Diversity of the lysozyme fold: structure of the catalytic domain from an unusual endolysin encoded by phage Enc34

Elina Cernooka1, Janis Rumnieks1, Nikita Zrelovs1, Kaspars Tars1,2 & Andris Kazaks1

Endolysins are bacteriophage-encoded peptidoglycan-degrading enzymes with potential applications for treatment of multidrug-resistant bacterial infections. *Hafnia* phage Enc34 encodes an unusual endolysin with an N-terminal enzymatically active domain and a C-terminal transmembrane domain. The catalytic domain of the endolysin belongs to the conserved protein family PHA02564 which has no recognizable sequence similarity to other known endolysin types. Turbidity reduction assays indicate that the Enc34 enzyme is active against peptidoglycan from a variety of Gram-negative bacteria including the opportunistic pathogen *Pseudomonas aeruginosa* PAO1. The crystal structure of the catalytic domain of the Enc34 endolysin shows a distinctive all-helical architecture that distantly resembles the α-lobe of the lysozyme fold. Conserved catalytically important residues suggest a shared evolutionary history between the Enc34 endolysin and GH73 and GH23 family glycoside hydrolases and propose a molecular signature for substrate cleavage for a large group of peptidoglycan-degrading enzymes.

The increasing prevalence of multidrug-resistant bacteria is being recognized as a major threat to global public health1. While antibiotic resistance has existed for at least several hundred million years as a defense measure in an ongoing 'chemical warfare' in the microbial world2 and a diverse set of antimicrobial resistance mechanisms have been present in nature for a very long time3, the current practice of excessive and often poorly substantiated medical and agricultural antibiotic use has greatly accelerated the evolutionary drive for selecting antibiotic-resistant bacteria4. With the number of newly discovered antibiotics dwindling, development of potential alternative treatments such as natural and synthetic antimicrobial peptides5, antibacterial monoclonal antibodies6, and bacteria-killing viruses (bacteriophages or phages)7 is of high priority to avoid a global health crisis caused by life-threatening and untreatable bacterial infectious diseases.

Phage therapy—the potential use of bacteriophages for controlling bacterial infections—was recognized already in the early twentieth century but has not seen significant developments due to unclear regulatory frameworks8, challenges in large-scale phage propagation, issues such as development of phage-resistant bacteria and anti-phage immune response, and even risks of horizontal gene transfer9. The antibacterial properties of phages, however, can be to a large extent reduced to the action of their endolysins, viral peptidoglycan-degrading enzymes which at the end of the replication cycle digest the bacterial cell wall, leading to osmotic rupture of the cell and release of viral progeny in the environment10. Purified endolysin preparations have demonstrated notable antimicrobial activity11 and, in contrast to conventional antibiotics, endolysins are extremely slow to induce resistance12. These enzymes can be further modified to alter their host range and enzymatic properties13, and they can be generally easily produced in industrial-scale quantities.

Despite achieving the same function of peptidoglycan cleavage, bacteriophage endolysins have markedly different structure and underlying mechanisms of action14. Endolysins from bacteriophages targeting Gram-positive bacteria usually have a modular structure of at least one enzymatically active domain (EAD) and one or more cell wall-binding domains (CBDs) while those from phages with Gram-negative hosts generally consist of only a single catalytic domain15 although some have additional N-terminal transmembrane domains16 or C-terminal amphipathic helices17. The EADs are remarkably diverse and belong to several functional classes that can target either glycosidic bonds (*N*-acetylglucosaminidases, *N*-acetylmuramidases and transglycosylases), the

1Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga 1067, Latvia. 2Faculty of Biology, University of Latvia, Jelgavas 1, Riga 1004, Latvia. *email: andris@biomed.lu.lv
sugar-peptide linkage (N-acetylglucosamoyl-l-alanine amidases), or the interpeptide bridge (various endopeptidases) and EADs of the different types can in turn adopt vastly different folds (reviewed by Broendum et al.14).

Phages are the most abundant and genetically diverse biological entities on Earth, and their gene pool appears to be a nearly limitless resource for a large variety of different proteins, including endolysins14. Therefore, despite the already documented vast variety of these enzymes, the overall structural and functional landscape of bacteriophage endolysins still remains incompletely explored and likely holds many more novel and useful enzymes for future clinical, industry and biotechnology applications. Here we report functional and structural characterization of such a new type of endolysin isolated from bacteriophage Enc34.

