Bioinformatics method combined with logistic regression analysis reveal potentially important miRNAs in ischemic stroke

Running title: miRNAs to ischemic stroke.

Zhiqiang Wei a*#, Xingdi Qi b*, Yan Chen a*, Xiaoshuang Xia a, Boyu Zheng c, Xugang Sun c, Guangming Zhang c, Ling Wang c, Qi Zhang c, Chen Xu c, Shihe Jiang c, Xiulian Li c, Bingxin Xie c, Xiaohui Liao c, Zhu Ai c

a. Department of Neurology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China.
b. Public Administration, the Second Hospital of Tianjin Medical University. Tianjin 300211, P.R. China.
c. Department of Geriatric, the Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China.

*Indicates equal contribution

#Correspondence:
Zhiqiang Wei
Department of Neurology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, P.R. China.
Pingjiang Road 23, Hexi district, Tianjin, China.
E-mail: weizhiqiangdoctor@yeah.net

Abstract

Purpose: This study aimed to investigate the comprehensive differential expression profile of miRNAs by screening for miRNA expression in ischemic stroke and normal samples.

Methods: Differentially expressed miRNA analysis was conducted using limma R Bioconductor package. Target genes of differential expression miRNAs (DEMs) were identified from TargetScanHuman and miRTarBase databases. Functional enrichment analysis of the target genes was performed using clusterProfiler R Bioconductor package. The miRNA-based ischemic stroke diagnostic signature was constructed via logistic regression analysis.
Results: Compared with the normal cohort, a total of 14 DEMs, including 5 upregulated miRNAs and 9 downregulated miRNAs, were identified in ischemic stroke patients. These DEMs have 1600 regulatory targets. Using a logistic regression model, the top 5 miRNAs were screened constructing a miRNA-based ischemic stroke diagnostic signature. Using the miRNA–mRNA interaction pairs, two target genes (SP1 and AGO1) were speculated to be the primary genes of ischemic stroke.

Discussion and Conclusion: Here, several potential miRNAs biomarkers were identified and a miRNA-based diagnostic signature for ischemic stroke was established, which can be a valuable reference for future clinical researches.

Key words: miRNAs; ischemic stroke; machine learning algorithms
1 Introduction

Stroke is an acute predominant cerebrovascular disease, which causes brain tissue damage owing to a sudden rupture of blood vessels in the brain or the inability of blood to flow into the brain because of vascular occlusion [1]. In 2010, the incidence of stroke was approximately 16.9 million, which added to a pool of 33 million stroke survivors worldwide. Currently, stroke is considered to be the second leading cause of death after ischemic heart disease [2]. Typical symptoms of stroke include sudden unilateral weakness, numbness, visual loss, diplopia, altered speech, ataxia, and non-orthostatic vertigo [3-4]. Stroke can be categorized into ischemic and hemorrhagic stroke. The incidence of ischemic stroke is higher than that of hemorrhagic stroke, accounting for 60%–70% of the total number of strokes [5-6]. Cardioembolic stroke accounts for approximately 25%–30% of ischemic stroke cases, and 25% of such cases pass all diagnostic tests and have no known causes. Because of the acute onset, treatment difficulty, and the lack of detection methods, such cases pose a great challenge to clinicians.

MicroRNAs (miRNAs) are a class of small endogenous RNAs that regulate gene expression post-transcriptionally and play a role in gene silencing and translation inhibition by binding to target genes. The miRNAs are a highly conserved class of tissue-specific genes that have been found in all eukaryotic cells preserved across species since their discovery in 1993 [7-8]. In general, they are short RNA molecules measuring 19–25 nucleotides in size. A single miRNA can target hundreds of mRNAs and influence the expression of many genes often involved in a functional interacting pathway [9]. Appropriate maintenance of miRNA expression is required for a balanced physiological environment because these small molecules influence almost every genetic pathway from cell cycle checkpoint and cell proliferation to apoptosis, with a wide range of target genes [10]. In recent years, miRNA regulation has been extensively studied for their role in biological processes (BPs) as well as in the development and progression of various human diseases including ischemic stroke [11-12].

In mammals, the brain exhibits a high level and activity of several miRNAs that
show region-specific expression [13-14]. Studies conducted using conditional knock-out Dicer (RNA enzymes are critical for miRNAs biogenesis) have demonstrated the indispensable functional significance of miRNAs in controlling processes that include cellular differentiation, proliferation, synaptic morphogenesis, and vascular formation [15-17], indicating an overlap between ischemic stroke and miRNAs. It has been suggested that stroke alters the expression levels of many miRNAs in human blood and brain [18-19].

Despite decades of research, treatment for ischemic stroke is limited to thrombolytic therapy and symptom management. Moreover, a considerable number of patients remain asymptomatic and cannot be detected at onset. To this end, a more comprehensive approach to predict potential ischemic stroke patients based on the differential expression of specific miRNAs is required. To address these issues, we performed bioinformatic analysis combined with machine learning algorithms to identify potential candidate diagnostic miRNAs. This study will help us screen for ischemic stroke-associated miRNA biomarkers and can be tremendously useful for ischemic stroke patients.

