Differentiation of *Bacillus pumilus* and *Bacillus safensis* Using MALDI-TOF-MS

Raquel Branquinho¹, Clara Sousa¹,², João Lopes³,⁴, Manuela E. Pintado⁵, Luísa V. Peixe¹, Hugo Osório⁶,⁷*

¹ REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal, ² CEB, Centro de Engenharia Biológica, Universidade do Minho, Braga, Portugal, ³ REQUIMTE, Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal, ⁴ CBQF, Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal, ⁵ Departamento de Tecnologia Farmacêutica, Faculdade Farmácia, Universidade de Lisboa, Lisboa, Portugal, ⁶ IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal, ⁷ Faculdade de Medicina, Universidade do Porto, Porto, Portugal

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) despite being increasingly used as a method for microbial identification, still present limitations in which concerns the differentiation of closely related species. *Bacillus pumilus* and *Bacillus safensis*, are species of biotechnological and pharmaceutical significance, difficult to differentiate by conventional methodologies. In this study, using a well-characterized collection of *B. pumilus* and *B. safensis* isolates, we demonstrated the suitability of MALDI-TOF-MS combined with chemometrics to accurately and rapidly identify them. Moreover, characteristic species-specific ion masses were tentatively assigned, using UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases and primary literature. Delineation of *B. pumilus* (ions at m/z 5271 and 6122) and *B. safensis* (ions at m/z 5288, 5568 and 6413) species were supported by a congruent characteristic protein pattern. Moreover, using a chemometric approach, the score plot created by partial least square discriminant analysis (PLSDA) of mass spectra demonstrated the presence of two individualized clusters, each one enclosing isolates belonging to a species-specific spectral group. The generated pool of species-specific proteins comprised mostly ribosomal and SASPs proteins. Therefore, in *B. pumilus* the specific ion at m/z 5271 was associated with a small acid-soluble spore protein (SASP O) or with 50S protein L35, whereas in *B. safensis* specific ions at m/z 5288 and 5568 were associated with SASP J and P, respectively, and an ion at m/z 6413 with 505 protein L32. Thus, the resulting unique protein profile combined with chemometric analysis, proved to be valuable tools for *B. pumilus* and *B. safensis* discrimination, allowing their reliable, reproducible and rapid identification.

Citation: Branquinho R, Sousa C, Lopes J, Pintado ME, Peixe LV, et al. (2014) Differentiation of *Bacillus pumilus* and *Bacillus safensis* Using MALDI-TOF-MS. PLoS ONE 9(10): e110127. doi:10.1371/journal.pone.0110127

Editor: Mickael Desvaux, INRA Clermont-Ferrand Research Center, France

Received April 17, 2014; **Accepted** September 17, 2014; **Published** October 14, 2014

Copyright: © 2014 Branquinho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: Dr. Kasthuri Venkateswaran, Dr. Irène Ouoba, Dr. Joseph W. Kloepper, Dr. Cecilie From and Dr. Maria Morea are gratefully acknowledged for providing isolates FO-36bT, SAFN-027, SAFN-037, KL-052, 51-3C and 82-2C; Bs31; SE 49 (AP3) and SE 52 (AP7); FEL 55, UNG22 and MIL46, respectively. Raquel Branquinho was supported by a PhD fellowship (Ref. SFRH/BD/61410/2009) and Clara Sousa by a post-doctoral fellowship (Ref. SFRH/BPD/70548/2010), from FCT (Fundação para a Ciência e Tecnologia, Portugal). Hugo Osório acknowledges the funding from OREN-FEDER through the Operational Program ON. 2 – O Novo Norte. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by the Portuguese Foundation for Science and Technology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Bacillus pumilus and *Bacillus safensis* represent one of the most significant and widespread terrestrial species within the *Bacillus pumilus* group [1,2,3,4,5]. A wide range of biotechnological and pharmaceutical applications has been attributed to these species, including human and animal probiotics [6] or phytosanitary-based products [7]. Moreover, they are important contaminant agents found in foodstuffs, namely in food and/or pharmaceutical facilities, posing a serious problem to the quality assurance of these industrial segments [2,4]. More rarely, *B. pumilus* isolates have also been involved in foodborne poisoning [8,9] and in human infections including anthrax-like cutaneous lesions [10,11,12,13].

Studying a collection of previously identified *B. pumilus* isolates we have realized the difficulty to their differentiation from closely related species based on phenotypic and biochemical characteristics and on 16S rRNA gene sequences [4]. Sequencing housekeeping genes, such as *gyrB* (β-subunit of DNA gyrase) and *rpoB* (β-subunit of RNA polymerase) has proven to be useful for taxonomic resolution of closely related species, including *Bacillus* species. Nevertheless, are already recognized its implementation difficulties in the routine of microbiology laboratories [4,5].

Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF-MS), is an accurate, fast, and affordable emerging technique that has been increasingly used for identification of bacteria at different taxonomical levels [14,15]. As a proteomic approach, MALDI-TOF-MS relies on the reproducible detection of microbial protein patterns, which can be used for microbial identification by comparing experimental mass spectra with a library of known reference strains or by comparing identities of species-specific biomarkers [16,17].
Using vegetative *B. pumilus* and *B. safensis* cells Farfour et al. [19] unsuccessfully attempted to discriminate these closely related species. Differentiation of these species using spore cells was proposed by Dickinson et al. [19], by MALDI-TOF-MS using a single ion at m/z 7620. Nevertheless, there is a need for further studies in order to assess the validity of this discriminatory tool. Moreover, Lash et al. [20,21] suggested that bacterial vegetative cells when submitted to a protein enrichement process, could provide a more informative mass spectra pattern than that obtained with bacterial spores [20,21].

In addition, the species-specific protein fingerprint constitutes a valuable approach for the assignment of species biomarkers, which usually comprise cell structure and housekeeping proteins [22]. In *Bacillus* spp., ribosomal proteins and small acid-soluble spore proteins (SASPs) have been reported as potential species-specific biomarkers [21]. Nevertheless and despite this successful characterization of *Bacillus cereus* group species [21], this was not applied to the members of the *B. pumilus* group.

In this work, through the implementation of a protocol that enhances proteins extraction [21] combined with chemometric tools, we assessed the potential of MALDI-TOF-MS fingerprinting to discriminate a comprehensive collection of *B. safensis* and *B. pumilus* isolates. Moreover, the tentative assignment of their species-specific protein biomarkers was also performed.

Materials and Methods

Isolates collection and identification

Five *B. pumilus* and twenty-two *B. safensis* isolates that were previously identified by phenotypic and genotypic (16S rRNA, gyrB and rpoB gene sequences) methods were studied [5,23]. They comprised diverse pulsed-field gel electrophoresis (PFGE)-types and were recovered from different geographic terrestrial locations and sources, including food samples (Norway, Italy and Africa) (n = 4), plants (USA) (n = 2), gastropods (Portugal) (n = 3), health (n = 6) and cosmetic (n = 4) products (Portugal), and clean room environments from Mars Odyssey (USA) (n = 5). Additionally, type and reference strains, *B. safensis* FO-36b5, *B. pumilus* ATCC 7061T and ATCC 14884 were included (Table 1).

Sample preparation

For MALDI-TOF-MS analysis, soluble proteins were extracted from a pure single colony of *Bacillus* spp. grown on LB agar (Merck, Darmstadt, Germany), which were subsequently cultured on the same medium, under aerobic conditions, for 24 h at 37°C. Bacterial cells were harvested by transferring three full loops (ca. 30 µl) from each agar plate into 20 µl of sterile water and were resuspended by vortexing. Bacterial inactivation was carried out applying the modified triluorouacetic acid (TFA) (Sigma-Aldrich, St. Louis, MO) inactivation protocol [20], with some modifications previously established by Lash et al. [2008] [20] to improve the accuracy of the mass spectra. Briefly, 80 µl of pure TFA was added to 20 µl of each bacterial suspension. After gentle shaking (100 rpm) for 5 min at room temperature, the solution was centrifuged for 20 min at 28960 g at 4°C. Subsequently, the supernatant was 10-fold diluted with HPLC grade water (Millipore Corp., Bedford, MA), filtered throughout a 0.22 µm pore size filter (Millipore) and stored at −20°C until further analysis.

Mass spectrometry methods

Snapshots of different protein composition were detected and acquired by a MALDI-TOF/TOF mass spectrometer (4800 Plus MALDI TOF/TOF Analyzer, AB SCIEX, Framingham, MA), equipped with a 200-Hz frequency Nd:YAG laser, operating at a wavelength of 355 nm. Pulse ion extraction with a 1300 ns delay time was used for collecting spectra. Measurements were carried out in linear positive mode using an acceleration voltage of 19.4 kV (Grid 1), and a lens 1 voltage of 8 kV. Each spectrum was the accumulated sum of at least 2000 laser shots within the ion range at m/z 2000–12000, due to the good reproducibility of the spectral profile in this interval. All the spectra were externally calibrated using a commercial mixture of angiotensin I, ACTH (adrenocorticotropic hormone) and insulin (AB SCIEX, Framingham, MA) and analyzed with the Data Explorer software (Version 4.6, AB SCIEX, Framingham, MA).

For MALDI-TOF-MS experiments, 2 µl of the filtrated microbial dilution were mixed with 2 µl of a 12-mg/ml 9-cyano-4-hydroxycinnamic acid (CHCA) (Sigma-Aldrich, St. Louis, MO) solution, prepared in 100% ACN (Acetonitrile, Sigma-Aldrich) and 0.3% TFA. 1 µl of the mixture was spotted onto a 123 x 11 mm stainless steel MALDI sample plate (Opti-TOF 384- Well insert, AB SCIEX, Framingham, MA) and allowed to dry at room temperature. For each isolate, two biological replicates (obtained from two different agar plates) were carried out, and the mean spectra were considered for the analysis. Mass spectra were analyzed with the Data Explorer software (v3.7, build 126, AB SCIEX, Framingham, MA). Ion masses were extracted from the raw experimental mass spectra that included all the ion peaks with a relative signal to noise (S/N) ratio intensity above 2.

