Obez çocuklarda lipid metabolizması ile non-alkolik yağlı karaciğer hastalığı ilişkisi

The association of lipid metabolism and non-alcoholic fatty liver disease in children with obesity

İlhan Hazer¹, Hilmi Onur Kabukçu¹, Murat Yağcı¹, Zeynep Ertürk¹, Gonca Kılıç Yıldırım³, Birgül Kirel¹

¹Eskişehir Osmangazi Üniversitesi Tıp Fakültesi, Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, Çocuk Endokrinoloji Bilim Dalı, Eskişehir, Türkiye
²Eskişehir Osmangazi Üniversitesi Tıp Fakültesi, Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, Eskişehir, Türkiye
³Eskişehir Osmangazi Üniversitesi Tıp Fakültesi, Çocuk Sağlığı ve Hastalıkları Anabilim Dalı, Çocuk Beslenme ve Metabolizma Bilim Dalı, Eskişehir, Türkiye

Sorumlu Yazar/Corresponding Author: Birgül Kirel E-posta/E-mail: birkirel9@gmail.com

Geliş Tarihi/Received: 27.06.2019
Kabul Tarihi/Accepted: 07.01.2020

©Telif Hakkı 2020 Türk Pediatri Kurumu Dernegi - Makale metnine www.turkpediatriarsivi.com web adresinden ulaşılabilir.
©Copyright 2020 by Turkish Pediatric Association - Available online at www.turkpediatriarsivi.com
DOI: 10.14744/TurkPediatriArs.2020.65148

OPEN ACCESS This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Bu konuda bilinenler

Obezite, insülin direnci ve dislipidemi non-alkolik yağlı karaciğer hastalığı için önemli risk etmenleridir. Non-alkolik yağlı karaciğer hastalığı lipid düzeylerinin düşüküğü ile belirgin abetalipoproteimli ve hipobetalipoproteinemi hastalarda oluşabilmektedir.

Çalışmanın katkıları

Hipolipidemik, normolipidemik ve hiperlipidemik hastalar arasında non-alkolik yağlı karaciğer hastalığı görülme sıkalığı farklı bulunmamıştır.

Amaç: Obezite, insülin direnci ve hiperlipidemi non-alkolik yağlı karaciğer hastalığı için risk etmenleri olarak gösterilmiştir. Bu çalışmada obezite tanılı hastalarda lipid ve lipoprotein metabolizması anormal-likelihoodleri ile non-alkolik yağlı karaciğer hastalığı varlığı arasındaki ilişkisi araştırılmıştır.

Gereç ve Yöntemler: Bu çalışmada; 2013–2018 yılları arasında obezite tanısı alan, yaşları 2–18 yıl arasında değişen 357 çocuk ve ergen hastanın (199 kız, 158 erkek) klinik, laboratuvar ve görüntüleme bulguları girişi doktorka incelendi. Ultrasonografi ile non-alkolik yağlı karaciğer hastalığı saptanan hastaların klinik ve laboratuvar özellikleri non-alkolik yağlı karaciğer hastalığı olan hastalar ile karşılaştırılmıştır.

Bulgular: Tüm çalışma grubunda non-alkolik yağlı karaciğer hastalığı görülme sıkalığı %44,5 idi ve erkeklerde sıralık daha yüksekti (p<0,05). Non-alkolik yağlı karaciğer hastalığı olan hastalarda vücut ağırlığı, vücut kitle indeksi, alanin aminotransferaz, glukoz, insülin, non-yüksek dansiteli lipoprotein-kolesterol ve HOMA-IR skoru daha yüksek; yüksek

Abstract

Aim: Obesity, insulin resistance, and hyperlipidemia have been shown as risk factors for non-alcoholic fatty liver disease. In this study, the association between lipid and lipoprotein metabolism abnormalities and the presence of non-alcoholic fatty liver disease was investigated in patients with obesity.

Material and Methods: In this study, the clinical, laboratory and imaging findings of 357 children and adolescent patients (199 girls, 158 boys) aged 2–18 years who were diagnosed as having obesity between 2013 and 2018 were retrospectively analyzed. The clinical and laboratory features of the patients who were diagnosed as having non-alcoholic fatty liver disease using ultrasonography were compared with patients who did not have non-alcoholic fatty liver disease. All lipid and lipoprotein levels were defined as hypo-, normo- and hiperlipidemik in comparison with the reference values according to age and sex.

