Tune-out wavelengths for the alkaline earth atoms

Yongjun Cheng¹,², Jun Jiang², and J. Mitroy²
¹ Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, People’s Republic of China and ² School of Engineering, Charles Darwin University, Darwin NT 0909, Australia
(Dated: May 11, 2014)

The lowest 3 tune-out wavelengths of the four alkaline-earth atoms, Be, Mg, Ca and Sr are determined from tabulations of matrix elements produced from large first principles calculations. The tune-out wavelengths are located near the wavelengths for \(3P_1 \) and \(3P_1 \) excitations. The measurement of the tune-out wavelengths could be used to establish a quantitative relationship between the oscillator strength of the transition leading to existence of the tune-out wavelength and the dynamic polarizability of the atom at the tune-out frequency. The longest tune-out wavelengths for Be, Mg, Ca, Sr, Ba and Yb are 454.9813 nm, 457.2372 nm, 657.446 nm, 689.200 nm, 788.875 nm and 553.00 nm respectively.

PACS numbers: 31.15.ac, 31.15.ap, 37.10.De

I. INTRODUCTION

The dynamic polarizability of an atom gives a measure of the energy shift of the atom when it is exposed to an electromagnetic field \([1, 2]\). For an atom in any given state, one can write
\[
\Delta E \approx -\frac{1}{2} \alpha_d(\omega) F^2, \tag{1}
\]
where \(\alpha_d(\omega) \) is the dipole polarizability of the quantum state at frequency \(\omega \), and \(F \) is a measure of the strength of the AC electromagnetic field. The limiting value of the dynamic polarizability in the \(\omega \to 0 \) limit is the static dipole polarizability.

The dynamic polarizability will go to zero for certain frequencies of the applied electromagnetic field. The wavelengths at which the polarizability goes to zero are called the tune-out wavelengths \([3, 7]\). Atoms trapped in an optical lattice can be released by changing the wavelength of the trapping laser to that of the tune-out wavelength for that atom. Very recently, tune-out wavelengths have been measured for the rubidium \([3, 7]\) and the potassium atoms \([8]\). The advantage of a tune-out wavelength measurement is that it is effectively a null experiment, it measures the frequency at which the polarizability is equal to zero. Therefore it does not rely on a precise determination of the strength of an electric field or the intensity of a laser field. Accordingly, it should be possible to measure tune-out wavelengths to high precision and proposals to measure the tune-out wavelengths of some atoms with one or two valence electrons have been advanced \([8]\).

The present manuscript describes calculations of the three longest tune-out wavelengths for Be, Mg, Ca and Sr. The tune-out wavelengths for the alkaline-earth atoms arise as a result of the interference between the dynamic polarizability coming from a weak transition and a large background polarizability. The tune-out wavelengths typically occur close to the excitation energy of the weak transitions. The atomic parameters that determine the values of the longest tune-out wavelengths are identified. The calculations utilize tables of matrix elements from earlier calculations of polarizabilities and dispersion coefficients \([9–13]\). These were computed using a non-relativistic semi-empirical fixed core approach that has been applied to the description of many one and two electron atoms \([14–17]\). In addition, the longest tune-out wavelengths for Ba and Yb are determined by making recourse to previously determined polarizabilities and oscillator strengths.

II. FORMULATION

The transition arrays for the alkaline earth atoms are essentially those used in previous calculations of the polarizabilities and dispersion coefficients for these atoms \([9–13]\). These were computed with a frozen core configuration interaction (CI) method. The Hamiltonian for the two active electrons is written
\[
H = \sum_{i=1}^{2} \left(-\frac{1}{2} \nabla_i^2 + V_{\text{dir}}(r_i) + V_{\text{exc}}(r_i) + V_{\text{p1}}(r_i) \right) + V_{\text{p2}}(r_1, r_2) + \frac{1}{r_{12}}, \tag{2}
\]
The direct, \(V_{\text{dir}} \), and exchange, \(V_{\text{exc}} \), interactions of the valence electrons with the Hartree-Fock (HF) core were calculated exactly. The \(\ell \)-dependent polarization potential, \(V_{\text{p1}} \), was semi-empirical in nature with the functional form
\[
V_{\text{p1}}(\mathbf{r}) = -\sum_{\ell m} \frac{\alpha_{\text{core}} g^2_{\ell}(r)}{2r^4} |\ell m\rangle \langle \ell m|, \tag{3}
\]
The coefficient, \(\alpha_{\text{core}} \), is the static dipole polarizability of the core and \(g^2_{\ell}(r) = 1 - \exp(-r^6/p_{\ell}^6) \) is a cutoff function designed to make the polarization potential finite at the origin. The cutoff parameters, \(p_{\ell} \), were initially tuned to reproduce the binding energies of the corresponding
alkaline-earth positive ion, e.g. Mg$^+$. Some small adjustments to the ρ_j were made in the calculations of alkaline-earth atoms to further improve agreement with the experimental spectrum.

