On the spontaneous synchronization between micro-rotation and vorticity in micropolar flows

R. H. Guterres1, W. G. Melo2, C. F. Perusato3 and P. R. Zingano1

1Department of Pure and Applied Mathematics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil

2Department of Mathematics, Universidade Federal de Sergipe, São Cristóvão, SE 49100-000, Brazil

3Department of Mathematics, Universidade Federal de Pernambuco, Recife, PE 50740-560, Brazil

\textit{Dedicated in loving memory of Bella (2003-2022) and Sophie (2007-2018)}

Abstract

The spontaneous synchronization between micro-rotation and vorticity in micropolar flows in $\mathbb{R}^n (n = 2, 3)$ is investigated and used to explain the faster decay by $t^{-1/2}$ of the angular velocity of the fluid particles’ micro-rotation, as well as establishing its optimality. This synchronization effect remained elusive for sixty years of investigations in micropolar fluid flows and was revealed after important upper and lower bounds for the solutions in $\dot{H}^m(\mathbb{R}^n)$ were obtained by the authors, using the monotonicity approach for general dissipative systems introduced in [22]. Several related results of independent interest are also given along the discussion.

AMS Classification: 35B40, 35K45, 35Q30

Keywords: incompressible micropolar flows, vorticity and micro-rotation, dissipative systems, monotonicity method, upper and lower estimates

Corresponding author: Paulo R. Zingano (paulo.zingano@ufrgs.br)

1R. H. Guterres acknowledges support form FACEPE Grant BFP-0067-1.01/19.
2W. Melo acknowledges support from Bolsa PQ CNPq - 309880/2021-1.
3C. F. Perusato was partially supported by CAPES-PRINT-88881.311964/2018-01.
1. Introduction

In this work we identify the close relation between vorticity and micro-rotation in micropolar flows in \mathbb{R}^n ($n = 2, 3$). We also present related results and a number of interesting consequences of this relation which might be of independent interest. In the 1960s, C. Eringen [18] introduced the micropolar fluids model (see the equations (1.1) and (1.6) below). It deals with a class of fluids which exhibit certain microscopic effects arising from micro-motions and local structures of the fluid particles that lead to a nonsymmetric stress tensor, and which are often called polar fluids. It includes, as a special case, the well-established Navier-Stokes model [31].

The governing equations are given as follows. We begin with dimension $n = 3$. Given arbitrary states $u_0 = (u_0^1, u_0^2, u_0^3) \in L^2_\sigma(\mathbb{R}^3)$ and $w_0 = (w_0^1, w_0^2, w_0^3) \in L^2(\mathbb{R}^3)$, we consider solutions $(u, w) = (u_1, u_2, u_3, w_1, w_2, w_3)$ in the Leray-Hopf sense of the incompressible micropolar equations [18, 19, 31, 42]

\begin{align}
 u_t + u \cdot \nabla u + \nabla p &= (\mu + \chi) \Delta u + 2\chi \nabla \wedge w, \\
 \nabla \cdot u &= 0, \\
 w_t + u \cdot \nabla w &= \nu \Delta w + \kappa \nabla (\nabla \cdot w) - 4\chi w + 2\chi \nabla \wedge u, \\
 u(\cdot, 0) &= u_0, \quad w(\cdot, 0) &= w_0,
\end{align}

(1.1)

where the coefficients μ (kinematic viscosity), ν (angular viscosity) and χ (vortex or micro-rotation viscosity) are positive, and κ (gyroviscosity) is nonnegative, all assumed to be constant. Leray-Hopf (or simply Leray) solutions in \mathbb{R}^3 are global mappings $(u, w)(\cdot, t) \in C_w([0, \infty), L^2_\sigma(\mathbb{R}^3) \times L^2(\mathbb{R}^3)) \cap L^2((0, \infty), H^1(\mathbb{R}^3) \times H^1(\mathbb{R}^3))$ with $(u, w)(\cdot, 0) = (u_0, w_0)$ that satisfy the equations in weak sense for $t > 0$ and in addition the energy estimate

\begin{align}
 \| (u, w)(\cdot, t) \|^2_{L^2} + 2 \int_t^s \{ \mu \| D u(\cdot, \tau) \|^2_{L^2} + \nu \| D w(\cdot, \tau) \|^2_{L^2} \} d\tau \leq \| (u, w)(\cdot, s) \|^2_{L^2}
\end{align}

(1.2)

for all $t > s$, for $s = 0$ and for almost every $s > 0$, where $\| \cdot \|_{L^2}$ denotes the norm in $L^2(\mathbb{R}^3)$ (see (1.16)-(1.18) below for notation). The existence of Leray solutions for the equations (1.1) and other similar dissipative systems is well known, but their uniqueness and exact regularity properties are still open,\(^1\) except for small initial

\(^1\)Recent advances seem to give strong indication that 3D Leray solutions may fail to be unique (and therefore smooth), see [1, 8, 26] and references therein.
data in suitable spaces \[3, 19, 31, 39, 42\]. This is the case, for example, of small initial data in \(H^1_0(\mathbb{R}^3) \times H^1(\mathbb{R}^3) \): Serrin-like regularity conditions \[13, 41\] and standard calculations give that \((u, w) \in C^\infty(\mathbb{R}^3 \times (0, \infty))\), with in addition \((u, w)(\cdot, t) \in C((0, \infty), H^m(\mathbb{R}^3) \times H^m(\mathbb{R}^3))\) for all \(m \geq 0 \), if

\[
\| (u_0, w_0) \|_{L^2(\mathbb{R}^3)}^{1/2} \| D(u_0, w_0) \|_{L^2(\mathbb{R}^3)}^{1/2} \leq 3.182 \cdot \min \{ \mu, \nu \}
\]

(see (2.5), Section 2). From (1.2) it follows that, for any \((u_0, w_0) \in L^2_0(\mathbb{R}^3) \times L^2(\mathbb{R}^3)\), there will exist \(t_* \geq 0 \) sufficiently large so that \((u, w) \in C^\infty(\mathbb{R}^3 \times (t_*, \infty))\) and

\[
(u, w)(\cdot, t) \in C((t_*, \infty), H^m(\mathbb{R}^3) \times H^m(\mathbb{R}^3)), \quad \forall \ m \geq 0.
\]

(1.3)

It also follows the existence of some \(t_{**} \geq t_* \), with \(t_*, t_{**} \) satisfying

\[
0 \leq t_* \leq t_{**} \leq K \cdot (\min \{ \mu, \nu \})^{-5} \| (u_0, w_0) \|^4_{L^2(\mathbb{R}^3)}, \quad K < 0.005,
\]

(1.4)

so that \(\| D(u, w)(\cdot, t) \|_{L^2(\mathbb{R}^3)} \) is monotonically decreasing in \((t_{**}, \infty)\), cf. Theorem 2.1 of Section 2. From (1.2) and (1.4) we immediately obtain

\[
\lim_{t \to \infty} t^{1/2} \| D(u, w)(\cdot, t) \|_{L^2(\mathbb{R}^3)} = 0.
\]

More is true: for arbitrary data \((u_0, w_0) \in L^2_0(\mathbb{R}^n) \times L^2(\mathbb{R}^n), n = 3\), it is known that

\[
\lim_{t \to \infty} t^{m/2} \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} = 0
\]

(1.5a)

and

\[
\lim_{t \to \infty} t^{(m+1)/2} \| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} = 0
\]

(1.5b)

for every \(m \geq 0 \), see \[21, 23, 32\]. The extra factor \(t^{1/2} \) in (1.5b) as compared to (1.5a) seems to have been first obtained in the incompressible case in \[21, 23\] (for compressible flows, see \[30\]), as a consequence of the damping term in the equation (1.1c). When the initial data are also in \(L^1 \), the corresponding results were obtained in \[11\] by combining the monotonicity approach of \[22, 27\] with the Fourier Splitting technique introduced by M. Schonbek in \[36, 37\]. Using the decay character theory, C. Niche and C. Perusato \[32\] derived lower bounds for \(\| (u, w)(\cdot, t) \|_{L^2} \). However, an individual lower bound for \(\| w(\cdot, t) \|_{L^2} \) was not obtained there. The linear damping term gives an exponential contribution to the decay, which prevents obtaining the lower estimate for \(\| w(\cdot, t) \|_{L^2} \) and Fourier splitting (or decay character) techniques.
do not seem to help in this situation. This has now become possible in view of the strong decay properties of the error $\varepsilon(\cdot,t)$ given in (1.7) below.

It will follow from our results that the speed-up gain by $t^{1/2}$ observed in (1.5b) is indeed optimal and is rooted in an intimate relation between micro-rotation and flow vorticity that is an important effect of vortex viscosity.

In [20], F. Gay-Balmaz, T. Ratiu and C. Tronci established the equivalence of Eringen’s micropolar theory and the Ericksen-Leslie director theory\footnote{For a discussion of the Ericksen-Leslie equations for nematic liquid crystal flows, see e.g. [25].} for the dynamics of nematic liquid crystals [16, 17, 29]. Therefore, the results provided here might be extended to other contexts.

Similar results can of course be obtained for two-dimensional flows. In this case, $u = (u_1(x_1, x_2, t), u_2(x_1, x_2, t))$, $w = (0, 0, w(x_1, x_2, t))$ and from (1.1) we get

\begin{align*}
 u_t + u \cdot \nabla u + \nabla p &= (\mu + \chi) \Delta u + 2\chi \nabla \wedge w, \quad (1.6a) \\
 \nabla \cdot u(\cdot, t) &= 0, \quad (1.6b) \\
 w_t + u \cdot \nabla w &= \nu \Delta w - 4\chi w + 2\chi \nabla \wedge u, \quad (1.6c) \\
 u(\cdot, 0) &= u_0 \in L^2_\sigma(\mathbb{R}^2), \quad w(\cdot, 0) = w_0 \in L^2(\mathbb{R}^2), \quad (1.6d)
\end{align*}

where $\nabla \wedge w = (D_2 w, -D_1 w)$ and $\nabla \wedge u = D_1 u_2 - D_2 u_1$ (notice that in (1.6) above the term associated with the gyroviscosity κ now drops out, because $\nabla \cdot w = 0$). As in the 2D Navier-Stokes equations, Leray solutions to (1.6) are regular for $t > 0$, that is, $(u, w) \in C^\infty(\mathbb{R}^2 \times (0, \infty))$ and $(u, w)(\cdot, t) \in C((0, \infty), H^m(\mathbb{R}^2) \times H^m(\mathbb{R}^2))$ for every $m \geq 0$, so that in 2D we have $t^* = 0$ [14, 15, 31]. Moreover, (1.5) remains valid in the two-dimensional case, as can be shown by a completely similar derivation.

\section*{1.1. Physical background}

Before continuing our discussion, let us give some physical insight for (1.5b) above. Micropolar fluids are an important model of non-Newtonian fluids in which the particles are endowed with a rigid structure, so that they can rotate about their center of mass (micro-rotation), whose angular velocity is given by w. Conservation of linear and angular momentum, along with some natural assumptions on the stress tensor, lead to the equations (1.1a)/(1.6a) and (1.1c)/(1.6c), respectively, in the absence of external forces [18, 31]. On the other hand, the flow vorticity at time t (given by the curl of the translational velocity field, $\nabla \wedge u$) is a measure of the local flow rotation,
as we now briefly review. Consider, for example, the two-dimensional flow depicted at some time t in Figure 1a, with, say, positive and negative vorticity at the points P and Q shown, lying on some streamline A. In this situation, a fluid particle located at P would be moving faster (at least momentaneously) than neighboring particles on the streamline B shown there and slower than those on C, so that to the particle P it would seem that neighboring particles were moving in opposite directions on his left and right sides. Thus, from its point of view, the particles would appear to be circulating counterclockwise about it (Figure 1b). A similar perception would have an observer sitting on the particle Q shown downstream, except that this time the circulation of neighboring particles would appear to be clockwise. That is, flow vorticity at any given time is related to local flow circulation as seen by the particles at that time.

