Morphological and phylogenetic analyses reveal two new species of Sporocadaceae from Hainan, China

Zhaoxue Zhang¹, Rongyu Liu¹, Shubin Liu¹, Taichang Mu¹, Xiuguo Zhang¹, Jiwen Xia¹

¹ Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China

Corresponding author: Jiwen Xia (xiajiwen1@126.com)

Academic editor: Nalin Wijayawardene | Received 17 February 2022 | Accepted 29 March 2022 | Published 14 April 2022

Citation: Zhang Z, Liu R, Liu S, Mu T, Zhang X, Xia J (2022) Morphological and phylogenetic analyses reveal two new species of Sporocadaceae from Hainan, China. MycoKeys 88: 171–192. https://doi.org/10.3897/mycokeys.88.82229

Abstract
Species of Sporocadaceae have often been reported as plant pathogens, endophytes or saprophytes and are commonly isolated from a wide range of plant hosts. The isolated fungi were studied through a complete examination, based on multilocus phylogenies from combined datasets of ITS/tub2/tef1, in conjunction with morphological characteristics. Nine strains were isolated from Ficus microcarpa, Ilex chinensis and Schima superba in China which represented four species, viz., Monochaetia schimae sp. nov., Neopestalotiopsis haikouensis sp. nov., Neopestalotiopsis piceana and Pestalotiopsis licualicola. Neopestalotiopsis piceana was a new country record for China and first host record from Ficus macrocarpa. Pestalotiopsis licualicola was first report from Ilex chinensis in China.

Keywords
Monochaetia, multigene phylogeny, Neopestalotiopsis, Pestalotiopsis

Introduction

The family Sporocadaceae was established by Corda in 1842 (type genus: Sporocadus). Species of Sporocadaceae are endophytic, plant pathogenic or saprobic, and associated with a wide range of host plants (Maharachch. et al. 2013; Jayawardena et al. 2015; Liu et al. 2019). Currently, the family comprises 35 genera including Monochaetia (Sacc.) Allesch., Neopestalotiopsis Maharachch. et al., Pestalotiopsis Steyaert, Pseudopestalotiopsis Maharachch.et al., and etc. Most genera have multi-septate and more or less fusiform
conidia with appendages at one or both ends, frequently with some melanised cells. Also known as pestalotioid fungi, resembling those taxa having affinities with *Pestalotia* (Liu et al. 2019).

Steyaert (1949) segregated two novel genera from *Pestalotia*, namely *Pestalotiopsis* (with 5-celled conidia) and *Truncatella* (with 4-celled conidia) based on the conidial forms. This resulted in apparent controversy from Guba (1956, 1961). He emphasised that there was no point in assembling species with similar numbers of conidial septa into distinct genera. Subsequently, Steyaert (1953, 1961, 1963) provided further evidence in support of splitting *Pestalotia*. Sutton (1980) accepted most of the genera discussed here (*Pestalotia*, *Pestalotiopsis*, *Truncatella*) which fitted into fairly well-defined groups and cited the electron microscope investigation of Griffiths and Swart (1974), which examined the conidial wall of *Pestalotia pezizoides* and two species of *Pestalotiopsis* (*P. funerea* and *P. triseta*) to support Steyaert’s division of *Pestalotiopsis*. Maharachch. et al. (2014) segregated two novel genera from *Pestalotiopsis*, namely *Neopestalotiopsis* and *Pseudopestalotiopsis*, based on conidia pigment colour, conidiophores and molecular phylogeny. *Neopestalotiopsis* can be easily distinguished from *Pseudopestalotiopsis* and *Pestalotiopsis* by its versicolourous median cells (Maharachch. et al. 2014). Saccardo (1884) introduced *Monochaetia* as a subgenus of *Pestalotia* (as *Pestolozzia*). The genus *Monochaetia* was introduced by Allescher (1902), which included 23 species. Allescher (1902) designated the type *Monochaetia monochaeta* which has a single apical appendage (Guba 1961; Maharachch. et al. 2014; Senanayake et al. 2015). Steyaert (1949) transferred numerous *Monochaetia* species to *Pestalotiopsis* or *Truncatella*. More than 40 species of *Monochaetia* were recognised by the monograph of Guba (1961). There are 127 *Monochaetia* epithets in the Index Fungorum (accession date: 31 March 2022) and most have been transferred to other genera such as *Sarcostroma*, *Seimatosporium* and *Seiridium* (Nag Raj 1993; Maharachch. et al. 2011, 2014, 2016). *Seridium* and *Monochaetia* have obvious morphological differences and show separate clades (de Silva et al. 2017).

To date, most phylogenetic studies addressing genera of Sporocadaceae have been based solely on ITS and LSU sequences (Barber et al. 2011; Tanaka et al. 2011; Jaklitsch et al. 2016), or on concatenated datasets of more genes but with incomplete datasets (Senanayake et al. 2015; Wijayawardene et al. 2016). In this study, we made a collection of the established genera *Monochaetia*, *Neopestalotiopsis* and *Pestalotiopsis* species from leaves of *Ficus microcarpa*, *Ilex chinensis* and *Schima superba* in Hainan Province, China. The inventories allowed establishing two new species that are described here.

Materials and methods

Isolation and morphological studies

The samples were collected from Hainan Province, China. The strains were isolated from diseased leaves of *Ficus microcarpa*, *Ilex chinensis* and *Schima superba* using surface disinfected tissue fragments (0.5 × 0.5 cm) taken from the margin of leaf lesions
Surface disinfection consisted of steps including immersion in 75% ethanol for 30 s, 5% sodium hypochlorite (Aladdin, Shanghai, China) for 1 min, and sterile distilled water for 30 s. The pieces were dried with sterilized paper towels and placed on potato dextrose agar (PDA). All plates were incubated at 25 °C for 3–4 days. Then, hyphae were picked out of the periphery of the colonies and inoculated onto new PDA plates. Photographs of the colonies were taken at 7 and 15 days using a Powershot G7X mark II digital camera. Micromorphological characters were observed using an Olympus SZX10 stereomicroscope and Olympus BX53 microscope, all fitted with Olympus DP80 high definition colour digital cameras to photo-document fungal structures. The size of conidia was measured by software Digimizer (https://www.digimizer.com/), and thirty individual measurements were obtained for each character. All fungal strains were stored in 10% sterilised glycerin at 4 °C for further studies. The holotype specimens were deposited in the Herbarium of Plant Pathology, Shandong Agricultural University (HSAUP). Ex-type cultures were deposited in the Shandong Agricultural University Culture Collection (SAUCC). Taxonomic information on the new taxa was submitted to MycoBank (http://www.mycobank.org).

