Research Article

Distributed Continuous-Time Containment Control of Heterogeneous Multiagent Systems with Nonconvex Control Input Constraints

Xue Li,1,2 Lulu Wang,2 and Yinsen Zhang2

1Ctr Commun and Tracking Telemetry Command, Chongqing University, Chongqing 400044, China
2School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Xue Li; lixue.1981@cqu.edu.cn

Received 29 July 2021; Accepted 31 January 2022; Published 25 April 2022

Academic Editor: Chih-Chiang Chen

Copyright ©2022 Xue Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on studying containment control problem with switching communication graphs of continuous-time heterogeneous multiagent systems where the control inputs are constrained in a nonconvex set. A nonlinear projection algorithm is proposed to address the problem. We discuss the stability and containment control of the system with switching topologies and nonconvex control input constraints under three different conditions. It is shown that all agents converge to the convex hull of the given leaders ultimately while staying in the nonconvex set under the premise that at least one directed path from leaders to the agents exists in each bounded time interval. Finally, the validity of the results obtained in this paper is verified by simulation.

1. Introduction

With the in-depth research of autonomous control of multiagent systems in recent years, many cooperative control problems of multiagent systems have become the focus of many fields, such as control theory, biology, robotic systems, and spacecraft systems [1–5]. The study and exploration of multiagent systems provided a unified framework and theoretical basis for various practical problems such as unmanned aerial vehicles, formation aircrafts, multiple robots, and other practical applications. A Lyapunov-based approach was proposed to address the consensus problem in [6]. Lin et al. [7] emphasized on the consensus control problem in consideration of nonconvex control input constraints. The consensus control problem of multiagent systems with time delays was studied in consideration of external interference in [8]. And the work [9] was centered on the containment control problem. Lin et al. [10] studied distributed optimization problems for continuous-time and discrete-time multiagent systems with different constraints.

As an important branch of control theory, there were many articles focusing on the study of containment control [11–20]. Ji et al. and Li et al. [11, 13] solved the containment control problem with fixed topology. The output formation-containment problem of heterogeneous system was investigated in [14, 15]. For double-integrator multiagent systems, containment control problem with fixed communication topology and position measurements was addressed in [16, 17]. Two distributed algorithms were proposed for containment control in the case of only using absolute position measurements and relative position measurements, respectively. However, the ‘sign’ function was employed in [17], which may lead to the chattering phenomenon. Cheng et al. [18] avoided employing the ‘sign’ function, and both disturbance and measurement noise were also taken into consideration. Notarstefano et al. and Zhang et al. [19, 20] investigated containment control with switching topologies. Cao et al. [12] studied the solution of containment control in consideration of switching topologies and fixed simultaneously.

In many practical systems, the control inputs were generally constrained in a convex or a nonconvex hull, while most of existing works studied the multiagent problem without considering the constraint of control inputs. The authors of [21–24] studied the consensus problem with position constraints on the basis of the property of stochastic
matrices. Nevertheless, these approaches could not be applied to the realization of containment control with the nonconvex control inputs’ constraints. The containment control problem with input saturation of the second-order agent system was studied in [25, 26]. However, control input of each agent was supposed to be in a hypercube. In reality, on account of the physical limitation, the control inputs were often constrained in a convex or a nonconvex region. For instance, the maximum driving forces of quadrotors, which formed a nonconvex region, were in the direction of the diagonal axis. A multiagent system model and a projection consensus algorithm were introduced in [23], and it placed emphasis on the effects of control input constraints. The algorithm was executed locally by each agent and its relationship with the alternate projection method was discussed in [23]. Yang et al. and Lin et al. [27, 28] took nonconvex velocity and control inputs’ constraints into consideration, but what they emphasized was on the consensus control problem which meant all the followers had to reach a consensus.

In [29], all agents were assumed to be in the form of the second-order dynamics. In practical applications, the multiagent systems might contain different kinds of agents. Our focus of this paper is to study the containment control for heterogeneous multiagent systems with nonconvex input constraints. Since the agents in this paper have different dynamics, the analysis for the case with all identical agents in [29] cannot be applied to this paper directly. In this study, we expand the results of [29] and mainly focus on the containment control problem of continuous-time heterogeneous multiagent systems, given the nonconvex control input constraints and switching communication graphs. Li et al. [30] studied the containment control of heterogeneous multiagent systems, however, they did not consider the constraints of control inputs and heterogeneous multiagent systems at the same time. To analyze the stability and convergence of the system, a nonlinear projection algorithm is proposed to address the problem. Then, a model transformation is introduced and estimates the distance from the followers to the nonconvex hull by using the Lyapunov function we construct. We prove that the distance decreases and ultimately all followers converge to the nonconvex hull.

