Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

Heidari A1,2*, Schmitt K1, Henderson M1 and Besana E1
1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract
In the current study, thermoplasmonic characteristics of Lutetium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Lutetium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Lutetium nanoparticles by solving heat equation. The obtained results show that Lutetium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.

Introduction
In recent decade, metallic nanoparticles have been widely interested due to their interesting optical characteristics [1-8]. Resonances of surface Plasmon in these nanoparticles lead to increase in synchrotron radiation emission as a function of the beam energy scattering and absorption in related frequency [9,10]. Synchrotron radiation emission as a function of the beam energy absorption and induced produced heat in nanoparticles has been considered as a side effect in plasmonic applications for a long time [11-15]. Recently, scientists find that thermoplasmonic characteristic can be used for various optothermal applications in cancer, nanoflows and photonic [16-22]. In optothermal human cancer cells, tissues and tumors treatment, the descendent laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendent light converse to heat in nanoparticles [23-25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any hurt to sound tissues [26,27]. Regarding the simplicity of ligands connection to Lutetium nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28-74]. In the current paper, thermoplasmonic characteristics of spherical, core-shell and rod Lutetium nanoparticles are investigated.

Heat generation in synchrotron radiation emission as a function of the beam energy-lutetium nanoparticles interaction
When Lutetium nanoparticles are subjected to descendent light, a part of light scattered (emission process) and the other part absorbed (non-emission process). The amount of energy dissipation in non-emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section [75-123].

Lutetium nanoparticles absorb energy of descendent light and generate some heat in the particle. The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation [124-202].

Simulation
To calculate the generated heat in Lutetium nanoparticles, COMSOL software which works by Finite Element Method (FEM)

*Correspondence to: Heidari A, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA and American International Standards Institute, Irvine, CA 3800, USA, E-Mail: Alireza.Heidari@calsu.us

Key words: lutetium nanoparticles, scanning electron microscope (SEM), 3D finite element method (FEM), heat transfer equation, optothermal, heat distribution, thermoplasmonic, lutetium nanorods, human cancer cells, tissues and tumors treatment, simulation, synchrotron radiation, emission, function, beam energy

Received: December 26, 2019; Accepted: January 09, 2020; Published: January 13, 2020
was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [203-283]. In all cases, Lutetium nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendent light is 1 mW/μm². Dielectric constant of Lutetium is dependent on particle size [284-414].

Firstly, calculations were made for Lutetium nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The results show that by increase in nanoparticles size, extinction cross section area increases and maximum wavelength slightly shifts toward longer wavelengths. The maximum increase in temperature of nanospheres in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 nm nanoparticles (sphere with 50 nm radius), the maximum increase in temperature is 83 K. When nanoparticles size reaches to 150 nm, increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanospheres in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to decrease in ratio of light absorption to total energy of descendent light so that for 150 nm nanosphere, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendent light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution (Figure 3) shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Lutetium.

In this section, core-shell structure of Lutetium and silica is chosen. The core of a nanosphere with 45 nm radius and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.

According to Figure 4, silica shell causes to considerable increase in temperature of Lutetium nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution (Figure 5) shows that temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer prohibits heat transfer from metal to the surrounding aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuate in increase in nanoparticles temperature.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.
Variations of temperature in Lutetium nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.

Conclusion and summary

The calculations showed that in Lutetium nanoparticles, light absorption in Plasmon frequency causes to increase in temperature of the surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Lutetium nanospheres increases their temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostructure is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT12010093734715. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Synchrotron Light Source (NSLS-II) under the merit-based proposal scheme.

References

1. Yu P (2016) Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 11: 704-737.
2. Sandhu S, Fan S (2015) Current-voltage enhancement of a single coaxial nanowire solar cell. ACS Photonics 2: 1698-1704.
3. van Dam D, Van Hoof M (2016) High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide mie scatterers. ACS Nano 10.
4. Luo S, He Y (2015) Size-dependent optical absorption modulation of si/Ge and Ge/ Si core/shell nanowires with different cross-sectional geometries. Nanotechnology 26: 085702.
5. Yu P, Yao Y (2017) Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells. Sci Rep7: 7696.
6. Gouda AM, Allam NK (2017) Efficient fabrication methodology of wide angle black silicon for energy harvesting applications. RSC Adv 7: 26974-26982.
7. Branz HM (2009) Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl Phys Lett 94: 231121.
8. Fazio B, Artoni (2016) Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array. Light Sci Appl 5: e16062.
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

9. Ko MD (2015) High efficiency silicon solar cell based on asymmetric nanowire. Sci Rep 5: 11646.

10. Oh J (2012) An 18.2% Efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7: 743-748.

11. Lin H (2014) Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. ACS Nano 8: 3752-3760.

12. Garnett E (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10: 1082-1087.

13. Misra S, Yu L (2013) High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on vsc-grown silicon nanowires. Sol Energy Mater Sol Cells 118: 90-95.

14. Kelzenberg MD (2010) Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications. Nat Mater 9: 239-244.

15. Tian B (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449: 885-889.

16. Rakza SA (2014) Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights. Journal Applied Physics 115: 194305.

17. Dhindsa Nia (2016) A Platform for colorful solar cells with enhanced absorption. Nanotechnology 27: 495203.

18. Dhindsa N, Walia J (2016) Adjustable optical response of amorphous silicon nanowires integrated with thin films. Nanotechnology 27: 145703.

