Neoadjuvant, Anthracycline-Free Chemotherapy with Carboplatin and Docetaxel in Triple-Negative, Early-Stage Breast Cancer: A Multicentric Analysis of Feasibility and Rates of Pathologic Complete Response

Peter Kerna, e Anne Kalischa Hans-Christian Kolbergb Rainer Kimmiga
Friederich Otterbacha Gunter von Minckwitzd, e William M. Sikovg Dirk Pottc
Christian Kurbacherf

aWomen’s Department, West-German Cancer Center, Comprehensive Cancer Center, University Hospital of Essen, Essen, bWomen’s Department, Marienhospital Bottrop, and cClinic for Hematology and Oncology, Bottrop, dGerman Breast Group, Neu-Isenburg, eBreast Center Düsseldorf Luisenkrankenhaus, Düsseldorf, and fDepartment of Gynecological Oncology, Medical Center Bonn Friedensplatz, Bonn, Germany; gWarren Alpert Medical School of Brown University, Providence, R.I., USA

\textbf{Key Words}
Triple-negative breast cancer · Neoadjuvant chemotherapy · Carboplatin · Pathologic complete response

\textbf{Abstract}
\textbf{Background:} Triple-negative breast cancer (TNBC) attracts a disproportionate share of intensive research because of its poor prognosis. Standard anthracycline- and taxane-based regimens still yield an unsatisfactorily low rate of pathologic complete response (pCR). The pCR rate is a recognized surrogate marker for good long-term survival. \textbf{Methods:} A multicentric, retrospective study was conducted including all patients not willing to undergo or not suitable for an anthracycline-based regimen. Six cycles of docetaxel 75 mg/m2 and carboplatin AUC 6 q3w were administered. The primary endpoint was pCR (ypT0/ypTis + ypN0) and near-pCR (≤5 mm residual disease). The secondary endpoint was feasibility (CTCAE version 4.03 criteria) and adherence to treatment.

\textbf{Results:} Six cycles of carboplatin AUC 6 and docetaxel 75 mg/m2 resulted in a high pCR rate of 50% and a combined pCR/near-pCR rate of 70%. Grade 3 and 4 toxicities were rare events and 28 of 30 (93%) patients completed all 6 cycles. No toxicity-related treatment discontinuation and no febrile neutropenia were registered. \textbf{Conclusion:} This chemotherapy regimen provides a highly effective and feasible strategy for patients not willing to receive or not suitable for an anthracycline-based treatment (cardiac ejection fraction <65% or age >65 years). Combinations of platinum compounds with taxanes and anthracyclines may be also desirable in TNBC.

© 2014 S. Karger AG, Basel

\textbf{Introduction}
Among human breast cancer subtypes, triple-negative breast cancer (TNBC) is a particularly heterogeneous group defined solely by the absence of expression of estrogen (ER) and progesterone receptors (PR) and HER2/
neu amplification [1, 2]. It has a prevalence of 11–20% in unselected cohorts of breast cancer patients [3–5] and has attracted a disproportionate share of intensive research because of its poor prognosis due to typical features like aggressive growth, rapid progression after recurrence [5, 6], and early metastatic spread [7, 8]. Although TNBC displays a greater chemosensitivity than other subtypes, reflected in higher pathologic complete response (pCR) rates to neoadjuvant chemotherapy, its recurrence rates are still the highest of all tumor biologies [6, 9–11] (triple-negative paradox) [12]. The current neoadjuvant or adjuvant treatment for TNBC is a combination or sequence of anthracycline- and taxane-based regimens [13]; the responses to other chemotherapeutic agents and combinations in patients who fail to respond to or relapse after treatment with these agents tend to be very brief. Multiple targeted therapies have been evaluated in preclinical and early-phase clinical studies in TNBC with controversially discussed efficacy. The majority of breast cancers that develop in BRCA1 mutation carriers are triple negative [6, 14, 15]. Sensitivity to platinum-based agents has been demonstrated in pilot studies in BRCA1-positive patients [16]. While BRCA1 mutations are uncommon in so-called sporadic TNBC, these cancers may exhibit a dysfunctional BRCA pathway with deficient DNA mismatch repair and genomic instability [17, 18]. Given the similarities between sporadic TNBC and BRCA-associated tumors in the gene expression array, platinum analogues would seem to be a suitable addition to the standard chemotherapy approach [16, 19, 20].

