Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions

T. T. Favas 1 · Priya Dev 1 · Rameshwar Nath Chaurasia 1 · Kamlesh Chakravarty 2 · Rahul Mishra 3 · Deepika Joshi 1 · Vijay Nath Mishra 1 · Anand Kumar 1 · Varun Kumar Singh 1 · Manoj Pandey 4 · Abhishek Pathak 1

Received: 9 August 2020 / Accepted: 5 October 2020 / Published online: 21 October 2020

© Fondazione Società Italiana di Neurologia 2020

Abstract

Background Coronaviruses mainly affect the respiratory system; however, there are reports of SARS-CoV and MERS-CoV causing neurological manifestations. We aimed at discussing the various neurological manifestations of SARS-CoV-2 infection and to estimate the prevalence of each of them.

Methods We searched the following electronic databases; PubMed, MEDLINE, Scopus, EMBASE, Google Scholar, EBSCO, Web of Science, Cochrane Library, WHO database, and ClinicalTrials.gov. Relevant MeSH terms for COVID-19 and neurological manifestations were used. Randomized controlled trials, non-randomized controlled trials, case-control studies, cohort studies, cross-sectional studies, case series, and case reports were included in the study. To estimate the overall proportion of each neurological manifestations, the study employed meta-analysis of proportions using a random-effects model.

Results Pooled prevalence of each neurological manifestations are, smell disturbances (35.8%; 95% CI 21.4–50.2), taste disturbances (38.5%; 95%CI 24.0–53.0), myalgia (19.3%; 95% CI 15.1–23.6), headache (14.7%; 95% CI 10.4–18.9), dizziness (6.1%; 95% CI 3.1–9.2), and syncope (1.8%; 95% CI 0.9–4.6). Pooled prevalence of acute cerebrovascular disease was (2.3%; 95%CI 1.0–3.6), of which majority were ischaemic stroke (2.1%; 95% CI 0.9–3.3), followed by haemorrhagic stroke (0.4%; 95% CI 0.2–0.6), and cerebral venous thrombosis (0.3%; 95% CI 0.1–0.6).

Conclusions Neurological symptoms are common in SARS-CoV-2 infection, and from the large number of cases reported from all over the world daily, the prevalence of neurological features might increase again. Identifying some neurological manifestations like smell and taste disturbances can be used to screen patients with COVID-19 so that early identification and isolation is possible.

Keywords COVID-19 neurological manifestations · Acute cerebrovascular disease · SARS-CoV-2 infection · Meningoencephalitis · Guillain-Barré syndrome · Smell and taste disturbances

Background

Coronaviruses are enveloped, positive-stranded RNA viruses that mainly cause respiratory and gastrointestinal tract infections [1]. They are divided into four genera: alpha, beta, delta, and gamma. Alphacoronavirus and betacoronavirus cause human infections [1]. Betacoronaviruses are further divided into 4 clades, a–d [2]. SARS-CoV and MERS-CoV are betacoronaviruses which caused outbreaks in 2002 and 2012 respectively [3]. The likely reservoirs of SARS-CoV and MERS-CoV viruses were identified as bats [2]. SARS-CoV-2 is a coronavirus and is classified into the betacoronavirus 2b lineage; however, a distinct clade from the SARS-CoV and MERS-CoV [4, 5]. It has been postulated that reservoir of SARS-CoV-2 is also bats; however, more evidence is needed for proving the assumption [6]. The disease caused by SARS-CoV-2 is termed as COVID-19. COVID-19 outbreak started as a cluster of respiratory illnesses and the first case was reported from Wuhan, Hubei Province, China on 8th December [7, 8]. It was declared as a pandemic by WHO on March 11, 2020 [9].
The most common symptoms of COVID-19 are similar to other coronaviruses which include fever, fatigue, dry cough, anorexia, shortness of breath, myalgia, and headache [10–12]. Old age and co-morbidities are associated with higher mortality and morbidity as compared with younger patients and those without any co-morbidities [10, 12, 13].

The neuroinvasive and neurotropic potential of coronaviruses like SARS-CoV and MERS-CoV has been demonstrated in many previous studies [14, 15]. A similar mechanism is suggested for the SARS-CoV-2 also [16]. Neurological manifestations reported of SARS-CoV, MERS-CoV, and other coronaviruses include peripheral neuropathy [17], myopathies with elevated creatinine kinase [17], large vessel stroke [18], olfactory neuropathy/anosmia [19], meningoencephalitis [20, 21], post-infectious acute disseminated encephalomyelitis [22, 23], Bickerstaff’s encephalitis overlapping with Guillain-Barré syndrome [24], and Guillain-Barré syndrome [24]. This review is aimed at discussing various neurological manifestations in COVID-19, including the frequency of neurological symptoms, morbidity, mortality, laboratory parameters, and imaging findings associated with patients with neurological symptoms. In the meta-analysis, we estimated the proportion of COVID-19 patients developing neurological manifestations.

Methods

Selection criteria and search strategy

We searched the following electronic databases for articles published between 1st December 2019 to 25th June 2020; PubMed, MEDLINE, Scopus, EMBASE, Google Scholar, EBSCO, Web of Science, Cochrane Library, WHO database, and ClinicalTrials.gov. The MeSH terms and keywords used include: “COVID-19” OR “COVID 19” OR “SARS-CoV-2” OR “2019 novel coronavirus” OR “2019 nCoV” AND “Neurological” OR “Brain” OR “CNS features” OR “central nervous system features” OR “peripheral nervous system features” OR “neuropathy” OR “skeletal muscle” OR “myositis” OR “neuromuscular junction” OR “headache” OR “anosmia” OR “olfactory” OR “ageusia” OR “cranial neuropathy” OR “seizures” OR “encephalitis” OR “meningitis” OR “stroke” OR “cerebrovascular disease” OR “cerebral hemorrhage” OR “intracerebral hemorrhage” OR “cerebral infarct” OR “cortical venous thrombosis” OR “deep cerebral venous thrombosis” OR “impaired consciousness” OR “confusion” OR “weakness” OR “Guillain-Barre’ syndrome” OR “Miller Fisher syndrome” OR “ataxia” OR “myopathy” OR “myelitis” OR “myelopathy” with an additional filter of “studies in human subjects”. The search was done between 31st March 2020 and 25th June 2020. To ensure literature saturation, we inspected the references of all studies included in this review. The protocol of this review was registered at PROSPERO (ID-CRD42020185593) prospectively in May 2020.

Inclusion and exclusion criteria

All published randomized controlled trials, non-randomized controlled trials, case-control studies, cohort studies, cross-sectional studies, case series, and case reports, if they had sufficient data on neurological features, laboratory parameters, imaging findings were included in this review. Only those studies were included in which subjects were diagnosed with SARS-CoV-2 infection by real-time RT-PCR or high throughput sequencing analysis of swab specimens or serology or culture. We also included pre-prints and letters if they included data on neurological manifestations in COVID-19. Editorials, systematic reviews, meta-analysis, narrative reviews, conference abstracts, commentaries, animal studies, post-mortem studies, and where translation into English was not possible were excluded. The authors were contacted twice by email if any missing data in the articles.

Data extraction and study quality assessment

Databases selected were searched independently by two members (TF and AP) in the team, and, following duplicate removal, reviewed all the articles and selected articles based on inclusion and exclusion criteria. Reporting was done according to the recommendations of the PRISMA statement [25]. Quality of the non-randomized studies was evaluated using the Newcastle-Ottawa Scale [26, 27] and the quality of one randomized controlled trial was assessed using the CONSORT criteria [28]. Any disagreements between two main reviewers were discussed with a third evaluator. Data about the author’s name, publication date, study setting and design, time and duration of the study, follow-up, the total number of patients evaluated, study population, age, gender, co-morbidities, neurological features, laboratory parameters, imaging findings, morbidity, and mortality were extracted.

Outcome measures

Primary outcomes assessed were neurological manifestations in COVID-19 patients and its prevalence. For the categorical variables, simple and relative frequency and proportions were used. For continuous variables, central tendency (mean or median) and dispersion measures (standard error, standard deviation) were used. To measure association, risk ratios, odds ratios, and hazard ratios were used and 95% confidence intervals calculated. We also assessed secondary outcomes like the association of neurological manifestations with age, co-morbidities, lab parameters including CSF study, imaging features, length of hospital stay, ICU admission, time from onset.
of typical COVID-19 symptoms to neurological manifestations, and morbidity/mortality.

Strategy for data synthesis, statistical analysis for meta-analysis

Data synthesis and illustration were done in tables and figures. For the categorical variables, simple and relative frequency and proportions were used. For continuous variables, measures of central tendency (mean or median) and dispersion (standard error, standard deviation) were calculated. The primary aim of our study was to synthesize the findings from multiple studies that investigated the issues related to neurological manifestations in COVID-19 and thus provide a quantitative summary, to better direct future work. The data are available in the form of proportions, defined as the number of cases of interest in a sample with a particular characteristic divided by the size of the sample. To achieve the objective of obtaining a more precise estimate of the overall proportion for a certain event (neurological manifestations) related to COVID-19, the study employed meta-analysis of proportions using a random-effects model and by the DerSimonian-Laird method [29, 30]. We performed data analysis using meta-packages in R (version 3.5.0). Heterogeneity was assessed using the I^2 value. I^2 can take values from 0% to 100% and it is assumed that an I^2 of 25%, 50%, and 75% indicate low, medium, and large heterogeneity respectively [31]. Forest plot was used to visualize the point estimates of study effects and their confidence intervals. Publication bias was evaluated using the funnel plot.

Results

Among the 6789 articles identified, 212 studies were included in the systematic review and 74 studies in the meta-analysis (PRISMA flow diagram (Fig. 1)). Out of them, most were retrospective studies, 18 were cohort studies, 11 were prospective studies, nine were cross-sectional studies, one was a randomized controlled trial, one was a case-control study and the rest were all case series and case reports. Among these studies, we found only 19 studies, which investigated specifically neurological features in COVID-19 patients. Other studies, evaluated parameters in general, Table 1 shows a summary of all the observational studies included.

Neurological manifestations

Neurological manifestations have been reported in patients with COVID-19 from all over the world. A multicentre, retrospective study by Mao et al. [32] was the first study to evaluate the neurological manifestations in COVID-19 and found that neurological manifestations were present in 36.4% of total 214 patients, out of which most common was CNS manifestations (24.8%) followed by peripheral nervous system manifestations (8.9%). Other large retrospective observational studies reported the incidence of neurological manifestations as 4.3% [45], 15% [47], and 57.4% [49]. The most common neurological manifestations reported in COVID-19 were smell disturbances, taste disturbances, headache, myalgia, and disturbances in consciousness/altered mental status. The prevalence of all the neurological manifestations assessed is given in Table 2. A summary estimate of pooled prevalence and heterogeneity of each neurological manifestation are given in Table 3. Forest plot and funnel plot is given in Figs. 2 and 3 respectively.

Smell and taste disturbances

The overall incidence of smell disturbances in the studies ranged from 4.9–85.6% [49, 54] and the most common type of smell disturbance was anosmia. Other smell disturbances noticed were hyposmia, phantosmia, and parosmia [54]. Similarly, the incidence of taste disturbances reported was 0.3–88.8% [47, 54] and the most commonly reported were dysgeusia and ageusia. In the meta-analysis, we found 17 and 14 studies, which assessed the prevalence of smell and taste disturbances respectively and disturbances of smell (35.8%; 95%CI 21.4–50.2) and taste (38.5%; 95%CI 24.0–53.0) sensation were the most common neurological manifestation followed by non-specific neurological manifestations. A case-control study of 79 COVID-19 patients and 40 historical controls of influenza patients from Spain [52] revealed that new-onset smell and taste disorders were significantly higher in the COVID-19 group. Patients in COVID-19 were significantly younger. Another study reported olfactory and taste disturbances occur more frequently in females than males [53]. Lechien et al. [54], Gilani S et al. [140], and Rachel Kaye et al. [141] reported that anosmia can be the initial and early manifestations of COVID-19. Population surveys on new-onset olfactory dysfunction from Iran [142] and UK [143] have reported an increase in olfactory dysfunction during the COVID-19 pandemic.

Non-specific symptoms

The most common non-specific neurological symptoms reported in SARS-CoV-2 infection were myalgia, headache syncope, and dizziness. The overall pooled prevalence estimate of the proportion of cases are given in Table 3. Incidence of myalgia reported in various studies ranged from 1.8–62.5% [47, 111], headache from 0.6–70.3% [90, 111], and dizziness from 0.6–21% [47, 113]. In children, myalgia and dizziness were less common and rarely reported. In health care workers, the incidence of myalgia, headache, and dizziness was higher compared with the general
Table 1 Characteristics of studies included and neurological manifestations

First author	Article type	Study setting	Type of study	Enrolment date	Follow-up duration	Total number of patients (N)
Ling Mao [32]	Published	3 centers of Union Hospital of Huazhong University of Science and Technology, Wuhan, China	Retrospective, observational case series	January 16, 2020, to February 19, 2020	NA	214
Yanan Li [33]	Published	Single centre, Union Hospital of Huazhong University of Science and Technology, Wuhan, China	Retrospective, observational case series	16 January 2020, to 29 February 2020	NA	221
Lu Lu [34]	Published	Multicentre study from Hubei province, Sichuan province, Chongqing municipality, China	Retrospective study	January 18 to February 18, 2020	NA	304
F.A. Klok [35]	Published	Multicentre, Netherlands	Prospective study	March 7th 2020, to April 22, 2020	14 days	184
Corrado Lodigiani [36]	Published	Single centre, Humanitas Clinical and Research Hospital, Milan, Italy	Retrospective cohort study	13 February–10 April 2020	NA	388
Megan Fraissé [37]	Published	Single centre, France	Retrospective study	March 6 to April 22, 2020	NA	92 (1 lost to follow-up)
Siddhant Dogra [38]	Published	NYU Langone Health system, New York, USA	Retrospective cohort study	March 1st and April 27th, 2020	NA	3824
Julie Helms [39]	Published	Strasbourg, France	Observational Prospective case series	March 3 and April 3, 2020	NA	58
Julie Helms [40]	Published	Two centers of a French tertiary hospital, France	Prospective cohort study	March 3rd and 31st 2020	April 7th	150
Sedat G Kandemirli [41]	Published	Multicentre (8 centers), Turkey	Retrospective study	March 1 to April 20, 2020	NA	235
Silvia Garazzino [42]	Published	Italian Society of Paediatric Infectious Diseases, Multicentre, Italy	Retrospective study	25 March 2020, to 10 April 2020	At least 2 weeks	168
Rajan Jain [43]	Published	Multicentre (3 centers), New York	Retrospective cohort	March 1, 2020, and April 13, 2020	NA	3218
Alberto Benussi [44]	Published	ASST Spedali Civili Hospital, Lombardy, Italy	Retrospective, cohort study	February 21, 2020, to April v5, 2020	NA	56
Weixi Xiong [45]	Published	56 hospitals in Wuhan, Chongqing municipality, Sichuan province, China	Retrospective cohort study	18 January and 20 March 2020	NA	917 (1 asymptomatic patient excluded) (so total 918)
Tyler Scullen [46]	Published	Single center, New Orleans, Louisiana	Retrospective cross-sectional analysis	April 22, 2020	NA	27
Abdelkader Mahammedi [47]	Published	Multicentre, Italy	Retrospective observational study	Feb 29 to April 4	NA	725
Alireza Radmanesh [48]	Published	New York University Langone Medical Center, USA	Retrospective observational case series	March 1 and 31, 2020	2 weeks	3661
Carlos Manuel Romero-Sánchez [49]	Published	Two centers, Albacete, Spain	Retrospective observational	March 1st to April 1st, 2020	NA	841
Stéphane Kremer [50]	Published	French Society of Neuroradiology, 16 hospitals, France	Retrospective cohort study	March 23th, 2020, to April 27th, 2020	NA	37
Pramusha Pinna [51]	Published	Rush University Medical Center, Chicago, Illinois, USA	Retrospective observational case series	March 1, 2020, to April 30, 2020	NA	50
Published	Pilot multicentre case-control study	23rd to 25th March 2020	NA	79		
Table 1 (continued)

