Seasonal ecophysiological responses and behavior of phillyrea latifoliaspecie to climate change in Tunisia

Khaoula Nefzi (nefzikhaoula@hotmail.com)
national research institute of rural engineering water and forests

Baraket Mokhtar
national research institute of rural engineering water and forests

Maroua Herzi
national research institute of engineering water and forests

Zouhair Nasr
national research institute of engineering water and forests

Research

Keywords: climate change, ecophysiological response, behavior, phillyrea latifolia

DOI: https://doi.org/10.21203/rs.3.rs-20878/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background As part of global climate change, variation in precipitation in arid ecosystems is leading to plant adaptation in water-use strategies; significant interspecific differences in ecophysiological response will change the plant behavior. The main aim of this study was to investigate the ecophysiological responses of Phillyrea latifolia species to seasonal drought stress. Measurements were conducted between March and December 2018. The parameters studied were the Leaf Water Potential (ψ_{leaf}), Net photosynthesis (P_n), stomatal conductance (g_s) and leaf transpiration (T_r), maximum efficiency of PSII photochemistry (F_{v}/F_{m}), and Hydraulic conductivity. Main results The results showed that all measured parameters varied significantly with the season ($P < .0001$). The results of ψ_{leaf} showed the highest average in summer (-2.99 ± 0.08 MPa). Likewise, the highest values of the maximal photochemical efficiency of PSII (F_{v}/F_{m}) were observed in summer (0.83 ± 0.06). However, the highest values of P_n ($3.62 \pm 0.41 \mu\text{mol m}^{-2}\text{s}^{-1}$) and T_r ($0.3 \pm 0.028 \mu\text{mol m}^{-2}\text{s}^{-1}$) were noted in autumn. The Initial Hydraulic Conductivity (K_{in}) value was in spring ($1.34 \pm 0.04 \pm 110^{-5}$ mmol s^{-1} m^{-2} MPa^{-1}) and autumn ($1.18 \pm 0.04 \pm 2.3010^{-6}$ mmol s^{-1} m^{-2} MPa^{-1}) and the Maximal Hydraulic Conductivity (K_{max}) was the highest during the spring season ($3.4510^{-4} \pm 2.7010^{-11}$ mmol s^{-1} m^{-2} MPa^{-1}). The results of the Stomatal Conductance (g_s) were that the lowest values were recorded in summer (0.19 ± 0.04 MPa). The percentage of loss conductivity (PLC) reached 66%. During the spring season, the soil had a decreasing moisture profile as it moved to the depths and varied from 15.23 ± 5.48% at 20 cm to 6.26 ± 2.46% at 80 cm. Conclusions The best physiological performances of Phillyrea latifolia reported in spring and autumn may be attributed to favorable environmental conditions. The answers depend not only on the species but also on the climates in which they grow.

Background

Climate change is one of the main determinants of the types and distribution of global vegetation. According to Schwinning and Ehleringer (2001), plant species segregate along natural gradients of water availability regarding their capacity to withstand drought. Annual precipitation patterns play a crucial role in shaping plant adaptation in water use strategies, and in determining the compositions of plant communities in arid environments. However, species from different biogeographic origins and with contrasting ecological requirements coexist at transition zones. The Mediterranean region has played this role of transition zone over geological time scales and many species of the Mediterranean flora are tertiary relicts or remnants from vegetation shifts during glaciations (Palamarev, 1989). Mediterranean regions are particularly suffering water deficits due to the unprecedented rate of warming and more frequent extreme events (Dai, 2013). But one key characteristic of Mediterranean ecosystems is a dry period over the summer and to what extent Mediterranean plants are fully adapted to this drought remains unclear. Species coexisting in Mediterranean habitats differ remarkably in their ecophysiological traits and their responses and tolerances to water restrictions (Cabrera, 2002; Gulias et al., 2002; Ogaya and Peñuelas, 2003). There are different alternative strategies for dealing with drought, and Mediterranean species have been classified as drought-tolerant when they can maintain photosynthesis
under severe water stress such as some evergreen plantsoaks, and drought avoiders, when they either shed leaves or close stomata during the dry periods, as certain pines do. (Martínez-Ferri et al., 2000; Ferrio et al., 2003; Valladares et al., 2005). Drought tolerance is generally associated with efficient use of water (Ferrio et al., 2003), but mixed results have been demonstrated for the efficiency of water use in the water stress in Mediterranean ecosystems (Reichstein et al., 2002). Comparisons of the survival, under similar environmental conditions, of species with different strategies are rare and, despite the frequent occurrence of drought in Mediterranean areas, our understanding of the ecology and evolution of Mediterranean species under restricted waters is still fragmentary. As a result, plants can respond to water stress with contrasting xylem attributes that can, however, coexist within communities under similar water stress (Martínez-Vilalta et al., 2002). For this reason, it is important to study the impact of climate change on *Phillyrea latifolia* the by evaluating of their responses ecophysiological in sites of Sarej (DS) and to compare their behavior in the three seasons (spring, summer, and autumn).

