Mathematical Model of Micropolar Lubricant Considering Viscosity-Pressure Dependence

A V Morozova¹, N S Zadorozhnaya¹, M A Mukutadze¹, V I Kirishchieva¹
¹Rostov State Transport University, 2, Rostovskogo Strelkovogo Polka Narodnogo Opolcheniya sq., Rostov-on-Don, 344038, Russia

E-mail: murman1963@yandex.ru.

Abstract. In the study, based on the micropolar fluid flow equation for a “thin layer”, the continuity equation, the equation describing the profile of the molten contour of the guide coated with a low-melting metal alloy, and the equation for the mechanical energy dissipation rate, asymptotic and exact self-similar solution has been found for the zero (without considering the melting) and first (considering the melting) approximation of wedge-shaped support with the slider support profile adapted to the friction conditions and the low-melting metal coating of the guide surface. The research has taken into account the pressure dependence of the lubricant rheological properties and the melt having micropolar properties in the laminar flow regime. Analytical dependencies have been obtained for the molten surface profile of the low-melting metal coating of the guide and the field of velocities and pressure for the zero and first approximations. Also, the basic performance characteristics of the friction pair under consideration have been determined: the bearing capacity and the friction force. The impact of parameters determined by the coating melt, adapted to the support profile friction conditions, and the parameter characterizing the pressure dependence of the lubricant viscosity on the bearing capacity and friction force has been estimated.

1. Introduction
A sufficient number of publications [1-13] consider developing a design model of thrust plain bearings with a low-melting coating on movable and fixed contact surfaces. However, the surface melt lubrication is not a self-sustaining process. To provide self-sustaining lubrication of journal bearings, not only the presence of low-melting coatings on one of the working contact surfaces but also the constant availability, i.e., constant supply of lubricant [14-26] or an adapted profile of the bearing surface is required.

The study provides a design mathematical model of the hydrodynamic lubricant flow regime and a coating melt with micropolar rheological properties in the running clearance of wedge-shaped sliding support with an adapted profile of the bearing surface of the slider, considering the viscosity-pressure dependence.

2. Research objective
The steady-state flow of an incompressible liquid and a coating melt in the running clearance of wedge-shaped sliding support has been considered. In this case, the wedge-shaped sliding support with a non-standard support profile is fixed, and the thrust ring with a low-melting coating moves at the velocity u^* (Fig. 1).
The design scheme is built in the coordinate system $x'y'y'$. The contours of an inclined slider with a non-standard support profile and a molten coating of the guide surface are described as follows:

$$y' = h_0 + x'\tan\alpha, \quad y' = h_0 + x'\tan\alpha - \alpha'\sin\alpha x' = h'(x'),$$
$$y' = -\lambda'y'(x').$$

(1)

where α' is the angle between the inclined slider and the Ox axis; h_0 is the lubricating layer thickness in the initial section; α' and ω' are the disturbance range and the adapted slider profile parameter, respectively.

The pressure dependence of the lubricant viscosity is set in the form:

$$\mu = \mu_0 p', \quad \kappa' = \kappa_0 p', \quad y' = \gamma_0 p'.$$

(2)

The basic equations are the well-known micropolar lubricant flow equation for a “thin layer”, the continuity equation, and the equation describing the profile of the molten coating contour, considering the mechanical energy dissipation rate:

$$\frac{1}{2} \left(2\mu + \kappa \right) \frac{d^2 u'}{dy'^2} + \kappa \frac{\partial v'}{\partial y'} = \frac{dp'}{dx'},$$

$$\gamma \frac{d^2 \omega'}{dy'^2} - 2\kappa \omega' - \kappa' \frac{\partial v'}{\partial y'} = 0, \quad \frac{\partial v'}{\partial y'} \frac{\partial v'}{\partial x'} = 0,$$

$$\frac{d\lambda'}{dx'} \left(h'(x') \right) \cdot L' = -2\mu \left\{ \frac{\partial u'}{\partial y'} \left(\frac{\partial u'}{\partial y'} \right)^2 \right\} dy'.$$