The data of BCIRG 006 showed that omission of anthracyclines with a platinum- and taxane-based backbone is feasible in HER-2/neu-positive tumors [21]; this was previously reported in the 2nd interim analysis of the trial in 2006 [22]. The combination of docetaxel and carboplatin as neoadjuvant therapy has been evaluated in analyses of only small TNBC subgroups in other trials [23–25]. Because TNBC is associated with a poor prognosis unless a pCR is achieved [9], this case-cohort trial assesses the pCR rate associated with this combination in patients who were not suitable for or not willing to receive an anthracycline-based treatment.

Patients and Methods

Eligibility Criteria

Patients with histologically confirmed, primary, unilateral, nonmetastasized TNBC were eligible for this retrospective analysis if they were unsuitable for or had refused standard anthracycline-based neoadjuvant chemotherapy. All patients were offered standard anthracycline-taxane-based treatment first. Patients refusing to take the risk of an anthracycline-containing regime with views to its well-known cardiotoxic potential and opting for an alternative treatment schedule of taxane- and carboplatin-based therapy were included in our study. Patients considered not eligible for an anthracycline-taxane-based combination were patients with a reduced cardiac output with an ejection fraction <60% or patients aged >65 years.

Other inclusion criteria were: age ≥18 years, adequate baseline hematologic values (absolute neutrophil count ≥1.5 × 10^9/l, platelet count ≥100 × 10^9/l, and hemoglobin level ≥100 g/l), and normal hepatic and renal functions. Pregnancy or breast-feeding and prior or concomitant chemotherapy for this cancer were exclusion criteria. This study complies with the principles of the Declaration of Helsinki and was approved by the institutional review board.

Immunohistochemical Evaluation

Core needle biopsies (≥3 representative samples) were used for immunohistochemical determination of HER-2/neu and hormone receptors (HR). All tests (IHC and FISH) were performed according to each of the institution’s standards. HER2-negative disease was defined as IHC 0/1+ or a FISH ratio (HER2 gene copy/chromosome 17) <2.0 according to ASCO-CAP guideline recommendations [26]. Tumors with <1% positive cancer cells by IHC were classified as ER negative and PR negative [27]; 3 patients were included according to the older definition of ≤10% positive cancer cells [28]. CK 5/6, CK14, CK17, and/or EGFR were utilized as markers for the basal-like subtype (basal-like breast cancer; BLBC). Patients in this cohort had not been tested for BRCA mutational status, and thus we expected a normal representation of the BRCA subtype proportion of patients in our cohort and could not differentiate between potentially BRCA-mutated and wild-type BRCA patients.

Response and Toxicity Assessment

The primary objective was to assess the pCR rate, defined as an absence of invasive tumor cells in the breast and axilla, with residual ductal carcinoma in situ (DCIS) allowed (ypT0/is + ypN0). Near-pCR was defined as residual disease (RD) ≤5 mm. The secondary objective was the feasibility of this drug combination in TNBC with regard to treatment-related toxicity. Side effects were classified according to CTCAE v4.03 [29] based on blood examinations and standardized patient questionnaires.

Treatment

All eligible patients were treated with 6 cycles of carboplatin AUC 6 and docetaxel 75 mg/m², both given intravenously as a 1-hour infusion every 21 days. Glucocorticoids and 5-HT3 antagonists were administered as antiemetics. Granulocyte colony-stimulating factor and other supportive medications between cycles were permitted at the investigator’s discretion. Patients with clinically negative axillary lymph nodes underwent a sentinel lymph node (SLN) biopsy before chemotherapy. After completion of the chemotherapy, all patients underwent breast conservation or mastectomy. Axillary lymph node dissection was performed in patients with clinically positive lymph nodes or if the pretherapeutic SLN biopsy showed lymph node involvement.
Statistics
The patient and tumor characteristics before the start of chemotherapy were summarized. Continuous data were expressed as medians, ranges, or means and categorical data as frequency percentages. A nonparametric Spearman’s correlation test (two-tailed Spearman’s rank correlation coefficient, r) was used to evaluate the bivariate relationship between ordinal data. Associations between basal-like status and pCR were correlated using a two-tailed Fisher’s exact test. p < 0.05 was considered statistically significant.