1.1. Notations. Assume that \(\mathbb{R}^{m \times n} \) represents the set of \(m \times n \)-dimensional real matrix. \(x^T \) is the transposing matrix of \(x \). \(\|x\| \) is the Euclidean norm of \(x \). \(W_\chi(x) \) denotes the projection of a vector \(x \) onto a closed convex set \(\chi \), i.e.,
\[
W_\chi(x) = \arg\min_{x \in \chi} \|x - \pi\|.
\]

2. Preliminaries

2.1. Graph Theory. \(G(V, E, A) \) is a directed weighted graph representing the communication graphs among the agents, where \(V = \{v_1, v_2, \ldots, v_n\} \) is the set of node representing the agents and \(E \subseteq V \times V \) is the set of directed edges representing the communication between the agents. \(A = \{a_{ij}\} \in \mathbb{R}^{m \times n} \) is a weighted adjacent matrix. Laplacian is a very important matrix in graph theory, which is defined as \(L = D - A \), where

\[
D = \left\{ \begin{array}{ll} \sum_{j=1, j \neq i}^{n} a_{ij}, & i = j, \\ 0, & i \neq j. \end{array} \right.
\]

Then, the Laplacian matrix can be expressed as follows:
\[
L = (l_{ij})_{m \times n},
\]

\[
l_{ij} = \left\{ \begin{array}{ll} \sum_{j=1, j \neq i}^{n} a_{ij}, & i = j, \\ -a_{ij}, & i \neq j. \end{array} \right.
\]

For heterogeneous multiagent systems consisted of \(n \) first-order and \(m \) second-order agents, the adjacent agents of second-order agent \(i \) can be denoted as \(N_i = N_i^f \cup N_i^s \). Similarly, the adjacent agents of first-order agent \(i \) can be denoted as \(N_i^f = N_i^s \cup N_i^f \). and \(f \) represent the second-order and the first-order agents, respectively. Partition the matrix \(A \) and \(D \) as
\[
A = \begin{bmatrix} A_s & A_{sf} \\ A_{fs} & A_f \end{bmatrix},
\]
\[
D = \begin{bmatrix} D_s + D_{sf} & 0 \\ 0 & D_f + D_{fs} \end{bmatrix},
\]

where \(D_{sf} = \text{diag}(\sum_{i \in N_i} a_{ii}) \) and \(A_{sf} \) represents the adjacent relationship of the second-order and the first-order agents. \(D_{fs} = \text{diag}(\sum_{i \in N_i} a_{sii}) \) and \(A_{fs} \) represents the adjacent relationship of the first-order and the second-order agents. Then, the Laplacian matrix can be expressed as follows:
\[
L = D - A = \begin{bmatrix} T_s & -A_{sf} \\ -A_{fs} & T_f \end{bmatrix},
\]

where \(T_s = D_s + L_s \), \(T_f = D_f + L_f \), and \(L_s \) and \(L_f \) are the Laplacian matrix of second-order agents and first-order agents, respectively.

2.2. Nonconvex Constraints. The control inputs are generally subject to nonconvex constraints in many practical cases. Hence, we have the following assumption.

Assumption 1 (see [7]). \(E \in \mathbb{R}^r \) is a nonempty bounded closed set, \(0 \in E \), and \(\max_{x \in E} \|Q_E(x)\| = \eta, \min_{x \in E} \|Q_E(x)\| = \bar{\eta} > 0 \). \(Q_E \) is a nonconvex constraints’ operator and is defined as follows:

\[
Q_E(x) = \left\{ \begin{array}{ll} \frac{x}{\|x\|} \max_{0 \leq \delta \leq 1} \left\{ \delta \frac{dx}{\|x\|} \in E, \forall 0 \leq \delta \leq 1 \right\}, & x \neq 0, \\ 0, & x = 0. \end{array} \right.
\]

In this study, the operator \(Q_E(.) \) is used to convert \(x \) to \(Q_E(x) \) which has the alignment with the direction of \(x \) and satisfies \(\|Q_E(x)\| \leq \|x\| \) and \(\delta Q_E(x) \in E_i, \forall 0 \leq \delta \leq 1 \). \(\max_{x \in E} \|Q_E(x)\| = \bar{\eta} \) means that the value cannot be
arbitrarily large. We do not have any requirement for \(E_i \) to be convex or nonconvex. What we require is that the distance from any point outside \(E_i \) to the origin is lower bounded by a positive constant.

3. System Modeling

Consider a continuous-time multiagent system consisted of \(l \) leaders, \(n \) first-order followers, and \(m \) second-order followers. The first-order agents have the following dynamic equation:

\[
\dot{x}_f(t) = u_f(t).
\]

The dynamic equations of the second-order agents can be denoted as follows:

\[
\begin{align*}
\dot{x}_s(t) &= v_s(t), \\
\dot{v}_s(t) &= u_s(t),
\end{align*}
\]

where \(s, f \in \Gamma \) and \(q \) is speed decay factor of followers. \(a_{ij}(t) \) and \(a_{ij}(t) \) are the weight of edge \((i, s), (i, f)\) at time \(t \). And, we assume the weight of edge is always positive and lower bounded by a constant \(\varepsilon_{ij} \). If follower \(i \) can get the information from one or more agent directly, then \(g_i(t) = \mathcal{G}_i \), otherwise, \(g_i(t) = 0 \). Assume that \(\chi(t) \) is the convex set of the leaders. The Laplacian matrix of the heterogeneous multiagent system can be denoted by the following matrix:

\[
L = \begin{bmatrix}
\mathcal{T}_s & -A_{sf} \\
-A_{fs} & L_f
\end{bmatrix}.
\]

