Localization and Topography of Antigenic Domains within the Heavy Chain of Smooth Muscle Myosin

MICHAEL D. SCHNEIDER, JAMES R. SELLERS, MARYANNE VAHEY, YVETTE A. PRESTON, and ROBERT S. ADELSTEIN
Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20205. Dr. Schneider’s present address is Section of Cardiology, Departments of Medicine and Cell Biology, Baylor College of Medicine, Houston, Texas 77030.

ABSTRACT We have produced and characterized monoclonal antibodies that label antigenic determinants distributed among three distinct, nonoverlapping peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Mice were immunized with a partially phosphorylated chymotryptic digest of adult turkey gizzard myosin. Hybridoma antibody specificities were determined by solid-phase indirect radioimmunoassay and immunoreplica techniques. Electron microscopy of rotary-shadowed samples was used to directly visualize the topography of individual [antibody-antigen] complexes.

Antibody TGM-1 bound to a 50-kD peptide of subfragment-1 (S-1) previously found to be associated with actin binding and was localized by immunoelectron microscopy to the distal aspect of the myosin head. However, there was no antibody-dependent inhibition of the actin-activated heavy meromyosin ATPase, nor was antibody TGM-1 binding to actin–S-1 complexes inhibited. Antibody TGM-2 detected an epitope of the subfragment-2 (S-2) domain of heavy meromyosin but not the S-2 domain of intact myosin or rod, consistent with recognition of a site exposed by chymotryptic cleavage of the S-2:light meromyosin junction. Localization of TGM-2 to the carboxy-terminus of S-2 was substantiated by immunoelectron microscopy. Antibody TGM-3 recognized an epitope found in the light meromyosin portion of myosin. All three antibodies were specific for avian smooth muscle myosin. Of particular interest is that antibody TGM-1, unlike TGM-3, bound poorly to homogenates of 19-d embryonic smooth muscles. This indicates the expression of different myosin heavy chain epitopes during smooth muscle development.

The structural organization of myosin molecules is conserved throughout evolution and among myosins of disparate tissue origin. A pair of heavy chains comprises both carboxy-terminal α-helical domains that form a coiled-coil “tail” and amino-terminal domains that form two globular “heads.” Each head is associated with a regulatory and an essential light chain. Interaction of myosin heads with filamentous actin, activation by actin of the Mg2+-ATPase of the myosin molecule, and functional coupling between ATP hydrolysis and force generation are essential and ubiquitous processes for contraction and other motile events in muscle and nonmuscle cells (1). In vertebrate striated muscles, myosin polymorphism is apparent not only for light chains characteristic of specific muscle classes, fiber types, and developmental stages (2–4), but also for myosin heavy chains of skeletal (5–9) and cardiac (10–12) muscle myosin. In contrast, the structural and functional organization and development of myosin in vertebrate smooth muscle have received relatively little study. We have produced a series of monoclonal antibodies (mAb)1 directed against antigenic determinants (epitopes) of smooth muscle myosin, as probes for such investigations.

We report here results obtained with hybridoma antibodies that recognize three distinct nonoverlapping domains of the heavy chain of avian smooth muscle myosin: heavy meromyosin (HMM) subfragment-1 (S-1), subfragment-2 (S-2),...
and light meromyosin (LMM). We have studied functional aspects of smooth muscle myosin by assaying for antibody-dependent effects on the actin-activated HMM Mg2+-ATPase and for actin-dependent effects on mAb binding. We have investigated the structure of the smooth muscle myosin heavy chain, not only with its purified peptide domains, immunoblot techniques, and electron microscopy of rotary-shadowed [antibody-antigen] complexes, but also in conjunction with radiophosphorylated myosin light chains (13) as a unique structural probe.

