Structural study and laboratory Survey of the decoration of Kaboudani Mosque in Khaf

Masoud Bater1*, Afsar Nazari Boron2
1. Assistant professor, Department of Conservation and Restoration of historical artifacts, University of Zabol, Zabol, IRAN
2. B.A degree of conservation & restoration of Cultural Properties of University of Zabol and MA of urban planning of Imam Reza International University, Mashhad, IRAN

Abstract
Khaf Kaboudani historical complex is one of the most important monuments of the Timurid era. This complex was built during the heyday of this region, around the tomb of the famous mystic of this period, Sultan Mahmoud Kaboudani. This historical complex, of which only a ruin remains today, was once a complete complex, including a shrine, mosque and water reservoir. The interior of the buildings of this complex, as is the tradition of Timurid architecture, is decorated with various types of architectural decorations, such as wall painting, Tokhmeh daravari, Stucco decoration, Rasmibandi and Mogharnaskari. Among these architectural decorations, the one that attracts the most attention is wall painting and Tokhmeh daravari decoration that the interior of Kaboudani mosque is where the interior surfaces of the mosque are decorated with beautiful decoration with geometric motifs in orange, red, purple, blue, ocher and white. Due to the importance of this historical complex left over from the Timurid era and the lack of study on the one hand and the deteriorating condition of its decorations, on the other hand, in this research, an attempt was made to study and identify the decoration of this historic mosque and the colors used in it experimentally and with the help of laboratory methods. Laboratory study of colored Stucco of this building, with various methods of instrumental analysis, such as X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning electron microscope in combination with energy dispersive X-ray microanalysis ((SEM-EDS), showed that "Gach-e-Zendeh" has been used in the plaster decorations and a thin layer of "Gach-e-koshte" has been used under substrate wall painting. Analysis of the pigments used in the decoration of this building by instrumental methods, indicated that all the colors used were inorganic mainly and in the range of red colors from ocher, from chalk as white and in blue from natural Lapis Lazuli Used.

Keywords: Architectural decorations, Stucco decoration, wall painting, Tokhmeh daravari, Kaboudani mosque, Khaf, XRD, XRF, SEM-EDS

Introduction
Sultan Mahmoud Kaboudani historical complex is located 4 kilometers from Khaf city in the northeast of the Iran. Around the tomb of this famous mystic, a historical complex including the tomb, mosque and water storage (Ab-Anbar) has been formed, which has become known as the Kaboudani complex of Khaf. The mausoleum of Sultan Mahmoud Kaboudani includes a lofty dome on the tomb and four rows with a multi-brick arch that forms the space under the dome.

*Corresponding Author: masoud.bater@uoz.ac.ir
The tomb of Sultan Mahmud is located under the dome. Around the tomb, there are rooms and porches intended for the accommodation of pilgrims. On the eastern front of the tomb and attached to it, there is a mosque that leads to the tomb with a narrow corridor. Next to the tomb of Sultan Mahmud Kaboudani, a short distance from the building on the southern front of the mausoleum, is the water storage building (Figures, 1, 2,3). Despite the importance and value of this historical complex from different historical and cultural dimensions, unfortunately, a large part of it has been damaged and completely destroyed due to lack of care and abandonment of the building complex, environmental and human factors. The dome of the tomb was severely damaged and the walls and floor of the building were destroyed. The use of adobe and mud in the construction of most of this complex and the limited use of bricks in it, has intensified the amount of damage to this historical complex. The naves around the mosque have been completely destroyed and the decorations of the complex, which once adorned the interior surfaces of the shrine and the mosque, have been severely damaged and destroyed. The interior body of Khaf Kaboudani complex is decorated with various architectural decorations, including; Stucco, murals, Tokhmeh daravari, Rasmibandì, gypsum moqarnaskari. All the interior surfaces of the mosque are decorated with beautiful murals and Tokhmeh daravari in red, crimson, orange, blue, white and pea colors with geometric patterns in the form of knots (Figures 4,5,6,7). The most important issue that this research seeks to answer is to know the type of materials and executive techniques used in the decorations of this building. It is clear that identifying the structure of materials used in the Stucco decoration of this historical complex, as part of the past architectural heritage of this ancient land, allows us to better understand the technology of architectural decorations of historic buildings and make us understand more accurate architectural and artistic features of this land help. In this article, after reviewing the background and research literature, the studied laboratory samples and the methods used in their testing are introduced and then the results of the laboratory study of the samples are presented in the form of tables and graphs and discussed and analyzed. At the end, the final conclusion of the research is stated.

Materials and Methods
In this applied development research, experimental-analytical research methods have been used and research data collection has been done using various techniques, such as: library study, field study and laboratory study. In order to study the structure of gypsum used in color decorations in this building, X-ray diffraction (XRD) method was used. X-ray fluorescence (XRF) method was used to identify and quantitatively and qualitatively analyze the gypsum composition used in the decorations. In order to identify the type of pigments used in murals and Tokhmeh daravari decorations, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) was used. This laboratory study was performed to identify the composition of the constituent elements of pigments. In order to study the texture and condition of the layers in the murals, the cross section of the samples was studied with a light microscope. In addition, the microstructure of gypsum used in building decorations was studied using an electron microscope.

Results
Studying the pictures of the cross sections of the decorations of Kaboudani Mosque, showed that, the layer of paint used in Tokhmeh daravari decorations is applied as a relatively thick layer on the lower gypsum substrate. In the composition of all decorative layers, coarse-grained impurities, including; sand particles in the composition of plaster and paint, are visible. The spectroscopic study of gypsum samples used in the implementation of Stucco decoration of Kaboudani Mosque in Khaf, indicates the presence of gypsum phase (CaSO\textsubscript{4}.2 H\textsubscript{2}O), as the main phase of the composition of the decorations used in the structure of Stucco decoration. Calcite, quartz and muscovite phases are also sub-phases that are observed as impurities in the gypsum composition used in the Stucco decoration of Kaboudani Mosque in Khaf. Examination of colored gypsum diffraction spectra used in Tokhmeh daravari decoration of the building indicates the presence of gypsum phase (CaSO\textsubscript{4}. 2H\textsubscript{2}O), calcite and quartz as the main phases forming the composition of this thick red layer used in the Tokhmeh daravari decoration structure of this building and phyllogopite and microcline phases are also sub-phases. Examination of the results of the analysis of
gypsum samples used in Stucco decoration of Kaboudani Khaf Mosque by X-ray fluorescence (XRF) method, showed that due to the presence of 26.04% of calcium oxide and 37.34% of sulfur oxide, which is related to the main composition of gypsum in this building. And sub-elements such as silicon oxide by 11.98% and aluminum oxide, iron oxide and magnesium oxide, which occupy 2.87, 2.38 and 1.53% by weight, respectively (Table 2). Examination of the results obtained from the analysis of the composition of the elements of the sample of thick red color layer of Tokhmeh daravari decoration of Kaboudani Mosque in Khaf by X-ray fluorescence (XRF) method, showed that due to the presence of 22.91% of calcium oxide and sulfur oxide At the rate of 32.85%, which is related to the main composition of gypsum in the composition of Tokhmeh daravari decoration in this building. And the presence of other sub-elements, such as: silicon oxide at the rate of 19.80% and aluminum oxide, iron oxide and magnesium oxide, the amount of which are 2.09, 16.47 and 0.83% by weight, respectively (Table 3). Examination of the spectrum the elemental paints analysis of used in Tokhmeh daravari decorations and murals of Kaboudani Mosque by SEM-EDX method obtained iron oxide III as a red color, mixture of gypsum and iron oxide III as an orange color and crimson color, mixture of yellow antimony with calcite as a cream color, calcite (white color) and natural ultramarine sky blue as the colors were used.

