Comprehensive analysis of tumor mutation burden and immune microenvironment in gastric cancer

Jie Yu\(^\dagger\), QianYun Zhang\(^\dagger\), MengChuan Wang\(^a\)\, SiJia Liang\(^c\), HongYun Huang\(^a\), Lang Xie\(^a\), ChunHui Cui\(^a\)*, JinLong Yu\(^a\)*

\(^a\) Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou, 510282, P.R. China.

\(^b\) Department of Medical Ultrasound, Guangzhou Women and Children's Medical Center, Guangdong, Guangzhou, 510623, P.R. China.

\(^c\) Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.

\(^\dagger\) These authors contributed equally to this work.

* Corresponding Authors:

ChunHui Cui, M.D., Ph.D.
Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou 510282, P.R. China.
E-mail: drcuich@126.com

JinLong Yu, M.D., Ph.D.
Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou 510282, P.R. China.
E-mail: yujinlong640506@163.com
ORCID: 0000-0002-4581-1726

Running title: Analysis of TMB and immune microenvironment in gastric cancer.
Abstract

Tumor mutation burden (TMB) was a promising marker for immunotherapy. We aimed to investigate the prognostic role of TMB and its relationship with immune cells infiltration in gastric cancer (GC). We analyzed the mutation landscape of all GC cases and TMB of each GC patient was calculated and patients were divided into TMB-high and TMB-low group. Differentially expressed genes (DEGs) between the two groups were identified and pathway analysis was performed. The immune cells infiltration in each GC patient was evaluated and Kaplan-Meier analysis was performed to investigate the prognostic role of immune cells infiltration. At last, hub immune genes were identified and a TMB prognostic risk score (TMBPRS) was constructed to predict the survival outcome of GC patients. The relationships between mutants of hub immune genes and immune infiltration level in GC was investigated. We found higher TMB was correlated with better survival outcome and female patients, patients with T1-2 and N0 had higher TMB score. Altogether 816 differentially expressed genes were harvested and pathway analysis demonstrated that patients in TMB-high group were associated with neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway. The infiltration of activated CD4+ memory T cells, follicular helper T cells, resting NK cells, M0 and M1 macrophages and neutrophils in TMB-high group were higher compared than that in TMB-low group and high
macrophage infiltration was correlated with inferior survival outcome of GC patients. Last, the TMBPRS was constructed and GC patients with high TMBPRS had poor prognosis.

Keywords: Gastric cancer (GC); Tumor mutation burden (TMB); Immune cells infiltration; Prognosis.
Background

According to the statistics in 2018, over 1 million newly diagnosed cases and almost 800,000 cancer-related death making gastric cancer (GC) one of the most intractable diseases worldwide. Overall, gastric cancer ranked third in terms of incidence and 5th in terms of mortality (1). The only curative measure for GC patients is surgery (2). However, most of the cases diagnosed in advanced stage making complete resection impossible (3). The prognosis of GC patients also partially decided by whether lymph nodes were involved (4). Chemotherapy before or after surgery was proved to increase the benefit of patients. Besides, monoclonal drugs target human epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor receptor 2 (VEGFR2) has also been applied in the clinical practice (5).

Recently, immunotherapy emerged as a rising star in the cancer treatment. The measures consist mainly of immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive T-cell transfer therapy and cytokine therapy (6, 7). Major breakthrough was accomplished by immunotherapy so far. A phase 2 trial revealed that nivolumab (anti-PD-1 monoclonal antibody) plus ipilimumab (anti-CTLA-4 monoclonal antibody) could benefit the patients of malignant pleural mesothelioma (8). The combination of nivolumab and ipilimumab therapy showed promising result in metastatic melanoma patients, especially...
in patients with negative expression of PD-L1(9). Chimeric antigen receptor (CAR) T cells therapy significantly changed the landscape of lymphoma therapy, improving the remission rate of lymphoma patients(10, 11). In addition, CAR-T therapy also offered potential benefit to pancreatic cancer patients(12). A randomized clinical trial demonstrated that cancer vaccine in combination with docetaxel could remarkably enhanced the progression-free survival of metastatic breast cancer patients(13).

It is worth noting that immunotherapy has also been playing a more and more important role in GC treatment. ATTRACTION-2 study revealed that patients with unresectable or recurrent GC treated with anti-PD-1 monoclonal antibodies (mAbs) showed an objective response rate (ORR) of 11.2%(14). Due to the extraordinary result brought by anti-PD-1 mAbs, this measure was incorporated into the third-line treatment for advanced GC in the Japanese guideline. CheckMate-032 study demonstrated that Ipilimumab (anti-CTLA-4 mAbs) plus nivolumab group (anti-PD-1 mAbs) showed a higher objective response rate than nivolumab alone group(15). Although immunotherapy is a promising solution for GC patients, the response rate still limited and novel biomarkers are urgently needed to identify the suitable subgroup of patients.

Tumor mutation burden (TMB) is defined as the non-synonymous somatic mutation number per megabase in cancer cells(16, 17). Several retrospective
and prospective studies demonstrated that TMB could be a promising predictive biomarker for immunotherapy especially for immune checkpoint inhibitors efficacy. Researchers found that high frequency of non-synonymous mutation was associated with higher response rate in both melanoma and non-small cell lung cancer patients treated with ICIs. A pan-cancer analysis showed that TMB was indeed correlated with ICIs treatment response rate. Ten different cancers treated with ICIs were incorporated into the KEYNOTE-158 study and the study result revealed that high TMB was associated with improved ORR and progression-free survival. A phase 2 trial (NCT02915432) also demonstrated that GC patients with high TMB gained significant longer survival advantage than those with low TMB. Therefore, it's worth understanding the TMB status of GC and its relevance with immune cells infiltration.

With the development of bioinformatics, many resources on TMB and immune microenvironment status were available on multiple databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. However, few researches investigate the relationship between them. Therefore, this study was performed to evaluate the prognostic value of TMB and its association with immune cells infiltration in GC patients.

Methods
Transcriptome and somatic mutation data acquisition.

We obtained transcriptome and somatic mutation data from Genomic Data Commons Data Portal of TCGA database (https://portal.gdc.cancer.gov/). Transcriptome profiles of all gastric cancer samples and relative adjacent gastric mucosa samples were downloaded in HTSeq-FPKM format. Somatic mutation data were downloaded in “Masked Somatic Mutation” and processed by VarScan software. The “Maftools” R package(22) was applied to visualize the mutation genes and classification and type of the mutation. The clinical characteristics of GC patients, which including age, gender, AJCC-TNM stage, pathologic stage, tumor grade and living status, were also downloaded from TCGA database.

TMB scores calculation and prognostic analysis

TMB was defined as the total count of somatic mutation of genes which including base substitutions, insertions and deletions. In this research, TMB scores was defined as total number of somatic mutation variants/length of exons. We calculated the TMB scores (mutation frequency) by perl scripts basing on JAVA8 platform. The TMB-high and TMB-low group was defined by median TMB scores. The TMB scores and clinical characteristics of each GC patients were merged by R software. We used Kaplan-Meier analysis to measure the length of survival time and P-value was calculated through log-rank test. The correlation between TMB level and clinical characteristics was analyzed by Wilcoxon rank-sum test.
Identification of differentially expressed genes and pathway enrichment analysis

GC patients were divided by TMB-high and TMB-low group according to the measures as we previously described. Differentially expressed genes (DEGs) were identified by “limma” package and false discovery rate was set as 0.05. Heatmap of DEGs was created by “pheatmap” package. The "org.Hs.eg.db" package was utilized to annotate the DEGs. The Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by “clusterProfiler”, “enrichplot”, “ggplot2” and both filters of P-value and q-value were set as 0.05. Gene Set Enrichment Analysis (GSEA) was performed by the software downloaded from its official website (https://www.gsea-msigdb.org/gsea) and “c2.cp.kegg.v6.2.symbols.gmt gene sets” was selected as gene set database.

CIBERSORT algorithm

CIBERSORT is an analytical algorithm developed to detect the abundances of cell types in a mixed cell population, using gene expression data(23). Firstly, we prepared the data with “limma” R package. Then we used CIBERSORT algorithm to analyze the immune cell composition in GC patients and visualization was performed by barplot. The violin plot was utilized to visualize the distribution of immune cell and Wilcoxon rank-sum test was used to
evaluate the immune cells infiltration between different TMB group.

Identification of differentially expressed immune-related genes

We downloaded immune-related gene list from immport database (https://www.immport.org/shared/genelists) and altogether 2498 genes were obtained. Intersection of DEGs and immune genes was visualized by “VennDiagram” package.

Establishment of TMB prognostic risk score (TMBPRS) of differentially expressed immune-related genes

We merged differentially expressed immune-related genes with corresponding survival data and univariate Cox regression analysis was performed to find out the prognostic genes. Multivariate Cox regression analysis was performed to identify the independent risk gene. The TMBPRS was calculated with

\[TMBPRS = \sum (\chi_i \times EXP_i) \]

and \(\chi_i \) was the coefficient derived from the multivariate Cox regression analysis. Gastric cancer patients were divided into high-risk group and low-risk group with threshold of median risk score. Kaplan-Meier analysis was performed to assess the survival status between the two groups. Receiver Operating Characteristic (ROC) curve was generated to evaluate the predictive value of TMBPRS.

Timer database
The “SCNA” module of Timer database (https://cistrome.shinyapps.io/timer/) was designed to compare different immune cells infiltration with different copy number variation (CNV) of a given gene. We used this module to detect the immune cells infiltration with different CNV of the TMB-related immune genes. Box plots were drawn to visualize the distribution of immune cell subset with different CNV and two-sided Wilcoxon rank-sum test was used to calculate the P-value between normal and each mutation group. We also utilized “Survival” module to compare the survival status for immune infiltrates with Kaplan-Meier plots. P-value was calculated through log-rank test.

