Peptidomics of *Haemonchus contortus*

Armelle Buzy, Camille Allain, John Harrington, Dominique Lesuisse, Vincent Mikol, David F. Bruhn, Aaron G. Maule, and Jean-Claude Guillemot

ABSTRACT: The nematode *Haemonchus contortus* (the barber’s pole worm) is an endoparasite infecting wild and domesticated ruminants worldwide. Widespread anthelmintic resistance of *H. contortus* requires alternative strategies to control this parasite. Neuropeptide signaling represents a promising target for anthelmintic drugs. Identification and relative quantification of nematode neuropeptides are, therefore, required for the development of such therapeutic targets. In this work, we undertook the profiling of the whole *H. contortus* larvae at different stages for the direct sequencing of the neuropeptides expressed at low levels in these tissues. We set out a peptide extraction protocol and a peptidomic workflow to biochemically characterize bioactive peptides from both first-stage (L1) and third-stage larvae (L3) of *H. contortus*. This work led to the identification and quantification at the peptidomic level of more than 180 mature neuropeptides, including amidated and nonamidated peptides, arising from 55 precursors of *H. contortus*. The differential peptidomic approach provided evidence that both life stages express most FMRFamide-like peptides (FLPs) and neuropeptide-like proteins (NLPs). The *H. contortus* peptidome resource, established in this work, could add the discovery of neuropeptide system-targeting drugs for ruminants.

INTRODUCTION

Haemonchus contortus is a very common endoparasite and one of the most pathogenic nematodes infecting wild and domesticated ruminants worldwide. It lives in the abomasum, causing hemorrhagic gastritis, anemia, edema, and even death of the infected animals.

H. contortus exhibits a monoxenous life cycle that consists of a free-living phase in the external environment and a parasitic phase in the infested host animal. The life cycle begins with the laying of eggs by *H. contortus* females. The first-stage larvae (L1s) develops inside the eggs after their excretion in the host feces and molts to the second stage (L2s) and then into the third-stage larvae (L3s) within approximately 1 week. The infective L3s are then ingested by the host animal, undergo an exsheathment process to develop to become fourth-stage larvae (L4s) and then to dioecious adults within 3 weeks in the stomach. The last two stages feed on blood from capillaries of the abomasal wall.

Haemonchosis is mainly controlled by anthelmintics, which act by compromising the nematode motor function. However, the increase in resistance to existing chemotherapeutics warrants the identification of new parasiticides with novel modes of action. As neuropeptides and their receptors regulate many vital biological processes (such as development, behavior, movement, metabolism, and reproduction), the nematode neuropeptide signaling system has been proposed as a promising target for novel drugs against helminths. Neuropeptides consist of short peptides that are derived from larger precursor proteins by the action of processing enzymes and are commonly subjected to post-translational modifications. Three large neuropeptide groupings occur in nematodes, two of which are defined by conserved structural features (the FMRFamide-like peptides (FLPs) and insulin-like peptides (INSs)). The FMRFamide-like peptides (FLPs) are a group of neuropeptides that are similar to the tetrapeptide FMRF-amide (H-Phe-Met-Arg-Phe-NH2), a cardioexcitatory peptide first isolated from the mollusk *Macrocystis nimbosa*. Neuropeptides sharing a C-terminal RFamide motif have been further identified from other organisms and were defined as FLPs. The third group comprises all other neuropeptides and includes diverse family groupings (the neuropeptide-like proteins NLPs). Unlike FLPs and INSs that each comprise single families, the NLPs were originally defined as encompassing 11 distinct peptide families.

© 2021 The Authors. Published by American Chemical Society
Table 1. Presence of FMRFamide-like Peptide Encoding Genes (FLPs) in Genomic and Transcriptomic Data Sets of *H. contortus*

fip-gene	Presence of a fip gene sequologue\(^a\)	C-terminal FLP motif\(^b\)	*H. contortus* Sequologues\(^c\)	Presence in PRJEB506	Presence in PRJNA205202
flip-1	yes: PNFIRFG	KPNFRFG	yes	yes	yes
	7 predicted peptides	GSDPNLFRFG	yes	yes	yes
		NQPNFLFRFG (2x)	yes	yes	yes
		AAADSNLFRFG	yes	yes	yes
		CGADDNFRFG	yes	yes	yes
		CGADDNFRFG	yes	yes	yes
		COVDPNFRFG	yes	yes	yes
		KPNFLFRFG	yes	yes	yes
flip-2	yes: REPXIRFG	PXEPEIRFG	yes	yes	no
	2 predicted peptides	VPEPDIRFG	yes	yes	no
flip-3	no	LGT/Xo/INRFG	no	no	no
flip-4	no	KPTFRFG	no	no	no
flip-5	yes: (P/Q)K/[L]HRFG	AKFIRFG	yes	yes	yes
	2 or 3 predicted peptides	AGAXAFIRFG	yes but GGGAKFIRFG	yes but GGGAKFIRFG	yes
		AAKFIRFG (no described for *H. contortus*)	yes: AAKFIRFG	yes	no
flip-6	yes: 1 predicted peptide	KSAVMRFG	KSAMRFG (3x)	yes	yes
flip-7	yes: 4 predicted peptides	PXOXR/KSXOXRFRG	SBFPFRG	yes but TPGRRSMVRFG	no
		AMPDKSAPLRFG (2x)	yes	no	no
		AMPDKSAPLRFG (2x)	yes	no	no
flip-8	yes: 1 predicted peptide	KNEFKRFG	KNEFKRFG	yes	no
flip-9	yes: 1 predicted peptide	KPSVFIRFG	no	no	no
flip-10	no	YKXFRG	no	no	no
flip-11	yes: 3 predicted peptides	RNXLXoFRG	AMQSALVRFG	yes	no
		AGUSMVNLVRFG	yes	no	no
		YALTDDYF STRICTLY	yes	no	no
		KSAQPYVRFG	yes	no	no
flip-12	yes: 1 predicted peptide	KNFIRFG	KFKFIRFG	no	no
flip-13	yes: 7 predicted peptides	PLXoRFG	SYFENAPSLRFG	yes	no
		DLSGAPlRFG	yes	no	no
		APFAPLRFG	yes	no	no
		PDSAPLRG	no	no	no
		TFAAFLRFG	yes	no	no
		SFNAFLRFG	yes	no	no
		SFNAFLRFG	yes	no	no
flip-14	yes: 2 predicted peptides	KHEVLRFG	KSYLFRFG (4x)	yes	yes
		KSYLFRFG	yes	no	no
flip-15	yes: 2 predicted peptides	PXGPLRFG	AGPCPLRFG	yes	yes
		XGGQQPPLRFG	yes	no	no
flip-16	yes: 2 predicted peptides	(A/Q)QTTVRFG	AQTYRFG	yes	no
		GQTVRFGR	yes	no	no
flip-17	yes: 2 predicted peptides	KSAVFIRFG	yes	yes	yes
flip-18	yes: 8 predicted peptides	PGXoXRFRG	SYLVGDDGPDGVRFG	yes but DLDGDPGVLRFG	yes but DLDGDPGVLRFG
		XVLVGDDGPDGVRFG	yes	yes	yes
		SEVGFLRFG	yes	yes	yes
		CMVGLRFG	yes	yes	yes
		CVGLRFG	yes	yes	yes
		AMPVGLRFG	yes	yes	yes
		TEPQCMKRFG	yes	yes	yes
flip-19\(^d\)	yes: 2 predicted peptides	WXXQXoRFG	yes only WXP510	yes	yes
		WAXQXoRFG	yes only WXP510	yes	yes
flip-20	yes: 2 predicted peptides	AXoXR(L/R)FG	AMPLFG	yes	no
		AMPLFG	yes	no	no
flip-21	yes: 1 predicted peptide	GPRPLRFG	YES	yes	no
flip-22	yes: 3 predicted peptides	KWMRFG	YES	yes	no
		TPSAXKRFG	YES	yes	no
		SPNAXKRFG	YES	yes	no
flip-23	yes: 1 predicted peptide	QDS/XELRFG	YES	yes	no
flip-24	yes: 1 predicted peptide	DMACKRFG	YES	yes	no
flip-25	yes: 2 predicted peptides	YXSY/XoKRFG	YES	yes	yes
		SYDFXRFG	YES	yes	yes
flip-26	no	DT[TL]AKRFG	YES	yes	yes
flip-27	no	GXRMRFG	YES	yes	yes
flip-28	yes: (L/V)XoMRFG	IPFRFG	yes	yes	yes
flip-31	no	RPRPBFIRFG	no	no	no
flip-32	yes: 1 predicted peptide	AMRK5/SILX/RFG	AMNK5SRFG	yes	yes
		SIDRQKPRFG	yes	yes	yes
flip-33	yes: 1 predicted peptide	XoXoXoXoKoKoKoPRFG	AMRK5SRFG	yes	yes
flip-34	yes: 2 predicted peptides	SAINSAAGRVRFGR	SAINSAAGRVRFGR	yes	yes
		SAINSAAGRVRFGR	yes	yes	yes

