Research progress of Nedd4L in cardiovascular diseases

Mohan Li1, Guoze Sun1, Pengbo Wang1, Wenbin Wang1, Kexin Cao1, Chunyu Song1, Yingxian Sun1, 2✉, Ying Zhang1, 2✉ and Naijin Zhang1, 2✉

© The Author(s) 2022

Post-translational modifications (PTMs) are covalent processing process of proteins after translation. Proteins are capable of playing their roles only after being modified, so as to maintain the normal physiological function of cells. As a key modification of protein post-translational modification, ubiquitination is an essential element, which forms an enzyme-linked reaction through ubiquitin-activating enzyme, ubiquitin binding enzyme, and ubiquitin ligase, aiming to regulate the expression level and function of cellular proteins. Nedd4 family is the largest group of ubiquitin ligases, including 9 members, such as Nedd4-1, Nedd4L (Nedd4-2), WWP1, WWP2, ITCH, etc. They could bind to substrate proteins through their WW domain and play a dominant role in the ubiquitination process, and then participate in various pathophysiological processes of cardiovascular diseases (such as hypertension, myocardial hypertrophy, heart failure, etc.). At present, the role of Nedd4L in the cardiovascular field is not fully understood. This review aims to summarize the progress and mechanism of Nedd4L in cardiovascular diseases, and provide potential perspective for the clinical treatment or prevention of related cardiovascular diseases by targeting Nedd4L.

Cell Death Discovery (2022) 8:206; https://doi.org/10.1038/s41420-022-01017-1

FACTS

- Nedd4L, containing a C2 domain, four WW domains, and a HECT domain, is involved in various pathophysiological processes, and exert distinct influences on various cardiovascular diseases including hypertension, dilated cardiomyopathy, diabetic cardiomyopathy, myocardial infarction, heart failure, etc.
- Nedd4L is a key regulator of epithelial sodium channel (ENaC) activity.
- Targeting Nedd4L might be the hopeful option for target organ protection in patients with hypertension in the future.
- Mutations of the sodium voltage-gated channel alpha-subunit 5 (SCNSA) gene encoding the NaV1.5 protein leads to the occurrence of cardiomyopathy and arrhythmia.

INTRODUCTION

Post-translational modifications (PTMs) of proteins are the covalent addition of functional groups or proteins. The proteolytic cleavage of regulatory subunits, or the degradation of the entire protein could ultimately change the structure, conformation, and physicochemical properties of proteins [1]. This process could further facilitate the functional diversity of modified proteins from the genome level to the proteome. These modifications mainly included phosphorylation [2], acetylation [3], and ubiquitination [4–6]. As we know, the addition of ubiquitin to substrate proteins is called ubiquitination. Ubiquitin [7] is a low molecular weight protein with highly conserved evolution. Yeast and human ubiquitin only differs in three amino acids [8, 9]. Ubiquitination can mark the target proteins, allow them to be recognized and degraded by the proteasome. Hence, as an important and common form of protein post-translational modification [10, 11], ubiquitination modifications usually occur on lysine residues and thereby regulate the various cellular pathways. Previous studies have mostly focused on upstream proteins such as transcription factors, but the regulatory mechanisms of upstream pathways are complex and there are many factors affecting this process. Research works from our team focused on the most important downstream factors of cellular damage and found that protein ubiquitination modifications played important roles on target organ protection through modulating neuronal precursor cell expression developmentally downregulated 4 (Nedd4) family members [12–14]. The whole process of ubiquitination is formed by a ubiquitin-proteasome system (UPS), which is mainly composed of ubiquitin-activating enzyme (E1), ubiquitin cross-linking enzyme (E2), ubiquitin ligase (E3) and 26S proteasome [15]. The NEDD4 family is one of the most essential groups of E3 ligase [9, 16], which includes neuronal precursor cell expression developmentally downregulated 4-1 (RPF1), neuronal precursor cell expression developmentally downregulated 4-2 (Nedd4L), ITCH/atropine-1 interacting protein 4 (AIP4) and etc [17–19]. The ubiquitination process is formed by the enzyme-linked reaction consisting of the following three ubiquitinase [20]: 1. In the case of energy supplying by ATP, ubiquitin-activating enzyme E1 could activate ubiquitin molecules; 2. Ubiquitin-activating enzyme E1 then transfers the activated ubiquitin molecules to ubiquitin-conjugating enzyme E2 ; 3. Ubiquitin ligase E3 finally connects the E2-binding ubiquitin to the target protein [21, 22]. Being the most important enzyme in the ubiquitination process, E3 ligase is presented in three families: RING (really interesting new gene) family [23], E3 enzymes with...
HECT domain (homologous to E6-associated protein C-terminus E3 ligase, HECT E3S [24–26], and the U-box family [27]. HECT E3S can be divided into three subfamilies based on the presence of different amino acid sequence motifs or domains at the N-terminus [25]: (1) Neuronal precursor cell expression developmentally downregulated 4 (Nedd4) subfamily (9 members) [17, 28], containing tryptophan Acid-tryptophan Acid (WW) motif [29]; (2) HERC (HECT and RCC1-like domains) subfamily (6 members), possessing one or more chromosome condensation 1 (RCC1)-like domains (RLDs) [30, 31]; (3) “Other” HECTs (13 members), containing various domains as well [32, 33]. Namely, Nedd4L is a member of the Nedd4 subfamily of HECT E3S of the ubiquitin-proteasome system (UPS) [34]. Nedd4L is located to human chromosome 18q21 (ref. [35]), and Nedd4L in human is homologous to mouse Nedd4-2 (ref. [36, 37]). Nedd4L is widely expressed during mouse development [38] and is also involved in the pathogenesis of cardiovascular diseases through multiple pathways. It is composed of C2 domain [39], four WW domains [40, 41] and one HECT domain. During the last decades, the incidence of cardiovascular diseases increased dramatically worldwide [42, 43]. In the past few years, the association between Nedd4L and cardiovascular diseases has been focused by many investigators. Results showed that Nedd4L could regulate cardiac function through various pathways and modulate a series of related physiological and pathological processes. In this article, we summarized the recent progress on the role of Nedd4L in various cardiovascular diseases.