Local approximation of the velocity field by Taylor expansion shows that this apparent rotation happens with angular velocity given, to first approximation, by half of the local vorticity, that is, $\frac{1}{2} \nabla \wedge \mathbf{u}$ (see e.g. [10], pp. 19-21). In micropolar fluids, where the particles can also micro-rotate, local circulation can be transmitted to their micro-rotation, and vice-versa, due to the mechanism of vortex viscosity. It thus seems physically plausible that, in time, flow circulation and micro-rotation will tend to synchronize (Figure 1c), so that we should expect

$$w(x,t) \approx \frac{1}{2} \nabla \wedge \mathbf{u}(x,t)$$

for $t \gg 1$. In particular, as the flow develops, $\|w(\cdot, t)\|_{L^2}$ should not really be much different from $\frac{1}{2} \| \nabla \wedge \mathbf{u}(\cdot, t)\|_{L^2}$, which accounts for the extra factor $t^{1/2}$ obtained in (1.5b), at least for $m = 0$. This spontaneous synchronization between micro-rotation and local flow circulation has apparently not been observed in the literature of micropolar fluids before, and it is at the heart of the mathematical results given in this paper, all related in one way or another to estimating the difference

$$\varepsilon(x,t) = w(x,t) - \frac{1}{2} \nabla \wedge \mathbf{u}(x,t). \quad (1.7)$$

Following the physical picture above, $\varepsilon(\cdot, t)$ should decay faster than either term on the right of (1.7) alone, as confirmed by Theorems A-D below. This effect gets even stronger when the kinematic and angular viscosities coincide, especially in 3D (Theorem B). The proofs rely on delicate new upper and lower \dot{H}^m solution bounds derived from monotonicity properties [22] and from estimates of $\varepsilon(\cdot, t)$. In the literature there are relatively few examples of lower \dot{H}^m estimates, see e.g. [34] for the Navier-Stokes system. Our results might suggest a possible extension to the case $\nu = 0$, but this question is left open (see [9, 15] for some papers in this direction).
Fig. 1a: A snapshot at some time t of a hypothetical two-dimensional flow, showing two points, P and Q, assumed with positive and negative vorticity, respectively (streamline A).

Fig. 1b: An observer sitting on the particle P would see neighboring particles circulating counterclockwise (black circle). At Q, local circulation would appear to be clockwise.

Fig. 1c: In micropolar flows, local circulation and micro-rotation tend to synchronize because of the action of vortex or micro-rotation viscosity, so that $\mathbf{w} \approx \frac{1}{2} \nabla \times \mathbf{u}$ for $t \gg 1$.
1.2. Main contributions of the paper

We now describe our main results. We are concerned throughout the paper with Leray solutions $z(\cdot, t) = (u, w)(\cdot, t)$ in \mathbb{R}^n ($n = 2, 3$), whose velocity $u(\cdot, t)$ satisfies

$$
\| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha} \quad \forall \ t > T_0
$$

for some constants $C_0, \alpha, T_0 \geq 0$, where $z_0 = (u_0, w_0)$. For the existence of solutions satisfying (1.8) with $\alpha > 0$, see e.g. [4, 5, 6, 12, 83] and the APPENDIX to this paper.

Theorem A. If (1.8) is valid for some $\alpha \geq 0$, then we have, for each $m \geq 1$:

$$
\| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K_m(\alpha) C_0 \mu^{-\frac{m}{2}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m}{2}} \quad \forall \ t > T_m
$$

(1.9a)

where $K_m(\alpha)$ depends solely on (m, α), and not on the solution or other parameters, and T_m only on (m, α, μ), $C_0, \| z_0 \|_{L^2(\mathbb{R}^n)}$ and, if $n = 2$ and $\alpha = 0$, also on how fast $\| z(\cdot, t) \|_{L^2(\mathbb{R}^2)}$ vanishes as $t \to \infty$. Moreover, we have, for every $m \geq 0$:

$$
\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K_{m+1}(\alpha) C_0 \mu^{-\frac{m+1}{2}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m+1}{2}} \quad \forall \ t > T'_m
$$

(1.9b)

with $K_{m+1}(\alpha)$ given in (1.9a), and T'_m dependent on $(m, \alpha, \mu, \nu, \chi, C_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, if $n = 2$ and $\alpha = 0$, also on the vanishing speed of $\| z(\cdot, t) \|_{L^2(\mathbb{R}^2)}$ as $t \to \infty$.

Theorem B. If (1.8) is valid for some $\alpha \geq 0$, then we have, for every $m \geq 0$:

$$
\| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K'_m(\alpha) C_0 \left| \frac{\mu - \nu}{\chi} \right| \mu^{-\frac{m+3}{2}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m+3}{2}}
$$

$$
+ K''_m(\alpha) C_0^2 \chi^{-1} \mu^{-\frac{m+3}{2} - p_n} \| z_0 \|_{L^2(\mathbb{R}^n)}^2 t^{-2\alpha - \frac{m+3}{2} - p_n}
$$

(1.10)

for all $t > T''_m$, with $T''_m > t_*$ depending only on $(m, \alpha, \mu, \nu, \chi, C_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, in the case $n = 2$ and $\alpha = 0$, also on how fast $\| z(\cdot, t) \|_{L^2(\mathbb{R}^2)}$ vanishes as $t \to \infty$.

The constants $K'_m(\alpha), K''_m(\alpha)$ depend on (m, α) only, and $p_n = (n - 2)/4$.

Remark 1.1. In dimension 2, $w(x_1, x_2, t) = (0, 0, w(x_1, x_2, t))$, and so $\nabla \cdot w(\cdot, t) = 0$. When $n = 3$, $w(\cdot, t)$ is not solenoidal but (1.7) and Theorem B show that $\nabla \cdot w(\cdot, t)$ decays very fast: one has $\| D^m [\nabla \cdot w](\cdot, t) \|_{L^2(\mathbb{R}^3)} = O(t^{-\alpha - 2 - m/2})$ if $\mu \neq \nu$, and $\| D^m [\nabla \cdot w](\cdot, t) \|_{L^2(\mathbb{R}^3)} = O(t^{-2\alpha - 2 - m/2 - 1/4})$ when $\mu = \nu$, for every $m \geq 0$, while, from Theorem A, $\| D^m [\nabla \cdot w](\cdot, t) \|_{L^2(\mathbb{R}^3)} = O(t^{-\alpha - 1 - m/2})$ whether $\mu = \nu$ or not. A lower bound of $t^{-\alpha - 1 - m/2}$ for $\| D^m [\nabla \cdot w](\cdot, t) \|_{L^2(\mathbb{R}^3)}$ follows from Theorem C,
see (1.13) below. Other similar results can be obtained from Theorem D as well.

The estimates (1.9) and (1.10) are suggestive of a significantly faster decay of \(e(\cdot, t) \) in comparison to \(w(\cdot, t) \) or \(\nabla \wedge u(\cdot, t) \). This can be rigorously established under some extra assumptions on the solution; for instance, if we assume, in addition to (1.8), a lower bound of \(t^{-\alpha} \) for the solution \(z(\cdot, t) = (u, w)(\cdot, t) \). By Theorem A, this is equivalent to having

\[
\| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \geq c_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha} \quad \forall \ t > t_0
\]

(1.11)

for some positive \(c_0, \alpha, t_0 \), where again \(z_0 = (u_0, w_0) \). The existence of solutions satisfying (1.11) is obtained in [12] (see also [32]). For the case \(0 < \alpha < 1/2 \) it is a direct consequence of Theorem B above, see the Appendix for details.

Theorem C. If (1.8) and (1.11) hold for some \(\alpha > 0 \), then we have, for each \(m \geq 1 \):

\[
\| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \geq \Gamma_m c_0 \mu^{m/2} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - m/2} \quad \forall \ t > t_m
\]

(1.12)

where \(\Gamma_m = \Gamma_m(\alpha, c_0, C_0) > 0 \) depends on \((m, \alpha, c_0, C_0) \) only, and \(t_m \) depends solely on \((m, \alpha, \mu, \nu, \chi, c_0, t_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)}) \).

Remark 1.2. Recalling that \(\| D^m [\nabla \wedge u] (\cdot, t) \|_{L^2(\mathbb{R}^n)} = \| D^{m+1} u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \), it follows from (1.7), (1.10) and (1.12) that, for every \(m \geq 0 \):

\[
\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \geq \frac{1}{2} \Gamma_{m+1} c_0 \mu^{m+1/2} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - m+1/2} + O(t^{-\alpha - m+3/2})
\]

(1.13)

for \(t \gg 1 \), so that (1.8) and (1.11) yield lower (and upper) bounds for \(w(\cdot, t) \) as well. Further results can be obtained replacing (1.11) by the more general assumption

\[
\| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \geq c_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\eta} \quad \forall \ t > t_0
\]

(1.14)

for some positive \(c_0, \eta, t_0 \), with \(\eta \geq \alpha \) not too much larger than \(\alpha \) (see below).

Theorem D. If (1.8) and (1.14) are valid for some given \(\alpha > 0 \) and \(\eta \geq \alpha \) such that \(\eta < \alpha(\alpha + 1 + m/2)/(\alpha + m/2) \) for some \(m \geq 1 \), then: for every \(1 \leq \ell \leq m \), we have

\[
\| D^\ell u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \geq c_\ell \mu^{\ell/2} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\eta - \ell q} \quad \forall \ t > t'_\ell
\]

(1.15)

for some \(t'_\ell \gg 1 \) depending on \((\ell, \alpha, \eta, \mu, \nu, \chi, c_0, t_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)}) \) only, where \(q = \eta/\alpha \) and \(c_\ell > 0 \) depends on \((\ell, \alpha, c_0, C_0) \) only.
Remark 1.3. For \((\alpha, \eta)\) satisfying the conditions of Theorem D, (1.10) and (1.15) imply that, for some \(\theta > 0\) fixed:
\[
\| D^k \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} = O(t^{-\theta}) \| D^k [\nabla \wedge u](\cdot, t) \|_{L^2(\mathbb{R}^n)}
\]
for every \(0 \leq k \leq m - 1\). Recalling (1.7), we thus have for large \(t\) that the angular velocity of micro-rotation is essentially half of the vorticity, as physically expected.

Remark 1.4. When \(\mu = \nu\), it follows from the proof of Theorem D (see Section 4) that (1.15) is valid more generally if \(0 < \alpha \leq \eta < \alpha (2\alpha + 1 + m/2 + p_n)/(\alpha + m/2)\), where \(p_n = (n - 2)/4\), and again \(\| D^k \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} = O(t^{-\theta}) \| D^k [\nabla \wedge u](\cdot, t) \|_{L^2(\mathbb{R}^n)}\), \(0 \leq k \leq m - 1\), for some \(\theta > 0\), as in the previous case (cf. Remark 1.3).

1.3. Organization of the paper

Here is a summary of the next sections. In Section 2 some preliminary results are provided to prepare the way for the derivation of the theorems above. Although this material is basically known, some proofs are new and a few improvements are offered. In particular, we use the monotonicity approach developed by the authors in [22] to obtain new upper or lower bounds for the solutions or their derivatives (of arbitrary order) out of previously known estimates. For the most part of Section 2, the special structure of the micropolar equations, dissipating the particles’ micro-rotation more effectively than their translational velocity, is not taken into account, with solutions \(z = (u, w)\) treated as a whole. In Section 3 the distinction between the fields \(u, w\) is stressed from the start, leading to a series of results which are of interest on their own and which ultimately lead to Theorems A and B. The argument is once again based on monotonicity properties, which is also the main tool in Section 4. The latter focus instead on lower bounds, deriving Theorems C and D by a similar approach. An Appendix supplements the discussion providing proof for the existence of Leray solutions satisfying (1.8) and (1.11) in the case \(0 < \alpha < 1/2\).