\(^{a}\)From McCoy et al.\(^{14}\), gray shading indicates the presence of a gene. The number of copies of a predicted peptide is indicated as (no.×). Complete sequence of *flip*-32 was found in Atkinson et al.\(^{35}\). \(X_i\) denotes a hydrophobic amino acid. One peptide among the four amidated peptides predicted from the *flip*-11 precursor is not an *flip* peptide. This peptide is indicated in italics. \(^{b}\)*flip*-19 sequence was present in previous PRJEB506 release (versions to 10) but not in versions 11−14.
RF-amide where X is a nonpolar hydrophobic (L, I, M or V) residue and Y is aromatic.13,14,15,20

Detailed knowledge on neuropeptide sequences in parasitic nematodes and their post-translational modifications is required to help building an understanding of their in vivo biology and physiological role. The availability of genomic and transcriptomic data sets and the development of in silico mining tools have enabled the identification of neuropeptide genes and further prediction of neuropeptide sequences.21–23 However, these in silico discovery approaches suffer major drawbacks in that the end products are bioactive peptides that can be modified, nonclassically cleaved, or even mispredicted.19 The development and application of sensitive mass spectrometry-based peptidomic technologies25 have enabled the biochemical identification of many nematode neuropeptides.22,26,27 Of particular interest is the recent work performed on Caenorhabditis elegans in which a peptidomic analysis was performed to identify unprecedented 203 mature neuropeptides from C. elegans.38,29 Previous high-throughput peptidomic approaches on parasitic nematodes have been confined to the large gastrointestinal parasite of pigs, Ascaris suum.23,30 No such studies have been reported on other nematode parasites and only two FLP neuropeptides have been characterized biochemically from H. contortus.31,32 In this paper, we report on a comprehensive peptidomic study to biochemically monitor, identify, and quantify endogenous peptides from two larval stages (the first-stage larvae (L1s) and the third-stage larvae (L3s)) of H. contortus through a peptidomic workflow using the recent release of two genome assemblies for H. contortus.14,34

This study aimed at characterizing the whole-worm peptidome of L1 and L3 larval stages of H. contortus using a label-free peptidomic approach. Peptidome exploration of essential developmental stages of H. contortus will provide a valuable repository for a better understanding of this nematode at the biochemical level.

RESULTS

Genomic and Transcriptomic Data Set Interrogation.

The direct identification of bioactive peptides using a mass spectrometry (MS)-based strategy relies on mapping the peptide masses identified to a reference data set (predicted from genome and/or transcriptome). There are two genomic and transcriptomic data sets publicly available for H. contortus.33,34 The two versions of the genome and transcriptome presented in both publications are available on the WormBase site (https://wormbase.org) (BioProject PRJNA205202 and BioProject PRJEB006). The protein FASTA files for both BioProjects can be downloaded from the WormBase site. It is noteworthy that for the BioProject PRJEB006, the genome reported for H. contortus has been updated in the WormBase version 11.0, whereas all of the PRJNA205202 versions have remained unchanged.

Before submitting MS/MS data for database searching, we analyzed the two H. contortus draft genomes and transcriptomes, PRJNA205202 version 14 (WBPS14) and PRJEB006 version 14 (WBPS14) and version 10 (WBPS10), for the presence of potential FLPs using the H. contortus C-terminal FLP motifs and FLP-gene sequelogues identified by McCoy et al. in a pan-phylum bioinformatics study14 (Table 1).

Among the 32 FLP-encoding genes identified in 17 nematode parasites, 26 have been reported for H. contortus, highlighted in gray in Table 1.15,36 Each flp gene encodes one or several FLPs, up to 8, for a total of 62 different predicted FLPs. Eleven FLP sequences (flp-1, flp-5, flp-6, flp-14, flp-15, flp-17, flp-18, flp-21, flp-25, flp-33, and flp-34) were identified within both the H. contortus databases reported in PRJEB006 and PRJNA205202 (WormBase), with some discrepancies in sequences for flp-5, flp-14, and flp-18 (Table 1). Eleven flp transcripts (flp-2, flp-7, flp-8, flp-9, flp-11, flp-12, flp-13, flp-16, flp-19, flp-22, and flp-24) were found only in PRJEB006 with some discrepancies in sequence for flp-7 and flp-16. Flp-28 was only identified in PRJNA205202. Surprisingly, flp-19 was present in previous PRJEB006 releases (versions 1–10) but not in versions 11–14. Finally, three flp sequences (flp-20, flp-23, and flp-32) were not identified in either database (Figure 2); flp-32 was reported by Atkinson et al.35

To maximize peptide identification using our approaches, we used a combination of the two transcriptome databases (PRJEB006 and PRJNA205202) with a homemade database that we constructed from the sequelogues sequences described14 (Supplementary Data 1).

Identification of Neuropeptides.

To biochemically identify endogenous FLP peptides and other bioactive peptides of H. contortus, a peptide acidic/methanol extraction method was used (see the Methods section). Peptides extracted from both first-stage (L1) and third-stage larvae (L3) of H. contortus were analyzed by LC/MS/MS, and the results were processed in the MaxQuant environment implemented with the three different peptide precursor proteins.

FMRFamide-like Peptides. Among the 26 FLP genes described for H. contortus, there are 62 predicted FMRFamide-like peptides (Table 1). In addition, two peptides not strictly belonging to the FLPs can be found, the flp-11 peptide (YLATDDDYATAAQQG) described as a neuropeptide and the RYamide flp-34 peptide (SDLSDFAISANASGRLRG).

In this work, we isolated and identified 54 of the 62 predicted peptides (Table 2) across the two larval stages. Only two of these peptides were previously biochemically characterized, KHEYLRF.NH2 (flp-14) and KSAYMRF.NH2 (flp-6), by Keating et al.31 and Marks et al.32

