Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells

Matthias Peipp #,±, Jeroen J. Lammerts van Bueren #,* , Tanja Schneider-Merck 1, Wim W.K. Bleeker *, Michael Dechant 1, Thomas Beyer 1, Roland Repp ±, Patrick H. C. van Berkel *, Tom Vink 1, Jan G. J. van de Winkel ±, Paul W. H. I. Parren *, and Thomas Valerius 1

1 Division of Nephrology and Hypertension and ± Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University, Kiel, Germany
Genmab, Utrecht, The Netherlands
‡ Immunotherapy Laboratory, Dept. of Immunology, University Medical Center
Utrecht, Utrecht, The Netherlands

Both authors contributed equally to this work

Running title: Antibody fucosylation and ADCC

Scientific Category: Immunobiology

Corresponding author: Thomas Valerius MD, Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany; phone: +49-431-597-1338, fax: +49-431-597-1337, e-mail: valerius@nephro.uni-kiel.de
List of abbreviations

ADCC: antibody-dependent cell mediated cytotoxicity

CDC: complement-dependent cytotoxicity

EGF-R: epidermal growth factor receptor

E:T ratio: effector to target cell ratio

2F8-H: 2F8 antibody produced in hybridoma cells

2F8-C: 2F8 antibody produced in CHO-DG44 cells

2F8-HEK-(F+/G-/S-): 2F8 antibody produced in HEK-293 cells (high fucose, low galactose, low sialic acid); galactosidase treated

2F8-C-(F-/G-/S-): 2F8 antibody produced in CHO cells (low fucose, low galactose, low sialic acid); galactosidase treated

MNC: mononuclear cells

NK cells: natural killer cells

PMN: polymorphonuclear cells

F: fucose

G: galactose

S: sialic acid
Abstract

Glycosylation of the antibody Fc fragment is essential for Fc receptor-mediated activity. Carbohydrate heterogeneity is known to modulate the activity of effector cells in the blood, in which fucosylation particularly affects NK-cell mediated killing. Here, we investigated how the glycosylation profile of 2F8, a human IgG1 monoclonal antibody (mAb) against EGF-R in clinical development, impacted effector function. Various 2F8 batches differing in fucosylation, galactosylation and sialylation of the complex-type oligosaccharides in the Fc fragment were investigated. Our results confirmed that low fucose levels enhance MNC-mediated ADCC. In contrast, PMN were found to preferentially kill via high-fucosylated antibody. Whole blood ADCC assays, containing both types of effector cells, revealed little differences in tumor cell killing between both batches. Significantly, however, high-fucose antibody induced superior ADCC in blood from G-CSF-primed donors containing higher numbers of activated PMN. In conclusion, our data demonstrated for the first time that lack of fucose does not generally increase the ADCC activity of therapeutic antibodies, and that the impact of Fc glycosylation on ADCC is critically dependent on the recruited effector cell type.
Introduction

Monoclonal antibodies constitute a growing class of therapeutics – with major indications in oncology, infectious diseases and autoimmunity. In oncology, antibody-mediated cellular cytotoxicity (ADCC) is considered a particularly relevant mechanism of action for therapeutic antibodies. Evidence for this is mainly derived from studies with the CD20 antibody rituximab – the most intensively investigated antibody in this regard. For example, rituximab lost most of its therapeutic efficacy against xeno-transplanted human tumors in mice lacking activating Fc receptors by knock-out of the common FcRγ-chain. Syngeneic B-cell depletion by murine CD20 antibodies has furthermore been correlated with antibody isotypes and with their respective binding to activating, compared to inhibitory Fcγ receptors. In patients, rituximab’s therapeutic efficacy has been correlated with well-defined FcR polymorphisms affecting binding of human IgG and the ability to induce ADCC in vitro. These and other observations stimulated studies exploring opportunities to improve antibodies’ capacity to trigger ADCC. This can be achieved by increasing antibody binding to activating cellular Fc receptors such as NK-cell expressed FcγRIIIa, and by decreasing binding to the inhibitory FcγRIIb isoform. At least two different methodologies have been established: one modifying the protein structure of the antibody Fc region by mutating the respective cDNAs, while the other is based on technologies altering the glycosylation profile of antibodies. Post-translational modifications such as glycosylation are increasingly recognized to alter the functional activity of biopharmaceuticals. For antibodies, glycosylation of Asn297 in the CH2 domain has long been recognized to be critical for complement activation and Fc receptor binding. More detailed analyses revealed that lack of fucose at this glycosylation site selectively improved binding to FcγRIIIa, while binding to a number of other Fcγ receptors appeared to be unaffected by this modification. Crystallographic studies demonstrated that sugar moieties on antibody Fc formed only minor interactions with the amino acids of FcγRIIIa, suggesting that the sugars act indirectly by conferring subtle conformational alterations in a limited region of Fc and possibly...
by decreasing the mobility of the CH₂ domain. Further functional analyses revealed enhanced ADCC by isolated mononuclear effector cells for low-fucosylated compared to high-fucosylated antibodies. More recent studies suggested that in addition to Fc fucosylation also sialylation affected FcR binding and antibody function. Antibody galactosylation, on the other hand, was demonstrated to impact complement activation via the lectin pathway, but not Fc receptor mediated functions. However, to the best of our knowledge, none of the previous studies addressed the impact of antibody glycosylation on PMN function. PMN constitute the first line of defense against invading bacteria and may significantly contribute to tumor rejection – at least for some antibodies such as those against the epidermal growth factor receptor (EGF-R).

EGF-R is a tyrosine kinase receptor, which is expressed on common solid cancers such as colon, lung, head and neck as well as select non-epithelial tumors such as glioblastomas. Since activation of this receptor is associated with accelerated tumor cell proliferation and progression to a more malignant tumor phenotype, EGF-R constitutes an attractive molecule for targeted therapies. Consequently, several EGF-R-directed monoclonal antibodies have been developed for clinical applications, two of which have obtained FDA approval. In this manuscript, we describe effector functions of glycosylation variants of a fully human IgG1 EGF-R antibody. These variants bound comparably to EGF-R, inhibited EGF-R phosphorylation and efficiently blocked proliferation of EGF-R expressing tumor cells. Only fucosylation and not sialylation or galactosylation was found to impact ADCC. As expected, low-fucosylated variants were more efficient in binding to FcγRIIIa and in the recruitment of MNC as effector cells for ADCC. Notably, however, high-fucosylated batches were more effective in triggering PMN, which mediated tumor cell lysis via FcγRII and which significantly contributed to the whole blood ADCC activity of these antibodies.
Material and Methods

Experiments reported here were approved by the Ethical Committee of the Christian Albrechts University, Kiel, Germany, in accordance with the Declaration of Helsinki. Blood donors were randomly selected from healthy volunteers, or from G-CSF-primed hematopoietic stem cell donors, who gave written informed consent before analyses.

