Review Paper

Investigation of Knee Arthrokinematic Changes Before and After Reconstruction of Anterior Cruciate Ligament: A Systematic Review

Ali Asghar Norasteh1, *Mostafa Payandeh1, Zaher Mohammad Ashour1

1. Department of Corrective Exercises and Sports Injuries, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.

Objective

The aim of this study was to investigation the arthrokinematic changes of the knee before and after the reconstruction of the anterior cruciate ligament and also to examine these changes after a period of rehabilitation exercises.

Methods

In this systematic review study search was conducted in online databases of, Ebsco, Scopus, Web of Science, PEDro, Google scholar, PubMed, Science Direct, CINAHL, SPORTDiscus, EMBASE and MEDLINE from 1970 to 2020. And keywords related to the topic were used to search for articles.

Results

According to the search method, 127 articles were found that considering the inclusion criteria, 20 articles (20 English and 0 Persian) were selected. The results showed that the anterior glide in the injured knee increased significantly compared to the healthy knee. However, this arthrokinematic change was more observed in the medial epicondyle than in the lateral epicondyle. Also, among the articles, it is agreed that the highest arthrokinematic difference observed in injured persons compared to healthy individuals occurred between 15 degrees of flexion and complete extension of the knee. And Finally, the findings showed that the arthrokinematics of the knee after reconstruction, were more similar with before the reconstruction it up to a healthy knee. And also the arthrokinematic movements of the reconstructed ligament, even after a rehabilitation period, were more similar to the un reconstructed knee than to the healthy knee.

Conclusion

According to the results of previous articles and being more obvious change of anterior glide, medial glide and to some extent external rotation in persons with anterior cruciate ligament rupture as well as no difference arthrokinematic knee before and after reconstruction of the anterior cruciate ligament, it seems important that rehabilitation programs and anterior cruciate ligament reconstruction techniques be planned in order to correct or prevent arthrokinematic changes are mentioned.

* Corresponding Author: Mostafa Payandeh, PhD. Candidate
Address: Department of Corrective Exercises and Sports Injuries, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.
Tel: +98 (917) 3675299
E-mail: paradise.gheshm2011@gmail.com
important consequences of this injury in the joint is the possibility of osteoarthritis in the knee joint [5]. Due to the pivotal role of this ligament in controlling the stability of the knee joint [22], it has been proven that its rupture will lead to a decrease in sense of depth, balance, decreased strength, decreased muscle function, and biomechanical changes [23]. Past studies have shown that even a damaged ACL that has been rebuilt shows signs of instability [21-26].

According to Barinius et al. (2014), after reconstruction of the ACL, 57% of those who were monitored for 14 years they had developed osteoarthritis in the injured knee [26]. The above raises the question of what arthrokinematic changes occur after ACL rupture and even after reconstruction, which causes irreversible complications? Therefore, the present review aimed to identify the most important arthrokinematic changes before and after ACL reconstruction as well as after a rehabilitation period according to previous research.

2. Methods

In this review article, we tried to collect the studies on arthrokinematic changes of the knee with ACL injury before and after reconstruction compared to a healthy knee from 1970 to 2020. These articles were done by searching the websites of Ebsco, Scopus, PEDro, WebofScience, Google Scholar, PubMed, Science Direct, CINAHL, SPORTdiscus, EMBASE and MEDLINE. The keywords used in this search included the following and their synonyms:

Knee, Gait knee kinematics, Gait knee kinematics Injured, Anterior cruciate ligament deficient, Arthrokinematic, Sagittal Plane Knee Motion, Anterior Cruciate Ligaments, Knee Joint Movements, Knee Pathology, ACL reconstruction Knee hypermobility, Accessory movement.

Manual search was also used to find articles. In this study, the quality of articles was also scored with the Modified Downs and Black checklist [27]. In fact, this checklist is set up to evaluate the methodology of random and non-random articles, based on this checklist, articles are divided into four levels. If the article score was between 24 and 28, the level was excellent, 19 to 23 was good, 14 to 18 was relatively good and less than 13 articles was considered poor.

3. Results

According to the search method, 127 articles were found and at the end, 20 articles were reviewed and finalized according to the inclusion and exit criteria. 8 studies evaluated knee arthrokinematic when walking and running normally or downhill on the treadmill [26-36]. Seven studies examined arthrokinematic of the knee in static position and weight bearing on one leg [37-43]. Tow studies on going up and down stairs [44-46], one study was performed on a trampoline [47], another was performed on Lachman test [48], and the remaining study performed an arthrokinematic evaluation of the knee joint on a corpse after rupture [49].

Among the studies, 15 of the 20 found that the injured knee’s anterior glide was significantly increased compared to the healthy knee. However, this arthrokinematic change was greater in the internal epicondyle than in the external one than in healthy individuals. After the anterior glide, the second and third obvious arthrokinematic changes that occurred between the two groups were an increase in the internal glide and an external rotation, respectively. Among the articles, it is agreed that the most common arthrokinematic difference observed in injured individuals compared to healthy individuals occurred between 15 degrees of flexion and full knee extension. Finally, research results indicate that the arthrokinematic of the knee after reconstruction were more similar to those before than to a healthy knee, also, the arthrokinematic movements of the reconstructed ligament, even after a period of rehabilitation, were more similar to the non-reconstructed knee than to the healthy knee.

4. Discussion and Conclusion

The highest arthrokinematic difference was observed in injured individuals compared to healthy individuals in the anterior glide and at angles between 15 degrees of flexion and full extension of the knee [29, 38, 40, 42, 49, 50]. Hoshino et al. (2012), Douglas et al. (2005) as well as Sangboom et al. (2015) have noted that changes in the anterior glide occur more frequently in the internal epicondyle than in the external epicondyle in people with ACL injury than in healthy individuals [32, 41, 48]. Research has shown that the injured knee has more external rotation or the internal tibial glide occur more frequently in the internal epicondyle than in healthy individuals [32, 43, 46, 48]. It is also important to note that the results of the research showed that there was no significant difference in the arthrokinematic changes that occurred before and after the ACL reconstruction. The last and perhaps one of the most important points about people with ACL rupture that is very important and unfortunately less considered is finding the internal tibial glide in these people [32, 35, 36, 45].

Hoshino et al. (2012) have concluded that even after a period of rehabilitation people who had rebuilt their ACL, in the heel strike stage while running downhill, compared to healthy individuals, they had more roll and glide movements in the knee joint [32]. Ga O Bo et al. (2010) also...
prescribed a 6-step rehabilitation course for these individuals. The results of this study showed that the kinematic variables of a reconstructed knee, despite participating in a rehabilitation program, are more similar to a non-reconstructed injured knee than a healthy knee [46].

Ethical Considerations

Compliance with ethical guidelines

This study is a systematic review and there is no need to for ethical approval.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or profit-non sectors.

