Pre-to-post COVID-19 lockdown and their environmental impacts on Ghoghla beach and Somnath beach, India

Tarini Prasad Sahoo1,2 · Sonpal Vasavdutta1 · Amit Chanchpara1,2 · Nosad Sahu1 · Indirapriyatharsini Thiagarajan1 · Sanak Ray1,2 · Shrutti Chatterjee3 · Ravikumar Bhagawan Thorat1,2 · Soumya Haldar1,2 · Anil Kumar Madhava1,2

Received: 22 April 2022 / Accepted: 16 June 2022 / Published online: 24 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Environmental impact of COVID-19 imposed lockdown (2020) and the new normal condition (2021) on two different beaches of India (Ghoghla beach, Diu and Somnath beach, Veraval) were compared with the pre-lockdown era, 2013. The lockdown phase favored the natural restoration of the beaches and showed infinitesimal values of the parameters tested when compared with the pre-lockdown regime. However, the new normal situation in 2021 opened up the accessibility of these beaches to the tourists and pilgrims resulting in significant changes of water quality. The release of diluted sewage mixed with freshwater from the Somnath town to the sea has led to the drastic change in beach water quality. The mean cadmium concentration increased drastically in beach waters (Ghoghla: 1.35, 0.28 and 7.09 μg/L; Somnath: 0.45, 0.28 and 0.58 μg/L) during pre-to-post lockdown, respectively. However, post-lockdown resulted in the rise of toxic heavy metals in the sediments of Somnath beach but Ghoghla beach remained to be pristine which may be due to the Blue Flagship status. The total number of marine bacteria was higher during 2013 and 2021 when compared during lockdown describing greater human interventions. For instance, Vibrio spp. count in Ghoghla beach water during pre-lockdown phase was 7733 CFU/mL and this value reduced to 70 and 5 CFU/mL in the lockdown and post-lockdown phases. Interestingly, the diversity of planktonic and benthic components showed a different trend from pre-to-post lockdown due to significant change in the inorganic nutrients and metal bioaccumulation. To our knowledge, this will be the first comprehensive assessment to report the environmental and ecological health of Ghoghla beach and Somnath beach during the pre-to-post lockdown.

Keywords COVID-19 · Somnath · Ghoghla · Lockdown · New Normal · Assessment

Introduction
Globally, intensive human activities have resulted in significant deterioration of seawater quality and coastal habitats (Hosseini et al. 2021; Chapman 2017). Combination of chemicals and trashes result in the disruptive levels of marine pollution that becomes extremely detrimental to the health of all aquatic organisms (Behera et al. 2021). Sedimentation, eutrophication, pollution and overexploitation of marine resources are all issues that have wreaked havoc on near-shore marine ecosystems (Ozden et al. 2021). Ecosystems that are in danger of deteriorated water quality will in turn create a daunting effect upon the parameters of health. Coastal regions are the most valuable and fragile habitats as they contribute significantly in socioeconomic growth and human health, thus safeguarding them is a major concern (Bharathi et al. 2018). Healthy marine environment depends upon the excellent water quality; when the water is clean and nutrient-free, the seagrasses and coral reefs flourish (Sheppard et al. 2021).

Scattered pollutants on the beaches and waste dump along the coastlines enter the ecosystem in the worst ways possible that not only generates health-related challenges...
but also serious economic losses as well (Depledge et al. 2013; Seth and Shriwastav 2018; Sunitha et al. 2021). Many variables affect water quality including the physicochemical, nutrient and biological parameters. Nutrient inputs into coastal waters have increased drastically during the last four decades, causing quick and significant changes in coastal ecosystems around the world (Edward et al. 2021). Coastal regions get nitrogenous nutrients from a variety of places, including coastal upwelling, freshwater runoff/rainfall, cyclones/depressions and sewage from the industrial/household sectors (Bharathi et al. 2018; Sarma et al. 2020). Therefore, quality maintenance program generates guidelines for activities to maintain and restore the water quality levels required to support the healthy animal and plant populations (Botero et al. 2015).

Traditionally humans are attracted toward the coastal zone aesthetics and as a result, the coastal zones are extensively developed (Luijendijk et al. 2018). Sea beach is an area of the seashore consisting sediments, sand pebbles, shingle-like elements, shells, coralline algae, and is a home to a diverse range of landforms and ecosystems (Abreu et al. 2016). This area is predominantly used for the recreational activities like bathing, water sports and other entertainment purposes. Indian coasts stretch for over 7500 km and ample of sea beaches are present through the coastal side of the Indian subcontinent, viz., starts from the eastern side of the country extended through the southern coastal side of the Indian subcontinent, and latter known by the name Ahmedpur-Mandvi beach. This beach offers many attractive water sport activities like parasailing, surfing and water scooters. Diu is one of the well-known tourist destinations and 2.3 million people have visited Diu in the year 2014 (NIP 2020; Diu Tourism Department 2022). The beach is well maintained, but least explored place, which eventually is the main reason for the pristine nature of Ghoghla beach (https://ddd.gov.in/centers/ghogla-beach/). Ghoghla beach was declared with the blue flagship in October 2020 (https://pib.gov.in/Pressreleaseshare.aspx?PRID=1684105).

Somnath is situated along the southwest coast on the Saurashtra peninsula, beside the Arabian Sea, and is located 5 km east of Veraval, India. Somnath beach is about 750 meters from the Somnath shrine, which is a well-known tourist attraction because of its religious significance (Gaur et al. 2002). Predominantly, the tourist activity is concentrated in a small stretch of the beach. Therefore, different types of wastes are discarded and get spreads to the entire beach area creating aesthetic issues and pollution problems. Horse/camel riding results in congestion and animal excreta on the beach area (GEC 2012).

Coronavirus disease 2019 (COVID-19) is caused by the novel SARS-CoV-2 (acute respiratory syndrome coronavirus), which turned to be pandemic with high infection rates and mortality (Coccia 2021a). COVID-19 extended its severity in phase wise depending on the different attributes such as social and environmental factors (Coccia 2018 & 2021b). Several countries have forcefully imposed complete restrictions for the man movement in order to contain the spread of this dreadful infection (Coccia 2022a). The environmental monitoring during the course of lockdown as well as their comparative assessment has gained greater attention from environmentalists (Coccia, 2020, 2021c and 2022b). There are assessment reports explaining the quality of water, ambient air and other environmental attributes during the pre-to-post lockdown at Indian and global context (Saraswat and Saraswat 2020; Chanchpara et al. 2021; Sun et al. 2021; Sahoo et al. 2021). The entry to Somnath shrine and Diu Island for the tourists and pilgrims was banned until the end of 2020.

