The effect of titanium dioxide nanoparticles on the relative expression of catalase, P450, SOD, diTDS and WRKY genes of *Vitex agnus-castus* L.

Seyed M. MOSHIRIAN FARAHI¹, Alireza IRANBAKHSH¹*, Homa MAHMOODZADEH², Mostafa EBADI³

¹Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; s.m_moshirian@yahoo.com; iranbakhsh@iau.ac.ir (*corresponding author)
²Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran; homa_mahmoodzadeh@yahoo.com
³Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran; mteebadi@gmail.com

Abstract

Each environmental factor is able to change the way genes are expressed. Application of nanoparticles also affects the expression of different genes in plants. The aim of this study was to investigate the effect of three different concentration of titanium dioxide nanoparticles, TiO₂ (zero, 200 and 800 micrograms per milliliter) on the relative expression of catalase, P450, SOD, diTDS and WRKY genes in *Vitex* plant leaf tissue using qRT-PCR. Plant cultivation was carried out in 2018 in the greenhouse of Islamic Azad University of Mashhad. The experiment was arranged as completely random design with 5 replications. XRD measurements showed that applied TiO₂ nanoparticles were in the form of anatase. Statistical analysis of gene expression in treated leaves of *Vitex* plant with TiO₂ nanoparticles showed that this nanoparticle significantly affected the expression of catalase, P450, SOD, diTPS and WRKY genes. A concentration of 800 micrograms per milliliter of TiO₂ nanoparticle increased the expression of catalase, P450, SOD and WRKY genes and decreased the expression of diTPS gene. In contrast, concentrations of 200 micrograms per milliliter only increased the expression of catalase and WRKY genes. The expression of the diTPS gene under treatments of 200 and 800 micrograms per liter of TiO₂ compared with control, decreased by 2.1 and 0.46, respectively. Overall, the nanoparticle was able to influence the expression of genes in the biosynthetic pathway of terpenoids, as well as the plant's antioxidant enzymes, depending on the concentration of nanoparticles.

Keywords: gene expression; quantitative RT-PCR; *Vitex* plant; TiO₂ nanoparticles

Introduction

Research on nanoparticles is increasing due to distinct physical and chemical properties such as particle morphology, larger surface area, pore size, high reactivity, and physical and chemical properties related to particle size (Siddiqui *et al*., 2015). It has been reported that most nanoparticles show toxic effects even at very low concentrations and affect their morphophysiological, biochemical and molecular properties. In recent years, application of TiO₂ nanoparticles due to biological properties has been highly considered by plant
physiologists (Qi et al., 2013). One of the applications of nanoparticles is to use them as elicitor. Elicitors are biotic or abiotic compounds, which induces biosynthesis and accumulation of secondary metabolites by inducing defensive responses (Zhao et al., 2005; Namdeo, 2007; Shakya et al., 2019). TiO$_2$ nanoparticles through enhancing the nitrate reductase and glutamate dehydrogenase functioning affect the nitrogen metabolism and thus improve the crop growth and development. Due to their small size, they can also easily penetrate into cells induce protein production and improve the gene expressions (Yang et al., 2008).

