On the angular momentum evolution of merged white dwarfs

K.N. Gourgouliatos*† & C.S. Jeffery‡
Armagh Observatory, College Hill, Armagh BT61 9DG, Northern Ireland

Accepted Received ; in original form

ABSTRACT
We study the angular momentum evolution of binaries containing two white dwarfs which merge and become cool helium-rich supergiants. Our object is to compare predicted rotation velocities with observations of highly evolved stars believed to have formed from such a merger, which include the R CrB and extreme helium stars.

The principal case study involves a short-period binary containing a $0.6 \, M_\odot$ carbon-oxygen white dwarf, and a $0.3 \, M_\odot$ helium white dwarf. The initial condition for the angular momentum distribution is defined by the orbital configuration where the secondary fills its Roche Lobe.

Since mass transfer from the secondary is unstable, the white dwarf breaks up on a dynamical timescale. After accreting some mass, the primary is assumed to ignite helium and evolve to become a yellow supergiant with a helium-rich surface. We assume conservation of angular momentum to compute the initial angular momentum distribution in a collisionless disk and subsequently in the giant envelope. At the end of shell-helium burning, the giant contracts to form a white dwarf. We derive the surface rotation velocity during this contraction.

The calculation is repeated for a range of initial mass ratios, and also for the case of mergers between two helium white dwarfs; the latter will contract to the helium main-sequence rather than the white dwarf sequence.

Assuming complete conservation of angular momentum, we predict acceptable angular rotation rates for cool giants and during the initial subsequent contraction. However such stars will only survive spin-up to reach the white dwarf sequence (CO+He merger) if the initial mass ratio is close to unity. He+He merger products must lose angular momentum in order to reach the helium main sequence.

Minimum observed rotation velocities in extreme helium stars are lower than our predictions by at least one half, indicating that CO+He mergers must lose at least one half of their angular momentum, possibly through a wind during shell-helium burning, but more likely from the disk following secondary disruption.

Key words: stars: evolution, stars: rotation, stars: chemically peculiar

1 INTRODUCTION
Following [Webbink 1984], [Saio & Jeffery 2002] have demonstrated that the most probable origin for extreme helium stars is a stellar merger in a binary system containing a carbon-oxygen and a helium white dwarf, although some may originate in systems containing two helium white dwarfs [Saio & Jeffery 2000]. In the first case, the product ignites helium in a shell at the surface of the CO core and expands to become a helium-rich supergiant. After the helium-burning shell burns outwards through most of the helium-rich surface layers, the star contracts to become a white dwarf. In the second case, the helium-ignition again occurs in a shell at the core-envelope boundary, but then burns inwards, lifting the electron-degeneracy in the helium core. When the helium-burning flame reaches the centre, the star essentially becomes a low-mass helium main-sequence star.

A criticism occasionally heard (but, to our knowledge, not yet written) is that the products of such mergers should have a very high angular momentum and thus should be observed as rapid rotators. While general arguments suggest that this should not be a problem, it seemed appropriate to investigate the question more rigorously.
Previously [Saio & Jeffery 2000, 2002] examined the
evolution of the internal structure of stars following two
types of white dwarf merger. In this paper we focus on the
evolution of the angular momentum distribution from bi-
nary progenitor to final white dwarf. We aim to set limits
on the predicted rotation velocities of the merger products.

2 ANGULAR MOMENTUM: GENERAL
CONSIDERATIONS

The final mass of systems that become extreme helium stars
does not appear to exceed $0.9 \, M_\odot$ [Saio & Jeffery 2002].
Assuming tidal locking for the progenitor binary we con-
clude that the orbital angular momentum is dominant. We
already know that angular momentum will be removed by
gravitational radiation on a timescale that depends on the
initial separation of the binary and will lead to a decrease in
the orbital separation [Chad 1978]. For binary white dwarfs
that have a period of a few hours and an initial separation
of $\sim 10^2 \, \text{cm} \sim 2 \, R_\odot$ the time needed to merge is less than
the Hubble time. So we expect a significant fraction of exist-
ing close white dwarf binaries to merge. Because of orbital
decay, at some point the secondary fills its Roche Lobe. The
orbital period at this point can be determined from the sep-
oration and is approximately 3 minutes. Subsequently, mass
starts to transfer from the secondary to the primary. The
transferred mass cannot all be accreted onto the primary
because of the Eddington limit. The mass transfer is
unstable because of the inverse mass-radius relation for white
dwarfs. So the secondary will break up and form a thick
disk round the primary on a dynamical timescale. For such
systems, this is very short and of the order of the orbital
period.

