Neutron skin of 208Pb, nuclear symmetry energy, and the parity radius experiment

X. Roca-Maza1,2, M. Centelles1, X. Viñas1, and M. Warda3

1Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
2INFN, sezione di Milano, via Celoria 16, I-20133 Milano, Italy
3Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie–Skłodowskiej, ul. Radziszewskiego 10, 20-031 Lublin, Poland

(Dated: January 14, 2013)

A precise determination of the neutron skin Δr_{np} of a heavy nucleus sets a basic constraint on the nuclear symmetry energy (Δr_{np} is the difference of the neutron and proton rms radii of the nucleus). The parity radius experiment (PREX) may achieve it by electroweak parity-violating electron scattering (PVES) on 208Pb. We investigate PVES in nuclear mean field approach to allow the accurate extraction of Δr_{np} of 208Pb from the parity-violating asymmetry A_{pv} probed in the experiment. We demonstrate a high linear correlation between A_{pv} and Δr_{np} in successful mean field forces as the best means to constrain the neutron skin of 208Pb from PREX, without assumptions on the neutron density shape. Continuation of the experiment with higher precision in A_{pv} is motivated since the present method can support it to constrain the density slope of the nuclear symmetry energy to new accuracy.

PACS numbers: 21.10.Gv; 21.65.Ef; 21.30.Fc; 25.30.Bf

New interest in masses and density distributions of nuclei is being prompted by the production of rare isotopes in radioactive beam facilities [1]. Exciting phenomena discovered in these isotopes such as thick skins, halos, and new shell closures urge better understanding of neutrons in nuclei. Yet, our knowledge of neutron density distributions is limited even in the stable nuclei. As neutrons are uncharged, neutron densities have been probed mostly by nucleon scattering [2–6], α scattering [7], and nuclear effects in exotic atoms [5, 6]. Even if some of these experiments reach small errors, all hadronic probes require model assumptions to deal with the strong force introducing possible systematic uncertainties.

Parity-violating electron scattering (PVES) was suggested as a model-independent probe of neutron densities [7]. An electroweak probe is not hindered by the complexity of the strong force and the reaction mechanism with the nucleus needs not be modeled [7–9], similarly to clean electron scattering for nuclear charge densities. The novel parity radius experiment (PREX) at the Jefferson Lab [9, 10] aims to measure the parity-violating asymmetry A_{pv} in polarized electron scattering on 208Pb to 3% accuracy. This accuracy is estimated to constrain the neutron rms radius r_n of 208Pb to 1% [9, 10]. Currently, r_n of 208Pb is uncertain by \sim2% and data may be model dependent [2–6, 11]; in contrast, the charge radius of 208Pb is accurately known as $r_{ch} = 5.5010(9)$ fm [12]. In recent years it has been established that the neutron skin thickness $\Delta r_{np} = r_n - r_p$ (difference of the neutron and proton rms radii) of 208Pb is strongly correlated with the density dependence of the nuclear symmetry energy around saturation [13–17]. Knowledge of the density dependence of the nuclear symmetry energy is a cornerstone for drip lines, masses, densities, and collective excitations of neutron-rich nuclei [13, 19], flows and multifragmentation in heavy-ion collisions [20, 21], and for astrophysical phenomena like supernovae, neutrino emission, and neutron stars [15, 22, 24]. A constraint from PREX on Δr_{np} of 208Pb is thus regarded as a landmark for isospin physics. In addition to being important for its own sake, it has broad implications for different communities of nuclear physics and astrophysics. Fostered by the seminal study of Ref. [9], PREX completed an initial run in 2010. First analyses [10] show the validity of the experimental technique, the adequacy of instruments, and that systematic errors are under control. Additional beam time is now under request to attain the planned 3% accuracy in the parity-violating asymmetry A_{pv} [10].

The direct output of PREX is the value of the asymmetry A_{pv} at a single scattering angle [9, 10]. The neutron rms radius r_n of the nucleus may be deduced only if a shape for the neutron density such as a two-parameter Fermi function Θ is assumed. A systematic uncertainty in the analysis is unavoidable in this way. Here, we provide a different and accurate strategy to deduce r_n and Δr_{np} from PREX that removes this problem. By study of PVES on 208Pb in successful nuclear mean field (MF) forces of wide use in nuclear research and astrophysical applications, we reveal a high linear relation between Δr_{np} and A_{pv} that allows one to extract r_n and Δr_{np} from A_{pv} model and shape independently. Moreover, our approach unifies the extraction of Δr_{np} from A_{pv} with the same framework where Δr_{np} is correlated to the symmetry energy. We show that the present method can support PREX to narrow down the value of the density slope of the nuclear symmetry energy to novel accuracy. This result provides a new and important motivation to continue the experiment to increased precision.