Author	Institution	Study Design	Start Date	End Date	Total Cases	
Álvaro Beltrán-Corbellini [52]	Multicentre (2 centres)	Madrid, Spain	Cross-sectional study, verbal interview	19 March 2020	NA	59
Andrea Giacomelli [53]	L. Sacco Hospital in Milan, Italy	Prospective survey	NA	NA	417	
Jerome R. Lechien [54]	COVID-19 Task Force of YO-IFOS, Multicentre, Europe	Cross sectional telephone survey	March 19 and March 22, 2020	NA	202	
Luigi Angelo Vaira [56]	University Hospital of Sassari, Italy	Prospective study	March 31 and April 6, 2020	NA	72	
Luigi Angelo Vaira [57]	Multicentre, Italy	Prospective study	April 9th and 10th 2020	NA	33	
Yonghyun Lee [59]	The Daegu Medical Association, South Korea	Prospective telephone interview	March 8, 2020 - March 31, 2020	NA	3191	
Marlene M. Speth [60]	Kantonsspital Aarau, Aarau, Switzerland	Prospective cross-sectional telephone questionnaire study	March 3, 2020, to April 17, 2020	NA	103	
T. Klopfenstein [61]	NFC (Nord Franche-Comté) Hospital, France	Retrospective observational	March 1st to March 17th, 2020	Till 24th, 2020	114	
Wei-je Guan [11]	Multicentre, 30 provinces in China	Retrospective study	December 11, 2019, to January 31, 2020	NA	1099	
Nanshan Chen [12]	Jinyintan Hospital, Wuhan, China	Retrospective study	Jan 1 to Jan 20, 2020	Till Jan 25, 2020	99	
Chaolin Huang [62]	Jin Yintan Hospital, Wuhan, China	Prospective cohort	Dec 16, 2019, to Jan 2, 2020	NA	41	
Chaomin Wu [63]	Jin Yintan Hospital, Wuhan, China	Prospective cohort	December 25, 2019- January 26, 2020	February 13, 2020	201	
Xiaobo Yang [64]	Jin Yintan Hospital, Wuhan, China	Retrospective, observational study	Dec 24, 2019, to Jan 26, 2020	Feb 9, 2020	52	
Tao Chen [65]	Tongji Hospital, Wuhan, China	Retrospective case series	13 January- 12 February 2020	28 February 2020	274	
Yingzhen Du [66]	2 centres, Hanyan Hospital and Wuhan Union Hospital, Wuhan, China	Retrospective, observational study	January 9 to February 15, 2020	February 15, 2020	85	
Yongli Zheng [67]	Chengdu Public Health Clinical Medical Center, Chengdu, China	Retrospective case series	January 16 to February 20, 2020	February 23, 2020	99	
Alfonso J. Rodriguez-Morales [68]	Chile	Cross sectional	March 3, 2020, to March 23, 2020	NA	922	
Feng Wang [69]	Tongji Hospital Wuhan, China	Retrospective study	January 29, 2020, to February 10, 2020	February 22, 2020	28	
Suixin Wan [70]	Chongqing University Three Gorges Hospital, Chongqing, China	Retrospective case series	23 January - 8 February 2020	8 February 2020	135	
Zhongliang Wang [71]	Union hospital, Wuhan, China	Retrospective case series	January 16 to January 29, 2020	February 4, 2020	69	
Dan Sun [72]	Wuhan Children’s Hospital, Wuhan, China	Case series	January 24 to February 24	February 24, 2020	8	
Sijia Tian [73]	Multicentre, 57 hospitals, Beijing, China	Retrospective study	Jan 20 to Feb 10, 2020	Feb 10, 2020	262	
Fei Zhou [74]	2 centers, Jinyintan Hospital and Wuhan Pulmonary Hospital, Wuhan, China	Retrospective cohort	Dec 29, 2019, to Jan 31, 2020	NA	191	
Na Du [75]	First Affiliated Hospital of Jilin University, Jilin, China	Case series	23 January 2020, to February 2020	NA	12	
Author(s)	Published	Hospital/Country	Study Type	Dates	Total Patients	
---------------------------	--	--	---------------------------------	---------------------------------	----------------	
Kui Liu [76]	Published	Tertiary hospitals, Hubei province, China	Retrospective study	December 30, 2019, to January 24, 2020	NA	
Alma Tostmann [77]	Published	Netherlands	Online anonymous questionnaire	10 March to 29 March 2020	NA	
Yongli Yan [78]	Published	Tongji Hospital, Wuhan, China	Retrospective, observational	January 10, 2020, to February 24, 2020	NA	
Xiang-Wei Xu [79]	Published	Multicentre, Zhejiang province, China	Retrospective case series	10 January 2020, to 26 January 2020	NA	
Jiangshan Lian [80]	Published	Health Commission of Zhejiang Province	Retrospective study	Jan 17 to Feb 7, 2020	Feb. 12, 2020	
Nitesh Gupta [81]	Published	Multicentre, Zhejiang province, China	Retrospective observational case series	Feb 1st to 19th March 2020	19th March 2020	
Xiaoli Yan [82]	Published	Tongji Hospital, Wuhan, China	Retrospective study	January 17 to February 8	NA	
Jiangshan Lian [80]	Published	Health Commission of Zhejiang Province	Retrospective study	January 17 to February 8	NA	
Nitesh Gupta [81]	Published	Multicentre, Zhejiang province, China	Retrospective study	22 January 2020, to 10 February 2020	11 February 2020	
Ivan Fan-Ngai Hung [84]	Published	Multicentre, Hong Kong, China	Prospective, open-label, randomised, phase 2 trial	Feb 10 to March 20, 2020	NA	
Huan Wu [85]	Published	Wuhan Children’s Hospital, Wuhan, China	Retrospective case series	January 25 to April 18, 2020	April 18, 2020	
Michael G Argenziano [86]	Published	NewYork-Presbyterian/Columbia University Medical Center, New York, USA	Retrospective review	1 March to 5 April 2020	30 April	
Simone Bastrup Israelsen [87]	Published	Hvidovre Hospital, Denmark	Retrospective case series	10 March to 23 April 2020	NA	
Matthew J Cummings [88]	Published	NewYork-Presbyterian hospitals affiliated with Columbia University Irving Medical Center, New York, USA	Prospective observational cohort	March 2 to April 1, 2020	April 28, 2020	
Marjolein F. Q. Kluytmans-van den Bergh [89]	Published	2 teaching Hospitals, Netherlands	Cross sectional	March 12, 2020, and March 16, 2020 (interview dates)	March 16, 2020	
Błażej Nowak [90]	Published	Central Clinical Hospital, Warsaw, Poland	Retrospective study	March 16, 2020, to April 7, 2020	April 7, 2020	
Xiaoquan Lai [91]	Published	Tongji Hospital Wuhan	Retrospective case series	January 1 to February 9, 2020	NA	
X. Wang [92]	Published	Dongxihu Fangcheng Hospital, Wuhan, China	Retrospective study	7 February to 12 February 2020	22 February	
Zhe Liu [93]	Published	Multicentre Xi’an, Shaanxi province, China	Retrospective study	January 16 to February 13, 2020	NA	
Qiong Huang [94]	Published	Multicentre, Hunan, China	Retrospective case series	January 17 to February 10, 2020	NA	
Kyung Soo Hong [95]	Published	Yeungnam University Medical Center in Daegu, South Korea	Retrospective study	Up to March 29, 2020	March 29, 2020	
Rui Huang [96]	Published	Multicentre Jiangsu province, China	Retrospective study	January 22, 2020, to February 10, 2020	February 10, 2020	
Mengyao Ji [97]	Published	Renmin Hospital of Wuhan University Wuhan, China	Retrospective study	2nd January to 28 January 2020	8 February 2020	
Dawei Wang [98]	Published	Zhongnan Hospital of Wuhan University Wuhan, China	Retrospective study	Up to February 10, 2020	NA	
Saurabh Aggarwal [99]	Published	Unity Point Clinic, USA	Retrospective study	March 1 to April 4, 2020	NA	
Xin-Ying Zhao [100]	Published	Jingzhou Central Hospital, China	Retrospective study	January 16, 2020, to February 10, 2020	February 10, 2020	
Name	Published	Institution	Study Type	Dates	Patients	
---------------------	------------------------------------	---	-----------------------------	---	----------	
Yifan Meng [101]	Published	Tongji Hospital, Wuhan, China	Retrospective study	January 16th to February 4th, 2020	168	
Qingchun Yao [102]	Published	Dabieshan Medical Center, Huanggang city, Hubei Province, China	Retrospective cohort	January 30, 2020 - February 11, 2020	108	
Li Zhu [103]	Published	Multicentre, Jiangsu province, China.	Retrospective case series	January 24, 2020, to February 22, 2020	10	
Eu Suk Kim [104]	Published	Korea National Committee for Clinical Management of COVID-19, South Korea	Nationwide multicentre retrospective study	January 19th, 2020, to February 17th, 2020	28	
Pavan K. Bhatnaju [105]	Published	Multicentre (9), Seattle, USA	Retrospective study	February 24 to March 9, 2020	24	
Haiyan Qiu [106]	Published	Multicentre (3), Zhejiang, China	Retrospective cohort	January 21 to March 1, 2020	36	
Guang Chen [107]	Published	Tongji Hospital, Wuhan, China	Retrospective study	Late December 2019 to January 27, 2020	21	
Wenjie Yang [108]	Published	Multicentre (3 centers), Wenzhou city, Zhejiang, China	Retrospective cohort	January 17th to February 10th, 2020	149	
Yu-Huan Xu [109]	Published	Single centre, Beijing, China	Retrospective study	January to February 2020	50	
Xi Xu [110]	Published	Guangzhou Eighth People’s Hospital, Guangzhou, China	Retrospective study	January 23, 2020, and February 4, 2020	90	
Jerome R. Lechien [111]	Published	Multicentre, Europe	Observational, cross-sectional study	March 22 to April 10, 2020	1420	
Sherry L. Burrer [112]	Published	CDC COVID-19 Response Team, United states, USA	Retrospective study	February 12 to April 9, 2020	9282	
Ruth Levinson [113]	Published	Tel Aviv Medical Center, Israel	Retrospective with questionnaire via mobile and email	March 10 to 23, 2020	42	
Xu Zhu [114]	Preprint	Renmin Hospital of Wuhan University, Wuhan, China	Retrospective study	January 20 to February 15, 2020	114	
Dan Wang [115]	Preprint	Zhongshan Hospital, Wuhan, China	Cross-sectional study	January 15, 2020 - February 28, 2020	143	
Chuming Chen [116]	Preprint	Shenzhen Third People’s Hospital, Guangdong, China	Prospective study	Jan 16, 2020, to Feb 19, 2020	31	
Pingzheng Mo [117]	Published	Zhongnan Hospital of Wuhan University, Wuhan, China	Retrospective study	January 1st to February 5th	155	
Gu-qin Zhang [118]	Published	Zhongnan Hospital of Wuhan University, Wuhan, China	Retrospective case series	January 2, 2020, to February 10, 2020	221	
Jennifer Tomlins [119]	Published	North Bristol NHS Trust, UK	Retrospective study	March 10th to March 30th, 2020	95	
Zonghao Zhao [120]	Published	First Affiliated Hospital of USTC Hefei, China	Retrospective study	Jan 21 to Feb 16, 2020	75	
Ying Huang [121]	Preprint	Fifth Hospital of Wuhan, Wuhan, China	Retrospective study	Jan 21 - Feb 10, 2020	36	
Carol H. Yan [122]	Published	University of California San Diego Health, La Jolla, California, USA	Cross-sectional internet- and email-based platform	March 3, 2020, and March 29, 2020	59	
Table 1 (continued)

First author	Study population	Age (years), mean ± SD or median (range) or median (IQR)	Sex (male) n (%)	Neurological features n (%)	Remarks (groups compared)	Outcome n (%)
Ling Mao [32]	Consecutive hospitalized patients	52.7 ± 15.5	87 (40.7)	Any—78 (36.4)	Severe vs non-severe	NA
				CNS—53 (24.8)	5 ischaemic stroke, 1 hemorragic stroke	
				Dizziness—36 (16.8)		
				Headache—28 (13.1)		
				Impaired consciousness—16 (7.5)		
				Acute cerebrovascular disease—6 (2.8)		

First author	Study population	Age (years), mean ± SD or median (range) or median (IQR)	Sex (male) n (%)	Neurological features n (%)	Remarks (groups compared)	Outcome n (%)
Yan Deng [123]	2 centers, Wuhan, China	Retrospective study	January 1, 2020, to February 21, 2020	NA	225	
Jiaojiao Chu [124]	Tongji Hospital, Wuhan, China	Retrospective study	7 January to 11 February 2020	NA	38	
Håkon Ihle-Hansen [125]	Barnum Hospital, Norway	Observational qualitative study	9-31 March 2020	31 March 2020	42 (1 pt. from 43 not included as asymptomatic and tested due to exposure)	
Parag Goyal [126]	2 centres, New York, USA	Retrospective case series	March 3 to March 27, 2020	April 10th	393	
Jiantai Cao [127]	Wuhan University Zhongnan Hospital, Wuhan, China	Retrospective cohort	3 January to 1 February 2020	15 February 2020	102	
De Chang [128]	Multicentre (3 centers), Beijing, China	Case series	January 16, 2020, to January 29, 2020	February 4, 2020	13	
Huijun Chen [129]	Zhongnan Hospital of Wuhan University, Wuhan, China	Retrospective case series	Jan 20 to Jan 31, 2020	Feb 4, 2020	9	
Lang Wang [130]	Renmin Hospital of Wuhan University, China	Retrospective study	Jan 1 to Feb 6, 2020	March 5	339	
Gianfranco Spiteri [131]	WHO European Region(except UK), Europe	Cross-sectional study	24 January to 21 February 2020	21 February 2020	31 (total 38, but for symptoms data available for 31 only)	
Yingxia Liu [132]	Shenzhen Third People’s Hospital, China	Case series	Jan 11 to Jan 20, 2020	NA	12	
Tianmin Xu [133]	Third Hospital of Changzhou, Changzhou city, Jiangsu province, China	Retrospective cohort	Jan 23 to February 18,2020	February 27, 2020	51	
Michael Chung [134]	Multicentre (3 centers), 3 provinces, China	Retrospective case series	January 18, 2020, to January 27, 2020	NA	21	
Heshui Shi [135]	Wuhan Jinyintan hospital or Union Hospital of Tongji Medical College, China	Retrospective study	Dec 20, 2019, to Jan 23, 2020	Feb 8th, 2020	81	
Luhuan Yang [136]	Yichang Central People’s Hospital, Yichang, Hubei Province, China	Retrospective study	Jan 30 to Feb 8, 2020	Feb 26, 2020	200	
Wei Zhao [137]	Multicentre (4 centers), Hunan, China	Retrospective study	NA	NA	101	
Ya-nan Han [138]	Xian eighth hospital Shaanxi, China	Retrospective study	31st January-16th February 2020	NA	32	
Yang Wang [139]	Tongji Hospital, China	Cohort	January 25, 2020, to February 25, 2020	28 days follow-up	344	
Study	Setting	Sample Size	Main Diagnoses and Findings			
-------	---------	-------------	-----------------------------			
Yanan Li [33]	Consecutive hospitalized patients	53 ± 15.9	Acute cerebrovascular disease—13 (5.9), Ischaemic stroke—11 (84.6)			
			Cerebral venous sinus thrombosis—1 (7.7)			
			Acute cerebrovascular disease—3 (1)			
Lu Lu [34]	Consecutive discharged or died patients from multiple centers	44 (33–59.25)	Acute cerebrovascular disease—3 (1)			
			Mild, moderate vs severe, critical			
F.A. Klok [35]	Only ICU patients	NA	Mild, moderate vs severe, critical			
Corrado Lodigiani [36]	Consecutive adult symptomatic patients admitted, 61 ICU patients	66 (55–75)	Acute cerebrovascular disease—5 (2.8) (all ischaemic stroke)			
			All patients received thromboprophylaxis			
			ICU vs general ward, survivors vs non-survivors, thromboprophylaxis in 100% ICU and 75% ward patients			
Megan Fraissé [37]	Only ICU patients	61 (55–70)	Acute cerebrovascular disease—4 (4.3)			
			All received thromboprophylaxis			
Siddhant Dogra [38]	All hospitalized patients	62 (37–83) (among 33 patients)	Acute hemorrhagic stroke—33 (0.9) (only in 75% neuroimaging done)			
			37 had hemorrhage, but 4 excluded as hemorrhage secondary to trauma, bleeding in brain metastases, after tumor resection			
Julie Helms [39]	Consecutive hospitalized ICU patients	63	Agitation—40/58 (69)			
			Corticospinal tract signs—39/58 (67)			
			DysExecutive syndrome—14/39 (36)			
			MRI—leptomeningeal enhancement—8/13 (62)			
			Perfusion abnormalities—11/11 (100)			
			Cerebral ischaemic stroke—3/13 (23)			
Julie Helms [40]	All consecutive patients referred to ICU for ARDS	63 (53–71)	Cerebral ischaemic attack—2 (1.3) (population after matching—0)			
			Historical prospective cohort of “non-COVID-19 ARDS” patients vs COVID-19 ARDS			
			Discharged—36 ICU admission—101 Died—13			
Sedat G Kandemirli [41]	Patients admitted to ICU	63 (34–87)	Neurological symptoms—50 (21)			
			Cortical signal abnormalities on FLAIR images—10/27 (37)			
			Acute transverse sinus thrombosis—1 (0.4)			
			Brain MRI done in 27/50 (54%) patients with neurological symptoms			
Table 1 (continued)

