Abstract

Let G be countable group and M be a proper cocompact even-dimensional G-manifold with orbifold quotient \tilde{M}. Let D be a G-invariant Dirac operator on M. It induces an equivariant K-homology class $[D] \in K^G_0(M)$ and an orbifold Dirac operator \tilde{D} on \tilde{M}. Composing the assembly map $K^G_0(M) \to K_0(C^*(G))$ with the homomorphism $K_0(C^*(G)) \to \mathbb{Z}$ given by the representation $C^*(G) \to \mathbb{C}$ of the maximal group C^*-algebra induced from the trivial representation of G we define $\text{index}([D]) \in \mathbb{Z}$. In the second section of the paper we show that $\text{index}(\tilde{D}) = \text{index}([D])$ and obtain explicit formulas for this integer. In the third section we review the decomposition of $K^G_0(M)$ in terms of the contributions of fixed point sets of finite cyclic subgroups of G obtained by W. Lück. In particular, the class $[D]$ decomposes in this way. In the last section we derive an explicit formula for the contribution to $[D]$ associated to a finite cyclic subgroup of G.
1 Introduction

Let G be a countable group and M be a proper cocompact even-dimensional G-manifold with orbifold quotient \overline{M}. In the literature, orbifolds which can be represented as a global quotient of a smooth manifold by a proper action of a discrete group are often called good orbifolds.

Let D be a G-invariant Dirac operator on M acting on sections of a G-equivariant $\mathbb{Z}/2\mathbb{Z}$-graded Dirac bundle $F \to M$. It induces an equivariant K-homology class $[D] \in K^G_0(M)$ and an orbifold Dirac operator \overline{D} on \overline{M} with index $\text{index}(\overline{D}) \in \mathbb{Z}$. In the following we briefly describe these objects.

We can identify \overline{D} with the restriction of D to the subspace of G-invariant sections $C^\infty(M, F)^G$. The operator \overline{D} is an example of an elliptic operator on an orbifold. Index theory for elliptic operators on orbifolds has been started with [Kaw81] (see also [Kaw79], [Kaw78] for special cases, and [Far92b], [Far92c], [Far92a] for alternative approaches). In particular, we have $\dim \ker(\overline{D}) < \infty$, and we can define

$$\text{index}(\overline{D}) := \dim \ker(\overline{D}^+) - \dim \ker(\overline{D}^-).$$

In the present paper we use the analytic definition of equivariant K-homology using equivariant KK-theory

$$K^G(M) := KK^G(C_0(M), \mathbb{C}).$$

The class $[D] \in KK^G(C_0(M), \mathbb{C})$ is represented by the Kasparov module $(\mathcal{E}, \mathcal{F})$ with $\mathcal{E} := L^2(M, F)$ and $\mathcal{F} := D(D^2 + 1)^{-1/2}$ (see Subsection 2.1 for more details).

Let $C^*(G)$ denote the unreduced group C^*-algebra of G. In general, the theory of the present paper would not work with the reduced group C^*-algebra $C^*_r(G)$. The key point is that finite-dimensional unitary representations of G extend to representations of $C^*(G)$, but not to $C^*_r(G)$ in general.

We now consider the assembly map

$$\text{ass} : K^G_0(M) \to K_0(C^*(G)).$$

We use an analytic description of the assembly map which is part of Definition 2.1, and we refer to [MN06], [DL98] and [BM04] for modern treatements of assembly maps in general.
Composing the assembly map with the homomorphism $I_1 : K_0(C^*(G)) \to K_0(\mathbb{C}) \cong \mathbb{Z}$ given by the representation $1 : C^*(G) \to \mathbb{C}$ induced from the trivial representation of G we define

\[\text{index}([D]) := I_1 \circ \text{ass}([D]) \in \mathbb{Z}. \]

As a special case of the first main result Theorem 2.2 we get the equality

\[\text{index}(\bar{D}) = \text{index}([D]). \] (1)

Theorem 2.2 deals with the slightly more general case where the trivial representation triv of G is replaced by an arbitrary finite-dimensional unitary representation of G. We think, that equation (1) was known to specialists, at least as a folklore fact.

The next result of the present paper is a nice local formula for $\text{index}([D])$. The main feature of local index theory is that one can calculate the index of a Dirac operator on a closed smooth manifold in terms of an integral of a local index form. A standard reference for local index theory is the book [BGV92]. Local index theory generalizes to Dirac operators on orbifolds. The index formulas in [Kaw81] and [Far92b] express the index of the Dirac operator on the orbifold as a sum of integrals of local index forms over the various strata. In the case of a good orbifold $G\backslash M$ the strata correspond to the fixed point manifolds M^g of the elements $g \in G$. There are various ways to organize these contributions. For the purpose of the present paper we need a formula which expresses the index as a sum of contributions associated to the conjugacy classes of finite cyclic subgroups of G. We will state this formula in Corollary 2.4 (we refrain from giving a detailed statement here since this would require the introduction of too much of notation). In principle one could deduce the formula given in Corollary 2.4 by reorganising the previous results [Kaw81] and [Far92b]. But we found it simpler to prove the formula directly using the heat equation approach to local index theory and the local calculations from equivariant index theory [BGV92].

The proper cocompact G-manifold M can be given the structure of a finite G-CW-complex. The equivariant K-homology of proper G-CW-complexes has been studied intensively in connection with the Baum-Connes conjecture. Rationally, $K^G(M)$ decomposes as a sum of contributions of conjugacy classes (C) of finite cyclic subgroups $C \subset G$ (see [Lue02b] for a detailed statement). This decomposition is a consequence of a result of [Lue02b] which is finer since it only requires to invert the primes dividing the orders of the finite subgroups of G. We thus can write $[D]$ as a sum of contributions $[D](C)$ where (C) runs over the set of conjugacy classes of finite cyclic subgroups of G. Our last result Theorem 4.3 is the calculation of $[D](C)$. In the proof we use the index formula Corollary 2.4 as follows. By a result of [LO01b] the equivariant K-theory $K^G_0(M)$ has a description in terms of finite-dimensional G-equivariant vector bundles $E \to M$. We first derive a cohomological index formula Theorem 4.1 for the pairing of a K-homology class coming
from a finite cyclic subgroup \(C \subset G \) with the class \([E] \in K^0_G(M)\). In the proof we use the relation (1).

We then observe that the pairing of \([D]\) with \([E]\) is the index of the twisted operator \([DE]\) which can be written as a sum of contributions of conjugacy classes of finite subgroups by 2.4. We obtain \([D](C')\) be a comparison of the formulas in Theorem 4.1 and Corollary 2.4 and variation of \(E\).

Acknowledgement: The first version of this paper was written in spring 2001. I want to thank W. Lück for his motivating interest in this work, and Th. Schick for pointing out a small mistake \(^1\) in the previous version.

2 Assembly and orbifold index

2.1 The equivariant \(K\)-homology class of an invariant Dirac operator

Let \(G\) be a countable discrete group. Let \(M\) be a smooth proper cocompact \(G\)-manifold, i.e. a \(G\)-manifold such that the stabilizer \(G_x\) is finite for all \(x \in M\), and \(G \setminus M\) is compact. We further assume that \(M\) is equipped with a complete \(G\)-invariant Riemannian metric \(g^M\) and a \(G\)-homogeneous Dirac bundle \((F, \nabla^F, \circ, (.,.)_F)\). Here \(\circ : TM \otimes F \to F\) is the Clifford multiplication, \(\nabla^F\) is a Clifford connection, \((.,.)_F\) is the hermitian scalar product, and these structures satisfy the usual compatibility conditions (see [BGV92], Ch.3) and are, in addition, \(G\)-invariant.

For simplicity we assume that \(\dim(M)\) is even and that the Dirac bundle is \(\mathbb{Z}/2\mathbb{Z}\)-graded. In fact, the odd-dimensional case can easily be reduced to the even dimensional case by taking the product with \(S^1\).

We use equivariant \(KK\)-theory in order to define equivariant \(K\)-homology. Thus let \(KK^G\) be the equivariant \(KK\)-theory introduced in [Kas88] (see also [Bla98]). Let \(C_0(M)\) be the \(G\)-\(C^*\)-algebra of continuous functions on \(M\) vanishing at infinity. Then by definition \(K^G_0(M) = KK^G(C_0(M), \mathbb{C})\). The Dirac operator \(D\) associated to the invariant Dirac bundle \(F\) induces a class \([D] \in K^G_0(M)\) as follows. We form the \(\mathbb{Z}/2\mathbb{Z}\)-graded \(G\)-Hilbert space \(\mathcal{E} := L^2(M, F)\). Then \(C_0(M)\) acts on \(\mathcal{E}\) by multiplication. Furthermore, we consider the bounded \(G\)-invariant operator \(\mathcal{F} := D(D^2 + 1)^{-1/2}\) which is defined by applying the function calculus to the unique (see [Che73]) selfadjoint extension of \(D\). Then \([D]\) is represented by the Kasparov module \((\mathcal{E}, \mathcal{F})\).

