Electronic correlation in the infrared optical properties of the quasi-two-dimensional σ-type BEDT-TTF dimer system

Sasaki T., Ito I., Yoneyama N., Kobayashi N., Hanasaki N., Tajima H., Ito T., Iwasa Y.

Journal or Publication Title: Physical Review. B

Volume: 69

Number: 6

Page Range: 064508

Year: 2004

URL: http://hdl.handle.net/10097/53405

doi: 10.1103/PhysRevB.69.064508
Electronic correlation in the infrared optical properties of the quasi-two-dimensional κ-type BEDT-TTF dimer system

T. Sasaki, I. Ito, N. Yoneyama, and N. Kobayashi
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan

N. Hanasaki and H. Tajima
Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa 277-8581, Japan

T. Ito
JAIST Hokuriku, Asahidai 1-1, Tatsunokuchi, Ishikawa 923-1292, Japan

Y. Iwasa
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
and CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan

(Received 25 August 2003; published 20 February 2004)

The polarized optical reflectance spectra of the quasi-two-dimensional organic correlated electron system κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Y, $Y=$Br and Cl are measured in the infrared region. The former shows the superconductivity at $T_c=11.6$ K and the latter does the antiferromagnetic insulator transition at $T_N=28$ K. Both the specific molecular vibration mode $v_3(a_g)$ of the BEDT-TTF molecule and the optical conductivity hump in the mid-infrared region change correlatively at $T^*=38$ K of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, although no indication of T^* but the insulating behavior below $T_{ins}=50–60$ K are found in κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl. The results suggest that the electron-molecular vibration coupling on the $v_3(a_g)$ mode becomes weak due to the enhancement of the itinerant nature of the carriers on the dimer of the BEDT-TTF molecules below T^*, while it does strong below T_{ins} because of the localized carriers on the dimer. These changes are in agreement with the reduction and the enhancement of the mid-infrared conductivity hump below T^* and T_{ins}, respectively, which originates from the transitions between the upper and lower Mott-Hubbard bands. The present observations demonstrate that two different metallic states of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br are regarded as a correlated good metal below T^* including the superconducting state and a half filling bad metal above T^*. In contrast the insulating state of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl below T_{ins} is the Mott insulator.

DOI: 10.1103/PhysRevB.69.064508

PACS number(s): 74.70.Kn, 78.30.Jw, 71.30.+h

I. INTRODUCTION

Organic charge transfer salts based on the donor molecule bis(ethylenedithio)-tetrathiafulvalene, abbreviated BEDT-TTF, are characterized by their quasi-two-dimensional electronic properties which originate in the layer structure of (BEDT-TTF)$_2$X crystals. The BEDT-TTF molecules have different possible packing patterns in the conducting layer. The patterns are denoted by the different Greek letters. Among them, κ type has a unit of dimer consisting of two BEDT-TTF molecules. Since each dimer has one hole (three electrons) because of charge transfer to the anions, the conduction band can be considered to be effectively half-filling. Therefore, κ-(BEDT-TTF)$_2$X with $X=$Cu(NCS)$_2$ and Cu[N(CN)$_2$]Y ($Y=$Br and Cl) have attracted considerable attention from the point of view of the strongly correlated Q2D electron system. The unconventional metallic, antiferromagnetic insulator and superconducting phases appear next to one another in the phase diagram. The transitions among these phases are controlled by the applied pressure which must change the conduction band width W with respect to the effective Coulomb repulsion U between two electrons on a dimer. Thus the κ-(BEDT-TTF)$_2$X family has been considered to be the bandwidth controlled Mott system in comparison with the filling controlled one in the inorganic perovskites such as High-T_c copper oxides.