Electrons interact with nuclei by exchanging photons and Z^0 bosons. The former mainly couple to protons and the latter to neutrons because, opposite to the nucleon electric charges, the neutron weak charge $Q^2_W = -1$ is much larger than the proton weak charge $Q^2_W = 1 - 4 \sin^2 \theta_W \approx 0.075$ (θ_W being the Weinberg an-
Therefore, electron scattering can probe both the electric and the weak charge distributions in a nucleus [7–9]. PREX measures the elastic differential cross sections \(d\sigma_+/d\Omega\) for incident electrons of positive or negative helicity. The parity-violating asymmetry,

\[
A_{pv} = \left(\frac{d\sigma_+}{d\Omega} - \frac{d\sigma_-}{d\Omega} \right) / \left(\frac{d\sigma_+}{d\Omega} + \frac{d\sigma_-}{d\Omega} \right)
\]

for massless electrons (it is \(m_e/p_e \approx 0.0005\) at PREX energy), is sensitive to the parity-violating term induced by the weak interaction in the scattering amplitude. According to their helicity, electrons interact with a potential \(V_{\text{Coulomb}}(r) \pm G_F \rho_W(r)/2^{3/2}\), with \(G_F\) the Fermi constant and \(\rho_W\) the weak density of the target [7–9].

We solve the associated Dirac equation via the exact phase-shift analysis in distorted-wave Born approximation (DWBA) [11] to compute \(A_{pv}\). Our benchmarks are the pointlike densities of protons \(\rho_p(r)\) and neutrons \(\rho_n(r)\) calculated self-consistently in MF models. We fold \(\rho_p(r)\) and \(\rho_n(r)\) with electromagnetic proton and neutron form factors to obtain the charge density [11], and with electric form factors for the coupling to a \(Z^0\) to obtain the weak density [9] [11] [25]: \(\rho_{W}(r) = \int d\mathbf{r}' \left\{ 4 G_E^{\text{em}}(r') N \rho_n(|\mathbf{r} - \mathbf{r}'|) + 4 G_M^{\text{em}}(r') Z \rho_p(|\mathbf{r} - \mathbf{r}'|) \right\}\).

Though not useful for realistic calculations, it is worth recalling the Born approximation (BA) to \(A_{pv}\) [7–9]:

\[
A_{BA}^{PV} = \frac{G_F q^2}{4\pi \alpha \sqrt{2}} \left[4 \sin^2 \theta_W + \frac{F_n(q)}{F_p(q)} \right],
\]

as it nicely illustrates that \(A_{pv}\) relates to the proton and neutron nuclear form factors \(F_n,p(q)\). Furnstahl [11] showed that \(F_n(q) = (4\pi)^{-1} \int d^3r \, J_0(qr) \rho_n(r)\) is at low momentum transfer \(q\) strongly correlated with \(r_n\) of \(^{208}\text{Pb}\) in nuclear MF models, evidencing that PREX would directly constrain the neutron radius and the symmetry energy. Realistic DWBA calculations of \(A_{pv}\) in MF models can be found in [8] [11] [25] [26].

At the optimal kinematics of PREX the electron beam energy is 1.06 GeV and the scattering angle is 5° (\(q_{\text{lab}} \approx 0.47 \text{ fm}^{-1}\)) [10]. We compute \(A_{pv}\) in DWBA at this kinematics in a comprehensive large sample of 47 nuclear MF interactions. We display the results in Fig. 1 as a function of the neutron rms radius of \(^{208}\text{Pb}\). To prevent eventual biases in our study, we avoid including more than two models of the same kind fitted by the same authors and protocol. We also avoid models yielding a charge radius of \(^{208}\text{Pb}\) away from experiment [12] by more than 1% (same level as the 1% pursued by PREX in \(r_n\)). The considered models rest on very different theoretical grounds, from nonrelativistic models of zero range (models HFB, v090, and those starting with S or M) or finite range (D1S, D1N, BCP), to relativistic models with meson self-interactions (NL and PK models, FSUGold, G1, G2, TM1), density-dependent vertices (DD-ME, RHF-PK) or point couplings (DD-PC1, PC-PK1, PC-PF1) [11] [17] [19]. (NL3.s25 and PK1.s24 are variants of NL3 and PK1 giving \(\Delta r_{np} = 0.25\) and 0.24 fm in \(^{208}\text{Pb}\).)

