The muscarinic receptor antagonist propiverine exhibits \(\alpha_1 \)-adrenoceptor antagonism in human prostate and porcine trigonum

Melinda Wuest · Lambertus P. Witte · Martina B. Michel-Reher · Stefan Propping · Manfred Braeter · Gerhard J. Strugala · Manfred P. Wirth · Martin C. Michel · Ursula Ravens

Received: 6 January 2011 / Accepted: 29 January 2011 / Published online: 19 February 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract

Purpose Combination therapy of male lower urinary tract symptoms with \(\alpha_1 \)-adrenoceptor and muscarinic receptor antagonists attracts increasing interest. Propiverine is a muscarinic receptor antagonist possessing additional properties, i.e., block of L-type Ca\(^{2+}\) channels. Here, we have investigated whether propiverine and its metabolites can additionally antagonize \(\alpha_1 \)-adrenoceptors.

Methods Human prostate and porcine trigone muscle strips were used to explore inhibition of \(\alpha_1 \)-adrenoceptor-mediated contractile responses. Chinese hamster ovary (CHO) cells expressing cloned human \(\alpha_1 \)-adrenoceptors were used to determine direct interactions with the receptor in radioligand binding and intracellular Ca\(^{2+}\) elevation assays.

Results Propiverine concentration-dependently reversed contraction of human prostate pre-contracted with 10 \(\mu \)M phenylephrine (\(-\log IC_{50} [M] \) 4.43 ± 0.08). Similar inhibition was observed in porcine trigone (\(-\log IC_{50} \) 5.01 ± 0.05), and in additional experiments consisted mainly of reduced maximum phenylephrine responses. At concentrations \(\geq 1 \mu M \), the propiverine metabolite M-14 also relaxed phenylephrine pre-contracted trigone strips, whereas metabolites M-5 and M-6 were ineffective. In radioligand binding experiments, propiverine and M-14 exhibited similar affinity for the three \(\alpha_1 \)-adrenoceptor subtypes with \(-\log K_i [M] \) values ranging from 4.72 to 4.94, whereas the M-5 and M-6 did not affect \([\text{H}]\)-prazosin binding. In CHO cells, propiverine inhibited \(\alpha_1 \)-adrenoceptor-mediated Ca\(^{2+}\) elevations with similar potency as radioligand binding, again mainly by reducing maximum responses.

Conclusions In contrast to other muscarinic receptor antagonists, propiverine exerts additional L-type Ca\(^{2+}\)-channel blocking and \(\alpha_1 \)-adrenoceptor antagonist effects. It remains to be determined clinically, how these additional properties contribute to the clinical effects of propiverine, particularly in male voiding dysfunction.

Keywords \(\alpha_1 \)-Adrenoceptor · Bladder trigone · Propiverine · Prostate

Introduction

The medical treatment of male lower urinary tract symptoms (LUTS) typically consists primarily of \(\alpha_1 \)-adrenoceptor antagonists, but in many patients this provides...
insufficient symptom relief. A combination of α1-adrenoceptor and muscarinic receptor antagonists may be more effective, particularly against storage symptoms [1, 2]. While most combination studies have used tolterodine as the muscarinic antagonist, several have also been based on propiverine [1–4].

Propiverine is an antagonist with similar affinity for all muscarinic receptor subtypes [5, 6] which also inhibits voltage-gated L-type Ca2+-channels [9–13]. As contractions of prostate [7] and bladder smooth muscle [8] at least partly depend on such channels, their inhibition may contribute to the therapeutic effects of propiverine in LUTS suggestive of benign prostatic hyperplasia and overactive bladder (OAB), respectively.

Based upon the growing interest in a combination treatment of male LUTS, we have explored possible α1-adrenoceptor antagonist effects of propiverine and its metabolites M-5, M-6, and M-14, which share the anti-muscarinic and/or L-type Ca2+-channel-blocking activity of propiverine [16, 17].

