Supplementary Information for

Genome-wide association studies identify novel loci associated with age at menarche and age at natural menopause

Chunyan He1,2, Peter Kraft1,2, Constance Chen1,2, Julie E. Buring2–4, Guillaume Paré3–5, Susan E. Hankinson3,6, Stephen J. Chanock7, Paul M. Ridker2–5, David J. Hunter1,2,6–8 & Daniel I. Chasman3–5

1Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA. 2Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA. 3Donald W. Reynolds Center for Cardiovascular Research, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue East, Boston, Massachusetts 02215, USA. 4Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue East, Boston, Massachusetts 02215, USA. 5Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue East, Boston, Massachusetts 02115, USA. 6Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, Massachusetts 02115, USA. 7Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 6120 Executive Boulevard, Bethesda, MD 20892, USA. 8Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. Correspondence should be addressed to C.H. (che@hsph.harvard.edu).
Supplementary Table 1 The means and standard deviations of age at menarche and age at natural menopause in the NHS, the WGHS and the combined sample

	NHS			WGHS			Combined	
	N	Mean (SD)	N	Mean (SD)	N	Mean (SD)		
Age at menarche	2,270	12.5 (1.39)	15,136	12.4 (1.44)	17,406	12.4 (1.43)		
Age at natural menopause	1,344	50.8 (3.08)	7,768	50.6 (3.66)	9,112	50.6 (3.58)		
\(\lambda = 1.074 \)

\(\lambda = 1.026 \)
Supplementary Figure 1 Log quantile-quantile (QQ) P value plots for 317,759 single-SNP tests of association in joint analysis for age at menarche (a) and age at natural menopause (b), adjusting for the top principle components of genetic variation chosen for each study. Under the null hypothesis of no association at any locus, the points would be expected to follow the dashed line. Deviations from the dashed line correspond to loci that deviate from the null hypothesis. \(\lambda = \text{mean} (T^2) \) and T is the test statistic from the linear regression.
Supplementary Figure 2 Log quantile-quantile (QQ) P value for heterogeneity (Q statistic) plots for 317,759 single-SNP tests of association in joint analysis for age at menarche (a) and age at natural menopause (b), adjusting for the top principle components of genetic variation chosen for each study. Under the null hypothesis of no heterogeneity between the two studies at any locus, the points would be expected to follow the dashed line. Deviations from the dashed line correspond to loci that deviate from the null hypothesis.
Supplementary Table 2 Means of age at menarche and age at natural menopause by genotype for the genome-wide statistically significant SNPs identified in the combined sample of the NHS and the WGHS

SNP	Total N	Minor Alleles	Common Homozygote	Heterozygote	Variant Homozygote
Age at Menarche					
rs314277	17,366	C, A	12,768 12.4	4,265 12.6	333 12.7
rs314263	17,390	T, C	8,180 12.4	7,506 12.5	1,704 12.5
rs369065	17,338	T, C	7,770 12.4	7,741 12.5	1,827 12.5
rs7861820	17,404	T, C	4,706 12.5	8,654 12.5	4,044 12.4
rs314280	17,301	C, T	5,303 12.4	8,500 12.5	3,498 12.5
rs369065	17,325	G, A	5,302 12.4	8,553 12.5	3,470 12.5
rs12684013	17,398	C, T	9,338 12.5	6,751 12.4	1,309 12.4
rs4452860	17,397	A, G	9,051 12.5	6,916 12.4	1,430 12.4
rs7028916	16,816	T, C	4,937 12.4	8,492 12.5	3,387 12.5
Age at Natural Menopause					
rs16991615	9,111	G, A	8,089 50.6	989 51.7	33 52.3
rs1172822	9,096	C, T	3,715 51.0	4,115 50.6	1,266 49.8
rs2384687	9,087	T, C	3,422 51.0	4,233 50.6	1,432 49.9
rs897798	9,084	A, G	2,636 51.0	4,432 50.7	2,016 50.1
rs365132	8,807	G, T	2,356 50.3	4,210 50.7	2,241 51.1
rs7718874	9,111	A, G	2,354 50.3	4,509 50.7	2,248 51.1
rs402511	9,084	C, T	2,354 50.3	4,480 50.7	2,250 51.1
rs7246479	9,102	G, T	2,475 50.2	4,442 50.8	2,185 51.0
rs1551562	9,011	A, G	5,368 50.9	3,117 50.5	526 49.6
rs691141	9,088	C, T	2,742 50.4	4,443 50.7	1,903 51.2
rs12611091	8,882	T, C	2,396 50.3	4,418 50.7	2,068 51.0
rs2153157	9,046	C, T	2,373 50.4	4,448 50.7	2,225 50.9
rs2278493	9,100	G, A	4,023 50.9	4,070 50.6	1,007 50.3
Supplementary Table 3 Estimates of the square of the correlation coefficient (r^2) and D' for pairwise comparison of the identified genome-wide statistically significant SNPs for age at menarche and age at natural menopause within each chromosome region