\(^1\)The factor \(\frac{1}{\text{ord}(g)}\) in (2.3) was missing.
2.2 Descent and index

Let $C^*(G)$ denote the (non-reduced) group C^*-algebra of G. It has the universal property, that any unitary representation of G extends to representation of $C^*(G)$. In particular, if $\rho : G \to U(V_\rho)$ is an unitary representation of G on a finite-dimensional Hilbert space V_ρ, then there is an extension $\rho : C^*(G) \to \text{End}(V_\rho)$. On the level of K-theory it induces a homomorphism (using Morita invariance and $K_0(\mathbb{C}) \cong \mathbb{Z}$) $I_\rho : K_0(C^*(G)) \to K_0(\text{End}(V_\rho)) \cong \mathbb{Z}$. In particular, if $\rho = 1$ is the trivial representation, then we also write $I := I_1$. Note that I_ρ can be written as a Kasparov product $\otimes C^*(G)[\rho]$, where $[\rho] \in KK(C^*(G), \text{End}(V(\rho)))$ is represented by the Kasparov module $(V_\rho, 0)$.

Let $C^*(G, C_0(M))$ be the (non-reduced) cross product of G with $C_0(M)$. Then there is the descent homomorphism $j^G : K_0^G(M) \cong KK(C_0(M), \mathbb{C}) \to KK(C^*(G, C_0(M)), C^*(G))$ introduced in [Kas88], 3.11. Following [GHT00] we choose any cut-off function $\chi \in C^\infty_c(M)$ with values in $[0, 1]$ such that $\sum_{g \in G} g^*\chi^2 \equiv 1$. Then we define the projection $P \in C^*(G, C_0(M))$ by $P(g) = (g^{-1})^*\chi$. Let $[P] \in K_0(C^*(G, C_0(M)) \cong KK(\mathbb{C}, C^*(G, C_0(M)))$ be the class induced by P, which is independent of the choice of χ.

Definition 2.1 We define $\text{index}_\rho : K_0^G(M) \to \mathbb{Z}$ to be the composition

$$K_0^G(M) \xrightarrow{j^G} KK(C^*(G, C_0(M)), C^*(G)) \xrightarrow{[P] \otimes C^*(G, C_0(M))} KK(\mathbb{C}, C^*(G, C_0(M))) \xrightarrow{I_\rho} \mathbb{Z}.$$

In particular, we set $\text{index} := \text{index}_1$.

2.3 Index and Orbifold index

The quotient $\tilde{M} := G \backslash M$ is a smooth compact orbifold carrying an orbifold Dirac bundle $\tilde{F} := G \backslash F$ with associated orbifold Dirac operator \tilde{D}. In our case the space of smooth sections $C^\infty(\tilde{M}, \tilde{F})$ can be identified with the G-invariant sections $C^\infty(M, F)^G$. Then \tilde{D} coincides with the restriction of D to this subspace. It is well-known that $\dim(\ker \tilde{D}) < \infty$ so that we can define the index $\text{index}(\tilde{D}) := \dim_s(\ker \tilde{D}) \in \mathbb{Z}$, where the subscript ”$s$” indicates that we take the super dimension.

If $\rho : G \to U(V_\rho)$ is a finite-dimensional unitary representation of G, then we define the orbifold bundle $\tilde{V}(\rho) := G \backslash M \times V_\rho$ and let \tilde{D}_ρ be the twisted operator associated to $\tilde{F} \otimes \tilde{V}(\rho)$. The space $C^\infty(\tilde{M}, \tilde{F} \otimes \tilde{V}(\rho))$ can be identified with $(C^\infty(M, F) \otimes V_\rho)^G$ such that \tilde{D}_ρ is the restriction of $D \otimes 1$ to this subspace. Still we can define $\text{index}(\tilde{D}_\rho)$.

Theorem 2.2 $\text{index}(\tilde{D}_\rho) = \text{index}_\rho([D])$

Proof. We first apply j^G to the Kasparov module $(L^2(M, F), \mathcal{F})$ representing $[D]$. According to [Kas88], 3.11., $j^G([D])$ is represented by $(C^*(G, L^2(M, F)), \tilde{F})$, where $C^*(G, L^2(M, F))$...
is a $C^*(G)$-right-module admitting a left action by $C^*(G, C_0(M))$. It is a closure of the space of finitely supported functions $f : G :\rightarrow L^2(M, F)$. The operator \tilde{F} is given by $(\tilde{F}f)(g) = (Ff)(g)$. The $C^*(G)$-valued scalar product is given by $\langle f_1, f_2 \rangle(g) = \sum_{h \in G} \langle f_1(h), f_2(hg) \rangle$. Furthermore, the left action of $C^*(G, C_0(M))$ is given by $(\phi f)(g) = \sum_{h \in G} \phi(h)(hf)(g)$.

Using associativity of the Kasparov product we can compute index$_{\rho}$ by first applying $\otimes_{C^*(G)}[\rho]$ and then $[P] \otimes_{C^*(G, C_0(M))}$. Using that $C^*(G, L^2(M, F)) \otimes_{C^*(G)} V_{\rho} \cong L^2(M, F) \otimes V_{\rho}$ by $f \otimes v \mapsto \sum_{g \in G} f(g) \rho(g)v$ we conclude that $j^G([D]) \otimes_{C^*(G)} [\rho]$ is represented by the Kasparov module $(L^2(M, F) \otimes V_{\rho}, \tilde{F})$, where $\tilde{F} = F \otimes \text{id}_{V_{\rho}}$. The left-action of $C^*(G, C_0(M))$ is given by $(\phi f) = \sum_{h \in G} \phi(h)(h \otimes \rho(h))f$.

Finally we compute $[P] \otimes_{C^*(G, C_0(M))} (j^G([D]) \otimes_{C^*(G)} [\rho])$. We represent $[P]$ by the Kasparov module $(PC^*(G, C_0(M)), 0)$. We must understand $PC^*(G, C_0(M)) \otimes_{C_0(M)} (L^2(M, F) \otimes V_{\rho})$.

There is a natural unitary inclusion $L : L^2(\tilde{M}, F \otimes \tilde{V}(\rho)) \hookrightarrow L^2(M, F) \otimes V_{\rho}$. If $f \in L^2(\tilde{M}, F \otimes \tilde{V}(\rho))$ is considered as an element \hat{f} of $(L^2_{\text{loc}}(M, F) \times V_{\rho})^G$ in the natural way, then $L(f) := \chi \hat{f}$. The projection LL^* onto the range of L is given by

$$LL^*(f) = \sum_{g \in G} (g^{-1})^* \chi g f.$$

It now follows from the definition of P that

$$PC^*(G, C_0(M)) \otimes_{C^*(G, C_0(M))} (L^2(M, F) \otimes V_{\rho}) = P(L^2(M, F) \otimes V_{\rho})$$

$$\cong L^2(\tilde{M}, F \otimes \tilde{V}(\rho))$$

The operator \tilde{D} has a natural selfadjoint extension (also denoted by \tilde{D}) such that we can form $\overline{\tilde{F}} := \tilde{D}(1 + \tilde{D})^{-1/2}$. We claim that $[P] \otimes_{C^*(G, C_0(M))} (j^G([D]) \otimes_{C^*(G)} [\rho])$ is represented by the Kasparov module $(L^2(\tilde{M}, F \otimes \tilde{V}(\rho)), \overline{\tilde{F}})$. The assertion of the Theorem immediately follows from the claim. In order to show the claim we employ the characterization of the Kasparov product in terms of connections (see [Kas88], 2.10). In our situation we have only to show that $\overline{\tilde{F}}$ is a $\overline{\tilde{F}}$-connection.