Recently anomalies in the metallic state of the superconducting salts at $T^*\approx 38$ K for $X=$Cu[N(CN)$_2$]Br and 50 K for $X=$Cu(NCS)$_2$ have been reported in several physical properties; the cusp of the spin-lattice relaxation rate (T_1T)$^{-1}$ appears in 1H-NMR, the velocity of sound takes a pronounced minimum, and the thermal expansion coefficient indicates a reminiscent of second-order phase transition, and the spin susceptibility and the resistivity show a change of the anisotropy. The T^* line seems to divide the metallic phase into unconventional metal with large antiferromagnetic spin fluctuation at $T>T^*$ and a metal with a possibility of the fluctuated density wave formation at $T<T^*$. The line has been found to be terminated at the critical end point of the first order Mott metal-insulator transition line. The nature of the T^* line (transition or crossover) and these unconventional metallic regions, however, has not been understood well. It is important particularly to investigate the characteristics in the metallic state at $T_c<T<T^*$ because it must be closely related to the mechanism and the symmetry of the superconductivity which has been controversially discussed so far. In this point the anticorrelation of the signs of the uniaxial-pressure coeffi-
cients at T_c and $T^\#$ has been pointed out from a thermodynamic analysis. 21 It is noted again that such $T^\#$ anomalies and the metallic state below $T^\#$ appear in only the superconducting salts and those have not been found in the non-superconducting salts, for example, the antiferromagnetic (AF) Mott insulator κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl which has the AF transition at $T_N=28$ K (Ref. 22) and the insulator-semiconductor like transition at $T_{ins}=50-60$ K. 18,23

Optical conductivity measurements are powerful tool for investigating the charge dynamics, electron correlation, and electron-phonon (molecular vibration) coupling in the correlated electron system like the low-dimensional organic conductors. 24 In this paper, we report the systematic infrared (IR) reflectance investigation of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Y ($Y=\text{Br}$ and Cl). We focus on the change of a specific molecular vibration mode $\nu_3(a_g)$ and the broad conductivity peak in the mid-IR region of the superconducting κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br and the AF-Mott insulator κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl. The symmetric $\nu_3(a_g)$ mode becomes visible in the IR spectra due to the large electron-molecular vibration (EMV) coupling. 24-26 Thus the mode is sensitive to the electronic state on the dimer molecules. The conductivity peak at mid-IR has been resulted in the inter-band transitions based on the tight binding band calculation. 27-32 In the case of strongly correlated electron system with half-filling, however, a broad band has been expected to appear at the similar mid-IR region corresponding to the energy of U which is attributed to the transitions between the lower and upper Hubbard bands. 33-35 We discuss the change of the electronic state and the correlation effect of κ-(BEDT-TTF)$_2$X by probing such optical properties.

II. EXPERIMENTS

High quality single crystals of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Y with $Y=\text{Br}$ and Cl were grown by the standard electrochemical oxidation method. The crystals have a slightly distorted hexagonal and diamond shaped shiny surface containing the c and a axes. The polarized reflectance spectra were measured on the c-a plane along $E\parallel a$ axis and $E\parallel c$ axis with a Fourier transform microspectroscopic spectrophotometer (JASCO FT/IR-620 and MICRO-20). The mid-IR ($600-6000$ cm$^{-1}$) region was measured by use of a mercury-cadmium-telluride (MCT) detector at 77 K and a KBr beamsplitter. The sample was fixed by the conductive carbon paste on the microgoniometer which was placed at the cold head of the helium flow type refrigerator (Oxford CF1104). The temperature was monitored and controlled at 10–300 K by the gold/iron-Chromel thermocouple and diode thermometers. We gave careful consideration of less stress and good thermal contact to the crystals in the sample setting. The reflectivity was obtained by comparison with a gold mirror at room temperature. The optical conductivity was calculated by a Kramers-Kronig analysis of the reflectivity. For this analysis, the reflectivity data was extrapolated to low and high frequencies. The conductivity in the measured frequency range was found to be insensitive to the small differ-

III. RESULTS AND DISCUSSION

Figure 1 shows the reflectivity (upper panels) and the optical conductivity spectra (lower panels) of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br for $E\parallel c$ axis (left panels) and $E\parallel a$ axis (right panels), respectively.

FIG. 1. The reflectivity (upper panels) and the conductivity spectra (lower panels) of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br for $E\parallel c$ axis (left panels) and $E\parallel a$ axis (right panels), respectively.

ence of the extrapolations. The Raman spectra were measured by using a JASCO NRS-1000 with a backscattering geometry. We used a He-Ne laser with the wavelength at 632.8 nm.
reflectance and the conductivity spectra also reproduce well the results which have been reported.30,37 Below about 50–60 K, in contrast to the superconducting salt, the conductivity at low-frequency range decreases and the mid-IR conductivity and a vibrational mode become dominant at lower temperatures.

