Long-Read Single Molecule Sequencing to Resolve Tandem Gene Copies: The Mst77Y Region on the Drosophila melanogaster Y Chromosome

Flavia J. Krsticevic,* Carlos G. Schrago,* and A. Bernardo Carvalho†,1
*Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, CONICET, Ocampo y Esmeralda, S2000EZR Rosario, Argentina, and †Departamento de Genética, Universidade Federal do Rio de Janeiro, 21941-971, Rio de Janeiro, Brazil
ORCID ID: 0000-0001-8959-6469 (A.B.C.)

ABSTRACT

The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295–307) found 18 Y-linked copies of Mst77F (“Mst77Y”), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction–induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes.

The Mst77F gene of Drosophila melanogaster is essential for male fertility and encodes a component of sperm chromatin (Raja and Renkawitz-Pohl 2005; Barckmann et al. 2013). Russell and Kaiser (1993) found three Y-linked pseudogenes of this gene (Mst77-ψ1, Mst77-ψ2, and Mst77-ψ3) by sequencing testis complementary DNAs. Years later the genome sequence of D. melanogaster became available (Adams et al. 2000), but unfortunately it was not very informative on the Y-linked paralogs of Mst77F (“Mst77Y” hereafter), in part because of the general difficulties of sequencing and annotation of Y-linked genes (Carvalho et al. 2009), and mostly because these genes were severely misassembled (Krsticevic et al. 2010). For example, several Mst77Y genes (most with incomplete sequences) could be found in the then-available genome assembly (and until Release 5), but none of them corresponded to the pseudogenes described by Russell and Kaiser (Krsticevic et al. 2010). Given the misassemblies, Krsticevic et al. (2010) used a de novo sequencing approach, polymerase chain reaction (PCR) of Mst77Y-like genes followed by cloning and sequencing, and found 18 Mst77Y genes. Because the DNA came from an inbred strain (the same used in genome sequencing), each different gene sequence...
variant was inferred to correspond to a different gene. To circumvent PCR-induced artifacts Krsticvic et al. (2010) sequenced more than 100 clones and only picked gene sequence variants occurring twice or more. They also used two other methods that yielded similar estimates of the number of Mst77Y genes: restriction enzyme digestion plus band quantification (16 copies) and computational analysis of the whole-genome sequencing traces (14 copies). Ten Mst77Y genes (named as Mst77Y-1, Mst77Y-2, Mst77Y-3, Mst77Y-4, Mst77Y-5, Mst77Y-7, Mst77Y-8, Mst77Y-9, Mst77Y-12, and Mst77Y-13) have intact open reading frames, and several of them are expressed and correctly spliced in testis, accounting for ~20% of the functional Mst77F-like mRNA. Finally, purifying selection was detected, mostly in the potentially functional copies. Hence, some Mst77Y genes are functional genes (Krsticvic et al. 2010).

Using Y-chromosome deletions, Russell and Kaiser (1993) broadly mapped the Mst77Y genes to h18-h19 heterochromatic bands, whereas Krsticvic et al. (2010) showed that the duplicated region (or at least what survived from it) spans ~3.4 kb of the 3L chromosome, encompassing the whole Mst77F gene, and pieces of two neighboring genes (two exons of Pka-R1, and the 5’-UTR of CG3618). The current D. melanogaster genome assembly (Release 6; Hoskins et al. 2015) incorporated the data from Krsticvic et al. (2010) and, hence, the 18 Mst77Y genes appear there, although with several mismatches. However, the genomic structure and context of the Mst77Y region, its length on the Y chromosome, and the possible existence of additional copies of Mst77Y genes remained unknown. Long-read technologies, which are being developed in the last few years (Clarke et al. 2009; Eid et al. 2009; Voskoboinik et al. 2013), are specially suited for resolving repetitive regions because repeats only create assembly problems when their length exceeds the read length, i.e., as read length grows the chance of collapsing paralogous copies drops. For example, if each Y-translocated 3.4-kb copy of chromosome 3L is flanked by a small amount of single-copy DNA, an assembly with read length greater than ~4 kb should not collapse different copies (as happened with the Sanger-based assembly) even if they are 100% identical. The recent availability of two long-read assemblies of D. melanogaster (PacBio: Berlin et al. 2014; Kim et al. 2014; Illumina Synthetic Long-Reads: McCoy et al. 2014) prompted us to reinvestigate this challenging region of the Y chromosome.

