FITTING OF A TRANSFORMATION GEOID MODEL TO THE GRAVIMETRIC-GEOMETRIC GEOID MODEL OF BENIN CITY

1Oduyebo, O. F., 1Ono, M. N. and 2Eteje, S. O.

1Department of Surveying and Geoinformatics, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
2Eteje Surveys and Associates, Benin City, Edo State, Nigeria

*Corresponding Author Email: jimioduyebo@yahoo.com

ABSTRACT
The application of the transformation geoid model in Benin City has necessitated its fitting to the existing gravimetric-geometric geoid model of the study area. The transformation geoid model was determined using the Kotsakis (2008) model for the transformation of global geoid heights to local geoidal undulations. To obtain its accuracy, the root mean square error (RMSE) index was applied. The computed accuracy is 2.0172 m. To apply the determined geoid model in the study area, as well as improving on the computed accuracy, the model was fitted to the gravimetric-geometric geoid model of the study area. The fitting result shows that geoid heights can be computed using the determined geoid model with an accuracy of 1.1041 m in the study area.

Keyword: fitting, gravimetric-geometric, geoid, model, transformation

INTRODUCTION
The geoid is an equipotential sea surface that is extended through the land. It is a surface adopted as a reference for the vertical coordinate system. The local geoid model of Nigeria has not been determined. As a result, different local geoid models have been established in various parts of the country. The local geoid model of Benin City was determined with the gravimetric-geometric method, which involves the combination of gravimetrically and geometrically obtained data. The transformation of the global geoid model to local has been proposed by Okeke and Nnam (2017) for the determination of the local geoid model of Nigeria. The method has to do with the transformation of the geoid heights from the global geopotential model such as EGM 08 to local geoid heights using the transformation model given by Kotsakis (2008). The proposed method has been tested by Okeke and Nnam (2017) using the geoid heights from EGM 08 in part of the Federal Capital Territory, Abuja and accuracy of 0.14 cm was obtained. To verify the consistency of the accuracy of the proposed method in other parts of the country, it was applied and compared with the local gravimetric-geometric geoid model of Benin City. The accuracy obtained was 2.0172 m. It is inconsistent with the one obtained by Okeke and Nnam (2017). To apply the proposed method geoid model in the study area for the computation of geoidal undulations, the accuracy of the model needs to be improved. This can be done by fitting the transformation geoid model to the local geoid model of the study area. As a result, this paper presents the fitting of a transformation geoid model to the gravimetric-geometric geoid model of Benin City.

The Study Area
According to Oduyebo et al. (2019), Benin City is the capital of Edo State in Southern Nigeria. It is a City approximately 40 kilometres north of the Benin River. The City is also linked by roads to Asaba, Sapele, Siluko, Okene, and Ubaja and is served by air and the Niger River delta ports of Koko and Sapele (Oduyebo et al., 2019). The City is made up of three Local Government Areas, Oredo LGA, Ikpoba Okha LGA and Egor LGA. It has a total population of 1,782,000 according to the 2021 NPC projection. It covers a total area of about 1,204 km². Benin City is bounded by UTM zone 31 coordinates 660000 mN and 712500 mN, and 770000 mE and 815000 mE (Oduyebo et al., 2019). Figures 1 and 2 show the maps of the study area.
Kotsakis Model for Transformation of Global Geoid Height to Local

The model for the transformation of global geoid heights to local as given by Kotsakis (2008) is

\[N' - N = \delta N(t_x) + \delta N(t_y) + \delta N(t_z) + \delta N(\varepsilon_x) + \delta N(\varepsilon_y) + \delta N(\varepsilon_z) + \delta N(\delta r) + \delta N(\delta a) + \delta N(\delta f) \]

Where,

\[\delta N(t_x) = t_x \cos \varphi \cos \lambda \]
\[\delta N(t_y) = t_y \cos \varphi \sin \lambda \]
\[\delta N(t_z) = t_z \sin \varphi \]
\[\delta N(\varepsilon_x) = -\varepsilon_x Ne^2 \sin \varphi \cos \varphi \sin \lambda \]
\[\delta N(\varepsilon_y) = \varepsilon_y Ne^2 \sin \varphi \cos \varphi \cos \lambda \]
\[\delta N(\delta r) = (aW + N)\delta s \]
\[\delta N(\delta a) = -W\delta a \]
\[\delta N(\delta f) = a(1-f) \sin^2 \varphi \delta \tilde{f} / W \]
\[W = \sqrt{1-e^2 \sin^2 \varphi} \]

N in equations (5) and (6) is the radius of curvature in prime vertical and it is given by Eteje et al. (2019) as

\[N = \frac{a}{\sqrt{1-e^2 \sin^2 \varphi}} \]

The quantities \(\delta a = a' - a\) and \(\delta f = f' - f\) correspond to the difference in the numerical values for the semi-major axis and the flattening of the reference ellipsoid, as these are used in the respective reference frames, GRF1 and GRF2 (Kotsakis, 2008).