All predicted FLP precursors were found except flp-20, flp-21, flp-23, flp-28, and flp-32. It is noteworthy that flp-20, flp-23, and flp-32 were not identified in either of the WormBase data sets, although the complete flp-32 sequence was previously reported.33 In the study performed on C. elegans by Van Bael et al.,28,29 the bioactive peptides issued from these precursors were either not detected or could not be confirmed using MS/MS. Peptides predicted to be encoded by flp-1, flp-2, flp-6, flp-8, flp-9, flp-11, flp-12, flp-13, flp-15, flp-17, flp-19, flp-24, flp-25, flp-33, and flp-34 transcripts, which had identical sequences between those reported in MacCoy et al.14 and both WormBase databases, were all unambiguously identified in this study, except for one peptide (APITSKLIQLSNAELRFLG) arising from flp-34 (Table 1), not detected in this study. Peptides arising from flp-19 (WANQVRFG and AWWAS-
gene	precursor name	database	sequence	modifications	mass	start position	end position
flp-1	HCON_00103480; maker-scaffold1982-	PRJEB506; PRJNA205202	KPNFMRFG	Gly-loss	937.4956	70	77
	snap-gene.0.20-mRNA-1			+Amide			
flp-1	HCON_00103480; maker-scaffold1982-	PRJEB506; PRJNA205202	GSDPNFLRFG	Gly-loss	1050.525	87	96
	snap-gene.0.20-mRNA-1			+Amide			
flp-1	HCON_00103480; maker-scaffold1982-	PRJEB506; PRJNA205202	NQPNFLRFG	Gly-loss	1033.546	98	106
	snap-gene.0.20-mRNA-1			+Amide			
flp-1	HCON_00103480; maker-scaffold1982-	PRJEB506; PRJNA205202	AAGDPNFLRF	Gly-loss	1105.567	118	128
	snap-gene.0.20-mRNA-1			+Amide			
flp-1	HCON_00103480; maker-scaffold1982-	PRJEB506; PRJNA205202	GAGDPNFLRF	Gly-loss	1091.551	130	140
	snap-gene.0.20-mRNA-1			+Amide			
flp-2	HCON_00188000	PRJEB506	FGRPEIRFG	Gly-loss	919.5392	154	161
				+Amide			
flp-5	HCON_00164350; maker-scaffold856-	PRJEB506	KPNFLRFG	Gly-loss	901.567	39	58
	augustus-gene.0.7-mRNA-1			+Amide			
flp-5	HCON_00164350; maker-scaffold856-	PRJEB506	GSDPNFLRF	Gly-loss	876.5334	37	44
	augustus-gene.0.7-mRNA-1			+Amide			
flp-5	HCON_00164350; maker-scaffold856-	PRJEB506	AMPKFIRFG	Gly-loss	950.545	46	55
	augustus-gene.0.7-mRNA-1			+Amide			
flp-6	HCON_00155670; augustus-scaffold18780-	PRJEB506	KSAYMRFG	Gly-loss	900.464	32	39
abinit-gene.0.3-mRNA-1				+Amide			
flp-7	HCON_00164220	PRJEB506	TPMVRSSMVRF	Gly-loss	1308.68	43	53
flp-7	HCON_00164220	PRJEB506	AMDRSAMVRF	Gly-loss	1278.633	56	67
flp-8	HCON_00180390	PRJEB506	KNEFIRFG	Gly-loss	850.5177	80	87
flp-9	HCON_00131250	PRJEB506	KPSFVRFG	Gly-loss	850.5177	80	87
flp-11	HCON_00176100	PRJEB506	AMRNALVRF	Gly-loss	1075.607	31	40
flp-11	HCON_00176100	PRJEB506	AGGSRNALVRF	Gly-loss	1276.682	42	54
flp-11	HCON_00176100	PRJEB506	YLATDDDYATAAQG	Gly-loss	1486.658	57	71
flp-11	HCON_00176100	PRJEB506	NGAQPFFVRFG	Gly-loss	1130.599	74	84
flp-12	HCON_00095850	PRJEB506	NKFIRFG	Gly-loss	1098.597	74	82
flp-13	HCON_00095850	PRJEB506	SFENASPLRF	Gly-loss	1407.715	44	56
flp-13	HCON_00095850	PRJEB506	DLGAPLRF	Gly-loss	1086.619	59	69
flp-13	HCON_00095850	PRJEB506	APEAHPLRF	Gly-loss	1148.646	71	81
flp-13	HCON_00095850	PRJEB506	ADPSAPLRF	Gly-loss	1084.603	84	94
flp-13	HCON_00095850	PRJEB506	DPEASPLRF	Gly-loss	1142.608	96	106
flp-13	HCON_00095850	PRJEB506	SPAAPLRF	Gly-loss	969.576	109	118
flp-13	HCON_00095850	PRJEB506	SPNASPLRF	Gly-loss	1099.614	120	130
flp-13	HCON_00095850; maker-scaffold19612-	PRJEB506	KHEYLRFG	Gly-loss	990.5399	93	100
snap-gene.0.18-mRNA-1				+Amide			
flp-13	HCON_00095850; maker-scaffold19612-	PRJEB506	AGPQGPLRF	Gly-loss	940.5243	41	49
snap-gene.0.18-mRNA-1				+Amide			
flp-13	HCON_00095850; maker-scaffold19612-	PRJEB506	GSPGFLRF	Gly-loss	828.4606	53	61
snap-gene.0.18-mRNA-1				+Amide			
flp-13	HCON_00095850; maker-scaffold19612-	PRJEB506	AQTFFVRFG	Gly-loss	866.4763	70	77
snap-gene.0.18-mRNA-1				+Amide			
SIRFG) whose sequences were removed from the updated versions of PRJEB506 were unambiguously identified in this study.

For peptides showing sequence discrepancies across those reported \(^{14}\) and the WormBase data sets (Figure 1; Table 1), the use of a combination of all three data sets enabled sequence confirmation. For flp-5, flp-7, flp-16, and flp-18, the correct predicted sequences are those reported in the WormBase data sets. The peptide KHEYLRFSRG arising from flp-14 and predicted only by the sequlogue database was not detected in this study, whereas the other flp-14-predicted peptide (KHEYLRFG) was unambiguously identified. This raises the question of the occurrence of the undetected peptide.

In addition to the confirmation that peptides were all amidated at the C-terminus, we also searched for additional processed peptides as described for C. elegans.\(^{23}\) The authors looked at potential peptides derived from predicted neuropeptides precursors, which are flanked by (di)basic residues and which were not identified as mature peptides. Applying the same strategy to our H. contortus peptidomimicry data set, we could identify 14 additional peptides arising from 10 FLP precursors (Table 3). Here again, the interrogation of both worm databases led to the identification of the correct sequences for these additional peptides derived from flp-5, flp-6, flp-15, and flp-17.

For example, we found two additional non-FLP peptides encoded on flp-17, with one (AAEESAEIE) correctly predicted by both databases and the other (SSEVEDSPDAIDME) having the same predicted sequences on both databases: PRJEB506.WBPS14 and PRJNA205202.WBPS14. We also identified the peptide (SEALDEDPMDVE), which was not identified in this study. Interestingly, the peptide (SSEVEDSPDAIDME) was wrongly predicted by the previous version, PRJEB506.WBPS10. Table 2 shows the MS/MS spectra of the peptides SSEVEDSPDAIDME and SEALDEDPMDVE.

Table 2. continued

gene	precursor name\(^{13}\)	database	sequence	modifications	mass	start position	end position
flp-17	HCON_00123460; maker-C469629-8augustus-gene-0.17-mRNA-1	PRJEB506; PRJNA205202	KSAFVRFG	Gly-loss + Amide	852.497	72	79
flp-17	HCON_00123460; maker-C469629-8augustus-gene-0.17-mRNA-1	PRJEB506; PRJNA205202	KSQYIRFG	Gly-loss + Amide	939.529	112	119
flp-18	HCON_00164730; augustus-scaffold2866-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	DLDGGMPGVLRFG	Gly-loss + Amide	1274.644	54	66
flp-18	HCON_00164730; augustus-scaffold2866-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	EVPGVLRFG	Gly-loss + Amide	914.5338	76	84
flp-18	HCON_00164730; augustus-scaffold2866-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	SMPGVLRFG	Gly-loss + Amide	904.4953	91	99
flp-18	HCON_00164730; augustus-scaffold2866-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	SVPGVLRFG	Gly-loss + Amide	872.5232	102	110
flp-18	HCON_00164730; augustus-scaffold2866-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	EMPPVLRFG	Gly-loss + Amide	946.5059	113	121
flp-18	HCON_00164730; augustus-scaffold2866-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	AMPGVLRFG	Gly-loss + Amide	888.5004	124	132
flp-18	HCON_00164730; augustus-scaffold2866-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	TIEPGMRFG	Gly-loss + Amide	1079.526	135	144
flp-18	HCON_00164730; augustus-scaffold2866-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	NVPGVLRFG	Gly-loss + Amide	899.5341	161	169
flp-19	HC000587500	PRJEB506.WBPS10	WANQVRFG	Gly-loss + Amide	918.4824	50	57
flp-19	HC000587500	PRJEB506.WBPS10	ASSWASSIRFG	Gly-loss + Amide	1109.562	60	70
flp-22	HCON_00012150	PRJEB506	TPSAKWMRFGL	Gly-loss + Amide	1121.58	37	46
flp-22	HCON_00012150	PRJEB506	SPNAKWMRFGL	Gly-loss + Amide	1134.576	49	58
flp-22	HCON_00012150	PRJEB506	TPDAKWMRFGL	Gly-loss + Amide	1149.575	61	70
flp-24	HCON_00094680	PRJEB506	VPSAGDMMVRFGL	Gly-loss + Amide	1207.584	53	64
flp-25	HCON_00078750; maker-scaffold165-snap-gene-0.6-mRNA-1	PRJEB506; PRJNA205202	HYDFVRFG	Gly-loss + Amide	981.4821	47	54
flp-25	HCON_00078750; maker-scaffold165-snap-gene-0.6-mRNA-1	PRJEB506; PRJNA205202	ASYDYIRFG	Gly-loss + Amide	1032.503	63	71
flp-33	HCON_0009870; maker-scaffold18501-snap-gene-0.8-mRNA-1	PRJEB506; PRJNA205202	SIDEQKPRFG	Gly-loss + Amide	1230.672	66	76
flp-34	HCON_00140260; maker-scaffold19714-augustus-gene-0.9-mRNA-1	PRJNA205202	SDLSDFASINSAGRLRYG	Gly-loss + Amide	1940.97	51	69

\(^{13}\)The precursor name corresponds either to the one reported in project PRJEB506 or to the one described in project PRJNA205202 on the WormBase site. When sequences are predicted by both databases, the peptide sequence start and end positions refer to the database indicated first.

\(^{14}\)Denotes identified sequences from the PRJEB506 release (versions previous version 10).
This is illustrated in Figure 3 with the alignment of flp-11 precursors for both *H. contortus* and *C. elegans*. The four amidated peptides observed for *C. elegans* flp-11 were also detected for *H. contortus*, with one of them being amidated on a glutamine residue in both species. Compared to the studies of Van Bael et al.,28,29 we were able to sequence the C-terminal peptide (SGHLDHIHDILSQLQLQNYH).

