ORIGINAL ARTICLE

First record of *Myotis alcathoe* von Helversen & Heller, 2001 (Chiroptera: Vespertilionidae) in Macedonia

Nikola Micevski1,*, Javier Juste3,4, Branko Micevski1,2

1 BatLife Macedonia, Blvd. Fevuarski Pohod 24/47, 1000 Skopje, Macedonia
2 Sts. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Department of Animal Taxonomy and Ecology, 1000 Skopje, Macedonia
3 Estación Biológica de Doñana, CSIC, Avda América Vespucio 16, Seville 41092, Spain
4 CIBER de Epidemiología y Salud Pública. CIBERESP, Spain

* Corresponding author e-mail: nikom.entomak@gmail.com

DOI: https://doi.org/10.14709/BarbJ.11.1.2018.03

Keywords: Myotis alcathoe, DNA, chiroptera, Balkans, bat species, faunistics, Barbastella barbastellus.

received: February, 13th 2018
accepted: May, 12th 2018

ABSTRACT

Only recently separated from the *Myotis mystacinus* species complex, the Alcathoe whiskered bat (*Myotis alcathoe*) is one of the rarest tree-dwelling bats in Europe. In fact, despite the increased number of records across the continent, it is generally still poorly known. Here we present its discovery in Macedonia. A molecularly confirmed *Myotis alcathoe* was mist netted in the lower part of Štučka River Valley, near the Štuka village in SE Macedonia. The species is new for the bat fauna of Macedonia. This discovery brings the total number of bat species known to occur in the country to 29. In addition, the study reports the third record of the rare Western Barbastelle bat, *Barbastella barbastellus* (Schreber, 1774) from Macedonia.

INTRODUCTION

The Alcathoe whiskered bat was initially discovered in Greece and Hungary, and was described based on specimens from Greece (von Helversen et al. 2001). Soon after its description, the species was also found in France (Ruedi et al. 2002), Slovakia (Benda et al. 2003), Montenegro (Benda 2004), Spain (Agirre-Mendi et al. 2004), Bulgaria (Schunger et al. 2004) and Switzerland (Stadelmann et al. 2004). During the last decade, new records followed from Germany, Poland, Albania and Turkey (Niermann et al. 2007), Romania (Jére & Dóczy 2007), Austria (Spitzenberger et al. 2008), Czech Republic (Rehák et al. 2008), Italy (Tereba et al. 2009), United Kingdom (Jan et al. 2010), Ukraine (Bashta et al. 2011), Slovenia (Presetnik 2012), Croatia (Pavlinić et al. 2012) and Belgium (Nyssen et al. 2015). In addition to being the smallest European *Myotis* species, the Alcathoe whiskered bat differs from other species in the whiskered bat species complex (the *Myotis mystacinus* complex), by dental characteristics as well (i.e. protocone of the third upper premolar) (Dietz & von Helversen 2004). However, in most cases, genetic analyses are necessary for a proper and unambiguous identification, particularly when new records of the species are presented.

Though there have been an increasing number of records during the past decade, the distribution of this species is still only partially understood and little is known about its conservation status. In fact, IUCN classifies it as “data deficient” (IUCN, 2017) and the European Environment Agency (EEA) describes its status as “unknown” pointing to forest clearances, use of biocides, and removal of dying and dead trees as its main threats (EEA, 2017).

MATERIAL AND METHODS

A mist netting field work session was conducted in the lower part of the Štučka river (Mt. Ogražden, SE Macedonia) on 11 October 2014. The survey was part of a wider study of the bat fauna of Mt. Ogražden during 2013-2016 for the purposes of biodiversity baseline studies preparation. Bats were captured with two mist nets (2.5 x 4 m) set across the river surrounded by old Poplar trees (*Populus alba* L. and *P. nigra* L.). The nets were deployed half an hour before sunset and kept in place for four hours. All bats were identified, measured, weighed and photographed before being released at the same netting point. Measurements and body mass of each mist netted bat were taken using a digital caliper (± 0.1 mm) and a Pesola digital scale (± 0.1 g).

The field identification of the specimens was based on morphological characteristics given by Dietz & von Helversen (2004) and Dietz et al. (2009). In addition, biopsy wing punches (3 mm) were taken from one questionable small
Myotis bat and preserved in 70% ethanol vial. Samples were later sent for DNA analyses to the Laboratory of Molecular Ecology (LEM) at the Estación Biológica de Doñana (CSIC) in Seville, Spain.

