Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice

Abstract
Urolithin A (UA) is a natural metabolite produced from polyphenolics in foods such as pomegranates, berries, and nuts. UA is neuroprotective against Parkinson’s disease, Alzheimer’s disease, and cerebral hemorrhage. However, its effect against traumatic brain injury remains unknown. In this study, we established adult C57BL/6J mouse models of traumatic brain injury by controlled cortical impact and then intraperitoneally administered UA. We found that UA greatly reduced brain edema; increased the expression of tight junction proteins in injured cortex; increased the immunopositivity of two neuronal autophagy markers, microtubule-associated protein B (Akt) and mammalian target of rapamycin (mTOR), two regulators of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway; decreased the phosphorylation levels of inhibitor of NFκB (IκB) kinase alpha (IKKα) and nuclear factor kappa B (NFκB), two regulators of the neuroinflammation-related Akt/IKK/NFκB signaling pathway; reduced blood-brain barrier permeability and neuronal apoptosis in injured cortex; and improved mouse neurological function. These findings suggest that UA may be a candidate drug for the treatment of traumatic brain injury, and its neuroprotective effects may be mediated by inhibition of the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways, thus reducing neuroinflammation and enhancing autophagy.

Key Words: autophagy; blood-brain barrier; cerebral edema; controlled cortical impact model; neuronal apoptosis; neuropharmacology; neuroprotection; tight junction protein; traumatic brain injury; urolithin A

Introduction
Traumatic brain injury (TBI) can be divided into primary injury and secondary injury. Primary injury occurs at the moment of harm; its extent depends on the mechanism and force of impact. After primary injury, a complex cascade of events contributes to secondary injury, such as blood-brain barrier (BBB) disruption, oxidative stress, brain edema, neuronal apoptosis, impaired autophagy flux, and ionic homeostasis imbalance (Stocchetti et al., 2017; Desai and Jain, 2018), which contributes to patients’ morbidity and mortality. Here, we investigate a neuroprotective strategy to mitigate secondary injury after TBI.

Autophagy is a highly conserved intracellular degradation pathway by which cells deliver cytoplasmic organelles and proteins to lysosomes for degradation (Mizushima et al., 2008). This process recycles cellular substances and plays a vital role in maintaining cellular metabolism. Research over the past decade shows that dysregulation of autophagy is involved in various diseases, including tumors (Byun et al., 2017), neurodegenerative diseases (Menzies et al., 2015; Shao et al., 2021; Zhang et al., 2021), and neurotrauma (Sarkar et al., 2014; Wu and Lipinski, 2019). Dysregulated autophagy plays an important role in TBI secondary injury processes such as neuronal apoptosis, BBB disruption, and neuroinflammation (Chang et al., 2013; Sarkar et al., 2014; Wu et al., 2020; Mytych, 2021). Therefore, targeting of autophagy shows promise for the treatment and prevention of TBI-induced secondary injury.

Urolithin A (UA) is a natural metabolite produced from food that contains ellagitannins, such as pomegranates, berries and nuts. During digestion, ellagitannins taken from food spontaneously hydrolyze into ellagic acid, which is further converted into urolithins...
Controlled cortical impact model of traumatic brain injury

We described the TBI model used in this work in our previous study (Liu et al., 2018b). Briefly, adult male C57BL/6J mice were anesthetized intraperitoneally with ketamine (75 mg/kg, Cat# K2753, MilliporeSigma) and xylazine (10 mg/kg, Cat# X1126, MilliporeSigma), a widely used mix of anesthetics that are safe and effective (Curl, 1988). Then, mice were placed in a stereotaxic frame (Stoelting Co., Wood Dale, IL, USA) with a heating pad. First, an incision was made from the midline of the skull and skin and fascia were retracted using a vascular clamp. Then, a 4 mm trephine was used to perform a craniotomy over the center of the right parietal bone, between bregma and lambda and 1 mm lateral to the sagittal suture. Mice were excluded from the study if the dura was broken. Following the craniotomy, the stereotaxic frame was adjusted to ensure that the impactor tip was perpendicular to the cortical surface; then, a moderate contusion injury was made using a precision cortical impactor (PCI3000, Hatters Instruments Inc., Cary, NC, USA) at an impact velocity of 1.5 m/s, depth of 1.5 mm, and dwell time of 100 ms (Additional Figure 1A). Bleeding was stanched with sterile cotton, bone wax was placed over the craniotomy site, and the incision was closed with silk sutures. The animal remained on a heating pad until full rectal temperature of body temperature and consciousness occurred and was then returned to its home cage. The sham group underwent the same procedure, except without the contusion injury.

