Big-bang nucleosynthesis in Brans-Dicke cosmology with a varying Λ term related to WMAP

R. Nakamura1, M. Hashimoto1, S. Gamow1, and K. Arai2

1 Department of Physics, Kyushu University, Fukuoka, 810-8560, Japan
2 Department of Physics, Kumamoto University, Kumamoto, 860-8555 Japan

Received / Accepted

Abstract. We investigate the big-bang nucleosynthesis in a Brans-Dicke model with a varying Λ term using the Monte-Carlo method and likelihood analysis. It is found that the cosmic expansion rate differs appreciably from that of the standard model. The produced abundances of 4He, 7Li, and barely 6Li are consistent with the observed ones within the uncertainties in nuclear reaction rates when the baryon to photon ratio $\eta = (5.47 - 6.64) \times 10^{-10}$, which is in agreement with the value deduced from WMAP.

Key words. general: nucleosynthesis – abundances – cosmology: early universe – cosmic microwave background

1. Introduction

The standard model of the big-bang nucleosynthesis (SBBN) has succeeded in explaining the origin of light elements 4He, 7Li, although the value of the baryon-to-photon ratio η has been derived from the observations of the Wilkinson Microwave Anisotropy Probe (WMAP) (Bennett et al. 2003) to be $\eta_0 = 6.1^{+0.3}_{-0.2}$, the value seems to be inconsistent with the results of SBBN (Coc et al. 2004). Contrary to the excellent concordance with η of WMAP for D, the abundance of 4He by SBBN is rather low compared to that from WMAP. Therefore, non-standard models of BBN have been proposed with the Friedmann model modified (Steigman 2003).

For non-standard models, scalar-tensor theories have been investigated (e.g., Bergmann 1968, Wagoner 1970, Endo & Fukui 1977, Fukui et al. 2001). For a simple model with a scalar ϕ, it is shown that a Brans-Dicke (BD) generalization of gravity with torsion includes the low-energy limit string effective field theory (Hammond 1996). Related to the cosmological constant problem, a Brans-Dicke model with a varying $\Lambda(\phi)$ term (BDA) has been presented, and also investigated from the point of an inflation theory (Berman 1989). Moreover, it is found that the linearized gravity can be recovered in the Randall-Sundrum brane world (Garriga & Tanaka 2000). Furthermore, scalar-tensor cosmology is constrained by χ^2 test for WMAP spectrum (Nagata et al. 2004) where the present value of the coupling parameter $\omega_0 = \omega(\phi_0)$ is bounded to be $\omega_0 > 50 (4\sigma)$ and $\omega_0 > 1000 (2\sigma)$ in the limit to BD cosmology.

In the mean time, BBN has been studied in BDA (Arai et al. 1987, Etoh et al. 1997). A relation between BBN and scalar-tensor gravity is investigated with the inclusion of e^+e^- annihilation to the equation of state, where the present value of the scalar coupling has been constrained (Damour & Pichon 1999). On the other hand, it is suggested that a decaying Λ modifies the evolution of the scale factor and affects the temperature T_r of the cosmic microwave background at redshift $z \leq 10^4$, when the recombination begins due to the decrease in T_r (Kimura et al. 2004), while a decaying Λ is found to be consistent with temperature observations of the cosmic microwave background for $z < 4$ (Puy 2004). Therefore, it is worthwhile to check the validity of BDA related to the recent observations. In the present paper, we investigate how extent BBN in the BDA model can be reconciled with η from WMAP.

