RESEARCH ARTICLE

In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives

Hikmate Abriouel1*, Beatriz Pérez Montoro1, María del Carmen Casado Muñoz1, Charles W. Knapp2, Antonio Gálvez1, Nabil Benomar1

1 Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain, 2 Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, Scotland, United Kingdom

* hikmate@ujaen.es

Abstract

Lactobacillus pentosus MP-10, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. The genome sequence of L. pentosus MP-10 is currently considered the largest genome among lactobacilli, highlighting the microorganism’s ecological flexibility and adaptability. Here, we analyzed the complete genome sequence for the presence of acquired antibiotic resistance and virulence determinants to understand their defense mechanisms and explore its putative safety in food. The annotated genome sequence revealed evidence of diverse mobile genetic elements, such as prophages, transposases and transposons involved in their adaptation to brine-associated niches. In-silico analysis of L. pentosus MP-10 genome sequence identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) as an immune system against foreign genetic elements, which consisted of six arrays (4–12 repeats) and eleven predicted cas genes [CRISPR1 and CRISPR2 consisted of 3 (Type II-C) and 8 (Type I) genes] with high similarity to L. pentosus KCA1. Bioinformatic analyses revealed L. pentosus MP-10 to be absent of acquired antibiotic resistance genes, and most resistance genes were related to efflux mechanisms; no virulence determinants were found in the genome. This suggests that L. pentosus MP-10 could be considered safe and with high-adaptation potential, which could facilitate its application as a starter culture and probiotic in food preparations.

Introduction

Lactobacilli are ubiquitous in the environment and food production (reviewed in [1]), and they are also part of intestinal, vaginal and oral microbiota [2]. As members of the lactic acid
bacteria (LAB), they have been used in food fermentation processes for millennia; however, in the last decade more attention has focused on their probiotic capacity. Thus, when consumed, sufficient live cultures may benefit the host’s health [3]. Lactobacilli and bifidobacteria represent the main LAB probiotics traditionally isolated from human sources (e.g., milk and intestinal tract). However, probiotic LAB from non-dairy origin, such as fruits and vegetables, have increased in the last few years due to increasing frequencies of lactose intolerance, dyslipidemia, allergy and vegetarianism among people [4–6]. Furthermore, those food matrices are characterized by intrinsic physico-chemical properties that mimic conditions in the gastrointestinal tract, since probiotic bacteria from vegetables or fruits possess mechanisms for adherence to surfaces similarly as they would on the intestinal surface, along with their tolerance to acids and several other stresses. As such, several studies have focused on the selection of new probiotic candidates [7, 8] with LAB abundances between 10^2–10^4 CFU/g on fruit and vegetable surfaces [9, 10] and 10^6–10^8 CFU/g in fermented foods [11, 12].

Along with the probiotic features of some lactobacilli strains, aspects of food safety should be considered as both properties are inherently linked to the specific strains and host susceptibility [13]. Although many Lactobacillus spp. are recognized as GRAS (Generally Regarded As Safe; in the USA) or have attained the QPS (Qualified Presumption of Safety; for the European Commission; European Food Safety Authority “EFSA”) [14] status, probiotic properties and safety aspects of the intended probiotic bacterium should be thoroughly analyzed at genomic scale. Thus, probiogenomics [15] could offer a novel approach to verify the absence of genes related to virulence or antibiotic-resistance transferability and the presence of genes involved in health-promotion.

The complete genome of a potential probiotic Lactobacillus pentosus MP-10, isolated from brines of naturally fermented Aloreña green table olives, was initially sequenced in 2011 [16] and completed in 2016 [17]; in this study, it was re-annotated to provide deeper insight into its defense mechanisms—e.g., antibiotic-resistance and virulence determinants. In this sense, bioinformatic tools could provide a greater sense of the microorganism’s safety in food preparations.

Results and discussion

General genomic features of a probiotic Lactobacillus pentosus MP-10

Lactobacillus pentosus MP-10 has the largest genome among lactobacilli considered to date, which may reflect the bacterium’s ecological flexibility and adaptability. The single circular chromosome of L. pentosus MP-10 consisted of 3,698,214 bp, with an estimated mol% G+C content of 46.32% and 5 plasmids ranging 29–46 kb [17], as represented in Fig 1. The annotated genome sequence (Fig 1A) revealed 3,558 open reading frames (ORFs), of which 84.5% (2,971) were attributed to a COG (Cluster of Orthologous Groups) family and/or were given a functional description; such number exceeded the estimate of protein-coding genes in LAB, of 1,700–2,800 genes [18], and also in L. pentosus strains—such as L. pentosus IG1 from Spanish-style fermented green olives (3,133 ORFs) [19] and L. pentosus KCA1 isolated from a vaginal source (2,992 ORFs) [20]. The genetic variability among L. pentosus strains may be based on their ecological niches as reported by O’Sullivan et al. [21], which compared genomes from different niches. Thus, lactobacilli isolated from fermented olives showed a higher number of predicted ORFs than other sources. Furthermore, ecological adaptability to fermentation is reflected by the presence of additional plasmids in L. pentosus MP-10 (five plasmids; Fig 1B) and seven plasmids in L. pentosus IG1 [19]; plasmids were absent in L. pentosus KCA1 [20]. This suggests that plasmid-borne genes mediate the persistence of lactobacilli in olive fermentation; however, this hypothesis requires further studies for confirmation.
S1 Fig (Supplemental Material) shows the cellular component, the molecular function and the biological process frequencies predicted in *L. pentosus* MP-10. Among the GO (Gene Ontology) terms, 230 belonged to transcription (DNA-templated), 104 transcription regulation (DNA-templated), 77 to phosphoenolpyruvate-dependent sugar phosphotransferase system, 73 to carbohydrate metabolism, 65 to response to antibiotics, 60 to cell-wall organization, 54 to transport, 48 to sporulation, 33 to glycolytic process and gluconeogenesis, and 12 to defense responses, et al. (S1 Fig).

Comparison of ORFs sequences among *L. pentosus* MP-10, *L. pentosus* KCA1, and *L. pentosus* IG1 (aligned by MAUVE algorithm) showed that the synteny of genes was similar (Fig 2A), although inversion and rearrangements among all *L. pentosus* strains occurred (Fig 2A). Inversion and rearrangement are the main evolutionary phenomena observed among *L. pentosus* strains and provide a complete picture of genetic differences among the strains colonizing different ecological niches. The phylogenetic distance between *L. pentosus* MP-10 and *L.*

Fig 1. Circular representation of the *Lactobacillus pentosus* MP-10 chromosome (A) and 5 plasmids (B). (A) The circles from outside to inside are the annotated CDS elements in forward orientation, the annotated CDS elements in the reverse orientation, several COG functions, the structural RNA, the GC content and the GC screw. (B) The circles from outside to inside of each plasmid are the annotated CDS elements in forward orientation, the annotated CDS elements in the reverse orientation, several COG functions, the GC content and the GC screw.

https://doi.org/10.1371/journal.pone.0176801.g001

S1 Fig (Supplemental Material) shows the cellular component, the molecular function and the biological process frequencies predicted in *L. pentosus* MP-10. Among the GO (Gene Ontology) terms, 230 belonged to transcription (DNA-templated), 104 transcription regulation (DNA-templated), 77 to phosphoenolpyruvate-dependent sugar phosphotransferase system, 73 to carbohydrate metabolism, 65 to response to antibiotics, 60 to cell-wall organization, 54 to transport, 48 to sporulation, 33 to glycolytic process and gluconeogenesis, and 12 to defense responses, et al. (S1 Fig).

