García, Trinidad; Rodríguez, Celestino; González-Castro, Paloma; Álvarez - García, David; González-Pienda, Julio-Antonio
Metacognición y funcionamiento ejecutivo en Educación Primaria
Anales de Psicología, vol. 32, núm. 2, mayo, 2016, pp. 474-483
Universidad de Murcia
Murcia, España

Disponible en: http://www.redalyc.org/articulo.oa?id=16745250019
Metacognición y funcionamiento ejecutivo en Educación Primaria

Trinidad García*, Celestino Rodríguez, Paloma González-Castro, David Álvarez-García y Julio-Antonio González-Pienda

Universidad de Oviedo (España).

Resumen: Este trabajo analiza las diferencias en habilidades metacognitivas y de funcionamiento ejecutivo entre dos grupos de estudiantes (10-12 años) con diferentes niveles de conocimiento metacognitivo (alto $= 50$, bajo $= 64$). Los grupos fueron establecidos en función de la puntuación en una prueba de reconocimiento de estrategias. Las habilidades metacognitivas se evaluaron mediante auto-informes. Los estudiantes indicaron la frecuencia de empleo de estas habilidades en las fases de planificación, ejecución y evaluación del aprendizaje. Por último, la información sobre el funcionamiento ejecutivo fue proporcionada por familias y profesorado. Los resultados indicaron que: a) los estudiantes con alto conocimiento metacognitivo señalan que usan con mayor frecuencia las habilidades metacognitivas que sus compañeros con bajo conocimiento metacognitivo. Estas diferencias se encontraron principalmente en las fases de planificación y ejecución; b) tanto familias como profesorado informaron que los estudiantes con alto conocimiento metacognitivo, siendo estadísticamente significativas las diferencias en planificación, memoria funcional, focalización de la atención y atención sostenida. Estos resultados muestran la existencia de una asociación entre diferentes niveles de conocimiento metacognitivo y el funcionamiento ejecutivo, sugiriendo la necesidad de incidir en el conjunto de variables estudiadas para promover entre los estudiantes niveles crecientes de control sobre su proceso de aprendizaje.

Palabras clave: metacognición; funciones ejecutivas; conocimiento; habilidades; aprendizaje.

Introducción

El desempeño académico depende en gran medida de la capacidad de los estudiantes para llevar a cabo procesos de control ejecutivo, también denominados *Funciones Ejecutivas* (en adelante FE). De este modo, desde los primeros años de escolaridad, a los estudiantes se les requiere adquirir grados de responsabilidad crecientes, así como aprender a organizar, integrar y manejar cantidades cada vez mayores de información. Responder exitosamente a las demandas del contexto escolar implica la intervención de procesos como la habilidad para priorizar los objetivos a alcanzar; organizar el tiempo, la información y los materiales; comportarse de un modo flexible y acorde a la situación; juzgar la conveniencia de un posible curso de acción; o monitorear el propio progreso en la realización de una tarea. El término *Funciones Ejecutivas* hace referencia, por tanto, a un amplio rango de procesos o habilidades responsables de la conducta orientada a un objetivo (Anderson, Jacobs, y Anderson, 2008; Flores-Lázaro, Castillo-Preciado, y Jiménez-Miramont, 2014; Meltzer, 2013), e implica componentes como la memoria de trabajo, la organización y planificación, la inhibición de respuestas, la flexibilidad cognitiva, la capacidad atencional o el control del propio estado emocional (Diamond, 2013; Korzeniowski, 2011; Van De Voorde, Roeyers, Verté, y Wiersema, 2010).

Las dificultades en los FE se manifiestan en el contexto escolar a menudo en problemas relacionados con la escritura, la lectura y el razonamiento matemático, entre otros (García et al. 2013; Lee, Lynn, y Fong, 2009; Toll, Van der Ven, Kroesbergen, y Van Luit, 2012; Van der Ven, Kroesbergen, Boom, y Leseman, 2013). Estas dificultades se hacen aún más evidentes conforme los estudiantes progresan hacia niveles superiores de escolarización, en parte debido al aumento del volumen y la complejidad de la información a procesar. Como resultado, muchos estudiantes no rinden lo esperado dada su capacidad real, lo cual puede ser extremadamente frustrante, afectando su motivación, así como su desempeño académico y social.

No obstante, otra parte importante en el rendimiento académico es la capacidad de los estudiantes para evaluar su propio proceso de aprendizaje y diferenciar aquellas estrategias que son útiles para ellos, sabiendo reconocer por qué, cómo y cuándo aplicarlas. Esta capacidad para reflexionar acerca del propio pensamiento y aprendizaje ha sido definida como *Metacognición* (Flavell, 1979).

El término Metacognición es un constructo multidimensional. Tradicionalmente se han diferenciado dos componentes: conocimiento metacognitivo y habilidades metacognitivas (Flavell, 1979; Lucangeli y Cabrele, 2006; Pennequin, Sorel, y Mainguy, 2010a). El *conocimiento metacognitivo* hace refe-
rencia a varios aspectos: el conocimiento declarativo sobre estrategias de aprendizaje y sobre uno mismo como aprendiz o resolutor de problemas; el conocimiento procedimental sobre cómo usar esas estrategias; y el conocimiento condicional acerca de cuándo y porqué emplearlas. Este conocimiento se basa en una interrelación entre la persona, las características de la tarea y las estrategias disponibles en una situación de aprendizaje. Por su parte, las habilidades metacognitivas hacen referencia a habilidades de orden superior e implican un componente de regulación de la propia cognición y la conducta. De este modo, las habilidades metacognitivas implicarían componentes como el análisis, la planificación, la monitorización, y la reflexión y evaluación de la ejecución de una tarea (Throndsen, 2011; Pennequin et al., 2010a). Estas habilidades permitirían un aprendizaje profundo y transferible (Panadero y Alonso-Tapia, 2014). Una evidencia a cerca de esta distinción reside en el hecho de que ambos componentes parecen desarrollarse a diferentes ritmos, siendo el conocimiento metacognitivo anterior a las habilidades metacognitivas y base sobre la cual se sustentan estas últimas (Blöme, Van Otterloo, Stevenson, y Veenman, 2004; Pennequin, Sorel, Narty, y Fontaine, 2010b; Weil et al., 2013).

En este sentido, Pennequin et al. (2010b) señalan que, mientras el conocimiento metacognitivo se empezará a desarrollar a la edad de seis años, la propia aplicación de este conocimiento (es decir, las habilidades metacognitivas) no parece alcanzar la madurez hasta los once o doce años de edad. De este modo, como señalan Vallez et al. (2009), para que los estudiantes sean exitosos en su aprendizaje no es suficiente con que entiendan y conozcan qué estrategias deben ser aplicadas, sino que es necesario que sepan aplicarlas eficazmente en situaciones de aprendizaje.

