Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The prognostic role of micronutrient status and supplements in COVID-19 outcomes: A systematic review

Evmorfia Pechlivanidou a, Dimitrios Vlachakis b, Konstantinos Tsarouhas c, Dimitris Panidis d, Christina Tsitsimpikou e, Christina Darviri f, Dimitrios Kouretas g, Flora Bacopoulou a,f,*

a Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Agia Sophia Children’s Hospital, Athens, 11527, Greece
b Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, 11855, Greece
c Department of Cardiology, University Hospital of Larissa, Messerolou, Larissa, 41110, Greece
d European Commission, Joint Research Centre (JRC), Ispra, Italy
e Postgraduate Program “The Science of Stress and Health Promotion”, School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephesiou Street, 11527, Athens, Greece
f Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
g General Chemical State Laboratory of Greece, 16, An. Tsosha Sr., Athens, 11521, Greece

Handling Editor: Dr. Jose Luis Domingo

ARTICLE INFO

Keywords: COVID-19, Vitamin, Micronutrients, Pandemic, Supplements, Coronavirus

A B S T R A C T

Micronutrients constitute an adjuvant treatment for respiratory viral infections. Since there is no effective antiviral therapy for COVID-19 yet, adjuvant intervention for the survival of critically ill patients may be significant. Search of the PubMed, CINAHL and Cochrane databases was carried out to find human studies investigating the prognostic role of micronutrient status and the effects of micronutrient supplementation intervention in COVID-19 outcomes of adult patients. Patients with certain comorbidities (diabetes mellitus type 2, obesity, renal failure, liver dysfunction etc.) or pregnant women were excluded. 31 studies (27 observational studies and 4 clinical trials) spanning the years 2020–2021, pertaining to 8624 COVID-19 patients (mean age±SD, 61 ± 9 years) were included in this systematic review. Few studies provided direct evidence on the association of serum levels of vitamin D, calcium, zinc, magnesium, phosphorus and selenium to patients’ survival or death. Vitamin D and calcium were the most studied micronutrients and those with a probable promising favorable impact on patients. This review highlights the importance of a balanced nutritional status for a favorable outcome in COVID-19. Micronutrients’ deficiency on admission to hospital seems to be related to a high risk for ICU admission, intubation and even death. Nevertheless, evidence for intervention remains unclear.

1. Introduction

In December 2019, the Municipal Health Commission of Wuhan identified a large number of cases of viral pneumonia of unknown etiology. Soon, through sequence analysis, a new virus of the coronavirus family was identified and named SARS-CoV-2, while the resulting disease was named Corona Virus Induced Disease 2019 (COVID-19) (Zhu et al., 2020). By February 2020 the widespread transmission of the virus outside China became apparent, while on March 12, 2020, the World Health Organization (WHO) characterized the situation as a pandemic (WHO, 2020a). In early February 2021 the cases had exceeded 100 million worldwide, while over 2 million people had lost their lives due to COVID-19 (WHO, 2020b).

While SARS-CoV-2 seems to be accompanied by lower mortality rates than the previous corona viruses MERS and SARS-CoV-1, it is more contagious (Lu et al., 2020; Wang et al., 2020). Current estimates of mortality rates range from 0.5 to 3.5% overall (compared to 0.1% for seasonal flu) and are significantly higher in the elderly, people with comorbidities, or the immunosuppressed. Key risk factors are age over 65 years, coronary heart disease, heart failure, diabetes mellitus, chronic obstructive pulmonary disease, obesity and smoking (Guo et al., 2020; Huang et al., 2020a; Wang et al., 2020).

Vaccination has been proven a safe and efficient strategy against SARS-CoV-2 spread, the rapidity of which has substantially reduced the
number of new COVID-19 cases and their severity in highly vaccinated countries, while microRNAs have been introduced as promising antiviral agents aside from their crucial use in vaccine technology (Abedi et al., 2021). However, antiviral treatment and evidence of other favorable interventions need further development (Tavilani et al., 2021; Whittaker et al., 2021). Regarding prognosis, risk factors have been clarified but recovery predictors are still under research (Abrahim et al., 2020; Tavilani et al., 2021; Whittaker et al., 2021). Recent reviews agree that micronutrients play a crucial role in COVID-19 progression, prognosis and survival, as in multiple other viral infections that primarily affect the respiratory tract (Cheng, 2020; Grant et al., 2020; Jin et al., 2020; Keil et al., 2016; Lin et al., 2017; Ryu et al., 2010). Especially zinc and flavonoids have been proven to inhibit a special protease of the virus called 3C and improve survival (Jo et al., 2019; Lin et al., 2017; Ryu et al., 2010).

This systematic review summarizes and describes human studies investigating the prognostic role of micronutrient status and the effects of micronutrient supplementation intervention in COVID-19 outcomes of adult patients.

2. Materials and methods

2.1. Search strategy

The present systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A systematic and comprehensive search of the PubMed, CinAHL and Cochrane databases was carried out for papers published from database inception until April 2021. We used the following search algorithm: (“Wuhan coronavirus” or “Wuhan virus” or “novel coronavirus” or “nCoV” or “SARS-CoV-2” or “SARS 2” or “severe acute respiratory syndrome coronavirus 2” or “COVID-19” or “corona virus disease 2019 virus” or “2019-nCoV” or “2019 novel coronavirus” or “severe acute respiratory syndrome coronavirus 2” or “coronavirus” or “coronaviruses”) AND (“Vitamin D” or “vitamin D” or “25-OH-calciferol” or “25 hydroxy calciferol” or “25-OH-vitamin D” or “25-OH-vitamin d” or “25 hydroxy vitamin d” or Mg or zinc or vitamin C or “ascorbate” or “ascorbic acid” or Ca or antioxidants or micronutrients) AND patients AND prognosis. The references of all eligible articles were also checked thoroughly.

2.2. Selection criteria

The eligibility criteria were based on the PICOS (Participants, Intervention, Comparison, Outcomes, Study design) acronym. Studies of COVID-19 inpatients, outpatients or both were included in the review, if they fulfilled the following criteria: (i) written in English language; (ii) investigated outcomes among SARS-CoV-2 infected adults according to specific micronutrients’ blood levels; (iii) prospective or retrospective cohort studies or cross-sectional studies or clinical trials; (iv) the study presented its final results; (v) there was a precise determination of the patients’ levels of the studied micronutrient at the beginning and/or during the study protocol, so that objective evidence of the sufficiency or insufficiency of the studied micronutrient could be provided. Regarding the determination of prognosis, all studies looking for outcomes such as severe disease, need for mechanical ventilation (MV), intensive care unit (ICU) admission, mortality, end or duration of hospitalization, reduction of blood inflammatory markers and those estimating certain survival scores were included, to enclose only studies with specific or measurable outcomes. Studies were excluded if they focused only on patients with certain comorbidities (such as diabetes mellitus type 2, obesity, renal failure, liver dysfunction etc.) or pregnant women. These populations were excluded because their pre-comorbid conditions might had precluded potentially beneficial effects of vitamin supplements, whereas pregnant women might had already been taking nutrient supplements to maintain adequate micronutrient levels throughout gestation. Studies evaluating prognosis only throughout the improvement of symptoms were also excluded.