Comparison of ORFs sequences among *L. pentosus* MP-10, *L. pentosus* KCA1, and *L. pentosus* IG1 (aligned by MAUVE algorithm) showed that the synteny of genes was similar (Fig 2A), although inversion and rearrangements among all *L. pentosus* strains occurred (Fig 2A). Inversion and rearrangement are the main evolutionary phenomena observed among *L. pentosus* strains and provide a complete picture of genetic differences among the strains colonizing different ecological niches. The phylogenetic distance between *L. pentosus* MP-10 and *L.*
pentosus IG1, both isolated from olives, was lower than with L. pentosus KCA1 from vagina (Fig 2B), thus L. pentosus MP-10 was phylogenetically more closely related with L. pentosus IG1.

Defense mechanisms of Lactobacillus pentosus MP-10

Among the defense mechanisms revealed in the L. pentosus MP-10 genome sequence by in silico analysis, 12 genes were found to be involved in defense responses to viruses and bacteria. Furthermore, we identified the presence of two CRISPR systems: CRISPR1 and CRISPR2 [17] that represent an acquired and adaptive immune system providing protection against mobile genetic
elements (i.e., viruses, transposable elements and conjugative plasmids) [22, 23]. In general, a CRISPR mechanism depends on a leader sequence, CRISPR array and CRISPR associated protein responsible genes (cas genes) in bacteria since the expression of CRISPR array could be constitutive or inducible [24, 25]. Analysis carried out with the CRISPRs finder program showed that L. pentosus MP-10 genome possessed genes that encoded nine potential CRISPR arrays (CR) between 159,766 and 3,085,353 bp distributed on the entire whole genome (Fig 3A): six were confirmed CRISPRs, and three were questionable CRISPRs (Fig 3A, Table 1).
Table 1. Characteristics of CRISPR arrays detected in *Lactobacillus pentosus* MP-10 and other lactobacilli genomes by using CRISPR finder program.

Strains	CRISPR array	Start position	End position	CRISPR length	Number of repeats	DR consensus**
L. pentosus MP-10	CR1	159072	159766	694	11	GTCTTGATATAGTATAGTCATATCAAAACAGGTTTACAGGACAG
	CR2*	409315	09451	136	2	CAATCGTGACTAAGTCAGTACGGGTACCTGTTTT
	CR3	1319339	1319917	578	10	GGTACCCCCGCTACACGGGGGAACAG
	CR4*	1609619	1609706	89	2	GGTACCCCCGCTACACGGGGGAACAG
	CR5	161028	1610562	273	5	GGTACCCCCGCTACACGGGGGAACAG
	CR6	1610698	1611397	699	12	GGTACCCCCGCTACACGGGGGAACAG
	CR7	1614018	1614531	513	9	ATACCCCCGCTACACGGGGGAACAG
	CR8	2492891	2493112	221	4	TACAGTGTCAGTTGTTGAGCT
	CR9*	3085283	3085353	70	2	CTAGTGCTACACGGGGGAACAG
L. pentosus KCA1	NZ_CM001538_1	131563	132851	1288	20	GTCTTGATATAGTATATCAAAACAGGTTTACAGGACAG
	NZ_CM001538_2	1239838	1241143	1305	22	GGTACCCCCGCTACACGGGGGAACAG
	NZ_CM001538_3	1456695	1459106	2411	40	GGTACCCCCGCTACACGGGGGAACAG
	NZ_CM001538_4	1461724	1462549	825	14	GGTACCCCCGCTACACGGGGGAACAG
	NZ_CM001538_5	1462701	1463218	517	9	GGTACCCCCGCTACACGGGGGAACAG
	NZ_CM001538_6	1463531	1464538	1187	20	GGTACCCCCGCTACACGGGGGAACAG
L. pentosus IG1	FR874854.1_Crispr_1	289548	289944	396	7	GGGTACCCCCGCTACACGGGGGAACAG
	FR874854.1_Crispr_2	299897	300172	275	5	GGTGATCCCATCGGATACGGGGGAACAG
	FR874854.1_Crispr_3	585210	585665	455	8	GGTGATCCCATCGGATACGGGGGAACAG
	FR874854.1_Crispr_4	788797	78983	186	4	GGTGATCCCATCGGATACGGGGGAACAG
	FR874854.1_Crispr_5*	790101	790233	132	3	GGTGATCCCATCGGATACGGGGGAACAG
	FR874854.1_Crispr_6	920329	920758	429	7	GGTGATCCCATCGGATACGGGGGAACAG
L. pentosus FL0421	tmp_1_Crispr_1*	221528	221664	136	2	AAACAGTGTCAGTTGTTGAGCT
	tmp_1_Crispr_2	466666	467162	496	8	GGTGATCCCATCGGATACGGGGGAACAG
L. plantarum CF_00129605	NZ_CP012343_2	2563734	2564693	959	15	GGTGATCCCATCGGATACGGGGGAACAG
L. plantarum ZJ316	NC_0201229_1	359930	360361	431	7	GGTGATCCCATCGGATACGGGGGAACAG
L. plantarum GCC_001296095	NZ_CP012343_2	2563734	2564693	15	5	GGTGATCCCATCGGATACGGGGGAACAG
L. plantarum GCC_001715615	NZ_CP015308_2	1823736	1824036	5	15	GGTGATCCCATCGGATACGGGGGAACAG
L. plantarum GCC_001660025	NZ_CP015857_1	231415	2312014	9	15	GGTGATCCCATCGGATACGGGGGAACAG
L. plantarum GCC_001659745	NZ_CP015966_1	2416755	2417252	8	15	GGTGATCCCATCGGATACGGGGGAACAG
L. plantarum subsp. plantarum GCC_001272315	NZ_CM003439_1	2774673	2775303	630	10	GGTGATCCCATCGGATACGGGGGAACAG
L. paraplantarum GCC_001443645	NZ_CP013130_1	302519	303280	761	12	GGTGATCCCATCGGATACGGGGGAACAG
	NZ_CP013130_2	1344198	1344530	332	6	GGTGATCCCATCGGATACGGGGGAACAG
	NZ_CP013130_3	1349145	1349416	271	5	GGTGATCCCATCGGATACGGGGGAACAG
	NZ_CP013130_4	1351689	1352203	514	9	GGTGATCCCATCGGATACGGGGGAACAG
	NZ_CP013130_5*	2726056	2726234	178	3	GTCACCATTGAAACCATCTGCAA
L. brevis GCC_001678805	NZ_CP015398_1	79605	80762	1157	18	GATCTTTAACTTTGATATAGTCATAACTATCTAAAG
	NZ_CP015398_2	229570	229735	165	3	GATCTTTAACTTTGATATAGTCATAACTATCTAAAG
	NZ_CP015398_3	391217	391302	85	2	GATCTTTAACTTTGATATAGTCATAACTATCTAAAG
	NZ_CP015398_4	1416352	1416623	271	5	GATCTTTAACTTTGATATAGTCATAACTATCTAAAG

(Continued)
This may reflect chromosomal plasticity as a means of increasing fitness or changing ecological lifestyles.