For Hilbert-C^*-modules X, Y over some C^*-algebra A let $L(X, Y)$ and $K(X, Y)$ denote the spaces of bounded and compact adjoinable A-linear operators (see [Bla98] for definitions). For $\xi \in PC^*(G, C_0(M))$ we define $\theta_\xi \in L(L^2(M, F) \otimes V_{\rho}, P L^2(M, F) \otimes V_{\rho})$ by $\theta_\xi(f) = \xi f$. Since \mathcal{F} and $\overline{\mathcal{F}}$ are selfadjoint we only must show that $\theta_\xi \circ \overline{\mathcal{F}} - (L\overline{\mathcal{F}})^* \circ \theta_\xi \in K(L^2(M, F) \otimes V_{\rho}, P L^2(M, F) \otimes V_{\rho})$. We have $\xi \overline{\mathcal{F}} - (L\overline{\mathcal{F}})^* \xi = [\xi, \overline{\mathcal{F}}] + (\overline{\mathcal{F}} - L\overline{\mathcal{F}})^* P \xi$. Since $[\xi, \overline{\mathcal{F}}]$ is compact it suffices to show that $(\overline{\mathcal{F}} - L\overline{\mathcal{F}})^* P$ is compact. We consider $\tilde{D} := (1 - P)D(1 - P) + L\tilde{D} \overline{\mathcal{F}}$. Then we have $\tilde{D} = D + Q$, where Q is a zero order non-local operator. Let $\overline{\mathcal{F}} := \tilde{D}(1 + \tilde{D})^{-1/2}$. Then $(\overline{\mathcal{F}} - L\overline{\mathcal{F}})^* P = (\overline{\mathcal{F}} - \overline{\mathcal{F}}) P$. Let $\tilde{\chi} \in C_c^\infty(M)$ be such that $\chi \tilde{\chi} = \chi$. Then we have $(\overline{\mathcal{F}} - \overline{\mathcal{F}}) P = (\overline{\mathcal{F}} - \overline{\mathcal{F}}) \chi P$. Therefore it
suffices to show that $(\hat{F} - \tilde{F})\tilde{\chi}$ is compact. This can be done using the integral representations for \hat{F} and \tilde{F} as in [Bun95].

\[\square \]

2.4 The local index theorem

In this the present subsection we derive a local index theorem which is a formula for $\text{index}_p([D])$ in terms of integrals of characteristic forms over the various singular strata of \bar{M}.

Let $W \in C^\infty(M \times M, F \boxtimes F^*)^G$ be an invariant section which satisfies an estimate

\[|W(x, y)| \leq C \exp(-c \text{dist}(x, y)^2) \]

for some $c > 0$, $C < \infty$. Since \bar{M} is compact the manifold M has bounded geometry, and in particular, it has at most exponential volume growth. Therefore, W defines an integral operator \bar{W} on $L^2(\bar{M}, \bar{F} \otimes \bar{V}_\rho)$ by

\[\bar{W}f(x) := \int_M (W(x, y) \otimes \text{id}_{V_\rho}) f(y) dy. \]

This operator is in fact of trace class. We claim that

\[\text{Tr} \bar{W} = \int_{\bar{M}} \sum_{g \in G} \text{tr}(W(x, gx)g_x) dx \text{tr}\rho(g), \]

where g_x denotes the linear map $g_x : F_x \to F_{gx}$. In order to see the claim note that $\text{Tr} \bar{W} = \text{Tr} LW L^*$, and $R := LW L^*$ is the integral operator on $L^2(M, F) \otimes V_\rho$ given by the integral kernel $R(x, y) = \sum_{g \in G} \chi(x)W(x, gy)g_y \chi(y) \otimes \rho(g)$.

Again, since M and F have bounded geometry the heat kernel W_t, $t > 0$, i.e. the integral kernel of $\exp(-tD^2)$, satisfies the Gaussian estimate (2). Moreover, \bar{W}_t is precisely $\exp(-t\bar{D}^2)$. By the McKean-Singer formula we have

\[\text{index}(\bar{D}_\rho) = \text{Tr}_s \bar{W}_t \]

for any $t > 0$, where Tr_s is the super trace. We obtain the local index formula by evaluating

\[\lim_{t \to 0} \text{Tr}_s \bar{W}_t \]

If $g \in G$, then let M^g denote the fixed point submanifold of g. If $M^g \neq \emptyset$, then g is of finite order. Furthermore, let $Z_G(g)$ denote the centralizer of g in G. Then $Z_G(g) \backslash M^g$ is compact. For $g \in G$ let $(g) \in C(G)$ denote the conjugacy class of g, where $C(G)$ denotes the set of conjugacy classes. By $\mathcal{F}(G)$ we denote the set of elements of finite order, and by $\mathcal{FC}(G)$ we denote the set of conjugacy classes of G of finite order.
The formula (3) can we rewritten as follows.

\[
\text{tr}_s W = \int_M \sum_{g \in G} \text{tr}_s(W(x, gx)g_x)dx \, \text{tr}\rho(g)
\]
\[
= \sum_{(g) \in C(G)} \int_{G \backslash M} \sum_{h \in Z_G(g) \backslash G} \text{tr}_s(W(x, hgh^{-1}x)(hgh^{-1})_x)dx \, \text{tr}\rho(hgh^{-1})
\]
\[
= \sum_{(g) \in C(G)} \int_{Z_G(g) \backslash M} \text{tr}_s(W(x, gx)g_x)dx \, \text{tr}\rho(g) .
\]

If \(W = W_t \) is the heat kernel, then due to the usual gaussian estimates the integral \(\int_{Z_G(g) \backslash M} \text{tr}_s(W(x, gx)g_x)dx \) localizes at \(Z_G(g) \backslash M^g \) as \(t \to 0 \). There is a \(Z_G(g) \)-invariant density \(U(g) \in C^\infty(M^g, |\Lambda^{\text{max}}|T^*M^g)^{Z_G(g)} \) which is locally determined by the Riemannian structure \(g^M \) and the Dirac bundle \(F \) such that

\[
\lim_{t \to \infty} \int_{Z_G(g) \backslash M} \text{tr}_s(W_t(x, gx)g_x)dx = \frac{1}{\text{ord}(g)} \int_{Z_G(g) \backslash M^g} U(g) \text{tr}\rho(g) .
\]

An explicit formula for \(U(g) \) is given in [BGV92], Ch. 6.4, and it will be recalled below. We conclude that

\[
\text{index}_\rho([D]) = \sum_{(g) \in C_F(G)} \frac{1}{\text{ord}(g)} \int_{Z_G(g) \backslash M^g} U(g) \text{tr}\rho(g) .
\]

The fixed point manifold \(M^g \) is a totally geodesic Riemannian submanifold of \(M \) with induced metric \(g^{M^g} \). Let \(R^{M^g} \) denote its curvature tensor. We define the form \(\hat{A}(M^g) \in \Omega(M^g, \text{Or}(M^g)) \) by

\[
\hat{A}(M^g) = \det^{1/2} \left(\frac{R^{M^g}/4\pi i}{\sinh(R^{M^g}/4\pi i)} \right),
\]

where \(\text{Or}(M^g) \) denote the orientation bundle (the orientation bundle occurs since we must choose an orientation in order to define \(\det^{1/2} \)).

Furthermore, we define the \(G \)-equivariant bundle \(F/S := \text{End}_{\text{Cliff}(T^*M)}(F) \). It comes with a natural connection \(\nabla^{F/S} \). By \(R^{F/S} \) we denote its curvature. Following [BGV92], 6.13, we define the form \(\text{ch}(g, F/S) \in \Omega(M^g, \Lambda^{\text{max}} N \otimes \text{Or}(M)) \) by

\[
\text{ch}(g, F/S) = \frac{2^{\text{codim}_M(M^g)}}{\sqrt{\det(1 - g^N)}} \text{str}(\sigma_{\text{codim}_M(M^g)}(g^F) \exp(-R_0^{F/S}/2\pi i)) .
\]

Here \(g^N \) is the restriction of \(g \) to the normal bundle \(N \) of \(M^g \). Note that \(\det(1 - g^N) > 0 \) so that \(\sqrt{\det(1 - g^N)} \) is well-defined. Furthermore \(g^F \) is the action of \(g \) on the fibre of \(F|_{M^g} \). Since \(g^F \) commutes with \(\text{Cliff}(T^*M^g) \) it corresponds to an element of \(\text{Cliff}(N) \otimes \text{End}_{\text{Cliff}(M)}(F) \). \(\sigma_{\text{codim}_M(M^g)} : \text{Cliff}(N) \to \Lambda^{\text{max}} N \) is the symbol map so
that \(\sigma_{\text{codim}(M^g)} g^F \in \text{End}_{\text{Cliff}(M)}(F) \otimes \Lambda^{\text{max}} N \). Furthermore, the restriction \(R^{F/S}_0 \) of the curvature \(R^{F/S} \) to \(M^g \) is a section of \(\Omega(M^g, \text{End}_{\text{Cliff}(M)}(F)|_{M^g}) \). The super trace \(\text{str} : \text{End}_{\text{Cliff}(M)}(F) \rightarrow \mathbb{C} \otimes \text{Or}(M) \) is defined by \(\text{str}(W) = \text{tr}_g(\Gamma W) \), where \(\Gamma = \text{in}^{n/2} \text{vol}_M \) is the chirality operator defined using the orientation of \(M \).

