EVENLY DIVISIBLE RATIONAL APPROXIMATIONS OF QUADRATIC IRRATIONALITIES

DAN CARMON

Abstract. In a recent paper of Blomer, Bourgain, Radziwiłł and Rudnick [1], the authors proved the existence of small gaps between eigenvalues of the Laplacian in a rectangular billiard with sides π and $\pi/\sqrt{\alpha}$, i.e. numbers of the form $\alpha m^2 + n^2$, whenever α is a quadratic irrationality of certain types. In this note, we extend their results to all positive quadratic irrationalities α.

1. Introduction

In [1], the authors investigated the minimal gaps between energy levels of the eigenvalues of the Laplacian of a billiard in a rectangle with width $\pi/\sqrt{\alpha}$ and height π. These eigenvalues are of the form $\alpha m^2 + n^2$, where $m, n \geq 1$ are integers. For positive irrational α, these levels belong to a simple spectrum $0 < \lambda_1 < \lambda_2 < \cdots$, with growth $\lambda_N \sim \frac{4\sqrt{\pi}}{\pi} N$. The minimal gap function is then defined as

$$\delta_{\min}(N) = \min(\{\lambda_{i+1} - \lambda_i : 1 \leq i < N\}).$$

The authors prove several lower and upper bounds on the growth rate of $\delta_{\min}(N)$, for various families and sets of irrational α. Amongst these is [1, Theorem 6.1]:

Theorem 1.1. For all positive real quadratic irrationalities of the form

$$\alpha = \alpha(x; a, b, \epsilon, r) = r \cdot \left(\frac{x + \sqrt{x^2 + 4\epsilon}}{2}\right)^a \cdot \left(\sqrt{x^2 + 4\epsilon}\right)^b$$

with

$$a \in \mathbb{Z}, \quad b = 0, 1, \quad x \in \mathbb{Z} \setminus \{0\}, \quad \epsilon = \pm 1, \quad r \in \mathbb{Q}^\times,$$

we have $\delta_{\min}^{(\alpha)}(N) \ll_{\alpha, \epsilon} N^{-1+\epsilon}$ infinitely often, for any $\epsilon > 0$.

Furthermore, the authors remark that when $b = 0$ and a is even, they have in fact obtained the stronger result that $\delta_{\min}^{(\alpha)}(N) \ll_{\alpha} N^{-1}$ for all N. We refer the reader to [1] for a more detailed introduction to the problem, as well as the motivation for these upper bounds.

Date: October 26, 2018.

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 320755.
Our goal in this paper is to generalize the result above to any positive quadratic irrationality. Here on, we shall denote by $K = \mathbb{Q}[\sqrt{D}]$ – a real quadratic number field, \mathcal{O}_K – its ring of integers, and for any $\omega \in K$, we shall denote its conjugate in K by $\overline{\omega}$, and its norm and trace (over \mathbb{Q}) by $N(\omega) = \omega \overline{\omega}$, $\text{tr}(\omega) = \omega + \overline{\omega}$. In section 3, we prove:

Theorem 1.2. Let $K = \mathbb{Q}[\sqrt{D}]$ be any real quadratic number field, where $D \in \mathbb{N}$ is square-free. Let $0 < \alpha \in K$ be a positive element of K. Then $\delta_{\min}^{(\alpha)}(N) \ll_{\alpha,\varepsilon} N^{-1+\varepsilon}$ infinitely often, for any $\varepsilon > 0$. Furthermore, if $\alpha \in \mathbb{Q}_>0 \cdot (K^\times)^2$ then $\delta_{\min}^{(\alpha)}(N) \ll N^{-1}$ for all N.

One of the key lemmas in [1] relates small gaps between the λ_i to finding good rational approximations to α with both numerator and denominator being evenly divisible (or strongly even divisible): We call a sequence m_n, n_m of numbers evenly divisible if there exist divisors $d_n \mid m_n$ such that $\min(d_n, m_n/d_n) \gg \varepsilon^1 m_n^{1/2-\varepsilon}$, for all $\varepsilon > 0$. We call the sequence strongly evenly divisible if $\min(d_m, m_n/d_n) \gg m_n^{1/2}$. Then by [1, Lemma 3.1], we have:

Lemma 1.3. If $\alpha > 0$ has infinitely many rational approximations p_n/q_n satisfying

\begin{equation}
|q_n\alpha - p_n| \ll \frac{1}{q_n}
\end{equation}

with the sequences $\{p_n\}, \{q_n\}$ being evenly divisible (resp. strongly evenly divisible), then $\delta_{\min}^{(\alpha)}(N) \ll N^{-1+\varepsilon}$ for all $\varepsilon > 0$ (resp. $\delta_{\min}^{(\alpha)}(N) \ll N^{-1}$) infinitely often.