2.3. Quality assessment and data extraction

Titles and abstracts of studies were retrieved using the search strategy for all three databases and were extracted independently by three different authors (EP, DV and FB). These authors (EP, DV and FB) screened for eligibility the titles and abstracts of the retrieved papers and analyzed the full-text articles that met the eligibility criteria. Data extraction was performed as following: first author and year of publication, studied micronutrient, country, study design, demographic information (age, sex), sample size, COVID-19 test type for diagnosis, time of micronutrients laboratory evaluation, criteria for prognosis evaluation; results. Automation tools were not used in this process.

2.4. Compliance with ethics guidelines

This article is a review of previously conducted studies, in accordance with the PRISMA guidelines.

3. Results

3.1. Search results and selection of studies

Initial search yielded 186 studies. After excluding irrelevant papers and those matching to the research subject but not complying with the eligibility criteria, the final step of the screening process resulted in 31 studies (14 published in 2020 and 17 in 2021) spanning the years 2020–2021. Among included studies, 27 were observational studies (19 retrospective, 4 prospective, 4 cross-sectional) and 4 were clinical trials (2 double-blind placebo-controlled). The PRISMA flow diagram shows the selection and exclusion of studies (Fig. 1).

Fourteen studies focused on vitamin D (Vit D) levels as a key-micronutrient in prognosis, 12 on calcium (Ca), 4 on zinc (Zn), 4 on magnesium (Mg), 3 on phosphorus (P), 2 on vitamin C (Vit C), 2 on selenium (Se), 2 on folate while iron (Fe), vitamin B12 (Vit B12), vitamin E (Vit E), melatonin, N-acetylcycteine and pentoxifylline were also studied.

3.2. Study characteristics

This systematic review included 8624 COVID-19 patients with a mean age of 61 years. Among them 527 participated in clinical trials. Three studies (2 observational and 1 clinical trial) included COVID-19 patients who had been admitted to the ICU since their first hospitalization day (Chavarría et al., 2021; Vassiliou et al., 2020; Zheng et al., 2021).

As outcomes indicating prognosis most studies (21/31) used mortality or survival as primary or secondary outcomes (Alalamari et al., 2020; Bennouar et al., 2021; Capone et al., 2020; Carpagnano et al., 2021; Doaei et al., 2021; Entrenas Castillo et al., 2020; Ersox and Yilmaz, 2021; Heller et al., 2021; Infante et al., 2021; Karahan and Katkat, 2021; KashefiZadeh et al., 2020; Lobia et al., 2021; Meisel et al., 2021; Moghaddam et al., 2020; Murai et al., 2021; Rudjakovic et al., 2020; Sun
Almost all studies estimated blood levels of targeted micronutrients for all patients at least on admission. COVID-19 diagnosis was confirmed by polymerase chain reaction (PCR) test for all patients in all studies.

The main characteristics and results of the studies are presented in Tables 1 and 2, respectively.

3.3. Results on the prognostic role of each micronutrient

3.3.1. Vitamin D (Vit D)

Most studies in this systematic review focused on prognostic role of Vit D in COVID-19. Most observational studies presented Vit D blood levels on admission as prognostic factors given that in 5 studies survivors revealed higher levels on admission than non-survivors, while in 2 studies Vit D deficiency was related to higher mortality risk ratio (Bennouar et al., 2021; Carpagnano et al., 2021; Infante et al., 2021; Karahan and Katkat, 2021; Kashefizadeh et al., 2020; Radujkovic et al., 2020; Ricci et al., 2021; Tehrani et al., 2021; Vassiliou et al., 2020). MV was more common among patients with Vit D deficiency than patients with normal Vit D levels in a single study (Radujkovic et al., 2020). Inflammatory markers on admission were higher among patients with low Vit D levels than the rest or an inverse association between Vit D levels and inflammatory markers was detected (Carpagnano et al., 2021; Karahan and Katkat, 2021; Maghbooli et al., 2020; Radujkovic et al., 2020; Ricci et al., 2021). Finally, 4/14 studies concluded that Vit D was not associated to prognosis of COVID-19 patients (Allard et al., 2020; Ersoz and Yilmaz, 2021; Lohia et al., 2021; Murai et al., 2021), whereas one clinical trial targeting Vit D levels, reported significantly lower risk for ICU admission of the intervention group vs. controls, with only 1 patient receiving Vit D supplementation admitted to ICU (Entrenas Castillo et al., 2020).
First author, year	Micronutrient	Country	WHO region	Type of study	COVID-19 patients N	Age in years, mean (SD)	Females N (%)
Chavarría et al., 2021	Vit C, Vit E, N-acetylcysteine, Melatonin, Pentoxifylline	Mexico	Americas	Clinical Trial (non-double-blind placebo-controlled)	110 in ICU	58 (13)	32 (29%)
Ricci et al. (2021)	Vit D	Italy	Europe	Prospective	52 with lung involvement (22 Vit D deficient vs. 30 with normal Vit D)	77.5 (16) vs. 68.9 (18)	13 (59%) vs. 14 (47%)
Infante et al. (2021)	Vit D	Italy	Europe	Retrospective	1.37 (78 survivors vs. 59 non-survivors)	65 (28) vs. 70 (29)	48 (35%)
Eroz and Yilmaz (2021)	Vit D, Fe, Vit B12, Folate	Turkey	Europe	Retrospective	310	57 (18)	149 (48%)
Kashefizadeh et al. (2020)	Ca, Mg	Iran	Eastern Mediterranean	Retrospective	53	58 (13)	29 (55%)
Zheng et al. (2021), Karahan and Karkat (2021)	Vit D	China, Turkey	Western Pacific, Europe	Retrospective	180 in ICU	64	67 (37%)
Bennour et al. (2021)	Vit D	Algeria	Africa	Prospective	120 critically ill	62 (18)	37 (31%)
Lohia et al. (2021)	Vit D	USA	Americas	Retrospective	270 severely ill	64 (15)	153 (57%)
Zhao et al. (2021)	Ca	China	Western Pacific	Retrospective	172 moderately ill (on admission)	65 (5)	90 (52%)
Allard et al. (2020)	Zn, Se, Ca, P, Mg, Vit D	Germany, South-East Asia	Europe	Cross-sectional	31	77 (5)	19 (54%)
Heller et al. (2021)	Zn, Se, Vit D	Iran	Eastern Mediterranean	Cross-sectional	235	59 (15)	91 (39%)
Maghbooli et al. (2020)	Vit D	Iran	Eastern Mediterranean	Cross-sectional	185	60 (9)	90 (49%)
Radojkovic et al. (2020)	Vit D	Germany	Europe	Retrospective	47	34 (6)	18 (38%)
Yang et al. (2021)	Ca, P	China	Western Pacific	Retrospective	226 (104 confirmed patients and 122 suspected cases)	40 (4)	89 (39%)
Jothimani et al. (2020)	Zn	India	South-East Asia	Prospective	47	34 (6)	18 (38%)
Alamdari et al. (2020)	Ca, Mg	Iran	Eastern Mediterranean	Cross-sectional	459	62 (12)	139 (30%)
Tsecan et al. (2020)	Ca	Turkey	Europe	Retrospective	408	54 (16)	220 (54%)
Estrenas Castillo et al. (2020)	Vit D	Spain	Europe	Clinical Trial (non-double-blind placebo-controlled)	76 inpatients	53 (10)	31 (41%)
Capone et al. (2020)	Vit C, Zn	USA	Americas	Retrospective	102	63 (3)	47 (46%)
Carpagnano et al. (2021)	Vit D	Italy	Europe	Retrospective	42 (acute respiratory failure) inpatients to Respiratory Intermediate Care Unit	65 (13)	12 (29%)
Moghaddam et al. (2020)	Se	Germany	Europe	Cross-sectional	33	77 (5)	19 (54%)
Liu et al. (2020)	Ca	China	Western Pacific	Retrospective	107 severely ill	68 (2)	55 (51%)
Lagier et al., 2020, Sun et al. (2020)	Zn, Ca	France, China	Western Pacific	Retrospective	3737	45 (17)	2033 (54%)
Wu et al. (2020), Meisel et al. (2021)	Vit D, Folate	China	Western Pacific	Retrospective	241	65 (2)	129 (54%)
Doaei et al. (2021)	Omega-3 fatty acids	Iran	Eastern Mediterranean	Clinical Trial (double-blind placebo-controlled)	101 critically ill (28 intervention group vs. 73 control group)	66 (15) vs. 64 (14)	13 (46%) vs. 28 (38%)
Tehrani et al. (2021)	Vit D	Iran	Eastern Mediterranean	Retrospective	205 critically ill	60 (15)	79 (39%)
Murali et al. (2021)	Vit D	Brazil, America	Clinical Trial (double-blind placebo-controlled)	240	56 (14)	104 (44%)	
Vassiliou et al. (2020)	Vit D	Greece	Europe	Prospective	30 in ICU	65 (11)	6 (20%)

