Genome-wide screen for modifiers of Parkinson’s disease genes in Drosophila

Caroline Fernandes1,2 and Yong Rao2*

Abstract

Background: Mutations in parkin and PTEN-induced kinase 1 (Pink1) lead to autosomal recessive forms of Parkinson’s disease (PD). parkin and Pink1 encode a ubiquitin-protein ligase and a mitochondrially localized serine/threonine kinase, respectively. Recent studies have implicated Parkin and Pink1 in a common and evolutionarily conserved pathway for protecting mitochondrial integrity.

Results: To systematically identify novel components of the PD pathways, we generated a genetic background that allowed us to perform a genome-wide F1 screen for modifiers of Drosophila parkin (park) and Pink1 mutant phenotype. From screening ~80% of the fly genome, we identified a number of cytological regions that interact with park and/or Pink1. Among them, four cytological regions were selected for identifying corresponding PD-interacting genes. By analyzing smaller deficiency chromosomes, available transgenic RNAi lines, and P-element insertions, we identified five PD-interacting genes. Among them, opa1 and drp1 have been previously implicated in the PD pathways, whereas debra (dbt), Pi3K21B and β4GalNAcTA are novel PD-interacting genes.

Conclusions: We took an unbiased genetic approach to systematically isolate modifiers of PD genes in Drosophila. Further study of novel PD-interacting genes will shed new light on the function of PD genes and help in the development of new therapeutic strategies for treating Parkinson’s disease.

Background

Parkinson’s disease (PD) is the second most common neurodegenerative disease. It is characterized by the loss of nigral dopaminergic neurons. Mutations in Pink1 and Parkin cause autosomal recessive early-onset Parkinson’s disease in humans [1,2]. Together mutations in these genes account for greater than 50% of familial Parkinson disease (PD) and ~20% of early-onset sporadic cases [3-5]. Recent studies on characterizing the function of Parkin and Pink1 have significantly advanced our understanding of PD pathogenesis.

Parkin has E3-ubiquitin ligase activity, and is shown to degrade abnormally folded proteins [6]. For instance, Parkin ubiquitinates and degrades proteins such as CDCrel-1 [7], Parkin-associated endothelin receptor-like (Pael) receptor [8], α-synuclein [9], synphilin-1 [10], and cyclin E [11]. Thus, Parkin dysfunction in regulating the level of other proteins or itself through protein degradation may contribute to PD pathogenesis.

Pink1 is a mitochondria-localized serine/threonine kinase [2,12,13]. A recent study suggests that Pink1 directly phosphorylates Parkin [14]. In addition, Pink1 may directly or indirectly induce the phosphorylation of the HSP75 chaperone TRAP1 [12] and the mitochondrial protease HtrA2 [13].

Accumulated evidence supports that Pink1 and Parkin act together in a common and conserved pathway to protect mitochondrial integrity (for review, see [15]). For instance, it is reported that overexpression of Drosophila Parkin (park) could rescue mitochondrial defects caused by Pink1 mutations both in Drosophila [16-19] and mammalian systems [20,21]. Recent studies also indicate that Pink1-dependent recruitment of Park into mitochondria is required for the clearance of damaged mitochondria [22-25].

Drosophila melanogaster has proven to be a powerful model system for understanding the function of PD genes. Several PD genes such as park, Pink1, LRRK2 and HtrA1 have orthologs in Drosophila. Interfering with
their function caused PD-like phenotypes in *Drosophila* [17-19,26-29]. Genetic studies in *Drosophila* have begun to reveal new targets for the development of new therapeutic approaches to treat PD. For instance, Pallanck and colleagues previously conducted a genetic screen to isolate modifiers of partial lethality caused by complete loss of *park* in *Drosophila* [30]. From ~1400 P-element insertions affecting less than 10% of the fly genome, they identified several genes that regulate oxidative stress and innate immune responses [30].

In this study, we conducted a systematic genetic screen to isolate *park*- and/or *Pink1*-interacting regions that cover ~80% of the entire fly genome. We generated a genetic background in which *park* or *Pink1* was knocked down. The availability of this genetic tool allowed us to perform a F1 genetic screen to identify cytological regions on the 2nd and 3rd chromosome that interact with *park* and/or *Pink1*. We found that 31 cytological regions modify both *park* and *Pink1* wing-posture phenotype. In addition, 21 cytological regions showed interactions with both *Pink1* and *park* in adult lethality test. We then selected four cytological regions for fine mapping, which identified two known PD-interacting genes *opa1* and *drp1*, and three novel PD-interacting genes *debra*, *PisK21B* and *β4GalNAcTA*.

Methods

Drosophila stocks

UAS-Pink1-RNAi, *UAS-park RNAi* and other transgenic RNAi lines were obtained from the VDRC stock center. A collection of deficiencies uncovering >92% of cytological regions on 2nd and 3rd chromosomes were obtained from the Bloomington *Drosophila* Stock Center. Smaller deficiencies and P-element insertions mapped within large PD-interacting cytological regions were also obtained from the Bloomington *Drosophila* Stock Center. Balancer stocks *CyO,GAL80* and *TM3,GAL80* were provided by D.van Meyel. The *park*\(_{\text{dpk,}\Delta 21}\)/TM3,Sb line was provided by M. Guo (UCLA). *Pink1109/FM7,Act-GFP* and *park25/TM3,Sb* stocks were provided by T. Fon. *Df(2R)[2R]/β4GalNAcTA_{1,20,1}* and *β4GalNAcTA_4* lines were obtained from N. Haines.

