The Diffusion of the Magnetization Profile in the XX-model

Yoshiko Ogata
Department of Physics, Graduate School of Science,
University of Tokyo, Hongo,7-3-1,Bunkyo-ku, Tokyo 113-0033, Japan
(Dated: November 8, 2018)

By the C^*-algebraic method, we investigate the magnetization profile in the intermediate time of diffusion. We observe a transition from monotone profile to non-monotone profile. This transition is purely thermal.

PACS:05.70.Ln,05.60.Gg,02.30.Tb,75.10.Jm

I. INTRODUCTION

The anomalous properties of the state with current in one-dimensional integrable system has attracted considerable interests. Especially, the heat conduction in one-dimensional systems is a long -standing problem. It has been expected that the existence of conserved quantities implies anomalous conductivity of the heat current [1]. A large number of numerical investigations have been done [2].

It is natural to consider the state with current as the non-equilibrium steady state (NESS), i.e., the state which is asymptotically realized from the inhomogeneous initial state [3]. In other words, the NESS is the state at the convergent point. There reported many works on the NESS itself. However, the relaxation process to the NESS is not much investigated. After a large but finite time, what kind of profile does the observable quantity show? In the previous paper [3], stating from the inhomogeneous initial state (the temperatures of the left and the right are different), we obtained the homogeneous NESS for the transverse XX-model. Investigating the profiles in the intermediate time, we would obtain the diffusion of the temperature profile. Furthermore, in the integrable system, the existence of the conserved quantities may have a significant influence on the relaxation process.

In this paper, we investigate the profile at the large intermediate time using the transverse XX-model. The chain is initially divided to the left and the right, and kept at different temperatures. The problem of intermediate profile with inhomogeneous initial condition in the XX-model was first studied by Antal.et.al. in [4]. They considered the magnetization profile in zero temperature with the reversed external field, the situation which makes the calculation simple. It was shown that the magnetization profile shows the scaling property, $m(x,t) \approx \Phi(x/t)$. They calculated the explicit form of the scaling function Φ, which has the flat part around the origin. We investigate this problem with the aid of the C^*-algebraic argument. Modifying the argument of Ho and Araki [5], we develop a method which is applicable to the present situation. The C^*-algebraic argument makes the calculation much simpler, and enables us to consider the more general situation, including the finite temperature case.

We obtain the scaling limit $m(x,t) \approx \Phi(x/t)$. For the situation of Antal.et.al. [4], we reproduce the same result. We further consider the finite temperature case. In the finite temperature case, we obtain a remarkable dependence of the magnetization profile on the strength of the external field and the temperature. When the external field is large, or the difference of the temperature is small, the profile varies monotonically. On the other hand, when the external field is small and the difference of the temperature is large, the profile is not monotone and has two extremum points. This feature is absent at the zero-temperature. That is, this phenomenon is due to purely thermal effect. This can be explained by the velocity distribution. In section II, we represent the model and the initial condition. In section III, the scaling property of correlation function is derived. In section IV, we investigate the interesting property which the profile reveals.

II. THE MODEL

The Hamiltonian we shall consider has the form,

$$
\mathcal{H} = \frac{1}{4} \sum_{n=-\infty}^{\infty} (\sigma_n^x \sigma_{n+1}^x + \sigma_n^y \sigma_{n+1}^y) + \frac{\gamma}{2} \sum_{n=-\infty}^{\infty} \sigma_n^z,
$$

where $\sigma_n^\alpha (\alpha = x, y, z)$ is the α-component of the Pauli matrix at the site n. This Hamiltonian is called the transverse XX-model. The Hamiltonian is written by the fermion operators using the Jordan-Wigner transformation [8]:

$$
\mathcal{H} = -\frac{1}{2} \sum_{n=-\infty}^{\infty} \left[a_n^\dagger a_{n+1} + a_n^a a_{n+1} \right] + \frac{\gamma}{2} \sum_{n=-\infty}^{\infty} \left(2a_n^\dagger a_n - 1 \right),
$$

where a_n and a_n^\dagger are the fermionic annihilation and creation operators on the nth site.

