Microbiological Contamination of In-Store Lipstick Testers Available to the Consumer

Mireli Vassoler*
Fabiana Tonial*
Silvia Cristina Fagundes*
Micheila Alana Fagundes*
Nágila Bernarda Zortéa*
Luciana Grazziotin Rossato-Grando*
Charise Dallazem Bertol*

The microbiological contamination of pharmaceutical and cosmetic products represents a public health problem because it can cause infections. Before purchasing a particular cosmetic, many consumers test it on their own skin, increasing the susceptibility to microbiological contaminations. We hypothesize that these lipstick testers available to pharmacy consumers represent a potential source of microbiological contamination. This study analyzed the microbiological quality of 30 lipstick samples, randomly collected, from different manufacturers, available to the consumers for trials in pharmacies in southern Brazil (fifteen samples were collected in Casca, five in Ciríaco and ten in Passo Fundo). The microbiological quality of the lipsticks was evaluated by: total count of viable bacteria and mold and yeast, and presence of pathogens Staphylococcus aureus and Pseudomonas aeruginosa. It was verified that amounts ranged from 1.0 x 10¹ to 1.9 x 10⁵ CFU/g of viable bacteria and from 1.0 x 10¹ to 7.3 x 10³ CFU/g of molds and yeasts on the lipsticks. 54.33% and 40% of the samples were disapproved by the total count of viable bacteria and molds and yeasts, respectively. S. aureus, Aspergillus sp. and Cladosporium sp. were also found. Although the waxy composition of the lipsticks hinders microbial contamination this research reveals a large number of microorganisms. Our hypothesis that the lipsticks have a high microbiological load was confirmed. Opportunistic pathogenic microorganisms can become infectious agents in patients with compromised immune systems. The use of disposable applicators is proposed as an alternative way to avoid microbiological contamination of the cosmetic products.

Keywords: Fungi. Microbial contamination. Preservatives. Quality control. Staphylococci.

INTRODUCTION

Cosmetics, personal care products and perfumes are preparations consisting of natural or synthetic substances, for external use in the parts of the human body, skin, capillary system, nails, lips, external genitals, teeth and mucous membranes of the oral cavity, with the sole or main purpose of cleaning, perfuming, altering their appearance and/or correcting body odors and/or keeping them in good condition¹.

The Associação Brasileira da Indústria de Higiene Pessoal, Perfumaria e Cosméticos

DOI: 10.15343/0104-7809.202044261268

*Universidade de Passo Fundo. Passo Fundo/ RS, Brasil
E-mail: charise@upf.br
reports that Brazil is the fourth largest global consumer market for personal hygiene, perfumery and cosmetics, with 6.2% market share and it is responsible for a total of USD 30 billion in consumer sales in 2018, according to a study by Euromonitor. Brazil is only behind the USA (18.3% with USD 89.5 billion), China (12.7% with USD 62 billion) and Japan (7.7% with USD 37.5 billion). In Brazil, the consumption of makeup is fifth in a worldwide ranking.\(^2\)

The physicochemical and microbiological tests performed by manufacturer or importer of the cosmetics guarantee the safety, the promotion and protection of the users’ health avoiding the transmission of diseases. Cosmetovigilance monitors problems related to use, quality defects and undesirable effects after the marketing of the products. Excessive microorganisms go beyond to implicate health risks. The endotoxins and metabolites produced by microorganisms may cause abrasion, irritation and allergies on the skin and may lead to product deterioration altering the smell, color, viscosity, and performance.\(^3\) Contaminated cosmetics (moisturizing body milk and mouthwash) led to outbreaks of nosocomial infections.\(^8-11\)

Besides that, cosmetic products are rarely suspected as the cause of skin infections, for example in individuals with prior skin diseases such as allergic dermatitis. Manufacturers do not communicate to the public when their cosmetics are returned due to excessive contamination. Furthermore, it is unknown whether consumers are aware that their products are contaminated or they just throw them away because of obvious changes, for example in odor. The in-use contamination happens often without noticeable changes in the product making it impossible to know if the products are contaminated.\(^12\)

The production of cosmetics is regulated by the Agência Nacional de Vigilância Sanitária and, according to the legislation, one of the technical requirements necessary for the sale of cosmetics is a microbiological analysis. Manufacturers must carry out all physical-chemical and microbiological tests of raw materials and finished products. The Brazilian Pharmacopoeia brings the microbiological specifications for products used topically where the *Staphylococcus aureus* and *Pseudomonas aeruginosa* must be absent, and a maximum of 2×10^2 UFC/g of bacteria and 2×10^1 UFC/g of fungi is accepted.\(^14\)

The lipstick contains wax, oils, antioxidants, and emollients. Microorganisms grow better in aqueous media rather than oily media and the survival of microorganisms is directly associated with the minimum necessary level of water activity.\(^15\) Therefore, the composition of the lipstick does not favor microbial growth.

The shared use of makeup can lead to a high microbial contamination attributed, in the majority of cases, to contact with the skin, mucosa or environment. Lipstick is a popular cosmetic and prior to its purchase it is common for the consumer to sample it to evaluate texture and color. Lipsticks exposed in pharmacies and markets are used repeatedly by different clients, and this habit can lead to an excessive number of microorganisms on the product, including pathogens. Our hypothesis is that the lipsticks available as testers have a high microbiological load. The microbiological contamination of cosmetics can bring risks to consumer health, therefore the present work sought to verify the microbiological quality of lipsticks available to the consumer for trial in pharmacies.
METHODOLOGY

This work is an experimental study. The analyses were performed in the Biological Medicines Control Quality Laboratory of University of Passo Fundo (Passo Fundo -RS).

Samples

Thirty samples of lipsticks of different manufactures were collected randomly, from pharmacy displays in the northern region of Rio Grande do Sul (RS) (fifteen samples were collected in Casca, five in Ciríaco and ten in Passo Fundo) in sterile plastic bags with the aid of a sterile scalpel.

Total Viable Microbial Count

0.5 g of each lipstick sample was solubilized in 4.5 mL of sterile isopropyl myristate with the aid of a tube shaker (Biomatic) for 3 minutes and subjected to an ultrasound bath (Unique/USC 2850-A) for 15 minutes. Thereafter, 1:10, 1:100, 1:1000 and 1:10000 dilutions were prepared using the same diluent. 0.5 mL of the dilutions were pipetted and added into Petri dishes containing approximately 15 mL of Soy-Casein Agar for bacterial count or Sabouraud Dextrose Agar for mold and yeast count. The dilutions were added by the Pour plate method. The incubation conditions were 5 days at 35°C ± 1°C for bacteria (oven Biopar®) and 7 days at 25°C ± 1°C for fungi (oven De Leo®). The growths were evaluated daily. The total count of colony forming units (CFU) per g was calculated. As a negative control, a plate with only culture medium was used.

