Formation and removal of 1,N^6-dimethyladenosine in mammalian transfer RNA

Xue-Jiao You1,2,3,†, Shan Zhang1,2,†, Juan-Juan Chen2, Feng Tang2, Jingang He4,5, Jie Wang4,5, Chu-Bo Qi6, Yu-Qi Feng1,2 and Bi-Feng Yuan1,2,3,*

1Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China, 2Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China, 3Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China, 4State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China, 5University of Chinese Academy of Sciences, Beijing, China and 6Department of Pathology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China

Received April 09, 2022; Revised August 17, 2022; Editorial Decision August 18, 2022; Accepted August 27, 2022

ABSTRACT

RNA molecules harbor diverse modifications that play important regulatory roles in a variety of biological processes. Over 150 modifications have been identified in RNA molecules. N^6-methyladenosine (m^6A) and 1-methyladenosine (m^1A) are prevalent modifications occurring in various RNA species of mammals. Apart from the single methylation of adenosine (m^6A and m^1A), dual methylation modification occurring in the nucleobase of adenosine, such as N^6,N^6-dimethyladenosine (m^6,6A), also has been reported to be present in RNA of mammals. Whether there are other forms of dual methylation modification occurring in the nucleobase of adenosine other than m^6,6A remains elusive. Here, we reported the existence of a novel adenosine dual methylation modification, i.e. 1,N^6-dimethyladenosine (m^1,6A), in tRNAs of living organisms. We confirmed that m^1,6A is located at position 58 of tRNAs and is prevalent in mammalian cells and tissues. The measured level of m^1,6A ranged from 0.0049% to 0.047% in tRNAs. Furthermore, we demonstrated that TRMT6/61A could catalyze the formation of m^1,6A in tRNAs and m^1,6A could be demethylated by ALKBH3. Collectively, the discovery of m^1,6A expands the diversity of RNA modifications and may elicit a new RNA modification-mediated gene regulation pathway.

GRAPHICAL ABSTRACT

INTRODUCTION

Beyond the four canonical nucleobases, RNA molecules also carry a diverse array of modifications (1). In recent years, there have been substantial efforts to uncover and characterize the modifications present on RNA, motivated by the potential of such modifications to regulate RNA metabolism (2). Over 150 different types of modifications have been reported to be present in various RNA species across all domains of living organisms (3). These naturally occurring modifications in RNA molecules serve critical roles in impacting RNA structure and also broaden our understanding toward the functions of RNA molecules (4–6). In a manner analogous to DNA, increasing evidence...
proposes that these modifications in RNA molecules participate in regulating RNA processes (7).

Methylation is the most prevalent modification occurring in RNA molecules of mammals (3). Two isomeric adenosine methylation modifications of N6-methyladenosine (m6A) and 1-methyladenosine (m1A) have been reported to be widely present in different RNA species of mammals (8). m6A is found in eukaryotic messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA) and non-coding RNA (ncRNA) (9). Intensive studies of m6A indicate that m6A is found in mammalian mRNA, with enrichment in the 5′ untranslated region (5′ UTR) (20–22). m6A in RNA can affect ribosome biogenesis, respond to environmental stress, and mediate antibiotic resistance in bacteria (23).

Apart from the single methylation on the nucleobase of adenosine (m6A and m1A), dual methylation modification occurring in the nucleobase of adenosine, such as N6,N6-dimethyladenosine (m6,6A), also has been reported to be present in RNA. m6,6A is a conserved modification found in human 18S rRNA and plays a critical role in ribosome biogenesis (24,25). Since both m1A and m6A are ubiquitously found in RNA of mammals, we speculate that the dimethylated adenosine other than m6,6A, such as 1,N6-dimethyladenosine (m1,6A), may be present in RNA. However, unlike m6,6A, m1,6A has never been discovered in living organisms across the three-domain system, including archaean, bacteria, and eukaryote. The presence of m1,6A in RNA remains an open question.

In this study, we reported the existence of a novel adenosine dual methylation modification, i.e. m1,6A, in tRNAs of mammalian cells and tissues. Notably, we demonstrated that m1,6A was located at position 58 of tRNAs. Furthermore, we demonstrated that TRMT6/61A was responsible for the formation of m1,6A in tRNAs and ALKBH3 was capable of demethylating m1,6A in tRNAs.

MATERIALS AND METHODS

Chemicals and reagents

The nucleosides and modified nucleosides, including adenosine (A), guanosine (G), cytidine (C), uridine (U), N3-methylcytidine (mC), 5-methylcytidine (m5C), N7-methylguanosine (m7G), N7-methyladenosine (m7A), N6,N6-dimethyladenosine (m6,6A), 1-methyladenosine (m1A), 1,2-O-dimethyladenosine (m1Am), and N6,2′-O-dimethyladenosine (m6Am) were purchased from various commercial sources and the detailed information of these nucleosides can be found in Supplementary Table S1 in Supporting Information. 1,N6-dimethyladenosine (m6,6A) was synthesized in the current study. Venom phosphodiesterase I and TRIzol reagent were purchased from Sigma-Aldrich (Beijing, China). Calf intestinal alkaline phosphatase (CIAP) and S1 nuclease were obtained from Takara Biotechnology (Dalian, China). Proteinase K was obtained from Sangon Biotechnology (Shanghai, China). Dimethyl sulfate (DMS) was purchased from Macklin Biochemical Technology Co., Ltd (Shanghai, China). Trimethylsulfoniumiodide (Me3SI) was purchased from Bide Pharmatech Ltd. (Shanghai, China). Dulbecco’s modified Eagle’s medium (DMEM), RPMI-1640 medium and fetal bovine serum were purchased from Thermo-Fisher Scientific (Beijing, China). Chromatographic grade methanol was purchased from Merck (Darmstadt, Germany).

Synthesis and characterization of m1,6A

m1,6A was synthesized by two different strategies. Briefly, 20 μM of m1A or m6A was used as the substrate to react with 100 mM of DMS under different pH at 37°C for 1 h. Alternatively, m6A (6 mg) in DMF was used as the substrate to react with Me3SI (30 mg) at 85°C for 3.5 h. The obtained m1,6A was separated and purified by high performance liquid chromatography (HPLC). The HPLC separation was performed on Shimadzu LC-20AT HPLC system. A homemade C18-T column (10.0 × 250 mm) was employed for the separation. An isocratic separation was performed at a flow rate of 2.0 ml/min with 10% methanol (v/v) as the mobile phase. The synthesized m1,6A was characterized by high-resolution mass spectrometry and nuclear magnetic resonance (NMR) analysis.

Biological and clinical samples

Human embryonic kidney 293T cell line (HEK293T), human cervical carcinoma cell line (HeLa), human hepatic cell line (HL-7702), human breast cancer cell line (MCF-7), human liver carcinoma cell line (HepG2), human malignant myeloid cell line (K562), human leukemic cell line (Jurkat-T), and mouse neuroblastoma N2a cell line (Neuro-2a) were obtained from the China Center for Type Culture Collection. HEK293T, HeLa, MCF-7, HepG2 and Neuro-2a cells were grown in DMEM medium. HL-7702, Jurkat-T and K562 cells were grown in RPMI-1640 medium. The medium was supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin. Cells were maintained in a humidified atmosphere with 5% CO2 at 37°C. As for stable isotope tracing experiments, human HEK293T and HeLa cells were cultured in DMEM medium supplemented with 0.3 mM of D3-Met. HEK293T and HeLa cells were harvested after cultivating for 72 h in DMEM medium supplied with D3-Met.

