Correctness of the initial-boundary problem of the compressible fluid filtration in a viscous porous medium

A A Papin and M A Tokareva
Altai State University, Barnaul, Russia
E-mail: tma25@mail.ru

Abstract. The local solvability of initial-boundary value problem for the system of the equations of non stationary fluid motion in a viscous deformable medium in the field of gravity is proved.

1. Introduction
The process of filtration compressible fluid in a deformable viscous porous medium is described by a system of equations which includes the laws of conservation of mass for each phase, Darcy’s law for fluid phase, taking into account the motion of a solid skeleton, the rheological law and the equation of conservation of momentum for system [1]–[3]. The solvability of this problem in some particular case is proved in [4]. The localization of solution for the filtration problem in an elastic medium is established in [5]. Similar problems with variable porosity were considered in [6]–[12].

2. Statement of the problem and formulation of the main result
A quasi-linear system of equations of composite type is considered:

\[
\begin{align*}
\frac{\partial (1-\phi)\rho_s}{\partial t} + \frac{\partial}{\partial x}((1-\phi)\rho_s v_s) &= 0, \\
\frac{\partial (\rho_f\phi)}{\partial t} + \frac{\partial}{\partial x}(\rho_f\phi v_f) &= 0, \\
\phi(v_f - v_s) &= -k(\phi)(\frac{\partial p_f}{\partial x} - \rho_f g), \\
\frac{\partial v_s}{\partial x} &= -\frac{1}{\xi(\phi)} p_e, \\
\frac{\partial p_{tot}}{\partial x} &= -\rho_{tot} g, \\
\rho_{tot} &= \phi \rho_f + (1-\phi) \rho_s.
\end{align*}
\]

We seek a solution of this system in the domain \((x, t) \in Q_T = \Omega \times (0, T), \Omega = (0, 1)\), under the boundary and initial conditions

\[
v_s \mid_{x=0, x=1} = v_f \mid_{x=0, x=1} = 0, \quad \phi \mid_{t=0} = \phi^0(x), \quad \rho_f \mid_{t=0} = \rho^0(x), \quad p_{tot} \mid_{x=0} = p^0(t).
\]
This initial-boundary problem describes 1D non-stationary isothermal motion of a compressible fluid in a viscous porous medium. Here ρ_f, p_s, v_f, v_s are, respectively, real density and velocity of solid and fluid phases, ϕ is the porosity, p_f, p_s are, respectively, pressures of the fluid and solid phases; p_c is the effective pressure, p_{tot} is the total pressure, ρ_{tot} is the density of the two-phase medium, g is the density of the mass forces; $k(\phi)$ is the coefficient of filtration, $\xi(\phi)$ is the coefficient of rock shear viscosity (specified function). The problem is written in the Eulerian coordinates x, t. The real density of the solid particles ρ_s is assumed constant. The unknown quantities are $\phi, \rho_f, v_f, v_s, p_f, p_s$. The system of equations (1)–(4) is closed by using the equation of state of the fluid phase $p_f = p_f(\rho_f)$.

We use the notation of functional spaces and the relevant norms adopted in [13]. In this paper by a solution of problem (1)–(5) we mean the set of functions $v_s \in C^{3+\alpha,1+\alpha/2}(Q_T) \ (\phi, p_f, p_s) \in C^{2+\alpha,1+\alpha/2}(Q_T), v_f \in C^{1+\alpha,1+\alpha/2}(Q_T)$ such that $0 < \phi < 1$, $p_f > 0$, $p_f > 0$. These functions satisfy the equations (1)–(4), the initial and boundary conditions (5) and regarded as continuous functions in $\overline{Q_T}$.

Let us state the main results of the paper.

Theorem. Suppose that the data of problem (1)–(5) satisfies the following conditions:

1) the functions $k(\phi), \xi(\phi)$ and their derivatives up to the second order are continuous for $\phi \in (0, 1)$ and satisfy the conditions

$$k_0^{-1} \phi^{a_1}(1-\phi)^{a_2} \leq k(\phi) \leq k_0 \phi^{a_1}(1-\phi)^{a_2}, 1/\xi(\phi) = a_0(\phi)\phi^{a_1}(1-\phi)^{a_2 - 1}, \ 0 < R_1 \leq a_0(\phi) \leq R_2,$$

where $k_0, a_i, R_i, i = 1, 2$ are positive constants, $q_1, ..., q_4$ are fixed real parameters, $p_f = R(\rho_f), \ R = \text{const} > 0$.

