Angiostrongylus cantonensis
Eosinophilic Meningitis in an Infant, Tennessee, USA

Tim Flerlage, Yvonne Qvarnstrom, John Noh, John P. Devincenzo, Arshia Madni, Bindiya Bagga, Nicholas D. Hysmith

In 2016, a 12-month-old, fully vaccinated boy was admitted to a hospital in Memphis, Tennessee, USA, for evaluation of 18 days of daily fever, irritability, decreased oral intake, and emesis. His medical history was unremarkable, and he had no known contact with sick persons. He had not traveled outside the area comprising southwestern Tennessee and northwestern Mississippi. He lived in a nonagricultural rural area and was exposed to a vaccinated family dog. Wild rats had been observed in and around the home, and rat droppings had been found in the child’s bed. Raccoons were seen on the property; however, contact, either direct or through fomites such as latrines, was not reported. During a 17-day period, 2 evaluations by his primary care physician and 4 emergency department visits resulted in the diagnosis of fever of unknown origin and inpatient admission.

A cerebrospinal fluid (CSF) sample taken by lumbar puncture on day 20 of illness showed eosinophil-predominant pleocytosis, mild hypoglycorrhachia, and a mildly elevated protein level (Table). Magnetic resonance imaging of the brain and spine showed scattered areas of restricted diffusion throughout the brain parenchyma, leptomeningeal enhancement, and multifocal nodular enhancement along the ventral portion of multiple spinal levels. Serologic testing was negative for *Toxocara canis/cati*, *Strongyloides stercoralis*, *Ehrlichia chaffeensis*, *Rickettsia rickettsiae*, Epstein–Barr virus, HIV, and *Toxoplasma gondii*; a rapid plasma reagin was also negative. Tuberculin skin testing was negative. Results of CSF PCR for *Streptococcus pneumoniae*, herpes simplex virus, and enteroviruses were negative; CSF cryptococcal antigen testing was also negative. Due to concern for infection with *Baylisascaris procyonis*, the raccoon roundworm, physicians prescribed albendazole and dexamethasone. The patient’s temperature returned to normal, and his symptoms resolved. Upon discharge, he was to complete 3 weeks of albendazole and tapering doses of corticosteroids. Attending physicians repeated lumbar punctures on days 28, 41, and 56 (Table).

Physicians sent samples (CSF and serum) taken on day 20 to the Centers for Disease Control and Prevention (Atlanta, GA, USA) to test for *B. procyonis* roundworms and samples taken on day 56 to test for *Angiostrongylus cantonensis*, the rat lungworm. Results were negative for *B. procyonis* but positive for *A. cantonensis*. In addition, serum samples obtained at the time of the initial lumbar puncture were positive for *A. cantonensis* antibodies by investigational whole-worm Western blot.

The first documented human infection with *A. cantonensis* worms occurred in 1944 in Taiwan. Since then, >2,800 cases among humans have been reported; most have been in Southeast Asia and the Pacific islands (1; online Technical Appendix, https://www.cdc.gov/EID/article/23/10/17-0978-Techapp1.pdf). In the late 1950s, the first report of human *A. cantonensis* infection in the
United States occurred in Hawaii. *A. cantonensis* worms have since become endemic to wide-ranging tropical and subtropical locales in the Western Hemisphere, including the Hawaiian Islands (2), the Caribbean Islands (3), and South America (4).

The first report of the rat lungworm in the continental United States was in 1987, when Kim et al. found that 18% of rats sampled on necropsy in New Orleans, Louisiana, were infected with the nematode (5). First-stage *A. cantonensis* larvae from these rats produced infections in native gastropods, providing the potential for these parasites to become endemic to the region. A report ≈15 years later documented infection in vertebrates not only in New Orleans but also in other areas of Louisiana and Mississippi. *A. cantonensis* worms are now considered to be endemic to Louisiana (5). Infection has since been documented in rats (6), gastropods (7), and vertebrates (8) across a large area of the southern United States, from Oklahoma (6) to Florida (7,8).

