Dynamics of symmetric holomorphic maps on projective spaces

KOHEI UENO

Abstract

We consider complex dynamics of a critically finite holomorphic map from \mathbb{P}^k to \mathbb{P}^k, which has symmetries associated with the symmetric group S_{k+2} acting on \mathbb{P}^k, for each $k \geq 1$. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.

1 Introduction

For a finite group G acting on \mathbb{P}^k as projective transformations, we say that a rational map f on \mathbb{P}^k is G-equivariant if f commutes with each element of G. That is, $f \circ r = r \circ f$ for any $r \in G$, where \circ denotes the composition of maps. Doyle and McMullen [4] introduced the notion of equivariant functions on \mathbb{P}^1 to solve quintic equations. See also [11] for equivariant functions on \mathbb{P}^1. Crass [2] extended Doyle and McMullen’s algorithm to higher dimensions to solve sextic equations. Crass [3] found a good family of finite groups and equivariant maps for which one may say something about global dynamics. Crass [3] conjectured that the Fatou set of each map of this family consists of attractive basins of superattracting points. Although I do not know whether this family has relation to solving equations or not, our results will give affirmative answers for the conjectures in [3].

In section 2 we shall explain an action of the symmetric group S_{k+2} on \mathbb{P}^k and properties of our S_{k+2}-equivariant map. In section 3 and 4 we shall show our results about the Fatou sets and hyperbolicity of our maps by using properties of our maps and Kobayashi metrics.
2 S_{k+2}-equivariant maps

Crass [3] selected the symmetric group S_{k+2} as a finite group acting on \mathbb{P}^k and found an S_{k+2}-equivariant map which is holomorphic and critically finite for each $k \geq 1$. We denote by $\mathcal{C} = \mathcal{C}(f)$ the critical set of f and say that f is critically finite if each irreducible component of $\mathcal{C}(f)$ is periodic or preperiodic. More precisely, S_{k+2}-equivariant map g_{k+3} defined in section 2.2 preserves each irreducible component of $\mathcal{C}(g_{k+3})$, which is a projective hyperplane. The complement of $\mathcal{C}(g_{k+3})$ is Kobayashi hyperbolic. Furthermore restrictions of g_{k+3} to invariant projective subspaces have the same properties as above. See section 2.3 for details.

2.1 S_{k+2} acts on \mathbb{P}^k

An action of the $(k+2)$-th symmetric group S_{k+2} on \mathbb{P}^k is induced by the permutation action of S_{k+2} on \mathbb{C}^{k+2} for each $k \geq 1$. The transposition (i,j) in S_{k+2} corresponds with the transposition “$u_i \leftrightarrow u_j$” on \mathbb{C}_u^{k+2}, which pointwise fixes the hyperplane $\{u_i = u_j\} = \{u \in \mathbb{C}_u^{k+2} \mid u_i = u_j\}$. Here $\mathbb{C}^{k+2} = \mathbb{C}_u^{k+2} = \{u = (u_1,u_2,\ldots,u_{k+2}) \mid u_i \in \mathbb{C} \text{ for } i = 1,\ldots,k+2\}$.

The action of S_{k+2} preserves a hyperplane H in \mathbb{C}_u^{k+2}, which is identified with \mathbb{C}^{k+1} by projection $A : \mathbb{C}_u^{k+2} \rightarrow \mathbb{C}^{k+1}$,

$$H = \left\{ \sum_{i=1}^{k+2} u_i = 0 \right\} \cong \mathbb{C}_x^{k+1} \text{ and } A = \begin{pmatrix} 1 & 0 & \ldots & 0 & -1 \\ 0 & 1 & \ldots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 & -1 \end{pmatrix}. $$

Here $\mathbb{C}^{k+1} = \mathbb{C}_x^{k+1} = \{x = (x_1,x_2,\ldots,x_{k+1}) \mid x_i \in \mathbb{C} \text{ for } i = 1,\ldots,k+1\}$.