Each CRISPR array comprised of short spacer sequences that were fragments of foreign DNA, either derived from the phage or plasmid, incorporated into the host between degenerate repeats (DR consensus). The number of confirmed CRISPR arrays was similar in both \textit{L. pentosus} strains (MP-10 and KCA1); however, the number of repeats and spacers, the CRISPR length, and the DR consensus sequence were different, although two identical repeats were found in both \textit{L. pentosus} strains (MP-10 and KCA1) (Table 1). Comparison of CRISPR arrays of \textit{L. pentosus} MP-10 and phylogenetically related lactobacilli, such as \textit{L. plantarum}, \textit{L. para\textit{plantarum}} and \textit{L. brevis} (available in CRISPRs database), showed that one DR consensus (5’-GTCTTGAATAGTAGTCATATCAAACAGGTTTAGAAC-3’) or its reverse complement was shared by all \textit{L. pentosus} and \textit{L. plantarum} strains except \textit{L. pentosus} IG1 (Table 1). Such DR consensus could be considered as a more conserved repeat signature in \textit{L. plantarum} group.

The number of spacers ranged from four in CR5 to eleven in CR6 identified within the six confirmed CRISPR arrays with lengths ranging from 29 to 51 bp (40 bp average length) (Table 2). The search of protospacer was done using CRISPR Target program to localize the DNA target acquired by horizontal gene transfer, and the results revealed the presence of protospacers related to plasmids and phages. These protospacers were located within genes encoding structural viral protein (such as tail-fiber protein) or bacterial enzymes such as thioredoxin reductase, short-chain dehydrogenase, excinuclease ABC subunit A and FMN-dependent oxidoreductase, nitrilotriacetate monoxygenase family protein, et al. (Table 2). Furthermore, the protospacers were also identified within genes of unknown function and in intergenic regions (Table 2).

Given that the spacers were usually added at one side of the CRISPR system, the chronological record of the viruses and plasmids (protospacers), which invaded \textit{L. pentosus} MP-10 or its ancestors, could be detected by searching for the spacers with BLAST (Basic Local Alignment Search Tool). For example in CR1, we suggested that the primary invasion was accomplished by \textit{Haematospirillum jordaniae} H5569 Plasmid unnamed 2, then by other short sequences followed by \textit{Borrelia miyamotoi} FR64b Plasmid_07, and \textit{Clostridium taeniosporum} 1/k Plasmid pCt3 (Table 2). On the other hand, multiple targets were observed for all confirmed CRISPR spacers of \textit{L. pentosus} MP-10 except for CR7 (Table 2). This suggests that \textit{L. pentosus} MP-10 could target many diverse viruses and plasmids. As such, they could possess an efficient defense mechanism against different pathogens, not only in food systems, but also in intestinal tract—thus reinforcing their probiotic capacity.

Regarding the CRISPR-associated protein involved in sequence-specific recognition and cleavage of target DNA complementary to the spacer, according to the classification suggested by Makarova et al. [26], three major types of the CRISPR-Cas systems were differentiated (Types I, II and III). However, in the present study both signature genes for the Type I (\textit{cas3}) and Type II (\textit{cas9}) systems were detected in \textit{L. pentosus} MP-10 genome (S1 Table, Fig 3B).
Table 2. Characteristics of spacers from CRISPR arrays in *Lactobacillus pentosus* MP-10 genome as revealed by CRISPRTarget program.

CRISPR array	CR1	CR2*	CR3	CR4*	CR5																				
Spacers sequence (5'-3')	AAAATTCTGTTAAGTTCAATGGCTTGTT	CR2	TCAATCATGATGATTGTTGAAAN	CCGCCTGCGTCACGAAATTGAGAAE7	GGGCTGACGCGGGCTGGATTCCA																				
Protospacer characteristics	Haematospirillum jordaniae H5569 Plasmid unnamed 2		*Bdellovibrio and Yersinia* sp. *Kat1* (KJ471607.1)	Strhabdella sp. HNZ7 Plasmid pShin-01	Bacillus Phage Eldridge																				
Origin of DNA				346033..346060 +	35750..35781																				
Position	262527..262506 -		1180..1206 +	246996..247027 +	262649..262622 -																				
Strand	X	X	X	X	X																				
Score	X	X	X	X	X																				
Accession number	NZ_CP014527.1		NC_017261.1	NZ_CP015737.1	KU253712																				
Gene (GenBank)	Non coding		Non coding	TonB-dependent receptor	Non coding																				
Origin of DNA																									
Position																									
Strand																									
Score																									
Accession number																									
Gene (GenBank)																									
Origin of DNA																									
Position																									
Strand																									
Score																									
Accession number																									
Gene (GenBank)																									
Origin of DNA																									
Position																									
Strand																									
Score																									
Accession number																									
Gene (GenBank)																									
CRISPR array	Position	Strand	Score	Accession number	Gene (GenBank)	Origin of DNA	Spacer sequence (5´-3´) Protospacer characteristics	Score	Accession number	Gene (GenBank)	Origin of DNA	Spacer sequence (5´-3´) Protospacer characteristics	Score	Accession number	Gene (GenBank)	Origin of DNA	Spacer sequence (5´-3´) Protospacer characteristics	Score	Accession number	Gene (GenBank)					
-------------	---------	--------	-------	-----------------	---------------	---------------	---	-------	-----------------	---------------	---------------	---	-------	-----------------	---------------	---------------	---	-------	-----------------	---------------					
CR6	X	X				Moraxella Phage Mcat17	GTAAAAAACTTTATCCACTCCATGCGCTCC TTG X X X X X X					GATTGAGAATCTGCAAAACCCGTTAAGCCC TTA X X X X X X					CCTAATCCAGTCAAACTCATGCCGTTTCGA ACA X X X X X X					AAATACTTATCTTTTGAGACAGCCAACCAC ATG X X X X X X			
CR7	X	X				Moraxella Phage Mcat17	GTAAAAAACTTTATCCACTCCATGCGCTCC TTG X X X X X X					GATTGAGAATCTGCAAAACCCGTTAAGCCC TTA X X X X X X					CCTAATCCAGTCAAACTCATGCCGTTTCGA ACA X X X X X X					AAATACTTATCTTTTGAGACAGCCAACCAC ATG X X X X X X			
CR8	X	X				Moraxella Phage Mcat17	GTAAAAAACTTTATCCACTCCATGCGCTCC TTG X X X X X X					GATTGAGAATCTGCAAAACCCGTTAAGCCC TTA X X X X X X					CCTAATCCAGTCAAACTCATGCCGTTTCGA ACA X X X X X X					AAATACTTATCTTTTGAGACAGCCAACCAC ATG X X X X X X			

No results obtained by CRISPR-Target program.

HP: Hypothetical protein.
ND: Not determined.

https://doi.org/10.1371/journal.pone.0176801.t002

Genomic insights into safety aspects and defense mechanisms of a probiotic *Lactobacillus pentosus*. PLOS ONE | https://doi.org/10.1371/journal.pone.0176801 June 26, 2017 9 / 21
CRISPR1 and CRISPR2 consisted of three Type-II-C and eight Type-I genes, respectively (Fig 3B), and they were closely associated with the palindromic repeat/spacer units (Fig 3A).

