049 (3.869)
Yes	7	11		7	11	
PS3						
Positive	23	12	.018 (5.595)	7	28	.152 (2.054)
Negative	14	23		13	24	
HER2						
Positive	25	14	.031 (4.677)	8	31	.268 (1.226)
Negative	15	23		12	26	

*P-values were calculated with the chi-square test.

TABLE 2

RsID	Name	Polymorphism	Risk allele	Position	Consequence in MDM2	Main TF-related SNP	Frequency of minor allele
Rs150550023\(^d\)	Del1518	40-bp ins/del	Deletion	chr12:68806996-68807065	2KB Upstream	RORA, MEF2A, MIZF	0.37\(^e\)
Rs2870820	SNP55	C → T	T	chr12:68808546	Intron 1-2	Sp1	0.23
Rs117039649	SNP285	G → C	C	chr12:68808776	Intron 1-2	Sp1	0.01
Rs2279744	SNP309, G2580T	T → G	G	chr12:68808800	Intron 1-2	Sp1	0.36
Rs1196333	SNP344	T → A	A	chr12:68808835	Intron 1-2	TFAP2A	0.04
ND	SNP443	G → T	T	chr12:68808934	Intron 1-2	NR	NR
Rs769412	SNP354	A → G	G	chr12:68839435	Exon 11\(^f\)	NR	0.07
Rs937283	G2164A	A → G	G	chr12:68808384	5 Prime UTR	NR	0.30

\(^a\)Minor alleles were considered as the risk allele.

\(^b\)Based on GRCh38.p12 assembly.

\(^c\)1000 Genome.

\(^d\)Rs3730485 based on GRCh38.p7 assembly.

\(^e\)Based on the frequency of GenomAD.

\(^f\)Synonymous mutation.
3.2 | Bioinformatics analysis

In the rSNPBase database, SNP309 and del1518 polymorphisms were introduced as rSNPs, and the presence of TF binding region as the related regulatory element was confirmed. The performed analysis by the VEP tool indicated the rs2279744 as a risk factor in the ClinVar database, and a high score was reported for rs3730485 in the transcript support level. SNP Function Prediction and TFBIND tools confirmed a new site region for the SNP309G allele and del allele in del1518. The CpG island predictions of two polymorphisms

FIGURE 4 The positions of the all assessed MDM2 variations in the current systematic review on breast cancer patients
were checked in the MethPrimer 2.0 tool, and the results indicated that the rs2279744 is located in the CpG island region.

3.3 | SNP309 and Del1518 frequencies in the control and breast cancer groups

Figure 2 shows the electrophoresis pattern of the RFLP fragments of MDM2-SNP309 and amplified products of MDM2-del1518. The frequencies of SNP309 genotypes were as follows: TT (23%), TG (52%), and GG (25%) among the patients, and they were obtained as follows: TT (23%), TG (52%), and GG (25%) in the controls (P-value = .118). Also, the rate of del1518 genotypes in the patient group was as follows: ins/ins (52%), ins/del (41%), and del/del (7%), and they were obtained as follows: ins/ins (62%), ins/del (30%), and del/del (8%) in the control group (P-value = .266). The frequencies of SNP309 and del1518 genotypes were evaluated among all the individuals in the two study groups using the Hardy-Weinberg equilibrium by the available software, and the results showed no significant deviation (P-values > .05). Frequency distribution of MDM2 SNP309 and del1518 genotypes was analyzed in the patients and control subjects, and the results indicated no positive difference in the genotype frequencies of the co-dominant, dominant, recessive, and over-dominant models between the two study groups. Also, no significant difference was found for MDM2 SNP309 and del1518 allele frequencies between the patients and controls. However, in SNP309 polymorphism, the GG genotype in the recessive model was positively different among the patients and controls (P = .048, OR = 0.54, 95% CI = 0.30-1.00) indicating its protective role against the breast cancer. Then, genotyping results were confirmed by the DNA sequencing. Figure 3 shows the results obtained from each genotype for SNP309 and homozygous genotypes for del1518. Haplotype study of MDM2 gene polymorphisms showed a strong linkage disequilibrium between the SNP309 and del1518 variants (D’ = 0.9995) in our studied population.

3.4 | Polymorphisms, clinicopathological features and demographic factors

The possible association between the clinicopathological features of the patients with SNP309 and del1518 genotypes was analyzed in the co-dominant, dominant, recessive, and over-dominant models. Our results indicated a significant association between the MDM2-SNP309 genotypes in an over-dominant model with HER2 and p53 status and also in a recessive model with the family history of other types of cancer (Table 1). Also, the association of the SNP309 and del1518 genotypes of the MDM2 gene with the age onset of the disease was evaluated in the patients with breast cancer. Our results demonstrated no significant association between the genotypes of the SNP309 and del1518 and onset age of disease (Data not shown).

4 | DISCUSSION

The MDM2 gene is located on the chromosome 12 q14.3-q15.1. The MDM2 gene (HDM2) is transcribed through two promoters: basic promoter (p1) and alternative promoter (p2). Some functional and regulatory sequences in the promoter regions of the MDM2 (rSNP) can change the gene expression level. It has been indicated that the rSNPs of the genes associated with DNA damage and apoptosis mechanisms can influence the individual’s sensitivity to the cancer progression. Several types of research have studied the SNPs in the MDM2 gene and their association with the risk of breast cancer in different populations. Common studied polymorphisms are located in the first intron of the MDM2 gene as P2 promoter. The SNP309T>G (rs2279744) is located at position 309 (IVS1 + 309) in the P2 region so that T to G transversion enhances the binding affinity of specificity protein 1 (Sp1) to a specific sequence in the promoter and, thus, increases the transcriptional level of the MDM2 gene.