MATERIALS AND METHODS

D. melanogaster assemblies

Illumina Synthetic Long-Reads assembly: As detailed in McCoy et al. (2014), DNA from mixed males and females of the reference genome strain IS01 (5; cn, bw, sp; the same used in the Drosophila Genome Project) was sequenced by use of the Illumina TruSeq Synthetic Long-Reads technology and assembled with the Celera Assembler. This assembly (“SLR”) was downloaded from NCBI (accession JAIQD00000001).

PacBio assemblies: DNA from adult males of the ISO1 strain of D. melanogaster was sequenced with PacBio technology (Kim et al. 2014); the reads were assembled with the Celera Assembler using the recently developed MHAP algorithm as the overlapper (Berlin et al. 2014). This assembly (“MHAP”) was downloaded from NCBI (accession JSAE00000001). We also examined two preliminary assemblies of the same reads: PBcR used the standard PBcR pipeline (instead of MHAP) and the Celera Assembler (http://cbcb.umd.edu/software/pbc/dmel.html), whereas FALCON used PacBio’s in house FALCON assembler (http://blog.pacifichomesciences.com/2014/01/data-release-preliminary-de-novo.html). These assemblies were downloaded from http://cbcb.umd.edu/software/pbcr/dmel_cons_asm.tar.gz and http://datasets.pacb.com/s3.amazonaws.com/2014/Drosophila/reads/dmel_FALCON_diploid_assembly.tgz. The Celera Assembler usually produces a main assembly and another set of scaffolds, called “degenerate,” that contains less-reliable sequences (Hoskins et al. 2002). Because we have found before that degenerate scaffolds contain pieces of Y-linked genes (Krsticvic et al. 2010) we used the two sets of scaffolds while searching for the Mst77Y genes in the MHAP and PBcR assemblies. PacBio reads, used to check the assemblies, were downloaded from http://gembox.cbcb.umd.edu/mhap/raw/dmel_filtered.fastq.gz.

Sanger assembly: As a comparison reference for the aforementioned long-read assemblies, we used the WGS3 assembly, which is the best unfinished Sanger assembly of the D. melanogaster genome (Hoskins et al. 2002). We have not used Release 6 because it incorporated the data from Krsticvic et al. (2010) (Hoskins et al. 2015) and hence cannot be used as an independent reference. WGS3 was assembled with the Celera assembler and hence include a set of degenerate scaffolds (called “armExtra”) . It was downloaded from ftp://ftp.fruitfly.org/pub/download/compressed/WGS3_het_genomic_dmel_RELEASE3.0.FASTA.gz.

Annotation of the Mst77Y region in the long-reads assemblies

All BLAST searches were run locally in a Linux server. The sequences of the 18 Mst77Y genes (Krsticvic et al. 2010) were used in BLASTN searches for the identification and annotation of scaffolds containing the Mst77Y genes in the different long-read assemblies. Note that the sequences of Mst77Y genes deposited in 2010 (GQ868243–GQ868260) correspond to their coding sequences and hence omit their small intron. Different Mst77Y genes may be 99.5% identical, and to better identify them, we used here the gene sequence (i.e., with the intron; accessions KPE684500–KPE684517) instead of the coding sequences. We also annotated the misassembled regions (Misassembly detection using Illumina reads section) and transposable elements (with RepeatMasker; Smit et al. 1996–2010). We then inspected the Mst77Y region, searching for missing and new Mst77Y genes, misassemblies, other genes, etc., with all information displayed with the IGV browser (Thorvaldsdottir et al. 2013).

Misassembly detection using Illumina reads

Casey Bergman et al. generated a large dataset of 100 bp paired-end Illumina from ISO1 adult males and kindly made it available at http://bergman.smith.man.ac.uk/data/genomes/2057_Illumina.tgz. We used it for misassembly detection in the long-read assemblies, employing two different approaches. First, we inspected in the IGV browser the bwa-generated alignment (Li and Durbin 2009), searching for regions of zero coverage (i.e., where Illumina reads failed to align) or consistent mismatches. Zero-coverage regions also were detected and quantified using the bedtools suite of programs (Quinlan and Hall 2010). Second, we used the YGS program, which decomposes both the assembled genome and the Illumina reads in k-mers and compare the two lists, searching the genome for k-mers that are not matched by the Illumina-derived k-mers (Carvalho and Clark 2013). Given the high coverage of the Casey Bergman’s Illumina data (~90x for the autosomes; ~45x for the sex-chromosomes), its source (males from the same ISO1 strain used in the assembly), and the inherently low error rate of Illumina
sequencing, genomic k-mers that are unmatched by the Illumina reads almost certainly are due to assembly errors (or to new mutations in the ISO1 strain). We displayed the location of the unmatched k-mers in IGV as well. The two approaches of misassembly detection are complementary, as they do not always flag the same regions (Supporting Information, Figure S1). The parameters and scripts used with the bwa, bedtools, YGS, and other programs are available with the authors upon request.

