Silent Giant Cell Arteritis in an Elderly Korean Woman

Dong Min Cha1, Taeseung Lee2, Gheeyoung Choe3, Hee Kyung Yang1, Jeong-Min Hwang1

1Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
2Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
3Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea

Giant cell arteritis (GCA), or temporal arteritis, is a vasculitis of medium-to-large-sized arteries that is confirmed with temporal artery biopsy. In GCA, the arterial walls are infiltrated with inflammatory cells such as lymphocytes, epithelioid histiocytes (giant cells), macrophages and fibroblasts. Ophthalmic involvement can occur in up to 50% to 70% of the GCA patients, and this represents an ocular emergency [1,2]. Arteritic anterior ischemic optic neuropathy (AAION) is the most common type of ophthalmic involvement in GCA and can cause permanent visual loss. Therefore, prompt diagnosis and treatment with a high dose of steroids is essential for these patients.

Patients with GCA typically present with headache, jaw claudication, fever, weight loss, myalgia, arthralgia, or malaise [1]. Conversely, patients with silent GCA, first described by Simmons and Cogan [3], present with sudden visual loss without systemic symptoms and signs. Thus, due to the lack of symptoms, diagnosis and treatment of silent GCA may be considerably delayed when compared to typical GCA [4]. An elevated erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) level and platelet count were highly elevated. Temporal artery biopsy revealed multiple lymphocytes and multinucleated giant cells in the arterial media layer. To our knowledge, this is the first report of GCA in a Korean that has been confirmed with temporal artery biopsy. In conclusion, silent GCA can occur in Koreans, and hence, elderly patients presenting with chalky-white disc swelling, and corresponding laboratory findings must be evaluated for GCA.

Key Words: Giant cell arteritis, Ischemic optic neuropathy, Silent giant cell arteritis

Case Report

An 83-year-old woman presented with sudden visual loss that had developed in both eyes (oculus uterque, OU) the previous day. Her past medical history was unremarkable. The erythrocyte sedimentation rate, C-reactive protein and platelet count were highly elevated. Temporal artery biopsy revealed multiple lymphocytes and multinucleated giant cells in the arterial media layer. To our knowledge, this is the first report of GCA in a Korean that has been confirmed with temporal artery biopsy. In conclusion, silent GCA can occur in Koreans, and hence, elderly patients presenting with chalky-white disc swelling, and corresponding laboratory findings must be evaluated for GCA.

Key Words: Giant cell arteritis, Ischemic optic neuropathy, Silent giant cell arteritis

Received: September 22, 2011 Accepted: October 13, 2011

Corresponding Author: Jeong-Min Hwang, MD. Department of Ophthalmology, Seoul National University Bundang Hospital, #82 Gumiro 173beon-gil, Bundang-gu, Seongnam 463-707, Korea. Tel: 82-31-787-7372, Fax: 82-31-787-4057, E-mail: hjm@snu.ac.kr

© 2013 The Korean Ophthalmological Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
able. She did not complain of any associated headache, scalp tenderness, jaw claudication or constitutional symptoms such as weight loss, fever, malaise or sweats. Her visual acuities included perception of light in the right eye (oculus dexter, OD) and perception of hand motion in the left eye (oculus sinister, OS). The anterior segment examination revealed advanced nuclear sclerosis OU. A relative afferent pupillary defect OD was detected. Fundus examination revealed mild retinal arterial narrowing and chalky-white disc swelling OU (Fig. 1). The results of the Hardy-Rand-Rittler test and Ishihara test showed total dyschromatopsia OU. The Goldmann perimetry test revealed a total field defect OD and paracentral island OS. Although electroretinography findings were within normal limits, visual evoked potentials showed delayed P100 latency OU. Cerebrospinal fluid tapping revealed normal intracranial pressure and cell counts. Brain magnetic resonance imaging scans and angiography results showed diffuse bilateral

![Fig. 1. Fundoscopic findings. Chalky-white disc swellings were found in both eyes (A, right eye; B, left eye), especially in the right eye (A).](image)

![Fig. 2. Histopathology of left temporal arterial biopsy. (A) Diffuse infiltration by multiple inflammatory cells including lymphocytes, macrophages and multinucleated giant cells into all layers of the arterial wall, especially the media (H&E, ×100). (B) A few multinucleated giant cells among the diffusely infiltrated lymphocytes (H&E, ×400).](image)
stenoic of vertebral arteries and external carotid arteries
without significant intracranial vessels stenosis. The CRP
level, ESR and platelet count were elevated and measured
to be 5 mg/dL (upper normal limit, 0.5 mg/dL), 55 mm/h
(upper normal limit, 20 mm/h), and 510 K/µL (upper nor-
mal limit, 400 K/µL), respectively.

