ABSOLUTELY CHOICELESS PROOFS

ASAFAKARAGILA

ABSTRACT. We study a well-known technique of using absoluteness for giving choice-free proofs to some
statements which are known to be provable with the axiom of choice. The idea is to reduce the problem
to an inner model where the axiom of choice holds and use absoluteness. We examine the complexity of the
sentences that this technique can be applied to, and show that many of the theorems in basic partition calculus
have the adequate complexity for this technique to apply.

1. INTRODUCTION

Recall the Lévy hierarchy of formulas in the language of set theory. We say that a quantifier Q is
bounded if it is of the form $(Q x \in y)$. We define Σ_0 formula to be a formula equivalent to one in which
all the quantifiers are bounded, Π_0 is a negation of Σ_0 and Δ_0 are statements which are both Π_0 and Σ_0.
Note that all three classes defined here are the same.

If $\Sigma_n, \Pi_n, \Delta_n$ were defined, then we define Σ_{n+1} to be formulas equivalent to $\exists x \varphi(x)$, where φ is a Π_n formula; Π_{n+1} is a formula equivalent to a negation of Σ_{n+1}; and Δ_{n+1} is a formula which is both
Σ_{n+1} and Π_{n+1}.

To read more about these one should consult, for example, [Jec03, Chapter 13]. And we will assume
that the reader is familiar with the basic statements about this hierarchy.

One of the classical theorems is that if $M \subseteq V$ are two models of ZF with the same ordinals (and M is
transitive in V), then every Σ_1 statement true in M is true in V (in which case we say that the statement is
upwards absolute), and every Π_1 statement true in V is true in M (in which case we say that the
statement is downwards absolute). It follows that Δ_1 statements are absolute between two models of
ZF with the same ordinals. Moreover, if we assume that $V \models ZF + DC$ then every Π_1 sentence is absolute
between V and L, and therefore Π_1 sentences are absolute between all models of $ZF + DC$.

But absoluteness can also be used to prove statements without the axiom of choice in the following
manner.

Example 1 (Erdős-Dushnik-Miller Theorem). Assuming that in ZFC it is provable that $\kappa \rightarrow (\kappa, \omega)^2$
for every uncountable κ, then it is provable in ZF.

Proof. Suppose that $V \models ZF$, and κ is uncountable in V. Let c be a coloring of $[\kappa]^2$ in V, and consider
$L[c]$ which is a model of ZFC. Since $\kappa \subseteq L[c]$ we have $c \in L[c]$.

By the fact that κ is uncountable in V it is certainly uncountable in $L[c]$ and so there is a subset $X \subseteq \kappa$ witnessing
the truth of the Erdős-Dushnik-Miller Theorem, and so $X \subseteq \kappa$ and it is a witness for the
wanted homogeneity.

Of course that is an indirect result, rather than directly constructing the sets we use the fact that this
is true in a definable inner model. And in [Cai10] Andrés Caicedo asks whether or not a direct proof can
be given of a consequence of the above theorem (which can be proved in a similar fashion). The answer
is yes, and an argument due to Clinton Conley and is given on the same page.

Before we proceed we give another striking example with a seemingly very different nature.

Example 2 (Magidor). If $cf(\omega_1) = cf(\omega_2) = \omega$ then 0^+ exists.

Proof. Let $\kappa = \omega^\omega$. Let $A \subseteq \kappa$ be a cofinal sequence of length ω. Then in $L[A]$, κ is singular. Let α be
$(\kappa^+)^{L[A]}$, then in V we have that $cf(\alpha) = \omega$ as well. Let $B \subseteq \alpha$ be a cofinal sequence of order type ω.

Now in $L[A, B]$ we have that both κ and α are singular, and therefore the successor of κ in $L[A, B]$ is some $\beta < \alpha$.
If so, $L[A, B]$ knows that $L[A]$ miscalculates the successor of a singular cardinal, κ, and
therefore it knows that 0^+ exists, and so V knows that as well.

\begin{flushleft}
\textbf{Date:} February 20, 2014.
\end{flushleft}

2010 Mathematics Subject Classification. Primary 03E25; Secondary 03E99.

Key words and phrases. Absoluteness, Lévy hierarchy, axiom of choice, ordinal bounded quantifiers.
2. The General Theorem

Question (Raghavan). To what sort of level in the Lévy hierarchy can we use the above trick, and show that if a statement is provable from ZFC then it is provable from ZF?\(^1\)

It is trivial that every \(\Sigma_1\) statement satisfies that criteria. If \(\varphi\) is a \(\Sigma_1\) statement, and \(V\) satisfies ZF, then \(L \subseteq V\) satisfying ZFC, and therefore \(L \models \varphi\). By absoluteness \(V \models \varphi\), and so we get that ZF proves \(\varphi\) as well.

