Tumor promoting capacity of polymorphonuclear myeloid-derived suppressor cells and their neutralization

Christopher Groth1,2,3,4,5 | Rebekka Weber1,2,3 | Samantha Lasser1,2,3,6 | Feyza Gül Özbay1,2,3,6 | Annina Kurzay1,2,6 | Vera Petrova1,2,3 | Peter Altevogt1,2,3 | Jochen Utikal1,2 | Viktor Umansky1,2,3

1Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
2Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
3Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
4Department for Immunobiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
5European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
6Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany

Correspondence
Viktor Umansky, Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Email: v.umansky@dkfz.de

Funding information
Bundesministerium für Bildung und Forschung, SERPENTINE/ERA PerMed network; Deutsche Forschungsgemeinschaft, Grant/Award Number: 259332240/RTG 2099; Deutsches Krebsforschungszentrum, Grant/Award Number: CA181

Abstract
Myeloid-derived suppressor cells (MDSC) represent a highly immunosuppressive population that expands in tumor bearing hosts and inhibits both T and NK cell antitumor effector functions. Among MDSC subpopulations, the polymorphonuclear (PMN) one is gaining increasing interest since it is a predominant MDSC subset in most cancer entities and inherits unique properties to facilitate metastatic spread. In addition, further improvement in distinguishing PMN-MDSC from neutrophils has contributed to the design of novel therapeutic approaches. In this review, we summarize the current view on the origin of PMN-MDSC and their relation to classical neutrophils. Furthermore, we outline the metastasis promoting features of these cells and promising strategies of their targeting to improve the efficacy of cancer immunotherapy.

KEYWORDS
immunosuppression, immunotherapy, metastasis, neutrophils, PMN-MDSC

1 | INTRODUCTION

One of the hallmarks of cancer is its capability to avoid recognition and destruction by the immune system.1 Cancer cells achieve this aim, in particular, through the acquisition of mutations in the antigen-presenting machinery, the down-regulation of MHC molecules and the establishment of an immunosuppressive environment.2,3 Immunosuppression can be mediated both by tumor cells...
and host cells in the tumor microenvironment (TME). Tumor-infiltrating immune cells such as tumor-associated macrophages (TAM), regulatory T cells (Treg) and myeloid derived suppressor cells (MDSC) possess potent capacities to suppress T cell and natural killer cell (NK) function and antigen presentation by dendritic cells (DC), contributing thereby to primary tumor progression, metastasis and therapy resistance. 3 MDSC consist of two main subsets: monocytic (M) and polymorphonuclear (PMN)-MDSC. 4 In contrast to M-MDSC, the study of PMN-MDSC is challenging due to their more fragile nature under ex vivo conditions. In recent years, researchers identified tumor-infiltrating PMN-MDSC as a negative prognostic factor in renal cell carcinoma, 5 melanoma, 6 colorectal cancer, 7 hepatocellular carcinoma, 8 head and neck cancer 9 and non-small cell lung cancer (NSCLC). 10 In addition, this MDSC subset has been shown to not only elicit immunosuppressive mechanisms comparable to M-MDSC but also unique tumor and metastasis promoting properties. Since the immunosuppressive function of these cells has been already described in detail elsewhere, 11,12 in this review, we focus on the current understanding of the origin and characteristics of PMN-MDSC, their metastasis promoting properties and their role as a therapeutic target.

2 CHARACTERIZATION OF POLYMORPHONUCLEAR-MYELOID-DERIVED SUPPRESSOR CELL

MDSC represent a highly heterogeneous population of myeloid cells that accumulate under chronic inflammatory conditions typical for cancer. 13 In mice, MDSC are characterized as Gr1−CD11b+ cells. The myeloid differentiation antigen Gr1, which is a glycosylphosphatidylinositol linked protein, consists of two subsets, Ly6G and Ly6C, allowing a further differentiation into Ly6G+Ly6C+ PMN-MDSC and Ly6GlowLy6C+ M-MDSC. 4 Since human cells lack the expression of Gr1, human PMN-MDSC and M-MDSC are defined as CD11b+CD14+CD15+ or CD11b+CD14+CD66b+, and CD11b+CD14+ human leukocyte antigen (HLA)-DR−/lowCD15− cells, respectively. 4 A third population, containing immature myeloid cells without immunosuppressive activity, is termed early-stage MDSC and defined as Lin− (including CD3, CD14, CD15, CD19 and CD56) HLA-DR−CD33− cells. 4 In most solid malignancies PMN-MDSC, resembling neutrophils, represent a dominant subpopulation of tumor-infiltrating and circulating MDSC. 14 In addition, the numbers of PMN-MDSC in vivo are assumed to be underestimated since experimental procedures, including freezing and thawing of samples can lead to degradation of these cells. 15 Furthermore, a high neutrophil to lymphocyte ratio has been shown to be a negative prognostic factor, indicating a pivotal role of pathologically activated neutrophils in malignant progression. 16 Despite intensive investigation of PMN cells, their nomenclature in tumor bearing mice and patients is often confusing. For instance, PMN-MDSC could be also termed immunosuppressive neutrophils, N2 neutrophils, tumor-associated neutrophils (TAN) or pathologically activated neutrophils.

