Stability and Hopf bifurcation of HIV-1 model with Holling II infection rate and immune delay

Maoxin Liaoa, Yanjin Liua, Shinan Liua and Ali M. Meyadb

aSchool of Mathematics and Physics, University of South China, Hengyang, People’s Republic of China; bSchool of Public Finance and Taxation, Southwestern University of Finance and Economics, Chengdu, People’s Republic of China

ABSTRACT
This paper aims to analyse stability and Hopf bifurcation of the HIV-1 model with immune delay under the functional response of the Holling II type. The global stability analysis has been considered by Lyapunov–LaSalle theorem. And stability and the sufficient condition for the existence of Hopf Bifurcation of the infected equilibrium of the HIV-1 model with immune response are also studied. Some numerical simulations verify the above results. Finally, we propose a novel three dimension system to the future study.

1. Introduction
In recent years, people pay more attention to damages of the immune system caused by HIV virus. According to recent studies, they found that latent infected cells could transform themselves into health cells by autoimmune response before that viral genome is integrated into cellular genome (e.g. see [15]). Therefore, some scholars began to study HIV-1 models with latent infected cells and the corresponding dynamic properties (e.g. see [1–14, 16–33]). The literature (e.g. see [1]) considered the following model:

\[
\begin{align*}
\frac{dx(t)}{dt} &= s - d_1x(t) - \beta x(t)v(t) + \delta w(t), \\
\frac{dw(t)}{dt} &= \beta x(t)v(t) - (\delta + d_2 + q)w(t), \\
\frac{dy(t)}{dt} &= qw(t) - d_3y(t), \\
\frac{dv(t)}{dt} &= \sigma y(t) - \gamma v(t),
\end{align*}
\]

where \(x(t), w(t), y(t), v(t)\) denote the concentration of the uninfected \(CD4^+T\) cells, latent infected cells, infected cells and virus at time \(t\), respectively. And \(s(s > 0)\) is the recruitment rate of uninfected \(T\) cells, the \(\beta xv\) is the bilinear incidence of the healthy cells caused by HIV virus, and \(\delta\) represents the proportion that latent cells restore to healthy cells before
integrating into viral genome. Moreover, d_1, d_2, d_3, γ respectively denote the death rate of the uninfected T cells, the latent infected cells, infected cells and the virus. Finally, q is the rate of at which the latent infected cells change into infected cells and σ is the rate at which cells release the virus.

It is noticed that the disease incidence rate is bilinear in Model (1). However, studies have shown that when the number of the target cells is large enough (see [3]), bilinear incidence may not be a valid assumption, namely the virus and host cell is a nonlinear relationship. Therefore, we consider the Holling II $\frac{\beta x(t)y(t)}{1+y(t)}$ instead of bilinear incidence rate $\beta x(t)v(t)$, which is more in line with the actual situation. As we know that the body’s immune is an important factor, in the process of inhibition and destroy infected cells. The body’s immune system could delay production when the body accepts to produce in the process of lymphocyte antigen stimulation (see [7, 20]). So we establish the following model:

$$
\begin{align*}
\frac{dx(t)}{dt} &= s - d_1x(t) - \frac{\beta x(t)y(t)}{1+y(t)} + \delta w(t), \\
\frac{dw(t)}{dt} &= \frac{\beta x(t)y(t)}{1+y(t)} - (\delta + d_2 + q)w(t), \\
\frac{dy(t)}{dt} &= qw(t) - d_3y(t) - hy(t)z(t), \\
\frac{dz(t)}{dt} &= ky(t-\tau)z(t-\tau) - d_4z(t),
\end{align*}
$$

(2)

where $z(t)$ denotes the concentration of the Immune cells at time t, τ denotes the immune delay, d_4 denotes the death rate of the immune cell, $ky(t-\tau)z(t-\tau)$ denotes the birth rate of immune cell.

In this paper, we mainly study the global stability and Hopf bifurcation of HIV-1 model (2) with immune delay under the functional response of the Holling II type.

The remainders of this paper are as follows. In Section 2, we consider the positivity and boundaries of solutions and equilibria of model (2). In Section 3, we mainly study the global stability of the viral free equilibrium and infected equilibrium by Lyapunov–LaSalle theorem. In Section 4, we mainly study the global stability and the existence of Hopf Bifurcation of the infected equilibrium of the HIV-1 model with immune response. In Section 5, some numerical simulations are performed to illustrate the main results. The sixth part gives some conclusions and prospects. Here, we propose a novel three dimension system to the future study.

2. Positivity and boundaries of solutions and equilibria given

Considering the biological significance of the model, we assume that the initial conditions of system (2) are as follows:

$$
\begin{align*}
 x(\theta) &= \varphi_1(\theta), \quad w(\theta) = \varphi_2(\theta), \quad y(\theta) = \varphi_3(\theta), \quad z(\theta) = \varphi_4(\theta), \\
 \varphi_1 &\geq 0, \quad \varphi_i > 0, \quad i = 2, 3, 4, \quad \theta \in [-\tau, 0],
\end{align*}
$$