The animal experiment was treated in accordance with the protocols and approved by the Animal Ethics Committee at the Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences. The rat and mouse were anesthetized and euthanized, and the rat brain tissues were quickly removed and manually divided into nine regions, including olfactory bulb (OB), cerebellum (CE), medulla (MED), midbrain (MID), thalamus (THA), hypothalamus (HYP), hippocampus (HP), striatum (ST) and cerebral cortex (CC). A total of 10 breast cancer tissues and matched tumor-adjacent normal tissues from five breast cancer patients were collected from Hubei
Cancer Hospital. The human related study was granted and approved by the Hubei Cancer Hospital Ethics Committee and met the declaration of Helsinki. All the experiments were performed in accordance with Hubei Cancer Hospital Ethics Committee’s guidelines and regulations.

Purification of different RNA species

Cellular total RNA was extracted using TRIzol reagent (Sigma-Aldrich, Beijing, China) according to the manufacturer’s recommended procedure. Large RNA (>200 nt) and small RNA (<200 nt) were purified using an E.Z.N.A. miRNA kit (Omega Bio-Tek Inc., Norcross, GA, USA). The small RNA (<200 nt) was further separated by 10% urea–PAGE and gel-purified to obtain tRNAs, 5S rRNA, and 5.8S rRNA. For the isolation of 18S rRNA and 28S rRNA, the total RNA was further separated by means of size exclusion chromatography (SEC) using a Bio SEC-5 column (5 mm, 1000˚A, 4.6 × 10^{-6} mm; Agilent Technologies, Foster City, CA, USA) according to a previous study (26). Isocratic separation was performed at a flow rate of 0.35 ml/min at 35 °C with 100 mM CH₃COONH₄ (pH 7.0) as the mobile phase. The fraction was collected and processed with the E.Z.N.A. miRNA kit to remove salt. For mRNA isolation, the obtained large RNA (>200 nt) was extracted twice using PolyATtract® mRNA isolation system (Promega, Madison, WI, USA). The isolated RNA was quantified by UV spectrophotometer B-500 (Metash, Shanghai, China).

Isolation of individual tRNA

Typically, 20 µl of PuriMag G-Streptavidin magnetic beads (PuriMag Biotech, Xiamen, China) were washed three times with 1× binding buffer (20 mM Tris- HCl, pH 8.0, 0.5 M NaCl), and then resuspended in 100 µl of 1× binding buffer. Subsequently, 40 µM of biotin-labeled DNA probe (Supplementary Table S2 in Supporting Information) that is complementary to individual tRNA in 100 µl of 1× binding buffer was added to beads and incubated at 25 °C for 30 min with gentle mixing. The DNA probe-coated beads were then washed four times using 200 µl of 1× binding buffer and resuspended in 100 µl of 1× binding buffer. Then 30 µg of purified tRNAs dissolved in 100 µl of 1× binding buffer was mixed with the DNA probe-coated beads and incubated at 75 °C for 10 min followed by incubation at 25 °C for 3 h to allow the hybridization of the individual tRNA to DNA probe. The DNA probe-coated beads were washed five times with 200 µl of washing buffer (7 mM Tris–HCl, pH 8.0, 0.17 M NaCl). The individual tRNA was recovered by degradation of streptavidin with 27 µM of proteinase K digestion at 55 °C for 40 min in 50 µl of RNase-free H₂O or through incubation in 20 µl buffer (95% formamide, 10 mM EDTA, pH 8.2) at 65 °C for 5 min. The resulting tRNA was further purified using RNA Clean & Concentrator kit (Zymo Research).

Isolation of specific fragment of tRNA

To obtain a specific fragment of tRNA, we proposed a strategy of DNA hybridization protection combined with S1 nuclease digestion. Specifically, 600 ng of purified tRNA_{\text{Gly(GCC)}} and 5 µM of 22-mer biotin-labeled DNA probe (or 20-mer or 18-mer biotin-labeled DNA probe) were mixed in a 20-µl hybridization buffer (50 mM Tris- HCl, pH 7.0, 5 mM MgCl₂). The mixture was heated at 70 °C for 10 min followed by gradual cooling down to 25 °C to allow the hybridization of the 22-mer biotin-labeled DNA probe (or 20-mer or 18-mer biotin-labeled DNA probe) with tRNA_{\text{Gly(GCC)}}. Subsequently, S1 nuclease (180 units/µl in stock solution) was added to the mixture (final concentration of 0.3 units/µl) to digest the single-stranded region of tRNA_{\text{Gly(GCC)}} as well as the excess biotin-labeled DNA probe at 23 °C for 15 min. Finally, the PuriMag G-Streptavidin magnetic beads were applied for isolation of the 22-bp RNA/DNA hybrid (or 20-bp or 18-bp RNA/DNA hybrid) according to the aforementioned procedure.

LC–ESI-MS/MS analysis

RNA was enzymatically digested under neutral conditions according to our previously described method (27). LC–ESI-MS/MS analysis of the digested nucleosides was performed on a Shimadzu 8045 mass spectrometer (Kyoto, Japan) equipped with an electrospray ionization (ESI) source (Turbo Ionspray) and a Shimadzu LC-30AD UPLC system (Tokyo, Japan). A Shimadzu Shim-pack GIST C18 column (100 mm × 2.1 mm i.d., 2.0 µm) was employed for the separation at 40 °C. The mobile phases consist of 0.05% formic acid/H₂O (solvent A) and methanol (solvent B) with a flow rate of 0.2 ml/min. A 20-min gradient (0–2 min of 5% B, 2–10 min of 5 to 80% B, 10–12 min of 80% B, 12–13 min of 80 to 5% B and 13–20 min of 5% B) was employed for the separation. The nucleosides were detected by multiple reaction monitoring (MRM) under positive-ion mode. The optimal MRM mass spectrometric parameters are listed in Supplementary Table S3 in Supporting Information.

High-resolution mass spectrometry analysis

The synthesized m⁺¹⁶A was characterized using a high-resolution LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), which was equipped with an ESI source and a Dionex Ultimate 3000 UPLC system (Thermo Fisher Scientific, Waltham, MA, USA). The LC separation conditions were the same as that on Shimadzu 8045 mass spectrometer system. The MS analysis was performed in positive-ion mode with full scan detection (m/z 100–350) at a resolution of 60 000. The molecular mass (m/z 296.1) of the m⁺¹⁶A was listed as the precursor ions for MS/MS analysis. The high-resolution MS/MS analysis was performed under positive-ion mode at the resolution of 60000 using collision induced dissociation (CID) activation mode with a collision energy of 20 eV. In addition, the product ion (m/z 164.1) of the m⁺¹⁶A was listed as the precursor ions for MS³ analysis. The high resolution MS³ analysis was performed under positive-ion mode at the resolution of 60 000 using CID activation mode with a collision energy of 35 eV. The source and ion transfer parameters applied were as follows: capillary
temperature, 350°C; heater temperature, 300°C; auxiliary gas flow, 15 arbitrary units; sheath gas flow, 35 arbitrary units; capillary voltage, 35 V; spray voltage, 3.5 kV; the S-lens RF level, 60%. Data analysis was performed using Xcalibur v3.0.63 (Thermo Fisher Scientific, Waltham, MA, USA).