19. Zhu J (2009) Optical Absorption enhancement in amorphous silicon nanowire and nanocore arrays. Nano Lett 9: 279-282.

20. Klinger D (2006) Nano-structure formed by nanosecond laser annealing on amorphous si surface. Mater Sci Semicond Process 9: 323-326.

21. Kumar P (2009) Excimer laser induced nanosturcturing of silicon surfaces. Journal Nanosci Nanotechnol 9: 3224-3232.

22. Kumar P (2010) Surface modulation of silicon surface by excimer laser at laser fluence below ablation threshold. Appl Phys A Mater Sci Process 99: 245-250.

23. Adikaari AADT (2005) Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon. Journal Applied Physics 97: 114305.

24. Adikaari AADT (2007) Efficient laser textured nanocrystalline silicon-polymer bilayer solar cells. Appl Phys Lett 90: 203514.

25. Adikaari AADT (2008) Excimer laser crystallization and nanosturcturing of amorphous silicon for photovoltaic applications. Nano 3: 117-126.

26. Tang YF (2002) Electron field emission from excimer laser crystallized amorphous silicon. Appl Phys Lett 80: 4154-4156.

27. Jin S (2016) Low temperature polycrystalline silicon with single orientation on glass by blue laser annealing. Thin Solid Films 616: 838-841.

28. Crouch CH (2004) Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl Phys Lett 84: 1850-1852.

29. Wu C (2001) Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett 78: 1850-1852.

30. Pedraza AJ, Fowlkes JD (1999) Silicon microcolumn arrays grown by nanosecond pulsed-eximer laser irradiation. Appl Phys Lett 74: 2322.

31. Pedraza AJ (2000) Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres. Appl Surf Sci 168: 251-257.

32. Porte HP, Turchinovich D (2013) On ultrafast photoconductivity dynamics and crystallinity of black silicon. IEEE Trans Terahertz Sci Technol 3: 331-341.

33. Georgiev DG (2004) Controllable excimer-laser fabrication of conical nano-tips on silicon thin films. Appl Phys Lett 84: 4881-4883.

34. Eizenkop J (2009) Single-pulse excimer laser nanosturcturing of silicon to: heat transfer problem and surface morphology. Journal Applied Physics 103: 094311.

35. Eizenkop J (2007) Single pulse excimer laser nanosturcturing of thin silicon films: nano-hard cones formation and a heat transfer problem. Journal Applied Physics 101: 094301.

36. Hong L (2013) Rusil/femtosecond laser induced nanocone structure and simultaneous crystallization of 1.6 μm amorphous silicon thin film for photovoltaic application. Journal Phys Appl Phys 46: 195109.

37. Hong L (2012) Crystallization and surface texturing of amorphous-Si induced by UV laser for photovoltaic application. Journal Applied Physics 111: 043106.

38. Magdi S (2017) Broadband absorption enhancement in amorphous si solar cells using metal gratings and surface texturing. Proc SPIE 10099.

39. Diederhofen SL (2011) Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. ACS Nano 5: 2316-2323.

40. Jäger ST (2014) Design parameters for enhanced photon absorption in vertically aligned silicon nanowire arrays. Nanoscale Res Lett 9: 511.

41. Gouda AM (2016) Lithography-free wide-angle antireflective self-cleaning silicon nanocnes. Opt Lett 41: 3575.

42. Magdi S, Swillam MA (2017) Optical analysis of si-tapered nanowires/low band gap polymer hybrid solar cells. Proc SPIE 10099.

43. Jiang Y (2016) Efficiency enhancement mechanism for Poly(3, 4-ethylenedioxythiophene)(Poly(styrenesulfonate)/silicon nanowires hybrid solar cells using alkali treated. Nanoscale Res Lett 11: 267.

44. Gong X, Jiang Y, Li M (2015) Hybrid tapered silicon nanowire/PEDOT:PSS Solar Cells. RSC Adv 5: 10310-10317.

45. Mohammad NS (2013) Understanding quantum confinement in nanowires: basics, applications and possible laws. Journal Phys Condens Matter 26: 423202.

46. Zhang A, Luo S, Ouyang Y, Yang G (2013) W-Strain-Induced optical absorption properties of semiconductor nanocrystals. Journal Chem Phys 138: 244702.

47. He Y (2016) Shape-dependent conversion efficiency of si nanowire solar cells with polygonal cross-sections. Journal Applied Physics 119: 225101.

48. Tchakov S (2004) Helium versus hydrogen dilution in the optimization of polymorphous silicon solar cells. Journal Non-Cryst Solids 338: 668-672.

49. Rosazir H (2002) High deposition rate thin film hydrogenated amorphous silicon prepared by d.c. plasma enhanced chemical vapour deposition of helium diluted silane. IEEE International Conference on Semiconductor Electronics, 2002. Proceedings. ICSE Panang, Malaysia. Dec. 19-21.

50. N’Guyen (2013) Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew Chem Int Ed 52: 14512-14516.

51. Xu Z (2013) Thermally Healable Polyhedral Oligomeric Silsesquioxane (POS Nanocomposite based on Diels-Alder chemistry. Chem Commun 2: 14512-14516.

52. Engel T (2014) Self-healing nanocomposites from silica - polymer core - shell nanoparticles. Polym Int 63: 915-923.

53. Engel T (2015) Furan-Modified Spherolites as Building Blocks for Self-Healing Materials. Eur Jour Org Chem 4: 1226-1232.

