Высокая остаточная агрегационная активность тромбоцитов у пациентов с ишемической болезнью сердца: новый методический подход к выявлению

Трубачева О.А.1, Суслова Т.Е.1, Гусакова А.М.1, Кологривова И.В.1, Шнайдер О.Л.1, Завадовский К.В.1, Петрова И.В.2

1 Научно-исследовательский институт (НИИ) кардиологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук
Россия, 634012, г. Томск, ул. Киевская, 111а
2 Сибирский государственный медицинский университет (СибГМУ)
Россия, 634050, г. Томск, Московский тракт, 2

РЕЗЮМЕ

Цель – разработать новый методический подход к оценке коллаген-индукцированной агрегации тромбоцитов у пациентов с ишемической болезнью сердца (ИБС) и определить информативность методик выявления высокой остаточной реактивности тромбоцитов для прогнозирования риска нарушения миокардиальной перфузии.

Материалы и методы. Обследованы 36 пациентов (10 мужчин и 26 женщин) в возрасте 41–83 лет со стабильной формой ИБС, находящихся на непрерывной антиагрегационной терапии в течение 6 мес. Оценку агрегации тромбоцитов проводили на лазерном анализаторе с индуктором агрегации коллагеном по стандартной методике 1 и по собственной запатентованной методике – методике 2. Оценивали степень агрегации тромбоцитов (%) и размер агрегатов (отн. ед.) в суспензии тромбоцитов. Перфузионную сцинтиграфию миокарда с 99mTc-метокси-изобутилизонитрилом выполняли по двухдневному протоколу «нагрузка – покой». Для анализа использовали значения SSS, при SSS < 4 делали вывод о нормальной миокардиальной перфузии.

Результаты. Степень агрегации тромбоцитов по методике 1 составила 12 (5; 64)%, размер агрегата – 3 (2; 7) отн. ед. Степень агрегации тромбоцитов по методике 2 составила 44 (13; 78)%, а размер агрегата – 5 (4; 8) отн. ед. Методика 2 позволила диагностировать наличие нарушений миокардиальной перфузии при степени агрегации ≥44,9% с чувствительностью 84% и специфичностью 92% (AUC = 0,89; p < 0,0001; отношение шансов (ОШ) 2,18; 95%-й доверительный интервал (ДИ) 0,57–0,98) и увеличение размеров агрегатов ≥4,80 отн. ед. с чувствительностью 84% и специфичностью 84% (AUC = 0,95; p < 0,00001; ОШ 5,83; 95%-й ДИ 0,72–0,99).

Заключение. У пациентов с ишемической болезнью сердца выявление высоких показателей коллаген-индукцированной агрегации тромбоцитов с помощью запатентованной методики ассоциируется с риском нарушения миокардиальной перфузии. Разработанный новый методический подход по выявлению высокой остаточной реактивности тромбоцитов позволил определить наличие высокого риска развития атеротромботических осложнений у 22% обследованных пациентов.

Ключевые слова: агрегация, тромбоцит, коллаген, ишемическая болезнь сердца, остаточная реактивность.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Исследование выполнено в рамках фундаментальной темы НИИ кардиологии (№ AAAA-A15-115123110026-3).

Трубачева Оксана Александровна, e-mail: otrubacheva@inbox.ru
ABSTRACT

Aim. To develop a new methodological approach to assessment of collagen-induced platelet aggregation in patients with coronary artery disease (CAD) and to determine the quality of various methods for detecting high residual platelet reactivity (HRPR) to predict the risk of myocardial perfusion disturbance.

Materials and methods. 36 patients (10 men and 26 women) aged 41–83 years and having stable CAD were examined. All patients had been undergoing continuous antiaggregation therapy for 6 months. We evaluated platelet aggregation using a laser analyzer with collagen as an aggregation inducer by the standard method and our own patented method. The degree of platelet aggregation (%) and the size of aggregates in relative units (r.u.) in platelet-rich plasma were estimated. Myocardial perfusion scintigraphy with 99mTc-methoxy-isobutylisonitrile was performed according to a two-day stress-rest protocol. The summed stress score (SSS) values were used for analysis. SSS < 4 was regarded as normal myocardial perfusion.