Brain water content assay

We used the brain water content assay as a pilot study to determine the safe dosage, as well as to exclude any CNV due to the vehicle. Based on previous studies (Savi et al., 2017; Ahsan et al., 2019; Lee et al., 2021), 36 mice were randomly divided into five groups of sham, sham + vehicle, TBI + vehicle, TBI + UA (2.5 mg/kg), TBI + UA (5 mg/kg), and TBI + UA (10 mg/kg), with 6 mice in each group.

Brain water content was performed by the wet/dry weight method 72 hours after CCI. The mice were anesthetized and sacrificed, and the brains were removed immediately without intracardiac perfusion. The cerebrum ipsilateral to the CCI was separated from the remaining brain and weighed with a precise analytical balance. Then, the ipsilateral cerebrum was dried in an oven (Shanghai Bluaprad Instruments Co., Shanghai, China) at 60°C for 72 hours. The dry weight was obtained by weighing the brain tissue after drying. The brain water content was calculated as (wet weight – dry weight)/ wet weight × 100%.

Blood-brain barrier permeability assay

BBB permeability was measured by EB dye extravasation. EB is a macromolecular dye that can only permeate a broken BBB (Kaya and Ahishali, 2011). Three days after TBI, mice were injected with 0.1 mL of EB (2% in saline, Cat# E2129, MilliporeSigma) in the jugular vein, put on a heating pad for 2 hours, and then perfused with 50 mL phosphate-buffered saline through the left ventricular to remove the EB dye from the blood circulation. The hemisphere ipsilateral to the CCI was immediately separated from the remaining brain and weighed with a precise analytical balance. After weighing, the ipsilateral hemisphere was homogenized using an ultrasonic homogenizer (Sonic & Materials Inc., Newtown, CT, USA) in 1 mL of solvothermic trichloroacetic acid. Following centrifugation (12,000 × g for 20 minutes), the supernatant was divided to 2 layers, and the supernatant was collected and transferred to a 96-well plate. A microplate reader (Biotek, Winooski, VT, USA) was used to detect the absorbance of the supernatant at 610 nm. Each sample was read in triplicate, and EB concentration was calculated according to the absorbance and a standard curve. Finally, the EB concentration was expressed as EB content per gram brain tissue weight.

Immunofluorescence and TUNEL assay

Mice were anesthetized, sacrificed, and perfused intracardially with 30 mL phosphate-buffered saline 72 hours after CCI. The whole brain was removed carefully from the skull, immersed in −80°C isopentane for 30 seconds, and then cut into successive coronal sections of 20 µm with a freezing microtome (Leica, Wetzlar, Germany). After attachment onto slides, the brain sections were fixed with 4% paraformaldehyde or methanol for 10 minutes, penetrated with 0.1% Triton X-100 for 10 minutes, and blocked with 10% bovine serum albumin (Cat# MBA4219, Milliunbio, Dalian, China) for 60 minutes. For immunofluorescence staining, sections were incubated in primary antibodies at 4°C overnight, in secondary antibodies at room temperature for 1 hour, and in 4',6-diamidino-2-phenylindole (DAPI) for 5 minutes.
For the TUNEL assay, the sections were first stained by immunofluorescence using a neuronal nuclei antigen (NeuN) primary antibody. Then, a TUNEL assay kit (Cat# C1098, Beyotime) was used to detect apoptosis in accordance with the manufacturer’s instructions. Briefly, each section was incubated with 50 μL TUNEL reaction mixture at 37°C for 30 minutes to stain nuclei of apoptotic cells red. Apoptotic neurons were defined as cells that stained positive for both NeuN and TUNEL. For each brain, three equally spaced coronal sections were selected from the injury site; we calculated the mean number of apoptotic neurons by analyzing 4–6 random microscope fields for each section of injured cortex using the 63x objective lens of a confocal microscope (Leica). For both immunofluorescence staining and the TUNEL assay, only the injured cortex was further analyzed (Additional Figure 1B). Images of all sections were captured with a confocal microscope (Leica), and fluorescence intensity was quantified by LAS AF 2.8.0 software (Leica). Antibodies used in immunofluorescence are listed below: rabbit anti-zona occludens protein 1 (ZO-1; 1:100, Cat# 61-7300, RRID: AB_2533938, Thermo Fisher Scientific, Waltham, MA, USA), mouse anti-occludin (1:100, Cat# 33-1500, RRID: AB_2533101, Thermo Fisher Scientific), goat anti-occludin (1:200, Cat# AF2128, RRID: AB_2161028, R&D Systems, Minneapolis, MN, USA), mouse anti-neuronal nuclei antigen (NeuN; 1:100, Cat# MAB377, RRID: AB_2298772, MilliporeSigma), rabbit anti-microtubule-associated protein 1 light chain 3 A/B (LC3A/B; 1:100, Cat# 12741, RRID: AB_2617131, Cell Signaling Technology, Danvers, MA, USA), rabbit anti-p62 (1:200, Cat# ab109012, RRID: AB_328078, Abcam, Cambridge, UK), donkey anti-goat-Alexa Fluor 555 (1:500, Cat# A-212432, RRID: AB_2553553, Thermo Fisher Scientific), donkey anti-rabbit IgG–Alexa Fluor 488 (1:500, Cat# A-21206, RRID: AB_2535792, Thermo Fisher Scientific), donkey anti-mouse IgG–Alexa Fluor 488 (1:500, Cat# A-21202, RRID: AB_141607, Thermo Fisher Scientific), and donkey anti-rabbit IgG–Alexa Fluor 594 (1:500, Cat# A-21207, RRID: AB_141637, Thermo Fisher Scientific).

