LRIP-Net: Low-Resolution Image Prior-Based Network for Limited-Angle CT Reconstruction
Qifeng Gao, Rui Ding, Linyuan Wang, Bin Xue, and Yuping Duan, Member, IEEE

Abstract—In the practical applications of computed tomography (CT) imaging, the projection data may be acquired within a limited-angle range and corrupted by noises due to the limitation of scanning conditions. The noisy incomplete projection data results in the ill-posedness of the inverse problems. Based on the observation that the low-resolution reconstruction problem has better numerical stability, we propose a novel low-resolution image prior-based CT reconstruction model for limited-angle reconstruction. More specifically, we build up a low-resolution reconstruction problem on the down-sampled projection data, and use the reconstructed low-resolution image as prior knowledge for the high-resolution limited-angle CT problem. The constrained minimization problem is then solved by the alternating direction method with all subminimization problems approximated by the convolutional neural networks. Numerical experiments demonstrate that our double-resolution network outperforms both the variational method and popular learning-based reconstruction methods on noisy limited-angle reconstruction problems.

Index Terms—Computed tomography (CT), deep unrolling, ill-posedness, inverse problem, limited-angle.

I. INTRODUCTION

X-RAY computed tomography (CT) is widely used for clinical diagnosis, the quality of which directly affects the judgment of the clinicians. The filtered back-projection (FBP), algebraic reconstruction technique (ART), and simultaneous ART (SART) are popular choices for the full scanned data. Cai et al. [7] developed an edge-guided TV minimization reconstruction algorithm in dealing with high-quality image reconstruction. Xu et al. [39] combined the total generalized variation regularization and developed an efficient alternating edge-preserving diffusion and smoothing algorithm, which can well preserve the edges for limited-angle reconstruction problem.

The regularization-based method has been applied to the improperly posed problems and achieved great successes, which are good choices for the limited-angle CT reconstruction problems. Since compressed sensing (CS) was proposed by Candes et al. [9], various models and algorithms have been proposed to improve the reconstruction quality using the total variation (TV) for image reconstruction problems [10], [28]. Sidky and Pan [33] developed the primal-dual algorithm for solving the TV minimization problem, which performed well concerning angular under-sampling reconstruction. Ritschl et al. [32] presented a new method for optimized parameter adaption for sparsity-constrained image reconstruction. Chen et al. [12] proposed the anisotropic TV minimization method, which performed better than the isotropic TV model for the limited-angle CT reconstruction.

Frikel [17] used the sparse regularization technique in combination with curvelets to realize an edge-preserving reconstruction. Cai et al. [7] developed an edge-guided TV minimization reconstruction algorithm in dealing with high-quality image reconstruction. Xu et al. [39] combined the \(\ell_1 \) norm of gradient and \(\ell_0 \) norm of gradient as the regularization term and developed the efficient alternating edge-preserving diffusion and smoothing algorithm, which can well preserve the edges for limited-angle reconstruction problem.

In addition to TV-based regularization methods, high-order regularization methods have also been investigated for degenerated scanned data. Niu et al. [30] presented a penalized weighted least-squares scheme to retain the image quality by incorporating the total generalized variation regularization. Zhang et al. [43] introduced the curvature-driven Euler’s elastica regularization to rectify large curvatures and kept the isophotes smooth without erratic distortions. Cai et al. [8] proposed the block matching sparsity regularization for CT image reconstruction for an incomplete projection set. Wang et al. [37] presented the guided image filtering-based limited-angle CT reconstruction algorithm using a wavelet projection data due to the system’s geometric limitations and other factors. It was proven that the reconstruction problem becomes highly unstable with scanning angular range less than \(2\pi/3 \). For more background, we refer to [17] and references therein. The aforementioned degenerated scanned data makes the direct method and iterative methods suffer from severe streaking artifacts and noise-induced artifacts [18], [21]. For limited-angle CT reconstruction, various algorithms were proposed, which can be broadly categorized into the regularization-based method and learning-based method.
frame. Xu et al. [40] combined the dictionary learning and image gradient ℓ_0-norm into a image reconstruction model for limited-angle CT reconstruction. Wang et al. [36] considered minimizing the ℓ_1/ℓ_2 term on the gradient for a limited-angle scanning problem in CT reconstruction. However, the aforementioned regularization methods are usually time consuming and suffer from tricky parameter tuning.