A two body polarization term, V_{p2}, was also part of the Hamiltonian $\frac{1}{14}$ $\frac{18}{18}$ $\frac{19}{19}$. The polarization of the core by one electron is influenced by the presence of the second valence electron. Omission of the two-body term would typically result in a ns^2 state that would be too tightly bound. The two body polarization potential is adopted in the present calculation with the form

$$V_{p2}(r_i, r_j) = \frac{\alpha_{\text{core}}}{r_i^2 r_j^3} g_{p2}(r_i) g_{p2}(r_j), \quad (4)$$

where g_{p2} had the same functional form as $g_{\ell}(r)$. The cutoff parameter for $g_{p2}(r)$ is usually chosen by averaging the different one-electron cutoff parameters.

The use of a fixed core model reduced the calculation of the alkaline-earths and their excited spectra to a two electron calculation. The two electron wavefunctions were expanded in a large basis of two electron configurations formed from a single electron basis mostly consisting of Laguerre Type Orbitals. Typically the total number of one electron states would range from 150 to 200. The use of such large basis sets means that the error due to incompleteness of the basis is typically very small.

Details of the calculations used to represent Be, Mg, Ca and Sr have been previously described $\frac{9}{9}$ $\frac{13}{13}$. We refer to these semi-empirical models of atomic structure as the configuration interaction plus core polarization (CICP) model in the subsequent text.

For Be, the matrix element list is exactly the same as the matrix element list used in Ref. $\frac{9}{9}$. However, the energies of the low-lying $2s2p \; ^1P^o$ states were set to the experimental binding energies. In the case of the triplet state, the energy chosen was that of the $J = 1$ spin-orbit state. Using experimental energies is important for tune-out wavelength calculations since the tune-out wavelength depends sensitively on the precise values of the excitation energies of nearby excited states. In the case of Mg and Ca, the reference matrix elements were those used in dispersion coefficient calculations $\frac{10}{10}$ $\frac{12}{12}$. The energies of the low lying Mg and Ca excited states were also set to experimental values for calculations of the tune-out wavelengths.

The matrix element set for Sr incorporated experimental information. An experimental value was used for the $5s2 \; ^1S^o \cdot 5s5p \; ^1P^o$ matrix element $\frac{20}{20}$ and the energy differences for the low-lying excitations were set to the experimental energies. This matrix element set was used to calculate dispersion coefficients between two strontium atoms, and also between strontium and the rare gases $\frac{13}{13}$.

State	Experiment	CICP
$2s^2 \; ^1S^o_0$	-1.0118505	-1.0118967
$2s2p \; ^1P^o_1$	-0.8179085	-0.8178898
$2s3p \; ^1P^o_1$	-0.7376168	-0.7376426
$2s2p \; ^3P^o_1$	-0.9117071	-0.9116666
$2s3p \; ^3P^o_1$	-0.7434484	-0.7433848
$3s^2 \; ^1S^o_0$	-0.8335299	-0.8335218
$3s3p \; ^1P^o_1$	-0.6738246	-0.6737887
$3s4p \; ^1P^o_1$	-0.6086897	-0.6086551
$3s3p \; ^3P^o_1$	-0.7338807	-0.7336286
$3s4p \; ^3P^o_1$	-0.6155347	-0.6155008
$4s2 \; ^1S^o_0$	-0.6609319	-0.6609124
$4s4p \; ^1P^o_1$	-0.5531641	-0.5531844
$4s5p \; ^1P^o_1$	-0.4935704	-0.4934062
$4s6p \; ^1P^o_1$	-0.4710284	-0.4706060
$4s4p \; ^3P^o_1$	-0.5916298	-0.5913732
$4s5p \; ^3P^o_1$	-0.4943762	-0.4948801
$3d4p \; ^3P^o_1$	-0.4817070	-0.4815337
$5s^2 \; ^1S^o_0$	-0.6146377	-0.6146378
$5s5p \; ^1P^o_1$	-0.5157723	-0.5157723
$5s6p \; ^1P^o_1$	-0.4592740	-0.4591686
$5s5p \; ^3P^o_1$	-0.5485511	-0.5476478
$5s6p \; ^3P^o_1$	-0.4603223	-0.4600070
$4d5p \; ^3P^o_1$	-0.4446740	-0.4446176