Ca: calcium, COVID-19: Corona Virus Induced Disease 2019, Fe: iron, ICU: intensive care unit, Mg: magnesium, P: phosphorus, Se: selenium, Vit D: Vitamin D, Vit B12: Vitamin B12, Vit C: Vitamin C, Vit E: Vitamin E, Zn: zinc.
Table 2: Main results and protocols of included studies.

First author, year	Micronutrients	Laboratory evaluations	Study protocol COVID-19 patient categories	Prognosis evaluation	Results
1. Chavarría et al., 2021	Vit C, Vit E N-acetylcysteine Melatonin Pentoxifylline	Baseline (day before treatment) and each day of treatment	• Per os or NG tube • 5 groups • Each group received pentoxifylline and 4/5 one of the other studied micronutrients • Treatment: every 12 h for 5 days	• SOFA, Apache II, SAPS II, Critical Illness Risk Score, COVIDGRAM and GCS scores • Inflammatory markers (CRP, IL-6, PCT)	IL-6 decreased in Vit C + Pentoxifylline, Vit E + Pentoxifylline, and NAC + Pentoxifylline treatments CRP decreased in Vit C + Px, Vit E + Px and NAC + Px groups Antioxidant therapies improved all survival scores
2. Ricci et al., 2021	Vit D	Hospital admission	Vit D deficient (<10 ng/ml) or not	• SOFA, LIPI and TS scores • IL-6, hs-CRP, PCT	Higher IL-6 in Vit D deficient patients on admission Higher SOFA, LIPI and TS scores in patients with Vit D deficiency Higher mortality rate in Vit D deficient patients
3. Infante et al., 2021	Vit D	Hospital admission	Survivors Non-survivors	Mortality	Higher Vit D in survivors vs. non-survivors Inverse association between Vit D and risk of in-hospital mortality Higher Vit B12 in ICU or intubation patients and non-survivors Lower Fe in worse prognosis patients for all three factors Lower folate in patients in need for ICU admission
4. Ersoz and Yılmaz (2021)	Vit D Fe Vit B12	Hospital admission	2 groups (ICU admission, intubation and death)	ICU admission Intubation Mortality	Higher Vit D in patients with severe-critical disease vs. moderate disease 93% of critically ill patients presented with Vit D insufficiency Vit D levels higher in survivors Vit D independently associated with mortality and negatively related to CRP
5. Kashefizadeh et al. (2020)	Ca Mg Folate	Hospital admission	Survivors Non-survivors	Length of hospitalization Mortality	Significantly lower Ca of non-survivors vs. survivors Insignificantly lower Mg on admission of survivors vs. non-survivors
6. Zheng et al. (2021)	Ca	Every day	Survivors Non-survivors	Mortality	Significantly lower Ca on admission and on day of death of survivors
7. Karahan and Katkat (2021)	Vit D	Hospital admission	Survivors Non-survivors	COVID-19 Severity Mortality Inflammatory markers including CRP	Lower Vit D in patients with severe-critical disease vs. moderate disease 93% of critically ill patients presented with Vit D insufficiency Vit D levels higher in survivors Vit D independently associated with mortality and negatively related to CRP
8. Bennouar et al. (2021)	Vit D Ca	Hospital admission	Vit D: • deficient ≤20 ng/ml • insufficient 21–29 ng/ml • normal ≥30 ng/ml	In-hospital mortality within 28 days of admission	Significantly lower Ca and Vit D on admission of non-survivors vs. survivors Significant dose effect relation between both Vit D and Ca to mortality ratio (highest mortality ratio in patients with lowest levels for both micronutrients)
9. Lohia et al. (2021)	Vit D	Hospital admission	Categorized according to each outcome separately	Mortality MV Thromboembolism (DVT, PE)	No association of Vit D with mortality, MV, ICU admission, thromboembolism
10. Zhao et al. (2021)	Ca	Hospital admission	Categorized according to 2 outcomes	Critical illness or discharge with mild disease	Low Ca was a risk factor for severe disease Significantly lower Ca in severe vs. moderate disease
11. Allard et al. (2020)	Zn Se Ca P Mg Vit D	Hospital admission	Categorized according to levels of each micronutrient separately	Severe COVID-19 pneumonia	Lower Zn, P and higher Mg in severe disease
12. Heller et al. (2021)	Zn Se	Mean 5th (SD – 4) day of hospitalization	Survivors Non-survivors	Mortality	Most patients Zn deficient Zn significantly lower in non-survivors vs. survivors Zn increased consistently in both survivors and non-survivors throughout hospitalization Linear association between Zn and Se (continued on next page)
First author, year	Micronutrients	Laboratory evaluations	Study protocol COVID-19 patient categories	Prognosis evaluation	Results
-------------------	---------------	------------------------	---	----------------------	---------
13. Maghbooli et al. (2020)	Vit D	Hospital admission	Categorized according to Vit D cut-off: 30 ng/ml	Duration of Hospitalization ICU admission Severe disease (CDC criteria) CRP levels >40 mg/dl	Increasing Se day-by-day in survivors vs. stable Se in non-survivors
14. Radujkovic et al. (2020)	Vit D	Hospital admission	Inpatients	IMV	Vit D-deficient patients:
			Outpatients	Mortality	• more commonly inpatients than outpatients
			Median observation: 66 days	IL-6 levels for inpatients	• higher risk of IMV and/or death
					• higher median IL-6 at hospitalization
15. Yang et al. (2021)	Ca	ICU admission Discharge	Categorized according to each outcome independently	Disease severity (moderate vs. severe/critical) CT score ICU admission (+ days of staying) Hospitalization days Inflammation markers	Significantly low P commonly detected in severe disease
					Low Ca in severe disease.
					Significantly more patients with low P and/or low Ca admitted to ICU vs. patients with normal levels
					Low Ca and P significantly correlated with low CT scores