Chemometric methods

MALDI-TOF-MS spectra were mean-centred and analysed by partial least squares discriminant analysis (PLS-DA) [24]. The PLSDA model were developed and validated based on a cross-validation strategy leave-one-out [25] where 70% of the strains were randomly selected to calibrate the model and 30% to test the model (the procedure was repeated 100 times). The PLSDA scores were the source for hierarchical cluster analysis (HCA). The purpose of HCA was the generation of dendrograms highlighting the association between isolates. Dendrograms were performed directly on unprocessed PLSDA scores using the Euclidean distance and the Median’s algorithm [26]. All chemometric models were performed in Matlab version 6.5 release 13 (MathWorks, Natick, MA) and the PLS Toolbox version 3.5 for Matlab (Eigenvector Research, Manson, WA).

Biomarker identification

Intact protein masses derived from MS analysis were used to generate a pool of candidate’s proteins for the identification of specific markers. The selected distinct mass information was submitted to a web-based TagIdent software tool (http://web.expasy.org/tagident/) using 1% mass error for the taxonomic selections *B. pumilus*, *B. safensis* and *B. subtilis*. No restrictions on protein isolectric point were used. This tool allowed the identification of proteins based on the experimental masses acquired by mass spectrometry using the information available at the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL protein sequence databases. Moreover, ribosomal proteins of genome-sequenced type strains, including *B. pumilus* ATCC 7061T available in the database developed by Hotta et al. [27] were also included for comparison. For ion peaks matching the theoretical molecular weights we took into consideration the “N-end rule” where N-terminal methionine is cleaved when the second amino acid residue had a small side-chain, according to the previous study [28].
Results and Discussion

One of the current challenges in bacterial taxonomy is to integrate timely and accurate typing methods for a meaningful identification of microorganisms [14], which is particularly problematic for closely related species such as *B. pumilus* and *B. safensis* [2,5]. Moreover, because of the medical, industrial and biotechnological relevance of these species, reliable, easy and rapid methodologies for their correct differentiation are needed. Discrimination of *B. pumilus* and *B. safensis* by molecular markers sequencing (e.g. *gyrB*), a time demanding and expensive methodology, which is not readily available for routine laboratories, was recently demonstrated [4,5]. In fact, there are no comprehensive studies assessing its potential on *B. pumilus* and *B. safensis* discrimination despite the importance of the MALDI-TOF-MS application in bacterial differentiation. Moreover, combining accurate MALDI-TOF mass ion signals with the information available at a protein sequence database, such as UniProt, species-specific candidate protein biomarkers can be tentatively assigned, supporting the interest of this methodology for species identification.

Sample preparation conditions

Bacterial species identification using MALDI-TOF-MS is based on mass profiles obtained from whole bacterial cell suspensions considering proteins with low mass weight (less than 20 kDa). Additionally, for MS applications it is imperative to define a standardized protocol, including the establishment of rigorous

Table 1. Origins of *Bacillus* spp. isolates (n = 27) included in this study.

Isolate	Origin	Year/Location	References
Bacillus pumilus			
Bp ATCC14884	Reference strain		
Bp ATCC 7061			
Bp7	2005/Portugal		
Bp11	Health products (n = 3)	2005/Portugal	[37]
Bp15	2005/Portugal		
Bacillus safensis			
Bs1	2004/Portugal		
Bs2	Animals Gastropods (n = 3)	2005/Portugal	
Bs3	2007/Portugal		
Bs13	2005/Portugal		
Bs16	Health products (n = 3)	2005/Portugal	
Bs17	2005/Portugal		[37]
Bs5	2002/Portugal		
Bs18	Cosmetic products (n = 4)	2002/Portugal	
Bs19	2002/Portugal		
Bs27	2002/Portugal		
Bs24	2004/Italy		
Bs25	Foods/salame (n = 3)	2004/Italy	[38]
Bs33	2004/Italy		
Bs22	Plant Growth-Promoting Rhizobacteria (PGPR) (n = 2)	1997/USA	[39]
Bs23	1997/USA		
Bs31	Food/beans (n = 1)	2003/Africa	[40]
Bs FO-36b	Clean-room/air particulate (n = 1)	1999/USA	Type Strain, [2]
Bs35	Clean-room/floor (n = 1)	2001/USA	
Bs36	Clean-room/cabinet top (n = 1)	2001/USA	
Bs37	Clean-room/Mars Odyssey spacecraft surface (n = 2)	2001/USA	[2]
Bs38			
Bs42	Clean-room/anteroom (n = 1)	2001/USA	

