Detection of multiple mycotoxin occurrences in soy animal feed by traditional mycological identification combined with molecular species identification

A.C. Gutleba,*, F. Calonib, F. Girauda, C. Cortinovisb, F. Pizzob, L. Hoffmann, T. Bohna, M. Pasqualia

a Centre de Recherche Public-Gabriel Lippmann, Departement Environnement et Agrobiootechnologies – 41, rue du Brill, L-4422 Belvaux, Luxembourg

b Department of Health, Animal Science and Food Safety (VESPA) Universitá degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy

* Corresponding author. Centre de Recherche Public-Gabriel Lippmann, Departement Environnement et Agrobiootechnologies – 41, rue du Brill, L-4422 Belvaux, Luxembourg

E-mail address: gutleb@lippmann.lu (A.C. Gutleb)
Abstract

Soy products are a main component of animal feed. Because mycotoxins may harm farm animals, undermining productivity and health, a mycological and toxigenic screening was carried out on 36 batches sold for feed use, collected in 2008, 2009 and 2010 in Italy. The investigated mycoflora of a subset of soy seed (n=6) suggested that *Aspergillus* spp. and *Fusarium* spp. frequently colonize soy seeds. Aflatoxins, fumonisins and deoxynivalenol were detected in 88.9%, 72.2% and 30.6% of samples, respectively. Co-occurrence of at least two toxins was observed in 72% of cases. The molecular analysis of the *Fusarium* spp. population identified *Fusarium verticillioides* as potential producers of fumonisins, but no known deoxynivalenol producers were detected. It is suggested that the widespread presence of toxins can be due to non-optimal storing conditions of the feed. Moreover, our results suggest that mycotoxin thresholds should be adapted to consider the frequent case of toxin co-occurrence. This approach would better reflect the real toxigenic risk of feedstuffs.

Keywords: fumonisin, *Fusarium verticillioides*, aflatoxin, deoxynivalenol, toxin co-occurrence, animal health
1. Introduction

Mycotoxins are secondary metabolites produced by several fungi mainly belonging to the genera *Fusarium*, *Aspergillus* and *Penicillium*. Their global occurrence is considered to be a major risk factor, affecting human and animal health. It is estimated that up to 25% of the world’s crop production is contaminated to some extent by mycotoxins (Diekman and Green, 1992; Fink-Gremmels and Georgiou, 1996; D’Mello et al., 1999; Placinta et al., 1999; Larsen et al., 2004; Schollenberger et al., 2007). Mycotoxin contamination may occur in the field before harvest, during harvesting, or during storage and processing. Environmental factors such as substrate composition, humidity and temperature govern the mycotoxin production and thus the degree of contamination of feed and food commodities. According to their various chemical structure, mycotoxins have a wide spectrum of toxicological effects. The nature and intensity of these effects is related to the dose and duration of exposure (Fink-Gremmels, 1999). A major concern is chronic low-dose contamination that may even remain undetected, but may result in reduced weight gain, reduced reproduction and increased susceptibility to infections (Kuiper-Goodman, 1995).

A large number of predominant mycotoxins are produced by the *Fusarium* fungi, probably constituting the most prevalent toxin-producing fungi found on cereals in the northern temperate regions of Europe, America and Asia (Creppy, 2002). There is compelling evidence for the implication of fusariotoxins in livestock disorders in different parts of the world. Outbreaks of fusariotoxicoses have been reported for Europe, Asia, New Zealand and South America. Moreover, chronic intake of these mycotoxins is
reported on a regular and more widespread basis due to continuing global contamination of cereal grains and animal feed (D'Mello et al., 1999).

The most important fusariotoxins with respect to animal health and productivity are deoxynivalenol (DON) and fumonisins (FBs) (Placinta et al., 1999). Co-occurrence of *Fusarium* mycotoxins (Cote et al., 1985) has also become an important issue, with complex and indeterminate implications on animal health and welfare (Placinta et al., 1999).

Exposure to these mycotoxins has been positively linked with a number of specific syndromes in farm livestock (Caloni and Cortinovis, 2010). In spite of enhanced awareness of the debilitating effects of these mycotoxins and chronic exposure of farm animals to DON, the risk of exposure to fusariotoxins has not diminished in the past years, presenting a continuous hazard in continental Europe, Canada and the USA (D'Mello et al., 1999).