Various plants species that have been used in traditional medicine for thousands of years are rich source of biologically active compounds (Wubshet et al., 2016). *Vitex* is the largest genus in the Lamiaceae family, containing 250 species worldwide (Rani and Sharma, 2013). Species of this genus are shrubby. One of the most important species used in medicine is the *Vitex* plant or chaste tree with the scientific name (*Vitex agnus-castus* L.), which grows in the Mediterranean region of southern Europe and Central Asia as volunteer on the banks of rivers and along waterways. (Rani and Sharma, 2013). The *Vitex* plant essential oils mainly contain sabinene, pinene, and sesquiterpene and various compounds including alkaloids as viticine, isoflavones derivatives (mostly casticin) and flavonoids like penduletin and chrysophanol. The essential oils of this plant contain cineol and pinene (Chen et al., 2011a). The fruit of this plant is used to treat menstrual problems in women, including premenstrual syndrome, imbalance of estrogen and progesterone levels, jaundice, menopausal complications, hyperprolactinemia (Carmichael, 2008; Dugoua et al., 2008). In traditional Iranian medicine, its leaves and fruits are used to increase milk production (Azadbakht et al., 2005). According to the studies, the main medicinal properties of this plant are due to the presence of diterpenoids and their effect on dopamine receptors in the brain (Jarry et al., 2006; Brattström and Max Zeller, 2014). Numerous types of labdane-related diterpenoids have been extracted from the vitex plant, and a recent study indicated of 114 unique structures covering a wide range of groups, including labdanes, abietanes, and clerodanes (Yao et al., 2016). Most extracted diterpenoids from vitex plant are combined with the hydroxyl group on carbon 9 (C-9) carbon 13 (C-13) (Hoberg et al., 1999; Ono et al., 2008, 2009, 2011). Biosynthesis of terpenes in angiosperm plants is performed by terpene synthases (TPSs) enzymes of the geranylgeranyl diphosphate (GGPP) (Peters, 2010; Chen et al., 2011a). These enzymes, which are found in all plants, separate the phosphate group and form the skeletons of monoterpenes, sesquiterpene, and diterpenes (Chen et al., 2011b). Two types of diTPS enzymes class I and II have been identified in the biosynthesis pathway of the *Vitex* plant diterpenes. In the first stage, class II diTPS produces bicyclic intermediates from GGPP and by de-phosphorylation them by class I diTPS, produces two or three labdane-related bicyclic diterpenes. The oxidation steps followed by cytochrome P450 enzymes (CYP) in the biosynthesis pathway result in highly functional diterpenes of Vitex plant (Ignca et al., 2016; Scheler et al., 2016; Pateraki et al., 2017). Over the past 20 years, WRKY transcription factor (TF) family genes have been well known for their role in regulating the tolerance of biotic and abiotic stresses (Schlutenhofer and Yuan, 2015). Studies confirm that transcription factors such as WRKYs may play a role in regulating the biosynthetic pathways of terpenoids in plants (Xu et al., 2004; Cheng et al., 2007; Suttipanta et al., 2011). Catalase (CAT) and superoxide dismutase (SOD) enzymes are important antioxidants that play a role in the response of plants to abiotic stresses, and TiO$_2$ nanoparticles enhance their activity (Mohammadi et al., 2014).

The *Vitex* plant has important medicinal properties for the pharmaceutical industry, however there are not many studies on the expression of the genes of this plant for these properties. Nanoparticles appear to be able to affect the expression of some of the genes involved in the biosynthesis of secondary metabolites and antioxidants. Therefore, the aim of this study was to investigate the relative expression of five important genes in the *Vitex* plant under treatment with TiO$_2$ nanoparticles by performing Real-Time PCR reaction.
Materials and Methods

Plants and TiO$_2$ nanoparticles

Vitex plant seeds were obtained from Dashtiar Company of Isfahan in 2018. Cultivation in greenhouse conditions was done as a completely randomized design with 5 replications. Each repetition consisted of 5 pots and each pot contained 10 seeds of a Vitex plant that was planted at a depth of 1 cm above the soil surface. The pots were placed on the platform in front of the sunlight and were irrigated on a daily basis. Greenhouse temperatures ranged from 21 to 28 °C, with light conditions 16 hours a day, 8 hours as night, and relative humidity of 75%.

The concentrations of TiO$_2$ nanoparticles used in this experiment included of 200 and 800 micrograms per milliliter and distilled water as control treatments (chosen concentration was due to the finding that the 200 and 800 micrograms per milliliter of TiO$_2$ nanoparticles showed the highest and lowest positive effects on germination factors and the seedling growth of the Vitex plant, respectively (Farahi et al., 2019)). TiO$_2$ nanoparticles were produced by Notirino Company in Tehran. In order to prepare a homogeneous solution of TiO$_2$ nanoparticles, further to the regular shaker, the solution was placed in an ultrasonic cleaner bath for 30 minutes. The nanoparticle solution was sprayed as a leaf spray by piset on 30th day of experiments on plants, and control plants were sprayed with distilled water. The duration of the experiment was 65 days.

Investigation of nanoparticle properties

The nanoparticle characteristics including particle motion, zeta potential and TiO$_2$ nanoparticle size were analyzed by Cordouan-Vasco Particle Size Analyzer with Nano Q software in the central laboratory of Ferdowsi University of Mashhad. To perform the experiment, the nanoparticle, which was dissolved in a suitable solvent (ionized water at pH of 6), was first placed in an ultrasonic device. The ultrasonic device was used to create uniform dispersion for a maximum of 20 minutes at ambient temperature. After the nanoparticles were dispersed into the solvent, the sample was transferred to the Zetasizer device without interruption. The Zetasizer device first determines the particle size by measuring the Brownian motion of the particles in a sample by Dynamic Light Scattering (DLS) and then by interpreting the size using proven theories. The crystalline properties of TiO$_2$ were also investigated by X-ray diffraction (XRD).