NEDD4L AND HYPERTENSION

Interaction of Nedd4L and ENaC and the potential role on sodium homeostasis and blood pressure

Hypertension is a common disease in the cardiovascular field [44–47], and is an important risk factor for stroke, myocardial infarction, heart failure, and kidney damage. Therefore, the pathogenesis of hypertension is a long-standing research focus [48–51]. Accumulating evidence show that, Nedd4L is involved in the formation and development of hypertension at the molecular level. The association between sodium intake, sodium hemostasis in human body and hypertension is well known now. The presence of Nedd4L in the kidney indicates its role and the interaction on sodium reabsorption in the kidney, thus affecting the blood pressure [52, 53]. A previous study demonstrated that reabsorption of Na+ [54] could be regulated by the Nedd4 family member—epithelial sodium channel (ENaC) in the kidney, an important regulator of electrolyte balance and fluid stability [55].

ENaC is structurally composed of three subunits (alpha-, beta-, and gamma-), each containing a conserved proline-tyrosine (PY) motif at the C-terminal. Nedd4 protein could bind to these PY motifs on ENaC, and undergo ubiquitination through its WW domain [56]. Activated ENaC is capable of mediating the transport of Na+ through the epithelial cells in the kidney, intestine, and lung [38, 57, 58]. Meanwhile, some biochemical and overexpression experiments have shown that Nedd4L could bind to the β- and γ-subunits of ENaC through its PY motif in the C-terminal region, which could then interact with the WW domain of Nedd4L and undergo ubiquitination for degradation [59, 60]. Phosphorylation of Nedd4L by serum and glucocorticoid-regulated kinase 1 (SGK1), for instance, may also regulate its combination with ENaC, then ubiquitinating ENaC. Thus, the interaction between Nedd4L and ENaC might play an important role in sodium homeostasis, and the regulation of blood pressure (BP) [57]. Therefore, it is of importance to further define the role and mechanism of Nedd4L ubiquitination in the protection of target organs in hypertension. It remains unknown if targeting Nedd4L could be the hopeful option for target organ protection of hypertension.