Results

Patient and Tumor Characteristics
From January 2007 to December 2011, thirty patients with primary TNBC from 3 breast units were analyzed. Table 1 summarizes the patient and tumor characteristics. The mean age was 56.3 years (range 28–76). The majority of tumors were high-grade (G3: 77%), invasive ductal carcinomas NOS (90%).

Fifteen patients were clinically T1 and 13 were T2, whereas 2 were considered T4. Nineteen patients were pathologically node negative (pN0) and 7 were node positive (pN+) on pretreatment SLN sampling. Four patients with clinically positive axillary nodes (cN+) did not undergo SLN sampling. Thus, UICC stages were predominantly stage I and IIA (73%) at diagnosis.

Twenty-three samples were completely negative for HER2 (score 0); 6 were scored as 1+. One case had an IHC score of 2+ but was classified as HER2 negative by FISH analysis. Twenty-seven tumors were diagnosed as HR negative with less than 1% positive cancer cells by IHC. As noted above, 3 patients were considered HR negative with ≤10% staining of cancer cells based on an older definition (PR 1%, n = 1; PR 4%, n = 1, and ER ≤10%, n = 1, not specified). Information on the BLBC immunophenotype was available in 21 out of 30 core needle biopsies, 12 of which were scored as BLBC. There was no significant correlation between patient age and the prevalence of BLBC.

Response to Neoadjuvant Chemotherapy
After completion of the chemotherapy, all patients underwent surgery (breast-conserving surgery, n = 25, and mastectomy, n = 5), yielding a breast conservation rate of 83.3%. Fifteen out of 30 patients (50.0%) achieved a pCR (ypT0/is + ypN0), including 4 patients with residual DCIS only. A near-pCR was found in 6 patients (20.0%) (ypT1mic, n = 2, and ypT1a, n = 4). Thus, a pCR or near-pCR was achieved in 70% of cases (fig. 1).

Table 1. Patient and tumor characteristics before chemotherapy
Age at diagnosis, years
Mean 56.3
Range 28–76
Median 57
Age distribution, n (%)
≤50 years 12 (40)
>50 years 18 (60)
Menopausal status, n (%)
Premenopausal 12 (41.4)
Postmenopausal 17 (58.6)
Missing 1
Tumor size, mm
Mean 25.5
Range 8.4–93
Median 20.2
Tumor stage, n (%)
cT1a 0
cT1b 3 (10.0)
cT1c 12 (40.0)
cT2 13 (43.3)
cT3 0
cT4a 1 (3.3)
cT4b 1 (3.3)
Lymph node stage, n (%)
pN0 19 (63.3)
pN1 6 (20.0)
pN2 1 (3.3)
pN3 0
no SLNB (cN1) (clinically positive lymph node) 4 (13.3)
UICC stage, n (%)
I 11 (36.7)
IIA 11 (36.7)
IIB 5 (16.7)
IIIA 1 (3.3)
IIIB 2 (6.7)
IIIC 0
IV 0
Histological subtype, n (%)
Invasive ductal (NOS) 27 (90.0)
+ DCIS 2
Partial mucinous 1
Apocrine 2 (6.7)
Medullary 1 (3.3)
Grading, n (%)
G1 1 (3.3)
G2 5 (16.7)
G2–3 1 (3.3)
G3 23 (76.7)
Basal-like phenotype, n (%)
Basal-like 12 (57.1)
Non-basal-like 9 (42.9)
Missing 9

Carboplatin and Docetaxel in Early-Stage TNBC

Chemotherapy 2013;59:387–394
DOI 10.1159/000362756
A pCR or near-pCR was achieved in 83.3% (10/12) of patients aged ≤50 years versus 61.1% (11/18) in patients aged >50 years, but there was no significant correlation between age and pCR (r Spearman’s rho = −0.12; p = 0.54) (fig. 2). Patients with BLBC by IHC criteria were no more likely to achieve a pCR with this neoadjuvant regimen than those who were not (two-tailed Fisher’s exact test = 1.00).