Due to the development of deep convolutional neural networks (CNNs) in a broad range of computer vision tasks, deep learning methods become more and more popular in the medical imaging field. With regard to limited-angle CT reconstruction, Pelt and Batenburg [31] proposed an artificial neural network-based fast limited-angle image reconstruction algorithm, which can be regarded as a weighted combination of the FBP method and some learned filters. Boublil et al. [4] utilized a CNN-based model to integrate multiple reconstructed results. Kang et al. [26] constructed a deep CNN model in the wavelet domain, which trained the wavelet coefficients from the CT images after applying the contourlet transform. Gupta et al. [19] presented a new image reconstruction method, which replaced the projector in a projected gradient descent with a CNN. Adler and Öktem [1] proposed a deep neural network by unrolling a proximal primal-dual optimization method and replacing the proximal operators with a CNN. Chen et al. [11] unfolded the field of experts regularized CT reconstruction model into a deep learning network, all parameters of which can be learned from the training process. Han and Ye [20] proposed a new multiresolution deep learning scheme based on the frame condition to overcome the limitation of U-net. Zhang et al. [44] presented a new deep CNN jointly reconstructs CT images and their associated Radon domain projections, and constructed a hybrid loss function to effectively protect the important structure of images. Bubba et al. [6] developed a hybrid reconstruction framework that fused model-based sparse regularization with data-driven deep learning to solve the severely ill-posed inverse problem of limited-angle CT. Arridge et al. [2] attempted to provide an overview of methods for integrating data-driven concepts into the field of inverse problems and a solid mathematical theory. Würfl et al. [38] mapped the Feldkamp–Davis–Kress algorithm to the neural networks by introducing a novel cone-beam back-projection layer for limited-angle problems. Lin et al. [27] proposed an end-to-end trainable dual-domain network to simultaneously restore sinogram consistency and enhance CT images. Baguer et al. [3] introduced the deep image prior approach in combination with classical regularization and an initial reconstruction. Ding et al. [14] came up with a method based on the unrolling of a proximal forward-backward splitting framework with a data-driven image regularization via deep neural networks. Cheng et al. [13] proposed a novel reconstruction model to jointly reconstruct a high-quality image and its corresponding high-resolution projection data. Zang et al. [42] proposed IntraTomo, a powerful framework that combines the benefits of learning-based and model-based approaches for solving highly ill-posed inverse problems. Hu et al. [22] developed a method termed single-shot projection error correction integrated adversarial learning (SPECIAL) progressive-improvement strategy, which could effectively combine the complementary information contained in the image domain and projection domain. Bubba et al. [5] proposed a novel CNN, designed for learning pseudodifferential operators in the context of linear inverse problems. Hu et al. [23] proposed a novel reconstruction framework termed deep iterative optimization-based residual-learning (DIOR) for limited-angle CT, which combined iterative optimization and deep learning based on the residual domain. Although the aforementioned learning-based methods have achieved better reconstruction results than the regularization-based methods, the high ill-posedness of the limited-angle reconstruction problems still challenges the reconstruction quality.

The incomplete projection data makes the inverse problem toward the ill-posedness, becoming more and more sensitive to noises. We observe that the low-resolution reconstruction problems have better numerical stability than the corresponding high-resolution reconstruction problems. Therefore, we propose a novel low-resolution image prior-based trainable reconstruction approach for the limited-angle CT reconstruction. More specifically, we use the established reconstruction method to obtain the low-resolution image from the down-sampled raw measured data. In what follows, we build up the constrained reconstruction problem, which is solved by the alternating direction method. By approximating the resolvent operators by CNNs, an end-to-end algorithm is gained to reconstruct images from raw data. We evaluate the performance of the proposed method on the American Association of Physicists in Medicine (AAPM) Challenge dataset. By comparing with the state-of-the-art reconstruction methods, our algorithm is shown more effective in dealing with limited-angle data contaminated by either Gaussian or Poisson noises.

The remainder of this article is organized as follows. We present the double-resolution reconstruction method in Section II. Section III is dedicated to explaining the details of our network architecture, loss function, and optimization. We present the numerical results on the AAPM phantom CT dataset corrupted by Gaussian noises and Poisson noises in Section IV. Finally, a brief conclusion and possible future works are presented in Section V.

II. DOUBLE-RESOLUTION RECONSTRUCTION METHOD

A. Double-Resolution Reconstruction Model

The CT reconstruction problem aims to reconstruct clean image $u \in X$ from the projection data $f \in Y$ with unknown noise $\delta \in Y$, whose mathematical formulation is

$$f = Au + \delta$$

where the reconstruction space X and the data space Y are typically Hilbert Spaces, $A : X \rightarrow Y$ is the forward operator that models how an image gives rise to data in absence of noise. When the light source is a fan beam, the dimension of the system matrix is $M \times N$ with M and N given as follows:

$$M = N_{\text{views}} \times N_{\text{bins}}$$
$$N = n \times n$$
where N_{views} denotes the number of angles in the angular interval for limited-angle CT reconstruction, N_{bins} denotes the number of units on the detector, and N represents the number of pixels of the input image. For CT reconstruction problem (1), the condition number of the system matrix A directly affects the stability of the solution [25]. The larger the condition number of the system matrix, the more serious the ill-posedness of the inverse problem, which may result in the degradation of the numerical methods.

We investigate the condition numbers of the system matrix with different image resolutions. More specifically, we define the low-resolution image using the equidistant sampling with the step size of τ. Then, the dimension of the low-resolution image u_l becomes $n/\tau \times n/\tau$. For the low-resolution system matrix A_l, the geometric parameters are consistent with the original system matrix A, i.e., the N_{views} and N_{bins} of A_l being the same as A, and only the number of pixels changes. The dimension of the low-resolution system matrix A_l becomes $M \times N/\tau^2$. As shown in Fig. 1, we evaluate the condition numbers of the system matrices on the limited-angle reconstruction problem, where the angle range varies from 180° to 30°. We can observe that no matter which norm is used to calculate the condition number, the smaller the resolution of the image is, the smaller the condition number is.

Since large condition numbers lead to numerical instability and severe sensitivity to noisy measurements [25], the low-resolution image can be used as prior to improve the solution of limited-angle CT reconstruction, where the low-resolution image can be expressed by the down-sampling matrix D as given as follows:

$$u_l = Du$$

where u_l is the down-sampled image and $D^T D$ is a diagonal matrix with diagonal elements being either 1 or 0. Considering this, we propose the following constrained minimization problem for CT reconstruction:

$$\begin{align}
\min_{u} & \quad F(Au, f) + R(u) \\
\text{s.t.} & \quad Du = u_l
\end{align}$$

where $F(\cdot)$ denotes the data fidelity term and $R(\cdot)$ denotes the regularization term.