Expression and purification of recombinant proteins

The human ALKBH3 (hALKBH3), human ALKBH1 (hALKBH1), human TRMT6 (hTRMT6), human TRMT61A (hTRMT61A) and mouse Alkbh3 (mAlkbh3) genes were synthesized by TsingKe Biological Technology (Beijing, China). The synthesized hALKBH3, hALKBH1, hTRMT6 and mAlkbh3 genes were separately cloned into pGEX-4T1 plasmid that contains the glutathione S-transferase (GST) tag. The hTRMT61A gene was inserted into pET28(a) plasmid. The human METTL16 gene was constructed from the MTase domain (1–310 amino acids, referred to as hMTD16) and inserted into pET28(a) plasmid. These protein-expressing constructs were examined and confirmed by sequencing and the trans-ET28(a) plasmid. These protein-expressing constructs were examined and confirmed by sequencing and trans-

Expression and purification of recombinant proteins

The human ALKBH3 (hALKBH3), human ALKBH1 (hALKBH1), human TRMT6 (hTRMT6), human TRMT61A (hTRMT61A) and mouse Alkbh3 (mAlkbh3) genes were synthesized by TsingKe Biological Technology (Beijing, China). The synthesized hALKBH3, hALKBH1, hTRMT6 and TRMT61A were simultaneously transformed into BL21 (DE3) strain. The induced protein expression was carried out at 16°C for 20 h with the addition of 0.5 mM IPTG (isopropyl-β-D-thiogalactopyranoside).

For the purification of hALKBH1, hALKBH3 and mALKBH3 proteins, *E. coli* cells were collected in PBS buffer (136 mM NaCl, 2.6 mM KCl, 8 mM Na2HPO4, 2 mM KH2PO4, 2 mM DTT) supplemented with protease inhibitors (0.2 mM). After ultrasonication, the supernatant was applied to purify recombinant proteins using GST affinity beads. After washing with PBS buffer, Cryonase™ Cold-Active nuclease (Takara Biotechnology, Dalian, China) was added to degrade the residual nucleic acid at 4°C for 1 h. The recombinant proteins were eluted with 20 mM reduced glutathione in 100 mM Tris-HCl (pH 8.0). For the purification of hMTD16, *E. coli* cells were collected in the lysis buffer (20 mM Tris–HCl 8.0, 150 mM NaCl), and the recombinant protein was purified using Ni-NTA and then eluted with 250 mM imidazole in the elution buffer (20 mM Tris–HCl, pH 8.0, 150 mM NaCl). For the purification of hTRMT6/61A protein complex, we used GST affinity beads to pulldown the complex followed by elution with 20 mM reduced glutathione in 100 mM Tris–HCl (pH 8.0). All the purified proteins were analyzed by SDS-PAGE and stored at –80°C.

In vitro methylation and demethylation assay

The *in vitro* methylation and demethylation assays were conducted according to previous studies with slight modifications (28,29). For the methylation assay of hMTD16, the reaction mixture (20 μl) contained 50 mM Tris–HCl (pH 8.0), 200 mM NaCl, 2 mM MgCl2, 1 mM DTT, 0.2 units/μl (final concentration) of RNase inhibitor, 1 mM SAM (S-adenosyl-L-methionine), 20 μM hMTD16, and 5 pmol hairpin RNA (Supplementary Table S2 in Supporting Information) or 100 ng of purified tRNAs. The reaction was carried out at 37°C for 3 h. For the methylation assay of hTRMT6/61A, the mixture (20 μl) included 50 mM Tris–HCl (pH 8.0), 50 mM NH4Cl, 10 mM MgCl2, 1 mM DTT, 0.2 units/μl (final concentration) of RNase inhibitor, 60 μM SAM, 5 μM hTRMT6/61A, and 200 ng of tRNAs. The reaction was performed at 30°C for different times. For the demethylation assay, the reaction solution (20 μl) contained 10 μM recombinant hALKBH1, hALKBH3 or mALKBH3 protein, 600 ng of purified tRNAs, 100 mM KCl, 2 mM MgCl2, 0.2 units/μl (final concentration) of RNase inhibitor, 2 mM L-ascorbic acid, 1 mM α-ketoglutarate, 150 μM (NH4)2Fe(SO4)2·6H2O, and 50 mM Tris–HCl (pH 7.0). The reaction was carried out at 37°C for 3 h. All the reactions were quenched by heating at 95°C for 5 min.

Overexpression and siRNA knockdown

The plasmid pEGFP N1-hALKBH1, pCMV Sport6-hALKBH3, and pCMV Sport6-mALKBH3 were obtained from Sangoon Biotechnology (Shanghai, China) and confirmed by sequencing. Human HEK293T cells were transfected with these plasmids or control plasmids using Lipofectamine 3000 (Invitrogen, USA) according to the manufacturer’s instruction. Knockdown of hALKBH1 or hALKBH3 was performed using siRNA (TsingKe Biological Technology, Beijing, China) targeting human ALKBH1 or ALKBH3 mRNA. The non-targeting siRNA was used as a negative control. The sequences of hALKBH1, hALKBH3 siRNA and control siRNA are listed in Supplementary Table S2 in Supporting Information. Human HEK293T cells were transfected with hALKBH1 siRNA, hALKBH3 siRNA, or control siRNA using Lipofectamine 2000 (Invitrogen, USA) according to the manufacturer’s instruction. The culture medium was changed at 8 h after transfection and cells were harvested at 48 h after transfection.

Quantitative real-time PCR analysis

The isolated total RNA (1 μg) was used to generate cDNA using Hifair® III 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus) (Yeasen Biotechnology, Shanghai, China). The Hiieff® qPCR SYBR Green Master mix (No Rox) (Yeasen Biotechnology, Shanghai, China) was used for PCR reaction according to the manufacturer’s instructions. Quantitative real-time PCR (qPCR) was performed using a CFX96 Real-Time PCR Detection system (Bio-Rad Laboratories). The levels of gene expression were normalized to glyceraldehyde 6-phosphate dehydrogenase gene (GAPDH). The sequences of PCR primers are listed in Supplementary Table S2 in Supporting Information.

Western blotting

HEK293T cells were lysed using RIPA lysis buffer (Be-yotime Biotechnology, Shanghai, China). Then proteins were analyzed by SDS-PAGE and transferred to a PVDF
Figure 1. Synthesis and characterization of m1,6A by high-resolution mass spectrometry. (A) The chemical reaction for the synthesis of m1,6A. (B) Chromatogram for separation and purification of m1,6A. (C) The extracted-ion chromatogram of the synthesized m1,6A. (D) MS/MS spectra of the synthesized m1,6A by high-resolution mass spectrometry analysis. Shown in red are theoretical m/z; shown in blue are measured m/z.

membrane (Millipore). Membranes were blocked with 5% milk proteins in TBST buffer (50 mM Tris–HCl pH 7.6, 150 mM NaCl and 0.1% Tween-20), and probed with primary antibody for 2 h. Then the membranes were washed three times with TBST buffer (5 min each) and probed with HRP-conjugated secondary antibody for 1 h. After washing three times, signal was detected using ECL western blot kit (ComWin Biotech Co., Ltd., Beijing, China) and imaged on a Tanon-4600SF chemiluminescent detector (Tanon, Shanghai, China). Antibodies that specifically recognized ALKBH1 (Abcam, ab12889, Cambridge, MA), ALKBH3 (Abcam, ab93174, Cambridge, MA) and GAPDH (Cell Signaling Technology, Danvers, MA) were used at 1:2000, 1:2000 and 1:3000 dilutions, respectively. HRP-conjugated secondary goat anti-rabbit antibody (Abcam, ab6721, Cambridge, MA) was used at a 1:10 000 dilution.