Genetics

To knock down *Pink1* or *park*, *tubulin-GAL4* (tub-GAL4) flies were crossed with *UAS-Pink1-RNAi* or *UAS-park-RNAi* flies to ubiquitously express *Pink1-RNAi* or *park RNAi*. Since fly stocks with ubiquitous expression of *Pink1-RNAi* or *park RNAi* under control of *tub-GAL4* are not healthy, genetic crosses were performed to generate *UAS-Pink1-RNAi/CyO,GAL80*; *tub-GAL4/TM3,Sb* and *UAS-park-RNAi/tub-GAL4/TM3,Sb,GAL80* stocks, in which GAL4 is inhibited by GAL80 to prevent the expression of *UAS-Pink1-RNAi* or *UAS-park-RNAi* in parental stocks [31]. F1 screen was performed by crossing individual deficiency lines from 2nd and 3rd chromosome deficiency kits with *UAS-Pink1-RNAi/CyO,GAL80*; *tub-GAL4/TM3,Sb* or *UAS-park-RNAi/tub-Gal4/TM3,Sb,GAL80* flies. The F1 progeny in *Pink1-RNAi* background were reared at 25°, and the F1 progeny in *park-RNAi* background were kept at 29°. F1 progeny were collected for 4-6 days and separated according to their date of eclosion. The modification of wing-posture phenotype by each deficiency chromosome was scored on post-eclosion day 3 for *Pink1* screen and on post-eclosion day 6 for *park* screen. Wing posture phenotype in both male and female F1 flies was scored, and the modifying effect on penetrance was determined by counting the percentage of both held-up-wing flies and drooped-wing flies. For *park* and *Pink1* screen, 212 and 217 deficiencies in the deficiency kit were screened, respectively.

Selected deficiency lines were also crossed with *Pink1109/FM7,Act-GFP* female flies. F1 progeny were scored for the modification of the wing-posture phenotype. The F1 progeny were also scored for adult lethality test.

Analysis of wing phenotype, longevity and fertility

For analysis of abnormal wing phenotype, ~20 flies were placed per vial. Flies with both wings held-up or drooped were counted.

For longevity test, flies were collected upon eclosion and transferred to new vials every 4-6 days. Mortality was scored daily. The assay was performed in triplicate. Survival curves were plotted using GraphPad software.

To test fertility of male flies, individual male flies were crossed with three (*w1118*) virgin females. After 10 days, the number of vials with progeny were counted.

Statistical Analysis

Student’s t-test was used for statistical analysis.

Results

Characterization of *park* and *Pink1* knockdown phenotypes

Previous studies show that loss of *park* or loss of *Pink1* caused similar phenotypes, such as abnormal wing morphology, male sterility, reduced climbing ability, decreased longevity and loss of dopaminergic neurons [17-19,29]. To generate a “park-inhibited” or “Pink1-inhibited” background suitable for systematic F1 genetic screen, we used the GAL4-UAS system [32] to knock down the level of *Pink1* or *park* in flies.

Consistent with previous reports [17-19,29], we found that ubiquitous knockdown of *Pink1* or *park* by expressing *UAS-park-RNAi* or *UAS-Pink1-RNAi* transgenes under control of the tub-GAL4 driver, caused male sterility (compared to 100% fertility in wild-type control,
Pink1 and park knockdown flies showed 14.3% and 44.4% fertility, respectively, reduced life span, and abnormal wing posture (i.e. held up or drooped) (Figure 1). Those phenotypes resembled that observed in park and Pink1 loss-of-function mutants [17-19,29].

We then tested if the penetrance and severity of above phenotypes could be enhanced by increasing the expression level of the UAS-park-RNAi transgene. This was achieved by elevating temperature, which increases the activity of GAL4 leading to higher expression of UAS-transgenes [32]. Indeed, we found that increasing the expression level of park-RNAi significantly enhanced the phenotype. The penetrance of wing-posture phenotype in park knockdown flies was increased from ~2.1% at 25°C to ~22.4% at 29°C. The maximal life span of park knockdown flies was further reduced from ~67 days at 25°C to ~17 days at 29°C. The fertility of male park knockdown flies was also reduced from ~44.4% at 25°C to ~30% at 29°C.

We also examined the effect of increasing the level of Pink1-RNAi transgene on wing posture, male sterility and longevity. In Pink1 knockdown flies, the penetrance of wing-posture phenotype was increased from ~2.9% at room temperature to ~91% at 29°C. The maximal life span of Pink1 knockdown flies was reduced from ~55 days at room temperature to ~18 days at 29°C. The fertility of male Pink1 knockdown flies was also decreased from ~14.3% at room temperature to 0% at 29°C.

F1 screen for modifiers of the park knockdown phenotype

To identify novel modifiers of the PD pathway, we set out to conduct a systematic screen to identify cytological regions on the 2nd and 3rd chromosome that interact with park (Figure 2). Prior to the screen, we examined if the park knockdown mutant background is sensitive to the reduction in the dosage of known genes in the pathway. We found that reducing the level of endogenous park substantially increased the penetrance of the park-RNAi-induced wing posture phenotype from ~15% (n = 76) (genotype: park RNAi; +/+) to ~43% (n = 97) (genotype: park RNAi; park25/+). Since Pink1 and park have previously been shown to act in a common pathway [17-19], we also tested if the park knockdown background is sensitive to a reduction in the level of Pink1. Indeed, we found that Pink1 heterozygosity significantly enhanced the penetrance of the park-RNAi-induced...
wing posture phenotype from ~13% (n = 90) (genotype: +/+; park RNAi) to ~40% (n = 32) (genotype: Pink1B9/+; park RNAi) (P < 0.01).

To systematically identify modifiers of this park wing-posture phenotype, we crossed a large collection of deficiencies on the 2nd and 3rd chromosome into the park knockdown mutant background. In each deficiency chromosome, a portion of cytological regions was deleted. Thus, crossing a deficiency chromosome into the park knockdown background led to 50% reduction in the dosage of genes located within the deleted cytological region.

