Review

The Hallmarks of Flavonoids in Cancer

Luis Gustavo Saboia Ponte 1,†, Isadora Carolina Betim Pavan 1,2,†, Mariana Camargo Silva Mancini 1, Luiz Guilherme Salvino da Silva 1, Ana Paula Morelli 1,*, Matheus Brandemarte Severino 1, Rosangela Maria Neves Bezerra 1 and Fernando Moreira Simabuco 1,*

1 Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; lg_saboia@hotmail.com (L.G.S.P.); isadora.bpavan@gmail.com (I.C.B.P.); marianamancini5@gmail.com (M.C.S.M.); luizsalvino@yahoo.com.br (L.G.S.d.S.); apm.morelli@gmail.com (A.P.M.); matheusbr.severino@gmail.com (M.B.S.); rosangela.bezerra02@hotmail.com (R.M.N.B.)
2 Laboratory of Signal Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, São Paulo 13083-871, Brazil
* Correspondence: simabuco@gmail.com
† These authors contributed equally.

Abstract: Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.

Keywords: flavonoids; cancer; cell signaling

1. Introduction

Flavonoids represent the largest group of polyphenols found in plant-based foods, including fruits, vegetables, grains, and herbs, as well as in beverages such as tea, wine, and juices [1]. In plants, flavonoids play the role of secondary metabolites, acting as protectors against biotic and abiotic threats, particularly in the defense against ultraviolet radiation and pathogen action. Additionally, they also actively participate in odor, flavor, and color determination in several species [2,3]. The concentration of flavonoids in food is related to several factors, including the variety of the phylum, order, family, and/or species of the plant, as well as the characteristics related to plantings, such as the type of soil, the climatic conditions of the region and the level of maturation of the food. Flavonoids’ concentration and composition also vary depending on the different parts of the plant. Leaves and the peels of fruits are commonly rich sources of flavonoids due to increased susceptibility to stress [4–6].

These compounds are composed of fifteen carbon atoms in their chemical structure (Table 1), presenting two benzene rings (A and B) connected through a heterocyclic ring containing oxygen (C). Flavonoids can be subdivided into flavones, isoflavones, flavanones, flavonols, anthocyanidins, and flavans. These classes differ from one another according
to the oxidation state of the central carbon in the chemical backbone. Table 1 presents the chemical structures and the main food sources of these subclasses of flavonoids [7].

| Chemical Structure | Subclass       | Examples                        | Food Source                        |
|--------------------|----------------|---------------------------------|------------------------------------|
| ![Chemical Structure](image) | Anthocyanidins | Cyanidin (Cya), Delphinidin (Del) | Strawberry, Blackberry, Grape, Red cabbage [8] |
| ![Chemical Structure](image) | Flavanols      | Catechin (Cat), Epigallocatechin (Epi) | Tea, Apples, Cocoa [9] |
| ![Chemical Structure](image) | Flavanones     | Naringenin (Nar), Taxifolin (Tax), Eriodictyol (Eri) | Citrus fruits [10] |
| ![Chemical Structure](image) | Flavones       | Luteolin (Lut), Apigenin (Api), Vitexin (Vit) | Celery, Parsley, Artichokes, Chicory, Tea and Herbs leaves [11] |
| ![Chemical Structure](image) | Flavonols      | Quercetin (Que), Kaempferol (Kae), Myricetin (Myr) | Broccoli, Garlic, Onion [12] |
| ![Chemical Structure](image) | Isoflavones    | Genistein (Gen), Daidzein (Dai) | Soy [13] |

According to Hanahan and Weinberg [14], cancer may be defined as a heterogeneous disease presenting characteristics related to the uncontrolled growth, division, and invasion of cells in other tissues and organs. Cancer cells undergo important biological changes that allow the emergence of new cellular characteristics, which are known as the hallmarks of cancer: maintenance of proliferative signaling; inactivation of growth suppressors; apoptosis resistance; increase in replication potential; angiogenesis induction; invasion of surrounding tissues and metastasis.

In human nutrition, flavonoids are associated with reduced oxidative stress through the balance between oxidizing and antioxidant molecules and the protection against changes in cell lipids, proteins, and DNA. The administration of diets based on foods
rich in phenolic compounds suggests that flavonoids can protect against the development of several types of diseases, including cancer [15–17]. However, further studies in humans are needed since most of them are carried out in vitro or in animals. The development of these studies takes place through clinical trials that are classified as the gold standard in the evaluation of therapeutic and preventive actions in health [18]. Currently, several clinical studies are being developed considering flavonoids in cancer therapy (Table 2). Those who reached the final stage showed promising results in the use of these compounds as an auxiliary therapy in the treatment or prevention of various types of cancer. Therefore, more studies are necessary to obtain answers that have not yet been clarified regarding this subject.

Table 2. Clinical trials based on flavonoids administration for cancer.

| Anthocyanidins                  | Indication                      | Number of Participants | FDA Approval Status | Trial Status       | National Clinical Trial Number (NCT#) | Ref.   |
|---------------------------------|---------------------------------|------------------------|--------------------|-------------------|--------------------------------------|--------|
| Cyanidin                        | Breast Cancer                   | 300                    | Not applicable     | Completed         | NCT02195960                          | -      |
|                                 | Colorectal Adenocarcinoma       | 100                    | Phase II           | Unknown           | NCT01948661                          | -      |
|                                 | Myelodysplastic Syndrome/Myeloproliferative Neoplasm | 21                     | Phase II           | Active, not recruiting | NCT03140280                          | -      |
|                                 | Oral Cancer                     | 58                     | Not Applicable     | Not yet recruiting | NCT04372914                          | -      |

| Flavanols                      | Indication                      | Number of Participants | FDA Approval Status | Trial Status | National Clinical Trial Number (NCT#) | Ref.   |
|---------------------------------|---------------------------------|------------------------|--------------------|-------------|--------------------------------------|--------|
| Catechins                       | Prostate Cancer                 | 50                     | Phase I            | Completed   | NCT00459407                          | [19]   |
|                                 | Breast Cancer                   | 40                     | Phase I            | Completed   | NCT00516243                          | [20]   |
|                                 | Breast Cancer                   | 1075                   | Phase II           | Completed   | NCT00917735                          | [21]   |
|                                 | Lung Cancer                     | 53                     | Phase II           | Completed   | NCT00573885                          | -      |
|                                 | Unspecified Adult Solid Tumor, Unspecified | 55                     | Phase I            | Completed   | NCT0091325                           | -      |
|                                 | Esophageal Cancer               | 55                     | Phase I            | Completed   | NCT00233935                          | -      |
|                                 | Cervical Cancer                 | 98                     | Phase II           | Completed   | NCT00303823                          | [22]   |
|                                 | Bladder                         | 31                     | Phase II           | Completed   | NCT00666562                          | -      |

| Flavanones                      | Indication                      | Number of Participants | FDA Approval Status | Trial Status | National Clinical Trial Number (NCT#) | Ref.   |
|---------------------------------|---------------------------------|------------------------|--------------------|-------------|--------------------------------------|--------|
| Hesperidin                      | Breast Cancer                   | 40                     | -                  | Completed   | NCT03482401                          | [23]   |

| Flavones                        | Indication                      | Number of Participants | FDA Approval Status | Trial Status | National Clinical Trial Number (NCT#) | Ref.   |
|---------------------------------|---------------------------------|------------------------|--------------------|-------------|--------------------------------------|--------|
| Apigenin                        | Colorectal Cancer               | 382                    | Phase II           | Suspended   | NCT00609310                          | -      |
| Luteolin                        | Tongue Neoplasms                | 4                      | Early phase I      | Unknown     | NCT03288298                          | -      |

| Flavonols                       | Indication                      | Number of Participants | FDA Approval Status | Trial Status | National Clinical Trial Number (NCT#) | Ref.   |
|---------------------------------|---------------------------------|------------------------|--------------------|-------------|--------------------------------------|--------|
| Quercetin                       | Prostate Cancer                 | 31                     | Phase I            | Active, not recruiting   | NCT01912820                          | -      |
|                                 | Prostate Cancer                 | 60                     | Not applicable     | Recruiting  | NCT01538316                          | -      |
|                                 | Squamous Cell Carcinoma         | 55                     | Phase II           | Recruiting  | NCT03476330                          | -      |
| Quercetin-3-O-glucoside         | Colorectal and Pancreatic Cancer | 64                     | Phase II/III       | Active, not recruiting | NCT02195232                          | -      |
|                                 | Renal Cell Carcinoma and Kidney Cancer | 104                   | Phase I/II         | Recruiting  | NCT02446795                          | -      |
Table 2. Cont.

| Isoflavones | Indication | Number of Participants | FDA Approval Status | Trial Status | NCT# | Ref. |
|-------------|------------|------------------------|--------------------|-------------|------|------|
| Genistein   | Bladder Cancer | 60                     | Phase II           | Active, not recruiting | NCT00118040 | [24] |      |
|             | Colon and Rectal Cancer | 13                    | Phase I/II         | Completed | NCT01985763 | [25] |      |
|             | Refractory Leukemias, Central Nervous System Tumor, Solid Tumor, Refractory Solid Tumor, Leukemia, and Lymphoma | 6          | Phase I/II         | Completed | NCT02499861 | -   |      |
|             | Non-small Cell Lung Cancer | 21                   | Phase I/II         | Active, not recruiting | NCT02567799 | [26] |      |
|             | Adenocarcinoma | 44                     | Phase I/II         | Unknown   | NCT01182246 | -   |      |
|             | Cancer        | 15                     | Phase I            | Completed | NCT00001696 | -   |      |
|             | Prostate Cancer | 24                   | Phase II           | Temporarily suspended | NCT02766478 | -   |      |
|             | Prostatic Neoplasms | 47                   | Phase II           | Unknown   | NCT00546039 | -   |      |
|             | Breast Cancer | 126                    | Phase II           | Completed | NCT0290758 | -   |      |
|             | Prostate Cancer | 15                   | Phase II           | Completed | NCT01325311 | -   |      |
| Daidzein    | Prostate Cancer | 43                     | Phase II           | Completed | NCT00669656 | -   |      |

Bioavailability is a complex process and depends on several factors, including stability of the digestive system (adequate concentration of enzymes and pH), the composition of the food matrix, and the initial concentration of the compound [27,28]. Most flavonoids are ingested in the usual diet in the form of glycosides, which have one or more sugar molecules linked to phenolic groups or the C-3 hydroxyl group [28]. Normally, these compounds can be absorbed in two ways: the first and simplest is related to the forms of aglycones, which are absorbed directly in the small intestine; the second involves substances found in their glycosylated form, which undergo metabolic reactions of biotransformation (phase I), including oxidation, reduction, and hydrolysis reactions. These compounds are affected by the action of Lactase-Phlorizin Hydrolase (LPH) or Cytosolic β-Glucosidase (CBG), present in intestinal epithelial cells, causing the separation and release of the phenolic compound in an aglycone form. After absorption, the compounds are metabolized by enzymes in the intestinal or liver cells that promote conjugation reactions with methyl, sulfate, and glucuronic acid groups (phase II). These conjugated metabolites are then transported to the bloodstream or returned to the digestive system through enterohepatic recirculation. The absorption of the phenolic compound may be low in the upper gastrointestinal tract. The compounds that were not absorbed in the small intestine pass into the large intestine, where they are metabolized by bacteria present in the microbiota and then can be absorbed or excreted in the feces [29–31]. Once absorbed, the flavonoids may have their systemic or local effects on different cell types and biological processes.

It is worth mentioning that there are limitations regarding the use of flavonoids, mainly due to their low bioavailability and toxicity in the human body. Regarding the bioavailability process, the concentration of flavonoids in food does not necessarily correspond directly to the actual amount absorbed and metabolized in the body, which can lead to a reduction of the beneficial effect on health [32,33]. As for toxicity, when flavonoids are ingested in the form of supplements in exorbitant amounts, they can induce pro-oxidant activity, mitochondrial toxicity (potential apoptosis-inducing properties), and interactions with metabolic enzymes [34,35]. Currently, the development of nanoformulations is an alternative to reduce these limitations [36], however, studies targeting methods to improve bioavailability, as well as the concentrations that avoid flavonoid toxicity, should be further investigated.
In this context, this review aims to clarify how flavonoids act in the modulation of several biological signaling pathways and defensive systems involved in cancer, including inflammation and immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle (Figure 1). Considering the great number of studies in this area, here we present detailed figures demonstrating the participation of different classes of flavonoids in several steps of those signaling pathways. We also highlight the state-of-art research of these compounds, presenting in-depth tables containing molecular mechanisms, compound concentrations, incubation conditions, and experimental models regarding recent in vitro and in vivo studies. We believe that the compilation of this information brought by this review may greatly contribute to future studies in the area.

**Figure 1.** The molecular actions of flavonoids in cell signaling in cancer. Flavonoids significantly alter the biological processes involved in cancer, including inflammation and immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle. Signaling pathways related to these biological processes, which include Mitogen-Activated Protein Kinases (MAPK), Nuclear Factor-κB (NF-κB), Nod-Like Receptor Pyrin domain containing 3 (NLRP3) inflammasome, Signal Transducer and Activator of Transcription 3 (STAT3) pathway, Warburg effect, Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Hypoxia-Inducible Factor 1 alpha (HIF1α), mechanistic Target Of Rapamycin (mTOR), Ras, macroautophagy, cell cycle checkpoints, intrinsic and extrinsic apoptotic pathways, and senescence, are modulated by flavonoids in cancer and highlighted in this figure. Original figure made for this review using the Biorender software.

### 2. Flavonoids, Inflammation and Immunity

Inflammation has been classified as one of the hallmarks of cancer and is involved in the progression of most types of cancer [14]. Innate and adaptive inflammatory responses are mainly mediated by immune system cells, such as macrophages [37]. Thus, in this section, the immunomodulatory and anti-inflammatory properties of flavonoids will be explored by focusing on specific signaling pathways such as Nuclear Factor-κB (NF-κB), Mitogen-Activated Protein Kinases (MAPK), Nod-Like Receptor Pyrin domain containing 3 (NLRP3) inflammasome, and Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT). A summary of the actions of flavonoids in inflammation and immunity is presented in Table 3.
2.1. The NF-κB Pathway

NF-κB is a transcription factor composed of a family of proteins: RelA (p65), NF-κB1 (p50), RelB, c-Rel, and NF-κB2 (p52), which are combined in different homo and heterodimers [38]. NF-κB activation is mediated by Lipopolysaccharide (LPS) and pro-inflammatory cytokines such as Tumor Necrosis Factor (TNF-α) and Interleukine-1 (IL-1). NF-κB activation generally occurs in tumor microenvironments of most solid cancers and hematopoietic malignancies, which makes this signaling pathway a potential target for cancer therapy [39].

As shown in Figure 2, after Toll-Like Receptor 4 (TLR4) activation by LPS, Myeloid differentiation primary response 88 (Myd88) is recruited to the TLR4 receptor, an important event that activates TNF Receptor-Associated Factor 6 (TRAF6), which in turn activates Transforming growth factor β-Activated Kinase 1 (TAK1). TAK1 activation leads to phosphorylation of I Kappa B Kinase (IKK), an upstream regulator of NF-κB [40]. Tumor Necrosis Factor Receptor (TNFR) activation by TNF-α also recruits Receptor-Interacting Protein 1 (RIP1) and TNF Receptor-Associated Factor 2/5 (TRAF2/5), which are important for TAK1 activation, and consequently activation of NF-κB signaling [41]. I kappa B-alpha (IκB-α) can be phosphorylated, mainly by IKK, causing its ubiquitination and release of NF-κB. The p50/p65 dimer then migrates to the nucleus and regulates gene expression related to immune response, inflammation, cell growth, survival, and development (Figure 2) [42,43]. Classical targets for NF-κB are already described as pro-inflammatory cytokines (TNF-α, IL-1, and IL-6) [44], chemokines (IL-8, Macrophage Inflammatory Protein 1/2 alpha; MIP1α/2α, Monocyte Chemoattractant Protein 1; MCP1, and Regulated upon Activation, Normal T cell Expressed, and Secreted; RANTES) [44,45], Matrix Metalloproteinase 9 (MMP9) [46], proliferation-inducing proteins (cyclin D1 and Myc) [47,48], anti-apoptotic proteins (B-cell lymphoma-extra-large; Bcl-XL, B-cell lymphoma 2; Bcl-2 [49,50], pro-inflammatory enzymes (Cyclooxygenase-2; COX-2 and inducible Nitric Oxide Synthase; iNOS) [43], and angiogenic factors (Vascular Endothelial Growth Factor; VEGF) [51]. Thus, NF-κB is essential for inflammatory responses, linking chronic inflammation and cancer [39,43].

Flavonoids can modulate the NF-κB pathway in different ways [52–67]. For example, Genistein 27 (Gen-27), the synthetic derivative of Genistein, presents NF-κB inhibitory activity in colon cancer cells when treated with LPS [52]. This compound reduces IκB-α and IKK-α/β phosphorylation and inhibits the nuclear translocation of p65 NF-κB. Gen-27 also decreases the LPS-induced cytokines IL-6 and IL-1β in THP-1 cells [52]. Studies also showed that Kaempferol has anti-inflammatory activities [53,60]. Kaempferol inhibits the DNA binding activity of NF-κB, in addition to decreasing its expression [53]. Another study showed that kaempferol reduces IκB-α/IKK phosphorylation, nuclear translocation of NF-κB, and NF-κB targets gene expression as iNOS, COX-2, TNF-α, IL-1β, and IL-6 in LPS-treated RAW 264.7 macrophages [60].

Myricetin is known to reduce inflammation markers (TNF-α, IL-1β, IL-6, NF-κB, p-NF-κB, and COX-2), thereby preventing chronic inflammation and inflammation-driven tumorigenesis in colon tissue of mice [61]. Eridictiol, a less studied flavonoid, has also been shown to impact the NF-κB pathway, decreasing the phosphorylation of IκB-α and p65 in U87MG and CHG-5 glioma cells [62]. Other evidence showed that Luteolin decreased the NF-κB activation and also the gene expression of NF-κB targets, such as COX-2, IL-1β, and IL-6 in Phorbol Myristate Acetate (PMA) plus A23187-induced inflammation HMC-1 cells [63].

Studies have shown that Apigenin efficiently regulates the NF-κB pathway [54,64]. Apigenin reduces NF-κB activity in HEK293 cells with TNF-α and IL-1β-induced inflammation, while it decreases IL-6, IL-1β, and TNF-α in macrophages induced by LPS [64]. Shuckla et al. (2015) showed that Apigenin downregulates several NF-κB targets related to proliferation (cyclin D1, and COX-2), angiogenesis (VEGF), and apoptosis (Bcl-2 and Bcl-XL) in Transgenic Adenocarcinoma Mouse Prostate (TRAMP) model [54]. This event
Molecules 2021, 26, 2029

is associated with the decrease in IκB-α phosphorylation mediated by inhibiting IKK activation, enabling the suppression of NF-κB activity.

Figure 2. Flavonoids modulate inflammation and immunity pathways in cancer. Pro-inflammatory stimuli like TNF-α and Lipopolysaccharide (LPS) can bind to Tumor Necrosis Factor Receptor (TNFR) and TLR4 receptors, respectively, and activate the TAK1, which is mediated by TNFR-associated Death Domain (TRADD), TRAF2/5, and Receptor-Interacting Protein 1 (RIP) in response to TNF-α/TNFR signaling and Myd88 and TRAF6 in LPS-TLR4 signaling. TAK1 activates Mitogen-Activated Protein Kinases (MKKs) and I Kappa B Kinases (IKKs), leading to translocation of AP-1 and NF-κB to the nucleus. Flavonoids act mainly in inhibiting the nuclear translocation, expression, or phosphorylation of these transcription factors. The first signal for NLRP3 inflammasome activation is through NF-κB-mediated transcription of NLRP3. The second signal is mediated by Adenosine Triphosphate (ATP), Pathogen-Associated Molecular Patterns (PAMPs), Damage-Associated Molecular Patterns (DAMPs), and K+ efflux. When NLRP3 inflammasome is activated, caspase 1 cleaves pro IL-18 and pro-IL-1β in activated forms. Flavonoids act in this pathway mainly by inhibiting caspase 1 activity and reducing the NLRP3 expression. The TGR5-cAMP signaling pathway is activated by Genistein to lead to ubiquitination and degradation of NLRP3. Flavonoids also modulate the JAK2-STAT3 signaling, reducing inflammatory and EMT markers. Epi: Epigallocatechin, Kae: Kaempferol; Myr: Myricetin; Que: Quercetin; Api: Apigenin; Vit: Vitexin; Gen: Genistein; Dai: Daidzein; Lut: Luteolin; Nar: Naringenin; Tax: Taxifolin; Eri: Eriodictyol, Cya: Cyanidin. Original figure made for this review using the Biorender software.

Using an in vivo model of benzo (a) pyrene (B[a]P)-induced lung cancer tumorigenesis, Bodduluru et al. (2016) showed that Naringenin reduces cytokines such as TNF-α, IL-6, and IL-1β while also reducing protein levels of NF-κB, showing a chemopreventive role of Naringenin against chemically induced lung cancer in mice [65]. Taxifolin, a Quercetin derivate, also presents a chemopreventive capacity through modulation of inflammatory pathways [66]. Manigandan et al. (2015) showed that Taxifolin inhibits
NF-κB and downregulates COX-2, TNF-α, and cyclin D1, which are known NF-κB targets, in 1,2-Dimethylhydrazine (DMH)-induced mouse colon carcinogenesis [66]. Some studies showed that Quercetin ameliorates the inflammatory process in cancer cells [55,67]. Quercetin presented chemopreventive effects against metastatic cell lines of the human salivary gland, since it increases the expression of IkB-α, an inhibitor of NF-κB activation, and reduces translocation of NF-κB to the nucleus [67]. In HeLa cells, Quercetin reduced IkB-α and IKK-β phosphorylation, NF-κB members (p50 and p65), and cyclin-D1 expression [55].

A study showed that Quercetin reduced the production of nickel-induced cytokines, such as IL-1β, IL-6, TNF-α, and IL-10, in lung cancer cell lines. In addition, Quercetin suppressed the expression of TLR4 and Myd88, in addition to reducing the phosphorylation of IKK-β and IkB-α, the nuclear expression of p65 (NF-κB), and the expression of MMP9 in A549 cells exposed to nickel. Thus, Quercetin presents potential preventive effects in lung cancer [56].