Of the 9 patients who did not achieve a pCR or near-pCR, 8 still had limited RD (ypT1); only 1 patient, who had T4b disease at diagnosis, still had locally advanced disease at surgery. Twelve patients underwent axillary lymph node dissection, and only 2 of them had positive lymph nodes (ypN0, n = 10; ypN1a, n = 1, and ypN2a, n = 1). Five out of 7 patients with pretherapeutic positive sentinel nodes had no additional positive nodes in their axillae and all 4 patients with clinically positive axillae (cN1) converted to ypN0. Figure 3 displays the UICC stages before and after neoadjuvant chemotherapy.

Toxicity
Treatment was well tolerated. The only common grade 3 and 4 toxicities were leukopenia (CTCAE grade 3: 53.6%, grade 4: 7.1%) and neutropenia (CTCAE grade 3: 46.4%, grade 4: 28.6%); despite this incidence of grade
3–4 neutropenia, no episodes of febrile neutropenia were reported and only 7 cases of grade 1 and 2 infection occurred. Grade 3 thrombocytopenia or anemia developed in 3 and 2 cases, respectively. While 41.4% of patients developed grade 2 dysesthesia, only 1 instance of grade 3 peripheral neuropathy was recorded. The more common grade 1 and 2 toxicities were hematologic, increased creatinine and liver values, mucositis, dysesthesia, and fatigue. Alopecia occurred in all documented patients. No fatal (CTCAE grade 5) toxicities were registered. We observed no correlation between age at diagnosis and the frequency or severity of toxicity events (r Spearman’s rho = −0.08; p = 0.70). The toxicities reported during neoadjuvant chemotherapy are listed in Table 2.

Table 2. Reported toxicities

Toxicities, n (%)	NCI-CTCAE		
	grade 1 or 2	grade 3	grade 4
Leukopenia	24 (85.7)	15 (53.6)	2 (7.1)
Neutropenia	15 (53.6)	13 (46.4)	8 (28.6)
Anemia	27 (96.4)	2 (7.1)	0
Thrombocytopenia	22 (78.6)	3 (10.7)	0
Febrile neutropenia	0	0	0
Infection	7 (24.1)	0	0
Allergy	4 (13.8)	2 (6.9)	0
Nausea	16 (55.2)	2 (6.9)	0
Emesis	2 (6.9)	1 (3.4)	0
Diarrhea	5 (17.2)	1 (3.4)	0
Mucositis	13 (44.8)	0	0
Fatigue	5 (17.2)	1 (3.4)	0
Joint pain	10 (34.5)	0	1 (3.4)
Edema	4 (13.8)	0	1 (3.4)
Dysesthesia	12 (41.4)	1 (3.4)	–
Skin toxicity	9 (31.0)	1 (3.4)	0
Liver values †	23 (76.7)	2 (6.7)	0
Creatinine †	20 (66.7)	0	0
Alopecia	29 (100)	–	–

Discussion

Neoadjuvant chemotherapy for TNBC is essentially limited to standard chemotherapeutic agents, with non-responding patients experiencing high rates of relapse and predilection for visceral metastasis [7, 8, 30, 31]. Our study population achieved a high pCR or near-pCR rate (70%) with neoadjuvant carboplatin (AUC 6) and docetaxel (75 mg/m²), which exceeds most of the results reported with even anthracycline-taxane-containing regimens. We used carboplatin at the dosage of AUC 6 with docetaxel at 75 mg/m² because there is good evidence of its feasibility from BCIRG 006 in the Her2-positive early breast cancer setting [21, 22] as well as from treatment schedules in the first-line setting of ovarian cancer [32] and also non-small cell lung cancer [33].

The results were superior for younger patients, though this did not reach statistical significance, probably due to the sample size. Loibl et al. [34] also reported age as a predictive factor for achieving pCR in triple-negative patients (pCR rate 45% in patients aged ≤ 35 years vs. 31% in patients aged >35 years).

There was no apparent increment in the response for patients with BLBC as defined by immunohistochemical stains for cytokeratins and/or EGFR. BLBC patients and non-BLBC patients both derived equal benefits from our taxane-platinum-protocol, unlike in the GEICAM/ 2006-03 trial in which this effect could not be shown for the BLBC cohort [35]. However, the categorization of TNBC is almost certainly more complex than BLBC versus non-BLBC; Lehmann et al. [36] identified 6 TNBC subtypes in a cluster analysis of the gene expression profiles of 587 TNBC cases, each of which may have different response and resistance characteristics.