RESULTS AND DISCUSSION

Synthetic Long Reads assembly

Table 1 summarizes the analysis of Mst77Y genes in the two main long read assemblies (SLR and MHAP), as well as in two preliminary PacBio assemblies (PBcR and FALCON), and in the Sanger WGS3 assembly. The SLR assembly recovered more Mst77Y sequences than the Sanger-based WGS3 assembly and most of them are error-free, but still is incomplete and fragmented. The scaffolds are small (all less than 15 kb), and hence provide little information on the genomic structure and context of the Mst77Y region. These problems most likely are a direct consequence of this technology. Synthetic long reads are made by sequencing bar-coded ~10 kb genomic fragments with standard Illumina short-reads, performing a local assembly of these 10-kb fragments into synthetic long reads, and then feeding them into a standard assembler (Voskoboynik et al. 2013; McCoy et al. 2014). The method works well with repetitive DNA as long as there is only one copy of a repeat in each 10-kb fragment, i.e., the repeats should be interspersed. Indeed, SLR has been shown to perform well in reconstructing transposable elements (McCoy et al. 2014), which are the prototypical interspersed repeat. Tandem repeats, however, are expected to be misassembled and, as we found with the PacBio assembly, this is precisely the case of the Mst77Y region: 10-kb genomic fragments frequently will contain two or three highly similar Mst77Y genes. It is worth noting also that several biologically interesting and poorly known regions of the Drosophila genome, such as other recently duplicated genes, the histone and rDNA clusters, and the centromeres, have a tandem repeat organization, and in these cases synthetic long reads are predicted to have limited utility.

MHAP assembly and description of the Mst77Y region

The MHAP assembly recovered 18 Mst77Y genes in a single contig (accession JSAE01000257; Table 1), without any mismatch with the sequences described by Krsticevic et al. (2010). Given this, and also the absence of misassembly signs in the intergenic regions [Search for misassemblies in the Mst77Y region (PacBio assemblies) section], we conclude that MHAP is at least a fairly accurate reconstruction of the Mst77Y region, and used it to analyze this region (the two preliminary PacBio assemblies will be commented in a next section).

As summarized in Figure 1, the Mst77Y genes are located in tandem over 96 kb, with the same orientation. Some genes are present in identical multiple copies: Mst77Y-4 and Mst77Y-12 have three copies, whereas Mst77Y-6a and Mst77Y-7 have two copies. As Krsticevic et al. (2010) noted, the “gene sequence variant counting” method they used could not detect identical copies, so their discovery is somewhat expected. On the other hand, we could not find six genes described in Krsticevic et al. (2010): Mst77Y-2, Mst77Y-5b, Mst77Y-8, Mst77Y-9, Mst77Y-11b, and Mst77Y-14b. These missing genes may be due a misassembly in MHAP or to an experimental artifact in Krsticevic et al. (2010). Two lines of evidence strongly suggest that the second hypothesis is true. First, these six genes also are missing in the other assemblies listed in Table 1. Second, supposing that they were misassembled in MHAP, they must be present in the PacBio reads, because of their high coverage of the genome (~90x for the autosomes, 45x for the sex chromosomes). Therefore, we aligned with bwa these raw reads to the 18 Mst77Y genes described by Krsticevic et al. (2010), plus the autosomal Mst77Y, and measured the coverage of each gene. The result (Figure 2) is a stunning confirmation of the findings reported above: the six missing genes are absent from the reads (their coverage is essentially zero). Furthermore, the multiple copy Mst77Y genes have a much greater coverage, similar to the autosomal (hence, diploid) Mst77Y, whereas the remaining Mst77Y genes have the lower coverage expected for single-copy Y-linked genes (hence, haploid). We have not carried an analogous test using Illumina reads because they are too short to be unambiguously mapped to each Mst77Y gene.