Soon after the initial recognition in local animal reservoirs, the first reported *A. cantonensis* infection in a human acquired in the continental United States occurred in an 11-year-old boy residing in New Orleans. Since then, 3 additional cases have been reported in an 11-month-old, a 12-month-old, and a 19-month-old, all of whom resided in Houston, Texas, and had not traveled (9).

A. cantonensis infection causes a self-limited illness in which headaches, nonfocal neurologic findings, and cranial nerve involvement are the most common signs and symptoms. Optimal therapy has not been clearly defined, and symptomatic management is an option for this self-limited illness. When therapy is prescribed, corticosteroids alone or in combination with antihelminth medications are most commonly used. In a prospective study that followed up on 3 previous studies, Chotmongkol et al. confirmed that a 2-week course of corticosteroids shortened the duration of headache and reduced the need for repeated lumbar puncture (10). The study concluded that corticosteroids plus albendazole was no better than corticosteroids alone.

International shipping and the ability of *A. cantonensis* worms to use diverse species of gastropods as intermediate hosts have all contributed to this parasite becoming a pathogen of increasing public health concern (5). Angiostrongyliasis should be considered in the differential diagnosis of prolonged fever of unknown origin with compatible clinical and laboratory findings.

Dr. Flerlage is a second-year fellow in a combined fellowship program for training in pediatric infectious diseases and critical care medicine at University of Tennessee/St. Jude Children’s Research Hospital. His primary research interest is acute lung injury caused by respiratory viruses in immunocompromised patients.

References

1. Wang Q-P, Wu Z-D, Wei J, Owen RL, Lun Z-R. Human Angiostrongylus cantonensis: an update. Eur J Clin Microbiol Infect Dis. 2012;31:389–95. http://dx.doi.org/10.1007/s10096-011-1328-5
2. Rosen L, Chappell R, Laqueur GL, Wallace GD, Weinstein PP. Eosinophilic meningoencephalitis caused by a metacystorhidian lung-worm of rats. JAMA. 1962;179:620–4. http://dx.doi.org/10.1001/jama.1962.03050080032007
3. Waugh CA, Lindo JF, Lorenzo-Morales J, Robinson RD. An epidemiological study of *A. cantonensis* in Jamaica subsequent to an outbreak of human cases of eosinophilic meningitis in 2000. Parasitology. 2016;143:1211–7. http://dx.doi.org/10.1017/S0031182016000640
4. Simoes RO, Monteiro FA, Sanchez E, Thiengo SC, Garcia JS, Costa-Neto SF, et al. Endemic angiostrongyliasis, Rio de Janeiro, Brazil. Emerg Infect Dis. 2011;17:1331–3. http://dx.doi.org/10.3201/eid1707.101822
5. Kim DY, Stewart TB, Bauer RW, Mitchell M. *Parastrongylus* (=Angiostrongylus) cantonensis now endemic in Louisiana wildlife. J Parasitol. 2002;88:1024–6. http://dx.doi.org/10.1645/0002-3395(2002)088[1024:PA]2.0.CO;2
6. York EM, Creecy JP, Lord WD, Caire W. Geographic range expansion for rat lungworm in North America. Emerg Infect Dis. 2015;21:1234–6. http://dx.doi.org/10.3201/eid2107.141980
7. Stockdale-Walden HD, Slapcinsky J, Qvarnstrom Y, McIntosh A, Bishop HS, Rosseland B. Angiostrongylus cantonensis in introduced gastropods in Southern Florida. J Parasitol. 2015;101:156–9. http://dx.doi.org/10.1645/14-553.1
8. Duffy MS, Miller CL, Kinsella JM, de Lahunta A. *Parastrongylus cantonensis* in a nonhuman primate, Florida. Emerg Infect Dis. 2004;10:2207–10. http://dx.doi.org/10.3201/eid1012.040319

Table. Results of cerebrospinal fluid testing for 12-month-old boy with meningoencephalitis, Memphis, Tennessee, USA, 2016*

