Antiviral activity of chlorogenic acid against influenza A (H1N1/ H3N2) virus and its inhibition of neuraminidase

Yue Ding, Zeyu Cao, Liang Cao, Gang Ding, Zhenzhong Wang & Wei Xiao

Lonicera japonica Thunb, rich in chlorogenic acid (CHA), is used for viral upper respiratory tract infection treatment caused by influenza virus, parainfluenza virus, and respiratory syncytial virus, etc in China. It was reported that CHA reduced serum hepatitis B virus level and death rate of influenza virus-infected mice. However, the underlying mechanisms of CHA against the influenza A virus have not been fully elucidated. Here, the antiviral effects and potential mechanisms of CHA against influenza A virus were investigated. CHA revealed inhibitory against A/PuertoRico/8/1934(H1N1) (EC50 = 44.87 μM), A/Beijing/32/92(H3N2) (EC50 = 62.33 μM), and oseltamivir-resistant strains. Time-course analysis showed CHA inhibited influenza virus during the late stage of infectious cycle. Indirect immunofluorescence assay indicated CHA down-regulated the NP protein expression. The inhibition of neuraminidase activity confirmed CHA blocked release of newly formed virus particles from infected cells. Intravenous injection of 100 mg/kg/d CHA possessed effective antiviral activity in mice, conferring 60% and 50% protection from death against H1N1 and H3N2, reducing virus titres and alleviating inflammation in the lungs effectively. These results demonstrate that CHA acts as a neuraminidase blocker to inhibit influenza A virus both in cellular and animal models. Thus, CHA has potential utility in the treatment of the influenza virus infection.

Influenza is an acute viral respiratory illness that causes high morbidity and mortality globally1. Three circulating subtypes, type A/H1N1, type A/H3N2 and type B, are well known as influenza viruses that infect humans, causing massive and rapidly evolving global epidemics2. A previously unrecognized H7N9 subtype of avian influenza virus which could infect humans was first identified in March 2013 and has caused at least 274 deaths during 3 major epidemic waves in China3. In humans, influenza infection of the lower respiratory tract can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure4. Cytokine storm during influenza infection is a predictor of morbidity and mortality5.

Currently available control measures for influenza include vaccination and two classes of antiviral compounds, the M2 ion channel blockers and the neuraminidase inhibitors (NAIs)6. Vaccines must be continually updated to cover currently circulating viral strains, and their protective efficacy is limited in people over 65-year-old who are paradoxically susceptible to influenza7. M2 ion channel blockers, with potential neurotoxicity, inhibits influenza A virus only8. NAIs act by binding to the active site of the viral NA to prevent release and spread of progeny viruses from infected cells during the replication cycle1, which is a promising target for anti-influenza drugs screening9. However, several strains were reported to be resistant to oseltamivir due to mutations in the viral amino acid sequence10,11. Resistance and severe respiratory distress syndrome caused by influenza virus have become major public health concerns7. Thus, there is an urgent need to develop alternative anti-influenza drugs12.

Chlorogenic acid (CHA) (Fig. 1A) is a caffeoylquinic acid component distributed widely in Lonicera japonica Thunb, Crataegus monogyna, Eucalyptus globules, and Eupatorium perfoliatum, and Vaccinium angustifolium13, as well as several traditional Chinese medicine (TCM) injections14-16. CHA has antiviral effects against several viruses, including HIV17,18, adenovirus19, hepatitis B virus19, HSVs20,21, and also inhibits inflammation caused by viral infection22. CHA was reported to reduced serum hepatitis B virus level in vivo20. Results from molecular
Figure 1. (A) Chemical structure of CHA. (B) Cellular toxicity of CHA. Inhibitory effects of CHA on (C) influenza A/PuertoRico/8/1934 (H1N1) and (D) A/Beijing/32/92 (H3N2) viruses infection in MDCK cells. *P < 0.05 compared to oseltamivir carboxylate-treated group. (E) Experimental protocols to identify the inhibitory effects of CHA on influenza virus infection. MDCK cells (5 x 10^4 cells/well) were treated with different amounts of CHA, before, at the same time of, and after inoculation with (F) influenza A/PuertoRico/8/1934 (H1N1) and (G) A/Beijing/32/92 (H3N2) viruses. *P < 0.05, **P < 0.01 compared to Protocol 1; ϕP < 0.05, ϕϕP < 0.01 compared to Protocol 2.
docking experiments indicated that CHA could be a potential NAI of influenza virus H1N1, H5N1 and H7N9. It was reported that CHA could recover cell viability and increase survival rate in H1N1-infected mice. Previous studies have demonstrated the antiviral effects of CHA against influenza virus H5N1 and its derivatives against influenza virus H3N2. However, evidence for the antiviral effects and potential mechanisms is very limited. Moreover, it was administered orally in previous experiments, which could not confirm CHA is an effective component in blood, due to its low oral bioavailability (0.13%). Thus, the anti-influenza effects should be checked by intravenous injection. On the other hand, it was reported that CHA could down-regulate inflammatory factors in glial cells. However, the action of CHA to alleviate inflammation in lung tissue caused by viral infection also requires careful assessment.