16. Jothimani et al. (2020)	Zn	6 h post-admission	Categorized according to Zn cut-off: 80 μg/dl All patients received multivitamins, including Vit C 500 mg bd and Zn 150 mg OD (after the test) as per standard care	Duration of hospitalization Disease severity	Zn deficient patients vs. patients with normal levels:
					• significantly more complications
					• significantly higher IL-6
					• more hospitalization days
					• higher trend of death
17. Alamdari et al. (2020)	Ca	Hospital admission	Categorized according to studied outcome	Mortality	Survivors had significantly higher Mg on admission than those who died
					Low Zn significantly associated with poor outcomes
18. Tezcan et al. (2020)	Ca	Hospital admission	Categorized according to each studied outcome	ICU admission MV Duration of hospitalization Mortality	Significantly lower Ca in patients with poor outcome
					Significantly higher ICU admissions for control vs. intervention group
					Among patients receiving Vit D supplementation only 1 admitted to ICU
19. Estrenas Castillo et al. (2020)	Vit D	Hospital admission or day before treatment	Intervention group Control group (2:1 ratio) Intervention: oral calcifediol (0.532 mg) on admission (day 1) and 0.266 mg on day 3 and 7 and then the same dose once weekly until discharge or ICU admission	ICU admission Mortality	Significantly higher ICU admissions for control vs. intervention group
					Among patients receiving Vit D supplementation only 1 admitted to ICU
20. Capone et al. (2020)	Vit C	Hospital admission	73 received Vit C and Zn supplementation during treatment 4 groups according to Vit D: without hypovitaminosis ≥30 ng/mL insufficient 20–30 ng/mL moderately deficient 10–20 ng/mL severely deficient <10 ng/mL	Mortality ICU admission Morbidity	Supplementation not associated with survival
					Tendency to higher IL-6 in patients with severe Vit D deficiency vs. all other groups
21. Carpagnano et al. (2021)	Zn				Tendency to rapid unfavorable clinical evolution of patients with severe Vit D deficiency vs. all other groups
					50% mortality risk in patients severely deficient vs. 5% in patients moderately deficient
					Lower Ca in patients with poor outcome
22. Moghaddam et al. (2020)	Se	Mean 5th (SD – 4) day of hospitalization	Survivors Non-survivors	Mortality	Significantly higher Se in survivors vs. non-survivors
					Se recovered with time in survivors but remained low or declined in non-survivors
23. Liu et al. (2020)	Ca	Hospital admission	Categorized according to corrected serum Ca cut-off < 2.15 mmol/L	Inflammation markers (IL-6, PCT, CRP) Poor outcome: need for MV ICU admission or death of any cause during admission	Negative correlation of Ca with all inflammatory markers
					Significantly lower Ca in patients with poor outcome
					Significantly lower Ca on admission in non-survivors than the rest
24. Lagier et al., 2020	Zn	Hospital admission	Poor outcome Favorable outcome	Poor outcome: ICU admission, death, hospitalization lasting ≥10 days	Low Zn significantly associated with poor outcomes

(continued on next page)
3.3.3. Zinc (Zn)
Low Zn blood levels were associated with the development of severe disease, more complications or longer hospitalization (Allard et al., 2020; Jothimani et al., 2020; Lagier et al., 2020). In some cases, survival was associated with high admission Zn levels (Heller et al., 2021; Lagier et al., 2020) but this was not verified in all studies (Capone et al., 2020).

3.3.4. Selenium (Se), Phosphate (P) and Magnesium (Mg)
Survival was associated with high blood levels of Se (Heller et al., 2021; Moghaddam et al., 2020), Mg (Alamdari et al., 2020; Kashefiiza-deh et al., 2020), P (Yang et al., 2021). Similarly, severe disease was inversely associated to P and Mg levels (Allard et al., 2020).

Several clinical trials suggested that micronutrients’ supplementation was helpful in clinical improvement and survival of COVID-19 patients (Chavarría et al., 2021; Doaei et al., 2021; Entrenas Castillo et al., 2020; Murai et al., 2021).

4. Discussion
This review examines whether micronutrient status of COVID-19 patients is related to the course and outcome of the disease but even a year after the characterization of COVID-19 as a pandemic, direct evidence is still weak. Previous experience on the treatment of other SARS and viral infections suggests that nutrition may alter the outcome even in critically ill patients (Rowe et al., 2021). In addition, the activation of inflammation and development of an effective immune system are primarily associated to nutrition utilization (Marcos et al., 2003). The importance of inflammation in COVID-19 prognosis has been highlighted in survival analysis, as neutrophil-to-lymphocyte ratio and white blood cell counts have been introduced as one-month mortality predictors in COVID-19 (Vafadar Moradi et al., 2021). Nutrient deficiency alters cells regeneration and function, suppresses immune response, and contributes to diabetes mellitus type II, hypertension and coronary heart disease in the elderly (Bjorklund et al., 2020; Farrokhian et al., 2016;
COVID-19 has a multiplex pathophysiology and alters different metabolic pathways. Excess inflammation, endothelial damage, and the use of angiotensin converting enzyme 2 (ACE-2) as crucial cellular entrance for the virus, consist fundamental mechanisms of SARS-CoV-2 action. The suppression of the pathways involved in lung tissue destruction by specialized micromolecular agents such as Rhe kinase inhibitors, along with the efficiency of multiple micronutrients targeting these processes, may promisingly result in boosting the immune response against the viral agent (Abedi et al., 2020).

