Metallothioneins (MTs) are small cysteine-rich proteins found in various eukaryotes. Plant MTs are classified into four types based on the arrangement of cysteine residues. To determine whether all four types of plant MTs function as metal chelators, six Arabidopsis (Arabidopsis thaliana) MTs (MT1a, MT2a, MT2b, MT3, MT4a, and MT4b) were expressed in the copper (Cu)- and zinc (Zn)-sensitive yeast mutants, Δcup1 and Δzrc1 Δcot1, respectively. All four types of Arabidopsis MTs provided similar levels of Cu tolerance and accumulation to the Δcup1 mutant. The type-4 MTs (MT4a and MT4b) confered greater Zn tolerance and higher accumulation of Zn than other MTs to the Δzrc1 Δcot1 mutant. To examine the functions of MTs in plants, we studied Arabidopsis plants that lack MT1a and MT2b, two MTs that are expressed in phloem. The lack of MT1a, but not MT2b, led to a 30% decrease in Cu accumulation in roots of plants exposed to 30 μM CuSO₄. Ectopic expression of MT1a RNA in the mt1a-2 mt2b-1 mutant restored Cu accumulation in roots. The mt1a-2 mt2b-1 mutant had normal metal tolerance. However, when MT deficiency was combined with phytochelatin deficiency, growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was more sensitive to Cu and cadmium compared to the cad1-3 mutant. Together these results provide direct evidence for functional contributions of MTs to plant metal homeostasis. MT1a, in particular, plays a role in Cu homeostasis in the roots under elevated Cu. Moreover, MTs and phytochelatins function cooperatively to protect plants from Cu and cadmium toxicity.
based on the conserved positions of Cys residues (Cobbett and Goldsbrough, 2002). There are some general trends in the expression of these four types of MTs, with type-1 MTs expressed predominantly in roots, type-2 MTs in leaves, type-3 MTs in fruits, and type-4 MTs in seeds (Zhou and Goldsbrough, 1994; Hsieh et al., 1995; Zhou and Goldsbrough, 1995; Hsieh et al., 1996; Guo et al., 2003). We have previously shown that the genome of Arabidopsis contains seven genes encoding MTs (Cobbett and Goldsbrough, 2002). Expression of the Arabidopsis MT genes closely follows the patterns found in other plant species, with the exception of MT3 whose expression is prominent in leaf mesophyll cells (Guo et al., 2003). More detailed analysis has shown that expression of the Arabidopsis MT1a and MT2b genes is particularly high in phloem tissues (Guo et al., 2003).

Despite the widespread occurrence of MTs and the relatively high level of RNA expression of many MT genes (Matsumura et al., 1999; Bausher et al., 2003; Moyle et al., 2005), the functions of MTs in plants remain poorly understood. Some evidence points to a role of plant MTs in Cu detoxification. In many plant species, including Arabidopsis, rice (Oryza sativa), and the metal hyperaccumulator Thlaspi caerulescens, MT gene expression is strongly induced by Cu treatment and, to a lesser degree, by Cd and Zn (Zhou and...
Goldsbrough, 1994; Hsieh et al., 1995; Roosens et al., 2004). Expression of MT genes has also been shown to correlate closely with Cu tolerance among Arabidopsis ecotypes and between populations of Silene vulgaris and Silene paradoxa (Murphy and Taiz, 1995; van Hoof et al., 2001; Mengoni et al., 2003). However, the involvement of MTs in Cu detoxification in plants has not been conclusively demonstrated. In addition, the divergence of plant MT protein sequences and the complex expression patterns of MT genes suggest that the functions of MTs may not be limited to Cu detoxification. This is supported by studies showing that a type-2 MT in rice, OsMT2b, is involved in reactive oxygen species scavenging and signaling (Wong et al., 2004). In response to pathogen attack, this rice MT must be down-regulated to allow an oxidative burst that signals activation of host responses leading to disease resistance.

In this study, we demonstrate that all Arabidopsis MTs can function as metal chelators in vivo. To further understand the physiological roles of MTs in plants, we have studied Arabidopsis mutants that do not express specific MT genes. Characterization of these mutants indicates that MT1a, but not MT2b, plays an important role in the accumulation of Cu in roots. We have also shown that both MTs and PCs are involved in tolerance to Cu and Cd.