RESULTS AND DISCUSSION
Characterization of the synthesized m1,6A
m1A and m6A are two prevalent modifications in RNA of mammals. In addition to the single methylation of adenine, dual methylation of adenine, such as m6,6A, has also been identified to be present in RNA of mammals. However, the dual methylation of adenine, i.e. m1,6A, has not been reported before. In this study, we aimed to investigate whether m1,6A is present in RNA of mammals.

We first synthesized the m1,6A standard, which is essential for the unambiguous determination of its potential presence in RNA of mammals. It has been reported that DMS can methylate the N1 or N6 position of adenosine under different pH conditions (30). Thus, we initially used m1A and m6A as the substrates to react with DMS to synthesize m1,6A (Supplementary Figures S1 and S2 in Supporting Information). The results showed that the potential m1,6A could be obtained; however, the yield was low. We therefore carried out the reaction under different pH to test whether pH plays critical role on the reaction efficiency for the synthesis of m1,6A. However, the yield of m1,6A was still low and many by-products were also produced under different reaction conditions (Supplementary Figures S1 and S2 in Supporting Information). It can be seen that the reaction is not suitable for the synthesis of m1,6A standard. In this respect, we turned to use Me3SI as the reagent to react with m6A (Figure 1A). The HPLC analysis showed that, in addition to the substrate of m6A (24.0 min), a new peak occurred at 5.0 min after the reaction (Figure 1B). The yield for m1,6A is estimated to be ~90%. The high-resolution MS analysis showed that the precursor ion (m/z 296.1356) and fragment ions (m/z 164.0930) of the synthesized product were identical to the theoretical m/z of m1,6A (m/z 296.1353 and 164.0931, Figure 1C and D), indicating that the compound should be the desired m1,6A. The chromatographic retention time of this synthesized compound (3.2 min) in LC–ESI-MS/MS analysis is different from that of m6,6A standard (7.8 min) (Supplementary Figure S3 in Supporting Information), excluding the possibility of the synthesized compound being m6,6A. In addition, NMR analysis further confirmed the synthesized compound was m1,6A (Supplementary Figures S4–S6 in Supporting Information). Collectively, these results demonstrated that m1,6A was successfully synthesized with high yield by using Me3SI as the reagent.
Figure 2. Determination of m1,6A in mammalian tRNAs. (A) The extracted-ion chromatograms of m1,6A from different samples by LC-ESI-MS/MS analysis. The synthesized m1,6A standard was added into the enzymatically digested total RNA or tRNAs of HEK293T cells to confirm the existence of m1,6A. (B, C) Confirmation of the detected m1,6A from tRNAs of HEK293T cells by high-resolution mass spectrometry analysis. The extracted-ion chromatograms (upper panel), MS/MS spectra (middle panel), and MS3 spectra (bottom panel) of the synthesized m1,6A standard and detected m1,6A from tRNAs of HEK293T cells. (D, E) Identification of m1,6A in tRNAs of HEK293T cells using stable isotope tracing monitored by mass spectrometry. The extracted-ion chromatograms of the detected m1,6A (MRM: 296.1→164.1, upper panel), D3-m1,6A (MRM: 299.1→167.1, middle panel), and D6-m1,6A (MRM: 302.1→170.1, bottom panel) from tRNAs of HEK293T and HeLa cells.

Determination of m1,6A in RNA of mammalian cells

With the synthesized m1,6A standard, we next investigated the potential existence of m1,6A in mammalian RNA by mass spectrometry analysis. The preliminary results showed a peak with a retention time of 3.2 min in the extracted-ion chromatogram (m/z 296.1→164.1) from the total RNA of HEK293T cells, which was consistent with the retention time of m1,6A standard (Figure 2A). We added the m1,6A standard to the enzymatically digested nucleosides from total RNA of HEK293T cells. It can be seen that the spiked m1,6A standard had the same retention time as that detected in HEK293T cells and the peak intensities increased with the spiked m1,6A standard (Figure 2A), suggesting that the detected compound should be m1,6A. On the contrary, m1,6A was undetectable in the negative control sample of water or the sample with only adding enzymes and omitting RNA (Figure 2A), which excludes the possibility that the detected m1,6A was from the contamination of water or enzymes. We next examined m1,6A in different RNA species from HEK293T cells. The total RNA was separated into mRNA, 28S rRNA, 18S rRNA, 5.8S rRNA, 5S rRNA and tRNAs (Supplementary Figure S7 in Supporting Information), followed by enzymatical digestion and LC-ESI-MS/MS analysis. The results showed that m1,6A mainly existed in tRNAs and was undetectable in other RNA species (Figure 2A).

We further employed high-resolution MS to examine the detected m1,6A from tRNAs of HEK293T cells. The collisional activation the [M + H]+ ions of the m1,6A standard nucleoside can readily eliminate a ribose moiety to yield the protonated ions of the nucleobase portion (m/z 164.0931) as the dominant fragment ions in MS/MS (Supplementary Figure S8 in Supporting Information). Further collisional activation of the ions of m/z 164.1 leads to facile loss of C2H2N moieties to yield the dominant fragment ions of m/z 123.0665 in MS3 for m1,6A (Supplementary Figure S8 in Supporting Information). The MS/MS and MS3 analysis showed that the precursor ions and fragment ions (m/z shown in blue) of the detected compound in tRNAs of HEK293T cells were identical to their corresponding theoretical values (m/z shown in red) as well as to that of the standard (Figure 2A and
Figure 3. Quantification of m1,6A, m1A and m6A in tRNAs from different cell lines and tissues. (A) The extracted-ion chromatograms of m1,6A from tRNAs of different cell lines. (B) The extracted-ion chromatograms of m1,6A from tRNAs of mouse brain tissues and different regions of rat brain tissues. OB: olfactory bulb; CE: cerebellum; MED: medulla; MID: midbrain; THA: thalamus; HYP: hypothalamus; HP: hippocampus; ST: striatum; CC: cerebral cortex. (C, D) Quantification of m1,6A in tRNAs from different cell lines and tissues. (E, F) Quantification of m1A and m6A in tRNAs from different cell lines and tissues.

C), further confirming the detected m1,6A in tRNAs. Collectively, the results demonstrate that m1,6A is present in tRNAs of HEK293T cells.