Rs3730485 (GRCh38.p7 assembly), also known as del1518 polymorphism (merged into rs150550023 in GRCh38.p12 assembly), is located in the P1 region of the MDM2 gene having a putative TATA motif. In the del1518 polymorphism, del-allele can increase the binding of some transcription factors, such as Myocyte Enhancer Factor 2A (MEF2A), RAR-Related Orphan Receptor A (RORA), and MBD2-Interacting Zinc Finger protein (MIZF) to the regulatory sequence in the promoter regions. The del1518 has high linkage disequilibrium (LD) with SNP309 locus. High-level expression of MDM2 can influence the p53 signaling pathway allowing the damaged cells to escape from the control point of the cell cycle leading to the increase in the carcinogenesis.

Risk of BC is influenced by the environmental, hormonal, and genetic factors. The MDM2 protein is a main negative regulator in controlling the p53 expression. It has been found that the MDM2 protein binds to the p53 and induces the ubiquitination and therefore degradation of the p53 by proteasome. Therefore, high-level expression of the MDM2 gene contributes to the reduced p53 activity and results in escaping from the checkpoints in the cell cycle. The P53, as a tumor suppressor protein, activates the cellular processes, such as halt of the cell cycle, autophagy, and apoptosis process in response to the genotoxic stresses and damages. Studies have shown that the genotypes of SNP309GG and del/del in 40-bp ins/del polymorphisms in the MDM2 gene could influence its expression and may play a significant role in the cancer susceptibility. The association of MDM2-SNP309 and del1518 with different types of cancer has been investigated in relation to the breast, esophageal, uterine leiomyomas, endometrial, bladder, lung, and colorectal cancers; however, the reported results were contradictory. There are no available reports related to the T309G and del1518 of the MDM2 gene among the Iranian population in the west of Iran; therefore, this study was conducted to investigate the relationship between these MDM2 polymorphisms with the breast cancer for the first time.

Our results showed a negative association between the MDM2-del1518 polymorphism and development of the breast cancer.
rs# (variation name)	Country (population¹)	Ethnicity	Sample source	No. of case/control	Patients	Control group	Match with BC
rs3730485 (del1518)	China (Nanjing And Southeast)	Chinese, Unrelated Ethnic Han	Blood	366/605	BC	Female	Age, gender
	Iran (Kermanshah Province, West)	Kurdish	Blood	100/100	BC	98 Females, 2 Males	Age, Area Of Residence
	Iran (Southeast)	NR	Blood	236/203	BC	NR	Gender, Area Of Residence
	Mexico (Guadalajara City)	NR	Blood	742/345	BC	Female	Age, Gender, Area Of Residence, Same Cohort
	Norway (CONOR) Study	NR	Blood	1717/1872	BC	Female	Age, Gender, Same Cohort
rs2870820 (SNP55)	Norway (CONOR) Study	NR	Blood	1707/1858	BC	Female	Age, Gender, Same Cohort
rs117039649 (SNP285)	Austria	Austrian	Blood	406/254	BC	Female	Gender, Geography Same Countries
	Mixed (Norway And Netherlands)	Mixed (Norwegian And Dutch)	Blood & Cancerous Breast Tissue	1973/2518	1. BC	NR	
	Norway (CONOR) Study	NR	Blood	1717/1872	BC	Female	Age, Gender, Area Of Residence, Same Cohort
	Poland (Wielkopolska)	Caucasian	Blood	468/550	BC	Female	Gender, Geography, Ethnicity
	Scotland	Scottish	Blood	299/275	BC	Female	Gender, Geography, Ethnicity
rs2279744 (SNP309)	Austria	Austrian	Blood	406/254	BC	Female	Gender, Geography
	Brazil	NR	Blood/ Non-Tumoral Tissue	39/186	BC, R337H Mutation Carriers	NR	
	Canada	Caucasian	Blood	38/379	BC, Pre-Menopausal	Female	NR
	China (Shanghai)	NR	Blood	1. 402/84 2. 402/605	BC	Female	1. Gender, Geography 2. Gender
	China (Nanjing And Southeast)	Chinese, Unrelated Ethnic Han	Blood	366/605	BC	Female	Age, Gender
	Czech Republic	NR	Tissue/ Blood	158/149	BC	NR	NR
	England (WCGS)	NR	NR	59/102	BC/ With BRCA1 Mutations	Female	NR
	England (Anglo-Saxon Population)	British	NR	351/258	BC	Female	Gender, Geography
	German	NR	Blood	549/1065	BC	Female	Ethnicity
	India (North)	NR	Blood	100/100	BC, IDC	NR	Age

¹ Population information is provided when available.
Properties	Genotyping method(s)	Association with	Risk 2	IHC & outcome 3	Age of onset 4	References
Cancer-free	PCR	Not significant	NR	Negative		1
Healthy, Cancer-Free	PCR	Not Significant	Negative	Negative		Present Study
Cancer-Free	PCR	Higher Risk	Negative	Negative		72
Healthy	PCR	Higher Risk	NR	NR		73
Healthy, Cancer-Free	PCR	Not Significant	NR	NR		74
Healthy	LightSNIP	Not Significant	NR	Negative		75
benign gynecological lesion/Healthy	Real-Time PCR	Not Significant	Negative	Negative		76
Healthy	Sequencing	NR	NR	1. NR	2. Negative	77
Healthy	LightSnap	Not Significant	NR	NR		78
Healthy	Sequencing	Lower Risk	Negative	NR		79
Cancer-Free	Sequencing	NR	NR	Negative		80
Benign gynecological lesion/Healthy	Real-Time PCR	Not Significant	PS3, Ki67	Positive		76
Cancer-Free, No Family History Of Cancer, Without The R337H Mutation	Real-Time PCR	NR	Negative	NR	81	
NR	Sequencing	Not Significant	NR	NR		82
Healthy, Cancer-Free	Sequencing	1. Higher Risk	Negative	Positive		83
Cancer-Free	PIRA-PCR, Sequencing	Not Significant	NR	Negative		71
Mixed Of Healthy And Ischemic Disease (Cancer-Free)	PCR-RFLP	Not Significant	Negative	Negative		84
NR	Pyrosequencing	NR	NR	Negative		85
Cancer-Free	Allele Specific PCR	Not Significant	NR	Negative		86
Healthy	Real-Time PCR, Sequencing	Not Significant	NR	Negative	87	
Healthy, Cancer-Free	Allele Specific PCR	Not Significant	HER2, Distant Metastasis	NR	88	