Nedd4L and essential hypertension

Essential hypertension (EH) is common, but the underlying pathogenesis is complex and still not fully understood. Genetic variants are also considered to be one of the causes of EH. In addition, epigenetic, environment and other factors might also be responsible for the pathogenesis of EH [61]. Among them, post-translational histone modifications are considered to be the crucial epigenetic marks associated with EH [62]. At present, more and more members of the Nedd4 family in the ubiquitinated proteasome system, especially Nedd4L, are constantly being explored for their role in EH through both experimental and clinical studies [38, 63, 64]. It is shown that the Nedd4L gene may be a candidate gene that causes high blood pressure in humans. Nedd4L has three isoforms (isoform I, II, and III). Studies found that the interaction of isoform I might interact with other human isoforms and abnormally increase sodium reabsorption [38]. Loffing-Cueni et al. have found that Nedd4L is highly expressed in aldosterone-sensitive distal nephron (ASDN) near to the collecting duct [65], indicating its role on hypertension. A previous study in African Americans found that the A allele of SNP rs4149601 was associated with increased blood pressure, with the involvement of Nedd4L. The detailed mechanism may be that this allele could reduce the ubiquitination and degradation of epithelial Na+ channels, resulting in an increase in the density of epithelial sodium channels or prolonged residence time on the cell surface, which will further lead to the increasing of the epithelial sodium transportation, eventually result in hypertension. Russo et al. also found two Nedd4L SNPs (rs513563 and rs3865418) were associated with hypertension in Greek whites [66]. Three representative Nedd4L variants (296921–296923delTTG, rs2288774, and rs2288775) were found two Nedd4L SNPs (rs4149589 and rs3865418) were associated with hypertension in Caucasian whites, and two other Nedd4L SNPs (rs4149589 and rs3865418) were associated with hypertension in Guatemalan white [67]. Studies have shown that SGK1 may play a role in the pathogenesis of salt-sensitive hypertension, SGK1 phosphorylates and inhibits Nedd4L which is an ubiquitin ligase, thereby failing to reduce the channel expression and stimulate ion channel degradation. The phosphorylation mediated by SGK1 induces the interaction of Nedd4L with members of the 14-3-3 protein family, which in turn disrupts the ubiquitination and degradation of ENaC by Nedd4L [68, 69] (Fig. 1). It can be said that SGK1, functioning as a modulator, indirectly activates ENaC in tubules [70]. In salt-sensitive hypertensive rats, ENaC is abnormally regulated by aldosterone [71], contributing to the initiation and progression of salt-sensitive hypertension [72, 73]. In recent years, accumulating evidence defined the interaction between NEDD4L and ENaC and their role in the regulation of blood pressure. Nedd4L is now considered to be an E3 ubiquitin ligase involved in the process of salt-sensitive hypertension [74]. It is involved in the control of the sodium transporters, which are distinct from the epithelial sodium channels, but also play a determinant role in salt-sensitive hypertension [75]. A previous study showed that conditional Nedd4L knockout mice showed similar blood pressure as control mice under standard diet, but blood pressure was significantly higher in conditional Nedd4L knockout mice than in control mice after 12 days high-Na+ diet, accompanied by higher urinary calcium. [71] Another study evidenced higher blood pressure in Nedd4L knockout mice even under normal diet, and blood pressure was further increased under a high-salt diet, studies also found that salt-sensitive hypertension in the Nedd4L-C2 (KO) mice...
was resistant to eplerenone (EPL) [57]. Aldosterone-independent transcriptional activation of ENaC in the aldosterone-sensitive distal nephron (ASDN) was evidenced in Nedd4L-C2 KO mice, this activation could be abolished by Amiloride [76]. The following factor might be involved in the induction of hypertension in Nedd4L knockout mice: Upregulated expression levels of all three ENaC subunits in the kidneys [57]. However, a specific inhibitor of sodium ion channel, amiloride, can reverse the elevated blood pressure shown in the Nedd4L-KO mice under high-salt diet [76]. The above results indicate that Nedd4L is a key regulator of ENaC activity and blood pressure in vivo. In fact, studies have found that carriers of the Nedd4L salt-sensitivity-associated genotype (rs4149601 A→G and rs2288774 T→C Nedd4L variants) had higher systolic and diastolic blood pressure and multivariate adjusted hazards ratio (95% confidence interval) of CVD 1.13 (1.02-1.25, P = 0.018), coronary events 1.20 (1.06-1.37; P = 0.005) and cardiovascular mortality 1.17 (0.99-1.37; P = 0.055) than noncarriers, suggesting that the genotype of Nedd4L related to salt-sensitivity is associated with hypertension and higher risk of cardiovascular morbidity and mortality in human beings [77]. Nedd4L was once considered as a candidate protein to control the surface expression of ENaC, but which component is indeed involved in the regulation of ENaC in epithelial cells was unknown. Through RNA interference technology, Snyder and colleagues discovered that endogenous Nedd4L could negatively regulate ENaC in epithelial cells, which is the key component of steroid hormone-regulated ENaC signaling pathway, so the defect of this regulation pathway may be directly linked with the pathogenesis of hypertension [78].

Nedd4L and Liddle syndrome

Liddle syndrome is characterized by hypertension with a background of hypokalemia and metabolic alkalosis [79, 80]. It is usually caused by abnormally elevated sodium reabsorption in distal nephrons. The α, β, and γ subunits of ENaC are known to contain a conserved proline-tyrosine (PY) motif at the C-terminus [56]. Mutation in this PY motif, which is also the binding site for the ubiquitin ligase Nedd4L, might cause Liddle syndrome [81, 82] (Fig. 2). In case of β or γ subunits deficiency of the PY motif, binding capacity to the WW domain of Nedd4L will decrease, thereby accelerate the cell activity of ENaC, promote apoptosis, increase the absorption of sodium ion and fluid in the distal nephron, and ultimately lead to the elevated blood volume and blood pressure [81, 83], implying that Nedd4L may be an inhibitor of epithelial Na⁺ channels [84]. Liddle syndrome can be manifested as severe hypertension, hypokalemia, metabolic alkalosis, and hyporeninemia clinically. It is an inherited form of salt-sensitive hypertension [56, 84, 85]. Capillary sodium channels located on the aldosterone-sensitive distal nephron (ASDN) also play a key role in the homeostasis of sodium homeostasis. Clinical studies have confirmed that Liddle syndrome is related to the gene mutation of ENaC-NEDD4L-proteasome. A clinical study showed that Nedd4L gene single nucleic acid polymorphisms (SNPs) were closely related to hypertension [35]. Abriel and colleagues evidenced the loss of the Nedd4 binding site in ENaC in Liddle syndrome through immunofluorescence and other methods [86]. In addition, knockout of Nedd4L protein from adult mouse renal tubules can lead to the accumulation of ENaC, which may lead to increased cell surface channels and sodium reabsorption in distal nephrons, and ultimately resulting in hypertension [86]. The human Nedd4L gene, especially the evolutionary new subtype I, is a candidate gene for hypertension [38]. Certain small-molecule compounds could destabilize cell-surface ENaC or enhance the Nedd4L activity in the kidney, thus being hopeful candidates for anti-hypertension agents [87].

Nedd4L and myocardial remodeling

Nedd4L and cardiac diseases. Cardiac hypertrophy and dilated cardiomyopathy, as a type of myocardial remodeling [88–90], is one of the risk factors for heart failure (HF) [91–93]. Up till now, heart failure has been the main leading cause of death in the cardiovascular field [94, 95]. Nedd4L is the key player not only responsible for the regulation of blood pressure but also for the electrolyte balance in vivo. Cardiac hypertrophy and significantly decreased cardiac function were detected in Nedd4L knockout mice fed with chronic high-salt diet [57]. It is known that the density and expression of sodium channels in vivo play an important role in the pathogenesis of cardiovascular diseases. Among the ion channels of the heart, sodium voltage-gated channel alpha-subunit 5 (SCN5A) encodes the Naᵥ1.5 protein.
As an essential transmembrane channel protein, NaV1.5 is structurally composed of 4 similar domains, each of which contains 6 transmembrane proteins (S1-S6) linked by amino acid sequences. The exact cause of dilated cardiomyopathy cannot always be found clinically, approximately 50 variants have been identified in patients with DCM that cause macroscopically dilated cardiomyopathy. This seems to imply that the occurrence of DCM is closely related to genetic background. In 2008, Ge and his team conducted a research on a Chinese DCM pedigree and found that the cardiac sodium channel gene (SCN5A) A1180V was associated with the disease development in the whole family.