Study	Type	Patients	Age (mean ± SD or range)	Features	Outcomes		
Silvia Garazzino [42]	Pediatric patients under 18 years	2.3 (0.3–9.6)	94 (55.9)	Acute infarction in right middle cerebral artery territory—1 (0.4)	NA Recovered—168		
Rajan Jain [43]	All patients admitted	NA	NA	Neuro imaging done—454 (14.1%)	NA		
				Imaging Positive—38 (8.4)			
				Stroke—35 (92.5)			
				Ischaemic stroke—26 (68.5)			
				Large vessel—17 (44.5)			
				Lacunar—9 (24)			
				Hemorrhagic stroke—9 (24)			
				Hypoxic anoxic brain injury—2 (5)			
				Encephalitis—1 (2.5)			
Alberto Benussi [44]	All adult (≥18 years old) patients admitted for neurological disease and had a definite outcome	77.0 (67.0–83.8)	28 (50.0)	Cerebrovascular disease—43 (76.8)	COVID-19 vs non-COVID-19 Mortality—21 (37.5)		
				TIA—5 (11.6)			
				Ischaemic stroke—35 (81.4)			
				Hemorrhagic stroke—3 (7.0)			
				Epilepsy—4 (7.1)			
				Delirium—15 (26.8)			
				Cerebral palsy—1 (2.5)			
Weixi Xiong [45]	All consecutive symptomatic patients	48.7 ± 17.1	504 (55)	New-onset neurological events—39 (4.3)	Critical vs non-critical neurological events Discharged—742 Hospitalized—145 Died—30		
				Disturbance of consciousness/delirium—21 (2.3)			
				Syncope—3 (0.3)			
				Traumatic brain injury—1			
				Acute Cerebrovascular accident—10 (early onset—2)			
				Oculomotor palsy—1			
				Unexplained severe headache—2			
				Non-specific headache—8			
				Functional or Tic/tremor—2			
				Muscle cramp—2			
Tyler Scullen [46]	Severe cases with neurological features	59.8 (35–91)	14 (52)	Altered mental status—26 (96.3)	Imaging and EEG Encephalopathy—20 (74)		
				Dysgeusia—1 (3.7)			
				Generalized weakness—1 (3.7)			
				Headache—2 (7.4)			
				Focal deficit—10 (37.0)			
				Focal ataxia—1 (3.7)			
				Facial droop—1 (3.7)			
				Fixed pupils—1 (3.7)			
				Gaze deviation—3 (11.1)			
				Hemiparesis or hemiplegia—4 (14.9)			
				Acute necrotizing encephalopathy—2 (7)			
				Vascular disease—5 (19)			
				Subacute ischaemic stroke—4 (14.8)			
				NCSE—1 (3.7)			
				Large vessel occlusion—PCA P2B—1 (3.7)			
Study	Study Design	Patients	Neurological Symptoms	ICA Terminus			
------------------------------	-------------------------------	----------	-----------------------	-------------			
Abdelkader Mahammedi [47]	Consecutive hospitalized patients	NA	NA	3 (11.1)			
			Acute neurological symptoms—108 (15)				
			Altered mental status—64 (8.8)				
			Ischaemic stroke—33 (total was 34, but 1 is hypoxic encephalopathy added here)				
			Headache—13 (1.8)				
			Myalgia—13 (1.8)				
			Seizures—10				
			Dizziness—4 (0.6)				
			Neuralgia—3				
			Ataxia—2 (0.3)				
			Hyposmia—2 (0.3)				
			ICH-6				
			Hypoxic ischaemic encephalopathy—1				
			Cerebral venous thrombosis—2				
			GBS—2				
			PRES—1				
			Acute encephalopathy—1				
			Non-specific encephalopathy—2				
			MS plaque exacerbation—2				
Alireza Radmanesh [48]	All patients diagnosed	NA	NA	197 (23.42)			
			Acute/subacute infarct—13				
			Haemorrhage—7 (excluding previous)				
			Altered mental status—102 (2.9%)				
			Syncope/fall—79 patients				
Carlos Manuel Romero-Sánchez [49]	All patients admitted	66.42 ± 14.96	473 (56.2)				
			Neurological manifestations—483 (57.4)				
			Myalgias—145 (17.2)				
			Headache—119 (14.1)				
			Dizziness—51 (6.1)				
			Syncope—5 (0.6)				
			Anosmia—41 (4.9)				
			Dysgeusia—52 (6.2)				
			Disorders of consciousness—165 (19.6)				
			Seizures—6 (0.7)				
			Dysautonomia—21 (2.5)				
			AIDP—1				
			HyperCKemia—73 (9.2)				
			Rhabdomyolysis—9 (1.1)				
			Myopathy—26 (3.1)				
			Ischaemic stroke—11 (1.3)				
			Intracranial hemorrhage—3 (0.4)				
			Movement disorders—6 (0.7)				
			Encephalitis—1 (0.1)				
			Optic neuritis—1 (0.1)				
Stephe Kremer [50]	Severe patients with abnormal MRI Only	61 (8–78)	30 (81)	Neuropsychiatric symptoms—167 (19.9)	Non-hemorrhagic vs hemorrhagic forms	Died—5 (14)	
-------------------	---------------------------------------	-----------	---------	-----------------------------------	-----------------------------------	----------	
				Headache—4 (11)	CSF—1 patient’s CSF SARS-CoV-2		
				Seizures—5 (14)	RT-PCR positive		
				Clinical signs of corticospinal tract involvement—4 (11)			
				Disturbances of consciousness—27 (73)			
				Confusion—12 (32)			
				Agitation—7 (19)			
				Pathological wakefulness in intensive care units—15 (41)			
Pranusha Pinna [51]	Only 50 patients admitted to neurology ward or referred to neurology is studied	NA	NA	CNS	Neurological manifestations—7.7%	NA	
				Altered mental status—30	(total patients in the hospital were 650; however, not all evaluated for neurological symptoms, mentioned in the limitations of the study)		
				Seizures—13			
				Headache—12			
				Short-term memory loss—12			
				Acute cerebrovascular accident—19			
				Acute ischemic stroke—10			
				Hypoxic ischemic brain injury—7			
				ICH—4			
				Non-aneurysmal SAH—4			
				PRES—2			
				TIA—1			
				PNS			
				Dysautonomia—6			
				Muscle injury with elevated CK—6			
				Hypogeusia/dysgeusia—5			
				Hyposmia—3			
				Extraocular muscle abnormalities—5			
				Isolated unilateral facial palsy—3			
				Paresthesias—1			
				Ataxia—1			
				Smell and/or taste disorder—31 (39.2)			
				Smell disorder—25 (31.65)			
				Most common—anosmia—14/31 (45.7)			
				Taste disorder—28 (35.44)			
				Most common—ageusia—14/31 (45.2)			
				Headache—2 (3.4)			
				Olfactory and/or taste disorders—20 (33.9)			
				Olfactory disorders—14			
				Taste disorder—17			
				Olfactory dysfunction—357 (85.6)			
				Anosmia—284 (79.6)			
				Hyposmia—73 (20.4)			
				Phantosmia—12.6%			

Table 1 (continued)

Álvaro Beltrán-Corbellini [52]	Consecutive patients hospitalized, > 18 years	61.6 ± 17.4	48 (60.8)	Case—COVID-19 patients	Control—40 historical group of 2019/2020 season influenza patients	NA						
Andrea Giacomelli [53]	All hospitalized patients who were able to be interviewed	60 (50–74)	40 (67.8)	NA	NA							
Jerome R. Lechien [54]	Adult > 18 years, mild to moderate cases (ICU cases excluded) hospitalized and home patients	36.9 ± 11.4	154 (36.9)	NA	NA							
Study/Author/Setting	Description	Data	Headache	Muscle/joint pain	Dizziness	Altered sense of smell or taste	Gustatory disorders	Distorted ability to taste flavors	Ref.			
----------------------	-------------	------	-----------	------------------	-----------	-------------------------------	---------------------	----------------------------------	------			
Giacomo Spinato [55]	Adults (≥ 18 years) consecutively assessed and mildly symptomatic (only home managed patients)	Parosmia—32.4%	Gustatory disorders—342 (88.8)	Reduced/discontinued—78.9%	Distorted ability to taste flavors—21.1%	Headache—86 (42.6)	Muscle or joint pains—90 (44.6)	Dizziness—28 (13.9)	Altered sense of smell or taste 130— (64.4%)	NA		
Luigi Angelo Vaira [56]	Adults over 18 years of age (excluded assisted ventilation patients)									NA		
Luigi Angelo Vaira [57]	Health care staff, home quarantined, age > 18 years									NA		
Luigi Angelo Vaira [58]	Both hospitalized and home quarantined patients, ≥ 18 years (excluded assisted ventilation patients)									Validation of a self-administered olfactory and gustatory test done		
Yonghyun Lee [59]	COVID-19 patients awaiting hospitalization or facility isolation	Headache—30 (41.6)	Olfactory and taste disorders—53 (73.6)	Olfactory disorder—44 (61.1)	Taste disorder—39 (54.2)	Objective tests used						
Markene M. Speth [60]	All positive (ICU and deceased excluded)	Headache—16 (11)	Olfactory dysfunction—63 (61.2)	Decreased smell—14.6%	Anosmia—46.6%	Gustatory dysfunction—67 (65.0)	Decreased taste—25.2%	Anosmia—389	NA			
T. Klopfenstein [61]	All admitted adults									Death—2/54(4)		
Dawei Wang [10]	Consecutive patients admitted	Myalgia—48 (34.8)							ICU vs non-ICU			
Wei-je Guan [11]	All patients with data available	Headache—150 (13.6)	Myalgia or arthralgia—164 (14.9)	Rhabdomyolysis—2 (0.2)	All Severe vs non-severe	Death—15 (1.4)	Discharged—55 (5.0)	Hospitalization—1029 (93.6)	Recovery—9 (0.8)			
Nanshan Chen [12]	All hospitalized patients	Muscle ache—11 (11)	Headache—8 (8)	Confusion—9 (9)	NA							
Chaolin Huang [62]	Hospitalized	Myalgia or fatigue—18 (44)	Headache—3/38 (8)	ICU vs non-ICU								
Source	Patient Description	Total Patients	Fatigue or myalgia (Number of Cases and Percentage)	Headache (Number of Cases and Percentage)	ARDS vs non-ARDS	Survivors vs non-survivors	Deaths vs recovered	Hospitalized	Discharged	Discharged	Death	Died
------------------------	--	----------------	--	--	------------------	----------------------------	---------------------	--------------	------------	------------	-------	-------
Chaomin Wu [63]	All hospitalized patients	51 (43–60)	128 (63.7)								6 (15)	44 (21.9)
Xiao Wang Yang [64]	Only critically ill patient admitted in ICU	59.7 (13-3)	35 (67)	Myalgia—6 (11.5) Headache—3 (6)							32 (61.5)	8
Tao Chen [65]	113 died and 161 fully recovered and discharged patients	62.0 (44.0–70.0)	171 (62)	Myalgia—60 (22) Headache—31 (11)							12	
Yingzhen Du [66]	Consecutive severe patients	65.8 ± 14.2	62 (72.9)	Myalgia—14 (16.5) Headache—4 (7.7)							85	
Yongli Zheng [67]	Consecutively hospitalized All ages	49.40 ± 18.45	51 (52)	Muscle ache and headache—12 (12)							NA	
Alfonso J. Rodriguez-Morales [68]	First notified cases of COVID-19	NA	NA	Headache—597 (64.8) Myalgia—32 (3.5)							NA	
Feng Wang [69]	Diabetic, hospitalized patients	68.6 ± 9.0	21 (75)	Headache—3 (10.7)							1 (0.7)	
Suxin Wan [70]	Hospitalized patients	47 (36–55)	72 (53.3)	Myalgia or fatigue—44 (32.5) Headache—24 (17.7)							12	
Zhongliang Wang [71]	Hospitalized patients	42.0(35.0–62.0)	32(46)	Myalgia—21 (30) Headache—10 (14)							44 (65.7)	18 (26.9)
Dan Sun [72]	Pediatric ICU (severe and critically ill only)	47.5 (1–94)	127 (48.5)	Headache—17 (6.5)							5 (7.5)	3
Sijia Tian [73]	Hospitalized, all age groups	64.6 ± 9.0	21 (75)	Headache—3 (10.7)							1 (0.7)	54
Fei Zhou [74]	All adult ≥ 18 hospitalized and either dead or discharged patients	56.0 (46.0–67.0)	119 (62)	Myalgia—29 (15)							2 (0.7)	99
Na Du [75]	Consecutive hospitalized patients	45.25(23–79)	7(54.3)	Headache—3 (20)							44 (32.1)	77
Kui Liu [76]	Hospitalized patients	45.25(23–79)	7(54.3)	Headache—3 (20)							44 (32.1)	77
Alma Tostmann [77]	Only health care workers	45.25(23–79)	7(54.3)	Headache—3 (20)							44 (32.1)	77 (56.2)
Yongli Yan [78]	Adults over 18 years, hospitalized, severe (all hospitalized admitted there included)	64 (49–73)	114 (59.1)	Myalgia or fatigue—44(32.1) Headache—13(9.5)							48 (32.1)	48
Xiao-Wei Xu [79]	Adult hospitalized patients	41 (32–52)	35 (56)	Myalgia or fatigue—32 (52) Headache—21 (34)							2 (0.7)	

Note: NA indicates data not available.

