Commentary: Hematuria as an early sign of multisystem inflammatory syndrome in children: A case report of a boy with multiple comorbidities and a review of the literature

Boris Adasevic1, Daniel Turudic2* and Danko Milosevic1,3

1Department of Pediatrics, General Hospital Zabok and Hospital of Croatian Veterans, Bracak, Croatia, 2Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia, 3School of Medicine, University of Zagreb, Zagreb, Croatia

KEYWORDS
MIS-C, Hematuria, differential diagnosis, congenital heart disease, Child

Introduction

Recently, we encountered an article that describes hematuria as the early onset of multisystem inflammatory syndrome in children (MIS-C) (1). Upon further analysis, we found some inconsistencies in the commented article, which we outlined in the following article.

Subsections relevant to the subject

Cardiac involvement:

- Chromosome 8p23.1 deletion has been associated with severe and life-threatening congenital heart disease (CHD), requiring complex cardiac procedures and follow-ups (2). Pro-BNP levels in children with some CHD can remain elevated even after corrective surgeries (3). The type of CHD should have been presented with prior...
follow-ups, surgical corrections, and pro-BNP levels. Pro-BNP in CHD is primarily a marker of left ventricular systolic function, but very high levels are also an independent marker of inflammation (4–6). As increased pro-BNP is one of the markers of MIS-C cardiac inflammation and/or ventricular dysfunction, it should have trended until normalization and not presented as a single value like in the article (7).

- Common observed ECG abnormalities in MIS-C involve prolonged ECG intervals (PR, QRS complex, and QT segment), low QRS amplitude, T-wave abnormalities, or first-, second, or third-degree atrioventricular (AV) blocks (8, 9). Nodal (junctional) rhythms are uncommon in MIS-C (6.3%) and can be adequately interpreted only with a complete ECG presentation. Apart from AV blocks, they can also be a side effect of potential medications used in children with CHD (e.g., β-blockers, digitalis) or correction surgery for CHD (10, 11). As the ECG report before the MIS-C episode has not been presented and the described ECG report in the article is incomplete, we can only speculate on its interpretation. For instance, second- or third-degree AV block can show with normal troponin and elevated pro-BNP, just like the described case (9).

- Telemetry ECG monitoring is also recommended in patients with MIS-C with conduction delays or ectopy, which is not presented or approached in this case report (7).

- The statement that ”normal values of Troponin I and creatine kinase (CK) ruled out myocarditis” is false. Troponin I and troponin T are neither specific nor sensitive markers of myocarditis (for instance, only 35% of patients with suspected viral myocarditis have elevated troponin I) (12, 13). CK used by authors is not as accurate as creatine kinase myocardial band (CK-MB) for suspected myocarditis. Cardiovascular MRI should have been at least considered, even though direct tissue examination remains the diagnostic reference standard. The indirect statement in the article that thrombocyte levels can rule out Kawasaki disease at “day 7” is also misleading, as thrombocytosis in Kawasaki disease is often seen in the second or third week of illness (1, 14).

Nephrology involvement:

- It is well known that red blood cell (RBC) morphology helps differentiate glomerular from nonglomerular hematuria. The percentage of acanthocytes >5% in urine would be beneficial, which was not done in the article (15).

- Although abnormal urinalysis was underreported in MIS-C, hematuria was scarcely found at its onset. In reported cases, it was only associated with severe acute kidney injury (AKI) or other underlying conditions (thrombotic microangiopathy (TMA), renal infarcts). No authors report spontaneous remission without treatment, which contradicts the case presented and the relevant articles (16–20). The article indirectly suggests that the hematuria was of short duration.

- Some aspects of the case report suggest a possible underlying nephrological disease as comorbidity. It is known that acute Sars-Cov-2 infection may trigger an underlying disease to manifest clinically (17, 21). IgA nephropathy manifests with periodic macrohematuria with spontaneous remission. Since we do not have a kidney biopsy, such a possibility remains unresolved.

- If the nasopharyngeal swabs are PCR-negative, Sars-Cov-2 samples could be taken from stool and urine samples. New studies isolated Sars-Cov-2 spike S1 protein from urine in 25% of patients with severe COVID-19 disease (22, 23).