DNA extraction and amplification

Genomic DNA was extracted from fungal mycelium grown on PDA using cetyltrimethylammonium bromide (CTAB) protocol as described in Guo et al. (2000). The internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS) and partial beta-tubulin (tub2) and translation elongation factor 1-alpha (tef1) genes were amplified and sequenced by using primers pairs ITS5/ITS4 (White et al. 1990), T1/Bt2b (Glass and Donaldson 1995; O’Donnell and Cigelnik 1997), and EF1-728F/EF-2 (O’Donnell et al. 1998; Carbone and Kohn 1999).

PCR was performed using an Eppendorf Master Thermocycler (Hamburg, Germany). Amplification reactions were performed in a 50 μL reaction volume, which contained 25 μL Green Taq Mix (Vazyme, Nanjing, China), 2 μL of each forward and reverse primer (10 μM) (Tsingke, Beijing, China), and 2 μL template genomic DNA, to which distilled deionized water was added. PCR parameters were as follows: 94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at a suitable temperature for 30 s, extension at 72 °C for 1 min and a final elongation step at 72 °C for 7 min. Annealing temperature was 55 °C for ITS, 54 °C for tub2, 52 °C for tef1. The PCR products were visualised on 1% agarose electrophoresis gel. Sequencing was done bi-directionally, conducted by the Tsingke Biotechnology Company Limited (Qingdao, China). Consensus sequences were obtained using MEGA 7.0 or MEGA-X (Kumar et al. 2016). All sequences generated in this study were deposited in GenBank (Table 1).

Phylogeny

Newly generated sequences in this study were aligned with additional related sequences downloaded from GenBank (Table 1) using MAFFT 7 online service with
the Auto strategy (Katoh et al. 2019, http://mafft.cbrc.jp/alignment/server/). To establish the identity of the isolates at the species level, phylogenetic analyses were conducted first individually for each locus and then as combined analyses of three loci (ITS, tub2 and tef1). Phylogenetic analyses were based on maximum likelihood (ML) and Bayesian inference (BI) for the multi-locus analyses. For BI, the best evolutionary model for each partition was determined using MrModeltest v. 2.3 (Nylander 2004) and incorporated into the analyses. ML and BI were run on the CIPRES Science Gateway portal (https://www.phylo.org/) (Miller et al. 2012) using RaxML-HPC2 on XSEDE v. 8.2.12 (Stamatakis 2014) and MrBayes on XSEDE v. 3.2.7a (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003; Ronquist et al. 2012), respectively. Four Markov chains were run for two runs from random starting trees for 10,000,000 generations (ITS + tub2 + tef1) until the split deviation frequency value < 0.01, and trees were sampled every 1000 generation. The first quarter generations were discarded as burn-in. A majority rule consensus tree of all remaining trees was calculated. The resulting trees were plotted using FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree) and edited with Adobe Illustrator CC 2019. New sequences generated in this study were deposited at GenBank (https://www.ncbi.nlm.nih.gov; Table 1). The final concatenated sequence alignments were deposited in TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S29480).

Table 1. Species and GenBank accession numbers of DNA sequences used in this study. New sequences are in bold.

