Non-Orthogonal Multiple Access in the Presence of Additive Generalized Gaussian Noise

Lina Bariah, Member, IEEE, Sami Muhaidat, Senior Member, IEEE, Paschalis C. Sofotasios, Senior Member, IEEE, Sanjeev Gurugopinath, Member, IEEE, Walaa Hamouda, Senior Member, IEEE, and Halim Yanikomeroglu, Fellow, IEEE.

Abstract—In this letter, we investigate the performance of non-orthogonal multiple access (NOMA), under the assumption of generalized Gaussian noise (GGN), over Rayleigh fading channels. Specifically, we consider a NOMA system with \(L \) users, each of which is equipped with a single antenna, and derive an exact expression for the pairwise error probability (PEP). The derived PEP expression is subsequently utilized to derive a union bound on the bit error rate (BER) and to quantify the diversity orders realized by NOMA users in the presence of additive white (AW) GGN. Capitalizing on the derived PEP expression and the union bound, the error rate performance of NOMA users is further evaluated for different special cases of AWGGN. The derived analytical results, corroborated by simulation results, show that the shaping parameter of the GGN (\(\alpha \)) has negligible effect on the diversity gains of NOMA users, particularly for large \(\alpha \) values. Accordingly, as in the case of additive white Gaussian noise (AWGN), the maximum achievable diversity order is determined by the user’s order.

Index terms—Additive generalized Gaussian noise, diversity order, NOMA, pairwise error probability.

I. INTRODUCTION

The rapid increase in the number of connected devices and the explosive growth of mobile traffic, which is expected to reach 77.5 Exabytes per month in 2022, have imposed stringent requirements on the 5th generation (5G) of wireless networks, such as massive connectivity, low latency and enhanced spectral efficiency [1]. Consequently, in order to address these challenges, new communication paradigms have been recently proposed in the literature, including the proposal of new multiple access techniques. More specifically, non-orthogonal multiple access (NOMA) has recently emerged as a key enabling technology for 5G wireless networks [2]. NOMA was included in the third generation partnership project long-term evolution (3GPP LTE) Advanced Release 13 in order to realize multiuser superposition transmission (MUST) [3].

Recently, several variants of NOMA have been proposed, which can be generally classified into two categories, namely, power domain multiplexing [4] and code domain multiplexing [5]. In code domain multiplexing, e.g., multiple access with low-density spreading (LDS), user-specific spreading codes are utilized in order to multiplex different users in the code domain. On the other hand, in power domain multiplexing, signals of different users are multiplexed in the power domain by assigning different power levels to different users. At the users terminals, multi-user detection is realized by successive interference cancellation (SIC).

The superiority of NOMA over conventional orthogonal multiple access techniques has been demonstrated in several aspects in the recent literature. This includes spectral efficiency, in which multiple users are served using the same time and frequency resources, interference mitigation through SIC, and the support for massive connectivity.

The current literature on NOMA has primarily focused on the additive white Gaussian noise (AWGN) assumption, which essentially represents the thermal noise at the receiver side [6]–[9]. Nevertheless, in many practical scenarios, the AWGN assumption is not sufficient to accurately describe the noise model as it ignores other sources of noise. Specifically, it has been shown that the combined statistics of interference and noise in ultra wideband communication systems follows the generalized Gaussian distribution (GGD) [10].

In underwater acoustic (UWA) systems, the noise sources are limited in number. Thus, the noise of UWA systems is modeled as impulsive noise. Furthermore, the noise model in power line communications (PLC) is characterized by a mixture of Gaussian and Laplacian noise [11], requiring an accurate and unified model to represent such distinct noise model. It is worth noting that the impulsive noise component in the simplified class A noise model, which is modeled by Laplacian distribution [12], and the Gaussian distribution are special cases of the GGD.

