Assessing Resident Diagnostic Skills Using a Modified Bronchiolitis Score

CURRENT STATUS: UNDER REVIEW

Andrea V Rivera-Sepulveda rivera.andreav@gmail.com
Saint Louis University School of Medicine
Corresponding Author
ORCiD: 0000-0002-8423-3981

Muguette Isona
San Juan City Hospital

DOI: 10.21203/rs.2.19264/v1

SUBJECT AREAS Pediatrics

KEYWORDS resident, pediatric, diagnostic skills, bronchiolitis, inter-rater, score, board-certified, pediatrician, pediatric emergency department
Abstract

Objective: The purpose of this study is to evaluate resident’s assessment of respiratory distress compared to attending’s assessment in the academic setting.

Results: We evaluated resident’s assessment of respiratory distress in children through inter-rater reliability of a bronchiolitis severity assessment tool among pediatric attendings and pediatric residents. Inter-rater reliability (IRR) was assessed using a one-way random, average measures intra-class correlation (ICC) to evaluate the degree of consistency and magnitude of disagreement between inter-raters. Value of >0.6 was considered substantial for kappa and good internal consistency for ICC. Twenty patients were evaluated. Analysis showed fair agreement for the presence of retractions (K=0.31), auscultation (K=0.33), and total score (K=0.3). The RR (ICC=0.97), peripheral saturation (ICC=1.0), auscultation (ICC=0.77), and total score (ICC=0.84) were scored similarly across both raters, indicating excellent IRR. The identification of retractions had the least level of agreement.

INTRODUCTION

Patient history and physical examination are essential to clinical practice. Literature suggests that medical students and residents are deficient in aspects of physical diagnosis; auscultation being the most prominent\(^1\). The challenge with the resident-teaching faculty rests in identifying subtle and obvious mistakes made by residents in history and physical examinations\(^2\); in conjunction with medical evidence of accuracy in exam maneuvers, including sensitivity, specificity, and clinical diagnostic reasoning.
Pediatric residents’ growth, acquisition of knowledge, and clinical diagnostic reasoning is usually measured by the descriptive performance expectations from the combination of resident milestones from the Accreditation Council for Graduate Medical Education (ACGME), and the American Academy of Pediatrics (AAP)\(^3\). Although resident milestones are objective assessment instruments, they rely on the subjective appraisal of the attending. Therefore, the use of a standardized instrument may complement the evaluation of resident diagnostic skills in the academic setting. The objective of this study is to evaluate resident’s assessment of respiratory distress through inter-rater reliability of a bronchiolitis severity assessment tool among pediatric attendings and pediatric residents.

METHODS

Study design and setting

This is a cross-sectional study performed in a community teaching hospital. The mainly urban population under study consisted of a convenience sample of children under 24 months of age who presented to the Pediatric Emergency Department (PED) from January 01, 2014 to June 30, 2014. We included children with a primary or secondary diagnosis of clinical bronchiolitis. The principal investigators identified patients with potential for recruitment. Bronchiolitis was defined as clinical evidence of lower respiratory tract involvement such as wheezing, rhonchi, crackles or chest wall retractions with or without upper respiratory tract infection. We excluded children who required immediate therapeutic management or intubation per the physician’s clinical criteria, prematurity, chronic lung disease, bronchopulmonary dysplasia, bronchiectasis, gastroenteritis, liver function impairment, or congenital heart disease; and patients with a diagnosis of
pneumonia by chest radiography.

RESULTS

Twelve providers (10 pediatric residents, 1 non-board-certified general pediatrician and 1 board-certified general pediatrician) participated in the completed assessment of 20 patients for a total of 40 clinical assessments during a 6-month period. Patients’ ages ranged from 1 to 15 months, with a mean age of 6 months (SD 4). The inter-raters’ total scores had a wide distribution that ranged from 1 to 7, with a median score of 3 for both raters (Fig. 1).