1.4. Notation

Throughout the text vector quantities are denoted by boldface letters, \(\langle v, w \rangle\) indicates the standard inner product of two vectors \(v, w \in \mathbb{R}^n\), and \(|\cdot|\) is used to denote absolute value (for scalars) or the Euclidean norm (for vectors). \(L^p(\mathbb{R}^n)\), \(1 \leq p \leq \infty\), are the usual Lebesgue spaces; \(v = (v_1, v_2, ..., v_k) \in L^p(\mathbb{R}^n)\) means that \(v_i \in L^p(\mathbb{R}^n)\) for every \(1 \leq i \leq k\). By \(\| \cdot \|_{L^p(\mathbb{R}^n)}\) or simply \(\| \cdot \|_{L^p}\) are meant the usual \(L^p\) norms in \(\mathbb{R}^n\); for vector functions,
\[
\|v\|_{L^p}^p \equiv \|(v_1, v_2, \ldots, v_k)\|_{L^p}^p = \sum_{i=1}^k \int_{\mathbb{R}^n} |v_i(x)|^p \, dx
\] (1.16)
if \(1 \leq p < \infty\), and \(\|v\|_{L^\infty} = \text{ess sup} \{ |(v_1(x), v_2(x), \ldots, v_k(x))| : x \in \mathbb{R}^n \}\) if \(p = \infty\). Similarly, if \(1 \leq p < \infty\) and \(v = (v_1, v_2, \ldots, v_k)\), we have

\[
\|Dv\|_{L^p}^p \equiv \|Dv\|_{L^p(\mathbb{R}^n)}^p = \sum_{i=1}^k \sum_{j=1}^n \sum_{\ell=1}^n \int_{\mathbb{R}^n} |D_j v_i(x)|^p \, dx,
\] (1.17a)

\[
\|D^2v\|_{L^p(\mathbb{R}^n)}^p = \sum_{i=1}^k \sum_{j=1}^n \sum_{\ell=1}^n \sum_{m=1}^n \int_{\mathbb{R}^n} |D_j D_\ell v_i(x)|^p \, dx,
\] (1.17b)

and, for general \(m \geq 1\),

\[
\|D^m v\|_{L^p(\mathbb{R}^n)}^p = \sum_{i=1}^k \sum_{j_1=1}^n \sum_{j_2=1}^n \cdots \sum_{j_m=1}^n \int_{\mathbb{R}^n} |D_{j_1} D_{j_2} \cdots D_{j_m} v_i(x)|^p \, dx,
\] (1.17c)

where \(D_j = \partial/\partial x_j\), \(D_j D_\ell = \partial^2/\partial x_j \partial x_\ell\), and so forth, while

\[
\|Dv\|_{L^\infty(\mathbb{R}^n)} = \max \{ \text{ess sup}_{x \in \mathbb{R}^n} |D_j v_i(x)| : 1 \leq i \leq k, 1 \leq j \leq n \}\] (1.18a)

and, more generally,

\[
\|D^m v\|_{L^\infty(\mathbb{R}^n)} = \max \{ \text{ess sup}_{x \in \mathbb{R}^n} |D_{j_1} \cdots D_{j_m} v_i(x)| : 1 \leq i \leq k, 1 \leq j_1, \ldots, j_m \leq n \}\] (1.18b)

(for \(m \geq 1\)) if \(p = \infty\). In the text, we will only use \(p = 2\) or \(p = \infty\). We will also be using the Sobolev space \(H^m(\mathbb{R}^n)\), i.e., the space of all those functions in \(L^2(\mathbb{R}^n)\) whose derivatives of order \(m\) are again in \(L^2(\mathbb{R}^n)\). If \(v = (v_1, v_2, \ldots, v_k)\), we write \(v \in H^m(\mathbb{R}^n)\) when \(v_i \in H^m(\mathbb{R}^n)\) for all \(1 \leq i \leq k\). By \(L^2_0(\mathbb{R}^n)\) we denote the space of vector functions \(v = (v_1, v_2, \ldots, v_n) \in L^2(\mathbb{R}^n)\) with \(\nabla \cdot v = 0\) in distributional sense, that is, \(\nabla \cdot v = 0\) in \(D'(\mathbb{R}^n)\), and, similarly, \(H^m_0(\mathbb{R}^n) = \{ v \in L^2_0(\mathbb{R}^n) : v \in H^m(\mathbb{R}^n) \}\). Here, \(\nabla \cdot\) denotes the divergence operator; the curl and gradient are denoted by \(\nabla \land\) and \(\nabla\), respectively, as in the equations (1.1a), (1.1c) above. Finally, we will also occasionally mention the homogeneous Sobolev space \(H^m(\mathbb{R}^n), m \geq 1\), that is, the space of tempered distributions with locally integrable Fourier transforms and whose distributional derivatives of order \(m\) are all in \(L^2(\mathbb{R}^n)\).

Acknowledgments. The authors would like to express their gratitude to Prof. César J. Niche (Universidade Federal do Rio de Janeiro, Brazil) for his interest in this work and a number of invaluable discussions that helped us improve it.
2. Mathematical preliminaries

In this section we present a brief review of several basic results of (global) Leray solutions to the micropolar systems (1.1) or (1.6) which will be needed later. The discussion below is adapted from [7, 21, 22, 24] and considers general initial data \((u_0, w_0) \in L^2_0(\mathbb{R}^n) \times L^2(\mathbb{R}^n)\), where \(n = 2\) or \(3\). It will prove convenient to introduce

\[
\gamma = \min\{\mu, \nu\} \quad (2.1)
\]

where \(\mu, \nu > 0\) are given in the equations (1.1) or (1.6) above, and recall the general estimates

\[
\|D^\ell v(\cdot, t)\|_{L^\infty(\mathbb{R}^2)} \|D^{m-\ell+1} v(\cdot, t)\|_{L^2(\mathbb{R}^2)} \leq \|v(\cdot, t)\|_{L^2(\mathbb{R}^2)} \|D^{m+1} v(\cdot, t)\|_{L^2(\mathbb{R}^2)} \quad (2.2a)
\]

\[
\|D^\ell v(\cdot, t)\|_{L^\infty(\mathbb{R}^3)} \|D^{m-\ell+1} v(\cdot, t)\|_{L^2(\mathbb{R}^3)} \leq \|v(\cdot, t)\|_{L^2(\mathbb{R}^3)} \|D^{m+1} v(\cdot, t)\|_{L^2(\mathbb{R}^3)} \quad (2.2b)
\]

for every \(m \geq 1\), \(0 \leq \ell \leq m - 1\) and \(v \in H^{m+1}(\mathbb{R}^n)\), \(n = 2, 3\), see (17, Lemma 3.1).

In dimension \(n = 2\), solutions are known to be smooth \((C^\infty(\mathbb{R}^2 \times (0, \infty)))\) and uniquely defined by \((u_0, w_0)\), with \((u, w)(\cdot, t) \in C((0, \infty), H^m(\mathbb{R}^2) \times H^m(\mathbb{R}^2))\) for every \(m \geq 0\), see e.g. [19, 31]. If \(n = 3\), uniqueness and exact regularity properties are not known for arbitrary data, but the following result is available.

Theorem 2.1. Given \((u_0, w_0) \in L^2_0(\mathbb{R}^3) \times L^2(\mathbb{R}^3)\) and any Leray solution \((u, w)(\cdot, t)\) to the equations (1.1), there exists \(t_{**} > 0\) satisfying

\[
t_{**} \leq 0.005 \cdot \gamma^{-5} \|u_0, w_0\|_{L^2(\mathbb{R}^3)}^4 \quad (2.3)
\]

such that \((u, w) \in C^\infty(\mathbb{R}^3 \times (t_{**}, \infty))\), \((u, w)(\cdot, t) \in C((t_{**}, \infty), H^m(\mathbb{R}^3) \times H^m(\mathbb{R}^3))\) for every \(m \geq 0\), and \(\|D(u, w)(\cdot, t)\|_{L^2(\mathbb{R}^3)}\) is monotonically decreasing in \((t_{**}, \infty)\).

Proof. If \((u, w)(\cdot, t) \in C([t_0, T], H^1(\mathbb{R}^3))\) for some \(0 \leq t_0 < T\), the solution is smooth in \((t_0, T)\) and we obtain, differentiating the equations (1.1), the energy estimate

\[
\|Dz(\cdot, t)\|_{L^2(\mathbb{R}^3)}^2 + 2\gamma \int_{t_0}^t \|D^2 z(\cdot, \tau)\|_{L^2(\mathbb{R}^3)}^2 d\tau \leq \|Dz(\cdot, t_0)\|_{L^2(\mathbb{R}^3)}^2 + 2 \int_{t_0}^t \|D^2 z(\cdot, \tau)\|_{L^2(\mathbb{R}^3)} \|z(\cdot, \tau)\|_{L^\infty(\mathbb{R}^3)} \|Dz(\cdot, \tau)\|_{L^2(\mathbb{R}^3)} d\tau \quad (2.4)
\]

for all \(t \in (t_0, T)\), where \(z = (u, w)\) and \(\gamma > 0\) is given in (2.1). Observing that
\[\| z(\cdot, \tau) \|_{L^\infty(\mathbb{R}^3)} \| Dz(\cdot, \tau) \|_{L^2(\mathbb{R}^3)} \leq K \| z(\cdot, \tau) \|_{L^2(\mathbb{R}^3)} \| Dz(\cdot, \tau) \|_{L^2(\mathbb{R}^3)} \| D^2z(\cdot, \tau) \|_{L^2(\mathbb{R}^3)}^{3/4} \]
\[\leq K \| z(\cdot, \tau) \|_{L^2(\mathbb{R}^3)}^{1/2} \| Dz(\cdot, \tau) \|_{L^2(\mathbb{R}^3)}^{1/2} \| D^2z(\cdot, \tau) \|_{L^2(\mathbb{R}^3)} \]
(by Fourier transform), where \(K = \sqrt[3]{12} / \sqrt[3]{6\pi} \) (Theorem 2.2), it follows from (2.4) that \(\| Dz(\cdot, t) \|_{L^2(\mathbb{R}^3)} \) is monotonically decreasing for \(t \geq t_0 \) if we have
\[K \| z(\cdot, t_0) \|_{L^2(\mathbb{R}^3)}^{1/2} \| Dz(\cdot, t_0) \|_{L^2(\mathbb{R}^3)}^{1/2} < \gamma \] (2.5)
with, in particular, \(z \in C^\infty(\mathbb{R}^3 \times (t_0, \infty)) \) and \(z(\cdot, t) \in C((t_0, \infty), H^m(\mathbb{R}^3) \times H^m(\mathbb{R}^3)) \) for each \(m \) (see e.g. [38]). Taking \(\hat{t} = \frac{1}{3} K^4 \gamma^{-5} \| (u_0, w_0) \|_{L^2(\mathbb{R}^3)}^4 \) (1.2) have
\[2 \gamma \int_0^t \| Dz(\cdot, \tau) \|_{L^2(\mathbb{R}^3)}^2 d\tau \leq \| (u_0, w_0) \|_{L^2(\mathbb{R}^3)}^2 \]
and so there exists \(E \subseteq (0, \hat{t}) \) with positive Lebesgue measure such that
\[\| Dz(\cdot, t') \|_{L^2(\mathbb{R}^3)}^2 \leq \frac{1}{2} \hat{t}^{-1} \| (u_0, w_0) \|_{L^2(\mathbb{R}^3)}^2 \]
for all \(t' \in E \). Therefore, for each \(t' \in E \):
\[\| z(\cdot, t') \|_{L^2(\mathbb{R}^3)}^2 \| Dz(\cdot, t') \|_{L^2(\mathbb{R}^3)}^2 \leq \| z(\cdot, t') \|_{L^2(\mathbb{R}^3)}^2 \| Dz(\cdot, t') \|_{L^2(\mathbb{R}^3)} \frac{1}{2} \hat{t}^{-1} \| (u_0, w_0) \|_{L^2(\mathbb{R}^3)}^2 \]
\[\leq \frac{1}{2} \hat{t}^{-1} \| (u_0, w_0) \|_{L^2(\mathbb{R}^3)}^4 < K^{-4} \gamma^4 \]
where the last estimate follows from the choice of \(\hat{t} \). By (2.5), this gives the result. \[\square \]