CpG Oligodeoxynucleotides (CpG-ODN), a known TLR9 agonist, can induce the production of several cytokines and metalloproteinases in prostate cancer cell lines [57]. Mukherjee et al. (2014) showed that Epigallocatechin-3-Gallate (EGCG) reverts the inflammation response produced by CpG-ODN, inhibiting cytokines (IL-6, IL-8), chemokines (CXCL1, CCL5, IP-10), metalloproteinase activity (MMP9 and MMP2), and translocation of p65 to the nucleus. Thus, EGCG seems to have a robust anti-inflammatory response, which could be beneficial in prostate cancer treatment [57].

Pratheeshkumar et al. (2014) topically administrated Cyanidin-3-Glucoside (C3G) in SKH-1 hairless mice followed by Ultraviolet (UV) radiation exposure, which usually induces inflammation and photocarcinogenesis in mammalian skin [58]. The results showed that a C3G blocks the NF-κB translocation to the nucleus and reduces UVB-induced COX-2, and iNOS levels. Therefore, C3G may be used against UVB-induced inflammation related to skin disease and skin cancer [58]. Finally, Delphinidin showed anti-proliferative and anti-invasive properties in PMA-induced human breast carcinoma cells (MCF-7) through NF-κB activity inhibition and consequently reduction in MMP-9 expression [59].

2.2. The MAPK Pathway

MAPKs are protein-serine/threonine kinases, which include c-Jun N-terminal kinases (JNKs), p38s, and Extracellular Signal-Regulated Kinases (ERKs) [68]. MAPKs are modulated by various signals such as hormones, cytokines, growth factors, and endogenous stress. For this reason, they are also called mitogen and stress-activated MAPKs [69]. As illustrated in Figure 2, similarly to NF-κB activation, MAPK activation is also mediated by TAK1 activation in response to LPS and TNF-α stimulus [70]. TAK1 can activate Mitogen-Activated Protein Kinases (M KKs), which in turn phosphorylates and activates JNK1 and JNK2 [40,70]. Upon activation, JNKs phosphorylate several targets, including the transcription factor c-Jun, which homodimerizes and/or heterodimerizes with c-Fos generating the Activator Protein-1 (AP-1) transcription complex [71,72]. AP-1 can directly bind to AP-1 binding motifs in promoters in the DNA and increase the expression of pro-inflammatory genes, such as TNF-α [73], IL-1 [74], Interferon-gamma (IFN-γ) (Figure 2) [75], and MMPs [76]. The activation of the JNK/AP-1 axis has been involved in the pathogenesis and progression of several cancers [77,78]. A link between this pathway and chronic inflammation-associated cancer development has been proposed [68,69].

p38 is a serine/threonine kinase activated by direct phosphorylation of MKK3 and MKK6 and contributes to AP-1 activation through phosphorylation and activation of Activating Transcription Factor 2 (ATF2) and Ternary Complex Factors (TCFs) [79,80]. p38 has a key role in inflammatory diseases, and its role in cancer is contradictory [81]. p38 may be considered a tumor suppressor, however, some studies also provide evidence for an oncogenic potential related to its pro-inflammatory properties, capacity to regulate epithelial-mesenchymal transition, and angiogenesis [82–85].
A study showed that Kaempferol reverses LPS-induced inflammation through inhibition of c-fos and decreases the activity of the AP-1 complex in RAW 264.7 macrophages [60]. Luteolin is another flavonoid that possesses an impact on the MAPK pathway. Kang et al. (2010) showed that Luteolin can reduce phosphorylation of JNKs (JNK1, and JNK2) and inflammatory cytokines (TNF-α, IL-8, IL-6) induced by PMA and A23198 in HMC-1 cells [63]. Naringenin inhibits p38, MMP2, and MMP9 activity, blocking migration in glioblastoma cells [86]. Delphinidin is also able to block PMA-induced JNK and p38 MAPK pathways in MCF-7 cells, reducing PMA-induced breast cancer cell invasion. Vitexin, a derivative of Apigenin, also has anti-inflammatory activity through modulation of the MAPK pathway [87]. Rosa et al. (2016) showed that Vitexin reduces neutrophil migration and decreases pro-inflammatory mediators, such as TNF-α, IL-1β, and Nitric Oxide (NO) releases in the peritoneal cavity of LPS-treated mice. In addition, vitexin can reduce TNF-α, IL-1β, NO, Prostaglandin E2 (PGE2) levels and increase IL-10 release in LPS-treated RAW 264.7 cells. Mechanistically, Vitexin inhibits the phosphorylation of p38 and JNK, which explains its described anti-inflammatory effects [87].

2.3. The Inflammasome Pathway

Inflammasomes are multimeric protein complexes that are part of the innate immune system. The most studied inflammasome complex is the NLRP3, which consists of the NLRP3 sensor, the Apoptosis-associated Speck-like protein containing CARD (ASC) adapter, and the pro-caspase 1. The NLRP3 sensor has a Pyrin Domain (PYD) in its N-terminal, a central domain of nucleotide-binding and oligomerization (NATCH), and a Leucine-Rich Repeats (LRR) in its C-terminal [88]. The NLRP3 complex is activated by at least two signals. The first involves NF-κB signaling activation, which upregulates pro-IL-1β, pro-IL-18, and NLRP3 protein levels. The second involves extracellular ATP mediated-P2X7 receptor activation, K⁺ efflux, and a set of inflammation-inducing stimuli, such as Pathogen-Associated Molecular Patterns (PAMPs) and Damage-Associated Molecular Patterns (DAMPs) [89,90]. The activation of the NLRP3 inflammasome complex occurs by the oligomerization of NLRP3 mediated by the homotypic interaction between NATCH domains. NLRP3 also interacts with the ASC, an adapter protein, through PYD domains. ASC then recruits cysteine protease pro-caspase-1 through CARD-domain interactions, resulting in autocatalysis and activation of caspase 1 [88]. Pro-IL-1β and pro-IL-18, potent pro-inflammatory cytokines, can be cleaved into biologically active forms of IL-1β and IL-18 by caspase 1, promoting pyroptosis, a form of cell death programmed by inflammation (Figure 2) [91].

The NLRP3 inflammasome is involved with several inflammatory-based diseases, including cancer [92]. Studies have shown that NLRP3 increased expression and/or activity in several types of cancer, such as melanoma [93], head and neck squamous cell carcinoma [94], lung squamous cell carcinoma [95], pancreatic [96], and bladder cancer [97]. Thus, NLRP3 has been investigated as a potential and attractive therapeutic target. Figure 2 illustrates the activation of the NLRP3 inflammasome and summarizes the point actions of flavonoids in this pathway.

Ulcerative colitis (UC), a chronic and inflammatory bowel disease, is an essential factor of colorectal cancer [98]. NLRP3 mediates Dextran Sodium Sulfate (DSS)-induced ulcerative colitis in mice [99]. A study showed that Genistein can inhibit NLRP3 activation and protect DSS-treated mice from ulcerative colitis [100]. In vivo, Genistein also suppressed the production of IL-1β, caspase-1, and the protein level of NLRP3. In macrophages, Genistein inhibited the NLRP3 inflammasome by activating the G-protein coupled bile acid receptor 1 (TGR5)-cAMP signaling pathway, which signals for ubiquitination and degradation of NLRP3 [100]. Thus, Genistein may be an important candidate in the prevention or treatment of ulcerative colitis and colorectal cancer.

Another study showed that Gen-27 is a potent inhibitor of LPS-induced inflammation in RAW264.7 cells, through inhibition of NLRP3 and NF-κB signaling pathways [101]. Gen-27 inhibited nitrite and nitric oxide levels, suppressed the release of pro-inflammatory...
cytokines, such as TNF-α, IL-1β, IL-6, and IL-18, and decreased the expression of COX-2 and iNOS. In addition, Gen-27 decreased caspase 1 activity, NLRP3 protein levels, and NF-κB (p65) transcriptional activity [101]. Genistein is a promising therapeutic targeting the prevention and therapy of diseases associated with inflammation. Apigenin also reduced LPS-induced inflammation by several mechanisms in human THP-1-derived macrophages [64]. One of them involves inhibition of NLRP3 inflammasome, causing inhibition of caspase 1 activity and IL-1β production [64].

2.4. The STAT Family Pathway

Members of the STAT family are signal transducers and activators of transcription [102]. Cytokines such as interleukins, interferons, and peptides hormones can bind to cell surface receptors leading to their homo or heterodimerization. This event causes activation of JAK proteins, which phosphorylate tyrosine residues in the tail of the receptor, thereby creating docking sites for the STAT-receptor interaction. Then, JAK phosphorylates STAT, which is released from the receptor and interacts with other STAT proteins through SH2-domains (Figure 2). JAK-STAT signaling is one of the main pathways in the conversion of the cytokine signal to the response of gene expression, coordinating the proliferation and differentiation of immune cells. STAT1, STAT2, STAT3, STAT4, and STAT6 proteins have pro- or anti-inflammatory properties and are activated by cytokines in inflammation processes [103]. STAT3 is the most studied member of the STAT family. Various cytokines such as IL-11 [104], IL-23 [105], IL-21 [106], IL-6 [107], IL-17 [108], genes related to Epithelial-Mesenchymal Transition (EMT), such as TWIST, MMP2, and MMP9 [109], and angiogenesis such as VEGF [109] are upregulated by STAT3 and reinforce the oncogenic role of this protein.

Some studies have shown that flavonoids can regulate STAT signaling as presented in Figure 2 [60,110–118]. Huang et al. (2015) showed that Luteolin inhibits the EMT and metalloproteinase secretion in pancreatic cancer cells (PANC-1 and SW1990) by inhibiting the transactivation of p-STAT3 and transcription mediated by STAT3 [110]. The EMT is associated with the onset of metastasis during tumor progression [119]. Another study showed that Kaempferol alone or in combination with 5-Fluorouracil (5-FU), a chemotherapeutic agent commonly used in colon cancer, reduces STAT3 phosphorylation in both parental and 5-FU chemo-resistant colon cancer cells, concomitant with a decrease in IL-8 and VEGF levels in 5-FU resistant cells [111].

In leukemia cells, HL60, and TF1 cells, Apigenin exerts a negative regulation in the JAK/STAT pathway. In both cell lines, Apigenin reduces JAK2 and STAT3 phosphorylation, and in TF1 cells it also reduces STAT5 phosphorylation [112]. In the same study, Apigenin also impaired phosphorylation and activation of Src, an activator of STATs, in both cell lines [112]. Cao et al. (2016) showed the role of Apigenin in the regulation of STAT3 in melanoma B16F10 cell lung metastasis [113]. Apigenin enhances the immune response in these cells by inhibiting STAT3 and its direct target, VEGF, which has an immunosuppressive function. Apigenin also downregulates other STAT3 target genes like MMP2, MMP9, and TWIST1, thereby reducing cell migration and invasion [113].

The ethanolic extract of black raspberries has two abundant phytochemicals metabolites upon ingestion called Cyanidin-3-rutinoside and quercitin-3-rutinoside. Both reduced the phosphorylation of STAT3 in peripheral blood mononuclear cells treated with IL-6 [115]. In conclusion, flavonoids can reduce several inflammatory markers such as cytokines, chemokines, inflammatory enzymes, and proteins related to migration and invasion in cancer through modulation of NF-kB and JAK/STAT3 signaling, AP-1 complex, and NLRP3 inflammasome.
Table 3. Molecular mechanisms of flavonoids in inflammation, immunity, and cancer.

| Flavonoid         | Molecular Mechanisms                                                                 | Concentration | Incubation | Model                        | Observations                                                                 | References |
|-------------------|--------------------------------------------------------------------------------------|---------------|------------|------------------------------|-------------------------------------------------------------------------------|------------|
| Cyanidin          | Inhibits nucleus translocation of NF-κB. Reduces COX-2 and iNOS                      | 250 and 500 µM| 24 h       | SKH-1 hairless mice          | Cyanidin was topically administrated, followed by exposure to UV radiation   | [58]       |
|                   | Reduce p-STAT3                                                                       | 100 and 200 µM| 4 h        | Peripheral blood mononuclear cells | Stimulated with IL-6                                                         | [115]      |
| Delphinidin       | Suppresses MMP9 expression, activation of NF-κB and AP-1                            | 60 µM         | 24 h       | MCF-7 cells                  | Co-treatment with Phorbol Myristate Acetate (PMA)                            | [59]       |
| Epigallocatechin  | Inhibits NF-κB, MMP-2, and MMP-9 activity. Reduces cytokines and chemokines production | 40 µg/mL      | 24 h       | LNCAP, DU-145, and PC-3 cells | Followed by CpG-ODN or TNFα treatment                                         | [57]       |
| Eriodictyol       | Inhibits NF-κB pathway                                                               | 100 µM        | 48 h       | U87MG and CHG-5 cells        |                                                                                | [62]       |
| Naringenin        | Down-regulates NF-κB pathway and TNF-α, IL-1β, and IL-6 production                   | 50 mg/kg b.wt | 16 weeks   | Swiss albino mice            | B[a]P induced lung carcinogenesis in vivo                                      | [65]       |
|                   | Inhibits IL-6, IL-1β, TNF-α, NF-κB, caspase-1, and NLRP3 assembly                  | 25 µM         | 2 h        | THP-1-derived macrophages and HEK293 cells | Followed by IL-1β or TNF-α or LPS treatment                                  | [64]       |
| Apigenin          | Reduces phosphorylation of src, JAK2, and STAT3                                     | 20–40 µM      | 24 h       | HL60 and TF1 cells           |                                                                                | [112]      |
|                   | Inhibits IKK activation and suppresses NF-κB activation                              | 20 and 50 µg/mouse/day | 20 weeks | TRAMP mice, oral gavage      |                                                                                | [54]       |
|                   | Inhibits STAT3 activity, reduces MMP-2, MMP-9, VEGF, and TWIST expression          | 40 µg/mL cells or 150 mg/kg/day in mice | 24 h in cells or 24 days in mice | A375, and G361 cells. Lung metastasis in C57BL/6 mice |                                                                                | [113]      |
| Vitexin           | Reduces phosphorylation of p38 and JNK                                              | 25, 50, and 100 µg/mL | 2 h      | RAW 264.7 cells              | Stimulated with LPS                                                          | [87]       |
| Luteolin          | Attenuates TNF-α, IL-8, IL-6, and COX-2 expression. Decreases p-JNK 1/2. Inhibits NF-κB activation and IxB degradation | 50 µM         | 1 h        | HMC-1 cells                  | Stimulation with PMA plus A23187                                             | [63]       |
|                   | Deactivates STAT3 reduces MMP2, MMP7, and MMP9 levels                               | 80 µM         | 24 h       | PANC-1 and SW1990 cells      |                                                                                | [110]      |
| Kaempferol        | Inhibits NF-κB activity                                                              | 10 µM         | 72 h       | Jurkat cells                 | TNF-α treatment                                                              | [53]       |
|                   | Reduces p-STAT3                                                                     | 75 µM         | 72 h       | LS174 cells                  | Alone or combined with 5-FU                                                  | [111]      |
|                   | Inhibits NF-κB activity and c-Fos expression                                         | 25, 50, or 100 µM | 1 h   | RAW264.7 cells               | Followed by LPS treatment                                                    | [60]       |
### Table 3. Cont.

| Molecular Mechanisms                                                                 | Concentration     | Incubation | Model                                      | Observations                                      | References |
|-------------------------------------------------------------------------------------|-------------------|------------|--------------------------------------------|---------------------------------------------------|------------|
| Myricetin                                                                           | Reduces TNF-α, IL-1β, IL-6, NF-κB, p-NF-κB, and COX-2       | 40 and 100 mg/kg | 4 weeks                                    | AOM/DSS-induced colitis and tumorigenesis in model mice | [61]       |
|                                                                                     | Down-regulates TLR4 and NF-κB pathways. Reduces secretion of IL-1β, IL-6, TNF-α, and IL-10 | 5 μM          | 4 h                                        | A549 cells                                       | [56]       |
|                                                                                     | Inhibits NF-κB nuclear translocation                         | 50 and 100 μM  | 24 h                                       | ACC-2 and ACC-M cells                             | [67]       |
|                                                                                     | Down-regulates NF-κB, p-IκB-α, p-IκK-β, and cyclin D1       | 80 μM         | 24 h                                       | HeLa cells                                       | [55]       |
| Quercetin                                                                           | Inhibits NLRP3 inflammasome via TGR5-cAMP                    | 20 μM         | 2 h                                        | THP-1 and U937 cells                             | [100]      |
|                                                                                     | Inhibits NLRP3 and NF-κB pathway                             | 1, 5, and 10 μM| 1 h                                        | RAW264.7 cells                                  | [101]      |
|                                                                                     | Inhibits NF-κB activity                                     | 10 μM         | 30–120 min                                 | HCT116 cells                                    | [52]       |
| Genistein                                                                           | Down-regulates NF-κB, TNF-α, COX-2, and cyclin D1          | 4 μg/kg       | 15 weeks                                   | Swiss albino mice                               | [66]       |
| Taxifolin                                                                           | Down-regulates NF-κB, TNF-α, COX-2, and cyclin D1          | 4 μg/kg       | 15 weeks                                   | Swiss albino mice                               | [66]       |
|                                                                                     |                                                               |             |                                            | Pre-treated with 1,2-Dimethylhydrazine (DMH)      | [66]       |
3. Flavonoids and Redox Metabolism

Reactive Oxygen Species (ROS) are among the most important mutagenic factors that occur naturally in the body and cause genetic instability within cells. Such instabilities can generate harmless or malignant mutations, which can eventually lead to cancer. It is known that malignant changes at the genomic level are the main pathological driving force of carcinogenesis, thus being frequently associated with oxidative stress [120]. Multiple biochemical reactions where oxygen is metabolized can lead to the generation of toxic reactive intermediates that can damage DNA [121]. Adaptive changes, which increase over long periods cumulatively, must occur within a cell for the malignant transformation. On the other hand, there are several examples of how genetic mutations (inherited or acquired) lead to increased ROS production, which in turn is associated with DNA damage and contributes to the malignant transformation [122,123]. Therefore, cancer cells depend on and adapt to this highly unstable and mutagenic environment, further highlighting the crucial role of oxidative stress in cancer [124].

The metabolic changes involved in carcinogenesis contribute to a high degree of oxidative stress in the tumor environment. However, oxidative stress defenses are adapted in cancer, enabling cancer cells to survive [124]. This is associated with the fact that most cancer cells no longer use the complete oxidative phosphorylation to generate ATP, but instead glycolysis, which is known as the Warburg effect. Such an effect has much influence not only on the energetics of cells but also on the redox system, the resilience, and the adaptation of cancer. Several molecular changes are known to relate the metabolic adaptations of cancer cells and the redox balance.

3.1. Metabolic Alterations in Cancer

In the Warburg effect, the M2 isoform of Pyruvate Kinase (PKM2), although less enzymatically efficient compared to the M1 isoform, is more commonly found in tumors due to its promotion via Myc Proto-Oncogene Protein C (c-Myc) [125]. The c-Myc oncoprotein affects the splicing of Pyruvate Kinase (PK) mRNA through the positive regulation of the Polypyrimidine Tract Binding protein (PTB) and heterogeneous nuclear Ribonucleoproteins (hnRNPs) A1 and A2, leading to the predominant production of PKM2 [126]. The less efficient PKM2 is advantageous for cell proliferation, as it enables the entry of carbohydrate metabolites from glycolysis into alternative pathways to produce macromolecules and Nicotinamide Adenine Dinucleotide Phosphate (NADPH), which are necessary for tumor growth and the support of altered redox balance [127]. This is accomplished since PKM2 shifts metabolic precursors from glycolysis to the pentose phosphate pathway to produce NADPH and ribose. Isocitrate Dehydrogenase Dependent on NADP 1 (IDH1), IDH2, and Malic Enzyme 1 (ME1) also contribute to the production of NADPH [128]. Myc increases glutamine uptake and glutaminolysis, leading to de novo synthesis of Glutathione (GSH). Therefore, Myc contributes to the production of NADPH, promoting the expression of PKM2. Together, NADPH and GSH control the increased levels of ROS driven by the increased proliferation of cancer cells [128].

With the influence of the Warburg effect, GSH plays a central role in the cellular antioxidant defense system in cancer. GSH participation in cellular metabolic redox processes and elimination of ROS is present in all existing aerobic organisms [129]. GSH is a non-enzymatic antioxidant that is intracellularly synthesized from cysteine, glycine, and glutamate and is highly abundant in all major cell compartments, such as cytosol, nuclei, and mitochondria [124]. At the cell nucleus, GSH protects sulfhydryl groups of proteins essential for DNA repair and gene expression. GSH antioxidant properties are also manifested in the direct elimination of hydroxyl radicals and singlet oxygen (O$_2^\cdot$), hydrogen peroxide (H$_2$O$_2$), lipid peroxides, and even 4-Hydroxynonenal (HNE), in conjunction with the enzymatic action of Glutathione Peroxidase (GPx) and Glutathione Transferases (GSTs). GSH is also involved in the reductive regeneration of important antioxidants, including water-soluble vitamin C and lipid-soluble vitamin E [129]. The oxidized form of GSH is Glutathione Disulfide (GSSG), formed by the oxidation of two GSH molecules. GSSG is
generally formed during the reduction of organic hydroperoxides and inorganic peroxides such as $\text{H}_2\text{O}_2$ in enzymatic reactions catalyzed by GPx or Peroxiredoxins (PRXs). GSGG can be reduced back to GSH in the tandem enzymatic action of Glutathione Reductase (GR) and the reducing equivalent $\text{NADPH} + \text{H}^+$. Therefore, the GSH:GSSG ratio is considered an important indicator of redox balance in cells, where a higher ratio means less oxidative stress [130].

