PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCa) and novel (PKCd) subfamilies. We discuss how unique structural features of PKCa and PKCd underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCa and PKCd can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.

PKC was discovered nearly 45 years ago based on its unique dependence on lipids and Ca\(^{2+}\) for activation (1, 2). Further studies revealed 10 PKC isoforms that are founding members of the larger AGC (collective name for cAMP-dependent PKA, cGMP-dependent protein kinase G, and PKJ) superfamily of protein kinases (3–5). PKC subfamilies have been defined based on specific requirements for activation by lipids and Ca\(^{2+}\). These subfamilies include conventional PKCs (cPKCs; PKCa, PKCb, and PKCd), which require diacylglycerol (DAG) and Ca\(^{2+}\) for activation, novel PKCs (nPKCs; PKCd, PKCe, PKC\(\delta\), and PKC\(\theta\)), which are Ca\(^{2+}\) independent, and atypical PKCs (aPKCs and PKCd), which do not require DAG or Ca\(^{2+}\) and are activated by protein–protein interactions (6). As many isoforms are ubiquitously expressed, targeting these kinases in disease has been daunting due in part to concerns about specificity and redundancy. This is the first review we are aware of that compares activation and function of representative isoforms of the cPKC (PKCa) and nPKC (PKCd) subfamilies. Our goal is to highlight novel and unique aspects of the regulation and signaling functions of these isoforms to encourage their exploration as drug targets in cancer and other diseases.

PKC isoforms participate in “outside–in” signaling by transducing signals from a variety of cell surface receptors including receptor tyrosine kinases (RTKs) and G protein–coupled receptors. Indeed, the identification of lipid-regulated kinases such as PKC was a turning point that linked hydrolysis of membrane inositol lipids, described decades earlier, to regulation of intracellular functions (7, 8). These receptors, as well as other physiologic activators of PKC, were shown to stimulate breakdown of membrane phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) to generate the signaling lipids DAG and inositol 3-phosphate (IP\(_3\)) (9) (Fig. 1). DAG tethers PKC to the membrane, whereas IP\(_3\) induces release of Ca\(^{2+}\) from the endoplasmic reticulum (ER). Interaction of PKCs with the membrane induces conformational changes that lead to release of autoinhibition and activation. Thus, membrane localization is considered the hallmark of PKC activation (10) (see later and Refs. (4, 11) for a detailed description of PKC activation events).

All PKC isoforms have highly conserved C-terminal catalytic domains and similar N-terminal regulatory domains (4). However, divergence in critical motifs results in differences in cofactor requirements, mode of membrane recruitment, mechanisms of noncanonical activation, spatial distribution, desensitization, and protein–protein interactions. These differences underly the divergent functions that have been ascribed to PKC subfamilies and to isozymes within subfamilies (Fig. 2A). Later, we will discuss the unique structural features and known functions of PKCa (conventional subfamily) and PKCd (novel subfamily) in diverse biological processes, highlighting contexts in which these kinases have contrasting and similar roles.

Distinct structural features of PKCa and PKCd

Unique structural features and modes of activation

The N-terminal domain of cPKC and nPKC isoforms includes a tandem repeat C1 domain comprising C1a and C1b subdomains that bind DAG, albeit with varying affinity, a membrane lipid–binding C2 domain, and a pseudosubstrate motif that blocks access to the substrate-binding pocket (12). However, PKCs differ in the nature and arrangement of these domains. For example, in PKCa, the C2 domain lies between the C1 and catalytic domains, whereas in PKCd, the C2 domain lies between the N terminus and the C1 domain (Fig. 2A). Elegant studies by several groups have revealed differences in the maturation, activation, and downregulation (inactivation) of PKCa and PKCd that are thought to contribute to specification of function.
Kinase phosphorylation and maturation

Many AGC kinases share a requirement for serine/threonine phosphorylation at three conserved sites in the C-terminal domain for activity (3, 13). In PKCs, constitutive phosphorylation in the activation loop by the PIP₃-regulated kinase, 3-phosphoinositide-dependent protein kinase 1, transphosphorylation at the “turn” motif, typically by mammalian target of rapamycin complex 2 (mTORC2), and autophosphorylation at the hydrophobic motif (13–15) is required for catalytic competence and protection from degradation. It is important to emphasize that, in contrast to other AGC kinases that are acutely activated by phosphorylation (e.g., Akt (13)), phosphorylation of the three “priming” sites is seen in inactive PKC (Fig. 2, B and C, step 2) and is, therefore, not indicative of PKC activation per se. Instead, membrane localization and substrate phosphorylation are the only reliable indicators of kinase activation. Comparison of the regulation and function of PKCa and PKCd priming phosphorylation has revealed two important differences. First, unlike PKCa, which is dependent on activation loop phosphorylation for activity (14), the T505A activation loop mutant of PKCd is still partially active (16). This difference may have consequences for modulation of kinase activity as well as kinase degradation. Second, a recent study from the Newton laboratory has identified a fourth priming phosphorylation motif, the mTOR interaction motif, in some mTORC2–regulated AGC kinases, including PKCa (17, 18). Phosphorylation of this motif (S631 in PKCa) by the mTORC2 complex allosterically regulates PIP₃-regulated kinase, 3-phosphoinositide-dependent protein kinase 1 binding, activation loop phosphorylation, and autophosphorylation of the hydrophobic motif. Curiously, select nPKC isoforms, including PKCd, are mTORC2 independent for priming and lack this conserved threonine (19). Additional serine and threonine phosphorylation events may fine-tune activation of PKCd in response to specific signals (20). As discussed later, tyrosine phosphorylation may in addition play a role in modulating the activity of PKCa and PKCd.

PKCa and PKCd have unique C1, C2, and phosphotyrosine-binding domains

Divergence in the C2 and C1 domains of PKCa and PKCd accounts for important differences in Ca²⁺ dependence and mechanism of activation (Fig. 2). C2 domains are evolutionary conserved lipid-and protein-binding motifs (21). PKCa has a topology I (S family) C2 domain that requires Ca²⁺ for lipid binding (21, 22). Since membrane binding of the C2 domain is required for membrane recruitment of PKCa by DAG, PKCa activation is Ca²⁺ dependent. In contrast, PKCd has a topology II (P family) C2 domain that lacks the critical structural requirements for Ca²⁺ binding (21, 22); thus, PKCd activation is Ca²⁺ independent (23, 24). The C2 domain of PKCd also differs from that of PKCa in its ability to mediate protein–protein interactions (22–24). Benes et al. (22) have identified a novel high-affinity phosphotyrosine-binding (PTB) motif in the PKCd C2 domain, which is not found in PKCa or other PKC isoforms. This PTB domain is distinct from both Src-homology 2 and previously described PTB domains in that it interacts with residues in the phosphorylated peptide both C-terminal and N-terminal to pTyr (22). Binding of the C2 PTB domain to phosphotyrosine-containing proteins in trans could drive the formation of PKCd-specific signaling modules, whereas cis interactions could contribute to regulation of PKCd by binding to tyrosine-phosphorylated residues within the kinase domain, for example, as induced by hydrogen peroxide (25).

cPKC and nPKC C1α and C1b domains differ in their affinity for DAG and play unique roles in isoform activation (26). In PKCa, the C1α domain has a higher affinity for DAG compared with the C1b domain (26). However, the C1α domain is masked in unstimulated PKCa by interaction with the C2 and catalytic domains and is only released following Ca²⁺-dependent interaction of the C2 domain with anionic lipids in the plasma membrane (27–31) (Fig. 2B). Thus, activation of PKCa requires a multistep process in which the C2 domain initially interacts with the membrane, with subsequent
release of the C1a domain for membrane penetration and DAG binding (30–32). Notably, although the C2 domain of PKCα has low intrinsic affinity for Ca\(^{2+}\), its Ca\(^{2+}\) binding is enhanced by PIP\(_2\), phosphatidyserine, and DAG in the plasma membrane, allowing for enzyme activation by DAG even at subphysiological intracellular Ca\(^{2+}\) levels (21, 29, 33–35).

Nonetheless, while activation of PKCα by DAG does not require release of intracellular calcium stores, elevated intracellular Ca\(^{2+}\) concentrations increase the rate of PKCα activation in the presence of DAG (29); thus, PKCα activation may be targeted to local areas of Ca\(^{2+}\) generation, consistent with spatially restricted signaling (36).
The mechanism of PKCδ activation is similar to that of PKCα, except that PKCδ does not bind calcium and is targeted to the membrane primarily through high-affinity binding of the C1 domains to membrane DAG (37) (Fig. 2C). However, the relative contribution of the C1a and C1b domains to membrane DAG binding remains to be resolved. It has been reported that, as in PKCα, the C1a domain of PKCδ has high affinity for DAG, whereas the C1b domain fails to bind DAG but has high affinity for phorbol esters (38). In contrast, other studies have shown that the C1b domain of PKCδ binds to DAG with an affinity that is two orders of magnitude greater than that of cPKCs, and that mutation of the C1a domain has minimal effects on binding of PKCδ to DAG-containing membranes (37, 39). Nonetheless, the high affinity of the C1 domain of PKCδ for DAG compensates for the lack of membrane binding of its C2 domain, allowing for direct C2 domain–independent membrane recruitment and activation of the kinase by signal-generated DAG (37). DAG–independent functions of the C1b domain may also contribute to targeting and activation of PKCδ (37). For instance, Wang et al. (40) have shown that the C1b domain of PKCδ mediates its association with the Golgi/ER protein, p23/Tmp21, to regulate apoptosis.

Noncanonical activation of PKC

In addition to the plasma membrane, it is now clear that PKC isoforms can be activated in a variety of subcellular locations and can respond to stimuli that do not promote hydrolysis of membrane lipids (41). One well-documented mechanism of noncanonical activation of both cPKCs and nPKCs is through reactive oxygen species (ROS) (42). The cysteine-rich zinc-binding finger of C1 domains is highly sensitive to oxidation by ROS, which destroys the conformation of the DAG-binding site. For PKC, oxidation by ROS typically relieves autoinhibition and activates the kinase (43). While redox-dependent conformational changes can activate both cPKCs and nPKCs, PKCδ can also be regulated by oxidative stress through changes in phosphorylation of specific tyrosine residues unique to this isoform (25, 44). There are at least two explanations for redox regulation via tyrosine phosphorylation (42). First, cysteine residues in the active site of protein tyrosine phosphatases are very sensitive to redox inactivation, and the inhibition of dephosphorylation manifests as an overall increase in tyrosine phosphorylation (45). Second, redox activation of RTKs (e.g., epidermal growth factor receptor [EGFR]) and non-RTKs (e.g., c-Abl, c-Src, and Src-family kinases) results in increased phosphorylation on tyrosine residues in PKCδ (42, 46). The most extensively studied of these residues are Tyr311 (rodent; 313 human), Tyr155 (rodent and human), and Tyr64 (rodent and human), which can be phosphorylated by c-Lck, c-Abl, and c-Src (25, 42, 44, 47, 48). PKCα is also tyrosine phosphorylated in response to oxidative stress (25), and tyrosine phosphorylation of Tyr195, Tyr285/286, Tyr365, Tyr504, Tyr512, and Tyr515 (human) has been reported in multiple studies https://www.phosphosite.org/proteinAction.action?id=1773.

Tyrosine phosphorylation is essential for activation of PKCδ in response to death signals. The Reyland laboratory has described a noncanonical activation scheme for PKCδ in which progressive phosphorylation at Tyr155 and Tyr64 by c-Abl and c-Src, respectively, allosterically activates the kinase while also promoting its nuclear translocation (48, 49). Tyrosine phosphorylation reveals a cryptic bipartite nuclear localization signal in the C terminus of PKCδ allowing importin-α binding and nuclear import (47, 50, 51) (Fig. 2C; also see the “Apoptosis” section). Phosphorylation of PKCδ at Tyr155 and Tyr64 appears to be a general response to agents that cause DNA damage (48). Phosphorylation at Tyr311 and Tyr187 can also promote the apoptotic function of PKCδ (52–54), suggesting that multiple tyrosine phosphorylation events may coordinate activation of this function of the kinase.

Other examples of noncanonical activation include Ca2+ overload in the ischemic heart, where the cysteine protease calpain cleaves PKCα in the V3 region to generate a constitutively active cytosolic C-terminal catalytic fragment (CF) that negatively regulates myocardial function (55). Likewise, PKCδ can be activated by caspase-3-mediated cleavage (56). In both cases, cleavage activates the kinase by releasing the CF from inhibitory interactions with the regulatory domain. Finally, in the context of cell migration, PKCα can be activated by oligomerized syndecan-4 (57), a transmembrane proteoglycan that serves as a receptor for heparan sulphate–binding growth factors and extracellular matrix (ECM) components such as fibronectin and vitronectin (see later).

Signal termination

PKC signal termination is mediated by acute inactivation and long-term desensitization mechanisms. For PKCα and PKCδ, this is accomplished largely through rapid metabolism of DAG (58), which leads to activity-dependent dissociation of PKC from the membrane and restoration of the autoinhibited protein in the cytosol (Fig. 2, B and C, step 5, and (59, 60)). However, prolonged activation by ligands that are not readily metabolized (e.g., phorbol esters, bryostatin) and, in the case of PKCδ, by physiological stimuli (e.g., growth factors), can result in activity-dependent downregulation/loss of PKCα and PKCδ protein, with loss of associated signaling in the continued presence of agonists (Fig. 2C, step 6). Multiple mechanisms of downregulation have been implicated, with subcellular localization playing an important role in dictating the engagement of processing pathways (61). While ubiquitin-mediated proteasomal degradation is a major mechanism of PKC down-regulation (62–65), endomembrane trafficking and lysosomal processing have also been shown to play a role, at least for PKCα (66–68).

Multisite dephosphorylation of PKC by PH domain leucine-rich repeat protein phosphatase (69) and protein phosphatase 2A (PP2A) (65, 70), which appears to occur in an intracellular compartment (66–68, 70), may serve as a trigger for PKC degradation in some contexts (63, 70). For cPKCs, peptidyl-prolyl isomerization of the turn motif–priming site by peptidyl-prolyl cis/trans isomerase (PIN1) is required for
dephosphorylation of priming sites (71). However, fully phosphorylated mature PKC (Fig. 2, B and C, step 5) is the major substrate for the proteasome in many cell types (61, 65, 67, 72, 73). Parker et al. (73) showed that hyperphosphorylated PKCδ is rapidly degraded in phorbol ester–treated cells and at the G1/S boundary during the cell cycle. The Black laboratory confirmed degradation of fully phosphorylated PKCδ using short-chain DAGs such as 1,2-dioctanoyl-sn-glycerol (DiC8) (61). In the case of PKCa, proteasomal degradation of the fully primed active form following prolonged activation with phorbol esters or bradykinins requires the molecular chaperone heat shock protein 70 (72), which can, paradoxically, also serve to stabilize the dephosphorylated enzyme by binding to the turn motif, promoting its rephosphorylation and reentry into the pool of signaling competent enzyme (74). Maintenance of priming site phosphorylation on activated PKCa is also facilitated by heat shock protein 90 (72), with nucleotide occupancy of the active site within these kinases further contributing to phosphatase resistance (75). Although few studies have addressed lysosomal pathways of PKC downregulation, the Black group and others have determined that PKCa is targeted to lysosomes by phorbol esters via at least two distinct lipid raft–dependent pathways, and that the fully primed protein is also the major target for lysosomal degradation (66–68).