2 Material and Methods

2.1 Study materials

The materials used in this study were obtained from the Gene Expression Omnibus (GEO, https://ncbi.nlm.nih.gov/geo) with the accession number of GSE55937, which included 24 blood samples from healthy individuals and 24 blood samples from ischemic stroke. The miRNA expression profiles of the abovementioned samples were detected based on Affymetrix Multispecies miRNA-3 Array chip platform.

2.2 Differential expression analysis

The miRNA expression profiles were normalized using robust multi-array (RMA) method via the affy R Bioconductor package and standardized by logarithmic transformation. Differentially expressed miRNAs (DEMs) were screened using the limma R Bioconductor package by employing the criteria of absolute log-transformed fold change (|log2FC|) > 0.5 and p value ≤ 0.05.
2.3 Construction of miRNA–mRNA regulatory network

The target genes of DEMs were searched from TargetScan (Release 7.2: March 2018 www.targetscan.org) and miRTarBase (Release 7.0: Sept. 15, 2017 mirtarbase.mbc.nctu.edu.tw). Target genes that were common between the two databases were used for constructing the miRNA–mRNA regulatory network. Cytoscape software was applied for visualizing the regulatory network.

2.4 Functional enrichment analysis

Functional enrichment analysis of the target genes of DEMs was conducted using clusterProfiler Bioconductor package. Ultimately, Gene Ontology (GO, including Biological Process, Molecular Function, and Cellular Component) and KEGG pathways that satisfied Benjamini–Hochberg (BH)-adjusted p value of <0.05 were retained.

2.5 Construction of logistic regression model

Here, we proposed to test if DEMs could help distinguish stroke samples from normal ones. For this purpose, logistic regression analysis was performed by considering DEMs and sample groups as continuous predictor and categorical responsory, respectively, based on the glm basic R function. Each DEM with a p value of <0.05 was retained for constructing the prediction model.

2.6 Statistical analysis

Statistical analyses were performed using R software v3.5.2. Affy R Bioconductor package for the normalization of raw expression profiles. Limma R Bioconductor package was used for conducting differential expression analysis. A p value of <0.05 was considered to be statistically significant in all of the abovementioned analyses.

3 Results

3.1 DEMs

Expression of all miRNAs contained in the miRNA chip after normalization is shown in Figure S1A, which indicates that the normalization process successfully eliminated the batch effects. After calculation, we obtained a total of 14 DEMs in ischemic stroke samples in comparison with the normal samples, including 5 upregulated miRNAs and 9 downregulated miRNAs, as shown in Figure S1B.
Expression of those 14 DEMs in normal and ischemic stroke groups were illustrated as a heatmap in Figure 1.

3.2 Target genes of DEMs

A total of 1,600 target genes (Supplemental Table 1) were simultaneously predicted by TargetScanHuman and miRTarBase databases for 14 DEMs; functional enrichment analysis of these 1,600 target genes led to the identification of a total of 499 and 87 significantly enriched GO terms, respectively. Figure 2A and Figure 2B illustrates the top 30 most significant GO terms and KEGG pathways.

3.3 DEMs effectively characterizes ischemic stroke

Correlation of expression of the 14 DEMs in ischemic stroke and normal samples is shown in Figure 3A, indicating that there was no particularly strong collinear relationship among them. Thus, all these 14 DEMs were used for the construction of logistic regression model. Receiver operating characteristic (ROC) analysis was used for evaluating the performance of the model. Consequently, the area under curve (AUC) value of the model was 0.8645, as shown in Figure 3B, which proved that the logistic model could robustly determine the sample type. More importantly, we found that the p values of the five miRNAs, hsa_mir_122, hsa_mir_99b, hsa_mir_339, hsa_mir_145, and hsa_mir_3130_1, were less than 0.05, indicating that those five miRNAs had a greater contribution to the model than the remaining nine miRNAs. Hence, we reconstructed the logistic model using those five miRNAs, and it was found that the AUC value of the logistic model could reach 0.8589 (Figure 3C). Additionally, we conducted 5-fold cross validation basing on the dataset, and result illustrated high AUC value (Figure 3D). The abovementioned results proved that the model constructed based on these five miRNAs could effectively predict the sample type and should be more cost-effective for the diagnosis of ischemic stroke.

3.4 SP1 and AGO1 are highly connected in miRNA–mRNA regulatory network

We constructed the miRNA–mRNA network for all 14 DEMs and the 5 DEMs that had a p value of <0.05 in logistic regression analysis, as shown in Figures S2A and S2B, respectively. Nodes in the network were colored according to their connectivity, i.e., number of their direct neighbors; furthermore, of the 1,600 target genes, 499 and 87 significantly enriched GO terms were found for the ischemic stroke and normal samples, respectively.
genes, SP1 and AGO1 were the 2 genes that were regulated by at least two miRNAs in both regulatory networks. Therefore, they might be pivotal biomarkers in the development of ischemic stroke.

