Research Article

The Influences of CuO/ZnO Ratios on the Crystallization Characteristics Electrical and Magnetic Properties of Cu$_x$Zn$_{1-x}$O Powders

Kuan-Jen Chen, 1 Fei-Yi Hung, 2 Truan-Sheng Lui, 2 Cheng-Hung Chen, 2 and Sheng-Po Chang 3

1 The Instrument Center, National Cheng Kung University, Tainan 70101, Taiwan
2 Department of Materials Science and Engineering, Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
3 Institute of Microelectronics and Department of Electrical Engineering, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan

Correspondence should be addressed to Fei-Yi Hung; fyhung@mail.ncku.edu.tw

Received 18 October 2012; Accepted 18 January 2013

Copyright © 2013 Kuan-Jen Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study synthesizes Cu$_x$Zn$_{1-x}$O powders using an aqueous solution method. The Cu$_x$Zn$_{1-x}$O powders with different content ratios of CuO and ZnO (CuO:ZnO = 1:2, 1:1, and 2:1) were formed. The crystalline characteristics and electrical and magnetic properties depended primarily on the mixing effect and oxygenation. The electrical resistance of Cu$_{0.5}$Zn$_{0.5}$O ($1.5 \times 10^5 \Omega/\square$) powder was lower than that of CuO ($5.82 \times 10^5 \Omega/\square$) powder after ZnO mixing in CuO. This reduction was attributed to the substitution of Cu$^+$ ions at Zn$^{2+}$ sites or the formation of electron trapping defect centers. The concentration ratio of CuO phase in Cu$_x$Zn$_{1-x}$O powder mainly dominated the electrical resistance. The Cu$_x$Zn$_{1-x}$O has a diluted ferromagnetism (DFM) and paramagnetism (PM). The electrical resistance of Cu$_x$Zn$_{1-x}$O decreased; the magnetic behavior increased instead. This study also analyzes the chemical binding of Cu$_{0.5}$Zn$_{0.5}$O powders to confirm the contribution of Cu$^+$ ions to the electrical and magnetic properties.

1. Introduction

Metal oxide nanostructures, such as ZnO [1], CuO [2, 3], SnO$_2$ [4], In$_2$O$_3$ [5], and TiO$_2$ [6], have attracted extensive attention for their optical, electrical, and magnetic properties. They are widely applied in various optoelectronic devices, such as photocatalysts [7], solar cells [8], photodiodes [9], and humidity sensors [10].

Recent reports on CuO-ZnO compound and CuO/ZnO heterojunction structures show the need for efficient characteristics [11, 12]. A few Cu dopants (<10 at.%) doped ZnO samples have been investigated [13, 14]. However, the effects of the higher Cu doping contents (>10 at.%) on electrical properties and magnetic behavior of ZnO were rarely reported. Thus, the electrical properties that dominate devices performance and the influences of higher dopant level on the electrical resistance of Cu$_x$Zn$_{1-x}$O are topics worthy of further research. In addition, ZnO-diluted magnetic semiconductor (DMS) can enhance its magnetic behavior by Cu doping [15]. The influences of high CuO concentration on magnetic properties of ZnO are not clear.

The study uses an aqueous solution method to synthesize CuO and Cu$_x$Zn$_{1-x}$O powders. Specifically, this study examines the effects of high ZnO content mixed with CuO on the structural, electrical, and magnetic properties of Cu$_x$Zn$_{1-x}$O powders. The relation of electrical resistance and...
magnetic properties for Cu\textsubscript{x}Zn\textsubscript{1−x}O powders was carried out to understand the influences of CuO mixing effects and clarify the contribution of CuO and Cu\textsubscript{2}O phase.

2. Experimental Procedures

The experiments in this study synthesized the CuO powder using an aqueous solution. To acquire the CuO powder, 0.25 M copper acetate [Cu(CH\textsubscript{3}COO)]\textsubscript{2} was synthesized in deionized water. The precursor solution was uniformly stirred at 80°C for 1 h and then dried at 120°C in an oven to evaporate the solvent. The resulting powder was then analyzed by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) to determine the thermal properties of fabricated CuO nanoparticles. The DSC and TGA results indicate that CuO powder could be obtained after thermal annealing in a furnace for 1 h. For Cu\textsubscript{x}Zn\textsubscript{1−x}O powders, the copper acetate and the zinc acetate were mixed with different ratios (CuO:ZnO = 1:2, 1:1 and 2:1) and the molar ratio of zinc acetate to citric acid (C\textsubscript{6}H\textsubscript{8}O\textsubscript{7}) was 2.