Sub-score analysis showed almost perfect agreement in RR (K = 0.9) and SpO\textsubscript{2} (K = 1.0) (Table 2). Inter-raters had fair agreement for the presence of retractions (K = 0.31), auscultation (K = 0.33), and total severity score (K = 0.3). But presented, however, high-moderate correlation between ranked variables. Inter-item correlation was high-moderate for auscultation (R = 0.61; p = 0.004) and total severity score (R = 0.72; p = 0.001), and showed near perfect correlation with RR (R = 0.95; p = 0.001). The sub-score for RR (ICC = 0.97), SpO\textsubscript{2} (ICC = 1.0), auscultation (ICC = 0.77), and total severity score (ICC = 0.84) were scored similarly across both raters, indicating excellent internal consistency and IRR. The presence of retractions showed the least agreement across all statistical analyses.

	Cohen’s kappa	Spearman’s Rho	Pearson’s correlation	Intra-class correlation (95% CI)
Respiratory rate	0.90*	0.92*	0.95*	0.97 (0.93–0.99)
Retractions	0.31*	0.48*	0.39	0.57 (-0.10-0.83)
Oxygen saturation	1.0	1.0	1.0	1.0
Auscultation	0.33*	0.63*	0.61*	0.77 (0.41–0.91)
Total score	0.30*	0.72*	0.72*	0.84 (0.59–0.94)
Diagnosis	0.44*	0.44*	0.44*	0.63 (0.07–0.86)

*P value < 0.05 as statistically significant.
Total score analysis in relation to the distribution of bronchiolitis severity was 90% for mild bronchiolitis and 10% for moderate bronchiolitis. An analysis controlling for age group (1-3, 4-6, 7-9, 10-12, 13-15 months) showed high-moderate correlation with inter-rater agreement based on total severity score (R = 0.69; p = 0.001); but low-moderate correlation based on diagnosis of severity (R = 0.45; p = 0.052).

DISCUSSION

The modified bronchiolitis score showed significant reliability across paired raters in their assessment of respiratory distress in children with bronchiolitis. There were higher levels of agreement for observed quantitative parameters (i.e. oxygen saturation and respiratory rate) than for subjective parameters (i.e. retractions and wheezing). This may be because the assessment of auscultatory findings relies on the clinician’s experience, acuity of hearing, and personal interpretation\(^9\). Inter-rater comparison showed that pediatric residents had a wider range of total scores and a 50% reduced ability to identify the presence of 2 or more retractions versus the pediatric attending. This inconsistency in the physical examination can lead to inaccurate assessment of respiratory distress, which in turn may affect the management of airway compromise. An analysis controlling for age group showed an effect on the level of agreement for the variation seen in total score and diagnosis of severity. These findings differ from Gajdos et al.\(^5\) who determined that the use of a respiratory score between a physician, nurse and respiratory therapist for assessment of respiratory status of children hospitalized with bronchiolitis showed no differences in weighted kappa estimates in accordance to age group. In our study, the age distribution was skewed to the right, with younger children being more frequently affected with bronchiolitis. The disconnect between high-moderate
correlation for total severity score and low-moderate correlation for diagnosis of severity may be explained by the respiratory assessment tool’s range in points required for a diagnosis to be made for mild bronchiolitis when compared to moderate bronchiolitis severity.

Respiratory assessment tools can be easily implemented bedside given its strong relationship with respiratory distress, and reproducibility5,10−12. Respiratory assessment is considered an integral part of the clinical reasoning process for physicians-in-training13. Auscultation is used to assess lung sounds that may be associated with respiratory pathologies or dysfunction14. However, the presence or absence of retractions is more telling about the degree of respiratory distress than auscultatory findings15, given that the use of accessory muscles is a depiction of the chest cavity maintaining adequate ventilation, and is therefore a representation of work of breathing16. Respiratory rate has been associated with lower respiratory tract infection17,18, and has been stressed as a predictive value in the assessment of respiratory distress in bronchiolitis19. Furthermore, pulse oximetry is an objective and easily reproducible parameter, which may not require inter-observer assessment as evidenced by its almost perfect agreement and excellent internal consistency20.