Results. The degree of platelet aggregation according to method 1 was 12 (5; 64)%, the aggregate size was 3 (2; 7) r.u. The degree of platelet aggregation according to method 2 was 44 (13; 78)%, and the aggregate size was 5 (4; 8) r.u. Method 2 allowed to diagnose the presence of myocardial ischemia with an aggregation degree ≥ 44.9% with sensitivity of 84% and specificity of 92% (area under the curve (AUC) = 0.89; p < 0.0001; odds ratio (OR) 2.18; 95% confidence interval (CI) 0.57–0.98) and an increase in aggregate size ≥ 4.80 r.u. with sensitivity of 84% and specificity of 84% (AUC = 0.95; p < 0.0001; OR 5.83; 95% CI 0.72–0.99).

Conclusion. In patients with CAD, detection of high rates of collagen-induced platelet aggregation using the patented technique is associated with the risk of impaired myocardial perfusion. The developed new methodological approach to detection of HRPR allowed to determine high risk of atherothrombotic complications in additional 22% of the examined patients.

Key words: aggregation, platelet, collagen, coronary artery disease, residual reactivity.

Conflict of interest. The authors declare the absence of obvious or potential conflict of interest related to the publication of this article.

Source of financing. The study was performed within the fundamental theme of the Cardiology Research Institute (No. AAAA-A15-115123110026-3).

Conformity with the principles of ethics. Each patient signed an informed consent to participate in the study. The study was approved by the Ethics Committee at Cardiology Research Institute, Tomsk NRMC (Protocol No. 139 of 18.11.2015).

For citation: Trubacheva O.A., Suslova T.E., Gusakova A.M., Kologrivova I.V., Schneider O.L., Zavadovsky K.V., Petrova I.V. High residual platelet aggregation in patients with coronary artery disease: a new methodological approach to detection. Bulletin of Siberian Medicine. 2021; 20 (2): 113–119. https://doi.org/10.20538/1682-0363-2021-2-113-119.
ВВЕДЕНИЕ

Ишемическая болезнь сердца (ИБС) остается наиболее распространенным заболеванием сердечно-сосудистой системы, сопровождающимся высоким риском сосудистых событий и смерти. Высокая остаточная реактивность тромбоцитов (ВОРТ) у пациентов ассоциируется с развитием ишемических осложнений, что доказано в многочисленных исследованиях и данных метаанализа [1, 2]. Но в повседневной практике врача-кардиолога оценка функции тромбоцитов не проводится в связи со слабой доказательной базой. Мониторирование агрегации тромбоцитов целесообразно использовать лишь в определенных клинических ситуациях (класс рекомендаций IIb) [1, 2]. Однако чувствительности используемых в настоящее время методик оценки остаточной агрегации тромбоцитов часто оказывается недостаточно.

В настоящей работе наряду со стандартным обследованием пациентов с ИБС выполнена оценка показателей тромбоцитарной агрегации и проведена оценка их взаимосвязи с нарушением миокардиальной перфузии по данным перфузионной сцинтиграфии миокарда. Знания в данной области исследований актуальны как для клинической и фундаментальной медицины, так и для разработки новых методов диагностики.

Цель – разработать новый методический подход к оценке коллаген-индукцированной агрегации тромбоцитов у пациентов с ишемической болезнью сердца и определить информативность различных методик выявления высокой остаточной реактивности тромбоцитов для прогнозирования риска нарушения миокардиальной перфузии.

МАТЕРИАЛЫ И МЕТОДЫ

Проведено поперечное (одномоментное) исследование. Набор пациентов проводился на базе Научно-исследовательского института кардиологии в соответствии с принципами Хельсинской декларации. Обследованы 36 пациентов (10 мужчин и 26 женщин) в возрасте 41–83 лет со стабильной формой ИБС, находящихся на непрерывной антиагрегационной терапии в течение 6 мес. Все обследованные пациенты получали регулярную комбинированную базисную терапию в соответствии с современными рекомендациями для лечения ИБС. Всем пациентам в соответствии с рекомендациями по диагностике и лечению ИБС выполняли лабораторные и инструментальные методы исследования, в том числе агрегацию тромбоцитов и ЭКГ-синхронизированную перфузионную сцинтиграфию миокарда. Критерии включения в исследование: стабильная форма ИБС и непрерывный прием антиагрегационной терапии в течение 6 мес (кардиомагнил в дозе 75 мг). Критерии исключения из исследования: отказ от терапии; острые сосудистые осложнения давностью менее 6 мес; тяжелая сопутствующая патология; клинические и лабораторные признаки остrego воспления; уровень сывороточного креатинина более 120 мкмоль/л; фибрилляция предсердий; желудочковая аритмия высокой градации по Lown и нежелание участвовать в исследовании.

