MANUSCRIPT

ABSTRACT

One of the key factors in the swimming teaching-learning process seems to be the variation of water's depth. However, there are almost no studies about this topic and the existing ones usually follow a basic approach and with no control of the educational program used. It was our purpose to determine the effect of deep versus shallow water differences on developing pre-schoolers' aquatic skills after 6 months of practice. Twenty-one Portuguese school-aged children of both genders (4.70 ± 0.51 yrs.), inexperienced in aquatic programs, participated in this study. The children were divided into two groups performing a similar aquatic program but in a different water depth: shallow water (n=10) and deep water (n=11). Each participant was evaluated twice for their aquatic readiness using an observation check list of 17 aquatic motor skills: during the first session (T0) and after six months of practice (two sessions per week with a total of 48 sessions) (T1). The aquatic proficiency on each skill was compared between the groups and a stepwise discriminant analysis was conducted to predict the conditions with higher or lower aquatic competence. Results suggested that swimming practice contributed positively to improvements on several basic aquatic skills, in both groups. The results showed that shallow water group managed to acquire a higher degree of aquatic competence particularly in five basic aquatic skills (p< .05): breath control combined with face immersion and eye opening; horizontal buoyancy; body position at ventral gliding; body position at dorsal gliding; leg kick with breath control at ventral body position, without any flutter device. The discriminant function revealed a significant association between both groups and four included factors (aquatic skills) (p< .001), accounting for 88% between group variability. The body position at ventral gliding was the main relevant predictor (r=0.535). Shallow water swimming lessons generated greater aquatic competence in preschool children after a period of 6 months of practice.

Keywords: Elite aquatic skills, teaching methods, children; shallow water, deep water

INTRODUCTION

Swimming is not considered a static personal ability (Langendorfer, 2014); instead, it implies an acquisition process, through practice and experience, which is built on a previous state of autonomy, confidence and satisfaction in the aquatic environment. Hence, aquatic competence is considered a bio-behavioural assumption of learning more complex and specialized aquatic skills, which also includes swimming strokes (Parker & Blanksby, 1997; Warda, 2003). This conceptual understanding of aquatic competence is perhaps the most important in recent decades regarding swimming learning (Langerdorfer & Bruya, 1995; Moreno & Sanmartín, 1998). It provided a coherent pedagogical foundation to reshape the "thinking processes of teachers" and therefore on what is tough and how is tough (Clark & Peterson, 1986). However, there are still several pedagogical issues unanswered, mainly related with the process of swimming teaching and its results. The uniqueness of the practice environment makes swimming a challenge for initiation of a constructive approach to teaching (Light & Wallian, 2008). Although constructivism is not a prescription for teaching (Fosnot & Perry, 1996), it is necessary to consider the teacher's role to...
provide optimal opportunities for learning. Therefore, proper environment conditions in a swimming pool can be particularly crucial to learning with effectiveness. One determinant factor seems to be the variation of the water depth (Costa et al., 2012). Indeed, aquatic readiness programs for young children can be performed in shallow water (usually from 0.65 to 1.00 meter deep), usually in the beginning of the process, or in deep water (usually from 1.00 meter to 2.00 meters deep), in the later stages. By decision of the swimming instructor or mere lack of structural alternative, there are aquatic programs for children (for utilitarian or formal educational purposes) almost exclusively conducted in deep water. One of the few studies on this subject compared the deep and shallow water effect on developing pre-schoolers’ aquatic skills after six, twelve and eighteen months of practice (Costa et al., 2012). The results suggested that water depth might affect the acquisition of some basic aquatic skills, at least up to six months practice. However, that was a cross-sectional study, observational, which does not provide definitive information on the cause-effect of the conditions compared.

Therefore, the purpose of our study was to analyse the differences on developing pre-schoolers’ aquatic skills between deep and shallow water aquatic programs after six months of practice. It is hypothesized that the shallow water program (while applying a controlled methodological approach) may induce an acquisition of basic aquatic skills at a higher level of proficiency.

METHOD

Participants

Participated in the present study 21 elementary school-aged children of both genders (4.70 ± 0.51 yrs.) with no previous experience in aquatic programs. The children were divided into two distinct classes with a similar aquatic program but performed on a different water depth environment: ten and 11 children performed all the swimming lessons in shallow water and deep water, respectively.