Then, algorithm (8) can be converted into

\[
\begin{align*}
u_s(t) &= Q_E\left[-q_s v_s(t) - \sum_{i=1}^n a_{si}(t)(x_i(t) - x_s(t)) - g_s(t)(x_s(t) - W_{\chi_i}(x_i(t))) \right], \\
u_f(t) &= Q_E\left[\sum_{i=1}^n a_{fi}(t)(x_i(t) - x_f(t)) - g_f(t)x_f(t) - W_{\chi_f}(x_f(t)) \right],
\end{align*}
\]

where \(s, f \in \Gamma \) represent the second-order and the first-order agents, respectively, and \(x_i(t), v_i(t), \) and \(u_i(t) \) represent the position information, speed information, and control input of the second-order agents separately. \(x_f(t) \) and \(u_f(t) \) represent the position information and control input of the first-order agents separately. The set of all followers is expressed by \(\Gamma = \{1, 2, \ldots, n + m\} \). We assume all leaders are stationary and the position states are denoted by \(Y = \{y_1, y_2, \ldots, y_{\ell}\} \).

In this study, if all the followers can converge into the convex set of leaders under the control protocol for any initial value given, that is, \(\lim_{t \to \infty} \| x_i(t) - W_{\chi_i}(x_i(t)) \| = 0 \), the control protocol can realize the containment control.

4. Model Transformation

To analyze the containment control of continuous-time heterogeneous multiagent system, a control protocol is proposed in this study as follows:

\[
\begin{align*}
u_s(t) &= Q_E\left[-q_s v_s(t) - \mathcal{T}_s x_s(t) + A_{sf} x_f(t) - g_s(t)(x_s(t) - W_{\chi_i}(x_i(t))) \right], \\
u_f(t) &= Q_E\left[-\mathcal{T}_f x_f(t) + A_{fs} x_s(t) - g_f(t)(x_f(t) - W_{\chi_f}(x_f(t))) \right].
\end{align*}
\]

The following model transformation is introduced for further derivation:

\[
z_i(t) = \frac{Q_E[\Phi(t)\Phi(t)]}{\Phi(t)},
\]

where \(\Phi(t) = 0 \), \(z_i(t) = 1 \). For the first-order agents, (11) can be denoted as follows:

\[
z_f(t) = \frac{Q_E[\omega_f(t)]}{\omega_f(t)}.
\]

where \(\omega_f(t) = -\mathcal{T}_f x_f(t) + A_{fs} x_s(t) - g_f(t)(x_f(t) - W_{\chi_f}(x_f(t))) \). For the second-order agents, (11) can be transformed as follows:

\[
z_f(t) = \frac{Q_E[\omega_f(t) + \omega_s(t)]}{\omega_f(t) + \omega_s(t)},
\]

where \(\omega_s(t) = -\mathcal{T}_s x_s(t) + A_{sf} x_f(t) - g_s(t)(x_s(t) - W_{\chi_i}(x_i(t))) \). From the above definition, it is easy to know the range of \(z_i(t) \), that is, \(0 < z_i(t) < 1 \). We assume that \(z_i(t) \) is lower bounded by a positive constant \(\pi_i = \min|z_i(t)| > 0, \)
for all i. According to the above definition, system (8) can be converted into the following form.

For the first-order agents,

$$\dot{x}_j(t) = z_j(t)\omega_j(t). \quad (14)$$

For the second-order agents,

$$\dot{x}_j(t) = c_j\varphi_j(t) - c_j x_j(t),$$

$$\dot{\varphi}_j(t) = (c_s - q_j z_j(t))\varphi_j(t) + \left[q_j z_j(t) + \frac{z_j(t)(T_s + g_j(t))}{c_s} \right] x_j(t) + \frac{z_j(t)A_{j,f}}{c_s} x_f(t) + \frac{z_j(t)g_j(t)}{c_s} W_{X_{j,l}}(x_j(t)). \quad (16)$$

5. Main Result

Prior to the main theorems, we need to give the definition of switching communication graphs. Denote an infinite sequence of nonempty bounded continuous intervals as $[t_s, t_{s+1}]$, $s = 0, 1, 2, \ldots$ and $0 \leq t_{s+1} - t_s \leq T$, where T is a positive constant. Divide the above interval into a series of subintervals which are represented as $[t_{k}, t_{k+1}]$, $n\{q_{j}, t_{s}, h\} \times [T_{s}, T_{s+1}]$ with $t_{k} = t_{s}$ and $t_{n+1} = t_{s+1}$. We assume there exists a constant $\rho \geq 0$ that makes $t_{s+1} - t_s \geq \rho$. The communication topologies change at $t = t_{s}$ and do not change in the subinterval $[t_{s}, t_{s+1}]$.