Vit D has been proposed to have a special place on the cell protection mechanism by inhibiting the entrance of the virus in the cells via interaction of Vit D with its one receptor and ACE-2 (Glaab and Ostaszewski, 2020). Also, Vit D enhancement is crucial for immune function as it participates to the pathways of function for normal T-cells, macrophages, dendritic cells and other immune cells (Aranow, 2011; Sigmundsdottir et al., 2007). Its role in the PLC-γ1 expression through a specific nuclear receptor is also mandatory for both the innate and adaptive immune systems (Von Essen et al., 2010). Most human studies on COVID-19 patients agree that Vit D within normal limits on admission may assist in a favorable outcome. This finding strengthens the hypotheses that Vit D acts both as an immune booster and an antiviral agent. The molecular mechanism that may explain the benefit of Vit D supplementation in COVID-19 patients is its immunomodulatory effect on interleukin-6 (IL-6) production. Vit D reduces immune cell IL-6 production, and potentially reduces pro-inflammatory effects, but it does not specifically target IL-6 receptors, avoiding any negative impact on IL-6 anti-inflammatory actions (Silberstein, 2020). Furthermore, human studies have revealed a significant immunomodulatory capacity of Vit D to lower tumor necrosis factor (TNF) and interleukin-10 (IL-10) levels (Peterson and Heffernan, 2008; Schleithoff et al., 2006). Thus, multiple pathways are probably activated by Vit D and result in favorable immunoregulation against COVID-19, as IL-6, IL-10 and TNF are primarily involved in excess inflammation in COVID-19 severe illness (Pedersen and Ho, 2020). These findings, combined with the results of this systematic review, provide evidence for the use of Vit D as adjuvant factor targeting hyperinflammatory cytokines in COVID-19. Nevertheless, more clinical trials are needed to evaluate the action of Vit D supplements both in Vit D deficient patients and patients without insuficiency, along with its beneficial effects against the virus per se.

Calcium is along with Vit D the most studied molecule among critically ill COVID-19 patients. Hypocalcemia was a known abnormality accompanying multiple viral infections before the outbreak of COVID-19, thus low Ca levels among these patients were expected (Crespi and Ostaţewska, 2020). The exact pathophysiological mechanism causing this abnormality has not been clarified yet and multiple hypotheses including malnutrition of the exact pathophysiological mechanism causing this abnormality has not been clarified yet and multiple hypotheses including malnutrition of the body, disturbed calcium binding and parathyroid hormone secretion caused by COVID-19 as well as the role of unsaturated fat elevation, have been proposed (Cappellini et al., 2020; Crespi and Alcock, 2021; Huang et al., 2020; Nathan et al., 2020). Although the exact pathophysiological mechanism causing this abnormality has not been clarified yet and multiple hypotheses including malnutrition of the elderly, disturbed albumin binding and parathyroid hormone secretion caused by COVID-19 as well as the role of unsaturated fat elevation, have been proposed (Cappellini et al., 2020; Crespi and Alcock, 2021; Huang et al., 2020; Nathan et al., 2020; Torres et al., 2021). Two recent meta-analyses studying hypocalcemia as a risk factor for critically illness and intubation, revealed that hypocalcemia was related to high D-dimer levels and thus a more inflammatory response to SARS-CoV-2 (Alemdal et al., 2021; Palagiannis et al., 2020). Vice versa, our results indicate that normal Ca levels act protectively as they are related to survival. It is important to underline that SARS-CoV-2 cellular hypoxia leads to Ca release from Ca stores in the cell and thus in increase of intracellular Ca through two different processes: i) hijacking the Ca channels and pumps, thus intracellular Ca cannot get out of the cell and ii) enhancing the cellular entry of extracellular Ca obligatory for the translation of HIF-1α and HIF-2α, a process stimulated by hypoxia (Danta, 2020, 2021; Gasarova et al., 2011; Hui et al., 2006; Serebrovskaya et al., 2020). This pathophysiological process gives evidence that patients with normal serum Ca levels may not be attacked by SARS-CoV-2 in such a degree that cellular hypoxia has absorbed most of the extracellular Ca and that could explain why normocalcaemia on admission is related to survival. If this hypothesis works, Ca supplements cannot act as an adjuvant therapy targeting SARS-CoV-2 inflammatory cascade but only as a protective therapy to the crucial consequences of hypocalcemia itself.

Zinc belongs to minerals/metalloids and constitutes a co-factor for several enzymes participating in antioxidant reactions that assist the immune system (Black, 2003). Zn deficiency disturbs the development of immune cells and thus cell-mediated immunity but also humeral immunity (Maares and Haase, 2016; Skalny et al., 2020; Tuerk and Fazel, 2009). In clinical practice Zn deficiency has been related both to viral infections and severe pneumonia among the elderly and has been effective as a nutrient supplement in the recovery from common cold (Barnett et al., 2010; Mossad et al., 1996; Read et al., 2019). Zn has been found to participate in the molecular pathways of acute respiratory syndrome, as animal studies have proved that Zn deficiency results in significant increase in proinflammatory molecules along with lung epithelium remodeling and thus in increased permeability of proinflammatory markers that lead the cell to apoptosis (Xiao and Knolle, 2006; Biaggio et al., 2010; Liu et al., 2014; St-Croix et al., 2005). Zn deficiency may also participate in the inflammatory process that results in lung fibrosis (Biaggio et al., 2012). As for COVID-19, the aforementioned mechanisms may explain the clinical improvement of patients with normal Zn levels compared to those with Zn deficiency while a reverse association between Zn and IL-6 levels as well as Zn capability to inhibit SARS-CoV-2 RNA polymerase are described (Domingo and Marques, 2021). In addition, in vitro experiments give indications that Zn may target and inhibit the SARS-CoV-2 agent itself (Iyigundogdu et al., 2017; Zhang and Liu, 2020). If we further consider the fact that Zn has worked as an adjuvant therapy in acute respiratory syndrome along with the results of the present review, Zn appears to be a promising nutrient supplement as an adjuvant treatment for COVID-19 patients (Haidar et al., 2011; Skalny et al., 2020). Nevertheless, large scale clinical studies are needed to confirm this hypothesis.