To begin with, we assume conservation of total mass. This has been demonstrated for the early evolution of white
dwarf mergers [Secrestain, Chabrier & Mochkovitch 1995,
Gerrero, Garcia-Berro & Isern 2003], but not for the later
stages of their evolution. In order to determine the char-
acteristics of the angular momentum profile of the disk we
use two quantities, specific angular momentum and angular
momentum density, defined in section 3. The conservation
of total angular momentum is a plausible assumption. In
addition, we assume conservation of angular momentum for
every single particle (or fluid element). Thus the discussion
reduces to an idealised collisionless model.

This is a conservative assumption, which effectively re-
duces to a worst case scenario. In the collisionless model,
the transfer of angular momentum is slow compared to the
dynamical timescale, so, it does not have important effects.
The opposite assumes a model in which collisions are im-
portant, producing a viscous disk. The problem of angular
momentum transport in a viscous disk has been approached
already [Lynden-Bell & Pringle 1974], where it was shown that
“the angular momentum is steadily concentrated onto
a small fraction of the mass which orbits at greater and
greater radii while the rest is accreted onto the central body”
on an approximately dynamical timescale. The problem for
the viscous disk approximation is that the accretion rate for
the surviving white dwarf then becomes very high and it is
not clear whether subsequent evolution will lead to the as-
similation of this mass or its complete ejection by radiation
pressure. Consequently, we have started with the collision-
less model to see whether it, too, faces major obstacles.

Using the above assumption we propose an angular mo-
mentum distribution profile for the disk. In the purely colli-
sionless model, as will be shown, the inner radius of the disk
is approximately twice the radius of the primary. The inter-
vening gap will prevent accretion. In real systems, random
collisions will broaden the angular momentum profile. We
will simulate this by applying a Gaussian smoothing func-
tion, where the width of the Gaussian may be considered
representative of the frequency of the collisions. Note that
this procedure does not change the total angular momentum
of the system.

Since the disk was created from the decomposition of
the secondary, which was a helium white dwarf, helium
will be its dominant constituent. Following [Saio & Jeffery
2002], after a small quantity (0.004 M_\odot) of helium is ac-
creted by the primary, helium ignition occurs at the base
of the accreted layer. This energy source forces the star to
expand to become a giant. Models indicate that the radius
of the giant will be two orders of magnitude greater than
that of the disk, initially about $60 \, R_\odot$.

A simple model for the angular momentum distribution
in the giant can be obtained by assuming that each cylindri-
cal element in the disk forms a spherical shell conserving its
angular momentum. In order to describe the density profile
of the giant we assume it consists of a degenerate core, that
is the carbon-oxygen white dwarf, and a convective envelope.
In the fully conservative case, the final mass of the convec-
tive envelope is equal to the mass of the initial disk, and
hence of the helium secondary. Therefore we can describe
an angular velocity distribution for the star.

Following calculation of the angular velocity distribution
in the giant merger product, we investigate how contraction
affects the rotation. After helium-burning is completed,
the stars will contract, and hence rotate more quickly. The
question is whether their rotation will approach the critical
breakup velocity and what the consequences might be.

For the CO+He WD merger, we investigate three possi-
bles cases. In the first case, the central region rotates as a
rigid body and the angular velocity profile of the envelope
depends on the initial conditions, meaning the disk angular
momentum distribution. In the second case, 25% of the con-
vection zone near the surface rotates as a rigid body as well
as the central region whereas there is differential rotation
in the intermediate region. Thirdly, we examine the case of
completely rigid body rotation. This should be the ultimate
equilibrium state since no shear torques occur that could
lead to angular momentum transfer [Lynden-Bell & Pringle
1974, Pringle 1981], however it is not likely to be achieved,
since it is a slow process.

Using the above assumptions we will model the an-

gular momentum evolution of a binary which consists
initially of two white dwarfs. For the structure of the
white dwarfs, we adopt the models described by
Chandrasekhar [1955]. For the principal calculation we will
consider the primary to be a carbon oxygen (CO) white
dwarf with mass 0.6 M_\odot and radius 0.013 R_\odot and the
secondary a helium (He) white dwarf with mass 0.3 M_\odot
and radius 0.021 R_\odot [Vennes, Fontaine, & Brassard 1995,
Panei, Althaus & Benvenuti 2000]. In addition we will con-
sider CO+He binaries with masses of $0.7 M_\odot + 0.2 M_\odot$ and
The angular velocity is given by
\[\omega = \sqrt{\frac{GM}{\alpha^3}} \] (5)

where \(\omega \) is the angular velocity and \(I \) refers to the moment of inertia. Moments of inertia can be evaluated from the density profile of the stars. However, some distortions may occur that alter it slightly (James 1964; Tassoul 1978).