A. Energies

The energy levels of ground state and some of the lowest energy $^1P^o$ excited states for Be, Mg, Ca and Sr are listed in Table I. The polarization potential cutoff parameters were chosen to reproduce the energy of the might most tightly bound state of each symmetry. The energy of the second lowest state does not have to agree with the experimental energy. The reasonable agreement with experimental energies for the second lowest states is an indication that the underlying model Hamiltonian is reliable.
B. **Line Strengths**

Tables [I] and [II] give the line strengths for a number of the low-lying transitions of the alkaline-earth metals comparing with available experimental and theoretical information. The line strength can be calculated as

$$S_{ij} = \left| \langle \psi_i; L_i J_i || r^k \mathbf{C}_k(r) || \psi_j; L_j J_j \rangle \right|^2 .$$ \hspace{1cm} (5)

The CICP values were computed with a modified transition operator [14, 19, 22], e.g.

$$r = r - (1 - \exp(-r^6/\rho^6))^{1/2} \frac{\alpha_d \mathbf{r}}{r^3} .$$ \hspace{1cm} (6)

The cutoff parameter used in Eq. (6) was taken as an average of the s, p, d, and f cutoff parameters. The specific values are detailed elsewhere [9–13].

There appears to be no experimental or theoretical data available for the strontium $5s^2 \ 1S^e \rightarrow 5s6p \ 3P^o$ transition [32]. The line strength adopted for this transition was determined by estimating the mixing between the $5s6p \ 1P^o_1$ and $5s6p \ 3P^o_1$ states caused by the spin-orbit interaction. The transition rates for the $5s6p \ 1P^o_1 \rightarrow 5s4d \ 1D^o_2$ and $5s6p \ 3P^o_1 \rightarrow 5s4d \ 1D^o_2$ have been measured [33, 34]. The ratio of these transition rates can be used to make an estimate of the singlet:triplet mixing ratio, and the CICP line strength for the $5s^2 \ 1S^e \rightarrow 5s6p \ 1P^o$ transition, we estimate the $5s^2 \ 1S^e \rightarrow 5s6p \ 3P^o_1$ line strength to be 0.012.

III. POLARIZABILITIES

A. Static polarizabilities

The polarizabilities for the ground states of Be, Mg, Ca, and Sr are listed in Table [IV]. All polarizabilities are computed using experimental energy differences for the lowest energy excited states. The present polarizabilities are in good agreement with the previous high quality calculations.

These polarizabilities contain contributions from the core electrons. The electric dipole response of the core is described by a pseudo-oscillator strength distribution [15, 64, 65]. Oscillator strength distributions have been constructed by using independent estimates of the core polarizabilities to constrain the sum rules [13, 66–68]. These take the form

$$\alpha_{\text{core}} = \sum_i \frac{f_i}{\epsilon_i} .$$ \hspace{1cm} (7)

where f_i is the pseudo-oscillator strength for a given core orbital and ϵ_i is the excitation energy for that orbital. The sum of the pseudo-oscillator strengths is equal to the number of electrons in the atom. The pseudo-oscillator strength distribution is tabulated in Table [V].

The relative uncertainties in the polarizabilities are assessed at 0.1% for Be, 0.5% for Mg, 1.5% for Ca and 1% for Sr.

B. Dynamic polarizabilities and feasibility analysis

FIG. 1: (color online) The dynamic polarizability of the neutral calcium atom in the vicinity of the longest tune-out wavelength.

FIG. 2: (color online) The dynamic polarizability of the neutral calcium atom in the vicinity of the second and third longest tune-out wavelengths.
The tune-out wavelengths all occur close to the excitation energies for transitions to $^1P_1^o$ or $^3P_1^o$ states. The first tune-out wavelength is associated with the $ns^2 1S^o \rightarrow nsnp \ 3P_1^o$ inter-combination transition. The dynamic polarizability for this transition becomes large and negative just after the photon energy becomes large enough to excite the $nsnp \ 3P_1^o$ state. This large negative polarizability will cancel with the positive polarizability from the remaining states at the tune-out wavelength. The dynamic polarizability also has a sign change when the photon energy exceeds the excitation energy for the $nsnp \ 3P_1^o$ state. This change in the polarizability is not associated with a tune-out wavelength. At energies larger than the $ns^2 1S^o \rightarrow nsnp \ 1P_1^o$ resonant transition energy the polarizability is negative. Additional tune-out wavelengths occur just prior to the excitation energies of the higher $ns^2 1S^o \rightarrow 1^3P_1^o$ transitions.