Materials and methods

Prostate and trigone detrusor contraction

Human prostate was obtained with informed written consent in accordance with the regulations of the local hospital ethical committee (permit EK 194092004) from six patients undergoing combined prostatectomy and radical cystectomy for invasive bladder cancer (65 ± 3 years). Urinary bladder trigone from juvenile and adult female pigs were obtained from a local abattoir. Prostate strips (10 mm long and 3–4 mm wide) and trigone strips (7–10 mm long and 2–4 mm wide without urothelium) were prepared and mounted in organ baths as previously described [7, 18] except for a resting load of 5 mN. After an equilibration period of 60 min, the strips were challenged with a single concentration of test compound was added and after additional 30 min, a second concentration-response curve for phenylephrine was generated.

Radioligand binding

Binding of propiverine and its metabolites to human α1-adrenoceptor subtypes was analyzed in Chinese hamster ovary (CHO) cells, expressing approximately 2 pmol receptor/mg protein, by competition binding against [3H]-prazosin as previously described [19, 20]. Phentolamine was used as a reference antagonist. Radioactivity adherent to the filters was quantified in a Topcount NXT (Perkin Elmer, Zaventem, Belgium) using Microsint O (Perkin Elmer) scintillator.

Intracellular Ca2+

Cells were plated in black, clear bottom 96 wells plates at 50,000 cells per well. After 24 h in serum-free medium, cells were loaded for 1 h with 4 μM Fluo-4 AM ester in buffer (HBSS containing 20 mM HEPES and 250 mM probenecid and 0.42% v/v pluronic acid). They were then washed twice and incubated for 45 min with buffer. Fluorescence was measured using an excitation filter at 485 nm and emission filter at 520 nm on a NOVOstar (BMG Labtech, via Isogen, IJsselstein, the Netherlands). After measuring the basal level for 10 s, phenylephrine (100 pM–10 μM) was added and measured for 50 s, then 5% v/v triton X-100 in basic buffer was added at 10% v/v to determine the maximal signal (Fmax). After 20 s, 0.1 M EGTA in buffer was added at 10% v/v to determine the minimal signal (Fmin). The increase in free intracellular Ca2+ ([Ca2+]i) was calculated as the difference between the [Ca2+]i for the basal level and after adding a ligand. [Ca2+]i was calculated by the equation:

\[[\text{Ca}^{2+}]_i = K_d * \left((F - F_{\text{min}})/(F_{\text{max}} - F) \right) \]

Kd is the dissociation constant of the binding of Fluo-4 to Ca2+ (345 nM). Concentration-response curves for phenylephrine were generated in duplicate in the absence and presence of propiverine, its metabolites M-5, M-6, and M-14 and the reference antagonist phentolamine (added 15 min prior to phenylephrine).

Data analysis

Experimental data were analyzed, by non-linear curve fitting of each individual experiment using GraphPad Prism® 4.00 (GraphPad Software, San Diego, CA, USA). Potencies of propiverine, tamsulosin, and prazosin on phenylephrine pre-contracted human prostate and porcine trigone strips...
were determined as $-\log \text{IC}_{50}$ [M] values. The potency ($-\log \text{EC}_{50}$ [M]) and efficacy of phenylephrine-induced contractions and $[\text{Ca}^{2+}]_i$ elevations were determined in the absence and presence of the indicated test compounds. Maximum contraction during the second concentration-response curve for phenylephrine (Eff_{max}) was expressed as percent of the maximum effects during the first concentration-response curve (=100%). Inhibitory potency as determined from competition binding experiments was transformed to $-\log K_i$ values using the Cheng and Prusoff equation. Statistical differences were tested by Student’s t-test and were considered significant for $P < 0.05$.

Chemicals

$[^{3}\text{H}]$-prazosin (specific activity 80 Ci/mmol) was purchased from Perkin Elmer (Zaventem, Belgium). Propiverine hydrochloride, M-5 (2,2-diphenyl-2-propoxy-acetic acid [1-methyl-piperid-4-yl]-ester-N-oxide-trans), M-6 (2,2-diphenyl-2-hydroxy-acetic acid [1-methyl-piperid-4-yl]-ester-N-oxide-trans), M-14 (2,2-diphenyl-2-propoxy-acetic acid [piperid-4-yl]-ester), and tamsulosin were synthesized at APOGEPHA Arzneimittel GmbH. Prazosin was from TOCRIS (Bristol, UK). Fluo-4 AM ester and pluronic acid were from Molecular Probes (via Invitrogen, Breda, The Netherlands). Phentolamine, phenylephrine, and all other chemicals were from SIGMA–ALDRICH (Taufkirchen, Germany).