1Type Strain.
2Isolates obtained from the Quality Control Department (INFARMED), Lisbon, Portugal.
3Isolates FEL 55 from salame felino, UNG22 from salame ungherese and MIL46 from salame milano obtained from the Istituto di Scienze delle Produzioni Alimentari (ISPA), Bari, Italy.
4Isolates SE 49 (AP3) and SE 52 (AP7) from cucumber roots obtained from the Culture collection of the Department of Entomology and Plant Pathology, Auburn University, Alabama, USA.
5Isolates FO-36b from African locust beans for *Soumbala production* obtained from Ouagadougou, Africa.
6Isolates FO-36b, SAFN-027, SAFN-037, KL-052, 82-2C from spacecraft and assembly-facility surfaces obtained from California Institute of Technology, California, USA.

[10.1371/journal.pone.0110127.t001]
sample preparation and cultivation conditions, including culture medium, temperature and time. Therefore, an adequate number of ion masses should be obtained to allow the identification and discrimination of closely related bacterial species. Moreover, the definition of strict parameters for spectral data acquisition is also required.

The protein enrichment protocol, reported by Lash et al. [20], for B. cereus group members, using a combined TFA treatment, centrifugation and filtration steps, is of relevance in the case of Bacillus species, since it promoted an efficient extraction of soluble microbial proteins presented in the core spore and other morphological structures [20]. The described sample preparation procedure was successfully applied to B. pumilus and B. safensis isolates, clonally diverse and collected from different terrestrial origins [4], demonstrating its suitability to generate reproducible mass spectra data with a sufficient number of ion masses and reinforcing the potential for the successful application of the MS technique for their identification in routine laboratories.

Mass spectrometry analysis

The Figure 1 displayed the average mass spectra obtained from MALDI-TOF-MS analysis for the two Bacillus species under study: (a) B. pumilus (5 spectra) and (b) B. safensis (22 spectra), in the ion range at m/z 2000 to 12000. Spectra were obtained by averaging the respective experimental ion signals from all isolates.

doi:10.1371/journal.pone.0110127.g001

Table 2. Species-specific ion m/z values (average) of B. pumilus and B. safensis isolates.

Experimental average ion m/z values*	B. pumilus	B. safensis
	3692.5	3821.5
B. pumilus	3060 (BP1)	3821.5
3608.5 (BP2)	3060 (BP1)	3821.5
5271 (BP3)	5948.5	
6122 (BP4)	6793.5	
	6793.5	
	7415	
B. pumilus	3692.5	
3821.5	3396 (BS1)	
B. safensis	5948.5	
4305.5	5288 (BS2)	
6704	5568 (BS3)	
6793.5	6094 (BS4)	
7415	6413 (BS5)	

* average ion m/z values (±2Da).

b In brackets were named candidate species-specific ion masses.
doi:10.1371/journal.pone.0110127.t002
Table 2 compiled the characteristic ion masses for each spectral group and those presented in both species.

As expected, similar fingerprints could be observed for isolates belonging to the same species, exhibiting several common ion peaks (Figure 1). For instance, the ions having m/z values at 3060, 3608.5, 5271 and 6122 were consistently observed in B. pumilus isolates, while the ions having the m/z values at 3396, 5288, 5568, 6094 and 6413 were related to B. safensis. Moreover, B. pumilus and B. safensis isolates demonstrated common ions at m/z 3692.5, 3821.5, 4305.5, 5948.5, 6704, 6793.5 and 7415 (Table 2), which could be considered characteristic ion peaks for both species. Therefore, the protein fingerprint similarities achieved among B. pumilus and B. safensis corroborated the closeness similarity previously verified among them [4,5].

Interestingly, some spectral variability was observed within isolates belonging to the same spectral group, including the presence or absence of some ion peaks beyond those listed in Table 2 (data not shown). This observation was not surprising, since we had previously demonstrated that both species comprised a clonally diverse population [4]. Therefore, the specific peptide profile probably reflects their evolution towards an adaptation to different niches [4].