Death refers to deaths among patients who were admitted to hospitals.

Discharged refers to patients who were discharged from hospitals.

Hospitalized refers to patients who were hospitalized.

Mortality refers to deaths among patients who were admitted to hospitals.
Study	Population	Median age (IQR)	Median days of illness (IQR)	Symptoms	
Jiang-shan Lian [80]	All confirmed cases	NA	407 (51.65)	Muscle ache—91 (11.54) Headache—75 (9.52)	
Nitesh Gupta [81]	First 21 hospitalized patients in the centre	40.3 (16–73)	14 (66.7)	Headache—3 (13.6)	
XiaoLi Zhang [82]	All hospitalized patients	NA	328 (50.85)	Muscle ache—71 (11.01) Headache—67 (10.39)	
Jie Li [83]	All hospitalized patients	45.1 ± 12.8	9 (52.9)	Myalgia—4 (23.5)	
Ivan Fan-Ngai Hung [84]	Adult at least 18 years, admitted	NA	68 (53.54)	Headache—6 (4.72)	
Huan Wu [85]	Pediatric mild and moderate cases only	84 (18–123)	60 (40.5)	Headache—5 (3.4)	
Michael G Argenziano [86]	First 1000 consecutive patients presented to centre	63.0 (50.0–75.0)	596 (59.6)	Myalgia—268 (26.8) Headache—101 (10.1)	
Simone Bastrup Israelsen [87]	Consecutive patients, adult ≥ 18, hospitalized	71 (55–81)	85 (48.6)	Myalgia—46 (26.3) Headache—32 (18.3)	
Matthew J Cummings [88]	Only critically ill adults aged ≥18 years	62 (51–72)	171 (67)	Myalgia—67 (26) Headache—10 (4)	
Marjolein F. Q. Kluytmans-van den Bergh [89]	Only health care workers infected	49 (22–66)	15 (17)	Severe myalgia—54 (63) Headache—49 (57)	
Blażej Nowak [90]	Consecutive patients hospitalized	63.7 ± 19.6	87 (51.5)	Headache—1	Anosmia and ageusia—3 (1.7)
Xiaoquan Lai [91]	Only health care workers	36.5 (30.0–47.0)	31 (28.2)	Myalgia or fatigue—66 (60.0)	
X. Wang [92]	Only non-critically ill (however, all patients admitted in that hospital included)	50 (39–58)	524 (51.8)	Muscle ache—50 (45.5) Headache—33 (30.0)	
Zhe Liu [93]	All hospitalized	46.2 ± 15.9	39 (54.2)	Muscle soreness—7 (9.7) Headache—4 (5.6)	
Qiong Huang [94]	All hospitalized patients	41 (31–51)	28 (51.9)	Muscle soreness—9 (16.7) Headache—3 (5.6)	
Kyung Soo Hong [95]	Consecutive hospitalized patients	55.4 ± 17.1	38 (38.8)	Myalgia—37 (37.8)	

Notes:
- With Wuhan exposure vs without
- Normal imaging vs abnormal imaging
- Discharged vs non-discharged
- Combination triple antiviral drug vs control group (lopinavir–ritonavir)
- Emergency vs ward vs ICU
- Survivors vs non-survivors
- Uncomplicated vs mild vs severe
- ICU vs non-ICU

Additional Data:
- Discharged—32 (15.3)
- Discharged—699
- Discharged—109 (62.3)
- Discharged alive—58 (23)
- Discharged—101 (39)
- Discharged—98 (38)
- Discharged—58 (23)
- Discharged—46 (26.3)
- Hospital admission—2 (2)
- Died—1 (0.9)
- Died—9 (9.2)
- Died—46 (26.3)
- Died—57 (58.2)
- Died—32
- Died—46 (26.3)
- Died—0
- Died—40
| Study | Description | Mean Age ± SD | Headache Count | Headache Severity | Death Count | Hospitalization Count | Cured Count | Others |
|-------|-------------|---------------|----------------|-------------------|-------------|-----------------------|-------------|--------|
| Rui Huang [96] | All hospitalised | 44.0 (33.0–54.0) | 116 (57.4) | Muscle ache—21 (10.4) Headache—12 (5.9) | Severe vs non-severe | Transferred—6 (6.1) Remained in hospital—165 (81.7) Hospital discharge—37 (18.3) Death—0 (0) | | |
| Mengyao Ji [97] | Random selection of confirmed patients | 51.0 (37.0–61.0) | 48 (48) | Myalgia—16 (16) Vertigo—4 (4) Headache—6 (6) | | | | |
| Dawei Wang [98] | All the discharged (alive at home and dead) patients with confirmed COVID-19 | 51.0 (36.0–65.0) | 57 (53.3) | Myalgia—33 (30.8) Headache—7 (6.5) Dizziness—7 (6.5) | | | | |
| Saurabh Aggarwal [99] | All admitted patients | 67 (38–95) | 12 (75) | Lightheadedness—3 (19) Headache—4 (25) | | | ICU, shock, death vs no Died—3 (19) Discharged—11 Admitted—2 | |
| Xin-Ying Zhao [100] | All hospitalized patients | 46.00 | 49 (53.8) | Myalgia—16 (16.5) | | | Severe vs mild Remained in hospital—75 (82.4) Discharged—14 (15.4) Died—2 (2.2) Died—17 (8.9) Discharge—136 Hospital—15 | |
| Yifan Meng [101] | All consecutive admitted (all were severe or critically ill patients) | 56.7 ± 15.1 | 86 | Myalgia—48 (28.6) Headache—22(13.1) Dizziness—7(4.2) | | | | |
| Qingchun Yao [102] | Consecutive adult patients admitted | 52 (37–58) | 43 (39.8) | Myalgia or fatigue—28 (25.9) Headache—2 (20.0) | | | Non-severe vs severe alive vs severe dead Died—12 Discharged—96 Discharged—5 (50.0) Hospitalized—5 (50.0) Died—10 Hospitalized—18 Died—12 (50) Discharged—5 (21) Hospitalized—7 (30) | |
| Li Zhu [103] | 1–18 years, children | NA | 5 (50.0) | | | | | |
| Eu Suk Kim [104] | First 28 patients in Republic of Korea, hospitalized | 42.6 ± 13.4 | 15 (53.6) | Myalgia—7 (25.0) Headache—7 (25.0) | | | | |
| Pavan K. Bhatnaju [105] | Only critically ill ICU patients | 64 ± 18 (23–97) | 15 (63) | Headache—2 (8) | | | | |
| Haiyan Qiu [106] | All pediatric 0–16 years | 8.3 ± 3.5 | 23 (64) | Muscle pain—5 (3.36%) Headache—13 (8.72%) | | | | |
| Guang Chen [107] | All hospitalized patients | 56.0 (50.0–65.0) | 17 (81.0) | | | | | |
| Wenjie Yang [108] | Consecutive hospitalized patients | 45.11 ± 13.35 | 81 | | | | | |
| Yu-Huan Xu [109] | All hospitalized patients | 43.9 ± 16.8 | 29 (58) | Headache—5 (10) Muscle ache—8 (16) | | | | |
| Xi Xu [110] | All hospitalized patients | 50 (18–86) | 39 (43) | Myalgia—25 (28) Headache—4 (4) | | | | |
| Jerome R. Lechien [111] | Mild to moderate (but all reported) | 39.17 ± 12.09 | 458 (32.3) | Headache—998 (70.3) Loss of smell—997 (70.2) Reduction of smell—201 (14.2) Myalgia—887 (62.5) | | | Based on age | |

Table 1 (continued)
Author	Study Type	Cases Reported (Range)	New Disease Symptoms Reported (Range)	Hospitalization Status	Not Hospitalized (90%)	Hospitalized (10%)	Death (0.1%)	Recovery Status
Sherry L. Burrer [112]	Cases reported to CDC, only health care personal	42 (32–54)	2464(27)		NA	6760 (90%)	723 (8–10%)	27 (0.3–0.6%)
Ruth Levinson [113]	Hospitalized adults and adolescents (age ≥ 15 years), and mild symptoms (all admitted were mild)	34 (15–82)	23	Myalgia or arthralgia—24 (57)	NA			
Xu Zhu [114]	Only elderly (>70) patients	76 (72–82)	67 (58.8)	Myalgia—4 (3.5)	Severe vs non-severe	87 (76.3)	27 (23.7)	
Dan Wang [115]	All consecutive admitted patients	58(39–67)	73(51.0)	Myalgia—49(34.3)	Mild/moderate vs severe/critical			
Chuming Chen [116]	Only pediatric, <18 years, hospitalized patients	7.33 ± 4.35	13 (41.9)	Headache—1 (3.2)	NA	184 (2–5%)		
Pingzheng Mo [117]	All Consecutive admitted patients	54 (42–66)	86 (55.5)	Myalgia or arthralgia—50 (61.0)	General vs refractory			
Gu-qin Zhang [118]	All hospitalized patients	55.0 (39.0–66.5)	108(48.9)	Headache—17(7.7)	Severe vs non-severe	168 (76.0)		
Jennifer Tomlins [119]	All sequential hospitalized patients	75 (59–82)	60 (63)	Myalgia—13 (14)	NA	107 (27.2)		
Zonghao Zhao [120]	All positive cases	47 (34–55)	42 (56)	Muscle soreness—9 (12.00)	NA			
Ying Huang [121]	Non survivors only	69.22 (9.64)	25 (69.44)	Myalgia—1 (2.78)	NA			
Carol H. Yan [122]	All positive COVID-19 who completed survey (most are mild cases)	NA	29 (49.2)	Headache—39 (66.1)	With subjective olfaction score			
Yan Deng [123]	Only dead and recovered patients admitted	124	Myalgia or fatigue—57	Headache—13 (11.5)	NA			
Jiaojiao Chu [124]	Only medical staff(54 tested, but only 38 positive for nucleic acid tests)	39 (26–66)	24 (63.2)	Muscle ache—2 (5.3)	Common vs severe, positive RT-PCR vs negative			
Håkon Ihle-Hansen [125]	All consecutive admitted	72.5 (30–95)	28 (67)	New-onset confusion—5 (19)	Severe vs critical			
Parag Goyal [126]	First consecutive patients hospitalized, adults ≥ 18 years	62.2 (48.6–73.7)	238 (60.6)	Myalgia—107 (27.2)	invasive mechanical ventilation vs no invasive mechanical ventilation			
Study	Group Description	Age Range	No.	Male (%)	Symptom(s)	Outcome	Notes	
-------	-------------------	-----------	-----	----------	------------	---------	-------	
Cao [127]	All patients admitted	37–67	54	37 (69.6)	Muscle ache	35 (64.8)	Non survivors vs survivors	Discharge 85 (83.3), Died 17 (16.7)
De Chang [128]	All hospitalized patients	34–48	10	77 (77)	Myalgia	3 (30)	NA	All recovered 12 (still quarantined)
Chen [129]	Only pregnant patients	26–40 years	NA	100	Myalgia	3 (30)	NA	All nine live birth
Wang [130]	Consecutive cases over 60 years	65–76	166 (49)	Myalgia	16 (4.7)	NA	Survival vs dead	Discharged 91 (26.8), Died 65 (19.2)
Spiteri [131]	First cases in the WHO European region except UK	2–81	42	25	Myalgia	1 (3.22)	Infected in Europe vs China	Died 1
Liu [132]	Patients admitted	10–72 years	8	100	Myalgia	4 (50)	NA	NA
Xu [133]	Patients admitted	NA	25	100	Myalgia	8 (32)	NA	NA
Chang [134]	Admitted patients who underwent chest CT	17–75	51	13 (62)	Headache	3 (14)	NA	Infected in Europe vs China
Shi [135]	Admitted and had CT chest done	49.5 ± 11	42	100	Headache	5 (6)	NA	NA
Yang [136]	All admitted patients	55 ± 17.1	98	100	Myalgia or malaise	44 (44.9)	ICU vs non-ICU	Hospitalization 143 (71.5), Died 42 (21), Death 15 (7.5)
Zhao [137]	Consecutive laboratory confirmed COVID-19 who underwent CT	44.4 (17–75)	56	100	Headache	27 (48)	NA	Emergency vs non-emergency group
Han [138]	All admitted patients	NA	16	100	Myalgia or fatigue	13 (81.3)	Emergency vs non-emergency group	Discharged 32
Wang [139]	Severely and critically ill (ICU)	52–72	179	52 (97.7)	Rhabdomyolysis	17 (9.5)	Survivors vs non-survivors	Died 133 (38.7), Discharged 185 (87.7), Hospitalized 26
population. Syncope was reported in three studies with incidence of 0.3% [45], 0.6% [49], and 4.8% [86]. Few studies showed an increase in creatine kinase, LDH, and myoglobin in COVID-19 patients [12, 62, 66].

Acute cerebrovascular disease

Acute cerebrovascular disease (CVD) was reported in 0.5–5.9% [33, 48] of COVID-19 patients. Out of them, the most common type was acute ischaemic stroke and severe COVID-19 patients were more at risk of developing the acute CVD [33]. From these studies, the incidence of acute CVD in severe/ICU patients reported were 0.8–9.8% [33, 41]. The incidence of ischaemic stroke, hemorrhagic stroke, and cerebral venous thrombosis reported from various studies ranged from 0.4–4.9% [33, 48], 0.2–0.9% [38, 48], and 0.3–0.5% [33, 47] respectively. A study by Mao et al. [32] reported that two patients presented with hemiplegia without any typical COVID-19 symptoms. The median time to onset of cerebrovascular disease was 9 days. Another study by Li Y et.al [33] showed that acute CVD was more likely to be present with severe COVID-19; however, they were older, and had cardiovascular risk factors. These findings were similar to the above study by Mao et al. [32]. In both these studies, the laboratory parameters in patients with CNS symptoms were different from the other COVID-19
patients, with a higher white cell and neutrophil counts, reduced lymphocyte and platelet counts, elevated CRP and D-dimer levels [32, 33].

We found two studies that specifically studied the thrombotic complications in COVID-19 patients and found acute ischaemic stroke in COVID-19 patients receiving thromboprophylaxis [35, 36]. A retrospective observational case series in COVID-19 patients from Italy [144] reported six cases of stroke, four were ischaemic and two were hemorrhagic. Five of them had pre-existing vascular risk factors. Three patients with ischaemic stroke and one patient with hemorrhagic stroke showed hypercoagulable blood parameters [144]. Two studies reported six cases of stroke in young(< 50 years) COVID-19 patients, out of which three patients did not have any risk factors [145, 146].

Also there are multiple case reports and case series of ischemic stroke including large artery [147], aneurysmal [148, 149] and non-aneurysmal SAH [51], deep cerebral venous thrombosis [150–157], hemorrhagic stroke [38, 158, 159] and CNS vasculitis [160] from all over the world in COVID-19 patients [38, 51, 147–173].

Meningoencephalitis, encephalopathy, disturbances in consciousness

Several cases of meningoencephalitis and encephalopathy were reported in COVID-19 patients [39, 43, 49, 174–183]. The incidence of encephalitis reported in two retrospective studies was 0.03% [43] and 0.1% [49]. Only in four of the 15 reported cases of encephalitis, CSF RT-PCR test was positive.