Results

Effects on α_1-adrenoceptor-mediated prostate contraction

At the end of the equilibration period, human prostate strips exhibited a passive tension of $0.06 \pm 0.01 \text{ mN/mg}$ wet weight ($n = 16$ strips/five patients). Phenylephrine (10 μM) increased force of contraction to peak values of $0.16 \pm 0.02 \text{ mN/mg}$ ($n = 19/6$), which stabilized at steady-state values of $0.10 \pm 0.02 \text{ mN/mg}$ ($n = 16/5$) within 45 min (Fig. 1a). The maximum relaxation induced by 10 μM forskolin was $0.07 \pm 0.01 \text{ mN/mg}$ ($n = 16/5$). Propiverine, tamsulosin, and prazosin relaxed phenylephrine-induced contractions in a concentration-dependent manner (Fig. 1b).

Effects on α_1-adrenoceptor-mediated trigone contraction

Phenylephrine concentration-dependently contracted adult porcine trigone (but not bladder wall) with maximum contractions of $1.24 \pm 0.23 \text{ mN/mg}$ wet weight and a $-\log \text{EC}_{50}$ [M] of 5.74 ± 0.04 ($n = 6$). In juvenile tissues, these contractions were concentration-dependently reversed by tamsulosin, prazosin, and propiverine (Fig. 2a). The overall relaxing effect of propiverine on contractions was similar in tissue from mature and juvenile animals, but the potency was lower in mature than in juvenile pigs ($-\log \text{IC}_{50}$ [M] 5.01 ± 0.05 vs. 6.21 ± 0.10, respectively; $n = 5–7$; $P < 0.05$; Fig. 2a,b). In trigone from mature pigs M-14 caused similar relaxation when compared to propiverine but with lower potency (4.84 ± 0.08; $n = 8$; Fig. 2b). M-5 and M-6 did not influence trigone contractions in concentrations up to 100 μM (data not shown).

Concentration-response curves for phenylephrine in porcine trigone strips in the presence of increasing

Fig. 1 a Original recordings of force of contraction in a human prostate tissue strip. The preparation was pre-contracted with phenylephrine (PE, 10 μM) (left arrow). After stabilization of force, propiverine or vehicle were added in increasing concentrations (0.1–100 μM). Finally, forskolin (10 μM) was added for complete relaxation. The difference between force prior to addition of the test compound and force in the presence of forskolin was taken as maximum relaxation (=100%). b Effects of tamsulosin, prazosin, and propiverine on α_1-adrenoceptor-mediated contractions in the human prostate (calculated $-\log \text{IC}_{50}$ values 10.39 ± 0.04, 7.73 ± 0.04, and 4.43 ± 0.08, respectively). Values were corrected for spontaneous relaxation during time-matched controls, normalized to percent relaxation by forskolin and expressed as means \pm SEM.
propiverine concentrations demonstrated that inhibition was largely insurmountable, i.e., mainly consisting of reduced maximum responses with only minor if any reductions in apparent potency (Fig. 3).

Binding to α_1-adrenoceptor subtypes

Direct α_1-adrenoceptor inhibition was evaluated in radioligand binding assays with CHO cells. Propiverine, M-14, and phentolamine competed for [3H]-prazosin binding with $-\log K_i$ values of 4.72 ± 0.01, 4.72 ± 0.04, and 8.62 ± 0.19 at α_{1A}-, 4.94 ± 0.02, 5.02 ± 0.11 and 7.96 ± 0.22 at α_{1B}-, and 4.73 ± 0.02, 4.57 ± 0.06 and 7.87 ± 0.04 at α_{1D}-adrenoceptors, respectively (Fig. 4). In contrast, the metabolites M-5 and M-6 had little effect at up to 100 μM.