Специальное исследование по оценке агрегации тромбоцитов проводили с помощью метода Г. Борна в модификации З.А. Габбасова на двухканальном лазерном анализаторе 220 LA (НПФ «Биола», Россия) по двум методикам. Методика 1 (стандартный подход): использовали индуктор агрегации коллаген, вносили однократно в конечной концентрации 2 мкмоль/л на 10 с. Методика 2: коллаген вносили пятикратно по 2 мкмоль/л на 10 с, определяли агрегацию тромбоцитов на 1, 2, 3 и 4-й мин. Подробно новый методический подход описан в патенте на изобретение RU 2686700 C1 [3].

Для выделения суспензии тромбоцитов использовали периферическую венозную кровь с цитратом натрия (3,8%) в качестве антикоагулянта. Для каждого образца крови пациента определяли экспериментальные значения светопропускания, где бедная тромбоцитами плазма принимается за 0% агрегации у данного пациента. По максимальной величине светопропускания судили о степени агрегации (%), а по кривой среднего размера агрегатов (отн. ед.) – о размере агрегата. Значения агрегации, установленные по кривой светопропускания, в диапазоне 45–100% свидетельствовали о ВОРТ у пациентов.

Перфузионную сцинтиграфию миокарда (ПСМ) с 99mTc-метокси-изобутилизонитрилом (99mTc-МИБИ) выполняли согласно двухдневному протоколу «нагрузка – покой». Исследования были проведены на гибридном 64-резоновом однофотонном эмиссионном компьютерном томографе Discovery NM/CT 570c (GE Healthcare, США), оснащенном гамма-камерой с кадмий-цинк-теллуровыми детекторами [4].
В качестве стресс-теста использовали внутривенную инфузию аденозина в дозе 140 мг/кг/мин в течение 4 мин. Оценку миокардиальной перфузии осуществляли с использованием специализированного программного обеспечения Corridor 4DM SPECT (INVIA, Ann Arbor, MI, США). Согласно общепринятому подходу, нарушения миокардиальной перфузии определяли по сумме баллов для исследования при нагрузке (SSS), в покое (SRS) и по их разнице (SDS) для всего миокарда левого желудочка [5]. Значения SSS < 4 свидетельствовали о нормальной миокардиальной перфузии.

Статистическую обработку данных проводили с помощью пакета программ SPSS (версия 19), Statistica 10.0. Для оценки распределения количественных признаков был использован критерий Шапиро – Уилка. Распределение количественных показателей агрегации не подчинялось нормальному закону распределения; данные агрегации представлены в виде медианы и интерквартильного размаха Мед (Q1; Q3). Данные по ПСМ представлены в виде абсолютного и относительного числа (n, %). Достоверность различий для парных или зависимых выборок оценивали с использованием Т-критерия Вилкоксона. Для оценки корреляции между переменными использовали непараметрический тест Спирмена (r).

Для определения чувствительности и специфичности уровня показателей агрегации в стратификации риска развития неблагоприятных сердечно-сосудистых событий использовали ROC-анализ. Значимым считали значение AUC > 0,70. Для выявления факторов, оказывающих значимое влияние на течение заболевания, производили расчет отношения шансов (ОШ) с 95%-м доверительным интервалом (ДИ). Различия между выборками считали статистически значимыми при значении вероятности р < 0,05.

РЕЗУЛЬТАТЫ

В группе обследованных пациентов были широко распространены следующие факторы сердечно-сосудистого риска: курение – 27 (75%) пациентов, избыточная масса тела и ожирение – 31 (86%), артериальная гипертензия – 33 (92%), сахарный диабет 2-го типа – 12 (33%) пациентов. Преобладали пациенты со стенокардией напряжения функционального класса (ФК) III – 15 (42%) и ФК II – 11 (30%). В анамнезе 8 (22%) пациентов перенесли Q-инфаркт миокарда (ИМ) давностью 6 мес и более. В большинстве случаев у включенных пациентов диагностировали многососудистое поражение коронарных артерий – 30 (83%).

Исследование агрегации тромбоцитов у пациентов с ИБС выявило значимые различия между показателями степени агрегации тромбоцитов и размеров агрегатов, полученными в ходе выполнения стандартной методики.

При использовании разработанного нами нового методического подхода (методика 2) установлено, что у больных с ИБС увеличен размер агрегатов и повышенна степень агрегации тромбоцитов по сравнению с соответствующими значениями показателей, полученными в ходе проведения методики 1 (таблица). Методика 1 позволила выявить ВОРТ у 9 (25%) пациентов, методика 2 – дополнительно еще у 8 (22%), что в сумме составило 47% от всех пациентов.