Species	Strain	Host/substrate	Country	GenBank accession number	Reference
Bartalinia robillardoides	CBS 122705 T	Lepidopaus occidentalis	Italy	LT853104 LT853202 LT853252	Bonthond et al. 2018
Ciliochorella phanericola	MFLUCC 14-0984 T	Phanera purpurea	Thailand	KX789680 – KX789682	Jiang et al. 2021b
Monochaetia castaneae	MFLUCC 12-0310	Phanera purpurea	Thailand	KF827444 KF827477 KF827478	Jiang et al. 2021b
M. dimorphospora	MFLUCC 54354 – SM1-1 T	Castanea mollissima	China	MW166222 MW199741 MW218515	Jiang et al. 2021b
M. ilicis	KUMCC 15-0520 T	Ilex sp.	China	KX984153 – –	de Silva et al. 2017
M. junipericola	CBS 101009	Air	Japan	MH553953 MH554371 MH554612	Liu et al. 2019
M. kansensis	CBS 143391 T	Juniperus communis	Germany	MH107900 MH108021 MH108045	Crous et al. 2018
M. monochaeta	CBS 546.80 Culture contaminant	Quercus pubescens	Netherlands	MH554056 MH554491 MH554732	Liu et al. 2019
M. quercus	CBS 199.82 T	Quercus pubescens	Italy	MH554018 – MH554694	Liu et al. 2019
M. schimae	CBS 115004	Quercus robur	Netherland	IY853243 MH554398 MH554639	Liu et al. 2019
M. sinensis	CBS 144045 T	Quercus edulis	Mexico	MH554171 MH554606 MH554844	Liu et al. 2019
Schima superba	SAUCC212200 T	Schima superba	China	MZ775565 OK104874 OK104867	This study
M. sinensis	HKAS 10065 T	Quercus sp.	China	MH115995 – MH115999	de Silva et al. 2017
Species	Strain	Host/substrate	Country	GenBank accession number	Reference
---------	--------	----------------	---------	--------------------------	-----------
Neopetalotiopsis acrostichi	MFLUCC 17-1754 T	Acrostichum aurum	Thailand	MK764272 MK764316 MK764338	Norphanphou et al. 2019
N. atapicalis	MFLUCC 17-2544 T	Rhizophora mucronata	Thailand	MK357772 MK463547 MK463545	Kumar et al. 2019
N. aotearoa	CBS 367.54 T	Canvas	New Zealand	KM199369 KM199526 KM199454	Maharachch. et al. 2014
N. asiatica	MFLUCC 12-0286 T	Unidentified tree	Mozambique	JX399097 JX399095 JX399014	Maharachch. et al. 2012
N. brachiata	MFLUCC 17-1555 T	Rhizophora apiculata	Thailand	MK764274 MK764318 MK764340	Norphanphou et al. 2019
N. braziliensis	COAD 2166 T	Psidium guajava	Brazil	MG686409 MG692402 MG692400	Bezerra et al. 2018
N. egyptiaca	CBS 367.54 T	Plant debris	France	KM199369 KM199526 KM199454	Maharachch. et al. 2014
N. ellipsospora	CBS 600.96 T	Leaf litter	Cuba	KM199369 KM199526 KM199454	Maharachch. et al. 2014
N. eucalypticola	CBS 114178 T	Leucospermum cuneiforme cv. "Sunbird"	Zimbabwe	JN712498 KM199542 KM199463	Maharachch. et al. 2014
Species	Strain	Host/substrate	Country	GenBank accession number	Reference
-----------------	------------	--------------------	----------------	--------------------------	------------------------
N. rhizophorae	MFLUCC 17-1550 T	*Rhizophora mucronata*	Thailand	MK764278 MK764322 MK764344	Norphanphoun et al. 2019
N. mae	CBS 124745	*Pemonia suffruticosa*	USA	KM199360 KM199524 KM199430	Maharachch. et al. 2014
	CBS 101057 T	*Rosa sp.*	New Zealand	KM199359 KM199523 KM199429	Maharachch. et al. 2014
N. micola	CFCC 51992 T	*Rosa chinensis*	China	KY885239 KY885243 KY885245	Norphanphour et al. 2019
	CFCC 51993	*Rosa chinensis*	China	KY885240 KY885244 KY885246	Norphanphour et al. 2019
N. sanarangensis	MFLUCC 12-0233 T	*Syzygium samarangense*	Thailand	JQ968609 JQ968611 JQ968610	Maharachch. et al. 2012
N. rosae	CBS 124745	*Paeonia suffruticosa*	USA	KM199345 KM199538 KM199433	Maharachch. et al. 2014
	CBS 101057 T	*Rosa sp.*	New Zealand	MW166231 MW199750 MW218524	Jiang et al. 2021b
N. rosicola	CFCC 51992 T	*Rosa chinensis*	China	KY885239 KY885243 KY885245	Norphanphour et al. 2019
	CFCC 51993	*Rosa chinensis*	China	KY885240 KY885244 KY885246	Norphanphour et al. 2019
N. samarangensis	MFLUCC 12-0233 T	*Syzygium samarangense*	Thailand	JQ968609 JQ968611 JQ968610	Maharachch. et al. 2012
N. saprophytica	MFLUCC 12-0282 T	*Magnolia sp.*	China	MK199345 KM199538 KM199433	Maharachch. et al. 2014
N. sichuanensis	CFCC 51993	*Castanea mollissima*	China	MW166231 MW199750 MW218524	Jiang et al. 2021b
N. sonneratae	MFLUCC 17-1745 T	*Sonneronata alba*	Thailand	MK764280 MK764324 MK764346	Norphanphour et al. 2019
N. steyaertii	IMI 192475	*Eucalytpus viminalis*	Australia	KF582796 KF582792 KF582794	Maharachch. et al. 2014
N. surinamensis	CBS 450.74 T	*Soil under Elaeis guineensis*	Suriname	KM199351 KM199518 KM199465	Maharachch. et al. 2014
N. thailandica	MFLUCC 17-1730 T	*Rhizophora mucronata*	Thailand	MK764281 MK764325 MK764347	Norphanphour et al. 2019
N. umbrinospora	CBS 114193 T	*Eurafrax cinerea cv. “Summer black”*	Zimbabwe	JX556231 KM199545 KM199456	Maharachch. et al. 2014
N. vitis	MFLUCC 15-1265 T	*Vitis vinifera cv.*	China	KU140694 KU140676 KU140685	Jayawardena et al. 2016
N. zimbabwana	CBS 111495 T	*Leucocarpus cuneiforme cv.*	Zimbabwe	JX556231 KM199545 KM199456	Maharachch. et al. 2014
Nonappendiculata quercina	CBS 116061 T	*Quercus suber*	Italy	MH553982 MH554400 MH554641	Liu et al. 2019
Pestalotiopsis australasiae	CBS 114126 T	*Quercus pulcens*	Italy	MH554025 MH554459 MH554701	Liu et al. 2019
P. australis	CBS 114193 T	*Grevillea sp.*	Australia	KM199332 KM199475 KM199383	Maharachch. et al. 2014
P. grevilleae	CBS 114127 T	*Grevillea sp.*	Australia	KM199300 KM199504 KM199407	Maharachch. et al. 2014
P. hollandica	CBS 265.33 T	*Sciadopitys verticillata*	The Netherlands	KM199328 KM199481 KM199388	Maharachch. et al. 2014
P. kenyana	CBS 442.67 T	*Coffia sp.*	Kenya	KM199302 KM199502 KM199395	Maharachch. et al. 2014
P. knightiae	CBS 114138 T	*Knightia sp.*	New Zealand	KM199310 KM199497 KM199408	Maharachch. et al. 2014
P. licualicola	HGUP4057 T	*Licuala grandis*	China	KC492509 KC481684 KC481683	Geng et al. 2013
P. oryzae	CBS 279.82	*Quercus suber*	Italy	MH554025 MH554459 MH554701	Liu et al. 2019
P. parva	CBS 114126 T	*Knightia sp.*	New Zealand	KM199297 KM199499 KM199409	Maharachch. et al. 2014
P. portugalica	CBS 114193 T	*Grevillea sp.*	Australia	KM199332 KM199475 KM199383	Maharachch. et al. 2014
P. spathuliappendiculata	CBS 279.82	*Quercus suber*	Italy	MH554025 MH554459 MH554701	Liu et al. 2019
Pseudopestalotiopsis cocos	CBS 278.35	*Leucocarpus cuneiforme*	New Zealand	KM199313 KM199509 KM199405	Maharachch. et al. 2014
Seiridium papillatum	CBS 393.48 T	*Eucalyptus delegatensis*	Indonesia	KM199378 KM199553 KM199467	Maharachch. et al. 2014
Seir. phylicae	CBS 124745	*Elaeis guineensis*	Nigeria	MH554044 MH554479 MH554720	Liu et al. 2019
	CBS 459.78 T	*Rosa sinensis*	India	KM199381 KM199560 KM199470	Maharachch. et al. 2014
Seir. phylicae	CBS 340.97 T	*Eucalyptus delegatensis*	Australia	LT853102 LT854468 LT853250	Bonthond et al. 2018

Isolates marked with "T" are ex-type or ex-epitype strains.
Two new species of Sporocadaceae from Hainan, China

Figure 1. Phylogram of Sporocadaceae based on combined ITS, tub2 and tef1 sequences. The BI and ML bootstrap support values above 0.90 and 70% are shown at the first and second position, respectively. The tree is rooted to Bartalimia robillardoides (CBS 122705), ex-type or ex-epitype cultures are indicated in bold face. Strains from the current study are in red. Some branches were shortened according to the indicated multipliers.
Figure 1. Continued.
Result

Phylogenetic analyses

Nine strains of Sporocadaceae isolated from plant hosts from Hainan, China, were grown in culture and used for analyses of molecular sequence data. The combined dataset of ITS-tub2-tef1 has an aligned length of 2285 total characters (ITS: 1–638, tub2: 639–1558, tef1: 1559–2285) including gaps, of which 869 characters are constant, 292 variable and parsimony-uninformative, and 1124 parsimony-informative. For the BI and ML analyses, the substitution model GTR+G for ITS, HKY+I+G for tub2 and GTR+I+G for tef1 were selected and incorporated into the analyses. The MCMC analysis of the three concatenated genes run for 7,795,000 generations, resulting in 7796 trees. The ML tree topology confirmed the tree topologies obtained from the BI analyses, and therefore, only the ML tree is presented (Fig. 1).

Bayesian posterior probability (≥ 0.90) and ML bootstrap support values (≥ 70%) are shown as first and second position above nodes. The 96 strains were assigned to 75 species clades based on the three gene loci phylogeny (Fig. 1). Based on the multi-locus phylogeny and morphology, nine isolates were assigned to four species, including Monochaetia schimae sp. nov., Neopestalotiopsis haikouensis sp. nov., Neopestalotiopsis piceana and Pestalotiopsis licualicola.