Ambos tipos de componentes, FE y Metacognición, guardan una estrecha relación. En este sentido, la revisión de la literatura ha confirmado el papel de diversas funciones ejecutivas como la planificación, memoria, organización, o flexibilidad cognitiva, en el control del proceso de aprendizaje, así como del esfuerzo y la persistencia en la tarea (Corso, Sperb, Inchausti de Jou, y Fumagalli, 2013; Meltzer, 2013; Lyons y Zelano, 2011). No obstante, a pesar de la relación conceptual y práctica entre ambos componentes, la mayoría de los estudios centrados en estos aspectos han sido realizados desde orientaciones muy diferentes. En este sentido, mientras que los estudios sobre Metacognición se habrían llevado a cabo desde el campo de la Psicología y la Educación, la mayoría de los estudios sobre FE parecen haberse desarrollado dentro de contextos más clínicos, fundamentalmente desde la Neuropsicología (Corso et al., 2013; Pennequin et al., 2010a). Son pocos los estudios, por tanto, que han analizado la relación entre ambos aspectos desde un punto de vista comprensivo (por ejemplo, Garner, 2009; Kuhn, y Pease, 2010; Pennequin et al., 2010a; Roebers, Gmelí, Röthlisberger, y Neuenschwande, 2012; Schneider, 2010). Estos estudios han demostrado la importancia de la relación entre ambos componentes en diferentes edades y etapas educativas. Concretamente, en el estudio de Garner (2009), con 108 estudiantes universitarios a los que se les aplicaron cuestionarios de FE y estrategias de aprendizaje, se encontró que las habilidades de planificación predijeron significativamente el uso de estrategias cognitivas y metacognitivas, así como la regulación del esfuerzo académico. En esta misma línea, el trabajo de Pennequin et al. (2010a) ha evidenciado la relevancia de aspectos como la memoria de trabajo y la flexibilidad cognitiva como soporte tanto del conocimiento metacognitivo como de las habilidades metacognitivas en adultos. Por su parte, en el trabajo de Roebers et al. (2012), con una muestra de 209 estudiantes en los primeros cursos de Educación Primaria, los resultados indicaron que el rendimiento en varias tareas de FE (inhibición, flexibilidad cognitiva y fluidez verbal) se relacionó significativamente con los niveles de control metacognitivo de los estudiantes, siendo un importante predictor en el rendimiento en matemáticas, lectura y escritura. Finalmente, Kuhn y Pease (2010) y Schneider (2010) han demostrado la importancia de las habilidades de inhibición de respuestas y memoria de trabajo en el desarrollo metacognitivo en la infancia y adolescencia.

Si bien estos estudios no son numerosos, una de las características comunes entre ellos es el tipo de instrumentos de evaluación de las FE que emplean. En este caso, la mayoría de ellos se basan en la aplicación de pruebas neuropsicológicas o medidas basadas en la ejecución. También denominadas Test Neuropsicológicos, este tipo de pruebas se aplican generalmente en contextos clínicos y consisten en pruebas individuales o baterías que miden una serie de indicadores objetivos relacionados con la ejecución de los sujetos, como tiempos de respuesta, número de errores y omisiones. Un ejemplo de estas pruebas sería el Test Stroop (Stroop, 1935; Martín et al., 2012) para la medida de la inhibición de respuestas, o la Torre de Hanoi (Borys, Spitz, y Dorans, 1892; Díaz et al., 2013) para la medida de la planificación. Estas pruebas han sido ampliamente utilizadas, mostrando en líneas generales su utilidad en la evaluación del funcionamiento ejecutivo. Sin embargo, han sido criticadas por mostrarse poco específicas, demasiado estructuradas y constituir modelos poco representativos del mundo real. De ahí que se les aporte una alta validez ecológica (Burin, Drake, y Harris, 2007; Chevignard, Catroppa, Galvin, y Anderson, 2010; Gioia, Kenworthy, e Isquith, 2010; Lee, 2011; Lezak, Howieson, Bigler, y Tranel, 2012).

Una alternativa a este tipo de medidas es el uso de cuestionarios de calificación de la conducta. Éstos permiten valorar una gran variedad de componentes desde el punto de vista de la observación de la conducta de niños y adolescentes en el hogar y centro educativo. Se basan en la información proporcionada por familias y profesorado sobre la frecuencia o intensidad de ciertas conductas problemáticas, que serían indicativas de dificultades en las funciones ejecutivas. Este tipo de medidas han sido ampliamente desarrolladas en los últimos años, en parte debido al reconocimiento del hecho de que las FE no sólo implican aspectos cognitivos, sino también conductuales y emocionales, muchos de los cuales son solamente evidenciados en contextos habituales (Egeland y Fa-
llmyr, 2010; Mares, McLuckie, Schwartz, y Saini, 2007). Entre los instrumentos de evaluación estandarizados más conocidos se encontrarían el Child Behavior Checklist (CBCI; Achenbach, 1991), el Children Executive Function Inventory (CHEXI; Thorell y Nyberg, 2008), el Behavior Rating Inventory of Executive Functions (BRIEF; Gioia, Isquith, Guy, y Kenworthy, 2000), y más recientemente el Barkley Deficits in Executive Functioning Scale - Children and Adolescents (BDEFS-CA: Barkley, 2012). No obstante, ninguno de estos instrumentos se encuentra disponible en español. En este sentido, se ha elaborado en nuestro país la Escala de Funcionamiento Ejecutivo para Profesorado (EFE-P; García, Álvarez-García, González-Castro, Álvarez y Segurola, 2014) y la Escala de Funcionamiento Ejecutivo para Familias (EFE-F; García, Álvarez-García, González-Castro, Álvarez, y Cueli, 2013). Diseñadas como dos escalas paralelas, los primeros datos disponibles evidencian su potencial utilidad en la evaluación de estos componentes en nuestra población.

No obstante, a pesar de las ventajas que el uso de medidas basadas en la observación puede tener como método de evaluación de las FE en situaciones diarias, otros factores deben ser tenidos en cuenta. En este sentido, numerosos estudios han mostrado una baja correspondencia entre el rendimiento de niños y adolescentes en las pruebas basadas en la ejecución y las dificultades observadas en diversos ámbitos de la vida diaria (Bishop, 2011; Lezak et al., 2012; McAuley, Chen, Goos, Schachar, y Crosbie, 2010), así como un acuerdo de bajo a moderado entre diferentes informantes, fundamentalmente familias y profesorado (Rettew et al., 2011; Salbach-Andrae, Lenz, y Lehmkühl, 2009). Estos aspectos llevan a menudo a resultados contradictorios, de ahí que no exista un único patrón de funcionamiento ejecutivo relacionado con los componentes metacognitivos del aprendizaje. En este sentido, contar con varios tipos de medidas o en su defecto con diferentes informantes se hace esencial con el fin de delimitar con mayor exactitud esta relación.

En resumen, si bien los estudios que han analizado la relación entre diferentes FE y la Metacognición son escasos, su potencial utilidad en el contexto actual, éstos sugieren la existencia de una asociación entre ambos componentes, destacando la memoria de trabajo, la planificación, la flexibilidad cognitiva o la inhibición de respuestas entre los factores más relevantes. No obstante, aspectos como la distinción conceptual y evolutiva entre conocimiento y habilidades metacognitivas, o el tipo de medidas de las FE empleadas (principalmente basadas en la ejecución, con las implicaciones que este aspecto tiene para la validez ecológica de las medidas), imponen en cierta medida restricciones para la generalización de los resultados obtenidos en estudios previos. De este modo, y partiendo de la concepción de que el conocimiento metacognitivo es anterior a las habilidades metacognitivas y clave para su desarrollo, el objetivo del presente estudio ha sido analizar las diferencias en habilidades metacognitivas y de funcionamiento ejecutivo en dos grupos de estudiantes de tercer ciclo de Educación Primaria (10 a 12 años) que presentan diferentes niveles de conocimiento metacognitivo (alto vs. bajo). Se empleó el cuestionario de Conocimiento de Estrategias de Aprendizaje- CEA (Rosário, Mourão, Nuñez, González-Pienda, y Solano-Pizarro, 2006) para evaluar el conocimiento metacognitivo, mientras que las habilidades metacognitivas se evaluaron mediante el Inventario de Procesos de Autorregulación del Aprendizaje- IPAA (Rosário et al., 2010). Este cuestionario evalúa el uso de estrategias metacognitivas durante las fases de planificación, ejecución y evaluación del aprendizaje. Por último, con el objetivo de evitar un posible sesgo en la evaluación de las FE se han administrado dos formas paralelas de la escala EFE a familias y profesorado (García et al., 2013, 2014), previamente comentadas.