RESULTS

Arabidopsis MTs Are Functional Chelators of Cu and Zn in Vivo

It has been shown that MT1 and MT2 proteins from Arabidopsis can be purified by Cu affinity chromatography and are able to bind Cu ions in vitro (Murphy et al., 1997). When expressed in the yeast Δcup1 mutant, the MT1a and MT2a genes were also able to confer Cu and Cd tolerance (Zhou and Goldsbrough, 1994). To test the ability of the other Arabidopsis MT genes to function as metal chelators in vivo, six Arabidopsis MTs were expressed in the Cu-sensitive Δcup1 S. cerevisiae mutant, which lacks the yeast CUP1 MT (Hamer et al., 1985). Expression of these MTs was driven by a constitutive promoter derived from the glyceraldehyde-3-P dehydrogenase gene in a high copy number (2μ origin) yeast expression vector (Mumberg et al., 1995). MT1c was omitted from this experiment because it exhibits 94% sequence identity to MT1a and the MT1c mRNA is expressed at a very low level in Arabidopsis compared to MT1a. Growth of the Δcup1 mutant was completely inhibited by 50 μM CuSO4 (Hamer et al., 1985; Fig. 1A). Expression of the six Arabidopsis MT genes, as well as the yeast CUP1 gene, was able to restore Cu tolerance of the mutant to nearly the wild-type level (Fig. 1A). Similar results were also observed in the presence of 100 μM CuSO4 (data not shown).

To determine whether expression of the Arabidopsis MTs imparted tolerance by increasing the capacity of yeast to sequester Cu ions, cells were grown in liquid medium containing a noninhibitory concentration of CuSO4 (10 μM) for 10 h and the Cu concentration in cells was measured. Deletion of the CUP1 gene significantly reduced Cu content in the mutant, and complementation with the CUP1 gene restored Cu accumulation to 70% of the wild-type level (Fig. 1B). Expression of the Arabidopsis MT proteins also increased Cu accumulation to varying degrees in the Δcup1 mutant (Fig. 1B).

To determine if Arabidopsis MTs could also function as Zn ligands in vivo, we examined the ability of these proteins to restore tolerance to a Zn-sensitive yeast mutant. The Δzrc1 Δcot1 yeast mutant lacks two vacuolar Zn transporters, ZRC1 and COT1, and is hypersensitive to Zn due to accumulation of Zn in the cytoplasm (MacDiarmid et al., 2000). Growth of the Δzrc1 Δcot1 mutant was inhibited by 0.1 mM ZnSO4. Expression of MTP1, a plasma-membrane Zn efflux transporter from the nickel/Zn hyperaccumulator Thlaspi goesingense (Kim et al., 2004), restored Zn tolerance almost to that of the wild type (Fig. 2A). All Arabidopsis MTs were also able to restore some growth to the Δzrc1 Δcot1 mutant in the presence of 0.1 mM ZnSO4. However, the ability of different MTs to impart tolerance to Zn was more variable than with Cu. MT4a was the most effective of the Arabidopsis MTs in conferring Zn tolerance to the yeast mutant. Although MT4a and MT4b share 84% amino acid sequence identity, including nearly all

Figure 3. Arabidopsis MTs confer tolerance to CdSO4 and Co(NO3)2 in S. cerevisiae. Yeast strains expressing Arabidopsis MTs in the Δzrc1 Δcot1 background were grown on medium containing either 0.1 mM CdSO4 or 0.1 mM Co(NO3)2. Numbers at the bottom indicate serial dilutions of the yeast cultures. Wild type, Δzrc1 Δcot1, and the mutant complemented with a Zn transporter from T. goesingense (MTP1) were used as controls.
Cys residues, MT4a was reproducibly better than MT4b in imparting Zn tolerance in yeast. Accumulation of Zn was analyzed in yeast cells grown in medium containing 50 μM ZnSO₄. Cells of the Δzrc1 Δcot1 mutant had a lower level of Zn because of their inability to accumulate Zn in the vacuole (MacDiarmid et al., 2000). Expression of the T. goesingense efflux transporter MTP1 in Δzrc1 Δcot1 further decreased Zn accumulation in yeast cells (Kim et al., 2004; Fig. 2B). Although all Arabidopsis MTs provided some degree of Zn tolerance, only expression of MT4a, and to a lesser degree MT4b, resulted in the accumulation of significantly higher levels of Zn in the yeast mutant (Fig. 2B).

Because the Δzrc1 Δcot1 mutant is also hypersensitive to Cd and cobalt (Co; D. Salt, personal communication), the ability of Arabidopsis MTs to provide protection against these metals was also tested (Fig. 3). Interestingly, MT4a provided a high level of tolerance to Co, but was ineffective for Cd. The other MTs had little effect on Co tolerance but were able to provide a high level of Cd tolerance, superior to the wild-type strain. However, expression of these MTs had no effect on Cd accumulation in yeast (data not shown).

