Three-body asymptotic normalization factors for halo nuclei and their determination

R Yarmukhamedov
Institute of Nuclear Physics, Ulughbek, 100214 Tashkent, Uzbekistan
E-mail: rakhim@inp.uz

Abstract. The explicit forms of the true asymptotics of the three-body (312) bound state radial wave functions of halo nuclei a both with two loosely bound external neutrons and with two charged particles, valid in different parts of the asymptotic region of the configuration space, are presented. The results for three-body asymptotic normalization factors (TBANFs) for $\alpha + n + n \to ^6\text{He}$ and $n + \alpha + \alpha \to ^9\text{Be}$ are obtained from the comparative analysis of these asymptotic forms with the specific approximate model wave functions for asymptotic regions. We use $\hbar = c = 1$ throughout the paper.

1. Introduction
In this review work, we will briefly present the true asymptotic forms derived in works [1–5] for the three-body (3+1+2) halo nucleus a, which is also denoted by 3+1+2 below, and the results for the three-body asymptotic normalization factors (TBANFs) for $\alpha + n + n \to ^6\text{He}$ and $n + \alpha + \alpha \to ^9\text{Be}$ are obtained from the comparative analysis of these asymptotic forms with the specific approximate model wave functions for asymptotic regions. We use $\hbar = c = 1$ throughout the paper.

2. True asymptotic forms of the three-body bound state radial wave functions for halo nuclei
Let us consider the three-body bound system ($a = (312)$) consisting of two external particles, say, particles 1 and 2, and of a core 3. Let r and ρ be the relative distance between the (1,2)-pair and centers of mass of third particle 3 and of the (1,2)-pair, respectively, q and p be the conjugate to them relative momentums as well as $r_j(q_j)$ be the relative distance (momentum) between centers of mass of the particle j ($j = 1$ and 2) and of the core 3. Besides, we denote $\mu_{ij} = m_im_j/m$ and $\mu_{(ij)k} = m_km_{ij}/m$ as the reduced masses of the subsystem (ij) and the $(ij)k$ system, respectively; $R = \sqrt{2\mu_{12}r^2 + 2\mu_{(12)3}\rho^2}$ as the hyperradius; $\varphi = \text{atan}(\sqrt{2\mu_{12}r}/\sqrt{2\mu_{12}r})$ as the hyperangle; $R^{(j)}(r_2, r_1) = [2\mu_{23}r_2^2 + 2\mu_{23}1(r_2 - (-1)^j\lambda_1 r_1)^2]^{1/2} = [2\mu_{13}r_1^2 + 2\mu_{(13)2}(r_1 - (-1)^j\lambda_2 r_2)^2]^{1/2}$ as a modified hyperradius with $\lambda_j = m_j/(m_j + m_3)(j = 1$ and 2); $\eta = Z_1Z_2e^2(\mu_{12}/\varepsilon_a)^{1/2}/\cos \varphi$ as the Coulomb parameter for the subsystem (12) in the three-body (312) bound system and $\varepsilon_a = m_1 + m_2 + m_3 - m$ as the binding energy for the a system in the (3+2+1)-channel, where $m_{ij} = m_i + m_j$, $m = m_i + m_j + m_k$, m_j and Z_je are the mass and the charge of particle j.

The explicit forms for the true three-body asymptotics for the three-body $a = (312)$ bound state radial wave functions can be laid down by means of the following theorems:
Theorem 1. For \(r \to \infty \) and \(\rho \to \infty \) the asymptotics formula
\[
\Psi_{av}(r, \rho) \approx C_{\alpha; \nu}(\varphi) f_i(\sqrt{\varepsilon_a} R \sin^2 \varphi) f_\lambda(\sqrt{\varepsilon_a} R \cos^2 \varphi) \frac{e^{-\sqrt{\pi} \alpha}}{R^{3/2}}
\] (1)
is valid for a neutral case [1] and that
\[
\Psi_{av}(r, \rho) \approx C_{\alpha; \nu}(\varphi) f_i(\sqrt{\varepsilon_a} R \sin^2 \varphi) f_\lambda(\sqrt{\varepsilon_a} R \cos^2 \varphi)(2\sqrt{\varepsilon_a} R)^{-\eta} \frac{e^{-\sqrt{\pi} \alpha}}{R^{3/2}}
\] (2)
is valid for the bound system with two (1 and 2) the charged particles [3], where
\[
f_{L_\alpha}(x) = \sum_{n=0}^{L_\alpha} \frac{L_\alpha!}{n!(L_\alpha - n)!} \frac{1}{(2x)^n}.
\]

