Comment on “A short impossibility proof of quantum bit commitment”

Guang Ping He

School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

In a recent letter (Phys. Lett. A 377 (2013) 1076), the authors presented an impossibility proof of quantum bit commitment, which attempted to cover all possible protocols that involve both quantum and classical information. Here we show that there are many errors in the proof, thus it fails to exhaust all conceivable protocols.

PACS numbers: 03.67.Dd, 03.67.Ac

While it is widely believed that unconditionally secure quantum bit commitment (QBC) is impossible, the completeness of previous impossibility proofs have been continually challenged. As pointed out in a recent letter [1], “the debate can be only settled with an appropriate formulation of the problem, which is sufficiently powerful to include all possible protocols in a single simple mathematical object”. Ref. [1] made a good attempt towards this direction. Unfortunately, we found that the goal is still not accomplished, as their proof contains the following problems.

I. WRONG MODELLING OF THE HISTORY OF CLASSICAL INFORMATION

At the beginning of Section 4.1 of Ref. [1], the authors wrote that \(s_i = i_0 i_1 \ldots i_l \) will represent the history of classical information with \(i_{2k-1} \) denoting the outcome of Bob’s quantum operation at step \(k \) (which is the same as Alice’s classical input at Alice’s step \(k \) and \(i_{2k-2} \) for \(k > 1 \) represents Bob’s input classical information (which is Alice’s output at step \(k – 1 \)”). That is, they think that Bob’s (Alice’s) output always equals to Alice’s (Bob’s) input. This point may look fine at the first glance, because in the 1st paragraph of Section 3.7 the authors defined \(s_i \) (and therefore all \(i’s \) included in \(s_i \)) as the classical information being openly exchanged. However, we should note that there can be protocols in which some outcomes are allowed to be kept secret without being exchanged. Meanwhile, these secret information can also affect the participants’ choices of quantum operations. For example, at a certain step \(k_0 \) Bob’s outcome can include both \(i_{2k_0-1} \) and \(i_{2k_0-1}^* \), where \(i_{2k_0-1} \) is publicly exchanged and becomes Alice’s input while \(i_{2k_0-1}^* \) is kept secret to himself. At a later step \(k_1 \), Bob can choose which quantum operation to apply, depending not only on the classical information already exchanged, but also on \(i_{2k_0-1}^* \) (e.g., on a certain comparison result between \(i_{2k_0-1}^* \) and Alice’s recent output). Thus \(i_{2k_0-1}^* \) becomes a part of Bob’s own input at this step. In such protocols, one participant’s output is not always the same as the other’s input at each step, as opposed to the case the authors studied.

As a consequence, in the general case the history of classical information \(s \) should include not only all \(i’s \) being exchanged, but also all \(i^*’s \) being kept secret. Such an \(s \) is not always known completely to either Alice or Bob. Each of them can only know a different part of \(s \). A cheating strategy must conform to all \(i’s \), i.e., the communication interface, as mentioned at the end of the 1st paragraph of their Section 4. But this is not enough. A successful cheating should also agree with \(i^*’s \) of the other participant. Therefore, it becomes doubtful whether a dishonest Alice has sufficient information to calculate the unitary transformation \(\mathcal{P} \) in Eq. (69), as the related equations in their Section 5.1 all depend on the history of classical information \(s \). (Note that the authors dropped the index \(s \) for simplicity, as they mentioned in the paragraph below Eq. (68).) Without \(\mathcal{P} \), Alice’s cheating procedure described below Eq. (72) cannot be performed.

Some might argue that in a protocol all participants can measure only the information that are required to be publicly announced. All other secret can be kept on the quantum level without collapsing into classical information, so that \(i^*’s \) can be treated as a part of the quantum system being exchanged and does not need to be included in \(s \). However, while classical information is a special case of quantum ones, it is so special that it can be cloned perfectly, cannot be altered, and there is only one measurement basis for reading the information, no other nonorthogonal bases exist. On the contrary, quantum information does not have these particularities. Thus classical information cannot always be replaced with quantum ones, especially when there can be dishonest participants who want to alter the content or perform measurements in other bases. Delaying the measurement on one’s own quantum system may not always be a benefit for an honest participant (at least, even though it is indeed a benefit in some particular protocols previously proposed, there still lacks of such a general proof in literature, including Ref. [1]). Especially, as described in the 1st paragraph of Section 3.7, the quantum system is exchanged back and forth between the participants. Therefore in a well-designed protocol, an honest participant’s measuring his own quantum system can help him gain more information from the system, and keeping these information secret will put more lim-

