Using drone brood in the control of the Varroa disease of bees in Greece

Santas L.A. Laboratory of Sericulture and Apiculture, Athens College of Agricultural Sciences
Lazarakis D.M. Laboratory of Sericulture and Apiculture, Athens College of Agricultural Sciences

https://doi.org/10.12681/eh.13898

Copyright © 2017 L.A. Santas, D.M. Lazarakis

To cite this article:
Santas, L.A., & Lazarakis, D.M. (1984). Using drone brood in the control of the Varroa disease of bees in Greece. ENTOMOLOGIA HELLENICA, 2, 63-68. doi:https://doi.org/10.12681/eh.13898
Using Drone Brood in the Control of the Varroa Disease of Bees in Greece

L.A. SANTAS and D.M. LAZARAKIS

Laboratory of Sericulture and Apiculture, Athens College of Agricultural Sciences
Iera Odos 75, Gr-118 55 Athens, Greece

ABSTRACT

The use of drone brood to control the Varroa disease (Varroa jacobsoni Ouds) was tested in twenty bee colonies (ten as control) which had a very low Varroa mite infestation. The experiment started in winter 1981-82. Early in spring 1983 the brood was removed from ten hives and later during April, May and June it was replaced by drone combs (trap combs) which were also removed when drone cells were capped. The same treatment was repeated during spring 1984.

In July 31, 1984, the adult bee infestation was 0 to 7%, while the worker brood’s infestation was 0 to 17%. The data show that, after two and half years without any acaricidal treatment, six out of the ten bee colonies continued to have a very low mite infestation, while three showed high infestation and had to be treated with acaricide. One of the three colonies was treated by acaricide in the winter 1983-84, that is two years from the beginning of this experiment. On the contrary, in the ten control colonies (with the same low infestation in spring 1982) the mite infestation reached catastrophic levels by August 1983.

Introduction

The possibility of using biological control agents such as parasites, viruses, bacteria and others, against the destructive mite of bees Varroa jacobsoni Ouds (Acarina: Varroidae) is restricted. On the other hand, biological control by means of mite predators may have little chance of success (Griffiths et al. 1984). Attempts to use other means for the suppression of the Varroa pest population have been undertaken, and in certain cases those means along with the use of chemicals gave promising results justifying future research (Grobov 1977). Thus, there have been attempts to create conditions for attracting and trapping Varroa mites and to establish artificially broodless periods (Grobov 1977, Toshkoff et al. 1979). These manipulations in combination with acaricidal treatment could result in a good control of the mite (Santas and Lazarakis 1984).

The mite V. jacobsoni reproduces exclusively on the capped brood and it prefers drone over worker brood for reproduction (Grobov 1977, Toshkoff et al. 1979). Ruttner and Koeniger (1979), and later other research workers, took this fact into consideration on their efforts to control the Varroa disease.

The use of drone brood to control the Varroa mite was considered important to be studied under our country’s conditions also. Our research started during winter 1981 and the results of the period 1982 to August 1983 have been already published (Santas and Lazarakis 1984). In the present paper the data of 1983-84 and the conclusions of the whole experiment are given.

Materials and Methods

The experiment started in the winter of 1981-82 with twenty bee colonies (ten as control). Due to previous
In those periods, that is during spring and early summer 1983 and 1984, 1, 1.5, 2, 3, or 4 drone combs were used as traps as shown above. Two methods were used for the formation of drone combs. Either an entirely empty frame was used (without any artificial comb), or a small sheet of artificial comb 1-2 cm in width had been placed through the top bar of the frame (Fig. 2). It has been observed that the combs in the second case were formed earlier than those in the first case. However,

drone combs (trap combs) were used. They were removed when drone cells were capped. The same treatment was repeated during spring 1984 (Fig. 1). The section of the comb that corresponded to the sheet of the artificial comb and a little below consisted of worker cells (Fig. 3).

Bee colony	April	May	June	July
Number of drone combs in 1983	3	2	3	3
Number of drone combs in 1984	1.5	2	1.5	1

In December 1982, without any other treatment, nine out of the ten bee colonies (used for brood trap test) had a small rate of adult bee infestation ranging from 0.4-2.7% and only one showed a relatively high infestation of about 8.2% (Santas and Lazarakis 1984). Early in spring 1983, all drone brood from those ten bee colonies was removed and destroyed. Later on, during April, May and June,

treatments with malathion dust the Varroa mite infestation was very low (Santas 1984, Santas and Lazarakis 1984). In December 1982, without any other treatment, nine out of the ten bee colonies (used for brood trap test) had a small rate of adult bee infestation ranging from 0.4-2.7% and only one showed a relatively high infestation of about 8.2% (Santas and Lazarakis 1984). Early in spring 1983, all drone brood from those ten bee colonies was removed and destroyed. Later on, during April, May and June,
FIG. 2. Frame with a small piece of comb on the top bar.