The angular momentum conservation to determine the mass distribution of such close binary white dwarfs (Paczynski 1990; Marsh 1995; Napiwotzki et al. 2003) are commensurate with estimated merger rates (Iben et al. 1996; Nelemans et al. 2001).

\[J = \frac{32 G^3 M_1 M_2 M}{5 c^3 \alpha^3} \] (1)

where \(G \) is the gravitational constant, \(c \) the speed of light, and \(M = M_1 + M_2 \) is the total mass of the system. Due to angular momentum loss, their orbits will decay. The total angular momentum of a tidally locked system will be

\[J_{\text{tot}} = J_1^s + J_2^s + J_1^o + J_2^o \] (2)

where the superscripts \(o \) and \(s \) refer to orbital and spin angular momentum respectively, and the subscripts 1 and 2 refer to the primary and to the secondary. We can express the orbital angular momentum in the frame of reference of the centre of mass

\[J_1^o = M_1 M_2 \sqrt{\frac{G \alpha}{M}} \] (3)

where \(M \) is the total mass of the system. Spin angular momentum can be expressed

\[J_1^o = (I_1 + I_2) \omega \] (4)

where \(\omega \) is the angular velocity and \(I \) refers to the moment of inertia. Moments of inertia can be evaluated from the density profile of the stars. However, some distortions may occur that alter it slightly (James 1964; Tassoul 1978). The angular velocity is given by

\[\omega = \sqrt{\frac{GM}{\alpha^3}} \] (5)

Substituting angular momentum expressions from equations 3, 4 and differentiating with respect to \(\alpha \), we obtain the following expression

\[\frac{dJ}{dt} = \frac{J_1^2}{(M \alpha)^{3/2}} \times \left(\frac{M_1 M_2}{2(M \alpha)^{1/2}} - \frac{3 \dot{M}_\text{tot} M_1^{1/2}}{2 \alpha^{3/2}} \right) \times \left(\frac{M_1 M_2 \alpha^{1/2}}{M^{1/2}} - \frac{I_1^{1/2}}{\alpha^{3/2}} \right) \] (6)

As the orbit decays, the equipotential surface surrounding the two stars (Roche lobes) shrinks until one component exactly fills its own lobe. The Roche lobe radius is given by

\[\alpha_L = \frac{0.49 q^{2/3}}{0.6q^{2/3} + \ln(1 + q^{1/3})}, \quad 0 < q < \infty \] (7)

where \(q \) is the ratio of the mass of the primary over the mass of the secondary.

For the 0.6 + 0.3 M\(_\odot\) system defined above, the secondary will fill its Roche lobe when the orbital separation is 0.067 R\(_\odot\). From eqns. 6 and 1, we can estimate the orbital decay timescale. Assuming an initial separation of 1.5 R\(_\odot\), which corresponds to an orbital period of 5 hours, we obtain a timescale of 4.10\(^6\) years, which is less than a Hubble time. We note that observations of an increasing number of such close binary white dwarfs (Paczynski 1990; Marsh 1995; Napiwotzki et al. 2003) are commensurate with estimated merger rates (Iben et al. 1996; Nelemans et al. 2001).
be determined to first order, ignoring the self gravitating effects of the disk itself.

\[\omega(r) = \sqrt{\frac{GM}{r^3}} \]

(9)

The angular momentum for a particle of mass \(m \) performing circular motion of radius \(r \), is \(J = m\omega r^2 \). Particles that carry less of the angular momentum at the binary stage lie at the front surface of the star (i.e. face-on to the the primary). The angular momentum of these particles will determine the inner radius of the disk. In our case, this is \(r_{in} = 0.022R_\odot \). We can use the same argument for the outer radius of the disk. In that case we evaluate the angular momentum of a particle at the rear surface of the secondary.

We conclude that it is \(r_{out} = 0.305R_\odot \). If we take into account the self gravitating effect of the mass stored in the disk, the outer radius is decreased 30% to \(r_{out} = 0.203R_\odot \), whereas the inner radius will be unaffected. This may be shown by a first-order approximation. Assume that a particle of unit mass carrying angular momentum \(J \) lies in the gravitational field of a mass \(M \). At radius \(r \) the attractive force is \(GM/r^2 \). Including the gravitational field of a disk of mass \(m \), the central force on the test particle, now at radius \(r' \), is \(G(M + m)/r'^2 \). Since \(J \) is constant, the ratio of radii (for \(m = 0.3M_\odot, M = 0.6M_\odot \)) is \(r'/r = 2/3 \). In higher order, the geometry of the disk must be considered, but this does not affect the angular momentum calculation.

Whether we use the first or the second approximation for the angular momentum density will have no effect on our final results for the rotation of the giant star, since the specific angular momentum does not change. The choice only affects the angular momentum density at the disk stage (Fig. 3).

