Effectiveness of narrow-band imaging magnification for invasion depth in early colorectal cancer

Masakatsu Fukuzawa, Yutaka Saito, Takahisa Matsuda, Toshio Uraoka, Takao Itoi, Fuminori Moriyasu

Abstract
AIM: To evaluate the surface microvascular patterns of early colorectal cancer (ECC) using narrow-band imaging (NBI) with magnification and its effectiveness for invasion depth diagnosis.

METHODS: We studied 112 ECC lesions [mucosal/submucosal superficial (m/sm-s), 69; sm-deep (sm-d), 43] ≥ 10 mm that subsequently underwent endoscopic or surgical treatment at our hospital. We compared microvascular architecture revealed by NBI with magnification to histological findings and then to magnification colonoscopy pit pattern diagnosis.

RESULTS: Univariate analysis indicated vessel density: non-dense (P < 0.0001); vessel regularity: negative (P < 0.0001); caliber regularity: negative (P < 0.0001); vessel length: short (P < 0.0001); and vessel meandering: positive (P = 0.002) occurred significantly more often with sm-d invasion than m/sm-s invasion. Multivariate analysis showed sm-d invasion was independently associated with vessel density: non-dense [odds ratio (OR) = 402.5, 95% confidence interval (CI): 12.4-13133.1] and vessel regularity: negative (OR = 15.9, 95% CI: 1.2-219.1). Both of these findings when combined were an indicator of sm-d invasion with sensitivity, specificity and accuracy of 81.4%, 100% and 92.9%, respectively. Pit pattern diagnosis sensitivity, specificity and accuracy, meanwhile, were 86.0%, 98.6% and 93.8%, respectively, thus, the NBI with magnification findings of non-dense vessel density and negative vessel regularity when combined together were comparable to pit pattern diagnosis.

CONCLUSION: Non-dense vessel density and/or negative vessel regularity observed by NBI with magnification could be indicators of ECC sm-d invasion.

© 2010 Baishideng. All rights reserved.

Key words: Colorectal neoplasms; Narrow-band imaging; Microvasculature

Peer reviewer: Dr. Oliver Mann, MD, Senior Attending Physician and Deputy Director, Department of General, Visceral and Thoracic Surgery, University of Hamburg, Martini Str. 52, D-20246 Hamburg, Germany

INTRODUCTION
Magnified colonoscopy and the development of pit pattern diagnosis[1] not only permits us to distinguish neoplastic from non-neoplastic colorectal lesions,[2-5] but also helps to assess the invasion depth of early colorectal cancers (ECC).[6-9] Similarly, vascular findings on the surface of gastric lesions have also been observed by
magnification endoscopy, and the usefulness in predicting the histological nature of such lesions and assessing their invasion depth has also been reported in the upper gastrointestinal (GI) tract[10-12].

The recently developed narrow-band imaging (NBI) system is a noninvasive optical technique that uses reflected light that provides clearer images of surface microvascular architecture than the conventional observation modality[13]. To date, the use of magnification endoscopy with the NBI system has been studied in the upper GI tract[14-20] and the suitability of this new modality for differentiating neoplastic from non-neoplastic lesions and its potential for pit pattern diagnosis have also been reported for the lower GI tract[21-23].

As previously indicated, colorectal lesions with mucosal (m) or submucosal (sm) superficial invasion < 1000 μm (sm-s) have an extremely low risk of lymph-node metastasis and are good candidates for endoscopic treatment[24]. It is helpful therefore, to differentiate endoscopically between m/sm-s and deeper sm invasion (sm-d ≥ 1000 μm) lesions. There have been only a few reports concerning invasion depth diagnosis using NBI with magnification in a large series of cases, however, a number of questions remain regarding the comparative effectiveness of a diagnosis based on NBI observation and one using pit pattern analysis by dye chromoendoscopy for determining invasion depth.

Using magnification colonoscopy with the NBI system, we evaluated the characteristics of the surface microvascular architecture of ECC and investigated the effectiveness of this new optical modality for the diagnosis of invasion depth. In addition, we evaluated the comparative relationship between NBI with magnification and pit pattern diagnoses.