Remark 2.1. In dimension \(n = 2 \), we have, for \(z = (u, w), \)
\[\| z(\cdot, \tau) \|_{L^\infty(\mathbb{R}^2)} \| Dz(\cdot, \tau) \|_{L^2(\mathbb{R}^2)} \leq \frac{1}{2} \| z(\cdot, \tau) \|_{L^2(\mathbb{R}^2)}^{1/2} \| Dz(\cdot, \tau) \|_{L^2(\mathbb{R}^2)} \| D^2z(\cdot, \tau) \|_{L^2(\mathbb{R}^2)} \]
\[\leq \frac{1}{2} \| z(\cdot, \tau) \|_{L^2(\mathbb{R}^2)} \| D^2z(\cdot, \tau) \|_{L^2(\mathbb{R}^2)} \]
(see e.g. [38]). Since (2.4) is also valid for \(n = 2 \), it follows that \(\| D(u, w)(\cdot, t) \|_{L^2(\mathbb{R}^2)} \) is monotonically decreasing in the interval \((t_{**}, \infty)\) if \(t_{**} \geq 0 \) is such that
\[\| (u, w)(\cdot, t_{**}) \|_{L^2(\mathbb{R}^2)} \leq 2 \gamma. \] (2.6)
Because \(\| z(\cdot, t) \|_{L^2(\mathbb{R}^n)} \rightarrow 0 \) as \(t \rightarrow \infty \) (see e.g. [23]), this condition is satisfied for suitable \(t_{**} \), which depends on how fast \(\| z(\cdot, t) \|_{L^2(\mathbb{R}^2)} \) becomes small for \(t \gg 1 \).

The monotonicity of \(\| Dz(\cdot, t) \|_{L^2(\mathbb{R}^n)} \) has important consequences, as illustrated by the next results. More examples are given in Section 3 (see also [22]).
Theorem 2.2. For any Leray solution \(z = (u, w) \) to the micropolar equations (1.1) or (1.6) above, we have
\[
\| Dz(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq \gamma^{-1/2} \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)} t^{-1/2} \quad \forall \ t > 2 t^{**}
\] (2.7)
where \(t^{**} \geq t^* \) denotes the monotonicity time of \(\| Dz(\cdot, t) \|_{L^2(\mathbb{R}^n)} \), cf. (2.3) or (2.6).

Proof. From the energy inequality for \(\| z(\cdot, t) \|_{L^2(\mathbb{R}^n)} \) (see (1.2)), we have
\[
\| z(\cdot, t) \|^2_{L^2(\mathbb{R}^n)} + 2 \gamma \int_{t_0}^t \| Dz(\cdot, \tau) \|^2_{L^2(\mathbb{R}^n)} d\tau \leq \| z(\cdot, t_0) \|^2_{L^2(\mathbb{R}^n)}
\] (2.8)
for every \(t > t_0 > t^* \) (the solution’s regularity time), so that, for \(t > 2 t^{**} \):
\[
\gamma \ t \| Dz(\cdot, t) \|^2_{L^2(\mathbb{R}^n)} \leq 2 \gamma \int_{t/2}^t \| Dz(\cdot, \tau) \|^2_{L^2(\mathbb{R}^n)} d\tau \leq \| (u_0, w_0) \|^2_{L^2(\mathbb{R}^n)}.
\]
□

Remark 2.2. In a similar way, we obtain that \(\| Dz(\cdot, t) \|_{L^2(\mathbb{R}^n)} = o(t^{-\frac{1}{2}}) \) as \(t \to \infty \), since (for \(t > t^{**} \)): \(t \| Dz(\cdot, t) \|^2_{L^2(\mathbb{R}^n)} \leq \int_t^{2t} \| Dz(\cdot, \tau) \|^2_{L^2(\mathbb{R}^n)} d\tau \to 0 \). See e.g. [27, 43].

Theorem 2.3. (i) If \(n = 3 \), for each \(m \geq 0 \) there exists an absolute constant \(K_m > 0 \) (i.e., depending only on \(m \)) such that, given any Leray solution \(z = (u, w) \) to the equations (1.1), we have \(\| D^m z(\cdot, t) \|_{L^2(\mathbb{R}^3)} \) monotonically decreasing in \((t^{**(m)}, \infty) \) for some \(t^{**(m)} \geq t^* \) satisfying
\[
t^{**(m)} \leq K_m \gamma^{-5} \| (u_0, w_0) \|_{L^2(\mathbb{R}^3)}^4.
\] (2.9a)

(ii) If \(n = 2 \), for each \(m \geq 1 \) there exists a constant \(k_m > 0 \) (depending only on \(m \)) so that, for any solution \(z = (u, w) \) of the system (1.6), we have \(\| D^m z(\cdot, t) \|_{L^2(\mathbb{R}^2)} \) monotonically decreasing in the interval \((t^{**(m)}, \infty) \), for any \(t^{**(m)} \geq 0 \) satisfying
\[
\| (u, w)(\cdot, t^{**(m)}) \|_{L^2(\mathbb{R}^2)} \leq k_m \gamma.
\] (2.9b)

Proof. The case \(m \leq 1 \) has already been considered (we may take \(K_0 = K_1 = 0.005 \) and \(k_1 = 2 \), cf. (2.3) and (2.6) above). Now, given \(m \geq 1 \), we obtain, from (1.1) or (1.6),
\[
\| D^m z(\cdot, t) \|^2_{L^2(\mathbb{R}^n)} + 2 \gamma \int_{t_0}^t \| D^{m+1} z(\cdot, \tau) \|^2_{L^2(\mathbb{R}^n)} d\tau \leq \| D^m z(\cdot, t_0) \|^2_{L^2(\mathbb{R}^n)} +
H_{m,n}^t \sum_{\ell=0}^{[m/2]} \int_{t_0}^t \| D^{m+1} z(\cdot, \tau) \|_{L^2(\mathbb{R}^n)} \| D^\ell z(\cdot, \tau) \|_{L^\infty(\mathbb{R}^n)} \| D^{m-\ell} z(\cdot, \tau) \|_{L^2(\mathbb{R}^n)} d\tau
\]
for all \(t > t_0 > t^* \), where \([r]\) denotes the integer part of \(r \in \mathbb{R} \). This expression gives

12
\[\| D^m z(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 2\gamma \int_{t_0}^t \| D^{m+1} z(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau \leq \| D^m z(\cdot, t_0) \|_{L^2(\mathbb{R}^n)}^2 + \]
\[+ H_{m,n} \int_{t_0}^t g_n(\tau) \| D^{m+1} z(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau \quad (2.10) \]

by (2.2), where \(g_2(t) = \| z(\cdot, t) \|_{L^2(\mathbb{R}^2)} \) and \(g_3(t) = \| z(\cdot, t) \|_{L^2(\mathbb{R}^3)}^{1/2} \| Dz(\cdot, t) \|_{L^2(\mathbb{R}^3)}^{1/2} \). Here, \(H'_{m,n}, H_{m,n} \) are positive constants that depend on \((m, n)\) only, both increasing with \(m \geq 1\) (for example, \(H'_{1,n} = 1, H_{1,2} = 1/2, H_{1,3} = 8\sqrt{12}/\sqrt{6\pi}, \) and so forth). Let \(m \geq 2 \): from (2.10), monotonicity of \(\| D^m z(\cdot, t) \|_{L^2(\mathbb{R}^n)} \) is achieved if \(H_{m,n} g_n(t) \leq 2\gamma \) when \(t > t^{(m)}_{**} \).

For \(n = 2 \), this is (2.9b) with \(k_m = 2/H_{m,2} \). For \(n = 3 \), recalling (2.3) and (2.7) we see that this condition is guaranteed by (2.9a) if we take \(K_m = H_{m,3}/16 \).

Remark 2.3. From the proof of **Theorem 2.3** we see that more can be achieved by redefining slightly the values \(K_m, k_m \) (and \(t^{(m)}_{**} \)) in (2.9) for \(m \geq 1 \), as follows.

Setting \(k_m = 1/H_{m,2} \) and \(K_m = H_{m,3}^4, m \geq 1 \), we obtain \(H_{m,n} g_n(t) \leq \gamma \) for \(t > t^{(m)}_{**} \), with \(t^{(m)}_{**} \) now defined by

\[
t^{(m)}_{**} = \inf \left\{ t \geq 0 : \| (u, w)(\cdot, t) \|_{L^2(\mathbb{R}^2)} \leq \gamma/H_{m,2} \right\} \quad \text{if } n = 2, \quad (2.11a)
\]
\[
t^{(m)}_{**} = H_{m,3}^4 \gamma^{-5} \| (u_0, w_0) \|_{L^2(\mathbb{R}^3)}^4 \quad \text{if } n = 3, \quad (2.11b)
\]

for \(m \geq 1 \), where \(H_{m,2}, H_{m,3} > 0 \) are given in (2.10). These definitions assure us that

\[
H_{m,n} g_n(t) \leq \gamma \quad \forall \ t > t^{(m)}_{**} \quad (2.11c)
\]

and thus produce, from (2.10) above, the energy estimate

\[
\| D^m z(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + \gamma \int_{t_0}^t \| D^{m+1} z(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau \leq \| D^m z(\cdot, t_0) \|_{L^2(\mathbb{R}^n)}^2 \quad (2.12)
\]

for all \(t > t_0 > t^{(m)}_{**} \), and every \(m \geq 1 \), with \(t^{(m)}_{**} \) defined in (2.11a) and (2.11b) above. This estimate allows a quick generalization of **Theorem 2.2**, given next.

Theorem 2.4. For any Leray solution \(z = (u, w) \) to the micropolar equations (1.1) or (1.6) above, we have, for every \(m \geq 1 \):

\[
\| D^m z(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K_m \gamma^{-m/2} \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)} t^{-m/2} \quad \forall \ t > 2^m t^{(m)}_{**} \quad (2.13)
\]

where the constant \(K_m \) depends only on \(m \) (and not on the solution), and \(t^{(m)}_{**} \) is the monotonicity time for \(\| D^m z(\cdot, t) \|_{L^2(\mathbb{R}^n)} \) introduced in (2.11a) and (2.11b) above.
Proof. For $m = 1$, (2.13) is obvious from (2.7) of Theorem 2.2, with $K_1 = 1$, observing that $t^{(1)}_{**} \geq t_{**}$. For $m = 2$, (2.12) with $m = 1$ gives, for $t > 2t_{**}$,

$$\gamma \frac{t}{2} \| D^2 z(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq \gamma \int_{t/2}^t \| D^2 z(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 \, d\tau \leq \| D z(\cdot, \frac{t}{2}) \|_{L^2(\mathbb{R}^n)}^2$$

where the first inequality is due to the monotonicity of $\| D^2 z(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}$, as $t/2 > t_{**}$. For $t > 4t_{**}$, we have $t/2 > 2t_{**}^{(1)}$ (because $t_{**}^{(2)} > t_{**}^{(1)}$), so that we have

$$\| D z(\cdot, \frac{t}{2}) \|_{L^2(\mathbb{R}^n)}^2 \leq K_1^2 \gamma^{-1} \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)}^2 \frac{t}{\{ \frac{t}{2} \}}^{-1}$$

from the previous case ($m = 1$). This shows the result for $m = 2$ as well. Proceeding by induction in a similar way, (2.12) is obtained for every $m \geq 1$, as claimed. □

We conclude this section with an important improvement for $\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)}$.