*Electronic address: hegp@mail.sysu.edu.cn
its on the other participant’s freedom on altering the system dishonestly in later steps. (Note that it is not the purpose of our current comment to discuss whether the conclusion “unconditionally secure QBC is impossible” is correct. Instead, it is to discuss whether the current proof is sufficient to lead to this conclusion. For this reason, here we will not go into detail on how to construct such a protocol, and would rather leave it elsewhere.) On the other hand, if an honest participant announces openly all the classical information that he obtained from his measurements, then he is surely easier to be cheated since he lets his opponent know too much. Therefore, if \(s \) is taken merely as the classical information being exchanged, while the secret information \(i^* \)s are not included, then not all the measurements in the protocols are fully considered, so that the corresponding impossibility proof cannot be regarded as general.

Also, it might be the intention of the authors that these secret information could be treated as the content of the quantum memories, so that they do not need to be included in the classical information \(s \). But we must note that the quantum memory was merely mentioned briefly in Sections 3.2 and 3.3 of Ref. [1]. After that, the authors seemed to forget its role. The contribution of its content on the form of the cheating operations was never formulated in a rigorous mathematical manner. Especially, the change of the memory content was not considered.

II. LOOPHOLE ON THE CORRESPONDENCE BETWEEN STRATEGIES AND CONDITIONED COMBS

After the proof of Theorem 2 in Section 3.7, it was claimed that as a consequence of the theorem, “single-party strategies in a protocol are in one-to-one correspondence with conditioned combs”. However, let us look into the details of the proof of Theorem 2. It said that “if we apply the von Neumann-Lüders measurements \(\{ I_{s_{2k}} \otimes | s_{2k} \rangle \langle s_{2k} | \} \) on the input space \(\mathcal{H}_{2k} \) before channel \(\mathcal{G}_k \), followed by \(\{ I_{s_{2k+1}} \otimes | s_{2k+1} \rangle \langle s_{2k+1} | \} \) on the output space \(\mathcal{H}_{2k+1} \) after channel \(\mathcal{G}_k \), we obtain the conditioned quantum operations \(\{ \mathcal{E}_{s_{2k}}^{c_{2k}} \} \)”. That is, the correspondence between a strategy and a conditioned comb is valid only if the mentioned measurements are performed. But what if the measurements are applied in other bases, or not performed at all? Then there will be no guarantee that the correct conditioned quantum operations will be obtained.

Note that “whether QBC can be secure” and “whether the current proof is sufficiently general” are two different stories. That is, on one hand, it is true that a protocol is insecure if it can be proven that a successful cheating strategy still exists even when the cheater honestly performs the measurement required in this particular step. While on the other hand, the model of QBC cannot be considered general if there is no proof showing that the cheater always has to perform this measurement honestly. In the presented proof, as shown in their Fig. 2, the measurement of the quantum tester is performed at the opening stage only, instead of being performed after each step \(k (k = 0, \ldots, N - 1) \). Therefore, while the protocol requires the strings \(s_{2k}, s_{2k+1} \) to be announced classically, there is nothing to ensure that both participants indeed obtain all these strings by the honest measurements \(\{ I_{s_{2k}} \otimes | s_{2k} \rangle \langle s_{2k} | \} \) and \(\{ I_{s_{2k+1}} \otimes | s_{2k+1} \rangle \langle s_{2k+1} | \} \). It is possible that they merely announce \(s_{2k}, s_{2k+1} \) by guess without measurements, or by using other dishonest measurements.

For this reason, the proof that the authors presented to Theorem 2 is valid only when all internal participants always perform the measurements honestly. Thus it works fine if we apply Eq. (54) of Ref. [1] merely to formulate quantum cryptographic protocols in which all internal legitimate participants are willing to collaborate honestly against external cheating. The well-known quantum key distribution is a typical example of such protocols. On the other hand, in cryptographic tasks where some of the internal legitimate participants may attempt to cheat (e.g., QBC), the measurements required in the proof of Theorem 2 may not be performed honestly. In this case, the correspondence between strategies and conditioned combs does not necessarily hold, so that Eq. (54) is not sufficiently general to represent all possible protocols where there are dishonest internal participants.

