Feedback regulation by Atf3 in the endothelin-1-responsive transcriptome of cardiomyocytes: Egr1 is a principal Atf3 target

Article

Accepted Version

Supplemental information

Giraldo, A., Barrett, O. P. T., Tindall, M. J., Fuller, S. J., Amirak, E., Bhattacharya, B. S., Sugden, P. H. and Clerk, A. (2012) Feedback regulation by Atf3 in the endothelin-1-responsive transcriptome of cardiomyocytes: Egr1 is a principal Atf3 target. Biochemical Journal, 444 (2). pp. 343-355. ISSN 0264-6021 doi: 10.1042/BJ20120125 Available at http://centaur.reading.ac.uk/27916/

It is advisable to refer to the publisher’s version if you intend to cite from the work.

To link to this article DOI: http://dx.doi.org/10.1042/BJ20120125

Publisher: Portland Press Limited

Publisher statement: The final version of record is available at http://www.biochemj.org/bj/444/bj4440343.htm

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online
Supplemental Information Giraldo et al Fig. S1

Figure S1 Infection with AdVs modulates expression of a subset of cardiomyocyte mRNAs

Cells (uninfected or infected with 150 MOI FLAG or AS-Atf3) were unstimulated or exposed to ET-1 for 90 min and RNA expression profiles determined using Affymetrix rat exon 1.0 ST arrays. A, Heatmaps show expression profiles for probesets that were significantly changed (>1.5-fold, FDR<0.05) by viral infection alone. Normalisation is to the gene median (range is -2.5 (cyan) through 0 (black) to +2.5 (red) on a log2 scale). Results are means for 3 hybridisations each representing 3 independent myocyte preparations. Clustering on conditions and entities used a Euclidean distance matrix and centroid linkage ratio. B, Transcripts were classified according to function. Upregulated and downregulated transcripts are in red and blue, respectively. Transcripts regulated by interferons (Ifn) in other systems are in lighter colours.
Supplemental Table 1 Response of cardiomyocyte transcriptome to adenoviral infection

Cardiomyocytes were uninfected (no virus) or infected with empty adenoviruses and gene expression profiles were examined using Affymetrix microarrays. The data were analysed using GeneSpring to identify transcripts that were significantly changed (>1.5-fold; FDR<0.05) by adenovirus infection. Transcripts are clustered according to known or probable function and are listed alphabetically with upregulated transcripts listed first. Results are means for n=3 independent hybridisations each representing 3 separate preparations of cardiomyocytes. * Transcripts identified as part of an interferon response in other systems.

Probeset	Genesymbol	Genedescription	Raw values (No virus)	Fold change induced by virus
7196285	Adar	Adenosine deaminase, RNA-specific	204	1.80 *
7315869	Ddit3	DNA-damage inducible transcript 3	273	2.27
7301235	Ifi27	interferon, alpha-inducible protein 27	1785	1.98
7072322	Ifi35	Interferon-induced protein 35	91	1.97
7215722	Ifi44	Interferon-induced protein 44	126	3.96
7067089	Ifi47	Interferon gamma inducible protein 47	141	7.07
7041465	Ifi2	Interferon-induced protein with tetratricopeptide repeats 2	89	1.89
7041467	Ifi3	Interferon-induced protein with tetratricopeptide repeats 3	57	3.38
7170909	Igg1	Interferon inducible GTPase 1	106	4.47
7076595	Ifr1	Interferon regulatory factor 1	154	1.72
7131960	Ifr9	Interferon regulatory factor 9	443	2.28
7092176	Mx1/2	Myxovirus (influenza virus) resistance 1/2	55	19.37
7087207	Mx2/1	Myxovirus (influenza virus) resistance 2/1	122	19.05
7098947	Oas1a/k	2'-5' oligoadenylate synthetase 1A/K	91	12.05
7102451	Oas1b/i	2-5 oligoadenylate synthetase 1B/i	55	6.03
7098944	Oas1i	2'-5' oligoadenylate synthetase 1I	73	5.81
7102456	Oas1k/a	2'-5' oligoadenylate synthetase 1K/A	97	1.80
7103432	Oas2	2'-5' oligoadenylate synthetase 2	41	3.58
7102992	Oasl	2'-5' oligoadenylate synthetase-like	101	11.64
7103001	Oasl2	2'-5' oligoadenylate synthetase-like 2	84	9.95
7125147	Pilsr1	Phospholipid scramblase 1	104	1.69
7305174	Rsad2	Radial S-adenosyl methionine domain containing 2	61	12.13
7055354	Trim5	Tripartite motif-containing 5	835	1.52
7263822	Zc3hav1	Zinc finger CCCH type, antiviral 1	124	2.05

Cytokine/chemokine signalling

Probeset	Genesymbol	Genedescription	Raw values (No virus)	Fold change induced by virus
7073869	C1qtnf1	C1q and tumor necrosis factor related protein 1	189	1.58
7356847	Ccl20	Chemokine (C-C motif) ligand 20	146	1.77
7070340	Ccf7	Chemokine (C-C motif) ligand 7	1918	2.00
7212826	Cs1	Colony stimulating factor 1 (macrophage)	122	1.84
7071906	Cs3	Colony stimulating factor 3 (granulocyte)	220	2.80
7116933	Cxcl10	Chemokine (C-X-C motif) ligand 10	37	5.21
7116931	Cxcl11	Chemokine (C-X-C motif) ligand 11	472	1.81
7123570	Cxcl13	Chemokine (C-X-C motif) ligand 13	132	1.69
7055111	Il18bp	Interleukin 18 binding protein	155	1.92
7260080	Il6	Interleukin 6	149	5.13
7138335	Ripk3	Receptor-interacting serine-threonine kinase 3	151	1.71
7362008	Stat1/4	Signal transducer and activator of transcription 1/4	906	2.26
7311784	Stat2	Signal transducer and activator of transcription 2	157	3.36
7216733	Tnf	Tumor necrosis factor (TNF superfamily, member 2)	94	2.19
7327525	Tnfrsf11b	Tumor necrosis factor receptor superfamily, member 11b	1001	1.93
7098502	Trald1	TRAF type zinc finger domain containing 1	192	1.50
7351276	Ccr1	Chemokine (C-C motif) receptor 1	123	0.53
7041124	Il33	Interleukin 33	100	0.64
7123902	Pf4	Platelet factor 4	704	0.59