Theorem 2. For a neutral case the asymptotic formula
\[
\Psi_{av}(r, \rho) \approx C_{\alpha; \nu}(\varphi) g_i(\sqrt{\varepsilon_a} R \sin^2 \varphi) f_\lambda(\sqrt{\varepsilon_a} R \cos^2 \varphi) \frac{e^{-\sqrt{\pi} \alpha}}{R^{3/2}}
\] (3)
is valid for \(r \to \infty \) and \(\rho \to 0 \) (\(\rho \neq 0 \), \(\varphi \to 0 \)) and that
\[
\Psi_{av}(r, \rho) \approx C_{\alpha; \nu}(\varphi) f_i(\sqrt{\varepsilon_a} R \sin^2 \varphi) g_\lambda(\sqrt{\varepsilon_a} R \cos^2 \varphi) \frac{e^{-\sqrt{\pi} \alpha}}{R^{3/2}}
\] (4)
is valid for \(\rho \to \infty \) and \(r \to 0 \) (\(r \neq 0 \), \(\varphi \to \pi/2 \)) [5], where
\[
g_{L}(x) = \frac{1}{2} [f_{L}(x) + (-1)^{L+1} e^{2x} f_{L}(-x)] \approx x^{L+1} / (2L + 1)!! \ll 1 \text{ at } x \to 0.
\] (5)

In Eqs. (1)-(4), the TBANF \(C_{av}(\varphi) \) is determined by [1, 6]
\[
C_{\alpha; \nu}(\varphi) = (-1)^{l_1 + \lambda + 1} \frac{(m \sqrt{\varepsilon_a})^{3/2}}{2 \pi^{3/2}} W_{\alpha; \nu}(i \sqrt{\varepsilon_a} \cos \varphi, i \sqrt{\varepsilon_a} \sin \varphi),
\] (6)
where \(\nu = \{ \lambda ; L \} \) and \(W_{\alpha; \nu}(i \sqrt{\varepsilon_a} \cos \varphi, i \sqrt{\varepsilon_a} \sin \varphi) \) is the on-shell partial vertex function (OSWF) for the virtual decay \(a \to 3 + 1 + 2 \), i.e., values of the partial vertex functions \(W_{\alpha; \nu}(q, p) \) when all the particles 3, 1 and 2 are on-shell \((\varepsilon = q^2 / 2\mu_1 + p^2 / 2\mu_2) = -\varepsilon_a \).