During the formation of the disk collisions may take place. These will broaden the angular momentum distribution, in particular to scatter material into the region \(r < r_{in} \). Angular momentum will also be transfered to outer parts of the disk which will become more extended. In order to simulate the effect of these collisions we convolve the angular momentum functions \(dJ/dr \) with a Gaussian of width \(\sigma = 0.005R_\odot/\sqrt{2} \), where the width of the Gaussian may be taken to represent the overall efficiency of the collisions. The resulting density distribution demonstrates that only a very modest collisional redistribution of angular momentum is required to bring disk and star into contact (Fig. 3).
5 GIANT STAGE

Following disk formation and providing gas has been scattered to \(r < r_{10} \), helium will be accreted from the disk onto the surface of the former primary, which becomes the degenerate core of the merged star. Saio & Jeffery \((2002) \) adopted an accretion rate of roughly half the Eddington rate. After \(\sim 0.029M_\odot \) is accreted, a helium flash occurs. This leads the star to expand and form a yellow giant. The expansion is rather rapid and lasts only 200 years. The radius of the giant initially reaches \(\sim 60R_\odot \). This stage of evolution may correspond to some hydrogen-deficient carbon giants and the coolest of the R CrB stars \(\text{(Saio & Jeffery, 2002)} \). The radii of some models do exceed this value, so we surmise that the surface rotation will be lower than that deduced here. However, assuming a conservative distribution of specific angular momentum, spin-down during expansion and spin-up during contraction should lead to a similar final result.

Our objective is to predict the angular velocity profile for such a giant. In order to model its density profile, we expect it to consist of a degenerate core and a convective envelope. Using tables from Chandrasekhar \(\text{(1958)} \), fitted with a 5th order polynomial, we approximate the envelope as a polytrope of index \(n = 3/2 \) and express the density as a function of \(r \) that fits the numerical results of the Lane-Emden equation for \(n = 3/2 \) \(\text{(Mohan & Al-Bayaty, 1980)} \). We assume that initially no angular momentum is transferred between the various parts of the star. Therefore we first make the approximation that the outside surface of the star will form the outside shell of the star, whereas the inner parts of the disk will stay near the core, and that there is no change in the specific angular momentum.

However, it is also possible that helium-shell ignition occurs before the disk has been fully accreted, so that the material which was accreted first becomes the surface of the expanding giant, while the disk survives for sometime inside the giant envelope. Subsequent accretion, or the disintegration of the disk, feeds mass into the interior of the giant, close to the core-envelope boundary. We will examine this case as well, assuming that the outer layer of the giant, with a mass equal to the burning shell, comes from the inner part of the disk and the remainder of the envelope comes from the disintegration of the disk and obeys cylindrical symmetry.

We neglect differential rotation within a shell, so a thin spherical shell of mass \(dm \) at distance \(r \) from the centre of the star rotates as a rigid body with moment of inertia

\[
I = \frac{2}{3}mr^2 dm
\]

The choice of cylindrical shells, rather than spherical, is made primarily on grounds of mathematical simplicity. There is some evidence \(\text{(e.g. the Sun)} \) that rotation may be a function of latitude – possibly suggesting cylindrical symmetry. It will be seen, however, that the difference between the extreme cases of rigid-body and differential rotation are sufficiently small that the choice of geometry in the latter are unlikely to be important.

We examine a number of cases.
The third case lies between 45 \(R_\odot \). This was chosen arbitrarily in order to represent a case some slight dicontinuity at the 45 \(R_\odot \) boundary of \(\delta \omega = 1.2 \times 10^{-8} \) rad s\(^{-1}\). This represents an intermediate case, since angular momentum is transferred within the star.

Case 2: Rigid core + transition layer + rigid envelope

In the second case we divide the star into three regions, the first is the core and a thin layer that rotates as a rigid body as before. The second region lies between 0.045 \(R_\odot \) and 45 \(R_\odot \), where the star rotates differentially as before. The third region lies between 45 \(R_\odot \) and the surface. This boundary was chosen arbitrarily in order to represent a case some way between the extremes discussed in cases 1 and 3. We expect that near the surface, convection may be strong enough that mixing will cause these outer layers to rotate as a rigid body (Fig. 7). Therefore the angular velocity for the surface and the outer convection zone is 1.27 \(10^{-7} \) rad s\(^{-1}\), corresponding to \(v_{eq} = 5.33 \) km s\(^{-1}\). There is also a slight discontinuity at the 45 \(R_\odot \) boundary of \(\delta \omega = 1.2 \times 10^{-8} \) rad s\(^{-1}\). This represents an intermediate case, since angular momentum is transferred within the star.