(Continues)
rs# (variation name)	Country (population)	Ethnicity	Sample source	No. of case/control	Patients	Control group	Match with BC
India (Lucknow, North)	NR	Blood	104/105	BC	Female	Gender, Geography, Ethnicity	
Iran (Kermanshah Province, West)	Kurdish	Blood	100/100	BC	98 Females, 2 Males	Age, Area of residence	
Iran (Mashhad City, Southeast)	NR	Blood	128/126	BC	Female	Age, Gender	
Israel	Ashkenazi–Jewish (AJ) Origin	NR	187/138	BC, BRCA1/2 Mutation Non-Carrier	Female	Gender	
KSA	Arabian	Blood	100/100	BC	Female	Gender, Ethnicity	
Kyrgyzstan	Kyrgyz	Blood	117/102	BC	Female	Age, Gender	
Mixed (Norway And Netherlands)	Mixed (Norwegian And Dutch)	Blood & Cancerous Breast Tissue	1973/2518	1. BC 2. BC, ER+	NR	Same Countries	
Mixed (UK)	Scottish Caucasian	Blood	299/182	BC	Female	Gender, Geography, Ethnicity	
Netherlands (South–West)	NR	Blood	343/126	Familial BC	340 Females, 3 Males	Geography	
Norway (CONOR) Study	NR	Blood	1717/1872	BC	Female	Age, Gender, Area Of Residence, Same Cohort	
Poland (Wielkopolska)	Caucasian	Blood	468/550	BC	Female	Gender, Geographically, Ethnicity	
Sweden (South-East Sweden Health Care Region)	NR	Blood/ Normal Lymph Node Tissues	123/146	BC, Young Women	Female	Gender, Geography	
Taiwan	Asian Taiwanese, Not Immigrants From America Or Europe.	Blood	255/324	BC	254 Females, 1 Male	-	
Taiwan	Taiwanese	Blood	124/97	Sporadic BC	Female	Gender, Ethnicity	
Turkey	NR	Blood	110/138	BC	Female	Age, Gender	
Turkey	NR	Blood	147/120	Familial BC	Female	Gender	
Turkey	Turkish	Blood	223/149	BC (Ductal Carcinoma)	Female	Age, Gender, Ethnicity	
US (NHS Study)	NR	Blood	1519/2271	BC	Female	Age, Menopausal Status, Recent Postmenopausal Hormone (PMH) use	
US (Baltimore)	1. African American Descent 2. Caucasian White Descent (Not Hispanic White)	Blood & Cancerous & Noncancerous Breast Tissue	1. 165/178 2. 125/136	BC	Female	Age, Gender, Geography, Race	
US (Carolina Breast Cancer Study)	1. African-Americans 2. Whites	Blood	1. 767/680 2. 1270/1133	BC	Female	NR	
Properties	Genotyping method(s)	Association with					
--	----------------------	-----------------					
		Risk²	IHC & outcome³	Age of onset⁴	References		
Tumor/Cancer-Free	ARMS-PCR	Not Significant	NR	NR	89		
Healthy, Cancer-Free	PCR	Lower Risk	HER2, P53, Family history of cancer	Negative	Present Study		
Healthy	ARMS-PCR	Not Significant	Negative	Positive	90		
Cancer-Free	MALDI-TOF	Not Significant	NR	Negative	91		
Healthy	Real-Time PCR	Higher Risk	Negative	Negative	92		
BC-Free	PCR-RFLP	Not Significant	NR	NR	93		
Healthy	Sequencing	Not Significant	NR	1. NR	77		
				2. Negative			
Cancer-Free	Sequencing	Not Significant	Tumour Grade, Lymph Node, NPI	Negative	80		
Heterozygous carriers of cystic fibrosis gene mutations	Sequencing	Not Significant	NR	Positive	94		
Healthy	Lightsnip	Not Significant	NR	NR	78		
Healthy	PCR-RFLP, Sequencing	Not Significant	Negative	NR	79		
Healthy	Pyrosequencing	Not Significant	Negative	NR	95		
Healthy, Cancer-Free	PCR-RFLP, Sequencing	Higher Risk	NR	NR	96		
Healthy, Cancer-Free	PCR-RFLP, Sequencing	Higher Risk	NR	Positive	97		
Healthy	PCR-RFLP	Higher Risk	Negative	NR	98		
Healthy	PCR-RFLP	Higher Risk	NR	NR	99		
Healthy, Cancer-Free	PCR-RFLP	Not Significant	NR	NR	100		
Healthy	PCR-RFLP	Not Significant	NR	NR	101		
Cancer-Free	Real-Time PCR	Not Significant	Tumor P53 Expression	Negative	102		
NR	Real-Time Pcr	Not Significant	ER, PgR	Negative	103		

(Continues)
Limited studies have been done with the contradictory results on the correlation of MDM2-del1518 polymorphism and BC.15,37,48 Consistent with our results, Ma et al found no correlation between the MDM2-del1518 polymorphism and BC in the Chinese population.15 Gansmo et al (2016) in a meta-analysis concluded that the MDM2-del1518 polymorphism was not associated with the BC.37 Also, Hua et al (2017) performed a meta-analysis study to investigate the role of MDM2 del1518 polymorphism associated with the cancer susceptibility. Their results provided a significant support for the lack of association between the MDM2 del1518 polymorphism and cancer risk.36 In other studies conducted in the Chinese population, no association has been reported between the MDM2-del1518 polymorphism with esophageal squamous cell carcinoma and uterine leiomyomas.51,42 However, inconsistent with the results of our study, Hashemi et al (2014) revealed an association between the MDM2-del1518 polymorphism with the risk of BC in the Zahedan population, Sistan and Baluchestan province (southeast of Iran).47 Also, a significant correlation has been observed between the MDM2-del1518 polymorphism and the BC in the Mexican population.48 Contradictory results in the reported studies can be due to the differences in the sample size and ethnicity of the populations. It is suggested that the 40-bp ins/del in the promoter of the MDM2 might not play a major role in the risk of BC.15

