Resolving the $(g-2)_\mu$ Discrepancy with F-$SU(5)$ Intersecting D-branes

Joseph L. Lamborn, Tianjun Li, James A. Maxin, and Dimitri V. Nanopoulos

1 Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115 USA
2 CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
3 School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
4 George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
5 Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA
6 Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece

A discrepancy between the measured anomalous magnetic moment of the muon $(g-2)_\mu$, and computed Standard Model value now stands at a combined 4.2σ following experiments at Brookhaven National Lab (BNL) and the Fermi National Accelerator Laboratory (FNAL). A solution to the disagreement is uncovered in flipped $SU(5)$ with additional TeV-Scale vector-like 10 + 10̃ multiplets and charged singlet derived from local F-Theory, collectively referred to as F-$SU(5)$. Here we engage general No-Scale supersymmetry (SUSY) breaking in F-$SU(5)$ D-brane model building to alleviate the $(g-2)_\mu$ tension between the Standard Model and observations. A robust Δa_μ(SUSY) is realized via mixing of M_μ and M_{1X} at the secondary $SU(5) \times U(1)_X$ unification scale in F-$SU(5)$ emanating from $SU(5)$ breaking and $U(1)_X$ flux effects. Calculations unveil Δa_μ(SUSY) = 19.0 − 22.3 × 10^{-10} for gluino masses of $M(\tilde{g}) = 2.25 - 2.56$ TeV and higgsino dark matter, aptly residing within the BNL+FNAL 1σ mean. This $(g-2)_\mu$ favorable region of the model space also generates the correct light Higgs boson mass and branching ratios of companion rare decay processes, and is further consistent with all LHC Run 2 constraints. Finally, we also examine the heavy SUSY Higgs boson in light of recent LHC searches for an extended Higgs sector.

PACS numbers: 11.10.Kk, 11.25.Mj, 11.25.-w, 12.60.Jv

INTRODUCTION

The Fermi National Accelerator Lab (FNAL) launched an experiment to update the original Brookhaven National Lab (BNL) analysis of the magnetic moment of the muon $(g-2)_\mu$. The BNL measurements showed an enticing 3.7σ deviation [1] from the theoretical Standard Model calculation [2,31], albeit burdened with a large factor of uncertainty. The independently conducted FNAL venture sought to either confirm or exclude these initial BNL findings. Concluding the anticipation, FNAL announced recently a similar disparity with the Standard Model value, leading to a combined 4.2σ discrepancy of $\Delta a_\mu = a_\mu$(Exp) − a_μ(SM) = 25.1 ± 5.9 × 10^{-10} [32], in conjunction with a reduced uncertainty by a factor of four. Even more intriguing is the magnitude of the discrepancy, which just so happens to be similar in scale to the electroweak contribution [20,31] to a_μ(SM), suggesting new physics obscured at the TeV-scale.

A natural explanation for the anomaly is supersymmetry (SUSY), certainly the most auspicious extension to the Standard Model. The muon’s magnetic moment maintains the benefit of precision measurements and is rather sensitive to new physics, thus it has long been viewed as a gateway to probing SUSY. The triumphs of SUSY are numerous and well known with regards to stabilizing quantum corrections to the scalar Higgs field, gauge coupling unification, mechanism for radiatively breaking electroweak symmetry, and yielding a dark matter candidate in the form of the lightest supersymmetric particle (LSP) under R-parity. Our model we investigate here showcases intersecting D-branes, therefore a critical feature of SUSY is its fundamental presence in super-string theory.

The SUSY grand unification theory (GUT) model we study merges the realistic intersecting D6-brane model [33,47] with the phenomenologically [48,50] and cosmologically [60,69] favorable No-Scale flipped $SU(5)$. The union of these with extra vector-like matter, dubbed flippons [51], is referred to as the F-$SU(5)$ D-brane model, which in aggregate reinforces deep theoretical constructions, furnishing a compelling natural GUT candidate for our universe. Serving as a viable high-energy candidate though, it must be capable of elegantly explaining any and all empirical observations, so we shall stress test the model to affirm whether or not it can indeed explain the BNL+FNAL 4.2σ discrepancy (Spoiler Alert: It can!). But first we must review the F-$SU(5)$ D-brane model’s foundation before we then take the deep dive into the calculations of $(g-2)_\mu$ and corresponding phenomenology later in the paper.
F-SU(5) INTERSECTING D-BRANES

The F-SU(5) literature is amply stocked with discussions of the minimal flipped SU(5) model (for instance, see Refs. [51, 53, 54, 58, 59, 70–72] and references therein). We shall provide here only a condensed review of the minimal flipped SU(5) model [73, 74], where the gauge group SU(5) × U(1)X is embedded into the SO(10) model. First, the generator \(U(1)_{Y'} \) in SU(5) is defined as

\[
T_{U(1)_{Y'}} = \text{diag} \left(\frac{1}{3}, \frac{1}{3}, -\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \right),
\]

which provides the hypercharge given by

\[
Q_Y = \frac{1}{5} (Q_X - Q_{Y'}). \tag{2}
\]