Assumption 2. Suppose that there exist at least one path between leaders and followers in the interval $[t_s, t_{s+1})$ for every agent. In other words, each follower can receive information from leaders directly or indirectly in the every interval $[t_s, t_{s+1})$.

Assumption 3 (see [29]). $\sum_{j=1}^{n} a_{j,i} (t)(x_i(t) - x_j(t)) \leq N_i/2$ and $g_j(t)(x_i(t) - W_{X_{j,l}}(x_i(t))) \leq N_i/2$ for some constant N_i.

$$\frac{\text{d}}{\text{d}t}\left\| x_j(t) - W_{X_{j,l}}(x_j(t)) \right\| \leq c_j \left\| \varphi_j(t) - W_{X_{j,l}}(\varphi_j(t)) \right\| - c_j \left\| x_j(t) - W_{X_{j,l}}(x_j(t)) \right\|, \quad (19)$$

$$\frac{\text{d}}{\text{d}t}\left\| \varphi_j(t) - W_{X_{j,l}}(\varphi_j(t)) \right\| \leq (c_s - q_j z_j(t)) \left\| \varphi_j(t) - W_{X_{j,l}}(\varphi_j(t)) \right\|$$

$$+ \left(q_j z_j(t) - c_s - \frac{z_j(t)(T_s + g_j(t))}{c_s} \right) \left\| x_j(t) - W_{X_{j,l}}(x_j(t)) \right\|$$

$$+ \left(\frac{z_j(t)A_{j,f}}{c_s} \right) \left\| x_f(t) - W_{X_{j,l}}(x_f(t)) \right\|. \quad (20)$$

$$\frac{\text{d}}{\text{d}t}\left\| x_f(t) - W_{X_{j,l}}(x_f(t)) \right\| \leq \left\| (T_f z_f(t) + g_f(t)) \right\| \left\| x_f(t) - W_{X_{j,l}}(x_f(t)) \right\|$$

$$+ \left(A_{j,f} z_f(t) \right) \left\| x_f(t) - W_{X_{j,l}}(x_f(t)) \right\|. \quad (21)$$

Lemma 1 (see [29]). Suppose that $U \subseteq \mathbb{R}^r$ is a nonempty closed set. For any vector $x_i \in U^r$, $i \in \{1, 2, \ldots, n\}$, and $\sum_{i=1}^{n} a_i = 1$, we have

$$\left\| \sum_{i=1}^{n} a_i x_i - W_U \left(\sum_{i=1}^{n} a_i x_i \right) \right\| \leq \sum_{i=1}^{n} a_i \left\| x_i - W_U (x_i) \right\|. \quad (17)$$

To analyze the stability and convergence of the system, we construct a Lyapunov function as follows:

$$F(t) = \max_{k} \left\| \zeta_k(t) - W_{X_{j,l}}(\zeta_k(t)) \right\|, \quad (18)$$

where $t \geq T_0$, $k \in \{1, 2, \ldots, n + m\}$.

Theorem 1. If $q_i \geq (c_i + 1)/\pi$, and $\eta/2 < N_i < \eta$, under assumption 1 and 2, $F(t)$ is a nonincreasing function relative to time t and $F(t) \geq 0$, namely, the limit of $F(t)$ exits. And the following inequalities hold:
Proof. For the second-order agents, we can deduce
\[
\lim_{\Delta t \to 0} x_s(t + \Delta t) = \lim_{\Delta t \to 0} (1 - c_s \Delta t) x_s(t) + \lim_{\Delta t \to 0} (c_s \Delta t) \bar{v}_s(t),
\]
where \(\Delta t\) is time increment and \(\Delta t \to 0\). \(c_s\) is a positive constant. Then, it is evident that \(c_s \Delta t > 0\), \(1 - c_s \Delta t > 0\), and \(1 - c_s \Delta t + c_s \Delta t = 1\). According to Lemma 1, (22) is converted to
\[
\left\| x_s(t + \Delta t) - W_{L, t}(x_s(t + \Delta t)) \right\| \leq (1 - c_s \Delta t) \left\| x_s(t + \Delta t) - W_{L, t}(x_s(t)) \right\| + c_s \Delta t \left\| \bar{v}_s(t + \Delta t) - W_{L, t}(\bar{v}_s(t)) \right\|.
\]
Analogously, we can do the same conversion for \(\bar{v}_s(t)\):
\[
\bar{v}_s(t + \Delta t) = (1 + (c_s - q_s z_s(t)) \Delta t) \bar{v}_s(t) + \left(q_s z_s(t) - c_s - \frac{z_s(t)(T_s + g_s(t))}{c_s} \right) \Delta t x_s(t) + \frac{z_s(t)A_{sf}}{c_s} \Delta t x_f(t)
\]
\[
+ \frac{z_s(t)g_s(t)}{c_s} \Delta t W_{L, t}(x_s(t)).
\]
To facilitate later calculations, we have simplified the upper formula to the following form:
\[
\bar{v}_s(t + \Delta t) = \beta_{1i} \bar{v}_s(t) + \beta_{2i} x_s(t) + \beta_{3i} x_f(t) + \beta_{4i} W_{L, t}(x_s(t)),
\]
where
\[
\beta_{1i} = 1 + (c_s - q_s z_s(t)) \Delta t,
\]
\[
\beta_{2i} = \left(q_s z_s(t) - c_s - \frac{z_s(t)(T_s + g_s(t))}{c_s} \right) \Delta t,
\]
\[
\beta_{3i} = \frac{z_s(t)A_{sf}}{c_s} \Delta t,
\]
\[
\beta_{4i} = \frac{z_s(t)g_s(t)}{c_s} \Delta t.
\]
For all \(t \geq T_0\), we have
\[
\beta_{1i} > 0, \beta_{3i} \geq 0, \beta_{4i} \geq 0.
\]
When \(q_s \geq (c_s + 1)/\pi_i\), we obtain
\[
\beta_{3i} = \left(q_s z_s(t) - c_s - \frac{z_s(t)(T_s + g_s(t))}{c_s} \right) \geq q_s \pi_i - c_s - 1 \geq 0.
\]
And \(\beta_{1i} + \beta_{2i} + \beta_{3i} + \beta_{4i} = 1\). Then, (24) can be converted into the following forms:
\[
\left\| \bar{v}_s(t + \Delta t) - W_{L, t}(\bar{v}_s(t + \Delta t)) \right\| \leq \beta_{1i} \left\| \bar{v}_s(t) - W_{L, t}(\bar{v}_s(t)) \right\| + \beta_{2i} \left\| x_s(t) - W_{L, t}(x_s(t)) \right\| + \beta_{3i} \left\| x_f(t) - W_{L, t}(x_f(t)) \right\|
\]
\[
+ \beta_{4i} \left\| W_{L, t}(x_s(t)) - W_{L, t}(W_{L, t}(x_s(t))) \right\|.
\]
Combined with the following conditions, \(\chi_f(t) \in \chi \), \(\chi_f(t) \in \chi \), and \(W_{x_f(t)}(W_{x_f(t)}(x_f(t))) = W_{x_f(t)}(x_f(t)) \); it follows that

