EFFECT OF TEMPERATURE AND EXTRACTION TIME ON THE PROCESS TO OBTAIN SODIUM ALGINATE FROM *Macrocystis pyrifera*

Dora Luz Arvizú-Higuera*
Gustavo Hernández-Carmona**
Y. Elizabeth Rodríguez-Montesinos

Centro Interdisciplinario de Ciencias Marinas
Apartado postal 592
La Paz, Baja California Sur, México 23000
*E-mail: gcarmona@vmredipn.ipn.mx

Received in September of 1995; accepted in July of 1996

RESUMEN

Se analizó la etapa de extracción alcalina en el proceso de producción de alginato de sodio a partir del alga *Macrocystis pyrifera*. Se compararon los tratamientos de extracción en frío (28°C) y en caliente (80°C) para determinar el efecto de la temperatura de extracción sobre el rendimiento y viscosidad del producto final, empleando muestras recolectadas en Bahía Tortugas, Baja California Sur (México), en el verano de 1994. Para el tratamiento en caliente se obtuvo un rendimiento de 19.10% y una viscosidad de 398 cps, mientras que en el proceso en frío el rendimiento fue de 15.53%, con una viscosidad de 466 cps, por lo que se concluye que con la extracción en caliente se tiene un rendimiento significativamente mayor que con la extracción en frío, y la calidad en términos de viscosidad no fue significativamente diferente. Se determinó el efecto del tiempo de tratamiento durante la etapa de extracción en el proceso en caliente (80°C), con muestras de alto rendimiento recolectadas en Bahía Tortugas en el otoño de 1990, con el fin de determinar el tiempo mínimo de extracción en el cual se puede obtener un producto final de buena calidad, en términos de viscosidad, y un alto rendimiento. Se probaron tiempos de extracción de 90 a 165 minutos a una temperatura de 80°C. No se encontró diferencia significativa entre los valores de rendimiento y viscosidad en el intervalo de temperatura estudiado, por lo que se concluye que el tiempo mínimo de extracción es de 90 minutos; sin embargo, si se desea llegar al final de la reacción se debe prolongar el tiempo de extracción a 120 minutos.

Palabras clave: *Macrocystis pyrifera*, ácido alginico, alginatos, proceso, extracción.

ABSTRACT

The alkaline extraction step of the process to obtain sodium alginate from *Macrocystis pyrifera* was investigated. We compared cold (28°C) and hot (80°C) treatments to determine the effect of extraction temperature on the yield and viscosity of the final product, using samples collected in Bahía Tortugas, Baja California Sur (Mexico), in the summer of 1994. At 80°C we obtained a yield of

* Becario de la Comisión de Operación y Fomento de Actividades Académicas del IPN (COFAA).
19.10% and a viscosity of 398 cps: at 28°C the yield was 15.53% and the viscosity was 466 cps. We conclude that hot extraction is more favourable, because the yield is statistically greater and the viscosity is the same. The effect of extraction time was also investigated in the hot process, using samples collected in Bahia Tortugas in the fall of 1990, to determine the minimum extraction time in which we can obtain high yield and quality of the final product. We tested times from 90 to 165 minutes at 80°C. In the temperature range tested, no significant difference was found between the yields or the viscosity. We conclude that the minimum extraction time is 90 minutes; however, to reach the final reaction point, the time must be extended to 120 minutes.

Key words: Macrocystis pyrifera, alginic acid, alginate, process, extraction.

INTRODUCTION

Brown algae (phaeophytes) are a potential source of alginates, with properties that vary from one species to another. In Mexico, Macrocystis pyrifera (L.) C. Agardh, is the most important species from the phaeophyte group, due to its high alginate content (Casas-Valdez, 1985; Hernández-Carmona, 1985; Rodriguez-Montesinos and Hernández-Carmona, 1991) and high abundance along the Baja California peninsula (Guzmán-del Próo et al., 1971; Casas-Valdez et al., 1985; Hernández-Carmona et al., 1989a, b, 1991).

Alginate is the generic name given to the salts of alginic acid, which is a polysaccharide built up from a linear polymer based on 1,4-linked residues of two monomeric units, β-D-mannuronic and α-L-guluronic, units by enlaces 1, 4 (Hirst et al., 1964).