Taxonomy

Monochaetia schimae Z. X. Zhang, J. W. Xia & X. G. Zhang, sp. nov.

MycoBank No: 841381

Fig. 2

Type. China, Hainan Province: East Harbour National Nature Reserve, on diseased leaves of Schima superba, 23 May 2021, Z.X. Zhang (holotype HSAUP212201; ex-type living culture SAUCC212201).

Etymology. Name refers to the genus of the host plant Schima superba.

Description. Leaf spots irregular, pale brown in centre, brown to tan at margin. Sexual morph not observed. Asexual morph on PDA: Conidiomata solitary, scattered, black, raising above surface of culture medium, subglobose, exuding black conidial droplets from central ostioles after 10 days in light at 25 °C. Conidiophores cylindrical, hyaline, smooth-walled. Conidiogenous cells 9.0–16.5 × 1.2–2.2 μm, phialidic, ampulliform, discrete, hyaline, smooth, thin-walled. Conidia 18–24 × 4.5–6.0 μm, mean ± SD = 20.5 ± 1.1 × 5.5 ± 0.4 μm, fusiform, tapering at both ends, 4-septate; apical cell 2.0–4.0 μm long, conical, hyaline and smooth-walled; three median cells doliiform, 12.5–15.5 μm long, mean ± SD = 14.2 ± 0.7 μm, olivaceous, rough-walled, upper second cell 3.8–5.3 μm long, upper third cell 3.4–5.0 μm
long, upper fourth cell 4.4–5.4 μm long; basal cell 2.2–4.5 μm long, conical, hyaline and smooth-walled; apical appendage 7.0–12.5 μm long (mean = 9.2 μm), single, unbranched, central, tubular, filiform; basal appendage 2.5–5.0 μm long, single, unbranched tubular, filiform.

Culture characteristics. Colonies on PDA 39.0–45.0 mm in diameter after 15 days at 25 °C in darkness, growth rate 2.5–3.0 mm/day, irregularly circular, raised, dense surface with lobate edge, zonate in different sectors, light brown at the margin, brown at the centre; reverse brown at the margin, dark brown at the centre.
Additional specimen examined. China, Hainan Province: East Harbour National Nature Reserve, 23 May 2021, Z.X. Zhang. On diseased leaves of *Schima superba*, paratype HSAUP212202, living culture SAUCC212202; on diseased leaves of *Schima superba*, paratype HSAUP212203, living culture SAUCC212203.

Notes. *Monochaetia schimae* is introduced based on the multi-locus phylogenetic analysis, with three isolates clustering separately in a well-supported clade (BI/ML = 0.99/96). *Monochaetia schimae* is phylogenetically close to *M. castaneae* from leaves of *Castanea mollissima*, *M. ilicis* from leaves of *Ilex* sp., and *M. junipericola* from twigs of *Juniperus communis*. However, *Monochaetia schimae* differs from *M. castaneae* by 148 nucleotides (11/463 in ITS, 89/743 in *tub2* and 48/403 in *tef1*), from *M. ilicis* by 94 nucleotides (18/526 in ITS, 32/698 in *tub2* and 44/456 in *tef1*), and from *M. junipericola* by 91 nucleotides (10/524 in ITS, 40/411 in *tub2* and 41/304 in *tef1*). Furthermore, they are distinguished by hosts and conidial sizes (18.0–24.0 × 4.5–6.0 μm in *M. schimae* vs. 18.8–27.3 × 4.7–6.6 μm in *M. castaneae* vs. 20.0–27.0 × 5.0–8.0 μm in *M. ilicis* vs. 22.0–28.0 × 5.0–7.0 μm in *M. junipericola*). In morphology, *Monochaetia castaneae* differs from *M. schimae* by the colour of colonies (cinnamon vs. brown), *Monochaetia ilicis* differs from *M. schimae* by the colour of median cells (brown vs. olivaceous), and *M. junipericola* differs from *M. schimae* by longer conidiogenous cells (10.0–30.0 μm vs. 9.0–16.5 μm) (de Silva et al. 2017; Crous et al. 2018; Jiang et al. 2021b).

Neopestalotiopsis haikouensis Z. X. Zhang, J. W. Xia & X. G. Zhang, sp. nov.

Mycobank No: 841382

Fig. 3

Type. China, Hainan Province, Haikou City: East Harbour National Nature Reserve, on diseased leaves of *Ilex chinensis*. 23 May 2021, Z.X. Zhang (holotype HSAUP212271; ex-type living culture SAUCC212271).

Etymology. Named after the host location, Haikou City.

Description. Leaf spots irregular, grey white in centre, brown to tan at margin. Sexual morph not observed. Asexual morph on PDA: Conidiomata globose to clavate, solitary or confluent, embedded or semi-immersed to erumpent, dark brown, exuding globose, dark brown to black conidial masses. Conidiophores indistinct, often reduced to conidiogenous cells. Conidiogenous cells discrete, subcylindrical to ampulliform, hyaline, 5.0–10.0 × 2.0–6.0 μm, apex 1.0–2.0 μm diam. Conidia fusoid, ellipsoid, straight to slightly curved, 4-septate, 16.0–22.0 × 4.5–7.0 μm, mean ± SD = 20.0 ± 1.8 × 5.5 ± 0.4 μm; basal cell conical with a truncate base, hyaline, rugose and thin-walled, 3.0–4.5 μm long; three median cells doliform, 11.5–15.0 μm long, mean ± SD = 13.2 ± 1.0 μm, wall rugose, septa darker than the rest of the cell, second cell from the base pale brown, 3.5–5.5 μm long; third cell honey-brown, 4.0–6.0 μm long; fourth cell brown, 3.8–5.7 μm long; apical cell 2.5–5.5 μm long, hyaline, cylindrical to subcylindrical, thin- and smooth-walled; with 2–3 tubular apical appendages (mostly 3), arising from the apical crest, unbranched, filiform, 13.5–24.0 μm long, mean ± SD = 19.1 ± 3.5 μm; basal appendage 2.0–7.0 μm long, single, tubular, unbranched, centric.
Culture characteristics. Colonies on PDA occupying an entire 90 mm petri dish in 7 days at 25 °C in darkness, growth rate of 7.0–14.0 mm/day, edge undulate, white to grey white, with moderate aerial mycelium on the surface, with black, gregarious conidiomata; reverse similar in colour.

