Gold deposits in Chile

José Cabello

Mineralium Consulting Group, Escritor Manuel Rojas 1699-D, La Reina, Santiago, Chile.
cabello.lechuga@vtr.net

ABSTRACT. A review of gold and gold bearing base metals deposits in Chile, indicate the existence of at least six different type of ore deposits, most largely formed during the Cenozoic with predominance in the Miocene. Mesozoic deposits are common but less relevant regarding their size and gold content. These hydrothermal ore deposits are genetically associated with subduction related Andean arc magmatism. Due to its relationship with episodic magmatism migrating eastward, there is a tendency for the deposits to be in distinct, north-south trending, belts with a progressive west to east decrease in mineralization age. After analysing 82 cases in total, main gold concentration can be assigned to high-sulfidation epithermal and porphyry type deposits. Low-sulfidation epithermal, IOCG and mesothermal type deposits appear as less relevant. Gold bearing copper deposits constitute an important part of Chile’s total gold production. Both IOCG type but especially porphyry copper deposits are and will remain as a substantial source to supplement the future output of the gold in the country. The 82 deposits with their tonnage and grade studied, represent a total gold content of 11,662 t equivalent to 375 Moz, excluding past production for those exploited. A number of probable gold bearing base metals high tonnage deposits (IOCG and porphyry copper) do not include their gold content in public format, hence the number delivered could be estimated conservative. Methodical geochronological, ore types and zonation studies are required to better appreciate this metallogenic setting widening current understanding and future exploration results.

Keywords: Andean magmatism, Gold deposits belts, Ore deposit type, Tonnage and grade.

RESUMEN. Yacimientos de oro en Chile. Una revisión de yacimientos de oro y de metales básicos con oro, indican la existencia de por lo menos seis diferentes tipos de yacimientos, mayormente formados durante el Cenozoico con predominancia en el Mioceno. Los depósitos de edad mesozoica son de ocurrencia frecuente, pero menos relevantes en cuanto a tamaño y contenido de oro. Estos yacimientos hidrotermales están genéticamente vinculados con arcos magmáticos andinos, de orientación norte-sur, asociados a subducción. Debido a su relación con un magmatismo episódico migrante hacia el este, los yacimientos presentan una tendencia a distribuirse en diferentes franjas de orientación meridional, con una progresiva disminución de la edad de la mineralización hacia el este. Del análisis de un total de 82 yacimientos, la principal concentración de oro puede asignarse a depósitos tipo epithermal de alta sulfuración, pórfidos auríferos y pórfidos de cobre. Los yacimientos tipo epithermal de baja sulfuración, IOCG y mesotermal aparecen como menos importantes. Yacimientos cupríferos con mineralización aurífera subordinada constituyen una importante parte del total de la producción de oro en Chile. Los yacimientos tipo IOCG, y sobre todo los pórfidos cupríferos son y permanecerán como importantes recursos para contribuir a la futura producción de oro en el país. Los 82 depósitos con tonelaje y ley estudiados, representan un total de 11.662 t de oro contenido equivalente a 375 Millones de onzas excluyendo la producción pasada para los yacimientos que han sido explotados. Sin embargo, un número importante de yacimientos con gran tonelaje de metales básicos con oro subordinado (IOCG y pórfidos cupríferos) no publican su contenido de oro, por lo que las cifras acá entregadas podrían ser consideradas conservadoras. Estudios sistemáticos de geochronología, tipos de yacimientos y zonación, son necesarios para ampliar su entendimiento metalogénico, así como futuros resultados en exploración.

Palabras clave: Magmatismo andino, Franjas de yacimientos de oro, Tipo de yacimiento, Tonnage and ley.
1. Introduction

Chile produced 38 tonnes of gold in 2019 making it the 21st most important gold miner in the world and the fifth in South America after Perú, Brazil, Argentina and Colombia (Sernageomin, 2020). Annual production should increase further as a result of proposed new developments at the Pascua and Cerro Casale projects where annual productions of 20 t and 7.7 t respectively have been projected.

Even if gold production exists from pre-Hispanic times, recognition of Chile as an important gold province (Fig. 1) is in part the result of exploration successes in the last five decades (Sillitoe, 1995, 2000, 2010; Cabello, 1999, 2002). Although in detail more complex, the geology of the Chilean Andes can be interpreted as a sequence of eastward migrating Mesozoic and Cenozoic magmatic arcs built over Paleozoic and Precambrian basement (Hervé et al., 2007). Hydrothermal gold deposits are more common in northern and central Chile (ca. 18°-34° S; Fig. 1) where they are closely related to several discrete magmatic arcs generated during Mesozoic to Miocene time. Gold deposits, in common with the magmatic arcs that contain them are progressively younger eastward (Davidson and Mpodozis, 1991). Several isotopic studies indicate a general trend of increasing crustal contamination throughout the Cenozoic arc evolution (Miller and Harris, 1989), but apparently there is no influence in the magmatism related to gold mineralization of the same age (Sillitoe, 1991).

The most important gold deposits are of epithermal and porphyry type (Table 1). Mesothermal, skarn, or stratabound are less prominent. Placer type gold deposits, common in central-southern Chile, realized important production from 1541 to the end of the sixteenth century (Cuadra and Dunkerley, 1991). Gold-bearing copper deposits have contributed an important component to Chile’s total gold production (today about 50%). IOCG type deposits and especially porphyry copper are and will remain significant sources of gold production (Table 2 and 3). All-important gold bearing base metals deposits are Mesozoic or Cenozoic in age (Maksaev et al., 2007).

This article intends to update the knowledge originated previously by different authors (Ruiz and Peebles, 1988; Camus, 1990; Sillitoe, 1991; Cabello, 1992; Kojima, 1999; Maksaev et al., 2007), including information about deposits that were less known or unknown in the previous century.

2. Geological setting

The Andes of Chile are the southernmost part of the Cordilleran igneous and tectonic region that is continuous along the western margins of the North and South American plates from Alaska to Chile (Davidson and Mpodozis, 1991; Charrier et al., 2007). This margin of South America has faced the Pacific Ocean throughout the Phanerozoic and has been a convergent plate margin since late Paleozoic.

The magmatic and tectonic evolution of the Chilean Andes has been the subject of several studies (e.g., Mpodozis and Ramos, 1990; Kay et al., 1999; Charrier et al., 2007; Parada et al., 2007). Although exceptionally broad and geologically complex, the Chilean sector of the Andes can be interpreted as a sequence eastward-migrating Mesozoic and Cenozoic magmatic arcs (Coira et al., 1982; Stern, 2004; Mpodozis and Cornejo, 2019), built over Paleozoic and Precambrian basement. These arcs were formed by active subduction of the oceanic plate beneath the South American plate at least since Paleozoic times. The pre-Jurassic basement is made up of a collage of discrete fragments of Precambrian to early Paleozoic allochthonous or displaced terranes belonging to the Gondwana Continent (e.g., Oliveros et al., 2020). Existing geologic provinces owe their distribution to segmentation of the subducted Nazca plate (Jordan et al., 1983; Tassara et al., 2006; Bloch et al., 2018).

An early Carboniferous magmatic arc appears to have been established over Precambrian and early Paleozoic rocks along the length of the Chilean Andes (Coloma et al., 2017). This arc was bounded by an accretionary prism oceanward and by a foreland sedimentary basin toward the continental interior (Willner et al., 2009; Deckart et al., 2014). Calc-alkaline, mantle-derived granitoids of late Carboniferous ages are well exposed in parts of central-northern Chile (Nasi et al., 1985; Charrier et al., 2014). A large Permian to Triassic silicic volcanic field and associated shallow-level plutons generated by crustal melting in an extensional setting overlies and intrudes the Carboniferous arc (Mpodozis and Kay, 1990; Ramos and Folguera, 2016).

In contrast to the Paleozoic, the Mesozoic-Cenozoic Andes lack evidence of major terrane collisions (Dalziel, 1986; Forsythe et al., 1987).
Fig. 1. Distribution of the main gold deposits and other important gold bearing ore deposits type in Chile.
TABLE 1. MAIN GOLD DEPOSITS IN CHILE.

Name	Deposit Type	Ore M Tons	Au gt	Ag gt	T Au	M Oz Au	Age	References
Choquelimpie	EpithAu HS	11.00	2.23	60	24.53	0.79	Miocene	Sillitoe, 1999
San Cristóbal	EpithAu LS	25.00	0.90	3	22.50	0.72	Paleocene-Eocene	Cabello, 2002
El Peñón	EpithAu LS	32.40	8.20	249	265.68	8.54	Paleocene-Eocene	Zuluaga, 2018
Guanaco	EpithAu HS	28.00	1.43	6	40.40	1.29	Paleocene-Eocene	Nat Res Holdings, 2013
Amancaya	EpithAu LS	1.40	7.90	73	11.06	0.36	Paleocene-Eocene	Yamana Gold, 2018
Salares Norte	EpithAu HS	26.80	3.90	48.9	104.52	3.36	Miocene	Brewer et al., 2017
El Hueso	EpithAu HS	16.00	1.68	2	26.88	0.86	Eocene-Oligocene	Cabello, 2002
Agua de la Falda Jerónimo	EpithAu HS	16.50	6.00	3	99.00	3.18	Eocene-Oligocene	Thompson et al., 2004
N Esperanza	EpithAu HS	39.40	0.39	66	15.37	0.49	Miocene	Kingsgate, 2016
Purén	EpithAu HS	17.00	0.90	278	15.30	0.49	Miocene	Arribas et al., 2005
La Coipa	EpithAu HS	88.00	0.80	84	70.40	2.26	Miocene	Cabello, 2002
Can Can	EpithAu HS	6.00	1.30	na	7.80	0.25	Miocene	Cabello, 2002
Cerro Maricunga	PorphAu	474.00	0.39	na	184.86	5.94	Miocene	Nat. Res. Holdings, 2013
Lobo Marte	PorphAu	311.00	0.98	na	304.78	9.80	Miocene	Nat. Res. Holdings, 2013
La Pepa	Porph Au-Epith Au HS	187.00	0.56	na	104.72	3.37	Miocene	Nat. Res. Holdings, 2013
Volcán	EpithAu HS	431.00	0.69	na	297.39	9.56	Miocene	Nat. Res. Holdings, 2013
Ojo de Agua	EpithAu HS	18.60	0.85	na	15.81	0.51	Miocene	Andina Minerals, 2012
Pantanillo	Porph Au-Epith Au HS	47.00	0.69	na	32.43	1.04	Miocene	Simon et al., 2010
Refugio-Maricunga	PorphAu	382.00	0.66	na	252.12	8.11	Miocene	Nat. Res. Holdings, 2013
Caspiche	PorphAu	1,602.00	0.48	1.14	768.96	24.72	Miocene	Goldcorp, 2017
Cerro Casale	PorphAu	1,990.00	0.51	1.44	1,014.90	32.63	Miocene	Goldcorp, 2017
Pascua	EpithAu HS	662.00	1.20	40	794.40	25.54	Miocene	Nat. Res. Holdings, 2013
El Indio	EpithAu HS	23.20	6.60	50	153.12	4.92	Miocene	Sillitoe, 1999
Tambo	EpithAu HS	37.00	4.10	na	151.70	4.88	Miocene	Cabello, 2002
Alturas	EpithAu HS	211.00	1.00	na	211.00	6.78	Miocene	Barrick, 2016
Andacollo Au	MesoAu	253.00	0.39	-	91.00	2.93	Cretaceous	Slater et al., 2012
Bronce de Petorca	EpithAu LS	7.60	4.60	14	34.96	1.12	Cretaceous	Camus, 2011
Pullalli	Stratabound	9.00	1.60	na	14.30	0.46	Cretaceous	Pegasus Gold Inc.,1997
Alhué	EpithAu LS	17.00	3.60	na	61.20	1.97	Cretaceous	Nat. Res. Holdings, 2013
Las Palmas	EpithAu LS	2.00	4.50	na	9.00	0.29	Cretaceous	Cabello, 2002
Cerro Bayo-Fachinal	EpithAu LS	5.90	3.30	170	19.47	0.63	Cretaceous	Poblete, 2011

