Demographic and lifestyle factors and survival among patients with esophageal and gastric cancer: The Biobank Japan Project

Emiko Okada a, Shigekazu Ukawa a, Koshi Nakamura a, Makoto Hirata b, Akiko Nagai c, Koichi Matsuda d,e, Toshiharu Ninomiya f, Yutaka Kiyohara g, Kaori Muto c, Yoichiro Kamatani h, Zentaro Yamagata i, Michiaki Kubo j, Yusuke Nakamura d,k, BioBank Japan Cooperative Hospital Group l, Akiko Tamakoshi a,*

* Department of Public Health, Hokkaido University Graduate School of Medicine, Sapporo, Japan
b Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
c Department of Public Health, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
d Laboratory of Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
e Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
f Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
g Hisayama Research Institute for Lifestyle Diseases, Fukuoka, Japan
h Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
i Department of Health Sciences, University of Yamanashi, Yamanashi, Japan
j RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
k Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, USA

ARTICLE INFO

Article history:
Received 17 October 2016
Accepted 15 December 2016
Available online 9 February 2017

Keywords:
Esophageal cancer
Gastric cancer
Survival
Cohort study
Japan

ABSTRACT

Background: Several studies have evaluated associations between the characteristics of patients with esophageal and gastric cancer and survival, but these associations remain unclear. We described the distribution of demographic and lifestyle factors among patients with esophageal and gastric cancer in Japan, and investigated their potential effects on survival.

Methods: Between 2003 and 2007, 24- to 95-year-old Japanese patients with esophageal and gastric cancer were enrolled in the BioBank Japan Project. The analysis included 365 patients with esophageal squamous cell carcinoma (ESCC) and 1574 patients with gastric cancer. Hazard ratios (HRs) and 95% confidence intervals (CIs) for mortality were estimated using medical institution-stratified Cox proportional hazards models.

Results: During follow-up, 213 patients with ESCC (median follow-up, 4.4 years) and 603 patients with gastric cancer (median follow-up, 6.1 years) died. Among patients with ESCC, the mortality risk was higher in ever drinkers versus never drinkers (multivariable HR = 2.37, 95% CI: 1.24, 4.53). Among patients with gastric cancer, the mortality risk was higher in underweight patients versus patients of normal weight (multivariable HR = 1.66, 95% CI: 1.34, 2.05). Compared to patients with gastric cancer with no physical exercise habit, those who exercised ≥3 times/week had a lower mortality risk (multivariable HR = 0.75, 95% CI = 0.61, 0.93). However, lack of stage in many cases was a limitation.

Conclusions: Among patients with ESCC, alcohol drinkers have a poor prognosis. Patients with gastric cancer who are underweight also have a poor prognosis, whereas patients with physical exercise habits have a good prognosis.

© 2017 The Authors. Publishing services by Elsevier B.V. on behalf of The Japan Epidemiological Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Esophageal cancer is the seventh most common type of cancer and the sixth most common cause of death from cancer worldwide. Esophageal cancer is classified into two main histological types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). The incidence of each type differs depending on race and geographical region. ESCC is increasing in Western countries, whereas ESCC is the dominant type of esophageal cancer in East Asian countries such as China, Korea, and Japan. Gastric cancer is the fifth most common type of cancer and the third most common cause of death from cancer worldwide. Established risk factors for esophageal cancer include tobacco smoking, heavy alcohol drinking, and frequent consumption of high-temperature beverages. Risk factors for gastric cancer include smoking, high salt intake, and infection by Helicobacter pylori. In addition, gastroesophageal reflux disease and the reflux-related condition Barrett's esophagus are known risk factors for esophageal cancer, because the esophagus is connected to the cardia of the stomach. Thus, esophageal and gastric cancer should be investigated together.

Some studies have reported that male sex, increased age, weight loss, smoking and alcohol drinking decrease survival in patients with esophageal cancer, but other studies revealed no significant association between smoking and alcohol drinking and esophageal cancer. In patients with gastric cancer, smoking has been shown to decrease survival but other studies revealed no significant association. Tobacco smoking remains a popular lifestyle choice among many East Asian males, despite it being an established risk factor for multiple cancers in the general population. Moreover, evidence for associations between demographic and lifestyle factors and the prognosis of esophageal and gastric cancer in Japan is scarce.