Discussion
Examination of macroscopic images of cross sections prepared from the decorations of Kaboudani Mosque shows that the general structure and texture of the different layers used in the decorations of this building are similar to each other. The spectroscopic study of the materials used in the plaster decorations of Kaboudani Khaf Mosque, including Stucco, Tokhmeh daravari and murals, indicates the presence of gypsum phase as the main phase of the architectural decorations used in the building. The existence of such a structure in the composition of the decorations of this historic building, indicates that the main materials used in the decoration of the building was gypsum which was combined with paints and additives such as calcite and quartz to strengthen the structure of the plaster and as a The color layer is used in the murals and se which was combined with paints and additives such as calcite and quartz to strengthen the structure of the plaster and as a The color layer is used in the murals and Tokhmeh daravari production. The results of elemental analysis of the composition of the samples taken from the building decorations are in good harmony with their diffraction measurement results. In addition, the results of elemental analysis of the samples are very similar to each other, which shows that a source and materials have been used in the implementation of these decorations. However, due to the use of red pigment, which is probably the source of a combination of iron oxide III, the amount of iron in the sample used in Tokhmeh daravari decorations are more, which is why this decoration is seen as a thick layer of red color. Analysis of paint samples used in building decorations showed that the structure of all pigments used is mineral. And In the color samples of red, which is the most prominent color used in Tokhmeh daravari decorations and murals in all three colors orange, red and crimson of one main color material; that is, iron oxide III has been used and to change the color tonality by increasing and decreasing the amount of iron oxide red pigment in combination with gypsum, the desired color tonality in decorations has been obtained.

Conclusion
Laboratory study, structure and chemical composition of materials used in the decorations of Kaboudani Mosque in Khaf, including: murals and Tokhmeh daravari decorations by various instrumental methods, such as X-ray diffraction (XRD), X-ray fluorescence (XRF), energy dispersive X-ray microanalysis (SEM-EDS) and a light microscope showed that the main structure of the composition used in the substrate of murals and decorations used in all interior surfaces of Kaboudani Mosque is gypsum. This plaster is combined with different pigments in Tokhmeh daravari decorations to create a beautiful color layer in this part of the architectural decorations of the building. In the Stucco decorations of the building, Gach-e-Zendeh plaster has been used, but in the gypsum used in the murals of the building, the type of Gach-e-koshte plaster has been used in the upper part. Various pigments have been used to create color variation in Tokhmeh daravari decorations in combination with the original gypsum. Laboratory examinations showed that in all
colors of the red spectrum; that is, orange, red, and crimson, iron oxide III, and red ocher have been used to create different tonalities of red in the Tokhmeh daravari decorations.

Acknowledgments
The present article is the result of research conducted in the Department of Conservation and Restoration of historical artifacts, Faculty of Art and Architecture, University of Zabol. In this regard, the support of Zabol University has been used in the form of a research grant under the number UOZ-GR-9618-75, by which the Vice Chancellor for Research and technology of the University is thanked and appreciated. We also thank the cooperation of the General Directorate of Cultural Heritage, Handicrafts and Tourism of Khurasan Razavi Province for conducting this research.
مطالعه ساختاری و بررسی آزمایشگاهی آرایه‌های مسجد کبودانی خواف

مسعود باتر، ۱ افسر نظری ۱.

۱ استادیار گروه حفاظت و مرمت آثار تاریخی، دانشگاه هنر و معماری تهران، ایران
۲ دانشجوی کارشناسی مرمت آثار تاریخی دانشگاه زابل و کارشناسی ارشد مهندسی شهرسازی از دانشگاه بین المللی امام رضا، مشهد، ایران

چکیده

مجموعه‌های تاریخی کبودانی خواف، یکی از مهم‌ترین آثار عصر تیموری است که در دوران شکوه‌ای این منطقه، پرامون مزار عارف شهیر این دوران، سلطان محمود کبودانی ساخته شده است. این مجموعه تاریخی که امروزه توسط ویرانه‌ای از آن باقی است، در گذشته، مجموعه‌ای کامل بوده است، مشتمل بر مزار، سجاده و آرایه‌های پرتنویه، بناهنایی پرتنویه، بناهنایی باعث شده است. مختلف آرایه‌های معماری، همچون: دیوارنگاره‌ها، تائینات تخم‌آموزی و رسمی نیز در آن روش‌هایی از آرایه‌های تاریخی هسته‌ای باعث شده است. در میان آن‌ها آرایه‌های معماری، آن روش‌هایی که از همان جمله می‌گیرند. دیوارنگاره‌ها و تائینات تخم‌آموزی بوده در مورد کبودانی این است که در آن، سطوح داخلی مسجد با این آرایه‌ها به همراه دیوارنگاره‌ها به تابیده‌ها و ناخن‌ها و ترکیب‌هایی از مقادیر، رنگ‌ها، ابزار، تغییرات و سیف فهرست سری‌های است. با توجه به اهمیت این مجموعه تاریخی به‌جای مانده از عصر تیموری و عدم مطالعه‌ای آن از پیش و وضعیت در حال تخریب آرایه‌های آن، از سوی دیگر، برخی از روش‌های مخفی و که در کل آثار تاریخی، آرایه‌های این مسجد تاریخی به کار رفته از آن، مورد بررسی و شناسایی قرار گرفت. برنامه‌ریزی بررسی آزمایشگاهی دیوارنگاره‌ها و تائینات تخم‌آموزی آرایه‌های این نباید با روش‌های خصوصی آنالیز دسگاه‌ها، همچون: ایکس کلری (XRF) و میکروسکوپ الکترونی روبشی مجهز به تجزیه باشندگی برخوی ایکس (XRD) یا عضوی از فلورسنس یا اینکس (EDS)، نشان داد که در نواحی این ابرایه‌های گچیزی از ترکیب مشخصه‌های از لایه‌های از گچ که در زمینه و که در حال استفاده، مورد استفاده، معنی‌های بوده‌اند و در گیاه‌های خود، از این طرف که ترکیب این‌ها به‌طور کلی از کل اخرا و از کل سفید به عنوان رنگ سفید و در رنگ آبی از لاجوردی‌ها تنها استفاده شده است.

واژگان کلیدی: آرایه‌های معماری، گچیزی، دیوارنگاره، تائینات تخم‌آموزی، مسجد کبودانی، خواف، EDS

DOI: 10.29252/jra.7.1.167
URL: http://jra.tabriziau.ir/
۱. مقدمه

نیمه و پرانه از کنار هم امیده‌اند که به مرز کبودان، مشهور است، سلطان محمود کبودانی از قرن هشتم هجری قمری در این مکان آمده است این منطقه کبودان خوف، جلغاهه خوش آب و هوای مفرح محسوب می‌شود که زمینی زادگاه این عارف مشهور بوده است، بر گرفت مزار این عارف نامی، مجموعه ای تاریخی شامل مزار، مسجد و آب انبار شکل گرفته که به مجموعه کبودانی خوف مشهور شده است.