Region	Chr.	SNP1	SNP2	R^2	D'
6q21	6	rs314262	rs314263	0.54	1.00
	6	rs314262	rs314277	0.20	0.99
	6	rs314262	rs314280	1.00	1.00
	6	rs314262	rs369065	0.48	0.90
	6	rs314262	rs4946651	0.99	1.00
	6	rs314263	rs314277	0.35	0.97
	6	rs314263	rs314280	0.54	1.00
	6	rs314263	rs369065	0.90	0.99
	6	rs314263	rs4946651	0.55	1.00
	6	rs314277	rs314280	0.20	0.99
	6	rs314277	rs369065	0.34	0.99
	6	rs314277	rs4946651	0.20	0.98
	6	rs314280	rs369065	0.49	0.91
	6	rs314280	rs4946651	0.99	1.00
	6	rs369065	rs4946651	0.48	0.90
9q31.2	9	rs12684013	rs4452860	0.92	0.99
	9	rs12684013	rs7028916	0.92	0.99
	9	rs12684013	rs7861820	0.38	0.98
	9	rs4452860	rs7028916	1.00	1.00
	9	rs4452860	rs7861820	0.42	1.00
	9	rs7028916	rs7861820	0.42	1.00
5q35.2	5	rs2278493	rs365132	0.46	0.97
	5	rs2278493	rs3762974	0.68	0.89
	5	rs2278493	rs402511	0.46	0.97
	5	rs2278493	rs691141	0.40	0.98
	5	rs2278493	rs7718874	0.46	0.97
	5	rs365132	rs3762974	0.57	1.00
	5	rs365132	rs402511	1.00	1.00
	5	rs365132	rs691141	0.83	1.00
	5	rs365132	rs7718874	1.00	1.00
	5	rs3762974	rs402511	0.57	1.00
	5	rs3762974	rs691141	0.48	1.00
	5	rs3762974	rs7718874	0.57	1.00
	5	rs402511	rs691141	0.83	1.00
	5	rs402511	rs7718874	1.00	1.00
	5	rs691141	rs7718874	0.83	1.00
19q13.42	19	rs1172822	rs1261109	0.36	0.82
	19	rs1172822	rs1551562	0.54	0.99
	19	rs1172822	rs2384687	0.81	0.94
	19	rs1172822	rs7246479	0.54	0.99
	19	rs1172822	rs897798	0.64	0.99
	19	rs12611091	rs1551562	0.20	0.83
	19	rs12611091	rs2384687	0.27	0.68
	19	rs12611091	rs7246479	0.50	0.71
	19	rs12611091	rs897798	0.54	0.81
	19	rs1551562	rs2384687	0.42	0.91
	19	rs1551562	rs7246479	0.30	0.99
	19	rs1551562	rs897798	0.35	0.99
	19	rs2384687	rs7246479	0.58	0.99
	19	rs2384687	rs897798	0.52	0.86
	19	rs7246479	rs897798	0.82	0.99
Supplementary Table 4 Hapmap SNPs in the specified region that are in high LD (pairwise correlation $r^2 \geq 0.8$) with the identified genome-wide statistically significant SNPs for age at menarche and age at natural menopause in the study based on HapMap phase I+II dataset