Additional specimen examined. China, Hainan Province: East Harbour National Nature Reserve, 23 May 2021, Z.X. Zhang. On diseased leaves of *Ilex chinensis*, paratype HSAUP212272, living culture SAUCC212272.
Notes. Phylogenetic analysis of a combined three-gene ITS-tub2-tef1 showed that *Neopesataliotiopsis haikouensis* formed an independent clade with full-supported (BI/ML = 1/100, Fig. 1) and is phylogenetically distinct from *N. cocoensis* (MFLUCC 15-0152), *N. formicidarum* (CBS 362.72) and *N. sichuanensis* (CFCC 54338). *Neopesataliotiopsis haikouensis* can be distinguished from the phylogenetically most closely related species *N. cocoensis* by narrower conidia (4.5–7.0 vs. 7.5–9.5 μm), *N. formicidarum* by smaller conidia (16.0–22.0 × 4.5–7.0 vs. 20.0–29.0 × 7.5–9.5 μm), and *N. sichuanensis* by shorter conidia (16.0–22.0 vs. 23.2–32.8 μm). Furthermore, some species were reported from the same host genus *Ilex*, including *Pestalotia neglecta*, *Pestalotiopsis annulata*, *P. humicola* and *P. ilicis*. After comparison, *P. humicola* was closest to *N. haikouensis* in morphology, but with 78/588 differences in the ITS region (Maharachch. et al. 2014; Liu et al. 2019; Jiang et al. 2021b).

Neopesataliotiopsis piceana S.S.N. Maharachch., K.D. Hyde & P.W. Crous, Studies in Mycology 79:146. (2014)

Fig. 4

Description. Leaf spots irregular, pale brown in centre, brown to tan at margin. Asexual morph on PDA: Conidiomata solitary, globose to clavate, semi-immersed, brown to black; exuding globose, dark brown to black conidial masses. Conidiophores reduced to conidiogenous cells. Conidiogenous cells discrete, ampulliform to lageniform, hyaline, smooth and thin walled, simple, 4.0–12.0 × 2.0–10.0 μm, apex 2.0–5.0 μm diam. Conidia ellipsoid to clavate, straight to slightly curved, 4-septate, 19.5–26.5 × 5.5–7.0 μm, mean ± SD = 22.7 ± 0.8 × 6.1 ± 0.4 μm; somewhat constricted at septa; basal cell obconic with truncate base, rugose and thin-walled, 2.7–5.0 μm long; three median cells 12.0–16.0 μm long, mean ± SD = 14.7 ± 0.9 μm, doliiform, verruculose, versicoloured, septa darker than the rest of the cell, second cell from base pale brown, 4.0–5.7 μm long; third cell dark brown, 3.5–5.2 μm long; fourth cell brown, 3.8–5.8 μm long; apical cell obconic, hyaline, thin and smooth-walled, 2.5–5.2 μm long; with 1–3 tubular apical appendages, arising from the apical crest, flexuous, unbranched, 21.0–32.0 μm long, mean ± SD = 24.8 ± 3.5 μm; basal appendage single, tubular, unbranched, centric, 2.7–6.5 μm long.

Culture characteristics. Colonies on PDA incubated at 25 °C in the dark with an average radial growth rate of 9.0–14.0 mm/day and occupying an entire 90 mm petri dish in 7 d, with edge undulate, whitish, aerial mycelium on surface, fruiting bodies black, concentric; reverse of culture yellow to pale brown.

Specimen examined. China, Hainan Province: Five Fingers Group Scenic Area, 20 May 2021, Z.X. Zhang. On diseased leaves of *Ficus microcarpa*, HSAUP210112, living culture SAUCC210112; on diseased leaves of *Ficus microcarpa*, HSAUP210113, living culture SAUCC210113.

Notes. In the present study, two strains (SAUCC210112 and SAUCC210113) from symptomatic leaves of *Ficus microcarpa* were clustered with *Neopesataliotiopsis piceana*.
clade (Maharachch. et al. 2014) based on phylogeny (Fig. 1). Morphologically, our strains were the same as *N. piceana*, which was originally described with an asexual morph on wood of *Picea* sp., *Cocos nucifera* and fruit of *Mangifera indica*. The sexual morph of *N. piceana* was undetermined yet. *Neopestalotiopsis piceana* was a new record for China and first reported from *Ficus macrocarpa* (Moraceae).

Figure 4. *Neopestalotiopsis piceana* (SAUCC210112) a diseased leaf of *Ficus microcarpa* b surface of colony after 7 days on PDA c reverse of colony after 7 days on PDA d conidiomata e–g conidiogenous cells with conidia h–j conidia. Scale bars: 10 μm (e–j).

Pestalotiopsis licualicola K. Geng, Y. Song, K.D. Hyde & Yong Wang bis, *Phytotaxa* 88 (3):51. (2013)

Fig. 5

Description. Leaf spots irregular, pale brown in centre, brown to tan at margin. Asexual morph on PDA: Conidiomata solitary, scattered, black, raising above surface of culture
medium, subglobose. Conidiophores cylindrical, hyaline, smooth-walled. Conidiophores often indistinct. Conidiogenous cells discrete, hyaline, simple, filiform, 5.5–10.0 μm long. Conidia 18.0–24.5 × 4.0–5.5 μm, mean ± SD = 20.5 ± 1.9 × 5.3 ± 0.3 μm, fusiform, straight to slightly curved, 4-septate, smooth, greyish brown; basal cell conical, hyaline, thin-walled, 2.8–6.0 μm long; with three median cells, dark brown, concolorous, septa and periclinal walls darker than the rest of the cell, together 11.5–16.0 μm long, mean ± SD = 13.2 ± 1.2 μm; second cell from base 3.4–5.5 μm; third cell 3.3–4.7 μm; fourth cell 3.5–5.1 μm; apical cell hyaline, conic to subcylindrical, 3.1–5.3 μm; with 1–3

Figure 5. *Pestalotiopsis licualicola* (SAUCC210087) a diseased leaf of *Ilex chinensis* b surface of colony after 7 days on PDA c reverse of colony after 7 days on PDA d conidiomata f, g, j, k conidiogenous cells with conidia e, h, i, l, m conidia. Scale bars: 10 μm (e–m).
tubular apical appendages (mostly 1) without knobs, arising from the apex of the apical cell, 10.0–20.5 μm long, mean ± SD = 16.0 ± 4.0 μm; basal appendage filiform, short.

Culture characteristics. Colonies on PDA reaching 70.0–80.0 mm diam after 7 d at 25 °C, growth rate 9.0–12.0 mm/day, edge entire, whitish to pale honey coloured, with sparse aerial mycelium on the surface, with black, gregarious conidiomata; reverse similar in colour.

Specimen examined. China, Hainan Province: East Harbour National Nature Reserve, 23 May 2021, Z.X. Zhang. On diseased leaves of *Ilex chinensis*, HSAUP210087, living culture SAUCC210087; on diseased leaves of *Ilex chinensis*, HSAUP210088, living culture SAUCC210088.

Notes. In the present study, two strains (SAUCC210087 and SAUCC210088) from symptomatic leaves of *Ilex chinensis* were clustered to *Pestalotiopsis licualicola* clade (Geng et al. 2013) based on phylogeny (Fig. 1). Morphologically, our strains were the same as *P. licualicola*, which was originally described with an asexual morph on leaves of *Licuala grandis* in China. The sexual morph of *P. licualicola* was undetermined yet. This is the first time this species has been reported in *Ilex chinensis* (Aquifoliaceae) in China.