Indeed, few studies have explored the potential of MALDI-TOF-MS to properly identify B. pumilus or B. safensis isolates [18,19,29,30]. Farfour et al. attempted unsuccessfully to discriminate between B. pumilus and B. safensis vegetative cells by MALDI-TOF-MS using the Andromas database [18]. This discrepancy highlighted the need for the improvement and enlargement of this database and led eventually to the prior enrichment of the protein before MS analysis. Moreover, Bölume et al. [29], using B. pumilus type and reference strains (ATCC 7061T and 14884) that were subjected to an extraction procedure previously to the MS analysis, suggested the presence of a series of ions at m/z 3620, 5297, 6617 and 7237, which were specific for this species, when compared with other B. subtilis group members (B. subtilis, Bacillus amyloliquefaciens and Bacillus licheniformis) and with members of Bacillus cereus group (B. cereus, Bacillus megaterium and Bacillus thuringiensis). In addition, the presence of this same series of ions at m/z 3620, 6617 and 7230 were also detected by Fernández-No et al. [30] in the same reference strains. Analysis of our MALDI-TOF-MS profiles did not reveal these ion peaks as B. pumilus species-specific discriminatory, when compared with B. safensis. Nevertheless, a closer inspection of the mass spectra of B. pumilus and B. safensis Profiling by MALDI-TOF-MS to properly identify B. pumilus or B. safensis isolates [18,19,29,30]. Farfour et al. attempted unsuccessfully to discriminate between B. pumilus and B. safensis vegetative cells by MALDI-TOF-MS using the Andromas database [18]. This discrepancy highlighted the need for the improvement and enlargement of this database and led eventually to the prior enrichment of the protein before MS analysis. Moreover, Bölume et al. [29], using B. pumilus type and reference strains (ATCC 7061T and 14884) that were subjected to an extraction procedure previously to the MS analysis, suggested the presence of a series of ions at m/z 3620, 5297, 6617 and 7237, which were specific for this species, when compared with other B. subtilis group members (B. subtilis, Bacillus amyloliquefaciens and Bacillus licheniformis) and with members of Bacillus cereus group (B. cereus, Bacillus megaterium and Bacillus thuringiensis). In addition, the presence of this same series of ions at m/z 3620, 6617 and 7230 were also detected by Fernández-No et al. [30] in the same reference strains. Analysis of our MALDI-TOF-MS profiles did not reveal these ion peaks as B. pumilus species-specific discriminatory, when compared with B. safensis. Nevertheless, a closer inspection of the mass spectra of B. pumilus and B. safensis Profiling by MALDI-TOF-MS to properly identify B. pumilus or B. safensis isolates [18,19,29,30].
Table 3. Overview of biomarkers tentative assignment of MALDI-TOF-MS mass signals of *B. pumilus* group species.

Specie(s)	Observed Mass (Da)	Predicted Mass (Da)	Error (%)	UniProt Accession ID	Protein Description	Peptide sequence	Organism*
	3060	NA	NA	Unassigned	NA	NA	NA
	3608.5	NA	NA	Unassigned	NA	NA	NA
	5270	0.02		A8FX54	50S ^RP subunit L34	MKRTFQNNRKSXVKHFRSRSMAKNGRLVLKRPIRSGRRKLA	*B. pumilus SAFR-032
	5271						
B. pumilus	5266.89	0.08		A8FDQ9	"^SASP O"	MTWRKANHPVNGMAKSGQXAGYG1TEDQVLTAEQRQNNKHKKRNQ	*B. pumilus SAFR-032
	6114	0.2		C0I3U0	Uncharacterized membrane protein YzG	MQTNRVILLAVMICLVSATFVELLNGCXXDDGDTIIGCFLGIFVVVRQKQ5	*B. subtilis subsp. subtilis str. 168
	6122						
	6126	0.08		PO18MS	Transcriptional regulator SkA	MKTHVKKDLDKGMILWQARSGGMDHVRQFLQRTSARQKNKHTKVQD	*B. subtilis subsp. subtilis str. 168
	3049	NA	NA	Unassigned	NA	NA	NA
	3396	NA	NA	Unassigned	NA	NA	NA
B. safensis	5288	0.2		A8FDH4	^a"SASP J"	MSFQKDKKASEKDHKQXVDQLEAASEKLAGDPLQEAQVKKKNNDQ	*B. pumilus SAFR-032
	5568	0.5		A8FDQ8	^a"SASP P"	MTNKNTGKDROQNSPKEHQSGQPEPLSGSKXKXKNRHTQKXHNSHDDM	*B. pumilus SAFR-032
	6094	NA	NA	Unassigned	NA	NA	NA
	6413	0.03		A8FCW7	^b"RP subunit L32"	MAVPFRRTSWKXKRLRTHFKLQVPGMVAACEGEMKSHXRVCXGTYKGDVKN	*B. pumilus ATCC 7601T
	3692.5	0.1		C0I3V1	UFPF0752 membrane protein YzG	MSGYSNNGGGYGGLSVFLVLFILLIVGTAFVGGF	*B. subtilis subsp. subtilis str. 168
	3821.5	NA	NA	Unassigned	NA	NA	NA
B. pumilus and B. safensis	4305.5	0.01		A8F9A9	50S ^RP subunit L36	MKVRPSTVSQPECCXVIRXKVXKVMXVCMENPKHKXQQ	*B. pumilus SAFR-032
	5948.5	0.3		A8FF72	50S ^RP subunit L33 2	MRVNIKLCTCGERNYITKNNRNPPRVEFKYCRXKKCTVHRETK	*B. pumilus SAFR-032
	6704	0.3		C0I3Z1	Uncharacterized protein YzG	MMKNGFAYXNKGLVNIFCGKEELYNLKALFKLFXTSNXVKEVSRSPIYRTKSKQLE	*B. subtilis subsp. subtilis str. 168
	6793.5	0.01		B4AE40	50S ^RP subunit L28	MKAVITGRTKXAKGNNRHAMNSTKRTGWANLQXKRLVDGKP	*B. subtilis ATCC 7601T
	7415	0.08		B4AM90	50S ^RP subunit L35	MPRKMTHRSAKRFKKJGGXKLXKSHAHTYSHL	*B. pumilus ATCC 7601T