Alginate production is based on a series of ion-exchange reactions to extract and purify it. Alginic acid was first discovered by the Englishman E.C.C. Stanford in 1881 (Tseng, 1945), but it was not until 1886 that Krefting patented the process for obtaining pure alginic acid (Krefting, 1896). Sin embargo, la producción comercial se inició hasta 1929 en los Estados Unidos de Norteamérica (Steiner y McNeely, 1950) y se basó en las patentes de Clark y Green (1936), Green (1936) y LeGloahec y Herter (1938). A partir de entonces, se han desarrollado algunos trabajos para mejorar el proceso. Bashford et al. (1950) y posteriormente Haug (1964) plantearon la transformación del ácido alginico insoluble a alginato de sodio soluble mediante dos etapas de intercambio iónico. Myklestad (1968) describió ampliamente los efectos de diferentes
factores en la etapa de preextracción. Esta última es una etapa sobre la que más publicaciones se tienen: Haug (1964), Myklestad (1968), Duville et al. (1974), Hernández-Carmona y Aguirre-Vilchis (1987), Hernandez-Carmona et al. (1991), Hernández-Carmona et al. (1992) y Arvizu-Higuera et al. (1995). Sin embargo, existe poca información sobre la etapa de extracción: Bescond (1948) menciona en su patente el uso de carbonato de sodio del 5-7% para la digestión del alga, por un tiempo de 12 h; Lukachyov y Pochkalov (1965) emplean carbonato de sodio y lo llevan a ebullición, sin mencionar tiempo; Zvered et al. (1969), carbonato de sodio del 1-2%, 1-2 h a 27°C; Secconi (1967), solución básica de amoníaco, potasio o sodio 5-7%, con un tiempo de 5-24 h; Baranov et al. (1980), 12-15% de carbonato de sodio más 5% de fosfato de sodio, a 45°C por 30 min; McHugh (1987) cita el uso de carbonato de sodio, un tiempo de 1-2 h y una temperatura de 50-95°C. En general, se menciona el empleo de un álcali como carbonato de sodio y el uso de temperaturas y/o tiempos muy variables, sin ejemplificar los valores de rendimiento o viscosidad del producto final para unos parámetros específicos o una especie de alga en particular. Por tal motivo, el objetivo de este trabajo fue determinar el efecto de la temperatura y el tiempo de extracción sobre el rendimiento y la viscosidad del alginato de sodio, empleando Macrocystis pyrifera como materia prima.

MATERIAL Y MÉTODOS

(a) Efecto de la temperatura de extracción sobre el rendimiento y la calidad en términos de viscosidad

Para llevar a cabo los experimentos se empleó el método de Hernández-Carmona et al. (patente en trámite), utilizando muestras de 10 g de alga seca (M. pyrifera), recolectada en Bahía Tortugas, Baja California Sur (México), en el verano de 1994 para el experimento del efecto de temperatura y en el otoño de 1990 para el experimento del tiempo de tratamiento, por ser ésta una muestra de alto rendimiento.

deal with: Haug (1964), Myklestad (1968), Duville et al. (1974), Hernández-Carmona and Aguirre-Vilchis (1987), Hernández-Carmona et al. (1991), Hernández-Carmona et al. (1992) and Arvizu-Higuera et al. (1995). However, there is little information on the extraction stage: Bescond (1948) mentions in his patent the use of 5-7% sodium carbonate for 12 h for algae breakdown; Lukachyov and Pochkalov (1965) use sodium carbonate and heat to boiling, but do not mention time; Zvered et al. (1969), 1-2% sodium carbonate for 1-2 h at 27°C; Secconi (1967), basic ammonia solution, 5-7% potassium or sodium for 5-24 h; Baranov et al. (1980), 12-15% sodium carbonate plus 5% sodium phosphate, at 45°C for 30 min; McHugh (1987) cites the use of sodium carbonate for 1-2 h at 50-95°C. The studies generally mention the use of an alkali, such as sodium carbonate, as well as highly variable temperatures and/or times without specifying the yield or viscosity of the final product, using specific parameters or a particular algal species. For this reason, the objective of this study was to determine the effect of temperature and extraction time on the yield and viscosity of sodium alginate, using Macrocystis pyrifera as raw material.

MATERIAL AND METHODS

(a) Effect of extraction temperature on yield and quality in terms of viscosity

The method of Hernández-Carmona et al. (patent pending) was used in the experiments, with 10-g samples of dry algae (M. pyrifera), collected from Bahía Tortugas, Baja California Sur (Mexico), during the summer of 1994 for the experiment of the effect of temperature and in the fall of 1990 for the experiment on treatment time, since this is a high-yield sample. The algae were ground to a 40 mesh size.

The samples were hydrated in a 0.1% formaldehyde solution, at a ratio of nine parts solution to one of algae, for 12 h, to facilitate reactions in the latter stages (McHugh, 1987). Acid pre-extraction was conducted by washing the algae three times with 150 ml of
Las algas fueron molidas hasta un tamaño de 40 mallas.

