Key requirements of an IT tool based on last planner® system

1. Introducción

Desde inicios de los años 90, el sistema productivo a nivel global se encuentra inmerso en un cambio, el cual comenzó en el sector automovilístico, pero más tarde fue adaptándose a otros sectores como la construcción (Pons, 2014); (Koskela, 2000). Debido a la necesidad de mejorar la eficiencia de las industrias y los sistemas de producción, nace una nueva forma de trabajo, el sistema Lean (Womack y Jones, 2008). Lean proporciona herramientas que contribuyen a una mayor integración entre los diferentes agentes sociales y las empresas que intervienen a lo largo de todo el ciclo de vida de un proyecto, desde los gerentes hasta los trabajadores a pie de obra, lo cual implica, adoptar un nuevo enfoque en la gestión integral del proyecto (Pons, 2014).

En una empresa Lean, las personas representan un activo fundamental, generando una mayor calidad laboral (Gil, 2017). Ademáes, este sistema, fomenta el trabajo en equipo, mejora la comunicación, facilita la visión de conjunto de todo el proceso, ayuda a la identificación temprana de errores, seguida de una resolución eficaz y rápida de problemas, y conduce hacia una mayor autogestión (Womack y Jones, 2008). La gestión integral de todo el proyecto pasa del modelo tradicional jerarquizado de mando y orden, a un sistema colaborativo y de autoridad distribuida (Cuatrecasas, 2015). En este ámbito, surge una nueva filosofía de producción para la industria de la construcción, conocida como Lean Construction o construcción sin pérdidas, el cual consiste en la aplicación de los principios y herramientas del sistema Lean a lo largo de todo el ciclo de vida de un proyecto de construcción (Pons, 2014); desde su concepción hasta su ejecución y puesta en servicio (Koskela, 1992). La filosofía Lean Construction, cuenta con diversas herramientas para su implementación dentro de una empresa, siendo una de ellas el Last Planner® System (LPS) o sistema del último planificador (Ballard y Howell, 1997).
LPS es una metodología de programación, seguimiento y control de proyectos de construcción que se concentra fundamentalmente en la ejecución de las obras, pero también posee un componente de planificación inicial, previa al inicio de las obras (Ballard, 2000); (Ureta, 2018). LPS provoca una reducción de la variabilidad del proyecto, protección del trabajo ejecutable, optimización de los flujos de trabajo, mejora en identificación de pérdidas, mejoramiento continuo, trabajo colaborativo e integración de las cadenas de producción y aprovisionamiento (Koskela et al., 2015). Dadas las numerosas ventajas que tiene implementar LPS, las que incluyen alcanzar mayores índices de productividad, calidad, seguridad, satisfacción del cliente y reducción de plazos de entrega (Pons, 2014), es que muchas empresas del rubro de la construcción se han atrevido a utilizar esta metodología, cambiando sus sistemas tradicionales de planificación a un sistema Lean.

En los últimos años, se han desarrollado numerosas contribuciones al LPS, a través de la incorporación de sistemas de tecnologías de la información (TI), las cuales colaboran con la planificación y gestión de un proyecto a corto plazo. Por ello, es que se han desarrollado sistemas informáticos de gestión de proyectos basados en la metodología LPS, que incorporan los componentes relevantes de esta metodología (Ureta, 2018) y permiten una mejora en los flujos de información y un mejor alineamiento entre la planificación, operación y control, considerando el proyecto en su totalidad, es decir, la gestión del proyecto a largo plazo (Rodríguez et al., 2011). Si bien LPS ha tenido un gran auge en el último tiempo, siendo aplicado principalmente en las grandes empresas a través de diversos softwares que ofrece el mercado, actualmente se desconoce los reales requerimientos que tienen las empresas constructoras acerca de una herramienta TI basada en Last Planner® System. También, se desconoce cómo las principales aplicaciones TI que aplican LPS satisfacen las necesidades de las empresas. Por lo tanto, el objetivo de este trabajo es identificar los principales requerimientos de una herramienta TI basada en la metodología LPS, y dar a conocer cómo los principales softwares del mercado hacen cumplimiento de éstos aspectos.

2. Metodología de investigación

La metodología de investigación se muestra en la (Figura 1). Se incluyen las etapas de trabajo, herramientas de investigación y actividades realizadas para alcanzar el objetivo de encontrar las funcionalidades que debe tener una TI basada en LPS. Además, se indican los entregables obtenidos en el transcurso de la investigación.