Metabolic labeling of m1,6A

We further carried out the stable isotope tracing monitored by mass spectrometry assay to evaluate the methyl donor for m1,6A. It has been well known that L-methionine (Met) could be converted into S-adenosyl-L-methionine (SAM) by methionine adenosyltransferase and SAM is a methyl group donor for many methylated nucleosides (31). If m1,6A exists in mammalian cells, culturing cells in the DMEM medium supplied with isotopically labeled L-methionine (D3-Met) should lead to the transfer of the CD3 group from D3-SAM to m1,6A. Theoretically, single
Figure 4. Quantification of RNA adenosine modifications in tRNAs and the mRNA levels of hALKBH1, hALKBH3, hTRMT6 and hTRMT61A in human breast cancer tissues and tumor-adjacent normal tissues. (A–C) Quantification and statistical analysis of m^{1,6}A, m^{1}A and m^{6}A in tRNAs. (D–G) The relative mRNA levels of hALKBH1, hALKBH3, hTRMT6 and hTRMT61A. Triplicate measurements were carried out. A total of 10 tissues from five breast cancer patients were analyzed.

and dual CD3 might be added to m^{1,6}A, including D_{1}-m^{1,6}A (CD3-labeled N1 or N6) and D_{6}-m^{1,6}A (CD3-labeled both N1 and N6). The results showed that, as expected, m^{1,6}A, D_{1}-m^{1,6}A and D_{6}-m^{1,6}A, were clearly detected in tRNAs of HEK293T and HeLa cells (Figure 2D and E). The concentration of D_{1}-Met in the medium is 60% of the total methionine (D_{1}-Met/ (D_{1}-Met + Met)). Quantification data showed that approximately 60% of the measured m^{1,6}A carried CD3 group, which is comparable to the theoretical percentage of D_{1}-Met in total methionine in the medium. Collectively, the results further confirm the presence of m^{1,6}A in tRNAs of mammalian cells and SAM is the methyl donor for m^{1,6}A.

Quantification of m^{1,6}A in tRNAs of multiple cell lines and tissues

With the discovery of m^{1,6}A in tRNAs of HEK293T and HeLa cells, we next examined whether m^{1,6}A is a prevalent modification present in tRNAs of mammals. In this respect, the tRNAs from a variety of mammalian cells, including HepG2 cells, K562 cells, Jurkat-T cells, MCF-7 cells, HL-7702 cells, and mouse Neuro-2a cells, were extracted and analyzed. The results showed that m^{1,6}A could be detected in all these cell lines (Figure 3A). Furthermore, m^{1,6}A was present in tRNAs of rat and mouse brain tissues (Figure 3B). Notably, m^{1,6}A was detected in all the different regions of rat brain tissues (Figure 3B). The measured m^{1,6}A ranged from 0.0049% to 0.0084% and from 0.019% to 0.047% in tRNAs of mammalian cells and tissues, respectively (Figure 3C and D). Obviously, the level of m^{1,6}A is low than that of m^{1}A and m^{6}A in tRNAs of mammals (Figure 3E and F).

It has been reported that RNA modifications are involved in a variety of human diseases (32). Herein, we further evaluated whether there is a difference in the level of m^{1,6}A between human breast cancer tissues and tumor-adjacent normal tissues. The statistical results showed that the levels of m^{1,6}A, m^{1}A and m^{6}A in tRNAs significantly increased in human breast cancer tissues compared to tumor-adjacent normal tissues (Figure 4A–C). We further examined the expression of hALKBH1 and hALKBH3 in these tissues since ALKBH1 can demethylate m^{1}A and ALKBH3 can demethylate both m^{1}A and m^{6}A (33–35). The results showed that the mRNA levels of hALKBH1 and hALKBH3 were generally decreased in human breast cancer tissues (Figure 4D and E), revealing that the decreased expressions of hALKBH1 and hALKBH3 in human breast cancer tissues are correlated to the increased levels of m^{1,6}A, m^{1}A and m^{6}A in tRNAs. Moreover, m^{1}A at position 58 (m^{1}A_{58}) of human cytoplasmic tRNAs was catalyzed by TRMT6/61A methyltransferase (36). However, the mRNA levels of hTRMT6 and hTRMT61A were only slightly increased in human breast cancer tissues (Figure 4F and G). Taken together, these results indicate that the increased contents of m^{1,6}A, m^{1}A and m^{6}A in tRNAs of human breast cancer tissues are closely correlated to the expression of hALKBH1 and hALKBH3.

Determination of the site of m^{1,6}A in m^{1}A_{58}-containing tRNAs

m^{1}A in tRNAs is a highly conserved modification in mammalian cells. TRMT6/61A methyltransferase complex is responsible for forming m^{1}A_{58} in tRNAs (36). The crystal structure of TRMT6/61A bound to tRNAs displayed that...
Figure 5. Identification and quantification of m\(^{1,6}\)A in individual tRNA from HEK293T cells. (A) Urea–PAGE analysis of isolated small RNA (<200 nt), tRNAs, tRNA\(_{\text{Gly(GCC)}}\), tRNA\(_{\text{His(GUG)}}\) and tRNA\(_{\text{Met(CAU)}}\) from HEK293T cells. (B) The extracted-ion chromatograms of m\(^{1,6}\)A from tRNA\(_{\text{Gly(GCC)}}\), tRNA\(_{\text{His(GUG)}}\) and tRNA\(_{\text{Met(CAU)}}\). (C, D) Quantification of m\(^{1,6}\)A and m\(^{1}\)A in individual tRNA from HEK293T cells.

We next examined whether m\(^{1,6}\)A is located at position 58 of tRNAs. To this end, we developed a strategy of DNA hybridization protection combined with S1 nuclease digestion. In this strategy, a 22-mer biotin-labeled DNA probe complementary to tRNA\(_{\text{Gly(GCC)}}\) was used to hybridize to the region that contains m\(^{1}\)A\(_{58}\), followed by S1 nuclease digestion (Figure 6A). The gel electrophoresis analysis confirmed the successfully isolated 22-bp fragment (Figure 6C). LC–ESI-MS/MS analysis of the 22-bp fragment demonstrated that the 22-nt fragment from tRNA\(_{\text{Gly(GCC)}}\) contained m\(^{1,6}\)A (Figure 6D), with the level being 0.022% (Supplementary Figure S9 in Supporting Information). Because the 22-nt fragment in tRNA\(_{\text{Gly(GCC)}}\) contains only one adenosine at position 58 (Figure 6A), the detected m\(^{1,6}\)A theoretically is from the position 58 of tRNA\(_{\text{Gly(GCC)}}\). In addition, we also synthesized shorter 20-mer and 18-mer DNA probe to carry out the DNA hybridization protection combined with S1 nuclease digestion assay. The LC–ESI-MS/MS analysis showed that similar results were obtained with using different length of DNA probes (Supplementary Figure S10 and Supplementary Figure S11 in Supporting Information). Collectively, these results with using different length of DNA probes reveal that m\(^{1,6}\)A exists at position 58 of tRNA\(_{\text{Gly(GCC)}}\). Here, we focused on the study of m\(^{1,6}\)A in m\(^{1}\)A\(_{58}\)-containing tRNA\(_{\text{Gly(GCC)}}\). The other m\(^{1}\)A\(_{58}\)-containing tRNAs may also carry m\(^{1,6}\)A at position 58, which can be explored in future studies.
Figure 6. Determination of the site of m1,6A in tRNAGly(GCC) from HEK293T cells. (A) The sequence and modifications of tRNAGly(GCC). Shown in red represents different RNA modifications. The green line represents the DNA probe complementary to the 22-nt fragment region. (B) Schematic illustration of the purification of the 22-nt fragment region that contains m1A\textsubscript{58}. (C) PAGE analysis of the 22-bp RNA/DNA hybrid. (D) The extracted-ion chromatograms of m1,6A from m1A standard (upper panel), supernatant (middle panel), and eluent (bottom panel) by LC-ESI-MS/MS analysis.