The change of the electronic states in these salts is reflected in the totally symmetric internal vibration \(\nu_3(a_g) \) mode of the BEDT-TTF molecule through the EMV coupling. Figures 3 and 4 show the optical conductivity in the frequency range near 1300 cm\(^{-1}\) of \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Br} \) and \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Cl} \), respectively. The plotted conductivity value of these spectra are shifted from the data at the lowest temperature by 150 and 400 Scm\(^{-1}\) each for \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Br} \) and \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Cl} \), respectively. The sharp peak structures in the spectra have been assigned to the vibrational modes as follows.29,30 The peaks around 1170 cm\(^{-1}\) and 1270–1290 cm\(^{-1}\) have been assigned to \(\nu_{67} \) and \(\nu_5 \) modes, both of which involve the CH\(_2\) motion, respectively. The peak at 1380–1390 cm\(^{-1}\) has been assigned to \(\nu_{45} \). These peaks do not change the frequency with temperature so much. On the other hand, the peaks at 1320–1330 cm\(^{-1}\) and 1250–1270 cm\(^{-1}\) for \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Br} \) and to lower frequency below 50–60 K in \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Cl} \). The former temperature corresponds to \(T^* \) and the latter \(T_{\text{ins}} \). These relatively broad peaks have been assigned to the \(\nu_3(a_g) \) mode. The opposite trend of the temperature dependence of the peak positions in between \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Br} \) and \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Cl} \) has been reported.29,30,38

The present experiments show clearly in the first time that the shift of the \(\nu_3(a_g) \) mode is not monotonic with temperature but correlated to \(T^* \) in \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Br} \), and \(T_{\text{ins}} \) and \(T_N \) in \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Cl} \). In concurrence with such frequency shifts, the shape of the conductivity peaks change at \(T^* \) and \(T_{\text{ins}} \). The peak becomes sharper and larger below \(T_{\text{ins}} \) in \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Cl} \), while the further broadening seems to be observed below \(T^* \) in \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[(\text{CN})_2]\text{Br} \). But the latter broadening cannot be concluded because of overlapping with the Fanotype antiresonance of the CH\(_2\) vibrations.

The peak frequency \(\omega_R \) of the \(\nu_3(a_g) \) mode is shown in the inset of Fig. 5. The peak frequencies in both salts and both polarization directions increase monotonically with decreasing temperature from room temperature. This monotonic change of \(\omega_R \) is in accordance with the change of the same mode of the Raman shift frequency \(\omega_R \). Then the
monotonic change of \(\omega_{IR} \) and \(\omega_R \) represents the hardening of the molecular vibration itself by cooling. Below about \(T_{ins} \approx 50 - 60 \) K, however, the peak frequency starts to shift to lower frequency in both polarization directions of \(\kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br \) (open circles and dotted line) and \(\kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl \) (filled circles and broken line) for \(E \parallel c \) axis (upper panel) and \(E \parallel a \) axis (lower panel). Insets show the temperature dependence of \(\omega_{IR} \) and \(\omega_R \).

The characteristic temperature dependence of the \(\nu_3(a_g) \) mode in the IR optical conductivity can be attributed to the change of the electronic states through the EMV coupling, because the same vibrational mode measured by the Raman shift \(\omega_R \) from room temperature to 10 K.\(^{40-41} \) The main panel of Fig. 5 shows the temperature dependence of the relative frequency shift of the \(\nu_3(a_g) \) mode in the IR spectra, which is normalized by \(\omega_R \) shown in the inset. The IR frequency \(\omega_{IR} \) is expected to be smaller than the bare phonon frequency \(\omega_0 (= \omega_R) \) when the transfer integral \(t_{dimer} \) for hopping between molecules within the dimer is larger than \(\omega_0 (= \omega_R) \).\(^{24-26} \) These plots support further that the anomalous frequency shifts of the \(\nu_3(a_g) \) mode at \(T^* \) in \(\kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br \), and \(T_{ins} \) and \(T_N \) in \(\kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl \) are caused by changing not the molecular vibration itself but the electronic states on the dimers through the EMV coupling.