This review indicates that other metalloids such as Se and Mg may relate to the prognosis of patients with SARS-CoV-2 infection. Mg is a crucial co-factor for multiple enzymatic reactions and low levels of Mg have been related to increased proinflammatory and inflammatory markers as well as molecules that disturb the normal endothelial function (Chacko et al., 2010). Selenium has been discussed as a crucial biomarker for the prognosis of multiple viral infections including influenza, coxsackie virus, cytomegalovirus and hepatitis C. Abnormal low levels of this molecule have been related to high pathogenicity of influenza and suppressed immune response against the agent (Chacko et al., 2010; Harthill, 2011; Steinbrenner et al., 2015). Domingo and Marques reviewed the role of Se in regulating the host defense against SARS-CoV-2 and corroborate the immunomodulatory properties of this metalloid as well as the negative role of Se deficiency in COVID-19 patients (Domingo and Marques, 2021). Phosphate participates in cell and tissue regeneration. Thus, high P levels may assist the cellular effort to maintain alive during the infection. However, neither animal nor in vivo studies have clarified the exact pathways and findings from human studies remain weak (Kumar et al., 2021). Other micronutrients that are discussed to act beneficially against SARS-CoV-2 but findings from human studies and clinical trials are not clear, are Vit C, Vit E, Fe, copper and other antioxidants (Cheng, 2020; Domingo and Marques, 2021; Tavakol and Seifalian, 2021; Tojo et al., 2021).

5. Conclusion

The COVID-19 pandemic is a major threat to human life all over the world. The absence of an effective anti-SARS-CoV-2 treatment trace each possible favorable adjuvant therapy vital for the survival of critical and non-critical ill patients. This systematic review highlights the importance of a healthy micronutrient status for a favorable outcome in COVID-19. Vit D, Ca and Zn may make a significant difference if used as...
nutritional supplements on a primary point, but further clinical trials need to confirm it. In addition, micronutrients’ deficiency on admission seems to be related with high risk for ICU admission, intubation and even death. Thus, it is important for individuals to maintain a healthy and balanced nutritional status to overcome a possible COVID-19 infection while further studies are required to evaluate if vitamin supplements would assist or not, a vaccinated or not individual, to actually contract SARS-CoV-2.

CRediT authorship contribution statement

Evmorfia Pechlivanidou: Project administration, Conceptualization, Investigation, Methodology, Writing – original draft. Dimitrios Vlachakis: Investigation, Methodology, Writing – original draft. Konstantinos Tsarouhas: Investigation, Writing – original draft. Christina Davrivi: Supervision, Writing – review & editing. Dimitrios Kouretas: Supervision, Writing – review & editing. Flora Bacopoulou: Project administration, Investigation, Methodology, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Abedi, F., Rezaee, R., Karimi, G., 2020. Plausibility of therapeutic effects of Rho kinase inhibitors against severe acute respiratory syndrome coronavirus 2 (COVID-19). Pharmcol. Res. 156, 104808. https://doi.org/10.1016/j.phrs.2020.104808.
Abedi, F., Rezaee, R., Hayes, A.W., Nasirpour, S., Karimi, G., 2021. MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents? Cell Cycle 20 (2), 143–153. https://doi.org/10.1080/15384101.2020.1867792.
Abraham, S.A., Tenesma, M., Defar, A., Hussen, A., Ejeta, E., Demoz, G., Tereda, A.B., Biaggio, V.S., Salvetti, N.R., Perez Chaca, M.V., Valdez, S.R., Ortega, H.H., Gimenez, M.S., 2010. Alterations of the extracellular matrix of lung during zinc deficiency. Br. J. Nutr. 108 (1), 62–70. https://doi.org/10.1017/S0007114509995290.
Björklund, G., Dadar, M., Pivina, L., Dosa, M.D., Semenova, Y., Aserth, J., 2020. The role of Zinc and Copper in insulin resistance and diabetes mellitus. Curr. Med. Chem. 27 (39), 6643–6657. https://doi.org/10.2174/0929867356666190902121521.
Black, R.E., 2003. Zinc deficiency, infectious disease and mortality in the developing world. J. Nutr. 133 (S Suppl. 1), 1485S–1489S. https://doi.org/10.1093/jn/133.5.1485S.
Capone, S., Abramyan, S., Ross, B., Rosenberg, J., Zeibeg, J., Vasdevulan, S., Samad, R., Gerolemenou, L., Pinelis, E., Gasperino, J., Oserini, J., 2020. Characterization of critically ill COVID-19 patients and clinical profiles of a bronchoalveolar lavage fluid safety-net hospital. Cureus 12 (8), e9809. https://doi.org/10.7759/cureus.9809.
Cappellini, F., Betvio, R., Casati, M., Cavallero, A., Contro, E., Brambilla, P., 2020. Low level of total and ionized Ca in blood & COVID-19. JAMA Clin. Lab. Med. 58 (9), e171–e173. https://doi.org/10.1001/jamalabmed.2020.0611.
Carpyagano, G.E., Di Lecce, V., Quaranta, V.N., Zito, A., Buonamico, E., Capoza, E., Palumbo, A., Di Gioia, G., Valerio, V., Resta, O., 2021. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J. Endocrinol. Invest. 44 (4), 765–771. https://doi.org/10.1007/s40618-020-01370-x.
Chacko, S.A., Song, Y., Nathan, L., Tinker, L., de Boer, I.H., Tylavsky, F., Wallace, R., Liu, S., 2010. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care 33 (2), 304–310. https://doi.org/10.23736/s0149-1907.10.30310-2.
Chavarria, A.P., Vázquez, R., Cheriti, J., Bello, H.H., Suastegui, H.C., Morena-Castaneda, L., Alans Estrada, G., Hernández, F., Gonzales-Marcos, O., Sacedo-Orozco, H., Manzano-Pech, L., Márquez-Velasco, R., Guerrero-Lans, V., Pérez-Torres, I., Soto, M.E., 2021. Antioxidants and pentoxifylline as coadjuvant measures to standard therapy to improve prognosis of patients with COVID-19. Comput. Struct. Biotechnol. J. 19, 1379–1390. https://doi.org/10.1016/j.csbj.2021.02.009.
Cheng, R.Z., 2020. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med Drug Discov 5, 100028. https://doi.org/10.1016/j.mddis.2020.100028.
Crespi, R., Alcock, J., 2021. Conflicts over Ca and the treatment of COVID-19. Evol Med Public Health 9 (1), 149–156. https://doi.org/10.1093/emph/eoa046.
Danna, C.C., 2020. Ca Channel Blockers: a possible potent therapeutic strategy for the treatment of Alzheimer’s dementia patients with SARS-CoV-2 infection. ACS Chem. Neurosci. 11 (15), 2145–2148. https://doi.org/10.1021/acscneuro.0c00391.
Danna, C.C., 2021. SARS-CoV-2, hypoxia, and Ca signaling: the consequences and therapeutic options. ACS Pharmacol Transl Sci 4 (1), 400–402. https://doi.org/10.1021/acsptsci.202000004.
Doaei, S., Gholami, S., Rastgoo, S., Bagheri, S.E., Samipoor, F., Akbari, M.E., Shadnou, M., Ghort, F., Moavi Jarrahi, S.A., Ashouri Mirsadeghi, N., Hajipour, A., Joola, P., Moslem, A., Goosard, M.O., 2021. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: a randomized clinical trial. J. Transl. Med. 19 (1), 128. https://doi.org/10.1186/s12967-021-02795-5.
Domingo, J.J., Marques, M., 2021. The effects of some essential and toxic metals/ metaloids in COVID-19: a review. Food Chem. Toxicol. 152, 121161. https://doi.org/10.1016/j.fct.2021.121161.
Entrenas Castillo, M., Entrenas Costa, L.M., Vaquerio Barrios, J.M., Alcaza Diaz, J.F., Jiménez Hernández, J., Bourbour, F., Chennouf, M., Chebab, R., Guzmán, M., 2021. Quercetin: a treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 203, 105751. https://doi.org/10.1016/j.jsbmb.2021.105751.
Eroza, A., Yilmaz, T.E., 2021. The association between micronutrient and hemoglobin prognostic factors in COVID-19 patients: a single-center experience from Turkey. Int. J. Clin. Pract., e14078. https://doi.org/10.1111/ijs.14078.
Farrukhian, A., Bahnani, F., Taghizadeh, M., Mirhamshahi, S.M., Abarahi, M.H., Raygan, F., Aghadavod, E., Asemi, Z. 2016. Selenium supplementation affects insulin resistance and serum hs-CRP in patients with type 2 diabetes and coronary heart disease. Horm. Metab. Res. 48 (4), 263–268. https://doi.org/10.1055/s-0035-1562825.
Glaeb, E., Ostaszewski, M., 2020. The Role of Spike-ACE2 Interaction in Pulmonary Blood Pressure Regulation. FAIRDOM Hub.
Grant, W.B., Lahore, H., McDonnell, S.L., Baggerty, C.A., French, C.B., Aliano, J.L., Blaha, J.P., 2020. Vitamin D supplementation could reduce risk of COVID-19 infections and deaths. Nutrients 12 (4). https://doi.org/10.3390/nu12040988.
Guerra, G.A., Trejo, H.E., Dada, L.A., Briva, A., Welch, L.C., Hamsaka, R.B., Mutlu, G.M., Chander, N.S., Prakya, M., Snedjier, J.J., 2011. Hypoxia leads to Na,K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol. Cell. Endocrinol. 31 (17), 3546–3556. https://doi.org/10.1016/j.mce.2011.11.014.
Harbi, M., Larbi, Z.S., Ahmed, A., Bheren, Z.A., 2020. Antioxidant enzymes calibration as an anchor to antibodies in the treatment of pneumonia in children 2 to 9 years of age. Cochrane Database Syst. Rev. 10, CD007368. https://doi.org/10.1002/1cd007368.pub2.
Harrington, J., 2011. Review: micronutrient S deficiency influences evolution of some viral infectious diseases. Biol. Trace Elem. Res. 143 (3), 1325–1336. https://doi.org/10.1007/s12011-011-8977-1.
Heller, R.A., Sun, Q., Hackler, J., Seelig, J., Seibert, L., Cherkezov, A., Minich, W.B., Seemann, P., Diegmann, J., Filz, M., Bachmann, M., Ranaji, B., Moghaddam, A., Schönbürg, L., 2020. Vitamin D supplementation reduces COVID-19 mortality and clinical outcomes in COVID-19 by zinc, age, and selenoprotein P as composite biomarker. Redox Biol. 38, 101764. https://doi.org/10.1016/j.redox.2020.101764.