The objective of this study was to describe the distribution of demographic and lifestyle factors among patients with esophageal and gastric cancer registered in the BioBank Japan (BBJ) project. In addition, we investigated the potential effect of demographic and lifestyle factors on survival in patients with esophageal and gastric cancer.

Material and methods

Study population

Between 2003 and 2007, patients with any of 47 target common diseases were enrolled in the BBJ at 66 hospitals, which comprised 12 cooperating medical institutions, located throughout Japan. Details of the study design have been described elsewhere. We included participants whose disease duration could be calculated from the date of diagnosis of esophageal and/or gastric cancer and the date of registration for this study. In the present study, 1258 patients with esophageal cancer and 5597 patients with gastric cancer were included at baseline. Of these patients, 1162 patients with esophageal cancer and 5103 patients with gastric cancer completed follow-up. When we performed the analysis for progeny, new patients who entered the study within 90 days after diagnosis were included. Among patients with esophageal cancer, patients who entered this study within 90 days after diagnosis (n = 702), patients with a histology other than ESCC (n = 93), and patients whose smoking history and/or alcohol drinking history were missing (n = 2) were excluded from the survival analysis. Because ESCC is the major histologic type of esophageal cancer in Asian countries, including Japan, we focused on ESCC herein. Among patients with gastric cancer, patients for whom >90 days passed between diagnosis and study entrance (n = 3513) and patients for whom smoking and alcohol drinking histories were missing (n = 16) were excluded from the survival analysis. Patients whose smoking and alcohol drinking histories were missing were excluded because these are significant risk factors for ESCC and gastric cancer in the general population. A total of 365 patients with ESCC and 1574 patients with gastric cancer were included in the survival analysis. The study design was reviewed and approved by the Ethics Committees of all participating institutions. Written informed consent was obtained from all participants.

Data collection

Baseline clinical information was collected through medical records and interviews using a standardized questionnaire. Interview items included smoking and alcohol drinking habits, height, weight, and frequency of physical exercise. Information collected from medical records included birth year and sex. In this study, esophageal and gastric cancer histology was determined from excised tissue specimens, and missing histological data were complemented by biopsy or cytological specimens. Esophageal and gastric cancer stages were classified according to the Japanese Classification of Esophageal Cancer, ninth edition (1999) and the Japanese Classification of Gastric Carcinoma, twelfth edition (1993).

Follow-up surveys

A survival follow-up survey was implemented from 2010 to 2014 for patient vital statistics. Information about death using the 10th revision of the International Classification of Disease codes was collected from the Vital Statistics of the Statistics and Information Department of the Ministry of Health, Labour and Welfare, Japan.

Statistical analysis

To calculate expected survival rates, a survival rate table of a Japanese reference cohort was obtained from the Cancer Registry and Statistics, Cancer Information Service, National Cancer Center, Japan. The survival rate table was based on sex- and age-specific mortality rates and Gompertz-Makeham’s law in Abridged Life Tables, which is annually published by the Statistics and Information Department of the Ministry of Health, Labour and Welfare, Japan. Relative survival rates were calculated by dividing cumulative survival rates by expected sex- and age-adjusted survival rates. Patients >100 years old were excluded due to a lack of data in the reference life table. We compared the 5-year relative survival rates of esophageal and gastric cancer patients in this study to data from the Japanese Association of Clinical Cancer Centers (cases diagnosed from 2004 to 2007). Univariate and multivariate hazard ratios (HRs) and 95% confidence intervals (CI) of demographic and lifestyle factor variables for mortality risk were evaluated using medical institution-stratified Cox proportional hazards model. The following variables were included in the multivariate models: sex, age (20–29, 30–39, 40–49, 50–59, 60–69, 70–79, or >80 years), year of diagnosis (2003, 2004, 2005, 2006, 2007, or 2008), body mass index (BMI) (<18.5, 18.5–24.9, 25–29.9, ≥30.0 kg/m², or unknown), smoking history (never or ever smoker), alcohol drinking history (never or ever drinker), physical exercise (no habit, 1–2 times/week, ≥3 times/week, or unknown), and stage (0, I, II, III, IVa, IVb, or unknown for ESCC, and Ia, Ib, II, IIIa, IIIb, IVa, IVb, or unknown for gastric cancer). All statistical analyses were performed using the SAS statistical package for Windows (version 9.4, SAS). Differences were considered statistically significant at p < 0.05.
Results

The proportions of patients by age group according to the BBJ, the Japanese Association of Cancer Registries,24 and the Patient Survey25 are shown in Fig. 1 for esophageal cancer and Fig. 2 for gastric cancer. Compared to the Japanese Association of Cancer Registries and the Patient Survey, which were performed in Japan, the proportion of patients with esophageal and gastric cancer age 55–69 years in the BBJ was about 4% higher within each 5-year age group, whereas the proportion of patients ≥75 years was about 5% lower.