(3)

where $\varphi = (\varphi_1, \varphi_2, \varphi_3, \varphi_4)^T \in C([-\tau, 0], R^4_+)$. It expresses a continuous function from $[-\tau, 0]$ to R^4_+ and with supremum norm in Banach space. ($R^4_+ = (x_1, x_2, x_3, x_4): x_i \geq 0, \quad i = 1, 2, 3, 4$.)
Define the infection of the basic reproductive number R_0 and the basic immune response reproductive number R_1. Through calculation we can get

\[
R_0 = \frac{\beta qs}{d_1 d_3 (\delta + d_2 + q)}, \quad R_1 = \frac{kq \beta s}{d_3 [\beta d_4 (d_2 + q) + d_1 (k + d_4)(\delta + d_2 + q)]}.
\]

It is also easy to know system (2) has following three equilibrium points:

1. If $R_0 < 1$, there exists an uninfected equilibrium $E_0 = (\frac{\epsilon}{d_1}, 0, 0, 0)$.
2. If $R_0 > 1$ and $R_1 < 1$, there exists an infected equilibrium without immune response $E_1(x_1, w_1, y_1, z_1)$, where

 \[
 \begin{align*}
 x_1 &= \frac{sq(\delta + d_2 + q) + (d_2 + q)d_5(\delta + d_2 + q)}{\beta q(d_2 + q) + d_1 q (\delta + d_2 + q)}, \\
 w_1 &= \frac{\beta sq - d_1 d_3 (\delta + d_2 + q)}{\beta q (d_2 + q) + d_1 q(\delta + d_2 + q)}, \\
 y_1 &= \frac{\beta sq - d_1 d_3 (\delta + d_2 + q)}{\beta d_5 (d_2 + q) + d_1 d_3(\delta + d_2 + q)}, \\
 z_1 &= 0.
 \end{align*}
 \]

3. If $R_1 > 1$, there exists an infected equilibrium $E_2(x_2, w_2, y_2, z_2)$ with immune response, where

 \[
 \begin{align*}
 x_2 &= \frac{s(k + d_4)(\delta + d_2 + q)}{\beta d_4 (d_2 + q) + d_1 (k + d_4)(\delta + d_2 + q)}, \\
 w_2 &= \frac{s \beta d_4}{\beta d_4 (d_2 + q) + d_1 (k + d_4)(\delta + d_2 + q)}, \\
 y_2 &= \frac{d_4}{k}, \\
 z_2 &= \frac{\beta sqk - d_3 [d_1 (k + d_4)(\delta + d_2 + q) + \beta d_4 (d_2 + q)]}{[\beta d_4 (d_2 + q) + d_1 (k + d_4)(\delta + d_2 + q)]h}.
 \end{align*}
 \]

Lemma 2.1: Suppose that $x(t), w(t), y(t), z(t)$ is the solution of system (2) satisfying initial conditions (3). Then $x(t) > 0, w(t) > 0, y(t) > 0, z(t) > 0$ for all $t \geq 0$.

Proof: Assume that t_1 is the first point satisfy $t_1 = \min t > 0 : x(t) \times w(t) \times y(t) \times z(t) = 0$.

1. If $x(t_1) = 0$, from the first equation of system (2) we can know

 \[
 \dot{x}(t_1) = s - d_1 x(t_1) - \frac{\beta x(t_1) y(t_1)}{1 + y(t_1)} + \delta w(t_1) = s + \delta w(t_1)
 \]

 because t_1 is the first time meet $x(t) \times w(t) \times y(t) \times z(t) = 0$, so $w(t_1) \geq 0, y(t_1) \geq 0, z(t_1) \geq 0$. It is easy to know $\dot{x}(t_1) > 0$. So for any sufficiently small ϵ_1, when $t \in (t_1 - \epsilon_1, t_1)$, we have $x(t) < 0$ but on the other hand, $x(t) > 0, t \in [0, t_1)$ the assumption $x(t_1) = 0$ does not hold. Hence $x(t) > 0, t \in (0, \infty)$.
(2) If \(w(t_1) = 0 \), from the second equation of system (2) we can know
\[
w(t_1) = e^{-(\delta + d_2 + q)t_1}w(0) + \int_0^{t_1} \frac{\beta x(\eta)y(\eta)}{1+y(\eta)} e^{-(\delta + d_2 + q)(t_1-\eta)} \, d\eta > 0,
\]

This is contradictory with \(w(t_1) = 0 \), so we can't find any \(t_1 \) to meet \(w(t_1) = 0 \). Therefore \(w(t) > 0, t \in (0, +\infty) \). By a recursive demonstration and initial conditions, we can easily get \(y(t) > 0, z(t) > 0, t \in (0, +\infty) \). The proof is completed.

Lemma 2.2: Suppose that \(x(t), w(t), y(t), z(t) \) are the solutions of system (2), each of them is bounded.

Proof: We define
\[
F(t) = x(t) + w(t) + y(t) + \frac{h}{k}z(t + \tau), m = \min\{d_1, d_2, d_3, d_4\}.
\]

For boundedness of the solution, calculating the derivative of \(F(t) \), we get
\[
F'(t) = x'(t) + w'(t) + y'(t) + \frac{h}{k}z'(t + \tau)
\]
\[
= s - [d_1x(t) + d_2w(t) + d_3y(t) + \frac{d_4h}{k}z(t + \tau)]
\]
\[
< s - m \left[x(t) + w(t) + y(t) + \frac{h}{k}z(t + \tau) \right]
\]
\[
= s - mF(t),
\]
where \(F(t) < \varepsilon + \frac{1}{m} \) (positive number \(\varepsilon \) can be arbitrarily small). This implies that \(F(t) \) is bounded by the comparison theorem, and so are \(x(t), w(t), y(t) \) and \(z(t) \). The proof is completed.