TRMT6/61A catalyzes the formation of m1,6A in tRNAs

We next explored the potential methyltransferase responsible for the formation of m1,6A in tRNAs. The biosynthesis of m1,6A may be through the further methylation of m1A at the N6 position or methylation of m6A at the N1 position to form m1,6A. As for the further methylation of m1A at the N6 position, m1A\textsubscript{58} in tRNAs is located in the TΨC loop with a GUUCRA (R = A/G) motif (20), thus the methyltransferase of m5A should recognize such motif and secondary structure of tRNAs. Among the reported m6A methyltransferases, the METTL3/METTL14 complex (38,39), METTL5/TRMT112 complex (40) and ZCCHC4 (15) all exhibit strong substrate specificity and are unlikely to exert further methylation of m1A\textsubscript{58} at the N6 position in tRNAs.

It has been reported that the methyltransferase METTL16 can methylate adenosine to form m6A in pre-mRNAs, U6 snRNA and other highly structured IncRNAs (41). METTL16 shows no obvious recognition motif and could recognize substrates with secondary structures, making it a potential candidate for m1,6A methyltransferase. We therefore expressed and purified recombinant hMTD16 protein that had similar activity as hMETTL16
Figure 7. hTRMT6/61A catalyzes the further methylation of m6A at the N1 position to form m1,6A in tRNAs. (A) Schematic illustration of m1A-to-m6A rearrangement (Dimroth rearrangement). (B) The extracted-ion chromatograms of m1A and m6A in untreated tRNAs (upper panel) and alkaline-treated tRNAs (bottom panel). (C) Quantification of m1,6A in alkaline-treated tRNAs and untreated tRNAs after incubation with hTRMT6/61A at different times. (D) Schematic illustration showing that TRMT6/61A catalyzes the methylation of m6A at the N1 position to form m1,6A in tRNAs.

The DNA hybridization protection combined with S1 nuclease digestion assay indicated that m6A was also present at position 58 of tRNA Gly(GCC) (Supplementary Figure S15 in Supporting Information). Thus, it is possible that the biosynthesis of m1,6A may be through the further methylation of m6A at the N1 position to form m1,6A. It has been reported that TRMT10 is responsible for the methylation of purine at position 9 in some tRNAs (17,44), and TRMT6/61A is responsible for the deposition of m1A at position 58 in tRNAs (36,45). Since m1,6A is located at position 58 of tRNAs, we next explored the formation of m1,6A by TRMT6/61A protein complex. We expressed and purified the recombinant hTRMT6/61A protein complex (Supplementary Figure S16 in Supporting Information). Incubation of the hALKBH3-treated tRNAs with hTRMT6/61A led to a dramatic increase of m1,6A (Supplementary Figure S17 in Supporting Information), confirming the purified recombinant hTRMT6/61A protein complex has good activity.

We carried out the in vitro methylation assay to examine whether TRMT6/61A can methylate m6A to form m1,6A in tRNAs. First, the isolated tRNAs were subjected to alkaline treatment (pH 9.0) at 50°C for 1 h to allow the Dimroth rearrangement (m1A-to-m6A rearrangement) according to previously described method (21) (Figure 7A). It can be seen that the level of m6A was increased after alkaline treatment (Figure 7B and Supplementary Figure S18 in Supporting Information). The alkaline-treated tRNAs were purified and then further incubated with hTRMT6/61A. The result showed a time-dependent increase of m1,6A (Figure 7C), suggesting that TRMT6/61A can further methylate m6A at the N1 position to form m1,6A in tRNAs. In addition, we also carried out the incubation of untreated tRNAs (without alkaline treatment) with hTRMT6/61A. Again, we observed an increased level of m1,6A (Figure 7C). Since the level of m6A in alkaline-treated tRNAs was much higher than that in tRNAs without alkaline treatment, the formed m1,6A upon incubation with hTRMT6/61A from alkaline-treated tRNAs was therefore much higher than that from tRNAs without alkaline treatment (Figure 7C). Taken together, these results suggest that TRMT6/61A is responsible for the formation of m1,6A in tRNAs. We speculate that a small fraction of m1A will be rearranged to m6A in vivo.
Figure 8. hALKBH3 catalyzes the demethylation of m1,6A in tRNAs. (A, B) Change of the levels of m1A, m6A, m7G, m3C, m5C, and m1,6A in tRNAs of HEK293T cells after hALKBH3 or heat-inactivated hALKBH3 treatment. (C) Demethylation of m1A, m6A and m1,6A in tRNAs at different time upon hALKBH3 treatment. (D) Western blotting of hALKBH3 upon overexpression. (E) Measured levels of m1A, m6A and m1,6A in tRNAs of HEK293T cells upon overexpression of hALKBH3. (F) Western blotting of hALKBH3 upon siRNA knockdown. (G) Measured levels of m1A, m6A and m1,6A in tRNAs of HEK293T cells upon knockdown of hALKBH3. Data were presented as means ± SD from three independent experiments. * P < 0.05, ** P < 0.01, *** P < 0.001.

(although so far no methyltransferase has been reported for m6A in tRNAs, we cannot exclude the possibility that m6A58 is deposited by certain methyltransferase), and the generated m6A58 will be further methylated to form m1,6A58 by TRMT6/61A (Figure 7D).

ALKBH3 catalyzes the demethylation of m1,6A in tRNAs

m1A58 in tRNAs can be demethylated by ALKBH1 and ALKBH3 (29,33,46). According to the finding that the levels of m1,6A and m1A in tRNAs of human breast cancer tissues are correlated to the expression of hALKBH1 and hALKBH3 (Figure 4), we thus speculate that these demethylases for m1A58 may also potentially demethylate m1,6A. Along this line, we expressed and purified recombinant hALKBH3 protein (Supplementary Figure S19A in Supporting Information), and carried out the in vitro demethylation assay. Incubation of the tRNAs from HEK293T cells with hALKBH3 led to a dramatic decrease of m1A, m6A, m3C and m1,6A, but not the levels of m7G or m5C (Figure 8A and B). The results suggested that hALKBH3 had demethylation activity toward m1,6A. Additionally, hALKBH3 exhibited stronger demethylation activity toward m1A than m6A and m1,6A (Figure 8C). The observed demethylation activity of hALKBH3 toward m1A, m6A and m3C in tRNAs is also consistent with previous reports (29,46). In addition to the in vitro assay, the overexpression of hALKBH3 in HEK293T cells caused marked decline in the level of m1A, m6A and m1,6A (Figure 8D and E). Reciprocally, knockdown of hALKBH3 by siRNA in HEK293T cells induced a significant increase of the levels of m1A, m6A and m1,6A (Figure 8F and G). Similar phenomena were observed by using mALKBH3 (Supplementary Figure S19B and S20 in Supporting Information). Taken together, these results suggest that ALKBH3 is responsible for the demethylation of m1,6A in tRNAs.