Materials And Methods

Sites and species description

The study was carried out inmount of Sarej in northeastern Tunisia for 3 seasons (spring, summer, autumn 2018). The mount of Serj is the third summit of the Tunisian Dorsal positioned at a longitude of 009° 33.0' E and latitude of 35° 57.0' N in the UTM coordinate system with heights of 793 m above sea level. It belongs to the upper semi-arid with variations in cool and temperate winter. Dominant tree species are the Aleppo pine, green oak, cork oak, maple, evergreen cypress, and carob tree (UNDP, 2015). The climate is typically the Mediterranean, characterized by spring and autumn rains, with hot, dry winters and summers. The soil is almost entirely composed of Cretaceous limestone dating from the Secondary Era, who’s raised, sometimes folded but exposed strata are the titanic steps of a giant staircase. *Phillyrea latifolia* are plants with narrow, slightly toothed, opposing leaves. It belongs to the family of Oléacées.

Measured parameters

Leaf Water Potential

The Leaf Water Potential (ψ_{leaf}) was measured using the pressure chamber technique. Small twigs were cut and placed in a pressure chamber (Arimad 2®, A.R.I, KfarCharuv, Israel) connected and fed by a nitrogen gas bottle and equipped with a magnifying glass holder.

Gas exchange measurement

Net photosynthesis (Pn), stomatal conductance (gs) and leaf transpiration (Tr) were measured by the portable photosynthesis system Li-Cor Li-6400XT (Li-Cor, Li-6400XT Lincoln, NE, USA) based on the IRGA (Infra RedGas Analysis) principle. One plant from each season was chosen for the A/Ci curves. For each curve, the leaf reached an equilibrium corresponding to a CO$_2$ concentration of 400 mmol.mol$^{-1}$, for 30 min to acclimate the plants to the conditions of temperature, PAR, ventilation rate and CO$_2$.
concentration corresponding to the first point of the curve. The temperature is adjusted to 25 °C. Relative humidity was maintained at 60%.

Chlorophyll fluorescence

Measurements of the maximum efficiency of PSII photochemistry (Fv/ Fm) were conducted in situ on attached leaves with a portable pulse-modulated fluorimeter PAM-2000 (Walz, Effeltrich, Germany). Leaves were dark-adapted with leaf clips for 1 h, which was determined to be sufficient to allow complete relaxation of energy-dependent quenching. The Fv/Fm ratio was calculated as (Fm – Fo)/Fm, where Fm and Fo are the maximum and basal fluorescence yields, respectively, of dark-adapted leaves (Genty et al., 1989).

Hydraulic conductivity

We have determined the hydraulic conductivity of the xylem using the high-pressure flowmeter method (Sack et al., 2002; Tyree et al., 2005). This method includes infusing degassed water at positive pressure P (2 MPa) into the segment and quantifying the flow rate at the inlet. Measuring the maximum hydraulic capacity was deduced by cavitation as follow:

\[
PLC = 100 \times \left(1 - \frac{K_{in}}{K_{max}}\right)
\]

Where: PLC is the percentage of conductivity loss, K_{in} is the initial conductivity and K_{max} is the maximum conductivity measured after removing the gas trapped in the pipes (Sperry et al., 1988; Tyree and Yang, 1992; Hietz et al., 2008).