Theorem 3. For \(r_1 \to \infty \) and \(r_2 \to \infty \) the asymptotic formula
\[
\Psi_{av_1}(r_1, r_2) \approx \{C_{av_1}(r_1, r_2) f_i(q_1^{(1)}(r_2)) f_i(q_1^{(1)}(r_1)) \exp[-\sqrt{\varepsilon_a} R^{(1)}(r_2, r_1)] / [R^{(1)}(r_2, r_1)]^{3/2}
\]
\[-C_{av_2}(r_1, r_2) f_i(q_2^{(2)}(r_2)) f_i(q_1^{(2)}(r_1)) \exp[-\sqrt{\varepsilon_a} R^{(2)}(r_2, r_1)] / [R^{(2)}(r_2, r_1)]^{3/2} / r_2 r_1
\] (7)
is valid [2], where \(q_1^{(1)} = i 2 \mu_{(23)} \sqrt{\varepsilon_a} r_1 - (-1)^{l_1} \lambda_1 r_1 / R^{(1)} \) and \(q_2^{(2)} = i 2 \mu_{(13)} 2 \sqrt{\varepsilon_a} r_2 - (-1)^{l_2} \lambda_1 r_1 / R^{(2)} \). In (7), the TBANFs \(C_{av_1}(r_1, r_2) \) is determined by
\[
C_{av_1}(r_1, r_2) = N(-1)^{l_1 + l_2 + L} \sum_{l'_1 l'_2 L'} \xi^{(j)}_{l_1 l'_1 l'_2 L'} \sqrt{l_1 l'_1 l'_2 l_2} W_{\alpha; \nu}(q_1^{(1)}(r_1), q_2^{(2)}(r_2)) \left(\begin{array}{ccc} l_2 & l'_2 & L' \\ 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} l_1 & l'_1 & L' \\ 0 & 0 & 0 \end{array} \right)
\]
\[
\times \left\{ \begin{array}{c} l_1 \\ l'_1 \\ l'_2 \\ l_2 \\ L' \end{array} \right\}, \quad N = (2\pi)^{-5/2} m_3 m_2 m_3 / (m^{1/2} \varepsilon_a^{1/4}).
\] (8)
where $W_{a_1; n_1}(q_1^{(j)}, q_2^{(j)})$ is the OSVF for the virtual decay $a \rightarrow 3+2+1$ but written for the variables q_1 and q_2 at $\varepsilon = -\varepsilon_a$, $\xi_{L}^{(1)} = 1$, $\xi_{L}^{(2)} = (-1)^{L'}$, the cycle and figured brackets are the $(3j)$- and $(6j)$- symbols, respectively, $\nu_l = \{l_1 l_2 L S_{12} S\}$, l_j is the relative orbital angular momentum of particle j and a core 3, s_{12} is a total spin of the (1,2)- pair and $L_0 = 2L_a + 1$. One notes that when $m_3 \rightarrow \infty$ (a heavy particle 3 for which $m_j / m_3 << 1$), the asymptotics formula for $\Psi_{a; \nu}(r_1, r_2)$ passes to the same form for $\Psi_{a; \nu}^{(a)}(r, \rho)$ at $r \rightarrow \infty$ and $\rho \rightarrow \infty$ given by (1) since for the limit at $m_3 \rightarrow \infty$ $R^{(j)} = R$ and $C_{a; \nu}^{(j)} = C_{a; \nu}$ [2]. As is seen from Eqs.(1)–(4), (7) and (8), the true asymptotic formulas obtained for the three-body bound state radial wave functions $\Psi_{a; \nu}(r, \rho)$ and $\Psi_{a; \nu}(r_1, r_2)$ in the different asymptotic regions are expressed through the unknown TBANFs $C_{a; \nu}(\varphi)$ and $C_{a; \nu}(r_1/r_2)$ for $3+2+1 \rightarrow a$.

One note that the residue of the three-body partial amplitude $M_{a}(q, p)$ for the 1 + 2 + 3 scattering at the pole $\varepsilon = \varepsilon_a$ is expressed in terms of the OSVF $W_{a; \nu}(q, p)$ for the virtual processes $a \leftrightarrow 3 + 2 + 1$. Therefore, the OSWF and TBANF are fundamental nuclear characteristics for the three-particle (312) bound system and carry an information on the dynamics of strong two-particle interactions. Consequently, knowledge of the TBANF (or the OSVF) allows to get the information both on the three-body cluster structure of halo nuclei and on types of two-particle (cluster-cluster, cluster-nucleon and nucleon-nucleon) interactions as well as on the mechanism of the two nucleon transfer reactions (for example, the $\alpha^6\text{He}, \alpha^6\text{He}$ and $\alpha^6\text{Li}, \alpha^6\text{Li}$($E^* = 3.532$ MeV,0^+) reactions). Besides, a value of OSVF (or TBANF) enables one to calculate reliable values of the three-body bound state radial wave function in the asymptotic regions, which in turn are very important for reliable quantitative verification of behaviour of different approximate model three-body bound state wave functions in the asymptotic region of the configuration space. Therefore, systematic collection of data about TBANFs for different three-body halo nuclei must be extremely encouraged nowadays. For this end, at the present time a comparative analysis of the approximate model wave functions with the obtained asymptotic expressions [1–5] is usually done to extract the TBANF values.

3. Comparative analysis for the approximate model three-body bound state model wave functions for the ^6He and ^9Be nuclei