There are three families of Standard Model fermions, and the quantum numbers under SU(5) × U(1)X respectively are

\[
F_i = (10, 1), \quad \bar{F}_i = (\bar{5}, -3), \quad \bar{l}_i = (1, 5), \tag{3}
\]

with \(i = 1, 2, 3 \). Relevant for our D-brane model notation, we associate \(F_i, \bar{F}_i, \bar{l}_i \) with the particle assignments

\[
F_i = (Q_i, D_i^c, N_i^c), \quad \bar{F}_i = (U_i^c, L_i), \quad \bar{l}_i = E_i^c,
\]

where \(Q_i, U_i^c, D_i^c, L_i, E_i^c \) and \(N_i^c \) are the left-handed quark doublets, right-handed up-type quarks, down-type quarks, left-handed lepton doublets, right-handed charged leptons, and neutrinos, respectively. Three Standard Model singlets \(\phi_i \) can be introduced to generate heavy right-handed neutrino masses.

The GUT and electroweak gauge symmetries can now be broken, and this is accomplished by introducing two pairs of Higgs representations

\[
H = (10, 1), \quad \bar{H} = (\bar{10}, -1),
\]

\[
h = (5, -2), \quad \bar{h} = (\bar{5}, 2). \tag{5}
\]

The \(H \) and \(F \) multiplet states are labeled similarly, including only a “bar” added above the fields for \(\bar{H} \). More precisely, the Higgs particles are

\[
H = (Q_H, D_H^c, N_H^c), \quad \bar{H} = (\bar{Q}_H, \bar{D}_H, \bar{N}_H), \tag{6}
\]

\[
h = (D_h, D_h, D_h, H_d), \quad \bar{h} = (\bar{D}_H, \bar{D}_H, \bar{D}_H, H_u), \tag{7}
\]

such that \(H_d \) and \(H_u \) are a single pair of MSSM Higgs doublets.

We introduce this GUT scale Higgs superpotential to break the SU(5) × U(1)X gauge symmetry down to the Standard Model gauge symmetry:

\[
W_{\text{GUT}} = \lambda_1 H H h + \lambda_2 \bar{H} \bar{H} \bar{h} + \Phi (\bar{H} H - M_H^2). \tag{8}
\]

Consequently, there is only one F-flat and D-flat direction existing, which can certainly be rotated along the \(N_H^c \) and \(\bar{N}_H^c \) directions. As a result, we obtain \(\langle N_H^c \rangle = \langle \bar{N}_H^c \rangle = M_H \). Additionally, the supersymmetric Higgs mechanism allows the superfields \(H \) and \(\bar{H} \) to be consumed and thus acquire large masses, except \(D_H^c \) and \(\bar{D}_H \). Moreover, the superpotential terms \(\lambda_1 H H h \) and \(\lambda_2 \bar{H} \bar{H} \bar{h} \) couple \(D_H^c \) and \(\bar{D}_H \) respectively, which forms massive eigenstates with masses \(2\lambda_1 < \langle N_H^c \rangle \) and \(2\lambda_2 < \langle \bar{N}_H^c \rangle \). Accordingly, doublet-triplet splitting naturally occurs due to the missing partner mechanism [75]. There is only a small mixing through the \(\mu \) term in the triplets \(h \) and \(\bar{h} \), so colored higgsino-exchange mediated proton decay remains negligible, i.e., the dimension-5 proton decay problem is absent [76].

String-scale gauge coupling unification at about 10^{17} GeV can be realized by introducing the following vector-like particles (referred to as flippons) at the TeV scale derived from local F-theory model building [77, 78]:

\[
X\bar{F} = (10, 1), \quad X\bar{F} = (\bar{10}, -1),
\]

\[
X l = (1, -5), \quad \bar{X} l = (1, 5). \tag{9}
\]

Under Standard Model gauge symmetry, the particle content resulting from decompositions of \(X F, X\bar{F}, X l, \) and \(\bar{X} l \) are

\[
X F = (X Q, X D^c, X N^c), \quad X\bar{F} = (X Q^c, X D, X N),
\]

\[
X l = X E, \quad \bar{X} l = X E^c.
\]

The additional vector-like particles under the \(SU(3)_C \times SU(2)_L \times U(1)_{Y'} \) gauge symmetry have the quantum numbers

\[
X Q = (3, 2, \frac{1}{6}), \quad X Q^c = (\bar{3}, 2, -\frac{1}{6}), \tag{10}
\]

\[
X D = (3, 1, -\frac{1}{3}), \quad X D^c = (\bar{3}, 1, \frac{1}{3}),
\]

\[
X N = (1, 1, 0), \quad X N^c = (1, 1, 0), \tag{11}
\]

\[
X E = (1, 1, -1), \quad X E^c = (1, 1, 1), \tag{12}
\]