Results: The frequency of non-alcoholic fatty liver disease was 44.5% in the entire study group and was higher in males (p<0.05). The body weight, body mass index, alanine aminotransferase, glucose, insulin, non-high-density lipoprotein-cholesterol, and HOMA-IR scores were found to be higher in the patients with non-alcoholic fatty liver dis-
Giriş

Non-alkolik yağlı karaciğer hastağının [non-alcoholic fatty liver disease (NAFLD)] çocukluk çağında en sık görülen kronik karaciğer hastağının olup; alkol tüketimi, viral enfek lıver disease (NAFLD) çocuk ve adoles kentik yağlı karaciğer hastağının en sık görülen ve lip i d temizle bilinen kilikli sıkılmakta smart'ın. Hipolipi demik, normallipidemik ve hiperlipidemik hastalarda non-alkolik yağlı karaciğer hastağının sıkılığı farklı değildir. Bu bulgu da alkol-za manida karaciğer hastağının gelişiminde vücut yağ dokusunun artışının ve insulin direncinin daha önemli rolü olana risk etmektedir.

Anahtar sözcükler: Hiperlipidemi, hipolipidemi, NAFLD, obezite

Obez çocuk ve ergenlerde non-alkolik karaciğer hastağının ve lip i d metabolizması bozuklukları sıklıkla saptanmaktadır. Hipolipidemi nedeniyle obez çocuk ve ergen hastalarda lipoprotein-kolesterol ve lipid metabolizması bozuklukları sıklıkla saptanmıştır. (1-3).

Obezite, insülin direnci (IR) ve dislipidemi NAFLD için önemli risk etkenleri saymlmaktadır. (8). Obezlerde; artmış trigliserit (TG) ve düşük danlıliprotein-koles terol (LDL-K) düzeyleri, azalmiş yüksek danlıliprotein kolesterol (HDL-K) düzeyi ile birlikte dislipidemi görülümektedir. Obezlerde sekonder dislipidemilerin en sık nedenidir (9). Obez hastalarda hiperlipidemi; NAFLD gelişimi için bağımsız bir risk etmeni sayılmaktadır. Non-HDL-K ve TG düzeylerinin artması, NAFLD’den sorumlu tutulmaktadır (10, 11).

Öte yandan NAFLD, plazma lipid ve lipoproteinlerinin düsüküğü ile belirgin primer hipolipidemilerin klinik bir bulgusu olabilmektedir. Abetalipoproteinemi; mikrozomal trigliserit transfer protein (MTTP) geninde mutasyon sonucu ortaya çıkan plazmada apobetalipoprotein B (Apo B) içeren lipoproteinlerin yokluğu ile belirgin, oto zomal çekinkin geçişli ender bir hastalıktır. Ailesel hipo betalipoproteinemisi ise otozomal baskın geçişli apob gen mutasyonları sonucu gelişen, plazma ApoB ve LDL-K düzeylerinin düşüğü ile belirgin diğer primer hipolipidemi nedenidir. Her iki hastalığın kliniğinde steatore, ishal, periferik nöropati, retinitis pigmentoza ve NAFLD gibi bulgular görülmektedir (12-13). Abetalipoproteinemi ve homozigot ailesel hipobetalipoproteinemili hastalarda to tal kolesterol (TK), TG ve LDL-K ölçümeyi kadar düşüktür; hipobetalipoproteinemi heterozigot taşıyıcılar ar- amidında TK düzeyi 150 mg/dL’nin altında ve LDL-K düzeyi 20-50 mg/dL’arla saantmaktadır. Bu taşıyıcı olgular da klinik olarak asemptomatik olmalarına karşın; NAFLD gelişimi açısından risk altındadır (14-15).

Dizinde hipo-, normo- ve hiperlipidemik obez çocuk ve ergen hastalarda NAFLD sıkılığını karşılaştıran bir çalışma saptanmıştır. Bu çalışmada obezite nedeniyle izlenen hastalarda lipoprotein metabolizması anormalllıkları ile NAFLD varlığını arasındaki ilişkii araştırmaktır.
Hazer ve ark. Obezitede lipid metabolizması ile NAFLD ilişkisi

İstatistiksel Çözümleme
Verilerin analizinde IBM SPSS 21 paket programı kullanıldı. Nicel veriler ait değerler ortalamaya +/- standart sapma (SD) ya da ortanca (25–75 persantil) olarak; nitel veriler ise frekans ve yüzde olarak gösterildi. Nicel verilerin normal dağılmışı Shapiro Wilk testi ile değerlendirildi. Normal dağılıan değişkenlerde gruplar arasi fark T-testi ile ve tek yönlü varyant analizi (ANOVA); normal dağılmayanlarda ise Mann-Whitney U testi ve Kruskal Wallis testi ile değerlendirildi. Nitel değişkenler arasındaki ilişki ki-kare analizi ile incelendi. p<0,05 olarak elde edilen sonuçlar anlamlı kabul edildi.