In this section, we present the result of the analysis of the asymptotic behaviour of the approximate three-body (ann) and (nna) radial wave functions for the ground state of ^6He and ^9Be nuclei obtained in [2,7–9] and [10], respectively, as well as the results of the TBANF values for $\alpha + n + n \rightarrow ^6\text{He}$ and $n + \alpha + \alpha \rightarrow ^9\text{Be}$ obtained in Refs. [2, 5] and in Ref. [3], respectively. The approximated radial wave functions $\Psi_{a; \nu}(r, \rho)$ were derived within the multichannel stochastic variational approach for the $^6\text{He}(ann)$ nucleus [9] and the $^9\text{Be}(nna)$ one [10], which is based on two dimensional gaussian basic expansion. At this, in [9] the Sack-Biedeharn-Breit for αN interaction and the hard-core Reid for the NN potential (M1-model; $\varepsilon_{He}=0.3048$ MeV,$\varepsilon_{He}^{(exp)}=0.975$ MeV) as well as the Kukulin et al potential for αN-interaction and the hard-core Reid for the NN potential (M2-model; $\varepsilon_{He}=0.1848$ MeV,$\varepsilon_{He}^{(exp)}=0.975$ MeV) were used, whereas, in [10] the Ali-Bodmer $\alpha\alpha$ potential and the Kukulin et al $\alpha\alpha$ potential (M3-model; $\varepsilon_{Be}=1.76$ MeV,$\varepsilon_{Be}^{(exp)}=1.56$ MeV) as well as the Buck-Friedrich-Wheatley $\alpha\alpha$ potential and the Kukulin et al αn potential (M4-Model; $\varepsilon_{Be}=2.86$ MeV,$\varepsilon_{Be}^{(exp)}=1.56$ MeV) were applied. In [2, 7, 8], the radial wave function $\Psi_{a; \nu}(r_1, r_2)$ were obtained within the Lagrange-mesh approach by using the Kanada et al for αN-interaction and the Minnesota NN potential.

In [1, 3] and [5], the asymptotic behaviour of the approximate three-body (ann) and (nna) bound state radial wave functions of [9, 10] has been compared with the asymptotic formulas given by Eqs. (1)–(4) and information has been obtained about the values of the TBANFs for the $\alpha + n + n \rightarrow ^6\text{He}$ and $n + \alpha + \alpha \rightarrow ^9\text{Be}$ as a function of the hyperangle φ. To this end, for
Figure 1. Ratio of the radial wave functions $\Psi_{H_{c;v}}(r, \rho)$ for M1-model (or $\Psi_{H_{c;v1}}(r_1, r_2)$) to the asymptotic expression $\Psi_{H_{c;v}}^{(as)}(r, \rho)$ (or $\Psi_{H_{c;v1}}^{(as)}(r_1, r_2)$) in (a) (or (c), where $r_{31} = r_1$ and $r_{23} = r_2$) obtained in [5]/[2]). In (b), the result of a comparison of the numerical radial wave function of [9] for the M1-model (solid line) with the asymptotic wave function (4) (dashed line) calculated in [5] for the 6He(nn) nucleus at $\varphi=5.0^o$.

For each fixed value of φ the ratio

$$R_{MLS}(\varphi) = \frac{\Psi_{MLS}(r, \rho)}{\Psi_{as}(r, \rho)} C_{a\nu}(\varphi)$$

(9)

was considered. The similar way of testing for the asymptotic behaviour of the approximate three-body (ann) radial wave functions $\Psi_{H_{c;v1}}(r_1, r_2)$ was applied in [2] and information has been obtained about the values of the TBANFs $C_{a\nu}(r_1/r_2)$ ($j=1$ and 2).

The analysis performed in Refs. [5] and [3] showed that the approximate wave functions $\Psi_{a\nu}(r, \rho)$ derived in Refs. [9] and [10] for the 6He(nn) and the 9Be($n\alpha\alpha$) nuclei, respectively,
have a correct asymptotic behaviour in the fairly narrow range of the asymptotical regions. As an example, this is illustrated in Fig. 1 a and b only for the $^6\text{He}(\alpha nn)$ nucleus. But, as is illustrated in Fig. 1c, the approximated radial three-body $^6\text{He}(\alpha nn)$ wave functions $\Psi_{\alpha,\nu_1}(r_1, r_2)$ for the ^6He [2, 7, 8] have a correct asymptotic behaviour in the fairly wide range of the asymptotical regions.

Figure 2. The TBANF values for $\alpha + n + n \rightarrow ^6\text{He}$ (a, c and d) and $n + \alpha + \alpha \rightarrow ^9\text{Be}$ (b) for different values of the quantum numbers. A detail caption is given in the text.