The Cu\textsubscript{x}Zn\textsubscript{1−x}O powders were then designed according to the concentration ratio of CuO and ZnO as Cu\textsubscript{0.3}Zn\textsubscript{0.7}O, Cu\textsubscript{0.5}Zn\textsubscript{0.5}O, and Cu\textsubscript{0.67}Zn\textsubscript{0.3}O.

This study investigates the structural characteristics of powders using X-ray diffraction (XRD, Siemens/D5000) and scanning electron microscopy (SEM, Hitachi/S-4100). To understand the contribution of CuO on the electrical and magnetic characteristics of Cu\textsubscript{x}Zn\textsubscript{1−x}O powders, a semiconductor parameter analyzer (Agilent/4155-B) and superconducting quantum interference device vibrating sample magnetometer (SQUID VSM) were used, respectively. The composition and chemical bonding of the crystallization were analyzed using an electron spectroscopy for chemical analysis (ESCA, PHI 5000 VersaProbe).

3. Results and Discussions

This study uses DSC and TGA analysis to determine the crystallization conditions of CuO precursors (Figure 1). The
specimens were heated from room temperature to 1000°C at a rate of 10°C/min in air. The TGA data reveals a sharp weight loss in the powder at 270°C because of the evaporation of water and organics [16]. This result is consistent with the DSC curve, which shows an exothermic peak at 280°C. An endothermic peak appears at 480°C and the powder weight (TGA curve) gradually increases and then stabilizes as the temperature exceeds 500°C. The main reason is that the CuO crystallization gradually forms with increasing temperature [17]. Based on these reasons, the CuO powder was annealed at 500°C to estimate the CuO crystallization.

Figure 2(a) shows the XRD patterns of as-grown CuO precursors and CuO powder annealed at 500°C for 1h. Both samples were polycrystalline and had a monoclinic structure. An additional diffraction peak of (CH₃COO)₂Cu appeared in as-grown CuO precursors, indicating that a drying temperature of 120°C was insufficient for its evaporation. After thermal annealing at 500°C, the Cu(CH₃COO)₂ phase disappeared and the (111) diffraction peak dominated the CuO crystallization. The intensity of the major diffraction peaks increased, indicating that the sufficient thermal energy improved CuO crystallization. Based on the Scherrer formula [16], the grain size of CuO nanoparticles can be estimated from the full width at half-maximum (FWHM) of the (111) diffraction peak. The average grain size of CuO powder increased from 8 nm to 21 nm after thermal annealing at 500°C. This result is associated with the grains growing more easily under the higher temperature [16]. The ZnO powder was also synthesized and compared to CuₓZn_{1−x}O powder. XRD analysis of CuₓZn_{1−x}O (x = 0, 0.33, 0.5, 0.67, and 1) powders were conducted to analyze the effects of ZnO on CuₓZn_{1−x}O crystallization (Figure 2(b)). A small amount of ZnO mixing with CuO (CuₓZn_{1−x}O, x = 0.67), the monoclinic structure of CuO dominated the CuₓZn_{1−x}O crystallization, and ZnO phases existed in the CuₓZn_{1−x}O matrix. With increasing the ZnO concentration in CuₓZn_{1−x}O (x value increase from 0.67 to 0.33), the (101) diffraction peak of ZnO was the preferred orientation which indicated that the ZnO phases dominated the CuₓZn_{1−x}O crystallization. A comparison of the CuO revealed that the diffraction peak of (111) for Cu_{0.67}Zn_{0.33}O shifted to higher degree. In contrast, the diffraction peak of (101) for Cu_{0.67}Zn_{0.33}O shifted to lower degree comparing with ZnO. These results are associated with compressive strain in the crystallization [4]. In addition, the related (220) diffraction peak of the CuO phase was attributed to insufficient oxidation [2]. Notably, the (200) diffraction peak of CuO phase did not appear in Cu_{0.5}Zn_{0.5}O crystallization, indicating that the compositional ratio of CuO phase was less than other CuₓZn_{1−x}O (x = 0.33 and 0.67) powders. This result should affect the electrical properties of CuₓZn_{1−x}O powders.