Authors’ contributions

Conceptualization, methodology and supervision: all authors; Review and writing the original draft and sources: Mostafa Payandeh, Zaher Mohammad Ashour; Review and editing: Ali Asghar Norasteh.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the Research And Educational Officials of the University of Guilan and the Faculty of Physical Education and Sports Sciences.
بررسی تغییرات آرتروکینماتیک زانو قبل و بعد از بازسازی رباط متقاطع قدمانی: یک مطالعه مروری

نظریه

1. مقدمه

هدف از تحقیق حاضر بررسی تغییرات آرتروکینماتیک زانو قبل و بعد از بازسازی رباط متقاطع قدمانی و همچنین بررسی این تغییرات بعد از یک دوره تمرینات توان بخشی بود.

جمع‌آوری شد. در 2020 تا 1970 در این مقاله مروری نظام مند سعی شد مطالعات انجام شده در زمینه موضوع تحقیق از سال 1 روش‌ها و تکنیک‌های بازسازی رباط متقاطع قدمانی و استفاده از کلیدواژه‌ها برای جست وجوی مقالات استفاده شد.

یافته دوازده مقاله یافت شد که در انتها با توجه به معیارهای ورود و خروج بیست مقاله بررسی و 127 با توجه به روش جست وجو یافته‌ها نهایی شد. پانزده تحقیق از بیست تحقیق یافت شده گزارش کرده‌اند که گلاید قدامی در زانوی آسیب‌پذیر نسبت به زانوی سالم به شکل معنی داری افزایش یافته است. البته این تغییر آرتروکینماتیکی نسبت به افراد سالم در اپی کندیل داخلی بیشتر از اپی کندیل خارجی بود. به همین دلیل تغییرات آرتروکینماتیکی بین دو گروه رخ داد.

با توجه به بررسی نتایج مقالات گذشته و بارزتر بودن تغییر گلاید قدامی، گلاید داخلی و تا حدودی چرخش خارجی در نتیجه گیری افراد دارای پارگی رباط متقاطع قدمانی و همچنین عدم تفاوت آرتروکینماتیک قبل و بعد از بازسازی رباط متقاطع و برنامه‌های توان بخشی رایج، به نظر می‌رسد برنامه‌های توان بخشی و تکنیک‌های بازسازی رباط متقاطع به شکل دقیق‌تر و هدف‌مندتر در راستای اصلاح یا جلوگیری از بروز تغییرات آرتروکینماتیک ذکر شده برنامه‌ریزی شود.

کلیدواژه‌ها:

- اختلالات حرکت
- پارگی رباط متقاطع قدمانی
- رباط متقاطع قدمانی بازسازی شده
- استئوآرتریت زانو

اطلاعات مقاله:

تاریخ دریافت 1399 تیر 4
تاریخ پذیرش 1399 تیر 7
تاریخ انتشار 1399 شهریور 11

مقدمه

به‌طور طبیعی، کنده‌ای که دو سطح را به هم می‌بندد و بلوک می‌کند. از این طریق، دو سطح به هم می‌بندند و به شکلی که حفظ توانائی جانداران را در حین تغییرات محیطی نگه‌دارند.

حواشی:

1. Analogous to the study by Mohammad Azadzadkhah et al., this study also investigated the effects of rehabilitation programs on patellar tendinitis.

2. The study found that rolling, sliding, and spinning are the main movements in the knee joint.

1. Rolling, sliding and spinning

2. A study was conducted to investigate the effects of rehabilitation programs on patellar tendinitis.

3. The results showed a significant increase in the patellar movement before and after rehabilitation.

4. This finding indicates the importance of rehabilitation programs in treating patellar tendinitis.

5. The study emphasizes the need for more research in this area to develop effective rehabilitation programs.
هنگام حرکت، نسبت مقادیر رول و گلاید از طریق بررسی مسیر [2]، درواقع عملکرد 7-10 استنباط می‌شود. مرکز لحظه‌ای چرخش اصلی رباط متقاطع قدامی ایجاد ثبات در حرکات انتقالی و چرخش. رباط متقاطع قدامی دارای دو باند 7، 10 تیبیا نسبت به فمور است. باند قدامی داخلی هنگامی که زانو به فلکشن می‌رود، سفت و محکم می‌شود و باند خلفی خارجی نیز در زمان اکستنش زانو در حالت سفت و محکم قرار می‌گیرد. این ترتیب عملکرد در رباط متقاطع قدامی نشان دهنده اعمال نقش 8 این رباط در سرتاسر دامنه حرکتی فلکشن و اکستنش است. همچنین رباط متقاطع قدامی، نگهدارنده اصلی جابجایی 2. Path of Instantaneous Centers of Rotation
بحث
مطالعات گذشته ثابت کرده اند که حتی رباط متقاطع قدامی بازسازی شده نشانه‌هایی از بی‌ثباتی را نشان می‌دهد. با توجه به نقش محوری رباط متقاطع در کنترل فضای و بازاریابی سطوح زانو، ثابت شده است پارگی آن منجر به کاهش حس عمیقی، عملکرد مکانیکی و همچنین به تغییرات بیومکانیکی خواهد شد. همچنین قطع آسیب ایجاد شده بر روی رباط متقاطع قدامی به صورت وضعیت تغییر خواهد کرد. تغییرات اینگونه به وسیله فریم‌های مکانیکی روی فضاهای سطحی مفصل در طی پارگی ربات متقاطع قدامی ایجاد می‌شود. در ضمن، این تغییرات پارگی ربات متقاطع قدامی اینجا هم اهمیت پیدا می‌کند که بر پایه گزارش بارینیوس و همکاران حتی بعد از بازسازی رباط متقاطع قدامی نیز از ورود بارهای غیرطبیعی روی سطوح مفصل در طی فعالیت‌های عملیکی استفاده می‌شود.

مطالعات گذشته ثابت کرده که حتی رباط متقاطع قدامی بازسازی شده، نشانه‌هایی از بی‌ثباتی را نشان می‌دهد. با توجه به نقش محوری رباط متقاطع در کنترل فضای و بازاریابی سطوح زانو، ثابت شده است پارگی آن منجر به کاهش حس عمیقی، عملکرد مکانیکی و همچنین به تغییرات بیومکانیکی خواهد شد. همچنین قطع آسیب ایجاد شده بر روی رباط متقاطع قدامی به صورت وضعیت تغییر خواهد کرد. تغییرات اینگونه به وسیله فریم‌های مکانیکی روی فضاهای سطحی مفصل در طی پارگی ربات متقاطع قدامی ایجاد می‌شود. در ضمن، این تغییرات پارگی ربات متقاطع قدامی اینجا هم اهمیت پیدا می‌کند که بر پایه گزارش بارینیوس و همکاران حتی بعد از بازسازی رباط متقاطع قدامی نیز از ورود بارهای غیرطبیعی روی سطوح مفصل در طی فعالیت‌های عملیکی استفاده می‌شود.