The superpotential is

\[
W_{\text{Yukawa}} = y_{ij}^{D} F_i F_j h + y_{ij}^{U} U_i^{c} F_j \bar{F} + y_{ij}^{E} E_i^{c} F_j \bar{h} + \mu h \bar{h} + y_{ij}^{N} N_i^{c} L_j H_d + M_{ij} \phi_i \phi_j,
\]

\[
+ y_{i}^{X} F X F h + y_{i}^{X} F X F \bar{h} + M_{X} X E^c X E + M_{X} X E X E^c
\]

\[
+ M_{X_{I}} X E X E + M_{X_{I}} \phi_i \phi_j + \cdots \text{(decoupled below } M_{GUT}). \tag{16}
\]
where $y_D^{i}, y_{ij}^{I}, y_{ij}^{E}, y_{ij}^{N}, y_{ji}^{X}, y_{X}^{X}$ are Yukawa couplings, μ is the bilinear Higgs mass term, and $M_{i,j}^{\phi}, M_{a}^{\phi}$ and M_{X}^{ϕ} are new particle masses. The vector-like particle flippons are of course these new particles. The masses $M_{i,j}^{\phi}, M_{a}^{\phi}$ and M_{X}^{ϕ} have not been explicitly computed yet, reserving that in-depth project for the future.

Regardless, a common mass decoupling scale M_{V} for the vector-like multiplets is implemented.

Contributions from vector-like multiplets require changes to the one-loop gauge β-function coefficients b_i that promote a flat $SU(3)$ Renormalization Group Equation (RGE) running ($b_3 = 0$) \[3\], separating the secondary $SU(3)_C \times SU(2)_L$ unification around 10^{16} GeV, which we refer to as the mass scale M_{32}, and the primary $SU(5) \times U(1)_X$ unification near the string scale 10^{17} GeV, defined as the mass scale M_{F}. This is significant as it elevates unification close to the Planck mass. The M_{3} and M_{2} gaugino mass terms and couplings α_{3} and α_{2} unify at the scale M_{32} into a single mass parameter M_{5} and coupling α_{5} \[4\], where $M_{5} = M_{3} = M_{2}$ and $\alpha_{5} = \alpha_{3} = \alpha_{2}$ between M_{32} and M_{F} \[5\]. The flattening of the M_{3} gaugino RGE running between M_{32} and M_{F} produces a characteristic mass texture of $M_{\tilde{t}_{1}} < M_{\tilde{g}} < M_{\tilde{q}}$, spawning a light stop and gluino that are lighter than all other squarks \[5\].

Two critical effects naturally transpire at the scale M_{32}. First, $U(1)_X$ flux effects \[15\] cause a small increase in M_{1} from the evolution of M_{1X} via the following

$$M_{1} = \frac{24}{\alpha_{1}} M_{1X} + \frac{1}{\alpha_{5}} M_{5}$$

where $\alpha_{1} = 5\alpha_{Y}/3$ is the $U(1)_Y$ gauge coupling. Second, in the $SU(5) \times U(1)_X$ models motivated by D-brane model building, there exist three chiral multiplets in the $SU(5)$ adjoint representation, for example, see Ref. \[50\]. These chiral multiplets can obtain vacuum expectation values around the $SU(3)_C \times SU(2)_L$ unification scale M_{32}, and then the gaugino masses for $SU(3)_C \times SU(2)_L \times U(1)_Y$ of $SU(5)$ can be split due to the high-dimensional operators \[51,52\]. Because the bino mass is a linear combination of the $U(1)_Y$, and $U(1)_X$ gaugino masses, the bino mass M_{1}, wino mass M_{2}, and gluino mass M_{3} can be independent free parameters at M_{32}. Thus, we shall consider such effects by introducing the following relationship at the scale M_{32} that stimulates mixing between M_{5} and M_{1X}:

$$M_{2} = \frac{18}{25} M_{5} - \frac{7}{25} M_{1X}$$

This effect drives the wino to small values at the electroweak scale and we use the resulting phenomenology to constrain the coefficients in Eq. \[15\]. A larger contribution from M_{5} decreases the wino contribution to $(g-2)_{\mu}$.

On the contrary, a smaller contribution from M_{5} shifts the $SU(3)_C \times SU(2)_L$ unification scale M_{32} lower, to below 10^{15} GeV. The lower M_{32} in turn pushes the proton decay rate $\tau_{p}(p \rightarrow e^{+} \pi^{0})$ down to unacceptably fast time periods of 10^{14} yrs or less. We study the nominal mixing highlighted in Eq. \[15\] in this analysis, though plan a more in-depth study later regarding maximum limits on the mixing parameters of Eq. \[15\].

Following upon the F_{i}, f_{i}, and l_{i} of Eq. \[4\], the general No-Scale SUSY breaking soft terms at M_{F} are M_{5}, $M_{1X}, M_{QD_{-}N_{c}}, M_{U_{L}}, M_{E_{L}}, M_{H_{u}}, M_{H_{d}}, A_{r}, A_{t}$, and A_{b}. Note that $M_{QD_{-}N_{c}}$ is the 10, $M_{U_{L}}$ is the 5, and $M_{E_{L}}$ is the 1 of Eq. \[3\]. General SUSY breaking soft terms of this type are motivated by D-brane model building \[50\], where F_{i}, f_{i}, l_{i}, and h/\tilde{h} arise from intersections of different stacks of D-branes. As a result, the SUSY breaking soft mass terms and trilinear A terms will be different.