Figure 6. Logarithmic plot of the angular velocity \(\omega \) at the giant stage as a function of the distance from the rotation axis. The central region rotates as a rigid body, whereas angular velocity falls with distance from the axis.

Figure 7. The angular velocity \(\omega \) of the disk, in the second scenario. The central and the intermediate region rotate as in the previous case (Fig. 4), however, there is a layer at the outer part of the convective envelope that rotates as a rigid body. There are two slight dicontinuities at the boundaries of the three regions.

\[\omega_{\text{giant}} = \frac{J_{\text{giant}}}{I_{\text{giant}}} \]
which is 1.64 \(10^{-7} \) rad s\(^{-1}\) corresponding to \(v_{eq} = 7.1 \) km s\(^{-1}\). This case represents the fastest rotation of the surface layers and sets an upper limit for the observed rotation velocity.

We conclude that the equatorial surface velocities do not depend strongly on the details of the model. Using the above argument we can define an upper limit on the angular momentum that corresponds to rigid body rotation. Any velocity observed should be less than this limit. We have not taken into account any losses of angular momentum due to mass ejection. Such phenomena will lead to lower angular momentum and therefore lower angular velocity. In the polytropic density profile we have neglected any term from rotation; this gives a good approximation since the linear velocity of circular motion due to the gravitational field of the star at a radius equal to the giant star radius is 53 km s\(^{-1}\), or about one order of magnitude greater than the velocities we found. In addition, any distortion caused by rotation will increase the moment of inertia of the star and decrease the angular velocity, supporting the statement that rigid body rotation of a spherical body represents the maximum possible equatorial surface velocity.
Logarithmic plot of the angular velocity contracts by a fraction β being a giant, we next consider the angular velocity distribution following shell helium extinction and the subsequent contraction at constant luminosity towards the white dwarf cooling track.

Since the core is degenerate, we need only consider the evolution of the envelope, which we shall consider to contract homologously. A simple model can be developed by assuming that the star rotates as a rigid body (case 3).

However, no crucial differences will be found if we assume differential rotation, as demonstrated in the previous section. The only effect would be to find lower surface equatorial velocities. In order to become a white dwarf the star needs to contract by a factor of about 5×10^3. We can see that for progenitor masses of $0.5M_\odot + 0.4M_\odot$, contraction can reach the white dwarf radius, whereas for the other two cases angular momentum needs to be removed. The dotted line corresponds to the model of a merger with progenitor masses of $0.6M_\odot + 0.3M_\odot$ where 50% of the secondary mass is lost.

6 HOMOLOGOUS CONTRACTION

Having considered the angular momentum distribution of a star as it evolves from a white dwarf binary through to being a giant, we next consider the angular velocity distribution following shell helium extinction and the subsequent contraction at constant luminosity towards the white dwarf cooling track.

Since the core is degenerate, we need only consider the evolution of the envelope, which we shall consider to contract homologously. A simple model can be developed by assuming that the star rotates as a rigid body (case 3).

However, no crucial differences will be found if we assume differential rotation, as demonstrated in the previous section. The only effect would be to find lower surface equatorial velocities. In order to become a white dwarf the star needs to contract by a factor of about 5×10^3. We can see that for progenitor masses of $0.5M_\odot + 0.4M_\odot$, contraction can reach the white dwarf radius, whereas for the other two cases angular momentum needs to be removed. The dotted line corresponds to the model of a merger with progenitor masses of $0.6M_\odot + 0.3M_\odot$ where 50% of the secondary mass is lost.

Figure 8. Logarithmic plot of the angular velocity ω as the star contracts by a fraction $\beta = R_0/R$. R_0 is the radius of the giant before contraction.

Case 4: Rigid core $0.87M_\odot$ + differential envelope

The fourth case can be considered as a combination of cases 1 and 3. During evolution as a giant, the helium-burning shell eats up the envelope, so the core mass increases, while the core radius remains virtually unchanged. Conversely, the envelope retains the same radius but a drastically reduced mass. We consider a final configuration in which the envelope mass is $0.03M_\odot$. The moment of inertia of the core increases but cannot exceed $1.4 \times 10^{-5} \text{ g cm}^2$. Even in this case, no more than 15% of the total angular momentum can be stored in the core before the core reaches its breakup limit. Therefore the envelope will have to rotate about 30 times faster than in case 1.

Such rotation is extremely fast and seems implausible; at least, it is not observed. The problem is that, to be conservative, angular momentum must be transferred into the core at the same time as the envelope is ingested. However, once the core reaches breakup velocity the transfer of angular momentum becomes impossible, so the momentum must stay in the envelope, creating a paradox. Interestingly, this parallels the case for the viscous disk (Lynden-Bell & Pringle 1974) in which angular momentum is expelled outwards as mass migrates inwards.