Following a presumptive diagnosis of silent GCA-
associated AAION OU, the patient was hospitalized and
treated with intravenous 250 mg methylprednisolone every
6 hours for 3 days. Biopsy of the left temporal artery was
performed, and 3 cm of the temporal artery was acquired.
Lymphocytes, epithelioid histiocytes, and multinucleated
giant cells had diffusely infiltrated into the entire vessel
wall, especially in the arterial wall media (Fig. 2). GCA
was confirmed, and a high dose of steroid therapy was
maintained.

After 7 days, the patient’s visual acuity OS improved
slightly to being able to count fingers. Disc swelling OU
had decreased. The CRP level and ESR decreased to 1.07
mg/dL and 30 mm/h, respectively. Oral prednisolone ther-
apy was slowly tapered down from 60 mg per day, and ste-
roid treatment was maintained with deflazacort 30 mg per
day. However, after 4 months, the patient’s visual acuities
deteriorated to no light perception OD and light perception
OS.

Discussion

GCA predominantly affects elderly Caucasian females.
GCA should be strongly suspected when patients greater
than 50 years of age present with headaches. The inci-
dence of GCA in Scandinavian countries and North America
ranges between 6.9 and 32.8 per 100,000 [7]. However, the
occurrence of GCA is rare in African Americans, Hispanic,
s, and Asians [8-10]. There have only been a few reports
of GCA among Asians [5,6,11-15]. In Japan, a nationwide
GCA survey revealed an extremely low prevalence of 1.47
per 100,000 population, which is approximately 1 / 140 of
that reported in the US [10]. Pereira et al. [16] reported that
GCA was seen 20 times less frequently in Asians than in
Caucasians. Chaudhry et al. [17] stated that, for over a pe-
riod of 22 years, only 7 patients were diagnosed with GCA
by temporal artery biopsy in a tertiary medical center in
Saudi Arabia.

The incidence of GCA in Asians was far lower than that
in Caucasians; however, the incidence is now increasing
in the Asian population. After 36 years of no reported cases
of GCA, in 2010, Aui-Aree et al. [6] reported 4 GCA cases
in Thailand. Cullen et al. [5] noted that of the 7 biopsy-
confirmed GCA cases reported over the past 10 years in
Singapore, 3 were reported in 2009. This trend may be
associated with an increase in the maximum life span of
the Asian population [7]. Suspected diagnosis of GCA by
rheumatologists and ophthalmologists, along with exten-
sive laboratory tests, may be other important factors. How-
ever, a nation-wide epidemiologic study would be needed
to clarify the association of life span and GCA incidence
in Asians.

In Korea, only a few biopsy-confirmed GCA cases have
been reported [18,19]; however, there have been no GCA-
associated AAION cases so far. To our knowledge, this
is the first biopsy-confirmed report of GCA-associated
AAION in Korea. Our patient was diagnosed with silent
GCA, and the clinical features overlapped with non-arterit-
ic AION. When Asian patients aged >50 years present with
acute visual loss and disc swelling and no other symptom,
non-arteritic AION accounts for more than 90% of these
cases. In such circumstances, laboratory parameters, such
as ESR, CRP level and platelet count can serve as indica-
tors in the diagnosis of GCA. Hayreh et al. [20] reported
that the CRP level has a sensitivity of 100% for GCA, and
the combination of CRP level and ESR has a specificity
of 97%. In a large population-based cross-sectional study,
Walvick et al. [21] documented that the odds of a positive
biopsy were 1.5 times greater with an ESR of 47 to 100
mm/h, 5.3 times greater with a CRP of >2.45 mg/dL, and
4.2 times greater with a platelet count of >400,000 µL.
The above 3 parameters were elevated in our patient (CRP,
5 mg/dL; ESR, 55 mm/h; and platelet count, 510 K/µL).
These test results are known to be normal in non-arteritic
AION.