There are standardized tests that evaluate physicians-in-training through medical school, but not in residency21. There is limited literature on the implementation of standardized scoring tools for the assessment of resident skills. Studies have shown that trainees often enter residencies with significant deficiencies in clinical skills22−24, with a lack of proficiency in physical examination25,26. It is the role of the
faculty to assess, and directly observe resident learners to evaluate competence and milestone achievement on the appropriateness and accuracy of history-taking, and physical examination techniques, as well as the interpretation of their findings27 - 32. Therefore, the implementation of an assessment scoring tool provides education benefits by standardizing resident exposure to evidence-based medicine, such as the assessment of respiratory distress, and improvement of skills at communicating respiratory status33 - 25.

CONCLUSIONS
The use of a scoring tool would enhance resident teaching and evaluation of clinical diagnostic reasoning through early identification of diagnostic challenges. This allows for more effective resident remediation, improved patient and resident outcomes, and promotes a more standardized teaching and evaluation process.

Limitations
As part of the study, we did not collect identifiable information about the resident. This prevented us from evaluating whether the resident’s clinical deficiencies were persistent or deviated from patient to patient. We also lacked information about year of training, and therefore were unable to perform a secondary analysis on inter-rater agreement stratified by the level of training. We did not provide follow up on the residents that showed deficiency in their clinical skills as shown by higher degree of disagreement between raters to show improvement in clinical skills after remediation using the same modified clinical scoring tool. Patients’ low disease severity, given that 90% of patients had mild bronchiolitis, may have played a role in the residents’ ability to assess subtle clinical differences between mild and
moderate disease. We did not consider confounding variables that may have affected the physical evaluation of the patient; such as tachypnea secondary to dehydration, or as a result of undiagnosed pneumonia.

ABREVIATIONS

IRR: Inter-rater reliability
ICC: Intra-class correlation
ACGME: Accreditation Council for Graduate Medical Education
AAP: American Academy of Pediatrics
PED: Pediatric Emergency Department
RR: Respiratory rate
SpO₂: Oxygen saturation
K: Cohen’s kappa
SD: Standard deviation

Declarations

Ethics approval and consent to participate: This manuscript adheres to the appropriate reporting guidelines and community standards for data management. It adheres to the highest of ethical standards and rigorous methodology. All participants’ parents or guardians provided written informed consent prior to enrolment in the study. This study was approved by the San Juan City Hospital Institutional Review Board (approval no. B0270214).

Consent to publish: All participants’ parents or guardians provided written informed consent prior to enrolment in the study, which included the publication of the results.
Availability of data and materials: The data that supports the findings of this study was used under license for the current study, and is not in the public domain.

Competing interests: The authors declare that they have no competing interests.

Funding: The authors received no specific funding for this work.

Authors’ contributions: Dr. Rivera-Sepulveda conceptualized and designed the study, acquired and interpreted data. Dr. Isona made substantial contributions to conception and design, analysis and interpretation of data. Both authors were involved in drafting, critically revising and providing final approval of the manuscript.

Acknowledgements: Research reported is supported in part by the National Institute of Minority Health and Health Disparities of the National Institutes of Health Award Number R25MD007607. The content is solely the responsibility of the authors and does not necessarily represent the views of The National Institute of Health.

References

1. Durning SJ, Artino AR, Schuwirth L, van der Vleuten C. Clarifying assumptions to enhance our understanding and assessment of clinical reasoning. Acad Med 2013;88(4):442-448.

2. Pinsky, LE, & Wipf, JE. Learning and Teaching at the Bedside. University of Washington, Department of Medicine.
 http://depts.washington.edu/physdx/gettingstarted.html. Accessed November 1, 2018.

3. Hicks PJ, Englander R, Schumacher DJ, Burke A, Benson BJ, Guralnick S, Ludwig S, Carraccio C. Pediatrics milestone project: next steps toward meaningful
outcomes assessment. J of Grad Med Educ 2010;2(4):577-584.

4. Goebel J, Estrada B, Quinonez J, Noorkarim N et al. Prednisolone plus albuterol versus albuterol alone in mild to moderate bronchiolitis. Clin Pediatr 2000;39(4):213-220.