Along with GSH metabolism and the Warburg effect, there are enzymes and antioxidant factors that are largely modulated in cancer cells, such as Superoxide Dismutases (SODs), Catalase (CAT), NADP oxidases (NOXs), Nuclear Factor Erythroid 2-related Factor 2 (NRF2), COX-2, Nitric Oxide Synthase-2 (NOS2), and Hypoxia-Inducible Factor 1 alpha (HIF1$\alpha$) [131–134]. HIF1$\alpha$, which is also overexpressed in the Warburg effect, increases the expression of Glucose Transporters (GLUTs), glycolytic enzymes, and Pyruvate Dehydrogenase Kinase, isoenzyme 1 (PDK1), which blocks the entry of pyruvate into the Tricarboxylic Acid (TCA) cycle [128]. Myc cooperates with HIF1$\alpha$ for the activation of several genes that encode glycolytic proteins but also increases mitochondrial metabolism [135]. The cellular tumor antigen p53 opposes the glycolytic phenotype by suppressing glycolysis through TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR), increasing mitochondrial metabolism via Protein SCO2 homolog (SCO2) [136,137]. Organic Cation Transporter 1 (OCT1) acts in the opposite way to activate the transcription of genes that drive glycolysis and suppress oxidative phosphorylation [138].

Another important factor for redox metabolism in cancer is NRF2, which is one of the main antioxidant transcription factors and regulates positively the expression of various antioxidant and detoxifying molecules [139]. When ROS levels are low, NRF2 binds to Kelch-like ECH-Associated Protein 1 (KEAP1), which triggers the degradation of NRF2. Under oxidative stress, p53 is activated and stimulates the expression of p21 [128], p21 prevents KEAP1-NRF2 interaction and preserves NRF2, increasing antioxidant protection [139], through the nuclear heterodimerization with Musculoaponeurotic Fibrosarcoma Proteins (MAFs) [140]. The loss of p53 in a cancer cell inactivates this redox maintenance mechanism: as p21 is not activated, NRF2 continues to be degraded, antioxidant proteins are not expressed, and the redox balance is lost [128]. It may be possible to explore mutations of loss of p53 function or other tumor suppressor genes by applying additional oxidative stress. In the absence of redox maintenance pathways that are supported by these tumor suppressors, malignant cells can be selectively killed [141].

3.2. Flavonoids and Oxidative Stress in Cancer

The best-described property of almost all groups of flavonoids is their ability to act as antioxidants [142]. The antioxidant activity of flavonoids has already been shown to depend on the organization of functional groups on the nuclear structure of the molecule [7]. The configuration, substitution, and the total number of hydroxyl groups substantially influence the antioxidant activity, such as radical scavenging and metal ion chelation capacity [143]. The hydroxyl configuration of the B ring is the most significant determinant for the elimination of ROS and Reactive Nitrogen Species (RNS) because it donates hydrogen and electron to hydroxyl, peroxy, and peroxynitrite radicals, stabilizing the flavonoid radical [7].

In healthy tissues, the antioxidant mechanisms of flavonoids may include suppression of ROS formation by inhibiting enzymes such as GST or by chelating trace elements involved in the generation of free radicals [144]; direct neutralization of ROS; and positive regulation or protection of antioxidant defenses [145]. In cancer, such mechanisms of action are also observed, however, the countless metabolic differences in cancer cells significantly affect the oxidative balance of the cell. Therefore, it is necessary to understand how the oxidative balance is affected in a cancer cell to understand the action of flavonoids in this context.

There is growing evidence of the importance of flavonoids in modulating the carcinogenic pathways associated with glucose metabolism that indirectly affect the redox balance
of the cancer cell. Flavonoids target the activity of certain enzymes involved in aerobic glycolysis, the expression of transporters responsible for glucose uptake, the modulation of HIF1 in normoxic conditions, and several other factors associated with the Warburg phenotype [146].

Several inhibitory effects of flavonoids in cancer were analyzed in vitro through evaluations of the enzymatic activity of PKM2, as shown in Figure 3. Among these flavonoids, Taxifolin, Apigenin, Catechin gallate, and Epicatechin are the most effective in inhibiting PKM2 activity in in vitro experiments [147,148]. Additionally, Quercetin significantly decreased the level of glycolysis-related proteins, including PKM2, by modulating the protein kinase B (AKT) and mechanistic Target Of Rapamycin (mTOR) pathway in vivo [149]. Quercetin also reduced the level of PKM2 in the colon mucosa of F344 rats, pointing to a chemopreventive role of this flavonoid [150]. In the context of the Warburg effect, Kaempferol reduced the mRNA levels of the Glucose Transporter 1 (GLUT1) and prevented the uptake of Monocarboxylate Transporter 1 (MCT1), leading to the accumulation of extracellular lactate in breast cancer [151]. Epicatechin stimulated mitochondrial respiration in vitro in pancreatic cancer cells [152] and can act indirectly on the Warburg effect via MAPK/ERK2/Cytochrome c Oxidase (COX) [153]. In addition, flavonoids such as Icariside II, aspalatin, baikain, and hesperetin are effective in important molecules in the Warburg effect, such as IDH1, IDH2, OCT1, PDK1, and NOX2 [154–158].

Flavonoids have shown direct effects on glutathione metabolism in cancer models. GSH and GST levels were increased after treatment with Luteolin in colorectal cancer models [159,160]. Apigenin treatment increased the expression of genes encoding phase II enzymes, blocking the NADPH oxidase complex and, consequently, downstream target inflammatory genes, which leads to increased NRF2 expression and nuclear translocation [161]. In addition to the proteins involved in cell growth and the Warburg effect, flavonoids have been shown to stabilize important oxidative factors such as HIF1 and NRF2, as already mentioned above [162].

The modulation of NRF2 expression for cancer therapy is well studied, both for cancer types that have it overexpressed, and for those that express it less. [163,164]. The class of NRF2-inducing compounds helps in the detoxification of carcinogens and environmental mutagens (Figure 3). They can also decrease the levels of ROS in tumor cells and make them susceptible to therapy [165]. Tamoxifen-resistant MCF7 breast cancer cells showed a response to a combination of EGCG and siRNA against NRF2 [166]. A similar mechanism has been observed in cervical cancer, where EGCG increased cisplatin activity and induced apoptosis [167]. Luteolin can potently inhibit NRF2 in A549 NSCLC cells, increasing their sensitivity to various anticancer drugs, as well as in a xenographic model of nude athymic mice [168]. Quercetin also directly interacts with NRF2: as part of the NAD(P)H Quinone Dehydrogenase 1 (NQO1) induction process, Quercetin binds to NRF2 protein and increases its half-life four times [169,170]. Apigenin inhibited the Nrf2/ARE/CAT pathway in doxorubicin-resistant hepatocarcinoma (BEL-7402/ADM and HepG2) [171,172]. Apigenin inhibited Nrf2, at the mRNA level, and detoxification enzymes in phase 2, at protein and mRNA levels, in BEL-7402/ADM cells [172], and sensitized doxorubicin-resistant (DOX-resistant) BEL-7402/ADM cells to doxorubicin (DOX), reducing the IC50 value of DOX treatment [173]. Myricetin activated Nrf2 by regulating KEAP1 interaction, also decreasing NRF2 ubiquitination and increasing Heme Oxynagenase-1 (HO-1) levels in hepatocarcinoma [174]. Epicatechin treatment has been shown to increase NRF2 phosphorylation and nuclear translocation also in hepatocarcinoma cell culture [175]. Taxifolin also inhibited TPA-induced colon carcinogenesis in albino Swiss mice through the epigenetic induction of NRF2 [66,176]. Genistein reduced the methylation level of the KEAP1 promoter region, leading to increased mRNA expression, thereby effectively inhibiting NRF2 transcription to the nucleus [177]. In this context, Vitexin increased p21 expression and decreased CDK1 in melanoma cell lines and a mice model, suppressing melanoma cell growth through DNA damage by increasing ROS levels [178].
Figure 3. Flavonoids modulate redox metabolism pathways in cancer. Flavonoids, in addition to functioning as free radical scavengers, also act on antioxidant system enzymes such as Superoxide Dismutases (SODs), Catalase (CAT), Cyclooxygenase-2 (COX-2), Glutathione (GSH), and Glutathione Disulfide (GSSG) in cancer. Additionally, some flavonoids can interact with NRF2, activating many systems responsible for the redox balance and cell detoxification such as Heme Oxygenase-1 (HO-1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Isocitrate Dehydrogenase Dependent on NADP 1 (IDH1), and Malic Enzyme 1 (ME1). Hypoxia-Inducible Factor 1 (HIF1) has also been shown to be relocated, degraded, and inhibited by the action of flavonoids in cancer cells, thereby reducing receptors such as GLUT1 and glycolytic enzymes related to the Warburg effect such as PDK1, HK2, and PKM2, indirectly increasing the TCA cycle and not allowing the transformation of pyruvate into lactate. The inhibition of some cell growth proteins such as mTOR, AMPK, and AKT was also shown to be inhibited by flavonoids, affecting the c-Myc oncoprotein indirectly. Que: Quercetin; Epi: Epigallocatechin, Kae: Kaempferol; Myr: Myricetin; Que: Quercetin; Api: Apigenin; Gen: Genistein; Dai: Daidzein; Lut: Luteolin; Nar: Naringenin; Tax: Taxifolin; Eri: Eriodictyol; Vit: Vitexin. Original figure made for this review using the Biorender software.

Regarding HIF1, many flavonoids were also effective in the anticancer context, as shown in Figure 3. For example, Quercetin inhibited the accumulation of HIF1α, as well as its synthesis under hypoxia conditions and in a concentration-dependent manner in several cell lines, including LNCaP prostate cancer cells, SKBR3 breast cancer cells, and CX-1 colon cancer cells [179,180]. Interestingly, Quercetin increased the accumulation of HIF1α in healthy and cancer cells [181]. EGCG also significantly suppressed the accumulation of HIF1α protein in gastric cancer cells but did not affect the expression of HIF-1α mRNA [182]. The mechanism linked to the HIF1 inhibitory properties of EGCG is explained by its interference with the PI3K/AKT/mTOR pathway and its translation function [183]. Luteolin suppressed HIF1 activation in M2-like tumor-associated macrophages under hypoxia conditions [184]. Kaempferol showed strong inhibitory effects on HIF1 activity in Huh7 hepatocellular carcinoma cells by relocating HIF1 into the cytoplasm due to inactivation of p44/p42 MAPK, which decreased cell viability under
hypoxia conditions [185]. In addition to these flavonoids, Apigenin also downregulated hypoxia-responsive genes, such as HIF1α, GLUT-1, and VEGF, in human pancreatic cancer cells [186]. Genistein sensitized liver cancer cells to apoptosis, directly regulating HIF1α, inactivating GLUT1 and Hexokinase 2 (HK2) to suppress aerobic glycolysis [187].

When observing associated redox pathways, it is possible to identify several effects of flavonoids on cancer (Table 4). In vivo studies have indicated that Naringenin can suppress the early stage of colon cancer by attenuating levels of iNOS and COX-2 in mice injected with carcinogen [188,189]. Luteolin also inhibited iNOS and COX-2 [190]. The treatment of murine hepatomas with Daidzein and/or Genistein led to increased expression of Quinone Reductase (QR) mRNA and its activity, as well as greater NRF/ARE binding capacity [191]. Apigenin and Luteolin treatments in osteosarcoma models showed Forkhead box protein O1 (FOXO1) translocation and reduced Glucose-6-Phosphatase (G6Pc) mRNA levels, as well as Phosphoenolpyruvate Carboxykinase (PEPCK), CAT, and SOD [192,193]. Kaempferol triggered the generation of ROS and apoptosis by reducing the concentrations of thioredoxin and proinflammatory cytokines, also increasing SOD activity in glioblastoma cells [194]. On the other hand, in a colon cancer model, Kaempferol blocked the generation of ROS, causing the cell cycle to arrest in G1 and G2/M and affecting cell migration [195,196]. In stomach cancer, Kaempferol reduced the expression levels of COX-2, p-AKT, and p-ERK, which are involved in cell proliferation and cell cycle arrest [197]. Inflammation can also be inhibited by anthocyanins (Delphinidin, Cyanidin, and Petunidin) through the PI3K/AKT and NF-κB pathways, suppressing the expression of COX-2 and iNOS and regulating the expression of antioxidant enzymes from phase II via NFR2/ARE signaling [198,199]. Vitexin also decreased ROS levels and increased GSH and SOD levels in pheochromocytoma cells [200].
### Table 4. Molecular mechanisms of flavonoids in redox metabolism and cancer.

| Flavonoid | Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
|-----------|----------------------|---------------|------------|-------|--------------|------------|
| Epigallocatechin | Acts as a chemosensitizer in breast cancer cells by activating NRF2 signaling | 25 µM | 24 h | HeLa cells | Observed in Cisplatin triple-negative cells | [167] |
| | Inhibits cell proliferation under hypoxia via the downregulation of HIF-1α and its downstream target gene VEGF levels | 80 μg/mL | 48 h | SGC7901 cells | - | [182] |
| Naringenin | Suppresses the early stage of colon cancer by attenuating iNOS and COX-2 levels | 200 mg/kg | 10 weeks | Sprague-Dawley rats injected with a carcinogen | - | [188] |
| | Decreases PKM2 expression | 10–60 µM | 24 h | HCT116, HT29, and DLD1 cells | - | [148] |
| Apigenin | Reduces cell viability in a dose- and time-dependent manner through CAT and GSH activity | 100 μmol/L | 24–48 h | HepG2 cells | - | [171] |
| | Down-regulates of HIF1α and GLUT-1 mRNA expression. Represses hypoxia-mediated induction of GLUT-1 expression. Significant reduces of the HIF1 protein level | 50 µM | 24 h | S2-013 and CD18 cells | - | [186] |
| | Translocates FOXO1 and reduces G6Pc-mRNA levels | 20–100 µM | 24 h | U-2 OS cells | - | [192] |
| | Inhibits colon carcinogenesis through iNOS and COX-2 | 1.2 mg/body kg | 3 weeks | Balb/c mice | - | [190] |
| | Regulates HIF1α-VEGF/MMP9signaling pathway through suppression of HIF1α activation | 20 µM | 24 h | RAW264.7 cells | - | [184] |
| | Induces cell apoptosis through antioxidant enzymes activity like SODs e CAT | 50 µM | 6 to 24 h | CH27 cells | - | [201] |
| | Translocates FOXO1 and reduces G6Pc-mRNA levels | 10–100 µM | 24 h | U-2 OS cells | - | [192] |
| | Increases NRF2, increases GSH content, decreases the level of GSSG, and prevents tumorigenesis | 1–20 µM | 8–24 h | Caco-2, HT-29, HepG2, and HEK-293 cells | - | [160] |
| Luteolin | Blocks ROS generation causing cell cycle arrest at G1 and G2/M arrest involving p53 and p38 | 50 and 100 µM | 24, 48, and 72 h | HCT116 cells | - | [195] |
| | Reduces the COX-2, p-AKT, and p-ERK levels, decreasing tumor growth | 60 or 120 µM | 48 h | MKN28 and SGC7901 cells | - | [197] |
| | Causes HIF1α mislocalization into the cytoplasm due to p44/42 MAPK inactivation, resulting in the suppression of HIF1 activity | 5 to 50 µM | 4 h | Huh7 cells | - | [185] |
| | Triggers ROS generation and apoptosis through reduction of the thioredoxin and SOD concentrations | 50 µM | 72 and 96 h | LN229, U87MG, and T98G cells | - | [194] |
| Molecules 2021, 26, 2029 |
|--------------------------|

Table 4. Cont.

| Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
|----------------------|---------------|------------|-------|--------------|------------|
| Myricetin            | 20 µM         | 24 h       | HepG2 cells | -            | [174]      |
| Interacts directly with NRF2 increasing its half-life | 0–40 µM | 6 to 12 h | HepG2 cells | - | [169] |
| Quercetin            | 40 µM         | 24 h       | A431-III cells | - | [202] |
| Activates NRF2 by modifying the KEAP1 protein, decreasing NRF2 ubiquitination, and increasing HO-1 levels | 20 µM | 24 h | HepG2 cells | - | [174] |
| Inhibits metastasis of cancer cells by blocking AKT/mTOR/c-Myc signaling pathway | 50 mg/kg twice daily | 1 month | BALB/c nude mice | - | [149] |
| Suppresses the mobility of breast cancer by suppressing glycolysis through AKT-mTOR-PKM2 | 100 µM | 8 h | LNCaP, SkBr3, and CX-1 cells | - | [179] |
| Reduces the level of methylation in the KEAP1 promoter region, leading to an increased mRNA expression, thus effectively inhibited the transcription of NRF2 to the nucleus | 10 µM | 48 h | A549 cells | - | [177] |
| Daidzein            | 1 and 5 µM    | 24 and 48 h | Hepa-1c1c7 cells | - | [191] |
| Increases expression of QR mRNA and its activity, as well as increased NRF2/ARE binding capacity | 1, 5, and 25 µM | 24 and 48 h | Hepa-1c1c7 cells | - | [191] |
| Genistein            | 20–80 mg/kg   | 21 days    | Athymic BALB/C nu/nu mice | - | [187] |
| Sensitizes aerobic glycolytic cells to apoptosis by directly downregulating HIF1α, inactivating GLUT1 and HK2 to suppress aerobic glycolysis | 40 or 80 mg/kg | 2–3 weeks | c BALB/c female nude mice (nu/nu) | - | [178] |
| Vitexin             | 5–20 µM       | 24 h       | A375, Sk-Mel-5, and Sk-Mel-28 cells | - | [200] |
| Suppressed melanoma cell growth through DNA damage by increasing ROS levels | 10 and 100 µM | 24 h | PC12 cells | - | [178] |
| Taxifolin            | 4 µg/kg       | 15 to 30 weeks | Albino Swiss mice | - | [66] |
| Inhibits NF-κB-mediated Wnt/β-catenin signaling, via up-regulation of NRF2 pathway |              |            |              |              |            |
4. Flavonoids and Cell Growth Signaling

In mammalian cells, growth signaling is necessary from embryogenesis to adult cells, ensuring adequate functions in cells [203]. Hanahan and Weinberg described that one of the main and fundamental characteristics of cancer cells is to sustain a chronic proliferation state [14]. In normal cells, there is a fine regulation of the extracellular growth stimulus, while cancer cells develop metabolic autonomy to support chronic growth signaling [203]. Cancer cells enabling signals are based in large part on growth factors that bind cell-surface receptors, typically the Tyrosine Kinase Receptors (TKRs) [14]. These receptors are messengers of pathways that control tumor progression, including the AKT/mTOR and Ras/ERK signaling. In this topic we explore one of the hallmarks of cancer, focusing on what are the main targets of cell proliferation in which flavonoid compounds can act. A summary of the mechanisms of action of flavonoids in cell growth signaling is shown in Table 5.

4.1. The AKT/mTOR Pathway

In tyrosine kinase signaling cascades, insulin and other growth factors, such as IGF, bind to their receptors to promote the recruitment of Insulin Receptor Substrate 1 (IRS1) and the production of Phosphatidylinositol (3,4,5)-triphosphate (PIP3) through the activation of Phosphoinositide-3-Kinase (PI3K) [204]. PI3Ks catalyzes the conversion of PIP2 to the second messenger PIP3 and its reaction is reversed by the Phosphatase and Tensin Homolog (PTEN) (Figure 4) [205]. The PIP2 conversion recruits and activates the AKT, which phosphorylates the Tuberous Sclerosis Complex 2 (TSC2), dissociating the TSC1/2 protein complex and promoting mTOR activation [204].

Most flavonoids can inhibit mTOR signaling early on. Vitexin [206,207], Taxifolin [208], and Eriodyctiol [209] decreased p-PI3K in human lung cancer cells, as Daidzein [210,211] in human breast and ovarian cancer cell lines, and Delphinidin [212] in human lung cancer cells. Some of these compounds decreased p-PI3K while increasing PTEN expression, such as Kaempferol in hepatocarcinoma [213] and cervical cancer cells [214] and EGCG in pancreatic cancer cells [215], reinforcing the inhibition of mTOR signaling by these two axis. Remarkably, Taxifolin can bind to EGFR and PI3K and decrease their activities in murine epidermal JB6 P+ cells [216].

mTOR has the same catalytic subunits in two distinct complexes (mTORC1 and 2), which respond differently to rapamycin: while complex 1 has most functions inhibited, complex 2 is insensitive to the acute treatment [217]. Since its discovery, the mTOR pathway has been suggested as a central mechanism that converges different signaling pathways to coordinate cell growth [218]. Thus, mTOR acts as a sensor of energy, nutrient availability, and growth factors to orchestrate assertively catabolism and anabolism [218]. Overactivation of mTOR is commonly reported in cancer and is extensively associated with poor prognosis [219,220]. The sensitivity to mTOR inhibition by rapamycin may vary by several orders of exposure, indicating an intrinsic resistance to mTOR inhibition in different cancer types [221].

