Non-coding RNA in cancer

Huiwen Yan and Pengcheng Bu

Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China

Correspondence: Pengcheng Bu (bupc@ibp.ac.cn)

Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.

Introduction

Approx. 75% of the human genome is transcribed into RNA, while only 3% is transcribed into protein-coding mRNAs [1]. According to the length, shape and location, non-coding RNAs (ncRNAs) have been divided into different classes. Among them, microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA) are the four major ncRNA types with distinct functions in cancers. miRNAs are a kind of small RNA with approx. 22 nucleotides (nt) in length. miRNAs bind to the complementary sequence in targeted mRNA and cause RNA-induced silencing complex (RISC) to degrade targeted mRNA (Figure 1) [2]. piRNA was first identified in Drosophila with 24–30 nt in length. It mainly exists in germline cells and binds to PIWI family proteins to participate in epigenetic regulation of chromatin [3]. LncRNAs and circRNAs are more than 200 nt long, but lncRNAs are linear, while circRNAs are ringlike. Both lncRNAs and circRNAs can be transcribed from exon, intron, intergenic region or 5′/3′-untranslational regions and fold into complicated secondary structures, which facilitate their interactions with DNA, RNA and proteins (Figures 2 and 3) [4]. LncRNAs and circRNAs regulate gene expression through multiple mechanisms. They can play as miRNA decoy to prevent the targeted mRNA degradation. They can modulate transcription factors to bind to promoters and thus regulate targeted gene expression [5]. They can also work as scaffold to regulate protein–protein interactions and the related downstream signaling pathways. Recently, some studies showed that lncRNAs and circRNAs participated in epigenetic modulation of chromatin to regulate gene expression.

Abundant evidences have shown that ncRNAs play crucial roles in human malignancies. They can work as oncogenes or suppressors to regulate cancer initiation and progression. Many ncRNAs can be released from cancer cells into blood or urine and act as diagnostic markers or prognostic indicators. Here, we mainly focus on overviewing the recently emerging studies of the four major ncRNAs in cancer.

miRNAs in cancers

Numerous studies have shown the important role of miRNAs in various cancers. Many miRNAs are highly expressed in cancer cells and promote cancer development. Some miRNAs even regulate the progression of multiple cancers. miR-126 is known to be highly expressed in breast [6] and colorectal cancers [7]. Recently, Silva et al. showed that miR-126 was also highly expressed in human B-ALL [8]. Forced expression of miR-126 in mouse hematopoietic stem progenitor cells resulted in B-cell leukemia. Further study revealed that overexpression of miR-126 down-regulated the expression of p53 and its associated genes [9],...
miRNAs are transcribed as pri-miRNAs by RNA polymerase II. Following processing by the Drosha complex, pre-miRNAs are exported to the cytoplasm by exportin 5 (XPO5). Mature miRNAs are produced by Dicer and TAR RNA-binding protein 2 (TARBP2)-mediated processing and loaded into the RISC. miRNAs function through degrading mRNA or repressing translation to regulate cancer.

while suppression of miR-126 triggered apoptosis and inhibited B-ALL progression in xenograft mice. miR-155 has been identified as an oncogene in many kinds of cancers, including colon, breast, lung, gastric and liver cancer [10–14]. In agreement with its oncogenic roles, miR-155 has been regarded as a therapeutic target in different cancers. Recently, miR-155 was further shown to be up-regulated in plexiform neurofibromas [15]. Up-regulated miR-155 increased proliferation and sphere formation of plexiform neurofibromas initiating cells. Inversely, anti-miR-155 nucleic acid decreased tumor number in mouse spontaneous plexiform neurofibromas model. miR-215 is another oncogene and up-regulated in glioblastoma by hypoxia [16]. Hypoxia-elevated miR-215 targets epigenetic regulator
Figure 2. The biogenesis and effector machineries of lncRNAs

LncRNAs are transcribed by RNA polymerase II. LncRNAs function as guide molecules to recruit factors for chromatin remodeling, as decoys to hinder transcriptional factors from the promoter of target gene, as sponges of associated miRNA to prevent degradation of target gene, or as scaffolds to facilitate interaction of associated proteins.

KDM1B, to regulate the related downstream signaling and thus maintain glioblastoma initiating cell growth [17]. Some miRNAs, such as miR-105 can be secreted by cancer cells via exosome to modulate tumor microenvironment. miR-105 is highly expressed in metastatic breast cancer cells [18]. After secretion, miR-105-containing exosomes enter into endothelial monolayers and suppress the expression of the tight junction protein ZO-1, resulting in elevated vascular permeability and cancer metastasis [18]. Zhuo et al. further showed that circulating miR-105 could act as a clinical indicator of breast metastasis.

Some miRNAs have been regarded as tumor suppressors, such as let-7 and miR-34a. The let-7 miRNAs contain many family members. Most of them are down-regulated in different types of cancers, including hepatocellular carcinoma [19], non-small cell lung cancer [20], prostate cancer [21], breast cancer [22], colon cancer [23] and pancreatic cancer [24]. Let-7 miRNAs target and down-regulate many oncogenic genes including E2F1, ARID3B, K-RAS and c-Myc, resulting in suppression of tumor progression [25]. Furthermore, higher levels of let-7 indicate better prognosis in hepatocellular carcinoma and thyroid carcinoma [26]. Recently, Pablo et al. showed that let-7 also targeted Long Interspersed Element class 1 (LINE-1), the only autonomously active transposable elements highly expressed in lung cancer, to impair its translation and reduce its mobilization [27]. They proposed that Let-7 sustained somatic genome integrity by restricting LINE-1 retrotransposition. miR-34a is another tumor suppressor that plays an important role in suppressing cancer progression. We previously showed that miR-34a was critical for asymmetric division of colon cancer stem cells (CCSCs) [28]. Silencing miR-34a inhibits asymmetric cell division, promotes CCSC self-renewal and thus accelerates colon cancer progression. Kennerdell et al. also showed that miR-34a was decreased in most of the colon cancer cell lines and low levels of miR-34a predicted poor prognosis [29]. Tumor suppressor miR-29 is identified in microenvironment of chronic lymphocytic leukemia (CLL). In CLL, miR-29 targets Tumor-Necrosis Factor (TRAF4), a factor associated with CD40 activation and B-cell receptor signaling [30]. Down-regulated miR-29 elevates the expression of TRAF4 and activates CD40 signaling in CLL. Reversely, activated CD40 represses the expression of miR-29. miR-29-TRAF4-CD40 signaling axis plays as a negative feedback regulation loop in CLL. We have summarized the recent studies on miRNA functions in cancer in Table 1.
Figure 3. The biogenesis and effector machineries of circRNAs

circRNAs are transcribed by RNA polymerase II and cyclized by backsplicing. circRNAs function as scaffolds to facilitate interaction of associated proteins, or as miRNA sponges to prevent degradation of target gene.