5. Gajdos V, Beydon N, Bommenel L, Pellegrino B, de Pontual L, Bailleux S, Labrune P, Bouyer J. Inter-observer agreement between physicians, nurses, and respiratory therapists for respiratory clinical evaluation in bronchiolitis. Pediatr Pulmonol. 2009;44(8):754-762.

6. Berg MD, Schexnayder SM, Chameides L, Terry M, Donoghue A, Hickey RW, Berg RA, Sutton RM, Hazinski MF. Part 13: pediatric basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circ 2010;122:S862-S875.

7. Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, Maconochie I, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lanc 2011;377(9770): 1011-1018.

8. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174.

9. Alsmadi S, Kahya YP. Design of a DSP-based instrument for real-time classification of pulmonary sounds. Comput Biol Med 2008; 38(1):53-61.

10. Liu LL, Gallaher MM, Davis RL, Rutter CM, Lewis TC, Marcuse EK. Use of a respiratory clinical score among different providers. Pediatr Pulmonol 2004;37:243-248.

11. Wang EE, Milner RA, Navas L, Maj H. Observer agreement for respiratory signs and oximetry in infants hospitalized with lower
12. Walsh P, Gonzales A, Satar A, Rothenberg SJ. The interrater reliability of a validated bronchiolitis severity assessment tool. Pediatr Emerg Care 2006;22:316–320.

13. Higgs J, Jones M, Loftus S, Christensen N. Clinical reasoning in the health professions, 4th edition. Amsterdam: Elsevier Health Sciences; 2018:3-12.

14. Sole ML, Bennett M. Comparison of airway management practices between registered nurses and respiratory care practitioners. Am J Crit Care 2014;23(3):191-199.

15. Ahmed A, Graber MA. Evaluation of the adult with dyspnea in the emergency department. In Hockberger RS (Ed.), UpToDate. http://www.uptodate.com/contents/evaluation-of-the-adult-with-dyspnea-in-the-emergency-department. Accessed June 30, 2018.

16. Mulholland EK, Olinsky A, Shann FA. Clinical findings and severity of acute bronchiolitis. Lanc 1990;335:1259–1261.

17. Mahabee-Gittens EM, Grupp-Phelan J, Brody AS, Donnelly LF, Bracey SE, Duma EM, Mallory ML, Slap GB. Identifying children with pneumonia in the emergency department. Clin Pediatr (Phila) 2005;44:427–435.

18. Margolis P, Gadomski A. The rational clinical examination. Does this infant have pneumonia? JAMA 1998;279:308–313.

19. American Academy of Pediatrics. Subcommittee on Diagnosis and Management of Bronchiolitis. Diagnosis and Management of Bronchiolitis. Pediatr 2006;118(4):1774-1793.

20. Ralston SL, Lieberthal AS, Meissner HC, et al. Clinical Practice Guideline: The Diagnosis, Management, and Prevention of Bronchiolitis. Pediatr 2014;134(5):e1474-e1502.
21. Brannick MT, Erol-Korkmaz HT, Prewett M. A systematic review of the reliability of objective structured clinical examination scores. J Med Educ 2011;45(12):1181-1189.

22. Wray NP, Friedland JA. Detection and correction of house staff error in physical diagnosis. JAMA 1983;249:1035-1037.

23. Woolliscroft JO, Stross JK, Silva J Jr. Clinical competence certification: a critical appraisal. J Med Educ 1984;59:799-805.

24. Norcini JJ, Blank LL, Arnold GK, Kimball HR. The mini-CEX (clinical evaluation exercise): a preliminary investigation. Ann Intern Med 1995; 123:795-9.

25. Fletcher SW, O'Malley MS, Bunce LA. Physicians' abilities to detect lumps in silicone breast models. JAMA 1985;253:2224-8.

26. Mangione S, Nieman LZ. Cardiac auscultatory skills of internal medicine and family practice trainees: a comparison of diagnostic proficiency. JAMA 1997;278:717-722.