Analysis of Arabidopsis Plants That Lack MT1a and MT2b

The capacity of MT1a and MT2b proteins to provide Cu tolerance in yeast (Fig. 1) together with phloem-localized and Cu-inducible expression of MT1a and MT2b (Guo et al., 2003) suggest that MTs may function in Cu homeostasis and distribution in plants. To examine this possibility, plants with insertional inactivation or reduced expression of the MT1a and MT2b genes were studied. Arabidopsis mutants with T-DNAs inserted in the MT1a and MT2b genes were obtained from the Salk Institute Genomic Analysis Laboratory. The positions of the T-DNA left border insertion sites were confirmed by DNA sequencing and are located 356 bp, 19 bp, and 18 bp downstream of the translational start codon in the mt1a-1, mt1a-2, and mt2b-1 mutants, respectively (Fig. 4A). The insertions in mt1a-2 and mt2b-1 are located in the first exon whereas the insertion in mt1a-1 is in the second exon. A double mutant (mt1a-2 mt2b-1) with insertions in both MT1a and MT2b was obtained from a cross between the mt1a-2 and mt2b-1 mutants. Expression of MT genes in the mutants was analyzed by RNA-blot hybridization (Fig. 4B) and reverse transcription (RT)-PCR (Fig. 4C). No hybridization signals or PCR products were detected for MT1a or MT2b RNA in the single or double mutants that were

Analysis of Arabidopsis Plants That Lack MT1a and MT2b

The capacity of MT1a and MT2b proteins to provide Cu tolerance in yeast (Fig. 1) together with phloem-localized and Cu-inducible expression of MT1a and MT2b (Guo et al., 2003) suggest that MTs may function in Cu homeostasis and distribution in plants. To examine this possibility, plants with insertional inactivation or reduced expression of the MT1a and MT2b genes were studied. Arabidopsis mutants with T-DNAs inserted in the MT1a and MT2b genes were obtained from the Salk Institute Genomic Analysis Laboratory. The positions of the T-DNA left border insertion sites were confirmed by DNA sequencing and are located 356 bp, 19 bp, and 18 bp downstream of the translational start codon in the mt1a-1, mt1a-2, and mt2b-1 mutants, respectively (Fig. 4A). The insertions in mt1a-2 and mt2b-1 are located in the first exon whereas the insertion in mt1a-1 is in the second exon. A double mutant (mt1a-2 mt2b-1) with insertions in both MT1a and MT2b was obtained from a cross between the mt1a-2 and mt2b-1 mutants. Expression of MT genes in the mutants was analyzed by RNA-blot hybridization (Fig. 4B) and reverse transcription (RT)-PCR (Fig. 4C). No hybridization signals or PCR products were detected for MT1a or MT2b RNA in the single or double mutants that were
homozygous for the corresponding T-DNA insertion alleles, indicating that the insertions resulted in complete loss of gene expression in these mutants. Expression of MT2a and MT3 RNA was not altered in the single or double mutants (Fig. 4B).

A number of independent transgenic Arabidopsis plants were also produced that express RNA interference (RNAi) for MT1a. Some of these plants had substantially reduced expression of the target MT1a RNA (Fig. 4D) and normal expression of other MT RNAs (data not shown). These plants were used in some experiments to verify that phenotypes observed in insertional knockouts of MT1a were indeed due to the lack of this MT.

The mt1a and mt2b-1 single mutants, the mt1a-2 mt2b-1 double mutant, and the RNAi transgenic plants showed no visible phenotypes when grown under normal conditions in either soil or hydroponic culture. Analysis of leaves also showed no significant differences in elemental composition between the mutant and wild-type plants grown under these conditions (data not shown). These results indicate that MT1a and MT2b are not essential for normal growth and development under these conditions.

MT1a Deficiency Decreases Cu Accumulations in Roots

To examine the role of MTs in plants exposed to excess Cu, seeds of the insertion mutants and one MT1a RNAi line (Fig. 4D, MT1a-RNAi-7) were germinated on normal Murashige and Skoog (MS) medium for 4 d and then transferred either to fresh MS medium or to medium containing 30 μM CuSO4 for 10 d. Root growth and dry weight of the mutants and the RNAi line were indistinguishable from the wild type regardless of the Cu concentration in the medium (data not shown). No significant differences were observed in the Cu contents of mutant and wild-type seedlings grown in normal MS medium (Fig. 5A and B). Compared to plants grown on normal medium, the seedlings transferred to medium containing 30 μM CuSO4 accumulated much more Cu in both roots and shoots. However, the Cu content in roots of both the mt1a mutants and the MT1a-RNAi-7 line was approximately 30% lower than in the wild type or the mt2b-1 mutant (Fig. 5B). The mt1a-2 mt2b-1 double mutant did not show any further decrease in Cu accumulation in roots compared with the mt1a mutants. The Cu contents in shoots of the mutants and MT1a-RNAi-7 line were not significantly different from the wild-type level (Fig. 5A).

To confirm that the decreased Cu content in roots of mt1a mutants was indeed the result of deficiency in...
MT1a, the MT1a complementary DNA (cDNA) driven by the cauliflower mosaic virus 35S promoter was transformed into the mt1a-2 mt2b-1 double mutant. Two independent transgenic lines (35S-MT1a-1 and 35S-MT1a-9) were analyzed for Cu content as described above. Expression of this transgene was able to restore Cu accumulation in roots of the mt1a-2 mt2b-1 double mutants to the level seen in wild-type plants (Fig. 5C).