All such models accurately describe general properties of nuclei such as binding energies and charge radii along the periodic table. However, one readily sees in Fig. 1 that the predicted \(r_n\) of \(^{208}\text{Pb}\) varies largely, from 5.55 to 5.8 fm, as the isovector channel of the nuclear models is little constrained by current phenomenology. The models with softer (stiffer) symmetry energy at saturation density [11] yield smaller (larger) \(r_n\) and larger (smaller) \(A_{pv}\). One notes that the information encoded in the models implies a value of about 0.67 to 0.75 ppm for \(A_{pv}\) at PREX kinematics. A significant linear trend is found between \(A_{pv}\) and \(r_n\) (the correlation coefficient is \(r = 0.974\)).

As the experimental value of \(A_{pv}\) is not yet available, we have chosen for study a plausible test value \(A_{pv} = 0.715\) ppm of 3% accuracy, depicted in Fig. 1. The assumed sample measurement of \(A_{pv}\) determines through the linear fit shown in Fig. 1 a fiducial neutron rms radius \(r_n = 5.644 \pm 0.065 \text{ fm}\), within typical values deduced from hadronic probes [26]. Note that a 3% accuracy in \(A_{pv}\) does lead to ~1% accuracy in \(r_n\), thereby supporting the expectations of PREX. It is to be pointed out that the analysis described in this paper is actually independent of the exact value of the parity-violating asymmetry. Thus, once the experimental value of PREX is known, one can repeat the same type of analysis using the actual \(A_{pv}\) instead of our test value. We also plot in Fig. 1 the confidence band of the regression (boundary of the possible straight lines) and the so-called prediction band (the wider band that basically coincides with the envelope of the models in the figure) at 95% confidence level [27].

While one first thinks of using a PREX extraction of \(r_n\) to constrain \(\Delta r_{np}\) of \(^{208}\text{Pb}\), we show in Fig. 2 that \(A_{pv}\) and \(\Delta r_{np}\) have themselves a very high linear dependence (the correlation coefficient is 0.995). The small fluctuation of \(A_{pv}\) with the charge density is more ef-
FIG. 2: Same as Fig. 1 against the neutron skin of 208Pb. The linear fit is $10^7 A_{pv} = 7.88 - 3.75 \Delta r_{np}$. The correlation is found to be quite stable: for example, if we remove the forces excluded by the depicted test constraint, then $r = 0.990$. The figure also shows the points calculated with the neutron densities deduced from experiment in Refs. [2, 3, 5].

Effectively removed by analyzing A_{pv} vs $r_n - r_p$. Actually, the correlation of A_{pv} and Δr_{np} is implicit in the BA. That is, expanding Eq. [2] at $q \to 0$ yields $F_n(q)/F_p(q) \to 1 - (r_n + r_p)/(r_n - r_p) q^2/6$, which is driven by $r_n - r_p$ ($r_n + r_p \simeq 11.1$ fm changes by less than 3% in the models). Though Coulomb distortions correct A_{pv} by more than 30–40%, the correlation prevails in the DWBA result. One sees in Fig. 2 that any nuclear model accurately calibrated to masses and charge radii nearly falls on the best-fit line and that the confidence band of the regression is very narrow. Looking at Fig. 1 it can be realized that different models, similarly successful for the well-known observables, can give the same A_{pv} with different r_n (cf. MSkA, BCP, and SkM*; Sk-Rs, SkA, and FSUGold; SKI5 and G2), but almost the same Δr_{np} are obtained with these forces. That the prediction band of the regression is wider horizontally in Fig. 1 than in Fig. 2 points to the same fact. Thus, one expects more accurate estimates of neutron observables using the correlation of Fig. 2. Having found Δr_{np}, one can get r_n by unfolding the finite size of the proton charge from the accurate 208Pb charge radius [12]. We note that our analysis allows one to deduce Δr_{np} and r_n from A_{pv} without assuming any particular shape for the nucleon density profiles. Altogether, we believe our results firmly back the commissioning of an improved PREX run where A_{pv} can be measured more accurately. The present method will permit to retain in Δr_{np} and r_n most of the experiment’s accuracy. As recently proposed [26], if r_n is first precisely known, then a second measurement can be made at higher energy to constrain the surface thickness of the neutron density of 208Pb.