Subtotal 5,227.00 168.03

The gold deposits considered are mainly Epithermal ore deposits of high sulfidation (Epithermal HS) and low sulfidation (Epithermal LS), porphyry gold type (Porphyry Au) and Mesothermal. Total resources in million tons (Mt) of ore, the ore grade in g/t for Au and Ag, the total Au contained in the deposits is in tons (t) and million ounces (Moz).
During Jurassic and early Cretaceous time, the Andean region was characterised by a series of magmatic arcs and back arc basins in a steep-angle subduction regime dominated by back-arc extension and subsidence (Mpodozis and Ramos, 1990; Ramos, 2010), resembling a Mariana-type tectonic setting (Oliveros et al., 2007). From the earliest Mesozoic, huge volumes of calc-alkaline volcanic rocks and related plutons were emplaced along a belt parallel to the present coastline in northern and central Chile. Magmatic rocks from this period represent a well-defined and exposed, linear magmatic arc built over late Paleozoic fore-arc assemblages (Díaz-Alvarado et al., 2019). The arc was bounded to the east by a system of ensialic back-arc basins filled with sediments or thick volcanoclastic successions (Ramos, 2010). A major middle Cretaceous tectonic break in the Andean evolution occurred between 100 and 88 Ma, with the inception of South Atlantic spreading and consequent increase in the westward velocity of the South American plate, a change from low-stress Mariana-type subduction to a compressive subduction system (Chilean type) was produced (Mpodozis and Ramos, 1990). This resulted in the closure and collapse of the back arc basins. From this time onward, the calc-alkaline magmatic arc remained as the major tectonic element but a calm in igneous activity occurred in the late Cretaceous (Coira et al., 1982; Charrier et al., 2007).

Intense calc-alkaline magmatism resumed in northern Chile during Paleocene to Eocene times (Charrier et al., 2015). Volcanic centres were displaced eastward with respect to the extinct Jurassic-Early Cretaceous magmatic arc located in the present Coast Range (Charrier et al., 2007). Magmatism ceased in the Eocene as a consequence of the Incaic deformation event, to be followed by a late Eocene-early Oligocene period of relative magmatic quiescence associated with strike-slip faulting (Herrera et al., 2017). A second period of Neogene magmatism began in the late Oligocene when the modern Andean arc was established in the Western Cordillera, even farther east (Jordan and Gardeweg, 1988; Stern, 2004).

TABLE 2. MAIN IRON OXIDES COPPER GOLD (IOCG) DEPOSITS IN CHILE.

Name	Deposit Type	Model	Ore Tons	Cu %	Au gt	T Au	M Oz Au	Age my	Age	References
Montecristo	IOCG	FeOxCuAu	15	1.60	0.600	9.00	0.29	164		Cretaceous
Santo Domingo	IOCG	FeOxCuAu	485	0.32	0.043	20.86	0.67			Sillitoe, 2003
Cerro Negro	IOCG	FeOxCuAu	249	0.40	0.150	37.35	1.20			Cretaceous
Diego de Almagro	IOCG	FeOxCuAu	70	0.65	0.050	3.50	0.11	120-100		Herrera et al., 2008
Manto Verde	IOCG	FeOxCuAu	440	0.56	0.120	52.80	1.70	128-117		Richards et al., 2016
Ojos del Salado	IOCG	FeOxCuAu	17	1.32	0.270	4.59	0.15			Cretaceous
Punta del Cobre	IOCG	FeOxCuAu	120	1.50	0.020	24.00	0.77			Sillitoe, 2003
La Tigresa	IOCG	FeOxCuAu	8	0.56	0.270	2.16	0.07			Cretaceous
Carola	IOCG	FeOxCuAu	10	1.80	0.500	5.00	0.16			Vivallo et al., 2008
Atacama Kozan	IOCG	FeOxCuAu	50	1.60	0.350	17.50	0.56			Cretaceous
Candelaria	IOCG	FeOxCuAu	501	0.54	0.130	65.13	2.09	116-110		Richards et al., 2016
Productora	IOCG	FeOxCuAu	214	0.48	0.100	21.40	0.69	130-128		Marquardt et al., 2015
Dominga	IOCG	FeOxCuAu	2	0.12	0.014	28.00	0.90	127		Cretaceous
Panulcillo	IOCG	FeOxCuAu	15	1.45	0.100	1.50	0.05	115		Chen et al., 2013
Punitaqui	IOCG	FeOxCuAu	10	na	3.000	30.00	0.96			Cretaceous
El Espino	IOCG	FeOxCuAu	123	0.66	0.240	29.52	0.95	100-94		López et al., 2014

Ore resources in million tons (Mt), the ore grade in g/t for Au, the total Au contained in the deposits is in tons (t) and million ounces (Moz).
TABLE 3. MAIN PORPHYRY COPPER-MOLYBDENUM-GOLD DEPOSITS IN CHILE.

Name	Deposit Type	Ore Tons	Cu %	Au gt	t Au	M oz Au	Age	References
Mocha	PorpCuMoAu	2,100.00	0.35	0.04	84.00	2.7	Paleocene	Churuta, 2019
Cerro Colorado	PorpCuMoAu	450	0.90	0.10	45.00	1.45	Paleocene	Cabello, 2002
Rosario	PorpCuMoAu	3,108	0.82	0.01	31.08	1.00	Eocene-Oligocene	Camus, 2003
Ujina	PorpCuMoAu	1,081	0.81	0.03	32.43	1.04	Eocene-Oligocene	Cabello, 2002
Quebrada Blanca	PorpCuMoAu	1,09	0.72	0.10	109.00	3.5	Eocene-Oligocene	Singer et al., 2005
Los Vóleances ex Conchi	PorpCuMoAu	1,874	0.50	0.05	56.22	1.81	Eocene-Oligocene	AMSA, 2017
Chuquicamata	PorpCuMoAu	7,521	0.55	0.04	300.84	9.67	Eocene-Oligocene	Camus, 2003
Encuentro	PorpCuMoAu	1,222	0.42	0.15	183.30	5.89	Eocene-Oligocene	Perelló et al., 2010
Sierra Gorda	PorpCuMoAu	2,918	0.35	0.05	140.06	4.5	Paleocene	Lopez and Ristorcelli, 2011
Telégrafo	PorpCuMoAu	2,489	0.38	0.12	298.68	9.6	Eocene-Oligocene	Perelló et al., 2010
Polo Sur	PorpCuMoAu	1,388	0.34	0.05	69.40	2.23	Eocene-Oligocene	AMSA, 2017
Spence	PorpCuMoAu	405	1.10	0.18	72.90	2.34	Paleocene	Camus, 2003
Esperanza	PorpCuMoAu	1,204	0.45	0.15	180.60	5.81	Eocene-Oligocene	Perelló et al., 2010
Centinela-P. Blanco	PorpCuMoAu	322	0.38	0.05	16.10	0.52	Eocene-Oligocene	AMSA, 2017
Chimborazo	PorpCuMoAu	236	0.60	0.70	165.20	5.31	Eocene-Oligocene	Singer et al., 2008
Escondida	PorpCuMoAu	4,86	0.97	0.25	1,215.00	39.06	Eocene-Oligocene	Singer et al., 2005
Pampa Escondida	PorpCuMoAu	7,44	0.45	0.06	446.40	14.35	Eocene-Oligocene	BHP, 2018
Exploradora	PorpCuMoAu	100	0.50	0.20	20.00	0.64	Eocene-Oligocene	Camus, 2003
Sierra Jardín	PorpCuMoAu	50	0.25	0.20	10.00	0.32	Eocene-Oligocene	Camus, 2003
El Salvador	PorpCuMoAu	974	0.63	0.10	97.40	3.13	Eocene-Oligocene	Camus, 2003
Potrerillos	PorpCuMoAu	670	0.60	0.15	100.50	3.23	Eocene-Oligocene	Camus, 2003
Inca de Oro	PorpCuMoAu	769	0.36	0.10	76.90	2.47	Cretaceous	Richard et al., 2016
Carmen	PorpCuMoAu	100	0.32	0.38	38.00	1.22	Cretaceous	Llaumett, 2009
Los Helados	PorpCuMoAu	1,28	0.40	0.15	192.00	6.17	Mio-Pliocene	NGEX, 2016
El Morro-Fortuna	PorpCuMoAu	1,442	0.41	0.34	490.28	15.76	Eocene-Oligocene	Lambert et al., 2012
Domeyko	PorpCuMoAu	58	0.48	0.40	23.20	0.75	Cretaceous	Camus, 2003
Andacollo	PorpCuMoAu	417	0.34	0.12	50.04	1.61	Cretaceous	Teck Res. Ltd., 2016
Between 27° S and 33° S, the same Paleocene-Eocene magmatic event is recognised, followed by discrete Late Oligocene-Early Miocene, Mid-Miocene, and Late Miocene magmatic episodes. In this segment of the Andes magmatism ceased in the Late Miocene, when the subduction angle shallowed beneath this region, which today constitutes the non-volcanic, “flat slab” segment of the Chilean Andes (Kay et al., 1987; Sepúlveda et al., 2015; Ramos and Folguera, 2016).