Culture of eukaryotic cells. A431 and HEK-293 cells (ATCC, American Type Culture Collection, Manassas, USA) were cultured in RPMI 1640- or DMEM-Glutamax-I medium (both Invitrogen, Karlsruhe, Germany), respectively, both containing 10 % FCS, penicillin (100 U/ml) and streptomycin (100 μg/ml).

Production and analysis of antibodies. Human IgG1κ mAb 2F8 against EGF-R was generated by immunizing HuMAb mice (Medarex, Milpitas, CA) alternatingly with A431 cells and purified EGF-R (Sigma-Aldrich, St. Louis, MO). MAb 2F8 was selected for its potency to block the interaction between EGF-R and its ligands, EGF and TGF-α. MAb 2F8-H was produced by the original 2F8 monoclonal hybridoma cells (derived from SP2/0). MAb 2F8-C was produced in a transfectoma cell line (derived from CHO-DG44 cells). Culture supernatants of both cell lines were purified using protein A affinity chromatography, followed by size exclusion chromatography on an HR200 column (Pharmacia, Peapack, NJ), and were formulated in PBS containing Tween 80 and mannitol. 2F8 Fab fragments were made by papain digestion. Human IgG1κ, specific for keyhole limpet hemocyanin (KLH), developed using the same mouse strain, served as isotype control. Purity and monomerity were analysed by SDS-PAGE, isoelectric focusing (IEF) and high-performance size-exclusion chromatography (HP-SEC). Degalactosylated and desialylated material of 2F8-H and 2F8-C was prepared by treatment with neuraminidase (*acrobacter*, Roche, Mannheim, Germany), 1,4 β-galactosidase (*Streptococcus pneumoniae*, Calbiochem, San Diego, CA), and α-galactosidase (Sigma-Aldrich) for 48 hours at 37º C. Unexpectedly, approximately 30% of the N-glycolylnneuraminic acid present on 2F8-H appeared
resistant for neuramidase-treatment. As a substitute we used material from mAb 2F8 produced in HEK-293 cells, which contains comparable levels of fucose as 2F8-H, but lacks sialic acids in the N-linked glycan structure. After enzymatic-treatment the material was repurified and formulated as described above. Both preparations were analyzed by HPEAC-PAD to confirm removal of galactose and sialic acid. The degalactosylated and desialylated material of 2F8 produced in CHO cells was named 2F8-C-(F'/G'/S'), that of 2F8 produced in HEK-293 cells 2F8-HEK-(F+/G+/S+).

Analysis of antibody attached carbohydrate structures:

A) Matrix Assisted Laser Desorption /Ionization- Time Of Flight (MALDI-TOF) Mass Spectrometry (MS) of released N-linked glycans. 100 μg IgG was digested with 1 U N-glycosidase F (Roche) to release the N-linked glycans. In some cases, samples were concomitantly incubated with 3 mU neuramidase (*acrobacter*, Roche) to remove sialic acid residues. Positive ion MALDI-MS was performed without further purification on a Voyager DE Pro mass spectrometer (Applied Biosystems, Foster City, CA) in the reflector mode using 2,5-dihydroxybenzoic acid as a matrix (DHB, 10 mg/ml in 50/50/0.1 acetonitrile/water/trifluoroacetic acid). Peak assignment to carbohydrate structures was done using GlycoMod software (www.expasy.ch/tools/glycomod).

B) N-Linked glycosylation profiling by High-pH Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). For HPAEC-PAD analyses mAb 2F8 was incubated with N-glycosidase F as described above. In case of β-galactosidase treatment, 1 mU β-galactosidase (*Streptococcus pneumoniae*, Calbiochem) was added during deglycosylation. Samples were centrifuged at 13,000 rpm for 10 sec before analysis by HPAEC-PAD. HPAEC-PAD analysis was performed on a 2 mm internal diameter CarboPac PA1 column (Dionex, Sunnyvale, CA) with CarboPac PA100 guard, using a linear elution gradient of 0-175 mM sodium acetate in 150 mM sodium hydroxide at a flow rate of 1 ml/min. PAD occurred with the quadropulse and
peaks were integrated with Chromeleon Software (Dionex, Sunnyvale, CA). For each profile, 70 μg digest was loaded.

Cloning, expression and purification of soluble Fc receptors. Plasmid DNA from RZPD (German Resource Center for Genome Research, Berlin, Germany) clones containing cDNA encoding for FcγRI (P12314), FcγRIIa-R131 allotype (P12318), FcγRIIIa-V158 allotype (P08637) were used as PCR templates. For FcγRIIb (P31994) a codon optimized synthetic construct was synthesized at GeneArt (Regensburg, Germany) and used as PCR template. Specific primers were used that generated fragments encoding each extracellular domain, introduced suitable restriction sites for cloning in the mammalian expression vector pEE13.4 (Lonza Biologics, Slough, UK), an ideal Kozak sequence and a C-terminal His₆ tag. PCR fragments were cloned in pEE13.4, and the correct sequences of positive clones were confirmed by DNA sequencing. The extracellular domain coding sequences of FcγRIIIb-NA1 (AAA35881) and FcγRIIIb-NA2 (O75015) were synthesized at GeneArt, introducing suitable restriction sites, ideal Kozak sequences and C-terminal His₆ tag coding sequences and cloned in pEE13.4.