![Figura 1. Metodología de la investigación.](image)

En una primera etapa, mediante una revisión de literatura se identificaron los requerimientos de los usuarios para la formulación de sistemas TI basados en Last Planner® System, obteniéndose un listado con los principales requerimientos identificados. La búsqueda se realizó en la biblioteca de Google Scholar, incorporando libros, artículos científicos y tesis académicas, comprendidas entre los años 1992 y 2018, en base a los conceptos de: Lean Production, Lean Construction, Last Planner® System, y Software LPS. En una segunda etapa, un listado con los principales elementos que debería tener un software basado en la metodología LPS fue obtenido mediante juicio de expertos, en base a una sesión de discusión grupal presencial. Se seleccionaron ocho expertos que
cumpían los siguientes requisitos: a) más de 15 años de práctica en gestión de la construcción, y b) experiencia como implementador, consultor, investigador o profesor universitario en tópicos Lean. En una tercera etapa, a partir del listado validado por los expertos y lo obtenido de la literatura, se realizó una encuesta online a 56 profesionales practicantes o consultores de Last Planner® System, los cuales debían calificar cada elemento con una escala tipo Likert con puntuación de 1 a 5, según el nivel de importancia que ellos consideraban tenía ese elemento para una herramienta LPS. A partir de los resultados obtenidos de la encuesta realizada, se calculó el Relative Importance Index (RII), mediante el cual se pudo crear un ranking con los principales elementos que debe contener una herramienta TI de LPS, obteniéndose una lista priorizada. Finalmente, se realizó una verificación a cada uno de los softwares encontrados en el mercado, donde se analizó si estos cuentan o no con las características del listado obtenido en la investigación, obteniendo una matriz comparativa.

3. Resultados y análisis

Los avances tecnológicos de los últimos años permiten extender el uso de la tecnología de la información (TI) a nuevas aplicaciones para mejorar la efectividad y la eficiencia de diferentes campos e industrias. Paradójicamente, a pesar del importante papel del sector de la construcción en la economía nacional y global, la utilización de estos avances tecnológicos en la industria de la construcción es todavía bastante baja. Este uso deficiente de la tecnología por parte de las empresas de construcción es bien conocido y ha sido demostrado en muchos estudios, enfatizando que la realidad tecnológica de la industria de la construcción está lejos de la de otros sectores (Ureta, 2018).

3.1 Requerimientos de usuarios

El Last Planner® System ha sido implementado en países de los cinco continentes a lo largo de más de 20 años y su evolución ha sido registrada en más de 50 investigaciones publicadas en las conferencias del International Group of Lean Construction (IGLC) (Cisterna, 2013). Además, si bien la gran mayoría de las publicaciones reportan estudios de Estados Unidos y Europa, además, el sistema ha tenido una amplia y creciente adopción en Sudamérica y particularmente en Chile (Sabbatino, 2011). Además, el número de componentes adoptados ha crecido sistemáticamente en el tiempo, no obstante, el grado de adopción de los distintos componentes ha variado a lo largo de los años y existen algunos componentes que se han mantenido en un grado incipiente de implementación (Lagos, 2017).

Una conclusión ampliamente aceptada por los investigadores del IGLC es que el foco de la implementación de LPS ha sido sistemáticamente corteplacista (Lagos, 2017). De hecho, los componentes más ampliamente adoptados de la metodología han sido constantemente la planificación semanal, búsqueda de causas de no cumplimiento y medición del PPC (Alarcón y Calderón, 2003). Esta problemática resulta ser importante ya que el no uso de los demás componentes de LPS está altamente correlacionado al aumento del cumplimiento de compromisos y el mejoramiento del desempeño de los proyectos (Lagos et al., 2019).