We emphasize that the impact of additive white generalized Gaussian noise (AWGGN) on the performance of NOMA is not comprehensively understood yet, since it has not been addressed in the related open literature, which calls for a thorough investigation. We note that such an investigation is indeed compelling for the successful realization of NOMA in some particular applications and for determining the actual performance limits, particularly in terms of the system’s reliability.

Motivated by the above, in this letter, we analyze the performance of a NOMA system over Rayleigh fading channels in the presence of AWGGN. In particular, we derive a novel exact closed-form expression for the pairwise error probability (PEP), which is subsequently used to quantify the diversity...
order of NOMA users under the considered scenario. To the
best of the authors’ knowledge, such a performance study has
not been reported in the open literature.

II. SYSTEM MODEL

We consider a downlink NOMA system which consists of
a single base station (BS) and \(L \) ordered users, \(U_1, \ldots, U_L \),
with asymmetric channel gains. Hence, users are ordered
based on their channel gains, i.e., \(h_1 < h_2 < \cdots < h_L \),
where \(h_l \) is the fading envelope between the BS and the \(l \)th
user, which follows the Rayleigh distribution with zero mean
and unit variance, i.e., \(\sigma^2_l = 1 \). We further assume that all
channel coefficients, \(h_i, i \in \{1, \cdots, L\} \), are independent
and identically distributed. Following the key principle of NOMA,
users are allocated different power levels depending on their
channel gains, i.e., higher power coefficients are assigned to far
users, while near users are allocated lower power coefficients.
In power domain NOMA, the transmitted signals of the \(L \)
users are multiplexed in the power domain, yielding

\[
s = \sum_{i=1}^{L} \sqrt{a_i} x_i \tag{1}
\]

where \(a_i \) and \(x_i \) are the power allocation coefficient and
the transmitted symbol of the \(i \)th user, respectively, and \(P \) is
the total transmission power at the BS. Accordingly, following
the commonly used mathematical signal model \[10, 13\], the
received signal at the \(l \)th user is given by

\[
y_l = h_l s + n_l \tag{2}
\]

where the noise term, \(n_l \in \mathbb{R} \), represents the AWGGN with
zero mean and variance \(N_0/2 \). Specifically, the probability
density function (PDF) of \(n_l \) is given by \[14\]

\[
f(n_l) = \frac{\alpha \Lambda}{2 \Gamma(1/\alpha)} \exp(-\Lambda^\alpha |n_l|^{\alpha}) \tag{3}
\]

where \(\Gamma(\cdot) \) is the complete gamma function, \(\alpha \in \mathbb{R}^+ \)
denotes the shaping parameter and \(\Lambda = 2\alpha N_0/N_0 \) is the noise power
normalization coefficient, \(\Lambda_0 = \Gamma(3/\alpha)/\Gamma(1/\alpha) \). It is worth
noting that most of the common noise models are considered as
special cases of the AWGGN. For example, when \(\alpha = 2 \), the
PDF in \[3\] reduces to the Gaussian noise PDF \[13\], while the
Laplacian noise model can be obtained by setting \(\alpha \) to 1 \[12\].
Note that from classical information-theoretic perspective, for
a fixed noise variance, Gaussian noise has been shown to
be the worst-case additive noise for wireless channels. This
follows from the fact that the Gaussian distribution maximizes
the entropy, and thus, can be considered as a lower bound on
the channel capacity \[15\]. Hence, the practical values of \(\alpha \)
is assumed to be less than 2, i.e., \(\alpha < 2 \).

