The Klein–Gordon equation with a generalized Hulthén potential in D-dimensions

Nasser Saad

Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada C1A 4P3

E-mail: nsaad@upei.ca

Received 6 July 2007
Accepted for publication 25 September 2007
Published 30 October 2007
Online at stacks.iop.org/PhysScr/76/623

Abstract

An approximate solution of the Klein–Gordon equation for the general Hulthén-type potentials in D-dimensions within the framework of an approximation to the centrifugal term is obtained. The bound state energy eigenvalues and the normalized eigenfunctions are obtained in terms of hypergeometric polynomials.

PACS numbers: 03.65.w, 03.65.Fd, 03.65.Ge

1. Introduction

The search for exact solutions of wave equations, whether non-relativistic or relativistic, has been an important research area since the birth of quantum mechanics. The generalized Hulthén potential [1–18] is given by

$$V(r) = -Z\alpha \frac{e^{-\alpha r}}{1 - q e^{-\alpha r}},$$

where α is the screening parameter and Z is a constant which is identified with the atomic number when the potential is used for atomic phenomena. The Hulthén potential is one of the important short-range potentials which behaves like a Coulomb potential for small values of r and decreases exponentially for large values of r. The Hulthén potential has received extensive study in both relativistic and non-relativistic quantum mechanics [1–18]. There is a wealth of literature on the use of the Hulthén potential as an approximation of the interaction potential in a number of areas in physics such as nuclear and particle physics [2], atomic physics [3, 4], solid state physics [5] and chemical physics [6], see also [7] and the references therein. Unfortunately, quantum mechanical equations with the Hulthén potential can be solved analytically only for states with zero-angular momentum [1–16]. Recently, some interesting research papers [17, 18] have appeared which study the l-state solutions of the relativistic Klein–Gordon equation with Hulthén-type potentials. The main idea of their investigation relies on using the approximation of the centrifugal term $1/r^2$ by means of $1/r^2 \approx (\alpha^2 e^{-\alpha r}/(1 - e^{-\alpha r})^2)$. Their results show that this approximation is in good agreement with the other methods for small α values. The purpose of the present work is twofold: (i) to extend the l-state approximate solutions [17, 18] of Klein–Gordon equation with the generalized Hulthén potentials to arbitrary dimension; (ii) to compute the normalization constant of the approximate wave functions that seems to have been overlooked by many researchers [1–18].

2. The Klein–Gordon equation in D-dimensions

The D-dimensional Klein–Gordon equation for a particle of mass M with radially symmetric Lorentz vector and Lorentz scalar potentials, $V(r)$ and $S(r)$, $r = \|r\|$, is given (in atomic units $\hbar = c = 1$) [19, 20] by

$$(-\Delta_D + [M + S(r)]^2)\Psi(r) = [E - V(r)]^2\Psi(r),$$

where E denotes the energy and Δ_D is the D-dimensional Laplacian. Transforming to the D-dimensional spherical coordinates $(r, \theta_1, \ldots, \theta_{D-1})$, the variables can be separated using

$$\Psi(r) = R(r)Y_{l_0,\ldots,l_{D-1}}(\theta_1, \ldots, \theta_{D-1}),$$

where $R(r)$ is a radial function, and $Y_{l_0,\ldots,l_{D-1}}(\theta_1, \ldots, \theta_{D-1})$ is a normalized hyper-spherical harmonic with eigenvalue $l(l + D - 2)$. $l = 0, 1, 2, \ldots$. Thus, we obtain the radial equation of Klein–Gordon equation in D-dimensions by
substituting equation (2) into (1)

\[
\begin{align*}
\left\{ \frac{d^2}{dr^2} - \frac{1}{r} \frac{d}{dr} + \frac{l(l + D - 2)}{r^2} + [M + S(r)]^2 \right. \\
- \left. [E - V(r)]^2 \right\} R(r) = 0.
\end{align*}
\] (4)

Writing \(R(r) = r^{-(D-1)/2} u(r) \) gives

\[
\begin{align*}
\left\{ \frac{d^2}{dr^2} + \frac{(k - 1)(k - 3)}{4r^2} + [M + S(r)]^2 \\
- \left. [E - V(r)]^2 \right\} u(r) = 0,
\end{align*}
\] (5)

where \(k = D + 2l \) and \(u(r) \) is the reduced radial wave function satisfying \(u(0) = 0 \).