The FcγRIIIa-F158 and FcγRIIa-H131 allotype sequences were generated by PCR-based site-directed mutagenesis of the FcγRIIIa-V158 or FcγRIIa-R131 cDNA, respectively, using the QuickChange II XL Kit (Stratagene, Amsterdam, NL). For all FcγR, transmembrane and intracellular domains were replaced by DNA encoding a His₆ tag. Consequently, the expected proteins comprised the extracellular domains of the FcγR at their COOH termini and 6 x His at amino acid positions as follows: FcγRI: His₂₉₂; FcγRIIa: Gly₂₁₇; FcγRIIb: Gly₂₂₃; FcγRIIIa: Ser₂₀₀; FcγRIIIb: Ile₁₉₉ (residue numbers include the signal peptide). Plasmid DNA was transiently transfected in HEK293F cells using 293fectin (both Invitrogen). Proteins were purified from culture supernatant by BD Talon™ chromatography (BD Biosciences, Palo Alto, CA), and their appropriate molecular weights confirmed by SDS-PAGE.
Measurement of Fc/Fc receptor interactions. ELISA plates were coated overnight with 5 μg/ml mAb 2F8 diluted in PBS. MAb 2F8-C Fab fragments were included as negative control. Next, the plates were washed with PBS, 0.05% (v/v) Tween-20 (PBST), incubated with 3-fold serial dilutions of FcγR protein diluted in PBST, 2% (w/v) BSA (assay buffer) and incubated for 1 hr at room temperature (RT). Plates were then washed again, replenished with ice-cold biotin-conjugated mouse antipoly histidine antibodies (clone AD1.1.10, R&D Systems, Minneapolis, MN), and incubated for 1 hr at 4º C. Subsequently, binding of FcγR was visualized using peroxidase-conjugated streptavidin and 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate. Absorbance at 405 nm was measured on an EL808 ELISA plate reader (Bio-Tek Instruments, Winooski, VT). EC₅₀ values were calculated with Graphpad Prism 4.03 software using 4 parameter logistic curve fitting. Affinity differences of FcγR for 2F8-H and 2F8-C were expressed as the ratio: \[
\frac{EC_{50}^{2F8-H}}{EC_{50}^{2F8-C}}
\]. Due to the low affinity interactions between antibodies and some Fcγ receptors, EC₅₀ calculations were not possible when binding curves did not reach upper plateaus.

Inhibition of cell proliferation. Effects on tumor cell growth were evaluated by using AlamarBlue for measuring vital cells mass. MAb 2F8 dilutions were added to A431 cell cultures in 96-well flat-bottom tissue culture plates (500 cells/well). Plates were incubated at 37º C for 5 days, before AlamarBlue solution (Biosource, Camarillo, CA) was added. Plates were incubated for another 4 hours, transferred to room temperature (RT), and fluorescence of reduced AlamarBlue was measured by exciting at 528 nm and measuring emission at 590 nm on Synergy HT plate reader (Bio-Tek Instruments, Winooski, VT).

Inhibition of EGF-R phosphorylation. Inhibition of EGF-induced EGF-R phosphorylation was measured using a two-step assay. Briefly, A431 cells were cultured overnight in serum-deprived medium. Cells were then incubated with
serial dilutions of mAb 2F8 at 37° C. After 60 minutes, 50 ng/ml recombinant human EGF (Biosource) was added for an additional 30 minutes. Subsequently, cells were solubilized with lysis buffer (Cell Signaling Technology, Beverly, MA), lysates were transferred to ELISA plates coated with 1 μg/ml of mouse anti-EGF-R antibodies (mAb EGFR1, BD Pharmingen, San Diego, CA) and incubated for 2 hours at RT. Next, the plates were washed and binding of phosphorylated EGF-R was visualized using a europium-labelled mouse mAb, specific for phosphorylated tyrosines (mAb P-Tyr-100, PerkinElmer, Waltham, MA). Finally, DELFIA® enhancement solution was added, and time-resolved fluorescence was measured by exciting at 315 nm and measuring emission at 615 nm on an EnVision plate reader (PerkinElmer).

Flow cytometric analyses. For indirect immunofluorescence, cells were incubated with antibodies 2F8-C, 2F8-H or KLH at varying concentrations in PBS supplemented with 1 % bovine serum albumin (Sigma-Aldrich Chemie GmbH, Munich, Germany) and 0.1 % sodium-azide (PBA buffer) for 30 min on ice. After washing, cells were stained with FITC-labeled F(ab')2-fragments of polyclonal goat anti-mouse antibodies (Dako-Cytomation, Glostrup, Denmark). Cells were then analyzed on a flow cytometer (Coulter EPICS Profile, Brea, CA).

Isolation of mononuclear and neutrophil effector cells. Peripheral blood from healthy volunteers or from hematopoietic stem cell donors was layered over a discontinuous Percoll (Biochrom, Berlin, Germany) gradient consisting of 70 % and 62 % Percoll. After centrifugation, neutrophils were collected at the interface between the two percoll layers, and mononuclear cells from the serum/Percoll interface. Remaining erythrocytes were removed by hypotonic lysis. Purity of neutrophils was determined by cytopsin preparations and exceeded 95 %. MNC typically contained approx. 60 % CD3-positive T-cells, 20 % CD56-positive NKcells, and 10 % CD14-expressing monocytes – as determined by immunofluorescence staining. Viability of cells tested by Trypan blue exclusion was higher than 95 %.
Antibody dependent cell-mediated cytotoxicity (ADCC) assays. ADCC assays against 51Cr labeled target cells were performed as described 37. Whole blood (50 µL), plasma or isolated effector cells and sensitizing antibodies at varying concentrations were added to microtiter plates (Nunc, Neerijse, Belgium). Assays were started by adding effector and target cells at a (E:T) ratio of 80:1, unless otherwise indicated. Isolated PMN were stimulated by GM-CSF (50 U/ml). After three hours at 37º C, 51Cr-release from triplicates was measured in counts per minute (cpm). Percentage of cellular cytotoxicity was calculated using the formula

$$\% \text{ specific lysis} = \frac{\text{exp. cpm} - \text{basal cpm}}{\text{maximal cpm}} \times 100$$

with maximal 51Cr release determined by adding perchloric acid (3 % final concentration), and basal release measured in the absence of sensitizing antibodies and effector cells. Antibody-independent cytotoxicity (effectors without target antibodies) was observed in whole blood assays, and with mononuclear effector cells, but not with PMN. For analyses of Fc receptor involvement, F(ab')2 fragments of blocking antibodies AT10 (FcγRII, CD32), 3G8 (FcγRIII, CD16), or Ox55 (control, rat CD2) were added at 10 µg/ml before adding target cells. All three F(ab')2 fragments were kindly provided by Prof. Martin Glennie (Tenovus, Southampton, UK).
Results