B. Learned Alternating Direction Algorithm

The constrained minimization problem (2) can be further reformulated into an unconstrained minimization problem using the penalty method as follows:

$$\begin{align}
\min_{u, \tilde{u}} & \quad F(A\tilde{u}, f) + R(\tilde{u}) + \frac{1}{2\tau} \|Du - u\|_2^2 \quad (3)
\end{align}$$

where μ is a positive regularization parameter. Because all terms in (3) contain the variable u making the minimization task difficult, we introduce an auxiliary variable \tilde{u} and rewrite (3) as the following minimization problem:

$$\begin{align}
\min_{\tilde{u}, u} & \quad F(A\tilde{u}, f) + R(\tilde{u}) + \frac{1}{2\tau} ||Du - u||_2^2 + \frac{1}{2\tau} ||\tilde{u} - u||_2^2
\end{align}$$

where r is a positive parameter. The main advantage of above minimization problem is that we can use the alternating direction method to solve the multivariable minimization problem. The variables \tilde{u} and u can be estimated alternatively by solving the following two energy minimization problems:

$$\begin{align}
\min_{\tilde{u}} & \quad F(A\tilde{u}, f) + R(\tilde{u}) + \frac{1}{2\tau} ||\tilde{u} - u||_2^2 \quad (4)
\text{and}
\min_{u} & \quad \frac{1}{2\tau} ||\tilde{u} - u||_2^2 + \frac{1}{2\tau} ||Du - u||_2^2 \quad (5)
\end{align}$$

respectively. The minimization (4) is a typical regularization model, which can be solved by the learned primal-dual algorithm as follows:

$$\begin{align}
\begin{cases}
p^{k+1} = \arg \min_{p} F^*(p, f) - \langle A\tilde{u}^k, p \rangle + \frac{1}{2\tau} ||p - p^k||_2^2 \\
\tilde{u}^{k+1} = \arg \min_{\tilde{u}} R(\tilde{u}) + \langle A\tilde{u}, p^{k+1} \rangle + \frac{1}{2\tau} ||\tilde{u} - u||_2^2
\end{cases}
\end{align}$$

where F^* denotes the adjoint operator of F, p is the dual variable of \tilde{u}, and τ is a positive parameter. On the other hand, the minimization problem (5) is a least squared problem, which can be solved by the closed-form solution. To sum up, we propose to use the following iterative scheme to solve the minimization problem (4) and (5) in an alternative way:
Algorithm 1 LRIP-Net

1: Initialize \(p^0, u^0, \tilde{u}^0 \)
2: for \(k = 0, \ldots, I \)
3: \(u^{k+1} \leftarrow \Pi_{\omega^k}(\tilde{u}^k, D^* u_k) \);
4: \(p^{k+1} \leftarrow \Gamma_{\phi^k}(p^k, A \tilde{u}^k, f) \);
5: \(\tilde{u}^{k+1} \leftarrow \Lambda_{\psi^k}(u^{k+1}, A^* p^{k+1}) \);
6: return \(u^I \)

where \(I \) denotes the identity operator, \(A^* \) and \(D^* \) represent the adjoint operators of the forward operator \(A \) and down-sampling operator \(D \), respectively.

In the following, we intend to summarize the unrolled alternating direction algorithm by the deep neural networks to solve the low-resolution image prior-based CT reconstruction model (2); see Algorithm 1. In the algorithm, we use the total \(I \) iterations to build up the low-resolution image prior-based network, which is shorted as LRIP-net in our work.

Remark 1: We assume the constraint \(\tilde{u} = u \) holds unconditionally during the iterations process, where \(u^{k+1} \) is used to update \(\tilde{u}^{k+1} \) in the algorithm.

III. ALGORITHM IMPLEMENTATION

Our low-resolution image prior-based network (denoted by LRIP-net) is generated based on Algorithm 1, which is implemented in Python using operator discretization library (ODL), the package Adler, the ASTRA Toolbox, and Tensorflow 1.8.0. Tensorflow is a toolkit for dealing with complex mathematical problems, it can be thought of as a programming system in which you represent calculations as graphs, mathematical operations as nodes, and communication multidimensional data arrays as edges of graphs. ASTRA toolbox is a MATLAB and Python toolbox of high-performance GPU primitives for 2-D and 3-D tomography, the ODL is a Python library for fast prototyping focusing on inverse problems and the Adler is a toolkit that can quickly implement neural network construction.

A. Network Architecture

The unrolling strategy is a discriminative learning method by unrolling an iterative optimization algorithm into a hierarchical architecture. Fig. 2 depicts the network structures of the low-resolution reconstruction model, we use the classical learned primal-dual reconstruction method [1] to obtain the low-resolution solution \(u_i \), for which we can also adopt other advanced learning-based methods or variational methods. Fig. 3 depicts the network structures of our LRIP-net, which has three inputs, including the incomplete projection data \(f \), the system matrix \(A \), and the reconstructed low-resolution image \(u_i \). More specifically, there are three blocks in each stage of the high-resolution reconstruction, which correspond to the three variables. As shown at the bottom of Fig. 3, each block involves a 3-layer network.