Owing to the bilinear form of the Hamiltonian, the dynamics of the many body system can be written by
the dynamics of the single particle. So, we only have to consider the dynamics of the linear combination of a^\dagger_l;

$$a^\dagger_l (f) \equiv \sum_{l=-\infty}^{\infty} f(l)a^\dagger_l, \quad \sum_{l=-\infty}^{\infty} |f(l)|^2 < \infty. \quad (3)$$

Here, l denotes the l-th site. The summable sequence $\{f(l)\}$ can be interpreted as the wave function of the single particle which is living on the lattice. They construct the one particle Hilbert space, with the inner product

$$\langle f|g \rangle = \sum_{l=-\infty}^{\infty} f(l)g(l).$$

As usual, we define the norm of f as

$$\|f\| = \left(\sum_{l=-\infty}^{\infty} |f(l)|^2 \right)^{\frac{1}{2}}.$$

In the one particle Hilbert space, the Fourier transformation is defined as

$$\hat{f}(k) \equiv \sum_{n=-\infty}^{\infty} f(n)e^{-ink}, \quad f(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{f}(k)e^{ink}.$$

By the Hamiltonian (3), $a^\dagger(f)$ evolves as

$$a^\dagger(f) \rightarrow a^\dagger(e^{itf})f,$$

(4)

where e^{itf} is the dynamics of the single particle, represented in the Fourier representation as

$$e^{itf}(k) = e^{-it(cos k - \gamma)f(k)}.$$

Hence, in the coordinate representation, we have

$$(e^{itf})(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} dk e^{-it(cos k - \gamma)}e^{ink}\hat{f}(k).$$

(5)

From now on, we use the following notations. Usually, the Heisenberg representation of the observable A is

$$e^{itH} Ae^{-itH}.$$

In stead of this, we use the notation $\alpha_t(A)$;

$$e^{itH} Ae^{-itH} \leftrightarrow \alpha_t(A).$$

In this notation, the dynamics of the single particle is written as

$$\alpha_t(a^\dagger(f)) = a^\dagger(e^{itf}).$$

We also use the unusual notation about the states. Usually, the state is given by a density matrix ρ, and the expectation value of A is given by

$$\text{Tr}_\rho A.$$

In stead of this, we use ω;

$$\text{Tr}_\rho A \leftrightarrow \omega(A).$$

These notations are introduced because the usual notations are mathematically ill-defined in infinite system. However, there is no inconvenience in interpreting them in the usual sense.

The initial state ω_0 we consider is inhomogeneous. To define it, we divide the chain to the left and the right. The left ($n \leq 0$) side is in the equilibrium under magnetic field γ_- with inverse temperature β_-. We denote the state by ω_-. On the other hand, the right ($n \geq 1$) side is in the equilibrium under magnetic field γ_+ with inverse temperature β_+. We denote the state by ω_+. The expectation value of $a^\dagger(g)a(f)$ in ω_-, ω_+ are expressed as

$$\omega_-(a^\dagger(g)a(f)) = \frac{1}{\pi} \int_{-\pi}^{\pi} d\omega \omega g(\omega)f(-\omega),$$

$$\omega_+(a^\dagger(g)a(f)) = \frac{1}{\pi} \int_{-\pi}^{\pi} d\omega \omega g(\omega)f(\omega),$$

(6)

where ρ_\pm is determined by the valuables β_\pm, and γ_\pm as

$$\rho_\pm(k) = \frac{1}{1 + e^{-\beta_\pm(cos k - \gamma_\pm)}}.$$

We used the Fourier-sine transform;

$$\tilde{f}_-(k) \equiv -i \sum_{n=-\infty}^{0} f(n)\sin((n-1)k) \quad k \in [0, \pi],$$

$$f(n) = \frac{2i}{\pi} \int_{0}^{\pi} dk \tilde{f}_-(k)\sin((n-1)k) \quad n \leq 0,$$

$$\tilde{f}_+(k) \equiv i \sum_{n=1}^{\infty} f(n)\sin(nk) \quad k \in [0, \pi],$$

$$f(n) = \frac{2i}{\pi} \int_{0}^{\pi} dk \tilde{f}_+(k)\sin(nk) \quad n \geq 1.$$

Because of the quadratic form of the equilibrium states ω_- and ω_+, the expectation values are evaluated by use of the Wick product with the two-point function. The initial state has then the following product form;

$$\omega_0 (A_- \otimes A_+) = \omega_- (A_-) \omega_+ (A_+),$$

(7)

where A_- and A_+ are arbitrary operators of the left part ($n \leq 0$) and the right part ($n \geq 1$) of the chain, respectively.