In basic researches, some scholars found that the mutation of SCN5A related to the occurrence of DCM is mainly distributed in the DI-S4 segment of the Nav1.5 protein, while the A1180V mutation occurs at DII-DIII segment. In fact, the electrophysiological damage associated with DCM is now thought to be caused by its variant which reduces peak sodium currents. In addition, A1180V induces a 4.5mV negative inactivation offset of the mutant channel and also shows a slower recovery. This emergence of cardiac sodium ion current disturbance can greatly aggravate myocardial injury and ultimately lead to dilated cardiomyopathy, which in turn leads to heart failure. Ge and
his team also found that participants carrying the A1180V gene face higher risk for disease progression, and the mechanism might relate to changed sodium ion balance, resulting in electronic disorders and ultimately leading to structural heart disease [97, 101].

It is known that endocrine-related diseases such as diabetes [102–104] and insulin resistance [105] can also cause diabetic cardiomyopathy [106, 107]. The role of Nedd4L in the development of diabetic cardiomyopathy has also been explored in recent years. Nedd4L can become the phosphorylated form of Nedd4L, this process is mediated by SGK1. It acts as a direct downstream target of SGK1, and down-regulating SGK1 levels could down-regulate Nedd4L and vice versa. Shi et al. found that high glucose may downregulate the expression of SGK1, resulting in the reduction in the phosphorylated form of Nedd4L (an inactive state). This implies that SGK1 and Nedd4L are involved in the development of hyperglycemia-induced cardiomyopathy, future studies are warranted to validate whether targeting SGK1 and Nedd4L could provide a solution for the clinical treatment of diabetic cardiomyopathy or not [108].

Nedd4L and myocardial infarction. Myocardial infarction (MI) is related to the highest mortality rate among cardiovascular diseases [109–111]. Myocardial ischemia caused by MI, and heart remodeling [112] could be the causes of clinical death. Studies have shown that the loss of Nedd4L-C2 subtype can cause the cardiac conduction changes in resting state and responsible for the pro-arrhythmic change after acute myocardial infarction [113]. From a prognostic point of view, Huang and his colleagues found that the downregulation of circular RNA Nfnx (circNfnx) in cardiomyocytes can attenuate the process of myocardial remodeling after MI and partially restore myocardial functions. Y-box-binding protein 1 (Ybx1) [114] is an essential transcriptional protein in myocardial proliferation after myocardial infarction, which acts as a substrate for Nedd4L and can bind to Nedd4L for degradation. Studies have found that circNfnx could bind Nedd4L. When circNfnx is overexpressed, the binding of Nedd4L and circNfnx could be promoted, resulting in the reduction of Ybx1. Downregulation of circNfnx could upregulate Ybx1, promote proliferation and regeneration of cardiomyocytes, ultimately improve prognosis post-MI [115]. The in-depth understanding of the above mechanisms provides a theoretical basis for the clinical targeted therapy of patients with MI in the future, and also provides inspiration for new treatment approaches.

Heart failure which is a common heterogeneous clinical syndrome. Ubiquitination also played an important role in heart failure. Luo et al. found that microenvironment change could lead to degradation changes of ENac by Nedd4L. When the intracellular concentration of calcium ion increases, the activity of Nedd4L increases, thereby promoting the degradation of the sodium ion channels located on the membrane. In addition, Nedd4L and its colocalization with sodium channels are also increased in case of heart failure [116]. It is also found that after the occurrence of HF, the expression of Nav1.5 protein was significantly downregulated [117]. A previous study demonstrated that miR-454 could affect heart failure (HF) progression by modulating Nedd4L/tropomyosin receptor kinase A (TrkA)/cyclic adenosine 3′,5′-monophosphate (cAMP) axis, in that miR-454 exerts anti-apoptotic and protective effects on cardiomyocytes by inhibiting Nedd4L, while Nedd4L stimulates the ubiquitination and degradation of TrkA protein. The miR-454 activates the cAMP pathway through the Nedd4L/TrkA axis, which ultimately inhibits cardiomyocyte apoptosis and alleviates myocardial injury. Results from this landmark study thus suggest that targeting the Nedd4L/TrkA/cAMP pathway may be a potential novel promising option for the prevention and treatment of heart failure [118].

Nedd4L and arrhythmias. The sodium channel has three subunits, α, β, and γ [56]. Sodium voltage-gated channel alpha-subunit 5 (SCN5A) (Table 1) encodes the voltage-dependent alpha-subunit of NaV1.5 protein [97, 98]. NaV1.5 binds through its WW domain to the PY motif at the C-terminus of Na,1.5 protein encoded by SCN5A [59, 119]. This results in decreased protein expression and current through Na,1.5 ubiquitination [113, 120]. The above can indicate that the mutation of the SCN5A gene encoding Na,1.5 protein or the changes of its expression level are closely related to the occurrence of diseases with abnormal electrophysiological conduction under various factors [121]. Therefore, it is of importance to explore the mechanism of Na,1.5 channel mutation for the prevention and treatment of arrhythmia, especially malignant arrhythmias [120, 122, 123].

