ABSTRACT

Objective: To evaluate the analgesic effect and anti-inflammatory properties of *Boswellia dalzielii* (Burseraceae), a medicinal plant commonly used in northern Nigeria as an anti-diarrheal, antipyretic, analgesic and anti-inflammatory agent.

Methods: Three doses (25 mg/kg, 50 mg/kg and 100 mg/kg) of the crude aqueous extract of *Boswellia dalzielii* were evaluated for analgesic and anti-inflammatory activities using the acetic acid-induced writhing test, formalin-induced nociception and formalin-induced hind paw oedema in rats. The acute oral toxicity was carried out using the up and down procedure as described by the OECD guidelines.

Results: All doses (25, 50 and 100 mg/kg) of the extract tested were effective against acetic acid induced abdominal constrictions producing a percentage inhibition of (55.43, 69.56 and 71.73%) respectively. A percentage inhibition of the formalin-induced nociception of (7.31, 31.70 and 48.78%-early phase) and (12.82, 21.79 and 48.71%-late phase) respectively was also produced. For the acetic acid writhing test, the percentage inhibition obtained at the dose of 50 and 100 mg/kg (69.56 and 71.73%) were higher than that of the standard drug (Piroxicam, 10 mg/kg) (59.78%). For formalin-induced nociception, the test extract at 100 mg/kg showed a higher percentage inhibition compared to Piroxicam, in early (48.78 and 43.90%) and late phase (48.71 and 39.74 %) respectively. The extract, however, did not show a significant activity against formalin-induced paw oedema at all the doses used.

Conclusion: The present study demonstrated that *Boswellia dalzielii* has significant analgesic properties comparable to that of the standard drug (10% Piroxicam), thus validating the traditional claim of its antinociceptive property.

Keywords: *Boswellia dalzielii*, Analgesic, Anti-inflammatory

INTRODUCTION

Inflammation is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants [1]. The purpose of inflammation is to eliminate the initial cause of cell injury, clear out necrotic cells and tissues damaged from the original insult and the inflammatory process, and to initiate tissue repair [1]. Pain (Algesia) on the other hand is an unpleasant sensation that can negatively affect all areas of a person’s life, including comfort, thought, sleep, emotion, and normal daily activity [2]. The side effects of some of the currently available drugs for the management of these conditions pose a major problem in their clinical use. For example, some non-steroidal anti-inflammatory drugs (NSAIDs) may cause gastric ulceration and renal damage [3, 4]. Owing to the safety concerns associated with the use of synthetic anti-inflammatory and analgesic agents, those of natural sources are desired [5].

Boswellia dalzielii (Frankincense) is a tree plant that is abundantly found in north-western Nigeria, where the Hausa speaking people refer to it as Hano or Arrabi [6]. This plant is very popular among the locals as a potent source of ethnomedicine [6]. A previous preliminary survey on the local use of *Boswellia dalzielii* among ten herbalist from Kano and Sokoto states in the northwestern region of Nigeria reveals that, the aqueous stem bark extract of *Boswellia dalzielii* is used in the treatment of gastrointestinal problems (diarrhea and abdominal cramp) and as antipyretic, analgesic and anti-inflammatory agent either alone or in combination with other herbs (unpublished data). Etuk et al. has shown that the aqueous stem bark extract of *Boswellia dalzielii* possesses anti-diarrheal activity [7]. The stem bark has also been shown to have an antispasmodic activity [8]. While the aqueous extract of the stem bark produced some anti-ulcer activity [9].

The claimed analgesic, and anti-inflammatory activity of the stem bark extract has however not been found in the literature. This study was therefore carried out to evaluate the analgesic and anti-inflammatory activity of the aqueous stem bark extract of *Boswellia dalzielii* and validate its ethnobotanical use for this purpose.

MATERIALS AND METHODS

Animals

Wistar rats weighing about 110-160 g and mice weighing (20-25 g) of both sexes were used for the experiment. The wistar rats were obtained from the animal house of Ahmadu Bello University Zaria, while the mice were obtained from the animal house of Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto. The animals were maintained under standard environmental conditions, fed with standard chow and had access to food and water *ad libitum*. The animals were acclimatized for two weeks before the commencement of the study. The study was approved by the Research Ethics Committee, Usmanu Danfodiyo University, Sokoto. The care of the rats was conducted in accordance with established public health guidelines for handling experimental animals.