α_{1A}-Adrenoceptor-mediated intracellular Ca^{2+} elevation

The $[\text{Ca}^{2+}]_i$ increase with 10 μM phenylephrine was about 1,600 nM, and all subsequent data values are normalized to that response as measured within a given experiment (=100%). Propiverine and M-14 concentration-dependently inhibited the $[\text{Ca}^{2+}]_i$ elevations, but this inhibition largely consisted of reduced maximum responses with small if any effects on phenylephrine potency (Fig. 5a,b). M-5 or M-6 had little effect (Fig. 5c), whereas antagonism by phentolamine was surmountable (Fig. 5d).

Discussion

Propiverine differs from most other OAB drugs as it is not only a muscarinic receptor antagonist [5, 6] but also inhibits L-type Ca^{2+} channels [9–13]. Based upon the increasing interest in a combination treatment of male LUTS [14–16], we have explored possible α_1-adrenoceptor antagonism of propiverine and three of its main metabolites. The α_1-adrenoceptor antagonists phentolamine, prazosin, and tamsulosin were used as reference compounds and exhibited the expected potency for interaction with α_1-adrenoceptors, thereby validating our model systems and

Fig. 2 a Effects of cumulatively added concentrations of phenylephrine on adult pig detrusor tissue from the trigone and the wall area of the urinary bladder. Data were normalized to mN/mg wet weight of the detrusor strip. b Effects of increasing concentrations of propiverine in comparison to those of the α_1-adrenoceptor antagonists tamsulosin and prazosin on juvenile porcine detrusor strips from the trigone area of the urinary bladder. Strips were pre-contracted with 10 μM of the α_1-adrenoceptor agonist phenylephrine. c Effects of increasing concentrations of propiverine and its metabolites M-5 and M-6 and d effects of propiverine and M-14 on trigone detrusor strips from mature pigs pre-contracted with phenylephrine (10 μM). Data in b–d were normalized to percent relaxation by forskolin (10 μM) and corrected for spontaneous relaxation during time-matched controls. Means ± SEM

© Springer
techniques. Due to limited access to human prostate specimen for organ bath experiments as well as smaller signal/noise ratios, we have used porcine trigone as a well established animal model of \(\alpha_1\)-adrenoceptor-mediated contraction of urological tissue for more detailed analysis.

Our data demonstrate concentration-dependent relaxation of phenylephrine-induced tone of human prostate and porcine trigone. At least in trigone, similar relaxation was observed with the propiverine metabolite M-14 but not with M-5 or M-6. As phenylephrine-induced contraction in these two preparations is \(\alpha_1\)-adrenoceptor-mediated [17], this relaxation provided initial evidence for \(\alpha_1\)-adrenoceptor antagonism by propiverine and M-14. However, L-type Ca\(^{2+}\) channels contribute to prostate and bladder contraction [9, 10]. The direct interaction of propiverine and its metabolites with \(\alpha_1\)-adrenoceptors was demonstrated in competition binding studies with cloned human \(\alpha_1\)-adrenoceptor subtypes, yielding affinities in line with their potency to relax human prostate and porcine trigone. To verify that the inhibition of radioligand binding was indeed associated with receptor antagonism, concentration-dependent inhibition of phenylephrine-induced [Ca\(^{2+}\)]\(_i\) elevation was demonstrated. In contrast to tissue relaxation experiments, inhibition of [Ca\(^{2+}\)]\(_i\), elevation in CHO cells cannot be explained by Ca\(^{2+}\) channel-blocking properties of propiverine, because CHO cells do not express such L-type Ca\(^{2+}\) channels. Together these experiments demonstrate that propiverine and its metabolite M-14 bind to and inhibit human \(\alpha_1\)-adrenoceptors and accordingly can relax \(\alpha_1\)-adrenoceptor-mediated contraction of human prostate and porcine trigone.

Propiverine is a competitive antagonist with similar affinity for all muscarinic receptor subtypes [5, 6, 11]. However, the antagonism of [Ca\(^{2+}\)]\(_i\) elevations in CHO cells and of contraction in porcine trigone was
insurmountable. Thus, the molecular interaction of propiverine with \(\alpha_1 \)-adrenoceptors and muscarinic receptors occurs in a different way despite the drug being an antagonist for both receptor families. This differential interaction is also supported by the fact that the propiverine metabolites M-5 and M-6 lacked \(\alpha_1 \)-adrenoceptor effects but inhibit muscarinic receptor function [5, 10, 18, 19].