This calculation therefore strongly suggests that if stable shell-burning giants are to be produced by white dwarf mergers, then a large fraction of the total angular momentum must be dissipated from the disk before it is accreted onto the primary.

While this case is the most interesting and realistic of the four considered, it has presented a paradox for the transfer of angular momentum from the envelope to the growing core. The consequences of this deserve more attention than we are currently equipped to explore.
lower than the speed of light and relativistic effects may be ignored.

7 AN ANGULAR MOMENTUM PROBLEM?

So far we have examined a fully conservative scenario from the Roche lobe stage and after for a $0.6 + 0.3 \, M_\odot$ binary. However, much energy is ejected at the breakup of the secondary. Some of this energy may be deposited in the disk as thermal kinetic energy, while some material of high angular momentum is likely to leave the system, although the maximum possible mass lost has been shown to be small (Han & Webbink 1999).

We therefore examine whether the contraction of the giant can proceed conservatively if some mass (and hence its associated specific angular momentum) is ejected. Although this is contrary to our initial assumptions and previous numerical results (Segretain, Chabrier & Mochkovitch 1997; Han & Webbink 1999; Geurro, García-Berro & Isern 2004), this mass ejection is treated as taking place during the phase of disk formation. This approximation avoids numerical complications which are beyond the scope of this paper, but allows us to obtain a rough estimate of the resulting configurations when mass loss is taken into account.

We have solved the problem for the cases where 1%, 5%, 10%, 25% and 50% of the mass of the secondary is ejected during the merger process. In all cases, the giant cannot contract to the radius of a white dwarf. Fig. 4 includes the case in which 50% of the mass of the secondary is ejected. In this test case, $2/3$ of the total angular momentum is removed, since particles carrying more angular momentum are more likely to escape. A reaches unity when $\beta \approx 1000$, which means that the star can reach a small size (10^{-3} times its original), but not less than five times the required white dwarf radius.

In order to investigate the role of the initial conditions, we have solved the problem for various relative masses of the white dwarf binary components. We have plotted the ratio of the equatorial rotation velocity to the surface orbital velocity (λ) for progenitor binaries of $0.7 + 0.2 \, M_\odot$ and $0.5 + 0.4 \, M_\odot$ in addition to the test case of $0.6 + 0.3 \, M_\odot$ (Fig. 4). When $\lambda \gtrsim 1$, contraction cannot proceed. We see that for mass ratios nearer unity the star can contract to white dwarf size without the need for additional angular momentum loss. This is expected, since such systems need to lose more angular momentum before the secondary star fills its Roche Lobe. This is because the white dwarf radius varies inversely with mass, so more massive white dwarfs will have smaller radii and will fill their Roche lobes later. Close orbits involve less angular momentum of course, and their products will rotate more slowly.

Therefore conservation of angular momentum does present a problem for the white dwarf merger model in most, but not, all cases. The problem arises either during helium-shell burning, when angular momentum has to be transferred to the envelope to avoid the core reaching breakup velocity, or during contraction, when the surface reaches breakup velocity.

8 HE+HE WHITE DWARF MERGERS

The case of merger between two helium white dwarfs is initially identical to that of the CO+He merger (Sai & Jeffery 2004). After shell helium ignition, the star expands to become a giant, and the envelope is capable of storing substantial angular momentum. However, the star evolves to become a helium main-sequence star on a short timescale (Ther 1990). The case is analogous to the CO+He merger which must spin up during contraction to become a white dwarf.

We have calculated rotation rates for helium main-sequence stars arising from a number of initial configurations. The final configuration is an $n = 5/2$ polytrope with overall dimensions given by Paczynski (1971).

Table II shows the run of the moments of inertia I, total angular momenta J, and angular and linear equatorial rotation velocities (ω, v_rot) for a series of initial configurations (M_1, M_2). The predicted values for v_rot are very high and, in most cases, substantially exceed the critical orbital velocity at the surface (v_orb). Clearly such stars cannot exist and it is necessary to find a mechanism for expelling angular momentum at an earlier stage. In this case losing some angular momentum at the breakup of the secondary when it fills its Roche Lobe is likely, since the total mass of the binary and the binding energy is lower. In addition to this, less massive white dwarfs have larger radii and fill their Roche lobe earlier. This will enable mass carrying angular momentum to escape the system earlier.

9 OBSERVED ROTATION RATES

Observations suggest modest rotation velocities for extreme helium stars. Measurements of the projected rotation velocity $v_\text{eq} \sin i$ for ten objects have been obtained by fitting line
Table 2. Projected rotation velocities for extreme helium stars.