MATERIALS AND METHODS

Materials: Nitrocellulose filtration plates (pore size 0.45 μm, type STHA) were purchased from Millipore Corp. (Bedford, MA), and nitrocellulose membranes (pore size 0.20 μm, type BAF3) from Schleicher and Schuell, Inc. (Keene, NH). 125I-labeled Fab'2 fragment of affinity-purified sheep IgG directed against mouse immunoglobulins 125I-labeled Fab'2 (8.5 × 10^6 Ci/mmol) was purchased from New England Nuclear (Bosto, MA). Reagents for sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gel electrophoresis (SDS PAGE) were obtained from Bio-Rad Labs. (Richmond, CA). Trypsin (3× crystallized, type TRL.3), chymotrypsin (3x crystallized, type CDI), and papain (2x crystallized, type PAP) were obtained from Worthington Biochemical Corp. (Freehold, NJ). Initial stocks of P3-X63.Ag8 murine myeloma cells were obtained from Dr. Marshall Nirenberg (Institutes of National Health).

Production of Monoclonal Antibodies: To prepare smooth muscle myosin as immunogen and as antigen for initial screening assays, myosin was purified from adult turkey gizzards (14). Gizzard myosin was phosphorylated by myosin light chain kinase (14) to ~0.5 mol PO4/mol 20-kD myosin light chain (LC20) and subsequently subjected to limited proteolysis with chymotrypsin (1 mg/100 mg myosin) at 25°C in 500 mM NaCl. 10 mM MgCl2, 50 mM Tris-HCl, pH 7.4. The reaction was stopped after 10 min with the addition of phenylmethylsulfonyl fluoride to 0.5 mM. Female 6- to 9-week-old BALB/c mice were inoculated intraperitoneally at 0 and 8 d with 75 μg of myosin digest intravenously without adjuvant. Cell fusion at 18 d was performed in a Balzers vacuum evaporator (Balzers, Hudson, NH) by the method of Tyrer and Branton (28). A Zeiss EM-10 electron microscope (Carl Zeiss, Inc., Thornwood, NY) was employed at 60-kV accelerating voltage.

RESULTS

Specificity for Avian Smooth Muscle Myosin:

63 of 173 hybridoma colonies assayed 14–24 d after cell fusion produced detectable antibody directed against a chymotryptic digest of partially phosphorylated adult turkey gizzard myosin. We report results obtained with three hybridoma cell lines, each recloned three times at this limiting dilution to ensure homogeneity and adapted to growth in roller bottles yielding ~150 mg/liter of monoclonal immunoglobulin. The binding specificity of each mAb was first determined in the presence of 10^{-4}–10^{-5} g/well of myosin purified from adult turkey gizzard, chicken pectoralis, or calf aorta (Fig. 1). Antibodies TGM-1 and TGM-3, under the conditions shown, recognized intact turkey gizzard myosin but neither avian skeletal muscle myosin nor mammalian smooth muscle myosin. Antibody was comparably bound to myosin purified from gizzards of adult turkey versus adult chicken (data not shown). mAb TGM-2, which recognized an epitope of digested gizzard myosin in the screening assay, did not, however,

![Figure 1](https://via.placeholder.com/150)
bind to intact myosin. None of the antibodies tested bound to rabbit skeletal muscle HMM or to nonmuscle myosin purified from chicken intestinal brush border.

Tissue Homogenates

To determine the tissue specificity of epitopes recognized by antibodies TGM-1 and TGM-3, SDS-denatured homogenates of 19-d chicken embryo tissues were analyzed by indirect radioimmunoassay (Fig. 2). Antibody TGM-3 bound to homogenates of 19-d embryonic chicken gizzard, aorta, and intestine, but not to cardiac ventricle, pectoralis, or cerebellum. The binding of mAb TGM-3 was specific for the 200-kD smooth muscle myosin heavy chain as demonstrated in the accompanying Western blot (Fig. 3). In contrast, using antibody TMG-1, little binding to myosin in homogenates of 19-d embryonic chicken smooth muscle was detected by indirect radioimmunoassay (Fig. 2). Results demonstrating binding of each antibody in the presence of purified adult turkey gizzard myosin are included for comparison. Thus, antibody TGM-1 may identify a region of smooth muscle myosin that undergoes developmental regulation and is preferentially expressed in the adult. None of the antibodies bound SDS-denatured homogenates of uterus, stomach, cardiac ventricle, pectoralis, cerebellum, or spleen of adult rat (data not shown), indicating specificity for avian smooth muscle myosin.