The affinity of propiverine for \(\alpha_1 \)-adrenoceptors in the present study differs from that for human \(M_3 \) receptors by 50- to 100-fold [5, 6, 12] but is very similar to its potency for inhibition of L-type Ca\(^{2+}\) channels [12]. As muscarinic antagonists typically are dosed to yield high receptor occupancy rates [20], it can be expected that therapeutic doses of propiverine exhibit some degree of \(\alpha_1 \)-adrenoceptor antagonism and L-type Ca\(^{2+}\) channel blockade. Based upon reported plasma concentrations of propiverine (parent compound alone) [21] and our affinity estimates from the radioligand binding studies, therapeutic propiverine concentrations could occupy up to 10% of \(\alpha_1 \)-adrenoceptors. While this may be less pronounced than the blockade of muscarinic receptors, it may nevertheless contribute to the clinical profile of propiverine and specifically may be beneficial for the treatment of male LUTS. Moreover, the insurmountable antagonism at \(\alpha_1 \)- (but not muscarinic) receptors raises the possibility that even limited \(\alpha_1 \)-adrenoceptor occupancy will yield considerable inhibition over time. Interestingly, a large recent observational study reported that the clinical effects of propiverine against OAB symptoms were quantitatively similar in men when administered alone or as add-on to an existing \(\alpha \)-blocker treatment [22]. While these findings do not prove \(\alpha_1 \)-antagonism of propiverine in vivo, they are in line with this proposal. However, dedicated studies will be required to determine the clinical relevance of such effects. They should also take into account that propiverine and its various metabolites differ in their in vivo plasma concentrations [23]. For each of them, the relative contribution of the three molecular targets may differ in the generation of bladder selectivity and the overall relaxing effect in the lower urinary tract [24]. Even if propiverine itself turns out to have too little \(\alpha_1 \)-antagonism in vivo, it is an exciting starting point for the future synthesis of balanced \(\alpha_1 \)/muscarinic receptor antagonists.

Conclusions

In contrast to other drugs used for the treatment of OAB, propiverine is not only a muscarinic receptor antagonist but also has L-type Ca\(^{2+}\) channel blocking and \(\alpha_1 \)-adrenoceptor antagonist effects. While each of these effects may be beneficial in the treatment of voiding dysfunction, including male LUTS, the relative contribution of these mechanisms and of the propiverine metabolites to the overall therapeutic effects upon oral administration of propiverine remains to be determined.

Acknowledgments This study was funded and supported in part by the Bundesministerium für Wirtschaft, Germany (PRO INNO II, KA0558501UL7), Coordination Theme 1 (Health) of the European Community’s FP7, Grant agreement number HEALTH-F2-2008-223234, and by APOGEPHA Arzneimittel GmbH, Dresden, Germany. MB and GJS are employees of Apogepha. MC Michel has received research support, lecturer and/or consultant honoraria in the anti-muscarinic field from Allergan, Astellas, Bayer, Boehringer Ingelheim, Pfizer, Schwarz Pharma, Theravance.
Conflict of interest The other authors do not report a conflict of interest other than those listed under Acknowledgments.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Saito H, Yamada T, Oshima H et al (1999) A comparative study of the efficacy and safety of tamsulosin hydrochloride (Harnal capsules) alone and in combination with propiverine hydrochloride (BUP-4 tablets) in patients with prostatic hypertrophy associated with pollakiuria and/or urinary incontinence. Jpn J Urol Surg 12:525–536

2. Lee K-S, Choo M-S, Kim D-Y et al (2005) Combination treatment with propiverine hydrochloride plus doxazosin controlled release gastrointestinal therapeutic system formulation for overactive bladder and coexisting benign prostate obstruction: a prospective, randomized, controlled multicenter study. J Urol 174:1334–1338

3. Maruyama O, Kawachi Y, Hanazawa K et al (2006) Naftopidil monotherapy vs naftopidil and an anticholinergic agent combined therapy for storage symptoms associated with benign prostatic hyperplasia: a prospective randomized controlled study. Int J Urol 13:1280–1285