Los objetivos específicos y las hipótesis del presente estudio se presentan a continuación:

- Determinar si los estudiantes con un buen conocimiento metacognitivo, comparados con aquellos que muestran un bajo conocimiento, muestran unas mejores habilidades metacognitivas (es decir, emplean con más frecuencia las estrategias metacognitivas en las fases de planificación, ejecución y evaluación del aprendizaje). Puesto que el conocimiento metacognitivo funcionaría como base para el desarrollo de las habilidades metacognitivas, se espera que los estudiantes con un buen conocimiento metacognitivo muestren de una forma general puntuaciones significativamente superiores en el cuestionario de habilidades metacognitivas en comparación con el grupo con bajo conocimiento metacognitivo.

- Analizar si los estudiantes con diferente conocimiento de estrategias metacognitivas se diferencian en los diferentes componentes de las FE, evaluados éstos mediante las informaciones proporcionadas por familias y profesorado. Teniendo en cuenta los estudios previos, se esperan encontrar diferencias estadísticamente significativas entre ambos grupos, principalmente en los componentes de planificación, memoria, organización, inhibición y flexibilidad cognitiva. Los estudiantes con alto conocimiento metacognitivo mostrarán mejores niveles de funcionamiento ejecutivo que sus compañeros con bajo conocimiento metacognitivo.

Método

Participants

La muestra estuvo compuesta por 114 estudiantes de Tercer Ciclo de Educación Primaria pertenecientes a 9 centros educativos en Asturias. De la muestra total, 49 estudiantes (43%) fueron mujeres y 65 (57%) varones. El rango de edad de los participantes fue de 10 a 12 años ($M = 11.25$, $DT = .686$). Un total de 31 estudiantes (27.2%) asistía a quinto, mientras que 83 (72.8%) asistía a sexto de Educación Primaria. La muestra total fue dividida en dos grupos en función del nivel de conocimiento de estrategias metacognitivas (alto vs. bajo), evaluadas mediante el cuestionario Conocimiento de Estrategias de Aprendizaje- CEA (Rosário et al., 2006). Se eligió el percentil 50 como criterio para la asignación de los
estudiantes a los grupos. Los estudiantes se distribuyeron de la siguiente forma:

El grupo 1 (alto conocimiento metacognitivo) estuvo formado por 50 estudiantes, de los cuales 28 (43.8%) fueron mujeres y 36 (56.3%) varones. La edad media de los participantes fue de 11.10 años ($DT = .647$). A este grupo fueron asignados aquellos estudiantes que obtuvieron una puntuación superior al percentil 50 en el cuestionario CEA (Rosário et al., 2006).

El grupo 2 (bajo conocimiento metacognitivo) estuvo formado por 64 estudiantes, de los cuales 21 (42%) fueron mujeres y 29 (58%) varones. La edad media de los participantes fue 11.36 años ($DT = .628$). Este grupo lo conformaron los estudiantes con una puntuación menor o igual al percentil 50 en el cuestionario anteriormente comentado.

Los estudiantes participaron voluntariamente en el estudio, previo consentimiento informado de las familias. La elección de la muestra fue realizada por accesibilidad (Casal y Mateu, 2003). Los estudiantes con algún diagnóstico previo fueron excluidos de los análisis. No hubo diferencias significativas entre los dos grupos en edad ($F(1,112) = 3.128, p ≥ .05$). No hubo diferencias estadísticamente significativas entre los grupos en la proporción de mujeres [$\chi^2(1) = 1.000, p ≥ .05$] y varones [$\chi^2(1) = .754, p ≥ .05$].

Instrumentos

Las principales variables e instrumentos de evaluación se describen a continuación:

Conocimiento metacognitivo. Fue evaluado a través de la aplicación del cuestionario de Conocimiento de Estrategias de Aprendizaje-CEA (Rosário et al., 2006). Esta prueba se basa en el reconocimiento de diferentes estrategias metacognitivas. De este modo, presenta 10 cuestiones con 3 alternativas de respuesta, de las cuales solo una de ellas es verdadera. El estudiante tiene que indicar cuál de las opciones es la correcta. Los ítems se refieren a 10 de las estrategias metacognitivas más importantes, las cuales hacen referencia tanto a aspectos cognitivos, como afectivos y motivacionales. La puntuación máxima en esta escala es 10. Puntuaciones elevadas son indicativas de un buen conocimiento metacognitivo. La fiabilidad para la escala, estimada a partir del estadístico Alfa de Cronbach fue de .89.

Habilidades metacognitivas. Se empleó el Inventario de Procesos de Autorregulación del Aprendizaje-IP-A (Rosário et al., 2010). Este cuestionario está compuesto por 12 ítems y evalúa el uso de varias estrategias metacognitivas en las diferentes fases del proceso de Autorregulación del Aprendizaje (Planificación, Ejecución y Evaluación; Zimmerman, 2008). Cada fase o dimensión se mide mediante 4 ítems, a través de una escala tipo Likert con 5 alternativas de respuesta (desde 1 = nunca, hasta 5 = siempre). Se evalúa, por tanto, la frecuencia con que el estudiante emplea estas estrategias durante situaciones de aprendizaje. La puntuación máxima en cada componente es 20. A mayor puntuación en cada uno de estos ítems y dimensiones mejores habilidades metacognitivas. La fiabilidad de la escala, estimada a través del estadístico Alfa de Cronbach, fue de .80 para la dimensión de planificación, de .85 para ejecución y de .87 para evaluación.

Funciones Ejecutivas. Se emplearon la Escala de Funcionamiento Ejecutivo en sus formas para profesorado (EFE-P; García et al., 2013) y familias (EFE-F; García et al., 2014). Diseñadas como dos formas paralelas, son aplicables desde los 6 a los 18 años de edad. Estas escalas evalúan la frecuencia con que niños y adolescentes muestran una serie de conductas, indicativas de posibles déficits en FE, en el contexto educativo o en el hogar. Para ello, se basan en las informaciones proporcionadas por familias y profesorado. Formadas por 27 ítems cada una, evalúan un total de 9 componentes (Control de la Impulsividad, Control de la Hiperactividad, Control Emocional, Capacidad de Concentración, Focalización de la Atención, Planificación, Organización, Memoria Funcional y Flexibilidad Cognitiva). Los ítems siguen una escala tipo Likert con 5 opciones de respuesta, desde 1 = Nunca, hasta 5 = Siempre. La puntuación máxima en cada componente es 15. Puntuaciones elevadas en estos componentes serían indicativas de dificultades en las FE. Ambas escalas han sido puestas a prueba en una muestra de 1019 y 616 estudiantes respectivamente, pertenecientes a 41 centros educativos de Asturias (España). Los análisis factoriales confirmatorios mostraron un buen ajuste de los datos al modelo compuesto por nueve factores, con unos índices de fiabilidad que varían entre .77 y .89 para los diferentes componentes en ambas formas de la escala.

