Observation of a Smooth Polaron–Molecule Transition in a Degenerate Fermi Gas

Gal Ness, Constantine Shkedrov, Yanay Florshaim, Oriana K. Diessel, Jonas von Milczewski, Richard Schmidt, Yoav Sagi

PRX 10, 041019 (2020)
Anastasiya Vainbaum
Meny Menashes
Prof. Yoav Sagi
Yanay Florsheim
Dr. Jonathan Nemirovsky
Yigal Ilin
Dr. Amir Stern
Dr. Kostya Shkedrov
GN
Oded Zilberman
Dr. Richard Schmidt
Oriana Diessel
Jonas von Milczewski
2. Fermi impurity problem

- **Helium 3**
 - M. I. Dykman, K. Kono, D. Konstantinov, M. J. Lea, PRL 119, 256802 (2017)

- **High-T_c superconductors**
 - N. F. Mott, JPCM 5, 3487 (1993)

- **Neutron stars**
 - M. Kutschera & W. Wójcik, PRC 47, 1077 (1993)

- **Fermi impurity problem**
 - W. H. Sio, C. Verdi, S. Poncé, F. Giustino, PRL 122, 246403 (2019)
2. Fermi impurity problem

Increasing interaction

N. Prokof'ev & B. Svistunov, PRB 77, 020408 (2008)
M. Punk, P.T. Dumitrescu, W. Zwerger, PRA 80, 053605 (2009)
R. Schmidt & T. Enss, PRA 83, 063620 (2011)
3. Hallmark of the first-order transition

- A. Schirotzek, ..., M. W. Zwierlein, PRL 102, 230402 (2009)
- S. Nascimbène, ..., C. Salomon, PRL 103, 170402 (2009)
- N. Navon, ..., C. Salomon, Science 328, 729 (2010)
- C. Kohstall, ..., R. Grimm, Nature 485, 615 (2012)
- M. Koschorreck, ..., M. Köhl, Nature 485, 619 (2012)
- M. Cetina, ..., E. Demler, Science 354, 96 (2016)
- F. Scazza, ..., G. Roati, PRL 118, 083602 (2017)
- Z. Yan, ..., M. W. Zwierlein, PRL 122, 093401 (2019)

F. Chevy, PRA 74, 063628 (2006)
M. Punk, P.T. Dumitrescu, W. Zwerger, PRA 80, 053605 (2009)
4. Observation of a smooth transition

We developed:
• Raman spectroscopy with high-sensitivity fluorescence detection
• Theoretical model of many impurities at $T > 0$

We found:
• Finite impurity density leads to a smooth transition
• Finite temperature enhances this effect
• Polarons and molecules coexist around the transition
5. Raman spectroscopy
with high-sensitivity fluorescence detection

C. Shkedrov, GN, Y. Florshaim, Y. Sagi, PRA 101, 013609 (2020)
5. Raman spectroscopy of weakly-interacting atoms

For weakly-interacting atoms:

\[\hbar \omega = \frac{2\hbar^2}{m} \left(\bar{q}^2 + \bar{q}k_z \right) \]

Raman spectrum reveals the momentum distribution

C. Shkedrov, GN, Y. Florshaim, Y. Sagi, PRA 101, 013609 (2020)
6. High-sensitivity Raman spectroscopy

C. Shkedrov, Y. Florshaim, GN, A. Gandman, Y. Sagi, PRL 121, 093402 (2018)
7. Raman spectroscopy of strongly-interacting imbalanced Fermi gas

GN, C. Shkedrov, Y. Florshaim, O. K. Diessel, J. von Milczewski, R. Schmidt, Y. Sagi, PRX 10, 041019 (2020)
8. Zero-momentum polaron energy
9. Molecule binding energy
10. Quasiparticle weight

\[P(\omega) = \bar{Z}P_{\text{coh}}(\omega; T_p, \epsilon_{\text{pol}}^0, m^*) + (1 - \bar{Z})P_{\text{bg}}(\omega; T_{\text{bg}}, E_b) \]

\[(k_Fa)^{-1} = -0.06 \]
11. Fermi polaron model

- polaron and molecule variational wave-functions
- populated at finite temperature
12. Summary

1. Smooth polaron–molecule transition is a direct consequence of coexistence for $n_l > 0$, amplified in $T > 0$.

2. High-sensitivity Raman spectroscopy enabled momentum-dependent probing and extraction of the quasiparticle residue.

3. Outlook: repulsive polaron, Raman injection spectroscopy.

Thank you!

GN, C. Shkedrov, Y. Florshaim, O. K. Diessel, J. von Milczewski, R. Schmidt, Y. Sagi, PRX 10, 041019 (2020)