If in addition $q_n \gg q_{n+1}$ for all n, then these inequalities hold for all N.

The authors of [1] were able to find evenly divisible approximations satisfying (1.2) for quadratic irrationalities of the form (1.1). However, the condition (1.2) can be significantly weakened; namely, if we replace it with the condition

\begin{equation}
|q_n\alpha - p_n| \ll \frac{1}{q_n^{1-\varepsilon}}, \text{ for all } \varepsilon > 0
\end{equation}

The conclusion of Lemma 1.3 that $\delta_{\min}^{(\alpha)}(N) \ll N^{-1+\varepsilon}$ for all $\varepsilon > 0$ remains valid. This is essentially the content of [1, Lemma 3.2], and the form of the lemma that will be more useful to us.

1Given any $\alpha \in K$, this condition can be easily checked, as it is equivalent to α satisfying $N(\alpha) \in (\mathbb{Q}^\times)^2$ and $\text{tr}(\alpha) > 0$. We do not use this equivalence in this paper, and leave its proof as a simple exercise to the reader.
2. Divisibility properties

In this section we establish some divisibility properties for traces and twisted traces of powers of a quadratic algebraic integer. These play similar roles to the Chebyshev polynomials featured in [1], and in fact generalize them.

2.1. Divisibility properties of traces. Let \(\omega \in \mathcal{O}_K \) be an algebraic integer with \(\text{tr} \omega \neq 0 \). Note that for any odd positive integer \(\ell, \omega^\ell \in \mathcal{O}_K \), hence \(\text{tr}(\omega^\ell) \) is an integer. Furthermore, it is divisible by \(\text{tr}(\omega) \); this follows from the fact that \(x^\ell + y^\ell \) is a symmetric polynomial in \(\mathbb{Z}[x, y] \), and substituting \(\omega, \bar{\omega} \) for \(x, y \). More generally, for any positive integer \(L \) which is odd and square-free, we have the decomposition

\[
\text{tr}(\omega^L) = \Phi_L(\omega) \Psi_L(\omega),
\]

where \(\Phi_L(\omega), \Psi_L(\omega) \in \mathbb{Z} \) are both integers, defined by

\[
\Phi_L(\omega) = \prod_{\ell | L} \text{tr}(\omega^{L/\ell})^{\mu(\ell)}, \quad \Psi_L(\omega) = \prod_{\ell | L; \ell \geq 1} \text{tr}(\omega^{L/\ell})^{-\mu(\ell)}. \tag{2.2}
\]

Indeed, both \(\Phi_L, \Psi_L \) are symmetric polynomials in \(\mathbb{Z}[\omega, \bar{\omega}] \), hence their values must be in \(\mathbb{Z} \) for \(\omega \in \mathcal{O}_K \).

In order to estimate the sizes of the factors \(\Phi_L, \Psi_L \), assume further that \(|\omega/\bar{\omega}| \leq 1/2 \). Note that

\[
e^{-2|x|} \leq 1 - |x| \leq |1 + x| \leq 1 + |x| \leq e^2|x|
\]

for all \(|x| \leq 1/2 \), and therefore for any \(m \geq 1 \),

\[|
\text{tr}(\omega^m)| = |\omega^m + \bar{\omega}^m| = |\omega^m| \left(1 + \left(\frac{\bar{\omega}}{\omega}\right)^m\right) \in |\omega^m| \cdot [e^{-21-m}, e^{21-m}],
\]

hence,

\[
|\text{tr}(\omega^L)| \asymp |\omega|^L, \quad |\Phi_L(\omega)| \asymp |\omega|^\phi(L), \quad |\Psi_L(\omega)| \asymp |\omega|^{L-\phi(L)}, \tag{2.3}
\]

where the implied constants are all between \(e^{-2} \) and \(e^2 \). It immediately follows that

\[
|\Phi_L(\omega)| \asymp |\text{tr}(\omega^L)|^{\phi(L)/L}, \quad |\Psi_L(\omega)| \asymp |\text{tr}(\omega^L)|^{1-\phi(L)/L}. \tag{2.4}
\]

2.2. Divisibility properties of twisted traces. For \(\omega \in K \), we define the twisted trace of \(\omega \) as

\[
\tilde{\text{tr}}(\omega) := \text{tr}(\sqrt{D} \cdot \omega) = (\omega - \bar{\omega})\sqrt{D} \in \mathbb{Q}. \tag{2.5}
\]