3. Bound states for the generalized Hulthén potential

We consider the vector and scalar Hulthén potential defined as,

\[
V(r) = - \frac{V_0 e^{-ar}}{1 - q e^{-ar}}, \quad S(r) = - \frac{S_0 e^{-ar}}{1 - q e^{-ar}},
\] (6)

where \(V_0 \) and \(S_0 \) are the depth of the vector and scalar Hulthén potential, respectively, and \(a \) is the screening parameter and \(q \neq 0 \) is the deformation parameter. Substituting (6) in the Klein–Gordon equation (5), we obtain

\[
\begin{align*}
\left\{ \frac{d^2}{dr^2} + \frac{(k - 1)(k - 3)}{4r^2} - \frac{(2MS_0 + 2EV_0)e^{-ar}}{1 - q e^{-ar}} \\
+ \left(\frac{S_0^2 - V_0^2}{(1 - qe^{-ar})^2} \right) \right. u(r) = (E^2 - M^2) u(r).
\end{align*}
\] (7)

In order to obtain analytic solutions of this equation, we have to use an approximation \([17, 18]\) for the centrifugal term similar to that used for the non-relativistic cases. We, thus, follow \([17, 18, 21-28]\) and use \(1/r^2 \approx (a^2e^{-ar}/(1-qe^{-ar})^2) \) for the centrifugal term. This approximation is valid for \(q = 1 \), however, we follow the model used by Qiang et al \([18]\). This allows us to write equation (7) as

\[
\begin{align*}
\left\{ \frac{d^2}{dr^2} - \frac{(2MS_0 + 2EV_0)e^{-ar}}{1 - q e^{-ar}} \\
+ \frac{(a^2/4)(k - 1)(k - 3)e^{-ar} + (S_0^2 - V_0^2)e^{-2ar}}{(1 - q e^{-ar})^2} \right. \\
\times \left. u(r) = (E^2 - M^2) u(r).
\end{align*}
\] (8)

Equation (8) can be further simplified using a new variable \(z = qe^{-ar} \) \((r \in [0, \infty), z \in [q, 0])\),

\[
\begin{align*}
\left\{ \frac{d^2}{dz^2} + \frac{1}{z} \frac{d}{dz} - \frac{\beta_1}{z(1 - z)} + \frac{\beta_2}{(1 - z)^2} \right. \\
\left. - \beta_2 (1 - z)^2 \right\} u(z) = 0,
\end{align*}
\] (9)

where we used the dimensionless parameters given by

\[
\begin{align*}
\epsilon &= \frac{\sqrt{M^2 - E^2}}{\alpha}, \quad \beta_1 = \frac{2(0S_0 + EV_0)}{\alpha^2 q}, \\
\beta_2 &= \frac{S_0^2 - V_0^2}{\alpha^2 q^2}.
\end{align*}
\] (10)

We now look for a solution of (9) in the form

\[
\begin{align*}
u(z) = z^\alpha (1 - z)^\delta f(z).
\end{align*}
\] (11)

In this case, equation (9) reads

\[
\begin{align*}
f''(z) + \left(\frac{1 + 2\alpha}{z} - \frac{2\delta}{1 - z} \right) f'(z) \\
+ \left(\frac{(\beta_1 - (2\alpha + 1)\delta - \delta^2 + \delta - \beta_2)(1 - z)}{z(1 - z)^2} \right) f(z) = 0.
\end{align*}
\] (12)

We may now choose \(\delta \) such that

\[
\delta^2 - \delta - \beta_2 - \frac{1}{4q}(k - 1)(k - 3) = 0,
\] (13)

which yields

\[
\delta = \delta_\pm = \frac{1}{2} \pm \frac{1}{2} \sqrt{q^2(1 + 4\beta_2) + q(k - 1)(k - 3)},
\] (14)

where \(\delta = \delta_+ \) for \(q > 0 \) and \(\delta = \delta_- \) for \(q < 0 \). Thus, equation (12) reduces to

\[
\begin{align*}
f''(z) &= \left(\frac{2\delta}{1 - z} - \frac{1 + 2\alpha}{z} \right) f'(z) \\
+ \left(\frac{4q(\delta + 1) - \beta_1 + (k - 1)(k - 3)}{4q z(1 - z)} \right) f(z).
\end{align*}
\] (15)

