Sequestosome-1/p62 Is the Key Intracellular Target of Innate Defense Regulator Peptide

Received for publication, October 7, 2009, and in revised form, October 19, 2009. Published, JBC Papers in Press, October 22, 2009, DOI 10.1074/jbc.C900736277

Hong Bing Yu 1,2, Agnieszka Kielczewska 3, Annett Rozek 2, Shunsuke Takenaka 4, Yuling Li 3, Lisa Thorson 4, Robert E. W. Hancock 1, M. Marta Guarna 5, John R. North 5, Leonard J. Foster 6, Oreola Donini 5, and B. Brett Finlay 1,7,8

From the 1Michael Smith Laboratories and the 2Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, 3Inrimex Pharmaceuticals, Vancouver, British Columbia V5A 4T8, and the 4Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, Vancouver, British Columbia V6T 1Z4, Canada.

Innate defense regulator-1 (IDR-1) is a synthetic peptide with no antimicrobial activity that enhances microbial infection control while suppressing inflammation. Previously, the effects of IDR-1 were postulated to impact several regulatory pathways including mitogen-activated protein kinase (MAPK) p38 and CCAAT-enhancer-binding protein, but how this was mediated was unknown. Using a combined stable isotope labeling by amino acids in cell culture-proteomics methodology, we identified the cytoplasmic scaffold protein p62 as the molecular target of IDR-1. Direct IDR-1 binding to p62 was confirmed by several biochemical binding experiments, and the p62 ZZ-type zinc finger domain was identified as the IDR-1 binding site. Co-immunoprecipitation analysis of p62 molecular complexes demonstrated that IDR-1 enhanced the tumor necrosis factor α-induced p62 receptor-interacting protein 1 (RIP1) complex formation but did not affect tumor necrosis factor α-induced p62-protein kinase ζ complex formation. In addition, IDR-1 induced p38 MAPK activity in a p62-dependent manner and increased CCAAT-enhancer-binding protein β activity, whereas NF-κB activity was unaffected. Collectively, these results demonstrate that IDR-1 binding to p62 specifically affects protein-protein interactions and subsequent downstream events. Our results implicate p62 in the molecular mechanisms governing innate immunity and identify p62 as a potential therapeutic target in both infectious and inflammatory diseases.

© 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

EXPERIMENTAL PROCEDURES

Experimental Procedures are detailed in the supplemental material.

4 The abbreviations used are: IDR, innate defense regulator; C/EBP, CCAAT-enhancer-binding protein; NF-κB, nuclear factor κ-light-chain-enhancer of activated B cells; PKC, protein kinase C; SILAC, stable isotope labeling of amino acids in cell culture; TRAF6, tumor necrosis factor receptor-associated factor 6; RIP1, receptor-interacting protein 1; XIAP-4, X-linked inhibitor-of-apoptosis proteins; ZZ, ZZ-type zinc finger; MAPK, mitogen-activated protein kinase; TNF, tumor necrosis factor; Sp, specific; nSp, nonspecific.

This paper is available online at www.jbc.org

© 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
ACCELERATED PUBLICATION: p62 Is Intracellular Target of IDR-1

RESULTS

p62 Is an Intracellular Target of IDR-1—We utilized stable isotope labeling by amino acids in cell culture (SILAC) and quantitative mass spectrometry-based proteomics to identify the major intracellular binding target of IDR-1. Murine leukemic RAW264.7 cells were grown in isotope labeled medium (SILAC-heavy condition containing [13C6]arginine and [2H4]lysine) and in isotopically unlabeled medium (SILAC-light condition containing normal isotopic arginine and lysine) (14). The cells from both conditions were harvested, lysed, and subjected to affinity enrichment with desthiobiotinylated IDR-1 (heavy condition) or desthiobiotin alone (light, control condition) (Fig. 1A). Proteins bound to the matrix after washing were eluted using free biotin, digested to peptides, and analyzed by liquid chromatography-tandem mass spectrometry. Quantitative SILAC ratios were then extracted after acquisition. Only two cellular proteins, p62 and XIAP-4, showed a marked and consistent differential binding to IDR-1 when compared with control in three repeat studies (Fig. 1B). p62 was present with a specific/nonspecific (Sp:nSp) ratio approaching infinity indicating selective binding (Fig. 1C, right panel). This analysis was confirmed using other, related IDR compounds, which detected only p62, but not XIAP-4, as the binding partner (not shown).

To test direct binding of IDR-1 to human p62 and XIAP, lysates from HEK293T cells were incubated with streptavidin beads coated with biotinylated IDR-1 or biocytin as background control. Immunoblot analysis of the pulldown samples showed a strong band at ∼62 kDa that was detected with antibodies against p62 (Fig. 1D, left panel). Densitometric analysis of this band revealed that it constitutes 64% of the intensity of p62 present in the cell lysate control, suggesting that the majority of the p62 from the lysate bound to the peptide. In contrast, the IDR-1 pulldown of the XIAP protein was very faint (Fig. 1D, right panel) and constituted only 4% of the lysate control.