Gravimetric soil moisture

This method is considered as a reference method, it consists of drying a soil sample in an oven at 105 °C for two days and then determining the weight of water contained in the sample by back weighing. Soil samples are taken with a helical auger up to 80 cm, given the heterogeneity of the soil and the rocks which sometimes prevent samples from being taken.

Statistics analysis

The data were subject to two ways ANOVA analysis with the GLM procedure of the statistical software package SAS version 9.1 (SAS Institute Inc., Cary, NC). The statistical assumption of residual normality was evaluated using the Shapiro-Wilk, while Levene’s test was used for homogeneity of variances. Means difference was determined using the Student-Newman-Keuls test. Significance was considered at P < 0.05. The data were expressed as a mean ± standard error. The statistical model was:

\[
Y_{ijk} = \mu + \alpha_i + \epsilon_{ij}
\]

Where: Y_{ijk} = response variable of the plant (k) in the season i. \(\mu \) = overall mean value for Y. \(\alpha_i \) = fixed effect of the seasons (j = 1 - 3), and \(\epsilon_{ij} \) = error term.
Results

Rainfall seasonal variations

Precipitation and temperature differed between 2017 and 2019 in the areas being studied (Fig. 1). In 2017, in the period from January to September, the mean accumulated precipitation was low when compared with the same period of 2018 (21 mm and 38 mm, respectively). This was caused by a 44% decrease in rainfall from June onwards when compared with the same period of 2018. This decreases gave rise to lower water availability for plants over a long period.

This decrease in precipitation in Summer decline in rainfall affected gas exchange and water relations differently in the specie studied. The differences in meteorological conditions mentioned above throughout the study is reflected in the results of the gas study exchanges and relationships in the field of water (Figs. 2, 3, 4 and 5). This being indicative of severe water stress since gs is an integrative indicator of the degree of water stress (Flexas et al. 2002, Galmés et al., 2007).

Leaf Water Potential (ψ_{leaf})

The results of Leaf Water Potential (ψ_{leaf}) are presented in Fig. 2. We observed significant differences among seasons ($P < .0001$) under seasonal variations conditions. During spring, ψ_{leaf} remained higher ($-1.61 \pm 0.075 \text{ MPa}$). However, during summer, ψ_{leaf} was increased with an increase in water stress. The measurements were around $-2.99 \pm 0.08 \text{ MPa}$. In autumn, Phillyrea latifolia reached lower levels of the ψ_{leaf} ($1.20 \pm 0.04 \text{ MPa}$).

Gas exchange

Net Photosynthesis (Pn) and transpiration (Tr)

The results of the photosynthesis (Pn) and Transpiration (Tr) are shown in Fig. 3. We observed significant differences in seasons ($P < .0001$). We noticed that during the study, the rainfall was concentrated in spring and autumn seasons, whereas the summers were the driest periods coinciding with higher air temperatures. The highest values of Pn ($3.62 \pm 0.41 \text{ µmol m}^{-2} \text{ s}^{-1}$) and Tr ($0.3 \pm 0.028 \text{ µmol m}^{-2} \text{ s}^{-1}$) were recorded in autumn, however, we have reported the lowest Pn and Tr average values of 0.39 ± 0.046 and $0.073 \pm 0.015 \text{ µmol m}^{-2} \text{ s}^{-1}$, respectively in summer.