In conclusion, although this disease is rare in Asians,
GCA-associated AAION should be considered when an el-
derly patient presents with sudden visual loss and disc ede-
ema. GCA should be suspected and laboratory tests should
be performed, even in the absence of typical symptoms.

Conflict of Interest

No potential conflict of interest relevant to this article
was reported.

References

1. Rahman W, Rahman FZ. Giant cell (temporal) arteritis: an
overview and update. Surv Ophthalmol 2005;50:415-28.
2. Hayreh SS, Podhajsky PA, Zimmerman B. Occult giant
cell arteritis: ocular manifestations. Am J Ophthalmol
1998;125:521-6.
3. Simmons RJ, Cogan DG. Occult temporal arteritis. Arch
Ophthalmol 1962;68:8-18.
4. Ezeonyeji AN, Borg FA, Dasgupta B. Delays in recogni-
tion and management of giant cell arteritis: results from a re-
tropective audit. Clin Rheumatol 2011;30:259-62.
5. Cullen JF, Chan BM, Wong CF, Chew WC. Giant cell (tem-
poral) arteritis in Singapore: an occult case and the ratio-
nale of treatment. Singapore Med J 2010;51:73-7.
6. Aui-Aree N, Tungsimmunkong K, Hirunpat S, et al. A vari-
ety of atypical manifestations in giant cell arteritis. J Med
Assoc Thai 2010;93:629-32.
7. Lee JL, Naguwa SM, Cheema GS, Gershwin ME. The geo-
epidemiology of temporal (giant cell) arteritis. Clin Rev Allergy Immunol 2008;35:88-95.
8. Liu NH, LaBree LD, Feldon SE, Rao NA. The epidemiology of giant cell arteritis: a 12-year retrospective study. Ophthalmology 2001;108:1145-9.
9. Smith CA, Fidler WJ, Pinals RS. The epidemiology of giant cell arteritis: report of a ten-year study in Shelby County, Tennessee. Arthritis Rheum 1983;26:1214-9.
10. Kobayashi S, Yano T, Matsumoto Y, et al. Clinical and epidemiologic analysis of giant cell (temporal) arteritis from a nationwide survey in 1998 in Japan: the first government-supported nationwide survey. Arthritis Rheum 2003;49:594-8.
11. Cullen JF, Chan CM, Chua KL. Giant cell arteritis (temporal arteritis, cranial arteritis) and a case from Singapore. Singapore Med J 2003;44:306-8.
12. Cheng CK, Lee CC, Huang KH, et al. Giant cell (temporal) arteritis with anterior ischemic optic neuropathy: a biopsy-proven case in Taiwan. J Formos Med Assoc 2010;109:550-4.
13. Wang X, Hu Z, Lu W, et al. Giant cell arteritis: a rare disease in Asians. J Clin Rheumatol 2009;15:48.
14. Chen CH, Kung SY, Tsai YY, et al. Temporal arteritis. J Chin Med Assoc 2005;68:333-5.
15. Kwok AK, Lam DS, Liew CT. Bilateral arteritic central retinal artery occlusion in a Chinese patient. Aust N Z J Ophthalmol 1998;26:175-6.
16. Pereira LS, Yoon MK, Hwang TN, et al. Giant cell arteritis in Asians: a comparative study. Br J Ophthalmol 2011;95:214-6.
17. Chaudhry IA, Shamsi FA, Elzaridi E, et al. Epidemiology of giant-cell arteritis in an Arab population: a 22-year study. Br J Ophthalmol 2007;91:715-8.
18. Kwon CM, Hong YH, Chun KA, et al. A case of silent giant cell arteritis involving the entire aorta, carotid artery and brachial artery screened by integrated PET/CT. Clin Rheumatol 2007;26:1959-62.
19. Kim KH, Yang WI, Choi JJ. Giant cell arteritis of the breast: a case report. Yonsei Med J 1990;31:80-4.
20. Hayreh SS, Podbielsky PA, Raman R, Zimmerman B. Giant cell arteritis: validity and reliability of various diagnostic criteria. Am J Ophthalmol 1997;123:285-96.
21. Walvick MD, Walvick MP. Giant cell arteritis: laboratory predictors of a positive temporal artery biopsy. Ophthalmology 2011;118:1201-4.