CRISPR1 operon consisted of only three genes (cas1, cas2, and cas9), which were similar to those of Streptococcus thermophilus (S1 Table) and adjacent to the CR1 array (Fig 3A). A comparison of L. pentosus MP-10 and L. pentosus KCA1 revealed that CRISPR1 of L. pentosus KCA1 contained one more gene encoding a protein involved in adaptation (the csn2 gene) [27]; while CRISPR1 of L. pentosus KCA1 belonged to Type II-A, CRISPR1 of L. pentosus MP-10 belonged to Type II-C lacking this fourth gene (Fig 3B). Regarding CRISPR2 of L. pentosus MP-10, this operon consisted of eight genes: the coding genes for CRISPR-associated endonucleases Cas1 and Cas2 (ygbT and ygbF genes); the CRISPR system Cascade subunit CasC (casC gene); and the CRISPR system Cascade subunit Cas5 (XX999_01592 gene ID of L. pentosus MP-10), which were similar to Escherichia coli, the Cas3 nuclease/helicase (cas3 gene) in Streptococcus thermophilus, the CRISPR-associated endoribonuclease Cse3 in Thermus thermophilus and two genes unique for L. pentosus MP-10 (XX999_01592 gene ID, or cse1_Lpe gene, and XX999_01590 gene ID, or cse2_Lpe gene) (S1 Table). Among the eight genes of CRISPR2, five of them were shared by both L. pentosus strains (MP-10 and KCA1): cas1, cas2, cas3, casC, cas5 and cse3 (Fig 3B); however, both unique genes for L. pentosus MP-10 (XX999_01592 gene ID, or cse1_Lpe gene, and XX999_01590 gene ID, or cse2_Lpe gene) corresponded to CRISPR-associated protein (KCA1_RS06550) and cse2/casB (KCA1_RS06555) in L. pentosus KCA1. Alignment of these genes revealed that the cse1-Lpe gene from L. pentosus MP-10 showed high similarity to the CRISPR-associated protein from L. pentosus DSM 20314 and L. pentosus FL0421 (99.8% identity) and also with L. pentosus KCA1 (94.2%). However, it showed only 71.6% identity with cse1 gene sequence from L. pentosus IG1, which formed a separate lineage from the other clusters representing the four lactobacilli (Fig 4A). On the other hand, the cse2-Lpe gene from L. pentosus MP-10 was identical to the cse2 gene from L. pentosus DSM 20314 and L. pentosus FL0421 (100% identity) and highly similar to cse2/casB gene from L. pentosus KCA1 (90.2% identity); however, L. pentosus IG1 formed a different lineage (67.3%
identity) from the main cluster of other lactobacilli (Fig 4B). It is noteworthy to highlight that the CRISPR genes found in \textit{L. pentosus} MP-10 were more highly similar to those of \textit{L. pentosus} DSM 20314 (isolated from corn silage), \textit{L. pentosus} FL0421 (isolated from temperate deciduous-forest biome soil), and \textit{L. pentosus} KCA1 (isolated from the vagina), than \textit{L. pentosus} IG1 isolated from fermented olives. These data provided new insight into the evolution of bacterial resistance against mobile elements in \textit{Lactobacillus} spp., which highlight their interconnection between different ecosystems; thus \textit{L. pentosus} MP-10 possess multiple CRISPR elements of various nature, which are (again) of great relevance for the application of this bacterium, not only as a promising probiotic, but also as starter culture at industrial scale.

Detection of mobile genetic elements in \textit{Lactobacillus pentosus} MP-10 genome

Bacterial genome of \textit{L. pentosus} MP-10 included 29 transposase, four putative transposon Tn552 DNA-invertase bin3 (four different genes of the same family) located on plasmids (pLPE-2, pLPE-3, pLPE-4 and pLPE-5), and one transposase repressor (IS2 repressor \textit{TnpA}) coding gene. The transposases represented nine different families, with three of them appearing in multiple copies ranging from three to six (Table 3). Furthermore, they were highly represented by the DDE superfamily: 17 transposase DDE domain proteins (five different genes), which appeared in 5–7 copies as a result of replication events. Other transposases were represented by three transposases (three different genes), three transposases of the mutator family (three different genes), two putative transposases (two different genes, with a single gene unique to \textit{L. pentosus} MP-10), two transposase IS200 like proteins (two different genes, with one gene unique to \textit{L. pentosus} MP-10), one transposase from transposon Tn916 and one IS2 transposase \textit{TnpB} coding gene. Similarity of \textit{L. pentosus} MP-10 transposase genes was shown to transposases from other \textit{Lactobacillus} spp.: mainly \textit{L. plantarum}, \textit{L. fermentum}, and \textit{L. brevis} (Table 3). The number of transposase genes present in \textit{L. pentosus} MP-10 (29 genes) was higher than other lactobacilli strains such as \textit{L. pentosus} KCA1 (25 genes) [20], \textit{L. acidophilus} NCFM (18 genes) [28], \textit{L. pentosus} DSM 20314 (14 genes) and \textit{L. pentosus} IG1 (five genes) which suggested that insertion element-mediated genome diversification was more frequent in the \textit{L. pentosus} MP-10 environment (Table 3). Furthermore, BLASTx analysis of transposase-unique genes, predicted in \textit{L. pentosus} MP-10, revealed similarly encoded proteins in other lactobacilli, and the result further showed that the encoded transposase of \textit{L. pentosus} MP-10 had similarity with transposase proteins of \textit{L. pentosus} KCA1, \textit{L. pentosus} DSM 20314 and \textit{L. pentosus} FL0421 (Fig 5). ClustalW alignment of XX999_01924 putative transposase and other transposase genes showed 100% identity to transposase gene from \textit{L. pentosus} DSM 20314 (Fig 5A); however, it was more similar to \textit{L. plantarum} EGD-AQ4 (98.2% identity) than to \textit{L. pentosus} KCA1 (90.3% identity) transposases (Fig 5A). Regarding the transposase IS200-like protein encoding gene (XX999_01925), alignment with ClustalW with other related genes showed 100% identity to \textit{L. pentosus} FL0421 and \textit{L. pentosus} DSM 20314 (Fig 5B); however, similarly we observed less homology to the encoding gene for the transposase-IS200-like protein from \textit{L. pentosus} KCA1 (94.9% identity) than to \textit{L. plantarum} EGD-AQ4 (98.6% identity) (Fig 5B).

On the other hand, screening for prophage DNA within \textit{L. pentosus} MP-10 genome, using bioinformatic tools such as PHAST, determined the presence of five temperate phage regions. Two regions were intact (Regions 2 and 5, score > 90), the other two were questionable (Regions 1 and 4, score 70–90), and the last one was incomplete (region 3, score < 70) (Fig 3A, Table 4). The complete prophage regions of \textit{L. pentosus} MP-10 chromosome were identified as \textit{Lactobacillus} phage Sha1 (region 2; GC content, 40.35%; region length, 39.2 kb) [29] and
Table 3. Characterization of transposase and transposon elements predicted in *Lactobacillus pentosus* MP-10 genome.