The total depth of the network depends on the number of stages contained in the network, which is chosen to balance the receptive fields and the total number of parameters. The proposed network introduces the residual structure for two reasons: 1) the residual structure makes the network easier to train and optimize because each update is only a small offset and 2) the skip connections can alleviate gradient disappearance and gradient explosion caused by increasing the depth of deep neural networks. The nonlinear activation functions are chosen as the parametric rectified linear units (PReLU) function. As displayed in Fig. 3, we set the numbers of channels in each stage as \(7 \rightarrow 32 \rightarrow 32 \rightarrow 5 \) for \(p \), \(6 \rightarrow 32 \rightarrow 32 \rightarrow 5 \) for \(\tilde{u} \) and \(u \), where the differences in the numbers are due to the dimension of inputs. The convolutions are set to be of the size \(3 \times 3 \) in our network. Furthermore, we choose the Xavier initialization scheme for the convolution parameters and the zero initialization for all biases. The convolution stride is set as \(1 \) and the padding strategy is chosen as “SAME” in the network.

B. Network Loss and Optimization

In the training stage, we use both mean squared error (MSE) and structural similarity index (SSIM) as our loss function defined as follows:

\[
\mathcal{L} = \frac{1}{L} \sum_{i=1}^{L} (\mathcal{L}_{\text{MSE}}(u_i, u_i^*) + \mu \mathcal{L}_{\text{SSIM}}(u_i, u_i^*))
\]

(7)

where \(u_i \) denotes the reconstructed image, \(u_i^* \) denotes the reference image, and \(\mu \) is a tradeoff parameter. We assumed that
both the MSE loss and SSIM loss have the same contribution. Thus, μ is fixed as $\mu = 1$ for all experiments.

Our network updates each parameter through the backpropagation of the stochastic gradient descent method in Tensorflow. For a fair comparison, most experimental parameters are set as the same as the PD-net and FSR-net. We adopt the adaptive moment estimation (Adam) to optimize the learning rate by setting the parameter $\beta = 0.99$ and other parameters to their default values. The learning rate schedule is set according to cosine annealing to improve training stability, the initial learning rate η_0 is set to 10^{-4}. To further improve the training stability, the global gradient norm clipping is performed by limiting the gradient norm to 1. Besides, the batch size is set to 1 for all experiments.

IV. Numerical Results

In this section, we evaluate our LRIP-net on limited-angle reconstruction problems and compare it with several state-of-the-art methods on a human phantom dataset.

A. Comparison Algorithms

We adopt several recent CT reconstruction methods, both the variational method and learning-based methods as given as follows.

1) TV Model: The TV regularized reconstruction model in [33]. We tuned the balance parameter $\lambda \in [0.9, 2.5]$, the step size for the primal value $\tau \in [0.5, 0.9]$, and the step size for the dual value $\sigma \in [0.2, 0.5]$ for different experiments.

2) FBP-Unet: The FBP-Unet reconstruction in [24]. It is a method combining the FBP reconstruction with the Unet as the post-processing to improve image quality. We use the Xavier to initialize the network parameters. And, the loss function is the mean squared loss of the reconstructed image and the ground truth.

3) PD-net: The Learned Primal-Dual network in [1]. The network is a deep unrolled neural network with ten stages. The number of initialization channels for primal values and dual values is set to 5. The Xavier initialization and the mean squared loss of the reconstructed image and the ground truth are used in all experiments.

4) SIPID: The deep learning framework for Sinogram Interpolation and Image Denoising in [41]. The SIPID network can achieve accurate reconstructions through alternatively training the sinogram interpolation network and the image denoising network. The Xavier initialization and the mean squared loss of the reconstructed image and the ground truth are used in all experiments.

5) FSR-net: The Learned Full-Sampling Reconstruction From Incomplete Data in [13]. The network is an iterative expansion method that used the corresponding full-sampling projection system matrix as a prior information. To be specific, the IFSR-net guarantees the
invertibility of the system matrix, while the SFSR-net guarantees numerical stability. The number of initialization channels for primal values and dual values is set as 6 and 7, respectively. And, the loss function is the mean square error of the image domain and the Radon domain with the weight α being 1.

B. Datasets and Settings

We use the clinical data “The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge” [29], which contains ten full-dose scans of the ACR CT accreditation phantom. We select nine data as the training profile and leave 1 data for the evaluation, resulting in 2164 images of size 512 \times 512 for the training and 214 images for the testing. We concern with the limited-angle reconstruction problem in the numerical experiments, for which the scanning angular interval is set as 1$^\circ$. The additive white Gaussian noises and Poisson noises are introduced into the projected data to validate the performance of reconstruction methods.

C. Parameter Behavior

In the first place, we test the effect of the number of epoch on the convergence in network training on the human dataset. The values of the loss function, PSNR, and SSIM are plotted in Fig. 4, which evidence the convergence of our LRIP-net. Accordingly to plots, we fix the number of the epochs as $k = 22$ during the training in the following experiments.

Second, the amount of the parameters reflects the complexity of the network. Table I lists the sizes of the parameters for the learning-based models. Because each stage in our model involves three 3-layer networks, our model has a total of 90 convolution layers, which gives 3.6×10^5 parameters. For the fairness of comparison, we set the stage number for PD-net and FSR-net to be 20 and 10, respectively.

Finally, expanding the variable space is a common network optimization technique, which allows the model to retain some memory for the variables making the training process more stable, such as $u = [u^{(1)}, u^{(2)}, \ldots, u^{(N_p)}]$ and $p = [p^{(1)}, p^{(2)}, \ldots, p^{(N_d)}]$. In Table II, we explore the influence of the choices of N_p and N_d to reconstruction accuracy on 90$^\circ$ limited-angle data. As can be seen, the best accuracy is achieved with $N_p = 5$ and $N_d = 5$, which are fixed for all experiments.