Transformation Parameters between WGS 84 and Minna Datums

The transformation parameters from WGS 84 to Minna datum as given by Okeke (2014) and Okeke et al (2017) are:

Transformation Parameters from WGS 84 to Minna Datum

\[Tx=93.809786\ m\pm0.375857310\ m \]
\[Ty=89.748672\ m\pm0.375857310\ m \]
\[Tz=-118.83766\ m\pm0.375857310\ m \]
\[\alpha=0.000010827829\pm0.0000010311322 \]
\[\beta=0.0000018504213\pm0.0000015709539 \]
\[\gamma=0.0000021194542\pm0.0000013005997 \]
\[S=0.99999393\pm0.0000010048219 \]
Properties of the WGS 84 and Clarke 1880 Ellipsoids

The equatorial radius \((a)\) and the flattening \((f)\) of the WGS 84 and the Clarke 1880 ellipsoids are respectively 6378137 m and \(1/298.257223563\), and 6378249.145 m and 1/293.465 (Eteje et al., 2019).

Global Earth Gravimetical Models

According to Idrizi (2013), in the absence of local/state gravimetric networks, geodetic practice often uses global Earth Gravimetric Models, which includes data for the entire area of the world. Idrizi (2013) further stated that, to date, the National Geospatial-Intelligence Agency (NGA) has established three global Earth gravimetric models in the years 1984, 1996 and 2008, recognized as EGM84, EGM96 and EGM08. The Geosciences Division in the Office of Geomatics at NGA is responsible for collecting, processing, and evaluating gravity data (free-air and Bouguer gravity anomalies). These data are then used to compute gravimetric quantities such as mean gravity anomalies, geoid heights, deflections of the vertical, and gravity disturbances. All of these quantities are used in World Geodetic System 1984 support, navigation systems, mapping projects, and different types of surveys (Idrizi, 2013).

The Earth’s Gravitational Model (EGM) derived geoidal undulations, \(N_{GGM}\) (Long and Medium Wavelength) is mathematically expressed as (Odumosu et al., 2016):

\[
N_{GGM} = \frac{GM}{R^2} \sum_{n=2}^{\infty} \frac{a^n}{r} \sum_{m=2}^{n} \left[S_{nm} \sin m\lambda + C_{nm} \cos m\lambda \right] P_{nm} \cos \phi
\]

(12)

Where,

- \(GM\) = Gravity Mass Constant of GEM
- \(\gamma\) = Normal Gravity
- \(a\) = Equatorial Scale Factor of GEM
- \(r, \theta, \phi\) = Geocentric Radius, Spherical Co-latitude and Longitude of Computation Point.
- \(P_{nm}\) = Fully – Normalized Legendre Function
- \(C_{nm}, S_{nm}\) = Fully – Normalised Coefficients of GEM

Computation of Root Mean Square Error (RMSE)

The fitting of a new local geoid model to an existing local geoid model requires the computation of the RMSE of the model to obtain its accuracy. The computation of the RMSE of the fitted geoid model is done by comparing the geoid heights of points from the existing and the new geoid models to obtain the residuals. The computed residuals and the total number of points are used for the computation of the RMSE of the fitted geoid model. The model for the computation of RMSE as given by Oduyebo et al. (2019) is

\[
RMSE = \pm \sqrt{\frac{V^2 V}{n}}
\]

(13)

Where,

- \(V = N_{Existing} - N_{New}\) (Residual)
- \(N_{Existing}\) = Geoid Height from Existing Geoid Model
- \(N_{New}\) = Geoid Height from New Geoid Model
- \(n\) = Number of Points

Gravimetric-Geometric Geoid Model of Benin City

The gravimetric-geometric geoid model of Benin City was determined using the combination of the gravimetrically and geometrically obtained data. The realization, as well as the determination of the model, is detailed in Oduyebo et al. (2019). In Oduyebo et al. (2019), three gravimetric-geometric geoid models were determined and the one with the highest accuracy (third-degree gravimetric-geometric geoid model with RMSE of 0.6746 m among the three models was recommended for application in Benin City.