3 ORIGIN OF POLYMORPHONUCLEAR-MYELOID-DERIVED SUPPRESSOR CELL

Neutrophil production occurs primarily in the bone marrow where hematopoietic progenitor cells (HPC) differentiate into mature neutrophils that are released into the bloodstream. 17 The most prominent change in morphology during this process is the segmentation of the initially banded nucleus, which allows the identification of different stages of neutrophil maturation. 18 The accumulation of immature and mature granulocytes in cancer is due to their increased production in the bone marrow, primarily mediated by increased concentrations of the granulocyte-colony stimulating factor (G-CSF), which is regarded as the master regulator of neutrophil differentiation and proliferation. 19 Under physiological conditions, neutrophils are retained in the bone marrow until their maturation process is completed. Proliferated neutrophils that express the CXC chemokine receptor (CXCR)-4 remain in the bone marrow mediated by a constitutive production of its ligand, chemokine CXCL12 by osteoblasts and bone marrow stromal cells. 20 Another mechanism that mediates neutrophil retention is the expression of α4β1 integrin (VLA-4) on neutrophils, which is lost during maturation and the production of its ligand VCAM-1 by bone marrow stromal cells. 21 In tumor bearing individuals, this process is impaired by tumor-derived factors, in particular, by G-CSF. 22 It reduces the production of CXCL12 by bone marrow stromal cells and the expression of its receptor CXCR4 on neutrophils, leading to an excessive release of neutrophils into the circulation 23,24 and their migration to the tumor site mediated mainly by CXCR2 and CXCR4 ligands. 25 Furthermore, G-CSF and GM-CSF have been shown to act as chemoattractants for neutrophils. 26 Factors, inducing neutrophil recruitment originate from both cancer and tumor infiltrating immune cells. 27 It has been reported that G-CSF production could be stimulated by IL-17, produced mainly by γδ T cells. 28 Blocking of IL-17 or G-CSF or the depletion of γδ T cells diminished neutrophil accumulation in breast cancer metastases. 29 Activated T cells have been also demonstrated to produce GM-CSF, CXCL1 and CXCL2, however, a specific contribution of different T cell subsets to neutrophil recruitment needs further investigation. 27 In addition to its effect on neutrophil expansion and migration, G-CSF is considered a potent inducer of tumor promoting properties of neutrophils. 29

Another important factor involved in the acquisition of immunosuppressive features by neutrophils is transforming growth factor (TGF)-β. Blocking TGF-β resulted in an increased influx of classical neutrophils into murine tumors. 30 Most importantly, upon TGF-β blockade, these neutrophils demonstrated antitumor cytotoxicity, which suggests TGF-β as a major factor which induces neutrophil polarization. This assumption is further supported by studies that showed impaired cytotoxicity of TGF-β treated neutrophils and the retention of an antitumor activity of neutrophils lacking the TGF-β receptor. 31,32 In contrast, interferon β was shown to block tumor supporting functions of neutrophils by suppressing the production of proangiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP) 9. 33
4 | POLYMORPHONUCLEAR-MYELOID-DERIVED SUPPRESSOR CELL VERSUS NORMAL NEUTROPHILS

In the course of neutrophil differentiation and proliferation, the density of neutrophils rises due to increased granularity and reduced cell size resulting from subsequent cell divisions.34 Stimulation of granulopoiesis due to cancer-derived factors leads to the increased level of circulating neutrophils and to the release of not terminally differentiated cells into the periphery. Several studies therefore examined the differences in the frequency and immunosuppressive capacity between circulating high density neutrophils (HDN) and low density neutrophils (LDN) in cancer patients.35-37 Circulating LDN are mostly absent in healthy donors but expanded in cancer patients; they are unable to induce T cell activation, possess a strong immunosuppressive effect on effector cells of the immune system in vitro and show proangiogenic properties. Therefore, they can be described as a population of PMN-MDSC.35-37 However, considering only a low density or an immature phenotype of neutrophils as a sufficient indicator for their immunosuppressive activity is, probably, an over-simplified view since the LDN fraction has been found to consist of both cells with banded, and segmented nuclei.37 In addition, a study including patients with head and neck and urological cancers identified a circulating neutrophil population with a high expression of the maturation markers CD11b and CD16 as cells with the highest immunosuppressive potential.38

Mature neutrophils have been found to suppress T cell activity upon stimulation through the secretion of reactive oxygen species (ROS).39 In this setting, inhibition of T cells was dependent on CD11b activation on neutrophils. In contrast to these findings, PMN-MDSC from renal cell carcinoma patients demonstrated a decreased expression of CD16 and CD62L associated with an increased CD66b expression.40 Furthermore, PMN-MDSC with low CD16 expression correlated with the resistance to capecitabine in colorectal cancer patients.41

The expression of Fc receptors on neutrophils is of interest in this context since they can exert antibody-dependent cell-mediated cytotoxicity (ADCC).42 The lower expression of the Fc receptors CD16 and CD32 on PMN-MDSC detected in some studies might result in a decreased cytotoxic potential. However, since recent studies also suggested a role of CD16 as a decoy receptor that can reduce ADCC towards cancer cells, interpretation of Fc receptor expression is complicated.42