At the users terminals, SIC is utilized to realize multi-user
detection and mitigate interference \[16\]. Particularly, user \(U_l \),
\(l = 2, \cdots, L \), first detects users’ signals with higher power
coefficients, \(U_j \) (\(1 \leq j \leq l - 1 \)), and then subtracts them
from its received signal. Next, user \(l \) detects its own signal by
treating users with lower power coefficients, \(U_k \) (\(k > l \)), as
noise. Consequently, after performing SIC, the received signal
at \(U_l \) can be written as

\[
y'_l = h_l \left(\sqrt{a_l} x_l + X \right) + n_l \tag{4}
\]

where \(n_l \) is the normalized AWGGN with zero mean and unit
variance, \(\bar{\gamma} = 2P/N_0 \) is the average transmit signal-to-noise
ratio (SNR), and

\[
X = \sum_{i=1}^{l-1} \sqrt{a_i} \gamma \hat{\Delta}_i + \sum_{j=l+1}^{L} \sqrt{a_j} \gamma x_j \tag{5}
\]

Here, \(\hat{\Delta}_i = x_i - \hat{x}_i \) denotes the error signal at the \(i \)th layer
of SIC, given that \(\hat{x}_i \) is the detected symbol of the \(i \)th user.
The residual interference from higher order users is treated
as additive noise, which has less impact on the error rate
performance due to their reduced power levels. It is worth
mentioning that, as the value of the shaping parameter (\(\alpha \))
increases, the GGD tail becomes tighter, which means the
noise level becomes lower. Subsequently, as \(\alpha \) value decreases,
the effect of AWGGN on the received signal becomes higher.
After the SIC process, user \(l \) performs maximum likelihood
decoding to detect its own signal. Based on the noise model in \[3\]
and assuming the effect of multi-user interference is negligible,
the received signal \(y'_l \), conditioned on \(h_l \) and \(x_l \), is modeled
as GG with mean \(= h_l \left(\sqrt{a_l} \gamma x_l \right) \) and unit variance.
Therefore, the conditional PDF of \(y'_l \) can be expressed as

\[
f(y'_l | x_l, h_l) = \frac{\alpha \Lambda}{2 \Gamma(1/\alpha)} e^{-\Lambda^\alpha |y'_l - h_l (\sqrt{a_l} \gamma x_l)|^{\alpha}}. \tag{6}
\]

The receiver detects the transmitted signal according to the
following ML criterion \[10\]

\[
\hat{x}_l = \arg \max_{\bar{x} \in \phi} f(y'_l | x_l, h_l) \tag{7}
\]

which can be further simplified to

\[
\hat{x}_l = \arg \min_{\bar{x} \in \phi} |y'_l - \sqrt{a_l} \gamma h_l \bar{x}| \tag{8}
\]

where \(\phi \) is an arbitrary signal constellation set.

III. PERFORMANCE ANALYSIS

A. Pairwise Error Probability Analysis

In this section, we derive a novel closed-form expression for
the PEP for all NOMA users subject to AWGGN. The PEP
is defined as the probability of erroneously detecting symbol
\(\hat{x}_i \) when symbol \(x_i \) is transmitted. It is worth mentioning
that the PEP constitutes the basic building block for the derivation
of the union bound on the error probability.

Proposition 1. The exact PEP expression of the \(l \)th user in
the NOMA scheme can be expressed by \[9\], on the top of the
next page, where \(\mu = 1 \) for \(\upsilon < 0 \) and \(\mu = 0 \) for \(\upsilon > 0 \).
In \[9\], \(\Delta_l = x_l - \hat{x}_l \) denotes the error signal of the \(l \)th user.
Also,

\[
\delta_{l,t} = (L - l + 1 + i) \tag{10}
\]

\[
A_l = L!/[((l - 1)!(L - l)!)] \tag{11}
\]

\[
\upsilon = \left[\text{mod}(X) \right]^2 - \left[\text{mod}(\zeta) \right]^2 \tag{12}
\]

\[
\zeta = \sqrt{a_l} \gamma \Delta_l + X \tag{13}
\]

