REVIEW

Roles of PFKFB3 in cancer

Linlin Shi¹, Hongming Pan¹,², Zhen Liu¹, Jiansheng Xie² and Weidong Han¹,²

The understanding of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFK-2/FBPase 3, PFKFB3) has advanced considerably since its initial identification in human macrophages in the mid-1990s. As a vital regulator of glycolysis, accumulating studies have suggested that PFKFB3 is associated with many aspects of cancer, including carcinogenesis, cancer cell proliferation, vessel aggressiveness, drug resistance and tumor microenvironment. In this review, we summarize current knowledge of PFKFB3 regulation by several signal pathways and its function in cancer development in different cell types in cancer tissues. Ubiquitous PFKFB3 has emerged as a potential target for anti-neoplastic therapy.

INTRODUCTION

Glycolysis is the metabolic pathway that converts glucose to pyruvate. The free energy released in this process is utilized to form the high-energy compounds ATP and NADH. A high rate of glycolytic flux, even in the presence of oxygen, is a central metabolic hallmark of tumors. This phenomenon is historically known as the ‘Warburg Effect’.¹ The rate of glycolytic flux is controlled at different levels and by different mechanisms. One of the critical modulators is the conversion of fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2) by 6-phosphofructo-1-kinase (PFK-1), which is the first committed rate-limiting step of glycolysis.² The intracellular allosteric regulator fructose 2,6-bisphosphate (F2,6P2) is a potent activator of PFK-1.³ F2,6P2 increases the affinity of PFK-1 for F6P and overrides the tonic allosteric inhibition of PFK-1 by ATP, allowing glycolytic flux through the PFK-1 checkpoint and into F1,6P2 synthesis.³ The intracellular steady-state concentration of F2,6P2 is controlled by a feedback regulatory mechanism involving PFK-1, fructose-bisphosphate aldolase (FBPase) and triose phosphate isomerase.⁴ The regulation of PFK-1 ensures a high flux of glycolysis in the presence of oxygen. The PFK-1 activity is regulated by the allosteric activator F2,6P2, downstream of the regulation of F2,6P2 synthesis by HIF-1α and other factors.⁵ The regulation of PFKFB3 is critical for the control of glycolysis in cancer cells.

REGULATORY MECHANISMS OF PFKFB3

The oncopgenic Ras signaling pathway has been invoked as a central regulator of the glucose metabolism of cancer via the activity of PFKFB3.¹⁹,²⁰ Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1 alpha (HIF-1α), reducing the expression of the pfkfb3 gene and causing glycolysis shutdown and cell death.²¹ Constitutive HER2 expression increases PFKFB3 expression and glucose metabolism in breast cancer cells.²² Loss of p53 and PTEN and/or other tumor suppressor functions also stimulates glycolysis in part by activating the regulatory bifunctional PFKFB3 family.²³,²⁴ In addition, the transcriptional corepressor myeloid translocation gene 16 (MTG16) could act as a brake on glycolysis, stimulating mitochondrial respiration and inhibiting cell proliferation through suppression of PFKFB3.²⁵ Different stimuli have been reported to induce gene expression of pfkfb3. For example, hypoxia,²⁶ progesterin²⁷ and estradiol²⁸ induce PFKFB3 expression through interactions of HIF-1, progesterone receptor (PR), and estrogen receptor (ER) with their own consensus response elements located at the pfkfb3 promoter. Circadian-driven transcription factor ‘CLOCK’ could also bind to pfkfb3 promoter at ‘E-box’ site to increase the transcription of pfkfb3 in cancer cells. PFKFB3 inhibition significantly retarded the growth of implanted human tongue cancer cell in mice only at certain time points within the circadian cycle. This finding

¹Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China and ²Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Correspondence: J Xie (jx8512@163.com) or Professor W Han (hanwd@zju.edu.cn)

Received 13 April 2017; revised 22 June 2017; accepted 28 June 2017
indicates the significance of time-based PFKFB3 inhibition in cancer treatment. Growth factors, such as insulin, pro-inflammatory molecules such as interleukin 6 (IL-6), lipopolysaccharide (LPS) and adenosine or different stress stimuli (NaCl, H2O2, UV radiation or anisomycin), increase PFKFB3 gene expression levels. The major signal pathways involved in PFKFB3 regulation are shown in Figure 2.

The mRNAs of all PFKFB3 isoforms contain multiple copies of the AUUUA instability motif in their 3′ UTR AU-rich elements. It was reported recently that miR-206 and miR-26b directly interact with the 3′ UTR of PFKFB3 mRNA, resulting in attenuation of glycolysis in breast cancer and osteosarcoma, respectively. Other miRNAs, including hsa-miR-26b-5p and hsa-miR-330-3p, are also expected to have binding sites in the 3′ UTR of PFKFB3, although functional validation remains to be performed. The PFKFB3 isozyme is phosphorylated at a consensus site, Ser461, within the C-terminal region by mitogen-activated protein kinase-activated protein kinase 2 (MK2), AMP-activated protein kinase (AMPK), protein kinase A (PKA) and protein kinase C (PKC), thus making it responsive to multiple external signals. S-glutathionylation and demethylation of PFKFB3 by high reactive oxygen species (ROS) in cancer cells shift a shift of glucose utilization from glycolysis toward the NADPH-producing pentose phosphate pathway (PPP), resulting in ROS detoxification. The PFKFB3 isozyme is degraded by the E3 ubiquitin ligase.

Roles of PFKFB3 in cancer
L Shi et al.