3. Stability analysis of equilibrium point \(E_0 \) and \(E_1 \)

In this section, we mainly consider the stability of the viral free equilibrium \(E_0 \) by employing Lyapunov function.

Theorem 3.1: If \(R_0 < 1 \), the uninfected equilibrium \(E_0 \) of system (2) is globally asymptotical stable for any time delay \(\tau \geq 0 \).

Proof: Define the Lyapunov function \(V_0 \) as follows:
\[
V_0 = x(t) - x_0 - \int_{x_0}^{x(t)} \frac{x_0}{\theta} d\theta + w(t) + \frac{\delta}{2(d_1 + d_2 + q)x_0} [(x(t) - x_0) + w(t)]^2
\]
\[
+ \frac{\delta + d_2 + q}{q} y(t) + \frac{(\delta + d_2 + q)h}{qk} z(t) + \frac{(\delta + d_2 + q)h}{q} \int_{t-\tau}^{t} y(\theta)z(\theta) \, d\theta.
\]
Through $x_0 = \frac{x}{d_1}$, we can push that $s = d_1 x_0$. Calculating the derivative of V_0 along the solution of system (2), we get

\[
V'_0 = (d_1 x_0 - d_1 x(t)) - \frac{\beta x(t)y(t)}{1 + y(t)} + \delta w(t) \left(1 - \frac{x_0}{x(t)}\right) + \frac{\beta x(t)y(t)}{1 + y(t)} - (\delta + d_2 + q)w(t)&
+ \frac{\delta}{d_1 + d_2 + q}x_0 (x(t) - x_0 + w(t)) \left[d_1 x_0 - d_1 x(t) + \delta w(t) - (\delta + d_2 + q)w(t) \right]
+ \frac{\delta + d_2 + q}{q} (q w(t) - d_3 y(t) - h y(t)z(t))
+ \frac{(\delta + d_2 + q)h}{q} \left[ky(t - \tau) z(t - \tau) - d_4 z(t) \right]
+ \frac{(\delta + d_2 + q)h}{q} y(t)z(t) - \frac{(\delta + d_2 + q)h}{q} \left[ky(t - \tau) z(t - \tau) - d_4 z(t) \right]
= -\frac{d_1 (x(t) - x_0)}{x(t)} + d_1 w(t) (1 - \frac{x_0}{x(t)}) + \frac{\beta x_0 y(t)}{1 + y(t)} + \frac{\delta d_1 (x(t) - x_0)^2}{(d_1 + d_2 + q) x_0}
- \frac{\delta w(t) (x(t) - x_0)}{x_0} + \frac{\delta (d_2 + q) w(t)^2}{d_1 + d_2 + q x_0} - \frac{\delta + d_2 + q}{d_3 y(t)}
- \frac{(\delta + q + d_2) h}{d_4 z(t)} - \frac{\delta (d_2 + q) w(t)^2}{(d_1 + d_2 + q) x_0}.
\]

Since $2 - \frac{x_0}{x} - \frac{x}{x_0} \leq 0$ and $R_0 < 1$ hold, we can get the above $V'_0 \leq 0$. In addition to that only if $(x(t), w(t), y(t), z(t)) = (\frac{x}{d_1}, 0, 0, 0)$, we obtain $V'_0 = 0$. The uninfected equilibrium E_0 of system (2) is globally asymptotically stable according to the Lyapunov–Lasalle theorem in [2]. The proof is complete.

Theorem 3.2: If $R_0 \in (1, 1 + \frac{2 + (d_2 + q) d_3}{\delta d_3}]$ and $R_1 < 1$ hold, the infected equilibrium E_1 without immune response of system (2) is globally asymptotically stable for any time delay $\tau \geq 0$.

Proof: Define the Lyapunov function V_1 as follows:

\[
V_1 = x(t) - x_1 - \int_{x_1}^{x(t)} \frac{x_1}{\theta} d\theta + w(t) - w_1 - w_1 \ln \frac{w(t)}{w_1}
+ \frac{\delta}{2(d_1 + d_2 + q)x_1} \left[(x(t) - x_1) + (w(t) - w_1) \right]^2
\]
\[V'_1 = \left(d_1 x_1 + \frac{\beta x_1 y_1}{1 + y_1} - \delta w_1 - d_1 x(t) - \frac{\beta x(t)y(t)}{1 + y(t)} + \delta w(t) \right) \left(1 - \frac{x_1}{x(t)} \right) \\
+ \left[\frac{\beta x(t)y(t)}{1 + y(t)} - (\delta + d_2 + q) w(t) \right] \left(1 - \frac{w_1}{w(t)} \right) \\
+ \left(\frac{\delta}{(d_1 + d_2 + q)x_1} \left(x(t) - x_1 + w(t) - w_1 \right) \left[d_1 x_1 - \frac{\beta x_1 y_1}{1 + y_1} - \delta w_1 - d_1 x(t) \right] \\
+ \delta w(t) - (\delta + d_2 + q) w(t) \right] + \frac{\delta + d_2 + q}{q} [q w(t) - d_3 y(t) - h y(t) z(t)] \left(1 - \frac{y_1}{y(t)} \right) \\
+ \frac{(\delta + d_2 + q) h}{q k} [k y(t - \tau) z(t - \tau) - d_4 z(t)] \\
+ \frac{(\delta + d_2 + q) h}{q k} [d_1 (x(t) - x_1) + n_1 \left(1 - \frac{x_1}{x(t)} + \frac{y(t)(1 + y_1)}{y_1(1 + y(t))} \right) \\
+ \delta w(t) \left(1 - \frac{x_1}{x_1 y_1(1 + y(t) w(t))} \right) + n_1 \left(1 - \frac{x_1}{x_1 y_1(1 + y(t) w(t))} \right) \\
+ \delta w(t) \left(1 - \frac{x_1}{x_1 y_1(1 + y(t) w(t))} \right) + n_1 \left(1 - \frac{x_1}{x_1 y_1(1 + y(t) w(t))} \right) \\
+ \frac{\delta d_1 x(t) y(t)}{x(t) x_1} \left(x(t) - x_1 \right) + n_1 \left(1 - \frac{x(t) y(t)}{x_1 y_1(1 + y(t) w(t))} \right) + n_1 \left(1 - \frac{x(t) y(t)}{x_1 y_1(1 + y(t) w(t))} \right) \\
+ \beta x_1 y_1 h z(t) \left[\frac{\delta d_1 x(t) y(t)}{x(t) x_1} \left(x(t) - x_1 \right) + n_1 \left(1 - \frac{x(t) y(t)}{x_1 y_1(1 + y(t) w(t))} \right) + n_1 \left(1 - \frac{x(t) y(t)}{x_1 y_1(1 + y(t) w(t))} \right) \\
+ n_1 \left(1 - \frac{x(t) y(t)}{x_1 y_1(1 + y(t) w(t))} \right) + n_1 \left(1 - \frac{x(t) y(t)}{x_1 y_1(1 + y(t) w(t))} \right) \right) \left(1 - \frac{x_1}{x(t)} \right) \\
+ \frac{\beta x_1 y_1 h z(t)}{q w_1} \cdot \frac{d_1 (k + d_4) (\delta + d_2 + q) + d_4 \beta (d_2 + q)}{k \beta (d_2 + q) + kd_1 (\delta + d_2 + q) (R_1 - 1),} \right) \\
\]

where

\[s = d_1 x_1 + \frac{\beta x_1 y_1}{1 + y_1} - \delta w_1, n_1 = \frac{\beta x_1 y_1}{1 + y_1} = (\delta + d_2 + q) w_1, 1 - \frac{x_1}{x} = \frac{-(x-x_1)^2}{x_1} + \frac{x-x_1}{x_1}. \]

Calculating the derivative of \(V_1 \) along the solution of the system (2), we obtain:
Proof: We define the Lyapunov function

\[V_2 = x(t) - x_2 - \int_{x_2}^{x(t)} \frac{x_2}{\theta} d\theta + w(t) - w_2 - w_2 \ln \frac{w(t)}{w_2} + \frac{\delta}{2(d_1 + d_2 + q)x_2} [(x(t) - x_2) + (w(t) - w_2)]^2 + \frac{\delta + d_2 + q}{q} \left(y(t) - y_2 - y_2 \ln \frac{y(t)}{y_2} \right) + \frac{(\delta + d_2 + q)h}{qk} (z(t) - z_2 - z_2 \ln \frac{z(t)}{z_2}). \]

Calculating the derivative of \(V_2 \) along the solution of the system (2), we obtain

\[V'_2 = (s - d_1 x(t)) - \frac{\beta x(t) y(t)}{1 + y(t)} + \delta w(t)) (1 - \frac{x_2}{x(t)}) \]
\[+ \left[\frac{\beta x(t) y(t)}{1 + y(t)} - (\delta + d_2 + q) w(t) \right] (1 - \frac{w_2}{w(t)}) \]
\[+ \frac{\delta}{(d_1 + d_2 + q)x_2} [(x(t) - x_2) + (w(t) - w_2)] [s - d_1 x(t) + \delta w(t) - (\delta + d_2 + q) w(t)] \]

where \(d_1 x_1 - \delta w_1 \geq 0 \) can be formulated as \(R_0 \leq 1 + \frac{sq+(d_2+q)d_3}{\delta d_3} \). Since the arithmetic mean is greater than or equal to the geometric mean, it follows that

\[4 - \frac{x_1}{x(t)} = \frac{x(t) y(t)(1 + y_1) w_1}{x_1 y_1 (1 + y(t) w(t))} - \frac{w(t) y_1}{w_1 y(t)} - \frac{1 + y(t)}{1 + y_1} \leq 0. \]

If \(R_0 \in (1, 1 + \frac{sq+(d_2+q)d_3}{\delta d_3}) \) and \(R_1 < 1 \), we can get the above \(V'_1 \leq 0 \). In addition, if and only if \((x(t), w(t), y(t), z(t)) = (x_1, w_1, y_1, 0)\), we obtain \(V'_1 = 0 \). According to Lyapunov–LaSalle, we can know that the infected equilibrium \(E_1 \) of system (2) without immune is globally asymptotically stable. The proof is complete.

\[\Box \]

4. Stability analysis and the existence of Hopf bifurcation of equilibrium point \(E_2 \)

In this section, we mainly discuss the stability and the existence of Hopf bifurcation of the infected equilibrium \(E_2 \) of system (2) with immune response.