Herein, no positive association was found between the frequencies of MDM2-SNP309 alleles with the risk of BC. Consistent with our results, Hosein Pour et al and Tavakkol Afshari et al reported no positive association between the SNP309 with the BC across populations of the northwest49 and northeast of Iran.50 Different studies in the various populations failed to confirm a significant association between the MDM2-SNP309 and the incidence of BC in the European populations.12 A negative association has been confirmed between the MDM2-SNP309 and other types of cancer, such as endometrial,44 bladder,45 esophageal squamous cell,41 Kaposi’s sarcoma,56 and uterine leiomyomas.43 However, in several studies, an association has been reported between the SNP309 polymorphism and the incidence of BC worldwide.10,11,14,18,22,37-59

Our results indicated a protective role of the GG genotype in SNP309 against the BC ($P = 0.048$, OR = 0.54, 95%CI = 0.30-1.00). Consistent with our findings, some studies have revealed the protective role of GG genotype of MDM2-SNP309 in different cancers including the lung,39 colorectal,46 and esophageal.42 Cancers. Protective role of GG genotype in MDM2-SNP309 may be due to the formation of haplotypes with other unknown effective rSNPs.19 It can reduce the positive effect of SNP309 and highly influences the expression level of the MDM2 gene and decreases it.

The strong linkage disequilibrium was observed between the SNP309 and del1518 variants in the studied population. In fact,
when the alleles are in the linkage disequilibrium condition, haplotypes do not occur with the expected frequencies. It can be used to improve the power of the cancer-genetic association studies, and it helps to detect the true associations in the case-control studies. So, the LD results suggested the homogeneity of these polymorphisms in the Kurdish population.

The contradictory results for the function of MDM2-SNP309 in different types of cancer may be due to several reasons: (a) The effect of this variant is related to the changes in the binding of tissue specific-transcription factors (TF) in the promoter; (b) malignancies in various tissues can have different molecular mechanisms, and even in one type of cancer because of heterogeneity across different individuals; (c) the different sample size of the studied populations; (d) differences in the ethnicity and lifestyle-related factors in various studied populations may influence the effect of MDM2-SNP309 on the incidence of BC; (e) function and expression level of the MDM2 gene or TFs-associated genes may be related to the DNA methylation as a main epigenetic mechanism so that the methylation status of the regulatory sequence in the promoter is different in various populations based on the specific environmental and ethnic conditions; (f) polymorphism effect can be related to the interaction with the haplotypes and other SNPs in the MDM2 gene; and also (g) variable of minor allele frequency (MAF) can show up in the demographic layers of the populations, and as a result, the risk of BC may change with respect to the ethnicity because of their allele frequencies.

Some diseases, such as cancer, are complex, meaning that they are caused by the multiple genes and environmental factors. Studying a few genetic polymorphisms in such small populations is like only a piece of the large puzzle presenting their ability to influence the cancer risk in different populations, especially ethnicities. Also, it can provide an overall perspective for the subsequent studies on the genes involved in the desired pathway in the ethnic groups.

In the next step, our research was expanded with a systematic review of all the variations of the studied MDM2 gene in the patients with breast cancer for the first time. There were several case-control studies on assessment of the functional variations of the MDM2 and the susceptibility to BC. As indicated in Table 2, seven single nucleotide variations (SNVs) and an ins/del were investigated in the eligible reviewed studies. Commonly studied polymorphisms are located in the first intron (Intron 1-2) as P2 promoter of MDM2 gene.

Totally, 46 studies on the SNVs and one ins/del reported in 36 papers and the current research had the eligibility to be included in the systematic review (Figure 4). The status of eight variants in the patients with BC was included in the populations from 23 countries in the systematic review. Table 3 shows the characteristics of the eligible studies.

As demonstrated in Table 3, the main sample sources in the reviewed studies were taken from the blood. Two studies have used the samples including the cancerous tissue for evaluation of two variations in MDM2 gene that may change the genotype...

Properties	Genotyping method(s)	Association with	References
Healthy	Sequencing	Not Significant	104
Cancer-Free	Sequencing	Not Significant	80
BC-Free	Real-Time PCR	1. Higher Risk	102
		2. Not Significant	
Cancer-Free	Sequencing	Not Significant	80
Healthy, Cancer-Free	PCR-RFLP, Sequencing	Higher Risk	105

References
i, ii, iii, iv, v, vi, vii, viii, ix, x, xi, xii, xiii, xiv, xv, xvi, xvii, xviii, xix, xx, xxi, xii, xiii, xiv, xv, xvi, xvii, xviii, xix, xx, xxi, xii, xiii, xiv, xv, xvi, xvii, xviii, xix, xx, xxi, xii, xiii, xiv, xv, xvi, xvii, xviii, xix, xx, xxi.
frequency of the target polymorphisms and influence the association of SNP with the studied outcome and, therefore, intervening in the interpretation of the results. Most studies have been conducted on the female patients with BC. In most studies, the control groups were matched with the patients in terms of age, sex, and geographical location parameters. BC-free and healthy individuals were mostly considered as the control group. Also, rs2279744 known as SNP309 and G2580T was the well-studied SNP in the MDM2 gene. This polymorphism occurs as a result of T to G transition that has a higher affinity to the transcription factor of Sp1 in its mutant allele. Our review revealed that there are contradictory results for this SNP. Six studies conducted in Asia have confirmed the positive result of this polymorphism in increasing the BC incidence. In overall, in accordance with our case-control research, studies conducted worldwide until 2019 have shown that this SNP did not increase the BC risk. Also, a recent meta-analysis performed in 2018 showed that this polymorphism could not have a significant intervention in the carcinogenesis of BC. Results of some studies on the correlation between the SNP309 with onset age of disease indicated no positive association in this regard.65-67

SNP285(G>C) is located in intron1-2 and the upstream of the SNP309 (Figure 4). Some studies have demonstrated that the C allele plays a role as an antagonist factor for SNP309 and reduces the Sp1 affinity for binding to the gene promoter and decreases the transcription activity.39,64 In the literature review, reported results did not confirm the role of SNP285 as a risk factor for BC susceptibility.