MATERIALS AND METHODS

NBI system

NBI is a novel technique that uses spectral narrow-band optical filters instead of the full spectrum of white light. It is based on the phenomenon that the depth of light penetration depends on its wavelength, with a short wavelength penetrating only superficially and a longer wavelength penetrating into deeper layers. In the NBI mode, optical filters that allow narrow-band light to pass at wavelengths of 415 and 540 nm are mechanically inserted between a xenon arc lamp and a red/green/blue rotation filter. Thin blood vessels such as capillaries on the mucosal surface can be seen most clearly at 415 nm, which is the wavelength that corresponds to the hemoglobin absorption band, while thick vessels located in the deep layer of the mucosa can be observed at 540 nm. Current NBI technology limits mucosal surface light penetration, thereby enhancing visualization of the fine capillary vessel structure on the surface layer.

Patients and evaluation methods

We studied a total of 112 ECC lesions ≥ 10 mm analyzed with NBI with magnification colonoscopy examination, which then underwent endoscopic or surgical treatment at the National Cancer Center Hospital between January 2006 and February 2007. All colonoscopies were performed with a PCF-Q240ZI or CF-H260AZI endoscope (Olympus Optical Co. Ltd., Tokyo, Japan) by three experienced endoscopists (MF, YS, TM) each of whom had annually performed more than 1000 magnifying chromoendoscopy examinations and at least 500 NBI examinations per year. Endoscopic images of each lesion were taken in the following order: conventional colonoscopy, NBI with magnification, chromoendoscopy and magnification chromoendoscopy. When a lesion was detected by conventional colonoscopy, its surface was washed with proteinase to remove excess mucus. Magnification NBI views of the microvascular architecture concentrated on those portions of the lesion where invasion seemed to have permeated the deepest regions, such as depressed areas and large nodules[22,23].

After completion of NBI with magnification, the pit pattern of each lesion was assessed with magnification chromoendoscopy performed using 0.4% indigo-carmine (IC) dye spraying. When high magnification observation with IC dye did not permit us to determine adequately the surface structure for pit pattern analysis, 0.05% crystal violet was applied for staining[24]. The visible pit pattern was then assessed during the course of the examination by the endoscopist conducting the procedure. All lesions were resected subsequently endoscopically or surgically and histological diagnosis was performed by three experienced pathologists based on the Vienna classification[25,26]. The depth of sm invasion was determined as being either sm-s < 1000 μm or sm-d ≥ 1000 μm[27]. After pathological diagnosis was completed on all resected lesions, three endoscopists (Fukuzawa M, Saito Y and Matsuda T) who performed the examination individually reviewed the endoscopic images of the NBI findings that were taken prior to treatment. All endoscopic images were chosen by one of these endoscopists. Their evaluation of the NBI images of the m/sm-s and sm-d lesions focused on the suspected areas, respectively, of higher grade dysplasia and deepest suspected invasion. Each characteristic of microvascular architecture was finally determined based on the agreement of at least two of the three reviewing endoscopists. Microvascular findings with a high frequency of sm-d were assessed as to whether those were significant sm-d indicators by univariate and multivariate analysis. In addition, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy were calculated for each microvascular architectural feature observed during NBI, as well as every pit pattern diagnosis determined by magnification chromoendoscopy. We then compared the various types of microvascular architectural characteristics revealed by NBI with magnification to the chromoendoscopy pit pattern diagnoses.

The protocol for this study was approved by our institutional review board and all patients gave written informed consent.

Chromoendoscopy with magnification

Our pit pattern evaluation method relied on the clinical classification system proposed by Fuji et al[28] and Matsuda et al[29], with reference to the Kudo Classification System. Lesions were categorized into noninvasive and invasive...
patterns. The noninvasive pattern included regular crypts with or without a demarcated area (e.g. depression, large nodule, or reddened area) and irregular pits without a demarcated area, and are usually observed in Kudo’s types IIIa, IIIb, IV and V1 without demarcated areas (e.g. adenomatous polyps, m and sm-s cancers), with endoscopic resection being the appropriate treatment. The invasive pattern was characterized by irregular and distorted crypts in a demarcated area, as observed in Kudo’s type V2s and V1 with a demarcated area (e.g. sm-d), and should be treated by surgical resection. As indicated, Kudo’s type V1 can be observed in either noninvasive or invasive patterns. Those differences are dependent on the presence or absence of a demarcated area.