Research of the pathogens Staphylococcus aureus and Pseudomonas aeruginosa

0.3 g of each sample was placed in enrichment broth (5% peptone, 1.5% yeast extract, 1.5% meat extract, 3.5% NaCl, 1% dextrose, 3.68% dibasic potassium phosphate, 1.32% monobasic potassium phosphate, 1% tween and water) for 48 hours at 35°C. Then, the tubes were placed in an ultrasonic bath for 20 minutes. After incubation, the broths were spread with a platinum handle over the surface of Sal-Mannitol Agar for S. aureus research and Cetrimide Agar for P. aeruginosa research. The Petri dishes were incubated at 35°C for 48 hours.

Colonies of S. aureus in Agar Sal-Mannitol present smooth consistency surrounded by a zone of yellow color. To confirm the identity of the suspect colony, the microorganism was submitted to Gram staining, catalase and coagulase assay.

Search and identification of filamentous fungi

The identification of the filamentous fungi was based on the macroscopic and microscopic characteristics of the microorganism previously isolated in dishes of Sabouraud Dextrose Agar. The macroscopic characteristics of growth (obverse and reverse) were analyzed. The microculture technique was performed for microscopic analysis (Olympus / CH20BIMF1100, 400x magnification).
RESULTS

According to the Brazilian Pharmacopeia, the acceptable microbiological limits of total viable bacteria of freshly marketed products are \(2 \times 10^2\) CFU/g or mL; for mold and yeasts, the limit is \(2 \times 10^1\) CFU/g or mL\(^4\). Considering this, 54.33% of the products (16 samples) analyzed were reproved in total viable bacteria counts and 40% (12 samples) failed regarding mold and yeast counts. Although the percentage of disapproval is based on specifications required for products without use, the result shows microbiological contamination of the lipstick samples available to the consumers for trial. The absence of bacterial growth in 6 samples and fungal growth in 16 samples may be related to the fact that these samples were exposed for less time or were not used. These data were not made available to the researchers because the establishments also did not know when the lipsticks were initially made available for consumer testing.

Total viable bacteria count in the lipstick samples ranged from 0 to \(1.9 \times 10^5\) CFU/g after incubation. The mold and yeast count ranged from 0 to \(7.3 \times 10^3\) CFU/g after incubation (Table 1).

The sample A12 was contaminated with \(S.\) aureus.

The presence of coagulase-negative Staphylococcus and \(Bacillus\) sp. was also detected (data not shown). The Gram-positive bacillus, sporulated, with growth after heat shock at 70°C and that reacted to catalase was considered \(Bacillus\) sp.\(^{18}\). None of the samples presented Pseudomonas aeruginosa, which should be also absent according to the specifications\(^9\).

The filamentous fungi identified in the lipstick were \(Cladosporium\) sp. and \(Aspergillus\) sp. (Figure 1).

Table 1 – Total count of viable bacteria and mold and yeast colony forming units (CFU)/g of lipsticks samples exposed in the pharmacies of South of Brazil (Passo Fundo, 2017).

Sample	Total viable bacteria count (CFU/g)	Total mold and yeast count (CFU/g)
A1	\(1.9 \times 10^2\) *	\(7.3 \times 10^1\) *
A2	\(8.5 \times 10^4\) **	\(7.4 \times 10^8\) *
A3	\(4.0 \times 10^2\) *	0
A4	\(3.6 \times 10^4\) *	0
A5	0	\(4.7 \times 10^8\) *
A6	\(4.1 \times 10^2\) *	0
A7	\(5.0 \times 10^2\) *	0
A8	\(3.9 \times 10^2\) *	0
A9	0	0
A10	\(3.6 \times 10^4\) *	0
A11	\(2.0 \times 10^2\) *	\(7.3 \times 10^3\) *
A12	\(1.5 \times 10^2\)	0
A13	\(1.0 \times 10^2\) *	\(2.7 \times 10^1\) *
A14	\(9.1 \times 10^2\) *	0
A15	\(5.0 \times 10^1\)	\(1.0 \times 10^1\)
A16	0	\(3.7 \times 10^1\) *
A17	0	0
A18	\(1.1 \times 10^3\) *	\(1.4 \times 10^2\) *
A19	\(5.5 \times 10^1\)	0
A20	\(1.0 \times 10^1\)	\(3.3 \times 10^1\) *
A21	\(4.5 \times 10^2\)	\(3.7 \times 10^1\) *
A22	\(1.1 \times 10^2\)	0
A23	\(5.4 \times 10^2\)	0
A24	\(1.5 \times 10^2\)	\(1.4 \times 10^2\) *
A25	\(5.0 \times 10^2\)	0
A26	\(5.5 \times 10^1\)	\(4.0 \times 10^1\) *
A27	\(1.4 \times 10^2\)	\(2.3 \times 10^1\) *
A28	0	0
A29	0	\(1.0 \times 10^1\)
A30	\(1.3 \times 10^2\) *	0

* Samples demonstrating amount of bacterial and fungi above specified limits by Farmacopeia\(^4\)
The cosmetics reached the market complying with microbiological specifications; however, this quality can be lost after contact with the consumer and/or environment. Studies report microbiological contaminations of cosmetics after use. Onurdağ, Özgen, and Duygu (2010) analyzed 73 cosmetic samples (eyelash masks, eyeshadows, bases and lipsticks), ten were contaminated, and the presence of Candida sp., Staphylococcus aureus and Escherichia coli was also detected. Analysis of cosmetic kits of shared use with 2802 samples (eyeshadows, lipsticks, bases and other unspecified products) obtained in commercial establishments in the United States detected contamination of 50% of cosmetics where 5% contained legally unacceptable microbial loads21. Moreover, 67% of 1345 eyeshadows exposed to consumers as testers for a period of 6 to 24 months were contaminated22. The presence of S. aureus, S. epidermidis, S. warneri, Bacillus sp., Klebsiella pneumoniae, Aspergillus sp., Fusarium sp. and Penicillium sp. was detected in eyeshadow samples, eyelash masks, and eyeliners23. Furthermore a recent work performed microbial analysis of used lipsticks (n = 80) and found 70% growth of microorganisms, principally Gram-positive organisms (93%) such as S. aureus, S. epidermidis, S. saprophyticus and Streptococci genus24.