The correlation of A_{pv} with Δr_{np} is universal in the realm of mean field theory as it is based on widely different nuclear functionals. It is of interest to get further indications on it by looking at existing experiments. The 208Pb neutron densities found via proton elastic scattering at 0.8 GeV in [2] and 0.3 GeV in [3] were both deduced from the data in a way consistent with the experimental charge density of 208Pb (known by electron elastic scattering). We computed A_{pv} using the neutron and charge densities quoted in these works and plotted the results in Fig. 2 against the central Δr_{np} value of each experiment (0.14 fm in [2] and 0.21 fm in [3]). We did the same with the data deduced from the antiprotonic 208Pb atom [5] (now using the Fermi nucleon densities of Table VI of [5]). It is seen that the theoretical correlation of the models nicely agrees with these points. Our test value $A_{pv} = 0.715$ ppm of 3% accuracy from PREX would give Δr_{np} as 0.195 ± 0.057 fm (see Fig. 2). As reviewed in [11], we may recall that the recent constraints from strong probes, isospin diffusion, and pygmy dipole resonances favor a range 0.15–0.22 fm for the central value of $\Delta r_{np}(^{208}$Pb). Recent informations on the nuclear equation of state derived from observed masses and radii of neutron stars suggest a similar range 0.14–0.20 fm [23, 28].

Finally, we analyze how PREX can constrain the density dependence of the nuclear symmetry energy $E_{sym}(\rho)$ around normal density ρ_0, which is characterized by the slope coefficient $L = 3\rho_0 \partial E_{sym}(\rho)/\partial \rho|_{\rho_0}$ in the literature [17–21]. A larger L value implies a higher pressure in neutron matter and a thicker neutron skin in 208Pb. Interest in L permeates many areas of active research, such as the structure and the reactions of neutron-rich nuclei [15–21], the physics of neutron stars [22–24], and events like giant flares [29] and gravitational radiation from neutron stars [30]. The available empirical estimates span a rather loose range $30 \lesssim L \lesssim 110$ MeV, with the recent constraints seemingly agreeing on a value around $L \sim 60$ MeV with ±25 MeV spread [17–21]. A microscopic calculation with realistic nucleon-nucleon potentials and three-body forces predicts $L = 66.5$ MeV [31]. Figure 3 displays the correlation between $\Delta r_{np}(^{208}$Pb) and L [17–19] in the present analysis. Imposing the previous constraint $\Delta r_{np} = 0.195\pm0.057$ fm yields $L = 64\pm39$ MeV. While the central value depends on our test assumption $A_{pv} = 0.715$ ppm, the spread following from a determination of A_{pv} to 3% accuracy, essentially does not. Then, we have to conclude that a 3% accuracy in A_{pv} sets modest constraints on L, implying that some of the expectations that this measurement will constrain L precisely may have to be revised to some extent. To narrow down L, though demanding more experimental effort, a ∼1% measurement of A_{pv} should be sought ultimately in PREX. Our approach can support it to yield a new accuracy near $\delta \Delta r_{np} \sim 0.02$ fm and $\delta L \sim 10$ MeV well below any previous constraint. Moreover, PREX is unique in that the central value of Δr_{np} and L follows from a probe largely free of strong force uncertainties.

In summary, PREX ought to be instrumental to pave the way for electroweak studies of neutron densities in heavy nuclei [9, 10, 26]. To accurately extract the neu-
trom radius and skin of 208Pb from the experiment requires a precise connection between the parity-violating asymmetry A_{pv} and these properties. We investigated parity-violating electron scattering in nuclear models constrained by available laboratory data to support this extraction without specific assumptions on the shape of the nucleon densities. We demonstrated a linear correlation, universal in the mean field framework, between A_{pv} and Δr_{np} that has very small scatter. Because of its high quality, it will not spoil the experimental accuracy even in improved measurements of A_{pv}. With a 1% measurement of A_{pv} it can allow to constrain the slope L of the symmetry energy to near a 10 MeV level. A mostly model-independent determination of Δr_{np} of 208Pb and L should have enduring impact on a variety of fields, including atomic parity nonconservation and low-energy tests of the Standard Model [3] [9] [32].