Fig. 1. Proportion of patients with esophageal cancer by age group.

Fig. 2. Proportion of patients with gastric cancer by age group.
Table 1
Demographic and lifestyle factors of patients with esophageal and gastric cancer at baseline in the Biobank Japan Project.

	Esophageal cancer (n = 1258)	Gastric cancer (n = 5597)
	No. (%)	No. (%)
Sex		
Male	1088 (86.5)	4095 (73.2)
Female	170 (13.5)	1502 (26.8)
Age range, y		
20–29	0 (0.0)	5 (0.1)
30–39	2 (0.2)	72 (1.3)
40–49	37 (2.9)	279 (5.0)
50–59	259 (20.6)	1052 (18.8)
60–69	545 (43.3)	1860 (33.2)
70–79	354 (28.1)	1836 (32.8)
80+	61 (4.9)	493 (8.8)
BMI range, kg/m²		
<18.5	347 (28.4)	1124 (21.0)
18.5–24.9	786 (64.3)	3694 (69.1)
25–29.9	85 (7.0)	486 (9.1)
≥30	4 (0.3)	41 (0.8)
Unknown	36 –	252 –
Smoking history		
Never smoker	214 (17.2)	1861 (33.7)
Ever smoker	1027 (82.8)	3659 (66.3)
Unknown	17 –	77 –
Alcohol drinking history		
Never drinker	166 (13.4)	2048 (37.2)
Ever drinker	1074 (86.6)	3453 (62.8)
Unknown	18 –	91 –
Physical exercise		
No habit	822 (73.9)	3639 (67.2)
1–2 times/week	41 (3.7)	238 (4.3)
≥3 times/week	249 (22.4)	1129 (20.6)
Unknown	146 –	591 –
Year of diagnosis		
2000	232 (18.4)	1463 (26.1)
2001	65 (5.2)	323 (5.8)
2002	85 (6.8)	437 (7.8)
2003	128 (10.2)	669 (12.0)
2004	183 (14.6)	767 (13.7)
2005	172 (13.7)	737 (13.2)
2006	184 (14.6)	697 (12.5)
2007	199 (15.8)	483 (8.6)
2008	10 (0.8)	21 (0.4)
Histology of esophageal cancer		
Squamous cell carcinoma	971 (89.9)	
Adenocarcinoma	73 (6.8)	
Adenosquamous carcinoma	13 (1.2)	
Adenoid cystic carcinoma	1 (0.1)	
Basaloid cell carcinoma	2 (0.2)	
Anaplastic carcinoma	6 (0.6)	
Other cancers	14 (1.1)	
Unknown	178 –	
Histology of gastric cancer		
Papillary adenocarcinoma	93 (1.9)	
Tubular adenocarcinoma	2988 (61.5)	
Poorly differentiated adenocarcinoma	488 (18.2)	
Signet-ring cell carcinoma	620 (12.8)	
Mucinous adenocarcinoma	80 (1.6)	
Special type	18 (0.4)	
Other cancers	179 (3.7)	
Unknown	735 –	
Stage of esophageal cancer		
0	40 (10.1)	
I	70 (17.7)	
II	118 (29.9)	
III	102 (25.8)	
IVa	40 (10.1)	
IVb	25 (6.3)	
Unknown	863 –	
Stage of gastric cancer		
Ia	689 (48.0)	
Ib	227 (15.8)	
II	168 (11.7)	