From this screen, we identified 26 cytological regions that enhanced the park wing-posture phenotype (Table 1), and 53 cytological regions that suppressed the wing-posture phenotype (Table 2). We also found that reducing the dosage of genes by 50% in 48 cytological regions in park knockdown flies caused lethality prior to the adult stage (Table 3). No such adult lethality was observed when park was knocked down alone, or the dosage of those 48 cytological regions was reduced by 50% in wild type background.

F1 screen for modifiers of the pink1 knockdown phenotype

Above deficiencies were also screened using the pink1 knockdown mutant background. Pink1 knockdown mutant flies displayed the wing-posture phenotype at the penetrance of ~64% (n = 314) at 25°C. Among 26 enhancer-containing cytological regions identified from the Park screen (Table 1), 8 cytological regions, when reduced by 50% in dosage, also enhanced the penetrance of the Pink1 knockdown wing phenotype (Table 4). This

![Figure 2 A genetic scheme for isolating modifiers of Parkinson’s disease genes in Drosophila.](image)

Figure 2 A genetic scheme for isolating modifiers of Parkinson’s disease genes in Drosophila. Deficiencies (Df) from the Bloomington deficiency kits were crossed individually into the park or Pink1 knockdown mutant background. F1 progeny were scored for potential phenotypic enhancement (i.e., an increase in the penetrance of the wing phenotype) or suppression (i.e., a decrease in the penetrance of the wing phenotype). Abbreviations: En, enhancement; Su, suppression; tub-GAL4, tubulin-GAL4.

Table 1 Enhancers of the park-RNAi wing phenotype

Deficiencies	Breakpoints	Strength of modification a
Df(2L)net-PMF	21A1;21B7-8	++
Df(2L)BSC28	23C5-D1;23E2	+++
Df(2L)c-h3	25D2-26B2-S	++
Df(2L)BSC7	26D10-E1;27C1	++
Df(2L)ED611	29B4-29C3	++
Df(2L)BSC17	30C3-30F1	++
Df(2L)Jdh	30D-30F;31F	+++++
Df(2L)BSC50	30F5-31B1	+++++
Df(2L)FCK-20	32D1;32F1-3	+++
Df(2L)nap9	42A1-2;42E6-F1	+++
Df(2L)ren9	42E4;4C4	++
Df(2L)HBE1	44D1-4;4F12	+++
Df(2L)ren30	48A3-4;48C6-S	+++
Df(2L)BSC39	48C5-D1;48D5-E1	+++
Df(2L)BSC16	54B2;54B17	+++
Df(2R)Exel7162	56F11-56F16	+++
Df(2R)SA9D	59A1-3;59D1-4	+++
Df(3L)JAC1	67A2-67D11-13	+++
Df(3L)X533	76A4-77B7	++
Df(3L)BSC249	79B2;79D2	++
Df(3R)BSC47	83B7-C1;83C6-D1	++
Df(3R)Tpi10	83C1-2;84B1-2	++
Df(3R)BSC43	92F7-93A1;93B3-6	++
Df(3R)BSC56	94E1-2;94F1-2	++
Df(3R)BSC137	95D2-95A8-B1	++
Df(3R)BSC42	98B1-2;98B3-5	++

Each deficiency was crossed into the park RNAi background and the wing posture phenotype was scored. Crosses were maintained at 29°C.

a Each ‘+’ represents 1.0 SD from the mean penetrance (i.e., ~22.4%) observed for park RNAi alone flies.
Table 2 Suppressors of the park-RNAi wing phenotype

Deficiencies	Breakpoints	Strength of modification*
Df(2L)BSC106	21B7;21C2	++++
Df(2L)Udp-796	22A2-3;22DS5-E1	++++
Df(2L)ed1	24A2-24D4	++++
Df(2L)Sc19-8	24C2-25SC8-9	++
Df(2L)BSC110	25C12SC5G	++
Df(2L)BSC109	25C24SC8	++++
Df(2L)E110	25F3-26A1;26D3-11	++
Df(2L)BSC142	28C3;26D3	++++
Df(2L)BSC143	31B1;31D9	++
Df(2L)BSC145	32C1;32C1	++++
Df(2L)BSC147	34B12-C1;35B10-C1	++++
Df(2L)C'h35;h38L		++
Df(2R)BSC3	48E12-F4;49A11-B6	++++
Df(2R)E110	50E3-50F6	++++
Df(2R)BSC550	53C15SC6	++++
Df(2R)exel6-c	54B17-C45A1-C4	++
Df(2R)BSC45	54C8-D15A2-E2-7	++++
Df(2R)Vp34	55E2-45D1-C1-11	++++
Df(2R)AA21	55F9;17S5D1-J1-12	++
Df(2R)BSC155	60B960C4	++++
Df(2R)E110	60E2-360E11-12	++
Df(2R)BSC550	62A112628	++++
Df(2R)BSC37	65E10-F1.65F2-6	++
Df(2R)BSC37	65F3;65R10	++++
Df(2R)BSC38	66R8-96C9-J10	++++
Df(2R)J-22	66D10-11.66E1-2	++++
Df(2R)BSC550	66E1-66F6	++
Df(2R)BSC283	67C76D75	++++
Df(3L)BSC150	68A4-56D9D4	++++
Df(2R)BSC10	69D4-56F9-14	++++
Df(2R)BSC312	69F6-70A1-J10A1-12	++
Df(2R)BSC17	70C1-27D0-D4	++++
Df(2R)BSC17	71C2-32B1-C1	++
Df(2R)BSC17	75F10-11.76A1-15	++++
Df(2R)BSC17	77F37BC9	++
Df(2R)BSC17	81F3-626F2-7	++
Df(2R)BSC17	82F3-486F10-11	++++
Df(2R)BSC17	85A2-85C1	++++
Df(2R)BSC17	85F1-86C7-8	++++
Df(2R)BSC17	88F9-89A1-89B9-10	++
Df(2R)BSC17	89B5-89C2-7	++
Df(2R)BSC17	89B7-89E7	++++
Df(2R)BSC17	94E9-94E13	++++
Df(2R)BSC17	95A4-95B1	++
Df(2R)BSC17	95B1-95D1	++++
Df(2R)BSC17	95C2-95D8	++++
Df(2R)BSC17	95D1-95F15	++++
Df(2R)BSC17	96A2-96B2	++++
Df(2R)BSC17	96C9-96E2	++++
Df(2R)BSC17	96E2-96G6	++++
Df(2R)BSC17	99D3-99R3	++++