Figure 1. General structure of the PFKFB3 gene and protein. (a) The PFKFB3 gene contains at least 19 exons, which can be divided into 2 regions, the constant and variable regions. The variable region contains seven exons named A–G, and variations in the exons in this region leads to six isoforms of PFKFB3. PFKFB3 contains multiple copies of the AUUUA instability element in its 3′ UTR. (b) The PFKFB3 protein has two homodimeric subunits. Each subunit of PFKFB3 comprises two functional domains: an N-terminal kinase domain and a C-terminal phosphatase domain. The kinase activity catalyzes the production of F2,6P2 and ADP from F6P and ATP, which highly promote the glycolytic pathway. The phosphatase activity dephosphorylates F2,6P2 to produce F6P and Pi.

Table 1. Comparison of the nucleotide sequences and body localization of six ubiquitous PFKFB3 isoforms

Splice variants	Alias	Variable exons	Location
UBI2K1		A, B, C, G	Low levels in the brain
UBI2K2		A, C, D, E, G	Low levels in the brain
UBI2K3		A, C, D, F, G	Brain-specific
UBI2K4	Inducible PFK-2	A, C, D, G	Preferentially expressed in human skeletal muscle
UBI2K5	Placenta PFK-2/FBPase-2 ubiquitous PFK-2/FBPase-2	A, C, G	Brain, liver, skeletal muscle
UBI2K6		A, G	Brain, liver, skeletal muscle

Loiseau et al. discovered that there was no bisphosphatase activity of PFKFB in hepatocellular carcinoma (HCC) cells, which was hypothesized as a key mechanism accounting for the loss of control of glycolysis. Although multiple PFKFB isoforms are almost certainly co-expressed in these tumor cells, the absence of bisphosphatase activity supports the explanation that the dominantly expressed PFKFB enzyme in these cells is PFKFB3. PFKFB3 has been suggested to play a crucial role in many types of tumor cells as well as various cells in the tumor microenvironment. The following sections and Figure 3 summarize recent advances of PFKFB3 in different tumor cells, tumor stem cells and tumor environment cells.

Roles of PFKFB3 beyond glycolysis

Although the glycolytic role of PFKFB3 in cancer progression has been the subject of numerous functional studies, some researchers have also focused on the functions of PFKFB3 beyond glycolysis. Recent observations have established that PFKFB3 is also trafficked to the nucleus in multiple cell lines via a highly conserved nuclear localization motif in the C-terminal domain, and ectopic expression of wild-type PFKFB3 in the nucleus stimulates cellular proliferation without an effect on glucose metabolism. The product of PFKFB3, F2,6P2, activates cyclin-dependent kinases (Cdks) and then stimulates the Cdk-mediated phosphorylation of the Cip/Kip protein p27, which in turn results in decreased levels of p27 due to ubiquitination and proteasomal degradation by Cdk1. As p27 is a potent suppressor of the G1/S transition and activator of apoptosis, the known requirement for PFKFB3 for cell cycle progression and prevention of apoptosis may be partly due to the ability of F2,6P2-induced p27 degradation. The effect of siRNA silencing of PFKFB3 is reversed by co-siRNA silencing of p27. These results confirm that PFKFB3 expression may not only be essential for the regulation of glycolysis in the cytoplasm, but also in the control of the cell cycle in the nucleus and maintenance of an anti-apoptotic state.

Roles of PFKFB3 in cancer

Loiseau et al. discovered that there was no bisphosphatase activity of PFKFB in hepatocellular carcinoma (HCC) cells, which was hypothesized as a key mechanism accounting for the loss of control of glycolysis. Although multiple PFKFB isoforms are almost certainly co-expressed in these tumor cells, the absence of bisphosphatase activity supports the explanation that the dominantly expressed PFKFB enzyme in these cells is PFKFB3. PFKFB3 has been suggested to play a crucial role in many types of tumor cells as well as various cells in the tumor microenvironment. The following sections and Figure 3 summarize recent advances of PFKFB3 in different tumor cells, tumor stem cells and tumor environment cells.
Targeting PFKFB3 in cancer cells

Enhanced glycolysis is important for cancer development.51 As a key regulator of glycolysis, PFKFB3 plays an important part in oncogenesis and the survival and proliferation of cancer cells in the tumor microenvironment. The roles of PFKFB3 in different cancer cell lines and possible mechanisms are summarized in Table 3. PFKFB3 has been studied in various cancer cells. Most studies have demonstrated that cancer cell growth, proliferation, migration and metastasis are promoted when PFKFB3 expression is increased or the PFKFB3 isoenzyme is phosphorylated. In addition, gene expression inhibition by siRNA in HeLa cells47,52 and colon carcinoma cells,53 or by miRNA in breast cancer cells36.
and osteosarcoma cells decreases the growth, proliferation and migration of these cells. PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) and its derivation 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) have been shown to reduce glucose metabolism and exhibit potent antitumor activity in several human cancer xenograft models, including tongue carcinoma, gastric cancer and head and neck squamous cell carcinoma. These studies further proved the proto-oncogenic role of PFKFB3. A recent in vitro study found that PFKFB3 is a key effector protein of transforming growth factor β1 (TGFβ1), which is an inducer of epithelial–mesenchymal transition (EMT) in tumor cells, further suggesting a role of PFKFB3 in the cancer invasion process. Most of the literature has reported that increased PFKFB3 promotes tumorigenesis and proliferation. However, experimental result in astrocytoma cells is inconsistent. Zscharnack et al. found that the PFKFB3 splice variant UBI2K4 is downregulated in high-grade astrocytoma relative to low-grade astrocytomas and corresponding non-neoplastic brain tissue. Overexpression of UBI2K4 decreased cell viability and anchorage-independent growth of U87 cells. Consequently, further study is needed to elaborate the exact role of PFKFB3 in different cancer cells.