27. Govaerts, MJ, Van de Wiel MW, Schuwirth LW, Van der Vleuten CP, Muijtjens AM. Workplace-based assessment: raters' performance theories and constructs. Adv. In Health Sci. Educ 2013;18(1):375-396.

28. Mangione S. Torre DM. Teaching of pulmonary auscultation in pediatrics: a nationwide survey of all U.S. accredited residencies. Pediatr Pulmonol 2003;35:472-476.

29. Mangione S, Burdick WP, Peitzman SJ. Physical diagnosis skills of physicians in training: a focused assessment. Acad Emer Med 1995;2:622-629.

30. Mangione S. Cardiac auscultatory skills of physicians-in-training: a comparison of three English speaking countries. Am J of Med 2001;110:210-216.

31. Bordage G. Where are the history and physical? Can Med Assoc J
32. Hodges, BD. The shifting discourses of competence. The Question of Competence: Reconsidering Medical Education in the Twenty-First Century. Ithaca: Cornell University Press; 2012:14-41.

33. van der Vleuten, CP, Schuwirth LW, Driessen EW, Dijkstra J, Tigelaar D, Baartman LK, van Tartwijk J. A model for programmatic assessment fit for purpose. Med Teach 2012;34(3):205-214.

34. Talib HJ, Lax Y, Reznik M. The Impact of a Clinical Asthma Pathway on Resident Education. BioMed Research Int 2018.

35. Moonen-van Loon, JM, Overeem K, Donkers HH, Van der Vleuten, CP, Driessen EW. Composite reliability of a workplace-based assessment toolbox for postgraduate medical education. Adv Health Sci Educ 2013;18(5)1087-1102.

Figures
RESULTS

Twelve providers (10 pediatric residents, 1 non-board-certified general pediatrician and 1 board-certified general pediatrician) participated in the completed assessment of 20 patients for a total of 40 clinical assessments during a 6-month period. Patients’ ages ranged from 1 to 15 months, with a mean age of 6 months (SD 4). The inter-raters’ total scores had a wide distribution that ranged from 1 to 7, with a median score of 3 for both raters (Fig. 1). Sub-score analysis showed almost perfect agreement in RR (K = 0.9) and SpO₂ (K = 1.0) (Table 2). Inter-raters had fair agreement for the presence of retractions (K = 0.31), auscultation (K = 0.33), and total severity score (K = 0.3). But presented, however, high-
moderate correlation between ranked variables. Inter-item correlation was high-moderate for auscultation (R = 0.61; p = 0.004) and total severity score (R = 0.72; p = 0.001), and showed near perfect correlation with RR (R = 0.95; p = 0.001). The sub-score for RR (ICC = 0.97), SpO₂ (ICC = 1.0), auscultation (ICC = 0.77), and total severity score (ICC = 0.84) were scored similarly across both raters, indicating excellent internal consistency and IRR. The presence of retractions showed the least agreement across all statistical analyses.

Table 2
Inter-rater reliability and internal consistency by sub-score

	Cohen’s kappa	Spearman’s Rho	Pearson’s correlation	Intra-class correlation (95% CI)
Respiratory rate	0.90*	0.92*	0.95*	0.97 (0.93–0.99)
Retractions	0.31*	0.48*	0.39	0.57 (-0.10–0.83)
Oxygen saturation	1.0	1.0	1.0	1.0
Auscultation	0.33*	0.63*	0.61*	0.77 (0.41–0.91)
Total score	0.30*	0.72*	0.72*	0.84 (0.59–0.94)
Diagnosis	0.44*	0.44*	0.44*	0.63 (0.07–0.86)

*P value < 0.05 as statistically significant.

Total score analysis in relation to the distribution of bronchiolitis severity was 90% for mild bronchiolitis and 10% for moderate bronchiolitis. An analysis controlling for age group (1–3, 4–6, 7–9, 10–12, 13–15 months) showed high-moderate correlation with inter-rater agreement based on total severity score (R = 0.69; p = 0.001); but low-moderate correlation based on diagnosis of severity (R = 0.45; p = 0.052).