* Each ‘+’ represents 0.5 SD from the mean (~22.4%) observed for park RNAi alone flies.

Table 3 List of deficiencies showing lethal interactions with park knockdown

Deficiencies	Breakpoints
Df(2L)BSC16	21C7;21C6
Df(2L)BSC37	21D1;22B2-3
Df(2L)BSC37	22D2-32F1-2
Df(2L)BSC37	22F4-22F3-23A1
Df(2L)C144	22F4-23A1-23C2-4
Df(2L)Exel6010	25C825DS5
Df(2L)Un2-14	29C1-230C8-9
Df(2L)J2	31B3A2
Df(2L)ac25Sv64	35F-36A1-36D5
Df(2L)UTW137	36C2-43.78B1-3

Above deficiencies, when crossed into the park knockdown background, significantly reduced the viability of park knockdown flies (less than five flies eclosed).
screen also identified 9 enhancer-containing cytological regions that were not uncovered from the park screen (Table 4). Among 53 suppressor-containing cytological regions identified from the park screen (Table 2), we found that 23 cytological regions also contained suppressors of the Pink1 wing-posture phenotype (Table 5). In addition, we found that 30 cytological regions, when reduced by 50% in dosage, suppressed the Pink1 wing phenotype but not the park wing phenotype (Table 5).

Among 50 cytological regions that caused adult lethality when their dosage was reduced by 50% in park knockdown background (Table 3), 21 cytological regions also displayed a similar lethal interaction with Pink1 knockdown (Table 6). Five cytological regions only showed lethal interactions with Pink1 but not park (Table 6).

Analysis of genetic interactions using a Pink1 null mutant allele
Cytological regions identified from above RNAi-based screen may contain genes that function in the Pink1/park pathway, or genes that function in a parallel pathway that act together with the Pink1/park pathway to regulate mitochondrial function. To further characterize these cytological regions, we performed genetic analysis using a Pink1 null mutant allele to test the potential interactions between Pink1 and cytological regions that interact with both Pink1 and park in the above RNAi-based screen. Among six enhancer-containing cytological regions examined, five cytological regions, when

Table 5 Suppressors of the Pink1-RNAi wing phenotype
Deficiencies
Df(2L)BSC106
Df(2L)dp-769
Df(2L)US17
Df(2L)dm-92
Df(2L)led-1
Df(2L)BSC109
Df(2L)E110
Df(2L)BSC6
Df(2L)Dwlet-1W5
Df(2L)XE-3801
Df(2L)BSC142
Df(2L)BSC143
Df(2L)BSC32
Df(2L)BSC147
Df(2L)U4049
Df(2R)w54-30h
Df(2R)C21
Df(2R)E7130
Df(2R)Ex1731
Df(2R)BSC11
Df(2R)BSC50
Df(2R)rob6-c
Df(2R)K1048
Df(2R)P34
Df(2R)Ex1762
Df(2R)or-886
Df(2R)M21
Df(2L)G634
Df(2L)X1D98
Df(3L)BSC33
Df(3L)66C-G28
Df(3L)BSC13
Df(3L)scf-R6
Df(3L)BSC10
Df(3L)st-13
Df(3L)J19
Df(3L)J22
Df(3L)X1-44
Df(3L)me-107
Df(3L)BSC29
Df(3R)X-703
Df(3R)M-6c1
Df(3R)Aa
Df(3R)sd-104
Df(3R)P115
Df(3R)23D1
Df(3R)crb-F89
Df(3R)Exel917
Df(3R)Exel020
Df(3R)Exel023
Df(3R)IT-P
Df(3R)IT-P

* Each ‘+’ represents 1.0 SD from the mean (i.e., ~64.5%) observed for Pink1 RNAi alone flies. Deficiencies that also enhanced park RNAi wing posture phenotype (Table 1) are indicated in bold.

Table 4 Enhancers of the Pink1-RNAi wing phenotype
Deficiencies
Df(2L)net-PMF
Df(2L)BSC4
Df(2R)BSC16
Df(2L)BSC17
Df(2L)BSC50
Df(2R)nap9
Df(2R)nc9
Df(2R)sc9
Df(2R)BSC39
Df(2R)BSC3
Df(2R)BSC2
Df(3L)BSC27
Df(3L)BSC14
Df(3L)X5
Df(3L)ED4782
Df(3L)UD1
Df(3R)BSC47
Df(3R)Top10

* Each ‘-’ represents 1.0 SD from the mean (i.e., ~64.5%) observed for Pink1 RNAi alone flies. Deficiencies that also suppressed park RNAi wing posture phenotype (Table 2) are indicated in bold.

Each deficiency was crossed into the Pink1 knockdown background and the wing posture phenotype was scored. Crosses were maintained at 25°C.