Stomatal Conductance (gs)

The results of the Stomatal Conductance (gs) were shown in Fig. 4. We observed significant differences among seasons ($P < .0001$). The lowest values of the gs were measured in summer ($0.19 \pm 0.04 \text{ MPa}$), under the higher temperature and water unavailability. The highest values of stomatal conductance were reached in autumn ($1.12 \pm 0.02 \text{ MPa}$) when temperatures were the lowest ones, and intermediate values were measured in spring ($0.21 \pm 0.05 \text{ MPa}$), either because of low water availability or low temperature, respectively.
Potential photochemical efficiencies of PSII (Fv/Fm)

The results of the quantum yield of primary photochemistry of PSII (Fv/Fm) were shown in Fig. 5. We observed significant differences among seasons (P < .0001). The highest values of the maximal photochemical efficiency of PSII (Fv/Fm) were observed in summer (0.83 ± 0.06), under the higher temperature and water unavailability. Though the lowest Fv/Fm values were reached in autumn (0.76 ± 0.07) when temperatures were the lowest ones, and intermediate values (0.77 ± 0.02) were measured in spring, either because of low water availability or low temperature, respectively.

Hydraulic Conductivity (K\textsubscript{in} and K\textsubscript{max})

Hydraulic Conductivity was presented in Fig. 6. Initial Hydraulic Conductivity (K\textsubscript{in}) and Maximal Hydraulic Conductivity (K\textsubscript{max}) were significantly different (P < 0.001) among seasons. The highest K\textsubscript{in} value was reported during the spring season (1.34 ± 0.04 ± 110-5 mmol s-1 m-2 MPa-1), and in autumn (1.18 ± 0.04 ± 2.3010-6 mmol s-1 m-2 MPa-1), followed by summer (1.75 ± 0.05 ± 3.610-6 mmol s-1 m-2 MPa-1). Whereas, the highest K\textsubscript{max} value was reported during the spring season (3.4510-04 ± 2.7010-11 mmol s-1 m-2 MPa-1). The lowest value was recorded in summer (5.2310-05 ± 6.7310-11 mmol s-1 m-2 MPa-1).

Percentage of loss conductivity (PLC)

The results of the Percentage of loss conductivity (PLC) are presented in Table 1. We have reported a significant difference (P < 0.001) in PLC among seasons. In fact, during the spring season, the PLC values reached 61% for \textit{Phillyrea latifolia}. In the dry season, the PLC peaked and reached 66%. For the autumn season, the PLC has been fully restored by decreasing their percentage to reach 41%.

Gravimetric soil moisture

Analysis of the water profile (Fig. 7) showed significant variations (P < .0001) in soil moisture content at different soil depths and as a function of seasons. During the spring season, the soil had a decreasing moisture profile as it moved to the depths and varied from 15.23 ± 5.48% at 20 cm to 6.26 ± 2.46% at 80 cm. In summer, the measurements exhibited that the volume of humidity is lower than in the spring, which can be explained by the absence of rainfall in this month 0 mm. These moisture levels ranged from 6.03 ± 2.60% during the spring season in the 20 cm depth to 2.24 ± 1.63% in the 80 cm depth. In autumn, \textit{Phillyrea latifolia} reached higher levels of the soil moisture content. These levels ranged from 19.08 ± 2.70% in the 20 cm depth to 11.70 ± 1.07% in the 80 cm depth.

Discussion

In the Mediterranean area, water shortage represents the main limiting factor for plant growth (Zavala et al., 2000). Especially in shallow soils, where the vegetation does not completely cover the whole surface, water losses through evaporation in the dry season can deeply reduce the soil water content to values as low as 5% (Kemp et al., 1997; Pariente, 2002; Villegas et al., 2010). This results in a decreasing trend of
soil water content from the wet to the dry season. In this study, lower soil water contents were observed under the serval of climate change due to precipitation removal. Variability in water status shows that surface horizons 20 to 80 cm are very sensitive to summer drought in the DS site, which has very dry soils. Aussenac et al. (1979), have proven these results by showing that the drying has spread to greater depths and is practically nil after 130 to 140 cm depth. The distinction of this water profile allows a comparison of the ecophysiological parameters of plants between seasons so that they can be classified with their adaptations to temporal variation in precipitation and temperature.