Thus the permutation action of S_{k+2} on \mathbb{C}_u^{k+2} induces an action of “S_{k+2}” on \mathbb{C}^{k+1}. Here “S_{k+2}” is generated by the permutation action S_{k+1} on \mathbb{C}_x^{k+1} and a $(k+1,k+1)$-matrix T which corresponds to the transposition $(1, k+2)$ in S_{k+2},

$$T = \begin{pmatrix} -1 & 0 & \ldots & 0 \\ -1 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ -1 & 0 & \ldots & 1 \end{pmatrix}. $$

Hence the hyperplane corresponding to $\{u_i = u_j\}$ is $\{x_i = x_j\}$ for $1 \leq i < j \leq k+1$. The hyperplane corresponding to $\{u_i = u_{k+2}\}$ is $\{x_i = 0\}$ for $1 \leq i \leq k+1$. Each element in “S_{k+2}” which corresponds to some transposition in S_{k+2} pointwise fixes one of these hyperplanes in \mathbb{C}^{k+1}.
The action of “S_{k+2}” on C^{k+1} projects naturally to the action of “S_{k+2}” on P^k. These hyperplanes on C^{k+1} projects naturally to projective hyperplanes on P^k. Here $P^k = \{ x = [x_1 : x_2 : \cdots : x_{k+1}] \mid (x_1, x_2, \cdots, x_{k+1}) \in C^{k+1} \setminus \{0\} \}$. Each element in the action of “S_{k+2}” on P^k which corresponds to some transposition in S_{k+2} pointwise fixes one of these projective hyperplanes. We denote “S_{k+2}” also by S_{k+2} and call these projective hyperplanes transposition hyperplanes.

2.2 Existence of our maps

One way to get S_{k+2}-equivariant maps on P^k which are critically finite is to make S_{k+2}-equivariant maps whose critical sets coincide with the union of the transposition hyperplanes.

Theorem 1 ([3]). For each $k \geq 1$, g_{k+3} defined below is the unique S_{k+2}-equivariant holomorphic map of degree $k + 3$ which is doubly critical on each transposition hyperplane.

$$g = g_{k+3} = [g_{k+3,1} : g_{k+3,2} : \cdots : g_{k+3,k+1}] : P^k \to P^k,$$

where $g_{k+3,l}(x) = x_l^3 \sum_{s=0}^{k} (-1)^s \frac{s + 1}{s + 3} x_l^s A_{k-s}$. $A_0 = 1$, and A_{k-s} is the elementary symmetric function of degree $k-s$ in C^{k+1}.

Then the critical set of g coincides with the union of the transposition hyperplanes. Since g is S_{k+2}-equivariant and each transposition hyperplane is pointwise fixed by some element in S_{k+2}, g preserves each transposition hyperplane. In particular g is critically finite. Although Crass [3] used this explicit formula to prove Theorem 1, we shall only use properties of the S_{k+2}-equivariant maps described below.

2.3 Properties of our maps

Let us look at properties of the S_{k+2}-equivariant map g on P^k for a fixed k, which is proved in [3] and shall be used to prove our results. Let L^{k-1} denote one of the transposition hyperplanes, which is isomorphic to P^{k-1}. Let L^m denote one of the intersections of $(k-m)$ or more distinct transposition hyperplanes which is isomorphic to P^m for $m = 0, 1, \cdots, k - 1$.

First, let us look at properties of g itself. The critical set of g consists of the union of the transposition hyperplanes. By S_{k+2}-equivariance, g preserves each transposition hyperplane. Furthermore the complement of the critical set of g is Kobayashi hyperbolic.
Next, let us look at properties of g restricted to L^m for $m = 1, 2, \cdots, k - 1$. Let us fix any m. Since g preserves each L^m, we can also consider the dynamics of g restricted to any L^m. Each restricted map has the same properties as above. Let us fix any L^m and denote by $g|_{L^m}$ the restricted map of g to the L^m. The critical set of $g|_{L^m}$ consists of the union of intersections of the L^m and another L^{k-1} which does not include the L^m. We denote it by L^m_{k-1}, which is an irreducible component of the critical set of $g|_{L^m}$. By S_{k+2}-equivariance, $g|_{L^m}$ preserves each irreducible component of the critical set of $g|_{L^m}$. Furthermore the complement of the critical set of $g|_{L^m}$ in L^m is Kobayashi hyperbolic.

