Evaluating the supercritical extraction effects on the chemical compositions of the extracted oil using GC/TOF MS

Ahmad H Ibrahim1* Sawsan S Al-Rawi1

1 Faculty of Sciences, University of Zakho, Kurdistan Region, Iraq
*Corresponding Authors: Ahmad H. Ibrahim: Faculty of Sciences, University of Zakho, Kurdistan Region, Iraq. Email address: dr.ahmadh.ibrahim@gmail.com

Abstract. Gas chromatography time of flight mass spectrometry (GCTOFMS) is becoming an attractive and alternative full-spectrum technique against others traditional instruments. In this study, the GCTOFMS was used to evaluate the effect of supercritical temperature and pressure on the chemical composition of the extraction yields. A total of 12 samples obtained from 3x4 general factorial design were analyzed for its chemical components using GCTOFMS. A list of compounds was identified and matched to the NIST library with a hit over 80% on the basis of the specific mass determination of their molecular ions and their major fragments. All the overlaps peaks were separated. All the extracted oils possess similar chemical components but varied in each compound concentration. Moreover, the aromatic ethers group was identified as the main group in the supercritical extracts with the presence of Myristicin as the highest peak, whereas, in the soxhlet extraction this group concentration was found lower. This result reveals the great effect of the extraction condition and the used method on the chemical compositions of the extraction yield and the concentration of each compound. This finding indicates and confirms the potential use of supercritical extraction in producing richer extract and fractions.

Key words: Gas Chromatography: Nutmeg: Supercritical: Time of flight.

1. Introduction
These Gas chromatography time of flight mass spectrometry (TOFMS) is becoming an attractive and alternative full-spectrum technique against others traditional instruments. The novelty and the potent of this technique led to the detection and quantification of low levels of several compounds [1]. ToF-MS has many characteristics including the high-speed full spectrum acquisition without mass spectral skewing which led to preserve high resolution and maximize sensitivity. This has made the TOF MS very attractive for the screening of target and non-target compounds and for their reliable accurate mass confirmation. Thus, it has been applied in many different field such as environmental research [2], biological samples [3], in the presence of pesticides in food [4] and in food analysis [5]. Fragrance and essential oils contains monoterpenoids, sesquiterpenoids, saturated and unsaturated hydrocarbons, alcohols, carbonyl derivatives, and esters. The common analysis tool for identifying these compounds is GC. These compound classes possess similar chromatographic behavior, and may have common isobaric molecular ions or MS in GC [6]. TOF-MS has significantly more reliable interpretation for compound identification. Its ability in generate broader peak that enables Character-impact odorants to be identified more than traditional GC [6]. TOF MS very attractive for the rapid screening of compounds and for their ability to produce an accurate mass confirmation [7]. Moreover, it is a rapid sample screening and definitive identifications in the presence of low amounts of matrix [5]. Fay [8] selected seafood extract as a representative example for complex food flavors. Several
unidentified flavor components molecules of the seafood extract using GC-quadrupole MS were successfully identified using GC-TOFMS.

Supercritical extraction techniques have been used widely in extraction and fractionation [9][10][11]. Thus, many researchers have used it in the extracting of nutmeg oil [12]. Nutmeg is a native South East Asian plant that has many significant properties [13]. Up to now, few papers have been published regarding GC analysis of nutmeg oil, with less information about GC-TOFMS has been conducted or published yet. Therefore, in this study, the GC-TOFMS will be applied for the determination of chemical components of the supercritical and soxhlet extract of nutmeg seed and to study the effect of the supercritical extraction temperature and pressure on the chemical composition of the extracted oil.

2. Material &Methods

2.1. Chemicals & Material
Commercial liquid carbon dioxide gas with purity of 99 g kg\(^{-1}\) was purchased locally from Malaysian Oxygen, Penang, Malaysia in a gas cylinder at temperature below -5°C. Nutmeg samples were purchased from a farm in Balik Pulau, Pinang, Malaysia. n-Hexane from AR grad obtained from R&M marketing UK., Ethyl acetate HPLC grade was purchased from Merck.