Results

Endolysin identification. Bacteriophage Enc34 is a siphovirus previously isolated and sequenced in our laboratory19. Enc34 is related to bacteriophages of the *Chivirus* genus that comprises mostly *Salmonella* phages of similar genome size and organization. Based on biochemical tests, the host bacterium of the Enc34 phage was initially identified as *Enterobacter cancerogenus*, but more recent molecular analysis has suggested that the host most likely is an unusual Bgl+ Pro− strain of *Hafnia alvei*. The genome of the Enc34 phage is approximately 60 kb long and contains 80 predicted open reading frames (ORFs), more than a half of which do not have an identifiable function.

The virion morphogenesis module in the Enc34 genome is followed by a small cassette of four ORFs (Fig. 1a) which show no notable homology to any studied gene products, but which were predicted to comprise the lysis module of the phage by similarity with phage λ20. The first ORF within the module, ORF38, encodes a small ~12 kDa protein with a double-start motif and a predicted N-terminal transmembrane helix that resembles the λ holin. The last two gene products ORF40 and ORF41 are predicted to contain a transmembrane helix and a lipoprotein signal peptide, respectively, resembling the inner- and outer-membrane components Rz and Rz1 of the spanin complex of phage λ. However, contrary to λ, Enc34 ORF40 is not completely embedded in ORF41 but instead their sequences overlap as in phage P22.21.

The remaining ORF in the cassette, ORF39, encodes a 26 kDa protein with an N-terminal domain of the PHA02564 family and a predicted C-terminal two-helix transmembrane domain. Based on its location in-between the other lysis genes, and in absence of any other candidates in the genome, the ORF39 was assumed to encode an endolysin of an apparently novel class of these enzymes. Proteins of similar sequence and predicted architecture are found also in genomes of other enterobacterial phages (Fig. 1b).

Enzymatic activity. To enable functional and structural studies of the putative Enc34 endolysin, the coding sequence of the ORF39 protein with a cleavable N-terminal hexahistidine-tag was cloned and expressed in *Escherichia coli*. A plasmid construct encoding the full-length protein showed low transformation efficiency, reduced cell growth and no detectable production of the target protein upon induction, indicative of toxicity of the ORF39 gene product to the bacterial cells. Further experimentation revealed that a truncated variant of the ORF39 protein containing only the conserved PHA02564 domain can be readily produced in a soluble form and without adverse effects to the cells. This C-terminal deletion variant of the protein, ORF39ΔC, was therefore used for the subsequent studies.

To test for the enzymatic activity of the Enc34 endolysin, purified ORF39ΔC protein was subjected to turbidity reduction assays using outer membrane (OM)-permeabilized bacteria as a substrate. The Enc34 endolysin showed clear mura-lytic activity towards OM-permeabilized *Escherichia coli* W3100, *Pseudomonas aeruginosa* PAO1 and *Hafnia alvei* cells (Table 1), demonstrating that the N-terminal domain of the Enc34 endolysin, and hence the PHA02564 family proteins in other bacteriophage genomes, indeed encode an enzymatically active domain (EAD) of a functional endolysin. When using OM-permeabilized *P. aeruginosa* PAO1 cells, the enzymatic activity of the Enc34 endolysin was almost identical to commercial chicken egg white lysozyme but the activity was three to six times lower when using the other substrates. The ORF39ΔC protein showed no activity against unpermeabilized *E. coli* W3100, *P. aeruginosa* PAO1, or *H. alvei* cells (data not shown), suggesting that the EAD by itself cannot pass through the lipid bilayer, and it was also inactive against the Gram-positive microbe *Microbacterium paraoxydans*, which was unsurprising considering the notable differences in peptidoglycan structure between Gram-negative and Gram-positive bacteria23.

Three-dimensional structure. The structure of the ORF39 EAD was initially determined using the single-wavelength anomalous diffraction method with selenomethionine-labeled ORF39ΔC crystals. The initial structure was solved to 1.8 Å which enabled building of an almost complete model of the EAD except for two poorly resolved loop regions. During subsequent crystal soaking and co-crystallization experiments with substrate analogs a different crystal form was discovered that diffracted to 1.6 Å. No electron density corresponding to the bound substrate could be identified in this structure, but due to the higher resolution and better resolved protein loops it was selected for reporting here.