Cytological Location	Specified Region (bp)	Genome-wide significant SNP in the study	HapMap SNPs
Age at menarche			
6q21	Chr6:105445489..105596453	rs314277 a	-
		rs314263 a	-
		rs369065 a	rs314268 a, rs314273 a, rs7759938 b, rs9391253 b, rs395962 a, rs167539 a, rs2095812 c, rs314276 b
		rs314280 a	-
		rs4946651 b	rs1744206 a, rs314266 a, rs314270 a, rs314289 a, rs364663 a
		rs314262 a	rs11156429 b
9q31.2	Chr9:105924867..106110634	rs7861820 b	-
		rs12684013 b	rs997068 b, rs2676451 b, rs7862517 b, rs13299139 b, rs2676450 b, rs13296266 b, rs13302191 b, rs4273906 b
		rs4452860 b	rs13300395 b, rs2008393 b, rs7864013 b, rs10978431 a, rs2222133 b, rs1516882 b, rs1516883 b, rs7020240 b
		rs12684029 b	rs12684045 b, rs10978430 b, rs299121 b, rs12682937 b, rs7047281 b, rs7032974 b, rs10453225 b, rs1516881 b, rs12352703 b
		rs7028916 b	rs7865332 b, rs7865367 b, rs13291190 b, rs12684048 b, rs10118978 b, rs2138628 a, rs11999547 b, rs7866767 b, rs13294242 b, rs7862972 b, rs1516887 b, rs12352703 b
5q35.2	Chr5:176205976..176412209	rs365132 d	-
		rs7718874 e	rs1700490 d
		rs402511 e	rs251844 a, rs601923 a, rs149307 a, rs2456181 a, rs2292256 a, rs353467 b, rs353468 b, rs353478 a, rs10068703 a, rs6861925 a, rs2292255 a, rs353471 a
		rs691141 a	rs4490607 a, rs353496 a, rs4976665 a, rs353495 a, rs3923879 a, rs251843 a, rs353479 a, rs2962842 a, rs2962844 a, rs2940521 a, rs353494 a, rs187114 a, rs547798 e
		rs2384687 e	rs8113016 a, rs10411773 a, rs10412726 a, rs734518 a
		rs2153157 a	-
		rs1172822 a	rs11668344 a, rs11668309 a, rs4800660 a, rs10425848 a, rs1109368 a, rs4806661 a
		rs897798 a	rs7252864 a
		rs7246479 f	rs8113016 a, rs10411773 a, rs10412726 a, rs734518 a
		rs1551662 a	-
		rs12611091 a	rs2607336 a, rs1172818 a
		rs16991615 f	-

aIntronic; bUnknown; c3'-UTR; dExonic, synonymous; e5'-UTR; fExonic, non-synonymous.
Supplementary Methods

Description of genome-wide association study samples. The NHS was initiated in 1976, when 121,700 United States registered nurses between the ages of 30 and 55, residing in 11 larger U.S. states, returned an initial questionnaire reporting medical histories and baseline health-related exposures, including information related to reproductive history (age at menarche, age at first birth, parity, age at menopause etc.), and exposure to exogenous hormones (oral contraception or post-menopausal hormone replacement therapy). Biennial questionnaires with collection of exposure information on risk factors have been collected prospectively, and outcome data with follow-up of reported disease events are collected. From May 1989 through September 1990, we collected blood samples from 32,826 participants in the NHS cohort. Subsequent follow-up has been greater than 99% for this subcohort.