DON, also known as vomitoxin due to its emetic effects in pigs, is produced principally by *Fusarium graminearum* and *Fusarium culmorum* and is considered to be a major cause of economic losses due to reduced growth performance. DON exposure is generally associated with feed refusal, depressed feed intake, and possibly impaired immune function in many animal species (Morgavi and Riley, 2007). The European Commission (EC) has published guidance levels for DON in products intended for animal feed. These guidance values for DON are 8 mg kg\(^{-1}\) in cereals and cereal products, 12 mg kg\(^{-1}\) in maize by-products and 5 mg kg\(^{-1}\) in complementary and complete feeding stuffs with the exception of feeding stuffs for pigs (0.9 mg kg\(^{-1}\)), calves (<4 months) and lambs (2 mg kg\(^{-1}\)) (EC, 2006).
FBs are a group of mycotoxins produced primarily by *Fusarium verticillioides* and *Fusarium polferatum*. The known forms are FB1, FB2 and FB3, of which in particular FB1 is considered the most common and harmful (Chaytor et al., 2011a). FBs are likely involved in the incidence of many diseases such as leukoencephalomalacia in horses and lung edema in pigs, and they are also suspected to be a cause of esophageal tumors in certain human populations (Richard, 2007; Caloni and Cortinovis, 2010).

Regulatory authorities have established guidance levels for FBs (total including FB1, FB2 and FB3) in animal feed. These guidance values, concerning complementary and complete feeding stuffs, are 5 mg kg\(^{-1}\) for horses, rabbit, pigs and pet animals, 10 mg kg\(^{-1}\) for fish, 20 mg kg\(^{-1}\) for poultry, calves (<4 months) and lambs and 50 mg kg\(^{-1}\) for adult ruminants (>4 months) and mink (EC, 2006).

Animal exposure to a mixture of several mycotoxins from commercial feed, derived not only from *Fusarium* but also from *Aspergillus*, has been reported (Binder et al., 2007). However, the occurrence of single-mycotoxin contamination seems to be rare (Bracarense et al., 2011). Generally, data on possible interactions between mycotoxins upon ingestion are poor and often outdated. In the gastrointestinal tract of piglets for example, four different interactions at different levels of the intestine were reported for the combined effects of DON and FB1: synergistic, additive, less-than-additive and antagonistic effects (Bracarense et al., 2011). An experimental interaction between aflatoxins (AFs) and DON was reported in broiler chickens, and additive toxicity was demonstrated on broiler performance and health (Huff et al., 1986).

AFs, a group of mycotoxins able to infect a wide range of crops, are produced by several different species of *Aspergillus*, including *A. flavus, A. parasiticus, A. nomius, A.*
pseudotamarii, A. flavus being the most common. Four different forms of AFs have been identified, including AFB₁, AFB₂, AFG₁, AFG₂ (Chaytor et al., 2011a). AFs cause liver injury in a wide variety of animal species, and may have effects on production aspects (eggs, milk and weight gains) and on the immune system. AFs are also carcinogenic, teratogenic and mutagenic, with AFB₁ being the most toxic (Richard, 2007). The limits of AFB₁ established by the European Community concerning complete feeding stuffs, are 20 µg kg⁻¹ for cattle, sheep and goats, 5 µg kg⁻¹ for dairy animals, 10 µg kg⁻¹ for calves and lambs and 20 µg kg⁻¹ for pigs and poultry (FAO, 2004).

The study of mycological composition of feed may help guiding the detection of toxins (Pasquali et al., 2010) despite the impossibility to predict the amount of toxins produced, given the fact that mycotoxin production is linked to different environmental factors such as climate (Schmidt-Heydt et al., 2011). Few studies have so far focused on the potential contamination of soy by multiple types of mycotoxins (Jajić et al., 2008). The aim of this work was to assess the mycotoxigenic risk of soy samples used for animal feed by a combined study of the mycological composition of soy samples and their toxin content with special attention to potential co-occurrence of fusariotoxins.

