A Generalization of Brown’s Construction for the Degree/Diameter Problem

Yawara ISHIDA

December 31, 2015

Abstract

The degree/diameter problem is the problem of finding the largest possible number of vertices \(n_{\Delta,D} \) in a graph of given degree \(\Delta \) and diameter \(D \). We consider the problem for the case of diameter \(D = 2 \). William G Brown gave a lower bound of the order of \((\Delta, 2)\)-graph. In this paper, we give a generalization of his construction and improve the lower bounds for the case of \(\Delta = 306 \) and \(\Delta = 307 \). One is \((306, 2)\)-graph with 88723 vertices, the other is \((307, 2)\)-graph with 88724 vertices.

1 Introduction

The degree/diameter problem is the problem of finding the largest possible number \(n_{\Delta,D} \) of vertices in a graph of given degree \(\Delta \) and diameter \(D \). Let \(G \) be a graph with degree \(\Delta \) (\(\Delta > 2 \)) and diameter \(D \), then we have

\[
|G| \leq n_{\Delta,D} \leq 1 + \Delta \sum_{k=1}^{D-1} (\Delta - 1)^k
\]

where \(|G| \) is the number of vertices of \(G \). The right hand side of the above inequation is called Moore bound. On the other hand, a lower bound of \(n_{\Delta,D} \) for small degree and small diameter are available at http://combinatoricswiki.org. Especially for case of \(D = 2 \) and large degree, there exists the general construction that gives a lower bound of \(n_{\Delta,2} \), which is called Brown’s construction [3]. Let \(F_q \) be the finite field, where \(q \) is a power of a prime. Brown’s construction gives the graph \(B(F_q) \) whose vertices are lines in \(F_q^2 \) and two lines are adjacent if and only if they are orthogonal. It follows that

\[
|B(F_q)| = q^2 + q + 1, \quad \Delta(B(F_q)) = q + 1, \quad D(B(F_q)) = 2.
\]

The degree of each vertex of \(B(F_q) \) is \(q + 1 \) or \(q \). Among \(q^2 + q + 1 \) vertices, \(q + 1 \) vertices are of degree \(q \) and \(q^2 \) vertices are of degree \(q + 1 \). If \(q \) is a power of 2, there exists \((q + 1, 2)\)-graph with \(q^2 + q + 2 \) vertices [2].

In this paper, we generalize Brown’s construction by replacing a field with a commutative ring, and search new records of the degree/diameter problem.
2 Generalized Brown’s Construction

We give some definitions for generalized Brown’s construction. A graph \(G = (V, E) \) consists of a set \(V \) of vertices and a set \(E \subset \{(v, w) \in V^2 | v \neq w \} \) of edges. If \((v, w)\) is in \(E \), it is said that \(v \) and \(w \) are adjacent, which is denoted by \(v \sim w \). The order \(|G|\) of the graph is the number of vertices. The neighbours \(N(v) \) of the vertex \(v \) is a set of vertices which are adjacent to \(v \). The degree \(\delta(v) \) of the vertex \(v \) is the number of neighbours \(|N(v)|\). The degree \(\Delta(G) \) of the graph \(G \) is the maximum degree of vertices, namely \(\Delta(G) = \max \{\delta(v) | v \in V \} \).

The distance \(d(v, w) \) of vertices is the shortest path length between \(v \) and \(w \). The diameter \(D(G) \) of the graph is the maximum distance of all pairs of vertices.

Let \(R \) be a commutative ring with unity. \(R^3 \) denotes the set of invertible elements of \(R \). \(R^3 \) is naturally seen as \(R \)-module. The addition and \(R \)-action are defined by coordinate-wise. The inner product \(\cdot : R^3 \times R^3 \Rightarrow R \) is defined as follows:

\[
(v_1, v_2, v_3) \cdot (w_1, w_2, w_3) = v_1w_1 + v_2w_2 + v_3w_3.
\]