بحث
مطالعات گذشته ثابت کرده اند که حتی رباط متقاطع قدامی بازسازی شده نشانه‌هایی از بی‌ثباتی را نشان می‌دهد. با توجه به نقش محوری رباط متقاطع در کنترل فضای و بازاریابی سطوح زانو، ثابت شده است پارگی آن منجر به کاهش حس عمیقی، عملکرد مکانیکی و همچنین به تغییرات بیومکانیکی خواهد شد. همچنین قطع آسیب ایجاد شده بر روی رباط متقاطع قدامی به صورت وضعیت تغییر خواهد کرد. تغییرات اینگونه به وسیله فریم‌های مکانیکی روی فضاهای سطحی مفصل در طی پارگی ربات متقاطع قدامی ایجاد می‌شود. در ضمن، این تغییرات پارگی ربات متقاطع قدامی اینجا هم اهمیت پیدا می‌کند که بر پایه گزارش بارینیوس و همکاران حتی بعد از بازسازی رباط متقاطع قدامی نیز از ورود بارهای غیرطبیعی روی سطوح مفصل در طی فعالیت‌های عملیکی استفاده می‌شود.

بحث
مطالعات گذشته ثابت کرده اند که حتی رباط متقاطع قدامی بازسازی شده نشانه‌هایی از بی‌ثباتی را نشان می‌دهد. با توجه به نقش محوری رباط متقاطع در کنترل فضای و بازاریابی سطوح زانو، ثابت شده است پارگی آن منجر به کاهش حس عمیقی، عملکرد مکانیکی و همچنین به تغییرات بیومکانیکی خواهد شد. همچنین قطع آسیب ایجاد شده بر روی رباط متقاطع قدامی به صورت وضعیت تغییر خواهد کرد. تغییرات اینگونه به وسیله فریم‌های مکانیکی روی فضاهای سطحی مفصل در طی پارگی ربات متقاطع قدامی ایجاد می‌شود. در ضمن، این تغییرات پارگی ربات متقاطع قدامی اینجا هم اهمیت پیدا می‌کند که بر پایه گزارش بارینیوس و همکاران حتی بعد از بازسازی رباط متقاطع قدامی نیز از ورود بارهای غیرطبیعی روی سطوح مفصل در طی فعالیت‌های عملیکی استفاده می‌شود.

بحث
مطالعات گذشته ثابت کرده اند که حتی رباط متقاطع قدامی بازسازی شده نشانه‌هایی از بی‌ثباتی R.png را نشان می‌دهد. با توجه به نقش محوری R.png در کنترل فضای و بازاریابی سطوح زانو، ثابت شده است پارگی آن منجر به کاهش حس عمیقی، عملکرد M.png و همچنین به تغییرات B.png خواهد شد. همچنین C.png آسیب ایجاد شده بر روی D.png به صورت وضعیت E.png تغییر خواهد کرد. تغییرات اینگونه به وسیله F.png مکانیکی روی G.png مفصل در طی H.png ربات M.png ایجاد می‌شود. در ضمن، این تغییرات P.png ربات M.png اینجا هم اهمیت پیدا می‌کند که بر پایه گزارش B.png و همکاران گ.jpg بعد از بازسازی R.png متقاطع قدامی نیز از ورود B.png غیرطبیعی روی G.png مفصل در طی H.png فعالیت‌های عملیکی استفاده می‌شود.

بحث
مطالعات گذشته ثابت کرده اند که حتی R.png متقاطع قدامی بازسازی شده نشانه‌هایی از B.png را نشان می‌دهد. با توجه به نقش R.png محوری R.png در کنترل F.png و بازاریابی S.png زانو، ثابت شده است P.png منجر به کاهش حس عمیقی، عملکرد M.png و همچنین به تغییرات B.png خواهد شد. همچنین C.png آسیب E.png ایجاد شده بر روی D.png به صورت وضعیت E.png تغییر خواهد کرد. تغییرات اینگونه به وسیله F.png مکانیکی روی G.png مفصل در طی H.png ربات M.png ایجاد می‌شود. در ضمن، این تغییرات P.png ربات M.png اینجا هم اهمیت پیدا می‌کند که بر پایه گزارش B.png و همکاران گ.jpg بعد از بازسازی R.png متقاطع قدامی نیز از ورود B.png غیرطبیعی روی G.png مفصل در طی H.png فعالیت‌های عملیکی استفاده می‌شود.
از دستگاه فلورسکوپی ساختارهای زانو و یا مفاصل دیگر را مورد بررسی قرار داده بودند و همچنین تحقیقاتی که نقش آرتروکینماتیک دیگر مطالعاتی که حرکات آرتروکینماتیک زانو را بعد از ترمیم کرده بودند. یک تحقیق باقی مانده نیز ارزیابی آرتروکینماتیک، یک تحقیقات یافت شده هشت تحقیق، آرتروکینماتیک زانو را در هنگام مفصل زانو استفاده کرده اند. تکنیک آنالیز سه بعدی حرکت استریو رادیوگرافی سیستم، داینامیک رادیوگرافی ایکس ری، دو مقاله دیگر نیز از روش مشاهده می شود، از بیست مقاله بررسی شده شش مقاله از سیستم پنج تحقیق، متغیرهای کینماتیک خود را قبل و بعد از بازسازی 29، 44-46، 48، 36، 33، 30، 28، 24، 27، 26، 23، 22، 21، 20، 19، 18، 17، 16، 15، 14، 13، 12، 11، 10، 9، 8، 7، 6، 5، 4، 3، 2، 1، 0. متن کامل مقاله در میزبانی نشر پایان‌نامه است.

همچنین برای چستنوجویی مقالات فارسی در پایگاه اطلاعات علمی چهارده شماره 11. ۱۹۹۱ تا ۱۹۹۳، پایگاه یوپکهداکل علوم و فناوری اطلاعات ایران، یک مقاله سلامت، یک مقاله پزشکی از کلیپوزهای کینماتیک مفصل زانو، آرتروکینماتیک مفصل زانو، آرتروکینماتیک و از پارسی، و پارسی به روی رابطه شایع می‌باشد که آرتروکینماتیک زانو و حرکات انتقالی مفصل زانو استفاده کرده. از کلیپوزهای اگلیسی به خانواده برای یادگیری مقالات اگلیسی چشمه‌های در مجلات علمی خارجی استفاده شد.

از مسیر بررسی حذف گردیدند.

نتایج

پس از غیر فناوری بر اساس مivarfan، مقاله پژوهش گردید.