2. Material and Methods

2.1 Sampling and mycological analysis

Feed samples were obtained during 2008-2010 (Supplementary Tables 1). Fifty seeds were randomly selected, surface sterilized in 0.37% NaOCl (VWR Prolabo, Briar
France) and immersed in 0.1% ‘Tween 20’ (Acros New Jersey, USA) for 10 min before being dried on sterile filter paper in a laminar flow hood. In the case of soy flour, 10 g were used and mixed with 1, 10, or 100 ml of water. 1 ml of each dilution was then used for plating. From the original batch of isolates (Table 1), a liquid suspension of the soy seed or flour was plated on 20 potato dextrose agar (PDA) Petri dishes and left at 24 °C for up to 7 days. Colonies were screened according to their phenotype on PDA. Genus or order attribution was carried out according to standard taxonomic procedures as described by Nelson et al. (1994) for Fusarium spp., Frisvad and Samson (2007) for Penicillium spp., and Bennett (2010) for Aspergillus spp. The procedure of Fusarium selection carried out for the seed batches listed in Table 2 followed the protocol described by Giraud et al. (2010). After 6-12 days, Fusarium resembling colonies were transferred to PDA (Merck Darmstadt Germany) and incubated at 22 ± 2 °C for 6 days. Single colonies were then produced by washing off spores with sterile deionized distilled water and by serial dilutions on PDA plates. Spores produced were stored at -80 °C until further use.

2.2 Mycotoxin analysis

Mycotoxin content in the soy samples (Table 3) was determined by ELISA. Samples were analyzed for the presence of FBs, total AFs and DON using commercially available quantitative ELISA assay kits. The Fumonisin ELISA Assay (Helica Biosystems, Inc., Fullerton, California, USA) was used for detection of FBs. AF analysis was carried out using the MycoMonitor™ Total Aflatoxin Assay (Helica Biosystems). The measurement of DON was performed with the MycoMonitor™ Deoxynivalenol
Assay (Helica Biosystems). Mycotoxin extraction was achieved by mixing 20 g of the samples with 40 ml of 90% methanol (VWR International, Milan, Italy) for FBs, 100 ml of 70% methanol for AFs and 100 ml of deionized water from a Milli-Q system (Millipore, Bedford, MA, USA) for DON. The extract was then filtered through filter paper (Whatman No.1 - Whatman Inc., Clifton, NJ, USA) and the filtrate was used directly for AF ELISA analysis, while for FB and DON detection the filtrate was diluted with deionized water (1:20 and 1:10, respectively). The ELISA procedure was performed according to the manufacturer’s instructions. The optical density (OD) was measured at 450 nm by an ELISA reader (Labsystems Multiskan Plus, Labsystems, Helsinki, Finland). A calibration curve using OD values was constructed from five standard concentrations between 0.1-6 mg kg\(^{-1}\) for FBs, 1-20 µg kg\(^{-1}\) for AFs and 0.5-10 mg kg\(^{-1}\) for DON. The mycotoxin concentrations in the samples were measured by interpolation from the corresponding calibration curves.

2.3 Molecular analysis

Fungal cultures from specified seed lots (Table 2) were grown for 5 days in PDB (Sigma) and DNA was extracted according to the protocol described by Giraud et al. (2010). The identity of the strains isolated was confirmed by sequencing of the elongation factor 1α (EF-1α), using primers and PCR conditions as described by Dubos et al. (2011). The sequences were then blasted using both the Fusarium database (http://isolate.fusariumdb.org/blast.php) and the NCBI (National Center for Biotechnology Information) blast tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome), in order
to determine the species. Sequences of EF-1α were analyzed using the CLC main workbench 6.01 software (CLC BIO, Aarhus, DK).

3. Results

3.1 Fungal characterization

Morphological observations on PDA plates were carried out on an original batch of seed lots from 2008 (Table 1) in order to guide the potential search for dangerous toxins that are regulated at the European level. The identification on PDA plates of colonies resembling *Aspergillus* and *Fusarium* species suggested testing for AFs, DON and FBs. In addition, other potentially mycotoxigenic fungi were identified, such as *Penicillium* spp.

3.2 Mycotoxin contamination

FBs were detected in 30.6% of the samples with an average concentration of 0.4 mg kg⁻¹; the maximum level recorded was 2.5 mg kg⁻¹ (Table 3). AFs occurred in 88.9% of the samples at levels ranging from 0.8 to 5.9 µg kg⁻¹. The mean AF concentration in the positive samples was 3 µg kg⁻¹. DON was detected at concentrations of up to 6.4 mg kg⁻¹; 72.2% of the samples were positive for this mycotoxin. Co-occurrence of FBs, AFs and DON was found in 8.3% of the samples analyzed. The most frequent mycotoxin combination was FBs+DON (22.2%) followed by FBs+AFs (11%) (Fig. 1).