Chemicals and drugs

Formalin and acetic acid were obtained from Sigma Chemical Co. (St Louis, MO, USA) while Piroxicam (Feldene® by Pfizer Inc, New York) was obtained from a local Pharmacy.

Plant collection and identification

The plant was collected from Bare village, in Gezawa local government, Kano state, on 12th May 2015. It was identified at the herbarium unit of the Department of Pharmacognosy and Ethnopharmacy, Usmanu Danfodiyo University, Sokoto, and authenticated by Dr. Halilu Mshelia. The plant was given a voucher number PCG/UDI/S/BURS/0001 and preserved in the herbarium for future reference.
Preparation of the extract

The bark was air dried for about 10 d and then size reduced using mortar and pestle. Two hundred gram (200 g) of the powdered bark was cold macerated with 1.5 l of distilled water for 72 h. The extract was filtered and transferred into an evaporating dish of known weight. It was evaporated to dryness in a hot air oven at 40 °C. The percentage yield was then determined.

Acute toxicity studies

Limit test at 2000 mg/kg as described by the Organisation for Economic Co-operation and Development (OECD) guidelines [11] for oral acute toxicity testing was used. All experimental animals were maintained under close observation for 14 d.

Anti-inflammatory studies

The formalin (2.5%) induced inflammation as described by Winter et al. [13], employing abdominal constriction. Swiss albino mice were divided into five (5) groups each containing five (5) mice. The first group was given 10 ml/kg of distilled water (1 ml/kg), groups 2-4 received 25, 50 and 100 mg/kg intraperitoneally (i. p) of the extract respectively. The fifth group received 10 mg/kg i. p. of piroxicam. The increase in paw diameter was measured using vernier caliper (Digital caliper, Skole®-650 mm, model number 605035 from Frits Pedersen, Denmark). The difference in the weight of the right hind paw and the left hind paw indicates inflammation. The measurement was done immediately before and after 1-5 h following formalin injection.

Analgesic studies

Acetic acid induced writhing test in mice

This test was conducted employing the method described by Koster et al. [14], employing abdominal constriction. Swiss albino mice were divided into five (5) groups each containing five (5) mice. The first group was given 10 ml/kg of distilled water (1 ml/kg), groups 2-4 received 25, 50 and 100 mg/kg intraperitoneally (i. p) of the extract respectively. The fifth group received 10 mg/kg i. p. of piroxicam. The increase in paw diameter was measured using vernier caliper (Digital caliper, Skole®-650 mm, model number 605035 from Frits Pedersen, Denmark). The difference in the weight of the right hind paw and the left hind paw indicates inflammation. The measurement was done immediately before and after 1-5 h following formalin injection.

Formalin-induced nociception in rats

The formalin-induced pain test in rats as described by Duduinosaur and Dennis [14] which involves recording the severity of pain as a score was used. Animals were grouped into 5 groups of 5 animals each. Distilled water (10 ml/kg intraperitoneal) was given to group 1 to serve as negative control. The aqueous extract (25, 50 and 100 mg/kg intraperitoneal) was given to groups 2, 3 and 4, respectively. Piroxicam (10 ml/kg intraperitoneal) was given to group 5 to serve as positive control. Thirty (30) minutes post-treatment, 0.05 ml of 2.5% formalin was injected under the plantar surface of the left hind paw. The rats were then placed in transparent boxes for observation. The severity of the pain was recorded as scores: (0), rat walked or stood firmly on the injected paw; (1), rat partially elevated or favored the paw; (2), rat elevated the paw from the floor; or (3), rat licked, bit or shook the paw. The cut off point for the observation were every 2 min for the first 10 min (early phase) and at every 5 min for the period between 10th and 60th minute (late phase). The Percentage inhibition was calculated from the expression

\[
\text{Inhibition} = \frac{\text{Mean number of writhing (control)} - \text{Mean number of writhing (treated)}}{\text{Mean number of writhing (control)}} \times 100
\]