Under different stimuli, the mechanisms involved in PFKFB3 regulation in different cancer cell lines differ. Even under the same stimuli, cancer cells also display diverse regulatory mechanisms for PFKFB3. For instance, under progestin stimulation, dual mechanisms operate to ensure glycolysis in breast cancer cells (increased expression and increased phosphorylation of PFKFB3). To protect cancer cells from harm from high ROS, HeLa cells and human leukemia U937 cells utilize two different modifications of PFKFB3 (S-glutathionylation and demethylation of PFKFB3). Desideri et al. suggested that decreased PFKFB3 entails loss of autophagy in HeLa cells, leading to increased resistance to nutrient deprivation. The possible mechanism is that ROS, a mild activator of autophagy, is detoxified by decreased PFKFB3 by shifting glycolysis to PPP. However, another study reported an opposite outcome that the selective inhibition of PFKFB3 induces increased autophagy in HCT-116 colon adenocarcinoma cells as a survival mechanism. Together, the roles of PFKFB3 on cancer cells are widely studied in cell lines and xenograft models. However, its functions and mechanisms are not exactly the same. A genetically engineered cancer in vivo model is still lacking for further investigation.

Targeting PFKFB3 in cancer stem cells (CSCs)
CSCs are a subgroup of cells within a tumor that have the ability of (1) self-renewal and differentiation into multiple cell types when transplanted; (2) initiating new tumors or responsible for the dissemination of metastases; (3) resisting to anticancer drugs or radiations. Pacini et al. suggest that the undifferentiated state of stem cells is characterized by a decrease in oxidative phosphorylation, a reduced level of intracellular ATP and a smaller production of ROS. CSCs from colon carcinoma, osteosarcoma, epithelial ovarian cancer and breast cancer were proved to rely on the glycolysis pathway rather than oxidative phosphorylation (OXPHOS) for their energy needs. However, leukemia and pancreatic adenocarcinoma support OXPHOS as the primary energy source of CSCs. Even in the same type of tumor CSCs, the glucose metabolic patterns from different studies differ. Nevertheless, the peculiar metabolic characteristic of CSCs becomes a therapeutic and diagnostic opportunity in cancer research.

CD44+CD24- breast cancer stem-like cells are enriched in tumor-initiating and chemotherapy-resistant cells. PFKFB3 is
Roles of PFKFB3 in cancer
L Shi et al

Table 3. PFKFB3 in different cancer cell lines

Cancer cell type	Upstream effector	Possible mechanism	PFKFB3 expression level	Effect on cancer cell	Ref.
Breast cancer cells	Estradiol	Increased transcription of PFKFB3 by ER	↑	Survival, growth and metastases	28
	Progestins	Increased transcription of PFKFB3 by PR	↑	Proliferation	27
	AMPK	Phosphorylation of PFKFB3	—	Mitotic arrest survival	75
	miR-206	Interaction with 3’UTR in PFKFB3 mRNA level	↓	Proliferation and migration inhibition	36
Hela cells	stress stimuli	p38/MK2 pathway	↑	Adaptation to microenvironment conditions	33
	high ROS	S-glutathionylation of PFKFB3	—	ROS detoxification; cell survival and proliferation	40
	MAPK14 siRNA	Increased degradation of PFKFB3 by APC/C-Cdh1 and SCF	↓	Increased resistance to nutrient deprivation	44
Pancreatic and gastric cancer cells	hypoxia	Increased transcription of PFKFB3 by HIF-1	↑	Proliferation and survival	76
Colorectal cancer	IL-6	Phosphorylation PFKFB3	↑	Proliferation	77
Colonic carcinoma cell lines	insulin siRNA	Increased transcription of PFKFB3 silencing of PFKFB3 gene	↑	Apoptosis	30
Lung adenocarcinoma cells	rasfonin	Silencing of PFKFB3 gene	↓	Decreased growth	19
Renal cancer cells	JAK2/STAT5 siRNA	Increased transcription of PFKFB3 by STAT5	↑	Autophagy and apoptosis	79
Myeloid lineage cells	JAK2/STAT5	Increased transcription of PFKFB3	↑	Increased Growth	80
Leukemia U937 cells	high ROS siRNA	Reduced methylation of PFKFB3	—	Survive from oxidative stress	41
Acute myeloid leukemia cell lines	DB-1 melanoma low pH exposure	Phosphorylation PFKFB3	—	Tumorigenesis and treatment resistance	81
Osteosarcoma cells	miR-26b	Interaction with 3’UTR in PFKFB3 mRNA level	↓	Proliferation, migration, invasion inhibition; apoptosis induction	37,54
Bladder cancer cell lines	3PO	Inhibition of PFKFB3	—	Reduced growth	83
Malignant hematopoietic and	3PO	Inhibition of PFKFB3	—	Reduced growth	84
adenocarcinoma cell lines					
Tongue cancer	3PO	Inhibition of PFKFB3	—	Proliferation inhibition, apoptosis	29
Pancreas cancer	TGFβ1	Increased transcription of PFKFB3	↑	Invasion	57
Gastric cancer cells	siRNA	Silencing of PFKFB3 gene	↓	Proliferation and migration inhibition	85
PKFI5		Inhibition of PFKFB3	—	Cell cycle arrest; apoptosis; invasion inhibition	55
Head and neck squamous cell carcinoma	PFK15	Inhibition of PFKFB3	—	Proliferation suppression; halted cell cycle progression; induced cell apoptosis	56
Glioblastoma cells		↑(Induced)	—	Decreased growth rate, cell viability, anchorage-independent growth	10,58

one of the genes in the CD44+CD24− cell gene signature that has been related to an enhanced risk of distant metastasis and poor clinical outcome in breast cancer patients.86,87 Cieslar-Pobuda et al88 revealed that breast CSCs can be distinguished from induced pluripotent stem cells (iPS) or surrounding breast cancer cells based on differences in PFKFB3 and PFK-1 expression. They found that PFKFB3 and PFK-1 expression are higher in CSCs than in iPS cells. When cultured under hypoxic conditions, iPS cells and cancer cells change the expression levels of PFKFB3 and PFK-1 similarly in CSCs, supposing that CSCs might enhance glycolysis due to hypoxia-mediated modulation of restriction point (R-point) markers such as PFK-1 and PFKFB3. The different expression levels of PFKFB3 and PFK-1 among CSC, iPS cells and non-stem cancer cells suggest improved prospects for the more precise detection of CSCs and for clinical applications of stem cell-based therapies.