With this backdrop, we aimed to understand the environmental quality of two beaches (Ghoghla beach, Diu and Somnath beach, Veraval) of Indian coasts in pre-to-post COVID-19 lockdown. We aimed to compare the baseline data generated through three time-regimes, viz., pre-lockdown (May 2013), lockdown (October 2020) and post-lockdown (October 2021), to understand the environmental behavior of the beach’s health with respect to physicochemical, nutrient and biological parameters. To best of our knowledge, this report will be serve as a baseline data of Ghoghla and Somnath beaches during pre-to-post lockdown. This manuscript can be an important document to identify the point source of pollution in the beaches due to anthropogenic activities in future.

Materials and methods

Samples and data collection

The samples (seawater and sediments) were collected from Ghoghla beach–Diu and Somnath beach–Veraval during low and high tides at different transects. The sample transects...
were established to cover both the active and non-active areas of each beach. A handheld global positioning system (Garmin, GPS) device was used to record the locations of all sampling transects. The coordinates and observations made during field visits are enlisted in the Supplementary Materials Table S1 and the generated map is given in Fig. 1.

The water and sediment samples were collected aseptically from all sites during high and low tides and then transported to the laboratory after imparting pre-treatment. The water samples were collected as per APHA, 1998 and 2017 guidelines depending on the nature of tests to be performed. The samples for microbiological analyses were collected in sterile vials and 250 mL plankton samples were collected by filtering ~100 L surface waters using pore-sized plankton net as per requirement. Sediment-slurry was prepared with seawater and sieved through 430 m ASTM mesh for concentrating the benthic organisms. The phytoplankton samples were fixed using formalin and Lugol’s iodine, while zooplankton and benthic samples were fixed with formalin and Rose Bengal solutions.

Measure of parametric variables

The water and sediment quality parameters such as pH, seawater & air temperature, total suspended solids (TSS), turbidity, salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), total organic carbon (TOC), nitrite (NO₂-N), nitrate (NO₃-N), ammonia (NH₄-N), phosphate (PO₄-P), silicate, chloride and toxic heavy metal contents were assayed as per the method described in APHA (1998 & 2017). Supplementary Materials Table S2 gives the summary of the analytical test and methods involved in the analyses of seawater and sediment samples. The handheld pH meter (EuTech) and refractometer (ATAGO master) were used to measure the pH and salinity of seawater on the site itself. Total organic carbon (TOC) content of the seawater

Fig. 1 Map showing the sample collection sites at Ghoghla beach, Diu and Somnath beach, Veraval
and sediments was analyzed using Elementar Vario TOC select analyzer. The absorbance values were recorded on Systonic Microprocessor UV–Visible spectrophotometer. The heavy metal contents of seawater and sediment samples were quantified on an inductively coupled plasma mass spectrometry iCAP RQ (ICP-MS).

Data analysis procedure

Qualitative and quantitative analysis of planktons and benthi c organisms was performed microscopically. The phytoplankton and zooplanktons were imaged for the qualitative and quantitative determination on Olympus BX53 fluorescent microscope, while the benthic organisms were enumerated on a Leica S8APO microscope. The cells were counted using Sedgewick-Rafter to understand the genera and the generic diversity. Phytoplanktons and zooplanktons were enumerated as number of cells per mL of the sample, while benthic count was expressed as number or weight of benthos per m² area of the sea floor. The number of cells was used to calculate the Shannon–Wiener diversity index.

\[SWDI = - \sum \left(\frac{n_i}{n} \right) \log_2 \left(\frac{n_i}{n} \right) \] (1)

where \(n_i \) is the number of individuals of each species in the sample and \(n \) is the total number of individuals of all species in the sample (Simpson 1949; Winder and Sommer 2012). The bacterial load in the seawater (CFU/mL) and sediments (CFU/g) were assayed for the presence of total number of bacteria and coliform, *Salmonella* spp., *Vibrio* spp., *Streptococcus*, *Pseudomonas*, *Escherichia coli*, *Aeromonas* and *Enterococcus*.

Results

The results of the physicochemical parameters analyzed during the years’ 2013, 2020 and 2021 tabulated in Table 1. The minimum and maximum air temperature at Ghoghla beach were 31–41°C (2013), 28–32°C (2020) and 25–29°C (2021), while Somnath beach ambience was 30–32°C (2013), 29–30°C (2020) and 30–33°C (2021). The high temperature during 2013 is due to the month of sampling (March 2013) and similar trend was witnessed in case of water temperature at all transects of both the beaches. pH variation in water depends upon the amount of free carbon dioxide, carbonate and bicarbonates. The mean pH levels of both the beaches ranged between pH 7.3±0.1 and 7.8±0.3 for the years 2013 and 2021, respectively, and the waters with pH range 6.5–9.0 are optimal for fish production (Tucker and Robinson 1990). pH levels measured during the years 2013 and 2020 at Ghoghla beach showed similar trend, but in the year 2021 (post-lockdown) showed in incremental rise in pH level from 7.3 to 8.2. In case of Somnath beach, the mean pH level at all transects was pH 7.3±0.1 during 2013 and this has increased to pH 7.8±0.3 in the years 2020 & 2021.

The beach waters of Ghoghla beach did not show much difference in the salinity levels during HT and LT when compared between (36.1±0.4 ppt) 2013 and (33.9±1.1 ppt) 2020, whereas salinity level decreased to 28.5±2.5 ppt during 2021. The average salinity level at Somnath beach waters was 35.17±0.41 and 34.33±1.03 ppt during pre-lockdown and lockdown regimes; however, post-lockdown sampling inferred that the salinity values were 0 and 17 ppt in the transects studied. Turbidity is a measurement of the water clarity and turbid water is due to the contamination of water by the suspended particles. In this assessment, there is a drastic decrease in average turbidity from the year 2013 (42.83 NTU), 2020 (21.2 NTU) and 2021 (4.88 NTU) at Ghoghla beach.