Suppose \(\omega \in \mathcal{O}_K \), and \(\tilde{\text{tr}}(\omega) \neq 0 \) (i.e. \(\omega \notin \mathbb{Q} \)). Then for all positive integers \(\ell \), \(\tilde{\text{tr}}(\omega^\ell) \) is an integer and divisible by \(\text{tr}(\omega) \), since \(\frac{x^\ell + y^\ell}{x + y} \) is a symmetric

2 Specifically, \(\Phi_L \) is the homogenized reflected \(L \)-th cyclotomic polynomial, and \(\Psi_L \) is the corresponding cofactor.
polynomial in \(\mathbb{Z}[x, y]\) and \(\sqrt{D}\omega^L \in \mathcal{O}_K\). As above, this generalizes to any square-free \(L \in \mathbb{N}\), by
\[
\tilde{\tr}(\omega^L) = \tilde{\Phi}_L(\omega)\tilde{\Psi}_L(\omega),
\]
where
\[
(2.7) \quad \tilde{\Phi}_L(\omega) = \prod_{\ell \mid L} \tilde{\tr}(\omega^{L/\ell})^\mu(\ell), \quad \tilde{\Psi}_L(\omega) = \prod_{\ell | L; \ell > 1} \tilde{\tr}(\omega^{L/\ell})^{-\mu(\ell)}.
\]
are again integers, and whenever \(|\sqrt[3]{/}\omega| < 1/2 \text{ and } L > 1\), we have
\[
|\tilde{\tr}(\omega^L)| \asymp \sqrt{D}|\omega|^L, \quad |\tilde{\Phi}_L(\omega)| \asymp |\omega|^{\phi(L)}, \quad |\tilde{\Psi}_L(\omega)| \asymp \sqrt{D}|\omega|^{L-\phi(L)},
\]
and consequently
\[
(2.9) \quad |\tilde{\Phi}_L(\omega)| \asymp D^{-\frac{\phi(L)}{2L}}|\tilde{\tr}(\omega^L)|^\frac{\phi(L)}{L}, \quad |\tilde{\Psi}_L(\omega)| \asymp D^{-\frac{\phi(L)}{2L}}|\tilde{\tr}(\omega^L)|^{1-\frac{\phi(L)}{L}}.
\]
The major difference between the divisibility properties for \(\tr(\omega^L)\) and \(\tilde{\tr}(\omega^L)\) is that in the second case \(L\) may be even – and specifically, we may choose \(L = 2\), which is the only number with \(\phi(L)/L = 1/2\), capable of generating strongly evenly divisible sequences, rather than just evenly divisible.

3. Proof of Theorem 1.2

We first note that we may assume \(\alpha \in \mathcal{O}_K\). Indeed, for any \(\alpha \in K\) there is some denominator \(A \in \mathbb{N}\) such that \(A \cdot \alpha \in \mathcal{O}_K\). If we are then able to find (strongly) evenly divisible \(p_n, q_n\) such that \(A \cdot \alpha\) is well-approximated by \(p_n/q_n\), then the sequence \(A \cdot q_n\) is also (strongly) evenly divisible and \(\alpha\) is well-approximated by \(p_n/(A \cdot q_n)\).

Let \(\zeta \in \mathcal{O}_K\) be an algebraic integer with \(N(\zeta) = 1\) and \(|\zeta| > 1 > |\sqrt[3]{/}\zeta|\). Such \(\zeta\) may constructed e.g. as \(\zeta = x + y\sqrt{D}\), where \((x, y) \in \mathbb{N}^2\) is a non-trivial integral solution to the Pell equation \(x^2 - Dy^2 = 1\). Let \(\varepsilon > 0\) be arbitrarily small.