DISCUSSION

The modified bronchiolitis score showed significant reliability across paired raters in their assessment of respiratory distress in children with bronchiolitis. There were higher levels of agreement for observed quantitative parameters (i.e. oxygen saturation and respiratory rate) than for subjective parameters (i.e. retractions and wheezing). This may be because the assessment of auscultatory findings relies on the clinician’s experience, acuity of hearing, and personal interpretation⁹. Inter-rater comparison showed that pediatric residents had a wider range of total scores and a 50% reduced ability to identify the presence of 2 or more
retractions versus the pediatric attending. This inconsistency in the physical examination can lead to inaccurate assessment of respiratory distress, which in turn may affect the management of airway compromise. An analysis controlling for age group showed an effect on the level of agreement for the variation seen in total score and diagnosis of severity. These findings differ from Gajdos et al.5 who determined that the use of a respiratory score between a physician, nurse and respiratory therapist for assessment of respiratory status of children hospitalized with bronchiolitis showed no differences in weighted kappa estimates in accordance to age group. In our study, the age distribution was skewed to the right, with younger children being more frequently affected with bronchiolitis. The disconnect between high-moderate correlation for total severity score and low-moderate correlation for diagnosis of severity may be explained by the respiratory assessment tool’s range in points required for a diagnosis to be made for mild bronchiolitis when compared to moderate bronchiolitis severity.

Respiratory assessment tools can be easily implemented bedside given its strong relationship with respiratory distress, and reproducibility5,10–12. Respiratory assessment is considered an integral part of the clinical reasoning process for physicians-in-training13. Auscultation is used to assess lung sounds that may be associated with respiratory pathologies or dysfunction14. However, the presence or absence of retractions is more telling about the degree of respiratory distress than auscultatory findings15, given that the use of accessory muscles is a depiction of the chest cavity maintaining adequate ventilation, and is therefore a representation of work of breathing16. Respiratory rate has been associated with lower respiratory tract infection17,18, and has been stressed as a predictive value in the assessment of respiratory distress in bronchiolitis19. Furthermore, pulse oximetry is an objective and easily reproducible parameter, which may not require inter-observer assessment as evidenced
by its almost perfect agreement and excellent internal consistency20.

There are standardized tests that evaluate physicians-in-training through medical school, but not in residency21. There is limited literature on the implementation of standardized scoring tools for the assessment of resident skills. Studies have shown that trainees often enter residencies with significant deficiencies in clinical skills22 – 24, with a lack of proficiency in physical examination25,26. It is the role of the faculty to assess, and directly observe resident learners to evaluate competence and milestone achievement on the appropriateness and accuracy of history-taking, and physical examination techniques, as well as the interpretation of their findings27 – 32. Therefore, the implementation of an assessment scoring tool provides education benefits by standardizing resident exposure to evidence-based medicine, such as the assessment of respiratory distress, and improvement of skills at communicating respiratory status33 – 25.

\textbf{CONCLUSIONS}

The use of a scoring tool would enhance resident teaching and evaluation of clinical diagnostic reasoning through early identification of diagnostic challenges. This allows for more effective resident remediation, improved patient and resident outcomes, and promotes a more standardized teaching and evaluation process.

\textbf{Limitations}

As part of the study, we did not collect identifiable information about the resident. This prevented us from evaluating whether the resident’s clinical deficiencies were persistent or deviated from patient to patient. We also lacked information about year of training, and therefore were unable to perform a secondary analysis on inter-rater agreement stratified by the level of training. We did not provide follow up on the residents that showed deficiency in
their clinical skills as shown by higher degree of disagreement between raters to show improvement in clinical skills after remediation using the same modified clinical scoring tool. Patients’ low disease severity, given that 90% of patients had mild bronchiolitis, may have played a role in the residents’ ability to assess subtle clinical differences between mild and moderate disease. We did not consider confounding variables that may have affected the physical evaluation of the patient; such as tachypnea secondary to dehydration, or as a result of undiagnosed pneumonia.