As can be seen from Figures 1 and 2, the tune-out wavelengths for the alkaline-earth atoms arise as a result of the interference between the dynamic polarizability arising from a weak transition and a large background polarizability. In the vicinity of the tune-out wavelength the variation of background polarizability with energy will be much slower than the variation of the tune-out transition. The polarizability near the tune-out wavelength can be modelled as

$$\alpha = \alpha_0 + \frac{f}{\Delta E^2 - \omega^2}, \quad (8)$$

where α_0 is the background polarizability arising from all transitions except the transition near the tune-out wavelength. The background polarizability is evaluated at the tune-out wavelength, ω_{to}. Setting $\alpha = 0$ gives

$$\omega_{to} = \sqrt{\Delta E^2 + \frac{f}{\alpha_0}}. \quad (9)$$

When $f/\alpha_0 << \Delta E$ is obeyed, and this will generally be the case for the transitions discussed here, one can write

$$\omega_{to} \approx \Delta E \left(1 + \frac{f}{2\alpha_0 \Delta E^2}\right). \quad (10)$$

Equation (10) can be used to make estimate of the tune-out wavelength. When the background polarizability is negative, the tune-out frequency is lower than the excitation energy of the transition triggering the tune-out condition. The quotient, $f/(2\alpha_0 \Delta E^2)$, provides an estimate of the relative difference between the transition frequency and tune-out frequency in the vicinity of a transition.

Equation (10) can also be used for an uncertainty analysis. Setting $X_{shift} = f/(2\alpha_0 \Delta E^2)$, one has

$$\delta X_{shift} = \frac{\delta f}{f} + \frac{\delta \alpha_0}{\alpha_0}. \quad (11)$$

The contribution to the uncertainty in X_{shift} due to the uncertainty in the transition energy does not have to be considered at the present level of accuracy.

Neglecting the frequency dependence of α_0, the variation in α with respect to variations in ω^2 is

$$\frac{d\alpha}{d\omega^2} = \frac{-f}{(\Delta E^2 - \omega^2)^2}. \quad (12)$$

Writing $\omega^2 = \omega_{to}^2 - \delta(\omega^2) = \Delta E^2 + \frac{f}{\alpha_0} - \delta(\omega^2)$ in the vicinity of ω_{to} gives

$$\frac{d\alpha}{d\omega^2} = \frac{-f}{\left(\frac{f}{\alpha_0} - \delta(\omega^2)\right)^2}. \quad (13)$$

At $\omega = \omega_{to}$, $\delta(\omega^2) = 0$, and one has

$$\frac{d\alpha}{d\omega^2} = -\frac{\alpha_0^2}{f}, \quad (14)$$

or

$$\frac{d\alpha}{d\omega} = -2\omega_0^2 \frac{\alpha_0^2}{f} \approx -2\Delta E(\omega_0^2). \quad (15)$$
TABLE III: Comparison of line strengths for the principal transitions of Ca, Sr, Ba and Yb. The CIDF line strengths are produced using the given oscillator strength and transition energies. The MCHF and CI+MBPT values are determined from published reduced matrix elements. Numbers in brackets represent the uncertainties in the last digits. The notation $a \times 10^b$ means $a \times 10^b$.