Rs3730485 (GRCh38.p7 genome assembly), known as del1518, is located in the promoter region of the 2kb upstream. Deletion allele can make a higher potential binding site for the RORA, MEF2A, and MIZF TFs. This 40-bp ins/del is located near the 40-bp ins/del (rs150550023) so that, in the GRCh38.p12 genome assembly, these polymorphisms are merged into rs150550023 with three alleles: 40-bp double insertion, 40-bp insertion, and 40-bp deletion. The current review revealed controversial results regarding the lack of significant association and positive correlation for an increasing role of del1518 on the BC susceptibility in different populations.

Limited number of studies have been conducted on the relationship between the SNP55, 68 SNP344, 22,69 SNP354, 55 SNP443, 22 and rs93728570 with the risk of BC. SNP443 does not have the RefSeq ID and is not validated as a variation in the National Center for Biotechnology Information (NCBI) and Ensemble databases. SNP55 and Rs1196333 have a higher affinity to bind to the Sp1 and TFAP2A TFs in the mutant allele, respectively, leading to the increase in the expression level of MDM2 in the cell.

In conclusion, our results indicated that the GG genotype of SNP309-MDM2 plays a protective role in the BC in our studied population. However, our findings indicated no positive association between the MDM2 del1518 polymorphism and the risk of BC in the Kurdish population from western Iran. Also, our systematic review indicated that the SNP309, SNP285, and del1518 polymorphisms of MDM2 gene in different populations mostly were not associated with the BC risk. Thus, there is a need to evaluate other novel rsSNPs in the MDM2 gene in the future researches as well as the expression of the MDM2 gene and its associated transcription factors, such as RORA, Sp1, MEF2A, and MIZF.

There were some limitations in the present study including a small number of included studies with the contradictory results for 40-bp del1518 polymorphism to calculate the sample size, obtaining the patients’ consent to participate in the study, achieving a maximum number of the included new cases, time constraint, and obtaining a maximum data from the patients’ medical history in new cases. Therefore, more time should be taken to collect the sample of new cases, increase the sample size, and obtain the complete IHC characteristics of the patients for the future studies.

ACKNOWLEDGMENT
We thank our colleagues in Molecular Genetics Laboratory, Medical Biology Research Center, Kermanshah, Iran, for technical assistance.

AUTHOR CONTRIBUTIONS
AJ collected the samples, performed experiments, extracted the systematic review data, and wrote the first draft of the manuscript. KY and MA designed the case-control and systematic review studies and analyzed the data. ZR and IS edited the final version of the manuscript. PM draw the schematic figure. All authors reviewed the final version of the manuscript and approved it for publication.

ETHICAL APPROVAL
Ethics Committee in Kermanshah University of Medical Sciences, Iran, approves the current study. All control and patient’s individuals agreed to participant in the study and signed the form of informed consent (Helsinki II declaration).

REFERENCES
1. Shadmani FK, Mansori K, Khazaei S, et al. Geographic distribution of breast cancer incidence in Iran. Biomed Res Ther. 2017;4(05):1295-1304.
2. Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med. 2017;4:227.
3. Gupta I, Ouhtit A, Shamgunanathan S, Al-Riyami H. Abstract P2-03-19: Discovery of the genes that underpin the transition to malignant phenotype of breast tumors in highly consanguineous region. Cancer Res. 2015;75(9 Supplement);P2-03-19-P2-03-19.
4. Rafeimanesh H, Salehiniya H, Lotfi Z. Breast cancer in Iranian woman: incidence by age group, morphology and trends. Asian Pacific J Cancer Prev. 2016;17(3):1393-1397.
5. Ferlay J, Ervik M, Lam T, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer; 2018.
6. Zhang J, Zhang Y, Zhang Z. Association of rs2279744 and rs117039649 promoter polymorphism with the risk of gynecological cancer: a meta-analysis of case–control studies. Medicine. 2018;97(2): e9554.
7. Yue W, Wang J-P, Li Y, et al. Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms. Int J Cancer. 2010;127(8):1748-1757.
8. Otoghvar HA, Hosseini M, Tizmaghz A, Shabestanipour G, Noori H. A review on metastatic breast cancer in Iran. Asian Pacific J Trop Biomed. 2015;5(6):429-433.
9. Angahar L. An overview of breast cancer epidemiology, risk factors, pathophysiology and cancer risk reduction. MedCrave Online J Biol Med. 2017;1(4):92-96.

10. Gao J, Kang A-J, Lin S, et al. Association between MDM2 rs2279744 polymorphism and breast cancer susceptibility: a meta-analysis based on 9,788 cases and 11,195 controls. Ther Clin Risk Manag. 2014;10:269.

11. Akisik E, Yazici H, Dalay N. ARLTS1, MDM2 and RAD51 gene variations are associated with familial breast cancer. Mol Biol Rep. 2011;38(1):343-348.

12. Zhao E, Cui D, Yuan L, Lu W. MDM2 SNP309 polymorphism and breast cancer risk: a meta-analysis. Mol Biol Rep. 2012;39(4):3471-3477.

13. Cox DG, Deer D, Guo Q, et al. The p53 Arg72Pro and MDM2-309 polymorphisms and risk of breast cancer in the nurses’ health studies. Cancer Causes Control. 2007;18(6):621-625.

14. Leu J-D, Wang C-Y, Tsai H-Y, Lin I, Chen R-C, Lee Y-J. Involvement of p53 R72P polymorphism in the association of MDM2-SNP309 with breast cancer. Oncol Rep. 2011;25(6):1755-1763.

15. Ma H, Hu Z, Zhai X, et al. Polymorphisms in the MDM2 promoter and risk of breast cancer: a case-control analysis in a Chinese population. Cancer Lett. 2006;240(2):261-267.

16. Shi D, Gu W. Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer. 2012;3(3-4):240-248.

17. Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E. Clinical overview of MDM2/X-targeted therapies. Front Oncol. 2016;6:7.