NLP Peptides. The identification of NLP peptides was carried out in association with the two PRJEB506 (version 10 and version 14) and PRJNA205202 WormBase data sets (there were no additional resources for NLP precursors as there was for FLP precursors). In addition, we performed a BLAST analysis of the 82 NLP precursors of *C. elegans* reported,28,29 against the PRJEB506 and PRJNA205202 data sets. In total, 42 *nlp* *H. contortus* genes could be found using this BLAST approach (Table S1). Among these 42 *nlp* genes, 20 were predicted by both PRJNA205202 and PRJEB506 BioProjects and 22 were found only in the PRJEB506 data set. As noticed for FLP precursors, some NLP precursors (those from *nlp-1*, *nlp-19*, *nlp-35*, and *nlp-69*) were only predicted by the PRJEB506 versions before the update (versions 1–10), whereas *nlp-10*, *nlp-12*, and *nlp-58* were found in the updated PRJEB506 versions (versions 11–14).

In this study, we clearly detected and identified 110 putative bioactive neuropeptides encoded by 33 of these 42 predicted NLP precursors (Table 4). We also identified three additional peptides arising from the precursor HCON_00135420 (PRJEB506 nomenclature), which could not be assigned by BLAST searches to any *C. elegans* precursor.

Figure S1 illustrates different predicted flp-6 sequence alignments.

All FLP precursor sequences identified in this study were aligned with the corresponding *C. elegans* FLP gene precursors (**Figure S1**). These alignments emphasize the strong homologies of bioactive peptides and their mono- and di-basic cleavage sites across nematode species, as highlighted.14

Table 3. Flp-Gene-Encoded Non-FLP Peptides Identified in the First-Stage (L1) and Third-Stage Larvae (L3) of *H. contortus*

gene	precursor name	database	sequence	modifications	mass	start position	end position
flp-2	HCON_00188000	PRJEB506	GPMFEFYFPFDY	unmodified	1264.511	61	70
flp-5	HCON_00164350	PRJEB506	SGNTNWDDDDSDTSTYAHQDD	unmodified	2328.889	57	77
flp-6	HCON_00155670; augustus; scaffold18780-abinit-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	SDPELAQDMME	unmodified	1395.536	41	52
flp-6	HCON_00156670	PRJEB506	SEALDEDPMIDVE	unmodified	1348.534	65	76
flp-6	HCON_00155670; augustus; scaffold18780-abinit-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	SSEVEDSPDAIDME	unmodified	1522.598	99	112
flp-11	HCON_00176100	PRJEB506	SGGHLDHIHDILSQLQLQNYH	unmodified	2652.377	86	108
flp-13	HCON_00095800	PRJEB506	VDTLERS	unmodified	905.4454	35	42
flp-15	U6PJU1 CBN-FLP-15 protein GN=HCON_01474400	PRJEB506	EIEDTDDSK	unmodified	1163.519	22	31
flp-15	U6PJU1 CBN-FLP-15 protein GN=HCON_01474400	PRJEB506	STFDPYTVFDQPPYYFY	unmodified	2279.01	64	81
flp-17	HCON_00123460; maker-C469629-augustus-gene-0.17-mRNA-1	PRJEB506; PRJNA205202	AAESAEIE	unmodified	947.4084	82	90
flp-17	maker-C469629-augustus-gene-0.17-mRNA-1	PRJEB506; PRJNA205202	SAAEFDMPE	unmodified	995.3906	102	110
flp-18	HCON_00164730; augustus; scaffold1866-abinit-gene-0.01-mRNA-1	PRJEB506; PRJNA205202	STYDITPLELLELD	unmodified	1378.687	147	148
flp-25	HCON_00078750; maker-scaffold165-snap-gene-0.6-mRNA-1	PRJEB506; PRJNA205202	SQJXDDFLARFSPYQFL	unmodified	2114.991	74	91
flp-33	HCON_0009870; maker-scaffold18501-snap-gene-0.8-mRNA-1	PRJEB506; PRJNA205202	SPLYGFDISSIMM	unmodified	1441.611	52	64

"The precursor name corresponds either to the one reported in project PRJEB506 or to the one described in project PRJNA205202 on the WormBase site. bWhen sequences are predicted by both databases, the peptide sequence start and end positions refer to the database indicated first."
As seen for FLP peptides, the use of the two WormBase data sets (PRJEB506 versions 10 and 14, and PRJNA205202) yielded an increase in the number of identified NLP peptides and allowed us to inform the predicted sequences where discrepancies existed between databases, as shown for nlp-5, nlp-7, nlp-15, nlp-9, nlp-13, and nlp-18 (Table 4; Figure S2). Detection of the peptide GGGRAFFGGWQPYESLGARMD encoded on nlp-9 shows that the correct sequence was the one predicted in PRJNA205202, whereas for nlp-7, nlp-13, nlp-15, nlp-18, and one peptide of nlp-S, the correct sequences were predicted in PRJEB506. More surprising was the fact that we clearly identified both of the WormBase predicted sequences for the C-terminal peptide of nlp-5 (SRLFSTYYYLPYRD-SLEDMDQAQE, predicted in PRJNA205202, and SRLFSTYYYLPYRDSLEDMDQNVQE, predicted in

Figure 2. MS/MS spectra of two unmodified peptides of the *H. contortus* flp-6. The fragmentation schemes enabled the identification of the peptide SEALDEDPMDEV in the WormBase, PRJEB506.WBPS10 database analysis (A), and of the peptide SSEVEDSPDAIDME upon the analysis of both PRJEB506.WBPS14 and PRJNA205202.WBPS14 WormBase (B).