(3)

With commonly accepted simplifications, the boundary conditions for this problem will have the form:

$$u' = -u^*, v' = 0, \quad v' = 0 \text{ at } y = -\eta f'(x');$$
$$u' = 0, \quad v' = 0, \quad v' = 0 \text{ at } y = h'(x');$$
$$p(0) = p(L) = p_0.$$

(4)
To pass to dimensionless variables, we apply the standard technique:

\[u' = \frac{u}{h_0}, \quad v' = \frac{v}{v_0}, \quad \nu' = \frac{\nu}{\mu}, \quad p' = \frac{p}{\mu h_0^2}; \quad y' = h_0 y; \]

\[N^2 = \frac{\kappa}{2\mu + \kappa}; \quad \nu'_I = \frac{2h_0^2}{\nu_0^2}; \quad \nu_0^2 = \frac{\gamma}{4\mu}; \quad \nu' = \mu_0 \mu; \]

\[\varepsilon = \frac{h_0}{L}; \quad \nu' = \frac{u}{2h_0}; \quad \nu = \frac{2(h_0 + \nu_0^2)h^*_l}{2h_0^2}; \quad x' = Lx; \quad \bar{a} = \frac{a}{p}; \quad \bar{v}' = \bar{a} L. \]

(5)

Considering (5) in the system of equations (3) and boundary conditions (4), as a result, we obtain a system of equations with boundary conditions:

\[\frac{\partial^2 u}{\partial y^2} + N^2 \frac{\partial \nu}{\partial y} = e^{-\alpha p} \frac{\partial p}{\partial x}, \quad \nu = \frac{1}{2N_0 h} (y^2 - h), \quad \frac{\partial u}{\partial y} + \frac{\partial \nu}{\partial y} = 0, \quad \frac{\partial \Phi}{\partial x} = -K \frac{\partial^2 \nu}{\partial y^2}; \]

\[\nu = 0, \quad v = 0, \quad u = 0 \text{ at } y = 1 + \eta x - \eta_1 \sin \alpha x; \]

\[\nu = 0, \quad v = 0, \quad u = -1 \text{ at } y = -\Phi(x); \]

\[p(0) = p(1) - \frac{P_0}{p}. \]

(6)

(7)

(8)

(9)

Introduce the notation \(z = e^{-\alpha p} \). When differentiating both sides of the equality, equations (8) with boundary conditions (9) will take the form:

\[\frac{\partial^2 u}{\partial y^2} + N^2 \frac{2y - h}{2N_0 h} = -\frac{1}{\alpha} \frac{dz}{dx}, \quad \nu = \frac{1}{2N_0 h} \left(y^2 - h \right), \quad \frac{\partial u}{\partial y} + \frac{\partial \nu}{\partial y} = 0, \quad \frac{\partial \Phi}{\partial x} = -K \frac{\partial^2 \nu}{\partial y^2}; \]

\[\nu = 0, \quad v = 0, \quad u = 0 \text{ at } y = 1 + \eta x - \eta_1 \sin \alpha x; \]

\[\nu = 0, \quad v = 0, \quad u = -1 \text{ at } y = -\Phi(x); \]

\[p(0) = p(1) - \frac{P_0}{p} e^{-\alpha p}. \]

(10)

(11)

Similarly to the previous problems, the asymptotic solution of system (10) considering (11) can be written as follows:

\[v(x, y) = \frac{v_0}{\Phi(x)} + K \nu(x, y) + \nu^2(x, y) + \ldots; \]

where \(K = \frac{2\mu^\prime L}{\eta_0 L}; \quad \eta = \frac{\mu^\prime a}{h_0}; \quad \eta_1 = \frac{a}{h_0}. \)
\[u(x, y) = u_0(x, y) + Ku_1(x, y) + K^2u_2(x, y) + \ldots; \]
\[\Phi(x) = -K\Phi_1(x) - K^2\Phi_2(x) - K^3\Phi_3(x) - \ldots; \]
\[z(x) = z_0 + Kz_1(x) + K^2z_2(x) + K^3z_3(x) - \ldots. \]
(12)