\[
\|\nabla_f(t + \Delta t) - W_{x_f(t)}(\nabla_f(t + \Delta t))\| \leq \beta_1 \|\nabla_f(t) - W_{x_f(t)}(\nabla_f(t))\| + \beta_2 \|\chi_f(t) - W_{x_f(t)}(\chi_f(t))\|
\]

(30)

Similarly, for the first-order agents, we can deduce

\[
\lim_{\Delta t \to 0} x_f(t + \Delta t) = \lim_{\Delta t \to 0} \dot{x}_f(t) \Delta t + \lim_{\Delta t \to 0} x_f(t) \Delta t, \quad (31)
\]

where \(\Delta t \) is time increment and \(\Delta t \to 0 \). According to (31) and Lemma 1, we have

\[
x_f(t + \Delta t) = [1 - z_f(t)(\overline{I} + g_f(t))] \Delta t x_f(t) + A_{f_j} z_f(t) \Delta t x_f(t) + g_f(t) z_f(t) \Delta t W_{x_f(t)}(\nabla_f(t)).
\]

(32)

To facilitate later calculations, we have simplified the upper formula to the following form:

\[
x_f(t + \Delta t) = \alpha_1 x_f(t) + \alpha_2 x_f(t) + \alpha_3 W_{x_f(t)}(x_f(t)), \quad (33)
\]

where \(\alpha_1 = [1 - z_f(t)(\overline{I} + g_f(t))] \Delta t, \quad \alpha_2 = A_{f_j} z_f(t) \Delta t, \quad \alpha_3 = g_f(t) z_f(t) \Delta t \). We can deduce from (33)

\[
\|x_f(t + \Delta t) - W_{x_f(t)}(x_f(t))\| \leq \alpha_1 \|x_f(t) - W_{x_f(t)}(x_f(t))\| + \alpha_2 \|x_f(t) - W_{x_f(t)}(x_f(t))\|
\]

(34)

Similar to the second-order agents, according to the condition \(\chi_f(t) \in \chi \) and \(W_{x_f(t)}(W_{x_f(t)}(x_f(t))) = W_{x_f(t)}(x_f(t)) \), we have

\[
W_{x_f(t)}(W_{x_f(t)}(x_f(t))) = W_{x_f(t)}(x_f(t)). \quad (35)
\]

It is evident that every \(\|\xi_f(t) - W_x(x_f(t))\| \) is a convex hull that is composed of \(\|\nabla_f(t) - W_x(\nabla_f(t))\| \). From (23), (30), and (35), we can obtain that

\[
\|\xi_f(t + \Delta t) - W_{x_f(t)}(\xi_f(t + \Delta t))\| \leq \max \|\xi_f(t) - W_{x_f(t)}(\xi_f(t))\|.
\]

(36)