The purpose of this study was to investigate the anti-influenza activity of CHA in MDCK cells and mice by intravenous injection. The mechanism of CHA against the influenza virus was also discussed.

Results

Cytotoxic and antiviral activity of CHA on MDCK cells. At a concentration of $200\mu M$ or less, CHA caused no significant cytotoxicity in MDCK cells (Fig. 1B). However, CHA at concentrations over $200\mu M$ reduced the viability of MDCK cells remarkably. The CC$_{50}$ of CHA on MDCK cells was $364.30\pm 1.06\mu M$.

Inhibitory effects of CHA on the influenza A/PuertoRico/8/1934(H1N1) and A/Beijing/32/92 (H3N2) viruses were first examined in vitro. Microscopic examination showed that MDCK cells infected with influenza virus exhibited cytopathic effect (CPE) including cell rounding, detachment and death. Treatment with 10–100 μM CHA significantly reduced CPE caused by infection in MDCK cells. MTS assays revealed that CHA increased the viability of virus-infected cells dose-dependently (Fig. 1C, D). For instance, $100\mu M$ CHA inhibited H1N1 and H3N2 by 73.33% and 54.72%, respectively. Interestingly, $100\mu M$ CHA showed a better antiviral effect than oseltamivir carboxylate ($P<0.05$), used as positive control, against H1N1. The EC$_{50}$ values were $44.87\pm 1.12\mu M$ and $62.33\pm 1.22\mu M$ against H1N1 and H3N2, respectively (Table 1). Additionally, CHA revealed inhibition against several strains resistant to oseltamivir clinically (Table 2). Moreover, CHA suppressed viral mRNA transcription and subsequent protein translation during H1N1 infection (Suppl. Fig. S1), which confirmed the antiviral effects observed in cellular model. These results indicated that CHA protected MDCK cells from viral infection and reduced the viral production in a dose-dependent manner.

Compound	Cell Line	CC$_{50}$ (μM)	EC$_{50}$ (μM)	SF	CC$_{50}$ (μM)	EC$_{50}$ (μM)	SF
CHA	MDCK	364.30	44.87	8.12	62.33	5.84	10.9
	A549	312.67	38.14	8.20	66.89	4.67	14.3

Table 1. In vitro inhibitory effects of CHA against influenza A/PuertoRico/8/1934(H1N1) virus and influenza A/Beijing/32/92 (H3N2) virus. aCC$_{50}$ was determined by MTS assay. bEC$_{50}$ was determined by MTS assay. cRatio of CC$_{50}$ to EC$_{50}$.

Compound	Cell line or virus strains	CHA (μM)		
		CC$_{50}$	EC$_{50}$	SF
MDCK		364.30		
Influenza virus	A/PuertoRico/8/1934(H1N1)	44.87	8.12	
	A/FM1/1/47 (H1N1)	39.42	9.24	
	A/Beijing/32/92 (H3N2)	62.33	5.84	
	A/Human/Hubei/3/2005(H3N2)	51.23	7.11	
	A/Jinlin/15/2009(H1N1)d	58.34	6.24	
	A/Zhuhui/1222/2010(H3N2)d	71.93	5.06	

Table 2. The inhibition of CHA against several stains of influenza virus sensitive or resistant to oseltamivir. aCC$_{50}$ was determined by MTS assay. bEC$_{50}$ was determined by MTS assay. cRatio of CC$_{50}$ to EC$_{50}$. dStrains clinically resistant to oseltamivir.

Efforts of CHA on the reduction of the viral NP protein. NP localization was examined at 24 h post infection (pi) when viral replication and transcription was underway and the newly formed virus particles began
to release and spread from infected cells. As shown in Fig. 2, no immunofluorescent foci of viral NP was observed in the control. A strong green fluorescent signal was observed in the majority of virus-infected cells without CHA treatment. Moreover, viral NP was localized predominantly in the cytoplasm, with lesser amounts in the nucleus. In contrast, in CHA-treated cells, less NP was observed in the cytoplasm and expression levels decreased dose-dependently (Fig. 2). These results suggested that CHA reduced the expression of viral NP protein and caused nuclear retention of the viral NP, leading to the preventing of release and spread of progeny virions from infected cells.