Figure 3 shows SEM images of CuₓZn_{1−x}O (x = 0.33, 0.5, and 0.67) powders at an annealing temperature of 500°C. All powders displayed a particle-like structure, and the agglomeration of particles was randomly distributed. The morphology of Cu_{0.5}Zn_{0.5}O powder shows an irregular and its size for the agglomeration of particles is larger than that of Cu_{0.67}Zn_{0.33}O and Cu_{0.33}Zn_{0.67}O powders. The electrical properties of powder might be influenced by the particle size [18], therefore, the electrical resistance were examined.

Electrical measurements were conducted to determine the resistance value of CuO powder. The CuO powder was
pressed to form ingots (Φ 10 mm/~2 mm thick) at a pressure of 30 kg/cm² for 30 s before measuring their resistivity (Table 1). After annealing at 500°C, the resistivity of the CuO sample decreased from $8.6 \times 10^{11} \Omega \cdot \text{cm}$ to $2.3 \times 10^6 \Omega \cdot \text{cm}$. After CuO mixing with ZnO, the electrical resistance of the Cu$_{0.67}$Zn$_{0.33}$O and Cu$_{0.33}$Zn$_{0.67}$O samples was higher than that of CuO. This increment of the electrical resistance may be attributed to the substitution of Cu$^+$ ions at Zn$^{2+}$ sites or the formation of electron trapping defect centers [19]. It is noted that the electrical resistance of Cu$_{0.5}$Zn$_{0.5}$O sample ($1.5 \times 10^5 \Omega \cdot \text{cm}$) decreased instead comparing with CuO sample. This result indicates that the ratio of the CuO phase to Cu$_2$O phase in Cu$_x$Zn$_{1-x}$O system decreased [20] and possessed a stable crystallization comparing with Cu$_{0.67}$Zn$_{0.33}$O and Cu$_{0.33}$Zn$_{0.67}$O samples.

Table 1: The relation of electrical resistances and magnetic properties for Cu$_x$Zn$_{1-x}$O ($x = 0, 0.33, 0.5, 0.67, \text{and} 1$) powders with different CuO/ZnO ratios.

Sample	Resistivity ($\Omega \cdot \text{cm}$)	Magnetism
Before annealing $x = 1$	8.6×10^{11}	—
Cu$_x$Zn$_{1-x}$O	2.3×10^6, AFM	
Annealed at 500°C $x = 0.67$	1.0×10^7	DFM + PM
	$x = 0.5$	DFM + PM
	$x = 0.33$	DFM + PM
	$x = 0$	DM

Figure 5: XPS spectra of Cu$_{0.5}$Zn$_{0.5}$O powder: (a) XPS spectrum of Cu$_{0.5}$Zn$_{0.5}$O powder fully scanned from 300 eV to 1200 eV, (b) high-resolution selective spectrum of O, (c) high-resolution selective spectrum of Cu, and (d) high-resolution selective spectrum of Zn.
resulted from the formation of CuO crystallization [21]. From XRD data (Figure 2(b)), the CuO phase dominated the Cu$_{0.5}$Zn$_{0.5}$O, Cu$_{0.67}$Zn$_{0.33}$O crystallization and affected their magnetic properties that were consistent with the result of M-H curves. In addition, the lower magnetization of Cu$_{0.5}$Zn$_{0.5}$O, Cu$_{0.67}$Zn$_{0.33}$O was also attributed to the secondary phase of Cu$_2$O [22]. The low-field region of the hysteresis loops of Cu$_{0.5}$Zn$_{0.5}$O powders was clearly observed (inset of Figure 4) which indicated that all Cu$_{0.5}$Zn$_{0.5}$O powders also contained a diluted ferromagnetism (DFM). The FM could be developed by the distortion of ZnO structure by the substitution of remnant Cu$^{2+}$ ions into ZnO lattice [22, 23]. It is found that the coercivity field of the Cu$_{0.33}$Zn$_{0.67}$O, Cu$_{0.5}$Zn$_{0.5}$O, and Cu$_{0.67}$Zn$_{0.33}$O powders is 75 Oe, 150 Oe, and 78 Oe, respectively. That is to say, the Cu$_{0.5}$Zn$_{0.5}$O powder has a good stability for thermal interference [24].