18. Yadav P, Masroor M, Tanwer K, et al. Clinical significance of TP53 (R72P) and MDM2 (T309G) polymorphisms in breast cancer patients. Clin Transl Oncol. 2016;18(7):728-734.

19. Lalonde M-E, Ouimet M, Lariivières M, Kritikou EA, Sinnett D. Identification of functional DNA variants in the constitutive promoter region of MDM2. Hum Genomics. 2012;6(1):15.

20. Shaikh MF, Morano WF, Lee J, et al. Emerging role of MDM2 as target for anti-cancertherapy: a review. Ann Clin Lab Sci. 2016;46(6):627-634.

21. Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin. 2014;46(3):180-189.

22. Paulin FEM, O’Neill M, McGregor G, et al. MDM2 SNP309 is associated with high grade node positive breast tumours and is in linkage disequilibrium with a novel MDM2 intron 1 polymorphism. BMC Cancer. 2008;8(1):281.

23. Alshatwi AA, Hasan TN, Shafi G, Alsiaf MA, Al-Hazzani AA, Alsiaf AA. A single-nucleotide polymorphism in the TP53 and MDM-2 gene modifies breast cancer risk in an ethnic Arab population. Fundam Clin Pharmacol. 2012;26(3):438-443.

24. Moradi MT, Yari K, Khodarahim R. A novel, efficient, fast and inexpensive DNA extraction protocol from whole blood applicable for studying drug-DNA interaction. J Rep Pharm Sci. 2014;3:80-84.

25. Dong D, Gao X, Zhu Z, Yu Q, Bian S, Gao Y. A 40-bp insertion/deletion polymorphism in the constitutive promoter of MDM2 confers risk for hepatocellular carcinoma in a Chinese population. Gene. 2012;497(1):66-70.

26. Oliver L, Vallette FM. The role of caspases in cell death and differentiation. Drug Resist Updat. 2005;8:163-170.

27. Rodríguez-S, Gaunt TR, Day INM. Hardy-Weinberg equilibrium testing of biological ascertainment for mendelian randomization studies. Am J Epidemiol. 2009;169(4):505-514.

28. Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928-1929.

29. Guiu S, Michiels S, André F, et al. Molecular subclases of breast cancer: how do we define them? The IMPAKT 2012 Working Group Statement. Ann Oncol. 2012;23(12):2997-3006.

30. Hua W, Zhang A, Duan P, et al. MDM2 promoter del1518 polymorphism and cancer risk: evidence from 22,931 subjects. Onco Targets Ther. 2017;10:3773.

31. Barak Y, Gottlieb E, Juven-Gershon T, Oren M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 1994;8(15):1739-1749.

32. Riley MF, Lozano G. The many faces of MDM2 binding partners. Genes Cancer. 2012;3(3-4):226-239.

33. Mendoza M, Mandani G, Momand J. The MDM2 gene family. Biomol Concepts. 2014;5(1):9-19.

34. Okamoto K, Tsunematsu R, Tahira T, et al. SNP55, a new functional polymorphism of MDM2-P2 promoter, contributes to allele-specific expression of MDM2 in endometrical cancers. BMC Med Genet. 2015;16(1):67.

35. Knappskog S, Lønning PE. Effects of the MDM2 promoter SNP285 and SNP309 on Sp1 transcription factor binding and cancer risk. Transcription. 2011;2(5):207-210.

36. Dimitriadis M, Poulouannis G, Liu L, et al. p53-independent mechanisms regulate the P2-MDM2 promoter in adult astrocytic tumours. Br J Cancer. 2008;99(7):1144-1152.

37. Gansmo LB, Vatten L, Romundstad P, et al. Associations between the MDM2 promoter P1 polymorphism del1518 (rs3730485) and incidence of cancer of the breast, lung, colon and prostate. Oncotarget. 2016;7(19):28637.

38. Hu Z, Ma H, Lu D, et al. Genetic variants in the MDM2 promoter and lung cancer risk in a Chinese population. Int J Cancer. 2006;118(5):1275-1278.

39. Gansmo LB, Knappskog S, Romundstad P, et al. Association between the MDM2 promoter P1 polymorphism del1518 (rs3730485) and incidence of cancer of the breast, prostate, lung and colon. Int J Cancer. 2015;137(1):96-103.

40. Kumar R, Kohli S, Das S. p53 regulation upon genotoxic stress: intricacies and complexities. Mol Cell Oncol. 2014;1(3):e969563.

41. Ma J, Zhang J, Ning T, Chen Z, Xu C. Association of genetic polymorphisms in MDM2, PTEN and P53 with risk of esophageal squamous cell carcinoma. J Hum Genet. 2012;57(4):261.

42. Lei C, Zhang W, Fan J, et al. MDM2 T309G polymorphism and esophageal cancer risk: a meta-analysis. Int J Clin Exp Med. 2015;8(8):13413.

43. Salimi S, Hajizadeh A, Khodamian M, Pejman A, Fazeli K, Yaghmaei M. Age-dependent association of MDM2 promoter polymorphisms and uterine leiomyoma in South-East Iran: a preliminary report. J Obstet Gynaecol Res. 2015;41(5):729-734.

44. Ashton KA, Proietto A, Otton G, et al. Polymorphisms in TP53 and MDM2 combined are associated with high grade endometrial cancer. Gynecol Oncol. 2009;113(1):109-114.

45. Xie L, Sun Y, Chen T, et al. Association between MDM2 SNP309 T>G polymorphism and the risk of bladder cancer: new data in a chinese population and an updated meta-analysis. Onco Targets Ther. 2015;8:3679.

46. Abderrahmane R, Louhibi L, Moghit FZ, et al. TP53 Arg72Pro and MDM2 SNP309 polymorphisms and colorectal cancer risk: a west Algerian population study. Pathol Oncol Res. 2015;21(3):629-635.