Genetic analysis

DNA was extracted from wing biopsies preserved in ethanol following Higuchi et al. (1988). A fragment of subunit 1 of the mitochondrial NADH dehydrogenase (ND1) gene was amplified using primers ND1-F2 and ND1-R (Kawai et al. 2002). The PCR mix (20 μl final reaction volume) included 2 μl of DNA extract, 1 μl of each primer (10 μM), 0.8 μl of MgCl2 (50 mM), 0.16 μl dNTP (25 mM), 0.5 unit of taq-polymerase with appropriate buffer and H2O. Thermocycling consisted of 5’ initial denaturation at 94°C, followed by 40 cycles at 94°C (30’’), 52°C (30’’), and 72°C (1’30’’), with a final extension at 72°C (5’). The fragment was sequenced directly from purified PCR product using an ABI 3100 automated sequencer (Applied Biosystems, Warrington, UK), following the manufacturer’s protocols. The partial sequences were aligned and edited using the program Geneious R7 (Biomatters Ltd.) and visually inspected. For species identification purposes, the obtained sequences were compared to available sequences in the GenBank database (http://www.ncbi.nlm.nih.gov/GenBank) using the BLAST tool. To study the phylogenetic relationships of this sample, an alignment was constructed using a selection of 13 homologous sequences of the same ND1 marker of *M. alcathoe* available in GenBank and using a *M. mystacinus* sample as outgroup. After selecting the best fitting substitution model using JMODELTEST-2 (Darriba et al. 2012) and the Bayesian criterion (BIC), a phylogenetic hypothesis was reconstructed using a Bayesian probabilistic criterion. The tree was obtained after three simultaneous runs of Markov chains Monte Carlo (MCMC) for 5x10^6 generations. Trees were sampled every 100 generations and the burn-in value was determined empirically after tree likelihood scores reached stationary. The analysis was performed using MrBAYES v.3.2. (Ronquist et al. 2012).

RESULTS AND DISCUSSION

One small male *Myotis* netted in the lower part of the Štučka River (41°28’16.83”N, 22°49’14.13”E, 340 m a.s.l.) – Mt. Ogražden foothills, UTM-FL59 (Fig. 1) displayed morphological characteristics – particularly dentition (Fig. 2) and measurements (Table 1) which strongly suggested that it belonged to the *Myotis alcathoe* species. The sequence of around 950 bp of the ND1 fragment (Gen Bank Accession
That was incorporated into the history of the species, one of them in the Balkans. The new to two possible glacial refugia in the recent evolutionary reconstruction indicates that the bat from Macedonia was in fact a Myotis bechsteinii (Kuhl, 1817) (Budinski 2017) brings the total number of bat species known to occur in the country to 29. The closest known locality of the species is the Kresna gorge in the neighboring Bulgaria (Niermann et al. 2007) at a distance of some 40 km to the north-east.

During the survey (18:20 - 22:20 h), the temperature varied from 16 to 17 °C and the wind speed was 0 on the Beaufort scale. The Alcathoe whiskered bat was netted together with seven additional bat species: Plecotus austriacus (1♀), Myotis mystacinus (2♂), Hypsugo savii (1♂), Nyctalus leisleri (1♂), Barbastella barbastellus (3♂), Pipistrellus kuhlii (1♀, 1♂) and P. nathusii (1♂). The finding of B. barbastellus is certainly worth noting, bearing in mind that it is the third record for the country. Prior to this study this species was known only from Demir Kapija (Đulić & Mikuška 1966) and Kriva Palanka (Stojanovski 1998), the two localities are situated in the eastern part of the country. The most recent comprehensive study of the bat fauna of Macedonia (Micevski et al. 2014) did not report this rare species, even though the surveys covered various regions and habitats, including few from Eastern Macedonia (i.e. Štip, Dojran).