The crystallographic asymmetric unit contains two protein molecules which are represented as chains A and B in the final model. The two molecules have an interface area of 591 Å² which due to its small size likely does not represent a biologically relevant assembly. Apart from three N-terminal residues that were poorly structured, the A monomer could otherwise be modeled without gaps whereas the model of the B monomer does not include residues 83–89 due to disorder. The overall structure of the ORF39 EAD (Fig. 2) is all-helical and consists of six α helices (α1 to α6) and a single one-turn 3_10 helix in-between α5 and α6. The structure can be regarded as two overlapping helical bundles, the first of which is formed by α2, α3, α4 and α5 in a roughly antiparallel arrangement, and the second consisting of α2, α5 and α6 with α2 and α6 running parallel to each other. The overall shape of the EAD is roughly globular with a large groove between loops connecting α1–α2 and α3–α4 and centered on
Figure 1. Endolysin proteins in Enc34 and related bacteriophages. (a) Organization of the lysis module of the Enc34 bacteriophage. Locations of the catalytic domain of the endolysin (PHA02564, yellow), transmembrane helices (TMH, orange) and a lipoprotein signal cleavage site (dark red) within the lysis proteins are indicated. (b) Phylogeny of Enc34-type endolysins. The tree is drawn to scale with branch lengths corresponding to the number of amino acid substitutions per site. Tip labels include NCBI accession numbers and corresponding phage names for the respective endolysin proteins. Ultrafast bootstrap support percentages are indicated adjacent to the nodes. For clarity, branches of some of the most populated and well-supported clades containing very similar sequences have been collapsed and are represented as triangles.

Table 1. Enzymatic activity of the phage Enc34 endolysin and comparison to chicken egg white lysozyme. OM outer membrane. Activity units and determination coefficients for the linear regression analysis are calculated according to22. Locally isolated and sequenced bacterial strain is indicated by an asterisk. Raw data can be found in the Supplementary Table S1.
the C-terminal end of helix α3. The C-terminus of the ORF39ΔC protein extends away from the EAD and in the full-length protein likely functions as a linker to the separate transmembrane domain.

Structural homology analysis with DALI uncovered similarities with a wide range of α-helical proteins with neither the top hit (Homo sapiens mitochondrial dimethyladenosine transferase 1; PDB ID: 6AJK; Z-score: 4.8) nor many of the next structural matches having apparent evolutionary relatedness to endolysins. Only three proteins, namely, N-acetylglucosaminidase from Thermotoga maritima (PDB ID: 4QDN; Z score: 3.0), lytic transglycosylase gp144 from bacteriophage φKZ (PDB ID: 3BKH; Z score: 2.6), and the E. coli lytic transglycosylase MltC (PDB ID: 4C5F; Z score: 2.5) did indicate potential homology, however, the sequence similarity of Enc34 ORF39 to any of these proteins was too small for a reliable sequence alignment and thus for sequence-based identification of evolutionary conserved residues.

Further conservation analysis with ConSurf revealed a trifurcated stretch of highly conserved residues centered around the major groove of the protein (Fig. 3) which probably constitutes the peptidoglycan binding surface of the enzyme. We were however unable to confirm carbohydrate binding to this area experimentally.
as crystal soaking and co-crystallization experiments with N-acetylglucosamine (NAG), N-acetylmuramic acid (NAM), chitotetraose or NAG–NAM disaccharide did not reveal bound sugar moieties in any of the trials, but the complex shape of the potential peptidoglycan-binding surface might indicate that the enzyme recognizes a branched motif within the peptidoglycan network which was not present in any of the tested substrates.

Within the large groove of the ORF39 protein, a number of conserved charged, polar, and aromatic residues could be identified that are potentially involved in substrate binding and catalysis (Fig. 4a). The Glu131 in the ORF39 EAD corresponds to the catalytic glutamate residues in the superimposed TM0633, gp144 and MltC proteins (Fig. 4b) which suggests that the groove is indeed the active site of the Enc34 endolysin. Furthermore, residues corresponding to Trp79 and Tyr95 are also conserved; these have been shown to be important for catalysis in the structural homologs27,28, corroborating the evolutionary relatedness of these proteins.