Test	Reference range	Day of illness			
Leukocytes, cells/mm³	0–8	20	28	41	56
Polymorphonuclear cells, %	0–1	4	20	4	4
Lymphocytes, %	0–5	44	80	65	64
Monocytes, %	0–5	20	6	10	21
Eosinophils, %	NA	36	10	5	11
Erythrocytes	<0	0	14	0	45
Glucose, mg/dL	40–70	37	25	22	27
Protein, mg/dL	15–45	67	74	164	104

Gram stain	Reference range	Day of illness
Sterile	NA	Sterile
Sterile	NA	Sterile
Sterile	NA	Sterile

*NA, not applicable.

Table. Results of cerebrospinal fluid testing for 12-month-old boy with meningoencephalitis, Memphis, Tennessee, USA, 2016*
In recent decades, dengue virus (DENV) infection has been spreading worldwide. Although in Africa the leading cause of acute febrile illness is still malaria, dengue has recently gained momentum (1). Dengue has been reported in 34 African countries, although it has probably been underreported because of the lack of diagnostic testing and systematic surveillance in Africa (2). Four types of virus have been isolated; the most endemic to Africa is DENV type 2 (DENV-2), followed by DENV-1 (2). The first reported case of DENV-1 infection occurred in a young soldier from Abidjan, Côte d’Ivoire, in 1999 (3). At that time, no other similar cases or epidemics in Abidjan had been reported. In 2008, a closely related strain, DENV-3, was isolated from visitors to Côte d’Ivoire (4,5). In 2010, dengue fever was biologically confirmed for 7 patients who had never been in a dengue-endemic area, and DENV-3 was confirmed by reverse transcription PCR for 4 of these patients (6). A prospective study in Abidjan also revealed that DENV-3 had been the cause of febrile illness during 2011–2012 (7). Thus, DENV-3 may have circulated widely in Côte d’Ivoire, especially in Abidjan. During the 2016 outbreak in Burkina Faso, DENV-2 infection was detected in 2 travelers returning from Burkina Faso to France (8). During August–November 2016, the World Health Organization reported 1,061 probable dengue cases and 15 deaths from dengue (9). We report a case of dengue fever exported to Japan from Abidjan in 2017.

On June 19, 2017, a man in his early 50s sought care at the Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan, for fever, chills, headache, and mild joint pain. In June 2013, he had traveled to Abidjan for business, and on June 13, 2017, he returned to Japan. He had been vaccinated for yellow fever. He had noticed a high fever in the morning and sought care the same evening.

Physical examination revealed body temperature of 39.3°C, mildly hyperemic conjunctiva, and a slight rash on his trunk. His blood biochemistry profile showed 3,640 × 10^9 leukocytes/L, hemoglobin level 13.5 g/dL, and 151 × 10^9 thrombocytes/L. Results of a rapid diagnostic test for malaria (BinaxNOW Malaria; Alere, Waltham, MA, USA) were negative. A thin-coated peripheral blood smear with May-Grünwald Giemsa stain showed no Plasmodium parasites. Results of a dengue rapid diagnostic test (Dengue Duo NS1 Ag + Ab Combo; Alere) were negative for IgM and IgG but positive for nonstructural protein 1 antigen. Serum samples obtained on June 19 and 26 were sent for real-time reverse transcription PCR to the National Institute of Infectious Diseases, Tokyo, where DENV-2 RNA was detected.

The patient’s signs and symptoms resolved spontaneously in a week; his lowest thrombocyte count was 99 × 10^9 thrombocytes/L. On June 19, a diagnostic test for DENV IgM (Dengue Virus IgM Capture ELISA; Focus Diagnostics, Cypress, CA, USA) yielded negative results; however, on June 26, positive results indicated seroconversion.