South of Santiago (33° S), where the dip of the Benioff zones is again steep (30°) Quaternary volcanism is widespread. No evidence of Paleogene magmatism has been recognized and Miocene volcanics directly overlie the Cretaceous sequences of the main Cordillera, where coeval Miocene granodioritic stocks intrude them (Rivano and Sepúlveda, 1991; Kay and Godoy, 2005).

3. Hydrothermal gold deposits

In general, in Chile, main gold producing deposits are hydrothermal (mainly epithermal) polymetallic in a broad geochemical sense with gold content being a minority participant respect to other metals like copper, silver and molybdenum among others. The higher economic value of gold, allow to consider them gold deposits (Kojima and Campos, 2011).

3.1. Mesozoic gold deposits

Several gold deposits formed during the Mesozoic time are important today. In the Andacollo mining district (Fig. 1, Table 1), immediately west of the Andacollo porphyry copper, separated by a NS trending normal fault, there are several volcanic hosted gold deposits of manto type and veins. The stratabound mantos located 1 to 3 km northwest of the Andacollo porphyry copper deposit are considered to be of contact metasomatic origin (Sillitoe, 1988). Gold mineralization (pyrite, chalcopyrite, sphalerite, galena and cinnabar) is disseminated in volcanic rocks with associated K feldspar alteration (Llaumett, 1980). The mantos are developed in felsic and intermediate volcanic rocks, with thickness between 10 to 20 m and 1 to 1.5 km length. A closely related predominantly EW oriented and steeply dipping vein swarm and range from centimetres up to 6 m wide with similar mineralization as the stratabound mineralization, is also present (Reyes, 1991).
Oyarzún et al. (1996) indicate that the fluid, which deposited the stratabound gold mineralization, was of moderate salinity and cooled from approximately 365º to 100º. This observation, combined with restoration of the deposits to their pre-faulting configuration, led the writers to conclude that the 91±6 Ma gold mantos (Reyes, 1991) are not derived laterally from the 100 Ma Andacollo porphyry system, but rather from a younger, concealed intrusive located vertically below the gold mantos. To the south of the Andacollo district, Los Montes de Punitaqui (Fig. 1, Table 1) is a pluton-related vein deposit (Sillitoe, 1991) part of a Mesozoic batholith. Mineralization occurs as veins within a main shear zone and along northwest shear fractures. Gold is contained in a 3.5 km long quartz vein up to 25 m wide and known to a maximum depth of 350 m. Hematite, minor magnetite and chalcopyrite are intergrown in quartz veins with subordinare calcite.

In the Coastal Range of the Atacama-Coquimbo Region (26°-32° S), several vein type gold deposits are known: Faro, Costa Rica, Rescatada, Capote, Carrizal Alto, Burladora, Colluntua and Jote (Fig. 1). Henríquez et al. (1991) have classified these gold deposits as mesothermal. Gold deposits are mainly veins hosted in jurassic granitic and granodioritic intrusives or in cretaceous volcanic rocks without alteration halos. They can extend as far as 4 km in length, but the economic ore bodies tend to be 200 to 400 m in length reaching depths between 350 and 450 m. Main sulfide minerals are pyrite, chalcopyrite and arsenopyrite in a quartz gangue. Fluid inclusion studies indicate a vertical zonation with a deeper mesothermal character evolving to an upper epithermal zone (Quintana, 2018). An equivalent setting is also known in the Central Chile coastal range (32°-36° S) (Gröpper, 2011; Camus, 2018) including several gold mining districts: El Bronce de Petorca, Alhué, Chancón and Las Palmas (Fig. 1, Table 1), among others less relevant.

The El Bronce de Petorca district (Fig. 1, Table 1) is composed by an epithermal low sulfidation vein system hosted by Cretaceous volcanic andesitic sequences (Camus et al., 1991). Nearly 90 ore bodies, mostly polymetallic veins, some copper veins, and one copper breccia pipe have been recognized. A 1 km vertical zonation is described, with a barren upper part followed by sub economic gold plus base metals, then the main gold and base metals zone ending in a sub economic gold plus silver with no base metals lower zone. The most significant and productive ore deposit is the El Bronce vein, emplaced in a 7 km long, NS-N20E striking fault. Diverse lenticular, structurally controlled ore shoots are detected along the fault, fluctuating from 100-600 m in length, 200-400 m in depth, and 1-20 m in width (Camus et al., 1991). The vein mineralogy is composed of quartz, pyrite, sphalerite, galena, tetrahedrite, barite and calcite. Ore shoots occurs as massive sulfide fillings, stockworks and disseminations.

The Pullalli deposit (Fig. 1, Table 1) consists of fractured and faulted stratabound-like siliceous bodies in a Triassic dome complex intruded by Jurassic granites (Shatwell, 1999). The siliceous bodies are composed of microcrystalline and massive quartz and stockworks of quartz micro veins with disseminated pyrite and associated gold. Quartz-sericite and argillic alteration surrounds the siliceous bodies. Maksaev et al. (2007) classified this deposit as mesothermal.

Alhué (Fig. 1, Table 1) is another low-sulfidation epithermal vein district hosted andesitic rocks of Upper Cretaceous age intruded by a granodiorite of the same age (Camus, 1990; Moncada et al., 2015). The ore bodies of this old district, exploited since the XIX siècle, occur as east-west sub vertical veins and consists of a central brecciated portion surrounded by a quartz veinlets stockwork that gradually diminishes in vein density outward. Alteration associated with mineralization is mainly silicification, which grades outward into propilitic envelopes. Gold is mainly associated with quartz and pyrite with lesser chalcopyrite and sphalerite. Fluid inclusion studies indicate a vertical zonation with a deeper mesothermal character evolving to an upper epithermal zone (Quintana, 2018).

The Las Palmas is located in the coastal range of south central Chile (Fig. 1, Table 1). It is low sulfidation epithermal gold vein district hosted by andesites and volcanic tuffs probably of Middle Jurassic age (Camus and Duhalde, 1982; Gröpper, 2011). Host volcanic rocks have been affected by a propilitic alteration associated with the emplacement of Upper Cretaceous intrusives. Several veins are identified, some of them with a length up to 1.5 km. Veins are mostly filled with quartz, chlorite, pyrite, sphalerite, galena, chalcopyrite and locally magnetite including quartz-sericite alteration grading to silicification at depth.

Cerro Bayo-Fachinal district, in southern Chile (Fig. 1, Table 1), is a low to intermediate sulfidation epithermal vein (0.5 to 5 m wide) and hydrothermal breccia (up to 1m wide) system (Wheeler, 1991; Boetsch, 2014) hosted by Jurassic rhyolite to...
dacitic volcanic ash-flow/tuffs. Veins and breccias consists of quartz with disseminated pyrite, and a complex series of silver sulphosalts with free gold and silver. Minor amounts of sphalerite, lead sulphide and chalcopyrite are also recognized. Illite-smectite are the major alteration minerals in the district (Poblete, 2011). Los Domos is a prospect located nearby Cerro Bayo with similar characteristics (Equus Mining Ltd., 2017).

Skarns type deposits (Maksaev, 2005), are also part of the Mesozoic mineralization but none is known as important regarding its gold content. Several are mentioned as copper deposits (with only one case of a zinc-lead body) with gold as a by-product. Mainly located in the Coastal Range hosted by Lower Cretaceous carbonate rocks. From North to South, Lagarto near Iquique, San Antonio near La Serena, Panulcillo in the Coquimbo Region are IOCG type with some skarn development (Narváez and Aguirre, 2015; Castellón, 2017), Mantos Grandes in the Limari Province, Cabildo in the Valparaíso Region, La Campana north of Santiago and El Toqui (Zn, Pb, Au) in the Chilean Patagonia are all examples of skarn type deposits with noticeable gold content.

A relevant characteristic for the Mesozoic is the abundance of gold and gold-copper veins many times described as mesothermal (Ruiz et al., 1965; Boric et al., 1990; Vivallo et al., 2008; Camus, 2011; Gröpper, 2011; Arredondo et al., 2017). Most of these deposits are less important regarding their size and unfortunately, information about tonnage-grade is often unknown. Additionally, the Jurassic-Early Cretaceous magmatic arc is characterized by a large variety of ore deposit types including mesothermal and epithermal gold, IOCG, porphyry copper as well as stratabound copper-silver deposits. This gave place due to its geographic location to a definition of a Costal Range Metallogenic Belt (Vivallo et al., 2009). An interesting zonation and lineaments pattern for porphyry copper, IOCG, stratabound Cu-Ag and stratabound Au deposits was also suggested for this belt (Morel, 2009).

3.2. Cenozoic gold deposits

Most of the Cenozoic gold deposits seem to be related to eroded volcanic centres and/or sub volcanic intrusives (Davidson and Mpodozis, 1991) and all of them are part of discrete magmatic arcs, parallel to the current coastal line (Cabello, 1986, 1992).

The Paleocene-Eocene magmatic event started some 70 Ma ago, increasing in intensity during the Paleocene due to faster plate convergence (Pardo-Casas and Molnar, 1987). This magmatism is well exposed in northern Chile as a NS trending belt and these volcanic rocks host the Faride, San Cristóbal, Guanaco and El Peñón gold deposits (Fig. 1).

Faride is a low sulfidation epithermal gold-silver deposit located ca. 80 km north of the San Cristobal Gold deposit (Fig. 1, Table 1). It is associated with an eroded volcanic centre (Camus and Skewes, 1991; Iriarte, 1993; Garofalo, 2009). Vein type ore bodies extend roughly 2 km, filling discontinuous portions of faults. The veins are oxidized and the hypogene mineralization below 200 m comprises specularite, chalcopyrite, galena, sphalerite and copper-silver sulfosalts, while gangue minerals include quartz, barite, rhodochrosite and siderite with quartz-sericite envelopes around the veins.