Let \(T_N : \Lambda^{\text{max}} N \rightarrow \mathbb{C} \otimes \text{Or}(N) \) be the normal Beresin integral, where Or\((N)\) is the bundle of normal orientations. Then we have

\[
U(g) := [T_N(\frac{\hat{A}(M^g) \text{ch}(g, F/S)}{\det^{1/2}(1 - g^N \exp(-R^N/2\pi i))})]^{\text{max}}.
\]

Here \(R^N \) is the curvature tensor of \(N \), \(\frac{\det^{1/2}(1 - g^N \exp(-R^N))}{\det^{1/2}(1 - g^N \exp(-R^N/2\pi i))} \in \Omega(M^g, \text{Or}(M^g)) \), and \([\cdot]^{\text{max}}\) takes the part of maximal degree. In order to interpret the right-hand side as a density on \(M^g \) we identify \(\Lambda^{\text{max}} T^* M^g \otimes \text{Or}(M^g)^2 \otimes \text{Or}(N) \otimes \text{Or}(M) \) with \(|\Lambda^{\text{max}}| T^* M^g \) in the canonical way.

Theorem 2.3

\[
\text{index}_\rho([D]) = \sum_{(g) \in C \mathcal{F}(G)} \frac{\text{tr}_\rho(g)}{\text{ord}(g)} \int_{Z_G(g) \setminus M^g} [T_N(\frac{\hat{A}(M^g) \text{ch}(g, F/S)}{\det^{1/2}(1 - g^N \exp(-R^N/2\pi i))})]^{\text{max}}
\]

2.5 Cyclic subgroups

We now reformulate the local index theorem in terms of contributions of conjugacy classes of cyclic subgroups. Let \(\mathcal{F} \text{Cyc}(G) \) denote the set of finite cyclic subgroups. If \(C \in \mathcal{F} \text{Cyc}(G) \), then let \(\text{gen}(C) \) denote the set of its generators. The normalizer \(N_G(C) \) and the Weyl group \(W_G(C) := N_G(C)/Z_G(C) \) acts on \(\text{gen}(C) \). There is a natural map \(p : \mathcal{F}(G) \rightarrow \mathcal{F} \text{Cyc}(G), \ g \mapsto < g > \) which factors over conjugacy classes \(\tilde{p} : \mathcal{F}(G) \rightarrow \mathcal{F} \text{Cyc}(G) \). If \((C) \in \mathcal{F} \text{Cyc}(G) \), then \(\tilde{p}^{-1}(C) \) can be identified with \(W_G(C)/\text{gen}(C) \).

Note that \(M^g = M^{< g >} \), i.e. it only depends on the cyclic subgroup generated by \(g \). Similarly, \(Z_G(g) = Z_G(< g >) \). So we obtain

Corollary 2.4

\[
\text{index}_\rho([D]) = \sum_{(C) \in \mathcal{F} \text{Cyc}(G)} \frac{1}{|C|} \sum_{g \in W_G(C) \setminus \text{gen}(C)} \int_{Z_G(C) \setminus M^C} U(g) \text{tr}_\rho(g)
\]

2.6 Cap product and twisting

We define \(K^0_C(M) := KK^G(\mathbb{C}, C_0(M)) \). If \(E \) is a \(G \)-equivariant complex vector bundle, then let \([E] \in K^0_C(M) \) denote the class represented by the Kasparov module \((C_0(M, E), 0) \), where we define the \(C_0(M) \)-valued scalar product on \(C_0(M, E) \) after choosing a \(G \)-invariant hermitean metric \((.,.)_E \).
Since $C_0(M)$ is commutative any right $C_0(M)$-module is a left- $C_0(M)$-module in a natural way. If we apply this to Kasparaov modules we obtain a map

$$a : KK^G(C, C_0(M)) \to KK^G(C_0(M), C_0(M)).$$

Definition 2.5 The cap-product $K_0^G(M) \otimes K_0^G(M) \to K_0^G(M)$ is defined by

$$v \cap x := a(v) \otimes_{C_0(M)} x.$$

If we choose on $(E, (.,.))$ a hermitian connection ∇^E, then we can form the twisted Dirac bundle $E \otimes F$ with associated Dirac operator D_E. The following fact is well-known.

An elementary proof (for trivial G) can be found e.g. in [Bun95].

Proposition 2.6 $[D_E] = [E] \cap [D]$

2.7 A cohomological index formula for twisted operators

Let R^E denote the curvature of the connection ∇^E. For a finite cyclic subgroup $C \subset G$ let R^E_0 denote the restriction of R^E to M^C. If $g \in \text{gen}(C)$, then we have

$$\text{ch}(g, E \otimes F/S) = \text{ch}(g, F/S) \cup \text{ch}(g, E),$$

where $\text{ch}(g, E) = \text{tr}g^E \exp(-R^E_0/2\pi i)$. Here g^E denotes the action of g on the fibre of E.

Thus we can write

$$U_E(g) := \left[T_N\left(\frac{\hat{A}(M^g)\text{ch}(g, F/S) \cup \text{ch}(g, E)}{\det^{1/2}(1 - g^N \exp(-R^N/2\pi i))} \right) \right]_{\text{max}}.$$

We can write $U_E(g) = [\hat{U}(g) \cap \text{ch}(g, E)]_{\text{max}}$, where

$$\hat{U}(g) = T_N\left(\frac{\hat{A}(M^g)\text{ch}(g, F/S)}{\det^{1/2}(1 - g^N \exp(-R^N/2\pi i))} \right). \quad (4)$$

The cohomology $H^*(Z_G(C) \setminus M^C, \mathbb{C})$ of the orbifold $Z_G(C) \setminus M^C$ can be computed using the complex of invariant differential forms $(\Omega^*(M^C)^{Z_G(C)}, d)$. Furthermore, the homology $H_*(Z_G(C) \setminus M^C, \mathbb{C})$ can be identified with the dual of the cohomology, i.e. $H_*(Z_G(C) \setminus M^C, \mathbb{C}) \cong H^*(Z_G(C) \setminus M^C, \mathbb{C})^*$. The closed form $\hat{U}(g) \in \Omega^*(M^C, \text{Or})$ now defines a homology class $[\hat{U}(g)] \in H_*(Z_G(C) \setminus M^C, \mathbb{C})$ such that $[\hat{U}(g)]([\omega]) = \int_{Z_G(C) \setminus M^C} \hat{U}(g) \cap [\omega]_{\text{max}}$ for any closed form $\omega \in \Omega^*(M^C)^{Z_G(C)}$.

Let $\text{ch}(g, E) \in H^*(Z_G(C) \setminus M^C, \mathbb{C})$ denote the cohomology class represented by the closed form $\text{ch}(g, E)$.

Theorem 2.7

$$\text{index}_\rho([E] \cap [D]) = \sum_{(C) \in C \setminus FCycG} \frac{1}{|C|} \sum_{g \in W_G(C) \setminus \text{gen}(C)} \langle [\text{ch}(g, E)], [\hat{U}(g)] \rangle \text{tr} \rho(g).$$
3 Chern characters

3.1 The cohomological Chern character

In this Subsection we review the construction of the Chern character given in \cite{LO01a}. There the equivariant K-theory is introduced using a classifying space $K_G \mathbb{C}$. If X is a proper G-CW complex, then $K^0_G(X) := [X, K_G \mathbb{C}]_G$, where $[.]_G$ denotes the set of homotopy classes of equivariant maps.

Let $K_G(X)$ be the Grothendieck group of G-equivariant complex vector bundles. Then there is a natural homomorphism $b : K_G(X) \to K^0_G(X)$, which is an isomorphism if X is finite (\cite{LO01a}, Prop. 1.5).

If H is a finite group, then let $R_C(H)$ denote the complex representation ring of H with complex coefficients. The character gives a natural identification of $R_C(H)$ with the space of complex-valued class functions on H, i.e. $\mathbb{C}(C(H))$.

Since we want to work with differential forms later on we simplify matters by working with complex coefficients (the constructions in \cite{LO01a} are finer since they work over \mathbb{Q}). For any finite subgroup $H \subset G$ the construction \cite{LO01a}, (5.4), provides a homomorphism

$$\mathbf{ch}^H_X : K^0_G(X) \to H^*(Z_G(H) \backslash X^H) \otimes \mathbb{C}(C(H)).$$

For our purpose it suffices to understand $\mathbf{ch}^H_X(b(\{E\}))$, where E is a G-equivariant complex vector bundle over X, and $\{E\}$ denotes its class in $K_G(X)$. First of all note that $E_{|X^H}$ is a $N_G(H)$-equivariant bundle over X^H. We can further write $E_{|X^H} = \sum_{\phi \in \hat{H}} \text{Hom}_H(V_\phi, E_{|X^H}) \otimes V_\phi$, where $\text{Hom}_H(V_\phi, E_{|X^H})$ is a $Z_G(H)$-equivariant bundle over X^H. We therefore obtain an element of $K^0_{Z_G(H)}(X^H) \otimes R(H)$. We now apply the composition

$$K^0_{Z_G(H)}(X^H) \stackrel{pr^*}{\to} K^0_{Z_G(H)}(EG \times X^H) \stackrel{\cong}{\to} K^0_{Z_G(H)}(EG \times Z_G(H) \times X^H) \stackrel{\mathbf{ch}}{\to} H^*(EG \times Z_G(H) \times X^H, \mathbb{C}) \stackrel{(pr^*)^{-1}}{\to} H^*(Z_G(H) \backslash X^H, \mathbb{C})$$

to the first component, and the character $R(H) \to \mathbb{C}(C(H))$ to the second. The result belongs to $H^*(Z_G(H) \backslash X^H, \mathbb{C}) \otimes \mathbb{C}(C(H))$ and is $\mathbf{ch}^H_X(b(\{E\}))$.