It is worth discussing the origin of these six artificial genes. Krsticevic et al. (2010) sequenced 115 clones of PCR products of the Mst77Y genes. To guard against PCR-induced errors, which would mimic additional Mst77Y genes, the authors did two separate PCR-cloning experiments (one with Taq and one with a Pfu low-error polymerase) and only considered gene sequence variants occurring at least twice. It turns out that this is insufficient: if PCR-induced “mutations” occur in early cycles they can attain rather high frequencies, and this is the likely explanation for the these six genes (see also Schenk et al. 2006). Interestingly, the six genes do not contain any new substitution (as would be expected from point mutations); rather, they all seem to originate from recombination among the other Mst77Y genes. For example, the Mst77Y-8 sequence can be generated by pasting the 5’ of Mst77Y-4 with the 3’ of Mst77Y-16b, whereas the opposite combination (5’ of Mst77Y-16b with the 3’ of Mst77Y-4) would generate Mst77Y-14b. It has been suggested that Pfu generates more recombination artifacts than Taq (Zylstra et al. 1998), and indeed all six artificial Mst77Y genes came from the PCR-cloning experiment that used this polymerase [see Table 1 of (Krsticevic et al. 2010)]. We suggest that readers planning this type of experiment should avoid Pfu, and strictly follow the recommendations of Schenk et al. (2006).

Besides the Mst77Y genes, the 96-kb region contains pieces of two flanking genes (the first two exons of Pka-R1, and the 5’-UTR of CG3618; Mst77F is located inside an intron of Pka-R1), in the same order which they occur in 3L, and also many transposable elements (mostly retroelements), which account for 48% of the region.

We should note that it was just a coincidence that the number of Mst77Y genes (18 genes) remained the same in Krsticevic et al. (2010) and in the present paper; six genes were discarded as PCR artifacts (Mst77Y-2, Mst77Y-5b, Mst77Y-8, Mst77Y-9, Mst77Y-11b, and Mst77Y-14b), and six

| Table 1 Mst77Y genes in different assemblies of the D. melanogaster genome |

Assembly	Mst77Y Genes Found	Perfect Matchesa	With Errors	Number of Scaffolds	Scaffold Size, kb
SLR	10	8	2	7	3–13
MHAP	18	18	—	1	747
PBcR	20	17	3	2	20; 177
FALCON	18	11	7	1	619
WGS3	6	2	4	6	<2

a 100% identical over the entire length to some gene described in Krsticevic et al. (2010).
other genes were added as newly detected duplicates (Mst77Y-4b, Mst77Y-4c, Mst77Y-12b, Mst77Y-12c, Mst77Y-6db, and Mst77Y-7b). We followed *Drosophila*’s standard nomenclature and named the duplicated genes as Mst77Y-4a, Mst77Y-4b, Mst77Y-4c, and so forth.

Search for misassemblies in the Mst77Y region (PacBio assemblies)

Given its repeat-rich composition and the lack of a reference sequence for most of its length (the exception being the Mst77Y genes), it would be desirable to have some independent validation of the MHAP assembly of the Mst77Y region. As described in the section Material and Methods, we used Illumina reads of the same strain for this purpose. Because the focus of the present paper is the Mst77Y region (i.e., the 96 kb located in coordinates 85040–180612 of contig JSAE01000257), we first analyzed it; the rest of the 747 kb contig will be dealt with in the next section.

We found just two small errors in the Mst77Y region: a T insertion at 85,619 (in a run of five T) and C/T substitution at position 110,630, both in intergenic regions (Figure S1). Thus, the assembly of this region seems to be essentially perfect. This conclusion is strengthened by the analysis of the two preliminary PacBio assemblies (PBcR and FALCON), for we could detect many misassemblies there (Table 2 and Figure 3). In other words, the apparent absence of misassemblies in MHAP is not caused by a lack of power to detect them. Some misassemblies could have lead to wrong conclusions in biologically relevant issues: the first PacBio assembly we examined (PBcR) contain what seems to be a new *Mst77Y* gene, characterized by a deletion in the S′ end; the Illumina reads shows that it was a misassembly (Figure 3). Given the data discussed here (Table 2) and in the previous section (Figure 2), we conclude that the MHAP assembly allows for at least a fairly accurate description of the Mst77Y region, and that it is unlikely that major amendments will be needed in the future.