Thus, \(F(t + \Delta t) \leq F(t) \) can be deduced which indicate that \(F(t) \) is a nonincreasing function relative to time \(t \). It is obvious that \(F(t) \geq 0 \). Thus, it is easy to know that the limit of \(F(t) \) exists.
For the second-order agents, according to the definition of derivative and (23), we have

\[
\lim_{\Delta t \to 0} \left(\frac{\| x_s(t + \Delta t) - W_{x_s(t)}(x_s(t + \Delta t)) \|}{\Delta t} - \frac{\| x_s(t) - W_{x_s(t)}(x_s(t)) \|}{\Delta t}\right) \leq c_s \left\| \dot{\mathbf{v}}_s(t) - W_{x_s(t)}(\mathbf{v}_s(t)) \right\| - c_s \left\| \dot{x}_s(t) - W_{x_s(t)}(x_s(t)) \right\|.
\]

(37)

That is,

\[
\frac{d}{dt} \left\| x_s(t) - W_{x_s(t)}(x_s(t)) \right\| \leq c_s \left\| \dot{v}_s(t) - W_{x_s(t)}(v_s(t)) \right\| - c_s \left\| \dot{x}_s(t) - W_{x_s(t)}(x_s(t)) \right\|.
\]

(38)

Similarly, according to (30), we have

\[
\lim_{\Delta t \to 0} \left(\frac{\| \mathbf{v}_s(t + \Delta t) - W_{\mathbf{v}_s(t)}(\mathbf{v}_s(t + \Delta t)) \|}{\Delta t} - \frac{\| \mathbf{v}_s(t) - W_{\mathbf{v}_s(t)}(\mathbf{v}_s(t)) \|}{\Delta t}\right) \leq \lambda_1 \left\| \dot{\mathbf{v}}_s(t) - W_{x_s(t)}(\mathbf{v}_s(t)) \right\| + \lambda_2 \left\| \dot{x}_s(t) - W_{x_s(t)}(x_s(t)) \right\| + \lambda_3 \left\| \dot{x}_f(t) - W_{x_f(t)}(x_f(t)) \right\|.
\]

(39)

That is,

\[
\frac{d}{dt} \left\| \mathbf{v}_s(t) - W_{x_s(t)}(\mathbf{v}_s(t)) \right\| \leq \lambda_1 \left\| \dot{\mathbf{v}}_s(t) - W_{x_s(t)}(\mathbf{v}_s(t)) \right\| + \lambda_2 \left\| \dot{x}_s(t) - W_{x_s(t)}(x_s(t)) \right\| + \lambda_3 \left\| \dot{x}_f(t) - W_{x_f(t)}(x_f(t)) \right\|.
\]

(40)

where

\[
\lambda_1 = c_s - q_s z_s(t), \\
\lambda_3 = \frac{z_s(t) A_{zf}}{c_s}, \\
\lambda_2 = q_s z_s(t) - c_s - \frac{z_s(t) (A_{zf} + g_s(t))}{c_s}.
\]

(41)

For the first-order agents, similarly, according to (35), we have

\[
\lim_{\Delta t \to 0} \left(\frac{\| x_f(t + \Delta t) - W_{x_f(t)}(x_f(t + \Delta t)) \|}{\Delta t} - \frac{\| x_f(t) - W_{x_f(t)}(x_f(t)) \|}{\Delta t}\right) \leq \mu_1 \left\| \dot{x}_f(t) - W_{x_f(t)}(x_f(t)) \right\| + \mu_2 \left\| \dot{x}_s(t) - W_{x_s(t)}(x_s(t)) \right\|.
\]

(42)

That is,

\[
\frac{d}{dt} \left\| x_f(t) - W_{x_f(t)}(x_f(t)) \right\| \leq \mu_1 \left\| \dot{x}_f(t) - W_{x_f(t)}(x_f(t)) \right\| + \mu_2 \left\| \dot{x}_s(t) - W_{x_s(t)}(x_s(t)) \right\|.
\]

(43)
where \(\mu_1 = -z_f(t) (T_f + g_f(t)) \), \(\mu_2 = A_s f \). \(\square \)

Theorem 2. Under assumption 1 and 2, all the followers can move into the convex hull spanned by static leaders with algorithm (3), i.e., \(\lim_{t \to \infty} \| x_i(t) - W_{x_i}(x_i(t)) \| = 0. \)

Proof. We will discuss the convergence of the heterogeneous multiagent system with switching graphs and nonconvex control input constraints at intervals in three cases.

According to the definition of calculus, for all \(t \in [t_{s_n}, t_{s_{n+1}}) \), we have

\[
\| \nabla_{a_i}(t) - W_{x_{i_n}}(\nabla_{a_i}(t)) \| \leq \mathcal{L}_{\lambda_{i_n}} \| \nabla_{a_i}(t) - W_{x_{i_n}}(\nabla_{a_i}(t)) \| + \left(-\lambda_{i_n} - \frac{z_{i_n}(t)g_{i_n}}{c_{i_n}} \right) F_{i_n}(t_{s_n}) \leq \left(c_{i_n} - q_{i_n} \right) \| x_{i_n}(t) - W_{x_{i_n}}(x_{i_n}(t)) \| + \left(q_{i_n} - c_{i_n} - \frac{\pi_i g_{i_n}}{c_{i_n}} \right) F_{i_n}(t_{s_n}).
\]

