A Reply to Campbell and Mau
Nicholas Bloom, Mirko Draca and John Van Reenen, January 23rd 2021

Introduction

In Bloom, Draca and Van Reenen (2016, “BDVR”) we have a set of nine results on the impact of Chinese trade. The first three showed that Chinese trade increased technical change in European firms measured by patents, productivity and IT adoption. The last six showed that Chinese trade led to reallocation towards more technologically advanced firms: those with more patents, higher productivity and IT adoption had faster growth and lower exit rates. Campbell and Mau (2020, “CM”) argue that the effects of Chinese imports on patenting are sensitive to specification changes. This paper focuses on CM’s critique of our count data models – we discuss other aspects of CM in a longer response.¹

Count Data Models

CM point to coding errors in our original Table 7. Column (1) of Table 1 below reproduces our original result, and column (2) corrects for the coding errors (equivalent to CM Table 2, columns (1) and (3) respectively). However, CM’s column (4) omits the industry dummies that we use to control for sector heterogeneity. Our baseline long differenced regressions in Tables 1-5 of BDVR removes these industry fixed-effects through differencing, but they are necessary in the levels count data models (e.g., due to variations in intensity to file patents).

A second issue with the column (2) specification in our Table 1 is that it does not control for the initial conditions for Chinese imports. To see why this is potentially important, consider the model:

\[PAT_{ijkt} = \exp(\alpha IM_{jkt}^{CH} + f_{kt} + \eta_i) V_{ijkt} \]

(1)

where \(PAT_{ijkt} \) is the count of patents of firm \(i \) in industry \(j \) in county \(k \) at time \(t \), \(IM_{jkt}^{CH} \) is the firm’s exposure to Chinese imports, \(f_{kt} \) are country by time dummies, \(\eta_i \) is a firm fixed effect and \(V_{ijkt} \) an idiosyncratic error term. We can approximate \(\eta_i \) by a linear function of industry dummies

¹ The longer response to the other points raised in CM (Bloom et al., 2020) is available at https://nbloom.people.stanford.edu/sites/g/files/sbiybj4746/f/cm_response_1.pdf

© The Author 2021. Published by Oxford University Press on behalf of The Review of Economic Studies Limited. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
(SIC4j), the initial patent stock, \(
\overline{\text{PAT}}_{ijkl0}\), and initial Chinese imports, \(\overline{\text{IMP}}_{jkl0}^{CH}\). Formally, the assumption is:

\[
\exp(\eta_i) = \exp(SIC4j + a_1\overline{\text{PAT}}_{ijkl0} + a_2\overline{\text{IMP}}_{jkl0}^{CH})U_i ,
\]

where \(U_i\) has mean 1 and is independent of all conditioning variables. Thus, the equation we take to the data is:

\[
E(\text{PAT}_{ijklt}|\text{conditioning set up to } t) = \exp(a\overline{\text{IMP}}_{jkt}^{CH} + f_{kt} + \text{SIC4}j + a_1\overline{\text{PAT}}_{ijkl0} + a_2\overline{\text{IMP}}_{jkl0}^{CH}) (3)
\]

Equation (3) can be estimated by either Negative Binomial or Poisson, as in the nonlinear panel models with sequentially exogenous regressors of Blundell et al (1999, 2002).

The estimator used in column (2) of Table 1 does not use initial Chinese imports (i.e. it sets \(a_2 = 0\) in equation (3)) so it may not a sufficient approximation for the fixed effect to remove the bias on \(\alpha\) in equation (1).\(^2\) We measure initial Chinese imports \((\overline{\text{IMP}}_{jkl0}^{CH})\) as the average \(\overline{\text{IMP}}_{jkt}^{CH}\) across all years from 1990 (our first year of comprehensive imports data) to the year in which a firm enters the sample. For example, the first year of our estimating sample is 1996, so \(\overline{\text{IMP}}_{jkl0}^{CH}\) is the average of \(\text{IMP}_{jkt}^{CH}\) between 1990 and 1996. For a firm who entered in 1997, \(\overline{\text{IMP}}_{jkl0}^{CH}\) is the 1990-1997 average, and so on. Column (3) of Table 1 includes this measure of \(\overline{\text{IMP}}_{jkl0}^{CH}\) in the specification of the previous column. The coefficient is negative and statistically significant. It is clear that once we control for this initial value of Chinese imports, there is a positive and significant association of innovation with Chinese imports. The significance level (10% level) is lower than in column (1), but the magnitude of the coefficient is larger (1.1 vs. 0.4).

