Cells via Caveolin-1

Caveolin-1 (Cav-1), the principal structural protein of caveolae, has been implicated as a regulator of virus-host interactions. Several viruses exploit caveolae to facilitate viral infections. However, the roles of Cav-1 in herpes simplex virus 1 (HSV-1) infection have not fully been elucidated. Here, we report that Cav-1 downregulates the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) in dendritic cells (DCs) during HSV-1 infection. As a result, Cav-1 deficiency led to an accelerated elimination of virus and less lung pathological change following HSV-1 infection. This protection was dependent on iNOS and NO production in DCs. Adoptive transfer of DCs with Cav-1 knockdown was sufficient to confer the protection to wild-type (WT) mice. In addition, Cav-1 knockout (KO) (Cav-1−/−) mice treated with an iNOS inhibitor exhibited significantly reduced survival compared to that of the nontreated controls. We found that Cav-1 colocalized with iNOS and HSV-1 in caveolae in HSV-1-infected DCs, suggesting their interaction. Taken together, our results identified Cav-1 as a novel regulator utilized by HSV-1 to evade the host antiviral response mediated by NO production. Therefore, Cav-1 might be a valuable target for therapeutic approaches against herpesvirus infections.

Herpes simplex virus 1 (HSV-1) is a double-stranded DNA (dsDNA) virus belonging to the Alpha herpesvirus family, which causes oral herpes, encephalitis, keratitis, neonatal herpes, and pneumonia disease, establishing latency in the neurons after acute infection of mucosal tissues (1–3). Notably, HSV-1 can be isolated from the respiratory tract of immunosuppressed patients and newborn infants, where it induces pneumonitis, resulting in remarkable morbidity and mortality (4). Recent studies have suggested that HSV-1-induced bronchopneumonitis is common in nonimmunocompromised persons who are undergoing continuous mechanical ventilation (5). Currently, the mechanisms of HSV-1-induced pneumonia and obstructive pulmonary disease are not fully understood, although intranasal (i.n.) infection with HSV-1 in mice can be used as a model to investigate these mechanisms (4, 6, 7). Such investigations might reveal a valuable therapeutic approach for HSV-1-induced pneumonia.

Innate defense cells and inflammatory factors serve as the first-line of host defense against viral infections. DCs can be recruited to the lungs and to the cornea of the eye, where they contribute to host defense (8, 9). Studies have shown that diphtheria toxin (DT)-induced depletion of DCs in CD11c-DTR mice (in which the DT receptor [DTR] is expressed under the control of the CD11c promoter) inhibited the migration of natural killer cells and neutrophils to locally infected cornea, resulting in severe pathology (10, 11). Moreover, involvement of the free radical nitric oxide (NO) has been indicated. This is a powerful vasodilator factor and cell signaling molecule, with a short half-life of 3 to ~4 s in the blood, and it is synthesized by nitric oxide synthase (NOS) in epithelial cells, macrophages, DCs, and other myeloid cells (12, 13). NOS has three isoenzymes: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS) (iNOS is induced by a single stimulus, like lipopolysaccharide [LPS] or gamma interferon [IFN-γ]). Induction of iNOS and NO production constitutes a critical component of the innate antiviral host response to HSV-1, influenza A virus, and other intracellular parasites (14–16) and is potent in clearing the invading pathogens. Early inhibition of NO by i.n. administration of aminoguanidine (AG) was found to increase HSV-1 infection in the eyes and lungs of mice (17). Conversely, pretreatment with an NO donor, sodium nitroprusside (SNP), decreased the titer of Sindbis virus (18). Despite the general importance of DCs and NO in antiviral responses, it is unknown whether this is applicable to HSV-1 infection in the lungs.

Caveolin-1 (Cav-1), a scaffolding protein found in most types of cells, is the major coating protein of caveolae (with 50- to 100-nm plasma membrane invaginations) (19, 20). A deficiency in Cav-1 leads to disruption of the caveolae structure. Although best known in lipid metabolism, roles for Cav-1 in the internalization of pathogens, signal transduction, host defenses, and suppression of inflammatory responses have also been indicated by numerous studies (20–22). Viral entry into cells occurs by clathrin, caveolae, or receptor-mediated pathways (23–25). However, recent studies revealed that simian virus 40 (SV40) enters cells via...
an atypical caveolae-mediated endocytic pathway, forming a new compartment called a caveosome (26, 27). Amphotropic murine leukemia virus (A-MLV) also infects NIH 3T3 cells via Pit2 with the involvement of caveolae (28).

In addition, published work has suggested that Cav-1 facilitates viral replication in vitro and regulates inflammation in vivo. Cav-1 was observed to facilitate influenza A virus subtype H1N1 replication, while Cav-1 mutations or RNA interference (RNAi)-mediated Cav-1 knockdown decreased the virus titer in infected Madin-Darby canine kidney (MDCK) cells (29). By using the mutant Cav-1 protein, hepatitis B virus (HBV) was found to require intact Cav-1 to initiate a productive infection in HepaRG cells (30). In addition, Cav-1 has been implicated in cell signaling and inflammation (31). Reports show that caveolin-1 might down-regulate iNOS/NO via a proteasome pathway and mediate the posttranscriptional regulation of iNOS (32, 33). Through the ability of Cav-1 to regulate NO, Cav-1 mutants/mice exhibited attenuation of lung injury and less edema formation in response to LPS (34). These observations suggested to us that Cav-1 might be involved in HSV-1 infection.

We hypothesized that Cav-1 might suppress host antiviral immunity during HSV-1 infection. In the present study, we used a murine model of HSV-1-induced pneumonia to demonstrate for the first time that Cav-1-deficient mice are resistant to fatal HSV-1 infection and that the increased antiviral activity is due to increased expression of iNOS/NO in DC cells in Cav-1-deficient mice. In addition, the protective effect of Cav-1 deficiency was largely abolished by iNOS inhibition in Cav-1-deficient mice or by DC depletion in CD11c-DTR/Cav-1-deficient mice. Furthermore, we observed that Cav-1 colocalized with iNOS and HSV-1 in caveolae in the virus-infected DCs. Thus, these findings indicate that HSV-1 exploits Cav-1 to downregulate the expression of iNOS in DCs. The corollary is that a deficiency in Cav-1 can restore antiviral immune responses, which has implications for the design of drugs against herpes infection.