Gene ID	Gene	Position	Strand	Gen length (bp)	Protein description	Protein family	Similarity to transposase in *Lactobacillus*
XX999_00002	bin3	24835–25416	-	582	Putative transposon Tn552 DNA-invertase bin3	UniProtKB: P20384	98% identity transposase in *L. paracollinoides* TMW 1.1995 plasmid pl11995-6
XX999_00061	XX999_00061	6507–6758	-	252	Transposase	Pfam: PF01527.14	100% identity transposase in *L. lindneri* TMW 1.481
XX999_00069	XX999_00069	14032–14613	-	582	Transposase, Mutator family	Pfam: Pf00872.12	99% identity transposase in *L. fermentum* 47–7
XX999_00071	bin3	17298–17972	-	675	Putative transposon Tn552 DNA-invertase bin3	UniProtKB: P20384	99% identity transposase in *L. fermentum* IFO 3956
XX999_00112	XX999_00112	22929–23432	-	504	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* LY-78
XX999_00245	XX999_00245	157564–158067	-	504	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* LY-78
XX999_00336	XX999_00336	260525–261202	+	678	IS2 repressor TnpA	CLUSTERS: PRK09413	100% identity transposase in *L. plantarum* AY01
XX999_00337	XX999_00337	261379–262110	+	732	IS2 transposase TnpB	CLUSTERS: PRK09409	100% identity transposase in *L. plantarum* MF1298 plasmid unnamed7
XX999_00400	XX999_00400	331304–331807	-	504	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* LY-78
XX999_00407	XX999_00407	334530–334901	+	372	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* subsp. plantarum TS12
XX999_00611	XX999_00611	565747–566250	-	504	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* LY-78
XX999_00680	int-Tn	637701–638588	-	1158	Transposase from transposon Tn916	UniProtKB: P22868	97% identity transposase in *L. plantarum* LZ206
XX999_01017	XX999_01017	992606–992803	+	198	Transposase	Pfam: Pf01527.14	100% identity transposase in *L. pentosus* IG1
XX999_01502	XX999_01502	1519616–1519912	+	297	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* C410L1 plasmid unnamed1
XX999_01619	XX999_01619	1648272–1648775	+	504	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* LY-78
XX999_01924	XX999_01924	1973033–1974301	-	1269	Putative transposase	Pfam: Pf01385.13	-
XX999_01925	XX999_01925	1974399–1974839	+	441	Transposase IS200 like protein	Pfam: Pf01797.10	-
XX999_02663	XX999_02663	2747991–2749130	-	1140	Putative transposase DNA-binding domain protein	Pfam: Pf07282.5	75% identity transposase in *L. brevis* BSO 464 plasmid pLb464-1
XX999_02664	XX999_02664	274911–2749563	-	453	Transposase IS200 like protein	Pfam: Pf01797.10	80% identity transposase in *L. brevis* BSO 464 plasmid pLb464-1
XX999_02834	XX999_02834	2935214–2935510	+	297	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* LZ227 plasmid LZ227p2
XX999_02924	XX999_02924	3033618–3033914	+	297	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* C410L1 plasmid unnamed1
XX999_02993	XX999_02993	3117440–3117943	+	504	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* subsp. plantarum TS12
XX999_03221	XX999_03221	3359214–3359585	+	372	Transposase DDE domain protein	Pfam: Pf01609.15	99% identity transposase in *L. plantarum* LY-78

(Continued)
The questionable prophage regions corresponded to *Streptococcus pyogenes* phage 315.2 (region 1; GC content, 42.18%; region length, 15.4 kb) [29] and *Listeria* phage B025 (region 4; GC content, 42.96%; region length, 20.9 kb) [31]. The incomplete prophage region was identified as *Lactobacillus* phage Sha1 (region 3; GC content, 42.61; region length, 26.7 kb) [29].

The occurrence of prophage DNA within bacterial genomes is common; over 40 *Lactobacillus* prophages have been reported [32] and their presence highlights the genetic diversity and fitness of the *Lactobacillus* genome. In our case, the presence of prophages may confer selective advantage to the cell, promoting its survivability and its resistance to other infecting phages.

S2 Table shows the proteins encoded by the five prophage regions predicted by PHAST tool in *L. pentosus* MP-10 genome. The complete prophages corresponded to regions 2 and 5 encoded 49 and 57 proteins, respectively (Table 4) and were homologous to *Lactobacillus* phage Sha1 isolated from traditional Korean fermented food “kimchi” [29] and *Oenococcus* phage phi 9805 from red wine [30]. Those data suggest that different species colonizing different ecosystems may share the same prophages and their architecture due to the interconnection between different habitats via lateral genetic exchange [33].
Each prophage region of *L. pentosus* MP-10 genome showed the presence of an integrase: one integrase in each complete prophage (region 2 and 5), two integrases in incomplete pro-
phage (region 3), and a single integrase in the questionable prophage (region 1) (S2 Table); also phage attachment sites (attL and attR) (in regions 1, 2, 3 and 5) were found to be poten-
tially involved in the integration of prophage regions in host chromosome. However, screening
of the whole genome (outside prophage regions) of *L. pentosus* MP-10 for phage integrases as
markers for mobile DNA elements, such as prophages, determined the presence of fifteen inte-
grase core domain proteins not adjacent to the prophage-like region, thus we deduce that they
were not involved in prophage mobility (data not shown). However, lysis genes (endolysin and
holin) detected in prophage regions may be used by *L. pentosus* MP-10 in their own ecological
niche or could be used in the food industry to eliminate undesirable bacteria during fermenta-
tion, particularly in cheese making to accelerate ripening. However, studies concerning the
application of *L. pentosus* MP-10 in several fermentations should be studied in depth.

In silico analysis of safety properties of *L. pentosus* MP-10

To generate further insights into the food-safety aspects of *L. pentosus* MP-10, we surveyed the
genes related with antibiotic resistance and virulence factors in their genome.

Table 4. Description of prophage regions detected in *L. pentosus* MP-10 genome by using the PHAST bioinformatic tool.

Region	Region length	Completeness*	Score	Region position	Most common phage	GC%	Total proteins
1	15.4 kb	Questionable	80	39530–54980	PHAGE_Strept_315.2_NC_004585(3)	42.18	24
2	39.2 kb	Intact	150	637535–676738	PHAGE_Lactob_Sha1_NC_019489(27)	40.35	49
3	26.7 kb	Incomplete	40	1405091–1431841	PHAGE_Lactob_Sha1_NC_019489(7)	42.61	25
4	20.9 kb	Questionable	80	1437486–1458462	PHAGE_Lister_B025_NC_009812(8)	42.96	21
5	51.7 kb	Intact	120	2437004–2488736	PHAGE_Oenoco_phi9805_NC_023559(16)	42.21	57

* Intact (score > 90), Questionable (score 70–90), Incomplete (score < 70).

https://doi.org/10.1371/journal.pone.0176801.t004
Antibiotic resistance. Firstly, a BLAST search was conducted for each annotated element of *L. pentosus* MP-10 genome sequence against the antibiotic resistance genes database (CARD). The search predicted the presence of several genes involved in antibiotic resistance although their identity to known resistance genes were low (< 90%), thus we could not suggest that the genes in *L. pentosus* MP-10 genome were homologous to the described genes (data not shown). To predict the complete resistome from *L. pentosus* MP-10 genome, including resistance genes and mutations conferring antibiotic resistance, we used the Resistance Gene Identifier (RGI) tool available in the recent updated CARD database [34], which used archive’s curated AMR (antimicrobial resistance) detection models. Here, we detected strict hits, which were defined as being within the similarity cut-offs of the individual AMR detection models and represented likely homologs of AMR genes according to Jia et al. [34]. The RGI revealed that *L. pentosus* MP-10 chromosome contained specific resistance genes for different antibiotics: aminocoumarin (*alaS*, an alanyl-tRNA synthetase gene, 1 hit), fluoroquinolone (*mfd* gene, 1 hit) and mupirocin (*ileS* or isoleucyl-tRNA synthetase gene, 2 hits), as well as genes coding for efflux pump proteins conferring resistance to multiple antibiotics (Fig 6, S3 Table). Among them, we found LmrB and LmrD multidrug efflux pumps that confer resistance to lincosamides in *Bacillus subtilis*, and *Streptomyces lincolnensis* and *Lactococcus lactis* respectively [35–36]; the regulator of ArlR efflux-pump that binds to the norA promoter to activate its expression [37]; and the multidrug efflux pump EmeA from *Enterococcus faecalis* conferring resistance to several antimicrobial agents (S3 Table). Previous phenotypic analysis of antibiotic susceptibility of *L. pentosus* MP-10 [38] revealed that this strain showed resistance to cefuroxime, ciprofloxacin, teicoplanin, trimethoprim, trimethoprim/sulfamethoxazole and vancomycin. However, *L. pentosus* MP-10 was sensitive to clindamycin [38], thus *lmrB* and *lmrD* genes coding for multidrug efflux pumps were not involved in clindamycin resistance.