ABREVIATIONS

IRR: Inter-rater reliability
ICC: Intra-class correlation
ACGME: Accreditation Council for Graduate Medical Education
AAP: American Academy of Pediatrics
PED: Pediatric Emergency Department
RR: Respiratory rate
SpO₂: Oxygen saturation
K: Cohen’s kappa
SD: Standard deviation

Declarations

Ethics approval and consent to participate: This manuscript adheres to the appropriate reporting guidelines and community standards for data management. It adheres to the highest of ethical standards and rigorous methodology. All participants’ parents or guardians provided written informed consent prior to enrolment in the study. This study was approved by the San Juan City Hospital Institutional Review Board (approval no. B0270214).
Consent to publish: All participants’ parents or guardians provided written informed consent prior to enrolment in the study, which included the publication of the results.

Availability of data and materials: The data that supports the findings of this study was used under license for the current study, and is not in the public domain.

Competing interests: The authors declare that they have no competing interests.

Funding: The authors received no specific funding for this work.

Authors’ contributions: Dr. Rivera-Sepulveda conceptualized and designed the study, acquired and interpreted data. Dr. Isona made substantial contributions to conception and design, analysis and interpretation of data. Both authors were involved in drafting, critically revising and providing final approval of the manuscript.

Acknowledgements: Research reported is supported in part by the National Institute of Minority Health and Health Disparities of the National Institutes of Health Award Number R25MD007607. The content is solely the responsibility of the authors and does not necessarily represent the views of The National Institute of Health.

References

1. Durning SJ, Artino AR, Schuwirth L, van der Vleuten C. Clarifying assumptions to enhance our understanding and assessment of clinical reasoning. Acad Med 2013;88(4):442-448.

2. Pinsky, LE, & Wipf, JE. Learning and Teaching at the Bedside. University of Washington, Department of Medicine. http://depts.washington.edu/physdx/gettingstarted.html. Accessed November 1, 2018.

3. Hicks PJ, Englander R, Schumacher DJ, Burke A, Benson BJ, Guralnick S, Ludwig S, Carraccio C. Pediatrics milestone project: next steps toward meaningful outcomes assessment. J of Grad Med Educ 2010;2(4):577-584.

4. Goebel J, Estrada B, Quinonez J, Noorkarim N et al. Prednisolone plus albuterol versus
albuterol alone in mild to moderate bronchiolitis. Clin Pediatr 2000;39(4):213-220.

5. Gajdos V, Beydon N, Bommenel L, Pellegrino B, de Pontual L, Bailleux S, Labrone P, Bouyer J. Inter-observer agreement between physicians, nurses, and respiratory therapists for respiratory clinical evaluation in bronchiolitis. Pediatr Pulmonol. 2009;44(8):754-762.

6. Berg MD, Schexnayder SM, Chameides L, Terry M, Donoghue A, Hickey RW, Berg RA, Sutton RM, Hazinski MF. Part 13: pediatric basic life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circ 2010;122:S862-S875.

7. Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, Maconochie I, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lanc 2011;377(9770): 1011-1018.

8. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174.

9. Alsmadi S, Kahya YP. Design of a DSP-based instrument for real-time classification of pulmonary sounds. Comput Biol Med 2008; 38(1):53-61.

10. Liu LL, Gallaher MM, Davis RL, Rutter CM, Lewis TC, Marcuse EK. Use of a respiratory clinical score among different providers. Pediatr Pulmonol 2004;37:243–248.

11. Wang EE, Milner RA, Navas L, Maj H. Observer agreement for respiratory signs and oximetry in infants hospitalized with lower

12. Walsh P, Gonzales A, Satar A, Rothenberg SJ. The interrater reliability of a validated bronchiolitis severity assessment tool. Pediatr Emerg Care 2006;22:316-320.

13. Higgs J, Jones M, Loftus S, Christensen N. Clinical reasoning in the health professions, 4th edition. Amsterdam: Elsevier Health Sciences; 2018:3-12.

14. Sole ML, Bennett M. Comparison of airway management practices between registered
nurses and respiratory care practitioners. Am J Crit Care 2014;23(3):191-199.