۱. چک لیست بررسی چک کلیه مقالات تصادفی و تحقیقات ویژه تحقیقاتی تسهیل شده است در این چک کلیه ۲۷ سوال وجود دارد. یک مقاله گزارش دهنده می‌باشد برای مثال در سطح گزارش دهنده می‌باشد در چهار سطح قرار داده شده است.

۱۵. ژورنال‌شناسی
4. SID
5. ISC
6. Magiran
7. Irandoc
8. Iran Medex
9. Medlib
10. Modified Down's and Black Checklist (MDBC)
11. Reporting
12. External validity
13. Internal validity
14. Bias
15. Selection bias

پیشنهاد مقاله‌های چاپ شده در مجلات علمی داخلی استفاده شد. متن کامل مقاله در دسترس باشد؛ البنک جامع مقالات پزشکی مطرح می‌شود.

افتخاری برای چستنوجویی مقالات فارسی در پایگاه اطلاعات علمی چهارده شماره 11. ۱۹۹۱ تا ۱۹۹۳، پایگاه یوپکهداکل علوم و فناوری اطلاعات ایران، یک مقاله سلامت، یک مقاله پزشکی از کلیپوزهای کینماتیک مفصل زانو، آرتروکینماتیک مفصل زانو، آرتروکینماتیک و از پارسی، و پارسی به روی رابطه شایع می‌باشد که آرتروکینماتیک زانو و حرکات انتقالی مفصل زانو استفاده کرده. از کلیپوزهای اگلیسی به خانواده برای یادگیری مقالات اگلیسی چشمه‌های در مجلات علمی خارجی استفاده شد.

از مسیر بررسی حذف گردیدند.

نتایج

پس از غیر فناوری بر اساس مivarfan، مقاله پژوهش گردید.

۱. چک لیست بررسی چک کلیه مقالات تصادفی و تحقیقات ویژه تحقیقاتی تسهیل شده است در این چک کلیه ۲۷ سوال وجود دارد. یک مقاله گزارش دهنده می‌باشد برای مثال در سطح گزارش دهنده می‌باشد در چهار سطح قرار داده شده است.

۱۵. ژورنال‌شناسی
4. SID
5. ISC
6. Magiran
7. Irandoc
8. Iran Medex
9. Medlib
10. Modified Down's and Black Checklist (MDBC)
11. Reporting
12. External validity
13. Internal validity
14. Bias
15. Selection bias

پیشنهاد مقاله‌های چاپ شده در مجلات علمی داخلی استفاده شد. متن کامل مقاله در دسترس باشد؛ البنک جامع مقالات پزشکی مطرح می‌شود.
شکلی، به‌طور کلی مطالعه‌های قبل از و پس از بازسازی را بررسی کرده‌اند. با وجود تغییرات در زاویه‌ها و روند‌های حرکتی، با این حال که تغییرات در طول زمان بود، این تغییرات معمولاً با بقیه متفاوت بود. در حالی که داگلاس و سانگ‌بوم به‌طور کلی این تغییرات را در حالت نزدیک متقاطع قدامی بیشتر از افراد سالم در اپیکندل داخلی بیشتری رواج داشتند، که پانزده تحقیق از بیست تحقیق گزارش کرده‌اند. نیز به‌طور کلی در آزمون‌های ارزیابی بعد از پارگی رباط متقاطع قدامی به ترتیب بررسی‌های یو‌ژانگ و همکاران، کینین و همکاران، یوگانگ و همکاران، کینین و همکاران، جانسون و همکاران، کینین و همکاران، و دو مقاله دیگر نیز ارزیابی‌ها را در بخش‌های مختلف از پارک‌های داخلی بازسازی کرده‌اند. به‌طور کلی، در این مطالعات، تغییرات در طول زمان، به‌ویژه در پنج مقاله آخرین مطالعات، به‌طور کلی ارزیابی‌ها را در بخش‌های مختلف از پارک‌های داخلی بازسازی کرده‌اند. به‌طور کلی، در این مطالعات، تغییرات در طول زمان، به‌ویژه در پنج مقاله آخرین مطالعات، به‌طور کلی ارزیابی‌ها را در بخش‌های مختلف از پارک‌های داخلی بازسازی کرده‌اند. به‌طور کلی، در این مطالعات، تغییرات در طول زمان، به‌ویژه در پنج مقاله آخرین مطالعات، به‌طور کلی ارزیابی‌ها را در بخش‌های مختلف از پارک‌های داخلی بازسازی کرده‌اند.
 pada در سال 2020 با بررسی تغییرات آرتروکینماتیک محور قبل و بعد از ترمیم رباط، مطالعه انجام شد. نتایج مطالعه نشان داد که با ترمیم رباط، بیشترین اختلاف بین زانوی آسیب دیده و زانوی سالم در حرکت گلاید درصد اول سیکل گیت 10 قدمی بود که در هنگام دویدن روی تریدمیل شیب دار اتفاق افتاد. زمان ارزیابی: دو ماه و نیم بعد از عمل جراحی مداخله: تنها مقایسه، تمرین خاصی تجویز نشد

متغیرهای اصلی	ابزار و حالت اندازه‌گیری
سنی	Optical imaging system, infrared motion tracking diodes to record relative motion
حجم	In vitro
نمونه	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد
نویسنده و همکاران	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد
شماره 6، دوره 1399 شهریور	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد

نتایج در سال 2018 با بررسی تغییرات آرتروکینماتیک محور قبل و بعد از ترمیم رباط، مطالعه انجام شد. نتایج مطالعه نشان داد که با ترمیم رباط، بیشترین اختلاف بین زانوی آسیب دیده و زانوی سالم در حرکت گلاید درصد اول سیکل گیت 10 قدمی بود که در هنگام دویدن روی تریدمیل شیب دار اتفاق افتاد. زمان ارزیابی: دو ماه و نیم بعد از عمل جراحی مداخله: تنها مقایسه، تمرین خاصی تجویز نشد

متغیرهای اصلی	ابزار و حالت اندازه‌گیری
سنی	Optical imaging system, infrared motion tracking diodes to record relative motion
حجم	In vitro
نمونه	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد
نویسنده و همکاران	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد
شماره 6، دوره 1399 شهریور	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد

نتایج در سال 2018 با بررسی تغییرات آرتروکینماتیک محور قبل و بعد از ترمیم رباط، مطالعه انجام شد. نتایج مطالعه نشان داد که با ترمیم رباط، بیشترین اختلاف بین زانوی آسیب دیده و زانوی سالم در حرکت گلاید درصد اول سیکل گیت 10 قدمی بود که در هنگام دویدن روی تریدمیل شیب دار اتفاق افتاد. زمان ارزیابی: دو ماه و نیم بعد از عمل جراحی مداخله: تنها مقایسه، تمرین خاصی تجویز نشد