In the field of the arrhythmia associated with the atrium, studies have found that mutations in SCN5A are associated with diseases such as sick sinus syndrome (SSS) [124]. Loss or enhancement of sodium channel function caused by SCN5A variants can lead to the decreasing of cardiac excitability, resulting in sinus node dysfunction. The most typical state caused by SCN5A variability is the loss of function of the sodium ion channel. In the molecular

Mehanisms of the variant	Biological responses	References
The role of SCN5A gene encoding Nav1.5 protein in cardiovascular diseases	Dilated cardiomyopathy (DCM)	[97, 99, 100]
Arrhythmia	sick sinus syndrome (SSS)	[96, 124, 125]
SCN5A-A1180V mutation, occurs at DI-DII segment, induces a 4.5mV negative inactivation offset of the mutant channel and also shows a slower recovery.	Atrial fibrillation (AF)	[127, 128]
SCN5A variants may lead to the decreasing of cardiac excitability, resulting in the loss-of-function property of diminished electrical coupling between the sinoatrial node and surrounding atrial cells.	Atrial standstill (AS)	[129]
The eight novel variants of SCN5A, including M138I, F428K, H445D, N470K, E655K, E113I, R1826C, V1951M, were all associated with the occurrence and susceptibility of AF.	Brugada syndrome (Brs)	[133, 134]
The decreased expression of atrial-specific gap junction protein connexin40 (Cx40); the mutations in the extremely important sodium ion channel gene SCN5A D1125N in the heart.	Long QT syndrome	[135, 136]
level, it is manifested as the loss-of-function property of diminished electrical coupling between the sinoatrial node and surrounding atrial cells, resulting in outlet blocking, which is a common character in SSS [96, 125]. The other diseases most associated with SCNSA are currently found to be atrial fibrillation (AF) and atrial standstill. AF has always been the most common type of cardiovascular system disease in arrhythmia [126]. Clinically, its electrocardiogram often shows rapid irregular atrial fibrillation waves of 350–600 beats per minute. Experts have found that among patients diagnosed with AF, those with a family history of atrial fibrillation are more likely to develop new-onset AF [127], which implies that the occurrence of AF may be closely related to genetic factors [128]. In addition, studies have found that mutations or rare variants in the SCN5A gene may predispose people without underlying heart disease to AF. Hence, it seems that the susceptibility of AF is related to the variations in the gene named SCNSA which encoding the cardiac sodium channels [127]. However, AS is a rare arrhythmia [129]. In 2003, Groeneveld et al. investigated families with this rare disease background and found that the occurrence of AS was related to the decreased expression of atrial-specific gap junction protein connexin40 (Cx40), and the extremely important sodium ion channel gene SCNSA D1275N in the heart also has mutations. Hence the emergence of AS is also considered to appear under the joint influence of various factors [129].

Secondly, in the direction of arrhythmia related to the ventricle, there are also many arrhythmias related to the mutation of the sodium channel encoding gene SCNSA. Among the primary arrhythmic syndromes (including Brugada syndrome, long QT syndrome, short QT syndrome, early repolarization syndrome, etc.) [130], Brugada syndrome (BrS) was found to be most associated with SCNSA [131]. In 1998, the variant of this gene encoding the sodium channel was discovered for the first time [132]. Eight allele-related inherited heart diseases have been found to be associated with the genetic mutations of SCNSA [133]. It has been found that the SCNSA variants associated with BrS are usually located in the region between DI and DII [134]. Currently, 21% of BrS probands are found to be carriers of SCNSA variants, and more than 300 SCNSA variants have been found to be associated with this inherited disease [134]. Other studies have found that the SCNSA-p.L1239P variant can enhance the ubiquitin and degradation of Na, 1.5 channels due to the existence of a new binding site. Another variant, SCNSA-p.Y1977N, which disrupts the common SCNSA binding site (from PPxY to PPxN), thus prevents the process of ubiquitination. [135, 136]

Table 2. Roles and functions of Nedd4L in cardiac diseases

Disease category	Involvement in the diseases	Functions and mechanisms	References
Hypertension	Salt-sensitive hypertension	SGKI phosphorylates and inhibits Nedd4L which is a ubiquitin ligase, thereby failing to reduce the channel expression and stimulate ion channel degradation. The phosphorylation mediated by SGKI induces the interaction of Nedd4L with members of the 14-3-3 protein family, which in turn disrupts the ubiquitination and degradation of ENaC by Nedd4L, ultimately leads to salt-sensitive hypertension.	[68, 69]
Essential hypertensive	SCN5A isoform I can interact with other isoforms and can increase sodium reabsorption, which can lead to hypertension; the A allele of SNP rs4149601 of Nedd4L was associated with increased blood pressure, with the involvement of Nedd4L. The detailed mechanism may be that this allele could reduce the ubiquitination and degradation of epithelial sodium channels, resulting in an increase in the density of epithelial sodium channels or prolonged residence time on the cell surface, which will further lead to the increasing of the epithelial sodium transportation, eventually result in hypertension.	[38, 66]	
Liddle syndrome	Liddle syndrome		[56, 81-83]
Cardiomyopathy	Dilated cardiomyopathy		[97]
Diabetic cardiomyopathy	The miR-195-5p/SGK1/Nedd4L axis plays an important regulatory role in high glucose-induced cardiomyopathy.		[108]
Myocardial infarction	When the circRNA is overexpressed in cardiomyocytes, it can promote the binding of Nedd4L and Ybx1, resulting in the reduction of Ybx1, hence to induce the formation of cardiomyocyte proliferation, which is not beneficial to prognosis.		[114, 115]
Heart failure	The miR-454 activates the CAMP pathway through the NEDD4L/TrkA axis, which ultimately inhibits cardiomyocyte apoptosis and alleviates myocardial injury.		[118]
Arrhythmia	Long QT syndrome	SCNSA-p.Y1977N disrupts the common Nedd4L binding site (from PPxY to PPxN), thus prevents the process of ubiquitination.	[135, 136]