We thank G. Colò, A. Polls, P. Schuck, and E. Vives for valuable discussions. H. Liang for the densities of the RHF-PK and PC-PK models, and K. Kumar for information on PREX kinematics. Work supported by the Consolider Ingenio 2010 Programme CPAN CSD2007 00042 and Grants No. FIS2008-01661 from MEC and FEDER, No. 2009SGR-1289 from Generalitat de Catalunya, and No. N N202 231137 from Polish MNiSW.

[1] Proc. 5th Intl. Conf. on Exotic Nuclei and Atomic Masses ENAM’08, Eur. Phys. J. A42, 299 (2009).
[2] G. W. Hoffmann et al, Phys. Rev. C21, 1488 (1980).
[3] J. Zenrihiro et al, Phys. Rev. C82, 044611 (2010).
[4] A. Krasznahorkay et al, Nucl. Phys. A731, 224 (2004).
[5] B. Klos et al, Phys. Rev. C76, 014311 (2007). (arXiv:0702016)
[6] E. Friedman, Hyperfine Interact. 193, 33 (2009). (arXiv:0810.1848)
[7] T. W. Donnelly, J. Dubach, and Ingo Sick, Nucl. Phys. A503, 589 (1989)
[8] D. Vretenar et al, Phys. Rev. C61, 064307 (2000). (arXiv:nucl-th/9911024)
[9] Č. J. Horowitz, S. J. Pollack, P. A. Souder, and R. Michaels, Phys. Rev. C63, 025501 (2001). (arXiv:nucl-th/9912038)
[10] K. Kumar, P. A. Souder, R. Michaels, and G. M. Urciuoli, spokespersons, http://hallaweb.jlab.org/parity/prex (see section ‘Status and Plans’ for latest updates).
[11] M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. C82, 054314 (2010). (arXiv:1010.5396)
[12] I. Angeli, At. Data Nucl. Data Tables 87, T85 (2004)
[13] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000); S. Typel and B. A. Brown, Phys. Rev. C64, 027302 (2001).
[14] R. J. Furnstahl, Nucl. Phys. A706, 85 (2002). (arXiv:nucl-th/0112085)
[15] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis, Phys. Rep. 411, 325 (2005). (arXiv:nucl-th/0410066)
[16] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005). (arXiv:nucl-th/0504034)
[17] M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. Lett. 102, 122502 (2009) (arXiv:0806.2886);
M. Warda, X. Viñas, X. Roca-Maza, and M. Centelles, Phys. Rev. C80, 024316 (2009). (arXiv:0906.0932)
[18] A. Carbone et al, Phys. Rev. C81, 041301(R) (2010). (arXiv:1003.3580)
[19] L. W. Chen et al, Phys. Rev. C82, 024321 (2010). (arXiv:1004.4672)
[20] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008). (arXiv:0804.3580)
[21] M. B. Tsang et al, Phys. Rev. Lett. 102, 122701 (2009). (arXiv:0811.3107)
[22] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001). (arXiv:astro-ph/0010227)
[23] J. Xu et al, Astrophys. J. 697, 1549 (2009).
[24] A. W. Steiner, J. M. Lattimer, and E.F. Brown, Astrophys. J. 722, 33 (2010). (arXiv:1005.0811)
[25] O. Moreno, E. Moya de Guerra, P. Sarriguren, and J. M. Udías, J. Phys. G 37, 064019 (2010).
[26] S. Ban, C.J. Horowitz, and R. Michaels, arXiv:1010.3246
[27] N. R. Draper and H. Smith, Applied Regression Analysis 3rd. ed. (Wiley, New York, 1998).
[28] K. Hebeler, J.M. Lattimer, C.J. Pethick, and A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010). (arXiv:1007.1746)
[29] A.W. Steiner and A.L. Watts, Phys. Rev. Lett. 103, 181101 (2009). (arXiv:0902.1683)
[30] D. H. Wen, B. A. Li, and P. G. Krastev, Phys. Rev. C80, 025801 (2009). (arXiv:0907.1165)
[31] I. Vidaña, C. Providencia, A. Polls, and A. Rios, Phys. Rev. C80, 045806 (2009) (arXiv:0907.1165)
[32] T. Sil et al, Phys. Rev. C71, 045502 (2005). (arXiv:nucl-th/0501014)