Subfragments of Smooth Muscle Myosin Heavy Chain

Binding of each antibody was determined in the presence of purified intact adult turkey gizzard myosin or its purified subunits by indirect radioimmunoassay (Fig. 4) and by Western blot (Fig. 5). mAb TGM-1 identified intact myosin, HMM, and S-1, but not S-2, rod, or LMM. mAb TGM-3 recognized intact myosin, rod, and LMM, but not HMM, S-1, or S-2. Thus, the TGM-1 epitope was localized to S-1, and the TGM-3 epitope to LMM.

mAb TGM-2, which did not bind to intact myosin, bound to HMM and S-2 but not S-1, indicating that a free carboxy-terminus of S-2 must be present for recognition. To confirm this localization of the TGM-2 binding site, HMM was digested with papain, and myosin rod was digested with chymotrypsin (Fig. 6, A and E). The resultant peptides were analyzed by Western blot. mAb TGM-2 bound to undigested HMM, to a number of intermediate fragments, and to S-2 produced in a time-dependent manner from the carboxy-terminus of HMM (Fig. 6C). Whereas no binding to undigested rod or its intermediate fragments was detected, mAb TGM-2 did bind to S-2 cleaved from the amino-terminus of 5'-end.
FIGURE 5 Specificity of mAbs for identified domains of smooth muscle myosin heavy chain by Western blot. Purified subunits of adult turkey gizzard myosin (1 µg/lane) were subjected to SDS PAGE (panels A–D, 7.5% acrylamide; E–H, 12.5% acrylamide). Lanes: (a) HMM, (b) HMM produced by chymotryptic cleavage of myosin in the presence of ATP, (c) S-1, (d) LMM, (e) S-2, and (f) mixed LC2o and LC17. Panel E shows the Coomassie Blue-stained gel; B–D and F–H are autoradiograms of nitrocellulose replicas using mAbs TGM-1 (B and F), TGM-2 (C and G), or TGM-3 (D and H). The heavy chain of both 130-kD HMM and 97-kD S-1 undergo secondary proteolysis at a site ~70 kD from the amino-terminus (see Fig. 11). This gives rise to the additional bands seen below the main heavy chain bands in the HMM and S-1 preparations. (See reference 13 for a discussion of the digestion patterns.)

FIGURE 6 mAb TGM-2 recognizes HMM, S-2 derived from either HMM or from rod, but not intact rod. (A–D) HMM was digested with papain (0.01 U/mg HMM) and (E–H) rod with chymotrypsin (1 mg/100 mg rod) at 25°C for the times shown. Peptides (1 µg/lane) were separated by SDS PAGE (12.5% acrylamide). A and E show the Coomassie Blue-stained gel; B–D and F–H are autoradiograms of nitrocellulose replicas with mAbs TGM-1 (B and F), TGM-2 (C and G), or TGM-3 (D and H).

rod (Fig. 6G). Thus, [125I-F(ab')2]-TGM-2-S-2 complexes were not formed when the S-2-LMM junction was intact, and we postulate that the TGM-2 binding site is at or near the S-2-LMM junction. mAb TGM-1 (Fig. 6, B and F) and TGM-3 (Fig. 6, D and H) identified distinct families of proteolytic peptides derived only from HMM or from rod, respectively, and are shown for comparison.