Statistical analysis

The normalization of data and differential analysis was performed by “limma” R package. Cox regression analysis and Kaplan-Meier analysis was performed by “survival” R package. Wilcoxon rank-sum test is a nonparametric test and being used to detect the difference between two groups. All statistical analysis was carried out in R software (Version 3.6.3). P-value <0.05 was considered as statistically significant.

Results

Overview of the mutation status of GC patients

We obtained the somatic mutation data of GC patients from TCGA and chose the data processed by VarScan software. The “Maftools” R package was
utilized to visualize the landscape of mutation data of GC. According to variant classification, missense mutation, frame shift deletion and nonsense mutation were the first three mutations (Figure 1A). Single nucleotide polymorphism was the most common mutation type, followed by deletion and insertion (Figure 1B). Among the single nucleotide variants (SNV) class, C>T was the most common mutation (Figure 1C). We also countered the number of mutations in each sample and the summary of mutation was visualized in box plot (Figure 1D, E). Top 10 mutated genes in GC were also demonstrated in percentage form, including TTN (48%), MUC16 (31%), TP53 (44%), LRP1B (24%), ARID1A (25%), SYNE1 (22%), FAT4 (19%), CSMD3 (18%), FLG (19%) and PCLO (17%). Mutation of each gene in different samples was showed in waterfall plot (Figure 1G). Besides, genes mutated in more than 30 samples were showed by Genecloud plot (Figure S1). The correlation of mutated genes was shown in Figure 2 and deep green squares indicated co-occurrence while brown squares indicated mutually exclusive.

Assessment of TMB level and prognostic analysis

We calculated the TMB score of each GC samples by perl script. All GC samples were divided into TMB-high and TMB-low group according to median TMB score. Kaplan-Meier analysis was performed to evaluate the survival status between different group. We found that high TMB score was correlated with better survival outcome (Figure 3A). We matched TMB status with
clinicopathological characteristics (Table 1) of GC patients and found that GC patients with age >65y had higher TMB score. Besides, female patients and patients with T1-2 and N0 had higher TMB score than the others (Figure 3B, C, E, F). There was no difference between TMB score and tumor grade and AJCC-M stage (Figure 3D, G).

Comparison of DEGs between TMB-high and TMB-low group and pathway analysis

As we previously described, GC patients were divided into two groups. We compared the DEGs by using "limma" package with |Fold Change| >1 and 816 DEGs were harvested. DEGs between two groups were visualized in heat map (Figure 4A). Go and KEGG analysis were also performed and these DEGs in TMB-high group were mainly involved in neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway (Figure 4B, C and Table 2). GSEA analysis indicated that high TMB level was correlated with splicesome, RNA degradation, cell cycle and base excision repair (Figure 4D). In addition, low TMB level was associated with arachidonic acid metabolism, calcium signaling pathway, neuroactive ligand receptor interaction and vascular smooth muscle contraction (Figure S2).

Immune cell infiltration in TMB-high and TMB-low GC patients

As we have separated two groups of GC patients according to TMB level, we
wanted to investigate the immune cells infiltration between the two groups. By
using "CIBERSORT" R package, we compared 22 immune cells in TMB-high
and TMB-low group. The fraction of 22 immune cells in each GC patients were
shown in Figure 5A and different color represented different immune cell type.
Furthermore, the violin plot was utilized to visualize the immune cell proportion.
Wilcoxon rank-sum test revealed that the infiltration of activated CD4$^+$ memory
T cells, follicular helper T cells, resting NK cells, M0 and M1 macrophages and
neutrophils in TMB-high group were higher compared than that in TMB-low
group (Figure 5B). The absolute abundance of each immune cell type in each
patient was shown in Table 6. In order to further investigate the prognostic role
of immune cells, we constructed a Cox regression model in GC samples and
the formula was demonstrated as follow: Surv (STAD) ~ B cell + CD8$^+$ T cell +
CD4$^+$ T cell + Macrophage + Neutrophil + Dendritic. The result showed that
macrophage infiltration was the only risk factor for GC patients (HR=293.055,
P<0.001 Table 3). Kaplan-Meier analysis was also performed and the result
showed that high macrophage was correlated with inferior survival outcome of
GC patients (Figure 5C).

Identification of immune-related DEGs and TMBPRS establishment
We downloaded immune-related genes from immport database and
“VennDiagram” package was utilized to screen out 96 immune-related genes
(Figure 6A). Univariate Cox regression analysis was performed and further identified 12 prognostic genes (Table 4). TMBPRS was constructed basing on multivariate Cox regression analysis and model was demonstrated as follow:

\[
PRS = (0.001763 \times APOD + 0.033231 \times FGF7 + 0.107249 \times AMHR2 + 0.067987 \times NPR3) \quad \text{(Table 5)}.
\]

And then we calculated the TMBPRS of each GC patients and patients were divided into high-risk and low-risk group with the cutoff value of median. Kaplan-Meier analysis was performed and the result showed that GC patients with high risk had worse survival outcome (Figure 6B). The ROC curve of 1-year overall survival (OS) prediction was drawn with AUC=0.642 (Figure 6C).

Association between CNV of TMB-related immune genes and immune cell infiltrate.

As we previously described, we used “VennDiagram” package to identify the intersection between DEGs and immune-related genes and 96 differentially expressed immune-related genes were harvested. Further univariate analysis was applied to identify genes associated with prognosis. At last, we identified 4 hub immune genes (APOD, FGF7, AMHR2, NPR3) that were correlated with TMB. We then further investigated the association between mutants of these hub immune genes and immune cell infiltrate. The “SCNA” module of Timer database was used to analyze the association and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell were incorporated into the
analyze (Figure 7) Besides, all 4 hub immune genes were also analyzed by Kaplan-Meier method in TCGA and K-M plotter database (Figure S3). The methylation status of the four hub immune genes were also assessed in Figure S4.

Discussion

Immunotherapy has brought a revolutionary advance in the field of oncology and immune checkpoint inhibitors played a pivotal role in it. The monoclonal antibody which targets PD-1 and CTLA-4 are the most extraordinary examples of cancer immunotherapy. Human PD-1 is expressed on the surface of T cells and binds to the PD-L1/PD-L2 that are present on antigen-presenting cells (APCs). The PD-1/PD-L1 axis was found negatively regulate T cell activation and its immunosuppression effect is mainly through inhibitory signaling pathway in effect T cells and T\(_{\text{reg}}\) cells(24). Since pembrolizumab and nivolumab were approved by FDA in 2014, they have changed the way of cancer therapy. A phase 3 clinical trial demonstrated that pembrolizumab plus chemotherapy drugs had prolonged the overall survival of non-small-cell lung cancer patients compared with chemotherapy alone(25). Recent study focuses on melanoma also found that patients treated with nivolumab plus ipilimumab remarkably improved their OS with 52% of them survived more than 5 years(26). Another clinical trial showed that atezolizumab plus nab-paclitaxel improved the progression-free survival of metastatic triple-negative breast
cancer patients (27). Besides, myriad of clinical trials demonstrated the efficacy
of anti-PD1/PD-L1 in many cancer types such as urothelial carcinoma, renal
cell carcinoma, small-cell lung cancer (28-30).

Although spectacular result made with immune checkpoint inhibitors,
complicated microenvironment of different organs makes it difficult to predict
which patient will benefit. Several markers such as PD-1/PD-L1
expression (16), microsatellite instability (31) and CD8+ T cell infiltration (32)
have been developed to recognize appropriate patients but their effect were
limited. Therefore, finding better marker to optimize the therapeutic effects of
ICIs is of vital importance.

TMB, a promising marker for ICIs treatment, has been found to play a vital role
in predicting the response of immunotherapy. Ready et al. found that non-small
cell lung cancer patients with high TMB had better response rate and
prolonged progression-free survival when treated with nivolumab plus
low-dose ipilimumab despite of PD-L1 expression (33). Among 22 colorectal
patients treated with PD-1/PD-L1 inhibitors, all TMB-high patients responded
while six out of nine TMB-low patients progressed (34). Besides, TMB also
been demonstrated its effect in various of cancer such as breast cancer,
melanoma, urothelial carcinoma and so on (19, 35, 36). Our study showed that
GC patients with higher TMB had better survival outcome and this finding was
in accordance with other cancer research. In addition, we outlined the TMB-related characteristics of GC patients and observed that TMB-high was correlated with younger age, female, T1-T2 and N0 in GC cases.

In the current study, we calculated the tumor mutation burden score of each GC patients by perl. GC patients then were divided into TMB-high and TMB-low group. By comparing the DEGs between TMB-high and TMB-low group, we identified 816 differently expressed genes. GO and KEGG pathway analysis indicated that these DEGs were mainly involved in neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway and so on. Further uni- and multivariate Cox analysis indicated that AMHR2, APOD, FGF7 and NPR3 were the hub immune genes and correlated with the prognosis of GC patients. We also found that mutant of these genes was correlated with the immune infiltrates. Immune cells infiltration such as B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell were inhibited by the mutation of these genes. To be specific, Arm-level deletion of AMHR2 and FGF7 were associated with reduced infiltration of immune cells. However, Arm-level gain of APOD and NPR3 were associated with reduced infiltration of immune cells.

APOD is an encoding gene which encodes a component of high-density lipoprotein. Researchers found that high expression of APOD was correlated
with worse survival outcome of breast cancer patients (37). Another group also reported that APOD was highly expressed in prostate cancer and high grade prostatic intraepithelial neoplasia compared with adjacent normal tissue (38). FGF7 belongs to fibroblast growth factor (FGF) family and possess mitogenic and cell survival activities. Zhu et al. reported that FGF7 could promote breast cancer progression through AKT signaling pathway (39). In gastric cancer, several studies indicated that FGF7 might play a role in gastric cancer cell proliferation and metastasis (40, 41). The product of gene NPR3 encodes one of the natriuretic peptide receptors and responsible of clearing natriuretic peptides. Previous study demonstrated that high expression of NPR3 was correlated with poor prognosis of colorectal patients (42).