In view of such change of \(\omega_{IR} \) of the \(\nu_3(a_g) \) mode, let us then consider the relation to the electronic states. In the \(\kappa \)-type BEDT-TTF system, the effective half-filling bands are expected and results in the Mott insulator due to the strong dimerization.\(^{3-5} \) This situation is realized below \(T_{ins} \) in \(\kappa-(BEDT-TTF)_2Cu[N(CN)_2]Cl \). Large negative frequency shift from the bare phonon frequency observed below \(T_{ins} \) corresponds to the enhancement of the EMV coupling. The large EMV coupling on the dimer system implies that the carriers tend to localize at the dimer and then the conductivity becomes small. The larger and sharper peak shape of the \(\nu_3(a_g) \) mode also demonstrates the localization of a carrier (one hole) at each dimer. Then the system has become the Mott insulating state before the AF static order appears at \(T_N \). In this context, the open of the charge gap has been reported below \(T_{ins} \).\(^{30} \) On the other hand, the positive frequency shift below \(T^* \) indicates that the carriers on the dimer show the itinerant behavior in the superconducting salt. This metallic behavior is consistent with the results of the spin susceptibility which has shown that the density of states at Fermi level increases below \(T^* \).\(^{7} \) The resistivity also shows the quadratic temperature dependence below \(T^* \), which suggests the Fermi-liquid-like metallic behavior.\(^{35} \) The superconductivity appears from such metallic state.

A possibility of the fluctuation of the charge density wave or charge localization in the metallic state below \(T^* \) has been proposed on the basis of the anisotropic behavior of the resistivity and spin susceptibility.\(^{7} \) A separation or distortion of the line shape of the \(\nu_3(a_g) \) mode is expected in such instances. In fact the clear peak separation has been observed in the charge ordered insulating state of the \(\theta \)-type BEDT-TTF system,\(^{42} \) where the separation width is related to the degree of the charge disproportionation on each molecule. The line shape of the \(\nu_3(a_g) \) mode in this study on the \(\kappa \)-type system, however, shows a sign of neither the separation nor the clear distortion below \(T^* \), although the shape becomes somewhat broadened. It needs further experiments and analysis for reaching the conclusion.

The EMV coupling reflects the intensity of the mid-IR band transition. The totally symmetric \(\nu_3(a_g) \) mode is not originally IR active. This mode can appear in the IR spectra by borrowing the intensity of the mid-IR band transition. Such mid-IR band transition should appear as a broad conductivity hump in the spectra. As has been reported on the several \(\kappa \)-type\(^{29-32} \) and \(\beta \)-type\(^{28} \) BEDT-TTF salts which have a strong dimer structure, a broad conductivity hump is observed in the mid-IR region which can be seen in Fig. 2. The characteristic feature is that the intensity of the hump changes with temperature but the peak frequency does not. The several possible origins of the hump have been pro-
The polaron absorption. On one hand, the temperature range from room temperature down to about 100 K is difficult to be explained by the polaron model.

We shall discuss the behavior of the mid-IR conductivity hump and the resulting EMV coupling in view of the Mott-Hubbard picture. The anisotropic triangular dimer Hubbard model has been proposed by Kino and Fukuyama for describing the electronic states of κ-type BEDT-TTF system. The model suggests the importance of the correlation between the effective on-site Coulomb repulsion U on a single dimer and the interdimer hopping integrals t's. Many of the essential features are well described and the critical U_c value for the Mott insulating transition has been estimated to be $U_c/4t \sim U_c/W \sim 1$ in the Hartree-Fock approximation. The κ-type BEDT-TTF salts may be close to the transition because of $U \sim 2t_{dimer} \sim 0.4$ eV and $t \sim 0.1$ eV, where t_{dimer} is the intradimer hopping integral. In the optical conductivity in such Mott-Hubbard system, the broad mid-IR band transition between the upper and lower Hubbard bands is expected to appear around $\omega \sim U$ in the insulator region. The observation of the enhancement of the mid-IR conductivity hump in κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl below T_{ins} can be understood in this picture and may confirm that the insulating state results in the Mott insulator.