3.1. A symmetric construction. Let \(\{\ell_i\}_{i=1}^\infty, \{\ell'_i\}_{i=1}^\infty\) be two disjoint sub-sequence of the odd primes, with
\[
\prod_{i=1}^\infty \left(1 - \frac{1}{\ell_i}\right) = \prod_{i=1}^\infty \left(1 - \frac{1}{\ell'_i}\right) = 1/2,
\]
the existence of which easily follows from \(\prod_p (1 - 1/p) = 0\). For a fixed \(t \in \mathbb{N}\) write
\[
L = \prod_{i=1}^t \ell_i, \quad L' = \prod_{i=1}^t \ell'_i
\]
and suppose \(t = t(\varepsilon)\) is sufficiently large so that \(\frac{\phi(L)}{L}, \frac{\phi(L')}{L'} \in (1/2, 1/2 + \varepsilon)\).

\[^3\]We may choose \(\zeta\) with \(N(\zeta) = -1\) instead, in fields where such integers exist. Note that the number \(\frac{x + \sqrt{2x^2 + 4t}}{2}\) appearing in (1.1) is always an example of an appropriate \(\zeta\) for the appropriate field.
Let $M = M(\varepsilon) \in \mathbb{N}$ be the smallest positive integer such that $M + 1$ is divisible by L and M is divisible by L', and write $M + 1 = m_1 L, M = m_2 L'$. Define $N = nLL'$, where $n = n(\varepsilon)$ is any sufficiently large number such that the following inequalities are satisfied:

\begin{align}
|\zeta/\alpha|^{nL'} &> 2|\alpha/\alpha|^m, \\
|\zeta/\alpha|^{nL} &> 2|\alpha/\alpha|^{m_2}, \\
|\zeta/\alpha|^N &> 4|\alpha - \alpha||N(\alpha)|^M|\alpha|^{-\varepsilon M}.
\end{align}

Such n clearly exist, as α is fixed, m_1, m_2, L and L' depend only on ε, and $|\zeta/\alpha| > 1$, by the definition of ζ. Finally, we define

\begin{align}
P &= P(\varepsilon) = \text{tr}(\alpha^{M+1}\zeta^N) = \text{tr}((\alpha^{m_1}\zeta^{nL'})^L), \\
Q &= Q(\varepsilon) = \text{tr}(\alpha^{M}\zeta^N) = \text{tr}((\alpha^{m_2}\zeta^{nL'})^L).
\end{align}

We first show that P/Q is a good approximation to α. Note that (3.1) implies $|Q|$ is approximately $|\alpha^M\zeta^N|$, or, more explicitly,

\begin{equation}
|Q|/|\alpha^M\zeta^N| \in [1 - 2^{-L'}, 1 + 2^{-L'}] \subset [1/2, 2].
\end{equation}

It then follows that

\[|\alpha Q - P| = |\alpha - \alpha||\alpha^M\zeta^N| = \frac{|\alpha - \alpha||N(\alpha)|^M|N(\zeta)|^N}{|\alpha^M\zeta^N|} \leq \frac{C(\alpha, \varepsilon)}{|Q|} \leq \frac{1}{|Q|^{1-\varepsilon}}, \]

where $C(\alpha, \varepsilon) = 2|\alpha - \alpha||N(\alpha)|^{M(\varepsilon)}$ depends only on α and ε. The two final steps then follow immediately from (3.5), (3.2) and $|N(\zeta)| = 1$.

Next, we show that P and Q are evenly divisible. By their definitions, the inequalities (3.1) and section 2.1, it is evident that the factorization $P = \Phi_L(\alpha^{m_1}\zeta^{nL'})\Psi_L(\alpha^{m_1}\zeta^{nL'})$ satisfies

\[\min(|\Phi_L(\alpha^{m_1}\zeta^{nL'})|, |\Psi_L(\alpha^{m_1}\zeta^{nL'})|) \times \min(|P|^{1/2}, |P|^{1/2}) \gg |P|^{1/2-\varepsilon}, \]

and similarly $Q = \Phi_L(\alpha^{m_2}\zeta^{nL'})\Psi_L'(\alpha^{m_2}\zeta^{nL})$ with

\[\min(|\Phi_L(\alpha^{m_2}\zeta^{nL'})|, |\Psi_L'(\alpha^{m_2}\zeta^{nL})|) \gg |Q|^{1/2-\varepsilon}. \]

We conclude that for any sequence $\varepsilon_k \searrow 0$, the sequences $P(\varepsilon_k), Q(\varepsilon_k)$ are evenly divisible and provide good approximations to α, which allows us to conclude via Lemma 1.3.

3.2. Alternative constructions. Instead of defining P and Q via traces of integral powers, we may use twisted traces instead, and define

\[P = \tilde{\text{tr}}((\alpha^{m_1}\zeta^{nL'})^L), \quad Q = \tilde{\text{tr}}((\alpha^{m_2}\zeta^{nL'})^L). \]

Repeating the same computations for the same values of L, L' would lead to the same estimates as in the first construction. However, since we are now using skew-traces, we may define L (resp. L') to be equal to 2 instead of a product of odd primes, which will then correspond to P (resp. Q) having two factors of size $\gg |P|^{1/2}$, i.e. the sequence $P(\varepsilon_k)$ (resp. $Q(\varepsilon_k)$) will be strongly evenly divisible. However, we cannot in general do this for both P
and Q simultaneously, since it is impossible for both $M + 1$ and M to be even.