Antibody production, characterization and glycosylation analyses

To analyze the impact of antibody Fc glycosylation on PMN- and MNC-mediated ADCC we compared glycosylation variants of a fully human EGF-R antibody of the IgG1 isotype. Two batches of this mAb were produced by hybridoma cells, designated 2F8-H, or CHO-DG44 cells, designated 2F8-C. For both the hybridoma and the CHO-produced material, we analyzed the protein and the oligosaccharide portions. There were no significant differences observed in SDS-PAGE, and HP-SEC analyses. Both antibody preparations have the same amino acid sequence, and consisted of > 99 % pure, monomeric IgG (data not shown). However, their N-linked oligosaccharide structures - analyzed by HPAEC-PAD and MALDI-MS – showed some major differences (Table 1, supplementary Table 1, supplementary Figure S1A). The analysis of 2F8-C carbohydrate indicated that about 25 % of the complex type N-linked glycans were not core-fucosylated on the reducing N-acetylglucosamine (Peaks 2, 4, 6 and 7). In contrast, for 2F8 produced in hybridoma cells, non-core fucosylated glycans, i.e. peaks 2 and 4 were not detected - demonstrating that 2F8-H was fully fucosylated. In addition, both batches showed differences in sialylation and galactosylation. 2F8-C mainly contained non-sialylated complex type glycans, with limited galactose. About 46 % of the glycans did not contain galactose, about 35 % contained only one galactose, and only 6 % were fully galactosylated. We did not observe the presence of α-galactosyl or N-glycolyneuraminic acid (NeuGc) on 2F8-C. Hybridoma-derived 2F8-H contained significantly more sialylated glycans (i.e. peaks eluting between 37 - 43 and 55 - 58 min) compared to CHO derived mAb 2F8-C. Characterization of these charged peaks revealed that they were mainly core-fucosylated complex type glycans with one (structures between 37 – 43 min) or two N-glycolyneuraminic acids (structures between 55 - 58 min). Taken together, although the difference in the fucose content was most prominent, there were also differences in other monosaccharides, such as galactose and sialic acid.
Antigen binding and Fab-mediated direct effector functions

In a first set of functional experiments, the antigen binding characteristics of the two antibody preparations were investigated. 2F8-C was compared to its highly fucosylated counterpart 2F8-H. Binding to purified EGF-R and to native EGF-R on the cell surface of A431 cells was analyzed by ELISA and indirect immunofluorescence staining, respectively. Both antibodies bound specifically and with similar EC50 to purified EGF-R (data not shown) and to cell-surface expressed EGF-R (Figure 1A) - demonstrating that the differences in glycosylation did not influence antigen binding characteristics of the two antibody preparations.

To address whether also biological activity mediated by the antigen-binding Fab domains were unaffected, growth inhibition of EGF-R-expressing tumor cells by 2F8-C and 2F8-H was analyzed. A431 cells, which express high levels of EGF-R, were incubated at increasing concentrations of 2F8-C or 2F8-H, and tumor cell proliferation was measured. Both antibody preparations efficiently inhibited tumor cell growth in vitro at an IC50 concentration of 0.19 μg/ml (95% CI 0.10 to 0.40 μg/ml). No significant differences were observed between 2F8-C and 2F8-H (Figure 1B). Further, inhibition of ligand-induced EGF-R phosphorylation was analyzed. A431 cells were incubated with serial dilutions of 2F8-C or 2F8-H, and subsequently stimulated with recombinant EGF. Both 2F8-C and 2F8-H inhibited ligand-induced EGF-R phosphorylation similarly, at an IC50 concentration of 0.17 μg/ml (95% CI 0.16 to 0.19 μg/ml) (Figure 1C). Both 2F8-C and 2F8-H, therefore, showed no significant differences in their ability to modulate EGF-R signaling, which demonstrated that differences in Fc fragment glycosylation did not impact the function of the antigen combining site.

Fc-mediated effector functions

It is well established that the Fc glycosylation profile of antibodies may affect Fc-mediated effector functions such CDC 38 and ADCC 12-14. However, in CDC assays with A431 tumor cells as targets and human plasma as source of complement, none of the tested antibody preparations triggered significant complement-mediated lysis (not shown). This is probably attributable to the high
expression levels of membrane-bound complement regulators (e.g. CD55 and CD59) on most solid tumor cells.

In order to investigate whether the observed glycosylation differences resulted in altered Fc-mediated biological effector functions, the two glycosylation variants of 2F8 were compared for their ability to trigger ADCC (Figure 2). We first analyzed MNC, in which NK cells primarily serve as effector cells. Low-fucosylated 2F8-C induced superior ADCC compared to highly fucosylated 2F8-H (Figure 2A). Half maximal lysis was reached at about 4-fold lower antibody concentration with 2F8-C compared to 2F8-H [EC50; 0.004 µg/ml (95% CI; 0.002 to 0.008) vs 0.016 µg/ml (95% CI; 0.009 to 0.028)]. To address the question which Fc receptors were engaged in MNC-mediated killing by the two 2F8 batches, ADCC experiments in the presence of specific Fc receptor blocking antibodies were performed. For these experiments, F(ab')2-fragments of mAb 3G8 (blocking FcγRIII, CD16), AT10 (blocking FcγRII, CD32), or Ox55 (non-binding control) were used. Killing by isolated MNC was efficiently blocked by 3G8 F(ab')2-fragments, demonstrating the involvement of FcγRIIIa on NK-cells (Figure 2B). Killing mediated by 2F8-C was inhibited to a lesser extent than lysis by 2F8-H - most likely reflecting the higher affinity of 2F8-C for CD16. In contrast, no inhibition of MNC-mediated killing was observed with AT10 F(ab')2-fragments - demonstrating that FcγRII (CD32) was not involved in 2F8 mediated tumor cell lysis by MNC (Figure 2B).

Next, we performed ADCC with PMN effector cells (Figure 2C). Notably, both 2F8-C and 2F8-H antibodies mediated efficient and significant ADCC by PMN. Compared to MNC, which triggered maximum lysis at low antibody concentrations, higher antibody concentrations were required for efficient ADCC by PMN. Interestingly, high-fucosylated 2F8-H antibody demonstrated enhanced maximum lysis compared to its low-fucosylated counterpart, but no significant differences in the EC50 values of 2F8-C and 2F8-H were observed. Thus, also PMN-mediated ADCC was affected by the glycosylation profiles of the antibody preparations (Figure 2C). In contrast to MNC-mediated lysis, PMN-mediated killing was completely blocked by AT10 F(ab')2 fragments against FcγRII (CD32) -
demonstrating that FcγRII engagement was necessary for efficient tumor cell lysis by PMN. Interestingly, PMN-mediated killing was not inhibited, but rather stimulated by 3G8 F(ab’)_2 fragments against FcγRIII (CD16) (Figure 2D). These results with blocking antibodies and PMN effector cells were independent of the glycosylation status of the targeting antibodies.