The addition of platinum analogues to standard chemotherapy in the neoadjuvant setting has been reported only in small cohorts in the treatment of TNBC. Cisplatin monotherapy showed higher response rates in BRCA1-mutated TNBC (pCR: 83%) [16]; however, a lower response rate of 21% in a non-BRCA-screened triple-negative cohort was reported earlier by Silver et al. [19]. Chen et al. [24] (carboplatin AUC 2 + paclitaxel 80 mg/m² q1w, 4 cycles) and Roy et al. [25] (carboplatin AUC 6 + docetaxel 75 mg/m² q2w + G-CSF, 4 cycles) reported pCR-rates of 33.3 and 44.4%, respectively, in triple-negative cohorts; however, the doses of carboplatin were lower than those used in this study. In studies utilizing similar carboplatin dosing, Chang et al. [23] (carboplatin AUC 6 + docetaxel 75 mg/m² q3w, 4 cycles) and Sikov et al. [37] (carboplatin AUC 6 q4w + paclitaxel 80
mg/m² weekly, 4 cycles) reported pCR rates of 54.5 and 66.6%, respectively, in TNBC. The pCR/near-pCR rate of 70.0% in this study is high in a relatively large cohort of patients (n = 30) receiving an anthracycline-free regimen. However, the cohort of patients treated in this study had an earlier stage of disease than patients included in some neoadjuvant trials, with 73% having stage I–IIA disease and only 13% having a clinically node-positive status, which likely contributed to the pathologic response results.

It may also be difficult to compare results across trials due to the different definitions of pCR used by various study groups [38–41]. Minimal RD, residual DCIS, and axillary lymph node involvement after chemotherapy are not consistently defined as RD or pCR. von Minckwitz et al. [40] compared the different definitions of pCR and their impact on prognosis. Patients with pCR, defined as no invasive and no in situ RD in the breast and axilla, showed the most favorable relapse-free survival and overall survival, while the inclusion of patients with RD reduced the prognostic significance of achieving a pCR [40]. However, a more extensive meta-analysis performed by Cortazar et al. [41] demonstrated that the inclusion of DCIS in the definition of pCR (like in our study) does not essentially change the survival outcomes of neoadjuvant-treated patients [41].

The use of platinum analogues also seems to have an impact on the overall survival in retrospective studies of locally advanced breast cancer. Hurley et al. [42] explored in their retrospective analysis different settings of anthracycline, taxane, and platinum combinations. Anthracyclines were applied before and after surgery, and thus this study is classified not as a pure neoadjuvant study. Further, this trial did not include an anthracycline-free case cohort, which renders the impact of taxanes and platinum compounds unclear. Moreover, platinum-containing regimens show a high efficacy and tolerability in combination with taxanes in metastatic breast cancer [43].

Previous analyses have reported the pCR rates achieved using standard anthracycline- and taxane-based protocols in TNBC, such as the retrospective analysis of the MD Anderson Cancer Center with pCR rates of 11.8% for taxane monotherapies, 20.0% for FAC/FEC/AC regimens, and 28.0% for TFAC/TFEC protocols [9]. The highest pCR rates reported in TNBC from large, multicenter, prospectively randomized phase III trials have been with anthracycline- and taxane-based regimens, with rates of 34.9–38.9% in the GeparTrio trial (TAC) [44], with patients under 40 years of age achieving a pCR rate of 57% [45]. The results of retrospective analyses like the MA5 trial [46] have been attributed to low levels of topoisomerase IIα gene amplification. This is being analyzed further in several studies [6, 47, 48]. In exploratory analyses of the FINXX trial, the integration of capecitabine into an adjuvant regimen that also contains anthracyclines, taxanes, and cyclophosphamide has improved breast cancer-specific survival in TNBC (HR 0.64; 95% CI 0.44–0.95; p = 0.027) and also recurrence-free survival in women with more than 3 positive axillary lymph nodes [49]; however, recent studies of metastatic TNBC have shown that capecitabine-containing doublets like TX or NX have limited potency in the TNBC subtype [50].