Discussion

Based on phylogeny and morphology, nine strains from three host species (*Ficus microcarpa*, *Ilex chinensis* and *Schima superba*) were described as well as two new species (*Monochaetia schima* sp. nov. and *Neopestalotiopsis baikouensis* sp. nov.) and two known species (*Neopestalotiopsis piceana* and *Pestalotiopsis licualicola*). In the genus *Monochaetia*, most species were found on Fagaceae hosts, including *Castanea pubinervis* (*Monochaetia dimorphospora*), *Castanea mollissima* (*Monochaetia castaneae*), *Quercus pubescens* (*Monochaetia monochaeta*) and etc. In our study, the species of *Monochaetia* (*M. schima*) was first reported from *Schima superba* (Theaceae). *Ilex* was widely grown as an evergreen tree all over the world and isolated many pathogens, endophytes or saprophytes (Alfieri et al. 1984; Maharachch. et al. 2014; de Silva et al. 2017; Solarte et al. 2018). More than 100 strains (Xylariales) have been isolated from the genus *Ilex*. Among these, there was 13 pestalotia-like fungi, and we compare morphology with my new collection. In morphology, the conidia size of *Pestalotiopsis humicola* is similar to *Neopestalotiopsis baikouensis*. Phylogenetic analyses of Maharachch. et al. (2014) and the current study show *Neopestalotiopsis* and *Pestalotiopsis* are different genus. The known species *Neopestalotiopsis piceana* was described from *Picea* sp. (Pinaceae) in United Kingdom (Maharachch. et al. 2014) and *Pestalotiopsis licualicola* was described from *Licuala grandis* (Palmaceae) in China (Geng et al. 2013). In this study, *Neopestalotiopsis piceana* was a new record for China and first reported from *Ficus macrocarpa* (Moraceae), *Pestalotiopsis licualicola* was first reported from *Ilex chinensis* (Aquifoliaceae) in China, so we described and illustrated *N. piceana* and *P. licualicola* again. Species in genera have multi-septate and more or less fusiform conidia with a single apical and basal appendage (*Monochaetia, Seiridium*); other genera do not form appendages (*Nonappendiculata*) or have 2–4 appendages (*Pestalotiopsis*, *Ciliochorella*, *Nonappendiculata*),
Neopestalotiopsis, Pseudopestalotiopsis) (Maharachch. et al. 2014; Bonthond et al. 2018; Liu et al. 2019). Our study supported this phenomenon.

As many pestalotioid species have overlapping morphological traits, sequence data is essential to resolve these three genera and introduce new species (Jeewon et al. 2002; de Silva et al. 2017; Norphanphoun et al. 2019). Combined gene sequences of ITS, tub2 and tef1 can provide a better resolution for Monochaetia. However, more genes are needed to provide better resolution and support in Neopestalotiopsis. In the previous studies, members of Sporocadaceae are of particular interest with regard to the production of secondary metabolites, e.g. Bartalinia, Morinia and Pestalotiopsis (Collado et al. 2006; Gangadevi and Muthumary 2008; Liu et al. 2009). Pestalotiopsis fici was shown to possess a very high number of gene clusters involved in bioactive compound synthesis (Wang et al. 2016). Owing to Pestalotiopsis and other genus in this family sharing the same evolutionary history, it is important to report novel species and screen for novel metabolites in future studies.

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (nos. 31900014, U2002203, 31750001) and National Science and Technology Fundamental Resources Investigation Program of China (2019FY100704).

References

Akinsanmi OA, Nisa S, Jeff-Ego OS, Shivas RG, Drenth A (2017) Dry Flower Disease of Macadamia in Australia Caused by Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov. Plant Disease 101(1): 45–53. https://doi.org/10.1094/PDIS-05-16-0630-RE

Alfieri Jr SA, Langdon KR, Wehlburg C, Kimbrough JW (1984) Index of Plant Diseases in Florida (Revised). Florida Dept. Agric. And Consumer Serv., Div. Plant Ind. Bull. 11: 1–389.

Allescher A (1902) Fungi Imperfecti: Gefärbt-sporige Sphaerioideen. Rabenhorst's Kryptogamen-Flora von Deutschland. Österreich und der Schweiz. 2nd edn. Kummer, Leipzig, 65–128.

Ayoubi N, Soleimani MJ (2016) Strawberry Fruit Rot Caused by Neopestalotiopsis iranensis sp. nov., and N. mesopotamica. Current Microbiology 2016(72): 329–336. https://doi.org/10.1007/s00284-015-0955-y

Barber PA, Crous PW, Groenewald JZ, Pascoe IG, Keane P (2011) Reassessing Vermisporium (Amphisphaeriaceae), a genus of foliar pathogens of eucalypts. Persoonia 27(1): 90–118. https://doi.org/10.3767/003158511X617381

Bezerra JDP, Machado AR, Firmino AL, Rosado AWC, Souza CAF, Souza-Motta CM, Freire KTLS, Paiva LM, Magalhaes OMC, Pereira OL, Crous PW, Oliveira TGL, Abreu VP, Fan XL (2018) Mycological Diversity Description I. Acta Botanica Brasílica 32(4): 656–666. https://doi.org/10.1590/0102-33062018abb0154
Bonthond G, Sandoval-Denis M, Groenewald JZ, Crous PW (2018) *Seiridium* (Sporocadaceae): An important genus of plant pathogenic fungi. Persoonia 40(1): 96–118. https://doi.org/10.3767/persoonia.2018.40.04

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia 91(3): 553–556. https://doi.org/10.2307/3761358

Collado J, Platas G, Bills GF, Basilio Á, Vicente F, Rubén Tormo J, Hernández P, Teresa Díez M, Peláez F (2006) Studies on *Morinia*: Recognition of *Morinia longiappendiculata* sp. nov. as a new endophytic fungus, and a new circumscription of *Morinia pestalozzioides*. Mycologia 98(4): 616–627. https://doi.org/10.1080/15572536.2006.11832665

Crous PW, Wingfield MJ, Le RJJ, Richardson DM, Strasberg D, Shivis RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan YP, Altés A, Barasubiye T, Barnes CW, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R, Daniel R, de Beer ZW, Yáñez-Morales M de Jesús, Duong TA, Fernández-Vicente J, Geering ADW, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khemmuk W, Kolařík M, Kurli R, Lebeuf R, Lévesque CA, Lombard L, Magista D, Manjón JL, Marincowitz S, Mohedano JM, Nováková A, Oberlies NH, Otto EC, Paguigan ND, Pascoe IG, Pérez-Buttrón JL, Perrone G, Rahi P, Raja HA, Rintoul T, Sanhueza RMV, Scarlett K, Shouche YS, Shuttleworth LA, Taylor PWJ, Thorn RG, Vawdrey LL, Solano-Vidal R, Voitk A, Wong PTW, Wood AR, Zamora JC, Groenewald JZ (2015) Fungal planet description sheets: 371–399. Persoonia 35(1): 264–327. https://doi.org/10.3767/003158515X690269