Bulgular
Tüm çalışma grubunda NAFLD görülme sıklığı %44,5 (n=158) iken; erkek hastalarda daha yüksekti (p<0,05). Non-alkolik yağlı karaciğer hastağının olmaması ile olmayaşın hastaların klinik özellikleri ve laboratuvar sonuçları Tablo 1’de verilmiştir. Non-alkolik yağlı karaciğer hastalarının diğer hastalar arasında yaş, LDL-K, TK, sT4, TSH ve glukoz düzeyleri açısından fark saptanmadı (p>0,05). Non-alkolik yağlı karaciğer hastalarda; VA, boy, VKİ, BGVA, insülin ve non-HDL-K daha yüksek (p<0,001); yine ALT, AST, HOMA-IR skoru daha yüksek; HDL-K düzeyi daha düşüktü (p<0,05).

Tablo 1. Non-alkolik yağlı karaciğer hastalığı olan ve olmayan hastaların klinik özellikleri ve laboratuvar bulguları

Özellik	NAFLD (+) (n=159)	NAFLD (–) (n=198)	p
Yaş (ay)	146,2±37,5	137,9±42,4	0,052
Kız/Erkek (n, %)	79/80 (49,7/50,3)	120/78 (60,6/39,4)	0,039
VA (kg)	72±22,6	59,8±19,7	<0,001
Boy (cm)	156 (143-164)	150 (138-159)	0,03
VKİ (kg/m²)	29,4 (25,9-33,4)	25,6 (23,5-28,5)	<0,001
BGVA (%)	158 (140-174)	142,5 (128-154)	<0,001
Glukoz (mg/dL)	85 (80-91)	85 (80,7-90)	0,49
İnsülin (uU/mL)	20,1 (11,9-27,5)	14,6 (9,3-21)	<0,001
TK (mg/dL)	175 (139,5-199)	181 (148-203)	0,39
TG (mg/dL)	113 (79-167)	116 (81-178)	0,06
LDL-K (mg/dL)	115 (83-134)	130 (90-141)	0,07
HDL-K (mg/dL)	44 (38-51)	46 (40-54)	0,76
non-HDL-K (mg/dL)	62 (34-78)	88 (53-96)	<0,001
ALT (U/L)	24 (16-36)	18 (14-23)	<0,001
AST (U/L)	23 (19-34)	22 (19-25)	0,01
sT4 (ng/dL)	1,22 (1,12-1,33)	1,23 (1,14-1,34)	0,26
TSH (mIU/mL)	2,8 (2,1-3,6)	2,73 (1,93-3,65)	0,98

a: Tabloda normal dağılan veriler ortalaması±SD, normal dağılmayan veriler ortanca (25–75 persantil) değerleri göstermektedir. ALT: Alanin aminotransferaz; AST: Aspartat aminotransferaz; BGVA: Boya göreci ağırlığı; HDL-K: Yüksek dansiteli lipoprotein-kolesterol; LDL-K: Düşük dansiteli lipoprotein-koledrol; NAFLD: Non-alkolik yağlı karaciğer hastalığı; TG: Trigliserid; sT4: Serbest t4; TSH: Tiroid stimülan hormon; VA: Vücut ağırlığı; VKİ: Vücut kitle indeksi
Grup 1, 2, 3 arasında NAFLD görülme sıklığı farklı değildir (sırasıyla %52,6, %44,7, %41,3) (p>0,05). Ancak grup 1'de sayısal olarak daha yüksek oranda NAFLD sıklığı vardı. Trigliserid ve TK düzeylerinin düşük, normal ve yüksek olmalarına göre oluşturulan gruplar arasında da NAFLD sıklığı açısından fark yoktu (p>0,05). Lipid ve lipoprotein düzeylerine göre hipo-, normo- ve hiperglisemik hastaların NAFLD sıklıkları Tablo 3'te verilmiştir.