When active, mTORC1 phosphorylates substrates that control the production of proteins, lipids, nucleotides, and ATP, initiating anabolic programming while limiting the autophagic process [218]. During protein synthesis and translation initiation, mTOR mainly phosphorylates Eukaryotic Initiation Factor 4E-Binding Proteins (4EBPs) and p70 S6 Kinase 1 (S6K1), leading to the release of Eukaryotic Translation Initiation Factor 4E (eIF4E) by 4E-BP1 and Ribosomal Protein S6 (S6/RPS6) phosphorylation by S6K1 (Figure 4) [218,222,223]. The flavonoids Quercetin [224], Apigenin [225], and Luteolin [226] decreased 4E-BP1 phosphorylation in breast, keratinocytes, and lung cancer cells, respectively, presumably limiting protein translation. Notably, Quercetin at 15 µM decreased p-4EBP1, p-S6K1, p-AKT in breast cancer cell culture and decreased tumor growth after 13 weeks of treatment in the MDA-MB-231 xenograft model, highlighting that flavonoid as a rationally approach against breast tumor progression [224].
Figure 4. Flavonoids modulate growth pathways in cancer. Most of the flavonoid compounds inhibit the AKT/mTOR and Ras/ERK signaling pathway, impairing especially the metabolism, proliferation, survival, growth, and angiogenesis in cancer cells. Flavonoids can inhibit the response of the tyrosine kinase receptors (RTKs), initially controlling the upstream signaling cascade. The signaling can bifurcate in two main pathways: the Ras/ERK and the AKT/mTOR signaling. The Ras/ERK signaling, which is important in tumor progression, can be both negatively and positively regulated by flavonoids. In the AKT/mTOR pathway, one of the primary stages of signaling is the conversion of PIP2 to PIP3. This conversion can be inhibited by some flavonoids by inhibiting their converter, PI3K, or by stimulating the reverse conversion of PIP3 to PIP2 through PTEN, known as a tumor suppressor. Although some compounds stimulate AKT, probably through a feedback loop, most flavonoid compounds can inhibit AKT, preventing the activation of mTOR and, consequently, its effectors. The compounds directly inhibit mTOR, in addition to inhibiting 4EBP1/2 and S6K1, proteins that control especially the translation initiation and ribosomal and mRNA biogenesis. The compounds also stimulate p53, which targets SESTRIN 1/2, to inhibit the AKT/mTOR pathway by stimulating AMPK. mTOR signaling also controls lipid synthesis and angiogenesis, which can be both inhibited by flavonoids. These inhibitory regulations direct the cells to inhibition of cancer progression. Epi: Epigallocatechin, Kae: Kaempferol; Myr: Myricetin; Que: Quercetin; Api: Apigenin; Gen: Genistein; Dai: Daidzein; Lut: Luteolin; Nar: Naringenin; Tax: Taxifolin; Eri: Eriodictyol; Vit: Vitexin. Original figure made for this review using the Biorender software.
Table 5. Molecular mechanisms of flavonoids in cell growth signaling and cancer.

| Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
|----------------------|---------------|------------|-------|--------------|------------|
| Cyanidin             | 40 µM         | 24 h       | HepG2, Hep3B, HepG2/DDP, and Hep3B/DDP cells, HepG2 xenograft BALB/c mice | Reverses oxaliplatin resistance | [252] |
| Cyanidin-3-o-glucoside | 150 µM and 420 mg/kg | 24 h and 6 weeks | MCF-7, SK-BR-3, MDA-MB-436, BT-20, and MDA-MB-231 cells and MDA-MB-231-luc xenograft mice | - | [253] |
|                      | 5, 50, and 100 µM | 48 h | Meg-01 cells | - | [254] |
| Delphinidin          | 20, 40, and 80 µM | 48 h | MDA-MB-453 and BT474 cells | Increases p-AMPK at 80 µM | [260] |
|                      | 10, 20, and 40 µM | 1h | A549 cells | Induced by cobalt chloride (200 µM) and EGF (20 ng/mL) treatments | [261] |
|                      | 20, 40, and 60 µM in cell culture, 1 or 2 mg in xenograft BALB/c mice | 48 h | NCI-H441 and SK-MES-1 cells and NCI-H441 xenograft mice | Decreased tumor volume in the NCI-H441 xenograft model | [212] |
|                      | 0.1, 1 and 10 µM | 24 h | IS2 cells | Delphinidin exhibits the same effects as cisplatin and paclitaxel | [262] |
|                      | 0.1, 1 and 10 µM | 30 min | SKOV3 cells | Sensitizes to paclitaxel treatment | [263] |
| Epigallocatechin gallate (EGCG) | 40 µg/mL | 48 h | PANC-1 and BxPC-3 cells | - | [215] |
|                      | 25 µg/mL in cell culture and tap water containing 0.1% or 1% EGCG in xenograft mouse model | 3.6,12 and 24 h in cell culture and 35 days in xenograft mouse model | SW837 cell line and xenograft SW837 BALB/c nude mice | Decreases tumor volume while decreases p-AKT and p-ERK1/2 at 0.1 and 1% of EGCG in xenograft BALB/c mice | [250] |
|                      | 10, 20, 40, and 80 µM | 24, 48, and 72 h | PANC-1 cells | - | [272] |
|                      | 25 µM | 1 h | MDA-MB-231, PC-3, LnCAP, and A549 cells | Decreases MDA-MB-231 and A549 cell proliferation in a dose-dependent manner after 72 h | [251] |
|                      | 0–100 µg/mL in cell culture/tap water containing 0.01 or 0.1% EGCG in mice xenograft model | 24 or 48 h/5 weeks | HuH7 cells and mice BALB/c xenograft model | - | [273] |
| Molecules | Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
|-----------|----------------------|---------------|------------|-------|--------------|------------|
| Eriodictyol | Decreases p-PI3K, p-mTOR, and p-AKT | 25, 50 and 100 µM | 48 h | A549 and FR2 cells | - | [209] |
| | Decreases p-PI3K and p-AKT | 25, 50 and 100 µM | 48 h | U87-MG and CHG-5 cells | - | [62] |
| Naringenin | Decreases p-AKT (Ser473), p-MEK1/2, and p-MAPK after insulin stimuli. Inhibits glucose uptake | 100 µM | 15 min | T47D and MCF-7 cells | - | [248] |
| | Decreases p-AKT | 200 µM | 24 h | THP-1 cells | - | [274] |
| | Decreases p-AKT | 20, 40, or 80 µM | 24, 48 and 72 h | SGC7901 cells | - | [275] |
| | Decreases p-AKT | 40 µM | 48 h | SGC7901 cells | Combined with 5 µM ABT-737 | [249] |
| Apigenin | Prevents AKT phosphorylation | 40 µM | 2 h | MDA-MB-231 cells | Induced by Hepatocyte growth factor (40 ng/mL) | [243] |
| | Prevents p-AKT (Ser473) and p-GSK3β (Ser9) during hypoxia. Inhibits HIF1α activity and decreases VEGF mRNA levels during hypoxia | 25, 50 and 100 µM | 1 h | PC3-M cells | - | [277] |
| | Increases p-AKT (Ser473), p-ERK1/2, and p-ERK2 in dorsolateral prostate of TRAMP mice decreases IGF-1 and increases IGFBP-3 in the serum and the dorsolateral prostate | 20 µg and 50 µg/day | 20 weeks | C57BL/TGN TRAMP mice | Apigenin also inhibits tumor growth and metastasis | [278] |
| | Increases p-AMPK (Thr172) and decreases p-AKT (Ser473), LKB1, p-S6K1 (Thr389), p-4EBP1 and 4EBP1 | 20 µM | 24 h | HaCaT cells | - | [225] |
| | Decreases p-AKT, p-mTOR and p-ERK1/2 | 100 µM | 24 h | A375 and C8161 cells | - | [244] |
| Luteolin | Decreases p-AKT (Ser473), p-S6K1, and p-S6. Decreases p-IGFR, p-AKT, and p-mTOR | 10, 25, and 50 µM | 48 h | T24 and 5637 cells | Decreases tumor growth in the xenograft model | [245] |
| | Decreases p-AKT, p-mTOR, p-S6K1 and increases p-ERK1/2. Decreases expression of SREBP1, SREBP2, and SREBP cleavage-activating protein (SCAP) mRNAs and protein expression | 5, 10 and 20 µM | 48 h | JAR and JEG-3 cells | Exhibits synergistic effects with etoposide, cisplatin, and paclitaxel | [228] |
| | Decreases p-AKT, p-S6, and p-4EBP1 in NCI-H1975 cells | 10, 30, 50, 80 and 100 µM | 24 h | A549, HCC827, and NCI-H1975 cells | - | [226] |
| | Decreases p-IGFR, p-AKT, and p-mTOR | 5, 10 and 20 µM | 24 h | U251MG and U87MG cells | - | [279] |
Table 5. Cont.

| Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
|----------------------|---------------|------------|-------|--------------|------------|
| **Vitexin**          |               |            |       |              |            |
| Decreases p-AKT, p-mTOR and p-PI3K | 20 µM | 48 h | A549 cells | - | [207] |
| Increases p-AMPK and decreases p-PI3K, p-AKT, and p-mTOR | 20 and 40 µM | 24 h | ACHN and OS-RC-2 cells | - | [206] |
| Decreases p-AKT (Ser473) and p-S6K1 | 5–20 µM | 24 h | A2780/CP70 and OVCAR-3 cells | - | [241] |
| Increases p-AKT, p-S6K1, p-S6, and p-ERK1/2 | 20, 50 and 100 µM | - | D-17 canine osteosarcoma cells | Exhibits synergistic antiproliferative effects with cisplatin and etoposide | [270] |
| **Myricetin**        |               |            |       |              |            |
| Increases p-AKT, p-ERK1/2 and p-p90RSK | 5, 10 and 20 µM | - | JAR and JEG-3 cells | - | [271] |
| Decreases AKT, p-AKT (Ser473), and EGFR expression. 200 µM decreases K-ras and Raf-1, ERK and p-ERK | 25–200 µM | 24 h | DBTRG cells | - | [242] |
| Decreases p-ERK and ERK, AP-1 and MEK1 activity | 5–20 µM | 1 h | JB6 P+ and H-Ras-transformed JB6 P+ cells | Treatment combined with 12-O-tetradecanoylphorbol-13-acetate (TPA) 20 ng/mL | [135] |
| **Kaempferol**       |               |            |       |              |            |
| Increases PTEN while decreases p-PI3K, p-AKT, p-mTOR and p-S6K1 | 50 µM | 24 h | HepG2 cells | - | [213] |
| Increases p53 and PTEN while decreases PI3K and AKT mRNA expression | 25, 50 and 100 µM | 24, 48, and 72 h | HeLa cells | - | [214] |
| **Quercetin**        |               |            |       |              |            |
| Decreases p-AKT (Ser473) and p-ATK | 40 µM | 48h | EJ cells | - | [236] |
| Decreases p-AKT (Ser473) and Thr508, | 50 µM | 48 and 72 h | K562 and U937 cells | - | [235] |
| Decreases p-AKT (Ser473) | 25–100 µM | 24 h | RCC 786-O cells | - | [237] |
| Inhibits p-AKT (Ser473) and increases p-MEK2 and p-MAPK | 35–70 µM | 48 h | A549 cells | - | [238] |
| Decreases p-AKT and p-MTOR | 25 and 50 µM | 24 h | SMMC-7721 and BEL-7402 cells | - | [229] |
| **Suppresses cell invasion and migration of breast cancer** | 25 mM | 4 h | C6 cells | - | [232] |
| Decreases p-AKT and p-mTOR | 25 and 50 µM | 24 h | MCF7 and MDA-MB-231 cells and MCF7 xenograft BALB/C mice | - | [149] |
| **Decreases tumor growth** | 15 and 45mg/kg | 13 weeks | GPP-MDA-MB-231 xenograft SCID mice | - | [224] |
| Decreases p-4EBP1, p-S6K1, and p-ATK | 15 µM | 15 min | MDA-MB-231 and MDA-MB-435 cells | - | [224] |
| Increases p-AMPK, Sestrin2, p53 and decreases p-mTOR | 25 and 50 µM | 6 h | HCT116 cells | - | [280] |
| Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
|---------------------|---------------|------------|-------|--------------|------------|
| Quercetin-6-C-β-d-glucopyranoside | Suppressed proliferation through decreases of p-AKT and p-mTOR | 60 µM (PC-3) and 100 µM (DU-145) | 24 and 48 h | PC-3 and DU-145 cells | - | [233] |
| Daidzein | Decreases p-PI3K, p-AKT, and p-mTOR | 10 µM CC and 50 µM Daidzein | 48 h | MCF-7 and MDA MB-231 cells | Treatments separately or together | [210] |
| Anti-proliferative activity against MCF-7 cells and in MDA-MB-231. Inhibits proliferation and invasion | MCF-7 cells at 66.98 ± 4.87 µM and MDA-MB-231 at 93.75 ± 5.15 µM | MCF-7 and MDA-MB-231 cells | - | [211] |
| Genistein | Decreases p-AKT and p-mTOR | 40 µM | 12 h | human colon cancer HT-29 | Treatment combined with indol-3-carbinol | [255] |
| Enhances the antitumor activity of cisplatin and reduces p-mTOR, p-p70S6K1, p-4E-BP1, and p-AKT | 25 µM | 24 h | HeLa cells. | Sensitizes cells to cisplatin treatment. | [256] |
| Decreases cell viability, p-PI3K, and p-AKT | 160 µM | 12 and 48 h | Human Bladder Cancer T24 Cells | - | [257] |
| Decreases p-EGFR and p-AKT (Ser473) and increases p-ERK1/2 | 50-200 µM | 24 h | The HuCCA-1 and RMCCA-1 human intrahepatic CCA cell lines | - | [258] |
| Decreases cell viability, p-AKT, and p-HIF1α | 50 µM | 48 h | A549 human lung carcinoma cells | - | [259] |
| S-Equol (a metabolite of Daidzein) | Decreases p-AKT, p-ERK, and p-FOXO3a in vitro. Inhibits the growth of PC-3 xenograft tumors in BALB/c nude mice | 100, 150, and 200 µM | 24 h | LnCaP, DU-145, and PC-3 cells | - | [269] |
| Taxifolin | Decreases p-PI3K, cell viability and tumor growth | 25, 50 and 100 µM in cells/1mg/kg in mice | 24 h/25 days | A549 and H1975 cells and A549 Xenograft BALB/c nude nude | - | [208] |
| Taxifolin binds to EGFR and PI3K and decreases its activity. Decreases p-AKT (Thr308 and Ser473), p-S6K1, and p-ERK1/2 | 20, 40, and 80 µM | 24 h | JB6 P+ cells | - | [216] |
| Decreases p-AKT (Ser473) in cell lines and tumor growth in a xenograft model | 25 and 50 µM | 48 h | U2OS and Saos-2 cells and U2OS xenograft BALB/c nude mice | - | [246] |
Since cell growth demands lipid synthesis, mTOR also coordinates the lipid synthesis through two main processes: activation of Sterol Regulatory Element-Binding Proteins 1/2 (SREBP1 and 2) and Peroxisome Proliferator-Activated Receptor-γ (PPARγ) (Figure 4) [227]. Luteolin significantly reduced the mRNA levels of SREBP1 and SREBP2, decreasing SREBP1 protein expression in JAR and JEG-3 Human Placental Choriocarcinoma Cells [228]. Furthermore, in C6 rat glioma cells, Quercetin inhibited cholesterol and fatty acid synthesis, decreasing the expression of SREBP1, SREBP2, and ChREBP, a transcription factor that regulates genes involved in lipogenesis [229].

AKT, an oncogene, is highly expressed in human cancers and can be considered the central and convergent point of several growth signaling pathways, including mTOR [230]. AKT is capable of phosphorylating several downstream effectors, such as apoptotic proteins, transcription factors, and other oncogenes [231]. Most of the compounds with anti-cancer activity decrease AKT activation as the main molecular mode of action. Quercetin suppressed breast cancer progression by decreasing AKT/mTOR pathway, inducing autophagy, in vitro and in vivo [149], and inhibited AKT-mediated activation of mTOR and its effectors in hepatic carcinoma [232], prostate [233], and breast cancer cells [234]. Similarly, in concentrations ranging between 25–100 µM, Kaempferol decreased AKT phosphorylation in hepatocarcinoma [213], leukemia [235], endometrial cancer [236], renal carcinoma [237], and human lung cancer cells [238].

Despite AKT/mTOR inhibition being an important strategy for cancer treatment, some mTOR inhibitors, such as ‘rapalogs’, presented a feedback loop activation of the AKT/mTOR axis, becoming cytostatic rather than cytotoxic [218]. Natural compounds inhibit the mTOR effectors 4E-BP1, S6K1, and S6, along with AKT inhibition [239]. In human breast cancer cells, Genistein and Daidzein potentially inhibited cell migration and invasion while decreasing PI3K and AKT phosphorylation [240]. Decreased PI3K, AKT, and mTOR phosphorylation were also observed in human breast cancer cells at 50 µM for 48 h [210]. Remarkably, Myricetin [241,242], Apigenin [243,244] and its derivative Vitexin [206,207], Luteolin [226,228,245], Eriotyctiol [62,209], Taxifolin [216,246,247], Naringenin [248,249], EGCG [215,250,251], and Cyanidin [252–254] also decreased AKT phosphorylation and mTOR effectors in several cancer models, avoiding this feedback activation loop.

Regarding AKT, all studies presented here involving Genistein [255–259] and Delphinidin [212,260–263] treatment decreased AKT activation, highlighting that as a robust effect of these two flavonoids in different types of cancer. The co-treatment with indol-3-carbinol, a compound extracted from Cruciferous vegetables, and Genistein increased subG1 cell accumulation and significantly decreased p-AKT, while inhibiting p-mTOR in HT-29 human colon cancer cell line [255]. Genistein also sensitized HeLa cervical cancer cell line to cisplatin, while preventing the increase in p-mTOR, p-AKT, and p-S6K1 generated by cisplatin treatment [256]. At 80 µM, Delphinidin substantially decreased p-mTOR, p-AKT, and p-eIF4E and increased p-LKB1 and p-AMPK, resulting in the induction of autophagy in MDA-MB-453 and BT474 cells [260].

4.2. The Ras/ERK Pathway

In addition to AKT, one of the most important pathways that control cell growth is the Ras/ERK signaling pathway, responsible for alterations in cell morphology, differentiation, and neoplastic transformation [264]. The gain-of-function mutations in members of the Rat Sarcoma viruses (Ras) family are one of the most common genetic alterations in cancer [265], which leads to prolonged activation of Ras signaling [264]. The first Ras effector pathway identified was the RAF/MEK/ERK axis and the second best-characterized Ras effector is PI3K, cross-talking with the mTOR/AKT pathway (Figure 4) [265,266]. The first evidence of the interaction between Ras and PI3K was achieved by detecting PI3K activity in Ras immunoprecipitation in transformed cells [267].

Different strategies that can inhibit these pathways are widely considered therapeutic interventions in cancer [268]. Flavonoids appear to synergistically inhibit both Ras
and mTOR signaling, such as Apigenin in melanoma cell lines [244], Daidzein [269] in human prostate cancer cell lines, Delphinidin [212,263] in lung and ovarian cancer cells, and EGCG in colorectal cells in vitro and in vivo [250]. Studies reported that Myricetin can decrease both AKT and ERK 1 and 2 phosphorylation (also known as Mitogen-activated protein kinase 2, MAPK2, and Mitogen-Activated Protein Kinase 1, MAPK1, respectively) [135,242,270,271]. Myricetin can reduce the phosphorylation of AKT while decreasing the activation of Ras, RAF proto-oncogene serine/threonine-protein kinase (Raf), and ERK in human glioblastoma cells [242]. Myricetin also showed to be a potent Mitogen-Activated Protein Kinase Kinase 1 (MEK1) inhibitor, leading to decreased ERK phosphorylation and, consequently, impairing the neoplastic transformation of mouse epidermal cell lines [135]. Thus, flavonoids are highlighted as important compounds in adjuvant cancer therapy, presenting potent inhibition activity against cancer cell growth and proliferation.

5. Flavonoids and Autophagy

Autophagy is a cell survival pathway that is composed of 3 routes: macroautophagy, microautophagy, and chaperone-mediated autophagy. Macroautophagy is the most studied one and a catabolic process, responsible for the degradation of organelles within a vesicle derived from the smooth endoplasmatic reticulum and mediated by lysosomal hydrolytic enzymes. This pathway is activated to ensure the maintenance of homeostasis in cases of starvation, dysfunctional organelles, and stress compounds such as ROS inducers. Macroautophagy is also modulated in cases of cell proliferation, differentiation and directly interacts with the apoptotic pathway [281].

As shown in Figure 5, the macroautophagy pathway starts by the formation of the Unc-51 Like Autophagy Activating Kinase (ULK1) complex, that activates by phosphorylation the Beclin1 complex, a type of Phosphoinositide 3 Kinase 3 Complex (PI3K3C), leading to the production of Phosphoinositol 3 Phosphate (PIP3) from Phosphoinositol 2 Phosphate (PIP2). The PIP3 accumulation recruits WD-repeat protein Interacting with Phosphoinositides (Wipi) and some autophagy-related genes (Atgs) proteins for the formation of a single-layer pre-autophagosome. In the next step, there is the nucleation of the pre-autophagosome, generating a double layer membrane. This occurs when the Microtubule-associated protein 1A/1B-light chain 3 (LC3-I) protein is lipidated to the form LC3-II, binding to the autophagosome by autophagy receptors such as sequestosome-1 (p62). Lastly, the lysosomes fuse with the autophagosome, generating the autolysosome, which digest the content by Cathepsins enzymes action [282–284].

Currently, the macroautophagy pathway has been intensively studied in oncology, since it is related to some important pathways that frequently present mutations in tumoral models, related to proliferation (mTOR and ERK) and survival and DNA repair (Bcl-2, p53). In addition, the dysregulation of autophagy is related to some of the hallmarks proposed by Weinberg and Hanahan in 2011 [14,285], and other relevant characteristics to tumors as presented below:

- Autophagy and genome instability and mutation: autophagy acts as a clearance pathway that removes dysfunctional organelles. These organelles can lead to the accumulation of toxic compounds, such as ROS, that increase genomic instability, promoting mutations [286,287].

- Autophagy and sustaining proliferative signaling: the regulation of this process by some molecules such as the accumulation of Adenosine Monophosphate (AMP) and the depletio of Adenosine Triphosphate (ATP) leads to the activation of anti-proliferative pathways, for example, the Liver Kinase B1 (LKB1) and AMP-activated Kinase (AMPK) pathways. These proteins reduce the rate of cell proliferation and also intensify the autophagy process. In some types of cancer with driver mutation in PTEN and LKB1, there is a decrease of autophagy to maintain high levels of proliferation [288,289].
- Autophagy and deregulation of cellular energetics: some types of cancer promote re-programming of cellular bioenergetics known as the Warburg effect, where autophagy plays a critical role to protect the cell against high levels of ROS and lactate, helping cell survival [290,291].

- Autophagy and resistance to cell death: Beclin1 protein interacts with Bcl-2 protein, inhibiting the autophagy process. Thus, when a cancer cell receives a death stimulus such as chemotherapy, the interaction between Beclin1 and Bcl-2 proteins is lost and the cell presents high levels of anti-apoptotic and autophagy activities, turning it resistant to apoptosis [292,293].

- Autophagy and induction angiogenesis: when the supply of O\textsubscript{2} and nutrients are low, autophagy plays an important role in cell survival. However, some types of cancer can purposefully decrease autophagy pathways to promote tumoral angiogenesis [294,295].

- Autophagy and activation of invasion and metastasis: low levels of autophagy are related to EMT with the association of inflammation and macrophages in the tumor. Cancer cells can then detach from the primary tumor region, promoting the metastasis process and producing an invasive tumoral colony. Tumoral colonies can benefit from autophagy since they can avoid the anoikis process, a type of apoptosis due to the loss of contact from the extracellular matrix. Autophagy also plays an important role to overcome starvation and hypoxia until the metastatic cells invade a new region [296,297].