The Yukawa terms $HH\tilde{h}$ and $HH\tilde{h}$ of Eq. \[8\] and $F_{i}F_{j}h, XFXFh, \text{and} XFXFh$ of Eq. \[13\] are forbidden by the anomalous global $U(1)$ symmetry of $U(5)$, nonetheless, these Yukawa terms can be generated from high-dimensional operators or instanton effects. Differing from $SU(5)$ models, the Yukawa term $F_{i}F_{j}h$ in the $F-SU(5)$ model gives down-type quark masses, so these Yukawa couplings can be small and hence generated via high-dimensional operators or instanton effects.

PHENOMENOLOGICAL RESULTS

The general No-Scale soft SUSY breaking terms in the $F-SU(5)$ D-brane model are implemented at the $SU(5) \times U(1)_X$ unification scale M_{F}, and we concurrently float the low-energy parameters $\tan\beta$, m_{t}, and M_{V}. Over 1.2 billion points in the model space are sampled by computing the SUSY mass spectra, rare decay process branching ratios, spin-independent dark matter cross-sections, and relic density using a proprietary mpi codebase built on scaled down versions of Micromegas 2.1 \[83\] and Suspect 2.34 \[84\]. The intervals scanned are:

- $100 \text{ GeV} \leq M_{5} \leq 1700 \text{ GeV}$
- $100 \text{ GeV} \leq M_{1X} \leq 3800 \text{ GeV}$
- $10 \text{ eV} \leq M_{U_{L}} \leq 1500 \text{ GeV}$
- $1 \text{ GeV} \leq M_{E_{L}} \leq 2400 \text{ GeV}$
- $1 \text{ keV} \leq M_{QD_{-}N_{c}} \leq 1900 \text{ GeV}$
- $100 \text{ GeV} \leq M_{H_{u}} \leq 4000 \text{ GeV}$
- $100 \text{ GeV} \leq M_{H_{d}} \leq 4000 \text{ GeV}$
- $-10 \text{ TeV} \leq A_{r} \leq 10 \text{ TeV}$
- $-10 \text{ TeV} \leq A_{t} \leq 13 \text{ TeV}$
- $-10 \text{ TeV} \leq A_{b} \leq 15 \text{ TeV}$
- $2 \leq \tan\beta \leq 60$
- $1 \text{ TeV} \leq M_{V} \leq 8000 \text{ TeV}$

A small tolerance of $172.3 \leq m_{t} \leq 174.4 \text{ GeV}$ is ap-
TABLE I. The F-SU(5) D-brane model general No-Scale SUSY breaking soft terms along with their associated mass spectra and other pertinent data for 12 benchmark spectra representative of that region of model space that can explain the BNL+FNAL 4.2σ discrepancy. All spectra have higgsino LSP, with the higgsino percentage listed in the bottom line.

M_1 (GeV)	2700	2700	2500	2700	2900	2500	2800	3100	3400	3600	3500	3600
M_2 (GeV)	1510	1510	1530	1570	1600	1600	1660	1610	1640	1660	1660	1700
M_{U-L} (keV)	10	10	10	10	10	10	10	10	10	10	10	10
$M_{Q-D',N}$ (keV)	10	10	10	10	10	10	10	10	10	10	10	10
M_{E} (GeV)	1200	1200	1400	1200	1300	1400	1200	900	1000	1000	900	
M_{H_u} (GeV)	1800	1800	1900	1900	2100	2000	1900	2000	1900	2000	1900	
M_{H_d} (GeV)	2300	2300	2300	2300	2400	2500	2400	2500	2400	2600	2600	
A_{τ} (GeV)	800	800	800	1200	1200	700	600	800	1200	1200	600	800
A_{τ} (GeV)	600	600	600	200	400	0	300	500	100	400	200	800
A_s (GeV)	-4600	-4900	-4900	-5200	-4300	-4500	-5200	-4900	-5000	-4700	-5000	-5000
M_V (TeV)	4000	7000	7000	4000	4000	5500	5500	7000	8000	7000	8000	
$\tan\beta$	60	60	60	60	60	60	59	60	60	60	60	60
m_{top} (GeV)	173.3	173.1	172.7	173.3	173.7	173.3	172.7	172.9	172.3	173.1	172.3	
Δa_{μ} (SUSY) $(\times 10^{-10})$	21.1	22.3	21.1	20.1	19.3	19.0	19.4	20.2	20.6	19.0	19.5	19.0
$\text{Br}(b\to s\gamma)$ $(\times 10^{-3})$	3.01	3.04	2.99	3.09	3.01	3.02	3.10	2.99	3.14	2.99	3.16	3.26
$\text{Br}(B^0_s\to \mu^+\mu^-)$ $(\times 10^{-6})$	5.8	4.9	5.7	6.2	6.2	4.6	4.6	5.6	5.7	5.2	4.3	4.1
σ_{tot} (SUSY) $(\times 10^{-9} \text{fb})$	8.6	6.7	6.8	8.7	6.5	4.9	6.2	6.7	7.8	4.9	6.1	6.2
$\tau_{\text{p}}(p\to e^+\pi^0)$ $(\times 10^{33} \text{yrs})$	1.3	1.3	1.5	1.4	1.0	1.4	1.5	1.1	1.0	0.9	1.0	1.0
Ωh^2	0.0039	0.0041	0.0049	0.0048	0.0043	0.0055	0.0050	0.0039	0.0030	0.0024	0.0032	0.0035
M_{χ^0} (GeV)	235	201	202	217	185	207	215	197	190	210	197	185
$M_{\tilde{g}}$ (GeV)	-282	-237	-232	-251	-215	-234	-247	-233	-234	-271	-240	-222
$M_{\tilde{q}}$ (GeV)	239	206	208	223	191	213	220	202	195	213	201	190
$M_{\tilde{t}^\pm}$ (GeV)	412	380	352	463	458	355	475	396	416	396	416	374
$M_{\tilde{B}_{s,\bar{s}}}$ (GeV)	1074	1054	1076	1109	1155	1115	1113	1129	1133	1174	1162	1184
$M_{\tilde{t}}$ (GeV)	1737	1738	1710	1784	1727	1770	1833	1753	1829	1814	1903	1968
$M_{\tilde{g}}$ (GeV)	2254	2281	2306	2341	2372	2388	2397	2406	2428	2463	2500	2554
$M_{\tilde{m}}$ (GeV)	2522	2507	2537	2619	2658	2651	2655	2650	2660	2713	2739	2798
m_h (GeV)	123.3	123.3	123.6	124.0	124.6	124.0	123.6	124.2	123.4	124.3	123.1	123.0
M_{h} (GeV)	936	946	889	847	831	1014	1000	904	813	1010	962	904
M_{32} $(\times 10^{16}$ GeV)	1.0	1.0	1.1	1.1	1.0	1.1	1.1	1.0	0.9	1.0	1.0	1.0
M_F $(\times 10^{17}$ GeV)	1.9	1.8	1.8	1.9	1.8	1.8	1.8	1.7	1.7	1.7	1.7	1.7