This equation is a special case of a more general differential equation discussed in \([29]\), namely

\[
\begin{align*}
f''(z) &= \left(\frac{2a z^{N+1}}{1 - b z^{N+2}} - \frac{2(m + 1)}{z} \right) f'(z) - \frac{w z^N}{(1 - b z^{N+2})} f(z), \\
N &= -1, 0, 1, \ldots,
\end{align*}
\] (16)

which has exact solutions, for \(n = 0, 1, 2, \ldots, \), given by

\[
\begin{align*}
f_n(z) &= (-1)^n C_n (N + 2)^n \left(\frac{2m + N + 3}{N + 2} \right)^n_n \\
\times _2F_1 \left(-n, \frac{2(m + 1)b + 2a}{(N + 2)b} + n; \frac{2m + N + 3}{N + 2}; b z^{N+2} \right),
\end{align*}
\] (17)

if

\[
w_n(N) = n(N + 2)((n(N + 2) + (2m + 1)b + 2a).
\] (18)

Here \(C_n \) is the normalization constant and \(_2F_1(a, b; c; n) \) is a special case \([30]\) of the generalized hypergeometric function

\[
\begin{align*}
p_r f_q(a_1, \ldots, a_p; c_1, \ldots, c_q; z) &= \sum_{n=0}^{\infty} (a_1)_{n} \cdots (a_p)_{n} (c_1)_{n} \cdots (c_q)_{n} n! z^n.
\end{align*}
\] (19)
where the Pochhammer symbol \((\alpha)_n\) is defined by \((\alpha)_n = \Gamma(\alpha + n)/\Gamma(\alpha)\). By putting \(N = -1\) and \(b = 1\) in (16), using (18), with \(\alpha = \delta\) and \(u_n(-1) = n(n + 2\epsilon + 2\delta)\), we obtain the energy spectrum (9) as

\[
\epsilon_n^{(k)} = \frac{q[\beta_1 - n^2 - (1 + 2n)\delta] - (1/4)(k - 1)(k - 3)}{2q(n + \delta)}
\]

\[
= \frac{q[\beta_1 - (n + \delta)^2] + q\beta_1^2 - (1/4q)(k - 1)(k - 3)}{2q(n + \delta)}
\]

\[
= \frac{\beta_1 + \beta_2}{2(n + \delta)} - \frac{1}{2}(n + \delta),
\]

(20)

where we have used (13). Furthermore, the exact solutions of (12), using (17), now reads

\[
f_n(z) = (-1)^n C_n(1 + 2\epsilon^{(k)}_{n})_n
\]

\[
\times \frac{1}{2}\sum_{i=0}^{\infty} u_n(\epsilon^{(k)}_{n} + 2\delta + n + 1 + 2\epsilon^{(k)}_{n}, z).
\]

(21)

Therefore, we can write the total radial wave function (11) as follows

\[
u_n(z) = C_n z^{\alpha^{(k)}_{n}}(1 - z)^{\beta^{(k)}_{n}}\sum_{m=0}^{\infty} u_n(\epsilon^{(k)}_{n} + 2\delta + n + 1 + 2\epsilon^{(k)}_{n}, z)
\]

\[
= C_n z^{\alpha^{(k)}_{n}}(1 - z)^{\beta^{(k)}_{n}}\sum_{m=0}^{\infty} P^{m}(\alpha, \beta; z)
\]

(22)

where we used the definition of Jacobi polynomials [31] given by

\[
P^{m}(\alpha, \beta; z) = \frac{\Gamma(n + 1 + \alpha)}{\Gamma(1 + \alpha)} \times \frac{1}{2}\sum_{i=0}^{\infty} u_n(\epsilon^{(k)}_{n} + 2\delta - 1)(1 - 2z)
\]

(23)

4. Normalization constant

In this section, we compute the normalization constant \(C_n\) appearing in (22). As far as we are aware, the normalized energy eigenfunctions have not been explicitly worked out in the literature for this case. It is straightforward to note that the normalization constant \(C_n\) can be computed using

\[
\int_0^q u_n(\epsilon^{(k)}_{n} + 2\delta + n + 1 + 2\epsilon^{(k)}_{n}, z) \sum_{m=0}^{\infty} u_n(\epsilon^{(k)}_{n} + 2\delta - 1)(1 - 2z) dz = 1
\]

(24)