Finally, let us look at a property of superattracting fixed points of g. The set of superattracting points, where the derivative of g vanishes for all directions, coincides with the set of L^0's.

Remark 1. For every $k \geq 1$ and every m, $1 \leq m \leq k$, a restricted map of g_{k+3} to any L^m is not conjugate to g_{m+3}.

2.4 Examples for $k = 1$ and 2

Let us see transposition hyperplanes of the S_3-equivariant function g_4 and the S_4-equivariant map g_5 to make clear what L^m is. In [3] one can find explicit formulas and figures of dynamics of S_{k+2}-equivariant maps in low-dimensions.

2.4.1 S_3-equivariant function g_4 in P^1

$$g_3([x : y]) = [x^3(-x + 2y) : x^2(2x - y)] : \mathbb{P}^1 \to \mathbb{P}^1,$$

$$C(g_3) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_1 = x_2\} = \{0, 1, \infty\} \text{ in } \mathbb{P}^1.$$

In this case "transposition hyperplanes" are points in \mathbb{P}^1 and L^0 denotes one of three superattracting fixed points of g_3.

2.4.2 S_4-equivariant map g_5 in P^2

$$C(g_5) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\} \cup \{x_1 = x_2\} \cup \{x_2 = x_3\} \cup \{x_3 = x_1\} \text{ in } \mathbb{P}^2.$$

In this case L^1 denotes one of six transposition hyperplanes in \mathbb{P}^2, which is an irreducible component of $C(g_5)$. For example, let us fix a transposition hyperplane $\{x_1 = 0\}$. Since g_5 preserves each transposition hyperplane,
we can also consider the dynamics of \(g_5 \) restricted to \(\{ x_1 = 0 \} \). We denote by \(g_5|_{x_1=0} \) the restricted map of \(g_5 \) to \(\{ x_1 = 0 \} \). The critical set of \(g_5|_{x_1=0} \) in \(\{ x_1 = 0 \} \simeq \mathbb{P}^1 \) is

\[
C(g_5|_{x_1=0}) = \{ [0 : 1 : 0], [0 : 0 : 1], [0 : 1 : 1] \}.
\]

When we use \(L^0 \) after we fix \(\{ x_1 = 0 \} \), \(L^0 \) denotes one of intersections of \(\{ x_1 = 0 \} \) and another transposition hyperplane, which is a superattracting fixed point of \(g_5|_{x_1=0} \) in \(\mathbb{P}^1 \). The set of superattracting fixed points of \(g_5 \) in \(\mathbb{P}^2 \) is

\[
\{ [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 0], [1 : 1 : 1], [0 : 1 : 1] \}.
\]

In general \(L^0 \) denotes one of intersections of two or more transposition hyperplanes, which is a superattracting fixed point of \(g_5 \) in \(\mathbb{P}^2 \).

3 The Fatou sets of the \(S_{k+2} \)-equivariant maps

3.1 Definitions and preliminaries

Let us recall theorems about critically finite holomorphic maps. Let \(f \) be a holomorphic map from \(\mathbb{P}^k \) to \(\mathbb{P}^k \). The Fatou set of \(f \) is defined to be the maximal open subset where the iterates \(\{ f^n \}_{n \geq 0} \) is a normal family. The Julia set of \(f \) is defined to be the complement of the Fatou set of \(f \). Each connected component of the Fatou set is called a Fatou component. Let \(U \) be a Fatou component of \(f \). A holomorphic map \(h \) is said to be a limit map on \(U \) if there is a subsequence \(\{ f^n \}_{s \geq 0} \) which locally converges to \(h \) on \(U \). We say that a point \(q \) is a Fatou limit point if there is a limit map \(h \) on a Fatou component \(U \) such that \(q \in h(U) \). The set of all Fatou limit points is called the Fatou limit set. We define the \(\omega \)-limit set \(E(f) \) of the critical points by

\[
E(f) = \bigcap_{j=1}^{\infty} \bigcup_{n=j}^{\infty} f^n(C).
\]

Theorem 2. ([10, Proposition 5.1]) If \(f \) is a critically finite holomorphic map from \(\mathbb{P}^k \) to \(\mathbb{P}^k \), then the Fatou limit set is contained in the \(\omega \)-limit set \(E(f) \).