Baseline demographic and lifestyle factors of patients with esophageal and gastric cancer are shown in Table 1. Among patients with esophageal and gastric cancer, patients were more likely to be male (esophageal cancer: 86.5%; gastric cancer: 73.2%), age 60–69 or 70–79 years (esophageal cancer: 43.3% and 28.1%, respectively; gastric cancer: 33.2% and 32.8%, respectively), have a BMI of 18.5–24.9 kg/m² (esophageal cancer: 64.3%; gastric cancer: 69.1%), be ever smokers (esophageal cancer: 82.8%; gastric cancer: 66.3%), be ever drinkers (esophageal cancer: 86.6%; gastric cancer: 62.8%), and have no physical exercise habit (esophageal cancer: 73.9%; gastric cancer: 72.7%). For patients with esophageal cancer, almost all had ESCC histology (89.9%), and among cases for which the stage was known, stage II (29.9%) and III (25.8%) disease was most common. For patients with gastric cancer, tubular adenocarcinoma was the most common histology (61.5%), and among patients for whom the stage was known, stage la disease was most common (48.0%).

Table 2 shows the 5-year relative survival rate of patients with esophageal and gastric cancer. Relative survival rates of all patients and patients who participated in the study for ≤90 days after diagnosis are shown. The 5-year relative survival rate of patients for whom <90 days passed from diagnosis to study enrollment was 49.6% and 75.7% for esophageal and gastric cancer, respectively.

For patients with ESCC who participated in the study for ≤90 days after diagnosis, the median follow-up period was 4.4 years. During 1605 person-years, there were 213 deaths. The HRs and 95% CIs for mortality according to demographic and lifestyle factors among patients with ESCC are shown in Table 3. Compared to patients aged 50–59 years, patients ≥80 years had an increased risk of mortality after adjusting for other variables (multivariate HR = 2.79; 95% CI = 1.34, 5.80). With respect to alcohol drinking, the multivariate HR for mortality in ever drinkers was 2.37 (95% CI = 1.24, 4.53) compared to that of never drinkers. No significant association was observed for smoking history.

In gastric cancer patients who participated in the study for ≤90 days after diagnosis, the median follow-up period was 6.1 years. During 9620 person-years, there were 603 deaths. The HRs and 95% CIs for mortality according to demographic and lifestyle factors among patients with gastric cancer are shown in Table 4. For males, the multivariate HR for mortality was 1.42 (95% CI = 1.11, 1.81) compared to females. Compared to patients aged 50–59 years, younger patients had a decreased risk of mortality (40–49 years: multivariate HR = 0.55; 95% CI = 0.34, 0.90), and older patients had an increased risk of mortality (70–79 years: multivariate HR = 1.94; 95% CI = 1.53, 2.46; ≥80 years: multivariate HR = 3.50; 95% CI = 2.52, 4.87). Multivariate HR for mortality in patients with a BMI <18.5 kg/m² was 1.66 (95% CI = 1.34, 2.05) compared to patients with a BMI 18.5–24.9. Compared to patients who had no physical exercise habit, patients who exercised ≥3 times/week had a decreased risk of mortality (multivariate HR = 0.75; 95% CI = 0.61, 0.93).
We have described the distribution of demographic and lifestyle factors among patients with esophageal and gastric cancer in Japan. Patients with ESCC experienced shorter survival due to aging and alcohol drinking. Among patients with gastric cancer, those who were older and/or underweight experienced shorter survival, while those with a physical exercise habit lived longer.

The results of the present study demonstrated a relatively similar age distribution compared to other surveys performed in Japan, although slight differences existed. The 5-year relative survival rate of all patients in this study was higher than that of patients in the Japanese Association of Clinical Cancer Centers. However, patients for whom ≤90 days passed from diagnosis to study entry showed a similar 5-year relative survival rate to that of patients in the Japanese Association of Clinical Cancer Centers (42.4% and 73.0% for esophageal and gastric cancer, respectively). It was possible to reduce the bias for the number of years of study registration by including only patients who participated in the study for ≥90 days after diagnosis.

It was possible to reduce the bias for the number of years of study registration by including only patients who participated in the study for ≥90 days after diagnosis.

Table 2

	No. of patients	Follow-up rate (%)	Relative survival rate (%)	
Esophageal cancer	Biobank Japan (total)	1158	97.5	59.3
Biobank Japan	460	96.7	49.6	
Japanese Association of Clinical Cancer Centers	6109	95.1	42.4	
Gastric cancer	Biobank Japan (total)	5094	97.6	82.1
Biobank Japan	1590	97.4	75.7	
Japanese Association of Clinical Cancer Centers	23,690	93.5	73.0	

* Patients who entered the study ≤90 days after diagnosis.