Star	T_{eff}/K	$\log g$	$v_{\text{eq}} \sin i$/km s$^{-1}$	R/R_\odot	$\omega \sin i$/102 rad s$^{-1}$	Reference
FQ Aqr	8750 ± 300	0.3 ± 0.3	20 ± 5	136 ± 96	0.22 ± 0.17	Pandey et al. (2006)
HD168476	13500 ± 500	1.6 ± 0.25	25 ± 5	23 ± 13	1.6 ± 1.0	Pandey et al. (2006)
LSS 99	15330 ± 500	1.9 ± 0.25	30 ± 5	16 ± 9	2.9 ± 1.7	Jeffery et al. (1998)
HD124448	15500 ± 500	4 ± 5	14 ± 8	0.38 ± 0.5	4.9 ± 2.8	Pandey et al. (2006)
LSS 4357	16130 ± 500	45 ± 5	14 ± 8	0.49 ± 2.8	2.6 ± 1.5	Jeffery et al. (1998)
LS II+33°5	16180 ± 500	45 ± 5	14 ± 8	0.49 ± 2.8	2.6 ± 1.5	Jeffery et al. (1998)
V1920 Cyg	16300 ± 900	40 ± 5	23 ± 13	2.6 ± 1.5	2.6 ± 1.5	Pandey et al. (2006)
BD+10°2179	16900 ± 500	18 ± 5	6 ± 3	4.7 ± 2.5	4.7 ± 2.5	Pandey et al. (2006)
LSE 78	18000 ± 700	20 ± 5	15 ± 3	2.0 ± 0.7	2.0 ± 0.7	Jeffery (1993)
DY Cen	19500 ± 500	20 ± 5	13 ± 3	2.4 ± 0.8	2.4 ± 0.8	Heber (1993)

Figure 10. Projected angular rotation log $\omega \sin i$ as a function of relative inverse radius β for extreme helium stars. The dotted line represents a homologous contraction, i.e., $\omega \propto 1/R^2$, and the solid line represents the maximum theoretical rotation rate shown in Fig. 9.

Figure 11. Projected angular rotation as a fraction of breakup velocity λ as a function of relative inverse radius β for extreme helium stars.

The projected rotation rates are all smaller than the maximum rate predicted by theory assuming complete conservation of angular momentum through the white dwarf merger. Assuming a random distribution of inclination angles, the average rotation rates should be $\frac{\pi}{4}$ times the maximum rates. The observed rates are less than one third of the maximum rate. This implies that at least half of the angular momentum must have been lost, either during the merger process or whilst the star was a cool giant, e.g. in a wind.

The minimum rotation rate as a fraction of breakup velocity $\lambda_{\text{min}} = v_{\text{eq}} \sin i/v_{\text{orb}}$ can also be checked using the same estimates for radius (Fig. 11). All objects are currently slow rotators ($v_{\text{eq}} \sin i$ for FQ Aqr is probably overestimated for the reasons given above).

In other words, the observed rotation rates for extreme helium stars are consistent with homologous contraction of the envelope at constant luminosity. They are not consistent with complete conservation of angular momentum during the white dwarf merger. With angular velocities less than one third the predicted rates, the likelihood of breakup as these stars contract towards the white dwarf phase is much reduced compared with Fig. 9.
10 CONCLUSION
Assuming that angular momentum is strictly conserved within the system, we have calculated the rotation velocities of stars produced by the merger of white dwarf binaries over a range of interesting initial mass ratios and possible outcomes. These include evolution through the giant phase and subsequently towards either the white dwarf or the helium main-sequence. We have demonstrated that while it may be possible to produce the initial giants, the star (or its core) will spin up as material is processed into the core or as the overall star contracts towards either of the compact configurations. This spinup would be high enough to cause breakup.

More critically, the rotation velocities predicted under total conservation of angular momentum for post-giant objects are greater than those observed in the putative CO+He merger products, the extreme helium stars, by a factor \(\gtrsim 3 \).

Therefore, for the merger model to work, the star must lose angular momentum at some point in its evolution. The most likely time for this to occur is following formation of the disk after breakup of the secondary. In order to assume total conservation of angular momentum, it was necessary to assume that this disk is collisionless, but that assumption would also prevent the accretion of material onto the primary.

In fact the completely opposite assumption must be considered. Lynden-Bell \& Pringle (1974) argue that, in a viscous disk, angular momentum will be transported outwards while mass is transported inwards, on the viscous timescale \(\tau_{\text{visc}} \approx R^2/\nu \), where \(R \) is the disk radius and \(\nu \) the viscosity. The latter is approximately \(\nu \approx \sigma_s H \), where \(\sigma_s \) is the sound speed and the scale height \(H \approx R_0/\nu \), \(\nu \) being the Keplerian velocity for a circular orbit at radius \(R \) having a period \(P_0 \). Rearranging, we obtain \(\tau_{\text{visc}} \approx 3R/\nu\sigma_s(R/H)^2 \).