متغیرهای اصلی	ابزار و حالت اندازه‌گیری
سنی	Optical imaging system, infrared motion tracking diodes to record relative motion
حجم	In vitro
نمونه	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد
نویسنده و همکاران	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد
شماره 6، دوره 1399 شهریور	مداخله: تنها مقایسه، تمرین خاصی تجویز نشد
علي اصغر نورسته و همکاران. بررسی تغییرات آرتروکینماتیک رباط پا در زنان با آسیب رباط متقاطع قدمام. مجله بیومکانیک ورزشی. 1344، شماره 8، شماره 2: 75-80.
در بررسی‌های این تحقیق مشخص شد که استخوان تیبیای پای آسیب‌دیده در حرکات پاسیو به نسبت پای سالم به شکل معنی‌داری به طور متوسط دارای گلاید قدمی بیشتری بود، ولی در هنگام راه‌رفتن نتایج این تحقیق به شکل شگفت‌انگیزی نشان داد که پای آسیب‌دیده به نسبت پای سالم به طور متوسط دارای گلاید قدامی کمتری است. به شکل دقیق تر بیشین اختلاف بین دو درصدی سیکل گیت 70 گروه در حدود 40 تا 50 دفعه اتفاق افتاد.

بررسی تأثیر لقی پاسیو زانو بر آرتروکینماتیک تیبیوفمورال در هنگام حرکات اکتیو در افراد به نسبت افراد سالم ACL دارای پارگی زمان ارزیابی: بین 3 ماه تا 5 ماه حرکات پاسیو و افراد سالم طبیعی به نسبت افراد طبیعی به نسبت افراد سالم، در حدود 70 درصد سیکل گیت افتاق اتفاق.

در هنگام روند در مرحله‌ای که از طریق مخاطرات اعتیاد در جراحی، می‌تواند باعث اختلالات نقش در جراحی، می‌ت
علی‌اصغر نورسته و همکاران. بررسی تغییرات آرتروکینماتیک زانو قبل و بعد از بازسازی رباط متقاطع قدامی

در این تحقیق اشاره شده است که افراد دارای آسیب رباط متقاطع قدامی در هنگام شیفت دادن وزن بدن خود به یک طرف در حالت ایستا به نسبت گروه کنترل روی ترامپولین دارای گلاید قدامی بیشتری بودند.

مقایسه حرکت انتقالی تیبیا در فعالیت‌های مختلف بین افراد سالم و افراد دارای آسیب ACL رابطه می‌نماید.

تغییرات کینماتیک حاصل از پارگی متقاطع قدامی در این تحقیق در حالت ایستا روی یک پا در حالی که همان پا از حالت درجه فلکشن خم 90 درجه اکستنشن کامل می‌شود، مورد اندازه‌گیری قرار گرفت، نتیجه تحقیق نشان داد که زانوی آسیب دیده (که هفت ماه از پارگی آن می‌گذشت) به نسبت درجه اول فلکشن از نظر آماری به شکل معنی‌داری، دارای گلاید میلی متر و چرخش داخلی 3 قدامی (تقریباً درجه) بیشتری بود. همچنین نتایج این تحقیق نشان داد که پای آسیب دیده میلی متر نسبت به پای سالم در 1 تقریباً درجه دارای گلاید داخلی 90 تا 15 فلکشن تیبیا شده بود.

تغییرات کینماتیک حاصل از پارگی متقاطع قدامی در حالت ایستا:

بررسی تغییرات کینماتیک زانو بعد از پارگی رباط متقاطع قدامی در حالت Quasi-static lunge.

مداخله: فقط مقایسه، تمرین خاصی تجویز نشد.

روز: یک تا هفت روز بعد از روز (عمل)، اندازه‌گیری حرکت اولیه کنترل شده (سه تا شش هفته)، اندازه‌گیری حرکت قدرتی و حس عمق پیشرفته (هفت تا ده هفته)، تمرینات پلایومتریک و دویدن (یازده تا دوازده هفته)، تمرینات چابکی (سیزده هفته تا شش ماه).

تیبیا شده بود.

A computerized goniometer With 4 potentiometers (CA-4000; OSI Inc, Hayward, CA)

Dual orthogonal fluoroscopic imaging system: An In Vivo Imaging Analysis (CA-100; OSI Inc, Hayward, CA).
١٩٩٩، شماره ٨، صفحات ٧٨-٨١

بحث‌های آرتروکینماتیک قبل و بعد از بازسازی رباط متقاطع قدامی

نمونه‌ریزی: با آسیب رباط متقاطع قدامی و کاهش کارایی آن بیشترین تغییرات کینماتیک در این افراد به نسبت افراد سالم در هنگام راه رفتن در مرحله ترمینال سوینگ و قبل از هیل (Heel strike) رخ داد. نتایج این تحقیق نشان می‌دهد که در این مرحله گلاید قدامی و چرخش خارجی تیبیا در افراد آسیب‌پذیر بیش از افراد سالم است. در افراد آسیب‌پذیر، گلاید قدامی فمور در اپی کندیل داخلی به شکل ۱۷/۴۵ به شکل می‌گردد که بیشتر از افراد سالم بود. در افراد دارای پارگی متقاطع قدامی در مقایسه با افراد سالم گلاید خلفی فمور (گلاید قدامی تیبیا) در اپی کندیل میلی متر) ولی این گلاید خلفی در اپی کندیل داخلی به شکل ۴/۷۵ مشاهدی بیشتر از افراد سالم بود. در مرحله بالا رفتن از پله سانتی‌متری، زمان ارزیابی: چهار تا شش هفته بعد از پارگی مداخله: فقط مقایسه، تمرین خاصی تجویز نشد. تمرین‌های کششی قبل از انجام تمرین خصوصی در افراد سالم گزارش نشده است.
in a weight-bearing condition, the involved knee had a greater anterior glide compared to the normal knee.

However, during weight-bearing in the full range of knee extension, individuals with injured cruciate ligaments had greater anterior glide compared to the normal knee.

Mixed-model analyses and EMG:

Measurement condition: In the weight-bearing condition, with standing and also in the weight-bearing condition when standing from the sitting position.

The knee flexion to extension range of 65 to 55 degrees was assessed.

The results of this study showed that in the normal knee, movement from 6/4 degrees of flexion to 10 degrees of flexion was accompanied by 50 degrees of internal and external rotation.

However, in the injured knee, 2/5 degrees of internal rotation was equal to ACL rupture,

2/6 degrees of external rotation was equal to

which indicates that the injured knee had tried to maintain external rotation.

In these cases, there was a significant difference between the two groups.

Knee kinematic assessment after cruciate ligament injury:

Measurement condition: 4 to 5 months after injury.

Intervention: Only comparison, no special training was provided.

Roentgen stereophotogrammetric:

Measurement condition: Without bearing weight, when the person's foot is on the floor, and also in the weight-bearing condition when standing from the sitting position.

The knee flexion to extension range of 17 to 41 degrees was assessed.

