Sums of prime element orders in finite groups
C. Beddani and W. Messirdi
Department of Mathematics, College of Science, Taibah University, Madinah, Saudi Arabia

ABSTRACT
Let G be a finite group and $c^*(G)$ denote the sum of prime element orders of G. This paper presents some properties of c^* and investigate the minimum value and the maximum value of c^* on the set of groups of the same order.

ARTICLE HISTORY
Received 22 December 2017
Accepted 20 March 2018

KEYWORDS
Finite groups; cyclic groups; nilpotent groups

AMS SUBJECT CLASSIFICATION
20B05; 20D60

1. Introduction
Motivated by the works of Amiri, Jafarian Amiri and Isaacs [1–4] and Shen et al. [5] in the study of $\psi(G)$ – the sum of element orders of a finite group G, we will introduce, in this paper, another function denoted by $\psi_*(G)$, which is the sum of prime element orders. More precisely, the function ψ_* is defined as follows:

\[\psi_*(G) = \sum_{k \in V(G) | k \text{ is prime}} o(x), \]

where $o(x)$ is the order of the element x.

In Section 2, we give the preliminary definitions and results about the functions $\psi(G)$ and $\psi_*(G)$. Particularly, we will show that if G_1 and G_2 are two finite groups, then $\psi_*(G_1 \times G_2) = \psi_*(G_1) + \psi_*(G_2)$ if and only if the order of G_1 and that of G_2 are relatively prime, and as a consequence, we will prove that if G is a nilpotent group of order n, then $\psi_*(H) \leq \psi_*(G)$ for every nilpotent group H of order n if and only if every Sylow subgroup of G has prime exponent. Section 3 presents the main results of this work in the study of the minimum value and the maximum value of ψ_* on the set of groups of the same order. More precisely, the main results are:

1. Let G be a finite group. Then $\psi_*(G) \geq \psi_*(C)$ for every cyclic group C of the same order as G.

2. Let n be an integer which is not a nilpotent number and $\max\{|\psi_*(G) | |G| = n\} = \psi_*(K)$ for some group K of order n. Then K is not nilpotent.

2. Preliminaries and basic results
This section presents some results and notations that will be useful in the sequel. Given a finite group G, let:

\[\Omega(G) \]
\[\Omega_p(G) \]
\[\Omega_1(G) = \{x \in G \mid o(x) = k\} \text{ for all } k \in \Omega(G). \]

Definition 2.1: We define the area of G (the sum of element orders of G) as follows:

\[\psi(G) = \sum_{k \in \Omega(G)} k|S_k|. \]

Definition 2.2: We define the prime area of G (the sum of prime element orders of G) as follows:

\[\psi_*(G) = \sum_{p \in \Omega_p(G)} k|S_p|. \]
Example 2.3: If \(o(G) = p \) is a prime number, then

1. \(\psi(G) = p(p - 1) + 1, \)
2. \(\psi_*(G) = p(p - 1). \)

Proposition 2.4: For every normal \(N \) subgroup of \(G \), we have

\[
\psi_*(G) \leq \psi_*(G/N) + \psi_*(N). \quad (4)
\]

Proof: Remark that if \(x \) is an element in \(G \) such that \(o(x) = p \) for some prime number \(p \), then \((xN)^p = N \). Hence, \(o(xN) = p \) or \(o(xN) = 1 \) as an element in \(G/N \).

That means \(o(xN) \leq p \) or \(x \in N \). Therefore, \(|\mathcal{S}_p(G)\| \subseteq |\mathcal{S}_p(G/N)\| + |\mathcal{S}_p(N)\|. \)

Hence, \(\psi_*(G) \leq \psi_*(G/N) + \psi_*(N). \)

Proposition 2.5: Let \(G \) be a nonabelian group of order \(2p \), where \(p \) is a prime number greater than or equal to 3.

1. \(\psi(G) = p(p + 1) + 1, \)
2. \(\psi_*(G) = p(p + 1). \)

Proof: It is well known that if \(G \) is a nonabelian group of order \(2p \), where \(p \) is a prime number greater than or equal to 3, then \(G \cong D_{2p} \), and since the dihedral group \(D_{2p} \) has 1 element of order 1, \(p \) element of order 2, and \(p-1 \) element of order \(p \), we obtain \(\psi(G) = p(p + 1) + 1 \) and \(\psi_*(G) = p(p + 1). \)

Lemma 2.6: Let \(G_1 \) and \(G_2 \) be two finite groups, then

\[
\psi_*(G_1 \times G_2) = \psi_*(G_1) + \psi_*(G_2) + \sum p|\mathcal{S}_p(G_1)\| \cdot |\mathcal{S}_p(G_2)\|. \quad (5)
\]