Immune/inflammatory response

Probeset	Genesymbol	Genedescription	Raw values (No virus)	Fold change induced by virus	
7149693	Bst2	Bone marrow stromal cell antigen 2	165	3.21	
7093567	Cd80	CD80 molecule	80	2.20	
7093779	Cd86	CD86 molecule	106	1.63	
7216827	Ccb	Complement factor B	66	2.85	
7296860	Cmpk2	Cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial	72	7.20	
7327552	Enpp2	Ectonucleotide pyrophosphatase/phosphodiesterase 2	127	2.31	
7107717	Fgcr3a	Fc fragment of IgG, low affinity IIla, receptor	180	2.86	
7200128	Gbp2	Guanylate binding protein 2	101	7.94	
7076940	Irgm	Immunity-related GTPase family, M	240	6.43	
7293880	Isg15	ISG15 ubiquitin-like modifier	64	14.88	
7033289	Isg20	Interferon stimulated exonuclease gene 20	84	2.56	
7270067	Kikr1	Killer cell lectin-like receptor subfamily K, member 1	28	1.72	
7084895	Lgals3bp	Lectin, galactoside-binding, soluble, 3 binding protein	319	3.79	
Gene ID	Description	Value 1	Value 2	P	
---------	--	---------	---------	----	
7080131	Lgals5/9 Lectin, galactose binding, soluble 5/9	116	2.19	*	
7080134	Lgals9/5 Lectin, galactoside-binding, soluble, 9/5	162	4.47	*	
7069999	Nos2 Nitric oxide synthase 2, inducible	65	1.87		
7266324	Reg3g Regenerating islet-derived 3 gamma	1758	1.57		
7216994	RT1 class Ia, locus A2/A1	locus A3	RT1 class Ib, locus EC2	289	2.02
	MHC class I RT1.Aa alpha-chain				
7220575	RT1 class I, locus1	RT1 class I, locus CE12/CE14		271	2.24
7216676	RT1 class I, locus CE10/CE7/CE11	164	1.72		
7224452	RT1 class I, locus CE11/CE7	RT1 class Ib, locus EC2		271	2.00
7224458	RT1 class I, locus CE12/14	RT1 class I, locus1		244	2.31
7224429	RT1 class I, locus CE13/CE14	102	1.78		
7224511	RT1 class I, locus CE15	422	1.76		
7220557	RT1 class I, locus CE3/A3	RT1 class la, locus A1/A2	RT1 class Ib, locus EC2	116	1.75
7220541	RT1 class I, locus CE5/CE4	RT1 class Ib, locus EC2		327	2.04
	MHC class I RT1.Aa alpha-chain	mature alpha chain of MHC class Ib protein-like			
7216505	RT1 class Ib, locus N2/N1/N3	103	1.66		
7216519	RT1 class Ib, locus N3/N1/N2	189	2.17		
7216562	RT1 class I, locus T24, gene 1/4	MHC class I		198	2.09
	RT1.O type 149 processed pseudogene				
7216540	RT1 class I, locus T24, gene 1/4	MHC class I		210	3.82
	RT1.O type 149 processed pseudogene	RT1 class Ib, locus EC2			
7220923	Tap1 Transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	120	3.12		
7220903	Tap2 Transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)	106	1.77		
7221026	Tappb TAP binding protein	239	2.78		
7269637	Tapbp/Vamp1 TAP binding protein-like	113	1.59		
7145662	Trl3 Toll-like receptor 3	80	1.83		
7226106	Tor1b Torsin family 1, member B	154	1.51	*	
7112701	Tor3a Torsin family 3, member A	162	1.91	*	
7071036	Trim25 Tripartite motif-containing 25	194	2.01		
7295338	Xdh Xanthine dehydrogenase	155	1.56	*	
7222388	Aif1	Lamc3 Allograft inflammatory factor 1-like	laminin gamma 3	920	0.85
7111837	Cth Complement factor H	122	0.60		
7325371	Lyz2	Lyc2 Lysozyme 2	lysozyme C type 2	350	0.59
7321134	Mr196a MicroRNA mir-196a	72	0.66	*	

Agonists/Receptors

Gene ID	Description	Value 1	Value 2	P
7035427	Adm Adrenomedullin	210	1.52	
7322881	Angpt4 Angiopoietin-like 4	186	1.74	
7301401	Bdkrb1 Bradykininin receptor B1	53	1.81	*
7232862	Bmp2 Bone morphogenetic protein 2	40	1.97	
7123853	Ereg Epiregulin	55	2.55	
7204090	Fst Follistatin	83	1.93	
7144128	Gdf15 Growth differentiation factor 15	168	2.89	
7261775	Hgf Hepatocyte growth factor	155	1.57	
7249035	Htr1b 5-hydroxytryptamine (serotonin) receptor 1B	33	1.60	
7318105	Ly6e Lymphocyte antigen 6 complex, locus E	127	2.89	
7216279	Olr1730 Octoflavin receptor 1730	42	1.64	
7201157	Ptger3 Prostaglandin E receptor 3 (subtype EP3)	64	1.59	
7055094	Fxor2 Folate receptor 2 (fetal)	174	0.66	
7364798	Htr2b 5-hydroxytryptamine (serotonin) receptor 2B	99	0.65	
7313468	Igf1 Insulin-like growth factor 1	2690	0.36	
7071991	Igfbp4 Insulin-like growth factor binding protein 4	494	0.63	
7146031	Msr1 Macrophage scavenger receptor 1	640	0.57	
7055209	Olt3 Octoflavin receptor 6	180	0.61	
7263730	Ptn Pleiotrophin	825	0.37	
7041587	Tfrc Transferrin receptor	1300	0.58	

Cell adhesion/extracellular matrix

Gene ID	Description	Value 1	Value 2	P
7296103	Sdc1 Syndecan 1	184	1.78	
7247754	Sdc4 Syndecan 4	1059	1.57	
7213140	Vcam1 Vascular cell adhesion molecule 1	140	1.78	
7202072	Vcan Versican	618	1.62	
7317088	Col14a1 Collagen, type XIV, alpha 1	271	0.64	
7319496	Fbn1 Fibulin 1	299	0.85	
7260805	Fgll2 Fibrinogen-like 2	254	0.60	
7169581	Pcdh21 Protocadherin beta 2	88	0.65	