The results of this study showed that in the normal knee, movement from 30 degrees of flexion to 30 degrees of flexion was accompanied by femur movement.

The natural realignment of the knee to its natural state occurred.

The three-dimensional knee kinematic assessment in the extension phase:

Measurement condition: 8 months after injury.

Intervention: Only comparison, no special training was provided.

Radiostereometry (Dynamic bilateral radiostereometric):

Measurement condition: Without bearing weight, when the person's foot is on the floor, and also in the weight-bearing condition when standing from the sitting position.

The knee flexion to extension range of 30 to 30 degrees was assessed.

The results of this study showed that in the normal knee, movement from 30 degrees of flexion to 30 degrees of flexion was accompanied by femur movement.

The natural realignment of the knee to its natural state occurred.
بعد از بروز آسیب قادر به تأخیر انداختن؟ آن‌ها بیان داشته‌اند بعد از پارگی رباط و بازسازی آتاق قدامی بازگشت به فعالیت ورزشی را باید دو سال به ملاحظات زیست‌شناسی و عملکرد می‌دانند. مقاله مروری آن‌ها با این سؤال بپردازد که بر اساس ملاحظات زیست‌شناسی و عملکردی آن‌ها از پارگی رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان داده‌اند که بر اساس مطالعه دقیق بازاری و بررسی‌گزارش، مدیرانرزه که با همکاری‌ها رباط رباط را بازسازی کرده‌اند. آن‌ها همچنین نشان D همچنین نشان D همچنین نشان D همچنین نشان D
ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این مقاله از نوع مروری است و مستقیماً از هیچ گونه نمونه انسانی یا حیوانی در آن استفاده نشده است.

حمایت مالی

هیچگونه کمک مالی از سازمانیهای دولتی، خصوصی و غیرانتفاعی دریافت نکرده است.

مشارکت نویسندگان

روش‌شناسی و تئوری همه نویسندگان ظاهر محمد عاشور، مصطفی پاینده و بهرام بهادری نوشته و منابع اصلی: مصطفی پاینده، ظاهر محمد عاشور و ویرایش نهایی: علی اصغر نوراسته.

تعارض منافع

بنابر اظهار نویسندگان و نظر وزارت بهداشت، در این مقاله هیچگونه تعارض منافع مطرح نشده است.

نتیجه‌گیری نهایی

به نظر مرسد پیش‌تر، تنظیمات ارتوکینماتیک حامل از یک گره ریت بی‌شکل، باعث مرور زنده نشدن یک گره می‌شود. در این نظریه، بی‌شکل جریان ترتیب بدنی و عضلات و ماهیت آنها به یک گره تخت شکل بی‌شکل می‌گیرد. این راه‌حل شامل تغییرات بین دو گروه اصلی شده و در گروه اصلی سالم، همچنین در گروه اصلی بی‌شکل تغییرات بین دو گروه اصلی شده و در گروه بی‌شکل تمام موارد به وجود می‌آید. در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و بی‌شکل شده و در این نظریه، این راه‌حل شامل تغییرات بین دو گروه اصلی سالم و
References

[1] Kakarlapudi T, Bickerstaff D. Knee instability: Isolated and complex. Br J Sports Med. 2000; 34(5):395-400. [DOI:10.1136/bjsm.34.5.395-a] [PMID] [PMCID]

[2] Nasserí A, Khataee H, Bryant AL, Lloyd DD, Saxby DJ. Modelling the loading mechanics of anterior cruciate ligament. Comput Methods Programs Biomed. 184:105098. [DOI:10.1016/j.cmpb.2019.105098] [PMID]

[3] Kiapour AM, Murray MM. Basic science of anterior cruciate ligament injury and repair. Bone Joint Res. 2014; 3(2):20-31. [DOI:10.1302/2046-3758.32.2000241] [PMID] [PMCID]

[4] Collins SL, Layde P, Guse CE, Schlotthauer AE, Van Valin SE. The incidence and etiology of anterior cruciate ligament injuries in patients under the age of 18 in the State of Wisconsin. Pediat Therapeut. 2014; 4:196. [DOI:10.4172/2161-0665.1000196]

[5] Ajuyed A, Wong F, Smith C, Norris M, Earnshaw P, Back D, et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: A systematic review and meta-analysis. Am J Sports Med. 2014; 42(9):2242-52. [DOI:10.1177/0363546513508376] [PMID]

[6] Kapandi IA. The Physiology of the joints. Edinburgh: Churchill Livingstone; 1985. https://books.google.com/books?id=k5wTAQAAMAAJ&q

[7] Frankenl VH, Burstein AH, Brooks DB. Biomechanics of internal derangement of the knee: Pathomechanics as determined by analysis of the knee's centers of rotation. J Bone Joint Surg Am. 1971; 53:945-962. [DOI:10.1099/00004623-197153050-00010]

[8] Gerber C, Matter P. Biomechanical analysis of the knee after rupture of the anterior cruciate ligament and its primary repair: An instant-centre analysis of function. J Bone Joint Surg Br. 1983; 65:391-9. [DOI:10.1302/0301-620X.65B4.687470] [PMID]

[9] Mitton GR, Ireland WP, Runyon CL. Evaluation of the instantaneous centers of rotation of the stifle before and after repair of torn cruciate ligament by use of the over-the-top technique in dogs. Am J Vet Res. 1991; 52(10):1731-7. [PMID]

[10] Zatsiorsky VM. Kinematics of human motion. Champaign, Ill: Human Kinetic; 1998. https://books.google.com/books?id=mf4i7G5nXvkC&printsec=frontcover&q=

[11] Fu FH, Harmer CD, Johnson DL, Miller MD, Woo SL. Biomechanics of knee ligaments: Basic concepts and clinical application. Instr Course Lect. 1994; 43:137-48. [PMID]

[12] Khadian M, LaCour MT, Coomer SC, Bolognesi MP, Komistek RD. In vivo knee kinematics for a cruciate sacrificing total knee arthroplasty having both a symmetrical femoral and tibial component. J Arthroplasty. 2020; 35(6):1712-9. https://www.sciencedirect.com/science/article/pii/S0883540320301273

[13] Marx RG, Jones EC, Angel M, Wickiewicz TL, Warren RF. Beliefs and attitudes of members of the American Academy of Orthopaedic Surgeons regarding the treatment of anterior cruciate ligament injury. Arthroscopy. 2003; 19(7):762-70. [DOI:10.1016/S0749-8063(03)00398-O] [PMID] [PMCID]

[14] Sim JA, Gadikota HR, Li JS, Li G, Gill TJ. Biomechanical evaluation of knee joint laxity and graft forces after anterior cruciate ligament reconstruction by transtibial and anteromedial portal, outside-in, and transtibial techniques. Am J Sports Med. 2011; 39:2604-10. [DOI:10.1177/0363545411420810] [PMID] [PMCID]