15. Ahmed A, Graber MA. Evaluation of the adult with dyspnea in the emergency department. In Hockberger RS (Ed.), UpToDate. http://www.uptodate.com/contents/evaluation-of-the-adult-with-dyspnea-in-the-emergency-department. Accessed June 30, 2018.

16. Mulholland EK, Olinsky A, Shann FA. Clinical findings and severity of acute bronchiolitis. Lanc 1990;335:1259-1261.

17. Mahabee-Gittens EM, Grupp-Phelan J, Brody AS, Donnelly LF, Bracey SE, Duma EM, Mallory ML, Slap GB. Identifying children with pneumonia in the emergency department. Clin Pediatr (Phila) 2005;44:427-435.

18. Margolis P, Gadomski A. The rational clinical examination. Does this infant have pneumonia? JAMA 1998;279:308-313.

19. American Academy of Pediatrics. Subcommittee on Diagnosis and Management of Bronchiolitis. Diagnosis and Management of Bronchiolitis. Pediatr 2006;118(4):1774-1793.

20. Ralston SL, Lieberthal AS, Meissner HC, et al. Clinical Practice Guideline: The Diagnosis, Management, and Prevention of Bronchiolitis. Pediatr 2014;134(5):e1474-e1502.

21. Brannick MT, Erol-Korkmaz HT, Prewett M. A systematic review of the reliability of objective structured clinical examination scores. J Med Educ 2011;45(12):1181-1189.

22. Wray NP, Friedland JA. Detection and correction of house staff error in physical diagnosis. JAMA 1983;249:1035-1037.

23. Woolliscroft JO, Stross JK, Silva J Jr. Clinical competence certification: a critical appraisal. J Med Educ 1984;59:799-805.

24. Norcini JJ, Blank LL, Arnold GK, Kimball HR. The mini-CEX (clinical evaluation exercise): a preliminary investigation. Ann Intern Med 1995; 123:795-9.

25. Fletcher SW, O'Malley MS, Bunce LA. Physicians' abilities to detect lumps in silicone
22. Mangione S, Nieman LZ. Cardiac auscultatory skills of internal medicine and family practice trainees: a comparison of diagnostic proficiency. JAMA 1985;253:2224-8.

26. Mangione S, Nieman LZ. Cardiac auscultatory skills of internal medicine and family practice trainees: a comparison of diagnostic proficiency. JAMA 1985;253:2224-8.

27. Govaerts, MJ, Van de Wiel MW, Schuwirth LW, Van der Vleuten CP, Muijtjens AM. Workplace-based assessment: raters’ performance theories and constructs. Adv. In Health Sci. Educ 2013;18(1):375-396.

28. Mangione S. Torre DM. Teaching of pulmonary auscultation in pediatrics: a nationwide survey of all U.S. accredited residencies. Pediatr Pulmonol 2003;35:472-476.

29. Mangione S, Burdick WP, Peitzman SJ. Physical diagnosis skills of physicians in training: a focused assessment. Acad Emer Med 1995;2:622-629.

30. Mangione S. Cardiac auscultatory skills of physicians-in-training: a comparison of three English speaking countries. Am J of Med 2001;110:210-216.

31. Bordage G. Where are the history and physical? Can Med Assoc J 1995;152:1595-1598.

32. Hodges, BD. The shifting discourses of competence. The Question of Competence: Reconsidering Medical Education in the Twenty-First Century. Ithaca: Cornell University Press; 2012:14-41.

33. van der Vleuten, CP, Schuwirth LW, Driessen EW, Dijkstra J, Tigelaar D, Baartman LK, van Tartwijk J. A model for programmatic assessment fit for purpose. Med Teach 2012;34(3):205-214.

34. Talib HJ, Lax Y, Reznik M. The Impact of a Clinical Asthma Pathway on Resident Education. BioMed Research Int 2018.

35. Moonen-van Loon, JM, Overeem K, Donkers HH, Van der Vleuten, CP, Driessen EW. Composite reliability of a workplace-based assessment toolbox for postgraduate medical education. Adv Health Sci Educ 2013;18(5)1087-1102.
Figure 1

Total modified bronchiolitis score distribution among raters.