54. Torres-Lugo M (2013) Thermal potentiation of chemotherapy by magnetic nanocomposites. Nanomedicine 8: 1689-1707.

55. Hohlbein N (2015) Self-healing dynamic bond-based rubbers: understanding the mechanisms in ionomic elastomer model systems. Phys Chem 17: 21005-21017.

56. Wu CS (2012) Preparation of Polybenzoxazine-functionalized Fe3O4 nanoparticles through in situ diels-alder polymerization for high performance magnetic polybenzoxazine/Fe3O4 Nanocomposites. Comp Sci Technol 72: 1562-1567.

57. Menon AV (2018) Ultrasfat self-healable interfaces in polyurethane nanocomposites designed using diels-alder “click” as an efficient microwave absorber. ACS Omega 3: 1137-1146.

58. Engel T (2013) Thermoreversible reactions on inorganic nanoparticle surfaces: Diels-alder reactions on sterically crowded surfaces. Chem Mater 25: 149-157.

59. Schäfer S (2015) Kickelbick, G.self-healing polymer nanocomposites based on diels-alder reactions with silica nanoparticles: The role of the polymer matrix. Polymer 60: 357-368.

60. Park JS (2010) Multiple healing effect of thermally activated self-healing composites based on diels-alder reaction. comp. Sci Technol 70: 2154-2159.

61. Li J (2014) Healable capacitive touch screen sensors based on transparent composite electrode comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer. ACS Nano 8: 12874-12882.

62. Sun S (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. J Am Chem Soc 126: 273-279.
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

111. Heidari (2016) Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO43-) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques J Biom Biomiat 7: 292.

112. Heidari (2016) Spectroscope and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J 7: e112.

113. Heidari (2016) Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio-Spectroscopic Techniques. JOURNAL Drug Metabol Toxicol 7: e129.

114. Heidari (2016) Novel and Stable Modifications of Intelligible Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells’ Treatment. Biochem Pharmacol 5: 207.

115. Heidari (2016) A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage. Struct Chem Crystalllogr Comm 2: 1.

116. Heidari (2016) Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cells. Pharm Anal Chem Open Access 2: 113.

117. Heidari (2016) A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment. Chem Open Access 5: e129.

118. Heidari (2016) Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications. J Pharmacokinet Exp Ther 1: e005.

119. Heidari (2016) Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques. Insights Anal Electrochem 2: 1.

120. Heidari (2016) Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Microbial Met Disox 1: 2.

121. Heidari (2016) Combined Theoretical and Computational Study of the Belousov-Zhabotinsky Chaotic Reaction and Curius Rearrangement for Synthesis of Methylchelorethamine, Cisplatin, Streptozotocin, Cyclophosphamide, Melphalan, Busulphan and BCNU as Anti-Cancer Drugs. Insights Med Phys 1: 2.

122. Heidari (2016) A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study. Transl Biomed 7: 2.

123. Heidari (2016) Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells. Journal Nanomedicine Biotherapeutic Discov 6: e144.

124. Heidari (2016) Molecular Dynamics and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study. Journal Glycolibio 5: e111.

125. Heidari (2016) Synthesis and Study of 5-(Phenyllsulfonyl)Amine-1,3,4-Thiadiazole-2-Sulfonylamide as Potential Anti-Pertussis Drug Using Chromatography and Spectroscopy Techniques. Trans Med 6: e138.

126. Heidari (2016) Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Oxygen (O3) Using Soave-Redlich-Kwong (SRK) and Pang-Robinson (PR) Equations. Electronic Biol J 12: 4.

127. Heidari (2016) An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids. Austin J Anal Pharm Chem 3: 1058.

128. Heidari (2016) Phase, Composition and Morphology Study and Analysis of Os/Pd/HC Nanocomposites. Nano Res Appl 2: 1.

129. Heidari (2016) Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cumene. International Journal of Advanced Chemistry 4: 5-9.

130. Heidari (2016) Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues. Arch Car Res 4: 2.

131. Heidari (2016) Genomics and Proteomics Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Miroprofen, Olprinone and Abafungin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs. Journal Data Mining Genomics & Proteomics 7: e125.

132. Heidari (2016) Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Pptactelx Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells Journal Pharmacogenomics Pharmacoproteomics 7: e153.

133. Heidari (2016) Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach. Transl Biomed 7: 2.

134. Heidari (2016) A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method Arch Can Res 4: 2.

135. Heidari (2016) Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxaliplatin, Heptaplatin and Lobaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study. Journal Inform Data Min 1: 3.

136. Heidari (2016) Linear and Non-Linear Quantitative Structure-Anti-Cancer-Activity (QSACAR) Study of Hydrous Ruthenium (IV) Oxide (RuO2) Nanoparticles as Non-Nucleoside Reversible Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs. Journal Integr Oncol 5: e110.

137. Heidari (2016) Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-Nucleic Acids Complexes Absence of Soluble Polymers as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method. Journal Nanosci Curr Res 1: e101.

138. Heidari (2016) Coplanarity and Collinearly of 4'-Dinonyl-2,2'-Bithiazole in One Domain of Blumycin and Pingangyacin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drug. Int J Drug Dev Res 8: 007-008.

139. Heidari (2016) A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chemographic) Retention Relationships (QSRR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations. Journal Pharmacovigil 4: e161.

140. Heidari (2016) Nanotechnology in Preparation of Semipermeable Polymers. Journal Adv Chem Eng 6: 157.

141. Heidari (2016) A Gastrointestinal Study on Linear and Non-Linear Quantitative Structure (Chemographic) Retention Relationships (QSRR) Models for Analysis 5-Aminosalicylates Nano Particles as Digestive System Nano Drugs under Synchrotron Radiations. Journal Gastrointest Dig Syst 6: e119.