(Studies imply that there is not much direct connection between Nedd4L and arrhythmia, and most of the arrhythmias are related to the gene SCNSA that encodes the sodium channel. Shown in Table 1) Here, eight diseases are listed in the table.

CONCLUSION

In conclusion, Nedd4L, as the dominating E3 ligase of the Nedd4 family, and related signaling play fundamental roles in...
cardiovascular diseases. In this present review, we’ve already known that the ubiquitination ligase, Nedd4L, participates in various pathophysiological processes of cardiovascular diseases. The Nedd4L isoform is expressed in several organs, thus plays a key role in the post-transcriptional modification of sodium transporters and cardiac ion channels. The encoding gene SCNSA, ENaC, and the mediator SGK1 and etc. participate in the pathogenesis of various cardiac diseases. Either mutations or deletion of above genes could lead to the poor outcome. Several signaling pathways play important roles in regulating the body’s blood pressure, among them, NEDD4L is a key regulator of these processes. Therefore, understanding their roles and targeting these molecules might hint novel therapeutic approaches to various cardiovascular diseases.

DATA AVAILABILITY

The [DATA TYPE] data used to support the findings of this study are available from the corresponding author upon request.

REFERENCES

1. Basak S, Lu C, Basak A. Post-translational protein modifications of rare and unconventional types: implications in functions and diseases. Curr Med Chem. 2016;23:714–45.
2. Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circul Physiol. 2012;303: H940–H966. https://doi.org/10.1152/ajph.00077.2012.
3. Issa Diaoille. Beve, Valerie Cunin FredericMinassian, Jean-Francois Poisson SylvieMichelland, et al. Current trends in protein acetylation analysis. Expert Rev Proteom. 2019;16:139–59. https://doi.org/10.1080/14789490.2019.1559061.
4. Song L, Luo Z-Q. Post-translational regulation of ubiquitin signaling. J Cell Biol. 2019;218:1767–86. https://doi.org/10.1083/jcb.201902074.
5. Zhang N, Zhang Y, Miao W, Shi C, Chen Z, Wu B, et al. An unexpected role for BAG3 in regulating PARP1 ubiquitination in oxidative stress-related endothelial damage. Redox Biol. 2022;50:102238. https://doi.org/10.1016/j.redox.2022.102238.
6. Zhang N, Zhang Y, Wu B, You S, Sun. Y. Role of WW domain E3 ubiquitin protein ligase 2 in modulating ubiquitination and Degradation of Septin4 in oxidative stress endothelial injury. Redox Biol. 2020;30:101419. https://doi.org/10.1016/j.redox.2020.101419.
7. Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016;18:579–86. https://doi.org/10.1038/nclb3358.
8. Goldstein G, Scheid M, Hammerling U, Schlesinger DH, Niall HD, Boyse EA. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci USA. 1975;72:11–15.
9. Yang B, Kumar S. Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ. 2010;17:68–77. https://doi.org/10.1038/cdd.2009.84.
10. Powell, SR. The ubiquitin-proteasome system in cardiac physiology and pathology. Am J Physiol Heart Circul Physiol. 2006;291:H1–19.
11. Shenoy. SK. Seven-transmembrane receptors and ubiquitination. Circulation Res. 2007;100:1142–54.
12. Qian H, Zhang N, Wu B, Wu S, You S, Zhang Y, et al. The E3 ubiquitin ligase Smurf2 regulates PARP1 stability to alleviate oxidative stress-induced injury in human umbilical vein endothelial cells. J Cell Mol Med. 2020;24:4600–11. https://doi.org/10.1111/jcmm.15121.
13. Zhang N, Zhang Y, Qian H, Wu S, Cao L, Sun. Y. Selective targeting of ubiquitination and degradation of PARP1 by E3 ubiquitin ligase WW2P regulates isoproterenol-induced cardiac remodeling. Cell Death Differ. 2020;27:2605–19. https://doi.org/10.1038/s41419-020-0523-2.
14. Wang P, Zhang N, Wu B, Wu S, Zhang Y, Sun. Y. The role of mitochondria in vascular calcification. J Transl Int Med. 2020;8:80–90. https://doi.org/10.2478/jtjm-2020-0013.
15. Zhang X, Linder S, Bazzaro M. Drug development targeting the ubiquitin-proteasome system (UPS) for the treatment of human cancers. Cancers (Basel) 2020;12. https://doi.org/10.3390/cancers12040902.
16. Goell P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene. 2015;557. https://doi.org/10.1016/j.gene.2014.11.051.
17. Anne Boase N, Kumar S. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene. 2015;557:113–22. https://doi.org/10.1016/j.gene.2014.12.020.
46. Wang MC, Lloyd-Jones DM. Cardiovascular risk assessment in hypertensive patients. Am J Hypertens. 2021;34:569–77. https://doi.org/10.1093/ajh/hpb201.

47. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:233–37. https://doi.org/10.1038/s41581-019-0244-2.

48. Manosroi W, Williams GH. Genetics of human primary hypertension: focus on hormonal mechanisms. Endocr Rev. 2019;40:825–56. https://doi.org/10.1210/er.2018-0071.

49. He FF, Tan M, Ma Y, MacGregor GA. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:632–47. https://doi.org/10.1016/j.jacc.2019.11.055.

50. Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol. 2018;14:185–201. https://doi.org/10.1038/nrneph.2017.189.

51. Safar ME. Arterial stiffness as a risk factor for clinical hypertension. Nat Rev Cardiol. 2018;15:5. https://doi.org/10.1038/nrcardio.2017.155.

52. Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol. 2015;65:1042–50. https://doi.org/10.1016/j.jacc.2015.12.039.

53. Adrogue HJ, Madrias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med. 2007;356:1966–76.

54. Snyder PM. Down-regulating destruction: phosphorylation regulates the E3 ubiquitin ligase Nedd4-2. Sci Signal. 2009;2:pe41. https://doi.org/10.1126/scisignal.279pe41.

55. Zhang DD, Duan X-P, Xiao Y, Wu P, Gao Z-X, Wang W-H, et al. Deletion of renal Nedd4-2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC, and causes hypokalemia during high HS. Am J Physiol Ren Physiol. 2021;320:F883–F896. https://doi.org/10.1152/ajprenal.00555.2020.

56. Kaminya E, Debonneville C, Hirt RP, Staub O. Liddle’s syndrome: a novel mouse Nedd4 isoform regulates the activity of the epithelial Na+ channel. Kidney Int. 2001;60:466–71.

57. Shi PP, Xiao Y, Wu P, Gao Z-X, Wang W-H, et al. Deletion of renal Nedd4-2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC, and causes hypokalemia during high HS. Am J Physiol Ren Physiol. 2021;320:F883–F896. https://doi.org/10.1152/ajprenal.00555.2020.

58. Xue Guan Bing Za Zhi. 2010;38:918

59. Lof

60. Graham L, Padmanabhan S. NEDD4L in essential hypertension. J Hypertens. 2001;60:466

61. Li N, Wang H, Yang J, Zhou L, Hong J, Guo Y, et al. Genetic variation of NEDD4L gene and essential hypertension in Chinese Hans - a population-based case-control study. BMC Med Genet. 2009;10:130https://doi.org/10.1186/1471-2350-10-130.

62. Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res. 2019;42:1099–113. https://doi.org/10.1007/s10992-019-01566-2.

63. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Nat Rev Nephrol. 2021;17:350–61. https://doi.org/10.1038/s41581-019-0244-2.

64. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Curr Opin Cardiol. 2020;35:468–77. https://doi.org/10.1097/HCO.0000000000000972.

65. Ronzaud C, Lof

66. Kino T, Ishigami T, Murata T, Doi H, Nakashima-Sasaki R, Chen L, et al. Eplerenone-resistant salt-sensitive hypertension in Nedd4-2 C2 KO mice. J Int Med Sci. 2017;18. https://doi.org/10.3390/ijms18061250.

67. Dahlberg J, Sjogren M, Hedblad B, Engstrom G, Melander O. Genetic variation in NDEAL1, an epithelial sodium channel regulator, is associated with cardiovascular disease and cardiovascular death. J Hypertens. 2014;32:294–9. https://doi.org/10.1093/ihj/hdu200.

68. Snyder PM, Steines JC, Olson DR. Relative contribution of Nedd4 and Nedd4-2 to ENaC regulation in epithelia determined by RNA interference. J Biol Chem. 2004;279:5042–6.

69. Enslow BT, Stockand JD, Berman JM. Liddle’s syndrome mechanisms, diagnosis and management. Integr Blood Press Control. 2019;12:213–22. https://doi.org/10.1016/j.ipbc.2019.03.008.

70. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76–82.

71. Rotin D, Schild L. ENaC and its regulatory proteins as drug targets for blood pressure control. Curr Drug Targets. 2008;9:79–16.

72. Knight KK, Olson DR, Zhou R, Snyder PM. Liddle’s syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc Natl Acad Sci USA. 2006;103:2805–8.

73. Gleason CE, Frindt G, Cheng C-J, Ng M, Kidwai A, Rashmi P, et al. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J Clin Invest. 2015;125:177–28. https://doi.org/10.1172/JCI73935.

74. Ishigami T, Kino T, Ishigami T, Murata T, Doi H, Nakashima-Sasaki R, Chen L, et al. Eplerenone-resistant salt-sensitive hypertension in Nedd4-2 C2 KO mice. J Int Med Sci. 2017;18. https://doi.org/10.3390/ijms18061250.

75. Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol. 2015;65:1042–50. https://doi.org/10.1016/j.jacc.2015.12.039.