While PKCa and PKCδ are both degraded in response to prolonged activation by phorbol esters, studies with other PKC agonists have identified at least two important differences in activation-induced desensitization of these isoforms. PKCδ is readily degraded in response to prolonged activation by membrane-permeant short-chain DAGs (61) or physiological signals that stimulate the production of DAG (e.g., gonadotropin-releasing enzyme (76), bombesin (77), and platelet-activated growth factor (77)). In contrast, chronic activation of PKCa by DiC8 (61) or physiological agonists (e.g., thyrotropin-releasing enzyme (78), angiotensin II (79)) fails to engage desensitization mechanisms, such as dephosphorylation, ubiquitination, internalization, or degradation, with the enzyme remaining membrane associated and able to support downstream signaling for prolonged periods (e.g., 12 h (61, 77)). Differences in Ca2+ sensitivity and DAG affinity of PKCa and PKCδ failed to explain the selective resistance of PKCa. Thus, although an effect of different membrane domains was observed, underlying mechanisms remain to be determined (61). Another notable difference is seen in the response of these isoforms to bradykinin 1. While concentrations from 0.1 to 1 μM bradykinin promote proteasomal and lysosomal degradation of PKCa (61, 63), these doses fail to downregulate PKCδ (80, 81). Interestingly, these low concentrations of bradykinin also block the ability of phorbol esters to induce PKCδ degradation when the two agonists are coapplied, suggesting that bradykinin directs PKCδ to a subcellular compartment that is not accessible to phorbol esters.
Subcellular localization of PKCα and PKCδ

The differential effects of PKC agonists on PKCα and PKCδ may reflect their activation at different cellular locations (82), with PKCα translocating mainly to the plasma membrane, whereas PKCδ accumulates in a variety of additional compartments, including the plasma membrane, Golgi membranes, the ER, mitochondria, and the nucleus (50, 83, 84). Localization-specific functions of PKC may be regulated by spatially restricted generation of second messengers such as Ca²⁺ and/or DAG or by protein–protein interactions that facilitate access to unique substrates (85), among other mechanisms.

The almost exclusive localization of activated PKCα at the plasma membrane (65, 86–88) may explain the important role of this isoform in regulating cell growth, differentiation, and migration. As discussed further, extensive evidence supports the ability of both PKCα and PKCδ to regulate the activity of RTKs and downstream effectors that reside at the plasma membrane (89–97). PKCα also coordinately regulates plasma membrane–associated Rho-GTPases, as well as integrins and the actin cytoskeleton, to regulate cell spreading, focal contact formation, and migration (see later).

The wide subcellular distribution of activated PKCδ is consistent with its diverse functions in proliferation, migration, DNA repair, apoptosis, and metabolism. Agonist-induced changes in the intracellular distribution and activity of PKCδ have been investigated using FRET-based fluorescence reporters (41, 83). These studies demonstrate a unique two-step mechanism for recruitment and retention of PKCδ at the mitochondria, where the kinase regulates respiration and promotes apoptosis (98–100). In other studies, Gomel et al. (101) targeted exogenous active PKCδ to the cytosol, ER, nucleus, or mitochondria. Their studies showed that ER-targeted PKCδ is antiapoptotic, whereas nuclear-, cytoplasmic-, and mitochondrial-targeted PKCδ is proapoptotic.

The Reyland laboratory has shown that nuclear localization of PKCδ is highly regulated and linked to cell death signals such as activation of c-Abl and caspase-3 (47, 50). Nuclear localization is in addition controlled by c-Src and Src-family kinases (83), suggesting a potential link between growth factor signaling and cell death. In addition to PKCδ, caspase-3 also accumulates in the nucleus in response to apoptotic signals, where it can cleave PKCδ in the V3 region to generate a constitutively activated CF (PKCδ CF) (51, 56), which is also constitutively nuclear because of exposure of its nuclear localization signal. Whether PKCδ CF is functionally distinct from full-length PKCδ is unclear since both forms of PKCδ can induce apoptosis when overexpressed, albeit with different kinetics (51, 102).

Proliferation and differentiation

In-depth studies of the growth regulatory functions of PKCα in normal cells have been performed in the hematopoietic system and in regenerating epithelial tissues, including the intestinal epithelium, epidermis, and endometrium. While PKCα signaling can promote (103–105) or inhibit (106, 107) proliferation in cells of the immune system, the kinase is predominantly antiproliferative and prodifferentiation in regenerating epithelia (86–88, 108–115). PKCδ can also promote (116–121) or inhibit (122–126) proliferation in normal carriers.
and cancer cells (127–129). Curiously, in some cases, PKCa and PKCd regulate similar cell functions, albeit with different outcomes. For example, while cell cycle arrest by PKCa can lead to cell differentiation (86–88, 108–115), cell cycle arrest by PKCd is more likely to drive cell death (130, 131). PKCa and PKCd diverge significantly in their regulation of growth factor signaling, with PKCa inhibiting growth factor receptor activity and downstream pathways, and PKCd generally propagating growth factor signaling by regulating downstream pathways such as the MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal–regulated kinase) cascade (102, 132, 133). Here, we will discuss what is known about mechanism(s) underlying the overlapping and divergent effects of these PKC isoforms on growth regulatory targets.

Cell cycle regulation

Compelling evidence for growth-suppressive and differentiation-inducing functions of PKCa comes from immunohistochemical analysis of unperturbed epithelial tissues. PKCa is cytosolic and inactive in proliferating cells of intestinal and colonic crypts (88, 110), the basal layer of the epidermis (112, 113), and the endometrium (86). However, coincident with cell growth arrest and differentiation in these tissues, PKCa robustly localizes to the plasma membrane, a hallmark of PKC activation (10). More specifically, PKCa is cleared from the cytosol and appears at the plasma membrane in the upper crypt region of the intestinal epithelium, the first suprabasal layer (spinning layer) of the epidermis, and in non-proliferating estrus phase endometrial cells. Remarkably, PKCa remains membrane associated and presumably active for prolonged periods in postmitotic cells, for example, 2 to 3 days in the intestine and 8 to 10 days in the skin, consistent with the requirement for sustained activation of the enzyme for maintenance of physiological responses such as growth arrest and differentiation (134, 135). Strikingly, *in vivo* studies in genetically engineered mice largely support a growth suppressive role for PKCa. While PKCa knockout mice are viable, fertile, and have no overt phenotype, Oster and Leitges (136) reported increased crypt cell mitotic index in the intestinal epithelium of these mice. The Farese group further showed that insulin signaling through PI3K is enhanced in PKCa-deficient skeletal muscle and adipocytes and that PKCa acts as a physiological feedback inhibitor of the insulin pathway (137), a finding that has been confirmed in multiple systems (138–140).

A direct role for PKCa activity in driving growth arrest was established by *in vitro* studies in intestinal crypt–like cells (108, 109) and keratinocytes (87, 112), which demonstrated that PKCa can trigger hallmark events of cell cycle withdrawal into G0. Evidence from these and other systems points to D-type cyclins and the cyclin–dependent kinase (CDK) inhibitory proteins, p21Cip1 and p27Kip1, as critical cell cycle regulatory targets of PKCa (Fig. 3A). PKCa induces rapid downregulation of cyclins D1, D2, and D3 and/or induction of p21Cip1/p27Kip1, inhibition of G1/S cyclin/CDK complex activity, and changes in the pocket proteins, p107, pRb, and p130, characteristic of G1 arrest and cell cycle withdrawal in multiple cell types (87, 108, 109, 112, 141, 142). PKCa-induced downregulation of D-type cyclins is mediated by at least two mechanisms: inhibition of cyclin D translation through PP2A-mediated activation of the translational repressor 4E-BP1 (143–145), and transcriptional repression, likely through a MEK–ERK–dependent mechanism (135, 143, 145). PKCa induces p21Cip1 at the level of transcription via p53-dependent (146) and p53-independent mechanisms (141, 143). Consistent with its ability to trigger cell cycle withdrawal, activation of PKCa can induce p21Cip1-dependent cell senescence (147). Studies in lung cancer cells by the Kazaniez group showed that activation of PKCa in S phase results in irreversible G2/M cell cycle arrest, which was not observed when PKCa was activated in G1 phase (147).

In contrast to PKCa, which largely restrains cell growth and cell cycle progression, PKCd can promote or suppress proliferation depending on the context. Perhaps not surprisingly, PKCd regulates many of the same targets as PKCa. Studies from Kitamura et al. (130) demonstrate biphasic activation of PKCd in response to serum and a requirement for PKCd activation for DNA synthesis. PKCd can promote cell cycle progression in G1 by increasing cyclin levels or by reducing expression or nuclear levels of p21Cip1 and/or p27Kip1 (130, 131), and can enhance G2/M transition through phosphorylation of Cdc25b (148) (Fig. 3A). In contrast, vascular endothelial cells and B cells derived from PKCd knockout mice show an increase in proliferation (149, 150) consistent with studies by Watanabe et al. (122, 151–153) that have linked PKCd to growth arrest. As shown for PKCa, induction of G1 or G1/S arrest can occur through upregulation of p21Cip1 or p27Kip1 or through downregulation of cyclin D and/or cyclin E (123, 131, 151, 154–158). Several mechanisms have been identified for regulation of p21Cip1 by PKCd including (a) transcriptional induction through KLF4 (124), (b) regulation of p21Cip1 phosphorylation (159), and (c) regulation of the interaction of p21Cip1 with CDK2 (160). PKCd can in addition regulate the interaction of p27Kip1 with CDK4 to inhibit proliferation (123).

Cell cycle arrest by PKCd may have important implications for cell death decisions. Notably, in some studies, PKCd promotes G1 transition and causes cells to arrest in S or G2/M (130, 131). Using a PKCd overexpression model, Ohno et al. (130) showed that phosphorylation of PKCd at Thr505 is required for the serum-induced transition from G1 to S phase; however, in the same study, PKCd induced a block in G2/M progression. Similarly, expression of the PKCd CF induced a strong G2/M block in primary human keratinocytes and immortalized HaCaT cells coincident with induction of apoptosis (161). Other studies show that overexpression of PKCd stimulates G1 → S transition, but the cells then arrest in S phase and undergo apoptosis (131). Thus, G1 → S promotion under these conditions is not proproliferative but proapoptotic.

Finally, like PKCa, increasing evidence points to a role for PKCd in cell senescence (161–165). Studies in adipocyte stem cells show that PKCd can induce senescence through regulation of human telomerase reverse transcriptase (162, 163).
Similar studies identified PKCδ as a mediator of transforming growth factor-β–induced senescence through repression of human telomerase reverse transcriptase (165) or inactivation of glycogen synthase kinase 3β (166). PKCδ can also function in cell senescence downstream of p16INK4α and Rb (164). An interesting question is whether induction of senescence by PKCδ is a survival mechanism under conditions where DNA repair is inhibited (see the “Cell survival and cell death” section).

Regulation of growth factor signaling

Inhibitory effects of PKCα on cell cycle progression also reflect its ability to suppress the activity of tyrosine kinase receptors, including EGFR (89–95), ErbB2 (Erb-B2 RTK 2) (HER2 [human epidermal growth factor receptor 2] (93, 96, 97), c-Met (hepatocyte growth factor receptor) (167), and RET (rearranged during transfection) (168) (Fig. 3B). PKCα can inhibit tyrosine kinase receptor signaling by reducing ligand-binding affinity though direct receptor phosphorylation and by altering cell surface expression of receptors by modulating receptor trafficking (93–95, 167–175). PKCα also regulates cell proliferation by acting downstream of growth factor receptors, as exemplified by its ability to suppress insulin action through inhibition of PI3K–Akt and MEK–ERK signaling downstream of the insulin receptor (138–140). PKCα-mediated inhibition of PI3K–Akt signaling has been observed in multiple systems (e.g., (86, 145, 176, 177)) and can be accomplished via distinct mechanisms, including suppression of the catalytic activity of PI3K by phosphorylation of the p84α regulatory subunit (177) or direct phosphorylation of the catalytic subunit (178) and by PP2A-dependent dephosphorylation of Akt (86). Interestingly, PKCα can also induce growth arrest via strong and sustained activation, rather than inhibition, of the MEK–ERK pathway (135). PKCα-induced growth inhibitory ERK signaling is dominant over proliferative ERK signaling from serum-regulated growth factors (111, 135, 179–181), further supporting the ability of PKCα to drive growth arrest in epithelial tissues.

In direct contrast to PKCα, PKCδ promotes signaling through tyrosine kinase and G protein–coupled receptors, including receptors for EGF, fibroblast growth factor (FGF), hepatocyte growth factor, insulin-like growth factor 1, and vascular endothelial growth factor (102, 132, 133, 182–188) (Fig. 3B). PKCδ can drive growth factor signaling as part of an active receptor complex, through regulation of A disintegrin and metalloprotease 17–mediated shedding of ligands such as EGF (189), and by controlling recycling and degradation of activated cell surface receptors (170, 190–192). Ligand binding to EGFR and other receptors in this family frequently results in activation of a PKCδ–Src–ERK pathway (127, 132, 133, 193). The Reyland laboratory has shown that in Her2/ErbB2–positive breast cancer cells, loss of PKCδ disrupts the association of Src with ErbB2 and inhibits ERK activation (127). In addition to acute regulation, PKCδ contributes to sustained ERK activation both downstream of growth factors and through growth factor–independent mechanisms (118, 190, 194–197). For example, sustained activation of ERK in response to DNA damage is PKCδ dependent but EGFR independent (197). PKCδ is required for maintenance of ERK activation downstream of mutant K-Ras in some non–small cell lung cancer (NSCLC) cells and may be a mechanism of resistance to tyrosine kinase inhibitors (TKIs) (128, 198–200). PKCδ can also activate MEK–ERK by inhibiting Raf kinase inhibitory protein (RKIP), a negative regulator of ERK activation (201). Regulation of growth factor signaling by PKCδ could potentially also be mediated by its ability to bind phosphotyrosine and assemble signaling complexes (22).

Cell differentiation

Elegant studies by the Fields laboratory showed that PKCα promotes cytosostasis and megakaryocytic differentiation of K562 human erythroleukemia cells and that this effect is mediated by isoozyme-specific sequences within the catalytic domain (202–204). The Schwende group (205) demonstrated the ability of PKCα to promote differentiation of THP-1 monocyte-like cells into macrophage-like cells, and Nishizuka et al. (134) showed that sustained activation of PKCα is required for differentiation of HL-60 promyelocytic leukemia cells into macrophages. The link between PKCα signaling and cell differentiation is clearly illustrated by studies in keratinocytes. Early work by Yuspa et al. identified PKCα as a major player in the induction of differentiation markers during Ca2+-induced keratinocyte differentiation (114), findings that were subsequently confirmed by others (87, 113, 115). Using human keratinocyte organotypic raft cultures, Denning et al. (87) demonstrated that PKCα deficiency results in decreased cell differentiation, indicated by reduced expression of the late granular layer differentiation marker, loricrin, and impaired epidermal stratification. PKCα has also been shown to play a major role in the differentiation program of mouse keratinocytes by promoting Ca2+-dependent activation of AP-1 transcription factors (206). Studies from the Rosato laboratory (207) investigated the involvement of PKCα and PKCδ in FGF receptor 2b–induced keratinocyte differentiation. Their work showed that PKCδ is necessary at the onset of differentiation, whereas PKCα is necessary for the terminal stages of differentiation. Consistent with this role, PKCδ promotes differentiation in a variety of cells and tissue types (208–210).

Cell survival and cell death

While PKCα provides a strong antiproliferative signal, multiple studies have also linked PKCα to cell survival. In contrast, while PKCδ supports cell survival in some contexts, it is more commonly a regulator of cell death (211). Interestingly, PKCα and PKCδ have been shown to have opposing effects on cell survival in the same cell (212–214). For example, in salivary acinar cells, apoptosis induced by loss of PKCα requires PKCδ activity (214).