Let us recall the notion of Kobayashi metrics. Let \(M \) be a complex manifold and \(K_M(x,v) \) the Kobayashi quasimetric on \(M \),

\[
\inf \left\{ |a| \mid \varphi : D \to M : \text{holomorphic}, \varphi(0) = x, D\varphi \left(a \left(\frac{\partial}{\partial z} \right) \right) = v, a \in \mathbb{C} \right\}
\]
for $x \in M$, $v \in T_xM$, $z \in D$, where D is the unit disk in C. We say that M is Kobayashi hyperbolic if K_M becomes a metric. Theorem 5 is a corollary of Theorem 3 and Theorem 4 for $k = 1$ and 2.

Theorem 3. (a basic result whose former statement can be found in [8, Corollary 14.5]) If f is a critically finite holomorphic function from P^1 to P^1, then the only Fatou components of f are attractive components of superattracting points. Moreover if the Fatou set is not empty, then the Fatou set has full measure in P^1.

Theorem 4. ([5, theorem 7.7]) If f is a critically finite holomorphic map from P^2 to P^2 and the complement of $C(f)$ is Kobayashi hyperbolic, then the only Fatou components of f are attractive components of superattracting points.

3.2 Our first result

Let us fix any k and $g = g_{k+3}$. For every m, $2 \leq m \leq k$, we can apply an argument in [5] to a restricted map of g to any L^m_k because every L^{m-1}_k is smooth and because every $L^m_k \cup C(g|_{L^m_k})$ is Kobayashi hyperbolic. We shall use this argument in Lemma 1, which is used to prove Proposition 1.

Proposition 1. For any Fatou component U which is disjoint from $C(g)$, there exists an integer n such that $g^n(U)$ intersects with $C(g)$.

Proof: We suppose that $g^n(U)$ is disjoint from $C(g)$ for any n and derive a contradiction by using Lemma 1 and Remark 3 below. Take any point $x_0 \in U$. Since $E(g)$ coincides with $C(g)$, $g^n(x_0)$ accumulates to $C(g)$ as n tends to ∞ from Theorem 2. Since $C(g)$ is the union of the transposition hyperplanes, there exists a smallest integer m_1 such that $g^n(x_0)$ accumulates to some L^{m_1}.

Let h_1 be a limit map on U such that $h_1(x_0)$ belongs to the L^{m_1}. From Lemma 1 below, the intersection of $h_1(U)$ and the L^{m_1} is an open set in the L^{m_1} and is contained in the Fatou set of $g|_{L^{m_1}}$.

We next consider the dynamics of $g|_{L^{m_1}}$. If there exists an integer n_2 such that $g^{n_2}(h_1(U) \cap L^{m_1})$ intersects with $C(g|_{L^{m_1}})$, then $g^{n_2}(h_1(U) \cap L^{m_1})$ intersects with some L^{m_1-1}. In this case we can consider the dynamics of $g|_{L^{m_1-1}}$. On the other hand, if there does not exist such n_2, then there exists an integer m_2 and a limit map h_2 on $h_1(U) \cap L^{m_1}$ such that the intersection of $h_2(h_1(U) \cap L^{m_1})$ and some L^{m_2} is an open set in the L^{m_2} from Remark 3 below. Thus it is contained in the Fatou set of $g|_{L^{m_2}}$. Here m_2 is smaller than m_1. In this case we can consider the dynamics of $g|_{L^{m_2}}$.