Phylogenetic analysis of the DENV envelope gene indicated that the sequence of DENV-2 obtained from the patient belonged to the cosmopolitan genotype and was 99% identical with the envelope gene of DENV-2 strains from the 2016 dengue epidemic in Burkina Faso (GenBank accession nos. LC206003, KY627763, and KY627762) (Figure). The sequence of DENV-2 from the patient also showed 97% identity
Angiostrongylus cantonensis Eosinophilic Meningitis in an Infant, Tennessee, USA

Technical Appendix

Additional reports of human infection with Angiostrongylus cantonensis, the rat lungworm.

1. Chen HT. A new pulmonary nematode of rats, Pulmonema cantonensis ng, nsp from Canton. Ann Parasitol. 1935;13:312–7.

2. Wang Q-P, Lai D-H, Zhu X-Q, Chen X-G, Lun Z-R. Human angiostrongyliasis. Lancet Infect Dis. 2008;8:621–30. PubMed http://dx.doi.org/10.1016/S1473-3099(08)70229-9

3. Wang Q-P, Wu Z-D, Wei J, Owen RL, Lun Z-R. Human Angiostrongylus cantonensis: an update. Eur J Clin Microbiol Infect Dis. 2012;31:389–95. PubMed http://dx.doi.org/10.1007/s10096-011-1328-5

4. Graeff-Teixeira C, da Silva AC, Yoshimura K. Update on eosinophilic meningoencephalitis and its clinical relevance. Clin Microbiol Rev. 2009;22:322–48. PubMed http://dx.doi.org/10.1128/CMR.00044-08

5. Nomura S, Lin PH. First case report of human infection with Haemoproteus ratti, Yokagawa. Taiwan No Ikai. 1945;3:589–92.

6. Kliks MM, Palumbo NE. Eosinophilic meningitis beyond the Pacific Basin: the global dispersal of a peridomestic zoonosis caused by Angiostrongylus cantonensis, the nematode lungworm of rats. Soc Sci Med. 1992;34:199–212. PubMed http://dx.doi.org/10.1016/0277-9536(92)90097-A

7. Kim JR, Hayes KA, Yeung NW, Cowie RH. Diverse gastropod hosts of Angiostrongylus cantonensis, the rat lungworm, globally and with a focus on the Hawaiian Islands. PLoS One. 2014;9:e94969. PubMed http://dx.doi.org/10.1371/journal.pone.0094969

8. Barratt J, Chan D, Sandaradura I, Malik R, Spielman D, Lee R, et al. Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen. Parasitology. 2016;143:1087–118. PubMed http://dx.doi.org/10.1017/S0031182016000652
9. Campbell BG, Little MD. The finding of Angiostrongylus cantonensis in rats in New Orleans. Am J Trop Med Hyg. 1988;38:568–73. PubMed http://dx.doi.org/10.4269/ajtmh.1988.38.568

10. Kim DY, Stewart TB, Bauer RW, Mitchell M. Parastrogylus (=Angiostrongylus) cantonensis now endemic in Louisiana wildlife. J Parasitol. 2002;88:1024–6. PubMed http://dx.doi.org/10.1645/0022-3395(2002)088[1024:PACNEI]2.0.CO;2

11. York EM, Creecy JP, Lord WD, Caire W. Geographic range expansion for rat lungworm in North America. Emerg Infect Dis. 2015;21:1234–6. PubMed http://dx.doi.org/10.3201/eid2107.141980

12. Rosen L, Chappell R, Laqueur GL, Wallace GD, Weinstein PP. Eosinophilic meningoencephalitis caused by a metastrongylid lung-worm of rats. JAMA. 1962;179:620–4. PubMed http://dx.doi.org/10.1001/jama.1962.03050080032007

13. Qvarnstrom Y, Bishop HS, da Silva AJ. Detection of rat lungworm in intermediate, definitive, and paratenic hosts obtained from environmental sources. Hawaii J Med Public Health. 2013;72(Suppl 2):63–9. PubMed