MATERIALS AND METHODS

Ethics statement. The use of laboratory animals in our study was approved by the Beijing Association for Science and Technology (approval ID SYXK [Beijing] 2007-0023), and all animal procedures were conducted according to the guidelines of Beijing Laboratory Animal Welfare and Ethics of the Beijing Administration Committee of Laboratory Animals. All animal research was also carried out in accordance with the China Agricultural University Institutional Animal Care and Use Committee guidelines (ID: SKLAB-B-2010-003) and approved by the animal welfare committee of China Agricultural University.

Mice. Female C57BL/6 mice at 6 to 8 weeks of age were purchased from the Animal Institute of Chinese Medical Academy (Beijing, China). Cav-1−/− mice (stock Cav1tm1Nim/J, C57BL/6 background) and CD11c-DTR/GFP mice (B6.FVB-Tg [Igax-DTR/GFP] 57Lan/J) were used in addition. The protective effect of Cav-1 deficiency was largely abolished by iNOS inhibition in Cav-1−/− mice or by DC depletion in CD11c-DTR/Cav-1−/− mice. Furthermore, we observed that Cav-1 colocalized with iNOS and HSV-1 in caveolae in the virus-infected DCs. Thus, these findings indicate that HSV-1 exploits Cav-1 to downregulate the expression of iNOS in DCs. The corollary is that a deficiency in Cav-1 can restore antiviral immune responses, which has implications for the design of drugs against herpes infection.

Materials and methods. We hypothesized that Cav-1 might suppress host antiviral immunity during HSV-1 infection. In the present study, we used a murine model of HSV-1-induced pneumonia to demonstrate that the first time that Cav-1−/− mice are resistant to fatal HSV-1 infection and that the increased antiviral activity is due to increased expression of iNOS/NO in DC cells in Cav-1−/− mice. In addition, the protective effect of Cav-1 deficiency was largely abolished by iNOS inhibition in Cav-1−/− mice or by DC depletion in CD11c-DTR/Cav-1−/− mice. Furthermore, we observed that Cav-1 colocalized with iNOS and HSV-1 in caveolae in the virus-infected DCs. Thus, these findings indicate that HSV-1 exploits Cav-1 to downregulate the expression of iNOS in DCs. The corollary is that a deficiency in Cav-1 can restore antiviral immune responses, which has implications for the design of drugs against herpes infection.
infection, followed by daily administration until 12 days postinfection (dpi).

In vivo CD11c⁺ DC depletion with diphtheria toxin. A transgene was designed to place a simian diphtheria toxin receptor (DTR) protein under the control of the CD11c promoter, and CD11c-DTR mice were generated (36). CD11c⁺ DCs in CD11c-DTR mice were depleted with diphtheria toxin (DT) (Sigma). DT was prepared in a sterile solution of PBS with 0.5% lactose. Mice were given an i.p. injection of DT at 8 ng/g of body weight at 12 h prior to HSV-1 challenge and every 12 h after until 12 dpi. The efficiency of depletion was detected by flow cytometry.

mRNA expression profiling in infected lung cells. Total RNA was isolated with the total RNA extraction kit. cDNA was synthesized using the reverse transcriptase enzyme (Toyobo). Primers were designed with the primers and reverse primer, forward primer 5'-GCACGCTAGTCCTGAGTATCT-3' for eNOS, forward primer 5'-CAACGCCTACCAAGGACATT-3' and reverse primer 5'-CTCTCTGGCAAGAAAAGCTCTTG-3' for suppressor of cytokine signaling 1 (SOCS-1), forward primer 5'-GTGGTTTGGAGGTTGAGATGATTT-3' and reverse primer 5'-CCTGAGAGTGATGATGATTT-3' for interleukin 10 (IL-10), forward primer 5'-AGAAAGCATGGCGCTCTAAATCCAGG-3' and reverse primer 5'-CTCTGAGACCTGCTCTGACG-3' for IL-1β, forward primer 5'-CACCAAAAGATGTAATCTCAGT-3' and reverse primer 5'-GATCACCACCTCTCCAGCTGCA-3' for IFN-γ, forward primer 5'-AGGCGAGTCGCTTCTTGGAG-3' and reverse primer 5'-GCGTACTTGCTGTGGTT-3' for IL-6, forward primer 5'-GCACGTAGTCTTCGATCACTATC-3' and reverse primer 5'-GCGTTACATGTGTGGCCAGCTG-3' for PD-L1, forward primer 5'-GCCCTGTAGGTGAGGTTGATCT-3' for CD40, forward primer 5'-GCCCGGAAGGGAGGAGG-3' and reverse primer 5'-GCCCGGAAGGGAGGAGG-3' for GAPDH, forward primer 5'-GCCCGGAAGGGAGGAGG-3' and reverse primer 5'-GCCCGGAAGGGAGGAGG-3' for iNOS.

Co-IP assay. A colominprecipitation (Co-IP) experiment was performed to detect the interaction of iNOS with caveolin-1. A Pierce classic magnetic IP and Co-IP kit (Thermo) were used. A total of 2 × 10⁶ DC cells were seeded and infected with HSV-1 at a multiplicity of infection (MOI) of 5. At 24 and 48 h postinfection (hpi), Co-IP analysis was done according to the manufacturer's instructions. In brief, cells were harvested with ice-cold IP lysis/wash buffer. Cell debris was removed by centrifugation at 13,000 × g for 10 min. One milligram of total protein in supernatant was transferred to a new tube, mixed with 5 µg of IP antibody (anti-Cav-1; Abcam), and left overnight at 4°C in a tube roller to form immune complexes. Pierce protein A/G magnetic beads were washed with IP lysis/wash buffer, added to the antigen sample/antibody mixture, and incubated at room temperature for 1 h with mixing. Next, beads were collected with a magnetic stand and washed twice with IP lysis/wash buffer and once with ultrapure water. Complex was eluted from the beads with lane marker sample buffer containing 50 nM dithiothreitol (DTT) as provided in the kit, and then the supernatant was immobiloblotted.