[15] Herrington L, Alarifi S, Jones R. Patellofemoral joint loads during running at the time of return to sport in elite athletes with acl reconstruction. Am J Sports Med. 2017; 45(12):2812-6. [DOI:10.1177/0363545517716632] [PMID]

[16] Karanikas K, Arampatzis A, Bruggemann GP. Motor task and muscle strength followed different adaptation patterns after anterior cruciate ligament reconstruction. Eur J Phys Rehabil Med. 2009; 45(1):37-45. https://www.researchgate.net/profile/Adamantios_Arampatzis/publication/2345781

[17] Kvist J. Rehabilitation following anterior cruciate ligament injury. Sport Med. 2004; 34(4):269-80. [DOI:10.2165/00007256-200434040-00006] [PMID]

[18] Noehren B, Abraham A, Curry M, Johnson D, Ireland ML. Evaluation of proximal joint kinematics and muscle strength following ACL reconstruction surgery in female athletes. J Orthop Res. 2014; 32(10):1305-10. [DOI:10.1002/jor.22678] [PMID] [PMCID]

[19] Pairoit-de-Fontenay B, Willy RW, Elias AR, Mizer RL, Dube MO, Roy JS. Running biomechanics in individuals with anterior cruciate ligament reconstruction: A systematic review. Sport Med. 2010; 40(9):1411-24. [DOI:10.1007/s12260-010-9778-3] [PMID] [PMCID]

[20] Pratt KA, Sigward SM. Knee loading deficits during dynamic tasks in individuals following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017; 47(6):411-9. [DOI:10.5251/jospt.2017.6912] [PMID]

[21] Tazhman S, Kolowich P, Collon D, Anderson K, Anderst W. Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res. 2007; 454-66-73. [DOI:10.1097/BLO.0b013e31813a8b39e] [PMID]

[22] Andersen NN, Dyhre-Poulsen P. The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc. 1997; 5(3):145-9. [DOI:10.1007/s001670050042] [PMID]

[23] Ingersoll CD, Grindstaff TL, Pietrosimone BG, Hart JM. Neuromuscular consequences of anterior cruciate ligament injury. Clin Sports Med. 2008; 27(3):383-vii. [DOI:10.1016/j.csm.2008.03.004] [PMID]

[24] Andreichai TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res. 2006; 442;39-44. [DOI:10.1097/BLO.0b013e318077f979] [PMID]

[25] Chauhdari AMW, Briant PL, Bevill SL, Koo S, Andreichai TP. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc. 2008; 40(2):215-22. [DOI:10.1249/mss.0b013e31815cbb06e] [PMID] [PMCID]

[26] Barenbus B, Panzer S, Shalabi A, Bujak R, Norlen L, Eriksson K. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: A 14-year follow-up study of a randomized controlled trial. Am J Sports Med. 2014; 42(5):1049-57. [DOI:10.1177/0363545514526139] [PMID]

[27] Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998; 52(6):377-84. [DOI:10.1136/jech.52.6.377] [PMID] [PMCID]

[28] O’Connor SR, Tully MA, Ryan B, Bradley JM, Baxter GD, McDonough SM. Failure of a numerical quality assessment scale to identify potential risk of bias in a systematic review: A comparison study. BMC Res Notes. 2015; 8(1):1-7. https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-015-1181-1
Alpinar B, Thorhauer E, Irrgang JJ, Tashman S, Fu FH, Anderst WJ. Alteration of Knee kinematics after anterior cruciate ligament reconstruction is dependent on associated meniscal injury. Am J Sports Med. 2018; 46(5):1158-65. [DOI:10.1177/0363546517753386] [PMID]

Andriacci TP, Dyrby CO. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech. 2005; 38(2):293-8. [DOI:10.1016/j.jbiomech.2004.02.010] [PMID]

Booth H, Duda GN, Heller MO, Ehrig RM, Doyscher R, Jung T, et al. Anterior cruciate ligament-deficient patients with passive knee joint laxity have a decreased range of anterior-posterior motion during active movements. Am J Sports Med. 2013; 41(5):1051-7. [DOI:10.1177/0363546513480465] [PMID]

Hoshino Y, Tashman S. Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment. Knee Surg Sports Traumatol Arthrosc. 2012; 20(7):1268-75. [DOI:10.1007/s00167-011-1731-6] [PMID]

Shabani B, Bytyqi D, Lustig S, Cheze L, Bytyqi C, Neyret P. Gait knee kinematics after ACL reconstruction: 3D assessment. Int Orthop. 2013; 39(6):1187-93. [DOI:10.1007/s00264-013-2243-0] [PMID]

Yang C, Tashio Y, Lynch A, Fu F, Anderst W. Kinematics and arthrokine- matics in the chronic ACL-deficient knee are altered even in the absence of instability symptoms. Knee Surg Sports Traumatol Arthrosc. 2018; 26(5):1406-13. [DOI:10.1007/s00167-017-4780-7] [PMID] [PMCID]

Yim JH, Seon JK, Kim YK, Jung ST, Shin CS, Yang DH, et al. Anterior translation and rotational stability of anterior cruciate ligament-deficient knees during walking: speed and turning direction. J Orthop Sci. 2015; 20(1):155-62. [DOI:10.1007/s00776-014-0672-6] [PMID]

Zhang Y, Huang W, Yao Z, Ma L, Lin Z, Wang S, et al. Anterior cruciate ligament injuries alter the kinematics of knees with or without meniscal deficiency. Am J Sports Med. 2016; 44(12):3132-9. [DOI:10.1177/0363546516650026] [PMID]

Brandsson S, Karlsson J, Eriksson BI, Kärrholm J. Kinematics after tear of the anterior cruciate ligament. Am J Sports Med. 1989; 17(6):796-802. [DOI:10.1177/036354658901700613] [PMID]

Jonsson H, Kärnhölm J, Elmqvist LG. Kinematics of active knee extension after tear of the anterior cruciate ligament. Am J Sports Med. 1989; 17(6):796-802. [DOI:10.1177/036354658901700613] [PMID]

Abebe ES, Utturukar GM, Taylor DC, Spritzer CE, Kim JP, Moorman CT, et al. The effects of femoral graft placement on in vivo knee kinemat- ics after anterior cruciate ligament reconstruction. J Biomech. 2011; 44(5):924-9. [DOI:10.1016/j.jbiomech.2010.11.028] [PMCID]

Brandsson S, Karlsson J, Svärd L, Kartus J, Eriksson BI, Kärrholm J. Kinematics and laxity of the knee joint after anterior cruciate ligament reconstruction: pre- and postoperative radiosteometric studies. Am J Sports Med. 2002; 30(3):361-7. [DOI:10.1177/03635450203000310 01] [PMID]