The globular S-1 head produced after digestion of myosin with papain retains the actin-binding and actin-activated Mg2+-ATPase activity of the intact myosin molecule (29). Controlled proteolysis of skeletal myosin S-1 with trypsin (30–32) results in formation of an amino-terminal 25-kD adenine nucleotide-binding fragment, a 50-kD central fragment containing one of two actin cross-linking sites, and a carboxy-terminal 20-kD fragment that contains the second actin cross-linking site, the S-1:S-2 junction, and a site of probable association with myosin light chains (13, 33, 34). Smooth muscle myosin S-1 similarly digested with trypsin results in homologous fragments of apparent molecular weight 29-, 50-, and 26-kD (references 13 and 35; Fig. 7A). The Western blot employing mAb TGM-1 localizes the TGM-1 epitope (Fig. 7C) to the 50-kD tryptic fragment; the antibody bound neither to the amino-terminal 29-kD fragment, nor to the carboxy-terminal 26-kD fragment that binds radiophosphorylated 20-kD light chains of gizzard myosin (see reference 13 and Fig. 7B). The 28-kD band detected in the immunoblot only at 7.5 and 30 min-digestion does not correspond with the 29-kD fragment, as shown in the 1.5-min lanes.

After incubation of gizzard HMM or S-1 with rabbit skeletal muscle F-actin in the absence of ATP, such that all actin-binding sites were occupied, as determined by airfuge sedimentation of [S-1: actin] complexes, little or no inhibition of mAb TGM-1 binding was detected (Fig. 8). Phosphorylated gizzard HMM was incubated with mAb TGM-1 and then assayed for actin-activated Mg2+-ATPase activity. Little or no inhibition was detected under the conditions tested. In contrast, incubation of HMM with mAb TGM-2 resulted in a slight increase in the actin-activated Mg2+-ATPase activity (see Table I).

Topography of mAb Epitopes

Fig. 9 shows rotary-shadowed specimens of HMM and HMM reacted with TGM-1 and TGM-2. HMM molecules
FIGURE 8 Binding of mAb directed against myosin S-1 and HMM in the presence and absence of actin. Turkey gizzard HMM (circles) or myosin S-1 (squares) was incubated at 25°C for 30 min in the presence (solid symbols) or absence (open symbols) of rabbit skeletal muscle F-actin, as previously described (19). The proteins were immobilized on nitrocellulose for solid-phase indirect radioimmunoassay (see Materials and Methods) at the antigen concentration indicated. Results shown are fmol 125I-F(ab')2 specifically bound per well. (A) Reaction of HMM and S-1 with TGM-1. (B) Reaction of HMM and S-1 with TGM-2.

TABLE I
Actin-activated HMM ATPase in the Presence of mAbs Directed against HMM

mAb	0.02	0.05	0.10
TGM-1	86	117	110
TGM-2	192	171	185

Phosphorylated gizzard HMM (0.02-0.1 μM) was incubated at 37°C for 60 min with monoclonal IgG (0.33 μM) purified by DEAE-cellulose chromatography, then assayed for actin-activated Mg2+-ATPase activity as previously described (14). P3-X63.Ag8 IgG was used as control. The control HMM ATPase activity was 0.35 μmol Pi released/min per mg.

* Values in heading represent μM HMM.

(Fig. 9B) and [mAb-HMM] complexes (Fig. 9, C and D) were examined, and the topographic localization of bound IgG was determined. mAb TGM-1 mapped specifically to S-1. Two forms of the [TGM-1-S-1] complex were detected (Fig. 9C): one antibody attached to the lateral aspect of a single S-1 head, or one antibody attached between the two S-1 heads of one HMM molecule (intramolecular cross-linking). Immunoglobulin was present at approximately twofold excess. However, the proportion of nonreactive parental P3-X63.Ag8 IgG and hybrid molecules in the reaction mixture was not determined. Univalent [TGM-1-S-1] complexes were essentially symmetric with respect to the long axis of the bound S-1 head, and thus were not analyzed for evidence of rotational freedom of the head as was detected using mAbs directed against the amino-terminal 25-kD fragment of skeletal myosin S-1 (9).

mAb TGM-2, which in peptide binding studies bound S-2 only in the absence of an intact S-2:LMM junction, was mapped specifically to S-2 and was further localized to the carboxy-terminus of S-2 (Fig. 8D). The α-helical portion of HMM did not extend beyond bound antibody molecules. Thus, localization of mAb TGM-1 to S-1 and TGM-2 to the carboxy-terminus of S-2, based on indirect radioimmunoassay and Western blot techniques, was substantiated by the topography of individual [mAb-HMM] complexes determined by immunoelectron microscopy.