Histopathology. Seven days after HSV-1 challenge, lung, brain, liver, kidney, heart, and spleen samples were collected from each group of mice and fixed in 4% paraformaldehyde. After paraffin embedding, the tissues were cut into 4- to 5-µm-thick sections. Antigen retrieval was accomplished by boiling the slides in 0.01 M citrate buffer (pH 6.0), followed by staining with hematoxylin and eosin (H&E). Immunohistochemistry of HSV-1 antigen in lung and brain sections was performed as previously described (37).

Statistical analysis. The results are presented as the mean ± standard error of the mean (SEM) from at least three independent experiments. Treatment groups were compared by Student's t test and nonparametric analysis of variance (ANOVA). Pairwise differences were analyzed by the two-sided Student’s t test. For multigroup analysis, ANOVA was used. A P value of <0.05 was considered to be statistically significant. For survival curve analysis, a log rank (Mantel-Cox) test was performed, and a P value of <0.05 denoted a statistically significant difference.

RESULTS

Cav-1-deficient mice are more resistant to HSV-1 infection. To investigate the potential role of Cav-1 in the host defense upon infection, we initially infected wild-type (WT) C57BL/6 mice with different doses of HSV-1 (50 µl of 10⁴, 10⁵, and 10⁶ TCID₅₀ of HSV-1) via the i.n. route, and the survival of the animals was monitored. As shown in Fig. 1A, 50% of the mice died after infection with 10⁶ TCID₅₀ of HSV-1, indicating that the LD₅₀ of HSV-1 was 3 × 10⁵ TCID₅₀ in mice with the C57BL/6 background. To assess the role of Cav-1 in resistance to infection, both WT and Cav-1^{-/-} mice were challenged with a lethal dose (10 LD₅₀) of HSV-1, and the survival of the animals was monitored. During the first 8 days after challenge, Cav-1^{-/-} mice had a
higher survival rate than that of WT mice (75% in Cav-1−/− mice versus 0% in WT mice) (Fig. 1B), showing that Cav-1−/− mice are more resistant to HSV-1 infection.

Cav-1 deficiency correlates with reduced viral replication and lung pathology. Because virus replication and the consequent tissue damage are thought to contribute to the mortality of mice during viral infection, the influence of Cav-1 on both viral load and histopathology was investigated. We challenged WT and Cav-1−/− mice with 10 LD50 of HSV-1 via the i.n. route. On day 7 postinfection, we determined histology and viral replication in the lungs, brain, heart, liver, spleen, and kidneys. HSV-1 did not cause obvious tissue damage in most organs examined except the brain and lungs (Fig. 2A). There was no difference between Cav-1+/+ and Cav-1−/− mice in the degree of damage in brain sections, indicating that less brain damage did not account for the greater resistance of the Cav-1−/− mice (Fig. 2A). However, the lungs from Cav-1−/− mice showed much less lung destruction than that of the WT mice, which had substantial cell infiltration edema, thickening of the alveolar wall, and alveolar septum capillary congestion (Fig. 2B). Despite the greater cell infiltration observed in the WT mouse lung sections, no major differences in total BALF cell counts were detectable between the two groups (data not shown). Histopathology scores were significantly lower in Cav-1−/− mice than those in WT mice (average score, 2.6 in Cav-1−/− mice and 3.8 in WT mice; Fig. 2C). When viral load in the organs was assessed by quantitative PCR (qPCR) at day 7 after HSV-1 infection, viral load was correlated with the histochemical results, being barely detected in the liver, spleen, and kidneys (Fig. 2D). The viral load was also remarkably less in Cav-1−/− lung cells and in BALF (101.67-fold lower), whereas no obvious difference in load was seen in the brain at 7 dpi (Fig. 2D). Therefore, combined with results shown in Fig. 1, Cav-1−/− mice may have been more resistant to HSV-1 infection because of enhanced elimination of virus and milder damage in the lungs.

Cav-1 facilitates virus replication in the lungs. Since Cav-1 may act as a gateway for the entry of viruses, such as SV40, we tested whether the milder lung pathology in Cav-1-deficient mice was a result of a lower entry of HSV-1. We analyzed viral load in DNA derived from lung cells at 4 h postinfection. As illustrated in Fig. 3A, a significant difference in the viral load inside the lung cells of Cav-1−/− and WT mice was observed after i.n. infection (P = 0.67).

On the other hand, a notable role of Cav-1 is its involvement in virus replication (29). We therefore tested if Cav-1 influenced HSV-1 replication in the lungs. To address this, mice were challenged with a lower dose of HSV-1 (1 LD50). After 1, 3, and 5 days of infection, the genomic DNA of lung cells and whole lung protein was collected, and we examined viral load by qPCR and HSV-1 protein levels by Western blot. Increases in both viral load and glycoprotein D expression in the lung cells of WT mice were observed at 1 and 3 dpi compared to those in Cav-1−/− mice (Fig. 3B and C). The increased viral load in Cav-1 KO mice was not statistically significant from that of WT mice at day 3 p.i. Viruses were also cleared in both groups by 5 dpi, probably because C57BL/6 mice are resistant to low doses of viral infection. In addition, the viruses isolated from the challenged mice were quantified by measuring the TCID50 in Vero cells. Figure 3D shows that Cav-1 expression drastically increased the viral load in the lungs (5.33 ± 0.44 log10 TCID50 in WT versus 3.27 ± 0.501 log10 TCID50 in Cav-1−/−) but not in the brain at 7 dpi. Histochemical analysis of the expression of HSV-1 proteins showed a similar trend (Fig. 3E and F), further suggesting that Cav-1 facilitates virus replication. These results indicate that the greater resistance of Cav-1−/− lungs to HSV-1 infection was associated with inhibition of virus replication.