If C is a finite cyclic subgroup, then let $r : \mathbb{C}(C(C)) \to \mathbb{C}(\text{gen}(C))$ be the restriction map. Note that $W_G(C)$ acts on $\mathbb{C}(\text{gen}(C))$ as well as on $H^*(Z_G(C) \backslash X^C, \mathbb{C})$. The result \cite{LO01a}, Lemma 5.6, now asserts that if X is finite, then

$$\prod_{(C) \in CFCyc(G)} (1 \otimes r) \mathbf{ch}^G_X : K^0_G(X)_C \to \prod_{(C) \in CFCyc(G)} (H^{ev}(Z_G(C) \backslash X^C, \mathbb{C}) \otimes \mathbb{C}(\text{gen}(C)))^{W_G(C)}$$

is an isomorphism.
3.2 Differential forms

In the present subsection we give a description of the equivariant Chern character using differential forms. Let M be a smooth proper G-manifold and E be a G-equivariant complex vector bundle over M. Then we can find a G-invariant hermitian metric $(.,.)_E$ and a G-invariant metric connection ∇^E. Let R^E denote the curvature of ∇^E. We define the closed G-invariant form $\text{ch}(E) \in \Omega(M)^G$ by $\text{ch}(E) := \text{tr} \exp(-R^E/2\pi i)$. It represents a cohomology class $[\text{ch}(E)] \in H^*(G\setminus M, \mathbb{C})$. Furthermore, we have the class $\text{ch}_{M}^{(1)}(b\{E\}))$, which is given by the following composition

$$
\mathbb{K}_G^0(M) \xrightarrow{\text{pr}_E} \mathbb{K}_G^0(EG \times M) \xrightarrow{\text{pr}_2} \mathbb{K}_1^0(EG \times_G M) \xrightarrow{\text{ch}} H^*(EG \times_G M, \mathbb{C}) \xrightarrow{(\text{pr}_2)^{-1}} H^*(G\setminus M, \mathbb{C}). \tag{6}
$$

Lemma 3.1 $[\text{ch}(E)] = \text{ch}_{M}^{(1)}(b\{E\}))$

Proof. We show that $\text{ch}_{M}^{(1)}(b\{E\}))$ can be represented by the form $\text{ch}(E)$. To do so we employ an approximation $j : \tilde{E}G \to EG$, where $\tilde{E}G$ is a free G-manifold and the G-map j is $\dim(M) + 1$-connected. This existence of such approximations will be shown in Subsection 3.3. Then we can define $\text{ch}_{M}^{(1)}(b\{E\}))$ by (3) but with EG replaced by $\tilde{E}G$. It is now clear that $\text{pr}_2^*\text{ch}(E) = \text{ch}(G\setminus \text{pr}_1^*E)$. \hfill \Box

Let $C \subset G$ be a finite cyclic subgroup. Furthermore, let $[\text{ch}(g, E)] \in H^*(Z_G(C)\setminus M^C, \mathbb{C})$ denote the cohomology class represented by $\text{ch}(g, E)$. The function $\text{gen}(C) \ni g \mapsto [\text{ch}(g, E)]$ can naturally be considered as an element $[\text{ch}(.), E] \in H^*(Z_G(C)\setminus M^C, \mathbb{C}) \otimes \mathbb{C}(\text{gen}(C))$ which is in fact $W_G(C)$-equivariant.

Proposition 3.2 $[\text{ch}(.), E]) = (1 \otimes r)\text{ch}_{M}^{C}(b\{E\}))$

Proof. First of all note that R^E_0 is the curvature of $E_{|M^C}$. Furthermore, the decomposition $E_{|M^C} = \sum_{\phi \in \mathcal{C}} E(\phi) \otimes V_\phi$ is preserved by R^E_0, where $E(\phi) = \text{Hom}_C(V_\phi, E_{|M^C})$. Let $R^{E(\phi)}$ be the restriction of the curvature to the subbundle $E(\phi) \otimes V_\phi$. We get for $g \in \text{gen}(C)$

$$
(1 \otimes r)\text{ch}_{M}^{C}(b\{E\})(g) \overset{\text{def}}{=} \sum_{\phi \in \mathcal{C}} \text{ch}_{M}^{(1)}(b\{E(\phi)\})\text{tr}\phi(g)
$$

$$
\overset{\text{Lemma} \text{3.2}}{=} \sum_{\phi \in \mathcal{C}} [\text{ch}(E(\phi))]\text{tr}\phi(g)
$$

$$
= \sum_{\phi \in \mathcal{C}} [\text{tr} \exp(-R^{E(\phi)}/2\pi i)]\text{tr}\phi(g)
$$

$$
= [\text{tr} g^E \exp(-R^E_0/2\pi i)]
$$

$$
= [\text{ch}(g, E)].
$$
3.3 Smooth approximations of CW-complexes

The goal of this subsection is to show that the approximation $j : \tilde{E}G \to E\!G$ used in the proof of Lemma 3.1 exists. We start with the following general result.

Proposition 3.3 If X is a countable finite-dimensional CW-complex, then there exists a smooth manifold M and a homotopy equivalence $M \sim X$.

Proof. Let X be a finite-dimensional CW-complex. Following [Bro62] we call a manifold with boundary $(\bar{M}, \partial \bar{M})$ a tubular neighbourhood of X if there exists a continuous map $F : \partial \bar{M} \to X$ such that the underlying topological space of \bar{M} is the mapping cylinder $C(F) = \partial \bar{M} \times [0,1] \cup_F X$ of F, the inclusion $\partial \bar{M} \times [0,1) \hookrightarrow M$ is smooth, and the inclusion $X \hookrightarrow \bar{M}$ is smooth on each open cell of X.

Let $X_0 \subseteq X_1 \subseteq X_2 \subseteq \ldots \subseteq X_n = X$ be the filtration of X by skeletons. We obtain X_{i+1} from X_i by attaching a countable number of $i+1$-cells. We will construct a tubular neighbourhood $(\bar{M}, \partial \bar{M})$ of X by induction over the dimension with the special property that the tangent bundle $T\bar{M} \to \bar{M}$ is trivial. It is clear that the collection of points X_0 admits such a tubular neighbourhood of any given dimension. Let us now assume that there exists an i-dimensional CW-complex Y together with a homotopy equivalence $h : Y \to X_i$ and a m-dimensional tubular neighbourhood $(W, \partial W)$, $F : \partial W \to Y$ of Y, such that $m \geq 2n + 3$ and $TW \to W$ is trivial.

Via a homotopy inverse of h the attaching data for X_{i+1} from X_i by attaching a countable number of $i + 1$-cells.

We consider \mathbb{R} with the cell-structure given by its decomposition into unit intervals. The product $(W \times \mathbb{R}, \partial W \times \mathbb{R})$ is a tubular neighbourhood of $Y \times \mathbb{R}$ in a natural way with retraction $F \times \text{id}_\mathbb{R} : \partial W \times \mathbb{R} \to Y \times \mathbb{R}$. The projection $Y \times \mathbb{R} \to Y$ is a homotopy equivalence.

We now fix an inclusion $J \subseteq Z$ and define attaching maps $\chi_\alpha := \tilde{\chi}_\alpha \times \{\alpha\} : S^i \to Y \times \mathbb{R}$. Let \tilde{Z} denote the complex obtained by attaching the cells to $Y \times \mathbb{R}$. Our choice of attaching maps is made such that these $i + 1$-cells are attached to the i-skeleton of Y. We have a homotopy equivalence $\tilde{Z} \sim \tilde{Z}$.