76. Kino T, Ishigami T, Ishigami T, Murata T, Doi H, Nakashima-Sasaki R, Chen L, et al. Eplerenone-resistant salt-sensitive hypertension in Nedd4-2 C2 KO mice. J Int Med Sci. 2017;18. https://doi.org/10.3390/ijms18061250.
first described arrhythmia overlap syndrome and one of the largest and best characterised families worldwide. Neth Heart J. 2009;17:422–8.
120. Wang Q, Shen J, Saplowski I, Atkinson D, Li Z, Robinson JL, et al. SCNSA mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–11.
121. Rook MB, Evers MM, Vos MA, Bierhuizen MFA. Biology of cardiac sodium channel Nav.1.5 expression. Cardiovascular Res. 2012;92:12–23. https://doi.org/10.1093/cvr/cvs252.
122. Wilde AAM, Bezina CR. Genetics of cardiac arrhythmias. Heart. 2005;91:1352–8.
123. Shy D, Gillet L, Abriel H. Cardiac sodium channel NaV.1.5 distribution in myocytes via interacting proteins: the multiple pool model. Biochim Biophys Acta. 2013;1833:886–94. https://doi.org/10.1016/j.bbamcr.2012.10.026.
124. Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCNSA). J Clin Invest. 2003;112:1019–28.
125. Abe K, Machida T, Sumitomo N, Yamamoto H, Ohkubo K, Watanabe I, et al. Sodium channelopathy underlying familial sick sinus syndrome with early onset and predominantly male characteristics. Circ Arrhythm Electrophysiol. 2014;7:511–7. https://doi.org/10.1161/CIRCEP.113.001340.
126. Sergio Richter LDB, Hindricks G. Atrial fibrillation ablation in heart failure. Eur Heart J. 2019;40:663–71. https://doi.org/10.1093/euheartj/ehy778.
127. Darbar D, Kannankeril PJ, Donahue BS, Kucera G, Stubbefield T, Haines JL, et al. SCN5A sodium channel sodium (SCNSA) variants associated with atrial fibrillation. Circulation. 2008;117:1927–35. https://doi.org/10.1161/CIRCULATIONAHA.107.757955.
128. Lubitz SA, Yin X, Fontes JD, Magnani JW, Rienstra M, Pai M, et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304:2263–9. https://doi.org/10.1001/jama.2010.1690.
129. Groenewegen WA, Firoozi M, Bezina CR, Vliex S, van Langen IM, Sandkuil L, et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circulation Res. 2003;92:14–22.
130. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PAGES, and AEPC in June 2013. Heart Rhythm. 2013;10:1932–63. https://doi.org/10.1016/j.hrthm.2013.05.014.
131. Glazer AM, Wada Y, Li B, Muhammad A, Kalash OR, O'Neill MJ, et al. High-throughput reclassification of SCNSA variants. Am J Hum Genet. 2020;107:11–23. https://doi.org/10.1016/j.ajhg.2020.05.015.
132. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293–6.
133. Clatot J, Ziyadeh-Ileem A, Maugenre S, Denjoy I, Liu H, Dilanian G, et al. Dominant-negative effect of SCNSA N-terminal mutations through the interaction of Nav1.5 c-subunits. Cardiovascular Res. 2012;96:53–63. https://doi.org/10.1093/oxfordcirc/oxr211.
134. Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, et al. An international comendium of mutations in the SCNSA-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33–46. https://doi.org/10.1016/j.hrthm.2009.09.069.
135. Wang Y, Du Y, Luo L, Hu P, Yang G, Li T, et al. Alterations of Nedd4-2-binding protein-1 implicated in translational control of fetal myocardial gene development. J Mol Biol. 2020;432:107741. https://doi.org/10.1016/j.jmb.2020.04.032.
136. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293–6.
137. Clatot J, Ziyadeh-Ileem A, Maugenre S, Denjoy I, Liu H, Dilanian G, et al. Dominant-negative effect of SCNSA N-terminal mutations through the interaction of Nav1.5 c-subunits. Cardiovascular Res. 2012;96:53–63. https://doi.org/10.1093/oxfordcirc/oxr211.
138. Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, et al. An international comendium of mutations in the SCNSA-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33–46. https://doi.org/10.1016/j.hrthm.2009.09.069.
139. Wang Y, Du Y, Luo L, Hu P, Yang G, Li T, et al. Alterations of Nedd4-2-binding protein-1 implicated in translational control of fetal myocardial gene development. J Mol Biol. 2020;432:107741. https://doi.org/10.1016/j.jmb.2020.04.032.
140. Murphy LL, Moon-Grady AJ, Cuneo BF, Wakai RT, Yu S, Kunic JD, et al. Developmentally regulated SCNSA splice variant potentiates dysfunction of a novel mutation associated with severe fetal arrhythmia. Heart Rhythm. 2012;9:590–7. https://doi.org/10.1016/j.hrthm.2011.11.006.

AUTHOR CONTRIBUTIONS
M.L. contributed to the manuscript and figures. G.S. and P.W. modified the grammar. W.W. and K.C. and S.S. summarized the molecular mechanisms of Nedd4-2 and hypertension. N.Z. and Y.Z. and Y.S. contributed to conception and design. All authors read and approved the final manuscript.

FUNDING
The present study was funded by the National Natural Science Foundation of China (82171572, 82171571, 81900372, 81970211, and 81900355) and the National Postdoctorative Innovative Talents Support Program (BXX2021376).

COMPETING INTERESTS
The authors declare no competing interests.
ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41420-022-01017-1.

Correspondence and requests for materials should be addressed to Yingxian Sun, Ying Zhang or Naijin Zhang.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.