DISCUSSION

We have produced and characterized monoclonal antibodies that label epitopes distributed among three distinct, non-overlapping identified peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Though turkey gizzard myosin shares similar native structure and domain organization with myosin not only from mammalian smooth muscle but also from striated muscle, the antibodies reported here exhibit specificity for avian smooth muscle myosin alone and do not cross-react with purified myosin from calf aorta, chicken pectoralis, or with avian nonmuscle myosin(s). Localization of the smooth muscle myosin epitopes (Fig. 10)
was established by indirect radioimmunoassay employing pu-
perified myosin subunits as well as by Western blot analysis
of these subunits or of fragments generated by further proteol-
ysis. Assignment of mAb TGM-1 to S-1 and TGM-2 to the
carboxy-terminus of S-2 based on peptide mapping is addi-
tionally supported by the topography of [mAb-HMM] com-
plexes visualized by electron microscopy after low-angle ro-
tary shadowing with platinum.

mAb TGM-1 recognizes a 50-kD tryptic peptide of S-1 but
not the amino-terminal 20-kD fragment or carboxy-terminal
26-kD LCoP-binding fragment. However, actin fails to inhibit
TGM-1 binding, and conversely, antibody fails to inhibit
actin-activated Mg2+-ATPase of HMM. Thus, we have de-
tected no functional interaction between mAb TGM-1 and
the actin-binding site within the 50-kD peptide.

mAb TGM-2 recognizes an epitope of S-2 that is created by
chymotryptic cleavage of the S-2:LMM junction. Thus,
TGM-2 recognizes HMM and S-2 but not intact myosin or
myosin rod. Analogous results have been reported for pol-
yclonal antibodies produced in rabbits immunized with S-2
derived from chicken pectoralis myosin that precipitate S-1
but not intact myosin (36). We postulate, therefore, that the
epitope-combining site is located at or near the carboxy-
terminus of S-2 and that [TGM-2-S-2] complexes are not
formed when the S-2:LMM junction is intact. This is con-
firmed by immunoelectron microscopy.

Evidence for myosin heavy chain polymorphism has been
well established for a variety of vertebrate striated muscles by
biocolohical (6, 37), immunologic (5, 9, 10), and molecular
genetic (8, 11, 12) investigations: synthesis of myosin heavy
chains in both cardiac and skeletal muscle is encoded and
directed by a multigene family (11) resulting in the orderly
sequential expression of a series of myosin heavy chains. In
contrast, the structural and functional properties of myosin
in developing smooth muscles have received little study.
Katoh and Kubo identified a 23-kD myosin light chain of 9-
d embryonic chick gizzard, progressively replaced by LC17,
but stated that myosin heavy chains from embryonic and
adult gizzard were immunologically identical by Ouchterlony
immunodiffusion and quantitative immunoprecipitation
(38). In the present report mAb TGM-1, directed against an
epitope of S-1 detected in the myosin heavy chain of adult
turkey gizzard, bound poorly to the myosin heavy chain of
embryonic chick smooth muscles. Thus, myosin heavy chains
from embryonic and adult gizzard were found to be distinct;
these results contradict the previous report and indicate de-
velopmental regulation of this site within the 50-kD trypic
peptide of S-1, whether by serial gene expression or by post-
translational events (39).