La inclusión de sistemas TI para el soporte de la gestión de LPS presenta una oportunidad para el mejoramiento de la gestión de dichos componentes (Alarcón y Calderón, 2003). (Choo y Tommelein, 2001) describe un listado de requerimientos, obtenidos del desarrollo y testeo con usuarios, para la formulación de sistemas TI basados en LPS. Estos requerimientos buscan fijar las características necesarias de dichos sistemas para facilitar su adopción y que su implementación sea beneficiosa en proyectos de construcción. Los requerimientos se basan principalmente en las características de los aplicativos para facilitar su uso, entendimiento y la integración con la metodología Last Planner®:

a) Procedimiento de Last Planner® efectivo y simple: los softwares diseñados para la gestión de LPS deben integrar todos los componentes de la metodología en un procedimiento que emule los pasos de la planificación LPS y que sea fácil de seguir por los usuarios.

b) Soporte para las reuniones de planificación: Para ello, debe facilitar la recopilación de la información y ponerla a disposición de los usuarios como apoyo a la reunión de planificación. Aspectos como las restricciones, compromisos y causas de no cumplimiento deben ser registradas en una forma simple y que requiera poco tiempo. Además, debe entregarse en la forma de reportes que tengan la información más actualizada para contribuir a la reunión.

c) Distribución efectiva de la información: Entrega de la información actualizada, ya sea a través de reportes imprimibles, formatos web o en la aplicación misma, de tal forma que los responsables puedan acceder fácil y rápidamente a ésta.
d) Interfaz y estructura de datos que resulte familiar: Se debe mantener un orden y estructura de la información, al nivel de detalle requerido por los usuarios, que permita el claro entendimiento de ésta. Además, la interfaz debe ser simple y clara con el fin de facilitar la adopción. Algunos puntos clave mencionados son la similitud con herramientas y reportes ya usados por los responsables.

e) Interacción con sistemas existentes: Muchas empresas utilizan sistemas informáticos para el control y gestión de información. Las herramientas por implementarse deben ser capaces de interactuar con éstas para facilitar su adopción y uso.

f) Registro de información histórica: Para promover el análisis de la evolución de la implementación y resultados, junto a la gestión del conocimiento.

g)Capacidad de sincronizarse y actualizarse sistemáticamente: Para asegurar que los planificadores trabajen siempre con la última información disponible.

h) Permitir la recolección de la información en la fuente: Permitir la toma de información en diversas instancias, sin necesidad de reingresarla posteriormente. Además, permitir acceder a la información capturada en ocasiones posteriores.

i) Integridad: Debe ser sostenible y confiable, lo que implica que debe funcionar sin fallas de sistema ni errores en la información entregada.

Los requerimientos descritos pretenden minimizar tres de las barreras más recurrentes para la adopción de sistemas TI y de la metodología LPS: (1) la inclusión de mecanismos que permitan facilitar la comunicación y difusión de la información facilitará la descentralización de la planificación y control (Ureta, 2018); (2) el uso de herramientas que faciliten el registro, actualización y visualización de la información permite disminuir el tiempo utilizado en la preparación, maximizando el tiempo invertido en la planificación y control (Alarcón y Calderón, 2003); y (3) el registro sistemático de información, y su difusión en la forma de reportes especializados, facilita la gestión del conocimiento y toma de decisiones, lo que genera impactos positivos en el grado de adopción de la metodología (Ureta, 2018).

La necesidad de una obtención rápida de la información para mantener un sistema actualizado y contar con la información en tiempo real o cuando esta sea necesaria, radica en que la información es la base para el proceso de planificación y, además, la obtención de información retroalimentada desde la operación garantiza que se cuente con mejor información en procesos de planificación futuros (Ballard y Howell, 1998). Si dicha retroalimentación no se obtiene a tiempo, se provocará una división entre las decisiones planteadas en base a la planificación y las decisiones que deberán tomarse en terreno, basadas en la información de campo (Ureta, 2018).

3.2 Características de una herramienta TI – LPS

Para tener claro los elementos primordiales que debe poseer una herramienta TI para aplicar LPS, se realizó una encuesta, donde se buscaba conocer cuáles eran los elementos que los profesionales que utilizan a diario LPS, consideran más importantes y que no deben faltar en una herramienta para aplicar LPS. La encuesta consistía, en que cada encuestado debía indicar, en primer lugar, la experiencia profesional en LPS, y, en segundo lugar, el nivel de importancia (1 a 5, donde 5 es muy importante) para una herramienta LPS de 12 elementos, los cuales fueron el resultado final de una lista que se realizó en base a la literatura y el panel de expertos.