Cell cycle/cell death

Gene ID	Description	Value 1	Value 2	P
7341999	Birc3 Baculoviral IAP repeat-containing 3	70	1.55	
7321430	Cdk2 Cyclin dependent kinase 2	229	1.57	
7217282	Cdkn1a Cyclin-dependent kinase inhibitor 1A	1072	2.49	
7114725	Ephx1 Epoxide hydrolase 1, microsomal	124	2.25	
7041442	Fas Fas (TNF receptor superfamily member 6)	275	1.62	
Protein	Function/Modification/Folding/Degradation	Regulation of Metabolism/Signalling/Transcription		
---------	--	---		
Protein synthesis/modification/folding/degradation				
Dtx3l	Deltex 3-like (Drosophila)	Ddx3l (DDX3L)		
Eef1g	Eukaryotic translation elongation factor 1 gamma (Eef1g)	Eef1g (EFTF)		
Mettl20	Methyltransferase like 20	Mettl20 (METS)		
Mitd1	MIT, microtubule interacting and transport, domain containing 1	Mitd1 (MITD1)		
Psmb8	Proteasome (prosome, macropain) subunit, beta type 8	Psmb8 (PSMB8)		
Psmb9	Proteasome (prosome, macropain) subunit, beta type 9	Psmb9 (PSMB9)		
Psme2	Proteasome (prosome, macropain) activator subunit 2	Psme2 (PSME2)		
Protein synthesis/modification				
Abcb1b/1a	ATP-binding cassette, sub-family B (MDR/TAP),member 1B/1A	Abcb1b/1a (ABCB1B)		
Apol3	Apolipoprotein L, 3	Apol3 (APOL3)		
Ass1	Argininosuccinate synthetase 1	Ass1 (ASS1)		
Cyp27a1	Ectonucleotide pyrophosphatase/phosphodiesterase 4	Cyp27a1 (CYP27A1)		
Gbl1	Galactosidase, beta 1-like	Gbl1 (GBL1)		
Has2	Hyaluronan synthase 2	Has2 (HAS2)		
Mgmt	O-6-methylguanine-DNA methyltransferase	Mgmt (MGMT)		
Proteins with no known function/hypothetical proteins				
Apol9a	Apolipoprotein L 9a	Apol9a (APOL9A)		
Ascc3	Activating signal cointegrator 1 complex subunit 3	Ascc3 (ASCC3)		
Ass1	Activating transcription factor 3	Ass1 (ASS1)		
Cyp27a1	Ectonucleotide pyrophosphatase/phosphodiesterase 4	Cyp27a1 (CYP27A1)		
Has2	Hyaluronan synthase 2	Has2 (HAS2)		
Mgmt	O-6-methylguanine-DNA methyltransferase	Mgmt (MGMT)		
Nqo1	NAD(P)H dehydrogenase, quinone 1	Nqo1 (NQO1)		
Rbp2	Retinol binding protein 2, cellular	Rbp2 (RBP2)		
Slc28a2	Solute carrier family 28 (sodium-coupled nucleoside transporter), member 2	Slc28a2 (SLC28A2)		
Steap1	Six transmembrane epithelial antigen of the prostate 1	Steap1 (STEAP1)		
Steap1	Six transmembrane epithelial antigen of the prostate 1	Steap1 (STEAP1)		
Tcf21	Transcription factor 21	Tcf21 (TCF21)		
Proteins with no known function/hypothetical proteins				
Apol9a	Apolipoprotein L 9a	Apol9a (APOL9A)		
Ascc3	Activating signal cointegrator 1 complex subunit 3	Ascc3 (ASCC3)		
Ass1	Activating transcription factor 3	Ass1 (ASS1)		
Cyp27a1	Ectonucleotide pyrophosphatase/phosphodiesterase 4	Cyp27a1 (CYP27A1)		
Has2	Hyaluronan synthase 2	Has2 (HAS2)		
Mgmt	O-6-methylguanine-DNA methyltransferase	Mgmt (MGMT)		
Nqo1	NAD(P)H dehydrogenase, quinone 1	Nqo1 (NQO1)		
Rbp2	Retinol binding protein 2, cellular	Rbp2 (RBP2)		
Slc28a2	Solute carrier family 28 (sodium-coupled nucleoside transporter), member 2	Slc28a2 (SLC28A2)		
Steap1	Six transmembrane epithelial antigen of the prostate 1	Steap1 (STEAP1)		
Tcf21	Transcription factor 21	Tcf21 (TCF21)		

Proteins with no known function/hypothetical proteins

Proteins with no known function/hypothetical proteins
Gene ID	Gene Name	Description	Value	Score	
7073915	Rnf213	Ring finger protein 213	51	2.54	
7073928	Rnf213	Ring finger protein 213	65	1.99	
7094771	Rtp4/Ctdsp1	Receptor (chemosensory) transporter protein 4	CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1	139	11.46
7070419	Sfn3	Schlafen 3	131	5.04	
7070393	Sfn5	Schlafen family member 5	98	1.85	
7072336	Tmem106a	Transmembrane protein 106A	78	1.85	
7252491	Tmem140	Transmembrane protein 140	206	1.83	
7047575	Unknown	Unknown	55	1.57	
7088625	Unknown	Unknown	88	2.72	
7116103	Unknown	Unknown	71	2.16	
7129386	Unknown	Unknown	38	1.54	
7153410	Unknown	Unknown	96	1.74	
7254427	Unknown	Unknown	119	1.55	
7328454	Unknown	Unknown	46	1.64	
7371101	Unknown	Unknown	54	2.67	
7126637	Cd38	CD38 molecule	608	0.61	
7191192	Fam134b	Family with sequence similarity 134, member B	1202	0.62	
7372873	Fam70a	Family with sequence similarity 70, member A	534	0.51	
7133474	Lcp1	Lymphocyte cytosolic protein 1	545	0.57	
7164764	LOC680097	Similar to germinal histone H4 gene	6612	0.58	
7367891	LOC680166	Unknown	204	0.61	
7157871	LOC682649	Similar to Histone H2A type 1	647	0.53	
7260779	Lrrc17	Leucine rich repeat containing 17	298	0.38	
7060488	Ms4a6b/11	Membrane-spanning 4-domains, subfamily A, member 6B/11	215	0.52	
7337370	Ns5atp9	NS5A (hepatitis C virus) transactivated protein 9	307	0.66	
7035206	Olfml1	Olfactomedin-like 1	355	0.48	
7328472	Tmem71	Transmembrane protein 71	128	0.59	
7077262	Unknown	Unknown	100	0.66	
7135004	Unknown	Unknown	194	0.62	
7164849	Unknown	Unknown	845	0.66	
7176278	Unknown	Unknown	208	0.65	
7367340	Unknown	Unknown	67	0.57	
7368283	Unknown	Unknown	409	0.63	
7369003	Unknown	Unknown	1284	0.63	
7370879	Unknown	Unknown	86	0.63	
Table 2 Transcripts upregulated by ET-1 that are regulated by Atf3 but are unaffected by FLAG virus infection *, IEG; **, non-IEG