Theorem 2.5. For any Leray solution $z = (u, w)$ to the equations (1.1) or (1.6),

(i) we have

$$\| w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq \gamma^{-1/2} \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)} \frac{t}{\tau_0} \quad \forall \ t > \tau_0 \quad (2.14a)$$

for some $\tau_0 > 0$ depending only on γ, χ and the monotonicity time t_{**} given in (2.7);

(ii) for every $m \geq 1$, we have

$$\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq C_m \gamma^{-\frac{m+1}{2}} \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)} \frac{t}{\tau_m}^{-\frac{m+1}{2}} \quad \forall \ t > \tau_m \quad (2.14b)$$

for some constant C_m which depends only on m, and where $\tau_m > 0$ depends only on $m, \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)}, \gamma, \chi$ and $t_{**}^{(m+2)}$ given in (2.11).

Proof. (i) From the equation for $w(\cdot, t)$ given in (1.1) or (1.6) we get, for every $t > t_{**}$ (the solution’s regularity time), that

$$\frac{d}{dt} \| w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 2\nu \| Dw(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 8\chi \| w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2$$

$$\leq 4\chi \| w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \| Du(\cdot, t) \|_{L^2(\mathbb{R}^n)}$$

$$\leq 4\chi \| w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + \chi \| Du(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2$$

so that we have

$$\frac{d}{dt} \| w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 4\chi \| w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq \chi \| Du(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2.$$

Recalling (2.7) of Theorem 2.2, this gives, for $t > 4t_{**}$, that
\[\| w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq e^{-2\chi t} \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)}^2 + \chi \int_{t/2}^{t} e^{-4\chi(t-\tau)} \| D u(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau \]
\[\leq \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)}^2 \left\{ e^{-2\chi t} + \frac{1}{2} \gamma^{-1} t^{-1} \right\}, \quad \text{[by (2.7)]} \]

from which we get (2.14a) for all \(t > 4t_* \) with \(t e^{-2\chi t} \leq \gamma^{-1/2} \), finishing the proof of (i).

(ii) Given \(t > t_* \), we have, differentiating \(m \) times the equation for \(w(\cdot, t) \) in (1.1) or (1.6),
\[\frac{d}{dt} \| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 2\nu \| D^{m+1} w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 8\chi \| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \]
\[\leq 4\chi \| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \| D^{m+1} u(\cdot, t) \|_{L^2(\mathbb{R}^n)} + K'_m \| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} G_m(t) \]

where \(G_m(t) = \sum_{\ell=0}^m \| D^\ell u(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} \| D^{m+1-t} w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \), for some constant \(K'_m \) depending only on \(m \). This gives
\[\frac{d}{dt} \| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq \chi \| D^{m+1} u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + K''_m \chi^{-1} G_m(t)^2 \]

where \(K''_m = (K'_m/\sqrt{8})^2 \), so that we have, for \(t > 2t_* \):
\[\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq e^{-\chi t} \| D^m w(\cdot, t/2) \|_{L^2(\mathbb{R}^n)}^2 + \chi \int_{t/2}^{t} e^{-2\chi(t-\tau)} \| D^{m+1} u(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau \]
\[+ K''_m \chi^{-1} \int_{t/2}^{t} e^{-2\chi(t-\tau)} G_m(\tau)^2 d\tau. \]

Taking \(t/2 > 2^{(m+2)} t_*^{(m+2)} \) and using (2.13) of Theorem 2.4 to estimate the three terms on the righthand side of the expression above, we obtain (2.14b), increasing \(t \) further if necessary (depending on the values of \(m, \| (u_0, w_0) \|_{L^2(\mathbb{R}^n)} \) \(\gamma \) and \(\chi \)), as claimed. \(\square \)

Remark 2.4. In an entirely similar way to the derivation of (2.7) and (2.13) above, we obtain from (2.7) and (2.12) that
\[\| Dz(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq \gamma^{-1/2} \| z(\cdot, t/2) \|_{L^2(\mathbb{R}^n)} t^{-1/2} \quad \forall \, t > 2t_* \] \hspace{1cm} (2.15a)

(where \(t_* \) is the monotonicity time given in (2.3) and (2.6)) and, for every \(m > 1 \),
\[\| D^m z(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq \tilde{K}_m \gamma^{-m/2} \| z(\cdot, t/2) \|_{L^2(\mathbb{R}^n)} t^{-m/2} \quad \forall \, t > 2^m t_*^{(m)} \] \hspace{1cm} (2.15b)

for some constant \(\tilde{K}_m \) which depends only on \(m \), with \(t_*^{(m)} \) given in (2.11), as before. Using (2.15) we can obtain, similarly to the derivation of (2.14), for every \(m \geq 0 \):
\[\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq \tilde{C}_m \gamma^{-m+1} \| z(\cdot, t/2) \|_{L^2(\mathbb{R}^n)} t^{-m+1/2} \quad \forall \, t > \tilde{\tau}_m \] \hspace{1cm} (2.16)

with \(\tilde{C}_0 = 1, \tilde{\tau}_0 = \tau_0 \), and \(\tilde{C}_m \geq C_m, \tilde{\tau}_m \geq \tau_m, m \geq 1 \), behaving as \(C_m, \tau_m \) in (2.14b).
3. Proof of Theorems A and B

In this section we derive Theorem A and Theorem B stated in the Introduction, dividing their proofs into several individual results of interest on their own. Throughout the section \(z(\cdot, t) = (u, w)(\cdot, t) \) denotes an (arbitrary) Leray solution to the equations (1.1) or (1.6), with initial data \(z_0 = (u_0, w_0) \in L^2_\sigma(\mathbb{R}^n) \times L^2(\mathbb{R}^n) \), satisfying

\[
\| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha} \quad \forall \ t > T_0
\]

(3.1)

for given nonnegative constants \(C_0, \alpha, T_0 \). We recall that \(\gamma = \min\{\mu, \nu\} \), see (2.1), and, by (2.11a), it will be convenient if \((n = 2, \alpha = 0) \) to introduce \(g(\cdot) \) such that

\[
\| z(\cdot, t) \|_{L^2(\mathbb{R}^2)} \leq g(t) \quad \forall \ t > 0.
\]

(3.2)

Theorem 3.1. Assuming (3.1), then we have, for each \(m \geq 0 \):

\[
\| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K_m(\alpha) C_0 \gamma^{-\frac{m}{\gamma}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m}{\gamma}} \quad \forall \ t > T_m
\]

(3.3a)

and

\[
\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K'_m(\alpha) C_0 \gamma^{-\frac{m+1}{\gamma}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m+1}{\gamma}} \quad \forall \ t > T'_m
\]

(3.3b)

for some constants \(K_m(\alpha), K'_m(\alpha) \) which depend only on \((m, \alpha)\), and not on the solution or any other parameters, and where the time instants \(T_m, T'_m \) depend only on \((m, \alpha, \gamma, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)}) \) and, if \(n = 2 \) and \(\alpha = 0 \), also on the function \(g(\cdot) \) considered in (3.2) above.

Proof. In view of (2.15) and (2.16), it is sufficient to show that we have, from (3.1),

\[
\| w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K(\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha} \quad \forall \ t > T'_0
\]

(3.4)

for some constant \(K(\alpha) > 0 \) dependent only on \(\alpha \), and some \(T'_0 > 0 \) depending only on \(\alpha, \gamma, \chi, C_0, T_0 \) and \(\| z_0 \|_{L^2(\mathbb{R}^n)} \). From the equation for \(w(\cdot, t) \) in (1.1c) or (1.6c) we get

\[
\frac{d}{dt} \| w(\cdot, t) \|^2_{L^2} + 2 \nu \| Dw(\cdot, t) \|^2_{L^2} + 8 \chi \| w(\cdot, t) \|^2_{L^2} \leq 4 \chi \| Dw(\cdot, t) \|_{L^2} \| u(\cdot, t) \|_{L^2}
\]

for \(t > t_* \) (the solution’s regularity time), so that we have

\[
\frac{d}{dt} \| w(\cdot, t) \|^2_{L^2(\mathbb{R}^n)} + 8 \chi \| w(\cdot, t) \|^2_{L^2(\mathbb{R}^n)} \leq 2 \nu^{-1} \chi^2 \| u(\cdot, t) \|^2_{L^2(\mathbb{R}^n)}
\]
for \(t > t^* \). Therefore, if \(t/2 > \max \{ t^*, T_0 \} \) we get, by (3.1),

\[
\| w'(t) \|_{L^2(\mathbb{R}^n)}^2 \leq \| z_0 \|_{L^2(\mathbb{R}^n)}^2 e^{-4x t} + 2 \nu^{-1}(e^{-8x(t-\gamma)} \| u'(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2) + t^{-\alpha} \| z_0 \|_{L^2(\mathbb{R}^n)} \chi(t) \leq \| z_0 \|_{L^2(\mathbb{R}^n)} e^{-4x t} + 2 \nu^{-1}(e^{-8x(t-\gamma)} C_0^2 t^{-2\alpha})
\]

so that

\[
\| w'(t) \|_{L^2(\mathbb{R}^n)} \leq (1 + 2^\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} e^{-4x t} \leq \| z_0 \|_{L^2(\mathbb{R}^n)} \chi(t) \leq \| z_0 \|_{L^2(\mathbb{R}^n)} \chi(t)
\]

for some \(t_1 = t_1(\alpha, \gamma, \chi, t^*, C_0, T_0) > 1 \) large enough. This has the form (3.4) except for the factor \(\gamma^{-1/2} \chi^{1/2} \), which can be dismissed by redefining \(t_1 \) as follows. If \(0 < \alpha \leq 1 \), increasing \(t_1 \) if necessary so that \(\gamma^{-2} = t_1 \), then (3.5) gives

\[
\| w'(t) \|_{L^2(\mathbb{R}^n)} \leq (1 + 2^\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\frac{3\alpha}{2}}
\]

for \(t > t_1 \). By (3.1), it follows that \(\| z(t) \|_{L^2(\mathbb{R}^n)} \leq (2 + 2^\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\frac{3\alpha}{4}} \) (for \(t > t_1 \)) and then, by (2.16), increasing \(t_1 \) if necessary so that \(\gamma^{-2} \leq t_1 \),

\[
\| w'(t) \|_{L^2(\mathbb{R}^n)} \leq 2^\alpha (2 + 2^\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha}
\]

for \(t > 2t_1 \). This is (3.4), as we proposed to show, in the case \(0 < \alpha \leq 1 \). (Having (3.6) gives us that \(\| z(t) \|_{L^2(\mathbb{R}^n)} \leq 2^\alpha (3 + 2^\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha} \) for all such \(t \), because of (3.1), and (3.3) results then directly from (2.15) and (2.16).) For \(\alpha > 1 \), we proceed similarly: increasing \(t_1 \) in (3.5), if necessary, so that \(\gamma^{-2} \leq t_1 \), we obtain from (3.5) that

\[
\| w'(t) \|_{L^2(\mathbb{R}^n)} \leq (1 + 2^\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha + \frac{1}{2}}
\]

for \(t > t_1 \). Hence, from (3.1): \(\| z(t) \|_{L^2(\mathbb{R}^n)} \leq (2 + 2^\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha + \frac{1}{4}} \) (for \(t > t_1 \)) and so, by (2.16), increasing \(t_1 \) if necessary so that \(\gamma^{-2} \leq t_1 \), we obtain (3.6) for \(t > 2t_1 \), thus showing (3.4) if \(\alpha > 1 \) as well. By (3.1), \(\| z(t) \|_{L^2(\mathbb{R}^n)} \leq 2^\alpha (3 + 2^\alpha) C_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha} \) for all such \(t \), so that we can apply (2.15) and (2.16) once again and obtain (3.3). \(\square \)

Recalling (1.7), we now begin estimating the remainder \(\varepsilon(\cdot, t) \) in the expression

\[
w(x, t) = \frac{1}{2} \nabla \cdot u(x, t) + \varepsilon(x, t)
\]

for \(t > t^* \) (the solution’s regularity time). From the equations for \(u(\cdot, t) \) and \(w(\cdot, t) \) we get

\[
\varepsilon_t + (u \cdot \nabla) \varepsilon + 4 \chi \varepsilon = \mathbb{L} \varepsilon + (\nu - \mu) \Delta w + \frac{1}{2} \sum_{j=1}^{n} (\nabla u_j) \wedge (D_j u) \quad (3.8a)
\]

17
where L denotes the elliptic operator

$$
L v = \mu \Delta v + \kappa \nabla (\nabla \cdot v) - \chi \nabla \wedge (\nabla \wedge v).
$$

(3.8b)

The equations (3.8) allow us to obtain the following preliminary (but very useful) estimate for $\| \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}$, which will play an important role for the next results, leading to the improved estimate given in (3.15). We recall that $\gamma = \min \{ \mu, \nu \}$.