Los doce elementos que contemplaba la encuesta se mencionan a continuación:

1. Revisar compromisos semana anterior y tomar compromisos semana que viene, es decir, permitir crear plan semanal.
2. Revisar y establecer restricciones de cada actividad, donde se especifique el responsable, y fecha, y además donde se puedan especificar las causas de no cumplimiento.
3. Crear o permitir ingresar un listado de tareas en un plan intermedio y al plan global del proyecto
4. Entregar indicadores claves (ej: PPC, PCR, etc)
5. Permitir crear listado y frecuencia de causas de no cumplimiento
6. Permite plantear y controlar acciones correctivas a las causas de no cumplimiento
7. Consolidar registros históricos de las restricciones y causas de no cumplimiento que afectan al proyecto
8. Permitir analizar el cumplimiento o no cumplimiento histórico de los responsables de las actividades
9. Restringir el avance de tareas con restricciones y/o su inclusión en los períodos de corto plazo
10. Permitir crear listado de actividades semanales por responsable del proyecto
11. Permitir crear y gestionar ITE
12. Facilitar la gestión visual de la información del proyecto
La encuesta se realizó a 56 profesionales del rubro de la construcción, en donde la mayoría de los encuestados tiene entre 2 a 5 años de experiencia trabajando con Last Planner® System. Los resultados obtenidos fueron analizados con el Relative Importance Index (RII), instrumento validado para medir el nivel de importancia de diversos atributos (Gunduz y Yahya, 2018), en este caso, los elementos de una herramienta LPS. El RII de cada elemento se obtuvo mediante la (Fórmula 1).

\[
RII = \frac{\sum W}{AN}
\]

Donde W es la importancia dada a cada factor por los encuestados (1 a 5), A es la importancia más alta de cada factor, en este caso 5 y N es el total de encuestados, 56 para este análisis. El RII obtenido para cada uno de los elementos que componían la encuesta se muestra en la (Tabla 1).

ELEMENTOS	RII	RII (%)
2. Revisar y establecer restricciones de actividad	0,971	97%
1. Revisar y crear compromisos semanales	0,95	95%
10. Crear actividades semanales por responsable	0,904	90%
4. Calcula indicadores clave PPC, PCR.	0,886	89%
12. Gestión visual	0,889	89%
3. Ingresar actividades a plan intermedio y plan maestro	0,861	86%
5. Crear listado de CNCs	0,854	85%
6. Definir acciones correctivas CNCs	0,821	82%
11. Crear y gestionar ITE	0,821	82%
7. Consolidar registros históricos de restricciones y CNCs	0,804	80%
8. Analizar cumplimiento histórico de los responsables	0,771	77%
9. Restringir inclusión de actividades con restricciones	0,743	74%

En la (Tabla 1) es posible ver que el elemento más importante que debe poseer una herramienta basada en LPS es revisar y establecer restricciones de cada actividad, donde se especifique el responsable, y fecha, y además donde se puedan especificar las causas de no cumplimiento. Sin embargo, es importante destacar que el nivel de importancia dado a cada uno de los factores resulta significativo, ya que todos se encuentran sobre el 70%.

3.3 Softwares existentes de Last Planner® System

En la actualidad existen en el mercado diversos softwares basados en la metodología Last Planner® System, los cuales buscan que para las empresas sea mucho más rápido y eficiente el proceso de implementación de esta metodología de planificación de proyectos. A continuación, se presenta una breve descripción de las diversas herramientas basadas en LPS que se evaluaron en este trabajo. Finalmente se muestra, en la (Tabla 2), una matriz que permite al usuario de cada software identificar cuáles de estos cumplen con los requerimientos y características que a través de este trabajo se han establecido como esenciales para una herramienta TI basada en Last Planner® System.

3.3.1 ProPlanner®

ProPlanner® es un software perteneciente a Ipsum, una empresa chilena nacida el año 2014, con la misión de aportar a la mejora en la productividad de la industria nacional e internacional, buscando lograr un impacto tanto económico como social, aportando así a la creación de verdaderas “smart cities”. Este software se basa en la metodología de trabajo de Last Planner® System, y tiene por objetivo ayudar a gestionar los proyectos de
construcción de manera más rápida y fácil. Consiste en una plataforma web y móvil para la planificación, control y gestión de proyectos de ingeniería y construcción, la cual permite, empoderarse de las cuadrillas a la vez que se levanta información desde terreno. Además, permite ahorrar tiempo de trabajo ya que ProPlanner® genera de manera automática un sin fin de planillas en Microsoft Excel, evitar la pérdida o distorsión de la información pues todo converge en un mismo ecosistema de trabajo.