The chemical bonding of the Cu$_{0.5}$Zn$_{0.5}$O powder was examined by XPS with full region scanning from 0 eV to 1200 eV (Figure 5). In Figure 5(a), all peaks from oxygen, copper, zinc, and a trace of carbon are apparent, meaning that the Cu$_{0.5}$Zn$_{0.5}$O powder is substantially covered by Cu$^{2+}$, Zn$^{2+}$, and O$^{2-}$. The high-resolution scanning information provided in Figures 5(b)–5(d) is for the separate analysis of elements: O, Cu, and Zn, respectively. The high-resolution XPS spectrum of the O$_{1s}$ signal (Figure 5(b)) indicates that the binding energy of 530.3 eV can be attributed to oxidized ions in the CuO particles [25]. Multipeak Gaussian fitting shows another O$_{1s}$ peak located at 532.4 eV, indicating that this binding energy was dominated by Zn$^{2+}$ ion doping [23]. The high-resolution XPS spectrum of the Cu$_{2p3/2}$ mode (Figure 5(c)) appears at 932.3 eV, indicating the presence of Cu$^{2+}$ ion [2]. The binding energy of 952.3 eV (Cu$_{2p1/2}$ mode) can be attributed to Cu$^{+}$ ions in Cu$_{0.5}$Zn$_{0.5}$O that resulted from Cu$_2$O [26, 27]. This result is consistent with the observation of XRD data (Figure 3(b)). Figure 5(d) shows two strong peaks at 1021.5 eV and 1044.7 eV which correspond to Zn$_{2p3/2}$ and Zn$_{2p1/2}$, respectively. This is consistent with the Zn$^{2+}$ ion binding in previous reports [28]. Based on these results, the Zn$^{2+}$ ions were substituted by Cu$^{+}$ to form the Cu$_{0.5}$O phase that affects the electrical and magnetic properties.

The correlation of the magnetic properties and resistivity of Cu$_{0.5}$Zn$_{1−x}$O powders were summarized in Table 1. The magnetic property of pure CuO powder varied from antiferromagnetism (AFM) to paramagnetism (PM) when ZnO to CuO. The resistivity of Cu$_{0.5}$Zn$_{1−x}$O powders decreased; the values of the paramagnetic behavior decreased. These results indicate that the paramagnetic behavior in Cu$_{0.33}$Zn$_{0.67}$O powder is the highest. The lower carrier concentration may promote paramagnetic ordering in Cu$_{0.33}$Zn$_{0.67}$O [29].

4. Conclusions

The stability of oxide (CuO or Cu$_2$O) depends primarily on the intensity of oxidation (annealing temperature). When ZnO participated in the CuO system, the crystalline quality of CuO powder deteriorated. The ZnO mixing effect increased the crystallization size and induced a compressive stress in the particle. Although the presence of CuO phases deteriorated Cu$_{0.5}$Zn$_{0.5}$O crystallization, the electrical conductance was improved. A lower Cu$_2$O phase concentration and stable crystallization reduced the electrical resistance of Cu$_{0.5}$Zn$_{0.5}$O powder. The electrical resistance of Cu$_{0.5}$Zn$_{0.5}$O powder was the lowest and the magnetic behavior was the smallest because CuO and Cu$_2$O contents were higher. XPS analysis reveals that the Zn$^{2+}$ ions were substituted by Cu$^{+}$ and Cu$^{+}$ ions, forming CuO and Cu$_2$O phases that confirmed the contribution of Cu$_2$O on the electrical and magnetic properties.

Acknowledgments

The authors are grateful to the Instrument Center of National Cheng Kung University, the Center for Micro/Nano Science and Technology (D100-2700), and the National Science Council, Taiwan, for financially supporting this study under Grant nos. I01-2221-E-006-114 and NSC100-2622-E-006-030-CC3.

References

[1] B. Karthikeyan, T. Pandiyarajan, and K. Mangaiyarkarasi, “Optical properties of sol-gel synthesized calcium doped ZnO nanostructures,” Spectrochimica Acta A, vol. 82, pp. 97–101, 2011.

[2] H. Qin, Z. Zhang, X. Liu, Y. Zhang, and J. Hu, “Room-temperature ferromagnetism in CuO sol-gel powders and films,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 14, pp. 1994–1998, 2010.

[3] C. W. Zou, J. Wang, F. Liang, W. Xie, L. X. Shao, and D. J. Fu, “Large-area aligned CuO nanowires arrays: synthesis, anomalous ferromagnetic and CO gas sensing properties,” Current Applied Physics, vol. 12, pp. 1349–1354, 2012.

[4] J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, “Large-scale synthesis of SnO$_2$ nanotube arrays as high-performance anode materials of Li-ion batteries,” Journal of Physical Chemistry C, vol. 115, no. 22, pp. 11302–11305, 2011.