Inhibitory effect of CHA on the NA activity of influenza viruses. To evaluate the target of CHA against influenza virus, NA activity in the presence of CHA was measured in vitro. CHA reduced NA activity of the influenza A/PuertoRico/8/1934 (H1N1) virus and the influenza A/Beijing/32/92 (H3N2) virus in a dose-dependent manner (Fig. 3A), with an IC_{50} of 22.13 ± 1.07 μM against H1N1 and of 59.08 ± 1.12 μM against H3N2 (Fig. 3B). These results demonstrated that CHA inhibited NA and further lead to blocking of release and spread of progeny virions from infected cells, which explained the prevention of CHA on the post-adsorption step of viral life cycle. Thus, inhibitory on NA could be the anti-influenza virus mechanism of CHA.
Inhibitory effects of CHA on the influenza virus in vivo. First, the safety of CHA treatment in mice was assessed. Animals treated with CHA at a dose of 100 mg/kg/d maintained a relatively steady weight and showed no significant clinical symptoms throughout the study (data not shown).

To evaluate the therapeutic efficacy of CHA against influenza A/PuertoRico/8/1934 (H1N1) virus, a lethal murine infection model was used. Mice of the placebo group all died at 8 days post infection (dpi). Oseltamivir protected 70% of mice from lethal infection. However, the administration of CHA at 100, 50, and 25 mg/kg/d saved 60%, 40%, and 20% of mice infected with H1N1, respectively (Fig. 4A). Administration of CHA effectively protected the infected mice from weight loss caused by influenza virus infection (Fig. 4B). Despite the similar trend of initial weight loss in the first 7 days of infection, animals treated with CHA regained weight starting on day 8, whereas all of the mice without treatment (placebo) showed the most significant weight loss within 8 days. These results demonstrated that CHA treatment effectively increased survival rate and protected mice from weight loss associated with lethal infection with influenza virus.

To further investigate the therapeutic efficacy of CHA against H1N1, virus titres in the lung of mice were determined at 5 dpi. No virus was observed in lung tissues from the normal group. Virus titre of the placebo group was $5.52 \pm 0.48 \log_{10}\text{CCID}_{50}/g$, whereas virus titres were $3.77 \pm 0.51 \log_{10}\text{CCID}_{50}/g$ and $4.14 \pm 0.32 \log_{10}\text{CCID}_{50}/g$ for CHA at 50 and 25 mg/kg/d, respectively. **$P<0.01$ compared to placebo, *$P<0.05$ compared to placebo.
Log_{10} CCID_{50}/g in the 100 and 50 mg/kg/d CHA-treated groups (Fig. 4C), respectively. H1N1 virus titres were markedly decreased by CHA treatment. The lung index for each group was observed to evaluate lung lesions. The placebo group had a lung index of 2.3 ± 0.31, whereas lung index was 1.41 ± 0.17 and 1.57 ± 0.23 when treated with 100 and 50 mg/kg/d CHA (Fig. 4D), respectively. Therefore, CHA decreased the lung index effectively compared to the placebo group.

Similar results were required in an H3N2-infected model, CHA treatments of 100 and 50 mg/kg/d resulted in 50% and 40% survival rate (Fig. 5A), protecting infected mice from weight loss (Fig. 5B). Lung virus titers (Fig. 5C) and lung index (Fig. 5D) on day 5 of H3N2-infected mice were significantly reduced by CHA. These results indicated CHA could exhibit anti-influenza activity against H3N2 in vivo as well.

Effects of CHA on H1N1 infection in the lung. The expression of NP, which represents virus load in the lung, was detected by immunohistochemistry. Lung sections obtained from the placebo group had the most obvious immunostaining of viral antigens. However, less immunostaining was detected in the CHA-treated group, which could be attributed to the inhibition of viral replication by CHA in the lungs (Fig. 6). These data were also consistent with the results of virus titres in lung tissues.

The lungs of mice were sampled for histopathologic changes caused by viral infection at 5 d pi by haematoxylin and eosin staining (Fig. 7A). No signs of lung inflammation or pathological changes were observed in the normal control group. Bronchial epithelial cells were necrotic in mice from the placebo group with thickened alveolar walls. Severe lung hyperemia and lesions were observed in the placebo group. Meanwhile, alveolar spaces filled with moderate inflammatory infiltrates of neutrophils, macrophages, and lymphocytes. However, pathological sections of the CHA-treated groups show remission of lung hyperemia and lesions. And the lungs of mice treated with CHA had a reduced inflammatory response, which were consistent with the results of measuring lung index.