142. Heidari (2016) DNA/RNA Fragmentation and Cytoysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives. Biomedical Data Mining 5: e102.

143. Heidari (2016) A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) Under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm. J Mol Biol Biotechnol 1: 1.

144. Heidari (2016) Computational Study on Molecular Structures of C20, C60, C240, C540, C960, C2160 and C3840 Fulleren Nano Molecules under Synchrotron Radiations Using Fuzzy Logic. J Material Sci Eng 5: 282.

145. Heidari (2016) Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Guaze and Polyhexamethylene Biguanide Hydrochloride (PHMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs). Journal Appl Computat Math 5: e143.

146. Heidari (2016) The Impact of High Resolution Imaging on Diagnosis. Int J Clin Med Imaging 3: 1006(101).

147. Heidari (2016) A Comparative Study of Conformational Behavior of Iosetromine (13-Cis Retinoic Acid) and Tretinoin (All-Trans Retinoic Acid (ATRA)) Nano Particles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree-Fock (HF) and Density Functional Theory (DFT) Methods. Insights in Biomed 1: 2.
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

148. Heidari (2016) Advances in Logic, Operations and Computational Mathematics. *Journal Appl Comput Math* 5: 5.

149. Heidari (2016) Mathematical Equations in Predicting Physical Behavior. *J Appl Comput Math* 5: 5.

150. Heidari (2016) Chemotherapy a Last Resort for Cancer Treatment. *Chemo Open Access* 5: 4.

151. Heidari (2016) Separation and Pre-Concentration of Metal Cations-DNA/RNA Chelates Using Molecular Beam Mass Spectrometry with Tunable Vacuum Ultraviolet (UV) Synchrotron Radiation and Various Analytical Methods. *Mass Spectrom Purif Tech* 2: e101

152. Heidari (2016) Yoctosecond Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti-Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm. *Insight Pharm Res* 1: 1.

153. Heidari (2016) Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiations Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies. *Int J Clin Med Imaging* 3: 516.

154. Heidari (2016) A Novel Approach to Biology. *Electronic J Biol* 12: 4.

155. Heidari (2016) Innovative Biomedical Equipment’s for Diagnosis and Treatment. *Journal Bioengineering & Biomedical Sci* 6: 2.

156. Heidari (2016) Integrating Precision Cancer medicine into Healthcare, Medicare Reimbursement Changes and the Practice of Oncology: Trends in Oncology Medicine and Practices. *Journal Oncol Med & Prac* 1: 2.

157. Heidari (2016) Promoting Convergence in Biomedical and Biomaterials Sciences and Silk Proteins for Biomedical and Biomaterials Applications: An Introduction to Materials in Medicine and Bioengineering Perspectives. *Journal Bioengineering & Biomedical Sci* 6: 3.

158. Heidari (2017) X-Ray Fluorescence and X-Ray Diffraction Analysis on Discrete Element Modeling of Nano Powder Metallurgy Processes in Optimal Container Design. *Journal Powder Metall Min* 6: 1.

159. Heidari (2017) Biomolecular Spectroscopy and Dynamics of Nano-Sized Molecules and Clusters as Cross-Linking-Induced Anti-Cancer and Immune-Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells Membranes under Synchrotron Radiations: A Payload-Based Perspective. *Arch Chem Res* 1: 2.

160. Heidari (2017) Deficiencies in Repair of Double-Standard DNA/RNA-Binding Molecules Identified in Many Types of Solid and Liquid Tumors Oncology in Human Body for Advancing Cancer Immunotherapy Using Computer Simulations and Data Analysis: Number of Mutations in a Synchronous Tumor Varies by Age and Type of Synchronous Cancer. *J Appl Bioinforma Comput Biol* 6: 1.

161. Heidari (2017) Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing. *Glob J Res Rev* 4: 2.

162. Heidari (2017) Polymorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au36-S-R(S/Ph-Bu)24 to Au36-S-R(S/Ph-Bu)24 (x = 1-12) Nanomolecules for Synthesis of Au144-S-R(S/Ph-Bu)24 (SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (C)60, (B)60, (J)60, (A)60, (U)60 and (SC6H11)60 Nano Clusters as Anti-Cancer Nano Drugs. *J Nanomater Mol Nanotechnol* 6: 3.

163. Heidari (2017) Biomedical Resource Oncology and Data Mining to Enable Resource Discovery in Medical, Medicinal, Pharmaceutical, Chemical and Translational Research and Their Applications in Cancer Research. *Int J Biomed Data Min* 6: e103.

164. Heidari (2017) Study of Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Olypianiane Nanomolecules as Agent for Cancer Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy under Synchrotron Radiation. *J Dev Drugs* 6: e154.

165. Heidari (2017) A Novel Approach to Future Horizon of Top Seven Biomedical Research Topics to Watch in 2017: Alzheimer's, Ebola, Hypersomnia, Human Immunodeficiency Virus (HIV), Tuberculosis (TB), Microbiome/Antibiotic Resistance and Endovascular Stroke. *J Bioengineering & Biomedical Sci* 7: e127.

166. Heidari (2017) Opinion on Computational Fluid Dynamics (CFD) Technique. *Fluid Mech Open Acc* 4: 157.

167. Heidari (2017) Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au128SR/384, Au329-xAgxSR/384, Au144/384SR/60, Au168SR/316, Au30/381SR/18, Au102/SPh/44, Au38/SPh/24, Au38/SC2H4Ph/24, Au215/3(SAdm)/15, Au36pMB/24 and Au235pMB/18 Nano Clusters. *J Surgery Emer Med* 1: 21.