The presence of solids (total suspended solids; TSS and total dissolved solids; TDS) in the beach water has direct implications on the water quality. HT water of transect-2 at Ghoghla beach had the following parametric values; TDS, 255.6 mg/L; TSS, 51.17 mg/L and turbidity, 1.028 NTU particularly in 2013. The above values did not correlate with the values of the HT/LT waters of other transects. Subsequent sampling during 2020 and 2021 did not express the same trend among the samples tested while drastic reduction in the TDS level of Ghoghla beach water was observed in the post-lockdown. From Table 1, it is also inferred that the TSS levels were high in all transects of Ghoghla beach. TDS concentrations in Somnath beach were in the range of 25.66±0.54, 55.42±82.60 and 8.69±5.69 mg/L during pre-lockdown, lockdown and post-lockdown. The higher level of TDS during lockdown is mainly due to the restricted flow of sewage. Increasing trend of TSS levels was observed in both Ghoghla and Somnath beach waters during pre-lockdown, 154.20±43.25 mg/L; lockdown, 150.18±3.50 mg/L and post-lockdown, 665.13±170.35 mg/L.

The presence of solids decreases the DO content of water and this is witnessed in waters of Ghoghla and Somnath beaches as enlisted in Table 1. Other parameters influencing DO level in water are temperature and salinity (Song et al. 2019). The optimal range of DO is 4–9 mg/L, which largely supports the diverse fish population and it is known that DO values receding below 2 mg/L would result in hampering the sustainment of juvenile fishes and crustaceans (Low et al. 2021). DO level of Ghoghla beach water at all transects had an average of 5.61±0.28, 4.76±0.18 and 4.40±0.11 mg/L during pre-lockdown, lockdown and post-lockdown phases, whereas the trend observed in Somnath beach water was different (3.56±0.77, 4.55±0.19 and 2.97±0.72 mg/L). DO levels >4 mg/L were observed during lockdown phase and the quality has deteriorated during post-lockdown in 2021 (DO, 2.97±0.72 mg/L) and few transects had DO level of 2.2
mg/L which may be due to the anthropogenic inputs. BOD level increased in Ghoghla beach (1.35±1.87, 2.60±0.31 and 2.91±0.27 mg/L) and Somnath beach (1.33±1.27, 2.88±0.29 and 3.10±0.79) from pre-to-post lockdown period and this is in concurrence of the normal life resumption.

The organic constituents assessed in this study were total organic carbon (TOC), oil & grease contents of beach waters. Oil & grease are organic, not easily biodegradable toxic waste and possess destructive ability to the aquatic lives. They are known to form a layer on the water’s surface, arrest the sunlight penetration to the water bodies and disturb photosynthesis ultimately declining the DO level (El-Gawad 2014). The acceptable limit of oil & grease in coastal water is <0.1 mg/L as prescribed by Central Pollution Control Board (CPCB 1998). Oil & grease content in Ghoghla waters was 4.119±3.091, 1.563±0.385 and 0.603±0.537 mg/L for the pre-to-post lockdown while Somnath beach water had 8.2±3.462, 1.27±0.121 and 0.5±0.204 mg/L during the regimes assessed as shown in Table 1. TOC levels of Ghoghla seawaters were 18.35±2.66, 14.85±1.8 and 21.28±1.05 mg/L while Somnath beach water had 0.0012±0.0004, 12.87±0.42 and 20.53±1.0 mg/L during pre-to-post lockdown regimes. The seawater nutrients of Ghoghla and Somnath beach waters were assessed with respect to the inorganic ions such as nitrite (NO₂⁻), nitrate (NO₃⁻), ammonia (NH₄), silicate (SiO₄²⁻) and phosphate (PO₄³⁻) as shown in Fig. 2.

Eleven heavy metals were monitored in the pre-to-post lockdown including the four critically categorized four heavy metals such as arsenic (As), cadmium (Cd),

Table 1 Physicochemical parameters of Ghoghla and Somnath beach water analyzed during pre-to-post lockdown regimes

Parameters	Regimes	Parametric mean values		
		Ghoghla beach water	Somnath beach water	
		Pre-lockdown	Lockdown	Post-lockdown
		34.9±4.5	31±1.10	
		26.8±1.3	29.35±0.31	
		30.4±1.3	31.02±1.02	
Air temperature (°C)		31.3±1.4	29.33±0.41	
		23.8±0.9	24.13±0.40	
		23.1±0.8	25.05±1.32	
		7.44±0.09	7.3±0.1	
		7.46±0.18	7.8±0.3	
		7.79±0.28	7.82±0.32	
		36.1±0.4	35.17±0.41	
		33.9±1.1	34.33±1.03	
		28.5±2.51	10.83±8.40	
		42.83±20.29	36.7±13.4	
		21.20±1.74	7.7±0.7	
		4.88±0.60	3.5±1.2	
		154.20±43.25	95.37±16.86	
		150.18±3.50	117.82±3.50	
		665.13±170.35	378±235.34	
		52.59±82.03	25.66±0.54	
		26.99±1.25	55.42±82.60	
		16.23±0.07	8.69±5.69	
		5.61±0.28	3.56±0.77	
		4.76±0.18	4.55±0.19	
		4.40±0.11	2.97±0.72	
		1.35±1.87	1.33±1.27	
		2.60±0.31	2.88±0.29	
		2.91±0.27	3.10±0.79	
		18.35±2.66	0.001±0.001	
		14.85±1.80	12.87±0.42	
		21.29±1.05	20.53±1.00	
		4.12±3.09	8.2±3.46	
		1.56±0.39	1.27±0.12	
		0.60±0.54	0.5±0.20	

 Springer
chromium (Cr), and lead (Pb) (Kaur et al. 2011; Han et al. 2019; Rahman and Singh 2019). The lead concentration decreased significantly in the recent assessments when compared with pre-lockdown. Particularly, arsenic concentration remained to be in declining trend (Fig. 3) and within allowable limit in Somnath beach waters when assessed after pre-lockdown (Neff 1997). The mean Cd concentration increased drastically in Ghoghla beach waters; 1.35, 0.28 and 7.09 μg/L, but in case of Somnath the Cd levels were 0.45, 0.28 and 0.58 μg/L during pre-to-post lockdown, respectively.

