Renormalization of Massive Lattice Fermions

A.S. Kronfelda and B.P. Mertensb

aTheoretical Physics Group, Fermi National Accelerator Laboratory, Batavia, Illinois, USA
bEnrico Fermi Institute and Department of Physics, University of Chicago, Chicago, Illinois, USA

The renormalization of a general action for massive lattice fermions is discussed. The analysis applies for all m,q. Preliminary results for the self energy at one loop in perturbation theory are presented.

1. INTRODUCTION

This paper is a progress report of efforts to calculate the renormalization of fermion masses and bilinear currents in one-loop perturbation theory [1]. When these calculations are finished, they will permit a determination of heavy-quark masses, they will give one-loop predictions for the tuning of improvement parameters in the action, and they will give a one-loop guide for extrapolating the matrix elements to the continuum.

After specifying a general action in sect. 2, sect. 3 sketches an all-orders derivation for mass and wavefunction renormalization in terms of the fermion self energy. We have the self energy to one-loop for the simplest action, and present results with and without tadpole improvement. Sect. 4 discusses current renormalization.

2. THE ACTION

Consider the action $S = S_0 + S_B + S_E + \cdots$,

$$S_0 = m_0 \int \tilde{\psi}(x) \psi(x) - \frac{i}{2} a r \zeta \int \tilde{\psi}(x) \Delta(3) \psi(x)$$

$$+ \zeta \int \tilde{\psi}(x) \gamma^j D_j \psi(x)$$

$$+ \frac{1}{2} \int \tilde{\psi}(x) [(1 + \gamma_0) D_0^+ - (1 - \gamma_0) D_0^-] \psi(x),$$

$$S_B = -\frac{1}{2} a c_B \zeta \int \tilde{\psi}(x) \Sigma \cdot B(x) \psi(x),$$

$$S_E = -\frac{1}{2} a c_B \zeta \int \tilde{\psi}(x) \alpha \cdot E(x) \psi(x).$$

Special cases are the Wilson action [2], which sets $r = \zeta = 1$, $c_B = c_E = 0$, and the Sheikholeslami-Wohlert action [3], which sets $r = \zeta = 1$, $c_B = c_E = c_E$.

To remove lattice artifacts in general the parameters m_0, r, ζ, c_B and c_E must all be adjusted [4]. In a non-relativistic setting, however, it is enough to adjust m_0, c_B, and c_E [4].

3. THE SELF ENERGY

The self energy $\Sigma(p)$ is related to the momentum-space propagator by

$$S^{-1}(p) = S_0^{-1}(p) - \Sigma(p),$$

where $S_0(p)$ is the free propagator. In perturbation theory $\Sigma(p)$ is the sum of all one-particle irreducible graphs. The p_0-Fourier transform $C(t, p) = (2\pi)^{-1} \int dp_0 e^{ip_0 t} S(p)$ obeys

$$C(t, p) = Z_2(p) e^{-E_p \mid Q + \cdots,}$$

where E_p is the energy of a one fermion state with momentum p, and Q is a Dirac matrix satisfying $(Q \gamma_0)^2 = Q \gamma_0$. The \cdots denote multi-particle states, which are irrelevant here.

The self energy has the decomposition

$$\Sigma(p) = i \sum_\mu \gamma_\mu \sin p_\mu A_\mu(p) + C(p)$$

in Dirac matrices. For a Euclidean invariant cutoff C and $A_\mu = A \forall \mu$ are functions of p^2 only. With the lattice cutoff, however, they are constrained only by (hyper)cubic symmetry. For emphasis it is convenient to write, say, $C(p_0, p)$.