It is widely recognized that immune cells infiltration status had prognostic value in multiple cancer. We compared 22 immune cells between TMB-high and TMB-low group and found that CD4+ memory T cells, follicular helper T cells, resting NK cells, M0 and M1 macrophages and neutrophils were differently infiltrated in the two groups. In order to further investigate whether this difference in the two groups would affect the survival outcome of GC patients, we performed the Cox regression analysis. The result demonstrated that high macrophage infiltration was associated with worse survival outcome of GC patients. Similar conclusion was drawn by Su et al. that high density of macrophage predicted a poor survival outcome of GC patients (43). Several
studies investigated the interaction of macrophage and gastric cancer cell and found that macrophage might play a role in promoting gastric cancer cell proliferation, metastasis, angiogenesis, chemoresistance and immune invasion (44-47).

Finally, a prognostic algorithm (TMBPRS) was constructed according to the Cox regression analysis and patients with high TMBPRS had worse survival outcomes. However, the AUC curve of this algorithm was only 0.642 and therefore large data research was needed to improve the predictive effect.

However, there were some limitations in this study: (a) lack of basic experiment such as immunohistochemistry to identify the correlation between four hub immune genes and immune cells infiltration. (b) large clinical samples are needed to validate the prognostic effect of TMBPRS.

Conclusions

Higher tumor mutation burden was correlated with better survival outcome of GC patients. High macrophage infiltration predicted worse prognosis of GC patients.

Data Availability Statement
The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

The present study was supported by the National Natural Science Foundation of China (grant no. 8197032867), the Natural Science Foundation of Guangdong Province, China (grant no. 2017A030313488) and the Scientific and Technological Program of Guangzhou City (grant no. 201707010104).

Author contribution

(I) Conception and design: Jie Yu, SiJia Liang, JinLong Yu

(II) Administrative support: JinLong Yu

(III) Collection and assembly of data: Jie Yu, QianYun Zhang, MengChuan Wang

(IV) Data analysis and interpretation: Jie Yu, QianYun Zhang, MengChuan Wang, SiJia Liang, HongYun Huang, Lang Xie

(V) Manuscript writing: All authors

(VI) Final approval of manuscript: All authors
Abbreviations

1. TMB, tumor mutation burden; GC, gastric cancer; DEGs, differentially expressed genes; TMBPRS, TMB prognostic risk score; ICIs, immune checkpoint inhibitors; mAbs, monoclonal antibodies; ORR, objective response rate; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; ROC, Receiver Operating Characteristic; OS, overall survival.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.

2. Hohenberger P, Gretschel S. Gastic cancer. The Lancet. 2003;362(9380):305-15.

3. Wesolowski R, Lee C, Kim R. Is there a role for second-line chemotherapy in advanced gastric cancer? The Lancet Oncology. 2009;10(9):903-12.

4. Karpeh MS, Leon L, Klimstra D, Brennan MF. Lymph node staging in gastric cancer: is location more important than Number? An analysis of 1,038 patients. Ann Surg. 2000;232(3):362-71.

5. Kono K, Nakajima S, Mimura K. Current status of immune checkpoint inhibitors for gastric cancer. Gastric Cancer. 2020.

6. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic
science to clinical practice. Nat Rev Immunol. 2020.

7. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nature reviews Cancer. 2004;4(1):11-22.

8. Scherpereel A, Mazieres J, Greillier L, Lantuejoul S, Dô P, Bylicki O, et al. Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. The Lancet Oncology. 2019;20(2):239-53.

9. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. New Engl J Med. 2015;373(1):23-34.

10. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. New Engl J Med. 2020;382(14):1331-42.

11. Brudno JN, Lam N, Vanasse D, Shen Y-W, Rose JJ, Rossi J, et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med. 2020;26(2):270-80.

12. Beatty GL, O'Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, et al. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology. 2018;155(1):29-32.

13. Heery CR, Ibrahim NK, Arlen PM, Mohebtash M, Murray JL, Koenig K, et al. Docetaxel Alone or in Combination With a Therapeutic Cancer Vaccine (PANVAC) in Patients With Metastatic Breast Cancer: A Randomized Clinical Trial. Jama Oncology. 2015;1(8):1087-95.
14. Kang Y-K, Boku N, Satoh T, Ryu M-H, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England). 2017;390(10111):2461-71.

15. Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, et al. CheckMate 032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients With Metastatic Esophagogastric Cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2018;36(28):2836-44.

16. Fumet JD, Truntzer C, Yarchoan M, Ghiringhelli F. Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts. Eur J Cancer. 2020;131:40-50.

17. Wu Y, Xu J, Du C, Wu Y, Xia D, Lv W, et al. The Predictive Value of Tumor Mutation Burden on Efficacy of Immune Checkpoint Inhibitors in Cancers: A Systematic Review and Meta-Analysis. Front Oncol. 2019;9:1161.

18. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124-8.

19. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. The New England journal of medicine. 2014;371(23):2189-99.

20. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor
1. Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Molecular cancer therapeutics. 2017;16(11):2598-608.

2. Wang F, Wei XL, Wang FH, Xu N, Shen L, Dai GH, et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Annals of oncology : official journal of the European Society for Medical Oncology. 2019;30(9):1479-86.

3. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome research. 2018;28(11):1747-56.

4. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37(7):773-82.

5. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704.

6. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. The New England journal of medicine. 2018;378(22):2078-92.

7. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. The New England journal of medicine. 2019;381(16):1535-46.

8. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. The New England journal of medicine. 2021;384(25):2403-15.
Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. The New England journal of medicine. 2017;376(11):1015-26.

Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. The New England journal of medicine. 2018;378(14):1277-90.

Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. The New England journal of medicine. 2018;379(23):2220-9.

Dudley JC, Lin M-T, Le DT, Eshleman JR. Microsatellite Instability as a Biomarker for PD-1 Blockade. Clinical cancer research : an official journal of the American Association for Cancer Research. 2016;22(4):813-20.

Fumet J-D, Richard C, Ledys F, Klopfenstein Q, Joubert P, Routy B, et al. Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of patients under anti-PD-1 therapy. British journal of cancer. 2018;119(8):950-60.

Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, et al. First-Line Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2019;37(12).

Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS, et al. Tumor mutational
burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Annals of oncology: official journal of the European Society for Medical Oncology. 2019;30(7):1096-103.

35. Park SE, Park K, Lee E, Kim J-Y, Ahn JS, Im Y-H, et al. Clinical implication of tumor mutational burden in patients with HER2-positive refractory metastatic breast cancer. Oncoimmunology. 2018;7(8):e1466768.

36. Galsky M, Saci A, Szabo PM, Han GC, Grossfeld GD, Collette S, et al. Nivolumab in Patients with Advanced Platinum-Resistant Urothelial Carcinoma: Efficacy, Safety, and Biomarker Analyses with Extended Follow-up from CheckMate 275. Clinical cancer research: an official journal of the American Association for Cancer Research. 2020.

37. Jankovic-Karasoulos T, Bianco-Miotto T, Butler MS, Butler LM, McNeil CM, O'Toole SA, et al. Elevated levels of tumour apolipoprotein D independently predict poor outcome in breast cancer patients. Histopathology. 2020;76(7):976-87.

38. Hall RE, Horsfall DJ, Stahl J, Vivekanandan S, Ricciardelli C, Stapleton AM, et al. Apolipoprotein-D: a novel cellular marker for HGPIN and prostate cancer. The Prostate. 2004;58(2):103-8.

39. Zhu Y, Yang L, Chong Q-Y, Yan H, Zhang W, Qian W, et al. Long noncoding RNA Linc00460 promotes breast cancer progression by regulating the miR-489-5p/FGF7/ AKT axis. Cancer management and research. 2019;11:5983-6001.

40. Ma H-W, Xi D-Y, Ma J-Z, Guo M, Ma L, Ma D-H, et al. Long Noncoding RNA AFAP1-AS1 Promotes Cell Proliferation and Metastasis via the miR-155-5p/FGF7 Axis and Predicts Poor Prognosis in Gastric Cancer. Disease markers. 2020;2020:8140989.
41. Huang T, Wang L, Liu D, Li P, Xiong H, Zhuang L, et al. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1. International journal of oncology. 2017;50(5):1501-12.

42. Martinez-Romero J, Bueno-Fortes S, Martin-Merino M, Ramirez de Molina A, De Las Rivas J. Survival marker genes of colorectal cancer derived from consistent transcriptomic profiling. BMC genomics. 2018;19(Suppl 8):857.

43. Su C-Y, Fu X-L, Duan W, Yu P-W, Zhao Y-L. High density of CD68+ tumor-associated macrophages predicts a poor prognosis in gastric cancer mediated by IL-6 expression. Oncology letters. 2018;15(5):6217-24.

44. Eissmann MF, Dijkstra C, Jarnicki A, Phesse T, Brunnberg J, Poh AR, et al. IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat Commun. 2019;10(1):2735.

45. Lin C, He H, Liu H, Li R, Chen Y, Qi Y, et al. Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut. 2019;68(10):1764-73.

46. Yu S, Li Q, Yu Y, Cui Y, Li W, Liu T, et al. Activated HIF1α of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer. Cancer immunology, immunotherapy : CII. 2020.

47. Wang Z, Yang Y, Cui Y, Wang C, Lai Z, Li Y, et al. Tumor-associated macrophages regulate gastric cancer cell invasion and metastasis through TGFβ2/NF-κB/Kindlin-2 axis. Chinese journal of cancer research = Chung-kuo yen cheng yen chiu. 2020;32(1):72-88.
Figure legends

Figure 1: Summary of mutation landscape of GC samples from TCGA database.