Grup 1'de (n=57) heterozigot hipobetalipoproteinemi taşıyan hastaların %52,6'sında LDL-K düzeyi <50 mg/dL olan hastaların (n=12) %40'ında (n=5) NAFLD saptandı. LDL-K düzeyi ≥50 mg/dL olan hastaların (n=45) ise %55'inde (n=25) NAFLD saptandı. Bu iki grup arasında NAFLD sıklığı farklı değildir (p>0,05).

Hipertrigliseridemi olan hastalarda; TG düzeyinin düşük ve normal olduğu hastalara göre insülin, ALT, LDL-K ve TK düzeyleri daha yüksek; HDL-K düzeyleri daha düşük (p<0,05); yaş, cinsiyet, boy, BGVA, VKİ, AST ve glukoz düzeyleri açısından fark yoktu (p>0,05). Total kolesterol düzeyi düşük olan hastalarda TG, Normal ve düşük olan hastalara göre BGVA, insülin, HOMA-IR skoru, LDL-K düzeyi daha yüksek (p<0,05); yaş, boy, VKİ, TG, HDL-K, ALT, AST ve glukoz düzeyleri açısından fark yoktu (p>0,05). Erkek hastalarda TK yüksekliği daha fazlaydı (p<0,05).

Tablo 2. Düşük dansiteli lipoprotein-kolesterol düzeylerine göre oluşturulan çalışma gruplarının klinik özellikleri ve laboratuvar bulguları

	Grup 1 (n=57)	Grup 2 (n=143)	Grup 3 (n=157)	p
Yaş (ay)	165,5 (132–190)	135,5 (105–157)	144 (116–178)	<0,001
Kız/Erkek (n, %)	30/27 (53/47)	77/66 (54/46)	92/65 (59/41)	0,62
VA (kg)	70,6±25,5	62,9±20,7	65,4±20,7	0,08
Boy (cm)	157,5 (139–166)	150,5 (137–161)	152 (141–161)	0,07
VKİ (kg/m²)	28,5 (24,2–32,4)	26,5 (24,3–29,6)	27,3 (24,6–30,3)	0,39
BGVA (%)	148 (128–172)	150 (138–164)	152 (129–162)	0,07
Glukoz (mg/dL)	85 (81–91)	85 (81–90)	84 (80–89)	0,45
İnsülin (uU/mL)	19,7 (10,6–26,1)	16,1 (10,1–22,7)	15,3 (10,6–25,3)	0,67
TK (mg/dL)	111 (99–121)	157 (141–174)	202 (192–216)	0,00
TG (mg/dL)	79,5 (50–110)	93 (71–126)	129 (96–187)	0,00
HDL-K (mg/dL)	40 (35–53)	46 (40–53)	45 (39–52)	0,20
Non-HDL-K (mg/dL)	41 (18–78)	62 (33–111)	85 (43–144)	0,00
AST (U/L)	24 (18,7–36)	22 (18–27,2)	22 (19–27)	0,12
ALT (U/L)	21 (15–42)	19 (15–25)	18 (15–31)	0,23
sT4 (ng/dL)	1,2 (1,12–1,32)	1,26 (1,14–1,35)	1,21 (1,12–1,33)	0,42
TSH (mIU/ml)	2,8 (1,9–3,5)	2,6 (1,9–3,6)	2,8 (2,1–3,6)	0,47

Tablo 3. Hipo- normo- ve hiperlipidemik hastalardaki non-alkolik yağlı karaciğer hastalığı non-NAFLD ile karşılarak karşılaştırıldıkları

	NAFLD (+)	NAFLD (-)	p
TG düzeyine göre (n, %)			
Düşük	1 (16,7)	5 (83,3)	0,18
Normal	79 (42,8)	105 (57,2)	
Yüksek	76 (48,4)	81 (51,6)	
TK düzeyine göre (n, %)			
Düşük	22 (46,8)	25 (53,2)	0,48
Normal	99 (46,5)	114 (53,5)	
Yüksek	37 (39,4)	57 (60,6)	
LDL-K düzeyine göre (n, %)			
Düşük	30 (52,6)	27 (47,4)	0,34
Normal	64 (44,8)	79 (55,2)	
Yüksek	65 (41,4)	92 (58,6)	