Lack of MTs Increases Metal Sensitivity in PC-Deficient Plants

MTs and PCs constitute two classes of Cys-rich metal chelators in plants. PCs are required for Cd tolerance in plants. In Arabidopsis, the PC-deficient cad1-3 mutant exhibited a 10-fold decrease in Cd tolerance and a 2-fold decrease in Cu tolerance (Howden et al., 1995; Ha et al., 1999). Although both PCs and MTs can bind a variety of metals in vitro, the interaction between these ligands in metal tolerance has not been investigated. The Arabidopsis mt1a-2 mt2b-1 double mutant has normal tolerance to Cu and Cd (data not shown). However, the impact of MT deficiency on metal tolerance may have been masked by the presence of PCs. To examine the potential redundancy between MTs and PCs, the mt1a-2 mt2b-1 double mutant was crossed with the cad1-3 mutant to obtain the mt1a-2 cad1-3, mt2b-1 cad1-3, and mt1a-2 mt2b-1 cad1-3 mutants. These plants were then tested for Cd and Cu tolerance relative to the cad1-3 mutant. In the presence of 30 or 40 μM CdSO₄, root growth of the mt1a-2 cad1-3 and mt2b-1 cad1-3 mutants was similar to that of cad1-3 plants (Fig. 6A). However, root growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was significantly more sensitive to Cd after transfer of seedlings to Cd-containing medium (Fig. 6A). When the mt1a-2 mt2b-1 cad1-3 triple mutant was germinated and grown on MS medium containing 30 μM CdSO₄, root growth was more severely inhibited than observed in cad1-3 seedlings (Fig. 6B).

Similar results were observed when Cu sensitivity was analyzed. Using root length as an assay for Cu tolerance was complicated by the extensive development of lateral roots in seedlings grown for prolonged periods on agar plates containing additional Cu. Therefore, biomass was used as an alternative measure of Cu tolerance. Seedlings were grown on normal MS medium for 4 d and then transferred to medium containing various concentrations of CuSO₄. Dry weight of seedlings was measured after 10 d. The dry weight of the mt1a-2 mt2b-1 cad1-3 plants was similar to or slightly higher than that of the cad1-3 mutant under normal conditions. However, 30 μM CuSO₄ inhibited growth of the mt1a-2 mt2b-1 cad1-3 mutant, and to a lesser degree the mt2b-1 cad1-3 mutant, more than in the cad1-3 plants (Fig. 6C).

DISCUSSION

Arabidopsis MTs Can Impart Metal Tolerance in Vivo

MTs are Cys-rich metal-chelating proteins that have important roles in metal homeostasis in yeast and
Native MT proteins have proven to be very difficult to isolate from plants. Therefore, heterologous expression has often been used to provide evidence for the metal-binding properties of MT proteins. Here we have demonstrated that six Arabidopsis MTs, including representatives of all four types of plant MTs, can impart metal tolerance when expressed in S. cerevisiae. This diversity among plant MTs suggests that the four MT types may have different metal binding properties and distinct functions.

Native MT proteins have proven to be very difficult to isolate from plants. Therefore, heterologous expression has often been used to provide evidence for the metal-binding properties of MT proteins. Here we have demonstrated that six Arabidopsis MTs, including representatives of all four types of plant MTs, can impart metal tolerance when expressed in S. cerevisiae. Although the metal-binding capacity of some plant MTs has been previously demonstrated (Tomme et al., 1991; Evans et al., 1992; Murphy et al., 1997), this is the first report, to our knowledge, to compare all four types of MTs from a single plant species. Our results suggest that all MT isoforms are able to bind Cu ions in vivo. Expression of the six Arabidopsis MT genes not only imparted Cu tolerance but also increased Cu accumulation in the yeast Δcup1 mutant.

The seed-specific type-4 MTs were more effective than other Arabidopsis MTs in protecting against Zn toxicity and enhancing Zn accumulation in the yeast Δzrc1 Δcot1 mutant. These contrasting results indicate that type-4 MT proteins may have a higher affinity for Zn, or a greater capacity to bind Zn ions compared to other MT isoforms. The wheat (Triticum aestivum) Ec protein, a type-4 MT and the first plant MT to be identified, was purified from seeds as a Zn-binding protein (Lane et al., 1987). The ability of MT4a and MT4b to impart Zn tolerance may result from the unusual amino acid sequences of these proteins. Unlike other plant MTs, type-4 MTs contain three Cys-rich domains and two conserved His residues in the central Cys-rich domain (Cobbett and Goldsborough, 2002). Results from NMR experiments indicate that the two conserved His residues in the wheat Ec protein participate with the Cys residues in metal binding or coordination, especially for Zn (Leszczyzsyn et al., 2007). His is frequently used for Zn coordination in other metalloproteins, including those that contain Zn-finger structures (Blindauer and Sadler, 2005). Although the level of expression and stability of Arabidopsis MT proteins in S. cerevisiae could also influence these results, differences among Arabidopsis MTs in their capacity to impart tolerance to various metals in yeast suggest that there may be significant differences in the metal-binding properties of these proteins. Therefore, further studies will be required to examine this aspect of Arabidopsis MTs as well as to identify the metals that bind to MT proteins in planta.