2) the functions g, the initial and boundary functions $\phi^0, \rho^0, p^0(t)$ satisfy the following smoothness conditions: $g \in C^{1+\alpha,1+\alpha/2}(Q_T), \phi^0 \in C^{2+\alpha}(\Omega), \rho^0 \in C^{2+\alpha}(\Omega), p^0(t) \in C^{1+\alpha/2}(0, T)$ and the matching conditions

$$((1 - \phi^0) \frac{dp^0}{dx} - \rho^0 g(x, 0)) |_{x=0,x=1} = 0,$$

as well as satisfy the inequalities

$$0 < m_0 \leq \phi^0(x) \leq M_0 < 1, 0 < m_1 \leq \rho^0(x) \leq M_1 < \infty, 0 < g(x, t) \leq g_0 < \infty, \ x \in \overline{\Omega},$$

where m_0, M_0, m_1, M_1, g_0 are given positive constants.

Then problem (1)–(5) has a local solution, i.e. there exists a value of $t_0 \in (0, T)$ such that

$$v_s(x, t) \in C^{3+\alpha,1+\alpha/2}(\overline{Q}_{t_0}), (\phi(x, t), p_s(x, t), p_f(x, t), \rho_f(x, t)) \in C^{2+\alpha,1+\alpha/2}(\overline{Q}_{t_0}),$$

$$v_f(x, t) \in C^{1+\alpha,1+\alpha/2}(\overline{Q}_{t_0}).$$

Moreover, $0 < \phi(x, t) < 1, \rho_f(x, t) > 0$ in \overline{Q}_{t_0}.

3. Local solvability

Following [5], [14], we rewrite the system (1)–(5) in the mass Lagrangian variables. We obtain the following problem for unknown functions ρ_f, ϕ:

$$\frac{\partial}{\partial t}(a(\phi)\rho_f) - \frac{\partial}{\partial x}(K(\phi)b(\rho_f)\frac{\partial \rho_f}{\partial x} - \frac{K(\phi)}{1-\phi} \rho_f^2 g) = 0,$$

$$\frac{\partial G}{\partial t} = p_f - p_{tot}, \ (1 - \phi) \frac{\partial p_{tot}}{\partial x} = -\rho_{tot} g,$$

$$((1 - \phi) \frac{\partial \rho_f}{\partial x} - \rho_f g) |_{x=0,x=1} = 0, \ \rho_f |_{t=0} = \rho^0(x), \ \phi |_{t=0} = \phi^0(x),$$

where

$$a(\phi) = (1 - \phi) \frac{\rho_{tot}}{1 + \rho_{tot}}, \ \ K(x, t) = \rho_{tot}(\Phi(x, t)).$$
We note that on the set V where (6)–(8) has a unique local solution, i.e. there exists a value of t_0 such that

$$(\phi(x,t), \rho_f(x,t), p_{tot}(x,t)) \in C^{2+\alpha,1+\alpha/2}(\overline{Q}_{t_0}).$$

Lemma 1. Let the data of problem (6)–(8) satisfy the conditions of the theorem. Then problem (6)–(8) has a unique local solution, i.e. there exists a value of t_0 such that

$$(\phi(x,t), \rho_f(x,t), p_{tot}(x,t)) \in C^{2+\alpha,1+\alpha/2}(\overline{Q}_{t_0}).$$

Furthermore, $0 < \phi(x,t) < 1$, $\rho_f(x,t) > 0$ \overline{Q}_{t_0}.

The solvability of problem (6)–(8) is established by using the Tikhonov-Schauder fixed-point theorem [15].

Since the function $\psi = G(\phi)$ is strictly monotone, at $\phi \in (0,1)$, than the inverse function exists: $\phi = G^{-1}(\psi)$. Assuming that $\rho(x,t) = \rho_f(x,t) - \rho^0(x)$, $\omega(x,t) = G(\phi) - G(\phi^0)$. We represent the equations (6),(7) in the form

$$\frac{\partial}{\partial t} \left(a(\omega)(\rho + \rho^0) \right) = \frac{\partial}{\partial x} \left(K(\omega) b(\rho + \rho^0) \frac{\partial(\rho + \rho^0)}{\partial x} - \frac{K(\omega)}{1-\phi(\omega)} \rho(\rho + \rho^0)^2 g \right),$$

$$\frac{\partial \omega}{\partial t} = p_f(\rho + \rho^0) - p_{tot}(1 - \phi(\omega)) \frac{\partial p_{tot}}{\partial x} = -\rho_{tot} g.$$ \hspace{1cm} (10)