LSP Higgsino Composition 67% 80% 86% 82% 86% 89% 84% 79% 71% 52% 72% 79%
FIG. 2. Illustration of the F-$SU(5)$ D-brane model points that can explain the BNL+FNAL 4.2σ discrepancy on $\Delta \alpha_{\mu}$ evaluated against the CMS constraints on electroweakinos for those spectra with higgsino LSP. The points are superimposed upon the CMS exclusion curves of Ref. [88] that addresses electroweakino production in compressed spectra, namely, higgsino. In this plot for clarity we only show those points that survive the ATLAS electroweakino constraint of Ref. [87], as displayed in FIG. 4. The CMS simplified model scenario applied is not an exact match for the F-$SU(5)$ D-brane model space, but it is nonetheless instructive as to how our model measures against the latest chargino constraints.

Higgs boson mass of $m_h = 125.09 \text{ GeV}$ [22], providing a range of $123 \leq m_h \leq 127 \text{ GeV}$ on the computed total m_h. The total light Higgs boson mass calculation includes the vector-like particle contribution, which couples through the vector-like multiplet Yukawa coupling. We assume a maximum coupling, implying the (XD, XD^c) Yukawa coupling is $Y_{XD} = 0$ and the (XU, XU^c) Yukawa coupling is $Y_{XU} = 1$, and furthermore, the trilinear coupling A-term is $A_{XD} = 0$ while the (XU, XU^c) A-term is $A_{XU} = A_U$ [55, 07]. These numerical values ensure a maximal coupling between the vector-like particles and light Higgs boson.

Given only an upper limit established on the abundance of the lightest neutralino χ_1^0, multi-component dark matter is generally necessary. Therefore, we rescale the spin-independent cross-section σ_{SI} on nucleon-neutralino collisions as such:

$$\sigma_{SI}^{\text{rescaled}} = \sigma_{SI} \frac{\Omega h^2}{0.12}$$

(19)

The $SU(5)$ breaking effects drive the wino to near degeneracy with the lightest neutralino, generating higgsino LSPs. Compressed spectra with $M(\tilde{\chi}_1^+) - M(\tilde{\chi}_1^0) = 3 - 7 \text{ GeV}$ and $M(\tilde{\chi}_2^0) < 0$ are typical conditions identifying higgsino spectra, and indeed these are the char-
FIG. 4. Histogram binned by counts of the heavy SUSY Higgs mass $M(H^0)$. All 261,562 points that satisfy the LHC electroweakino constraints and reside within either the BNL+FNAL 1σ or 2σ limits on Δa_μ are counted in the bins. The bin width is 10 GeV. The peak lies in the (985, 995] bin, or $M(H^0) \simeq 1$ TeV.