Hon, B., Srinivasan, J., Dehghani, S., Hashemsadeghi, M., Madadi, A., Akbari, S., Alavi, S., Montazeri, M., 2020. The effect of zinc on cytokine production and clinical outcomes in patients with COVID-19 infection. PLoS One 15 (9), e0239799. https://doi.org/10.1371/journal.pone.0239799.

Hui, A.S., Bauer, A.L., Striet, J.B., Schnell, P.O., Czyzyk-Krzeska, M.F., 2006. Ca signaling stimulates translation of HIF-alpha during hypoxia. Faseb. J. 20 (3), 466–475. https://doi.org/10.1096/fj.05-5086com.

Infante, M., Busco, A., Pieri, M., Lupsella, S., Nuccetelli, M., Bernardini, S., Fabbri, A., Ianni, M., Andreoni, M., Colizzi, V., Morello, M., 2021. Low vitamin D status at admission as a risk factor for poor survival in hospitalized patients with COVID-19: an Italian retrospective study. J. Am. Coll. Nutr. 1 https://doi.org/10.1080/02786126.2021.1897972.

Iyer, B., Sreekanth, K., Srinivasan, R., Premkumar, P., Pariyedath, S., Reddy, B., 2020. Zinc regulates the acute phase response and serum amyloid A production in response to sepsis through JAK-STAT3 signaling. PLoS One 9 (4), e94934. https://doi.org/10.1371/journal.pone.0094934.

Maghbooli, Z., Sahraian, M.A., Ebrahimi, M., Pakozdi, M., Kafan, S., Tabriz, H.M., Hadadi, A., Montazeri, M., Nasiri, M., Shiri, A., Schomburg, L., 2021. Vitamin D and COVID-19: a systematic review and meta-analysis to assess the association between vitamin D blood levels and at least one COVID-19 clinical outcome. J. Trace Elem. Med. Biol. 79, 1060. https://doi.org/10.1016/j.jtemb.2021.09.035.

Manoharan, S., Ramani, V., Narasimhan, G., Kaliamoorthy, I., Rela, M., 2020. Effect of a single high dose of vitamin D3 on hospital length of stay in patients with moderate to severe COVID-19: a randomized controlled trial. JAMA 325 (11), 1053–1066. https://doi.org/10.1001/jama.2021.0680.

Mossad, S.B., Macknick, M.L., Medendorp, S.V., Mason, P., 1996. Zinc gluconate lozenges for treating the common cold. A randomized, double-blind, placebo-controlled trial. J. Am. Coll. Nutr. 12 (2), 81–88. https://doi.org/10.1080/02786126.1996.10179110.
Tavakol, S., Seifalian, A.M., 2022. Vitamin E at a high dose as an anti-ferroptosis drug and not just a supplement for COVID-19 treatment. Biotechnol. Appl. Biochem. https://doi.org/10.1002/bab.2176.