where \(\text{mod}(b) \) denotes the modulus of a complex number \(b \)
and the value of \(k \) is selected such that \(t = k\alpha/2 \) reduces to
an integer number.
Pr \left(x_l, \hat{x}_l | h_l \right) = \frac{A_l}{2 \Gamma \left(\frac{1}{\alpha} \right)} \sum_{i=0}^{l-1} \binom{l-1}{i} \left(-1 \right)^i \frac{\Gamma \left(\frac{1}{\alpha} \right)}{\delta_{l,i}} \left\{ \frac{\left(-1 \right)^{\mu} \sqrt{k_0} \sqrt{\Lambda_0} |v| \pi}{\sqrt{\alpha_l \gamma_{l,i} \Re \{ \Delta_l \} \left(2 \pi \right)^{\frac{m+1}{2}}} \right\} \times G^m_{\frac{\mu \beta \alpha}{2 \beta}} \left(\frac{1}{k \beta} \left(\sqrt{\Lambda_0} |v| \right)^{\frac{\beta}{\beta}} \left(\frac{\alpha_k}{2 \alpha_l \gamma_{l,i}} \right)^{\frac{1}{\beta}} \left[\frac{2(1-\frac{1}{k})}{\alpha_k}, \ldots, \frac{2(\frac{m}{k} - \frac{1}{k})}{\alpha_k} \right] \right\} \right] \right\} \right]. \quad (9)

\textbf{Proof.} Following the basic definition of the PEP, and given that \(x_l \) and \(\hat{x}_l \) are the respective transmitted and incorrectly detected symbols of the \(l \)-th user, the conditional PEP can be written as:

\begin{equation}
\Pr \left(x_l, \hat{x}_l | h_l \right) = \Pr \left(\left| h_l \zeta + \hat{n}_l \right|^2 \leq \left| h_l X + \hat{n}_l \right|^2 \right) \quad (14)
\end{equation}

where the inter-user interference and the effect of imperfect SIC are represented by \(X \) and \(\zeta \), which are defined in \((5) \) and \((3) \), respectively. After some mathematical manipulations, the conditional PEP in \((14) \) can be written as:

\begin{equation}
\Pr \left(x_l, \hat{x}_l | h_l \right) = \Pr \left(2 \Re \left\{ \sqrt{\alpha_l \gamma} h_l \Delta_l \hat{n}_l \right\} \leq |h_l|^2 \nu \right) \quad (15)
\end{equation}

where \(\Re \{ z \} \) denotes the real part of the complex variable \(z \). Note that for the special case of binary phase shift keying (BPSK) modulation, \(N \) in \((15) \) reduces to \(N = 2 \sqrt{\alpha_l \gamma} |h_l| \Delta_l \hat{n}_l \). Since \(\hat{n}_l \) represents the normalized AWGN with zero mean and unit variance, the decision variable \(N \) follows the GGD with zero mean and variance, \(\sigma_N^2 = 2 \alpha_l \gamma \Re \{ \Delta_l \}^2 \). Therefore, the PDF of \(N \) can be obtained from \((3) \), after substituting \(A \) by:

\begin{equation}
\lambda = \sqrt{\Lambda_0}/\sqrt{2 \alpha_l \gamma} \Re \{ \Delta_l \}. \quad (16)
\end{equation}

Consequently, the conditional PEP can be evaluated as:

\begin{equation}
\Pr \left(x_l, \hat{x}_l | h_l \right) = \Pr \left(N \leq h_l^2 \nu \right) = \int_{-\infty}^{h_l^2 \nu} \frac{\alpha \lambda}{2 \Gamma \left(1/\alpha \right)} \exp \left(-\lambda^{\alpha} |z|^\alpha \right) dz. \quad (17)
\end{equation}

By noting that the value of \(\nu \) is determined based on the error codewords, \(\nu \) has two cases, namely, \(\nu > 0 \), which denotes destructive interference, and \(\nu < 0 \) denoting constructive interference. Consequently, the integral in \((17) \) can be re-written as \((18) \), on the top of the next page.