\(v \) and \(w \) are orthogonal if and only if the inner product vanishes, namely \(v \cdot w = 0 \). The cross product \(\times : R^3 \times R^3 \Rightarrow R \) is defined as follows:

\[
(v_1, v_2, v_3) \times (w_1, w_2, w_3) = (v_2w_3 - v_3w_2, v_3w_1 - v_1w_3, v_1w_2 - v_2w_1).
\]

Definition 1. Let \(R \) be a commutative ring with unity. The vertex set \(V \) of the graph \(B(R) \) is

\[
V = (R^3 \setminus \{v | \exists r \in R, r \cdot v = 0 \}) / \sim
\]

where \(v \sim w \) if and only if there exists \(k \in R^* \) such that \(k \cdot v = w \). The two vertices \([v] \) and \([w] \) are adjacent if and only if \(v \cdot w = 0 \).

The definition of adjacency above is well-defined because the orthogonality does not depend on the selection of representatives. We call the above construction of a graph from a ring a generalized Brown’s construction. It is clear that the new construction coincides with Brown’s one when the ring \(R \) is a field.

Lemma 1. Let \(E \) be a Euclidean domain and \(u \) be a prime element in \(E \). If \(E/(u^k) \) is a finite ring, then the degree of each vertex of \(B(E/(u^k)) \) is \(\Delta \) or \(\Delta - 1 \), where \((u^k)\) is the principal ideal generated by \(u^k \).

Proof. It is clear that the degrees of vertices represented by \((1, 0, 0), (0, 1, 0), (0, 0, 1) \) are the same. Let \(v = ([a], [b], [c]) \) be a representative of any vertex where \(a, b, c \in E \). If any element of \([a], [b], [c] \) is not invertible in \(E/(u^k) \), there exist natural numbers \(1 \leq l, m, n < k \) and some elements \(a', b', c' \in E \) such that \(a = u^la', b = u^mb', c = u^nc' \). \(v \) is not a representative of vertices because the equation \([u^{\min(l, m, n)}] \cdot v = ([0], [0], [0]) \) holds. This is a contradiction. Therefore, at least one of \([a], [b], [c] \) is invertible. If \([a] \) is invertible, there exists one-to-one correspondence \(\overline{U} : N([1, 0, 0]) \to N([v]) \) such that for all \([w] \in N([1, 0, 0]) \),
$U(w) = [U^{-1}w]$ where U is an invertible matrix defined as follows

$$U = \begin{pmatrix} a & 0 & 0 \\ b & 1 & 0 \\ c & 0 & 1 \end{pmatrix}$$

If $v \cdot v = 0$, then $\delta([w]) = \delta([(1, 0, 0)]) - 1$. If not so, $\delta([w]) = \delta([(1, 0, 0)])$. In the same way, if $[b]/[c]$ is invertible, then $\delta([w]) = \delta([(0, 1, 0)])/\delta([(0, 0, 1)])$ or $\delta([(1, 0, 0)])/\delta([(0, 0, 1)]) - 1$. Therefore, for all the vertex $[w]$,

$$\delta([w]) = \begin{cases} \delta([(1, 0, 0)]) & (v \cdot v \neq 0) \\ \delta([(1, 0, 0)]) - 1 & \text{(otherwise)} \end{cases}$$

\[\square\]

Lemma 2. Let E be a Euclidean domain and I be an ideal of E. The diameter of $B(E/I)$ is 2.