Targeting PFKFB3 in endothelial cells (ECs)
The blood vessel lumen is lined by a monolayer of ECs including tip cells and stalk cells, and each performs specific functions.89,90 ECs are also glucose addicted and highly glycolytic even in the presence of ample oxygen.91,92 A few possible explanations are as follows: (1) glycolysis generates ATP more rapidly to meet energy needs for EC motility compared to oxidative metabolism, thus quickly restoring more oxygen supply to the perivascular tissue; (2) glycolysis side pathways produce macromolecules needed for biomass duplication during cell division, which may further contribute to rapid vascular sprouting; (3) ECs can still depend on glycolysis to sprout in the milieu with less oxygen and glucose because glucose diffuses further away from vessels than oxygen; (4) by primarily maintaining glycolysis metabolism, ECs minimize the production of ROS, protecting ECs from their hypoxic stress microenvironment.91,93–95

Signal Transduction and Targeted Therapy (2017) e17044
Tumor angiogenesis, represents one of the central hallmarks of cancer, is the growth of new blood vessels which supply nutrients for tumor growth, expansion and progression.69 High microvessel density in tumor specimen correlates metastasis, recurrence, poor prognosis in many malignancies.97,98 During angiogenesis, endothelial cells proliferate so that new capillary blood vessels can develop from preexisting microvessels to tolerate blood flow. Induction of PFKFB3 by vascular endothelial growth factor (VEGF) promotes angiogenesis and endothelial migration by regulating the tube formation of filopodia and lamellipodia and directional migration. Silencing of PFKFB3 in ECs reduces vascular sprouting by decreasing the migration of tip cells and proliferation of stalk cells.99,100 A few other mechanisms may also underlie this effect: (1) PFKFB3 compartmentalizes with F-actin in lamellipodia to create an assembly line of glycolysis, facilitating efficient and rapid local ATP production to fuel migration;101 (2) the increase in lactate upon increased PFKFB3 stimulates angiogenesis via activation of HIF-1α and upregulation of VEGF receptor 2 (VEGFR2);102 (3) PFKFB3 also control cell proliferation via glycolysis-independent CDks activities in the nucleus.45 In contrast to traditional anti-angiogenic therapy that aims to inhibit angiogenesis, an emerging paradigm is to normalize characteristicallychaotic tumor vasculature in order to improve blood perfusion, which could decrease hypoxia and increase drug accessibility. The normalized vessels might also resist shedding of cancer cells from the primary tumor, potentially reducing tumor metastasis.102,103 A recent study found that inhibition of PFKFB3 in melanoma tumor endothelial cells (TECs) induces tumor vessel normalization, thus reducing cancer cell invasion, intravasation and dissemination, and contributing to increased response to chemotherapy.104 This effect is probably achieved by reducing VE-cadherin endocytosis and inflammation in ECs and making pericytes more quiescent and adhesive under reduced glycolysis. By decreasing NF-κB signaling, TECs also lower the expression of cancer cell adhesion molecules, which contributes to metastasis inhibition of cancer cells.104 Thus, targeting EC metabolism through PFKFB3 might offer unprecedented opportunities for anti-angiogenic therapies and inhibition of tumor growth.

Targeting PFKFB3 in immune cells
The Warburg effect has also recently been associated with many immune cell activities. For example, resting or quiescent T cells will switch from OXPHOS to aerobic glycolysis to provide sufficient ATP and precursor molecules for proliferation and survival when encountering antigens.105–107 Chang et al.108 found that when activated T cells are provided with co-stimulation and growth factor stimulation but are blocked from engaging in glycolysis, their ability to produce interferon-γ (IFN-γ) is markedly compromised. IFN-γ is a cytokine contributing to the inhibition of the development of chemically or virus-induced tumors.109 T-cell activation is associated with a rapid increase in intracellular PFK2, PFKFB3 may be the dominant PFKFB family member involved in TCR/CD28-induced F2,6P2 synthesis and glycolysis.110 3PO, an inhibitor of PFKFB3, can suppress T-cell-dependent immunity and induce apoptosis of T cells in vitro and in vivo.110 Researches on the roles of PFKFB3 in the antitumor immunity associated with T cells mediated are still rare except the valuable work done by Chesney. They found a PFKFB3 inhibitor, PFK-158, could decrease tumor-infiltrating Th17 cells and myeloid-derived suppressor cells, and increase tumor-infiltrating CD4+ and CD8+ T cells in the tumors of B16-F10 melanoma-bearing mice.111–113 However, the functions of different immune cells are different and complicated. Thus, a clarification of the function of PFKFB3 in different immune cells, immune responses and immune stages is necessary for a deeper understanding of the role of PFKFB3 in antitumor immunity.

