Case Report

Meningeal TB in a 39-Year-Old Male Presenting with Headache

Jason Selinger and Thar El Baage
Southeastern Regional Medical Center, Lumberton, NC, USA

Correspondence should be addressed to Thar El Baage; elbaage@yahoo.com

Received 20 February 2017; Revised 8 August 2017; Accepted 20 August 2017; Published 26 September 2017

1. Intro/Background

*Mycobacterium tuberculosis* can produce several extrapulmonary manifestations, including hematogenous spread to just about anywhere in the body. Examples include spread to joints, bones, the GI system, the cardiovascular system, and the central nervous system. Once in the central nervous system, several forms of the disease may appear, including a tuberculoma which may lead to meningeal infection, and the disease may spread to the spinal cord [1].

According to recent CDC data from 2014, CNS tuberculosis accounted for 4.5% of all extrapulmonary manifestations of TB in the United States [2]. Initial presenting symptoms of meningeal TB may occur in several phases and in different forms. Patients may experience headache, malaise, or fevers early in the disease and may progress to more focal neurological findings as the disease progresses [3].

These symptoms, while vague and often nonspecific, are presented in a variety of smaller review articles with similar findings. Only a small number of patients are aware of a personal history of TB infection [4]. However, adults at higher risk of meningeal TB infection from reactivation of a latent infection include those with a history of immunosuppression from infection, alcohol abuse, or medications. As the disease progresses, a hydrocephalus may occur secondary to inflammation from the surrounding infection and may be viewed as a poor prognostic indicator [5]. Prompt treatment with appropriate antituberculous drugs is critical in preventing morbidity and mortality.

2. Case

A 39-year-old male with a past medical history of alcohol abuse of several years' duration presented to the Emergency Department with chief complaint of headache. At the time of presentation he denied any chest pain, weakness, or other neurologic symptoms. Basic labs including complete blood count and basic metabolic panel were performed in the ED, which showed severe hyponatremia with a sodium of 116 mmol/L (normal 135–145 mmol/L) and serum osmolality of 235 mmol/L (normal 275–285 mmol/L). Further questioning of a family member revealed the patient was also experiencing mild confusion in the past few days. Physical exam showed the patient was oriented to person and place, while showing signs of chronic malnutrition. The rest of his serum chemistries, including complete blood count, were normal on presentation with the exception of hypochloremia (81 mmol/L). CT of the head on admission was obtained due to the patient's altered mental status, and it showed no edema or signs of infarct at the time. His chest X-ray performed in the ED showed nonspecific increased reticular markings. Kernig's and Brudzinski's signs were negative on physical exam. The patient had no pain or stiffness of the neck on admission. His vitals were otherwise stable, with normal temperature, O2 saturation, and respiratory rate on presentation. Alcohol level was negative in the ED, although he was kept on alcohol withdrawal protocol for the duration of his hospital stay due to the history of alcohol abuse and likelihood for withdrawal. The patient was admitted to...
a medical floor for hyponatremia and alcohol withdrawal workup. He did not receive any antibiotics in the ED as there was no indication of an infection at the time.

On the first day of admission, the patient was difficult to arouse in the morning after he spiked a fever of 101.5°F (38.6°C) overnight. Infectious Disease was consulted due to concern for meningitis due to altered mental status and fever. ID recommended starting the patient on Vancomycin, Zosyn, and Acyclovir, which the patient continued for the duration of his two-week hospital stay. A lumbar puncture was also performed the same day. The patient was transferred to the ICU due to concerns over airway protection due to rapidly worsening mental status. At this time a nine-panel drug screen was ordered which was negative. Lactic acid, procalcitonin, and blood cultures were all taken and were within normal limits. Nephrology was consulted for the hyponatremia, thought to be secondary to beer potomania and possible SIADH. In the ICU, the patient had a central line placed and he was started on 3% normal saline. Measurement of urine sodium was 191 mmol/L and urine osmolality was 626 mOsm/kg, although these labs were likely drawn after the administration of the hypertonic saline.

Initial results of the spinal tap showed a traumatic tap with 49 red blood cells/mm³, 8 white blood cells/mm³, glucose of 20 mg/dL, and protein of 188 mg/dL. Due to the low white blood cell count, ID felt meningitis was thought to be low on the differential. Acid fast culture was sent but would not return for several weeks from the health department. PCR for Mycobacterium tuberculosis was not available. A teleneurology consult was obtained due to the lack of an in-hospital neurology service, and they recommended treating the hyponatremia as a cause of the patient’s encephalopathy. Due to the low white blood cell count in the cerebrospinal fluid, sterile blood cultures, and explanation of hyponatremia for the patient’s altered mental status, antibiotics were discontinued on day #3 but eventually restarted as the patient’s condition declined. He had a total of two weeks’ course of antibiotics.