Considering (12), from (10), we obtain a system of equations with boundary conditions:

- for zero approximation:
\[\frac{\partial^2 u_0}{\partial y^2} + \frac{N^2}{2N'h}(2y - h) = -\frac{1}{\alpha} \frac{\partial u_0}{\partial x} + \frac{\partial \psi_0}{\partial y} = 0, \]
\[v_0 = 0, \quad u_0 = 0 \quad \text{at} \quad y = 1 + \eta x - \eta_1 \sin \alpha; \]
\[v_0 = 0, \quad u_0 = -1, \quad v_0 = 0 \quad \text{at} \quad y = \Phi(x) = 0; \]
\[z_0(0) = z_0(1) = e^{\frac{-a\rho}{p}} ; \]
(13)

- for the first approximation:
\[\frac{\partial^2 u_1}{\partial y^2} + \frac{1}{\alpha} \frac{\partial u_1}{\partial x} + \frac{\partial \psi_0}{\partial y} = 0, \]
\[\frac{d\Phi_1(x)}{dx} = K \frac{\psi_0}{\Phi(0)} \frac{\partial \psi_0}{\partial y} dy; \]
\[v_1 = \left(\frac{\partial \psi_0}{\partial y} \right)_{y=0} \cdot \Phi; \quad u_1 = \left(\frac{\partial \psi_0}{\partial y} \right)_{y=0} \cdot \Phi; \]
\[v_1 = 0, \quad v_1 = 0, \quad u_1 = 0 \quad \text{at} \quad y = h(x) + \Phi; \]
\[z_1(0) = z_1(1) = 1; \quad \Phi(0) = \Phi(1) = h^*; \]
(14)

A self-similar solution to systems (13) and (14) will be sought in the form
\[u_0 = \frac{\partial \psi_0}{\partial x} + U_0(x, y); \quad v_0 = \frac{\partial \psi_0}{\partial y} + V_0(x, y); \quad \psi_0(x, y) = \tilde{\psi}_0(\xi); \quad \xi = \frac{y}{h(x)}; \]
\[V_0(x, y) = -\tilde{v}(\xi) \cdot h'(x); \quad U_0(x, y) = \tilde{u}_0(\xi); \quad \frac{dz_0}{dx} = -\alpha \left(\frac{\tilde{C}_1}{h'(x)} + \frac{\tilde{C}_2}{h''(x)} \right). \]
(15)

Considering (17), from (13) and (14), we obtain a system of equations with boundary conditions:
\[\tilde{\psi}_0^* = \tilde{C}_2, \quad \tilde{\nu}_0^* = \tilde{C}_1 - \frac{N^2}{2N'h}(2\xi - 1); \quad \tilde{u}_0^* + \xi \tilde{v}_0^* = 0; \quad \frac{dz_0}{dx} = -\alpha \left(\frac{\tilde{C}_1}{h'(x)} + \frac{\tilde{C}_2}{h''(x)} \right); \]
\[\tilde{\psi}_0(0) = 0, \quad \tilde{\nu}_0(1) = 0, \quad \tilde{\nu}_0(1) = 0, \quad \tilde{v}_0(0) = 0, \quad \tilde{v}_0(1) = 0; \]
\[\tilde{u}_0(0) = 1, \quad \tilde{v}_0(0) = 0, \quad 0 \frac{d\tilde{a}_0(\xi)}{d\xi} = 0; \]
(16)

Solving (18) and (19), we obtain the calculation formulas
\[\tilde{\psi}_0(\xi) = \frac{\tilde{C}_2}{2} \left(\xi^2 - \tilde{C}_1 \right), \quad \tilde{C}_1 = 6; \]
(20)

\[\tilde{u}_0(\xi) = \frac{\xi^2}{2} - \frac{N^2}{2N'h} \left(\frac{\xi^3}{3} - \frac{\xi^2}{2} \right) - \left(\frac{N^2}{12N'h} + \frac{\tilde{C}_1}{2} + 1 \right) \xi + 1. \]