Crous PW, Schumacher RK, Wingfield MJ, Akulov A, Denman S, Roux J, Braun U, Burgess T, Carnegie AJ, Vaczy KZ, Gutimosim E, Schwartsburd PB, Barreto RW, Hernández-Restrepo M, Lombard L, Groenewald JZ (2018) New and Interesting Fungi. 1. Fungal Systematics and Evolution 1(1): 169–215. https://doi.org/10.3114/fuse.2018.01.08

de Silva N, Phookamsak R, Maharachchikumbura SSN, Thambugala KM, Jayarama Bhat D, Al-Sadi AM, Lumyong S, Hyde KD (2017) *Monochaetia ilexae* sp. nov. (Pestalotiopsidaceae) from Yunnan Province in China. Phytotaxa 291(2): 123–132. https://doi.org/10.11646/phytotaxa.291.2.3

de Silva N, Maharachchikumbura SSN, Thambugala KM, Jayarama Bhat D, Phookamsak R, Al-Sadi AM, Lumyong S, Hyde KD (2018) *Monochaetia sinensis* sp. nov. from Yunnan Province in China. Phytotaxa 375(1): 59–69. https://doi.org/10.11646/phytotaxa.375.1.2

Freitas EFS, de Silva N, Barros MVP, Kasuya MCM (2019) *Neopestalotiopsis hadrolaëliae* sp. nov., a new endophytic species from the roots of the endangered orchid *Hadrolaelia jongheana* in Brazil. Phytotaxa 416(3): 211–220. https://doi.org/10.11646/phytotaxa.416.3.2

Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus *Bartalinia robillardoides* Tassi, isolated from a medicinal plant, *Aegle marmelos* Correa ex Roxb. World Journal of Microbiology & Biotechnology 24(5): 717–724. https://doi.org/10.1007/s11274-007-9530-4

Gao YH, Sun W, Su YY, Cai L. (2014) Three new species of *Phomopsis* in Gutianshan Nature Reserve in China. Mycological Progress 13(1): 111–121. https://doi.org/10.1007/s11557-013-0898-2

Geng K, Zhang B, Song Y, Hyde KD, Kang JC, Wang Y (2013) A new species of *Pestalotiopsis* from leaf spots of *Licuala grandis* from Hainan, China. Phytotaxa 88(3): 49–54. https://doi.org/10.11646/phytotaxa.88.3.2
Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

Griffiths DA, Swart HJ (1974) Conidial structure in two species of Pestalotiopsis. Transactions of the British Mycological Society 62(2): 295–304. https://doi.org/10.1016/S0007-1536(74)80038-0

Guba EF (1956) Monochaetia and Pestalotia vs. Truncatella, Pestalotiopsis and Pestalotia. Annals of Microbiology 7: 74–76.

Guba EF (1961) Monograph of Pestalotia and Monochaetia. Harvard University Press, Cambridge.

Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. The New Phytologist 147(3): 617–630. https://doi.org/10.1046/j.1469-8137.2000.00716.x

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics (Oxford, England) 17(17): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Jaklitsch WM, Gardiennet A, Voglmayr H (2016) Resolution of morphology-based taxonomic delusions: Acrocordiella, Basseiptospora, Blogiascospora, Cypeosphaeria, Hymenopleella, Lepetteutya, Pseudapiospora, Requienella, Seridium and Strickeria. Persoonia 37(1): 82–105. https://doi.org/10.3767/003158516X690475

Jayawardena RS, Zhang W, Liu M, Maharachchikumbura SSN, Zhou Y, Huang JB, Nilthong S, Wang ZY, Li XH, Yan JY, Hyde KD (2015) Identification and characterization of Pestalotiopsis-like fungi related to grapevine diseases in China. Fungal Biology 119(5): 348–361. https://doi.org/10.1016/j.fusbio.2014.11.001

Jayawardena RS, Liu M, Maharachchikumbura SSN, Zhang W, Xing QK, Hyde KD, Nilthong S, Li XH, Yan JY (2016) Neopestalotiopsis vitis sp. nov. causing grapevine leaf spot in China. Phytotaxa 258(1): 63–74. https://doi.org/10.11646/phytotaxa.258.1.4

Jeewon R, Liew ECY, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Molecular Phylogenetics and Evolution 25(3): 378–392. https://doi.org/10.1016/S1055-7903(02)00422-0

Jiang N, Voglmayr H, Bian DR, Piao CG, Wang SK, Li Y (2021a) Morphology and Phylogeny of Gnomoniopsis (Gnomoniaceae, Diaporthales) from Fagaceae Leaves in China. Journal of Fungi (Basel, Switzerland) 7(10): e792. https://doi.org/10.3390/jof7100792

Jiang N, Fan XL, Tian CM (2021b) Identification and Characterization of Leaf-Inhabiting Fungi from Castanea Plantations in China. Journal of Fungi (Basel, Switzerland) 7(1): e64. https://doi.org/10.3390/jof7010064

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054

Kumar V, Cheewangkoon R, Gentekaki E, Maharachchikumbura SSN, Brahmanage RS, Hyde KD (2019) Neopestalotiopsis alpapicalis sp. nov. a new endophyte from tropical mangrove trees in Krabi Province (Thailand). Phytotaxa 393(3): 251–262. https://doi.org/10.11646/phytotaxa.393.3.2
Liu L, Li Y, Liu SC, Zheng ZH, Chen XL, Zhang H, Guo LD, Che YS (2009) Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici. Organic Letters 11(13): 2836–2839. https://doi.org/10.1021/ol901039m

Liu F, Bonthond G, Groenewald JZ, Cai L, Crous PW (2019) Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Studies in Mycology 92(1): 287–415. https://doi.org/10.1016/j.simyco.2018.11.001

Ma XY, Maharachchikumbura SSN, Chen BW, Hyde KD, Mckenzie EHC, Chomnunti P, Kang JC (2019) Endophytic pestalotiod taxa in Dendrobium orchids. Phytotaxa 419(3): 268–286. https://doi.org/10.11646/phytotaxa.419.3.2

Maharachchikumbura SSN, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD (2011) Pestalotiopsis – morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50(1): 167–187. https://doi.org/10.1007/s13225-011-0125-x

Maharachchikumbura SSN, Guo LD, Chukeatirote E, Wu WP, Sun X, Crous PW, Jayarama Bhat D, McKenzie EHC, Bahkali AH, Hyde KD (2012) A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Diversity 2012(56): 95–129. https://doi.org/10.1007/s13225-012-0198-1