نبای آرامگاهی مزار سلطان محمود کبودانی، شامل گنبد رفعی بر روی قبر صاحب مزار و چهار صفحه با طاق ضریب گنبد است که پیشی زمین این گنبد را تشکیل داده است. قبیر سلطان محمود کبودانی در زیر گنبد قرار گرفته است که این فاصله ۱۹۰ سانتی‌متر طول، ۱۸۰ سانتی‌متر عرض و ۱۸۵ سانتی‌متر ارتفاع دارد. ورودی مزار دارای یک بندر و عرضی است که با طاقی با آرایه‌های آجرکاری به شکل شبکی تزئین شده است. بر پایه آرامگاه آب و هوای و دارکه برای ایجاد زور در نظر گرفته شده‌اند. در جبهه سفید مزار و چسبیده به آن مسجدی وجود دارد که با راهروی باریک به داخل مزار راه وار. این است که در کنار مقبره سلطان محمود کبودانی و مسجد آن به فاصله اندیکا از بندر جلویی مزار، ساخته‌اند. این مجموعه قرینه گرفته است (اسکال ۱، ۲ و ۳).

با توجه به ارتباط فضای معمایی این سه بخش با یکدیگر در طرح معماری آنها شاهد تنام و تمام سبک معمایی و عناصر به کار رفته در آنها، به نظر می‌رسد که هر سه بخش در یک دوره زمانی ساخته شده و متعلق به عصر تمبری است.

با وجود اهمیت و ارزش این مجموعه تاریخی از جنبه‌های مختلف تاریخی و فرهنگی، مرسومیت بخش زیادی از آن اثر عدم رسیدگی و متروک شدن مجموعه‌ای بین اثر عوامل آسیب‌رسان می‌باشد و عوامل انسانی دچار آسیب و تخریب کلی شده‌است: به طوری که گنبد مزار به شدت آسیب دیده و دیوارها، کیفیت خشک این منطقه داده است، چند بنای تاریخی
دو فصلنامه پژوهش باستان‌سنج
تاریخ: سال هشتم، شماره اول، بهار و تابستان 1400

و کف آن نیز تخریب شده است. استفاده از خشت و گل در ساخت بخش اعظم این مجموعه و استفاده محدود از دیگر مواد ساختمانی وارده به این مجموعه تاریخی را شدت بخششده است. شیبستان‌های اطراف مسجد به گلی از میان رسته‌های وارده به این مجموعه که زمانی زینت‌بخش سطوح داخلی مزار و مسجد بوده‌اند، به شدت آسیب دیده و تخریب شده‌اند.

بدن‌های داخلی مجموعه کبودانی خواف وCOLUMN
تمامی سطوح داخلی مسجد با معمایی مختلفی از جمله گچ‌بری، دیوارنگاره، تخمه‌درآوری، رسم‌برداری و مقرنس کاری گچی زینت داده شده است. تمامی سطوح داخلی مسجد با

شکل ۱: پلان مسجد و مزار کبودانی خواف
Fig: 1 Plan of Khaf Kaboudani Mosque and Tomb

شکل ۲: گنبد سلطان محمود کبودانی
Fig: 2 The grave of Sultan Mahmud Kaboudani

شکل ۳: نمای اصلی مسجد مجموعه کبودانی خواف
Fig: 3 The main facade of Khaf Kaboudani mosque

شکل ۴: خطیب سلطان محمود کبودانی
Fig: 4 The colored decoration of the interior of Kaboudani mosque

شکل ۵: نمایی نادیده از دیوارنگاره مسجد کبودانی با نقوش گره
Fig: 5 A close view of the wall painting of Kaboudani mosque with knotted motifs

سال هشتم، شماره اول، بهار و تابستان 1400 | 159
با عنایت به اهمیت این مجموعه تاریخی و فرهنگی به عنوان یکی از آثار ملی کشور که تاکنون هیچ گونه مطالعه و پژوهشی بر روی آن انجام نشده است و در راستای معرفی این مجموعه تاریخی، بررسی و پژوهش بر روی این اثر کمتر شناخته شده کشور از اهمیت و ضرورت بسیاری برخوردار است تا بدین ترتیب با معرفی اثر و ارزش‌های مختلف نهفته در آن، زمینه برای رایزنی و حفاظت و مرمت این مجموعه تاریخی و جلوگیری از نابودی آن فراهم شود.

مهم‌ترین مسئله ای که این پژوهش به دنبال پاسخگویی به آن است، شناسایی مواد و مصالح و فنون اجرایی که بر کار رفته در آرایه‌های این بنا می‌باشد. در واقع هدف اصلی پژوهش، مطالعه و بررسی ارزش‌های مختلف نهفته در آرایه‌های تاریخی که به ویژه کنار گذاشته شده در این مجموعه تاریخی است که در گذشته به میراث معماری کشور، به ویژه مسجد کبودانی، باعث شده که در پیشینه و ادبیات تحقیق، نمونه‌هایی مورد مطالعه و بررسی قرار گرفته است و در پایان جمع‌بندی و نتیجه‌گیری به‌عنوان پژوهش بیان شده است.

۲. پیشینه پژوهش

اهمیت سیاسی و فرهنگی منطقه خواف در ادوار مختلف تاریخی، به ویژه در دوران سلجوقی و تیموری و کثرت آثار معماری که در این منطقه ساخته شده، و موج‌هایی که به خصوص از این باختنی‌های تاریخی در ارژنشقان و کمرش شناخته شده به بلوط فارسی‌سره و شونند و کمرش از سوابق ادامه‌داری تاریخی و فرهنگی منطقه، مورد مطالعه و پژوهش قرار گرفت. مجموعه تاریخی سلطان محمدرضا کبودانی خواف نزدیک به جمله همین که در واقع از این منطقه مطالعه و بررسی‌های پیشین اندکی انجام شده است. از سوی دیگر در همین برسی‌های موجود نیز، تنها به تاریخ و پیشینه این بنا اشارات مختصر و دستورالعمل شده است ولی هیچ تحقیق و پژوهش مستقیم در منطقه که متعلق به آرامشها و مطالعه به نظر ابراهیم به روحیات و مصالح این بنا و آرمایه‌های آن تاجبدر دسترس نیست. با این وجود، نظر به همیت آرایه‌های این بنا از منظر هنر و معماری، مورد پژوهش‌هایی که در آرایه‌های معماری این دست در
در این دوران، بررسی مطالعه عمومی این آبادان در ایران حاکی از آن است که به تعداد دوران اسلامی در بزرگ‌شهر تاریخی سه‌گانه مهم ترینه آجرکاری، گچ‌بری و کاشی قدیمی آراهمهای متعدد، این دوران طولانی، همراه با تغییرات است. گچ‌پوشی به کار درآمده در این دوران از مهم‌ترین مصالح مورد استفاده در تزیین باهای ایران در دوره اسلامی است که توسط اداره، به ویژه عصر سلجوقی به بعد مورد توجه قرار گرفته است. یپشت، گچ‌بری و گچ‌پوشی در این دوران تزیین باهای متفاوت با گچ حاکی است که نتیجه آن بوده است که بتوان آبنی (در از اصل) از رنگ‌های سبز و نارنجی در این دوران استفاده شده بوده و به همین علت، بیشترین توزیع رنگ‌های سبز و نارنجی در این دوران در کنار یکدیگر و یکدیگر در این دوران استفاده می‌شده است. بررسی قرار گرفته، شناسایی شده است [10].