FIG. 3. A drone comb with a small area of worker comb on the top.
Results and Discussion

In July 31, 1984, the infestation by the *Varroa* mite appeared as follows: in five of the colonies (1, 2, 3, 5, 10) it was less or equal to that of August 1983, in four of them (4, 6, 8, 9) a small or large increase appeared during the same period (Table 1) and in colony 7 the infestation was so high in August 1983 that it had to be treated with Asuntol during winter 1983-84 (Santas and Lazarakis 1984, Santas et al. 1984). In three out of the four bee colonies where increase of infestation was observed (4, 6, 8), the infestation was so high (Table 1) that had to be treated with acaricide. On the contrary, the bee colony 9 had a low bee and brood infestation (2 and 1%, respectively) and it would be active and reproductive for a long time.

The small or large increase of infestation which was observed in the four colonies could be attributed to factors probably connected to the physical condition of the queens, as it has been noted previously (Santas and Lazarakis 1984), or to random distribution of mites. It could be also attributed to the fact that some drone comb traps were used by the bees for other purposes, mainly for storing honey during that period. Thus, in the bee colonies 4, 6, 8, only 1 to 1.5 drone comb traps were used during spring 1984. This could be attributed to two causes: a) either in this period the drone combs were soon filled up with honey (4 and 6), or b) the drone combs (trap combs) worked defectively because during that period there was always scattered drone brood into the hives (Schulz et al. 1983). The second has been also observed previously (Santas and Lazarakis 1984). In addition, the bee colonies 4, 6, 8 had old queens, and bee colonies with old queens accept the drones driven out earlier in the fall

Bee colony	Dec. 9, 1982%	August 31, 1983%	July 31, 1984
1	0.5	0.0(0/309)**	1.0
2	1.4	0.4(1/274)	1.0
3	2.7	1.6(4/258)	1.0
4	1.8	0.0(0/312)	0.0
5	2.4	0.0(0/295)	0.0
6	2.1	0.0(0/246)	1.3
7	8.2	2.9(10/345)	14.7
8	0.4	0.6(2/355)	0.6
9	2.2	0.0(0/209)	1.1
10	1.2	2.8(9/320)	2.8

* Data from Santas and Lazarakis (1984).
** In parenthesis, mites/bees in the sample.
TABLE 2. Percentage of Varroa mite infestation on worker and drone brood during spring and summer 1983.

Bee colony	Worker brood	Drone brood	Worker brood	Drone brood	Worker brood	Drone brood
1	0.0	1.0	0.5	3.0	0.0	1.0
2	3.0	2.0	0.0	1.5	0.0	2.0
3	2.0	6.0	2.0	8.7	0.5	3.5
4	1.0	4.0	1.0	2.0	0.0	0.0
5	5.0	6.0	0.0	0.0	-*	-
6	1.0	4.3	1.0	5.0	0.0	0.9
7	6.0	9.0	1.0	6.0	4.2	8.5
8	4.0	5.0	0.0	1.0	-	-
9	0.0	8.0	-	-	0.0	11.0
10	3.0	6.7	0.0	1.0	-	-

Mean: 2.5/5.2 = 2.1

p No brood was found.

Colonies was 0 to 7%, while the worker brood’s infestation was 0 to 17% (Table 1). The data show that, after two and half years without any acaricidal treatment, six out of the ten bee colonies, that is 60%, continued having a very low mite infestation. Three bee colonies showed high infestation and were treated by acaricide in winter 1984-85, that is three years from the beginning of this experiment (winter 1981-82). On the contrary, in the ten control bee colonies, with the same initial infestation in spring 1982, the mite infestation reached a catastrophic level in August 1983.

From the data obtained in this work, it seems that the Varroa disease may be kept under control by means of drone brood trap in colonies with low initial infestation. This agrees with the results of a similar research carried out in W. Germany (Schulz et al. 1983). Summarising, it appears that in bee colonies with low initial infestation (either because the disease is at an early stage or because of intensive treatment by acaricide), the drone comb trap method can delay the progress of the Varroa disease.

Acknowledgment

We thank Dr. D. Tambouratzis for his help in the statistical analysis.

References

Griffiths, D.A., J. Gray and F. Pegazzano. 1984. Varroa: the acarologist’s view. In, Proceedings of E.E.C. Experts' Group Meeting on “Varroa jacobsoni Ouds affecting honey bees: present status and needs”. Wageningen, February 7-9, 1983: 79-85.

Grobov, O.F. 1977. Varroasis in bees. In, Proceedings of the Meeting on “Varroasis, a honeybee disease”. Sofia Bulgaria, March 8-13, 1976. Apimondia Publishing House, Romania: 46-90.

Knobelspies, F. 1984. Die Biologische Varroabekämpfung aus der Sicht eines Praktikers. Die Biene 84: 344-347.