To further determine if CHA regulates the secretion of cytokines, bronchoalveolar lavage (BAL) fluids from each group were assessed at 5 d pi. Influenza virus infection resulted in significant IL-6 and TNF-α accumulation in BAL fluid compared with the normal control group, which was clearly reduced by CHA at 5 dpi (Fig. 7B,C). Additionally, the effect of IL-6 down-regulation was more pronounced than that of TNF-α.

Discussion
Influenza is a highly contagious disease with high morbidity and mortality during an epidemic. The clinical application of anti-influenza drugs is limited by side effects and the emergence of resistant strains. Consequently, it’s very necessary to explore new drugs for influenza virus control. Traditional Chinese medicinal herbs may be a potential alternative medicine source for treatment. Recently, clinical trials have shown that TCMs, including *Lonicera japonica* Thunb, could be alternative treatments for influenza. CHA exists in high quantities in *Lonicera japonica* Thunb, which is an inexpensive and widely distributed resource. Thus, CHA could be used for potential anti-influenza therapy at low cost in light of the continuous emergence of new and virulent influenza strains.
Here, the inhibitory effects of CHA against influenza A/Puerto Rico/8/1934 (H1N1) and A/Beijing/32/92 (H3N2) viruses were investigated both in vitro and in vivo. First, the EC\textsubscript{50} of CHA against H1N1 and H3N2 were 44.87 μM and 62.33 μM in vitro, respectively. Moreover, CHA inhibited several oseltamivir-resistant strains, which implied the binding mode of CHA differs from oseltamivir. Thus, CHA, with a broad anti-influenza spectrum, could be an alternative therapeutic approach against resistance. NP transcription and protein synthesis were significantly decreased by CHA administration, attributed to its antiviral effects. Furthermore, 100 mg/kg/d CHA possessed effective antiviral activity in vivo, conferring 60% and 50% protection from death against H1N1 and H3N2. CHA also prolonged survival time, decreased virus titres in the lung, and inhibited lung consolidation in virus-infected mice. These data show a lower dosage than those of previous reports23. Oral administration of 960 mg/kg/d CHA caused a survival rate of 56%, in comparison with model group23, which could be attributed to the low oral bioavailability (0.13%) of CHA29. Thus, it was reasonable that intravenous injection of 100 mg/kg/d CHA caused a similar inhibition of influenza with oral administration of 960 mg/kg/d CHA. Moreover, intravenous injection of CHA could be an optional administration route. Taken together, the antiviral effects of CHA against influenza virus were demonstrated in this study, which agrees with findings of previous studies17,23–26. Importantly, CHA could be the potential antiviral material basis of Lonicera japonica Thunb34, Reduning35 and Shuanghuanglian injection36.

Greater activity against influenza virus was observed when CHA was added after viral adsorption, which could be attributed to the inhibition of CHA on NA activity, playing a vital role in the viral life cycle with respect to release of progeny virions from infected cells. Indeed, the IC\textsubscript{50} of CHA against NA of H1N1 and H3N2 was 22.13 μM and 59.08 μM, respectively. Hence, CHA may inhibit the release and spread of progeny virus particles. Interestingly, CHA had a greater inhibitory effect on NA from H1N1 virus than against that from H3N2, which is consistent with the results observed in cellular model. Amino acid differs in or near the active site of NA between two strains which may have effects on inhibitor binding. These differences in the NA amino acid sequence may lead to different structure and thereafter susceptibility to CHA37. These results demonstrated that NA could be a potential antiviral target of CHA to counter influenza A virus.

Monocytes and macrophages are susceptible to influenza A virus infection38,39. In response to excessive viral load, these cells produce cytokines, such as IL-6 and TNF-α38. Accumulation of IL-6 and TNF-α is responsible for the pathogenesis and severity of influenza virus infection30,41, for it could cause severe secondary pneumonia in the lung, which is one of the most important causes of mortality in influenza infection39,42. In this study, CHA was shown to decrease secretion of IL-6 and TNF-α induced by influenza virus infection, and thereby alleviated inflammation and damage in lung tissues43. Thus, the down-regulation of cytokine secretion could be attributed to the inhibition of virus budding caused by CHA. Thus, we conclude that CHA reduced inflammation by inhibiting the excessive secretion of IL-6 and TNF-α in the lung tissues of infected mice.