Table 3

Person-years No. of deaths	Univariate model	Multivariate model*
Sex		
Male	1344	181
Female	260	32
Age range, years		
30–39	19	0
40–49	56	10
50–59	408	51
60–69	784	91
70–79	307	50
≥80	31	11
Year of diagnosis		
2003	101	17
2004	266	46
2005	331	33
2006	365	50
2007	495	65
2008	45	2
BMI range, kg/m²		
<18.5	343	52
18.5–24.9	1107	145
25–29.9	133	14
≥30	10	0
Unknown	12	2
Smoking history		
Never smoker	274	36
Ever smoker	1330	177
Alcohol drinking history		
Never drinker	183	17
Ever drinker	1422	196
Physical exercise		
No habit	1053	144
1–2 times/week	102	6
≥3 times/week	338	44
Unknown	111	19

* Multivariate HRs were adjusted for sex, age, year of diagnosis, BMI, smoking history, alcohol drinking history, physical exercise and stage.

All analyses were stratified by medical institution.

*p < 0.05, **p < 0.01.

Discussion

We have described the distribution of demographic and lifestyle factors among patients with esophageal and gastric cancer in Japan. Patients with ESCC experienced shorter survival due to aging and alcohol drinking. Among patients with gastric cancer, those who were older and/or underweight experienced shorter survival, while those with a physical exercise habit lived longer.

The results of the present study demonstrated a relatively similar age distribution compared to other surveys performed in Japan, although slight differences existed. The 5-year relative survival rate of all patients in this study was higher than that of patients in the Japanese Association of Clinical Cancer Centers. However, patients for whom ≤90 days passed from diagnosis to study entry showed a similar 5-year relative survival rate to that of patients in the Japanese Association of Clinical Cancer Centers.
whereas ESCC is the dominant type of esophageal cancer in East Asian countries. Differences in the relative proportions in esophageal cancer types between Asian and Western populations likely contribute to the difference in factors associated with survival.

The present observation that underweight gastric cancer patients experience poor survival is similar to that of several other studies. In the Japanese population, lower BMI has been observed to be associated with an increased risk of mortality among gastric cancer patients, with a linear inverse association. Whether or not it influences patient prognosis remains unclear.

In conclusion, we found that among Japanese patients with esophageal and gastric cancer, patients were more likely to be older, of normal weight, be ever smokers, be ever drinkers, and have no physical exercise habit. The present findings suggest that patients with ESCC experience decreased survival due to alcohol consumption. Gastric cancer patients who are underweight also have a poor prognosis, whereas patients with physical exercise habits have a good prognosis. Further studies are required to clarify the impact of demographic and lifestyle factors on long-term survival for esophageal and gastric cancer in different populations and to confirm the underlying mechanisms of these findings.

Conflicts of interest

All authors declare that there are no conflicts of interest.
Acknowledgements

We express our gratitude to all of the participants in the BioBank Japan Project. We thank all of the medical coordinators of the cooperating hospitals for collecting samples and clinical information, as well as Yasushi Yamashita and staff members of the BioBank Japan Project for administrative support. We also thank Dr. Kumao Toyoshima for his overall supervision of the BioBank Japan Project. This study was supported by funding from the Tailor-Made Medical Treatment with the BBJ Project from Japan Agency for Medical Research and development, AMED (since April 2015), and the Ministry of Education, Culture, Sports, Science, and Technology (from April 2003 to March 2015).