whereas after temperature increased and no precipitation events occurred, similar soil water content values were measured under both control and drought treatments. The reduced plant water availability under the drought treatment was also reflected in the lower leaf water potential measured in the summer compared to spring. In summer, the difference in soil water content was founded, and leaf water potential decreased to the minimum values in correspondence with the minimum soil water content measured at the end of summer. Different studies on leaf gas exchange in Mediterranean plants have highlighted similar leaf responses to those mentioned here. Net rates of photosynthesis, transpiration, and stomatal conductances decline with increasing drought (Oechel et al., 1981; Tenhunen et al., 1987; Damesin and Rambal, 1995; Penuelas et al., 1998), but the response and the sensitivity rate depended on the species (Acherar and Rambal, 1992). Stomatal closure is one of the first responses of plants to protect it from exposure to severe water stress.

Phillyrea latifolia resprouts from underground organs; this is a common response to plants in Mediterranean-type ecosystems that have been affected by disturbances (Canadell et al., 1991). This species has shown physiological performances that enable it to withstand climate change (Vitale et al., 2007). We investigated whether the resilience of this species, from a functional point of view, is affected by climate change.

According to Llorens et al. (2003a) and Llusia et al. (2008), Pn, Tr, and gs are complex under unembellished climate change. Though, the imposed water accessibility has an impact on the leaf water potential, either in spring or in summer or autumn. During spring, it remained higher. However, during summer, ψ_{leaf} was increased with an increase in water stress. The best photosynthetic performance, transpiration, and stomatal conductance of Phillyrea latifolia were observed in spring and autumn and may be due to advantageous environmental conditions (non-limiting rainfall and air temperature). Nevertheless, during summer a general reduction of gs and photosynthesis was observed in the drought. The ecophysiological characteristics described in this study are in agreement with the different other species (Nogues et al., 2012; Domenico de Dato et al., 2013; Tattini et al., 2002; Filella et al., 1998). For example, in an earlier study on evergreen and broad-leaved oak (Ogaya and Peñuelas, 2003), it is clear that the carry-over effects of the summer drought were observed during the following cold season, decreasing the photosynthetic capacity of plants previously exposed to drought. Under conditions of extreme drought, Phillyrea Latifolia showed a decrease in photosynthesis performances, indicating a lower sensitivity to drought or high temperatures. Thus, to compare different adaptive strategies it is very important to conduct long term observations. It has been reported for Phillyrea plants,
the Fv/Fm ratio was slightly higher in summer than in spring and autumn. In our study, the maximum values of Fv/Fm were within the optimal range reported by Bjorkman and Demmig (1987) and they took place in the spring to fall. Conversely, summer Fv/Fm values were greater than 0.75 with a minimum of 0.83 ± 0.06 for phillyrea in summer, in agreement with previous studies on Mediterranean vegetation that also reported lower Fv/Fm values during these seasons. (Garciaa-Plazaola et al., 1997, Karavatas and Manetas, 1999; Larcher, 2000; Oliveira and Penuelas, 2001).

Persistent reductions in PSII efficacy is mainly attributed to decreased photosynthesis, stomatal closure, and reduced stomatal conductance. Nevertheless, lasting reductions in Fv/Fm values can also result from the accumulation of nonfunctional PSII reactions and the partial photoinactivation of PSII (Niyogi, 1999).