Theorem 4.1: If \(R_1 > 1 \) and (H1) hold, the infected equilibrium \(E_2 \) of system (2) with immune response is globally stable when \(\tau = 0 \).

\[\delta d_4 \beta \leq d_1(k + d_4)(\delta + d_2 + q) \quad \text{(H1)} \]

Proof: We define the Lyapunov function \(V_2 \) as follows:

\[V_2 = x(t) - x_2 - \int_{x_2}^{x(t)} \frac{x_2}{\theta} d\theta + w(t) - w_2 - w_2 \ln \frac{w(t)}{w_2} + \frac{\delta}{2(d_1 + d_2 + q)x_2} [(x(t) - x_2) + (w(t) - w_2)]^2 + \frac{\delta + d_2 + q}{q} \left(y(t) - y_2 - y_2 \ln \frac{y(t)}{y_2} \right) + \frac{(\delta + d_2 + q)h}{qk} (z(t) - z_2 - z_2 \ln \frac{z(t)}{z_2}). \]

Calculating the derivative of \(V_2 \) along the solution of the system (2), we obtain
The associated characteristic equation of system (4) at E_2 becomes

$$H(\lambda; \tau) = \lambda^4 + b_1\lambda^3 + b_2\lambda^2 + b_3\lambda + b_4 + (c_1\lambda^3 + c_2\lambda^2 + c_3\lambda + c_4)e^{-\lambda\tau} = 0,$$

where

$$b_1 = A + B + C + d_4,$$

$$b_2 = AB + BC + (d_2 + q)C + \delta d_1 + d_4(A + B + C) - qD,$$

$$b_3 = ABC + \delta d_1 B - \delta BC - d_1 qD + d_4(AB + BC + AC + \delta d_1 - \delta C - qD),$$

$$b_4 = d_4(ABC + \delta d_1 B - \delta BC - d_1 qD),$$

$$c_1 = -ky_2.$$
\[
c_2 = hky_2z_2 - (A + B + C)ky_2, \\
c_3 = Ahky_2z_2 + Chky_2z_2 - (AB + BC + AC + \delta d_1 - \delta C - qD)ky_2, \\
c_4 = hky_2z_2(AC + \delta d_1 - \delta C) - (ABC + \delta d_1 B - \delta BC - d_1qD)ky_2, \\
A = \delta + d_2 + q, B = d_3 + hz_2, C = d_1 + \frac{\beta y_2}{1 + y_2}, D = \beta X_2(1 + Y_2)^2.
\]

We suppose (5) has a purely imaginary root \(\lambda = i\omega \), then we obtain
\[
\omega^4 - ib_1\omega^3 - b_2\omega^2 + ib_3\omega + b_4 \\
+ [\cos(\omega \tau) - i \sin(\omega \tau)](ic_1\omega^3 - c_2\omega^2 + ic_3\omega + c_3) = 0.
\]

Separating the real parts and imaginary parts of the above equation, we can get
\[
\begin{cases}
\omega^4 - b_2\omega^2 + b_4 = -\cos(\omega \tau)(-c_2\omega^2 + c_4) + \sin(\omega \tau)(c_1\omega^3 + c_3\omega), \\
-b_1\omega^3 + b_3\omega = \cos(\omega \tau)(c_1\omega^3 - c_3\omega) + \sin(\omega \tau)(-c_2\omega^2 + c_4).
\end{cases}
\]

Then we have
\[
\omega^8 + l_1\omega^6 + l_2\omega^4 + l_3\omega^2 + l_4 = 0,
\]
where
\[
l_1 = b_1^2 - 2b_2 - c_1^2, \\
l_2 = b_2^2 + 2b_4 - 2b_1b_3 - c_2^2 + 2c_1c_3, \\
l_3 = b_3^2 - 2b_2b_4 - c_3^2 + 2c_2c_4, \\
l_4 = hd_4^2z_2(d_2C + qC + \delta d_1)\{d_3 + B)(d_2C + qC + \delta d_1) - 2d_1qD].
\]

Denote
\[
G(\omega) = \omega^4 + l_1\omega^3 + l_2\omega^2 + l_3\omega + l_4.
\]

If Equation (5) has a purely imaginary root \(i\omega \), equation
\[
G(\omega) = \omega^4 + l_1\omega^3 + l_2\omega^2 + l_3\omega + l_4 = 0.
\]
will have a positive real root \(\omega^2 \).

If \(l_4 < 0 \), we can obtain the following inequality:
\[
(d_3 + B)(d_2C + qD + \delta d_1) < 2d_1qD. \tag{H2}
\]

The above formulation implies that Equation (9) has one positive real root at least.

Suppose that Equation (9) has \(n(1 \leq n \leq 4) \) positive real roots, then Equation (7) has \(n \) positive real roots \(\omega_1 = \sqrt{\sigma_1}, \omega_2 = \sqrt{\sigma_2} \cdots \omega_n = \sqrt{\sigma_n}(1 \leq n \leq 4) \). Through
Equation (6), we get
\[
\begin{align*}
sin(\omega \tau) &= F_n = \frac{(c_1 \omega^3 - c_3 \omega)(\omega^4 - b_2 \omega^2 + b_4) + (-c_1 \omega^2 + c_4)(-b_1 \omega^3 + b_3 \omega)}{(c_1 \omega^3 - c_3 \omega)^2 + (-c_2 \omega^2 + c_4)^2}, \\
cos(\omega \tau) &= J_n = \frac{(c_1 \omega^3 - c_3 \omega)(-b_1 \omega^3 + b_3 \omega) - (-c_2 \omega^2 + c_4)(\omega^4 - b_2 \omega^2 + b_4)}{(c_1 \omega^3 - c_3 \omega)^2 + (-c_2 \omega^2 + c_4)^2}.
\end{align*}
\]