IncRNAs in cancers

Like miRNAs, IncRNAs also play as oncogenes or suppressors to regulate tumorigenesis and progression. HOTTIP, derived from *HOXA* gene, has been shown to be highly expressed in many cancers. Recently, Luo et al. demonstrated that HOTTIP played as an oncogene in acute myeloid leukemia (AML) [31]. They found that HOTTIP was aberrantly elevated in AML and worked as an epigenetic regulator to modulate hematopoietic gene-associated chromatin signature and transcription. LncTCF7 is another IncRNA transcribed from TCF gene locus. Wang et al. showed that LncTCF7 was highly expressed in liver cancer stem cells (CSCs) and was important for liver CSC self-renewal [32].
Table 1 List of miRNAs and their role in cancer development

Cancer type	Oncogene	Tumor suppressor
Breast	let-7	miR-30 promotes apoptosis [76]
	miR-141	miR-140 inhibits proliferation [77]
	miR-766	miR-143 inhibits proliferation [78]
		miR-600 inhibits stemness [79]
		miR-7 inhibits cell growth [80]
Lung	miR-518b	let-7 represses expression of k-Ras [83]
	miR-629	miR-200a represses EMT [84]
Ovarian	let-7	miR-190b suppresses cell growth [85]
		miR-134-3p reduces multiple drug resistance [87]
Prostate	miR-141	miR-126 inhibits proliferation [88]
		miR-145 inhibits proliferation and invasion [90]
Colorectal	miR-1274a	miR-34 reduces stemness [91]
	miR-592	miR-137-3p inhibits migration [94]
Brain	miR-137	miR-3622a-3p reduces stemness and differentiation [96]
		miR-136 promotes apoptosis [99]
Pancreatic	miR-200b-3p	miR-142-5p inhibits proliferation [101]
		miR-136 promotes apoptosis [99]
Liver	miR-93-5p	miR-342-3p inhibits proliferation [102]
		miR-1225-5p inhibits proliferation and invasion [103]
		miR-589 suppresses stemness [105]
		miR-635 inhibits proliferation and invasion [106]
Stomach	miR-876-5p	miR-876-5p inhibits proliferation and invasion [107]
Leukemia	miR15/16 Sustains stemness [108]	miR-99 suppresses stemness [109]
		miR-185 impairs survival of drug-resistant cells [110]

Mechanistically, LncTCF7 recruited SWI/SNF complex to TCF7 promoter and activated Wnt signaling for sustaining liver CSC self-renewal. Epigenetically induced LncRNA1 (EPIC1) is first identified as an oncogene in luminal B breast cancer [33]. Recently, EPIC1 has been found to be highly expressed in glioma [34], cholangiocarcinoma [35], pancreatic [36] and lung cancers [37]. Elevated EPIC1 promotes tumor growth by interacting with MYC to elevate its target genes, such as CDKN1A, CCNA2 and CDC20 [33]. Recently, Li et al. showed that linc0624, an antisense strand of CHD1L, worked as molecular decoy to segregate HDAC6–TRIM28–ZNF354C transcriptional corepressor complex away from the specific genomic loci, thus promoting the progression of hepatocellular carcinoma [38]. Some LncRNAs act as suppressors to suppress cancer development and progression. Pvt1b, a p53-dependent isoform of the lncRNA, suppresses lung cancer growth by down-regulating c-Myc expression [39]. DIRC3 is down-regulated in melanomas and its lower expression level is associated with shorter survival [40]. Further study reveals that DIRC3 inhibits proliferation of melanoma cells via elevating the expression of tumor suppressor IGFBP5. Recently, SATB2-AS1, an antisense transcript of tumor suppressor SATB2, has also been shown to be down-regulated in colorectal cancer. Knockdown of SATB-AS1 significantly increases cell proliferation, migration and invasion [41]. Mechanistically, SATB-AS1 works as a scaffold to recruit p300 to SATB2 promoter, up-regulating SATB2. Elevated
SATB2 recruits HDAC1 to Snail promoter, suppressing Snail expression and epithelial-to-mesenchymal transition. MALAT1, a nuclear IncRNA, is also a tumor suppressor in breast cancer. Jong et al. showed that knockout of MALAT1 promoted breast cancer metastasis through disrupting the recruitment of transcription factor TEAD and co-activator YAP to the target gene promoters [42]. We have summarized the recent studies on IncRNA functions in cancer in Table 2.

circRNAs in cancers

circRNAs are recently identified ncRNA type and act as either tumor suppressors or oncogenes. For instance, circ-CDYL is down-regulated in colon cancer, bladder cancer and triple-negative breast cancer and its underexpression is positively correlated with patient survival [43]. Further studies shows that overexpression of circ-CDYL promotes apoptosis and inhibits proliferation of breast cancer cells [44]. Mechanically, circCDYL functions as a sponge to protect TP53INP1 from miR-190a-3p-mediated down-regulation [45]. The expression of circFOXO3 is lower in the breast cancers compared with that in adjacent benign tissues [46]. Interestingly, circFOXO3 works not only as an miRNA sponge to protect Foxo3 mRNA from attack, but also as a scaffold to bridge p21 and CDK2 to inhibit cell cycle progression [47].