Using the series representation (19) of the hypergeometric function \(\sum_{i=0}^{\infty} \) of degree \(n\) in \(z\), we have

\[
C_n^2 \sum_{i=0}^{n} \sum_{j=0}^{n} \frac{(-n)_i(\epsilon^{(k)}_{n} + 2\delta + n)_j}{(1 + 2\epsilon^{(k)}_{n})_i}(1 + 2\epsilon^{(k)}_{n})_j k! \times \int_0^q z^{2\epsilon^{(k)}_{n} + i + j - 1}(1 - z)\delta d\zeta = \alpha.
\]

(25)

The definite integral in (25) is just the integral representation of incomplete Beta function [32],

\[
B_q(x, y) = \int_0^q r^{x-1}(1 - r)^{y-1} dr, \quad \Re(x) > 0, \Re(y) > 0.
\]

(26)

Therefore, equation (25) now reads

\[
\sum_{i=0}^{n} \sum_{j=0}^{n} \frac{(-n)_i(\epsilon^{(k)}_{n} + 2\delta + n)_j}{(1 + 2\epsilon^{(k)}_{n})_i}(1 + 2\epsilon^{(k)}_{n})_j k! \times B_q(\epsilon^{(k)}_{n} + i + j, 2\delta + 1) = \alpha.
\]

(27)

On integrating by parts of (26), we can find that the incomplete Beta function satisfies the recurrence relation

\[
B_q(x + 1, y) = \frac{x + y}{x + y} B_q(x, y) - \frac{q^{x-1}(1 - q)^y}{(x - 1)B(x, y)}.
\]

(28)

which in turn can be written in terms of the normalized version of the incomplete Beta function \(I_q(x, y) = B_q(x, y)/B(x, y)\) as

\[
I_q(x, y) = 1 - \frac{q^{x-1}(1 - q)^y}{(x - 1)B(x, y)}
\]

(29)

\[
= I_q(x, y) - \frac{q^{x-1}(1 - q)^y}{(x - 1)B(x, y)} - \frac{q^{x-1}(1 - q)^y}{(x - 1)B(x, y)}
\]

(30)

Thus

\[
I_q(2\epsilon^{(k)}_{n} + i + j, 2\delta + 1) = I_q(2\epsilon^{(k)}_{n}, 2\delta + 1) - q^{2\epsilon^{(k)}_{n} + i + j} \times (1 - q)^{2\delta + 1} \sum_{k=0}^{\infty} \frac{q^k}{(x - k)B(x, y)}
\]

(31)

which allows us to compute the incomplete Beta function in (27) as \(B_q(2\epsilon^{(k)}_{n} + i + j, 2\delta + 1) = B(2\epsilon^{(k)}_{n} + i + j, 2\delta + 1)I_q(2\epsilon^{(k)}_{n} + i + j, 2\delta + 1)\) for \(i, j = 0, 1, 2, \ldots\). Note, in the case of \(i = j = 0\), the sum in (30) is equal to zero.

Although the discussion above for computing the normalization constant assumed that \(q \in (0, 1)\), the computation for arbitrary \(q \neq 0\) can be performed using the analytic expressions [32]:

\[
B_q(x, y) = \frac{q^{x-1}(1 - q)^{-1} \sum_{k=0}^{\infty} \frac{q^k}{(1 + x)k} \left(\frac{q}{q - 1}\right)^k}{x}.
\]

(31)
for \(q \in (-\infty, 0) \cup (0, \frac{1}{2}) \), and

\[
B_q(x, y) = B(x, y) - \frac{q^{i-1}(1-q)^y}{y} \sum_{k=0}^{\infty} \frac{(1-x)_k}{(1+y)_k} \left(\frac{q-1}{q} \right)^k
\]

\[
= B(x, y) - \frac{q^{i-1}(1-q)^y}{y} \sum_{k=0}^{\infty} \frac{(1-x)_k}{(1+y)_k} \left(\frac{q-1}{q} \right)^k, \tag{32}
\]

for \(q > 1/2 \). In the case of \(q = 1 \), i.e. the Hulthén potential, equation (32) yields \(B_1(x, y) = B(x, y) \), consequently, equation (25) becomes

\[
C_n^2 \sum_{i=0}^{n} \frac{(-n_i) (2\epsilon_n^{(i)} + 2\delta + n_i) \Gamma(1 + i + 2\delta + 1)}{(1 + 2\epsilon_n^{(i)}) i!} \Gamma(\epsilon_n^{(i)}) \Gamma(2\delta + 1)
\]

\[
\times \xi (2\epsilon_n^{(i)} + i + j) = \alpha. \tag{33}
\]