3.3 Molecular identification
To precisely determine which species of *Fusarium* were obtained from the isolation procedure on PDA, monoconidial strains were produced. The partial EF-1α sequences were obtained from the 19 *Fusarium* isolates obtained from 4 feed batches. Sequences were deposited at the NCBI gene bank with accession numbers as specified in Table 2. All the strains were classified as *Fusarium verticillioides*, member of the *Gibberella fujikuroi* species complex (O'Donnell et al. 1998). No *Fusarium* species known to be able to produce DON could be isolated. On the contrary, FBs producers (*Gibberella fujikuroi* species complex) were isolated.

4. Discussion

Soy material can be contaminated by various mycotoxins, but systematic investigations of toxigenicity in soy are lacking. Because soy is a widely used component of animal feeds, but also employed for human consumption, we explored the level of contamination of mycotoxins present in soy samples used for animal feed by combining mycotoxin measures and mycological determination of colonizing fungi. *Fusarium* species were reported to infect soybean (Broders et al., 2007; Harrington et al., 2000), and contamination of soy by fusariotoxins such as DON was shown in Brazil (Martinelli et al., 2004). In this work, it is suggested that species from the *Gibberella fujikuroi* complex are probably the main cause of FB accumulation. Surprisingly, no DON producers have been identified, despite our attempts of isolation. The results can be explained by the presence of unknown fungal strains able to produce DON that cannot be isolated with traditional methods or more likely by the presence of some chemicals that cross react in the ELISA test. Further studies are warranted to elucidate
which of the two hypothesis is closer to truth. The most frequently found toxin in soy was AF, which is produced by Aspergillus spp. Indeed a large set of isolates obtained from soy were classified as belonging to the latter genus. This result differs from a previous survey by Escobar and Reguero (2002) in Cuba who found less than 5% of the soybean contaminated by AFs. This may suggest that conditions used for storing soy products for animal feed in Italy are conductive of toxin synthesis and accumulation.

The overall levels of mycotoxin contamination observed were not extremely high, and all concentrations were below the EU guidance levels. Nonetheless, the co-occurrence of different toxins may be a cause of concern that requires further attention.

Soy contamination may have occurred in the storage facilities, because it was not possible to obtain isolates from the inside of the intact soy seeds. However, it was not possible nor the aim of this study to establish whether Fusarium contamination occurred in the field or during storage. This can indeed be the case, given the fact that, often, different cereals are stocked in the same location. The importance of correct storage of grains in order to diminish the risk of cross-contamination and toxin diffusion is fundamental to preserve healthy feed.

Combinations of AFs and DON were shown to be extremely toxic and to have an impact on feed intake (Chaytor et al., 2011b), therefore attention towards mycotoxin co-occurrence should be increased. To conclude, the work represents the first description of soy material used as animal feed contaminated by multiple mycotoxins. As reported for corn (Rocha et al., 2009) and other crops (Beg et al., 2006), co-occurrence of toxins produced by a diverse set of fungal species can be frequent. Soy material used for animal feed showed relatively low levels of contamination but large screening
campaigns for detecting the co-occurrence of mycotoxins that could enhance overall toxicity due to synergistic effects (Gutleb et al., 2002) are warranted.

Disclosure Statement
All authors disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the work submitted that could inappropriately influence their work.

References
Beg, M. U., Al-Mutairi, M., Beg, K. R., Al-Mazeedi, H. M., Ali, L. N., & Saeed, T. (2006). Mycotoxins in poultry feed in Kuwait. *Archives of Environmental Contamination and Toxicology*, 50, 594-602.

Bennett, J. W. (2010). An overview of the genus *Aspergillus*. In M. Machida, & K. Gomi (Eds.), *Aspergillus: Molecular Biology and Genomics* (pp. 4-37). Caister Academic Publisher, USA.

Binder, E. M., Tan, L. M., Chin, L. J., Handl, J., Richard, J. (2007). Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. *Animal Feed Science and Technology*, 137, 265-282.

Bracarense, A. P. F. L., Lucioli, J., Grenier, B., Drociunas Pacheco, G., Moll, W. D., Schatzmayr, G., & Oswald, I. P. (2011). Chronic ingestion of deoxynivalenol and
fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. *British Journal of Nutrition*, 22, 1-11.