Appendix. Author list for BioBank Japan Cooperative Hospital Group

Members of medical institutions cooperating in the BioBank Japan Project who coauthored this paper include Kai Shimoyama, Shinichiro Makimoto, Hiromasa Harada and Tomaoki Fujikawa (Tokushukai Hospitals); Shiro Minami, Eji Uchiha and Masao Miyashita (Nippon Medical School); Yoshiaki Kajiyama, Natsumi Shinichiro Makimoto, Hiromasa Harada and Tomoaki Fujikawa (Tokushukai Hospitals); Yasuo Takahashi (Tokyo Metropolitan Institute of Gerontology); Mitsuhiko Moriyama and Yasuo Takahashi (Nihon University); Tomita and Akihito Nagahara (Juntendo University); Satoshi Asai, Miyashita (Nippon Medical School); Yoshiaki Kajiyama, Natsumi Shinichiro Makimoto, Hiromasa Harada and Tomoaki Fujikawa (Tokushukai Hospitals); Yahei Mukai, Toshikazu Hara and Keiko Hayashi (Takamatsu Medical University); Seijiro Mori and Hideki Ito (Tokyo Metropolitan Institute of Gerontology); Satoshi Nagayama and Yoshiio Miki (The Cancer Institute Hospital of JFCR); Akihide Masumoto and Akira Yamada (Aso Iizuka Hospital); Akihito Nagahara (Juntendo University); Satoshi Asai, Miyashita (Nippon Medical School); Yoshiaki Kajiyama, Natsumi Shinichiro Makimoto, Hiromasa Harada and Tomoaki Fujikawa (Tokushukai Hospitals); Yahei Mukai, Toshikazu Hara and Keiko Hayashi (Takamatsu Medical University); Seijiro Mori and Hideki Ito (Tokyo Metropolitan Institute of Gerontology); Satoshi Nagayama and Yoshiio Miki (The Cancer Institute Hospital of JFCR); Akihide Masumoto and Akira Yamada (Aso Iizuka Hospital); Yasuko Nishizawa and Ken Kodama (Osaka Medical Hospital of JFCR); Yasushi Yamashita and staff members of the BioBank Japan Project for administrative support. We also thank Dr. Kumao Toyoshima for his overall supervision of the BioBank Japan Project. This study was supported by funding from the Tailor-Made Medical Treatment with the BBJ Project from Japan Agency for Medical Research and development, AMED (since April 2015), and the Ministry of Education, Culture, Sports, Science, and Technology (from April 2003 to March 2015).

