Measurements of the Nuclear Spin-Spin Relaxation Times for Commensurate 3He-Ne Films Adsorbed on Hexagonal Boron Nitride

C Parks1, N S Sullivan1, and P Stachowiak2

1 Department of Physics, University of Florida, Gainesville, FL 32611
2 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland

E-mail: Sullivan@phys.ufl.edu

Abstract.

Measurements of the 3He nuclear spin-spin relaxation time, T_2, have been carried out for commensurate layers of 3He-Ne mixtures adsorbed on hexagonal boron nitride for temperatures $0.2 < T < 10$ K. A temperature independent relaxation is observed at low temperatures and is interpreted in terms of the effective exchange frequencies for 3He particle exchange on the surface. The results show a strong dependence on the fraction of neon in the adsorbed layer. This variation is discussed in terms of a multiple spin exchange model for 3He in a monolayer. The contributions to T_2 from different components of the exchange, 2-spin exchange (J_2), 3-spin exchange (J_3), 4-spin exchange (J_4) and higher exchange permutations depend on the 3He coverage and thus permit the separation of the amplitudes of the different exchange rates, and in particular allow one to deduce the relative strengths of 2-atom and 3-atom exchange where other methods are sensitive only to the effective two-particle term $J_{\text{eff}} = J_2 - 2J_3$.

1. Introduction

Numerous studies, experimental[1, 2, 3, 4, 5, 6] and theoretical[7, 8, 9, 10, 11, 12, 13, 14], of the nuclear magnetic properties of solid helium three in both bulk and two-dimensional films have been successfully interpreted in terms of the multispin exchange model. In this model the spin exchange Hamiltonian is given by

$$H = -\hbar \sum_n (-)^n J_n P_n$$

where J_n is the strength of the exchange for an n-particle cyclic permutation described by the spin permutation operator P_n. The most striking feature of the exchange, particularly in monolayer films, is that the J_n are comparable in strength, and exchanges up to the sixth order are needed to obtain a good description of the experimental studies of 3He on graphite[4, 5, 8]. The experimental parameters used to infer values for the J_n are: (i) the Curie constant $\Theta = 3J_{\text{eff}}^X$ with $J_{\text{eff}}^X = -(J_2-2J_3+3J_4-\frac{5}{8}J_6,...)$, and (ii) the nuclear heat capacity, $C^N = \frac{1}{2}(k_BT)^2J_{\text{eff}}^C$ with $J_{\text{eff}}^C = (J_2-2J_3+\frac{5}{8}J_4+...).$ Although relatively large values of J_2, J_3 and J_4 are predicted, the competing signs of J_n result in small values for the susceptibility and J_{eff}^C. Experiments reported
to date have been sensitive only to the combination $J_2 - 2J_3$ and we sought a more direct means to
determine the relative strengths of J_2 and J_3. In order to do this we prepared samples of 3He and
neon (with a random distribution of neon) to reduce the number of three-particle permutations
(and higher orders) by dilution. Preliminary results have been previously reported[15] and
this study compares the results for three concentrations studied at low temperatures where
temperature independent exchange-induced relaxation dominates the relaxation rates.

2. Experimental considerations
Commercially available hexagonal boron nitride (BN)[16] was used for the studies and after
washing with methanol to remove impurities was baked at 400 C in high vacuum before loading
into the NMR cell. Micrograph studies showed that the BN consisted of thin platelets measuring
typical 100–200 microns across with a thickness of approximately 10–30 microns. The BN was
tightly compressed around a brush of copper wire that was part of a cold finger extending from a
dilution refrigerator. The gas samples were admitted as a hot gas via a heated capillary (∼12 K)
to a sample cell held at 1 K using 4He exchange gas exterior to the cell. This technique optimized
the random distribution of 3He and Ne on the cold surface and minimized clustering of the neon.
The nuclear spin-spin relaxation studies were carried out using pulsed NMR techniques at high
Larmor frequency (203 MHz) in order to maximize the signal to noise ratio and to simplify
the interpretation of the NMR results. The precise coverage was determined by measuring the
spin-spin relaxation time, T_2, as a function of gas admitted to the cell for a fixed temperature
(0.2 K). The results shown in Figure 1 exhibit a sharp minimum as a function of coverage with
the minimum identified as the completion of a commensurate monolayer.[15, 17] The variation
for a 33% mixture shows an appreciable broadening of the minimum (compared to that observed
for pure 3He[15]) as expected for a random distribution of the neon.

![Figure 1](image)

Figure 1. Variation of the spin-spin relaxation time ($T_2(x)$) with the fraction of coverage for
monolayers of 3He-Ne mixtures on boron nitride for fixed temperature (T=0.4 K) for a 50%
mixture of 3He-Ne.
3. Results
Two different temperature regions are observed for the relaxation times[15]. At low temperatures \((T < 0.5 \text{ K})\) the relaxation is independent of temperature which is the signature of exchange dominated relaxation, while at high temperature a strong increase of \(T_2\) is observed with increasing temperature and has been interpreted in terms of vacancy formation[15, 17]. The high temperature data is poorly described by the expected exponential variation, \(\exp(-\Phi/k_B T)\), for an activation energy \(\Phi\) and may be better described in terms of a 2D lattice gas melting[18]. The values of the low temperature relaxation are used for the analysis below.