2.2. Supercritical carbon dioxide (SC-CO\(_2\)) extraction
The SC-CO\(_2\) extraction was conducted using a supercritical fluid extractor SFX™ 220 (ISCO, Inc., Lincoln, NE. USA; model SFX 220) with 2.5 ml extractor vessel capacity. General factorial design of two variable multi-levels was applied with thirty six runs to investigate the operating parameters that influence the supercritical extraction condition of nutmeg oil that give the highest yield. The first independent variable studied was extraction pressure (MPa) with 4 levels as follow (20.7, 27.6, 34.5 and 41.4 MPa). The second independent variable was temperature with three levels (40, 50 and 60 °C). Response is the oil yield at each design point was recorded. Extraction was carried out at all the design points and each extraction was run in three replicates, and the average was calculated. About 1.5 g of ground nutmeg seed was placed into the extractor vessel. The extraction was then performed under various experimental conditions in accordance with the full factorial design.

2.3. Soxhlet extraction
About 15 g of nutmeg grinded seeds were extracted using n-Hexane in a soxhlet apparatus for the duration of 8 h as described by AOCS Standard Method (30.036) [14]. The result of extraction yield was expressed as the percentage of crude extract.

2.4. GC-TOFMS
The GC-TOFMS instrument was used in this experiment, which consist of a gas chromatogram 7890 (Agilent Technology) and a 7890 series auto sampler injector with controller, coupled with a LECO Pegasus© III GC-TOFMS with electron impact ionization equipment. All data were processed and analyzed with LECO ChromaTOF® software. Gas chromatography was carried out using MS capillary column-HP-5 (30 m x 0.32 mm x film thickness 0.25 µm) with a constant flow rate of helium at 1 mL/min as a carrier gas. The GC oven temperature programmed for 70 °C, hold for 2min, then the temperature gradually increased to 280 °C at the rate of 20 °C/min and was hold for 20min. Sample injection volume was 3 µL in the splitless injections mode. Injection port temperature was set to 280 °C for the entire run with total run time was 1950 seconds. Electron impact ionization was performed at electro energy -70 eV was used. Ion source temperature was set to 250 °C. The detector voltage is 1550 volt. Data acquisition was at the mass range 30 to 700 amu, at a rate of 20spectra/sec. As for the processing data method the ratio of signal to noise (S/N) was set to 10.0 (to enable the scan of all compounds peaks). Minimum/maximum molecular weight was set to 30/750 respectively. All the detected peaks on the chromatogram were determined by comparing their mass ionization spectrum with NIST library.
3. Result and Discussion

3.1. Chemical constituent identification using GC-TOF/MS

In this experiment, non-target screening of nutmeg seed oil extracted by using SFE was carried out using LECO Pegasus© III GCTOF-MS. The LECO ChromaTOF® software automatically detected peaks according to a defined parameters, showing their mass spectra to be searched in the library, and produced a hit list with positive matches (library match >70 %). A large list of compounds was identified and was matched to the NIST library. It has been well established that the TOFMS capability in identifying non target compounds was due to its capacity in recording the full spectrum for all the detected compounds at the same time. The amount of each identified compound is represented as qualitatively (% area) in an automated search was applied to determine the chemical constituent of oil at each supercritical extraction condition. The data processing method gives the (TIC) total ion chromatograph profile of extracted oil and (AIC) analytical ion chromatograph. The AIC spectrum offers information similar to the (TIC) but with higher signal-to-noise ratio. The AIC is the sum of the extracted-ion chromatograms for the ions in the found peaks.

3.2. Chemical constituent of the supercritical extracted oil of nutmeg seed M. fragrans.

A total of 12 samples which represent all the extracted oils that were obtained from the supercritical extraction were tested and analyzed for it chemical components using GCTOFMS. The results showed that all the extracted oils were very much similar in the chemical components, but varied in each component concentration. The major chemicals compounds that were present in the extracted nutmeg were listed in Table 1.

No	Compound Name	Formula
1	Eugenol	C7H8O2
2	Isoeugenol	C10H12O2
3	Methoxyeugenol	C11H14O3
4	Methylleugenol	C11H14O2
5	Myristicin	C11H12O3
6	Asarone	C12H16O3
7	Safrole	C10H10O2
8	Decanoic acid, methyl ester	C11H22O2
9	α-Phellandrene	C10H16
10	Terpinolen	C10H16
11	Sabinen	C10H16
12	4-Carene,	C10H16
13	Anisole,	C19H24O3
14	a-Thujene	C10H16
15	α-Pinen	C10H16
16	κ-Terpinen	C10H16
17	Copaene	C10H16