(A, B, C) Mutation types basing on different categories, where missense mutation was the most frequent component and SNP was the most common mutation type and C > T was the most common type of SNV. (D, E) Tumor mutation burden of each GC samples and its classification and the median variants number was 89. (F). Top 10 mutated genes in GC samples and TTN, MUC16 and TP53 was the TOP 3 mutated genes. (G) Waterfall plot of mutation profiles of each gene in each sample. The legend at the bottom described the mutation types. The plot above the legends showed the mutation burden of each sample. GC, gastric cancer.

Figure 2: Pair of mutually exclusive or co-occurring mutated genes. Pair-wise Fisher’s Exact test was used to detect the statistic difference.

Figure 3: Prognostic value of TMB and its association with clinical characteristics.

(A) Higher TMB level was correlated with better survival outcome of GC patients, P=0.017. (B, C, E, F) Higher TMB was associated with lower age, female, lower AJCC-T stage and lower AJCC-N stage. (D, G) No statistic difference were observed between TMB and tumor grade and AJCC-M stage. TMB, tumor mutation burden
Figure 4: Comparison of DEGs between TMB-high and TMB-low group and pathway analysis.

(A). Top 40 DEGs between TMB-high and TMB-low group were shown in heatmap. (B, C) GO and KEGG analysis of DEGs between TMB-high and TMB-low group. (D) GSEA analysis indicated that high TMB was correlated with spliceosome, RNA degradation, cell cycle and base excision repair. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TMB, tumor mutation burden.

Figure 5: Immune cells infiltration between TMB-high and TMB-low group and survival analysis of immune cells.

(A) 22 types of immune cells infiltration status in each GC sample. (B) The comparison of immune cells infiltration between TMB-high and TMB-low group. (C) Kaplan-Meier analysis of different immune cells and high macrophage infiltration was correlated with worse survival outcome of GC patients. GC, gastric cancer; TMB, tumor mutation burden.

Figure 6: Identification of hub immune genes and construction of TMBPRS.

(A) Identification of differentially expressed immune-related genes through Venn plot. (B) Assessment of TMBPRS in GC patients and patients with high TMBPRS had worse survival outcome (P=0.00032). (C) ROC plot of TMBPRS with AUC=0.642. AUC, area under curve; GC, gastric cancer; ROC, receiver
operating characteristic; TMBPRS, tumor mutation burden prognostic risk score.

Figure 7: Correlation between mutants of 4 hub immune genes and immune cells infiltration

(A) Correlation between mutants of AMHR2 and immune cells infiltration. Arm-level deletion of AMHR2 was correlated with reduced infiltration level of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell.

(B) Correlation between mutants of APOD and immune cells infiltration. Arm-level gain of APOD was correlated with reduced infiltration level of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell.

(C) Correlation between mutants of FGF7 and immune cells infiltration. Arm-level deletion of FGF7 was correlated with reduced infiltration level of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell.

(D) Correlation between mutants of NPR3 and immune cells infiltration. Arm-level gain of NPR3 was correlated with reduced infiltration level of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil and dendritic cell.

Figure S1: Genecloud plot of mutated genes in GC. GC, gastric cancer.

The size of each gene in the genecloud plot was positively correlated with mutation frequency in GC samples.
Figure S2: GSEA analysis of TMB-low samples.

GSEA analysis indicated that low TMB was correlated with (A) arachidonic acid metabolism, (B) calcium signaling pathway, (C) neuroactive ligand receptor interaction and (D) vascular smooth muscle contraction. TMB, tumor mutation burden.

Figure S3: Kaplan-Meier analysis of 4 hub immune genes in TCGA database and K-M plotter database.

Kaplan-Meier analysis of 4 hub immune genes in TCGA database (A) AMHR2, (B) APOD, (C) FGF7 and (D) NPR3. Kaplan-Meier analysis of hub immune genes in K-M plotter database (E) AMHR2, (F) APOD, (G) FGF7 and (H) NPR3

Figure S4: Methylation status of 4 hub immune genes and its association with gene expression and clinical characteristics. Different colors with specific annotations at the bottom meant the various characteristics of each GC patients.

(A) The expression of AMHR2 was negatively correlated with methylation around the promoter region.

(B) The expression of APOD was negatively correlated with methylation around the promoter region.

(C) No correlation was observed between FGF7 expression and methylation
around the promoter region.

(D) The expression of NPR3 was positively correlated with H. pylori infection.

Tables

Table 1: Clinical characteristics of TCGA gastric cancer patients.

Table 2: KEGG analysis of the DEGs in TMB-high group. DEGs, differentially expressed genes; TMB, tumor mutation burden.

Table 3: Multivariate Cox regression analysis of immune infiltration cells in gastric cancer.

Table 4: Univariate Cox regression analysis of immune-related DEGs.

Table 5: Multivariate Cox regression analysis of immune-related DEGs.

Table 6: Absolute abundance of each immune cell type in GC patients.
Altered in 387 (89.38\%) of 433 samples.
A heat map showing the correlation between different genes. The colors represent the significance of the correlation:

- **P < 0.001**
- **P < 0.05**

The genes are listed along the top and left side of the map. The significance levels are indicated by the color intensity and the presence of a star symbol. The map includes the following genes:

- PIK3CA [63]
- CSMD1 [63]
- SPTA1 [64]
- ZFHX4 [65]
- RYR2 [66]
- HMCN1 [67]
- OBSCN [68]
- FAT3 [68]
- KMT2D [69]
- DNAH5 [70]
- PCLO [72]
- CSMD3 [79]
- FAT4 [82]
- FLG [84]
- SYNE1 [94]
- LRP1B [105]
- ARID1A [109]
- MUC16 [133]
- TP53 [189]
- TTN [208]

The color gradient indicates the number of co-occurrences or mutual exclusivity:

- **>3 (Co-occurrence)**
- **>3 (Mutually exclusive)**

The exact P-values are not provided in the diagram.
A

Venn diagram showing sets of samples with the following counts:
- 173 samples in set A
- 96 samples in set B
- 530 samples in set C
- 75 samples in set A and B
- 96 samples in set A and C
- 1 sample in sets A, B, and C

B

Survival analysis graph comparing high-risk and low-risk strata. The graph shows survival probabilities over time with the following statistics:
- P-value: 0.00032
- Hazard Ratio (HR): 1.82