3.3.2 Impera

Impera es un programa de gestión y control de proyectos con 15 años de experiencia, creado y desarrollado por GEPUC utilizando la vasta experiencia de sus profesionales en el rubro de la construcción. Está basado en la metodología Last Planner®, y tiene por objetivo reducir la variabilidad, mejorar la confiabilidad y aumentar la productividad, incorporando además la transformación digital a los proyectos.

3.3.3 COCOPLAN

COCOPLAN es una herramienta informática de gestión, seguimiento y control de la producción en obra, basada en Last Planner® System que facilita la implementación de la metodología en las empresas. Tiene una interfaz amigable, lo que ayuda a que el aprendizaje sea rápido, permitiendo gestionar y llevar el seguimiento de la planificación general, o el Plan Maestro, actualizado a la semana; de las restricciones detectadas que impiden el flujo de trabajo y de la planificación semanal, comprobando el cumplimiento semanal de las tareas comprometidas por el equipo. Este programa pertenece a la empresa Thinks y ha sido creado por profesionales dedicados a Lean Construction tras años de implementaciones y ha sido utilizado en más de 100 proyectos. La empresa realiza asesorías para la implementación del software y ofrece además una versión de prueba.

3.3.4 Touchplan

Touchplan® es una tecnología de planificación y administración optimizada para equipos de proyectos de construcción que ayuda a implementar Last Planner® System. Este programa está arraigado en la industria de la construcción como una división de MOCA Systems, una firma de desarrollo de software.

3.3.5 V-Planner

VPlanner es una solución integral para la planificación de la producción y es compatible con los flujos de trabajo del Last Planner® System (LPS). Este programa resuelve dos problemas clave al implementar LPS que requieren un esfuerzo significativo por parte del equipo del proyecto. El primero, es la alineación entre los planes de proyecto a corto y largo plazo, y el segundo es la administración constante de los planes a corto plazo para identificar y eliminar las restricciones que pueden afectar la confiabilidad del flujo de trabajo. VPlanner elimina el esfuerzo redundante requerido para alinear el trabajo que se puede hacer en un proyecto con el trabajo que se debe hacer para cada ciclo de planificación del trabajo.

3.3.6 Work Move Plan, Work Plan y DePlan

WorkPlan y DePlan son programas de computadora desarrollados para guiar a las unidades de producción en la creación de planes de trabajo confiables. Nacieron como respuesta a los esfuerzos que se han dado en la construcción y el diseño por implementar Last Planner® System. WorkPlan es un programa independiente que ayuda a desarrollar planes de trabajo semanales, el cual permite exportar información básica de programación. Por otro lado, DePlan combina WorkPlan con la capacidad ADePT para representar modelos de procesos de diseño, realizar análisis de matrices de estructuras de dependencia y desarrollar programas de diseño para los proyectos generales (Choo y Tommelein, 2001). WorkMovePlan, es un programa extensión de WorkPlan, el cual incluye capacidades para la planificación y coordinación distribuida, lo cual permite a las unidades de producción aumentar la confiabilidad de sus planes al compartir el paquete de trabajo, la información de programación y la información de restricciones (Choo y Tommelein, 2001).

3.3.7 BIM 360 Plan

BIM 360 Plan es un software de gestión de proyectos que ayuda a la colaboración entre los diferentes agentes que intervienen. Al ser un software en la nube permite acceder a la información en cualquier lugar, momento y por toda persona del proyecto. Este software de planificación de la producción en la construcción pertenece a la empresa Autodesk, y está basado en Last Planner® System. El software se crea con el fin de adoptar un enfoque móvil para la planificación de la producción, construir planes de trabajo confiables usando los principios de Lean Construction, y para reducir los desperdicios por sobreproducción, exceso de inventario y retrabajo.
Tal como se ve en la (Tabla 2), las plataformas BIM 360 Plan posee 8 de las 12 características identificadas, seguida por Impera que posee 7 y COCOPLAN con 6. Por otro lado, las herramientas ProPlanner®, Touchplan, V-Planner y Work Move Plan poseen solo 5 características. Para finalizar, Work Plan pose 4 y DePlan solo 2 características. Respecto a las características, las que mayormente se repiten son: facilitar la gestión visual de la información del proyecto (en los 9 softwares), revisar compromisos semana anterior y tomar compromisos semana que viene, es decir, permitir crear plan semanal (en 8), revisar y establecer restricciones de cada actividad, donde se especifique el responsable, y fecha, y además donde se puedan especificar las causas de no cumplimiento (en 7), y entregar indicadores claves (en 7). Por otro lado, las herramientas de permite plantear y controlar acciones correctivas a las causas de no cumplimiento y permitir crear y gestionar ITE no se han encontrado en ninguno de los 9 software explorados.