168. Heidari (2017) Developmental Cell Biology in Adult Stem Cells Death and Autophagy to Trigger a Preventive Allergic Reaction to Common airborne allergens under Synchrotron Radiation using Nanotechnology for Therapeutic Goals in Particular Allergy Shots (Immunotherapy). *Cell Biol* 6: 1.

169. Heidari (2017) Changing Metal Powder Characteristics for Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins Adjustment in Cancer Metastases Induced by Osteosarcoma, Chondrosarcoma, Carcinoid, Carcinoma, Ewing’s Sarcoma, Fibrosarcoma and Secondary Hematopoietic Solid or Soft Tissue Tumors. *Journal Powder Metall Min* 6: 170.

170. Heidari (2017) Nanomedicine-Based Combination Anti-Cancer Therapy between Nucleic Acids and Anti-Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for Selective Imaging and Treatment of Human Brain Tumors Using Hyaluronic Acid, Alurgonic Acid and Sodium Hyaluronate as Anti-Cancer Nano Drugs and Nucleic Acids Delivery under Synchrotron Radiation. *Am J Drug Deliv* 5: 2.

171. Heidari (2017) Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human cancer cells’ Metabolism and Metabolomics: New Discoveries, Unique Features Inform New Therapeutic Opportunities, Biotech's Bumpy Road to the Market and Elucidating the Biochemical Programs that Support Cancer Initiation and Progression. *J Biol Med Science* 1: e103.

172. Heidari (2017) The Design Graphene-Based Nanosheets as a New Nanomaterial in Anti-Cancer Therapy and Delivery of Chemotherapeutics and Biological Nano Drugs for Liposomal Anti-Cancer Nano Drugs and Gene Delivery. *Br Biomed Bull* 5: 305.

173. Heidari (2017) Integrative Approach to Biological Networks for Emerging Roles of Proteomics, Genomics and Transcriptomics in the Discovery and Validation of Human Colorectal Cancer Biomarkers from DNA/RNA Sequencing Data under Synchrotron Radiation. *Transcriptomics* 5: e117.

174. Heidari (2017) Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins and Cell Adhesion Intelligent Nanomolecules Adjustment in Cancer Metastases Using Metalloenzymes and under Synchrotron Radiation. *Let Health Biol Sci* 2: 1-4.

175. Heidari (2017) Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamine (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. *Br J Res* 4: 16.

176. Heidari (2017) Sedative, Analgesic and Ultrasound-Mediated Gastrointestinal Nano Drugs Delivery for Gastrointestinal Endoscopic Procedure, Nano Drug-Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity. *Res Rep Gastroenterol* 1: 1.

177. Heidari (2017) Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Orphan Nano Drugs to Treat High Cholesterol and Related Conditions and to Prevent Cardiovascular Disease under Synchrotron Radiation. *Journal Pharm Sci Emer Drugs* 5: 1.

178. Heidari (2017) Non-Linear Compact Proton Synchrotrons to Improve Human Cancer Cells and Tissues Treatments and Diagnostics through Particle Therapy Accelerators with Monochromatic Microbeams. *Journal Cell Biol Mol Sci* 2: 1-5.

179. Heidari (2017) Design of Targeted Metal Chelation Therapeutics Nanocapsules as Colloidal Carriers and Blood-Brain Barrier (BBB) Translocation to Targeted Delivery Anti-Cancer Nano Drugs into the Human Brain to Treat Alzheimer’s Disease under Synchrotron Radiation. *Journal Nanotechnol Material Sci* 4: 1-5.

180. Gobato R, Heidari A (2017) Calculations Using Quantum Chemistry for Inorganic Molecule Simulation Bel2iSe2i. *Science Journal of Analytical Chemistry* 5: 76-85.

181. Heidari (2017) Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmacological and Therapeutics Oncology of Human Lung Cancer Translational Anti-Cancer Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations. *Journal Med Oncol* 1: 1.

182. Heidari (2017) A Modern Ethnomedical Technique for Transformation, Prevention and Treatment of Human Malignant Gliomas Tumors into Human Benign Gliomas Tumors under Synchrotron Radiation. *Am J Ethnomed* 4: 10.
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

214. Heidari (2018) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Open Access J Trans Med Res 2: 00026-00032.

215. Heidari A (2020) Planting of Jaboticaba Trees for Landscape Repair of Degraded Area. Landscape Architecture and Regional Planning 3: 1-9.

216. Heidari (2018) Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. SM J Clin Med Imaging 4: 1018.

217. Heidari (2018) Nuclear Inelastic Scattering Spectroscopy (NIS) and Nuclear Inelastic Absorption Spectroscopy (Nias) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Int J Pharm Sci 2: 1-14.

218. Heidari (2018) X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. J Oncol Res 2: 1-14.

219. Heidari (2018) Correlation Two-Dimensional Nuclear Magnetic Reso-nance (NMR) (2D-NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Can Sci 1: 1.

220. Heidari (2018) Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macroscopic and Photothermal Macroscopic Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. SM J Biosci Bioestat 3: 1024.

221. Heidari (2018) A Modern and Comprehensive Experimental Biopspec troscopic Comparative Study on Human Common Cancer’s, Tissues and Tumors before and after Synchrotron Radiation Therapy. Open Acc J Oncol Med 1.