La correspondencia entre las informaciones proporcionadas por familias y profesorado en el presente estudio se muestra en la Tabla 1. Como se puede observar, se encontraron correlaciones estadísticamente significativas entre pares de componentes, con la excepción de la variable Flexibilidad. Estas correlaciones fueron en todos los casos positivas, variando desde correlaciones bajas a moderadas. Las correlaciones más bajas (cercanas a .25) fueron encontradas en los componentes de Control Emocional, Memoria Funcional y Control de la Impulsividad, mientras que las más elevadas (superiores a .37) se encontraron en Planificación, Atención Sostenida, Focalización de la Atención y Organización.

| Tabla I. Correlaciones bivariadas entre las puntuaciones en las escalas EFE-F y EFE-P. |
|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| EFE-F | | | | | | | | | |
| 1.Control de la Impulsividad | .282** | .261**| .207* | .276**| .084 | .097 | .208* | .233* | .112 |
| 2.Control de la Hiperactividad | .302** | .312**| .241**| .332**| .181 | .135 | .219* | .247**| .137 |
| 3.Control Emocional | .166 | .155 | .218* | .192* | .098 | .026 | .137 | .204* | .101 |
| 4.Focalización | .251** | .293**| .247**| .390**| .256**| .190* | .281* | .313**| .093 |
| 5.Atención Sostenida | .223* | .306**| .215* | .428**| .397**| .316**| .413**| .402**| .177 |
Procedimiento

Este estudio fue llevado a cabo de acuerdo con la Declaración de Helsinki (Williams, 2008), la cual recoge los principios éticos para la investigación con seres humanos. Una vez presentado el estudio a los equipos directivos, se obtuvo la autorización de los mismos y el consentimiento informado de las familias, tras lo cual se realizó la recogida de la información. Los cuestionarios administrados a alumnado se aplicaron colectivamente en una sesión regular de clase (aproximadamente 50 minutos). La participación del alumnado fue voluntaria, teniendo presente en todo momento el anonimato y la garantía de confidencialidad de los datos. Los cuestionarios de FE fueron entregados a los tutores, que además de cumplimentar sus propios cuestionarios, se encargaron de la entrega y recogida de los cuestionarios administrados a las familias. Éstas respondieron los cuestionarios en sus casas. Las instrucciones sobre cómo cumplimentar las escalas fueron proporcionadas junto con los propios cuestionarios. Solo se tuvieron en cuenta en este estudio aquellos cuestionarios en los que se contaba con las dos formas cumplimentadas (familias y profesorado).

Análisis de los datos

En este trabajo se empleó un diseño comparativo de tipo transversal (Ato, López, y Benavente, 2013). Dados los objetivos del mismo, se optó por el análisis Multivariado de la Varianza (MANOVA) con el fin de analizar las diferencias entre grupos con diferente conocimiento metacognitivo en las variables de estudio: habilidades metacognitivas (fases de planificación, ejecución y evaluación), y los nueve componentes de las FE evaluados por familias y profesorado.

Se empleó el programa SPSS 19.0 para el tratamiento estadístico de los datos. Las diferencias se consideraron estadísticamente significativas a un nivel de \(p \leq .05 \). Teniendo en cuenta la necesidad de conocer la significación práctica, además de la significación estadística de las diferencias, se incluyó un indicador de la magnitud del efecto (Ato et al., 2013). Se empleó para ello el criterio de Cohen (1988), según el cual el efecto es pequeño cuando \(\eta_p^2 = .01 \) (\(\delta = .20 \)), medio cuando \(\eta_p^2 = .059 \) (\(\delta = .50 \)), y alto cuando \(\eta_p^2 = .138 \) (\(\delta = .80 \)). Finalmente, dado que el presente estudio se basa en el análisis de las diferencias entre dos grupos, junto con las medias y el análisis de éstas diferencias, se obtuvieron los valores de asimetría y curtosis por separado para cada grupo y variable analizada (Tablas 2 y 3).

Resultados

Diferencias en las habilidades metacognitivas entre los grupos con alto y bajo conocimiento metacognitivo

En la Tabla 2 se pueden observar las medias de los estudiantes con diferente conocimiento metacognitivo (alto vs. bajo) en cuanto al uso de estrategias metacognitivas en las diferentes fases del Aprendizaje Autorregulado. Estas medias indicaron como los estudiantes en el grupo con alto conocimiento metacognitivo señalaron emplear con más frecuencia esas estrategias de forma sistemática en todas las fases. En este sentido, el MANOVA llevado a cabo confirmó la existencia de diferencias estadísticamente significativas entre ambos grupos en el conjunto de variables mencionadas (Lambda de Wilke = .873, \(F(3,110) = 5.333, p < .001, \eta_p^2 = .127 \)). Este análisis reveló asimismo Planificación (\(p < .001 \)) y Ejecución (\(p < .01 \)) como las fases donde se hallaron estas diferencias, fundamentalmente en la primera, con un tamaño del efecto considerablemente mayor. En cuanto a la fase de Evaluación, no se hallaron diferencias estadísticamente significativas entre los grupos (\(p = .25 \)).

Teniendo en cuenta las medias de ambos grupos en estas variables, se observó un uso infrecuente de las habilidades metacognitivas en las fases de Evaluación, y sobre todo en Planificación (con una media cercana a 8 cuando la puntuación máxima para esta subescala iría hasta 20), mientras que el uso de estas estrategias fue mucho más frecuente en la fase de Ejecución.

Habilidades Metacognitivas (IPPA)	Grupo 1 \((N = 50)\)	Grupo 2 \((N = 64)\)	Diferencias					
	M (DT)	Asimetría	Curtosis	M (DT)	Asimetría	Curtosis	F (1,112)	\(\eta_p^2 \)
Planificación	8.560 (1.296)	-.460	-.875	7.677 (1.299)	-.986	2.559	12.965 ***	.104

Nota: \(N = 114 \); EFE-F = Escala de Funcionamiento Ejecutivo para Familias; EFE-P = Escala de Funcionamiento Ejecutivo para Profesorado. ** \(p < .01 \); * \(p < .05 \)

Tabla 2. Análisis descriptivo y diferencias entre los grupos en el uso de estrategias metacognitivas.
Las medias de ambos grupos en las variables de funcionamiento ejecutivo evaluadas por familias y profesorado se muestran en la Tabla 3. De forma general, los estudiantes con alto conocimiento metacognitivo fueron evaluados por sus familias y profesorado de una forma más positiva (informando acerca de un menor déficit ejecutivo), en comparación con el grupo con bajo conocimiento metacognitivo. Esto se puede observar atendiendo a las medias obtenidas en los componentes de las FE, menores en el primero de los grupos en la mayoría de los casos. Solamente en los componentes de Control de la Impulsividad, Control Emocional y Flexibilidad evaluados por el profesorado se encontró un patrón diferente, con las medias fueron ligeramente superiores en el grupo con alto conocimiento de estrategias metacognitivas.

Los MANOVA realizados revelaron la existencia de diferencias estadísticamente significativas en el conjunto de las FE evaluadas entre ambos grupos de estudiantes, tanto cuando los informantes fueron las familias (Lambda de Wilks = .826; F(9,104) = 2.438; p = .015; \(\eta^2 = .174 \)) como cuando fue el profesorado (Lambda de Wilks = .807; F(9,104) = 2.766; p = .006; \(\eta^2 = .193 \)). Se encontraron diferencias estadísticamente significativas en ambas formas de la escala en los componentes de Focalización de la atención, Atención Sostenida, Memoria y Planificación. Aunque con un tamaño del efecto menor, también se encontraron diferencias estadísticamente significativas en el componente de Organización en la escala para familias. El componente de planificación fue el que presentó un tamaño del efecto empleando ambas escalas.