14. Hochberg NS, Park SY, Blackburn BG, Sejvar JJ, Gaynor K, Chung H, et al. Distribution of eosinophilic meningitis cases attributable to Angiostrongylus cantonensis, Hawaii. Emerg Infect Dis. 2007;13:1675–80. PubMed http://dx.doi.org/10.3201/eid1311.070367

15. Hochberg NS, Blackburn BG, Park SY, Sejvar JJ, Effler PV, Herwaldt BL. Eosinophilic meningitis attributable to Angiostrongylus cantonensis infection in Hawaii: clinical characteristics and potential exposures. Am J Trop Med Hyg. 2011;85:685–90. PubMed http://dx.doi.org/10.4269/ajtmh.2011.11-0322

16. Thyssen A, Mitchell M, Qvarnstrom Y, Rao S, Benke TA, Glodé MP. Eosinophilic meningitis in a previously healthy 13-year-old child. Pediatr Infect Dis J. 2013;32:194, 198. PubMed http://dx.doi.org/10.1097/INF.0b013e31827c9726

17. Waugh CA, Lindo JF, Lorenzo-Morales J, Robinson RD. An epidemiological study of A. cantonensis in Jamaica subsequent to an outbreak of human cases of eosinophilic meningitis in 2000. Parasitology. 2016;143:1211–7. PubMed http://dx.doi.org/10.1017/S0031182016000640

18. Simoes RO, Monteiro FA, Sanchez E, Thiengo SC, Garcia JS, Costa-Neto SF, et al. Endemic angiostrongyliasis, Rio de Janeiro, Brazil. Emerg Infect Dis. 2011;17:1331–3. PubMed http://dx.doi.org/10.3201/eid1707.101822

19. Moreira VLC, Giese EG, Melo FTV, Simões RO, Thiengo SC, Maldonado A Jr, et al. Endemic angiostrongyliasis in the Brazilian Amazon: natural parasitism of Angiostrongylus cantonensis in
Rattus rattus and *R. norvegicus*, and sympatric giant African land snails, *Achatina fulica*. Acta Trop. 2013;125:90–7. PubMed http://dx.doi.org/10.1016/j.actatropica.2012.10.001

20. Iwanowicz DD, Sanders LR, Schill WB, Xayavong MV, da Silva AJ, Qvarnstrom Y, et al. Spread of the rat lungworm (*Angiostrongylus cantonensis*) in giant African land snails (*Lissachatina fulica*) in Florida, USA. J Wildl Dis. 2015;51:749–53. PubMed http://dx.doi.org/10.7589/2014-06-160

21. Stockdale-Walden HD, Slapcinsky J, Qvarnstrom Y, McIntosh A, Bishop HS, Rosseland B. *Angiostrongylus cantonensis* in introduced gastropods in Southern Florida. J Parasitol. 2015;101:156–9. PubMed http://dx.doi.org/10.1645/14-553.1

22. Duffy MS, Miller CL, Kinsella JM, de Lahunta A. *Parastrongylus cantonensis* in a nonhuman primate, Florida. Emerg Infect Dis. 2004;10:2207–10. PubMed http://dx.doi.org/10.3201/eid1012.040319

23. Kottwitz JJ, Perry KK, Rose HH, Hendrix CM. *Angiostrongylus cantonensis* infection in captive Geoffroy’s tamarins (*Saguinus geoffroyi*). J Am Vet Med Assoc. 2014;245:821–7. PubMed http://dx.doi.org/10.2460/javma.245.7.821

24. New D, Little MD, Cross J. *Angiostrongylus cantonensis* infection from eating raw snails. N Engl J Med. 1995;332:1105–6. PubMed http://dx.doi.org/10.1056/NEJM199504203321612

25. Foster CE, Nicholson EG, Chun AC, Gharfeh M, Anvari S, Seeborg FO, et al. *Angiostrongylus cantonensis* infection: a cause of fever of unknown origin in pediatric patients. Clin Infect Dis. 2016;63:1475–8. PubMed http://dx.doi.org/10.1093/cid/ciw606