Figure 3. Sequence alignments of *H. contortus* flp-11 (sequence in the BioProject PRJEB506 protein fasta file, Wormbase source) with *C. elegans* flp-11 (UniProtKB source). Sequences were aligned using the Clustal Omega program (http://www.clustal.org). Predicted signal peptide is indicated in italics. Putative mono- and di-basic cleavage sites are shown in red. The potential C-terminal glycine residues for amidation are indicated in brown. *C. elegans* peptide data shown in the study of Van Bael et al.29 are highlighted in blue. *H. contortus* FLP peptide sequences identified in this study are shown in bold green with the sequence of the unmodified peptides being underlined. The amidated glutamine residues identified in both species are indicated in purple.
NLP	precursor name	database	sequence	modifications	mass	start position	end position
nlp-1	HCOI0158100	PRJEB506_WBPS10	AVMFPRTGFALFG	Gly-loss +Amide	1354.722	31	43
nlp-3	HCON_0188680	PRJEB560	AINPFLDSMG	Gly-loss +Amide	1238.594	82	92
nlp-3	HCON_0188680	PRJEB560	AVNPELDSFG	Gly-loss +Amide	1005.495	28	37
nlp-3	HCON_0188680	PRJEB560	SSRYQPYYHLD	unmodified	1007.508	40	49
nlp-3	HCON_0188680	PRJEB560	YFDSLQAQGLG	Gly-loss +Amide	1427.647	52	62
nlp-5	HCON_00046600; maker-C469189-snap-gene-0.14-mRNA-1	PRJEB506; PRJNA205202	ALSFDTLGGIGGLG	Gly-loss +Amide	1248.671	42	55
nlp-5	HCON_00046600; maker-C469189-snap-gene-0.14-mRNA-1	PRJEB506	TQILSSDLSGGGLGLG	Gly-loss +Amide	1358.741	46	60
nlp-5	HCON_00046600; maker-C469189-snap-gene-0.14-mRNA-1	PRJEB506; PRJNA205202	SEDTAKALSSFDTLGGIGGLG	Gly-loss +Amide	2008.048	123	143
nlp-5	HCON_00046600; maker-C469189-snap-gene-0.14-mRNA-1	PRJEB506; PRJNA205202	DDMLAGEKKSΦSSFDLGIΓLG	Gly-loss +Amide	2252.136	146	168
nlp-5	HCON_00046600; maker-C469189-snap-gene-0.14-mRNA-1	PRJNA205202	SRLFSTYYLYPRYDSLEDMDQNAQE	Gly-loss +Amide	3103.387	171	195
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	LIPSYLSSHYD	unmodified	1392.693	32	43
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	TLDFFDPRLSTAFG	Gly-loss +Amide	1642.799	46	60
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	NGLVTTLNRPRFI	unmodified	1600.905	63	76
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	SPEILGTVGLAYI	unmodified	1350.718	79	91
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	ADMDPRFISNSFG	Gly-loss +Amide	1397.64	94	106
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	STLYDFDPRAFSLSG	Gly-loss +Amide	1878.879	109	125
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	SGFDFDRFSSMSFG	Gly-loss +Amide	1739.725	128	143
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	SGFLDDLPRFAMSFG	Gly-loss +Amide	1703.761	146	161
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	SGFPN FEDPRFASLSFG	Gly-loss +Amide	1718.805	164	179
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	SGFDLDDPRFAMSFG	Gly-loss +Amide	1689.746	182	197
nlp-7	HCON_00165470; maker-C452207-snap-gene-0.3-mRNA-1	PRJEB506; PRJNA205202	SGSDLDRRYWSMFSFG	Gly-loss +Amide	1774.762	200	215
nlp-8	HCON_00010710; maker-scaffold14524-snap-gene-0.4-mRNA-1	PRJEB506; PRJNA205202	AFDRIEIN DFGLF	unmodified	1529.715	49	61
nlp-8	HCON_00010710; maker-scaffold14524-snap-gene-0.4-mRNA-1	PRJEB506; PRJNA205202	AFDRIEMADFGF	unmodified	1417.634	69	80
nlp-8	HCON_00010710; maker-scaffold14524-snap-gene-0.4-mRNA-1	PRJEB506; PRJNA205202	AFDVRGTTEFGFEGVL	unmodified	1798.9	85	100
nlp-8	HCON_00010710; maker-scaffold14524-snap-gene-0.4-mRNA-1	PRJEB506; PRJNA205202	TEGFEGVL	unmodified	997.4757	92	100
nlp-8	HCON_00010710; maker-scaffold14524-snap-gene-0.4-mRNA-1	PRJEB506; PRJNA205202	AADRLADIGFRN	unmodified	1317.679	104	115
NLP	precursor name\(^a\)	database	sequence	modifications	mass	start position\(^b\)	end position\(^b\)
-----	---------------------	----------	----------	---------------	------	-----------------------	---------------------
nlp-9	HCON_00136940; maker-scaffold10126-snap-gene-0.11-mRNA-1	PRJEB506; PRJNA205202	GGRAFHGYFNMPSS	unmodified	1597.71	48	62
nlp-9	HCON_00136940; maker-scaffold10126-snap-gene-0.11-mRNA-1	PRJEB506; PRJNA205202	LGSEYPPYLYE	unmodified	1395.623	65	75
nlp-9	maker-scaffold10126-snap-gene-0.11-mRNA-1	PRJNA205202	GGRAFFGGWQPYESLGARMD	unmodified	2258.033	78	98
nlp-9	maker-scaffold10126-snap-gene-0.11-mRNA-1	PRJEB506; PRJNA205202	SSSLWEFEDRNAL	unmodified	1665.8	127	140
nlp-10	HCON_00073270; maker-scaffold13486-augustus-gene-0.18-mRNA-1	PRJEB506; PRJNA205202	AVMPFSGGLYG	Gly-loss + Amide	1039.516	64	74
nlp-10	HCON_00073270; maker-scaffold13486-augustus-gene-0.18-mRNA-1	PRJEB506; PRJNA205202	SEMPDDMYIERPVLPLSAGWQE	unmodified	2562.177	90	111
nlp-10	HCON_00073270; maker-scaffold13486-augustus-gene-0.18-mRNA-1	PRJEB506; PRJNA205202	AVMPFSGGLYGKRAVMPFSGGLYG	Gly-loss + Amide	2403.223	114	137
nlp-10	HCON_00073270; maker-scaffold13486-augustus-gene-0.18-mRNA-1	PRJEB506; PRJNA205202	AAMPFSGGLYG	Gly-loss + Amide	1011.485	140	150
nlp-10	HCON_00073270; maker-scaffold13486-augustus-gene-0.18-mRNA-1	PRJEB506; PRJNA205202	ADRYIRSPMPISGGIFG	Gly-loss + Amide	1777.93	153	169
nlp-10	HCON_00062360; augustus-C472037-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	LETELHPLVMGMYGFPENNAY	unmodified	1003.516	159	169
nlp-11	HCON_00062360; augustus-C472037-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	HISPSPDEEVGDVMRTLMDIG	Gly-loss + Amide	2481.135	36	57
nlp-11	HCON_00062360; augustus-C472037-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	QLSVADDVGRQMQMYHRLFEAG	Gly-loss + Amide	2492.205	91	112
nlp-11	HCON_00062360; augustus-C472037-abinit-gene-0.0-mRNA-1	PRJEB506; PRJNA205202	AALSPSQDLQSAVELSNYLERAG	Gly-loss + Amide	2360.197	116	138
nlp-12	HCON_00021180; maker-scaffold5805-snap-gene-0.2-mRNA-1	PRJEB506; PRJNA205202	DYRPLQFG	Gly-loss + Amide	993.5032	41	49
nlp-12	HCON_00021180; maker-scaffold5805-snap-gene-0.2-mRNA-1	PRJEB506; PRJNA205202	DGYRPLQFG	Gly-loss + Amide	893.4818	31	38
nlp-12	HCON_00021180; maker-scaffold5805-snap-gene-0.2-mRNA-1	PRJEB506; PRJNA205202	SPLASFLVPAL	unmodified	1184.681	62	73
nlp-13	HCON_00136950; maker-C471727-snap-gene-0.19-mRNA-1	PRJEB506; PRJNA205202	NDFSRDIMHFG	Gly-loss + Amide	1279.577	33	43
nlp-13	HCON_00136950; maker-C471727-snap-gene-0.19-mRNA-1	PRJEB506; PRJNA205202	AYGNGRLVAYGGPAFERDMMAFG	Gly-loss + Amide	2391.125	46	68
nlp-13	HCON_00136950; maker-C471727-snap-gene-0.19-mRNA-1	PRJEB506; PRJNA205202	AYGNGRLVAYGGPAFERDMMAFG	Gly-loss + Amide	1275.538	71	82
nlp-13	HCON_00136950; maker-C471727-snap-gene-0.19-mRNA-1	PRJEB506; PRJNA205202	SGFFEREMMSFG	Gly-loss + Amide	256.61E+03	85	95
nlp-13	HCON_00136950; maker-C471727-snap-gene-0.19-mRNA-1	PRJEB506; PRJNA205202	SGFFEREMMSFG	Gly-loss + Amide	1315.587	98	109
nlp-13	HCON_00136950; maker-C471727-snap-gene-0.19-mRNA-1	PRJEB506; PRJNA205202	DEFERSMMAFG	Gly-loss + Amide	1260.527	112	122
nlp-14	HCON_00190000; maker-scaffold4554-snap-gene-0.8-mRNA-1	PRJEB506; PRJNA205202	ALDSLEDGFGGLF	unmodified	1396.651	52	65
nlp-14	HCON_00190000; maker-scaffold4554-snap-gene-0.8-mRNA-1	PRJEB506; PRJNA205202	SLDSLEDGFGGLF	unmodified	1357.567	68	80
NLP	precursor name	sequence modifications	end position	start position	mass		
-----------	--	------------------------	--------------	----------------	-----------------		
nlp-14	HCON_00190000; maker-scaffold4554-snap-gene-0.8-	unmodified	191	83	1296.599		
nlp-14	HCON_00190000; maker-scaffold4554-snap-gene-0.8-	unmodified	174	98	1320.609		
nlp-15	HCON_00024600; maker-C472057-snap-gene-0.5-	unmodified	92	79	1326.609		
nlp-15	HCON_00024600; maker-C472057-snap-gene-0.5-	unmodified	92	95	1342.604		
nlp-15	HCON_00024600; maker-C472057-snap-gene-0.5-	Gly-loss+Amide	92	113	1342.604		
nlp-16	HCON_00131138; maker-C471673-augustus-gene-0.17-	unmodified	82	74	1063.529		
nlp-16	HCON_00131138; maker-C471673-augustus-gene-0.17-	unmodified	82	95	1130.572		
nlp-17	HCON_00114940; maker-C471673-augustus-gene-0.17-	Gly-loss+Amide	82	52	1130.572		
nlp-17	HCON_00114940; maker-C471673-augustus-gene-0.17-	Gly-loss+Amide	82	52	1270.619		
nlp-18	HCON_00035340; maker-C471673-augustus-gene-0.17-	Gly-loss+Amide	82	52	1283.923		
nlp-18	HCON_00035340; maker-C471673-augustus-gene-0.17-	Gly-loss+Amide	82	52	1390.604		
nlp-18	HCON_00035340; maker-C471673-augustus-gene-0.17-	Gly-loss+Amide	82	52	1543.738		
nlp-19	HCON_00067330; maker-C471673-augustus-gene-0.17-	Gly-loss+Amide	82	52	1543.738		
NLP precursor name	database sequence modifications	mass	start position	end position			
--------------------	---------------------------------	------	---------------	-------------			
nlp-21			887.4614	165			
nlp-24			1493.799	73			
nlp-31			1341.626	68			
nlp-35			1699.821	49			
nlp-40			1877.878	60			
nlp-40			1220.652	72			
nlp-42			2544.381	53			
nlp-42			984.576	94			
nlp-44			1134.593	63			
nlp-44			1311.581	68			
nlp-44			985.584	57			
nlp-59			1154.593	75			
nlp-67			1311.581	68			
nlp-68			2646.329	104			
nlp-81			1331.581	61			
nlp-81			2035.094	41			
nlp-81			1331.581	61			
All *H. contortus* NLP sequences revealed in this study were aligned with their *C. elegans* homologues as shown in Figure S2. As reported for *C. elegans*,28,29 we also detected equivalent unrecorded *H. contortus* neuropeptides for nlp-3, nlp-9, nlp-10, and nlp-12 (these peptides are underlined in Figure S2). As already shown for FLP peptides, these alignments emphasize the similarity in neuropeptide sequences between both *C. elegans* and *H. contortus* with the identification of peptides bearing the C-terminal glycine residue for amidation and with peptides not modified but being flanked by di- or mono-basic residues. In this study, we were able to isolate and identify peptides arising from nlp-17, nlp-19, nlp-44, nlp-54, nlp-59, nlp-67, nlp-38, nlp-69, and nlp-71 that were not previously reported in similar studies on *C. elegans*. Of particular interest are the C-terminal peptides of nlp-17, nlp-67, and nlp-71, which were unambiguously identified with one disulfide bridge, as shown by their MS/MS spectra (Figure 5). The study on *C. elegans*28,29 reported the homologous sequences with the prediction of disulfide bridges, but there was no biochemical isolation or characterization.