Considering \(z_0(0) = z_0(1) = e^{\frac{-a\rho}{p}} \), from the fourth equation of system (18), up to for, we obtain the equation for \(\tilde{C}_2 \) accurate to \(O(\eta^3) \):
Considering (21), for \(z_0 \), we get:

\[
\hat{z}_2 = -6 \left(1 + \frac{n}{2} + \frac{n}{\omega} (\cos \omega - 1) \right).
\]

(21)

For the function determining the molten contour of the support ring, considering (20), we obtain:

\[
z_0 = -6\alpha \left(\frac{n}{2} (x^2 - x) + \frac{n}{\omega} (\cos \omega x - 1) - \frac{n_1 x}{\omega} (\cos \omega - 1) \right) + e^{-\frac{u_0}{\rho}}.
\]

(22)

A self-similar solution to (15) and (16) will be sought in the same way as for (13) and (14). As a result, we obtain the calculation formulas for the field of velocities and pressure:

\[
\tilde{\psi}'(\tilde{\xi}) = \tilde{C}_1 \left(\tilde{\xi}^2 \right), \quad \tilde{C}_1 = 6M; \quad \tilde{\alpha}_1(\tilde{\xi}) = \tilde{C}_1 \frac{\tilde{\xi}^2}{2} - \left(\tilde{C}_1 + M \right) \tilde{\xi} + M;
\]

(23)

\[
\frac{dz_1}{dx} = -\alpha \left(\frac{\tilde{C}_1}{(h(x) + \Phi)^2} + \frac{\tilde{C}_2}{(h(x) + \Phi)^2} \right);
\]

(24)

A self-similar solution to (15) and (16) will be sought in the same way as for (13) and (14). As a result, we obtain the calculation formulas for the field of velocities and pressure:

\[
\tilde{C}_2 = -6M \left(1 + \frac{1}{2} \tilde{n} + \frac{\tilde{n}_1}{\omega} (\cos \omega - 1) \right) \left(1 + \Phi \right),
\]

(25)

where

\[
\tilde{n} = \frac{n}{1 + \Phi}; \quad \tilde{n}_1 = \frac{n_1}{1 + \Phi};
\]

\[
M = \sup_{x \in [0,1]} \left(\frac{\partial h_0}{\partial y} \right)_{y=0} \cdot \Phi_1(x) = \sup_{x \in [0,1]} \left[-2\eta \frac{\eta_0}{\omega} (\cos \omega + 1) + \frac{N^2}{4N_1} (1 + \eta_1 - \eta \sin \omega) \right] \Phi.
\]

(26)

Considering (26), for \(z_1 \), we get:

\[
z_1 = -6\alpha M \left(1 + \Phi \right)^2 \left(\frac{\eta_1}{2} (x^2 - x) + \frac{\tilde{n}_1}{\omega} (\cos \omega x - 1) \right) - \frac{n_1 x}{\omega} (\cos \omega - 1) + 1.
\]

(27)

Therefore, for \(z = z_0 + Kz_1 \), we get the following equation:

\[
z = -6\alpha A + e^{-\frac{u_0}{\rho}} - 6\alpha KM \cdot B + 1,
\]

(28)
where \(A = \left(\frac{\eta \left(x^2 - x \right)}{\omega} + \frac{\eta_1}{\omega} \left(\cos \omega x - 1 \right) - \frac{\eta_1 x}{\omega} \left(\cos \omega - 1 \right) \right) ; \)

\[B = \frac{\tilde{\eta} \left(x^2 - x \right) + \frac{\eta_1}{\omega} \left(\cos \omega x - 1 \right) - \frac{\eta_1 x}{\omega} \left(\cos \omega - 1 \right)}{(1 + \Phi)^2}. \]

Applying the Taylor method for the functions \(e^{-x^2} \) and \(e^{-\frac{\omega x}{p}} \), with an accuracy to \(O(\alpha^3) \), \(O\left(\frac{p a}{p^3} \right) \), for the hydrodynamic pressure, we obtain

\[p = \frac{p a}{p^3} - 6 \left(A + KMB \right) \left(1 + \alpha \frac{p a}{p^3} - \frac{\alpha^2}{2} \left(\frac{p a}{p^3} \right)^2 \right). \] \(\text{(29)} \)