Cell survival

An early report by Parker et al. (215) described a causal relationship between loss of PKCα function and induction of
apoptosis in COS cells, pointing to the ability of PKCδ to mediate survival signaling. Subsequent studies in a broad range of cell types further support this role (214, 216–218). The prosurvival functions of PKCa are modulated primarily through Bcl-2 (B cell lymphoma 2 apoptosis regulator) family members (Fig. 4A). Induction of cell death in glioma cell lines and rat hepatic epithelial cells by PKCα knockdown is associated with significant downregulation of the survival protein, Bcl-xL (B cell lymphoma–extra large apoptosis regulator) (216, 219). Ruvolo et al. (220) determined that PKCa can phosphorylate Bcl-2 on Ser70 in vitro, a modification linked to enhanced Bcl-2 antiapoptotic activity (221), and PKCa-mediated phosphorylation of Bcl-2 was subsequently confirmed in multiple studies using a variety of cell types (220, 222–225). Importantly, PKCa can associate with mitochondrial membranes (221, 222) via a mechanism that may involve anchorage by protein interacting with PRKCA 1 (PICK1) (222), for appropriate positioning to regulate Bcl-2. Additional mechanisms associated with the prosurvival effects of PKCa include (a) suppression of apoptosis mediators FEM1b and apoptotic protease activating factor-1 (APAF-1) in T-cell acute lymphoblastic leukemia cells (226), (b) modulation of the proapoptotic BH3 protein, BAD (BCL-2-associated death promoter), in lymphoma cells (227), (c) induction of nuclear translocation of NFκB in bladder cancer cells (228), (d) cytoplasmic localization of p53 in melanoma cells (229), and (e) upregulation of Dicer in bladder cancer cells (230).

Prosurvival signaling by PKCδ is somewhat surprising given its well-established role in regulating cell death. In particular, many studies have shown an essential role for PKCδ in the survival of cells that are dependent on activated K-Ras. These include neuroendocrine tumor cells (116), cancer stem cells in pancreatic and prostate tumors (117), and a subset of lung cancer cells (117, 128, 198). In NIH 3T3 cells engineered to express activated K-Ras (199) and pancreatic cancer cell lines with activated K-Ras (186), PKCδ is required to maintain Akt prosurvival signaling. However, in K-Ras–addicted NSCLC cells, PKCδ is required for ERK activation downstream of mutant K-Ras but not Akt activation (128, 198, 199). PKCδ supports the survival of cancer stem cells in multiple human tumor types (117, 121, 231) and facilitates maintenance of tumor-initiating cells (232). Muselli et al. (233) have recently shown that PKCδ regulates expression of the protein Bmi1 (B cell–specific Moloney murine leukemia virus integration site 1), which is required for stem cell renewal. Other prosurvival mechanisms include sequestration of Smac, an antagonist of inhibitor-of-apoptosis proteins (Fig. 4A) (234, 235), and regulation of the phosphorylation and inactivation of the proapoptotic protein Bim (BCL-2-like protein 11) (236, 237) (186, 198, 237).

Contrary to its prosurvival roles, overexpression of PKCδ is associated with decreased survival in colon cancer cells, keratinocytes, and many nontransformed cells (124, 125, 238). Consistent with a dual role for PKCδ in regulation of cell viability, functional proteomic analysis of PKCδ-depleted salivary epithelial cells reveals upregulation of signaling pathways that promote cell survival as well as cell death (239). In particular, ERK signaling, energy sensing, the DNA damage response, and apoptosis were identified as key pathways dependent on PKCδ (187, 194–197, 240–242). These seemingly paradoxical functions of PKCδ may reflect cell- and context-specific integration of different signaling pathways.

Apoptosis

The preponderance of evidence supports opposite roles for PKCα and PKCδ in cell death, with PKCα suppressing and PKCδ inducing apoptosis (211, 238) (Fig. 4B). However, PKCα can also play a proapoptotic role. In hormone-dependent LNCaP prostate cancer cells, prolonged association of PKCα with non-nuclear membranes leads to apoptosis (243), and PKCδ mediates apoptosis induced by DAG-lactones (244). In renal tubular cells, PKCα mediates cell death induced by polychlorinated biphenyls, via a mechanism that involves downregulation of Bcl-2 and activation of caspase-3 (245).

Extensive studies from the Reyland laboratory and others have shown that PKCδ plays a central role in activation of cell death pathways under conditions of cell stress and DNA damage (149, 246, 247) (Fig. 4B). Depletion of PKCδ suppresses DNA damage–induced cell death in most nontransformed cells and some cancer cells, PKCδ knockout mice are protected from irradiation-induced damage to the salivary gland and thymus, and salivary epithelial cells from PKCδ knockout mice are resistant to multiple apoptotic stimuli (211, 247). PKCδ also regulates apoptosis through TRAIL (tumor necrosis factor (TNF)–related apoptosis-inducing ligand) and TNFα (248, 249). In this context, PKCδ can regulate secretion of death receptor ligands in response to phorbol ester (250) and death receptor expression in the context of ER stress (251, 252).

Nuclear PKCδ is the primary inducer of cell death, although localization of PKCδ to the mitochondria may also contribute to apoptosis (50, 51, 253, 254). Nuclear localization of PKCδ is tightly regulated to prevent inappropriate activation of cell death pathways (see the “Distinct structural features of PKCa and PKCδ” section) (47, 50). Once in the nucleus, PKCδ is cleaved by nuclear caspase-3 to generate a 42 kD CF (PKCδ CF), which is constitutively nuclear and a potent inducer of apoptosis (51). Interestingly, caspase-3 cleavage of PKCδ per se is not required for this mechanism of apoptosis, but nuclear translocation of PKCδ and PKCδ kinase activity are essential (51). Defining the critical role tyrosine phosphorylation plays in activating PKCδ in response to DNA damage led to the prediction that TKIs could be protective against irradiation damage. The Reyland laboratory has subsequently shown that TKIs block PKCδ activation and provide robust protection against radiation-induced damage to the salivary gland in vivo (49, 255). Furthermore, PKCδ-targeted siRNAs reduce cytotoxic-induced renal cell injury in mice as well as irradiation-induced salivary gland damage (256, 257). Thus, PKCδ-targeted therapies could be used to provide protection from damage during radiation and/or chemotherapy treatment.

Mechanistically, PKCδ can regulate the apoptotic machinery through downregulation of prosurvival Bcl-2 proteins, such as Mcl-1 (myeloid cell leukemia-1 antiapoptotic BCL-2 family
protein), or upregulation of proapoptotic Bcl-2 proteins, including BIM, BAD, BAX (BCL-2 associated X protein), and BAK (BCL-2 antagonist/killer 1) (236, 258–261). However, Bcl-2 proteins have not been identified as direct substrates of PKCδ. More likely, PKCδ regulates these apoptotic players indirectly through p38, c-Jun N-terminal kinase, ERK, and mitogen- and stress-activated protein kinase 1 (MSK1), Akt, and other pathways that control cell survival in response to damage (176, 196, 197, 262, 263). In addition, there is evidence that PKCδ regulates the DNA damage response and cell cycle checkpoints (264–270). For example, PKCδ can regulate activation of the DNA damage sensors DNA-PK (DNA-dependent protein kinase) and ATM (ataxia–telangiectasia mutated) as well as phosphorylation of RAD9 and γH2AX (264–266, 268, 269). In the case of DNA-PK, PKCδ inactivates the catalytic subunit, suppressing DNA repair and inducing apoptosis (265). Phosphorylation of histone H3 Ser10 by PKCδ has also been described, which is accompanied by chromatin condensation and increased apoptosis (271). Similarly, the Reyland laboratory has shown that MSK1 is required for apoptosis through a PKCδ → ERK → MSK1 pathway (197). Cell cycle checkpoints in S phase and G2/M phase may also be targets for induction of cell death by PKCδ (266, 267, 269) as loss of the G2/M checkpoint is associated with increased radiation sensitivity and apoptosis (267). Whether these checkpoints are directly regulated by PKCδ or induce cell death secondary to accumulation of DNA damage has not been fully elucidated.

Regulation of cell motility and migration

While the biological effects of PKCa and PKCδ often diverge, a notable exception is seen in the regulation of cell motility and migration where both isoforms generally act as positive regulators, although the mechanisms underlying this regulation often differ (Fig. 5). A large body of evidence points to PKCα as a positive regulator of epithelial-to-mesenchymal transition (EMT), a dynamic process in which polarized epithelial cells assume a mesenchymal phenotype characterized by enhanced migratory capacity and invasiveness. EMT plays important roles during normal development as well as pathological processes such as tumor metastasis (272–275). PKCα regulates the expression of transcription factors that play key roles in EMT, including FRA1 (276), SNAIL (274, 277), TWIST1 (277, 278), ZEB1 (zinc finger E-box–binding homebox 1) (273), and ZEB2 (277). For example, TWIST1 is a PKCα substrate, and PKCα-mediated phosphorylation leads to accumulation of TWIST1 through inhibition of its ubiquitination and proteasomal degradation (278). Knockdown of PKCα leads to downregulation of ZEB1 and accompanying upregulation of E-cadherin mRNA, as well as inhibition of cell migration and invasion (273). PKCα is also likely to affect EMT and E-cadherin expression through negative regulation of p120-catenin by direct inhibitory phosphorylation (279, 280).

In contrast to PKCa, few studies have reported regulation of EMT by PKCδ; however, PKCδ activity has been linked to EMT based on its ability to mediate effects of EGF on E-cadherin and adherens junctions in primary keratinocytes (281).

In addition to regulating EMT, PKCa has direct effects on cell migration and invasion, predominantly mediated by coordinated regulation of Rho-GTPases (282). PKCa binds to syndecan-4, a ubiquitously expressed heparan sulphate proteoglycan that acts as a receptor for growth factors such as FGF2, vascular endothelial growth factor, and PGDF, and ECM components, including fibronectin and vitronectin (283). Following engagement with heparan sulphate–binding proteins, syndecan-4 undergoes PIP2-dependent oligomerization, which results in activation of PKCa through a noncanonical mechanism that is independent of DAG and Ca2+ (57, 282, 284–286). In the resting state, syndecan-4 represses the

Figure 5. Effects of PKCa and PKCδ on motility and migration. PKCa and PKCδ have predominantly positive effects on cell motility and migration, although they generally regulate these processes through different mechanisms. Activation of PKCa following its interaction with syndecan-4 promotes migration through regulation of Rho-GTPases. PKCa can also enhance migration through regulation of the Scribble–LGL–DLG polarity complex and remodeling of the actin cytoskeleton. PKCα regulation of ZEB1, FRA1, SNAIL, and TWIST1 enhances EMT and promotes cellular motility. PKCδ mediates effects of FAK and Src family kinases on migration, acting through PLD, CDC5, and CDCP1. Integrin signaling represents a common target for PKCa and PKCδ, although the specific integrins targeted differ. Finally, syndecan-4 and CDC5 represent nodes where PKCa and PKCδ can regulate each other’s effects on migration. Positive effects are shown in green arrows, and negative effects are shown in red. CDCP1, CUB domain–containing protein 1; CDC5, cyclin-dependent kinase 5; DLG, discs large MAGUK (membrane-associated guanylate kinase homologs) scaffold protein; EMT, epithelial-to-mesenchymal transition; FAK, focal adhesion kinase; LGL, lethal giant larvae protein; PLD, phospholipase D; ZEB1, zinc finger E-box–binding homebox 1.
activity of Rho-family small GTPases, RhoA and Rac1, through interaction with and activation of the Rho GDP–dissociation inhibitor, RhoGDI1. However, following activation, syndecan-4-bound PKCα phosphorylates RhoGDI1, leading to release and activation of RhoA and Rac1 (287–290). Thus, syndecan-4-mediated activation of PKCα supports directional migration through activation of RhoA and Rac1 at sites of matrix and/or growth factor binding (291). PKCα also supports migration through phosphorylation of p190RhoGAP (GTPase-activating protein) (292), which leads to inhibition of RhoA but not Rac1, and thus regulates the phasic activation of Rho-GTPases that is required for migration (292, 293). Notably, PKCδ signaling can oppose the effects of PKCα on RhoA and Rac1. While PKCδ does not interact with syndecan-4 (282), the kinase can phosphorylate syndecan-4 on Ser183, which inhibits PIP_2 binding and oligomerization to prevent PKCα activation by heparan sulphate–binding proteins (294).

Modulation of migration by PKCα can also involve direct effects on components of the actin cytoskeleton. For example, phosphorylation by PKCα protects the actin crosslinking protein, filamin A, from degradation and enhances cytoskeletal remodeling and cell migration (295, 296). PKCα also binds and phosphorylates vinculin (297) and fascin (298) to regulate cell spreading and focal adhesion. The Scribble–LGL (lethal giant larvae protein)–DLG (discs large MAGUK [membrane-associated guanylate kinase homologs] scaffold protein) polarity complex has also been implicated in the ability of PKCα to control directed migration (299–301). PKCα interacts with DLG1 at the leading edge, and blockade of this interaction reduces the ability of PKCα to promote migration (299). Notably, regulation of DLG1 is unique to PKCα since it is mediated by a PDZ ligand motif in the C terminus of the kinase that is not present in PKCδ or other PKC isozymes.

Both PKCα and PKCδ regulate motility and invasion through modulation of integrin function. PKCα interacts with the cytoplasmic tail of β1 integrin to promote its internalization, and inhibition of this interaction suppresses migration (302, 303). Effects on integrin internalization can be mediated by PKCα phosphorylation of formin-like receptor 2 in lamellipodia and filopodia to promote actin-dependent internalization of formin-like receptor 2/α integrin/β1 integrin complexes (304, 305). While PKCα regulates integrin recycling, PKCδ is important for linking integrins to downstream effectors including phospholipase D, Src, focal adhesion kinase, and mitogen-activated protein kinase (306–308). In addition, PKCδ can control migration through regulation of integrin expression (309, 310).

PKCδ also has effects on migration that are distinct from those of PKCα. Limited evidence supports a role for PKCδ in controlling the stability of the actin cytoskeleton and enhancing migration through phosphorylation of myosin light chain (311–313). PKCδ also plays an important role in regulating smooth muscle cell and neutrophil migration (314–317). Sorouch et al. (318, 319) have shown that PKCδ regulation of neutrophil–endothelial cell interactions and neutrophil migration is dependent on phosphorylation of PKCδ on Tyr155. A role for PKCδ in cortical neuron migration has also been shown, with PKCδ promoting cell migration by stabilizing the CDK5 activator, p35 (320). In contrast, PKCα has been reported to be a negative regulator of CDK5 activity (321). Another mechanism unique to PKCδ involves regulation of cell migration through interaction of the enzyme with the transmembrane CUB domain–containing protein 1 (CDCP1) (322–324). As discussed previously, this protein interacts with the PTB in the C2 domain of PKCδ (22). Upregulation of CDCP1 is seen in many types of cancer where it is associated with progressive disease and poor survival (323, 325). In pancreatic cancer, CDCP1 regulates cell migration, invasion, and ECM degradation through a mechanism that requires association with PKCδ and recruitment of Src (323). Hepatocellular carcinoma and renal carcinoma cells can upregulate CDCP1 via a hypoxia-inducible factor–dependent mechanism to drive PKCδ-dependent migration (322, 324), and a novel small-molecule inhibitor that blocks association of PKCδ and CDCP1 was shown to inhibit metastasis of gastric carcinoma cells (326).

PKCα and PKCδ in disease

Functions of PKCα and PKCδ in cell proliferation, cell survival, cell death, and migration are often subverted in disease. Disease phenotypes likely reflect the sum of individual phenotypes, in the context of their relative contribution to the specific disease process. Here, we will discuss what is known about the contribution of PKCα and PKCδ to cancer, immune, and neurodegenerative disorders.