In the metallic κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, the position of the mid-IR conductivity hump is the same with that in κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl, and it does not change at T^*. This demonstrates that the mid-IR band transition between the upper and lower Hubbard bands keeps a certain amount of the intensity even below T^* without changing the energy. The dynamical mean-field theory (DMFT) for calculating the Hubbard model predicts that a quasiparticle peak grows at the chemical potential in the metallic state below a temperature T_0 which is much smaller than U and W. For temperature smaller than T_0 a Drude-like response appears at $\omega \sim 0$ and the new peak forms at $\omega \sim U/2$, which corresponds to the transition between the coherent quasiparticle band and the upper and lower Hubbard bands, while a broad peak forms at $\omega \sim U$ in the insulating state above T_0. It is interesting to compare the metallic state found in κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br below T^* to the coherent metal state expected below T_0 in DMFT. The expected new broad band, however, cannot be found at $\omega \sim U/2$ in the conductivity spectra below T^*. The spectrum weight of the broad hump above T^* moves not to the $\omega \sim U/2$ position but to the Drude response at $\omega \sim 0$ at low temperature. The DMFT calculations have shown also that the large phonon frequency shift takes place at T_0 in particular phonons at $\omega \sim U/2$. The Raman frequency ω_R of $\nu_{3}(a_\parallel)$ near $\omega \sim U/2$, however, does not change at T^*, while the IR conductivity frequency ω_R changes dramatically in line with the intensity of mid-IR conductivity hump at $\omega \sim U$. It follows from these points that the metallic state below T^* still holds a feature of the Mott-Hubbard picture with a certain amount of the state density at $\omega \sim 0$. Then the state can be called as the correlated good metal. But the intensity of the coherent quasiparticle peak may not be so strong enough to realize the transitions from the quasiparticle band to the upper Hubbard band and from the lower Hubbard band to the quasiparticle band. Therefore it is not clear at present whether the ob-

Fig. 6. Temperature dependence of the conductivity of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br (open circle) and κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl (filled circle) at 3300 cm$^{-1}$ for $E\parallel c$ axis (upper panel) and 2200 cm$^{-1}$ for $E\parallel a$ axis (lower panel). Each frequency corresponds to the conductivity hump in the mid-IR region.
served T^* corresponds to the coherent temperature T_0 in DMFT. It is noted that the second-order phase transition at T^* has been proposed while DMFT shows that T_0 is a crossover temperature.

IV. CONCLUSION

We have measured the optical conductivity in the IR region of the Mott system κ-(BEDT-TTF)$_2$X. The specific molecular vibration mode $\nu_3(a_g)$ of the BEDT-TTF molecule shows the sudden frequency shift at T_{ins} and T^* where the system changes to the Mott insulator and the correlated good metal, respectively. These frequency shifts have strong correlation with the intensity of the mid-IR conductivity hump. The mid-IR conductivity hump is explained by the transition between the upper and lower Mott-Hubbard bands. The characteristic temperatures T_{ins}, T_N, T_c, and T^* are summarized as the schematic phase diagram of κ-(BEDT-TTF)$_2$X in Fig. 7. The results of the similar optical conductivity experiments in the κ-(BEDT-TTF)$_2$Cu(NCS)$_2$ and the deuterated κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br are also plotted in the figure. Above T_{ins} and T^* the system has almost the same electronic state of the so-called half-filling bad metal, where the transitions between the upper and lower Mott-Hubbard bands are dominant. In the small W/U side, the bad metal changes to the Mott insulator at T_{ins} and then to the AF-Mott insulator at T_N. On the other hand, the half-filling bad metal in the large W/U side is altered to the correlated good metal at T^*. The possible fluctuation of a density wave formation is not conclusive in the metallic state at present. The superconducting state can be realized only from the good metal by the second-order phase transition.

The Mott insulator and the good metal at high temperature and the AF-Mott insulator and the superconductor are separated by the contiguous first-order transition line. The first-order phase transition line is terminated at the critical end point. The recent observation of the phase separation and the field induced phase alternation in the system being situated next to the first-order transition may be explained by the spacial inhomogeneity consisting of the Mott insulator and the good metal or the AF-Mott insulator and the superconductor. The possible origin of the spacial inhomogeneity may have the close relation to the ethylene disorder, that is, the glass transition due to the freezing of the ethylene motion at higher temperature in addition to the competition of the free energy of each state.

The horizontal axis of the phase diagram can convert to the pressure through W. The strong pressure dependence of the $\nu_3(a_g)$ mode of κ-(BEDT-TTF)$_2$Cu(NCS)$_2$ at room temperature has been reported. The pressure dependence in the half-filling bad metal can be also understood in this picture. The increasing of W leads the bad metal to the normal metal with less electron correlation and then the EMV coupling becomes weak. In fact the mid-IR conductivity hump is suppressed under pressure. It must be interesting to study the optical properties near the first-order transition under pressure or in the materials controlled with the chemical pressure by way of the partial substitution of the molecular elements.