Some patients in our study refused to take the risk of an anthracycline-containing regimen with the well-known increased probability of congestive heart failure earlier described by Von Hoff et al. [51]. A reduced cardiac output or an age >65 years are being associated with a higher risk of mortality. As Pinder et al. [52] published earlier, women aged 66–70 years who received adjuvant treatment with anthracyclines had a significantly higher risk of developing congestive heart failure. This effect continued to increase throughout more than 10 years of follow-up, as the authors pointed out [52]. Swain et al. [53] also reported a greater incidence of congestive heart failure with the use of anthracyclines in 3 NSABP trials with an age cutoff of 65 years. In general, they observed estimated cumulative percentages of 5% of patients at a cumulative dose of 400 mg/m², 26% of patients at 550 mg/m², and 48% of patients at 700 mg/m², and an HR of 2.25 (p = 0.029) for patients aged >65 years versus <65 years [53]. Considering the (long-term) risk of cardiotoxicity [54] and the potential risk of leukemia and myelodysplastic syndrome [55], especially after dose-dense G-CSF-supported anthracycline-based treatment, the development of an effective, well-tolerated non-anthracycline-based regimen for TNBC may be desirable.

This trial provides valuable information on the safety, feasibility, and efficacy of this platinum-taxane-based regimen in a study population with a wide age range, i.e. from 28 to 76 years, with very few necessary dose reductions and no age-dependent increase in toxicity. Of note, a large number of patients, i.e. 28 out of 30 (93.3%), completed all 6 cycles and a dose reduction from AUC 6 to AUC 5 was performed in only 16.6% of patients and no episode of febrile neutropenia occurred. The breast conservation rate was also very high, i.e. 83.3%, in our study population. Limitations of this study include that it represents a multicentric but nonrandomized single-arm study, with the treatment selected based on patient ineligibility for or refusal of a more standard regimen, as well
as the relatively early stage of many of the included patients at diagnosis. BLBC was determined by IHC and cytokeratins and not by intrinsic subtyping. We did not explore the BRCA1/2 mutation status in this trial, which might influence the response to the platinum-containing regimen. Follow-up data will be presented in a subsequent analysis. The sensitivity to neoadjuvant chemotherapy varies in different intrinsic breast cancer subtypes [56]. Larger prospectively randomized trials are studying the value of adding platinum analogues to neoadjuvant anthracycline/taxane regimens for TNBC. The addition of carboplatin in the prospective, randomized GeparSixto trial achieved an absolute increase of more than 20% in pCR (defined as ypT0 ypN0/is), i.e. from 37.9% (paclitaxel + myocet + bevacicumab) to 58.7% (p < 0.05) (paclitaxel + myocet + bevacizumab + carboplatin) in TNBC, as demonstrated by von Minckwitz et al. [57] at ASCO 2013. The CALGB 40603 trial presented by Sikov et al. [58] at the San Antonio Breast Cancer Symposium 2013 showed that the addition of carboplatin to paclitaxel in a sequential dose-dense anthracycline/cyclophosphamide-containing regimen significantly increased the pCR rates.

References

1 Foukles WD, Smith IE, Reis-Filho JS: Triple-negative breast cancer. N Engl J Med 2010; 363:1938–1948.

2 Irvin W Jr, Carey LA: What is triple-negative breast cancer? Eur J Cancer 2008;44:2799–2805.

3 Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V: Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry. Cancer 2007;109:1721–1728.

4 Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO: Prognostic markers in triple-negative breast cancer. Cancer 2007;109:25–32.

5 Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N: Triple-negative breast cancer – current status and future directions. Ann Oncol 2009;20:1913–1927.

6 Carey L, Winer E, Viale G, Cameron D, Gianni L: Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 2010;7:683–692.

7 Heitz F, Harker P, Lueck HJ, et al: Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur J Cancer 2009;45:2792–2798.

8 Lin NU, Vanderplas A, Hughes ME, et al: Clinicopathological features and sites of recurrence according to breast cancer subtype in the National Comprehensive Cancer Network (NCCN) (abstract 543). J Clin Oncol 2009;27:15s.

9 Liedtke C, Mazouni C, Hess KR, et al: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008;26:1275–1281.

10 Rouzier R, Perou CM, Symmans WF, et al: Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005;11:5678–5685.

11 Kern P, Badiian M, von Minckwitz G, et al: Triple negative breast cancer: prognosis of triple-negative breast cancers and non-triple-negative breast cancers in a large registry of certified breast units (abstract). Cancer Res 2012;72:22.