Protein identity was determined by the TagIdent software and compared with ribosomal subunit proteins developed by Hotta et al. [23] described in Materials and Methods section.

^aSASP - Small, acid-soluble spore protein.

^bRP – Ribosomal protein.

Organism – bacterial strain where the protein was described.

NA – not applicable.

*Predicted molecular weight (Mw) proposed by Hotta et al. [27], considering “N-end rule” [28] where N-terminal methionine is cleaved from specific penultimate amino acid residues such as glycine, alanine, serine, proline, valine, threonine and cysteine.

doi:10.1371/journal.pone.0096944.t003
pumilus ATCC 70611 and 14884, revealed the presence of ions having m/z values at 3621, 5290 and 6624, although the ion at m/z 7238 was not present. Indeed, the differences found in these \textit{B. pumilus} profiles could be justified by the distinct growth culture medium used and the sample preparation procedure employed.

Finally, in other work, Dickinson et al. [19] presented MALDI-TOF-MS as a useful taxonomic tool for differentiating spores of \textit{B. pumilus} and \textit{B. safensis}. Results revealed the presence of two groups of characteristic ion peaks, comprising \textit{B. pumilus} (ions at m/z 6860, 7230 and 9606) and \textit{B. safensis} (ions at m/z 6860, 7230, 7620 and 9606). The authors claimed the presence of the additional ion at m/z 7620 in the spectra profile of \textit{B. safensis} as a species-specific biomarker, allowing the discrimination of these two species. Nonetheless, analysis of our \textit{B. safensis} spectral data (n = 22) did not reveal the presence of this ion peak, probably because the obtained MALDI-TOF-MS profiles were from vegetative cells. Additionally, the spectral profile obtained from spores seems to be more laborious and insufficient to discriminate appropriately among these closely related species, since spectral data with few number of ion peaks were generated. For these reasons, it was not possible to compare our study with the existing databases, as the SpectraBank (http://www.spectrabank.org), which is the case of \textit{Bacillus} spp., this characterization was only previously applied in \textit{B. cereus} group members [21].

Ion mass (m/z)	\textit{B. pumilus}	\textit{B. safensis}
5271	+	–
5288	–	+
5568	–	+
6122	+	–
6413	–	+

Ion masses are presented as m/z values. The presence/absence of an ion peak in each spectral group is represented by +/−, respectively.

doi:10.1371/journal.pone.0110127.t004

Candidate molecular biomarkers assignment

The possibility of biomarkers identification is one of the most valuable aspects of the mass spectrometric-based identification techniques, being this approach successfully applied to different bacterial species [21,31,32]. The assignment of 17 mass signals diagnostic ions formed in the MALDI-TOF-MS of \textit{B. pumilus} and \textit{B. safensis} represented the first consistent evidence of the relation between these ion m/z signals and the specific candidate protein sequences, which were presented in Table 3. Direct bacterial discrimination by means of MALDI-TOF-MS was hampered by the absence of consistent databases supported on sufficient identified biomarkers. Indeed, only two \textit{B. pumilus} genomes with numerous proteins defined as unknown were available in UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. \textit{B. pumilus} SAFR-032 and ATCC 70611 and \textit{B. safensis} were deposited, which hindered the candidate biomarkers identification. Therefore, this type of assignments can only be tentatively used to establish potential connections between protein sequences and ion m/z signals, and thus, should be prudently interpreted, although previously successfully applied in \textit{B. cereus} group members [21].

We found evidences of \textit{B. pumilus} and \textit{B. safensis} specific biomarkers, associated with a series of ions at m/z 4305.5, 5948.5, 6793.3 and 7415, which was attributed to the 50S ribosomal subunits proteins, respectively, L36, L33, L28 and L35 of \textit{B. pumilus} SAFR-032 (correspondent amino acidic sequences were also presented in Table 3). Moreover, the remaining ion detected at m/z of 3821.5 was not assigned, and two showed correspondences with membrane proteins of \textit{B. subtilis} subsp. \textit{subtilis} str 168, the YczN and YjpG at m/z of 3692.5 and 6704, respectively.