On the other hand, a loose algorithm, which works outside of the detection model cut-offs to provide detection of new, emergent threats and more distant homologs of AMR genes [34], was also used; S4 Table shows the results. Considering the previous results of antibiotic resistance phenotypic screening [38], we can suggest that resistance to cefuroxime, ciprofloxacin, teicoplanin, trimethoprim, trimethoprim/sulfamethoxazole and vancomycin may be mediated by new genes responsible (not determined up to date) for the intrinsic resistance; however, further studies are required to confirm this hypothesis.

Regarding the possibility of acquired resistance by horizontal gene transfer, ResFinder did not detect any acquired antibiotic resistance genes for aminoglycoside, beta-lactam, colistin, fluoroquinolone, fosfomycin, fusidic acid, MLS-series (macrolide, lincosamide and streptogramin B), nitroimidazole, oxazolidinone, phenicol, rifampicin, sulphonamide, trimethoprim, tetracycline and glycopeptide (data not shown).

In summary, in silico analysis of antibiotic resistance in *L. pentosus* MP-10 showed the absence of acquired antibiotic resistance genes, and the resistome was mostly represented by efflux-pump resistance genes responsible of the intrinsic resistance exhibited by this strain.

Virulence. Regarding virulence, the BLAST searches against a virulence gene database (PHAST) revealed the presence of 14 coding genes for P1, P2a and P2b prophage proteins, an alanine racemase and a DNA-binding ferritin-like protein similar to *L. plantarum* WCFS1 (>90% identity; Table 5). As such, *Lb. pentosus* MP-10 chromosome contained mostly P2b prophage elements, which were located in the predicted questionable prophage region (Region 1, Fig 3A; PHAGE_Strept_315.2_NC_004585(3); Table 4), and included: DNA packaging genes (encoding small and large terminase, portal protein), head-tail genes (head-to-tail joining), helicase and DNA replication gene (Table 5). These results were in accordance of those reported in S2 Table for Region 1. Furthermore, several proteins of unknown functions of P2b (proteins 10 and 21) prophage from *Lb. plantarum* WCFS1 were also detected (Table 5);
however, van Hemert et al. [39] showed that prophage P2b protein 21 was involved in modulating peripheral blood mononuclear cell (PBMC) cytokine interleukin 10 (IL-10) and IL-12 production, which might be responsible for the stimulation of anti- or pro-inflammatory immune responses in the gut. Comparing P2b prophage region of \textit{Lb. pentosus} MP-10 and \textit{Lb. plantarum} WCFS1, we observed a strong synteny between prophage regions from the two distinct species of \textit{Lactobacillus}, despite the comparison being done with proteins with >90% identity (Table 5). In this case, nine homologous proteins were shared, although each species occupies a different ecological niches: human saliva and olives [16, 40], respectively. Similar results were reported by Zhang et al. [41] for other lactobacilli.

Concluding notes

The new annotated genome sequence of \textit{L. pentosus} MP-10 is currently considered the largest genome among lactobacilli; their additional genes may reflect the microorganism’s ecological flexibility and adaptability. \textit{In silico} analysis of the genome identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system involved in bacterial resistance against mobile elements, which consisted of six arrays (4–12 repeats) and eleven predicted \textit{cas} genes (CRISPR1 and CRISPR2 consisted of three TypeII-C and eight TypeI-E genes) with high similarity to \textit{L. pentosus} KCA1. Bioinformatic evidence of \textit{L. pentosus} MP-10 did not reveal any acquired antibiotic resistance genes, and most inherent
resistance genes were antibiotic efflux genes. No virulence factors were found. Thus, we can suggest that *L. pentosus* MP-10 could be considered safe for food processing, and high their adaptation potential could facilitate their application as a probiotic and starter culture in industrial processes.

Materials and methods

Genome sequence of *L. pentosus* MP-10

The complete genome sequence of *L. pentosus* MP-10 was obtained by using PacBio RS II technology [17] and deposited at the EMBL Nucleotide Sequence Database (accession numbers FLYG01000001 to FLYG01000006). The assembled genome sequences were annotated at Life-sequencing S.L. (Valencia, Spain) using the Prokka annotation pipeline, version 1.11 [42]. This involved predicting tRNA, rRNA, and mRNA genes and signal peptides in the sequences using Aragorn, RNAmmer, Prodigal, and SignalP, respectively, [43–45].

Table 5. Characterization of virulence determinants predicted in *Lactobacillus pentosus* MP-10 genome against the MvirDB database of virulence factors.

Gene ID	Identity (%)	Query length	Subject length	E-value	Protein Description	Organism	Accession
XX999_00145	92.08	101	101	1E-60	Prophage P2b protein 21	*L. plantarum* WCFS1	CCC79635.1
XX999_00131	92.48	266	266	0.0	Prophage P2b protein 7, DNA replication	*L. plantarum* WCFS1	CCC79647.1
XX999_00596	92.53	375	375	0.0	Alanine racemase	*L. plantarum* WCFS1	
XX999_02401	92.68	127	126	9e-83	Prophage P2a protein 24, endodeoxyribonuclease	*L. plantarum* WCFS1	CCC79612.1
XX999_00135	93.65	63	63	2e-36	Prophage P2b protein 10	*L. plantarum* WCFS1	CCC79644.1
XX999_00137	93.80	129	129	2e-88	Prophage P2b protein 12, endonuclease	*L. plantarum* WCFS1	CCC79642.1
XX999_02409	95.05	101	101	7e-69	Prophage P2a protein 12	*L. plantarum* WCFS1	
XX999_02999	95.48	155	155	5e-108	DNA-binding ferritin-like protein, DPS family	*L. plantarum* WCFS1	CCC80168.1
XX999_01408	95.83	170	169	2e-117	Prophage P2a protein 16	*L. plantarum* WCFS1	CCC79619.1
XX999_02421	96.00	138	138	6e-87	Prophage P1 protein 7	*L. plantarum* WCFS1	CCC78108.1
XX999_00141	96.72	368	366	0.0	Prophage P2b protein 17, portal protein	*L. plantarum* WCFS1	CCC79639.1
XX999_00138	96.82	157	157	1e-111	Prophage P2b protein 14, terminase small subunit	*L. plantarum* WCFS1	CCC79641.1
XX999_00132	96.98	464	464	0.0	Prophage P2b protein 8, helicase	*L. plantarum* WCFS1	CCC79646.1
XX999_00139	97.53	567	567	0.0	Prophage P2b protein 15, terminase large subunit	*L. plantarum* WCFS1	CCC79640.1
XX999_00143	97.70	89	89	2e-56	Prophage P2b protein 19, head-to-tail joining	*L. plantarum* WCFS1	CCC79637.1
XX999_02397	99.34	152	153	3e-111	Prophage P1 protein 33, phage transcription regulator	*L. plantarum* WCFS1	CCC78134.1

https://doi.org/10.1371/journal.pone.0176801.t005
To evaluate the alignment and the synteny of genes between the *L. pentosus* MP-10, *L. pentosus* KCA1 and *L. pentosus* IG1 genome data sets, comparison was done by using Mauve algorithm in Lasergene’s MegAlign Pro software (Lasergene 14).