Discussion

The ORF39 protein of the Enc34 bacteriophage is in a number of ways unusual compared to the other currently characterized bacteriophage endolysins, starting with its uncommon two domain architecture. Typically, endolysins have either a simple globular structure, made up entirely by a single enzymatically active domain (EAD), or they are modular, consisting of one or several EADs and a cell wall-binding domain (CBD). The Enc34 endolysin is comprised of an N-terminal globular EAD linked to a C-terminal two-helix transmembrane domain (TMD) which is an uncommon arrangement that was first reported for the Salmonella phage Siskin29 and appears to be limited to a clade of bacteriophages of the corresponding Chivirus genus and some related viruses including Enc34. A superficially similar architecture is observed in signal-anchor-release (SAR) endolysins in which the EAD is preceded by an N-terminal transmembrane helix that functions as a signal sequence for translocating the EAD to the periplasmic space and anchoring the protein to the bacterial inner membrane. The TMD of the Enc34 endolysin, however, is located at the C-terminus of the protein and no known translocation mechanisms appear to exist that might be able to transport an N-terminal hydrophilic domain through the membrane using a C-terminal signal sequence. Still, recent studies of a homologous protein M4Lys from the Salmonella phage BSPM430 have demonstrated that the Enc34-type enzymes appear to be capable of achieving bacterial lysis without the requirement for the holin protein which implies that the EAD does gain access to the peptidoglycan substrate through some unknown mechanism. The holin-independent lysis is apparently mediated by the TMD since both for the M4Lys and the Enc34 ORF39 only full-length proteins were toxic to the bacterial cells, and for M4Lys it was further established that expression of the C-terminal transmembrane helix alone results in a bacteriostatic effect. Some endolysins are known to have an intrinsic capacity to disrupt bacterial membranes by an amphipathic helix at the C-terminus17,21 or to cross the membrane using a cationic N-terminus22 but there are no good indications that any of these mechanisms apply to the Enc34-type endolysins which do not exhibit charged N-termini and, while the EAD-proximal TMD helix does appear to have amphipathic character, at least for the M4Lys protein expression of the EAD together with the proximal helix does not result in deleterious effects to cells.
Lysis timing in bacteriophage-infected cells is regulated by holin proteins which prevent endolysins from accessing the peptidoglycan substrate until the later stages of infection. The holins function either by forming large pores in the inner membrane that allow diffusion of endolysin molecules out of the cytoplasm or, in case of the SAR endolysins, by forming small “pinholes” which depolarize the membrane that in turn releases the anchored endolysins into the periplasm. Due to the presence of the TMD it could be speculated that the Enc34-type endolysins are tethered and released from the inner membrane in a way functionally resembling the SAR endolysins and accordingly, the holin proteins in these viruses might function as pinholins. It can also be noted that the holin-independent lysis by the Enc34-type endolysins somewhat resembles observations with SAR endolysins but it is not entirely clear whether this phenomenon plays some role during the phage life cycle or it is merely a side effect of the strong promoter-driven recombinant expression system. Clearly, further studies of the holin-endolysin system of Enc34-like bacteriophages are required to address these questions experimentally.

Besides the perplexing TMDs, the EADs of the Enc34-type endolysins are equally distinctive. The Enc34 EAD does not have identifiable sequence similarity to proteins of known function, and only its three-dimensional structure is able to provide some clues about its relatedness to the other known classes of these enzymes. The closest structural homolog of the Enc34 endolysin, the protein TM0633 from the hyperthermophilic bacterium _Thermotoga maritima_, is a member of the large glycoside hydrolase family 73 (GH73) which, according to the Carbohydrate-Active Enzymes Database (http://www.cazy.org), currently holds over 29,000 representative enzymes, while the two more distant matches, gp144 from bacteriophage phiKZ and MltC from _Escherichia coli_, belong to the even bigger GH23 family with more than 100,000 constituent proteins. Proteins from these families span a considerable range of enzymatic activities that include 1,4-β-N-acetylmuramidases (EC 3.2.1.17), mannosyl-glycoprotein endo-β-N-acetylglucosaminidases (EC 3.2.1.96), peptidoglycan hydrolases with endo-β-N-acetylglucosaminidase specificity (EC 3.2.1.1-), peptidoglycan lyases (EC 4.2.2.1) and chitinases (EC 3.2.1.14). Structurally, however, these proteins are all variations of the α/β “lysozyme fold” which canonically consists of α- and β-structured parts (lobes) arranged to form a deep cleft within which the substrate binding and cleavage takes place. The EAD of the Enc34 endolysin bears resemblance to the α-lobe of the lysozyme fold but, in contrast to TM0633 and other GH73 enzymes, lacks any β-structured elements. It can be noted, however, that the large loop connecting α1 and α2 in the Enc34 ORF39 protein is located at essentially the same position as the β-lobe in GH73 enzymes and could likewise function as a lid over the substrate-binding groove. All of the core helices α2, α3, α4 and α5 that form the major groove of the Enc34 endolysin have identifiable counterparts in the TM0633, gp144 and MltC proteins; however, despite similar three-dimensional arrangement, there is a marked difference in the sequential order of these helices between the Enc34 endolysin and the other proteins. Helices corresponding to α2, α3 and α4 in the Enc34 endolysin are found in that particular order also in the other structural homologs but while the remaining helix α5 in the Enc34 endolysin directly follows α4, in the TM0633, gp144 and MltC proteins the corresponding helix is located before their α2 counterpart (Fig. 5). Notably, the α5 holds the catalytic Glu131 of the Enc34 endolysin but despite the permuted core, the respective glutamate residue in the superimposed ORF39, TM0633, gp144 and MltC structures is located at essentially the same position as in the Enc34 protein (Fig. 4b). An equivalent tyrosine residue for Tyr95 and a matching
expression plasmid were grown in 2xTY medium at 25 °C until OD600 of the culture reached 0.8–1.0. The
Escherichia coli medium supplemented with 50 μg/mL ampicillin at 25 °C until OD600 of the culture reached 0.6–0.8, after which
IQ-TREE (v2.0.6)43 using the LG + G4 substitution model (the best-scoring model according to the Bayesian
informative, 39 singleton and 82 constant sites) was used to infer a maximum-likelihood phylogenetic tree with
minimum molecular requirements for peptidoglycan cleavage for this superclade of enzymes.