San Cristobal mesothermal gold deposit (Fig. 1, Table 2) (Eggert and Kasaneva, 1995) is hosted in a 54 Ma complex of felsic porphyries and granitoids intruded by a series of quartz porphyries and hydrothermal breccias (Maksaev, 1990). The deposit comprises low grade disseminated mineralization and gold bearing NS quartz veins up to 2 km long and 1 m average thickness associated with potassic, propilitic and phyllic alteration. The bulk gold resource includes four ore shoots irregularly distributed forming a NW elongated body 1 km long, 300 m across and 200 m deep, which formed where the vein system crosses a sub volcanic complex.

Guanaco (Fig. 1, Table 1) is a high-sulfidation gold-copper district probably situated above a porphyry copper system and genetically related to a caldera with dacitic flows and domes (Puig et al., 1988; Cuitiño et al., 1988; Jovic et al., 2015). The gold mineralization is contained in ledges of vuggy silica up to 50 m wide with sulphides which includes enargite, auriferous pyrite, arsenopyrite and sparse chalcopyrite (Vidal et al., 2019). Ore bearing ledges are surrounded by advanced argillic alteration comprising alunite, pyrophyllite, kaolinite and dickite.

Discovered in 1994, El Peñón deposit is the largest gold-silver deposit associated with the Paleocene volcanic event. The deposit is a low sulfidation epithermal vein system genetically related with a Paleocene-age rhyolite flow dome complex (Arancibia et al., 2006). The fault controlled mineralization has been K-Ar dated at 52 to 53 Ma (Warren et al., 2008),
broadly coincident with the 40Ar/39Ar age of 53-51 Ma for vein adularia (Arancibia et al., 2006). Gold-silver mineralization is associated with a variety of quartz vein textures and grain sizes. Chalcedonic to coarse-grained quartz occurs in banded, saccoroidal, comb and bladed carbonate replacement vein textures. Hydrothermal breccias are common and constituted important structural preparation for vein formation. The oxidised zone of the deposit extends 250 to 280 m below the surface. Mineralogy consists largely of silver halides, native silver and electrum with a gangue of quartz, adularia, calcite, rhodochrosite, dolomite and other carbonate minerals (Bissig et al., 2007). Trace amounts of sphalerite, galena and chalcopyrite are present below the oxidised zone. Some 10 km north of El Peñón, a high sulfidation gold porphyry system named El Anillo has been described (Marquardt et al., 1994), associated to a younger episode of intrusive activity (48-42 Ma).

The Amanca y gold deposit is located south of El Peñón mine. It is a low sulfidation, epithermal deposit, hosted in a steeply dipping, structurally controlled, quartz vein (Altman et al., 2017).

The Late Eocene-Early Oligocene period was characterised by a clear magmatic intensity decrease (McKee and Noble, 1990), immediately following initiation of the Upper Eocene compressive stage. During this period, several of the most important Andean porphyry copper deposits or districts were formed (e.g., Collahuasi, Chuquicamata, Centinela, Escondida, El Salvador, Fig. 1.), associated with transcurrent north-south faults related to crustal weakness (Maksaev and Zentilli, 1988).

At least three high sulfidation gold deposits, apparently related to porphyry copper systems, of this age have been described:

El Hueso and Agua de la Falda-Jerónimo (Fig. 1, Table 1), both located close to the Potrerillos porphyry copper system (Colley et al., 1989; Marsh et al., 1997); and the Cantaritos prospect located in the vicinity of La Fortuna porphyry (Perelló et al., 1996). At El Hueso Jurassic-Cretaceous limestones and silstones intruded by dacitic-andesite stocks and over lain by siliceous tuffs and breccias host the epithermal ore deposit. Much of the ore occurs as tabular and steeply dipping silicified zones in limestone and volcaniclastics. Agua de la Falda-Jerónimo is located 2 km East of El Hueso. Here stratabound gold and sulfide mineralization was mainly deposited in silicified calcareous sandstones (Thompson et al., 2004). Pyrite is by far the main sulfide mineral, but marcasite, arsenopyrite, sphalerite, galena, bournonite and pyrrargirite are also found.

In the Cantaritos prospect inland of Villanueva city, alunite-vuggy silica alteration occurs 1 km SE of the El Morro-La Fortuna copper-gold porphyry prospect (Fig. 1, Table 1). Advanced argillic alteration at Cantaritos has yielded a 32 Ma age, similar to that of the porphyry deposit (Salazar and Coloma, 2016). Two other small low sulfidation epithermal occurrences associated with volcanic rocks of the same age have also been reported: they are the Choja and Tinaja diatreme related prospects (not included in the location map), inland of the Iquique and Copiapo cities (Sillitoe, 1992).

Volcanic rocks of Upper Oligocene-Late Miocene age host some of the larger gold deposits. Volcanism of this period, was formed during a time of faster and less oblique plate convergence (Pilger, 1984). A shallowing subduction zone generated a greater width of the related volcanic arc, as well as of the associated mineralization (Sillitoe, 1992). Two types of gold deposits are in this magmatic belt: high sulfidation epithermal deposits in the so-called Maricunga and El Indio belts and porphyry gold deposits also occurring in the Maricunga region (Vila and Sillitoe, 1991). These gold deposits formed from 10 to 6.2 Ma (Bissig et al., 2001; Sillitoe, 2008), after andesitic volcanism in the region had ceased (Kay et al., 1999) and the magmatic activity had moved to the east (Bissig et al., 2003). Volcanic rocks in both districts overly Upper Paleozoic granitic and felsic volcanic basement with clear evidence of crustal assimilation (Davidson and Mpodozis, 1991). Considering the tonnage and grade information available (Table 1) can be reported a gold content of 3,189 t for the Maricunga belt (14 deposits) and 1,310 t for the El Indio belt (4 deposits).

In the Maricunga belt, La Coipa (Fig. 1, Table 1) (Oviedo et al., 1991; Gamonal et al., 2015) is the most important gold-silver high sulfidation epithermal deposit formed between 19 and 14 Ma, including tabular and irregular bodies hosted by Triassic sedimentary rocks and Eocene-Oligocene stratovolcanic and dacitic-block rhyolite dome complexes (Kay et al., 1999; Belanger, 2003; Callan, 2019). Another high sulfidation example is the Chimberos-Esperanza silver-gold deposits, also associated with dacitic dome complexes (Vila, 1991a; Lagos, 2010). Here exists a highly silicified, structurally localised hydrothermal
breccia containing high silver grades and minor gold values. A case related to a somehow recent discovery is the Volcán deposit (Lewis et al., 2011), where mineralization is related to the emplacement of Miocene age calc-alkaline volcanic and sub-volcanic units over basement rocks of Paleozoic to Cenozoic age. The structural setting of the Volcán deposit (Fig. 1) is related to, and associated with, the Copiapó stratovolcano and may also be related to regional northerly-trending high angle reverse faulting. The gold deposit includes an arrangement of gold bearing quartz-pyrite veinlets with outer disseminated pyrite developed in argillie-silica altered tuffaceous and porphyritic dacitic volcanic rocks, as well as in dacitic dome complex. The most recent discovery of this prolific belt is the Salares Norte deposit, a high sulphidation epithermal system with pyritic sulfide mineralization, hosted by a breccia complex close to the contact of two volcanic domes of andesitic and dacitic composition (Brewer et al., 2017). The ore is mainly oxidized gold mineralization.

La Pepa (Fig. 1, Table 1) is a high sulfidation vein and breccia hosted epithermal system with an associated low-grade porphyry style deposit, named Cavancha (Muntean and Einaudi, 2001). Predominant host rocks are dacites, dacitic tuffs and brecciated rhyolites. Alteration mainly corresponds to advanced argillic with dominant quartz and alunite replacements. Kaolin and halloysite crosscut both quartz and alunite. Gold mineralization is largely associated with pyrite, limonite, and minor enargite. Gangue minerals are quartz, alunite, barite and clays.

A distinctive feature of the Maricunga belt is the presence of several gold rich porphyry systems emplaced beneath andesitic stratovolcanoes and related with doriotic to quartz-diorotic porphyritic intrusives and vast hydrothermal alteration zones (Vila and Sillitoe, 1991; Muntean and Einaudi, 2001; Gamonal and Bissig, 2019; Naranjo et al., 2019). They mainly include gold-(copper) mineralization in well-developed quartz stockworks. Iron oxides, both early magnetite and late hematite, constitute up to 10 percent of mineralized rocks. The Marte and Lobo deposits are classified as porphyry gold deposits but Refugio and Cerro Casale are closer to gold rich porphyry coppers (Vila and Sillitoe, 1991). A number of those porphyry systems present an overprint of advanced argillic alteration including quartz-alunite, pyrite, bornite, native sulphur and enargite (Vila, 1991b). Other new example is the Caspiche gold-copper deposit (Fig. 1, Table 1) related to a dioritic stock beneath post mineral cover where most of the gold and copper (pyrite-chalcopyrite) was introduced during the potassic alteration stage partially overlapped by a molybdenum-rich halo. An upper advanced argillic alteration is also present. (Sillitoe et al., 2013). Cerro Maricunga, also known as Fenix (Fig. 1, Table 1), is another addition to this belt with gold mineralization in dacitic and andesitic intrusive domes restricted to a NW-SE strip with a porphyry and breccia complex limited by faults including pyrite-magnetite mineralized zones usually associated to black banded quartz veinlets (Easdon, 2010).

The El Indio belt (Fig. 1), is a 200-km long near continuous belt of hydrothermal alteration centers (Maksaev et al., 1984; Siddley and Aranea, 1990; Bissig et al., 2002) preserved within a north-south graben system, controlled by high angle faults (Nasi et al., 1990). The extended hydrothermally altered zones appear related to porphyritic stocks. Gold mineralization occurs in various styles: Vein systems (El Indio and Sancarrón), fault and hydrothermal breccias (Tambo) and stratabound deposits (Pascua). The El Indio (Fig. 1, Table 1) high -sulfidation precious metals deposits are characterised by sulfide -rich mineralization in two principal type of veins: those dominated by copper (mainly enargite), and those dominated by gold. The Tambo deposits are sulfate-rich and have native copper and free gold mineralization that is mainly contained in tectonic-hydrothermal breccias associated with alunite and barite (Jannas et al., 1999). Alturas is a recently discovery in this belt, announced in 2015. Correspond to a pervasively oxidized disseminated high sulfidation epithermal gold deposit related to subvolcanic dacitic flows and domes as well as a diatreme complex including a shallow steam heated zone in a typical advanced argillic alteration. Mineralization appears associated to a silicification event. (Astorga et al., 2017).