There is increasing supporting evidence that xylem embolism limits gas exchange (Sperry et al., 1998) and, in general, the ability of plants to cope with water stress (Pockman and Sperry, 2000; Sperry, 2000). In this study, it was found that the level of embolism in DS in the autumn is lower than in the other two seasons. This low rate may be an indication of the adaptation of this site to the drought phenomenon. These results are in agreement with Sperry et al. (2005) and Salleo et al. (2001) who showed that xylemic hydraulic conductance is controlled by physical processes such as vessel dimensions, wall structure that can be disturbed by the creation of embolism or air and water vapor bubbles that expel the liquid phase. The vessel is then said to be cavitated or embolized (Tyree et al., 1989). Cavitation occurs particularly in cases of soil dryness (Vilagrosa et al., 2003, Ennajeh et al., 2008). It can also be seen that stomatal conductance follows the same aspect of variation of xylemic conductance presented in Fig. 33, these findings are proven by Cornic (2007). Previous studies have shown that plants differ widely in their vulnerability to drought-induced cavitation and that this variation is associated with the range of water potentials experienced in the field (Pockman and Sperry, 2000; Sperry, 2000). As a result, the difference between the critical leaf water potential causing catastrophic levels of xylem embolism and the minimum values under field conditions (Tyree and Sperry, 1988) tends to be small. This result suggests that there are disadvantages in having xylem that is overly resistant to cavitation. The main disadvantage that has been proposed is the existence of a trade-off between hydraulic potential and resistance to xylem embolism. Such a trade-off would have important evolutionary implications (Tyree et al., 1994). Alternatively, it may also be that there are direct advantageous effects of cavitation. Xylem embolism can be viewed as a control mechanism which, in connection with the stomatal activity, regulates the amount of water extracted by the plant (Salleo et al., 2001). Since differences in environmental conditions may introduce confounding effects in the relationships between hydraulic properties, we have focused on species coexisting in one single area.

Conclusion

In conclusion, seasonal variations in the physiological functioning of plants have occurred in both ambient and dry climates. Comparing the species’ behavior requires a good knowledge of the soil-plant-atmosphere system during the study periods (March-January 2018).
The best photosynthetic performance, Transpiration and stomatal conductance of *Phillyrea latifolia* reported in spring and autumn may be attributed to favorable environmental conditions. Nevertheless, during summer a general reduction of gs and photosynthesis was observed in the drought. the Fv/Fm ratio was slightly higher in summer than in spring and autumn. The vulnerability of xylem cavitation varies considerably according to season. The answers depend not only on the specie but also on the climates in which they grow.

References

Acherar M, Rmbal S, 1992. Comparative water relations of four Mediterranean oak species. In *Quercus ilex L. Ecosystems: function, dynamics, and management* (pp. 177-184). Springer, Dordrecht.

And CD, Rambal S, 1995. A field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (*Quercus pubescens*) during a severe summer drought. *New Phytologist*, 131(2), 159-167.

Aussenac G, Granier A, 1979. Etude bioclimatique d’une futaie feuillue (Fagus silvatica L. et Quercus sessiliflora Salisb.) de l’Est de la France-II, Étude de l’humidité du sol de l’évapotranspiration réelle. Annales Des Sciences Forestières (Vol, 36, No, 4, pp, 265-280). EDP Sciences.

Bjorkman O, Demmig B, 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77k among vascular plants of diverse origins. Planta 170: 489–504

Cabrera HM, 2002. Ecophysiological responses of plants in ecosystems with Mediterranean-like climate and high mountain environments. Revista Chilena De Historia Natural 75, 625–637.

Canadell J, Lloret F, Lopez-Soria L, 1991. Resprouting vigor of two Mediterranean shrub species after experimental fire treatments. Vegetatio 95:119–126.

Cornic G, 2007. Effet de la contrainte hydrique sur la photosynthèse foliaire [Effect of water stress on leaf photosynthesis] In: “La photosynthèse et l’environnement”. Laboratoire Eco-logie, Systématique et Evolution, Université Paris Sud, Paris, France, pp. 36.

Dai A, 2013. Increasing drought under global warming in observations and models. *Nature climate change*, 3(1), 52-58.

De Dato GD, Micali M, Jaoudé RA, Liberati D, De Angelis P, 2013. Earlier summer drought affects leaf functioning of the Mediterranean species Cistus monspeliensis L. Environmental and experimental botany, 93, 13-19.

Ennajeh M, Tounkiti T, Vadel AM, Khemira H, Cochard H, 2008. Water relations and drought-induced embolism in olive (*Olea europaea*) varieties ‘Meski’ and ‘Chemlali’ during a severe drought. Tree Physiol. 28(6):971-6.
Ferrio JP, Florit A, Vega A, Serrano L, Voltas J, 2003. D13C and tree-ring width reflect different drought responses in *Quercus ilex* and *Pinus halepensis*. Oecologia 442, 512–518.