Augmented aerobic glycolysis is also important for regulating the activation and function of dendritic cells (DC) and macrophages.32,114,115 DC activation and maturation are induced by Toll-like receptors (TLRs) ligands, stimulating a profound metabolic transition to aerobic glycolysis. The phosphatidylinositol 3′-kinase (PI3K)/Akt signaling pathway controls this metabolic switch.116 Increased PFKFB3 expression could be essential in protecting the viability of macrophages to develop their long-term defense and reparative functions in the inflammatory microenvironment. The expression of the transcription factors HIF1α, C/EBPβ, and Sp1 is activated in macrophages treated with LPS. LPS also increases AMPK activity in macrophages, which increases PFKFB3 phosphorylation.32 Because these immune cell experiments were all performed in vitro and the cancer microenvironment in vivo is completely different, more studies in vivo and in cancer models are needed to illustrate the function of glycolysis in immune cells within cancer.

Chronic inflammation is acknowledged as the cause of various human cancers.117,118 For example, patients with inflammatory bowel disease have an increased risk for colorectal cancer (CRC).119,120 The AUUUA instability element found in the mRNA of pfkfb3 is also found in several inflammatory cytokine mRNAs (for example, IL-1, IFN-γ and granulocyte/macrophage colony-stimulating factor, GM-CSF).34,35,121 The inflammatory cytokine IL-6 stimulates aerobic glycolysis and promotes cell proliferation and migration in CRC cells. Pfkfb3 was the gene most downregulated by an anti-IL-6 receptor antibody in colorectal adenoma tissues.77 We therefore speculate that the tumor inflammatory environment could be alleviated through PFKFB3 inhibition.

THERAPEUTIC POTENTIAL OF PFKFB3 INHIBITORS IN THE TREATMENT OF CANCER
As knowledge of PFKFB3 in cancer metabolism accumulates, there has been an increased interest in the identification and development of PFKFB3 inhibitors. It is known that current standard chemotherapeutic and irradiation protocols mainly target rapidly dividing cells. The data from Liu et al.122 suggest the efficacy of these treatments could be enhanced by inhibition of glycolysis aimed specifically at slower growing cancer cells. 3PO is a well-studied suppressor of the basal catalytic activity of the PFKFB3 isozyme. It decreases intracellular F2,6P2, thus suppressing glycolytic flux in transformed cells. 3PO functions through its binding to the sites that the PFKFB3 protein binds and functions. Consequently, binding competition between 3PO and F6P for the binding area is possible.84 However, Lineweaver-Burk double-reciprocal plot analyses have shown that 3PO exhibits a complex mechanism in the inhibition of PFK-2 activity that is both competitive and uncompetitive. Introduction of 3PO to various cancer cells, such as breast cancer,123 bladder carcinoma cancer83 and hepatocellular carcinoma86 induces cytotoxicity, apoptosis and growth inhibition. An advantage is that 3PO and its optimized derivatives do not affect serum glucose, red blood cell and white blood cell concentrations when administered daily in vivo.109

PFK15, a potent derivation of 3PO, was recently demonstrated55,56 to (1) cause cell cycle arrest in G0/G1 phase by blocking the cyclin-CDKs/Rb/E2F signaling pathway; (2) induce apoptosis through mitochondria; (3) inhibit invasion by down-regulating focal adhesion kinase (FAK) and upregulating E-cadherin. Additionally, compared with other PFKFB3 inhibitors, PFK15 displays potent and selective activity against PFKFB3 with low cytotoxicity.55,124 The improved apoptosis potency of PFK15 was greater than the metabolic changes it induced.124 Another potent and selective inhibitor of PFKFB3, PFK-158, displays broad antitumor activity and immunomodulatory effects in multiple human and syngeneic preclinical models.117–119 A phase I clinical trial demonstrated that PFK-158 was successfully completed in
July 2016. PFK-158 presented safety and anticancer activity in 6 of 19 evaluable patients with various advanced solid tumors (http://www.advancedcancertherapeutics.com). Other inhibitors of PFKFB3 have also been identified, such as 5-triazolo-2-arylpriazidinone,125 1-(3-pyridinyl)-3-(2-quinolinyl)-2-propan-1-one (PQP),126 5, 6, 7, 8-tetrahydroxy-2-(4-hydroxyphenyl) chrome-4-one (N4A) and 7, 8-dihydroxy-3-(4-hydroxyphenyl) chromen-4-one (YN1).127 The further identification of small-molecule inhibitors of PFKFB3 may provide a new avenue for the development of novel chemotherapeu-tic agents.

CONCLUSION AND PERSPECTIVES

Knowledge of the function of PFKFB3 in cancer has advanced considerably in the past several years. In this review, we summarized the function of PFKFB3 in tumor metabolism and elucidated the regulatory mechanisms of PFKFB3. Furthermore, the role of PFKFB3 in human tumor cells, CSCs, ECs and immune cells, was discussed in this review. PFKFB3 represents a promising target for tumor treatment. However, until now, no PFKFB3 inhibitors have been approved to treat patients with cancer. 3PO is a potent inhibitor of PFKFB3 but poor water solubility makes this compound clinically unavailable. Other potent and selective inhibitors of PFKFB3, such as PFKX15 and PFK-158, are under clinical trials for treating late-stage cancer patients. Recently emerged nanotechnology-based drug delivery carriers128–130 have the ability to formulate various hydrophobic anticancer agents including 3PO,131 thereby showing the potentials to improve the anticancer efficacy when used in vivo. On the other hand, specifying resistance mechanisms triggered by targeted therapies would allow for the specific selection of drug combinations. It was recently demonstrated that lactic acidosis arising as a result of tumor metabolism allows cancer cells to develop strong resistance to glucose deprivation-induced cell death.132 The theory that changing the pH of the tumor microenvironment with bicarbonate has been successfully applied in clinical treatment for patients with HCC that is not amenable to surgery,133 which provided new insights into treating tumors by targeting their metabolism and microenvironment. Reasonably, we believe combining PFKFB3 inhibitor with environmental cells inhibition, such as immune suppressors or angiogenesis inhibitors, would probably generate a better effect of tumor eradication. For example, the PFKFB3 inhibitor PFK-158 could improve the antitumor activity of the immune checkpoint inhibitor anti-CTLA4 in the B16 mouse model.132 Furthermore, tumors could rely on other metabolic pathways for energy supply besides glycolysis. For example, increased cholesterol synthesis and steriodogenesis occur throughout prostate cancer carcinogenesis rather than the classic ‘glycolytic switch’ observed in the majority of other solid tumors.134,135 Increased fatty acid oxidation is sufficient for cell survival and to protect cells from glucose withdrawal-induced death in Akt-overexpressing glioblastoma.136 A synergistic anti-neoplastic effect of anti-metabolism agents is anticipated when combined with chemotherapeutic drugs. How these drugs interact and produce optimal effects warrants further investigations.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (81372623, 81372631, 81502398 and 18026253), the Zhejiang Province Preeminence Youth Fund (LR16H160001) and the Zhejiang Natural Sciences Foundation Grant (Q16H160019).