ACKNOWLEDGMENTS

We thank R. H. McKenzie, J. Merino, and M. Lang for helpful discussions. A part of this work was performed at the Spectroscopy Laboratory, the Material Design and Characterization Laboratory, ISSP, University of Tokyo. This work was partly supported by a Grant-in-Aid for Scientific Research (C) (Grant No. 15540329) from the Ministry of Education, Science, Sports, and Culture of Japan.

1 T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer-Verlag, Berlin, 1998).
2 M. Lang and J. Müller, in The Physics of Superconductors, edited by K.H. Bennemann and J.B. Ketterson (Springer-Verlag, Berlin, 2003), Vol. II.
3 K. Kanoda, Hyperfine Interact. 104, 235 (1997).
4 K. Kanoda, Physica C 282–287, 299 (1997).
5 R. McKenzie, Comments Condens. Matter Phys. 18, 309 (1998).
ELECTRONIC CORRELATION IN THE INFRARED . . .

PHYSICAL REVIEW B 69, 064508 (2004)

6 J. Singleton and C. Mielke, Contemp. Phys. 43, 63 (2002).
7 T. Sasaki, N. Yoneyama, A. Matsuyama, and N. Kobayashi, Phys. Rev. B 65, 060505 (2002).
8 R. McKenzie, Science 278, 820 (1997).
9 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
10 H. Mayaffre, P. Wzietek, C. Lenoir, D. Jérome, and P. Batail, Europhys. Lett. 28, 205 (1994).
11 A. Kawamoto, K. Miyagawa, Y. Nakazawa, and K. Kanoda, Phys. Rev. Lett. 74, 3455 (1995).
12 S.M. De Soto, C.P. Slichter, A.M. Kini, H.H. Wang, U. Geiser, and J.M. Williams, Phys. Rev. B 52, 10 364 (1995).
13 K. Frikich, M. Poirier, M. Castonguay, and K.D. Truong, Phys. Rev. B 61, R6491 (2000).
14 T. Shimizu, N. Yoshimoto, M. Nakamura, and M. Yoshizawa, Physica B 281–282, 896 (2000).
15 D. Fournier, M. Poirier, M. Castonguay, and K. Truong, Phys. Rev. Lett. 90, 127002 (2003).
16 J. Müller, M. Lang, F. Steglich, J.A. Schlueter, A.M. Kini, and T. Sasaki, Phys. Rev. B 65, 144521 (2002).
17 S. Lefebvre, P. Wzietek, S. Brown, C. Bourbonnais, D. Jérome, C. Mézière, M. Fourmigué, and P. Batail, Phys. Rev. Lett. 85, 5420 (2000).
18 P. Limelette, P. Wzietek, S. Flores, A. Georges, T.A. Costi, C. Pasquier, D. Jérome, C. Mézière, and P. Batail, Phys. Rev. Lett. 91, 016401 (2003).
19 F. Kagawa, T. Itou, K. Miyagawa, and K. Kanoda, cond-mat/0307304 (unpublished).
20 K. Izawa, H. Yamaguchi, T. Sasaki, and Y. Matsuda, Phys. Rev. Lett. 88, 027002 (2002), and references therein.
21 M. Lang, J. Müller, F. Steglich, J.A. Schlueter, A.M. Kini, and T. Sasaki, Synth. Met. 133–134, 107 (2003).
22 K. Miyagawa, A. Kawamoto, Y. Nakazawa, and K. Kanoda, Phys. Rev. Lett. 75, 1174 (1995).
23 H. Ito, T. Ishiguro, M. Kubota, and G. Saito, J. Phys. Soc. Jpn. 65, 2987 (1996).
24 C.S. Jacobsen, in Semiconductors and Semimetals, edited by E. Conwell (Academic Press Inc., New York, 1988), Vol. 27.
25 M.J. Rice, Solid State Commun. 31, 93 (1979).
26 M.J. Rice, V.M. Yartsev, and C.S. Jacobsen, Phys. Rev. B 21, 3437 (1980).
27 H. Tajima, K. Yakushi, H. Kuroda, and G. Saito, Solid State Commun. 56, 159 (1985).