4 Discussion

Ischemic stroke is a leading cause of death and disability, resulting in over six million deaths per year worldwide [20]. In addition to the high mortality rate, the timely monitoring of undiagnosed stroke patients is also a very critical issue. All these issues highlight the dire need for effective forecasting targets or biomarkers. Because miRNAs are implicated in a wide variety of diseases and have been shown to be essential for diverse proper physiological functions in the human brain, it is beneficial to develop a comprehensive specific expression profile of miRNAs in ischemic stroke patients for identifying potential miRNAs candidates as well as for targeting mRNA. Here, compared with the normal samples, a total of 14 DEMs in ischemic stroke patients were screened, including 5 upregulated and 9 downregulated miRNAs. Moreover, 1,600 target genes have been further identified. We also studied the BPs related to these genes via GO and KEGG enrichment analysis. We found that these 1,600 target genes were significantly enriched in ischemic stroke-related BPs, such as response to oxygen levels and response to decreased oxygen levels. The results of this biomarker selection study demonstrate not only the rationality of our method (many related BPs can be selected) but also the importance of two processes (response to oxygen levels and response to decreased oxygen levels) in ischemic stroke. The responses to oxygen levels and to decreased oxygen levels have been researched with regard to transport, oxygen homeostasis, translation, nitrogen fixation, and angiogenesis, which are involved in hypoxia, retinal neoplasms, tumor angiogenesis, retinoblastoma, and neoplasms [21-22]. A laboratory study conducted by Perez-Alvarez using an in vivo model revealed that mTORC1 (mammalian Target of Rapamycin Complex-1), a protein complex downstream of PI3K-Akt pathway, was dysregulated after ischemic stroke and oxygen–glucose deprivation [23]. This evidence highlights the importance of understanding the relation between response to oxygen levels and ischemic stroke. Few other topics concerning response to oxygen levels and response...
to degraded oxygen levels in ischemic stroke may provide scope for more novel studies in the future.

We further reconstructed the logistic model and identified top five miRNAs (hsa_mir_122, hsa_mir_99b, hsa_mir_339, hsa_mir_145, and hsa_mir_3130_1). Previously, based on the screening of miRNA functional synergistic network, miR-145, miR-122, and miR-99b have been implicated to be associated with ischemic stroke by participating in the processes of post-ischemic neuronal damage and thrombosis, respectively. Based on our search, we found that the hsa_mir_339 and hsa_mir_3130_1 have not been well studied in ischemic stroke, which provide a very valuable starting point for future biomarker selection studies. The miR-339 and miR-3130 were mainly reported to be tumor suppressors in previous studies owing to their biological roles in the suppression of cell proliferation. Additionally, Martinez et al. also illustrated that miR-339 in the cerebellum and plasma of rats could be perturbed by in vitro stimulation with agents ethanol and caffeine; this indicates the potential of miR-339 as a novel biomarker for ischemic stroke.

From the miRNA–mRNA regulatory network, two target genes (SP1 and AGO1) are speculated to be the primary genes of ischemic stroke. Argonaute 1 (AGO1) plays critical roles in RNA interference among the many regulators participating in microRNA formation. According to the findings reported by Shi et al., the expression of miR-103 is modulated by hypoxia-inducible factor 1α, which can target argonaute 1 (AGO1) to promote tumor vessel formation. Meanwhile, miR-103 can substantially affect angiogenesis and vascular density after ischemic stroke by targeting vascular endothelial growth factor (VEGF). SP1 (specificity protein 1) is a member of a family of transcription factors that include SP2, SP3, and SP4; these factors are implicated in various essential BPs and have been established to play important roles in cell growth, differentiation, apoptosis, and carcinogenesis. SP1 reportedly interacts with zinc finger protein 179 (Znf179), which is a neuroprotective factor for the accumulation of reactive oxygen species (ROS). Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced)
damage following brain injury [30]. Both genes are related to ischemic stroke on some levels, and both those genes deserve to be investigationed further in detail.

In conclusion, in light of the fact that no gold standard treatment is currently available and that disease-specific prediction for ischemic stroke remains unreliable despite the presence of several standard criteria, we summarized the differential expression profile of miRNAs in ischemic stroke. The manner of expression of five miRNAs as well as of the two specific target genes (SP1 and AGO1) may provide new insights into the discovery of therapeutic biomarkers. Because many pathological states are known to alter miRNA profiles and functions, understanding those changes and developing new target genes to rectify them might lead to the formulation of novel therapeutic strategies.

Acknowledgments: Not Applicable.

Conflict of interest: The authors declare no conflict of interests.