۱۱۳۳ درصد قطعات، رنگ‌های متفاوت که در آن‌ها از رنگ‌های مختلف قرمز، آبی، زرد به‌صورتی ترکیبی به کار رفته است. گچ‌پوشی در این دوران به وسیله مصالحی مانند سبز و نارنجی به کار نگرفته است. در این دوران به وسیله سیاه و سرمی کردن رنگ‌های سبز و نارنجی به کار رفت. در این دوران به وسیله دو رنگ سبز و نارنجی به کار رفته است. در این دوران به وسیله دو رنگ سبز و نارنجی به کار رفته است. در این دوران به وسیله دو رنگ سبز و نارنجی به کار رفته است. در این دوران به وسیله دو رنگ سبز و نارنجی به کار رفته است. در این دوران به وسیله دو رنگ سبز و نارنجی به کار رفته است.
گچ در دوره ایلخانی، موضوع تازه‌ای است که برکه بخش از آن نیز از کتیبه‌های خطی نزدیک رگ‌آمیزی متعلق به گنده‌ها یا لاجرودی یا کشی‌های سفید گچ استفاده می‌شود، ولی تکامل حقیقی آرام‌های گچی رنگی به طور کلی در دوره ایلخانیان صورت گرفته است. از دوره ایلخانی تا ناصر تیموری، از این شیوه‌های ظرفی و پنرکار در تزئین سبزیاری از بنای‌های تاریخی این دوران استفاده شده است (۱۲).

بررسی و مطالعه فن آرام‌های گچ خانه شهشهان اصفهان، متعلق به عصر قاجار بروز رسانی آزماشگاهی مختلف نشان داد که آرام‌های گچی این با روند استرف از کاکل و بستری از جنگ و خاص اجازه داده‌اند. بررسی ساختار گمر استفاده در این گچ‌های بر روی پیش‌رسانی نسبت به حضرت بزرگ فاز مستقل را ابتدا رسانده است. مطالعه رازی ساختار آرام‌های گچی با توجه به تناوب تصرفی و میکروسکوپی اکلیترونی حاکی از نقش آن است که این گچ‌ها نیم کشته در اجرای آرام‌های این با استفاده همکاری‌ها است. سناسته-

بنابراین، به‌نظر می‌رسد که این آرام‌های، ابتدا با پیش‌رسانی و توقف می‌رسد و در دوره‌های مختلف به دست آمده‌اند. ادامه این موضوع و هدف این مطالعه گچ‌های تمامی حکم‌های این با استفاده به پیوند مطالعه تاریخی و تطبیق و سبک این آرام‌ها در این طبقه‌اند. نمی‌گذارد و دستیابی به نتایج مفتون دبیر ان. نیازمند

مور پیشینه‌های پژوهش‌های انجام شده در این موضوع، نشان دهنده است که به وجود اهمیت این موضوع و گسترشی و کنترل بنای تاریخی و سیاست‌های از نظریه نزدیکی به دوران تاریخی و پیش‌رسانی شده‌است. به‌طور جغرافیایی برسی بر اساس روش‌های آزمایشگاهی به منظور شناخت ساختار و ترکیب پیوستگی مصالح و نوع رنگ‌های های به کار رفته در این نوع از آرام‌های معمایی در شناختها از نظر بنیان‌گذاری و نگهداری ساخته‌نشده است. بنابراین، تحقیق در مورد آرام‌های رنگ‌های مجموعه

172

اسلام هفتم، شماره اول، بهار و تابستان ۱۴۰۰
4. نتایج و بحث در یافته‌ها

4.1 مهندسات ظاهری و نمونه‌برداری

متانالیک که به‌صورت مشاهده‌های صورتی و شفاف بر این ارائه‌ای رنگ‌گذاری مجموعه کوانتوم خواف انجام شد، حاکی از این است که در جریان نقص دریافتگرها و تغییرات نیم‌دایرکوری که بخش اعظم سطوح داخلی این نما به‌خورا نشده، نگهداری‌های مختلفی به کار رفته است. در این‌ها رنگ‌گذاری در تکیه به مناسب‌کاری و تکنیک‌ها استفاده از تکنیک‌های متناظر، همچون مطالعه کتابخانه‌ای، بررسی میدانی و مطالعه آزمایشگاهی، انجام شده است.

به منظور مطالعه ساختار مصالح به‌کار رفته در این ارائه‌ای رنگ‌گذاری در این‌جا از روش پرتوی ایکس (XRDT) و برای شناخت و تحلیل کمی و کیفی ترکیب عناصر مصالح به کار رفته در آرایه‌ها از روش فلورسانس پرتوی ایکس (XRF) استفاده شد. نشانه‌ای نوع رنگ‌گذاشته‌های در دیوارنگارها و تغییرات تخمین‌برداری با کار رفته در دیوارنگارها و مطالب انجام شده‌اند. میکروسکوپ الکترونی روشن مجف‌ف بی‌میدانی (M.D.C. (میکروسکوپ الکترونی) و میکروسکوپ الکترونی مدل VP1450، شرکت LEO، آلمان) استفاده شد.

به منظور بررسی نواحی و وضعیت لایه‌ها در آرایه‌ها، مقطع عرضی نمونه‌برداری از تغییرات تخمین‌برداری‌ها بر روی نمونه بررسی می‌گردد. علاوه بر این، برای ساخت اگرچه به کار رفته در این‌جا به‌کار رفته استفاده از میکروسکوپ الکترونی مورد مطالعه و بررسی قرار گرفته، پس از بررسی و مطالعه آرایه‌ای نیز به روشن‌ها و نواحی مطالعه کتابخانه‌ای، مثال‌ها و بحث و تجزیه و تحلیل قرار گرفت که نتایج آن به شرح زیر است.

تأثیری کوانتوم خواف به روش تجویزی از ضرورت، اهمیت و ارزش ویژه‌ای به لحاظ مطالعه موادشان و باستان‌شناسی در راستای تکمیل داده‌های ما از هنر آرایه‌ای کاربردی در پنالی تاریخی دوران اسلامی برخوردار است.

3. مواد و روش‌ها

پژوهشی تجزیه - تحلیل استفاده شده و جمع‌آوری داده‌های پژوهش با استفاده از تکنیک‌های مختلف، همچون مطالعه کتابخانه‌ای، بررسی میدانی و مطالعه آزمایشگاهی، انجام شده است.
نمونه‌برداری شد (شکل 8 و 11). (جدول 1). وضعیت نمونه‌های رنگ برداشته شده در برخی از موارد بهصورت یک لایه رنگ سپار نازک (رنگ‌های آبی، سفید و نارنجی) در تزئینات دیوارنگارها بر روی لایه بستر گچی اجرا شده بود و در برخی دیگر، به صورت یک لایه نسبتاً ضخیم گچ رنگی (رنگ‌های قرمز، زرشکی و نخودی) در

شکل 8 محل نمونه‌برداری از رنگ‌دانه‌های اصل آرایه‌های مسجد کبودانی خواف که با دایره سیاه رنگ مشخص شده است، A) رنگ نارنجی، B) رنگ قرمز، C) رنگ زرشکی، D) رنگ سفید، E) رنگ نخودی، F) رنگ آبی

شکل 9: تخمه‌دارویی مسجد کبودانی به رنگ رنگ‌های نارنجی، سفید و آبی

شکل 10: دیوارنگارهای مسجد کبودانی به رنگ تاریخی، سفید و آبی

Fig 8: Sampling location of original pigments of the decorations of Khaf Kabodani mosque is marked with a black circle, A) Orang color, B) red color, C) purple color, D) white color, E) ochre color, F) blue color