The three integrals in \((18) \) can be evaluated using the following \((17) \) Eqs. 3.381.8, 3.381.9, 3.381.10

\begin{equation}
\int_{0}^{\mu} r^m e^{-\beta r^2} dr = \frac{\Gamma \left(\varepsilon, \beta u^\alpha \right)}{\beta \varepsilon} \quad (19)
\end{equation}

\begin{equation}
\int_{0}^{\infty} r^m e^{-\beta r^2} dr = \frac{\Gamma \left(\varepsilon, \beta u^\alpha \right)}{\beta \varepsilon} \quad (20)
\end{equation}

and

\begin{equation}
\int_{0}^{\infty} r^m e^{-\beta r^2} dr = \frac{\Gamma \left(\varepsilon, \beta u^\alpha \right)}{\beta \varepsilon} \quad (21)
\end{equation}

yielding \((22) \) at the top of the next page, where \(\varepsilon = (m+1)/n \). In \((22) \), \(\gamma (A, z) \) denotes the lower incomplete gamma function. Finally, to obtain the unconditional PEP expression, we integrate the conditional PEP in \((22) \) over the PDF of \(\omega_l \overset{\Delta}{=} |h_l| \). Recalling that users are ordered based on their channel gains and the channel gain variance of the \(l \)-th user is normalized to unity, the PDF of \(\omega_l \) can be expressed as follows \((18) \)

\begin{equation}
\bar{f}_1 (\omega_l) = A_l (\omega_l) \sum_{i=0}^{l-1} \binom{l-1}{i} (-1)^i \exp \left(-\frac{\delta_{l,i} \omega_l^2}{2} \right). \quad (23)
\end{equation}

Therefore, the unconditional PEP can be evaluated as:

\begin{equation}
\Pr \left(x_l, \hat{x}_l \right) = \frac{A_l}{2 \Gamma \left(1/\alpha \right)} \sum_{i=0}^{l-1} \binom{l-1}{i} (-1)^i \left[T_1 + (-1)^i T_2 \right], \quad (24)
\end{equation}

where

\begin{equation}
T_1 = \frac{1}{\alpha} \int_{0}^{\infty} \omega_l \exp \left(-\frac{\delta_{l,i} \omega_l^2}{2} \right) d\omega_l \quad (25)
\end{equation}

and

\begin{equation}
T_2 = \frac{\alpha \sqrt{\Lambda_0} |v|}{2 \alpha_l \gamma \Re \{ \Delta_l \} \delta_{l,i}} \int_{0}^{\infty} \exp \left(-\frac{[\Lambda_0^{\alpha} |\nu|^\alpha]}{[2 \alpha_l \gamma]^{\alpha} \Re \{ \Delta_l \}^\alpha} \right) \times \exp \left(-\frac{\delta_{l,i} \omega_l^2}{2} \right) d\omega_l. \quad (26)
\end{equation}

Using the Meijer’s G-function \(G^m_{p,q} \) representation of the exponential function \((19) \) and by setting \(\theta = \omega_l^2 \), the integral in \((28) \) can be rewritten as:

\begin{equation}
T_2 = \frac{\alpha \sqrt{\Lambda_0} |v|}{2 \sqrt{2 \alpha_l \gamma} \Re \{ \Delta_l \} \delta_{l,i}} \int_{0}^{\infty} \frac{1}{\sqrt{\theta}} \times G^1_{0,1} \left(\frac{\delta_{l,i} \theta}{2}, 0 \right) \times G^1_{0,1} \left(\frac{[\Lambda_0^{\alpha} |\nu|^\alpha]}{[2 \alpha_l \gamma]^{\alpha} \Re \{ \Delta_l \}^\alpha}, 0 \right) d\theta \quad (29)
\end{equation}