47. Hashemi M, Omrani M, Eskandari-Nasab E, Hasani S-S, Mashhadi MA, Taheri M. A 40-bp insertion/deletion polymorphism of Murine Double Minute2 (MDM2) increased the risk of breast cancer in Zahedan, Southeast Iran. Iranian Biomed J. 2014;18(4):245.

48. Gallegos-Arreola MP, Márquez-Rosales MG, Sánchez-Corona J, et al. Association of the Del1518 Promoter (rs3730485) polymorphism in the MDM2 gene with breast cancer in a Mexican population. Ann Clin Lab Sci. 2017;47(3):291-297.

49. Hossein Pour Feizl M, Taghiyadeh S, Pouladi N, Azarfam P, Montazeri V. Study of MDM2 promoter polymorphism (SNP309) in...
breast cancer patients in an Iranian population. J Shahid Sadoughi Univ Med Sci. 2011;19(3):359-368.

50. Afshari ZT, Nikpoor AR, Afshari JT, et al. Lack of an Association between a Functional Polymorphism in the MDM2 Promoter and Breast Cancer in Women in Northeast Iran. Rep Biochem Mol Biol. 2017;6(1):112.

51. Petenkaya A, Bozkurt B, Akilli-Ozturk O, Kaya HS, Gur-Dedegolu B, Yulug IG. Lack of association between the MDM2-SNP309 polymorphism and breast cancer risk. Anticancer Res. 2006;26(6C):4975-4977.

52. Ryan BM, Calhoun KM, Pine SR, et al. MDM2 SNP285 does not antagonize the effect of SNP309 in lung cancer. Int J Cancer. 2012;131(11):2710-2716.

53. Sinilnikova O, Antoniou A, Simard J, et al. The TP53 Arg72Pro and MDM2 309G>T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2009;101(8):1456.

54. Nechushtan H, Hamburger T, Mendelson S, et al. Effects of the single nucleotide polymorphism at MDM2 309 on breast cancer patients with/without BRCA1/2 mutations. BMC Cancer. 2009;9(1):60.

55. Boersma BJ, Howe TM, Goodman JE, et al. Association of breast cancer outcome with status of p53 and MDM2 SNP309. J Natl Cancer Inst. 2006;98(13):911-919.

56. Varmazyar S, Marashi SM, Shoja Z, et al. MDM2 gene polymorphisms and risk of classic Kaposi’s sarcoma among Iranian patients. Med Microbiol Immunol. 2017;206(2):157-163.

57. Sun Y-F, Leu J-D, Chen S-M, Lin I-F, Lee Y-J. Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer. BMC Cancer. 2009;9(1):13.

58. Wang M, Xu Y, Qian J, Wang F. Association of murine double minute 2 and P53 polymorphisms with breast cancer susceptibility. Zhonghua Yu Fang Yi Xue Za Zhi. 2013;47(2):124-128.

59. Márquez-Rosales M, Sánchez-Corona J, Figuera L, Montoya-Fuentes H, Zúñiga-González G. Association of the rs2279744 promoter polymorphism in the MDM2 gene with breast cancer in a Mexican population (DSO) resulting in female sex reversal in 46 XY males. Hereditas. Genet Med. 2015;6:165.

60. Sonawane AR, Platig J, Fagny M, et al. Understanding tissue-specific gene regulation. Cell Rep. 2017;21(4):1077-1088.

61. Gathani T, Ali R, Balkwill A, et al. Ethnic differences in breast cancer incidence in England are due to differences in known risk factors for the disease: prospective study. Br J Cancer. 2014;110(1):224.

62. Vinci M. Sensing the environment: epigenetic regulation of gene expression. Phys Chem Biophys S. 2011;3:2161-2398.

63. Gutierrez-Arcelus M, Onen H, Lappalainen T, et al. Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. PLoS Genet. 2015;11(1):e1004958.

64. Knappskog S, Bjørnslett M, Myklebust LM, et al. The MDM2 promoter SNP285C/309G haplotype diminishes Sp1 transcription factor binding and reduces risk for breast and ovarian cancer in Caucasians. Cancer Cell. 2011;19(2):273-282.

65. Krekac D, Brozková K, Knoflickova D, et al. MDM2SNP309 does not associate with elevated MDM2 protein expression or breast cancer risk. Oncology. 2008;74(1-2):84-87.

66. Copson ER, White HE, Blaydes JP, Robinson DO, Johnson PW, Eccles DM. Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers. BMC Cancer. 2006;6(1):80.

67. Campbell IG, Eccles DM, Choong DY. No association of the MDM2 SNP309 polymorphism with risk of breast or ovarian cancer. Cancer Lett. 2006;240(2):195-197.

68. Helwa R, Gansmo LB, Romundstad P, et al. MDM2 promoter SNP55 (rs2870820) affects risk of colon cancer but not breast-, lung-, or prostate cancer. Sci Rep. 2016;6:33153.

69. Knappskog S, Gansmo LB, Romundstad P, et al. MDM2 promoter SNP344T>A (rs1196333) status does not affect cancer risk. PLoS One. 2012;7(4):e36263.

70. Chen B, Wang J, Wang J, Zhang J, Gu X, Feng X. The study of MDM2 rs937283 variant and cancer susceptibility in a central Chinese population. Technol Cancer Res Treat. 2018;17:1533033818801550.

71. Ma H, Hu Z, Zhai X, et al. Polymorphisms in the MDM2 promoter and risk of breast cancer: a case-control analysis in a Chinese population. Cancer Lett. 2006;240(2):261-267.

72. Hashemi M, Omrani E, Eskandari-Nasab E, Hasani S-S, Mashhadi MA, Taheri M. A 40 bp insertion/deletion polymorphism of Murine Double Minute2 (MDM2) increased the risk of breast cancer in Zahedan, Southeast Iran. Iran Biomed J. 2014;18(4):245.

73. Gallegos-Arreola MP, Márquez-Rosales MG, Sánchez-Corona J, et al. Association of the Del1518 promoter (rs3730485) polymorphism in the MDM2 gene with breast cancer in a Mexican population. Ann Clin Lab Sci. 2017;47(3):291-297.