We continue the same argument above. These reductions finally come to some L^1 and we use Theorem 5. One can find a similar reduction argument in the proof of Theorem 5. Consequently $g^n(x_0)$ accumulates to some
superattracting point L^0. So there exists an integer s such that g^s sends U to
the attractive Fatou component which contains the superattracting point
L^0. Thus $g^s(U)$ intersects with $C(g)$, which is a contradiction.

Remark 2. Even if a Fatou component U intersects with some L^m and is disjoint
from any L^{m-1}, then the similar thing as above holds for the dynamics in the L^m.
In this case $U \cap L^m$ is contained in the Fatou set of $g|_{L^m}$ and there exists an integer
n such that $g^n(U \cap L^m)$ intersects with $C(g|_{L^m})$.

Lemma 1. For any Fatou component U which is disjoint from $C(g)$ and any
point $x_0 \in U$, let h be a limit map on U such that $h(x_0)$ belongs to some L^m and
does not belong to any L^{m-1}. If $g^n(U)$ is disjoint from $C(g)$ for every $n \geq 1$,
then the intersection of $h(U)$ and the L^m is an open set in the L^m.

Proof: Let B be the complement of $C(g)$. Since B is Kobayashi hyperbolic
and B includes $g^{-1}(B)$, $g^{-1}(B)$ is Kobayashi hyperbolic, too. So we can
use Kobayashi metrics K_B and $K_{g^{-1}(B)}$. Since B includes $g^{-1}(B)$,

$$K_B(x,v) \leq K_{g^{-1}(B)}(x,v) \text{ for all } x \in g^{-1}(B), v \in T_x \mathbb{P}^k.$$

In addition, since g is an unbranched covering from $g^{-1}(B)$ to B,

$$K_{g^{-1}(B)}(x,v) = K_B(g(x), Dg(v)) \text{ for all } x \in g^{-1}(B), v \in T_x \mathbb{P}^k.$$

From these two inequalities we have the following inequality

$$K_B(x,v) \leq K_B(g(x), Dg(v)) \text{ for all } x \in g^{-1}(B), v \in T_x \mathbb{P}^k.$$

Since the same argument holds for any g^n from $g^{-n}(B)$ to B,

$$K_B(x,v) \leq K_B(g^n(x), Dg^n(v)) \text{ for all } x \in g^{-n}(B), v \in T_x \mathbb{P}^k.$$

Since g^n is an unbranched covering from U to $g^n(U)$ and B includes $g^n(U)$
for every n, a sequence $\{K_B(g^n(x), Dg^n(v))\}_{n \geq 0}$ is bounded for all $x \in U$,
$v \in T_x \mathbb{P}^k$. Hence we have the following inequality for any unit vectors v_n
in $T_{x_0} U$ with respect to the Fubini-Study metric in \mathbb{P}^k,

$$0 < \inf_{|v|=1} K_B(x_0,v) \leq K_B(x_0,v_n) \leq K_B(g^n(x_0), Dg^n(x_0)v_n) < \infty.$$

That is, the sequence $\{K_B(g^n(x_0), Dg^n(x_0)v_n)\}_{n \geq 0}$ is bounded away from
0 and ∞ uniformly.

We shall choose v_n so that $Dg^n(x_0)v_n$ keeps parallel to the L^m and claim
that $Dh(x_0)v \neq 0$ for any accumulation vector v of v_n. Let $h = \lim_{n \to \infty} g^n$
for simplicity. Let V be a neighborhood of $h(x_0)$ and ψ a local coordinate on V so that $\psi(h(x_0)) = 0$ and $\psi(L^m \cap V) \subset \{y = (y_1, y_2, \ldots, y_k) \mid y_1 = \cdots = y_{k-m} = 0\}$. In this chart there exists a constant $r > 0$ such that a polydisk $P(0, 2r)$ does not intersect with any images of transposition hyperplanes which do not include the L^m. Since $\psi(g^n(x_0))$ converges to 0 as n tends to ∞, we may assume that $\psi(g^n(x_0))$ belongs to $P(0, r)$ for large n. Let $\{v_n\}_{n \geq 0}$ be unit vectors in $T_{x_0}P^k$ and $\{w_n\}_{n \geq 0}$ vectors in $T_{\psi(g^n(x_0))}C^k$ so that w_n keep parallel to $\psi(L^m)$ with a same direction and