In summary, this study demonstrates the activity of CHA, as a NA inhibitor, countering influenza A virus infection in both cell culture and mice. Inhibition of NA by CHA decreased virus titres and alleviated inflammation in infected mouse lung tissues. These results suggest that CHA exhibits potential utility in the control of influenza virus infections with limited toxicity.

Figure 6. CHA reduced viral antigen in lung tissues from mice infected with H1N1 isolates. Lungs were sectioned for immunohistochemical staining to detect viral NP. Arrows marked in sections of placebo group show a large number of viral NP, while viral NP reduced in CHA-treated group. All micrographs were taken at ×200 magnification.
Materials and Methods

Compounds. CHA with the purity of 98% was purchased from the China Pharmacy Biological Products Examination Institute. Oseltamivir carboxylate was purchased from Chembest Co., Ltd. (Shanghai, China).

Viruses and cells. The influenza strains A/PuertoRico/8/1934(H1N1), A/Beijing/32/92 (H3N2), and A/Human/Hubei/3/2005(H3N2) were obtained from Wuhan Institute of Virology, China Academic of Sciences. The clinical isolated strains of A/Jinan/15/2009(H1N1) and A/Zhuhui/1222/2010(H3N2), resistant to oseltamivir and amantadine, respectively, were kindly donated by the Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, and stored at −80 °C. Madin-Darby canine kidney (MDCK) cells were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). 1640 medium supplemented with 10% (V/V) FBS, 100 U/ml penicillin and 100 U/ml streptomycin was used for culturing cells at 37 °C in a humidified atmosphere of 5% CO₂.

Animals. Specific-pathogen-free BALB/c mice 6 weeks of age and weighing 18–22 g were purchased from the Animal Experimental Centre, Yangzhou University, China (No. SCXK (Jiangsu) 2012–0004). Animals were housed in a 12 h light/dark cycle, and the air temperature was maintained at 22 ± 2 °C. This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments protocols were approved by Laboratory Animal Association of Jiangsu (Licence number: SYXK(Jiangsu)2010–0010), which were conducted in accordance with the “Guiding Opinions on PETA’s” promulgated by Ministry of Science and Technology of China in 2006.

Cytotoxicity assay. An MTS assay was performed to evaluate the cytopathic effects of CHA on MDCK cells. A series of concentrations of CHA (0–1000 μM) was added to the cells. After incubation at 37 °C for 48 h, medium with 10% MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) stock solution was added to each well. After 2 h of incubation under culture conditions, absorbance (A490 nm)
was measured using a microplate reader, and cell viability was expressed as the percentage of the absorbance value determined with respect to control cultures\(^7\). The half-maximum cytotoxic concentration (CC\(_{50}\)) was defined as the concentration that reduced the OD\(_{490}\) of CHA-treated cells to 50% of that of untreated cells.

Antiviral activity assay. An MTS assay was performed to evaluate the antiviral activity of CHA against influenza A viruses. MDCK cells were inoculated with 100 CCID\(_{50}\) (50% cell culture infective dose) of different strains of influenza virus suspension in 1640 medium for 2 h at 35 °C. Culture growth medium containing different concentrations of CHA ranging from 5 to 100 μM was added to cells in a confluent monolayer. Oseltamivir carboxylate (2 μM) was used as positive control. All cultures were incubated at 37 °C for 48 h. All wells were then observed under a light microscope to determine CPE\(^{46,47}\). Inhibition rate (%) was measured using a microplate reader, and cell viability was expressed as the percentage of the absorbance value determined with respect to control cultures. The half-maximum cytotoxic concentration (CC\(_{50}\)) was defined as the ratio of CC\(_{50}\) to EC\(_{50}\).

Inhibitory effects of CHA on different stages of viral replication. To investigate the anti-influenza effects of CHA at different stages of replication, CHA (10, 50, or 100 μM) were added exclusively for a 12 h pre-incubation period prior to infection (protocol 1), added together with virus for 2 h during adsorption period (protocol 2), or added immediately after the virus adsorption period (protocol 3). Cells were incubated for 48 h at 37 °C and cell viability was detected using an MTS assay.