Hipertrigliseridemi olan hastalarda; TG düzeyinin düşük ve normal olduğu hastalara göre insülin, ALT, LDL-K ve TK düzeyleri daha yüksek; HDL-K düzeyleri daha düşük (p<0,05); yaş, cinsiyet, boy, BGVA, VKİ, AST ve glukoz düzeyleri açısından fark yoktu (p>0,05). Total kolesterol düzeyi düşük olan hastalarda TG, Normal ve düşük olan hastalara göre BGVA, insülin, HOMA-IR skoru, LDL-K düzeyi daha yüksek (p<0,05); yaş, boy, VKİ, TG, HDL-K, ALT, AST ve glukoz düzeyleri açısından fark yoktu (p>0,05). Erkek hastalarda TK yüksekliği daha fazlaydı (p<0,05).
Hazer ve ark. Obezitede lipid metabolizması ile NAFLD ilişkisi

Tartışma
Ülkemizdeki çeşitli çalışmalarında obez çocuk ve erişkinlerde NAFLD sıkılığı %23-62 arasında bulunmuştur (5-7). Araştırılamamızda obez çocuk ve erişkinlerde NAFLD sıkılığı dizine benzer şekilde %44,2 oranında bulunmuş ve erkek hastalarda sıkılık daha yüksek saptanmıştır. Obezlerde lipoprotein artması ile serbest yağ asitleri artmaktadır. Serbest yağ asitleri lipoprotein lipazi inhabe ederek karaciğerde VLDL ve TG yapımının artışı nedeniyle hastaların obezitesi ile hepatoatyo neden olmadığı (19). Yüksek kitle indeksindeki artışın hepatosteatotuzu ve IR'yi arttırdığı bildirilmektedir (8, 20-22). Araştırılamamızda NAFLD'yi olan hastaların VA, VKI, BGVA, serum non-HDL-K ve insülin düzeyleri ile HOMA-IR skorlarının daha yüksek olması ve IR'lı olanlarda hem TG hem de NAFLD sıkılığının daha yüksek olması; NAFLD gelişiminde obezite, hiperlipidemi ve IR'ının rolü olduğu işaret etmektedir.

Non-alkolik yağlı karaciğer hastalığı için diğer bir bağımsız risk etmeni olarak tanımlanan dislipidemi sıkılığı obezlerde artmıştır (23). Çocuk ve ergen obez hastalarda dislipidemi sıkılığı %43-69 arasında değişmektedir. Bu hastalarda en sık hipertrigliseridemi saptanmaktadır (24-26). Araştırılamamızda obez çocuk ve erişkinlerde %77,5 oranında dislipidemi olduğu; hipertrigliseridemi ve LDL-K yüksekliğinin en yüksek oranda görülen lipid metabolizmasının anormalliği olduğu saptanmıştır.

Obez çocuk ve erişkinlerde artan serum TG ve non-HDL düzeylerinin NAFLD sıkılığını artırıldığı bildirilmektedir (22, 27). Araştırılamamızda NAFLD'yi olan hastaların non-HDL-K düzeylerinin yüksek olduğu; diziden farklı olarak TG düzeylerinin farklı olmamışı saptanmıştır. Ancak hastalarımız; TG, TK ve LDL-K düzeyleri açısından hipolipidemi, normolipidemi ve hiperlipidemi olarak ayrılmıştır; NAFLD sıkılığının bu gruplar arasında farklı olmamışı saptanmıştır. Bu bulgu ve hipolipidemi gruplarında en az hiperlipidemi gruplar kadar sıkılık NAFLD saptanmıştır; NAFLD gelişiminde lipid metabolizmasının değişikliklerinden çok; VKI artışı, IR ya da başka etmenlerin daha etkili olduğu düşünüldü ve bu durum retrospektif çalışmalarda geçerli gibi görülmektedir.

Araştırılamamızda obez hastalarda; LDL-K düzeylerine göre oldukça yüksek oranda (%52,6) hipolipidemi varlığı saptanmıştır. Non-alkolik yağlı karaciğer hastalığı, primer hipolipidemilerin klinik bir bulgusudur. Obez hastalarda karaçığerde VLDL ve TG yapımının artış ile heptosteatotöz gelişikten primer hipolipidemilerde obezite, IR gibi diğer metabolik anormallıklardan bağımsız olarak karaciğerden VLDL-TG sekresyonunun bozulması ile hepatositlerde TG birikir ve NAFLD gelişir (28). LDL-K düzeyleri 50 mg/dL'den düşük olan hastalarda hipolipideminin nedeninin, abetalipoproteinemi ve ailesel hipobetalipoproteinemi gibi primer hipolipidemi hastalıkları olabileceği akla gelmiştir.