Показатель	Методика 1	Методика 2				
Значения показателей агрегации, Мед (Q1; Q3)	ОШ	95%-й ДИ	Значения показателей агрегации, Мед (Q1; Q3)	ОШ	95%-й ДИ	
Степень агрегации, %	12 (2; 74)	1,46	0,58–0,93	44 (13; 78)*	2,18	0,57–0,98
Размер агрегата, отн. ед.	3 (2; 7)	1,79	0,61–0,95	5 (4; 8)*	5,83	0,72–0,99

* различия показателей между методиками с уровнем статистической значимости р < 0,05.

Показания к проведению исследованию перфузионной сцинтиграфии миокарда у 16 (39%) пациентов была диагностика ИБС с претестовой вероятностью 16–85%, у 12 (33%) – оценка миокардиальной перфузии и состояния коронарных стентов, у 8 (22%) пациентов – оценка состояния аортокоронарных шунтов. По данным ПСМ, у 7 (19%) пациентов миокардиальная перфузия в нагрузке была в пределах нормы (SSS < 4). У 14 (39%) пациентов отмечено минимальное (SSS 4–8), у 9 (25%) – умеренное (SSS 9–13) и у 6 (22%) – выраженное (SSS > 13) нарушение миокардиальной перфузии.

Корреляционный анализ показал наличие ассоциаций степени агрегации и размера агрегата по методике 1 со значением SSS средней силы связи (r = 0,54 и r = 0,61 соответственно; p < 0,002), тогда как по методике 2 выявлена связь высокой силы (r = 0,78 и r = 0,61 соответственно; p < 0,002).
Результаты логистического регрессионного анализа показали, что параметры агрегации тромбоцитов, полученные в ходе исследования по методике 2, ассоциированы с увеличением риска развития миокардиальной ишемии (см. таблицу).

Для изучения и сравнения диагностических и прогностических характеристик (чувствительности и специфичности) различных методик оценки агрегационной активности был проведен ROC-анализ. В качестве предиктора был использован показатель наличия (отсутствия) миокардиальной ишемии. По результатам ROC-анализа установлено, что исследование агрегации тромбоцитов пациентов с ИБС по методике 1 позволяет выявить наличие нарушений миокардиальной перфузии при увеличении степени агрегации 16,6% и более ($p < 0,0001$) и размера агрегатов 2,97 отн. ед. и более ($p < 0,0004$).

Для методики 2 характерна большая специфичность. Показано, что методика 2 позволяла диагностировать наличие нарушений миокардиальной перфузии при степени агрегации 44,9% и более ($p < 0,0001$) и увеличении размеров агрегатов 4,80 отн. ед. и более ($p < 0,0001$) (рис.).

Рисунок. Показатели ROC-анализа агрегации тромбоцитов пациентов с ишемической болезнью сердца по двум методикам в качестве предиктора миокардиальной ишемии: a – размер агрегата (методика 1); b – размер агрегата (методика 2); c – степень агрегации (методика 1); d – степень агрегации (методика 2)

ОБСУЖДЕНИЕ

Современная терапия в условиях стационара является весьма затратной, поэтому поиск простых и недорогих диагностических тестов становится все более актуальным. Дискуссия по поводу целесообразности исследования агрегации тромбоцитов у пациентов с ИБС все еще продолжается, что определяет необходимость проведения исследований в данной области.

Настоящая работа носила характер открытого однокентрового одномоментного наблюдения. В проведенном исследовании методом световой трансмиссионной агрегометрии определены пороговые значения параметров агрегации для данной субпопуляции пациентов с ИБС, при достижении которых можно сделать вывод о наличии ВОРТ у пациентов. По стандартной методике 1 заключение о наличии ишемии миокарда можно сделать при степени агрегации 16,6% и более, среднем размере агрегатов, который равен 2,97 отн. ед.
и более. При исследовании агрегации по методике 2 пороговые величины составили: 44,9% для степени агрегации и 4,80 отн. ед. для размера агрегатов. Кроме того, мы показали, что стандартные методы исследования агрегации не всегда являются достаточными для выявления ВОРТ. Использование повышенных концентраций индуктора коллагена при пятикратном добавлении во время исследования агрегации тромбоцитов повышает точность оценки коллаген-индукцированной агрегации у пациентов с ИБС.

