The Spread of Viruses and Bugs in Self Organizing Networks

Swarbhanu Chatterjee

Department of Physics, University of Rhode Island, Kingston, RI 02881

(Dated: June 4, 2011)

We review recent progress made in analyzing the spread of viruses and bugs in the internet. We describe how the use of a model that takes into account the complex inhomogeneity of the internet and its self-organizing characteristics can lead to a better understanding of the persistence of some viruses compared to others. We discuss how a better understanding can lead to a more targeted antiviral and anti-bug solution.

I. INTRODUCTION

The Internet is quickly becoming the backbone of our social and commercial existence. The Internet makes possible what would have been impossible to imagine only a few decades ago and its importance to the global economy cannot be overstated. There are two characteristics of the Internet that make it uniquely important to physicists who study the laws of statistical mechanics. The Internet is a self-organizing complex structure which seeks to make itself more efficient within hardware constraints. This makes it very similar to biological systems, more precisely living things, which self-organize with the specific aim of survival. Physicists have been trying to explain the phenomenon of life for centuries using statistical mechanics but have so far failed. It is here that the second attribute of the Internet makes it a wonderful testing base for statistical mechanics. The Internet is man-made and can be changed or experimented with extensively. We know everything that is to be known about the small details of the Internet because we have coded it ourselves. What we now need to investigate are the emergent phenomena that are possible in the Internet. Understanding these emergent phenomena may help us someday to understand the Holy Grail of science, the phenomenon of life. Analyzing the spread of viruses and bugs may help us someday know how cancer spreads in a living organism and why almost all animal species on the planet are affected by it but not so much the plants.

The Internet can be considered as a scale-free network \([1, 2]\). A scale-free network is one in which the probability for a node to have \(k\) connections to other nodes has a power law form,

\[
P(k) \sim k^{-\gamma},
\]

which therefore means that it has a long tail and nodes can always be found that are heavily linked to other nodes. This power law form for \(P(k)\) results from the fact that the Internet is a self-organizing network which adapts in order to become more efficient. The mechanisms of preferential attachment and fitness results in a situation when some nodes that are well placed in the network or are simply more efficient begin to have more links and become "super hubs". As a consequence of this tendency for the Internet to have this inhomogeneous and not-completely-random structure, the probability, \(P(k)\), which by definition describes an average effect, does not fall quickly as \(k\) increases. Instead it has a power law form. Such inhomogeneous networks in which there is a significant fraction of nodes that tend to have high linkage are called scale-free networks. Li et. al. defined a metric between 0 and 1,

\[
S(g) = \frac{\sum_{(i,j) \in \epsilon} d_i d_j}{\text{Max} \left(\sum_{(i,j) \in \epsilon} d_i d_j \right)}
\]

which is maximized when the high-degree nodes are connected to other high-degree nodes. Networks with low \(S(g)\) are "scale-rich" while those with high \(S(g)\) are scale-free [3].

The Internet, while it connects people and businesses together, makes all entities vulnerable to viral attacks or super bugs. Dealing with computer viruses and bugs have become an ubiquitous part of urban life. In this paper, we discuss the spread of viruses and bugs in the Internet \([4-7]\). Several governments, organizations and experts are trying to make the Internet safer and more reliable \([8]\). However, there has been a tendency to focus more on the smaller scale of individual links, servers and computers. The antiviral methods in use today focus on individual computers. We show in this paper that such indiscriminate methods to stop the spread of viruses and bugs may not be as effective
as targetted methods can be view the Internet as a large self-organizing network that adapts its complexity in a way as to always make itself more efficient.