Teniendo nuevamente en cuenta las medias de ambos grupos, se puede observar como las medias en el cuestionario administrado a profesorado fueron inferiores a las registradas en familias en la totalidad de los componentes evaluados, lo que indica que éstos primeros informaron a cerca de un mejor funcionamiento ejecutivo (menor déficit) en el alumnado. Las medias en ambos casos señalaron no obstante la ausencia de dificultades importantes en las conductas evaluadas. En este sentido, si bien la puntuación máxima en cada componente sería 15, las medias variaron de 4.82 y 7.84 a 4.14 a 6.66 en el administrado a profesorado.

Tabla 3. Análisis descriptivo y diferencias entre los grupos en los componentes de Funciones Ejecutivas evaluados por familias y profesorado.

EFE- F

Funciones Ejecutivas	Grupo 1 (N = 50)	Grupo 2 (N = 64)	Diferencias					
	M(DT)	Asimetría	Curtosis	M(DT)	Asimetría	Curtosis	F(1,112)	\(\eta^2 \)
Control de la Impulsividad	6.78 (2.243)	.999	.375	7.27 (2.674)	.647	.196	1.064	.009
Control de la Hiperactividad	5.76 (1.985)	1.081	2.110	6.20 (2.297)	.790	.680	1.175	.010
Control Emocional	6.68 (2.817)	.564	.674	6.34 (2.869)	1.187	1.313	.392	.003
Focalización	6.48 (2.288)	.751	.504	7.66 (2.692)	.571	.436	6.101*	.052
Atención Sostenida	6.38 (2.230)	.660	.532	7.55 (2.594)	.418	.390	6.412*	.054
Memoria	8.82 (1.662)	1.131	1.155	5.94 (2.390)	.595	.067	7.929**	.066
Planificación	6.16 (2.566)	.788	.128	7.84 (2.940)	.352	.440	10.278**	.084
Organización	5.76 (2.568)	1.121	1.170	6.86 (2.828)	.409	.915	4.595*	.039
Flexibilidad	6.08 (2.156)	.937	.634	6.56 (2.349)	.889	1.639	1.272	.011

EFE- P

Funciones Ejecutivas	Grupo 1 (N = 50)	Grupo 2 (N = 64)	Diferencias					
	M(DT)	Asimetría	Curtosis	M(DT)	Asimetría	Curtosis	F(1,112)	\(\eta^2 \)
Control de la Impulsividad	5.36 (2.724)	1.341	2.472	5.25 (2.777)	1.097	2.910	.045	.006
Control de la Hiperactividad	4.92 (2.554)	1.448	1.533	5.14 (2.636)	1.770	3.216	.202	.002
Control Emocional	8.88 (4.717)	1.402	1.123	4.63 (2.640)	.652	2.020	.277	.002
Focalización	5.54 (2.443)	1.096	.774	6.58 (2.224)	.849	.262	5.609*	.048
Atención Sostenida	4.70 (1.940)	1.456	1.873	6.20 (2.644)	.592	.624	11.368***	.092
Memoria	4.14 (1.841)	1.729	2.248	5.14 (2.403)	1.055	.710	5.942*	.050
Planificación	5.08 (2.415)	1.307	1.065	6.66 (2.540)	.556	.460	11.286***	.092
Organización	4.80 (2.286)	1.239	.730	5.59 (2.683)	1.143	.716	2.792	.024
Flexibilidad	5.30 (2.742)	1.787	2.852	5.05 (2.134)	1.020	.683	.307	.003

Notas: Grupo 1: alto conocimiento metacognitivo; Grupo 2: bajo conocimiento metacognitivo; EFE-P = Escala de Funcionamiento Ejecutivo para Profesorado.
Discusión y conclusiones

Este trabajo ha tenido como objetivo analizar las diferencias en las habilidades metacognitivas y de funcionamiento ejecutivo entre dos grupos de estudiantes de Tercer Ciclo de Primaria (10-12 años) con diferente conocimiento metacognitivo (alto vs. bajo). Los resultados obtenidos se discuten en relación con los objetivos e hipótesis planteados:

Diferencias en las habilidades metacognitivas entre los grupos con alto y bajo conocimiento metacognitivo

En primer lugar, los estudiantes con un alto conocimiento metacognitivo señalaron emplear más frecuentemente las estrategias metacognitivas analizadas en las fases de planificación, ejecución y evaluación. En este sentido, un mayor conocimiento metacognitivo se relacionó con unas mejores habilidades metacognitivas, lo que es coherente con estudios previos como el de Böte et al. (2004), Pennequin et al. (2010a) y Weil et al. (2013), que indican como el conocimiento metacognitivo sería previo a las habilidades metacognitivas y un importante precursor para su desarrollo. Estas diferencias fueron estadísticamente significativas en las fases de planificación y ejecución, pero no en la de evaluación del aprendizaje.

Relacionado con este último resultado, un aspecto a reseñar es el hecho de que, si se consideran las puntuaciones de ambos grupos en la escala de habilidades metacognitivas, se observa como los estudiantes de forma general señalaron emplear con mayor frecuencia estas habilidades metacognitivas en la fase de ejecución, en contraste con las fases de evaluación del aprendizaje y sobretodo planificación. Esta prominencia dada al uso de estrategias en la fase de ejecución y el menor empleo de las mismas en evaluación y planificación irían en la línea de estudios previos que sugieren que los estudiantes en estas edades (últimos cursos de Educación Primaria) serían principalmente “ejecutivos” en el sentido de que dedican la mayor parte de sus esfuerzos a la ejecución de la tarea, en lugar de al diseo de un plan previo y la evaluación posterior de los resultados (Cleary y Chen, 2009; Kramarski y Gutman, 2006; Montague, Enders, y Dietz, 2011).

Estos trabajos muestran como muchos estudiantes tienden a mostrar pobres habilidades metacognitivas en las situaciones de aprendizaje, pasando directamente a la acción, dando respuestas impulsivas y empleando la misma estrategia una y otra vez incluso cuando ésta no resulta adecuada, lo que les lleva a acudir a menudo a estrategias de ensayo y error. Quizás este perfil observado en la muestra total explique porque pese a haber ciertas diferencias entre ambos grupos en el uso de estrategias metacognitivas en la fase de evaluación (si bien no fueron tan marcadas como en la fase de planificación), éstas no alcanzaron la significación estadística. Otra posible explicación a la ausencia de diferencias significativas en este sentido podría deberse a la posibilidad de que los estudiantes en general tuvieran ciertas dificultades para reconocer el tipo de estrategias propias de esta fase, lo que haría más difícil para ellos evaluar hasta qué punto las aplican o no. Sería necesario incidir en este aspecto en futuros estudios.

Estos resultados en su conjunto indicarían la existencia de una relación entre el conocimiento y las habilidades metacognitivas, así como la necesidad de fomentar su desarrollo de ambos componentes desde edades tempranas en dos sentidos: en primer lugar, atendiendo a la promoción de un buen conocimiento de estrategias metacognitivas como base para el desarrollo posterior de las habilidades metacognitivas; y en segundo lugar, incidiendo directamente sobre la aplicación de este conocimiento en tareas reales. La intervención en estrategias de Aprendizaje Autoregulado ha mostrado ser beneficiosa en ambos sentidos, fundamentalmente en aquellos estudiantes que muestran dificultades del aprendizaje o bajo rendimiento académico (González-Pienda, Fernández, Bernardo, Núñez, y Rosario, 2014; Moos y Ringdahl, 2012; Stoeger y Ziegler, 2008).