Genomic analysis of mobile genetic elements and safety aspects of *Lactobacillus pentosus* MP-10

The annotated genome sequence of *L. pentosus* MP-10 was screened for the presence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci and the mobile genetic elements (i.e., conjugative plasmid, transposase, transposon, IS elements and prophage). Furthermore, we used the CRISPR finder tool (available in the CRISPRs web server; http://crispr.i2bc.paris-saclay.fr/Server/) to identify CRISPRs and extract the repeated and unique sequences in the *L. pentosus* MP-10 genome. The localization of CRISPR RNAs targets was done by using CRISPR Target program (http://bioanalysis.otago.ac.nz/CRISPRTarget/crispr_analysis.html). For prophage region search and annotation, we screened chromosomal DNA of *L. pentosus* MP-10 against a phage finding tool (PHAST, PHAge Search Tool) considered as an accurate or slightly more accurate than most available phage finding tools, with sensitivity of 85.4% and positive predictive value of 94.2% [46].

The predicted CDSs were annotated by using BLAST (Basic Local Alignment Search Tool) against the CARD (Comprehensive Antibiotic Resistance Database) and the MvirDB (a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications) databases for antibiotic resistance and virulence factor screening (last version downloaded on January, 2017), respectively, with the associated GO (Gene Ontology) terms obtained by using Swiss-Prot database. Furthermore, the Resistance Gene Identifier (RGI) software (as part of CARD tools) was used for prediction of *L. pentosus* MP-10 resistome from protein or nucleotide data based on homology and SNP (Single Nucleotide Polymorphism) models, based on the CARD’s curated AMR (antimicrobial resistance) detection models. Moreover, the ResFinder (acquired antimicrobial Resistance gene Finder) software version 2.1 (https://cge.cbs.dtu.dk//services/ResFinder/) was used for screening of acquired antibiotic resistance genes [47] with selected %ID threshold of 90.00% and Selected minimum length of 60% (last accessed in January, 2017).

Supporting information

S1 Fig. COG distributions in *Lactobacillus pentosus* MP-10. (PDF)

S1 Table. Characterization of CRISPR associated proteins predicted in *Lactobacillus pentosus* MP-10 genome. (DOC)

S2 Table. Characteristics of prophage regions in *Lactobacillus pentosus* MP-10 genome according to the PHAST bioinformatic toolkit. (DOC)

S3 Table. RGI results of AMR genes detected in *Lactobacillus pentosus* MP-10 genome. (DOC)

S4 Table. AMR detected in *Lactobacillus pentosus* MP-10 genome by using hits with weak "loose" similarity in RGI software. (DOC)
Acknowledgments

We acknowledge research grants AGL2013-43571-P (Ministerio de Economı́a y Competitividad, MINECO, FEDER), UJA2014/07/02 (Plan Propio UJA) and Research Team El_BIO01_2017.

Author Contributions

Conceptualization: HA NB.

Data curation: HA NB.

Formal analysis: HA NB BPM MCM CWK AG.

Funding acquisition: HA.

Investigation: HA NB BPM MCM.

Methodology: HA.

Project administration: HA NB.

Validation: HA NB.

Visualization: HA NB CWK AG.

Writing – original draft: HA.

Writing – review & editing: HA NB CWK AG.

References

1. Wacher C, Díaz-Ruiz G, Tamang JP. Fermented Vegetable Products. In: Tamang JP, Kailasapathy K, editors. Fermented foods and beverages of the world. Boca Raton, USA: CRC Press; 2010. pp. 149–190.

2. Venema K, Meijerink M. Lactobacilli as probiotics: discovering new functional aspects and target sites. In: Venema K, do Carmo AP, editors. Probiotics and Prebiotics: Current Research and Future Trends. UK: Caister Academic Press; 2015. pp. 29–42.

3. Food and Agricultural Organization of the United Nations and World Health Organization, editor. Report of a Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food; 2002. April 30, May 1; Ontario, Canada.

4. Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JAF. Functional foods and non dairy probiotic food development: trends, concepts, and products. Compr Rev Food Sci Food Saf. 2010; 9: 292–302.

5. Peres CM, Hernandez-Mendoza A, Peres C, Malcata FX. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria with an emphasis on table olives. Trends Food Sci Technol. 2012; 26(1): 31–42.

6. Ranadheera RDCS, Baines SK, Adams MC. Importance of food in probiotic efficacy. Food Res Int. 2010; 43: 1–7.

7. Cammarota M, De Rosa M, Stellavato A, Lamberti M, Marzaoli I, Giuliano M. In vitro evaluation of Lactobacillus plantarum DSMZ 12028 as a probiotic: emphasis on innate immunity. Int J Food Microbiol. 2009; 135: 90–98. https://doi.org/10.1016/j.ijfoodmicro.2009.08.022 PMID: 19748696

8. Chang J-H, Shim YY, Cha S-K, Chee KM. Probiotic characteristics of lactic acid bacteria isolated from kimchi. J Appl Microbiol. 2010; 109: 220–230. https://doi.org/10.1111/j.1365-2672.2009.04648.x PMID: 20102423

9. Spurr HW. The microbial ecology of fruit and vegetable surfaces, its relationship to postharvest biocontrol. In: Wilson C, Wisniewski M, editors. Biological Control of Postharvest Diseases: Theory and Practice. Boca Raton, FL: CRC Press; 1994. pp. 11–23.

10. Di Cagno R, Cardinali G, Minervini G, Antonielli L, Rizzello CG, Ricciuti P, et al. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Food Microbiol. 2010; 27: 381–389. https://doi.org/10.1016/j.fm.2009.11.012 PMID: 20227603
11. Bartkiewicz E, Vidmantiene D, Juodeikiene G, Viskelis P, Urbanoviciene D. Lactic acid fermentation of tomato: effects on cis/trans lycopene isomer and β-carotene concentration and formation of L(+) and D (-)-lactic acid. Food Technol Biotechnol. 2013; 51(4): 471–478.

12. Swain MR, Anandharaj M, Ray RC, Rani RP. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol Res Int. 2012; 2014: 250424.

13. Shanahan F. A commentary on the safety of probiotics. Gastroenterol Clin North Am. 2012; 41(4): 869–76. https://doi.org/10.1016/j.gtc.2012.08.006 PMID: 23101692

14. EFSA (European Food Safety Authority). Scientific Opinion of the Panel on Biological Hazards on the maintenance of the list of QPS microorganisms intentionally added to food or feed. The EFSA J. 2008; 923: 1–48.

15. Ventura M, O’Flaherty S, Claessens MJ, Trurron F, Kleenhammer TR, van Sinderen D, et al. Genom-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol. 2009; 7: 61–71. https://doi.org/10.1038/nrmicro2047 PMID: 19029955

16. Abriouel H, Benomar N, Pérez Pulido R, Martínez Cañamero M, Gálvez A. Annotated genome sequence of *Lactobacillus pentosus* MP-10 with probiotic potential from naturally-fermented Alovera green table olives. J Bacteriol. 2011; 193: 4559–4560. https://doi.org/10.1128/JB.05171-11 PMID: 21705590

17. Abriouel H, Pérez Montoro B, Casado Muñoz MC, Lavilla Lerma L, Hidalgo Pestaña M, Caballero Gómez N, et al. Complete genome sequence of a potentially probiotic *Lactobacillus pentosus* MP-10 isolated from fermented Alovera table olives. Genome Announc. 2016; 4(5): e00854–16. https://doi.org/10.1128/genomeA.00854-16 PMID: 27634988

18. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A. 2006; 103: 15611–15616. https://doi.org/10.1073/pnas.0607117103 PMID: 17030793

19. Maldonado-Barragán A, Caballero-Guerrero B, Lucena-Padrós H, Ruiz-Barba JL. Genome Sequence of *Lactobacillus pentosus* IG1, a strain isolated from Spanish-style green olive fermentations. J Bacteriol. 2011; 193(19): 5605. https://doi.org/10.1128/JB.05736-11 PMID: 21914902

20. Anukam KC, Macklaim JM, Gloor GB, Reid G, Boekhorst J. Genome sequence of *Lactobacillus pentosus* KCA1: vaginal isolate from a healthy premenopausal woman. PLoS ONE. 2013; 8(3): E59239. https://doi.org/10.1371/journal.pone.0059239 PMID: 23527145

21. O’Sullivan O, O’Callaghan J, Sangrador-Vegas A, McAuliffe O, Slattery L, Kaleta P, et al. Comparative genomics of lactic acid bacteria. Proc Natl Acad Sci U S A. 2006; 103: 15611–15616. https://doi.org/10.1073/pnas.0607117103 PMID: 17030793

22. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010; 327: 167–170. https://doi.org/10.1126/science.1179555 PMID: 20056882

23. Al-Attar S, Westra ER, van der Oost J, Brouns SJ. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem. 2011; 392: 277–289. https://doi.org/10.1515/BC.2011.042 PMID: 21294681

24. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008; 321: 960–964. https://doi.org/10.1126/science.1159689 PMID: 18703739

25. Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, Shah M, et al. Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in *Streptococcus thermophilus*. PLoS ONE. 2012; 7: e38077 10. https://doi.org/10.1371/journal.pone.0038077 PMID: 22666452

26. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011; 9: 467–477. https://doi.org/10.1038/nrmicro2577 PMID: 21552286

27. Wei Y, Terns RM, Terns MP. Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation. Genes Dev. 2015; 29(4): 356–361. https://doi.org/10.1101/gad.257550.114 PMID: 25691466

28. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, et al. Complete genome sequence of the probiotic lactic acid bacterium *Lactobacillus acidophilus* NCFM. Proc Natl Acad Sci U S A. 2005; 102(11): 3906–3912. https://doi.org/10.1073/pnas.0409188102 PMID: 15671160

29. Yoon BH, Jang SH, Chang HI. Sequence analysis of the *Lactobacillus* temperate phage Sha1. Arch Virol. 2011; 156: 1681–1684. https://doi.org/10.1007/s00705-011-1048-z PMID: 21701917

30. Jaomanjaka F, Ballestra P, Dols-lafargue M, Le Marrec C. Expanding the diversity of oenococcal bacteriophages: insights into a novel group based on the integrase sequence. Int J Food Microbiol. 2013; 166(2): 331–40. https://doi.org/10.1016/j.ijfoodmicro.2013.06.032 PMID: 23994162
31. Dorscht J, Klumpp J, Bielmann C, Born Y, Zimmer M, et al. Comparative genome analysis of *Listeria* bacteriophages reveals extensive mosaicism, programmed translational framesshifting, and a novel prophage insertion site. J Bacteriol. 2009; 191: 7206–7215. https://doi.org/10.1128/JB.01041-09 PMID: 19783628

32. Mercanti DJ, Rousseau GM, Capra ML, Quiberoni A, Tremblay DM, Labrie SJ, et al. Genomic diversity of phages infecting probiotic strains of *Lactobacillus paracasei*. Appl Environ Microbiol. 2016; 82(1): 95–105.

33. Lang AS, Zhaxybayeva O, Beatty JT. Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol. 2012; 10: 472–482. https://doi.org/10.1038/nrmicro2802 PMID: 22683846

34. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017; 45: D566–D573. https://doi.org/10.1093/nar/gkw1004 PMID: 27789705

35. Yoshida K, Ohki Y-H, Murata M, Kinehara M, Matsuoka H, Satomura T, et al. *Bacillus subtilis* LmrA is a repressor of the *lmrAB* and *yxaGH* operons: identification of its binding site and functional analysis of *lmrB* and *yxaGH*. J Bacteriol. 2004; 186(17): 5640–5648. https://doi.org/10.1128/JB.186.17.5640-5648.2004 PMID: 15317768

36. Florez AB, de los Reyes-Gavilán CG, Wind A, Mayo B, Margolles AA. Ubiquity and diversity of multidrug resistance genes in *Lactococcus lactis* strains isolated between 1936 and 1995. FEMS Microbiol. Lett. 2006; 263(1): 21–25. https://doi.org/10.1111/j.1574-6968.2006.00371.x PMID: 16958846

37. Fournier B, Aras R, Hooper DC. Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J Bacteriol. 2000; 182: 664–671. PMID: 10633099

38. Casado Muñoz MC, Benomar N, Ennahar S, Horvatovich P, Lavilla Lerma L, Knapp CW, et al. Comparative proteomic analysis of a potentially probiotic *Lactobacillus pentosus* MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. Int J Food Microbiol. 2016; 222: 8–15. https://doi.org/10.1016/j.ijfoodmicro.2016.01.012 PMID: 26827291

39. Van Hemert S, Meijerink M, Molenaar D, Bron PA, de Vos P, Kleerebezem M, et al. Identification of *Lactobacillus plantarum* genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiol. 2010; 10: 293. https://doi.org/10.1186/1471-2180-10-293 PMID: 21080958

40. Siezen RJ, Francke C, Rencken S, Boekhorst J, Wels M, Kleerebezem M, et al. Complete resequencing and reannotation of the *Lactobacillus plantarum* WCFS1 genome. J Bacteriol. 2012; 194(1): 195–6. https://doi.org/10.1128/JB.06275-11 PMID: 22156394

41. Zhang W-Y, Yu D-L, Sun Z-H, Chen W, Hu S-N, Meng H, et al. The comparative analysis of a prophage remnant Lcazh in relation to other *Lactobacillus* prophages, particularly Lp3. Int J Dairy Technol. 2010; 63: 1–5.

42. Seemann T, Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30(14): 2068–9. https://doi.org/10.1093/bioinformatics/btu153 PMID: 24642063

43. Hyatt D, Chen G-L, LoCaschio PF, Land ML, Larimer FW, Hauser L. Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010; 11: 304. https://doi.org/10.1186/1471-2105-11-304 PMID: 20211023

44. Lagesen K, Hallin P, Redlund EA, Staerfeldt HH, Rogne T. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007; 35: 3100–3108. https://doi.org/10.1093/nar/gkm160 PMID: 17452365

45. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32: 11–16. https://doi.org/10.1093/nar/gkm152 PMID: 14704338

46. Zhou Y, Liang Y, Lynch K, Dennis JJ, Wishart DS (2011) “PHAST: A Fast Phage Search Tool” Nucl. Acids Res. 2004; 39(suppl 2): W347–W352.

47. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012; 67(11): 2640–2644. https://doi.org/10.1093/jac/dks261 PMID: 22782487