In order to analyze the spreading of a virus or a bug in a computer network, it is useful to consider the following model. Each computer is a node and every connection between two computers is a link. Therefore, a computer network can be thought of as a network of nodes connected by links. The nodes have only two states: healthy and infected. This is the standard epidemiological model that has been used by Pastor-Satorras and Vespignani to describe the spread of a computer virus. At each time step, a healthy node can be infected with a probability, ν, while an infected node can be cured (because of antivirus software) with a probability, δ. The ratio, $\lambda = \nu / \delta$, defines a spreading rate. The authors have assumed a static model in the sense that the parameters, ν and δ do not change in time. This is not true in the real world where, as the authors have pointed out, antivirus software solutions are released in a matter of days or weeks and individuals with once infected but now cured computers become more wary of future attacks. Also individual browsing habits change over time and therefore so does the network traffic. As individuals and antivirus developers become aware of malicious sites, they block those sites or do not visit them and therefore, the channels through which the viruses spread are always evolving with time. We will come back to this point later when we will discuss what happens when the network adapts or changes as is the characteristic of self-organizing networks. In models with random graphs and local connectivity, there is a threshold value, λ_c, below which for $\lambda < \lambda_c$, the viruses decay exponentially fast. However, for $\lambda > \lambda_c$, the virus spreads and becomes persistent.

It has been observed in real viral attacks of many different types, that viruses infect saturate to a small but steady fraction of the total number of computers connected to the Internet. Had random graphs been the real motif for the Internet, such a result would have been surprising because there is no reason to believe that all those viruses would have their spreading rate just infinitesimally above the threshold value. However, as the authors, Pastor-Satorras and Vespignani, have shown numerically and analytically, a large scale-free network has $\lambda_c \approx 0$. This leaves the spreading rate of the epidemic to be almost equal to the spreading rate of the virus, λ, as set by the inventor of the virus. In their paper, Pastor-Satorras and Vespignani noted the fact that the Internet and the World Wide Web are scale-free networks with $P(k) \sim c k^{-\gamma}$. To investigate the viral epidemics in scale-free networks, the authors built a scale-free network numerically. They found following results:

1. The threshold, $\lambda_c = 0$ for sufficiently large networks. However, for networks of a finite size, $\lambda_c \neq 0$. They suggested that fluctuations in the connectivity, $\langle k^2 \rangle = \infty$ leads to infinite connectivity which makes it easier for the virus to spread to the point of resulting in the threshold, $\lambda_c \rightarrow 0$.

2. They constructed a dynamical mean field reaction rate equation for the relative density of the infected nodes, $n_k(t)$, with k links.

\[
\partial_t n_k(t) = -n_k(t) + \lambda k [1 - n_k(t)] \Theta(\lambda)
\]

(3)

where, $\Theta(\lambda)$ is the probability for a link to point to an infected node. In order to achieve a solvable mean field description, they neglected the density correlations among infected nodes (i.e. n_k^2 terms). The steady state solution for the mean field distribution of the infected nodes, $n \approx \exp(-1/m\lambda)$, which meant that $\lambda_c \approx 0$. The fact that $\lambda_c \approx 0$ makes it easy to explain the fact that viruses in the wild do not completely die off usually. Instead, they stay alive in a small fraction of nodes. The fact that this low prevalences of viruses in the wild can be explained by their model is an important success of the model.

However, as noted before, the network considered by Pastor-Satorras and Vespignani is static and does not change once it has been built. All the numerical simulations and analytical calculations take place on a static network. This however is not true in reality and therefore in this paper, we will provide an independent theoretical model which will give an analytical explanation for how the self-organizing nature of the Internet causes it to have characteristics similar to a true scale-free network. The dynamics of a viral epidemic and the spreading of bugs in such a self-organizing network is left to a following paper.

II. THE MODEL

In this section, we describe a very simple model that describes the essential points in physics that determine the behavior of a large and evolving complex network such as the Internet. The model does not claim to have all the relevant mechanisms in it that can explain the behavior of the network. Instead it has the barest minimum that can help to explain some of the not yet completely understood characteristics of the Internet and provide us with an intuitive handle with which to understand the Internet in a way that a more complex analysis (that could be truly solved only numerically and not analytically) would not be able to.