A concern might be that some of the variation in initial Chinese imports is across firms within an industry-country cell. There are two reasons for this. First, we have such variation for the current Chinese import share because some firms operate across multiple industries. For these multi-product firms, we use a weighted average of Chinese import share across all the four digit sectors

\(^2\) As Blundell et al. (1999, 2002), note, the bias on the estimate of \(\alpha\) converges to zero as the length of pre-sample innovation process becomes long. However, one of the conditions for this asymptotic result is that the fixed effect in the \(\text{PAT}_{ijklt}\) is proportional to the fixed effect in the \(\overline{\text{IMP}}_{jkt}^{CH}\) process. If this is not the case, then it may also be necessary to condition on \(\overline{\text{IMP}}_{jkl0}^{CH}\).
in which they operate (see BDVR Appendix A2). As an alternative definition, we can allocate a firm solely to its main industry, which is what we do for the rest of the Table 2 for the both the current Chinese import term and its initial condition (labelled “SINGLE” vs. the baseline “MULTI”). Second, Table 1 defines the initial condition as the average Chinese import share between 1990 and the first year we observe the firm in our sample. For firms alive in 1996, it is the 1990-1996 average. However, as noted above, for later entrants we use a longer average as in equation (2): 1997 entrants have the 1990-1997 average, 1998 entrants have the 1990-1998 average, 1990-1998 average for 1999 entrants and the 1990-2000 average for 2000 entrants. We experiment with turning this source of variation off, so that initial Chinese imports is defined solely on the 1990-1996 period for all firms. We label this “FIXED” as opposed to the baseline “COHORT”.

We implement these two changes in column (4) of Table 1 that reproduces column (3) but uses a single-industry per firm and define Chinese import initial condition fixed solely in 1990-1996. The coefficient on Chinese imports is 1.087 and significant at the 5% level, near identical to the previous column. Note that the initial imports variable is not statistically significant. This is likely because the initial condition is no longer “initial” for firms who enter after 1996. Since it is the same (the 1990-1996 average) for all firms, it will be a worse control for later entrants. To examine this, column (5) uses the same initial condition approach (“COHORT”) as in our baseline models, but continues to allocate firms to a single industry (as in column (3)). As expected, the point estimate on Chinese imports is slightly larger, and the initial conditions are now more precisely estimated. Finally, since equation (3) should also hold if we estimate a Poisson model instead of Negative Binomial model, we repeat the new specifications of Table 1 for the Poisson model, which shows similar qualitative results.

3 For example, for firms who entered in 2000 (the last entering cohort), the initial condition is 1990-2000 in columns (1) and (2), but 1990-1996 in columns (5) and (6).

4 These are in online Appendix Table A1. Although the Negative Binomial relaxes the distributional assumptions on the error term compared to the simpler Poisson model (it allows for over-dispersion), the fact we cluster the standard errors at the industry-country level means that there is no generality gained by moving from Poisson to NEGBIN (both have the same log-link first moment of equation (3)).
Conclusions

In BDVR, we argued that Chinese import competition played a positive role in upgrading technology in European firms between 2000 and 2007. This conclusion was based on many underlying empirical results showing Chinese competition both reallocated activity to higher tech firms (e.g. reducing employment by more for low-tech firms than for high tech firms) and increased technological change within firms when we examine patents, productivity and IT. CM argue the within firm impact of Chinese imports on patents is sensitive to specification choice. It is true that changing controls can lead to different results on signs and significance, and a useful aspect of our engagement with CM has been to probe the results further in several dimensions, especially of the count data models. Nonetheless, in our view the overall findings from our original paper remain robust when we apply the appropriate corrections.

The data and code underlying this article are available on Zenodo at http://doi.org/10.5281/zenodo.4457880
References
Bloom, Nicholas, Draca, Mirko and Van Reenen, John (2016), “Trade induced technical change? The Impact of Chinese Imports on Innovation, IT and Productivity, Review of Economic Studies 83(1), 87-117.
Bloom, Nicholas, Mirko Draca, and John Van Reenen. 2016. "Supplementary data for: Trade Induced Technical Change? The Impact of Chinese imports on innovation, IT and productivity." [dataset] Retrieved from https://doi.org/10.1093/restud/rdv039
Bloom, Nicholas, Mirko Draca and John Van Reenen, (2020) “A Reply to Campbell and Mau” Blundell, Richard, Rachel Griffith and Frank Windmeijer (2002) “Individual effects and Dynamics in Count Data Models” Journal of Econometrics, 108(1), 113-131 Blundell, Richard, Rachel Griffith and John Van Reenen (1999). “Market share, Market value and Innovation: Evidence from British Manufacturing Firms” Review of Economic Studies 66(3), 228, 529-54
Bureau Van Dijk (2020) Company Account Statistics (ORBIS) [dataset] Retrieved from https://www.bvdinfo.com/en-gb/our-products/data/international/orbis?gclid=EAIaIQobChMI57X0k9Tx7QIVUNPtCh3QbwrCEAAYASAAEgJEs_D_BwE
Campbell, Douglas and Karsten Mau (2020) “On Trade Induced Technical Change: The impact of Chinese Imports on Innovation, IT and Productivity”, mimeo European Patent Office (2020) Patent Statistics (PATSTAT) [dataset] Retrieved from https://www.epo.org/searching-for-patents/business/patstat.html European Patent Office (2020) Patent Statistics (PATSTAT) [dataset] Retrieved from https://www.epo.org/searching-for-patents/business/patstat.html Eurostat (2020) Statistics on the production of manufactured goods (PRODCOM). [Data set] Retrieved from https://ec.europa.eu/eurostat/web/prodcom/data/database
United Nations (2020) Statistics on trade (COMTRADE) [Data set] Retrieved from https://comtrade.un.org/
Table 1: Negative Binomial Count Data models with controls for initial Chinese Imports