However, the result of the GCTOF analysis showed that more than 80 % of the detected compounds were identified with a high similarity of more than 70 % matching with NIST library and during acquisition time of 1200 sec. After the 1200 sec, only few compounds were detected, and these compounds showed low similarity with the NIST library except of few compounds with significant similarity such as methoxyeugenol. This is due to the high resolution capability of the GCTOFMS, and the advantages of using multichannel ion detector. According to Veriotti & Sacks [16] Time-of-flight (TOF) MS can be used to obtain reliable extracted ion chromatograms with high spectral
acquisition rates, as this will allow for the characterization of many narrower GC peaks. Interestingly, the area percentage of each compound varied between the extracted oils. Some components were present in all the supercritical extraction oil and increased with increasing temperature. Figure 1a, shows the analytical-ion chromatogram (AIC) for nutmeg oil extracted using supercritical extraction at extraction temperature of 40 °C with pressure of 20.7, 27.6, 34.5, and 41.4MPa. Myristicin was found as a true peak with exact mass of 192.1, it is also the largest peak in the chromatogram that appeared at 727.2 sec, with a hit similarity of 86.6 % and above with the NIST library. Figure 1b shows the matching of the Myristicin in the extracted sample with the NIST library. Moreover, the chromatogram has become very complex and overfilled with peaks with increasing the extraction pressure of 41.3MPa. The chromatogram also showed very obvious differences between the extractions at different pressure, as the peaks become sharper, higher and more compounds peaks appeared. However, the Myristicin peak has a significant interference from 1-Octanamine by increasing the pressure. Despite with this extensive overlap, components identification by the provided software of LECO ChromaTOF was successful, and few other peak overlaps were also successfully detected.

Figure 1a. shows the AIC of the supercritical extraction of nutmeg seed at extraction temperature of 40 ° C using pressure

Figure 1b. Myristicin peak compound in the supercritical extraction vs NIST library.
The AIC for the supercritical extraction at extraction temperature of 50 °C using the extraction pressures set of 20.7, 27.6, 34.5, and 41.4MPa is shown in figure 2. Myristicin which appears again as the largest peak in the chromatogram, while (1-Octanamine) overlaps significantly with it, yet, spectral overlap was detected successfully and both two compounds peaks were successfully identified. Myristicin was detected as a true peak (with exact mass of 192.1) at 727.2 sec, which hit the NIST library significant with similarity of 86 % and above. Note that the supercritical nutmeg oil samples at a fixed temperature of 50 °C exhibited similar AIC for the extracted samples at different pressures. Á-Phellandrene was identified as well as Sabinene which scored library matching with 90. However, the extraction pressure affect it presence as well. The peak area percentage of sabinen increased gradually with increasing the pressure to 41.3MPa. Á-pinene appears and overlaps with sabinen at the retention time of 495.4s and hit the library with 87.6 %. This result confirmed that at constant temperature increasing the pressure increases the extraction yield and improved the presence of some compounds. It can be seen from the chromatogram at figure 3 that more number of peaks appeared at the highest extraction pressure of 41.3MPa. This is due to the solvating power of the SC-CO₂ fluid, which improved the isolation and extraction of some compounds from the matrix. Also, terpinenol-4 hit the library matching with a similarity of 86.7 % at the retention time of 594.9s with an exact mass of 154.13. Whereas, (-)-limonene matched the NIST library significantly with 91%. Moreover, the result of the AIC showed that the peaks in the region between 400 and 600s were mostly terpen compounds that belong to the monoterpens family. While, á-phellandrene, 1-terpinen-cis appeared at with similarity above 80 %. It was found from the AIC, that the presence of the aromatic ether group followed the monoterpen group, which starts to appear at the region from 600s to 800s with higher similarity above 80 % such as isoeugenol and asaron. Interestingly Methyleugenol hit significant similarity of 92.5 % which formed a peak area about 7.6 % as well as methoxyeugenol aromatic ether and a phenylpropane compound.

Figure 2. Shows the AIC of the supercritical extraction of nutmeg seed at extraction temperature of 50°C using different pressures.