Broders, K. D., Lipps, P. E., & Dorrance, A. E. (2007). Evaluation of *F. graminearum* as a seed and seedling pathogen of corn and soybean in Ohio. *Phytopathology*, 97(Suppl.), S159.

Caloni, F., & Cortinovis, C. (2010). Effects of fusariotoxins in the equine species. *Veterinary Journal*, 186, 157-161.

Chaytor, A. C., Hansen, J. A., van Heugten, E., See, M. T., & Kim, S. W. (2011a). Occurrence and decontamination of mycotoxins in swine feed. *Asian-Australasian Journal of Animal Sciences*, 5, 723-738.

Chaytor, A. C., See, M. T., Hansen, J. A., de Souza, A. L. P., Middleton, T. F., & Kim, S. W. (2011b). Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. *Journal of Animal Science*, 89, 124-135.

Cote, L. M., Beasley, V. R., Bratich, P. M., Swanson, S. P., Shivaprasad, H. L., & Buck, W. B. (1985). Sex-related reduced weight gains in growing swine fed diets containing deoxynivalenol. *Journal of Animal Science*, 61, 942-950.
Creppy, E. E. (2002). Update of survey, regulation and toxic effects of mycotoxins in Europe. *Toxicology Letters*, 127, 19-28.

Diekman, M. A., & Green, M. L. (1992). Mycotoxins and reproduction in domestic livestock. *Journal of Animal Science*, 70, 1615-1627.

D'Mello, J. P. F., Placinta, C. M., & MacDonald, A. M. C. (1999). *Fusarium* mycotoxins: a review of global implications for animal health, welfare and productivity. *Animal Feed Science and Technology*, 80, 183-205.

Dubos, T., Pasquali, M., Pogoda, F., Hoffmann, L., & Beyer, M. (2011). Evidence for natural resistance towards trifloxystrobin in *Fusarium graminearum*. *European Journal of Plant Pathology*, 130, 239–248.

Escobar, A., & Regueiro, O. S. (2002). Determination of Aflatoxin B1 in food and feedstuffs in Cuba (1990 through 1996) using an immunoenzymatic reagent kit (Aflacen). *Journal of Food Protection*, 65, 219-221.

European Commission (2006). Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding (2006/576/EC). *Official Journal of the European Union* L, 229, 7-9.
FAO (2004). Worldwide regulations for mycotoxins in food and feed in 2003. *Food and Nutrition Paper, 81*, 1-7.

Fink-Gremmels, J. (1999). Mycotoxins: their implications for human and animal health. *The Veterinary Quarterly, 21*, 115-120.

Fink-Gremmels, J., & Georgiou, N. A. (1996). Risk assessment of mycotoxins for the consumers. In G. Ennen, H. A. Kuiper, & A. Valentin (Eds.), *Residues of Veterinary Drugs and Mycotoxins in Animal Products* (pp. 159-174). Wageningen: NL-Wageningen Press.

Frisvad, J. C., & Samson, R. A. (2007). Polyphasic taxonomy of *Penicillium* subgenus *Penicillium*. A guide to identification of food and air-borne terverticillate *Penicillia* and their mycotoxins. *Studies in Mycology, 49*, 1-174.

Giraud, F., Pasquali, M., El Jarroudi, M., Vrancken, C., Brochet, C., Cocco, E., Hoffmann, L., Delfosse, P., & Bohn, T. (2010). *Fusarium* head blight and associated mycotoxin occurrence on winter wheat in Luxembourg in 2007/2008. *Food Additives and Contaminants Part A, 27*, 825-835.

Gutleb, A. C., Morrison, E., & Murk, A. J. (2002). Cytotoxicity assays for mycotoxins produced by *Fusarium* strains - a review. *Environmental Toxicology and Pharmacology, 11*, 307-318.
Harrington, T. C., Steimel, J., Workneh, F. & Yang, X. B. (2000). Molecular identification of fungi associated with vascular discoloration of soybean in the north central United States. *Plant Disease*, 84, 83-89.

Huff, W. E., Kubena, L. F., Harvey, R. B., Hagler, W. M. Jr., Swanson, S. W., Phillips, T. D., & Creger, C. R. (1986). Individual and combined effects of aflatoxin and deoxynivalenol (DON, vomitoxin) in broiler chickens. *Poultry Science*, 65, 1291-1298.