Transcript Cluster	Gene symbol	Raw values	Control	ET-1			
		No virus	FLAG	AS-Atf3	No virus	FLAG	AS-Atf3
AS Atf3 enhances response to ET-1							
Cluster A1							
		7169197	289	1 0.95	1.02	1.29	1.24
		7222466	85	1 0.92	0.87	1.32	1.59
		7288744	425	1 0.93	1.44	1.21	1.31
		7320920	64	1 0.95	1.12	3.78	4.29
Cluster A2		7308330	152	1 0.94	2.61	2.72	2.22
		7185572	154	1 1.05	1.94	1.56	1.41
		7231595	142	1 1.01	2.04	0.96	1.08
		7114850	130	1 0.98	2.28	2.00	1.60
		7265600	854	1 1.00	2.94	1.98	1.93
		7243216	52	1 1.13	1.81	1.83	1.49
		7179800	368	1 0.96	2.16	1.67	1.79
AS Atf3 inhibits response to ET-1							
Cluster B1		7260283	195	1 0.95	2.86	1.93	1.62
		7124933	500	1 1.13	2.22	1.73	1.91
		7096358	88	1 1.10	2.80	2.18	1.74
Cluster B2		7115195	181	1 1.06	2.77	1.79	1.67

| **AS Atf3 inhibits response to ET-1** |
Cluster B1		7123129	127	1 1.07	1.20	5.63	7.01	2.09
		7043230	178	1 0.93	0.87	3.03	2.99	1.54
		7345585	459	1 0.87	0.93	2.94	3.05	1.98
		7187674	191	1 0.94	0.82	1.66	1.92	1.14
		7202670	527	1 1.00	0.72	1.62	1.71	1.04
		7150663	116	1 0.98	0.91	1.66	1.34	0.88
		7235566	62	1 1.06	1.19	3.20	3.62	1.48
		7204067	863	1 1.12	1.19	1.76	1.90	1.24
		7104906	127	1 0.90	0.88	2.36	1.41	0.89
		7214260	77	1 1.03	1.04	4.42	3.27	1.28
		7141508	513	1 0.99	1.20	2.87	2.79	1.74
		7297329	126	1 1.14	0.96	2.83	3.77	2.24
		7350922	217	1 1.02	1.40	4.09	3.53	1.70
		7297247	121	1 1.12	1.14	2.21	2.22	1.41
Table 3 Transcripts unaffected by FLAG virus infection that are upregulated by ET-1 with significantly increased expression in control cells by Atf3 knockdown. *, IEG; **, non-IEG.

Transcript Cluster	Gene symbol	Raw values	Control	ET-1				
		No virus	FLAG	AS Atf3	No virus	FLAG	AS Atf3	
Cluster C								
7305953	Arl4a	482	1	1.07	1.69	1.60	1.99	2.21
7301400	Bdkrb2**	104	1	1.09	1.77	1.74	1.98	2.21
7111272	Btg2*	311	1	0.93	1.87	3.66	4.22	3.28
7209338	Ccn1**	249	1	0.99	1.77	1.69	1.54	2.47
7045696	Cnkr3	166	1	1.14	1.96	1.61	1.63	2.21
7350918	Csnr1p1	146	1	1.17	2.42	3.63	3.82	4.59
7044959	Ctgf*	342	1	0.91	3.04	3.85	4.13	5.22
7215359	Cyr61**	407	1	1.04	1.74	5.22	5.40	6.22
7143265	Eaf1	130	1	1.13	1.87	1.56	1.57	2.12
7163221	Edn1*	71	1	1.11	1.78	1.19	1.26	2.42
7147985	Efnb2**	71	1	0.99	1.74	1.42	1.45	2.15
7281135	Ephb2*	90	1	1.16	3.52	2.89	3.29	4.32
7297136	Fam110c	55	1	1.09	1.92	3.70	4.75	3.76
7242382	Fjx1	149	1	1.07	1.74	1.74	1.71	2.10
7252051	Flnc**	143	1	0.94	1.47	2.86	2.31	1.80
7162363	Gadd45g*	357	1	0.99	3.33	4.72	4.19	5.92
7174562	Hbegl*	100	1	0.88	2.73	3.90	4.33	3.84
7193413	Hspa4l	63	1	0.93	2.29	1.94	1.48	2.00
7165193	Inhba**	88	1	1.09	2.09	6.95	6.30	6.29
7257290	Lmcd1*	283	1	1.17	4.41	5.84	6.64	5.84
7100653	Mafk*	187	1	1.00	2.06	2.23	2.25	2.36
7068314	Map2k3**	106	1	1.00	1.65	1.91	1.78	1.96
7194351	Mei1/Tsc22d2	149	1	0.99	1.84	2.45	2.43	2.43
7317471	Myc*	156	1	1.02	2.04	2.28	2.34	2.92
7155813	Nfil3*	67	1	1.04	2.71	2.57	2.83	3.71
7189518	Plik2*	1457	1	1.15	2.79	2.14	2.65	3.58
7051029	Pp1r15a	115	1	1.02	1.93	1.57	1.57	2.26
7360736	Ptp4a1	638	1	1.05	2.14	2.39	2.27	2.36
7048738	PVR*	430	1	1.16	2.58	3.64	3.77	3.48
7340175	Rassf1*	163	1	0.99	1.90	1.62	1.68	2.04
7091811	Rcan1	2101	1	1.12	1.77	1.90	1.95	1.95
7331581	Rnd1*	203	1	1.20	3.24	4.78	4.76	3.58
7238766	Rnd3*	311	1	1.01	1.96	1.82	1.56	2.00
7029999	Sertad1*	217	1	1.09	1.86	1.95	2.50	2.39
7279509	Stik40	144	1	1.00	1.64	1.62	1.57	1.75
7075088	Tnrsf12a*	750	1	1.09	2.75	3.17	3.26	3.77
7106964	Tnrsf18	80	1	0.87	2.02	9.32	6.92	9.29
7199859	Tspan5**	217	1	1.08	1.69	2.30	2.02	1.95
7120783	Unknown	93	1	0.92	1.47	1.64	1.52	1.55
7339862	Unknown	185	1	0.84	1.53	1.62	1.14	1.60
7085544	Vgll3	133	1	0.96	1.59	2.87	2.52	2.78
7228236	Xirp2	124	1	0.93	2.14	3.84	2.73	2.17
Table 4 Transcripts affected by FLAG virus infection that are upregulated by ET-1 and regulated by Atf3.