The swimming school board and the local Research Ethics Committee approved the experimental procedures, ensuring compliance with the declaration of Helsinki. The children’s parents were informed about the study design and procedures and a written informed consent was signed. Data confidentiality was guaranteed, as well as their anonymity during the treatment process and analysis.

Aquatic readiness assessment

All children were evaluated twice for their aquatic readiness using an observation checklist of 17 aquatic motor skills based on Langerdorfer and Bruya (1995) and already applied by Costa et al. (2012): during the first session (T0) and after six months of practice (two sessions per week: 48 sessions; T1). The aquatic motor skills assessed were the following: water entry (Sk1); water orientation and adjustment at vertical position (Sk2); breath control - immersion of the face and eye opening (Sk3); horizontal buoyancy (Sk4); body position at ventral gliding (Sk5); body position at dorsal gliding (Sk6); body position at longitudinal rotation in gliding (Sk7); body position at front and back somersaults (Sk8); leg kick with breath control at ventral body position, with flutter boards (Sk9); and without any flutter device, (Sk10); leg kick with breath control at dorsal body position with flutter boards (Sk11); and without any flutter device (Sk12); feet-first entry (Sk13); head-first entry (Sk14); Autonomous in deep water (legs and arms displacement) (Sk15); vertical buoyancy at deep water (Sk16); deep water immersion (Sk17). Each one of these skills was divided into increasing levels of complexity (three, four or five levels, depending on the categorical skill) as suggested by Langendorfer and Bruya (1995): enable to perform at stage one, rudimentary movements at stage two (or three) and fundamental movements at stage three (or even four or five) that precede the specific motor skill acquisition. The children had three attempts to achieve the proposed exercises, as conducted by Costa et al. (2012).

Swimming practice

At the beginning of the study, all the children were in a state of total inaptness to the aquatic environment. The swimming sessions took place...
at the same time of the day, twice a week, with 45
min duration (between 6h45 and 7h30 p.m.). The
shallow water sessions were carried out in a 0.70
cm water depth, with the water temperature at
31ºC, the air temperature at 29ºC and a relative
humidity of 65%. The deep water sessions
occurred in a 1.30 meter water depth, with a
water temperature of temperature 29ºC, air
temperature of 29ºC and the relative humidity
was 65%.

Both aquatic programs aimed to improve
children’s aquatic readiness by teaching basic
aquatic skills. The number of students in each
class was reduced to increase the useful time of
the lesson and minimize practice waiting time
among students. The swimming teacher was the
same in both groups. Therefore, the teaching
methods and the skills developed in each class
were similar and based on the literature
guidelines (e.g., Canossa, Fernandes, Carmo,
Andrade, & Soares, 2007; Langendorfer & Bruya,
1995). Table 1 shows how the aquatic skills were
sequenced over the six months of teaching.

Table 1
Aquatic program characteristics conducted in both water deep environment.

Month	1	2	3	4	5	6
Sk1						
Sk2						
Sk3						
Sk4						
Sk5						
Sk6						
Sk7						
Sk8						
Sk9						
Sk10						
Sk11						
Sk12						
Sk13						
Sk14						
Sk15*						
Sk16*						
Sk17*						

Legend: [] Aquatic skill not developed; ↑, Aquatic skill highly developed; ▲, Aquatic skill moderately developed; ▼, Aquatic
skill not directly development but consider pre-requisite.

Teaching style shifted from absolute control
(command and task style) to more indirect
teaching style, best known as guided discovery
(Mosston & Ashworth, 1990). Indeed, the
students mostly performed analytical tasks to
develop basic aquatics skills in both aquatic
environments. However, ludic tasks were also
included, leading the child to discover a
predetermined “aquatic motor target” in
response to a sequence of “problems” presented
by the teacher. Sometimes it was necessary to
adjust certain aquatic tasks due to physical
embarrassment imposed by depth. As such, we
had to make minor changes to the task
organization (i.e., smaller groups and slight
changes to certain rules of play) and use some
floating didactic material. The following didactic
and floating material was used: didactic-puzzles,
towers, slides, mattresses, overflow arches, rings,
floating-arches, balls, small boards and noodles.