Theorem 3.2. Assuming (3.1), then we have, for each $m \geq 0$:

$$
\| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K^m_\alpha C_0 \frac{\mu + \nu}{\chi} \gamma^{- \frac{m+3}{2}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{- \alpha - \frac{m+3}{2}} \quad \forall \ t > T_m''
$$

(3.9)

for some constant K^m_α which depends only on (m, α), and not on the solution or other parameters, with T_m'' depending only on $(m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, if $n = 2$ and $\alpha = 0$, also on the function $g(\cdot)$ considered in (3.2) above.

Remark 3.1. Similarly to (2.15) and (2.16), we also have, for each $m \geq 0$:

$$
\| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq S_m \frac{\mu + \nu}{\chi} \gamma^{- \frac{m+3}{2}} \| z(\cdot, t/2) \|_{L^2(\mathbb{R}^n)} t^{- \frac{m+3}{2}} \quad \forall \ t > \sigma_m
$$

(3.10)

for some constant S_m that depends only on m, and some instant σ_m depending only on $(m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, if $n = 2$ and $\alpha = 0$, also on $g(\cdot)$.

Proof of (3.9): By (3.1) and (3.6), it suffices to show (3.10). Given $m \geq 0$, we have

$$
\frac{d}{dt} \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 2 \mu \| D^{m+1} \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 8 \chi \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \\
\leq |\mu - \nu| \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} \| D^{m+2} w(\cdot, t) \|_{L^2(\mathbb{R}^n)} + K_m \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} H_m(t)
$$

for $t > t_*$, by (3.8), where

$$
H_m(t) = \sum_{\ell = 0}^m \| D^\ell u(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} \| D^{m+1-\ell} \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} + \\
\sum_{\ell = 0}^m \| D^{\ell+1} u(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} \| D^{m+1-\ell} u(\cdot, t) \|_{L^2(\mathbb{R}^n)},
$$

and K_m is some constant dependent only on m. This gives

$$
\frac{d}{dt} \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 4 \chi \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq \frac{(\mu + \nu)^2}{8 \chi} \| D^{m+2} w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + \frac{K^2_m}{8 \chi} H_m(t)^2
$$

from which (3.10) follows, recalling (3.7) and the estimates (2.15) and (2.16). □
In terms of $\varepsilon(\cdot, t)$, the equation for $u(\cdot, t)$, $w(\cdot, t)$ can be rewritten in the form

\begin{align*}
\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p &= \mu \Delta \mathbf{u} + 2\chi \nabla \varepsilon, \quad \nabla \cdot \mathbf{u}(\cdot, t) = 0, \quad (3.11a) \\
\mathbf{w}_t + \mathbf{u} \cdot \nabla \mathbf{w} &= \nu \Delta \mathbf{w} + \kappa \nabla (\nabla \cdot \mathbf{w}) - 4\chi \varepsilon, \quad (3.11b)
\end{align*}
for $t > t_*$, which will be used in the rest of this section.

Theorem 3.3. Assuming (3.1), then: for each $m \geq 1$, the function $Z_m(\cdot)$ given by

\begin{equation}
Z_m(t) = \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 4 \chi^2 \mu^{-1} \int_t^\infty \| D^m \varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 \, d\tau \quad (3.12)
\end{equation}

(for $t > t_*$) is monotonically decreasing in the interval (ζ_m, ∞), where $\zeta_m > t_*$ depends only on $(m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, if $n = 2$ and $\alpha = 0$, also on the function $g(\cdot)$ considered in (3.2) above.

Proof. From (3.11a) we obtain, using the estimates (2.2),

\begin{equation}
\frac{d}{dt} \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + \mu \| D^{m+1} u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq 4 \chi \| D^{m+1} u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}
\end{equation}

for all $t > \zeta_m$, with ζ_m appropriately large dependent on $(m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, if $n = 2$ and $\alpha = 0$, on $g(\cdot)$ as well. This gives

\begin{equation}
\frac{d}{dt} \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq 4 \chi^2 \mu^{-1} \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \quad \forall \ t > \zeta_m
\end{equation}

from which (3.12) immediately follows, completing the proof of Theorem 3.3. \square

Remark 3.2. By a (simpler) similar argument, if follows directly from (3.11a) that

\begin{equation}
Z_0(t) = \| u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 2 \chi^2 \mu^{-1} \int_t^\infty \| \varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 \, d\tau \quad (3.13)
\end{equation}

decreases monotonically in $\langle t_*, \infty \rangle$, where t_* denotes the solution’s regularity time. Although (3.13) will not be used, monotonicity properties such as (3.12) and (3.13) are very important, see the general discussion in [22].

Theorem 3.4a. Assuming (3.1), then we have, for each $m \geq 1$:

\begin{equation}
\| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K_m(\alpha) C_0 \mu^{-\frac{m}{2}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m}{2}} \quad \forall \ t > T_m \quad (3.14a)
\end{equation}

where $K_m(\alpha)$ depends only on (m, α), and T_m only on $(m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, if $n = 2$ and $\alpha = 0$, also on the function $g(\cdot)$ given in (3.2) above.
Proof. For $m = 1$, we obtain, from (3.11a),
\[
\| u(\cdot, t) \|^2_{L^2} + 2\mu \int_{t/2}^{t} \| Du(\cdot, \tau) \|^2_{L^2} d\tau \leq \| u(\cdot, t/2) \|^2_{L^2} + 4\chi \int_{t/2}^{t} \| Du(\cdot, \tau) \|_{L^2} \| \varepsilon(\cdot, \tau) \|_{L^2} d\tau
\]
for $t > 2t_s$, so that we have
\[
\| u(\cdot, t) \|^2_{L^2} + \mu \int_{t/2}^{t} \| Du(\cdot, \tau) \|^2_{L^2} d\tau \leq \| u(\cdot, t/2) \|^2_{L^2} + 4\chi^2 \mu^{-1} \int_{t/2}^{t} \| \varepsilon(\cdot, \tau) \|^2_{L^2} d\tau
\]
for such t. Recalling (3.12), this gives
\[
\frac{\mu}{2} \| Du(\cdot, t) \|^2_{L^2} \leq \mu \int_{t/2}^{t} Z_1(\tau) d\tau \leq \| u(\cdot, t/2) \|^2_{L^2} + 4\chi^2 \mu^{-1} \int_{t/2}^{t} \| \varepsilon(\cdot, \tau) \|^2_{L^2} + E_1(\tau) d\tau
\]
if $t > 2\zeta_1$, where $E_1(\tau) = \mu \int_{\tau}^{\infty} \| D\varepsilon(\cdot, s) \|^2_{L^2(\mathbb{R}^n)} ds$. By (3.1) and (3.9), this shows (3.14) if $m = 1$. The general case $m > 1$ can be obtained by induction with a similar argument, observing that, from (3.11a), we have, using (2.2) above,
\[
\mu \int_{t/2}^{t} \| D^m u(\cdot, \tau) \|^2_{L^2} d\tau \leq \| D^{m-1} u(\cdot, t/2) \|^2_{L^2} + 8\chi^2 \mu^{-1} \int_{t/2}^{t} \| D^{m-1} \varepsilon(\cdot, \tau) \|^2_{L^2} d\tau
\]
for t sufficiently large (dependent on $(m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, if $n = 2$ and $\alpha = 0$, also on $g(\cdot)$ given in (3.2)). Recalling (3.12) and increasing t (if necessary) so that we also have $t > 2\zeta_m$, then we get
\[
\frac{\mu}{2} t \| D^m u(\cdot, t) \|^2_{L^2} \leq \| D^{m-1} u(\cdot, t/2) \|^2_{L^2} + 8\chi^2 \mu^{-1} \int_{t/2}^{t} \{ \| D^{m-1} \varepsilon(\cdot, \tau) \|^2_{L^2} + E_m(\tau) \} d\tau
\]
where $E_m(\tau) = \mu \int_{\tau}^{\infty} \| D^m \varepsilon(\cdot, s) \|^2_{L^2(\mathbb{R}^n)} ds$. Using (3.9), c.f. Theorem 3.2, and the induction hypothesis for $\| D^{m-1} u(\cdot, t) \|^2_{L^2(\mathbb{R}^n)}$, this shows the result for m, completing the proof. \(\square\)

Theorem 3.4b. Assuming (3.1), then we have, for each $m \geq 0$:
\[
\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K_{m+1}(\alpha) C_0 \mu^{-\frac{m+1}{2}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m+1}{2}} \quad \forall \ t > T'_m \quad (3.14b)
\]
with $K_{m+1}(\alpha)$ given in (3.14a), and T'_m dependent on $(m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ and, if $n = 2$ and $\alpha = 0$, also on the function $g(\cdot)$ given in (3.2), and nothing else.

Proof. Recalling (3.7), we have
\[
\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq \frac{1}{2} \| D^{m+1} u(\cdot, t) \|_{L^2(\mathbb{R}^n)} + \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}
\]
for all $t > t_s$ (the solution’s regularity time), so that (3.14b) is an immediate consequence of the estimates (3.9) and (3.14a) obtained in Theorems 3.2 and 3.4a above. \(\square\)

20
Theorem 3.5. Assuming (3.1), then we have, for each \(m \geq 0 \):

\[
\| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K'_m(\alpha) C_0 \frac{|\mu - \nu|}{\chi} \mu^\alpha \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m+4}{2}}
\]

\[
+ K''_m(\alpha) C_0^2 \chi^{-1} \mu^\alpha \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-2\alpha - \frac{m+4}{2} - p_n}
\]

(3.15)

for all \(t > T''_m \), with \(T''_m > t_* \) depending only on \((m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)} \) and, if \(n = 2 \) and \(\alpha = 0 \), also on the function \(q(\cdot) \) considered in (3.2). In addition, the constants \(K'_m(\alpha), K''_m(\alpha) \) depend on \((m, \alpha) \) only, and \(p_n = (n - 2)/4 \).

Proof. Let \(t_* \geq 0 \) be the solution’s regularity time. From (3.8) obtain

\[
\frac{d}{dt} \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 2\mu \| D^{m+1} \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 8\chi \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2
\]

\[
\leq \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \left\{ 2|\mu - \nu| \| D^{m+2} w(\cdot, t) \|_{L^2(\mathbb{R}^n)} + A_m F_m(t) + B_m G_m(t) \right\}
\]

for \(t > t_* \), where \(F_m(t) = \sum_{\ell = 0}^m \| D^{\ell+1} u(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} \| D^{m-\ell+1} u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \), the values \(A_m, B_m \) depend on \(m \) only, and \(G_m(t) = \sum_{\ell = 0}^m \| D^{\ell+1} u(\cdot, t) \|_{L^\infty(\mathbb{R}^n)} \| D^{m-\ell+1} \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} \). This gives

\[
\frac{d}{dt} \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 4\chi \| D^m \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \leq \frac{1}{2} \chi^{-1} |\mu - \nu|^2 \| D^{m+2} w(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2
\]

\[
+ \frac{1}{4} \chi^{-1} A_m^2 F_m(t)^2 + \frac{1}{4} \chi^{-1} B_m^2 G_m(t)^2
\]

from which (3.15) follows, in view of the estimates (3.9), (3.14a) and (3.14b) above. \(\square \)

An immediate consequence is the fast decay of \(\nabla \cdot w(\cdot, t) \), i.e., the divergence of the micro-rotational angular velocity, in comparison with \(\nabla \wedge w(\cdot, t) \):

Theorem 3.6. Assuming (3.1), then we have, for each \(m \geq 0 \):

\[
\| D^m [\nabla \cdot w](\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K'_{m+1}(\alpha) C_0 \frac{|\mu - \nu|}{\chi} \mu^\alpha \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m+4}{2}}
\]

\[
+ K''_{m+1}(\alpha) C_0^2 \chi^{-1} \mu^\alpha \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-2\alpha - \frac{m+4}{2} - p_n}
\]

(3.16)

for all \(t > T''_{m+1} \), where \(K'_{m+1}(\alpha), K''_{m+1}(\alpha) \) and \(T''_{m+1} \) are given in Theorem 3.5 above, and \(p_n = (n - 2)/4 \), as before.