- Autophagy and chemoresistance: some types of cancer have mutations on proliferative pathways such as p53 and MAPK and are known as “autophagy addicted”. The scenario of intense proliferation can be associated with a cellular metabolic disturbance due to the preference for glycolytic metabolism. In this case, autophagy plays a crucial role in tumor progression, protecting the cell against the damage of super proliferation and generating energy substrates through the degradation of organelles and proteins. Thereby, when the autophagy pathway is activated, the cells often present anti-apoptotic activity caused by Beclin1 interaction with Bcl-2, through the BH3 domain, which can lead to chemotherapeutic resistance [292,298].

- Autophagy and senescence: evidence points out that autophagy may correlate with the senescence process. CDKs (Cyclin-dependent-kinase) and cyclins control important pathways in proliferation, such as mTOR and AMPK, that can regulate autophagy. Thus, the deregulation of this system can slow the senescence process [299,300].

In this sense, it is important to highlight the autophagy process in oncology studies. According to some authors, autophagy inhibitors such as chloroquine, 3-Methyladenine (3-MA), and bafilomycin can increase the cancer sensitivity to chemotherapy and can be associated with therapies [301]. Other ways to modulate the autophagy process in cancer studies were demonstrated by using natural compounds. The literature points to strong evidence of the potential of flavonoids in stimulating autophagy in cancer. Table 6 describes the flavonoids that present solid evidence regarding the modulation of the autophagy process. Studies describe Quercetin, Apigenin, Luteolin, Kaempferol, Myricetin, Delphinidin, Naringin, Catechin, and Genistein as flavonoids targeting autophagy [32].

A group of flavonoids showed great potential in stimulating the formation of autophagosomes through the increase in expression of ULK1, PIP3K3C complex, some Atgs, p62, and LC3-II in different types of cancer. In breast, liver, and prostate tumor models, Quercetin specifically increased Atg5, Beclin1, p62, and LC3-II protein contents [149,302–304]. Kaempferol in liver and colon tumor models increased Atgs 5, 7, 12, Beclin1, p62, and LC3-II protein contents [305–308]. Myricetin in breast, melanoma, and colorectal tumor model increased Beclin1, p62, and LC3-II protein contents [309–311]. Flavones can also modulate autophagy. Apigenin in breast, glioma, and liver tumor models modulated autophagy and autophagosome development through the increase of Atg5, Beclin1, p62, and LC3-II [302,312–315]. Luteolin in liver and squamous tumor models modulated autophagy by increasing Beclin1, p62, and LC3-II [316–318].
Flavanones group also showed effects of stimulating the autophagy pathway. Naringin in gastric tumor models presented great potential for increasing Beclin1 and LC3-II protein content, stimulating the formation of autophagosome [319]. Anthocyanins such as Delphinidin in breast, osteosarcoma, and lung tumor models increased p-ULK, Atg5, 12, p62, and LC3-II protein content, indicating the stimulus of autophagosomes formation [260,320,321]. Epigallocatechins of the Flavans group in melanoma, colorectal, lung, and oral tumor models showed the ability to increase Atgs 5, 7, 12, 16, Beclin1, p62, LC3-II protein content [322–326]. Finally, isoflavonoids are indicated as great stimulators of the autophagy pathway, such as Genistein in breast, lung, and pancreatic tumor models, by increasing Beclin1, p62, and LC3-II protein content [327–331].

Currently, some authors have reported that bioactive compounds such as flavonoids present strong anticancer properties associated with chemotherapy treatment in cancer models [313,332]. Flavonoids, as already mentioned, can increase the canonical autophagy pathway and modulate non-canonical autophagy pathways, through the inhibition of proliferative routes (mTOR, Ras), hypoxia, and cytokines routes (STAT3). In addition, flavonoids may increase toxicity when associated with chemotherapeutic treatment. Ultimately this overactivation of autophagy may lead cells to a cytotoxic autophagy process, which is known as autophagic cell death or type II cell death [333].

Figure 5. Flavonoids modulate autophagy pathways in cancer. Macroautophagy begins by activation of ULK complex in the endoplasmic reticulum that leads to Beclin1 phosphorylation this permits the activation of PI3KC3 complex that converts PIP2 to PIP3 promoting an accumulation of phospholipid, this accumulation recruits Wipi proteins and some autophagy-related genes (Atg 5,12 and 16) for the formation of the single-layer pre-autophagosome (in blue), the autophagy receptor p62 interacts with the autophagy target and binds to active LC3-II forming a mature double membrane (in purple) that is fused with lysosomes that will digest the autophagosome content with cathepsin enzyme. Flavonoids can stimulate macroautophagy, through the increase in expression of Beclin1, p62, LC3-II, and some Atgs. Kae: Kaempferol, Myr: Myricetin, Que: Quercetin, Api: Apigenin, Gen: Genistein, Del: Delphinidin, Lut: Luteolin, Nar: Naringin, Epi: Epigallocatechin. Original figure made for this review using the Biorender software.
Table 6. Molecular mechanisms of flavonoids in autophagy and cancer.

| Delphinidin | Increases LC3-II, Atg5/12, and p-ULK | 80 µM  | 24 h  | HER-2 (breast) | - | [260] |
|-------------|-------------------------------------|--------|-------|----------------|---|-------|
|             | Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 100 µM | 24 h  | U2OS cells     | - | [320] |
|             | Increases LC3-II                     | 20 µM  | 48 h  | A549 cells     | - | [321] |
|             | Increases Beclin1, LC3-II, p62, and Atg5/12/16 | 250 µg/mL | 24 h  | A375 cells     | - | [322] |
| Epigallocatechin | Increases LC3-II                     | 12.5 µM | 24 h  | HTC-116 cells  | - | [323] |
|             | Increases LC3-II                     | 150 µM | 24 h  | A549 cells     | Sensibilization to γ-ray irradiation | [324] |
|             | Increases LC3-II                     | 100 µM | 48 h  | HT-29 and DLD-1 cells | - | [325] |
|             | Increases LC3-II, Beclin1, and Atg5/7/12  | 100 µM | 24 h  | CAR cells      | - | [326] |
| Naringin    | Increases Beclin1 and LC3-II         | 2 mM   | 24 h  | AGS cells      | - | [319] |
|             | Increases Beclin1 and LC3-II         | 25, 50, 100, and 200 µM | 36 h  | U251, U118, and U87 cells | - | [312] |
|             | Increases Beclin1 and LC3-II         | 80 µM  | 12 h  | HepG2 cells    | - | [313] |
|             | Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 90 µM  | 24 h  | HepG2 cells    | - | [314] |
| Apigenin    | Stimulates the formation of autophagosomes (decreases in p62 and increase in LC3-II), increase in Beclin1, and Atg5 | 10, 20, and 40 µM | 24 h  | HepG2 cells    | - | [315] |
|             | Increases Beclin1 and LC3-II         | 80 µM  | 24 h  | HepG2 cells    | - | [316] |
|             | Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 100 µM | 48 h  | Hep 3B cells   | - | [317] |
| Luteolin    | Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 20 µM  | 24 h  | MET4 cells     | - | [318] |
|             | Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 100 µM | 24 h  | MET4 cells     | - | [311] |
| Autophagy Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
|--------------------------------|---------------|------------|-------|--------------|------------|
| Increases Beclin1, LC3-II, and in Atg5, 7, 12 | 75 µM | 24 h | HepG2 cells | - | [305] |
| Inhibits autophagosome formation (accumulation of LC3-I and p62). Reduces Beclin1 | 20 µM | 48 h | SKVCR cells | - | [306] |
| Increases Beclin1. Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II). Increases Atg5 | 25 µM | 24 h | HT-29 cells | - | [307] |
| Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II). Increases Atg5, 7 | 100 µM | 24 h | HepG2 e Hh7 cells | - | [308] |
| Increases Beclin1. Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 60 µM | 24 h | MCF-7/MDA-MB-231 cells | - | [309] |
| Increases Beclin1 and LC3-II | 100 µM | 24 h | HCT116 and SW620 cells | - | [310] |
| Increases Beclin1. Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 100 µM | 24 h | SK-MEL-28 cells | - | [311] |
| Increases Beclin1. Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 40 µM | 24 h | HepG2 cells | - | [303] |
| Increases Beclin1 and LC3-II | 100 µM | 24 h | PC-3 cells | - | [304] |
| Increases Beclin1 and LC3-II | 30 µM | 24 h | MCF-7 and MDA-MB 231 cells | - | [149] |
| Increases LC3 | 100 µM | 72 h | MCF-7 cells | - | [327] |
| Increases Beclin1 | 500 ppm | 55 days | Xenografts of breast tumors | - | [328] |
| Increases Beclin 1. Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 60 µM | 24 h | A549 cells | - | [329] |
| Increases LC3-II and Beclin1 | 100 µM | 24 h | MIA-PaCa 2 cells | - | [330] |
| Increases Beclin 1 and p62 | 40 µM | 24 h | A549 cells | - | [331] |
| Autophagy | Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
|-----------|----------------------|---------------|------------|-------|--------------|------------|
| Quercetin | Increases Atg5. Stimulates the formation of autophagosomes (decreases p62 and increases LC3-II) | 10, 20, and 40 µM | 24 h | MDA-MB-231 cells | - | [302] |
| Apigenin (Apigenin-7-methyl ether) | Stimulates the formation of autophagosomes (decreases in p62 and increase in LC3-II), increases in Beclin1, and Atg5 | 20, 40, and 80 µM | 24 h | MDA-MB-231 cells | - |
Finally, it is worth mentioning the duality of autophagy in cancer. Firstly, this pathway can act to prevent cancer, through the removal of dysfunctional organelles, decrease of inflammation, removal of toxic compounds such as ROS, protection of DNA against damage and mutations, and maintenance of homeostasis. However, the autophagy pathway can be purposely modulated by cancer cells for the acquisition of hallmarks, becoming more aggressive and resistant to therapies and leading to a worse prognosis of the disease. Thus, the autophagy pathway can support tumorigenesis and its modulation may be carefully considered for cancer treatment [334,335].

6. Flavonoids, Apoptosis, and Cell Cycle

Apoptosis, a type of programmed cell death, occurs during early development and, in adults, it is used to eliminate from the body cells that have been damaged beyond repair. For this reason, apoptosis also plays an important role in preventing cancer [336]. Cells under apoptosis present a series of distinct changes in their morphology, such as loss of cell attachment, cytoplasmic contraction, and DNA fragmentation. In addition, a class of proteins is recruited, called caspases, which can be activated through the extrinsic or intrinsic apoptotic pathways [337].

Intrinsic apoptosis occurs inside the mitochondria, where its outer membrane is permeabilized and leads to cytochrome c release into the cytoplasm. The cytochrome c releasing is stimulated by pro-apoptotic proteins such as Bcl-2-Like Protein 4 (BAK) and Bcl-2 Homologous Antagonist/killer (BAX), leading to caspase 3 activation and apoptosome formation. Bcl-\(x\)L, Bcl-2, and Induced Myeloid Leukemia Cell Differentiation Protein (Mcl-1) are proteins of the intrinsic apoptosis pathway that can be inhibited (Figure 6) [338].

Extrinsic apoptosis, however, occurs outside the mitochondria and starts with the death receptors, which are cell membrane receptors known as Fas Receptor (FASR), Death Receptor 4/5 (DR4/5), and TNFR (Figure 6). Upon ligand binding, Fas Ligand (FasL), TNF-Related Apoptosis-Inducing Ligand (TRAIL), and TNF-\(\alpha\), respectively, the death receptors trimerize and recruit adaptor proteins, such as Fas-Associated Death Domain (FADD) and TNFR-associated Death Domain (TRADD), and initiator caspases (caspase 8 and 10) (Figure 6) [339].

6.1. Apoptotic Pathway

In the cancer context, apoptosis is critical, and the regulation of pro-apoptotic and anti-apoptotic proteins is well studied. Among the modulators of the apoptotic pathway are the flavonoids, which have been shown to activate pro-apoptotic processes in cancer cell lines and animal models [340]. A summary of these actions of flavonoids in apoptosis is described in Table 7.

In pancreatic cancer cells, Kaempferol upregulated caspase-3, which is a pro-apoptotic protein [341]. The same was observed for Quercetin and Cyanidins in cervical cancer cells [342], Genistein in colon cancer cells (HT29) [343], Luteolin in breast cancer cells (MDA-MB-231) [344], Vitexin in renal cancer cells [206], and Naringenin in hepatocellular carcinoma (HepG2) (Figure 6) [345].

Other pro-apoptotic proteins were described as upregulated by flavonoids, such as Caspase 9, BAK, BH3 Interacting-domain Death Agonist (BID), and BAX. Increased levels of BAX, for example, were observed in cancer cells treated with Myricetin, Vitexin, Quercetin, Apigenin, Genistein, Daidzein, Luteolin, Naringenin, and Taxifolin (Figure 6) [344–350]. The effects of flavonoids in pro-apoptotic proteins were not only detected in cancer cell cultures but also in athymic nude mice models, where 23 days of treatment with 0.2–0.4 mg/kg of Genistein was able to significantly increase the levels of BAX and BAK [348]. The downregulation of anti-apoptotic proteins has also been observed in the literature. The levels of Bcl-2 were lower in renal carcinoma, human colon cancer, prostate cancer, human leukemia, and hepatocellular carcinoma cells treated with Epigallocatechin, Myricetin, Apigenin, Genistein, Daidzein, respectively, compared with control cells (Figure 6) [346–348,351,352].
Figure 6. Flavonoids modulate apoptosis, cell cycle, DNA repair, and senescence pathways in cancer. Flavonoids can promote both down-regulation of anti-apoptotic proteins such as Bcl-2, Mcl-1, and Bcl-xL or upregulation of pro-apoptotic proteins as BAK, BAX, and BID. Besides that, flavonoids can also induce the conversion of pro-caspase 3 to activated Caspase 3. All these modulations lead to cancer cell death. Flavonoids also regulate proteins involved with the cell cycle, as p21, CDK1, CDK2, CDK4, and cyclins: D1, A, B, and E, culminating in cell cycle arrest. Proteins involved with DNA damage response as CHK1/2 also are modulated by flavonoids, inhibiting the ability of cancer cells to repair their DNA directing them to apoptosis. Quercetin can also regulate p16, a senescence marker. Epi: Epigallocatechin; Cat: Catechin; Kae: Kaempferol; Myr: Myricetin; Que: Quercetin; Api: Apigenin; Gen: Genistein; Dai: Daidzein; Cya: Cyanidin; Vit: Vitexin; Lut: Luteolin; Nar: Naringenin; Tax: Taxifolin; Eri: Eriodictyol. Original figure made for this review using the Biorender software.

p53, a key protein related to several pathways involved in cancer, is also found modulated by flavonoids. In several types of cancer, p53 is mutated, losing its function and becoming inactivated [137]. When inactivated, apoptosis is blocked and the cell cycle is facilitated, leading to the uncontrolled proliferation and growth of cells. In leukemia cells (Nalm6) treated with 20 µM of Quercetin for 24 h, the total content of p53 was significantly increased [353]. The same occurred in ATL cells from adult T-cell leukemia treated with 50–100 µM of Apigenin for 16 h [354] and in HeLa cells treated with Cyanidins for 24 h (Figure 6) [342]. These collected data strongly support the evidence of the influence of flavonoids on cancer cell apoptosis, acting as isolated treatments or combined with other therapies.

6.2. Cell Cycle Control

The cell presents a series of events, in a cycle, that prepare the cell for its division and duplication to produce daughter cells [337]. The cell cycle has four steps–named G1, S, G2, and M—in which the cell increases in size, duplicates its genetic material, prepares for division, and divides, respectively. Each step is ordered and programmed [355]. Several molecules stimulate the cell cycle, including the cyclins, proteins that promote the activation and binding to Cyclin Dependable Kinases (CDKs) (Table 7), both working as protein complexes that orchestrate the progression and maintenance of the cell cycle. On the other
hand, there are specific points in the cell cycle, called checkpoints, that stop the cell cycle to analyze the integrity of DNA, aiming at the production of daughter cells with correct genetic material [356]. In several types of cancer, the fine control of these checkpoints is lost, and cell proliferation is unlimited. For this reason, the search for molecules that promote cell cycle arrest is a promising therapeutic approach against cancer [357].

Flavonoids regulate cell growth and cell cycle progression by modulating the expression of these cell cycle regulatory proteins (Cyclins and CDKs) [337]. For instance, the treatment with Kaempferol downregulated the expression of cyclin D, E, and A in Human colon cancer cells (HT-29) [196]. Other flavonoids have been found to downregulate cyclins such as Daidzein, Cyanidin, Luteolin, and Taxifolin (Figure 6) [196,342,344,358].

Some flavonoids have been reported to mediate G2/M cell cycle arrest via the upregulation of the expression of Cyclin-Dependent Kinase Inhibitor 1 (p21). p21 is a protein that is activated by p53 and promotes the inhibition of cyclin B and E. HeLa cells, derived from cervical cancer, presented lower p21 expression when treated with Quercetin for 24 h [55]. The same was observed in a human colon cancer cell (HCT116) treated with Genistein [359], breast cancer cells (MDA-MB-231) under 10–30 µM of Luteolin [344], and colorectal cancer (HCT116) treated with Taxifolin for 24 h [350].

6.3. DNA Damage and Repair

The DNA is constantly damaged by exogenous and endogenous sources such as genotoxic chemicals, ultraviolet (UV), ionizing radiation, and reactive oxygen and nitrogen species [360]. The resulted damage in DNA can be double or single-strand breaks, base oxidation, deamination, interstrand crosslinks, or adduct formation. For each of these damages, there are specific cascades of molecules able to repair the DNA and to protect the cells from replicating with wrong genetic information [360]. DNA damage is one of the major causes for cancer initiation and progression due to genetic alterations, which may lead to loss of tumor suppression or increase of oncogenes [360].

Cancer treatments based on this pathway aim to decrease the expression of proteins that stimulate DNA repair, leading the cells to death when this treatment is combined with chemotherapy that induces DNA damage. Kuo et al. (2016) treated breast cancer cells MDA-MB-231 with flavonoids and observed decreased DNA repair pathway [360]. These cells were submitted to UV radiation and treated with different concentrations of Catechin and Epigallocatechin. The treatments with 5–10 µM of Catechin and 10–40 µM of Epigallocatechin were able to significantly reduce the phosphorylation of Checkpoint Kinase 1 (CHK1), a protein involved in DNA repair signaling. The same study submitted MDA-MB-231 cells to pretreatment with 10 µM or 50 µM of flavonoids followed by exposure to 10 µM cisplatin for 6 h to induce CHK1 and Checkpoint Kinase 2 (CHK2) phosphorylation. At 50 µM the flavonoids Kaempferol, Genistein, Naringenin, and Epigallocatechin were effective to reduce the levels of CHK1 and CHK2 phosphorylated (Figure 6) [360].

6.4. Cell Senescence

Cellular senescence is described as the irreversible arrest of cell proliferation and this phenomenon can be observed in several types of cells. The senescence occurs due to the gradual loss of telomere length after each cell division, and for this reason, this process is closely involved with the aging of cells [361]. As senescence leads to cell cycle arrest, at least in part, this process is linked to cancer suppression, being regulated by two major pathways: the p53/p21; and the cyclin-dependent kinase inhibitor 2A and Retinoblastoma-associated protein (p16INK1a/pRB), which are considered senescence markers [362]. Indeed, cells with mutations in p53 or p16INK4a present the inability to respond to certain senescence-inducing signals, which greatly increase cancer susceptibility [363].

Besides the inability to proliferate, the senescent cells have the feature of secreting several proinflammatory cytokines, chemokines, growth factors, and proteases, a process termed senescence-associated secretory phenotype (SASP) [362]. Although the SASP cells can attract immune cells to promote the clearance of the tumor, these senescent cells are also
able to create a microenvironment that stimulates the cancer cells growth and metastasis, including the release of Stromelysin3 (MMP3) and VEGF, which are cancer inductors of metastasis and angiogenesis, respectively [361].