Before describing the model, we note that the assumption of Pastor-Satorras and Vespignani regarding the static nature of the network is not really true. The hard-wired network consisting of personal computers, servers, switches
and routers connected via cables or wireless connections do change in a time scale much longer than the time scale of a viral epidemic and could be considered static. However, the “logical network” from the point of view of a virus during its propagation is different than the above hard-wired network and is this latter network adapts and evolves in a time scale that is comparable or often less than the spreading time of the virus. To clarify this, let us consider how a modern virus spreads vis-a-vis the old virus. Earlier, viruses spread mostly through email attachments and this allowed the viruses to be non-local because they could hop servers on the way but email networks change over a few months or a year while the viruses itself can spread over a matter of weeks. A modern virus however spreads mostly through Internet advertisements and third party websites. These however adapt very quickly, even on a daily basis, to the change in tastes of consumers. Besides, anti-virus software solutions are released within days or weeks after the first viral incident is discovered. Servers and computer networks that had previously been susceptible to the virus suddenly is cured or becomes impenetrable. This forces the viruses to adopt different website channels and routes in order to propagate. The viruses are also more complex and use different strategies to propagate. As a consequence, the ”logical network” through which a modern virus actually spreads is different than the actual hard-wired network and evolves faster or atleast as fast as a modern virus does. In the paragraphs that follow in this section, whenever we discuss a network over which a virus spreads, we mean the ”logical network”. This network is dynamic and not static as has been explained in this paragraph. In fact, we will show later that the network is self-organizing, in the sense that it evolves so that it becomes more efficient in terms of a certain metric, which we will try to deduce.

Internet is mainly a channel through which information can be spread from several sources to several sinks. What do we really mean by information? In this paper, we define information in a most general way that is helpful enough for our purposes. By information, we mean any meaningful data. A meaningful piece of data is a sequence of characters (or more generally bits in computer systems) that can be shown to be part of a language and which therefore when processed can be ”understood” by an automated system or a human in the sense that it or he can do something with it now or in the future. The language may be human or a computer language. We use the term language in the most general sense that is possible to do so now. We note here that there is a considerable amount of literature on the concept of a generalized language and generalized semantics (please refer to Chomsky for early and defining work in the study of languages). We denote information by a variable η such that $0 < \eta < 1.$

In all problems in physics, a system can be described by a lagrangian and the application of a variational principle in keeping with constraints always leads to its equation of motion which describes the behavior of the system. In what follows, we attempt to describe the flow of information along an evolving large self-organizing computer network by a lagrangian so that its equations of motions can tell us about the large scale behavior of the system. We can visualize the Internet as a fractal structure of nodes and links. In general, the fractal structure can have D dimensions. In reality, since the Internet is inhomogeneous and its nature can be different in different regions, the dimensions, $D,$ can vary among regions. The location of each node can be labelled by a coordinate, $x = \{x_1, x_2, \ldots, x_D\}.$

At this point, the simplest lagrangian for the information, $\eta(x)$,

$$\mathcal{L}_{\eta} = \frac{1}{2} (\partial_t \eta)^2 - f(\eta)$$ \hspace{1cm} (4)

where the term, $\partial_t \eta$, describes the rate of change of information being held in a node (which typically is a server). The term, $f(\eta)$, is the inertia or potential energy for the information carried by a node.

$$f(\eta) = a_0 + a_1 \eta + a_2 \eta^2 + a_3 \eta^3 + ...$$ \hspace{1cm} (5)

where, a_i are coefficients that may depend on the hardware resources. The point is that in all nodes, the more information there is on the node, the slower the node is in processing the information. This bottlenecking is an ubiquitous feature in all traffic problems. The more saturated a node gets, the more it chokes. Even when in the future, we will have servers with more powerful processors and large memory banks, there is reason to believe that our appetite for information of all kinds will increase manifold, and bottle-necking will always be a problem. On the other hand, if we do have resources that are more than enough for our demands, $f(\eta) \rightarrow 0.$

So far we have considered only the dynamics of the information, $\eta(x).$ But there is also the underlying computer infrastructure by which we mean the ”logical network” over which the viral epidemic spreads. Let the variable, d_i, denote the number of linkages of this network. We define a normalized function,

$$\rho = \frac{d_i}{\max(d_i)}$$ \hspace{1cm} (6)

which is normalized, $0 < \rho < 1.$
Modifying the metric used by Li et al. [2] which they maximized in order to build scale-free networks, we get the following,

\[\mathcal{L}_\rho = \sum_{(i,j) \in \epsilon} b_{ij} \rho_i \rho_j \]

where, \(\epsilon \) is the edge set and \(b_{ij} \), are coefficients. For a simplified treatment, we can consider the coarse-grained network, and in the continuum limit,

\[\mathcal{L}_\rho (x) = s (x) = b (x) \rho (x)^2 \]

where, \(\mathcal{L}_\rho (x) \) is the lagrangian density for the network and \(b (x) \) is a constant in the simplest case. This lagrangian will result in a clustering effect when the network is built. But there are no terms in the lagrangian that can describe dynamic fluctuations, i.e. the resultant network will be static and not self-organizing like the Internet is.