Statistical analysis
Standard statistical methods were used for the
calculation of means and standard deviations.
The t test was used to compare the differences in
aquatic proficiency (on each skill) between
groups. The effect size was calculated using
Cohen's d (Cohen, 1988). A stepwise
discriminant analysis was also conducted with A
wilk's method to build a predictive model for
group membership (aquatic competence for
shallow and deep water students). Predictor
variables were the 17 aquatic motor skills
previously described. Box's M variance-covariance
matrices were used to test the multivariate homogeneity. The level of statistical significance was set at \(p \leq 0.05 \).

Table 2 presents the aquatic skills acquired by shallow water and deep water students during six months of practice.

RESULTS

At the beginning of this study (T0), no differences were found in aquatic readiness between shallow and deep water. The students were not adapted to the aquatic environment and their aquatic motor proficiency was zero in all aquatic skills. After six months of practice there were differences between the means of both groups in five aquatic skills: Sk3, Sk4, Sk5, Sk6 and Sk10.

The stepwise discriminant analysis was used to determine which aquatic skills discriminate between both groups after six months of practice. The step-by-step model of discrimination was built with four steps, including the following aquatic skills: Sk5 (\(F = 40.151, p < 0.001 \)); Sk16 (\(F = 34.254, p < 0.001 \)); Sk15 (\(F = 29.237, p < 0.001 \)) and Sk13 (\(F = 29.489, p < 0.001 \)). The canonical discriminant function analysis revealed a significant association between both groups and all included factors, accounting for (0.938)\(^2\)=88% between group variability (\(\lambda = 0.119, \chi^2 = 36.124, p < 0.001 \)).

Table 3 shows the pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions. The variables are ordered by absolute size of correlation within function; Sk5 is the main predictor with a relevant absolute size of correlation within function (\(r=0.535 \)). The functions at groups’ centroids shows that shallow-water students have a mean of 2.46 (±0.64) while deep-water students produce a mean of 2.71 (±0.924); 100% of students were correctly classified.

Table 2

Aquatic skills acquired (mean ± SD) by shallow-water and deep-water students after six months of practice.

Skill	Levels of complexity	T0 (baseline)	T1 (six months practice)						
	Shallow Water (n=11)	Deep Water (n=10)	P-value	Cohen’s d	Shallow Water (n=11)	Deep Water (n=10)	P-value	Cohen’s d	
Sk1	1 to 3	1.09±0.302	1.10±0.316	.947	.029	3.00±0.000	2.90±0.316	.306	.448
Sk2	1 to 3	1.27±0.467	1.00±0.000	.081	.827	3.00±0.000	0.00±0.000	-	-
Sk3	1 to 5	1.00±0.000	1.00±0.000	-	-	4.18±0.879	3.10±1.137	.042*	1.73
Sk4	1 to 4	1.00±0.000	1.00±0.000	-	-	2.63±0.120	1.50±0.850	.018*	1.87
Sk5	1 to 4	1.00±0.000	1.00±0.000	-	-	2.72±0.647	1.20±0.422	.000*	2.70
Sk6	1 to 4	1.00±0.000	1.00±0.000	-	-	2.09±0.831	1.10±0.316	.002*	1.57
Sk7	1 to 3	1.00±0.000	1.00±0.000	-	-	1.45±0.522	1.30±0.483	.491	.308
Sk8	1 to 4	1.00±0.000	1.00±0.000	-	-	1.00±0.000	1.00±0.000	-	-
Sk9	1 to 4	1.00±0.000	1.00±0.000	-	-	2.45±0.522	2.10±0.316	.079	.823
Sk10	1 to 4	1.00±0.000	1.00±0.000	-	-	2.00±0.632	1.40±0.516	.029*	1.04
Sk11	1 to 4	1.00±0.000	1.00±0.000	-	-	2.09±0.701	1.70±0.675	.209	.568
Sk12	1 to 4	1.00±0.000	1.00±0.000	-	-	1.81±0.874	1.20±0.422	.057	.900
Sk13	1 to 3	1.00±0.000	1.00±0.000	-	-	2.36±0.505	1.80±0.789	.064	.851
Sk14	1 to 3	1.00±0.000	1.00±0.000	-	-	1.72±0.467	1.30±0.675	.105	.736
Sk15	1 to 3	1.00±0.000	1.00±0.000	-	-	1.36±0.505	1.50±0.527	.552	.264
Sk16	1 to 5	1.00±0.000	1.00±0.000	-	-	1.36±0.505	1.70±0.483	.136	.680
Sk17	1 to 4	1.00±0.000	1.00±0.000	-	-	1.18±0.405	1.30±0.483	.549	.265