To obtain an expressions for E_p and Z_2 one carries out the p_0 integration with the residue theorem. For arbitrary p the energy E_p is the
solution of the implicit equation
\[1 + m_0 a + \frac{1}{2} r \zeta p^2 a^2 = C = \cosh E a + (1 - A_0) \sqrt{1 - p^2} \sinh E a, \] (7)
for \(E \). The abbreviation
\[p^2 = \sum_j \left(\zeta - A_j \right)^2 \sin^2 p_j a \over (1 - A_0)^2 \sin^2 E a. \] (8)
Here the self-energy functions \(A_\mu (p_0, p) \) and \(C(p_0, p) \) are evaluated at \(p_0 = i E \). The solution of eq. (7), \(E = E_p \), defines the (lattice-distorted) mass shell of the fermion. The residue is
\[Z_2^{-1}(p) = (1 - A_0) \cosh E_p a - \tilde{C} \sqrt{1 - p^2} \\
+ \sum_j \tilde{A}_j (\zeta - A_j) \sin^2 p_j a \\
+ \sum_j \tilde{A}_j (\zeta - A_j) \sin^2 E_p a \] (9)
The notation \(\tilde{f} = (i a)^{-1} (df/dp_0) \). In eq. (9) the self-energy functions \(A_\mu (p_0, p) \) and \(C(p_0, p) \) are evaluated on shell, i.e. \(p_0 = i E_p \).

The \(p \) dependence of \(Z_2(p) \) is an artifact of the lattice cutoff. An acceptable definition of the wavefunction renormalization constant is
\[Z_2^{-1} = \epsilon^M a_1 - A_0 \cosh M_1 a + \tilde{A} \sinh M_1 a - \tilde{C} \] (10)
at \(p = 0 \), where \(M_1 \equiv E_0 \) is the (all-orders) rest mass of the fermion.

Eq. (7) at \(p = 0 \) determines the rest mass via
\[\epsilon^{M_1 a} = 1 + m_0 a + A_0 \sinh M_1 a - C \] (11)
and the dynamic mass \(M_2 = (d^2 E_p / dp_1^2)_{p=0}^{-1} \) via
\[\epsilon^{M_2 a} = r^2 + \frac{(\zeta - A_1)^2}{(1 - A_0) \sinh M_1 a} \sum_j \tilde{A}_j (\zeta - A_j) \sinh E_p a \] (12)
A total \(p_1 \)-derivative includes an explicit part and an implicit part through the \(E_p \) dependence. In eqs. (11) and (12) the self-energy functions and derivatives are evaluated at \(p_0 = i M_1 \) and \(p = 0 \).

For a massless fermion, \(M_1 = M_2 = 0 \). The bare mass that induces \(M_1 = 0 \) obeys
\[m_{0e} a = C(0, 0; m_{0e} a). \] (13)

The third argument of \(C \) denotes the parametric dependence. It is useful to take care of this term once and for all, and write
\[\epsilon^{M_1 a} = 1 + M_0 a + A_0 \sinh M_1 a - \tilde{C} \] (14)
where \(M_0 a = m_0 a - m_{0e} a = (2 \kappa)^{-1} - (2 \kappa_e)^{-1} \), and \(\tilde{C}(i M_1 a, 0; m_{0e} a) = C(i M_1 a, 0; m_{0e} a) - m_{0e} a \).

We turn now to one-loop results for \(r = \zeta = 1 \), \(c_B = c_F = 0 \), with and without tadpole improvement. In perturbation theory the rest mass has an expansion
\[M_1 a = \log(1 + M_0 a) + \sum_{i=1}^\infty \tilde{g}_i a^i M_1^i a. \] (15)

In the tadpole improved version \(\tilde{M}_0 a = M_0 a/\tilde{u}_0 \), where \(\tilde{u}_0 \) is a suitable (gauge invariant) average link. In applications both \(u_0 \) and \(\kappa_e \) would be taken from Monte Carlo calculations. Below we choose \(u_0 = (8 \kappa_e)^{-1} \). Figure 1 shows the one-loop correction to the rest mass \(M_1 \). As expected, \(\tilde{M}_1^{[1]} \) is significantly smaller than \(M_1^{[1]} \).