C

ROC curve with an AUC of 0.642.
Variables	TCGA cohort (N=443)					
Status						
Alive	272 (61.4)					
Dead	171 (38.6)					
Age	66±10.76					
Gender						
Female	158 (35.6)					
Male	285 (64.4)					
AJCC-T						
T1	23 (5.2)					
T2	93 (21.0)					
T3	198 (44.7)					
T4	119 (26.9)					
TX	10 (2.2)					
AJCC-N						
N0	132 (29.8)					
N1	119 (26.9)					
N2	85 (19.2)					
N3	88 (19.9)					
NX	17 (3.8)					
Unknown	2 (0.4)					
AJCC-M						
M0	391 (88.3)					
M1	30 (6.8)					
MX	22 (4.9)					
Pathologic stage						
I&II	192 (43.3)					
III&IV	224 (50.6)					
Unknown	27 (6.1)					
Tumor grade						
G1-G2	171 (38.6)					
G3	263 (59.4)					
GX	9 (2.0)					
Description	BgRatio	pvalue	p.adjust	qvalue		
--	---------	------------	-----------	-------------		
Neuroactive ligand-receptor interaction	340/8040	2.58E-11	6.64E-09	0.0000001		
Vascular smooth muscle contraction	132/8040	4.90E-08	6.30E-06	0.0000537		
cAMP signaling pathway	216/8040	2.44E-07	2.09E-05	0.0001779		
Calcium signaling pathway	193/8040	4.46E-07	2.86E-05	0.0002440		
Dilated cardiomyopathy (DCM)	96/8040	1.62E-06	8.33E-05	0.00007096		
Arrhythmogenic right ventricular cardiomyopathy	77/8040	3.33E-06	0.00014	0.00011966		
Hypertrophic cardiomyopathy (HCM)	90/8040	3.83E-06	0.00014	0.00011966		
Pancreatic secretion	102/8040	1.70E-05	0.000546	0.00046522		
Cell adhesion molecules (CAMs)	148/8040	2.40E-05	0.000685	0.00058390		
Insulin secretion	86/8040	5.79E-05	0.001487	0.00126717		
cGMP-PKG signaling pathway	167/8040	0.000112	0.002621	0.00223331		
Protein digestion and absorption	95/8040	0.000155	0.00331	0.00281991		
Renin secretion	69/8040	0.000811	0.014904	0.01269720		
Fat digestion and absorption	43/8040	0.000812	0.014904	0.01269720		
Focal adhesion	201/8040	0.000996	0.016124	0.01373677		
Adrenergic signaling in cardiomyocytes	149/8040	0.001004	0.016124	0.01373677		
Drug metabolism - cytochrome P450	72/8040	0.001108	0.016744	0.01426520		
Aldosterone-regulated sodium reabsorption	37/8040	0.001959	0.027971	0.02382945		
Cortisol synthesis and secretion	65/8040	0.002295	0.031038	0.02644201		
Aldosterone synthesis and secretion	98/8040	0.002842	0.036521	0.03111326		
Chemical carcinogenesis	83/8040	0.003022	0.036981	0.03150577		
ECM-receptor interaction	88/8040	0.004487	0.052421	0.04465959		
Bile secretion	90/8040	0.005209	0.058203	0.04958528		
Cell types	coef	HR	95%CI_l	95%CI_u	p.value	sig
---------------	-------	------	---------	---------	---------	-----
B_cell	3.262	26.096	0.419	1625.426	0.122	-
CD8_Tcell	-2.040	0.130	0.009	1.966	0.141	-
CD4_Tcell	-3.825	0.022	0.000	1.763	0.088	-
Marcophag	5.680	293.055	15.915	5396.255	0.000 ***	***
Neutrophil	-0.629	0.533	0.003	88.445	0.809	-
Dendritic	1.506	4.510	0.401	50.764	0.223	-
Gene	HR	HR.95L	HR.95H	CoxPvalue		
---------	-----	--------	--------	-----------		
SLC22A17	1.067292	1.023803	1.112629	0.002153		
APOD	1.002423	1.001157	1.003692	0.000175		
CMA1	1.155618	1.043777	1.279444	0.005354		
FGF7	1.048351	1.016115	1.081609	0.003044		
OGN	1.006824	1.001391	1.012288	0.013767		
AMHR2	1.109999	1.038009	1.186982	0.002286		
GHR	1.215142	1.071306	1.378290	0.002433		
GLP2R	1.412913	1.092291	1.827648	0.008483		
NPR3	1.073467	1.009318	1.141694	0.024136		
PTGER3	1.149958	1.018448	1.298451	0.024135		
PTGFR	1.198121	1.043102	1.376179	0.010561		
PTH1R	1.440015	1.056238	1.963235	0.021113		
id	coef	HR	HR.95L	HR.95H	coxPvalue	
------	---------	------	--------	--------	-----------	
APOD	0.001763	1.001765	1.000301	1.00323	0.018081	
FGF7	0.033231	1.03379	0.998769	1.070039	0.058773	
AMHR2	0.107249	1.113211	1.037874	1.194017	0.002702	
NPR3	0.067987	1.070352	0.998354	1.147541	0.055671	
Mixture	B cells naïve	B cells mem	Plasma cell	T cells CD8	T cells CD4	T cells CD4
-------------------------	---------------	-------------	-------------	-------------	-------------	-------------
TCGA-BR-8381-01A-11R-2402-13	0.038522	0	0.044155	0.287094	0	0.125966
TCGA-BR-A46-01A-11R-A251-31	0.221858	0	0.327528	0.090268	0	0.152557
TCGA-VQ-A8PE-01A-11R-A414-31	0.128187	0	0	0.118479	0	0.256744
TCGA-D7-8572-01A-11R-2343-13	0.094482	0	0.006857	0.064831	0	0.115045
TCGA-BR-8080-01A-11R-2343-13	0.138085	0	0.00095	0.107448	0	0.349662
TCGA-BR-4280-01A-01R-1131-13	0.084881	0	0.102067	0.112611	0	0.18027
TCGA-MX-A666-01A-11R-A31P-31	0.398376	0.073307	0.049096	0.049401	0	0.133646
TCGA-CG-5726-01A-11R-1602-13	0.097946	0	0.011768	0.12462	0	0.228917
TCGA-CD-A489-01A-11R-A24K-31	0.224342	0	0	0.153019	0	0.245688
TCGA-RD-A8N9-01A-11R-A251-31	0.107784	0	0.070759	0.10726	0	0.201487
TCGA-BR-8485-01A-11R-2402-13	0.077086	0	0.20364	0.236876	0	0.277928
TCGA-IN-7808-01A-11R-2203-13	0.189727	0.13278	0.054427	0.164136	0	0.129216
TCGA-HF-7131-01A-11R-2055-13	0.182054	0	0.067165	0.066441	0	0.320888
TCGA-HU-A4H0-01A-11R-A251-31	0.056642	0	0.013913	0.183148	0	0.243055
TCGA-IN-8663-01A-11R-2402-13	0.030208	0	0.022146	0.031952	0	0.119326
TCGA-VQ-A91Y-01A-11R-A414-31	0.050725	0	0.009986	0.115375	0	0.282776
-------------------------------	---------	---	---------	---------	---	---------
TCGA-CD-5801-01A-11R-1602-13	0.117121	0	0.03807	0.39133	0	0.182844
TCGA-HU-A4GJ-01A-11R-A251-31	0.226764	0.08181	0.110483	0.116423	0	0.213441
TCGA-BR-7715-01A-11R-2055-13	0.067281	0	0.006201	0.053518	0	0.115993
TCGA-D7-A747-01A-22R-A33Y-31	0.246803	0.017405	0	0.114213	0	0.213441
TCGA-VQ-AA6F-01A-31R-A414-31	0.194493	0	0.091413	0.088637	0	0.231649
TCGA-CD-5813-01A-11R-1602-13	0.110124	0	0.048618	0.156127	0	0.13701
TCGA-BR-4363-01A-01R-1157-13	0.043463	0	0.014833	0.086831	0	0.26201
TCGA-BR-8366-01A-11R-2343-13	0.000156	0.00538	0.022365	0.215232	0	0.182844
TCGA-BR-8690-01A-11R-2402-13	0.029565	0.040183	0.005946	0.063157	0	0.213441
TCGA-VQ-A91U-01A-11R-A414-31	0.077518	0.004643	0.105514	0.185144	0	0.231649
TCGA-BR-6452-01A-12R-1802-13	0.063977	0	0.032561	0.030331	0	0.13701
TCGA-RD-A7C1-01A-11R-A32D-31	0.146354	0	0.010288	0.079904	0	0.326928
TCGA-BR-6564-01A-12R-1884-13	0.10656	0	0.015866	0.197908	0	0.23416
TCGA-HU-A4HB-01A-12R-A251-31	0.17028	0	0.015866	0.197908	0	0.13701
TCGA-VQ-A925-01A-11R-A39E-31	0.097061	0	0.043966	0.045397	0	0.13701
TCGA-VQ-A8PC-01A-11R-A39E-31	0.003462	0.105375	0.002702	0.074268	0	0.182844
TCGA-BR-4201-01A-01R-1131-13	0.052002	0	0.001681	0.178822	0	0.23416
TCGA-VQ-A94R-01A-11R-A31P-31	0.076724	0	0.04637	0.091643	0	0.326928
TCGA-VQ-A91E-01A-11R-A36D-31	0.077518	0	0.004643	0.105514	0	0.13701
TCGA-D7-A6EV-01A-11R-A33Y-31	0.097061	0	0.043966	0.045397	0	0.13701
TCGA-HU-A4G2-01A-11R-A251-31	0.003462	0	0.002702	0.074268	0	0.13701
TCGA-VQ-A94R-01A-11R-A31P-31	0.076724	0	0.04637	0.091643	0	0.13701
ID	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6
---------------------	---------	---------	---------	---------	---------	---------
TCGA-HU-A4H8-01A-11R-A251-31	0	0.016034	0.002933	0.102498	0	0.271308
TCGA-BR-8284-01A-11R-2343-13	0.061207	0	0.004548	0.292353	0	0.255488
TCGA-RD-A8MV-01A-11R-A36D-31	0.070026	0.010121	0.011359	0.114919	0	0.192318
TCGA-HU-A4G3-01A-11R-A24K-31	0.041769	0.019507	0	0.075419	0	0.361848
TCGA-HU-A4GU-01A-11R-A251-31	0.070416	0	0.006364	0.067634	0	0.311823
TCGA-HU-A4G8-01A-11R-A251-31	0.065449	0.075801	0	0.077318	0	0.231358
TCGA-IN-A6RJ-01A-21R-A33Y-31	0.028795	0.009376	0.03407	0.078668	0	0.237302
TCGA-CG-5719-01A-11R-1602-13	0.035809	0	0.084801	0.036998	0	0.215205
TCGA-BR-8286-01A-12R-2343-13	0.015696	0	0	0.150474	0	0.156609
TCGA-CG-5716-01A-21R-1802-13	0.027995	0.103058	0.219496	0.080052	0	0.245870
TCGA-D7-6526-01A-11R-1884-13	0.14478	0	0	0.138915	0	0.239377
TCGA-D7-A6EZ-01A-11R-A31P-31	0.024219	0	0.006156	0.161082	0	0.081278
TCGA-D7-8578-01A-21R-2343-13	0.032461	0	0.002197	0.261544	0	0.255691
TCGA-CG-4305-01A-01R-1157-13	0.089286	0	0.003263	0.110442	0	0.169881
TCGA-D7-A4YX-01A-11R-A251-31	0.032461	0	0.002197	0.261544	0	0.255691
TCGA-D7-6815-01A-11R-1884-13	0.068239	0	0.016957	0.064274	0	0.104397
TCGA-EQ-8122-01A-11R-2343-13	0.06732	0	0	0.031583	0	0.099693
TCGA-HU-A4GQ-01A-11R-A36D-31	0.029468	0	0.002862	0.105896	0	0.096091
TCGA-BR-4256-01A-01R-1131-13	0.079346	0	0.001245	0.058401	0	0.166647
TCGA-CG-4466-01A-11R-1157-13	0.086833	0	0	0.058401	0	0.307343
TCGA-CG-4466-01A-11R-1157-13	0.029468	0	0.002862	0.105896	0	0.307343
TCGA-KB-A93J-01A-11R-A39E-31	0.069817	0	0.072559	0.075862	0	0.135446
TCGA-VQ-A92D-01A-11R-A414-31	0.035636	0	0.001706	0.041067	0	0.197105
TCGA-VQ-A91V-01A-11R-A414-31	0.073184	0	0.02537	0.109367	0	0.264605
TCGA-CD-8534-01A-11R-2343-13	0.164334	0	0.005018	0.074892	0	0.301570
TCGA-VQ-A8PU-01A-12R-A414-31	0.060546	0	0.037491	0.015347	0	0.197105
TCGA-VQ-A94T-01A-11R-A414-31	0.048808	0	0.00351	0.190537	0	0.151091
TCGA-CD-8531-01A-11R-2343-13	0.032461	0	0.002197	0.261544	0	0.255691
TCGA-VQ-AA69-01A-11R-A414-31	0.132967	0	0.070216	0.072762	0	0.297744
TCGA-VQ-AA6D-01A-11R-A414-31	0.129234	0	0.031797	0.051585	0	0.418408
TCGA-B7-A5TN-01A-21R-A31P-31	0.079346	0	0.001245	0.153021	0	0.253846
TCGA-B7-A5TI-01A-11R-A31P-31	0.073184	0	0.02537	0.109367	0	0.264605
TCGA-F1-6875-01A-11R-2055-13	0	0	0.013054	0.001025	0	0.272451
TCGA-FP-A8CX-01A-11R-A36D-31	0.028158	0.000923	0.073193	0.120996	0	0.162358
TCGA-FP-A8CX-01A-11R-A36D-31	0.028158	0.000923	0.073193	0.120996	0	0.272451
TCGA-FP-A8CX-01A-11R-A36D-31	0.028158	0.000923	0.073193	0.120996	0	0.162358
TCGA-FP-A8CX-01A-11R-A36D-31	0.028158	0.000923	0.073193	0.120996	0	0.272451
TCGA-BR-4371-01A-01R-1157-13	0	0	0.00432	0.01609	0.395666	
TCGA-BR-4253-01A-01R-1131-13	0.02284	0	0.002215	0.203075	0	0.31276
TCGA-F1-A448-01A-11R-A24K-31	0.140523	0	0.072247	0.038801	0	0.163972
TCGA-CG-5734-01A-11R-1602-13	0.059159	0	0.099418	0.07842	0.377997	
TCGA-VQ-A8DT-01A-11R-A36D-31	0.140523	0	0.072247	0.038801	0	0.163972
TCGA-CG-5725-01A-11R-1602-13	0.099904	0	0.009871	0.213837	0.090973	
TCGA-HU-8238-01A-11R-2343-13	0.100006	0	0.004266	0.07059	0.163972	
TCGA-VQ-A94U-01A-12R-A414-31	0.066678	0	0.022388	0.142156	0.377997	
TCGA-VQ-A8DZ-01A-11R-A36D-31	0.055824	0	0.003743	0.111868	0.233526	
TCGA-F1-A72C-01A-21R-A33Y-31	0.07213	0	0.049515	0.183018	0.204415	
TCGA-VQ-A922-01A-11R-A414-31	0.174401	0	0.014268	0.048166	0.314741	
TCGA-VQ-A91Z-01A-11R-A414-31	0.080732	0	0.01611	0.028554	0.178572	
TCGA-BR-8382-01A-11R-2402-13	0.059871	0	0.009871	0.213837	0.090973	
TCGA-VQ-A8P2-01A-11R-A36D-31	0.137995	0	0.023228	0.14483	0.354847	
TCGA-D7-6822-01A-11R-1884-13	0.035972	0	0.001372	0.122034	0.245038	
TCGA-RD-A8NB-01A-12R-A39E-31	0.136114	0	0.054165	0.23418	0.174365	
TCGA-BR-8592-01A-11R-2402-13	0.142227	0	0.026869	0.33402	0.10417	
TCGA-BR-8678-01A-11R-2402-13	0.059871	0	0.009871	0.213837	0.090973	
TCGA-CG-4441-01A-01R-1802-13	0.116585	0	0.010337	0.091966	0.189114	
TCGA-HU-A4GH-01A-11R-A24K-31	0.217923	0	0.014398	0.091966	0.189114	
TCGA-VQ-A8PO-01A-11R-A414-31	0.072292	0.009583	0	0.205171	0.182856	
TCGA-BR-A4CR-01A-11R-A24K-31	0.148498	0	0.013769	0.279928		
TCGA-IN-AB1V-01A-21R-A414-31	0.07845	0.143168	0.024837	0.156197	0.145174	
TCGA-CG-4437-01A-01R-1802-13	0.078002	0	0.011358	0.243338	0.042901	
TCGA-CG-4304-01A-01R-1157-13	0.085122	0	0.171854	0.02323	0.193194	
TCGA-CG-5723-01A-11R-1602-13	0.000114	0.007373	0.011352	0.220602	0.120957	
TCGA-CG-5725-01A-11R-1602-13	0.099904	0	0.099418	0.07842	0.377997	