characteristics of the \mathcal{F}-$SU(5)$ D-brane points. Twelve sample benchmark points are presented in TABLE I with the higgsino LSP composition percent shown. Given the small wino, the most stringent LHC constraints on the \mathcal{F}-$SU(5)$ D-brane model are ATLAS electroweakino production searches for higgsino LSP [87]. The small wino though does provide ample contribution to Δa_μ (SUSY) to explain the BNL+FNAL 4.2σ discrepancy. The D-brane model has a large region within both the 1σ and 2σ limits around the BNL+FNAL 25.1 × 10$^{-10}$ central value. This is graphically illustrated in FIG. 1 where Δa_μ (SUSY) is plot versus the gluino mass. The points are distinguished by satisfaction of the ATLAS light chargino constraint for those spectra with higgsino LSP [87]. The uncertainty on all Δa_μ calculations is about $\pm 2.4 \times 10^{-10}$. For the amount of M_5 and M_{1X} mixing in Eq. 15 Δa_μ (SUSY) remains in the BNL+FNAL 1σ range up to $M(\tilde{g}) \approx 2.56$ TeV. It is clear in FIG. 1 that the current LHC Run 2 gluino constraint of $M(\tilde{g}) \gtrsim 2.25$ TeV [98–104] correlates to the current chargino constraint for higgsino LSP since the BNL+FNAL 1σ and 2σ points that satisfy the ATLAS chargino constraint show a coincident lower bound of $M(\tilde{g}) \simeq 2.25$ TeV.

To more accurately assess any tension with LHC electroweakino production constraints so that we can provide a frame of reference for our relatively small wino, we superimpose the D-brane model points of FIG. 1 onto the ATLAS electroweakino production summary plot for higgsino LSP [87], as displayed in FIG. 2 and also the CMS electroweakino production plot for higgsino LSP [88], as shown in FIG. 5. The points are likewise separated into those that reside within either the BNL+FNAL 1σ or 2σ limits on Δa_μ. Given the compressed nature of the D-brane spectra, these higgsino simplified models appear to be the only search regions capable of probing the D-brane model space that resolves the BNL+FNAL 4.2σ discrepancy. In the CMS plot in FIG. 2, for clarity we show only those points that satisfy the ATLAS chargino constraint of FIG. 2. The CMS simplified model scenario applied in FIG. 2 is not a precise fit for the \mathcal{F}-$SU(5)$ D-brane model space, but it does give a good summary as to how our model stands against the current chargino constraints. The CMS analysis of Ref. [88] also studies the higgsino model in the phenomenological MSSM (pMSSM), though constraints are given in terms of the wino mass as a function of μ and all points in our model are well beyond these exclusion limits due to the large μ term.

Other than the small wino, the only other class of measurements the D-brane model would seem to be experiencing tension with are the direct-detection spin-independent cross-sections, which we rescale for small Ω_{h^2}. However, given the difficulty with which higgsino LSPs can be detected, we are not alarmed by the larger $\sigma_{SI} \sim 10^{-9}$ pb cross-section.

Recently, ATLAS and CMS have completed searches for heavy resonances that would include heavy Higgs bosons found in an extended Higgs sector. The ATLAS search [102] involves b-jet and τ-lepton final states, whereas the CMS search [106] focuses on b-quark pairs. All 261,562 points that pass the LHC chargino constraints on higgsino spectra and concurrently reside
within either the BNL+FNAL 1σ or 2σ limits on Δa_μ are binned in the histogram of FIG. 4 using 10 GeV bin widths. The histogram peak resides in the $(985, 995]$ GeV bin, or $M(H^0) \simeq 1$ TeV.

CONCLUSIONS

The recent FNAL confirmation of the BNL discrepancy between the measured value of the anomalous magnetic moment of the muon ($g - 2)_\mu$ and the Standard Model (SM) prediction presents a combined deviation of 4.2σ. Given the possible confirmation of a statistically significant 5σ discovery in forthcoming years, all natural GUT model candidates should be capable of elegantly explaining these experimental anomalies. Supersymmetry (SUSY) persists as one promising extension of the SM, hence we study in this work a merging of a realistic D-brane model with the supersymmetric GUT model flipped $SU(5)$ with extra TeV-scale string derived vector-like multiplets, referred to collectively as the F-$SU(5)$ D-brane model. Flipped $SU(5)$ has been shown to be both phenomenologically and cosmologically favorable, therefore, it is an ideal candidate to pursue whether it can indeed resolve the BNL+FNAL observed disparity with the SM calculations.

The supersymmetric GUT model F-$SU(5)$ produces a distinctive two-stage unification process. The primary unification occurs at the $SU(5) \times U(1)_X$ scale where $M_1 = M_2 = M_3$, then a secondary unification at the $SU(3)_C \times SU(2)_L$ scale. However, the large wino mass M_2 at $SU(5) \times U(1)_X$ due to the primary unification presents difficulties since a light wino at low-energy provides a large contribution to the muon $(g - 2)_\mu$. This dilemma can be resolved when the three chiral multiplets in the $SU(5)$ adjoint representation acquire vevs around the scale $SU(3)_C \times SU(2)_L$, and then the gaugino masses for $SU(3)_C \times SU(2)_L \times U(1)_Y$ of $SU(5)$ can be split due to high-dimensional operators, leading to independent bino, wino, and gluino masses. These effects from $SU(5)$ breaking can drive the wino M_2 to small values at the electroweak scale, which in consequence generates a large contribution to the muon $(g - 2)_\mu$.