MT1a Is Important for Cu Accumulation in Roots

Arabidopsis MT1a is expressed abundantly in roots, and both MT1a and MT2b are expressed in phloem of several organs. These observations suggest that MT1a may have an important role in roots, and that MT1a and MT2b may be involved in distribution of Cu via the phloem (Guo et al., 2003). However, Arabidopsis plants that lack MT1a and MT2b did not exhibit any unusual phenotypes when grown under normal conditions. This may be explained by functional compensation by other MTs (MT2a and MT3) or by other metal homeostasis mechanisms. It is worth noting that MT-deficient mammals and fungi are also able to grow and develop normally under standard conditions (Hamer, 1986; Coyle et al., 2002).

Further experimentation showed that MT1a plays an important role in Cu homeostasis and/or distribution. When exposed to 30 μM CuSO4, the roots of the mt1a-1 and mt1a-2 plants accumulated 30% less Cu than the wild type and the mt2b-1 mutant. These results suggest that MT1a, but not MT2b, may function in sequestration of excess Cu in root cells. In the absence of MT1a, Cu may bind to other ligands, including other MTs. However, the capacity of MT1a-deficient roots to accumulate Cu is significantly reduced. When this capacity is surpassed, plants may down-regulate Cu transporters (e.g. ACO1; Sancenon et al., 2004) to limit further uptake of Cu or pump excess Cu into the rhizosphere. Excess Cu may also be transported to the shoots, but we did not observe an increase in Cu accumulation in

Table 1. Genotypes of yeast strains used in this study

Name	Strain	Genotype	Reference
CuWT	DTY3	MAa; trp1-1; leu2-3; leu2-112; gal1; His−; ura3-50; cup1s (single copy)	Hamer et al. (1985)
Δcup1	DTY4	MAa; trp1-1; leu2-3; leu2-112; gal1; His−; ura3-50; cup1::URA3+	Hamer et al. (1985)
Δzrc1 Δcot1	CM137	MAa; can1-100; his3-11; his3-15; leu2-3; leu2-12; trp1-1; ura3-52; Δzrc1::His3; Δcot1::KanR	MacDiarmid et al. (2000)
ZnWT	CM100	MAa; can1-100; his3-11; his3-15; leu2-3; leu2-112; trp1-1; ura3-52	MacDiarmid et al. (2000)
shoots of the mutants compared to the wild type. The lower accumulation of Cu in roots of the mt1a mutants was not accompanied by a change in tolerance to the metal. This suggests that the MT-deficient plants are still able to cope with the elevated Cu concentration, perhaps through transport mechanisms or by another detoxification system. The destructive reactive oxygen species generated by free Cu ions can also be scavenged by various cellular antioxidants and enzyme systems.

The lack of MT1a and MT2b did not significantly affect Cu accumulation in shoots, suggesting that MT1a and MT2b are not essential for transport or accumulation of Cu in shoots. However, we cannot rule out the possibility that MT1a plays a role in the transport of Cu from shoots to roots. In this scenario, Cu might be transporting via the xylem to shoots where MT1a is then involved in remobilization of Cu to roots or other sink tissues via the phloem. The lack of MT1a in phloem could reduce the amount of Cu redirected to the root tissues. This possibility is supported by the observation that MT1a RNA is highly expressed in senescing leaves (Guo et al., 2003), when Cu is mobilized to sink tissues. We are currently examining the effect of MT deficiency on Cu distribution in young and senescing plants, and whether MT1a proteins can translocate between roots and shoots.

Functional Interaction between MTs and PCs

In addition to participating in Cu accumulation, the results presented here provide evidence that both PCs and MTs contribute to Cu and Cd tolerance and may overlap in their functions. Growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was more sensitive to Cu and Cd than either the cad1-3 or the mt1a-2 mt2b-1 mutants (Fig. 6). The increase in metal sensitivity was observed only when PC deficiency was combined with lack of both MT1a and MT2b, but not with either MT alone. These results suggest that PCs can compensate for the loss of MTs in metal detoxification. Because MT1a and MT2b comprise the major MT isoforms that are expressed in phloem tissues (Guo et al., 2003), the effect of MT deficiency on Cd hypersensitivity in PC-deficient plants may be due to the lack of MTs in the phloem. In the absence of PCs, MT1a and MT2b may participate in transport or sequestration of Cd in the phloem. This hypothesis is supported by a recent report that Cd accumulates in the phloem of Arabidopsis plants and that translocation of Cd from mesophyll cells to phloem may constitute an important mechanism for Cd tolerance in Arabidopsis (Bellegem et al., 2007). PCs may also have a role in the transport of Cu in the xylem or phloem tissues. It has already been shown that PCs can translocate from roots to shoots and vice versa, and that PCs mediate root-to-shoot transport of Cd (Gong et al., 2003; Chen et al., 2006).