Therapy:

- Despite apparent myocardial dysfunction, the patient was treated with a single 2 g/kg intravenous immune globulin (IVIG) infusion. Infusion of large volumes of IVIG (40 ml/kg) increases oncotic pressure, which may cause a liquid shift and volume overload in MIS-C patients who are already at risk due to potential capillary leak syndrome (24, 25). To cite ”In patients with heart failure immunoglobulins should be administered over at least 16 h or, alternatively, the total dose should be split in two

Symptom	MIS-C	Adenovirus	Coxsackievirus	Parvovirus B19	Bartonella henselae
Fever	Consistently	Consistently	Consistently	Consistently	Less common
Maculopapular rash	Common	Common	Consistently	Consistently	Common
GI symptoms	Common	Consistently	Consistently	Consistently	Common
Macrohematuria	Very rare	Fairly common	Less common	Less common	Less common
Conjunctivitis	Common	Common	Consistently	Consistently	Common
Pleural effusion	Common	Less common	Less common	Less common	Rare
Myocardial involvement	Common	Less common	Less common	Less common	Less common
Proteinuria	Uncommon	Uncommon	Less common	Less common	Less common

MIS-C, multisystem inflammatory syndrome in children; GI, gastrointestinal.
infusions 12 h apart” (26). In patients with cardiac
involvement, glucocorticoids (1–2 mg/kg/day) should be
“administered upfront in case of heart involvement” in
conjunction with IVIG (divided/slowed infusion or with
diuretics) to avoid heart overload rather than any drug
alone (26, 27). Low-dose aspirin (3–5 mg/kg) is
recommended in MIS-C patients with Kawasaki disease
features, which is something the authors neglected or
omitted from their presentation (28).

Final remarks:
1. The authors forgot or neglected to add common viral
pathogens to their differential diagnosis, which can mimic
or complicate MIS-C diagnosis. Pathogens that commonly
include fever, exanthems, conjunctivitis, cardiomyopathy,
and hematuria/hemorrhagic cystitis are adenoviruses,
Bartonella henselae, and rarely parvovirus B19 and
enteroviruses. Adenovirus can cause self-limiting
hemorrhagic cystitis and myocarditis with an immediate
response to IVIG therapy. Enteroviruses and Parvovirus
B19 can cause glomerulonephritis, albeit rarely. Even
though the symptoms match, ceftriaxone is commonly
used to treat Bartonella henselae myocarditis (Table 1).
Some authors have correctly asked the question: “Are we
losing awareness of other infections due to the fear of
coronavirus disease-2019 and MIS-C”? (29, 30)
2. Instead, Nino (22) in Table 1 should be Niño-Taravilla (22).

Discussion and conclusions

The authors perhaps hastily concluded that hematuria is an
early sign of MIS-C, especially in a patient with no apparent
acute kidney injury (normal creatinine level). Nor is this the
first published case of MIS-C-related hematuria at the time of
the article’s release (16, 31). Therefore, the content of the
article does not correspond with the title of the article.

It is, however, a case with no apparent kidney injury but
spontaneous remission of hematuria, which necessitates
further diagnostic investigation. According to the presented
symptoms and the clinical course of the disease, adenovirus
infection appears to be the most likely cause. Subsequently,
the authors should have considered the possibility of an
underlying nephrological disease or bacterial/viral co-infection
—with or without MIS-C.

Author contributions

All authors wrote and critically revised the manuscript. All
authors contributed to the article and approved the submitted
version.

Acknowledgments

The authors thank prim. Jadranka Kelecic, MD, a
pediatrician with a fellowship in pediatric allergology and
clinical immunology.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the editors
and the reviewers. Any product that may be evaluated in this
article, or claim that may be made by its manufacturer, is not
guaranteed or endorsed by the publisher.