Legislation requires an absence of the S. aureus in freshly produced topically used products, so sample A12 would be disapproved14,25. The genus Staphylococcus presents 32 species, many of them colonize the human skin and mucous membranes. Staphylococci are classified according to the coagulase test, among the coagulase-positive strains S. aureus is highlighted. This species is the most virulent of the genus and is associated with diseases mediated by toxins (food poisoning, toxic shock syndrome, scalded skin disease) and infectious processes such as impetigo, folliculitis, boil, carbuncle, skin wound infections, bacteremia, endocarditis, pneumonia, empyema, osteomyelitis, and septic arthritis. The dissemination of this bacterium can occur through direct contact between people or exposure to contaminated fomites18, such as the sample analyzed in this study. Other studies also reported the presence of S. aureus in cosmetics (eyelash masks, eyeshadows, bases and lipsticks20 and other unspecified products21).

The rigor of the microbiological quality control required in the cosmetics production avoids that these products reach the market with the degree of contamination detected in the study. In addition, the basic composition
of the lipsticks is wax, oil, pigments, fragrance, alcohol, preservatives and antioxidants, components that do not favor microbial growth due to lipophilic characteristics, with low water content. Therefore, the presence of *S. aureus* and high microorganism counts in the samples is related to the use of the lipsticks by many people. The microbial count found in the lipsticks was high, showing that shared use of cosmetics could bring risks to the health.

Filamentous fungi could cause damage through the production of toxins or by triggering infectious processes. Mycotoxins may cause allergic reactions, cutaneous necrosis, leukopenia, immunosuppression, cancer, impaired hepatic or renal function, and neurological damage. The genus *Aspergillus* found in the samples under study is one of the main producers of mycotoxins. This genus is easily dispersed in the environment through its reproductive structures, it is found in soil, water, and air. Beside the mycotoxins production, it can trigger infectious processes, like the aspergillosis in immunocompromised patients. It grows fast, developing in 3 days with a white surface that becomes yellow, green, brown or black, depending on the species. The reverse could be white, gold or brown, and its texture is velvety or cottony. Its conidiophore has clusters of conidia at the tips forming a kind of swollen vesicle. *Cladosporium* sp. is a filamentous fungus found in the environment that can trigger allergic processes and subcutaneous mycotic infections. It grows in 7 days with greenish, brownish or grayish-black velvety surface, piling up and becoming slightly folded. The reverse is black. It has dark septate hypha and the brown, smooth and oval conidia. Other study found *Aspergillus fumigatus*, *Penicillium* sp. and *Cladosporium* sp. in cosmetics powders.

CONCLUSION

The lipsticks exposed to consumer trials presented microbial contamination, and are, consequently, not safe. The hypothesis of this study was confirmed. 54.33% and 40.0% of the samples demonstrated excessive amounts of bacteria and fungi, respectively. The microorganisms *S. aureus*, coagulase-negative *Staphylococcus*, *Bacillus* sp., *Cladosporium* sp. and *Aspergillus* sp. were detected. A practical and low-cost alternative to solve this problem is the implementation of disposable brushes for the application of the product. This could reduce the microbiological contamination since it avoids the direct contact of the product with the consumer.
REFERENCES

1. Brasil. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC no 7, de 10 de fevereiro de 2015. Dispõe sobre os requisitos técnicos para a regularização de produtos de higiene pessoal, cosméticos e perfumes e dá outras providências [Internet]. 2015 [cited 2018 Mar 3]. Available from: http://portal.anvisa.gov.br/documents/10181/286785%283%29RDC_07_2015_COMP.pdf/bttca3b2-454d-4b05-8749-2a2646b096bc8

2. ABIHPEC. Associação Brasileira da Indústria de Higiene Pessoal, Perfumaria e Cosméticos. Anuário. [Internet]. 2019 [cited 2020 Jul 7]. Available from: https://abihpec.org.br/anuario-2019/mobile/index.html?p=8

3. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução da Diretoria Colegiada - RDC no 48 de 2013. Aprova o Regulamento Técnico de Boas Práticas de Fabricação para Produtos de Higiene Pessoal, Cosméticos e Perfumes, e dá outras providências. Ministério [Internet]. 2013 [cited 2017 Jul 7]. Available from: www.anvisa.gov.br

4. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Guia para Avaliação de Segurança de Produtos Cosméticos Guia para Avaliação de Segurança de Produtos Cosméticos. Ministério da Saúde. [Internet]. 2012 [cited 2017 Jul 1]. Available from: www.anvisa.gov.br

5. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução da Diretoria Colegiada - RDC no 332 de 2005. Determina que as empresas fabricantes e/ou importadoras de Produtos de Higiene Pessoal, Cosméticos e Perfumes, instaladas no Território Nacional deve [Internet]. 2005 [cited 2017 Jul 2]. Available from: www.anvisa.gov.br

6. Vigan M, Castelain F. Cosmetovigilance: definition, regulation and use “in practice.” Eur J Dermatology. 2014;24(6):643-9.

7. Smart R, Spooner DF. Microbiological spoilage in pharmaceuticals and cosmetics. J Soc Cosmet Chem Soc Cosmet Chem Gt Britain. 1972;23:721–77.

8. Álvez-Lerm A, Mauel E, Terradas R, Segura C, Planells I, Coll P, et al. Moisturizing body milk as a reservoir of Burkholderia cepacia. Outbreak of nosocomial infection in a multidisciplinary intensive care unit. Crit Care. 2008;12(1):1–6.

9. Kuty PK, Moody B, Guillon JS, Zervos M, Ajunni M, Washburn R, et al. Multistate outbreak of Burkholderia cepacia colonization and infection associated with the use of intrinsically contaminated alcohol-free mouthwash. Chest [Internet]. 2007;132(6):1825–31. Available from: http://dx.doi.org/10.1378/chest.07-1545

10. Matrician L, Ànge G, Burns S, Fanning WL, Kioski C, Cage GD, et al. Outbreak of Nosocomial Burkholderia cepacia Infection and Colonization Associated With Intrinsically Contaminated Mouthwash. Infect Control Hosp Epidemiol. 2000;21(11):739–41.