Here $a(\omega) = \frac{\phi(\omega)}{1-\phi(\omega)}, K(\omega) = k(\phi)(1 - \phi(\omega)), \phi(\omega) = G^{-1}(\omega + G(\phi^0)).$ Moreover,

$$\rho|_{t=0} = \omega |_{t=0} = ((1 - \phi(\omega)) \frac{\partial(\rho + \rho^0)}{\partial x} - (\rho + \rho^0)g) |_{x=0,x=1} = 0, p_{tot}|_{x=0} = \rho^0(t).$$

For the Banach space, we choose the space $C^{2+\beta,1+\beta/2}(\overline{Q}_{t_0})$, where β is any number from the interval $(0, \alpha)$, $\alpha \in [0,1)$. Let

$$V = \{ \bar{\rho}(x,t), \bar{\omega}(x,t) \in C^{2+\alpha,1+\alpha/2}(\overline{Q}_{t_0}) | \bar{\rho} |_{t=0} = \bar{\omega} |_{t=0} = ((1 - \phi(\omega)) \frac{\partial(\rho + \rho^0)}{\partial x} - (\rho + \rho^0)g) |_{x=0,x=1} = 0,$$

$$\hat{m}_1 - \rho^0(x) \leq \bar{\rho}(x,t) \leq \hat{M}_1 - \rho^0(x) < \infty, \quad \hat{m}_1 = \hat{m}_1(2+\frac{4g_0k_0}{R(1-M_0)})^{-1}, \quad \hat{M}_1 = \hat{m}_1(2+\frac{4g_0k_0}{R(1-M_0)}),$$

$$G(\frac{m_0}{2}) - G(\phi^0) \leq \hat{\omega}(x,t) \leq G(\frac{M_0+1}{2}) - G(\phi^0) < \infty, \quad (x,t) \in Q_{t_0},$$

$$\{ \hat{\omega} |_{x=1}, |\rho|_{x=1} - (\rho^0(x) - \rho^0(x)) \leq K_1, \quad |\hat{\omega} |_{x=2}, |\rho|_{x=2} - (\rho^0(x) - \rho^0(x)) \leq K_1 + K_2 \},$$

where K_1 is an arbitrary positive constant, while the positive constant K_2 will be given later. We note that on the set V following inequalities hold: $0 < \frac{m_0}{2} \leq \phi(\bar{\omega}) \leq \frac{M_0+1}{2} < 1, \quad a(\bar{\omega}) > 0, \quad K(\hat{\omega}) > 0.$

Let us construct an operator Λ mapping V in V. Suppose that $\bar{\omega}, \bar{\rho} \in V$. Using (10), we define the functions p_{tot}, ω by the equalities

$$p_{tot} = \rho^0(t) - \int_0^x g(\rho_s + (\bar{\rho} + \rho^0(\xi)) \frac{\phi(\bar{\omega})}{1-\phi(\bar{\omega})}) d\xi,$$

$$\omega = \int_0^t \left(R(\bar{\rho}(x,t) + \rho^0(\xi)) - p^0(\tau) + \int_0^x g(\rho_s + (\bar{\rho} + \rho^0(\xi)) \frac{\phi(\bar{\omega})}{1-\phi(\bar{\omega})}) d\xi \right) d\tau. \hspace{1cm} (11)$$
From the representation (11) it follows that smoothness \(\omega \) and \(p_{\text{tot}} \) is determined by the smoothness of functions \(\tilde{\rho}, \tilde{\omega}, \rho^0, p^0 \) and \(g \), and there exists a value \(t_1 = t_1(m_0, M_0, m_1, M_1) \), such that for all \(t_0 \leq t_1 \) the following inequality holds

\[
0 < \frac{m_0}{2} \leq \phi(x, t) \leq \frac{M_0 + 1}{2}, \quad (x, t) \in Q_{t_0},
\]

(12)

In particular, we have an estimate

\[
|\omega|_{2 + a, 1 + \alpha/2, Q_{t_0}} = C_1(m_0, M_0, m_1, M_1, K_1, T, |g|_{1 + a, \Omega}, |\rho^0|_{2 + a, \Omega}, |p^0|_{a/2, [0, T]}) (1 + t_0) |\rho_{xx}|_{a, \alpha/2, \Omega}.
\]

Taking into account (12) we also have the estimate for function \(\omega(x, t) : G\left(\frac{m_0}{2}\right) \leq \omega(x, t) + G(\phi^0) \leq G\left(\frac{M_0 + 1}{2}\right) \).