The bond specificity of the Enc34 endolysin was not experimentally investigated in this study but HPLC analy-
sis of peptidoglycan digestion products by the related M4lys protein38 suggested both N-acetylglucosaminidase
and endopeptidase activities for this enzyme. While two distinct enzymatic specificities for the same protein
would appear unusual, the very low sequence similarity between the Enc34-type endolysins and any other
characterized lytic enzymes left an open possibility that these proteins might represent a completely new class
of enzymes with features that would explain such observations. The three-dimensional structure of the Enc34
endolysin has now revealed a conserved signature of three catalytically important residues and weak but recog-
nizable similarity in the core protein fold that indicate that the Enc34-type enzymes represent a highly diverged
lineage of glycoside hydrolase enzymes with common ancestry to GH73 and GH23 family proteins. The closest
known structural homolog to the Enc34 endolysin, the T. maritima TM0633 protein, has been experimentally
shown to be an N-acetylglucosaminidase but no endopeptidase activity has been reported for either the TM0633
protein or, to our knowledge, any other GH73 or GH23 enzyme. It therefore appears reasonable to conclude that
the Enc34 endolysin, and by extension other proteins of the PHA02564 family, are β-N-acetylglucosaminidase
(glycosidase) enzymes with a catalytic mechanism similar to that of GH73 family enzymes of the same bond
specificity. We have not identified any specific clues within the three-dimensional structure of the Enc34 EAD
which would suggest for the endopeptidase activity of this protein, but, although unlikely, it still cannot be
excluded that Enc34-type enzymes have evolved a way to recognize and cleave two distinct substrates using
essentially the same structural framework. Further dedicated studies would be required to explore such intriguing
prospects in more detail and to gain deeper mechanistic understanding of these enzymes, for which the three-
dimensional structure of the Enc34 endolysin should provide a valuable foundation.

Methods
Sequence analysis. Evolutionarily related proteins and conserved domains within the Enc34 lysin module
were identified with BLASTP38 and HHpred39. Transmembrane helices were predicted with TMHMM40 and
signal peptides were identified with SignalP41. To identify homologs of the Enc34 endolysin, the amino acid
sequence of the ORF39 gene product (accession number: YP_007007038.1) was queried against sequences of
viral origin (taxid: 10239) from the NCBI’s non-redundant protein sequence (nr) database with BLASTP using
sequence of the ORF39 gene product (accession number: YP_007007038.1) was queried against sequences of
viral origin (taxid: 10239) from the NCBI’s non-redundant protein sequence (nr) database with BLASTP using
the default settings. Homologous sequences of comparable length (230–259 amino acids) were retrieved from
the top 100 hits regardless their functional annotation except that metagenome-derived sequences were omitted,
and a multiple sequence alignment of the resulting 37 sequences and the Enc34 endolysin was generated using
Clustal Omega (v1.2.4)42 with the default settings. The resulting alignment with 301 columns (180 parsimony-
informative, 39 singleton and 82 constant sites) was used to infer a maximum-likelihood phylogenetic tree with
I–E. coli
Vol.:(0123456789)
7
https://doi.org/10.1038/s41598-022-08765-1
following the same protocol as for the non-substituted ORF39ΔC, except that 5 mM DTT was added to the TN buffer and that all other buffer solutions contained 1 mM DTT to maintain reducing conditions.