[5] H. G. Na, D. S. Kwak, H. W. Kim, and H. W., “Structural, Raman, and photoluminescence properties of double-shelled coaxial nanocables of In$_2$O$_3$ core with ZnO and AZO shells,” Crystal Research and Technology, vol. 47, pp. 79–86, 2012.

[6] L. C. Chen, C. M. Huang, C. S. Gao, G. W. Wang, and M. C. Hsiao, “A comparative study of the effects of In(2)O(3) and SnO(2) modification on the photocatalytic activity and characteristics of TiO(2),” Chemical Engineering Journal, vol. 175, pp. 49–55, 2011.

[7] J. P. Li, F. Q. Sun, K. Y. Gu et al., “Preparation of spindly CuO micro-particles for photodegradation of dye pollutants under a halogen tungsten lamp,” Applied Catalysis A, vol. 406, pp. 51–58, 2011.

[8] R. Motoyoshi, T. Oku, H. Kidowaki et al., “Structure and photovoltaic activity of cupric oxide-based thin film solar cells,” Journal of the Ceramic Society of Japan, vol. 118, no. 1383, pp. 1021–1023, 2010.

[9] H. T. Hsueh, S. J. Chang, W. Y. Weng et al., “Fabrication and characterization of coaxial p-copper oxide/n-ZnO nanowire photodiodes,” IEEE Transactions on Nanotechnology, vol. 11, pp. 127–133, 2012.

[10] H. T. Hsueh, T. J. Hsueh, S. J. Chang et al., “CuO nanowire-based humidity sensors prepared on glass substrate,” Sensors and Actuators B, vol. 156, no. 2, pp. 906–911, 2011.
[11] J. X. Wang, X. W. Sun, Y. Yang et al., “Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties,” Nanotechnology, vol. 22, no. 32, Article ID 325704, 2011.

[12] C. S. Dandeneau, Y. H. Jeon, T. K. Shelton, D. P. Cann, and B. J. Gibbons, “Thin film chemical sensors based on p–CuO/n–ZnO heterocontacts,” Thin Solid Films, vol. 517, no. 15, pp. 4448–4454, 2009.

[13] T. Ghosh, M. Dutta, S. Mridha, and D. Basak, “Effect of Cu doping in the structural, electrical, optical, and optoelectronic properties of sol-gel ZnO thin films,” Journal of the Electrochemical Society, vol. 156, no. 4, pp. H285–H289, 2009.

[14] K. J. Chen, T. H. Fang, F. Y. Hung et al., “The crystallization and physical properties of Al-doped ZnO nanoparticles,” Applied Surface Science, vol. 254, no. 18, pp. 5791–5795, 2008.

[15] J. V. Bellini, M. R. Morelli, and R. H. G. A. Kiminami, “Ceramic system based on ZnO · CuO obtained by freeze-drying,” Materials Letters, vol. 57, no. 24–25, pp. 3775–3778, 2003.

[16] C. Karunakaran, V. Rajeswari, and P. Gomathisankar, “Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO,” Solid State Sciences, vol. 13, no. 5, pp. 923–928, 2011.

[17] O. Perales-Perez, A. Parra-Palomino, R. Singhal et al., “Evidence of ferromagnetism in Zn$_{1-x}$M$_x$O (M = Ni,Cu) nanocrystals for spintronics,” Nanotechnology, vol. 18, no. 31, Article ID 315606, 2007.

[18] X. Chen, Z. Zhou, K. Wang et al., “Ferromagnetism in Fe-doped tetra-needle like ZnO whiskers,” Materials Research Bulletin, vol. 44, no. 4, pp. 799–802, 2009.

[19] R. Al-Gaashani, S. Radiman, N. Tabet, A. R. Daud, and Synthesis a,”nd optical properties of CuO nanostructures obtained via a novel thermal decomposition method,” Journal of Alloys and Compounds, vol. 509, pp. 8761–8769, 2011.

[20] L. Li, J. G. Lei, and T. H. Ji, “Facile fabrication of p–n heterojunctions for Cu(2)O submicroparticles deposited on anatase TiO(2) nanobelts,” Materials Research Bulletin, vol. 46, pp. 2084–2089, 2011.

[21] H. Kim, B. K. Lee, K. S. An, and S. Ju, “Direct growth of oxide nanowires on CuO(x) thin film,” Nanotechnology, vol. 23, no. 4, Article ID 830474, 2012.