D. Experiments on Data With Gaussian Noises

In this section, we evaluate the performance of our LRIP-net and other methods on limited-angle raw data corrupted different noise levels. We let the default value of τ to be $\tau = 1/2$ to obtain the low-resolution image prior unless otherwise specified. And, the LRIP-net trained by the MSE loss function is denoted by LRIP-net$^\text{MSE}$.

Table III displays the quantitative results of different methods on limited-angle data corrupted by 5% Gaussian noises. The indexes used for evaluation are PSNR, RMSE, SSIM, and running time. We observe that the reconstruction qualities of all methods decrease as the scanning angle shrinks. It can be found out that LRIP-net$^\text{MSE}$ has the obvious numerical advantage compared to other comparison algorithms. After introducing the SSIM loss into the loss function, the advantage of LRIP-net$^1/2$ is further improved. Therefore, we suggest to

![Fig. 4. Values of the loss function, PSNR, and SSIM with respect to the numbers of epochs in our network, where the curves are evaluated on the human phantom with 90$^\circ$ scanning angular range and 5% Gaussian noise. (a) Loss function. (b) PSNR. (c) SSIM.](image-url)
use the joint loss function in implementation. Our LRIP-net$_{1/2}$ can provide better reconstruction accuracy with 0.6, 0.9, and 0.9 dB higher PSNR than the SFSR-net on 150°, 120°, and 90° reconstruction problem, respectively. What is even more important, compared to the SFSR-net, which is a dual-domain reconstruction method introducing the full-sampling system matrix as the prior knowledge, our model not only improves the reconstruction quality but also saves the computational time.

Fig. 5 presents the reconstruction results and residual images obtained by different methods for 90° limited-angle reconstruction. As can be seen, the learning-based methods outperform the direct method and TV model, which exhibit serious artifacts in the missing angle region. Although the denoiser introduced by the FBP-Unet can somehow deal with the noises, the result still presents obvious artifacts. Compared to the SIPID, PD-net, and FSR-nets, our LRIP-net$_{1/2}$ can better preserve the image details and edges with less information left in the residual images. Thus, both the quantitative and qualitative results confirm that the low-to-high double-resolution strategy can improve the reconstruction accuracy for the limited-angle reconstruction problem.

As shown by Table III, the low-resolution image prior works well on limited-angle reconstruction problems. However, there is one issue left that how to choose the optimal down-sampling rate to obtain the best performance. To make it clearly, we compare the reconstruction results of our LRIP-net with respect to different low-resolution priors, which are obtained by the down-sampling rate of 1/2, 1/4, 1/8, 1/16, and 1/32, respectively. As shown in Fig. 6, the reconstruction quality of our LRIP-net first increases and then decreases as the down-sampling rate keeps decreases with the best reconstruction results provided by the down-sampling rate of 1/8 for 150°, 120°, and 90° limited-angle reconstruction. The reason behind is that the quality of the low-resolution image prior also degrades as the down-sampling rate becomes smaller and smaller, which means there is a tradeoff between the resolution and quality of the low-resolution image prior. Even though, our LRIP-net has the dominant advantages compared to PD-net, which is built up by the reconstruction model without low-resolution image prior. As can be seen from Table IV, no matter what the down-sampling rate is, our LRIP-net always has significant advantages over the PD-net. The visual comparison on 90° limited-angle reconstruction is provided in Fig. 7, where our reconstructions have smoother edges and better details than PD-net.

We further increase the noise level contained in the raw data to 10% white Gaussian noises and list the quantitative results in Table V. It can be observed that the reconstruction performance of the TV model is poor in the case of...
TABLE III

Noise	Nview	Method	PSNR	RMSE	SSIM	Time
5%	150°	FBP	13.591	0.1162	0.4854	776
		TV	25.8815	0.0631	0.8091	5632
		FBP-Unet	23.8923	0.0793	0.8703	1033
		SIPID	30.3275	0.0321	0.9276	1372
		PD-net	30.3766	0.0313	0.9301	1113
		IFSR-net	30.8763	0.0296	0.9303	1429
		SFSR-net	30.9411	0.0279	0.9324	1582
		LRP-netMSE	31.3745	0.0256	0.9404	1245
		LRP-net1/2	31.5957	0.0247	0.9426	1264
120°		FBP	13.4118	0.1652	0.4008	602
		TV	25.5852	0.0802	0.7891	60032
		FBP-Unet	21.1637	0.0981	0.8072	1023
		SIPID	27.0428	0.0416	0.9024	1346
		PD-net	27.1539	0.0402	0.9037	1132
		IFSR-net	28.0441	0.0385	0.9079	1417
		SFSR-net	28.3263	0.0372	0.9103	1551
		LRP-netMSE	29.1888	0.0331	0.9354	1242
		LRP-net1/2	29.2763	0.0326	0.9361	1250
90°		FBP	13.0314	0.2260	0.3881	430
		TV	19.9501	0.0997	0.6918	54917
		FBP-Unet	18.5181	0.1035	0.7481	1015
		SIPID	22.7492	0.0626	0.8626	1363
		PD-net	22.6047	0.0638	0.8612	1099
		IFSR-net	23.9399	0.0572	0.8744	1382
		SFSR-net	24.2494	0.0566	0.8761	1525
		LRP-netMSE	24.9391	0.0528	0.8858	1218
		LRP-net1/2	25.1555	0.0516	0.8893	1247