11. Molina-Caballero JC, Bellos-Rivero M, Alvarez-León EE, Sánchez-AMM, Sánchez-Palacios M, Alvarez-D, et al. Intrinsically Contaminated Alcohol-Free Mouthwash Implicated in a Nosocomial Outbreak of Burkholderia cepacia Colonization and Infection. Infect Control Hosp Epidemiol. 2006;27(11):1281–2.

12. Lundov MD, Moesby L, Zachariae C, Johansen JD. Contamination versus preservation of cosmetics: A review on legislation, usage, infections, and contact allergy. Contact Dermatitis. 2009;60(2):70–8.

13. Brasil. Ministério da Saúde. ANVISA. RDC RESOLUÇÃO - RDC No 4, DE 30 DE JANEIRO DE 2014 Dispõe sobre os requisitos técnicos para a regularização de produtos de higiene pessoal, cosméticos e perfumes e dá outras providências. [Internet]. 2014 [cited 2019 May 3]. Available from: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2014/rdc0004_30_01_2014.html

14. Brasil. Ministério da Saúde/M, Agência Nacional de Vigilância Sanitária - ANVISA. Farmacopeia Brasileira, 6a edição. Farm Bras 6a edição [Internet]. 2019.1; Available from: http://portal.anvisa.gov.br/

15. Pinto TJA, Kaneko TM, Pinto AF. Controle Biológico de Qualidade de Produtos Farmacêuticos, correlatos e cosméticos. 4th ed. Barueri: Manole; 2015.

16. Koneman EW, Allen SD, Janda WM. Diagnóstico Microbiológico: texto e atlas colorido. 6th ed. Rio de Janeiro: Guanabara Koogan; 2008.

17. Fisher F, Cook BN. Micolologia Fundamentado. São Paulo: Revinter; 2001.

18. Murray PR, Rosenthal KS, Pfaller MA, Filho JP de A, Barros-Mazon S de. Microbiologia Médica. 8th ed. Rio de Janeiro: Elsevier; 2017.

19. Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira [Internet], 5th ed. Anvisa, editor. Vol. 1, Diário Oficial da União. Brasília; 2010. 546 p. Available from: http://www.anvisa.gov.br/hotsite/cd_farmacopeia/pdf/volume1.pdf

20. Onurdağ FK, Özgen S, Duygu A. Microbiological investigation of used cosmetic samples. Hacettepe Univ J Fac Pharm. 2010;30(1):1–16.

21. Tran TT, Hitchins AD. Microbial survey of shared-use cosmetic test kits available to the public. J Ind Microbiol. 1994;13(6):389–91.

22. Dawson NL, Reinhardt DJ. Microbial flora of in-use, display eye shadow testers and bacterial challenges of unused eye shadows. Appl Environ Microbiol. 1981;42(2):297–302.

23. El-Bazza EZ, El-Tablawy SY, Hashem AE, Nasser HH. Evaluation of the Microbial Contamination of some Eye-make up Products before and after Use. BioHealth Sci Bull. 2009;12(6):68–75.

24. Siya K, Thomas J, Kumar RBV, Saij AM, Iype AK, Akhil S. Lipsticks: The Microbiological Cellar: An Original Study. J Microsc Ultrastruct. 2019;7(4):194–197.

25. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução da Diretoria Colegiada - RDC no 481 de 1999. Estabelece os parâmetros de controle microbiológico para os produtos de higiene pessoal, cosméticos e perfumes. Ministério da Saúde. [Internet]. 1999 [cited 2017 Jul 2]. Available from: www.anvisa.gov.br

26. Sawant SS, Kelkar-Mane V. Study of bacterial contaminants in local as well as branded lipsticks before and after consumer use. Int J Recent Adv Multidiscip Res [Internet]. 2015;2(1):149–54. Available from: http://www.ijramr.com/sites/default/files/issues-pdf/089.pdf
27. Hussein H., Brasel J. Toxicity, metabolism and impact of mycotoxins on human and animals. Toxicology. 2001;167:101–134.
28. Pitt JI. Toxigenic fungi and mycotoxins. Br Med Bull. 2000;56(1):184–92.
29. Larone HD. Medically important fungi: A guide to identification. 2nd ed. Washington DC: ASM Press; 1995.
30. Grinn-Gofron A, Rapiejko P. Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central-Eastern Poland in 2004-2006 and relation to some meteorological factors. Atmos Res. 2009;93(4):747–58.
31. Pinto FCJ, Lima DB De, Agustini BC, Dallagassa CB, Shimabukuro MF, Chimelli M, et al. Morphological and Molecular Identification of Filamentous Fungi Isolated from Cosmetic Powders. Brazilian Arch Biol Technol. 2012;55(December):897–901.

Received in april 2020.
Accepted in july 2020.
Contaminação microbiológica em provadores de batons disponíveis aos consumidores

Mireli Vassoler*
Fabiana Tonial*
Silvia Cristina Fagundes*
Michelle Alana Fagundes*
Náglia Bernarda Zortéa*
Luciana Grazziotin Rossato-Grando*
Charise Dallazem Bertol*

DOI: 10.15343/0104-7809.202044261268

Resumo

A contaminação microbiológica de produtos farmacêuticos e cosméticos representa um problema de saúde pública pois pode ocasionar infecções. Antes de comprar um cosmético específico, muitos consumidores o testam em sua própria pele, aumentando a suscetibilidade a contaminações microbiológicas. Nossa hipótese é que os provadores de batons disponíveis em farmácias representam uma fonte de contaminação microbiológica em potencial. Este estudo analisou a qualidade microbiológica de 30 amostras de batons, coletadas aleatoriamente, de diferentes fabricantes, disponíveis em provadores para os consumidores em farmácias do sul do Brasil (quinze coletadas em Casca, cinco em Ciriáco e dez em Passo Fundo). A qualidade microbiológica dos batons foi avaliada por: contagem total de bactérias e fungos e leveduras viáveis e pesquisa dos patógenos *Staphylococcus aureus* e *Pseudomonas aeruginosa*. Verificou-se que as quantidades variaram de 1,0 x 10¹ a 1,9 x 10⁵ UFC / g de bactérias viáveis e de 1,0 x 10¹ a 7,3 x 10³ UFC / g de bolores e leveduras nos batons. 54,33% e 40% das amostras foram reprovadas na contagem total de bactérias e bolores e leveduras viáveis, respectivamente. *S. aureus*, *Aspergillus* sp. e *Cladosporium* sp. foram encontrados nas amostras. Embora a composição cerose dos batons desfavoreça a contaminação microbiana, esta pesquisa revela um grande número de microrganismos. Nossa hipótese de que os provadores de batons apresentam alta carga microbiológica foi confirmada. Microrganismos patogênicos oportunistas podem se tornar agentes infecciosos em pacientes com sistema imunológico comprometido. O uso de aplicadores descartáveis é proposto como uma alternativa para evitar a contaminação microbiológica dos cosméticos.