Western blot assay
Mice were anesthetized and sacrificed 72 hours following CCI. Brain samples of injured cortex were collected and homogenized in lysis buffer using ultrasound and then diluted in loading buffer (Cat# P0015, Beyotime) to make all samples the same protein concentration after centrifugation (Additional Figure 1C). For sodium dodecyl sulfate-polyacrylamide gel electrophoresis, samples were loaded onto gels made with the Polyacrylamide Gel Fast Preparation Kit (Cat# PG110-114, Epizyme, Shanghai, China) and were subsequently transferred to polyvinylidene fluoride membranes (Cat# 10600023, Cytiva, Marlborough, MA, USA) by electroblotting. Polyvinylidene fluoride membranes were blocked with 5% nonfat dry milk and then incubated in primary antibodies overnight at 4°C. After washing in phosphate-buffered saline, membranes were incubated in horseradish peroxidase-conjugated secondary antibodies for 1 hour at room temperature. Proteins were detected using the Omni-ECL Pico Light Chemiluminescence Kit (Cat# SQ202, Epizyme) and a chemiluminescent imaging system (Tanon Science and Technology Co., Shanghai, China). The relative optical density was calculated by ImageJ 1.52a software (Schneider et al., 2012). Antibodies used for western blot are listed below: rabbit anti-ZO-1 (1:1000, Cat# 61-7300, RRID: AB_2533938, Thermo Fisher Scientific), mouse anti-occludin (1:1000, Cat# 33-1500, RRID: AB_2533101, Thermo Fisher Scientific), mouse anti-β-actin (1:2000, Cat# 66009-1-Ig, RRID: AB_2687938, Abcam, Cambridge, UK), mouse anti-β-actin (1:500, Cat# 9664, RRID: AB_2070042, Cell Signaling Technology), goat anti-phospho-NFκB (p-IKKα/β, 1:1000, Cat# 2697, RRID: AB_2079382, Cell Signaling Technology), anti-mouse horseradish peroxidase–linked secondary antibody (1:5000, Cat# 7076, RRID: AB_330924, Cell Signaling Technology), and anti-rabbit horseradish peroxidase–linked secondary antibody (1:5000, Cat# 7074, RRID: AB_2099233, Cell Signaling Technology).

Modified neurological severity score and rotarod test
The modified neurological severity score (mNSS) test was performed to evaluate the neurological deficits of each mouse at 1, 3, 7, and 14 days after CCI. Scoring details are as follows. Motor deficits: raising the mouse by the tail to evaluate forelimb flexion (0–3) and placing the mouse on a balance beam to assess posture (0–6). Reflex deficits: testing pinna and corneal reflexes (0–2). A score of 0 indicates normal behavior, whereas a score of 14 indicates maximal deficit (Chen et al., 2001).

The rotarod test (Carter et al., 2001) was performed to evaluate motor coordination of the mice. Mice were trained for 72 hours (three sessions/day for 5 minutes/session) before CCI; there was at least a 15-minute interval between each session. The speed of the rod was increased from 0 to 20 rounds/minute on the first day to 0 to 30 rounds/minute on the second day and 0 to 40 rounds/minute on the third day. Mice that could not stay on the rod for at least 5 minutes were excluded from this test. On the 4th day, CCI was performed; mice were subjected to the rotarod test before CCI and at 1, 3, 7, and 14 days after CCI. The latency (time taken until the mouse fell off the rod) was recorded to evaluate the motor coordination function.

Statistical analysis
No statistical methods were used to predetermine sample sizes; however, our sample sizes are similar to those reported in a previous publication (Gong et al., 2019). No animals or data points were excluded from the analysis. The evaluator was blind to the animal groups. All data are presented as mean ± standard deviation (SD). All the experiments were analyzed using one-way analysis of variance followed by Bonferroni’s post hoc test. P < 0.05 was considered statistically significant. IBM SPSS Statistics for Windows, version 19.0 (IBM Corp., Armonk, NY, USA) and GraphPad Prism version 8.0.0 for Windows (GraphPad Software, San Diego, CA, USA) were used for statistical analysis and visualization, respectively.