Final State ΔE (a.u.)	CICP	MCHF	CIDF [37]	MBPT	Experiment
Ca $4s^4p \, ^1P_1^o$	0.107768	24.37	24.51 [38]	24.31 [25]	24.67(90) [39]; 24.9(4) [40]
$4s^5p \, ^1P_1^o$	0.167362	0.00666	0.0529 [38]	0.001156 [32]	0.00127(3) [43]; 0.00124(7) [44]; 0.00127(11) [45]
$4s^4p \, ^3P_1^o$	0.069302	0.0011022 [38]	0.00127(3) [43]; 0.00124(7) [44]; 0.00127(11) [45]		
$4s^5p \, ^3P_1^o$	0.166556	1.2423[-4]			
Sr $5s^5p \, ^1P_1^o$	0.098865	28.07	32.18 [46]	28.0 [25]	27.77(16) [47]; 27.12 [48]
$5s^6p \, ^1P_1^o$	0.155364	0.0712	0.0492 [46]	0.0790 [48]	0.068(10) [49]
$5s^5p \, ^3P_1^o$	0.066087	0.01718	0.0256 [32]	0.02280(54) [20]; 0.02206(51) [50]	
$5s^6p \, ^3P_1^o$	0.154315				
Ba $6s^6p \, ^1P_1^o$	0.082289	31.8	30.47 [25]	29.91(25) [52]	
$6s^7p \, ^1P_1^o$	0.066087	0.309	0.2746 [53]	0.259(13) [54]	
$6s^6p \, ^3P_1^o$	0.098865	16.9	22.85 [55]	17.30 [56]; 17.206(17) [57]	
$6s^7p \, ^3P_1^o$	0.066087	0.324	0.325 [55]	0.335 [59]	
Yb $6s^6p \, ^1P_1^o$	0.098865	28.07	32.18 [46]	17.20(17) [57]	
$6s^7p \, ^1P_1^o$	0.066087	0.324	0.325 [55]	0.335 [59]	

The experimental $5s^6p \, ^1P_1^o$ line strength [49] was multiplied by 0.179 to allow for mixing with the $5s^6p \, ^3P_1^o$ configuration.

TABLE IV: Static dipole polarizabilities for the alkaline-earth atom ground states. All values are in atomic units. Hybrid values were computed by replacing the line strength for the resonance transition with the best available experimental value.

Be	Mg	Ca	Sr	
Present: CICP	37.73	71.39	159.4	197.8
Theory: RCCSD [60]	158.00	198.85		
Expt. [61]	169(17)	186(15)		
CI+MBPT [62]	37.76	71.33	159.0	202.0
CI+MBPT-SD [48]	19.4(7.0) [58]			
Hybrid: Sum rule [62]	157.1(1.3)	197.2(2)		

The variation of the polarizability with ω is inversely proportional to the oscillator strength of the tune-out transition. Let us suppose that the condition for determination of the tune-out wavelength is that the polarizability be set to zero with an uncertainty of ± 0.1 a.u. This means the photon energy should be determined with a frequency uncertainty of

$$\Delta \omega = \frac{0.1}{2 \Delta E \alpha_0^2}.$$ \hfill (16)

For Be and Mg, $\Delta \omega$ would be 7.6×10^{-13} a.u. and 8.8×10^{-11} a.u. respectively. These energy widths are very narrow and difficult to achieve with existing technology. The energy windows for calcium and strontium would be $\Delta \omega = 5.2 \times 10^{-10}$ a.u. and $\Delta \omega = 6.9 \times 10^{-9}$ a.u. respectively.

C. Tune-out wavelengths for Be, Mg, Ca and Sr

Tables VI and VII list the three longest tune-out wavelengths for beryllium, magnesium, calcium and strontium. These are determined by explicit calculation of the dynamic polarizability at a series of ω values. The contributions of the various terms making up the dynamic polarizability at the tune-out wavelengths are given. The
The notation \(\alpha \) means that a measurement of these tune-out wavelengths requires a laser with a very precise wavelength. The level of precision required actually exceeds the precision with which the Be \(2s^2 \, 1S^0 \rightarrow 2s2p \, 3P^o \) energy is given in the NIST tabulation \[21\]. On the other hand, measurement of the Sr tune-out wavelength is much more feasible.

Equation (11) which is used to estimate the uncertainties in \(X_{\text{shift}} \), can also be used to determine the uncertainties in the tune-out wavelengths. Uncertainties in the tune-out wavelengths are given in Tables VI and VII. D. Heavier systems, Ba and Yb

There are two other atoms, namely, Ba and Yb with similar structures to those discussed earlier. The present calculational methodology cannot be applied to the determination of the tune-out wavelengths for these atoms due to relativistic effects. However, Eq. (9) can be used to make an initial estimate of their longest tune-out wavelengths.

The background polarizability, \(\alpha_0 \) is dominated by the \(ns^2 \, 1S^0 \rightarrow nsnp \, 1P^o \) resonant transition which contributes more than 96%. The contribution to \(\alpha_0 \) from

D. Heavier systems, Ba and Yb

There are two other atoms, namely, Ba and Yb with similar structures to those discussed earlier. The present calculational methodology cannot be applied to the determination of the tune-out wavelengths for these atoms due to relativistic effects. However, Eq. (9) can be used to make an initial estimate of their longest tune-out wavelengths.
TABLE VII: Breakdown of contributions to the static polarizability and dynamic polarizabilities at the three longest tune-out wavelengths for calcium and strontium. The remainder term comes from all the valence transitions other than those specifically listed in the Table. The uncertainty in the tune-out wavelength is given by \(\delta \lambda_{to} \). The oscillator strength of the transition predominantly cancelling the polarizability due to the resonant transition are given in the row labelled \(f \). The notation \(a[b] \) means \(a \times 10^b \).