TABLE IV

Noise	Nview	Method	PSNR	RMSE	SSIM	Time
5%	150°	FBP	30.3766	0.0313	0.9301	1113
		LRP-net1/2	31.5957	0.0247	0.9426	1264
		LRP-net1/4	32.7354	0.0231	0.9499	1240
		LRP-net1/8	32.8775	0.0218	0.9516	1231
		LRP-net1/16	32.3513	0.0241	0.9463	1227
		LRP-net1/32	31.5741	0.0253	0.9417	1124
120°		FBP	27.1539	0.0402	0.9037	1132
		LRP-net1/2	29.2763	0.0326	0.9342	1256
		LRP-net1/4	30.0991	0.0313	0.9361	1239
		LRP-net1/8	30.8746	0.0286	0.9399	1227
		LRP-net1/16	30.2761	0.0306	0.9378	1217
		LRP-net1/32	28.9642	0.0358	0.9314	1211
90°		FBP	22.6047	0.0638	0.8612	1099
		LRP-net1/2	25.1555	0.0516	0.8893	1247
		LRP-net1/4	25.9716	0.0484	0.9041	1205
		LRP-net1/8	26.3553	0.0451	0.9117	1186
		LRP-net1/16	26.0739	0.0477	0.9068	1175
		LRP-net1/32	25.2476	0.0501	0.8934	1169

E. Experiments on Data With Poisson Noises

Due to the statistical error of low photon counts, Poisson noises are introduced and result in random thin bright and dark streaks that appear preferentially along the direction of the greatest attenuation [15]. Table VI lists the PSNR, RMSE, and SSIM of different methods on raw data scanned within a limited scanning angle and corrupted by Poisson noises, where Poisson noises correspond to 100 incident photons per pixel before attenuation. Unlike white Gaussian noises, the performance of the TV model is significantly better than the high-level noises with PSNR dropping by 4 to 5 dB compared to the previous experiments. On the other hand, the performance of the learning-based methods is less sensitive to noises. The SIPID method relying on the sinogram interpolation works better than FBP-Unet. And, the deep unrolling methods (i.e., PD-net, IFSP-net, and SFSR-net) outperform the traditional iterative algorithm when the scanning range is limited and data is corrupted by noises. Similar to the previous experiments, compared with other deep learning algorithms, our LRIP-nets give the reconstruction results with higher PSNR and SSIM. Moreover, the low-resolution image obtained by the projection data down-sampled with rate 1/8 always gives the best reconstruction results with more than 2-dB PSNR and 0.05 SSIM increments compared to the PD-net. Fig. 8 illustrates the reconstructed images from different methodologies with scanning angular range of 90° and 10% Gaussian noises. It can be seen that the both TV model and the FBP-Unet suffers from significant artifacts, which present distortions in the angular range of the missing scan. Other learning-based methods provides better visual qualities than FBP-Unet, and our LRIP-net1/8 still gives the best reconstruction result with correct boundaries and fine structures.
TABLE V
Comparison on Limited-Angle Data Corrupted by 10% Gaussian Noises in Terms of PSNR, RMSE, SSIM, and Run Time (ms)

Noise	N_view	Method	PSNR	RMSE	SSIM	Time
150°		PBP	17.5464	0.1326	0.3914	640
		TV	20.7502	0.0917	0.5070	54536
		FBP-Unet	21.8293	0.0810	0.7887	1179
		SIPID	29.0276	0.0354	0.9193	1294
		PD-net	29.0084	0.0354	0.9193	1152
		SFSR-net	29.4543	0.0336	0.9199	1631
		IFPSR-net	29.6694	0.0328	0.9231	1587
		LRIP-net_{MSE}	30.1257	0.0304	0.9283	1390
		LRIP-net_{1/2}	30.3367	0.0295	0.9335	1407
		LRIP-net_{1/4}	30.7131	0.0291	0.9359	1386
		LRIP-net_{1/8}	30.8026	0.0288	0.9362	1375

TABLE VI
Comparison on Limited-Angle Data Corrupted by Poisson Noises in Terms of PSNR, RMSE, SSIM, and Run Time (ms)

Noise	N_view	Method	PSNR	RMSE	SSIM	Time
150°		PBP	19.1018	0.1108	0.6626	692
		TV	28.4326	0.0378	0.8925	64075
		FBP-Unet	23.2040	0.0691	0.8743	1134
		SIPID	28.7649	0.0371	0.9152	1298
		PD-net	28.8137	0.0362	0.9160	1288
		IFSR-net	29.4316	0.0337	0.9236	1512
		SFSR-net	30.0356	0.0314	0.9280	1649
		LRIP-net_{MSE}	30.2227	0.0307	0.9349	1324
		LRIP-net_{1/2}	30.3342	0.0303	0.9338	1341
		LRIP-net_{1/4}	30.8961	0.0285	0.9366	1315
		LRIP-net_{1/8}	31.1291	0.0277	0.9368	1308

Post-processing learning method FBP-Unet. And, all other learning-based methods work better than the TV model in terms of PSNR, RMSE, and SSIM. Our LRIP-nets still provide the best reconstruction accuracy among all the learning-based methods for the scanning angle of 150°, 120°, and 90°, respectively. It demonstrates that the LRIP-nets are also effective for data contaminated by Poisson noises.