Microvascular architecture of ECC

Microvascular architectural images taken during magnification colonoscopy with NBI were reviewed retrospectively by three endoscopists who referenced the microvascular architectural features of superficial esophageal carcinoma[^8^], and included the following characteristics: (1) caliber, narrow or wide; (2) caliber regularity, positive or negative; (3) meandering, positive or negative; (4) vessel regularity, positive or negative; (5) vessel length, short or long; and (6) vessel density, non-dense or dense. These characteristics were evaluated by comparing the NBI with magnification images to representative photographs of model examples (Figure 1).

Statistical analysis

We compared microvascular architecture as revealed by NBI with magnification to histological findings using the χ^2 test of independence or Fisher’s exact test for univariate analysis. Variables with a P value of < 0.05 in our univariate analysis were subsequently included in a logistic regression multivariate analysis. The StatView program, version 5.0 (SAS Institute, Cary, NC, USA), was used for data analysis and $P < 0.05$ was considered to be statistically significant.

RESULTS

Clinicopathological features of patients and lesions

The clinicopathological details of the patients and colorectal lesions involved in this study are shown in Table 1.

Univariate analysis

Univariate analysis indicated characteristics involving vessel density: non-dense ($P < 0.0001$); vessel regularity: negative ($P < 0.0001$); caliber regularity: negative ($P < 0.0001$); vessel length: short ($P < 0.0001$); and vessel meandering: positive ($P = 0.002$) occurred significantly more often with sm-d invasion than m/sm-s invasion (Table 2).

Multivariate analysis

Multivariate analysis demonstrated that sm-d invasion was independently associated with vessel density: non-dense [odds ratio (OR) = 402.5, 95% confidence interval (CI): 12.4-13133.1]; and vessel regularity: negative (OR = 15.9, 95% CI: 1.2-219.1) (Table 2). The sensitivity, specificity, PPV, NPV and diagnostic accuracy rate for each characteristic are shown in Table 3. The two vascular findings that were confirmed by multivariate analysis had the highest values for specificity, PPV and accuracy (non-dense vessel density: specificity 0.99, PPV 0.95, accuracy 90.2%; negative vessel regularity: specificity 0.99, PPV 0.95, accuracy 90.2%).

Pit pattern diagnosis

The pit patterns of 21 m/sm-s lesions were evaluated following IC dye spraying, whereas the pit patterns of the other 48 m/sm-s lesions and all 43 sm-d lesions were assessed after crystal violet staining. We subsequently calculated the sensitivity, specificity, PPV, NPV and accuracy in differentiating m/sm-s from sm-d for: (1) the pit patterns that were diagnosed as being invasive; and (2) the NBI with magnification characteristic findings of (a) non-dense vessel density and/or negative vessel regularity and (b) non-dense vessel density and negative vessel regularity, which were both considered to be indicators for sm-d invasion. Pit pattern analysis sensitivity, specificity, PPV, NPV and diagnostic accuracy were 0.86 (95% CI: 0.72-0.95), 0.99 (0.92-0.99), 0.97 (0.86-0.99), 0.92 (0.83-0.97) and 93.8%, respectively. The NBI with magnification characteristic findings of non-dense vessel density and negative vessel regularity were comparable to pit pattern diagnosis results [0.81 (0.67-0.92), 1.00 (0.95-1.00), 1.00 (0.90-1.00), 0.90 (0.81-0.95), 92.9%] (Table 4). Seven of the lesions in this study were incorrectly diagnosed using pit pattern analysis including six sm-d lesions mistakenly diagnosed as m/sm-s invasion depth. In two of these cases, however, both non-dense vessel density and negative vessel regularity had also been observed by magnification NBI, which suggests its potential use as a supplementary diagnostic tool to pit pattern diagnosis (Figures 2 and 3).