Then, we have
\[
\tau_n^{(j)} = \frac{1}{\omega_n} \arccos(J_n) + \frac{2\pi j}{\omega_n} (1 \leq n \leq 4, j = 0, 1, 2, 3, \ldots).
\]

It is easy to show that \(\pm i\omega_n \) is a pair of purely imaginary root of Equation (5), for every integer \(j \) and \(n \), let \(\lambda_n^{(j)}(\tau) = \alpha_n^{(j)}(\tau) + i\omega_n^{(j)}(\tau) \) be the roots of (5) near \(\tau = \tau_n^{(j)} \) satisfying \(\alpha_n^{(j)} = 0, \omega_n^{(j)}(\tau) = \omega_n \). Then, we have the following theorem.

Theorem 4.2: The \(\frac{d\Re(\lambda)}{d\tau} \big|_{\tau=\tau_n^{(j)}} \) and \(G'(\omega_n^2) \) have the same sign.

Proof: Put \(\lambda_n^{(j)}(\tau) \) into Equation (5) we get
\[
p(\lambda) + f(\lambda) e^{-\lambda \tau} = 0, \tag{11}
\]
where
\[
p(\lambda) = \lambda^4 + b_1 \lambda^3 + b_2 \lambda^2 + b_3 \lambda + b_4, \\
f(\lambda) = c_1 \lambda^3 + c_2 \lambda^2 + c_3 \lambda + c_4.
\]

Differentiating (11) with respect to \(\tau \) we obtain that
\[
p'(\lambda) \frac{d\lambda}{d\tau} + f'(\lambda) \frac{d\lambda}{d\tau} e^{-\lambda \tau} - (\lambda + \tau \frac{d\lambda}{d\tau}) f(\lambda) e^{-\lambda \tau} = 0.
\]

Hence, we get
\[
\left[\frac{d\lambda}{d\tau} \right]^{-1} = \frac{f'(\lambda) + p'(\lambda) e^{\lambda \tau}}{\lambda f(\lambda)} - \frac{\tau}{\lambda}.
\]

But \(p(i\omega_n) + f(i\omega_n) e^{-i\omega_n \tau_n^{(j)}} = 0 \), we have
\[
\Re \left[\frac{d\lambda}{d\tau} \big|_{\tau=\tau_n} \right]^{-1} = \Re \left[\frac{f'(i\omega_n) + p'(i\omega_n) e^{i\omega_n \tau_n^{(j)}}}{i\omega_n f(i\omega_n)} \right] \\
= \Re \left[\frac{-f'(i\omega_n)}{\omega_n f(i\omega_n)} i \right] + \Re \left[\frac{p'(i\omega_n)}{\omega_n p(i\omega_n)} i \right] \\
= \Im \left[\frac{f'(i\omega_n)}{\omega_n f(i\omega_n)} - \frac{p'(i\omega_n)}{\omega_n p(i\omega_n)} \right].
\]
On the other hand, we define \(\varphi(\omega) = |p(i\omega)|^2 - |f(i\omega)|^2 \). By calculating we can know that \(\varphi(\omega) = G(\omega)^2 \). Calculating the derivative of \(|p(i\omega)|^2 \) with respect to \(\omega \), we obtain
\[
\frac{d}{d\omega} (|p(i\omega)|^2) = \frac{d}{d\omega} ([Re p(i\omega)]^2 - [Im p(i\omega)]^2) \\
= 2Re p(i\omega) \cdot Re[p'(i\omega)] + 2Im p(i\omega) \cdot Im[p'(i\omega)] \\
= 2Re [p(i\omega)p'(i\omega)] \\
= -2Im [p(i\omega)p'(i\omega)].
\]
Then
\[
\frac{1}{2\omega} \frac{d\varphi}{d\omega} = \frac{1}{2\omega} \frac{d}{d\omega} (|p(i\omega)|^2 - |f(i\omega)|^2) \\
= \frac{1}{\omega} \cdot Im[f(i\omega) f'(i\omega) - p(i\omega)p'(i\omega)] \\
= Im \left[f(i\omega) \frac{f'(i\omega)}{\omega f(i\omega)} - |p(i\omega)|^2 \frac{p'(i\omega)}{\omega p(i\omega)} \right].
\]
Since \(|f(i\omega_n)|^2 = |p(i\omega_n)|^2 \), we get
\[
\left(\frac{1}{2\omega} \frac{d\varphi}{d\omega} \right)_{\omega=\omega_n} = |f(i\omega_n)|^2 Im \left[\frac{f'(i\omega_n)}{\omega_n f(i\omega_n)} - \frac{p'(i\omega_n)}{\omega_n p(i\omega_n)} \right] = |f(i\omega_n)|^2 Re \left[\frac{d\lambda}{d\tau} \bigg|_{\tau=\tau_n} \right]^{-1}.
\]
Then
\[
sign[G'(n^2)] = \left(\frac{1}{2\omega} \frac{d\varphi}{d\omega} \right)_{\omega=\omega_n} = \left(\frac{d\lambda}{d\tau} \right)_{\tau=\tau_n}.
\]
Because
\[
sign \left[\frac{d Re(\lambda)}{d\tau} \bigg|_{\tau=\tau_n} \right] = sign \left(\frac{d\lambda}{d\tau} \bigg|_{\tau=\tau_n} \right) = sign \left(\frac{d\lambda}{d\tau} \bigg|_{\tau=\tau_n} \right)^{-1},
\]
Therefore, we have
\[
sign \left[\frac{d Re(\lambda)}{d\tau} \bigg|_{\tau=\tau_n} \right] = sign[G'(n^2)].
\]
It is obvious that if \(G'(\omega_n^2) \neq 0 \), then \(\frac{d Re(\lambda)}{d\tau} \bigg|_{\tau=\tau_n} \neq 0 \). So, according to the above analysis and Hopf Bifurcation theorems given in the literature [6], we have the following conclusions.