28 H. Kuroda, K. Yakushi, H. Tajima, A. Ugawa, M. Tamura, Y. Okawa, A. Kobayashi, R. Kato, H. Kobayashi, and G. Saito, Synth. Met. 27, A491 (1988).
29 J.E. Eldridge, J.E. Kornelsen, H.H. Wang, J.M. Williams, A.V.S. Crouch, and D.M. Watkins, Solid State Commun. 79, 583 (1991).
30 J.E. Kornelsen, J.E. Eldridge, H.H. Wang, H.A. Charlier, and J.M. Williams, Solid State Commun. 81, 343 (1992).
31 M. Tamura, H. Tajima, K. Yakushi, H. Kuroda, A. Kobayashi, R. Kato, and H. Kobayashi, J. Phys. Soc. Jpn. 60, 3861 (1991).
32 J. Merino and R.H. McKenzie, Phys. Rev. B 61, 7996 (2000).
33 J. Merino and R.H. McKenzie, Phys. Rev. Lett. 89, 064508 (2002).
34 A. Kawamoto, H. Kuroda, K. Kanoda, and A. Kobayashi, J. Phys. Soc. Jpn. 69, 064508 (2004).
35 A. Kornelsen, J.E. Eldridge, H.H. Wang, and J.M. Williams, Phys. Rev. B 44, 5235 (1991).
36 M.J. Rozenberg, G. Kotliar, H. Kajueter, G.A. Thomas, D.H. Rapkine, J.M. Honig, and P. Metcalf, Phys. Rev. Lett. 75, 105 (1995).
37 A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
38 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 65, 65 (1993).
39 L. Pintschovius, H. Rietzschl, T. Sasaki, H. Mori, S. Tanaka, N. Toyoda, M. Lang, and F. Steglich, Europhys. Lett. 37, 627 (1997).
40 J.E. Eldridge, Y. Lin, H.H. Wang, J.M. Williams, and A.M. Kini, Phys. Rev. B 57, 597 (1998).
41 M. Maksimuk, K. Yakushi, H. Taniguchi, K. Kanoda, and A. Kawamoto, J. Phys. Soc. Jpn. 70, 3728 (2001).
42 K. Yamamoto, K. Yakushi, K. Miyagawa, K. Kanoda, and A. Kawamoto, Phys. Rev. B 65, 085110 (2002).
43 N.L. Wang, B.P. Clayman, H. Mori, and S. Tanaka, J. Phys.: Condens. Matter 12, 2867 (2000).
44 M. Dressel, N. Drichko, J. Schlueter, and J. Merino, Phys. Rev. Lett. 89, 167002 (2003).
45 M. Tamura, K. Yakushi, H. Kuroda, A. Kobayashi, R. Kato, and H. Kobayashi, J. Phys. Soc. Jpn. 57, 3239 (1988).
46 K. Murata, M. Ishibashi, Y. Honda, N.A. Fortune, M. Tokumoto, N. Kinoshita, and H. Anzai, Solid State Commun. 76, 377 (1990).
47 H. Kino and H. Fukuyama, J. Phys. Soc. Jpn. 65, 2158 (1996).
48 J. Merino and R.H. McKenzie, Phys. Rev. B 62, 16 442 (2000).
49 I. Ito, T. Sasaki, N. Yoneyama, N. Kobayashi, N. Hanasaki, H. Tajima, T. Ito, and Y. Iwasa, J. de Physique IV (unpublished).
50 V.J. Emery and S.A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).
51 K. Miyagawa, A. Kawamoto, and K. Kanoda, Phys. Rev. Lett. 89, 017003 (2002).
52 H. Taniguchi, A. Kawamoto, and K. Kanoda, Phys. Rev. B 67, 014510 (2003).
53 J. Singleton, C.H. Mielke, W. Hayes, and J.A. Schlueter, J. Phys.: Condens. Matter 15, 203 (2003).
54 N. Yoneyama, T. Sasaki, T. Nishizaki, and H. Kobayashi, J. Phys. Soc. Jpn. 73, 184 (2004).
55 A.K. Klehe, R.D. McDonald, A.F. Goncharov, V.V. Struzhkin, H. Mao, R.J. Hemley, T. Sasaki, W. Hayes, and J. Singleton, J. Phys.: Condens. Matter 12, 247 (2000).
56 A. Kawamoto, H. Taniguchi, and K. Kanoda, J. Am. Chem. Soc. 120, 10 984 (1998).