DISCUSSION

It has been reported previously that observation of intra-

Table 1 Clinicopathological features of evaluated colorectal lesions

Lesions (n = 112)	m/sm-s	sm-d	
Gender (male/female)	42/27	24/19	
Age (range, yr)	63.2 (57-79)	62.5 (52-80)	
Location	Right colon	29	15
Morphology[^1^]	Ip/Is/Isp	21	18
Ip/IIa + Ip/Ic	10	16	
Isp-G	20	5	
Isp-NG	18	4	
Mean size (range, mm)	32.3 (10-100)	24.4 (10-90)	

[^1^] Update on the Paris classification of superficial neoplastic lesion in the digestive tract[^10^]. LST-G: Laterally spreading tumor-granular type; LST-NG: Laterally spreading tumour-non granular type; m/sm-s: Mucosal/submucosal superficial; sm-d: Submucosal-deep.
papillary capillary loops by magnification endoscopy is useful in the diagnosis of invasion depth of superficial esophageal cancer\cite{[10],[11]}. The intra-papillary capillary loops can be seen in the normal esophageal mucosa by mag-

Table 2 Microvascular architecture & invasion depth

Variables	Univariate analysis	Multivariate analysis			
	P-value\(^1\)	Odds ratio	95% CI		
Vessel density	Non-dense/dense	< 0.001	0.001	402.5	12.4-13133.1
	m/sm-s	1/68			
	sm-d	33/10			
Vessel regularity	Negative/positive	< 0.001	0.038	15.9	1.2-219.1
	m/sm-s	8/61			
	sm-d	38/5			
Caliber regularity	Negative/positive	< 0.001	0.056	17.3	0.9-323.4
	m/sm-s	44/25			
	sm-d	42/1			
Vessel length	Short/long	< 0.001	0.161	0.2	0.01-2.10
	m/sm-s	20/49			
	sm-d	37/6			
Meandering	Positive/negative	0.002	0.110	0.1	0.01-1.60
	m/sm-s	49/20			
	sm-d	41/2			
Caliber	Wide/narrow	NS			
	m/sm-s	62/7			
	sm-d	41/2			

\(^1\)\(\chi^2\) or Fisher’s test. 95% CI: 95% confidence interval; NS: Not significant.
In cancerous lesions, characteristic changes of the intrapapillary capillary loops can be seen in the superficial mucosa according to the depth of tumor invasion. There have been few studies to assess invasion depth in cancerous lesions from microvascular architecture. However, the NBI system enabled observation of such the estimated depth was intramucosal and this LST-NG lesion was treated by endoscopic submucosal dissection.

Figure 2 35 mm laterally spreading tumor, non-granular (LST-NG) type, located in the ascending colon. A: Conventional colonoscopy image; B: Conventional colonoscopy image following 0.4% IC dye spraying; C: Narrow-band imaging (NBI) with magnification image at center of the lesion enclosed by the red box in A. Microvascular architecture consisted of non-dense vessel density and negative vessel regularity; D: Crystal violet staining image; E: Magnification view of the portion enclosed by the red box in D revealed a noninvasive pattern; F: Magnification view of the portion enclosed by the yellow box in D also revealed a noninvasive pattern, such the estimated depth was intramucosal and this LST-NG lesion was treated by endoscopic submucosal dissection.

Figure 3 Stereomicroscopic view and histological images. A: Stereomicroscopic view; B: Red lines indicate submucosal penetration of the tumor; C: Histological diagnosis at dotted line in A was a well-differentiated adenocarcinoma and depth of invasion was sm (1300 mm) shown with the arrow. Invasion depth diagnosis using NBI with magnification was correct, based on findings of non-dense vessels and negative vessel regularity, but pit pattern diagnosis of this lesion was inaccurate.
Table 3 Assessment of the carcinomatous invasion depth based on microvascular architecture

Microvascular architecture	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Accuracy (%)
Vessel density	33/43	0.86 (0.72-0.95)	0.97 (0.85-0.99)	0.87 (0.78-0.94)	90.2
Non-dense	38/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Vessel regularity	38/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Negative	38/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Caliber regularity	42/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Negative	42/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Vessel length	37/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Short	37/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Meandering	41/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Positive	41/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Caliber	41/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Wide	41/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5

PPV: Positive predictive value; NPV: Negative predictive value.