References

1. Generalić A, Davidović M, Kos I, Vrlićak K, Lamot L. Hematuria as an early
sign of multisystem inflammatory syndrome in children: a case report of a boy
with multiple comorbidities and review of literature. J Pediatr. (2021) 9:760070.
doi: 10.3389/fped.2021.760070
2. Wat MJ, Shchelochkov OA, HOLDER AM, BREMAN AM, DAGLI A, Bacino C, et al.
Chromosome 8p23.1 deletions as a cause of complex congenital heart
defects and diaphragmatic hernia. J Am Coll Cardiol. (2009) 149A(8):1661–77.
doi: 10.1016/j.jacc.2008.12.1314
3. Eindhoven JA, van den Bosch AE, Jansen PR, Boeruma E, Roos-Hesselink JW.
The usefulness of brain natriuretic peptide in complex congenital heart disease:
a systematic review. J Am Coll Cardiol. (2012) 60(21):2140–9. doi: 10.1016/j.jacc.2012.02.092
4. Koch A, Zink S, Singer H. B-type natriuretic peptide in paediatric patients
with congenital heart disease. Eur Heart J. (2006) 27(7):861–6. doi: 10.1093/
eurheart/ehh773
5. Sara B, Monteiro JJ, Carvalho P, Ribeiro Carvalho C, Chemma J, Ferreira C, et al.
Are high NT-proBNP levels more related to inflammation than to left
ventricular systolic dysfunction in acute myocarditis? Eur Heart J Acute
Cardiovasc Care. (2021) 10(Supplement_1):zuab020.189. doi: 10.1093/ehjacc/
zuab020.189
6. Mannarino S, Raso I, Garbin M, Ghidoni E, Corti C, Goletto S, et al. Cardiac
dysfunction in multisystem inflammatory syndrome in children: an Italian single-
center study. Ital J Pediatr. (2022) 48:25. doi: 10.1186/s13052-021-01189-z
7. Alsaeed T, Tremoulet AH, Burns JC, Said A, Dionne A, Lang SM, et al. Review of
cardiac involvement in multisystem inflammatory syndrome in children.
Circulation. (2013) 143(1):78–88. doi: 10.1161/CIRCULATIONAHA-
120-049836
8. Regan W, O’Byrne L, Stewart K, Miller O, Puahparajah K, Theocharis P, et al.
Electrocardiographic changes in children with multisystem inflammation
associated with COVID-19: associated with coronavirus disease 2019. J Pediatr. (2021) 234:27–32. doi: 10.1016/j.peds.2020.12.033

9. Dione A, Mah DY, Son MBF, Lee PJ, Henderson L, Baker AL, et al. Atrioventricular block in children with multisystem inflammatory syndrome. Pediatrics. (2020) 146(5):e202009704. doi: 10.1542/peds.2020-09704

10. Olshansky B, Chung MK, Pogwizd SM, Goldschlager N. Chapter 3—ectopic complexes and rhythms. In: B Olshansky, MK Chung, SM Pogwizd, N Goldschlager, editors. Arrhythmia essentials: 2nd ed. Elsevier (2017). p. 87–120. doi: 10.1016/B978-0-323-39968-5.00003-2.

11. Loomba RS, Buelow MW, Aggarwal S, Arora RR, Kovach J, Ginde S. Arrhythmias in adults with congenital heart disease: what are risk factors for specific arrhythmias? Facing Clin Electrophysiol. (2017) 40(4):353–61. doi: 10.1111/pace.12983

12. Law YM, Lal AK, Chen S, Chiháková D, Cooper Jr. LT, Deshpande S, et al. Diagnosis and management of myocarditis in children: a scientific statement from the American Heart Association. Circulation. (2021) 144:e123–35. doi: 10.1161/CIR.0000000000001001

13. Schulte JC, Hillaard AA, Coope LT, Rihal CS. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc. (2009) 84(11):1001–9. doi: 10.1016/S0025-6196(11)60670-8.

14. Arora K, Guleria S, Jindal AK, Rawat A, Singh S. Platelets in Kawasaki disease: is this only a numbers game or something beyond? Genes Dis. (2019) 7(3):62–6. doi: 10.1016/j.gendis.2019.09.003

15. Bolenz C, Schröppel B, Eisenhardt A, Schmitz-Dräger BJ, Grimm MO. The investigation of hematuria. Dtsch Arztebl Int. (2018) 115(48):801–7. doi: 10.3238/artztebl.2018.0801

16. Mahajan N, Chang HT, Leeman R, Manalo R, Glaherson WR. Case of multisystem inflammatory syndrome in children presenting as fever and abdominal pain. BMJ Case Rep. (2020) 13(9):e237306. doi: 10.1136/bcr-2020-237306

17. Os SSP, Muniz MPR, Faria IM, Filho NS, de Brito DJA, Lages JS, et al. Multisystemic inflammatory and thrombotic microangiopathy as complications of COVID-19 in a child: a case report. Front Pediatr. (2021) 9:659069. doi: 10.3389/fped.2021.659069