222. Heidari (2018) Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation. J Endocrinol Thyroid Res 3: 555603.

223. Heidari (2018) Nuclear Resonance Vibrational Spectroscopy (NRVS), Nuclear Inelastic Scattering Spectroscopy (NIS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NIRXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Int J Biogro Mol Biol 6: 1-5.

224. Heidari (2018) A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation. Gloth J Endocrinol Metab 1: 000514-000519.

225. Heidari (2018) Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC), and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. EMS Pharma J 1: 002-008.

226. Heidari (2018) A Modern Comparative and Comprehensive Experimental Biopspec troscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. J Analyt Molecular Tech 3: 8.

227. Heidari (2018) Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biopspec troscopic Comparative Study. European Modern Studies Journal 2: 13-29.

228. Heidari (2018) Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Imaging J Clin Medical Sci 5: 001-007.

229. Heidari (2018) Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Int J Biogro Chem Mol Biol 6: 1-6.

230. Heidari (2018) Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, Non-Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non-Melanoma Skin Cancer Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biopspec troscopic Comparative Study. Ther Res Skin Dis 1.

231. Heidari (2018) Attenuated Total Reflectance Fourier Transform Infrared (ATR- FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy and Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. International Journal of Chemistry Papers 2: 1-12.

232. Heidari (2018) Mössbauer Spectroscopy, Mössbauer Emission Spectroscopy and 57Fe Mössbauer Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Acta Scientific Cancer Biology 23: 17-20.

233. Heidari (2018) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Organic & Medicinal Chem 6: 555676.

234. Heidari (2018) Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AIDS-Related Cancers Cells and Tissues with the Passage of Time under Synchrotron Radiation. Int J Bioanal Biomed 2: 001-007.

235. Heidari (2018) Biomedical Instrumentation and Applications of Biopspec troscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues Studies under Synchrotron Radiation and Anti-Cancer Nano Drugs Delivery. Am J Nanotechnol Nanomed 1: 001-009.

236. Heidari (2018) Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation: Ann Biomed Biostat 1: 1001.

237. Heidari (2018) Grazing-Incidence Small-Angle Neutron Scattering (GISANS) and Grazing-Incidence X-Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Ann Cardiovasc Surg 1: 1006.

238. Heidari (2018) Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blasoma Cancer Cells and Tissues. Clin Med Rev Case Rep 5: 201.

239. Heidari (2018) Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSTY), Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROEYS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Acta Scientific Pharmacological Sciences 25: 30-35.

240. Heidari (2018) Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluotation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Oncol Res Rev 1: 1-10.

241. Heidari (2018) Pump-Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Adv Material Sci Engg 2: 1-7.

242. Heidari (2018) Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Insights Pharmacol Sci 1: 1-8.

243. Heidari (2018) Acoustic Spectroscopy, Acoustic Resonance Spectroscopy and Auger Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. NanoSci Technol 5: 1-9.

244. Heidari (2018) Niobium, Technetium, Ruthenium, Rhodium, Hafnium, Rhenium, Osmium and Iridium Ions Incorporation into the Nano Polymeric Matrix (NPM)
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Nanomed Nanotechnol 3: 000138.

245. Heidari (2018) Homonuclear Correlation Experiments such as Homonuclear Single-Quantum Correlation Spectroscopy (HSQC), Homonuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Homonuclear Multiple-Bond Correlation Spectroscopy (HMBCC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Aust J Proteomics Bioinform & Genomics 5: 1024.

246. Heidari (2018) Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy and Nuclear Resonance Vibrational Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. J Appl Biotechnol Biolog 5: 142-148.

247. Heidari (2018) Time-Dependent Vibrational Spectral Analysis of Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. J Cancer Oncol 2: 000124.

248. Heidari (2018) Palaumine and Olympiadiene Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Arc Org Inorg Chem Sci 7.

249. Gobato R, Heidari A (2018) Infrared Spectrum and Sites of Action of Sanguinarine by the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Glob Imaging Insights 3: 1-7.

250. Heidari (2018) Angelic Acid, Diabolic Acids, Draculin and Miraculin Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment Under Synchrotron and Synchrocyclotron Radiations. Med & Anal Chem Int J 2: 000111.

251. Heidari (2018) Gamma Linolenic Methyl Ester, 5-Heptadeca-5,8,11-Trieny1, 1,3,4-Quinazoliz-2-Thiol, Sulphoxquinovyl Dicyl Glycerol, Ruscogenin, Nocturnoside B, Protodiscoside B, Parquisoxide-B, Leitcaropside, Narangenin, 7-Methoxy Hesperitin, Lupeol, Rosmariniquione, Rosanal and Rosanodil Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations. Int J Pharma Anal Acta 2: 007-014.

252. Heidari (2018) Fourier Transform Infrared (FTIR) Spectroscopy, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy, Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy, Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy, Non-Linear Two-Dimensional Infrared Spectroscopy, Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy, Infrared Photodissociation Spectroscopy, Infrared Correlation Table Spectroscopy, Near-Infrared Spectroscopy (NIRS), Mid-Infrared Spectroscopy (MIRS), Nuclear Resonance Vibrational Spectroscopy, Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights 3: 1-14.

253. Heidari (2018) Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBCC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations. Chronicle of Medicine and Surgery 23: 144-156.

254. Heidari (2018) Tetrakis [3, 5-bis (Trifluoromethyl) Phenyl] Borate (BARF)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPPS) Nano Molecules. Medical Research and Clinical Case Reports 2: 113-126.