In §2, the formulation for BDA is given and the evolution of the universe in BDA is shown. Our results of BBN are presented in §3 using the Monte-Carlo method (Cyburt et al. 2001), and constraints are given to the parameters inherent in BDA. We examine in §4 the evolution of the scale factor and the resulting abundances with taking into account the deviation from the equation of state $p = \rho/3$ during the stage of e^+e^- annihilation. In §5, the likelihood analysis (Fields et AB. 1996) is adopted to get most probable values and the accompanying errors.
2. Brans-Dicke cosmology with a varying Λ term

The field equations for BDΛ are written as follows (Arai et al. 1987):

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda = \frac{8\pi}{\phi}T_{\mu\nu} + \frac{\omega}{\phi}(\partial_{\mu}\phi,_{\nu} - \frac{1}{2}g_{\mu\nu}\phi_{,\alpha}\phi^{,\alpha}) + \frac{1}{\phi}(\partial_{\mu}\phi - g_{\mu\nu}\Box\phi),$$

$$R - 2\Lambda - 2\phi\frac{\partial\Lambda}{\partial\phi} = \frac{\omega}{\phi^{2}}\partial_{\mu}\phi^{,\mu} - \frac{2\omega}{\phi}\Box\phi,$$

(1)

where ω is the coupling constant.

The equation of motion is obtained with use of the Friedmann-Robertson-Walker metric:

$$ds^{2} = -dt^{2} + a(t)^{2}\left\{ \frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right\},$$

(3)

where $a(t)$ is the scale factor and k is the curvature constant. Let $x = a/a_{0}$, then we get from the $(0,0)$ component in Eq. (1)

$$\left(\frac{\dot{x}}{x} \right)^{2} + \frac{k}{3} - \frac{\omega}{6} \left(\frac{\dot{\phi}}{\phi} \right)^{2} - \frac{\dot{x}}{x} \frac{\dot{\phi}}{\phi} = \frac{8\pi}{3}\frac{\rho}{\phi}.$$

(4)

where ρ is the energy density.

We assume the simplest case of the coupling between the scalar and matter fields:

$$\Box\phi = \frac{8\pi}{2\omega + 3}\mu T_{\nu}^{\nu},$$

(5)

where μ is a constant. Assuming the perfect fluid for $T_{\mu\nu}$, Eq. (4) reduces to

$$\frac{d}{dt}(\dot{x}x^{3}) = \frac{8\pi\mu}{2\omega + 3}(p - 3\rho)x^{3},$$

(6)

where p is the pressure.

A particular solution of Eq. (2) is obtained from Eqs. (1) and (5):

$$\Lambda = \frac{2\pi}{\phi}(\mu - 1)\rho_{m0}x^{-3},$$

(7)

where ρ_{m0} is the matter density at the present epoch.

The gravitational “constant” G is expressed as follows

$$G = \frac{1}{2}\left(3 - \frac{2\omega + 1}{2\omega + 3}\mu \right) \frac{1}{\phi}.$$

(8)

The radiation density ρ_{r} contains the contributions from photons, neutrinos, electrons and positrons at $t \leq 1$ s. The total energy density is given as

$$\rho = \rho_{m} + \rho_{r}, \quad \rho_{r} = \rho_{\text{rad}} + \rho_{\nu} + \rho_{e^{\pm}}.$$

(9)

Here the energy density of matter varies as $\rho_{m} = \rho_{m0}x^{-3}$. The radiation density $\rho_{r} = \rho_{\text{rad}}x^{-3}$ except $e^{+}e^{-}$ epoch where $e^{+}e^{-}$ annihilation changes the relation $T_{r} \sim x^{-1}$. We assume that the pressure satisfies $p = \rho/3$, which is legitimated only for relativistic particles. Then, Eq. (10) is integrated to give

$$\phi = \left(\frac{8\pi\mu}{2\omega + 3}\rho_{m0}t + \frac{B}{3} \right) x^{3},$$

(10)