By employing low-angle platinum shadowing, we have lo-
calized the 50-kD trypic peptide of S-1, which occupies the
mid-portion of the S-1 linear amino acid sequence, to the
distal aspect of the myosin head. This finding should be
considered in the context of previous reports that mAbs that
map to the amino-terminal fragment of S-1 localize to either
the upper or lower surface of the head (9) and is consistent
with the proposal by Mornet et al. (30) regarding the skewed
distribution of mass in rabbit skeletal myosin S-1. These
observations thus provide the first direct evidence for the
topographic organization of the myosin heavy chain within
the smooth muscle myosin head and furnish additional evi-
dence that homologous structural organization of domains is
conserved even in the presence of significant antigenic diver-
sity among myosins of disparate origin.

We thank Kathleen Faust for technical assistance. We are grateful to
Dr. Donald Winkelmann for chicken pectoralis myosin, Dr. Joseph
Chalovich for rabbit skeletal HMM, Dr. Kathleen Trybus for calf
aorta myosin, and Dr. Primal de Lanerolle for adult chicken gizzard
myosin. We thank Kathleen Erickson for expert preparation of the
manuscript.

Received for publication 31 May 1984, and in revised form 15 March
1985.

REFERENCES

1. Adelstein, R. S., and E. Eisenberg. 1980. Regulation and kinetics of the actin-myosin-
interaction. Ann. Rev. Biochem. 49:921-956.
2. Brow, J. D., J. H. Hsu, B. Jakowicz, and M. Rabkowitz. 1983. Cloned mRNA sequences for two types of embryonic myosin heavy chains from
chick skeletal muscles. II. Expression during development using S1 nuclease mapping. J. Biol. Chem. 258:670-678.
3. Winkelmann, D. A., and J. L. Press. 1983. Monoclonal antibodies localize
changes on myosin heavy chain isoforms during avian myogenesis. Cell. 34:295-306.
4. Clark, L. A., Jr., R. A. Chang, K. Reynolds, F. W. Rabkowitz, and R. Zak. 1982.
Species correlations between cardiac isoforms: a comparison of electrocardiographic and
morphological properties. J. Biol. Chem. 257:5449-5454.
5. Elahi, V. M., P. Periasamy, and B. Nadal-Ginard. 1982. Molecular characterization of
two myosin heavy chain genes expressed in adult heart. Nature (London). 297:659-664.
6. Wuyt, R. M., H. T. Nguyen, R. M. Gubits, and B. Nadal-Ginard. 1982. Characteriza-
tion of sarcomeric myosin heavy chain genes. J. Biol. Chem. 258:670-678.
7. Sellsor, J. R., and E. V. Harvey. 1984. Localization of a light-chain binding site on
smooth muscle myosin revealed by light-chain overlay of sodium dodexyl sulfate-
polyacrylamide electrophoretic gels. J. Biol. Chem. 259:14203-14207.
8. Sellsor, J. R., M. D. Pato, and R. S. Adelstein. 1981. Reversible phosphorylation of
smooth muscle myosin, heavy meromyosin, and platelet myosin. J. Biol. Chem.
256:13137-13142.
9. Kohler, G., and C. Müller. 1975. Continuous cultures of fused cells secreting antibody of
predetermined specificity. Nature (London). 256:495-497.
10. Galfre, G., S. C. Howie, C. Milstein, C. W. Butcher, and J. C. Howard. 1977. Antibodies
to major histocompatibility antigens produced by hybrid cell lines. Nature (London).
266:530-532.
11. Trister, G. D., D. M. Schneider, and M. Nirenberg. 1981. A topographic gradient of
molecules can be used to identify neuron position. Proc. Natl. Acad. Sci. USA. 78:2145-
2149.
12. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.
72:248-254.
13. Sellsor, J. R., E. Eisenberg, and R. S. Adelstein. 1982. The binding of smooth muscle