\[\text{Theorem 4.3:} \text{ Assume that } R_1 > 1, \text{ (H1) and (H2) hold. Then} \]

1. the infected equilibrium with immune response \(E_2 \) \(\tau \in [0, \tau_0) \), where \(\tau_0 = \tau^{(0)} = \min\{\tau_n^j | 1 \leq n \leq 4, j = 0, 1, 2, 3, \ldots \}, \omega_0 = \omega_{n_0}. (\tau_n^j \text{ is defined by (10))} \)
2. if \(G'(\omega_{n_0}^2) \neq 0 \), there is a Hopf bifurcation for the system (2) near as \(\tau \) is increased past \(\tau_0 \).

If (H1), (H2), (H3), (H4) hold, then (i) the positive equilibrium \(E^* \) of system (1.7) is locally asymptotically stable for \(0 \leq \tau < \tau_0 \); (ii) \(E^* \) is unstable for \(\tau > \tau_0 \); (iii) system (1.7) undergoes a Hopf bifurcation at \(E^* \) for \(\tau = \tau_0 \).
Figure 1. Numerical simulations show that the equilibrium E_2 of system (12) is locally asymptotically stable when $\tau = 2 < \tau_0$ holds.

5. Numerical simulations

In order to illustrate feasibility of the results of Theorem 4.3, we use the software Matlab to perform numerical simulations. Considering the following special system (12) of system (2):

\[
\begin{align*}
\frac{dx(t)}{dt} &= 7 - 0.03x(t) - 0.011 \frac{x(t)y(t)}{1 + y(t) + w(t)}, \\
\frac{dw(t)}{dt} &= 0.011 \frac{x(t)y(t)}{1 + y(t)} - (0.001 + 0.21 + 0.89)w(t), \\
\frac{dy(t)}{dt} &= 0.89w(t) - 0.26y(t) - 0.02y(t)z(t), \\
\frac{dz(t)}{dt} &= 0.62y(t - \tau)z(t - \tau) - 0.25z(t). \\
\end{align*}
\]

For the parameters from (12), we can calculate $d_1(k + d_4)(\delta + d_2 + q) - \delta d_4 \beta = 0.0287 > 0$ and $\omega_0 = 0.2313$ is a simple root of Equation (9), so (H1), (H2) hold. We can also calculate that $\tau_0 = 4.1244$, $R_1 = 5.1452 > 1$ by using the software Matlab. If $\tau = 2 < \tau_0$, we can get Figure 1; If $\tau = 6 > \tau_0$, we can get Figure 2. From Figures 1 and 2, we can know that Theorem 4.3 holds.
Figure 2. Numerical simulations show that the equilibrium E_2 of system (12) is unstable when $\tau = 6 > \tau_0$ holds.

6. Conclusion and prospects

In this paper, we established a mathematical model for HIV-1 with the immune delay and Holling II infection rate. In this model, we define the infection of the basic reproductive number R_0 and the basic immune response reproductive number R_1 by calculating and we identify the three equilibrium of the model. Then, it will show that uninfected equilib-rium E_0 of system (2) is globally asymptotically stable for any time delay $\tau \geq 0$ by using the Lyapunov–LaSalle theorem when the infection of the basic reproductive number R_0; the infected equilibrium without immune response of system (2) is globally asymptoti-cally stable for any time delay $\tau \geq 0$, when $R_0 \in (1, 1 + \frac{d_1}{d_3}(d_2 + q)\delta_3]$ and $R_1 < 0$ hold; the infected equilibrium with immune response E_2 of system (2) is globally stable for $\tau = 0$, when $R_1 > 1$ and $(H1)$ hold. And we also give sufficient condition of the Hopf bifurcation in equilibrium E_2 of system (2). Our analysis provides the effective reference value of the prevention and treatment of AIDS.

By using a novel reducing dimension modelling idea proposed in [29], see also [30, 31], we may reduce (2) into a three dimension system if we regard $x(t)$ or $z(t)$ as a
known function rather than an independent variable satisfying an independent dynamical equation, which will be a challenging topic to the future study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work is supported partly by Hunan Provincial Natural Science Foundation of China (No. 2020JJ4516), Fund of Education Department of Hunan Province (No. 17A181), Hunan Key Laboratory of Mathematical Modeling and Scientific Computing (No. 2019).

References

[1] B. Buonomo and C. Vargas-De-Leon, *Global stability for an HIV-1 infection model including an eclipse stage of infected cells*, J. Math. Anal. Appl. 385 (2012), pp. 709–720.