Funding: This study was supported by the grants from Tianjin Natural Science Foundation of China (Grant No. 16JCYBJC25500); The Key Project in the Science and Technology Foundation of Tianjin Health and Family Planning (Grant No. 15KG136); Tianjin Science and Technology Commission Scientific Popularization Project (Grant No. 17KPHDSF00170).
Reference

1. Hankey GJ. 2017. Stroke. Lancet 389:641-54 (PMID:27637676)
2. Katan M, Luft A. 2018. Global Burden of Stroke. Seminars in neurology 38:208-11 (PMID:29791947)
3. Kamel H, Healey JS. 2017. Cardioembolic Stroke. Circulation research 120:514-26 (PMID:28154101)
4. Rabinstein AA. 2017. Treatment of Acute Ischemic Stroke. Continuum 23:62-81 (PMID:28157744)
5. Meschia JF, Brott T. 2018. Ischaemic stroke. European journal of neurology 25:35-40 (PMID:28800170)
6. Kim JS, Caplan LR. 2016. Clinical Stroke Syndromes. Frontiers of neurology and neuroscience 40:72-92 (PMID:27960164)
7. Vishnoi A, Rani S. 2017. MiRNA Biogenesis and Regulation of Diseases: An Overview. Methods in molecular biology 1509:1-10 (PMID:27826912)
8. Tiwari A, Mukherjee B, Dixit M. 2018. MicroRNA Key to Angiogenesis Regulation: MiRNA Biology and Therapy. Current cancer drug targets 18:266-77 (PMID:28669338)
9. Verjans R, van Bilsen M, Schroen B. 2017. MiRNA Deregulation in Cardiac Aging and Associated Disorders. International review of cell and molecular biology 334:207-63 (PMID:28838539)
10. Backes C, Meese E, Keller A. 2016. Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Molecular diagnosis & therapy 20:509-18 (PMID:27378479)
11. Heydari E, Alishahi M, Ghaedrahmati F, Winlow W, Khoshnam SE, Anbiyaee A. 2020. The role of non-coding RNAs in neuroprotection and angiogenesis following ischemic stroke. Metabolic brain disease 35:31-43 (PMID:31446548)
12. Lu TX, Rothenberg ME. 2018. MicroRNA. The Journal of allergy and clinical immunology 141:1202-7 (PMID:29074454)
13. Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W. 2018. Stress-induced changes in miRNA biogenesis and functioning. Cellular and molecular life sciences: CMLS 75:177-91 (PMID:28717872)

14. Hrovatin K, Kunej T. 2018. Classification of miRNA-related sequence variations. Epigenomics 10:463-81 (PMID:29569482)

15. Le TD, Zhang J, Liu L, Li J. 2017. Computational methods for identifying miRNA sponge interactions. Briefings in bioinformatics 18:577-90 (PMID:27273287)

16. Wang D, Xin L, Lin JH, Liao Z, Ji JT, et al. 2017. Identifying miRNA-mRNA regulation network of chronic pancreatitis based on the significant functional expression. Medicine 96: e666 (PMID:28538367)

17. Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, et al. 2018. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Progress in neurobiology 163-164:59-78 (PMID:28842356)

18. Sorensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T. 2014. miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Translational stroke research 5:711-8 (PMID:25127724)

19. Li P, Teng F, Gao F, Zhang M, Wu J, Zhang C. 2015. Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke. Cellular and molecular neurobiology 35:433-47 (PMID:25410304)

20. Rodgers H. 2013. Stroke. Handbook of clinical neurology 110:427-33 (PMID:23312661)

21. Choudhry H, Harris AL. 2018. Advances in Hypoxia-Inducible Factor Biology. Cell metabolism 27:281-98 (PMID:29129785)

22. Chen R, Lai UH, Zhu L, Singh A, Ahmed M, Forsyth NR. 2018. Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors. Frontiers in cell and developmental biology 6:132 (PMID:30364203)

23. Perez-Alvarez MJ, Villa Gonzalez M, Benito-Cuesta I, Wadosell FG. 2018. Role of mTORC1 Controlling Proteostasis after Brain Ischemia. Frontiers in neuroscience 12:60 (PMID:29497356)
24. He W, Chen S, Chen X, Li S, Chen W. 2016. Bioinformatic Analysis of Potential microRNAs in Ischemic Stroke. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association 25:1753-9 (PMID:27151415)

25. Banerjee H, Krauss C, Worthington M, Banerjee N, Walker RS, et al. 2019. Differential expression of efferocytosis and phagocytosis associated genes in tumor associated macrophages exposed to African American patient derived prostate cancer microenvironment. Journal of Solid Tumors 9:22-7 (PMID: 31447959)

26. Luo A, Zhou X, Shi X, Zhao Y, Men Y, et al. 2019. Exosome-derived miR-339-5p mediates radiosensitivity by targeting Cdc25A in locally advanced esophageal squamous cell carcinoma. Oncogene 38:4990-5006 (PMID: 30858545)