Studies already reported the effect of flavonoids in eliminating senescence cells (a process called senolytic effect) and consequently impairing the tumor progression [364]. Prosenescence therapy was also recently proposed as an anti-cancer strategy and has been shown to effectively inhibit cancer. Özsoy et al. (2020) treated colon adenocarcinoma cell lines (Colo-320 and Colo-741) with Quercetin for 48h and showed a higher immunoreactivity to p16 [365]. The treatment with ECGC was able to induce senescence in U251 human glioblastoma cells, culminating in the shortening of telomere and cell cycle arrest [366]. Lastly, Banerjee et al. (2015) showed the effectiveness of apigenin in improving the activity of β-galactosidase in HCT-15 cells, leading the cell to senescence [367] (Figure 6).
Table 7. Molecular mechanisms of flavonoids in apoptosis, cell cycle, DNA repair, and senescence.

| Apoptosis       | Molecular Mechanisms                                      | Concentration | Incubation | Model                      | Observations                                      | References |
|-----------------|-----------------------------------------------------------|---------------|------------|----------------------------|---------------------------------------------------|------------|
|                 | Up-regulates cleaved Caspase 3                            | 50–100 µg/mL  | 24 h       | Jurkat cells               |                                                   | [368]      |
| Cyanidin        | Up-regulates p53 and caspase 3                            | 50–300 µg/mL  | 24 h       | HeLa cells                 |                                                   | [342]      |
|                 | Up-regulates p53 and caspase 3                            | 100–400 µg/mL | 24 h       | HeLa cells                 |                                                   |            |
| Epigallocatechin| Down-regulates Mcl-1, c-FLIP, and Bcl-2                   | 50 µg/mL      | 48 h       | Renal Cell Carcinoma (786-O) | The treatment was combined with 200 ng/mL of TRAIL | [351]      |
|                 | Down-regulates Bcl-XL                                     | 25–100 µM     | 48 h       | U87MG and CHG-5 cells      |                                                   | [62]       |
|                 | Up-regulates BAX/Bcl-2 ratio                              | 50–100 µM     | 24/48 h    | A549 cells                 |                                                   | [209]      |
|                 | Down-regulates Bcl-2                                      | 150–200 µM    | 24 h       | HepG2 cells                |                                                   | [345]      |
|                 | Up-regulates p53, Caspase 3 and BAX                       | 150–200 µM    | 24 h       | HepG2 cells                |                                                   |            |
|                 | Down-regulates Mcl-1 and c-FLIP                           | 50 and 100 µM | 8 h        | Human leukemic T cell lineJurkat HTLV-1-associated ATL cells |                                                   | [354]      |
|                 | Up-regulates p53                                          | 50 and 100 µM | 16 h       | ATL cells                  |                                                   |            |
|                 | Down-regulates Bcl-2                                      | 20 µM         | 24 h       | PC-3 cells                 |                                                   |            |
|                 | Up-regulates BAX                                          | 20 µM         | 24 h       | PC-3 cells                 |                                                   |            |
|                 | Up-regulates PARP cleaved                                 | 50 µg/day     | 8 weeks    | Athymic nude mice          |                                                   |            |
|                 | Up-regulates BAX and Caspase 3                           | 10–30 µM      | 48 h       | MDA-MB-231 cells           | Tre treatment was compared with Gefetinib action | [344]      |
|                 | Down-regulates Bcl-2                                      | 10–30 µM      | 48 h       | MDA-MB-231 cells           | Tre treatment was compared with Gefetinib action |            |
| Kaempferol      | Increases cleaved caspase 3                               | 10 µM         | 72 h       | Miapaca-2 cells            |                                                   | [341]      |
|                 | Increases cleaved caspase 3                               | 100 µM        | 72 h       | Panc-1 cells               |                                                   |            |
| Molecules | Table 7, Cont. |
|-----------|----------------|
| **Apoptosis** | Molecular Mechanisms | Concentration | Incubation | Model | Observations | References |
| **Myricetin** | Down-regulates Bcl-2 | 50 and 100 µM | 24 h | HCT-15 cells | - | [346] |
| | Up-regulates BAX | 50 and 100 µM | 24 h | HCT-15 cells | - | |
| **Vitexin** | Up-regulates cleaved Caspase-3 and Caspase-9 | 10–40 µM | 24 h | ACHN and OS-RC-2 cells | The treatment was compared with Metformin and Rapamycin action | [206] |
| | Down-regulates Bcl-2 and up-regulates BAX and cleaved Caspase-3 and Caspase-9 | 10–40 µM | 48 h | A549 cells | - | [207] |
| **Quercetin** | Down-regulates c-FLIP | 200 µM | 12 h | HepG2 cells | - | [369] |
| | Down-regulates c-FLIP | 50, 100 and 200 µM | 12 h | SNU-475 cells | - | |
| | Up-regulates cleaved PARP and p53 | 20 µM | 24 h | Leukemia cell (Nalm6) | - | [353] |
| | Down-regulates Mcl-1 | 20 µM | 24 h | Leukemia cell (Nalm6) | - | |
| | Up-regulates BAX, Caspase 3 and p53 | 80 µM | 24 h | HeLa cells | - | [35] |
| **Daidzein** | Down-regulates Bcl-2 | 90 µM | 24 h | BEL-7402 cells | - | [352] |
| | Up-regulates cleaved PARP | 25–100 µM | 48 h | Choriocarcinoma cell line (JAR) | - | [349] |
| | Down-regulates Bcl-2/BAX ratio | 25–100 µM | 48 h | Choriocarcinoma cell line (JEG-3) | - | |
| **Genistein** | Up-regulates Caspase 3 | 30–70 µM | 48 h | HT29 cells | - | [343] |
| | Up-regulates BAX | 20–50 µM | 48 h | HL-60 cells | - | [348] |
| | Down-regulates Bcl-2 | 40–50 µM | 48 h | HL-60 cells | - | |
| | Up-regulates BAX and BAK | 0.2–0.4 mg/kg | 23 days | Athymic nude mice | - | |
| **Taxifolin** | Up-regulates BAK | 40–60 µM | 24 h | HCT116 cells | - | [350] |
| | Down-regulates Bcl-2, Bcl-xL, and Bid | 40–60 µM | 24 h | HCT116 cells | - | |
### Table 7. Cont.

#### Cell Cycle

| Molecular mechanisms | Concentration | Incubation | Model | Observations | References |
|---------------------|---------------|------------|-------|--------------|------------|
| **Anthocyanidins**  |               |            |       |              |            |
| Up-regulates p21    | 10–100 µg/mL  | 24 h       | Jurkat cells | -            | [368]      |
| Down-Downregulates Cyclin D1 | 400 µg/mL | 24 h | HeLa cells | -            | [342]      |
| Down-regulates Cyclin D1 | 50–300 µg/mL | 24 h | HeLa cells | -            |            |
| **Luteolin**        |               |            |       |              |            |
| Down-regulates Cyclin D1 | 10–30 µM | 24 h | MDA-MB-231 cells | -        | [344]      |
| Up-regulates p21    | 10–30 µM      | 24 h       | MDA-MB-231 cells | -        |            |
| **Kaempferol**      | Down-regulates Cyclin D1, Cyclin A, and Cyclin E | 60 µmol/L  | 6 h | HT-29 cells | -          | [196]      |
| Quercetin           | Up-regulates p21 | 80 µM | 24 h | HeLa cells | -          | [55]       |
| **Daidzein**        | Down-regulates cyclin D, CDK2, CDK1, and CDK4 | 100 µM | 72 h | MDA-MB-453 and MCF-7 cells | - | [370] |
| Genistein           | Up-regulates p53 and p21 | 50–100 µM | 72 h | HCT116 cells | - | [358] |
| Taxifolin           | Up-regulates p21 | 40–60 µM | 24 h | HCT116 cells | - | [350] |
|                      | Down-regulates Cdk-2, Cdk-4, Cdk-6, Cyclin D, Cyclin A, Cyclin B | 40–60 µM | 24 h | HCT116 cells | - |            |

#### DNA Repair

| Molecular mechanisms | Concentration | Incubation | Model | Observations | References |
|---------------------|---------------|------------|-------|--------------|------------|
| **Catechin**        | Down-regulates CHK1 | 5–10 µM |     |              |            |
| **Epigallocatechin**| Down-regulates CHK1/2 | 10–50 µM |     |              |            |
| **Naringenin**      | Down-regulates CHK1/2 | 50 µM | 30 min | MDA-MB-231 cells | - | [360] |
| **Kaempferol**      | Down-regulates CHK1/2 | 50 µM |     |              |            |
| **Genistein**       | Down-regulates CHK1/2 | 5 µM |     |              |            |
| Senescence | Molecular mechanisms | Concentration | Incubation | Model | Observations | References |
|------------|----------------------|---------------|------------|-------|--------------|------------|
| Quercetin  | Increases p16        | 25 µg/mL      | 48 h       | Colo-320 and Colo-741 cells | -          | [365]      |
| Epigallocatechin | Telomerase shortening and increase of β-galactosidase | 10 µg/mL | 98 days | U251 cells | -          | [366]      |
| Apigenin   | Increases β-galactosidase | Above 25 µM | 6 days | HCT-15 cells | -          | [367]      |
7. Conclusions

In conclusion, flavonoids are important natural compounds with broad effects described in several signaling pathways related to cancer. Flavonoids can inhibit inflammation and increase immunity, modulating the NF-kB, MAPK, inflammasome, and JAK-STAT pathways, which are usually altered in cancer. In addition, flavonoids inhibit growth signaling pathways, such as the mTOR and Ras oncogenic pathways, and, at the same time, activate apoptosis and cause cell cycle arrest. In the case of autophagy and oxidative stress, which flavonoids can also modulate, both have a dual relationship with cancer depending on the stage of the disease. Thus, future studies must cautiously address these pathways in this context. Although more studies are needed to explore details on how flavonoids exert their mechanism of action in cells, the increasing amount of evidence strongly suggests the potential use of flavonoids as anti-cancer bioactive compounds.

Author Contributions: L.G.S.P. wrote the introduction, organized tables, and edited the manuscript. I.C.B.P. wrote the flavonoids, inflammation, and immunity section, conceptualized Figures 1 and 2, and designed all the final versions of figures. L.G.S.d.S. wrote the flavonoids and redox metabolism section and conceptualized Figure 3. A.P.M. wrote the flavonoids and growth signaling section and conceptualized Figure 4. M.B.S. wrote the flavonoids and autophagy section and conceptualized Figure 5. M.C.S.M. wrote the apoptosis and cell cycle section and conceptualized Figure 6. R.M.N.B. and F.M.S. have conceptualized the review. All authors revised and approved the final version of the manuscript.

Funding: This study was funded by the São Paulo Research Foundation, FAPESP (grant number: F.M.S. 2018/14818-9; fellowship numbers: A.P.M. 2019/00607-9; I.C.B.P. 2018/08391-2; M.C.S.M. 2019/25582-9).

Conflicts of Interest: The authors declare no potential conflict of interest.

References
1. Pallauf, K.; Duckstein, N.; Rimbach, G. A literature review of flavonoids and lifespan in model organisms. Proc. Nutr. Soc. 2017, 76, 145–162. [CrossRef]
2. Wen, L.; Jiang, Y.; Yang, J.; Zhao, Y.; Tian, M.; Yang, B. Structure, bioactivity, and synthesis of methylated flavonoids. Ann. N. Y. Acad. Sci. 2017, 1398, 120–129. [CrossRef]
3. Rahaiee, S.; Assadpour, E.; Faridi Esfanjani, A.; Silva, A.S.; Jafari, S.M. Application of nano/microencapsulated phenolic compounds against cancer. Adv. Colloid Interface Sci. 2020, 279, 102153. [CrossRef]
4. Rodriguez De Luna, S.L.; Ramirez-Garza, R.E.; Serna Saldivar, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [CrossRef]
5. Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Pavan Jukić, D.; Trebše, P.; Starc, A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Crourt. 2019, 58, 726–736. [CrossRef]
6. Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 2305–242S. [CrossRef]
7. Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [CrossRef]
8. Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [CrossRef]
9. Haskell-Ramsay, C.F.; Schmitt, J.; Actis-Goretta, L. The Impact of Epicatechin on Human Cognition: The Role of Cerebral Blood Flow. Nutrients 2018, 10, 986. [CrossRef]
10. Tahiri, I.; Garro-Aguilar, Y.; Cayssials, V.; Achaïntre, D.; Mancini, F.R.; Mahamat-Saleh, Y.; Boutron-Ruault, M.-C.; Kühn, T.; Katzke, V.; Boeing, H.; et al. Urinary flavanone concentrations as biomarkers of dietary flavanone intakes in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2020, 123, 691–698. [CrossRef]
11. Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavonoids: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. [CrossRef]
12. Xie, Y.; Huang, S.; Su, Y. Dietary Flavonols Intake and Risk of Esophageal and Gastric Cancer: A Meta-Analysis of Epidemiological Studies. Nutrients 2016, 8, 91. [CrossRef] [PubMed]
13. Douglas, C.C.; Johnson, S.A.; Arjmandi, B.H. Soy and its isoflavones: The truth behind the science in breast cancer. Anticancer Agents Med. Chem. 2013, 13, 1178–1187. [CrossRef]
14. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 666–674. [CrossRef]
15. Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 2011, 5, 1–12. [CrossRef]
41. Au, P.Y.B.; Yeh, W.C. Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. *Adv. Exp. Med. Biol.* 2007, 597, 32–47. [PubMed]

42. Hoffmann, A. The Ikappa B-NF-kappa B Signaling Module: Temporal Control and Selective Gene Activation. *Science* 2002, 298, 1241–1245. [CrossRef]

43. Park, M.; Hong, J. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. *Cells* 2016, 5, 15. [CrossRef]

44. Somade, O.T.; Ajayi, B.O.; Adeyi, O.E.; Aina, B.O.; David, B.O.; Sodiyi, J.D. Activation of NF-kB mediates up-regulation of cerebellar and hypothalamic pro-inflammatory chemokines (RANTES and MCP-1) and cytokines (TNF-α, IL-1β, IL-6) in acute edible camelid administration. *Sci. Afr.* 2019, 5, e00114. [CrossRef]

45. Richmond, A. NF-κB, chemokine gene transcription and tumour growth. *Nat. Rev. Immunol.* 2002, 2, 664–674. [CrossRef][PubMed]

46. Fukuyama, R.; Ng, K.P.; Cicek, M.; Kelleher, C.; Niculaita, R.; Casey, G.; Sizemore, N. Role of IKK and oscillatory NFκB kinetics in MMP-9 gene expression and chemoresistance to 5-fluorouracil in KKO colorectal cancer cells. *Mol. Carcinog.* 2007, 46, 402–413. [CrossRef][PubMed]

47. Guttridge, D.C.; Albanese, C.; Reuther, J.Y.; Pestell, R.G.; Baldwin, A.S. NF-κB Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin D1. *Mol. Cell. Biol.* 1999, 19, 5785–5799. [CrossRef][PubMed]

48. La Rosa, F.A.; Pierce, J.W.; Sonenshein, G.E. Differential regulation of the c-myc oncogene promoter by the NF-κB B rel family of transcription factors. *Mol. Cell. Biol.* 1994, 14, 1039–1044. [CrossRef]

49. Heckman, C.A.; Mehew, J.W.; Boxer, L.M. NF-kappa B activates Bcl-2 expression in t(14;18) lymphoma cells. *Oncogene* 2002, 21, 3898–3908. [CrossRef]

50. Khoshnan, A.; Tindell, C.; Laux, I.; Bae, D.; Bennett, B.; Nel, A.E. The NF-κB Cascade Is Important in Bcl-x L Expression and for the Anti-Apoptotic Effects of the CD28 Receptor in Primary Human CD4 + Lymphocytes. *J. Immunol.* 2000, 165, 1743–1754. [CrossRef]

51. Kadioglu, O.; Nass, J.; Saeed, M.E.M.M.; Schuler, B.; Effertth, T. Kaempferol is an anti-inflammatory compound with activity towards NF-κB pathway proteins. *Anticancer Res.* 2015, 35, 2645–2650.

52. Shukla, S.; Shankar, E.; Fu, P.; MacLennan, G.T.; Gupta, S. Suppression of NF-kB and NF-KB regulated gene expression by GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway. *Mediat. Inflamm.* 2016, 2016, 1–17. [CrossRef][PubMed]

53. Mukherjee, S.; Siddiqui, M.A.; Dayal, S.; Ayoub, Y.Z.; Malathi, K. Epigallocatechin-3-gallate suppresses proinflammatory cytokines and chemokines induced by Toll-like receptor 9 agonists in prostate cancer cells. *J. Inflamm.* 2014, 11, 89–101. [CrossRef]

54. Pratheeshkumar, P.; Son, Y.-O.; Wang, X.; Diyva, S.P.; Joseph, B.; Hitron, J.A.; Wang, L.; Kim, D.; Yin, Y.; Roy, R.V.; et al. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin. *Toxicol. Appl. Pharmacol.* 2014, 280, 127–137. [CrossRef]

55. Im, N.-K.; Jang, W.J.; Jeong, C.-H.; Jeong, G.-S. Delphinidin Suppresses PMA-Induced MMP-9 Expression by Blocking the NF-κB Pathway through MAPK Signal Transduction Pathways in MCF-7 Human Breast Carcinoma Cells. *J. Med. Food* 2014, 17, 855–861. [CrossRef][PubMed]

56. Li, W.; Du, Q.; Li, X.; Zheng, X.; Lv, F.; Xi, X.; Huang, G.; Yang, J.; Liu, S. Eriodictyol Inhibits Proliferation, Metastasis and Induces Apoptosis of Gloma Cells via PI3K/Akt/NF-kB Signaling Pathway. *Front. Pharmacol.* 2020, 11, 114. [CrossRef][PubMed]

57. Kang, O.H.; Choi, J.G.; Lee, J.H.; Kwon, D.Y. Luteolin is isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-κB and MAPKs activation pathways in HMC-1 cells. *Molecules* 2010, 15, 385. [CrossRef][PubMed]
64. Zhang, X.; Wang, G.; Gurley, E.C.; Zhou, H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. *PLoS ONE* **2014**, *9*, e107072. [CrossRef] [PubMed]

65. Bodduluru, L.N.; Kasala, E.R.; Madhana, R.M.; Barua, C.C.; Hussain, M.I.; Haloi, P.; Borah, P. Naringenin ameliorates inflammation and cell proliferation in benzo[a]pyrene induced pulmonary carcinogenesis by modulating CYP1A1, NF-κB and PCNA expression. *Int. Immunopharmacol.* **2016**, *30*, 102–110. [CrossRef] [PubMed]

66. Manigandan, K.; Manimaran, D.; Jayaraj, R.L.; Elangovan, N.; Dhivya, V.; Kaphle, A. Taxifolin curbs NF-κB-mediated Wnt/β-catenin signaling via up-regulating Nrf2 pathway in experimental colon carcinogenesis. *Biochimie* **2015**, *119*, 103–112. [CrossRef]

67. Sun, Z.-J.; Chen, G.; Hu, X.; Zhang, W.; Liu, Y.; Zhu, L.-X.; Zhou, Q.; Zhao, Y.-F. Activation of PI3K/Akt/IKK-α/NF-κB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: Its inhibition by quercetin. *Apoptosis* **2010**, *15*, 850–863. [CrossRef]

68. Huang, P.; Han, J.; Hui, L. MAPK signaling in inflammation-associated cancer development. *Protein Cell* **2010**, *1*, 218–226. [CrossRef]

69. Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. *Int. J. Mol. Sci.* **2020**, *21*, 1102. [CrossRef]

70. Symons, A.; Beinke, S.; Ley, S.C. MAP kinase kinase kinases and innate immunity. *Trends Immunol.* **2006**, *27*, 40–48. [CrossRef]

71. Chadee, D.N.; Kyriakis, J.M. Activation of SAPK/JNKs In Vitro. In *MAP Kinase Signaling Protocols*; Humana Press: Totowa, NJ, USA, 2010; pp. 59–73.

72. Angel, P.; Karin, M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. *Cancer Biol. Chem.* **2002**, 277, 1544–1552. [CrossRef] [PubMed]

73. Guinea-Viniegra, J.; Zenz, R.; Scheuch, H.; Hnisz, D.; Holcmann, M.; Bakiri, L.; Schonthaler, H.B.; Sibilia, M.; Wagner, E.F. MAPK is required for shedding and epidermal inflammation are controlled by Jun proteins. *Genes Dev.* **2009**, *23*, 2663–2674. [CrossRef] [PubMed]

74. Sirum-Connolly, K.; Brinckerhoff, C.E. Interleukin-1 or phorbol induction of the stromelysin promoter requires an element that cooperates with AP-1. *Nucleic Acids Res.* **1991**, *19*, 335–341. [CrossRef] [PubMed]

75. Thomsen, M.K.; Bakiri, L.; Hasenfuss, S.C.; Hamacher, R.; Martinez, L.; Wagner, E.F. JUNB/AP-1 controls IFN-γ during inflammatory liver disease. *J. Clin. Investig.* **2013**, *123*, 5258–5268. [CrossRef] [PubMed]

76. Sun, Y.; Wenger, L.; Brinckerhoff, C.E.; Misra, R.R.; Cheung, H.S. Basic Calcium Phosphate Crystals Induce Matrix Metalloproteinase-1 through the Ras/Mitogen-activated Protein Kinase/c-Fos/AP-1/Metalloproteinase 1 Pathway. *J. Biol. Chem.* **2002**, *277*, 1544–1552. [CrossRef] [PubMed]

77. Kaminska, B. Molecular Characterization of Inflammation-Induced JNK/c-Jun Signaling Pathway in Connection with Tumorigenesis. In *Inflammation and Cancer*; Humana Press: Totowa, NJ, USA, 2009; pp. 249–264.