METHODOLOGY

Data Acquisition

The transformation local geoid model was determined with a total of 49 points (See Figure 3). The positions and the ellipsoidal heights of the points were obtained by carrying out a GNSS observation in relative mode (See Figures 4 and 5). The observation was done using CHC 900 dual-frequency GNSS receivers. The observed points were the same as the ones used when the local gravimetric-geometric geoid model of the study area was determined.
Data Processing

The GNSS observations were respectively downloaded and processed with HcLoader and Compass post-processing software (See Figure 6). Since the adopted method involved the transformation of a global dataset to local, the geographic coordinates of the points were processed in the WGS 84 datum. The global positions of the points were used to obtain the global geoid heights of the points from EGM 08 using the GeoidEval online software, as well as equation (12) (See Figure 7).

The local geoid heights of the points were computed with the properties of the WGS 84 and the Clarke 1880 ellipsoids, the transformation parameters, the global geographic coordinates and the EGM 08 geoid heights of the points using the transformation method, as well as equation (1). The computation was done using a Microsoft Excel program developed in the study (See Figure 8).
RESULTS PRESENTATION AND ANALYSIS
Comparison of the Gravimetric-Geometric and the Transformation Method Geoid Heights
Table 1 presents the mean of the differences between the local gravimetric-geometric and the transformation method models geoid heights, the RMS errors, as well as the accuracy of the transformation geoid model, the existing gravimetric-geometric geoid model and that of the transformation geoid model when it was applied in part of the Federal Capital Territory (FCT), Abuja. It was done to present the accuracy of the transformation geoid model in the study area and when it was applied in part of the FCT, Abuja. Also, to present the accuracy of the gravimetric-geometric geoid model and the mean deviation of the transformation method local geoid model from the existing gravimetric-geometric geoid model of the study area. From Table 1, it can be seen that the mean of the differences between the geoid heights from the transformation geoid model and the gravimetric-geometric geoid model is 1.6882 m. This implies that the transformation method geoid model of the study area deviated with an average value of 1.6882 m from the existing local gravimetric-geometric geoid model of the study area. Also from Table 1, the RMS error, as well as the accuracy of the transformation geoid model is 2.0172 m which implies that geoid heights can be computed with an accuracy of 2.0172 m applying the model in the study area. Again from table 1, the RMS errors of the transformation geoid model as obtained by Okeke and Nnam (2017) and that of the gravimetric-geometric geoid models are respectively 0.0014 m and 0.675 m. These also show the high accuracy of the two geoid models. Comparing the obtained accuracy of the transformation geoid model in the study area (2.0172 m) with that obtained by Okeke and Nnam (2017) (0.0014 m) when the model was applied in part of the FCT, Abuja, shows the inconsistency of the accuracy of the method. It implies that the method cannot be used for the determination of the local geoid model of Nigeria.

Fitting of the Transformation Geoid Model to the Gravimetric-Geometric Geoid Model
Table 2 presents the fitting of the transformation geoid model to the gravimetric-geometric geoid model. It was done to improve on the accuracy of the transformation geoid model of the study area. The improvement of the accuracy of the transformation geoid model was necessary to enable its application in the study area. The fitting was carried out by finding the mean (1.6882 m) of the differences between the gravimetric-geometric model geoid heights of the points given in Table 2 and their respective geoid heights from the transformation geoid model of the study area. Subsequently, the mean was added to the transformation model geoid heights to fit the transformation geoid model to the gravimetric-geometric geoid model. Having fitted the transformation geoid model to the gravimetric-geometric geoid model, the two models geoid heights were compared to obtain the improved accuracy, as well as the RMS error of the transformation geoid model as given in Table 2. From Table 2, it can be seen that the improved accuracy of the transformation geoid model of the study area is 1.1041 m.
This implies that geoid heights can be obtained in the study area using the fitted geoid model with an accuracy of 1.1041 m. Comparing this accuracy of the transformation geoid model with its accuracy before fitting given in Table 1 (2.0172 m) shows an improvement in the accuracy of the model. It can also be seen from Table 2 that the mean of the differences between the transformation and the gravimetric-geometric models' geoid heights is 1.6882 m. It shows that to achieve the accuracy of 1.1041 m for the transformation geoid model, 1.6882 m will be added to any geoid height computed with the transformation geoid model.