Fig 9: The tahlmeh daravari of Kabodani mosque in purple and ochre

Fig 10: The wall painting of Kabodani mosque in orange, white and blue
جدول 1: نمونه‌های برداشته شده از آرایه‌های مسجد کبودانی برای آنالیز

محل نمونه‌برداری	نوع نمونه	رنگ	ردیف
دیوارنگاره داخل مسجد، آگهی سمت راست	نمونه رنگ تارکی	Pig-or2	۱
آرایه تخم‌درآوری	نمونه رنگ قرمز	Pig-red	۲
آرایه تخم‌درآوری	نمونه رنگ زرشک	Pig-zr2	۳
نرگ بخش یاپین تخم‌درآوری داخل مسجد	نمونه رنگ سفید	Pig-wh1	۴
آرایه تخم‌درآوری	نمونه رنگ نارنجی	Pig-bl	۵
دیوارنگاره خط دوار داخل مسجد	نمونه رنگ پایین اسپان	Pig-zr2	۶
گچبری محراب	نمونه مصالح اصلی گچبری	Gyp-origin	۷
آرایه تخم‌درآوری	نمونه ملات ضخیم قرمز رنگ	Gyp-color	۸

شکل 11: نمونه‌های برداشته شده از نگاره‌های آرایه‌های مسجد کبودانی برای آنالیز به روش‌های آزمایشگاهی

Fig. 11: Samples taken from the pigments of the colored decoration Kabodani mosque for analysis by laboratory methods

یک مطالعه ماکروسکوپی و میکروسکوپی

پرسی‌های ایزوت‌های تشکل دهنده آرایه‌های و ناحیه قرارگیری آنها با توجه به روش بخش‌هایی از مطقع این آرایه‌ها در بسیاری از قسمت‌های بنای، وضعیت نیازمندی آنها را در این بدای نسبت‌های، بررسی شکل دهنده آرایه‌های ناحیه، تکنیک‌های مهی و قالب‌های متوفی در مورد فنون اجرای این آرایه‌ها به ما نشان داد، وضعیت و نحوه قرارگیری آرایه‌های

شکل 11 نمونه‌های برداشته شده از نگاره‌های آرایه‌های مسجد کبودانی برای آنالیز به روش‌های آزمایشگاهی

Fig. 11: Samples taken from the pigments of the colored decoration Kabodani mosque for analysis by laboratory methods

تشکیل دهنده دیوارنگاره‌های بنای در شکل ۱۲ و

ساختار آرایه‌های تخم‌درآوری در تصاویر

میکروسکوپی ۱۳ و ۱۴ قابل مشاهده است. به منظور

بررسی ساختار، بافت و وضعیت لایه‌هایی تشکیل

دهنده آرایه‌های تخم‌درآوری مسجد کبودانی، از

تعدادی از نمونه‌های پرداخته شده از این آرایه‌ها،

مقطع عرضی به نگه گرفته و سپس مقاطع مورد

نظر پس

از آماده‌سازی، توسط میکروسکوپ توری مورد

بررسی

و مطالعه قرار گرفت (شکل ۱۳ و ۱۴) که نتایج این

مطالعات، به شرح زیر است:

شکل 11 نمونه‌های برداشته شده از نگاره‌های آرایه‌های مسجد کبودانی برای آنالیز به روش‌های آزمایشگاهی

Fig. 11: Samples taken from the pigments of the colored decoration Kabodani mosque for analysis by laboratory methods
مطالعه ساختاری و بررسی آزمایشگاهی آرایه‌های مسجد کبودانی خواف

شکل ۱۲: طرح شماتیک لایه‌نگاری دیوارنگاره‌های مسجد کبودانی خواف

Fig: 12: Schematic diagram of layering the wall painting of the Kabodani Khaf mosque

شکل ۱۳: تصویر مقطع عرضی ساختار گچ در تائینات تخمه‌درآوری مسجد کبودانی با میکروسکوپ نوری با بارگنمایی ۱۰X

Fig: 13: Cross-section image of the gypsum structure in the Kaboudani mosque with light microscope 10 X

شکل ۱۴: تصویر مقطع عرضی ساختار تائینات کرم‌مکه‌درآوری در مسجد کبودانی با میکروسکوپ نوری با بارگنمایی ۴۰X

Fig: 14: Cross-section image of the tokhmeh daravari decoration structure in the Kaboudani mosque with light microscope 40 X

بررسی ساختاری مصالح آرایه‌های با نهایت پراش پوتوی ایکس XRD به روش پراش پرتوی ایکس XRD

به منظور بررسی ساختار و شناسایی تركیب کانی، شناختی و فازهای موجود در مصالح مورد استفاده در آرایه‌های مجموعه کبودانی خواف، دو نمونه از مصالح به کار رفتند. در این بنا شامل ملات سه و سه‌ساله و سفید رنگ مورد استفاده در آرایه‌های گچ‌بری و نمونه‌های از ملات قرمز رنگ به کار رفتند. در ترتیبات تخموددرآوری با نهایت پراش پرتوی ایکس XRD مورد آنالیز قرار گرفت که نتایج حاصل از طیف سنجی پرتوی ایکس این نمونه‌های مصالح (اشکال ۱۳ و ۱۴) در بین یک تاریخی به شرح زیر است:

۴-۳ مطالعه ساختاری مصالح آرایه‌های با

بررسی ساختار ماسکروپوپی و تصاویر میکروسکوپی مقاطع عرضی صفحه شده از آرایه‌های مسجد کبودانی (اشکال ۱۲ و ۱۴) حاکی از این است که ساختار کلی و بافت‌های مختلف مورد استفاده در آرایه‌های بنا نشان دهنده مشابهی به یک ترکیب با دانه‌های بیشتری است. این باعث می‌شود که در تصاویر ۶ و ۷ مشاهده شود. یک ملات نهایی در رنگ به کار رفته از این است که در پوشه‌های خاکی، شیر، تایل و سیم با کارایی بالا در تأثیر‌گیری با دیگر مواد مولکولی است. در نهایت این نمونه‌ها در صورت یک لاشه منتسب به رنگ در نهایی در رنگ به کار رفته در فرآیند آرایه‌های تخموددرآوری به صورت بک‌لاشه نشان دهنده نقش یک ترکیبی از بخش‌های اصلی مسجد کبودانی خواف است. آنها شامل دو بخش می‌باشد: رنگ، قابل مشاهده است.
شکل ۱۵: طیف پراش سنجی پرتوی ایکس مصالح مورد استفاده در آرایه‌های گچبری مسجد کبودانی خواف

بررسی طیف پراش سنجی نمونه مصالح مورد استفاده در اجرای آرایه‌های گچبری مسجد کبودانی خواف، حاکی از حضور بارز فاز زیبس (CaSO₄·₂H₂O) به عنوان فاز اصلی تشکیل دهنده ترکیب گچ مورد استفاده در آرایه‌های این بخش از بنا است و فازهای کلسیت، کوارتز و موسکویت نیز فازهای فرعی است که به عنوان ناخالصی در ترکیب گچ مورد استفاده در این بخش از مسجد کبودانی خواف مشاهده می‌شود (شکل ۱۵).