Las muestras se hidrataron con solución de formaldehído al 0.1%, en una proporción de nueve partes de solución por una de algas, durante 12 h, para facilitar las reacciones en las etapas posteriores (McHugh, 1987).

La preextracción ácida se realizó mediante tres lavados del alga con 150 ml de agua destilada; se ajustó el pH a 4 con ácido clorhídrico 1N, manteniendo una agitación de 15 min en cada lavado, para permitir la transformación de las sales de alginato en ácido alginico, con la liberación de los iones calcio (Arvizu-Higuera et al., 1995).

La etapa de extracción alcalina se llevó a cabo en dos formas: para la extracción en caliente se colocaron las muestras en un volumen de veinticinco partes de agua destilada por una de algas y se ajustó el pH a 10 con una solución de carbonato de sodio al 10%. Las muestras se mantuvieron en baño maría a 80°C con agitación constante de 800 rpm durante 2 h. Para la extracción en frío se realizó el mismo procedimiento, excepto que la muestra se mantuvo en agitación a una temperatura de 28°C, por un tiempo de 2 h.

En ambos tratamientos, la pasta obtenida se diluyó con agua caliente y se filtró al vacío, con ayuda de tierra de diatomeas y papel filtro Whatman No. 4. La solución clarificada se precipitó con cloruro de calcio al 10%, manteniendo una agitación constante. La muestra precipitada se filtró y las fibras de alginato de calcio se suspendieron en veinte partes de agua destilada por una parte de algas empleadas; se ajustó el pH a 2 con una solución de ácido clorhídrico 1N y se mantuvo en agitación por 15 min. Posteriormente, la muestra se decantó y se repitió el lavado dos veces más, ajustando el pH a 1.8, con el fin de convertir el alginato de calcio en ácido alginico.

Las fibras de ácido alginico se colocaron en una mezcla de alcohol y agua, en una proporción 1:1, en un volumen de 15 ml por gramo de alga. Se añadió una solución de carbonato de sodio al 10% hasta obtener un pH de 8. La muestra se mantuvo en agitación durante 1 h. El alginato de sodio obtenido se filtró, se prensó, distillé water; in each washing, pH was adjusted to 4 with 1N hydrochloric acid and the mixture was stirred constantly for 15 min to allow for the transformation of the alginate salts to alginic acid, with the liberation of the calcium ions (Arvizu-Higuera et al., 1995).

Alkaline extraction was carried out in two ways: for the hot extraction, the samples were placed in a volume of twenty-five parts distilled water to one of algae; pH was adjusted to 10 with a 10% sodium carbonate solution. The samples were kept in a water bath at 80°C, with constant agitation of 800 rpm for 2 h. The same method was used for the cold extraction, except that the sample was kept at 28°C and stirred constantly for 2 h.

In both treatments, the paste obtained was diluted with hot water and vacuum filtered, using diatomaceous earth and Whatman No. 4 filter paper. The clarified solution was precipitated with 10% calcium chloride while being constantly stirred. The precipitated sample was filtered and the calcium alginate fibers suspended in twenty parts distilled water to one part of algae; pH was adjusted to 2 using a 1N hydrochloric acid solution, keeping agitation constant for 15 min. The sample was later drained and rinsed two more times in the same manner, adjusting the pH to 1.8 in order to convert the calcium alginate to alginic acid.

The alginic acid fibers were placed in a mixture of alcohol and water, at a ratio of 1:1, using 15 ml of mixture per gram of algae. A 10% sodium carbonate solution was added until a pH of 8 was reached. The sample was stirred constantly for 1 h. The sodium alginate obtained was filtered, pressed and the fibers separated and dried in an oven at 50°C until constant weight. The sodium alginate yields were calculated based on the dry weight of the initial sample.

The viscosity of the alginate obtained was determined for both treatments. A 1% solution was prepared, adjusting the temperature to 25°C, and it was measured in a Brookfield LVT viscometer, at a speed of 60 rpm with the appropriate spindle. The viscosity was also determined after adding hexametaphosphate sodium to the solution (50% of the alginate weight), in
se desmenuzaron las fibras y se secaron en un horno a 50°C hasta peso constante y se calcularon los rendimientos de alginato de sodio con base en el peso seco de la muestra inicial.

Para ambos tratamientos se determinó la viscosidad del alginato obtenido: se preparó una solución al 1%, ajustando la temperatura a 25°C, y se midió en un viscosímetro Brookfield LVT; a una velocidad de 60 rpm con la aguja adecuada. También se determinó la viscosidad después de agregar hexametafosfato de sodio a la solución (50% del peso de alginato), con el fin de secuestrar el calcio presente en la muestra y determinar la viscosidad real de la solución.