In order to improve the attaching maps we argue as in the proof of [Bro62, Theorem II]. Since $2\dim(Y) + 1 = 2i + 1 \leq 2n + 3 \leq m = \dim(W)$ we can deform the attaching...
map $\tilde{\chi}_\alpha$ slightly so that its image is disjoint from Y. To do so we adapt the method of the proof of [Whi55, Theorem 11a], and we use the assumption that the open cells of Y are smoothly embedded. Using the mapping cylinder structure $W \setminus Y \cong \partial W \times [0,1)$ we can further deform the attaching map such that it maps to ∂W. Finally, using that $2i + 1 \leq \dim(\partial W) = m - 1$ we can deform it to an embedding (see [Whi30, Theorem II]) into ∂W. We still denote this deformed attaching map by $\tilde{\chi}_\alpha$, and we use the assumption that the open cells of Y are smoothly embedded. Using the mapping cylinder structure $\partial W \times \{\alpha\} \cong \partial W \times [0,1)$ we can further deform the attaching map such that it maps to ∂W. Finally, using that $2i + 1 \leq \dim(\partial W) = m - 1$ we can deform it to an embedding (see [Whi30, Theorem II]) into ∂W. We still denote this deformed attaching map by $\tilde{\chi}_\alpha$, and we obtain a new deformed map $\chi_\alpha := \tilde{\chi}_\alpha \times \{\alpha\} : S^i \to \partial W \times \{\alpha\} \subseteq \partial W \times \mathbb{R}$. Since the tangent bundle $T\partial W \to \partial W$ is trivial, we see that the normal bundle ν_α of the embedding $\tilde{\chi}_\alpha$ is stably trivial. Since $\dim(\nu_\alpha) \geq i + 1$ the bundle ν_α is in fact trivial.

For each $\alpha \in J$ we now perform the procedure of attaching a handle to $W \times \mathbb{R}$ described in [Bro62, Sec. 2]. We can arrange the construction such that for $\alpha \in J$ it takes place on $W \times (\alpha - 1/4, \alpha + 1/4)$.

The result of this construction is a manifold with boundary $(N, \partial N)$ of dimension $m + 1$ containing an $i + 1$-dimensional CW-complex Z, and a map $N \to Z$ which represents $(N, \partial N)$ as a tubular neighbourhood of Z, and we have a homotopy equivalence $Z \cong \tilde{Z}$. The construction depends on the choice of trivializations of the normal bundles ν_α. By Lemma [Bro62, Lemma 2.2] we can choose the trivializations of the normal bundles ν_α such that $TN \to N$ is again trivial.

After we finite iteration of this construction we obtain a manifold with boundary $(\bar{M}, \partial \bar{M})$ which is a tubular neighbourhood of a CW-complex \tilde{X} which admits a homotopy equivalence $\tilde{h} : \tilde{X} \cong \tilde{X}$. The mapping cylinder structure on \bar{M} gives rise to a projection $p : \bar{M} \to \tilde{X}$. We now consider the smooth manifold $M := \bar{M} \setminus \partial \bar{M}$. The composition $\tilde{h} \circ p|_M : M \to X$ is a homotopy equivalence from a smooth manifold to X. □

We can now construct the smooth n-connected approximation $j : \tilde{EG} \to EG$, where $n \geq 2$. We start with a countable CW-complex BG of the homotopy type of the classifying space of G. For example, we can take the standard simplicial model. It is countable since G is countable.

We consider the n-skeleton $BG^n \subseteq BG$. It is a finite-dimensional countable CW-complex. By Proposition 3.3 we can find a smooth manifold \tilde{BG} together with a homotopy equivalence $\tilde{j} : \tilde{BG} \to BG^n$. Let $\tilde{j} : \tilde{BG} \to BG$ denote the composition of \tilde{j} with the inclusion $BG^n \hookrightarrow BG$. By construction \tilde{j} is n-connected.

Since \tilde{j} induces an isomorphism of fundamental groups it lifts to a n-connected map of universal coverings $j : \tilde{EG} \to EG$.

4 Explicit decomposition of K-homology classes

3.4 The homological Chern character

In this subsection we review the construction of the homological Chern character given in [Lü02a, Lü02b]. Let X be a proper G-CW-complex. The main constituent of the Chern character is a homomorphism

$$\text{ch}^X_H : H_{ev}(Z_G(H) \backslash X^H, \mathbb{C}) \otimes R_C(H) \to K^G_0(X)$$

for any finite subgroup $H \subset G$.

$$
\begin{array}{c}
H_{ev}(Z_G(H) \backslash X^H, \mathbb{C}) \otimes R_C(H) & \xrightarrow{(pr_2)^{-1} \otimes \text{id}} & H_{ev}(EG \times_{Z_G(H)} X^H, \mathbb{C}) \otimes R_C(H) \\
\text{ch}^{-1} \otimes \text{id} & \xrightarrow{=} & K_0(EG \times_{Z_G(H)} X^H)_C \otimes R_C(H) \\
\cong & \xrightarrow{m} & K_0^G(EG \times X^H)_C \\
\text{Ind}_{Z_G(H) \times H}^G & \xrightarrow{\text{Ind}_{Z_G(H) \times H}^G} & K_0^G(\text{Ind}_{Z_G(H) \times H}^G(EG \times X^H))_C \\
\text{Ind}_{Z_G(H) \times H}^G(pr_2), & \xrightarrow{m} & K_0^G(\text{Ind}_{Z_G(H) \times H}^G X^H)_C \\
& & K_0^G(X)
\end{array}
$$

Here ch is the homological Chern character, $\text{Ind}_{Z_G(H) \times H}^G$ denotes the induction functor, and $m : \text{Ind}_{Z_G(H) \times H}^G X^H = G \times_{Z_G(H) \times H} X^H \to X$ is the G-map $(g, x) \mapsto gx$.

Let $C \subset G$ be a finite cyclic subgroup. Then we have a natural inclusion $r^* : \mathbb{C}(\text{gen}(C)) \to R_C(C) \cong \mathbb{C}C$ such that the image consists of functions which vanish on $C \setminus \text{gen}(C)$. Note that $\mathbb{C}(\text{gen}(C))$ and $H_*(Z_G(H) \backslash X^H, \mathbb{C})$ are left and right $W_G(C)$-modules in the natural way. It follows from [Lü02b], Thm. 0.7, that

$$
\bigoplus_{(C) \in \mathcal{F}_{\text{Cyc}}(G)} \text{ch}^X_C (1 \otimes r^*) : \bigoplus_{(C) \in \mathcal{F}_{\text{Cyc}}(G)} H_{ev}(Z_G(C) \backslash X^C, \mathbb{C}) \otimes_{\mathbb{C}W_G(C)} \mathbb{C}(\text{gen}(C)) \to K^G_0(X)_C
$$

is an isomorphism.

4 Explicit decomposition of K-homology classes

4.1 An index formula

Let E be a G-equivariant vector bundle over X. If $A \in H_*(Z_G(H) \backslash X^H, \mathbb{C}) \otimes R_C(H)$, then we can ask for a formula for index$_\rho([E] \cap \text{ch}^X_H(A))$ in terms of $\text{ch}^H_X(b([E]))$. Let $\epsilon : R(H) \to \mathbb{Z}$ be the homomorphism which takes the multiplicity of the trivial representation. It
extends to a group homomorphism $\epsilon_C : \mathcal{R}_C(H) \to \mathbb{C}$. Using the ring structure of $\mathcal{R}_C(H)$ and the pairing between homology and cohomology we obtain a natural pairing

$$
\langle . , . \rangle_\rho : \left(H_*(Z_G(H) \setminus X^H, \mathbb{C}) \otimes \mathcal{R}_C(H) \right) \otimes \left(H^*(Z_G(H) \setminus X^H, \mathbb{C}) \otimes \mathcal{R}_C(H) \right) \to \mathcal{R}_C(H) \stackrel{\epsilon_\rho}{\to} \mathbb{C}.
$$

Theorem 4.1 $\text{index}_\rho([E] \cap \text{ch}_X^\mathfrak{X}(A)) = \langle \text{ch}_X^\mathfrak{X}(b\{E\}), A \rangle_\rho$

Proof. Let M be a cocompact free even-dimensional $Z_G(H)$-manifold equipped with a invariant Riemannian metric and a Dirac operator D associated to a $Z_G(H)$-equivariant Dirac bundle $F \to M$. Furthermore, let $f = (f_1, f_2) : M \to EG \times X^H$ be a $Z_G(H)$-equivariant continuous map. We form $[D] \in K_0^{Z_G(H)}(M)$ represented by the Kasparov module $(L^2(M, F), \mathcal{F})$. Then $f_*[D] \in K_0^{Z_G(H)}(EG \times X^H)$.

Note that $K_0^{Z_G(H)}(EG \times X^H) \subset \mathbb{C}$ is spanned by elements arising in this form. This can be seen as follows. First observe that every class in $K_0(EG \times X_G\mathfrak{H})$ can be represented in the form $f_*[D]$, where $\bar{f} : N \to EG \times Z_G(H) X^H$ is a map from a closed Spin^c-manifold, and \bar{D} is the Spin^c-Dirac operator on \bar{N}. A proof of this result is given in [BHS]. We now consider the pull-back

$$
\begin{array}{ccc}
N & \xrightarrow{f} & EG \times X^H \\
\downarrow & & \downarrow \\
\bar{N} & \xrightarrow{\bar{f}} & EG \times Z_G(H) X^H
\end{array}
$$

The manifold N carries a $Z_G(H)$-invariant Spin^c-structure with associated Dirac operator D. The class $f_*[D]$ corresponds to $\bar{f}_*[\bar{D}]$ under the isomorphism $K_0^{Z_G(H)}(EG \times X^H) \cong K_0^{Z_G(H)}(EG \times X^H)$.