In contrast with the tumor suppressive roles, some circRNAs have been identified as oncogenes. circ-CCAC1, also known as cholangiocarcinoma-associated circular RNA1, is highly expressed in cholangiocarcinoma and cholangiocarcinoma-derived endothelial vessels [48]. In tumor cells, circCCAC1 recruits miR-514a-5p to up-regulate YY1 and its downstream gene CAMLG, which elevates the cell activity [48]. In endothelial vessels, circ-CCAC1 up-regulates SH3GL2 by sequestering EZH2, thus reducing intercellular junction protein levels and increasing cell leakiness [48]. circRNAHIPK3 derived from exon 2 of HIPK3 gene is highly expressed in many types of cancer, including glioma [49], prostate cancer [50], breast cancer [51], colorectal cancer [52] and renal cancer [53]. Through screening of 424 miRNAs, 9 miRNAs showed great suppressive ability on the HIPK3 exon 2. Interestingly, all the nine miRNAs have been identified as tumor suppressors and suppressed by circHIPK3 [54]. These studies demonstrate that the expression of circRNAs is dynamically regulated in different cancers, and regulates cancer progression through distinct mechanisms. We have summarized the recent studies on circRNA functions in cancer in Table 3.

piwiRNAs in cancers

Generally, piRNAs are expressed in the germline, but recent studies have demonstrated that piRNAs are also expressed in cancer cells, where piRNAs play crucial role in repression of transposable elements cleaving, degradylation and decay. For instance, piRNA-823 has been identified to regulate proliferation and migration of a variety of cancer cells [55,56]. In multiple myeloma (MM), silencing piRNA-823 induces the expression of apoptosis-related genes by modulating de novo DNA methylation [57]. In colorectal cancer, inhibition of piR-823 suppresses cell proliferation and induces cell apoptosis by activating apoptosis-associated transcription factor HSF1 [58]. Cordeiro et al. examined several piRNA pathways in classical Hodgkin lymphoma and found that piR-651 was down-regulated in classic Hodgkin lymphoma patients compared with that in healthy controls. In addition, low levels of piR-651 are positively correlated with short overall survival of the classical Hodgkin lymphoma patients [59]. piRNA-54265 is highly expressed in cancer tissue and serum of the colorectal cancer patients. piRNA-54265 activates STAT3 signaling by facilitating PIWI2/STAT3/SRC complex assemble [60]. Thus, piRNAs are also important for cancer progression.

Targeting ncRNAs in cancer therapy

Recently, several ncRNAs have been used as novel therapeutic targets to treat cancers. Considering different roles of ncRNAs in specific cancer types, ncRNA mimics, antisense oligonucleotides (ASOs) or small molecule drugs have been applied for the treatment of cancers. miR-34a mimic packaged in a liposomal nanoparticle, called MRX34, has gone through a phase I clinical trial in patients with advanced solid tumor [61]. Moreover, miR-31-3p and miR-31-5p have been considered as colorectal cancer predictive biomarkers in phase III clinical trial [62,63]. Li et al. took a computational approach to design and identify small molecules on the base of the predicted miRNA hairpin precursor structures. They found that a benzimidazole analog selectively inhibited the processing of pri-miR-96 into oncogenic miR-96 and thus elevated miR-96 target gene expression and promoted cancer cell apoptosis [64]. Further optimization of benzimidazole turns out a dimeric benzimidazole and bisbenzimide compound, targaprimir-96, which shows a favorable pharmacokinetics profile and is effective at releasing tumor burden in a triple-negative breast cancer xenograft mouse model [65]. Another dimeric benzimidazole and bisbenzimide analog, targaprimir (TGP)-515, is
Cancer type	Oncogene	Tumor suppressor
Breast	00617	promotes metastasis [112]
	XIST	promotes proliferation and inhibit apoptosis [113]
	H19	promotes stemness [114]
	ROR	elevates multiple drug resistance [115]
	HOTAIR	promotes proliferation and metastasis [116]
	01271	promotes metastasis [117]
	DILA1	promotes proliferation and multiple drug resistance [118]
	ERINA	promotes cell-cycle progression [119]
	TROJAN	promotes proliferation and invasion [120]
Ovarian	HOTAIR	promotes stemness [123]
	LINP1	promotes proliferation and invasion [124]
Brain	HAS2-AS1	promotes invasion [125]
	H19	promotes angiogenesis [126]
	CRNDE	promotes proliferation and invasion [127]
	XIST	promotes proliferation and invasion [128]
Liver	HOTAIR	promotes proliferation and invasion [130]
	DILC	suppresses stemness [136]
	PTENP1	suppresses proliferation and invasion [137]
	β-Catm	sustains self-renewing [131]
	TRG-AS1	promotes proliferation and invasion [132]
	HUR1	promotes proliferation [133]
	01138	promotes proliferation, invasion and metastasis [134]
	MALAT1	promotes proliferation and inhibit apoptosis [135]
Colon	URHC	promotes proliferation and invasion [139]
	CCAT2	elevates chromosomal instability and promote proliferation and invasion [140]
	PURPL	promotes cell growth [141]
Lung	TRINGS	protects cancer cells from necrosis [143]
	MIR22HG	promotes cell survival [144]
	GUARDIN	sustains genomic stability and prevent apoptosis and senescence [145]
Leukemia	CRNDE	promotes proliferation [147]
	PANDA	inhibits cell growth [148]
Table 3 List of circRNAs and their role in cancer development

Cancer type	Oncogene	Tumor suppressor
Breast	UBE2D2	elevates multiple drug resistance [149]
		0000554 represses EMT [152]
		HIPK3 inhibits proliferation and invasion [153]
	DCAF6	sustains stemness [150]
	DNMT1	activates autophagy [151]
	MYLK	promotes glycolysis and proliferation [154]
	CPA4	promotes stemness [155]
	LDLRAD3	promotes proliferation and survival [156]
Lung		
Colon	UAP2	promotes proliferation and metastasis [157]
Brain	POSTN	promotes proliferation and metastasis [158]
		SHPRH suppresses proliferation [159]
Liver	0000517	promotes glycolysis and clonogenicity [160]
	0067934	promotes proliferation and metastasis [161]
	ASAP1	promotes proliferation, colony formation migration and invasion [162]
	CDYL	sustains stemness [163]
	10720	promotes EMT [164]
Gastric	0000144	promotes proliferation and clonogenicity [165]
	NRIP1	promotes proliferation and glycolysis [166]
Ovarian	FGFR3	promotes proliferation and EMT [167]
		9119 suppresses proliferation [169]
		ITC suppresses proliferation, invasion and glycolysis [170]
	UBAP2	promotes proliferation and inhibits apoptosis [168]
		MTO1 suppresses proliferation and invasion [171]