Palavras-chave: Fungos. Contaminação microbiana. Conservantes. Controle de qualidade. Estafilococos.

INTRODUÇÃO

Cosméticos, produtos de higiene pessoal, e perfumes são preparações constituídas por substâncias naturais ou sintéticas, de uso externo nas diversas partes do corpo humano, pele, sistema capilar, unhas, lábios, órgãos genitais externos, dentes e membranas mucosas da cavidade oral, com o objetivo exclusivo ou principal de limpá-los, perfumá-los, alterar sua aparência e ou corrigir odores corporais e ou protegê-los ou mantê-los em bom estado¹.

A Associação Brasileira da Indústria de Higiene Pessoal, Perfumaria e Cosméticos relata que o Brasil é o quarto maior mercado consumidor global de produtos de higiene pessoal, perfumaria e cosméticos, com 6,2% de participação de mercado e é responsável por um total de US$ 30 bilhões em vendas

*Universidade de Passo Fundo. Passo Fundo/ RS, Brasil
E-mail: charise@upf.br

Mundo da Saúde 2020,44:261-268, e0442020
ao consumidor em 2018, de acordo com um estudo da Euromonitor. O Brasil está atrás apenas dos EUA (18,3% com US$ 89,5 bilhões), China (12,7% com US$ 62 bilhões) e Japão (7,7% com US$ 37,5 bilhões). No Brasil, o consumo de maquiagem é o quinto no ranking mundial.

Os testes físico-químicos e microbiológicos realizados pelo fabricante ou importador dos cosméticos garantem a segurança, a promoção e a proteção da saúde dos usuários, evitando a transmissão de doenças. A cosmetovigilância monitora problemas relacionados ao uso, defeitos de qualidade e efeitos indesejáveis após a comercialização dos produtos. Microrganismos excessivos trazem riscos à saúde. As endotoxinas e metabólitos produzidos por microrganismos podem causar abrasão, irritação e alergias na pele e levar à deterioração do produto, alterando o cheiro, cor, viscosidade e desempenho. Os cosméticos contaminados (leite hidratante e enxaguatório bucal) levaram a surtos de infecções nosocomiais.

Além disso, raramente se suspeita de produtos cosméticos como causa de infecções de pele, por exemplo, em indivíduos com doenças de pele anteriores, como dermatite alérgica. Os fabricantes não comunicam ao público quando seus cosméticos são devolvidos devido a contaminação excessiva. Além disso, não se sabe se os consumidores estão cientes de que seus produtos estão contaminados ou apenas os jogam fora por causa de mudanças óbvias, por exemplo, alterações de odor. A contaminação em uso ocorre frequentemente sem alterações visíveis no produto, tornando impossível saber se os produtos estão contaminados.

A produção de cosméticos é regulamentada pela Agência Nacional de Vigilância Sanitária e, de acordo com a legislação, um dos requisitos técnicos necessários para a venda de cosméticos é a análise microbiológica. Os fabricantes devem realizar todos os testes físico-químicos e microbiológicos de matérias-primas e produtos acabados. A Farmacopeia Brasileira traz as especificações microbiológicas para produtos utilizados topicalmente onde os patógenos Staphylococcus aureus e Pseudomonas aeruginosa devem estar ausentes, e são aceitos no máximo 2 x 10^2 UFC / g de bactérias e 2 x 10^1 UFC / g de fungos.

O batom contém cera, óleos, antioxidantes e emolientes. Os microrganismos crescem melhor em meios aquosos, ao invés de oleosos, e a sobrevivência dos microrganismos está diretamente associada ao nível mínimo de atividade da água. Dessa forma, a composição do batom não favorece o crescimento microbiano.

O uso compartilhado de maquiagens pode levar a uma alta contaminação microbiana atribuída, na maioria dos casos, ao contato com a pele, mucosa ou ambiente. O batom é um cosmético de uso popular e, antes de sua compra, é comum o consumidor experimentá-lo para avaliar a textura e a cor. Batons expostos em farmácias e mercados são usados repetidamente por diferentes clientes, e esse hábito pode levar a um número excessivo de microrganismos no produto, incluindo patógenos. Nossa hipótese é que os batons disponíveis nos provadores apresentem uma carga microbiológica alta. A contaminação microbiológica de cosméticos pode trazer riscos à saúde do consumidor, portanto, o presente trabalho buscou verificar a qualidade microbiológica dos batons disponíveis ao consumidor para prova em farmácias.
METODOLOGIA

Este trabalho é um estudo experimental. As análises foram realizadas no Laboratório de Controle de Qualidade Biológico de Medicamentos da Universidade de Passo Fundo (Passo Fundo -RS).

Amostras

Foram coletadas aleatoriamente trinta amostras de batons de diferentes fabricantes, em provadores de farmácias da região norte do Rio Grande do Sul (RS) (quinze amostras foram coletadas em Casca, cinco em Ciriaco e dez em Passo Fundo) em sacos plásticos estéreis com o auxílio de um bisturi estéril.

Contagem de microrganismos viáveis totais

0,5 g de cada amostra de batom foram solubilizados em 4,5 mL de miristato de isopropil estéril com o auxílio de um agitador de tubos (Biomatic) por 3 minutos e submetidos a banho de ultrassom (Unique / USC 2850-A) por 15 minutos. Depois disso, as diluições de 1:10, 1: 100, 1: 1000 e 1: 10000 foram preparadas usando o mesmo diluente. Pipetaram-se 0,5 mL das diluições e adicionaram-se em placas de Petri contendo aproximadamente 15 mL de ágar de soja-caseína para contagem bacteriana ou ágar Sabouraud-dextrose para contagem de bolores e leveduras. As diluições foram adicionadas pelo método Pour plate. As condições de incubação foram 5 dias a 35 °C ± 1 °C para a pesquisa de bactérias (estufa Biopar®) e 7 dias a 25 °C ± 1 °C para fungos (estufa De Leo®). Os crescimentos foram avaliados diariamente. Foi calculada a contagem total de unidades formadoras de colônias (UFC) por g14. Como controle negativo, foi utilizada uma placa contendo apenas meio de cultura.