(44)

For all \(t \in [t_{s_n}, t_{s_{n+1}}) \), thus, we have

\[
\| \nabla_{a_i}(t) - W_{x_{i_n}}(\nabla_{a_i}(t)) \| \leq m_1 F_{i_n}(t_{s_n}),
\]

where \(m_1 = 1 + \frac{\pi_i g_{i_n}}{q_{i_n} - c_{i_n}} e^{(c_{i_n} - q_{i_n})(t - t_{s_n})} \). It is obvious that \(0 < m_1 < 1 \). According to (38) and (46), we obtain

\[
\| x_{i_n}(t) - W_{x_{i_n}}(x_{i_n}(t)) \| \leq m_1 F_{i_n}(t_{s_n}) + (1 - m_1) e^{-q_{i_n}(t - t_{s_n})} F_{i_n}(t_{s_n}).
\]

(47)

For all \(t \in [t_{s_n}, t_{s_{n+1}}) \), we have

\[
\| x_{i_n}(t) - W_{x_{i_n}}(x_{i_n}(t)) \| \leq m_2 F_{i_n}(t_{s_n}),
\]

where \(m_2 = 1 + (1 - m_1)e^{q_{i_n}(t - t_{s_n})} \). Obviously, \(0 < m_2 < 1 \).

If \(i_n \) is a first-order agent, we have

\[
\frac{d}{dt} \| x_{i_n}(t) - W_{x_{i_n}}(x_{i_n}(t)) \| \leq -g_{i_n} \| x_{i_n}(t) - W_{x_{i_n}}(x_{i_n}(t)) \| \leq -g_{i_n} F_{i_n}(t_{s_n}) \leq e^{-q_{i_n}(t - t_{s_n})} F_{i_n}(t_{s_n}).
\]

(49)

Then,

Case 1: suppose that there exists a agent \(i_n \) can receive the information from leaders at time \(t = t_{s_n} \). At this point, \(g_{i_n}(t) = g_{i_n} \). First of all, we assume \(i_n \) is a second-order agent. From (40), we have
\[\| x_{f_i}(t) - W_{f_j}(t)(x_{f_i}(t)) \| \leq n_1 F(t), \]
where \(n_1 = e^{-\frac{B_s}{2}}(t-t_0) \). Obviously, \(0 < n_1 < 1 \).

For all \(t \in [t_{\text{fin}}, t_{\text{sn}}] \), we have
\[\| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| \leq m_2 F(t), \]
where \(m_2 = 1 + (b_i - 1)e^{-\frac{c_s}{B_s}}(t-t_0) \). Obviously, \(0 < m_2 < 1 \).

Then, we can obtain that
\[\frac{d}{dt} \| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| \leq m_3 F(t), \]
where \(m_3 = 1 + (1-m_3)(c_{si}T - q_{si} - 1) \times \left(e^{-\frac{B_s}{2}}(t-t_0) - 1 \right) \). Hence,
\[\| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| \leq m_3 F(t), \]
where \(m_3 = \left[1 + (1-m_3)(c_{si}T - q_{si} - 1) \times \left(e^{-\frac{B_s}{2}}(t-t_0) - 1 \right) \right] F(t) \).

For the first-second agents, similarly, we have
\[\frac{d}{dt} \| x_{f_i}(t) - W_{x_{ia}(t)}(x_{f_i}(t)) \| \leq \frac{B_s}{B_s} b_i F(t), \]
Hence,
\[\frac{d}{dt} \| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| \leq \left(c_{si} - q_{si} \right) \| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| + \left[q_{si} + \pi_{si} \right] (e_{ij} - 1) \leq \frac{B_s}{B_s} b_i F(t). \]
Hence,
\[\| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| \leq \left(c_{si} - q_{si} \right) \| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| + \left[q_{si} + \pi_{si} \right] (e_{ij} - 1) \leq \frac{B_s}{B_s} b_i F(t). \]
Hence,
\[\| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| \leq \left(c_{si} - q_{si} \right) \| x_{si}(t) - W_{x_{ia}(t)}(x_{si}(t)) \| + \left[q_{si} + \pi_{si} \right] (e_{ij} - 1) \leq \frac{B_s}{B_s} b_i F(t). \]
Hence,
Figure 1: Four directed graphs.

Figure 2: Position of followers.

Figure 3: Nonconvex constraints of control input.
Reference
with a tracking-leader of unknown control input,” Systems & Control Letters, vol. 122, pp. 67–76, 2018.

[6] Y. Hong, L. Gao, D. Cheng, and J. Hu, “Lyapunov-based approach to multiagent systems with switching jointly connected interconnection,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 943–948, 2007.

[7] P. Lin, W. Ren, and H. Gao, “Distributed velocity-constrained consensus of discrete-time multi-agent systems with nonconvex constraints, switching topologies, and delays,” IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5788–5794, 2017.

[8] P. Lin, Y. Jia, and L. Li, “Distributed robust H-infinity consensus control in directed networks of agents with time-delay,” Systems & Control Letters, vol. 57, no. 8, pp. 643–653, 2008.