It is quite difficult to distinguish immunosuppressive PMN-MDSC from nonimmunosuppressive neutrophils based only on the expression of surface markers. The hallmarks of both cell populations are summarized in Table 1. Recent studies suggest a different metabolic program between normal neutrophils and PMN-MDSC. While neutrophils rely mostly on glycolysis to meet their energy demand, PMN-MDSC demonstrate a higher flexibility in their response to the glucose availability.37,43 PMN-MDSC are known to generate high amounts of ROS, which can inhibit antitumor activity of effector immune cells. ROS could be an important inducer of the endoplasmatic reticulum (ER) stress response which is strongly upregulated in PMN-MDSC.44 Together with the upregulation of the ER stress response, PMN-MDSC acquire an immunosuppressive pattern and express the lectin-type oxidized low-density lipoprotein receptor 1 (LOX-1), which is absent on neutrophils from healthy donors.45 LOX-1 upregulation by ER stress has also been demonstrated in macrophages, although it was not investigated in the context of immunosuppression.46

LOX-1 upregulation in response to ER stress has been found to be mediated by the transcription factor X-box binding protein (XBP) 1 in lung adenocarcinoma cell culture models.47 Additional studies have demonstrated that it could serve as a promising marker for immunosuppressive cells in glioblastoma.48 Moreover, a recent publication demonstrated an increase in circulating LOX-1+ PMN-MDSC in NSCLC patients that were not responding to anti-PD1 therapy.49 This suggests that LOX-1 identifies a subpopulation of PMN-MDSC that exerts immunosuppression. Although LOX-1 was described as a marker for immunosuppressive neutrophils in patients, it could not be used to distinguish PMN-MDSC from nonsuppressive PMN cells in mice.45

Due to their generally more immature phenotype, PMN-MDSC were described to display a decreased granularity, which also impairs their cytotoxicity.30 Transcriptome analysis of bone marrow neutrophils

Characteristics	Physiological neutrophils	PMN-MDSC
Surface marker in mice	CD11b^Lin^Ly6G^-	CD11b^int^Ly6G^-
Surface marker in humans	CD15^-CD66b^-CD16^-CD14^-	CD15^-CD66b^-CD16^-CD14^-CD11b^-CD33^-HLA-DR^-Lox1^-
Maturity	Mature, segmented nuclei,17 High CD16 expression,38 High density,36	Immature, banded nucleus,40 Intermediate CD16 expression,39 Low density,36
Immunosuppressive potential	Can induce T cell activation,35-37 Nonimmunosuppressive35-37	Unable to induce T cell activation,13 Suppress T and NK cell function35-37
Metabolism	Glycolysis as a main source of energy production,43 Regular ER stress response44	Higher metabolic flexibility,37 Increased fatty acid oxidation,96 Higher PEG2 production,98 High ER stress response,44
Cytotoxic potential	High cytotoxicity36	Low cytotoxicity36
Angiogenic potential	Low angiogenic potential117	High angiogenic potential117
Life span	6-8 hours in circulation, up to several days in tissues118	Shorter life span due to increased apoptosis119
from mesothelioma bearing mice showed a decrease in genes associated with phagosome assembly and antigen processing, suggesting a reduced potential for phagocytosis and T cell stimulation. A recent study supported the view that PMN-MDSC represented a distinguished subset of PMN neutrophils. The authors identified three distinct PMN neutrophil populations in cancer bearing mice: classical PMN neutrophils, PMN-MDSC and activated PMN-MDSC. The latter were found only in the TME during early tumor development, were highly immunosuppressive and could be identified based on the expression of CD14. In patients, the authors described classical PMN neutrophils and tumor infiltrating PMN-MDSC that showed a gene expression profile similar to activated murine PMN-MDSC.

5 | METASTASIS PROMOTING PROPERTIES OF POLYMORPHONUCLEAR-MYELOID-DERIVED SUPPRESSOR CELL

PMN-MDSC have been shown to support all steps of the metastatic process. These include dissemination of tumor cells from the primary tumor, their migration through endothelial barriers, reaching the lymphatic or blood circulation and seeding at the distant organs that offer an environment, supporting metastasis (Figure 1).

PMN-MDSC have been demonstrated to secrete IL-17a which induces a downregulation of E-cadherin in gastric cancers cells. This loss of epithelial markers together with an increase in the mesenchymal markers vimentin and ZEB1 induced a higher motility in gastric cancer cells and enabled their dissemination from the primary tumor. As immunosuppressive cells, PMN-MDSC can inhibit NK cells, which promotes the survival and metastatic capacity of circulating tumor cells (CTC) in the luminal space of microvessels. In addition, PMN-MDSC have also been shown to directly interact with CTC. Co-injection of MDA-MB-231 breast cancer cells and melanoma or breast cancer patient-derived CTC together with PMN-MDSC led to increased metastases formation in mice. In this context, ROS derived from PMN-MDSC induced the expression of Notch1 in CTC, promoting thereby their survival.