12 Carey LA, Dees EC, Sawyer L, et al: The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007;13:2329–2334.

13 Goldhirsh A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ: Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011;22:1736–1747.

14 Foukles WD, Stefansson IM, Chappuis PO, et al: Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 2003;95:1482–1485.

15 Sorlie T, Tibshirani R, Parker J, et al: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003;100:8418–8423.

16 Byrski T, Gronwald J, Huzarski T, et al: Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 2010;28:375–379.

17 Turner N, Tutt A, Ashworth A: Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 2004;4:814–819.

18 Lips EH, Mulder L, Oonk A, et al: Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br J Cancer 2013;108:2172–2177.

19 Silver DP, Richardson AL, Eklund AG, et al: Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol 2010;28:1145–1153.

20 von Minckwitz G, Martin M: Neoadjuvant treatments for triple-negative breast cancer (TNBC). Ann Oncol 2012;23(suppl 6):v35–v39.

21 Slamon D, Eiermann W, Robert N, et al: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 2011;365:1273–1283.

Acknowledgement

We thank André Scherag and Hildegard Lax of the Institute for Medical Informatics, Biometry and Epidemiology (IMIBE) for statistical advice, and Isabelle Krassowski, Birgit Klopires, and Susanne Herz for their diligent work with the patients and their contribution to data collection.

DOI: 10.1159/000362756
22 Slamon D, Eiermann W, Robert N, et al: BCIRG 006: 2nd interim analysis phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC→T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC→TH) in Her2neu positive early breast cancer patients (abstract 52). Annu San Antonio Breast Cancer Symp, San Antonio, December 2006.

23 Chang HR, Glasper J, Ahlson MA, et al: Differential response of triple-negative breast cancer to a docetaxel and carboplatin-based neoadjuvant treatment. Cancer 2010;116: 4227–4237.

24 Chen XS, Nie XQ, Chen CM, et al: Weekly paclitaxel plus carboplatin is an effective non-anthracycline-containing regimen as neoadjuvant chemotherapy for breast cancer. Ann Oncol 2010;21: 195–202.

25 Roy V, Pockai BA, Northfelt DW, et al: N038 phase II trial of docetaxel and carboplatin administered every two weeks as induction therapy for stage II or III breast cancer (abstract). Journal Clin Oncol 2008;26:563.

26 Wolff AC, Hammond ME, Schwartz JN, et al: American Society of Clinical Oncology/Cancer of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007;25:118–145.

27 Hammond ME, Hayes DF, Wolff AC, Mangu PB, Temin S: American Society of Clinical Oncology/Cancer of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 2010;6:195–197.

28 Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HJ: Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 2005;16:1569–1583.

29 National Cancer Institute: Common Terminology Criteria for Adverse Events v4.03. 2010. http://evs.nci.nih.gov/ftp1/CTCAE/C_T_C_A_E_4.0_3_2_0_1_0_0_6_-_1_4_QuickReference_8.5x11.pdf (accessed July 3, 2013).

30 Carey LA, Perou CM, Livasy CA, et al: Race, and patterns of recurrence. Clin Cancer Res 2007;13:4429–4434.

31 Dent R, Trudeau M, Pritchard KI, et al: Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2010;16:170–178.

32 Vasey PA, Atkinson R, Coleman R, et al: Docetaxel-carcaboplatin as first line chemotherapy for epithelial ovarian cancer. Br J Cancer 2001;84:170–178.

33 Zarogoulidis K, Kontakiots K, Hatzisapolou P, et al: A phase II study of docetaxel and carboplatin in the treatment of non-small cell lung cancer. Lung Cancer 2001;32:281–287.

34 Loibl S, Jackisch C, Gade S, et al: Neoadjuvant chemotherapy in the very young, 35 years of age or younger (abstract). Cancer Res 2012;72:S23–S21.

35 Alba E, Chacon JJ, Lluch A, et al: A randomized phase II trial of platinum salts in basal-like breast cancer patients in the neoadjuvant setting. Results from the GEICAM/2006-03, multicenter study. Breast Cancer Res Treat 2012;136:487–493.

36 Lehmann BD, Bauer JA, Chen X, et al: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011;121:2750–2767.

37 Sikow WM, Dizon DS, Stronger R, et al: Frequent pathologic complete responses in aggressive stages II to III breast cancers with every-4-week carboplatin and weekly paclitaxel with or without trastuzumab: a Brown University Oncology Trials Group Study. J Clin Oncol 2009;27:4603–4700.