Fig. 9 manifests the reconstruction results of these methods with scanning angular of 90°. It can be seen that both FBP and FBP-Unet produce serious artifacts within the range of missing angles. The TV model performs well in removing Poisson noises, but it can not handle the artifacts very well. Similarly, there left obvious artifacts on boundaries and different degrees of missing in visceral tissues of the reconstruction images obtained by the SIPID, PD-net, and FSR-net. The visceral tissue and boundaries of our LRIP-net reconstructions are more intact and smoother, especially for the LRIP-net_{1/8} which gives the ideal boundaries. The observation becomes even apparent if we look at the zoom-in regions, where the LRIP-nets can produce results with fine structures. Therefore, we conclude that the low-resolution image prior can effectively improve the qualities of the limited-angle CT reconstruction.

As far as the running time is concerned, since the FBP is an analytical reconstruction algorithm, it gives the fastest speed. On the other, the TV model is a traditional iterative method, for which the running time is the longest. For the deep learning-based methods, the running time increases with the complexity of the network, but the overall difference is not significant.

F. Discussions
The primal-dual network can be regarded as our model without the low-resolution image prior. By comparing the results in Tables III, V, and VI, even though both LRIP-net and PD-net are trained by the MSE loss, the LRIP-net shows significant advantages, always producing higher PSNR and SSIM. Such ablation study, it is shown that the low-resolution image working as prior knowledge can effectively improve the qualities of the reconstruction images. On the other hand, we discuss the impact of the low-resolution image
Fig. 8. Limited-angle reconstruction experiments on the AAPM phantom dataset within 90° scanning angular range and 10% Gaussian noises. The display window is set as [0, 1]. (a) Clean image. (b) FBP. (c) TV. (d) FBP-Unet. (e) SIPID. (f) PD-net. (g) FSR-net. (h) SFSR-net. (i) LRIP-netMSE. (j) LRIP-net1/2. (k) LRIP-net1/4. (l) LRIP-net1/8.

TABLE VII

Method	Settings	150°	120°	90°					
	PSNR	RMSE	SSIM	PSNR	RMSE	SSIM	PSNR	RMSE	SSIM
LRIP-net1/2-FBP	31.1571	0.0267	0.9374	28.6398	0.0369	0.9279	24.5943	0.0545	0.8814
LRIP-net1/2-PDnet	31.5957	0.0247	0.9426	29.2763	0.0326	0.9385	25.1555	0.0516	0.8893

To our LRIP-net, where the high-quality priors obtained by PD-net and poor-quality priors obtained by FBP are used in our LRIP-net. As shown in Table VII, two observations can be concluded as follows.

1) Our LRIP-net with the FBP reconstructed image priors always produce better reconstruction results than PD-net (see Table III). Thus, our strategy to introduce the low-resolution image as prior is not subject to the low-resolution image reconstruction method.

2) Our LRIP-net with the PD-net reconstructed image priors always provide better reconstruction results than the LRIP-net using FBP reconstructed image priors. It means that the better the quality of a priori image, the better the reconstruction result.

To sum up, the low-resolution image constraint in our model (2) can help to find a better solution from the null space, which has been demonstrated by our numerical experiments.

V. CONCLUSION AND FUTURE WORKS

In this article, we proposed a low-resolution image prior image reconstruction model for the limited-angle reconstruction problems. The constrained model was solved by the alternating direction method with all subminimization problems.
Fig. 9. Limited-angle reconstruction experiment on the AAPM phantom dataset with 90° scanning angular range and Poisson noises. The display window is set as [0, 1]. (a) Clean image. (b) FBP. (c) TV. (d) FBP-Unet. (e) SIPID. (f) PD-net. (g) IFSR-net. (h) SFSR-net. (i) LRIP-net. MSE. (j) LRIP-net1/2. (k) LRIP-net1/4. (l) LRIP-net1/8.

approximated by CNN blocks, which was trained end-to-end from raw measured data. Numerical experiments on various limited-angle CT reconstruction problems have successfully demonstrated the advantages of our LRIP-net over the state-of-the-art learning methods.

Although we illustrated that the low-resolution reconstruction problem has a smaller condition number than the corresponding high-resolution problem, it still lacks a theoretical guarantee. Thus one future work is to investigate the observation with rigorous mathematical proof. Another possible future research direction is to use image super-resolution methods, such as [16] and [34] to establish more effective connection between the low-resolution and high-resolution images for solving the ill-posed CT reconstruction problems. Moreover, we also would like to develop effective methods to fuse the multiscale information to obtain a priori image and to implement our method on other reconstruction problems such as digital breast tomosynthesis [35], which is a limited-angle X-ray tomography technique using low-dose high-resolution projections.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for their valuable comments and helpful suggestions to improve this article.

REFERENCES

[1] J. Adler and O. Öktem, “Learned primal-dual reconstruction,” IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1322–1332, Jun. 2018.
[2] S. Arridge, P. Maass, O. Öktem, and C. Schönlieb, “Solving inverse problems using data-driven models,” Acta Numerica, vol. 28, pp. 1–174, May 2019.
[3] D. O. Baguer, J. Leuschner, and M. Schmidt, “Computed tomography reconstruction using deep image prior and learned reconstruction methods,” Inverse Problems, vol. 36, no. 9, 2020, Art. no. 94004.
[4] D. Boubil, M. Elad, J. Shtok, and M. Zibulevsky, “Spatially-adaptive reconstruction in computed tomography using neural networks,” IEEE Trans. Med. Imag., vol. 34, no. 7, pp. 1474–1485, Jul. 2015.
[5] T. A. Bubba, M. Galinier, M. Laasas, M. Prato, L. Ratti, and S. Siltanen, “Deep neural networks for inverse problems with pseudodiffferential operators: An application to limited-angle tomography,” SIAM J. Imag. Sci., vol. 14, no. 2, pp. 470–505, 2021.
[6] T. A. Bubba et al., “Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography,” *Inverse Problems*, vol. 35, no. 6, 2019, Art. no. 64002.