Diferencias en funcionamiento ejecutivo (evaluado por familias y profesorado) entre los grupos con alto y bajo conocimiento metacognitivo

En cuanto a la segunda cuestión planteada en este estudio, los resultados indicaron que si bien los estudiantes no presentaron dificultades ejecutivas importantes tanto cuando fueron evaluados por familias como por profesorado, ambos informantes atribuyeron un mejor funcionamiento ejecutivo de forma general al grupo con alto conocimiento metacognitivo. Las diferencias entre los grupos se encontraron principalmente en focalización de la atención, atención sostenida, memoria funcional y planificación en ambas versiones de la escala, así como en las capacidades de organización en el caso de la forma administrada a familias. En este sentido, un alto conocimiento metacognitivo estuvo relacionado con mejores habilidades de control ejecutivo (o menor déficit) en los componentes evaluados.

Un aspecto a destacar, no obstante, es el hecho de que no se observaron diferencias estadísticamente significativas en inhibición de respuestas ni flexibilidad cognitiva, las cuales habían sido encontradas en estudios previos (Corso et al., 2013; Garner, 2009; Kuhn y Pease, 2010; Melzer, 2013; Pennequin et al., 2010a; Schneider, 2010). Una posible explicación a este hecho estaría relacionada con el tipo de medidas de evaluación de las FE mayoritariamente empleadas en estudios previos, basadas en la ejecución de diferentes tareas ejecutivas. Estas medidas han sido descritas por algunos au-
tores por ser poco específicas en el sentido de que diferentes funciones pueden intervenir en la correcta ejecución de una misma tarea (Burin et al., 2007; Chevignard, et al., 2010; Lee, 2011; Lezak et al., 2012). En el presente estudio, el uso de cuestionarios de calificación de la conducta parece abogar a favor de la distinción propuesta por varios autores entre las denominadas funciones cálidas (hot) y frías (cool) (Brock, Rimm-Kaufman, y Nathanson, 2009; Zelazo y Carlson, 2012). Las funciones cálidas estarían implicadas en el tratamiento de la información emocional, incluyendo componentes como el control de impulsos, la interpretación de señales corporales, la toma de decisiones y el reconocimiento de la perspectiva del otro, y estarían más relacionadas con el desempeño social del individuo en su entorno. Por otra parte, las funciones frías permitirían un tratamiento más racional de la información, y estarían relacionadas con el razonamiento y el procesamiento de información abstracta, como por ejemplo la memoria de trabajo, la planificación, conceptualización y categorización entre otras. Estas funciones estarían más relacionadas, tanto, con aspectos del aprendizaje, y serían las que habrían generado diferencias estadísticamente significativas entre los grupos en el presente estudio, siendo las que relacionaron con en el conocimiento de estrategias metacognitivas.

Estos resultados muestran nuevamente la existencia de una relación entre habilidades específicas de funcionamiento ejecutivo y la Metacognición, al menos con respecto al componente de conocimiento metacognitivo. En este sentido, ambos componentes se relacionarían en tanto que implican componentes de planificación, organización, memoria y atención. Si bien para autores como Roebers et al. (2012) esta relación podría explicarse en parte desde un punto de vista evolutivo (estos autores sostienen que el progreso en las FE durante la infancia y la adolescencia se ve acompañado del desarrollo de un mayor conocimiento y control de los propios procesos de aprendizaje), los resultados obtenidos en el presente estudio no permiten conocer la dirección de esta relación. En cualquier caso, se entiende que el hecho de promover avances en un componente (Metacognición o FE), resultaría beneficioso para el desarrollo del otro. No obstante, si bien existen numerosos trabajos centrados en la promoción del desarrollo de los componentes metacognitivos en la edad escolar, lo cierto es que la intervención en FE se ha hecho principalmente en contextos clínicos. Teniendo en cuenta las implicaciones que funciones como las analizadas en el presente estudio tienen en el aprendizaje escolar y en el control de la propia conducta (García, González-Castro, Areces, Cueli, y Rodríguez, 2014; Marcovitch y Zelazo, 2009, Van De Voorde et al., 2010), se hace cada vez más necesario la generalización de la intervención en estos aspectos a nuevos contextos, como el educativo o el familiar.

Por último, si bien la correspondencia entre la información proporcionada por familias y profesorado en las escalas de FE fue moderada (Tabla 1), en la línea de estudios previos en este campo (Papageorgiou, Kalyva, Dafoulis, y Vostanis, 2008; Rettew et al., 2011; Salbach-Andrae et al., 2009), los datos del presente estudio han revelado como cuando los estudiantes son clasificados basándose en un criterio externo (en este caso haber sido asignados a un grupo según el número de respuestas correctas dadas en el cuestionario de conocimiento metacognitivo-CEA), las informaciones proporcionadas por familias y profesorado tienden a converger. Estos resultados indicarían, por tanto, la conveniencia de contar con varios informantes cuando la evaluación se realiza de acuerdo a la observación de la conducta.

Para finalizar, hay una serie de limitaciones en el presente estudio que deben ser tenidas en cuenta. En primer lugar, el tamaño muestral impone ciertas limitaciones para la generalización de los resultados obtenidos. Así mismo, junto con una muestra más amplia, sería interesante establecer niveles más extremos para la asignación de los participantes a los diferentes grupos. Si bien en este estudio se empleó el percentil 50 como punto de corte, niveles como el percentil 25 o 75 quizás permitirían obtener un patrón más claro de diferencias significativas. En segundo lugar, el tipo de evaluación de las habilidades metacognitivas empleado debe ser tenido en cuenta. Si bien estos componentes suelen ser valorados mediante métodos de auto-informe, como en el presente estudio, son numerosos los autores que señalan que el empleo de otro tipo de medidas, basadas en el análisis del proceso, serían más adecuadas cuando se trata de la evaluación de este tipo de componentes procedimentales y estratégicos (Azevedo y Aven 2013; Lazakidou y Retalis 2010; Veenman, 2011). Estos métodos, como los protocolos Think-aloud (Montague et al., 2011) o la Triple Tarea y sus variantes (Piolat, Kellogg y Farioli, 2001; Piolat, Olive, y Kellogg, 2005) están basados en la recogida de información concurrente a la realización de una tarea cognitiva y suponen un complemento al uso de cuestionarios. En tercer lugar, y una vez salvadas las anteriores limitaciones, otro de los aspectos a considerar sería la conveniencia de ampliar este estudio mediante el análisis de la relación entre FE y el componente de habilidades metacognitivas. Esto permitiría conocer con mayor exactitud la relación entre FE y Metacognición. En cuarto lugar, si bien este estudio ha mostrado la relevancia de ciertas habilidades de control ejecutivo como la atención, planificación, la memoria o la capacidad de organización en relación con el conocimiento metacognitivo, los resultados obtenidos no permiten determinar si las FE explican el desarrollo de tal conocimiento o viceversa, o si otras variables como puede ser el tipo de método instruccional afectan a esta relación. Finalmente, y puesto que estudios previos han señalado como los componentes de Metacognición y FE se relacionan con el rendimiento en diversas áreas como las matemáticas o el lenguaje, incluir algún indicador de este tipo en estudios futuros sería de gran interés. Esto permitiría delimitar con mayor exactitud la relación entre ambos componentes, así como si influencia en el rendimiento en diferentes áreas curriculares.
Referencias

Achenbach, T. M. (1991). Integrative guide for the 1991 CBCL/1-5, YSR and TRF profiles. Burlington: Department of Psychiatry, University of Vermont.

Anderson, V. M., Jacobs, R. y Anderson, P. (2008). Executive functions and the frontal lobes: A lifespan perspective. New York: Taylor y Francis.