Label-Free Quantification of Neuropeptides. Neuropeptide quantification was performed on four L1 and three L3 biological replicates. Normalized intensities measured for all identified peptides arising from predicted neuropeptide precursors are listed in Table S2.

Relative Abundance of Endogenous Peptides. Some of the detected peptides are shorter versions of the same peptide, likely reflecting the degradation of bioactive peptides during sample processing. We calculated the intensities of truncated forms and compared these to the intensity of the corresponding nontruncated bioactive peptides. On average, we found that these degraded forms represented less than 15% of the entire form, indicative of a low level of peptide degradation. It is noteworthy that for most amidated peptides, we also detected two other minor forms, representing less than 5% of the mature peptide, one corresponding to the nonamidated peptide and the second one corresponding to the substrate of the amidating enzymes, which act sequentially on C-terminal Glycine-extended immature peptides (Table S2).

The relative abundance of all endogenous peptides reported in Tables 2 and 4 is shown in Figure 7, spanning four orders of magnitude both in the L1 and L3 life stages. Among the 181 detected bioactive peptides, the most intense FLP and nlp peptides quantified are indicated in Figure 6.

Differential Neuropeptide Expression between L1 Stage and L3 Stage Larvae of *H. contortus.* We compared the relative peptide expression in L1 (free-living stage) and L3 (infective) life stages for the 181 identified mature peptides (Table S3). All resulting individual boxplots are depicted in Figure S3. Based on an arbitrary fold-change of 3 and a p-value of 0.01, we found 29 peptides more highly expressed in L3s and 22 more highly expressed in L1s (Figure 7).

Data shown in Table S2 and Figure S3 highlight that peptides arising from the same precursor can either follow the same trend or vary greatly in expression between L1 and L3 worms. For example, all four nlp-3 peptides (AINPFLDSMG, AVNPFLLDSFG, SSRYQPYYHL, and YFDLSLAGQFG) are more highly expressed in L3s (Figure 8A), whereas nlp-10 has two peptides (AVMPFSGGGLYG and ADRYRSMIPSQG).

Table 4. continued

Database	Precursor Name	Start Position	End Position	Mass (Da)	Sequence	Modifications
PRJEB506	HCON_00135420	60	72	1,489.725	SIRYMSWMVHSKG Gly-loss+Amide	1489.725
PRJEB506	HCON_00135420	101	110	1,265.345	ARNPYSWMNEUN	unmodified

Notes:
- a The precursor name corresponds either to the one reported in project PRJEB506 or to the one reported in project PRJNA205202 on the WormBase site.
- b When sequences are predicted by both databases, the peptide sequence start and end positions refer to the database indicated first. Denotes identified sequences from the PRJEB506 release (versions to 10).
- c Denotes identified sequences from the PRJEB506 release (versions to 10).

PRJEB506); the corresponding MS/MS spectra are shown in Figure 4.
that show opposite trends in the two life stages, being lower in the L3 stage worms (Figure 8B).

DISCUSSION

The present study is the first whole-parasitic peptidome analysis of *H. contortus*. Previously, only two FLP neuropeptides have been directly sequenced for this nematode.31,32 These new findings enhance the understanding of nematode neuropeptide biology and enhance the FLP-activated G-protein coupler receptors profiling described in McCoy et al.14

This is also one of the most comprehensive neuropeptidome analyses of a nematode with a total of 181 peptides (68 FLPs and 113 NLPs) being identified biochemically using MS/MS. It can be compared with similar studies performed on *C. elegans*, which led to the identification of 203 neuropeptides based on mass matching,28,29 131 among them with sequenced levels using LC-MS/MS. In our study, all of the identified peptides were fully sequenced by MS/MS. However, five predicted FLP and nine NLP precursors remain undetected in this study. This can be due to various reasons. At first, it is not possible to anticipate which predicted peptides will be expressed and correctly processed into bioactive peptides. Another possibility is that some neuropeptides may be present in other developmental stages or may be expressed under certain conditions. In addition, we cannot exclude experimental bias like neuropeptide degradation during sample processing, leading to low-molecular-weight peptides not detectable by LC/MS. The stochastic precursor selection of DDA may also lead to inconsistent detection of peptides, and finally, some neuropeptides are certainly below the current detection threshold of MS due to their weak expression.

The results obtained from *H. contortus* larvae peptidomics profiling reveal and expand on the known complexity of neuropeptide expression in nematodes. These data are consistent with nematode parasites, displaying remarkable neuropeptide complexity despite their apparent nervous system simplicity.37 The data further confirm that peptide-based neuronal signaling in parasitic nematodes is similarly complex to that reported for free-living nematodes, at least in these clade V nematodes. This is not surprising considering that *H. contortus* has both free-living and parasitic stages and the L3 stage transitions from the free-living to a host-based environment.

In this study, the differentially expressed neuropeptides between two key developmental stages of *H. contortus* (the first-larval stage, L1, and the infective stage, L3) were investigated by comparative peptidomics. The free-living stage L1 is motile and exits the egg to feed on feces, while the L3 stage waits in water droplets on vegetation and enters a resting stage that relies on reserves, slows its metabolic rate,
and stops actively feeding, prior to being ingested by the ruminant host. Despite these dramatic differences in life stage behaviors, which have been reflected previously through transcriptomic studies showing significant differences in protein-coding gene expression, both life stages appear here to express mostly similar FLP and NLP neuropeptides.

Among the 181 quantified peptides in this study, 170 were detected in the L1 stage and 171 in the L3 stage. This is consistent with the fact that many of these neuropeptides, especially the FLPs, regulate diverse behaviors through the modulation of sensory and motor functions.

Figure 5. MS/MS spectra of the C-terminal peptides of nlp-17 (A), nlp-67 (B), and nlp-71 (C) of H. contortus. The fragmentation schemes allow the unambiguous identification of the presence of a disulfide bridge between two cysteine residues for the three peptides.

Figure 6. Relative abundance of flp-encoded (highlighted in blue) and nlp-encoded peptides (highlighted in red) in the L1 larvae stage (A) and L3 larvae stage (B) of H. contortus. The most intense peptides identified are indicated.
For the purpose of clarity, peptides are only annotated by the precursor name. For example, this quantitative strategy allowed the differential expression of peptide amidation processes to be detected. The log2 fold-change (FC) of L3 versus L1. The y-axis represents the log2 fold-change (FC) of L3 versus L1. The y-axis represents the

-value from a t test applied between four L1 biological replicates and three L3 biological replicates. All data are shown in Table S2. Peptides with FC < −3 and p-value <0.01, statistically more expressed in L1 stage, are highlighted in green and peptides with FC > 3 and p-value <0.01, statistically more expressed in L3 stage, are highlighted in red. For the purpose of clarity, peptides are only annotated by the precursor name.

It appears that genes expressed in both life stages are overall upregulated in the L3 phase, with only peptides encoded on flp-2, flp-9, nlp-1, and nlp-7 being upregulated in the L1 stages. These changes in expression could be associated with the maturation of the nervous motor system observed in L3. It is also possible that the peptides upregulated in the L1s associate with feeding behaviors that differ dramatically between the L1 and L3 life stages. More interesting is that for some genes, individual peptides are differentially expressed in one of the life stages compared to the other, e.g., nlp-10, nlp-21, nlp-40, and nlp-81. These data are intriguing and suggest that nematodes can differentially regulate the levels of individual peptides from the same precursor protein. This could be done through more rapid degradation of some component peptides compared to others, which further demonstrates the complexity inherent in nematode neuropeptide signaling.