For the dynamic mass it is better to define a renormalization factor via \(M_2 = m_2 Z_M \), where
\[m_2 a = \frac{M_0 a (1 + M_0 a) (2 + M_0 a)}{2 \zeta^2 (1 + M_0 a) + r \zeta M_0 a (2 + M_0 a)} \] (16)
is the tree-level expression for the dynamic mass, except that the linear mass divergence is absorbed, order by order, into \(M_0 a \). The tadpole improvement is \(M_2 = \tilde{m}_2 Z_M \), where \(\tilde{m}_2 \) is

\[\text{Figure 1. Plot comparing } M_1^{[1]} a \text{ vs. } M_b a \text{ (solid curve) and } \tilde{M}_1^{[1]} a \text{ vs. } M_b a \text{ (dashed curve). The static point is indicated by the box [5].} \]
Figure 2. Plot comparing $Z^{[1]}_M$ (solid curve) and $\tilde{Z}^{[1]}_M$ vs. M_2a (dashed curve).

Figure 3. Plot comparing $z^{[1]}_2$ vs. M_0a (solid curve) and $\tilde{z}^{[1]}_2$ vs. M_0a (dashed curve). The static point is indicated by the box [5].

given by the right-hand side of eq. (16), but with $M_0a \rightarrow \tilde{M}_0a$. The factors Z_M have series

$$Z^{(e)}_M = 1 + \sum_{l=1}^{\infty} g_0^{[l]} Z^{[l]}_M, \quad (17)$$

Figure 2 shows the one-loop renormalization of the dynamic mass. Again, $[Z^{[l]}_M]$ is significantly smaller than $[Z^{[l]}_M]$.

To define the perturbative coefficients for the wavefunction renormalization constant, factor out e^{M_0a}. The tadpole improved constant is $Z_2 = u_0 Z_2$. The perturbative series are

$$e^{M_1a} Z_2 = 1 + \sum_{l=1}^{\infty} g_0^{[l]} Z^{[l]}_2. \quad \text{(18)}$$

The one-loop coefficient has an infrared divergence, which can be regulated with a gluon mass λ. Figure 3 plots the IR-finite $\tilde{Z}^{[1]}_2 = \frac{1}{Z^{[1]}_2} \log(\lambda^2 a^2)/(6\pi^2)$. Once again, $\tilde{z}^{[1]}_2$ is significantly smaller than $z^{[1]}_2$.

4. VERTEX CORRECTIONS

A full vertex function takes the form

$$V(p|q) = S(p) \Gamma(p|q) S(q). \quad \text{(19)}$$

In perturbation theory Γ is given by the sum of all truncated three-point diagrams. To put the external lines on shell, one Fourier transforms in p_0 and q_0. Poles arise precisely as in the self-energy derivation, so the on-shell truncated vertex function is $\Gamma(iE_p, p|E_q, q)$. Consequently, when normalization conditions introduce a factor $1 + m_0a$ at tree level, the all-orders generalization is e^{M_0a}, just as with Z^{-1}.

ACKNOWLEDGEMENTS

This work is being carried out in collaboration with Aida El-Khadra and Paul Mackenzie [1].

B.P.M. is supported in part by the U.S. Department of Energy under Grant No. DE-FG02-90ER40560. Fermilab is operated by Universities Research Association, Inc., under contract DE-AC02-76CH03000 with the U.S. Department of Energy.

REFERENCES

1. A.X. El-Khadra, A.S. Kronfeld, P.B. Mackenzie, and B.P. Mertens, in progress.
2. K.G. Wilson, in New Phenomena in Subnuclear Physics, edited by A. Zichichi (Plenum, New York, 1977).
3. B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259 (1985) 572.
4. A.X. El-Khadra, A.S. Kronfeld, and P.B. Mackenzie, FERMILAB-PUB-93/195-T.
5. E. Eichten and B. Hill, Phys. Lett. B240 (1990) 193.