26. Tsai HC, Liu YC, Kunin CM, Lee SS, Chen YS, Lin HH, et al. Eosinophilic meningitis caused by *Angiostrongylus cantonensis*: report of 17 cases. Am J Med. 2001;111:109–14. PubMed http://dx.doi.org/10.1016/S0002-9343(01)00766-5

27. Sawanyawisuth K, Chindaprasirt J, Senthong V, Limpawattana P, Auvichayapat N, Tassniyom S, et al. Clinical manifestations of Eosinophilic meningitis due to infection with *Angiostrongylus cantonensis* in children. Korean J Parasitol. 2013;51:735–8. PubMed http://dx.doi.org/10.3347/kjp.2013.51.6.735

28. Evans-Gilbert T, Lindo JF, Henry S, Brown P, Christie CD. Severe eosinophilic meningitis owing to *Angiostrongylus cantonensis* in young Jamaican children: case report and literature review. Paediatr Int Child Health. 2014;34:148–52. PubMed http://dx.doi.org/10.1179/2046905513Y.0000000106
29. Chen XG, Li H, Lun ZR. Angiostrongyliasis, Mainland China. Emerg Infect Dis. 2005;11:1645–7. PubMed http://dx.doi.org/10.3201/eid1110.041338

30. Morassutti AL, Rascoe LN, Handali S, da Silva AJ, Wilkins PP, Graeff-Teixeira C. Cross-reactivity of the 31 kDa antigen of Angiostrongylus cantonensis – Dealing with the immunodiagnosis of meningoencephalitis. Parasitology. 2017;144:459–63. PubMed

31. Qvarnstrom Y, Xayavong M, da Silva AC, Park SY, Whelen AC, Calimlim PS, et al. Real-Time Polymerase Chain Reaction Detection of Angiostrongylus cantonensis DNA in Cerebrospinal Fluid from Patients with Eosinophilic Meningitis. Am J Trop Med Hyg. 2016;94:176–81. PubMed http://dx.doi.org/10.4269/ajtmh.15-0146

32. Punyagupta S, Juttijudata P, Bunnag T. Eosinophilic meningitis in Thailand. Clinical studies of 484 typical cases probably caused by Angiostrongylus cantonensis. Am J Trop Med Hyg. 1975;24:921–31. PubMed http://dx.doi.org/10.4269/ajtmh.1975.24.921

33. Yii CY. Clinical observations on eosinophilic meningitis and meningoencephalitis caused by Angiostrongylus cantonensis on Taiwan. Am J Trop Med Hyg. 1976;25:233–49. PubMed http://dx.doi.org/10.4269/ajtmh.1976.25.233

34. Jin E, Ma D, Liang Y, Ji A, Gan S. MRI findings of eosinophilic myelomeningoencephalitis due to Angiostrongylus cantonensis. Clin Radiol. 2005;60:242–50. PubMed http://dx.doi.org/10.1016/j.crad.2004.05.012

35. Chotmongkol V, Sawanyawisuth K, Thavornpitak Y. Corticosteroid treatment of eosinophilic meningitis. Clin Infect Dis. 2000;31:660–2. PubMed http://dx.doi.org/10.1086/314036

36. Chotmongkol V, Wongjitrat C, Sawadpanit K, Sawanyawisuth K. Treatment of eosinophilic meningitis with a combination of albendazole and corticosteroid. Southeast Asian J Trop Med Public Health. 2004;35:172–4. PubMed

37. Chotmongkol V, Sawadpanitch K, Sawanyawisuth K, Louhawilai S, Limpawattana P. Treatment of eosinophilic meningitis with a combination of prednisolone and mebendazole. Am J Trop Med Hyg. 2006;74:1122–4. PubMed

38. Chotmongkol V, Kittimongkolma S, Niwattayakul K, Intapan PM, Thavornpitak Y. Comparison of prednisolone plus albendazole with prednisolone alone for treatment of patients with eosinophilic meningitis. Am J Trop Med Hyg. 2009;81:443–5. PubMed