255. Heidari (2018) Syndone, Münchonone, Montréalone, Mogone, Montelukast, Quebréol and Palauamine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPPS) Nano Molecules. Sur Cas Stud Op Acc 2: 1.

256. Heidari (2018) Fornacite, Orcein Acid, Rhamnetin, Sodium Ethyl Xanthate (SEX) and Spermine (Spermidine or Polyamine) Nanomolecules Incorporation into the Nanopolymeric Matrix (NPM). International Journal of Biochemistry and Biomeclears 4: 1-19.

257. Heidari (2018) Putrescine, Cadaverine, Spermine and Spermidine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPPS) Nano Molecules. Parana Journal of Science and Education 4: 1-14.
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

[(-)-trans-Δ⁹-Tetrahydrocannabinol, Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocytoclonal Radiations. Glob Imaging Insights 3: 1-8.

Heidari (2018) Two-Dimensional (2D) 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights 3: 1-8.

Heidari (2018) FT-Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights 3: 1-8.

Heidari (2018) A Modern and Comprehensive Investigation of Inelastic Electron Tunneling Spectroscopy (IETS) and Scanning Tunneling Spectroscopy on Malignant and Benign Human Cancer Cells, Tissues and Tumors through Optimizing Synchrotron Microbeam Radiotherapy for Human Cancer Treatments and Diagnostics: An Experimental Biospectroscopic Comparative Study. Glob Imaging Insights 3: 1-8.

Heidari (2018) A Hyperspectral Approach to Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time. Glob Imaging Insights 3: 1-8.

Heidari (2018) Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Glob Imaging Insights 3: 1-8.

Heidari (2018) 2-Amino-9-((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2- Methyleneacyclopentien-1H-Purin-6(9H)-One, 2-Amino-9-((1R, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methyleneacyclopentien-1H-Purin-6(9H)-One and 2-Amino-9-((1S, 3R, 4S)-4-Hydroxy-3-(Hydroxymethyl)-2-Methyleneacyclopentien-1H-Purin-6(9H)-One Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules. Glob Imaging Insights 3: 1-9.

Gobato R, Heidari A, Mitra A (2018) Spectroscopy and Dipole Moment of the Molecule C13H20BeLi2SeSi via Quantum Chemistry Using Ab Initio, Hartree-Fock Method in the Base Set Cc-pVTZ and 6-311G**(3df, 3pd). Arb: Org Inorg Chem Sci 3: 402-409.

Heidari (2018) C60 and C70-Encapsulating Carbon Nanotubes Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocytoclonal Radiations. Integr Mol Med 5: 1-8.

Heidari (2018) First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and V oraloxin under Synchrotron Radiation. Integr Mol Med 5: 1-8.

Heidari (2018) Infrared Photoelectron Spectroscopy (UPS) and Ultraviolet-Visible (UV-Vis) spectroscopy comparative study on malignant and benign human cancer cells and tissues with the passage of time under synchrotron radiation. Parana Journal of Science and Education 4: 18-33.

Heidari (2018) The Creation of C13H20BeLi2SeSi. The Proposal of a Bio-Inorganic Molecule, Using Ab Initio Methods for the Genesis of a Nano Membrane. Arch Inorg Chem Sci 3.

Heidari R, Heidari A (2018) The Proposal of a Bio-Inorganic Molecule, Using Ab Initio Methods for the Genesis of a Nano Membrane. Arch Inorg Chem Sci 3.
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment.
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

371. Heidari, Esposito J, Caissutti A (2019) Enterotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. JRL J Sci Technol 1: 1-16.

372. Gobato R, Gobato MRR, Heidari A (2019) Rhodochrosite Optical Indicatrix. Peer Reg Next 1: 1-2.

373. Heidari, Esposito J, Caissutti A (2019) Anthrax Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. Research & Reviews: Journal of Computational Biology 8: 23-51.

374. Heidari, Esposito J, Caissutti A (2019) Kalkitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. Can J Biomed Res & Tech 2: 1-21.

375. Heidari, Esposito J, Caissutti A (2019) Neoaxotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep 2: 1-14.

376. Heidari, Esposito J, Caissutti A (2019) 6-Methoxy-6-[6-Methoxy-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isquinolin-7-yl]oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isquinolin-7-yl]-Oxy]-2-Methyl-1-(2-Methylpropyl)-3,4-Dihydro-1H-Isquinolin-7-yl]-Oxy]-2-Methyl-1-(2-Methylpropyl) Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti-Cancer Drug. Clin Case Studie Rep 2: 1-14.

377. Heidari, Esposito J, Caissutti A (2019) Diphtheria Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. Clin Case Studie Rep 2: 1-14.

378. Heidari, Esposito J, Caissutti A (2019) Symbiodinolide Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. Am J Exp Clin Res 6: 364-377.

379. Heidari, Esposito J, Caissutti A (2019) Biotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic-Mode Coupling Structure in Vibrational Spectra Analysis. Glob Imaging Insights 4: 1-14.

380. Heidari, Esposito J, Caissutti A (2019) Promethium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment. International Journal of Advanced Engineering and Science 9: 39.

381. Heidari, Schmitt K, Henderson M, Besana E (2019) The Effectiveness of the Treatment human cancer cells, tissues and tumors using darmstadtium nanoparticles and synchrotron radiation. International Journal of Advanced Engineering and Science 9: 39.