Tabla 2. Matriz comparativa de software basados en LPS (elaboración propia).

CARACTERÍSTICAS	SOFTWARE								
	BIM 360 Plan	Impera	COCOPLAN	ProPlanner®	Touchplan	V-Planner	Work Move Plan	Work Plan	DePlan
1. Revisar compromisos semana anterior y tomar compromisos semana que viene, es decir, permitir crear plan semanal.	x	x	x	x	x	x	x		
2. Revisar y establecer restricciones de cada actividad, donde se especifique el responsable, y fecha, y además donde se puedan especificar las causas de no cumplimiento.	x	x	x	x	x	x	x		
3. Crear o permitir ingresar un listado de tareas en un plan intermedio y ojalá el plan global de trabajo del proyecto	x	x	x	x	x	x	x		
4. Entregar indicadores claves	x	x	x	x	x	x	x		
5. Permitir crear listado y frecuencia de causas de no cumplimiento	x	x	x	x	x	x	x		
6. Permite plantear y controlar acciones correctivas a las causas de no cumplimiento	x	x	x	x	x	x	x		
7. Consolidar registros históricos de las restricciones y causas de no cumplimiento que afectan al proyecto	x	x	x	x	x	x	x		
8. Permitir analizar el cumplimiento o no cumplimiento histórico de los responsables de las actividades	x	x	x	x	x	x	x		
9. Restringir el avance de tareas con restricciones y/o su inclusión en los períodos de corto plazo	x	x	x	x	x	x	x		
10. Permitir crear listado de actividades semanales por responsable del proyecto	x	x	x	x	x	x	x		
11. Permitir crear y gestionar ITE	x	x	x	x	x	x	x		
12. Facilitar la gestión visual de la información del proyecto	x	x	x	x	x	x	x		

Revista Ingeniería de Construcción Vol 35 Nº2 Agosto de 2020 www.ricuc.cl

132
4. Conclusiones

Mediante una revisión de literatura, se lograron identificar los requerimientos de los usuarios para la formulación de herramientas TI basados en Last Planner® System. Por otro lado, mediante un panel de expertos, se identificaron los principales elementos que debe tener un software basado en la metodología LPS. En base a estos, una lista con los principales requerimientos de una herramienta TI basada en LPS fue generada y sometida a validación mediante una encuesta a 56 profesionales, cuyos resultados fueron analizados mediante el Relative Importance Index (RII), obteniendo una priorización de los aspectos planteados. Los resultados muestran que el elemento con mayor nivel de importancia es el de “Revisar y establecer restricciones de cada actividad, donde se especifique el responsable, y fecha, y además donde se puedan especificar las causas de no cumplimiento”. A pesar de ello, todos los aspectos sometidos a consulta han obtenido un RII mayor al 70%, lo que permite concluir que los 12 aspectos identificados son relevantes, y, por tanto, deben incorporarse en una herramienta TI basada en LPS.

Además, se logró identificar 9 software basados en LPS disponibles en el mercado, y analizar si ellos cuentan o no con las 12 características identificadas y validadas previamente. Se concluye que solo 3 de ellos poseen un 50% o más de los aspectos identificados (BIM 360 Plan con 8, Impera con 7 y COCOPLAN con 6), lo que denota una baja incorporación de las características relevantes identificadas, en las principales herramientas TI ofrecidas a la industria. Respecto a las características, “Facilitar la gestión visual de la información del proyecto”, “Revisar compromisos semana anterior y tomar compromisos semana que viene, es decir, permitir crear plan semanal”, “Revisar y establecer restricciones de cada actividad, donde se especifique el responsable, y fecha, y además donde se puedan especificar las causas de no cumplimiento”, y “Entregar indicadores claves” son las características que mayormente se incorporan en los softwares. Por otro lado, las herramientas de “Permite plantear y controlar acciones correctivas a las causas de no cumplimiento” y “Permitir crear y gestionar ITE” no se presentan en ninguno de los 9 software explorados.

Como futuras líneas de investigación, se plantea la exploración y priorización aplicada a en proyectos reales de las 12 características LPS identificadas, de forma de obtener un contraste respecto de la percepción de los profesionales encuestados. Además, se propone considerar la carencia de algunas características en los diferentes softwares estudiados, como oportunidades de mejora para la reformulación y el robustecimiento de las herramientas ofrecidas a la industria.