Filella I, Llusà J, Piñol J, Peñuelas J, 1998. Leaf gas exchange and fluorescence of Phillyrea latifolia and *Quercus ilex* samplings in severe drought and high-temperature conditions. Environ. Exp. Bot. 39: 213–220.

Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H, 2008. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Env 31:602–621.

Galmés J, Medrano H, Flexas J, 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93.

García-Plazaola JI, Faria T, Abadí A, Abadía A, Chaves MM, Pereira JS, 1997. Seasonal changes in xanthophyll composition and photosynthesis of cork oak (*Quercus suber*) leaves under the Mediterranean climate. J Exp Bot 48: 1667–1674.

Genty B, Briantais JM, Baker NR, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta (BBA)-Gen. Subj. 990 (1), 87–92.

Gulias J, Flexas J, Abadía A, a Medrano H, 2002. Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of *Rhamnus Ludovici-salvatoris*, an endemic Balearic species. Tree Physiology 22, 687–697.

Hietz P, Rosner S, Sorz J, Mayr S, 2008. Comparison of methods to quantify the loss of hydraulic conductivity in Norway spruce. *Annals of Forest Science*, 65, 502.

Karavatas S, Manetas Y, 1999. Seasonal patterns of photosystem 2 photochemical efficiency in evergreen sclerophylls and drought semi-deciduous shrubs under Mediterranean field conditions. Photosynthetica 36: 41–49.

Kemp PR, Reynolds JF, Pachepsky Y, Chen JL, 1997. A comparative modeling study of soil water dynamics in a desert ecosystem. Water Resources Research, Vol. 33, NO. 1, Pages 73-90, January 1997.

Larcher W, 2000. Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystems 134: 279–295.

Llorens L, Penuelas J, Estiarte M, 2003a. Ecophysiological responses of two Mediterranean shrubs, *Erica multiflora*, and *Globularia alypum*, to experimentally drier and warmer conditions. Physiol Plant 119:231–243.

Llusia J, Penuelas J, Alessio GA, Estiarte M, 2008. Contrasting species-specific, compound-specific, seasonal, and inter-annual responses of foliar isoprenoid emissions to experimental drought in
Mediterranean shrubland. Int J Plant Sci 169:637–645

Martinez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E, 2000. Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiology 20, 131–138.

Martinez-Vilalta J, Prat E, Oliveras I, Pinol J, 2002. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133, 19–29.

Niyogi KK, 1999. Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol 50: 333–359

Nogués I, Penuelas J, Llusia J, Estiarte M, Munné-Bosch S, Sardans J, Loreto F, 2012. Physiological and antioxidant responses of Erica multiflora to drought and warming through different seasons. Plant ecology, 213(4), 649-661.

Oechel WC, Lowell W, Jarrell W, 1981. Nutrient and environmental controls on carbon flux in Mediterranean shrubs from California. In Components of productivity of Mediterranean-climate regions Basic and applied aspects (pp. 51-59). Springer, Dordrecht.

Ogaya R, Penuelas J, 2003. A comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimentaldrought conditions. Environmental and Experimental Botany 50, 137–148.

Oliveira G, Penuelas J, 2001. Allocation of absorbed light energy into photochemistry and dissipation in a semi-deciduous and an evergreen Mediterranean woody species during winter. Australian Journal of plant physiology 28(6):471-480

Palamarev E, 1989. Paleobotanical evidence of the Tertiary history and origin of the Mediterranean sclerophyll dendroora. Plant Systematics and Evolution 162, 93–107.

Pariente S, 2002. "Spatial patterns of soil moisture as affected by shrubs, in different climatic conditions." Environmental Monitoring and Assessment 73.3 (2002): 237-251.

Peñuelas J, Filella I, Llusia J, Siscart D, Piñol J, 1998. A comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. Journal of Experimental Botany, 49(319), 229-238.