A deep analysis of the parameter space uncovered a region in the model that can explain the BNL+FNAL muon $(g - 2)_\mu$ measurements of $\Delta a_\mu = a_\mu(\text{Exp}) - a_\mu(\text{SM}) = 25.1 \pm 5.9 \times 10^{-10}$. Calculations show that the model can produce an anomalous magnetic moment as large as $\Delta a_\mu(\text{SUSY}) = 22.3 \times 10^{-10}$ for a gluino mass of $M(\tilde{g}) = 2281$ GeV, well within the 1σ uncertainty on the observed value. Moreover, we completed computations for gluino masses as large as $M(\tilde{g}) = 2560$ GeV, sufficient to ensure probing of the model space for several years to come at the LHC Run 2. We found that $\Delta a_\mu(\text{SUSY})$ can remain tucked just above the lower 1σ bound of $\Delta a_\mu(\text{SUSY}) \simeq 19.0 \times 10^{-10}$ all the way up to the 2560 GeV gluino mass. The small M_2 does drive the chargino mass $M(\tilde{\chi}_1^\pm)$ to near degeneracy with the LSP mass $M(\tilde{\chi}_1^0)$ along with a small negative neutralino mass $M(\tilde{\chi}_2^0)$, generating higgsino dark matter. In addition to the favorable $\Delta a_\mu(\text{SUSY})$, these same points in the model space are consistent with the observed light Higgs boson mass and other rare decay branching ratios, and also all LHC constraints, particularly those on electroweakinos, given the small chargino. Lastly, in light of recent LHC searches for heavy Higgs bosons in an extended Higgs sector, for this same region that can explain the BNL+FNAL measurements, we examined the heavy SUSY Higgs by plotting all viable $(g - 2)_\mu$ points in a histogram with 10 GeV bin widths and discovered that the histogram peak resides at $M(H^0) \simeq 1$ TeV.

ACKNOWLEDGMENTS

Portions of this research were conducted with high performance computational resources provided by the Louisiana Optical Network Infrastructure (http://www.loni.org). This research was supported in part by the Projects 11475238, 11647601, and 11875062 supported by the National Natural Science Foundation of China (TL), by the Key Research Program of Frontier Science, Chinese Academy of Sciences (TL), and by the DOE grant DE-FG02-13ER42020 (DVN).

[1] G. W. Bennett et al. (Muon $g - 2$), “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D73, 072003 (2006), hep-ex/0602035.

[2] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the Hadronic Contributions to the Muon $g - 2$ and to alpha(MZ),” Eur. Phys. J. C71, 1515 (2011), 1010.4180.

[3] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon $g - 2$ and $\alpha(m_Z^2)$ using newest hadronic cross-section data,” Eur. Phys. J. C77, 827 (2017), 1706.09436.

[4] A. Keshavarzi, D. Nomura, and T. Teubner, “Muon $g - 2$ and $\alpha(m_Z^2)$: a new data-based analysis,” Phys. Rev. D97, 114025 (2018), 1802.02995.

[5] G. Colangelo, M. Hoferichter, and P. Stoffer, “Two-pion contribution to hadronic vacuum polarization,” JHEP 02, 006 (2019), 1810.00007.

[6] M. Hoferichter, B.-L. Hoid, and B. Kubis, “Three-pion contribution to hadronic vacuum polarization,” JHEP 08, 137 (2019), 1907.01556.

[7] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to $\alpha(m_Z^2)$,” Eur. Phys. J. C80, 241 (2020), [Erratum: Eur. Phys. J. C80, 410 (2020)], 1908.00921.
[8] A. Keshavarzi, D. Nomura, and T. Teubner, “The $g - 2$ of charged leptons, $\alpha(M_Z^2)$ and the hyperfine splitting of muonium,” Phys. Rev. D101, 014029 (2020), 1911.00367.

[9] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, “Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order,” Phys. Lett. B734, 144 (2014), 1403.6400.

[10] A. Gérardin, M. Cè, G. von Hippel, B. Hörz, H. B. Meyer, D. Mohler, K. Ottndt, J. Wilhelm, and H. Wittig, “The leading hadronic contribution to $(g - 2)_\mu$ from lattice QCD with $N_f = 2 + 1$ flavours of O(a) improved Wilson quarks,” Phys. Rev. D100, 014510 (2019), 1904.03120.

[11] C. Aubin, T. Blum, C. Tu, M. Golterman, C. Jung, and S. Peris, “Light quark vacuum polarization at the physical point and contribution to the muon $g - 2$,” Phys. Rev. D101, 014503 (2020), 1905.09307.

[12] D. Giusti and S. Simula, “Lepton anomalous magnetic moments in Lattice QCD+QED,” PoS LAT-TICE2019, 104 (2019), 1910.03874.

[13] K. Melnikov and A. Vainshtein, “Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited,” Phys. Rev. D70, 113006 (2004), hep-ph/0312226.

[14] P. Masjuan and P. Sánchez-Puertas, “Pseudoscalar-pole contribution to the $(g - 2)_\mu$; a rational approach,” Phys. Rev. D95, 054026 (2017), 1701.05829.

[15] G. Colangelo, M. Höferichter, M. Procura, and P. Stoffer, “Dispersion relation for hadronic light-by-light scattering: two-pion contributions,” JHEP 04, 161 (2017), 1702.07347.