The quality of beach sediments was assessed with respect to physicochemical, organic load and toxic heavy metal constituents. Figure 4a&b illustrates the amount of clay, sand, silt and TOC of Ghoghla and Somnath beach sediments. The toxic heavy metal (Cr, Cd, As and Pb) contents in the beach sediments were analyzed in both the beaches and the values are shown in Fig. 5a&b. The outcome of this assessment reveals that Ghoghla beach environment required ample time to reduce 55.43, 4.27, 127.69 and 41.99 μg/g of Cr, Cd, As and Pb metal ions, respectively, from the pre-lockdown to lockdown (Cr, 29.23 μg/g; Cd, 2.27 μg/g; As, 12.46 μg/g and Pb, 10.25 μg/g). The bacterial load in the beach water and sediments were assessed and compared for three different regimes; pre-to-post lockdown. For the present study, a total of nine types of selective and differential media were used to determine the overall microbial diversity present at the selected sites. The average bacterial load in water (CFU/mL) and sediment (CFU/mL) such as (1) total number of marine bacteria, (2) Salmonella spp., (3) Vibrio spp., (4) Streptococci sp., (5) Pseudomonas sp., (6) total number of coliform, (7) E. coli, (8) Aeromonas sp. and (9) Enterococcus sp. are tabulated in Table 2. The marine ecological health of Ghoghla and Somnath beaches was assessed with respect to the species diversity and the results are tabulated in Table 3. SWD indices of phytoplanktons and zooplanktons in the surface waters while benthic organisms were assessed in the beach sediments.

Discussion

Due to COVID-19 pandemic, complete lockdown was imposed from March 2020 and continued until May 2020 when all the anthropogenic activities including human movement was completely halted. COVID-19 imposed
lockdown has opened up many avenues for the environmentalists to understand the effects of lockdown on the improvement of environmental quality with respect to ambient air, water, human health and many other attributes (Lotlikar et al. 2021; Coccia 2022b). Table 4 gives a snapshot of assessment reports conducted in specific sites during the COVID-19 pandemic period at different nations. Our present study reports a juxtaposition of environmental quality assessed during normal functioning of the world (pre-lockdown period, 2013), lockdown period (2020) and resumption of new normal, i.e., post-lockdown period (2021) in the selected beaches of India (Ghoghla beach, Diu and Somnath beach, Veraval).

pH variation in water depends upon the amount of free carbon dioxide, carbonate and bicarbonates. The principal anion in saltwater, Cl	extsuperscript{-}, alone has little effect on the pH of the water; nevertheless, seawater naturally contains additional elements, such as bicarbonate ions, which make the water somewhat more alkaline, with a pH to which marine species are acclimated. Increased dissolved CO	extsubscript{2} and human impacts such as ocean acidification lower pH of seawater (Barford 2013). The significant increase in the pH level of the beach waters may be due to the new normal resumption of tourism and pilgrimage. Salinity influences the marine biota and most of the aquatic lives are adapted to a narrow range of salinity (Velasco et al. 2018; Cañedo-Argüelles et al. 2019). As a result, any change in ambient salinity has the potential to influence organism’s capacity to carry out critical biological processes, and consequently their ability to live and thrive. Changes in salinity will have a significant impact on the marine species especially on their reproduction, distribution, larval dispersion and behavior (Ern et al. 2014). The reason for the dip in the salinity levels is the release of diluted sewage with freshwater from the Somnath town to the sea as shown in the Supplementary Materials Fig. S1.

Increased suspended silt, or turbidity, in aquatic ecosystems lowers the response distance to visual cues and may thus change movement behavior. Given that movement underpins essential behaviors including as feeding, mating and predator avoidance, a decrease in movement efficiency is anticipated to have a considerable influence on the health and population dynamics of visually guided fish species (Susannah et al. 2011). The effects of increased sediment suspension on photosynthetic species have been

![Comparison of toxic heavy metal contents in beach waters of (a) Ghoghla beach and (b) Somnath beach assessed during pre-to-post lockdown](image-url)
studied; however, there is growing evidence that fish are also significantly impacted (Newport et al. 2021).

The reason for the declined level of water haziness is that Diu Administration has taken all possible efforts to maintain Ghoghla beach water quality. Similarly, the beach waters of Somnath had turbidity levels of 36.7, 7.7 and 3.5 NTU for the pre-lockdown, lockdown and post-lockdown regimes. Reduced turbidity levels in Somnath beach water may be due to the continuous mixing of diluted sewage with freshwater. TSS has an inevitable role in imparting turbidity and they are known to absorb heat from sun; thus, they tend to increase the seawater temperature, and in turn, they decrease the dissolved oxygen (DO) content (USEPA 2000; Sembel et al. 2021). Microbial community dwelling in the aquatic ecosystem degrades the organic matter present at the bottom through DO consumption (Moresco et al. 2012; Fuhrman et al. 2015). First, turbidity affects dissolved oxygen (DO) sources by limiting light penetration and hence photosynthetic activity, as well as gas exchange with the atmosphere (Schmidt et al. 2019; Newport et al. 2021).

Lockdown has favored the decrease in the oil & grease content significantly. However, the new normal situation in 2021 has opened up the accessibility of the beaches to the common public and thus marginally increased the oil & grease content of the seawaters. TOC content of Ghoghla beaches showed inclination in their values from lockdown to post-lockdown period while opposite trend was found in case of Somnath water and this may be due to the freshwater mixing to the open sea. Generally, there is a relationship between TOC, DO and BOD value (Al-Said et al. 2018). With the increase in value of TOC, generally DO value decreases and BOD value increases. Near similar trend was observed in both of the beaches.

Interestingly, during lockdown sampling from Ghoghla beach, nitrite value was recorded very high in comparison with pre- and post-lockdown sampling. Although the absolute value was low, similar trend was also observed in the case of ammonia. This might be due to the activity of denitrifying and small amount ammonifying bacteria in the water which generally convert nitrate to nitrite and then to ammonia (Zakem et al. 2018). However, no such trend was observed in the case of Somnath beach-water sample, sharp spike of nitrate and nitrite was observed in the post-lockdown sampling in comparison with the previous sampling. A sudden increase in silicate value was observed in the pristine Ghoghla beach water during lockdown sampling.

Fig. 4 Comparison of sediment quality of (a) Ghoghla beach and (b) Somnath beach assessed during pre-to-post lockdown

	Clay (%)	Sand (%)	Silt (%)	TOC (%)
Pre-lockdown	77.93	81.94	83.95	16.86
Lockdown	5.22	4.43	4.66	5.83
Post-lockdown	3.75	3.75	3.75	3.75

	Clay (%)	Sand (%)	Silt (%)	TOC (%)
Pre-lockdown	81.05	84.73	86.17	13.74
Lockdown	5.21	3.45	3.62	2.30
Post-lockdown	3.70	3.70	3.70	3.70
when there were no anthropogenic activities. This proves that silicate value of water is not dependent on any of the anthropogenic source as it is mostly based on river run off and coastal upwelling (Sospedra et al. 2018; Panja et al. 2022). Phosphate value was recorded to be low in all the sampling and overall value was high in case of Somnath water in comparison with the Ghoghla.