During the Upper Miocene time, in northern Chile (18°-28° S) an important Miocene to Recent volcanic zone (Gardeweg and Ramirez, 1984) known as the Central Volcanic Zone developed. This zone was characterised by stratovolcanoes, calderas, and ignimbritic sequences with associated advanced argillic and solfataric hydrothermal alteration zones. These alteration zones could present important contents of native sulphur, exposed if the volcanic edifices have been eroded (Davidson and Mpodozis, 1991). Research on sulphur isotopes of the Copiapó volcano
Gold deposits in Chile (Zentilli et al., 1988, 1991) suggests a correlation between solfataric alteration zones and precious metal epithermal systems. At least two gold occurrences are known to be associated with this Miocene magmatic arc. The main one is the Choquelimpie high sulfidation epithermal deposit (Fig. 1). Gold-silver mineralization occurs in veins and hydrothermal breccias hosted in an eroded dacitic-andesitic stratovolcano intruded by similar composition domes (Cabello, 1986; Gröpper et al., 1991). The second case is the Pimentón mine located in the Andes cordillera of central Chile. Here epithermal high sulfidation gold veins are probably related to a porphyry copper system. Individual veins typically form ore shoots up to 450 m long, up to 50 cm wide, containing massive pyrite and chalcopyrite with a gangue of barite (Pardo, 2006; McGregor and Brady, 2016).

4. Placer gold deposits.

The first historic period of gold production in Chile was from 1541 to the end of the sixteenth century, when a series of gold rich alluvial deposits, mainly located in the central-south portion of the country, produced an estimated 1 or 2 metric tons of gold annually (Cuadra and Dunkerley, 1991). At that time, some of the main producing fields were Andacollo, Marga-Marga, Casablanca, Catapilco, Nirivilo, Lonquimay, Carahue and Madre de Dios. In the nineteenth century, alluvial gold was discovered in Tierra del Fuego (Río del Oro) in the far south of Chile with production for a period of about 40 years including some dredge operations. Chilean secondary gold deposits can be classified as alluvial, eluvial and beach placers (Ruiz and Peebles, 1988; Portigliati et al., 1988; Greiner, 1991). Currently, placer gold mining in Chile is at a very low scale having almost no impact in the country production statistics.

5. Gold as a by-product of copper deposits.

From the 2019 reported mining production (Sernageomin, 2020), it is estimated that 64% of Chile’s annual gold production can be attributed to by-product production from copper (largely) and lead-zinc deposits. The following copper deposits are known as important regarding their gold content and production:

- The Iron Oxide-Copper Gold (IOCG) belt contains deposits as Mantoverde, La Candelaria, Atacama Kozan and Punta del Cobre near the coastal range of the Atacama Region (Marschik et al., 1997; Richards et al., 2016). These deposits seem to be confined to a belt of early Cretaceous magnetite-apatite deposits of probable magmatic-hydrothermal origin and may be considered as copper-rich end member of these iron dominated deposits (Sillitoe, 1994, 2003; Vivallo, 2009). Hosted by Lower Cretaceous andesites and sedimentary sequences they appear to be associated to mid-Cretaceous dioritic to granodioritic plutons and their late stage differentiates (Marschik et al., 2000). Orebodies are stratabound concentrations of magnetite, pyrite, chalcopyrite, and gold but also include stockworks, breccias, disseminations, veins and massive replacements by the same minerals. Gold content in these deposits varies between 0.05 to 0.6 g/t Au, with an estimated average of 0.2 g/t based on the 14 deposits here reported (Table 2). Regarding it total gold content the most important is Candelaria (65 t), followed by Mantoverde (52 t) and Cerro Negro (37 t).

At least some 34 porphyry copper deposits and/or districts of different ages are known to contain gold (Table 3). In spite of their mostly low gold content, due to their sometimes huge reserves, porphyry coppers represent a major source of gold in the Chilean Andes. The gold content of the Chilean porphyries has been only partially documented yet (Perelló and Cabello, 1989) but seems to be enough to realize their importance regarding the content of this precious metal. Previous studies mentioned as deposits with important gold content the cases of Andacollo (Llamaett et al., 1975), Quebrada Blanca (Hunt et al., 1983), El Salvador (Roschmann, 1979) and Potrerrillos (Marsh et al., 1997). According to the compilation presented in table 3, publically reported average gold content varies between 0.01 to 0.7 g/t, resulting in 0.15 g/t average content for the 34 cases included. As in the Mesozoic case there are a few mentions of skarn type mineralization related to porphyry copper: they occur in the Centinela District at the Mirador deposit (Apablaza, 2015) as well as in Potrerrillos and Escalones, but is not clear yet its influence in gold content for those deposits. Reviewing their gold total content, the first place is for El Teniente (513 t) (Camus, 2003) followed by El Morro-Fortuna District (490 t) (Perelló et al., 1996, Lambert et al., 2012) and Pampa Escondida (446 t) (BHP, 2018), all this cases are obviously influenced by their huge tonnage. The Esperanza and Escondida
Porphyry copper deposits are mentioned as the current more important gold producer for this ore deposit type. Several other porphyry copper deposit including some recently discovered could have a gold content not known or publically reported yet: Radomiro Tomic, Ministro Hales, Escondida Norte-Zaldívar, Escondida Este, Vizcachitas, San Enrique-Monolito, La Huifa among others. Considering their important mineralized volumes, they could provide significant additional gold resources.

6. Gold mineralization: geological ages, ore deposit types, and mineral belts

The grade and tonnage for the different ore deposits considered in this work are presented in tables 1, 2 and 3. A note is made regarding the gold resources reported in this article: all is public information estimated to be valid at the time when obtained. Therefore, past mined gold statistics was not available for current or closed mines identified in this paper. Using this information was calculated the amount of gold concentrated during the different geological epochs and it relationship to the diverse ore deposit types both of precious and base metals (Figs. 2-7).

If we consider those (Table 1) defined as gold deposits group (31 cases), mainly epithermal precious metals deposits and porphyry gold, the gold concentrations are (Fig. 2): Mesozoic, 238 t (5%), Paleocene, 339 t (6%), Eocene-Oligocene 126 t (2%) and Miocene, 4,524 t (87%). Within the same group but according to the gold content in the different deposit types, the following distribution is obtained (Fig. 3): mesothermal 113 t (2%), epithermal LS 424 t (8%), epithermal HS 2,027 t (39%) and porphyry Au 2,663 t (51%).

In the porphyry copper group (35 cases) the distribution of gold content is (Fig. 4): Mesozoic, 188 t (3%), Paleocene, 342 t (6%), Eocene-Oligocene, 3,842 t (63%) and Mio-Pliocene, 1,675 t (28%).

And if we take all 82 deposits types (this means those defined as gold deposits plus porphyry coppers and IOCG) the gold content distribution according the geological age is (Fig. 5): Mesozoic, 778 t (7%), Paleocene, 681 t (6%), Eocene-Oligocene, 3,968 t (34%) and Mio-Pliocene, 6,234 t (53%). But based on the deposit type, the following gold distribution is obtained (Fig. 6): gold deposits 5,227 t or 168 Moz (45%), IOCG 352 t or 11 Moz (3%) and porphyry copper 6,082 t or 195 Moz (52%).
Gold deposits in Chile

Fig. 4. Gold content (%) in different geological epochs and periods based on 35 porphyry Cu-Mo-Au deposits (Table 3). Cretaceous 188 t (4 deposits), Paleocene 342 t (4 deposits), Eocene-Oligocene 3,842 t (19 deposits), Miocene-Pliocene 1,710 t (8 deposits).

Fig. 5. Gold content (%) in different geological epochs and periods based on 82 deposits (Tables 1, 2, 3). Cretaceous 778 t (26 deposits), Paleocene 681 t (8 deposits), Eocene-Oligocene 3,968 t (21 deposits), Miocene-Pliocene 6,234 t (27 deposits).

Fig. 6. Gold content (%) in different deposit types based on 82 deposits (Tables 1, 2, 3). Porphyry Cu-Mo-Au 6,082 t (35 deposits), Gold deposits 5,227 t (31 deposits), IOCG 352 t (16 deposits).

Fig. 7. Gold content (%) in different deposits type based on 31 main gold deposits (Table 1), 16 IOCG deposits (Table 2) and 35 porphyry Cu-Mo-Au deposits (Table 3). Mesothermal 113 t (2 deposits), Epithermal HS 2,027 t (7 deposits), Epithermal LS 424 t (15 deposits), Porphyry Au 2,663 t (7 deposits), IOCG 352 t (16 deposits), Porphyry Cu-Mo-Au 6,082 t (35 deposits).
And when compared (Fig. 7) all the ore deposit types in the 3 groups, the gold concentration is: Mesothermal 1% (113 t), epithermal LS 4% (424 t), epithermal HS 17% (2,027 t), Porphyry Au 23% (2,663 t), IOCG, 3% (352 t) and Porphyry Cu 52% (6,082 t). If we bring together Porphyry Au with Porphyry Cu, they represent 75% (8,745 t) of the gold concentration reflecting their metallogenic and economic relevance.

And all together represent an estimated number of 11,662 t equivalent to 375 Moz similar to a recent publication (Beard and Jowitt, 2019). And should be added that several potential gold bearing base metals deposits (both porphyry copper and IOCG) do not include their gold content in public format, therefore the number provided could be estimated conservative.

The Maricunga and El Indio are clearly the main gold belts in Chile. The Maricunga belt (Sillitoe, 2008) cover a length of approximately 200 km (between 26° and 28° S) with porphyry and high sulfidation epithermal gold deposits occurring in two partly overlapping NS remarkable belts where mineralization considered to be emplaced during two different episodes at 25-20 Ma and 15-13 Ma (Sillitoe et al., 1991). In Maricunga are reported some 14 deposits (7 high sulfidation epithermal gold deposits and 7 porphyry gold), which in total represent 3,189 t of gold (approx. 103 Moz). Further south, the El Indio belt (Bissig et al., 2015; Jara et al., 2019) is about 100 km long (between 29° and 30° S). Gold deposits were formed between 9.5 and 5 Ma (Bissig et al., 2001). No porphyry gold is yet identified here. El Indio belt includes 4 high sulfidation gold deposits as Pascua-Lama, the now historic El Indio, Tambo and the recent discovery of Alturas, accounting altogether for 1,310 t of gold or 42 Moz.