Furthermore, the ability to quantify neuropeptides between different samples allows the comparison of peptide profiles. For example, this quantitative strategy allowed the differential analysis of peptide amidation profiles and represents an efficient approach to the characterization of key neuropeptide processing enzymes of the neuropeptide processing pathway or, in the context of drug discovery, could inform target engagement and the efficacy of inhibitors or modulators of the neuropeptide signaling pathways or their processing enzymes. This repository of biochemically identified and quantified peptide sequences provides a unique resource to enable the discovery of compounds active at different developmental stages of the nematode.

In conclusion, the extensive neuropeptide database provided here is a first step toward the understanding of the fundamental biochemistry of H. contortus and can be exploited in further experimental studies aiming at developing new anthelmintics against H. contortus.

METHODS

Parasite Collection. All H. contortus samples (L1 and L3 stages) were obtained from Boehringer Ingelheim Animal Health. Worms were pelleted (12 min, 1800g), resuspended in deionized water, and washed several times with water. At the end of the final wash, worms were resuspended in 30 μL of PBS prior to storage at −80 °C. The L1 samples had a similar biomass to the L3 stage samples, i.e., approximately 45 000 L1 and 20 000 L3 in a volume of 20 μL PBS.

Peptide Extraction and Purification. To extract the peptides, 150 μL of an acidic methanol (methanol/water/acetic acid (90/9/1)) solution was added to the larvae. The mixture was then stirred for 30 min at 4 °C, followed by a 10 s sonication step for L3 larvae. Samples were then centrifuged for 15 min at 10 000g at 4 °C. Supernatants were collected and concentrated under vacuum (Concentrator S301, Eppendorf (SpeedVac)) to obtain a volume of approximately 10 μL. The peptides were purified and desalted using C18 columns (OMIX C18 pipette tips, Millipore, Molsheim, France) according to manufacturer’s instructions. Finally, peptides were concentrated in vacuum and reconstituted in 0.2% formic acid for injection in LC-MS/MS.

Nano-HPLC/Nano-ESI Orbitrap-MS/MS. LC-MS/MS analyses were performed using a liquid chromatograph (LC) coupled to an Orbitrap Fusion Tridib mass spectrometer (Thermo Fisher Scientific, San Jose, CA) using a Nano-spray Flex NG source. Reversed-phase chromatography was performed with a nano-ACQUITY Ultra-Performance LC system (Waters, Milford, MA) fitted with a trapping column (nano-Acquity Symmetry C18, 100 Å, 5 μm, 180 μm × 20 mm) at a 15 μL/min flow rate and an analytical column (nano-Acquity BEH C18, 130 Å, 1.7 μm, 75 μm × 250 mm) directly coupled to the ion source. The mobile phases for LC separation were 0.2% (v/v) formic acid in LC-MS grade water (solvent A) and 0.2% (v/v) formic acid in acetonitrile (solvent B). Peptides were separated at a 300 nl/min constant flow rate with a linear gradient of 5%–85% solvent B for 85 min. A full MS1 survey scan was acquired with the Orbitrap for m/z 325–1200 at a 50 ms maximum filling time and 2 × 10^5 ions. The resolution was set to 120 000 at m/z 200. For MS/MS experiments, fragmentation was performed in HCD fragmentation cell (collision energy at 26%), with isolation of precursor ions in a quadrupole. Target ions previously selected for fragmentation were dynamically excluded for 50 s with a relative mass window of ±10 ppm. The MS/MS selection threshold was set to 5 × 10^6 ion counts. The detection was performed in an Ion Trap with an Automatic Gain Control (AGC) of 2 × 10^5 target value and a 50 ms maximum injection time. Each sample was injected twice (technical replicate).

Data Processing. Identification and quantification of peptides were performed using MaxQuant software (Ver. 1.5.3.8, Max-Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Munich). Database searching was performed against the FASTA databases downloaded from the WormBase site (https://wormbase.org) (BioProject PRJNA205202 and BioProject PRJEB506). Interrogation of the databanks was based on the following criteria: precursor mass tolerance of 7 ppm, fragment ions mass tolerance of 0.6 Da, and 2 maximum missed cleavages with semi-trypsin as the enzyme. Search parameters for post-translational modifications were variable modifications of oxidation on methionine residues, N-terminal cyclization of glutamine/glutamic acid to pyroglutamate, disulfide bridge on cysteine residues, and glycine loss in combination with amidation (Gly-loss+Amide (C-term G)). The match between runs was performed with a match time window set to 0.7 min and an alignment time window set to 20 min. A false discovery
rate of 1% was required for peptides with a minimum Andromeda score for accepting an MS/MS identification for modified peptides set to 40. All of the other parameters were MaxQuant default parameters. Peptides were retained as putative neuropeptides if they were surrounded by (di)basic residues and were kept only if their Andromeda score was higher than 60 or after manual inspection of their MS/MS spectra.

Differential Statistical Analysis. Peptide intensities were exported from the MaxQuant modificationSpecificPeptides file. Missing values were replaced by the minimum value of each acquisition. Intensities were transformed into their log2 values. Medians were calculated over the technical replicates. Data normalization was performed on the set of all identified and quantified peptides. The normalization coefficients thus obtained were applied to the initial intensities of all of the peptides detected. A two-tailed t test for each peptide was performed on the normalized medians to determine the statistical significance between L1 and L3 sample groups, assuming equal variance.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c00650.

Sequence alignments of *H. contortus* FLP precursors predicted from the WormBase PRJNA205202 project and from the WormBase PRJEB506 with its homologs in *C. elegans*, UniProtKB source (Figure S1); sequence alignments of *H. contortus* NLP precursors predicted from the PRJNA205202 and from the PRJEB506.WBPS14 WormBase projects with their homologs in *C. elegans*, UniProtKB source (Figure S2); relative label-free quantification of FLP and NLP peptides between the first-stage (L1) and third-stage larvae (L3) of *H. contortus* (Figure S3); homemade database Fasta file (Supplementary Data 1) (PDF)

Blast analysis of *C. elegans* NLP precursors reported by Van Bael et al.,29 against *H. contortus* WormBase PRJEB506 and PRJNA205202 databases (Table S1);
expressions of all FLP and NLP peptides in the L1 larvae stage and L3 larvae stage of H. contortus (Table S2); expressions of mature FLP and NLP peptides in the L1 larvae stage and L3 larvae stage of H. contortus (Table S3) (XLSX)

■ AUTHOR INFORMATION

Corresponding Author

Armelle Buzy – Sanofi R&D, 91385 Chilly-Mazarin, France; orcid.org/0000-0003-3084-0468; Email: armelle.buzy@sanofi.com

Authors

Camille Allain – Sanofi R&D, 91385 Chilly-Mazarin, France
John Harrington – Boehringer Ingelheim Animal Health, Duluth, Georgia 30096, United States
Dominique Lesuisse – Sanofi R&D, 91385 Chilly-Mazarin, France
Vincent Mikoł – Sanofi R&D, 91385 Chilly-Mazarin, France
David F. Bruhn – Boehringer Ingelheim Animal Health, Duluth, Georgia 30096, United States
Aaron G. Mauel – School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, U.K.
Jean-Claude Guillemet – Sanofi R&D, 91385 Chilly-Mazarin, France

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c00650

Author Contributions

A.B. wrote the paper with input from all other authors. A.B. and C.A. designed the experiments. J.-C.G. supervised the development of the whole analytical workflow. D.F.B. prepared the parasite samples for peptide extraction. C.A. performed the peptide extraction, the LC-MS/MS analysis, and the Database Searching. A.B. processed the data.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors would like to thank Veeranagouda Yaligara, Michel Didier, Jean-Luc Zachayus, and Anne Remaury for technical advice.