Content of the whole contig JSAE01000257

The MHAP assembly (and also FALCON) extends some 550 kb to the right of the Mst77Y region, allowing for the annotation and description of its surroundings. We found that part of this region has been previously sequenced and studied by Villasante *et al.*, and we direct the reader to their papers for detailed analyses (Agudo *et al.* 1999; Abad *et al.* 2004; Méndez-Lago *et al.* 2009). We will make here only a brief comparison of the shared sequences and point to the regions not sequenced in their study. Before doing this, it is important to note that there are clear signs of misassembly in PacBio assemblies of this broader region (Figure S1 and Table S1), so the results should be taken with a grain of salt. The main potential problem for the level of analysis we are doing in this broad region is not the collapsing of some repeat or some single-base error but rather a chimeric contig that would misjoin sequences that are physically very distant (e.g., from other chromosome). We cannot exclude this possibility of chimerism, given the misassembly signs and the lack of independent long-range data (e.g., sequenced bacterial artificial chromosome (BACs)) for most of the length of contig JSAE01000257. On the other hand, the broad sequence composition we found in the whole contig JSAE01000257 is remarkably similar to preliminary data from a tiling path of BACs of this region (this section), which suggests that there are no major assembly errors.

Abad *et al.* (2004; see their Figure 1) presented a tiling path of BACs, presumably not sequenced, that would span the whole contig JSAE01000257. Méndez-Lago *et al.* (2009) sequenced twice one of these BACs (BACR26J21, from the ISO1 strain; accessions FM992409 and CU076040), which spans positions 280–445 kb of contig JSAE01000257. Figure S2 shows the dot plot alignment between contig JSAE01000257 and BACR26J21. The general agreement is very good, and no major misassembly such as chimeric regions was found in contig JSAE01000257. The largest discrepancy with BACR26J21 is in a region of contig JSAE01000257 (279–294 kb), which includes a zero Illumina coverage region, so the PacBio MHAP assembly almost certainly is wrong here (the alternative explanation would be mutation in the reference strain). As Méndez-Lago *et al.* (2009) described, this region is mostly composed of decayed telomeric transposons Het-A and TART, and the 18HT satellite, which derived from them.

Zooming out from the region covered by BACR26J21, we can recognize four broad “domains” in the whole sequence of contig JSAE01000257 (see also Figure 1 of Abad *et al.* 2004). The Mst77Y region detailed in the previous section extends from 85 to 181 kb. To
Table 2 Assembly errors of PacBio assemblies in the Mst77Y region

Assembly	Contig	Coordinates	Unmatched k-mers	Regions With Zero Coverage	Total Base Pairs With Zero Coverage
MHAP	JSAE01000257	85040–180612	1	0	0
PBcR	0_176540	87315–173699	9	1	245
FALCON	0032_03	436429–531977	36	11	138

One of the most interesting findings in this section is that the Pp1-Y2 gene is located in contig JSAE01000257 (coordinates 565977–566918). This is a functional single-copy gene of the Y chromosome, which encodes a testis-specific protein phosphatase. It was described by Carvalho et al. (2001), who mapped it to the tip of the long arm of the Y (using the standard marked Y chromosome strains; Kennison 1981), whereas Abad, Villasante et al. have mapped it to h18 region (with BAC fluorescent in situ hybridization; Abad et al. 2004). Although the definitive experiment—fluorescent in situ hybridization using a Pp1-Y2 probe—has yet to be performed, it seems reasonable to place this gene at h18; the results from Carvalho et al. (2001) would be explained by undetected rearrangements occurring during the obtainment of marked Y chromosome strains.