identified to target pri-miR-515, resulting in up-regulation of human epidermal growth factor receptor 2 and enhancement of the therapeutic efficacy of the anti-human epidermal growth factor receptor 2 antibody in breast cancer cells [66]. Likewise, a bisbenzimide analog called targarpemir-210, also called TGP-210, is identified to bind to pre-miR-210, leading to the inhibition of processing of mature miR-210 and suppressing the outgrowth of xenograft tumors in mice [67]. The attachment of a nuclease recruitment module on to targarpemir-210 offers a conjugate, TGP-210-RL, which is able to recruit RNase L on to pre-miR-210 to induce the degradation of pre-miR-210. Compared with TGP-210, TGP-210-RL conjugate exhibits higher binding affinity to the pre-miR-210 while lower affinity to DNA [68]. Recently, an oligonucleotide inhibitor of miR-155, called cobomarsen, has been reported to decrease cell proliferation and induces cell apoptosis in Diffuse Large B-cell Lymphoma. Clinically, this compound efficiently inhibits tumor growth without obvious side effects on the patients, supporting its potential therapeutic application in Diffuse Large B-cell or other types of Lymphoma [69]. Further computational and experimental studies demonstrates that mitoxantrone is able to directly bind to pre-miR-21 and subsequently inhibits Dicer-mediated biogenesis of oncogenic miR-21 [70]. Several studies have demonstrated that ASOs can be used as inhibitors to block lncRNAs [71]. In mouse model, ASOs targeting MALAT1 blocks metastasis of lung cancer cells [72]. Together, targeting ncRNAs has been showing a promising approach for cancer therapy.
Conclusion

ncRNAs contain various classes and participate in regulation of the progression of various types of cancers. Some ncRNAs highly exist in serum or urine of the cancer patient and are capable to work as diagnostic markers or prognostic indicators. Many clinical trials have also been conducted by targeting ncRNAs and exhibited promising therapeutic effects. With deep investigation of the mechanisms, we have been broadening our understanding of ncRNA functions. For instance, miRNAs are originally considered to suppress target gene expression by binding to the 3′-UTR regions. Recently, we have realized that miRNAs could also bind to other regions of the genes and even up-regulate target gene expression. Now we also know that some IncRNAs actually can encode small peptides to regulate biological processes. However, there are still many unknown ncRNAs, particularly the new ncRNA classes with precise roles need to be investigated. Even for the well-known ncRNAs, their function and regulatory mechanisms could be changed with spatial-temporal alteration, such as expression pattern, structure and interacting proteins. Therefore, efforts still need to make to understand the precise function and mechanisms of the ncRNAs.

Targeting ncRNA therapies have been conducted in many clinical trials. Emerging technologies and new approaches will contribute to even better outcomes. For instance, targeting ncRNA approaches could be co-operated with immune therapy or other therapeutic treatments. Human organoids can be used for investigating functions or preclinical effects of ncRNAs in patients. Targeting ncRNAs by CRISPR-mediated gene editing may also be worth trying for certain diseases. Many ncRNAs both functions in physiology and pathology. Therefore, deep investigation of the function and mechanism will help to identify the ncRNAs specifically regulating cancers and reduce the adverse side effects. Overall, ncRNAs are heavily involved in regulating various cancers and targeting ncRNAs have exhibit promising therapeutic effect, while we still need to keep making efforts to reveal the mystery of ncRNA functions.

Summary

• ncRNAs work as oncogenes or tumor suppressors to regulate carcinogenesis and progression.
• ncRNAs regulate cancer progression through distinct mechanisms and represent potential drug targets or therapeutic entities.
• Clinical trials have been conducted to treat cancers by targeting ncRNAs and exhibited promising therapeutic effect.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was partly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB29040100]; the Chinese Ministry of Science and Technology [grant number 2017YFA0504103]; and the National Natural Science Foundation of China [grant numbers 31771513, 81972797].

Author Contribution
Huiwen Yan wrote the manuscript. Pengcheng Bu reviewed and edited the manuscript.

Abbreviations
AML, acute myeloid leukemia; ASO, antisense oligonucleotide; CCSC, colon cancer stem cell; circRNA, circular RNA; CLL, chronic lymphocytic leukemia; CSC, cancer stem cell; EPIC1, epigenetically induced lncRNA1; LINE-1, long interspersed element class 1; IncRNA, long non-coding RNA; miRNA, microRNA; ncRNA, non-coding RNA; nt, nucleotide; piRNA, PIWI interacting RNA; TRAF4, tumor-necrosis factor 4; B-ALL, B cell acute lymphocytic leukemia.

References
1 Kimura, T. (2020) Non-coding natural antisense RNA: mechanisms of action in the regulation of target gene expression and its clinical implications. Yakugaku Zasshi 140, 687–700, https://doi.org/10.1248/yakushi.20-00002

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
53 Han, B., Shaolong, E., Luan, L., Li, N. and Liu, X. (2020) CircHIPK3 promotes clear cell renal cell carcinoma (ccRCC) cells proliferation and metastasis.

52 Yan, Y., Su, M. and Qin, B. (2020) CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2.

51 Chen, Z.G., Zhao, H.J., Lin, L., Liu, J.B., Bai, J.Z. and Wang, G.S. (2020) Circular RNA CirCHIPK3 promotes cell proliferation and invasion of breast cancer cells.

50 Chen, D., Lu, X., Yang, F. and Xing, N. (2019) Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer cells by sponging miR-193a-3p and regulating MCL1 expression.

49 Wang, S., Liu, F., Ma, H., Cui, X., Yang, S. and Qin, R. (2020) circCDYL acts as a tumor suppressor in triple negative breast cancer by sponging miR-193a-3p and upregulating TP53INP1.

48 Xu, Y., Leng, K., Yao, Y., Kang, P., Liao, G., Han, Y. et al. (2021) A circular RNA, Cholangiocarcinoma-Associated Circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers.

47 Du, W.W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P. and Yang, B.B. (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CK2.

46 Du, W.W., Fang, L., Yang, F., Wei, Q., Song, F., Zhang, Y., Wang, X. et al. (2020) Novel evidence for oncogenic piRNA-823 as a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. J. Cell. Mol. Med., https://doi.org/10.1111/jcmm.2015.03.003

45 Wang, X., He, L., Du, Y., Zhu, P., Huang, G., Luo, J. et al. (2015) The long noncoding RNA IncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell, 16, 413–425, https://doi.org/10.1016/j.stem.2015.03.003

44 Wang, Z., Yang, B., Zhang, M., Guo, W., Wu, Z., Wang, Y. et al. (2018) IncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic IncRNA that interacts with MYC and Promotes cells cycle progression in cancer. Cancer Cell, 33, 706e9–720e9, https://doi.org/10.1016/j.ccell.2018.03.006

43 Wang, J., Yang, S., Ji, Q., Li, Q., Zhou, F., Li, Y. et al. (2020) Long non-coding RNA EPIC1 promotes cell proliferation and motility and drug resistance in glioma. Mol. Ther. Oncol., 17, 130–137, https://doi.org/10.1016/j.mto.2020.03.011