Turbidity reduction assay. The peptidoglycan substrate for the enzymatic assays was obtained by treating bacteria with chloroform-saturated 50 mM Tris–HCl (pH 7.7) as described previously\(^4\) and resuspending the sacculi in PBS at a concentration of \(OD_{600}\) of ~0.6–1.0. The *Escherichia coli* W3100, *Pseudomonas aeruginosa* PAO1, Enc34-sensitive *Hafnia alvei* and *Microbacterium paraoxydans* bacteria used in the study originated from laboratory collection. The enzymatic activity was assayed essentially as described previously\(^2\) by adding purified ORF39ΔC or chicken egg white lysozyme (Biochemica) in 30 μl of PBS to 270 μl of the sacculi stock in a 96-well plate and measuring changes in absorbance at 600 nm on a BioTek μQuant microplate reader for 3 h at 3 min intervals. Outer membrane-permeabilized cells were assayed using dilution series (0.1–5.0 μg) of the enzyme, each amount in triplicate, and the enzymatic activity was calculated using the ActivityCalculator tool (https://www.biw.kuleuven.be/logt/ActivityCalculator.htm)\(^2\). Untreated cells were tested only with the highest enzyme amount and compared to a negative control without the enzyme.

Crystallization, data collection and structure determination. Purified ORF39ΔC or SeMet-ORF39ΔC protein was transferred to a buffer containing 20 mM Tris–HCl (pH 8.0), 100 mM NaCl and concentrated to ~10 mg/mL using Amicon 10 kDa MWCO filters (Millipore), and crystallized by mixing 1 μL of the concentrated protein solution with 1 μL of a solution containing 2.0 M ammonium phosphate monobasic and 0.1 M Tris–HCl (pH 8.5) using the sitting-drop vapor-diffusion technique. Crystals were flash-frozen in liquid nitrogen in a mother liquor containing 30% glycerol, and diffraction data from a native crystal diffraction to 1.8 Å resolution were collected at beamline 14.1 at BESSY II (Berlin, Germany) and from several selenomethionine-labeled crystals at MAX IV beamline BioMAX (Lund, Sweden). Diffraction images were processed with XDS\(^4\) through the XDSAPP\(^5\) interface, and multiple SeMet datasets were further scaled together with XSCALE\(^4\) to increase the anomalous signal. The structure was solved using the AutoSol wizard in Phenix\(^5\), and the resulting auto-built model was used to phase the higher-resolution native dataset, followed by manual model building in COOT\(^5\) and refinement in REFMAC\(^5\). In a subsequent co-crystallization screen with 100 mM N-acetylmuramic acid (Sigma-Aldrich), a crystal grew in different conditions (0.2 M sodium chloride, 0.1 M phosphate/citrate buffer (pH 4.2), 20% w/v PEG 8000). The crystal was flash-frozen directly from the drop and diffraction data were collected at MAX IV beamline BioMAX. The data were processed with XDS and the structure was solved by molecular replacement with PHASER\(^5\), followed by model completion in COOT and refinement with REFMAC. Quality of the final model was evaluated using MolProbity\(^5\). Data collection, scaling, refinement and model validation statistics are presented in Table 2.
Data collection and scaling

Parameter	Value
Space group	P 2 1 2 1 2
Cell parameters	1 = 65.30 Å
	b = 128.99 Å
	c = 36.28 Å
Wavelength (Å)	0.97 Å
Total number of observations	504,768
Number of unique reflections	41,857
Resolution (Å)	45.9–1.60
Highest resolution bin (Å)	1.70–1.60
Multiplicity	12.1 (10.7)
Completeness (%)	100.0 (100.0)
\(R_{merge}\)	0.168 (1.525)
Mean I/σI	9.90 (2.03)
CC1/2	0.996 (0.768)
Wilson B-factor (Å²)	30.7

Refinement

Parameter	Value
Resolution (Å)	45.9–1.60
Highest resolution bin (Å)	1.64–1.60
Work set	39,341
Free set	2071
\(R_{work}\)	0.177 (0.300)
\(R_{free}\)	0.209 (0.286)
Number of atoms	
Protein	2608
Water	264
Other	4
Average B-factor (Å²)	
Protein	25.2
Solvent	33.5
rms deviations from ideal geometry	
Bond lengths (Å)	0.009
Bond angles (°)	1.519
Ramachandran plot	
Residues in favored regions (%)	97.8
Residues in allowed regions (%)	100.0
Rotamers	
Favored (%)	96.4
Outliers (%)	0.00
Clashscore, all atoms (%)	0.97

Table 2. Crystallographic data collection, scaling, refinement and model validation statistics. Values in parentheses are given for the highest resolution bin. The Ramachandran plot, rotamer and clashscore statistics are according to MolProbity55.