شکل ۱۶: طیف پراش سنجی پرتوی ایکس ملات رنگین مورد استفاده در آرایه‌های تخم‌دراری مسجد کبودانی خواف

بررسی طیف پراش سنجی نمونه مصالح مورد استفاده در اجرای آرایه‌های تخم‌دراری مسجد کبودانی خواف، حاکی از حضور بارز فازات رنگین (CaCO₃، KAl₂Si₃O₈(OH)₂، KAl₃Si₃O₈(OH)₄) به عنوان فاز اصلی تشکیل دهنده ترکیب ملات رنگین مورد استفاده در آرایه‌های این بخش از مسجد کبودانی خواف مشاهده می‌شود (شکل ۱۶).
به منظور شناسایی و مطالعه ساختار ملات و مصالح
زنگی مورد استفاده در آرایه‌های تخمه‌دار، نتایج حاصل از این آزمایش به شرح دو نمونه به روش فلوپسانس پرتوی ایکس، آنالیز شدند.

در این پنژوهش، بنرای آنالیز کیفی و کمی ترکینب
اهان رنگی، مصالح اصلی مورد استفاده، همان گج
بونه است که از مواد رنگی و ماده افزودنی، همچون:
کلسیت و کوارتا به منظور تحکیم ساختار های تخمه،
شره و به صورت یک لایه ضخیم رنگی، آرایه‌های
تخمه‌داری با آن اجرا شده است.

4-4. آنانالیز ترکیب شیمیایی عناصر مصالح
مورد استفاده در آرایه‌های بنی به روش
فلوپسانس پرتوی ایکس

Table 2: The Elemental analysis results of materials sample used in the Stucco decoration of Kaboudani mosque by X-ray fluorescence method

عنصر اصلی	نوع اکسید	درصد عنصر اصلی	مقدار به	مقدار به	عنصر فرعی
Ca	SO	19/80	Ba	128	18
Sr	Al	2/09	Ce	N	1302
V	Na	0/17	Co	12	85
W	Mg	0/83	Cr	23	4
Y	Mo	1/33	Cu	59	8
Zr	Nb	0/24	Nb	N	32
Zn	Ti	0/29	Zn	7	253
N	Mo	0/03	Mo	N	2
Cr	Mn	0/14	Mn	N	2
V	Fe	0/15	Fe	Cl	1
W	P	0/32	P	Ni	4
Y	O	0/73	O	Pb	509

به منظور تحلیل عناصر صورت نمونه مصالح مورد استفاده در آرایه‌های کریستالی سبز، به روش فلوپسانس پرتوی ایکس (XRF) بررسی نتایج حاصل از آنالیز نمونه مصالح مورد

ایکس (XRD) مورد بررسی و مطالعه قرار گرفت.

بررسی طیف پراش سنجی این نمونه، ترکیب فازی اصلی، ساختاری یکنوازی از کانی‌های فیلوگوپیت، کلسیت و کوارتا به عنوان فازهای اصلی و در ساختار و اکسید‌های مشابه به عنوان فازهای فرعی بود که ترکیب ساختاری این لایه

ضخیم رنگ رنگ در آرایه‌های تخمه‌داری را تشکیل می‌داده (شکل 14). فیلوگوپیت از کانی‌های

خاوانه می‌کنند که به صورت رگه و توده‌های در

پیروکسنت‌ها و اسکارن‌ها می‌باشد. ترکیب این

است به (17) می‌باشد که می‌تواند از کانی

های سازنده سبزهای لاوروسن، سبزهای آدرین

و سنگ‌های پازاک‌قلیایی است که ترکیب شیمیایی

XRF
مطالعه اثرات استفاده از آنالیز‌های نمونه‌داری در تزئین‌های نقاشی تراکم‌دار از آثار هنری تخم‌درآوری مسجد کبودانی به روش فلورسانس XRF بر روی ایکس‌رنژ (Table 3: The Elemental analysis results of Sample thick red color layer used in the tokhmeh daravari decoration of Kaboudani mosque by X-ray fluorescence method)

عنصر فرعی	قدرت محلول (PPM)	عنصر اصلی	قدرت محلول (PPM)	نوع آلیکس
Pb	16	Co	2/87	AI2O3
Ba	2/22	Cr	1/53	MgO
Sr	16	Cu	0/47	K2O
Ln	60	Nb	0/26	TbO2
N	0/05	Mo	0/05	MnO
Th	0/11	U	26/04	CaO
C1	2/38	Pb	0/16	P2O5
Ni	37/34	N	2/87	Fe2O3
Pb	16/53	Zn	0/26	LOI
Fe2O3	5/34	Cr	1/53	MnO
Al2O3	7/53	Mo	0/05	MnO
Na2O	2/09	Pb	16/75	LOI
K2O	0/26	Zn	0/26	TbO2
CaO	26/04	Mo	0/05	MnO
P2O5	0/16	Pb	0/16	P2O5
MgO	0/47	Cu	0/47	K2O
3/3	1/53	Cr	1/53	MgO
Th	0/11	U	26/04	CaO
C1	2/38	Pb	0/16	P2O5
Ni	37/34	N	2/87	Fe2O3
Pb	16/53	Zn	0/26	LOI

بررسی نتایج به دست آمده از آنالیز ترکیب عناصر نشکل‌دهنده نمونه‌های نقاشی قطعات زنگ‌های تخم‌درآوری از آثار هنری تخم‌درآوری مسجد کبودانی به روش فلورسانس XRF بر روی ایکس‌رنژ (Table 3: The Elemental analysis results of Sample thick red color layer used in the tokhmeh daravari decoration of Kaboudani mosque by X-ray fluorescence method)

179
مطالعه ساختاری و بررسی آزمایشگاهی آرایه‌های مسجد کبودانی خواف

5-4. آنالیز رنگ‌های نمونه‌ها با کار رفته در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی، مجهز به سیستم آزمایشگاهی پرتوی (SEM-EDS) (یکس پراکنده‌شده)

یا توجه به محدودیت نمونه‌برداری از لایه‌های این آرایه‌های مسجد کبودانی به روش SEM-EDX (شکل ۱۷)، نشان دهنده است که با توجه به ضرورت بیان درصد و عناصر موجود در این نمونه رنگ، از رنگ‌های کاملاً متفاوت هم‌نام III (جدول ۴) می‌باشد. بنابراین، استفاده از روش‌های آزمایشگاهی پرتوی (SEM-EDS) تجربه پرتوی (یکس پراکنده‌شده) استفاده شده. برای این نمونه، از رنگ‌های مختلف در تجربه در آرایه‌های این بنا شامل سفید، آبی، قهوه‌ای، لیوانی، رنگ‌های شفاف، نشین و ناخالصی محصول می‌شوند.

بررسی طیف حاصل از تجربه عنصری رنگ قرمز (کد (Pig-red) SEM-EDX (شکل ۱۷)، نشان دهنده است که با توجه به ضرورت بیان درصد و عناصر موجود در این نمونه رنگ، از رنگ‌های کاملاً متفاوت هم‌نام III (جدول ۴) می‌باشد. بنابراین، استفاده از روش‌های آزمایشگاهی پرتوی (SEM-EDS) تجربه پرتوی (یکس پراکنده‌شده) استفاده شده. برای این نمونه، از رنگ‌های مختلف در تجربه در آرایه‌های این بنا شامل سفید، آبی، قهوه‌ای، لیوانی، رنگ‌های شفاف، نشین و ناخالصی محصول می‌شوند.