We next investigated direct IDR-1 binding to recombinant human p62. To test this, an in vitro protein binding assay using biotinylated IDR-1 and human recombinant glutathione S-transferase-labeled p62 was performed. As shown in Fig. 1E, a concentration-dependent binding of p62 by IDR-1 was observed, whereas the control biocytin did not bind to p62 over the same concentration range. This binding was confirmed using a competitive binding experiment with biotinylated IDR-1 and unlabeled IDR-1 and with other IDR analogs in the same class (data not shown). These results confirmed direct binding of IDR-1 to the human p62 protein.

IDR-1 Binds to the ZZ Domain of p62—To determine which region of p62 is required for IDR-1 binding, FLAG-tagged human p62 deletion mutants (Fig. 2A) were transfected into HEK293T cells and tested in biotinylated IDR-1 pulldown assays, as described above. Initially, the analysis was focused on the N-terminal, central, and C-terminal regions (constructs p621–440, p62118–440, and p62267–440, IDR-1 did not bind to constructs p621–118 and p62267–440, whereas it bound to p62118–440 (Fig. 2B). Further, a p62 construct composed only of residues 118–266 (p62118–266) was also able to bind IDR-1. This central region of p62 (residues 118–266) is made up of three subdomains, including a ZZ (zinc finger)
FIGURE 2. IDR-1 binds to the ZZ domain of p62. A, schematic representation of the constructs used for mapping of the p62 domains that interact with IDR-1. SH2, an SH2 binding domain; AID, an acidic interaction domain (P81 domain comprises the SH2 and AID); LB, LIM protein Aujuba binding domain; PEST, amino acids Pro, Glu, Ser, Thr-enriched domain; LR, LC3-interacting region; UBA, ubiquitin-associated domain. B, analysis of IDR-1 pulldown assays with constructs presented in A. Lysates from HEK293T cells overexpressing FLAG-tagged deletion mutants of human p62 were pulled down against biotin (B) or biotinylated IDR-1 (P). Cell lysates (L) were used as control. Proteins pulled down were immunoblotted with anti-FLAG antibody.

structural motif (residues 128–163), an intermediate domain LB (residues 170–220), and a TRAF6 binding region (residues 225–251). Successive deletions of each of these subdomains revealed that removal of residues 128–163 was sufficient to abolish IDR-1 binding, whereas deletion of LB or TRAF6 domains did not affect binding (Fig. 2). These findings demonstrated that the ZZ domain of p62 is required for IDR-1 binding.

IDR-1 Selectively Affects p62 Complex Formation—The p62 protein is a critical signaling component that functions as a scaffold by forming multiple intracellular protein signaling complexes. Because IDR-1 bound to p62 directly, we investigated the consequences of this binding on intracellular p62 protein complex formation. Sanz et al. (5, 6) previously reported that TNFα receptor ligation stimulates complex formation between RIP1 and p62 via the ZZ domain of p62. Thus, we hypothesized that the p62–RIP1 complex formation might be affected in cells treated with IDR-1. In HEK293T cells overexpressing RIP1, IDR-1 induced an increase in TNFα-stimulated complex formation between RIP1 and p62 proteins (Fig. 3A), suggesting that IDR-1 increased or stabilized this complex formation.

p62 interacts with PKCζ via its PB1 domain (15), distinct from the IDR-1 binding ZZ domain, and has been postulated as a molecular link between the atypical PKC-dependent NF-κB activation and the TNFα-RIP1 signaling axes (5). Therefore, the effect of IDR-1 on p62–PKCζ complex formation was also investigated. IDR-1 pretreated or untreated parental HEK293T cells were stimulated with TNFα followed by PKCζ immuno-precipitation. The amount of p62 co-immunoprecipitated with PKCζ was unaffected by IDR-1 treatment (Fig. 3B), suggesting that IDR-1 does not alter the TNFα-induced complex formation between PKCζ and p62.

The p62 protein has been reported to play a role in NF-κB activation by serving as a scaffold for PKCζ (17). Given the central role of NF-κB in cell signaling, we evaluated the effect of IDR-1 on NF-κB activity using a HEK293T NF-κB luciferase reporter cell line. The treatment of unstimulated cells with IDR-1 did not induce NF-κB activation, in contrast to the high NF-κB activation induced by TNFα stimulation (Fig. 3D). Furthermore, pretreatment with IDR-1 did not alter the NF-κB activation by TNFα, whereas the cationic peptide LL-37 reduced NF-κB activity in a dose-dependent manner, as previously reported (18). These experiments were repeated in an A549 epithelial cell line. IDR-1 treatment of these cells co-transfected with p38 activity reporter plasmids and an empty vector (pcDNA3.1) induced luciferase expression, indicating the activation of p38 (Fig. 3C). This effect was abolished in cells co-transfected with the dominant-negative mutant of p62, suggesting that p38 activation by IDR-1 is mediated by p62.