But one can notice that in order to use the trick of reducing back to \(L[A]\) we needed \(A\) to be a set of ordinals, or constructively coded into a set of ordinals. We introduce the following definition of an ordinal bounded quantifier, \((\exists^{\text{Ord}} x) \varphi(x)\) is the statement \(\exists x (x \subseteq \text{Ord}^{<\omega} \land \varphi(x))\). That is to say that \(x\) is a set of tuples of ordinals, and satisfies \(\varphi\). We similarly define \((\forall^{\text{Ord}} x) \varphi(x)\).

The statement \(x \subseteq \text{Ord}^{<\omega}\) is a \(\Delta_0\) statement (with \(x\) as a parameter saying that all the elements of \(x\) are functions whose domain is a finite ordinal, and whose range is a set of ordinals), therefore changing existential and universal quantifiers to ordinal bounded quantifiers does not increase (nor decreases) the complexity of the formula in the Lévy hierarchy.

Remark. We can require only that \(x\) is a subset of \(L\) in order to immediately have that \(x \in L[x]\), or even that \(x\) is a subset of a model of ZFC, such as HOD. However writing that \(x \subseteq L\) will increase the complexity of the formula, whereas just requiring that \(x\) is a set of tuples of ordinals does not.

Theorem 3. If \(\varphi\) is of the form \((\forall^{\text{Ord}} x) \psi(x)\), where \(\psi(x)\) is upwards absolute for models of ZF with the same ordinals, then ZF \(\vdash \varphi\) if and only if ZFC \(\vdash \varphi\).

Proof. Clearly every statement provable from ZF is provable from ZFC.

Suppose that \(\varphi\) is as above and ZFC \(\vdash \varphi\). Let \(V\) be a model of ZF, and let \(a \subseteq \text{Ord}^{<\omega}\) in \(V\). Consider \(L[a]\), which is a model of ZFC. We have \(a \subseteq L\), so \(a \in L[a]\). By the assumption, \(L[a] \models (\forall^{\text{Ord}} x) \psi(x)\), in particular for \(L[a] \models \psi(a)\), and since \(\psi\) is absolute we have \(V \models \psi(a)\). Therefore \(V \models \varphi\), so ZF \(\vdash \varphi\) as wanted.

Some examples for statements satisfying the requirements of the theorem are \(\Pi_1\) statements whose universal quantifiers are ordinal bounded, and in fact \(\Pi_1\) statements whose outer universal quantifiers are ordinal bounded. This gives a partial improvement over the absoluteness of \(\Pi_1\) sentences, since no assumption of DC is needed now. The following example reveals the limitation of the theorem when it comes to existential quantifiers.

Example 4. The statement “The real numbers can be well-ordered” is a \(\Sigma_2\) sentence with all its quantifiers ordinal bounded quantifiers, which is provable from ZFC but not from ZF.

Proof. Cohen proved the consistency of ZF with the failure of this statement (see [Coh64], as well [Jec03, Theorem 14.36]). And it is true in ZFC, since every set can be well-ordered. We calculate the complexity of the statement to see that it is indeed \(\Sigma_2\).

The real numbers can be well-ordered if and only if there is an ordinal \(\alpha\) and a function \(f: \alpha \rightarrow 2\) such that for every \(\alpha: \omega \rightarrow 2\) there is some \(\beta <\alpha\) such that for all \(n\), \(f(\beta + n) = a(n)\).

\[
(\exists^{\text{Ord}} \alpha)(\exists^{\text{Ord}} f)(\forall^{\text{Ord}} x)
\left(\alpha \text{ is an ordinal } \land (f: \alpha \rightarrow 2) \land (x: \omega \rightarrow 2) \rightarrow (\exists \beta \in \alpha)(\forall n \in \omega)x(n) = f(\beta + n)\right).
\]

The statements that \(\alpha\) is an ordinal and \(f\) is a function are both \(\Delta_0\), generally the quantification on \(\omega\) and the ordinal arithmetic are \(\Delta_1\), therefore the entire expression inside the quantifiers is \(\Delta_1\) with parameters \(\alpha, f\) and \(x\). So the entire statement is \(\Sigma_2\) as wanted. \(\square\)