Bioscience Reports. This is an Accepted Manuscript. You are encouraged to use the Version of Record, which will replace this version. The most up-to-date version is available at https://doi.org/10.1042/BSR20203336
TCGA-BR-8686-01A-11R-2402-13	0.107804 0 0 0.261899 0 0.224366
TCGA-BR-6802-01A-11R-1884-13	0.058107 0 0.01486 0.24651 0 0.003019
TCGA-BR-A477-01A-31R-A251-31	0.070331 0 0.008517 0.326459 0 0.199962
TCGA-BR-4191-01A-02R-1131-13	0.031632 0 0.001414 0.079163 0 0.211414
TCGA-BR-4366-01A-01R-1157-13	0.001305 0.014521 0 0.07395 0 0.166052
TCGA-HU-8244-01A-11R-2343-13	0.070331 0 0.008517 0.326459 0 0.199962
TCGA-BR-7722-01A-31R-2203-13	0.051294 0 0.003012 0.066146 0 0.242636
TCGA-FP-8631-01A-11R-2402-13	0.078728 0 0.029107 0.014063 0 0.243437
TCGA-BR-4369-01A-01R-1157-13	0.107904 0 0.113545 0.047623 0 0.296929
TCGA-VQ-A923-01A-11R-A414-31	0.079295 0 0.003012 0.223577 0 0.192437
TCGA-BR-7851-01A-11R-2203-13	0.075028 0 0.001602 0.111824 0 0.203228
TCGA-D7-8574-01A-13R-2343-13	0.004347 0.346691 0.014222 0.140656 0 0.251197
TCGA-BR-8683-01A-11R-2402-13	0.085998 0 0.006431 0.247456 0 0.125034
TCGA-BR-7723-01A-11R-2055-13	0.024984 0 0.038911 0.135957 0 0.16611
TCGA-VQ-A91Q-01A-12R-A414-31	0.104365 0.123672 0.006431 0.247456 0 0.125034
TCGA-BR-6453-01A-11R-1884-13	0.045353 0 0.00886 0.222052 0 0.229973
TCGA-FP-7998-01A-11R-2203-13	0.081489 0 0.034122 0.24451 0 0.114752
TCGA-BR-8365-01A-11R-2343-13	0.089258 0 0.02202 0.078634 0 0.203101
TCGA-BR-7717-01A-11R-2055-13	0.18107 0 0.000688 0.183748 0 0.205267
TCGA-D7-6521-01A-11R-1802-13	0.188471 0 0.140544 0 0.13732
TCGA-VQ-A8E3-01A-11R-2343-13	0.091394 0 0.007247 0.065907 0 0.199817
TCGA-D7-A4YU-01A-21R-A251-31 0.06047 0.014116 0.006033 0.105286 0 0.1 50774
TCGA-HU-A4HD-01A-11R-A251-31 0.057989 0 0.005477 0.080701 0 0.194293
TCGA-BR-4361-01A-01R-1157-13 0.031307 0 0.003489 0.115497 0 0.202526
TCGA-VQ-A927-01A-12R-A414-31 0.016604 0 0.140112 0.049888 0 0.448966
TCGA-BR-8384-01A-21R-2402-13 0.093941 0 0.213771 0 0.254664
TCGA-VQ-A91X-01A-12R-A414-31 0.123124 0 0.069987 0.101094 0 0.14935
TCGA-D7-6522-01A-11R-1802-13 0.076611 0.058646 0.032543 0.196248 0 0.090267
TCGA-HU-A4HD-01A-11R-2402-13 0.031364 0.063084 0.025715 0.143811 0 0.23088
TCGA-D7-A748-01A-12R-A32D-31 0.055062 0 0.009056 0.018818 0 0.191472
TCGA-VQ-A8PJ-01A-11R-A414-31 0.130617 0 0.057534 0.038897 0 0.328604
TCGA-D7-6524-01A-11R-1802-13 0.024658 0 0 0.068648 0 0.163578
TCGA-BR-6566-01A-11R-1802-13 0.011059 0.012058 0.004037 0.111868 0 0.235471
TCGA-FP-A4BF-01A-12R-A36D-31 0.029368 0 0.05419 0.175734 0 0.203878
TCGA-CG-4438-01A-01R-1157-13 0.04088 0 0.00662 0.135926 0 0.229394
TCGA-BR-6456-01A-11R-1802-13 0.048898 0 0 0.116734 0 0.178489
TCGA-CG-4460-01A-01R-1157-13 0.107755 0 0.082959 0.047988 0 0.192841
TCGA-VQ-AA68-01A-11R-A414-31 0.21821 0 0.029653 0.141789 0 0.151915
TCGA-D7-8575-01A-11R-2343-13 0.153849 0 0.03063 0.002315 0 0.132655
TCGA-BR-4367-01A-01R-1157-13 0.01377 0 0.027883 0.107282 0 0.19595
TCGA-VQ-A8P5-01A-11R-A39E-31 0.116524 0 0.05926 0.092748 0 0.162189
TCGA-VQ-A94O-01A-11R-A414-31 0.071949 0 0.015138 0.043028 0 0.218969
TCGA-VQ-A8E2-01A-11R-A36D-31 0.151244 0 0.034525 0.093395 0 0.120849
TCGA-RD-A8N0-01A-12R-A36D-31 0.02822 0.204422 0.087543 0.181747 0 0.200838
TCGA-BR-7901-01A-11R-2203-13 0.048689 0 0.005493 0.10081 0 0.182497
TCGA-BR-8081-01A-11R-1884-13 0.015845 0 0 0.056953 0 0.263709
TCGA-RD-A8N5-01A-12R-A36D-31 0.041137 0 0.003032 0 0.177003
TCGA-BR-6455-01A-11R-1802-13 0.088518 0 0.00206 0.332797 0 0.05843
TCGA-BR-4294-01A-01R-1131-13 0.065275 0 0.111817 0.123118 0 0.187523
TCGA-BR-8081-01A-11R-2343-13 0.064654 0 0.19543 0.103164 0 0.149628
TCGA-D7-6519-01A-11R-1802-13 0.022885 0 0 0.227833 0 0.159353
TCGA-VQ-A91S-01A-11R-A414-31 0.03229 0 0 0.279689 0 0.154145
TCGA-BR-A4J8-01A-11R-A251-31 0.05365 0.017071 0 0.069485 0 0.280998
TCGA-CD-8528-01A-11R-2343-13 0.015105 0 0 0.04828 0 0.19986
TCGA-SW-A7EB-01A-11R-A354-31 0.218704 0 0.054473 0.123122 0 0.20864
TCGA-VQ-A91N-01A-11R-A414-31 0.158176 0 0.155037 0.089962 0 0.246492
TCGA-CG-4442-01A-01R-1157-13 0.021156 0 0 0.066959 0 0.196322
TCGA-HF-A5NB-01A-11R-A31P-31 0.017104 0 0 0.203266 0 0.263591
TCGA-FP-8210-01A-11R-2343-13 0.133771 0.087448 0.024962 0.174013 0 0.154838
TCGA-VQ-A8PM-01A-21R-A414-31 0.128844 0 0.251652 0.058087 0 0.229833
TCGA-VQ-A928-01A-11R-A414-31 0.054403 0 0.005851 0.02739 0 0.272157
TCGA-HU-A4GY-01A-21R-A24K-31 0.08738 0.144761 0 0.102916 0 0.244719
TCGA-HU-A4H4-01A-21R-A251-31 0.12821 0 0.092653 0.080395 0 0.154145
TCGA-CD-8503-01A-11R-1602-13 0.064561 0 0.005237 0.245539 0 0.225107
T cells CD4 T cells follic T cells regu T cells gam NK cells res NK cells act Monocytes Macrophag Macrophag Macrophag