III. THE SCALING PROPERTY

Now, we investigate the asymptotic profile of physical quantities. Let us consider X_n, some physical value localized in the neighborhood of site n. The expectation value of X_n at the time t is $X(n, t) = \omega_0(\alpha_t(X_n))$, with
the notation of the previous section. The scaling property means

\[X(n, t) \approx \Phi_X \left(\frac{n}{t} \right), \]

i.e., for large \(t \), the expectation value of \(X \) at the site \(vt \) is almost \(\Phi_X(v) \). Fig.1 shows the situation. Each figure is the snapshot of the profile of some \(X \), at the time \(t_0, 3t_0, 10t_0 \). Note that the leaned area has the width \(t_0, 3t_0, 10t_0 \), respectively. It shows that the wave of the diffusion expand with the constant velocity 1. They can be written as

\[X(n, t) = \Phi_X \left(\frac{n}{t} \right), \]

Here, \(\Phi_X(v) \) is the scaling function represented in Fig.2.

To show this scaling property, we have to prove the following convergence to the scaling function \(\Phi_X \);

\[\Phi_X(v) = \lim_{t \to \infty} X(vt, t) = \lim_{t \to \infty} \omega_0(\alpha_t(X_{vt})). \]

As \(\omega_0 \) is determined by the Wick product of the two point function, we only have to derive the limit for \(X = a^\dagger(g)a(f) \) case;

\[\omega_v(a^\dagger(g)a(f)) \equiv \Phi_{a^\dagger(g)a(f)}(v) = \lim_{t \to \infty} \omega_0(\alpha_t(a^\dagger(S_{vt}g)a(S_{vt}f))) \]

where we used the \(m \)-sift operator \(S_m \) on the one particle Hilbert space;

\[(S_m f)(n) \equiv f(n-m). \]

For example, to derive the asymptotic profile of the magnetization \(m(v) \), we calculate

\[
\begin{align*}
 m(v) & = \lim_{t \to \infty} \omega_0 \left(\alpha_t \left(\frac{1}{2} \sigma_{vt}^z \right) \right) \\
 & = \lim_{t \to \infty} \omega_0 \left(\alpha_t \left(a^\dagger(S_{vt} \eta_0) a(S_{vt} \eta_0) \right) \right) - \frac{1}{2} \\
 & = \omega_0 \left(a^\dagger(\eta_0) a(\eta_0) \right) - \frac{1}{2},
\end{align*}
\]

with \(\eta_0 \), a wave function defined as

\[
\eta_0(n) = \begin{cases}
1 & n = 0 \\
0 & n \neq 0.
\end{cases}
\]

Using the \(C^* \)-algebraic method, we can make the argument generic. As an advantage, we can treat the finite temperature case. The argument uses the result of Ho and Araki [7]. They calculated the following decomposition of (3) with \(f \) an analytic function; for \(|n| < t(1 - \delta) \), with \(\delta > 0 \), we have

\[(e^{\imath \theta} f)(n) = (T_1 f)(n) + (A f)(n, t). \]

\[(T_1 f)(n) = \begin{cases}
g(n, t) & |n| < t(1 - \delta)
(e^{\imath \theta} f)(n) & |n| \geq t(1 - \delta)
\end{cases} \]

where

\[
g(n, t) \equiv \frac{1}{2} \left[\frac{\pi}{2t} \sqrt{1 - (n/t)^2} \right]^{-\frac{1}{2}} \times \left[f \left(\sin^{-1}(n/t) \right) e^{-\imath \sin^{-1}(n/t) - \imath t \sqrt{1 - (n/t)^2} + \imath \pi/4} \right. \\
\left. + f(\pm \pi + \sin^{-1}(n/t)) \right] e^{\imath \pi (\pm \pi + \sin^{-1}(n/t)) + \imath t \sqrt{1 - (n/t)^2} - \imath \pi/4}
\]

\[(+ \text{ for } n \leq 0, - \text{ for } n > 0). \]