COMPETING INTERESTS

The authors declare no conflict of interest.

REFERENCES

1. Warburg O. On the origin of cancer cells. Science 1956; 123: 309–314.
2. Weber G. Enzymology of cancer cells (first of two parts). N Engl J Med 1977; 296: 486–449.
3. Van Schaftingen E, Jett MF, Hue L, Hers HG. Control of liver 6-phospho-fructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci Biol 1981; 78: 3483–3486.
4. Piliks SJ, Claus TH, Kurland LJ, Lange AJ. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase: a metabolic signaling enzyme. Annu Rev Biochem 1995; 64: 799–835.
5. Okar DA, Lange AJ. Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors 1999; 10: 1–14.
6. El-Maghrabi MR, Noto F, Wu N, Manes N. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase: suitting structure to need, in a family of tissue-specific enzymes. Curr Opin Clin Nutr Metab 2007; 1: 411–418.
7. Okar DA, Lange AJ, Manzano A, Navarro-Sabate’ a, Riera LS, Bartrons R. PFK-2/ FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphos-
phatase. Trends Biochem Sci 2001; 26: 30–35.
8. Sakakibara R, Kato M, Okamura N, Nakagawa T, Komada Y, Tominaga N et al. Characterization of a human placentai fructose-6-phosphate, 2-kinase/fructose-2, 6-bisphosphatase. J Biochim 1997; 122: 122–128.
9. His-Jo R, Eschrich K. Splice isoforms of ubiquitous 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase in human brain. Brain Res Mol Brain Res 2001; 87: 190–195.
10. Fleischer M, Kessler R, Klammer A, Warnke JP, Eschrich K. LOH on 10p14-p15 targets the PFKFB3 gene locus in human glioblastomas. Genes Chromosomes Cancer 2011; 50: 1010–1020.
11. Chesney J, Telang S, Fau—Yalcin A, Yalcin A, Fau—Clemen A, Clemen A, Fau—Wallis M, Wals M, Fau—Bucala R, Bucala R. Targeted disruption of inducible 6-
phosphofructo-2-kinase results in embryonic lethality. Biochem Biophys Res Commun 2005; 331: 139–146.
12. El-Maghrabi MR, Claus TH, Piliks J, Fox E, Piliks SJ. Regulation of rat liver fructose 2,6-bisphosphatase. J Biol Chem 1982; 257: 7603–7607.
13. Tauler A, Lin K, Piliks SJ. Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphos-
phatase. Use of site-directed mutagenesis to evaluate the roles of His-258 and His-392 in catalysis. J Biol Chem 1993; 265: 15617–15622.
14. Li L, Lin K, Piliks J, Correa JJ, Piliks SJ. Hepatic 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase. The role of surface loop basic residues in substrate binding to the fructose-2,6-bisphosphatase domain. J Biol Chem 1992; 267: 21588–21594.
15. Lin K, Li L, Correa JJ, Piliks SJ. Glu327 is part of a catalytic triad in rat liver fructose-2,6-bisphosphatase. J Biol Chem 1992; 267: 6556–6562.
16. Kurland I, Chapman B, Lee YY, Piliks S. Evolutionary reengineering of the phosphofructokinase active site: ARG-104 does not stabilize the transition state in 6-phosphofructo-2-kinase. Biochem Biophys Res Commun 1995; 213: 663–672.
17. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-pho-
phofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunc-
tional enzyme that controls glycolysis. Biochem J 2004; 381: 561–579.
18. Toshiya A, Jason C, Christine M, Lin L, Seamas D, Zenji M et al. Characterization of a human placental fructose-6-phosphate, 2-kinase/fructose-
2,6-bisphosphatase: a metabolic signaling enzyme. Biochem Biophys Res Commun 1993; 190: 286–291.
19. Pilkis SJ, Claus TH, Kurland IJ, Lange AJ. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase. Regulation of rat liver fructose 2,6-
phosphatase. Proc Natl Acad Sci USA 1985; 82: 5881–5887.
20. Telang S, Yalcin A, Clemen A, Bucala R, Lane AN, Eaton JW et al. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 2006; 25: 7225–7234.
21. Kole HK, Resnick RJ, Van Doren M, Racker E. Regulation of 6-phosphofructo-1-
kinase activity in ras-transformed rat-1 fibroblasts. Arch Biochem Biophys 1991; 286: 586–590.
22. Blum R, Jacob-Hirsch J, Amariglio J, Rechavi G, Klyoo Y, Rechavi G, Klyoo Y et al. Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res Treat 2010; 160: 29–40.
23. Zawacka-Pankau J, Grinkevich VV, Huenten S, Nikulenkov F, Gluch A, Li H et al. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53 targeting Warburg effect to fight cancer. J Biol Chem 2011; 286: 41600–41615.
24. Cordero-Esparziana L, Hagen T. Increased concentrations of fructose 2,6-bisphos-
phatase contribute to the Warburg effect in phosphatase and tensin homolog (PTEN)-deficient cells. J Biol Chem 2013; 288: 36020–36028.
25. Kumar P, Sharoyko VV, Spegel P, Gullberg U, Mulder H, Olsson I et al. The transcriptional co-repressor myeloid translocation gene 16 inhibits glycolysis and stimulates mitochondrial respiration. PLoS ONE 2013; 8: e68502.
26. Fukasawa M, Tsuchiya T, Takayama E, Shinomiya N, Uyeda K, Sakakibara R et al. Identification and characterization of the hypoxia-responsive element of the
human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene. J Biol Chem 2004; 136: 273–277.