Let $\phi \in \bar{H}$ be a finite-dimensional representation. It gives rise to an element $[\phi] \in K_0^H(\ast)_C$ under the natural identification $\mathcal{R}_C(H) \cong K_0^H(\ast)_C$. Let $T : K_0^{Z_G(H)}(EG \times X^H) \otimes K_0^H(\ast)_C \to K_0^G(X)$ be the composition $m_* \circ \text{Ind}_Z^{G/H} \circ (\text{pr}_2)_* \circ \text{Ind}_Z^{G/H} \circ \text{mult}$, which is part of the definition of ch_X^Y. We first study $\text{index}_\rho([E] \cap T(f_*[D] \otimes [\phi]))$. We have $\text{mult} \circ f_*([D] \otimes [\phi]) = f_* \circ \text{mult}([D] \otimes [\phi])$, and $\text{mult}([D] \otimes [\phi]) \in K_0^{Z_G(H) \times H}(M)$ is represented by the Kasparov module $(L^2(M, F) \otimes V_\phi, \mathcal{F} \otimes \text{id})$. Furthermore, $\text{Ind}_Z^{G/H \times H} \circ f_* \circ \text{mult}([D] \otimes [\phi]) = \text{Ind}_Z^{G/H \times H} (f_* \text{Ind}_Z^{G/H \times H} (\text{mult}([D] \otimes [\phi])))$. Explicitly, $\text{Ind}_Z^{G/H \times H} (\text{mult}([D] \otimes [\phi]))$ is represented by a Kasparov module which is constructed in the following way. Consider the exact sequence

$$
0 \to K \to Z_G(H) \times H \to G,
$$

where $K = Z_G(H) \cap H = Z_H(H)$. We identify $K \setminus Z_G(H) \times H$ with the subgroup $Z_G(H)H \subseteq G$.

Note that we consider M as a $Z_G(H) \times H$-manifold via the action of the first factor. The $Z_G(H)H$-manifold $\bar{M} := K \backslash M$ carries an induced equivariant Dirac bundle \bar{F}. We further consider the flat $Z_G(H)H$-equivariant bundle $\tilde{\bar{V}}_\phi := V_\phi \times_K M$ over \bar{M}. The twisted bundle $\tilde{F} \otimes \tilde{\bar{V}}_\phi$ is a $Z_G(H)H$-equivariant Dirac bundle. We consider the cocompact proper G-manifold $\bar{M} := G \times_{Z_G(H)H} \tilde{\bar{M}}$. The $Z_G(H)H$-equivariant Dirac bundle $\tilde{F} \otimes \tilde{\bar{V}}_\phi$ induces a G-equivariant Dirac bundle $\tilde{F}_\phi \to \bar{M}$ in a natural way with associated operator \tilde{D}_ϕ. Then $\text{Ind}^G_{Z_G(H)H}(\text{mult}([D] \otimes [\phi]))$ is represented by $[\bar{D}_\phi]$. The map $\text{Ind}^G_{Z_G(H)H}(f_*)$ is induced by the G-map $\tilde{f} : \bar{M} \to G \times_{Z_G(H)H} (K \backslash EG \times X^H)$ given by $\tilde{f}([g, Km]) := [g, (Kf_1(m), f_2(m))]$. It is now clear that $T([f_*[D] \otimes [\phi]])$ is represented by $h_*[\tilde{D}_\phi]$, where $h : \bar{M} \to X$ is given by $h([g, Km]) = gf_2(m)$.

It follows from the associativity of the Kasparov product that

$$\text{index}_\rho([E] \cap T(f_*[D] \otimes [\phi])) = \text{index}_\rho([E] \cap h_*[\bar{D}_\phi]) = \text{index}_\rho([h^*E] \cap [\bar{D}_\phi]).$$

By Theorem 2.2 and Proposition 2.6 we obtain $\text{index}_\rho([h^*E] \cap [\bar{D}_\phi]) = \text{index}(\bar{D}_{\phi,h^*E,\rho})$, where \bar{D}_{ϕ,h^*E} is the G-invariant Dirac operator associated to $\tilde{F} \otimes h^*E$, and $\bar{D}_{\phi,h^*E,\rho}$ is the operator on the orbifold $\tilde{M} := G \backslash \tilde{\bar{M}}$ induced by \bar{D}_{ϕ,h^*E} and the twist ρ. Restriction from \tilde{M} to the submanifold $\{1\} \times \bar{M}$ provides an isomorphism

$$\left(C^\infty(\tilde{M}, \tilde{F}_\phi \otimes h^*E) \otimes V_\rho\right)^G \cong \left(C^\infty(\tilde{M}, \tilde{F} \otimes \tilde{\bar{V}}_\phi \otimes \tilde{f}_2^*E_{|X^H}) \otimes V_\rho\right)^{Z_G(H)H},$$

where $\tilde{f}_2 : \tilde{M} \to X^H$ is induced by f_2. Since the action of H on the latter spaces is implemented by the action on the fibres of $\tilde{V}_\phi \otimes \tilde{f}_2^*E_{|X^H} \otimes V_\rho$ we further obtain

$$\left(C^\infty(\tilde{M}, \tilde{F}_\phi \otimes h^*E) \otimes V_\rho\right)^G = C^\infty(\tilde{M}, \tilde{F} \otimes (\tilde{V}_\phi \otimes \tilde{f}_2^*E_{|X^H} \otimes V_\rho)^H)^{K \backslash Z_G(H)}.$$

In the present situation we have $\tilde{M} = Z_G(H) \backslash M = (K \backslash Z_G(H)) \backslash \tilde{\bar{M}}$, i.e. the orbifold is smooth, and it carries the Dirac bundle \bar{F} with associated Dirac operator \bar{D}. We define the $(K \backslash Z_G(H))$-equivariant bundle $E_{\phi,\rho} := (V_\phi \otimes E_{|X^H} \otimes V_\rho)^H$ over X^H. Furthermore, we consider the quotient $\tilde{f}_2^*E_{\phi,\rho} := (K \backslash Z_G(H)) \backslash \tilde{f}_2^*E_{\phi,\rho}$ over \bar{M}. The identifications above show that $\text{index}_\rho(\bar{D}_{\phi,h^*E}) = \text{index}(\tilde{f}_2^*E_{\phi,\rho})$, i.e. it is the index of a twisted Dirac operator. Writing the index of the twisted Dirac operator in terms of Chern characters we obtain

$$\text{index}_\rho([E] \cap T(f_*[D] \otimes [\phi])) = \langle \text{ch}(\tilde{f}_2^*E_{\phi,\rho}), \text{ch}([D]) \rangle.$$

Note that $\tilde{f}_2^*E_{\phi,\rho} = f^*\text{pr}_2^*E_{\phi,\rho}$, where $\text{pr}_2 : EG \times X^H \to X^H$, $\tilde{f} : \bar{M} \to EG \times_{Z_G(H)} X^H$ is induced by f, and $\text{pr}_2^*E_{\phi,\rho} := Z_G(H) \backslash \text{pr}_2^*E_{\phi,\rho}$. We conclude that

$$\langle \text{ch}(\tilde{f}_2^*E_{\phi,\rho}), \text{ch}([D]) \rangle = \langle \text{ch}(\text{pr}_2^*E_{\phi,\rho}), \text{ch}(f_*[D]) \rangle.$$

The right-hand side can now be written as

$$\langle \epsilon_{\mathbb{C}}(\text{ch}_X^H(b([E])) \otimes [\phi] \otimes \rho), (\text{pr}_2)_*\text{ch}(f_*[D]) \rangle = \langle \text{ch}_X^H(E), (\text{pr}_2)_*\text{ch}(f_*[D]) \otimes [\phi])_\rho \rangle.$$
Note that \(\text{ch}_{\hat{H}}^X((\text{pr}_2)_* \text{ch}(\bar{f}_*[\hat{D}]) \otimes [\phi]) = T(f_*[D] \otimes [\phi]) \). Therefore we have shown
\[
\text{index}_\rho([E] \cap \text{ch}_{\hat{H}}^X((\text{pr}_2)_* \text{ch}(\bar{f}_*[\hat{D}]) \otimes [\phi]))) = \langle \text{ch}_{\hat{H}}^X(b([E])), \text{ch}(\bar{f}_*[\hat{D}] \otimes [\phi]) \rangle.
\]
Since the classes \((\text{pr}_2)_* \text{ch}(\bar{f}_*[\hat{D}] \otimes [\phi])\) for varying data \(M, F, f, \phi\) span \(H_{ev}(Z_G(H) \setminus X^H, \mathbb{C}) \otimes R_C(H)\) the theorem follows. \(\square\)

4.2 Decomposition

Lemma 4.2 Let \(X\) be a finite proper \(G\)-CW-complex. If \(x \in K^G_0(X)_\mathbb{C}\) and index([\(E\) \cap \(x\)]) = 0 for all \(G\)-equivariant complex vector bundles \(E\) on \(X\), then \(x = 0\).