[9] J. Shen and J. Lam, “Containment control of multi-agent systems with unbounded communication delays,” International Journal of Systems Science, vol. 47, no. 9, pp. 2048–2057, 2016.

[10] P. Lin, W. Ren, C. Yang, and W. Gui, “Distributed continuous-time and discrete-time optimization with nonuniform unbounded convex constraint sets and nonuniform stepsizes,” IEEE Transactions on Automatic Control, vol. 64, no. 12, pp. 5148–5155, 2019.

[11] M. Ji, G. Ferrari-Trecate, M. Egerstedt, and A. Buffa, “Containment control in mobile networks,” IEEE Transactions on Automatic Control, vol. 53, no. 8, pp. 1972–1975, 2008.

[12] Y. Cao, W. Ren, and M. Egerstedt, “Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks,” Automatica, vol. 48, no. 8, pp. 1586–1597, 2012.

[13] B. Li, Z.-q. Chen, Z.-x. Liu, C.-y. Zhang, and Q. Zhang, “Containment control of multi-agent systems with fixed time-delays in fixed directed networks,” Neurocomputing, vol. 173, pp. 2069–2075, 2016.

[14] Y.-W. Wang, X.-K. Liu, J.-W. Xiao, and Y. Shen, “Output formation-containment of coupled heterogeneous linear systems by distributed hybrid active control,” Automatica, vol. 93, pp. 26–32, 2018.

[15] Y.-W. Wang, X.-K. Liu, J.-W. Xiao, and X. Lin, “Output formation-containment of coupled heterogeneous linear systems under intermittent communication,” Journal of the Franklin Institute, vol. 354, no. 1, pp. 392–414, 2017.

[16] C. Xu, Y. Zheng, H. Su, C. Zhang, and M. Z. Q. Chen, “Necessary and sufficient conditions for distributed containment control of multi-agent systems without velocity measurement,” IET Control Theory & Applications, vol. 8, no. 16, pp. 1752–1759, 2014.

[17] J. Li, W. Ren, and S. Xu, “Distributed containment control with multiple dynamic leaders for double-integrator dynamics using only position measurements,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1553–1559, 2012.

[18] L. Cheng, Y. Wang, W. Ren, Z.-G. Hou, and M. Tan, “Containment control of multiagent systems with dynamic leaders based on a $S\Pi n S$ -type Approach,” IEEE Transactions on Cybernetics, vol. 46, no. 12, pp. 3004–3017, 2016.

[19] G. Notarstefano, M. Egerstedt, and M. Haque, “Containment in leader-follower networks with switching communication topologies,” Automatica, vol. 47, no. 5, pp. 1035–1040, 2011.

[20] W. Zhang, Y. Tang, Y. Liu, and J. Kurths, “Event-triggering containment control for a class of multi-agent networks with fixed and switching topologies,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 3, pp. 619–629, 2017.

[21] P. Lin, W. Ren, C. Yang, and W. Gui, “Distributed consensus of second-order multiagent systems with nonconvex velocity and control input constraints,” IEEE Transactions on Automatic Control, vol. 63, no. 4, pp. 1171–1176, 2018.

[22] P. Lin, W. Ren, and J. A. Farrell, “Distributed continuous-time optimization: nonuniform gradient gains, finite-time convergence, and convex constraint set,” IEEE Transactions on Automatic Control, vol. 62, no. 5, pp. 2239–2253, 2017.

[23] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[24] P. Lin, W. Ren, C. Yang, and W. Gui, “Distributed optimization with nonconvex velocity constraints, nonuniform position constraints, and nonuniform stepsizes,” IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2575–2582, 2019.

[25] H. Su, G. Jia, and M. Z. Q. Chen, “Semi-global containment control of multi-agent systems with input saturation,” IET Control Theory & Applications, vol. 8, no. 18, pp. 2229–2237, 2014.

[26] Q. Song, F. Liu, H. Su, and A. V. Vasilakos, “Semi-global and global containment control of multi-agent systems with second-order dynamics and input saturation,” International Journal of Robust and Nonlinear Control, vol. 26, no. 16, pp. 3460–3480, 2016.

[27] S. Yang, Q. Liu, and J. Wang, “A multi-agent system with a proportional-integral protocol for distributed constrained optimization,” IEEE Transactions on Automatic Control, vol. 62, no. 7, pp. 3461–3467, 2017.

[28] P. Lin, Y. Huang, Q. Zhang, and Z. Yuan, “Distributed velocity and input constrained tracking control of high-speed train systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 12, pp. 7882–7888, 2021.

[29] C. Yang, M. Duan, P. Lin, W. Ren, and W. Gui, “Distributed containment control of continuous-time multiagent systems with nonconvex control input constraints,” IEEE Transactions on Industrial Electronics, vol. 66, no. 10, pp. 7927–7934, 2019.

[30] B. Li, Y. Yang, Q. Chen, and X. Liu, “Containment control of multi-agent systems with time-delays over heterogeneous networks,” International Journal of Control, Automation and Systems, vol. 17, no. 10, pp. 2521–2530, 2019.