Ato, M., López, J. J. y Benavente, A. (2013). Un sistema de clasificación de las pruebas de inteligencia. En G. Regalado, J. Lázaro, J. C., Castillo Pienda, J. A., Fernández, E., Bernardo, A. B., Núñez, J. C. y Rosario, P. (2014). Assessment of self-regulated learning intervention. The Spanish Journal of Psychology, 17, 1-9. doi: 10.3200/JRLP.143.4.405-426

Bispo, T. L. (2011). Relationship between performance-based measures of executive function and the Behavior Rating Inventory of Executive Function (BRIEF), a parent rating measure. Dissertation Abstracts International: Section B: The Sciences and Engineering, 72(1-B), 522.

Blöte, A. W., Van Otterloo, S. G., van Stevenson, C. E. y Veerman, M. V. J. (2004). Discovery and maintenance of the many-to-one counting strategy in 4-year-olds: A microgenetic study. British Journal of Developmental Psychology, 22, 83–102.

Braga, T. V., Sosa, D. y Hortaz, R. A. (1982). Tower of Hanoi performance of retarded young adults and nonretarded children as a function of solution length and goal state. Journal of Experimental Child Psychology, 31, 174–195.

Brock, I. L., Rimm-Kaufman, S. E. y Nathanson, L. (2009). The contributions of ‘hot’ and ‘cool’ executive function to children’s academic achievement and learning-related behaviors, and engagement in kindergarten. Early Childhood Research Quarterly, 24(3), 337-349.

Burin, D. I., Drake, M. y Harris, P. (2007). Evaluación de la atención. En D.I. Burin, M. Drake, y P. Harris (Eds.), Evaluación Neuropsicológica en adultos (pp. 146-147). Buenos Aires: Paidós.

Casal, J. y Mateu, E. (2005). Tipos de muestreo. Revista de Epidemiología y Medicina Preventiva, 1, 3–7.

Chevignard, M. P., Carrappa, C., Galvin, J. y Anderson, V. (2010). Development and evaluation of an ecological task to assess executive functioning post childhood TBI: The Children’s Cooking Task. Brain Impairment, 11(2), 125–143. http://dx.doi.org/10.1037/bri.11.2.125.

Chevignard, M. P., Carrappa, C., Galvin, J. y Anderson, V. (2010). Evaluación de la atención. En D.I. Burin, M. Drake, y P. Harris (Eds.), Evaluación Neuropsicológica en adultos (pp. 146-147). Buenos Aires: Paidós.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence Erlbaum

Corso, H. V., Sperb, T. M., Inchausti de Jou, G. y Fumagalli, J. (2013). Metacognitive and executive functions: relationships between concepts and implications for learning. Psicología: Teoría y Práctica, 29(1), 21-29. doi: http://dx.doi.org/10.1590/S0102-37722013000100004

Diamond, A. (2013). Executive Functions: Annual Review of Psychology, 64, 135-168. doi:10.1146/annurev-psych-113011-143750

Díaz, A., Martín, R., Jiménez, J. E., García, E., Hernández, S. y Rodríguez, C. (2012). Torre de Hanoi: datos normativos y desarrollo evolutivo de la planificación. European Journal of Education and Psychology, 5(1), 79-91.

Egeerland, J. y Falmyr, O. (2010). Confirmatory Factor Analysis of the Behavior Rating Inventory of Executive Function (BRIEF): support for a distinction between emotional and behavioral regulation. Child Neuropsychology, 16(6), 326-37. doi: 10.1080/09297040100310416

Finney, S. J. y DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. En G.R. Hancock y R.O. Muller (Eds.), Structural equation modeling: A second course (pp. 269-314). Greenwich, CT: Information Age

Flavell, J. H. (1979). Metacognition and cognitive monitoring. American Psychologist, 34, 906-911.

Flores-Lázaro, J. C., Castillo-Preciado, R. E. y Jiménez-Miramonte, N. A. (2014). Desarrollo de funciones ejecutivas, de la niñez a la juventud. Anales de Psicología, 30, 802. doi: http://dx.doi.org/10.6018/anapaless.30.2.155471

García, T., Álvarez-García, D., González-Castro, P., Álvarez, L. y Segurola, L. A. (2014). Propiedades psicométricas de la Escala de Funcionamiento Ejecutivo para Profesorado. Revista de Psicología y Educación, 9(1), 49-69.

García, T., González-Castro, P., Arces, D., Cuáel, M. y Rodríguez, C. (2014). Executive functions in children and adolescents: the types of assessment measures used and implications for their validity in clinical and educational contexts. Papel del Psicólogo, 35(3), 215-223.

Garner, J. K. (2009). Conceptualizing the Relations between Executive Functions and Self-Regulated Learning. Journal of Psychology, 143(4), 405-426. doi:10.3200/JRLP.143.4.405-426

Gioia, G. A., Isquith, P. K., Guy, S. y Kenworthy, L. (2000). BRIEF: Behavior Rating Inventory of Executive Function professional manual. Lutz, FL: Psychological Assessment Resources.

Gioia, G. A., Kenworthy, L. y Isquith, P. K. (2010). Executive function in the real world: BRIEF lessons from Mark Ylvisaker. Journal of Head Trauma Rehabilitation, 25(6), 433-439. doi: 10.1077/HTR.011.3e31815bc272

González-Pienda, J. A., Fernández, E., Bernardo, A. B., Núñez, J. C. y Rosario, P. (2014). Assessment of a self-regulated learning intervention. The Spanish Journal of Psychology, 17, 1-9. doi: http://dx.doi.org/10.3200/JRLP.143.4.405-426

Kozorenzis, C. G. (2011). Desarrollo evolutivo del funcionamiento ejecutivo y su relación con el aprendizaje escolar. Revista de Psicología, 7(13), 7-26.

Kramarski, B. y Gutman, M. (2006). How can self-regulated learning be supported in mathematical E-learning environments? Journal of Computer Assisted Learning 22, 24–33. doi:10.1111/j.1365-2729.2006.00157.x

Kuhn, D. y Pease, M. (2010). Los dos componentes de desarrollar estrategia use: Producción y inhibición. In H. S. Waters y W. Schneider (Eds.), Metacognitive strategy use and instruction (pp. 135–159). New York: Guilford Press.

Lazakidou, G. y Reralis, S. (2010). Using computer supported collaborative learning strategies for helping students acquire self-regulated problem-solving skills in mathematics. Computers y Education 54, 3-13. doi:10.1016/j.compedu.2009.02.020

Lee, K., Lynn, N. y Fong, S. (2009). The Contributions of Working Memory and Executive Functioning to Problem Representation and Solution Generation in Algebraic Word Problems. Journal of Educational Psychology, 101(2), 373–387.

Lee, E. (2011). An exploratory analysis of the ecological validity of a performance-based assessment of attention. Dissertation Abstracts International: Section B: The Sciences and Engineering, 71(0-B), 5777.

Lezak, M. D., Howieson D. B., Bigler, E. D. y Tranel, D. (2012). Neuropsychological assessment 5th edition. Oxford: Oxford University Press Chapters.

Lucangeli, D. y Cabrele, S. (2006). The relationship of metacognitive knowledge, skills and beliefs in children with and without mathematical learning disabilities. En A. Desoete y M. V. Veerman (Eds.), Metacognition in mathematics education (pp. 103–133). New York: Nova Science Publishers, Inc.