Transcript Cluster	Gene symbol	Raw values	Control	ET-1				
			No virus	FLAG	AS Atf3	No virus	FLAG	AS Atf3
AS Atf3 enhances response to ET-1								
Cluster D								
7120521	Lif *	82	1	1.75	3.70	2.88	3.62	7.30
7106132	Ptgs2 *	136	1	1.92	3.93	4.94	4.44	9.84
7237652	Slc25a25 *	94	1	1.22	1.71	1.41	1.64	2.19
7028549	Il11	143	1	1.20	1.74	2.88	2.82	3.87
7284153	Ripk2 **	238	1	1.31	2.79	2.53	2.72	3.58
7261019	Sema3c	208	1	1.22	2.16	1.67	1.80	2.21
7035407	Zfland2a *	303	1	1.21	1.89	1.74	2.23	2.26
7096947	Lif *	288	1	1.23	1.60	1.73	2.17	2.39

AS Atf3 inhibits response to ET-1
Cluster E | | | | | | | | |
7259100	Apold1	533	1	0.82	0.63	1.64	1.43	1.02
7105894	B3galt2	505	1	0.79	1.12	2.31	1.97	1.07
7051386	Csrp3	1062	1	0.75	0.72	1.53	1.37	0.72
7084788	Socs3	229	1	1.25	1.01	1.75	1.64	0.77
7370997	Unknown	313	1	0.69	0.81	1.83	1.43	0.80
7135004	Unknown	194	1	0.62	1.24	2.47	2.47	1.40
7305661	Unknown	81	1	0.80	1.25	3.46	3.56	2.12

Table 5 Transcripts that are downregulated by ET-1 and regulated by Atf3

Transcript Cluster	Gene symbol	Raw values	Control	ET-1				
			No virus	FLAG	AS Atf3	No virus	FLAG	AS Atf3
AS Atf3 enhances response to ET-1								
Cluster F								
7279127	Cited4	231	1	0.91	0.48	0.52	0.59	0.47
7180333	Ednra	2175	1	0.99	0.60	0.58	0.64	0.41
7115625	G0s2	2545	1	0.86	0.49	0.30	0.26	0.12
7190436	Lifr	390	1	0.88	0.55	0.60	0.54	0.37
7269707	Ntf3	250	1	1.18	0.54	0.52	0.65	0.37

AS Atf3 inhibits response to ET-1
Cluster G | | | | | | | | |
7222734	Ddit4	1553	1	1.16	2.04	0.46	0.55	0.79
7120384	Pik3ip1	339	1	0.83	0.57	0.29	0.34	0.46
7346730	Smad6	266	1	1.05	1.41	0.50	0.57	1.03
7197113	Txnip	2024	1	0.90	1.10	0.32	0.39	0.96
7173133	Unknown	690	1	0.74	0.15	0.23	0.16	0.18
Table 6 Primers used for qPCR and sqPCR

Nucleotide positions in transcripts are shown in parentheses for each primer. mRNA sequences (gene symbols are given with accession numbers in parentheses) were from the Rat Genome Database viewed at http://www.ncbi.nlm.nih.gov/entrez.

Gene symbol (accession no.)	Size (bp)	Forward primer	Reverse primer
qPCR Primers			
Atf3 (NM_012912.1)	108	TCGCCATCCAGAACAAGCA (140-158)	GGGCCACCTCAGACTTGTTG (229-247)
Egr1 (NM_012551.2)	98	CTACGAGCACCTGACCAAGAGCT (204-227)	GCAACGGGGTAGGTTGCTTTG (283-301)
Gapdh (NM_017008.3)	93	CCAAGGTCAATCCAGAACAACTT (476-497)	AGGGGCGATCCACAGCTTT (550-568)
Ptgs2 (NM_017232.3)	90	GAAGAACTTACAGGAGAAAGAAATGG (1393-1420)	CAGCACGGGCGGAGTACGTT (1464-1482)
Dusp1 (NM_053769.3)	62	GCGCGCTCCACTCAAGTC (337-354)	GGGCAGGAAGCGGAAAAC (381-398)
Dusp5 (NM_133578.1)	70	CGACATTAGCTCCCACCTTCA (882-903)	AAGGACCTTGGCCTCCCTTCC (934-953)
Areg (NM_017123.1)	108	CTGCTGGTCTTAGGGCAGTC (218-237)	CAGAAGTCCCAGAGACTGTG (306-325)
Il6 (NM_012589.1)	157	GAGTTGTGCAATGGCAATTC (202-221)	ACTCCAGAAGAAGACACGAG (339-358)
Il1f1 (NM_013037.1)	100	GCCCTTCATCTGGGCTACACT (68-88)	GCAATGGCGAGGAAGGTAAAC (147-167)
sqPCR PRIMERS			
Atf3 (NM_012912.1)	331	GCTGCCAGTGCTCCAGAACAAG (298-318)	CAGTTTCCAATGGCTTCAGG (608-628)
Gapdh (NM_017008.3)	452	ACCACAGCTCATGCGCATC (520-539)	TCCACCCACTGTGTCTGTA (952-971)
Supplementary Methods - Mathematical Model

1 Reaction equations

The reaction equations governing the expression of Egr1 and Atf3 mRNA, Atf3 protein and subsequent suppression of Egr1 mRNA expression by Atf3 protein are described as follows. Each of the following processes occur at the rate indicated. Further details on these can be found in Table 6.