The area where both the Alcathoe whiskered bat and the Western Barbastelle were discovered is highly influenced by the Mediterranean climate. The capture site (Fig. 4) is characterized by heavily degraded sub-mediterranean forest (ass. Querco carpinetum-orientalis) with scattered patches of pastures and meadows along the river, and with considerable presence of Christ’s thorn (Paliurus spinachristi Mill.) and prickly juniper (Juniperus oxycedrus L.). Upstream of the river, at lower altitudes, old-grown trees such as Oriental plane (Platanus orientalis L.), common alder (Alnus glutinosa (L.) Gaertn.), and walnut (Juglans regia L.) are quite frequent. At higher altitudes, the valley becomes quite steep and wet, and, depending from the exposition, is dominated either by beech (Fagus moesiaca (Maly, Domin) Czecz.) or by oak (Quercus cerris L.) forests. A recent study on the roost ecology of M. alcathoe (Coronado et al. 2018) identifies the maturity of the forests and the abundance of old trunks as key factors for roost-site selection by the species. In our case, the age of the forests is mainly 40-50 years; yet, old trees are also common and most probably used for roosting as well.

This discovery of the Alcathoe whiskered bat fills the gap in its known distribution between Tepelene (Albania), Kavala (Greece) and Kresna (Bulgaria). It is expected that the species is more widely distributed in Macedonia (e.g.

Number MG917094) showed > 95% identity with available homologous ND1 sequences of M. alcathoe in GenBank in a BLAST comparison, indicating unambiguously that the small Myotis was in fact a M. alcathoe bat. The studied alignment of the ND1 fragment included 15 sequences of 800 bp long. The best fitting selection model for the alignment was HKY-85 (Hasegawa et al. 1985) that was incorporated into the Bayesian analysis in which the first 200,000 generated trees were disregarded as ‘burnin’. The final Bayesian phylogenetic tree. The best fitting selection model for the alignment was HKY-85 (Hasegawa et al. 1985) that was incorporated into the Bayesian analysis in which the first 200,000 generated trees were disregarded as ‘burnin’. The final Bayesian phylogenetic tree. The best fitting selection model for the alignment was HKY-85 (Hasegawa et al. 1985) that was incorporated into the Bayesian analysis in which the first 200,000 generated trees were disregarded as ‘burnin’. The final Bayesian phylogenetic tree.

Fig. 2 - Dentition (left) and side view of the head (right) of the mist netted Myotis alcathoe in Macedonia (Photo: Nikola Micevski).

Fig. 3 - Reconstruction of the phylogenetic relationships within Myotis alcathoe based on a Bayesian analyses of a NDI mtDNA gene fragment. Values on the nodes are posterior probabilities after running 3 independent MCMC chains with 5x108 generations and using a homologous sequence of M. mystacinus to root the tree.

Table 1 - Measurements (mm) and body mass (g) of the first specimen of Myotis alcathoe recorded from Macedonia.

Date	Locality	Sex	Forearm	5th finger	3rd finger	Thumb	Tibia	Foot	Weight
11-10-2014	Štučka River	♂	31,6	36,8	47,1	4,2	14,2	5,5	3,2

Journal of Bat Research & Conservation
Volume 11 (1) 2018
Osogovski Mts., Maleševski Mts., Bregalnica River valley etc.) and further studies are necessary to confirm its status and distribution patterns in the country.

ACKNOWLEDGEMENTS

We thank to Primož Presetnik (Slovenia), Martin Cefuch (Slovakia) and Christian Dietz (Germany) for their comments on the species determination based on morphological characteristics. We thank to Juan Luis García-Mudarra, technician of the Laboratory of Molecular Ecology of the Estación Biológica de Doñana (LEM-EBD) in Spain for the DNA extraction and sequencing, and Frieder Mayer (Museum für Naturkunde, Germany) for additional independent sequencing. We thank to Bogoljub Sterijovski (Macedonia) for his help during the field work and to Euromax Resources for supporting the survey.

REFERENCES

AGIRRE-MENDI, P. T., GARCÍA-MUDARRA, J. L., JUSTE, J. & IBÁÑEZ, C. (2004). Presence of Myotis alcathoe Helversen & Heller, 2001 (Chiroptera: Vespertilionidae) in the Iberian Peninsula. Acta Chiropterologica, 6 (1): 49-57. https://doi.org/10.3161/001.006.0104

BASHTA, A. T., PISKORSKI, M., MISLAJEK, R. W., TEREBA, A., KORNELIUSZ, K. & SACHANOWICZ, K. (2011). Myotis alcathoe in Poland and Ukraine: new data on its status and habitat in central Europe. Folia Zoologica, 60 (1): 1-4. https://doi.org/10.25225/fozo.v60i1.a1.2011

BENDA, P. (2004). First record of Myotis aurascens and second record of Myotis brandtii in Montenegro. Lynx, n.s. 35: 13–18.