Proof. This follows directly from (3.15), as, by (3.7), we have \(\nabla \cdot w(\cdot, t) = \nabla \varepsilon(\cdot, t) \). \(\square \)
4. Proof of Theorems C and D

In this section we consider a solution \(z = (u, w) \) to the equations (1.1) or (1.6), with initial state \(z_0 = (u_0, w_0) \in L^2_\sigma(\mathbb{R}^n) \times L^2(\mathbb{R}^n) \), which, in addition to satisfying the upper bound (3.1) for some \(\alpha > 0 \), it also admits a lower bound of the form \(t^{-\eta} \) for some \(\eta \geq \alpha \). Beginning with the case \(\eta = \alpha \), we therefore assume that

\[
\| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \geq c_0 \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha} \quad \forall \ t > t_0
\]

for some \(c_0 > 0, t_0 \geq 0, \alpha > 0 \). Note that, by Theorem 3.4, the condition (4.1) is equivalent to having a lower bound \(t^{-\alpha} \) of similar type for the whole solution \(z(\cdot, t) \).

Theorem 4.1. If (3.1) and (4.1) hold for some \(\alpha > 0 \), then we have, for each \(m \geq 1 \):

\[
\| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \geq \Gamma_m(\alpha, c_0, C_0) c_0 \mu^{-\frac{m}{2}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha} \quad \forall \ t > t_m
\]

where \(\Gamma_m(\alpha, c_0, C_0) > 0 \) depends solely on \(m, \alpha, c_0, C_0 \), and \(t_m \) depends solely on \(m, \alpha, \mu, \nu, \chi, c_0, t_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)} \).

Proof. Beginning with \(m = 1 \), we have, from the equation (3.11a),

\[
\| u(\cdot, T) \|_{L^2(\mathbb{R}^n)}^2 + 2\mu \int_T^t \| Du(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau = \| u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 + 4\chi \int_T^t \langle \nabla \cdot u, \varepsilon \rangle dx d\tau
\]

for all \(T > \max \{ t_0, T_0, t_* \} \) (\(t_* \) being the solution’s regularity time), so that we get

\[
4\mu \int_T^t \| Du(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau \geq \| u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 - \| u(\cdot, T) \|_{L^2(\mathbb{R}^n)}^2 - 2\chi^2 \mu^{-1} \int_T^t \| \varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau
\]

\[
\geq c_0^2 \| z_0 \|_{L^2(\mathbb{R}^n)}^2 \left(t^{-2\alpha} - \lambda_1^2 T^{-2\alpha} \right) - 2\chi^2 \mu^{-1} \int_T^t \| \varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau
\]

by (3.1) and (4.1), where \(\lambda_1 = C_0/c_0 \geq 1 \). This gives, choosing \(T = (2\lambda_1)^{1/\alpha} t \),

\[
4\mu (2\lambda_1)^{1/\alpha} t Z_1(t) \geq \frac{1}{2} c_0^2 \| z_0 \|_{L^2(\mathbb{R}^n)}^2 t^{-2\alpha} - 2\chi^2 \mu^{-1} \int_T^t \| \varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau
\]

by (3.12), assuming that \(t > \zeta_1 \) also, cf. Theorem 3.3, so that we have

\[
4\mu (2\lambda_1)^{1/\alpha} t \| Du(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \geq \frac{1}{2} c_0^2 \| z_0 \|_{L^2(\mathbb{R}^n)}^2 t^{-2\alpha} - 2\chi^2 \mu^{-1} \int_T^t \| \varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau - F_1(t)
\]

where \(F_1(t) = 16 (2\lambda_1)^{1/\alpha} \chi^2 t \int_T^t \| D\varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 d\tau \). By (3.9), this shows (4.2) if \(m = 1 \).
For the general case $m > 1$ we proceed by induction. From (3.11a) we get, using (2.2),

$$
4 \mu \int_t^T \| D^m u(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 \ d\tau \geq \| D^{m-1} u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 - \| D^{m-1} u(\cdot, T) \|_{L^2(\mathbb{R}^n)}^2 - 4 \chi^2 \mu^{-1} \int_t^T \| D^{m-1} \varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 \ d\tau
$$

\begin{equation}
\tag{4.3b}

\end{equation}

for all $T > t$ with $t > t_s$ large (dependent on $(m, \alpha, \mu, \nu, \chi, C_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$. Assuming also $t > \zeta_m$ (ζ_m given in Theorem 3.3), $t > t_{m-1}$ (found in the previous step, cf. (4.2)) and $t > T_{m-1}$ (given in (3.14a), Theorem 3.4a), we then obtain, recalling (3.12),

$$
4 \mu T \| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)}^2 \geq c_{m-1} \| z_0 \|_{L^2(\mathbb{R}^n)}^2 \mu^{-m+1} \left(t^{-2\alpha-m+1} - \lambda_m^2 T^{-2\alpha-m+1} \right) + 16 \chi^2 T \int_t^\infty \| D^{m-1} \varepsilon(\cdot, \tau) \|_{L^2(\mathbb{R}^n)}^2 \ d\tau
$$

where $c_{m-1} = \Gamma_{m-1}(\alpha, c_0, C_0) c_0$ is the coefficient in (4.2) obtained in the previous step (i.e., step $m - 1$) and $\lambda_m = C_{m-1}/c_{m-1} \geq 1$, where $C_{m-1} = K_{m-1}(\alpha) C_0$, with $K_{m-1}(\alpha)$ given in (3.14a), Theorem 3.4a. Choosing $T = (2\lambda_m)^{1/\alpha} t$ gives the result (4.2) for m too, in view of the estimates (3.9) of Theorem 3.2, and the proof is now complete. \hfill \Box

Remark 4.1. If the conditions (3.1) and (4.1) are valid for some $\alpha > 0$, it follows from (3.9), (3.11a), (3.14a) and (4.2) that, for every $m \geq 0$, there will exist $\zeta'_m > t_s$ sufficiently large (dependent on $(m, \alpha, \mu, \nu, \chi, c_0, C_0, t_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ only) so that $\| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)}$ is monotonically decreasing on (ζ'_m, ∞), thus improving (3.12) and (3.13) in this case (cf. Theorem 3.3 and Remark 3.2).

Remark 4.2. In addition, when (3.1) and (4.1) hold for some $\alpha > 0$, it follows from (3.7), (3.9) and (4.2) above that, for each $m \geq 0$, we have

$$
\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)} \geq \frac{1}{4} \Gamma_{m+1}(\alpha, c_0, C_0) c_0 \mu^{-\frac{m+1}{2}} \| z_0 \|_{L^2(\mathbb{R}^n)} t^{-\alpha - \frac{m+1}{2}} \tag{4.4}
$$

for all $t > t'_m$, for some t'_m depending only on $(m, \alpha, \mu, \nu, \chi, c_0, C_0, t_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$, where the coefficient $\Gamma_{m+1}(\alpha, c_0, C_0)$ is given in (4.2). Moreover, by (3.11b), (3.14), (3.15) and (4.4), we obtain when $\mu = \nu$ that, for every $m \geq 0$, there exists $\zeta''_m > t_s$ sufficiently large (dependent on $(m, \alpha, \mu, \chi, c_0, C_0, t_0, T_0, \| z_0 \|_{L^2(\mathbb{R}^n)})$ only) such that $\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)}$ is monotonic on (ζ''_m, ∞). Thus, if $\mu = \nu$ and (3.1), (4.1) are valid for some $\alpha > 0$, then $\| D^m w(\cdot, t) \|_{L^2(\mathbb{R}^n)}$ also becomes monotonic at large times, for every $m \geq 0$, and not just $\| D^m u(\cdot, t) \|_{L^2(\mathbb{R}^n)}$. This complements Remark 4.1 above.
From Theorem 4.1 we see in particular that, for solutions $z = (u, w)$ satisfying the conditions (3.1) and (4.1) for some $\alpha > 0$, the term $\frac{1}{2} \nabla \wedge u(\cdot, t)$ in the decomposition (3.7) decays slower (as $t \to \infty$) in $\tilde{H}^m(\mathbb{R}^n)$, for every m, than the term $\varepsilon(\cdot, t)$, thereby eventually dictating the main behavior of the micro-rotation of fluid particles. This will also be the case under the more general condition

$$
\|u(\cdot, t)\|_{L^2(\mathbb{R}^n)} \geq c_0 \|z_0\|_{L^2(\mathbb{R}^n)} t^{-\eta} \quad \forall \ t > t_0
$$

(4.5)

for $\eta \geq \alpha$ not too much larger than α, as shown in Theorem 4.2 below.

Theorem 4.2. If (3.1) and (4.5) hold for some $\alpha > 0$, $\alpha \leq \eta < \alpha(\alpha+3/2)/(\alpha+1/2)$, then

$$
\|Du(\cdot, t)\|_{L^2(\mathbb{R}^n)} \geq c_1 \mu^{-\frac{1}{2}} \|z_0\|_{L^2(\mathbb{R}^n)} t^{-\eta - \frac{1}{2}} q \quad \forall \ t > t'_1
$$

(4.6a)

for some $t'_1 > 1$, which depends on $(\alpha, \eta, \mu, \nu, \chi, c_0, C_0, t_0, T_0, \|z_0\|_{L^2(\mathbb{R}^n)})$ only, where $q = \eta/\alpha$ and $c_1 = c_1(\alpha, c_0, C_0) > 0$ depends solely on (α, c_0, C_0). More generally: if $\alpha \leq \eta < \alpha(\alpha + m/2 + 1)/(\alpha + m/2)$ for some $m \geq 1$, then, for every $1 \leq \ell \leq m$:

$$
\|D^\ell u(\cdot, t)\|_{L^2(\mathbb{R}^n)} \geq c_\ell \mu^{-\frac{1}{2}} \|z_0\|_{L^2(\mathbb{R}^n)} t^{-\eta - \frac{1}{2} q} \quad \forall \ t > t'_\ell
$$

(4.6b)

for some $t'_\ell > 1$ that is dependent on $(\ell, \alpha, \eta, \mu, \nu, \chi, c_0, C_0, t_0, T_0, \|z_0\|_{L^2(\mathbb{R}^n)})$ solely, with the coefficient $c_\ell > 0$ depending on (ℓ, α, c_0, C_0) only.