78. Papachristou, D.; Batistatou, A.; Sykiotis, G.; Varakis, I.; Papavassiliou, A. Activation of the JNK–AP-1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. *Bone* **2003**, *32*, 364–371. [CrossRef]

79. Mendelson, K.G.; Contois, L.-R.; Tevosian, S.G.; Davis, R.J.; Paulson, K.E. Independent regulation of JNK/p38 mitogen-activated protein kinases by metabolic oxidative stress in the liver. *Proc. Natl. Acad. Sci. USA* **1996**, *93*, 12908–12913. [CrossRef]

80. Whitmarsh, A.J.; Davis, R.J. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. *J. Mol. Med.* **1996**, *74*, 589–607. [CrossRef] [PubMed]

81. Martinez-Limón, A.; Joaquin, M.; Caballero, M.; Posas, F.; de Nadal, E. The p38 Pathway: From Biology to Cancer Therapy. *Int. J. Mol. Sci.* **2020**, *21*, 2113. [CrossRef]

82. Simon, C.; Goepfert, H.; Boyd, D. Inhibition of the p38 mitogen-activated protein kinase by SB 203580 blocks PMA-induced Mr 92,000 type IV collagenase secretion and in vitro invasion. *Cancer Res.* **1998**, *58*, 1135–1139. [PubMed]

83. Rousseau, S.; Houle, F.; Konatides, H.; Witte, L.; Waltenberger, J.; Landry, J.; Huot, J. Vascular Endothelial Growth Factor (VEGF)-driven Actin-based Motility Is Mediated by VEGFR2 and Requires Concerted Activation of Stress-activated Protein Kinase 2 (SAPK2/p38) and Geldanamycin-sensitive Phosphorylation of Focal Adhesion Kinase. *J. Biol. Chem.* **2000**, *275*, 10661–10672. [CrossRef] [PubMed]

84. Yin, N.; Qi, X.; Tsai, S.; Lu, Y.; Basir, Z.; Oshima, K.; Thomas, J.P.; Myers, C.R.; Stoner, G.; Chen, G. p38γ MAPK is required for inflammation-associated colon tumorigenesis. *Oncogene* **2016**, *35*, 1039–1048. [CrossRef]

85. del Reino, P.; Alsinia-Beauchamp, D.; Escós, A.; Cerezo-Guisado, M.I.; Risco, A.; Aparicio, N.; Zur, R.; Fernandez-Estévez, M.; Collantes, E.; Montans, J.; et al. Pro-Oncogenic Role of Alternative p38 Mitogen-Activated Protein Kinases p38γ and p38δ, Linking Inflammation and Cancer in Colitis-Associated Colon Cancer. *Cancer Res.* **2014**, *74*, 6150–6160. [PubMed]

86. Chen, Y.-Y.; Chang, Y.-M.; Wang, K.-Y.; Chen, P.-N.; Hseu, Y.-C.; Chen, K.-M.; Yeh, K.-T.; Chen, C.-J.; Hsu, L.-S. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. *Environ. Toxicol.* **2019**, *34*, 233–239. [CrossRef] [PubMed]

87. Rosa, S.I.G.; Rios-Santos, F.; Balogun, S.O.; de Oliveira Martins, D.T. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. *Phytomedicine* **2016**, *23*, 9–17. [CrossRef] [PubMed]

88. Schroder, K.; Tschopp, J. The Inflammasomes. *Cell* **2010**, *140*, 821–832. [CrossRef] [PubMed]

89. Swanson, K.V.; Deng, M.; Ting, J.P.-Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. *Nat. Rev. Immunol.* **2019**, *19*, 477–489. [CrossRef]
90. Jo, E.-K.; Kim, J.K.; Shin, D.-M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. *Cell. Mol. Immunol.* 2016, 13, 148–159. [CrossRef]

91. Lamkanfi, M. Emerging inflammasome effector mechanisms. *Nat. Rev. Immunol.* 2011, 11, 213–220. [CrossRef]

92. Hamarsheh, S.; Zeiser, R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. *Front. Immunol.* 2020, 11. [CrossRef]

93. Okamoto, M.; Liu, W.; Luo, Y.; Tanaka, A.; Cai, X.; Norris, D.A.; Dinarello, C.A.; Fujita, M. Constitutively Active Inflammasome in Human Melanoma Cells Mediating Autoinflammation via Caspase-1 Processing and Secretion of Interleukin-1β. *J. Biol. Chem.* 2010, 285, 6477–6488. [CrossRef]

94. Bae, J.Y.; Lee, S.-W.; Shin, Y.-H.; Lee, J.-H.; Jahng, J.W.; Park, K. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. *Onco Targets Lett.* 2017, 8, 48972–48982. [CrossRef]

95. Xue, Y.; Du, H.-D.; Tang, D.; Zhang, J.; Zhai, C.-W.; Yuan, C.-C.; Hsueh, C.-Y.; Li, S.-J.; Heng, Y.; et al. Correlation Between the NLRP3 Inflammasome and the Prognosis of Patients With LSCC. *Front. Oncol.* 2019, 9. [CrossRef]

96. Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Pandian, G.S.D.B.; Savadkar, S.; Lee, K.B.; Torres-Hernandez, A.; Aykut, B.; Diskin, B.; et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. *J. Exp. Med.* 2017, 214, 1711–1724. [CrossRef]

97. Poli, G.; Brancorsini, S.; Cochetti, G.; Barillaro, F.; Egidi, M.G.; Mearini, E. Expression of inflammasome-related genes in bladder cancer and their association with cytokertatin 20 messenger RNA. *Urol. Oncol. Semin. Orig. Investig.* 2015, 33, 505.e1–505.e7. [CrossRef]

98. Danese, S.; Malesci, A.; Vetrano, S. Colitis-associated cancer: The dark side of inflammatory bowel disease. *Gut* 2011, 60, 1609–1610. [CrossRef]

99. Bauer, C.; Duewell, P.; Mayer, C.; Lehr, H.A.; Fitzgerald, K.A.; Dauer, M.; Tschopp, J.; Endres, S.; Latz, E.; Schnurr, M. Colitis and Inflammation in Inflammatory Bowel Diseases. *Curr. Pharm. Des.* 2005, 11, 2141–2151. [CrossRef]

100. Chen, Y.; Le, T.H.; Du, Q.; Zhao, Z.; Liu, Y.; Zou, J.; Hua, W.; Liu, C.; Zhu, Y. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via suppression of JAK/STAT signaling pathway. *Cell. Biol. Int.* 2019, 43, 1184–1192. [CrossRef] [PubMed]

101. Chen, Y.; Le, T.H.; Du, Q.; Zhao, Z.; Liu, Y.; Zou, J.; Hua, W.; Liu, C.; Zhu, Y. Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling. *Int. Immunopharmacol.* 2019, 71, 144–154. [CrossRef] [PubMed]

102. Hu, M.; Li, X.; Zhang, J.; Yuan, Z.; Fu, Y.; Ma, X.; Ren, N. GEN-27 exhibits anti-inflammatory effects by suppressing the activation of NLRP3 inflammasome and NF-kB pathway. *Cell Biol. Int.* 2019, 43, 1184–1192. [CrossRef] [PubMed]

103. Levy, D.E.; Darnell, J.E. STATs: Transcriptional control and biological impact. *Nat. Rev. Mol. Cell Biol.* 2002, 3, 651–662. [CrossRef]

104. Ernst, M.; Najdovska, M.; Grail, D.; Lundgren-May, T.; Buchert, M.; Tye, H.; Matthews, V.B.; Armes, J.; Bhathal, P.S.; Hughes, N.R.; et al. STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. *J. Clin. Investig.* 2008, 118, 1727–1738. [CrossRef] [PubMed]

105. Kortylewski, M.; Xin, H.; Kujawski, M.; Lee, H.; Liu, Y.; Harris, T.; Drake, C.; Pardoll, D.; Yu, H. Regulation of the IL-23 and IL-12 Balance by Stat3 Signaling in the Tumor Microenvironment. *Cancer Cell* 2009, 15, 114–123. [CrossRef]

106. Caprioli, F.; Sarra, M.; Caruso, R.; Stolfi, C.; Fina, D.; Sica, G.; MacDonald, T.T.; Pallone, F.; Monteleone, G. Autocrine Regulation of IL-21 Production in Human T Lymphocytes. *J. Immunol.* 2008, 180, 1800–1807. [CrossRef] [PubMed]

107. Wang, T.; Niu, G.; Kortylewski, M.; Burdelya, L.; Shain, K.; Zhou, M.; Bhattacharya, R.; Gabrilovich, D.; Heller, R.; Coppola, D.; et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. *Nat. Med.* 2004, 10, 48–54. [CrossRef]

108. Ogura, H.; Murakami, M.; Okuyama, Y.; Tsuruoka, M.; Kitabayashi, C.; Kanamoto, M.; Nishihara, M.; Iwakura, Y.; Hirano, T. Interleukin-17 Promotes Autoimmunity by Triggering a Positive-Feedback Loop via Interleukin-6 Induction. *Immunity* 2008, 29, 628–636. [CrossRef]

109. Yu, H.; Kortylewski, M.; Pardoll, D. Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. *Nat. Rev. Immunol.* 2007, 7, 41–51. [CrossRef] [PubMed]

110. Huang, X.; Dai, S.; Dai, J.; Xiao, Y.; Bai, Y.; Chen, B.; Zhou, M. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells. *Onco Targets Ther.* 2015, 8, 2989–3001. [CrossRef]

111. Riahi-Chebbi, I.; Souid, S.; Othman, H.; Haoues, M.; Karoui, H.; Morel, A.; Srairi-Abid, N.; Essafi, M.; Essafi-Benkhadir, K. The Phenolic compound Kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. *Sci. Rep.* 2019, 9, 195. [CrossRef]

112. Ruela-de-Sousa, R.R.; Fuhler, G.M.; Blom, N.; Ferreira, C.V.; Aoyama, H.; Peppelenbosch, M.P. Cytotoxicity of apigenin on leukemia cell lines: Implications for protection against cell death. *Cell Death Dis.* 2010, 1, e19. [CrossRef]

113. Cao, H.-H.; Chu, J.-H.; Kwan, H.-Y.; Su, T.; Yu, H.; Cheng, C.-Y.; Fu, X.-Q.; Guo, H.; Li, T.; Tse, A.K.-W.; et al. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. *Sci. Rep.* 2016, 6, 21731. [CrossRef] [PubMed]

114. Senggunprai, L.; Kuokngviriyapan, V.; Prawan, A.; Kuokngviriyapan, U. Quercetin and EGCG Exhibit Chemopreventive Effects in Cholangiocarcinoma Cells via Suppression of Jak/Stat Signaling Pathway. *Phyther. Res.* 2014, 28, 841–848. [CrossRef] [PubMed]
115. Mace, T.A.; King, S.A.; Ameen, Z.; Elnaggar, O.; Young, G.; Riedl, K.M.; Schwartz, S.J.; Clinton, S.K.; Knobloch, T.J.; Weghorst, C.M.; et al. Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling. *Cancer Immunol. Immunother.* 2014, 63, 889–900. [CrossRef] [PubMed]

116. Kumamoto, T.; Fuji, M.; Hou, D.-X. Myricetin directly targets JAK1 to inhibit cell transformation. *Cancer Lett.* 2009, 275, 17–26. [CrossRef] [PubMed]

117. Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative stress and cancer: An overview. *Aging Res. Rev.* 2013, 12, 376–390. [CrossRef] [PubMed]

118. Adham, A.N.A.; Abdelfatah, S.; Najishbandi, A.M.; Mahmoud, N.; Effert, T. Cytotoxicity of apigenin toward multiple myeloma cell lines and suppression of iNOS and COX-2 expression in STAT1-transfected HEK293 cells. *Phytomedicine* 2021, 80, 153371. [CrossRef] [PubMed]

119. Thiery, J.-P. Epithelial-mesenchymal transitions in cancer onset and progression. *Bull. Acad. Natl. Med.* 2009, 193, 1969–1978.

120. Sadikovic, B.; Al-Romaih, K.; Squire, J.; Zielenska, M. Cancer and Consequences of Genetic and Epigenetic Alterations in Human Cancer. *Curr. Genom.* 2008, 9, 394–408. [CrossRef] [PubMed]

121. Klaunig, J.E.; Kamendulis, L.M.; Hocevar, B.A. Oxidative Stress and Oxidative Damage in Carcinogenesis. *Toxicol. Pathol.* 2010, 38, 96–109. [CrossRef] [PubMed]

122. Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative stress and cancer: An overview. *Ageing Res. Rev.* 2013, 12, 376–390. [CrossRef] [PubMed]

123. Zheng, L.; Cardaci, S.; Jerby, L.; MacKenzie, E.D.; Sciacovelli, M.; Johnson, T.I.; Gaude, E.; King, A.; Leach, J.D.G.; Edrada-Ebel, R.; et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. *Nat. Commun.* 2015, 6, 6001. [CrossRef] [PubMed]

124. Andrisic, L.; Dudzik, D.; Barbas, C.; Milkovic, L.; Grune, T.; Zarkovic, N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. *Redox Biol.* 2018, 14, 47–58. [CrossRef]

125. Iqbal, M.A.; Gupta, V.; Gopinath, P.; Mazurek, S.; Bamezai, R.N.K. Pyruvate kinase M2 and cancer: An updated assessment. *FEBS Lett.* 2014, 588, 2685–2692. [CrossRef] [PubMed]

126. Wiese, E.K.; Hitzsogi, T. Tyrosine Kinase Signaling in Cancer Metabolism: PKM2 Paradox in the Warburg Effect. *Front. Cell Dev. Biol.* 2018, 6. [CrossRef]

127. Dong, G.; Mao, Q.; Xia, W.; Xu, Y.; Wang, J.; Xu, L.; Jiang, F. PKM2 and cancer: The function of PKM2 beyond glycolysis. *OncoLett.* 2016, 11, 1980–1986. [CrossRef]

128. Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. *Nat. Rev. Cancer* 2016, 11, 85–95. [CrossRef]

129. Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. *Front. Pharmacol.* 2014, 5. [CrossRef] [PubMed]

130. Sentellas, S.; Morales-Ibanez, O.; Zanuy, M.; Albertí, A. Effects of flavonoids on redox-sensitive signalling pathways and ageing. *Nutr. Biochem.* 2014, 28, 588–599. [CrossRef] [PubMed]

131. Griess, B.; Tom, E.; Domann, F.; Teoh-Fitzgerald, M. Extracellular superoxide dismutase and its role in cancer. *Antioxid. Redox Signal.* 2017, 26, 1464–1479. [CrossRef] [PubMed]

132. Parascandolo, A.; Laukkanen, M.O. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1 Signal Transduction Pathways. *Antioxid. Redox Signal.* 2019, 30, 443–486. [CrossRef]

133. de la Vega, M.R.; Chapman, E.; Zhang, D.D. NRF2 and the Hallmarks of Cancer. *Cancer Cell* 2018, 2, 1–23. [CrossRef] [PubMed]

134. Zhao, M.-X.; Wen, J.-L.; Wang, L.; Wang, X.-P.; Chen, T.-S. Intracellular catalase activity instead of glutathione level dominates the Warburg effect. *Cancer Cell* 2014, 63, 889–900. [CrossRef] [PubMed]

135. Lee, K.W.; Kang, N.J.; Rogozin, E.A.; Kim, H.-G.; Cho, Y.Y.; Bode, A.M.; Lee, H.J.; Surh, Y.-J.; Bowden, G.T.; Dong, Z. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. *Carcinogenesis* 2009, 28, 1918–1927. [CrossRef] [PubMed]

136. Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.C.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. *Cell* 2006, 126, 107–120. [CrossRef] [PubMed]

137. Simabuco, F.M.; Morale, M.G.; Pavan, I.C.B.; Morelli, A.P.; Silva, F.R.; Tamura, R.E. p53 and metabolism: A radical therapeutic approach? *Nat. Rev. Drug Discov.* 2009, 8, 579–591. [CrossRef]

138. Koch, K.; Havermann, S.; Büchter, C.; Wätjen, W. Caenorhabditis elegans elegans as model system in pharmacology and toxicology: Effects of flavonoids on redox-sensitive signalling pathways and ageing. *Sci. World J.* 2014, 2014, 920398. [CrossRef]

139. Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. *J. Nutr. Biochem.* 2002, 13, 572–584. [CrossRef]
168. Tang, X.; Wang, H.; Fan, L.; Wu, X.; Xin, A.; Ren, H.; Wang, X.J. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 2011, 50, 1599–1609. [CrossRef] [PubMed]

169. Tanigawa, S.; Fujii, M.; Hou, D. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 2007, 42, 1690–1703. [CrossRef]

170. Kerimi, A.; Williamson, G. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Antioxid. Redox Signal. 2018, 29, 1633–1659. [CrossRef]

171. Valdameri, G.; Trombeta-Lima, M.; Worfel, P.R.; Pires, A.R.A.; Martinez, G.R.; Noleto, G.R.; Cadena, S.M.S.C.; Sogayar, M.C.; Winnischofer, S.M.B.; Rocha, M.E.M. Involvement of catase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells. Chem. Biol. Interact. 2011, 193, 180–189. [CrossRef]

172. Gao, A.-M.; Ke, Z.-P.; Wang, J.-N.; Yang, J.-Y.; Chen, S.-Y.; Chen, H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 2013, 34, 1806–1814. [CrossRef]

173. Gao, A.-M.; Ke, Z.-P.; Shi, F.; Sun, G.-C.; Chen, H. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem. Biol. Interact. 2013, 206, 100–108. [CrossRef]

174. Qin, S.; Chen, J.; Tanigawa, S.; Hou, D.-X. Microarray and pathway analysis highlight Nrf2/ARE-mediated expression profiling by polyphenolic myricetin. Mol. Nutr. Food Res. 2013, 57, 435–446. [CrossRef] [PubMed]

175. Granado-Serrano, A.B.; Martínez, M.A.; Haegeman, G.; Goya, L.; Bravo, L.; Ramos, S. Epicatechin induces NF-κB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. Br. J. Nutr. 2010, 103, 168–179. [CrossRef] [PubMed]

176. Bhattacharjee, S.; Dashwood, R.H. Epigenetic Regulation of Nrf2/KEAP1 by Phytochemicals. Antioxidants 2020, 9, 865. [CrossRef] [PubMed]

177. Liu, X.; Sun, C.; Liu, B.; Jin, X.; Li, P.; Zheng, X.; Zhao, T.; Li, F.; Li, Q. Genistein mediates the selective radiosensitizing effect in polyphenolic myricetin. Mol. Nutr. Food Res. 2013, 57, 435–446. [CrossRef] [PubMed]

178. Liu, N.; Wang, K.S.; Qi, M.; Zhou, Y.J.; Zeng, G.Y.; Tao, J.; Da Zhou, J.; Zhang, J.L.; Chen, X.; Peng, C. Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels. J. Exp. Clin. Cancer Res. 2018, 37, 269. [CrossRef] [PubMed]

179. Lee, D.-H.; Lee, Y.J. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1α (HIF-1α) through inhibiting protein synthesis. J. Cell. Biochem. 2008, 105, 546–553. [CrossRef]

180. Samec, M.; Liskova, A.; Koklesova, L.; Mersakova, S.; Strnadel, J.; Kajo, K.; Pec, M.; Zhai, K.; Smejkal, K.; Mirzaei, S.; et al. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers 2021, 13, 130. [CrossRef] [PubMed]

181. Du, G.; Lin, H.; Wang, M.; Zhang, S.; Wu, X.; Lu, L.; Ji, L.; Yu, L. Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells. Cancer Chemother. Pharmacol. 2010, 65, 277–287. [CrossRef]

182. Fu, J.-D.; Yao, J.-J.; Wang, H.; Cui, W.-G.; Leng, J.; Ding, L.-Y.; Fan, K.-Y. Effects of EGCG on proliferation and apoptosis of gastric cancer SGC7901 cells via down-regulation of HIF-1α and VEGF under a hypoxic state. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 155–161. [CrossRef]

183. Huang, H.C.; Tao, M.H.; Hung, T.M.; Chen, J.C.; Lin, Z.J.; Huang, C. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antivir. Res. 2011, 100, 111–117. [CrossRef]

184. Fang, B.; Chen, X.; Wu, M.; Kong, H.; Chu, G.; Zhou, Z.; Zhang, C.; Chen, B. Luteolin inhibits angiogenesis of the M2-like TAMs and inhibits the STAT3 signaling pathway under hypoxia. Mol. Med. Rep. 2018, 74, 78. [CrossRef] [PubMed]

185. Mylonis, I.; Lakka, A.; Tsakalof, A.; Simos, G. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochem. Biophys. Res. Commun. 2010, 398, 74–78. [CrossRef]

186. Melstrom, L.G.; Salabat, M.R.; Ding, X.-Z.; Strouch, M.J.; Grippo, P.J.; Mirzoeva, S.; Pelling, J.C.; Bentrem, D.J. Apigenin Down-regulates the Hypoxia Response Genes: HIF-1α, GLUT-1, and VEGF in Human Pancreatic Cancer Cells. J. Surg. Res. 2011, 167, 173–181. [CrossRef]

187. Li, S.; Li, J.; Dai, W.; Zhang, Q.; Feng, J.; Wu, L.; Liu, T.; Yu, Q.; Xu, S.; Wang, W.; et al. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br. J. Cancer 2017, 117, 1518–1528. [CrossRef] [PubMed]

188. Vanamala, J.; Leonardi, T.; Patil, B.S.; Taddeo, S.S.; Murphy, M.E.; Pike, L.M.; Chapkin, R.S.; Lupton, J.R.; Turner, N.D. Suppression of colon carcinogenesis by bioactive compounds in grapefruit. Carcinogenesis 2006, 27, 1257–1265. [CrossRef] [PubMed]

189. Leonardi, T.; Vanamala, J.; Taddeo, S.S.; Davidson, L.A.; Murphy, M.E.; Patil, B.S.; Wang, N.; Carroll, R.J.; Chapkin, R.S.; Lupton, J.R.; et al. Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp. Biol. Med. 2010, 235, 710–717. [CrossRef]

190. Pandurangan, A.K.; Kumar, S.A.S.; Dharmalingam, P.; Ganapasam, S. Luteolin, a bioflavonoid inhibits azoxymethane-induced colon carcinogenesis: Involvement of iNOS and COX-2. Pharmacogn. Mag. 2014, 10, 5306–5310. [CrossRef]

191. Froyen, E.B.; Steinberg, F.M. Soy isoflavones increase quinone reductase in hep-a-1c17 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element. J. Nutr. Biochem. 2011, 22, 843–848. [CrossRef]
243. Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxict. Appl. Pharmacol. 2008, 226, 178–191. [CrossRef]

244. Zhao, G.; Han, X.; Cheng, W.; Ni, J.; Zhang, Y.; Lin, J.; Song, Z. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol. Rep. 2017, 37, 2277–2285. [CrossRef]

245. Iida, K.; Naiki, T.; Naiki-Ito, A.; Suzuki, S.; Kato, H.; Nozaki, S.; Nagai, T.; Etani, T.; Nagayasu, Y.; Ando, R.; et al. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 2020, 111, 1165–1179. [CrossRef] [PubMed]

246. Chen, X.; Gu, N.; Xue, C.; Li, B.-R. Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol. Med. Rep. 2018, 17, 3239–3245. [CrossRef] [PubMed]

247. Haque, M.W.; Bose, P.; Siddique, M.U.M.; Sunita, P.; Lapenna, A.; Pattanayak, S.P. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomed. Pharmacother. 2018, 105, 27–36. [CrossRef] [PubMed]

248. Harmon, A.W.; Patel, Y.M. Naringenin inhibits glucose uptake in MCF-7 breast cancer cells: A mechanism for impaired cellular proliferation. Breast Cancer Res. Treat. 2004, 85, 103–110. [CrossRef] [PubMed]

249. Zhang, H.; Zhong, X.; Zhang, X.; Shang, D.; Zhou, Y.L.; Zhang, C. Enhanced antiangiogenic effect of ABT-737 in combination with naringenin on gastric cancer cells. Exp. Ther. Med. 2016, 11, 669–673. [CrossRef]

250. Shimizu, M.; Shirakami, Y.; Sakai, H.; Yasuda, Y.; Kubota, M.; Adachi, S.; Tsurumi, H.; Hara, Y.; Moriwaki, H. (-)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem. Biol. Interact. 2010, 185, 247–252. [CrossRef] [PubMed]

251. Van Aller, G.S.; Carson, J.D.; Tang, W.; Peng, H.; Zhao, L.; Copeland, R.A.; Tummino, P.J.; Luo, L. Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Oncol. Rep. 2018, 40, 194–199. [CrossRef]

252. Li, X.; Zhang, Z.-S.; Zhang, X.-H.; Yang, S.-N.; Liu, D.; Diao, C.-R.; Wang, H.; Zheng, F.-P. Cyanidin inhibits EMT induced by oxaliplatin via targeting the PDK1-PI3K/Akt signaling pathway. Food Funct. 2019, 10, 592–601. [CrossRef]

253. Wang, L.; Li, H.; Yang, S.; Ma, W.; Liu, M.; Guo, S.; Zhan, J.; Zhang, H.; Tsang, S.Y.; Zhang, Z.; et al. Cyanidin-3-0-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. Oncotarget 2016, 7, 68684–68882. [CrossRef]