Table 3	Meta-analysis, summary estimate of pooled prevalence and heterogeneity of each neurological manifestations				
Studies (N)	Sample size (N)	Cases (n)	Prevalence (95% CI)	95% CI	5
Smell disturbances	17	7919	2488	31.4% (30.4–32.4)	99.87
Taste disturbances	14	7033	1979	28.1% (27.1–29.2)	99.65
Headache	54	13,623	2751	20.2% (19.5–20.9)	99.09
Myalgia	38	11,169	2288	20.5% (19.7–21.2)	98.98
Disturbances in consciousness/altered mental status	9	6687	408	6.1% (5.5–6.7)	98.26
Syncope	3	1000	56	5.6% (4.3–7.2)	99.93
Dizziness	12	2595	137	5.3% (4.5–6.2)	93.44
Acute cerebrovascular disease	8	10,186	148	1.4% (1.2–1.7)	96.61
Ischaemic stroke	7	9268	108	1.2% (1.0–1.4)	96.67
Hemorrhagic stroke	7	12,704	60	0.5% (0.4–0.6)	98.75
Cerebral venous thrombosis	2	946	3	0.3% (0.1–0.9)	99.98
Seizures	5	2043	23	1.1% (0.7–1.7)	96.61
Ataxia	2	939	3	0.3% (0.1–0.9)	99.98
Among them had negative nasopharyngeal swab [50, 50], positive for SARS-CoV-2 RNA, and surprisingly two cases any respiratory involvement has also been reported [175, 185]. COVID-19 patient [184]. Isolated meningoencephalitis without subdural hematoma was positive for SARS-CoV-2 RT-PCR in a [177, 181]. Interestingly, fluid from the surgical evacuation of hemorrhagic encephalopathy [191, 197], hypoxic brain injury among infected patients.

Table 1. Proportion of different neurological symptoms in COVID-19 patients.

Symptom	Proportion	95% CI
Headache	7.36%	[6.92%, 7.80%]
Fatigue	11.22%	[10.57%, 11.87%]
Myalgia	13.89%	[13.08%, 14.70%]
Asthenia	14.70%	[13.91%, 15.49%]
Myocardial infarction	11.97%	[11.26%, 12.68%]
Ischemic stroke	12.50%	[11.79%, 13.21%]
Hemorrhagic stroke	12.70%	[11.98%, 13.42%]
Seizure	12.90%	[12.19%, 13.61%]
Tetraparesis	13.00%	[12.29%, 13.71%]
Tissue necrosis	13.10%	[12.39%, 13.82%]
Accidental death	13.20%	[12.49%, 13.92%]
Myocardial infarction	13.30%	[12.59%, 13.93%]
Acute myocardial infarction	13.40%	[12.69%, 14.13%]
Ischemic stroke	13.50%	[12.79%, 14.21%]
Hemorrhagic stroke	13.60%	[12.89%, 14.32%]
Seizure	13.70%	[12.99%, 14.51%]
Tetraparesis	13.80%	[13.09%, 14.52%]
Tissue necrosis	13.90%	[13.19%, 14.61%]
Accidental death	14.00%	[13.29%, 14.72%]
Myocardial infarction	14.10%	[13.39%, 14.83%]
Acute myocardial infarction	14.20%	[13.49%, 15.02%]
Ischemic stroke	14.30%	[13.59%, 15.12%]
Hemorrhagic stroke	14.40%	[13.69%, 15.22%]
Seizure	14.50%	[13.79%, 15.31%]
Tetraparesis	14.60%	[13.89%, 15.51%]
Tissue necrosis	14.70%	[13.99%, 15.61%]
Accidental death	14.80%	[14.09%, 15.72%]
Myocardial infarction	14.90%	[14.19%, 15.83%]
Acute myocardial infarction	15.00%	[14.29%, 15.92%]
Ischemic stroke	15.10%	[14.39%, 16.01%]
Hemorrhagic stroke	15.20%	[14.49%, 16.12%]
Seizure	15.30%	[14.59%, 16.21%]
Tetraparesis	15.40%	[14.69%, 16.31%]
Tissue necrosis	15.50%	[14.79%, 16.41%]
Accidental death	15.60%	[14.89%, 16.52%]
Myocardial infarction	15.70%	[14.99%, 16.62%]
Acute myocardial infarction	15.80%	[15.09%, 16.72%]
Ischemic stroke	15.90%	[15.19%, 16.81%]
Hemorrhagic stroke	16.00%	[15.29%, 16.91%]
Seizure	16.10%	[15.39%, 17.01%]
Tetraparesis	16.20%	[15.49%, 17.12%]
Tissue necrosis	16.30%	[15.59%, 17.23%]
Accidental death	16.40%	[15.69%, 17.34%]
Myocardial infarction	16.50%	[15.79%, 17.45%]
Acute myocardial infarction	16.60%	[15.89%, 17.56%]
Ischemic stroke	16.70%	[15.99%, 17.67%]
Hemorrhagic stroke	16.80%	[16.09%, 17.78%]
Seizure	16.90%	[16.19%, 17.89%]
Tetraparesis	17.00%	[16.29%, 18.00%]
Tissue necrosis	17.10%	[16.39%, 18.11%]
Accidental death	17.20%	[16.49%, 18.22%]
Myocardial infarction	17.30%	[16.59%, 18.33%]
Acute myocardial infarction	17.40%	[16.79%, 18.44%]
Ischemic stroke	17.50%	[16.79%, 18.55%]
Hemorrhagic stroke	17.60%	[16.99%, 18.66%]
Seizure	17.70%	[17.00%, 18.77%]
Tetraparesis	17.80%	[17.20%, 18.88%]
Tissue necrosis	17.90%	[17.40%, 19.00%]
Accidental death	18.00%	[17.60%, 19.20%]

Fig. 2 Forest plot of each neurological manifestations

positive for SARS-CoV-2 RNA, and surprisingly two cases among them had negative nasopharyngeal swab [50, 174–176]. Two reports showed elevated levels of cytokines like IL-6, IL-8, TNF-α, β2-microglobulin, IP-10, MCP-1 in CSF [177, 181]. Interestingly, fluid from the surgical evacuation of subdural hematoma was positive for SARS-CoV-2 RT-PCR in a COVID-19 patient [184]. Isolated meningoencephalitis without any respiratory involvement has also been reported [175, 185]. Another case of rhombencephalitis as a rare complication of COVID-19 patient has been reported [186]. Few retrospective studies [32, 47, 49] reported seizures with the incidence ranging from 0.5–1.4% [32, 47]. Cases of all types of seizures like febrile seizures [42], focal seizures [180, 187–189], generalized tonic-clonic seizures [183, 190–192], myoclonic status epilepticus [193], status epilepticus [188, 194] and non-convulsive status epilepticus [46] were reported in COVID-19 patients.

Generally, the SARS-CoV-2 virus causes mild disease in children. However, a study from Italy showed a total five patients with seizures, and out of them, two had febrile seizures (three children had a known history of epilepsy, one child had a history of febrile seizures, one child had a first episode of febrile seizures) [42]. Also, a case of a 6-week-old infant with SARS-CoV-2 in addition to rhinovirus, presenting with brief 10–15 s episodes of upward gaze and bilateral leg stiffening was reported with normal EEG and MRI brain [195]. Another case of an 11-year-old child with COVID-19 viral encephalitis has been reported, with CSF showing viral encephalitis picture [194].

PRES syndrome has also been reported in studies [47, 51]. Transient cortical blindness like presentation of PRES syndrome with MRI brain at admission revealing bilateral T2/FLAIR hyperintensities, especially left occipital, frontal cortical white matter and splenium of the corpus callosum and diffusion restriction in DWI revealing vasogenic edema has been reported [196]. Repeat MRI after 2 weeks showed a complete resolution of findings. Cases of acute necrotizing hemorrhagic encephalopathy [191, 197], hypoxic brain injury with encephalopathy [43, 47, 51, 65], delayed post-hypoxic leukoencephalopathy [198], mild encephalitis/encephalopathy with a reversible splenial lesion(MERS) [199], ADEM in elderly females [200, 201], MS plaque exacerbation [47] and CIS [176] were reported in SARS-CoV-2 infected patients.
Incidence of disturbances of consciousness/delirium ranged from 3.3–19.6% [49, 100] in retrospective studies. S.R. Beach, et al. [202] reported four cases of elderly COVID-19 patients, who presented to the hospital with altered mental status without any respiratory complaints, and only one among them developed respiratory complaints during the hospital stay. Similar cases have been reported in elderly patients from Saudi Arabia [203], Norway [204] and China [205]. An observational case series from France [39] in 58 COVID-19 patients with ARDS admitted in ICU reported agitation in 40(69%) patients, confusion in 26 of 40 patients, diffuse corticospinal tract signs in 39 patients (67%) and out of the 45 patients discharged, 15(33%) had a dysexecutive syndrome. MRI Brain showed enhancement of leptomeningeal spaces in eight patients, bilateral frontotemporal hyperperfusion in 11 patients who underwent perfusion imaging, two asymptomatic patients with small acute ischaemic stroke and one patient with subacute ischaemic stroke.

Guillain-Barré syndrome

There are multiple reports of GBS in patients with confirmed COVID-19. GBS has also been reported to be a presenting feature in one case report by Zhao H et al. [206] where the patient, later on, developed fever and other symptoms of COVID-19. All the variants of GBS like AIDP, AMAN, AMSAN has been reported in COVID-19 patients [47, 206–219] including both para [206–212, 220–223] and post-infectious pattern [210, 211, 214–219, 224–226]. Toscano et al. [227] reported a series of five patients of COVID-19 with GBS, with the interval between the onset of fever, cough and symptoms of GBS ranging from 5 to 10 days. Cases of MFS were also reported [47, 226, 228, 229]. One case of MFS was associated with a positive serum GD1b-IgG antibody [228]. Other rare variants reported were GBS/MF overlap syndrome [219], AMSAN variants with severe autonomic neuropathy [219], facial diplegia [222, 227] and post-infectious pattern of the demyelinating type of GBS with brainstem and cervical leptomeningeal enhancement [225]. Cranial neuropathies with abnormal perineural or cranial nerve findings [230], multiple cranial neuropathies [211, 219], peripheral motor neuropathy [231] and ataxia [32, 43, 51] are all reported as presentations of COVID-19.

Other neurological manifestations

The incidence of rhabdomyolysis has been reported between 0.2–2.6% in different studies [11, 49, 139]. A report illustrates a 38 year-old COVID-19 patient presenting with fever, dyspnea, and severe myalgia, with high creatine kinase (>42,670 U/L) and LDH (4301 U/La) and was diagnosed as viral myositis [232]. Another two cases of adult COVID-19 patients with lower extremity pain and weakness with rhabdomyolysis with high creatine kinase and LDH were reported [233, 234]. First case developed rhabdomyolysis on the 9th day of admission [233] and 2nd case presented to the hospital with rhabdomyolysis [234]. An isolated case of post-infectious myelitis has been reported from Germany in a COVID-19 patient [235].

Three cases of generalized brainstem type of myoclonus were reported from Spain, with normal CSF study in one patient (others not done) and normal imaging findings. However, nasopharyngeal RT-PCR for SARS-CoV-2 was positive in only one patient. In all these patients, EEG was showing mild diffuse slowing without any epileptic activity [236]. Paresthesias [51] and cutaneous hyperaesthesia [237] were reported as a presentation in COVID-19 patients. A case of COVID-19 patient with oropharyngeal dysphagia followed by aspiration pneumonia, taste impairment, impaired pharyngolaryngeal sensation, and nasopharyngeal contractile dysfunction with absent gag reflex was reported from Japan [238]. Visual symptoms were also reported in a few studies. Mao L et al. [32] reported visual impairment in 1.4% of the COVID-19 patients. Cases of optic neuritis [49], isolated central retinal artery occlusion [239], non-arteritic type of posterior ischaemic optic neuropathy (PION) [240] as a COVID-19...
manifestation were also reported. The summary of all the neurological manifestations reported in COVID-19 is given in Table 4.

Heterogeneity

The heterogeneity was high in most of the neurological manifestations studied except for hemorrhagic stroke (medium), cerebral venous thrombosis (low), seizure (low), and ataxia (low). The funnel plots were symmetric in hemorrhagic stroke, ataxia, seizures, cerebral venous thrombosis and myalgia, which is pointing towards no bias in the selection of publications that are included in the study. However, the funnel plots were asymmetric in other neurological manifestations studied, which pointed towards the heterogeneity in the studies undertaken or bias in the selection of publications included in the study.

Discussion

In this systematic review and meta-analysis, we assessed the neurological manifestations, risk factors, mortality, laboratory parameters, and imaging findings in those patients with neurological features. Involving 30,159 patients, our meta-analysis is the first and most comprehensive study about the neurological manifestations of COVID-19.

The most common neurological manifestations reported were smell and taste disturbances. Another interesting finding is the geographical variations in the frequency of smell and taste disturbances.
taste disturbances. High incidence of smell and taste disturbances were noted in studies from most of the European countries [54] while studies from Asian countries showed a lower incidence [32]. However, most of the studies which reported a higher incidence of smell and taste disturbances evaluated mainly olfactory and taste symptoms only and studied mild to moderate cases and excluded severe/ICU patients compared with studies with lower incidence. This bias might have caused under-reporting of smell and taste disturbances in severe/ICU patients or could also be because of decreased awareness of investigator about these symptoms at the beginning of the pandemic. Supporting our assumption, a study from Spain which evaluated 841 COVID-19 patients with neurological manifestations reported only 4.9% of cases of smell disturbances and 6.2% cases of taste disturbances [49]. Other possibilities for these variations are, the difference in the incidence of SARS-CoV-2 to tissues between populations, differences in the strain of mutated virus circulating in Europe compared with Asian countries. However, more studies are required to confirm these assumptions. Interestingly a study by Wan Y et al. [241] predicted that binding affinity between 2019-nCoV and human ACE2 may be enhanced by a single N501T mutation. Also, ACE2 receptors are highly expressed by sustentacular cells of the olfactory epithelium. Olfactory and taste disorders were more common in younger patients [52, 140] most occurs in the early stages as initial manifestations of the disease and even as the only manifestation of COVID-19. Hence, olfactory and gustatory disorders can be the initial and early manifestations of COVID-19 and early identification of these symptoms might lead to early diagnosis and disease containment.

Non-specific neurological manifestations could be just systemic features of a viral infection Similar to olfactory disturbances, the incidence of myalgia, headache, and dizziness also shows geographical variations with the highest incidence reported from Europe, the USA, and Chile. The incidence of non-specific symptoms was lower in children. We noticed that non-specific symptoms were higher among the studies conducted in health care workers. This may be due to increased knowledge and awareness of the symptoms and disease.

The most common type of acute CVD reported was an ischaemic stroke. Hemorrhagic stroke, deep cerebral venous thrombosis, SAH (both non-aneurysmal and aneurysmal), and TIA were also reported; however, with much lesser prevalence. Severe infection or ICU requirement, older age, cardiovascular risk factors, prior co-morbidities, and hypercoagulable lab parameters were found to be a risk factor for developing acute CVD [32, 33]. The apparent association of COVID-19 and stroke is likely due to the sharing of similar risk factors. The severity of COVID-19 has been proved to be directly related to the presence of co-morbidities like hypertension and DM. An earlier meta-analysis by Yang J et al. [242] comprising [46, 243] COVID-19 patients reported the prevalence of risk factors, hypertension in 21.1%, DM in 9.7%, and cardiovascular diseases in 8.4%. Also, hypercoagulable blood parameters as shown by Li Y et al. [33], can lead to ischaemic stroke and cerebral venous thrombosis. Nervous system involvement in SARS-CoV-2 infection can be due to direct invasion of neural tissues, inflammatory response, or immune dysregulation. The SARS-CoV-2 virus uses the ACE2 and TMPRSS2 for entry to the host cell and it is one of the main determinants of infectivity [241, 244]. Susceptibility to infection correlated with ACE2 expression in previous studies [245].