In addition, we also expressed and purified recombinant hALKBH1 protein (Supplementary Figure S21A in Supporting Information) and carried out the in vitro demethylation assay. As expected, incubation of tRNAs
with hALKBH1 led to a significant decrease in the m1A level (Supplementary Figure S21B in Supporting Information). However, m2A, m3G, and m1,6A in tRNAs did not change significantly (Supplementary Figure S21B and S21C in Supporting Information), indicating that ALKBH1 is only capable of demethylating m2A in tRNAs and cannot demethylate m1,6A in tRNAs. Similarly, in vivo overexpression and knockdown of hALKBH1 indeed resulted in the corresponding change of m1A in tRNAs (Supplementary Figure S21D–G in Supporting Information), but no noticeable difference was observed for m1,6A in tRNAs (Supplementary Figure S21E and S21G in Supporting Information). In addition, we used hALKBH1 to treat the single tRNAiMet that was confirmed to carry m1,6A. The result also showed that hALKBH1 could demethylate m1A in tRNAiMet but not m1,6A (Supplementary Figure S22 in Supporting Information). These results show that ALKBH1 is unlikely the demethylases for m1,6A in tRNAs.

Intriguingly, some RNA modifications formed by physiologically enzymatic processes could also be generated by damaging agents, thus blurring the line between a physiological and a damage-induced modification (i.e., RNA lesion) (47). For example, m2A and 3-methylcytosine (m3C) could be produced by RNA methyltransferases or by damaging agents (23, 48, 49). In this point, m1,6A might also be considered as an RNA lesion since its formation is involved in the nonenzymatic rearrangement. In addition, LC–ESI-MS/MS with MRM detection mode generally could offer the detection sensitivity of nucleosides at femtomole level (50–52), allowing the detection of low-abundant RNA lesions produced by endogenous or exogenous damaging agents. Repair of RNA lesion is critical because some RNA lesions have the potential to disturb posttranscriptional events (53). Clearly, m1,6A58 could be demethylated (or repaired) by ALKBH3 to restore to unmodified adenosine. We observed a higher level of m1,6A in breast cancer tissues, which could be attributed to the lower expression level of ALKBH3 in breast cancer tissues. Although m1,6A could be viewed as an RNA lesion, it is possible that it may also play potentially regulatory role like 8-oxoguanine in DNA and RNA (54, 55). We anticipate that future investigations will provide us further understanding of m1,6A.

In summary, with the synthesized standard, we identified m1,6A in tRNAs of mammals. We confirmed that m1,6A is located at position 58 of tRNAs and is prevalent in mammalian cells and tissues. m1,6A could be formed from the further methylation of m2A at the N1 position by TRMT6/61A. We demonstrated that ALKBH3 could demethylate m1,6A in tRNAs. Based the obtained results together previous studies, we proposed a pathway for the dynamic regulation of the adenosine methylation at position 58 in tRNAs (Supplementary Figure S23 in Supporting Information). The methyltransferase complex TRMT6/61A could methylate adenosine at position 58 of tRNAs to form m1A58. m1A58 could be demethylated by ALKBH1 and ALKBH3 to restore adenosine. On the other hand, m2A58 that may be from the rearrangement of m1A58 (or formed by certain methyltransferase) could be further methylated at the N1 position to form m1,6A58 by TRMT6/61A. The generated m1,6A58 could be demethylated by ALKBH3. The significantly increased level of m1,6A in human breast cancer tissues indicates it may be correlated with cancer development. Taken together, we identified a modification of m1,6A that has not been reported in living organisms before, which diversifies RNA modifications and may indicate a new regulation mechanism for tRNA modification-mediated gene expression.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Dr Wen-Bo Liu and Dr Qiang-Hui Zhou (Wuhan University, PR China) for the helpful discussion on interpreting NMR spectra.

FUNDING

National Natural Science Foundation of China [22277093, 22074110, 21721005]. Funding for open access charge: National Natural Science Foundation of China.

Conflict of Interest statement. None declared.

REFERENCES

1. Chen, K., Zhao, B.S. and He, C. (2016) Nucleic acid modifications in regulation of gene expression. Cell Chem. Biol., 23, 74–85.
2. Chen, Y., Hong, T., Wang, S., Mo, J., Tian, T. and Zhou, X. (2017) Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem. Soc. Rev., 46, 2544–2572.
3. Boccaletto, P., Stefaniak, F., Ray, A., Cappannini, A., Mukherjee, S., Purta, E., Kurkowska, M., Shirvanzadeh, N., Destefanis, E., Groza, P. et al. (2022) MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res., 50, D231–D235.
4. Roundtree, I.A., Evans, M.E., Pan, T. and He, C. (2017) Dynamic RNA modifications in gene expression regulation. Cell, 169, 1187–1200.
5. Fu, L., Guerrero, C.R., Zhong, N., Amato, N.J., Liu, Y., Liu, S., Cai, Q., Ji, D., Jin, S.G., Niedernhofer, L.J. et al. (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc., 136, 11582–11585.
6. Chen, M.Y., Qi, C.B., Tang, X.M., Ding, J.H., Yuan, B.F. and Feng, Y.Q. (2022) Comprehensive profiling and evaluation of the alteration of RNA modifications in thyroid carcinoma by liquid chromatography-tandem mass spectrometry. Chin. Chem. Lett., 33, 3772–3776.
7. Frye, M., Harada, B.T., Behm, M. and He, C. (2018) RNA modifications modulate gene expression during development. Science, 361, 1346–1349.
8. Wiener, D. and Schwartz, S. (2021) The epitranscriptome beyond m(6)A. Nat. Rev. Genet., 22, 119–131.
9. He, P.C. and He, C. (2021) m(6)A is a RNA methylation: from mechanisms to therapeutic potential. EMBO J., 40, e105977.
10. Batista, P.J., Moline, B., Wang, J., Qu, K., Zhang, J., Li, L., Bouley, D.M., Lujan, E., Haddad, B., Daneshvar, K. et al. (2014) m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 15, 707–719.
11. Xu, C., Laurent, B., Ji, D., Jin, S.G., Niedernhofer, L.J. et al. (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc., 136, 11582–11585.
12. Chen, M.Y., Gui, Z., Chen, K.K., Ding, J.H., He, J.G., Xiong, J., Li, J.L., Wang, J., Yuan, B.F. and Feng, Y.Q. (2022) Adolescent alcohol exposure alters DNA and RNA modifications in peripheral blood by

9870 Nucleic Acids Research, 2022, Vol. 50, No. 17
liquid chromatography-tandem mass spectrometry analysis. *Chin. Chem. Lett.*, **33**, 2086–2090.

13. Huang,H.L., Weng,H.Y., Deng,X.L. and Chen,J.J. (2020) RNA modifications in cancer: functions, mechanisms, and therapeutic implications. *Ann. Rev. Cancer Biol.*, **4**, 221–240.

14. Wang,X., Lu,Z., Gomez,A., Hon,G.C., Yue,Y., Han,D., Fu,Y., Parisien,M., Dai,Q. and Jia,F.G. (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. *Nature*, **505**, 117–120.

15. Ma,H., Wang,X., Cai,J., Dai,Q., Natchiar,S.K., Lv,R., Chen,K., Lu,Z., Chen,H., Shi,Y.G. et al. (2019) N(6)-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. *Nat. Chem. Biol.*, **15**, 88–94.

16. Alarcon,C.R., Lee,H., Goodarzi,F., Halberg,N. and Tavazoie,S.F. (2018) N6-methyladenosine marks primary microRNAs for processing. *Nature*, **519**, 485–482.