Formalin-induced nociception in rats

The formalin-induced pain test in rats as described by Duduinosaur and Dennis [14] which involves recording the severity of pain as a score was used. Animals were grouped into 5 groups of 5 animals each. Distilled water (10 ml/kg intraperitoneal) was given to group 1 to serve as negative control. The aqueous extract (25, 50 and 100 mg/kg intraperitoneal) was given to groups 2, 3 and 4, respectively. Piroxicam (10 ml/kg intraperitoneal) was given to group 5 to serve as positive control. Thirty (30) minutes post-treatment, 0.05 ml of 2.5% formalin was injected under the plantar surface of the left hind paw. The rats were then placed in transparent boxes for observation. The severity of the pain was recorded as scores: (0), rat walked or stood firmly on the injected paw; (1), rat partially elevated or favored the paw; (2), rat elevated the paw from the floor; or (3), rat licked, bit or shook the paw. The cut off point for the observation were every 2 min for the first 10 min (early phase) and at every 5 min for the period between 10th and 60th minute (late phase). The Percentage inhibition was calculated from the expression

\[
\text{Inhibition} = \frac{\text{Mean number of writhing (control)} - \text{Mean number of writhing (treated)}}{\text{Mean number of writhing (control)}} \times 100
\]

Table 1: Effect of Boswellia Dalzielii on acetic acid induced writhing response

Treatments	Dose (mg/kg) I. p.	No. of abdominal writhing	% Inhibition
Distilled water	10 (ml/kg)	18.4±1.97*	0.00
Boswellia dalzielii	25	8.2±2.01*	55.43
Boswellia dalzielii	50	5.6±1.17*	69.56
Boswellia dalzielii	100	5.2±0.58*	71.73
Piroxicam	10	7.4±3.12*	59.78

Data presented as mean±SEM, n= 5 for all groups. *Significantly different from the control at p<0.05.

Formalin induced nociception

The aqueous extract of Boswellia dalzielii stem bark significantly inhibited the first phase (neurogenic pain) of the formalin-induced pain in rats at the dose 50 and 100 mg/kg in a dose-dependent manner. The percentage inhibitions obtained were 7.31, 31.70 and 48.78% for 25, 50, and 100 mg of the extract respectively. The extract also produced a significant inhibition of the late phase at the dose of 50 and 100 mg/kg. The percentage inhibitions of the extract in the late phase were 12.82, 21.79 and 39.74% for 25, 50 and 100 mg/kg respectively. When compared to the positive control (piroxicam 10 mg/kg), the test extract at 100 mg/kg showed a higher percentage inhibition in early (43.90 and 48.78%) and late phase (39.74 and 48.71), respectively (table 2).
The induced pain in rats were used. The acetic acid-induced writhing test is relatively non-toxic and therefore safe for use. The LD₅₀ study. Similar studies conducted on piroxicam (10 mg/kg) which is the standard analgesic used in the mg/kg) showing a higher percentage inhibition compared with dose-dependent manner, with the extract at the highest dose (100 mg/kg) significantly inhibited acetic acid-induced writhing in mice, in a non-dose-dependent manner. The analgesic effect of the extract may, therefore, be due either to its action on visceral receptors sensitive to acetic acid, to the inhibition of the production of algogenic substances or the inhibition at the central level of the transmission of painful messages [22].

The formalin-induced model is very useful for elucidating the mechanism of pain and analgesia [25]. The formalin test has a distinctive biphasic nociceptive response termed early and late phases. Drugs that act primarily on the central nervous system inhibit both phases equally while peripherally acting drugs inhibit the late phase [16]. The first phase (neurogenic phase) is probably a direct result of stimulation of nociceptors in the paw. Stimulation of opioid receptors has also been suggested as a possible mechanism of action against neurogenic pain [26]. This phase, therefore, reflects centrally mediated pain while the late phase (inflammatory phase) is due to inflammation with the release of serotonin, histamine, bradykinin and prostaglandins and at least to some degree, the sensitization of central nociceptive neurones [25]. The crude aqueous extract of Boswellia dalzielii exerted a significant, dose-dependent suppression of both phases as observed in the dose tested (50 and 100 mg/kg) suggesting the presence of both central and peripheral effects. However, the extract has a greater inhibitory effect on the neurogenic pain (early phase). A previous study carried out on Caralluma dalzielii showed that the extract inhibited the two phases of formalin-induced pain, suggesting suppression of both neurogenic and inflammatory nociception, and thus possess both central and peripheral mechanism [21]. The result obtained in Caralluma dalzielii is similar to that obtained with Boswellia dalzielii in terms of its analgesic properties. Also in a study using the methanolic extract of Schwenckia americana, a significant inhibition of the early phase and late phase of the formalin-induced pain model in rats was observed [22]. The result is similar to that obtained in this studies except that, Boswellia dalzielii produced a significant inhibition at 50 and 100 mg only while Schwenckia americana produced a significant inhibition at all the doses (25, 50 and 100 mg/kg).