Investigating gene expression

Design of primers: To investigate the expression of genes studied in response to nanoparticles, primers were designed for CAT, P450, SOD, diTPS and WRKY genes and Alpha-tubulin gene, and generated by cell probe gene research company (Table 1) The primers were designed in Geneious IR9 software based on primer3 and accompanied by Oligoanalyzer software.

Extraction of RNA, quantitative production of cDNA and PCR: Sampling of plants was performed 24 hours after application of the nanoparticles. Total cell RNA extraction was performed by Total RNA Extraction Kit according to the instructions of Pars Tous Manufacturing Company. Nano drop was used to determine the concentration and ensure the desired quality of the extracted RNA. The concentration of extracted RNAs after reading the treatment in the samples was read at a wavelength of 260 nm. The concentration of each sample was calculated and for the qualitative and quantitative control of the total extracted RNA, the electrophoresis method was used on agarose gel (1.2%) In order to eliminate possible contamination with genomic DNA in RNA samples extracted from DNase I treatment was used according to the proposed method of Fermantaz Company and the tubes were stored at -80 °C for long-term storage.

To make cDNA, according to the results of the nano-drop, one microgram of RNA was taken from each RNA sample and cDNA was used for all samples using EasyTM cDNA Synthesis Kit (New) according to the manufacturer's instructions (Pars Tous, Iran) In order to confirm the production of cDNA, the method of replication of homogenous gene (Actin1) on cDNA (after diluting and increasing the concentration of cDNA made to 200 ng / μl) was used by PCR and its electrophoresis on 1% agarose gel.
Real-time PCR was used to evaluate gene expression. This method is one of the most accurate methods for examining gene expression in which the changes in the number is not important, but the increase or decrease of gene expression is important. These changes will be compared with an internal control that is the standard or reference gene and normalized CT value will be matched against an untreated sample (Pfaffl, 2001). For this purpose, the PCR response conditions for the housekeeping gene (Actin1) (by changing the annealing temperature, the time of each cycle, as well as the number of reaction cycles) were optimized. The PCR reaction was then performed for other genes under the specified conditions. For all samples, each PCR-RT reaction was performed in four repetitions (two biological repetitions and two technical repetitions). Finally, the results were analyzed using 2-DDCT comparison method (Livak and Schmittgen, 2001). Statistical analysis of the data was performed using one-way analysis of variance (ANOVA) and mean comparison by Duncan’s test using SPSS software version 16.

Table 1. Primer sequences used in polymerase chain reaction in RT-PCR reaction

Gene name	Sequence primer 5ʹ→3ʹ	Annealing temperature (ºC)	Replicated fragment length (bp)
diTPS	F: ATGATACAGTAATGAGTTCGAGA	60	130
	R: TCGTCGGTGATGAATCCCAAA		
ViAgP450	F: AAGGCCAAGATTTCTGCTTT	60	140
	R: TGTCAGCGCTGGTTCAAAATT		
WRKY	F: TGGGTGGTTGTTGTTGCC	60	176
	R: CCGATGGATGCCAATGGCG		
ViAgSOD	F: CCACCTGGGGAAGCACATCACAG	60	153
	R: GCCTGAGCTGATTTTGAA		
ViAgCat	F: TGTTG(C)GATTTCTTCTGAGC	58.6	149
	R: AAATCAAAGTCTCCCTCTCAGT		
Alpha-tubulin	F: GCTAACAACCTTTGCCCCGTGGAC	61	166
	R: CCAGCAGAAGAGATCCCAAGACC		

Results and Discussion

Characteristics of titanium dioxide nanoparticles

X-ray diffraction is a method of studying the crystal structure of materials. X-rays used for diffraction usually have a wavelength of about 0.5 to 2.5 angstroms. In order to perform this experiment, electromagnetic radiation with a wavelength between 0.01 and 10 nanometers was used. This wavelength is shorter than the ultraviolet wavelength and longer than the gamma ray. The crystalline properties of TiO$_2$ nanoparticles were investigated by X-ray diffraction (XRD) and the result is presented in (Figure 1). XRD measurements showed that TiO$_2$ nanoparticles were used in the anatase form (Figure 1). The size of TiO$_2$ nanoparticles was measured by a nano-particle size device and is presented in scattered intensity (Figure 2 a), scattered volume (Figure 2 b) and scattered number (Figure 2 c), average. Nanoparticles diameter 98.87: (D mean), particle hydrodynamic diameter: 197.01 (Zaverage), particle scattering index: 0.2050 (PDI) (Figure 3 a) Particle motion and (Figure 3 b) show the potential of Zeta TiO$_2$ nanoparticles measured by the Zetasizer device (Figure 3).
Figure 1. XRD pattern of TiO$_2$ nanoparticles