The results for the TBANF values ($C_{^6\text{He},\nu}(\varphi)$ and $C_{^9\text{Be},\nu}(\varphi)$) recommended in [5] and [3] for the $\alpha + n + n \rightarrow ^6\text{He}$ and $n + \alpha + \alpha \rightarrow ^9\text{Be}$, respectively, are displayed in Figs. 2a and 2b as a function of the hyperangle φ. In Fig. 2a, the solid and dashed lines are related to $\alpha + n + n \rightarrow ^6\text{He}$ for the potentials of the M1-and M2-models, respectively. In Fig. 2b, the solid and dashed curves correspond to $n + \alpha + \alpha \rightarrow ^9\text{Be}$ obtained for the potentials of the M3-and M4-models, respectively. There the upper and the lower curves present, respectively, the maximum and the minimum values of $C_{^9\text{Be},\nu}(\varphi)$. The TBANF values were obtained by matching the approximated radial wave functions with the asymptotical expressions given (1)–(4) for the main components of the quantum numbers (λ, l, L, S). As is seen from this figures
the TBANF values are sensitive to the forms of the nuclear αN and $\alpha\alpha$ potentials used. The results for the TBANFs $C^{(j)}_{\text{He}_4}(r_1/r_2)$ recommended in [2] are displayed in Figs. 2c and d as a function of the ratio $r = r_1/r_2$. In Figs. 2c and 2d, ranges of obtained functions $C^{(j)}_{\text{Li}_4}(r_1/r_2)$ (delimited by dashed lines) and recommended value (solid lines) as a function of the coordinate ratio r_1/r_2 for $L = S = 0$ and $l_1 = l_2 = 0$, 1 and 2 (curves in Fig. 2c) as well as for $L = S = 1$ and $l_1 = l_2 = 1$ and 2 (curves in Fig. 2d).

4. Conclusion
The true asymptotic forms are presented for the three-body (312) bound state wave function of halo nuclei a with two valence neutrons $(1=2=n)$ and with two charged particles $(1=2=\alpha)$ in respect to the Jacobi coordinates and that with two valence neutrons in the relative coordinates of the valence neutrons. These asymptotic expressions contain the unknown TBANF for $3 + 1 + 2 \rightarrow a$ being a new fundamental characteristic three-body (312) nucleus a and relating to the OSVFs for the virtual decay $a \rightarrow 3 + 1 + 2$ given by (6).

The TBANF values for $\alpha + n + n \rightarrow {}^6\text{He}$ and $\alpha + \alpha + n \rightarrow {}^9\text{Be}$ recommended in [2, 3, 5] are presented and their sensitivity in the forms of the adopted two-body (αn and $\alpha\alpha$) nuclear potentials is also demonstrated. On the other hand, the TBANFs (OSVFs) for $\alpha + n + n \rightarrow {}^6\text{He}$ and $\alpha + \alpha + n \rightarrow {}^9\text{Be}$ can be calculated within the Faddeev’s equation in a correct manner.

The TBANFs (OSVFs) are in principle observable quantities. For instance, the TBANFs (or OSVFs) for $\alpha + n + n \rightarrow {}^6\text{He}$ can be obtained from the exchanged scattering $\alpha(^6\text{He}, \alpha)^6\text{He}$. It would be interesting to compare the present results with experiment. It is possible to get additional information about the form of the two-body potential and to verify an accuracy of the different approximated three-body wave functions as a source of reliable information on the TBANFs. Therefore, systematic collection of information about the TBANF values for different three-body halo nuclei is now encouraged in the future.

Acknowledgments
The work has been supported by the Academy of Sciences of the Republic of Uzbekistan (grant No. FA–F2–F177).

References
[1] Blokhintsev L.D., Ubaydullaeva M.K., Yarmukhamedov R. 1999 Phys. At. Nucl. 62 1289
[2] Yarmukhamedov R., Baye D., Leclercq-Willain C. 2002 Nucl. Phys. A 705 335.
[3] Blokhintsev L.D., Ubaydullaeva M.K. and Yarmukhamedov R., 2005 Phys. At. Nucl. 68 1372.
[4] Yarmukhamedov R. and Ubaydullaeva M.K. 2008 Uzbek Math. J. 4 15.
[5] Yarmukhamedov R. and Ubaydullaeva M.K. 2009 Int. J. Mod. Phys. 18 1561.
[6] Mukhamedzhano A.M., Ubaydullaeva M.K., and Yarmukhamedov R. 1993 Theor. and Math. Phys. 94 315.
[7] Baye D., Kruglanski M., Vincke M. 1994 Nucl. Phys. A 573 431.
[8] Baye D. 1997 Nucl. Phys. A 627 305.
[9] Kukulin V.I., Pomerantsev V.N., Razikov Kh.D., Voronchev V.T., Ryzhikh G.G. 1995 Nucl. Phys. A 586 151.
[10] Voronchev V.T., Kukulin V.I., Pomerantsev V.N., and Ryzhikh G.G. 1995 Few-body System. 18 191.