where B is a constant (Arai et al. 1987). Although the relation $p = \rho/3$ does not hold during the epoch of $e^{+}e^{-}$ annihilation, as pointed out by Damour and Pichon (1999),...
the inclusion of ϕ measures small deviation from SBBN in the case of our interest, so that our solution (10) can reasonably describe the evolution of x except the annihilation epoch. We consider that B affects the evolution of x significantly from the early epoch to the present compared to the contribution from e^+e^- annihilation. As the consequence, neutron to proton ratio is affected seriously by the initial value of B. Considering the important contribution of ρ_{γ} to BBN, we examine the effects of e^+e^- annihilation in §4. Hereafter we use the normalized values: $B^*=B/(10^{-24}\text{ g s}^{-1}\text{ cm}^{-3})$, and $n_{10}=10^{10}h$. The coupled equations (4), (7), and (10) can be solved numerically with the specified quantities: as for macroscopic quantities, $G_0=6.672\times10^{-8}\text{ dyn cm}^2\text{ g}^{-2}$, $H_0=71\text{ km s}^{-1}\text{ Mpc}^{-1}$ (Bennett et al. 2003), and $T_{r0}=2.725\text{ K}$ (Mather et al. 1999); as for microscopic quantities, the number of massless neutrino species is 3 and the half life of neutrons is 885.7 s (Hagiwara et al. 2002). Though we adopt $\omega=500$, the epoch of the appreciable growth of $|\dot{G}/G|$ is $t<10^3\text{ s}$ regardless of the value ω (Arai et al. 1997). Therefore, even if we adopt a value $\omega>500$ (Will 2001), we can get qualitatively the same conclusion by changing the parameters μ and B^*. We impose the condition $|\dot{\phi}/\phi|_0<10^{-13}\text{ yr}^{-1}$ which is the most severe observational limit (Müller et al. 1991).

We remark that BDA is an extension of the original form of BD and reduces to the Friedmann model when $\phi=\text{constant}$, $\mu=1$, and $\omega\gg1$. We have $\Lambda<0$ if $\mu<1$, and $\phi G>0$ if both $\mu>3$ and $\omega>1$. Figure 1 shows the evolution of the scale factor for BDA with the relevant parameters in the present study and for the Friedmann model. Note that the difference in the expansion rate at $t<10\text{ s}$ in BDA. In particular, around $t=5\text{ s}$, the curve x in BDA crosses that of the Friedmann model, which will have sensitive effects on BBN. Since Λ is proportional to ρ_{m0}, μ affects the evolution of the scale factor around the present epoch. In our BDA model, if $|B^*|$ increases, the expansion rate increases at $t<10-100\text{ s}$. It is remarked that the change in G between the recombination and the present epoch is less than 0.05 (2σ) from WMAP (Nagata et al. 2004), which is consistent with BDA since $|(G-G_0)/G_0|<0.005$ at $t>1\text{ yr}$.

3. Big-bang nucleosynthesis

Changes in the expansion rate compared to the standard model affect the synthesis of light elements at the early era, because the neutron to proton ratio is sensitive to the expansion rate.

For the BBN calculation, we use the reaction rates (Cyburt et al. 2001) based on NACRE (Angulo et al. 1999). We adopt the observed abundances of ^4He, D/H and $^7\text{Li}/\text{H}$ as follows: $Y_p=0.2391\pm0.0020$ (Luridiana et al. 2003), $\text{D}/\text{H}=2.75_{-0.30}^{+0.44}\times10^{-5}$ (Kirkman et al. 2003), $^7\text{Li}/\text{H}=(2.19\pm0.28)\times10^{-10}$ (Bonifacio et al. 2002).

Since the results of WMAP constrain cosmological parameters, we calculate the abundance of ^4He, D and ^7Li paying attention to the value $n_{10}=6.1$. First, we carry out the BBN calculations with use of the adopted experimental values of nuclear reaction rates given in NACRE. Figure 2 illustrates ^4He, D/H, and $^7\text{Li}/\text{H}$ for $\mu=0.7$. The abundance of ^4He is very sensitive to both B^* and μ; it increases if $|B^*|$ or μ increases. On the other hand, D and ^7Li are more sensitive to μ than B^* as seen from Fig. 4. As a result, ^4He and D/H are consistent with η obtained from WMAP in the range $-0.5\leq\mu\leq0.8$ and $-10\leq B^*\leq10$. The light-shaded areas denote the regions of observed abundances, and the dark-shaded area indicates the limit obtained from WMAP. While the obtained values of ^4He...
and D are consistent with η by WMAP, the lower limit in ^7Li is barely consistent.