Son zamanlarda mutasyonlar abetalipoproteinemiyi yol açan MTTP genindeki bazı polimorfizmelerin ve TMSF6F2 genindeki polimorfizmelerin; serum lipid ve lipoproteinlerindeki düşüşü, özellikle karaciğerde artmış TG depolanması, artmış NAFLD, NASH ve sıroz ile ilişkili olabileceği öne sürülmektedir (29, 30).

Hastalardında primer hipolipidemilerin NAFLD dışında yukarıda bahsedilen, sistemik, diğer ağrı klinik bulguları olmadığına göre; özellikle LDL-K düzeyleri 50 mg/dL'nin altında olan hastalarımızın kliniğinin hafif ya da asemptomatik olduğu primo hipolipidemilerin heterozigot taşıyıcı olabilecekleri ya da dizinde bildirilen ilgili polimorfizmili taşıyıcı hastaların akla gelmektedir. Araştırılamamızda hipolipidemisi olan hastalarımızda genetik analiz yapılmamıştır.

Hipoproteinemi olan hastalar polikliniklerde hiperlipidemisi olan hastalar; steatore, ishal, periferik nöropati gibi ağrı bulguları başvurduğu zaman genel olarak oğlan kaçağına ve ardından atıf etmektedir. Yukarıda bahsedildiği gibi ağrı ve kronik NAFLD, NASH ve sıroz gibi komplikasyonları yol açabileceği hiperlipidemi hastalarda NAFLD varlığı arastırılarak, Non-alkolik yağlı karaciğer hastalığına bir artışı artırmaktadır. Non-alkolik yağlı karaciğer hastalığına bir artışını hiperlipidemisi olan hastaların akla gelmektedir.

Araştırılamamızın sınırlılıkları, genetik analiz yapılmadığına, genetik analiz vücut yağ dokusu miktarı ve IR'nin daha yüksek olduğu; hem TG hem de NAFLD sıklığının daha yüksek olması; MA-IR skorlarının daha yüksek olması ve IR'si olanlarda BGVA, serum non-HDL-K ve insülin düzeyleri ile HOVA, serum non-HDL-K ve insülin düzeyleri ile HOMA-IR skorunu belirleyen risk faktörlerin belirlenmesi için genetik analiz yapılmamıştır.

Sonuç olarak obez hastaların polikliniklerde hiperlipidemi olan hastalar; steatore, ishal, periferik nöropati gibi ağrı bulguları başvurduğu zaman genel olarak oğlan kaçağına ve ardından atıf etmektedir. Yukarıda bahsedildiği gibi ağrı ve kronik NAFLD, NASH ve sıroz gibi komplikasyonları yol açabileceği hiperlipidemi hastalarda NAFLD varlığı arastırılarak, Non-alkolik yağlı karaciğer hastalığına bir artışını hiperlipidemisi olan hastaların akla gelmektedir.

Hepolipidemisi olan hastalar polikliniklerde hiperlipidemisi olan hastalar; steatore, ishal, periferik nöropati gibi ağrı bulguları başvurduğu zaman genel olarak oğlan kaçağına ve ardından atıf etmektedir. Yukarıda bahsedildiği gibi ağrı ve kronik NAFLD, NASH ve sıroz gibi komplikasyonları yol açabileceği hiperlipidemi hastalarda NAFLD varlığı arastırılarak, Non-alkolik yağlı karaciğer hastalığına bir artışını hiperlipidemisi olan hastaların akla gelmektedir.

Hepolipidemisi olan hastalar polikliniklerde hiperlipidemisi olan hastalar; steatore, ishal, periferik nöropati gibi ağrı bulguları başvurduğu zaman genel olarak oğlan kaçağına ve ardından atıf etmektedir. Yukarıda bahsedildiği gibi ağrı ve kronik NAFLD, NASH ve sıroz gibi komplikasyonları yol açabileceği hiperlipidemi hastalarda NAFLD varlığı arastırılarak, Non-alkolik yağlı karaciğer hastalığına bir artışını hiperlipidemisi olan hastaların akla gelmektedir.