Results
Urolithin A reduces brain edema and protects tight junction proteins and blood-brain barrier function following traumatic brain injury
The results from the brain water content assay, a pilot study, showed that TBI significantly increased brain water content (P < 0.001, compared with sham) and was reversed by UA administration of 2.5 mg/kg (P = 0.016, compared with TBI + vehicle). Compared with TBI + UA (2.5 mg/kg), 5 and 10 mg/kg UA did not further reduce brain water content (P = 0.395). No significant difference was found between sham and sham + vehicle (P = 0.227; Figure 1A). Therefore, we used 2.5 mg/kg as the dosage for subsequent experiments to reduce unnecessary sacrifice of experimental animals.

To investigate whether UA alleviates TBI-induced BBB disruption, Evans blue dye extravasation was performed to evaluate BBB permeability. The TBI + vehicle group exhibited more extravasation compared with the sham group, and UA administration after TBI alleviated the extravasation (Figure 1B). Quantification of the extravasation showed a significant increase in the EB concentration in brain tissue in the TBI + vehicle group compared with the sham group (P < 0.001), and UA administration after TBI significantly reduced EB concentration compared with TBI + vehicle (P = 0.005; Figure 1C), indicating that UA administration can alleviate TBI-induced BBB leakage.

Tight junction proteins are closely associated with BBB function (Obermeier et al., 2013), and therefore we investigated the changes in expression of ZO-1 and occludin in injured cortex. Immunofluorescence staining showed that tight junction proteins accompany the vascular marker CD31. Following TBI, the integrity of tight junction proteins decreased (Figure 1D and E), but no disruption of CD31 integrity. The TBI + UA group exhibited fewer gaps compared with the TBI + vehicle group (Figure 1D and E). Western
Urolithin A attenuates neuronal apoptosis following traumatic brain injury
To assess whether UA could attenuate neuronal apoptosis following TBI, we performed TUNEL/NeuN double immunostaining of cerebral tissue ipsilateral to the injury site (Figure 2A). Extensive neuronal apoptosis was observed in the cortex following TBI. The number of apoptotic neurons was significantly decreased in the TBI + UA group compared with that in the TBI + vehicle group (P < 0.001), indicating that UA attenuated neuronal apoptosis after TBI (Figure 2B).

Figure 2 | Urolithin A attenuates neuronal apoptosis 72 hours following traumatic brain injury.
(A) TUNEL assay (red) and costaining of NeuN (green, Alexa Fluor 488) in injured cortex. TUNEL⁺/NeuN⁺ cells are apoptotic neurons. UA administration reduced the number of apoptotic neurons in injured cortex following TBI. Scale bars: 25 μm. (B) Count of apoptotic neurons in the cortex for each group (n = 6). (C) Representative western blots of cleaved caspase-3, caspase-3, and bcl-2. (D) Quantification of relative protein expression (n = 5). Data are represented as mean ± SD. **P < 0.01, ***P < 0.001 (one-way analysis of variance followed by Bonferroni’s post hoc test). Cl-caspase3: Cleaved caspase3; n.s.: no statistical significance between indicated groups; NeuN: neuronal nuclei; TBI: traumatic brain injury; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling; UA: urolithin A; Ve: vehicle.

Urolithin A attenuates blood-brain barrier leakage and tight junction protein disruption 72 hours following traumatic brain injury.
EB concentration (μg/g) was used to assess the expression of tight junction proteins (Figure 1F and G). Consistent with immunofluorescence staining, the expression of tight junction proteins was significantly reduced after TBI (P < 0.001, compared with sham), and UA administration after TBI alleviated the reduction of tight junction proteins compared with TBI + vehicle (P < 0.001).

Figure 1 | Urolithin A attenuates blood-brain barrier leakage and tight junction protein disruption 72 hours following traumatic brain injury.
(A) A pilot study. UA reduced brain water content following TBI at dosages of 2.5, 5, and 10 mg/kg (n = 6). (B) Representative images of the EB extravasation assay. EB concentration increased following TBI and reduced after UA administration. (C) Quantification of EB concentration for each group (n = 4). (D, E) Immunostaining of occludin and ZO-1 (green, Alexa Fluor 488) with CD31 (red, Alexa Fluor 555) in injured cortex following TBI. White arrows show disruption of tight junction proteins. Scale bars: 10 µm. (F) Representative western blots of occludin and ZO-1. (G) Quantification of relative protein expression (n = 5) normalized to the optical density of β-actin. Data are represented as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001 (one-way analysis of variance followed by Bonferroni’s post hoc test). BBB: Blood-brain barrier; DAPI: 4,6-diamino-2-phenyl indole; EB: Evans blue; n.s.: no statistical significance between indicated groups; Ocln: occludin; TBI: traumatic brain injury; UA: urolithin A; Ve: vehicle; ZO-1: zonula occluden-1.