42 Kim, J., Piao, H.L., Kim, B.J., Yao, F., Han, Z., Wang, Y. et al. (2018) Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet., 50, 1705–1715, https://doi.org/10.1038/s41588-019-0788-4

41 Wang, Y.Q., Jiang, D.M., Hu, S.S., Zhao, L., Wang, L., Yang, M.H. et al. (2019) SATB2-AS1 suppresses colorectal carcinoma aggressiveness by inhibiting SATB2-dependent Snail transcription and epithelial-mesenchymal transition. Cancer Res., 79, 3542–3556, https://doi.org/10.1158/0008-5472.CAN-18-2900

40 Olivero, C.E., Martinez-Terroba, E., Zimmer, J., Liao, C., Tesfaye, E., Hooshdaran, N. et al. (2020) p53 activates the long noncoding RNA Pvt1b to inhibit Myc and suppress tumorigenesis. Mol. Cell, 77, 761e8–774e8, https://doi.org/10.1016/j.molcel.2019.12.014

39 Li, Z., Lu, X., Liu, Y., Zhao, J., Ma, S., Yin, H. et al. (2020) Gain of LINC00624 enhances liver cancer progression by disrupting the HDAC1-TRIM28-ZNF354C coressor complex. Hepatology, https://doi.org/10.1002/hep.31530

38 Xia, P., Liu, P., Fu, Q., Liu, C., Luo, Q., Zhang, X. et al. (2020) Long noncoding RNA EPIC1 interacts with YAP1 to regulate the cell cycle and promote the growth of pancreatic cancer cells. Biochem. Biophys. Res. Commun., 522, 978–985, https://doi.org/10.1016/j.bbrc.2019.11.167

37 Zhang, B., Lu, H.Y., Xia, Y.H., Jiang, A.G. and Ly, Y.X. (2018) Long non-coding RNA EPIC1 promotes human lung cancer cell growth. Biochem. Biophys. Res. Commun., 503, 1342–1348, https://doi.org/10.1016/j.bbr.2018.07.046

36 Feng, J., Yang, M., Wei, Q., Song, F., Zhang, Y., Wang, X. et al. (2020) Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer cells.

35 Li, Y., Cai, Q., Li, W., Feng, F. and Yang, L. (2018) Long non-coding RNA EPIC1 promotes cholangiocarcinoma cell growth. Biochem. Biophys. Res. Commun., 504, 654–659, https://doi.org/10.1016/j.bbrc.2018.08.174

34 Wang, J., Yang, S., Ji, Q., Li, Q., Zhou, F., Li, Y. et al. (2020) Long non-coding RNA EPIC1 promotes cell proliferation and motility in glioma.

33 Wang, Z., Yang, B., Zhang, M., Guo, W., Wu, Z., Wang, Y. et al. (2018) IncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic IncRNA that interacts with MYC and Promotes cells cycle progression in cancer. Cancer Cell, 33, 706e9–720e9, https://doi.org/10.1016/j.ccell.2018.03.006

32 Wang, X., He, L., Du, Y., Zhu, P., Huang, G., Luo, J. et al. (2015) The long noncoding RNA IncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell, 16, 413–425, https://doi.org/10.1016/j.stem.2015.03.003

31 Yin, J., Jiang, X.Y., Qi, W., Ji, C.G., Xie, X.L., Zhang, D.X. et al. (2017) piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSFI. Cancer Sci., 108, 1746–1756, https://doi.org/10.1111/cas.13300

30 Cordeiro, A., Navarro, A., Gaya, A., Diaz-Beya, M., Gonzalez-Farre, B., Castellano, J.J. et al. (2016) PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget, 7, 46002–46013, https://doi.org/10.18632/oncotarget.10015
60 Mai, D., Zheng, Y., Guo, H., Ding, P., Bai, R., Li, M. et al. (2020) Serum piRNA-54265 is a new biomarker for early detection and clinical surveillance of human colorectal cancer. Theranostics 10, 8468–8478, https://doi.org/10.7150/thno.46241

61 Hong, D.S., Kang, Y.K., Borad, M., Sachdev, J., Ejadi, S., Lim, H.Y. et al. (2020) Phase I study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 122, 1630–1637, https://doi.org/10.1038/s41416-020-0802-1

62 Anandappa, G., Lamps, A., Cunningham, D., Khan, K.H., Kouvelakis, K., Vlachogiannis, G. et al. (2019) miR-31-3p expression and benefit from anti-EGFR inhibitors in metastatic colorectal cancer patients enrolled in the Prospective Phase II PROSPECT-C Trial. Clin. Cancer Res. 25, 3830–3838, https://doi.org/10.1158/1078-0432.CCR-18-3769

63 Sur, D., Cainap, C., Burz, C., Havasi, A., Chis, I.C., Vlad, C. et al. (2019) The role of miRNA -31-3p and miR-31-5p in the anti-EGFR treatment efficacy of wild-type K-RAS metastatic colorectal cancer. Is it really the next best thing in miRNAs? J. BUON. 24, 1739–1746

64 Li, Y. and Disney, M.D. (2018) Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype. ACS Chem. Biol. 13, 3065–3071, https://doi.org/10.1021/acschembio.8b00827

65 Velagapudi, S.P., Cameron, M.D., Haga, C.L., Rosenberg, L.H., Laffitte, M., Duckett, D.R. et al. (2016) Design of a small molecule against an oncogenic noncoding RNA. Proc. Natl. Acad. Sci. U.S.A. 113, 5898–5903, https://doi.org/10.1073/pnas.1523975113

66 Costales, M.G., Hoch, D.G., Abegg, D., Childs-Disney, J.L., Velagapudi, S.P., Adibekian, A. et al. (2019) A designed small molecule inhibitor of a non-coding RNA sensitizesHER2 negative cancers to hercepin. J. Am. Chem. Soc. 141, 2960–2974, https://doi.org/10.1021/jacs.8b10558

67 Costales, M.G., Suresh, B., Vishnu, K. and Disney, M.D. (2019) Targeted degradation of a hypoxia-associated non-coding RNA enhances the selectivity of a small molecule interacting with RNA. Cell Chem. Biol. 26, 1180.e5–1186.e5, https://doi.org/10.1016/j.chembiol.2019.04.008

68 Tahara, H., Kay, M.A., Yasui, W. and Tahara, E. (2013) MicroRNAs in Cancer: the 22nd Hiroshima Cancer Seminar/the 4th Japanese Association for RNA Interference Joint International Symposium, 30 August 2012, Grand Prince Hotel Hiroshima. Jpn. J. Clin. Oncol. 43, 579–582, https://doi.org/10.1093/jjco/hyt037