Figure 3 shows the AIC for the supercritical extraction oil of nutmeg at extraction temperature of 60 °C using the extraction pressures set of 20.7, 27.6, 34.5, and 41.4MPa, also giving the highest peak area for the myristicin. It can be seen that the chromatogram has more peak than the extracted sample at temperature of 50 °C, which confirmed our previous result for the extraction yield. In addition, it is perceived from AIC chromatogram, that the extraction oil at the highest pressure of 41.3MPa has more peaks with higher peak area from other extraction oil at lower pressure which indicates that increasing the pressure increased the extraction yield. This fact theoretically and practically acceptable, as increasing the pressure of a supercritical gas, will easily separate the extracted organic compounds from the gaseous phase [16].
However, few components started to appear at the highest extraction pressure of 41.3MPa, which is nearly absent in the extracted oil at all lower pressure such as 3-carene, α-linalool and 4-terpineol, which were overlapped and successfully separated and identified by the supplied software. Figure 4 shows the AIC of the supercritical extraction oils of nutmeg at the lowest extraction pressure of 20.7MPa and the highest 41.3MPa respectively using the extraction temperature of 40, 50 and 60 °C. It can be seen from the AIC that at a fixed operating pressure, many chemical components were extracted by increasing the extraction temperature from 40 to 60 °C. At higher pressure of 41.3MPa, the chromatogram was overfilled with many peaks. It was perceived that at a fixed operating pressure increasing temperature has positive effect on the presence of some chemical components while it reduces the presence of others. The result also shows that using SFE extraction at temperature of 50 °C and pressure of 20MPa, high concentration of myristicin can be fractioned and obtained from nutmeg seed. Spricigo et al [18] extracted and identified the chemical composition of the nutmeg essential oil obtained by and found that the myristicin compound is behind the characteristic aroma of nutmeg. However, many other researchers also identified the chemical composition of the nutmeg oil with the presence of myristicin higher in SF than traditional method [19].
Sabinene, Alfa Phellendren, safarol, copaene was also existing at all different temperatures and increased by increasing the temperature as shown in figure 5. Sabinene increased with temperature increment at a fixed extraction pressure with a similarity of 90.9 % matching with the NIST library as shown in figure 6a. This is due to the increase in solubility or solvent density which increases the solute presence in the extracted oil. This result was in agreement with previous study from [20]. Figure 6b, shows the molecular structure of Sabinen.

Moreover, few other compounds concentration increased by increasing the extraction temperature from 40 to 60 such as elemicin, eugenol and farnesene.
3.3. Chemical Constituent of the extracted oil using soxhlet and compared to the supercritical extraction.

Figure 7 shows the AIC of the soxhlet extraction compared to the supercritical extraction oils of nutmeg. The result of the chromatogram of the comparison between the soxhlet extraction and the supercritical extraction at the highest pressure of 41.3MPa at temperature of 40, 50 and 60 °C shows quite full spectrum. It was found that at the region from 400s -600s the soxhlet extraction has many peaks with higher peak area, these peaks is representing the terpenes, monoterpen and Alcohol group particularly, Sabinen gives the highest peak area as well as Terpinenol-4, and á-phellandren. Whereas, at the region of 600 and above the supercritical peaks were more and with higher peak area than the soxhlet. Nevertheless, the supercritical extraction was richer in the aromatic ether group than the soxhlet extraction. Particularly, myristicin at temperature of 50°C gives the highest peak in the chromatogram. This result explained the difference in the extraction yield as the supercritical extraction gives higher yield than the soxhlet. Moreover, supercritical extraction was richer in the aromatic ether group which is behind its strong smell and fragrances.

![Figure 7. Shows the AIC of the supercritical extraction of nutmeg seed at extraction pressure of 41.3MPa using set range of different temperature compared with soxhlet.](image)

4. Conclusion

It can be concluded that GCTOFMS effectively identified and detected the chemical constituent of the nutmeg seed extract using simple method that uses little amount of sample. Moreover, using the GCTOFMS the effect of supercritical extraction temperature and pressure was confirmed represented by the various presences of chemical compounds. In addition, TOF-MS detected the overlaps spectral compounds significantly that matches well with the reference spectrum in the NIST library and identify each compound. In addition, our result confirms that the SFE can be used to extracted the desired compound or for fractionation purposes by optimizing its extraction parameters.

5. References

[1] Hernández F, Portolés T, Pitarch E, López FJ. Searching for anthropogenic contaminants in human breast adipose tissues using gas chromatography time of flight mass spectrometry. *Journal of mass spectrometry*. 2009 Jan;44(1):1-1.

[2] Dallüge J, Roose P, Brinkman UT. Evaluation of a high-resolution time-of-flight mass spectrometer for the gas chromatographic determination of selected environmental contaminants. *Journal of Chromatography A*. 2002 Sep 13;970(1-2):213-23.

[3] Kazda R, Hajšlová J, Poustka J, Čajka T. Determination of polybrominated diphenyl ethers in human milk samples in the Czech Republic: comparative study of negative chemical ionisation
mass spectrometry and time-of-flight high-resolution mass spectrometry. *Analytica Chimica Acta*. 2004 Aug 23;520(1-2):237-43.