This term corresponds to the contribution from the momentum \(k(n, t) \) where the phase velocity

\[\phi(k) = - \cos k + \gamma + \frac{nk}{t} \]

is stationary i.e.,

\[\phi'(k) = \sin k + \frac{n}{t} = 0 \]

\[\Rightarrow k(n, t) = - \sin^{-1}(n/t), \pm \pi + \sin^{-1}(n/t) \]

\[+ \text{ for } n \leq 0, - \text{ for } n > 0. \]

\[(A f)(n, t) \text{ decay as} \]

\[|(A f)(n, t)| \leq \frac{C_\delta}{t} \]

Fig.2 The scaling function \(\Phi_X(v) \) corresponds to Fig.1. In this figure, the \(x \)-axes is the site, but the scaling factor \(v \).
with \(C^\delta \), some constant which is independent of \(n \). They also showed that the contribution to \(e^{ith} f \) from \(|n| > t(1 - \delta) \):

\[
B_\delta \equiv \lim_{t \to \infty} \sum_{|n| > t(1 - \delta)} \| (e^{ith} f)(n) \|^2 \to 0
\]
(11)

go to zero as \(\delta \to 0 \). \((10), (11) \) ensures the following:

\[
e^{ith} f \sim T_t f,
\]
(12)

for large \(t \). We can see from \((8) \), this means that at the site \(n \), there is only the particle at momentum \(k(n,t) \).

Now, let us return to the current problem. First, we define projection operators on the one particle Hilbert space. The coordinate projections \(P_m^-, P_m^+ \) are

\[
[P_m^- f](n) = \begin{cases} 0 & n > m \\ f(n) & n \leq m \end{cases}
\]
\[
[P_m^+ f](n) = \begin{cases} f(n) & n > m \\ 0 & n \leq m \end{cases}
\]

There is the following relation between \(S_m \) and \(P_1^\pm \):

\[
S_m P_1^\pm = P_{m + 1}^\pm S_m
\]
(13)

The velocity projection \(\hat{P}_v^- \), \(\hat{P}_v^+ \) are defined in the Fourier representation as

\[
\hat{P}_v^- f(k) = \begin{cases} 0 & k \in I_v^- \\ \hat{f}(k) & k \in I_v^c \\ 0 & k \in I_v^+ \end{cases}
\]
\[
\hat{P}_v^+ f(k) = \begin{cases} \hat{f}(k) & k \in I_v^- \\ 0 & k \in I_v^+ \end{cases}
\]

where

\[I_v \equiv \{ k \in (-\pi, \pi); v \sin k \}, \]

and \(I_v^c \) is the complement of \(I_v \). By the definition of \(T_t \) \((8) \), we have for \(|n| < t(1 - \delta) \),

\[
(T_t \hat{P}_v^\pm f)(n) = (P_v^\pm T_t f)(n).
\]
(14)

Next we calculate the asymptotic value of

\[\alpha_t(a^\dagger(S_v t f)) = a^\dagger(e^{ith} S_v t f). \]

We claim that

\[
\lim_{t \to \infty} \| P_v^- S_v e^{ith} f - \hat{P}_v^+ S_v e^{ith} f \| = 0
\]

We have to calculate

\[
(e^{ith} S_v t f)(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} dk e^{-it(c \cos k - k)} e^{i(n-vt)k} \hat{f}(k),
\]

which we obtain by replacing \(n \) of \((3) \), with \(n - vt \). Note that \(S_m \) commutes with the dynamics \(e^{ith} \). Let us define \([g]_t \) as

\[
[g]_t(n) \equiv \begin{cases} (S_v t g)(n) & |n - vt| \leq t(1 - \delta) \\ (S_v e^{ith} g)(n) & |n - vt| > t(1 - \delta) \end{cases}
\]

