A Roadmap for Enabling a Future-Proof In-Network Computing Data Plane Ecosystem

Daehyeok Kim*, Nikita Lazarev†, Tommy Tracy§, Farzana Siddique§, Hun Namkung*
James C. Hoe*, Vyas Sekar*, Kevin Skadron§, Zhiru Zhang†, Srinivasan Seshan*
*Carnegie Mellon University, †Cornell University, §University of Virginia

Abstract
As the vision of in-network computing becomes more mature, we see two parallel evolutionary trends. First, we see the evolution of richer, more demanding applications that require capabilities beyond programmable switching ASICs. Second, we see the evolution of diverse data plane technologies with many other future capabilities on the horizon. While some point solutions exist to tackle the intersection of these trends, we see several ecosystem-level disconnects today; e.g., the need to refactor applications for new data planes, lack of systematic guidelines to inform the development of future data plane capabilities, and lack of holistic runtime frameworks for network operators. In this paper, we use simple-yet-instructive emerging application-data plane combinations to highlight these disconnects. Drawing on these lessons, we sketch a high-level roadmap and guidelines for the community to tackle these to create a more thriving “future-proof” data plane ecosystem.

1 Introduction
Recent advances in programmable switching ASICs [1, 2, 8, 17] have enabled the network data plane to move beyond its traditional role of packet forwarding. Today, we have more sophisticated capabilities to process packets to accelerate both network- and application-level functions. This emerging trend toward in-network computing enables new opportunities to improve performance and lower operational costs of data center infrastructure [57]. Indeed, recent efforts have shown that various datacenter applications, such as key-value stores [33, 34], machine learning [58], and network functions [31, 48] can benefit from in-network computing.

Looking forward, we see that there are increasing demands from applications that could benefit from in-network computing but cannot be realized on today’s switches. For example, while many recent studies have shown the promise of sketch-based network monitoring on switches [23, 60], we observe that it is infeasible to maintain sketches for multiple sub-populations of interest due to limited on-chip compute and memory resources. Also, applications that require inspection of packet payloads, such as an intrusion detection over fragmented packet streams (e.g., TCP streams), or middlebox functions over encrypted packet streams, are not possible on switches due to the lack of an ability to process packet payloads. While other devices in the network (e.g., a software switch [4, 16]) could implement some of the necessary functionality, the design of modern switches makes it difficult to seamlessly incorporate this external functionality.

In parallel, we also observe the exciting evolution of data plane technologies beyond switching ASICs, including FPGA-, NPU-, and DPU-based networking devices [5, 7, 12, 14, 19] that are designed to accelerate packets and data processing near the end hosts. Moreover, some switch vendors even manufacture a switch chassis that is equipped with both switching ASICs and FPGAs [9]. While this technology trend seems promising to support the evolving application demands, as mentioned above, modern switches have no way to incorporate this external functionality into the data plane.

As an illustrative case study at the intersection of these evolutionary trends, we consider one representative application, multi-dimensional sketch-based network monitoring and two emerging data plane technologies, FPGA and PIM-enabled data plane [7, 12, 27, 41, 42]. This case study was just meant as a very simple starting point to bootstrap the authors’ research collaboration spanning a cross-disciplinary team of sketch designers, network data plane researchers, and hardware architects. We explored how we can extend existing efforts to address this scenario (e.g., leveraging external data plane devices to address limitations of switch ASICs [36, 62]). Unfortunately, this exercise made it abundantly clear that there are fundamental disconnects between the requirements of different participants involved in this collaboration (i.e., sketch developers, hardware architects networking researcher) and the capabilities of existing solutions. In essence, we find that most existing efforts are point solutions for particular combinations of applications and data plane devices and provide little to no general capabilities for the relevant participants.

This disconnect between a seemingly simple case study and the capabilities of existing efforts naturally suggested the need for a more principled approach and design guidelines for creating a thriving future-proof ecosystem to accommodate and leverage such evolving applications and data plane technologies. This paper is merely a first step to bootstrap this discussion in the community.

To this end, we begin by first identifying key stakeholders in the ecosystem (hardware vendors, application developers,
and network operators). We use our case study lessons to raise essential questions from each of them, and try to provide guidelines for answering them to derive future-proof approaches. For example, hardware vendors need a principled way of choosing data plane technologies, designing building blocks a chosen data plane, and integrating the switch ASICs and the data plane given application demands. Application developers need a platform agnostic programming toolchain to avoid re-writing programs for different platforms. Network operators should be able to choose the right hardware platform for their application workloads while being able to manage resources at runtime.

We also present a preliminary attempt for answering these questions using our case study to shed light on a potential roadmap for creating a more thriving and future-proof data plane ecosystem. Although our exploration is admittedly preliminary, we hope that by drawing attention to this ecosystem-level view of in-network computing, our work opens up the discussion and new research opportunities and directions for the community; e.g., programming language support for general applications, runtime resource and state management, and making the architecture fault tolerant.

2 Background and Motivation

2.1 Evolving Application Demands

Many recent works have shown the promise of in-network computing for various applications [31, 44, 47, 48, 58, 60] by leveraging programmable switching ASICs [1, 2, 8, 17]. The key benefit of running applications on programmable switches is that they are located at the vantage point in the network where they can naturally observe packets. While all of these efforts seem promising, we also observe that it is difficult to support the evolving demands (in terms of workload sizes and required capabilities) for a wide variety of applications on switches, limiting the potential of in-network computing. Here, we introduce three such applications that could benefit from running inside the network but cannot be supported by the switch ASICs today.

Multi-dimensional sketch-based monitoring. Sketching algorithms are attractive as network monitoring capabilities on programmable switches since they offer high accuracy guarantees and use compact data structures. A single sketch instance reports statistics (e.g., heavy hitters) for a single sub-population defined by a flow key (e.g., IP 5-tuple). We observe that as the network traffic becomes diverse [6, 24] there is an increasing need for monitoring traffic from multiple dimensions simultaneously [47]. This requires multiple sketch instances running on a switch concurrently, which we call multi-dimensional sketching. However, we find that due to the limited on-chip compute and memory resources and their inefficient allocation, the switch can only run a few instances. For example, in our experiments with Count-Sketch [25], we observe that only up to 3 sketch instances can be implementable on a Tofino switching ASIC (not shown).

Intrusion detection/prevention systems. Intrusion detection and prevention systems (IDS/IPS) are another example that could benefit from running inside the network. Today, they are implemented and running on x86 servers [3, 20, 53] and accelerated using FPGAs [66]. Typically, they reassemble TCP streams and perform string matching over reassembled packets to detect malicious traffic. Running this functionality on switches would reduce the latency overhead of filtering malicious traffic by avoiding rerouting every packet to servers running IDS/IPS. However, it is infeasible to implement such functionalities due to the inability of switch processing (due to limited memory and a constraint computation model) to reassemble packets and inspect payloads.

Middlebox functions over encrypted traffic. The majority of today’s Internet traffic is encrypted using end-to-end protocols such as TLS [28] and its volume keeps growing [50]. There have been efforts to enable middlebox functions such as WAN optimization and load balancing over encrypted traffic on x86 server-based middleboxes [51, 59]. However, similar to the intrusion detection example, switches cannot process encrypted traffic due to their inability to inspect packet payloads and their limited computation capability.

We argue that the current design of programmable switching ASICs makes it difficult to meet these evolving application demands. Traditionally, switching ASICs are designed to support only stateless or simple stateful functionality, such as packet forwarding and access control in a synchronous manner at line-rate (e.g., a few Tbps). Because of this, even today, they are equipped with a limited amount of fast but expensive memory (e.g., SRAM and TCAM) and compute (e.g., simple ALUs and hashing units) on-chip resources, which are infeasible to extend post-manufacture. However, many applications, including the above mentioned ones, may not require synchronous or line-rate processing, but still could benefit from running inside the network. For example, multiple sketch instances can be updated for each incoming packet, asynchronously to packet routing. However, due to limited on-chip resources, it is impossible to implement such functionality on switches today. Thus, the mismatch between the switch data plane design and evolving application demands limits the potential of in-network computing.

2.2 Evolving Data Plane Technologies

In recent years, many hardware vendors have manufactured FPGA-, Netronome’s NPU-, and Nvidia’s DPU-based data plane devices [5, 7, 12, 14, 19] that trade off lower packet processing capacity compared to switch ASICs, for larger memory space and processing capabilities. Also, there are some software-based data planes running on x86 servers [4, ...]
They can be programmed by using vendor-supplied APIs [14, 19] or high-level programming languages and libraries like P4 [13, 22] and OpenCL [15]. In this section, we introduce the FPGA-based data plane, which is currently available and already widely used, and the Processing in memory (PIM)-enabled data plane, which is not mature yet, but seems promising.

Example 1: FPGA-based data plane. Recent studies have shown the promises of FPGA-based NICs as efficient networking devices capable of processing large volumes of data at line rate [7, 29, 56]. FPGAs contain an ample amount of heterogeneous, fine-grain, programmable resources such as look-up tables (LUTs), DSP slices, distributed on-chip memory, and programmable I/Os which support high packet processing capacity and flexibility of FPGA-based NICs.

FPGAs continue to evolve today. In-network processing applications driven by future FPGAs will benefit from a large number of high-bandwidth transceivers (e.g., up to twenty 100 GbE interfaces are already available in the Stratix 10 device [11]), emerging routing technologies [10] that promise to boost the maximum clock frequency of the data plane up to 700 MHz, and integrated on-chip systolic acceleration for high-performance MIMD computing. In addition, today’s FPGAs can be tightly coupled with 3D-stacked high-bandwidth memories (HBM), which makes implementation of complex high-throughput applications such as data sketching [39] feasible. Finally, modern FPGAs achieve very high system integration driven by the 2.5D [64] and through-silicon via (TSV) technologies [49]. These allow integrating networking interfaces, data processing units, and memory in a single package, therefore, reducing the off-chip traffic and further improving the performance and power efficiency of in-network processing systems.

Example 2: PIM-enabled data plane. We observe many in-network computing applications bring data and compute together [31, 46]. Seen from this angle, future data planes that exploit PIM [35, 52] appear as a promising alternative for in-network computing. PIM addresses the data access bottleneck due to latency and bandwidth limitations of traditional memory (e.g., DRAM) by performing the computations close to the data, in the memory unit. And by placing processing elements in every chip, bank, or even subarray, the resulting parallelism can enable a PIM device to keep up with very high data rates. Some PIM products are already on the market, including UPMEM [27], which places a data processing unit at each bank, and Samsung’s FIMDRAM [41], which targets machine learning applications and integrates a 16-wide SIMD matrix-vector engine within memory banks, replacing half of the cell array per bank.

2.3 Motivating Scenario

Suppose a network operator wants to run multi-dimensional sketch-based network monitoring on a programmable switch, but due to limited resources of the switch ASIC, it fails to run. Now, the operator tries to run the application on a combination of the switch ASIC and PIM-enabled data plane device as it provides an ample amount of memory resources and associated reconfigurable logic, which can be complementary to limited resources of the switch ASIC (Fig. 1).

At first glance, it appears that there are some existing efforts in leveraging external data plane devices that could be potentially applicable, such as: (1) new programming languages for heterogeneous data planes [30, 61]; (2) frameworks that help to offload functionality to programmable NICs [45, 55]; (3) program partitioning frameworks such as Flightplan [62]; and (4) switch resource augmentation systems such as TEA [36].

Unfortunately, as we explore this case study further, we observe that none of these aforementioned solutions are directly applicable to this scenario. First, programming languages for heterogeneous data planes such as Lyra [30] and µP4 [61] cannot be applied because they aim to translate a single program to a single device or a single type of device (e.g., switch ASIC). Second, programming frameworks that help to offload functionality to programmable NICs such as iPipe [45] and Floem [55] do not work for this scenario because they also consider a case where offloading a single program to a single target (i.e., NIC). Third, while program partitioning frameworks such as Flightplan [62] can statically disaggregates a program to multiple data plane devices (e.g., switches and FPGAs) , they focus on specific targets (e.g., P4-compatible) and do not consider runtime resource management. Lastly, switch resource augmentation framework such as TEA [36] augments switch’s resources (e.g., SRAM) for state-intensive network functions, it is unclear whether they applies to other applications with different workload characteristics (e.g., memory access patterns) and other memory technology such as PIM.
Moreover, these above disconnects are not unique to our choice; we observe that all these existing approaches do not work even for other combinations of an application and external data plane (in fact, our specific choice of application and data plane was quite incidental and was actually intended as a hopefully simple example to bootstrap a collaborative effort between networking and computer hardware architects.). This motivates us to think of these disconnects are perhaps symptomatic of a broader data plane ecosystem-level problem, and that we need to explore a more principled approach and design guidelines for a future-proof ecosystem.

3 Data Plane Ecosystem: Stakeholders and Requirements

Instead of proposing another point solution for a particular combination of an app and a data plane device, we argue that we need to rethink a future-proof data plane ecosystem to adapt evolving technologies to support evolving app demands. To this end, we begin by identifying the key stakeholders in this ecosystem and their goals. There are three key players in the data plane ecosystem: hardware designers/vendors, application developers, and network operators.

Hardware designers/vendors. Given application or workload demands (e.g., number of traffic flows to monitor and sketch data structure parameters), hardware vendors need to design data plane devices (or components) that are connected to switch ASICs while considering the cost-efficiency, generality (i.e., supporting next generation applications and data plane technology), and extensibility (e.g., an ability to add more memory space or new capabilities).

- What is the right architecture of external data plane devices for given workloads?
- What is the right interface between the switch ASIC and external data plane devices?

Application developers. Given application requirements, application developers need a general way to write applications (e.g., sketch-based monitoring) that can best leverage resources and capabilities on switch ASICs and other (even future) data plane devices.

- What is a good programming model that allows for the implementation of a wide range of applications while hiding the complexity of integrated data planes?

Network operators. Given application demands, a set of available hardware platforms, and cost budgets, network operators need to choose platforms that satisfy their application requirements while considering generality (i.e., supporting future app demands), extensibility, and cost-efficiency.

- What hardware should be provisioned for a given application, a set of data plane devices, and cost budgets?

- How to manage available data plane resources and route I/O requests to proper external data plane devices at runtime?

4 Hardware Design Space Exploration

We explore the hardware design space in this section by revisiting our case study from §2 in more detail. We defer questions for other stakeholders to the next section.

4.1 Application Workloads

Sketch configuration. We assume a network monitoring application that uses 10 Count-Min Sketch instances to monitor 10 different sub-populations of traffic defined by 10 different flow keys such as a source IP, destination IP, and IP 5-tuple. Each instance consists of \(3 \times 32\)-bit counter arrays of size 64K. To track heavy flow keys, we assume that the application uses priority queues.

Traffic workload. We assume that the network operator wants to monitor the Internet backbone traffic. Since the traffic rate in terms of packets per second is an important factor that can affect the application performance and hardware design, we analyze a number of publicly available CAIDA packet traces [21] and find that an average traffic rate is around 1.43 Mpps. We use this value for the rest of this section. Note that among this 1.43 M packets, around a few hundred of the packets update the heavy flow priority queue.

The main goal of hardware designers is to thoroughly understand possible design options and choose the best one that potentially satisfies network operators and application developers’ requirements. Here, we sketch out one possible principled way of exploring design spaces.

Hardware designers need to explore three design spaces: (1) Choice of data plane technology (e.g., PIM-enabled data plane), (2) Design of kernels (or building blocks) for the chosen data plane (e.g., a hash table in PIM), and (3) Interface between the switch ASIC and the external data plane.

For (1), hardware designers should consider inputs from network operators (e.g., cost budget, performance, and extensibility) and application developers (e.g., capabilities of interest). Note that in networking context, they need to consider that the workloads are streaming data. In this case study, we choose two data plane technologies, PIM and FPGA-enabled data planes, as they are in a trade-off relationship in terms of performance and extensibility.

Further, we discuss how designers could explore the design space (2) (in §4.2 and §4.3) and (3) (in §4.4) for FPGA and PIM-enabled data planes.

4.2 FPGA-enabled Data Plane

FPGAs extend the model of the traditional programmable switch data planes which only have a limited support for programmability. The reconfigurable nature of FPGAs allows fine-granular tuning of both the compute, memory,
and I/O architectures for any given application. This is, in particular, beneficial for multi-dimensional sketching as its high-bandwidth requirements, the randomness of memory access patterns, and in-network streaming nature demand specifically optimized/ customized data paths, memory, and the architecture of processing elements (PEs).

Modern FPGAs are capable of running the workloads such as data sketching at the line rate. The computational part of the algorithm (e.g., hashing engines, comparators) can be implemented with DSP blocks. For example, a recent study [39] has shown that the HyperLogLog sketching algorithm implemented on an FPGA with high-level synthesis tools consumes up to 16.4% of available DSPs on an Xilinx XCVU9P device [18] when targeting the throughput of 9.35 GB/s, which is substantially more than the required bandwidth of 0.51 GB/s in our case study. Similarly, modern FPGAs contain up to 350 Mb of on-chip memory which is sufficient to accommodate both the sketching counters (61.4 Mb) and key priority queues (12.8 Kb).

Deployment of in-switch algorithms on an FPGA comes with certain challenges and design decisions. One of them is how to cleanly decouple computation, temporal scheduling, and data placement in the design specification of the FPGA accelerator [40]. Each of these components has its own trade-offs depending on the required performance and the area/cost budget. For example, hash functions can be implemented using general-purpose LUTs, or DSPs, or even MIMD tensor cores available in modern FPGAs. The algorithm’s data can be placed in a large variety of possible configurations of distributed on-chip memory and even in the external HBM if an algorithm with a large memory footprint is concerned. These challenges are similar to the traditional workflow of a hardware accelerator design, however in-network line-rate performance requirements of in-switch computing add more constraints in the design space.

4.3 PIM-enabled Data Plane

PIM [35, 52] enables computation to be performed in or near memory [32, 43], minimizing the overhead of data movement between processing units and memory. Consequently, PIM is a potential data plane candidate that provides the high bandwidth required for processing multi-dimensional sketches at line-rate. This bandwidth is critical for the fetch-modify-write operations needed for counter updates.

Sketching requires considerable compute throughput, especially to perform the hash computations to index memory arrays for each counter operation. If we consider the sketch configuration and workload of §4.1, we need to update $3 \times 10 \times 1.43 = 42.9$ M counters per second. Each of these updates consists of a load, an increment, and a store. Here load and store are memory operations, and increment is an integer compute operation. As a result, the data plane needs to have at least $42.9 \times 4 \times 2 = 342.2$ MB/s memory bandwidth to support 42.9M updates per second.

Considering the bandwidth requirement and the poor locality of the sketches, we argue that bank-level PIM processing would be suitable for our purpose. The reason being, multiple counters could span across multiple banks, and the logic layer processing element works on one bank at a time. As a result, implementing sketch processing on the bank would allow us to perform concurrent counter updates, leveraging the bank-level parallelism.

To track top-100 heavy flow keys, we use a heap-based priority queue. The memory capacity requirement for this is $100 \times 4 \times 2 \times 2 = 1600$ B. Considering the small memory footprint, and to avoid memory accesses for this small structure, we hypothesize that a dedicated scratchpad for the priority queue on the memory logic layer would suffice to achieve our $1.43 \times 4 = 5.72$ MB/s bandwidth.

4.4 Switch–External Data Plane Integration

After choosing a data plane option (i.e., PIM or FPGA-based), hardware designers now need to consider how to integrate the switch ASIC and data plane component. We find that there are three design options depending on how they are interconnected, and the options present a trade-off between performance (i.e., throughput and latency) and extensibility. Table 1 summarizes these options.

Option	On-chip	Off-chip, On-chassis	Off-chassis
Interface	3D stack	High BW interface, PCIe	Ethernet
Performance	High	Medium	Low
Extensibility	Low	Medium	High

Table 1: Comparison of design options for a switch ASIC–external data plane integrated architecture.

Option 1: On-chip. A PIM or FPGA-enabled data plane component is located on the switching ASIC chip. This can be implemented with 3D stacking technology [26, 65], which allows for stacking dies of different capabilities (e.g., FPGA or PIM). With the ASIC and data plane component closely interconnected, on-chip integration can provide high bandwidth (e.g., 160 Gbps [65]) and low access latency (e.g., 12 ps [65]). However, such high performance comes at the cost of lower extensibility; the type of reconfigurable logic and capacity are fixed at manufacturing time.

Option 2: Off-chip, On-chassis. A data plane component is located outside the switching ASIC, but on the same chassis. They are connected through either a custom high bandwidth interconnect technology (e.g., 2.5D silicon interposer [63]) or existing technology such as PCIe. This option could achieve lower performance than the above option, but provide higher extensibility by allowing for plugging in new components.
5.2 Network Operators

Given a set of data plane options from hardware vendors and apps from app developers, network operators now have to provision the right external data plane. Key decision factors would be application demands, extensibility, generality, and cost budget. Network operators should be able to find an optimal data plane in terms of the above factors.

Here, we outline one potential way of finding an (near-) optimal solution based on a "what-if" analysis.1 Fig. 3 illustrates an example framework that takes inputs from all three stakeholders and tries to find an optimal solution for the data plane provisioning problem. Specifically, it models the problem as an integer linear program (ILP) and processes inputs to plug them into the ILP-based model. For example, a Network operator provide an estimated traffic volume (e.g., in bps or pps) and their objective functions (e.g., optimize the capital cost), and an application developer provides a sketching algorithm and its app-specific requirement (e.g., need a particular sketching algorithm). Hardware vendors provide data plane platforms and their capabilities. Then the what-if analysis framework finds an optimal data plane platform based on an objective function.

5.3 Open Questions

We conclude by highlighting a subset of open questions and future research directions by each stakeholder.

Hardware designers and vendors. In previous section, we discuss one possible way of designing capabilities required by a sketch-based application on PIM and FPGA-based data plane. An open question is whether there is a more principled and data plane agnostic way of exploring the design space for designing capabilities.

Application developers. While we illustrate a platform-agnostic library-based and parameterized programming model for external data plane devices as a potential approach for the sketch-based monitoring, it would be interesting to see if this model can be generally applicable to other applications. Another potential direction would be to design a new programming language that is agnostic to data plane platforms.

Network operators. In an integrated data plane platform, there are different types of resources and capabilities spread across multiple data plane devices. We need a run-time environment support for network operators to manage available resources and allocate workload to devices properly. Also, a failure of any data plane devices in the platform can affect the correctness of applications running on it. In particular for stateful applications (i.e., losing state due to failure can affect the correctness or behavior of the app), making them tolerant to failure is not trivial.

1We omit the details due to space constraints. The details can be found in our technical report [37].
References

[1] 2018. Barefoot Tofino. https://www.barefootnetworks.com/products/brief-tofino/.

[2] 2018. Cavium Xpliant Ethernet Switches. https://www.cavium.com/xpliant-ethernet-switch-product-family.html.

[3] 2018. https://bricata.com/blog/what-is-bro-ids/. BroIDS.

[4] 2018. VPP - fd.io. https://wiki.fd.io/view/VPP.

[5] 2019. Agilio CX SmartNICs - Netronome. https://www.netronome.com/products/agilio-cx/.

[6] 2019. Cisco Visual Networking Index. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html.

[7] 2020. Alveo U50 Data Center Accelerator Card. https://www.xilinx.com/products/boards-and-kits/alveo/u50.html.

[8] 2020. Cisco Silicon One Q200 and Q200L Processors Data Sheet. https://www.cisco.com/c/en/us/solutions/collateral/silicon-one/datasheet-c78-744312.html.

[9] 2020. Inferface Masters Tahoe 2624. https://interfacemasters.com/products/switches/10g-40g/tahoe-2624/.

[10] 2020. Intel HyperFlex, design handbook. https://www.intel.com/content/www/us/en/programmable/documentation/jbr1444752564689.html.

[11] 2020. Intel Stratix 10 FPGA, technical brief. https://www.intel.com/content/www/us/en/products/details/fpga/stratix10.html.

[12] 2020. Intel FPGA Programmable Acceleration Card N3000. https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/dev-kits/altera/intel-fpga-pac-n3000/overview.html.

[13] 2020. Netcope P4. https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/netcope-technologies-a-s-ip/netcope-p4.html.

[14] 2020. NVIDIA Mellanox ConnectX-5 adapters. https://www.nvidia.com/en-us/networking/ethernet/connectx-5/.

[15] 2020. OpenCL Overview - The Khronos Group Inc. https://www.khronos.org/opencl/.

[16] 2020. The Software Switch Pipeline. https://doc.dpdk.org/guides/packet_framework.html#the-software-switch-swx-pipeline.

[17] 2020. Tridentt / BCM56880 Series. https://www.broadcom.com/products/ethernet-connectivity.switching/strataxgs/bcm56880-series.

[18] 2020. Xilinx Vertex UltraSCALE+ device family, product tab. https://www.xilinx.com/products/silicon-devices/fpga/vertex-ultrascale-plus.html.

[19] 2020. NVIDIA BlueField Data Processing Units. https://www.nvidia.com/en-us/networking/products/data-processing-unit/.

[20] 2020. Snort++. https://www.snort.org/snort3.

[21] 2019. The CAIDA UCSD Anonymized Internet Traces. https://www.caida.org/data/pasive/passive_dataset.xml.

[22] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming Protocol-independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[23] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. 2020. Beaucoup: Answering many network traffic queries, one memory update at a time. In ACM SIGCOMM (2020).

[24] Cisco. 2018. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper.

[25] Graham Cormode and Marios Hadjileftheriou. 2008. Finding Frequent Items in Data Streams. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1530–1541.

[26] João Paulo C de Lima, Paulo Cesar Santos, Marco AZ Alves, Antonio CS Beck, and Luigi Carro. 2018. Design space exploration for PIM architectures in 3D-stacked memories. In Proceedings of the 15th ACM International Conference on Computing Frontiers. 113–120.

[27] F. Devaux. 2019. The true Processing in Memory accelerator. In IEEE Hot Chips: A Symposium on High Performance Chips (2019).

[28] Tim Dierks, Christopher Allen, et al. 1999. The TLS protocol version 1.0.

[29] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiu, Ailreza Dabagh, Mike Andrewartha, Harih Argepat, Vivek Bhana, Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh Chaturmohita, Matt Humphrey, Jack Lavier, Norman Lam, Fengfeng Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Ravidel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In USENIX NSDI (2018).

[30] Jiaqi Gao, Ennan Zhai, Hongjianggong Liu, Rui Miao, Yu Zhou, Bingchuang Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. 2020. Lyra: A Cross-Platform Language and Compiler for Data Plane Programming on Heterogeneous ASICs. In ACM SIGCOMM (2020).

[31] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and Walter Willinger. 2018. Sonata: Query-driven Streaming Network Telemetry. In ACM SIGCOMM (2018).

[32] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amrali Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating pointer chasing in 3D-stacked memory: Challenges, mechanisms, evaluation. In 2016 IEEE 34th International Conference on Computer Design (ICCD). IEEE, 32–35.

[33] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, and Robert Soule. 2018. NetChain: Scale-Free Sub-RTT Coordination. In USENIX NSDI (2018).

[34] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soule, Jeongkeun Lee, Nate Foster, Changhong Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores with Fast In-Network Caching. In ACM SOSP (2017).

[35] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho Jin, and Keith Kim. 2017. Hbm (high bandwidth memory) dram technology and architecture. In 2017 IEEE International Memory Workshop (IMW). IEEE, 1–4.

[36] Daeyeok Kim, Xaozong Liu, Yibo Zhu, Changhong Kim, Jeongkeun Lee, Vyas Sekar, and Sriravasan Seshan. 2018. TEA: Enabling State-Intensive Network Functions on Programmable Switches. In ACM SIGCOMM (2020).

[37] Daeyeok Kim, Vyas Sekar, and Sriravasan Seshan. 2021. What-If Analysis for In-Network Computing Architectures. https://daeyeokkim/assets/papers/what-if-tr.pdf.

[38] Daeyeok Kim, Yibo Zhu, Changhong Kim, Jeongkeun Lee, and Sriravasan Seshan. 2018. Generic External Memory for Switch Data Planes. In Proceedings of the 2018 ACM SIGCOMM International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery, New York, NY, USA, 242–251. https://doi.org/10.1145/3289602.3293910

[39] S. Lee, S. H. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Li, H. Shin, J. Kim, S. O, A. Iyer, D. Wang, K. Sohn, and N. S. Kim. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud. In USENIX NSDI (2018).
2020. Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology. In *ACM/IEEE ISCA* (2020).

[42] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie, Ameen Akel, Sean Eilert, Mircea R Stan, and Kevin Skadron. 2020. Fulcrum: a simplified control and access mechanism toward flexible and practical in-situ accelerators. In *IEEE HPCA* (2020).

[43] Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie, Ameen Akel, Sean Eilert, Mircea R Stan, and Kevin Skadron. 2020. Fulcrum: a simplified control and access mechanism toward flexible and practical in-situ accelerators. In *2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)*. IEEE, 556–569.

[44] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan RK Ports. 2020. Pegasus: Tolerating Skewed Workloads in Distributed Storage with In-Network Coherence Directories. In *USENIX OSDI* (2020).

[45] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and Karan Gupta. 2019. Offloading Distributed Applications Onto smartNICs Using iPipe. In *ACM SIGCOMM* (2019).

[46] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe, Vyas Sekar, and Kevin Skadron. 2020. Fulcrum: a simplified control and access mechanism toward flexible and practical in-situ accelerators. In *2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)*. IEEE, 556–569.

[47] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Blackburn, Diego R López, Konstantina Papagiannaki, PabloRodríguezRodriguez, and Peter Steenkiste. 2015. Multi-context tls (mctls) enabling secure in-network functionality in tls. *ACM SIGCOMM Computer Communication Review 45*, 4 (2015), 199–212.

[48] J Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In *2011 IEEE Hot Chips 23 Symposium (HCS)*. IEEE, 1–24.

[49] Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time. *Computer networks* 31, 23-24 (1999), 2435–2463.

[50] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco Mellia, Maurizio Munafo, Konstantina Papagiannaki, and Peter Steenkiste. 2014. The cost of the “s” in https. In *ACM CoNEXT* (2014).

[51] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn, Diego R López, Konstantina Papagiannaki, Pablo RodríguezRodriguez, and Peter Steenkiste. 2015. Multi-context tls (mctls) enabling secure in-network functionality in tls. *ACM SIGCOMM Computer Communication Review 45*, 4 (2015), 199–212.

[52] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe, Vyas Sekar, and Kevin Skadron. 2020. Fulcrum: a simplified control and access mechanism toward flexible and practical in-situ accelerators. In *2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)*. IEEE, 556–569.