Jajić, I., Jurić, V., & Abramović. B. (2008). First survey of deoxynivalenol occurrence in crops in Serbia. *Food Control*, 19, 545-550.

Kuiper-Goodman, T. (1995). Mycotoxins: risk assessment and legislation. *Toxicology Letters*, 82-83, 853-859.

Larsen, J. C., Hunt, J., Perrin, I., & Ruckenbauer, P. (2004). Workshop on trichothecenes with a focus on DON: summary report. *Toxicology Letters*, 153, 1-22.

Martinelli, J. A., Bocchese, C. A. C., Xie, W., O'Donnell, K., & Kistler, H. C. (2004). Soybean pod blight and root rot caused by lineages of the *Fusarium graminearum* and the production of mycotoxins. *Fitopatologia Brasileira*, 29, 492-497.
Morgavi, D. P., & Riley, R. T. (2007). A historical overview of field disease outbreaks known or suspected to be caused by consumption of feeds contaminated with *Fusarium* toxins. *Animal Feed Science and Technology, 137*, 201-212.

Nelson, P. E., Dignani, M. C., & Anaissie, E. J. (1994). Taxonomy, biology, and clinical aspects of *Fusarium* species. *Clinical Microbiology Reviews, 7*, 479-504.

O'Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of the *Gibberella fujikuroi* species complex. *Mycologia, 90*, 465-493.

Pasquali, M., Giraud, F., Brochot, C., Cocco, E., Hoffmann, L., & Bohn, T. (2010). Genetic *Fusarium* chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. *International Journal of Food Microbiology, 137*, 246-253.

Placinta, C. M., D’Mello, C. P. F., & MacDonald, A. M. C. (1999). A review of worldwide contamination of cereal grains and animal feed with *Fusarium* mycotoxins. *Animal Feed Science and Technologies, 78*, 21-37.

Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses - An overview. *International Journal of Food Microbiology, 119*, 3-10.

Rocha, L. O., Nakai, V. K., Braghini, R., Reis, T. A., Kobashigawa, E., & Corrêa, B. (2009). Mycoflora and co-occurrence of fumonisins and aflatoxins in freshly harvested
corn in different regions of Brazil. *International Journal of Molecular Sciences*, 10, 5090-5103.

Schmidt-Heydt, M., Parra, R., Geisen, R., & Magan, N. (2011). Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two *Fusarium* species. *Journal of the Royal Society Interface*, 8, 117-126.

Schollenberger, M., Muller, H. M., Rufle, M., Terry-Jara, H., Suchy, S., Plank, S., & Drochner, W. (2007). Natural occurrence of *Fusarium* toxins in soy food marketed in Germany. *International Journal of Food Microbiology*, 113, 142-146.
Table 1.

Seed lot ID of soy feed samples obtained from Italy in 2008-2010, and number of strains obtained for each fungal group from 20 plates for each seed lot.

Seed lot ID	Black aspergilli	Other Aspergillus spp.	Fusarium spp.	Penicillium spp.	Microdochium spp.	Other fungi
S01	-	-	-	-	-	3
S02	-	5	-	3	-	-
S03	2	6	-	-	1	2
S04	-	-	-	-	-	-
S05	5	23	-	-	-	5
S06	3	2	6	1	-	-
Table 2.

Isolate ID, seed lot from where the strain was obtained, NCBI temporary deposited sequence number and species attribution.

Isolate ID	Seed lot	NCBI sequence number	Species
S06_1	S06	JQ354942	*Fusarium verticillioides*
S06_2	S06	JQ354947	*Fusarium verticillioides*
S06_3	S06	JQ354954	*Fusarium verticillioides*
S06_4	S06	JQ354943	*Fusarium verticillioides*
S06_5	S06	JQ354955	*Fusarium verticillioides*
S06_6	S06	JQ354949	*Fusarium verticillioides*
S07_1	S07	JQ354945	*Fusarium verticillioides*
S07_2	S07	JQ354958	*Fusarium verticillioides*
S07_3	S07	JQ354959	*Fusarium verticillioides*
S07_4	S07	JQ354950	*Fusarium verticillioides*
S08_1	S08	JQ354951	*Fusarium verticillioides*
S08_2	S08	JQ354944	*Fusarium verticillioides*
S08_3	S08	JQ354946	*Fusarium verticillioides*
S08_6	S08	JQ354952	*Fusarium verticillioides*
S09_1	S09	JQ354956	*Fusarium verticillioides*
S09_2	S09	JQ354960	*Fusarium verticillioides*
S09_3	S09	JQ354957	*Fusarium verticillioides*
S09_4	S09	JQ354948	*Fusarium verticillioides*
S09_5	S09	JQ354953	*Fusarium verticillioides*
Table 3.