Hepolipidemisi olan hastalar polikliniklerde hiperlipidemisi olan hastalar; steatore, ishal, periferik nöropati gibi ağrı bulguları başvurduğu zaman genel olarak oğlan kaçağına ve ardından atıf etmektedir. Yukarıda bahsedildiği gibi ağrı ve kronik NAFLD, NASH ve sıroz gibi komplikasyonları yol açabileceği hiperlipidemi hastalarda NAFLD varlığı arastırılarak, Non-alkolik yağlı karaciğer hastalığına bir artışını hiperlipidemisi olan hastaların akla gelmektedir.
Çıkar Çatışması: Yazılar çıkar çatışması bildirmemişlerdir.

Mali Destek: Yazılar bu çalışma için mali destek almadıkları beyan etmiştir.

Ethics Committee Approval: Our study was conducted in accordance with the Declaration of Helsinki. Approval was obtained from Eskişehir Osmangazi University Non-Interventional Clinical Research Ethics Committee (date: 11.12.2018, decision number: 10).

Informed Consent: As it was a retrospective study, consent was not obtained from the patients.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - B.K.; Design - B.K., İ.H.; Supervision - B.K., G.K.Y.; Data Collection and/or Processing - H.O.K., M.Y., Z.E., G.K.Y.; Analysis and/or Interpretation - B.K., İ.H.; Literature Review - B.K., İ.H., H.O.K.; Writing - İ.H., B.K.; Critical Review - B.K.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

Kaynaklar
1. Shah J, Okubote T, Alkhouri N. Overview of Updated Practice Guidelines for Pediatric Nonalcoholic Fatty Liver Disease. Gastroenterol Hepatol (N Y) 2018; 14: 407–14.
2. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67: 328–57.
3. Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S, Benson JT, Enders FB, Angulo P. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut 2009; 58: 1538–44.
4. Anderson EL, Howe LD, Jones HE, Higgins JP, Lawlor DA, Fraser A. The Prevalence of Non-Alcoholic Fatty Liver Disease in Children and Adolescents: A Systematic Review and Meta-Analysis. PLoS One 2015; 10: e0140908.
5. Gökçe S, Athinici Z, Aycan Z, Çınar HG, Zorlu P. The relationship between pediatric non-alcoholic fatty liver disease and cardiovascular risk factors and increased risk of atherosclerosis in obese children. Pediatr Cardiol 2013; 34: 308–15.
6. Yıldız I, Erol OB, Toprak S, et al. Role of vitamin D in children with hepatosteatosis. J Pediatr Gastro Nutr 2014; 59: 106–11.
7. Akcam M, Boyacı A, Pirgon O, Koroglu M, Dundar BN. Importance of the liver ultrasound scores in pubertal obese children with nonalcoholic fatty liver disease. Clin Imaging 2013; 37: 504–8.
23. Dowla S, Aslibekyan S, Goss A, Fontaine K, Ashraf AP. Dyslipidemia is associated with pediatric nonalcoholic fatty liver disease. J Clin Lipidol 2018; 12: 981–7.

24. Elmaoğulları S, Tepe D, Uçaktürk SA, Karaca Kara F, Demirel F. Prevalence of Dyslipidemia and Associated Factors in Obese Children and Adolescents. J Clin Res Pediatr Endocrinol 2015; 7: 228–34.

25. Hashemipour M, Soghrati M, Malek Ahmadi M, Soghrati M. Anthropometric indices associated with dyslipidemia in obese children and adolescents: a retrospective study in isfahan. ARYA Atheroscler 2011; 7: 31–9.

26. Evia-Viscarra ML, Rodea-Montero ER, Apolinar-Jiménez E, Quintana-Vargas S. Metabolic syndrome and its components among obese (BMI >=95th) Mexican adolescents.

27. Steiner G. Hyperinsulinemia and VLDL kinetics. Adv Exp Med Biol 1993; 334: 287–94.

28. Castellano G, Garfia C, Gomez-Coronado D, et al. Diffuse fatty liver in familial heterozygous hypobetalipoproteinemia. J Clin Gastroenterol 1997; 25: 379–82.

29. Hsiao PJ, Lee MY, Wang YT, et al. MTTP-297H polymorphism reduced serum cholesterol but increased risk of non-alcoholic fatty liver disease-a cross-sectional study. BMC Med Genet 2015; 16: 93.

30. Dongiovanni P, Petta S, Maglio C, et al. Transmembrane 6 superfamily member 2 gene variant disentangles non-alcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61: 506–14.