5. Agradecimientos

Los autores desean agradecer a la Pontificia Universidad Católica de Valparaíso (PUCV-Chile), donde dos de los coautores son investigadores y profesores. Además, al espacio TIMS (Technology, Innovation, Management and Innovation) de la Escuela de Ingeniería Civil de la PUCV, donde se llevó a cabo parte de la investigación. El profesor Herrera agradece a ANID - PCHA/National Doctorate/2018 - 21180884 por financiar la investigación de postgrado. El profesor Muñoz agradece a ANID - PCHA/International Doctorate/2019-72200306 por financiar sus estudios de posgrado.

6. Referencias

Alarcón, L. (2008). Guía para la implementación del sistema del último planificador. GEPUC. Pontificia Universidad Católica de Chile, Santiago.
Alarcón, L.F.; Calderón, R. (2003). A production planning support system for construction projects. In Proc. Eleventh Annual Conference of the International Group for Lean Construction IGLC, 11, 1–13.
Ballard, G. (2000). The Last Planner System of Production Control. Doctoral dissertation, University of Birmingham.
Ballard, G.; Howell, G. (1997). Implementing Lean Construction: Improving Downstream. Lean Construction, 111-125.
Ballard, G.; Howell, G. (1998). Shielding Production: Essential Step in Production Control. Journal of Construction Engineering and management, 124(1), 11-17.
Choo, H.; Tommelein, I. (2001). Requirements and Barriers to Adoption of Last Planner Computer Tools. In Proc. for the 9th Annual Conference of the International Group for Lean Construction, 6–8.
Cisterna, D. (2013). Desarrollo y evaluación de indicadores de control para implementación en software de planificación y control de proyectos basado en metodología Last Planner. Universidad de Chile, Santiago, Chile.
Cuatrecasas, L. (2015). Lean Management: La gestión competitiva por excelencia. Profit Editorial. Barcelona, Spain.
Gil, M. (2017). Cultura Lean: las claves de la mejora continua. Profit Editorial. Barcelona, Spain.
Gunduz, M.; Yaba, A. M. A. (2018). Analysis of project success factors in construction industry. Technological and Economic Development of Economy, 24(1), 67–80. https://doi.org/10.3846/20294913.2015.1074129
Howell, G. (1999). What is Lean Construction. In Proc. for the 7th Annual Conference of the International Group for Lean Construction
Koskela, L. (1992). Application of the new production philosophy to construction. Acta Crystallographica Section D: Biological Crystallography. D63, 1009-1015. https://doi.org/10.1107/S0907444907037857

Koskela, L. (2000). Exploration towards a Production Theory and its Application to Construction. VTT Technical Research Centre of Finland.

Koskela, L.; Dave, B.; Hämäläinen, J.P. (2015). Exploring the recurrent problems in the Last Planner implementation on construction projects. In Proceedings of the Indian Lean Construction Conference (ILCC 2015). Institute for Lean Construction Excellence.

Lagos, C. (2017). Desarrollo e implementación de herramientas para el mejoramiento de la gestión de la información de Last Planner. Universidad Católica de Chile, Santiago, https://doi.org/10.13140/RG.2.2.28835.14889

Lagos, C.I., Herrera, R.F; Alarcón, L.F. (2019). Assessing the Impacts of an IT LPS Support System on Schedule Accomplishment in Construction Projects. Journal of Construction Engineering and Management (ASCE), Vol.145, no. 10, 04019055.

Pons, J. (2014). Introducción a Lean Construction (Marzo 2014).

Rodríguez, A.; Alarcón, L.; Pellicer, E. (2011). La gestión de la obra desde la perspectiva del último planificador, Revista de obras públicas, 158, 1-9.

Sabbatino, E. (2011). Directrices y recomendaciones para una buena implementación del sistema Last Planner en proyectos de edificación en Chile. Universidad de Chile, Santiago, Chile.

Ureta, G. (2018). Impactos en la Aplicación del Sistema Last Planner en Obras de Edificación con el Uso de Tecnologías de la Información. Pontificia Universidad Católica de Chile. Santiago, Chile. https://doi.org/10.13140/RG.2.2.15478.29767

Womack, J. P.; Jones, D. T. (2008). Lean thinking. Banish waste and create wealth in your corporation, ProdPress. com, Wroclaw.