The impact of heavy metals is drawing worldwide attention and their presence in the coastal water above the permissible limit has harmful impact on aquatic environment due to their carcinogenic, toxic, non-biodegradability and persistence nature (Wu et al. 2020). In addition to it, bio-accumulation and bio-magnification of heavy metals in aquatic organism would create more risks to the coastal populations (Ali et al. 2015; Zhang et al. 2017). Lead (Pb) is one of the heavy metals found in coastal water in different forms based on the physicochemical features of the seawater and the most regular forms of lead in seawaters are PbCO₃, Pb(CO₃)²⁻ and PbCl⁺ (Rostern 2017). The hexavalent chromium is soluble in water and has the potential to cause acute or chronic poisoning, mutagenesis, carcinogenesis and teratogenesis while undergoing bioaccumulation (Bonnand et al. 2013; He et al. 2020). The lockdown regime has favored the decrease of all heavy metals when compared with the baseline data generated on pre-lockdown phase; however, the new normal has opened up all possible ways to contaminate the environment. The risks posed by Cd metals would be dreadful and can be easily bio-accumulated by the aquatic organism through transport mechanism (Manzo et al. 2010; Inglot et al. 2012). The anticipated impacts of the measured toxic heavy metals are the bioaccumulation in the marine ecological components (Ali et al. 2015; Chiarelli et al. 2019).

There were no significant differences observed in the amount of clay, sand and silt at Ghoghla while drastic changes were observed in the above parameters in Somnath beaches, which is due to the siltation, and mixing of wastewater discharges to the open sea during post-lockdown regimes. Aeolian sedimentation, sewage discharges, deep-sea mining, etc., have resulted in the augmentation of metals into the water bodies (Naser 2013; Suresh et al. 2015; Perumal et al. 2021). All the heavy metals during the pre-lockdown period were high in all transects; however, the lockdown has favored the significant restoration of the natural environment of Ghoghla and Somnath beaches. The post-lockdown resulted in the increase of all
heavy metals in the beach sediments of Somnath beach but Ghoghla beach sediments remained to be pristine. The efforts of Diu Administration to maintain the Blue Flag-ship status has reduced the pollution load and this has resulted in significant reduction in toxic heavy metals even after resuming to new normal.

Pre-lockdown period (year 2013) had high bacterial load in Ghoghla beach water which drastically decreased to a
certain extent few bacterial loads were absent when assessed during lockdown and the new normal has resulted in the increase of microorganisms. Total coliform count and *Streptococci* sp. were not detected in Ghoghla beach water tested during lockdown. Individuals of family Enterobacteriaceae, *viz.*, *E. coli* and *Enterobacter* sp., were found in higher concentrations in pre-lockdown period indicating the greater human activities in the coastal environment. Pathogenic bacterial load were found be lesser in Ghoghla waters and sediments describing the efforts taken by the local administration in maintaining the beach quality. In case of Somnath marine environment, *Salmonella* spp., *Streptococci* sp., *Pseudomonas* sp. and *E. coli* were not detected in the beach waters during lockdown implying that water was least contaminated. However, the data presented in Table 2 of post-lockdown period have shown the presence of the pathogenic bacteria in the marine environment which is in concurrence of human interventions in deteriorating environmental quality (Arias-Andres et al. 2018). An interesting trend for overall bacterial load both in the seawater and sea sediment was observed in both the beaches. It was clearly observed during pre-lockdown sampling in 2013 that the microbial pollution was high in both the beaches but reduced drastically during lockdown and post-lockdown sampling. This is mostly due to improve beach management by the statutory authority which result drastic improvement in the microbial load in the water and sediments samples.

The diversity of planktons depends upon the physicochemical characteristics of the water and the diversity is usually low in eutrophic (increased pollution load) waters. The maximum value of Shannon–Wiener diversity index (SWDI) of plankton for clean waters is 6 and index ≥ 3 reveals the healthy condition of water bodies. However, values between 1 and 3 represent semi-productivity and SWDI<1 describes the poor productivity (Matta et al. 2018).

Coscinodiscus sp. and *Tabellaria* sp. were the commonly found phytoplankton species in regimes of assessment while *Nauplius* larvae existed in case of zooplanktons at Ghoghla beach. Whereas in Somnath beach, the phytoplanktons were higher in number when compared to zooplankton and benthic organisms as they acquire the base of the oceanic food chain (Peña et al. 1990). Among all the phytoplankton species obtained, *Coscinodiscus* sp. was observed during sampling of all the three years of assessment, as it is cosmopolitan in distribution (Cefarelli et al. 2010). *Biddulphia* sp. was also found during pre-lockdown and lockdown; however, it was not observed during the post-lockdown period. None of the zooplankton species were found in common for all the sampling regimes.
Benthic diversity was higher in the pre-lockdown period and Gastropods were found to dominate among all the benthic species. The decreased diversity of planktonic species may be attributed to cadmium and microplastics bioaccumulation in these ecological indicators (Shi et al. 2016; Cho et al. 2019; Daniel et al. 2020). SWDI values of phytoplanktons in Diu coastal water ranged between 3.42, 1.48 and 1.19 for the pre-to-post lockdown periods, which indicates that healthy and semi-productivity nature of the water. The zooplankton’s SWDI was 1.46 in pre-lockdown and this value decreased during lockdown to 0.87 (poor productivity) and eventually increased to 1.57 in post-lockdown, indicating the new normal has resulted in significant rise of inorganic nutrients to support the plankton’s growth and productivity (Llebot et al. 2010). SWDI values in Somnath surface water had good productivity (5.75) of phytoplanktons assessed in pre-lockdown and this value reduced to 0.75 indicating the loss of diversity during lockdown. However, the zooplankton’s SWDI describes the poor productivity during 2013 and 2020.

Benthos are the organisms found almost everywhere in the marine environment, starting from the littoral zone to deep sea. The most important factors that influence benthic diversity and abundance are habitat type and availability of food. The intertidal areas are very dynamic environment impacted by the waves and currents, which influences the sediment habitat of benthos (Vezzulli et al. 2009). Somnath beach is very dynamic and physically disturbed station by natural and anthropogenic activities thereby making the condition unsuitable for the benthos to dwell. Hence, macro-benthos were not found at Somnath beach, except Dotilla sp. (sand crabs), which was found during high tide as the beaches are less influenced by the waves and currents. However, Ghoghla beach excelled good species diversity and SWDI as they had favorable environment to harbor crustaceans like amphipods, isopods and sand crabs.