Considering (13), (15), and (29), for the bearing capacity and friction force, we obtain:

\[W = p \int_0^{\frac{1}{2}} \left(\frac{p a}{p^3} - \frac{p a}{p^3} \right) dx = \frac{3 \left(2 \mu_0 + \kappa_0 \right) L^2 u^2}{b_0} \times \]

\[\times \left(1 + KM \left(1 + \alpha \frac{p a}{p^3} - \frac{\alpha^2}{2} \left(\frac{p a}{p^3} \right)^2 \right) \right) \times \]

\[\times \left(- \frac{\eta_1}{12} \frac{\eta_1}{\omega} \left(\sin \omega \frac{1}{2} \cos \omega \frac{1}{2} \right) \right) + \]

\[\frac{KM}{(1 + \Phi)^2} \left(- \frac{\tilde{\eta}}{12} \frac{\eta_1}{\omega} \left(\sin \omega \frac{1}{2} \cos \omega \frac{1}{2} \right) \right) \right); \]

\[L_{\text{fr}} = \int_0^1 \left[\frac{\partial u_a}{\partial y} \right]_{y=0} + K \frac{\partial u_t}{\partial y} \left|_{y=0} \right. \right] dx = \]

\[\left(2 \mu_0 + \kappa_0 \right) \left(1 - \alpha \rho - \frac{\alpha^2}{2} \right) \times \]

\[\times \left[1 - \frac{\eta_1}{\omega} \cos \omega - 1 + \frac{N^2}{4 N_1} \left(1 + \frac{\eta_1}{\omega} \cos \omega - 1 \right) \right] - \]

\[- \Phi K \left(- \frac{N^2}{4 N_1} \left(1 - \frac{\eta_1}{\omega} \cos \omega - 1 \right) + \frac{N^2}{4 N_1} \right). \] \(\text{(30)} \)

The above models of thrust plain bearings with a low-melting coating of the support ring surface and an adapted profile of a slider with an inclined contact surface, working in a hydrodynamic regime on a liquid lubricant and a metal melt have shown that \(K, N^2, N_1, \alpha, \) and \(\omega \) parameters contribute significantly to the tribological characteristics of bearings. These models have been considered to account the pressure dependence of the viscosity of lubricants and the coating melt having micropolar rheological properties. Considering the above factors, the authors obtained the bearing capacity of the sliding support exceeds that of standard journal bearings by 19-21 %. Thereat, the friction coefficient decreases by 14–16 %.

In an experimental study, wedge-shaped sliding support with a low-melting metal coating made of Wood's alloy has been considered (see table). Based on the experimental results, the friction coefficient has been determined. This allows suggesting the occurrence of a hydrodynamic friction mode when the bearing operates with both a lubricant with micropolar properties and low-melting
Wood's alloy coating of the guide surface. The temperature and the transition from the hydrodynamic friction regime to the boundary one have also been determined. The analysis of experimental studies has shown that the Wood's alloy low-melting coating melt affects the friction coefficient 2.5–4 times more intensively than the rheological properties of the liquid lubricants applied. Experimental studies have confirmed the reliability of the theoretical models developed and the data of their numerical analysis in the considered range of design and operational parameters of wedge-shaped sliding supports with Wood's alloy low-melting metal coatings as a result of satisfactory convergence of theoretical and experimental results.

Item No.	Friction coefficient	Theoretical study	Experimental study
Thrust without low-melting coating	Thrust bearing with Wood's alloy low-melting metal coating		
1	0.0044	0.0026	0.0028
2	0.0045	0.0025	0.0031
3	0.0048	0.0024	0.0034
4	0.0049	0.0023	0.0035
5	0.0052	0.0024	0.0037

3. Summary
Theoretical studies have shown that a low-melting metal coating of the guide surface, considering the pressure dependence of the general rheological properties of both the lubricant applied and the low-melting metal coating melt with micropolar properties, results in the bearing capacity increase by ≈5–8 % with a higher α parameter characterizing the pressure dependence of viscosity, and the friction coefficient decreases by 8–9 %.