[7] A. Cai, L. Wang, H. Zhang, B. Yan, and J. Li, “Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization,” *J. Xuyi Sci. Technol.*, vol. 22, no. 3, pp. 335–349, 2014.

[8] A. Cai, L. Li, Z. Zheng, L. Wang, and B. Yan, “Block-matching sparsity regularization-based image reconstruction for low-dose computed tomography,” *Med. Phys.*, vol. 45, no. 6, pp. 2439–2452, Apr. 2018.

[9] E.J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” *IEEE Trans. Inf. Theory*, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[10] G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” *Med. Phys.*, vol. 35, no. 2, pp. 660–663, Jan. 2008.

[11] H. Chen et al., “LEARW: Learned experts’ assessment-based reconstruction network for sparse-data CT,” *IEEE Trans. Med. Imag.*, vol. 37, no. 6, pp. 1333–1347, Jun. 2018.

[12] Z. Chen, X. Jin, L. Li, and G. Wang, “A limited-angle CT reconstruction method based on anisotropic TV minimization,” *Phys. Med. Biol.*, vol. 58, no. 7, p. 2119, 2013.

[13] W. Cheng, Y. Wang, H. Li, and Y. Duan, “Learned full-sampling reconstruction from incomplete data,” *IEEE Trans. Comput. Imag.*, vol. 6, pp. 945–957, May 2020.

[14] Q. Ding, G. Chen, X. Zhang, Q. Huang, H. Ji, and H. Gao, “Low-dose CT with deep learning regularization via proximal forward–backward splitting,” *Phys. Med. Biol.*, vol. 65, no. 12, 2020, Art. no. 125009.

[15] I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polynenergetic X-ray computed tomography,” *IEEE Trans. Med. Imag.*, vol. 21, no. 2, pp. 39–99, Feb. 2002.

[16] F. Fang, J. Li, and T. Zeng, “Soft-edge assisted network for single image super-resolution,” *IEEE Trans. Image Process.*, vol. 29, pp. 4656–4668, 2020.

[17] J. Frikel, “Sparse regularization in limited angle tomography,” *Appl. Comput. Harmon. Anal.*, vol. 34, no. 1, pp. 117–141, Jan. 2013.

[18] A. Goy, G. Rughoobur, S. Li, K. Arthur, A. I. Akinwande, and J. Frikel, “Sparse regularization in limited angle tomography,” *Appl. Comput. Harmon. Anal.*, vol. 34, no. 1, pp. 117–141, Jan. 2013.

[19] Z. Song, X. Zhao, Y. Hui, and H. Jiang, “Progressive back-projection network for COVID-CT super-resolution,” *Comput. Methods Programs Biomed.*, vol. 208, Sep. 2021, Art. no. 106193.

[20] J. Teuwen et al., “Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation,” *Med. Image Anal.*, vol. 71, Jul. 2021, Art. no. 102061.

[21] C. Wang, M. Tao, J. G. Nagy, and Y. Lou, “Limited-angle CT reconstruction via the L1/L2 minimization,” *JAM I. Imag. Sci.*, vol. 14, no. 2, pp. 749–777, 2021.

[22] J. Wang, C. Wang, Y. Guo, W. Yu, and L. Zeng, “Guided image filtering based limited-angle CT reconstruction algorithm using wavelet frame,” *IEEE Access*, vol. 7, pp. 99954–99963, 2019.

[23] T. Würfl et al., “Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems,” *IEEE Trans. Med. Imag.*, vol. 37, no. 6, pp. 1454–1463, Jun. 2018.

[24] J. Xu, Y. Zhao, H. Li, and P. Zhang, “An image reconstruction model regularized by edge-preserving diffusion and smoothing for limited-angle computed tomography,” *Inverse Problems*, vol. 35, no. 8, Jul. 2019, Art. no. 85004.

[25] M. Xu, D. Hu, F. Luo, F. Liu, S. Wang, and W. Wu, “Limited-angle X-ray CT reconstruction using image gradient ℓ0-norm with dictionary learning,” *IEEE Trans. Radiat. Plasma Med. Sci.*, vol. 5, no. 1, pp. 78–87, Jan. 2021.

[26] H. Yuan, J. Jia, and Z. Zhu, “L1PIDE: A deep learning framework for sinogram interpolation and image denoising in low-dose CT reconstruction,” in *Proc. IEEE 15th Int. Symp. Biomed. Imag. (ISBI)*, 2018, pp. 1521–1524.

[27] G. Zang, R. Idoughi, R. Li, P. Wonka, and W. Heidrich, “IntraTom: Self-supervised learning-based tomography via sinogram synthesis and prediction,” in *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, Oct. 2021, pp. 1960–1970.

[28] H. Zhang, L. Wang, Y. Duan, L. Lei, G. Hu, and B. Yan, “Euler’s elastica strategy for limited-angle computed tomography image reconstruction,” *IEEE Trans. Nucl. Sci.*, vol. 64, no. 8, pp. 2395–2405, Aug. 2017.

[29] H. Zhang, B. Dong, and B. Liu, “JSR-Net: A deep network for joint spatial-radon domain CT reconstruction from incomplete data,” in *Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP)*, 2019, pp. 3657–3661.