The formalin-induced edema model was used in the anti-inflammatory studies. Acute inflammation induced by formaldehyde results from cell damage, which provokes the production of endogenous mediators, such as, histamine, serotonin, prostaglandins and bradykinin [27]. This acute inflammatory response is usually biphasic comprising of an early neurogenic phase mediated by substance P and bradykinin followed by a tissue mediated response where histamine, 5-HT, prostaglandins and bradykinin are known to be involved [28]. It is well known that inhibition of edema induced by formaldehyde in rats is one of the best suitable test procedures for sub-acute anti-inflammatory agents as it closely resembles human inflammation [29]. Inflammation induced by formaldehyde is also a model used for the evaluation of an agent with probable anti-proliferative activities [30]. In the current study, the aqueous extract of Boswellia dalzielii did not produce a significant reduction in the inflammatory growth in the hind paw of the rats at all the three doses used (25, 50 and 100 mg/kg). In contrast, a study on the anti-inflammatory properties of Terminalia brownii demonstrated a dose-dependent response to carrageenan-induced paw edema induced inflammation [31]. Also, Boswellia serrata a related plant

Table 2: Effect of Boswellia dalzielii on formalin induced pain in rats

Treatment (mg/kg)	Early phase pain score	% inhibition	Late phase pain score	% inhibition
Distilled water 10 ml/kg	1.64±0.19	-	1.56±0.09	-
Boswellia dalzielii 25	1.52±0.17	-	1.36±0.09	-
Boswellia dalzielii 50	1.12±0.07*	-	1.22±0.09*	-
Boswellia dalzielii 100	0.84±0.11*	-	0.8±0.11*	-
Piroxicam 10	0.92±0.14*	-	0.94±0.07*	-

Data presented as mean±SEM, n= 5 for all groups, *Significantly different from the control at p<0.05

Table 3: Anti-Inflammatory activity of Boswellia Dalzielii in rat

Treatment (mg/kg)	1st h	2nd h	3rd h	4th h	5th h
Distilled water (10 ml/kg)	0.65±0.36	1.37±0.41	1.62±0.25	1.37±0.45	1.38±0.38
Boswellia dalzielii 25	0.73±0.21	1.92±0.45	2.10±0.54	1.88±0.33	1.53±0.16
Boswellia dalzielii 50	0.74±0.24	1.32±0.14	1.39±0.37	1.14±0.14	0.74±0.23
Boswellia dalzielii 100	0.80±0.30	1.52±0.27	1.68±0.28	1.53±0.34	1.14±0.19
Piroxicam 10	1.41±0.38	1.37±0.23	1.44±0.43	1.18±0.30	0.88±0.23

Data presented as mean±SEM, n= 5 for all groups, *Significantly different from the control at p<0.05
has been evaluated for analgesic and anti-inflammatory activity [32]. The different fractions of *Boswellia serrata*, essential oil (10 ml/kg), gum (100 mg/kg), resin (100 mg/kg) oleo-resin (100 mg/kg) and oleo-gum-resin (100 mg/kg) significantly reduced carrageenan-induced inflammation in rats and showed analgesic activity, as determined by acetic acid-induced writhing response, formalin-induced pain, hot plate and tail flick method [32].

CONCLUSION

These results demonstrate that the crude aqueous extract of *Boswellia dalzielii* possesses analgesic but does not show anti-inflammatory activity. The research also supports the ethnomedical claim of the use of macerated *Boswellia dalzielii* as an anti-inflammatory agent. The research also supports the ethnomedical claim of the use of macerated *Boswellia dalzielii* as an anti-inflammatory agent. Further studies are needed for the confirmation of the mechanism of action of analgesia and to find out the active constituents responsible for this property.

AUTHORS CONTRIBUTIONS

All the author have contributed equally

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Ferrero-Millani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: the importance of NOG1 and NALP3 in an interleukin-1beta generation. Clin Exp Immunol 2007;147:90-4.
2. Mary AK, Young LG, Allredge BK, Corelli Robin L, Pain and its management. In: Applied Therapeutics. 9th Edition. Lippincott Williams and Wilkins publisher; 2009. p. 400-27.
3. Andrade SF, Lemos M, Comunello E, Noklin VF, Filho VC, Niero R. Evaluation of the antiulcerogenic activity of *Myrtus communis* (Celastraceae) in different experimental ulcer models. J Ethnopharmacol 2007;113:252-7.
4. Gooch K, Cullen BM, Manns BJ, Zhang J, Alfonso H, Tonelli M. Inhibition of carrageenan-induced paw oedema by a novel compound: a potential anti-inflammatory agent. Phytomedicine 2000;5:589-95.
5. Nwinyi, FCL, Binda GA, Ajoku SO, Aniagu KS. Evaluations of the potentials of being developed into analgesic agents. Further studies are needed for the confirmation of the mechanism of action of analgesia and to find out the active constituents responsible for this property.