Using the definition of Beta function [32] in terms of Gamma function \(B(x, y) = (\Gamma(x) \Gamma(y))/\Gamma(x + y) \), we write (33) as

\[
C_n^2 \sum_{i=0}^{n} \frac{(-n_i) (2\epsilon_n^{(i)} + 2\delta + n_i) \Gamma(1 + i + 2\delta + 1)}{(1 + 2\epsilon_n^{(i)}) i!} \Gamma(\epsilon_n^{(i)}) \Gamma(2\delta + 1)
\]

\[
\times \frac{\Gamma(2\epsilon_n^{(i)} + i + j)}{\Gamma(2\epsilon_n^{(i)} + i + j + 2\delta + 1)} = \alpha. \tag{34}
\]

By means of the definition of Pochhammer symbols \((a)_n = (\Gamma(a+n))/\Gamma(a) \), we have

\[
C_n^2 \frac{\Gamma(2\epsilon_n^{(i)}) \Gamma(2\delta + 1)}{\Gamma(2\epsilon_n^{(i)} + 2\delta + 1)} \sum_{i=0}^{n} \frac{(-n_i) (2\epsilon_n^{(i)} + 2\delta + n_i) \Gamma(1 + i + 2\delta + 1) i! (1 + 2\epsilon_n^{(i)}) (2\epsilon_n^{(i)} + 2\delta + 1) i!}{\Gamma(2\epsilon_n^{(i)} + 1)}
\]

\[
\times \sum_{j=0}^{n} \frac{(-n_j) (2\epsilon_n^{(j)} + 2\delta + n_j) \Gamma(1 + i + j + 2\delta + 1)}{\Gamma(2\epsilon_n^{(j)} + i + j + 2\delta + 1)} \Gamma(2\epsilon_n^{(j)} + i + j) = \alpha. \tag{35}
\]

Thus, by using the series representation of the hypergeometric series, \(F_3 \), again equation (19), equation (35) then reduce to

\[
C_n^2 \sum_{i=0}^{n} \frac{(-n_i) (2\epsilon_n^{(i)} + 2\delta + n_i) \Gamma(1 + i + 2\delta + 1) i!}{\Gamma(2\epsilon_n^{(i)} + 2\delta + 1) i!}
\]

\[
\times \frac{\alpha}{B(2\epsilon_n^{(i)} + 2\delta + 1)} \tag{36}
\]

which can be used to compute the normalization constant for \(n = 0, 1, 2, \ldots \). In particular, for the ground-state \(n = 0 \), we have

\[
C_0 = \frac{\alpha}{B(2\epsilon_0^{(i)} + 2\delta + 1)}. \tag{37}
\]

5. Conclusion

In this work, we have extended the approximate analytic solutions of Klein–Gordon equation with vector and scalar generalized Hulthén potential to arbitrary dimension \(D \). The analytical energy equation and the normalized radial wave functions expressed in terms of hypergeometric polynomials are given. When \(D = 3 \), our results normalize the approximate analytic solution for bound states obtained in [17] and [18] for Klein–Gordon equation with generalized Hulthén potentials for non-zero angular momentum.

Acknowledgment

Partial financial support of this work under grant no. GP249507 from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