Extravasation of tumor cells is supported by the secretion of MMP8 and 9 by PMN-MDSC, increasing vessel permeability. Tumor cells that already disseminated from injected mammary tumors showed an increased potential to form macroscopic distant metastases when PMN-MDSC frequencies in target organs were elevated. In addition, co-injection of 4T1 breast cancer cells in the tail vein of mice with PMN-MDSC (but not with M-MDSC) increased their potential to form lung metastases. Another important factor that influences metastasis is neutrophil elastase (NE) that affects tumor cell dissemination, extravasation and seeding in the premetastatic niche. NE is a serine protease that is primarily produced by neutrophils and other immune cells, including macrophages and lymphocytes, and that is accumulated in the serum of cancer patients. In primary tumors from breast cancer patients, increased NE levels were associated with metastasis and poor prognosis. In addition, high NE concentration correlated with poor response to tamoxifen and trastuzumab treatment in breast cancer patients. Metastases of subcutaneous Lewis lung carcinomas were decreased in mice deficient for NE. This observation was found to be dependent on the diminished degradation of insulin receptor substrate 1 (IRS-1), which acted as a negative regulator of the PI3K pathway, reducing thereby tumor cell proliferation.

NE together with myeloperoxidase (MPO) represent essential components of neutrophil extracellular traps (NET). The process of NET formation (NETosis), during which neutrophils release high amounts of DNA and proteases was first described as a mechanism for defense against bacteria. Although NETosis was initially considered as a form of cell death, it has become clear that both vital and lytic forms can occur. In infections, vital NETosis is predominant while in sterile injuries, primarily lytic NETosis is occurring. If there is a preference of a particular form of NETosis in cancer patients and if this influences tumor progression needs further investigation. In recent years, NETosis has been associated with different pathological conditions, including primary tumor growth and metastasis. PMN-MDSC derived NETs have been shown to trap CTC both in vitro and in vivo, which was associated with increased metastasis formation. Furthermore, NETs act as a physical shield for tumor cells, protecting them from the cytotoxic effect of immune effector cells. Studies with PMN-MDSC isolated from peripheral blood of cancer patients demonstrated that tumor-derived CXCR1 and CXCR2 agonists, especially IL-8, could be main inducers of NETosis. NE and MMP9 released into the extracellular space during NETosis have been shown to sequentially cleave the basal membrane component laminin. Proteolytically modified laminin could bind to αvβ1 integrin on dormant tumor cells, inducing thereby their proliferation and the outgrowth of metastases. It is important to mention that the capacity to induce NETosis differs among various mediators. In addition, studies demonstrated a high variability among neutrophil donors in this regard. In the same study, induction of NETosis through G-CSF and phorbol 12-myristate 13-acetate (PMA) in neutrophils from healthy donors and cancer patients did not show any differences. In contrast, a significantly higher induction of NETosis by these stimuli was observed in neutrophils from tumor bearing mice as compared to healthy animals. This indicates that data generated in murine models cannot be directly transferred to the human situation.

In addition, PMN-MDSC infiltration into various organs was shown to be a prerequisite for metastasis formation. These myeloid cells have been shown to secrete the proteins Bv8, S100A8 and S100A9, which can act as chemoattractant for both PMN-MDSC and tumor cells.

6 | THERAPIES TARGETING POLYMORPHONUCLEAR-MYELOID-DERIVED SUPPRESSOR CELL

Due to their immunosuppressive nature, PMN-MDSC are considered as one of the major contributors to cancer resistance to chemo- or...
immunotherapies. To counteract their effects, several strategies are pursued, including the inhibition of PMN-MDSC migration to the tumor site, depletion of PMN-MDSC or induction of their differentiation into mature neutrophils and the blockade of their immunosuppressive function (Figure 2).

The most prominent mediators of neutrophil migration in cancer and other pathological conditions are CXCR2 ligands, namely the chemokines CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7 and CXCL8. In humans, CXCR2 forms homodimers or heterodimers together with CXCR1 to facilitate signaling. Therefore, treatment...
approaches aim at inhibiting the expression or function of these molecules to abrogate pathologic neutrophil recruitment. In a spontaneous model of murine pancreatic cancer, genetic deletion of CXCR2 led to reduced formation of metastases. In addition, pharmacological inhibition of CXCR2 increased the influx of tumor-reactive T cells and synergized with anti-PD1 therapy. Our recent investigation also demonstrated a beneficial effect of adjuvant anti-CXCR2 treatment on the occurrence of distant metastases in melanoma bearing mice, which was presumably attributed to increased NK cell function.

It is important to mention that CXCR2 has been shown to play other roles besides inducing neutrophil migration. In vitro and in vivo analysis of breast cancer cell lines demonstrated a lower apoptotic rate, higher chemoresistance and stronger capacity to undergo EMT of CXCR2 expressing cells. Stronger capacity to undergo EMT was attributed to a lower expression of E-cadherin and β-catenin. These observations were supported by clinical data, where high CXCR2 expression was associated with the induction of cyclooxygenase 2 (Cox-2) and predicted poor overall survival of breast cancer patients. In addition, CXCR2 mediated augmented survival of prostate cancer cells. Activation of hypoxia-inducible factor (HIF)-1 and nuclear factor-κB (NF-κB) resulted in an increased expression of CXCR2, leading to partial resistance against etoposide. This protective effect was abrogated by treating cells with CXCR2 targeting siRNAs. Furthermore, SX-682, an allosteric inhibitor of both CXCR1 and CXCR2, was demonstrated to reduce the infiltration of oral and lung carcinomas with PMN-MDSC and thereby increasing the number of both endogenous and adoptively transferred T cells in preclinical tumor models.