Pesquisa dos patógenos Staphylococcus aureus e Pseudomonas aeruginosa

Colocaram-se 0,3 g de cada amostra de batom em caldo de enriquecimento (5% de peptona, 1,5% de extrato de levedura, 1,5% de extrato de carne, 3,5% de NaCl, 1% de dextrose, 3,6% de fosfato de potássio dibásico, 3,68% de fosfato de potássio dibásico, 1,32% de fosfato de potássio monobásico, 1% de Tween e água) durante 48 horas a 35 °C. Em seguida, os tubos foram colocados em banho ultrassônico por 20 minutos. Após a incubação, os caldos foram espalhados com uma alça de platina sobre a superfície do ágar Sal-Mannitol para pesquisa de S. aureus e ágar Cetrimida para pesquisa de P. aeruginosa. As placas de Petri foram incubadas a 35 °C por 48 horas.

As colônias de S. aureus crescidas em ágar Sal-Mannitol apresentam consistência suave cercada por uma zona de cor amarela. Para confirmar a identidade da colônia suspeita, o microrganismo foi submetido ao ensaio de coloração Gram, catalase e coagulase16.

Pesquisa e identificação de fungos filamentosos

A identificação dos fungos filamentosos foi baseada nas características macroscópicas e microscópicas do microrganismo previamente isolado em placas de ágar Sabouraud Dextrose. As características macroscópicas do crescimento (verso e reverso) foram analisadas. A técnica de microcultura foi realizada para análise microscópica (Olympus / CH20BIMF1100, aumento de 400x)17.
RESULTADOS

De acordo com a Farmacopeia Brasileira, os limites microbiológicos aceitáveis para bactérias viáveis totais em produtos não usados são \(2 \times 10^2\) UFC / g ou mL; e, para mofo e leveduras, o limite é \(2 \times 10^1\) UFC / g ou mL\(^1\). Considerando esses limites, 54,33% dos produtos (16 amostras) analisadas foram reprovadas na contagem total de bactérias e 40% (12 amostras) reprovaram quanto as quantidades de mofo e leveduras. Embora o percentual de reprovação seja baseado nas especificações exigidas para produtos sem uso, o resultado mostra contaminação microbiológica das amostras de batons disponíveis para a prova dos consumidores. A ausência de crescimento bacteriano em 6 amostras e crescimento de fungos em 16 amostras pode estar relacionada ao fato de que essas amostras foram expostas por menos tempo ou ainda não foram utilizadas. Esses dados não foram disponibilizados para os pesquisadores porque os estabelecimentos também não sabiam desde quando os batons estavam disponíveis para a prova dos consumidores.

A contagem total de bactérias viáveis nas amostras de batom variou de 0 a \(1,9 \times 10^5\) UFC / g após a incubação. A contagem de fungos e leveduras variou de 0 a \(7,3 \times 10^3\) UFC / g após a incubação (Tabela 1).

A amostra A12 estava contaminada com \textit{S. aureus}.

A presença de \textit{Staphylococcus} coagulase-negativo e \textit{Bacillus} sp. também foi detectada (dados não apresentados). Os bacilos graminpositivos, que esporularam, que apresentaram crescimento após choque térmico a 70 °C e que reagiram à catalase foram considerados \textit{Bacillus} sp.\(^1\). Nenhuma das amostras apresentou \textit{Pseudomonas aeruginosa}, que também deve estar ausente de acordo com as especificações\(^1\).

Os fungos filamentosos identificados nos batons foram \textit{Cladosporium} sp. e \textit{Aspergillus} sp. (Figura 1).

Tabela 1 – Contagem total de bactérias e fungos viáveis totais (UFC/g) de amostras de batons expostas nas farmácias do Sul do Brasil (Passo Fundo, 2017).

Amostra	Contagem de bactérias viáveis totais (UFC/g)	Contagem de fungos viáveis totais (UFC/g)
A1	\(1.9 \times 10^5\)^*	\(7.3 \times 10^1\)^*
A2	\(8.5 \times 10^4\)^*	\(7.4 \times 10^9\)^*
A3	\(4.0 \times 10^9\)^*	0
A4	\(3.6 \times 10^9\)^*	0
A5	0	\(4.7 \times 10^8\)^*
A6	\(4.1 \times 10^6\)^*	0
A7	\(5.0 \times 10^6\)^*	0
A8	\(3.9 \times 10^9\)^*	0
A9	0	0
A10	\(3.6 \times 10^6\)^*	0
A11	\(2.0 \times 10^6\)^*	\(7.3 \times 10^9\)^*
A12	\(1.5 \times 10^9\)^*	0
A13	\(1.0 \times 10^9\)^*	\(2.7 \times 10^8\)^*
A14	\(9.1 \times 10^9\)^*	0
A15	\(5.0 \times 10^9\)^*	\(1.0 \times 10^9\)^*
A16	0	\(3.7 \times 10^9\)^*
A17	0	0
A18	\(1.1 \times 10^9\)^*	\(1.4 \times 10^9\)^*
A19	\(5.5 \times 10^9\)^*	0
A20	\(1.0 \times 10^9\)^*	\(3.3 \times 10^9\)^*
A21	\(4.5 \times 10^9\)^*	\(3.7 \times 10^9\)^*
A22	\(1.1 \times 10^9\)^*	0
A23	\(5.4 \times 10^9\)^*	0
A24	\(1.5 \times 10^9\)^*	\(1.4 \times 10^9\)^*
A25	\(5.0 \times 10^9\)^*	0
A26	\(5.5 \times 10^9\)^*	\(4.0 \times 10^9\)^*
A27	\(1.4 \times 10^9\)^*	\(2.3 \times 10^9\)^*
A28	0	0
A29	0	\(1.0 \times 10^9\)^*
A30	\(3.7 \times 10^9\)^*	0

* Amostras que apresentaram quantidades de bactérias e fungos acima dos limites especificados pela Farmacopéia\(^1\)
DISCUSSÃO