7. Exploration, development and production

In a review of the last five decades, the rate of growth of Chilean gold production is indeed impressive. In the period 1969-1998, gold production increased 27 times from 1,827 to 49,700 kg., after that, the level of production has been kept at a good level always above 35,000 kg per year. Several facts explain that increase of production, the most important being the success of exploration sustained over the same period (Cabello, 1999; Sillitoe, 1995, 2000, 2010). This resulted in the discovery and development of several world-class deposits which account for a big part of the production increase.

Between 1969 and 1998, at least 18 precious metals discoveries were made. Of these, the most important and best known are El Indio mining district, La Coipa, Pascua, Refugio and Cerro Casale. These 18 discoveries collectively represented an in-ground resource of more than 1,763 t of gold.

In 1979, El Indio was the first of the new gold discoveries to become a mine. Of the 18 discoveries, 13 have been developed into mines. Of these, three were subsequently closed down (Choquelimpie, El Hueso and El Indio).

During the new siècle, the positive exploration trend has continued with several important discoveries like Volcán, Caspiche, Alturas and Salares Norte.

And parallel to these gold deposit discoveries happened important gold bearing copper deposit discoveries including both porphyry coppers and IOCG type deposits. All this is clearly reflected in the mining development and production statistics (Cochilco, 2010; Sernageomin, 2020).

Different technical reports mention future development for deposits like Salares Norte, Nueva Esperanza-Arqueros, Cerro Maricunga, Cerro Casale and Caspiche. Therefore, an increment of the country gold production is expected.

8. Concluding Remarks

The hydrothermal gold deposits in the Chilean Andes are closely associated with subduction related magmatic arcs. Due to its relationship with episodic magmatism migrating eastward, there is a general tendency for hydrothermal gold deposits to be in discrete NS trending belts presenting a progressive west to east decrease in mineralization age.

Excluding Andacollo, El Bronce de Petorca, Pullalli and Alhue, Mesozoic deposits are quite abundant but less relevant regarding their size and gold content. They are mainly vein deposits located in the coastal range and many of the mesothermal gold deposits are hosted in plutonic rocks. Erosion must be a factor to explain importance of intrusive rocks as host rocks with a genetically relationship with gold mineralization.

The Miocene high sulfidation epithermal and gold porphyry type deposits are the most important (La Coipa, Refugio, Cerro Casale, Pascua, El Indio)
suggesting a correlation with a faster and less oblique plate convergence. The same characteristic seems to have occurred in the Upper to Middle Eocene (El Guanaco, El Hueso, and Agua de La Falda-Jeronimo).

In general, the close correlation of Cenozoic gold deposits with volcanic centers and sub volcanic intrusives seems to be clear (Cabello, 1986, 1992; Davidson and Mpodozis, 1991). In addition, the relationship of the Cenozoic deposits with volcanic landform is quite evident in several cases (Choquelimpie, Volcán, Marte and Lobo). An association with dome complexes is reported in Guanaco, La Coipa, and Esperanza as well as in Pullali and Choquelimpie. In El Guanaco, a caldera type structure is considered important (Puig et al., 1988). El Indio is said to be associated with a caldera structure (Jannas et al., 1990) or alternatively to an eroded stratovolcano (Sillitoe, 1991).

Erosion has an important influence in relation to the absence or presence of gold deposits (Camus, 1990; Sillitoe, 1991). As a rule, it can be pointed out that the level of erosion decreases from west to east in the Andes, explaining the scarcity or absence in the pre and post Miocene periods. In the first case, deep erosion has removed the volcanic edifices, and in the second case erosion has not been sufficient to unroof the potentially mineralized centers.

Gold bearing copper deposits constitute an important part of Chile’s total gold production. Both IOCG type but especially porphyry copper are and will remain as significant sources to complement the future output of the gold deposits.

In summary, the 82 deposits with tonnage and grade studied represent gold content as follow: gold deposits 5,227 t or 168 Moz, IOCG 352 t or 11 Moz and porphyry copper 6,082 t or 195 Moz. And all together signify an estimated number of 11,662 t equivalent to 375 Moz. Moreover, should be added that a number of potential gold bearing base metals deposits (both porphyry copper and IOCG) do not include their gold content in public format, hence, the number provided could be estimated conservative. This figures support future maintenance of Chile’s current gold production level as well as eventual important increases if undeveloped project come into production.

Acknowledgements

The author would like to thank the support given to this article by the Mineralium Consulting Group. The cooperation of X. Prieto during the stage of data collection is greatly appreciated. The early draft of the manuscript benefited from reviews by Ch. Ford, F. Henriquez and W. Vivallo carefully revised the document and made numerous suggestions that assisted to greatly improve previous versions of the manuscript.

References

Altman, K.A.; Cox, J.J.; Moore, C.M.; Weir, I. 2017. Technical Report on the Guanaco and Amanca Gay Gold Project, Antofagasta Region (II), Chile. NI 43-101 Report, Austral Gold Ltd.-RPA: 377 p.

Andina Mineral Inc. 2012. Press Release, Acquisition of the Volcán Gold Deposit: 2 p.

AMSA, 2017. Ore Reserves and Mineral Resources Estimates. In Antofagasta PLC Annual Report: 216 p.

Apablaza, P. 2015. Porphyry and skarn copper mineralization at Mirador, Centinela District, northern Chile. In Congreso Geológico Chileno, No. 14: p 356. La Serena.

Arancibia, G.; Matthews, S.; Cornejo, P.; Pérez de Arce, C.; Zuluaga, J.; Kasaneva, S. 2006. 40Ar/39Ar and K-Ar geochronology of magmatic and hydrothermal events in a classic low-sulphidation epithermal bonanza deposit: El Peñón, northern Chile. Mineralium Deposita 41 (5): 505-516.

Armitage, A.; Davis, C. 2012. Resource Estimate on the Escalones Porphyry Copper Project, South American Silver Corp., GeoVector Management Inc.: 50 p.

Arredondo, C.; Moscoso, R.; Prieto, X.; Ortega, R.; Carrasco, R.; Vivallo, W.; Mateo, L.; Pantoga, J.; Ulloa, M.; Ercilla, O.; Ridelle, E. 2017. Depósitos Minerales de la Región de Coquimbo. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie de Recursos Minerales y Energéticos 35: 134 p., 2 mapas escala 1:500,000, 1 CD con anexos. Santiago.

Arribas, A.; Illanes, J.L.; Peralta, C.; Fuentes, M.; Kowalczyk, P.; Taufen, P. 2005. Geochemical study of the steam-heated cap above the Puren deposit, La Coipa mine, Chile. Geological Society of Nevada Conference, Reno, Graphic Presentation: 20 slides.

Astorga, D.; Griffiths, S.; Crosato, S.; Joquera, C.; Plasencia, C. 2017. Alturas: A unique discovery within a mature district trough integrating sound geological practices, multidisciplinary expertise and leading technology. In Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration (Tschirhart, V.; Thomas, M.D.; editors): 587-600.

Atna Resources Ltda. 2002. Cerro Negro Copper Project, Region III; Chile, Unpublished Report, Minera Atna Chile Limitada: 17 p.
Barrick. 2016. Alturas, Geology and Discovery, Toronto Geological Discussion Group, Graphic Presentation: 22 slides.

Beard, E.; Jowitt, S. 2019. Gold Resource Distribution in South America. SEG South American Conference: Sierra to Craton, Abstracts: 1 p.

Belanger, M. 2003. La Coipa Mine, Chile. Technical Report Prepared for Kinross Gold Corporation: 231 p.

BHP. 2018. BHP Annual Report: 300 p.

Bissig, T.; Lee, J.K.W.; Clark, A.H.; Heather, K.B. 2001. The Cenozoic history of volcanism and hydrothermal alteration in the central Andean flat-slab region: New 40Ar/39Ar constraints from the El Indio-Pascua Au (Ag, Cu) belt, 29°20´-30°30´S. International Geology Review 43: 312-340.

Bissig, T.; Clark, A.H.; Lee, J.K.W.; von Quadt, A. 2003. Petrogenetic and metallogenic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au-Ag-Cu Belt, Chile/Argentina. Mineralium Deposita 38: 844-862.

Bissig, T.; Donoso, D.; Guerra, N.; Dipple, G. 2007. Vein carbonates in the low sulfidation epithermal Au-Ag district of El Peñón, II Región, Chile: environment of formation and exploration implications. Revista Geológica de Chile 34 (2): 291-304. doi: 10.5027/andgeoV34n2-a07.

Bissig, T.; Clark, A.H.; Rainbow, A.; Montgomery, A. 2015. Physiographic and tectonic settings of high-sulfidation epithermal gold-silver deposits in the Andes and their controls on mineralizing processes. Ore Geology Reviews 65: 327-364.

Bloch, W.; Schurr, B.; Kummerow, J.; Salazar, P.; Shapiro, S.A. 2018. From slab coupling to slab pull: Stress segmentation in the subducting Nazca plate. Geophysical Research Letters 45: 5407-5416.

Boetsch, M. 2014. Control Estructural de la Mineralización Argento-Aurífera y Criterios de Exploración en el Distrito Cerro Bayo, Región de Aysén, Chile. Memoria de Titulo (Unpublished), Departamento de Geología, Universidad de Chile: 163 p.

Boric, R.; Díaz, F.; Maksaev, V. 1990, Geología y yacimientos metalíferos de la región de Antofagasta. Servicio Nacional de Geología y Minería-Chile, Boletín 40: 246 p.

Brewer, N.; Azevedo, F.; Huete, D.; Guevara, T.; Rojas, F.; Rodriguez, J.; Lagos, C.; Cerda, C.; Moreno, C.; Baumgartner, R.; Trueman, A.; Foley, A. 2017. The Discovery and Geology of the Salares Norte Epithermal Gold-Silver Deposit, Northern Chile. AME Roundup 2017, Power Point presentation: 21 slides. Vancouver.

Brimage, D.; Rennie, D.W.; Nilsson, J.; Winkers, A.; Davies, M. 2011. Technical Report on the Santo Domingo Project: 295 p. Ausenco.

Barrick. J. 1986. Precious metals and cenozoic volcanism in the Chilean Andes. In Exploration for Ore Deposits of the North American Cordillera (Nichols, C.E.; editor), Journal of Geochemical Exploration 25: 1-19.