The CXCR2 ligands belong to a group of chemokines characterized by a Glu-Leu-Arg sequence (ELR-motif), which enables them to promote angiogenesis by binding to CXCR2+ endothelial cells. Concordantly, the inhibition of CXCR2 signaling also influences tumor vascularization. Therefore, beneficial therapeutic effects observed under anti-CXCR2 therapy may not only be caused by decreased PMN-MDSC recruitment.

An inhibitor of CXCR2, AZD5069, is currently testing in a phase I/II clinical trial in combination with enzalutamide in patients with metastatic castration resistant prostate cancer (NCT03177187) and several other inflammatory conditions including asthma and chronic obstructive pulmonary disease (COPD).

Another important receptor, regulating neutrophil migration, is CXCR4, which mediates retention of neutrophils in the bone marrow under physiological conditions. Concordantly, inhibition of CXCR4 is an approved treatment for systemic neutropenia. Interestingly, it has been shown that in cancer, CXCR4 ligands are upregulated in the tumor microenvironment and are able to recruit CXCR4+ PMN-MDSC to the tumor. This indicates the CXCR4/CXCR4 ligand axis as a potential therapeutic target to inhibit PMN-MDSC migration. Recent preclinical studies aimed at inhibiting PMN-MDSC migration by targeting 5-lipoxygenase that is essential for the synthesis of leukotriene A4, a strong chemoattractant for neutrophils. Here, the inhibitor of 5-lipoxygenase was entrapped in nanoparticles that contained
5-hydroxytryptamine (5-HT) on their surface, which mediated their binding to cells, expressing high levels of myeloperoxidase such as neutrophils in inflamed tissue. Using this approach in a xenograft breast cancer model, tumor growth and metastasis were significantly reduced.84

Depletion of PMN-MDSC in preclinical studies is usually done by the application of monoclonal antibodies against either the Gr1 antigen or its Ly6G subunit, both of which are predominantly expressed by PMN-MDSC. While binding to Gr1 on neutrophils has been shown to induce complement-mediated membrane complex formation and, therefore, cell lysis, antibody against Ly6G stimulated phagocytosis of neutrophils by macrophages, resulting in a better depletion efficacy.85 In addition, targeting Ly6G offers a higher specificity over targeting Gr1 in depleting granulocytes.85 Although both approaches demonstrated a significant reduction of tumor weight and an improved mouse survival, their effect was highly dependent on the cancer entity, mouse strain as well as dosage and duration of the depletion approach.86 Depletion efficacy is also influenced by the degree of extramedullary granulopoiesis in the spleen, low bioavailability of the depleting antibodies, compensatory granulopoiesis in the bone marrow and the production of host antibodies against the anti-Ly6G or anti-Gr1 depleting antibodies. To optimize depletion efficacy, Boivin et al.87 proposed a promising double antibody-based depletion approach.

Importantly, one of the major side effects of chemotherapy is myelotoxicity, suggesting that PMN-MDSC could be affected by chemotherapeutics. Indeed, a decrease in circulating PMN-MDSC in human pancreatic cancer patients under gemcitabine treatment has been demonstrated.88 Interestingly, only PMN-MDSC were affected in this setting, while level of circulating M-MDSC remained stable. Data from several studies conducted with 5-fluorouracil (5-FU) indicated a reduction of MDSC numbers not only in the tumor but also in the circulation.89 In addition, 5-FU has been shown to decrease MDSC level to a higher degree than gemcitabine and without affecting antitumor immune cells in both patients and preclinical mouse models.90,91 It is important to mention that the efficacy of MDSC depletion is dependent on the used chemotherapeutic agent, treatment duration, dosage and tumor type.91

In addition to the depletion of MDSC, chemotherapeutics are capable of inducing MDSC differentiation. Treatment of melanoma bearing mice with low-dose paclitaxel significantly reduced the frequency of intratumoral MDSC associated with an elevation of DC numbers.92

PMN-MDSC could be also depleted through the targeting of tumor-derived mechanisms and factors that promote excessive granulopoiesis. PGE2-secreting breast cancer cells were shown to induce microRNA (miR)-10a in MDSC, which resulted in the activation of the AMP-activated protein kinase (AMPK) pathway and MDSC expansion.93 In line with this finding, inhibition of miR-10a abrogated this effect and increased survival of tumor-bearing mice.93 In addition, PGE2 has been shown to promote both CXCL12 and CXCR4 expression in a mouse model of prostate cancer, leading to an increased migration of these cells to the tumor site.94 PGE2 increased the immunosuppressive capacity of PMN-MDSC by inducing arginase-1 expression.95 A recent study described an upregulation of the fatty acid transporter (FATP)2 in PMN-MDSC in contrast to normal neutrophils in both humans and mice in a GM-CSF/signal transducer and activator of transcription (STAT)5-dependent manner.96 Increased expression of this receptor facilitated enhanced uptake of arachidonic acid, increasing thereby PGE2 synthesis. An inhibition of this transporter with lipoferrna restored the normal neutrophil phenotype and reduced tumor formation in mice, suggesting this receptor as a potential therapeutic target.96