which can be evaluated, using \((24) \), Eq. 2.24.1.1, as

\begin{equation}
T_2 = \frac{\sqrt{k_0} \sqrt{\Lambda_0} |\nu|}{\sqrt{\alpha_l \gamma} \Re \{ \Delta_l \} \left(2 \nu \right)^{\frac{m+1}{2}}} \times G^m_{\frac{\mu \beta \alpha}{2 \beta}} \left(\frac{1}{k \beta} \left(\sqrt{\Lambda_0} |\nu| \right)^{\frac{\beta}{\beta}} \left(\frac{\alpha_k}{2 \alpha_l \gamma \Re \{ \Delta_l \}} \right)^{\frac{1}{\beta}} \left(\frac{2(1-\frac{1}{k})}{\alpha_k}, \ldots, \frac{2(\frac{m}{k} - \frac{1}{k})}{\alpha_k} \right) \right). \quad (30)
\end{equation}

Finally, substituting \((27) \) and \((30) \) in \((24) \) yields the unconditional PEP expression given by \((9) \).

In the following, to gain some insights into the system
\[
\Pr (x_l, \hat{x}_l \mid h_l) = \begin{cases}
\frac{\alpha \gamma}{2 \Gamma(1/\alpha)} \left[\int_0^\infty \exp (-\lambda\alpha \gamma \omega) \, d\omega + \int_0^{h_l^2 \vert v \vert} \exp (-\lambda\alpha \gamma \omega) \, d\omega \right], & \nu > 0 \\
\frac{\alpha \gamma}{2 \Gamma(1/\alpha)} \left[\int_0^\infty \exp (-\lambda\alpha \gamma \omega) \, d\omega \right], & \nu < 0
\end{cases}
\]
(18)

\[
\Pr (x_l, \hat{x}_l \mid h_l) = \frac{1}{2 \Gamma(1/\alpha)} \left[\Gamma \left(\frac{1}{\alpha} \right) + (-1)^\nu \gamma \left(\frac{1}{\alpha}, \lambda\alpha \gamma h_l^2 \vert v \vert \right) \right].
\]
(22)

performance under AWGGN, we consider two special cases, namely, \(\alpha = 1 \) and \(\alpha = 2 \), and derive the corresponding PEP expressions.

Case 1 \((\alpha = 1)\): In this case, we introduce a simplified PEP expression for the special case of \(\alpha = 1 \), which represents the Laplacian noise PDF. With \(\alpha = 1 \), the Meijer’s G-function in (30) can be rewritten as

\[
G_{2,1}^{1,1} \left(\tau^2 | 0, \frac{1}{2} \right) = \pi \exp \left(\tau^2 \right) \text{erfc} (\tau)
\]
(31)

where

\[
\tau = \frac{\sqrt{\Delta_0} \vert v \vert}{2 \sqrt{\alpha \gamma^2 \delta_1 \delta_1 \{ \Delta_1 \}}}.\]
(32)

Hence, the PEP of the \(l \)th user, under this scenario, can be obtained as

\[
\Pr (x_l, \hat{x}_l) = \frac{A_l}{2} \sum_{i=0}^{l-1} \binom{l-1}{i} \left(\frac{-1}{\gamma} \right)^i \left[1 + (-1)^\nu \sqrt{\pi} \exp \left(\tau^2 \right) \text{erfc} (\tau) \right].
\]
(33)

Case 2 \((\alpha = 2)\): In this case, the AWGGN simplifies to AWGN. Hence, by setting \(k \) to 1, the Meijer’s G-function in (30) can be written as

\[
G_{1,1}^{1,1} \left(4\tau^2 | 0, 0.5 \right) = \Gamma (0.5) \left(4\tau^2 + 1 \right)^{-1/2}.
\]
(34)

Therefore, the PEP of the \(l \)th user can be expressed as

\[
\Pr (x_l, \hat{x}_l) = \frac{A_l}{2} \sum_{i=0}^{l-1} \binom{l-1}{i} \left(\frac{-1}{\gamma} \right)^i \left[1 + (-1)^\nu \frac{2\tau}{\sqrt{4\tau^2 + 1}} \right].
\]
(35)