Conclusions

Environmental and ecological health of two beaches, Ghoghla and Somnath, was investigated during the pre-to-post lockdown phases. Considerable reduction in the physicochemical parameters and pathogenic bacterial load were observed during the COVID-19 imposed lockdown. The uplift of lockdown distinguishably deteriorated the beach water and sediment qualities as well as the planktonic and benthic communities. Lockdown and post-lockdown data were compared with the primary data generated in the year 2013, which describe the deterioration of water quality predominantly due to social factors. Conclusively, the results presented in this report would facilitate future prospects to undertake regular monitoring and assessments of the pristine Ghoghla beach and largely exploited Somnath beach.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-022-21586-z.

Acknowledgement Authors also acknowledge Mr. Narshi R Baraiya and Mr. Jani Rajan for field sampling. Authors also sincerely acknowledge the Centralized Instrument Facility for instrumental analyses. This manuscript has been assigned with CSIR-CSMCRI: 49/2022 registration.

Authors’ contribution Tarini Prasad Sahoo was involved in investigation and writing—original draft. Sonpal Vasudutta helped in investigation and writing—original draft. Amit Chanchpara, Nosad Sahu and Thiagagarajan Indirapriyatharsini contributed to investigation. Sanak Ray, Shruti Chatterjee and Ravikumar Bhagawan Thorat were involved in review and editing. Soumya Haldar helped in conceptualization, review and editing. Madhava Anil Kumar contributed to supervision, review and editing. All authors read and approved the manuscript.

Funding Authors sincerely thank INCOIS-MoES for financial support to carry out the work. TPS acknowledges INCOIS-MoES for financial support.

Data availability Not applicable.

Declarations

Ethical approval and consent to participate The authors declare that they have no known competing financial interests or personal relationships that seem to affect the work reported in this article.

Consent for Publication We do not have any individual person’s data in any form.

Competing interest The authors declare that they have no conflict of interest.

References

Abreu R, Figueira C, Romão D, Brandão J, Freitas MC, Andrade C, Calado G, Ferreira C, Campos A, Prada S (2016) Sediment characteristics and microbiological contamination of beach sand—A case–study in the archipelago of Madeira. Sci Total Environ 573:627–638. https://doi.org/10.1016/j.scitotenv.2016.08.160

Ali AJH, Tamilselvi M, Akram AS, Arshan MLK, Sivakumar V (2015) Comparative study on bioremediation of heavy metals by solitary ascidian, Phallusia nigra, between Thoothukudi and Vizhinjam ports of India. Ecotoxicol Environ Saf 121:93–99. https://doi.org/10.1016/j.ecoenv.2015.04.052

Al-Said T, Naqvi SWA, Al-Yamani F, Goncharov A, Fernandez L (2018) High total organic carbon in surface waters of the northern Arabian Gulf: Implications for the oxygen minimum zone of the Arabian Sea. Mar Pollut Bull 129:35–42. https://doi.org/10.1016/j.marpolbul.2018.02.013

Ambika S, Basappa U, Singh A, Gonugade V, Tholiya R (2021) Impact of social lockdown due to COVID-19 on environmental and
health risk indices in India. Environ Res 196:110932. https://doi.org/10.1016/j.envres.2021.110932

Anbuselvan N, Nathan S, Sridharan M (2018) Heavy metal assessment in surface sediments off Coromandel Coast of India: Implication on marine pollution. Mar Pollut Bull 131:712–726. https://doi.org/10.1016/j.marpolbul.2018.04.074

APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington

APHA (2017) Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington

Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart HP (2018) Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut 237:253–261. https://doi.org/10.1016/j.envpol.2018.02.058

Barford E (2013) Rising ocean acidity will exacerbate global warming. Nature. https://doi.org/10.1038/nature.2013.13602

Behera DP, Kolandhasamy P, Sigamani S, Devi LP, Ibrahim YS (2021) A preliminary investigation of marine litter pollution along Mandvi beach, Kachchh, Gujarat. Mar Pollut Bull 165:112100. https://doi.org/10.1016/j.marpolbul.2021.112100

Bhattachiri M, Patra S, Sundaramoorthy S, Madeswaran P, Chandrasekar B, Kolandhasamy P, Sigamani S, Devi LP, Ibrahim YS (2021) Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut 237:253–261. https://doi.org/10.1016/j.envpol.2018.02.058

Bhat SA, Bashir O, Bilal M, Ishaq A, Dar MUD, Kumar R, Bhat RA, Sher F (2021) Impact of COVID-related lockdowns on environmental and climate change scenarios. Environ Res 195:110839. https://doi.org/10.1016/j.envres.2021.110839

Bonnand P, James RH, Parkinson IJ, Connelly D, Fairchild I (2013) The chromium isotopic composition of seawater and marine carbonates. Earth Planet Sci Lett 382:10–20. https://doi.org/10.1016/j.epsl.2013.09.001

Botero C, Pereira C, Totic M, Manjarrez G (2015) Design of an index for monitoring the environmental quality of tourist beaches from a holistic approach. Ocean Coast Manag 108:65–73. https://doi.org/10.1016/j.ocecoaman.2014.07.017

Braham S, Mohanty A, Satpathy K, Kanagasabapathy K, Panigrahi S, Samantara M, Prasad M (2014) Heavy metal content in the beach sediment with respect to contamination levels and sediment quality guidelines: A study at Kalpakkam coast, southeast coast of India. Environ Earth Sci 72:4463–4472. https://doi.org/10.1007/s12665-014-3346-y

Cañedo-Argüelles M, Kellford B, Schäfer R (2019) Salt in freshwaters: Causes, effects and prospects - introduction to the theme issue. Philos Trans R Soc Lond Ser B Biol Sci 374:20180002. https://doi.org/10.1098/rstb.2018.0002

Caraka RE, Lee Y, Kurniawan R, Herliansyah R, Kaban PA, Nasution BI, Gio PU, Chen RC, Toharudin T, Pardamean B (2020) Impact of COVID-19 large scale restriction on environment and economy in Indonesia. Glob J Environ Sci Manage 6:65–84. https://doi.org/10.22034/GJESM.2019.06.SI07

Cefarelli AO, Ferrario ME, Almendoz GO, Atencio AG, Akselman R, Vernet M (2010) Diversity of the diatom genus Fragilaropsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance. Polar Biol 33:1463–1484. https://doi.org/10.1007/s00300-010-0794-z

Central Pollution Control Board (1998) Water quality standards for coastal waters marine outfalls. 100-105. https://cpceb.nic.in/wqm/coastal_water_standards.pdf