If we take the disk radius to be approximately four times the white dwarf radius \(R \sim 4R_{\text{wd}} \), and the disk scale height to be twice the white dwarf radius, we obtain \(\nu \approx 6R/\nu \) and \(\tau_{\text{visc}} \sim 2P_0 \sim 500s \). Such a mechanism provides a very efficient sink for the angular momentum, but poses a problem for the mass, which will be dumped onto the surface of the white dwarf at a rate far in excess of the Eddington rate \((M_{\text{Edd}}) \). While accretion rates significantly higher than \(M_{\text{Edd}} \) may be accommodated in a nonspherical geometry, i.e. by accretion at the equator balanced by radiation in the polar axis, the disparity here seems to be insurmountable. Mass must be stored somewhere in the system where it is not supported by hydrostatic forces.

A hybrid solution might derive from a mechanism suggested first by Lynden-Bell \& Pringle (1974) and explored again by Popham \& Narayan (1991). This considers how material from an accretion disk would spin up the accretor (note, this is a true accretion disk, and not a disrupted secondary). When the accretor reaches critical velocity, it interacts with the disk, actually spinning up the disk. If this were to happen, then we could get momentum back into the disk, propagate it outwards and eject it from the outer edge of the disk.

A more detailed study of the dynamics of the binary disruption, disk formation and subsequent accretion is therefore warranted. Some progress has been made with smoothed particle hydrodynamics calculations have dealt principally with the dynamics of the secondary disintegration and subsequent disk formation, and give useful insight into the disk heating and mass distribution, i.e. no explosion and negligible mass loss from the system. However, none goes far enough to establish the long-term outcome during and following disk accretion.

ACKNOWLEDGEMENTS
K. Gourgouliatos is grateful to the Armagh Observatory for a summer studentship during which this work was carried out. Research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure. The authors are grateful to Profs D. Lynden-Bell and M. E. Bailey for stimulating discussions.

REFERENCES
Benz W., Bowers, R. L., Cameron, A. G. W., Press, W. H. 1990, ApJ 348, 647
Chandrasekhar S. 1958, An Introduction to the Study of Stellar Structure. Dover Publications, New York, NY
Chau W. Y. 1978, ApJ 219, 1038
Eggleton P. P. 1983, ApJ 268, 368
Guerrero, J., Garcia-Berro, E., Isren, J. 2004, A&A 413, 257
Han, Z., Webbink, R. F., 1999, A&A 349, L17
Iben I., Jr. 1990, ApJ 353, 215
Iben I., Jr., Tutukov A. V., Yungelson L. R., 1996, ApJ 456, 750
James R. A. 1964, ApJ 140, 552
Jeffery C. S. 1993, A&A 279, 188
Jeffery C. S., Heber U., 1993, A&A 270, 167
Jeffery C. S., Hamill P. J., Harrison P. M. Jeffers, S. V. 1998, A&A 340, 476
Landau L., Lifshitz E., 1958, The Classical Theory of Fields. Pergamon, Oxford
Lynden-Bell D., Pringle J. E. 1974, MNRAS 168, 603
Marsh T. R. 1995, MNRAS 275, 1
Mohan C., Bayaty A. R. 1980, Ap&SS 73, 227
Napiwotzki, R., Karl, C. A., Nelemans, G., et al., 2005, in 14th European Workshop on White Dwarfs, ASPC 334, 375, eds. D. Koester, S. Moehler
Nelemans G., Yungelson L. R., Portegies Zwart S. F., Verbunt F., 2001, A&A 365, 491
Paczynski B. 1971, Act. Astr. 21, 1
Paczynski B. 1990, ApJ 365, 9
Pandey G., Lambert, D. L., Jeffery, C. S., Rao, N. K. 2006, ApJ 638, 454
Panel J. A., Althaus L. G., Benvenuto O. G. 2000, A&A 353, 970
Popham R., Narayan R. 1991, ApJ 370, 604
Pringle J. E. 1981, ARA&A 19, 137
Saio H., Jeffery C. S. 1988, ApJ 328, 714
Saio H., Jeffery C. S. 2000, MNRS 313, 671
Saio H., Jeffery C. S. 2002, MNRS 333, 121
Segretain, L., Chabrier, G., & Mochkovitch, R. 1997, ApJ 481, 355
Tassoul J. L. 1978, Theory of Rotating Stars. Princeton University Press, Princeton, New Jersey
Vennes S., Fontaine G., Brassard P. 1995, A&A 296, 117
Webbink, R. F. 1984, ApJ 277, 355