Very few retrospective studies showed meningoencephalitis as a presentation of COVID-19; however, there are multiple case reports from all over the world. The probable mechanism can again be direct invasion via the hematogenous route or retrograde pathway via peripheral nerve terminals. Two studies even showed higher levels of inflammatory cytokines in the CSF analysis of these patients [177, 181]. SARS-CoV-2 could trigger a seizure in predisposing patients through neurotropic mechanisms as explained earlier [188]. However, more evaluation is required in this field to find a temporal factor. All types of seizures were reported like febrile seizures, focal seizures, generalized tonic-clonic seizures, status epilepticus and myoclonic status epilepticus, NCSE and also brainstem type of myoclonus. Demyelinating disorders like ADEM, exacerbation of MS plaque, and the clinically isolated syndrome were all reported in COVID-19 patients.

Cases of GBS and its variants were also reported in COVID-19. Both post-infectious and pre-infectious pattern of GBS were reported. The most common type of GBS reported was AIDP. Other variants like AMAN, AMSAN, Miller Fisher syndrome, and facial diplegic variant were also reported. Patients presenting as GBS without any other typical symptoms of COVID-19 were also reported. Possible pathogenesis of GBS in COVID-19 includes immune dysregulation secondary to systemic hyper inflammation and cytokines produced as described by McGonagle et al. [246] and Quin et al. [247]. Hence, it is important to suspect and test for COVID-19 in those patients presenting with GBS and MFS. However, more studies are required to conclude that these cases were not just coincidental and COVID-19 itself is a trigger for GBS and MFS. GBS was also reported in other recent important viral infections like MERS-CoV [248] and Zika virus [243].

Change in laboratory parameters was also reported in COVID-19 patients with neurological manifestations like higher white cell and neutrophil counts, reduced lymphocyte and platelet counts, elevated CRP and D-dimer levels, and higher levels of creatine kinase, LDH, and myoglobin [12, 32, 33, 62].

High heterogeneity in our study could be because of differences in the selection of patients and ethnicity, the severity of the disease, co-morbidities, only a few studies evaluated neurological symptoms specifically, variation in the number of patients in different studies, or due to publication bias and differences in the methodology among the studies.
Comparison with previous systematic reviews

Earlier meta-analyses addressing general clinical features in COVID-19 were published. One such study showed myalgia in (28.5%; 95%CI 21.2–36.2), headache (14.0%; 95%CI 9.9–18.6), and dizziness (7.6%; 95%CI 0.0–23.5) [249]. Our results also found similar results for myalgia, headache, and dizziness, i.e. (19.3%; 95%CI 15.1–23.6), (14.7%; 95%CI 10.4–18.9), and (6.1%; 95%CI 3.1–9.2) respectively. Another similar meta-analysis also showed myalgia in (21.9%; 95%CI 17.7–26.4) and headache in (11.3%; 95%CI 8.9–14.0) [250]. One more study reported the prevalence of headache as (8.0%; 95%CI 5.7–10.2) [251]. However, no meta-analyses are published on the specific neurological manifestations till now.

Strengths and limitations

The strength of our study is that we did a comprehensive search in all the electronic databases. Study limitations include high heterogeneity in the estimation of the prevalence of some neurological manifestations, the inclusion of studies with very small sample size, and lack of meta-regression analysis. We excluded studies in languages other than English where translation was not possible. Most of the included studies were of moderate quality. More good-quality prospective cohort studies are required to establish that the neurological manifestations reported in the studies were not just coincidental.

Conclusions

In conclusion, our study showed neurological manifestations are common in COVID-19 and are even present as the only symptom without any other manifestation of the respiratory system involvement. Hence it is important to suspect every COVID-19 patient with neurological manifestations. In this pandemic, a neurologist needs to take necessary precautions while examining the patients presenting to them. Also, some symptoms like smell and taste disturbance can be used as a screening tool for SARS-CoV-2 infection and can help isolate suspected patients earlier to avoid the spread of the disease.

Author contributions TF and AP conceptualized the study and searched and screened the literature. PD and RNC extracted and analysed the data. RNC contributed to figures, tables, and interpretation of images. KC was involved in extraction of data. DJ, VNM, TF, and AP were involved in study design, data interpretation, and data analysis. RM and MP did the statistical analysis. AK drafted the manuscript, data collection, figures. VKS did literature search, drafted the manuscript, and contributed to study design. TF wrote the first draft of the manuscript with input from AP.

Data availability All data available on request.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing interests.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

1. de Wilde AH, Snijder EJ, Kikker M, van Hemert MJ (2018) Host factors in coronavirus replication. Curr TopMicrobiol Immunol 419:1–42. https://doi.org/10.1007/82_2017_25
2. Drexler JM, Coman VM, Drosten C (2014) Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir Res 101:45–56. https://doi.org/10.1016/j.antiviral.2013.10.013
3. de Wit E, van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14(8):523–534. https://doi.org/10.1038/nrmicro.2016.81
4. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733. https://doi.org/10.1056/NEJMoa2001017
5. Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5(4):562–569. https://doi.org/10.1038/s41564-020-0688-y
6. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7
7. Novel Coronavirus – China. World Health Organization. https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/. Published January 12, 2020. Accessed June 19, 2020
8. Chen X, Yu B (2020) First two months of the 2019 coronavirus disease (COVID-19) epidemic in China: real-time surveillance and evaluation with a second derivative model. Glob Health Res Policy 5(1):7. https://doi.org/10.1186/s41256-020-00137-4
9. Coronavirus Disease (COVID-19) - events as they happen. World Health Organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen. Published January 12, 2020. Accessed June 19, 2020
10. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323(11):1061–1069. https://doi.org/10.1001/jama.2020.1585
11. Guan W, Ni Z, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, du B, Li L, Zeng G, Yuen KY, Chan RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China
Medical Treatment Expert Group for Covid-19 (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382(18):1708–1720. https://doi.org/10.1056/NEJMa2002032

12. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J’, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

13. Wu C, Chen X, Cui Y, Xia J’, Zhou X, Xu S, Huang H, Zhang L, Zhou X, du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Zhou X, Chen D, Xiong W, Xu L, Zhou F, Jiang B, Cai J, Zheng J, Song Y (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 180(7):934–943. https://doi.org/10.1001/jamainternmed.2020.0994

14. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S (2008) Severe acute respiratory syndrome coronavirus causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 82(15):7264–7275. https://doi.org/10.1128/JVI.00737-08

15. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, Gibson-Corley KN, Meyerholz DK, McCray PB Jr (2016) Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 213(5):712–722. https://doi.org/10.1093/infdis/jiv499

16. Baig AM, Khaleeq A, Ali U, Syeda H (2020) Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 11(7):995–998. https://doi.org/10.1021/acschemneuro.0c00122

17. Tsai L, Hsieh S, Chao C et al (2004) Neuromuscular disorders in severe acute respiratory syndrome. Am J Med 116(11):1669–1673. https://doi.org/10.1016/j.amjmed.2004.05.019

18. Unapathy T, Kor AC, Venketasubramanian N, Lim CCT, Pang BC, Yeo TT, Lee CC, Lim PL, Ponnudurai K, Chua KL, Tan PH, Tai DYH, Ang SPB (2004) Large artery ischaemic stroke in sepsis. Acta Neurol Taiwanica 15(1):26–31. https://doi.org/10.1542/peds.113.1.e73

19. Hwang CS (2006) Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwanica 15(1):26–28

20. Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, Wang C, Song Z, Li S, Li X, Lv X, Qu X, Huang R, Liu W (2016) Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 59(3):163–169. https://doi.org/10.1159/000453066

21. Morloupolou S, Brown JR, Davies EG, Anderson G, Virasami A, Qasim W, Chong WK, Hubab M, Plagnol V, Desforges M, Jacques TS, Talbot PJ, Breuer J (2016) Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med 375(5):497–498. https://doi.org/10.1056/NEJMc1509458

22. Arabi YM, Harthi A, Hussein J, Bouchara A, Johani S, Hajeer AH, Saeed BT, Wabbi A, Saedy A, AlDabbagh T, Okaili R, Sadat M, Bakhly H (2015) Severe neurologic syndrome associated with Middle East respiratory syndrome coronavirus (MERS-CoV). Infection. 43(4):495–501. https://doi.org/10.1007/s15010-015-0720-y

23. Ann Yeh E, Collins A, Cohen ME, Duffner PK, Faden H (2004) Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. PEDIATRICS. 113(1):e73–e76. https://doi.org/10.1542/peds.113.1.e73

24. Kim J-E, Heo J-H, Kim H, Song SH, Park SS, Park TH, Ahn JY, Kim MK, Choi JP (2017) Neurological complications during treatment of Middle East Respiratory Syndrome. J Clin Neurol 13(3):227–233. https://doi.org/10.3988/jcn.2017.13.3.227

25. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

26. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

27. Wells GA, Shea B, O’Connell D, et al. The Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Published October 19, 2009. Accessed June 19, 2020

28. Schulz KF, Altman DG, Moher D, for the CONSORT Group (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ 340(mar23 1):c332–c332. https://doi.org/10.1136/bmj.c332

29. Viechtbauer W. Conducting meta-analyses in R with the metafor Package. J Stat Softw. 2010;36(3). https://doi.org/10.18637/jss.v036.i03

30. Kontopanetelis E, Reeves D (2012) Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a comparison between DerSimonian–Laird and restricted maximum likelihood. Stat Methods Med Res 21(6):657–659. https://doi.org/10.1177/0962280211413451

31. Higgins JPT (2003) Measuring inconsistency in meta-analyses. BMJ. 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

32. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X, Li Y, Hu B (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 77(6):683–690. https://doi.org/10.1001/jamaneurol.2020.1127

33. Li Y, Li M, Wang M, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol. Published online July 2, 2020:svn-2020-000431. https://doi.org/10.1136/svn-2020-000431

34. Lu L, Xiong W, Liu D, Liu J, Yang D, Li N, Mu J, Guo J, Li W, Wang G, Gao H, Zhang Y, Lin M, Chen L, Shen S, Zhang H, Sander JW, Luo J, Chen S, Zhao Z (2020) New onset acute symptomatic seizure and risks factors in coronavirus disease 2019: a retrospective multicenter study. Epilepsia. 61(e6):e49–e53. https://doi.org/10.1111/epi.16524

35. Klok FA, Krup MJHA, van der Meer NJM, Arboos MS, Gommers D, Kant KM, Kapteijn FHH, van Paassen J, Stals MAM, Huisman MV, Endeman H (2020) Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res 191:148–150. https://doi.org/10.1016/j.thromres.2020.04.041

36. Lodigiani C, Iapichino G, Cencioni L, Ferrazzi P, Sebastian T, Kucher N, Studt JD, Sacco C, Alexia B, Sandri MT, Barco S, Humanitas COVID-19 Task Force (2020) Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 191:9–14. https://doi.org/10.1016/j.thromres.2020.04.024

37. Fraissé M, Logre E, Pajot O, Mentec H, Plantefève G, Contou D (2020) Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Crit Care 24(1):275. https://doi.org/10.1186/s13054-020-03025-y

38. Dogra S, Jain R, Cao M, Bilalogue S, Zagrag D, Hochman S, Lewis A, Melmed K, Hochman K, Horwitz L, Galetta S, Bergen J (2020) Hemorrhagic stroke and anticoagulation in COVID-19. J Stroke Cerebrovasc Di 29(8):104984. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104984
Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8(5):475–481. https://doi.org/10.1016/S2213-2600(20)30079-5

65. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, Wang T, Guo W, Chen J, Ding C, Zhang X, Huang J, Han M, Li S, Luo X, Zhao J, Ning Q (2020) Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study [published correction appears in BMJ. 2020 Mar 31;368:m1295]. BMJ 368:m1091 Published 2020 Mar 26. https://doi.org/10.1136/bmj.m1091

66. Du Y, Tu L, Zhu P et al (2020) Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am J Respir Crit Care Med 210(11):1372–1379. https://doi.org/10.1164/rcrn.2020-05430C

67. Zheng Y, Xu H, Yang M, Zeng Y, Chen H, Liu R, Li Q, Zhang N, Wang D (2020) Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. J Clin Virol 127:104366. https://doi.org/10.1016/j.jcvi.2020.104366

68. Rodriguez-Morales AJ, Rodriguez-Morales AG, Méndez CA, Hernández-Botero S. Tracing new clinical manifestations in patients with COVID-19 in Chile and its potential relationship with the SARS-CoV-2 divergence [published online ahead of print, 2020 Apr 18]. Curr Trop Med Rep 2020;1:1–4. https://doi.org/10.1007/s40745-020-00205-2

69. Wang F, Yang Y, Dong K, Yan Y, Zhang S, Ren H, Yu X, Shi X (2020) Clinical characteristics of 28 patients with diabetes and COVID-19 in Wuhan, China. Endoc Pract 26(6):666–674. https://doi.org/10.4158/EP-2020-0108

70. Sun D, Li H, Lu X-X, Xiao H, Ren J, Zhang FR, Liu ZS (2020) Clinical features of 85 fatal cases of COVID-19 in Wuhan, China, [published online ahead of print, 2020 Mar 16]. Clin Infect Dis. cia272. https://doi.org/10.1093/cid/cia272

71. Sun D, Li H, Lu X-X, Xiao H, Ren J, Zhang FR, Liu ZS (2020) Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China [published online ahead of print, 2020 Mar 16]. Clin Infect Dis. cia272. https://doi.org/10.1093/cid/cia272

72. Sun D, Li H, Lu X-X, Xiao H, Ren J, Zhang FR, Liu ZS (2020) Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single-center’s observational study. World J Pediatr 16(3):251–259. https://doi.org/10.1007/s12519-020-00354-4

73. Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, Chen H, Wang D, Liu N, Liu D, Chen G, Zhang Y, Li D, Li J, Lian H, Niu S, Zhang L, Zhang J (2020) Characteristics of COVID-19 infection in Beijing. J Inf Secur 80(4):401–406. https://doi.org/10.1002/jis.2020.02.018

74. Zhou F, Yu T, Du R et al (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3

75. Du N, Chen H, Zhang Q et al (2020) A case series describing the epidemiology and clinical characteristics of COVID-19 infection in Jilin Province. Virulence 11(1):482–485. https://doi.org/10.1080/21505594.2020.1767357

76. Liu K, Fang Y-Y, Deng Y et al (2020) Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J 133(9):1025–1031. https://doi.org/10.1097/CMA. 0000000000000744

77. Tostmann A, Bradley J, Boussem T, et al. (2020) Strong associations and moderate predictive value of early symptoms for SARS-CoV-2 test positivity among healthcare workers, the Netherlands, March 2020. Eurosurveillance. 25(16). https://doi.org/10.2807/ 1560-7917.ES.2020.25.16.2000508

78. Yan Y, Yang Y, Wang F, Ren H, Zhang S, Shi X, Yu X, Dong K (2020) Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Res Care 8(1): e001343. https://doi.org/10.1136/bmjdrc-2020-001343

79. Xu XW, Wu XJ, Jiang XG, Xu KJ, Yang LJ,Ma CL, Li SB, Wang HY, Zhang S, Gao HN, Sheng JF, Cai HL, Qiu YQ, Li LJ (2020) Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series [published correction appears in BMJ. 2020 Feb 27;368:m792]. BMJ 368:m606 Published 2020 Feb 19. https://doi.org/10.1136/bmj.m606

80. Lian J, Cai H, Hao S, Jin X, Zhang XL, Zheng L, Jia HY, Hu JH, Zhang SY, Yu GD, Gu JQ, Ye CY, Jin CL, Lu YF, Sheng JF, Yang YD (2020) Comparison of epidemiological and clinical characteristics of COVID-19 patients with and without Wuhan exposure. J Zhejiang Univ-Sci B 21(5):369–377. https://doi.org/10.1631/jzus.B2000112