The total lagrangian density that describes information flowing through the network,

\[\mathcal{L} = \mathcal{L}_\eta + \mathcal{L}_\rho = \frac{1}{2} \left(\partial_t \eta \right)^2 - f (\eta) + b (x) \rho (x)^2 \] (7)

The lagrangian in Eq. 7 describes the flow of information through a large coarse-grained computer network such as the Internet. In its present form, it can describe the cost that high amounts of information exacts on performance of the servers that process the information. It can also describe the clustering of the network.

III. THE SELF-ORGANIZING NETWORK

We will now analyze the case of a self-organizing network. We consider the network to be made of nodes and links that interconnect the nodes. In order to describe the dynamics of the evolving network, we consider the nodes to be of two kinds, super hubs (high performance servers) and weak nodes (low performance computers). The state of a node is described by the variable, \(\xi = 1 \) for a super hub, \(-1 \) for a weak node. The hamiltonian of the system,

\[H = -J \sum_{(ij)} \xi_i \xi_j \] (8)

where, \(J > 0 \), determines the energy in the network. The free energy is given by

\[F = \overline{E} - K S \] (9)

where, \(\overline{E} \) and \(S \) are the mean energy and entropy of the system. The parameter, \(K \), plays the role that temperature plays in thermodynamic systems. \(\overline{K} \) represents all the random stimuli that shake up the system much as what heat does to a physical system. In the Internet scenario, there can be several external stimuli that can try to randomize the system. These stimuli include influx/outflux of money, government policies, politics and random world events.

This system is very similar in several aspects to the Ising model with ferromagnetic coupling but there is a very important difference. In the Ising model, the lattice is static and Euclidean. Here, the lattice is fractal and more over it is continually evolving. There is no inconsistency when considering an evolving lattice. We are justified to apply some aspects of the Ising model to the general case of a self-organizing network.

The coupling in the Hamiltonian, Eq. 8 makes it advantageous for nodes with large number of linkages connect to each other. Therefore, it causes the formation of domains in each of which several nodes are next to each other. These domains are separated by a sea of weak nodes. When \(K \) is small, then the mean energy of the system, \(\overline{E} = -J \sum_{(ij)} (\xi_i \xi_j) \), causes the formation of very large domains of super hubs connected to each other. On the other hand, when \(K \) is large, the domains break into smaller domains.

Now we determine the entropy of the network. In general, the linkage in a region of the network is \(\rho (x) \). Consider a domain of superhubs surrounded by a sea of weak nodes. Let the number of superhubs on the boundary of the super hub domain which connect to the weak nodes outside be \(n \). Now consider a point on the boundary of the domain. The point can move forward and backward along any link and create a different domain with a larger or smaller size. Hence, since the coordination number of this lattice is \(\rho \), an upper bound to the number of configurations of the
boundary or domain wall is ρ^n. This is a slight overestimation since we have not taken into consideration that the boundary of a single domain cannot intersect itself. However, ρ is usually a large number much greater than 1 in our case and so the overestimation is not very significant. Therefore, the entropy difference due to the presence of a domain in that region of the network,

$$S (\rho (x), n) = \log \Omega \sim n \log \rho$$

where, Ω is the number of microstates. There can be more than one domain of different sizes (and therefore, different number of super hubs at the boundary, n) and each of them will contribute an entropy increase like in the Eq. 10.

The minimization of the total free energy, $F_{tot} = E - T \sum_i S_i (\rho (x), n_i)$, in keeping with the constraint for the total number of superhubs in the network, N,

$$\sum_i n_i = N,$$ \hspace{1cm} (11)

results in a self consistent solution for the number of boundary nodes in the i–th domain, $n_i = \pi (N)$ and $\rho (x)$.