27. Weber CE, Luo C, Hotz-Wagenblatt A, Gardyan A, Kordass T, et al. 2016. miR-339-3p Is a Tumor Suppressor in Melanoma. Cancer Research 76:3562-71 (PMID: 27197185)

28. Rossetto IMU, Cagnon VHA, Lizarte FSN, Tirapelli LF, Tirapelli DPC, et al. 2019. Ethanol and caffeine consumption modulates the expression of miRNAs in the cerebellum and plasma of UChB rats. Life Sciences 229:180-6 (PMID: 31077720)

29. Shi FP, Wang XH, Zhang HX, Shang MM, Liu XX, et al. 2018. MiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF). Iranian journal of basic medical sciences 21:318-24 (PMID:29511499)

30. Chuang JY, Kao TJ, Lin SH, Wu AC, Lee PT, et al. 2017. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury. Redox biology 11:135-43 (PMID:27918959)

Figure legends

Figure 1. The overview of DEMs’ expression profile between ischemic stroke and normal samples. Heat map display of the 14 differentially expressed miRNAs in all samples. The horizontal axis is the sample and the vertical axis is miRNA. Red represents high expression and blue represents low expression.

Figure 2. The GO and KEGG enrichment analysis of the 1,600 target genes. GO and KEGG enrichment results are shown in (A) and (B), respectively. The horizontal
axis in the figure represents the ratio of genes enriched, and the vertical axis represents the name of each biological process or pathway.

Figure 3. The collinear analysis and ROC curve of the differentially expressed miRNAs. (A) The collinear analysis of the 14 differentially expressed miRNAs. The darker the blue or red color, and the larger the area of blue or red color in the Pie, the greater the collinearity between them. (B) The ROC curve of the model. The AUC value of the Logistic model was found to be 0.8645. (C) The top five miRNAs were used to reconstruct the logistic model with the AUC value of the logistic model reached 0.8589. (D) The ROC curve of the model basing 5-fold cross validation.

Figure S1. Normalization of the raw miRNA expression profiles and differential expression miRNA analysis. (A) The distribution of miRNAs’ expression values in each sample after the data normalization; the horizontal axis is the sample and the vertical axis is the miRNAs expression level. (B) Volcano plot of the differentially expressed miRNAs. The horizontal axis is the log2-based fold change (Log2FC) and the vertical axis is -log10 (P-value). The blue dots in the figure represent up-regulated miRNAs and the red dots represent down-regulated miRNAs. The green dots are non-differentially expressed miRNAs.

Figure S2. The prediction of miRNAs target genes. (A) The regulatory network between 14 miRNAs and target genes. (B) The regulatory network between 5 identified miRNAs and target genes. Each rectangle in the figure represents a node (miRNA or mRNA). SP1 and AGO1 as well as their regulatory miRNAs were highlighted in yellow.
Figure 3

A. Corrgram of miRNA

B. 14miRNA AUC=0.8645

D. 5miRNA AUC=0.8589

Legend:

- AUC=0.84
- AUC=0.76
- AUC=0.65
- AUC=0.96
- AUC=0.65
Table S1 Target genes of DEMs.