The phosphorylation of MKK by ET-1 is denoted by

\[\text{ET-1} + \text{M KK} \xrightarrow{k_1} \text{ET-1} + \text{M KK-P}, \]

which subsequently phosphorylates the unphosphorylated ERK

\[\text{M KK-P} + \text{ERK} \xrightarrow{k_2} \text{M KK-P} + \text{ERK-P}. \]

ERK-P is now free to transcribe both Egr1 and Atf3 mRNA such that

\[\text{ERK-P} + \text{DNA_{Egr1}} \xrightarrow{k_3} \text{ERK-P} \cdot \text{DNA_{Egr1}} \xrightarrow{k_4} \text{mRNA_{Egr1}}, \]

and

\[\text{ERK-P} + \text{DNA_{Atf3}} \xrightarrow{k_5} \text{ERK-P} \cdot \text{DNA_{Atf3}} \xrightarrow{k_6} \text{mRNA_{Atf3}}, \]

which are both degraded

\[\text{mRNA_{Egr1}} \xrightarrow{d_1} \phi, \quad \text{mRNA_{Atf3}} \xrightarrow{d_2} \phi. \]

Here \(\cdot \) denotes a complex and \(\phi \) the degraded mRNA.

The suppression of Egr1 mRNA transcription by Atf3 is described by

\[\text{ERK-P} \cdot \text{DNA_{Egr1}} + \text{Atf3} \xrightarrow{k_7} \text{Atf3} \cdot \text{DNA_{Egr1}}, \]

where the concentration of ERK-P is considered to be in excess.

Finally the translation of Atf3 mRNA to Atf3 protein and subsequent degradation of the protein are denoted by

\[\text{mRNA_{Atf3}} \xrightarrow{k_8} \text{Atf3} \quad \text{and} \quad \text{Atf3} \xrightarrow{d_3} \phi_P, \]

respectively, where \(\phi_P \) denotes degraded protein. In this work we do not explicitly account for the degraded mRNAs or Atf3 protein.
2 Mathematical Model

The Law of Mass Action (6) was applied to equations (1)-(6). This led to the following system of nonlinear ordinary differential equations

\[
\frac{dm}{dt} = -k_1 e_t m, \\
\frac{dm_P}{dt} = k_1 e_t m, \\
\frac{dE}{dt} = -k_2 m_P E, \\
\frac{dE_P}{dt} = k_2 m_P E - k_3 E_P D_E + k_{-3} E - k_5 E_P D_A + k_{-5} T_A, \\
\frac{dD_E}{dt} = -k_3 E_P D_E + k_{-3} E, \\
\frac{dT_E}{dt} = k_3 E_P D_E - k_{-3} E - k_7 T_E A, \\
\frac{dM_E}{dt} = k_4 T_E - d_1 M_E, \\
\frac{dD_A}{dt} = -k_5 E_P D_A + k_{-5} T_A, \\
\frac{dT_A}{dt} = k_5 E_P D_A - k_{-5} T_A, \\
\frac{dM_A}{dt} = k_6 T_A - d_2 M_A, \\
\frac{dA}{dt} = k_8 M_A - k_7 T_E A - d_3 A, \\
\frac{dS}{dt} = k_7 T_E A.
\]

Each of the variables is defined as follows: \(e_T\) represents the concentration of ET-1 (denoted \(e_T=[\text{ET-1}]\)), \(m=[\text{MKK}]\), \(m_P=[\text{MKK-P}]\), \(E=[\text{ERK}]\), \(E_P=[\text{ERK-P}]\), \(D_E=[\text{DNA}_E\text{gr1}]\), \(D_A=[\text{DNA}_A\text{tf3}]\), \(T_E=\text{ERK-P-DNA}_{E\text{gr1}}\), \(T_A=\text{ERK-P-DNA}_{A\text{tf3}}\), \(M_E=[\text{mRNA}_{E\text{gr1}}]\), \(M_A=[\text{mRNA}_{A\text{tf3}}]\), \(S=[\text{Atf3-DNA}_{E\text{gr1}}]\) and \(A=[\text{Atf3}]\). Here the concentration of ET-1 is assumed to be constant. The rate of Atf3 protein to Egr1 DNA binding is assumed to be immediate and no delays are incurred in this process.

The system is closed with the initial conditions

\[
m = m_0, \quad m_P = 0, \quad E = E_0, \quad E_P = 0, \quad D_E = D_{E_0}, \quad T_E = 0, \\
M_E = M_{E_0}, \quad D_A = D_{A_0}, \quad T_A = 0, \quad M_A = 0, \quad A = 0 \quad \text{and} \quad S = 0.
\]
The governing system of equations can be simplified as follows. Addition of equations (8) and (9), integration with respect to time and application of the respective initial conditions yields the conservation relation
\[m + m_P = m_0. \] (21)
Substituting for \(m \) into equation (9), integrating and applying the initial condition yields
\[m_P(t) = m_0 \left(1 - e^{-k_{1c}t} \right). \] (22)
Addition of equations (12), (13) and (19), integration with respect to \(t \) and application of the initial conditions yields
\[D_E + T_E + S = D_{E0}. \] (23)
Likewise for equations (15) and (16)
\[D_A + T_A = D_{A0}. \] (24)
Assuming equation (16) is quasi-steady and substituting for \(D_A \) using equation (24) leads to
\[T_A \simeq \frac{D_{A0}E_P}{E_P + K_5}, \] (25)
where \(K_5 = k_{-5}/k_5 \).
Bringing all these results together gives
\[m_P(t) = m_0 \left(1 - e^{-k_{1c}t} \right), \] (26)
\[\frac{dE}{dt} = -k_2m_PE, \] (27)
\[\frac{dE_P}{dt} = k_2m_PE - k_3E_P(D_{E0} - T_E - S) + k_{-3}T_E, \] (28)
\[\frac{dT_E}{dt} = k_3E_P(D_{E0} - T_E - S) - k_{-3}T_E - k_7T_EA, \] (29)
\[\frac{dM_E}{dt} = k_4T_E - d_1M_E, \] (30)
\[\frac{dM_A}{dt} = \frac{k_5^*E_P}{E_P + K_5} - d_2M_A, \] (31)
\[\frac{dA}{dt} = k_8M_A - k_7T_EA - d_3A, \] (32)
\[\frac{dS}{dt} = k_7T_EA, \] (33)
with the initial conditions
\[E = E_0, \quad E_P = 0, \quad T_E = 0, \quad M_E = M_{E0}, \quad M_A = 0, \quad A = 0 \quad \text{and} \quad S = 0, \] (34)
where \(k_5^* = k_6D_{A0} \). When Egr1 transcription is not suppressed by Atf3 protein we have \(k_7 = 0 \).
3 Parameterisation