Impact of sialic acid, galactose and fucose removal

Although the difference in fucose content between the two antibody batches was most prominent, we also observed differences in other monosaccharides, such as galactose and sialic acid, as discussed above (Table 1 and supplementary Figure S1A). To verify whether the observed differences in effector-cell-mediated killing were primarily caused by differences in the fucose content or by differences in galactosylation and sialylation, we prepared enzymatically de-galactosylated and de-sialylated batches. Unexpectedly, approximately 30 % of the N-glycolylneuraminic acid present on 2F8-H appeared resistant to neuramidase-treatment. As a substitute we generated mAb 2F8 material produced in HEK-293 cells. 2F8 material produced in HEK-293 cells contained comparable levels of fucose as 2F8-H, but lacked sialic acids in the N-linked glycan structure. HPAEC-PAD confirmed that the obtained exo-glycosidase-treated batches lacked galactose and sialic acid (Table 1, supplementary Figure S1B). The exo-glycosidase-treated material of 2F8 produced in CHO cells was named 2F8-C-(F’/G’/S’), that of 2F8 produced in HEK-293 cells 2F8-HEK-(F’/G’/S’). As for the 2F8-C and 2F8-H, we confirmed that also the HEK-produced batches were unaltered in EGF-R binding and inhibition of signal induction (not shown).

These control batches were then used in ADCC experiments to analyze the impact of sialylation, galactosylation and fucosylation on MNC- and PMN-mediated ADCC. Importantly, removal of sialic acid, galactose, or both sialic acid and galactose demonstrated no influence on the efficiency of human MNC- or PMN-mediated killing (Figure 3A-F). Furthermore, these experiments confirmed that only the lack of fucose (Figure 3G), but not sialic acid (Figure 3A) or galactose (Figure 3C) was responsible for enhanced ADCC activity by MNC.
effector cells - as also published by others \(^{12,14}\). However, lack of fucose from the carbohydrate structure negatively affected PMN-mediated killing (Figure 3H). To our knowledge, this is the first report that reduced levels of fucose in antibody Fc may adversely affect antibody-mediated effector functions.

Fc receptor binding of glycosylation variants

In order to further analyze the Fc receptor interactions of the 2F8 glycosylation variants in detail, extracellular domains of the human Fc\(_\gamma\)RIa, Fc\(_\gamma\)RIIa, Fc\(_\gamma\)RIIb, Fc\(_\gamma\)RIIIa and the Fc\(_\gamma\)RIIIb receptors were produced as soluble recombinant proteins. For Fc\(_\gamma\)RIIa, Fc\(_\gamma\)RIIIa and Fc\(_\gamma\)RIIIb both common allotypes – Fc\(_\gamma\)RIIa-H131 and -R131, Fc\(_\gamma\)RIIIa-V158 and -F158, Fc\(_\gamma\)RIIIb-NA1 and -NA2 were investigated. To analyze the interactions of the recombinant receptors with differently glycosylated 2F8 variants, antibodies were immobilized on ELISA plates, and increasing concentrations of the different Fc\(_\gamma\)-receptor preparations were added. Low affinity interactions of antibodies and Fc receptors lead to some assay-to-assay variation (especially for Fc\(_\gamma\)RIIIb) - resulting in differences in measured absorbance maxima. Nevertheless, direct binding comparisons of different 2F8 batches to the tested Fc\(_\gamma\)R were well possible, and provided relative affinity differences of the glycosylation variants for FcR. Thus, low-fucosylated 2F8-C demonstrated a 5-fold increased affinity for Fc\(_\gamma\)RIIIa-V158, and about 15-fold enhanced binding to Fc\(_\gamma\)RIIIa-F158 compared to the high-fucosylated 2F8-H. Therefore, the major affinity difference of fully fucosylated 2F8-H for Fc\(_\gamma\)RIIIa-V158 versus –F158 was minimized for low-fucosylated 2F8-C - consistent with previous findings from others \(^{14,39}\). In addition binding of low-fucose antibodies to Fc\(_\gamma\)RIIIb was enhanced; more pronounced differences were observed for the Fc\(_\gamma\)RIIIb-NA1 allotype. Interestingly, we observed an approximately twofold higher affinity of human IgG1 for Fc\(_\gamma\)RIIa-H131 compared to –R131, which was not influenced by fucosylation levels. Binding to Fc\(_\gamma\)RIIa, Fc\(_\gamma\)RIa, and to Fc\(_\gamma\)RIIb was not significantly affected by altering the glycosylation profile of the antibodies (Figure 4). Binding of exo-glycosidase-treated batches to Fc\(_\gamma\)RIa, Fc\(_\gamma\)RIIIa (V/F158), Fc\(_\gamma\)RIIa (R/H131) and Fc\(_\gamma\)RIIb in ELISA confirmed that fucose content
modulated the affinity to FcγRIIIa (V/F158), but did not affect binding affinity to FcγRIa, FcγRIIa (R/H131) and FcγRIIb. Removal of galactose and sialic acid did not impact on the binding of 2F8 to FcγRIA, FcγRIIa (R/H131) and FcγRIIb, but slightly decreased the affinity to FcγRIIIa (V/F158) (supplementary Figure S2). In conclusion, these data underline that MNC-mediated killing was primarily attributable to enhanced FcγRIIIa binding due to the lack of fucose. As no differences in binding to FcγRIIa were observed, the mechanism of superior PMN killing was not attributable to differences in binding affinity to this receptor. The superior PMN killing by high-fucosylated antibodies may therefore correlate with the lower affinity of high-fucose antibodies to FcγRIIib. This is in accordance with CD16 blocking experiments demonstrating that blocking FcγRIIib enhances PMN-mediated ADCC. Together these findings suggest that high affinity binding to FcγRIIib partially inhibits PMN-mediated killing (Figure 2D).

Effector cell recruitment in whole blood ADCC assays

In a further set of experiments the glycosylation variants 2F8-H and 2F8-C were tested in human whole blood to induce ADCC with a physiological mixture of effector cells. Interestingly, only small differences in lysis were observed between the two antibody variants (Figure 5A). These differences were less pronounced than with isolated MNC or PMN (Figure 2A,C). Since the Fc receptor involvement in MNC- and PMN-mediated tumor cell killing was different (MNC via CD16, PMN via CD32), we aimed to investigate the contribution of both effector cell populations to whole blood ADCC. However, because in ADCC assays with isolated effector cells, F(ab’)2-fragments against FcγRIIib stimulated PMN-mediated killing (Figure 2D), we could not use this antibody in our whole blood ADCC assay. We therefore performed experiments with AT10 F(ab’)2-fragments to selectively block PMN-mediated killing. In these experiments, blockade of CD32 resulted in partial inhibition of tumor cell lysis. Control F(ab’)2-fragments did not affect whole blood ADCC (Figure 5B). Together, these results clearly demonstrated that PMN contributed to tumor cell killing in whole blood. To further address the contribution of PMN in 2F8-mediated whole blood killing, we
analyzed blood from G-CSF-primed donors. As shown in Figure 5C, ADCC activity in G-CSF-primed blood was significantly enhanced compared to healthy donor blood (Figure 5A). Blocking experiments revealed that killing in G-CSF-primed blood was more efficiently blocked by AT10 F(ab')2-fragments than killing in healthy donor blood – indicating the PMN contribution to tumor cell lysis to be enhanced during G-CSF treatment. Notably, high-fucosylated 2F8-H was significantly more effective in blood from G-CSF-treated patients than low-fucosylated 2F8-C.
Discussion