جدول ۲: نتایج تجربه عنصری نمونه رنگ قرمز

عنصر	درصد وزنی W%	درصد اتمی At%
O	49.48	73.30
Mg	1.18	1.15
Al	2.81	2.47
Si	5.83	6.91
S	2.41	1.78
Ca	3.62	2.14
Fe	29.55	6.91
Sb	0.79	3.54
کل	100	100

شکل ۱۸: طیف تجزیه عنصری نمونه رنگ قرمز در آرایه‌های بنا به روش SEM-EDX (شکل ۱۸).

جدول ۳: نتایج تجربه عنصری نمونه رنگ نارنجی

عنصر	درصد وزنی W%	درصد اتمی At%
O	43.38	61.23
Mg	6.23	6.23
Al	9.67	8.09
Si	19.16	15.40
S	2.59	1.82
K	3.41	1.97
Ca	2.97	1.67
Fe	5.61	2.37
Sb	4.49	1.29
کل	100	100

شکل ۱۹: طیف تجزیه عنصری نمونه رنگ نارنجی در آرایه‌های بنا به روش SEM-EDX (شکل ۱۹).

جدول ۴: نتایج تجربه عنصری نمونه رنگ قرمز

عنصر	درصد وزنی W%	درصد اتمی At%
O	49.48	73.30
Mg	1.18	1.15
Al	2.81	2.47
Si	5.83	6.91
S	2.41	1.78
Ca	3.62	2.14
Fe	29.55	6.91
Sb	0.79	3.54
کل	100	100

شکل ۲۰: طیف تجزیه عنصری نمونه رنگ قرمز در آرایه‌های بنا به روش SEM-EDX (شکل ۲۰).
درس طیف بهبست‌آمده از آنالیز رنگ نارنجی (کد Pig-or2) در دیوارنگارهای مسجد کبودانی به روش SEM-EDX (شکل 18) و نتایج بدست‌آمده از آن (جدول 5) نشان داد که با توجه به وجود 6/35 درصد وزنی آهن یک ماده رنگی اصلی: با اکسید آهن یک مقدار تقریباً 6/15 درصد وزنی آهن به همراه مقدار 9/34 درصد وزنی کلسیم و 5/32 درصد وزنی گوگرد در این نمونه رنگ، از اکسید آهن و رنگدانه قرمز اکرا در ترکیب با گچ به منظور پایین‌آوردن تنالیت‌های تیره در لایه‌های تخمه‌داری این بنا استفاده شده است.

جدول 5: نتایج آنالیز عنصری نمونه رنگ زرشکی

عنصر	درصد وزنی	درصد اتمی
O K	32/81	60/58
Si K	3/34	6/35
S K	7/42	5/73
Ca K	8/54	10/09
Sn L	3/94	2/46
Sb L	100	100
Totals	**100**	**100**

بررسی طیف حاصل از آنالیز عنصری رنگ زرشکی (Pig-zr2) در دیوارنگارهای مسجد کبودانی به روش SEM-EDX (شکل 19) و نتایج بدست‌آمده از آن (جدول 6) حاکی از آن است که با توجه به حضور بارز آهن به میزان 6/15 درصد وزنی در این نمونه رنگدانه نیاز، از قرمز اکرا در ترکیب با گچ برای ایجاد رنگ زرشکی استفاده شده است. متنیه میزان رنگدانه ترکیب شده با گچ نسبت به رنگ قرمز سبیل بیشتر بوده است که موجب شده در این بخش‌ها

جدول 6: نتایج آنالیز عنصری نمونه رنگ نخودی

عنصر	درصد وزنی	درصد اتمی
O K	7/34	3/5
Si K	11/15	8/05
S K	8/08	7/45
Ca K	10/21	4/82
Fe K	36/09	19/09
Sb L	100	100
Totals	**100**	**100**

بررسی طیف حاصل از آنالیز عنصری رنگ نارنجی (کد Pig-or2) در دیوارنگارهای مسجد کبودانی به روش SEM-EDX (شکل 18) و نتایج بدست‌آمده از آن (جدول 5) حاکی از آن است که با توجه به حضور بارز آهن به میزان 6/15 درصد وزنی در این نمونه رنگدانه نیاز، از قرمز اکرا در ترکیب با گچ برای ایجاد رنگ زرشکی استفاده شده است. متنیه میزان رنگدانه ترکیب شده با گچ نسبت به رنگ قرمز سبیل بیشتر بوده است که موجب شده در این بخش‌ها

شکل 20: طیف آنالیز عنصری نمونه رنگ نخودی تخم‌داری‌های دیوارنگاره

شکل 19: طیف آنالیز عنصری نمونه رنگ زرشکی تخم‌داری‌های دیوارنگاره

شکل 18: طیف آنالیز عنصری نمونه رنگ نارنجی تخم‌داری‌های دیوارنگاره
بررسی طیف بدست‌آمده از تجزیه عنصری رنگ نخودی (با کد کد P-2) در آراوهای تمام‌پوش (شکل 3) و ترتیب‌های آرایه از ناحیه 2 درصد وزنی این امکان‌پذیر باشد. توجهی از قبلاً میزان 3/2 درصد وزنی، در کنار 7/5 درصد وزنی کلسیم در این نمونه رنگ، برای تریب سطوح بنی به روش تخم‌آوری، از ترکیب رنگ آنتی‌مان با گل سفید برای ایجاد رنگ نخودی استفاده شده است.

جدول 7: نتایج تجزیه عنصری نمونه رنگ سفید

عضو	درصد وزنی (W%)	درصد اتمی (At%)
O K	60.49	77.35
Al K	13.75	11.13
Si K	9.04	7.91
Fe K	8.73	4.76
Ca K	8.80	100
سیلیس	10.17	7.91
نتایج کل	100	100

شکل 21: طیف تجزیه عنصری نمونه رنگ سفید دیوارنگاره به روش SEM-EDX

شکل 22: طیف تجزیه عنصری نمونه رنگ سفید دیوارنگاره به روش SEM-EDX

بررسی طیف حاصل از تجزیه عنصری رنگ سفید (پیگ A-B) به کار رفته در تریب سطوح (شکل 3) و ترتیب‌های آرایه از ناحیه 2 درصد وزنی وجود آنتی‌مان با گل سفید برای ایجاد رنگ نخودی استفاده شده است.

جدول 8: نتایج تجزیه عنصری نمونه رنگ آبی

عضو	درصد وزنی (W%)	درصد اتمی (At%)
O K	48.50	66.21
Al K	13.75	11.13
Si K	10.17	7.91
S K	9.04	6.15
Ca K	8.73	4.76
Fe K	8.80	3.83
سیلیس	10.17	7.91
نتایج کل	100	100

شکل 23: طیف تجزیه عنصری نمونه رنگ آبی دیوارنگاره به روش SEM-EDX

شکل 24: طیف تجزیه عنصری نمونه رنگ آبی دیوارنگاره به روش SEM-EDX

بررسی ناحیه زیر ساختاری گچ در آرایه‌های ناحیه 2 با روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های بنا به روش میکروسکوپ الکترونی روبشی SEM به منظور بررسی ریزساختار گچ در آرایه‌های B

طالعه ساختاری و بررسی آزمایشگاهی آرایه‌های مسجد کبودانی خواف
مطالعه و بررسی قرار گرفتی است در بخش‌هایی که نتایج آن به شرح زیر است:

سپس نمونه‌های برداشته شده، با کمک میکروسکوپ الکترونی روبشی بنا برگویی نهایی، ازجمله
10000، 5000، 2000 و 1000 برای مورد

![تصویر 1](image1.png)

![تصویر 2](image2.png)

![تصویر 3](image3.png)

![تصویر 4](image4.png)

![تصویر 5](image5.png)

![تصویر 6](image6.png)

![تصویر 7](image7.png)

![تصویر 8](image8.png)

اغلب، بلورهای گچ تیز، به صورت پارسالهایی شکل می‌گیرد که در مقایسه با گچ هسته‌ای، موجب برخی از خصوصیات مختلفانی می‌شود.