Roles in tumorigenesis

Analysis of mouse models of cancer clearly reveals opposing phenotypes for PKCα and PKCδ in tumor development and progression. The antiproliferative activity of PKCα (see the “Proliferation and differentiation” section) is reflected in a predominantly tumor suppressive role of the enzyme, supported by frequent downregulation of PKCα mRNA and protein in most cancer types (327) and by the fact that PKCα knockout or inhibition enhances tumorigenesis in all murine cancer models reported to date (i.e., models of intestinal (136), skin (328), endometrial (86), and lung (329) cancer as well as B-CLL (330)). Oster and Leitges (136) showed that loss of PKCα in the Apc^Min/+ mouse model of intestinal neoplasia enhances tumor formation in the intestine, with lesions displaying a more aggressive histopathological phenotype and mice dying significantly earlier than their PKCα-expressing littermates. Hara et al. (328) showed that PKCα knockout mice subjected to the two-stage protocol of skin carcinogenesis develop significantly more papillomas, and the Black laboratory has shown that PKCα deficiency accelerates tumor formation in a mutant PTEN (phosphatase and tensin homolog)–driven model of endometrial tumorigenesis (86). Similarly, genetic deletion of PKCα in three murine lung adenocarcinoma models (LSL-Kras, LA2-Kras, and urethane exposure) by the Fields group (329) significantly increased tumor number, size, and aggressiveness, while promoting progression from adenoma to carcinoma and reducing mouse survival.
Consistent with a role of PKCa in regulating cell senescence (147), PKCa deficiency resulted in bypass of oncogene-induced senescence in these lung cancer models (329). Loss of PKCa also resulted in expansion of the tumor-initiating bronchioloalveolar cell population, facilitated by enhanced expression of inhibitor of DNA binding proteins 1–3 (Id1–3), an effect of PKCa deficiency also identified by the Black group (86, 111) in intestinal epithelial and endometrial cells. Finally, Michie et al. (330) reported that deficiency of PKCa in hematopoietic progenitor cells results in B-CLL-like disease in mice. It should be noted that, aside from studies in hematopoietic progenitor cells (330), all PKCa-deficient mouse models reference here harbored organism-wide loss of the kinase. Thus, additional studies are needed to exclude a role for PKCa deficiency in tumor-associated stromal and immune cells in observed tumor-suppressive effects. Nevertheless, analysis of patient tumors supports findings in animal models, with PKCa loss correlating with advanced disease in many human tumor types (86, 329, 331, 332). In addition, while mutations in PKCa are rare in tumors, a loss-of-function PKCa mutant (D463H) is a hallmark of chordoid gliomas, present in 100% of cases examined to date (333, 334).

Both increased (16, 17) and decreased (335–339) expression of PKCδ has been observed in human tumors; however, functional genomic alterations of PKCδ are rare, and none have been mechanistically linked to cancer (340). While increased expression of PKCδ correlated with poor prognosis in a subset of human breast tumors (127, 341), expression of PKCδ was shown to decrease with increasing tumor grade in urinary bladder cancer (336). The variable expression of PKCδ in human tumors argues for context-dependent roles in tumor promotion and tumor suppression, consistent with the dual functions of PKCδ in proliferation and cell death that have been demonstrated in vitro. This contrasts with the finding that PKCδ largely functions as a tumor promoter in mouse models of cancer, including mammary gland, pancreatic, and lung (127–129). An exception are studies in transgenic mice where overexpression of PKCδ suppresses phorbol ester– but not UV irradiation–induced skin cancer (342, 343).

It should be noted that the PKCδ-deficient mouse cancer models in which PKCδ functions as a tumor promoter are all likely to be K-Ras dependent and, as discussed previously, PKCδ is required for survival of cells with activated K-Ras (128, 129, 186, 199) (see the “Cell survival and cell death” section). This is in direct contrast to PKCa, which functions as a tumor suppressor in K-Ras-driven tumor models (329). Studies by the Reyland laboratory in K-Ras mutant NSCLC cell lines support the notion that PKCδ function may be dependent on oncogenic context. In these studies, PKCδ function was investigated in two subpopulations of K-Ras mutant NSCLC cells defined based on dependence on K-Ras for survival (128, 198). NSCLC cells functionally dependent on K-Ras were found to require PKCδ for survival, whereas those not functionally dependent on K-Ras used PKCδ for apoptosis (128, 198). Studies in additional cancer models are clearly needed to delineate the roles of PKCδ in tumorigenesis and to understand how oncogenic context contributes to the function of this kinase.

Involvement in resistance to cancer therapeutics

Interestingly, both PKCa and PKCδ can promote resistance of cancer cells to chemotherapeutic agents, perhaps reflecting mechanistic overlap in their signaling functions. The ability of these kinases to protect cells from the cytotoxic effects of chemotherapeutic agents likely reflects their well-established prosurvival functions (see the “Cell survival and cell death” section). Increased expression of PKCa confers resistance of tumor cells to adriamycin (344), tamoxifen (345), etoposide, and cytosine arabinoside (220, 223), and protective effects have been linked to enhanced Bcl-2 phosphorylation in some contexts (220, 223). Conversely, reduced levels of PKCa sensitize T-acute lymphoblastic leukemia cells to vincristine and prednisone by preventing the downregulation of proapoptotic factors, FEM1b and Apaf-1 (226). Reduced expression of PKCa also sensitizes tumor cells to cisplatin, taxol (224, 346, 347), erlotinib (277), and mitomycin-C plus 5-fluorouracil (217). The clinical relevance of these findings is highlighted by evidence that PKCa expression correlates with resistance to antiestrogen therapy in breast cancer patients (348).

As might be expected, PKCδ has been validated as a synthetic lethal target in some cancers with mutant K-Ras (200, 349) and is required for resistance to TKIs in a subset of K-Ras mutant NSCLC cells (116, 186, 199). In addition, a recent study by Chen et al. (350) showed that PKCδ contributes to acquired resistance to EGFR inhibitors by stabilizing interaction of sodium/glucose cotransporter 1 (SGLT1) with EGFR and increasing glucose uptake. PKCδ expression is increased in NSCLC cells that are dependent on K-Ras for survival, and this correlates with increased nuclear abundance of PKCδ and resistance to chemotherapy-induced apoptosis (198). In this model, nuclear accumulation of PKCδ correlates with resistance to TKIs (200) rather than apoptosis.

Roles in invasion and metastasis

Consistent with their ability to promote cell migration (see the “Regulation of cell motility and migration” section), both PKCa and PKCδ have been implicated in tumor cell invasion and metastasis. Evidence points to PKCa, but not PKCδ, acting as a positive regulator of EMT through regulation of transcription factors such as TWIST and SNAIL (274, 277, 278). PKCα can also regulate Rho-GTPases and the actin cytoskeleton to promote cell spreading, migration and invasion, and both isoforms can regulate degradation of the ECM. PKCα promotes tumor cell invasion in multiple cancer types, including colon cancer (351), hepatocellular carcinoma (352), pancreatic cancer (274), endometrial cancer (353), melanoma (354), and glioblastoma (355). Furthermore, reduced expression/activity of PKCα inhibits metastasis in xenograft models of breast cancer (356, 357), ovarian cancer (358), and melanoma (355). In addition to effects on migration, this activity is associated with the ability of PKCa to increase matrix metalloproteinase (MMP) secretion in breast cancer (357),
glioblastoma (355), and lung cancer cells (359). Interestingly, PKCδ suppresses MMP9 secretion and migration in breast and colon cancer cells (360–362); however, it is required for chemomigration and MMP9 expression in prostate cancer cells (363) and for MMP9 expression in thrombin-stimulated astrocytes (364).

Early studies by the Jaken laboratory suggested a relationship between high expression of PKCδ and metastasis (361). They showed that mammary tumor cells that are engineered to overexpress the regulatory domain of PKCδ, which inhibits the activity of endogenous PKCδ, have reduced metastasis when transplanted into the mammary fat pad of mice (361). More recently, PKCδ has been linked to metastatic phenotypes such as migration and invasion in many in vitro models, including thyroid (365), hepatocellular (322), breast (127, 366), lung (128, 310), prostate (363), pancreatic (323), and renal cell (324) cancer. While confirmation using in vivo models and human tumors is needed, therapeutic targeting of PKCa or PKCδ may hold promise for suppression of metastatic disease; however, the potential role for these kinases as tumor suppressors would need to be taken into consideration in any clinical applications.

Contribution to autoimmune disease, inflammation, and neurodegeneration

PKCδ knockout mice develop a lupus-like autoimmune disease with age, which has been linked to a defect in the establishment of B-cell tolerance and aberrant accumulation of subpopulations of B cells (126, 150, 195, 367, 368). Notably, a similar autoimmune phenotype has been described in a patient with a rare loss-of-function mutation in the PRKCD gene (369, 370). In vivo studies reveal a role for PKCδ in promoting inflammation, as PKCδ knockout mice show defects in macrophage function (371, 372), platelet activation (373), and expression of proinflammatory cytokines (374, 375). Limited evidence also supports a role for PKCa in regulation of inflammatory responses, which can be positive or negative in different contexts. PKCa overexpression in mouse epidermis promotes marked intraepidermal neutrophilic inflammation and expression of inflammation-related genes such as cyclooxygenase 2 and TNFα (376, 377). Conversely, PKCa is protective against lipopolysaccharide-induced lung inflammation likely through inhibition of proinflammatory cytokine release by macrophages (378).

Given its role in inflammation, it is not surprising that disruption of PKCδ in vivo can be protective in tissue injury models and mouse models of disease. For example, PKCδ knockout mice show improved pathogen clearance and increased survival in rat models of sepsis (379–381). Both PKCa and PKCδ have been implicated in neurodegenerative disease (248, 382–385). The discovery of rare gain-of-function PKCa variants in families with late-onset Alzheimer’s disease supports a causative role for PKCa in the disease (386). In the case of PKCδ, loss or downregulation is protective in Alzheimer’s and Parkinson’s disease and is associated with increased survival in Huntington’s disease (248, 383–385). In some cases, these effects are associated with alterations in cell death, consistent with the known role of PKCδ in promoting apoptosis (247, 384, 385).

Summary and perspective

In this review, we have compared the structure, activation, and subcellular localization of PKCa and PKCδ and discussed their unique and sometimes opposing functions (Fig. 6). Our goal was to identify important gaps in knowledge and to stimulate new questions, particularly as they relate to human disease and therapy. Here, we highlight major themes in the regulation of biological functions by PKCa and PKCδ and discuss implications for the pathogenesis of diseases such as cancer.

PKCa and PKCδ can regulate the same or similar biological functions but with opposing outcomes

The contrasting functions of PKCa and PKCδ are often mediated by regulation of the same target molecules or pathway. This dichotomy is well exemplified by the growth-regulatory functions of these kinases. While PKCa is primarily involved in antiproliferative and prodifferentiation activities, PKCδ has both proproliferative and antiproliferative functions. Remarkably, both kinases regulate the same cell cycle proteins and growth factor signaling pathways, albeit in different ways. In the case of growth factor signaling, the specific pathway targets diverge, with PKCa regulating ligand binding, receptor trafficking, and downstream pathways, whereas PKCδ primarily regulates the activation of proproliferative pathways downstream of growth factor receptors. The observation that PKCa and PKCδ can control similar (or the same) biological pathways with different outcomes indicates that output is likely to be highly dependent on tissue, cellular, and signaling context.

Figure 6. Summary of the regulation and functions of PKCa and PKCδ signaling. The regulation and predominant roles of PKCa and PKCδ are indicated. + and − indicate positive and negative effects on the indicated cellular processes, with multiple +/− symbols indicating the relative prevalence of indicated effects based on the literature.
PKCa and PKCδ have largely opposing roles in cell survival and cell death

In most, but not all cases, PKCa activates prosurvival pathways, whereas PKCδ promotes cell death. In some contexts, contrasting functions are mediated by opposing effects on the same target proteins, with one example being the Bcl-2 family proteins. However, PKCδ can exert proapoptotic roles through regulation of targets not shared by PKCa, as seen in response to cell stress or DNA damage. The ability of PKCδ to regulate cell proliferation and cell death raises the important question of how these functions are segregated. Evidence points to subcellular localization of PKCδ as a determinant of function. When primarily cytoplasmic, PKCδ appears to be proproliferative, whereas nuclear translocation is tightly associated with cell death. However, some cancer cells may have high levels of nuclear PKCδ but not induce apoptosis, consistent with evasion of apoptosis being a hallmark of cancer. An interesting question is whether proliferative signaling and cell death signaling by PKCδ are linked, and if so, how. A possible connection is EGFR and MEK–ERK, which can regulate both biological outcomes. Studies in cells with specific oncogenic drivers and lessons from drug resistance models suggest that PKCδ “rewiring” is likely an adaptive response to promote tumor cell survival.

In mouse models of tumorigenesis, PKCa is uniformly tumor suppressive, whereas PKCδ usually functions as a tumor promoter

The largely tumor-suppressive effects of PKCa suggest that antiproliferative signaling is dominant over the prosurvival functions of the kinase. The largely tumor-promoting effects of PKCδ, on the other hand, point to dominant effects of PKCδ-regulated proproliferative and prosurvival pathways. It is notable that both PKCa and PKCδ generally act as positive regulators of migration and invasion, and both kinases have been implicated in tumor metastasis. The well-documented ability of PKCa to promote cell motility, EMT, invasion, and survival likely explains the seemingly contradictory tumor-promoting activity of this kinase in some cancer types, such as breast tumors. It should be appreciated that in vivo cancer models are largely limited to studies in whole animal knockouts of PKCa or PKCδ and to a select group of tumor models. Analysis of the role of these kinases in models with tissue-specific gene disruption, and in the context of other cancer driving mutations, will be required to more fully understand how these enzymes contribute to tumorigenesis and tumor progression.

The well-documented roles of PKCa and PKCδ in disease pathogenesis support their potential as therapeutic targets

While efforts are underway to target individual PKC isoforms, isoenzyme-specific targeting is a challenging task because of structural similarity and overlapping functions. There are also important concerns about whether therapeutic strategies should focus on rescuing or inhibiting PKC signaling given the complex phenotypes observed. In addition, both PKCa and PKCδ can promote resistance of cancer cells to the effects of chemotherapeutic agents, further complicating approaches to targeting these enzymes in cancer. A deeper understanding of the functions of each isoform in specific disease settings will be essential for the development of effective drug strategies.

Author contributions—J. D. B., T. A., A. R. B., and M. E. R. conceptualization; J. D. B., T. A., A. R. B., and M. E. R. writing–original draft; J. D. B., T. A., A. R. B., and M. E. R. writing–review & editing; J. D. B., T. A., A. R. B., and M. E. R. visualization; J. D. B. and M. E. R. supervision; J. D. B. and M. E. R. project administration; J. D. B. and M. E. R. funding acquisition.

Funding and additional information—This work was supported by the National Institutes of Health R01 grants DE027517 and DE015648, T32 CA190216, and F32 DE029116 (to M. E. R.) and by the National Institutes of Health R01 Grant CA054807, R21 Grant CA191894, Cancer Center Core Grant CA036727, and P20 Grant GM121316 and DOD award W81XWH-20-1-0590 (to J. E. D.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: BIM, BCL-2-like protein 11; BCL-2, B cell lymphoma 2 apoptosis regulator; CDCP1, CUB domain–containing protein 1; CDK, cyclin-dependent kinase; CF, catalytic fragment; cPKC, conventional PKC; DAG, diacylglycerol; DLG, discs large MAGUK (membrane-associated guanylylate kinase homologs) scaffold protein; ECM, extracellular matrix; EGFR, epidermal growth factor receptor; EMT, epithelial-to-mesenchymal transition; ER, endoplasmic reticulum; ERK, extracellular signal–regulated kinase; FGF, fibroblast growth factor; IP3, inositol 3-phosphate; MEK, mitogen-activated protein kinase kinase; MMP, matrix metalloproteinase; MSK1, mitogen- and stress-activated protein kinase 1; mTORC2, mammalian target of rapamycin complex 2; nPKC, novel PKC; NSCLC, non–small cell lung cancer; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP2A, protein phosphatase 2A; PTB, phosphotyrosine-binding motif; ROS, reactive oxygen species; RTK, receptor tyrosine kinase; TKI, tyrosine kinase inhibitor; TNF, tumor necrosis factor; ZEB, zinc finger E-box-binding homeobox.