Figure 2. Size of titanium dioxide nanoparticles measured by nanoparticle sizer device with: a) scattered intensity, b) scattered volume and c) scattered number
Relative expression of genes

Statistical analysis of gene expression in treated Vitex leaves with TiO$_2$ nanoparticles showed that this nanoparticle significantly affected the expression of Catalase, P450, diTPS and WRKY genes. In other words, treatment with TiO$_2$ nanoparticles significantly altered the accumulation of transcripts of the studied genes. The greatest change in gene expression due to the use of TiO$_2$ nanoparticles compared to the control treatment was observed in WRKY gene and concentration of 800 μg/ml nanoparticle (5.69 times) and the lowest change was in diTPS gene expression and in concentration of 800 μg/ml nanoparticle (0.46 times) (Figure 4) According to the results, the expression of WRKY and CAT genes with increasing use of TiO$_2$ nanoparticles had an increasing trend. However, different responses were found for genes in different concentrations of nanoparticles (Figure 4) Previous studies have shown the inducive or inhibitory effect of TiO$_2$ nanoparticles on the physiological and biochemical responses of plants depending on the species, cultivar, texture and concentration of nanoparticles (Nair et al., 2010; Kurepa et al., 2010) The results of this study also showed that the use of nanoparticles on Vitex medicinal plant may participate in re-programming the genome. The presence of nanoparticles in the plant can act as a stressor and increase the activity of the plant’s defense system at different concentrations of nanoparticles, thereby stimulating the expression of certain genes and the production of secondary plant metabolites.

The relative expression of the diTPS gene decreased with the use of TiO$_2$ nanoparticles. The expression of this gene under treatments of 200 and 800 μg/ml TiO$_2$ decreased compared with control treatment, by 2.1 and 0.46 respectively (Figure 4) According to studies on the Verbenaceae family species, there are different classes of diTPS that play a role in the biosynthesis of the plant’s highly valuable diterpenes (Zhou and Pichersky, 2020) Given the importance of the expression of the diTPS gene in the biosynthesis pathway of phytonutrient diterpenes, it is likely that the production of these compounds will decrease with the use of TiO$_2$ and reduced expression of the diTPS gene, although some researchers believe this is not always the case and some enzymes and final products are not close. This is because there are time and space gaps between genes and the final product. Even TPS genes, which account for 60 to 80 percent of similar protein and nucleotide specifications, produce different product ranges (He et al., 2018) Following the application of nanoparticle, rapid defense responses occur in plant cells, such as increased ionic currents across the plasma membrane, production of reactive oxygen species, activation of defense-related genes, structural changes in the cell wall, and synthesis of phytoalexins. Decreased diTPS gene expression may be due to toxicity of nanoparticles and their effect on one of the above mediators and decreased gene expression (Siddiqui et al., 2015) Stimulation of TPS gene expression by stimuli has also been observed in other studies (He et al., 2018) TiO$_2$ nanoparticles increased the expression of key genes in the thymoquinone biosynthesis pathway in the plant (Nigella sativa) (Kahila et al., 2018) In the study of Zhang et al. (2013), the effect of silver nanoparticles on increasing the production of secondary metabolites in the plant (Artemisia annua) increased artemisinin from 1.67 to 2.86 mg/g dry weight. Raei et al. (2014) by using titanium and silver dioxide nanoparticles reported an increase in
the amount of aloin in the cellular suspension of aloe vera. The amount of artemisinin production in artemisia plant increased due to the use of cobalt nanoparticles in artemisia cell culture medium (Ghasemi et al., 2015)

The relative expression of the P450 cytochrome gene decreased by 4.5-fold due to the application of 200 μg/TiO₂, whereas at a concentration of 800 μg/ml, a 2.4-fold increase in P450 gene expression was observed (Figure 4 b) The large cytochrome P450 enzymatic family plays a vital role in plant growth, development, and protection against stress through biosynthesis and detoxification pathways (Li et al., 2012) There are many reports of the gene’s important role in the biosynthesis of terpenes, some of which include triterpene in tobacco (Geisler et al., 2013), homoterpenes in Arabidopsis (Lee et al., 2010), sesquiterpene in cotton (Luo et al., 2001) and Dieterpen in the Apiaceae family (Hamberger et al., 2011)