Evolutionary analysis of the Mst77Y genes

Krsticevic et al. (2010; see their Figure 4) found four lines of evidence that strengthened the case that some Mst77Y are functional genes. Test 1 showed that as a whole (i.e., combining potentially functional and non-functional ones) the Mst77Y genes evolved under purifying selection (P = 0.027); Test 2 showed that most (or all) purifying selection occurred in the potentially functional Mst77Y (P = 0.015); Test 3 found no evidence of purifying selection in non-functional Mst77Y (P = 0.54); and Test 4 showed that the potentially functional Mst77Y' evolved under purifying selection (P = 0.017). Given that six of the 18 genes are artifacts (namely, Mst77Y-2, Mst77Y-5b, Mst77Y-8, Mst77Y-9, Mst77Y-11b, and Mst77Y-14b), it is desirable to repeat the aforementioned evolutionary analyses removing these six genes. When we did this (again using the HyPhy package; Pond et al. 2005), we found that Test 1 and Test 3 yield the same qualitative result (P = 0.046 and P = 0.246, respectively), but Test 2 and Test 4 are no longer statistically significant (P = 0.210 and P = 0.091, respectively). Table S2 detailed the updated tests; a comparison with Table S2 from Krsticevic et al. 2010 shows that the estimated parameters are similar. For example, the selective constraint ω of the potentially functional Mst77Y genes (ω = 0.54) still suggests stronger purifying selection compared with the nonfunctional ones (ω = 0.63), but the difference is no longer statistically significant. This pattern suggests that removal of the six spurious sequences reduced the statistical power of the tests. Indeed, simulations show that the power of Test 1 decreased from 89 to 39% and that a similar power reduction occurred with the other tests (File S1 and Table S4). Besides differences in statistical power, another factor that may explain the difference between the 2010 and the present study is that the six removed sequences are recombinants, and it is known that recombination interferes with likelihood methods for detecting selection pressure on codon alignments (Anisimova et al. 2003). It is worth to note that even after the removal of the six artificial sequences there still is statistically significant evidence for recombination, as evidenced by the GARD method (P < 10⁻³; Pond et al. 2006). These recombination events, possibly due to gene conversion or transposable elements activity, may further reduce the power to detect purifying selection on the potentially functional Mst77Y genes.

We also analyzed our data using the recently published RELAX method, which has several advantages over the standard approaches for detecting relaxed selection (Wertheim et al. 2015). The results are shown in Table S3; although the face value of the “selection intensity”
parameter k suggest that there is some selection acting on $Mst77Y$ genes as a whole ($k = 0.549$, instead of 0, as expected for strict neutrality), and that the selection intensity is stronger in the potentially functional $Mst77Y$ genes ($k = 0.686$), compared with the nonfunctional ones ($k = 0.303$), none of the effects is statistically significant.

We conclude from the aforementioned analyses that although there is some indication of purifying selection on $Mst77Y$ genes, the evidence is not conclusive. Hence the results of the molecular evolutionary analysis are less compelling than those reported in Krsticevic et al. (2010). However, the main evidence that the "potentially functional" $Mst77Y$ genes are functional genes is unchanged: they account for ~20% of the $Mst77Y$-like mRNA.

ACKNOWLEDGMENTS

We thank I. Koerich, B. Lemos, E. Dupim, G. Nassar, L. Arariepe, F. Vigoder, M. Vibranovski, and two anonymous reviewers for valuable comments in the manuscript, and S. K. Pond for calling our attention to the RELAX method. This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Coordenação de Aperfeiçoamento do Pessoal de Ensino Superior-CAPES, FAPERJ, and National Institutes of Health grant R01 GM064590.

LITERATURE CITED

Abad, J. P., B. de Pablos, M. Agudo, I. Molina, G. Giovinazzo et al., 2004 Genomic and cytological analysis of the Y chromosome of *Drosophila melanogaster*: telomere-derived sequences at internal regions. Chromosoma 113: 295–304.

Adams, M. D., S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne et al., 2000 The genome sequence of *Drosophila melanogaster*. Science 287: 2185–2195.

Agudo, M., A. Losada, J. P. Abad, S. Pimpinelli, P. Ripoll et al., 1999 Centromeres from telomeres? The centromeric region of the Y chromosome of *Drosophila melanogaster* contains a tandem array of telomeric HeT-A and TART-related sequences. Nucleic Acids Res. 27: 3318–3324.

Anisimoto, M., R. Nielson, and Z. Yang, 2003 Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164: 1229–1236.

Barckmann, B., X. Chen, S. Kaiser, S. Jayaramaiah-Raja, C. Rathke et al., 2013 Three levels of regulation lead to protamine and *Mst77F* expression in *Drosophila*. Dev. Biol. 377: 33–45.

Berlin, K., S. Koren, C.-S. Chin, J. Drake, J. M. Landolin et al., 2015 Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. (in press).

Carvalho, A. B., and A. G. Clark, 2013 Efficient identification of Y chromosome sequences in the human and *Drosophila* genomes. Genome Res. 23: 1894–1907.