References

1. Takai, Y., Kishimoto, A., Inoue, M., and Nishizuka, Y. (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. I. Purification and characterization of an active enzyme from bovine cerebellum. J. Biol. Chem. 252, 7603–7609
2. Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J. Biol. Chem. 252, 7610–7616
3. Leroux, A. E., Schulze, J. O., and Biondi, R. M. (2018) AGC kinases, mechanisms of regulation and innovative drug development. Semin. Cancer Biol. 48, 1–17
4. Newton, A. C. (2001) Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem. Rev. 101, 2353–2364
13. Newton, A. C. (2003) Regulation of the ABC kinases by phosphorylation: Biochim. Biophys. Acta 11, 591–592
14. Meldrum, E., Parker, P. J., and Carozzi, A. (1991) The PtdIns-PLC superfamily and signal transduction. Biochim. Biophys. Acta 1092, 49–71
15. Gong, J., Holewinski, R. J., Van Eyk, J. E., and Steinberg, S. F. (2015) A novel phosphorylation site at Ser130 adjacent to the pseudosubstrate domain contributes to the activation of protein kinase C-delta. Biochim. Biophys. Acta 1838, 1536–1547
16. Benes, C. H., Wu, N., Elia, A. E., Dharia, T., Cantley, L. C., and Soltoff, S. P. (2005) The C2 domain of PKCdela is a phosphotyrosine binding domain. Cell 121, 271–280
17. Lopez-Lluch, G., Bird, M. M., Canas, B., Godovac-Zimmerman, J., Ridley, A., Segal, A. W., et al. (2001) Protein kinase C-delta C2-like domain is a binding site for actin and enables actin redistribution in neutrophils. Biochem. J. 357, 39–47
18. Konishi, H., Tanaka, M., Takemura, Y., Matsuhashi, H., Ono, Y., Kikkawa, U., et al. (1997) Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc. Natl. Acad. Sci. U. S. A. 94, 11233–11237
19. Li, J., Ziemba, B. P., Falke, J. J., and Voth, G. A. (2014) Interactions of protein kinase C-alpha C1A and C1B domains with membranes: a combined computational and experimental study. J. Am. Chem. Soc. 136, 11757–11766
20. Dries, D. R., Gallegos, L. L., and Newton, A. C. (2007) A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J. Biol. Chem. 282, 826–830
21. Steinberg, S. F. (2012) Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci. 13, 10697–10721
22. Konishi, H., Yamauchi, E., Taniguchi, H., Yamamoto, T., Matsuhashi, T., Takemura, Y., et al. (2001) Phosphorylation sites of protein kinase C delta in H2O2-treated cells and its activation by tyrosine kinase in vitro. Proc. Natl. Acad. Sci. U. S. A. 98, 6587–6592
23. Chiarugi, P., Taddei, M. L., and Ramponi, G. (2005) Oxidation and tyrosine phosphorylation: synergistic or antagonistic cues in protein tyrosine phosphatase. Cell Mol. Life Sci. 62, 931–936
24. Adwan, T. S., Ohm, A. M., Jones, D. N., Humphries, M. J., and Reyland, M. E. (2011) Regulated binding of importin-alpha to protein kinase C delta in response to apoptotic signals facilitates nuclear import. J. Biol. Chem. 286, 35716–35724
JBC REVIEWS: PKCs and PKCδ

48. Humphries, M. J., Ohm, A. M., Schaack, J., Adwan, T. S., and Reyland, M. E. (2008) Tyrosine phosphorylation regulates nuclear translocation of PKCDelta. Oncogene 27, 3045–3053

49. Wie, S. M., Adwan, T. S., DeGregori, J., Anderson, S. M., and Reyland, M. E. (2014) Inhibiting tyrosine phosphorylation of protein kinase Cdelta (PKCDelta) protects the salivary gland from radiation damage. J. Biol. Chem. 289, 10900–10908

50. DeVries, T. A., Neville, M. C., and Reyland, M. E. (2002) Nuclear import of PKCDelta is required for apoptotic identification of a novel nuclear import sequence. EMBO J. 21, 6050–6060

51. DeVries-Seimon, T. A., Ohm, A. M., Humphries, M. J., and Reyland, M. E. (2007) Induction of apoptosis is driven by nuclear retention of protein kinase C delta. J. Biol. Chem. 282, 22307–22314

52. Lu, W., Finnis, S., Xiang, C., Lee, H. K., Markowitz, Y., Okhrimenko, H., et al. (2002) Tyrosine 311 is phosphorylated by c-Abl and promotes the apoptotic effect of PKCDelta in glioma cells. Biochem. Biophys. Res. Commun. 352, 431–436

53. Blass, M., Kronfeld, I., Kazimirsky, G., Blumberg, P. M., and Brodie, C. (2004) Tyrosine phosphorylation of protein kinase Cdelta is essential for its apoptotic effect in response to etoposide. Mol. Cell. Biol. 24, 182–195

54. Lomonaco, S. L., Kahana, S., Blass, M., Brody, Y., Okhrimenko, H., Xiang, C., et al. (2008) Phosphorylation of protein kinase cdelta on distinct tyrosine residues induces sustained activation of Erk1/2 via down-regulation of MKP-1: A role in the apoptotic effect of etoposide. J. Biol. Chem. 283, 17731–17739

55. Kang, M. Y., Zhang, Y., Matkovich, S. J., Diwan, A., Chishti, A. H., and Dorn, G. W., 2nd (2010) Receptor-independent cardiac protein kinase Calpha (PKCalpha) is resistant to long-term desensitization/down-regulation by prolonged diacylglycerol stimulation. J. Biol. Chem. 285, 6313–6346

56. Lee, H. W., Smith, L., Pettit, G. R., and Smith, J. B. (1997) Bryostatin 1 and phorbol ester down-modulate protein kinase C-alpha and -epsilon via the ubiquitin/proteasome pathway in human fibroblasts. Mol. Pharmacol. 51, 439–447

57. Lee, H. W., Smith, L., Pettit, G. R., Vinitsky, A., and Smith, J. B. (1996) Ubiquitination of protein kinase C-alpha and degradation by the proteasome. J. Biol. Chem. 271, 20973–20976

58. Lu, Z., and Hunter, T. (2009) Degradation of activated protein kinases by ubiquitination. Annu. Rev. Biochem. 78, 435–475

59. Leontieva, O. V., and Black, J. D. (2016) Protein kinase Cdelta protects the salivary gland from radiation damage. J. Biol. Chem. 288, 13093–13109

60. Feng, X., and Hannun, Y. A. (1998) An essential role for autophosphorylation of protein kinase Cdelta (PKCdelta) protects the salivary gland from radiation damage. J. Biol. Chem. 283, 6300–6311

61. Hansra, G., Garcia-Paramio, P., Prevostel, C., Whelan, R. D., Bornancin, F., and Parker, P. J. (1999) Multisite dephosphorylation and desensitization of conventional protein kinase C isoforms. Biochem. J. 342, 337–344

62. Abrahamsen, H., O’Neill, A. K., Kannan, N., Kruse, N., Taylor, S. S., Jennings, P. A., et al. (2012) Peptidyl-prolyl isomerase Pin1 controls down-regulation of conventional protein kinase C isoforms. J. Biol. Chem. 287, 13262–13278

63. Lum, M. A., Balaburski, G. M., Murphy, M. E., Black, A. R., and Black, J. D. (2013) Heat shock proteins regulate activation induced proteosomal degradation of the mature phosphorylated form of protein kinase C. J. Biol. Chem. 288, 27112–27127

64. Srivastava, J., Procyk, K. J., Iurrioz, X., and Parker, P. J. (2002) Phosphorylation is required for PMA- and cell-cycle-induced degradation of protein kinase Cdelta. Biochem. J. 368, 349–355

65. Gao, T., and Newton, A. C. (2002) The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J. Biol. Chem. 277, 31585–31592

66. Cameron, A. J., Escribano, C., Saurin, A. T., Kostelecky, B., and Parker, P. J. (2009) PKC maturation is promoted by nucleotide pocket occupation independently of intrinsic kinase activity. Nat. Struct. Mol. Biol. 16, 624–630

67. Maccario, H., Junoy, B., Poulin, B., Boyer, B., Enjalbert, A., and Drouva, S. V. (2004) Protein kinase Cdelta as gonadotropin-releasing hormone target isoform in the alphaT3-1 gonadotrope cell line. Neuroendocrinology 79, 204–220

68. Olivier, A. R., and Parker, P. J. (1994) Bombesin, platelet-derived growth factor, and diacylglycerol induce selective membrane association and down-regulation of protein kinase C isoforms in Swiss 3T3 cells. J. Biol. Chem. 269, 2758–2763

69. Kiley, S. C., Parker, P. J., Fabbro, D., and Jaken, S. (1991) Differential regulation of protein kinase C isoforms by thyrotropin-releasing hormone in GH4C1 cells. J. Biol. Chem. 266, 23761–23768

70. Chiu, T., Santiskulvong, C., and Rozengurt, E. (2003) ANG II stimulates diacylglycerol–cAMP–protein kinase C-dependent ERK activation, DNA synthesis, and cell division in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1–G11

71. Szallasi, Z., Denning, F. M., Smith, C. B., Dlugosz, A. A., Yuspa, S. H., Pettit, G. R., et al. (1994) Bryostatin 1 protects protein kinase C-delta from down-regulation in mouse keratinocytes in parallel with its inhibition of phorbol ester-induced differentiation. Mol. Pharmacol. 46, 840–850

72. Szallasi, Z., Smith, C. B., Pettit, G. R., and Blumberg, P. M. (1994) Differential regulation of protein kinase C isoforms by bryostatin 1 and phorbol 12-myristate 13-acetate in NIH 3T3 fibroblasts. J. Biol. Chem. 269, 2118–2124

73. Newton, A. C. (2010) Protein kinase C poised to signal. Am. J. Physiol. Endocrinol. Metab. 298, E395–E402

74. Kajimoto, T., Sawamura, S., Tohyama, Y., Mori, Y., and Newton, A. C. (2010) Protein kinase C (delta)-specific activity reporter reveals agonist-evoked nuclear activity controlled by Src family of kinases. J. Biol. Chem. 285, 41896–41910

75. Kajimoto, T., Shirai, Y., Sakai, N., Yamamoto, T., Matsuzaki, H., Kikkawa, U., et al. (2004) Ceramide-induced apoptosis by translocation, phosphorylation, and activation of protein kinase Cdelta in the Golgi complex. J. Biol. Chem. 279, 12668–12676

76. Jaken, S., and Parker, P. J. (2000) Protein kinase C binding partners. Bioessays 22, 245–254

77. Hsu, A. H., Lum, M. A., Shim, K. S., Frederick, P. J., Morrison, C. D., Chen, B., et al. (2018) Crosstalk between PKCalpha and PI3K/AKT signaling is tumor suppressive in the endometrium. Cell Rep. 24, 655–669
104. Pfeifhofer, C., Gruber, T., Letschka, T., Thuille, N., Lutz-Nicoladoni, C., Gomel, R., Xiang, C., Finniss, S., Lee, H. K., Lu, W., Okhrimenko, H., Bao, J., Alroy, I., Waterman, H., Schejter, E. D., Brodie, C., Gruenberg, J., Koese, M., Rentero, C., Kota, B. P., Hoque, M., Cairns, R., Wood, P., Friedman, B., Frackelton, A. R., Jr., Ross, A. H., Connors, J. M., Fujiki, H., Acin-Perez, R., Hoyos, B., Gong, J., Vinogradov, V., Fischman, D. A., Ouyang, X., Gulliford, T., and Epstein, R. J. (1998) The duration of activity. (1996) Human cancer cells exhibit protein kinase C-dependent c-erbB-2 inactivation. Oncogene. Jerome-Morais, A., Rahn, H. R., Tibudan, S. S., and Denning, M. F. (1996) Tumor promoters block tyrosine-specific phosphorylation of the epidermal growth factor receptor. Proc. Natl. Acad. Sci. U. S. A. 81, 3034–3038. Bollag, W. B. (2009) Protein kinase C isoform-dependent c-erbB-2 transmodulation that correlates with phosphatase sensitivity and kinase activity. J. Biol. Chem. 271, 21786–21792. Bao, J., Alroy, I., Waterman, H., Schejter, E. D., Brodie, C., Gruenberg, J., et al. (2000) Threonine phosphorylation diverts internalized epidermal growth factor receptors from a degradative pathway to the recycling endosome. J. Biol. Chem. 275, 26178–26186. Bollag, W. B. (2009) Protein kinase C isozyme-mediated cell cycle arrest involves induction of p21WAF1/CIP1 and p27KIP1 and hypophosphorylation of the retinoblastoma protein in intestinal epithelial cells. J. Biol. Chem. 272, 9424–9435. Denning, M. F., Dlugosz, A. A., Williams, E. K., Szallasi, Z., Blumberg, P. A., (2001) PKC-delta inhibits anchorage-dependent and anchorage-independent growth in vitro. J. Biol. Chem. 276, 18104–18117. Chen, Z., Forman, L. W., Miller, K. A., English, B., Takashima, A., Bohacek, R. A., et al. (2011) Protein kinase Cdelta inactivation inhibits cellular proliferation and decreases survival in human neuroendocrine tumors. Endocr. Relat. Cancer 18, 759–771. Chen, Z., Forman, L. W., Williams, R. M., and Faller, D. V. (2014) Protein kinase C-δ inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo. BMC Cancer 14, 90. Garavello, N. M., Pena, D. A., Bonatto, J. M., Duarte, M. L., Costa-Ju- nior, H. M., Schumacher, R. L., et al. (2013) Activation of protein kinase C delta by psideltaRACK peptide promotes embryonic stem cell proliferation. In JBC REVIEWS: PKCα and PKCδ 272, 2330–2332. Grosse, V. C., Falbo, K. B., Kazaniat, M. G., de Kier Joffe, E. D., and Utrregre, A. J. (2007) Protein kinase C delta enhances proliferation and survival of murine mammary cells. Mol. Carcinog. 46, 381–390. Lei, Z., Wang, J., Sun, W., Chen, X., Jiao, W., Zheng, H., et al. (2018) PKCδ reveals a tumor promoter function by promoting cell proliferation and migration in somatotropinomas. Int. J. Clin. Exp. Pathol. 11, 208–215. Berardi, D. E., Flumian, C., Rodriguez, C. E., Bessone, M. I., Cirigliano, S. M., Joffé, E. D., et al. (2016) PKCδ inhibition impairs mammary cancer proliferative capacity but selects cancer stem cells, involving autophagy. J. Cell Biochem. 117, 730–740. Cerda, S. R., Bissonnette, M., Scaglione-Sewell, B., Lyons, M. R., Khare, S., Mustafi, R., et al. (2001) PKC-δ inhibits anchorage-dependent and -independent growth, enhances differentiation, and increases apoptosis in CaCo-2 cells. Gastroenterology 120, 1700–1712. 87. Jerome-Morais, A., Rahn, H. R., Tibudan, S. S., and Denning, M. F. (2009) Role for protein kinase C-alpha in keratinocyte growth arrest. J. Invest. Dermatol. 129, 2365–2375. Saxon, M. L., Zhao, X., and Black, I. D. (1994) Activation of protein kinase C isoforms is associated with post-mitotic events in intestinal epithelial cells in situ. J. Cell Biol. 126, 747–763. Friedman, B., Frackelton, A. R., Jr., Ross, A. H., Connors, J. M., Fujiki, H., Sugimura, T., et al. (1984) Tumor promoters block tyrosine-specific phosphorylation of the epidermal growth factor receptor. Proc. Natl. Acad. Sci. U. S. A. 114, 1511–1518. Mischak, H., Pierce, J. H., Goodnight, J., Kazaniat, M. G., Blumberg, P. M., and Mushinski, J. F. (1993) Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-α and -δ and not by protein kinase CβII, -ε, -ζ, and -η. J. Biol. Chem. 268, 20110–20115. Pierre, A., Heyworth, C. M., Nicholls, S. E., Spooner, E., Dexter, T. M., Lord, J. M., et al. (1998) An activated protein kinase C α gives a differentiation signal for hematopoietic progenitor cells and mimicks macrophage colony-stimulating factor-stimulated signaling events. J. Cell Biol. 140, 1511–1518. 85. Nakashima, I. (1992) Accelerated proliferation and interleukin-2 production by psideltaRACK peptide promotes embryonic stem cell proliferation through ERK 1/2. J. Biol. Chem. 267, 18644–18648. Pfeilhofer, C., Gruber, T., Letschka, T., Thuille, N., Lutz-Nicoladoni, C., Hermann-Kleiter, N., et al. (2006) Defective IgG2a/2b class switching in PKCδ-/- mice. J. Immunol. 176, 6004–6011.
123. Cerda, S. R., Mustafi, R., Little, H., Cohen, G., Khare, S., Moore, C., et al. (2006) Protein kinase C delta inhibits Caco-2 cell proliferation by selective changes in cell cycle and cell death regulators. Oncogene 25, 3123–3138.