[16] M. Höferichter, B.-L. Hoid, B. Kuhis, S. Leupold, and S. P. Schneider, “Dispersion relation for hadronic light-by-light scattering: pion pole,” JHEP 10, 141 (2018), 1808.04823.

[17] A. Gérardin, H. B. Meyer, and A. Nyffeler, “Lattice calculation of the pion transition form factor with $N_f = 2 + 1$ Wilson quarks,” Phys. Rev. D100, 034520 (2019), 1903.09471.

[18] J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez, “Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment,” Phys. Lett. B798, 134994 (2019), 1908.03331.

[19] G. Colangelo, F. Hagelstein, M. Höferichter, L. Laub, and P. Stoffer, “Longitudinal short-distance constraints for the hadronic light-by-light contribution to $(g - 2)_\mu$ with large-N_c Regge models,” JHEP 03, 101 (2020), 1910.13432.

[20] V. Pauk and M. Vanderhaeghen, “Single meson contributions to the muon’s anomalous magnetic moment,” Eur. Phys. J. C74, 3008 (2014), 1401.0832.

[21] I. Danilkin and M. Vanderhaeghen, “Light-by-light scattering sum rules in light of new data,” Phys. Rev. D95, 014019 (2017), 1611.04646.

[22] F. Jegerlehner, “The Anomalous Magnetic Moment of the Muon,” Springer Tracts Mod. Phys. 274, 1 (2017).

[23] M. Knecht, S. Narison, A. Rabemananjara, and D. Rabetiarivony, “Scalar meson contributions to a_μ from hadronic light-by-light scattering,” Phys. Lett. B787, 111 (2018), 1808.03848.

[24] G. Eichmann, C. S. Fischer, and R. Williams, “Kaon-box contribution to the anomalous magnetic moment of the muon,” Phys. Rev. D101, 054015 (2020), 1910.06795.

[25] P. Roig and P. Sánchez-Puertas, “Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment,” Phys. Rev. D101, 074019 (2020), 1910.02881.

[26] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, “The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD,” Phys. Rev. Lett. 124, 132002 (2020), 1911.08123.

[27] G. Colangelo, M. Höferichter, A. Nyffeler, M. Passera, and P. Stoffer, “Remarks on higher-order hadronic corrections to the muon $g - 2$,” Phys. Lett. B735, 90 (2014), 1403.7512.

[28] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, “Complete Tenth-Order QED Contribution to the Muon $g - 2$,” Phys.Rev.Lett. 109, 111808 (2012), 1205.5370.

[29] T. Aoyama, T. Kinoshita, and M. Nio, “Theory of the Anomalous Magnetic Moment of the Electron,” Atoms 7, 28 (2019).

[30] A. Czarnecki, W. J. Marciano, and A. Vainshtein, “Refinements in electroweak contributions to the muon anomalous magnetic moment,” Phys. Rev. D67, 073006 (2003), [Erratum: Phys. Rev. D73, 119901 (2006)], hep-ph/0212229.

[31] C. Gneindiger, D. Stöckinger, and H. Stöckinger-Kim, “The electroweak contributions to $(g - 2)_\mu$ after the Higgs boson mass measurement,” Phys. Rev. D88, 053005 (2013), 1306.5546.

[32] B. Abi et al. (Muon g-2), “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126, 141801 (2021), 2104.03281.

[33] M. Berkooz, M. R. Douglas, and R. G. Leigh, “Branes intersecting at angles,” Nucl.Phys. B480, 265 (1996), hep-th/9606139.

[34] M. Cvetic, G. Shiu, and A. M. Uranga, “Three family supersymmetric standard - like models from intersecting brane worlds,” Phys.Rev.Lett. 87, 201801 (2001), hep-th/0107143.

[35] M. Cvetic, G. Shiu, and A. M. Uranga, “Chiral four-dimensional N=1 supersymmetric type 2A orientifolds from intersecting D6 branes,” Nucl.Phys. B615, 3 (2001), hep-th/0107166.

[36] R. Blumenhagen, B. Kors, D. Lust, and T. Ott, “The standard model from stable intersecting brane world orbifolds,” Nucl.Phys. B616, 3 (2001), hep-th/0107138.

[37] L. E. Ibanez, F. Marchesano, and R. Rabadan, “Getting just the standard model at intersecting branes,” JHEP 0111, 002 (2001), hep-th/0105155.

[38] M. Cvetic, I. Papadimitriou, and G. Shiu, “Supersymmetric three family SU(5) grand unified models from type IIA orientifolds with intersecting D6-branes,” Nucl.Phys. B659, 193 (2003), hep-th/0212177.

[39] R. Blumenhagen, M. Cvetic, P. Langacker, and G. Shiu, “Toward realistic intersecting D-brane models,” Ann.Rev.Nucl.Part.Sci. 55, 71 (2005), hep-th/0502005.

[40] M. Cvetic, T. Li, and T. Liu, “Supersymmetric pati-salam models from intersecting D6-branes: A Road to the standard model,” Nucl.Phys. B698, 163 (2004), hep-th/0403061.