Urolithin A reinforces neuronal autophagy following traumatic brain injury.
UA administration activates autophagy (Ahsan et al., 2019; Andreux et al., 2019; Lin et al., 2020). To investigate autophagy levels in cortical neurons, we used immunofluorescence to identify LC3 and p62, two autophagy markers, and the neuron marker NeuN in injured cortex (Figure 3A and B). We found that LC3 fluorescence intensity significantly increased following TBI, and the TBI + UA group had higher LC3 fluorescence intensity than the TBI + vehicle group (P < 0.001). In comparison, p62 fluorescence intensity significantly decreased following TBI, and the TBI + UA group had lower p62 fluorescence intensity than the TBI + vehicle group (P = 0.010; Figure 3C). Both LC3 and p62 immunostaining were surrounded by or merged with NeuN immunostaining in injured cortex. Consistent with our immunostaining results, western blot of injured cortex also showed increased LC3-II expression and decreased p62 expression following TBI (P < 0.001 for both LC3-II and p62, compared with sham), and the TBI + UA group had higher LC3-II expression (P = 0.006) and lower p62 expression (P = 0.003; Figure 3D and E) than the TBI + vehicle group. These results indicate that neuronal autophagy is activated following TBI, and UA administration could reinforce neuronal autophagy.
There is no specific therapy for TBI, and all curative and 14 days following TBI, respectively; following TBI (Figure 5A). The rotarod test showed that the TBI + UA group had a reduction continued to 14 days following TBI (P = 0.008, for 1, 3, and 14 days following TBI; P = 0.002, for Akt and mTOR, respectively (Figure 4B). (B) Representative western blots of p-Akt, Akt, mTOR, p-IKKα, IKKα, p-NFκB, and NFκB. (C) Quantification of relative protein expression (n = 5). Data are represented as mean ± SD. **P < 0.01, ***P < 0.001 (one-way analysis of variance followed by Bonferroni’s post hoc test). Akt: Protein kinase B; BBB: blood-brain barrier; IKK: inhibitor of NFκB; BBB: blood-brain barrier; IKK: inhibitor of NFκB kinase; mTOR: mammalian target of rapamycin; NFκB: nuclear factor kappa B; p-Akt: phospho-Akt; PI3K: phosphatidylinositol 3-kinase; p-IKKα: phospho-IKKα; p-mTOR: phospho-mTOR; p-NFκB: phospho-NFκB; TBI: traumatic brain injury; UA: urolithin A; Ve: vehicle.

PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways are involved in the neuroprotective effect of urolithin A

Many publications have reported that UA acts as an inhibitor of Akt phosphorylation, thus reinforcing autophagy via the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway (Komatsu et al., 2018; Xu et al., 2018; Totiger et al., 2019). Akt is also a key regulator in the Akt/IKK/NFκB signaling pathway, which regulates neuroinflammation (Ozes et al., 1999). Therefore, we speculate that the neuroprotective effects of UA may be partially achieved by inhibiting Akt phosphorylation, thus reinforcing autophagy and attenuating neuroinflammation via the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways, respectively (Figure 4A). Western blot analysis of injured cortex samples showed that the phosphorylation levels of Akt and mTOR decreased after TBI (P < 0.001, compared with sham) and were further decreased by UA administration after TBI (P = 0.010 and P = 0.001, for Akt and mTOR, respectively, compared with TBI + vehicle). The phosphorylation levels of IKKα and NFκB increased after TBI (P < 0.001, compared with sham) and were reduced by UA administration after TBI (P < 0.001; Figure 4B and C). These results indicate the involvement of the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways in the neuroprotective effects of UA to reinforce autophagy and attenuate neuroinflammation.

Urolithin A ameliorates neurological deficits following traumatic brain injury

We evaluated the neurological deficits in mice by the mNSS score and the rotarod test. Our results showed that the mNSS score of the TBI + UA group was significantly reduced 72 hours after TBI; this reduction continued to 14 days following TBI (P = 0.658, P = 0.002, P = 0.007, and P = 0.003, for 1, 3, 7, and 14 days after TBI, respectively; Figure 5A). The rotarod test showed that the TBI + UA group had a longer latency to fall than the TBI + vehicle group at 3, 7, and 14 days following TBI (P = 0.226, P = 0.008, P < 0.001, and P < 0.001, for 1, 3, 7, and 14 days after TBI, respectively; Figure 5B).