Proof: Let \((x, y) \in \mathcal{S}_p(G_1 \times G_2) \), then lcm \((o(x), o(y)) = p \). Therefore, \((o(x), o(y)) = (1, p) \) or \((o(x), o(y)) = (p, 1) \) or \((o(x), o(y)) = (p, p) \). Hence, for all prime \(p \), we have

\[
\mathcal{S}_p(G_1 \times G_2) = \mathcal{S}_p(G_1) \times \{e_2\} \cup \{e_1\} \times \mathcal{S}_p(G_2)
\]

where \(e_1 \) and \(e_2 \) are, respectively, the identity element of \(G_1 \) and \(G_2 \). Then, we have

\[
|\mathcal{S}_p(G_1 \times G_2)| = |\mathcal{S}_p(G_1)| + |\mathcal{S}_p(G_2)| + |\mathcal{S}_p(G_1)| \cdot |\mathcal{S}_p(G_2)|. \quad (6)
\]

Hence

\[
\psi_*(G_1 \times G_2) = \psi_*(G_1) + \psi_*(G_2) + \sum p|\mathcal{S}_p(G_1)\| \cdot |\mathcal{S}_p(G_2)\|. \quad (8)
\]

\[\square\]

Theorem 2.7: Let \(G_1 \) and \(G_2 \) be two finite groups. Then, the following statements are equivalent:

1. \(\psi_*(G_1 \times G_2) = \psi_*(G_1) + \psi_*(G_2). \)
2. \(\text{gcd}(|G_1|, |G_2|) = 1. \)

Proof: Since \(\text{gcd}(|G_1|, |G_2|) = 1 \), for all \((x, y) \in (G_1 \times G_2) \) : \(o(x, y) = o(x) \cdot o(y) \). Then, \(o(x, y) \in \mathcal{S}_p(G_1 \times G_2) \) is equivalent to \(o(x) \cdot o(y) = p \).

That means \((o(x), o(y)) = (1, p) \) or \((o(x), o(y)) = (p, 1) \). Hence, for all prime \(p \), we have

\[
\mathcal{S}_p(G_1 \times G_2) = \mathcal{S}_p(G_1) \times \{e_2\} \cup \{e_1\} \times \mathcal{S}_p(G_2). \quad (9)
\]

It follows that

\[
|\mathcal{S}_p(G_1 \times G_2)| = |\mathcal{S}_p(G_1)| + |\mathcal{S}_p(G_2)|. \quad (10)
\]

Hence

\[
\psi_*(G_1 \times G_2) = \psi_*(G_1) + \psi_*(G_2). \quad (11)
\]

Reciprocally, assume that \(\psi_*(G_1 \times G_2) = \psi_*(G_1) + \psi_*(G_2) \). Using the previous lemma, we obtain

\[
\sum p|\mathcal{S}_p(G_1)| \cdot |\mathcal{S}_p(G_2)| = 0. \quad (12)
\]

Hence, for all prime number \(p \) we have \(|\mathcal{S}_p(G_1)| = 0 \) or \(|\mathcal{S}_p(G_2)| = 0 \). Consider the contrary that means \(|G_1|, |G_2| \neq 1 \). Then, there is a prime number \(p \) dividing both \(|G_1| \) and \(|G_2| \). Applying the Cauchy theorem, there are elements \(x \in G_1 \) and \(y \in G_2 \) such that \(|x| = |y| = p \). This is a contradiction to \(\mathcal{S}_p(G_1) = 0 \) or \(\mathcal{S}_p(G_2) = 0 \).

\[\square\]

Proposition 2.8: If \(|G| = pq\), where \(p \) and \(q \) are distinct prime numbers, then:

\[
\psi_*(G) = p(p - 1) + q(q - 1). \]

Proof: By the Cauchy theorem, there exists an element \(a \) (resp. \(b \)) in \(G \) of order \(p \) (resp. \(q \)). Let \(H = \langle a \rangle \) and \(K = \langle b \rangle \), then

\[
|HK| = \frac{|H| \cdot |K|}{|H \cap K|}. \quad (13)
\]

Since \(|H \cap K| = 1 \), we get \(HK = G \). Then, the map \(f : H \times K \to G \) defined by \(f(x, y) = xy \) is an
isomorphism. Applying Theorem 2.7, we obtain
\[\psi_s(G) = \psi_s(H) + \psi_s(K) = p(p - 1) + q(q - 1). \] (14)

Theorem 2.9: Let \(G \) be a nilpotent group of order \(n \). Then, the following are equivalent:

1. \(\psi_s(H) \leq \psi_s(G) \) for every nilpotent group \(H \) of order \(n \).
2. Every Sylow subgroup of \(G \) has a prime exponent.