The relative expression of the WRKY gene under treatment with concentrations of 200 and 800 micrograms per milliliter of TiO₂ nanoparticles increased by 4.44 and 5.69 times, respectively (Figure 4 c) WRKY proteins belong to the large family of transcription regulators whose members are associated with defensive responses (Eulgem and Somssich, 2007; Rushton et al., 2010) Both concentrations of nanoparticles caused a relatively large increase in the transcript of WRKY transcription factor compared to other genes studied in this experiment. Due to the regulatory role of transcription factors in the plant’s signaling network, these genes induce a variety of physiological and biochemical responses at the bottom of their hands. Therefore, their effectiveness in applying the nanoparticle stimulus is significant, and the expression of the lower genes in the hand of this transcription factor should be more closely examined. In other studies, the expression of this family’s genes has been influenced by stimuli (Naoumkina et al., 2008) The expression of WRKY genes in transgenic tobacco shows that these transcription factors play a broad role in regulating metabolic responses that affect the production of secondary metabolites (phenol and lignin) and stress tolerance (Naoumkina et al., 2008) It has also been reported that the induction of WRKY gene expression is correlated with the accumulation of phenolic compounds and isoflavones in cells (M. truncatula) (Naoumkina et al., 2007) An increase in lignin accumulation in transgenic rice lines has also been reported in the above expression of the OsWRKY89 gene (Wang et al., 2007) Increases in the biosynthesis of indole alkaloids (Catharanthus roseus) (Yang et al., 2013) and sesquiterpene araboretum (Xu et al., 2004) have been reported with increased WRKY expression.

The relative expression of the SOD gene at a concentration of 200 μg/ml TiO₂ decreased by 0.6 times compared to the control, while in the treatment of 800 μg/ml TiO₂, the expression of SOD gene expression was increased by 1.56 times compared to the control (Figure 4 d) The use of TiO₂ nanoparticles had an increasing effect on the relative expression of the CAT gene. According to (Figure 4 e), concentrations of 200 and 800 micrograms per milliliter increased the expression of CAT gene expression by 1.83 and 3.16 times, respectively. Application of nanoparticles induces oxidative stresses and damage biomolecules by releasing free oxygen radicles (Chomoucka et al., 2010) Probably for this reason, in this study, an increase in the expression of antioxidant genes SOD and CAT due to the use of nanoparticles was observed. Other studies have reported an increase in the expression of stress-related genes in nanoparticle treatment (Khodakovskaya et al., 2011) TiO₂ nanoparticles (Hyoscyamus niger L.) activate the antioxidant enzymes and biosynthesis of hyoscyamine and scopolamine (Ghorbanpour et al., 2015)

In general, as can be deduced from Figure 4, all the genes studied were stimulated in response to the nanoparticle stimulus (although the concentration of the stimulus in this case is considered an important and influential factor) In this study, a concentration of 800 micrograms per liter of titanium nanofibers increased the expression of CAT, P450, SOD and WRKY genes and decreased the expression of diTPS gene. In contrast, concentrations of 200 micrograms per liter only increased the expression of CAT and WRKY genes. The higher concentration of titanium nano-oxide (800 micrograms per liter) appears to increase the expression of the studied genes, with the exception of the diTPS gene. These differences in response to nanoparticle treatment may indicate that the expression of these genes does not have a common or similar regulatory mechanism. It is also necessary to study the expression of genes after applying the nanoparticle treatment at
different times, because the maximum expression of different genes may occur at different times after the induction of the stimulus.