The effect of Cav-1 deficiency is dendritic cell dependent. The lung is one of the organs most affected by acute HSV-1 infection. DCs, macrophages, and epithelial cells of the lung have been reported to play critical roles in viral infection (38, 39). Therefore, we next examined these cellular populations, which might have been responsible for the increased resistance of Cav-1−/− mice. Both WT and Cav-1−/− mice were challenged with 10 LD50 of HSV-1. The viral loads in isolated DCs, macrophages, and epithelial cells were determined at 3 dpi. No difference in viral load was observed in macrophages and epithelial cells between the Cav-1−/− and WT groups. However, DCs from Cav-1−/− mice showed a significantly lower viral load than that of the WT DCs (Fig. 4A). To further assess this, CD11c+ DCs were isolated from WT and Cav-1−/− mice and infected at an MOI of 5 for 24 h and 48 h in vitro. Viral load was substantially reduced in Cav-1−/− DCs compared to that in WT DCs (Fig. 4B), suggesting that DCs played a role against HSV-1 infection, but the role was limited by the Cav-1 protein. In addition, there was little difference between WT and Cav-1−/− mice in the number of DCs recruited to the lungs (data not shown), indicating Cav-1 does not influence DC migration to the lungs. To further elucidate the function of Cav-1 expressed by lung DCs during HSV-1 infection, a Cav-1 knockdown DC2.4 cell line (Cav-1sh DCs) and a Cav-1 overexpression DC cell line (Cav-
1 over DCs) were constructed. The differential expression of Cav-1 in these cell lines was confirmed by Western blot (Fig. 4C). The genetically modified DCs were infected with HSV-1 at an MOI of 5 for 2 h in vitro and then treated with mitomycin C at 50 μg/ml for 20 min at 37°C to prevent uncontrolled proliferation. A total of 2 × 10^6 cells in 50 μl of DMEM were adoptively transferred into the lungs of WT or Cav-1^-/- recipients by i.t. injection. Twelve hours later, mice were i.n. infected with 10 LD_{50} of HSV-1, and

![Figure 2](http://cvi.asm.org)
survival was monitored as outlined in Fig. 4D. The WT mice that received Cav-1kd DCs had a significantly increased survival of 33% at 8 dpi, whereas WT mice that received Cav-1over DCs were all dead at 4 dpi (Fig. 4E). As HSV-1 infection might lead to body weight loss and Cav-1−/− mice are resistant to a lethal dose of HSV-1 infection, weight loss in Cav-1−/− mice was monitored and the function of Cav-1kd DCs evaluated during HSV-1 infection. Infected Cav-1−/− mice that received Cav-1kd DCs also showed growth and body weight gains similar to those of noninfected Cav-1−/− mice (Fig. 4F). In contrast, transfer of the Cav-1over DCs into infected Cav-1−/− mice was accompanied by substantial weight loss (about 2.8 g decrease by day 11; Fig. 4F).

To further investigate the critical role of endogenous DCs during HSV-1 infection, mice lacking both Cav-1 and DCs (CD11c-DTR/Cav-1−/− [double knockout (DKO) mice]) were generated; the WT, CD11c-DTR, Cav-1−/−, and DKO mice were challenged with 10 LD50 of HSV-1, and then the CD11c+ DC population was transiently depleted by DT injection. The survival of these mice was monitored over 12 days. Although the depletion efficiency of CD11c+ DCs is different in various organs, DT depletion shows a systemic depletion effect (40). The efficiency of depletion of CD11c+ DCs was assessed by flow cytometry at 24 h after injection. The CD11c+ DC population was successfully reduced to 0.014% by DT treatment (Fig. 4G). As shown in Fig. 4H, the survival rate was significantly impaired in DC-depleted DKO mice (0% at 6 dpi) relative to Cav-1 single-deficient mice (75% at 6 dpi), and mortality rates returned to a level comparable to that of infected CD11c-DTR mice. Our data demonstrate that DCs are capable of, and essential for, immune defense against HSV-1 infection, but their antiviral function is downregulated by HSV-1 via Cav-1.