Using (9), \(\tilde{\rho} \) and \(\tilde{\omega}(x, t) \) we find the function \(\rho(x, t) \) as a solution of the problem (here and elsewhere, we assume that the initial and boundary conditions are matched):

\[
\frac{\partial}{\partial t} (a(\omega)(\rho + \rho^0)) = \frac{\partial}{\partial x} \left(K(\omega) b(\tilde{\rho}) \frac{\partial (\rho + \rho^0)}{\partial x} - \frac{K(\omega)}{1 - \phi(\omega)} (\tilde{\rho} + \rho^0)(\rho + \rho^0) g \right),
\]

(13)

\[
\rho \big|_{t=0} = 0, \quad ((1 - \phi(\omega)) \frac{\partial (\rho + \rho^0)}{\partial x} - (\rho + \rho^0) g) \big|_{x=0, x=1} = 0.
\]

The equation for \(\rho(x, t) \) is uniformly parabolic. In view of the properties of \(\tilde{\omega}(x, t) \) and \(\rho^0(x) \) the problem (13) has a classical solution [16]. In addition, we have the following estimate:

\[
\left| \frac{1}{a(\omega)} \frac{\partial a(\omega)}{\partial t} \right| \leq C_0(m_0, M_0, m_1, M_1, \max_{0 \leq t \leq T} |p^0(t)|).
\]

Imposing the additional smallness condition on the quantity \(t_0 \), we can state the following lemma.

Lemma 2. There exists a value \(t_2 \), such that, when \(t_0 \leq \min(t_1, t_2) \), the classical solution of problem (13) satisfies the following inequality in \(Q_{t_0} \)

\[
0 < \hat{m}_1 \leq \rho(x, t) + \rho^0(x) \leq \hat{M}_1 < \infty.
\]

Proof. Further, setting \(U(x, t) = \rho(x, t) + \rho^0(x) \), we can express problem (13) in the form

\[
\frac{\partial}{\partial t} (a(\omega)U) = \frac{\partial}{\partial x} \left(K(\omega) b(\tilde{\rho}) \frac{\partial U}{\partial x} - \frac{K(\omega)}{1 - \phi(\omega)} (\tilde{\rho} + \rho^0) U g \right), \quad \left(\frac{\partial U}{\partial x} - \tilde{d} U \right) |_{x=0, x=1} = 0, \quad U |_{t=0} = \rho^0,
\]

(14)

where \(\tilde{d} = g \frac{1 - \phi(\omega)}{2(1 - \phi(\omega))} \). First, we show that \(U(x, t) \geq 0, (x, t) \in Q_{t_0} \). In equation (14), let us make the change \(U(x, t) = -z(x, t) \). Then

\[
z \frac{\partial a}{\partial t} + a \frac{\partial z}{\partial t} = \frac{\partial}{\partial x} \left(K b \frac{\partial z}{\partial x} - \frac{K}{1 - \phi(\omega)} (\tilde{\rho} + \rho^0) g z \right).
\]

Let

\[
z^{(0)}(x, t) = \max\{z, 0\}, \quad z^{(0)}(x, t) |_{t=0} = \max\{-\rho^0, 0\} = 0,
\]

\[
\sigma_e(x, t) = z^{(0)}(x, t)(|z^{(0)}(x, t)|^2 + \varepsilon)^{-1/2}, \varepsilon > 0.
\]

Let us multiply the equation for the function \(z \) by \(\sigma_e \) and then integrate over \(\Omega \). Following [4], we obtain the estimate

\[
\int_0^1 a z^{(0)}(x) dx \leq \varepsilon^{1/2} \int_0^t \int_0^1 \left| \frac{\partial a}{\partial \tau} \right| dx d\tau + \varepsilon^{1/2} \int_0^1 a |_{t=0} dx.
\]
Passing to the limit as \(\varepsilon \to 0 \), we find that \(z^{(0)} = 0 \), i.e. \(U \geq 0 \).