Using the relation \((13), (14) \), we have for \(|n - vt| \leq t(1 - \delta) \):

\[
\left[\hat{P}_v^+ \right]_t (n) = (S_v T_t \hat{P}_v^+ g)(n)
\]
(15)

\[
= (S_v P_v^- T_t g)(n) = (P_0^- S_v T_t g)(n) = (P_0^- [g]_t)(n).
\]
(16)

Let us fix some \(\delta > 0 \). Then, in the asymptotic limit \(t \to \infty \), we have from \((16) \),

\[
\| P_0^- [g]_t - [P_v^+ g]_t \|^2
\]
\[
= \sum_{|n-vt| > t(1-\delta)} \| (P_0^- S_v e^{ith} g(n) - S_v e^{ith} \hat{P}_v^+ g(n)) \|^2
\]
\[
+ \sum_{|n-vt| \leq t(1-\delta)} \| P_0^- [g]_t(n) - [P_v^+ g]_t(n) \|^2
\]
\[
\leq 2 \left[\sum_{|n| > t(1-\delta)} |e^{ith} g(n)|^2 + \sum_{|n| \leq t(1-\delta)} |e^{ith} \hat{P}_v^+ g(n)|^2 \right]
\]
\[
\to 2 \left(B_\delta(g) + B_\delta(\hat{P}_v^+ g) \right).
\]
(17)

We also have in \(t \to \infty \) limit,

\[
\| S_v e^{ith} g - [g]_t \|^2
\]
\[
= \sum_{|n-vt| \leq t(1-\delta)} \| (S_v e^{ith} g(n) - (S_v T_t g)(n)) \|^2
\]
\[
= \sum_{|n-vt| \leq t(1-\delta)} \| (e^{ith} g(n - vt) - (T_t g)(n - vt)) \|^2
\]
\[
= \sum_{|n| \leq t(1-\delta)} \| (e^{ith} g)(n) - (T_t g)(n) \|^2
\]
\[
= \sum_{|n| \leq t(1-\delta)} \| (Ag)(t,n) \|^2 \leq \sum_{|n| \leq t(1-\delta)} \frac{(C^\delta)^2}{t^2} \to 0
\]
(18)

Hence, we have

\[
\lim_{t \to \infty} \| P_0^- S_v e^{ith} f - \hat{P}_v^+ S_v e^{ith} f \|^2 = 0
\]

We used \((7), (15) \) and the commutativity of \(\hat{P}_v^+ \), \(S_v \), and \(e^{ith} \). Note that the first term \(\lim_{t \to \infty} \| P_0^- S_v e^{ith} g - \hat{P}_v^+ S_v e^{ith} g \| \) is \(\delta \)-independent. So, taking \(\delta \to 0 \), we have

\[
\lim_{t \to \infty} \| P_0^- S_v e^{ith} g - \hat{P}_v^+ S_v e^{ith} g \| = 0.
\]
(19)
Similarly, we have
\[
\lim_{t \to \infty} \| P_0^+ S_{vt} e^{i t g} - \tilde{P}_v - S_{vt} e^{i t g} \| = 0. \tag{20}
\]

Next, we substitute the above result to the initial state to derive the two point function \(\omega_v(a^\dagger (g) a(f)) \). For the purpose, we rewrite the initial state with the projection operators \(P_\pm \). Note that
\[
\hat{f}_-(k) = -i \sum_{n < 0} f_n \sin(n - 1)k
= -i \sum_{n \leq 0} f_n \frac{e^{i(n-1)k} - e^{-i(n-1)k}}{2i}
= -\frac{1}{2} \left[\hat{P}_0^- \hat{f}(k) e^{-ik} - \hat{P}_0^- \hat{f}(k) e^{ik} \right]
\]