Proof. Considering (4.6a) first, we have from (3.1), (4.3a) and (4.5) that

$$
4 \mu \int_t^T \|Du(\cdot, \tau)\|^2_{L^2(\mathbb{R}^n)} d\tau \geq c_0^2 \|z_0\|^2_{L^2(\mathbb{R}^n)} (t^{-2\eta} - \lambda_1^2 T^{-2\eta}) - 2 \lambda_2 \mu^{-1} \int_t^T \|\varepsilon(\cdot, \tau)\|^2_{L^2(\mathbb{R}^n)} d\tau
$$

for all $T > t > \max \{t_0, T_0, t_*\}$, where $\lambda_1 = C_0/c_0$. Taking $T = (2 \lambda_1)^{1/\alpha} t^q$ and using (3.9) and (3.12), as in the proof of Theorem 4.1, we get (4.6a) if $\eta < \alpha(\alpha + 3/2)/(\alpha + 1/2)$. Finally, (4.6b) follows by induction, using (3.9), (3.12) and (4.3b) in a similar way. \[\square\]

Remark 4.3. When $\alpha \leq \eta < \alpha(\alpha + m/2 + 1)/(\alpha + m/2)$ for some $m \geq 1$, it follows from (3.9) and (4.6b) that $\|D^\ell \varepsilon(\cdot, t)\|_{L^2(\mathbb{R}^n)}$ decays faster than $\|D^\ell [\nabla \wedge u](\cdot, t)\|_{L^2(\mathbb{R}^n)}$ for every $0 \leq \ell < m$, showing the dominant influence of vorticity on micro-rotation, cf. (3.7). In the special case $\mu = \nu$, by repeating the proof of Theorem 4.2 but using (3.15) instead of (3.9), the estimate (4.6b) can be obtained for $\eta \geq \alpha > 0$ satisfying

$$
\frac{\eta}{\alpha} < \frac{2 \alpha + m/2 + 1 + (n - 2)/4}{\alpha + m/2}
$$

and again $\|D^\ell \varepsilon(\cdot, t)\|_{L^2(\mathbb{R}^n)}$ will decay faster than $\|D^\ell [\nabla \wedge u](\cdot, t)\|_{L^2(\mathbb{R}^n)}$, $0 \leq \ell < m$.

24
Appendix

In this appendix we show the existence of solutions $z = (u, w)$ to the micropolar equations (1.1) or (1.6) satisfying the condition

$$c_0 (1 + t)^{-\alpha} \leq \| u(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq C_0 (1 + t)^{-\alpha}$$

(A.1)

for all $t > 0$, and some constants $0 < c_0 < C_0$ (which depend on the solution and various parameters) when $0 < \alpha < 1/2$. This is an easy consequence of THEOREM B, with the help of some well known results in the literature [2, 33, 35, 40].

From Schonbek’s theory of decay characters [4, 33] we can find $v_0 \in L^2_0(\mathbb{R}^n)$ with $v_0 \in H^m(\mathbb{R}^n)$ for all m and such that $v(\cdot, t) := e^{\mu \Delta t} v_0$ satisfies, for all $t > 0$,

$$c_0' (1 + t)^{-\alpha} \leq \| v(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq C_0'' (1 + t)^{-\alpha}$$

(A.2)

(for some constants $0 < c_0' < C_0''$), where $e^{\mu \Delta t}$ denotes the heat semigroup, that is, convolution with the heat kernel. Let then $z(\cdot, t) = (u, w)(\cdot, t)$ be the (unique, global, smooth) solution of the equations (1.1) or (1.6) with initial data $z_0 = (v_0, 0)$.

(In dimension $n = 3$, this may require replacing v_0 by a smaller multiple λv_0, with $\lambda > 0$ chosen so that $\lambda \| v_0 \|_{L^2_0(\mathbb{R}^3)} \| Dv_0 \|_{L^2_0(\mathbb{R}^3)} \leq 3 \cdot \min \{ \mu, \nu \}$, cf. SECTION 1.) Given this solution $z(\cdot, t)$, let $\varepsilon(\cdot, t)$ be defined by (1.7), so that we have, by THEOREM B,

$$\| \varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq E_0 (1 + t)^{-\frac{3}{2}}, \quad \| D\varepsilon(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq E_1 (1 + t)^{-2}$$

(A.3)

for all $t > 0$, and some constants E_0, E_1 (independent of t). Recalling the equation (3.11a), we then consider the solution $v(\cdot, t) \in C([0, \infty), L^2_0(\mathbb{R}^n))$ of the problem

$$v_t = \mu \Delta v(\cdot, t) + 2 \chi \nabla \cdot \varepsilon(\cdot, t), \quad v(\cdot, 0) = v_0.$$

(A.4)

By (A.3) and standard heat kernel estimates, we get $\| v(\cdot, t) - v(\cdot, t) \|_{L^2(\mathbb{R}^n)} = O(t^{-\frac{1}{2}})$. Since $\alpha < 1/2$, we then obtain from (A.2) that

$$c_0'' (1 + t)^{-\alpha} \leq \| v(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq C_0'' (1 + t)^{-\alpha}$$

(A.5)

for all $t > 0$, and some constants $0 < c_0'' < C_0''$. By (3.11a) and Wiegner’s theorem ([10], p. 305), we have, for all $t > 0$,

$$\| u(\cdot, t) - v(\cdot, t) \|_{L^2(\mathbb{R}^n)} \leq K (1 + t)^{-2\alpha - (n - 2)/4}$$

(A.6)

for some constant $K > 0$. Together with (A.5), this gives (A.1), as claimed. \qed
References

[1] D. Albritton, E. Brué and M. Colombo, Non-uniqueness of Leray solutions of the forced Navier-Stokes equations, Ann. Math. 196 (2022), 415-455.

[2] C. Bjorland and M. E. Schonbek, Poincaré’s inequality and diffusive evolution equations, Adv. Diff. Equations 14 (2009), 241-260.

[3] J. L. Boldrini and M. A. Rojas-Medar, Magneto-micropolar fluid motion: existence of weak solutions, Rev. Mat. Complut. 11 (1998), 443-460.

[4] L. Brandolese, Characterization of solutions to dissipative systems with sharp algebraic decay, SIAM J. Math. Analysis 48 (2016), 1616-1633.

[5] P. Braz e Silva, F. W. Cruz, L. S. Freitas and P. R. Zingano, On the L^2 decay of weak solutions for the 3D asymmetric fluids equations, J. Diff. Eqs. 267 (2019), 3578-3609.

[6] P. Braz e Silva, R. H. Guterres, C. F. Perusato and P. R. Zingano, New higher-order asymptotic inequalities for some dissipative systems (preprint).

[7] P. Braz e Silva, J. P. Zingano and P. R. Zingano, A note on the regularity time of Leray solutions to the Navier-Stokes equations, J. Math. Fluid Mechanics 21 (2019), https://doi.org/10.1007/s00021-019-0413-x.

[8] T. Buckmaster and V Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math. 189 (2019), 101-144.

[9] Y. Cai and Z. Lei, Global well-posedness of the incompressible magnetohydrodynamics, Arch. Rational Mech. Anal. 228 (2018), 969-993.

[10] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics (2nd ed), Springer, New York, 1990.

[11] F. Cruz, C. Perusato, M. Rojas-Medar and P. Zingano, Large time behavior for MHD micropolar fluids in \mathbb{R}^n, J. Diff. Eqs. 312 (2022), 1-44.

[12] B.-Q. Dong and Z.-M. Chen, On upper and lower bounds of higher order derivatives for solutions to the 2D micropolar fluid equations, J. Math. Anal. Appl. 334 (2007), 1386-1399.

[13] B.-Q. Dong and Z.-M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows, J. Math. Phys. 50 (2009), 103525.

[14] B.-Q. Dong and Z.-M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows, Discr. Cont. Dyn. Syst. 23 (2009), 765-784.
[15] B.-Q. Dong and Z. Zhang, *Global regularity of the 2D micropolar fluid flows with zero angular viscosity*, J. Diff. Eqs. 249 (2010), 200-213.

[16] J. Ericksen, *Hydrostatic theory of liquid crystals*, Arch. Ration. Mech. Anal. 9 (1962), 371-378.

[17] J. Ericksen, *Liquid crystals with variable degree of orientation*, Arch. Ration. Mech. Anal. 113 (1991), 97-120.

[18] A. C. Eringen, *Theory of micropolar fluids*, J. Mathematics and Mechanics, 16 (1966), 1-16, http://dx.doi.org/10.1512/iumj.1967.16.16001.

[19] G. P. Galdi and S. Rionero, *A note on the existence and uniqueness of solutions of the micropolar fluid equations*, Intern. J. Eng. Sci. 15 (1977), 105-108.

[20] F. Gay-Balmaz, T. S. Ratiu and C. Tronci, *Equivalent Theories of Liquid Crystal Dynamics*, Arch. Rational Mech. Anal. 210 (2013), 773-811.

[21] R. H. Guterres, W. G. Melo, J. R. Nunes and C. F. Perusato, *On the large time decay of asymmetric flows in homogeneous Sobolev spaces*, J. Math. Anal. Appl. 471 (2019), 88-101.

[22] R. H. Guterres, C. J. Niche, C. F. Perusato and P. R. Zingano, *Upper and lower \dot{H}^m estimates for solutions to parabolic equations* (submitted).

[23] R. H. Guterres, J. R. Nunes and C. F. Perusato, *On the large time decay of global solutions for the micropolar dynamics in $L^2(\mathbb{R}^n)$*, Nonl. Anal. RWA 45 (2019), 789-798.

[24] T. Hagstrom, J. Lorenz, J. P. Zingano and P. R. Zingano, *On two new inequalities for Leray solutions of the Navier-Stokes equations in \mathbb{R}^n*, J. Math. Anal. Appl. 483 (2020), 123601.

[25] M. Hieber and J. Prüss, *Modeling and analysis of the Ericksen-Leslie equations for nematic liquid crystal flows*, in: Handbook of Mathematical Analyis in Mechanics of Viscous Fluids, Springer, Berlin, 2018, pp. 1075-1134.

[26] H. Jia and V. Sverák, *Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space?* J. Funct. Anal. 268 (2015), 3734-3766.

[27] H.-O. Kreiss, T. Hagstrom, J. Lorenz and P. R. Zingano, *Decay in Time of Incompressible Flows*, J. Math. Fluid Mech. 5 (2003), 231-244.

[28] J. Leray, *Sur le mouvement d’un liquide visqueux emplissant l’espace*, Acta Mathematica, 63 (1934), 193-248.
[29] F. M. Leslie, *Theory of flow phenomena in liquid crystals*, Adv. Liquid Crystals 4 (1979), 1-81.

[30] Q. Liu and P. Zhang, *Optimal time decay of the compressible micropolar fluids*, J. Diff. Eqs. 260 (2016), 7634-7661.

[31] G. Lukasiewicz, *Micropolar Fluids: theory and applications*, Birkhäuser, Boston, 1999.

[32] C. J. Niche and C. F. Perusato, *Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids*, Zeitschrift Angew. Math. Phys. 73:48 (2022), https://doi.org/10.1007/s00033-022-01683-2.

[33] C. J. Niche and M. E. Schonbek, *Decay characterization of solutions to dissipative equations*, J. London Math. Soc. 91 (2015), 573-595.

[34] M. Oliver and E. S. Titi, *Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in \mathbb{R}^n*, J. Funct. Anal. 172 (2000), 1-18.

[35] M. M. Porzio, *On decay estimates*, J. Evolution Equations 9 (2009), 561-591.

[36] M. E. Schonbek, *L^2 decay for weak solutions of the Navier-Stokes equations*, Arch. Rational Mech. Anal. 88 (1985), 209-222.

[37] M. E. Schonbek, *Large time behaviour of solutions to the Navier-Stokes equations*, Comm. Partial Differential Equations 11 (1986), no. 7, 733-763.

[38] L. Schütz, J. S. Ziebell, J. P. Zingano and P. R. Zingano, *Sharp pointwise estimates for functions in the Sobolev spaces $H^s(\mathbb{R}^n)$*, February 2016, available at https://arxiv.org/pdf/1602.01902.pdf.

[39] R. Temam, *Navier-Stokes Equations: theory and numerical analysis*, American Mathematical Society/Chelsea, Providence, 1984.

[40] M. Wiegner, *Decay results for weak solutions of the Navier-Stokes equations on \mathbb{R}^n*, J. London Math. Soc. 35 (1987), 303-313.

[41] B. Q. Yuan, *Regularity of weak solutions to the magneto-micropolar fluid equations*, Acta Math. Sci. 30 (2010), 1469-1480.

[42] J. Yuan, *Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations*, Math. Meth. Appl. Sci. 31 (2008), 1113-1130.

[43] Y. Zhou, *A remark on the decay of solutions to the 3-D Navier-Stokes equations*, Math. Meth. Appl. Sci. 30 (2007), 1223-1229.