Therefore, the probability of a network to have ρ linkages at any part of it is,

$$P (\rho (x), N) \sim e^{-b \rho^2 (x) e^{S (\rho (x))}} \sim e^{-b (x) \rho^2 (x) e^{\pi (N)} \log \rho} = \rho^{\pi (N)} (x) e^{-b (x) \rho^2 (x)},$$ \hspace{1cm} (12)

where, $S (\rho)$ is the entropy in the network when there are ρ linkages in the network and the nodes of two possible kinds, super hubs (high performance servers) and weak nodes (low performance servers). We should note here that the issue of entropy in the network arises from the fact that since the network is self organizing, linkages are constantly added, removed or attached to other nodes. Therefore, in this evolving network, the nodes can be connected together in different ways. Since the nodes can generally be regarded to be of two kinds, high performance nodes and low performance nodes, this results in there to be considerable amount of entropy in the system, which has been discussed above.

We find that this distribution is not exactly the scale-free distribution, but it has a longer tail than an exponentially falling distribution. The distribution behaves in a similar way as that in a free scale network as far as large numbers of linkages is concerned. But for small values, our distribution starts as a power of ρ instead of falling from a large value as for a free scale distribution, $P_{free} (\rho) \sim c \rho^{-\gamma}$,which makes more physical sense. From Eq. 12 $P (\rho (x) \rightarrow 1, N) \sim \rho^{\pi (N)}$, while the free scale distribution, $P_{free} (\rho) \sim c \rho^{-\gamma}$.

IV. SUMMARY

We have formulated an independent theoretical model which provides an analytical explanation for how the self-organizing nature of the Internet causes it to have characteristics similar to a true scale-free network. In a following paper, we will analyze the dynamics of a viral epidemic and the spread of bugs in such a self-organizing network. A starting point would be to include terms in the lagrangian corresponding to the virus or the bug, such as $(\partial_t \psi)^2$ and ψ^2. The second term leads to a check in the population in the number of viruses or bugs. A reason for the presence of this second term is that if there are too many viruses or bugs, they will bring down the network or be detected quicker and antivirus solutions will appear sooner to eradicate them. We note here that the main difference between a virus and a bug is that a virus replicates and regenerates while a bug is passive. This feature of viruses needs to be reflected in the lagrangian model. In this paper, we have also not taken into account the complexity of the nodes themselves (in the real world, the hubs often grow in complexity as powerful processors are introduced[10]).

Our models are simple to the point of being oversimplistic in some cases. However, they are not meant to give exact accurate predictions regarding the traffic in a network or the spread of a virus/bug. Instead, they are meant as a tool that provides an easy to understand and intuitive handle to predict certain kinds of large scale behavior of the networks and the viruses/bugs, which numerical analyses rarely provide. Already the complexity of networks today is at a point in which it is difficult to give accurate predictions based on a numerical scheme. Also, there are not many ideas regarding how to incorporate the self-organizing nature of the Internet into calculations of virus epidemics and bug dispersion. As the Internet evolves into something even bigger and more complex than what it is today, it may be useful to simplify things and look at large scale behavior, which we have done in this paper.

[1] R. Albert, A. L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)
[2] L. A. N. Amaral, A. Scala, M. Barthelemy, H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 97 (21): 11149 (2000)
[3] L. Li, D. Alderson, R. Tanaka, J. C. Doyle, W. Willinger, arXiv:cond-mat/0501169 (2005)
[4] Damien Challet, Phys. Rev. E 70, 046109 (1994)
[5] Romualdo Pastor-Satorras and Alessandro Vespignani, Phys. Rev. Lett. 86, 3200 (2001)
[6] Sergi Valverde and Ricard V. Sole, Phys. Rev. E 72, 026107 (2005)
[7] M. E. J. Newman, Stephanie Forrest, and Justin Balthrop, Phys. Rev. E 66, 035101(R) (2002)
[8] Reka Albert, Istvan Albert, and Gary L. Nakarado, Phys. Rev. E 69, 025103(R) (2004)
[9] Nigel Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Reading, Massachussets) 1992
[10] Luis A. Nunes Amaral, Sergey V. Buldyrev, Shlomo Havlin, Michael A. Salinger, and H. Eugene Stanley, Phys. Rev. Lett. 80, 1385 (1998)