The tentative assignment of \textit{B. pumilus} specific biomarkers revealed the possible correspondence of the diagnostic ion at m/z 5271 with the 50S ribosomal subunit protein L34 or with the SASP O. In addition, the characteristic ion at m/z 6122 was diagnostic for either the uncharacterized membrane protein (YyzG) and/or the transcriptional regulator – ShrA of \textit{B. subtilis} subsp. \textit{subtilis} str 168. Additionally, the characteristic ions at m/z 3060 and 3608.5 were not possible to assign.

Concerning \textit{B. safensis} specific ions at m/z 5288, 5568 and 6413, potentially corresponding with two specific SASPs (SASP J and SASP P) and a 50S ribosomal subunit protein L32 were also found in \textit{B. pumilus} SAFR-032. The remaining ion m/z peaks detected were not possible to designate. Therefore, the proposed characteristic biomarkers, which could be used to differentiate...
between *B. pumilus* and *B. safensis* are summarized in Table 4. Moreover, these differentiating series of ions were shown in Figure 3, which outlined the representative MALDI-TOF-MS biomarkers established for *B. pumilus* and *B. safensis*.

In fact, ribosomal proteins and small, acid-soluble spore proteins (SASPs) have been suggested to be responsible for many ion masses detected by MALDI-TOF-MS profiles [21]. Since up to 21% of the overall cellular protein content is ribosomal and because ribosomal proteins are part of the cellular translational machinery constitutively expressed in vegetative cells, they constitute a stable ensemble of protein biomarkers suitable for use by fingerprinting techniques [33]. Moreover SASPs, a group of...
species-specific proteins present in large amounts in the core region of Bacillus endospores, have been also proposed as biomarkers for rapid differentiation and identification of Bacillus spp. using mass spectrometry approaches [34,35,36].

Our results also suggested that ribosomal and spore proteins constituted most of the B. pumilus and B. safensis biomarkers. A more detailed analysis could be carried out with MS/MS peptide fragmentation of the specific proteins assigned and subsequent comparison in protein databases or even with MS/MS peptide de novo sequencing. Nevertheless, within the context of the present work, which aimed to establish a MALDI-TOF-MS fingerprint classification for B. pumilus and B. safensis, these results may be beneficial and improve further accuracy of MS-based detection methods in identifying these species.

Conclusion

MALDI-TOF-MS profiles combined with chemometric analysis (PLS-DA) proved to be valuable tools for discrimination of B. pumilus and B. safensis, allowing its rapid identification. These high throughput approaches should be promptly considered for Bacillus species identification due to the accuracy of conventional techniques in the identification of closely related species of this genus. In this sense, it is imperative to standardize a sample preparation protocol, which should include a protein extraction and enrichment step, to provide informative and reproducible mass spectra. Moreover, tentative assignment of B. pumilus and B. safensis protein biomarkers suggested that most of them are ribosomal and spore proteins.

Author Contributions

Conceived and designed the experiments: RB CS JL LP HO. Performed the experiments: RB CS JL LP HO. Analyzed the data: RB CS JL MP LP HO. Contributed reagents/materials/analysis tools: CS JL MP LP HO. Contributed to the writing of the manuscript: RB CS JL LP HO.

References

1. U. S. Environmental Protection Agency (USEPA) (2004) Bioremediation Registration Action Document, Bacillus pumilus strain QST 2008 (PC Code 006485). Office of Pesticide Programs, Washington, DC: Government Printing Office.

2. Sato T, La Duc MT, Venkateswaran R (2006) Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol 56: 1735–1740.

3. Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacillus in agriculture. Curr Opin Biotechnol 22: 187–193.

4. Branquinho R, Meirinhos-Soares L, Carrico JA, Pintado M, Peixe LV (2014) Phylogenetic and clonality analysis of Bacillus isolates uncovered a highly heterogeneous population of different closely related species and clones. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12426

5. Liu Y, Lai Q, Dong C, Sun F, Wang L, et al. (2013) Phylogenetic diversity of the Bacillus group and the marine ecotype revealed by Multilocus Sequence Analysis. PLoS ONE 8: 1–11.

6. Hong HA, Du Je H, Cuning SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29: 815–835.

7. Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacillus in agriculture. Curr Opin Biotechnol 22: 187–193.

8. From C, Hormazabal V, Granum PE (2007) Food poisoning associated with Bacillus pumilus: a clinical report. J Clin Microbiol 45: 3583–4.

9. Bentur HN, Dalzell AM, Riordan FAI (2007) Central venous catheter infection and its Closest Relatives: from Genes to Agriculture. Curr Opin Biotechnol 22: 187–193.

10. Haymore BR, Akers KS, Ferguson TM (2006) A case of persistent bacteremia associated with Bacillus subtilis and its Closest Relatives: from Genes to Agriculture. Curr Opin Biotechnol 22: 187–193.

11. Mellmann A, Bimet F, Bizet C, Borovskaya AD, Drake RR, et al. (2009) High interlaboratory reproducibility of matrix-assisted laser desorption/ionization-time of flight mass spectrometry system for identification of aerobically growing Gram-positive bacilli. J Clin Microbiol 50: 2702–7.