Bissig, T. 2002. Miocene Landscape Evolution and Geomorphic Control on Epithermal Processes in the El Indio-Pascua Au-Ag-Cu Belt, Chile and Argentina. Economic Geology 97: 971-996.

Bissig, T.; Clark, A.H.; Lee, J.K.W.; von Quadt, A. 2003. Petrogenetic and metallogenic responses to Miocene slab flattening: new constraints from the El Indio-Pascua Au-Ag-Cu Belt, Chile/Argentina. Mineralium Deposita 38: 844-862.
Gold deposits in Chile

Camus, F.; Skewes, M.A. 1991. The Faride epithermal silver-gold deposit, Antofagasta region, Chile. Economic Geology 86: 1222-1237.

Camus, F.; Boric, R.; Skewes, M.A.; Castelli, J.C.; Reichard, E.; Mestre, A. 1991. Geologic, Structural, and Fluid Inclusions Studies of El Bronce Epithermal Vein System, Petorca, Central Chile. Economic Geology 86: 1317-1345.

Castellón, R. 2017. Geología del yacimiento Panulcillo, Características Geoquímicas y Control Estructural de Cuerpos Mineralizados. Tesis para optar al grado de Magíster en Ciencias de la Ingeniería (Unpublished), Pontificia Universidad Católica de Chile, Escuela de Ingeniería: 190 p.

Charrier, R.; Pinto, L.; Rodríguez, M. 2007. Tectonostratigraphic evolution of the Andean Orogen in Chile. In The Geology of Chile (Moreno, T.; Gibbons, W.; editors). The Geological Society of London: 21-114.

Charrier, R.; Ramos, V.; Tapia, F.; Sagripianti, L. 2014. Tectono-stratigraphic evolution of the Andean orogeny between 31 and 37°S (Chile and Western Argentina). Geological Society, London, Special Publications 399: 49 p.

Churata, E.; Vergara, R.; Villegas, P.; Toro, J. 2019. Mocha Porphyry Copper Deposit: An Update. SEG South American Conference: Sierra to Craton: Abstracts: 3 p.

Colley, H.; Treolar, P.J.; Diaz, F. 1989. Gold-silver mineralization in the El Salvador region, northern Chile: Economic Geology Monograph 6: 208-217.

Coloma, F.; Valín, X.; Olivares, V.; Vásquez, P.; Creixell, C.; Salazar, E.; Ducea, M.N. 2017. Geochemistry of Permian to Triassic igneous rocks from northern Chile (28°-30°15’S): Implications on the dynamics of the proto-Andean margin, Andean Geology 44 (2): 147-178. doi: 10.5027/andgeoV44n2-a03.

Cuadra, W.; Dunkerley, P.M. 1991. A History of Gold in Chile. Economic Geology 86: 1155-1173.

Cuitiño, L.; Diaz, S.; Puig, A. 1988. Aspectos de la mineralogía, geoquímica y geotermometría de los yacimientos epitermales Guanao y Cachinal de la Sierra, Antofagasta, Chile. In Congreso Geológico Chileno, No. 5, Actas: B273-B278. Santiago.

Dalziel, I.W.D. 1986. Collision and Cordilleran orogenesis: An Andean perspective: Geological Society of London Special Publication 2: 389-404.

Davidson, J.; Mpodozis, C. 1991. Regional geologic setting of epithermal gold deposits, Chile: Economic Geology 86: 1174-1186.

Deckart, K.; Hervé, F.; Fanning, M.; Ramírez, V.; Calderón, M.; Godoy, E. 2014. U-Pb Geochronology and Hf-O Isotopes of zircons from the Pennsylvanian Coastal Batholith, South-Central Chile, Andean Geology 41 (1): 49-82. doi: 10.5027/andgeoV41n1-a03.

Díaz-Alvarado, J.; Galaz, G.; Oliveros, V.; Creixell, C.; Calderón, M. 2019. Fragments of the late Paleozoic accretionary complex in central and Northern Chile: Similarities and differences as a key to decipher the complexity of the late Paleozoic to Triassic early Andean events. In Andean tectonics (Horton, B.K.; Folguera, A.; editors): 509-530.

Easdon, M. 2010. Technical Report on the Cerro Maricunga Gold Project, Region III, Chile. Atacama Pacific Gold Corporation: 69 p.

Eggert, E.; Kasaneva, S. 1995. San Cristobal gold district, Antofagasta, Chile: Pacrim Congress 95. The Australian Institute of Mining and Metallurgy Publication Series 9 (95): 197-202.

Equus Mining Ltd. 2017. Los Domos Epithermal Project. Annual General Meeting Presentation: 21 p.

Forsythe, R.D.; Kent, D.V.; Mpodozis, C.; Davidson, J. 1987. Paleomagnetism of Permian and Triassic rocks, central Chilean Andes. In Gondwana Six: Structure, tectonics and geophysics (Mckenzie, G.D.; editor) Geophysical Monograph 40: 241-252. Washington.

Frikken, P.; Cooke, D.; Walshe, J.; Archibald, D.; Skarmeta, J.; Serrano, L.; Vargas, R. 2005. Mineralogical and Isotopic Zonation in the Sur-Sur Tournimaline Breccia Río Blanco-Los Bronces Cu-Mo Deposit, Chile: Implication for ore genesis. Economic Geology 100 (5): 935-961.

Gamonal, S.; Bissig,T.; Fletcher, D.; Schroer, G.; den Boer, D.; Jemielita, R. 2015. Oligocene to Miocene volcanic and hydrothermal history and revised early to
middle Miocene Ag-Au mineralization ages of the La Coipa district, Maricunga belt. In Congreso Geológico Chileno, No. 14, Actas: 4 p. La Serena.

Gamonal, S.; Bissig, T. 2019. Metallogenetic Evolution of the Maricunga Belt and Adjacent Arc Segments: A Case for tectonic Domains Controlling Distribution of Epithermal versus Porphyry Deposits. SEG South American Conference: Sierra to Craton: Abstracts: 3 p.

Gardeweg, M.; Ramírez, C. 1984. Volcanismo del Cenozoico Superior del Altiplano Chileno (18°-28°S), en Seminario Actualización de la Geología de Chile, Apuntes, Sernageomin: E1-31.

Garofalo, P. 2009. Physical-chemical properties of the hydrothermal ore fluid in the Faride epithermal deposit (Antofagasta Region, Chile) from a preliminary set of high resolution fluid inclusion. GEOACTA, Special Publication 2: 87-95.

Greiner, G. 1991. Características y Distribución de los Placeres Auríferos de Chile. In Gisements Alluviaux d'Or: 14 p. La Paz.

Goldcorp. 2017. Fact Sheet -50/50 Joint venture in Maricunga District. http://Goldcorp.com; (Last visit May, 2020).

Gröpper, H.; Calvo, M.; Crespo, H.; Bisso, C.R.; Cuadra, W.A.; Dunkerley, P.M.; Aguirre, E. 1991. The epithermal gold-silver deposit of Choquelimpie, northern Chile: Economic Geology 86: 1206-1221.

Herrera, S.; Pinto, L.; Deckart, K.; Cortés, J.; Valenzuela, J. 2017. Cenozoic tectonostratigraphic evolution and architecture of the Central Andes in northern Chile based on the Aquine region, Western Cordillera (19°-19°30′ S). Andean Geology 44 (2): 87-122. doi: 10.5027/andgeoV44n2-a01.
Gold deposits in Chile

Kay, S.M.; Godoy, E. 2005. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes, Geological Society of America Bulletin 117 (1-2): 67-88.

Kingsgate Consolidated Ltd. 2016. Nueva Esperanza Mineral Resource Update, Press Release: 20 p.

Kojima, S. 1999. Some Aspects Regarding the tectonic Setting of High- and Low-sulfidation Epithermal Gold of Chile. Resource Geology 49 (3): 175-181.

Kojima, S.; Campos, E. 2011. An Overview of Chilean Economic Deposits. SGA News 29: 8 p.

Lagos, R. 2010. Exploración minera del Proyecto Chimberos Este, Distrito Esperanza, Región de Atacama, Chile. Memoria para optar al Título de Geólogo (Unpublished), Departamento de Geología, Universidad de Chile: 101 p.

Lambert, R.; Gow, N.; Hampton, P.; Gochnour, L. 2012. Technical Report on the El Morro Project, Region III, Chile, RPA. New Gold Inc.: 167 p.

Lewis, J.; San Martin, A.; Gowans, R.; Shoemaker, S. 2011. Technical Report on the Results of the Pre-feasibility Study of the Dorado Deposits, Volcan Gold Project, Region III, Chile. MICON International Ltd.: 174 p.

Llaumett, C. 2009. Proyecto Inca de Oro Sur, Geología, Mineralización y Evaluación de Recursos, III Región Chile. Unpublished report: 44 p.

Marsh, T.M.; Einaudi, M.T.; McWilliams, M. 1997. 40Ar/39Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos district, Chile. Economic Geology 97: 784-806.

Miller, J.F.; Harris, N.B.W. 1989. Evolution of continental crust in the Central Andes: constraints from Nd isotope systematics. Geology 17: 615-617.
Moncada, D.; De Pascale, G.; Reich, M.; Barra, F.; Morata, D.; Calderón, C.; González, J.; González, H.; Mundaca, P. 2015. Fluids in the Alhué gold mining District, Chile. In Congreso Geológico Chileno, No. 14, Actas: 4 p. La Serena.

Morel, R. 2009. Clasificación y distribución de depósitos de Cu-Fe (Au,Ag) en el cinturón jurásico-cretácico del norte de Chile (25°-31° L.S.): un enfoque para la exploración de recursos de Cu. In Congreso Geológico Chileno, No. 12: 4 p. Santiago.

Muntean, J.L.; Einaudi, M.T. 2001. Porphry-Epithermal Transition: Maricunga Belt, Northern Chile. Economic Geology 96: 743-772.

Naranjo, J.; Hevia, F.; Creixell, C. 2019. Volcano-Tectonic Paleo Environmental Evolution of the Southern Maricunga Belt, Northern Chile. Economic Geology 96: 743-772.

Perelló, J.; Sillitoe, R.H.; Brockway, H.; Posso, H.; Mpodozis, C. 2009. Contiguous Porphyry Cu-Mo and Cu-Au Mineralization at Los Pelambres, Central Chile. In Congreso Geológico Chileno, No. 12, Actas: 4 p. Santiago.