Данные о взаимосвязи риска развития сердечно-сосудистых осложнений с недостаточным подавлением активности тромбоцитов у больных ИБС остаются противоречивыми. Результаты нескольких независимых метаанализов с участием более 10 тыс. пациентов показали, что ВОРТ была ассоциирована со значительным повышением частоты развития ИМ, тромбоза стента и смерти от сердечно-сосудистых причин [2, 5, 6]. В то же время имеются данные, свидетельствующие об отсутствии взаимосвязи между кардиоваскулярным риском и ВОРТ у пациентов.

Так, опубликован французский регистр VERIFRENCHY, где изучалась прогностическая важность оценки функции тромбоцитов, и итоги годичного наблюдения не выявили значимых различий в частоте определенного (вероятного) тромбоза стента, сердечно-сосудистой смерти или ИМ (1 001 пациент, прибор VerifyNow, производитель Instrumentation Laboratory, США) [1]. С нашей точки зрения, отрицательные результаты, полученные в приведенных исследованиях, могут быть обусловлены тем, что все используемые в настоящее время методы агрегометрии имеют ограничения в чувствительности, специфичности, удобстве использования и прогностической ценности.

В соответствии с данными, полученными на сегодняшний день, процесс образования тромбоцитов активируется друг друга, образуя тромбоцитарные тромбы [7, 8]. Поэтому мы считаем, что только неоднократное добавление индуктора коллагена к богатой тромбоцитами плазме при исследовании агрегационной активности тромбоцитов может дать объективную информацию о наличии ВОРТ у пациентов. Использование разработанного нами нового методического подхода с дополнительным введением индуктора агрегации коллагена при оценке коллаген-индукцированной агрегации тромбоцитов позволяет получить дополнительную информацию о риске развития ишемии миокарда, что определяет новизну проведенного нами исследования.

В результате проведенного ROC-анализа мы показали, что наша собственная запатентованная методика (методика 2) обладает большей специфичностью для стратификации риска развития ишемии миокарда у пациентов с ИБС. Полученные данные согласуются с результатами исследований различных авторов, подтвердивших ассоциацию ВОРТ с развитием неблагоприятных кардиальных осложнений [1, 2, 5].

Сравнение методик показало, что неоднократное добавление индуктора коллагена позволяет выявить тромбоциты с высокой остаточной активностью и склонностью к образованию агрегатов крупных размеров. Отсутствие ответа на однократное добавление коллагена может быть связано с частичной активацией тромбоцитов с тенденцией к последующему деагрегированию. Выполнение исследования агрегации с использованием аденозиндифосфата или арахидоновой кислоты в качестве индукторов, а не коллагена, может привести к ложному заключению об эффективности антиагрегантной терапии, в то время как в действительности склонность тромбоцитов к активации в ответ на взаимодействие с поврежденным эндотелием остается повышенной. В настоящее время клинические данные свидетельствуют о том, что ни ацетилсалициловая кислота, ни клопидогрел в стандартных дозах при отсутствии контроля активности тромбоцитов не могут в полной мере гарантировать эффективность антиагрегантной терапии, направленной на снижение риска развития повторных острых сосудистых событий [5, 7]. Лекарственные препараты, эффективно действующие на коллагеновые рецепторы, в настоящий момент не запатентованы и не применяются.

С нашей точки зрения, выявление высокой остаточной реактивности тромбоцитов с помощью нового методического подхода позволит не только определить наличие повышенного кардиоваскулярного риска у пациентов, но и предположить возможные причины неэффективности проводимой антиагрегантной терапии. К ограничениям проведенного исследования можно отнести его однонаправленный дизайн и относительно небольшое число обследованных пациентов. Однако полученные результаты подчеркивают необходимость проведения дальнейших исследований по изучению клинических последствий высокой остаточной реактивности тромбоцитов у пациентов с ишемической болезнью сердца и совершенствованию методик для первичной и вторичной профилактики сердечно-сосудистых событий.

Трубачева О.А., Суслова Т.Е., Гусакова А.М. и др. Высокая остаточная агрегационная активность тромбоцитов

Bulletin of Siberian Medicine. 2021; 20 (2): 113–119
ЗАКЛЮЧЕНИЕ

В настоящей работе проанализирована клинико-прогностическая значимость высокой остаточной реактивности тромбоцитов у пациентов с ишемической болезнью сердца. Показано, что у пациентов выявление высоких показателей коллаген-индуцированной агрегации тромбоцитов с помощью собственной запатентованной методики ассоциируется с риском нарушения перфузии по данным перфузионной сцинтиграфии миокарда. Проведенное исследование агрегации тромбоцитов показало, что разработанный новый методический подход по выявлению высокой остаточной реактивности тромбоцитов позволил определить наличие высокого риска развития атеротромботических осложнений дополнительно у 22% обследованных пациентов по сравнению со стандартной методикой.