بررسی ریز ساختار گچ مورد استفاده در آراوهای مسجد کبودانی، نشان دهنده بارزی بودن میکروسکوپ الکترونی روشنی هاکی از آن به دلیل توجه به وابستگی بخش‌های مختلف مولکولیک ژیپس

سلام هنرمند، شماره اول، بهار و تابستان 1400
مطالعه‌ی ساختاری و بررسی آزمایش‌گاهی آرایه‌های مسجد کبودانی خواف

نشریه مطالعات مسجد و آثار تاریخی

پنجمین جلد

جلد سوم

شماره یازدهم

 Bersisitem حضور در آرایه‌ی مسجد کبودانی

(اشکال ۲۳ و ۲۴ و فضاهای خالی و حفرات موجود در میان آنها) محل تبخیر رطوبت موجود در مالکیت بوده و در اجرای آرایه‌های گچبری در پبخش‌های مختلف بنا از زندی این استفاده که از سختی و گیرش خوبی برخودر و بوده و بار آن کار مناسب بوده است ولی در پبخش‌های از بنا که از گچ به عنان لایه بستر زیرین لایه رنگ در دیوارنگاره‌ها استفاده شده بوده است بنابراین رنگ‌های پبخش‌های مختلف در این بنا استفاده شده بوده که به طور می‌رسد که از گچ‌کشته استفاده شده است.

در این بنا، اکسیژن و اکسید آهن (III) در طول زمان زیاد، باعث تغییرات شیمیایی در مواد معدنی شده است. این تغییرات آنها، باعث شده است که شکاف‌های مختلف در دیوارنگاره‌ها و پبخش‌های در این بنا بوجود آید. این شکاف‌ها باعث شده است که رنگ‌های مختلف رنگ‌دانه‌ها در این بنا بوجود آیند.

۵. تحلیل گیره

بررسی و دانستن از رنگ‌دانه‌ها، ساختر و ترکیب شیمیایی مواد و مصالح به کار رفته در آرایه‌های مسجد کبودانی خواف، شامل دیوارنگاره‌ها و پبخش‌های تائینات تخمه درآوری و دیوارنگاره‌ها، باعث شده است که شکاف‌های مختلف در پبخش‌های این بنا بوجود آیند.

یافته‌ها و نتایج

در این بنا، اکسیژن و اکسید آهن (III) در طول زمان زیاد، باعث تغییرات شیمیایی در مواد معدنی شده است. این تغییرات آنها، باعث شده است که شکاف‌های مختلف در دیوارنگاره‌ها و پبخش‌های در این بنا بوجود آید. این شکاف‌ها باعث شده است که رنگ‌های مختلف رنگ‌دانه‌ها در این بنا بوجود آیند.

۵. تحلیل گیره

بررسی و دانستن از رنگ‌دانه‌ها، ساختر و ترکیب شیمیایی مواد و مصالح به کار رفته در آرایه‌های مسجد کبودانی خواف، شامل دیوارنگاره‌ها و پبخش‌های تائینات تخمه درآوری و دیوارنگاره‌ها، باعث شده است که شکاف‌های مختلف در پبخش‌های این بنا بوجود آیند.

یافته‌ها و نتایج

در این بنا، اکسیژن و اکسید آهن (III) در طول زمان زیاد، باعث تغییرات شیمیایی در مواد معدنی شده است. این تغییرات آنها، باعث شده است که شکاف‌های مختلف در دیوارنگاره‌ها و پبخش‌های در این بنا بوجود آید. این شکاف‌ها باعث شده است که رنگ‌های مختلف رنگ‌دانه‌ها در این بنا بوجود آیند.
پژوهش‌ها و گردشگری اسلامی تاریخ در اسلامی ایران در دوره ایالت‌های تاریخی، ترحیم عابد‌الله، یونکری، یونکری و نشر کتاب، ۱۳۸۶.

[7] Kiani, Mohammad Yusef. Period Islamic: The of architecture Iranian the with related Decorations, Tehran: The Cultural Heritage Organization, 1998. [in Persian]

[8] Makkinezhad, Mahdi. Art History of Iran in Islamic Era: Architecture Ornaments, Tehran: The Organization for Researching and Composing University Textbooks in the Humanities (SAMT); 2008. [in Persian]

[9] Khammoradi M, Niknami K. P Painted Parthian Stuccoes From Qal' Eh Bastanshenasi Iran, 2017; 7(13). [in Persian]

[10] Simpson S, Ambers J, Verri G, Deviese T, Kirby J. Painted Parthian stuccoes from southern Iraq. In 7th International
Congress on the Archaeology of the Ancient Near East 2012, (pp. 209-220). Harrassowitz Verlag Wiesbaden.

[11] Shekofteh A, Ahmadi H, Oudbashi O. Seljuk Brickwork Decorations and Their Sustainability in Khwarezm and Ilkhanid Decorations. Iran University of Science & Technology. 2015; 3 (1): 84-104 [in Persian]

[13] Mohtasham A, Salehian L, Ahmadi K. Technical Study Of Stucco Ornamens In "Shah-Shahani" House Using Xrd, Sem And Wet Chemistry. Journal Of Advanced Materials And Technologies. 2014;3(2). [In Persian]

[14] Salehi Kakhki A, Aslani H. Presentation Of 12 Kinds Of Stucco Works Used In The Architectural Decoration Of The Islamic Period In Iran Based On Technical Properties. Journal Of Archaeological Studies. 2011;3(1 Serial No. 3). [In Persian]

[15] Farahmand Boroujeni H, Abed Esfahani A, Shishebori T. The Study Of Materials And Techniques Of Mural Painting In Five Ilkhanid Monuments Of Yazd City. Maremat-E Asar & Baft-Haye Tarikhi-Farhangi. 2013;2(4). [In Persian]

[16] Mishmastnehi M. The Application Of Crystallographic Interpretation On Technical Study Of Gypsum-Based Historical Materials (Case Studies Of Stucco Decoration Of Kuh-E Khwaja And Gypsum Mortars From Shadiak And Alamut). Journal Of Research On Archaeometry. 2016;1(2). [In Persian]

[17] Karimpour, M. H. Industrial minerals and Rocks, Ferdowsi University Publication,No 250, Iran, [in Persian]

[18] Mitchell R.H., “Titaniferous phlogopites from the Leucite lamproites of the West Kimberley area, Western Australia”, Contributions to Mineralogy and Petrology 76 (1981) 243-251.

[19] Zhang M., Suddaby P, Thompson R. N Dungan M. A., “Barian-titanian phlogopite from potassic lavas in northeast China: chemistry, substitutions and paragenesis”, Am.Mineral 78 (1996) 1056-1065.