Since neutrophils have also antitumor properties, it seems plausible to reprogram PMN-MDSC into tumor attacking cells. Interestingly, promising results in skewing PMN-MDSC into tumor-reactive neutrophils were observed in the studies with cabozantinib, a tyrosine kinase inhibitor that targets c-MET, VEGFR2, RET and AXL.97 Treatment of mice bearing castration resistant prostate cancer with cabozantinib led to a strong influx of tumor-reactive neutrophils into tumors and to their eradication.97 Since antibody mediated depletion of granulocytes abolished the effects of cabozantinib, this inhibitor is likely to render PMN-MDSC into tumor reactive neutrophils in vivo.97 In the same model, treatment of cabozantinib synergized with immune-checkpoint blockade leading to reduced tumor growth.98 For the treatment with cabozantinib, c-MET seems to be especially important as a target since c-MET\textsuperscript+ neutrophils have been shown to mediate resistance against adoptive T cell therapy in murine melanoma.99 It was demonstrated that cabozantinib was able to reduce both PMN-MDSC survival and their immunosuppressive capacity presumably through the inhibition of the PI3K-Akt-mTOR pathway and the upregulation of IL-1 receptor antagonist.98,100

Another major player in the induction of protumorigenic properties of PMN-MDSC is TGF-β.30,50 Currently, two inhibitors of TGF-β signaling are tested in phase II clinical trials. The treatment with monoclonal antibody fresolimumab, targeting all isoforms of TGF-β and with galusertinib, an inhibitor of TGF-β1, demonstrated acceptable safety and prolonged patient survival.101,102 In addition, galusertinib exerted synergistic effects when being applied together with anti-PD-L1 or anti-PD1 antibodies as well as with conventional chemotherapy.103-105

Initially, an immature phenotype was considered a general characteristic of MDSC. However, it has recently been shown that mature neutrophils can also exert immunosuppressive function in cancer patients.106 Nevertheless, promotion of myeloid cell maturation has been proven to be beneficial for the treatment outcome.107 The most intensively studied approach to induce MDSC maturation is the application of the all trans retinoic acid (ATRA), which induces expression of genes containing a retinoic acid response element.108 Activation of these genes leads to the production of glutathione, which detoxifies ROS. In absence of ROS, MDSC have been shown to lose their immunosuppressive capacity and develop rapidly into mature macrophages and dendritic cells.109 In patients with small cell lung cancer, ATRA was able to increase the response to a dendritic cell-based vaccine by 2-fold.107 At the present time, ATRA is tested in combination with ipilimumab (NCT03200847) or pembrolizumab (NCT02403778) in melanoma patients, showing promising results.110
According to many publications, PMN-MDSC rely to a large degree on the expression of arginase-1 to exert an immunosuppressive capacity.40,111-113 This enzyme reduces the concentration of L-arginine in the extracellular space, leading to the inhibition of T cell proliferation and contributing to the production of immunosuppressive polyamines.114 The treatment of cancer patients with L-arginine might, therefore, be helpful since such therapy showed beneficial effects in preclinical studies.115

7 | CONCLUSION

Our understanding of PMN-MDSC biology is rapidly evolving and reveals these cells as major players in the progression of primary tumors and the formation of distant metastases. Since the majority of cancer deaths is attributed to metastatic process, a targeting of PMN-MDSC in this context could be considered as a promising strategy of tumor immunotherapy.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project number 259332240/RTG 2099 (to JU and VU) and TRR179 (TP07 to Adelheid Cerwenka), the Cooperation Program in Cancer Research of the DFKZ Heidelberg and Israel's Ministry of Science, Technology and Space (MOST, CA181 to VU) and the German Federal Ministry of Education and Research (SERPENTINE project in the ERA PerMed network to VU). Open Access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

ORCID

Christopher Groth \(\text{https://orcid.org/0000-0001-5512-0112}\)
Jochen Utikal \(\text{https://orcid.org/0000-0001-5316-0241}\)
Viktor Umansky \(\text{https://orcid.org/0000-0003-0259-1839}\)