BENDA, P., RUEDI, M. & UHRIN, M. (2003). First record of Myotis alcathoe (Chiroptera: Vespertilionidae) in Slovakia. Folia Zoologica, 52: 359–365.

BUDINSKI, I. (2017). The first record of Bechstein’s Bat (Myotis bechsteinii (Kuhl, 1817)) in Macedonia and first data on bat fauna of the Korab Mountain. Hypsugo, II (2): 1-10.

BOGDANOWICZ, W., HULVA, P., ČERNÁ BOLFÍKOVÁ, B., BUŠ, M. M., RYCHLICKA, E., SZTENCEL-JABLONKA, A., CISTRONE, L. & RUSSO, D. (2015). Cryptic diversity of Italian bats and the role of the Apennine refugium in the phylogeography of the western Palaearctic. Zoological Journal of the Linnean Society, 174 (3): 635-648. https://doi.org/10.1111/zoj.12248

CORONADO, A., FLAQUER, C., PUIG-MONTSERRAT, X., BARTHÉ, E., MAS, M., ARRIZABALAGA, A. & LÓPEZ-BAUCELLS, A. (2018). The role of secondary trees in Mediterranean mature forests for the conservation of the forest-dwelling bat Myotis alcathoe. Are current logging guidelines appropriate? Hystrix, 28 (2): 240-246. https://doi.org/10.4404/HYSTRIX-00004-2017

DARRIBA, D., TABOADA, G. L., DOALLO, R. & POSADA, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature methods, 9 (8): 772.

DIETZ, C. & VON HELVERSEN, O. (2004). Illustrated identification key to the bats of Europe. Tübingen, Germany, 72 pp.

DIETZ, C., NILL, D. & VON HELVERSEN, O. (2009). Bats of Britain, Europe and Northwest Africa. A & C Black Publishers, London, United Kingdom, 400 pp.
DULIĆ, B. & MIKUŠKA, J. (1966). Two new species of bats (Mammalia, Chiroptera) from Macedonia with notes on some other bats occurring in this territory. *Fragmenta Balcanica Musei Macedonici Scientiarum Naturalium*, 6 (1/136): 1-13.

EEA (2017). *Myotis alcathoe*, European Environment Agency Report under the Article 17 of the Habitats Directive for the period 2007-2012.

HASEGAWA, M., KISHINO, H. & YANO, T. (1985). Dating the human-ape split by a molecular clock of mitochondrial DNA. *Journal of Molecular Evolution*, 22: 160-174.

HIGUCHI, R., VON BEROLDINGEN, C. H., SENSABAUGH G. F. & ERLICH, H. A. (1988). DNA typing from hairs. *Nature*, 332: 534–546. https://doi.org/10.1038/332543a0

IUCN (2017, May 20). *Myotis alcathoe*, The IUCN Red List of Threatened Species.

JAN, C. M.I., FRITH, K., GLOVER, A. M., BUTLIN, R. K., SCOTT, C. D., GREENAWAY, F., RUEDI, M., FRANTZ, A.C., DAWSON, D.A. & ALTRINGHAM, J.D. (2010). *Myotis alcathoe* confirmed in the UK from mitochondrial and microsatellite DNA. *Acta Chiropterologica*, 12: 471-483. https://doi.org/10.3161/150811010X538043

JÉRE, C. & DÓCZY, A. (2007). Prima semnalare a speciei de lielici *Myotis alcathoe* Helversen et Heller, 2001 (Chiroptera, Vespertilionidae) din România. *Acta Siculo* 2007: 179-183.

Kawai, K., NIKAIDO, M., HARADA, M., MATSUMURA, S., LIN, LK, WU, Y., HASEGAWA, M. & OKADA, N. (2002). Intra- and interfamily relationships of vespertilionidae inferred by various molecular markers including SINE insertion data. *Journal of Molecular Evolution*, 55: 284–301. https://doi.org/10.1007/s00239-002-2326-0

MICEVSKI, N., PRESENTNIK, P., MICEVSKI, B. & CELUCH, M. (2014). Contribution to the knowledge of the Macedonian bat fauna. *Vespertilio*, 17: 103–114.