Indirect immunofluorescence assay (IFA). MDCK cells were infected with influenza A/PuertoRico/8/1934(H1N1) virus, after removing influenza virus and washing with PBS, the cells were incubated with several concentrations of CHA (10, 50, 100 μM) diluted in growth medium containing 0.5% FBS. Twenty-four hours, the cells were fixed with 4% paraformaldehyde for 30 min. Cells were permeabilized with 0.1% Triton-X100 for 5 min. After blocking with 2% bovine serum albumin for 20 min, the cells were exposed to a FITC-conjugated mouse monoclonal antibody against influenza A virus nucleoprotein (NP) (Merck Millipore, Germany) in 4 °C for 12 h. Cell nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI), and the cells were visualized under a fluorescence microscope\(^{46,47}\). A fluorescence-based NA inhibition assay was used to determine the sensitivity of the influenza viruses to CHA. The assay is based on the release of a 4-methylumbelliferone fluorescent product from the 2′-(4-Methylumbelliferyl)-α-D-N-acetylneuraminic acid sodium salt hydrate (MU-NANA) (Sigma-Aldrich Co., St. Louis, MO, USA) substrate as a measure of NA activity\(^7\). The allantoic fluid of embryonated chicken eggs infected with influenza A viruses, containing NA of viruses, was used as an enzymatic resource. For the NA inhibition assay, 60 μl of a NA solution was first incubated with 10 μl of CHA (5–100 μM) at 37 °C in black 96-well microplate for 10 min. Next, 30 μl of an 80 μM MU-NANA substrate solution was added, and the plates were incubated at 37 °C for 30 min. Fluorescence was measured at Ex = 355 nm and Em = 460 nm\(^40\). The IC\(_{50}\) values of CHA represent concentrations that caused 50% loss of enzyme activity.

Antiviral study in mice. Seventy-six-week-old female BALB/c mice were grouped into 7 groups: normal control (mice without viral infection); placebo (infected mice without treatment); CHA-treated (25, 50 and 100 mg/kg/d); and oseltamivir-treated (100 mg/kg/d). Oseltamivir treatment was used as a positive control. All cultures were incubated at 37 °C for 48 h. All wells were stained with HRP-labelled rabbit anti-mouse IgG(H+L) (Merck Millipore, Germany) in 4 °C for 12 h. Cell nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI), and the cells were visualized under a fluorescence microscope\(^{46,47}\). Survival was observed and the mice were weighed daily for 14 days\(^{50,52}\).

Mice were weighed and euthanized at 5 dpi, and the lungs were removed and weighed\(^41\). The lung index was calculated as follows using the obtained values: Lung index = A/B × 100, where A is the lung weight, and B is the body weight\(^44\). Lungs harvested 5 dpi from each group were homogenized in 1640 medium containing antibiotics at 10% v/v tissue. Tissue homogenates, which were first clarified by low-speed centrifugation and then diluted (10\(^{-1}\)–10\(^{-7}\)) in 1640 medium, were added in 96-well culture plates containing MDCK cells, and virus titres were expressed as Log\(_{10}\)CCID\(_{50}\)/gram tissue. Survival, MDD (Mean day to death), weight index and viral titers were also evaluated in an H3N2 infection in mice treated with CHA.

BAL fluid was collected on 5 dpi by using consecutive instillations of 1 mL PBS. The collected BAL fluid was centrifuged at 1500 rpm at 4 °C for 5 min, and the supernatants were stored at −80 °C\(^{50,58}\). The concentrations of cytokines IL-6 and TNF-a in the BAL fluid were measured using anti-mouse enzyme-linked immunosorbert assay (ELISA) kits (eBioscience, San Diego, USA) according to the manufacturer’s guidelines.

Histopathology and immunohistochemical staining. Lungs from each group of mice at 5 dpi were immediately fixed in 10% neutral-buffered formalin, embedded in paraffin wax, and processed for histopathology and immunohistochemical staining. For evaluating influenza virus antigen expression, a monoclonal antibody (Merck Millipore, Germany) against the nucleoprotein of influenza A virus was applied to the sections\(^2\). Then, the sections were treated with HRP-labelled rabbit anti-mouse IgG(H + L) (Beiyotime Biotechnology, China). The slides were visualized using a DAB horseradish peroxidase colour development kit (Beiyotime Biotechnology, China). Finally, the slides were observed and photographed under an Olympus light microscope to detect the distribution influenza A virus nucleoprotein\(^{57,58}\).

Statistical analyses. All data are expressed as the mean ± standard error (SE). Differences during experiments were analysed by unpaired two-tailed t-test.
References

1. Bar-On, Y. et al. Neuraminidase-mediated, NKp46-dependent immune-evasion mechanism of influenza viruses. Cell reports 3, 1044–1050, doi: 10.1016/j.celrep.2013.03.034 (2013).

2. Hillaire, M. L. et al. Assessment of the antiviral properties of recombinant surfactant protein D against influenza B virus in vitro. Virus research 195, 43–46, doi: 10.1016/j.virusres.2014.08.019 (2015).