REFERENCES

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674.
2. Cornel AM, Mimpfen IL, Nierkens S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancer. 2020;12:1760.
3. Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front Immunol. 2020;11:940.
4. Bronte V, Brandau S, Chen S-H, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.
5. Jensen HK, Donskov F, Marcussen N, Nordmark M, Lundbeck F, von der Maase H. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol. 2009;27:4709-4717.
6. Jensen TO, Schmidt H, Moller HJ, et al. Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer. 2012;118:2476-2485.
7. Hold GL, Rao H-L, Chen J-W, et al. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS One. 2012;7:e30806.
8. Li YW, Qiu SJ, Fan J, et al. Intratumoral neutrophils: a poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol. 2011;54:497-505.
9. Trellakis S, Bruderek K, Dumitru CA, et al. Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer. 2011;129:2183-2193.
10. Barrera L, Montes-Servin E, Hernandez-Martinez JM, et al. Levels of peripheral blood polymorphonuclear myeloid-derived suppressor cells and selected cytokines are potentially prognostic of disease progression for patients with non-small cell lung cancer. Cancer Immunol Immunother. 2018;67:1393-1406.
11. Groth C, Hu X, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120:16-25.
12. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208-220.
13. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19:108-119.
14. Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5:3-8.
15. Kotsakis A, Harasymczuk M, Schilling B, Georgoulas V, Argiris A, Whiteside TL. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods. 2012;381:14-22.
16. Shen M, Hu P, Donskov F, Wang G, Liu Q, Du J. Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis. PLoS One. 2014;9:e98259.
17. Hong C-W. Current understanding in neutrophil differentiation and heterogeneity. Immune Netw. 2017;17:298-306.
18. Pillay J, Tak T, Kamp VM, Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci. 2013;70:3813-3827.
19. Richards MK, Liu F, Iwasaki H, Akashi K, Link DC. Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood. 2003;102:3562-3568.
20. De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest. 2018;48: e12949.
21. Petty JM, Lenox CC, Weiss DJ, Poynter ME, Suratt BT. Crosstalk between CXCR4/stromal derived factor-1 and VLA-4/VCAM-1 pathways regulates neutrophil retention in the bone marrow. J Immunol. 2009;182:604-612.
22. Wengner AM, Pitchford SC, Furse RC, Rankin SM. The coordinated action of G-CSF and ELR + CXC chemokines in neutrophil mobilization during acute inflammation. Blood. 2008;111:42-49.
23. Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood. 2005;106:3562-3568.
24. Petit I, Szypier-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687-694.
25. Susek KH, Karvouni M, Alić E, Lundqvist A. The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment. Front Immunol. 2018;9:2159-2159.
26. Castellani S, D’Oria S, Diana A, et al. G-CSF and GM-CSF modify neutrophil functions at concentrations found in cystic fibrosis. Sci Rep. 2019;9:12937.
27. Aruga A, Aruga E, Cameron M, Chang A. Different cytokine profiles released by CD4+ and CD8+ tumor draining lymph node cells involved in mediating tumor regression. J Leukoc Biol. 1997;61:507-516.

28. Coffelt SB, Kersten K, Doornewal CW, et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345-348.

29. Wright JD, Hu Q, Miller A, Liu S, Abrams SI. Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS One. 2011;6:e27690.

30. Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β1: “N1” versus “N2” TAN. Cancer Cell. 2009;16:183-194.

31. Novitskiy SV, Pickup MW, Chytil A, Polosukhina D, Owens P, Moses HL. Deletion of TGF-β1 signaling in human neutrophils exhibits metabolic flexibility that facilitates breast cancer liver metastasis. BMC Immunol. 2015;16:183-194.

32. Granot Z, Henke E, Comen Elizabeth A, King Tari A, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20:300-314.

33. Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Investig. 2010;120:1151-1164.

34. Cowland JB, Borregaard N. Isolation of neutrophil precursors from bone marrow for biochemical and transcriptional analysis. J Immunol Methods. 1999;223:191-200.

35. Shaul ME, Levy L, Sun J, et al. The ratio of peripheral regulatory T cells to llox-1+ polymorphonuclear myeloid-derived suppressor cells predicts the early response to anti–PD-1 therapy in patients with non–small cell lung cancer. Am J Respir Crit Care Med. 2019;198:243-246.

36. Shaal ME, Levy L, Sun J, et al. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: A transcriptomics analysis of pro- vs. antitumor TANs. Onco Targets Ther. 2016;5:e123221.

37. Yang Y, Cheng B-J, Jian H, et al. XBP1-LOX Axis is critical in ER stress-induced growth of lung adenocarcinoma in 3D culture. J Cell Biol. 2015;206:3562-3574.

38. Lang S, Bruderek K, Kaspar C, et al. Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets. Clin Cancer Res. 2018;24:4834-4844.

39. Hsu BE, Tabariés S, Johnson RM, et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep. 2019;19:3702-3715.

40. Rodriguez PC, Ernstoft MS, Hernandez C, et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69:1553-1560.

41. Lu Y, Huang Y, Huang L, et al. CD16 expression on neutrophils predicts treatment efficacy of capcitabine in colorectal cancer patients. BMC Immunol. 2020;21:46.

42. Treffers LW, van Houwits M, Bruggeman CW, et al. FcγRIIB restricts antibody-dependent destruction of cancer cells by human neutrophils. Front Immunol. 2019;9:3124.

43. Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Ulsmar VM. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2014;2:206-210.

44. Santos CX, Tanaka LY, Wosniak I, Laurindo FR. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal. 2009;11:2409-2427.

45. Condamine T, Dominguez GA, Youn JI, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 2016;1:eaaf8943.
65. Snoderly HT, Boone BA, Bennewitz MF. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res. 2019;21:145.