$$Dg^n(x_0)v_n = |Dg^n(x_0)v_n| \frac{D\psi^{-1}(w_n)}{r}.$$

So we may assume that the length of w_n is almost unit for large n. We define holomorphic maps φ_n from D to $P(0, 2r)$ as

$$\varphi_n(z) = \psi(g^n(x_0)) + rzw_n \quad \text{for } z \in D$$

and consider holomorphic maps $\psi^{-1} \circ \varphi_n$ from D to B for large n. Then

$$(\psi^{-1} \circ \varphi_n)(0) = g^n(x_0),$$

$$D(\psi^{-1} \circ \varphi_n) \left(\frac{|Dg^n(x_0)v_n|}{r} \frac{\partial}{\partial z} \right)_0 = Dg^n(x_0)v_n.$$

Suppose $Dh(x_0)v = 0$, then $Dg^n(x_0)v$ converges to 0 as n tends to ∞ and so does $Dg^n(x_0)v_n$. By the definition of Kobayashi metric we have that

$$K_B(g^n(x_0), Dg^n(x_0)v_n) \leq \frac{|Dg^n(x_0)v_n|}{r} \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

Since this contradicts (1), we have $Dh(x_0)v \neq 0$. This holds for all directions which are parallel to $\psi(L^m)$. Consequently the intersection of $h(U)$ and the L^m is an open set in L^m. \qed

Remark 3. The similar thing as above holds for the dynamics of any restricted map. Thus even if a Fatou component $g^n(U)$ intersects with $C(g)$ for some n, the same result as above holds. Because one can consider the dynamics in the L^m when $g^n(U)$ intersects with some L^m.

Theorem 5. For each $k \geq 1$, the Fatou set of the S_{k+2}-equivariant map g consists of attractive basins of superattracting fixed points which are intersections of k or more distinct transposition hyperplanes.
Proof: This theorem follows from Proposition 1 and Remark 2 immediately. Let us describe details. Take any Fatou component U. From Proposition 1 there exists an integer n_k such that $g^{n_k}(U)$ intersects with $C(g)$. Since $C(g)$ is the union of the transposition hyperplanes, $g^{n_k}(U)$ intersects with some L^{k-1}. By doing the same thing as above for the dynamics of g restricted to the L^{k-1}, there exists an integer n_{k-1} such that $g^{n_k+n_{k-1}}(U)$ intersects with some L^{k-2} from Remark 2. We again do the same thing as above for the dynamics of g restricted to the L^{k-2}. These reductions finally come to some L^1. That is, there exists integers n_{k-2}, \cdots, n_2 such that $g^{n_k+n_{k-1}+\cdots+n_2}(U)$ intersects with some L^0. Hence $g^{n_k+n_{k-1}+\cdots+n_1}$ sends U to the attractive Fatou component which contains the superattracting fixed point L^0 in P^k.

4 Axiom A and the S_{k+2}-equivariant maps

4.1 Definitions and preliminaries

Let us define hyperbolicity of non-invertible maps and the notion of Axiom A. See [6] for details. Let f be a holomorphic map from P^k to P^k and K a compact subset such that $f(K) = K$. Let \hat{K} be the set of histories in K and \hat{f} the induced homeomorphism on \hat{K}. We say that f is hyperbolic on K if there exists a continuous decomposition $T_{\hat{K}} = E^u + E^s$ of the tangent bundle such that $D\hat{f}(E^u_{\hat{x}}) \subset E^u_{\hat{f}(\hat{x})}$ and if there exists constants $c > 0$ and $\lambda > 1$ such that for every $n \geq 1$,