Over the next two days the patient’s mental status continued to wax and wane, as did his low grade fevers. Additional infection workup was ordered, including RPR, GC/chlamydia, hepatitis, and HIV, all of which were negative. Repeat chest X-ray showed worsening of the reticulonodular opacities previously visualized on the chest X-ray performed in the ED. A cardiac ECHO was ordered which was limited due to the patient developing tachycardia but showed normal EF and no signs of vegetations or valvular dysfunction. A repeat CT of the head was ordered as the patient’s mental status continued to decline (Figure 1). CT of the head showed new onset hydrocephalus, leading to a consult being placed with neurosurgery. Due to the new findings on CT scan an MRI was ordered, which showed subtle increased T2/flair signal interdigitating between the gyri, concerning for leptomeningitis (Figure 2). Neurosurgery placed an external ventricular drain catheter to drain the cerebrospinal fluid and relieve the hydrocephalus. There was no elevated intracranial pressure. The neurosurgeon did raise concern for meningitis based on the abnormal results of the original cerebrospinal fluid studies and the MRI; however treatment for TB was not started due to the negative cerebrospinal fluid samples.

Daily cerebrospinal fluid counts were sent to the lab from the ventriculostomy fluid collected. These repeat cerebrospinal fluid samples showed elevated white blood cell count, elevated red blood cell count, and low glucose with elevated protein. In total, three acid fast cultures were sent to the lab for analysis but their results would not come out for some time from the Health Dept. Patient was continued on Vancomycin, Acyclovir, and Cefepime. Culture results did not return until almost one month later.

Eight days into the patient’s hospital stay and seven days into his ICU stay the patient experienced a cardiac arrest,
Source of infection. Unfortunately, it would take several weeks and a CT scan of the chest gave clues as to this patient's possible etiology and glucose values. In addition, MRI imaging of the brain altered mental status, and abnormal cerebrospinal fluid protein of meningeal TB, including a history of headache, worsening mental status, and abnormal cerebrospinal fluid protein levels.

4. Conclusion

It is critical to recognize the signs and symptoms of meningeal TB before the patient's condition worsens. Even general symptoms of headache with altered mental status should raise concerns for infectious causes. In our patient's case, the first lumbar puncture was performed 24 hours into the admission. The results were viewed differently by the various physicians taking care of the patient, and treatment for tuberculosis was started but never continued. The low white blood cell count in the cerebrospinal fluid was concluded to indicate a noninfectious etiology of the patient's altered mental status, even though the patient ended up growing MTB weeks later. Other prognostic indicators, including the positive QuantiFERON test and the abnormal CT scan, should have been considered. Skin PPD was never placed even though the CT scan showed a clearly well-defined cavitary lesion.

Other factors which contributed to the patient's death included an infarct which likely occurred from the tuberculous infection, poor history on presentation, and severe hyponatremia, which was never fully corrected back to normal sodium levels during the course of hospitalization.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] S. M. al-Deeb, B. A. Yaqub, H. S. Sharif, and K. R. Motaery, "Neurotuberculosis: a review," Clinical Neurology & Neurosurgery, vol. 94, pp. S30–S33, 1992.

[2] CDC, Reported Tuberculosis in the United States, 2014, U.S. Department of Health and Human Services, CDC, Atlanta, Ga, USA, 2015.

[3] A. Cherian and S. V. Thomas, "Central nervous system tuberculosis," African Health Sciences, vol. 11, no. 1, pp. 116–127, 2011.
[4] P. N. Sutlas, A. Unal, H. Forta, S. Senol, and D. Kirbas, “Tuberculous meningitis in adults: review of 61 cases,” Infection, vol. 31, pp. 387–391, 2003.

[5] K. Chan, R. Cheung, C. Fong, K. Tsang, W. Mak, and S. Ho, “Clinical relevance of hydrocephalus as a presenting feature of tuberculous meningitis,” QJM, vol. 96, no. 9, pp. 643–648, 2003.

[6] I. G. Sia and M. L. Wieland, “Current concepts in the management of tuberculosis,” Mayo Clinic Proceedings, vol. 86, no. 4, pp. 348–361, 2011.

[7] L. Kivihya-Ndugga, M. Van Cleeff, E. Juma et al., “Comparison of PCR with the routine procedure for diagnosis of tuberculosis in a population with high prevalences of tuberculosis and human immunodeficiency virus,” Journal of Clinical Microbiology, vol. 42, no. 3, pp. 1012–1015, 2004.

[8] G. E. Marx and E. D. Chan, “Tuberculous meningitis: diagnosis and treatment overview,” Tuberculosis Research and Treatment, vol. 2011, Article ID 798764, 9 pages, 2011.