Because NF-κB activity did not appear to be affected by IDR-1 treatment of cells, we investigated the IDR-1 effects on C/EBPβ given our previous findings of IDR-1 induction of this pathway (1) and the known role of p38 in the activation of the C/EBP family of transcription factors (19, 20). An induction of C/EBPβ activity at 30 and 60 min after IDR-1 treatment was observed in nuclear extracts of A549 cells assayed by C/EBPβ luciferase activity using a HEK293T NF-κB luciferase reporter cell line with similar results (not shown).

DISCUSSION

The intracellular signaling network in host cells allows for efficient communication between the sensing of an incoming pathogen and the initiation of anti-infective responses. The p62 protein is emerging as one of the central signaling hubs of the cell, controlling this process (8–10, 21).
The data presented here demonstrate direct binding of IDR-1 to p62 and provide evidence that this binding has specific consequences on protein-protein interactions, as well as on downstream signaling pathways. p62 was discovered as the intracellular target of IDR-1 by an unbiased, non-hypothesis-driven proteomics approach. Due to high affinity of IDR-1 for p62, it is likely that p62 is the most physiologically relevant target. Although we identified XIAP-4 in the SILAC experiments, strong direct binding of IDR-1 to XIAP was not detected in human cell lysates, nor was binding to XIAP detected with other related IDR peptides that did bind p62. Another IDR-1 weak binding partner, glyceraldehyde 3-phosphate dehydrogenase, was also recently described (22).

Human p62 was confirmed as the IDR-1 target using binding assays and pulldown experiments from both endogenous and p62-overexpressing cell lysates. IDR-1 binding to both human and mouse p62, which share 99% amino acid sequence identity, was demonstrated. Through the investigation of p62 deletion mutants, we discovered that IDR-1 binds to the ZZ domain of p62, a zinc-binding protein interaction domain. Most compounds that act on protein-protein interactions antagonize or inhibit complex formation, but IDR-1 addition to cells led to a surprisingly specific effect; the TNFα-dependent receptor signaling complex of RIP1 and p62, which occurs at the ZZ domain, was stabilized, whereas the p62-PKCζ complex, which occurs at the PB1 domain proximal to the RIP1 binding region, was not affected.

The specific modulation of p62 signaling complexes by IDR-1 appears to have a corresponding effect on the downstream signaling. On one hand, p62 has been described as an activator of NF-κB due to its receptor-induced signaling complex formation with PKCζ (11, 12), but IDR-1 treatment did not modulate NF-κB activity downstream of TNFα, consistently with the p62-PKCζ complex formation being unaf-
fected. On the other hand, p38 MAPK activation downstream of TNFα is regulated by RIP1 (23), and the increase of RIP1-p62 interaction by IDR-1 may explain the previously reported role of IDR-1 in p38-mediated signaling pathways (1). This is further strengthened by the observation that IDR-1-mediated activation of C/EBPβ, downstream of p38, is also consistent with these and previous findings. Thus, we propose that the specific effects on intracellular signaling presented here contribute to the previously described IDR-1-modulated cytokine profile (Fig. 3F).

IDR-1 has been demonstrated to prevent and treat infections and reduce associated inflammation (1). In addition, recent studies report that p62 expression contributes to regulating macrophage-mediated (21) and cancer-associated inflammation (11, 16, 24), raising the question as to whether IDR-1 might also affect inflammatory responses in the absence of pathogen stimulation. The discovery that p62 is the target of IDR-1 highlights the importance of p62 in innate immunity and reveals p62 as a potential therapeutic target for anti-infective therapy without induction of harmful inflammation, and conversely, potential anti-inflammatory therapy with added anti-infective function.

Acknowledgment—We gratefully acknowledge the technical expertise of Mira Jovanovic.

REFERENCES

1. Scott, M. G., Dullaghan, E., Mookherjee, N., Glavas, N., Waldbrook, M., Thompson, A., Wang, A., Lee, K., Doria, S., Hamill, P., Yu, J. J., Li, Y., Donini, O., Guarna, M. M., Finlay, B. B., North, J. R., and Hancock, R. E. (2007) Nat. Biotechnol. 25, 465–472
2. Moscat, J., Díaz-Meco, M. T., Albert, A., and Campuzano, S. (2006) Mol. Cell 23, 631–640
3. Puls, A., Schmidt, S., Grawe, F., and Stabel, S. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 6191–6196
4. Kawai, K., Saito, A., Sudo, T., and Osada, H. (2008) J. Biochem. 143, 765–772