Each ‘+’ represents 1.0 SD from the mean (i.e., ~64.5%) observed for Pink1 RNAi alone flies. Deficiencies that also enhanced park RNAi wing posture phenotype (Table 1) are indicated in bold.

Table 6: Suppressor analysis of genetic interactions using a Pink1 null mutant allele.
Table 6 List of deficiencies showing lethal interactions with Pink1 knockdown

Deficiencies	Breakpoints
Df(2)BSC37	22D2-3;22F1-2
Df(2)dpd[14]	22E4-F2;22F3-23A1
Df(2)C144	22F4-23A1;23C2-4
Df(2)sc91-8	24C2-6;25C8-9
Df(2)Lef6101	25C8;25DS
Df(2)Lb87e25	34B12-C1;35B10-C1
Df(2)LTW137	36C2-4;37B9-C1
In(2R)bw/VDe2L[cy][R]	h42-h43;42A2-3
Df(2)M41A4	41A,41A
Df(2)XK1	46C47A1
Df(2)C1K1	49C1-4;50C23-D2
Df(2)BSC49	53D9;515B5-10
Df(2)ED4065	60C8;60E8
Df(2)Ri10	60F1;60F5
Df(3L)HR119	63C2;63F7
Df(3L)vin5	68A2-3;69A1-3
Df(3L)vin7	68C8-11;69A4-5
Df(3L)W101	75A6-7;75C1-2
Df(3L)ED4978	78D5;79A2
Df(3L)BSC23	79A3;79B3
Df(3R)Exel144	83A6;83B6
Df(3R)Rip712	84D4-6;85B6
Df(3R)Rip32	86E2-4;87C6-7
Df(3R)DG2	89E1-F;91B1-2
Df(3R)D-BX12	91F1-2;92D3-6
Df(3R)B83	99D3;3Rt

Above deficiencies, when crossed into the Pink1 knockdown background, significantly reduced the viability of Pink1 knockdown flies (less than five flies emerged). Deficiencies that display a similar lethal interaction with park knockdown (Table 3) are indicated in bold.

Table 7 Analysis of the interaction between a Pink1 null mutation and cytological regions that modified both park-RNASTAR and pink1-RNASTAR wing phenotype

Deficiencies	Breakpoints	Effects of modification
Df(2)BSC33	65E10-F;66F2-6	n/d
Df(2)BSC37	66B8-8;66C4-10	n/d
Df(2)LSCP-H6	66E1-6;66F1-6	n/d
Df(2)BSC10	69D4-5;69F5-7	n/d
Df(2)ppl10	77F3-7;78C6-9	n/d
Df(2)LSCP-95	85A2;85C1-2	n/d
Df(2)ppl10	89B8;89C2-7	n/d
Df(2)LSCP15	89B8;89C2-7	n/d

Abbreviations: n/d, not determined; Su, suppression; En, enhancement; No, no modification.

reduced by 50% in dosage, also enhanced the wing phenotype in Pink1 null mutants (Table 7). Among 17 suppressor-containing cytological regions examined, 10 cytological regions, when reduced by 50% in dosage, also suppressed the wing phenotype in Pink1 null mutants (Table 7). Among 19 examined cytological regions that showed lethal interactions with both Pink1 and park in RNAi-based screens, 5 cytological regions, when reduced by 50% in dosage, also displayed the lethal phenotype in Pink1 null mutants (Table 8).

Molecular characterization of the PD-interacting cytological region 21A1-21B7

The PD-interacting cytological regions identified from above screens are relative large and contain a number of genes. As a first step towards molecular characterization of these PD-interacting cytological regions, we performed fine mapping in four selected PD-interacting cytological regions to identify corresponding PD-interacting genes. Those cytological regions were selected since they displayed strongest interactions with both park and Pink1.

From above screens, we found that reducing the dosage of the cytological region 21A1-21B7-8, deleted in the deficiency chromosome Df(2L) net-PMF, enhanced both park and Pink1 wing phenotype (Table 1 and 4). To identify the corresponding PD-interacting gene within this cytological region, we tested additional deficiency lines that carry smaller deletions within this region. We found that similar enhancement was observed when a smaller deficiency chromosome Df(2L)
Table 8 Analysis of the interaction between a Pink1 null allele and deficiencies that exhibited lethal interactions with both park and Pink1 knockdown

Deficiencies	Breakpoints	Synthetic lethal with pinkf[9]
Df(2L)BSC37	22D2-3; 22F1-2	No
Df(2L)dpp(d14)	22E4-F2; 22F3-23A1	Yes
Df(2L)C144	22F4-23A1; 23C2-4	Partial
Df(2L)Exel601	25C8; 25D5	No
Df(2UTW137)	36C2-4; 37B9-C1	No
In(2R)bw[2]Cy[2]	h42-h43; 42A2-3	Yes
Df(2R)A414A4	h44; 42A2	Yes
Df(2R)X1	46C4-7; 47A1	n/d
Df(2R)Kr10	60F1; 60F5	No
Df(2R)ED4065	60C8; 60E8	No
Df(2R)ED4978	78D5; 79A2	No
Df(3L)HR119	36C2-4; 37B9-C1	No
Df(3L)Vin5	68A2-3; 69A1-3	No
Df(3L)Vin7	68C8-11; 69B4-5	No
Df(3L)W10	75A6-7; 75C1-2	No
Df(3L)BSC223	79A3; 79B3	No
Df(3L)BSC454	53D9-E1; 54B5-10	No
Df(3L)BSC700	84D4-6; 85B6	n/d
Df(3L)T-32	86E2-4; 87C6-7	No
Df(3L)Oa10	91F1-2; 92D3-6	No

ED5878 was crossed into park or Pink1 knockdown background (Figure 3). Twenty two genes are disrupted in this deficiency chromosome, including dbr, galectin, CG11374, net, CG11376, Sam-S, CG4822, Gs1, CG31976, CG3709, CG11377, CG13694, CG31975, CG11455, Nhel1, CG3164, CG31974, CG3436, CG11454, CG33635, CG42399 and spen. Interestingly, we found that another smaller deficiency Df(2L) ED2809 in which only the debra (dbr) gene is deleted, also enhanced the park knockdown phenotype (~50% increase in penetrance compared to park RNAi alone, n = 104). Taken together, these results suggest strongly that dbr is largely, if not entirely, responsible for the observed interaction with PD genes.