Table 2: Fitting of the Transformation Geoid Model to the Gravimetric-geometric Geoid Model

Point	Gravimetric-Geometric Geoid Heights (A) (m)	Transformed EGM08 Geoid Heights (B) (m)	Difference between A & B (m)	Difference between A & B Squared (P) (m²)
XSU92	2.086	2.0062	0.0798	0.0064
RR01	2.420	2.0506	0.3694	0.1365
SR01	1.588	1.8545	-0.2665	0.0710
SR02	1.978	1.7693	0.2087	0.0436
SR04	2.520	1.5919	0.9281	0.8613
SR05	2.802	1.4037	1.3983	1.9553
SR06	3.266	1.3533	1.9127	3.6585
XSU100	2.098	1.7326	0.3654	0.1335
AR01	0.685	2.0281	-1.3431	1.8039
AR02	0.720	1.9957	-1.2757	1.6274
AR03	1.436	1.9028	-0.4668	0.2179
AR04	1.439	1.8814	-0.4424	0.1957
UU01	4.658	2.6468	2.0112	4.0448
UU02	3.498	2.5054	0.9926	0.9853
UU03	1.981	2.3292	-0.3482	0.1212
UU04	1.276	2.2037	-0.9277	0.8607
UU05	1.346	2.1262	-0.7802	0.6087
UU06	1.489	2.0379	-0.5489	0.3013
UU07	1.329	1.9859	-0.6569	0.4315
UU08	1.263	1.9617	-0.6987	0.4882
AD01	2.986	2.1107	0.8753	0.7662
AD02	4.019	2.1413	1.8777	3.5256
AD03	4.420	2.1603	2.2597	5.1062
AK01	1.376	2.0867	-0.7107	0.5051
AK02	1.473	2.1092	-0.6362	0.4048
AK03	2.252	2.0958	0.1562	0.0244
AK04	3.101	2.0511	1.0499	1.1022
AK05	3.954	2.0023	1.9517	3.8090
MR01	1.300	2.1192	-0.8192	0.6711
MR02	1.488	2.1855	-0.6975	0.4864
MR03	1.614	2.2479	-0.6339	0.4018
MR04	4.037	2.2508	1.7862	3.1905
MR05	4.313	2.2046	2.1084	4.4455
SK01	1.500	1.9675	-0.4675	0.2185
SK02	2.035	1.8748	0.1602	0.0257
SK03	2.379	1.7966	0.5824	0.3392
CONCLUSION

In conclusion, the study has fitted a transformation geoid model to the gravimetric-geometric geoid model of Benin City. The obtained results showed that the transformation geoid model deviated from the gravimetric-geometric geoid model of the study area with a mean value of 1.6882 m. The study also obtained the accuracy of the transformation geoid model before fitting as 2.0172 m. The computed results of the fitted geoid model showed that geoid heights can be obtained using the model with an accuracy of 1.1041 m in the study area.

REFERENCES

Eteje, S. O., Oduyebo, O. F. and Oluyori, P. D. (2019). Procedure for Coordinates Conversion between NTM and UTM Systems in Minna Datum Using AllTrans and Columbus Software. International Journal of Scientific Research in Science and Technology, 6(5), 128-143. DOI: https://doi.org/10.3262/IJSRST196517.

Idrizi, B. M. (2013). Developing Model for Utilization of Global Earth Gravimetrical Models in Macedonian Territory. TS02B - National Geodesy and Geospatial Infrastructure. FIG Working Week 2013, Abuja, Nigeria.

Kotsakis, C. (2008). Transforming Ellipsoidal Heights and Geoid Undulations between Different Geodetic Reference Frames. Journal of Geodesy, 82(4) 249-260.

Odumosu, J. O., Kelly, K. M., Omogunloye, O. G., Adejare, Q. A., Adeleke, O. O. and Olaniyi, A. M. (2016). Empirical Geoid Modelling Using Classical Gravimetric Method. FIG Working Week, Christchurch, New Zealand.

Oduyebo, O. F., Ono M. N. and Eteje, S. O. (2019). Comparison of Three Gravimetric-Geometric Geoid Models for Best Local Geoid Model of Benin City, Nigeria. International Journal of Advanced Engineering Research and Science (IJAERS), 6(6), 261-272. DOI: https://dx.doi.org/10.22161/ijaers.612.23.

Oduyebo, O. F., Ono M. N. and Eteje, S. O. (2019). Practical Local Geoid Modelling of Benin City, Nigeria from Gravimetric Observations Using the Modified Stokes Integral. International Journal of Advanced Engineering, Management and Science (IJAEMS), 5 (12), 608-617. DOI: https://dx.doi.org/10.22161/iijaems.512.1.

Okeke, F. I. (2014). Assessment of the Capabilities of the National Transformation Version 2 (Ntv2) Model for the Nigerian Datum Transformation. National Union of Planetary and Radio Sciences (NUPRS) Conference.

Okeke, F. I. and Nnam, V. (2017). Local Geoid Determination for Nigeria by the Transformation of Global Geoid Model. Nigerian Journal of Geodesy, 1 (1), 147-157.

Okeke, F. I., Moka E. C., Uzodinma, V. N. and Ono, M. N. (2017). The Determination of Datum Transformation Parameters for Nigeria. Nigerian Journal of Geodesy, 1 (1), 49-64.