	Ca	Sr		
\(\lambda_{to} \) (nm)	\(\infty \)	689.200	695.348	693.670
\(\omega_{to} \) (a.u.)	0	0.0661105	0.1542699	0.1551514
\(f \)	1.101 [-3]	1.235 [-3]	7.371 [-3]	
\(\delta \lambda_{to} \) (nm)	0.042	0.011	0.049	

All the information adopted in the calculations for barium and ytterbium are listed in Table VIII. The predicted longest tune-out wavelength for barium was \(\lambda_{to} = 788.875 \) nm. The energy window was \(\Delta \omega = 3.6 \times 10^{-8} \) a.u. and \(X_{shift} = 0.00314 \). The uncertainty of the longest tune-out wavelengths for barium was \(\delta \lambda_{to} = 0.295 \) nm. The larger uncertainty in this tune-out wavelength was caused by the larger value of \(X_{shift} \).

Additional complications are present for ytterbium. The values for Model 1 reported in Table VIII did not explicitly include the nearby \(4f^{-6}6s^25d \) \(P_1^0 \) state in the polarizability calculation. This spectrum exhibits considerable mixing between the resonance \(6s6p \) \(P_1^0 \) state and the \(4f^{-6}6s^25d \) \(P_1^0 \) core excited state [69]. This mixing is caused by the small difference in the binding energies for the two states. This is the reason for the large difference between the CI+MBPT and experimental values for the resonant line strength in Table III. It has been argued that in cases such as this that one should use theoretical energy differences in polarizability calculations [53, 60]. So for our initial calculation of the tune-out frequency we use the CI+MBPT excitation energy for the resonant transition and the experimental excitation energy for the \(6s6p \) \(P_1^0 \) state. This model, which is detailed in Table VII, predicts the longest tune-out wavelengths to be \(\lambda_{to} = 553.00 \) nm. The energy window, \(\Delta \omega = 1.6 \times 10^{-7} \) a.u. while \(X_{shift} = 0.00509 \).

Another model has been made that explicitly includes the \(4f^{-6}6s^25d \) \(P_1^0 \) state in the polarizability calculation. In this model the line-strength and excitation energy for the resonant excitation for Model 1. A summary of the important parameters of the Model 2 analysis is detailed in Table VIII. This model gives a tune-out wavelength of \(\lambda_{to} = 553.06 \) nm. The energy window, \(\Delta \omega = 1.53 \times 10^{-7} \) a.u. while \(X_{shift} = 0.00497 \).

Model 2 also allows for the existence of an additional tune-out wavelength located between the excitation frequencies of the \(6s6p \) \(P_1^0 \) and \(4f^{-1}6s^25d \) \(P_1^0 \) states. This tune-out wavelength will be sensitive to the ratio of the respective line strengths and Model 2 predicts \(\lambda_{to} = 358.78 \) nm with \(X_{shift} = -0.0332 \).

With this background polarizability, one can approximately predict the tune-out wavelength using Eq. (9).

The differences between the predicted longest tune-out wavelengths in this way and the values obtained using the exact background polarizability are only \(2 \times 10^{-9} \) nm, \(3 \times 10^{-6} \) nm, \(3 \times 10^{-5} \) nm, and \(2 \times 10^{-3} \) nm for Be \(\rightarrow \) Sr which are much smaller than the uncertainties of the tune-out wavelengths.