Discussion

Currently there is no specific therapy for TBI, and all curative treatments focus on relieving TBI-induced secondary damage. UA permeate the BBB (Yuan et al., 2016; Kujawska et al., 2019) and has neuroprotective effects against central nervous system disorders such as Alzheimer’s disease (Gong et al., 2019), ischemic brain injury (Ahsan et al., 2019), and Parkinson’s disease (Kujawska et al., 2019). Our present study demonstrated for the first time that UA produces neuroprotective effects against TBI at a dose of 2.5 mg/kg in an experimental TBI mouse model by protecting the BBB, attenuating brain edema, reducing neuronal apoptosis, and alleviating neurobehavioral deficits. Inhibition of the PI3K/Akt/mTOR and Akt/IKK/NFκB pathways and activation of neuronal autophagy may be involved in these effects.

As previously described, UA is a natural metabolite produced from food enriched in ellagitannins, which is further transformed by gut microbiota to urolithins (Espín et al., 2013; Nuñez-Sánchez et al., 2014; Kujawska and Jodynis-Liebert, 2020). The bioavailability of UA is highly divergent among individuals and depends on the composition of their gut microbiota (Gerhauer, 2018). Therefore, intraperitoneal injection of UA bypasses the transformation step performed by gut
investigations, and thus it is impossible to
Because rapamycin can augment autophagy by inhibiting PI3K/AKT/
Though numerous studies have reported the activation of
in particular, the mTOR complex 1 has an intense inhibitory effect
In this study, we observed
activates following TBI with LC3-II levels increasing and p62 levels
proteins, as well as p62 itself. Hence, LC3-II levels positively correlate
These responses match the
Autophagy is a process by which cells conserve and recycle
when autophagy is activated, LC3-I is lipidated to form LC3-II,
form autophagosomes. Then, the autophagosomes are transported
and fuse with lysosomes to degrade their contents. Many proteins
play a crucial role in this process. LC3-I exists in the cytoplasm;
when autophagy is activated, LC3-I is lipidated to form LC3-II, which is specifically recruited to the phagophore. Ubiquitylated
proteins are bound by p62, which enables them to be taken up
by autophagosomes, leading to degradation of the ubiquitylated
proteins, as well as p62 itself. Hence, LC3-II levels positively correlate
with the number of autophagosomes, and p62 levels negatively correlate
with the level of substrate degradation (Narendra et al., 2014; Ben-Asher and Glickman, 2015). It is generally believed that autophagy
activates following TBI with LC3-II levels increasing and p62 levels
decreasing (Zhang and Wang, 2018). These responses match the
results from our present study. However, some researchers found that
LC3-II and p62 were both increased after TBI, suggesting that
the number of autophagosomes increase and substrates accumulate,
including impairment of autophagy flux (Sarkar et al., 2014; Zeng
et al., 2018). This divergence may be due to the severity of TBI, the
time-window assessed, or sampling. An increase of p62 was more
likely to be observed after severe TBI, while a decrease of p62 was
more likely to be observed after mild or moderate TBI (Wu and
Lipinski, 2019).

PI3K/Akt/mTOR is one of the main pathways of autophagy regulation; in particular, the mTOR complex 1 has an intense inhibitory effect on autophagy (Akira and Takeda, 2004). In this study, we observed
that the phosphorylation of Akt and mTOR decreased after TBI administration, suggesting involvement of the PI3K/Akt/mTOR
pathway in the autophagy reinforcement effect of UA.

Though numerous studies have reported the activation of autophagy following both experimental and clinical TBI (Zhang and
Wang, 2018; Zeng et al., 2020), it remains controversial whether modulating autophagy is beneficial or detrimental to TBI-induced secondary injury. Erlich et al. (2007) first found that administration of rapamycin, a mammalian target of rapamycin (mTOR) inhibitor,
and improved neurobehavioral function in an experimental TBI model. Because rapamycin can augment autophagy by inhibiting PI3K/AKT/
mTOR signaling, Erlich et al. (2007) concluded that rapamycin was neuroprotective following TBI by activating autophagy. Similarly,
Yin et al. (2018) reported that administration of docosahexaenoic acid improves neurological function recovery and reduces brain
damage after TBI by activating autophagic flux. In addition, many neuroprotective drugs are thought to alleviate TBI-induced secondary
innocuous TBI, thus exacerbating BBB disruption, reducing brain edema, decreasing neuronal apoptosis, and reinforcing neuronal autophagy, thus ameliorating TBI-induced neurodegeneration. Downregulation of the PI3K/Akt/mTOR and Akt/
IKK/NFκB pathways may be involved in the neuroprotective effect of UA. This study provides a solid in vivo experimental basis for UA as a
promising neuroprotective drug against TBI.

Acknowledgments: We would like to thank Prof. Guo-Yuan Yang (Institute of Med-X, Shanghai Jiao Tong University) and Prof. Yao-Hui Tang (Institute of Med-X, Shanghai Jiao Tong University) for assistance of animal behavior research.