Chakraborty B, Roy S, Bera A, Adhikary PP, Bera B, Sengupta D, Bhunia GS, Shit PK (2021) Cleaning the river Damodar (India): Impact of COVID-19 lockdown on water quality and future rejuvenation strategies. Environ Dev Sustain 23:11975–11989. https://doi.org/10.1007/s10668-020-01152-8

Chanchpara A, Sonpal V, Mehta G, Sahoo TP, Thorat RB, Ray S, Haldar S (2021) New normal baseline data during nationwide lock down due to Covid 19 pandemic in the world’s largest ship recycling yard at Alang, India. Environ Sci Pollut Res Int 28:35051–35063. https://doi.org/10.1016/j.espl.2021.12885-y

Chapman PM (2017) Assessing and managing stressors in a changing marine environment. Mar Pollut Bull 124:587–590. https://doi.org/10.1016/j.marpolbul.2016.10.039

Cherif EK, Vodopivec M, Mejidad N, Esteves da Silva JC, Simonović S, Boulaassal H (2020) COVID-19 pandemic consequences on coastal water quality using WST sentinel-3 data: Case of tangier, Morocco. Water 12:2638. https://doi.org/10.3390/w12092638

Chiarelli R, Martino C, Roccheri MC (2019) Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 24:675–687. https://doi.org/10.1007/s12192-019-01010-1

Cho Y, Shim WJ, Jang M, Han GM, Hong SH (2019) Abundance and characteristics of microplastics in market bivalves from South Korea. Environ Pollut 245:1107–1116. https://doi.org/10.1016/j.envpol.2018.11.091

Coccia M (2018) An introduction to the methods of inquiry in Social Sciences. SSRN Electron J 5:116–126. https://doi.org/10.2139/ssrn.3122662

Coccia M (2020) How (Un) sustainable Environments are Related to the Diffusion of COVID-19: The Relation between Coronavirus Disease 2019, Air Pollution, Wind Resource and Energy. Sustainability 12:9709. https://doi.org/10.3390/su12229709

Coccia M (2021a) Pandemic Prevention: Lessons from COVID-19. Encyclopedia 1:433–444. https://doi.org/10.3390/encyclopediaia1002036

Coccia M (2021b) The impact of first and second wave of the COVID-19 pandemic in society: comparative analysis to support control measures to cope with negative effects of future infectious diseases. Environ Res 197:111099. https://doi.org/10.1016/j.envres.2021.111099

Coccia M (2021c) High health expenditures and low exposure of population to air pollution as critical factors that can reduce fatality rate in COVID-19 pandemic crisis: a global analysis. Environ Res 199:111339. https://doi.org/10.1016/j.envres.2021.111339

Coccia M (2022a) Preparedness of countries to face COVID-19 pandemic crisis: Strategic positioning and underlying structural factors to support strategies of prevention of pandemic threats. Environ Res 203:111678. https://doi.org/10.1016/j.envres.2021.111678

Coccia M (2022b) COVID-19 pandemic over 2020 (with lockdowns) and 2021 (with vaccinations): similar effects for seasonality and environmental factors. Environ Res 208:112711. https://doi.org/10.1016/j.envres.2022.112711

Cucciniello R, Raia L, Vasca E (2022) Air quality evaluation during COVID-19 in Southern Italy: the case study of Avellino city. Environ Res 203:111803. https://doi.org/10.1016/j.envres.2021.111803

Daniel DB, Ashraf PM, Thomas SN (2020) Abundance, characteristics and seasonal variation of microplastics in Indian white shrimps (Fenneropenaeus indicus) from coastal waters off Cochin, Kerala, India. Sci Total Environ 739:139839. https://doi.org/10.1016/j.scitotenv.2020.139839

Deplege MH, Harvey AJ, Brownlee C, Frost M, Moore MN, Fleming LE (2013) Changing views of the interconnections between the oceans and human health in Europe. Microb Ecol 65:852–859. https://doi.org/10.1007/s00248-012-0173-0
marine pollution in the eastern Mediterranean. Mar Pollut Bull 165:112167. https://doi.org/10.1016/j.marpolbul.2021.112167

Pacacoal NF (2021) Improvement of water quality amidst COVID-19 pandemic: A paradoxical picture. J Public Health (Oxf) 43:e383–e384. https://doi.org/10.1093/pubmed/fda094

Panja AK, Vasavudatta S, Sahoo TP, Shinde AH, Thorat RB, Chatterjee S, Ray S, Kumar MA, Haldar S (2022) Impact of 2nd wave of COVID-19 related lockdown on coastal water quality at Diu, western coast of India and role of total alkalinity on bacterial loads. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-022-19168-0

Peña MA, Lewis MR, Harrison WG (1990) Primary productivity and size structure of phytoplankton biomass on a transect of the equator at 135°W in the Pacific Ocean. Deep-Sea Res Pt I 37:295–315. https://doi.org/10.1016/0198-4497(90)90129-J

Perumal K, Antony J, Muthuramalingam S (2021) Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay, South India. Environ Sci Eur 33:63. https://doi.org/10.1186/s12302-021-00501-2

Prakash VK, Vimala CSG, Latha TP, Nagamani PV, Laxmi CNV (2021) Assessment of water quality along the southeast coast of India during COVID-19 lockdown. Front Mar Sci 8:1–13. https://doi.org/10.3389/fmars.2021.659686

Qian Y, Zhang W, Yu L, Feng H (2015) Metal pollution in coastal sediments. Curr Pollut Rep 1:203–219. https://doi.org/10.1007/s40726-015-0018-9

Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr(VI)), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess 191:419. https://doi.org/10.1007/s10661-019-7525-7

Robin RS, Purvaja R, Ganguly D, Hariharan G, Paneerselvam A, Prasad MHK, Mugilarasan M, Rohan S, Arumugam K, Samuel VD, Ramesh R (2021) COVID-19 restrictions and their influences on ambient air, surface water and plastic waste in a coastal megacity, Chennai, India. Mar Pollut Bull 171:112739. https://doi.org/10.1016/j.marpolbul.2021.112739

Rostern N (2017) The effects of some metals in acidified waters on aquatic organisms. Fish & Ocean Opj 4:001–007. https://doi.org/10.19088/foaj.2017.04.555645

Sahoo PK, Mangla S, Pathak AK, Salâmao GN, Sarkar D (2021) Pre-to-post lockdown impact on air quality and the role of environmental factors in spreading the COVID-19 cases-A study from a worst-hit state of India. Int J Biometeorol 65:205–222. https://doi.org/10.1007/s10544-020-02019-3