In this manuscript, we investigated the impact of antibody Fc glycosylation on triggering Fc receptor-mediated tumor cell killing by different human effector cell types. Glyco-engineering of therapeutic antibodies currently receives great attention, because it is thought to represent a promising approach to improve antibody binding to activating, compared to inhibitory Fcγ receptors. As previously reported for antibodies against other target antigens, we observed low-fucosylated batches of a human EGF-R-specific antibody to be more effective in binding to recombinant FcγRIIIa than its high-fucosylated variant, which led to enhanced tumor cell killing in ADCC assays with MNC effector cells. Interestingly, low fucosylated 2F8-C showed smaller affinity differences between FcγRIIIa-V158 and –F158 than fully fucosylated 2F8-H. This observation suggests that the clinically relevant FcγRIIIa polymorphism may be less important for low compared to high fucosylated antibodies – as also proposed by others. However, lower levels of fucose adversely affected PMN-mediated killing – leading to similar killing levels by both antibody batches in human whole blood assays. Similarly, a fully fucosylated HLA class II antibody was more effective in recruiting PMN than its non-fucosylated variant (data not shown) - demonstrating that this observation is not dependent on one particular target antigen. Notably, the impact of antibody fucosylation on PMN-mediated killing has not been reported before and may have implications for therapeutic antibodies that recruit PMN for their in vivo effects.

In addition to fucosylation also antibody sialylation has been reported to impact on antibody efficacy. However, these studies were performed in mice, which express Fc receptors with limited homology, different cellular expression patterns and different Fc-binding preferences compared to the human system. With human effector cells, sialylation did not significantly affect antibody efficacy [and our results], but also other observations have been reported. These contradictory results may be explained e.g. by differences in antibody preparations, selected target antigens or assay conditions. Antibody galactosylation has been observed to affect complement activation, but did not
impact on ADCC \cite{40,42} [and our results]. Corresponding to our functional data, antibody fucose (Figure 4) - but not galactose or sialic acid (supplementary Figure S2) - content affected binding to human FcR.

The contribution of NK cells to cell-mediated killing mechanisms of monoclonal antibodies is widely acknowledged \cite{43}, and is strongly supported by clinical studies investigating the contribution of FcR polymorphisms \cite{6,7,44}. Since most NK cells express Fc\gammaRIIa as their only IgG receptor, engineering antibody variants with enhanced Fc\gammaRIII binding is an attractive approach to improve antibody efficacy. However, the extracellular domains of human Fc\gammaRIIa are highly homologous to Fc\gammaRIIib, which is an abundantly expressed GPI-linked IgG receptor on PMN. As expected, MNC-mediated killing was blocked by F(ab')2 fragments against Fc\gammaRIII (CD16). However, PMN-mediated killing was blocked by F(ab')2 fragments against Fc\gammaRII (CD32), but rather stimulated by F(ab')2-fragments against Fc\gammaRIII (CD16). EC\textsubscript{50} values of both 2F8 variants to the Fc\gammaRIIa-H/R131 alloforms were not significantly different – suggesting that the mechanism of higher PMN-mediated killing by 2F8-H was probably not due to differences in binding affinity to Fc\gammaRIIa. Interestingly, both antibody variants bound with 2-fold higher affinity to the Fc\gammaRIIa-H131 than the -R131 allele. This suggests that the correlation of Fc\gammaRIIa-H131 expression and clinical responses to rituximab, herceptin or cetuximab may be correlated to this affinity difference \cite{7,45,46}. Previous reports did not find this difference \cite{47} - most likely due to different assays for the determination of Fc/FcR interactions.

Interestingly, binding to Fc\gammaRIIIb was severely affected by Fc-glycosylation, with low-fucose antibodies demonstrating higher affinity to Fc\gammaRIIIb receptors. Thus, neutrophils express at least two classes of Fc\gamma receptors, which compete for IgG binding. Therefore, enhancing affinity for the non-cytotoxic Fc\gammaRIII isoform by lower fucosylation levels may actually impede antibody efficacy with PMN, but a role for other Fc-binding receptors cannot be excluded. Recent findings suggested that PMN express low levels of Fc\gammaRIIib \cite{48,49} - an inhibitory Fc receptor that is proposed to be involved in the regulation of cytotoxic responses \cite{43}.

20
However, in our FcγRIIb binding studies no significant differences were observed between the low and high fucosylated antibody batches. A potential contribution of human PMN to antibody efficacy is less established, but previous work indicated PMN to constitute a significant effector population for antibodies against HLA class II and against tyrosine kinase receptors such as HER-2/neu or EGF-R. Results with blood from G-CSF-primed donors (Figure 5) suggested that the relative contribution of PMN to whole blood ADCC activity can be therapeutically enhanced by G-CSF.

Today, clinical data with glycosylation variants of therapeutic antibodies are limited. Results from animal models demonstrated that improving the affinity for activating (A) Fc receptors (FcγRI, FcγRIIIa and FcγRIV), and decreasing the interaction with inhibitory (I) receptors (i.e. homologue of human FcγRIIb) – thus raising A/I ratios – improved the in vivo activity in mice. In human whole blood ADCC assays, however, we observed only minor differences in killing between both 2F8 glycosylation variants. Since the efficacy of glyco-engineered antibodies in vivo may well depend on the actions of various effector cells, our data suggest that the effector cell type could critically affect the efficacy of glyco-engineered antibodies. Due to the limited homology between human and mouse Fcγ receptors, these issues cannot reliably be addressed in animal studies, and results from clinical trials need to demonstrate superior therapeutic efficacy of glyco-engineered antibodies compared to unmodified variants. Importantly, the impact of glycosylation may differ between target antigens, and results from these trials may provide indirect evidence for the involvement of different effector cell populations in vivo. In this respect, it is interesting to note that the contributions of FcγR polymorphisms appear to be different between rituximab, herceptin and cetuximab.
Acknowledgement:
We gratefully acknowledge the excellent technical assistance from Daniela Barths, and thank Prof. M. Glennie for providing valuable reagents and Dr. A. Humpe for blood samples from G-CSF-primed donors. This work was supported by the Deutsche Forschungsgemeinschaft (Va 124/6-3, De 1478/1-1) and by intramural funding from the CAU, Kiel.