$$|D\hat{f}^n(v)| \geq c\lambda^n|v| \text{ for all } v \in E^u \text{ and}$$

$$|D\hat{f}^n(v)| \leq c^{-1}\lambda^{-n}|v| \text{ for all } v \in E^s.$$

Here $|\cdot|$ denotes the Fubini-Study metric on P^k. If a decomposition and inequalities above hold for f and K, then it also holds for \hat{f} and \hat{K}. In particular we say that f is expanding on K if f is hyperbolic on K with unstable dimension k. Let Ω be the non-wandering set of f, i.e., the set of points for any neighborhood U of which there exists an integer n such that $f^n(U)$ intersects with U. By definition, Ω is compact and $f(\Omega) = \Omega$. We say that f satisfies Axiom A if f is hyperbolic on Ω and periodic points are dense in Ω.

Let us introduce a theorem which deals with repelling part of dynamics. Let f be a holomorphic map from P^k to P^k. We define the k-th Julia set
J_k of f to be the support of the measure with maximal entropy, in which repelling periodic points are dense. It is a fundamental fact that in dimension 1 the 1st Julia set J_1 coincides with the Julia set J. Let K be a compact subset such that $f(K) = K$. We say that K is a repeller if f is expanding on K.

Theorem 6. ([7]) Let f be a holomorphic map on \mathbb{P}^k of degree at least 2 such that the ω-limit set $E(f)$ is pluripolar. Then any repeller for f is contained in J_k. In particular,

$$J_k = \{\text{repelling periodic points of } f\}$$

If f is critically finite, then $E(f)$ is pluripolar. We need the theorem above to prove our second result.

4.2 Our second result

Theorem 7. For each $k \geq 1$, the S_{k+2}-equivariant map g satisfies Axiom A.

Proof: We only need to consider the S_{k+2}-equivariant map g for a fixed k, because argument for any k is similar as the following one. Let us show the statement above for a fixed k by induction. A restricted map of g to any L^1 satisfies Axiom A by using the theorem of critically finite functions (see [8, Theorem 19.1]). We only need to show that a restricted map of g to a fixed L^2 satisfies Axiom A by symmetry. Argument for a restricted map of g to any L^m, $3 \leq m \leq k$, is similar as for a restricted map of g to the L^2. Let us denote $g|_{L^2}$, $\Omega(g|_{L^2})$, and L^2 by g, Ω, and \mathbb{P}^2 for simplicity.

We want to show that $g|_{L^2}$ is hyperbolic on $\Omega(g|_{L^2})$ by using Kobayashi metrics. If g is hyperbolic on Ω, then Ω has a decomposition to S_i,

$$\Omega = S_0 \cup S_1 \cup S_2,$$

where $i=0,1,2$ indicate the unstable dimensions. Since $C(g)$ attracts all nearby points, S_0 includes all the L^0's and S_1 includes all the Julia sets of $g|_{L^1}$. We denote by $J(g|_{L^1})$ the Julia set of $g|_{L^1}$. Then g is contracting in all directions at L^0 and is contracting in the normal direction and expanding in an L^1-direction on $J(g|_{L^1})$. Let us consider a compact, completely invariant subset in $\mathbb{P}^2 \setminus C$,

$$S = \{x \in \mathbb{P}^2 \mid \text{dist}(g^n(x), C) \to 0 \text{ as } n \to \infty\}.$$

By definition, we have $J_2 \subset S_2 \subset S$. If g is expanding on S, then it follow that $S_0 = \cup L^0$, $S_1 = \cup J(g|_{L^1})$. Moreover $J_2 = S_2 = S$ holds from Theorem...
Since periodic points are dense in $J(g|_{L^1})$ and J_2, expansion of g on S implies Axiom A of g.