(b) Determinación del efecto de la extracción en caliente (80°C) en función del tiempo de tratamiento

Para determinar el tiempo óptimo de extracción se variaron los tiempos de tratamiento alcalino, desde 90 hasta 165 min, con intervalos de 15 min.

En el primer estudio los experimentos se corrieron con cuatro réplicas y en el segundo con tres réplicas. La comparación de medias se realizó mediante una prueba t de Student.

RESULTADOS

(a) Efecto de la extracción en caliente sobre el rendimiento y la calidad en términos de viscosidad

En la extracción en caliente se obtuvo un rendimiento promedio de 19.10%, mientras que en la extracción en frío el rendimiento promedio fue de 15.53%, lo que representa una diferencia de 3.57% mayor para el primer tratamiento, que estadísticamente fue significativamente diferente ($\alpha = 0.05$) (tabla I).

La viscosidad promedio de la solución de alginato de sodio al 1%, después de agregar el secuestrante de calcio, fue de 398 cps en el proceso en caliente, mientras que en el proceso en frío la viscosidad fue de 466 cps, es decir, 14.59% más alta que en el primer proceso, pero estadísticamente no fue significativamente diferente ($\alpha = 0.05$) (tabla I).

(b) Efecto del efecto de la extracción en caliente (80°C) en función del tiempo de tratamiento

In order to determine the best extraction time, the alkaline treatment times were varied, from 90 to 165 min, with 15 min intervals.

Four duplicate tests were run in the first study and three in the second. Student's t-test was used to compare the means.

RESULTS

(a) Effect of extraction temperature on yield and quality in terms of viscosity

An average yield of 19.10% was obtained in the hot extraction, whereas an average yield of 15.53% was obtained in the cold extraction. The difference was 3.57% greater in the first treatment and it was also statistically different ($\alpha = 0.05$) (table I).

The average viscosity of the 1% sodium alginate, after adding the calcium sequestering agent, was 398 cps in the hot process and 466 cps in the cold process; in other words, it was 14.59% higher in the first process, but it was not significantly different ($\alpha = 0.05$) (table I).

(b) Effect of treatment time in the hot extraction

Yield, in terms of treatment time, remained almost constant between the 90 and 165 min treatments, ranging from 26.53% (90 min) to 27.84% (120 min). There were no statistically different changes ($\alpha = 0.05$) (fig. 1).

The viscosity of the 1% solutions of the different treatment times was also not significantly different ($\alpha = 0.05$), ranging from 880 cps at 105 min to 746.7 cps at 165 min (fig. 2). Even though significant differences were not found between the viscosity values obtained, a slight decrease was observed at 105 min, when the highest viscosity value (880 cps) was obtained. However, the reduction in viscosity of the
Tabla 1. Efecto de la temperatura en la etapa de extracción en el proceso de producción de alginato de sodio.

Table 1. Effect of temperature in the extraction stage during the process of sodium alginate production.

Tratamiento	Frío (28°C)	Caliente (80°C)
Peso del alginato de sodio (g)		
R1	1.5034	1.9149
R2	1.6162	1.9402
R3	1.5977	1.8818
R4	1.4950	1.9044
Media	1.5531	1.9103
Rendimiento (% base seca)		
R1	15.03	19.15
R2	16.16	19.40
R3	15.98	18.82
R4	14.95	19.04
Media	15.53	19.10
Viscosidad en solución al 1% sin hexametafosfato de sodio (cps)		
R1	594	484
R2	420	462
R3	660	394
R4	436	438
Media	528	445
Viscosidad en solución al 1% con hexametafosfato de sodio (cps)		
R1	512	450
R2	374	402
R3	588	360
R4	388	380
Media	466	398
pH en solución al 1%		
R1	7.0	7.0
R2	7.0	6.8
R3	7.0	6.8
R4	7.0	7.0
Media	7.0	6.9

(b) Efecto del tiempo de tratamiento en la extracción en caliente

El rendimiento en función del tiempo de tratamiento se mantuvo aproximadamente constante entre los 90 y 165 min, variando de 26.53% (90 min) a 27.84% (120 min), sin presentar un cambio estadísticamente diferente ($\alpha = 0.05$) (fig. 1).

La viscosidad de las soluciones al 1% de los diferentes tiempos de tratamiento tampoco varió de manera significativa, con valores entre 42.7 a 44.5 cps.

120 min value was only 42.7 cps; this loss can, therefore, be justified, allowing the reaction to continue until 120 min in order to achieve maximum yield.