4. Yokoyama T, Uematsu K, Watanabe T et al (2009) Naftopidil and propiverine hydrochloride for treatment of male lower urinary tract symptoms suggestive of benign lower urinary tract symptoms of benign prostate hyperplasia and concomitant overactive bladder: a prospective randomized controlled study. Scand J Urol Nephrol 43:307–314

5. Wuest M, Weiss A, Waelbrock M et al (2006) Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn-Schmiedeberg’s Arch Pharmacol 374:87–97

6. Maruyama S, Oki T, Otsuka A et al (2006) Human muscarinic receptor binding characteristics of antimuscarinic agents to treat overactive bladder. J Urol 175:365–369

7. Chueh S-C, Guh J-H, Chen J et al (1996) Inhibition by tamsulosin of tension responses of human hyperplastic prostate to electrical field stimulation. Eur J Pharmacol 305:177–180

8. Frazier EP, Peters SLM, Braverman AS et al (2008) Signal transduction underlying control of urinary bladder smooth muscle tone by muscarinic receptors and β-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 377:449–462

9. Christ T, Wettwer E, Wuest M et al (2008) Electrophysiological profile of propiverine—relationship to cardiac risk. Naunyn-Schmiedeberg’s Arch Pharmacol 376:431–440

10. Wuest M, Hecht J, Christ T et al (2005) Pharmacodynamics of propiverine and three of its metabolites on detrusor contraction. Br J Pharmacol 145:608–619

11. Tokuno H, Chowdhury JU, Tomita T (1993) Inhibitory effects of propiverine on rat and guinea-pig urinary bladder muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 348:659–662

12. Uchida S, Kurosawa S, Fujino T et al (2007) Binding activities by propiverine and its N-oxide metabolites of L-type calcium channel antagonist receptors in the rat bladder and brain. Life Sci 80:2454–2460

13. Zhu H-L, Brain KL, Aishima M et al (2008) Actions of two main metabolites of propiverine (M-I and M-2) on voltage-dependent L-type Ca^{2+} currents and Ca^{2+} transients in murine urinary bladder myocytes. J Pharmaco Exp Ther 324:118–127

14. Lee K-S, Lee HW, Han DH (2008) Does anticholinergic medication have a role in treating men with overactive bladder and benign prostate hyperplasia? Naunyn-Schmiedeberg’s Arch Pharmacol 377:491–501

15. Andersson K-E (2007) LUTS treatment: future treatment options. Neurourol Urodyn 26:934–947

16. Athanasopoulos A, Perimenis P (2005) Efficacy of the combination of an α1-Blacoker with an anticholinergic agent in the treatment of lower urinary symptoms associated with bladder outlet obstruction. Exp Opin Pharmacother 6:2429–2433

17. Michel MC, Vrydag W (2006) Anticholinergic effects of the urinary bladder spasmolytics propiverine and three of its metabolites in the urinary bladder, urethra and prostate. Br J Pharmacol 147:S88–S119

18. Wuest M, Braeter M, Schoeberl C et al (2005) Juvenile pig detrusor: effects of propiverine and three of its metabolites. Eur J Pharmacol 524:145–148

19. Proping S, Braeter M, Grimm M-O et al (2010) Anticholinergic effects of cis- and trans-isomers of two metabolites of propiverine. Naunyn-Schmiedeberg’s Arch Pharmacol 381:329–338

20. Hegde SS (2006) Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 147:S80–S87

21. Guay DRP (2003) Clinical pharmacokinetics of drugs used to treat urge incontinence. Clin Pharmacokinet 42:1243–1285

22. Oelke M, Murgas S, Baumann I et al (2011) Efficacy of propiverine ER with or without α-blockers related to maximum urinary flow rate in adult men with OAB: results of a 12-week, multicenter, non-interventional study. World J Urol. doi:10.1007/s00345-011-0654-7

23. May K, Westphal K, Giessmann T et al (2008) Disposition and antimuscarinic effects of the urinary bladder spasmytics propiverine: influence of dosage forms and circadian-time rhythms. J Clin Pharmacol 48:570–579

24. Yamada S, Ito Y, Taki Y et al (2010) The N-oxide metabolite contributes to bladder selectivity resulting from oral propiverine: muscarinic receptor binding and pharmacokinetics. Drug Metab Dispos 38:1314–1321