Suppose now that $\alpha \in \mathbb{Q}_{>0} \cdot (K^\times)^2$. By multiplying by a proper natural denominator A, we may assume that $\alpha \in \mathcal{O}_K^2$, i.e. $\alpha = \beta^2$ for some $\beta \in \mathcal{O}_K$. Now, for all sufficiently large n, define

$$P_n := \tilde{\text{tr}}(\alpha \zeta^{2n}) = \tilde{\text{tr}}((\beta \zeta^n)^2) = \tilde{\text{tr}}(\beta \zeta^n) \cdot \text{tr}(\zeta^n),$$

$$Q_n := \tilde{\text{tr}}(\zeta^{2n}) = \tilde{\text{tr}}((\zeta^n)^2) = \tilde{\text{tr}}(\zeta^n) \cdot \text{tr}(\zeta^n).$$

The sequences P_n and Q_n are therefore both strongly evenly divisible, since for large n we have

$$|\tilde{\text{tr}}(\beta \zeta^n)| \asymp \sqrt{D} |\beta \zeta^n| \asymp \sqrt{D} |\text{tr}(\beta \zeta^n)|,$$

$$|\tilde{\text{tr}}(\zeta^n)| \asymp \sqrt{D} |\zeta^n| \asymp \sqrt{D} |\text{tr}(\zeta^n)|.$$}

Furthermore, their ratios approximate α well, as

$$|Q_n \alpha - P_n| = |\alpha - \overline{\alpha}| \overline{|\zeta|}^{2n} = \frac{|\alpha - \overline{\alpha}| \sqrt{D}}{|Q_n|},$$

and the denominators grow geometrically - $|Q_n| \asymp |\zeta^{-2}||Q_{n+1}| \gg |Q_{n+1}|$.

Therefore for such α, we have $\delta_{\text{min}}^{(\alpha)}(N) \ll N^{-1}$ for all large N, via Lemma 1.3.

3.3. Comparison to previous results.

For completeness, we present the constructions used in the original proof of Theorem 1.1, in terms of our notation. As mentioned above, the term $\sqrt{x^2 + 4\epsilon}$ is simply our ζ. The optional term $\sqrt{x^2 + 4\epsilon}$ belongs to $\sqrt{D} \cdot \mathbb{Q}^\times$. Therefore the numbers in K covered by Theorem 1.1 are those of the form

$$\alpha(\zeta; r, a, b) = r \cdot \zeta^a \cdot \sqrt{D}^b$$

where $\zeta \in \mathcal{O}_K^\times$, $r \in \mathbb{Q}^\times$, $a \in \mathbb{Z}$ and $b = 0, 1$. The term $r = c/d$ is dealt with by multiplying all numerators by c and denominators by d, and we reduce to the case $r = 1$ (and thus $\alpha \in \mathcal{O}_K$). These α have the special property that the sequences of traces $\text{tr}(\alpha \zeta^N) = \text{tr}(\sqrt{D}^b \zeta^{N+a})$, and $\text{tr}(\zeta^N)$ (as well as $\tilde{\text{tr}}(\alpha \zeta^N)$ and $\tilde{\text{tr}}(\zeta^N)$) can have useful divisibility properties, for good choices of N, and their ratios provide good approximations to α. For general α, we can generalize this method and generate good approximations to α as ratios of the sequences of $\text{tr}(\alpha \omega \zeta^N)$ and $\text{tr}(\omega \zeta^N)$, for any $\omega \in \mathcal{O}_K$. The quality of the approximation is slightly worse: the upper bound on the error grows by the norm of ω, but this is not a problem if ω is fixed and N is large. In order to have good divisibility properties for these sequences we want $\alpha \omega \zeta^N$ and $\omega \zeta^N$ to be L-th and L'-th powers, respectively. We achieve this by setting $\omega = \alpha^M$ and choosing appropriate values of M and N – but other choices for ω and N might also be possible.
References

[1] Blomer, V., Bourgain, J., Radziwiłł, M., and Rudnick, Z. Small gaps in the spectrum of the rectangular billiard. arXiv:1604.02413v3. To appear in Ann. Sci. École Norm. S..

RAYMOND AND BEVERLY SACKLER SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, TEL AVIV 69978, ISRAEL