12. DINNOR RN, LA Duc MT, SATOMI M, WINEFORDER JD, POWELL DH, et al. (2004) MALDI-TOF MS compared with other polyphasic taxonomy approaches for the identification and classification of Bacillus pumilus species. J Microbiol Methods 58: 1–12.

13. LASCH P, NATTERMANN H, ERBUH M, STAMMEL M, GRUNOW R, et al. (2008) MALDI-TOF mass spectrometry compatible inactivation method for highly pathogenic microorganisms with emphasis on spores of Bacillus subtilis species. Appl Environ Microbiol 75: 7229–22.

14. LASCH P, BEREY W, NATTERMANN H, STAMMEL M, SIGBRECHT E, et al. (2009) Identification of Bacillus anthracis by using matrix-assisted laser desorption-ionization-time of flight mass spectrometry and artifical neural networks. Appl Environ Microbiol 75: 1883–1876.

15. WALKER M, MOORE ER (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization-time-of-flight mass spectrometry in systematic microbiol- ogy. Syst Appl Microbiol 34: 2–11.

16. WANG LT, LE FE, TAI CJ, KASSI H (2007) Comparison of gyrB gene sequences, 16S rDNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57: 1846–1850.

17. BARKER M, RAYENS W (2003) Partial least squares for discrimination. J Chemom 17: 166–173.

18. SOUSA C, GROSSE F, MEIRINHOS-SOARES L, PRIIE L, LOPEZ J (2014) Identification of carbapenem-resistant Acinetobacter baumannii clones using infrared spectroscopy. J of Biophotonics: 7: 287–294.

19. NIAS T, ISAASKON J, FEAR T, DAVIS T (2002) A user-friendly guide to multivariate calibration and classification. NIR Publications, Chichester, UK.

20. Hotta Y, Sato J, Sato H, HOSODA A, TAMURA H (2011) Classification of the genus Bacillus based on MALDI-TOF MS analysis of ribosomal proteins coded in S10 and specific operons. J Agric Food Chem 59: 5222–5230.

21. SHEARMAN F, STEWART JW, TAUSAWAS S (1985) Methionine or not methionine at the beginning of a protein. Bioessays 1: 27–31.

22. BOHEME K, FERNANDEZ-NO IC, BARROS-VELAZQUEZ J, GALLARDO JM, CAÑAS R, et al. (2011) Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 32: 2951–65.

23. FERNANDEZ-NO IC, BOHEME K, DIAS-BAO M, CEPEDA A, BARROS-VELAZQUEZ J, et al. (2013) Characterization and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting. Food Microbiol 33: 243–243.

24. DECKMANN R, MALONY B (2011) Rapid Screening of Epidemiologically Important Salmonella enterica subsp. enterica Serovars by Whole-Cell Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Appl Environ Microbiol 77: 1134–1140.

25. MORMO RA, Povey FJ, Smalls CM, O’Malley CJ, Montague GA, et al. (2013) MALDI-TOF mass spectrometry coupled with multivariate pattern recognition analysis for the rapid biomarker profiling of Escherichia coli in different growth phases. Anal Bioanal Chem 20: 8251–8265.

26. Groom RE, REILLY P (1999) Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal Biochem 260: 105–112.

27. DRUKS A (1999) The Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63: 1–20.

28. DRUKS A (2002) Proteins of the spore core and coat. p. 527–535. In SOENENREIN AE, HOCH JA, LOSRICK J, Bacillus subtilis and its Closest Relatives: from Genes to Cells, ASM Press, Washington, DC.
36. Lai EM, Phadke ND, Kachman MT, Giorno R, Vazquez S, et al. (2003) Proteomic analysis of the spore coats of *Bacillus subtilis* and *Bacillus anthracis*. *J Bacteriol* 185: 1443–1454.

37. Branquinho R, Pintado ME, Peixe L (2012) Clonality and protein diversity of *Bacillus pumilus* isolates from different sources and geographic regions. *Planta Med* 78: PA5, doi:10.1055/s-0032-1320320.

38. Matarante A, Baruzzi F, Cocconcelli PS, Morea M (2004) Genotyping and toxigenic potential of *Bacillus subtilis* and *Bacillus pumilus* strains occurring in industrial and artisanal cured sausages. *Appl Environ Microbiol* 70: 5168–5176.

39. Jetiyanon K (1997) Interaction between PGPR and cucumber during induced systemic resistance: recognition and early host defense responses. Ph.D. dissertation, Auburn University, Auburn, AL, USA.

40. Ouoba L, Diaouara B, Amoa-Awua WK, Traore AS, Moller PL (2004) Genotyping of starter cultures of *Bacillus subtilis* and *Bacillus pumilus* for fermentation of African locust bean (*Parkia biglobosa*) to produce Soumbala. *Int J Food Microbiol* 90: 197–205.