69 Anastasiadou, E., Seto, A., Beatty, X., Hermreck, M., Gilles, M.E., Stroopinsky, D. et al. (2021) Cobomarsen, an oligonucleotide inhibitor of miR-155, non-coding RNA sensitizes HER2 negative cancers to herceptin. J. Transl. Med. 19, 147, https://doi.org/10.1186/s12967-021-03509-4

70 Shir, Z., Zhang, J., Qian, X., Han, L., Zhang, K., Chen, L. et al. (2020) AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Res. 73, 5519–5531, https://doi.org/10.1158/0008-5472.CAN-13-0280

71 Zhou, T., Kim, Y and MacLeod, A.R. (2016) Targeting long noncoding RNA with antisense oligonucleotide technology as cancer therapeutics. Methods Mol. Biol. 1402, 199–213, https://doi.org/10.1007/978-1-4939-3378-5_16

72 Amodio, N., Stamato, M.A., Julli, G., Morelli, E., Fulciniti, M., Manzoni, M. et al. (2021) Cobomarsen, an oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth in vitro and in vivo. Clin. Cancer Res. 27, 1139–1149, https://doi.org/10.1158/1078-0432.CCR-20-3139

73 Shi, Z., Zhang, J., Qian, X., Han, L., Zhang, K., Chen, L. et al. (2013) AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Res. 73, 5519–5531, https://doi.org/10.1158/0008-5472.CAN-13-0280

74 Choi, S.K., Kim, H.S., Jin, T., Hwang, E.H., Jung, M. and Moon, W.K. (2016) Overexpression of the miR-141/200c cluster promotes the migratory and invasion phenotype. J. Cell. Biochem. 117, 29914–29924, https://doi.org/10.18632/oncotarget.15530

75 El Helou, R., Pinna, G., Cabaud, O., Wicinski, J., Bhajun, R., Guyon, L. et al. (2017) MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Future Oncol. 13, 1948–1957, https://doi.org/10.2217/fon-2018-0155

76 Hong, D.S., Kang, Y.K., Borad, M., Sachdev, J., Ejadi, S., Lim, H.Y. et al. (2020) Phase I study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 122, 1630–1637, https://doi.org/10.1038/s41416-020-0802-1

77 Hong, H., Yao, S., Zhang, Y., Ye, Y., Li, C., Hu, L. et al. (2020) In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor. PLoS Genet. 16, e1009168, https://doi.org/10.1371/journal.pgen.1009168

78 Xia, C., Yang, Y., Kong, F., Kong, Q. and Shan, C. (2018) High expression of the miR-141/200c cluster promotes the migratory and invasion phenotype. J. Cell. Biochem. 117, 29914–29924, https://doi.org/10.18632/oncotarget.15530

79 El Helou, R., Pinna, G., Cabaud, O., Wicinski, J., Bhajun, R., Guyon, L. et al. (2017) MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Future Oncol. 13, 1948–1957, https://doi.org/10.2217/fon-2018-0155

80 Hong, H., Yao, S., Zhang, Y., Ye, Y., Li, C., Hu, L. et al. (2020) In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor. PLoS Genet. 16, e1009168, https://doi.org/10.1371/journal.pgen.1009168
Chang, K.C., Diermeier, S.D., Yu, A.T., Brine, L.D., Russo, S., Bhatia, S. et al. (2020) MatAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat. Commun. 11, 6438, https://doi.org/10.1038/s41467-020-20207-y

Shi, Q., Li, Y., Li, S., Jin, L., Lai, H., Wu, Y. et al. (2020) LncRNA DILAT inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat. Commun. 11, 5513, https://doi.org/10.1038/s41467-020-19349-w

Fang, Z., Wang, Y., Wang, Z., Xu, M., Ren, S., Yang, D. et al. (2020) ERIN1 is an estrogen-responsive LncRNA that drives breast cancer through the ER2F1/RBI pathway. Cancer Res. 80, 4399–4413, https://doi.org/10.1158/0008-5472.CAN-20-1031

Jin, X., Xu, X.E., Jiang, Y.Z., Liu, Y.R., Sun, W., Guo, Y.J. et al. (2019) The endogenous retrovirus-derived long noncoding RNA TRAONJ promotes triple-negative breast cancer progression via ZMYND8 degradation. Sci. Adv. 5, eaat9820, https://doi.org/10.1126/sciadv.aat9820

Zagorac, S., de Giorgio, A., Dabrowska, A., Kalisz, M., Casas-Vila, N., Cathcart, P. et al. (2020) SCMRT lncRNA restrains tumorigenesis by opposing transcriptional programs of tumor-initiating cells. Cancer Res. 81, 580–593, https://doi.org/10.1158/0008-5472.CAN-20-2612

Cho, S.W., Xu, J., Sun, R., Mumbach, M.R., Carter, A.C., Chen, Y.G. et al. (2018) Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary. Cell 173, 1398.e22–1412.e22, https://doi.org/10.1016/j.cell.2018.03.068

Zhang, Y., Guo, J., Cai, E., Cai, J., Wen, Y., Lu, S. et al. (2020) HOTAIR maintains the stemness of ovarian cancer stem cells via the miR-206/TBX3 axis. Exp. Cell. Res. 395, 112218, https://doi.org/10.1016/j.yexcr.2020.112218

Li, Y., Hou, C.Z., Dong, Y.L., Zhu, L. and Xu, H. (2020) Long noncoding RNA LINC01138 promotes proliferation and invasion of ovarian cancer via activating KLF6. Eur. Rev. Med. Pharmacol. Sci. 24, 7918

Wang, J., Gu, J., You, A., Li, J., Zhang, Y., Rao, G. et al. (2020) The transcription factor USF1 promotes glioma cell invasion and migration by activating lncRNA HAS2-AS1. Biosci. Rep. 40, https://doi.org/10.1042/BSR20200487

Liu, Z.Z., Tian, Y.F., Wu, H., Gugay, S.Y. and Kuang, W.L. (2020) LncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1alpha/VEGF axis. Neoplasia 67, 111–118, https://doi.org/10.14199/neop.2019.190121N61

Li, D.X., Fei, X.R., Dong, Y.F., Cheng, C.D., Wang, Y. et al. (2018) The long non-coding RNA URHC on proliferation, apoptosis and self-renewal. Nat. Struct. Mol. Biol. 23, 631–639, https://doi.org/10.1038/s41589-019-0370