Carvalho, A. B., B. A. Dobos, M. D. Vibranovski, and A. G. Clark, 2001 Identification of five new genes on the Y chromosome of *Drosophila melanogaster*. Proc. Natl. Acad. Sci. USA 98: 13225–13230.

Carvalho, A. B., L. B. Koerich, and A. G. Clark, 2009 Origin and evolution of Y chromosomes: *Drosophila* tales. Trends Genet. 25: 270–277.

Clarke, J., H. C. Wu, L. Jayasinghe, A. Patel, S. Reid et al., 2009 Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4: 265–270.

Eid, J., A. Fehr, J. Gray, K. Luong, J. Lyle et al., 2009 Real-time DNA sequencing from single polymerase molecules. Science 323: 133–138.

Gatti, M., and S. Pimpinelli, 1983 Cytological and genetic analysis of the Y-chromosome of *Drosophila melanogaster*. 1. Organization of the fertility factors. Chromosoma 88: 349–373.

Hoskins, R., C. Smith, J. Carlson, A. B. Carvalho, A. Halpern et al., 2002 Heterochromatic sequences in a *Drosophila* whole-genome shotgun assembly. Genome Biol. 3: research0088.0081–0085.0016.

Hoskins, R. A., J. W. Carlson, K. H. Wan, S. Park, I. Mendez et al., 2015 The Release 6 reference sequence of the *Drosophila melanogaster* genome. Genome Res. 25: 445–458.

Kennison, J. A., 1981 The genetic and cytological organization of the Y-chromosome of *Drosophila melanogaster*. Genetics 98: 529–548.

Kim, K. E., P. Peluso, P. Babayan, P. J. Yeado, C. Yu et al., 2014 Long-read, whole-genome shotgun sequence data for five model organisms. Scientific Data 1: 140045.

Krsticevic, F. J., H. L. Santos, S. Januario, C. G. Schrago, and A. B. Carvalho, 2010 Functional copies of the *Mst77F* gene on the Y chromosome of *Drosophila melanogaster*. Genetics 184: 295–307.

Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

McCoy, R. C., R. W. Taylor, T. A. Blaukamp, J. L. Kelley, M. Kertesz et al., 2014 Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9: e106689.

Méndez-Lago, M., J. Wild, S. L. Whitehead, A. Tracey, B. d. Pablos et al., 2009 Novel sequencing strategy for repetitive DNA in a *Drosophila* BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere. Nucleic Acids Res. 37: 2264–2273.

Pond, S. L. K., S. D. Frost, and S. V. Muse, 2005 HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676–679.

Pond, S. L. K., D. Posada, M. B. Gravenor, C. H. Woelk, and S. D. W. Frost, 2006 Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 23: 1891–1901.

Quinlan, A. R., and I. M. Hall, 2010 BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842.

Raja, S. J., and R. Renkawitz-Pohl, 2005 Replacement by *Drosophila melanogaster* protamines and *Mst77F* of histones during chromatin condensation in late spermatids and role of sodas in the removal of these proteins from the male pronucleus. Mol. Cell. Biol. 25: 6165–6177.

Russell, S. R. H., and K. Kaiser, 1993 *Drosophila melanogaster* male germ line-specific transcripts with autosomal and Y-linked genes. Genetics 134: 293–308.

Schenk, M. F., L. J. Gilissen, G. D. Esselink, and M. J. Smulders, 2006 Seven different genes encode a diverse mixture of isoforms of Bet v 1, the major birch pollen allergen. BMC Genomics 7: 679.

Smit, A., R. Hubley, and P. Green, 1996–2010 RepeatMasker Open-3.0. Available at: http://www. repeatmasker. org. Accessed: December 20, 2014.

Thorvaldsdottir, H., J. T. Robinson, and J. P. Mesirov, 2013 Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14: 178–192.

Voskoboynik, A., N. F. Neff, D. Sahoo, A. M. Newman, D. Pushkarev et al., 2013 The genome sequence of the colonial chordate, *Botryllus schlosseri*. eLife 2: e00569.

Wertheim, J. O., B. Murrell, M. D. Smith, S. L. K. Pond, and K. Scheffler, 2015 RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32: 820–832.

Zylstra, P., H. S. Rothenfluh, G. F. Weiller, R. V. Blanden, and E. J. Steele, 1998 PCR amplification of murine immunoglobulin germline V genes: strategies for minimization of recombination artefacts. Immunol. Cell Biol. 76: 395–405.

Communicating editor: S. Celniker