4. Effects of e^+e^- annihilation on BBN

In the previous sections, we have assumed the equation of state $p = \rho/3$ in Eq. (6) to obtain Eq. (10) at the epoch of e^+e^- annihilation. Let us discuss the effects of e^+e^- annihilation on the evolution of the scalar field and the scale factor due to the deviation from the relation $p = \rho/3$. The electron-positron pressure and energy density are written with the variable $\zeta = m_e/k_BT_\tau$ as follows

$$p_e = \frac{2m_e^4}{\pi^2\hbar^3} \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n\zeta} \right)^2 K_2(n\zeta),$$

$$\rho_e = 3 p_e + \frac{2m_e^4}{\pi^2\hbar^3} \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n\zeta} \right) K_1(n\zeta),$$

where \hbar is Planck’s constant in units of 2π, k_B is Boltzmann’s constant, and m_e is the electron rest mass. $K_i(i = 1 \text{ and } 2)$ are modified Bessel functions of order i (e.g. Damour & Pichon [1994]). In the numerical calculations, the summations in Eqs. (11) and (12) are taken over $n = 1-10$. We can get the scale factor by integrating Eq. (10) with the aid of Eq. (8). To see the effects of e^+e^-, we take the form:

$$\dot{x}^3 = \frac{8\pi\mu}{2\omega + 3} \int x^3 (\rho_e - 3p_e) dt + B.$$

A direct comparison is made for the evolution of the scalar field. The results are shown in Fig. 4 where the solid line indicates the case of Eq. (10) with $B^* = -2.43$ and $\mu = 0.7$, and the broken line is the case of Eq. (13) with $B^* = -2.50$ and $\mu = 0.7$. These sets of parameters yield the same macroscopic quantities given in §2. Although we can appreciate the slight difference at $t < 10^3$ s, it remains small during and after the stage of BBN. The effects on the evolution of the scale factor are minor and the change in Y_p is found to be at most 0.1% compared to that obtained in §3. We can conclude that since the effects of B in the range $-10 < B^* < 10$ is much larger compared to those of e^+e^- annihilation, the deviation from the relation $p = \rho/3$ due to e^+e^- does not change our results qualitatively. However, we note that even small differences in Y_p may affect the detailed statistical analysis combined with theoretical and observational uncertainties performed in the previous sections.

5. Discussion and conclusions

We have carried out the BBN calculations in the $\mu - B^*$ plane and obtain the ranges $-0.5 \leq \mu \leq 0.8$ and $-10 < B^* < 10$ that are consistent with both the abundance observations and η obtained from WMAP.

To evaluate uncertainties of theory and observations, we calculate normalized likelihood distributions in BBN (Fields et al. [1996]; Hashimoto et al. [2003]). In Fig. 5, we show the likelihood functions for ^4He, D, and ^7Li. The combined distributions, $L_{4\text{He}} = L_4 \cdot L_7$ and $L_{247} = L_2 \cdot L_4 \cdot L_7$, are shown in Fig. 6. As the result, we get the 95% confidence limit of η: $5.47 \leq \eta_{10} \leq 6.64$.

The consistency holds within 1σ error for ^4He and D, and 2σ for ^4He, D, and ^7Li. Though new reaction rates recently published (Descouvemont et al. [2004]) will change the errors to some extent in the likelihood analysis, our conclusion holds qualitatively.

Our previous studies (Etoh et al. [1997]) showed $1 < \mu < 3$ if $\Lambda > 0$ for large value of ω. In the present case, the Λ term becomes negative from Eq. (7) for $\mu < 1$: this
Fig. 6. Likelihood function as a function of η_{10} for ^4He (L_4), D (L_2) and ^7Li (L_7). The vertical lines indicate upper and lower limit to η by WMAP.

Fig. 7. Combined Likelihood function for two (L_{247}) and three-elements (L_{247}).

would not conflict with available observations and/or basic theory (Vilenkin 2004). Alternatively, if we consider $\Lambda = \Lambda_0 + \Lambda(\phi)$ with $|\Lambda(\phi_0)/\Lambda_0| < 0.01$, then the cosmological term becomes consistent with the present observations. Though the evolutionary path in the early universe can deviate from the Friedmann model (Arai et al. 1987), parameters in BDA must be searched in detail for values of $\omega > 500$ to get quantitative results of BBN. We note that it is shown that negative energies are present in scalar-tensor theories, though it is not clear how to identify them definitely (Faraoni 2004).