Molecular characterization of two PD suppressor-containing cytological regions 21B7-21C2 and 50E4-50F6

Reducing the dosage of the cytological region 21B7-21C2, uncovered by the deficiency chromosome Df(2L)BSC106, suppressed both park and Pink1 wing phenotype (Table 2 and 5). From a collection of smaller deficiencies mapped within this region, we identified two overlapping deficiencies Df(2L)BSC454 and Df(2L)PI3K21B, which like Df(2L)BSC106, both suppressed park and Pink1 wing phenotype (Figure 4A). The cytological region deleted in both Df(2L)BSC454 and Df(2L)PI3K21B, contains four genes Hop, Pi3K21B, Plc21C and U2af38.

To further narrow down the PD-interacting gene within this region, we tested if any of above four genes interacts with PD genes. Among them, we found that knockdown the expression of Pi3K21B significantly suppressed the Pink1 wing phenotype (~48% decrease in penetrance compared to Pink1 RNAi alone, n = 42). This result suggests that Pi3K21B is the corresponding PD-interacting gene.

Reducing the dosage of the cytological region 50E4-50F6, uncovered by the deficiency chromosome Df(2R) Exel7131, also suppressed both park and Pink1 knockdown wing phenotype (Table 2 and 5). However, another deficiency Df(2R)BSC700, in which the deleted cytological region partially overlaps with that affected in Df(2R)Exel7131, did not interact with park or Pink1. The cytological region deleted in Df(2R)Exel7131, but not in Df(2R)BSC700, carry nine genes (i.e. opa1-like, CG8485, CG8494, CG8503, Mdr50, Hsc70-5, CG8531, β4GalNAcTA and CG8547) (Figure 4B).

To test if the above genes interact with park or Pink1, we crossed available mutations into park or Pink1 knockdown background. We found that opa1 and β4GalNAcTA interact genetically with PD genes (Figure 4B). A heterozygous mutation of opa1 (i.e. opa1EY09983) significantly suppressed the park wing phenotype (~95% reduction in penetrance compared to park knockdown alone, n = 83). And heterozygous mutations of β4GalNAcTA, Df (2R)β4GalNAcTA[20.1] (deleting both β4GalNAcTA and its neighboring gene CG8547) and β4GalNAcTA[4.1] (deleting part of the β4GalNAcTA gene only), significantly suppressed the Pink1 wing phenotype (for Df (2R)β4GalNAcTA[20.1], ~92% reduction in penetrance compared to Pink1 knockdown alone, n = 62; for β4GalNAcTA[4.1], ~82% reduction in penetrance compared to Pink1 knockdown alone, n = 59).
drp1 is the corresponding gene of the cytological region 22F4-23A3 that displayed lethal interaction with PD genes.

Two deficiencies, *Df(2L)dpp*[^d14] (22E4-F2;22F3-23A1) and *Df(2L)C144* (22F4-23A1;23C2-4), caused lethality when heterozygous in *park* RNAi, *Pink1* RNAi or *Pink1* null mutant background (Table 8). A smaller deficiency (i.e. *Df(2L)ED136*), which deletes the overlapping region defined by the above deficiencies, also caused partial lethality in the *Pink1* null background (i.e. ~50% reduction in viability compared to controls). The cytological region deleted in *Df(2L)ED136* contains 29 genes, of which mutations in **drp1** have been previously implicated as an enhancer of *park* and *Pink1* mutant phenotypes [16,33,34]. Hence, we used a mutant allele for **drp1** (i.e. *drp1*[^G08313^]) to examine the potential interaction. Consistent with previous reports, we found that **drp1** heterozygosity substantially enhanced the lethal phenotype in the *Pink1* null background (i.e. ~82.8% reduction in viability compared to controls). This result strongly suggests that **drp1** is the corresponding gene within the cytological region 22F4-23A3 that displayed lethal interaction with PD genes.

Discussion

In this study, we performed a genome-wide screen to isolate modifiers of PD genes. From this screen, we identified a number of cytological regions that interact with *park* and/or *Pink1*. Fine mapping of selected PD-interacting cytological regions led to the identification of corresponding PD-interacting genes. Among them, **opa1** and **drp1** have previously been implicated in *Pink1*/*park*-mediated mitochondrial quality control pathways. In addition, we also identified **debra**, **P13K21B**, and **β4GalNacTA** as novel PD-interacting genes.

While several previous studies suggest that *park* and *Pink1* function in a common pathway to regulate mitochondrial function, cytological regions identified from our *park*- and *Pink1*-modifying screens do not completely overlap. For instance, among cytological regions showing lethal interactions with *Pink1*, about 81% displayed similar interactions with *park* (Table 6). Among...
cytological regions modifying Pink1 wing phenotype, only ~44% showed similar interactions with park (Table 4 and 5). One possible explanation is that park and Pink1 knockdown genetic background have different sensitivity, which may account for the difference in their interactions with some cytological regions. Alternatively or additionally, the molecular network involving Park and Pink1 may be more complex than a simplified linear pathway.