Proof: Put \(n = p_1^{n_1} \cdots p_r^{n_r} \) where \(p_1, \ldots, p_r \) are distinct primes and \(n_i \) are positive integers. Recall that a group is nilpotent if and only if it is the direct product of its Sylow subgroups [6,p.126]. Let \(H \) be a nilpotent group of order \(n \). Then
\[H = P_1 \times P_2 \times \cdots \times P_r, \] (15)
where \(P_i \) is the Sylow \(p_i \)-subgroup of \(H \). From Theorem 2.7, we obtain
\[\psi_s(H) = \sum_{i=1}^r \psi_s(P_i). \] (16)

Therefore
\[\psi_s(H) \leq \sum_{i=1}^r p_i(p_i^{n_i} - 1). \] (17)

If every Sylow subgroup of \(G \) has a prime exponent, then
\[\psi_s(G) = \sum_{i=1}^r p_i(p_i^{n_i} - 1). \] (18)

Corollary 2.10: Let \(G \) be a finite group of order \(n = p_1^{n_1} \cdots p_r^{n_r} \) where \(p_1, \ldots, p_r \) are distinct primes and \(n_i \) are positive integers. Then the following statements are equivalent:

1. \(G \) is not nilpotent,
2. \(\psi_s(G) > \sum_{i=1}^r p_i(p_i^{n_i} - 1) \),
3. \(\psi(G) < \prod_{i=1}^r p_i(p_i^{n_i} - 1) + 1 \).

Proof: The equivalence (1)\(\iff\)(2) is a direct consequence of the previous theorem, and the equivalence (1)\(\iff\)(3) is proved by Amiri and Jafari Amiri in [1, Corollary 2.2].

\[\psi_s(G) \geq \psi_s(C) \] for every cyclic group of the same order as \(G \).

Theorem 3.3: Let \(G \) be a finite group. Then
\[\psi_s(G) \geq \psi_s(C) \] for every cyclic group of the same order as \(G \).

Proof: Let \(\varphi \) be Euler’s phi-function. It is well known that if \(C \) is a cyclic group of order \(n \), and \(r \) is a positive divisor of \(n \), then the group \(C \) has \(\varphi(r) \) elements of order \(r \). Then
\[\psi_s(C) = \sum_{p_i \in \Omega_s(C)} \psi(p_i) = \sum_{p_i \in \Omega_s(C)} \psi(p_i - 1). \] (21)

Using Corollary 3.2, we obtain that \(\psi_s(G) \geq \psi_s(C) \).

In the following, if \(d \) is a positive integer, we say that \(d \) satisfies the property \(N(d) \) if
\[\max(\psi_s(G) \mid |G| = d) = \psi_s(K) \] for some group \(K \) of order \(d \), then \(K \) is not nilpotent.
Lemma 3.4: Let \(d \) be a positive integer that satisfies the property \(N(d) \). Then \(n \}=ds \) satisfy the property \(N(n) \) for all positive integers \(s \) such that \(\gcd(d, s) = 1 \).

Proof: Let \(G \) be a group of order \(n=ds \) such that
\[
\psi_s(G) = \max(\psi_s(H) \mid |H| = n).
\]
If \(G \) is nilpotent, then \(G \) can be written as \(G = G_1 \times G_2 \), where \(|G_1| = d \) and \(|G_2| = s \). By hypothesis, there exists a not nilpotent group \(K \) of order \(d \) such that \(\psi_s(K) > \psi_s(G_1) \). Let \(H = K \times G_2 \). Then \(H \) is a not nilpotent group of order \(ds \) and
\[
\psi_s(H) = \psi_s(K) + \psi_s(G_2) > \psi_s(G_1) + \psi_s(G_2) = \psi_s(G_1 \times G_2) = \psi_s(G).
\]

Definition 3.5 (\cite{7}): A positive integer \(n \) is called nilpotent number if every group of order \(n \) is nilpotent.

Lemma 3.6 (\cite{7}, Theorem 1): Let \(n = p_1^{n_1} \cdot \cdots \cdot p_r^{n_r} \) be an integer where \(p_1, \ldots, p_r \) are distinct primes and \(n_i \) are positive integers. Then \(n \) is nilpotent number if and only if \(p_i \neq 1 \mod p_j \) for all integers \(i,j \) and \(k \) with \(1 < k < n_i \).

Theorem 3.7: Let \(n \) be an integer which is not a nilpotent number. Assume that \(\max|\psi_s(G) \mid |G| = n| = \psi_s(K) \) for some group \(K \) of order \(n \). Then \(K \) is not nilpotent.