Based on the design models obtained in the theoretical part, an experimental study was performed, which allowed determining the area of prospective exploitation of the tribosystem developed.

As a result of experimental studies, tribological characteristics have been determined, which allow obtaining the duration of the hydrodynamic friction regime, the reliability of the theoretical design models developed, and the data of their numerical analysis.

4. Conclusion
New multivariable equations have been developed for the main performance characteristics (bearing capacity and friction force) of wedge-shaped sliding support, considering the rheological properties of a micropolar lubricant the melt of the guide surface coated with a low-melting metal alloy.

The impact of variables determined by the melt of the guide surface coated with a low-melting metal alloy and the pressure dependence of the lubricant viscosity have been estimated.

The refined design models of wedge-shaped sliding support obtained allow adjusting the ratio of bearing capacity to the friction coefficient by varying the low-melting metal coating on the guide surface.

To support the theoretical conclusions, satisfactory convergence of theoretical and experimental study results has been established.
5. References

[1] Zadorozhnaya E, Hudyakov V, Dolgushin I 2020 Evaluation of Thermal Condition of Turbocharger Rotor Bearing *Lecture Notes in Mechanical Engineering* pp 1183-1193 DOI: 10.1007/978-3-030-22041-9_123

[2] Levanov I G, Zadorozhnaya E A, Mukhortov I V, Eschiganov M O 2020 Study of effect of metal oleates on mixed and boundary lubrication *Tribology in Industry* **42**(3) pp 461-467 DOI: 10.24874/ti.708.06.19.08

[3] Kandeva M, Rozhdestvensky Y V, Svoboda P, Kalitchin Z, Zadorozhnaya E 2020 Influence of the size of silicon carbide nanoparticles on the abrasive wear of electroless nickel coatings Part 2 *Journal of Environmental Protection and Ecology* **21**(1) pp 222-233

[4] Zadorozhnaya E, Levanov I, Kandeva M 2019 Tribological research of biodegradable lubricants for friction units of machines and mechanisms: Current state of research (2019) *Lecture Notes in Mechanical Engineering*, 0(9783319956299) pp 939-947 DOI: 10.1007/978-3-319-95630-5_98

[5] Levanov I, Zadorozhnaya E, Vichnyakov D 2019 Influence of friction geo-modifiers on HTHS viscosity of motor oils *Lecture Notes in Mechanical Engineering* 0(9783319956299) pp 967-972 DOI: 10.1007/978-3-319-95630-5_101

[6] Kolesnikov I V, Mukutadze A M, and Avilov V V 2018 Ways of Increasing Wear Resistance and Damping Properties of Radial Bearings with Forced Lubricant supply *Proceedings of the 4th Int.1 Conf. on Industrial Engineering, Lecture Notes in Mechanical Engineering (ICIE 2018)* 1049–1062

[7] Mukutadze M A 2016 Radial bearing with porous elements *Procedia Engineering* **150** 559–570

[8] Mukutadze M A 2018 Optimization of the Supporting Surface of a Slider Bearing according to the Load-Carrying Capacity Taking into Account the Lubricant Viscosity Depending on Pressure and Temperature *Journal of Machinery Manufacture and Reliability* **4** pp 356-361

[9] Mukutadze M A 2019 Radial Friction Bearing with a Fusible Coating in the Turbulent Friction Mode *Journal of Machinery Manufacture and Reliability* **48** pp 423-432

[10] Akhverdiev K S, Lagunova E O, Kolesnikov I V, Mukutadze M A 2018 Calculated model of wedge-shaped sliding supports in turbulent friction regime Advances in Engineering Research (AER) vol 157 International Conference "Actual Issues of Mechanical Engineering" (AIME 2018) pp 346-353