DISCUSSION

During the process of alginate production in the laboratory, the hot extraction (80°C) was more effective than the cold extraction, since 3.57% more was obtained in the first treatment,
Arvizu-Higuera et al.: Efecto de temperatura y tiempo de extracción en la obtención de alginato

Figura 1. Efecto del tiempo de extracción sobre el rendimiento de alginatos, realizando la extracción en caliente (80°C). Muestra: *Macrocystis pyrifera*, Bahía Tortugas, BCS (México), otoño de 1990.

Figure 1. Effect of extraction time on alginate yield in the hot extraction (80°C). Sample: *Macrocystis pyrifera*, Bahía Tortugas, BCS (Mexico), fall 1990.

Figura 2. Efecto del tiempo de extracción sobre la viscosidad de los alginatos en solución al 1%, realizando la extracción en caliente (80°C). Muestra: *Macrocystis pyrifera*, Bahía Tortugas, BCS (México), otoño de 1990.

Figure 2. Effect of extraction time on alginate viscosity in 1% solution during hot extraction (80°C). Sample: *Macrocystis pyrifera*, Bahía Tortugas, BCS (Mexico), fall 1990.
fueron significativamente diferentes ($\alpha = 0.05$), variando entre 880 cps a los 105 min y 746.7 cps a los 165 min (fig. 2). A pesar de no encontrar diferencia significativa en los valores de viscosidad obtenidos, se apreció un ligero decremento a partir de los 105 min, cuando se obtuvo el valor más alto de viscosidad (880 cps): sin embargo, en el siguiente valor, a los 120 min, la reducción de viscosidad sólo fue de 42.7 cps, por lo que se puede justificar esta pérdida, permitiendo que continúe la reacción hasta 120 min para lograr el rendimiento máximo.

DISCUSIÓN

En el proceso de producción de alginatos, a nivel laboratorio, la extracción en caliente (80°C) fue más efectiva que la extracción en frío, ya que se obtuvo 3.57% más en el primer tratamiento y fue significativamente diferente. La calidad del producto en términos de viscosidad fue ligeramente mayor en el tratamiento en frío; sin embargo, esta diferencia (67 cps) no fue estadísticamente significativa.

La obtención de mayores rendimientos en el proceso en caliente se debe a que las condiciones de extracción son más severas, facilitando el rompimiento de las paredes celulares del alga y la solubilización del alginato, mientras que en el proceso en frío algunas partículas de alga no son digeridas, conservando parte del alginato en su interior, lo que significa que bajo estas condiciones, se requiere un mayor tiempo de reacción (Haug, 1964).

A pesar de que las condiciones de extracción del proceso en caliente son más severas y puede ocurrir un rompimiento de las cadenas de los ácidos urónicos (Green, 1936), este efecto es mínimo en comparación con el tratamiento en frío, debido a que el tiempo de exposición es corto (2 h), de tal forma que el tiempo no es suficiente para degradar significativamente el alginato.

La extracción en frío tiene como ventaja el ahorro de energía que requiere el calentamiento; sin embargo, la disminución del rendimiento en 3.57% no justifica su aplicación, ya que los costos de producción son menores cuando se realiza el tratamiento en caliente durante 2 h, así como el rendimiento y calidad del producto.

A pesar de no encontrar diferencia significativa en los valores de viscosidad obtenidos, se apreció un ligero decremento a partir de los 105 min, cuando se obtuvo el valor más alto de viscosidad (880 cps); sin embargo, en el siguiente valor, a los 120 min, la reducción de viscosidad sólo fue de 42.7 cps, por lo que se puede justificar esta pérdida, permitiendo que continúe la reacción hasta 120 min para lograr el rendimiento máximo.

DISCUSIÓN

En el proceso de producción de alginatos, a nivel laboratorio, la extracción en caliente (80°C) fue más efectiva que la extracción en frío, ya que se obtuvo 3.57% más en el primer tratamiento y fue significativamente diferente. La calidad del producto en términos de viscosidad fue ligeramente mayor en el tratamiento en frío; sin embargo, esta diferencia (67 cps) no fue estadísticamente significativa.

La obtención de mayores rendimientos en el proceso en caliente se debe a que las condiciones de extracción son más severas, facilitando el rompimiento de las paredes celulares del alga y la solubilización del alginato, mientras que en el proceso en frío algunas partículas de alga no son digeridas, conservando parte del alginato en su interior, lo que significa que bajo estas condiciones, se requiere un mayor tiempo de reacción (Haug, 1964).

A pesar de que las condiciones de extracción del proceso en caliente son más severas y puede ocurrir un rompimiento de las cadenas de los ácidos urónicos (Green, 1936), este efecto es mínimo en comparación con el tratamiento en frío, debido a que el tiempo de exposición es corto (2 h), de tal forma que el tiempo no es suficiente para degradar significativamente el alginato.