References

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136(5):E359–E386.
2. Zhang HZ, Jin GF, Shen HB. Epidemiologic differences in esophageal cancer between Asian and Western populations. Chin J Cancer. 2012;31(6):281–286.
3. Kamangar F, Chow WH, Abnet CC, et al. Environmental causes of esophageal cancer. Gastroenterol Clin N Am. 2009;38(1):27–57, vii.
4. Laderas-Lopes R, Pereira AK, Nogueira A, et al. Smoking and gastric cancer: systematic review and meta-analysis of cohort studies. Cancer Causes Control. 2008;19(7):689–701.
5. World Cancer Research Fund and American Institute for Cancer Research, Food N, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington (DC): American Institute for Cancer Research 2007:265.
6. Group HaCC. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut. 2001;49(3):347–353.
7. Sasazuki S, Inoue M, Iwasaki M, et al. Effect of Helicobacter pylori infection combined with CagA and pepsinogen status on gastric cancer development in Japanese patients with stomach cancer: a prospective study. Int J Gastroenterol Hepatol. 2005;3(2):225–230.
8. Nozoe T, Kohno M, Ichiguchi T, et al. Analysis of the impact of body mass index in patients with gastric cancer. Surg Today. 2012;42(10):945–949.
9. Oh SJ, Hyung WJ, Li C, et al. Effect of being overweight on postoperative morbidity and long-term surgical outcomes in proximal gastric carcinoma. J Gastrointest Oncol. 2015;5(2):137–144.
10. Zhang SS, Yang H, Luo KJ, et al. The impact of body mass index on complication and survival in resected oesophageal cancer: a clinical-based cohort and meta-analysis. Br J Cancer. 2013;108(11):2894–2903.
11. Zheng Y, Cao X, Wen J, et al. Smoking affects treatment outcome in patients with resected esophageal squamous cell carcinoma who received chemoradiotherapy. PLoS One. 2015;10(4):e0123246.
12. Sundelof M, Lagergren J, Ye W. Patient demographics and lifestyle factors influencing long-term survival of oesophageal cancer and gastric cardia cancer in a nationwide study in Sweden. Eur J Cancer (Oxford, England: 1990). 2008;44(11):1566–1571.
13. Trivers KF, De Roos AJ, Gammon MD, et al. Demographic and lifestyle predictors of survival in patients with esophageal or gastric cancers. Clin Gastroenterol Hepatol: The Official Clinical Practice Journal of the American Gastroenterological Association. 2005;3(3):225–230.
14. Han MA, Kim YW, Choi IJ, et al. Association of smoking history with cancer recurrence and survival in patients with stomach cancer. Jpn J Clin Oncol. 2012;42(10):945–949.
15. Ferronha I, Castro C, Carreira H, et al. Prediagnosis lifestyle exposures and survival of gastric cancer patients: a cohort study from Portugal. Br J Cancer. 2012;107(3):537–543.
16. Organization for Economic Cooperation and Development. OECD Health Statistics. 2014.
17. Nagai A, Hirata M, Kamatani Y, et al. Overview of the BioBank Japan project: study design and profile. J Epidemiol. 2017;27:52–58.
18. Hirata M, Kamatani Y, Nagai A, et al. Cross-sectional analysis of BioBank Japan clinical data: a large cohort of 200,000 patients with 47 common diseases. J Epidemiol. 2017;27:59–521.
19. Hirata M, Nagai A, Kamatani Y, et al. Overview of BioBank Japan follow-up data in 32 diseases. J Epidemiol. 2017;27:522–528.
20. Vital Statistics [homepage on the Internet]. Ministry of Health, Labour and Welfare, Japan; Accessed August 5 2016. Available from: http://www.mhlw.go.jp/toukei/saikin/hw/seimei/seizonritu2007.html [in Japanese].
21. Cohort Life Table [homepage on the Internet]. Cancer Registry and Statistics, Cancer Information Service, National Cancer Center, Japan; Accessed August 5 2016. Available from: http://www.toukei.mhlw.go.jp/juso/kangyoku/seisakuji/seisakuji.html [in Japanese].
22. Abridged Life Tables for Japan [homepage on the Internet]. Ministry of Health, Labour and Welfare, Japan; Accessed August 5 2016. Available from: http://www.mhlw.go.jp/toukei/saikin/hw/seimei/list54-57-02.html [in Japanese].
23. Survival statistics of Japanese association of Clinical Cancer Centers, Cancer Information Service, National Cancer Center, Japan; Accessed August 5 2016. Available from: http://www.gunma.cc/sarukihan/seizouritu/seizouritu2007.html [in Japanese].
24. Hori M, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H. Cancer incidence and incidence rates in Japan in 2009: a study of 32 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 2015;45(4):456–461.
25. Ministry of Health, Labour and Welfare. Patient Survey. 2005.
26. Huang Q, Luo K, Yang H, et al. Impact of alcohol consumption on survival in patients with esophageal carcinoma: a large cohort with long-term follow-up. Cancer Sci. 2014;105(12):1638–1646.
27. Minami Y, Kawai M, Fujiya T, et al. Family history, body mass index and survival in Japanese patients with stomach cancer: a prospective study. Int J Cancer. 2006;119(10):2411–2418.
28. Nozoe T, Kohno M, Ichiguchi T, et al. Analysis of the impact of body mass index in patients with gastric carcinoma. Surg Today. 2012;42(10):945–949.
29. Oh SJ, Hyung WJ, Li C, et al. Effect of being overweight on postoperative morbidity and long-term surgical outcomes in proximal gastric carcinoma. J Gastrointest Oncol. 2009;24(3):475–479.
30. Ojima T, Iwashashi M, Nakamori M, et al. Influence of overweight on patients with gastric cancer after undergoing curative gastrectomy: an analysis of 689 consecutive cases managed by a single center. Arch Surg (Chicago, Ill: 1960). 2009;144(4):351–358. discussion 358.
31. Tozuka M, Hiki N, Fukunaga T, Ohyama S, Yamaguchi T, Nakajima T. Better 5-year survival rate following curative gastrectomy in overweight patients. Ann Surg Oncol. 2009;16(12):3245–3251.
32. Singh S, Edakkannambeth Varayil J, Devanna S, Murad MH, Iyer PG. Physical activity is associated with reduced risk of gastric cancer: a systematic review and meta-analysis. Cancer Prev Res (Philadelpia, Pa). 2014;7(1):12–22.
33. Ferronha I, Bastos A, Lunet N. Prediagnosis lifestyle exposures and survival of patients with gastric cancer: systematic review and meta-analysis. Eur J Cancer Prev: The Official Journal of the European Cancer Prevention Organisation (ECP). 2012;21(5):449–452.