The mathematical model has been informed with data available within the literature, from our own previous studies as well as work undertaken here. A complete list of the parameter values used can be found in Table 6. In cases where parameter values have been derived these are explained as follows.

Estimation of the activation rate of MKK and ERK: The time course for activation of ERK1 was determined previously (9) and maximal activation was at 3 minutes. The time course for activation of MKK was determined by immunoblotting with antibodies to phosphorylated (i.e. activated) MKK using primary antibodies from Cell Signaling Technology Inc. A representative blot is shown in Figure 1. The time course for activation by a range of agonists (epidermal growth factor, ET-1, phorbol 12-myristate 13-acetate or platelet-derived growth factor) all showed maximal activation by 2-3 minutes. We therefore assumed the time to maximal activation of MKK to be 2 min with a further 1 min for maximal activation of ERK.

The concentration of MKK in cardiomyocytes was estimated by immunoblotting cardiomyocyte extracts from a known number of cells alongside known concentrations of recombinant MKK1. Antibodies to total MKK were from Cell Signaling Technology Inc. Following densitometric analysis, a standard curve was constructed from which the amount of MKK in the myocyte extract was estimated. The concentration was calculated on the basis of the estimated volume of a neonatal myocyte. The concentration of ERK was assumed to be similar to MKK given that this lies within the range seen in other cells (4).

\[k_1 e_t = \frac{1}{120s} = 8.30 \times 10^{-3}s^{-1}. \]

\[k_2 = \frac{1}{60s} = 1.67 \times 10^{-2}s^{-1}. \]

The total ERK concentration is 130nM such that

\[k_2 = 1.28 \times 10^5(Ms)^{-1}. \]

\[k_4^*, k_6^* - Egr1 and Atf3 transcription rates:* The size of the Atf3 and Egr1 genes, mRNAs and proteins were for mouse (for rat, the 5’ untranslated region was not defined for Egr1 and the rat genome is not well sequenced in the intronic regions for Atf3). Sequences were obtained from NCBI. For Atf3 (Gene ID: 11910), this gives a total gene length of
13038 base pairs (bp), a 5’ untranslated region of 62 nucleotides and protein of 181 amino acids. For Egr1 (Gene ID: 13653), this gives a total gene length of 3750 bp. To estimate the rate of transcription, the total length of the gene was used allowing for an additional 200 nucleotides to be transcribed before termination. The maximum rate of transcription has been estimated recently to range from 55 b/s to greater than 800 b/s (1; 5). Thus to transcribe one molecule of mRNA from one gene, assuming a rate of 55 bases per second, takes

\[
\frac{3950 \text{ bases}}{55 \text{ bases/s}} = 71.82 \text{s}
\]

Per gene this equates to \(1.39 \times 10^{-2}\) molecules mRNA s\(^{-1}\). Since a cell contains two genes, we have \(2.78 \times 10^{-2}\) molecules of Egr1 mRNA being synthesized per cell per second. Taking the cell volume of 6.7pl we obtain

\[
k_4^* = \frac{2.78 \times 10^{-2} \text{ molecules s}^{-1}}{6.710^{-9} \text{ ml}} = 4.15 \times 10^{5} \text{ molecules ml}^{-1} \text{s}^{-1} = 6.89 \times 10^{-16} \text{ Ms}^{-1}. \quad (35)
\]

We can undertake a similar calculation for Atf3 transcription to obtain

\[
k_6^* = 5.15 \times 10^{-15} \text{ Ms}^{-1}.
\]

\(k_8 - \text{Atf3 translation rate:}\) The rate of translation of Atf3 was estimated on the basis of scanning of the 5’ untranslated region at a rate of 6 nucleotides per second (11), translation of the coding sequence at a rate of 20 amino acids per second (N.B. the reported rate of translation is in the range of 4 - 20 amino acids per second (10; 12) and we presume translation of IEGs is efficient) with 5 ribosomes attached simultaneously to each mRNA (N.B. the predicted occupancy is 1 ribosome per 32 amino acids)(7).

\(K_5\) and \(k_3, k_{-3} - \text{ERK-P dissociation rates for Egr1 and Atf3 DNA:}\) The model is based on the assumption that phospho-ERK bind to transcription factors that are pre-bound to the Atf3 and Egr1 promoters and this drives transcription. We presume that the ERK binding is mediated through a DEF motif with an estimated dissociation rate of 0.5µM (the dissociation rate for Elk1 is 0.25µM; that for Fos is 1µM) (2). Given that \(K_3 = k_{-3}/k_3\) we use an initial estimate of \(k_{-3} = 5 \times 10^{-2}\) s to obtain \(k_3 = 1 \times 10^5\) (Ms\(^{-1}\).