Legend: a – Variable not included in the step-by-step model.
DISCUSSION

The first aim of the present study was to analyse the development of basic aquatic skills and to compare the effect of swimming practices in two distinct swimming pool environments (deep and shallow swimming pools). Results showed positive effects of swimming practice in children’s aquatic competence from both sessions’ types. However, shallow water students managed to acquire greater aquatic competence in nearly all aquatic skills measured after six months of practice.

The swimming programs were more than just the simple acquisition of new motor patterns that allow moving inside the aquatic environment (Langendorfer & Bruya, 1995; Martins et al., 2010). These are based on the need to adjust the motor behaviour of the child in the water, helping to understand the particularities of the aquatic environment, specifically the lower gravity and viscosity (Holmér, 1974). Therefore, the enjoyment for swimming practice is associated with the notion of trust about their own security in the new environment (Brenner, Saluja, & Smith, 2003; Velasco, 1994).

In the initial phase, the confidence of the child in the aquatic environment could be easily affected when, for instance, the water depth of exercise is changed. This constrain caused by the depth of the pool could influence their autonomy. The current study did not have the purpose to study the variability of the pedagogic intervention or of the student’s motor behaviour in both pool environments (for that see Costa et al., 2012). Nevertheless, it is our perception that the water depth seems to be an inhibitory factor to discover the aquatic environment and its particularities. Thus, the water depth could constrain the students’ creativity in the resolution of major motor problems caused by the aquatic environment, at least in the early stages of familiarization. Although our effort to provide identical pedagogic experiences in both environments, for safety reasons it is understandable that teaching in deep water could be less student-centred. There is a need to adapt the swimming tasks due to the mandatory use of float materials and the lack of confidence of the student. Therefore, the teaching methods in this condition tended to be more traditional (Mosston, 1992). This occurs at least in the initial phase of development, in which the students’ actions are always derived from the teacher decisions. Considering a complete understanding of the concept of aquatic competence, it is not imperative that there is only one response to similar situations (Moreno & Sanmartín, 1998). Thus, we believe that different water depths during swimming lessons inevitably provide different psychomotor experiences. Our results, as we discuss below, seem to support such reasoning.

As reported in table 12, those children who attended to shallow water lessons presented greater level of aquatic competence in several skills, namely: breath control - immersion of the face and eye opening (Sk3), horizontal buoyancy (Sk4), body position at ventral gliding (Sk5), body position at dorsal gliding (Sk6), and leg kick with breath control at ventral body position, without any flutter device (Sk10). These results are consistent with the data reported by Costa et al. (2012); although these authors reported differences between both session types after six months of practices also in the following skills: water entry (Sk1); body position at longitudinal rotation in gliding (Sk7); body position at front and back somersaults (Sk8); leg kick with breath control at ventral body position, with flutter boards (Sk9); leg kick with breath control at dorsal body position with flutter boards (Sk11); and without any flutter device (Sk12); feet-first entry (Sk13); head-first entry (Sk14); vertical buoyancy at deep water (Sk16); deep water immersion (Sk17). These substantial differences in the acquired aquatic competence as reported by Costa et al. (2012) can derive from the variability of the teaching intervention, given that teachers were not the same in both sessions’ types.

The discriminant analysis showed that the Sk5 was the main predictor with significant correlation within function, consistent with the data reported by Costa et al. (2012). This could be related with the lower opportunity to develop the glide in ventral/dorsal position and in different depths in the early learning stages in deep water condition. Probably, the use of
Deep versus shallow water swimming lessons

CONCLUSIONS

In conclusion, the present study suggests that a shallow water environment is more suitable for the development of basic aquatic skills in preschool children. The stepwise discriminant analysis revealed a significant association between both session types and four included aquatic skills for six months of practice; the body position at ventral gliding seems to be the main significant predictor. This could mean that aquatic skills at the children beginner’s level should be learnt in a shallow water swimming pool and deep water programs should be carefully planned to stimulate certain skills (i.e. body gliding) that seems to be differently exercised in both pool environments.