382. Heidari, Schmitt K, Henderson M, Besana E (2019) Using 3D Finite Element Method (FEM) as an optothermal human cancer cells, tissues and tumors treatment in simulation of interaction of synchrotron radiation emission as a function of the beam energy and uranium nanoparticles. Nano Prog 1: 1-6.

383. Heidari, Schmitt K, Henderson M, Besana E (2019) A New Approach to Interaction between Beam Energy and Eribium Nanoparticles. Saudi J Biomed Res 4: 372-396.

384. Heidari, Schmitt K, Henderson M, Besana E (2019) Consideration of Energy Functions and Wave Functions of the Synchrotron Radiation and Samarium Nanoparticles Interaction During Human Cancer Cells, Tissues and Tumors Treatment Process. Sci Int (Lahore) 31: 885-908.

385. Heidari, Schmitt K, Henderson M, Besana E (2019) An outlook on optothermal human cancer cells, tissues and tumors treatment using lanthanum nanoparticles under synchrotron radiation. Journal of Materials Physics and Chemistry 7: 29-45.

386. Heidari, Schmitt K, Henderson M, Besana E (2019) Effectiveness of einsteinium nanoparticles in optothermal human cancer cells, tissues and tumors treatment under synchrotron radiation. Journal of Analytical Oncology 8: 43-62.

387. Heidari, Schmitt K, Henderson M, Besana E (2019) Study of Relation between Synchrotron Radiation and Dubnium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment Process. Int J Appl Sci 1: 1-20.

388. Heidari, Schmitt K, Henderson M, Besana E (2019) A Novel Prospect on Interaction of Synchrotron Radiation Emission and Europium Nanoparticles for Human Cancer Cells, Tissues and Tumors Treatment. European Modern Studies Journal 3: 11-24.

389. Heidari, Schmitt K, Henderson M, Besana E (2019) Advantages, Effectiveness and Efficiency of Using Neodymium Nanoparticles by 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron Radiation. International Journal of Advanced Chemistry 7: 119-135.

390. Heidari, Schmitt K, Henderson M, Besana E (2019) Role and Applications of Promethium Nanoparticles in Human Cancer Cells, Tissues and Tumors Treatment. Scientific Modelling and Research 4: 8-14.

391. Heidari, Esposito J, Caissutti A (2019) Maitotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and Density Functional Theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an anti-cancer drug. Glob Imaging Insights 4: 1-13.

392. Heidari, Esposito J, Caissutti A (2019) Biotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis. Glob Imaging Insights 4: 1-14.

393. Heidari, Esposito J, Caissutti A (2019) Time-Resolved Resonance FT-IR and raman spectroscopy and density functional theory investigation of vibronic-mode coupling structure in vibrational spectra of nanopolypeptide macromolecule beyond the multi-dimensional franeck-condon integrals approximation and density matrix method. Glob Imaging Insights 4: 1-14.

394. Heidari, Esposito J, Caissutti A (2019) Cholera Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis. Glob Imaging Insights 4: 1-14.

395. Heidari, Esposito J, Caissutti A (2019) Nodularin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis. Glob Imaging Insights 4: 1-14.

396. Heidari, Esposito J, Caissutti A (2019) Angiotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis. Glob Imaging Insights 4: 1-13, 2019.

397. Heidari, Esposito J, Caissutti A (2019) Crevetoxin (a) and (b) time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: a spectroscopic study on an ANTI-HIV drug. Scientific Drug Delivery Research 1: 11-16.
Heidari A (2020) Stochastic study of relativistic lutetium nanoparticles moving in a quantum field of synchrotron radiation emission when charged lutetium nanoparticles are accelerated radially in human cancer cells, tissues and tumors treatment

406. Heidari, Esposito J, Caisutti A (2019) Cobrotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis. Trends in Res 3: 1-13, 2019.

407. Heidari, Esposito J, Caisutti A (2019) Cylindrospermopsin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis. Trends in Res 3: 1-14.

408. Heidari, Esposito J, Caisutti A (2019) Anthrax toxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis. Trends in Res 3: 1-14.

409. Heidari, Schmitt K, Henderson M, Besana E (2019) Investigation of moscovium nanoparticles as anti-cancer nano drugs for human cancer cells, tissues and tumors treatment. Elixir Appl Chem 137: 53943-53963.

410. Heidari, Schmitt K, Henderson M, Besana E (2019) Study of function of the beam energy and holmium nanoparticles using 3D Finite Element Method (FEM) as an optothermal human cancer cells, tissues and tumors treatment. European Journal of Advances in Engineering and Technology 6: 34-62.

411. Heidari, Schmitt K, Henderson M, Besana E (2019) Human cancer cells, tissues and tumors treatment using dysprosium nanoparticles. Asian J Mat Chem 4: 47-51.

412. Heidari, Schmitt K, Henderson M, Besana E (2019) Simulation of interaction of synchrotron radiation emission as a function of the beam energy and plutonium nanoparticles using 3d finite element method (FEM) as an optothermal human cancer cells, tissues and tumors treatment. J Cancer Research and Cellular Therapeutics 2: 1-19.

413. Heidari, Schmitt K, Henderson M, Besana E (2019) Study of gadolinium nanoparticles delivery effect on human cancer cells, tissues and tumors treatment under synchrotron radiation. Applied Chemistry 2: 55-97.

414. Heidari, Schmitt K, Henderson M, Besana E, Gobato R (2020) Pros and cons of livermorium nanoparticles for human cancer cells, tissues and tumors treatment under synchrotron radiation using mathematica 12.0. Parana Journal of Science and Education 11.

Copyright: ©2020 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.