74. Gansmo LB, Vatten L, Romundstad P, et al. Associations between the MDM2 promoter P1 polymorphism del1518 (rs3730485) and incidence of cancer of the breast, lung, colon and prostate. Oncotarget. 2016;7(19):28637.

75. Helwa R, Gansmo LB, Romundstad P, et al. MDM2 promoter SNP55 (rs2870820) affects risk of colon cancer but not breast-, lung-, or prostate cancer. Sci Rep. 2016;6:33153.

76. Miedl H, Lebhard J, Ethart L, Schreiber M. Association of the MDM2 SNP285 and SNP309 genetic variants with the risk, age at onset and prognosis of breast cancer in central European women: a hospital-based case-control study. Int J Mol Sci. 2019;20(3):509.

77. Knappskog S, Bjørnslett M, Myklebust LM, et al. The MDM2 promoter SNP285C/309G haplotype diminishes Sp1 transcription factor binding and reduces risk for breast and ovarian cancer in Caucasians. Cancer Cell. 2011;19(2):273-282.

78. Gansmo LB, Knappskog S, Romundstad P, Hveem K, Vatten L, Lønnøw PE. Influence of MDM2 SNP309 and SNP285 status on the risk of cancer in the breast, prostate, lung and colon. Int J Cancer. 2015;137(1):96-103.

79. Piotrowski P, Lianeri M, Rubis B, et al. Murine double minute clone 2 309T/G and 285G/C promoter single nucleotide polymorphism as a risk factor for breast cancer: a Polish experience. Int J Biol Mark. 2012;27(2):105-110.

80. Paulin FEM, O’Neill M, McGregor G, et al. MDM2 SNP309 is associated with high grade node positive breast tumours and is in linkage disequilibrium with a novel MDM2 intron 1 polymorphism. BMC Cancer. 2008;8(1):281.

81. Macedo GS, Vieira IA, Vianna FSL, et al. p53 signaling pathway polymorphisms, cancer risk and tumor phenotype in TP53 R337H mutation carriers. Fam Cancer. 2018;17(2):269-274.

82. Samuel N, Id Said B, Guha T, et al. Assessment of TP53 polymorphisms and MDM2 SNP309 in premenopausal breast cancer risk. Hum Mutat. 2017;38(3):265-268.

83. Lum SS, Chua HW, Li H, et al. MDM2 SNP309 G allele increases risk but the T allele is associated with earlier onset age of sporadic breast cancers in the Chinese population. Carcinogenesis. 2008;29(4):754-761.

84. Krekac D, Brozková K, Knoflickova D, et al. MDM2SNP309 does not associate with elevated MDM2 protein expression or breast cancer risk. Oncology. 2008;74(1-2):84-87.

85. Copson ER, White HE, Blaydes JP, Robinson DO, Johnson PW, Eccles DM. Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers. BMC Cancer. 2006;6(1):80.
86. Campbell IG, Eccles DM, Choong DY. No association of the MDM2 SNP309 polymorphism with risk of breast or ovarian cancer. *Cancer Lett*. 2006;240(2):195–197.

87. Wilkening S, Bermejo JL, Burwinkel B, et al. The single nucleotide polymorphism IVS1+309 in mouse double minute 2 does not affect risk of familial breast cancer. *Cancer Res*. 2006;66(2):646–648.

88. Yadav P, Masroor M, Tanwer K, et al. Clinical significance of TP53 (R72P) and MDM2 (T309G) polymorphisms in breast cancer patients. *Clin Transl Oncol*. 2016;18(7):728–734.

89. Singh V, Rastogi N, Mathur N, Singh K, Singh MP. Association of polymorphism in MDM-2 and p53 genes with breast cancer risk in Indian women. *Ann Epidemiol*. 2008;18(1):48–57.

90. Afshari ZT, Nikpoor AR, Afshari JT, et al. Lack of an association between a functional polymorphism in the MDM2 promoter and breast cancer in women in Northeast Iran. *Rep Biochem Mol Biol*. 2017;6(1):112.

91. Yarden RI, Friedman E, Metsuyanim S, Olender T, Ben-Asher E, Papa MZ. MDM2 SNP309 accelerates breast and ovarian carcinogenesis in BRCA1 and BRCA2 carriers of Jewish-Ashkenazi descent. *Breast Cancer Res Treat*. 2008;111(3):497–504.

92. Alshatwi AA, Hasan TN, Shafi G, Alsaif MA, Al-Hazzani AA, Alsaif AA. A single-nucleotide polymorphism in the TP53 and MDM-2 gene modifies breast cancer risk in an ethnic Arab population. *Fundam Clin Pharmacol*. 2012;26(3):438–443.

93. Isakova J, Talakbeikova E, Aldasheva N, Vinnikov D, Aldashev A. The association of polymorphic markers Arg399Gln of XRCC1 gene, Arg72Pro of TP53 gene and T309G of MDM2 gene with breast cancer in Kyrgyz females. *BMC Cancer*. 2017;17(1):758.

94. Leu J-D, Wang C-Y, Tsai H-Y, Lin I, Chen R-C, Lee Y-J. Involvement of p53 R72P polymorphism in the association of MDM2-SNP309 with breast cancer. *Oncol Rep*. 2011;25(6):1755–1763.

95. Lång A, Palmebäck Wegman P, Wingren S. The significance of MDM2 SNP309 and p53 Arg72Pro in young women with breast cancer. *Oncol Rep*. 2009;22(3):575–579.

96. Cox DG, Deer D, Guo Q, et al. The p53 Arg72Pro and MDM2-309 polymorphisms and risk of breast cancer in the nurses’ health studies. *Cancer Causes Control*. 2007;18(6):621–625.

97. How to cite this article: Jalilvand A, Yari K, Aznab M, Rahimi Z, Salahshoueri F, Mohammadi P. A case-control study on the SNP309T → G and 40-bp Del1518 of the MDM2 gene and a systematic review for MDM2 polymorphisms in the patients with breast cancer. *J Clin Lab Anal*. 2020;34:e235299. https://doi.org/10.1002/jcla.23529