In conclusion, the results presented in this study provide direct evidence for a role of plant MTs in metal homeostasis and distribution. We have shown that (1) Arabidopsis MTs function in metal homeostasis in vivo and may differ in their metal chelating properties; (2) MT1a is involved in the sequestration of Cu in roots; (3) MTs and PCs have overlapping functions in Cu and Cd tolerance. Further and more detailed investigations of Arabidopsis MT-deficient mutants will be necessary to understand the specific functions of each MT and their interactions with other metal homeostatic factors. The expression of MT genes in plants is regulated by a wide variety of developmental and environmental conditions including senescence, pathogen infection, and oxidative stress. Characterization of MT-deficient mutants under these and other conditions may reveal additional roles for MTs in plants.

MATERIALS AND METHODS

Expression of MT Proteins in Saccharomyces cerevisiae

The genotypes of Saccharomyces cerevisiae strains used in this study are listed in Table 1. To express Arabidopsis (Arabidopsis thaliana) MTs in yeast, the open reading frames encoding MT1a, MT2a, MT2b, MT3, MT4a, and MT4b proteins were amplified using Pfu polymerase from individual cDNA plasmids with gene-specific primers containing restriction enzyme sites. The resulting fragments were cloned into the p424-CUP1 expression vector (Mumberg et al., 1995). The MT-DNA p424 plasmids and the empty vector were transformed into the yeast Δmt1Δmt2Δmt3Δmt4Δmt5Δmt6 mutants using the LiAc method (Gietz et al., 1995). The empty vector was also transformed into the corresponding wild-type strain, FY303 or CM100. A construct containing the yeast MT gene (CUP1) was also transformed into Δmt1 to provide a positive control for Cu tolerance experiments. The yeast Δmt1Δmt2Δmt3Δmt4Δmt5Δmt6 mutant expressing MT1a, a Zn transporter from the nickel/Zn hyperaccumulator Thlaspi goesingense (Kim et al., 2004), was a gift from Dr. David Salt.

Transformants were selected on synthetic complete (SC) medium lacking Trp (SC-Trp) and verified by PCR. The SC-Trp medium contained 0.67% yeast nitrogen base (Difco); 2% Glc; 0.01% of adenine, Arg, Cys, Leu, Lys, Thr, and uracil; 0.005% of Asp, His, Ile, Met, Phe, Pro, Ser, Tyr, and Val; and 2% agar for solid media.

Metal Tolerance Assays in Yeast

For analysis on plates, overnight cultures were inoculated into liquid medium at 30°C at an optical density (OD)_{600} of 0.2 to 0.3 and grown at 30°C to early mid-log phase (OD_{600} 0.8–1.0). The culture was then diluted to an OD of 0.2, from which serial dilutions (1, 10^{-1}, 50^{-1}, 100^{-1}, and 500^{-1}) were prepared with fresh SC-Trp medium and 2 μL of each dilution was spotted on SC-Trp medium containing various concentrations of CuSO_{4}, ZnSO_{4}, CdSO_{4}, or Co(NO_{3})_{2}. The plates were incubated at 30°C for 2 to 3 d and photographed.

Analysis of Metal Accumulation in Yeast

To measure Cu content in yeast cells, an overnight culture was inoculated into 50 mL of fresh SC-Trp medium at an OD_{600} of 0.2 to 0.3 and grown at 30°C for 24 h to late-log phase. Four milliliters of this culture was added to 1 mL of fresh medium containing CuSO_{4} to a final concentration of 10 μM. Three replicates were inoculated at the same time for each yeast strain. The yeast cultures were grown at 30°C for 10 h. For Zn content analysis, the overnight cultures were inoculated into 5 mL of fresh SC-Trp medium at an OD_{600} of 0.2 and ZnSO_{4} added to a final concentration of 50 μM. Three replicates were inoculated for each strain. The cultures were grown at 30°C for 24 h. For both Cu and Zn content analyses, cells from 4 mL of cultures were collected by filtration (0.45 μm nitrocellulose filter; Millipore) and washed with citrate buffer (20 mM sodium citrate, 1 mM EDTA, pH 4.2) as described previously (Kim et al., 2004). The filtrates with cells were dried at 92°C for 24 h and digested in 2 mL of concentrated nitric acid at 115°C for 6 h. Digested samples were diluted to 4 mL with water and analyzed by atomic absorption spectrometry (Perkin Elmer 400; Perkin Elmer). Three replicates for each yeast strain were analyzed at the same time.
Plant Materials and Growth Conditions

Arabidopsis plants and mutants used in this study were all in Columbia ecotype. Plants were grown in a soil mix in a growth room or greenhouse. For growth on MS medium, seeds were sterilized for 8 min with 15% (v/v) household bleach containing a few drops of Tween 20, followed by three washes with sterile water. Seeds were stratified at 4°C in the dark for 3 d, germinated on 100-× 100-× 15-mm square petri dishes containing MS medium, and grown at 22°C with a 16-h/8-h light/dark photoperiod. The MS medium contained half-strength MS salts, 0.05% (w/v) MES, and 1% (w/v) Suc, solidified with 0.8% (w/v) agar.