La extracción en frío tiene como ventaja el ahorro de energía que requiere el calentamiento; sin embargo, la disminución del rendimiento en 3.57% no justifica su aplicación, ya que los costos de producción son menores cuando se realiza el tratamiento en caliente durante 2 h, así como el rendimiento y calidad del producto.

A pesar de no encontrar diferencia significativa en los valores de viscosidad obtenidos, se apreció un ligero decremento a partir de los 105 min, cuando se obtuvo el valor más alto de viscosidad (880 cps); sin embargo, en el siguiente valor, a los 120 min, la reducción de viscosidad sólo fue de 42.7 cps, por lo que se puede justificar esta pérdida, permitiendo que continúe la reacción hasta 120 min para lograr el rendimiento máximo.

DISCUSIÓN

En el proceso de producción de alginatos, a nivel laboratorio, la extracción en caliente (80°C) fue más efectiva que la extracción en frío, ya que se obtuvo 3.57% más en el primer tratamiento y fue significativamente diferente. La calidad del producto en términos de viscosidad fue ligeramente mayor en el tratamiento en frío; sin embargo, esta diferencia (67 cps) no fue estadísticamente significativa.

La obtención de mayores rendimientos en el proceso en caliente se debe a que las condiciones de extracción son más severas, facilitando el rompimiento de las paredes celulares del alga y la solubilización del alginato, mientras que en el proceso en frío algunas partículas de alga no son digeridas, conservando parte del alginato en su interior, lo que significa que bajo estas condiciones, se requiere un mayor tiempo de reacción (Haug, 1964).

A pesar de que las condiciones de extracción del proceso en caliente son más severas y puede ocurrir un rompimiento de las cadenas de los ácidos urónicos (Green, 1936), este efecto es mínimo en comparación con el tratamiento en frío, debido a que el tiempo de exposición es corto (2 h), de tal forma que el tiempo no es suficiente para degradar significativamente el alginato.

La extracción en frío tiene como ventaja el ahorro de energía que requiere el calentamiento; sin embargo, la disminución del rendimiento en 3.57% no justifica su aplicación, ya que los costos de producción son menores cuando se realiza el tratamiento en caliente durante 2 h, así como el rendimiento y calidad del producto.

A pesar de que las condiciones de extracción del proceso en caliente son más severas y puede ocurrir un rompimiento de las cadenas de los ácidos urónicos (Green, 1936), este efecto es mínimo en comparación con el tratamiento en frío, debido a que el tiempo de exposición es corto (2 h), de tal forma que el tiempo no es suficiente para degradar significativamente el alginato.

La extracción en frío tiene como ventaja el ahorro de energía que requiere el calentamiento; sin embargo, la disminución del rendimiento en 3.57% no justifica su aplicación, ya que los costos de producción son menores cuando se realiza el tratamiento en caliente durante 2 h, así como el rendimiento y calidad del producto.

A pesar de que las condiciones de extracción del proceso en caliente son más severas y puede ocurrir un rompimiento de las cadenas de los ácidos urónicos (Green, 1936), este efecto es mínimo en comparación con el tratamiento en frío, debido a que el tiempo de exposición es corto (2 h), de tal forma que el tiempo no es suficiente para degradar significativamente el alginato.

La extracción en frío tiene como ventaja el ahorro de energía que requiere el calentamiento; sin embargo, la disminución del rendimiento en 3.57% no justifica su aplicación, ya que los costos de producción son menores cuando se realiza el tratamiento en caliente durante 2 h, así como el rendimiento y calidad del producto.
De acuerdo con los estándares comerciales (Kelco, 1986; Protan, 1983), los alginatos obtenidos tanto en el proceso en frío como en caliente, presentan una viscosidad media (400 cps) y una viscosidad alta (800 cps) para la muestra de otoño de 1990, empleada para determinar el tiempo de extracción. Hernández-Carmona et al. (1991) proponen un método de extracción en frío durante 2 h. con rendimientos de 24.4% y viscosidades de 440 cps (media), los cuales son similares a los que se reportan en este estudio.

El tiempo de extracción alcalina en el intervalo estudiado, empleando el proceso en caliente (80°C), no tuvo un efecto significativo sobre el rendimiento y la viscosidad del producto final, por lo que se puede considerar como tiempo mínimo de extracción 90 min. Sin embargo, desde el punto de vista químico, la reacción concluye hasta que no se incrementa más el rendimiento; si se desea llegar a este nivel, el tiempo mínimo de extracción es de 120 min, con una pequeña pérdida de viscosidad (43 cps) respecto al tiempo anterior (105 min).