ORA12
ZFYVE27
POU2F3
APOBEC3A
ANKRD36
ADM2
PHLD3A
CLCN6
THY1
SLC35E3
MAVS
RUNDC1
FBXO27
YIPF4
ORC6
HEYL
RRP36
ST3GAL1
VIM
DUSP18
ZNF790
POLR2D
CUBN
ABL2
FHDC1
LAMTOR3
DNAJB13
MYO1C
SHISA9
CDC37
CCDC142
SMAGP
BSCL2
HOXA7
TNFAIP8L1
UBE2G2
SPON2
NFIC
RAB11FIP1
COL13A1
MAFF
PRR23A
ARIH2OS
IYD
TMEM40
DSN1
ARSK
PIK3R2
PLXNA1
YME1L1
APOM
PHLDA2
CYP20A1
MYCN
FAM9B
SLC16A5
PRPF38A
MKLN1
SIK2
IBA57
ISY1-RAB43
MYH11
ZNF713
MFAP2
KCNA7
MAGT1
LONP2
SLC2A8
REL
FADS6
MLXIP
GPRIN3
SMYD4
SNTB2
CD3E
RBM43
HEATR5A
MED18
AKR7L
RPS15A
ACOT9
HM13
SEC14L4
GALNT6
LRRC3C
DCAF16
WDR17
KDELRC2
NFX1
HS3ST1
PLEKHS1
ZNF573
NOM1
SLC4A1
ZNF154
NUDT3
GPR161
OLA1
MRPS25
NKD1
ZYG11B
CCDC170
RAB43
PIGO
ZNF34
PRSS16
FLG2
GDF7
XIAP
FHL2
NKAP
BIRC5
TAS2RS5
ZNF841
PNMA2
TIMM50
PARVB
ADCY2
GMEB1
LYN
DCAF7
NOL10
TTLL12
ROBO1
OSBPL10
MED7
VWC2
ERC1
KRBA2
GNB1
QSOX1
PDP2
PLEKH3M
PGBD5
Gene
ZNF347
SPIB
TEP1
JPH2
PLXDC2
FAM217B
RAB10
SBO1
RACGAP1
ARHGEF5
PNPT1
ZFP14
HEBP2
HSPA4L
MMP17
NFE2L1
XPC
SLC35E2B
SCAMP4
SLC26A2
HMOX1
INTS3
KDM6B
ATP5F1
TSHZ2
HLA-E
CENPM
ECE1
ANKRD9
METTL2B
GPSM2
TIMM8A
THAP2
C3orf62
PIGX
COPA
TERF2
ARSA
SMG1
NKPD1
GK5
ESYT2
LRCH3
GFPT1
CINP
SLC16A10
MTAP
GTF2F1
DGKE
APOA1
RNF170
PSMB5
KAT7
MASTL
ALG1
LIMS1
IDS
DPY19L4
PRMT3
RFX7
SAR1A
NAGK
PTPN2
TFDP2
EEF2K
CDK4
ORC1
LMNB2
MEAF6
ANG
MGAT1
MYCBP
ABCF1
RGS9BP
FMN1
DNPEP
RAB32
BAMBI
SLC25A33
SLC1A5
CALCOCO2
AP1S1
NAA50
MTO1
FLYWCH2
YWHAB
RBM23
MSRB1
MED16
RPS6KA5
UROS
TIGD6
ISPD
OPTN
ZNF74
ITPA
RNF19B
BMS1
PIGG
CEP89
QPRT
SLC38A9
KDEL1
ESF1
TIAL1
MAPKAPK5
MAP4K2
DNAJC10
LYRM4
ZC3H15
ROM01
EMC3
KLHL7
ACP6
PTCD3
ALG14
SOD2
XPO5
LUC7L
C3
KCMF1
BROX
SF3A1
FFAR1
POTED
CCS
FIG4
GRSF1
ZNF786
MRPS23
BTN3A2
ZNF281
CYB5D1
LILRA2
ALOX5AP
Gene Symbol