Zhu, P., Wang, Y., Huang, G., Ge, B., Liu, B., Wu, J. et al. (2016) Inc-beta-Calm elicits EZH2-dependent beta-catenin stabilization and sustains liver CSC self-renewal. Nat. Struct. Mol. Biol. 23, 631–639, https://doi.org/10.1038/s41589-019-03235

Sun, X., Qian, Y., Wang, X., Cao, R., Zhang, J., Chen, W. et al. (2020) hsa-miR-4500 to modulate BACH1. Cancer Cell Int. 20, 395, 1283–1294, https://doi.org/10.1186/s12050-020-0066-7

Fang, Z., Wang, Y., Wang, Z., Xu, M., Ren, S., Yang, D. et al. (2020) ERIN1 is an estrogen-responsive LncRNA that drives breast cancer through the ER2F1/RBI pathway. Cancer Res. 80, 4399–4413, https://doi.org/10.1158/0008-5472.CAN-20-1031

Li, Z., Zhang, J., Li, S., Wang, G., Di, C. et al. (2018) The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat. Commun. 9, 1550–4559, https://doi.org/10.1038/s41467-018-04006-0

Li, Z., Zhang, J., Liu, S., Wang, G., Di, C. et al. (2018) The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat. Commun. 9, 1550–4559, https://doi.org/10.1038/s41467-018-04006-0

Malakar, P., Shilo, A., Mogilevsky, A., Stein, I., Pikarsky, E., Nevo, Y. et al. (2017) Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res. 77, 1155–1167, https://doi.org/10.1158/0008-5472.CAN-16-1508

Wang, X., Sun, W., Shen, W., Xia, M., Chen, C., Xiang, D. et al. (2016) Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J. Hepatol. 64, 1283–1294, https://doi.org/10.1016/j.jhep.2016.01.019

Qian, Y.Y., Li, K., Liu, Q.Y. and Liu, Z.S. (2017) Long non-coding RNA PTRN1 interacts with miR-193a-3p to suppress cell migration and invasion through the PTEN pathway in hepatocellular carcinoma. Oncotarget 8, 107859–107869, https://doi.org/10.18632/oncotarget.22305

Xu, F., Li, C.H., Wong, C.H., Chen, G.G., Lai, P.B.S., Shao, S. et al. (2019) Genome-Wide screening and functional analysis identifies tumor suppressor long noncoding RNAs epigenetically silenced in hepatocellular carcinoma. Cancer Res. 79, 1305–1317, https://doi.org/10.1158/0008-5472.CAN-18-1659

Gu, Z.G., Shen, G.H., Lang, J.H., Huang, W.X., Qian, Z.H. and Qiu, J. (2020) Effects of long non-coding RNA URHC on proliferation, apoptosis and invasion of colorectal cancer cells. Eur. Rev. Med. Pharmacol. Sci. 24, 7910

Chen, B., Dragomir, M.P., Fabris, L., Bayraktar, R., Knutsen, E., Liu, X. et al. (2020) Long noncoding RNA CCAT2 induces chromosomal instability through BOP1-AURKBks. Gastroenterology 159, 2146.e33–2162.e33, https://doi.org/10.1053/j.gastro.2020.08.018

Li, X.L., Subramanian, M., Jones, M.F., Chaudhary, R., Singh, D.K., Zong, X. et al. (2017) Long noncoding RNA PURPL suppresses basal p53 levels and promotes tumorigenicity in colorectal cancer. Cell Rep. 20, 2408–2423, https://doi.org/10.1016/j.celrep.2017.08.041

Zhou, B., Yi, F., Chen, Y., Li, C.H., Cheng, Y.S. and Yang, K. (2020) Reduced long noncoding RNA PGMS5-AS1 facilitated proliferation and invasion of colorectal cancer through sponging miR-100-5p. Eur. Rev. Med. Pharmacol. Sci. 24, 7972–7981

Sun, Z.O., Chen, C., Zhou, Q.B., Liu, J.B., Yang, S.X., Li, Z. et al. (2017) Long non-coding RNA LINC00959 predicts colorectal cancer patient prognosis and inhibits tumor progression. Oncotarget 8, 97052–97060, https://doi.org/10.18632/oncotarget.21171

Su, W., Feng, S., Chen, X., Yang, X., Mao, R., Guo, C. et al. (2018) Silencing of long noncoding RNA MIR22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung cancer. Cancer Res. 78, 3207–3219, https://doi.org/10.1158/0008-5472.CAN-18-0222

Hu, W.L., Jin, L., Xu, A., Wang, Y.F., Thorne, R.F., Zhang, X.D. et al. (2018) GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat. Cell Biol. 20, 492–502, https://doi.org/10.1038/s41556-018-0066-7
146 Shahabi, S., Kumaran, V., Castillo, J., Cong, Z., Nandagopal, G., Mullen, D.J. et al. (2019) LINC00261 is an epigenetically regulated tumor suppressor essential for activation of the DNA damage response. Cancer Res. 79, 3050–3062, https://doi.org/10.1158/0008-5472.CAN-18-2034

147 David, A., Zocchi, S., Talbot, A., Choisy, C., Ohnoura, A., Lion, J. et al. (2020) The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via an effect on IL6 signalling. Leukemia. https://doi.org/10.1038/s41375-020-01034-y

148 Wang, Y., Zhang, M., Xu, H., Wang, Y., Li, Z., Chang, Y. et al. (2017) Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway. Oncotarget 8, 72182–72196, https://doi.org/10.18632/oncotarget.20053

149 Wang, Y., Li, J., Du, C., Zhang, L., Zhang, Y., Zhang, J. et al. (2019) Upregulated circular RNA circ-UBE2D2 predicts poor prognosis and promotes breast cancer progression by sponging miR-1236 and miR-1287. Transl. Oncol. 12, 1305–1313, https://doi.org/10.1016/j.tranon.2019.05.016

150 Ye, G., Pan, R., Zhu, L. and Zhou, D. (2020) Circ_DCAF6 potentiates cell stemness and growth in breast cancer through GLIT-Hedgehog pathway. Exp. Mol. Pathol. 116, 104492, https://doi.org/10.1016/j.yexmp.2020.104492

151 Du, W.W., Yang, W., Li, X., Awan, F.M., Yang, Z., Fang, L. et al. (2018) A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 37, 5829–5842, https://doi.org/10.1038/s41388-018-0369-y