Gao B, Zheng N. Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clinical Biomechanics. 2010; 25(3):222-9. [DOI:10.1016/j.clinbiomech.2009.11.006] [PMID]

Ivist J. Sagittal plane knee motion in the ACL-deficient knee during body weight shift exercises on different support surfaces. J Orthop Phys Ther. 2006; 36(12):954-62. [DOI:10.2519/jospt.2006.2290] [PMID]

Koo S, Kyung BS, Jeong JS, Suh DW, Ahn JH, Wang JH. Dynamic three-dimensional analysis of lachman test for anterior cruciate ligament insufficiency: analysis of anteroposterior motion of the medial and lateral femoral epicondyles. Knee Surg Relat Res. 2015; 27(3):187-93. [DOI:10.5792/kssr.2015.27.3.187] [PMID] [PMCID]

Chahla J, Nelson T, D allo I, Valamanchil D, Eberlein S, Limposvaati O, et al. Anterior cruciate ligament repair versus reconstruction: A kinematic analysis. Knee. 2020; 27(2):334-340. [DOI:10.1016/j.knee.2019.10.020] [PMID]

Andriacci TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng. 2004; 32:447-457. [DOI:10.1023/B:ABME.0000017541.82498.37] [PMID]

Fairclough JA, Graham GP, Dent CM. Radiological sign of chronic anterior cruciate ligament deficiency. Injury. 1990; 21(6):401-2. [DOI:10.1016/0020-1383(90)90130-M] [PMID]

Vermeijden HD, Yang XA, van der List JP, DiFelice GS. Large variation in indications, preferred surgical technique and rehabilitation protocol for primary anterior cruciate ligament repair: A survey among ESSKA members. Knee Surg Sports Traumatol Arthrosc. 2020; 28(11):3613-21. [DOI:10.1007/s00167-020-05011-7]

Amitel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH. The phenomenon of “ligamentization”: Anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res. 1986; 4(2):162-72. [DOI:10.1002/jor.1100040204] [PMID]

Arnoczy CP, Tarvin GB, Marshall JL. Anterior cruciate ligament replacement using patellar tendon. Evaluation of graft vascularization in the dog. J Bone Joint Surg Am. 1982; 64(2):217-24. [DOI:10.2106/00004623-198264020-00011] [PMID]

Grindem H, Snyder-Mackler L, Moksnes H, Engerbretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: The Delaware-Oslo ACL cohort study. British J Sports Med. 2016; 50(13):804-8. [DOI:10.1136/bjsports-2016-096031] [PMID] [PMCID]

Scheffler SJ, Unterhauser FN, Weiler A. Graft remodeling and liga- mentization after cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2008; 16(9):834-42. [DOI:10.1007/s00267-008-0560-8] [PMID]
[57] Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K. Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy. 1993; 9(4):394-405. [DOI:10.1016/S0749-8063(05)80313-5] [PMID] [PMCID]

[58] Claes S, Verdonk P, Forsyth R, Bellemans J. The “Ligamentization” Process in Anterior Cruciate Ligament Reconstruction: What Happens to the Human Graft? A Systematic Review of the Literature. Am J Sports Med. 2011; 39(11):2476-83. [DOI:10.1177/0749806311402662] [PMID]

[59] Pauzenberger L, Syrè S, Schurz M. “Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: A systematic review of the literature and a glimpse into the future. Arthroscopy. 2013; 29(10):1712-22. [DOI:10.1016/j.arthro.2013.05.009] [PMID]

[60] Rougraff B, Shelbourne KD, Gerth PK, Warner J. Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med. 1993; 21(2):277-84. [DOI:10.1177/036354659302100219] [PMID]

[61] Dyhre-Poulsen P, Kroggaard MR. Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol. 2000; 89(6):2191-5. [DOI:10.1152/jappl.2000.89.6.2191] [PMID]

[62] Kroggaard MR, Fischer-Rasmussen T, Dyhr-Poulsen P. Absence of sensory function in the reconstructed anterior cruciate ligament. J Electromyogr Kinesiol. 2011; 21(1):82-6. [DOI:10.1016/j.jelekin.2010.09.012] [PMID]

[63] Ochi M, Iwasa J, Uchio Y, Adachi N, Kawasaki K. Induction of somatosensory evoked potentials by mechanical stimulation in reconstructed anterior cruciate ligaments. J Bone Joint Surg Am. 2002; 84(5):761-6. [DOI:10.1302/0301-620X.84B5.0840761]

[64] Nyland J, Brosky T, Currier D, Nitz A, Caborn D. Review of the afferent neural system of the knee and its contribution to motor learning. J Orthop Sports Phys Ther. 1994; 19(1):2-11. [DOI:10.2519/jospt.1994.19.1.2] [PMID]

[65] Di Stasi SL, Legerstedt D, Gardinier ES, Snyder-Mackler L. Gait patterns differ between acl-reconstructed athletes who pass return-to-sport criteria and those who fail. Am J Sports Med. 2013; 41(6):1310-8. [DOI:10.1177/0363546513482718] [PMID] [PMCID]

[66] Gokeler A, Benjamimse A, van Eck CF, Webster KE, Schot L, Otten E. Return of normal gait as an outcome measurement in acl reconstructed patients. A systematic review. Int J Sports Phys Ther. 2013; 8(4):441-51. [PMCID]

[67] Hart HF, Culvenor AG, Collins NJ, Ackland DC, Cowan SM, Machotka Z, et al. Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Br J Sports Med. 2016; 50(10):597-612. [DOI:10.1136/bjsports-2015-094797] [PMID]

[68] Reewer BD, Di Stasi SL, Snyder-Mackler L. Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction. J Biomech. 2011; 44(10):1948-53. [DOI:10.1016/j.jbiomech.2011.04.037] [PMID] [PMCID]

[69] Stasi SD, Hartigan EH, Snyder-Mackler L. Sex-Specific Gait Adaptations Prior to and up to 6 Months After Anterior Cruciate Ligament Reconstruction. J Orthop Sports Phys. 2015; 45(3):207-14. [DOI:10.2519/jospt.2015.5062] [PMID] [PMCID]

[70] Xergia SA, Pappas E, Zampeli F, Georgiou S, Georgouls AD. Asymmetries in Functional Hop Tests, Lower Extremity Kinematics, and Isokinetic Strength Persist 6 to 9 Months Following Anterior Cruciate Ligament Reconstruction. J Orthop Sports Phys. 2013; 43(3):154-62. [DOI:10.2519/jospt.2013.3967] [PMID]

[71] Nagelli CV, Hewett TE. Should Return to Sport be Delayed Until 2 Years After Anterior Cruciate Ligament Reconstruction? Biological and Functional Considerations. Sports Med (Auckland, NZ). 2017; 47(2):221-32. [DOI:10.1007/s40279-016-0584-z] [PMID] [PMCID]