Saraswat R, Saraswat DA (2020) Research opportunities in pandemic lockdown. Science 368:594–595. https://doi.org/10.1126/science.abc3372

Sarma V, Krishna M, Srinivas T (2020) Sources of organic matter and tracing of nutrient pollution in the coastal Bay of Bengal. Mar Pollut Bull 159:111477. https://doi.org/10.1016/j.marpolbul.2020.111477

Schmidt S, Diao II, Derrienic H, Fallou H, Lepage M (2019) Exploring the susceptibility of turbid estuaries to hypoxia as a prerequisite to designing a pertinent monitoring strategy of dissolved oxygen. Front Mar Sci 6:1–8. https://doi.org/10.3389/fmars.2019.00352

Sembel L, Setiyawati D, Yona D, Risjani Y (2021) Seasonal variations of water quality at Doreri Gulf, Manokwari, West Papua. IOP Conf Ser: Earth Environ Sci 890:012007. https://doi.org/10.1088/1755-1315/890/1/012007

Seth CK, Shriwastav A (2018) Contamination of Indian sea salts with microplastics and a potential prevention strategy. Environ Sci Pollut Res 25:30122–30131. https://doi.org/10.1007/s11356-018-3028-5

Sharma S, Zhang M, Anshika GJ, Zhang H, Kota SH (2020) Effect of restricted emissions during COVID-19 on air quality in India. Sci Total Environ 728:138878. https://doi.org/10.1016/j.scitotenv.2020.138878

Sheppard C, Elliott M, Galgani F, Hutchings P, Morton B, Richardson B, Yang GP (2021) From what and to where? Celebrating the first 50 years of Marine Pollution Bulletin. Mar Pollut Bull 162:111897. https://doi.org/10.1016/j.marpolbul.2020.111897

Shi W, Zhao X, Han Y, Che Z, Chai X, Liu G (2016) Ocean acidification increases cadmium accumulation in marine bivalves: A potential threat to seafood safety. Sci Rep 6:1–8. https://doi.org/10.1038/srep20197

Simpson E (1949) Measurement of diversity. Nature 163:688. https://doi.org/10.1038/163688a0

Song H, Wignall PB, Song H, Dai X, Chu D (2019) Seawater temperature and dissolved oxygen over the past 500 million years. J Earth Sci 30:236–243. https://doi.org/10.1007/s12302-018-1002-2

Sospedra J, Nienchesski LFH, Falco S, Andrade CF, Attisano KK, Rodilla M (2018) Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea). Oceanologia 60:52–64. https://doi.org/10.1007/s10166-017-07004

Straka W, Kondragunta S, Wei Z, Zhang H, Miller SD, Watts A (2021) Examining the economic and environmental impacts of covid-19 using earth observation data. Remote Sens 13:1–30. https://doi.org/10.3390/rs130110005

Sun X, Wandelt S, Fricke H, Rosenow J (2021) The Impact of COVID-19 on Air Transportation Network in the United States, Europe, and China. Sustainability 13:9656. https://doi.org/10.3390/su131179656

Sunita TG, Monisha V, Sivanesan S, Vasanthy M, Prabhakaran M, Omine K, Sivasankar V, Darchen A (2021) Micro-plastic pollution along the Bay of Bengal coastal stretch of Tamil Nadu, South India. Sci Total Environ 756:144073. https://doi.org/10.1016/j.scitotenv.2020.144073

Suresh G, Ramasamy V, Sundarraj M, Paramasivam K (2015) Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background radiation area, Kerala, India. Mar Pollut Bull 91:389–400. https://doi.org/10.1016/j.marpolbul.2014.11.007

Susannah M, McCormick MI, Mitchell MD, Ferrari MCO (2011) To feed or to feed: The effects of turbidity on perception of risk by a marine fish. Biol Lett 7:811–813. https://doi.org/10.1098/rsbl.2011.0645

Tokatlı C, Varol M (2021) Impact of the COVID-19 lockdown period on surface water quality in the Meric-Ergene River Basin, North-west Turkey. Environ Res 197:111051. https://doi.org/10.1016/j.envres.2021.111051

Tucker CS, Robinson EH (1990) Water Quality Management in Ponds. In: Channel Catfish Farming Handbook. Springer, Boston. https://doi.org/10.1007/978-1-4757-1376-3_10

United States Environmental Protection Agency (2000) Ambient aquatic life water quality criteria for dissolved oxygen (saltwater): Cape cod to cape hatteras. Office of water, Washington https://www.epa.gov/sites/production/files/2018-10/documents/ambient-al-wq-dissolved-oxygen-saltwater-cape-code.pdf

Velasco J, Gutiérrez-Cánovas C, Botella-Cruz M (2018) Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos Trans R Soc Lond Ser B Biol Sci 374:1764. https://doi.org/10.1098/rstb.2018.0011

Vezzulli L, Pezzati E, Moreno M, Fabiano M, Pane L, Pruzzo C, The VibrioSea Consortium (2009) Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb Ecol 58:808–818. https://doi.org/10.1007/s00248-009-9542-8
Vikas M, Dwarakish G (2015) Coastal pollution: A review. Aquat Procedia 4:381–388. https://doi.org/10.1016/j.aqpro.2015.02.051

Wang Q, Su M (2020) A preliminary assessment of the impact of COVID-19 on environment–A case study of China. Sci Total Environ 728:138915. https://doi.org/10.1016/j.scitotenv.2020.138915

Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16. https://doi.org/10.1007/s10750-012-1149-2

Wu J, Lu J, Zhang C, Zhang Y, Lin Y, Xu J (2020) Pollution, sources, and risks of heavy metals in coastal waters of China. Hum Ecol Risk Assess 26:2011–2026. https://doi.org/10.1080/10807039.2019.1634466

Yunus AP, Masago Y, Hijioka Y (2020) COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci Total Environ 731:139012. https://doi.org/10.1016/j.scitotenv.2020.139012

Zakem EJ, Al-Haj A, Church MJ, van Dijken GL, Dutkiewicz S, Fos- ter SQ, Fulweiler RW, Mills MM, Follows MJ (2018) Ecological control of nitrite in the upper ocean. Nat Commun 9:1206. https://doi.org/10.1038/s41467-018-03553-w

Zhang Y, Chu C, Li T, Xu S, Liu L, Ju M (2017) A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. Sci Total Environ 599–600:721–731. https://doi.org/10.1016/j.scitotenv.2017.04.232

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.