0.10008 0.06847 0.072017 0 0.005915 0 0.00271 0.071537 0.064206 0.097981
0 0.02592 0.011736 0 0 0.051067 0.010136 0 0.00787 0.044705
0.061745 0.039479 0.027432 0 0.035869 0 0.154705 0.05474 0.061412
0.027734 0.018873 0.019546 0 0.030089 0 0.397876 0.045172 0.100081
0 0.01409 0.019993 0.0243 0 0.01604 0 0.71815 0.069562 0.109038
0.144465 0.033836 0.003925 0 0.0455 0 0.00271 0.047271 0.090308
0 0.045606 0.066576 0 0 0.031369 0 0.75467 0 0.30385
0.052593 0 0.18982 0 0.038744 0 0 0.165618 0.055856 0.131562
0 0.023075 0.022739 0 0 0.051047 0.004586 0.017709 0.035399 0.19312
0.038767 0.064836 0.098201 0 0 0.006505 0.000732 0.070403 0.052008 0.108717
0.065357 0.023663 0.040651 0 0.024897 0.000843 0.100163 0.03037 4 0.053916
0.001614 0.031924 0.10139 0 0 0.043855 0 0.45481 0.03915 0.047321
0.017527 0 0.067505 0 0.02803 0 0.012131 0.072889 0.026601 0.05309
0.150524 0.058436 0.002355 0 7.71E-05 0 0.001929 0.001087 0.14072 0.110192
0.026644 0.04337 0.053848 0 0 0.022176 0 0.461229 0.026748 0.149824
0.017401 0.030187 0 0 0.040784 0 0.100163 0.03037 4 0.053916
0.047306 0.065841 0.010686 0 0 0.062063 6.51E-06 0.152799 0.100987 0.126802
0.118092 0 0.109936 0 0 0.003177 0.080274 0.098315 0.146485
0.026592 0 0.07074 0 0 0.008287 0.00765 0.06495 0.028846 0.06606
0.158103 0.046546 0.006534 0 0 0.020011 0.014257 0 0.74393 0.11297 0.08897
0.076644 0 0.002655 0 0 0.061801 0 0 0.42053 0.079337 0.042585
0.003009 0 0.035468 0 0 0.023504 0.006887 0.004955 0.011062
0.096156 0.012441 0.015047 0 0 0.00691 0 0.00277 0.063796 0.034742 0.065158
0 0.078168 0.029869 0 0 0.013006 0 0 0.08463 0.050149
0.017933 0.068004 0 0 0 0.061323 0.01446 0.000242 0.034226 0.063928
0.066629 0.070244 0.032741 0 0 0.01183 0 0.127019 0.102241 0.208496
0.032948 0.014667 0.0775 0 0 0.041881 0.004511 0.058335 0.116632 0.07704
0.10335 0.02027 0 0 0.038554 0 0 0.133287 0.063896 0.133526
0.081243 0.00304 0.012015 0 0 0.076815 0 0.22686 0.00426 0.073824
0.082273 0 0.024615 0 0 0.031394 0 0 0.296459 0 0.035274
0.151536 0 0.04086 0 0 0.040342 0 0 0.084406 0.09732 0.084467
0.057819 0.046827 0.04499 0 0 0.031474 0.002734 0.136446 0.050847 0.103489
0.008504 0.045234 0.02456 0 0 0 0.364571 0.129913 0.071749
0.101243 0.045261 0.074652 0.001406 0 0 0 0.059832 0.039513 0.071643
0.171087 0.023196 0.008694 0 0 0.044451 0.012 0.128123 0.075522 0.136537
0.001833 0.000483 0.03108 0 0 0.020414 0.028887 0.184017 0.046863 0.136042
0.016283 0.02331 0 0.013349 0.001344 0 0 0.062881 0.049158 0.302687
0.004137 0.08739 0.008565 0 0 0.058645 0 0.020297 0.172335 0 0.458429
0.093063 0.024209 0.08189 0 0 0.069022 0 0 0.204928 0.088992 0.128881
0.094795 0.009992 0.05529 0 0 0.032543 0.010513 0.041044 0.040358 0.036168
0.05174 0 0.050557 0 0 0.020045 0 0.02214 0.050881 0.049386 0.03056
0.090587 0 0 0 0.048514 0 0 0.074047 0.03955 0.080615
0 0.036336 0.008208 0 0 0.022812 0.002189 0.140414 0.072714 0.174549
0.014315 0 0.027253 0 0 0.005649 0 0 0.069683 0.01759 0.08962
Dendritic ce	Mast cells	Mast cells	Eosinophils	Neutrophils	
0.013416	0.001931	0	0.006	0	
0.016966	0.001326	0.038064	0	0	
0.000546	0.013692	0	0.046968	0	
0	0	0.077805	0	0.001608	
0.031319	0	0.069568	0	0	
0.003611	0	0.006065	0.00438	0.01581	
0.014982	0.031789	0	0	0	
0.027634	0	0.032095	0.014026	0	
0.034421	0	0.068664	0	0	
0.021891	0	0.050651	0	0	
0.012883	0	0.019869	0	0	
0	0	0.012751	0.001593	0.00487	
0.000559	0.017442	0.002905	0.020005	0.044769	
0.005006	0	0.032916	0	0	
0	0	0	0.002323	0	
0.025555	0	0.057709	0.006287	0	
0.077784	0.005131	0.028894	0	0	
0.023435	0	0.053238	0	0	
0.008937	0	0.043216	0	0.001947	
0.020494	0.021497	0.02989	0	0.014191	
0	0.016681	0.030966	0	0.001478	
0.038073	0	0.026881	0	0	
0	0	0	0.033974	0	
0.010898	0.14273	0	0	0.002323	
0.026346	0.003487	0.0244	0	0	
0.114547	0	0.019548	0	0.008337	
0.008058	0.037335	0.065854	0	0	
0.002766	0	0.011335	0.008403	0.071379	
0.065462	0	0.121688	0	0	
0.016118	0	0.014658	0	0.01145	
0	0.08133	0.132403	0	0.023908	
0.025344	0.048688	0	0.243698	0.054412	
0	0.010176	0	0.08684	0.016036	
0.071284	0	0.021885	0	0	
0	0	0.031019	0	0	
0.002631	0	0.005334	0	0	
0.021643	0	0.065133	0	0.007796	
0.035911	0.017779	0.164059	0	0	
0.052727	0.037103	0	0.097566	0.086531	
0	0	0	0.063362	0	
0.002039	0	0.055799	0	0	
0.019635	0	0.046585	0	0	
0.017736	0.023553	0.01766	0.005442	0.000659	
0.04088	0	0.009861	0	0.017464	
0.011383	0.009313	0	0.008456	0	
------	------	------	------	------	------
0.004582	0.033866	0.033338	0	0	0
0.013253	0	0.036338	0	0	0
0.002554	0.021752	0.031776	0	0	0.053349
0	0.01637	0.114737	0.029209	0	0.033975
0	0	0	0.018989	0	0.012719
0	0.008799	0.019097	0	0	0
0.073185	0.054821	0.105567	0	0	0.003224
0.002578	0	0	0.031439	0	0.011551
0.049199	0.013005	0.051573	0	0.000117	
0	0.05955	0.036127	0	0	0.006782
0	0.072113	0	0.079306	0	0.242045
0.015049	0.013445	0.053068	0	0	0.006129
0	0	0	0.101003	0	0.011785
0.034501	0.016896	0.040787	0.011946	0.001807	0.021455
0.038542	0	0	0.103426	0.02321	0.059492
0	0.024787	0	0.051983	0	0.001242
0.002077	0	0	0.076142	0	0
0	0.128122	0	0.144039	0	0.020908
0	0	0	0.019608	0	0.009629
0.007623	0	0.034213	0	0	0.002736
0.024428	0.011888	0.049449	0	0	0
0.008367	0	0.025572	0	0	0
0	0.076425	0.015566	0	0	0.046292
0	0.026909	0	0.104291	0.015729	0.013677
0.008379	0.017456	0.053602	0	0	0
0	0.161313	0	0.004369	0	0
0.01759	0	0.015598	0	0	0.001536
0.006378	0	0.023237	0.00224	0.025401	0.005732
0.018948	0	0.047326	0	0	0.007468
0.002166	0.051258	0.079703	0	0	0
0.05228	0	0.039082	0.044275	0.003851	0.064012
0.023954	0	0.03551	0	0	0
0	0.034202	0	0.109047	0	0
0.013778	0.024901	0.044892	0	0	0.004666
0.015954	0	0.008747	0	0.021384	0.010197
0.030821	0.002559	0.045741	0	0	0
0	0	0	0.149839	0.006236	0
0.025779	0	0.040298	0	0	0
0.123985	0	0.073649	0	0	0
0.003176	0	0.004418	0.021677	0.05738	
0	0	0.040235	0	0	0
0.033874	0.011698	0.072618	0	0	0.04745
0.004248	0.00678	0.042224	0	0	0
0.045675	0	0.054085	0	0	0
0	0.023003	0.098289	0.02829	0	0.076492
0	0.031183	0.038702	0	0	0.016611
0	0.0106	0	0.032442	0	0.023209
---	---	---	---	---	---
0.035919	0.005619	0.035923	0	0	0.001931
0.006599	0.005654	0.023031	0	0.002048	0.010065