Occurrence of fumonisins, aflatoxins and deoxynivalenol in 36 soy feed samples.

Mycotoxins	Positive samples (%)	Concentrations	
		average ± SD (mg kg⁻¹)	
		range (mg kg⁻¹)	
Fumonisins	30.6	0.40± 0.70	0.1 - 2.5
Aflatoxins	88.9	3.0·10⁻³± 1.36·10⁻³	0.8·10⁻³ - 5.9·10⁻³
Deoxynivalenol	72.2	2.60 ± 1.37	0.8 - 6.4
Supplementary Table 1

Soy feed samples, year of isolation and toxin levels as detected by ELISA in samples collected between 2008-2010 in Italy.

Seed lot ID	Date	Raw material	DON mg kg\(^{-1}\)	Fumonisins mg kg\(^{-1}\)	Aflatoxins µg kg\(^{-1}\)
S06\(^{a}\)	15/10/2008	Soyflour	2.1	ND\(^{b}\)	3.9
S07\(^{a}\)	30/10/2008	Soyflour	3.8	ND	ND
S08\(^{a}\)	13/11/2008	Soyflour	3.8	0.16	1.4
S09\(^{a}\)	04/12/2008	Soybean	2.7	2.5	0.8
S10	27/02/2009	Soybean	ND	0.2	1.4
S11	11/03/2009	Soybean	ND	ND	1.7
S12	11/03/2009	Soyflour	0.8	ND	5.8
S13	27/03/2009	Soyflour	3.1	ND	1.5
S14	22/04/2009	Soyflour	ND	0.2	1.5
S15	22/04/2009	Soybean	ND	ND	ND
S16	13/05/2009	Soyflour	ND	ND	3.9
S17	13/05/2009	Soyflour	2.7	ND	2.5
S18	27/05/2009	Soybean	1.1	ND	3.2
S19	12/06/2009	Soybean	ND	ND	3.5
S20	26/06/2009	Soyflour	3.6	ND	4.4
S21	25/09/2009	Soybean	ND	ND	ND
S22	25/09/2009	Soyflour	6.4	ND	3.7
S23	12/11/2009	Soybean	ND	ND	ND
S24	10/12/2009	Soybean	1.5	ND	4.6
S25	10/12/2009	Soybean	2.9	0.2	3.1
S26	14/01/2010	Soybean	ND	ND	2.9
S27	14/01/2010	Soyflour	2.6	ND	5.9
S28	14/01/2010	Soybean	2.8	0.1	3.1
S29	27/01/2010	Soybean	ND	ND	1.1
S30	16/02/2010	Soybean	2.1	0.1	2.9
S31	01/03/2010	Soybean	2.4	0.2	1.3
S32	11/03/2010	Soybean	1.6	ND	2.8
S33	29/03/2010	Soybean	2.8	ND	3.1
S34	29/03/2010	Soybean	4.0	0.5	3.6
S35	20/04/2010	Soybean	1.0	ND	2.6
S36	20/05/2010	Soyflour	0.9	ND	2.9
S37	21/06/2010	Soybean	1.0	ND	2.5
S38	21/06/2010	Soyflour	3.6	0.3	4.9
S39	30/06/2010	Soyflour	1.6	ND	1.9
S40	30/06/2010	Soyflour	5.1	ND	5.1
S41	21/07/2010	Soyflour	1.2	0.1	1.8

\(^{a}\) seed lots used for specific characterization of *Fusarium* population (see Table 2).

\(^{b}\) ND = not detected
Figure 1

Co-occurrence of fumonisins (FBs), aflatoxins (AFs) and deoxynivalenol (DON) in soy feed samples (n=36) collected in Italy between 2008-2010.
Highlights

- A mycological and toxigenic screening was carried out on soy samples for feed use
- *Aspergillus* spp. and *Fusarium* spp. were found to frequently colonize soy
- Aflatoxin was the most common mycotoxin detected
- No DON producers were isolated despite DON occurrence