Let us show that g is expanding on S. Because f is attracting on C and preserves C, there exists a neighborhood V of C such that V is relatively compact in $g^{-1}(V)$ and the complement of V is connected. We assume one of L^1's to be the line at infinity of P^2. By letting B be $P^2 \setminus V$ and U one of connected components of $g^{-1}(P^2 \setminus V)$, we have the following inclusion relations,

$$U \subset g^{-1}(B) \subset B \subset C^2 = P^2 \setminus L^1.$$

Because B and U are in a local chart, there exists a constant $\rho < 1$ such that $K_B(x,v) \leq \rho K_U(x,v)$ for all $x \in U$, $v \in T_x C^2$.

In addition, since the map g from U to B is an unbranched covering,

$$K_U(x,v) = K_B(g(x), Dg(v)) \text{ for all } x \in U, \ v \in T_x C^2.$$

From these two inequalities we have the following inequality

$$K_B(x,v) \leq \rho^n K_B(g^n(x), Dg^n(v)) \text{ for all } x \in g^{-n}(B), \ v \in T_x C^2.$$

Since g preserves S, which is contained in $g^{-n}(B)$ for every $n \geq 1$,

$$K_B(x,v) \leq \rho^n K_B(g^n(x), Dg^n(v)) \text{ for all } x \in S, \ v \in T_x C^2.$$

Consequently we have the following inequality for $\lambda = \rho^{-1} > 1$,

$$K_B(g^n(x), Dg^n(v)) \geq \lambda^n K_B(x,v) \text{ for all } x \in S, \ v \in T_x C^2.$$

Since $K_B(x,v)$ is upper semicontinuous and $|v|$ is continuous, $K_B(x,v)$ and $|v|$ may be different only by a constant factor. There exists $c > 0$ such that

$$|Dg^n(x)v| \geq c\lambda^n |v| \text{ for all } x \in S, \ v \in T_x C^2.$$

Thus g is expanding on S and satisfies Axiom A.

Remark 4. Unlike the case when $k = 1$, it does not seem obvious that S being a repeller implies $J_k = S$ when $k \geq 2$.

Remark 5. From [1, Theorem 4.11] and [9], it follows that the Fatou set of the S_{k+2}-equivariant map g has full measure in P^k for each $k \geq 1$.

Acknowledgments. I would like to thank Professor S. Ushiki and Doctor K. Maegawa for their useful advice. Particularly in order to obtain our second result, Maegawa’s suggestion to use Theorem 6 was helpful.
References

[1] R. Bowen, "Equilibrium states and the ergodic theory of Anosov diffeomorphisms", Lecture Notes in Mathematics 470, Springer-Verlag, Berlin-New York, 1975.

[2] S. Crass, Solving the sextic by iteration: a study in complex geometry and dynamics, Experiment. Math. 8(3) (1999), 209-240.

[3] S. Crass, A family of critically finite maps with symmetry, Publ. Mat. 49(1) (2005), 127-157.

[4] P. Doyle and C. McMullen, Solving the quintic by iteration, Acta Math. 163(3-4) (1989), 151-180.

[5] J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro, 1992), Astérisque 222(5) (1994), 201-231.

[6] M. Jonsson, Hyperbolic dynamics of endomorphisms, preprint.

[7] K. Maegawa, Holomorphic maps on \mathbb{P}^k with sparse critical orbits, submitted

[8] J. Milnor, "Dynamics in one complex variable", Introductory Lectures, Friedr. Vieweg and Sohn, Braunschweig, 1999.

[9] M. Qian and Z. Zhang, Ergodic theory for Axiom A endomorphisms, Ergodic Theory Dynam. Systems 15(1) (1995), 161-174

[10] T. Ueda, Critical orbits of holomorphic maps on projective spaces, J. Geom. Anal. 8(2) (1998), 319-334.

[11] S. Ushiki, Julia set with polyhedral symmetry, in "Dynamical systems and related topics" (Nagoya, 1990), Adv. Ser. Dynam. Systems 9, World Sci. Publ., River Edge, NJ, 1991, pp. 515-538.

Graduate School of Human and Environmental Studies
Kyoto University
Yoshida-Nihonmatu-cho, Sakyou-ku
Kyoto 606-8501
Japan
E-mail address: ueno@math.h.kyoto-u.ac.jp