Data availability

Coordinates and structure factors for the reported structure are available from the Protein Data Bank under accession code 7Q47. Any other datasets supporting the conclusions of this article are available from the corresponding author on reasonable request.

Received: 25 November 2021; Accepted: 10 March 2022
Published online: 23 March 2022

References

1. Interagency Coordination Group on Antimicrobial Resistance. No time to wait: Securing the future from drug-resistant infections report to the Secretary-General of the United Nations. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG_final_report_EN.pdf?ua=1 (Accessed 30 Oct 2021) (2019).
2. Waglechner, N., McArthur, A. G. & Wright, G. D. Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance. *Nat. Microbiol.*, 4, 1862–1871 (2019).
10. Schmelcher, M., Donovan, D. M. & Loessner, M. J. Bacteriophage endolysins as novel antimicrobials. *Future Microbiol.* 7, 1147–1171 (2012).

9. Murray, E., Draper, L. A., Ross, R. P. & Hill, C. The advantages and challenges of using endolysins in a clinical setting. *Viruses* 13, 680 (2021).

8. Brives, C. & Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. *Pulgarve Commun.* 6, 100 (2020).

7. Kim, B. O. et al. Phage-derived antibacterials: Harnessing the simplicity, plasticity, and diversity of phages. *Viruses* 11, 268 (2019).

6. Zurawski, D. V. & McLendon, M. K. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. *J. Antimicrob. Agents* 55, 105844 (2020).

5. Magana, M. et al. The value of antimicrobial peptides in the age of resistance. *Int. J. Antimicrob. Agents* 55, 105844 (2020).

41. Almagro Armenteros, J. J. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* 33, 1033–1054 (2016).

40. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. *Nucleic Acids Res.* 35, W244–W248 (2005).

39. Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. *Nat. Methods* 14, 587–589 (2017).

38. Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* 37, 1530–1534 (2020).

37. Kalyaanamoorthy, S., Minh, B. Q., Wong, T., von Haeseler, A. & Jerumi, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14, 587–589 (2017).

36. Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. *Mol. Biol. Evol.* 30, 1188–1195 (2013).

35. Rambaut, A. FigTree v. 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/ (2018).

34. Cernooka, E., Rumniks, J. & Kazaks, A. Structural characterization of a single-stranded DNA-binding protein: A case study of the ORF6 protein from bacteriophage Enc34. *Acta Crystallogr. D Struct. Biol.* 66, 1147–1171 (2010).

33. Yoo, J. M., Cha, I. H., Park, D. Y. & Kang, H. S. Structural characterization of a single-stranded DNA-binding protein: A case study of the ORF6 protein from bacteriophage Enc34. *Acta Crystallogr. D Struct. Biol.* 66, 1147–1171 (2010).

32. Plotka, M. et al. Structural and biochemical characterization of the β-N-acetylgalactosaminidase from *Thermotoga maritima*: Toward rationalization of mechanistic knowledge in the GH73 family. *Glycobiology* 25, 319–330 (2015).

31. Chertkov, O. V. et al. Dual active site in the endolysin transglycosylase gp144 of bacteriophage phiKZ. *Acta Nat.* 9, 81–87 (2017).

30. O’Leary, C., Xie, Y., Kongari, R., Gill, J. J. & Liu, M. Complete genome sequence of *Pseudomonas aeruginosa* strain ATCC 15444. *Microorganisms* 8, e00188-e219 (2019).

29. Chertkov, O. V. et al. Dual active site in the endolysin transglycosylase gp144 of bacteriophage phiKZ. *Acta Nat.* 9, 81–87 (2017).

28. Yoo, J. M., Cha, I. H., Park, D. Y. & Kang, H. S. Structural characterization of a single-stranded DNA-binding protein: A case study of the ORF6 protein from bacteriophage Enc34. *Acta Crystallogr. D Struct. Biol.* 66, 1147–1171 (2010).