Author contributions: M.P., T.S.M., J.J.L.v.B., W.K.B., T.B., M.D. T.Vi., P.C.H.v.B. performed experiments, analyzed experiments, wrote the manuscript; R.R., J.G.J.v.d.W., P.W.H.I.P, T.Va. planned experiments, analyzed experimental data, wrote the manuscript.

Disclosures: P.C.H.v.B., J.J.L.v.B., T.V., W.K.B., J.G.J.v.d.W., P.W.H.I.P. are employees of Genmab. M.D. and T.Va. received research grants from Genmab.

References

1. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23:1073-1078.

2. Houghton AN, Scheinberg DA. Monoclonal antibody therapies-a 'constant' threat to cancer. Nat Med. 2000;6:373-374.

3. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6:443-446.

4. Hamaguchi Y, Xiu Y, Komura K, Nimmerjahn F, Tedder TF. Antibody isotype-specific engagement of Fcg receptors regulates B lymphocyte depletion during CD20 immunotherapy. J Exp Med. 2006;203:743-753.

5. Uchida J, Hamaguchi Y, Oliver JA, et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med. 2004;199:1659-1669.

6. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood. 2002;99:754-758.
7. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940-3947.

8. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343-357.

9. Woof JM. Immunology. Tipping the scales toward more effective antibodies. Science. 2005;310:1442-1443.

10. Lazar GA, Dang W, Karki S, et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A. 2006;103:4005-4010.

11. Shields RL, Namenuk AK, Hong K, et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem. 2001;276:6591-6604.

12. Okazaki A, Shoji-Hosaka E, Nakamura K, et al. Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcγRIIIa. J Mol Biol. 2004;336:1239-1249.

13. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol. 1999;17:176-180.

14. Shields RL, Lai J, Keck R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277:26733-26740.

15. Barbin K, Stiegmaier J, Saul D, et al. Influence of variable N-glycosylation on the cytolytic potential of chimeric CD19 antibodies. J Immunother. 2006;29:122-133.

16. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21-50.

17. Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24:1241-1252.

18. Tao MH, Morrison SL. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol. 1989;143:2595-2601.
19. Nose M, Wigzell H. Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci U S A. 1983;80:6632-6636.

20. Wright A, Morrison SL. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 1997;15:26-32.

21. Sondermann P, Huber R, Oosthuizen V, Jacob U. The 3.2-A crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature. 2000;406:267-273.

22. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol. 2003;325:979-989.

23. Matsumiya S, Yamaguchi Y, Saito J, et al. Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol. 2007;368:767-779.

24. Schuster M, Umana P, Ferrara C, et al. Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res. 2005;65:7934-7941.

25. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670-673.

26. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol. 2007;44:1524-1534.

27. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med. 1995;1:237-243.

28. Nimmerjahn F, Anthony RM, Ravetch JV. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A. 2007;104:8433-8437.

29. Pizzo PA. Management of fever in patients with cancer and treatment-induced neutropenia. N Engl J Med. 1993;328:1323-1332.

30. Di Carlo E, Forni G, Lollini P, Colombo MP, Modesti A, Musiani P. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood. 2001;97:339-345.

31. Dechant M, Beyer T, Schneider-Merck T, et al. Effector mechanisms of recombinant IgA antibodies against epidermal growth factor receptor. J Immunol. 2007;179:2936-2943.
32. Stadick H, Stockmeyer B, Kuhn R, et al. Epidermal growth factor receptor and gp250: useful target antigens for antibody mediated cellular cytotoxicity against renal cell carcinoma? J Urol. 2002;167:707-712.

33. Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol. 2002;20:1S-13S.

34. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol. 2005;23:2445-2459.

35. Peipp M, Schneider-Merck T, Dechant M, et al. Tumor Cell Killing Mechanisms of Epidermal Growth Factor Receptor (EGFR) Antibodies Are Not Affected by Lung Cancer-Associated EGFR Kinase Mutations. J Immunol. 2008;180:4338-4345.

36. Bleeker WK, Lammerts van Bueren J, van Ojik HH, et al. Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol. 2004;173:4699-4707.

37. Elsässer D, Valerius T, Repp R, et al. HLA class II as potential target antigen on malignant B cells for therapy with bispecific antibodies in combination with granulocyte colony-stimulating factor. Blood. 1996;87:3803-3812.

38. Idusogie EE, Wong PY, Presta LG, et al. Engineered antibodies with increased activity to recruit complement. J Immunol. 2001;166:2571-2575.

39. Niwa R, Hatanaka S, Shoji-Hosaka E, et al. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcγRIIIa functional polymorphism. Clin Cancer Res. 2004;10:6248-6255.

40. Shinkawa T, Nakamura K, Yamane N, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278:3466-3473.

41. Nimmerjahn F, Ravetch JV. Fcγ receptor: old friends and new family members. Immunity. 2006;24:19-28.

42. Boyd PN, Lines AC, Patel AK. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol. 1995;32:1311-1318.

43. Nimmerjahn F, Ravetch JV. Antibodies, Fc receptors and cancer. Curr Opin Immunol. 2007;19:239-245.
44. Hatjiharissi E, Xu L, Santos DD, et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the FcγRIIIa-158 V/V and V/F polymorphism. Blood. 2007;110:2561-2564.

45. Musolino A, Naldi N, Bortesi B, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26:1789-1796.

46. Zhang W, Gordon M, Schultheis AM, et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol. 2007;25:3712-3718.

47. Parren PW, Warmerdam PA, Boeije LC, et al. On the interaction of IgG subclasses with the low affinity FcγRIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J Clin Invest. 1992;90:1537-1546.

48. Su K, Yang H, Li X, et al. Expression profile of FcγRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J Immunol. 2007;178:3272-3280.

49. Veri MC, Gorlatov S, Li H, et al. Monoclonal antibodies capable of discriminating the human inhibitory FcγRIIB (CD32B) from the activating FcγRIIA (CD32A): biochemical, biological and functional characterization. Immunology. 2007;121:392-404.

50. Würflein D, Dechant M, Stockmeyer B, et al. Evaluating antibodies for their capacity to induce cell-mediated lysis of malignant B cells. Cancer Res. 1998;58:3051-3058.