PNUD, 2015. Programme des Nations Unies pour le Développement en Tunisie [En Ligne]
http://www.cime-tunisie.nat.tn/fr/la-dorsale-tunisienne

Pockman WT, Sperry JS, 2000. Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299
Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R, 2002. Severe drought effects on ecosystem CO$_2$ and H$_2$O fluxes at three Mediterranean evergreen sites: revision of current

Sack L, Melcher PJ, Zwieniecki MA, Holbrook NM, 2002. The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. *Journal of Experimental Botany, 53*(378), 2177-2184.

Salleo S, Lo Gullo MA, Raimando F, Nardini A, 2001. Vulnerability to cavitation of leaf minor veins: any impact on leaf gas exchange? *Plant Cell and Environment* 24:851-859.

Schwinning S, Ehleringer JR, 2001. Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. *Journal of Ecology* 89, 464–480.

Sperry JS, 2000. Hydraulic constraints on plant gas exchange. *Agric For Meteorol* 104:13–23

Sperry JS, Donnelly JR, Tyree MT, 1988. A method for measuring hydraulic conductivity and embolism in xylem. *Plant Cell Environ* 11:35–40

Sperry JS, Hacke UG, Wheeler JK, 2005. Comparative analysis of end wall resistance in xylem conduits. *Plant, Cell and Environment* 11: 35-40.

Tattini M, Montagni G, Traversi ML, 2002. Gas exchange, water relations and osmotic adjustment in Phillyrea latifolia grown at various salinity concentrations. *Tree Physiology, 22*(6), 403-412.

Tenhunen J, 1987. Diurnal variations in leaf conductance and gas exchange in natural environments JD Tenhunen, RW Pearcy, and OL Lange. *Stomat. Funct*, 323.

Tyree MT, Nardini A, Salleo S, Sack L, El Omari B, 2005. The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for the stomatal response? *Journal of Experimental Botany, 56*(412), 737-744.

Tyree MT, Yang S, 1992. Hydraulic conductivity recovery versus water pressure in the xylem of Acer saccharum. *Plant Physiology, 100*(2), 669-676.

Tyree MT, 1989. Cavitation in trees and the hydraulic sufficiency of woody stems. Annales des Sciences Forestieres 46s, 330s-337s.

Valladares F, Dobarro I, Sanchez-Gomez D, Pearcy RW, 2005. Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. *Journal of Experimental Botany* 56, 483–494.

Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E, 2003. Cavitation, stomatal conductance, and leaf dieback in the seedling of two co-occurring Mediterranean shrubs during an intense drought. *Journal of*
Villegas JC, Breshears DD, Zou CB, Law DJ, 2010. Ecohydrological controls of soil evaporation in deciduous drylands: how the hierarchical effects of litter, patch and vegetation mosaic cover interact with phenology and season. *Journal of Arid Environments*, 74(5), 595-602.

Vitale M, Capogna F, Manes F, 2007. Resilience assessment on *Phillyrea Angustifolia L.* maquis undergone experimental fire through a big-leaf modeling approach. Ecol Modell 203:387–394. DOI:10.1016/j.ecolmodel.2006.12.004

Zavala MA, Espelta JM, Retana J, 2000. Constraints and trade-offs in Mediterranean plant communities: the case of holm oak-Aleppo pine forests. *The Botanical Review*, 66(1), 119-149.

Tables

Table 1: Percentage of loss conductivity (PLC)

| PLC (%) |
|---------|---
| Phillyrea latifolia
| Spring | Summer | Autumn |
| 61.15±1.2b | 66.58±1.62a | 41.15±1.7c |

Figures
Figure 1

Mean and accumulated precipitation and temperature per month from 2017 to 2019 at the site of study.
Figure 2

seasonal variability of \(\psi_{\text{leaf}} \).
Figure 3

Seasonal variability of net photosynthesis (Pn) and Transpiration (Tr).
Figure 4

Seasonal variability Stomatal Conductance

Figure 5

Seasonal variation of maximum quantum yield of primary photochemistry.
Figure 6

Seasonal variability of xylem conductivity (Kin and Kmax).
Figure 7

Evolution of the water profile from 20 to 80 cm depth during the three seasons.