A previous study by Pallanck and colleagues screened a collection of P-element insertions (covering less than 10% of the fly genome) that modify the partial lethality of park null mutants [30]. However, since their screen was conducted in homozygous park null mutant background, less than 10% of the fly genome was covered. To increase the coverage, we developed an RNAi-based strategy, which allowed us to perform a F1 screen that covered >80% of the fly genome. Several PD-interacting genes identified by Pallanck and colleagues in their previous screen [30], are located within PD-interacting cytological regions identified from our screen. For instance, Glutathione S-transferase 1 (Gst1) and Thioredoxin-2 (Trx-2) are located in PD-interacting cytological regions uncovered by Df(2R)BSC49 (Table 6) and Df(2L) N22-14 (Table 3), respectively.

While our screen using deficiencies greatly increases the coverage of genomic regions, there are several limitations. For instance, since cytological regions deleted in deficiency chromosomes contain a large number of genes (average ~50), it is possible that a cytological region containing PD-interacting genes may not be identified from our screen if both enhancers and suppressors are located within the same region. Similarly, this may also make it difficult to identify the corresponding genes, especially if the strong modifying effect is due to the presence of multiple weak modifiers within the same region. Additionally, since those deficiency chromosomes used in our screen may carry second-site mutations contributing to the observed interactions, it is necessary to characterize independent point mutations and/or deletions mapped within the same region.

Our screen isolated two known PD-interacting genes drp1 and Opal. drp1 encodes a GTPase (i.e. the dynamin-related protein 1) that has been previously implicated in regulating mitochondrial fission [35], while opal (optic atrophy 1) encodes for another dynamin-related GTPase that promotes mitochondrial fusion [36,37]. Consistent with previous reports [16,33,34], we showed that drp1 heterozygosity induced lethality prior to the adult stage in park or Pink1 knockdown background. We also showed that opal heterozygosity significantly suppressed the park-RNAi-induced wing phenotype. Similarly, previous reports showed that heterozygous mutations of opal suppressed indirect flight muscle degeneration and mitochondrial morphological phenotypes in Pink1 and park mutants [33,34]. Together, these observations underscore the importance of PD-interacting genes in mitochondrial fission and fusion to facilitate mitochondrial quality control.

Among the three novel PD-interacting genes (i.e. debra, Pi3K21B, and B4GalNAcTA) isolated from our screen, debra (determiner of breaking down of Ci activator) (dbr) heterozygosity led to strong enhancement of the park-RNAi-induced wing phenotype. dbr encodes a novel zinc-binding protein of 1007 amino-acid residues [38]. Cell culture studies showed that Dbr forms a complex with Sлим, a component of the SCF (Skpl, Cdc53 and F box) ubiquitin ligase complex, to mediate the polyubiquitination of the transcription factor Cubitus interruptus (Ci) and thus targets Ci into the lysosome for degradation [38]. This raises the interesting possibility that Dbr functions together with Park in the ubiquitin-proteasome pathway for the control of protein quality. Reducing the dosage of dbr may thus increase the accumulation of toxic protein substrates, leading to the enhancement of the park phenotype. In this context, it is worth noting that a recent study showed that reducing the level of dbr also enhanced Ataxin3-induced neurodegeneration in Drosophila, which also resulted from accumulation of pathogenic proteins [39]. Additionally, since Dbr is a zinc-binding protein, Dbr may also play a role in regulating the level of intracellular zinc. Zinc dyshomeostasis has been shown to cause abnormalities in autophagy that are associated with Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease [40]. Thus, it is possible that in addition to its interaction with Park in the ubiquitin-proteasome pathway, Dbr may interact with the PD pathway by regulating autophagy.

Another novel-PD-interacting gene Pi3K21B, identified in our screen as a suppressor of PD wing phenotype, encodes an SH2 domain-containing adaptor protein that binds to the Drosophila class IA Phosphoinositide 3 Kinase (PI3K), Pi3K92E/Dp110 [41]. It has been shown that class IA PI3-kinases are activated by nutrient-responsive insulin signalling to regulate cell growth and proliferation [42]. Loss of Pi3K21B-binding sites completely abrogates the activation of Dp110 by the insulin receptor, which decreased cell growth leading to reduced body size [43]. One possible explanation for the observed interaction between Pi3K21B and PD genes is that reducing the level of Pi3K21B may decrease insulin signaling and metabolic activities. This may be achieved by reducing the level of the TOR (target of rapamycin) signaling pathway. TOR can be activated by the PI3K/Akt pathway to regulate cell growth and metabolism (for review, see [44]). Recent studies show that reducing TOR signaling rescued PD
Characterization of the suppressors of the Pink1-RNAi-induced wing phenotype also identified 4GalNAcTA as a novel PD-interacting gene. 4GalNAcTA encodes for a β 1,4-N acetylgalactosaminyltransferase that mediates the N-glycosylation of protein substrates [47]. Drosophila adult mutants of 4GalNAcTA display severe locomotion abnormalities such as a low climbing index and coordination defects [48]. Glycosylation may affect protein function by diverse mechanisms, such as promoting protein stability, enabling protein recognition, altering ligand affinity and inhibiting protein activity [49]. For instance, abnormal glycosylation of α-dystroglycan interferes with its function leading to congenital muscular dystrophy [50]. Glycosylation may also contribute to the misfolding and accumulation of several proteins implicated in neurodegenerative disorders. For instance, glycosylation of tau and amyloid precursor protein (APP) may promote the formation and accumulation of pathogenic advanced glycosylation end-products (AGEs) [51]. In addition, α-synuclein, the primary component of Lewy bodies in Parkinson’s disease, is also modified by glycosylation [9]. This modification is hypothesized to affect the clearance of α-synuclein aggregates [9]. We speculate that glycosylation mediated by 4GalNAcTA affects the stability and/or activity of components in the PD pathways, which may contribute to the accumulation of toxic proteins, increased sensitivity to oxidative damage and mitochondrial dysfunction. Future studies will be needed to elucidate the exact action of 4GalNAcTA in the PD pathways.