4. Discussion
At high Larmor frequencies the transverse nuclear spin relaxation rate \(T_2^{-1}\) is given by

\[
T_2^{-1} = \frac{3}{2} G_0(0) = \left(\frac{3}{2} x M_{2p}\right)/J_{\text{NMR}}^{\text{eff}}
\]

where \(G_0(\omega)\) is the Fourier transform of the temporal autocorrelation function \(\langle Y_{20}^{jk}(t)Y_{20}^{jk}(0)\rangle\) for the spherical harmonic \(Y_{20}^{jk}\) associated with the orientation of the internuclear vector \(r_{jk}\).

\[J_{\text{NMR}}^{\text{eff}} = 1.4\left[J_2 - 2xJ_3 + \frac{3}{4}x^2J_4 - \frac{5}{8}J_5 + \ldots \right], \]

\(M_{2p}\) is the NMR second moment for pure \(^3\text{He}\) on BN, and \(x\) is the probability of occupation of a lattice site by a \(^3\text{He}\) atom. (Matsumoto et al.[19] have given an explicit calculation of the fourth NMR moment for bulk \(^3\text{He}\).)

![Figure 2. Observed dependence of the low temperature \((T < 0.5 \text{ K})\) nuclear spin-spin relaxation time, \(T_2(x)\), on the fraction \(x\) of \(^3\text{He}\) coverage for monolayers of \(^3\text{He}-\text{Ne}\) mixtures adsorbed on hexagonal boron nitride.](image)

![Figure 3. Comparison of the dependence of the normalized nuclear spin-spin relaxation time, \(xT_2(x)/T_2(1)\), on the fraction \(x\) of \(^3\text{He}\) coverage for monolayers of \(^3\text{He}-\text{Ne}\) on boron nitride with the variation calculated using the multispin exchange model described in the text.](image)

The observed variation of the low temperature values of \(T_2\) with \(^3\text{He}\) fraction are shown in Figure 2. (The dotted line is only a guide to the eye.) A distinct minimum is observed near \(x=65\%\) which is indicative of the competition between \(J_2\) and \(J_3\). In order to compare the observed values with theoretical predictions for the values of \(J_n\) we have plotted the normalized relaxation times \(xT_2(x)/T_2(1) = J_{\text{eff}}^{\text{NMR}}(x)/J_{\text{eff}}^{\text{NMR}}(1)\), shown by the solid line in Figure 3. For the calculated variation we used \(J_3 = 0.8J_2, J_4 = J_5 = 0.5J_2\) (comparable to the values of Ikegami et
al.[4]). The experimental results do not follow the sharp dip seen for the calculated values and this is attributed to the random nature of the occupation of the neon sites that would lead to a broadening of the site distribution functions and a smoothing of the theoretical calculation. The fit to the absolute values at \(x = 1 \) yields a value for \(J_2/2\pi = 1.1 \text{ MHz} \).

5. Conclusion
Measurements of the temperature independent transverse nuclear spin relaxation times observed at low temperatures for mixtures of \(^3\)He and neon on hexagonal boron nitride show an unusual dependence on the fraction of \(^3\)He in the monolayer. Instead of the conventional \(T_2(x) \sim 1/x \) expected for a classical system, a minimum is observed near \(x = 0.65 \) and is consistent with the multiple spin exchange model for two-dimensional \(^3\)He, the minimum being associated with the lowest order variation of \(T_2 \) with \(^3\)He fraction as determined by the effective exchange frequency for the NMR relaxation given by \(J_{\text{NMR}}^{\text{eff}} = |J_2 - 2xJ_3 + \ldots| \). The higher order terms are also significant in determining the absolute value of \(J_{\text{NMR}}^{\text{eff}} \).

A remarkable prediction of these studies is that for very dilute systems, \(x < 0.3 \), a strong increase in \(T_2 \) is expected with a predominant antiferromagnetic exchange that would exhibit the combined effects of frustration and disorder and could lead to the formation of a nuclear spin glass at very low temperatures.

6. References
[1] Casey A, Patel H, Nyéki J, Cowan B P, and Saunders J 1998 J. Low Temp. Phys. 113, 265.
[2] Saunders J, Mikheev V A, Lusher C P, and Cowan B P 1992 Phys. Rev. Lett. 69, 2807.
[3] Siqueira M, Nyéki J, Cowan B and Saunders J 1997 Phys. Rev. Lett. 78, 2600.
[4] Ikegami H, Obara K, Ito D, Ishimoto H 1998 J. Low Temp. Phys. 113, 277.
[5] Bäuерle C, Chen A S, Bunkov Yu M, Godfrin H and Roger M 1998 J. Low Temp. Phys. 113 287.
[6] Bäuerle C, Bunkov Yu M, Chen A S, Cousins D J and Godfrin H 2000 Physica B280,95.
[7] Bernu B, Ceperley D and Lhuillier C 1992 J. Low Temp. Phys. 89,589.
[8] Roger M, Bäuerle C, Bunkov Yu M, Chen A s, and Godfrin H, 1998 Phys. Rev. Lett. 80, 1308.
[9] Roger M, Bäuerle C and Godfrin H 1998 J. Low Temp. Phys. 113, 249.
[10] Misguich G, Bernu B, Lhuillier C, and Waldtmann C, 1998 Phys. Rev. Lett., 81 1098.
[11] Katano M and Hirashima D S 2000 Phys. Rev. B62, 2573.
[12] Hiroshima D S and Kubo K, 2001 Phys Rev. B63, 125340.
[13] Hiroshima D S 2002 J. Phys. Soc. Jap. 71, 1407.
[14] Kubo K and Momoi T, 2003 Physica B329-333, 142.
[15] Sullivan N S, Stachowiak P and Parks C 2003 Physica, B329-333,140.
[16] Johnson-Matthey, 30 Bond Street, Ward Hill, MA 01835-8099.
[17] Crane T P and Cowan B P 2000 Phys. Rev. B62,11359.
[18] Bienfait M, Zeppenfeld P, Ramos R C, Gay J M, Vilches O E, and Coddens G 1999 Phys. Rev. B60, 11773.
[19] Matsumoto K, Abe T and Izuyama T 1989 J. Phys. Soc. Jap. 58, 1149.