Table 4 Assessment of the carcinomatous invasion depth: comparison between microvascular architecture & pit pattern analysis

Microvascular architecture	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)	Accuracy (%)
Non-dense vessel density	38/43	0.86 (0.72-0.95)	0.97 (0.85-0.99)	0.87 (0.78-0.94)	90.2
and/or negative vessel regularity	35/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Non-dense vessel density	38/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
and negative vessel regularity	37/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
Pit pattern	37/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5
(Invasive pattern)	37/43	0.99 (0.92-0.99)	0.88 (0.80-0.99)	0.84 (0.76-0.94)	87.5

microvascular architecture of the tumor surface in the GI tract. In a similar fashion, we used NBI with magnification to investigate whether or not quantitative ECC invasion depth diagnosis was possible based on analysis of capillary vessel patterns instead of pit patterns. Based on our results, it appeared that non-dense vessel density and negative vessel regularity, as observed by NBI with magnification, could be diagnostic indicators of sm-d invasion, as effectively as pit pattern analysis.

Regular hexagonal or honeycomb-like capillary patterns are formed around the crypts of normal colorectal mucosa. In contrast, it has been reported that these capillaries are larger in tumor adenomas, whereas vascular disruption, caliber irregularity and dense vessels have been observed in severe atypical cases. In addition, vascular changes do not generally occur in non-neoplastic lesions such as hyperplastic polyps, with the exception of inflammatory polyps. The NBI technique provides clearer observation of microvascular architectural characteristics, therefore, it has been reported that differentiation of neoplastic from non-neoplastic lesions on the basis of different vascular patterns is equally possible using NBI or chromoendoscopy, and pit pattern diagnosis has likewise been explored using NBI. Previous studies have shown that the accuracy of pit pattern diagnosis of invasion depth by magnification endoscopy was 98.8%, whereas such diagnostic accuracy in this study was 93.8%.

The area surrounding crypts in the superficial layer of the mucosa is covered with capillaries and has previously been recognized as a pit using the NBI technique. Machida et al have reported that NBI pit pattern diagnosis is significantly more useful (P < 0.001) than conventional observation, but inferior to chromoendoscopy (P < 0.05). Hirata et al have reported that overall diagnostic consistency in pit patterns between magnification NBI and dye-spraying observations was 84%, but even higher for types II, III, IV and V pit patterns, although somewhat lower at 78%, for the type V pit pattern. In addition, Tischendorf et al have reported that there is no significant difference in the PPVs for neoplastic lesions as determined by pit pattern and vascular findings using NBI. There was a discrepancy, however, between two endoscopists in their NBI pit pattern diagnosis of types III-V neoplastic lesions. This may have been because the actual pit structure was not observed using the NBI technique, unlike the results from the contrast and staining methods; or, it could have been caused by the NBI pit pattern diagnosis of types III-V lesions, which are considered particularly important in determining the most suitable method of treatment, not having been performed accurately.

More recently, Katagiri et al have reported that capillary patterns observed by NBI with magnification are highly accurate in distinguishing between low-grade and high-grade dysplasia/invasive cancer, and thus could be used to predict the histopathological features of colorectal neoplasia. In addition, Hirata et al have reported vascular findings of significant sm-d invasion based on their NBI observation of thick blood vessels with irregularity on the surface of tumors. This differs somewhat from the results of our investigation, but the difference could be caused by a number of factors, such as variations in our respective definitions of vascular findings, and the macroscopic types of lesions involved in the two studies.
Magnification observation with dye spraying and staining, in particular crystal violet staining, however, can be time-consuming. Patient symptoms including abdominal discomfort and peristalsis are more likely to appear in longer duration colonoscopy examinations, which may render detailed observation more problematic. In contrast, the press of a single button on the handle of the endoscope with the NBI system can almost immediately change from NBI to the conventional view and back again, thereby shortening examination times and reducing the burden on patients and endoscopists alike. A mucous attachment on the endoscope can also interfere with diagnosis, and washing the surface of a lesion with pronase solution takes additional time during pit pattern diagnosis by magnification colonoscopy with IC dye spraying or crystal violet staining. Hirata et al.14 have further reported that NBI observation results in more accurate pit pattern diagnosis than dye spraying observation in cases with mucous attachment.