Conclusion
Systematic genetic screens covering ~80% of the entire genome were performed to identify modifiers of the PD phenotype in Drosophila. From the screen, we identified a number of cytological regions that interact with park and/or Pink1. Fine mapping in selected PD-interacting cytological regions was performed, which identified debrav Pi3K21B and 4GalNAcTA as novel PD-interacting genes. Future characterization of other PD-interacting cytological regions will likely lead to the identification of additional PD-interacting genes.

Acknowledgements
We thank people in the labs of Yong Rao and Don van Meyel for suggestions and comments; the Bloomington Stock Center, VDRC, D. van Meyel, N. Haines, T. Fon and M. Guo for fly stocks. This work was supported by a Team grant from Neuroscience Canada, and an operating grant (MOP-14688) awarded to Yong Rao from Canadian Institutes of Health Research.

Authors’ contributions
CF conducted all experiments, and was involved in writing the manuscript. YR supervised and wrote the manuscript. All authors read and approve the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 14 February 2011 Accepted: 19 April 2011
Published: 19 April 2011

References
1. Kita T, Akacawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605-608.
2. Valente EM, Abou-Sleiman PM, Caputo V, Muntj M, Harvey K, Gispert S, Ali Z, Del Turco D, Bertoviglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Corelli P, Gilks WP, Matcham DS, Harvey RJ, Dallapiccola B, Aeburger G, Wood NW: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004, 304:1158-1160.
3. Valente EM, Salvi S, Ialongo R, Marongiu R, Elia AE, Caputo V, Romito L, Albanese A, Dallapiccola B, Bertoviglio AR: PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004, 56:336-341.
4. Bertoli-Avella AM, Giroud-Benitez JL, Akyol A, Barbosa E, Schaap O, van der Horst CM, Oostra BA, Maegawa G, De Leo A, Gallai V, de Rosa G, Vanacore N, Meco G, van Duijn C, Oosta BA et al: Novel parkin mutations detected in patients with early-onset Parkinson’s disease. Mov Disord 2005, 20:424-431.
5. Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denefle P, Wood NW, Agrid Y, Brice A: Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 2000, 342:1560-1567.
6. Ima Y, Soda M, Takahashi R: Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 2000, 275:35661-35664.
7. Zhang Y, Gao J, Chung KS, Huang H, Dawson VL, Dawson TM: Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein. Curr Biol 2000, 10:3561-3566.
8. Ima Y, Soda M, Iinoue H, Hattori N, Mizuno Y, Takahashi R: An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001, 105:891-902.
9. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kissi K, Selkoe DJ: Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 2001, 293:263-269.
10. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson YM, Dawson TM: Parkin ubiquilinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson’s disease. Nat Med 2001, 7:1144-1150.
11. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A: Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 2003, 37:735-749.
12. Prigojeon JW, Olzmann JA, Chin LS, Li L: PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 2007, 5:e172.
The Parkinson's disease gene PINK1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441:1157-1161.

18. Petrovski S, Kim J, Dugan MT, Tang X, Liu J, Chen J: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006, 441:1157-1161.

19. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA, Guo M: Drosophila parkin is required for mitochondrial function and interacts genetically with parkin. Nature 2006, 441:1162-1166.

20. Dagda RK, Chu CT: Mitochondrial quality control in C. elegans and mammals. J Bioenerg Biomembr 2009, 41:473-479.

21. Exner N, Treske B, Paquet D, Holmstrom K, Schiesling C, Gispert S, Carballo-Carbalaj I, Berg D, Hoepken HH, Gasser T, Kruger B, Winklhofer KF, Vogel F, Reinhart AS, Auburger G, Kahle PJ, Schmid B, Haas C: Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 2007, 27:12413-12418.

22. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocacesu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Graihe R, Dawson TM, Li C, Tieu K, Przodebski S: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. J Cell Biol 2008, 180:411-419.

23. Ziviani E, Tao RN, Whitworth AJ: Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA 2010, 107:5018-5023.

24. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010, 12:119-131.

25. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Chung J: Neuronal degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. J Bioenerg Biomembr 2006, 38:3144-3156.

26. Liu S, Lu B: The PINK1-Parkin pathway is involved in the regulation of mitochondrial morphology. J Biol Chem 2009, 284:10793-10798.

27. Liu Z, Wang X, Yu Y, Li X, Wang T, Jiang H, Ren Q, Jiao Y, Sawa A, Moran T, Wissinger B: The PINK1-Parkin pathway regulates mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 2008, 377:975-980.

28. Guo M: What have we learned from Drosophila models of Parkinson’s disease? Prog Brain Res 2010, 184:3-16.

29. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ: Roles of Dp, a dynamin-related protein, and milton, a kinesin-associated protein, in mitochondrial segregation, unfurling and elongation during Drosophila spermatogenesis. Fly (Austin) 2007, 1:38-46.

30. Alexander C, Votrubova M, Pesch UE, Thielenton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Kellner U, Leo-Kottler B: The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. Biochem Biophys Res Commun 2009, 378:518-523.

31. Aldridge AC, Benson LP, Siegenthaler MW, Whigham BT, Stevers RS, Hailes KG: The role of Parkin in regulating neuronal apoptosis by the activation of a mitochondrial permeability transition pore. Exp Neurol 2007, 208:167-174.

32. Brand AH, Perrefit M: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118:401-415.

33. Deng H, Dodson MW, Huang H, Guo M: The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA 2008, 105:14503-14508.