124. Chew, Y. C., Adhikary, G., Wilson, G. M., Reece, E. A., and Eckert, R. L. (2011) Protein kinase C (PKC) delta suppresses keratinocyte proliferation by increasing p21(Cip1) level by a KLF4 transcription factor-dependent mechanism. J. Biol. Chem. 286, 28772–28782.

125. Hernández-Maqueda, J. G., Luna-Ulloa, L. B., Sanztoyano-Ramos, P., Castañeda-Pathán, M. C., and Robles-Flores, M. (2013) Protein kinase C delta negatively modulates canonical Wnt pathway and cell proliferation in colon tumor cell lines. PLoS One 8, e58540.

126. Miyamoto, A., Nakayama, K., Imaki, H., Hirose, S., Jiang, Y., Abe, M., et al. (2002) Increased proliferation of B cells and auto-immunity in mice lacking protein kinase C delta. Nature 416, 865–869.

127. Allen-Petersen, B. L., Carter, C. J., Ohm, A. M., and Reyland, M. E. (2014) Protein kinase Cdelta is required for ErbB2-driven mammary gland tumorigenesis and negatively correlates with prognosis in human breast cancer. Oncogene 33, 1306–1315.

128. Symonds, J. M., Ohm, A. M., Carter, C. J., Heasley, L. E., Boyle, T. A., Franklin, W. A., et al. (2011) Protein kinase C delta is a downstream effector of oncogenic K-ras in lung tumors. Cancer Res. 71, 2087–2097.

129. Mauro, L. V., Grossoni, V. C., Urrutegi, A. J., Yang, C., Colombo, L. L., Morandi, A., et al. (2010) PKC Delta (PKCdelta) promotes tumor progression of human ductal pancreatic cancer. Pancreas 39, e31–e41.

130. Kitamura, K., Mizuno, K., Futo, A., Akita, Y., Miyamoto, A., Nakayama, K., et al. (2003) The second phase activation of protein kinase C delta at late G1 is required for DNA synthesis in serum-induced cell cycle progression. Genes Cells 8, 311–324.

131. Santiago-Walker, A. E., Fikaris, A. J., Kao, G. D., Brown, E. J., Kazanietz, M. G., and Meinkoth, J. L. (2005) Protein kinase Cdelta stimulates progression of human ductal pancreatic cancer. J. Biol. Chem. 280, 31217–31219.

132. Sieher, H. L., Sub, C. C., Wang, T. S., and Yang, C. M. (2008) PKC-delta/c-Src-mediated EGF receptor transactivation regulates thrombin-induced COX-2 expression and PGE(2) production in rat vascular smooth muscle cells. Biochim. Biophys. Acta 1783, 1563–1575.

133. Hsieh, H. L., Tung, W. H., Wu, C. Y., Wang, H. H., Lin, C. C., Wang, T. S., et al. (2009) Thrombin induces EGF receptor expression and cell proliferation via a PKC(delta)/c-Src-dependent pathway in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 29, 1594–1601.

134. Alhara, H., Asaka, Y., Yoshida, K., and Nishizuka, Y. (1991) Sustained activation of protein kinase C is essential to HL-60 cell differentiation to macrophage. Proc. Natl. Acad. Sci. U. S. A. 88, 11062–11066.

135. Clark, J. A., Black, A. R., Leontieva, O. V., Frey, M. R., Pysz, M. A., Kanoh, Y., et al. (2004) Involvement of the ERK signaling cascade in protein kinase C-mediated cell cycle arrest in intestinal epithelial cells. Exp. Cell Res. 298, 6963–6967.

136. Perletti, G., Marras, E., Dondi, D., Osti, D., Congiu, T., Ferrarese, R., et al. (2009) p21(Waf1/Cip1) and p53 are downstream effectors of PKCdelta in thyroid cancer cells through extracellular signal-regulated kinase mitogen-activated protein kinase J. Biol. Chem. 284, 6860–6865.

137. Hizli, A. A., Black, A. R., Pysz, M. A., and Black, J. D. (2006) Protein kinase C delta negatively modulates the canonical Wnt pathway and cell proliferation in pancreatic cancer cells via p21(Cip1)-mediated G1 arrest. J. Cell. Sci. 119, 3025–3035.

138. Sun, X. G., and Rotenberg, S. A. (1999) Overexpression of protein kinase Cxi in MCF-10A human breast cells engenders dramatic alterations in morphology, proliferation, and motility. Cell Growth Differ. 10, 343–352.

139. Pysz, M. A., Leontieva, O. V., Bateman, N. W., Uronis, J. M., Curry, K. J., and Kazanietz, M. G. (2011) Protein kinase Cdelta negatively modulates the translational repressor 4E-BP1 via a phosphoinositide 3-kinase/Akt-independent, protein phosphatase 2A-dependent mechanism in intestinal epithelial cells. J. Biol. Chem. 201, 14596–14603.

140. Guan, L., Song, K., Pysz, M. A., Curry, K. J., Hizli, A. A., Danielpour, D., et al. (2007) Protein kinase C-mediated down-regulation of cyclin D1 involves activation of the translational repressor 4E-BP1 via a phosphoinositide 3-kinase/Akt-independent, protein phosphatase 2A-dependent mechanism in intestinal epithelial cells. J. Biol. Chem. 282, 14213–14225.

141. Wu, T. T., Hsieh, Y. H., Hsieh, Y. S., and Liu, J. Y. (2008) Reduction of PKCdelta decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma. J. Cell Biol. 103, 9–20.

142. Oliva, J. L., Man, M. C., Sanderowicz, A. M., and Kazanietz, M. G. (2008) S-Phase-specific activation of PKC alpha induces senescence in non-small cell lung cancer cells. J. Biol. Chem. 283, 5466–5476.

143. Pysz, M. A., Leontieva, O. V., Bateman, N. W., Uronis, J. M., Curry, K. J., and Kazanietz, M. G. (2005) Protein kinase C delta negatively modulates the canonical Wnt pathway and cell proliferation in pancreatic cancer cells via p21(Cip1)-mediated G1 arrest. J. Biol. Chem. 280, 33926–33934.

144. Perletti, G., Marras, E., Dondi, D., Osti, D., Congiu, T., Ferrarese, R., et al. (2005) p21(Waf1/Cip1) and p53 are downstream effectors of PKCdelta in tumor suppression and differentiation in human colon cancer cells. Int. J. Cancer 113, 42–53.

145. Ashton, A. W., Watanabe, G., Albanese, C., Harrington, E. O., Ware, J. A., and Pestell, R. G. (1999) Protein kinase Cdelta inhibition of S-phase progression of human malignant hepatocellular carcinoma. J. Cell Biol. Sci. 20, 34709–34711.

146. Soh, J. W., and Weinstein, I. B. (2003) Roles of protein kinase Cdelta in the transcriptional control of cyclin D1 and related genes. J. Biol. Chem. 278, 34709–34716.

147. Perletti, G., Marras, E., Dondi, D., Osti, D., Congiu, T., Ferrarese, R., et al. (2005) p21(Waf1/Cip1) and p53 are downstream effectors of protein kinase C delta in tumor suppression and differentiation in human colon cancer cells. Int. J. Cancer 113, 42–53.

148. Vucenik, I., Ramakrishna, G., Tantevskul, K., Anderson, L. M., and Ramljak, D. (2005) Inositol hexaphosphate (IP6) blocks proliferation of human breast cancer cells through a PKCdelta-dependent increase in p27Kip1 and decrease in retinoblastoma protein (pRb) phosphorylation. Breast Cancer Res. Treat 91, 35–45.
159. Oh, Y. T., Chun, K. H., Park, B. D., Choi, J. S., and Lee, S. K. (2007) Role of threonine residues in regulation of the epidermal growth factor receptor by protein kinase C alpha activation by RET: evidence for a negative feedback mechanism controlling RET tyrosine kinase. Oncogene 26, 2942–2949

160. Byun, H. O., Jung, H. J., Kim, M. J., and Yoon, G. (2014) PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta-induced senescence. Free Radic. Res. 48, 1100–1108

161. Lee, S. L., Hong, S. W., Shin, J. S., Kim, J. S., Ko, S. G., Hong, N. J., et al. (2009) p34SEK1-1 inhibits doxorubicin-induced senescence through a pathway mediated by protein kinase C-delta and c-Jun-NH2-kinase 1 activation in human breast cancer MCF7 cells. Mol. Cancer Res. 7, 1845–1853

162. Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., et al. (2013) Protein kinase C delta (PKCdelta) splice variants modulate apoptosis pathway in 3T3L1 cells during adipogenesis: identification of PKCdelta1 inhibitor. J. Biol. Chem. 288, 26834–26846

163. Patel, R. S., Carter, G., El Bassit, G., Patel, A. A., Cooper, D. R., Murr, M., et al. (2016) Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCdelta) in adipose stem cell niche. Stem Cell Investig. 3, 2

164. Takahashi, A., Ohtani, N., Yamakoshi, K., Iida, S., Tahara, H., Nakayama, K., et al. (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 8, 1291–1297

165. Katakur, Y., Udono, M., Katsuki, K., Nishide, H., Tabira, Y., Ikei, T., et al. (2009) Protein kinase C delta plays a key role in cellular senescence programs of human normal diploid cells. J. Biochem. 146, 87–93

166. Burton, K. T., MacLennan, M. J., and Aitken, J. J., et al. (2012) Enhanced PKCdelta and ERK signaling mediate cell migration of retinal pigment epithelial cells synergistically induced by HGF and EGF. PLoS One 7, e4937

167. Lu, Y., Jamison, L., Bruner, A. R., and Fields, A. P. (2001) NF-kappaB/RelA transactivation is required for epidermal protein kinase C iota-mediated cell survival. Oncogene 20, 4777–4792

168. Kvetnicska, B., Sanda, N., Aoki, D., Aoki, D., et al. (2004) Protein kinase Cdelta-calcium crosstalk regulates epidermal growth factor receptor exit from early endosomes. J. Biol. Chem. 279, 41085–41094

169. Hu, C. T., Cheng, C. C., Pan, S. M., Wu, J. R., and Wu, W. S. (2013) PKCdelta regulates force signaling during VEGF/CXCL4 induced dissociation of endothelial tubes. PLoS One 9, e93968

170. Liu, Y., Li, Z., Wang, L., Wu, W. X., Liu, P. Y., and Fan, Y. H. (2013) PKCdelta-mediated cell survival. J. Biol. Chem. 288, 17451–17460

171. Wang, X. Q., Yan, Q., Sun, P., Liu, J. W., Go, L., McDaniel, S. M., et al. (2007) Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-1, and ganglioside. Cancer Res. 67, 9986–9995

172. Elmakht, H., Gontit, M., Salazar, M. D., Zhang, J., Basrur, V., Gunning, W., et al. (2009) Regulation of folate receptor internalization by protein kinase C alpha. Biochemistry 48, 8249–8260

173. Tanaka, Y., Gavrilides, M. V., Mitsuuchi, Y., Fujii, T., and Kazanietz, M. G. (2003) Protein kinase C promotes apoptosis in LNCAp prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J. Biol. Chem. 278, 33753–33762

174. Caunt, C. J., Rivers, C. A., Conway-Campbell, B. L., Norman, M. R., and Park, M., et al. (2016) Adipose-derived stem cells from lean and obese humans differ in their role in angiogenesis and angiocrine activity in aortic ring model. Mol. Cell. Biol. 36, 4096–4107

175. Idkowiak-Baldys, J., Becker, K. P., Kitatani, K., and Hannun, Y. A. (2006) STIM1, PKC-delta and RasGRP set a threshold for activation of heparin-binding epidermal growth factor receptor exit from early endosomes. J. Biol. Chem. 281, 22321–22331

176. Lund, K. A., Lazar, C. S., Chen, W. S., Walsh, B. J., Welsh, J. B., Herbst, J. J., et al. (1990) Phosphorylation of the epidermal growth factor receptor at threonine 654 induces ligand-induced internalization and down-regulation. J. Biol. Chem. 265, 20517–20523

177. Wang, X. Q., Yan, Q., Sun, P., Liu, J. W., Go, L., McDaniel, S. M., et al. (2007) Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-1, and ganglioside. Cancer Res. 67, 9986–9995

178. Elmakht, H., Gontit, M., Salazar, M. D., Zhang, J., Basrur, V., Gunning, W., et al. (2009) Regulation of folate receptor internalization by protein kinase C alpha. Biochemistry 48, 8249–8260

179. Tanaka, Y., Gavrilides, M. V., Mitsuuchi, Y., Fujii, T., and Kazanietz, M. G. (2003) Protein kinase C promotes apoptosis in LNCAp prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J. Biol. Chem. 278, 33753–33762

180. Hoshino, D., Jourquin, J., Emmons, S. W., Miller, T., Goldgof, M., Costello, K., et al. (2012) Network analysis of the focal adhesion to invadopodia transition identifies a PI3K-PKCa invasive signaling Axis. Sci. Signal. 5, ra66

181. Pysz, M. A., Hao, F., Hizli, A. A., Lum, M. A., Swetzig, W. M., Black, A. R., et al. (2014) Differential regulation of cyclin D1 expression by protein kinase C alpha and e signaling in intestinal epithelial cells. J. Biol. Chem. 289, 12268–12283

182. Proper, K., Auerbach, H., Reuter, S., and Lee, S. K. (2007) Prokaryotic cell division. Curr. Opin. Cell Biol. 19, 84–90

183. Maitani, K., Nakayama, K., et al. (2006) ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 40, 1297–1304

184. Morrison, P., Takishima, K., and Rosner, M. R. (1993) Role of threonine 654 downstream of the epidermal growth factor receptor. J. Biol. Chem. 268, 22321–22331

185. Redig, A. J., and Platanias, L. C. (2007) The protein kinase C (PKC) family of proteins in cytokine signaling in hematopoiesis. J. Interferon Cytokine Res. 27, 623–636

186. Xia, S., Chen, Z., Forman, L. W., and Faller, D. V. (2009) PKCdelta survival signaling in cells containing an activated p21Ras protein requires PKCdelta-mediated cell death. Cell Signal. 21, 502–508

187. Chen, Y. J., Tsai, R. K., Wu, W. C., He, M. S., Kao, Y. H., and Wu, W. S. (2012) Enhanced PKCdelta and ERK signaling mediate cell migration of retinal pigment epithelial cells synergistically induced by HGF and EGF. PLoS One 7, e4937

188. Kvetnicska, B., Sanda, N., Aoki, D., Aoki, D., et al. (2004) Protein kinase Cdelta-calcium crosstalk regulates epidermal growth factor receptor exit from early endosomes. Mol. Cell. Biol. 15, 4877–4891