51. Stockmeyer B, Valerius T, Repp R, et al. Preclinical studies with FcγR bispecific antibodies and granulocyte colony-stimulating factor-primed neutrophils as effector cells against HER-2/neu overexpressing breast cancer. Cancer Res. 1997;57:696-701.

52. Dyer MJS, Moser S, Brünker P, et al. Enhanced Potency of Glycoengineered Anti-CD52 Monoclonal Antibodies (MAbs). Blood. 2005;160:2958A.

53. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science. 2005;310:1510-1512.
Legends to Figures

Figure 1: The glycosylation profile of 2F8 does not influence antigen binding and Fab-mediated inhibition of EGF-R signaling. (A) Binding of 2F8-C (●) and 2F8-H (○), or a human IgG1 control antibody (Δ), to EGF-R on A431 cells was analysed by flow cytometry. A431 cells were incubated with varying concentrations (0.016 – 100 μg/ml) of 2F8, and stained with polyclonal FITC-conjugated rabbit anti-human IgG serum. Each data point represents the mean ± SEM of triplicates (error bars are smaller than symbols and therefore not visible in the graph). The capacity of 2F8-C (●) and 2F8-H (○) to inhibit tumor cell growth (B), or EGF-induced EGF-R phosphorylation (C) was evaluated. (B) A431 cells were seeded in the presence of varying concentrations of antibody (0.002 - 30 μg/ml). After 5 days, vital cell mass was analyzed by measuring fluorescence of reduced AlamarBlue. Each data point represents the mean of duplicate wells. (C) A431 cells were seeded in the presence of varying concentrations of antibodies (0.04 – 2.5 μg/ml), and subsequently stimulated with 50 ng/ml EGF. EGF-R phosphorylation was measured in cell lysates of treated cells using a phospho-EGF-R specific ELISA and time-resolved fluorescence (TRF). Each data point represents the mean ± SEM of triplicates (error bars are smaller than symbols). Every experiment was performed at least two times.

Figure 2: MNC-mediated lysis of A431 cells is enhanced by low fucosylated 2F8-C; whereas PMN-mediated lysis is diminished. To analyze Fc-mediated effector functions of 2F8-C and 2F8-H antibodies, both antibody preparations were compared in their capacity to trigger ADCC of A431 cells with isolated (A) MNC or (C) PMN as effector cells and variation of antibody concentrations at a fixed E:T ratio (80:1). To define Fc receptors involved in (B) MNC- or (D) PMN-mediated target cell killing, ADCC assays were performed in the presence of F(ab’)2-fragments of Fcγ receptor blocking antibodies AT10 (FcγRII), or 3G8 (FcγRIII), or control F(ab’)2-fragments (all at 10 μg/ml). 2F8-C (●), 2F8-H (○),
human IgG1 control antibody (Δ). Data from experiments with six (A), (C), or three (B), (D), different donors, respectively, are presented as mean ± SEM. * indicates significant differences in killing between 2F8-C and 2F8-H. # indicates significant blockade compared to control treated samples (p < 0.05).

Figure 3: Removal of sialic acid, galactose, or both was compared to the impact of fucose levels on MNC- or PMN-mediated ADCC by 2F8. To analyse the contribution of sialic acid, galactose and fucose levels to MNC- or PMN-mediated tumor cell killing, ADCC experiments with non-sialylated and de-galactosylated in comparison to mock treated 2F8 batches were performed. (A), (B) contribution of sialic acid. (C), (D) contribution of galactose. (E), (F) contribution of sialic acid and galactose (in combination). (G), (H) contribution of fucose. ADCC experiments were performed as described above. Compared batches are indicated, glycosylation status in brackets. Data from experiments with at least three different donors are presented as mean ± SEM. * indicates significant differences in killing between batches (p < 0.05).

Figure 4: Analyses of Fc/Fc receptor interactions using recombinantly expressed extracellular domains of different Fcγ receptors.
Binding profiles of 2F8-C (●) and 2F8-H (○) to various Fcγ receptors were measured by ELISA. 2F8-C F(ab')2 fragments (▼) are shown as a control. The mean values are presented. One representative experiment out of three is shown.

Figure 5: Impact of glycosylation status on whole blood ADCC and contribution of PMN. Tumor cell lysis at varying antibody concentrations was analyzed with whole blood from healthy (A) or G-CSF primed donors (C) as a physiological combination of different effector cell populations. A431 cells served as target cells. To analyze PMN involvement in target cell killing in whole blood, ADCC assays were performed in the presence of F(ab’)2-fragments of FcγRII blocking antibody AT10, or control F(ab’)2-fragments (both at 10 µg/ml). 2F8
antibody concentrations were 0.4 μg/ml. Blocking experiments with blood from healthy donors (B), or from G-CSF-primed donors (D). 2F8-C (●), 2F8-H (○), or human IgG1 control antibody (△). Data from experiments with five (healthy donors), and three (G-CSF-primed donors) different volunteers, respectively, are presented as mean ± SEM. * indicates significant difference in killing between 2F8-C and 2F8-H. # indicates significant blockade compared to control treated samples (p < 0.05).

Origin	2F8-H	2F8-HEK	2F8-C	2F8-HEK-(F+/G-/S-)	2F8-C-(F-/G-/S-)
Treatment	Hybridoma	HEK-293F	CHO-DG44	HEK-293F	Galactosidase Neuramidase
Fucose (%)	95.1	95.1	75.9	95.3	75.9
Galactose (%)	73.8	33.1	26.1	3.3	0.2
Sialic acids (%)	55.3	1.8	3.0	0.7	2.0

N-linked glycans of 2F8 were enzymatically released and analysed by HPAEC-PAD. Percentages were calculated using the relative peak area in the elution profiles.
Figure 3

Sialylation

- 2F8-H
- 2F8-HEK

Galactosylation

- 2F8-HEK
- 2F8-HEK-(F+/G-/F-)

Sialylation / Galactosylation

- 2F8-H
- 2F8-HEK-(F+/G-/F-)

Fucosylation

- 2F8-HEK-(F+/G-/S-)
- 2F8-C-(F-/G-/S-)

Graphs A, B, C, D, E, F, G, H show the percentage lysis of different cell lines treated with varying concentrations of antibody. The x-axis represents the antibody concentration in µg/ml, and the y-axis represents the percentage lysis.
Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells

Matthias Peipp, Jeroen J. Lammerts van Bueren, Tanja Schneider-Merck, Wim W.K. Bleeker, Michael Dechant, Thomas Beyer, Roland Repp, Patrick H.C. van Berkel, Tom Vink, Jan G.J. van de Winkel, Paul W.H.I. Parren and Thomas Valerius

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include digital object identifier (DOIs) and date of initial publication.