81. Gupta N, Agrawal S, Ish P, et al. (2020) Clinical and epidemiologic profile of the initial COVID-19 patients at a tertiary care centre in India. Monaldi Arch Chest Dis. 90(1). https://doi.org/10.4081/monaldi.2020.1294

82. Zhang X, Cai H, Hu J, Liu J, Gu J, Zhang S, Ye C, Lu Y, Jin C, Yu G, Jia H, Zhang Y, Sheng J, Li L, Yang Y (2020) Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. Int J Infect Dis 94: 81–87. https://doi.org/10.1016/j.ijid.2020.03.040

83. Li J, Li S, Cai Y et al (2020) Epidemiological and clinical characteristics of 17 hospitalized patients with 2019 novel coronavirus infections outside Wuhan, China. Epidemiology. https://doi.org/10.1101/2020.02.11.2002053

84. Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TWH, Chu MY, Ng YY, Lo J, Chan J, Tam AR, Shum HP, Chan V, Wu AKL, Sin KM, Leung WS, Law WL, Lung DC, Sin S, Yeung P, Yip CCY, Zhang RR, Fung AYF, Yan EYW, Leung KH, Ip JD, Chu AWH, Chan WM, Ng ACK, Lee R, Fung K, Yeung A, Wu TC, Chan JWM, Yan WW, Chan WM, Chan JFW, Lie AKW, Tsang OTY, Cheng VCC, Que TL, Lau CS, Chan KH, To KKw, Yuen KY (2020) Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 395(10238):1695–1704. https://doi.org/10.1016/S0140-6736(20)31042-4

85. Wu H, Zhu H, Yuan C, Yao C, Luo W, Shen X, Wang J, Shao J, Xiang Y (2020) Clinical and immune features of hospitalized pediatric patients with coronavirus disease 2019 (COVID-19) in Wuhan, China. JAMA Netw Open 3(6):e2010895. https://doi.org/10.1001/jamanetworkopen.2020.10895

86. Argenziano MG, Bruce SL, Slater CL et al (2020) Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ 369:m1996. Published 2020 May 29. https://doi.org/10.1136/ bmj.m1996

87. Israelens SB, Kristiansen KT, Hindsberger B et al (2020) Characteristics of patients with COVID-19 pneumonia at Hvidovre Hospital, March–April 2020. Dan Med J 67(6): A05200313 Published 2020 May 15

88. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, Aaron JG, Claassen J, Rabbani LRE, Hastie J, Hoehman BR, Salazar-Schicchi J, Yip NH, Brodie D, O’Donnell MR (2020) Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 395(10239):1763–1770. https://doi.org/10.1016/S0140-6736(20)31819-2

89. Kluttyans-van den Bergh MFQ, AGM B, Pas SD et al (2020) Prevalence and clinical presentation of health care workers with symptoms of coronavirus disease 2019 in 2 Dutch hospitals during...
an early phase of the pandemic. JAMA Netw Open 3(5):e209673. https://doi.org/10.1001/jamanetworkopen.2020.9673

90. Nowak B, Szymański P, Pańkowski I, et al. Clinical characteristics and short-term outcomes of coronavirus disease 2019: retrospective, single-center experience of designated hospital in Poland. Pol Arch Intern Med. Published online May 18, 2020. https://doi.org/10.20452/pamw.15361

91. Lai X, Wang M, Qin C, Tan L, Ran L, Chen D, Zhang H, Shang K, Xia C, Wang S, Xu S, Wang W (2020) Coronavirus disease 2019 (COVID-2019) infection among health care workers and implications for prevention measures in a tertiary Hospital in Wuhan,China. JAMA Netw Open 3(5):e209666. https://doi.org/10.1001/jamanetworkopen.2020.9666

92. Wang X, Fang J, Zhu Y, et al. Clinical characteristics of non-critically ill patients with novel coronavirus infection (COVID-19) in a Fangcang Hospital. Clin Microbiol Infect. Published online April 2020:S1198743X20301774. https://doi.org/10.1016/j.cmi.2020.03.032

93. Liu Z, Jin C, Wu CC, Liang T, Zhao H, Wang Y, Wang Z, Li F, Zhou J, Cai S, Zeng L, Yang J (2020) Association between initial chest CT or clinical features and clinical course in patients with coronavirus disease 2019 pneumonia. Korean J Radiol 21(6):736–745. https://doi.org/10.3348/kjr.2020.0171

94. Huang Q, Deng X, Li Y, Sun X, Chen Q, Xie M, Liu S, Qu H, Liu S, Wang L, He G, Gong Z (2020) Clinical characteristics and drug therapies in patients with the common-type coronavirus disease 2019 in Hunan, China. Int J Clin Pharm 42(3):837–845. https://doi.org/10.1007/s11096-020-01031-2

95. Hong KS, Lee KH, Chung JH, Shin KC, Choi EY, Jin HJ, Jang JG, Lee W, Ahn JH (2020) Clinical features and outcomes of 98 patients hospitalized with SARS-CoV-2 infection in Daegu, South Korea: a brief descriptive study. Yonsei Med J 61(5):431–437. https://doi.org/10.3349/ymj.2020.61.5.431

96. Huang R, Zhu L, Xue L et al (2020) Clinical findings of patients with coronavirus disease 2019 in Jiangsu province, China: a retrospective, multi-center study. Santiago H da C, ed. PLoS Negl Trop Dis 14(5):e0008280. https://doi.org/10.1371/journal.pntd.0008280

97. Ji M, Yuan L, Shen W et al (2020) Characteristics of disease progress in patients with coronavirus disease 2019 in Wuhan, China. Epidemiol Infect 148:e94. Published 2020 May 6. https://doi.org/10.1017/S0950268820000977

98. Wang D, Yin Y, Hu C, Liu X, Zhang X, Zhou S, Jian M, Xu H, Prowle J, Hu B, Li Y, Peng Z (2020) Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care 24(1):188. https://doi.org/10.1186/s13054-020-02895-6

99. Aggarwal S, Garcia-Telles N, Aggarwal G, Lavie C, Lippi G, Henry BM (2020) Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): early report from the United States. Diagnosis 7(2):91–96. https://doi.org/10.1515/dx-2020-0046

100. Zhao X-Y, Xu X-X, Yin H-S, Hu QM, Xiong T, Tang YY, Yang AY, Yu BP, Huang ZP (2020) Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infect Dis 20(1):311. https://doi.org/10.1186/s12879-020-05010-w

101. Meng Y, Wu P, Lu W et al (2020) Sex-specific clinical characteristics and prognosis of coronavirus disease-19 infection in Wuhan, China: A retrospective study of 168 severe patients. Perelman S, ed. PLoS Pathog 16(4):e1008520. https://doi.org/10.1371/journal.ppat.1008520

102. Yao Q, Wang P, Wang X, et al. Retrospective study of risk factors for severe SARS-CoV-2 infections in hospitalized adult patients. Pol Arch Intern Med. Published online April 24, 2020. https://doi.org/10.20452/pamw.15312

103. Zhu L, Wang J, Huang R, Liu L, Zhao H, Wu C, Zhu C (2020) Clinical characteristics of a case series of children with coronavirus disease 2019. Pediatr Pulmonol 55(6):1430–1432. https://doi.org/10.1002/ppul.24767

104. Kim ES, Chin BS, Kang CK, Kim NJ, Kang YM, Choi JP, Oh DH, Kim JH, Koh B, Kim SE, Yun NR, Lee JH, Kim JY, Kim Y, Bang JH, Song KH, Kim HB, Chung KH, Oh MD, on behalf of the Korea National Committee for Clinical Management of COVID-19 (2020) Clinical course and outcomes of patients with severe acute respiratory syndrome coronavirus 2 infection: a preliminary report of the first 28 patients from the Korean cohort study on COVID-19. J Korean Med Sci 35(13):e142. https://doi.org/10.3346/jkms.2020.35.e142

105. Bhatraju PK, Ghassemi M, Cochrane E, Mehta A, Abinader V, O'Mahony S, Mokhtar AN, Papadimitriou C, Patil D (2020) Critical care resources and outcomes during the COVID-19 pandemic: a multi-center study in Wenzhou city, Zhejiang province, China. J Crit Care 55:102038. https://doi.org/10.1016/j.jcrc.2020.102038

106. Huang R, Zhu L, Xue L et al (2020) Clinical findings of patients with coronavirus disease 2019 in Jiangsu province, China: a retrospective, multi-center study. Santiago H da C, ed. PLoS Negl Trop Dis 14(5):e0008280. https://doi.org/10.1371/journal.pntd.0008280

107. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Hu Y, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 130(5):2620–2629. https://doi.org/10.1172/JCI137244

108. Yang W, Cao Q, Qin L, Wang X, Cheng Z, Pan A, Dai J, Sun Q, Zhao F, Qu J, Yan F (2020) Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19) in people of all ages. Lancet Infect Dis 20(6):689–696. https://doi.org/10.1016/S1473-3099(20)30198-5

109. Chosk S, Wu J, Hu B, Liu Y, Song Q, Chen D (2020) Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. J Matern Child Health 24(3):347–350. https://doi.org/10.1080/13674552.2020.1805199

110. Xu Y-H, Dong J-H, An W-M, Lv XY, Yin XP, Zhang JZ, Dong L, Ma X, Zhang HJ, Gao BL (2020) Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Inf Secur 80(4):388–393. https://doi.org/10.1016/j.jinf.2020.02.016

111. Xu X, Xu C, Qu J, Zhang L, Jiang S, Huang D, Chen B, Zhang Z, Guan W, Ling Z, Jiang R, Hu T, Ding Y, Lin L, Gan Q, Luo L, Tang X, Liu J et al (2020) Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2 infection in Wuhan, China: a single-center experience of designated hospital in Poland. Pol Arch Intern Med. Published online June 17, 2020:joinm.2020.13089. https://doi.org/10.1111/joinm.2020.13089

112. CDC COVID-19 response team. Characteristics of health care personnel with COVID-19 - United States, February 12-April 9, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):477–481. Published 2020 Apr 17. https://doi.org/10.15585/mmwr.mm2015165

113. Levinson R, Elbaz M, Ben-Ami R, Shasha D, Levinson T, Choshen G, Petrov K, Gadot A, Parun Y (2020) Time course of anosmia and dysgeusia in patients with mild SARS-CoV-2 infection. Infect Dis (Lond) 52(8):600–602. https://doi.org/10.1111/jid.15746

114. Zhai X, Yuan W, Huang K, et al. Clinical features and short-term outcomes of 114 elderly patients with COVID-19 in Wuhan, China: a single-center, retrospective, observational study. SSRN Electron J. Published online 2020. https://doi.org/10.2139/ssrn.3548774
115. Wang D, Li R, Wang J, et al. Correlation analysis between disease severity and clinical and biochemical characteristics of 143 cases of COVID-19 in Wuhan, China: a descriptive study. BMC Infect Dis. 2020;20(1):519. Published 2020 Jul 16. https://doi.org/10.1186/s12879-020-05242-w

116. Chen C, Cao M, Peng L, et al. Coronavirus disease-19 among children outside Wuhan, China. SSRN Electron J. Published online 2020. https://doi.org/10.2139/ssrn.3546071

117. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. Published online March 16, 2020;ciaa270. https://doi.org/10.1093/cia/ciaa270

118. Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, Peng Z, Pan H (2020) Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol 127:104364. https://doi.org/10.1016/j.jcv.2020.104364

119. Tomlins J, Hamilton F, Gunning S, Sheehy C, Moran E, Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. J Clin Infect Dis. 2020;20(1):519. Published 2020 Jul 16. https://doi.org/10.1093/cia/ciaa270

120. Zhao Z, Xie J, Yin M, et al. Clinical and laboratory profiles of 75 hospitalized patients with novel coronavirus disease 2019 in Hefei, China. Infectious Diseases (except HIV/AIDS); 2020. https://doi.org/10.1016/j.jinf.2020.04.020

121. Huang Y, Yang R, Xu Y, Gong P. Clinical characteristics of 36 non-survivors with COVID-19 in Wuhan, China. Infectious Diseases (except HIV/AIDS); 2020. https://doi.org/10.1101/2020.02.27.20029009

122. Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS (2020) Radiological findings from 81 patients with COVID-19 pneumonia: a retrospective study in a single center in Wuhan, China. J Med Virol 92(7):807-813. https://doi.org/10.1002/jmv.25793

123. Deng Y, Liu W, Liu K, Fang YY, Sheng G, Chen P, Li G, Wu S, Zhang B, Wang C, Miao X, Li J, Liu W, Zhang H (2020) Clinical characteristics of 54 medical staff with COVID-19: a retrospective study in a single center in Wuhan, China. J Med Virol 92(7):807-813. https://doi.org/10.1002/jmv.25793

124. Chu J, Yang N, Wei Y, Yue H, Zhang F, Zhao J, He L, Sheng G, Chen P, Li G, Wu S, Zhang B, Zhang S, Wang C, Miao X, Li J, Liu W, Zhang H (2020) Clinical characteristics of 54 medical staff with COVID-19: a retrospective study in a single center in Wuhan, China. J Med Virol 92(7):807-813. https://doi.org/10.1002/jmv.25793

125. Ihlé-Hansen H, Berge T, Tveita A, et al. (2020) COVID-19: Symptoms, course of illness and use of clinical scoring systems for the first 42 patients admitted to a Norwegian local hospital. Tidsskr Nor Laegeforen. 140(7):https://doi.org/10.4045/tidsskr.20.0301. Published 2020 Apr 10. https://doi.org/10.4045/tidsskr.20.0301

126. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, Satin MJ, Campion TR Jr, Nahid M, Ringel JB, Hoffman KL, Aalshak MN, Li HA, Wehmeyer GT, Rajan M, Roshnathyak E, Hupert N, Horn EM, Martinez FJ, Gulick RM, Safford MM (2020) Clinical characteristics of COVID-19 in New York City. N Engl J Med 382(24):2372–2374. https://doi.org/10.1056/NEJMc2010419

127. Cao J, Tu W-I, Cheng W, et al. Clinical features and short-term outcomes of 102 patients with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. Published online March 13, 2020;ciaa243. https://doi.org/10.1093/cia/ciaa243

128. Chang D, Lin M, Wei L, Xie L, Zhu G, dela Cruz CS, Sharma L (2020) Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA 323(11):1092–1093. https://doi.org/10.1001/jama.2020.1623

129. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q, Liao J, Yang H, Hou W, Zhang Y (2020) Clinical characteristics and intrathecal vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395(10226):809–815. https://doi.org/10.1016/S0140-6736(20)30360-3

130. Zhang W, He W, Yu X, Hu D, Bao M, Liu H, Zhou J, Jiang H (2020) Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Int Secur 80(6):639–645. https://doi.org/10.1016/j.jisec.2020.03.019

131. Mo P, Xing Y, Xiao Y, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. J Clin Infect Dis. 2020;20(1):519. Published 2020 Jul 16. https://doi.org/10.1093/cia/ciaa270

132. Han Y, Feng Z, Sun L, et al. A comparative-descriptive analysis of clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395(10226):809–815. https://doi.org/10.1016/j.jisec.2020.03.019

133. Xu T, Chen C, Zhu Z, Cui M, Chen C, Dai H, Xue Y (2020) Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int J Infect Dis 94:68–71. https://doi.org/10.1016/j.ijid.2020.03.022

134. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Faday ZA, Jacobi A, Li K, Li, Shen H (2020) CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295(1):202–207. https://doi.org/10.1148/radiol.2020200230

135. Shi H, Han X, Jiang N, Cao Y, Alwardi O, Gu J, Fan Y, Zhang C (2020) Radiologic findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20(4):425–434. https://doi.org/10.1016/S1473-3099(20)30086-4