27 Novelladsent L, Obach M, Millan-Arino L, Manzano A, Ventura F, Rosa JL et al. Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells. Biochem J 2012; 442: 345–356.

28 Imbert-Fernandez Y, Clem BF, O’Neal J, Kerr DA, Spaulding R, Lanceta L et al. Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3). Biol Chem 2014; 289: 9440–9448.

29 Chen LL, Zhao JJ, Tang QM, Li HG, Zhang CG, Yu R et al. PFKFB3 control of cancer growth by responding to circadian clock outputs. Sci Rep 2016; 6: 24324.

30 Riera L, Manzano A, Navarro-Sabate A, Perales JC, Bartrons R. Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells. Biochem Biophys Acta 2002; 1589: 89–92.

31 Ando M, Uehara I, Kogure K, Nakajima W, Abe Y et al. Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch 2010; 77: 97–105.

32 Ruiz-Garcia A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 2011; 286: 19237–19245.

33 Novellasdemunt L, Blubut L, Manzano A, Ventura F, Rosa JL, Vertommen D et al. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem J 2013; 452: 531–543.

34 Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell growth and the Warburg effect. Proc Natl Acad Sci USA 1999; 96: 1047–1052.

35 Chen CY, Shyu AB. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 1995; 20: 465–470.

36 Ge X, Lyu P, Cao Z, Li J, Guo G, Xia W et al. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun 2015; 463: 1115–1121.

37 Du JY, Wang LF, Wang Q, Yu LD. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep 2015; 33: 1890–1898.

38 Martin AS, Bouzin C, Bertrand L, Hue L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 2002; 277: 30778–30783.

39 Okamura N, Sakakibara R, A common phosphorylation site for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell growth and the Warburg effect. Proc Natl Acad Sci USA 1999; 96: 1047–1052.

40 Ruiz-Garcia A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 2011; 286: 19237–19245.

41 Ando M, Uehara I, Kogure K, Nakajima W, Abe Y et al. Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch 2010; 77: 97–105.

42 Ruiz-Garcia A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 2011; 286: 19237–19245.

43 Novellasdemunt L, Blubut L, Manzano A, Ventura F, Rosa JL, Vertommen D et al. PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem J 2013; 452: 531–543.

44 Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L, Al-Abed Y et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell growth and the Warburg effect. Proc Natl Acad Sci USA 1999; 96: 1047–1052.

45 Chen CY, Shyu AB. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 1995; 20: 465–470.

46 Ge X, Lyu P, Cao Z, Li J, Guo G, Xia W et al. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun 2015; 463: 1115–1121.

47 Du JY, Wang LF, Wang Q, Yu LD. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells. Oncol Rep 2015; 33: 1890–1898.

48 Martin AS, Bouzin C, Bertrand L, Hue L. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem 2002; 277: 30778–30783.

49 Okamura N, Sakakibara R, A common phosphorylation site for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell growth and the Warburg effect. Proc Natl Acad Sci USA 1999; 96: 1047–1052.

50 Seo M, Lee YH. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation. J Biol Chem 2018; 293: 7693–7704.

51 Ruiz-Garcia A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 2011; 286: 19237–19245.

52 Ando M, Uehara I, Kogure K, Nakajima W, Abe Y et al. Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch 2010; 77: 97–105.

53 Ruiz-Garcia A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 2011; 286: 19237–19245.

54 Ando M, Uehara I, Kogure K, Nakajima W, Abe Y et al. Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J Nippon Med Sch 2010; 77: 97–105.
Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani OP, Hussain MZ et al. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 2007; 9: 1115–1124.

Jain Rakesh K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014; 26: 605–622.

Murata R, Nishimura Y, Hiraoka M. An antiangiogenic agent (TNP-470) inhibited reoxygengation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys 1997; 37: 1107–1113.

Cantelmo AR, Conradi LC, Braja C, Goveia J, Kaluca J, Pircher A et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, improves metastasis, and improves chemotherapy. Cancer Cell 2016; 30: 968–985.

Roos D, Loos JA. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytolomaegglutinin stimulation. Exp Cell Res 1973; 77: 127–135.

Kraus S, Brand MD, Buttgerit F. Signaling takes a breath—new quantitative perspectives on bioenergetics and signal transduction. Immunity 2001; 15: 497–502.

Jones RG, Thomson BP. Reviving the engine: signal transduction fuels T cell activation. Immunity 2007; 27: 173–178.

Chang CH, Curtis JO, Maggi LB, Faubert B, Villarino AV, O'Sullivan D et al. Post-transcriptional control of T cell effector function by aerobic glycolysis. Cell 2013; 153: 1239–1251.

Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6: 836–848.

Taleng S, Clem BF, Klarer AC, Clem AL, Trent JO, Bucala R et al. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses T cell activation. J Transl Med 2012; 10: 95.