The problem (14) can be represented as:

\[
U_t - \tilde{a}_{11}U_{xx} + \tilde{a}_1U_x + \tilde{a}U = 0, \quad (U_x - \tilde{d}U)_{|x=0,1} = 0,
\]

where

\[
\tilde{a}_{11} = \frac{Kb}{a}, \quad \tilde{a}_1 = \frac{d - (Kb)_x}{a}, \quad \tilde{a} = \frac{a_t + d_x}{a}, \quad \tilde{d} = \frac{g}{(1-\phi)R}.
\]

Following [16], we pass from the function \(U(x,t) \) to the new function \(v(x,t) \) associated with the last one by the equality \(U(x,t) = v(x,t)e^{\lambda t} \), while the constant \(\lambda \) will be given later. The function \(v \) satisfies the equation

\[
v_t - \tilde{a}_{11}v_{xx} + \tilde{a}_1v_x + (\tilde{a} + \lambda)v = 0.
\]

Suppose that \(\lambda > \max_{Q_0}[-\tilde{a}] \). Since \(U \geq 0, g > 0 \), it follows from the boundary conditions (15), that \(U_{x|x=0,1} = (\tilde{d}U)_{|x=0,1} \geq 0 \), i.e. at \(x = 0 \) the maximum of the function can not be achieved. Suppose that \(\omega(x,t) = v(x,t)\varphi(x) \), where

\[
\varphi = -mx^2 + mx + 1 > 0, \quad m \equiv 2 \max |\tilde{d}| = \frac{4g_0k_0}{(1-M_0)R}.
\]

The function \(\omega \) is a solution of the problem

\[
\omega_t - \tilde{a}_{11}\omega_{xx} + (\tilde{a}_1 + \frac{2a_{11}\varphi_x}{\varphi})\omega_x + (-2\tilde{a}_{11}\frac{\varphi_x^2}{\varphi^2} + \tilde{a}_{11}\frac{\varphi_{xx}}{\varphi} - \tilde{a}_1\frac{\varphi_x}{\varphi} + \tilde{a} + \lambda)\omega = 0,
\]

\[
\omega_x|_{x=0,1} = ((\frac{\varphi_x}{\varphi} + \tilde{d})\omega)|_{x=0,1}, \quad \omega_x|_{x=0} > 0, \quad \omega_x|_{x=1} < 0.
\]

We choose

\[
\lambda > \max_{Q_0}\{\max\{2\tilde{a}_{11}\frac{\varphi_x^2}{\varphi^2} - \tilde{a}_{11}\frac{\varphi_{xx}}{\varphi} + \tilde{a}_1\frac{\varphi_x}{\varphi} - \tilde{a}\}, \max_{Q_0}[-\tilde{a}]\},
\]

then the function \(\omega \) reaches a positive maximum for \(t = 0 \). Therefore, we have an upper bound for \(U \):

\[
U \leq e^{\lambda t}M_1(1 + \frac{g_0k_0}{(1-M_0)R}).
\]

Then there exists a value \(t_2 = \ln 2^{1/\lambda} \), such that for all \(t \leq t_2 \) we have the estimate from above for \(\rho \) from Lemma 2.

To obtain a lower estimate we represent equation (14) in the form \((z(x,t) = 1/U(x,t)) \)

\[
z_t - \tilde{a}_{11}z_{xx} + \frac{2\tilde{a}_{11}}{z}z_x + \tilde{a}_1z_x - \tilde{a}z = 0.
\]

Applying a similar approach, we obtain the required estimate from below for \(\rho \) for any \(t \leq t_2 \).

Lemma 2 is proved.

In view of Lemma 2 and the properties of \(\bar{\omega} \) we have the following estimates [16]:

\[
|\rho|_{a,\alpha/2,Q_0} \leq C_2,
\]

\[
|\rho|_{2+a,1+a/2,Q_0} \leq C_3 \left(1 + |\rho_0|_{2+a,\alpha} + |\bar{\rho}_z|_{a,\alpha/2,Q_0} + |\bar{\omega}_t|_{a,\alpha/2,Q_0} + |\bar{\omega}_x|_{a,\alpha/2,Q_0} \right),
\]
in which the constants C_2, C_3 depends on K_1, m_0, m_1, M_0, M_1. Therefore
\[|\rho|_{2+\alpha,1+\alpha/2,Q_{0}} \leq C_4(K_1, m_0, m_1, M_0, M_1). \]