Hence we have
\[
\omega_-(a^\dagger (g) a(f)) = \frac{1}{4\pi} \int_{-\pi}^\pi dk \left[\hat{P}_0^- \hat{f}(k) \hat{P}_0^- (g(-k)) + \hat{P}_0^- \hat{f}(k) \hat{P}_0^- (g(k)) - e^{2ik} \hat{P}_0^- \hat{f}(k) \hat{P}_0^- (g(-k)) \right] \rho_-(k).
\tag{21}
\]

We are now interested in \(\omega_-(a^\dagger (g_t) a(f_t)) \), with \(g_t = S_{vt} e^{i t g} \), \(f_t = S_{vt} e^{i t f} \). We can see from \(\hat{f}_-(k) \), that \(\omega_-(a^\dagger (g_t) a(f_t)) \) is written with \(\hat{P}_0^- S_{vt} e^{i t g} \) and \(\hat{P}_0^- S_{vt} e^{i t f} \). Hence, we can apply the asymptotic form \(\hat{f}_-(k) \).

Applying the formula, we have
\[
\lim_{t \to \infty} \omega_-(a^\dagger (g_t) a(f_t)) = \lim_{t \to \infty} \frac{1}{4\pi} \int_{-\pi}^\pi dk \left[2 \hat{P}_0^+ (k) \hat{f}(k) \hat{g}(k) - e^{-2ik} \hat{P}_0^+ (k) \hat{f}(k) \hat{g}(k) - e^{2ik} \hat{P}_0^+ (k) \hat{f}(k) \hat{g}(k) \right] \rho_-(k).
\]

Here we used the fact that the Fourier representation of \(S_m \) is
\[
\hat{S}_m f(k) = e^{-imk} \hat{f}(k).
\]

By the Riemann-Lebesgue Theorem, the second and the third term vanishes and we finally obtain
\[
\lim_{t \to \infty} \omega_-(a^\dagger (g_t) a(f_t)) = \frac{1}{2\pi} \int_{\nu \leq \sin k} dk \rho_-(k) \hat{f}(k) \hat{g}(k)
\]

Similarly, we obtain
\[
\lim_{t \to \infty} \omega_(a^\dagger (g_t) a(f_t)) = \frac{1}{2\pi} \int_{\nu \geq \sin k} dk \rho_+(k) \hat{f}(k) \hat{g}(k)
\]

Hence, the explicit form of the two point function of \(\omega_v(a^\dagger (g) a(f)) \) is
\[
\omega_v(a^\dagger (g) a(f)) = \frac{1}{2\pi} \int_{\nu \leq \sin k} dk \rho_-(k) \hat{f}(k) \hat{g}(k)
+ \frac{1}{2\pi} \int_{\nu \geq \sin k} dk \rho_+(k) \hat{f}(k) \hat{g}(k).
\]

Note that \(\omega_v(a^\dagger (g) a(f)) \) is translation invariant.

The velocity of the particle with momentum \(k \) is \(\sin k \). We see that only the particles at temperature \(1/\beta_- \) with velocity \((\nu \leq \sin k \leq 1) \) contribute to the state \(\omega_v \). This represents the situation that on the inertial system which moves with velocity \(v \), quasi particles with velocity less than \(v \) in the left part of the chain go to left infinity and do not appear in the correlation function \(\omega_v \). This feature is also the case for the particles with temperature 1/\(\beta_+ \).

IV. THE ASYMPTOTIC PROFILE

With the two-point function, we can calculate the asymptotic profile of physical quantities. The magnetization profile \(m(v) \) is
\[
m(v) = \frac{1}{2\pi} \int_{\nu \leq \sin k} dk \rho_+(k) \sin k
+ \frac{1}{2\pi} \int_{\nu \geq \sin k} dk \rho_-(k) - \frac{1}{2}.
\]

The magnetic current profile is defined by
\[
J^M(v) = \lim_{t \to \infty} \omega_v(a_t (J^M_t))
\]
where \(J^M_n = S_n^x \tilde{S}_{n+1}^x - S_n^x \tilde{S}_{n+1}^x \) is the magnetic current at the site \(n \). Similarly, \(J^M(v) \) is calculated as
\[
J^M(v) = \frac{1}{2\pi} \int_{\nu \leq \sin k} dk \rho_+(k) \sin k
+ \frac{1}{2\pi} \int_{\nu \leq \sin k} dk \rho_-(k) \sin k
\]