Author contributions: Study design: QYG, HLT; manuscript writing: QYG, LC. All authors participated experiments, analyzed data, and approved the final version of manuscript for publication.

Conflicts of interest: The authors declare that they have no conflict of interest.

Availability of data and materials: All data generated or analyzed during this study are included in this published article and its supplementary information files.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Additional file: Additional Figure 1: Illustration for CCI model and sampling region of the brain.

References

Ahsan A, Zheng YR, Wu XL, Tang WD, Liu MR, Ma SJ, Jiang L, Hu WW, Zhang XN, Chen Z (2019) Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci Ther 25:976- 986.

Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499-511.

Andreuex PA, Blanco-Bose W, Ryu D, Burdet E, Ibbesson M, Aebischer P, Axter J, Singh A, Rinsch C (2019) The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab 1:595- 608.

Byun S, Lee E, Lee KW (2017) Therapeutic implications of autophagy inducers in immunological disorders, infection, and cancer. Int J Mol Sci 18:1959.
Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010) p62/SQSTM1 is required for Parkin- induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090-1106.
Noda NN, Inagaki F (2015) Mechanisms of Autophagy. Annu Rev Biochem 84:1-31.

Carter RJ, Morton J, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8:8.12.1-8.12.4.
Chakrabarti M, Das A, Samantaray S, Smith JA, Bankar NL, Haque A, Ray SK (2016) Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury. J Neurosci Res 94:271-281.
Chang CP, Su YC, Hu CW, Lee HY (2013) TRU2-dependent selective autophagy regulates NF-kB lysosomal degradation in p20-containing M2 macrophage differentiation. Cell Death Differ 20:513-523.
Chen J, Sanberg PG, Li J, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682-2688.
Corps KN, Roth TL, McGavern DB (2015) Inflammation and neuroprotection in traumatic brain injury. J Appl Physiol 118:325-362.
Corrigan F, Mander KA, Leonard AV, Vink R (2016) Neurogenetic improvement after traumatic brain injury and its potention for classical inflammation. J Neuroinflammation 13:264.
Cui L (1988) Ketamine-yalnine anaesthesia in the Duqiangian hamster (Phodopus sungorus). Lab Anim 22:309-312.
Desai M, Jain A (2018) Neuroprotection in traumatic brain injury. J Neurosurg Sci 62:563-573.
Erlacher S, Alexandrova A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a therapeutic target for preventing experimental colitis. Dig Dis Sci 52:2505-2511.
Ertel S, Komatsu W, Kishi H, Yagasaki K, Ohhira S (2018) Urolithin A attenuates pro-inflammatory cytokine release in human monocyte-derived macrophages. Autophagy 14:1437-1448.
Gerhauser C (2018) Impact of dietary gut microbial metabolites on the epigenome. Phil Trans R Soc Lond B Biol Sci 373.
Gong Z, Jiang X, Mu X, Zhang L, Lin X, Ye X, Xiong K, Long D, Sun H, He X, Xu L, Li Q, Xuan A (2019) Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J Neuroinflammation 16:62.
González-Sáizas A, Núñez-Sánchez M, Tomás-Barberán FA, Espin JC (2017) Neuroprotective effects of a selected polyphenolic mixture against oxidative stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. J Agri Food Chem 65:752-758.
Hayden MS, Gosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195-2224.
Heinemann F, Andress P, Risch C, Blom-Bank-West V (2017) Safety assessment of Urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins and ellagic acid. Food Chem Toxicol 108:289-297.
Ishimoto H, Shibata M, Myojin Y, Ito H, Sugimoto Y, Tai A, Hatano T (2011) In vivo anti-inflammatory and antioxidative properties of ellagitannins metabolite urolithin A. Bioorg Med Chem Lett 21:5901-5904.
Kaya M, Abishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol 763:369-382.
Komatsu W, Kishi H, Yagasaki K, Ohhira S (2018) Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J Neuroinflammation 15:109.
Kuźniak V, Mikołajczak P, Teissedre PL, Jodynis-Liebert J (2019) Neuroprotective effects of urolithins, the gut microbial ellagitannin-derived metabolites: the evidence so far. Antioxid Redox Signal 31:251-262.
Lee J, Jung YH, Choi GE, Kim JS, Chee CW, Lim JR, Kim SY, Yoon JH, Choi JH, Lee SJ, Han HJ (2021) Urolithin A suppresses high glucose-induced neuronal amyloidogenesis through modulating TGF-identified ER-mitochondria contacts and calcium homeostasis. Cell Death Differ 28:180-204.