Pardo-Casas, F.; Molnar, P. 1987. Relative motion of the Nazca (Farellón) and South American plates since late Cretaceous time. Tectonics 6: 233-248.

Pegasus Gold Inc. 1997. Pullalli Project in 1996 Annual Report: 63 p.

Perelló, J.; Cabello, J. 1989. Pórfidos Cupríferos ricos en Oro: una revisión. Revista Geológica de Chile 16 (1):73-92. doi: 10.5027/andgeoV16n1-a05.

Perelló, J.; Urzúa, F.; Cabello, J.; Ortiz, F. 1996. Clustered, gold-bearing Oligocene Porphyry Copper and Associated Epithermal Mineralization at La Fortuna, Vallenar Region, Northern Chile. Society of Economic Geologists Special Publication 5: 81-90.
Northern Chile Porphyry Copper belt. Society of Economic Geologist Special Publication 15: 229-252

Pilger, R.H. 1984. Cenozoic plate kinematics, subduction and magmatism: South American Andes. Journal Geological Society of London 141: 293-802.

Poblete, J. 2011. Geology, Geochronology and Structural Reconstruction of the Cerro Bayo Epithermal District, Chile. Society of Economic Geologist Special Publication 15: 229-252

Portigliati, C.; Emparan, C.; Vogel, S. 1988. Los agentes geológicos en la formación de placeres auríferos en el sur de Chile. In Congreso Geológico Chileno No. 5, Actas 1: A365-A383. Santiago.

Puig, A.; Díaz, S.; Cuítiiho, L. 1988. Sistemas hidrotermales asociados a calderas en el arco volcánico Paleógeno de la región de Antofagasta, Chile: Distritos El Guanaco, Cachinal de la Sierra y El Soldado. Revista Geológica de Chile 15 (1): 57-82. doi: 10.5027/andgeoV15n1-a05.

Quintana, K. 2018. Caracterización Petrográfica y calcográfica de Zona Mina Este, Distrito Minero Alhué. Memoria de Título (Unpublished). Departamento de Ciencias de la Tierra, Universidad de Concepción: 37 p.

Ramos, V. 2010. The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geological Journal 45: 2-25.

Ramos, V.; Folguera, A. 2016. Andean flat-slab subduction through time. In Ancient Orogens and Modern Analogues (Murphy, J.B.; Keppie, J.D.; Hynes, A.J.; editors). Geological Society of London, Special Publications 327: 31-54.

Reyes, M. 1991. The Andacollo strata-bound gold deposit, Chile and its position in a porphyry copper-gold system. Economic Geology 86: 1301-1316.

Richards, J.P.; López, G.P.; Zhu, J.; Creaser, R. A.; Locket, A.J.; Mumin, A.H. 2016. Contrasting tectonic settings and sulfur contents of magma associated with cretaceous porphyry Cu-Mo-Au and intrusion-related iron oxide Cu-Au deposits, in northern Chile. Economic Geology 112: 295-318.

Rivano, S.; Sepúlveda, P. 1991. Hoja Illapel, Región de Coquimbo, escala 1:250.000. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 69: 132 p., 1 mapa escala 1:250.000. Santiago.

Roeschman, C. 1979. El oro en el yacimiento de cobre El Salvador, Memoria de Título (Unpublished). Departamento de Geología, Universidad de Chile: 130 p. Santiago.

Ruiz, C.; Aguirre, L.; Corvalán, J.; Klohn, C.; Klohn, E.; Levi, B. 1965. Geología y Yacimientos Metalíferos de Chile. Distribución y Génesis de los Yacimientos Metalíferos Chilenos. Instituto de Investigaciones Geológicas: 302 p. Santiago.

Sillitoe, R.H. 1999. Gold Metallogeny of the Andes: an Introduction. Economic Geology 86: 1187-1205.

Sillitoe, R.H. 1992. Andean copper metallogeny of the central Andes, past, present and future exploration objectives. Economic Geology 87: 2205-2216.

Sillitoe, R.H. 1994. Models for Andean Copper Deposits. In Congreso Geológico Chileno, No. 7, Actas 2: p. 1618. Concepción.

Sillitoe, R.H. 1995. Exploration and Discovery of Base- and Precious-Metal Deposits in the Circum-Pacific Region During the Last 25 Years. Resource Geology Special Issue 19: 119 p.

Sillitoe, R.H. 1999. Styles of High-Sulphidation Gold, Silver and Copper Mineralisation in Porphyry and Epithermal Environments. PACRIM 99: 16 p. Bali.

Sillitoe, R.H. 2000. Exploration and Discovery of Base- and Precious-Metal Deposits in the Circum-Pacific Region During the Last 25 Years-A late 1990s Update. Resource Geology Special Issue 21: 65 p.

Sillitoe, R.H. 2003. Iron oxide-copper-gold deposits: An Andean view. Mineralium Deposita 38: 787-812.

Sillitoe, R.H. 2008. Major Gold Deposits and Belts of the North and South American Cordillera: Distribution,
Tectonomagmatic Settings, and Metallogenic Considerations. Economic Geology 103: 663-687.

Sillitoe, R.H. 2010. Exploration and Discovery of Base- and Precious-Metal Deposits in the Circum-Pacific Region During the Last 25 Years-A 2010 Perspective. Resource Geology Special Issue 22: 139 p.

Sillitoe, R.H.; McKee, E.H.; Vila, T. 1991. Reconnaissance K-Ar geochronology of the Maricunga gold-silver belt, northern Chile: Economic Geology 86: 1261-1270.

Sillitoe, R.H.; Tolman, J.; Van Kerkvoort, G. 2013. Geology of the Caspiche porphyry Gold-Copper Deposit, Maricunga belt, Northern Chile. Economic Geology 108: 585-604.

Simón, A.; Larrondo, P.; Maycock, J.; Castillo, F.; Cabrera, R. 2010. Orosur Mining Inc., Pantanillo Norte Property. NI 43-101. Technical Report, Amec.: 140 p.

Singer, D.A.; Berger, V.I.; Moring, B.C. 2005. Porphyry copper deposits of the world-Database, map, and grade and tonnage models. U.S. Geological Survey. Open-file Report 2005-1060: 9 p.

Singer, D.A.; Berger, V.I.; Moring, B.C. 2008. Porphyry copper deposits of the world-Database, map, and grade and tonnage models. U.S. Geological Survey Open-file Report 2008-1155: 45 p.

Slater, D.; Hearne, J.; Kelley, R. 2012. CMD Gold Mine, Andacollo, Chile. Independent Technical Report: 240 p.

Stern, C. 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31 (2): 161-206.

Tassara, A.; Götte, H.J.; Schmidt, S.; Hackney, R. 2006. Three-dimensional density model of the Nazca plate and the Andean continental margin, Journal of Geophysical Research 111: B09404.

Teck Resources Limited. 2016. 2015 Annual Information Form, 117 p., http://www.teck.com/media/Investors-aif_march_2016_T5.12.pdf. (Last visit 15/08/2019).

Thompson, J.F.H.; Gale, V.G.; Tosdal, R.; Wright, W.A. 2004. Characteristic and Formation of the Jerónimo Carbonate-Replacement Gold Deposit, Potrerillos District, Chile. Society of Economic Geologists Special Publication 11: 75-95.

Vida, C.; Páez, G.; Galina, M.; Jovic, S.; Guido, M.; Moreira, P.; López, L. 2019. Distribution of the Hydrothermal Alteration at the Guanaco Au-Cu District Mine, Northern Chile, SEG South American Conference: Sierra to Craton: Abstracts: 4 p.

Vila, T. 1991b. Precious Metals Mineralization Styles in the Maricunga Belt, High Andes of Northern Chile. In Congreso Geológico Chileno No.6, Resúmenes Expandidos: 153-154. Viña del Mar.

Vila, T.; Sillitoe, R.H. 1991. Gold-rich porphyry systems in the Maricunga belt, northern Chile. Economic Geology 86: 1238-1260.

Vivallo, W. 2009. Yacimientos de óxidos de Hierro-cobre-oro en Chile. In Congreso Geológico Chileno, No. 12, Actas: 4 p. Santiago.

Vivallo, W.; Diaz, A.; Jorquera, R. 2008. Yacimientos Metalíferos de la Región de Atacama. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, Serie Recursos Minerales y Energéticos 27: 75 p.

Vivallo, W.; Diaz, A.; Jorquera, R. 2009. Provincias Metalogénicas en la Región de Atacama, Chile. In Congreso Geológico Chileno, No. 12, Actas: 4 p. Santiago.

Warren, I.; Archibald, D.; Simmons, S.F. 2008. Geochronology of epithermal Au-Ag mineralization, magmatic-hydrothermal alteration and supergene weathering in the El Peñón district, northern Chile. Economic Geology 103 (4): 851-864.

Wheeler, D.E. 1991. Coeur d’Alene Mines-a commitment to growth (abs.): World Gold ´91, The Australian Institute of Mining, Metallurgy and Exploration (AusIM)-Society for Mining ,metallurgy and Exploration(SME) Joint Conference, 2nd, Cairns, Queensland: 285-286.

Willner, A.P.; Richter, P.P.; Ring, U. 2009. Structural overprint of a late Paleozoic accretionary system in north-central Chile (34°-35°S) during post-accretional deformation, Andean Geology 36 (1): 17-36.

Yamana Gold. 2018. Resource Updates for La Pepa, Jerónimo and Amancaya, News Release: 5 p. Toronto.

Zentilli, M.; Muljia, T.; Walker, J.A.; Maksaev, V. 1988. Effects of hydrothermal alteration in the distribution of gold in Miocene rocks of Copiapó Volcanic Complex, Chile. Revista Comunicaciones 39: p. 80.

Zentilli, M.; Stark, A.; Reynolds, P.H.; Muljia, T.; Walker, J.A.; Ulrichsen, C.E. 1991. Native sulphur deposits as the crown of epithermal systems? Isotopic and geochronological data on Volcán Copiapó Complex, Maricunga, northern Chile. In Congreso Geológico de Chile, No.6. Actas Resúmenes Expandidos: 616-620. Viña del Mar.

Zuluaga, I. 2018. Geología Distrito El Peñón, II Región, Yamana Gold, Seminario yacimientos Epitermales de Au-Ag de América, Power Point Presentation: 86 slides.

Manuscript received: September 6, 2019; revised/accepted: August 5, 2020; available online: September 30, 2020.