Proof. Because of the isomorphism (4) it suffices to show that if \(A \in H_{ev}(Z_G(C) \setminus X^C, \mathbb{C}) \otimes \mathbb{C}(\text{gen}(C))\) and index([\(E\) \cap \(\text{ch}_C^X(A)\)]) = 0 for all \(E\), then \(A = 0\). By Theorem 4.1 we have index([\(E\) \cap \(\text{ch}_C^X(A)\)]) = \(\langle \text{ch}_C^X(b(\{E\})), A \rangle\). Using the surjectivity of \(b\) and of the isomorphism (3), and the fact that the pairing
\[
\langle \ldots \rangle : (H_{ev}(Z_G(C) \setminus X^C, \mathbb{C}) \otimes \mathbb{C}(\text{gen}(C)))^{W_G(C)} \otimes (H_{ev}(Z_G(C) \setminus X^C, \mathbb{C}) \otimes \mathbb{C}(\text{gen}(C)))^{W_G(C)} \to \mathbb{C}(\text{gen}(C))
\]
is nondegenerate we see that \(\langle \text{ch}_C^X(b(\{E\})), A \rangle = 0\) for all \(E\) indeed implies \(A = 0\). \(\square\)

Let now \(M\) be an even-dimensional proper cocompact \(G\)-manifold equipped with a \(G\)-invariant Riemannian metric \(g^M\) and a \(G\)-equivariant Dirac bundle \(F\) with associated Dirac operator \(D\). Let \([D]_\mathbb{C} \in K^G_0(M)_\mathbb{C}\) be the equivariant \(K\)-homology class of \(D\).

The \(G\)-space \(M\) has the \(G\)-homotopy type of a finite proper \(G\)-CW-complex. In particular, we have the isomorphism (4)
\[
\bigoplus_{(C) \in \mathcal{C}_\mathcal{F}_{\text{Cyc}}(G)} \text{ch}_C^M(1 \otimes r^*) : \bigoplus_{(C) \in \mathcal{C}_\mathcal{F}_{\text{Cyc}}(G)} H_{ev}(Z_G(C) \setminus M^C, \mathbb{C}) \otimes \mathbb{C}(\text{gen}(C)) \to K^G_0(M)_\mathbb{C}.
\]

Therefore, there exist uniquely determined classes \([D](C) \in H_{ev}(Z_G(C) \setminus M^C, \mathbb{C}) \otimes \mathbb{C}(\text{gen}(C))\) such that
\[
\sum_{(C) \in \mathcal{C}_\mathcal{F}_{\text{Cyc}}(G)} \text{ch}_C^M(1 \otimes r^*)([D](C)) = [D]_\mathbb{C}.
\]

Theorem 4.3 We have the equality
\[
[D](C) = [\hat{U}],
\]
where \([\hat{U}]\) is given by \(\text{gen}(C) \ni g \to [\hat{U}(g)] \in H_{ev}(Z_G(C) \setminus M^C, \mathbb{C})\), and \(\hat{U}(g)\) was defined in (4).
Proof. Let E be any G-equivariant complex vector bundle over M. Then we have

$$\text{index}([E] \cap [D]_C) = \sum_{(C) \in CFCyc(G)} \langle ch^C_M(b(\{E\})), [D](C) \rangle.$$

Using the definition of ϵ_C and Proposition 3.2 we can write out the summands of right-hand side as follows

$$\langle ch^C_M(b(\{E\})), [D](C) \rangle = \frac{1}{|C|} \sum_{g \in \text{gen}(C)} \langle [ch(g, E)], [D](C)(g) \rangle.$$

On the other hand the index formula Theorem 2.7 gives

$$\text{index}([E] \cap [D]_C) = \sum_{(C) \in CFCyc(G)} \frac{1}{|C|} \sum_{g \in \text{gen}(C)} \langle [ch(g, E)], [\hat{U}](g) \rangle.$$

Varying E and using Lemma 4.2 we conclude $[D](C) = [\hat{U}]$. \quad \square

References

[BGV92] Nicole Berline, Ezra Getzler, and Michèle Vergne. *Heat kernels and Dirac operators*, volume 298 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 1992. 1, 2.1, 2.4

[BHS] Paul Baum, Nigel Higson, and Thomas Schick. On the Equivalence of Geometric and Analytic K-Homology, arXiv:math.KT/0701484. 4.1

[Bla98] Bruce Blackadar. *K-theory for operator algebras*, volume 5 of *Mathematical Sciences Research Institute Publications*. Cambridge University Press, Cambridge, second edition, 1998. 2.1, 2.3

[BM04] Paul Balmer and Michel Matthey. Model theoretic reformulation of the Baum-Connes and Farrell-Jones conjectures. *Adv. Math.*, 189(2):495–500, 2004. 2

[Bre93] Glen E. Bredon. *Topology and geometry*, volume 139 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1993.

[Bro62] Edgar H. Brown, Jr. Nonexistence of low dimension relations between Stiefel-Whitney classes. *Trans. Amer. Math. Soc.*, 104:374–382, 1962. 1.3
[Bun95] Ulrich Bunke. A K-theoretic relative index theorem and Callias-type Dirac operators. *Math. Ann.*, 303(2):241–279, 1995.

[Che73] Paul R. Chernoff. Essential self-adjointness of powers of generators of hyperbolic equations. *J. Functional Analysis*, 12:401–414, 1973.

[DL98] James F. Davis and Wolfgang Lück. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. *K-Theory*, 15(3):201–252, 1998.

[Far92a] Carla Farsi. K-theoretical index theorems for good orbifolds. *Proc. Amer. Math. Soc.*, 115(3):769–773, 1992.

[Far92b] Carla Farsi. K-theoretical index theorems for orbifolds. *Quart. J. Math. Oxford Ser. (2)*, 43(170):183–200, 1992.

[Far92c] Carla Farsi. A note on K-theoretical index theorems for orbifolds. *Proc. Roy. Soc. London Ser. A*, 437(1900):429–431, 1992.

[Fed88] V.V. Fedorchuk. The fundamentals of dimension theory. General topology. I. Basic concepts and constructions. Dimension theory. Encycl. Math. Sci. 17, 91-192 (1990); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 17, 111-224 (1988).

[GHT00] Erik Guentner, Nigel Higson, and Jody Trout. Equivariant E-theory for C*-algebras. *Mem. Amer. Math. Soc.*, 148(703):viii+86, 2000.

[Kas88] G. G. Kasparov. Equivariant KK-theory and the Novikov conjecture. *Invent. Math.*, 91(1):147–201, 1988.

[Kaw78] Tetsuro Kawasaki. The signature theorem for V-manifolds. *Topology*, 17(1):75–83, 1978.

[Kaw79] Tetsuro Kawasaki. The Riemann-Roch theorem for complex V-manifolds. *Osaka J. Math.*, 16(1):151–159, 1979.

[Kaw81] Tetsuro Kawasaki. The index of elliptic operators over V-manifolds. *Nagoya Math. J.*, 84:135–157, 1981.

[LO01a] Wolfgang Lück and Bob Oliver. Chern characters for the equivariant K-theory of proper G-CW-complexes. In *Cohomological methods in homotopy theory (Bellaterra, 1998)*, volume 196 of *Progr. Math.* , pages 217–247. Birkhäuser, Basel, 2001.
[LO01b] Wolfgang Lück and Bob Oliver. The completion theorem in K-theory for proper actions of a discrete group. *Topology*, 40(3):585–616, 2001.

[Lüc02a] Wolfgang Lück. Chern characters for proper equivariant homology theories and applications to K- and L-theory. *J. Reine Angew. Math.*, 543:193–234, 2002.

[Lüc02b] Wolfgang Lück. The relation between the Baum-Connes conjecture and the trace conjecture. *Invent. Math.*, 149(1):123–152, 2002.

[MN06] Ralf Meyer and Ryszard Nest. The Baum-Connes conjecture via localisation of categories. *Topology*, 45(2):209–259, 2006.

[Whi36] Hassler Whitney. Differentiable manifolds. *Ann. of Math. (2)*, 37(3):645–680, 1936.

[Whi55] Hassler Whitney. On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. *Ann. of Math. (2)*, 62:374–410, 1955.