Proof: The proof of this theorem is similar to that of Amiri and Jafarian Amiri mentioned in \cite{1}, Theorem. But we prefer to write it step by step to clarify certain changes for the reader. If \(n \) is not a nilpotent number, then there exists a group \(G \) not nilpotent of order \(n \), two prime numbers \(p \) and \(q \) in \(\Omega_n(G) \), and an integer \(i \) such that \(p \mid q^i - 1 \) but \(pp^i \) \(\cdot \) 1 for all \(j<i \). We can write the order of \(G \) as \(n = p^m q^k \), where \(\gcd(pq, k) = 1 \). As
\[
|\operatorname{Aut}((\mathbb{Z}_q)^i)| = \prod_{j=0}^{i-1}(q^j - q^i).
\]
we can find an element \(\varphi \) of order \(p \) in \(\operatorname{Aut}((\mathbb{Z}_q)^i) \). Let \(f : \mathbb{Z}_q \to \mathbb{Z}_q \) be the group homomorphism defined by \(f(a) = \varphi a \) where \(a \) is a generator of \(\mathbb{Z}_p \). The semidirect product \(\mathbb{Z}_p \rtimes (\mathbb{Z}_q)^i \), of \(\mathbb{Z}_p \) and \((\mathbb{Z}_q)^i \) with respect to \(f \), is a not nilpotent group of order \(pq^i \). By assumption on \(p \) and \(q \), the group \(\mathbb{Z}_p \rtimes (\mathbb{Z}_q)^i \) has \(\varphi \) Sylow \(p \)-subgroup. Therefore, \(S_p(\mathbb{Z}_p \rtimes (\mathbb{Z}_q)^i) = q^i(p - 1) \) and \(S_q(\mathbb{Z}_p \rtimes (\mathbb{Z}_q)^i) = q^i - 1 \). Hence
\[
\psi_s(\mathbb{Z}_p \rtimes (\mathbb{Z}_q)^i) = pq^i(p - 1) + q(q^i - 1).
\]
Let \(T = (\mathbb{Z}_p \rtimes (\mathbb{Z}_q)^i) \times \mathbb{Z}_p^{m-1} \times \mathbb{Z}_q^{r-1} \). Then \(T \) is a not nilpotent group of order \(p^m q^r \). It is easy to see that \(\mathbb{S}_p(T) = q^i(p - 1)p^m-1 + p^m-1 - 1 \) and \(S_q(T) = q^i - 1 \). So
\[
\psi_s(T) = p(q^i(p - 1)p^m-1 + p^m-1 - 1) + q(q^i - 1).
\]
In addition
\[
\psi_s(\mathbb{Z}_p^{m-1} \times \mathbb{Z}_q^{r-1}) = \psi_s(\mathbb{Z}_p^m) + \psi_s(\mathbb{Z}_q^i) = p(p^m - 1) + q(q^i - 1).
\]
Therefore
\[
\psi_s(T) - \psi_s(\mathbb{Z}_p^{m-1} \times \mathbb{Z}_q^{r-1}) = p(q^i(p - 1)p^m-1 + p^m-1 - 1) - p(p^m - 1)
\]
\[
= p(q^i - 1) + p^m - p^m = q^i(q^i - 1) - 1.
\]
Since \(\mathbb{Z}_p^{m-1} \times \mathbb{Z}_q^{r-1} \) has the greatest \(\psi_s(H) \) among all nilpotent groups \(H \) of order \(d = p^m q^r \), the integer \(d = p^m q^r \) satisfy the property \(N(d) \). Lemma 3.4 completes the proof.

4. Conclusion

This paper determines the minimum value and the maximum value of \(\psi_s \) on the set of groups of the same order. More precisely, it is proved that a cyclic group \(G \) can be characterized by its order and the value of \(\psi_s \) at \(G \). That means, if \(C \) is a finite cyclic group, then \(\psi_s(G) < \psi_s(C) \) for all noncyclic groups \(G \) of the same order as \(C \). On the other hand, it is given in this paper a new characterization, for nilpotent groups, announced as follows: if \(n \) be an integer which is not a nilpotent number and \(\max|\psi_s(G) \mid |G| = n| = \psi_s(K) \) for some group \(K \) of order \(n \), then \(K \) is not nilpotent.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Amiri H, Jafarian Amiri SM. Sum of element orders of finite groups of the same order. J Algebr Appl. 2011;10 (2):187–190.
[2] Jafarian Amiri SM, Amiri M. Second maximum sum of element orders on finite groups. J Pure Appl Algebr. 2014;218(3):531–539.

[3] Jafarian Amiri SM. Second maximum sum of element orders of finite nilpotent groups. Commun Algebr. 2013;41(6):2055–2059.

[4] Amiri H, Jafarian Amiri SM. Isaacs IM. Sums of element orders in finite groups. Commun Algebr. 2009;37(9):2978–2980.

[5] Shen R, Chen G, Wu C. On groups with the second largest value of the sum of element orders. Commun Algebr. 2015;43(6):2618–2631.

[6] Robinson D. A course in the theory of groups. New York: Springer; 1993 (Graduate Texts in Math.; Volume 80).

[7] Pakianathan J, Shankar K. Nilpotent numbers. Am Math Monthly. 2000;107(7):631–634.