B. Union Bound on the BER Performance

It is widely accepted that PEP provides an indispensable tool for the derivation of union bounds on the bit error rate (BER) performance of digital communication systems. Recalling that \(x_l \) and \(\hat{x}_l \) denote the transmitted and the incorrectly decoded symbols of the \(l \)th user, the BER union bound can be written as [21]

\[
P_{UB} \leq \frac{1}{q} \sum_{x_l} \Pr (x_l) \sum_{x_l \neq \hat{x}_l} e (x_l \rightarrow \hat{x}_l) \Pr (x_l, \hat{x}_l)
\]
(36)

where \(q \) is the number of transmitted bits, \(\Pr (x_l) \) denotes the probability of \(x_l \) and \(e (x_l \rightarrow \hat{x}_l) \) is the number of bit errors between \(x_l \) and \(\hat{x}_l \).

C. Asymptotic diversity order

The achievable diversity order of NOMA users is obtained from the slope of the PEP at high SNR values, which can be evaluated numerically, using (30), (33) or (35), as follows

\[
d_{\text{as}} = \lim_{\gamma \to \infty} \frac{-\log \Pr (x_l \rightarrow \hat{x}_l)}{\log \gamma}.
\]
(37)

Fig. 1: The exact PEP of three users NOMA under different noise scenarios, i.e., \(\alpha = 1/2, \alpha = 1 \) and \(\alpha = 2 \).

Fig. 2: The achievable diversity order of a three users NOMA under different noise scenarios, \(\alpha = 1, \alpha = 2 \).

IV. NUMERICAL RESULTS

In this section, we assess the accuracy of our analytical results presented in Proposition 1 when compared with Monte Carlo simulations. Without loss of generality, we consider a downlink NOMA system with a single BS and three users, i.e., \(U_1, U_2 \) and \(U_3 \). The transmitted and detected signals
are selected randomly from a BPSK constellation. Power allocation coefficients are selected as the following, $\alpha_1 = 0.7$, $\alpha_2 = 0.2$ and $\alpha_3 = 0.1$.

Fig. 1 shows the analytical and simulated PEP of all users versus the average transmit SNR, $\bar{\gamma}$. The perfect match between the analytical and simulation results show the accuracy of the derived expression in (9). Moreover, it can be noticed that α has no effect on the PEP performance of the first user, given that the diversity order of the first user is limited to unity. Additionally, it is worth recalling that the first user does not perform SIC, consequently, it suffers from high interference from the second and third users. For the second and third users, it is observed that for small α values, the diversity order of the users is highly affected by α, and as the value of α increases, its effect on the diversity order becomes negligible. This is verified by Fig. 2 which presents the achievable diversity order of all users for $\alpha = 1$ and 2. From Fig. 2 it is shown that the diversity order of the lth user converges to l, for all users.

The BER union bound is presented in Fig. 3 where the PEP is averaged over all possible scenarios of transmitted and detected symbols of all users [18]. Fig. 3 further corroborates the effect of α on the BER performance and the diversity order of NOMA users. It can be noted from the figure that higher order users are more susceptible to the variation of α values. More specifically, it is shown that α has negligible effect on the BER performance of the first user. This is due to the fact that the BER performance of the first user is dominated by the interference caused by all other users. Meanwhile, for higher order users, it can be observed that as α increases, its effect on the error rate performance decreases.

V. CONCLUSIONS

In this letter, we investigated the performance of NOMA systems subject to AWGN with imperfect SIC. Particularly, we derived an exact expression for the PEP in the considered setup, and studied the impact of the GGN parameters on the PEP performance and the achievable diversity order. From both simulation and analytical results, for small values of α, i.e., $\alpha < 1$, a noticeable impact on the diversity order of NOMA users was observed. On the other hand, for larger values of α, it was noticed that the achievable diversity order is independent of α. Hence, as in the AWGN case, the diversity order is dominated by the user’s order.