Maharachchikumbura SSN, Guo LD, Chukeatirote E, McKenzie EHC, Hyde KD (2013) A destructive new disease of Syzygium samarangense in Thailand caused by the new species Pestalotiopsis samarangensis. Tropical Plant Pathology 38(3): 227–235. https://doi.org/10.1590/S1982-56762013005000002

Maharachchikumbura SSN, Hyde KD, Groenewald JZ, Xu J, Crous PW (2014) Pestalotiopsis revisited. Studies in Mycology 79(1): 121–186. https://doi.org/10.1016/j.simyco.2014.09.005

Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Jayarama Bhat D, Dayarathe MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang QJ, Xiao Y, D’souza MJ, Hongsanan S, Jayawardena RS, Daranagama DA, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Wahab MAA, Sadi AMA, Bahkali AH, Boonmee S, Boonyuen N, Cheewangkoon R, Dissanayake AJ, Kang J, Li QR, Liu JK, Liu ZX, Liu ZY, Luangsarard JJ, Pang KL, Phookamsak R, Promputtha I, Suetrong S, Studer M, Wen TC, Wijayawardene NN (2016) Families of Sordariomycetes. Fungal Diversity 79(1): 1–317. https://doi.org/10.1007/s13225-016-0369-6

Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment. Bridging from the extreme to the campus and beyond. Association for Computing Machinery, USA, 1–8. https://doi.org/10.1145/2335755.2335836

Nag Raj TR (1993) Coelomycetous Anamorphs with Appendage-Bearing Conidia. Mycologue Publications, Waterloo, Ontario.

Norphanphoun C, Jayawardena RS, Chen Y, Wen TC, Meepol W, Hyde KD (2019) Morphological and phylogenetic characterization of novel pestalotiod species associated with mangroves in Thailand. Mycosphere: Journal of Fungal Biology 10(1): 531–578. https://doi.org/10.5943/mycosphere/10/1/9
Two new species of Sporocadaceae from Hainan, China

Nylander JAA (2004) MrModelTest v. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. Molecular Phylogenetics and Evolution 7(1): 103–116. https://doi.org/10.1006/mpev.1996.0376

O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95(5): 2044–2049. https://doi.org/10.1073/pnas.95.5.2044

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Saccardo PA (1884) Sylloge fungorum omnium hucusque cognitorum 3: 797.

Senanayake IC, Maharachchikumbura SSN, Hyde KD, Jayarama Bhat D, Gareth Jones EB, McKenzie EHC, Dai DQ, Daranagama DA, Dayarathne MC, Goonasekara ID, Konta S, Li WJ, Shang QJ, Stadler M, Wijayawardene NN, Xiao YP, Norphanphoun C, Li Q, Liu XZ, Bahkali AH, Kang JC, Wang Y, Wen TC, Wendt L, Xu JC, Camporesi E (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Diversity 73(1): 73–144. https://doi.org/10.1007/s13225-015-0340-y

Silvério ML, de Cavalcanti MA (2016) A new epifoliar species of *Neopestalotiopsis* from Brazil. Agrotópica 28(2): 151–158. https://doi.org/10.21757/0103-3816.2016v28n2p151-158

Solarte F, Munoz CG, Maharachchikumbura SSN, Alvarez E (2018) Diversity of *Neopestalotiopsis* and *Pestalotiopsis* spp., causal agents of guava scab in Colombia. Plant Disease 102(1): 49–59. https://doi.org/10.1094/PDIS-01-17-0068-RE

Song Y, Geng K, Zhang B, Hyde KD, Zhao WS, Wei JG, Kang JC, Wang Y (2013) Two new species of *Pestalotiopsis* from Southern China. Phytotaxa 126(1): 22–30. https://doi.org/10.11646/phytotaxa.126.1.2

Stamatakis A (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Steyaert RL (1949) Contribution a l’etude monographique de *Pestalotia* de Not. et *Monochaetia* Sacc. (*Truncatella* gen. nov. et *Pestalotiopsis* gen. nov.). Bulletin Jardin Botanique Etat Bruxelles 19(3): 285–354. https://doi.org/10.2307/3666710

Steyaert RL (1953) New and old species of *Pestalotiopsis*. Transactions of the British Mycological Society 36(2): 81–89. https://doi.org/10.1016/S0007-1536(53)80052-5

Steyaert RL (1961) Type specimens of Spegazzini’s collections in the *Pestalotiopsis* and related genera (Fungi Imperfecti: Melanconiales). Darwinia (Buenos Aires) 12: 157–190.
Steyaert RL (1963) Complementary informations concerning Pestalotiopsis guepini (Desmazieres) Steyaert and designation of its lectotype. Bulletin Jardin Botanique l’Etat Bruxelles 33(3): 369–373. https://doi.org/10.2307/3667200

Sutton BC (1980) The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, Surrey.

Tanaka K, Endo M, Hirayama K, Okane I, Hosoya T, Sato T (2011) Phylogeny of Discosia and Seimatosporium, and introduction of Adisciso and Immerdisosporia genera nova. Persoonia 26(1): 85–98. https://doi.org/10.3767/003158511X576666

Tibpromma S, Hyde KD, Mckenzie E, Bhat DJ, Phillips AJL, Wanasinghe DN, Samarakoon MC, Jayawardena RS, Dissanayake AJ, Tennakoon DS, Doilom M, Phookamsak R, Tang AMC, Xu J, Mortimer PE, Promputtha I, Maharachchikumbura SSN, Khan S, Karunarathna SC (2018) Fungal diversity notes 840–928: Micro-fungi associated with Pandanaceae. Fungal Diversity 93(1): 1–160. https://doi.org/10.1007/s13225-018-0408-6

Wang B, Zhang ZW, Guo LD, Liu L (2016) New cytotoxic meroterpenoids from the plant endophytic fungus Pestalotiopsis fici. Helvetica Chimica Acta 99(2): 151–156. https://doi.org/10.1002/hlca.201500197

White TJ, Bruns T, Lee S (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ (Eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wijayawardene NN, Hyde KD, Wanasinghe DN, Papizadeh M, Goonasekara ID, Camporesi E, Jayarama Bhat D, McKenzie EHC, Phillips AJL, Diederich P, Tanaka K, Li WJ, Tangthirasunun N, Phookamsak R, Dai DQ, Dissanayake AJ, Weerakoon G, Maharachchikumbura SSN, Hashimoto A, Matsumura M, Bahkali AH, Wang Y (2016) Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77(1): 1–316. https://doi.org/10.1007/s13225-016-0360-2

Supplementary material 1

The combined ITS, tub2 and tef1 sequences

Authors: Zhaoxue Zhang, Rongyu Liu, Shubin Liu, Taichang Mu, Xiuguo Zhang, Jiwen Xia

Data type: phylogenetic

Explanation note: The combined ITS, tub2 and tef1 sequences.

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/mycokeys.88.82229.suppl1