ЛИТЕРАТУРА

1. Мирзаев К.Б., Андреев Д.А., Сычев Д.А. Оценка агрегации тромбоцитов в клинической практике. Рациональная фармакотерапия в кардиологии. 2015; 11 (1): 85–91. DOI: 10.20996/1819-6446-2015-11-1-85-91.
2. Stone G.W., Witzenbichler B., Weisz G., Rinaldi M.J., Neumann F.-J., Metzger D.C. et al. Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet. 2013; 382 (9892): 614–623. DOI: 10.1016/S0140-6736(13)61170-8.
3. Трубачева О.А., Суслова Т.Е., Кологривова И.В., Гусакова А.М., Шнайдер О.Л., Петрова И.В. Способ определения резистентности тромбоцитов к антиагрегантным препаратам у пациентов с ишемической болезнью сердца. Патент России RU 2686700 C1. Опубл. 30.04.2019.
4. Завадовский К.В., Гуля М.О., Суслова Т.Е., Суслова Т.Е. Совмещение однофотонной эмиссионной и рентгеновская компьютерная томография сердца: методические аспекты. Вестник рентгенологии и радиологии. 2016; 97 (4): 235–242. DOI: 10.20862/0042-4676-2016-97-4-8-15.
5. Uddell J.A., Bonaca M.P., Collet J.-P., Lincoff A.M., Kereiakes D.J., Costa F. et al. Long-term dual antiplatelet therapy for secondary prevention of cardiovascular events in the subgroup of patients with previous myocardial infarction: a collaborative meta-analysis of randomized trials. Euroheart Journal. 2016; 37 (4): 390–399. DOI: 10.1093/eurheartj/ehv443.
6. Aradi D., Storey R.F., Komosi A., Trenk D., Gulba D., Kiss R.G. et al. Expert position paper on the role of platelet function testing in patients undergoing percutaneous coronary intervention. European Heart Journal. 2014; 35 (4): 209–215. DOI: 10.1093/eurheartj/ehv375.
7. Jastrzebska M., Marcinowska Z., Oledzki S. et al. Variable gender-dependent platelet responses to combined antiplatelet therapy in patients with stable coronary-artery disease. Journal of Physiology and Pharmacology. 2018; 69 (4): 595–605. DOI: 10.26402/jpp.2018.4.10.
8. Бакунович А.В., Буланова К.Я., Лобанок Л.М. Молекулярные механизмы агрегации тромбоцитов. Журнал Белорусского государственного университета. Экология. 2017; 4: 40–51.

Сведения об авторах

Трубачева Оксана Александровна, канд. мед. наук, науч. сотрудник, отделение функциональной и лабораторной диагностики, НИИ кардиологии, Томский НИМЦ, г. Томск. ORCID 0000-0002-1253-3352.
Суслова Татьяна Евгеньевна, канд. мед. наук, вед. науч. сотрудник, отделение функциональной и лабораторной диагностики, НИИ кардиологии, г. Томск. ORCID 0000-0001-9645-6720.
Гусакова Анна Михайловна, канд. фармацевт. наук, науч. сотрудник, отделение функциональной и лабораторной диагностики, НИИ кардиологии, г. Томск. ORCID 0000-0002-3147-3025.
Кологривова Ирина Вячеславовна, канд. мед. наук, науч. сотрудник, отделение функциональной и лабораторной диагностики, НИИ кардиологии, Томский НИМЦ, г. Томск. ORCID 0000-0003-4537-0008.
Шнайдер Ольга Леонидовна, врач-кардиолог, отделение атеросклероза и хронической ишемической болезни сердца, НИИ кардиологии, Томский НИМЦ, Томск.
Завадовский Константин Валерьевич, д-р мед. наук, зав. лабораторией радионуклидных методов исследования, НИИ кардиологии, Томский НИМЦ, г. Томск. ORCID 0000-0002-1513-8614.
Петрова Ирина Викторовна, д-р биол. наук, профессор, кафедра биофизики и функциональной диагностики, СибГМУ, г. Томск. ORCID 0000-0001-9034-4226.

Трубачева Оксана Александровна, e-mail: otrubacheva@inbox.ru

Поступила в редакцию 06.04.2020
Подписана в печать 29.09.2020