NEGR1
CCDC80
SETD7
DDX19B
ODF2L
ZNF670
RBM27
NNT
IER3
ZNF444
ABHD12
TMEM164
BAX
CACNG7
SMIM7
RAD51B
CD209
PEX11B
DNAJC8
SNAP25
KIAA1671
DNAH10OS
NPLOC4
RPL13A
RAB34
ZBTB4
HBP1
LCE1A
KDM2A
HPCAL1
C16orf58
ANKRD42
DFFB
EDA2R
FCRL2
DBNDD2
ZNF317
FAM131B
HNF4A
LRRC59
PFN1
KSR2
RAB15
CBX7
NIPAL3
RAPGEF1
PHC2
CLMP
BTF3L4
DAD1
KCN5
C4orf26
ADAMTS11
PIP4K2A
HYOU1
CDCA8
DPCR1
GABRB2
ALKBH5
PIP4K2C
LIF
CRCP
C6orf106
KIAA1755
PHB2
NCEH1
MYLK3
SLC2A4
KLK10
EZH1
SET
WDR13
YWHAZ
COX6B1
TPD52L2
SOWAHA
FN3K
ZNFS29
VAV3
SAP18
PPP1R18
TGF1
ZMAT5
MEX3A
BMP3
MIDN
REG3A
MCF2L2
PNRC2
STMN3
AOC3
ZNFS90
AFF3
SC5D
TMEM170A
TFPI
PPP2R2A
SMAD7
AEN
GMEB2
ZNFS460
CRTC2
ENTPD1
LINGO1
RNF125
GAN
RPS9
GLG1
ATG13
CBL
ZDHHC9
TAF8
VPS4A
SLC25A37
CYP4F3
TIRAP
ARL2
CNNM4
NUAK2
CDK2
CBS
TET3
GATAD2B
EPB41
PEG10
PAX2
PLA2G2F
PPIF
GM2A
RASGRP3
LAMTOR4
WNK2
CDC14B
CHAC1
TMEM239
FUT1
PRR12
PDK3
LETM1
RAB5C
PACSIN1
ZBTB45
SLC25A17
ZNF689
COPS7B
PRR4
ACAP2
B4GALT1
GRWD1
ARHGAP11A
MTRF1L
EFHD2
AMOTL1
ZN641
CCNG1
RAB6C
GPR107
SLC12A7
UGDH
RAB5B
HMGXB3
KLF13
NF2
NFAT5
PDE7B
IRGQ
MGAT5
OLFML2A
PHF12
GSTO2
OTUD7B
SUSD5
XPO6
TOB2
SYNJ2BP
SLC16A4
LIMD1
LIX1L
VSTM4
SRPX2
ERCC1
ATG2A
NACC2
PSMD11
WIZ
TTLL11
RAB3D
ZNF75A
S1PR2
ZNF431
RARA
HCFC1
SLC33A1
WNT3
SPATA13
SLC24A4
GNB2
NUDT16
LPIN3
CAP2B
FAM117B
STK4
RBM28
CHST6
LUZP1
PTK6
CDK12
THBS1
KLF10
HIC2
TTC39A
RPL28
GPRC5A
MSI2
MAG
GATAD2A
CLPB
SHROOM3
DSEL
CDC73
SORCS2
THSD4
HDAC5
POLG
HSD17B12
PLXNA3
CENPL
SSH3
ICK
TNFRSF13C
TMEM251
MID1
NUP205
SOX11
SALL2
ANKRD40
ZNF496
SOCS7
UBE2D3
RNF115
CCSER2
SNRPD3
PPIE
POFUT2
NUFIP2
RADIL
NAV2
TRPV1
ASCL2
STK32A
DGKH
ZNF611
FAM129A
WRN
ICOSLG
BMPR1A
SLC9A7
HMX1
MPZL1
MRGPRF
NPY4R
ALG9
TMEM65
HAUS3
TMEM120B
SEPHS1
ANKFY1
GMPR
RAB22A
GJC1
KDM5B
CECR2
EIF5A2
PSMD9
NSUN4
FAHD1
IMP4
MED28
HACE1
ASTN2
NOL11
PCNP
ELP2
SMU1
MTHFD1
IL21R
VGLL3
RNASEH2B
AHS2A
SEC63
EBNA1BP2
RPL37A
RNF11
PDCD10
PTEN
BCOR
STMN1
ATPSG3
MAP3K5
THRB
CREBZF
CDC5L
MAP2K6
SMAD5
PPP2CB
ZNF148
USP22
SYNCRIP
DPYSL2
GNS
ARL5B
AFF4
ZBTB34
DUSP19
ARIH1
RLIM
SRSF1
CSNK1G1
FZD4
ATP1B3
STRIP2
YPEL2
BMP8A
SMAD2
HDLBP
GRM1
SLC25A16
CTNND1
CELF2
ZNF695
ZC3H6
SLIT3
TAOK1
LRRC40
AQR
CREB1
S1PR1
MSH6
FGB
ATXN3
GAB1
MSL2
MTF2
NR2F2
SEC62
ELF2
ZEB1
RDX
MTMR7
GNAL
ZNF207
ZFHX4
TNRC6A
KPNA4
SLAIN2
HNRNPR
ZBTB20
SHOX2
PITPNM3
WDTC1
MEX3D
AKIRIN1
IGF2
KLHL15
MCL1
DCP2
KPNA1
HRK
JPH1
CNBP
FBXL17
PPIC
CAPZA1
ONECUT2
ZBTB16
MAP3K2
SP4
BCL11B
PCMT1
PFKFB3
PTGFRN
TGFBR3
E2F1
CELF1
AGO1
SP1
ATL3
SH3GL2
DENND6A
SDR16C5
SPATA2
ZNF800
SLIT2
PDCD4
HCFC2
EFNA3
TRIM24
PAFAH1B2
USP9X
COL19A1
CCNI
TMED7
RASL11A
PDPK1
COLEC12
KHSRP
C1orf52
GOLIM4
RPL41
HLA-G
RBM24
CDCA4
MYC
RBMXL1
STK17A
TMSB4X
STARD13
TPST2
HLA-DRB1
FAM120AOS
BCL2
CHCHD3
CDADC1
KIAA0391
PPP1CB
TXNIP
FUT10
AAK1
RCC2
ZDBF2
SCML2
CSNK2A1
RAB14
CSTF1
YPEL1
SRD5A1
APC2
MET
SYNRG
GRK1
SORD
MLEC
CDC25B
SUGT1
AKT2
KIF2C
SH3PD2A
ITGB8
VPS37A
CDKN2AIPNL
DCUN1D3
IRS1
SH3GLB1
KIAA1549
IGFBP5
AP5B1
QKI
TRIP11
CCT6A
LNPEP
TRAF7
TTPAL
SIKE1
CHRM3
FOXP1
SERPINE1
FXR1
HLA-A
SESN3
B4GALT7
CENPF
FZD5
Gene

DENR
MYCBP2
APPBP2
RALY
ACVR1
COL9A2
TMEM106B
PLA2G12A
DROSHA
MX2
CACNA1A
APC
BTD
ZSCAN25
FSCN1
ABHD17C
MYO5A
FLI1
ABRACL
SWAP70
GMFB
PPP3CA
SNX24
RTKN
ADD3
CAMK1D
PLCE1
ACTB
ERG
DUSP6
CTNNB1P1
KLF5
SOX9
NEDD9
ARF6
MEST
SRGAP1
ANKRD28
CLINT1
YES1
CFTR
PSAT1
PXN
ZFYVE9
ADAM17
Gene