Las altas temperaturas y los tiempos de extracción prolongados conducen al rompimiento de las cadenas de ácidos úronicos con la consecuente pérdida de viscosidad del alginato de sodio (McHugh, 1987). Sin embargo, una vez que se ha encontrado el punto óptimo de extracción para obtener un producto de alta calidad y rendimiento, estos factores se pueden emplear para controlar la viscosidad del producto final, dependiendo del tipo de alginato que se desea obtener, ya que las diferentes industrias que emplean alginatos requieren productos de diferente viscosidad. Por ejemplo, para la elaboración de algunos productos alimenticios y cosméticos se emplean alginatos de 800-1,000 cps, para impresiones dentales se emplean viscosidades de 200-300 cps y la industria farmacéutica emplea de 5-10 cps (Protan, 1983). El conocimiento de las variaciones de viscosidad en función del tiempo de tratamiento permite tomar decisiones en el proceso de producción para lograr la viscosidad deseada. Estas variaciones también dependen del tipo de alga que se emplee y la fecha de recolección ya que puede presentar la misma tendencia, pero los valores de viscosidad en función del tiempo son diferentes, por lo que cada especie que se emplee en una temporada determinada debe ser analizada para obtener su curva de reducción.

CONCLUSIONES

During the process of alginate production in the laboratory, hot extraction (80°C), compared to cold extraction (28°C), favors the yield of the sodium alginate obtained in the final product, without significantly affecting quality in terms of viscosity. In this case, the minimum extraction time at 80°C for Macrocystis pyrifera in the range studied is 90 min, which results in an acceptable yield and quality.

English translation by Jennifer Davis.

función del tiempo son diferentes, por lo que cada especie que se emplee en una temporada determinada debe ser analizada para obtener su curva de reducción.

CONCLUSIONES

En el proceso de producción de alginatos, a nivel laboratorio, la extracción en caliente (80°C), en comparación con la extracción en frío (28°C), favorece el rendimiento del alginato de sodio obtenido sin afectar significativamente la calidad, en términos de viscosidad, del producto final. En este caso, para Macrocystis pyrifera, el tiempo mínimo de extracción a 80°C
en el intervalo estudiado, con el cual se puede obtener un rendimiento y calidad aceptable, es de 90 min.

REFERENCIAS

Arvizu-Higuera, D.L., Hernández-Carmona, G. y Rodríguez-Montesinos, Y.E. (1995). Sistemas en carga y en flujo continuo durante la etapa de preextracción ácida en el proceso de extracción de alginatos. Ciencias Marinas, 21(1): 25-37.

Baranov, V.S., Locev, V.N., Guernet, N.A., Kuchumova, R.P. and Kuchumov, A.M. (1980). Method to obtain sodium alginate. Patent No. 707, 561, USSR.

Bashford, L.A., Thomas, R.S. and Woodman, F.N. (1950). Manufacture from brown marine algae. J. Soc. Chem. Ind., 69: 337-343.

Bescond, M.P. (1948). Pro&de de traitement des tiges de laminaire verte ou sèche afin d'obtenir des alginites de soude. Patente No. 940,035, Francia.

Casas-Valdez, M.M. (1985). Cuantificación y caracterización parcial de alginatos de algunas especies de algas feoilitas de las costas de México. Inv. Mar. CICIMAR, 2(1): 46-57.

Casas-Valdez, M., Hernández-Carmona, G., Torres-Villegas, J.R. y Sánchez-Rodríguez, I. (1985). Evaluación de los mantos de Macroystis pyrifera (sargazo gigante) en la península de Baja California (verano de 1982). Inv. Mar. CICIMAR, 2(1): 1-17.

Clark, D.F. and Green, H.C. (1936). Alginic acid and process of making same. US Patent 2, 036, 922.

Duville, C.A., Duville, J.L. y Panzarasa, E. (1974). Estudios básicos sobre ácido alginíco de algas pardas del litoral patagónico. I. Pretratamiento ácido, su influencia y aplicación. CIBIMA, Contrib. Téc. 16. Buenos Aires, Argentina, 16 pp.

Green, H.C. (1936). Process for making alginic acid and product. US Patent 2, 036, 934.

Guzmán-del Próo, S.A., De la Campa, S. y Granados, J.L. (1971). El sargazo gigante (Macrocystis pyrifera) y su explotación en Baja California. Rev. Soc. Mex. de Hist. Nat. (México), 32(12): 15-57.

Haug, A. (1964). Composition and properties of alginates. Rep. 30, Norwegian Inst. of Seaweed Res., Trondheim, Norway, 123 pp.