66. Cedervall J, Zhang Y, Olsson A-K. Tumor-induced NETosis as a risk factor for metastasis and organ failure. Cancer Res. 2016;76:4311-4315.

67. Olsson A-K, Cedervall J. NETosis in cancer—platelet–neutrophil crosstalk promotes tumor-associated pathology. Front Immunol. 2016;7:373.

68. Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Investig. 2013;123:3446-3458.

69. Tejeira A, Garasa S, Gato M, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52:856-871.

70. Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361:eaao4227.

71. Arpinati L, Shaul ME, Kaisar-Iluz N, Mali S, Mahroum S, Kortylewski M, Moreira D. Myeloid cells as a target for oligonucleotide therapies:turning obstacles into opportunities. Cancer Immunol Immunother. 2017;66:979-988.

72. Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCR1/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. 1871;2019:289-312.

73. Nasser MW, Raghuwanshi SK, Grant DJ, Jala VR, Burdick MD, Strieter RM. Depletion of gr-1+ neutrophils reduces MDSCs, tregs and TGF-β1 while restoring the teff/treg ratio in patients with pancreatic cancer. J Transl Med. 2016;14:282.

74. Otsubo D, Yamashita K, Fujita M, et al. Early-phase treatment by low-dose 5-fluorouracil or primary tumor resection inhibits MDSC-mediated lung metastasis formation. Anticancer Res. 2015;35:4425-4431.

75. Vincent J, Mignot G, Chalmin F, et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052-3061.

76. Wang Z, Till B, Gao Q. Chemotherapeutic agent-mediated elimination of myeloid-derived suppressor cells. Onco Targets Ther. 2017;6:1-11.

77. Takahashi R, Amano H, Ito Y, et al. Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b+Gr-1+MDSCs from bone marrow. Biomed Pharmacother. 2020;121:109581.

78. Yan G, Zhao H, Zhang Q, et al. A RIPK3-PGE₂ circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 2018;78:5586-5599.

79. Veglia F, Tsurin VA, Blasi M, et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. 2019;569:73-78.

80. Patnaik A, Swanson KD, Ciszmadia E, et al. Cabozantinib eradicates advanced murine prostate cancer by activating antitumor innate immunity. Cancer Discov. 2017;7:750-765.

81. Lu X, Homer JW, Paul E, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732.

82. Glodde N, Bald T, van den Boom-Konijnenberg D, et al. Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity. 2017;47:789-802.e789.

83. Tu S, Bhagat G, Cui G, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14:408-419.

84. Kelley RK, Gane E, Assenat E, et al. A phase 2 study of Galunisertib (TGF-β1 receptor type 1 inhibitor) and Sorafenib in patients with advanced hepatocellular carcinoma. Clin Transl Gastroenterol. 2019;10:e00056.

85. Formenti SC, Lee P, Adams S, et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin Cancer Res. 2018;24:2493-2504.

86. Holmgard RB, Schaar DA, Li Y, et al. Targeting the TGFβ pathway with galunisertib, a TGFβR1 small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J Immunother Cancer. 2018;6:47.

87. Melisi D, Garcia-Carbonero R, Macarulla T, et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer. 2018;119:1208-1214.
105. Melisi D, Guba SC, Karasarides M, Andre V. Phase 1b dose-escalation and cohort-expansion study of the safety, tolerability, and efficacy of a novel transforming growth factor-β receptor I kinase inhibitor (galunisertib [G]) administered in combination with the anti-PD-L1 antibody (durvalumab [D]) in recurrent or refractory metastatic pancreatic cancer. J Clin Oncol. 2017;35:TPS501.

106. Brandau S, Si Y, Bruderek K, et al. A subset of mature neutrophils contains the strongest PMN-MDSC activity in blood and tissue of patients with head and neck cancer. J Immunol. 2020;204:272.

107. Iclozan C, Antonia S, Chiappori A, Chen D-T, Gabrilovich D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother. 2013;62:909-918.

108. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 2007;67:11021-11028.

109. Corzo CA, Cotter MJ, Cheng P, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009;182:5693-5701.

110. Tobin RP, Davis D, Jordan KR, McCarter MD. The clinical evidence for targeting human myeloid-derived suppressor cells in cancer patients. J Leukoc Biol. 2017;102:381-391.

111. Nakamura K, Kassem S, Cleyen A, et al. Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment. Cancer Cell. 2018;33:634-648.

112. Canè S, Bronte V. Detection and functional evaluation of arginase-1 isolated from human PMNs and murine MDSC. Methods Enzymol. 2020;632:193-213.

113. Rodríguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev. 2008;222:180-191.

114. Grzywa TM, Sosnowska A, Matryba P, et al. Myeloid cell-derived arginase in cancer immune response. Front Immunol. 2020;11:938-938.

115. Cao Y, Feng Y, Zhang Y, Zhu X, Jin F. L-arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer. 2016;16:343.

116. Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil diversity in health and disease. Trends Immunol. 2019;40:565-583.

117. Binsfeld M, Muller J, Lamour V, et al. Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma. Oncotarget. 2016;7:37931-37943.

118. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431-446.

119. Condamine T, Kumar V, Ramachandran IR, et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest. 2014;124:2626-2639.