REFERENCES

[1] Cisco. (2019) Cisco visual networking index: Forecast and trends, 2017–2022 white paper. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

[2] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec. 2014.

[3] J. M. Meredith, “Study on downlink multiuser superposition transmission for LTE,” vol. 67, Mar. 2015.

[4] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in IEEE Vehicular Technology Conference (VTC Spring), Jun. 2013, pp. 1–5.

[5] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density signature for synchronous CDMA systems over AWGN channel,” IEEE Trans. Signal Proc., vol. 56, no. 4, pp. 1616–1626, Apr. 2008.

[6] L. Bariah, S. Muhaidat, and A. Al-Dweik, “Error probability analysis of NOMA-based relay networks with SWIPT,” IEEE Commun. Lett., pp. 1–1, 2019.

[7] Z. Mobini, M. Mohammadi, B. K. Chalise, H. A. Suraweera, and Z. Ding, “Beamforming design and performance analysis of full-duplex cooperative NOMA systems,” IEEE Trans. Wireless Commun., pp. 1–1, 2019.

[8] L. Lv, J. Chen, Q. Ni, and Z. Ding, “Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: User scheduling and performance analysis,” IEEE Trans. Commun., vol. 65, no. 6, pp. 2641–2656, Jun. 2017.

[9] Y. Liu, Z. Ding, M. Elkashlan, and J. Yuan, “Nonorthogonal multiple access in large-scale underlay cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 10,512–10,157, Dec. 2016.

[10] L. Bariah, S. Muhaidat, and A. Al-Dweik, “Error probabil ity analysis of NOMA-based relay networks with SWIPT,” IEEE Commun. Lett., vol. 16, no. 6, pp. 785–788, Jun. 2012.

[11] S. Prakash, A. Bansal, and S. K. Jha, “Performance analysis of narrowband PLC system under Gaussian Laplacian noise model,” in International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Mar. 2016, pp. 3597–3600.

[12] F. Yilmaz and M. Alouini, “On the bit-error rate of binary phase shift keying over additive white generalized Laplacian noise (AWGLN) channels,” in Signal Processing and Communications Applications Conference (SIU), May 2018, pp. 1–4.

[13] J. Proukis and M. Salehi, Digital Communications, 5th ed. UK: Ashford Colour Press, 2014.

[14] F. Yilmaz and M. Alouini, “Exact symbol error probability of square M-QAM signaling over generalized fading channels subject to additive generalized gaussian noise,” IEEE Commun. Lett., vol. 16, no. 6, pp. 785–788, Jun. 2012.

[15] I. Shomorony and A. S. Avestimehr, “Worst-case additive noise in wireless networks,” IEEE Trans. Inf. Theory, vol. 59, no. 6, pp. 3833–3847, 2013.

[16] L. Bariah, S. Muhaidat, and A. Al-Dweik, “Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints,” IEEE Trans. Commun., pp. 1–1, 2019.

[17] I. Gradstein and I. Ryzhik, Table of Integrals, Series, and Products, A. Jeffrey and D. Zwillinger, Eds. Academic Press, 2007.

[18] L. Bariah, S. Muhaidat, and A. Al-Dweik, “Error probability analysis of non-orthogonal multiple access over nakagami- m fading channels,” IEEE Trans. Commun., vol. 67, no. 2, pp. 1586–1599, Feb. 2019.

[19] L. Mohjazi, S. Muhaidat, M. Dianati, M. Al-Qatayri, and N. Al-Dhahir, “Performance analysis of SWIPT relaying systems in the presence of impulsive noise,” IEEE Access, vol. 6, pp. 71,662–71,677, 2018.

[20] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series, Volume 3: More Special Functions. New York: Gordon and Breach, 1986.

[21] M. Safari and M. Uysal, “Cooperative diversity over log-normal fading channels: performance analysis and optimization,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1963–1972, May 2008.