Our study suffered from some limitations. First, the NBI assessments were made on still images by three endoscopists, whereas the pit pattern diagnosis was done in real time after initial inspection with NBI, which could account for some further bias. Second, the different NBI features of the microvasculature are not independent: the endoscopist is not blinded to one feature if he scores the other. In addition, lesions that were diagnosed histologically as cancer had a diameter of at least 10 mm, thus lesions < 10 mm in diameter were not assessed in this study. Accordingly, future prospective studies will require that relevant data be accumulated and analyzed on a more objective basis.

In conclusion, the results of this study indicated that two microvascular architectural characteristics, non-dense vessel density and negative vessel regularity, observed using NBI with magnification during colonoscopy examinations could be reliable indicators of ECC sm-d invasion.

ACKNOWLEDGMENTS
The authors wish to thank Christopher Dix for his assistance in helping to edit this manuscript.

REFERENCES
1 Kudo S, Hirota S, Nakajima T, Hosobe S, Kusaka H, Kobayashi T, Hlinorn M, Yagyuu A. Colorectal tumours and pit pattern. J Clin Pathol 1994; 47: 880-885
2 Fu KI, Sano Y, Kato S, Fujii T, Nagashima F, Yoshino T, Okuno T, Yoshida S, Fujimori T. Chromoendoscopy using indigo carmine dye spraying with magnifying observation is the most reliable method for differential diagnosis between non-neoplastic and neoplastic colorectal lesions: a prospective study. Endoscopy 2004; 36: 1089-1093
3 Kato S, Fu KI, Sano Y, Fujii T, Saito Y, Matsuda T, Koba I, Yoshida S, Fujimori T. Magnifying colonscopic as a non-biopsy technique for differential diagnosis of non-neoplastic and neoplastic lesions. World J Gastroenterol 2006; 12: 1416-1420
4 Sano Y, Saito Y, Fu KI, Matsuda T, Uraoka T, Kobayashi N, Ito H, Machida H, Iwasaki J, Emura F, Hanafusa H, Yoshino T, Kato S, Fujii T. Efficacy of Magnifying Chromoendoscopy for the Differential Diagnosis of Colorectal Lesions. Digestive Endoscopy 2005; 17: 105-116
5 Trecca A, Gai F, Di Lorenzo GP, Hreniuc H, Pasciuto A, Antonnellis F, Sperone M. [Conventional chromoendoscopy versus magnifying chromoendoscopy and magnifying endoscopy for the diagnosis of colorectal lesions: a comparative prospective study in 995 patients] Chir Ital 2004; 36: 31-36
6 Kudo S, Tamura S, Nakajima T, Yamano H, Kusaka H, Watanabe H. Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointest Endosc 1996; 44: 8-14
7 Fujii T, Hasegawa RT, Saitoh Y, Fleischner D, Saito Y, Sano Y, Kato S. Chromoscopy during colonoscopy. Endoscopy 2001; 33: 1036-1041
8 Matsuda T, Fujii T, Saito Y, Nakajima T, Uraoka T, Kobayashi N, Ikehara H, Ikematsu H, Fu KI, Emura F, Ono A, Sano Y, Shimoda T, Fujimori T. Efficacy of the invasive/non-invasive pattern by magnifying chromoendoscopy to estimate the depth of invasion of early colorectal neoplasms. Am J Gastroenterol 2008; 103: 2700-2706
9 Nagata S, Tanaka S, Haruma K, Yoshihara M, Sumi K, Kaji-yama G, Shimamoto F. Pit pattern diagnosis of early colorectal carcinoma by magnifying colonoscopy: clinical and histological implications. Int J Oncol 2000; 16: 927-934
10 Kumagai Y, Inoue H, Kawano T. Magnifying endoscopic observation of superficial esophageal carcinoma. Dig Endosc 2004; 16: 277-281
11 Kumagai Y, Inoue H, Nagai K, Kawano T, Iwai T. Magnifying endoscopy, stereoscopic microscopy, and the microvascular architecture of superficial esophageal carcinoma. Endoscopy 2002; 34: 369-375
12 Otsuka Y, Niwa Y, Ohmiya N, Ando N, Ohashi A, Hirooka Y, Goto H. Usefulness of magnifying endoscopy in the diagnosis of early gastric cancer. Endoscopy 2004; 36: 165-169
13 Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, Yoshida S, Hamamoto Y, Endo T. Appearance of en-
Fukuzawa M et al. Narrow-band imaging for colorectal cancer