12. Winter EA, Risley EA, Nuss GV. Carrageenin-induced oedema in hind paw of rats as an assay for an anti-inflammatory drug. Pro Soc Exp Biol Med 1962;111:544-7.
13. Koster R, Anderson M, De Beer EJ. Acetic acid for analgesic screening research. Fed Proc 1959;18:412.
14. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effect of morphine, meperidine and brain stem stimulation in rats and cats. Pain 1977;4:161-74.
15. Bentley GA, Newton SH, Starr JB. Evidence for an action of morphine and the enkephalins on the sensory nerve ending in the mouse peritonitis. J Pharm 1981;9:125-34.
16. Charn YF, Tsai FY, Wu TS. Anti-inflammatory and analgesic activity of extracts from roots of *Angelica pubescens*. Planta Med 1995;61:2-8.
17. Sutharson L, Lila KN, Presanna KK, Shila EB, Rajan VJ. Anti-inflammatory and antinociceptive activities of methanolic extract of the leaves of *Praxinus floribunda* wallch. Afr J Biotechnol 2007;6:582-5.
18. Deraedt R, Joaquey S, Delevallee F, Flahaut M. Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur J Pharmacol 1980;61:17-24.
19. Duarte JD, Nakamura M, Ferreira SH. Participation of the sympathetic system in acetic acid-induced writhing in mice. Brazilian J Med Res 1988;21:341–3.
20. Borsato MLC, Grael OF, Souza GEP, Lopes NP. Analgesic activity of the lignans from *Lychnophora ericoides*. Phytochemistry 2000;55:809-13.
21. Ugwu-Oguejiofor CJ, Abu-Barkar K, Ugwu MO, Nnaji AA. Evaluation of the anti-inflammatory effect of *Caralluma dalzielii*. J Ethnopharmacol 2013;150:967-72.
22. Jimoh AO, Aminu C, Muhammad T, Adesibi I, Abdullahi N. Anti-inflammatory and analgesic properties of crude aqueous extract of *Schweinicia americana* Linn.(Solanaeaceae). J Ethnopharmacol 2011;137:54-6.
23. Vikram PK, Mahi R, Jain DK. Evaluation of analgesic and anti-inflammatory potential of *Mimusops puda*. Int J Curr Pharm Res 2012;4:47-50.
24. Okochuwu PN, Bokanisersere, Yusuf UF. Anti-inflammatory, analgesic and antipyretic properties of cassava leaves extract. Asian J Pharm Clin Res 2013;6:89-92.
25. Gaertner M, Muller L, Koos JS, Cani G, Santos AR, Niero R, et al. Analgesic triterpenes from *Sebastiana schottiana* roots. Phytotherapy 1999;6:41-4.
26. Greenwald RA. Animal models for evaluation of arthritic drugs. Meth Find Clin Pharmacol 1991;13:75-83.
27. Kyeni S, Koffa EA, Boampong JN. The efficacy of aqueous and ethanolic leaf extracts of *Pittia stratiotes* Linn. in the management of arthritis and fever. JIBMS 2012;1:29-37.
28. Tjølen A, Berge OG, Hustsaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992;51:5-17.
29. Wheeler-Aceto H, Cowan A. Neurogenic and tissue mediated components of formalin-induced edema: evidence for supraspinal regulation. Agents Action 1991;34:26-49.
30. Yuh-Fung C, Hsieh Y, Tian-Shung W. Anti-inflammatory and analgesic activities from roots of *Angelica pubescens*. Planta Med 1995;61:2-8.
31. Mbiri JW, Kasiki S, Patrick K, Mbinda W, Piero NM. Anti-inflammatory properties of methanolic bark extract of *Terminalia brownii* in wistar albino rats. Int J Curr Pharm Res 2016;8:100-4.
32. Sharma A, Bhatia S, Kharya MD, Gajbhiye V, Ganesh Namdeo NK. Anti-inflammatory and analgesic activity of different fractions of *Boswellia serrata*. Int J Phytother 2009;2:94-9.