Hernández-Carmona, G. (1985). Variación estacional del contenido de alginatos en tres especies de feoilitas de Baja California Sur, México. Inv. Mar. CICIMAR, 2(1): 29-45.

Hernández-Carmona, G. y Aguirre-Vilchis, M. (1987). Propiedades de intercambio iónico de Macroystis pyrifera durante la preextracción ácida, para la extracción de alginatos. Inv. Mar. CICIMAR, 3(2): 53-64.

Hernández-Carmona, G., Rodríguez-Montesinos, Y.E., Torres-Villegas, J.R., Sánchez-Rodríguez, I. y Vilchis, M.A. (1989a). Evaluación de los mantos de Macroystis pyrifera (Phaeophyta, Laminariales) en Baja California, México. I. Invierno 1985-1986. Ciencias Marinas, 15(2): 1-27.

Hernández-Carmona, G., Rodríguez-Montesinos, Y.E., Torres-Villegas, J.R., Sánchez-Rodríguez, I., Vilchis, M.A. y García-de la Rosa, O. (1989b). Evaluación de los mantos de Macroystis pyrifera (Phaeophyta, Laminariales) en Baja California, México. II. Primavera 1986. Ciencias Marinas, 15(4): 117-140.

Hernández-Carmona, G., Rodríguez-Montesinos, Y.E., Casas-Valdez, M.M., Vilchis, M.A. y Sánchez-Rodríguez, I. (1991). Evaluación de los mantos de Macroystis pyrifera (Phaeophyta, Laminariales) en Baja California, México. III. Verano 1986 y variación estacional. Ciencias Marinas, 17(4): 121-145.

Hernández-Carmona, G., Vilchis, M.A. y Rodríguez-Montesinos, Y.E. (1992). Recirculación del ácido residual de la etapa de pre-extracción en el proceso de obtención de alginato de sodio. Ciencias Marinas, 18(1): 125-137.

Hernández-Carmona, G., Casas-Valdez, M.M., Rodríguez-Montesinos, Y.E., Arvizu-Higuera, D.L., Vilchis, M.A. y Hernández-Valenzuela, R. (patente en tramite). Proceso optimizado para la obtención de fibras de algamato de calcio, ácido alginíco, algamato de sodio y algamato de potasio. Centro Interdisciplinario de Ciencias Marinas, Centro Regional de Investigaciones Pesqueras, La Paz, BCS, 25 pp.

Hirst, E.L., Percival, E. and Wold, J.K. (1964). The structure of alginic acid. Part 4. Partial
hydrolysis of the reduced polysaccharide. J. Chem. Soc., pp. 1493-1994.
Kelco (1986). Kelco algin hydrophilic derivatives of alginic acid for scientific water control. San Diego, Kelco Division of Merck and Co., Inc., 56 pp.
Krefting, A. (1896). An improved method of treating seaweed to obtain valuable products therefrom. Brit. Patent 11, 538.
LeGloahec, V.C.E. and Herter, J.R. (1938). Method of treating seaweeds. US Patent 2, 128, 551.
Lukachyov, O.P. and Pochkalov, V.K. (1965). Method to obtain alginate from brown algae. Patent No. 200, 416, USSR.
McHugh, D.J. (1987). Production, properties and uses of alginates. In: D.J. McHugh (ed.), Production and Utilization of Products from Commercial Seaweeds. FAO Fish. Tech. Pap., (288): 58-115.
Myklestad, S. (1968). Ion-exchange of brown algae. Determination of rate mechanism for calcium hydrogen ion exchange for particles from *Laminaria hyperborea* and *Laminaria digitata*. J. Appl. Chem., 18: 30-36.
Protan (1983). Protan Alginates. Protan A/S, 18 pp.
Rodriguez-Montesinos, Y.E. y Hernández-Carmona, G. (1991). Variación estacional y geográfica en la composición química de *Macrocystis pyrifera* en la costa occidental de Baja California. Ciencias Marinas, 17(3): 91-107.
Secconi, M.G. (1967). Procédé de fabrication d’alginites variant des cystosires ou algues similaires, et produit industriel obtenu. Patente No. 1, 464, 840. Francia.
Steiner, A.B. and McNeely, W.H. (1950). High-stability glycol alginates and their manufacture. US Patent 2, 494, 911.
Tseng, C.K. (1945). Algina. En: Enciclopedia de la Tecnologia Quimica. I. 1961. Ed. UTEHA, México, pp. 899-909.
Zvered, D.I., Afonin, B.P., Sendzimerzh, A.L., Andrievskiy, Y.P., Petzakova, T.N. and Andrievskaya, V.V. (1969). Recovery of alginates from brown algae. Patent 229, 213, USSR.