Acknowledgments:
To all the parents and children, for their kind participation in this research.
To NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and Analytics(NORTE-01-0145-FEDER-000016), co-financed by the Fundo Europeu de Desenvolvimento Regional (FEDER) through NORTE 2020

Conflict of interests:
Nothing to declare.

Funding:
Nothing to declare.

REFERENCES
Blanksby, B. A., Parker, H. E., Bradley, S., & Ong, V. (1995). Children’s readiness for learning front crawl swimming. The Australian Journal of Science and Medicine in Sport, 27(2), 34-37.
Brenner, R. A., Saluja, G., & Smith, G. S. (2003). Swimming lessons, swimming ability, and the risk of drowning. Injury Control and Safety Promotion, 10(4), 211-215.
Canossa, S., Fernandes, R. J., Carmo, C., Andrade, A., & Soares, S. M. (2007). Ensino multidisciplinar em natação: reflexão metodológica e proposta de lista de verificação”. Motricidade, 3(4), 82-99. doi: 10.6063/motricidade.3(4).656
Clark, C., & Peterson, P. (1986). Teacher’s thought processes. In M. Wittrock (Ed), Handbook of Research on Teaching (pp. 255-296). New York, NY: Macmillan Publishing Company.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Earlbaum Associates.
Costa, A. M., Marinho, D. A., Rocha, H., Silva, A. J., Barbosa, T. M., Ferreira, S. S., & Martins, M. (2012). Deep and Shallow Water Effects on Developing Preschoolers’ Aquatic Skills. *Journal of Human Kinetics*, 32, 211-219. doi: 10.2478/v10078-012-0037-1.

Fosnot, C. T., & Perry, R. S. (1996). Constructivism: A psychological theory of learning. In C. T. Fosnot (Ed.), *Constructivism: Theory, Perspectives, and Practice* (pp. 8-33). New York: Teachers College Press.

Holmér, I. (1974). *Physiology of swimming man*. Acta Physiologica Scandinavica, Suplementum 407, 1-55.

Langendorfer, S. (2014). *Swimming Learning Standards: An International Perspective*. 34º Congreso de la Asociación Española de Técnicos de Natación. Granada, Spain.

Langendorfer, S., & Bruya, L. (1995). *Aquatic Readiness: Developing Water Competence in Young Children*. Champaign, IL: Human Kinetics.

Light, R., & Wallian, N. (2008). A Constructivist-Informed Approach to Teaching Swimming. *Quest*, 60(3): 387-404. doi: 10.1080/00336297.2008.10483588

Martins, M., Silva, A. J., Marinho, D. A., Pereira, A., Moreira, A. M., Sarmento, P., & Barbosa, T. M. (2010). Assessment of heart rate during infants swim session. *International SportsMed Journal*, 11(3), 336-344.

Moreno, J., & M. Sanmartín (1998). *Bases metodológicas para el aprendizaje de las actividades acuáticas educativas*. Barcelona, Spain: INDE Publicaciones.

Mosston, M. (1992). *Tug-O-War, no more: Meeting teaching-learning objectives using the spectrum of teaching styles*. *Journal of Physical Education, Recreation & Dance*, 63(1), 27-56.

Mosston, M., & S. Ashworth (1990). *The Spectrum of Teaching Styles. From Command to Discovery*. White Plains, NY: Longman.

Parker, H. E., & B. A. Blanksby (1997). Starting age and aquatic skill learning in young children: mastery of prerequisite water confidence and basic aquatic locomotion skills. *Australian Journal of Science and Medicine in Sport*, 29(3), 83-87.

Velasco, C.G. (1994). *Natación segundo a psicomotricidade*. Rio de Janeiro, Brasil: Editora Sprint.

Warda, L. (2003). Swimming lessons for infants and toddlers. *Pediatrics & Child Health*, 8(2), 113-114.

All content of *Journal Motricidade* is licensed under Creative Commons, except when otherwise specified and in content retrieved from other bibliographic sources.