27. Lipski, A. et al. Structural and biochemical characterization of the β-N-acetylgalactosaminidase from *Thermotoga maritima*: Toward rationalization of mechanistic knowledge in the GH73 family. *Glycobiology* 25, 319–330 (2015).

26. Chertkov, O. V. et al. Dual active site in the endolysin transglycosylase gp144 of bacteriophage phiKZ. *Acta Nat.* 9, 81–87 (2017).

25. O’Leary, C., Xie, Y., Kongari, R., Gill, J. J. & Liu, M. Complete genome sequence of *Salmonella enterica* serovar Typhiunum siphophage Suskin. *Microbiol. Resour. Announc.* 8, e00188-e219 (2019).

24. Brier, Y. & Lavigne, R. Breaking barriers: Expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. *Future Microbiol.* 10, 377–390 (2015).

23. Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. *Mol. Microbiol.* 105, 105–109 (2004).

22. Graschopf, A. & Bläsi, U. Molecular function of the dual-start motif in the lambda S holin. *Acta Crystallogr. D Struct. Biol.* 66, 1147–1171 (2010).

21. Kongari, R. et al. Phage spanins: Diversity, topological dynamics and gene convergence. *BMC Bioinf.* 19, 326 (2018).

20. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. *Nucleic Acids Res.* 33, W244–W248 (2005).

19. Graschopf, A. & Bläsi, U. Molecular function of the dual-start motif in the lambda S holin. *Acta Crystallogr. D Struct. Biol.* 66, 1147–1171 (2010).

18. Fernández-Ruiz, I., Coutinho, F. H. & Rodriguez-Valera, F. Thousands of novel endolysins discovered in uncultured phage genomes. *Front. Microbiol.* 9, 1633 (2018).

17. Kim, B. O. et al. Phage-derived antibacterials: Harnessing the simplicity, plasticity, and diversity of phages. *Viruses* 11, 268 (2019).

16. Xu, M., Struck, D. K., Deaton, J., Wang, I. N. & Young, R. A signal-arrest-release sequence mediates export and control of the phage 1P endolysin. *Proc. Natl. Acad. Sci. U.S.A.* 101, 6415–6420 (2004).

15. Briers, Y. & Lavigne, R. Breaking barriers: Expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. *Future Microbiol.* 10, 377–390 (2015).

14. Broendum, S. S., Buckle, A. M. & McGowan, S. Catalytic diversity and cell wall binding repeats in the phage-encoded endolysins. *BMC Bioinf.* 19, 326 (2018).

13. Schmelcher, M., Donovan, D. M. & Loesener, M. J. Bacteriophage endolysins as novel antimicrobials. *Future Microbiol.* 7, 1147–1171 (2012).

12. Vasina, D. V. et al. Discovering the potentials of four phage endolysins to combat Gram-negative infections. *Front. Microbiol.* 12, 748718 (2021).

11. Vasina, D. V. et al. Discovering the potentials of four phage endolysins to combat Gram-negative infections. *Front. Microbiol.* 12, 748718 (2021).

10. Schmelcher, M., Donovan, D. M. & Loesener, M. J. Bacteriophage endolysins as novel antimicrobials. *Future Microbiol.* 7, 1147–1171 (2012).

1. D’Costa, V. M. et al. Antibiotic resistance is ancient. *Nature* 477, 457–461 (2011).

2. Ventola, C. L. The antibiotic resistance crisis: Part 2: Management strategies and new agents. *P T* 34, 344–352 (2015).

3. Magana, M. et al. The value of antimicrobial peptides in the age of resistance. *Lancet Infect. Dis.* 20, e216–e230 (2020).
52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
53. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).
54. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
55. Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

Acknowledgements
This work was supported by SIA “Mikrotīkls” private scholarship and the European Social Fund (grant no. 8.2.2.0/201/1/006). We thank Inara Akopjana for technical support and Vizma Nikolajeva for biochemical testing of bacterial strains. We also gratefully acknowledge the help from the personnel at the BESSY II and MAX IV synchrotron facilities.

Author contributions
E.C. designed the study, constructed the expression plasmids, produced and purified the target proteins, performed enzymatic activity assays and obtained protein crystals, E.C. and J.R. determined the crystal structures, N.Z. performed the phylogenetic analysis, A.K. and K.T. supervised the study, E.C. and J.R. wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-08765-1.

Correspondence and requests for materials should be addressed to A.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022