hanced tissue features in narrow-band endoscopic imaging. J Biomed Opt 2004; 9: 568-577
14 Muto M, Ugiumori T, Sano Y, Ohtsu A, Yoshiida S. Narrow band imaging combined with magnified endoscopy for the cancer at the head and neck region. Dig Endosc 2005; 17: S23-S24
15 Yoshida T, Inoue H, Usui S, Satodate H, Fukami N, Kudo SE. Narrow-band imaging system with magnifying endoscopy for superficial esophageal lesions. Gastroint Endosc 2004; 59: 288-295
16 Goda K, Tajiri H, Ikegami M, Urashima M, Nakayoshi T, Kaise M. Usefulness of magnifying endoscopy with narrow band imaging for the detection of specialized intestinal metaplasia in columnar-lined esophagus and Barrett's adenocarcinoma. Gastroint Endosc 2007; 65: 36-46
17 Singh R, Anagnostopoulos GK, Yao K, Karageorgiou H, Fortun PJ, Shohde A, Garsed K, Kaye PV, Hawkey CJ, Ragu-nath K. Narrow-band imaging with magnification in Barrett's esophagus: validation of a simplified grading system of mucosal morphology patterns against histology. Endoscopy 2008; 40: 457-463
18 Curvers W, Baak L, Kieslessch R, Van Oijen A, Rabenstein T, Ragu-nath K, Hey D, Scholten P, Seitz U, Ten Kate F, Fockens P, Bergman J. Chromoendoscopy and narrow-band imaging compared with high-resolution magnification endoscopy in Barrett's esophagus. Gastroenterology 2008; 134: 670-679
19 Uedo N, Ishihara R, Iishi H, Yamamoto S, Yamamoto S, Yamada T, Imanaka K, Takeuchi Y, Higashino K, Ishiguro S, Tatsuta M. A new method of diagnosing gastric intestinal metaplasia: narrow-band imaging with magnifying endoscopy. Endoscopy 2006; 38: 819-824
20 Nakayoshi T, Tajiri H, Matsuda K, Kaise M, Ikegami M, Sakai H. Magnifying endoscopy combined with narrow band imaging system for early gastric cancer: correlation of vascular pattern with histopathology (including video). Endoscopy 2004; 36: 1080-1084
21 Machida H, Sano Y, Hamamoto Y, Muto M, Kozu T, Tajiri H, Yoshida S. Narrow-band imaging in the diagnosis of colorectal mucosal lesions: a pilot study. Endoscopy 2004; 36: 1094-1098
22 Su MY, Hsu CM, Ho YP, Chen PC, Lin CJ, Chiu CT. Comparative study of conventional colonoscopy, chromoendoscopy, and narrow-band imaging systems in differential diagnosis of neoplastic and nonneoplastic colonic polyps. Am J Gastroenterol 2006; 101: 2711-2716
23 Chiu HM, Chang CY, Chen CC, Lee YC, Wu MS, Lin JT, Shun CT, Wang HP. A prospective comparative study of narrow-band imaging, chromoendoscopy, and conventional colonoscopy in the diagnosis of colorectal neoplasia. Gut 2007; 56: 373-379
24 Hirata M, Tanaka S, Oka S, Kaneko I, Yoshida S, Yoshihara M, Chayama K. Magnifying endoscopy with narrow band imaging for diagnosis of colorectal tumors. Gastroint Endosc 2007; 65: 988-995
25 Hirata M, Tanaka S, Oka S, Kaneko I, Yoshida S, Yoshihara M, Chayama K. Evaluation of microvessels in colorectal tumors by narrow band imaging magnification. Gastroint Endosc 2007; 66: 945-952