Grewal J, Ritchie J, Al Rayyan N, Taleng S, Yaddanapudi K, Chesney J. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is necessary for human melanoma MDSC differentiation and function. J Immunol 2016; 196: 74.8.

Chesney JA, Taleng S, Yaddanapudi K, Grewal JS. Targeting 6-phosphofructo-2-kinase (PFKFB3) as an immunotherapeutic strategy. J Clin Oncol 2016; 34: e14548.

Taleng S, Yaddanapudi K, Grewal J, Redman R, Fu S, Pohlmann P et al. Abstract B90: PFK-158 is a first-in-human inhibitor of PFKFB3 that selectively suppresses glucose metabolism of cancer cells and inhibits the immunosuppressive Th17 cells and MDSCs in advanced cancer patients. Cancer Res 2016; 76: 890.

Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science 2013; 342: 1242454.

Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY et al. Inhibition of PFKFB expression in pancreatic and gastric cancer cells. Clin Cancer Res 2011; 17: 17; 77.

Molina E, Maestre C, Esteban-Martinez L, Partida D, Fernandez-Miranda G et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol 2015; 17: 1304–1316.

Minchenko OH, Tsuchihara K, Minchenko DO, Bilikova F, Esuuni H. Mechanisms of regulation of PFKFB expression in pancreatic and gastric cancer cells. World J Gastroenterol 2014; 20: 13705–13717.

Han J, Meng Q, Xi Q, Zhang Y, Zhuang Q, Han Y et al. Interleukin-6 stimulates aerobic glycolysis by regulating PFKFB at early stage of colorectal cancer. Int J Oncol 2016; 48: 215–224.

Bandh O, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res 2005; 11: 5784–5792.

Lu Q, Yan S, Sun H, Wang W, Li Y, Yang X et al. Akt inhibition attenuates rasfonin-induced autophagy and apoptosis through the glycolytic pathway in renal cancer cells. Cell Death Dis 2015; 6: e2005.

Reddy MM, Fernandes MS, Deshpande A, Weisberg E, Ingullizian HV, Abdel-Wahab O et al. The JAK2V617F oncogene requires expression of inducible phosphofructokinase/fructose-bisphosphatase 3 for cell growth and increased metabolic activity. Leukemia 2012; 26: 481–489.

Feng Y, Wu L. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival. Biochem Biophys Res Commun 2017; 483: 897–903.

Mendoza EE, Pocesschi MG, Kang X, Leeper DB, Caro J, Limesand KH et al. Control of glycolytic flux by AMP-activated protein kinase in tumor cells adapted to low oxygen. Nat Cell Biol 2012; 14: 208–216.

Lea MA, Altayyar M, desBordes C. Inhibition of growth of bladder cancer cells by 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one in combination with other compounds affecting glucose metabolism. Anticancer Res 2015; 35: 5889–5899.

Clem B, Taleng S, Clem A, Yalcin A, Meier J, Simmons A et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 2008; 7: 110–120.

Han J, Meng Q, Xi Q, Wang H, Wu G. PFKFB3 was overexpressed in gastric cancer patients and promoted the proliferation and migration of gastric cancer cells. Cancer Biomark 2016; 18: 249–256.

Marotta LL, Almenredo V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Blouhstain-Qimron N et al. The JAK2/STAT3 signaling pathway is required for growth of CD44+/CD24− (+) stem cell-like breast cancer cells in human tumors. J Clin Invest 2011; 121: 2723–2735.

Shipitsin M, Campbell LL, Argani P, Weremowicz S, Blouhstain-Qimron N, Yao J et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2011; 27: 259–273.

Cieslar-Pobuda A, Jain MW, Kratz G, Rzeszowska-Wolny J, Ghavami S, Wiehec E. The expression pattern of PFKFB3 enzyme distinguishes between induced-pluripotent stem cells and cancer stem cells. Oncotarget 2015; 6: 29763–29770.

Geudens I, Gerhardt H. Coordinating cell behaviour during blood vessel formation. Development 2011; 138: 4569–4583.

Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis revisited: an overlooked role of endothelial cell metabolism in vessel sprouting. Microcirculation 2015; 22: 509–517.
127 Seo M, Kim JD, Sehgal I, Lee YH. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS ONE 2011; 6: e24179.

128 Wang H, Xie H, Wu J, Wei X, Zhou L, Xu X et al. Structure-based rational design of prodrugs to enable their combination with polymeric nanoparticle delivery platforms for enhanced antitumor efficacy. Angew Chem 2014; 126: 11716–11721.

129 Wang H, Xie H, Wang J, Wu J, Ma X, Li L et al. Self-assembling prodrugs by precise programming of molecular structures that contribute distinct stability, pharmacokinetics, and antitumor efficacy. Adv Funct Mater 2015; 25: 4956–4965.

130 Wang H, Wu J, Xie K, Fang T, Chen C, Xie H et al. Precise engineering of prodrug cocktails into single polymeric nanoparticles for combination cancer therapy: extended and sequentially controllable drug release. ACS Appl Mater Interfaces 2017; 9: 10567–10576.

132 Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 2012; 227: 189–199.

133 Chao M, Wu H, Jin K, Li B, Wu J, Zhang G et al. A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. Elife 2016; 5: e15691.

134 Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J 2012; 279: 2610–2623.

135 Zadra G, Photopoulos C, Loda M. The fat side of prostate cancer. Biochim Biophys Acta 2013; 1831: 1518–1532.

136 Buzzai M, Bauer DE, Jones RG, DeBerardinis RJ, Hatzivassiliou G, Elstrom RL et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 2005; 24: 4165–4173.

Supplementary Information accompanies the paper on the Signal Transduction and Targeted Therapy website (http://www.nature.com/sigtrans)