Taviani, A., Abbasi, E., Kian Afsari, M., Darini, A., Afzeli, Z., 2021. COVID-19 vaccines: current evidence and considerations. Metabol Open 12, 100124. https://doi.org/10.1016/j.metopen.2021.100124.

Tehrani, S., Khahiri, N., Moradi, H., Mosaati, M.S., Khahiri, S.S., 2021. Evaluation of vitamin D levels in COVID-19 patients referred to Labafinajad hospital in Tehran and its relationship with disease severity and mortality. Clin Nutr ESPEN 42, 313–317. https://doi.org/10.1016/j.clnesp.2021.01.014.

Tezcan, M.E., Dogan Gokce, G., Sen, N., Zorlutuna Kaymak, N., Ozer, R.S., 2020. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New Microbes New Infect 37, 100753. https://doi.org/10.1016/j.mninf.2020.100753.

Tojo, K., Sugawara, Y., Ot, O., Ogawa, F., Higurashi, T., Yoshimura, Y., Miyata, N., Higami, H., Yamaguchi, Y., Ishikawa, Y., Takeuchi, I., Tachibana, N., Goto, T., 2021. Author Correction: The Ushaped association of serum iron level with disease severity in adult hospitalized patients with COVID19. Sci. Rep. 11 (1), 16949. https://doi.org/10.1038/s41598-021-96408-2.

Tolou, T., Waku, M., Seyoum Gebre, D., Meddana Atomsa, E., Getachew, M., Fetensa, G., Ayala, D., Turi, E., 2021. Time to recovery from COVID-19 and its predictors among patients admitted to treatment center of Wollega University Referral Hospital (WURH), Western Ethiopia: survival analysis of retrospective cohort study. PLoS One 16 (6), e0252389. https://doi.org/10.1371/journal.pone.0252389.

Torres, B., Alcubilla, P., Gonzalez-Cordon, A., Inciarte, A., Chumbita, M., Cardozo, C., Meira, F., Giménez, M., de Hollanda, A., Soriano, A., COVID19 Hospital Clinic Infectious Diseases Research Group, 2021. Impact of low serum calcium at hospital admission on SARS-CoV-2 infection outcome. Int. J. Infect. Dis. 104, 164–168. https://doi.org/10.1016/j.ijid.2021.01.207.

Tuerk, M.J., Fazel, N., 2009. Zinc deficiency. Curr. Opin. Gastroenterol. 25 (2), 136–143. https://doi.org/10.1097/MOG.0b013e3282f21b95.

Vafadar Moradi, E., Teimouri, A., Rezaee, R., Morovatdar, N., Foroughian, M., Layegh, P., Rezvani Kakhki, B., Ahmadi Koupaei, S.R., Ghorani, V., 2021. Increased age, neutrophil-to-lymphocyte ratio (NLR) and white blood cells count are associated with higher COVID-19 mortality. Am. J. Emerg. Med. 40, 11–14. https://doi.org/10.1016/j.ajem.2020.12.003.

Vassiliou, A.G., Jahah, E., Pratikaki, M., Orfanos, S.E., Dimopoulou, I., Kotanidou, A., 2020. Low 25-Hydroxyvitamin D levels on admission to the intensive care unit may predispose COVID-19 pneumonia patients to a higher 28-day mortality risk: a pilot study on a Greek ICU cohort. Nutrients 12 (12). https://doi.org/10.3390/nu12123773.

von Essen, M.R., Rongbok, M., Schjerling, P., Olggaard, K., Odum, N., Geiser, C., 2010. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat. Immunol. 11 (4), 344–349. https://doi.org/10.1038/ni.1851.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, H., Wang, X., Feng, Z., 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhuan, China. JAMA 323 (11), 1061–1069. https://doi.org/10.1001/jama.2020.1585.

Whittaker, C., Watson, O.J., Alvarez-Moreno, C., Angakeshwiini, N., Boonyasiri, A., Carlos Trinano, L., Chanda, D., Charoenpong, L., Chayakulkeeree, M., Cooke, G.S., Croda, J., Cucubia, Z.M., Doss, A., Estofelte, C.F., Grillet, M.E., Farba, N.R., Costa, S.F., Forero-Petia, D.A., Gibb, D.M., Gordon, A.C., Hamers, R.L., Hamlet, A., Irawany, V., Jimuang, A., Keuerueangkul, N., Kimani, T.N., Lamp, M., Levin, A.S., Lopardo, G., Mustafa, R., Nagayam, S., Ngaunprasertchal, T., Neyi, N.L.H., Nogueira, M.L., Ortiz-Prado, E., Perroud, M.W., Phillips, A.N., Prommee, P., Qavi, A., Rodger, A.J., Sabino, E.C., Sangkawes, S., Sari, D., Sirjatuphat, R., Sposito, A.C., Srisangthong, P., Thompson, H.A., Udvdia, Z., Valderrama-Beltran, S., Winkill, P., Ghani, A.C., Walker, P.G.T., Hallert, T.B., 2021. Understanding the potential impact of different drug properties on SARS-CoV-2 transmission and disease burden: a modelling analysis. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa837.

WHO, 2021a. Coronavirus Disease 2019 (COVID-19): Situation Report – 37. WHO, 2020b. Coronavirus Disease 2019 (COVID-19) Dashboard. WHO, 2020a. Coronavirus Disease 2019 (COVID-19): Situation Report. https://www.who.int/mediacentre/factsheets/NovelCoronavirus2019/en/.

Zhao, C., Bai, Y., Wang, C., Zhang, Y., Lu, N., Tian, L., Cai, F., Jin, R., 2021. Risk factors related to the severity of COVID-19 in Wuhan. Int. J. Med. Sci. 18 (1), 120–127. https://doi.org/10.7150/ijms.47193.

Zheng, R., Zhou, J., Song, B., Zheng, X., Zeng, M., Jiang, L., Pan, C., Zhang, W., Xia, J., Chen, N., Wu, W., Zhang, D., Xi, Y., Liu, Z., Pan, Y., Liu, X., Li, S., Xu, Y., Li, Y., Tan, H., Zhong, N., Luo, X., Sang, L., 2021. COVID-19-associated coagulopathy: thromboembolism prophylaxis and poor prognosis in ICU. Exp. Hematol. Oncol. 10 (1), 6. https://doi.org/10.1186/s40164-021-00202-9.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Fan, M., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.P., Tan, W., China Novel Coronavirus Investigating and Research Team, 2020. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382 (8), 727–733. https://doi.org/10.1056/NEJMoa2001017.