Espera-se que os cosméticos cheguem ao mercado atendendo às especificações microbiológicas. No entanto, essa qualidade pode ser perdida após o contato com o consumidor e / ou o meio ambiente. Estudos relatam contaminações microbiológicas de cosméticos após o uso. Onurdağ, Özgen, e Duygu (2010) analisaram 73 amostras de cosméticos (máscaras para cílios, sombras, bases e batons), dez estavam contaminadas e a presença de *Candida* sp., *Staphylococcus aureus* e *Escherichia coli* também foi detectada. A análise de kits de cosméticos de uso compartilhado com 2802 amostras (sombras, batons, bases e outros produtos não especificados) obtidas em estabelecimentos comerciais nos Estados Unidos detectou contaminação de 50% dos cosméticos, com 5% contendo cargas microbianas legalmente inaceitáveis. Além disso, 67% das 1345 sombras expostas aos consumidores como provadores por um período de 6 a 24 meses estavam contaminadas. A presença de *S. aureus*, *S. epidermidis*, *S. warneri*, *Bacillus* sp., *Klebsiella pneumoniae*, *Aspergillus* sp., *Fusarium* sp. e *Penicillium* sp. foi detectada em amostras de sombras, máscaras para cílios e delineadores. Além disso, um trabalho recente realizou análise microbiana de batons usados (*n* = 80) e encontrou 70% de crescimento de microrganismos, principalmente organismos Gram-positivos (93%) como *S. aureus*, *S. epidermidis*, *S. saprophyticus* e gênero *Streptococcus*. A legislação exige a ausência de *S. aureus* em produtos de uso tópico recém-fabricados, então, a amostra A12 estaria reprovada. O gênero *Staphylococcus* apresenta 32 espécies, muitas das quais colonizam a pele e as mucosas humanas. Os estafilococos são classificados de acordo com o teste da coagulase, dentre as cepas coagulase-positivas *S. aureus* é destacado. Esta espécie é a mais virulenta do gênero e está associada a doenças mediadas por toxinas (intoxicação alimentar, síndrome do choque tóxico, doença de pele escaldada) e processos infecciosos como impetigo, foliculite, febre, carbúnculo, infecções de feridas na pele, bacteremia, endocardite, pneumonia, empiema, osteomielite e artrite séptica. A disseminação dessa bactéria pode ocorrer através do contato direto entre pessoas ou exposição a fômites contaminados, conforme a amostra analisada neste estudo. Outros estudos também relataram a presença de *S. aureus* em cosméticos (máscaras para cílios, sombras, bases e batons e sombras, batons, bases e outros produtos não
especificados21.

O rigor do controle de qualidade microbiológico exigido na produção de cosméticos evita que esses produtos cheguem ao mercado com o grau de contaminação detectado neste estudo. Além disso, a composição básica dos batons é cera, óleo, pigmentos, fragrâncias, álcool, conservantes e antioxidantes15,26, componentes que teoricamente não favorecem o crescimento microbiano devido às características lipofílicas, com baixo teor de água. Portanto, a presença de \textit{S. aureus} e a alta contagem de microrganismos detectada nas amostras estão relacionadas ao uso dos batons por muitas pessoas. A contagem microbiana encontrada nos batons foi alta, mostrando que o uso compartilhado de cosméticos pode trazer riscos à saúde.

Os fungos filamentosos podem causar danos através da produção de toxinas ou desencadear processos infecciosos. As micotoxinas podem causar reações alérgicas, necrose cutânea, leucopenia, imunossupressão, câncer, comprometimento da função hepática ou renal e dano neurológico27,28. O gênero \textit{Aspergillus} encontrado nas amostras estudadas é um dos principais produtores de micotoxinas27. Este gênero é facilmente disperso no ambiente através de suas estruturas reprodutivas, sendo encontrado no solo, na água e no ar. Além da produção de micotoxinas, pode desencadear processos infecciosos, como a aspergilose, em pacientes imunocomprometidos. \textit{Aspergillus} cresce rapidamente, desenvolvendo-se em 3 dias com uma superfície branca que se torna amarela, verde, marrom ou preta, dependendo da espécie. O inverso pode ser branco, dourado ou marrom. Sua textura é aveludada ou felpuda. Seu conidióforo possui aglomerados de conídios nas pontas, formando uma espécie de vesícula inchada17,29. \textit{Cladosporium} sp. é um fungo filamentososo encontrado no ambiente30 que pode desencadear processos alérgicos e infecções micóticas subcutâneas. Cresce em 7 dias com superfície aveludada esverdeada, acastanhada ou preta acinzentada, acumulando-se e ficando ligeiramente dobrada. O inverso é preto. Possui hifa septada escura e conídios marrons, lisos e ovais29. Outro estudo encontrou \textit{Aspergillus fumigatus}, \textit{Penicillium} sp. e \textit{Cladosporium} sp. em cosméticos em pó31. Os batons expostos em provadores para consumidores apresentaram contaminação microbiiana, consequentemente não são seguros. A hipótese do trabalho foi confirmada. 54,33\% e 40,0\% das amostras apresentam quantidades excessivas de bactérias e fungos, respectivamente. Os microrganismos \textit{S. aureus}, \textit{Staphylococcus} coagulase-negativo, \textit{Bacillus} sp., \textit{Cladosporium} sp. e \textit{Aspergillus} sp. foram detectados. Uma alternativa prática e de baixo custo para solucionar o problema é a implementação de aplicadores descartáveis para a aplicação do produto. Isso poderia reduzir a contaminação microbiológica, pois evita o contato direto do produto com o consumidor.
REFERÊNCIAS