Figure 4. Relative expression of gene expression a) diTPS, b) P450, c) WRKY, d) SOD, and e) CAT in the leaves of the *Vitex* plant under different concentrations of titanium nano-oxide
Conclusions

The results of this study showed that the use of TiO$_2$ nanoparticles was a stimulus to alter the expression of the studied genes of the *Vitex* plant, and this nanoparticle could affect the expression of the genes of terpenoid biosynthesis pathways as well as antioxidant enzymes of the plant. However, due to the complexity of the biosynthetic pathways of metabolites, the study of gene expression of other enzymes and their interaction should be further studied. It should also be noted that the use of nanoparticles to increase or decrease gene expression depends on the species and tissue, the duration of treatment with the stimulus and the concentration and characteristics of the nanoparticle. According to the results of this study, the concentration of 800 micrograms per milliliter of titanium nanoparticles increased the expression of CAT, P450, SOD and WRKY genes and decreased the expression of diTPS gene. At concentrations of 200 micrograms per milliliter, only the expression of CAT and WRKY genes increased. Since there is not much information about the use of nanoparticles in plants, deciding on their function in plant cells requires further studies on the expression of genes after several hours or days of application of nanoparticles, because it is estimated that nanoparticles have a toxic effect on the mitotic index and genomic. The results of this study also show that a more detailed study of the effect of nanoparticles on plant transcription factors such as WRKY will be effective in expanding the application of nanoparticles in agriculture.

Authors’ Contributions

SMMF: Main Person of All activities: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, Writing - review and editing; AI: Project administration, Supervision, Validation, review and editing; HM: Supervision, Validation; ME: Supervision; Validation.

All authors read and approved the final manuscript.

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Azadbakht M, Baheddini A, Shorideh SM, Naserzadeh A (2005). Effect of (*Vitex agnus-castus* L.) leaf and fruit flavonoidal extracts on serum prolactin concentration. Journal of Medicinal Plants 4(16):56-61, http://jmp.ir/article-1-690-en.html

Brattström A, Max Zeller Sohne AG (2014). Use of (*Vitex agnus castus*) extracts for preparing a medicament. U.S. Patent 8,637,099. https://patents.google.com/patent/US20100151059A1/en
Carmichael AR (2008). Can (Vitex agnus-castus) be used for the treatment of mastalgia? What is the current evidence? Evidence-Based Complementary and Alternative Medicine 5(3):247-250. https://doi.org/10.1093/ecam/nem074

Chen F, Tholl D, Bohlmann J, Pichersky E (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66(1):212-229. https://doi.org/10.1111/j.1365-313X.2011.04520.x

Chen SN, Tholl D, Bohlmann J, Pichersky E (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. The Plant Journal 66(1):212-229. https://doi.org/10.1111/j.1365-313X.2011.04520.x

Chen SN, Friesen JB, Webster D, Nikolic D, Breemen RB, Wang LJ, … Pauli GF (2011). Phytoconstituents from (Vitex agnus-castus) fruits. Fitoterapia 82(4):528-533. https://doi.org/10.1016/j.fitote.2010.12.003

Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007). Plant terpenoids: biosynthesis and ecological functions. Journal of Integrative Plant Biology 49(2):179-186 https://doi.org/10.1111/j.1744-7909.2007.00395.x

Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacological Research 62(2):144-149. https://doi.org/10.1016/j.phrs.2010.01.014

Dugoua JJ, Seely D, Perri D, Koren G, Mills E (2008). Safety and efficacy of chaste tree (Vitex agnus-castus) during pregnancy and lactation. Journal of Population Therapeutics and Clinical Pharmacology 15(1):e74-e79. https://www.jptcp.com/index.php/jptcp/article/view/191/150

Eulgem T, Somssich IE (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology 10(4):366-371. https://doi.org/10.1016/j.pbi.2007.04.020

Farahi S M M, Iranbakhsh A, Mahmoodzadeh H, Ebadi M, Baharara J (2019). Effects of titanium dioxide nanoparticles (TiO₂) on germination and seedling growth of Vitex plants (Vitex agnus-castus L.). Journal of BioScience and Biotechnology 8(2):141-149. https://doi.org/10.14720/aas.2015.105.1.03

Ghasemi B, Hosseini R, Nayeri FD (2015). Effects of cobalt nanoparticles on artemisinin production and gene expression in (Artemisia annua). Turkish Journal of Botany 39(5):769-777. https://doi.org/10.3906/bot-1410-9

Ghorbanpour M, Hatami M, Hatami M (2015). Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of (Hyoscyamus niger L.) plants with nano-sized titanium dioxide and bulk application. Acta Agriculturae Slovenica 105(1):23-32. http://dx.doi.org/10.14720/axs.2015.105.1.03

Hamberger B, Ohnishi T, Hamberger B, Séguin A, Bohlmann J (2011). Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiology 157(4):1677-1695. https://doi.org/10.1104/pp.111.185843

He X, Wang H, Yang J, Deng K, Wang T (2018). RNA sequencing on (Amomum villosum Lour) induced by MeJA identifies the genes of WRKY and terpene syntheses involved in terpene biosynthesis. Genome 61(2):91-102. https://doi.org/10.1139/gen-2017-0142