3. Wu, P. et al. Human Infection with Influenza A(H7N9) Virus during 3 Major Epidemic Waves, China, 2013–2015. Emerging infectious diseases 22, 964–972, doi: 10.3201/eid2206.151752 (2016).

4. Herold, S., Becker, C., Ridge, K. M. & Budinger, G. R. Influenza virus-induced lung injury: pathogenesis and implications for treatment. The European respiratory journal 45, 1463–1478, doi: 10.1183/09031936.00186214 (2015).

5. Tejario, J. R. et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, 980–991, doi: 10.1016/j.cell.2011.08.015 (2011).

6. Lee, S. M. & Yen, H. L. Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection. Antiviral research 96, 391–404, doi: 10.1016/j.antiviral.2012.09.013 (2012).

7. Del Valle, J., Pumarola, T., Gonzales, L. A. & Del Valle, L. J. Antiviral activity of maca (Lepidium meyenii) against human influenza virus. Asian Pacific journal of tropical medicine 7, 541–540, doi: 10.1016/j.apjtm.2014.06.068 (2014).

8. Zhao, X. et al. Design and synthesis of pinaminar derivitives as anti-influenza A M2 ion channel inhibitors. Antiviral research 96, 91–99, doi: 10.1016/j.antiviral.2012.09.001 (2012).

9. Belser, J. A., Maines, T. R., Creager, H. M., Katz, J. M. & Tumpey, T. M. Osmeltamivir inhibits influenza virus replication and transmission following ocular-an oral inoculation of ferrets. Virology 484, 305–312, doi: 10.1016/j.virology.2015.06.020 (2015).

10. Liu, Q. et al. Emergence of a novel drug resistant H7N9 influenza virus: evidence based clinical potential of a natural IFN-alpha for infection control and treatment. Expert review of anti-infective therapy 12, 165–169, doi: 10.1517/174787710.2014.870885 (2014).

11. Yen, H. L. et al. Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza H7N9 isolate can be masked by a mixed R/K viral population. mBio 4, doi: 10.1128/mBio.00396-13 (2013).

12. Muratore, G. et al. Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase. Proceedings of the National Academy of Sciences of the United States of America 109, 6247–6252, doi: 10.1073/pnas.1109817109 (2012).

13. Kwon, S. H. et al. Inactivation of Swine Influenza Virus A/H1N1/2009 by Plukenetia volubilis seed extract supplemented with α-tocopherol. Antiviral research 93, 93–100, doi: 10.1016/j.antiviral.2011.09.018 (2011).

14. Graham, R. C. et al. A microfluidic virus chip for high throughput screening of antiviral compounds. Lab on a chip 11, 618–624, doi: 10.1039/c0lc00717g (2011).

15. Luan, L., Wang, G. & Lin, R. HPLC and chemometrics for the quality consistency evaluation of Shuanghuanglian injection. Antiviral research 96, 391–404, doi: 10.1016/j.antiviral.2012.09.013 (2012).

16. Tan, D. F. et al. Anti-viral activity of the medicinal plant Plukenetia volubilis (Euphorbiaceae) leaf extract against influenza A (H1N1) and B viruses. Antiviral research 91, 96–103, doi: 10.1016/j.antiviral.2011.09.018 (2012).

17. Guo, Y. J. et al. Anti-influenza activity of baicalin against influenza A (H1N1) virus in cell culture and in mice and its inhibition of neuraminidase. Archives of virology 159, 3269–3278, doi: 10.1007/s00705-014-2192-2 (2014).

18. Yu, Y. et al. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Archives of virology 159, 3269–3278, doi: 10.1007/s00705-014-2192-2 (2014).
38. Halstead, E. S. & Chreneko, Z. C. Lethal influenza infection: Is a macrophage to blame? Expert review of anti-infective therapy 13, 1425–1428, doi: 10.1586/14787210.2015.1094375 (2015).

39. Peschke, T., Bender, A., Nain, M. & Gensma, D. Role of macrophage cytokines in influenza A virus infections. Immunobiology 189, 340–355 (1993).

40. Svitel, N., Rudd, P. A., Obojes, K., Pillet, S. & von Messling, V. Severe seasonal influenza in ferrets correlates with reduced interferon and increased IL-6 induction. Virology 376, 53–59, doi: 10.1016/j.viro.2008.02.035 (2008).

41. Kaiser, L., Fritz, R. S., Straus, S. E., Gubareva, L. & Hayden, F. G. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. Journal of medical virology 64, 262–268 (2001).