■ ABBREVIATIONS

FLPs, FMRFamide-like peptides; NLPs, neuropeptide-like proteins; LC-MS/MS, liquid chromatography-tandem mass spectrometry; FDR, false discovery rate; FC, fold-change

■ REFERENCES

(1) Besier, R. B.; Kahn, L. P.; Sargison, N. D.; Van Wyk, J. A. The Pathobiology, Ecology and Epidemiology of Haemonchus contortus Infection in Small Ruminants. Adv. Parasitol. 2016, 93, 95–143.
(2) Gasser, R. B.; von Samson-Himmelstjerna, G. Haemonchus contortus and haemonchosis— past, present and future trends. Adv. Parasitol. 2016, 93, 1–666.
(3) Veglia, E. The anatomy and life history of the Haemonchus contortus. Rep. Dir. Vet. Res. 1915, 3–4, 347–500.
(4) Brown, L. A.; Jones, A. K.; Buckingham, S. D.; Mee, C. J.; Sattelle, D. B. Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: nicotinic acetylcholine receptors, a case study. Int. J. Parasitol. 2006, 36, 617–624.
(5) Martin, R. J.; Robertson, A. P. Control of Nematode Parasites with Agents Acting on Neuro-Musculature Systems: Lessons for Neuropeptide Ligand Discovery. Adv. Exp. Med. Biol. 2010, 692, 138–154.
(6) Mousley, A.; Marks, N. J.; Halton, D. W.; Geary, T. G.; Thompson, D. P.; Maule, A. G. Arthropod FMRFamide-related peptides modulate muscle activity in helminths. Int. J. Parasitol. 2004, 34, 755–768.
(7) Kotze, A. C.; Prichard, R. K. Anthelmintic Resistance in Haemonchus contortus: History, Mechanisms and Diagnosis. Adv. Parasitol. 2016, 93, 379–428.
(8) Maule, A. G.; Mousley, A.; Marks, N. J.; Day, T. A.; Thompson, D. P.; Geary, T. G.; Halton, D. W. Neuropeptide signaling systems - potential drug targets for parasite and pest control. Curr. Top. Med. Chem. 2002, 2, 733–758.
(9) Mousley, A.; Polese, G.; Marks, N. J.; Eisthen, H. L. Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolots (Ambystoma mexicanum). J. Neurosci. 2006, 26, 7707–7717.
(10) Mousley, A.; Novozhilova, E.; Kimber, M. J.; Day, T. A.; Maule, A. G. Neuropeptide physiology in helminths. Adv. Exp. Med. Biol. 2010, 692, 78–97.
(11) McVeigh, P.; Atkinson, L.; Marks, N. J.; Mousley, A.; Dalzell, J. J.; Slader, A.; Hammerland, L.; Maule, A. G. Parastide neuropeptide biology: Seeding rational drug target selection? Int. J. Parasitol.: Drugs Drug Resist. 2012, 2, 76–91.
(12) McVeigh, P.; Geary, T. G.; Marks, N. J.; Maule, A. G. The FLP-side of nematodes. Trends Parasitol. 2006, 22, 385–396.
(13) Li, C.; Nelson, L. S.; Kim, K.; Nathoo, A.; Hart, A. C. Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann. N. Y. Acad. Sci. 1999, 897, 239–252.
(14) McCoy, C. J.; Atkinson, L. E.; Zamanian, M.; McVeigh, P.; Day, T. A.; Kimber, M. J.; Marks, N. J.; Maule, A. G.; Mousley, A. New insights into the FLPergic complements of parasitic nematodes: Informing deorphanisation approaches. Elife Open Proteomics 2014, 3, 262–272.
(15) Peymen, K.; Watteyne, J.; Froonincx, L.; Schoofs, L.; Beets, I. The FMRFamide-Like Peptide Family in Nematodes. Front. Endocrinol. 2014, 5, 90.
(16) Gahoi, S.; Gautam, B. Identification and analysis of insulin like peptides in nematode secretomes provide targets for parasite control. Bioinformation 2016, 12, 412–415.
(17) Price, D. A.; Greenberg, M. J. Structure of a molluscan cardioexcitatory neuropeptide. Science 1977, 197, 670–671.
(18) McVeigh, P.; Alexander-Bowman, S.; Veal, E.; Mousley, A.; Marks, N. J.; Maule, A. G. Neuropeptide-like protein diversity in phylum Nematoda. Int. J. Parasitol. 2008, 38, 1493–1503.
(19) Nathoo, A. N.; Moeller, R. A.; Westlund, B. A.; Hart, A. C. Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 14000–14005.
(20) Li, C.; Kim, K. Family of FLP Peptides in Caenorhabditis elegans and Related Nematodes. Front. Endocrinol. 2014, 5, 150.
(21) Christie, A. E.; Nolan, D. H.; García, Z. A.; McCoole, M. D.; Harmon, S. M.; Congdon-Jones, B.; Ohno, P.; Hartline, N.; Congdon, C. B.; Baer, K. N.; Lenz, P. H. Bioinformatic prediction of arthropod-nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa. Gen. Comp. Endocrinol. 2011, 170, 480–486.
(22) Jarecki, J. L.; Frey, B. L.; Smith, L. M.; Stretton, A. O. Discovery of neuropeptides in the nematode Ascaris suum by database mining and tandem mass spectrometry. J. Proteome Res. 2011, 10, 3098–3106.
(23) Koziol, U.; Koziol, M.; Preza, M.; Costabile, A.; Brehm, K.; Castillo, E. De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach. Int. J. Parasitol. 2016, 46, 709–721.
(24) McCoy, C. J.; Atkinson, L. E.; Robb, E.; Marks, N. J.; Maule, A. G.; Mousley, A. Tool-Driven Advances in Neuropeptide Research
from a Nematode Parasite Perspective. *Trends Parasitol.* 2017, 33, 986–1002.

(25) Edwards, S. L.; Mergan, L.; Parmar, B.; Cockx, B.; De Haes, W.; Temmerman, L.; Schoofs, L. Exploring neuropeptide signalling through proteomics and peptidomics. *Expert Rev. Proteomics* 2019, 16, 131–137.

(26) Husson, S. J.; Clynen, E.; Baggerman, G.; De Loof, A.; Schoofs, L. Discovering neuropeptides in *Caenorhabditis elegans* by two dimensional liquid chromatography and mass spectrometry. *Biochem. Biophys. Res. Commun.* 2005, 335, 76–86.

(27) Husson, S. J.; Landuyt, B.; Nys, T.; Baggerman, G.; Boonen, K.; Clynen, E.; Lindemans, M.; Jansen, T.; Schoofs, L. Comparative peptidomics of *Caenorhabditis elegans* versus *C. briggsae* by LC-MALDI-TOF MS. *Peptides* 2009, 30, 449–457.

(28) Van Bael, S.; Edwards, S. L.; Husson, S. J.; Temmerman, L. Identification of endogenous neuropeptides in the nematode *C. elegans* using mass spectrometry. *Methods Mol. Biol.* 2018, 1719, 271–291.

(29) Van Bael, S.; Zels, S.; Boonen, K.; Beets, I.; Schoofs, L.; Temmerman, L. A *Caenorhabditis elegans* mass spectrometric resource for neuropeptidomics. *J. Am. Soc. Mass Spectrom.* 2018, 29, 879–889.

(30) Yew, J. Y.; Dikler, S.; Stretton, A. O. De novo sequencing of novel neuropeptides directly from *Ascaris suum* tissue using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight. *Rapid Commun. Mass Spectrom.* 2003, 17, 2693–2698.

(31) Keating, C. D.; Holden-Dye, L.; Thordyke, M. C.; Williams, R. G.; Mallett, A.; Walker, R. J. The FMRFamide-like neuropeptide AF2 is present in the parasitic nematode *Haemonchus contortus*. *Parasitology* 1995, 111, 515–521.

(32) Marks, N. J.; Sangster, N. C.; Maule, A. G.; Halton, D. W.; Thompson, D. P.; Geary, T. G.; Shaw, C. Structural characterisation and pharmacology of KHEYLRFamide (AF2) and KSAYMRFamide (PF3/AF8) from *Haemonchus contortus*. *Mol. Biochem. Parasitol.* 1999, 100, 185–194.

(33) Li, C.; Kim, K.; Nelson, L. S. FMRFamide-related neuropeptide gene family in *Caenorhabditis elegans*. *Brain Res.* 1999, 848, 26–34.

(34) Atkinson, L. E.; Miskelly, I. R.; Moffett, C. L.; McCoy, C. J.; Maule, A. G.; Marks, N. J.; Mousley, A. Unraveling flp-11/flp-32 dichotomy in nematodes. *Int. J. Parasitol.* 2016, 46, 723–736.

(35) Li, C.; Kim, K.; Nelson, L. S. FMRFamide-related neuropeptide gene family in *Caenorhabditis elegans*. *Brain Res.* 1999, 848, 26–34.

(36) Petrushin, A.; Ferrara, L.; Blau, A. The Si elegans project at the interface of experimental and computational *Caenorhabditis elegans* neurobiology and behavior. *J. Neural Eng.* 2016, 13, No. 065001.

(37) Ma, G.; Wang, T.; Korhonen, P. K.; Ang, C. S.; Williamson, N. A.; Young, N. D.; Stroehlein, A. J.; Hall, R. S.; Koehler, A. V.; Hofmann, A.; Gasser, R. B. Molecular alterations during larval development of *Haemonchus contortus* in vitro are under tight post-transcriptional control. *Int. J. Parasitol.* 2018, 48, 763–772.