Let us consider the zero-temperature case: each side is in the ground state \((\beta_+ = \beta_- = \infty) \) with magnetic field \(\gamma_+, \gamma_- \) respectively. We further assume \(\gamma \equiv \gamma_+ = -\gamma_- \). This is the situation that was considered in \(\hat{f}_-(k) \), and we confirm their results,
\[
m(v) = -m(-v) = \begin{cases} 0 & 0 \leq v < \cos \pi m_0 \\ -m_0 + \frac{\arccos(v)}{\pi} & \cos \pi m_0 \leq v < 1 \\ \frac{1}{2} - m_0 & 1 \leq v \end{cases}
\]
where \(\gamma = \sin \pi m_0 \).

\[
J^M(v) = J^M(-v) = \begin{cases} \frac{1}{\pi} \gamma = \frac{1}{\pi} \sin \pi m_0 & 0 \leq v < \cos \pi m_0 \\ \frac{1}{\pi} \sqrt{1 - v^2} \cos \pi m_0 & \cos \pi m_0 \leq v < 1 \\ 0 & 1 \leq v \end{cases}
\]
In the zero-temperature case, regardless of the strength of the external fields γ_+ , γ_-, we can show that the magnetization profile $m(v)$ is monotone. The situation is classified by the following conditions: (A) the absolute value of the external field: (i)$|\gamma_-|, |\gamma_+| \leq 1$, (ii) $|\gamma_-| \leq 1, |\gamma_+| > 1$ or $|\gamma_-| > 1, |\gamma_+| > 1$, (iii)$|\gamma_-|, |\gamma_+| > 1$ and (B) the signs of the external field: (i)$\text{sign}(\gamma_+) = \text{sign}(\gamma_-)$, (ii)$\text{sign}(\gamma_+) = -\text{sign}(\gamma_-)$. Hence, we have $3 \times 2 = 6$ cases. By the explicit calculation, we can show that for all the situation, the magnetization profile $m(v)$ is monotone. Fig.3 shows the magnetization profile for each case. As seen in the following, the finiteness of the temperature destroys this monotonicity when the external field is small.

To concentrate on the thermal inhomogeneity, let us consider the situation $\gamma \equiv \gamma_+ = \gamma_- \neq 0$. Due to the non-zero γ, the spins have finite magnetization up to the value of the temperature. The left side of Fig.4 shows the profile of the magnetization for various values of the external field and temperature. Fig.(a) corresponds to the case $\gamma = -0.5, \beta_- = 10, \beta_+ = 1$. It shows the non-monotonic profile. As the magnetization profile is monotone in zero temperature $\beta_- = \beta_+ = \infty$, this is considered to be a purely thermal property. When we increase the strength of γ, the non-monotonicity is lost. Fig.(b) shows the $\gamma = -1$ case with the same temperature: $\beta_- = 10, \beta_+ = 1$. We can see the monotone profile. On the other hand, decrease of the difference of the temperature also destroys the non-monotonicity. Fig.(c) show the $\gamma = -0.5$ case with the different temperature: $\beta_- = 2, \beta_+ = 1$. The difference emerges also in the magnetic current. The right side of Fig.4 shows the profile of the magnetic current. In the case (a), the current takes the maximum value at two points. They corresponds to the two extremum point of the magnetization profiles. On the other hand, in the monotone case, the current takes the maximum at the origin $v = 0$.