1. Brasil. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC no 7, de 10 de fevereiro de 2015. Dispõe sobre os requisitos técnicos para a regularização de produtos de higiene pessoal, cosméticos e perfumes e dá outras providências [Internet]. 2015 [cited 2018 Mar 3]. Available from: http://portal.anvisa.gov.br/documents/10181/2867685/803129RDC_07_2015_COMP.pdf/6b6ca362-454d-4b05-8749-2a264b90b6c8
2. ABIHPEC. Associação Brasileira da Indústria de Higiene Pessoal, Perfumaria e Cosméticos. Anuário. [Internet]. 2019 [cited 2020 Jul 7]. Available from: https://abihpec.org.br/anuario-2019/mobile/index.html?p=8
3. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução da Diretoria Colegiada - RDC no 48 de 2013. Aprova o Regulamento Técnico de Boas Práticas de Fabricação para Produtos de Higiene Pessoal, Cosméticos e Perfumes, e dá outras providências. [Internet]. 2013 [cited 2017 Jul 7]. Available from: www.anvisa.gov.br
4. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Guia para Avaliação de Segurança de Produtos Cosméticos Guia para Avaliação de Segurança de Produtos Cosméticos, Ministério da Saúde. [Internet]. 2012 [cited 2017 Jul 1]. Available from: www.anvisa.gov.br
5. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução da Diretoria Colegiada - RDC no 332 de 2005. Determina que as empresas fabricantes e/ou importadoras de Produtos de Higiene Pessoal, Cosméticos e Perfumes, instalados no Território Nacional deve [Internet]. 2005 [cited 2017 Jul 2]. Available from: www.anvisa.gov.br
6. Vigan M, Castelanf L. Cosmetovigilance: definition, regulation and use “in practice.” Eur J Dermatology. 2014;24(6):643–9.
7. Smart R, Spooner DF. Microbiological spoilage in pharmaceuticals and cosmetics. J Soc Cosmet Chem Soc Cosmet Chem Gt Britain. 1972;23:721–37.
8. Alvarez-Lema F, Mauel F, Terradas R, Segura C, Planells I, Coll P, et al. Moisturizing body milk as a reservoir of Burkholderia cepacia: Outbreak of nosocomial infection in a multidisciplinary intensive care unit. Crit Care. 2008;12(1):1–6.
9. Kuty PK, Moody B, Gullion JS, Zeros M, Ajluni M, Washburn R, et al. Multistate outbreak of Burkholderia cepacia colonization and infection associated with the use of intrinsically contaminated alcohol-free mouthwash. Chest [Internet]. 2007;132(6):1825–31. Available from: http://dx.doi.org/10.1378/chest.07-1545
10. Matrician L, Ange G, Burns S, Fanning WL, Kioski C, Cage GD, et al. Outbreak of Nosocomial Burkbolheria cepacia Infection and Colonization Associated With Intrinsically Contaminated Mouthwash. Infect Control Hosp Epidemiol. 2000;21(11):739–41.
11. Molina-Cabrillana J, Bolaros-Rivero M, Alvarez-León EE, Sánchez Álvarez M, Sánchez-Palacios M, Alvarez D, et al. Intrinsically Contaminated Alcohol-Free Mouthwash Implicated in a Nosocomial Outbreak of Burkholderia cepacia Colonization and Infection . Infect Control Hosp Epidemiol. 2006;27(11):1281–2.
12. Lundov MD, Moesby L, Zachariace C, Johansen JD. Contamination versus preservation of cosmetics: A review on legislation, usage, infections, and contact allergy. Contact Dermatitis. 2009;60(2):70–8.
13. Brasil. Ministério da Saúde. ANVISA. RDC RESOLUÇÃO - RDC No 4, DE 30 DE JANEIRO DE 2014 Dispõe sobre os requisitos técnicos para a regularização de produtos de higiene pessoal, cosméticos e perfumes e dá outras providências. [Internet]. 2014 [cited 2019 May 3]. Available from: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2014/rdc0004_30_01_2014.html
14. Brasil. Ministério da Saúde-MS, Agência Nacional de Vigilância Sanitária - ANVISA. Farmacopeia Brasileira, 6a edição [Internet]. 2019;1. Available from: http://portal.anvisa.gov.br
15. Pinto TJA, Kaneko TM, Pinto AF. Controle Biológico de Qualidade de Produtos Farmacêuticos, correlatos e cosméticos. 4th ed. Barueri: Manole; 2015.
16. Koneman EW, Allen SD, Janda WM. Diagnóstico Microbiológico: texto e atlas colorido. 6th ed. Rio de Janeiro: Guanabara Koogan; 2015.
17. Koneman EW, Allen SD, Janda WM. Diagnóstico Microbiológico: texto e atlas colorido. 6th ed. Rio de Janeiro: Guanabara Koogan; 2015.
18. Murray PR, Rosenthal KS, Pfaller MA, Filho JP de A, Barros-Mazon S de. Microbiologia Médica. 8th ed. Rio de Janeiro: Elsevier; 2017.
19. Fisher F, Cook BN. Micologia Fundamentos e Diagnostico. São Paulo: Revinter; 2001.
20. Koneman EW, Allen SD, Janda WM. Diagnóstico Microbiológico: texto e atlas colorido. 6th ed. Rio de Janeiro: Guanabara Koogan; 2015.
21. Brasil. Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada - RDC no 481 de 1999. Estabelece os parâmetros de controle microbiológico para os produtos de higiene pessoal, cosméticos e perfumes. Ministério da Saúde. [Internet]. 1999 [cited 2017 Jul 2]. Available from: www.anvisa.gov.br
22. El-Bazza EZ, El-Tablawy SY, Hashem AE, Nasser HH. Evaluation of the Microbial Contamination of some Eye-make up Products before and after Use. Biohealth Sci Bull. 2009;1(2):68–75.
23. El-Bazza EZ, El-Tablawy SY, Hashem AE, Nasser HH. Evaluation of the Microbial Contamination of some Eye-make up Products before and after Use. Biohealth Sci Bull. 2009;1(2):68–75.
24. Siya K, Thomas J, Kumar RBV, Saji AM, Iype AK, Akhil S. Lipsticks: The Microbial Cellar: An Original Study. J Microsc Ultrastruct. 2019;7(4):194–197.
25. Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Resolução da Diretoria Colegiada - RDC no 481 de 1999. Estabelece os parâmetros de controle microbiológico para os produtos de higiene pessoal, cosméticos e perfumes. Ministério da Saúde. [Internet]. 1999 [cited 2017 Jul 2]. Available from: www.anvisa.gov.br
26. Sawant SS, Kelkar-Mane V. Study of bacterial contaminants in local as well as branded lipsticks before and after consumer use. Int J Recent Adv Multidiscip Res [Internet]. 2015;2(1):149–54. Available from: http://www.ijramc.com/sites/default/files/issues-pdf/089.pdf
27. Hussein H., Brasel J. Toxicity, metabolism and impact of mycotoxins on human and animals. Toxicology. 2001;167:101–134.
28. Pitt JI. Toxigenic fungi and mycotoxins. Br Med Bull. 2000;56(1):184–92.
29. Larone HD. Medically important fungi: A guide to identification. 2nd ed. Washington DC: ASM Press; 1995.
30. Grinn-Gofroń A, Rapiejko P. Occurrence of Cladosporium spp. and Alternaria spp. spores in Western, Northern and Central-Eastern Poland in 2004-2006 and relation to some meteorological factors. Atmos Res. 2009;93(4):747–58.
31. Pinto FCJ, Lima DB De, Agustini BC, Dallagassa CB, Shimabukuro MF, Chimelli M, et al. Morphological and Molecular Identification of Filamentous Fungi Isolated from Cosmetic Powders. Brazilian Arch Biol Technol. 2012;55(December):897–901.