Assuming \(\alpha_{rest} \) has the same value at \(\omega = 0 \) and \(\omega_{to} \), the value of \(\alpha_{rest} \) can be calculated as

\[
\alpha_{rest} = \alpha_d - \frac{f_{resonant}}{\Delta E_{resonant}^2} - \frac{f}{\Delta E^2},
\]

where \(\alpha_d \) is the static polarizability of the ground state, \(f_{resonant} \) and \(\Delta E_{resonant} \) and \(f \) and \(\Delta E \) are the oscillator strengths and transition energies of the resonant transition and the transition near the tune-out wavelength respectively. Then the background polarizability \(\alpha_0 \) can be represented as

\[
\alpha_0 = \frac{f_{resonant}}{\Delta E_{resonant}^2} - \omega^2 + \alpha_{rest}.
\]
TABLE VIII: Tune-out frequencies, ω_to, and wavelengths, λ_to, for the longest tune-out wavelengths of barium and ytterbium. The uncertainty in the tune-out wavelength is given by δλ_to. The oscillator strengths and dipole polarizabilities adopted in the calculation are collected from [53, 62] for barium and [63] for ytterbium. The contribution to the polarizability at the tune-out frequency due to the resonance transition is given. The transition energies for barium and Model 2 for ytterbium are taken from the NIST tabulation [21]. Model 2 for ytterbium has two low-lying strong transitions and data for both are given. The dynamic polarizability of ~428.162 a.u. for Model 2 for Yb was computed with only the 6s^2 1S_0^e → 6s6p 3P_i transition. The second value of α_rest allows for the change in the polarizability (due to the 6s6p 3P_i transition) at the wavelength of 357.78 nm.

Property	Value
S_resonant (a.u.)	29.92
f_resonant	1.641
α_d (a.u.)	273.5
α_rest (a.u.)	27.92
f_resonant/(ΔE^2_resonant - ω^2_to) (a.u.)	477.772
ΔE(6s^2 1S_0^e → 6s6p 3P_i) (a.u.)	0.05757669
f(6s^2 1S_0^e → 6s6p 3P_i)	0.0105
ω_o (a.u.)	0.0577574
λ_to (nm)	788.875
δλ_to (nm)	0.295

Yb: Model 1

Property	Value
S_resonant (a.u.)	22.85
f_resonant	1.802
α_d (a.u.)	141
α_rest (a.u.)	9.614
f_resonant/(ΔE^2_resonant - ω^2_to) (a.u.)	249.973
ΔE(6s^2 1S_0^e → 6s6p 3P_i) (a.u.)	0.08197762
f(6s^2 1S_0^e → 6s6p 3P_i)	0.0178
ω_o (a.u.)	0.08293938
λ_to (nm)	553.00

Yb: Model 2

Property	Value
S_resonant (a.u.)	17.25, 5.543
f_resonant	1.314, 0.4851
α_d (a.u.)	141
α_rest (a.u.)	9.614 , 7.726
∑ f_i_resonant/(ΔE^2_resonant - ω^2_to) (a.u.)	256.064, −426.162
ΔE(6s^2 1S_0^e → 6s6p 3P_i) (a.u.)	0.08197762
ΔE(6s^2 1S_0^e → 6f^−16s^25d 1P_i) (a.u.)	0.13148223
f(6s^2 1S_0^e → 6s6p 3P_i)	0.0178
ω_o,1 (a.u.)	0.0823844
λ_to,1 (nm)	553.06
ω_o,2 (a.u.)	0.120997
λ_to,2 (nm)	358.78

The complications of the structure of Yb are so severe that only indicative estimates of the uncertainty are possible. For the longest tune-out frequency, we set δf, the uncertainty in the 6s^2 1S_0^e → 6s6p 3P_i oscillator strength to 1.5%. The uncertainty in the polarizability due to other transitions at the tune-out frequency was initially set to 0.018 [55]. To this was added an additional uncertainty of 0.024 = 6/250, the difference between the Model 1 and 2 predictions of the polarizability at the tune-out frequency. The final uncertainty in the tune-out wavelength of the longest transition was 0.550 nm.

There is little experimental information to assist in the assessment of the uncertainty of the tune-out wavelength near 358.78 nm. The tune-out wavelength lies between the 6s^2 1S_0^e → 6s6p 3P_i and 6s^2 1S_0^e → 4f^−16s^25d 1P_i transitions and its value would be largely determined by the ratio of the oscillator strengths to those transitions. The uncertainty was determined by an analysis allowing that permitted 1.8% variations in the polarizability for the two resonant transitions while simultaneously admitting a 0.1/17.25 = 0.0058 variation in the 6s^2 1S_0^e → 6s6p 3P_i oscillator strength. The uncertainty in λ_to,2 was 0.23 nm. This uncertainty should be interpreted with caution since the value of the tune-out wavelength is very sensitive to line strength adopted for the 6s^2 1S_0^e → 4f^−16s^25d 1P_i transition and this is estimated by an indirect method.