Dependent Variable:	(1) PAT+1	(2) PAT	(3) PAT	(4) PAT	(5) PAT
Estimation Method	NEGBIN	NEGBIN	NEGBIN	NEGBIN	NEGBIN
Current Chinese Imports	0.398**	0.116	1.089*	1.087**	1.350***
Initial Chinese Imports	-5.371***	-0.403	-1.725*	-1.725*	-1.725*
Controls	Country and year dummies	Country by year dummies			
Definition of Chinese Imports for Current and initial level	MULTI: Average across a firm’s industries	MULTI: Average across a firm’s industries	MULTI: Average across a firm’s industries	SINGLE: Allocated to a single industry	SINGLE: Allocated to a single industry
Timing of initial Chinese imports control	Variable not included	Variable not included	COHORT: Average from 1990 to when firm enters sample	FIXED: Average from 1990-96 for all firms	COHORT: Average from 1990 to when firm enters sample
Observations	74,038	74,038	74,038	74,038	74,038

Notes: ***indicates significance at the 1% level, **5% level and * at the 10% level. PAT is a firm’s count of patents. Column (1) is identical to BDVR Table 7 column (1). Column (2) is identical to CM Table 2 column (3). The sample covers the years 1996-2005. All columns include four-digit SIC industry dummies and the two initial condition controls for patents and estimated by Negative Binomial models. Standard errors clustered by industry-country pair. “Current Chinese imports” is the share of Chinese imports in total imports in the industry-country-year cell. In the columns labelled “SINGLE: Allocated to a single industry” we allocate current and initial Chinese imports to the main four digit SIC industry that a firm operates in. “MULTI: Average across a firm’s industries” takes into account that some firms operate across multiple industry and uses a weighted average across these industries (as in the original BDVR paper). “Initial Chinese Imports” is the value of the initial Chinese import share with the exact timing of this differing by columns. Columns labelled “FIXED: Average from 1990-96 for all firms” uses the average between 1990 and 1996 (so is identical for all firms in a country-industry cell). Columns labelled “COHORT: Average from 1990 to when firm enters sample” uses the 1990-1996 average for firms who were alive in 1996 (i.e. entered the sample in 1996 or earlier); the 1990-1997 average for 1997 entrants, etc.
Online Appendix Table 1: Patent Count Data models with controls for initial Chinese Imports: Robustness

Estimation Method:	(1)	(2)	(3)
Current Chinese Imports	**2.142**	**1.937***	**2.244***
	(0.930)	(0.634)	(0.650)
Initial Chinese Imports	**-10.040***	**-4.399**	**-5.632***
	(3.391)	(2.007)	(1.974)
Controls	Country by year dummies	Country by year dummies	Country by year dummies
Definition of Chinese Imports for Current and initial level	MULTI: Average across a firm’s industries	SINGLE: Allocated to a single industry	SINGLE: Allocated to a single industry
Timing of initial Chinese imports control	COHORT: Average from 1990 to when firm enters sample	FIXED: Average from 1990-96 for all firms	COHORT: Average from 1990 to when firm enters sample
Observations	74,038	74,038	74,038

Notes: ***indicates significance at the 1% level, **5% level and * at the 10% level. PAT is a firm’s count of patents. The specification are identical to Table 1 columns (3), (4) and (5), except they are estimated by Poisson instead of a Negative Binomial model. The sample covers the years 1996-2005. All columns include four-digit SIC industry dummies and the two initial condition controls for patents. Standard errors are clustered by industry-country pair. “Current Chinese imports” is the share of Chinese imports in total imports in the industry-country-year cell. In the columns labelled “SINGLE: Allocated to a single industry” we allocate current and initial Chinese imports to the main four digit SIC industry that a firm operates in. “MULTI: Average across a firm’s industries” takes into account that some firms operate across multiple industry and uses a weighted average across these industries (as in the original BDVR paper). “Initial Chinese Imports” is the value of the initial Chinese import share with the exact timing of this differing by columns. Columns labelled “FIXED: Average from 1990-96 for all firms” uses the average between 1990 and 1996 (so is identical for all firms in a country-industry cell). Columns labelled “COHORT: Average from 1990 to when firm enters sample” uses the 1990-1996 average for firms who were alive in 1996 (i.e. entered the sample in 1996 or earlier); the 1990-1997 average for 1997 entrants; 1990-1998 average for 1998 entrants; the 1990-1998 average for 1999 entrants and the 1990-2000 average for 2000 entrants.