Ruttner, F. and N. Koeniger. 1979. Experiments to eliminate Varroa mite by biological methods. 27th Intern. Congr. of Apiculture of Apimondia. Apimondia Publishing House, Romania: 366-368.

Santas, L.A. 1984. Varroa disease in Greece and its control with Malathion. In, Proceedings of E.E.C. Experts' Group Meeting on "Varroa jacobsoni Ouds affecting honey bees: present status and needs”. Wageningen February 7-9, 1983: 73-76.

Santas, L.A. and D.M. Lazarakis. 1984. The use of drone brood in the control of Varroa disease of bees. Nea Melissa 10-11: 7-10 (in Greek).

Santas, L.A., D.M. Lazarakis and P.J. Choustoulakis, 1984. Comparative studies on various compounds and pesticides for the control of Varroa disease. Nea Melissa 8-9: 5-12 (in Greek).

Schulz, A., N. Koeniger and F. Ruttner, 1983. Drohnenbrut als Varroa-Falle. Die Biene 83: 58-59.

Toshkoff, A., S. Nedvalkoff, M. Shabanoff and I. Toshkoff, 1979. New directions in the study of Varroa disease and its control. In, Proceedings of the Seminar on "Prophylaxis and control of Varroa Disease". Bucharest Romania, August 21-24, 1978. Apimondia Publishing House, Romania: 31-35.
Η Χρησιμοποίηση του Κηφηνογόνου στον Έλεγχο της Βαρροϊκής Ακαρίασης των Μελισσών στην Ελλάδα

Α.Α. ΣΑΝΤΑΣ και Δ.Μ. ΛΑΖΑΡΑΚΗΣ

Εργαστήριο Σηροτροφίας – Μελισσοκομίας
Ανωτάτη Γεωπονική Σχολή Αθηνών

ΠΕΡΙΛΗΨΗ

Η εργασία αυτή άρχισε το χειμώνα του 1981-82 και χρησιμοποιήθηκαν για το σκοπό αυτό είκοσι μελισσοσμήνη (δέκα σαν μάρτυρας). Στα μελισσοσμήνη αυτά έγινε μια εντατική θεραπεία με σκονίσματα μαλαθείου στη διάρκεια του ανωτέρω χειμώνα, με αποτέλεσμα η προσβολή των από το άκαρο σχεδόν να μηδενισθεί. Το Δεκέμβριο του 1982, χωρίς να μεσολαβήσει κάποια άλλη θεραπευτική αγωγή, τα δέκα μελισσοσμήνη που θα γίνονταν ο πειραματισμός παρουσιάζαν μια μικρή προσβολή στις μέλισσες σε ποσοστό που κυμαίνονταν από 0,4-2,7% και μόνο μια κυψέλη είχε μια σχετικά μεγάλη προσβολή 8,2%.

Την άνοιξη του 1983 κατ' αρχάς αφαιρέθηκε και καταστράφηκε ο φυσικός κηφηνογόνος και στη συνέχεια στους μήνες Απρίλιο, Μάϊο, Ιούνιο αφαιρούνταν μετά από 20-25 ημέρες οι κηφηνοκηρήθρες που κτίσθηκαν ή οι κτισμένες οι οποίες και ξανατοποθετούνταν. Το ίδιο επαναλήφθηκε και την άνοιξη του 1984. Στο χρονικό διάστημα που κάλυπτε την άνοιξη και μέρος του θέρους του 1983 και 1984 χρησιμοποιήθηκαν από τα μελισσοσμήνη και συνεπώς λειτούργησαν σαν παγίδες, σε μερικά 1, σε άλλα 1,5 ή 2 ή 3 κηφηνοκηρήθρες.

Στις 31.7.84 η προσβολή στις μέλισσες κυμαίνονταν από 0-7% ενώ στον εργατικό γόνο από 0-17%. Από τις ενδείξεις αυτές διαφαίνεται ότι από τα 10 μελισσοσμήνη που χρησιμοποιήθηκαν στην ερευνητική αυτή εργασία και που υπήρχε ο χειμώνα του 1981-82, τα 6, δηλαδή το 60%, ύστερα από 2/12 σχεδόν χρόνια από την καταπολέμηση συνεπέσε ακόμη μια πολύ χαμηλή προσβολή έτσι ώστε αυτά να είναι παραγωγικά στενά, σε μερικά 1, σε άλλα 1,5 ή 2 ή 3 κηφηνοκηρήθρες.

Από τα ερευνητικά δεδομένα αυτής της εργασίας διαφαίνεται ότι μπορεί να γίνει έλεγχος της Βαρροϊκής Ακαρίασης με τη χρησιμοποίηση του κηφηνογόνου σε μελισσοσμήνη με μικρή αρχική προσβολή.