189. Jia, G., Wang, R., Yue, Y., and Dai, H. (2020) Activation of protein kinase Cdelta contributes to the induction of Src/EGF receptor/ERK signaling in Ammonia-treated astrocytes. J. Mol. Neurosci. 70, 1110–1119

190. Caunt, C. J., Rivers, C. A., Conway-Campbell, B. L., Norman, M. R., and Mc Ardle, C. A. (2008) Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases. J. Biol. Chem. 283, 6241–6252

191. Limander, A., Depeille, P., Freedman, T. S., Liou, J., Leitges, M., Kur osaki, T., et al. (2011) STIM1, PKC-delta and RasGRP set a threshold for...
proapoptotic erk signaling during B cell development. Nat. Immunol. 12, 425–433

196. Noh, K. T., Son, K. H., Jung, I. D., Kang, H. K., Hwang, S. A., Lee, W. S., et al. (2012) Protein kinase C delta (PKCdelta)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling cascade regulates glycogen synthase kinase-3 (GSK-3) inhibition-mediated interleukin-10 (IL-10) expression in lipopolysaccharide (LPS)-induced endotoxemia. J. Biol. Chem. 287, 14226–14233

197. Ohm, M. A., Affandi, T., and Reyland, M. E. (2019) EGF receptor and PKCdeta/2 signaling through the interaction with cytotoxic drug resistance in KRAS mutant lung cancer. Oncogene 36, 4370–4378

198. Xia, S., Forman, L. W., and Faller, D. V. (2007) Protein kinase C delta is required for survival of cells expressing activated p21RAS. J. Biol. Chem. 282, 13199–13210

199. Lee, P. C., Fang, Y. L., Yamaguchi, H., Wang, W. J., Chen, T. C., Hong, X., et al. (2018) Targeting PKCdelta as a therapeutic strategy against heterogeneous mechanisms of EGFR inhibitor resistance in EGFR-mutant lung cancer. Cancer Cell 34, 954–969.e4

200. Mandal, J. P., Shieue, C. N., Chen, Y. C., Lee, M. C., Yang, H. H., Chang, H. H., et al. (2021) PKCdelta mediates mitochondrial ROS generation and oxidation of HSP60 to relieve RIKP inhibition on MAPK pathway for HCC progression. Free Radic. Biol. Med. 163, 69–87

201. Hocavor, B. A., Morrow, D. M., Tykocinski, M. L., and Fields, A. P. (1992) Protein kinase C isotypes in human erythroleukemia cell proliferation and differentiation. J. Cell Sci. 101, 671–679

202. Murray, N. R., Baumgardner, G. P., Burns, D. J., and Fields, A. P. (1993) Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. Evidence that BII protein kinase C is required for proliferation. J. Biol. Chem. 268, 15847–15853

203. Walker, S. D., Murray, N. R., Burns, D. J., and Fields, A. P. (1995) Protein kinase C chimeras: catalytic domains of alpha and BII protein kinase C contain determinants for isotype-specific function. Proc. Natl. Acad. Sci. U. S. A. 92, 9156–9160

204. Dieter, P., and Schwendt, H. (2000) Protein kinase C-alpha and -beta play antagonistic roles in the differentiation process of THP-1 cells. Cell Signal. 12, 297–302

205. Rutberg, S. E., Saex, E., Glick, A., Dlugosz, A. A., Spiegelman, B. M., and Yusa, S. H. (1996) Differentiation of mouse keratinocytes is accompanied by PKC-dependent changes in AP-1 proteins. Oncogene 13, 167–176

206. Rosato, B., Ranieri, D., Nanni, M., Torrisi, M. R., and Belleudi, F. (2018) Role of FGFR2b expression and signaling in keratinocyte differentiation: sequential involvement of PKCdelta and PKCzeta. Cell Death Dis. 9, 565

207. Deszo, E. L., Brake, D. K., Cengel, K. A., Kelley, K. W., and Freund, G. G. (2001) CD45 negatively regulates monocytic cell differentiation by inhibiting phorbol 12-myristate 13-acetate-dependent phosphorylation and activation of protein kinase Cdelta. J. Biol. Chem. 276, 10212–10217

208. Feng, X., Zhang, J., Smuga-Otto, K., Tian, S., Yu, J., Stewart, R., et al. (2012) Protein kinase C mediated extracellular phosphorylation and differentiation of human embryonic stem cells. Stem Cells 30, 461–470

209. Smyth, D. C., Takenaka, S., Yeung, C., and Richards, C. D. (2015) Oncostatin M regulates osteogenic differentiation of murine adipose-derived mesenchymal progenitor cells through a PKCdelta-dependent mechanism. Cell Tissue Res. 360, 309–319

210. Reyland, M. E., and Jones, D. N. (2016) Multifunctional roles of PKCdelta: opportunities for targeted therapy in human disease. Pharmacol. Ther. 165, 1–13

211. Mandri, R., Ashkenazi, E., Blass, M., Kronfeld, I., Kaziminsky, G., Rosenthal, G., et al. (2001) Protein kinase Calpha and protein kinase Cdelta play opposite roles in the proliferation and apoptosis of glioma cells. Cancer Res. 61, 4612–4619

212. Halder, K., Banerjee, S., Bose, A., Majumder, S., and Majumdar, S. (2014) Overexpressed PKCdelta downregulates the expression of PKCalpha in B16F10 melanoma: induction of apoptosis by PKCdelta via ceramide generation. PLoS One 9, e91656

213. Ruvolo, P. P., Deng, X., Carr, B. K., and May, W. S. (1998) A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J. Biol. Chem. 273, 25436–25442

214. Ruvolo, P. P., Deng, X., and May, W. S. (2001) Phosphorylation of Bcl2 alpha mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia 15, 515–522

215. Wang, W. L., Yeh, S. F., Huang, E. Y., Lin, Y. L., Wang, C. F., Huang, C. Y., et al. (2007) Mitochondrial anchoring of PKCdelta by PKCalpha confers resistance to etoposide-induced apoptosis. Apoptosis 12, 1857–1871

216. Jilfai, T., Kuruinna, S., Suck, G., Carlson-Bremer, D., Ricciardi, M. R., Konopleva, M., et al. (2004) PKCdelta mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia 18, 505–512

217. Villar, J., Quadri, H. S., Song, I., Tomita, Y., Tiraod, O. M., and Notario, V. (2009) PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase Co-mediated Bcl-2 stabilization. Cancer Res. 69, 102–110

218. Ioniova, J., Misuth, M., Sureau, F., Miskovsky, J., and Nadova, Z. (2014) Effect of PKCa expression on Bcl-2 phosphorylation and cell death by hypericin. Apoptosis 19, 1779–1792

219. Lei, J., Li, Q., Gao, Y., Zhao, L., and Liu, Y. (2016) Increased PKCa activity by Rack1 overexpression is responsible for chemotherapy resistance in T-cell acute lymphoblastic leukemia-derived cell line. Sci. Rep. 6, 3317

220. Cerioni, L., Palomba, L., Brune, B., and Cantoni, O. (2006) Peroxynitrite-induced mitochondrial translocation of PKCalpha causes U937 cell survival. Biochem. Biophys. Res. Commun. 339, 126–131

221. Zheng, J., Kong, C., Yang, X., Cui, X., Lin, X., and Zhang, Z. (2017) Protein kinase C-alpha(PKCalpha) modulates cell apoptosis by stimulating nuclear translocation of NF-kappa-B p65 in uterine cell carcinoma of the bladder. BMC Cancer 17, 432

222. Smith, S. D., Enge, M., Bao, W., Thullberg, M., Costa, T. D., Olofsson, H. H., et al. (2012) Protein kinase C alpha (PKCalpha) regulates p53 localization and melanoma cell survival downstream of integrin alphav in three-dimensional collagen and in vivo. J. Biol. Chem. 287, 29336–29347

223. Jiang, Z., Kong, C., Zhang, Z., Zhu, Y., Zhang, Y., and Chen, X. (2015) Reduction of protein kinase C alpha (PKCalpha) promotes apoptosis via down-regulation of Dicer in bladder cancer. J. Cell Mol. Med. 19, 1085–1093

224. Yuan, Y., Wang, H., Rongrong, S., Xiaowu, L., Youwei, Z., and Sun, S. (2019) Sotrastaurin attenuates the stemness of gastric cancer cells by targeting PKCdelta. Biomed. Pharmacother. 117, 109165

225. Kim, K. S., Suh, Y., Hwang, E., Yoo, K. C., Choi, K. S., An, S., et al. (2015) PKCdelta maintains phenotypes of tumor initiating cells through cytokine-mediated autocrine loop with positive feedback. Oncogene 34, 5749–5759

226. Muselli, F., Courgaux, L., Morcos, R., Rochet, N., Nebout, M., Guerci, M., et al. (2021) Combination of PKCdelta inhibition with
conventional TKI treatment to target CML models. *Cancers (Basel)* **13**, 1693

234. Masoumi, K. C., Cormark, L., Lonne, G. K., Hellman, U., and Larsson, C. (2012) Identification of a novel protein kinase C delta-Smac complex that dissociates during paclitaxel-induced cell death. *FEBS Lett.* **586**, 1166–1172

235. Holmgren, C., Cormark, L., Lonne, G. K., Masoumi, K. C., and Larsson, C. (2014) Molecular characterization of protein kinase C delta (PKCdelta)-Smac interactions. *BMC Biochem.* **17**, 11

236. Quadros, M. R., Connelly, S., Kari, C., Abrams, M. T., Wickstrom, E., and Holmgren, C. (2012) Identiﬁcation of genes involved in cell cycle control and DNA repair. *Am. J. Physiol. Gastrointest. Liver Physiol.* **307**, G1207–G1215

237. Reyland, M. E. (2009) Protein kinase C isoforms: Multi-functional regulators of cell life and death. *Front. Biosci. (Landmark Ed.)* **14**, 2386–2399

238. Powell, C. T., Brittis, N. J., Stec, D., Hug, H., Heston, W. D., and Fair, W. (1999) Persistent membrane translocation of protein kinase C alpha during 12-0-tetradecanoyl-phorbol-13-acetate-induced apoptosis of LNCAp human prostate cancer cells. *Cell Growth Differ.* **7**, 419–428

239. Garcia-Bermejo, M. L., Leskow, F. C., Fujii, T., Wang, Q., Blumberg, P. M., Ohta, M., et al. (2002) Diacylglycerol (DAG)-lactones, a new class of protein kinase C (PKC) agonists, induce apoptosis in LNCAp prostate cancer cells by selective activation of PKCa. *J. Biol. Chem.* **277**, 645–655

240. Santiago, M. F., Perez-Reyes, P. L., Lopez-Aparicio, P., Recio, M. N., and Perez-Albarsanz, M. A. (2006) Diacylglycerol (DAG)-lactones, a new class of protein kinase C (PKC) agonists, induce apoptosis in LNCAp prostate cancer cells by selective activation of PKCa. *J. Biol. Chem.* **277**, 645–655

241. Allen-Petersen, B. L., Miller, M. R., Neville, M. C., Anderson, S. M., Humphries, M. J., Limesand, K. H., Schneider, J. C., Nakayama, K. I., Gordon, R., Anantharam, V., Kanthasamy, A. G., and Kanthasamy, A. (2012) Protein kinase Cdelta protects against bile acid apoptosis by suppressing proapoptotic JNK and BIM pathways in human and rat hepatocytes. *Am. J. Physiol. Cell Physiol.* **217**, 2174–2183

242. Ginnan, R., Guikema, B. J., Singer, H. A., and Jourdalters mammary gland development and apoptosis. *J. Biol. Chem.* **277**, 1580–1586

243. Lee, Y. J., Soh, J. W., Dean, N. M., Cho, C. K., Soh, J. W., Cho, C. K., Soh, J. W., et al. (2006) Activation of Bak and Bax through c-abl-protein kinase Cdelta-p38 MAPK signaling in response to ionizing radiation in human non-small cell lung cancer cells. *J. Biol. Chem.* **281**, 7049–7059

244. Arany, S., Benoit, D. S., Dewhurst, S., and Ovtit, C. E. (2013) Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo. *Mol. Ther.* **21**, 1182–1194

245. Pabla, N., and Dong, Z. (2012) Curtailting side effects in chemotherapy: a tale of PKCdelta in cisplatin treatment. *Oncotarget* **3**, 107–111

246. Choi, S. Y., Kim, M. J., Kang, C. M., Bae, S., Cho, C. K., Soh, J. W., et al. (2006) Activation of Bak and Bax through c-abl-protein kinase Cdelta-p38 MAPK signaling in response to ionizing radiation in human non-small cell lung cancer cells. *J. Biol. Chem.* **281**, 7049–7059

247. Murriel, C. L., Churchill, E., Inagaki, K., Szewda, L. I., and Mochly-Rosen, D. (2004) Protein kinase cdelta activation induces apoptosis in response to cardiac ischemia and reperfusion damage: a mechanism involving BAD and the mitochondria. *J. Biol. Chem.* **279**, 47985–47991

248. Sitalo, L. A., Tubudan, S. S., and Denning, M. F. (2006) The protein kinase C delta catalytic fragment targets Mcl-1 for degradation to trigger apoptosis. *J. Biol. Chem.* **281**, 29703–29710

249. Anderson, S. M., Reyland, M. E., Hunter, S., Deisher, L. M., Barzen, K. A., and Quissell, D. O. (1999) Etoposide-induced activation of c-jun terminal kinase (INK) correlates with drug-induced apoptosis in salivary gland acinar cells. *Cell Death Differ.* **6**, 454–462

250. Yoshida, K., Miki, Y., and Kufe, D. (2003) Protein kinase C delta catalytic domain. *Biochem. Biophys. Res. Commun.* **334**, 1068–1073

251. Cagnol, S., and Chambard, J. C. (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. *FEBS J.* **277**, 2–21

252. Kim, R., Guikema, B. J., Singer, H. A., and Jourdalters mammary gland development and apoptosis. *J. Biol. Chem.* **277**, 1580–1586

253. Santiago, M. F., Perez-Reyes, P. L., Lopez-Aparicio, P., Recio, M. N., and Perez-Albarsanz, M. A. (2006) Differential effects of PCBs on the induction of apoptosis in primary human keratinocytes by the protein kinase C delta catalytic domain. *J. Invest. Dermatol.* **123**, 434–440

254. Sitalo, L. A., Tubudan, S. S., and Denning, M. F. (2006) The protein kinase C delta catalytic fragment targets Mcl-1 for degradation to trigger apoptosis. *J. Biol. Chem.* **281**, 29703–29710

255. Anderson, S. M., Reyland, M. E., Hunter, S., Deisher, L. M., Barzen, K. A., and Quissell, D. O. (1999) Etoposide-induced activation of c-jun terminal kinase (INK) correlates with drug-induced apoptosis in salivary gland acinar cells. *Cell Death Differ.* **6**, 454–462

256. Yoshida, K., Miki, Y., and Kufe, D. (2002) Activation of PKA/INK signaling by protein kinase Cdelta in response to DNA damage. *J. Biol. Chem.* **277**, 48372–48378

257. Arango, D., Parihar, A., Villamena, F. A., Wang, L., Freitas, M. A., Grotewold, E., et al. (2012) Apigenin induces DNA damage through the PKCdelta-dependent activation of ATM and H2AX causing downregulation of genes involved in cell cycle control and DNA repair. *Biochem. Pharmacol.* **84**, 1571–1580

258. Bharti, A., Kraeft, S. K., Gounder, M., Pandey, P., Jin, S., Yuan, Z. M., et al. (1998) Inactivation of DNA-dependent protein kinase by protein kinase Cdelta: implications for apoptosis. *Mol. Cell Biol.* **18**, 6719–6728

259. LaGory, E. L., Sitalo, L. A., and Denning, M. F. (2010) The protein kinase C delta catalytic fragment is critical for maintenance of the G2/M DNA damage checkpoint. *J. Biol. Chem.* **285**, 1879–1887