Li J, Zhege J, Zheng X, Wu Y, Zhang Z, Xu T, Meftah Z, Xu H, Wu Y, Tian N, Gao J, Wang X, Zhang Y, Wang X (2020) Urolithin A-induced mitophagy suppresses apoptosis and attenuates intercellular disc degeneration via the AMPK signaling pathway. Free Radical Biol Med 150:109-119.
Liu S, Sarkar C, Dinzio M, Faden B, Koh EY, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10:2208-2222.
Savi M, Bocchi L, Mena P, Dall’asta M, Crozier A, Brighenti F, Sesti G, Del Rio D (2017) In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 16:80.
Schneider CA, Rasband WS, Eliceiri K (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671-675.
Shah K, Kaur SS, Zhu JG, Wang CM, Cheng BH, Bai B (2011) Apelin-13 induces apoptosis and egress of autophagy in the human glioma cell line U87. Mol Neurobiol 46:718-733.
Singh R, Chandrashekarappa S, Badduidi SR, Baby BH, Hegde BK, Nitakar HA, Salvato PM, Patel V, Jayakumar M, Langille MG, Douglas GM, Chen X, Rouchaux E, Waigel SJ, Dryden GW, Alattassi H, Zhang H, Haribabu B, Vemula PK, et al. (2019) Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 10:3156.
Stocchetti N, Carbonara C, Gitero E, Sillkrivars MB, Smielewski P, Zerle T, Menon DK (2017) Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol 16:452-464.
Suh S, Lyon KA, Shapiro L, Jung HJ (2020) Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: pathophysiology and potential therapeutic targets. J Neurosci Res 98:19-28.
Toftg TG, Sriivasan S, Jalal VM, Lamichhane P, Dosch AR, Gaidaib AS, 3rd J, Cosio G, Knapppa S, Castellanos J, Vemula PK, Chen X, Kowan D, Kashikar N, VanSan M, Merchant NB, Nagathialil NS (2019) Urolithin A, a natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer. Mol Cancer Ther 18:301-311.
Tuohetaebalique B, Zhang Y, Tian ZY, Zhang K, Kang J, Mao X, Zhang Y, Li X (2020) Pancreatic protective effects of Urolithin A on type 2 diabetic mice induced by high fat and streptozotocin via regulating autophagy and AKT/mTOR signaling pathway. J Ethnopharmacol 250:112479.
Wang CG, Ye Y, Chen F, Han WC, Sun JM, Lu X, Guo R, Cao K, Zheng MJ, Liao LC (2017) Posttraumatic administration of a sub-anesthetic dose of ketamine alleviates urolithin-induced neuroprotection via attenuating inflammation and autophagy. Neuroscience 343:30-38.
Wu F, Xu K, Xu K, Teng C, Zhang M, Xia J, Zhang K, Liu L, Chen Z, Xiao J, Wu Y, Zhang H, Cheng D (2020) D3-n-butylylphthalide improves traumatic brain injury recovery via inhibiting autophagy-induced blood-brain barrier disruption and cell apoptosis. J Cell Mol Med 24:1220-1232.
Wu J, Lipinski MM (2019) Autophagy in neurotrauma: good, bad, or dysregulated. Cells 8:693.
Xu J, Wang H, Xu L, Ding K, Zhang L, He J, Wei W, Wu Y (2014) Posttraumatic administration of lutetin protects mice from traumatic brain injury: implication of autophagy and inflammation. Brain Res 1582:237-246.
Yin Y, Liu E, Sun G, Yan QH, Foley LE, Andrezczuk LA, Attarzadeh Y, Hitchens TK, Kiseyev K, Dixon CE, Sun D (2018) Effects of DHA on hippocampal autophagy and lysosome function after traumatic brain injury. Mol Neurobiol 55:2445-2470.
Yu L, Ma T, Li Wu, Nielsen DB, Shah N, Crews R, Rose KN, Vattem DA, Seeram NP (2016) Plant-derived compounds' neuroprotective effect against Alzheimer's disease are protected by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci 7:26-33.
Zeng Z, Zhang Y, Jiang W, He L, Wei Q, Hu Q (2020) Modulation of autophagy in traumatic brain injury. J Cell Physiol 235:1973-1985.
Zhang L, Wang H (2018) Autophagy as a therapeutic target for traumatic brain injury. Cell Death Differ 25:925-932.
Zeng Z, Zhang Y, Jiang W, He L, Wei Q, Hu Q (2020) Modulation of autophagy in traumatic brain injury. J Cell Physiol 235:1973-1985.
Zhang L, Wang H (2018) Autophagy as a therapeutic target for traumatic brain injury. Cell Death Differ 25:925-932.
Additional Figure 1 Illustration for CCI model and sampling region of the brain.

(A) The process of CCI modeling in mice. (B) Coronal section of the brain after CCI. Shaded area indicates the region where sampled for Immunofluorescence and TUNEL assay. (C) Gross specimen of the brain after CCI. After evacuating the hemorrhage, the injured cortex in shaded area would be sampled for western blot. CCI: Controlled cortical injury; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling.