Original article

Exploration and determination of algal role as Bioindicator to evaluate water quality – Probing fresh water algae

Saeed Khalil a, Mater H. Mahnashi b, Manzoor Hussain a,* Naheed Zafar c, Waqar-Un-Nisa d, Falak Sher Khan e, Umara Afzal f, Ghulam Mujtaba Shah g, Usama Muhammad Niazi h, Muhammad Awais i, Muhammad Irfan j

a Department of Botany, Hazara University Mansehra, KPK, Pakistan
b Department of Medicinal Chemistry, Pharmacy School, Najran University, Najran, Saudi Arabia
c Department of Biological sciences, International Islamic University Islamabad, Pakistan
d Center for Interdisciplinary Research in Basic Sciences International Islamic University Islamabad, Pakistan
e Department of Biotechnology, Faculty of Sciences, University of Sialkot, Pakistan
f Department of Chemistry, Rawalpindi Women University, Satellite Town Rawalpindi, Pakistan
g Department of Mechanical Engineering Technology, National Skills University, Islamabad, Pakistan
h Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Sialkot, Pakistan
i Electrical Engineering Department, College of Engineering, Najran University, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 23 April 2021
Revised 31 May 2021
Accepted 2 June 2021
Available online 10 June 2021

Keywords:
Algal diversity
201 species
Organic pollution
Bioindicators
Azad Kashmir
Pakistan

A B S T R A C T

Objectives: To explore the algal floral diversity and its role to determine water quality.

Methods: The regular monthly collection of algal and water samples was made during 2018. Unicellular algae were preserved in 2 to 3% formalin while macroalgae in 4% formalin. Microphotographs of algae were taken at the biotechnological Lab of PCSIR Lahore, Pakistan. Palmer pollution index was used to determine water quality.

Results: The study identified 201 algal species distributed among 57 genera, 42 families, 25 orders, 10 classes and 7 divisions. The total score of Algal Genus Pollution Index of Banjosa Lake, Ali Sojal Dam, Dothan Dam, Drake Dam and Rawalakot Nullah (city) were 14, 9, 10, 18 and 25 respectively. It was revealed that Banjosa Lake has probable organic pollution, Ali Sojal Dam and Dothan Dam showed lack of organic pollution, Drake Dam indicated moderate pollution while Rawalakot Nullah (City) indicated confirm high organic pollution.

Conclusion: We strongly recommend the conservation and managed status of algal species for sustainable resource of algal-derived products in future. It was revealed that the water quality of Banjosa Lake, Drake Dam and Rawalakot Nullah was affected from anthropogenic activities and needs to be managed.

© 2021 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Algae are diverse and large group of simple, photosynthetic, unicellular and multicellular organisms. They have very simple body called thallus which cannot be differentiated into true roots, stems and leaves and lack vascular tissues. They are very diverse organisms in size, form, structure, color, habit and habitat. Algae occupy variety of habitats due to their vast ecological amplitude and distributed across the oceans, rivers, lakes, ponds and streams. They are present from the depth of ocean to the highest peaks of the world. Linnaeus for the first time coined the term ‘Algae (Linnaeus, 1753).Fig. 1.

Algae are major source of food for aquatic organism and play an important role in aquatic food chain or food web (Galloway et al., 2012). They are good source of natural human diet (Gupta and Pandey, 2007). Microalgae are good source of biofuel and higher productivities than traditional crops (Khatoon and Pal, 2015). Many crucial antibiotics and medicines are obtained from these
organisms. They are used by pharmaceutical companies to prepare drugs which are used to treat various diseases like cancer, Acquired immune deficiency syndrome (AIDS), Arthritis, respiratory diseases and infections due to viruses, bacteria and fungi (V, Vadlapudi, 2012). Algae are involved in water purification from nutrients and pollutants (Biggs and Kilroy 2000). Algae are considered as very good bioindicator of water quality due to their rapid response to pollutants. Algae are important biological organism for purification of waters bodies because they absorb organic and inorganic pollutants, heavy metals and radioactive substances (Alp et al., 2012). Microalgae are bioindicators of eutrophication and effectively used to assess the quality of water (Kumar and Amit, 2012). The dominance of green algae and diatoms indicate the oligotrophic conditions while abundance of blue green algae indicate the eutrophic conditions of water bodies (Musharaf et al., 2011).

(Abdul Aziz et al., 2003) undertook algal study on the Arabian Gulf of the coastal waters of Saudi Arabia. They reported 35 genera of unicellular algae belonging to Bacillariophyta, Dinophyta and Cyanophyta and found that algae showed luxurious growth in summer due to nutrients status and temperature conditions. Similar algal studies were conducted by (Khomayis and Al- Harbi, 2003) on marine fouling area of Sharm Obhour, Saudi Arabia and recorded 22 species of Bacillariophyta and 2 species of Cyanophyta and Dynophyta each. An important study regarding algae of different groups at Batkhela, Malakand, Pakistan was carried out and total of 63 algal species belonging to Cyanophyta, Chlorophyta and Bacillariophyta were recorded (Barkatullah et al., 2013). An important study to explore fresh water algal flora of Jauharabad district, Pakistan was conducted and species were taxonomically described (Zarina et al., 2013). Some studies on algal flora were carried out in Azad Jammu & Kashmir (Khuhawari et al., 2009, Naz et al., 2009, Haq et al., 2012, and Ali et al., 2006).

Due to immense importance and contribution of algae and attempt was made to document the presence of valuable algal species. The objectives of this particular study were to conduct an extensive research for collection, identification and classification of algal flora to determine Phycological diversity and its role to determine water quality from the study area for the first time. This research work is significant because this is an up to date novel work. The paper should be of interest to readers in the areas of Botany, Ecology, Conservation biology, Agriculture and Environmental sciences etc.

2. Materials and methods

2.1. Study site

Rawalakot is headquarter of district Poonch Azad Jammu & Kashmir, Pakistan. It located in temperate region at an elevation of 5374 feet and the Latitude 33°51’32.18”N, Longitude 73°45’34.93”E. The climate of Rawala Kot can be divided into four seasons. Rawala Kot has mild and warm temperature during the spring and summer, while snow falls in the winter. Maximum and minimum temperatures can be 38°C and −1°C in summer and winter respectively.

2.2. Sampling sites

For present study, algal and water samples were collected from five randomly selected sampling Sites; Banjosa Lake, Ali Sojal Dam, ...
Dothan Dam, Drak Dam and Rawalakot City (Nallah) were selected as sampling stations.

2.3. Sampling of algae

The regular monthly collection of algae was made from January 2018 to December 2018. Epiphytic algae and desmid flora were collected with pipette. Filamentous algal species were collected with the help of forceps. Tooth brush was used to collect diatoms while macro-algae were picked up with hands. The collected algal samples were transferred into bottles and were labelled.

2.4. Preservation of algae

Unicellular algae were preserved in 2 to 3% formalin while macro algae were kept in 4% formalin (Mason, 1967).

2.5. Laboratory studies and identification of algae

The algal samples were taken to molecular & biotechnological lab, food and biotechnological research Centre PCSIR, Lahore, Pakistan for microphotography. Microphotographs of algal species were taken with the camera attached with the microscope (MT5300H-Japan). The specimens of algal species were identified with the help of authentic literature upto species level or even up to variety level (Hustedt 1930, Majeed 1935, Smith 1950, Presscott, 1962, Tilden, 1910).

2.6. Analysis of algae

The collected material was assessed on the basis of morphological, cytological and reproductive characters during microscopic examination. After detail analysis, algae were documented and tabulated for evaluation of algal biodiversity from the study area.

2.7. Palmer pollution index

Palmer pollution index was used to evaluate water quality.

3. Results

The present study identified 201 algal species consisting of 57 genera, 42 families, 25 orders, 10 classes and 7 divisions from the study area during 2018. The maximum number of families (18) were contributed by division Bacillariophyta, followed by Chlorophyta (14) families and Cyanophyta (5) families. Euglenophyta contributed 2 while Glucophyta and Dinophyta contributed 1 family each. (Table 1). The Bacillariophyta showed dominancy with (47%) frequency followed by Chlorophyta and Cyanophyta 38% and 19% frequency respectively. The minor divisions Euglenophyta, Charophyta and Dinophyta showed poor representation with (2%), (1.5%) and (1%) frequency respectively (Fig. 2).

The highest number of species were represented by Navicula which was represented by 14 species followed by spirogyra and Cymbella with 11 species each. Minimum number of species were contributed by Troschia and Lyngbya (Fig. 4 and Table 1). The division Bacillariophyta showed dominancy with (47%) frequency followed by Chlorophyta and Cyanophyta 38% and 19% respectively. The minor divisions Euglenophyta, Charophyta and Dinophyta showed poor representation with (2%), (1.5%) and (1%) frequency respectively. Fig. 5.

3.1. Evaluation of organic pollution by Palmer’s algal genus

Pollution of surface water has become major environmental problem. Organic pollution in water bodies leads to eutrophication which in turn accelerate the growth of certain type of algal species in water body. Algae are taken as natural indicator to environmental conditions because they form blooms in water bodies and show vigorous growth. There are many studies by various authors who showed strong relationship among algal species and polluted and unpolluted water. They are influenced by factors like mixing of water masses, light, temperature, salinity and nutrients. Bioindicator organisms can be used to identify the effects of pollutants in aquatic ecosystems.

Different environmental conditions affect the occurrence and distribution of algae. Cyanobacteria mass is influenced by the hydrogen ion concentration (pH) followed by temperature, light, soil type and available nutrients. Their mass can be recorded in the form of the frequency as well as the intensity of biotic community due to eutrophication. Various studies on algal species confirmed their role for the assessment of pollution in water bodies. (Kolkwitz and Marsson, 1950) defined five zones on the degree of pollution in water bodies and proposed the use of aquatic organisms as bioindicators to evaluate the water quality.

(Werner, 1977) proposed nine different zones on the basis of organic pollution in water bodies. Werner proposed zones were Coprozoic, Polysaprobic, Mesosaprobic, Oligosaprobic, and Katharobic. Each zones was found to be different on the basis of physico-chemico and biological characteristics. He listed the indicator species of these zones which showed changes in their growth pattern in response to pollutants in water bodies. Polysaprobic zone was characterized by the complete absence of algae except for blue green algae Spirulina and green algae Euglena viridis. Blue green algae showed dominancy in alpha-Mesozoic while diatoms and green algae were dominant in Beta-Mesozoic zones. Members of Dinophyta and Charophyta were found only in oligosaprobic zones.

Palmer (1969) proposed pollution index on the basis of algal genus and species present in water bodies. This pollution index which is effectively used to analyze the water quality for high or low organic pollution (Table 2). The pollution tolerant genera of algae were recorded from all the sites of the study area and a pollution index score was assigned to each algal genus. Pollution index score of 20 or more confirms high organic pollution within the water body. A score of 15–19 is an evidence of probable organic pollution. Pollution index scores from 10 to 14 indicates moderate organic pollution, while index score 0–10 indicates lack of organic pollution in waters.

During our present study algal genera were used to determine the water quality of freshwater bodies in the study area in which the total score of algal genus pollution index of Banjosa Lake, Ali Sojal Dam, Dothan Dam, Drake Dam and Rawalakot City (Nullah) were found to be 14, 9, 10, 18 and 25 respectively. It was concluded that Banjosa Lake has probable organic pollution while Ali Sojal Dam and Dothan Dam, showed lack of organic pollution, Drake Dam indicated probable organic pollution and Rawalakot Nullah indicated confirm high organic pollution (Table 3).
Table 1
Algal flora explored from freshwater bodies of the study area.

Divisions	Class	Order, Family, Genus and Species name
Cyanophyta	Cyanophyceae	
	Order: Chroococcales	
	Family: Chroococcales	
	1. Chroococcus turgidus (Kutzing) Naegeli	
	2. Chroococcus limneticus Lemmermann	
	Family: Microcystaceae	
	3. Gleocapsa punctate Nageli	
	4. Gleocapsa bituminosa Kutzing	
	Order: Nostocales	
	Family: Nostocaceae	
	5. Nostoc muscorum C.A. Agardh	
	Order: Oscillatoriales	
	Family: Oscillatoriaceae	
	6. Lyngbya birgei G.M. Smith	
	7. Lyngbya mertensiya Meneghini ex Gomont	
	8. Lyngbya majuscula Harvey ex Gomont	
	9. Oscillatoria tenuis C.A. Agardh	
	10. Oscillatoria limosa C.A. Agardh	
	11. Oscillatoria princeps Vaucher	
	12. Oscillatoria sancta (Kutzing) Gomont	
	13. Oscillatoria fracta C.W.F. Carlson	
	14. Oscillatoria acuta Bruhl	
	15. Oscillatoria chilkensis Biswas	
	16. Oscillatoria obscura Bruhl & Biswas	
	17. Oscillatoria curviceps C.A. Agardh	
	18. Oscillatoria anguina Bory ex Gomont	
	Order: Synechococcales	
	Family: Merismopediae	
	19. Merismopedia glauca (Ehrenberg) Kutzing	
Chlorophyta	Chlorophyceae	
	Order: Chlorococcales	
	Family: Oocystaceae	
	20. Ankistrodesmus falcatus var. radiates (Chod) Lemmermann	
	Order: Chlamydomonadales	
	Family: Volvocaceae	
	21. Volvox aureus Ehrenberg	
	22. Pandorina morum Bory	
	Order: Chlorococcales	
	Family: Scenedesmaceae	
	23. Schroederia setigera [Schroeder]/Lemmermann	
	Order: Sphaeropleales	
	Family: Scenedesmaceae	
	24. Scenedesmus quadricauda (Turpin) Brebisson	
	25. Scenedesmus apolensis Richter	
	26. Scenedesmus protuberatus Fritsch and Rich	
	27. Scenedesmus longus Meyen	
	28. Scenedesmus dimorphus (Turpin) Kutzing	
	29. Scenedesmus carinatus (Lemmermann) Chodat	
	30. Scenedesmus communis E. Hegewald	
	31. Scenedesmus abundans var. longicuda G.M Smith	
	32. Scenedesmus quadricauda var. maxima West & GS West	
	33. Scenedesmus abundans var. Kirchner (Chodat)	
	34. Tetradron regulare Kutzing	
	35. Tetradron cautatum (Corda) Hansgirg	
	36. Tetradron trigonum var. minus Reinich	
	37. Trochidia aspera Reinisch	
	38. Coelastrum microporum Nageli	
	39. Coelosphaerium kuntzinginum	
	Order: Hydrodictyaceae	
	40. Pediastrum duplex Meyen	
	41. Pediastrum duplex var. gracilimum West & GS West	
	42. Pediastrum simplex var. echunulatum Wittrock	
	43. Pediastrum biaue var. ovatum (Ehrenberg) Tiffany	
	44. Pediastrum simplex var. duodenarium (Bailey) Rabenhorst	
	45. Pediastrum boryanum var. longicorne Raciborski	
	Order: Oedogoniales	
	Family: Oedogoniaceae	
	46. Oedogonium macroandrium Wittrock	
	47. Oedogonium carduncum (Hassall) Wittrock	
	48. Oedogonium majus (Hansgirg) Tiffany	
	Order: Tetrasporales	
	Family: Sphaerocystidaceae	
	49. Sphaerocystis Schroeteri R. Chodat	
	Order: Microspermales	

(continued on next page)
Divisions	Class	Order, Family, Genus and Species name
Family: Microsporaceae		
50. Microspora quadrata Hazen		
51. Microspora wilfekio Lagerheim		
52. Microspora tumidula Hazen		
Order: Chetophorales		
Family: Chetophoraceae		
53. Draparnaldia plumose (Vaucher) C.A. Agardh		
54. Chetophora lobata F.Schranks		
55. Chetophora elegans (Roth) Agardh		
Ulvophyceae		
Order: Ulvotrichales		
Family: Ulotrichaceae		
56. Ulothrix gemilata Kutzing		
57. Ulothrix zonata (Weber & Mohr) Kutzing		
58. Ulothrix aqualis Kutzing		
Order: Cladophorales		
Family: Cladophoraceae		
59. Cladophora glomerata (Linnaeus) Kutzing		
60. Cladophora oligoclona Kutzing		
Zygmematophyceae		
Order: Zygmematales		
Family: Zygmemataceae		
61. Spirogyra communis (Hassall) Kutzing		
62. Spirogyra biforis C.C.Jao		
63. Spirogyra maxima Link in C.C.Nees		
64. Spirogyra neglecta (Hassall) Kutzing		
65. Spirogyra subsalsa Link in C.C.Nees		
66. Spirogyra tetrapla Transeau		
67. Spirogyra elongata (Vaucher) Kutzing		
68. Spirogyra flaviatilis Hilse		
69. Spirogyra punctiformis Trascan		
70. Spirogyra rectangularis Transeau		
71. Spirogyra catenaeformis (Hassall) Kutzing		
72. Zygmena tenue Kutzing		
73. Zygmena sterile Transeau		
74. Zygmena insigni (Hassall)		
75. Zygmena aplanosporum Stacheva,J.D.Hall & Sheath		
76. Mougetia micropora Taft		
77. Mougetia viridis (Kutzing) Wittrock		
Order: Desmidiales		
Family: Desmidaceae		
78. Cosmarium formosulum Hoffmann		
79. Cosmarium botrytis Meneghini		
80. Cosmarium speciosum Lundell		
81. Cosmarium granatum Brebisson		
82. Cosmarium nitidulum Donoradis		
83. Cosmarium subtumidum Nordsted		
84. Staurastrum rorosae Meyen ex Ralfs		
Family: Closteriaceae		
85. Closterium acutum (Lyngbye) Brebisson		
86. Closterium parvulum Naegeli		
87. Closterium leidlinii Kutzing		
88. Closterium lanceolatum Kutzing		
89. Closterium intermedium Ralfs		
90. Closterium littorale Gay		
91. Closterium lunula (Mueiller) Nitzch		
92. Closterium pseudolumula Borge		
93. Closterium acerorum var. elongatum Brebisson		
94. Closterium striolatum Ehrenberg		
Trebouxiophyceae		
Order: Chlorellales		
Family: Chlorallaceae		
95. Chlorella conductrix Brandot		
Charophyta		
Charophyceae		
Order: Charales		
Family: Characeae		
96. Chara corallina Klein ex C.L.Willdenow		
97. Chara globular Thuiller		
98. Chara vulgaris Linnaeus		
Division	Class	Order, Family, Genus and Species name
----------	---------	--
Bacillariophyta	**Bacillariophyceae**	**Order:** Bacillariales
Family: Anomoeoeidaceae
99. *Anomoeoneis vitrea* Pfitzer
100. *Anomoeoneis exilis* (Kutzing) Cleve
101. *Anomoeoneis servanus* (Brebisson) Cleve
Family: Catenulaceae
99. *Amphora holsatica* Hustedt
Family: Achnanthidiaceae
100. *Achnanthus microcephalus* (Kutzing) Cleve
Family: Cocconeidaceae
101. *Cocconeis plancetula* Ehrenberg
Family: Bacillariaceae
102. *Denticula tennis* Kutzing
103. *Nitzchia palea* (Kutzing) Wm. Smith
104. *Nitzchia sublinearis* Hustedt
105. *Nitzchia acicularis* (Kutzing) Wm. Smith
106. *Nitzchia hungarica* Grunow
107. *Nitzchia denticula* Grunow
108. *Nitzchia palea* var. tenuirostris Grunow
Family: Fragilariales
109. *Diatom vulgare* Bory
110. *Diatoma anceps* (Ehrenberg) Kirchner
111. *Fragillaria viresecens* Ralfs
112. *Fragillaria pinnota* Ehrenberg
113. *Fragillaria capucina* Desmazieres
114. *Fragilaria vaucheriae* (Kutzing) J.P. Peterson
115. *Fragilaria intermedia* (Grunow) Grunow
116. *Fragilaria crotonensis* var. prolongata Grunow
117. *Fragilaria phoenicentron* (Nitzsch) Ehrenberg
118. *Fragilaria acuta* Wm. Smith
119. *Fragilaria amphicentra* var. amphilepta (Ehrenberg) Cleve
120. *Fragilaria scalproides* Rabenhorst
121. *Fragilariaatus* var. amphilepta (Ehrenberg) Cleve
122. *Fragilaria denticula* var. amphilepta (Ehrenberg) Cleve
123. *Synedra denticula* var. amphilepta (Ehrenberg) Cleve
124. *Synedra denticula* var. amphilepta (Ehrenberg) Cleve
125. *Synedra denticula* var. amphilepta (Ehrenberg) Cleve
126. *Navicula tuscula* (Ehrenberg) Grunow
127. *Navicula gracilis* Ehrenberg
128. *Navicula protracta* (Grunow) Cleve
129. *Navicula exigua* (Gregory) Muller
130. *Navicula viridula* Kutzing
131. *Navicula cuspidata* Kutzing
132. *Caloneis bacillum* (Grunow) Mereschkowsky
133. *Gyrosigma amnicum* (Kutzing) Cleve
134. *Gyrosigma wormleyi* (Sullivant) Boyer
135. *Gyrosigma Kaetzingii* (Grunow) Cleve
136. *Navicula rotundata* (Ehrenberg) Cleve
137. *Navicula gracilis* Ehrenberg
138. *Navicula protracta* (Grunow) Cleve
139. *Navicula exiguus* (Gregory) Muller
140. *Navicula veneta* Kutzing
141. *Navicula salinarum* Grunow
142. *Navicula rhynocephala* Kutzing
143. *Navicula radiosa* Kutzing
144. *Navicula viridula* Kutzing
145. *Navicula pusilla* Kutzing
146. *Navicula grimmel Kraskeh
147. *Navicula denticula* (Ehrenberg) Wm. Smith
148. *Navicula reinhardtii* (Grunow) Van Heurek
149. *Navicula gregaria* Donkin
Family: Rhopalodiaceae
150. *Rhopalodia gibba* (Kutzing) Mueller
151. *Rhopalodia gibba* var. ventricosa (Kutzing) H. Peragallo & M. Peragallo
152. *Ephelidium adnatum* (Kutzing) Brebisson
153. *Ephelidium argus* (Ehrenberg) Kutzing
Family: Pinnulariaceae
154. *Pinnularia nobilis* Ehrenberg
155. *Pinnularia braunii* (Grunow) Cleve
156. *Pinnularia angulata* (Quekett) Wm. Smith
157. *Pinnularia salinarum* (Grunow) Grunow
Family: Neidaceae
158. *Nedium iridis* (Ehrenberg) Pfitzer
(continued on next page)
4. Discussion

The algae have been an interesting group of plants due to their primitive nature and worldwide distribution because of their capabilities to exist in variety of environmental conditions. Algae are the primary producers in all kind of aquatic ecosystems due to their photosynthetic ability. They are very much important organism from ecological, commercial and medical aspects. In Pakistan, few algal studies have been conducted but little attention was given to explore algal flora of Azad Jammu & Kashmir. Our study in fresh water bodies showed rich diversity of algal species in which 3 species, *Phacus longicauda*, *Closterium leibeleinii*, and *Pediastrum duplex var. gracillimum* were new records for Azad Jammu & Kashmir. Our results are in agreement with the study on the diversity of algae carried out by Leghari et al., 2002 in which they identified 134 algal species from River Jhelum, Azad Jammu & Kashmir.

Divisions	Class	Order, Family, Genus and Species name
Nedium dubium (Ehrenberg) Pfitzer	Family: Sellaphoraceae	
Sellaphora capitata D.G.Mann & S.M. McDonald	Family: Amphipleuraceae	
Sellaphora pupilla (Kutzing) Meresckowsky	Family: Stauroneidaceae	
Frustulia rhomboids (Ehrenberg) DeToni	Family: Sellaphoraceae	
Frustulia viridula (Brebisson) DeToni	Family: Amphipleuraceae	
Craticula cuspidata (Kutzing) D.G.Mann	Order: Surirellales	
Frustulia viridula (Brebisson) DeToni	Order: Mastogloiales	
Surirella linearis var. constricta (Ehrenberg) Grunow	Order: Euglenales	
Surirella ovata Kutzing	Order: Euglenales	
Surirella minutu Kutzing	Order: Gomphonemataceae	
Surirella patella Kutzing	Order: Euglenales	
Surirella saronica Auerswald	Order: Cymbellales	
Surirella didyma Kutzing	Order: Cymbellales	
Surirella splendida (Ehrenberg) Kutzing	Family: Gomphonemataceae	
Surirella linearis var.		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Surirella saronica Auerswald		
Surirella didyma Kutzing		
Surirella splendida (Ehrenberg) Kutzing		
Surirella linearis var.		
Surirella minuta Kutzing		
Surirella patella Kutzing		
Similar algal research was undertaken and 195 algal species were documented from Punjab, Khyber Pakhtoonkhwa, Azad Kashmir, and north-eastern areas of Pakistan. The class Nostocophyceae was found to be more abundant which contributed 144 species as compared to the class Chlorophyceae which added 51 algal species. It was observed that these species appeared during spring and summer and disappeared in the autumn (Haq et al., 2012).

Previously some research work has been carried out on the algal diversity in Jauharabad District, Pakistan by Zarina et al., 2013. They identified four species of diatoms belonging to family Bacillariaceae, Gomphonemaceae and Nitzschiaceae. (Jang et al., 2014) investigated the algal diversity in fresh water bodies from different localities of Swabi District, Pakistan and identified 22 genera with 35 species. Our studies are in accordance with Aliya et al., 2009 during which they explored the fresh water habitats of Karachi city, Pakistan and reported 6 division, 33 families, 86 genera and 214 algal species. The divisions Cyanophycota and Volvophycota showed dominancy with (74.8%) frequency while the Euglenophycota and Chrysophyta showed poor representation of (2.8%) frequency. Variations in algal composition and diversity was analyzed in Sangju weir, Gyeongsangbuk-do province and it was found that it was varied at bottom, middle and surface layers of water due to formation of thermocline in water body. Micro algae were dominated by diatoms followed by green algae and blue green algae.

Bioindicator organisms indicate the effects of different pollutants in aquatic ecosystems. Phytoplanktons are reliable tool to evaluate the water quality of wetlands (Crosseti et al., 2008). Freshwater bodies and lakes are characterized on the basis of dominant algal group. We characterized water bodies of our study area on the basis of algal genus and concluded that Banjosa Lake has probable organic pollution, Ali Sojal Dam and Dothan Dam showed lack of organic pollution, Drake Dam indicated probable organic pollution while Rawalakot Nullah indicated confirm high organic pollution. Species of Chlorophyta like Chlymdomonas and Euglena, members of Bacillariophyta like Navicula, Synedra, Gomphonema, and blue green algae such as Oscillatoria and Phormidium grow in organic polluted waters (Palmer, 1969). (Anand, 2000) investigated the ecology of a diatom species and noticed their role as an indication of water quality parameters. The dominance of green algae and diatoms indicate the oligotrophic conditions while abundance of blue green algae indicate the eutrophic conditions of water bodies (Musharaf et al., 2011). Our findings agree with palmer (1969) and Musharaf et al. (2011).

5. Conclusion

The water of the fresh water bodies of Rawalakot is used for domestic, industrial and agricultural purposes. It was revealed through the current study that Rawalakot Nullah, Drak Dam and Banjosa Lake are declining due to pollution. Conservation and management of these water bodies is required in order to avail them for long term in a proper way. Sustainable water use and management is recommended for the subsistence of the water bodies in the study area. It is recommended for future studies to carry out
molecular studies of algae along with phylogeny of the representative genera. The algal use for bio-fuel, bioremediation, medicinal, human algal diet and fish flora should be studied for commercial and industrial applications and its advantages to the mankind.

Table 2
Palmer algal genus pollution index.

S. No.	Genus	Index	Genus	Index
1	Ankistrodesmus	4	Nitzchia	3
2	Closterium	1	Scenedesmus	4
3	Euglena	1	Syndra	2
4	Gomphonema	1	Pandorina	1
5	Chlorella	1	Oscillatoria	5
6	Navicula	3	Phacus	2
7	Cyclotella	5	Phormidium	1
8	Chlamydomonas	3	Stigeoclonium	2
9	Anacystis	2	Micractinium	1

Table 3
Pollution indicating algal genera from water bodies of the study area.

Algal Genus	Banjosa Lake	Alisojal Dam	Dothan Dam	Drak Dam	Rawalakot City (Nullah)
Ankistrodesmus	4	–	–	4	4
Closterium	1	1	1	1	1
Euglena	1	–	–	1	1
Gomphonema	1	1	1	1	1
Chlorella	–	1	1	–	–
Navicula	3	–	–	3	3
Cyclotella	–	–	–	–	–
Chlamydomonas	–	–	–	–	–
Nitzchia	3	3	–	3	3
Scenedesmus	–	–	–	4	4
Syndra	2	2	2	–	2
Pandorina	–	–	1	–	1
Oscillatoria	–	–	–	5	5
Phacus	2	2	–	–	–
Phormidium	–	–	–	–	–
Stigeoclonium	–	–	–	–	–
Total	**14**	**9**	**10**	**18**	**25**
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Authors would like to acknowledge the support of the Deputy for Research and Innovation- Ministry of Education, Kingdom of Saudi Arabia for this research through a grant (NU/IFC/INT/01/010) under the institutional Funding Committee at Najran University, Kingdom of Saudi Arabia. We are also thankful to Dr. Yasin Saleem, senior scientific officer at PCSIR Labs Complex Lahore, Punjab, Pakistan for providing laboratory facilities for microphotography of algal species.

References

Ali, T.S., Zarina, A., Hussain, M.U., 2006. Taxonomic studies on Cymbella (Bacillariophyta) from Punjab and Azad Kashmir. Pak J Bot 38 (1), 161–167.
Alya, R., Zarina, A., Shameel, M., 2009. Survey of freshwater algae from Karachi. Pakistan. Pak J Bot 41 (2), 861–870.
Anand, V.K., 2000. Ecology of Melosira varians AG. (Bacillariophyceae), J. Env. and Pollut. 7 (4), 299–302.
Aziz, P, Al- Tisan I, Al-Daili, M, Green, T, Ghani, A, and Javeed M (2003). Desalination, 132-29.
Barkatullah, F., Hussain, N., et al., 2013. Ecological study of algal flora of Jehlum River, Azad Kashmir. J Draing and Water Manag 6 (2), 33–48.

Leghari, M.K. et al., 2002. Ecological study of algal flora of Jehlum River, Azad Kashmir. J Draing and Water Manag 6 (2), 33–48.
Linnaeus, C. (1753). Exhibentes Plantas Rite Cognitas, Ad Genera Relatas, Cum Differentiis Specificis, Nominibus. Trivialibus, Synonymis Selectis, Locis Natalibus, Secundum Systema Sexualem Digestas. Species Plantarum, 2:561-1200.
Majeed, A.M., 1935. Fresh water algae of Punjab part I Bacillariophyta (Diatomae). Pak. J Bot. 41 (5), 2551–2561.
Mason, D.J., 1967. Limnology of Monolake. Pub. Zoology Dept. California Univ. California. 83, 1–102.
Alp, M.T. et al., 2012. Determination of heavy metals in sediment and macroalgae on the. Mersin coast. Ekol 21 (82), 47–55.
Musharaf, K, Farrukh, H, Shahana, M., 2011. A fraction of fresh water Algae of Kalarpani stream and adjoining. area of District Mardan, Pakistan. Int. J. Biosci. 145–150.

Kumar, J., Amit, P., 2012. Water quality monitoring of Ken river of Banda District Uttar Pradesh. India. Elxi J. Polli 42, 6360–6364.
Khomayis, HS, and Al- Harbi, SM (2003). J KAU, Mar, Sci, 14-3.
Kolkwitz, Marsson, 1950. Okologie der Pflanzischen Saprobien. Ber. Deutsch Bot. Ges 1908 (26), 505–519.
LehUri, M.K. et al., 2002. Ecological study of algal flora of Jehlum River, Azad Kashmir. J Draing and Water Manag 6 (2), 33–48.
Linnaeus, C. (1753). Exhibentes Plantas Rite Cognitas, Ad Genera Relatas, Cum Differentiis Specificis, Nominibus. Trivialibus, Synonymis Selectis, Locis Natalibus, Secundum Systema Sexualem Digestas. Species Plantarum, 2:561-1200.
Majeed, A.M., 1935. Fresh water algae of Punjab part I Bacillariophyta (Diatomae). Pak. J Bot. 41 (5), 2551–2561.
Mason, D.J., 1967. Limnology of Monolake. Pub. Zoology Dept. California Univ. California. 83, 1–102.
Alp, M.T. et al., 2012. Determination of heavy metals in sediment and macroalgae on the. Mersin coast. Ekol 21 (82), 47–55.
Musharaf, K, Farrukh, H, Shahana, M., 2011. A fraction of fresh water Algae of Kalarpani stream and adjoining. area of District Mardan, Pakistan. Int. J. Biosci. 145–150.
Naz, S.A, Zarina, M.U., Hasan, Shameel, M., 2009. Diversity of freshwater Cyanophyta in the North- Eastern. areas of Pakistan. Proc Pak Acad Sci 49 (3), 29–40.
Alp, M.T. et al., 2012. Determination of heavy metals in sediment and macroalgae on the. Mersin coast. Ekol 21 (82), 47–55.
Musharaf, K, Farrukh, H, Shahana, M., 2011. A fraction of fresh water Algae of Kalarpani stream and adjoining. area of District Mardan, Pakistan. Int. J. Biosci. 145–150.

Kumar, J., Amit, P., 2012. Water quality monitoring of Ken river of Banda District Uttar Pradesh. India. Elxi J. Polli 42, 6360–6364.
Khomayis, HS, and Al- Harbi, SM (2003). J KAU, Mar, Sci, 14-3.
Kolkwitz, Marsson, 1950. Okologie der Pflanzischen Saprobien. Ber. Deutsch Bot. Ges 1908 (26), 505–519.
LehUri, M.K. et al., 2002. Ecological study of algal flora of Jehlum River, Azad Kashmir. J Draing and Water Manag 6 (2), 33–48.
Linnaeus, C. (1753). Exhibentes Plantas Rite Cognitas, Ad Genera Relatas, Cum Differentiis Specificis, Nominibus. Trivialibus, Synonymis Selectis, Locis Natalibus, Secundum Systema Sexualem Digestas. Species Plantarum, 2:561-1200.
Majeed, A.M., 1935. Fresh water algae of Punjab part I Bacillariophyta (Diatomae). Pak. J Bot. 41 (5), 2551–2561.
Mason, D.J., 1967. Limnology of Monolake. Pub. Zoology Dept. California Univ. California. 83, 1–102.
Alp, M.T. et al., 2012. Determination of heavy metals in sediment and macroalgae on the. Mersin coast. Ekol 21 (82), 47–55.
Musharaf, K, Farrukh, H, Shahana, M., 2011. A fraction of fresh water Algae of Kalarpani stream and adjoining. area of District Mardan, Pakistan. Int. J. Biosci. 145–150.
Naz, S.A, Zarina, M.U., Hasan, Shameel, M., 2009. Diversity of freshwater Cyanophyta in the North- Eastern. areas of Pakistan. Proc Pak Acad Sci 49 (3), 29–40.
Palmer, C.M., 1969. Composite rating of algae tolerating organic pollution. J. Phycol 5, 78–82.
Khatoon, N., Pal, R., 2015. Microalgae in Biotechnological Application. Plant Biol & Biotech, 27–47.
Presscott, G.W., 1962. Algae of western great lakes area. C. Brown Co., Dusuoue, Iowa, W.M, p. 970.
Smith, GM (1950). The Fresh-Water Algae of United States of America, McGraw Hill, New York, America. Tiffny, LH, and ME, Britton (1971). The algae of Illinois. Hapner p Co 395.
Tilden, J., 1910. Minnesota algae. Minneapolis I, 555.
Vadlapudi, V., 2012. Antioxidant activities of marine algae. A review. Research signpost, 189–203.
Werner, D., 1977. The Biology of diatoms. Botanical monographs. California pres. 13 (498). pp.
Zarina, AS, T, Ali, M, Hassan and M, Shameel (2013). Taxonomic study of some diatoms from Jauharabad District. Pak J Bot 45(1): 345-348.