To save the apparent inconsistency for SBBN, effects of neutrino degeneracy, changes in neutrino species, or other new physical processes have been included (Steigman 2004). In our model, we need only a scalar field that could be related to a string theory (Hammond 1996). It is noted that the original BD cosmology ($\mu = 1$) would be limited severely by the more accurate observation of light elements and/or the future constraints for η as shown in the present investigation.

Acknowledgements. Data analysis were in part carried out on a general computer system at the Astronomical Data Analysis Center of the National Astronomical Observatory of Japan.

References

Angulo, C., Arnould, M., & Rayet, M., et al. 1999, Nucl. Phys. A, 656, 3
Arai, K., Hashimoto, M., & Fukui, T. 1987, A&A, 179, 17
Bennett, C. L., Halpern, M., & Hinshaw, G., et al. 2003, ApJS, 148, 1
Bergmann, P. G. 1968, Int. J. Theor. Phys., 1, 25
Berman, M. S. 1989, Phys. Lett. A, 142, 335
Bonifacio, P., Pasquini, L., Spite, F., et al. 2002, A&A, 390, 1
Brans, C. & Dicke, R. H. 1961, Phys. Rev., 124, 925
Cardenas, R., Gonzalez, T., Leiva, Y., Martin, O., & Quiros, I. 2003, Phys. Rev. D, 67, 083501
Coc, A. et al., in Origin of Matter and Evolution of Galaxies, astro-ph/0401008
Cyburt, R., Fields, B., & Olive, K. 2001, New A, 6, 215
Damour, T., & Pichon, B. 1999, Phys. Rev. D, 59, 123502
Descouvemont, P., Adahchour, A., Angulo, C., Coc, A., & Vangioni-Flam, E. 2004, Atom.Data Nucl.Data Tabl., 88, 203
Endo, M., & Fukui, T. 1977 Gen. Rel. Grav., 8, 833
Etoh, T., Hashimoto, M., Arai K., & Fujimoto, S. 1997, A&A, 325, 893
Faraoni, V. 2004, Phys. Rev. D, 70, 081501
Fields, B. D., Kainulainen, K., Olive K. A., & Thomas, D. 1996, New A, 1, 77
Fukui, T., Arai, K., & Hashimoto, M. 2001, Class. Quant. Grav., 18, 2087
Garriga, J. & Tanaka, T. 2000, Phys. Rev. Lett., 84, 2778
Hagiwara, K., Hikasa, K., Nakamura, K. et al. 2002, Phys. Rev. D, 66, 010001
Hammond, R. T. 1996, Class. Quant. Grav. 13, L73
Hashimoto, M., Kamikawa, T., & Arai, K. 2003, ApJ, 598, 13
Kimura, K., Hashimoto, M., Sakoda, M., & Arai, K. 2001, ApJ, 561, L19
Kirkman, D., Tytler, D., Suzuki, N., O’Meara, J. M., & Lubin, D. 2003, ApJS, 149, 1
Luridiana, V., Peimbert, A., Peimbert, M., & Cervino, M. 2003, ApJ, 592, 846
Mather, J. C., Fixsen, D. J., Shafer, R. A., Mosier, C., & Wilkinson, D. T. 1999, ApJ, 512, 511
Müller, J., Schneider, M., Soffel, M., & Ruder, H. 1991, ApJ, 382, L101
Nagata, R., Chiba, T., & Sugiyama, N. 2004, Phys. Rev. D, 69, 083512
Puy, D. 2004, A&A, 422, 1
Steigman, G., hep-ph/0309347
Vilenkin, A. 2004, in “Universe or Multiverse”, ed. by B.J. Carr, Cambridge University Press, in press, astro-ph/0407586
Wagoner, R. V. 1970, Phys. Rev. D, 1, 3209
Will, C. M. 2001, Living Rev. Relativ. 4, 4