[1] Hulthén L 1942 Über die Eigenlösungen der Schrödingergleichung des Deuteronen Ark. Mat. Astron. Fys. A 28 1–12
[2] Hulthén L, Sugawara M and Flügge S (ed)1957 Handbuch der Physik (Berlin: Springer)
[3] Tietz T 1961 Negative hydrogen ion J. Chem. Phys. 35 1917–8
[4] Lam C S and Varshni Y P 1971 Energies of s eigenstates in a static screened Coulomb potential Phys. Rev. A 4 1875–81
[5] Berezin A A 1972 Phys. Status. Solidi b 50 71
[6] Pyykko P and Jokisaari J 1975 Spectral density analysis of nuclear spin-spin coupling: I. A Hulthén potential LCAO model for \(J_x-J_y \) in hydrides \(XH_4 \) Chem. Phys. 10 293–301
[7] Chetouani L, Guechi L, Lecheheb A, Hammam T F and Messoubber A 1996 Path integral for Klein–Gordon particle in vector plus scalar Hulthén-type potential Physica A 234 529–44
[8] Hall R L 1992 The Yakawa and Hulthén potentials in quantum mechanics J. Phys. A: Math. Gen. 25 1373–82
[9] Flügge S 1994 Practical Quantum Mechanics (Berlin: Springer) vol 1 Problem 68 175
[10] Znojil M 1981 Exact solution of the Schrödinger and Klein–Gordon equations for generalised Hulthén potentials J. Phys. A: Math. Gen. 14 383–94
[11] Domínguez-Adame F 1989 Bound states of the Klein–Gordon equation with vector and scalar Hulthén-type potentials Phys. Lett. A 136 175–7
[12] Varshni Y P 1990 Eigenenergies and oscillator strengths for the Hulthén potential Phys. Rev. A 41 4682
[13] Simsek M and Egrifes H 2004 The Klein–Gordon equation of generalized Hulthén potential in complex quantum mechanics J. Phys. A: Math. Gen. 37 4379–93
[14] Egrifes H and Sever R 2007 Bound-state solutions of the Klein–Gordon equation for the generalized PT-symmetric Hulthén Potential Int. J. Theor. Phys. 46 935–50
[15] Chen G, Chen Z-D and Lou Z-M 2004 Exact bound state solutions of the s-wave Klein–Gordon equation with the generalized Hulthén potential Phys. Lett. A 331 374–7
[16] Benamira F, Guechi L and Zouache A 2007 Comment on Exact bound state solutions of the s-wave Klein–Gordon equation with the generalized Hulthén potential Phys. Lett. A doi:10.1016/j.physleta.2007.05.089
[17] Chen C-Y, Sun D-S and Lu F-L 2007 Approximate analytical solutions of Klein–Gordon equation with Hulthén potentials for nonzero angular momentum Phys. Lett. A doi:10.1016/j.physleta.2007.04.079
[18] Qiang W-C, Zhou R-S and Gao Y 2007 Any l-state solutions of the Klein–Gordon equation with the generalized Hulthén potential Phys. Lett. A doi:10.1016/j.physleta.2007.04.109
[19] Greiner W 2000 Relativistic Quantum Mechanics Wave Equations 3rd edn (Berlin: Springer)
[20] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Dirac and Klein–Gordon equations with equal scalar and vector potentials Phys. Lett. A 349 87

N Saad
The Klein–Gordon equation with a generalized Hulthén potential in D-dimensions

[21] Ikhdair S M and Sever R 2006 Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular momentum J. Math. Chem. doi: 10.1007/s10910-006-9115–8

[22] Aktas M and Sever R 2004 Exact supersymmetric solution of Schrödinger equation for central confining potentials by using the Nikiforov-Uvarov method J. Mol. Struct. 710 219–24

[23] Filho E D and Ricotta R M 1995 Supersymmetry, variational method and Hulthén potential Mod. Phys. lett. A 10 1613–8

[24] Günlü B, Özer O, Cancelik Y and Kocak M 2000 Hamiltonian hierarchy and the Hulthén potential Phys. Lett. A 275 238–43

[25] Qian S W, Huang B W and Gu Z Y 2002 Supersymmetry and shape invariance of the effective screened potential New J. Phys. 4 13.1–13.6

[26] Günlü B 2003 Exact treatment of $l \neq 0$ states Chin. Phys. Lett. 21 1685–8

[27] Bayrak O and Boztosun I 2007 Bound state solutions of the Hulthén potential by using the asymptotic iteration method Phys. Scr. 76 92–6

[28] Bayrak O, Kocak G and Boztosun I 2006 Any l-state solutions of the Hulthén potential by the asymptotic iteration method J. Phys. A: Math. Gen. 39 11521–9

[29] Ciftci H, Hall R L and Saad N 2005 Construction of exact solutions to eigenvalue problems by the asymptotic iteration method J. Phys. A: Math. Gen. 38 1147–55

[30] Andrews L C 1998 Special Functions of Mathematics for Engineers 2nd edn (Bellingham WA: SPIE Press) chapter 11

[31] Andrews L C 1998 Special Functions of Mathematics for Engineers 2nd edn (Bellingham WA: SPIE Press) p 378

[32] Temme N M 1996 Special Functions: An Introduction to the Classical Functions of Mathematical Physics (New York: Wiley) section 11.3