38 Baselga J, Bradbury I, Eidmann H, et al: Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTO): a randomised, open-label, multicentre, phase 3 trial. Lancet 2012;379:633–640.

39 Green MC, Buzdar AU, Smith T, et al: Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol 2005;23:5983–5992.

40 von Minckwitz G, Untch M, Blohmer JU, et al: Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012;30:1796–1804.

41 Cortazar P, Zhang L, Untch M, et al: Meta-analysis results from the Collaborative Trials in Neoadjuvant Breast Cancer (CTNeoBC) (abstract). Cancer Res 2012;72:S21–S11.

42 Hurley J, Reis IM, Rodgers SE, et al: The use of neoadjuvant platinum-based chemotherapy in locally advanced breast cancer that is triple negative: retrospective analysis of 144 patients. Breast Cancer Res Treat 2013;138:783–794.

43 Shamseddine AL, Farhat FS: Platinum-based compounds for the treatment of metastatic breast cancer. Chemotherapy 2011;57:468–487.

44 von Minckwitz G, Untch M, Nuesch E, et al: Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat 2011;125:145–156.

45 Huober J, von Minckwitz G, Denkert C, et al: Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Res Treat 2010;124:133–140.

46 Cheang MC, Chiou SK, Tu D, et al: Anthracyclines in basal breast cancer: the NCIC-CTG trial MA5 comparing adjuvant CMF to CEF (abstract S19). J Clin Oncol 2009;27:15s.

47 Di Leo A, Desmedt C, Bartlett JM, et al: HER2 and TOP2A as predictive markers for anthracycline-containing chemotherapy regimens as adjuvant treatment of breast cancer: a meta-analysis of individual patient data. Lancet Oncol 2011;12:1134–1142.

48 Tanner M, Isola J, Wiklund T, et al: Topoisomerase I/II Alpha gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neu amplified breast cancer: Scandinavian Breast Group Trial 9401. J Clin Oncol 2006;24:2428–2436.

49 Joensuu H, Kelkkouma-Lehtinen PL, Huovinen R, et al: Adjuvant capecitabine, docetaxel, cyclophosphamide, and epirubicin for early breast cancer: final analysis of the randomized FinXX trial. J Clin Oncol 2012;30:11–18.

50 Liao Y, Fan Y, Wan Y, Li J, Peng L: Acceptable but limited efficacy of capecitabine-based doublets in the first-line treatment of metastatic triple-negative breast cancer: a pilot study. Chemotherapy 2013;59:207–213.

51 Von Hoff DD, Layard MW, Basa P, et al: Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979;91:710–717.

52 Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH: Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 2007;25:3808–3815.

53 Swain SM, Whaley FS, Ewer MS: Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003;97:2869–2879.

54 Ewer MS, Von Hoff DD, Benjamin RS: A historical perspective of anthracycline cardiotoxicity. Heart Fail Clin 2011;7:363–372.

55 Karp J, Blackford A, Visvanathan K, et al: Myelodysplastic syndrome and/or acute myelogenous leukemia (MDS and/or AML) after a breast cancer diagnosis: the National Comprehenassive Cancer Network (NCCN) experience (abstract). Cancer Res 2012;72:S23–S25.

56 Jinno H, Matsuda S, Hayashida T, et al: Differential pathological response to preoperative chemotherapy across breast cancer intrinsic subtypes. Chemotherapy 2012;58:364–370.

57 von Minckwitz G, Schneeweiss A, Salat CT, et al: A randomized phase II trial investigating the addition of carboplatin to neoadjuvant therapy for triple-negative and HER2-positive early breast cancer (GeparSixto – GBG 66) (abstract). J Clin Oncol 2013;31:1004.

58 Sikow W, Berry D, Perou C, et al: Impact of the addition of carboplatin (Cb) and/or bevacizumab (B) to neoadjuvant weekly paclitaxel (P) followed by dose-dense AC on pathologic complete response (pCR) rates in triple-negative breast cancer (TNBC): CALGB 40603 (Alliance) (abstract S5-01). 36th Annu San Antonio Breast Cancer Symp, San Antonio, December 10–14, 2013.