III. WHO SHOULD PERFORM THE LAST MOVE

Also in the 1st paragraph of Section 4.1, the authors claimed that “at the end of the commitment stage we can assume without loss of generality that Alice performs the last move” because “for a protocol where the last move is Bob’s, we can always add a null move”. This is a tricky part of their impossibility proof, which makes it easier to come up with a cheating strategy for Alice. All these who had attempted to construct unconditionally secure QBC would know that one of the biggest difficulty is to force measurements, especially, to force a dishonest Alice to finish her measurements during the commitment stage. It is surely favorable to Alice if she is assumed to perform the last move and she does not use a null one, as Bob can no longer check whether Alice has performed this step honestly (or whether it is indeed a null move) before the end of the commitment stage. For example, if an honest Alice is supposed to finish some measurements in the last move, a dishonest Alice will then be able to delay the measurements until the beginning of the opening stage, because there is no Bob’s move in between to check Alice’s behavior. Thus we can see that assuming Alice to perform the last move is not appropriate.
IV. MISUSE OF THE CONCEALMENT CONDITION

In the last paragraph of the left column of page 9, the authors wrote that “a protocol that is not concealing at step \(k \) is also not concealing at any following step”. This statement could be wrong, depending on how “not concealing” is defined here. It may be true if “not concealing” means that \(\rho^{(0)} \) and \(\rho^{(1)} \) (the density matrices of the states at Bob’s side at this step corresponding to the committed values \(b = 0 \) and \(b = 1 \), respectively) are rigorously orthogonal to each other. But it is not true if it means that \(\rho^{(0)} \) and \(\rho^{(1)} \) do not satisfy the concealment condition Eq. (60) rigorously. In fact, Eq. (60) does not have to be satisfied at any step of the protocol. It is necessary only for the last step before the opening. This is because in the middle of the commitment stage of a well-designed protocol, Bob will still be subjected to other security checks at later steps, where he may be required to measure his quantum system in other bases which are different than the one that could distinguish required to measure his quantum system in other bases to other security checks at later steps, where he may be held back from applying the tester. But if this is true, then the QBC being studied are merely those protocols in which the measurements of an honest Bob are excluded. Consequently, their results thereafter become unreliable.

Similarly, the 1st sentence of the last paragraph of their Section 5.2 said that “for a protocol with unbounded number of rounds, the conditions of \(\varepsilon \)-concealment and \(\delta \)-closeness are still given by Eqs. (60) and (65), respectively”. We can see that the authors also missed to notice the possibility that a secure protocol does not have to be concealing at the middle stage, as long as there is proper security checks in later steps that can prevent Bob from distinguishing \(\rho^{(0)} \) and \(\rho^{(1)} \) at this stage. Therefore, their proof is insufficient to cover all protocols with unbounded number of rounds either.

V. OTHER ERRORS

There are also other problems in Ref. [1] which seem relatively less critical but still should not be ignored, as enlisted below.

A. Probability of failure

At the end of Section 2.1, the authors said that Bob’s measurement will result “in a failure, e.g. due to the detection of an attempted cheat. Again, in a well-designed protocol the probability of failure should be vanishingly small”. This is bewildering. When Alice cheats, the probability of failure in a well-designed protocol should not be small, otherwise the protocol is surely insecure.

B. Tester for an honest Bob

In the 1st paragraph of Section 3.4, it stated that “a dishonest Bob will perform a tester to distinguish Alice’s strategies before the opening”. This statement could sound misleading, as it seems to suggest that an honest Bob will not perform the tester. But if this is true, then the QBC being studied are merely those protocols in which the measurements of an honest Bob are excluded. That is, a large class of QBC protocols with measurements will be left out from their proof.

C. Concealment versus abortion

In the 2nd paragraph of its Summary, the authors claimed that “concealment is defined regardless abortion, namely Bob cannot detect the bit value anyway, whether Alice catches him or not”. This condition is too strong. If Bob can learn the bit but Alice can catch him whenever he manages to do so, then the protocol is generally still regarded as secure.

In summary, there are many logical problems in Ref. [1]. Thus it becomes doubtful whether the existing impossibility proof of unconditionally secure QBC is sufficiently general to cover all possible protocols. Still, comparing with a lot of previous impossibility proofs, the current one is more valuable as it attempts to construct the proof with an unambiguous detailed presentation, so that the (im)possibility of QBC can be discussed in a precise way.

The work was supported in part by the NSF of China under grant No. 10975198, the NSF of Guangdong province, and the Foundation of Zhongshan University Advanced Research Center.

[1] G. Chiribella, G.M. D’Ariano, P. Perinotti, D. Schlingemann, and R. Werner, Phys. Lett. A 377 (2013) 1076. A short impossibility proof of quantum bit commitment