E2F3
IGF1R
CPEB4
SNTB1
RPS6KA3
MAP3K3
MTDH
CLSTN2
DDI2
VGLL4
RPA1
DDX6
CTNNEP1
ALDOA
CLIC4
SLC52A2
PRKRA
ST6GALNAC4
FUNDC2
G6PC3
FOXK2
SLC7A1
PDK4
NPEPP5
MIPOL1
DUSP2
ANKRD13C
NT5C3A
SUCLA2
NOD2
CHMP3
RNF103-CHMP3
CALM3
OCLN
TBC1D22B
KIF5B
ARFGEF1
HECTD3
DENND2C
UBE2G1
C17orf105
FOXO3
NDRG3
IHH
EGLN3
FUT8
ADAM10
RAD21
PDE7A
MLLT1
MRRF
RBM47
G6PC
TP53
SNX13
PXMP4
MEF2D
KBTBD8
RAVER2
MTOR
TMEM30A
TRIB1
GRHL1
ZFP36L1
GPC3
TMEM170B
SIN3B
FOXO1
GINM1
RGS2
FOXO1
CTSB
DDAH1
HOXA5
SLC25A25
UBE2D4
GALNT2
GABRB1
STK17B
NPTX1
USP5
EV5
ASH1L
SH3BGRL3
TRIM71
SYNGR2
RAD51
BRWD1
ACER2
Gene

PPP1R12A
SPPL2A
KDM5A
NUP50
CSNK1D
ATXN1L
GID4
MORF4L1
ZMYND11
PMEPA1
LONRF1
ZBTB18
TIA1
ADRB1
RAB8B
SGK1
RAP2C
KLF7
IMDP1H
SHCBP1
NFIB
RBBP8
TRAK2
MDM4
TMBIM6
RHOB
HOMER1
CCNL1
MRPL17
RAB13
WDR20
RNF167
RORA
STOX2
C2orf42
ELMOD2
SOCS1
WDR45B
ZNF217
JAZF1
KCNJ2
SBF2
ARMC8
FBXO8
RAB18
Gene

GSKIP
RAP1B
ATXN1
OTUD1
RGL1
SNX17
ACBD5
SOCS3
RAP1A
KPNA6
BTBD7
E2F8
ELOVL5
PATL1
DDX3Y
MXD1
ESR1
BMPR2
LDLR
PPTC7
ABHD5
CLOCK
KLHL42
RAF1
TNFRSF12A
ENPP5
CCND1
FAM83D
NFIA
MOB1B
ADS5
EPS15
SLC9A6
ZMAT3
PKNOX1
ZDHHC7
SOX4
UBL3
ASNA1
COQ10B
TNFAIP3
PRICKLE2
SEMA4C
DUT
ARRDC3
Gene

ARPP19
ELL2
PFN2
ALG2
PHF13
DHX40
EREG
VPS4B
SMOC1
SECISBP2L
AFTPH
REEP3
MIER1
DLG5
B3GALNT2
WDR1
ARHGEF26
NPEPL1
NUP54
FBXO48
PPP2R5E
GRK6
MMGT1
FBXO28
PRUNE2
MAPK6
C5orf30
SLC6A8
ACSL4
PRKAA1
G3BP2
PRKACB
PTEN
HIPK3
FKBP15
ATG16L1
FRS2
RAPGEF2
ATXN7
CREBRF
TNPO2
CAMSAP1
CREBL2
KLHL20
KLHL20
GIYF1
AMMECR1L
CEP55
RAB1A
PCDH10
BRWD3
NACC1
KLHL3
TRPC3
MAP2K3
MTMR6
RAB2B
STK38
NPTN
RNF111
CLIP1
SKIL
PPP6R1
HNRNPF
PAPD4
MLLT10
AGPAT5
LMLN
GRB10
C16orf70
SPTSSA
SERINC3
PGM2L1
MFS6
WNT7B
SLC37A1
STX12
ARHGAP12
GPR137B
TNIP1
EIF4A2
ZFAND5
SH3KBP1
FAS
TXLNG
EFR3A
SATB1
TPRG1L
CAPRIN2
MEF2A
TNFRSF1B
PURG
FAM102A
PDE4A
ANKRD12
BEND3
DCBLD2
ZBTB47
NUS1
FNDC3A
MCC
ETV3
CD164
SOX6
MBNL3
OCRL
NAPB
IKZF1
DDX3X
USP13
MTMR12
ARID1A
MAP3K1
ANKIB1
FBXO10
CFL2
HDAC4
MTUS1
ATG14
MACF1
LIN9
GIT2
ARID2
PRR14L
SUZ12
WDR26
TP53INP1
LPP
BLCAP
CALM1
MECP2
DICER1
NF1
UBE2A
ZFYVE26
ZBTB7B