[2] A.A. Canabarro, I.M. Gleria, and M.L. Lyra, *Periodic solutions and chaos in a nonlinear model for the delayed cellular immune response*, Physica 342 (2004), pp. 232–241.

[3] D. Ebert, C.D. Zschokke-Rohringer, and H.J. Carins, *Does effects and density dependent regulation of two microparasites of Daphnia magna*, Oecologia 122 (2000), pp. 200–209.

[4] P. Essunger and A.S. Perelson, *Modeling HIV infection of CD4+ T cell subpopulations*, J. Theor. Biol. 170 (1994), pp. 367–391.

[5] Q.M. Gou and W.D. Wang, *Global stability of an SEIS Epidemic model with saturating incidence*, J. Biomath. 23 (2008), pp. 265–272.

[6] B.D. Hassard, N.D. Kazarinoff, and Y.H. wan, *Theory and Applications of Hopf Bifurcation*, Cambridge University Press, Cambridge, 1981.

[7] G. Huang, H. Yokoi, Y. Takeuchi, T. Kajiwara, and T. Sasaki, *Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics*, Jpn J. Ind. Appl. Math. 28 (2011), pp. 383–411.

[8] A. Korobeinikov, *Global properties of basic virus dynamics models*, Bull. Math. Biol. 66(4) (2004), pp. 879–883.

[9] A. Korobeinikov, *Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate*, Math. Medi. Biol. 26 (2009), pp. 225–239.

[10] S. Liu, X. Pan, and W. Zhao, *HIV cure: latent HIV eradication and strategies*, Journal of Zunyi Medical University 38(2) (2015), pp. 105–110.

[11] S. Liu and L. Wang, *Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy*, Math. Biosci. 7 (2010), pp. 675–685.

[12] X.D. Liu, H. Wang, Z.X. Hu, and W. Ma, *Global stability of an HIV pathogenesis model with cure rate*, Nonlinear Anal. Real World Appl. 12 (2011), pp. 2947–2961.

[13] C.F. Lv, L.H. Huang, and Z.H. Yuan, *Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response*, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), pp. 121–127.

[14] M. Nasri, M. Dehghan, and M. Jaberi Douraki, *Study of a system of non-linear difference equations arising in a deterministic model for HIV infection*, Appl. Math. Comput. 171 (2005), pp. 1306–1330.

[15] L. Rong, M. A. Gilchrist, Z. Feng, and A. S. Perelson, *Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility*, J. Theor. Biol. 247 (2007), pp. 804–818.

[16] L. Rong and A. S. Perelson, *Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips*, Math. Biosci. 217(1) (2009), pp. 77–87.
[17] M.W. Shen, Y.N. Xiao, and L.B. Rong, Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics, Math. Biosci. 263 (2015), pp. 37–50.
[18] C. Sun, L. Li, and J. Jia, Hopf bifurcation of an HIV-1 virus model with two delays and logistic growth, Math. Model. Nat. Pheno. 15 (2020), pp. 16–20.
[19] E. Vicenzi and G. Poli, Novel factors interfering with human immunodeficiency virus - type 1 replication in vivo and in vitro, Tissue Antigens 81(2) (2013), pp. 61–71.
[20] K.F. Wang, W.D. Wang, H.Y. Pang, and X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Physica D. 226 (2007), pp. 197–208.
[21] X. Wang, A. Elaiw, and X.Y. Song, Global properties of a delayed HIV infection model with CTL immune response, Appl. Math. Comput. 218 (2012), pp. 9405–9414.
[22] C.J. Xu, Local and global Hopf bifurcation analysis on simplified bidirectional associative memory neural networks with multiple delays, Math. Comput. Simulat. 149 (2018), pp. 69–90.
[23] R. Xu, Global dynamics of an HIV-1 infection model with distributed intracellular delays, Comput. Math. Appl. 61 (2011), pp. 2799–2805.
[24] R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl. 375 (2011), pp. 75–81.
[25] C.J. Xu and C. Aouiti, Comparative analysis on Hopf bifurcation of integer order and fractional order two-neuron neural networks with delay, Int. J. Circuit Theory Appl. 48(9) (2020), pp. 1459–1475.
[26] C.J. Xu, C. Aouiti, and Z. Liu, A further study on bifurcation for fractional order BAM neural networks with multiple delays, Neurocomputing 417 (2020), pp. 501–515.
[27] C.J. Xu, M. Liao, P. Li, Y. Guo, and S. Yuan, Influence of multiple time delays on bifurcation of fractional-order neural networks, Appl. Math. Comput. 361 (2019), pp. 565–582.
[28] C.J. Xu and Q. Zhang, Bifurcation analysis of a tri-neuron neural network model in the frequency domain, Nonlinear Dyn. 76(1) (2014), pp. 33–46.
[29] J.S. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math. 78 (2018), pp. 3168–3187.
[30] J.S. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equ. 269 (2020), pp. 10395–10415.
[31] J.S. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equ. 269 (2020), pp. 6193–6215.
[32] Z.H. Yuan, Z.J. Ma, and X.H. Tang, Global stability of a delayed HIV infection model with nonlinear incidence rate, Nonlinear Dyn. 68 (2012), pp. 207–214.
[33] R. Zhang and S. Liu, Global dynamics of an age-structured within-host viral infection model with cell-to-cell transmission and general humoral immunity response, Math. Biosci. Eng. 17(2) (2020), pp. 1450–1478.