SUPPLEMENTARY MATERIAL

Two new diprenylated flavanones from *Derris laxiflora* Benth.

Hui-Chi Huanga#, Shih-Chang Chienb, Ching-Chuan Kuoc, Ming-Der Wud, Ming-Jen Chengd, Jih-Jung Chene, Hsi-Lin Chiuf#, Yueh-Hsiung Kuoa,g,h,i

aDepartment of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan; bExperimental Forest Management Office, National Chung-Hsing University, Taichung, Taiwan; cInstitute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan; dBioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan; eFaculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; fDepartment of Chemistry, National Taiwan University, Taipei, Taiwan; gDepartment of Biotechnology, Asia University, Taichung, Taiwan; hChinese Medicine Research Center, China Medical University, Taichung, Taiwan; iResearch Center for Chinese Herbal Medicine, China Medical University, Taichung 404, Taiwan.

\#These authors contributed equally to this work.

CONTACT Yueh-Hsiung Kuo, E-mail: yhkuo@ntu.edu.tw
Supplemental data for this article can be accessed at XXX
CONTENT

Table 1S. 1H and 13C NMR spectral data of 1 (500 MHz for 1H and 125 MHz for 13C, Acetone-d_6) and 2 (400 MHz for 1H and 100 MHz for 13C, CDCl$_3$)

Figure 1S. Key NOESY correlation (H↔H) and HMBC correlation (H→C) of compounds 1-2.

Figure 2S. The 1H NMR (500 MHz, Acetone-d_6) data of 1

Figure 3S. The 13C NMR (125 MHz, Acetone-d_6) data of 1

Figure 4S. HMQC data of 1

Figure 5S. HMBC data of 1

Figure 6S. 1H-1HCOSY data of 1

Figure 7S. NOESY data of 1

Figure 8S. IR spectra of compound 1

Figure 9S. The 1H NMR (400 MHz, CDCl$_3$) data of 2

Figure 10S. The 13C NMR (100 MHz, CDCl$_3$) data of 2

Figure 11S. HMQC data of 2

Figure 12S. HMBC data of 2

Figure 13S. 1H-1HCOSY data of 2

Figure 14S. NOESY data of 2

Figure 15S. IR spectra of compound 2
Table 1S. 1H and 13C NMR spectral data of 1 (500 MHz for 1H and 125 MHz for 13C in Acetone-d_6) and 2 (400 MHz for 1H and 100 MHz for 13C in CDCl$_3$)

No.	1 1H	1 13C	2 1H	2 13C
2	5.39 (dd, 12.7, 3.1)	79.6	5.43 (dd, 13.2, 2.4)	79.3
3	3.11 (dd, 17.0, 12.7)	43.6	3.15 (dd, 16.8, 13.2)	43.8
	2.73 (dd, 17.0, 3.1)		2.86 (dd, 16.8, 2.4)	
4	197.7		196.3	
5	160.0		152.9	
6	110.0		105.5	
7	163.2		159.5	
8	108.6		109.4	
9	158.8		155.5	
10	103.0		104.2	
1'	131.2		130.1	
2'	7.39 (d, 8.5)	128.8	7.34 (d, 8.4))	127.6
3'	6.89 (d, 8.5)	116.1	6.87 (d, 8.4)	115.4
4'	158.5		156.3	
5'	6.89 (d, 8.5)	116.1	6.87 (d, 8.4)	115.4
6'	7.39 (d, 8.5)	128.8	7.34 (d, 8.4)	127.6
1''	3.22 (br d, 7.1)	22.6	3.48 br d, 7.1)	22.1
2''	5.16 (br t, 7.1)	123.9	5.32 br t, 7.1)	121.2
3''	131.1		131.8	
4''	1.58 (s)	17.9	1.68 (s)	18.2
5''	1.58 (s)	25.9	1.76 (s)	26.1
1'''	2.69 (t, 7.0)	17.0	6.56 (s)	98.0
2'''	1.70 (t, 7.0)	42.6		161.1
3'''		71.5		69.1
4'''	1.25 (s)	29.7	1.63 (s)	28.9
5'''	1.25 (s)	29.7	1.63 (s)	28.9
OH	12.47 (s)		11.96 (s)	
	9.50 (s)			
	8.58 (s)			
	4.72 (s)			
Figure 1S. Key NOESY correlation (H↔H) and HMBC correlation (H→C) of compounds 1-2.
Figure 2S. The 1H NMR (500 MHz, Acetone-d_6) data of 1

Figure 3S. The 13C NMR (125 Hz, Acetone-d_6) data of 1
Figure 4S. HMQC data of 1

Figure 5S. HMBC data of 1
Figure 6S. 1H-1HCOSY data of 1

Figure 7S. NOESY data of 1
Figure 8S. IR spectra of compound 1
Figure 9S. The 1H NMR (400 MHz, CDCl$_3$) data of 2

Figure 10S. The 13C NMR and DEPT (100 MHz, CDCl$_3$) data of 2
Figure 12S. HMBC data of 2

Figure 13S. 1H-1HCOSY data of 2

Figure 14S. NOESY data of 2
Figure 15S. IR spectra of compound 2