3. Analysis of the Examples

While it is clear how the first example falls into the absoluteness theorem above, it is unclear how Magidor’s theorem works out here. After all, ZFC always proves that both \(\omega_1\) and \(\omega_2\) are regular. But a careful analysis of the proof shows that in fact we can write the following statement: For every two sets of ordinals \(A\) and \(B\), if the following holds,

\(^1\)December 11th, 2013. Math Department lounge in Jerusalem. The question came up when we were having coffee and talking about the Erdős-Dushnik-Miller Theorem in a choiceless context.
(1) In $L[A]$ all the elements of A are cardinals (Π_1 statement), and $\sup A$ is singular (Σ_1 statement).

(2) In $L[A]$ $\sup B = (\sup A)^+$ (Δ_2 statement).

(3) In $L[A, B]$ there is an injection from $\sup B$ into $\sup A$ (Σ_1 statement).

Then $0^\#$ exists (Σ_2 statement).

Since being an element of $L[A]$ is Δ_1 with A as a parameter, the above is a Δ_2 statement with parameters A and B, and the existence of $0^\#$ is a Σ_2 statement, moreover every quantifier which increases the complexity beyond Δ_1 is ordinal bounded (in fact the only place were we use non-ordinal bounded quantifiers is in limiting our quantified objects to $L[A]$ or $L[A, B]$ which is Δ_1). So as a whole we have an implication between two Σ_2 statements, “There exists A and B such that some Δ_2 property in A and B” then “($0^\#$ exists”. The whole implication can be written as a Π_3 statement, whose universal quantifiers are ordinal bounded, and the internal Σ_2 statement is upwards absolute. Therefore ZF proves the implication as well, and Magidor’s proof is given by showing that from assuming that ω_1 and ω_2 are singular, there are witnesses that the implication is not vacuous.

We finish with the proof that essentially all the basic results of infinitary combinatorics about partition calculus which are provable in ZFC are provable in ZF.

Theorem 5. Every statement of the form “For every coloring of a subset of $[\kappa]<\omega$ in λ colors, there is a subset of order type/cardinality α which is homogeneous/anti-homogeneous” is Π_2 with all its quantifier being ordinal bounded quantifiers (and with κ, λ as parameters, and possibly n in $[\kappa]^n$).

Proof. The coloring is a function from strictly increasing finite functions to κ into λ, so quantifying “every coloring” is a $\bigwedge^{\text{Ord}} f$ and the fact that f is a coloring is Δ_0 (with parameters κ, λ and n if the functions have a fixed or bounded length).

Next we say that there exists a set of ordinals $A \subseteq \kappa$, and there exists a bijection or an order preserving bijection from A to α, or the relevant ordinal appearing in the theorem, that would be two consecutive \exists^{Ord} quantifiers, and a Δ_0 formula.

Finally we say that A is homogeneous which is to say that every finite function in $\text{dom } f$ whose range includes only elements from A is mapped to a single element. Or that A is anti-homogeneous if such f is injective. Both of these properties are Δ_0.

And so we get that the statement is of the form

$$(\forall^{\text{Ord}} f)(\exists^{\text{Ord}} A)(\exists^{\text{Ord}} g)\varphi(f, A, g, \kappa, \alpha, \lambda, n),$$

where φ is a Δ_0 statement in which we write out the above facts. \square

4. Acknowledgments

The author would like to thank D. Raghavan for inspiring the idea of a general framework of these absoluteness results, and to U. Abraham for his help in finding the elegant Σ_2 statement in Example 4, and to Haim Horowitz and Yair Hayut for their help in correcting a mistake in the author’s interpretation of that Σ_2 statement in a previous version of this manuscript.

References

[Coh64] Paul J. Cohen, *The independence of the continuum hypothesis. II*, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 105–110. MR 0159745 (28 #2962)

[Cai10] Andrés Caicedo (http://mathoverflow.net/users/6085/andrres-caicedo), *Distinct well-orderings of the same set*, MathOverflow, URL: http://mathoverflow.net/q/40507 (version: 2010-10-12).

[Jec03] Thomas Jech, *Set theory*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded. MR 1940513 (2004g:03071)

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.

E-mail address: karagila@math.huji.ac.il

URL: http://boolesrings.org/asafk