Hoberg E, Orjala J, Meier B, Sticher O (1999). Diterpenoids from the fruits of (Vitex agnus-castus). Phytochemistry 52(8):1555-1558. https://doi.org/10.1016/S0031-9422(99)00181-8

Ignea C, Athanasakoglou A, Ioannou E, Georgantea P, Trikka FA, Loupassaki S, … Kampranis SC (2016). Carnosic acid biosynthesis elucidated by a synthetic biology platform. Proceedings of the National Academy of Sciences 113(13):3681-3686. https://doi.org/10.1073/pnas.1523787113

Jarry H, Spengler B, Wurteke W, Christoffel V (2006). In vitro assays for bioactivity-guided isolation of endocrine active compounds in (Vitex agnus-castus). Maturitas 55:S26-S36. https://doi.org/10.1016/j.maturitas.2006.06.014

Kahila M.M.H, Naji A.M, Rahie M, Mir-Derikvand M (2018). Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in (Nigella sativa L.). Natural Product Research 32(15):1858-1862. https://doi.org/10.1080/14787447.2017.1405398

Khodakovskaya MV, Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011). Complex genetic, photo thermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences 108(3):1028-1033. https://doi.org/10.1073/pnas.1008856108

Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smale JA (2010). Uptake and distribution of ultra-small anatase TiO₂ Alizarin red S Nano conjugates in Arabidopsis thaliana. Nano Letters 10(7):2296-2302. https://doi.org/10.1021/nl903518f
Lee S, Badieyan S, Bevan DR, Herde M, Gatz C, Tholl D (2010). Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Proceedings of the National Academy of Sciences 107(49):21205-21210. https://doi.org/10.1073/pnas.1009975107

Li D, Wang Y, Han K (2012). Recent density functional theory model calculations of drug metabolism by cytochrome P450. Coordination Chemistry Reviews 256(11-12):1137-1150. https://doi.org/10.1016/j.ccr.2012.01.016

Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2^-ΔΔCT method. Methods 25(4):402-408. https://doi.org/10.1016/meth.2001.1282

Luo P, Wang YH, Wang GD, Essenberg M, Chen XY (2001). Molecular cloning and functional identification of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. The Plant Journal 28(1):95-104. https://doi.org/10.1046/j.1365-313X.2001.01133.x

Mohammadi R, Maali-Amiri R, Mantri NL (2014). Effect of TiO_2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russian Journal of Plant Physiology 61(6):768-775. https://doi.org/10.1134/S1021443714050124

Nair R, Varghese H, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010). Nano particulate material delivery to plants. Plant Science 179(3):154-165. https://doi.org/10.1016/j.plantsci.2010.04.012

Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA (2007). Different mechanisms for phytoalexin induction by pathogen and wound signals in (Medicago truncatula). Proceedings of the National Academy of Sciences 104(46):17909-17915. https://doi.org/10.1073/pnas.0708697104

Naoumkina MA, He X, Dixon RA (2008). Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in (Medicago truncatula). BMC Plant Biology 8(1):132. https://doi.org/10.1186/1471-2229-8-132

Ono M, Eguchi K, Konoshita M, Furusawa C, Sakamoto J, Yasuda S, ... Nohara T (2011). A new diterpenoid glucoside and two new diterpenoids from the fruit of (Vitex agnus-castus). Chemical and Pharmaceutical Bulletin 59(3):392-396. https://doi.org/10.1248/cpb.59.392

Ono M, Nagasawa Y, Ikeda T, Tsuchihashi R, Okawa M, Kinjo J, Yoshimitsu H, Nohara T (2009). Three new diterpenoids from the fruit of (Vitex agnus-castus). Chemical and Pharmaceutical Bulletin 57(10):1132-1135. https://doi.org/10.1248/cpb.57.1132

Ono M, Yamasaki T, Konoshita M, Ikeda T, Okawa M, Kinjo J, Yoshimitsu H, Nohara T (2008). Five new diterpenoids, vitaeagnusins A-E, from the fruit of (Vitex agnus-castus). Chemical and Pharmaceutical Bulletin 56(11):1621-1624. https://doi.org/10.1248/cpb.56.1621

Pateraki I, Andersen-Ranberg J, Jensen NB, Wubshet SG, Heskes AM, Forman V, ... Staerk D (2017). Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. eLife 6:e23001. https://doi.org/10.7554/eLife.23001.001