The NHS nested breast cancer case-control study was derived from the 32,826 women in the blood subcohort who were free of diagnosed breast cancer at blood collection and followed for incidence disease until June 1, 2004. Breast cancer follow-up in the NHS was conducted by personal mailings and searches of the National Death Index. Controls were women not diagnosed with breast cancer during follow-up, and were one-to-one matched to cases based on age at diagnosis, blood collection variables (time of day, season, and year of blood collection, as well as recent (<3 months) use of postmenopausal hormones), ethnicity (all cases and controls are self-reported Caucasians), and menopausal status (all cases were postmenopausal at diagnosis). The 2,287 NHS participants included in the present analysis were from this nested breast cancer case-control study and were self-described Caucasians with genotype data available from the National Cancer Institute’s Cancer Genetic Marker of Susceptibility (CGEMS) project\(^1\).
The WGHS cohort comprises 28,345 American women, who are participants in the ongoing Women’s Health Study (WHS) who had no prior history of cardiovascular disease, cancer, or other major chronic illness, and who provided a blood sample at baseline with consent for analyses linking blood-derived observations with baseline risk factor profiles and incident disease events. These women were 45 years of age or older at baseline in 1993. Details of the rationale, design, and methodology of the WGHS and the WHS are described elsewhere\(^2\,^3\). While genotyping of the cohort is ongoing, there were 15,151 Caucasian WGHS participants with genotype data available for the present analysis.

Validity of phenotype measurement. Age at menarche and age at natural menopause were self-reported, and age at menarche was determined retrospectively. Thus, both traits might be measured with error, although this error is likely to be random with respect to genotype. Age at menarche and age at natural menopause are associated with breast cancer and other endpoints in both the NHS and the WHS with magnitudes and directions of association that are consistent with what has been observed in other published studies, attesting to the validity of the measurements. In addition, Colditz et al. found a correlation of 0.82 for reported ages at natural menopause between two questionnaires in the NHS\(^4\). Must et al. observed a correlation of 0.79 between contemporarily documented and recalled age at menarche after 30 years\(^5\). Moreover, random measurement error, if present, would be expected to attenuate associations in our study, rather than elicit false positive associations.

Population stratification. In the NHS GWA study, population stratification was analyzed based on approximately 10,000 unlinked markers\(^1\). After excluding admixed (>15%) individuals using STRUCTURE\(^6\), population stratification was estimated using the four largest principal components of genetic variation that were calculated using the EIGENSTRAT software\(^1\,^7\) and chosen on the basis of significant (p<0.05) Tracy-Wisdom tests\(^8\).
In the WGHS GWA study, a principal component analysis using 1,443 ancestry informative SNPs was performed using PLINK\(^9\) in order to confirm self-reported ancestry. Subjects (0.3%) were removed from analysis if they did not cluster with other Caucasians. Furthermore, to rule out residual stratification among Caucasians only, we performed a principal component analysis with EIGENSTRAT software\(^7\) using 124,931 SNPs chosen to have pair-wise linkage disequilibrium lower than \(r^2 = 0.4\). The first ten components were then used as covariates for adjustment of age at menarche or natural menopause.

References
1. Hunter, D.J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. *Nat Genet* **39**, 870-4 (2007).
2. Ridker, P.M. et al. Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy american women. *Clin Chem* **54**, 249-55 (2008).
3. Ridker, P.M. et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. *N Engl J Med* **352**, 1293-304 (2005).
4. Colditz, G.A. et al. Reproducibility and validity of self-reported menopausal status in a prospective cohort study. *Am J Epidemiol* **126**, 319-25 (1987).
5. Must, A. et al. Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? *Am J Epidemiol* **155**, 672-9 (2002).
6. Pritchard, J.K. & Rosenberg, N.A. Use of unlinked genetic markers to detect population stratification in association studies. *Am J Hum Genet* **65**, 220-8 (1999).
7. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet* **38**, 904-9 (2006).
8. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. *PLoS Genet* **2**, e190 (2006).
9. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* **81**, 559-75 (2007).