IV. CONCLUSION

The three longest tune-out wavelengths for the alkaline-earth atoms from Be to Sr have been estimated from large scale configuration interaction calculations. The longest tune-out wavelengths for Ba and Yb have been estimated by using existing estimates of the polarizability and oscillator strengths. The longest tune-out wavelengths all occur at energies just above the nsnp 3P_i excitation threshold and arise due to negative polarizability from the nsnp 3P_i to nsnp 3P_i inter-combination line cancelling with the rest of the polarizability. The rest of the polarizability is dominated by contributions from the nsnp 1S_0^e → nsnp 3P_i resonant transition, with about 96-97% of the polarizability arising from this transition. A high precision measurement of the longest tune-out wavelengths is effectively a measure relating the oscillator strength of the nsnp 1S_0^e → nsnp 3P_i inter-combination line to the polarizability of the alkaline-earth atoms. The very small oscillator strengths of the Be and Mg inter-combination lines might make a measurement of the tune-out wavelengths for these atoms difficult. The viability of a tune-out wavelength measurement is greater for the heavier calcium and strontium atoms with their stronger inter-combination lines. The
longest wavelengths are all in the visible region. The second longest tune-out wavelength for all alkaline atoms occurs just before the excitation threshold of the $ns^2 \, 1S_0 \rightarrow ns(n+1)p\, 3P_1^o$ transition. Experimental detection of the second longest tune-out wavelength is more difficult since the oscillator strengths of the $ns^2 \, 1S_0 \rightarrow ns(n+1)p\, 3P_1^o$ transitions are smaller and the transition is in the ultra-violet. The third longest tune-out wavelengths are typically triggered by the $ns^2 \, 1S_0 \rightarrow ns(n+1)p\, 1P_1^o$ transition. The oscillator strengths for the transition are about 0.1-5% the size of the resonant oscillator strength. The potential for detection of a zero in the dynamic polarizability is larger, but once again the transition lies in the ultraviolet region.

Acknowledgments

The work was supported by the Australian Research Council Discovery Project DP-1092620. Dr Yongjun Cheng was supported by a grant from the Chinese Scholarship Council.
[50] J. F. Kelly, M. Harris, and A. Gallagher, Phys. Rev. A 37, 2354 (1988).
[51] D. Husain and J. Schifino, J. Chem. Soc., Faraday Trans. 2 80, 321 (1984).
[52] A. Bizzarri and M. C. E. Huber, Phys. Rev. A 42, 5422 (1990).
[53] V. A. Dzuba and J. S. M. Ginges, Phys. Rev. A 73, 032503 (2006).
[54] B. M. Miles and W. L. Wiese, At. Data 1, 1 (1969).
[55] M. S. Safronova, S. G. Porsev, and C. W. Clark, Phys. Rev. Lett. 109, 230802 (2012).
[56] K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, and Y. Takahashi, Phys. Rev. Lett. 98, 203201 (2007).
[57] Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Phys. Rev. Lett. 93, 123202 (2004).
[58] S. G. Porsev, Y. G. Rakhлина, and M. G. Kozlov, Phys. Rev. A 60, 2781 (1999).
[59] B. Budick and J. Snir, Phys. Rev. A 1, 545 (1970).
[60] I. S. Lim, M. Pernpointner, M. Seth, J. K. Laerdahl, P. Schwerdtfeger, P. Neogrady, and M. Urban, Phys. Rev. A 60, 2822 (1999).
[61] R. W. Molof, H. L. Schwartz, T. M. Miller, and B. Bederson, Phys. Rev. A 10, 1131 (1974).
[62] S. G. Porsev and A. Derevianko, JETP 102, 195 (2006).
[63] C. Degenhardt, T. E. Binnewies, G. Wilpers, U. Sterr, F. Riehle, C. Lisdat, and E. Tiemann, Phys. Rev. A 67, 043408 (2003).
[64] A. Kumar and W. J. Meath, Mol. Phys. 54, 823 (1985).
[65] D. J. Margoliash and W. J. Meath, J. Chem. Phys. 68, 1426 (1978).
[66] J. Mitroy and M. W. J. Bromley, Phys. Rev. A 70, 052503 (2004).
[67] J. Mitroy and M. W. J. Bromley, Phys. Rev. A 68, 035201 (2003).
[68] J. Y. Zhang, J. Mitroy, and M. W. J. Bromley, Phys. Rev. A 75, 042509 (2007).
[69] V. A. Dzuba and A. Derevianko, J. Phys. B 43, 074011 (2010).