Lyons, K. E. y Zelazo, P. D. (2011). Monitoring, metacognition, and executive function: elucidating the role of self-reflection in the development of self-regulation. En J. Benson (Ed.), Advances in Child Development and Behavior (pp.379–412). Burlington: Academic Press.

Marcovitch, S. y Zelazo, P. D. (2009). A hierarchical competing systems model of the emergence and early development of executive function. Development Science, 12(1), 1-18.

Mares, D., McLuckie, A., Schwartz, M. y Saini, M. (2007). Executive function impairments in children with attention-deficit hyperactivity disorder: do they differ between school and home environments? Canadian Journal of Psychology, 52(3), 527-534.
Metacognición y funcionamiento ejecutivo en Educación Primaria

483

Martin, R., Hernández, S., Rodríguez, C., García, E., Díaz, A. y Jiménez, J. E. (2012). Datos normativos para el Test de Stroop: patrón de desarrollo de la inhibición y formas alternativas para su evaluación. European Journal of Education and Psychology, 5(1), 39-51.

McAuley, T., Chen, S., Goos, L., Schachar, R. y Crobie, J. (2010). Is the Behavior Rating Inventory of Executive Functions more strongly associated with measures of impairment or executive function? Journal of the International Neuropsychological Society, 16(3), 495-505. doi: 10.1017/S1355617710000093.

Melzer, I. (2013). Executive Function and Metacognition in Students with Learning Disabilities: New Approaches to Assessment and Intervention. International Journal for Research in Learning Disabilities, 1(2), 31-63.

Montague, M., Enders, G. y Dietz, S. (2011). Effects of cognitive strategy instruction on math problem solving of middle school students with learning disabilities. Learning Disability Quarterly, 34(4), 262-272. doi: 10.1177/0731948711421762.

Moos, D. C. y Ringdal, A. (2012). Self-Regulated Learning in the classroom: A literature review on the teacher's role. Education Research International, 2012, Article ID 423284. doi:10.1155/2012/423284.

Panadero, E. y Alonso-Tapia, J. (2014). ¿Cómo autoregular nuestros alumnos? Revisión del modelo cíclico de Zimmerman sobre autoregulación del aprendizaje. Anales de Psicología, 30(2), 450-462. doi: http://dx.doi.org/10.6018/analesps.30.2.167221.

Papageorgiou, V., Kalyva, E., Dafoulis, V. y Vostanis, P. (2008). Differences in Parents' and Teachers' Ratings of ADHD Symptoms and Other Mental Health Problems. The European Journal of Psychiatry, 22(4), 200-210. doi: http://dx.doi.org/10.4321/s0213-48542008000400003.

Pennequin, V., Sorel, O. y Mainguy, M. (2010a). Metacognition, Executive Functions and Aging: The Effect of Training in the Use of Metacognitive Skills to Solve Mathematical Word Problems. Journal of Adult Development, 17(3), 168-176. doi: 10.1007/s10804-010-9098-3.

Pennequin, V., Sorel, O., Nanty, I. y Fontaine, R. (2010b). Metacognition and low achievement in mathematics: The effect of training in the use of metacognitive skills to solve mathematical word problems. Thinking and Reasoning, 16(3), 198-220.

Piolat, A., Kellogg, R. T. y Faraci, P. (2001). The triple task technique for studying writing processes: on which task reasoning, 16(3), 389-397. doi: 10.1007/s10164-010-0153.

Roebers, C. M., Grödel, P., Roithsberger, M. y Neuswander, B. (2012). Executive Functioning, Metacognition, and Self-Perceived Competence in Elementary School Children: An Explorative Study on their Interrelations and their Role for School Achievement. Metacognition y Learning, 7, 151-173. doi: 10.1007/s11449-012-9089-9.

Rosário, P., González-Plienda, J. A., Pinto, R., Ferreira, P., Lourenço, A. y Paiva, O. (2010). Efficacy of the program “Testas’s (mi)adventures” to promote the deep approach to learning. Psicothema, 22, 828-834.

Rosário, P., Mourão, R., Núñez, J. C., González-Plienda, J. A. y Solano, P. (2006). School-family: Is a reciprocal and positive relationship possible? Papeles del Psicólogo, 27(3), 174-182.

Salsbach-Andræ, H., Lera, K. y Lohrmüller, U. (2009). Patterns of agreement among parent, teacher and youth ratings in a referred sample. European Psychiatry, 24(5), 345–351. doi: 10.1016/j.eurpsy.2008.07.008.

Schneider, W. (2010). Metacognition and memory development in childhood and adolescence. En H. S.Waters y W. Schneider (Eds.), Metacognition, strategy use and instruction (pp. 54–81). New York: Guildford Press.

Stoecker, H., y Ziegler, A. (2008). Evaluation of a classroom based training to improve self-regulation in time management tasks during homework activities with fourth graders. Metacognition and Learning, 3(3), 207-230. doi: 10.1007/s11409-008-9027-x.

Stroop, J. R. (1933). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-622.

Thorell, L. B. y Nyberg, L. (2008). The Childhood Executive Functioning Inventory (CHEXI): A new rating instrument for parents and teachers. Developmental Neuropsychology, 33, 536-552. doi: 10.1080/87565640802101516.

Thorsdottir, I. (2011). Self-regulated learning of basic arithmetic skills: A longitudinal study. British Journal of Educational Psychology, 81, 558–578.

Toll, S. W. M., Van der Ven, S. H. G., Krosbergen, E. H. y Van Luit, E. J. H. (2011). Executive functions as predictors of math learning disabili ties. Journal of Learning Disabilities, 44(6), 521 – 532. doi: 10.1177/0022219410387302.

Valle, A., Rodríguez, S., Cabanach, R. G., Núñez, J. C., González-Plienda, J. A. y Rosário, P. (2009). Diferencias en rendimiento académico según los niveles de las estrategias cognitivas y de las estrategias de autorregulación. JUMMA Psicología UJFT, 6(2), 31-42.

Van der Ven, S. H. G., Krosbergen, E. H., Boom, J. y Leseman, P. P. (2013). The structure of executive functions in children: a closer examination of inhibition, shifting, and updating. British Journal of Developmental Psychology, 31(1), 70-87. doi: 10.1111/bjdp.12079.x.

Van De Voorde, S., Roeyers, H., Verté, S. y Vierin, J. R. (2010). Working memory, response inhibition, and within-subject variability in children with attention-deficit/hyperactivity disorder or reading disorder. Journal of Clinical and Experimental Neuropsychology, 32, 366-79. doi: 10.1080/1380399090366865.

Veerman, V. J. J. (2011). Learning to self-monitor and self-regulate. En R. Mayer y P. Alexander (Eds.), Handbook of research on learning and instruction (pp. 197-218). New York: Routledge.

Well, I. G., Fleming, S. M., Dumonthiel, I., Kílforda, E. J., Weil, R. S., Rees, G.,... y Blakemore, S. (2015). The development of metacognitive ability in adolescence. Consciousness and Cognition, 22, 264-271. doi: http://dx.doi.org/10.1016/j.concog.2013.01.004.

Williams, J. R. (2008). Revising the Declaration of Helsinki. World Medical Journal, 54, 120-125.

Zelazo, P. D. y Carlson, S. M. (2012). Hot and Cool Executive Function in Childhood and Adolescence: Development and Plasticity. Child Development Perspectives, 6(4), 354-360. doi: 10.1111/j.1750-8606.2012.00246.x.

Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical, background, methodological developments and future prospects. American Educational Research Journal, 45, 166-183.

(Artículo recibido: 18-07-2014; revisado: 31-12-2014; aceptado: 26-03-2015)