The T-DNA insertion mutants for MT1a (mt1a-1 and mt1a-2) and MT2b (mt2b-1) were obtained from the Salk Institute Genomic Analysis Laboratory (http://signal.salk.edu/cgi-bin/tdnaexpress): SALK_69220, referred to here as mt1a-1; SALK_76355, mt1a-2; and SALK_37601, mt2b-1. Locations of the T-DNA insertions were confirmed by sequencing PCR products amplified with gene-specific primers (Fig. 4A, primers 2 and 4) and the T-DNA left border primer (Fig. 4A, primer 5). To confirm the homozygosity of the T-DNA insertion lines, gene-specific primers were used to check the wild-type alleles (Fig. 4A, MT1a, primers 1 and 2; MT2b, primers 3 and 4). Sequences of primers used and the mutant allele names are available on request.

GFP-S65C in place of the GFP open reading frame. The resulting plasmid was transformed into the mt1a-2 mt2b-1 double mutant as described above. Transforms were identified on MS medium containing 7 µg·mL⁻¹ G418 (Basta). Six transformed T₄ plants were obtained and two T₅ plants heterozygous for a single copy transgene were used in this study.

RNA Expression Analysis

RNA was isolated from 8-d-old seedlings grown in liquid MS medium using TRIZOL Reagent (Invitrogen). For RNA blots, 5 µg of RNA was separated on a formaldehyde agarose gel transferred to a nylon membrane, UV cross-linked, and hybridized with 3²P-labeled cDNA probes as described previously (Guo et al., 2003). For RT-PCR analysis of MT1a and MT2b transcripts in mutants, cDNA was synthesized in a 20-µL reaction containing 2 µg of RNA as described (Smith et al., 2004). The resulting cDNA was diluted to 400 µL, and 1 µL was used as the template in a 15-µL reaction and subjected to 35 cycles of PCR (94°C for 30 s, 54°C for 30 s, and 72°C for 1 min) using Taq DNA polymerase. Amplification of a tubulin cDNA (TUB6, At5g12250) using the forward primer (5'-TGGGAACTCTGCTCATATCT-3') and the reverse primer (5'-GAGAATGAGGTTCACTG-3') was used to normalize results from different samples.

Measurement of Cu Content in Plant Organs

To measure Cu content, seedlings from different lines were germinated vertically on MS medium. After 4 d, seedlings were transferred to MS plates with or without 30 µM CdSO₄ and grown for another 10 d. Shoots and roots from 14-d-old seedlings were pooled from four to five MS plates (32–40 seedlings), washed first in deionized water, followed by citrate buffer (20 mM sodium citrate, 1 mM EDTA, pH 4.2), and then 25 mM CaCl₂ (pH 5), 5 min for each wash. All the washes were performed with ice-cold solutions. After a final rinse in deionized water, tissues were dried at 95°C for 24 h and the dry weight of each sample was determined. The dry tissues were digested in 1 mL of concentrated nitric acid for 12 h at 115°C. The digested samples were diluted to 3 mL with water and analyzed by atomic absorption spectrometry.

ACKNOWLEDGMENTS

The Δαα1 and Δαα1Δαα1 yeast mutants were kindly provided by Dr. Dennis J. Thiele and Dr. David Salt, respectively. The authors wish to acknowledge the Salk Institute Genomic Analysis Laboratory for providing the sequence-indexed Arabidopsis T-DNA insertion mutants, the Purdue Ionomic Center and Brett Lahner for inductively coupled plasma-mass spectrometry analysis and for assistance with atomic absorption spectrometry, and Dr. Dongguin Kim for suggestions with yeast analysis. Ms. Nicole L. Retzner assisted in generating yeast mutants expressing Arabidopsis MT4. The construct expressing the MT1a open reading frame driven by the cauliflower mosaic virus 35S promoter was provided by Ms. Rafaela Ruiz.

Received January 2, 2008; accepted February 11, 2008; published February 20, 2008.