Cav-1 suppresses NO production by DCs during HSV-1 infection. Since DCs lacking Cav-1 might confer resistance to HSV-1 infection, we next explored which cytokines or other mediators were involved. The levels of IL-6 and tumor necrosis factor alpha (TNF-α) in BALF were tested at days 0 and 4 postinfection. However, HSV-1 stimulated similar production of IL-6 and TNF-α in both WT and Cav-1−/− mice at 4 dpi (Fig. 5A). When the mRNA levels of antiviral cytokines and signaling molecules (IFN-β, IL-1β, IL-10, CD40, COX-2, PD-L1, ERK1, eNOS, and SOCS-1) in HSV-1-infected lung cells were measured at 1 and 3 dpi, no significant changes were observed, except for iNOS (Fig. 5B and C). iNOS, as an antiviral factor, is potently induced in virus-infected cells. We found that the mRNA level of iNOS was significantly augmented in Cav-1−/− lung cells but slowed in WT lung cells at 1 dpi (P = 0.0015) and 3 dpi (P = 0.0168), as depicted in Fig. 5C. Consistent with this, the iNOS mRNA level was also more strongly increased in vitro in freshly purified Cav-1−/− DCs than in WT DCs at 12, 24, and 36 hpi (Fig. 5D). Furthermore, as shown in Fig. 5E, Cav-1kd DCs had a much greater abundance of
FIG 4 Cav-1−/−-enhanced survival is DC dependent. (A) Viral load in DCs, macrophages (Mφ), and epithelial cells from HSV-1-infected WT and Cav-1−/− mice. Mice were challenged with 10 LD₅₀ HSV-1, cells were collected from the lungs at 3 dpi, genomic DNA was extracted, and the viral load was assessed by qPCR. (B) Viral load in DCs that were infected in vitro. DCs were isolated from WT and Cav-1−/− mice with the CD11c MicroBeads kit, infected with HSV-1 at an MOI of 5, and the total DNA was extracted at 24 hpi and 48 hpi for qPCR. (C) Cav-1 protein expression levels in recombinant DC2.4 cell lines. Cav-1 knockdown (Cav-1kd) and Cav-1 overexpression (Cav-1over) DC2.4 cell lines were constructed. Thirty micrograms of whole-cell extract was subjected to electrophoresis on an SDS-PAGE gel, transferred to a PVDF membrane, and the Cav-1 protein was assessed by Western blotting, with β-actin as control. (D) Outline protocol of i.t. adoptive transfer of Cav-1kd DCs and Cav-1over DCs. (E and F) Effect of caveolin-1 on resistance of mice to challenge with 10 LD₅₀ of HSV-1. (E) Survival curves. Survival was enhanced in caveolin-1 KO mice and in mice receiving i.t. DC2.4 in which caveolin-1 expression was reduced (Cav-1kd). Survival was decreased in mice receiving DC2.4 overexpressing caveolin-1 (Cav-1over). The reference mice received i.t. DMEM. n = 6 mice per group. (F) Body weight change curves. Weight was determined daily after a lethal dose of HSV-1 in Cav-1−/− mice and in mice receiving i.t. DC2.4 in which caveolin-1 expression was reduced (Cav-1kd). Survival was decreased in mice receiving DC2.4 overexpressing caveolin-1 (Cav-1over). The reference mice received i.t. DMEM. n = 6 mice per group. (G) Efficiency of DC depletion by DT in CD11c-DTR mice. DT was injected i.p. in 8-ng/g doses at 12-h intervals. Peripheral blood mononuclear cells (PBMC) were collected at 24 hpi and stained with CD11c-PercP-Cy5.5. Next, flow cytometry was performed to detect the percentage of DCs. (H) Resistance of Cav-1−/− mice after DC depletion. WT, CD11c-DTR, Cav-1−/−, and DKO mice were pretreated with DT and i.n. challenged with 10 LD₅₀ of HSV-1. n = 6. DT injections were performed at 12-h intervals during infection. **, Cav-1−/− versus DKO. The results are presented as the mean ± SEM from three independent experiments. For survival curve analysis, a log rank (Mantel-Cox) test was performed. Nonsignificant (ns), P > 0.05; *, P < 0.05; **, P < 0.01.
iNOS protein than did WT DCs at 24, 48, and 72 hpi in vitro, and at 48 hpi, the release of NO from Cav-1−/− DCs was 1.56-fold greater than that from the WT cells (Fig. 5F). The dynamics of NO release were associated with the change in expression of Cav-1. The DCs with silenced Cav-1 exhibited a peak production of NO at 30 M at 24 hpi, whereas the WT counterpart peak was at 16.7 M, and the peak for Cav-1-overexpressed DCs was at 8.6 M (Fig. 5G), indicating that the degree of NO release was strongly associated with the level of Cav-1 expression. To further confirm the retardation of the expression of NO by Cav-1, the NO levels in serum and BALF were analyzed. In agreement with the results in vitro, there was significantly less NO at 0.5, 1, and 4 dpi in the serum and in BALF of WT mice than that in the Cav-1−/− counterparts (Fig. 5H). Furthermore, as Cav-1 regulated the production of NO during HSV-1 infection, the penetration of virus entry in Cav-1-deficient DCs needs to be evaluated. The results showed that the virus entry into DCs was not significantly changed in Cav-1 knockdown DCs at an MOI of 0.5, 1, and 5 (data not shown).
HSV-1 infection (17), lower production of NO might account for

Furthermore, branes (Fig. 7A). In addition, HSV-1-induced iNOS was ob-
colocalized with Cav-1 in caveolae, the cytoplasm, and mem-
brane microscopy showed that 2 h after infection of DCs, HSV-1
investigated the subcellular localization of these proteins. Confo-
microscopy showed that 2 h after infection of DCs, HSV-1
investigated the subcellular localization of these proteins. Confo-
microscopy showed that 2 h after infection of DCs, HSV-1
investigated the subcellular localization of these proteins. Confo-

cocal localization of HSV-1 with Cav-1 and iNOS in caveolae.
Since Cav-1 modulated iNOS activity in HSV-1-infected DCs, we
imaging indicated that there might be protein-protein interactions between Cav-1 and iNOS in the caveolae and that this interaction increases as infection pro-

DISCUSSION
Since Cav-1 modulates HSV-1 replication in infected cells, it appears to be an important component of cell defense. However, the
molecular cross talk that mediates the effect of Cav-1 on antiviral activity is largely unknown. In this study, we uncovered a novel
mechanism exploited by HSV-1, using Cav-1 to disarm the produc-
tion by DCs of the antiviral factor NO. We showed that defi-
ciciency of Cav-1 protected mice from fatal HSV-1 infection, result-
ing in much milder lung morphological changes and a lower level of viral load. The resistance of Cav-1−/− mice against virus infec-
tion was DC dependent. Mechanistic studies demonstrated that the functions of Cav-1 include negatively regulating the produc-
tion of iNOS and NO in DCs. Depletion of CD11c+ DCs in Cav-
−/− mice or iNOS inhibition by SMT significantly impaired the
production of NO and diminished the resistance conferred by the
virus infection in the lung. We demonstrated for the first time that Cav-1 expression colocalized with iNOS and sequestered together with virus in caveolae in HSV-1-infected DCs. Therefore, this study identified a previously unrecognized role of Cav-1 during HSV-1 infection in the lungs. We demonstrated for the first time that Cav-1 facilitates HSV-1 infection and leads to lung injury and mortality by retard-
ation of the NO response in the lung DCs.
Although caveolae are best known as an important regulatory element for lipid metabolism, recent studies suggested that cave-
olae, and particularly the Cav-1 structural protein, can be involved in the internalization of pathogens, signal transduction, and host defenses (19, 26). Indeed, previous studies have demonstrated that Cav-1 facilitates H1N1 and HBV virus replication in cell cul-