NIERMANN, I., BIEDERMANN, M., BOGDANOWICZ, W., BRINKMANN, R., LE BRIS, Y., CIECHANOWSKI, M., DIETZ, C., DIETZ, I., ESTÓK, P., VON HELVERSEN, O., LE HOUEDEC, A., PAKSUZ, S., PETROV, B., ÖSKAN, B., PIKSA, K., RACHWALD, A., ROUÉ, S. Y., SACHANOWICZ, M., SCHORCHT, W., STOJANOVSKI, L., TEREBA, A. & MAYER, F. (2007). Biogeography of the recently described *Myotis alcathoe* von Helversen & Heller, 2001. *Acta Chiropterologica*, 9 (2): 361-378. https://doi.org/10.3161/1733-5329(2007)9[361:BOTRDM]2.0.CO;2

NYSSEN, P., SMITS, Q., VAN DE SIJPE, M., VANDENDRIESSCHE, B., HALMAERTEN, D. & DEKEUKELEIRE, D. (2015). First records of *Myotis alcathoe* von Helversen & Heller, 2001 in Belgium. *Belgian Journal Of Zoology*, 145 (2): 130-136.

PAVLINIĆ, I., TVRTKOVIC, N. & PODNAR, M. (2012). Preliminary data on genetics and morphometrics of *Myotis alcathoe* (Chiroptera, Vespertilionidae) in Croatia. *Mammalia*, 76 (3): 331-334. https://doi.org/10.1515/mammalia-2012-0004

PRESENTNIK, P. (2012). Descriptions of first records of *Myotis alcathoe* in Slovenia. *Natura Sloveniae*, 14 (1): 5-13.

RONQUIST, F., TESLENKO, M., VAN DER MARK, P., AYRES, D. L., DARLING, A., HÖHNA, S., LARGET, B., LIU, L., SUCHARD, M. A. & HUelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61 (3): 539-542. https://doi.org/10.1093/sysbio/sys029

REHÁK, Z., BARTONICKA, T., BRYJA, J. & GAISLER, J. (2008). New records of the Alcathoe bat, *Myotis alcathoe* in Moravia (Czech Republic). *Folia Zoologica*, 57 (4): 465-469.

RUEDI, M., JOURDE, P., GIOSA, P., BARATAUD, M. & ROUÉ, S. Y. (2002). DNA reveals the existence of *Myotis alcathoe* in France (Chiroptera: Vespertilionidae). *Revue Suisse de Zoologie*, 109: 643–652. https://doi.org/10.5962/bhl.part.79614

SCHUNGER, I., DIETZ, C., MERDSCHANEN, D., MERDSCHANOV, S., CHRISTOV, K., BORISSOV, I., STANEVA, S. & PETROV, B. (2004). Swarming of bats (Chiroptera, Mammalia) in the Vodnaye Dupki Cave (Central Balkan National Park, Bulgaria). *Acta Zoologica Balkarica*, 56: 323-330.

SPITZENBERGER, F., PAVLINIĆ, I. & PODNAR, M. (2008). On the occurrence of *Myotis alcathoe* von Helversen and Heller, 2001 in Austria. *Hystrix* (N.S.), 19: 3–12. https://doi.org/10.4404/hystrix-19.1-4409

STADELMANN, B., JACOBS, D.S., SCHOEMAN, C. & RUEDI, M. (2004). Phylogeny of African *Myotis* Bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. *Acta Chiropterologica*, 6: 177-192. https://doi.org/10.3161/001.006.0201

STOJANOVSKI, L. (1998, 2. Kongres na biolozite na Makedonijana). Second record of *Barbastella barbastellus* (Schreber, 1774) (Mammalia, Chiroptera) on the territory of Macedonia. Kniga na Apstrakti, Ohrid, p. 93

TAMURA, K., PETERSON, D., PETERSON, N., STECHER, G., NEI, M. & KUMAR, S. (2011). MEGAS: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology and Evolution*, 28 (10): 2731-2739. https://doi.org/10.1093/molbev/msr121

TEREBA, A., RUSSO, D., CISTRONE, L. & BOGDANOWICZ, W. (2009, Acts of the 2nd Italian Bat Congress,). Cryptic diversity: first record of *Myotis alcathoe* (Vespertilionidae) for Italy. pp. 85-88.

VON HELVERSEN, O., HELLER, K.-G., MAYER, F., NEMETH, A., VOLLETH, M. & GOMBKÖTO, P. (2001). Cryptic mammalian species: a new species of whiskered bat (*Myotis alcathoe* n.sp.) in Europe. *Naturwissenschaften*, 88 (5): 217–223. https://doi.org/10.1007/s001140100225