17. Vilardo,E., Amman,F., Toth,A., Ketler,A., Helm,M. and Rossmanith,W. (2020) Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B. *Nucleic Acids Res.*, **48**, 6157–6169.

18. Sergiev,P.V., Aleksina,N.A., Chugunova,A.A., Polkanov,Y.S. and Dontsova,O.A. (2018) Structural and evolutionary insights into ribosomal RNA methylation. *Nat. Chem. Biol.*, **14**, 226–235.

19. Suzuki,T., Yashiro,Y., Kikuchi,I., Ishigami,Y., Saito,H., Matsuzawa,I., Okada,S., Mito,M., Iwasaki,S., Ma,D. et al. (2021) Complete chemical structures of human mitochondrial tRNAs. *Nat. Commun.*, **11**, 4269.

20. Li,X., Xiong,X., Zhang,M., Wang,K., Chen,Y., Zhou,J., Mao,Y., Lv,J., Yi,D., Chen,X.W. et al. (2017) Base-Resolution mapping reveals distinct m(1)A methylome in Nuclear- and Mitochondrial-Encoded transcripts. *Mol. Cell*, **68**, 993–1005.

21. Dominissini,D., Nachtergaele,S., Moshitch-Moshkovitz,S., Peer,E., Kol,N., Ben-Haim,M.S., Dai,Q., Di Segni,A., Salmon-Divon,M., Clark,W.C. et al. (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. *Nature*, **530**, 441–446.

22. Li,X., Xiong,X., Wang,K., Wang,L., Shu,X., Ma,S. and Yi,C. (2016) Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. *Nat. Chem. Biol.*, **12**, 311–316.

23. Xiong,X., Li,X. and Yi,C. (2018) N(1)-methyladenosine methylome in messenger RNA and non-coding RNA. *Curr. Opin. Chem. Biol.*, **45**, 179–186.

24. Zorbas,C., Nicolas,E., Wacheul,L., Huvelle,E., Heurgue-Hamard,V. and Zorbas,C. (2016) N6-methyladenosine methylome. *Z. Anorg. Allg. Chem.*, **642**, 179–186.

25. Sloan,K.E., Warda,A.S., Sharma,S., Entian,K.D., Lafontaine,D.L. (2015) The human 18S rRNA base modification are required for ribosome biogenesis. *Cell Res.*, **25**, 836–843.

26. Chen,Z., Qi,M., Shen,B., Luo,G., Wu,Y., Li,J., Lu,Z., Zheng,Z., Dai,Q. and Wang,H. (2019) Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. *Nucleic Acids Res.*, **47**, 2533–2545.

27. Ozaicken,S., Krecic,A., Andersland,J. and Anderson,J.T. (2014) The bipartite structure of the tRNA m1A58 methyltransferase from *S. cerevisiae* is conserved in humans. *RNA*, **11**, 1281–1290.

28. Finer-Moore,J., Czudnochowski,N., O’Connell,J.D., Wang,A.L. and Stroud,R.M. (2015) Crystal structure of the human tRNA methyltransferase m1A58 methyltransferase-trna(3)Lys complex: refolding of substrate tRNA allows access to the methylation target. *J. Mol. Biol.*, **427**, 3862–3876.

29. Liu,J., Yue,Y., Han,D., Wang,X., Fu,Y., Zhang,L., Jia,G., Yu,M., Lu,Z. and Deng,X. et al. (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N(6)-adenosine methylation. *Nat. Chem. Biol.*, **10**, 93–95.

30. van Tran,N., Ernst,F.G.M., Hawley,B.R., Zorbas,C., Ulryck,C., Hokfelt,T., Bohnsack,K., Bohnsack,K., Mt., Jaffrey,S.R., Graille,M. et al. (2019) The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. *Nucleic Acids Res.*, **47**, 7719–7733.

31. Warda,A.S., Kretsinger,J., Hackert,P., Lenz,C., Urlaub,H., Hobart,E., Sokievski,M., Hu,S., Huang,J., Tang,C. et al. (2016) Structural basis of N(6)-adenosine demethylation by the METTL3-METTL14 complex. *Nature*, **534**, 575–578.

32. Chen,Z., Qi,M., Shen,B., Luo,G., Wu,Y. and Feng,Y.Q. (2020) Chemical tagging for sensitive determination of N(1)-methyladenosine in mammalian tRNA using S-Adenosylmethionine homeostasis factor. *Mol. Biol. Chem.*, **10**, 10477–10487.

33. Chen,Z., Qi,M., Shen,B., Luo,G., Wu,Y. and Feng,Y.Q. (2020) Determination of RNA hydroxylmethylation in species composed of 16-28 nucleotides. *Chem.-Eur. J.*, **26**, 9949–9956.

34. Howell,N.W., Jora,M., Jeppson,B.F., Limbach,P.A. and Jackman,J.E. (2019) Directly substrate specificities of the human tRNA methyltransferases TRMT10A and TRMT10B. *RNA*, **25**, 1366–1376.

35. Finner-Moore,J., Czudnochowski,N., O’Connell,J.D., Wang,A.L. and Stroud,R.M. (2015) Crystal structure of the human tRNA methyltransferase m5A58 methyltransferase-trna(3)Lys complex: refolding of substrate tRNA allows access to the methylation target. *J. Mol. Biol.*, **427**, 3862–3876.

36. Ueda,Y., Ooshio,I., Futahashi,E., Kitae,K., Kawaguchi,M., Jingushi,K., Hase,H., Harada,K., Hirata,K. and Tsujikawa,K. (2017) ALKB homolog 3-mediated RNA demethylation promotes protein synthesis in cancer cells. *Sci. Rep.*, **7**, 12271.

37. Thapar,R., Bacolla,A., Ouyerin,C., Bricker,J.R., Chimnab,N.M., Mosammaparast,N. and Tainer,J.A. (2019) RNA modifications: reversal mechanisms and cancer. *Biochemistry*, **58**, 312–329.

38. Xu,L., Liu,X., Sheng,N., Oo,K.S., Liang,J., Chiong,Y.H., Xu,J., Ye,F., Gao,Y.G., Dedon,P.C. et al. (2017) Three distinct substrate specificities of the human tRNA methyltransferases METTL16 and METTL16. *Nat. Chem. Biol.*, **11**, 1138–1152.

39. Feng,Y., Chen,J.J., Xie,N.B., Ding,J.H., You,X.J., Tao,W.B., Zhang,X., Yi,C., Zhou,X. and Yuan,B.F. (2021) Direct RNA demethylation regulates translation. *Sci. Rep.*, **11**, 816–828.
decarboxylation of Ten-eleven translocation-produced 5-carboxylycosine in mammalian genomes forms a new mechanism for active DNA demethylation. Chem. Sci., 12, 11322–11329.

53. Wurtmann, E.J. and Wolin, S.L. (2009) RNA under attack: cellular handling of RNA damage. Crit. Rev. Biochem. Mol. Biol., 44, 34–49.

54. Fleming, A.M., Zhu, J., Howpay Manage, S.A. and Burrows, C.J. (2019) Human NEIL3 gene expression regulated by epigenetic-like oxidative DNA modification. J. Am. Chem. Soc., 141, 11036–11049.

55. Seok, H., Lee, H., Lee, S., Ahn, S.H., Lee, H.S., Kim, G.D., Peak, J., Park, J., Cho, Y.K., Jeong, Y. et al. (2020) Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature, 584, 279–285.