136. Yang L, Liu J, Zhang R, Li M, Li Z, Zhou X, Hu C, Tian F, Zhou F, Lei Y (2020) Epidemiologic and clinical features of 200 hospitalized patients with coronavirus disease 2019 outside Wuhan, China: a descriptive study. J Clin Virol 129:104475. https://doi.org/10.1016/j.jcv.2020.104475

137. Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. Am J Roentgenol 214(5):1072–1077. https://doi.org/10.2214/AJR.20.22976

138. Han Y, Feng Z, Sun L, et al. A comparative-descriptive analysis of clinical characteristics of 2019 coronavirus-infected children and adults. J Med Virol. Published online April 17, 2020:jmv.25835. https://doi.org/10.1002/jmv.25835

139. Wang Y, Lu X, Li Y, Chen H, Chen T, Su N, Huang F, Zhou J, Zhang B, Yan F, Wang J (2020) Clinical course and outcomes of 344 intensive care patients with COVID-19. Am J Respir Crit Care Med 2011(11):1430–1434. https://doi.org/10.1164/rccm.202003-0736LE

140. Giliani S, Roditi R, Naraghi M (2020) COVID-19 and anosmia in Tehran, Iran. Med Hypotheses 141:109757. https://doi.org/10.1016/j.mehy.2020.109757

141. Kaye R, Chang CWD, Kazahaya K, Brereton J, Denny JC (2020) COVID-19 anosmia reporting tool: initial findings. Otolaryngol Neck Surg 163(1):132–134. https://doi.org/10.1177/0194599820922992

142. Bagheri SHR, Asghari AM, Farhadi M et al (2020) Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak. Otolaryngology. https://doi.org/10.1016/j.ijid.2020.03.23.20041889
173. Sharifi-Razavi A, Karimi N, Zarvari A, Cheraghmakan H, Baghbanian SM. Ischemic stroke associated with novel coronavirus 2019: a report of three cases. Int J Neurosci Published online June 17, 2020:1–5. https://doi.org/10.1080/00207454.2020.1782902

174. Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takaminoo J, Ueno M, Sakata K, Kondo K, Myose N, Nakao A, Takeda M, Haro H, Inoue O, Suzuki-Inoue K, Kubokawa K, Ogihara S, Sasaki T, Kinouchi H, Kojin H, Ito M, Onishi H, Shimizu T, Sasaki Y, Enomoto N, Ishihara H, Furuya S, Yamamoto T, Shimada S (2020) A first case of meningitis/encephalitis associated with SARS-CoV-2. Int J Infect Dis 94:55–58. https://doi.org/10.1016/j.ijid.2020.03.062

175. Huang YH, Jiang D, Huang JT (2020) SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav Immun 87:149. https://doi.org/10.1016/j.bbi.2020.05.012

176. Domingues RB, Mendes-Correa MC, de Moura Leite FBV, Sabino EC, Sararini DZ, Claro I, Santos DW, de Jesus JG, Ferreira NE, Romano CM, Soares CAS First case of SARS-CoV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J Neurol Published online June 20, 2020. https://doi.org/10.1007/s00410-020-09996-w

177. Farhadian S, Glick LR, Vogels CBF, Thomas J, Chiarella J, Farhadian S, Glick LR, Vogels CBF, Thomas J, Chiarella J, Duong L, Xu P, Liu A (2020) Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain Behav Immun 87:33. https://doi.org/10.1016/j.bbi.2020.04.024

178. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus Published online March 21, 2020. https://doi.org/10.7759/cureus.7352

179. Espinosa PS, Rizvi Z, Sharma P, Hindi F, Filatov A. Neurological complications of coronavirus disease (COVID-19): encephalopathy, MRI brain and cerebrospinal fluid findings: case 2. Cureus. Published online May 2, 2020. https://doi.org/10.7759/cureus.7930

180. Hepburn M, Mullaguri N, George P, Hantus S, Punia V, Bhimraj A, Dev D, Moudgil H, Ahmad N (2020) Lessons of the month 1: a case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clin Med 20(3):293–294. https://doi.org/10.7861/clinmed.2020-0182

181. Zanin L, Saraceno G, Panciari PP, Renisi G, Signorini L, Migliorati K, Fontanella MM (2020) SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir 162(7):1491–1494. https://doi.org/10.1007/s00701-020-04374-x

182. Yin R, Feng W, Wang T, et al. Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019. J Med Virol. Published online June 29, 2020:jmv.25888. https://doi.org/10.1002/jmv.25888

183. Afshar H, Yassin Z, Kalantari S, Aloosh O, Lotfi T, Moghaddasi M, Sadeghipour A, Emamikhah M. Evolution and resolution of COVID-19–related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anaemia. Neurol Neuromun Nerv Immunol Neuroinflammation 7(5):e789. https://doi.org/10.1212/NXI.0000000000000789

184. Al-olama M, Rashid A, Garozzo D (2020) COVID-19-associated acute hemorrhagic necrotizing encephalopathy. J Neurol Sci 415:116941.https://doi.org/10.1016/j.jns.2020.116941

185. Sohal S, Mansur M (2020) COVID-19 presenting with seizures. I DCases 20:e00782. https://doi.org/10.1007/j.12028-020-01006-6

186. Somani S, Pati S, Gaston T, Chitlangia A, Agnihotri S (2020) Delayed posthypoxic necrotizing leukoencephalopathy. J Neurol Sci 415:116943.https://doi.org/10.1016/j.jns.2020.116943

187. Sabino EC, Salarini DZ, Claro I, Santos DW, de Jesus JG, Inglese M, Farinini D (2020) Acute disseminated encephalomyelitis complicated with intracranial hemorrhage: a case report. Acta Neurol Scand 2020;43:102216. https://doi.org/10.1111/aus.1244. https://doi.org/10.1002/acn3.1212

188. Dugue R, Cay-Martínez KC, Tkachuk KT, Garcia JA, Chauhan LV, Lipkin WI, Mishra N (2020) Neurologic manifestations in an inpatient with SARS-CoV-2 infection. Clin Med 20(3):293–294. https://doi.org/10.7861/clinmed.2020-0182

189. Sohal S, Mansur M (2020) COVID-19 presenting with seizures. IDCases 20:e00782. https://doi.org/10.1007/j.12028-020-01006-6

190. Dixon L, Varley J, Gontsarova A, Mallon D, Toma F, Muir D, Luqmami A, Jenkins HK, Nicholas R, Jones B, Everitt A (2020) COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anaemia. Neurol Neuromun Nerv Immunol Neuroinflammation 7(5):e789. https://doi.org/10.1212/NXI.0000000000000789

191. Karimi N, Sharifi Razavi A, Roshani N (2020) Frequent convulsive seizures in an adult patient with COVID-19: a case report. Iran Red Crescent Med J 22(3). https://doi.org/10.5812/ircmj.10282

192. Yajna Y, Cushman S, Akinci C, Kocaman AS (2020) Transient cortical blindness in COVID-19 pneumonia: a PRES-like syndrome: case report. J Neurol Sci 413:116858. https://doi.org/10.1016/j.jns.2020.116858

193. Poyiadji N, Shahin G, Nourdiner D, Stone M, Patel S, Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. Published online March 31, 2020:201187. https://doi.org/10.1148/radiol.2020201187

194. Radmanesh A, Derman A, Ishida K (2020) COVID-19-associated delayed posthypoxic necrotizing leukencephalopathy. J Neurol Sci 415:116945. https://doi.org/10.1016/j.jns.2020.116945

195. Hayashi M, Sabashi Y, Baba Y, Okura H, Shimohata T (2020) Neurologic manifestations in an infant with COVID-19. Neurology 94(24):1100–1102. https://doi.org/10.1212/WNL.0000000000009652

196. Wang PF, Craik S, Newman P, Makain A, Srinivasan K, Crawford E, Dev D, Moudgil H, Ahmad N (2020) Lessons of the month 1: a case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clin Med 20(3):293–294. https://doi.org/10.7861/clinmed.2020-0182

197. Kalantari S, Aloosh O, Lotfi T, Moghaddasi M, Sadeghipour A, Emamikhah M Evolution and resolution of COVID-19–related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anaemia. Neurol Neuromun Nerv Immunol Neuroinflammation 7(5):e789. https://doi.org/10.1212/NXI.0000000000000789

198. Novi G, Rossi T, Pedemonte E, Saita L, Rolla C, Roccuta Gi L, Inglese M, Farinini D (2020) Acute disseminated paraclinical follow up study of a case. Mult Scler Relat Disord 2020;43:102216. https://doi.org/10.1016/j.msard.2020.102216
encephalomyelitis after SARS-CoV-2 infection. Neurrol - Neuroimmunol Neuroinflammation 7(5):e797. https://doi.org/10.1211/NXI.0000000000000797

202. Beach SR, Praschan NC, Hogan C, Dotson S, Merideth F, Kontos N, Fricchione GL, Smith FA (2020) Delirium in COVID-19: a case series and exploration of potential mechanisms for central nervous system involvement. Gen Hosp Psychiatry 65:47–53. https://doi.org/10.1016/j.genhospsy.2020.05.008

203. Alkeridi WA, Almghlouth I, Alrashed A, Alayed K, Binkhamis K, Alsharidi A, Liu-Ambrose T (2020) A unique presentation of delirium in a patient with otherwise asymptomatic COVID-19. J Am Geriatr Soc 68(7):1382–1384. https://doi.org/10.1111/jgs.16536

204. Neerland BE, Dobloug A, Nore KG, Mikaelsen EE, Halsen A, Ahmed MV. COVID-19 in an elderly woman with acute functional decline. COVID-19 păvist hos eldre kvinne med akutt funksjonssvikt. Tidsskr Nor Laegeforen. 2020;140(7):https://doi.org/10.4045/tidsskr.2020.0307. Published 2020 Apr 9.

205. Yin R, Feng W, Wang T, et al. Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019. J Med Virol. Published online June 29, 2020:jmv.25888. https://doi.org/10.1002/jmv.25888

206. Zhao H, Shen D, Zhou H, Liu J, Chen S (2020) Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol 19(5):383–384. https://doi.org/10.1016/S1474-4422(20)30109-5

207. Camdessanche J-P, Morel J, Pozzetto B, Paul S, Tholance Y, Coen M, Jeanson G, Culebras Almeida LA, Hübers A, Stierlin F, Padroni M, Mastrangelo V, Asioli GM, Pavolucci L, Abu-El Otmani H, El Moutawakil B, Rafai M-A et al (2020) Covid-19 (2020) Guillain-Barré syndrome following COVID-19: a case report and review of recent literature. J Peripher Nerv Syst 25(2):204–207. https://doi.org/10.1111/jns.12382

208. Kilinc D, van de Pasch S, Doets AY, Jacobs BC, van Vliet J, Garssen MPJ. Guillain-Barré syndrome after SARS-CoV-2 infection. Eur J Neurol. Published online June 13, 2020:ene.14398. https://doi.org/10.1111/ene.14398

209. Sedaghat Z, Karimi N (2020) Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci 76:233–235. https://doi.org/10.1016/j.jocn.2020.04.062

211. Bigaut K, Mallaret M, Baloglu S, Nemoz B, Morand P, Baicry F, Lascano AM, Epiney J, Coen M, et al. SARS-CoV-2 and Guillain-Barré syndrome in coronavirus disease 2019 (COVID-19): a case report. J Clin Neuroimmunol Neuroinflammation 7(4):e93–e94. https://doi.org/10.1080/23977681.2020.187902. Published online May 1, 2020. https://doi.org/10.1080/23977681.2020.187902

212. Alberti P, Beretta S, Paul S, Leoni I, Reny JL, Schibler M, Serratrice J (2020) Guillain-Barré syndrome following COVID-19 infection. Neurol - Neuroimmunol Neuroinflammation 7(5):e785. https://doi.org/10.1001/ene.2020.04449-8

213. Appollonio AID, Balaan M, Bhanot N (2020) Guillain-Barré syndrome associated with SARS-CoV-2 infection. ICDCases 20:e00771. https://doi.org/10.1016/j.jcide.2020.e00771

214. Ottaviani D, Boso F, Tranquillini E, Gapieni I, Pedrotti G, Cozzo S, Guerrera GM, Gioiello MT (2020) Early Guillain-Barré syndrome in coronavirus disease 2019 (COVID-19): a case report from an Italian COVID-hospital. Neurosci 41(6):1351–1354. https://doi.org/10.1017/s10072-020-04449-8

215. Rumeileh S, Piscaglia MG, Querzani P, Callegarini C, Foschi M, Balaan M, Bhanot N (2020) Guillain-Barré syndrome in patients with antibodies against SARS-COV-2. Eur J Neurol. Published online June 13, 2020:ene.14383. https://doi.org/10.1111/ene.14383
00000000000000009700. https://doi.org/10.1212/WNL.00000000000009700

231. Abdelnour L, Eltahir Abdalla M, Babiker S (2020) COVID 19 infection presenting as motor peripheral neuropathy. J Formos Med Assoc 119(6):1119–1120. https://doi.org/10.1016/j.jfma.2020.04.024

232. Zhang Q, Shan KS, Minalyan A, O’Sullivan C, Nace T. A rare presentation of coronavirus disease 2019 (COVID-19) induced viral myositis with subsequent rhabdomyolysis. Cureus Published online May 12, 2020. https://doi.org/10.7759/cureus.8074

233. Jin M, Tong Q (2020) Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis 26(7):1618–1620. https://doi.org/10.3201/eid2607.200445

234. Suwanwongse K, Shabarek N. Rhabdomyolysis as a presentation of 2019 novel coronavirus disease. Cureus Published online April 6, 2020. https://doi.org/10.7759/cureus.7561

235. Munz M, Wessendorf S, Koretiss G, Tewald F, Baegi R, Krämer S, Geissler M, Reinhard M (2020) Acute transverse myelitis after COVID-19 pneumonia. J Neurol 267(8):2196–2197. https://doi.org/10.1007/s00415-020-09934-w

236. Rábano-Suárez P, Bermejo-Guerrero L, Méndez-Guerrero A, et al. Generalized myoclonus in COVID-19. Neurology. Published online May 21, 2020. https://doi.org/10.1212/WNL.0000000000009829.

237. Krajewski PK, Szepietowski JC, Maj J (2020) Cutaneous hyperesthesia: a novel manifestation of COVID-19. Brain Behav Immun 87:188. https://doi.org/10.1016/j.bbi.2020.05.064

238. Aoyagi Y, Ohashi M, Funahashi R, Otaka Y, Saitoh E (2020) Clinicopathological characteristics of coronavirus disease 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 71(15):762–768. https://doi.org/10.1093/cid/ciaa248

239. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS (2020) Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 71(15):762–768. https://doi.org/10.1093/cid/ciaa248

240. Selvaraj V, Sacchetti D, Finn A, Dapaah-Africke K (2020) Acute vision loss in a patient with COVID-19. R I Med J (2013) 103(6):37–38 Published 2020 Jun 10

241. Ramirez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguín-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, Paniz-Mondolfi A, Lagos-Grisales GJ, Ramirez-Vallejo E, Suárez JA, Zambrano LI, Villamil-Gómez WE, Balbin-Ramon GJ, Raabaan AA, Harapan H, Dharma K, Nishiura H, Kataoka H, Ahmad T, Sah R, Latin American Network of Coronavirus Disease 2019- COVID-19 Research (LANCOVID-19). Electronic address: https://www.lancovid.org

242. Hoffman M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052

243. Hoffmann M, Geier M, Marzi A, Kumbiegel M, Pfeipp M, Fey GH, Gramberg T, Pöhlmann S (2004) Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319(4):1216–1221. https://doi.org/10.1016/j.bbrc.2004.05.114

244. Mcgonagle D, Sharif K, O’Regan A, Bridgewood C (2020) The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 19(6):102537. https://doi.org/10.1016/j.autrev.2020.102537

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.