heavy meromyosin to actin in the presence of ATP: effect of phosphorylation. J. Biol.
Chem. 257:13880-13883.
14. Morgan, S. N., and S. Lowey. 1982. Preparation of myosin and its subfragments
from rabbit skeletal muscle. Methods Enzymol. 85:55-71.
15. Greene, L. E., J. R. Sellsor, E. Eisenberg, and R. S. Adelstein. 1983. Binding of gizzard
smooth muscle myosin subfragments: I. to actin in the presence and absence of adenosine 3',5'-
triphosphate. Biochemistry. 22:530-535.
16. Spudich, J. A., and S. Watt. 1971. The regulation of rabbit skeletal muscle contraction.
I. Biochemical studies of the tropomyosin-troponin complex with actin and the proteo-
lytic fragments of myosin. J. Biol. Chem. 246:4866-4871.
17. Eisenberg, E., and W. W. Kucera. 1974. Tropomyosin-tropomyosin complex: column
chromatographic separation and activity of the three active tropomyosin components with
and without tropomyosin present. J. Biol. Chem. 249:4742-4748.
18. Parham, P. 1983. Monoclonal antibodies against HLA products and their use in
immunoaffinity purification. Methods Enzymol. 92:110-138.
19. Leaemli, U. K. 1970. Cleavage of structural proteins during the assembly of the head
of bacteriophage T4. Nature (London). 227:683-685.
20. Matsuoka, T., and D. R. Burgess. 1978. SDS microslab linear gradient polyacryl-
amide gel electrophoresis. Anal. Biochem. 87:386-396.
21. P Hohn, T. S. Stachelin, and J. G Worth. 1979. Electrophoretic transfer of proteins
from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
Proc. Natl. Acad. Sci. USA. 76:4350-4354.
22. Pyle, D. M., and D. Branton. 1980. Rotary shadowing of extended molecules dried
from glycerol. J. Ultrastr. Res. 71:95-102.
23. Lowey, S. H., S. Slayter, A. G. Weds, and H. Baker. 1989. Substructure of the myosin
molecule. I. Subfragments of myosin by enzymatic degradation. J. Mol. Biol. 42:1-29.
30. Moroet, D., R. Bertrand, P. Pantel, E. Audemard, and R. Kassab. 1981. Proteolytic approach to structure and function of actin recognition site on myosin heads. Biochemistry. 20:2110-2120.
31. Moroet, D., K. Ue, and M. F. Morales. 1984. Proteolysis and the domain organization of myosin subfragment-1. Proc. Natl. Acad. Sci. USA. 81:736-739.
32. Sutoh, K. 1983. Mapping of actin-binding sites on the heavy chain of myosin subfragment-1. Biochemistry. 22:1579-1585.
33. Winkelmann, D. A., and S. Lowey. 1984. Myosin head topography by immuno electron microscopy. Biophys. J. 45(2, Pt. 2):151a. (Abstr.)
34. Flicker, P. F., T. Wallimann, and P. Vibert. 1983. Electron microscopy of scallop myosin: location of regulatory light chains. J. Mol. Biol. 167:723-741.
35. Marianne-Pepin, T., D. Moroet, E. Audemard, and R. Kassab. 1983. Structural and actin-binding properties of the trypsin-produced HMM and S-1 from gizzard smooth muscle myosin. FEBS (Fed. Eur. Biochem. Soc.) Lett. 159:211-216.
36. Lowey, S., and L. A. Steiner. 1972. An immunochemical approach to the structure of myosin and the thick filaments. J. Mol. Biol. 65:111-126.
37. Heh, J. F. Y., P. A. McGrath, and P. T. Hale. 1978. Structural differences in the heavy chains of rat ventricular myosin isoenzymes. J. Mol. Cell. Cardiol. 10:1053-1076.
38. Katoh, N., and S. Kubo. 1978. Light chains of chicken embryonic gizzard myosin. Biochim. Biophys. Acta. 535:401-411.
39. Houriez, G. 1972. Developmental changes of the primary structure and histidine methylation in rabbit skeletal muscle myosin. Nature New Biol. 240:260-264.