FIG 6 Decreased NO and increased mortality in SMT-treated Cav-1−/− mice. Mice were challenged by 10 LD50 of HSV-1 i.n. and given daily i.p. injections of
the iNOS inhibitor (50 mg/kg), as described in Materials and Methods. (A) Serum levels of NO in the SMT-treated and nontreated Cav-1−/− mice. (B) Histopathology in lung sections stained with H&E stain. The scale bar is 100 μm. (C) Percentage of survival. *, P < 0.05 between SMT-treated and nontreated Cav-1−/− groups. n = 6. (D) Survival of iNOS KO mice and WT mice after i.n. challenge with 10 LD50 of HSV-1. The mice were observed daily. The data are representative of two independent experiments. *, P < 0.05.
ture (29, 30), and Cav-1 was found to regulate cytokine expression in macrophages via the p38/mitogen-activated protein kinase (MAPK) pathway (41). However, the role of Cav-1 in herpesvirus infection is largely unclear. To investigate this, we first established an i.n. HSV-1 challenge system in C57BL/6 WT and Cav-1 \(/\text{H}11002\) mice and found that the induction of significant mortality caused by i.n. infection required a dose of 9.47 log_{10} TCID_{50} of HSV-1 in WT mice (Fig. 1A), although only 8.47 log_{10} TCID_{50} was required by intraperitoneal (i.p.) challenge (data not shown). WT animals that were heavily challenged i.n. with 10 LD_{50} of HSV-1 all died, while Cav-1 \(-/-\) mice exhibited 75% protection (Fig. 1B), revealing that Cav-1 played a suppressive role in host immunity during HSV-1 infection via the i.n. route.

HSV-1 spreads to the brain, lungs, liver, spleen, and other tissues after i.n. infection, causing encephalitis, pneumonia, hepatitis, and keratitis (42). Although it mainly infects the nervous system and induces encephalitis in mice, HSV-1-induced pneumonia is common in immunocompromised patients, newborns, healthy persons, and mice (5, 7). Accordingly, when we used a high titer of HSV-1 (10 LD_{50}) to infect mice via the i.n. route, this resulted in severe disease in the lungs, with edema formation and alveolar septum capillary congestion. In contrast, in Cav-1 \(-/-\) mice, there was remarkably less pneumonitis induced by the HSV-1 infection, consistent with their increased survival (Fig. 2B and C). Previous studies noted that both imbalanced host immune responses and viral pathogenic factors are critical for virus-induced pneumonia (4, 43). In agreement with evidence that Cav-1 might facilitate virus replication (29), we observed that the expression of Cav-1 significantly elevated HSV-1 titers in lung cells and BALF. Interestingly, although the i.n. infection by HSV-1 also induced encephalitis in the brain, there were no significant differences between the Cav-1 \(-/-\) and WT mice in either degree of pathology (Fig. 2A) or viral load (Fig. 3D to F). The different effect of Cav-1 on organs (brain versus lungs) might due to the extremely high dose of HSV-1 and the route of infection (intranasal injection). The different expression of Cav-1 in epithelial cells of HSV-1-infected DCs (A) Localization of HSV-1 in caveolae. DC2.4 cells were infected at an MOI of 50 and stained at 2 hpi with goat anti-HSV-1 and rabbit anti-Cav-1 antibodies. Confocal microscopy was performed after secondary goat-anti-rabbit IgG-FITC and bovine anti-goat-PE. Bar, 5 mm. (B) Coimmunoprecipitation (Co-IP) of Cav-1 with iNOS. DCs were infected with HSV-1 at an MOI of 5 and lysed at different times with IP/wash lysis buffer. The lysate contents of iNOS, Cav-1, and GAPDH proteins were determined by Western blot analysis with specific Abs. Input, lysate before immunoprecipitation; IB, immunoblot; IP-Cav-1 Ab, immunoprecipitate; rabbit IgG, negative control. Similar results were obtained in two additional independent experiments.
lungs and brain cells may also contribute to the differences, and this needs to be investigated further. We concluded that the lungs were selectively susceptible after i.n. infection and that the pathology and viral load were enhanced by Cav-1 availability. The HSV-1 infection-induced pneumonitis in WT C57BL/6 mice was therefore adopted as a model system to further define the role of Cav-1.

Although the mechanisms and types of cells mediating resistance against HSV-1 infection in lungs are ill defined, published studies suggest that certain cell subsets of the innate immune system may be involved in controlling virus replication (44, 45). DCs, macrophages, and epithelial cells form the first line of host defense in lungs against invading pathogens, like HSV-1, lymphocytic choriomeningitis virus (LCMV), and influenza A (43, 46–48). In the case of RSV-induced pneumonia, adoptive transfer of DCs contributed to a reduction of RSV and Sindbis virus titers, with limited virus replication and airway hyperresponsiveness (49, 50). Previous studies of HSV-1 infection showed that an ablation of CD11c+ DCs in vivo increased susceptibility to infection (47), but the role that DCs play during HSV-1 infection required clarification. Our results shown in Fig. 4A and B clearly show that the absence of Cav-1 significantly suppressed infection in lung DCs but not in lung macrophages or epithelial cells. Studies showed iCD8+ DCs isolated from Mycobacterium bovis BCG-infected mice were adoptively transferred to mice and both enhanced bacterial clearance and reduced pathological reactions following challenge. But the noninfected CD8 DC control and PBS sham treatment exhibited no improvement in bacterial load in the lungs (51). In addition, DC pretreatment is able to initiate T-cell immune responses against malaria and viruses in mice (52, 53). In the experiment outlined in the Fig. 4, DCs were preinfected with HSV-1 before adoptive transfer. The importance of the DCs was further supported by our adoptive transfer experiments; as WT mice that received the Cav-1KO DCs showed better survival at 8 dpi (33%) than that of mice that received Cav-1+ DCs (0% survival at 4 dpi; Fig. 4E). Mitomycin C was applied to avoid unlimited DC2,4 cell proliferation before the transfer (54). Previous studies showed that mitomycin C treatment blocked cellular DNA integration but did not affect Visna virus and SV40 replication (55, 56). In addition, the extent of T-cell stimulation by mitomycin C-treated DCs is dose dependent, indicating that the function of mitomycin C is diverse and needs to be studied in the future (57). The depletion of DCs in Cav-1−/− mice also abolished the protective effect that was conferred by the absence of Cav-1 (Fig. 4H). Our findings indicated that HSV-1 exploits Cav-1 to disarm the antiviral effects of DCs in lungs.