[11] Mukutadze M A 2018 Optimization of the Supporting Surface of a Slider Bearing according to the Load-Carrying Capacity Taking into Account the Lubricant Viscosity Depending on Pressure and Temperature *Journal of Machinery Manufacture and Reliability* **4** pp 356-361

[12] Mukutadze M A 2019 Radial Friction Bearing with a Fusible Coating in the Turbulent Friction Mode *Journal of Machinery Manufacture and Reliability* **48** pp 423-432

[13] Mukutadze M A 2019 Simulation model of thrust bearing with a free-melting and porous coating of guide and slide surfaces *IOP Conf. Series: Materials Science and Engineering* 560 doi:10.1088/1757-899X/560/1/01203

[14] Mukutadzea M A, Khayanovab D U, Mukutadzea A M 2020 Hydrodynamic Model of a Wedge-Shaped Sliding Support with an Easy-Melting Metal Coating *Journal of Machinery Manufacture and Reliability* Vol 49 **4** pp 314–320 URL: https://link.springer.com/journal/12001/volumes-and-issues/49-4

[15] Mukutadze M A, Lagunova E O, Garmonina A N, Vasilenko V V 2018 Radial Slip Bearing with a Pliable Supporting Surface *Russian Engineering Research* Vol 38 **3** pp 166-171

[16] Mukutadze M A 2021 Mathematical model of a journal bearing with low-melting and porous coating in its structure on different contacting surfaces with incomplete filling of operating clearance *IOP Conf. Series: Materials Science and Engineering* 1064 012030 IOP Publishing doi:10.1088/1757-899X/1064/1/012030
[17] Mukutadze M A 2021 Mathematical model of a micropolar lubricating stuff International Conference Aviation Engineering and Transportation (AviaEnT 2020) IOP Conf. Series: Materials Science and Engineering 1061 012027 IOP Publishing doi:10.1088/1757-899X/1061/1/012027

[18] Mukutadze M A 2020 Simulation Model of a Journal Bearing with a LowMelting and Porous Coating in the Structure on Different Contact Surfaces International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon-2020)

[19] Bondarenko M E, Polyakov R N, Shengbo Li 2020 Controlling the characteristics of the hybrid bearing by means of an electromagnetic actuator IOP Conference Series: Materials Science and Engineering 1001(1) 012078, doi:10.1088/1757-899X/1001/1/012078

[20] Polyakov R N, Revkov A A, Shengping Fu, Shengbo L I 2020 Toroidal variator with hydro-gas pressure mechanism for creating a holddown IOP Conference Series: Materials Science and Engineering 1001(1) 012003 doi:10.1088/1757-899X/1001/1/012003

[21] FU Sheng-ping, LI Sheng-bo, LUO Ning, Roman Nikolaevich 2019 Polyakov Metamorphic mechanism of wet shift clutch in gear shifting process Journal of ZheJiang University (Engineering Science) Vol 53 Issue 4 pp 628-637 DOI: 10.3785/j.issn.1008-973X.2019.04.003 (Q2)

[22] Polyakov R N, Kornaev A V, Bondarenko M E, Shutin D V 2020 Design features of hybrid bearings with adjustable stiffness IOP Conference Series: Materials Science and Engineering 734 012080 doi:10.1088/1757-899X/734/1/012080

[23] Mukutadze A M 2016 Coefficient of a rolling motion bearing drive Procedia Engineering 150 pp 547–558

[24] Akhverdiev K S, Mukutadze A M, Zadorozhnaya N S and Flek B M 2016 Damper with a Porous Element for Bearing Arrangements Journal of Friction and Wear Vol 37 4 pp 395–400

[25] Akhverdiev K S, Zadorozhnaya N S, Mukutadze A M, Flek B M 2016 Computation model of composite cylindrical bearing working in steady-state regime for partial filling of gap with lubricant material Journal of Machinery Manufacture and Reliability Vol 45 3 pp 247–251

[26] Akhverdiev K S 2017 Research of Drive Factor of Damper with Double-Layer Porous Ring with Compound Feed of Lubricant Material International Journal of Applied Engineering Research 1 84