152 Mao, Y., Yu, M., Cao, W., Liu, X., Cui, J., Wang, Y. et al. (2020) Circular RNA 000554 represses epithelial-mesenchymal transition in breast cancer by regulating microRNA-182-2/TP63 axis. FASEB J. 34, 11405–11420, https://doi.org/10.1096/fasebj.201903047R

153 Hu, Y., Guo, F., Zhu, H., Tan, X., Zhu, X., Liu, X. et al. (2020) Circular RNA-0001283 suppresses breast cancer proliferation and invasion via miR-187/HIPK3 axis. Med. Sci. Monit. 26, e921502, https://doi.org/10.12659/MSM.921502

154 Xiong, S., Li, D., Wang, D., Huang, L., Liang, G., Wu, Z. et al. (2020) Circular RNA MYLK promotes glycolysis and proliferation of non-small cell lung cancer cells by sponging miR-195-5p and increasing glucose transporter member 3 expression. Cancer Res. 12, 5469–5478, https://doi.org/10.2147/CMAJ.S257386

155 Fu, Y., Su, L., Cai, M., Yao, B., Xiao, S., He, Q. et al. (2019) Downregulation of CPA4 inhibits non-small-cell lung cancer growth by suppressing the AKT/c-Myc pathway. Mol. Carcinog. 58, 2026–2039, https://doi.org/10.1002/mafc.20209

156 Xue, M., Hong, W., Jiang, J., Zhao, F. and Gao, X. (2020) Circular RNA circ-LDLRA03 serves as an oncogene to promote non-small cell lung cancer progression by upregulating SLC1A5 through sponging miR-137. RNA Biol. 17, 1811–1822, https://doi.org/10.1080/15476286.2020.1798919

157 Dai, J., Zhang, Y., Yang, Q., Qiu, B., Wang, X.R., Zhong, W.L. et al. (2018) Twist1 regulates vimentin through Cul2 circular RNA to promote EMT in breast cancer cells. Mol. Carcinog. 58, 1140–1147, https://doi.org/10.1002/mca.30795

158 Yang, Y., Zhang, Y., Chen, B., Ding, L., Mu, Z. and Li, Y. (2019) Elevation of circular RNA circ-POSTN facilitates cell growth and invasion by sponging miR-1296-5p. Int. J. Oncol. 53, 1039–1047, https://doi.org/10.3892/ijo.2018.4226

159 Zhang, M., Huang, N., Yang, X., Luo, J., Yan, S., Xiao, F. et al. (2018) A novel protein encoded by the circular form of the SHPR gene suppresses glioma tumorigenesis. Oncogene 37, 1805–1814, https://doi.org/10.1038/s41388-017-0019-9

160 Zhang, H., Li, Y., Zhang, X. and Huang, G. (2020) Circ_0000517 contributes to hepatocellular carcinoma progression by upregulating TXNDC5 via sponging miR-1296-5p. Cancer Manag. Res. 12, 3457–3468, https://doi.org/10.2147/CMAJ.S244024

161 Zhu, Q., Lu, G., Luo, Z., Gu, F., Wu, J., Zhang, D. et al. (2018) CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/beta-catenin axis. Biochem. Biophys. Res. Commun. 497, 626–632, https://doi.org/10.1016/j.bbrc.2018.02.119

162 Hu, Z.Q., Zhou, S.L., Li, J., Zhou, Z.J., Wang, P.C., Xin, H.Y. et al. (2020) Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology 72, 906–922, https://doi.org/10.1002/hep.31068

163 Wei, Y., Chen, X., Liang, C., Ling, Y., Yang, X., Ye, X. et al. (2020) A noncoding regulatory RNAs network driven by Circ-CDYL acts specifically in the early stages hepatocellular carcinoma. Hepatology 71, 130–147, https://doi.org/10.1002/hep.30795

164 Meng, J., Chen, S., Han, J.X., Qian, B., Wang, X.R., Zhong, W.L. et al. (2018) Twist1 regulates vimentin through CuZ circular RNA to promote EMT in hepatocellular carcinoma. Cancer Res. 78, 4150–4162, https://doi.org/10.1158/0008-5472.CAN-17-3009

165 Mi, L., Lei, L., Yin, X., Li, N., Shi, J., Han, X. et al. (2020) Circ_0000144 functions as a miR-623 sponge to enhance gastric cancer progression via up-regulating GPRCSA. Biosci. Rep. 40, https://doi.org/10.1042/BSR20201313

166 Liu, Y., Jiang, X., Yu, L., Qu, C., Zhang, L., Xiao, X. et al. (2020) circ-NRP1 promotes glycolysis and tumor progression by regulating miR-186-5p/MYH9 axis in gastric cancer. Cancer Manag. Res. 12, 5945–5956, https://doi.org/10.2147/CMAJ.S245941

167 Zhou, J., Dong, Z.N., Qiu, B.Q., Hu, M., Liang, Q.X., Dai, X. et al. (2020) CircRNA FGFR3 induces epithelial-mesenchymal transition of ovarian cancer by regulating miR-29a-3p/PRF81 axis. Aging (Albany N.Y.) 12, 14080–14091, https://doi.org/10.18632/aging.103388

168 Xu, Q., Deng, B., Li, M., Chen and Zhu, L. (2020) circular RNA-UBAP2 promotes the proliferation and inhibits apoptosis of ovarian cancer though miR-382-5p/PRPF8 axis. J. Ovarian Res. 13, 81, https://doi.org/10.1186/s13067-020-00665-w

169 Gong, J., Xu, X., Zhang, X. and Zhou, Y. (2020) Circular RNA-9119 suppresses in ovarian cancer cell viability via targeting the microRNA-21-5p-Pten-Akt pathway. Aging (Albany N.Y.) 12, 14314–14328, https://doi.org/10.18632/aging.103470

170 Lin, C., Xu, Y., Qian, B., Liang and Zhao, S. (2020) Circular RNA ITCH suppresses proliferation, invasion, and glycolysis of ovarian cancer cells by up-regulating CDH1 via sponging miR-106a. Cancer Cell Int. 20, 336, https://doi.org/10.18632/oncotarget.20053

171 Wang, N., Cao, O.X., Tian, J., Ren, L., Cheng, H.L. and Yang, S.G. (2020) Circular RNA MT01 inhibits the proliferation and invasion of ovarian cancer cells through the miR-182-5p/KLF15 axis. Cell Transplant. 29, 963689720943613, https://doi.org/10.1177/0963689720943613