In the innate immune system, are equipped with antiviral molecules for the clearance of invading pathogens. Proinflammatory and inflammatory cytokines are key regulators of the innate cellular defense against viral infections and might be the determining factors against respiratory infections, including HSV-1, H1N1, and respiratory syncytial virus (RSV) (58–60). NO is a reactive free radical molecule that modulates cytokine expression, and it is beneficial to the host defense against virus infections (61). For example, cells with iNOS inhibited by 1-NG-monomethyl arginine (1-NMMA) failed to restrict Japanese encephalitis virus (JEV) replication (62), and IFN-γ-induced iNOS and NO production inhibited the replication of vaccinia virus (VV) and HSV-1 (17, 63). Our observations implicating NO in resistance to HIV-1 are consistent with this. We observed that the deficiency of Cav-1 markedly enhanced iNOS and NO production in BALF and in DCs during HSV-1 infection (Fig. 5). In addition, lower levels of NO were observed in infected DC-depleted mice (data not shown) and in the serum from SMT-treated Cav-1−/− mice (Fig. 6A) than those in Cav-1+/− mice and are associated with higher mortality. Thus, consistent with a general antiviral role for iNOS, NO from lung DCs appears to be the key to resistance to HSV-1 infection. Furthermore, the connection between Cav-1 and iNOS has been documented in cells responding to LPS stimulation and in a tumorigenesis model (32, 34). Based on these observations, we hypothesized that HSV-1 disarms DCs by using Cav-1 to reduce iNOS production of NO.

Although IL-6 and TNF-α have been reported to play critical roles in immunity against HSV-1 (64), in this study, the deficiency in Cav-1 resulted in only slightly upregulated the expression of IL-6 and TNF-α in BALF, and this was not statistically significant (Fig. 5A). On the other hand, we did observe that Cav-1 upregulated transforming growth factor beta 1 (TGF-β1) expression in total lung cells (data not shown). Because TGF-β1 is a suppressive factor during immune responses, it may repress the expression of iNOS or other antiviral molecules and thereby contribute to virus replication (65). Whether Cav-1 regulation of TGF-β1, IL-6, or TNF-α is involved in resistance to HSV-1 infection in lungs needs further study.

We propose that HSV-1-induced NO production was suppressed through iNOS sequestration in caveolae. Our observations that Cav-1 both suppressed iNOS expression and colocalized with iNOS and HSV-1 in infected DC cells (Fig. 7B and C) is consistent with recent reports: in an LPS-induced sepsis model, Cav-1 downregulated LPS-induced iNOS and NO production, resulting in aggravated lung edema formation (34, 41); in a human colon carcinoma model, Cav-1 was found to cofractionate with iNOS and detain iNOS protein in caveolae, leading to iNOS proteolysis (32). Since there is also evidence that SV40 uses caveolae as a gateway to mediate viral entry and avoid host antiviral responses (27, 66), it appears that HSV-1 may use such a gateway to cause sequestration and the consequent inactivation of iNOS in the caveolae of lung DCs.

In sum, in this study, we demonstrate that Cav-1 plays a key role in susceptibility to HSV-1 infection, with higher viral load and aggravated lung pathology occurring in its presence; a lack of Cav-1 reversed this susceptibility and provided stronger protection against HSV-1 infection. Notably, NO and DCs were found to be critically important to the host defense against HSV-1 infection in Cav-1−/− mice. Thus, this study provides a new insight into a novel immunity evasion mechanism of HSV-1 and might indicate a valuable approach to controlling herpesvirus infection.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation of China (31430027 and 30930068), MOST national 863 project of China (2012AA02A407), and the National Science and Technology Major Program of Infectious Diseases (2013ZX10002001) to Bin Wang.

We thank Jane Q. L. Yu, Zhonghuai He, and Xianghua Shi for their assistance in this work.

REFERENCES

1. Qiu X, Zhong M, Xiang Y, Qu C, Pei Y, Zhang Y, Yang C, Gasteiger J, Xu J, Liu Z, Wang Y. 2013. Self-organizing maps for the classification of gallic acylate polyphenols as HSV-1 inhibitors. Med Chem 10:388–401.
nary infections. Mucosal Immunol 6:464–473. http://dx.doi.org/10.1038/mi.2013.14.

39. Othumpangat S, Noti JD, Beezhold DH. 2014. Lung epithelial cells resist influenza A infection by inducing the expression of cytochrome c oxidase VIc which is modulated by miRNA 4276. Virology 468:470–476.

40. Hochweller K, Striegl J, Hammerling GJ, Garbi N. 2008. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol 38:2776–2783. http://dx.doi.org/10.1002/eji.200838659.

41. Wang XM, Kim HP, Song R, Choi AM. 2006. Caveolin-1 confers anti-inflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am J Respir Cell Mol Biol 34:434–442. http://dx.doi.org/10.1165/rcmb.2005-0376OC.

42. Caspary L, Schindling B, Dundarov S, Falke D. 1980. Infections of susceptible and resistant mouse strains with herpes simplex virus type 1 and 2. Arch Virol 65:219–227. http://dx.doi.org/10.1007/BF01314538.

43. Wu Y, Mao H, Ling MT, Chow KH, Ho PL, Tu W, Lau YL. 2011. Successive influenza virus infection and Streptococcus pneumoniae stimulation alter human dendritic cell function. BMC Infect Dis 11:201. http://dx.doi.org/10.1186/1471-2334-11-201.

44. Marques CP, Cheeran MC, Palmquist JM, Hu S, Lokensgard JR. 2008. Microglia are the major cellular source of inducible nitric oxide synthase during experimental herpes encephalitis. J Neurovirology 14:229–238. http://dx.doi.org/10.1080/13550280802093927.

45. Paludan SR, Malmgaard L, Ellermann-Eriksen S, Bosca L, Mogensen SC. 2001. Interferon (IFN)-gamma and herpes simplex virus/tumor necrosis factor-alpha synergistically induce nitric oxide synthase 2 in macrophages through cooperative action of nuclear factor-kappa B and IFN regulatory factor-1. Eur Cytokine Network 12:297–308.