\(d_1, d_2, d_3 - \text{Degradation rates of Egr1 mRNA, Atf3 mRNA and Atf3 protein:}\) To estimate the half-life of Egr1 and Atf3 mRNA, cardiomycocytes were exposed to ET-1 for 30 min then incubated without or with actinomycin D (4µM, added directly to the culture dish). Cells were harvested at the indicated times following addition of actinomycin D and mRNA expression was measured by qPCR. GraphPad Prism 4 was used to fit a one phase exponential decay curve to the data shown in Figure 1, giving a half-life of 13 min for Egr1 and 49 min for Atf3. The rate of degradation is defined by

\[
d = \frac{\ln 2}{t_{1/2}}.
\]
Parameter	Definition	Value
m_0	Total MKK.	130nM
E_0	Total ERK.	130nM
M_{E0}	Initial Egr1 mRNA concentration.	1pM
D_{e0}	Egr1 DNA concentration.	33.2pM
k_{1e}	Rate of MKK activation by ET-1.	8.30×10^{-3} s$^{-1}$
k_2	Rate of ERK activation by MKK.	1.28×10^5 (Ms)$^{-1}$
k_3	Rate of ERK-P activation of Egr1 DNA.	1.00×10^5 (Ms)$^{-1}$
k_{-3}	Rate of ERK-P reverse activation of Egr1 DNA.	5.00×10^{-2} (Ms)$^{-1}$
k_4	Egr1 mRNA transcription rate.	6.89×10^{-15} M/s
k_5	Atf3 mRNA transcription rate.	1.03×10^{-15} M/s
k_7	Atf3 suppression rate.	To be determined.
k_8	Atf3 translation rate.	0.25 s$^{-1}$
K_5	ERK-P and Atf3 DNA dissociation rate.	0.5×10^{-6} M
d_1	Degradation rate of Atf3 mRNA.	8.89×10^{-4} s$^{-1}$
d_2	Degradation rate of Egr1 mRNA.	2.36×10^{-4} s$^{-1}$
d_3	Degradation rate of Atf3 protein.	2.36×10^{-4} s$^{-1}$

Table 6: Model parameter values.

which leads to

$$d_1 = 8.89 \times 10^{-4}s^{-1} \quad \text{and} \quad d_2 = \frac{\ln 2}{2580s} = 2.36 \times 10^{-4}s^{-1}. \quad (36)$$

We assume Atf3 protein degrades at the same rate as Atf3 mRNA.

Egr1 DNA concentration: We assume there are 2 molecules of DNA per cell. The volume of a neonatal myocyte was estimated given that an adult myocyte has a volume of 34 pl with a capacitance of 66pF (3; 8) and the capacitance of a neonatal myocyte is 13pF (8). This gives 6.7pl per cell leading to concentration of 33.2pM.

4 Results

The governing system of nonlinear ordinary differential equations (ODEs) (27)-(33) was solved using Gear’s method available in Matlab (The Mathworks, Version 7.11) via the solver ode15, with $m_P(t)$ given by equation (26).

Using the parameter values detailed in Table 6 we found the 20-fold change in Egr1 mRNA determined experimentally could not be re-produced using these values (using an initial estimate of $k_7 = 1 \times 10^5$ (Ms)$^{-1}$). As such we undertook a sensitivity analysis in which we varied the rates of Egr1 and Atf3 mRNA transcription (k_4, k_5), ERK-P reverse
Figure 1: A, Cardiomyocytes were exposed to ET-1 for the times indicated. Protein extracts were immunoblotted with antibodies to phospho-MKK. A representative image is shown. B, Cardiomyocytes were stimulated for 30 min before addition of actinomycin D (4µM) to inhibit transcription. Expression of Egr1 (upper panel) or Atf3 (lower panel) mRNAs were measured by qPCR at the indicated times after actinomycin D addition. A one phase exponential curve was fitted using GraphPad Prism 4.
activation of Egr1 DNA (k_{-3}) and the ERK-P association rate for Atf3 DNA (K_3). The most appropriate variation in these values which gave a good fit to the data was found to be a 5-fold increase in both the transcription rates of Egr1 and Atf3 mRNA ($5 \times k_4^*, 5 \times k_6^*$), a 10-fold decrease in the rate of ERK-P dissociation for Egr1 DNA ($k_{-3}/10$) and a 50-fold decrease in the ERK-P association rate for Atf3 DNA ($K_3/50$). Such a variation in the rates of Egr1 and Atf3 transcription is equivalent to a rate of 275 bases/s rather than the original assumption of 55 bases/s. Such a variation lies within the range recently reported by (1) and (5).

This led to a very good fit to the experimental data in terms of the magnitude variation in Egr1 mRNA observed experimentally and a relatively good fit (qualitatively) to the suppression of Egr1 mRNA by Atf3. To further improve this model-data fit we adjusted the rate of Atf3 suppression (k_7). Good fits to the data we obtained for the range of values $1.00 \times 10^5 (\text{Ms})^{-1} \leq k_7 \leq 6 \times 10^5 (\text{Ms})^{-1}$.

References

[1] Ben-Ari, Y. et al. The life of an mRNA in space and time. *J. Cell Sci.* 123, 1761-1774 (2010).
[2] Burkhard, K.A., Chen, F., & Shapiro, P. Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity. *J. Biol. Chem.* 286, 2477-2485 (2011).
[3] Cerbai, E., Pino, R., Sartiani, L., & Mugelli, A. Influence of postnatal-development on I(f) occurrence and properties in neonatal rat ventricular myocytes. *Cardiovasc. Res.* 42, 416-423 (1999).
[4] Fujioka, A. et al. Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. *J. Biol. Chem.* 281, 8917-8926 (2006).
[5] Maiuri, P. et al. Fast transcription rates of RNA polymerase II in human cells. *EMBO Rep.* (2011).
[6] J.D. Murray, Mathematical Biology, Springer Verlag, 2nd ed., 1993.
[7] Qin, X., Ahn, S., Speed, T.P., & Rubin, G.M. Global analyses of mRNA translational control during early *Drosophila* embryogenesis. *Genome Biol.* 8, R63 (2007).
[8] Satoh, H., Delbridge, L.M., Blatter, L.A., & Bers, D.M. Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects. *Biophys. J.* 70, 1494-1504 (1996).
[9] Sugden, P.H. et al. Monophosphothreonyl extracellular signal-regulated kinases 1 and 2 (ERK1/2) are formed endogenously in intact cardiac myocytes and are enzymically active. *Cell. Signal.* 23, 468-477 (2011).

[10] Tinoco, I., Jr. & Wen, J.D. Simulation and analysis of single-ribosome translation. *Phys. Biol.* 6, 025006 (2009).

[11] Vassilenko, K.S., Alekhina, O.M., Dmitriev, S.E., Shatsky, I.N., & Spirin, A.S. Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation. *Nucleic Acids Res.* 39, 5555-5567 (2011).

[12] Wohlgemuth, I., Pohl, C., & Rodnina, M.V. Optimization of speed and accuracy of decoding in translation. *EMBO J.* 29, 3701-3709 (2010).