The property of the profile (monotone/non-monotone) can be explained by the velocity distribution. Firstly, recall that the velocity of the particle at momentum k is $\sin k$. To see the dependence of the velocity distribution, let us consider the derivatives of $m(v)$ and $J_M(v)$ with v. For simplicity, we restrict ourselves to the case that both of $\rho_-(k), \rho_+(k)$ are continuous, i.e., the both sides are initially in finite temperature. In this case, we can differentiate $m(v)$ and $J_M(v)$ with v for $-1 < v < 1$. We have

$$\frac{dm(v)}{dv} = \frac{1}{\sqrt{1 - v^2}} [p_+(v) - p_-(v)],$$

$$\frac{dJ_M(v)}{dv} = \frac{v}{\sqrt{1 - v^2}} [p_+(v) - p_-(v)],$$

where p_- (resp.p_+) is the velocity distribution,

$$p_+(v) \equiv \frac{1}{2\pi} \left[\frac{1}{1 + e^{-\beta_-(\sqrt{1 - v^2})}} + \frac{1}{1 + e^{-\beta_+(\sqrt{1 - v^2})}} \right].$$

From these expressions, we can see that the difference $p_+(v) - p_-(v)$ determines the monotone/non-monotone of $m(v)$ and $j(v)$; if, for example, there exists a point where $p_+(v) > p_-(v)$ changes to $p_+(v) < p_-(v)$, the profile is non-monotone. Fig.5 shows $p_-(v), p_+(v)$ for the above mentioned situation. We can see the crossing only for the case of non-monotone (a).

V. DISCUSSION

We have investigated the profiles of the magnetization and the magnetic current, in the intermediate time towards the non-equilibrium steady state, using the transversed XX-model. We have found an interesting property: depending on the strength of the external fields...
and the values of initial temperature, the profile shows monotone/non-monotone property. This emerges as the result of the initial velocity distribution of the right and the left side. If there is a crossing between two distributions, the profile becomes non-monotone. This initial velocity dependence is due to a fact that the transverse \(XX \)-model preserves the one-particle mode. Each particle runs to the infinity with its own velocity. In this sense, the integrability affects the diffusion profile in an essential way.

The derivation of the asymptotic profile is carried out by showing the equation (19), (20). These equations are due to (14): the fact that for each site, there is only the particle with specific momentum. The specific momentum is the momentum where the phase velocity is stational (9). In other words, if the dynamics of free Fermion is asymptotically dominated by the stationary point, we would have the same property as in this paper, even if the dispersion is not cosine.

Acknowledgments

The author would like to thank Prof. M. Wadati for valuable comments and critical reading of the manuscript, and also thank Dr. K. Saito for helpful discussions.

![Fig. 5](image-url)

Fig.5: The velocity distribution of the right and left sides. The \(x \)-axes is the velocity \(v \), the \(y \)-axes is the distribution \(p(v) \). The solid line shows \(p_- (v) \), and the dash line, \(p_+ (v) \).

(a): \(\gamma = -0.5, \beta_- = 10, \beta_+ = 1 \), (b): \(\gamma = -1, \beta_- = 10, \beta_+ = 1 \), (c): \(\gamma = -0.5, \beta_- = 2, \beta_+ = 1 \).

[1] X. Zotos, F. Naef, and P. Prelovšek, Phys. Rev. B, 55, 11029-11032
[2] A. V. Savin, G. P. Tsironis, and A. V. Zolotaryuk, Phys. Rev. Lett. 88, 154301, (2000). K. Saito, S. Takesue, S. Miyashita, Phys. Rev. E, 54, 2404-2408, (1996). B. Li, H. Zhao, and B. Hu, Phys. Rev. Lett. 86, 63-66, (2001). A. Dhar, 163554-3557, (2001). P. L. Garrido, P. I. Hurtado and B. Nadrowski, Phys. Rev. Lett. 86, 5486-5489, (2001).
[3] D. Ruelle, J. Stat. Phys. 98, 57-75, (2000).
[4] V. Jakšić and C.-A. Pillet, Commun. Math. Phys. 226, 131 (2002)
[5] Y. Ogata, preprint (2002).
[6] T. Antal, Z. Rácz, A. Rákos, and G. M. Schütz, Phys. Rev. E, 59, 4912 (1999).
[7] T. G. Ho, and H. Araki, Proc. Steklov Inst. Math. (2000).
[8] E. Lieb, T. Schultz, D. Mattis, Ann. Phys 16 1961.
[9] H. Araki, Publ. RIMS, Kyoto Univ. 20, 277 (1984)
[10] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1, Springer-Verlag, 1986.
[11] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2, Springer-Verlag, 1996.