Peters RJ (2010). Two rings in them all: the labdane-related diterpenoids. Natural Product Reports 27(11):1521-1530. https://doi.org/10.1039/C0NP00019A

Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29(9):e45-e45. https://doi.org/10.1093/nar/29.9.e45

Qi M, Liu Y, Li T (2013). Nano-TiO_2 improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research 156(1-3):323-328. https://doi.org/10.1007/s12011-013-9833-2

Raei M, Angaji S.A, Omidi M, Khodayari M (2014). Effect of abiotic elicitors on tissue culture of (Aloe vera). International Journal of Bioscience 5(1):74-81. http://dx.doi.org/10.12692/ijb.5.1.74-81

Rani A, Sharma A (2013). The genus Vitex: A review. Pharmacognosy Reviews 7(14):188. https://dx.doi.org/10.4103/2009-7847.120522

Rico CM, Peralta-Vide JR, Gardea-Torresdey JL (2015). Differential effects of cerium oxide nanoparticles on rice, wheat, and barley roots: A Fourier Transform Infrared (FT-IR) micro spectroscopy study. Applied Spectroscopy 69(2):287-295. https://doi.org/10.1366/2F14-07495

Rushton PJ, Sommisch IE, Ringler P, Shen QJ (2010). WRKY transcription factors. Trends in Plant Science 15(5):247-258. https://doi.org/10.1016/j.tplants.2010.02.006

Scheler U, Brandt W, Porzel A, Rothe K, Manzano D, Božič D, ... Marillonnet S (2016). Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nature Communications 7(1):1-11. https://conews.today.com/
Schluttenhofer C, Yuan L (2015). Regulation of specialized metabolism by WRKY transcription factors. Plant Physiology 167(2):295-306. https://doi.org/10.1104/pp.114.251769

Shakya P, Marslin G, Siram K, Beerhues L, Franklin G (2019). Elicitation as a tool to improve the profiles of high-value secondary metabolites and pharmacological properties of (Hypericum perforatum). Journal of Pharmacy and Pharmacology 71(1):70-82. https://doi.org/10.1111/jphp.12743

Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015). Role of nanoparticles in plants. Nanotechnology and Plant Sciences 19-35. https://doi.org/10.1007/978-3-319-14502-0_2

Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011). The transcription factor CrWRKY positively regulates the terpenoid indole alkaloid biosynthesis in (Catharanthus roseus). Plant Physiology 157(4):2081-2093. https://doi.org/10.1104/pp.111.181834

Syu YY, Hung JH, Chen JC, Chuang HW (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry 83:57-64. https://doi.org/10.1016/j.plaphy.2014.07.010

Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Frontiers in Environmental Science 4:46. https://doi.org/10.3389/fenvs.2016.00046

Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007). Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology 65(6):799-815. https://doi.org/10.1007/s11103-007-9244-x

Wubshet SG, Tafahy H, Heskes AM, Kongstad KT, Pateraki I, Hamberger B, Möller BL, Staerk D (2016) Identification of PTP1B and α-glucosidase inhibitory serrulatanes from Eremophila spp. by combined use of dual high-resolution PTP1B and α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR. Journal of Natural Products 79(4):1063-1072. https://doi.org/10.1021/acs.jnatprod.5b01128

Xu YH, Wang JW, Wang S, Wang JY, Chen XY (2004). Characterization of GaWRKY, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-δ-cadinene Synthase-A. Plant Physiology 135(1):507-515. https://doi.org/10.1104/pp.104.038612

Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195):638-641. https://doi.org/10.1038/nature06964

Yang Z, Wang X, Xue J, Meng L, Li R (2013). Identification and expression analysis of WRKY transcription factors in medicinal plant (Catharanthus roseus). Chinese Journal of Biotechnology 29(6):785-802.

Zhang B, Zheng LP, Yi Li W, Wen Wang J (2013). Stimulation of artemisinin production in (Artemisia annua) hairy roots by Ag-SiO2 core-shell nanoparticles. Current Nanoscience 9(3):363-370. https://doi.org/10.1023/A:1010535001943

Zhao J, Davis LC, Verpoorte R (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23(4):283-333. https://doi.org/10.1016/j.biotechadv.2005.01.003

Zhou F, Pichersky E (2020). More is better: the diversity of terpene metabolism in plants. Current Opinion in Plant Biology 55:1-10. https://doi.org/10.1016/j.pbi.2020.01.005