18. Sökunbi O, Akinbolade Y, Akintan P, Oyeleke G, Kusimo O, Owowo U, et al. Clinical presentation and short-term outcomes of multisystemic inflammatory syndrome in children in Lagos, Nigeria during the COVID-19 pandemic: a case series. EclinicalMedicine. (2022) 49:101475. doi: 10.1016/j.eclinm.2022.101475

19. Sekar N, Pakkirayyaatnam M, Francis V. Diagnosis of multisystem inflammatory syndrome in children in a resource-limited center. Cureus. (2022) 14(2):e22254. doi: 10.7759/cureus.22254

20. Jamee A, Abotaima Z, Muammar M. Multisystem inflammatory syndrome with pericardial tamponade in COVID-19: a case report. Clin Pediatr (Phila). (2022) 61(2):112–5. doi: 10.1177/00099228211039966

21. Firenzen Y, Shahriari C, Imperial ME, Randhawa I, Nianiaris N, Ovunc B. Pediatric P-ANCA vasculitis following COVID-19. Pediatr Pulmonol. (2021) 56(10):3422–4. doi: 10.1002/ppul.26561

22. Anjos D, Fiaccadori FS, Servian CDP, da Fonseca SG, Guilarde AR, Borges MASB, et al. SARS-CoV-2 loads in urine, sera and stool specimens in association with clinical features of COVID-19 patients. J Clin Virol Plus. (2022) 2(1):100059. doi: 10.1016/j.jcyp.2021.100059

23. George S, Pal AC, Gagnon J, Timalina S, Singh P, Vidyam P, et al. Evidence for SARS-CoV-2 spike protein in the urine of COVID-19 patients. Kidney360. (2021) 2(6):924–36. doi: 10.34067/KID.0002172021

24. Costan M, Casadei P, Dell’Aquila M, Civitelli C, Mogni R, Pruccoli G, et al. MIS-C treatment: is IVIG always necessary? Front Pediatr. (2021) 9:753123. Erratum in: Front. Pediatr. (2022) 9:826318. doi: 10.3389/fped.2021.753123

25. Delmonaco AG, Carpentero A, Raffaldi I, Pruccoli G, Garrone E, Del Monte F, et al. First diagnosis of multisystem inflammatory syndrome in children (MIS-C): an analysis of POCUS findings in the ED. Ultrasound J. (2021) 13(1):41. doi: 10.1186/s13089-021-00980-2

26. Alghamdi SH. Clinical practice guidelines in multisystem inflammatory syndrome associated with COVID-19 (MIS-C): a diagnostic and treatment guidance from the rheumatology study group of the Italian society of pediatrics. Int J Pediatr. (2021) 47(1):24. doi: 10.1002/ijp2.12041

27. Henderson LA, Canna SW, Friedman KG, Gorelik M, Lapidus SK, Bassiri H, et al. American college of rheumatology clinical guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19 version 2. Arthritis Rheumatol. (2021) 73(4):e13–29. doi: 10.1002/art.41616

28. Algarini AS, Alamri NM, Khayat NZ, Alabdali RA, Alshibsi RS, Alghamdi SH. Clinical practice guidelines in multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: a critical review and recommendations. World J Pediatr. (2022) 18(2):83–90. doi: 10.1007/s12519-021-00499-w

29. Ozu SQ, Bayhan GI. Acute kidney injury in multisystem inflammatory syndrome in children (MIS-C). JN Comp Clin Med. (2021) 3(1):36–7. doi: 10.1007/s42399-020-00722-1

30. Erdihan G, Sınşık ÖÖ, Aksay AK, Ustündag G, Camlar SA, Mutluabab F, et al. Are we losing awareness of other infections due to the fear of coronavirus disease-2019 and MIS-C? Germs. (2021) 11(4):617–24. doi: 10.18683/germs.2021.1299

31. Greer AL, Gregory MJ, Jain A, Mohammad D, Cashen K, Ang JY, et al. Acute kidney injury in pediatric acute SARS-CoV-2 infection and multisystem inflammatory syndrome in children (MIS-C): is there a difference? Front Pediatr. (2021) 9:692256. doi: 10.3389/fped.2021.692256

Adasevic et al. 10.3389/fped.2022.1023525