[4] Leandro CC, Hancock P, Fussell RJ, Keely BJ. Quantification and screening of pesticide residues in food by gas chromatography–exact mass time-of-flight mass spectrometry. *Journal of Chromatography A*. 2007 Sep 28;1166(1-2):152-62.

[5] Čajka T, Hajšlová J, Kazda R, Poustka J. Challenges of gas chromatography–high resolution time of flight mass spectrometry for simultaneous analysis of polybrominated diphenyl ethers and other halogenated persistent organic pollutants in environmental samples. *Journal of separation science*. 2005 May;28(7):601-11.

[6] Marriott PJ, Chin ST, Maikhunthod B, Schmarr HG, Bieri S. Multidimensional gas chromatography. *TrAC Trends in Analytical Chemistry*. 2012 Apr 1;34:1-21.

[7] Santos FJ, Galceran MT. Modern developments in gas chromatography–mass spectrometry-based environmental analysis. *Journal of Chromatography A*. 2003 Jun 6;1000(1-2):125-51.

[8] Fay LB, Newton A, Simian H, Robert F, Douce D, Hancock P, Green M, Blank I. Potential of gas chromatography–orthogonal acceleration time-of-flight mass spectrometry (GC-oaTOFMS) in flavor research. *Journal of agricultural and food chemistry*. 2003 Apr 23;51(9):2708-13.

[9] Ab Rahman NN, Al-Rawi SS, Ibrahim AH, Nama MM, Ab Kadir MO. Supercritical carbon dioxide extraction of the residual oil from palm kernel cake. *Journal of food engineering*. 2012 Jan 1;108(1):166-70.

[10] Ibrahim AH, Al-Rawi SS, Majid AA, Rahman NA, Abo-Salah KM, Ab Kadir MO. Separation and fractionation of Aquilaria malaccensis oil using supercritical fluid extraction and the cytotoxic properties of the extracted oil. *Procedia Food Science*. 2011 Jan 1;1:1953-9.

[11] Ab Rahman NN, Nama MM, Al-Rawi SS, Ibrahim AH, Ab Kadir MO. Comparison of nutritional composition between palm kernel fiber and the effect of the supercritical fluid extraction on its quality. *Procedia Food Science*. 2011 Jan 1;1:1940-5.

[12] Al-Rawi SS, Ibrahim AH, Ab Rahman NN, Nama MM, Majid AM, Ab Kadir MO. The effect of supercritical fluid extraction parameters on the nutmeg oil extraction and its cytotoxic and antiangiogenic properties. *Procedia Food Science*. 2011 Jan 1;1:1946-52.

[13] Al-Rawi SS, Ibrahim AH, Majid AS, Majid AM, Ab Kadir MO. Comparison of yields and quality of nutmeg butter obtained by extraction of nutmeg rind by soxhlet and supercritical carbon dioxide (SC-CO2). *Journal of Food Engineering*. 2013 Dec 1;119(3):595-601.

[14] AOCS, Official Methods and Recommended Practices of the American Oil Chemists’ Society. 1980. *5th ed. AOCS Press*, Champaign.

[15] Veriotti T, Sacks R. High-speed GC and GC/time-of-flight MS of lemon and lime oil samples. *Analytical chemistry*. 2001 Sep 15;73(18):4395-402.

[16] Starmans DA, Nijhuis HH. Extraction of secondary metabolites from plant material: a review. *Trends in Food Science & Technology*. 1996 Jun 1;7(6):191-7.

[17] Spricigo CB, Pinto LT, Bolzan A, Novais AF. Extraction of essential oil and lipids from nutmeg by liquid carbon dioxide. *The Journal of supercritical fluids*. 1999 Jul 15;15(3):253-9.

[18] Spricigo CB, Pinto LT, Bolzan A, Novais AF. Extraction of essential oil and lipids from nutmeg by liquid carbon dioxide. *The Journal of supercritical fluids*. 1999 Jul 15;15(3):253-9.

[19] Machmudah S, Sulaswatty A, Sasaki M, Goto M, Hirose T. Supercritical CO2 extraction of nutmeg oil: Experiments and modeling. *The Journal of supercritical fluids*. 2006 Nov 1;39(1):30-9.
[20] Chung JY, Choo JH, Lee MH, Hwang JK. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. *Phytomedicine*. 2006 Mar 13;13(4):261-6.