Proof. For any two distinct vertices represented by $v = ([v_1], [v_2], [v_3])$ and $w = ([w_1], [w_2], [w_3])$, consider the cross product $v \times w$. If $v \times w = 0$, then $[v_i] \cdot w = [v_i] \cdot v$ for $i = 1, 2, 3$. There exists $e \in E$ such that $I = (e)$ because any Euclidean domain is a principal ideal domain. If $gcd(v_1, v_2, v_3, e)$ is not a unity, where gcd is a greatest common divisor, there exists $e' \neq 1$ in E such that $e = de'$. v is not a representative because $[e'] \cdot v = 0$. This is a contradiction. Therefore d is a unity, namely v_1 and v_2, v_3, e are coprime. Then there exist $a, b, c, d \in E$ such that $av_1 + bv_2 + cv_3 + de = 1$ in E. Seeing this formula in E/I, we get $[a][v_1] + [b][v_2] + [c][v_3] = [1]$. $v = [1] \cdot v = ([a][v_1] + [b][v_2] + [c][v_3])v = ([a][v_1] + [b][v_2] + [c][v_3])w$ means $[v] = [w]$, which is a contradiction to that two vertices are distinct, then $v \times w \neq 0$. If $v \times w$ is a representative of vertex, $[v \times w]$ is adjacent to $[v]$ and $[w]$. If $v \times w = ([k_1], [k_2], [k_3])$ is not a representative of vertex, $v \times w = [gcd(k_1, k_2, k_3)] \cdot u$ and u is a representative of vertex $[u]$ is adjacent to $[v]$ and $[w]$. \square

Theorem. The following equations hold.

1. $|B(Z_{pk})| = p^{2k} + p^{2k-1} + p^{2k-2}$
2. $\Delta(B(Z_{pk})) = p^k + p^{k-1}$
3. $D(Z_{pk}) = 2$

Proof. It is straightforward to show the formula of the order of $B(Z_{pk})$.

$$|B(Z_{pk})| = \frac{|Z_{pk}|^3 - |\{mp | 0 \leq m < p^{k-1}\}|^3}{|Z_{pk}| - |\{mp | 0 \leq m < p^{k-1}\}|}$$

$$= \frac{(p^k)^3 - (p^{k-1})^3}{p^{k} - p^{k-1}} = p^{2k} + p^{2k-1} + p^{2k-2}$$
Using Lemma 1, it is only enough to show that the degree of the vertex represented by \((1,0,0)\) satisfy the formula of the degree of \(B(\mathbb{Z}_p^k)\).

\[
\Delta(B(\mathbb{Z}_p^k)) = \delta([(1,0,0)]) = \frac{|\mathbb{Z}_p^k|^2 - |\{mp|0 \leq m < k\}|^2}{|\mathbb{Z}_p^k| - |\{mp|0 \leq m < k\}|} = \frac{(p^k)^2 - (p^{k-1})^2}{p^k - p^{k-1}} = p^k + p^{k-1}
\]

Using Lemma 2 we get \(D(B(\mathbb{Z}_p^k)) = 2\)

We search new records of the degree/diameter problem among graphs by generalized Brown’s construction of \(\mathbb{Z}_n\) where \(2 \leq n \leq 10000\). Using the above theorem, \(B(\mathbb{Z}_{17}^2)\) has degree 306 and diameter 2 and 88723 vertices. It is a new record of \((306,2)\) of the degree/diameter problem because it cannot be obtained from ordinary Brown’s construction. The power of a prime less than 305 = 306 − 1 is 293\(^1\) and the graph \(B(\mathbb{Z}_{293})\) obtained from ordinary Brown’s construction of 293\(^1\) has 294 = 293 + 1 degree and 86143 = 293\(^2\) + 293 + 1 vertices. The old record of 306 = 294 + 12 is 86156 = 86143 + 12 obtained from \(B(\mathbb{Z}_{293})\) by duplicating vertices. In the same way, the graph obtained from \(B(\mathbb{Z}_{17}^2)\) by duplicating any one vertex, whose order is 88724, is a new record of \((307,2)\) because the power of a prime less than 306 = 307 − 1 is 293\(^1\).

Acknowledgements

We wish to thank Ryosuke Mizuno, Nobuhito Tamaki, Masahito Hasegawa, Shin-ya Katsumata, and Sakie Suzuki.

References

[1] William G Brown. On graphs that do not contain a thomsen graph. *Canad. Math. Bull.*, 9(2):1–2, 1966.

[2] Paul Erdős, Siemion Fajtlowicz, and Alan J. Hoffman. Maximum degree in graphs of diameter 2. *Networks*, 10(1):87–90, 1980.

[3] M. Miller and J. Širáň. Moore graphs and beyond: a survey of the degree/diameter problem. *The Electronic Journal of Combinatorics*, (DS14), 2005.