Let $C_5 = \max\{C_1, C_4\}$. Choose K_2 so that $C_5 \leq \frac{K_1 + K_2}{2}$. Then, for $t_0 < \min(t_1, t_2, (K_1 + K_2)^{-1})$ we obtain
\[|\rho|_{2+\alpha,1+\alpha/2,Q_{0}} \leq K_1 + K_2, \quad |\omega|_{2+\alpha,1+\alpha/2,Q_{0}} \leq K_1 + K_2. \]

It remains to verify to conditions
\[|\rho|_{1+\alpha,(1+\alpha)/2,Q_{0}} \leq K_1, \quad |\omega|_{1+\alpha,(1+\alpha)/2,Q_{0}} \leq K_1. \]

Integrating equation (13) with respect to time, we obtain $|\rho|_{0,Q_{0}} \leq C_0 t_0$. From the equation (11) we obtain $|\omega|_{0,Q_{0}} \leq C_7 t_0$. Further, using for ρ, ω an inequality of the form [13]
\[|u|_{1+\alpha,(1+\alpha)/2,Q_{0}} \leq C |u|_{2+\alpha,1+\alpha/2,Q_{0}}^{1-c}, \quad c = (1 + \alpha)(2 + \alpha)^{-1}, \]
we find that there exists a sufficiently small value of t_0, depending on K_1 and K_2, such that the required estimates hold: $|\rho|_{1+\alpha,(1+\alpha)/2,Q_{0}} \leq K_1, |\omega|_{1+\alpha,(1+\alpha)/2,Q_{0}} \leq K_1$.

Thus, the operator Λ maps the set V into itself for sufficiently small values of t_0. Using the estimates obtained above, we can easily show the continuity of the operator Λ in the norm of the space $C^{2+\beta,1+\beta/2}(Q_{t_0})$. By the Tikhonov-Schauder theorem, there exists a fixed point $(\rho, \omega) \in V$ of the operator Λ. Uniqueness is established in the standard way [13].

Lemma 1 is proved.

Since $(\phi, p_f) \in C^{2+\alpha,1+\frac{\alpha}{2}}(Q_{t_0})$, we have:
\[v_\varepsilon \in C^{3+\alpha,1+\frac{\alpha}{2}}(Q_{t_0}), \quad (p_f, p_\varepsilon) \in C^{2+\alpha,1+\frac{\alpha}{2}}(Q_{t_0}), \quad v_f \in C^{1+\alpha,1+\frac{\alpha}{2}}(Q_{t_0}). \]

Theorem is proved.

4. Conclusion

We have studied the model of filtration of a compressible fluid in a viscous porous medium in the field of gravity. We establish the local solvability of the problem for the case in which the real densities of the solid phase are constant.

References

[1] Fowler A C and Yang X 1999 J. Geophys. Res. 104 989-97
[2] Connolly J A D and Podladchikov Y Y 1998 Geodin. Acta 11 55–84
[3] Morency C, Huismans R S, Beaumont C and Fullsack P 2007 J. Geophys. Res. 112 B10407
[4] Tokareva M A 2016 J. Phys.: Conf. Ser. 722 012037
[5] Tokareva M A 2015 J. Sib. Fed. Univ. Math. Phys. 8 467–77
[6] Prokudin D A and Krayushkina M V 2016 J. Appl. Indust. Math. 10 417–28
[7] Yang X 2000 Nonlin. Processes Geophys. 7 1–7
[8] Kucher N A, Mamontov A E and Prokudin D A 2012 Sib. Math. J. 53 1075–88
[9] Papin A A 2008 J. Appl. Mech. Tech. Phys. 47 527–36
[10] Simpson M, Spiegelman M and Weinstein M I 2007 Nonlinearity 20 21–49
[11] Geng Y and Zhang L 2010 Appl. Math. Comput. 217 1741–8
[12] Rudyak V Ya, Bocharov O B and Seryakov A V 2013 Proceedings of the XLI Summer School-Conference Advanced Problems in Mechanics (APM-2013) (St-Petersburg) 183-90
[13] Antontsev S N, Kazhikhov A V and Monakhov V N 1990 Boundary-Value Problems of the Mechanics of Inhomogeneous Fluids (Amsterdam: Nuth-Holland).
[14] Akhmerova I G and Papin A A 2014 Mathematical Notes 96 166–79
[15] Edwards R 1965 Functional Analysis: Theory and Applications (New York: Holt, Rinehart and Winston)
[16] Ladyzhenskaya O A, Solonnikov V A and Uraltseva N N 1968 Linear and Quasilinear Equations of Parabolic Type (Providence, RI: American Mathematical Society)