46. Welch MJ, Teijaro JR, Lewicki HA, Colonna M, Oldstone MB. 2012. CD8+ T cell defect of TNF-alpha and IL-2 in DNAM-1 deficient mice delays clearance in vivo of a persistent virus infection. Virology 429:163–170. http://dx.doi.org/10.1016/j.virol.2012.04.006.

47. Allen SJ, Mott KR, Chentoufi AA, BenMohamed L, Wechsler SL, Ballantyne CM, Ghiassi H. 2011. CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection. J Virol 85:9945–9955. http://dx.doi.org/10.1128/JVI.05208-11.

48. Unkel B, Hoengner K, Clausen BE, Lewe-Schlosser P, Bodner J, Gattenloehner S, Janssen H, Seeger W, Lohmeyer J, Herold S. 2012. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J Clin Invest 122:3652–3664. http://dx.doi.org/10.1172/JCI62139.

49. Wang H, Peters N, Schwarz JM. 2006. Plasmacytoid dendritic cells limit viral replication, pulmonary inflammation, and airway hyperresponsiveness in respiratory syncytial virus infection. J Immunol 177:6263–6270. http://dx.doi.org/10.4049/jimmunol.177.9.6263.

50. Ryman KD, Klimstra WB, Nguyen KB, Biron CA, Johnston RE. 2000. Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J Virol 74:3366–3378. http://dx.doi.org/10.1128/JVI.74.10.3366-3378.2000.

51. Gao X, Wang S, Fan Y, Bai H, Yang J, Yang X. 2010. CD8+ T cell, but not CD8+ DC, isolated from BCG-infected mice reduces pathological reactions induced by mycobacterial challenge infection. PLoS One 5:e9281. http://dx.doi.org/10.1371/journal.pone.0009281.

52. Bruña-Romero O, Rodriguez A. 2001. Dendritic cells can initiate protective immune responses against malaria. Infect Immun 69:5173–5176. http://dx.doi.org/10.1128/IAI.69.8.5173-5176.2001.

53. Hou WQ, So EY, Kim BS. 2007. Role of dendritic cells in differential susceptibility to viral demyelinating disease. PLoS Pathog 3:1036–1050.

54. Tomasz M. 1995. Mitomycin C; small, fast and deadly (but very selective). Chem Biol 2:575–579.

55. Trowbridge RS, Lehmann J, Torchio C, Brophy P. 1980. Visna virus synthesized in absence of host-cell division and DNA synthesis. Microbios 29:71–80.

56. Sarasin A, Benoit A. 1986. Enhanced mutagenesis of UV-irradiated simian virus 40 occurs in mitomycin C-treated host cells only at a low multiplicity of infection. Mol Cell Biol 6:1102–1107.

57. Terness P, Oeltt T, Ehser S, Chuang JJ, Lahdou I, Kleist C, Velten F, Hammerling GJ, Arnold B, Opelz G. 2008. Mitomycin C-treated dendritic cells inactivate autoreactive T cells: toward the development of a tolerogenic vaccine in autoimmune diseases. Proc Natl Acad Sci USA 105:18442–18447. http://dx.doi.org/10.1073/pnas.0807185105.

58. Bendelka K, Vojvodova V, Abezle N, Cepin-Bogovic J, Gagro A, Mlinaric-Galinovic G, Rabatic S. 2010. Decreased Toll-like receptor 8 expression and lower TNF-alpha synthesis in infants with acute RSV infection. Respir Res 11:143. http://dx.doi.org/10.1186/1465-9921-11-143.

59. Franca IL, Ribeiro AC, Akawa NE, Saad CG, Moraes JC, Goldstein-Schainberg C, Laurindo IM, Precioso AR, Ishida MA, Sartori AM, Silva CA, Bonfa E. 2012. TNF blockers show distinct patterns of immune response to the pandemic influenza A H1N1 vaccine in inflammatory arthritis patients. Rheumatology (Oxford) 51:2091–2098. http://dx.doi.org/10.1093/rheumatology/kes202.

60. Hayashi K, Hooper LC, Chin MS, Nagineni CN, Detrick B, Hoeks J. 2006. Herpes simplex virus 1 (HSV-1) DNA and immune complex (HSV-1-human IgG) elicit vigorous interleukin 6 release from infected corneal cells via Toll-like receptors. J Gen Virol 87:2161–2169. http://dx.doi.org/10.1099/vir.0.81772-0.

61. Miles DH, Thakur A, Cole N, Willcox MD. 2007. The induction and suppression of the apoptotic response of HSV-1 in human corneal epithelial cells. Invest Ophthalmol Vis Sci 48:789–796. http://dx.doi.org/10.1167/iovs.06-0609.

62. Lin YL, Huang YL, Ma SH, Yeh CT, Chiou SY, Chen LD, Liao CL. 1997. Inhibition of Japanese encephalitis virus infection by nitric oxide: antiviral effect of nitric oxide on RNA virus replication. J Virol 71:5227–5235.

63. Harris N, Buller RM, Karupiah G. 1995. Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication. J Virol 69:910–915.

64. Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. 2008. Effect of IL-6 deficiency on susceptibility to HSV-1 respiratory infection and intrinsic macrophage antiviral resistance. J Interferon Cytokine Res 28:589–595. http://dx.doi.org/10.1089/jir.2007.0103.

65. Thomas BJ, Lindsay M, Dagher H, Freezer NJ, Li D, Ghildyal R, Bardin PG. 2009. Transforming growth factor-beta enhances rhinovirus infection by diminishing early innate responses. Am J Respir Cell Mol Biol 41:339–347. http://dx.doi.org/10.1165/rcmb.2008-0316OC.

66. Engel S, Heger T, Mancini R, Herzog F, Kartenbeck J, Hayer A, Helenius A. 2011. Role of endosomes in simian virus 40 entry and infection. J Virol 85:4198–4211. http://dx.doi.org/10.1128/JVI.02179-10.