254. Ya, F.; Li, Q.; Wang, D.; Xie, S.; Song, F.; Gallant, R.C.; Tian, Z.; Wan, J.; Ling, W.; Yang, Y. Cyanidin-3-0-β-Glucoside Induces Megakaryocyte Apoptosis via PI3K/Akt- and MAPKs-Mediated Inhibition of NF-kB Signalling. Thromb. Haemost. 2018, 118, 1215–1229. [CrossRef] [PubMed]

255. Nakamura, Y.; Yogosawa, S.; Izutani, Y.; Watanabe, H.; Otsui, E.; Sakai, T. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol. Cancer 2009, 8, 100. [CrossRef] [PubMed]

256. Sahin, K.; Tuzcu, M.; Basak, N.; Caglayan, B.; Kilic, U.; Sahin, F.; Cucuk, O. Sensitization of Cervical Cancer Cells to Cisplatin by Genistein: The Role of NFB and Akt/mTOR Signaling Pathways. J. Oncol. 2012, 2012, 1–6. [CrossRef]

257. Park, C.; Cha, H.-J.; Lee, H.; Hwang-Bo, H.; Ji, S.Y.; Kim, M.Y.; Hong, S.H.; Jeong, J.-W.; Han, M.H.; Choi, S.H.; et al. Induction of G2/M Cell Cycle Arrest and Apoptosis by Genistein in Human Bladder Cancer T24 Cells through Inhibition of the ROS-Dependent PI3K/Akt Signaling Pathway. Antioxidants 2019, 8, 327. [CrossRef] [PubMed]

258. Tanjak, P.; Thiantanawat, A.; Watcharasit, P.; Satayavivad, J. Genistein reduces the activation of AKT and EGFR, and the production of IL6 in cholangiocarcinoma cells involving estrogen and estrogen receptors. Int. J. Oncol. 2018, 53, 177–188. [CrossRef] [PubMed]

259. Zhang, J.; Su, H.; Li, Q.; Li, J.; Zhao, Q. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF-1α/VEGF and NF-kB/COX-2 signaling pathways. Mol. Med. Rep. 2017, 15, 2296–2302. [CrossRef] [PubMed]

260. Chen, J.; Zhu, Y.; Zhang, W.; Peng, X.; Zhou, J.; Li, F.; Han, B.; Liu, X.; Ou, Y.; Yu, X. Delphinidin induced protective autophagy via mTOR pathway suppression and AMPK activation in HER-2 positive breast cancer cells. BMC Cancer 2018, 18, 342. [CrossRef] [PubMed]

261. Kim, M.-H.; Jeong, Y.-J.; Cho, H.-J.; Hoe, H.-S.; Park, K.-K.; Park, Y.-Y.; Choi, Y.-H.; Kim, C.-H.; Chang, H.-W.; Park, Y.-J.; et al. Delphinidin inhibits angiogenesis through the suppression of HIF-1α and VEGF expression in A549 lung cancer cells. Oncol. Rep. 2017, 37, 777–784. [CrossRef]

262. Lim, W.; Jeong, W.; Song, G. Delphinidin suppresses proliferation and migration of human ovarian clear cell carcinoma cells through blocking AKT and ERK1/2 MAPK signaling pathways. Mol. Cell. Endocrino. 2016, 422, 172–181. [CrossRef]

263. Lim, W.; Song, G. Inhibitory effects of delphinidin on the proliferation of ovarian cancer cells via PI3K/ AKT and ERK 1/2 MAPK signal transduction. Oncol. Lett. 2017, 14, 810–818. [CrossRef]

264. Shaw, R.J.; Cantley, L.C. Ras, PI3K and mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011, 36, 320–328. [CrossRef]
267. Sjölander, A.; Yamamoto, K.; Huber, B.E.; Lapetina, E.G. Association of p21ras with phosphatidylinositol 3-kinase. *Proc. Natl. Acad. Sci. USA* 1991, 88, 7908–7912. [CrossRef] [PubMed]

268. Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. *Eur. J. Med. Chem.* 2016, 109, 314–341. [CrossRef] [PubMed]

269. Lu, Z.; Zhou, R.; Kong, Y.; Wang, J.; Xia, W.; Guo, J.; Liu, J.; Sun, H.; Liu, K.; Yang, J.; et al. S-equol, a Secondary Metabolite of Natural Anticancer Isolavone Daidzein, Inhibits Prostate Cancer Growth In Vitro and In Vivo, Though Activating the Akt/FOXO3a Pathway. *Curr. Cancer Drug Targets* 2016, 16, 455–465. [CrossRef] [PubMed]

270. Park, H.; Park, S.; Bazer, F.W.; Lim, W.; Song, G. Myricetin treatment induces apoptosis in canine osteosarcoma cells by inducing DNA fragmentation, disrupting redox homeostasis, and mediating loss of mitochondrial membrane potential. *J. Cell. Physiol.* 2018, 233, 7475–7466. [CrossRef]

271. Yang, C.; Lim, W.; Bazer, F.W.; Song, G. Myricetin suppresses invasion and promotes cell death in human placental choriocarcinoma cells through induction of oxidative stress. *Cancer Lett.* 2017, 399, 10–19. [CrossRef]

272. Liu, S.; Wang, X.-J.; Liu, Y.; Cui, Y.-F. PI3K/AKT/mTOR signaling is involved in (-)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells. *Am. J. Chin. Med.* 2013, 41, 629–642. [CrossRef]

273. Shirakami, Y.; Shimizu, M.; Adachi, S.; Sakai, H.; Nakagawa, T.; Yasuda, Y.; Tsurumi, H.; Harai, Y.; Moriwaki, H. (-)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. *Cancer Sci.* 2009, 100, 1957–1962. [CrossRef]

274. Jin, J.H.; Sun, H.; Lee, B.K.; Kim, G.-Y.; Choi, Y.H.; Jeong, Y.K. Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. *Food Chem. Toxicol.* 2008, 46, 3684–3690. [CrossRef] [PubMed]

275. Bao, L.; Liu, F.; Guo, H.-B.; Li, Y.; Tan, B.-B.; Zhang, W.-X.; Peng, Y.-H. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. *Tumour Biol.* 2016, 37, 11365–11374. [CrossRef]

276. Park, S.; Lim, W.; Bazer, F.W.; Song, G. Naringenin suppresses growth of human placental choriocarcinoma via reactive oxygen species-mediated PI38 and JNK MAPK pathways. *Phytomedicine* 2018, 50, 238–246. [CrossRef] [PubMed]

277. Mirrozea, S.; Kim, N.D.; Chiu, K.; Franzen, C.A.; Bergan, R.C.; Pelling, J.C. Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. *Mol. Carcinog.* 2008, 47, 686–700. [CrossRef] [PubMed]

278. Shukla, S.; MacLennan, G.T.; Fu, P.; Gupta, S. Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model. *Pharm. Res.* 2012, 29, 1506–1517. [CrossRef] [PubMed]

279. Wang, Q.; Wang, H.; Jia, Y.; Ding, H.; Zhang, L.; Pan, H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1r/PI3K/AKT/mTOR signaling pathway. *Oncl. Lett.* 2017, 14, 3545–3551. [CrossRef]

280. Kim, G.T.; Lee, S.H.; Kim, Y.M. Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells. *J. Cancer Prev.* 2013, 18, 264–270. [CrossRef]

281. Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. *J. Pathol.* 2010, 221, 3–12. [CrossRef]

282. Mizushima, N. Autophagy: Process and function. *Genes Dev.* 2007, 21, 2861–2873. [CrossRef]

283. Kundu, M.; Lindsten, T.; Yang, C.-Y.; Wu, J.; Zhao, F.; Zhang, J.; Selak, M.A.; Nye, P.A.; Thompson, C.B. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. *Blood* 2008, 112, 1493–1502. [CrossRef]

284. Backer, J.M. The regulation and function of Class III PI3Ks: Novel roles for Vps34. *Adv. Exp. Med. Biol.* 2019, 1069–1075. [CrossRef] [PubMed]

285. Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. *Nature* 1999, 402, 672–676. [CrossRef]

286. Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. *Nature* 2008, 451, 1069–1075. [CrossRef] [PubMed]

287. Li, W.; Dai, Y.; Shi, B.; Yue, F.; Zou, J.; Xu, G.; Jiang, X.; Wang, F.; Zhou, X.; Liu, L. LRPPRC sustains Yap-P27-mediated cell ploidy and P62-HDAC6-mediated autophagy maturation and suppresses genome instability and hepatocellular carcinomas. *Oncogene* 2020, 39, 3879–3892. [CrossRef]

288. Takamura, A.; Komatsu, M.; Hara, T.; Sakamoto, A.; Kishi, C.; Waguri, S.; Eishi, Y.; Hino, O.; Tanaka, K.; Mizushima, N. Autophagy-deficient mice develop multiple liver tumors. *Genes Dev.* 2011, 25, 795–800. [CrossRef] [PubMed]

289. Lazova, R.; Camp, R.L.; Klump, V.; Siddiqui, S.F.; Amaravadi, R.K.; Pawelek, J.M. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. *Clin. Cancer Res.* 2012, 18, 370–379. [CrossRef] [PubMed]

290. Ferro, F.; Servais, S.; Besson, P.; Roger, S.; Dumas, J.-F.; Brisson, L. Autophagy and mitophagy in cancer metabolic remodelling. *Semin. Cell Dev. Biol.* 2020, 98, 129–138. [CrossRef]

291. Liu, G.; Pei, F.; Yang, F.; Li, L.; Amin, A.D.; Liu, S.; Buchan, J.R.; Cho, W.C. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. *Int. J. Mol. Sci.* 2017, 18, 367. [CrossRef] [PubMed]

292. Xu, H.-D.; Qin, Z.-H. Beclin 1, Bcl-2 and Autophagy. *Adv. Exp. Med. Biol.* 2019, 1206, 109–126. [CrossRef] [PubMed]

293. Jiang, F.; Zhou, J.-Y.; Zhang, D.; Liu, M.-H.; Chen, Y.-G. Artesunate induces apoptosis and autophagy in HCT116 colon cancer cells, and autophagy inhibition enhances the artesunate-induced apoptosis. *Int. J. Mol. Med.* 2018, 42, 1295–1304. [CrossRef]

294. Kardideh, B.; Samimi, Z.; Norooznezhad, F.; Kiani, S.; Mansouri, K. Autophagy, cancer and angiogenesis: Where is the link? *Cell Biosci.* 2019, 9, 65. [CrossRef]
295. Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. *Mol. Cancer* **2015**, *14*, 48. [CrossRef]

296. Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Ahmadi, Z.; Roomiani, S.; Katebi, M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. *J. Cell. Physiol.* **2019**, *234*, 19471–19479. [CrossRef]

297. Dower, C.M.; Wills, C.A.; Frisch, S.M.; Wang, H.-G. Mechanisms and context underlying the role of autophagy in cancer metastasis. *Autophagy* **2018**, *14*, 1110–1128. [CrossRef]

298. Musial, C.; Siedlecka-Kroplewska, K.; Kmiec, Z.; Gorska-Ponikowska, M. Modulation of Autophagy in Cancer Cells by Dietary Polyphenols. *Antioxidants* **2021**, *10*, 123. [CrossRef]

299. Pang, X.; Zhang, X.; Jiang, Y.; Su, Q.; Li, Q.; Li, Z. Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer. *Biomolecules* **2021**, *11*, 135. [CrossRef] [PubMed]

300. Herranz, N.; Gil, J. Mechanisms and functions of cellular senescence. *J. Clin. Investig.* **2018**, *128*, 1238–1246. [CrossRef] [PubMed]

301. Singh, S.S.; Vats, S.; Chia, A.Y.-Q.; Tan, T.Z.; Deng, S.; Ong, M.S.; Arfuso, F.; Yap, C.T.; Goh, B.C.; Sethi, G.; et al. Dual role of autophagy in hallmarks of cancer. *Oncogene* **2018**, *37*, 1142–1158. [CrossRef] [PubMed]

302. Zhang, H.-W.; Hu, J.-J.; Fu, R.-Q.; Liu, X.; Zhang, Y.-H.; Li, J.; Liu, L.; Li, Y.-N.; Deng, Q.; Luo, Q.-S.; et al. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Ky mediated PI3K/ Akt/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. *Sci. Rep.* **2018**, *8*, 11255. [CrossRef]

303. Tomas-Hernández, S.; Blanco, J.; Rojas, C.; Roca-Martínez, J.; Ojeda-Montes, M.J.; Beltrán-Debón, R.; García-Vallvé, S.; Pujadas, G.; Arola, L.; Mulero, M. Resveratrol Potently Counteracts Quercetin Starvation-Induced Autophagy and Sensitizes HepG2 Cancer Cells to Apoptosis. *Mol. Nutr. Food Res.* **2018**, *62*, 1–13. [CrossRef]

304. Han, B.; Yu, Y.-Q.; Yang, Q.-L.; Chen, C.-Y.; Wang, X.-J. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling. *Oncotarget* **2017**, *8*, 86227–86239. [CrossRef]

305. Jiang, S.; Chang, H.; Deng, S.; Fan, D. Icaritin enhances the chemosensitivity of cisplatin-resistant ovarian cancer cells by suppressing autophagy via activation of the AKT/mTOR/ATG5 pathway. *Int. J. Oncol.* **2019**, *54*, 1933–1942. [CrossRef]

306. Zhou, C.; Gu, J.; Zhang, G.; Dong, D.; Yang, Q.; Chen, M.-B.; Xu, D. AMPK-autophagy inhibition sensitizes icaritin-induced anti-colorectal cancer cell activity. *Sci. Rep.* **2018**, *8*, 14736–14747. [CrossRef]

307. Han, X.; Liu, C.-F.; Gao, N.; Zhao, J.; Xu, J. Kaempferol suppresses cell proliferation but increases apoptosis and autophagy by activating AMPK signaling. *Oncotarget* **2018**, *9*, 1363–1375. [CrossRef] [PubMed]

308. Zhou, Y.; Liang, X.; Chang, H.; Shu, F.; Wu, Y.; Zhang, T.; Fu, Y.; Zhang, Q.; Zhu, J.-D.; Mi, M. Ampelopsin-induced autophagy mediates cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. *Int. J. Oncol.* **2019**, *53*, 1142–1158. [CrossRef] [PubMed]

309. Zhang, H.-W.; Hu, J.-J.; Fu, R.-Q.; Liu, X.; Zhang, Y.-H.; Li, J.; Liu, L.; Li, Y.-N.; Deng, Q.; Luo, Q.-S.; et al. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Ky mediated PI3K/Akt/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. *Sci. Rep.* **2018**, *8*, 11255. [CrossRef]

310. Pang, X.; Zhang, X.; Jiang, Y.; Su, Q.; Li, Q.; Li, Z. Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer. *Biomolecules* **2021**, *11*, 135. [CrossRef] [PubMed]

311. Herranz, N.; Gil, J. Mechanisms and functions of cellular senescence. *J. Clin. Investig.* **2018**, *128*, 1238–1246. [CrossRef] [PubMed]

312. Singh, S.S.; Vats, S.; Chia, A.Y.-Q.; Tan, T.Z.; Deng, S.; Ong, M.S.; Arfuso, F.; Yap, C.T.; Goh, B.C.; Sethi, G.; et al. Dual role of autophagy in hallmarks of cancer. *Oncogene* **2018**, *37*, 1142–1158. [CrossRef] [PubMed]

313. Zhang, H.-W.; Hu, J.-J.; Fu, R.-Q.; Liu, X.; Zhang, Y.-H.; Li, J.; Liu, L.; Li, Y.-N.; Deng, Q.; Luo, Q.-S.; et al. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Ky mediated PI3K/Akt/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. *Sci. Rep.* **2018**, *8*, 11255. [CrossRef]

314. Zhou, C.; Gu, J.; Zhang, G.; Dong, D.; Yang, Q.; Chen, M.-B.; Xu, D. AMPK-autophagy inhibition sensitizes icaritin-induced anti-colorectal cancer cell activity. *Sci. Rep.* **2018**, *8*, 14736–14747. [CrossRef]

315. Han, X.; Liu, C.-F.; Gao, N.; Zhao, J.; Xu, J. Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microRNA-340 in human lung cancer cells. *Biomed. Pharmacother.* **2018**, *108*, 809–816. [CrossRef]

316. Zhou, Y.; Liang, X.; Chang, H.; Shu, F.; Wu, Y.; Zhang, T.; Fu, Y.; Zhang, Q.; Zhu, J.-D.; Mi, M. Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress. *Cancer Sci.* **2014**, *105*, 1279–1287. [CrossRef]

317. Zhu, M.-L.; Zhang, P.-M.; Jiang, M.; Yu, S.-W.; Wang, L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells. *BMC Complement. Med. Ther.* **2020**, *20*, 209. [CrossRef]

318. Zhou, D.-Z.; Sun, H.-Y.; Yue, J.-Q.; Peng, Y.; Chen, Y.-M.; Zhong, Z.-J. Dihydromyricetin induces apoptosis and cytoprotective autophagy through ROS-NF-κB signalling in human melanoma cells. *Free Radic. Res.* **2017**, *51*, 517–528. [CrossRef]

319. Zhou, M.; Hu, C.; You, Q.; Zhang, A.; Wang, X.; Guo, Q. Oroxylin A induces autophagy in human malignant glioma cells via the mTOR-STAT3-Notch signaling pathway. *Mol. Carcinog.* **2015**, *54*, 1363–1375. [CrossRef]

320. Zhou, M.; Lu, N.; Hu, C.; Liu, W.; Sun, Y.; Wang, X.; You, Q.; Gu, C.; Xi, T.; Guo, Q. Beclin 1-mediated autophagy in hepatocellular carcinoma cells: Implication in anticancer efficiency of oroxylin A via inhibition of mTOR signaling. *Cell. Signal.* **2012**, *24*, 1722–1732. [CrossRef]

321. Zheng, J.; Shao, Y.; Jiang, Y.; Chen, F.; Liu, S.; Yu, N.; Zhang, D.; Liu, X.; Zou, L. Tangeretin inhibits hepatocellular carcinoma proliferation and migration by promoting autophagy-related BECLIN1. *Cancer Manag. Res.* **2019**, *11*, 5231–5242. [CrossRef] [PubMed]

322. Yang, J.; Pi, C.; Wang, G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. *Biol. Pharmaceut. Biopharm. Res. Commun.* **2019**, *51*, 617–622. [CrossRef] [PubMed]

323. Verschooten, L.; Barrette, K.; Van Kelst, S.; Rubio Romero, N.; Proby, C.; De Vos, R.; Agostinis, P.; Garmyn, M. Autophagy inhibitor chloroquine enhanced the cell death inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells. *PLoS ONE* **2012**, *7*, e48264. [CrossRef] [PubMed]

324. Raha, S.; Yumnam, S.; Hong, G.E.; Lee, H.J.; Saralaamma, V.V.G.; Park, H.-S.; Heo, J.D.; Lee, S.J.; Kim, E.H.; Kim, J.-A.; et al. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. *Int. J. Oncol.* **2015**, *47*, 1061–1069. [CrossRef]
Annu. Rev. Physiol. 362, Campisi, J. Aging, Cellular Senescence, and Cancer.

Davalos, A.R.; Coppe, J.-P.; Campisi, J.; Desprez, P.-Y. Senescent cells as a source of inflammatory factors for tumor progression. Environ. Toxicol. 2019, 34, 443–456. [CrossRef]

Zheng, W.; Liu, T.; Sun, R.; Yang, L.; An, R.; Xue, Y. Daidzein induces choriocarcinoma cell apoptosis in a dose-dependent manner via the mitochondrial apoptotic pathway. Mol. Med. Rep. 2018, 17, 6093–6099. [CrossRef] [PubMed]

Razak, S.; Afsar, T.; Ullah, A.; Almajwal, A.; Alshamsan, A.; Jahan, S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/β-catenin signaling pathway. BMC Cancer 2018, 18, 1043. [CrossRef]

Wei, R.; Zhu, G.; Jia, N.; Yang, W. Epigallocatechin-3-gallate Sensitizes Human 786-O Renal Cell Carcinoma Cells to TRAIL-Induced Apoptosis. Cell Biochem. Biophys. 2015, 72, 157–164. [CrossRef]

Han, B.-J.; Li, W.; Jiang, G.-B.; Lai, S.-H.; Zhang, C.; Zeng, C.-C.; Liu, Y.-J. Effects of daidzein in regards to cytotoxicity in vitro, apoptosis, reactive oxygen species level, cell cycle arrest and the expression of caspase and Bcl-2 family proteins. Oncol. Rep. 2015, 34, 1115–1120. [CrossRef]

Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis. Sci. Rep. 2016, 6, 24049. [CrossRef]

Ding, J.; Polier, G.; Köhler, R.; Giaisi, M.; Kramer, P.H.; Li-Weber, M. Wogonin and related natural flavones overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein resistance of tumors by down-regulation of c-FLIP protein and up-regulation of TRAIL receptor 2 expression. J. Biol. Chem. 2012, 287, 641–649. [CrossRef] [PubMed]

Dalton, S. Linking the Cell Cycle to Cell Fate Decisions. Trends Cell Biol. 2015, 25, 592–600. [CrossRef]

Tamura, K. Development of cell-cycle checkpoint therapy for solid tumors. Jpn. J. Clin. Oncol. 2015, 45, 1097–1102. [CrossRef]

De Felice, F.; Marchetti, C.; Tombolini, V.; Panici, P.B. Immune check-point in endometrial cancer. Int. J. Clin. Oncol. 2019, 24, 910–916. [CrossRef]

Zhang, Z.; Wang, C.-Z.; Du, G.-J.; Qi, L.-W.; Calway, T.; He, T.-C.; Du, W.; Yuan, C.-S. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int. J. Oncol. 2013, 43, 289–296. [CrossRef]

Zhang, W.; van Gent, D.C.; Incrocci, L.; van Weerden, W.M.; Nonnekens, J. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis. 2020, 23, 24–37. [CrossRef]

Kuo, C.-Y.; Zupekó, I.; Chang, F.-R.; Hunyadi, A.; Wu, C.-C.; Weng, T.-S.; Wang, H.-C. Dietary flavonoid derivatives enhance chemotherapeutic effect by inhibiting the DNA damage response pathway. Toxicol. Appl. Pharmacol. 2016, 311, 99–105. [CrossRef]

Mavrogonatou, E.; Pratsinis, H.; Kletsas, D. The role of senescence in cancer development. Semin. Cancer Biol. 2020, 62, 182–191. [CrossRef]