0	0.006277	0	0.180015	0	0.04749
0.006888	0.0055	0	0.029558	0.003186	0.024185
0.001695	0.021561	0.070523	0	0	0.021096
0.015867	0.054572	0	0.062249	0	0
0	0	0	0.04653	0.067994	0
0	0	0	0.050213	0	0.004496
0	0	0	0.039993	0.153679	0.015766
0	0	0	0.046511	0	
0.058212	0	0.102491	0	0	0.00266
0.01994	0.009285	0.031339	0.015031	0	0.076158
0	0.008465	0.007214	0.002742	0	0.001219
0	0	0	0.044152	0	
0	0	0	0.046511	0	
0.020776	0.004238	0	0.007588	0	0.041665
0	0.085607	0	0.180093	0	0.108389
0	0	0	0.046395	0.02181	
0	0	0	0.079572	0	
0	0	0	0.059633	0.000471	0
0.016739	0	0.000301	0	0	0.114647
0.024017	0.007621	0.006863	0.006259	0	0
0.01578	0	0.052789	0	0	
0	0.021622	0.036339	0	0.001657	0
0	0	0.037792	0		
0.076724	0	0.05187	0	0	
0.00093	0.012646	0	0.088154	0	0.056726
0.012348	0.000798	0	0.009413	0.001671	0
0.020986	0.081562	0	0.067183	0.015174	0.01542
0.017656	0.01433	0.02064	0	0	0.002153
0.024628	0.005593	0.058461	0	0	0.015182
0.002891	0	0.08812	0	0	
0	0	0	0.039688	0.00035	0.00167
0.018595	0.043931	0	0.097799	0.001916	0.026916
0	0.034137	0	0.08632	0	0.025158
0.004025	0.006833	0.087148	0	0	0.062369
0.011169	0.0011	0.004442	0.001844	0.012329	0.097051
0	0	0	0.008848	0.000537	0
0	0	0	0.056756	0.01505	0.008193
0.017154	0.002349	0.018924	0.000977	0	0.049198
0.051188	0	0.004722	0	0.000713	0
0.046107	0.004705	0.008575	0	0	0.000834
0	0.049439	0	0.133256	0	0.02525
0.031382	0.016587	0.047326	0	0	0.003616
0.024487	0	0.021753	0	0	0
0	0	0.004777	0	0	0.020463
----	----	----	----	----	----
0.006828	0.046007	0.0	0.0	0.008843	
0.01065	0.017366	0.0	0.0		
0.105828	0.018533	0.062506	0.007212		
0.006177	0.001945	0.0			
0.02334	0.032453	0.008578			
0.064755	0.125447	0.0			
0.160284	0.071118	0.007614			
0.128051	0.060601	0.01842			
0.019724	0.018405	0.0			
0.011313	0.023827	0.000546			
0.021512	0.027725	0.005811			
0.044383	0.062932	0.00828			
0.01093	0.013472	0.107826	0.030681		
0.015058	0.020313	0.007864			
0.00374	0.01023	0.0			
0.11232	0.019601	0.097605	0.0		
0.05506	0.025485	0.04826	0.001737		
0.00458	0.00756	0.009035			
0.006122	0.05072	0.0			
0.0	0.010885	0.005868			
0.01389	0.008773	0.0213	0.0		
0.057227	0.02978	0.023832			
0.029387	0.031389	0.048464	0.003842		
0.0	0.072371	0.0			
0.001857	0.044163	0.008823			
0.003063	0.0				
0	0.010408	0.024667	0.078121		
0.000129	0.010282	0.0			
0.02368	0.044353	0.0			
0.064479	0.001599	0.040821	0.02144		
0.03549	0.041967	0.002215			
0.018057	0.008878	0.068124			
0	0.036183	0.0			
0.001204	0.0172062	0.032791	0.039152		
0.012256	0.103939	0.000606	0.033594		
0.003515	0.092079	0.0			
0.034827	0.007265	0.024066	0.001836		
0	0.087153	0.003642			
0.026587	0.00615	0.021221			
0.00435	0.117622	0.07164			
0	0.039054	0.038223	0.001975		
0	0.031092	0.042977	0.034455		
0.036181	0.00993	0.059286	0.003767		
0.040239	0.019547	0.054984	0.010023		
0	0.0105	0.037064	0.037312		
0.013121	0.008722	0.096763	0.012581		
----	------	------	------	------	------
0	0.002343	0.033137	0	0	0
0.021964	0	0.064798	0.001632	0	0.00604
0.019318	0	0.004473	0.004466	0.017612	0.001784
0.004748	0.018418	0.033095	0	0.017563	0.015676
0.05948	0.016561	0.076595	0	0	0
0.02652	0	0.055897	0	0	0
0.026133	0.049961	0	0	0.006149	
0.035401	0.002172	0.028169	0	0	0
0.059878	0	0.029242	0	0.01403	0.005221
0.068028	0.004194	0.041068	0	0	0.068451
0.026886	0.01355	0.031906	0	0	0
0.05076	0.048517	0	0.232858	0	0.165198
0.008459	0	0.115728	0	0	0
0.02016	0	0.00806	0	0	0.004567
0.004965	0.000656	0.012637	0	0.001082	0
0.01075	0	0.037915	0	0	0
0.004406	0	0.091152	0	0	0
0.014106	0	0.090377	0.03564	0.022185	
0.007344	0.017126	0.067632	0	0	0
0	0.006896	0	0.047162	0.003263	
0.000257	0	0.008642	0.007022	0.023573	0.032907
0.013106	0	0.13463	0.00116	0	0
0	0	0.003215	0	0	0
0.006102	0.009647	0.045235	0	0	0
0.026353	0.000275	0.104411	0.010474	0	0.010224
0.004536	0	0.026314	0	0.006144	
0.011259	0	0.027953	0	0	0
0.023905	0	0.123782	0	0.135437	
0.011509	0	0.009271	0	0	0
0.013064	0.0043	0	0.002198	0.102272	0.041144
0.008043	0.009861	0	0.01751	0	0
0.02305	0.001058	0.102601	0	0	0
0.011782	0	0.008393	0	0.025159	
0.000882	0	0.117747	0	0	0
0.010665	0	0.003993	0	0.007467	
0.002177	0	0.030809	0	0	0
0.049927	0.017177	0.029391	0	0.007026	0
0.000969	0	0.035205	0.004378	0.086954	
0.032399	0	0	0.045445	0	0
0.053816	0.029794	0.049031	0	0.010053	
0.033442	0.016619	0.041308	0	0	0
0.015912	0	0.125743	0.000467	0.006788	
0.010943	0.005667	0.019506	0	0	0
0.054391	0.037382	0	0.016023		
0.054791	0.012825	0.019558	0	0	0
0.005142	0.005099	0	0.01945	0	0
0	0	0	0.126811	0.022935	0.129105
0.017106	0.003346	0	0.003579	0	0.01229
0.000438	0	0.056818	0	0	0
0.008871	0.01421	0	0.107274	0	0.081735
0.016884	0	0.07186	0	0.000828	0.035961
0.01756	0.00441	0.009772	0	0.001231	0
0.15557	0	0	0.03088	0	0
0	0.003966	0.056244	0.000765	0	0.019447
0.007035	0	0.16265	0	0.016822	
0	0.042357	0.059011	0	0.049884	
0.003442	0.02003	0.014958	0.012968	0	0
0	0	0.188822	0	0.006779	
0.007393	0.005342	0.030662	0	0	0
0.039969	0	0.091339	0	0	0
0.017235	0	0	0.056469	0.00585	0
0.015466	0.008165	0.054148	0	0	0.005264
0.037899	0.02067	0.11543	0	0	0.00772
0	0	0	0.068762	0.000321	0.024163
0	0.037362	0	0.251787	0.016826	0.100928
0	0.092651	0	0.141745	0	0.034507
0.007364	0.006057	0.094652	0	0.025354	0.143599
0.006873	0	0.082265	0	0	0
0.010531	0.004307	0	0.056585	0	0.084607
0	0.000581	0.000329	0.004868	0	0.004908
0.019584	0.012397	0.085537	0	0	0
0.051869	0	0.015104	0	0	0
0	0	0.014465	0	0	0
0.062189	0	0.047144	0	0.001786	0
0.011058	0	0.02825	0	0	0
0	0.05042	0.037089	0	0	0
0.009171	0.023521	0.041791	0	0	0
0.051152	0.021192	0.021808	0.037063	0	0.001017
0.01172	0	0.026247	0	0	0.023915
0.014306	0	0	0.047243	0.030962	0.044779
0	0.042051	0	0.014264	0	0.022941
0.002936	0.075827	0	0	0.000385	0.014812
0.000549	0	0.035437	0	0	0
0	0.026043	0.013866	0.098186	0	0.05443
0.01798	0	0.09199	0	0.029333	0
0.013243	0.010177	0.024494	0	0	0
0.023645	0.045297	0	0.038324	0.038329	0.236077
0.025766	0.014293	0	0.09091	0.006251	0.011321
0.030782	0	0.060072	0	0.029776	0.073062
0	0.008078	0.015032	0	0	0
0.087668	0.037755	0	0.03545	0.003084	0
0.031084	0	0.060542	0	0	0