42. Bellani, G., Guerra, L., Pesenti, A. & Messa, C. Imaging of lung inflammation during severe influenza A: H1N1. Intensive care medicine 36, 717–718, doi: 10.1007/s00134-010-1756-1 (2010).

43. Wong, Z. X., Jones, J. E., Anderson, G. F. & Gualano, R. C. Oseltamivir treatment of mice before or after mild influenza infection reduced cellular and cytokine inflammation in the lung. Influenza and other respiratory viruses 5, 343–350, doi: 10.1111/j.1750-2659.2011.00235.x (2011).

44. Yu, C. et al. Anti-influenza virus effects of the aqueous extract from Mosla scabra. Journal of ethnopharmacology 127, 280–285, doi: 10.1016/j.jep.2009.11.008 (2010).

45. Saha, R. K. et al. Antiviral effect of strictinin on influenza virus replication. Antiviral research 88, 10–18, doi: 10.1016/j.antiviral.2010.06.008 (2010).

46. Hwang, B. S., Lee, I. K., Choi, H. J. & Yun, B. S. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii. Bioorganic & medicinal chemistry letters 25, 3256–3260, doi: 10.1016/j.bmcl.2015.05.081 (2015).

47. Hsieh, C. F. et al. Mechanism by which ma-xing-shi-gan-tang inhibits the entry of influenza virus. Journal of ethnopharmacology 143, 57–67, doi: 10.1016/j.jep.2012.05.061 (2012).

48. Sitisrisu, P., Michaelis, M., Schubert-Zsilavecz, M. & Cinatl, J., Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral research 97, 41–48, doi: 10.1016/j.antiviral.2012.10.004 (2013).

49. Yang, C. H. et al. Anti-influenza virus activity of the ethanolic extract from Peperomia suii. Journal of ethnopharmacology 155, 320–325, doi: 10.1016/j.jep.2014.05.035 (2014).

50. Kiso, M. et al. Efficacy of the new neuraminidase inhibitor CS-8958 against H5N1 influenza viruses. PLoS pathogens 6, e1000786, doi: 10.1371/journal.ppat.1000786 (2010).

51. Xu, G., Dou, J., Zhang, L., Guo, Q. & Zhou, C. Inhibitory effects of baicalein on the influenza virus in vivo is determined by baicain in the serum. Biological & pharmaceutical bulletin 33, 238–243 (2010).

52. Yang, B. et al. Protection against influenza H7N9 virus challenge with a recombinant NP-M1-HSP60 protein vaccine construct in BALB/c mice. Antiviral research 111, 1–7, doi: 10.1016/j.antiviral.2014.08.008 (2014).

53. Zarubaev, V. & et al. Broad range of inhibiting action of novel camphor-based compound with anti-hemagglutinin activity against influenza viruses in vitro and in vivo. Antiviral research 120, 126–133, doi: 10.1016/j.antiviral.2015.06.004 (2015).

54. Chen, L. et al. Synergistic activity of baicalein with ribavirin against influenza A (H1N1) virus infections in cell culture and in mice. Antiviral research 91, 314–320, doi: 10.1016/j.antiviral.2011.07.008 (2011).

55. Hasegawa, S. et al. Cytokine profile of bronchoalveolar lavage fluid from a mouse model of bronchial asthma during seasonal H1N1 infection. Cytokine 69, 206–210, doi: 10.1016/j.cyto.2014.06.006 (2014).

56. Okada, S. et al. Analysis of bronchoalveolar lavage fluid in a mouse model of bronchial asthma and H1N1 2009 infection. Cytokine 63, 194–200, doi: 10.1016/j.cyto.2013.04.035 (2015).

57. Sasaki, Y. et al. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity. Biochemical and biophysical research communications 450, 49–54, doi: 10.1016/j.bbrc.2014.05.058 (2014).

58. Kim, H. M. et al. Pathogenesis of novel reassortant avian influenza virus A (H5N8) Isolates in the ferret. Virology 481, 136–141, doi: 10.1016/j.virol.2015.02.042 (2015).

Acknowledgements
This work was financially supported by National Major New Drugs Innovation and Development Project by Ministry of Science and Technology (2013ZX09402203).

Author Contributions
Y.D. and Z.C. designed experiments, Y.D. and Z.C. performed experiments, D.Y., Z.C., L.C., G.D., Z.W. and W.X. discussed data, Y.D. and Z.C. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Ding, Y. et al. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep. 7, 45723; doi: 10.1038/srep45723 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017