LITERATURE CITED

Bauscher M, Shatters R, Chaparro J, Dang P, Hunter W, Niedz R (2003) An expressed sequence tag (EST) set from Citrus sinensis L. Osbeck whole seedlings and the implications of further perennial source investigations. Plant Sci 165: 415–422

Bellegem FV, Cuypers A, Brahim S, Smeets K, Vangronsveld J, d’Haen J, Blindauer CA, Valcke R, Chaparro J, Dang P, Hunter W, Niedz R, Belleghem FV, Cuypers A, Brahim S, Smeets K, Vangronsveld J, d’Haen J, Blindauer CA, Valcke R, Chaparro J, Dang P, Hunter W, Niedz R (2003) An expressed sequence tag (EST) set from Citrus sinensis L. Osbeck whole seedlings and the implications of further perennial source investigations. Plant Sci 165: 415–422

Borrelly GPM, Harrison MD, Robinson AK, Cox SG, Robinson NJ, Whitehall SK (2002) Surplus zinc is handled by Zym1 metallothionein and Zhm endoplasmic reticulum transporter in Schizosaccharomyces pombe. J Biol Chem 277: 30394–30400

Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytocelatin in Arabidopsis. Plant Physiol 141: 108–120

Analysis of Arabidopsis Metallothioneins

Plant Physiol. Vol. 146, 2008

Copyright © 2008 American Society of Plant Biologists. All rights reserved.
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743

Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3: 211–216

Cobbett CS, Goldsbrogh PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53: 159–182

Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59: 627–647

Domehech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2006) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88: 583–593

Ecker DJ, Baill TR, Cooke ST (1989) Yeast metallothionein: gene function and regulation by metal ions. Met Ions Biol Syst 25: 147–169

Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace-metal ion accumulation—implications for PsMTA function. Plant Mol Biol 20: 1019–1028

Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast-cells by the Liac/S-DNA/Peg procedure. Yeast 11: 355–360

Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100: 10118–10123

Guo JW, Bundihya W, Goldsbrogh PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159: 369–381

Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connelly MJ, Goldsbrogh PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11: 1153–1163

Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53: 1–11

Hamer DH (1986) Metallothionein. Annu Rev Biochem 55: 913–951

Hamer DH, Thiele DJ, Lemontt JE (1985) Function and auto-regulation of yeast copperthionein. Science 226: 683–690

Howden R, Cobbett CS (1992) Cadmium sensitive mutants of Arabidopsis thaliana. Plant Physiol 100: 100–107

Howden R, Goldsbrogh PB, Anderssen CR, Cobbett CS (1995) Cadmium sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107: 1059–1066

Hsieh HM, Liu WK, Chang A, Huang PC (1996) RNA expression patterns of a type 2 metallothionein-like gene from rice. Plant Mol Biol 32: 525–529

Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28: 381–389

Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39: 237–251

Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39: 267–294

Lane BG, Kajioka R, Kennedy TD (1987) The wheat germ Ec protein is a zinc-containing metallothionein. Biochem Cell Biol 65: 1001–1005

Leszczyszn OJ, Schmid R, Blindauer CA (2007) Toward a property/function relationship for metallothioneins: histidine coordination and unusual cluster composition in a zinc-metallothionein from plants. Proteins 68: 922–935

MacDiarmid CW, Gaither LA, Eide D (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19: 2845–2855

Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20: 719–726

Mengoni A, Goncelli C, Hakvoort HWJ, Galardi F, Bazzicalup M, Gabbrielli R, Schat H (2003) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant Soil 257: 451–457

Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR (2005) Developing pineapple fruit has a small transcriptome dominated by metallothionein. J Exp Bot 56: 101–112

Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119–122

Murphy A, Taiz L (1995) Comparison of metallothionein gene-expression and nonprotein thiols in 10 Arabidopsis ecotypes (correlation with copper tolerance). Plant Physiol 109: 945–954

Murphy A, Zhou JM, Goldsbrogh PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol 113: 1293–1301

Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci USA 95: 8428–8430

Rausker WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31: 19–48

Roossens NH, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577: 9–16

Sancenon V, Puig S, Mateu-Andres I, Dorcye E, Thiele DJ, Penarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279: 15348–15355

Smith AP, DeRilder BP, Gao WJ, Seeley EH, Regnier FE, Goldsbrogh PB (2004) Proteome analysis of Arabidopsis glutathione S-transferases from benoxacor- and copper-treated seedlings. J Biol Chem 279: 26098–26104

Suhy DA, Simon KD, Linzer DH, O’Halloran TV (1999) Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J Biol Chem 274: 9183–9192

TamaI KT, Graala EB, Ellerby LM, Valentine JS, Thiele DJ (1993) Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide-dismutase. Proc Natl Acad Sci USA 90: 8013–8017

Tommy AM, Shi JG, Lindsay WP, Urwin PE, Robinson NJ (1991) Expression of the pea gene PsMTA in E. coli. Metal-binding properties of the expressed protein. FEBS Lett 292: 48–52

van Hoof NALM, Hassinen VH, Hakvoort HWJ, Baltijnnt KF, Schat H, Verkleij JAC, Ernst WHO, Karenlampi SO, Tervahauta AI, Versteegh A, de Vries SC (1992) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 106: 1519–1526

Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse D, Liu Q, Gooding PS, Singh SP, Abbett D, Stoutjesdijk PA, et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27: 581–590

Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135: 1447–1456

Zhou JM, Goldsbrogh PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6: 875–884

Zhou JM, Goldsbrogh PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248: 318–328