260. Lee, Y. J., Soh, J. W., Dean, N. M., Cho, C. K., Kim, T. H., Lee, S. J., et al. (2002) Protein kinase Cdelta overexpression enhances radiation sensitivity via extracellular regulated protein kinase 1/2 activation, abolishing the radiation-induced G2/M arrest. *Cell Growth Differ.* **13**, 237–246

261. Li, B., Wang, X., Rasheed, N., Hu, Y., Boast, S., Ishii, T., et al. (2004) Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase C delta. *Genes Dev.* **18**, 1824–1837

262. Soriano-Carot, M., Quilis, I., Bano, M. C., and Igal, J. C. (2014) Protein kinase C controls activation of the DNA integrity checkpoint. *Nucl. Acids Res.* **42**, 7084–7095

263. Yoshida, K., Wang, H. G., Miki, Y., and Kufe, D. (2003) Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. *EMBO J.* **22**, 1431–1441
271. Park, C. H., and Kim, K. T. (2012) Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cdelta. PLoS One 7, e44307
272. Qi, H., Sun, B., Zhao, X., Du, J., Gu, Q., Liu, Y., et al. (2014) Wnt5a promotes vasculogenic mimicry and epithelial–mesenchymal transition via protein kinase Cα in epithelial ovarian cancer. Oncol. Rep. 32, 771–779
273. Llorens, M. C., Rossi, F. A., Garcia, I. A., Cooke, M., Abba, M. C., Lopez-Haber, C., et al. (2019) PKCa modulates epithelial-to-mesenchymal transition and invasiveness of breast cancer cells through ZEB1. Front. Oncol. 9, 1323
274. Kyuno, D., Kojima, T., Yamaguchi, H., Ito, T., Kimura, Y., Imamura, M., et al. (2013) Protein kinase Cα inhibitor protects against downregulation of claudin-1 during epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis 34, 1232–1245
275. Black, A. R., and Black, J. D. (2021) The complexities of PKCα signaling in cancer. Adv. Biol. Regul. 80, 100769
276. Tam, W. L., Lu, H., Buikhuisen, J., Soh, B. S., Lim, E., Reinhardt, F., et al. (2013) Protein kinase Cα is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 24, 347–364
277. Ahera, M. B., and Kazanietz, M. G. (2015) Protein kinase Cα mediates erlotinib resistance in lung cancer cells. Mol. Pharmacol. 87, 832–841
278. Tedja, R., Roberts, C. M., Alvero, A. B., Cardenas, C., Yang-Hartwich, Y., Spadlinger, S., et al. (2019) Protein kinase Cα-mediated phosphorylation of Twist1 at Ser-144 prevents Twist1 ubiquitination and stabilizes it. J. Biol. Chem. 294, 5082–5093
279. Vandenbroucke St Amant, E., Tauseef, M., Vogel, S. M., Gao, X.-P., Kyuno, D., Kojima, T., Yamaguchi, H., Ito, T., Kimura, Y., Imamura, M., et al. (2015) Protein kinase Cα promotes cell migration through a PDZ-dependent interaction with its novel substrate discs large homolog 1 (DLG1). J. Biol. Chem. 286, 43559–43568
280. Saito, Y., Desai, R. R., and Muthuswamy, S. K. (2018) Reinterpreting polarity and cancer: the changing landscape from tumor suppression to tumor promotion. Biochim. Biophys. Acta Rev. Cancer 1869, 103–116
281. Marziali, F., Dizanno, M. P., Cavatorta, A. L., and Gardiol, D. (2019) Differential expression of DLG1 as a common trait in different human diseases: an encouraging issue in molecular pathology. Biol. Chem. 400, 699–710
282. Ng, T., Shima, D., Squire, A., Bastiaens, P. I., Gschmeissner, S., Humphries, M. J., et al. (1999) PKCα regulates β1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J. 18, 3909–3923
283. Parsons, M., Keppeler, M. D., Kline, A., Messent, A., Humphries, M. J., Gilchrist, R., et al. (2002) Site-directed perturbation of protein kinase Cβ signaling blocks carcinoma cell chemotaxis. Mol. Cell. Biol. 22, 5897–5911
284. Wang, Y., Arjonen, A., Pouwels, J., Ta, H., Pausch, P., Bange, G., et al. (2015) Formin-like 2 promotes integrin-mediated cell motility reprogramming in cancer cell migration and invasiveness. J. Biol. Chem. 280, 47507–47516
285. Masaoka, K., Moriyama, N., Teshima, T., and Ohara, H. (2006) A lipid-regulated docking site on vinculin for protein kinase Cα. J. Biol. Chem. 281, 2869–2878
286. Chae, Y. C., Kim, K. L., Ha, S. H., Kim, J., Suh, P. G., and Ryu, S. H. (2010) Protein kinase Cα-mediated phosphorylation of phospholipase D controls integrin-mediated cell spreading. Mol. Cell. Biol. 30, 5086–5098
287. Xue, Z. H., Zhao, C. Q., Chua, G. L., Tan, S. W., Tang, Y. X., Wong, S. C., et al. (2010) Integrin alphabeta3-mediated receptor cross-linking triggers phosphorylation and activation of protein kinase C delta that regulates transcription factor Foxp1 expression in monocyes. J. Immunol. 184, 3567–3579
288. Bordeleau, F., Galarneau, L., Gilbert, S., Loranger, A., and Marceau, N. (2010) Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Mol. Biol. Cell 21, 1698–1713
289. Lin, T. H., Liu, H. H., Tsai, T. H., Chen, C. C., Hsieh, T. F., Lee, S. S., et al. (2013) CCL2 increases αvβ3 integrin expression and subsequently promotes prostate cancer migration. Biochem. Biophys. Acta 1830, 4917–4927
290. Symonds, J. M., Ohm, A. M., Tan, A. C., and Reyland, M. E. (2016) PKCδ regulates integrin alpha3beta3 expression and transformed growth of K-ras dependent lung cancer cells. Oncotarget 7, 17905–17919
Nakagawa, R., Soh, J. W., and Michie, A. M. (2006) Subversion of protein kinase Cα signaling in hematopoietic progenitor cells results in the generation of a B-cell chronic lymphocytic leukemia-like population in vivo. Cancer Res. 66, 527–534

Milani, G., Rebora, P., Accordi, B., Galli, L., Bresolin, S., Cazzaniga, G., et al. (2014) Low PKCδ expression within the MRD-HR stratum defines a new subgroup of childhood T-ALL with very poor outcome. Oncotarget 5, 5234–5245

Suga, K., Sugimoto, I., Ito, H., and Hashimoto, E. (1998) Down-regulation of protein kinase C-α detected in human colorectal cancer. Biochem. Mol. Biol. Int. 44, 523–528

Goode, B., Mondal, G., Hyun, M., Ruiz, D. G., Lin, Y. H., Van Zijlfe, J., et al. (2018) A recurrent kinase domain mutation in PRKCA defines chordoid glioma of the third ventricle. Nat. Commun. 9, 810

Rosenberg, S., Simeonova, I., Bielle, F., Verreau, M., Bance, B., Le Roux, I., et al. (2018) A recurrent point mutation in PRKCA is a hallmark of chordoid gliomas. Nat. Commun. 9, 2371

D’Costa, A. M., Robinson, J. K., Maududi, T., Chaturvedi, V., Nickoloff, B. J., and Denning, M. F. (2006) The proapoptotic tumor suppressor protein kinase C-δ is lost in human squamous cell carcinomas. Oncogene 25, 378–386

Langzam, L., Koren, R., Gal, R., Kugel, V., Paz, A., Farkas, A., et al. (2001) Patterns of protein kinase C isoenzyme expression in transitional cell carcinoma of bladder. Relation to degree of malignancy. Am. J. Clin. Pathol. 116, 377–385

Yadav, V., Yanez, N. C., Fenton, S. E., and Denning, M. F. (2010) Loss of protein kinase C δ gene expression in human squamous cell carcinomas: a laser capture microdissection study. Am. J. Pathol. 176, 1091–1096

Su, C. M., Weng, Y. S., Kuan, L. Y., Chen, J. H., and Hsu, F. T. (2020) Suppression of PKCδ/Cα-Kα signaling and apoptosis induction through extrinsic/intrinsic pathways are associated magnolol-inhibited tumor progression in colorectal cancer in vitro and in vivo. Int. J. Mol. Sci. 21, 3527

Renno, E. M., Haughian, J. M., Dimitrova, I. K., Jackson, T. A., Shroyer, K. R., and Bradford, A. P. (2008) Analysis of protein kinase C delta (PKCδ) expression in endometrial tumors. Hum. Pathol. 39, 21–29

Antal, C. E., Hudson, A. M., Kang, E., Zanca, C., Wirth, C., Stephenson, N. L., et al. (2015) Cancer-associated protein kinase C mutations reveal kinase’s role as tumor suppressor. Cell 160, 489–502

McKierman, E., O’Brien, K., Grebencchikov, N., Geurts-Moespot, A., Sieuwerts, A. M., Martens, J. W., et al. (2008) Protein kinase Cδ expression in breast cancer as measured by real-time PCR, western blotting and ELISA. Br. J. Cancer 99, 1644–1650

Reddig, P. J., Drecksmüdt, N. E., Ahrens, H., Simmsman, R., Tseng, C. P., et al. (1999) Transgenic mice overexpressing protein kinase Cδ in the epidermis are resistant to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 59, 5710–5718

Aziz, M. H., Wheeler, D. L., Blihm, B., and Verma, A. K. (2006) Protein kinase Cδ overexpressing transgenic mice are resistant to chemically but not to UV radiation-induced development of squamous cell carcinomas: a possible link to specific cytokines and cyclooxygenase-2. Cancer Res. 66, 712–722

Kong, C., Zhu, Y., Liu, D., Yu, M., Li, S., Li, Z., et al. (2005) Role of protein kinase Cα in superficial bladder carcinoma recurrence. Urology 65, 1228–1232

Tian, F., Wu, H., Li, Z., Wang, N., Huang, J., et al. (2009) Activated PKCα/ERK1/2 signaling inhibits tamoxifen-induced apoptosis in C6 cells. Cancer Invest. 27, 802–808

Zhao, L. I., Xu, H., Qu, J. W., Zhao, W. Z., Zhao, Y. B., and Wang, J. H. (2012) Modulation of drug resistance in ovarian cancer cells by inhibition of protein kinase C-α (PKC-α) with small interference RNA (siRNA) agents. Asian Pac. J. Cancer Prev. 13, 3631–3636

Mohanty, S., Huang, J., and Basu, A. (2005) Enhancement of cisplatin sensitivity of cisplatin-resistant human cervical carcinoma cells by bryostatin 1. Clin. Cancer Res. 11, 6730–6737

Assender, J. W., Gee, J. M., Lewis, I., Eilis, I. O., Robertson, J. F., and Nicholson, R. I. (2007) Protein kinase C isoform expression as a predictor of disease outcome on endocrine therapy in breast cancer. J. Clin. Pathol. 60, 1216–1221
369. Belot, A., Kasher, P. R., Trotter, E. W., Foray, A. P., Debaur, A. L., Rice, G. L., et al. (2013) Protein kinase cdelta deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. *Arthritis Rheum.* **65**, 2161–2171

370. Kuehn, H. S., Niemela, J. E., Rangel-Santos, A., Zhang, M., Pittaluga, S., Stoddard, J. L., et al. (2013) Loss-of-function of the protein kinase C delta (PKCdelta) causes a B-cell lymphoproliferative syndrome in humans. *Blood* **121**, 3117–3125

371. Duan, Y. T., Bi, K. Y., and Ma, Y. S. (2018) PKC delta gene can induce macrophages to release inflammatory factors against Mycobacterium tuberculosis infection. *Eur. Rev. Med. Pharmacol. Sci.* **22**, 4228–4237

372. Parihar, S. P., Ozurtk, M., Marakalala, M. J., Loots, D. T., Hurdayal, R., Beukes, D., et al. (2018) Protein kinase c-delta (PKCdelta), a marker of inflammation and tuberculosis disease progression in humans, is important for optimal macrophage killing effector functions and survival in mice. *Mucosal Immunol.* **11**, 579–580

373. Zaid, Y., Senhaji, N., Darif, Y., Kojok, K., Oudghiri, M., and Naya, A. (2016) Distinctive roles of PKC delta isoform in platelet function. *Curr. Res. Transl. Med.* **64**, 135–139

374. Niino, Y. S., Kawashima, L. Iguichi, Y., Kanda, H., Ogura, K., Mitayoshi, K., et al. (2021) PKCdelta deficiency inhibits fetal development and is associated with heart elastic fiber hyperplasia and lung inflammation in adult PKCdelta knockout mice. *PLoS One* **16**, e0253912

375. Ren, J., Wang, Q., Morgan, S., Si, Y., Ravichander, A., Dou, C., et al. (2014) Protein kinase c-delta (PKCdelta) regulates proinflammatory chemokine expression through cytosolic interaction with the NF-kappaB subunit p65 in vascular smooth muscle cells. *J. Biol. Chem.* **289**, 9013–9026

376. Wang, H. Q., and Smart, R. C. (1999) Overexpression of protein kinase C-alpha in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, TNF-alpha expression but not tumor promotion. *J. Cell Sci.* **112**, 5497–5506

377. Cataisson, C., Ohman, R., Patel, G., Pearson, A., Tsien, M., Jay, S., et al. (2009) Indurable cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. *Cancer Res.* **69**, 319–328

378. Wang, M., Zhong, H., Zhang, X., Huang, X., Wang, J., Li, Z., et al. (2021) EGCG promotes PKRCA expression to alleviate LPS-induced acute lung injury and inflammatory response. *Sci. Rep.* **11**, 11014

379. Li, X., Cullere, X., Nishi, H., Saggu, G., Durand, E., Mansour, M. K., et al. (2016) PKC-delta activation in neutrophils promotes fungal clearance. *J. Leukoc. Biol.* **100**, 581–588

380. Liverani, E., Mondrinos, M. J., Sun, S., Kunapuli, S. P., and Kilpatrick, L. E. (2018) Role of Protein Kinase C-delta in regulating platelet activation and platelet-leukocyte interaction during sepsis. *PLoS One* **13**, e0195379

381. Liverani, E., Tursi, A. S., Cornwell, W. D., Mondrinos, M. J., Sun, S., Buttarro, B. A., et al. (2020) Protein kinase C-delta inhibition is organ-protective, enhances pathogen clearance, and improves survival in sepsis. *FASEB J.* **34**, 2497–2510

382. Lorden, G., and Newton, A. C. (2021) Conventional protein kinase C in the brain: repurposing cancer drugs for neurodegenerative treatment? *Neuropharmacol. Signal.* **5**, NS02510036

383. Du, Y., Zhao, Y., Li, C., Zhang, Q., Tian, J., Li, Z., et al. (2018) Inhibition of PKCdelta reduces amyloid-beta levels and reverses Alzheimer disease phenotypes. *J. Exp. Med.* **215**, 1665–1677

384. Jin, H., Kanhassamy, A., Harischandra, D. S., Kondru, N., Ghosh, A., Panicker, N., et al. (2014) Histone hyperacetylation up-regulates protein kinase cdelta in dopaminergic neurons to induce cell death: Relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. *J. Biol. Chem.* **289**, 34743–34767

385. Rué, L., Alcalá-Vida, R., López-Sooop, G., Creus-Muncunill, J., Alberch, J., and Pèrez-Navarro, E. (2014) Early down-regulation of PKCdelta as a pro-survival mechanism in Huntington’s disease. *Neuromolecular Med.* **16**, 25–37

386. Alfonso, S. I., Callender, J. A., Hooli, B., Antal, C. E., Mullin, K., Sherman, M. A., et al. (2016) Gain-of-function mutations in protein kinase Calpha (PKCalpha) may promote synaptic defects in Alzheimer’s disease. *Sci. Signal.* **9**, ra47