26 Sano Y, Ikematsu H, Fu KI, Emura F, Katagiri A, Horimatsu T, Kaneko K, Soetikno R, Yoshida S. Meshed capillary vessels by use of narrow-band imaging for differential diagnosis of small colorectal polyps. Gastroint Endosc 2009; 69: 278-283
27 Tischendorf JJ, Wasmuth HE, Koch A, Hecker H, Traut-wein C, Winogrud R. Value of magnifying chromoendoscopy and narrow band imaging (NBI) in classifying colorectal polyps: a prospective controlled study. Endoscopy 2007; 39: 1092-1096
28 East JE, Suzuki N, Bassett P, Stavrinidis M, Thomas HJ, Guenther T, Tekkis PP, Saunders BP. Narrow band imaging with magnification for the characterization of small and diminutive colonic polyps: pit pattern and vascular pattern intensity. Endoscopy 2008; 40: 811-817
29 Sikka S, Ringold DA, Jonnalagadda S, Banerjee B. Comparison of white light and narrow band high definition images in predicting colon polyp histology, using standard colonoscopes without optical magnification. Endoscopy 2008; 40: 818-822
30 Katagiri A, Fu KI, Sano Y, Ikematsu H, Horimatsu T, Kaneko K, Muto M, Yoshida S. Narrow band imaging with magnifying colonoscopy as diagnostic tool for predicting histology of early colorectal neoplasia. Aliment Pharmacol Ther 2008; 27: 1269-1274
31 Kitajima K, Fujimori T, Fuji S, Takeda J, Okhura Y, Kawama-ta H, Kumamoto T, Ishiguro S, Kato Y, Shimoda T, Iwashita A, Ajioka Y, Watanabe H, Watanabe T, Muto T, Nagasako K. Correlations between lymph node metastasis and depth of submucosal invasion in submucosal invasive colorectal carcinoma: a Japanese collaborative study. J Gastroenterol 2004; 39: 534-543
32 Uraoka T, Saito Y, Matsuda T, Ikehara H, Gotoda T, Saito D, Fuji T. Endoscopic indications for endoscopic mucosal resection of laterally spreading tumours in the colorectum. Gut 2006; 55: 1592-1597
33 Saito Y, Fuji T, Kondo H, Mukai H, Yokota T, Kozu T, Saito D. Endoscopic treatment for laterally spreading tumours in the colon. Endoscopy 2001; 33: 682-686
34 Schlemper RJ, Riddell RH, Kato Y, Borchard F, Cooper HS, Dawsen SM, Dixon MF, Fenoglio-Preiser CM, Flejou JF, Geboes K, Hattori T, Hirota T, Itabashi M, Iwafuchi M, Iwashita A, Kim YI, Kirchner T, Klimpfinger M, Koike M, Lauwers GY, Levin KJ, Oberhuber G, Offner F, Price AB, Rubio CA, Shimizu M, Shimoda T, Sipponen P, Solcia E, Stolte M, Watanabe H, Yamae H. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 2000; 47: 251-255
35 Dixon MF. Gastrointestinal epithelial neoplasia: Vienna revisited. Gut 2002; 51: 130-131
36 Endoscopic Classification Review Group. Update on the Paris classification of superficial neoplastic lesions in the dig-estive tract. Endoscopy 2005; 37: 570-578
37 Konerding MA, Fait E, Gaumann A. 3D microvascular ar-chitecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer 2001; 84: 1354-1362
38 Sano Y, Maeda N, Kanzaki A, Fuji T, Ochiai A, Takenoshita S, Takebayashi Y. Angiogenesis in colon hyperplastic polyp. Cancer Lett 2005; 218: 223-228

S-Editor Wang YR L-Editor Kerr C E-Editor Lin YP