A Neural Reordering Model for Phrase-based Translation

Peng Li
Tsinghua University
pengli09@gmail.com

joint work with Yang Liu, Maosong Sun, Tatsuya Izuha, Dakun Zhang
Phrase-based Translation

布什 与 了 沙龙 举行 会谈

Bush held a talk with Sharon

segmentation reordering translation

(Koehn et al., 2003; Och and Ney, 2004)
Reordering is Hard

Q: Can you figure out a sentence using these words?
Reordering is Hard

Chinese President Xi Jinping and his US counterpart Barack Obama open two days of talks in California on a number of high-stakes issues

Q: Can you figure out a sentence using these words?
Reordering is Hard

• An NP-complete problem (Knight, 1999; Zaslavskiy et al., 2009)

• Reordering modeling has attracted intensive attention, e.g.
 • Distance-based model (Koehn et al., 2003)
 • Word-based lexicalized model (Koehn et al., 2007)
 • Phrase-based lexicalized model (Tillman, 2004)
 • Hierarchical phrase-based lexicalized model (Galley and Manning, 2008)
Distance-based Model

布什 与 沙龙 举行 了 会谈

Bush held a talk with Sharon

(Koehn et al., 2003)
Lexicalized Models

布什 与 沙龙 举行了 会谈

Bush held a talk with Sharon

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Lexicalized Models

布什 与 了 会谈
Bush held a talk with Sharon

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Lexicalized Models

布什 与 沙龙 举行 了 会谈
Bush held a talk with Sharon

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Challenge #1: Sparsity

Source Phrase	Target Phrase	M	S	D
布什	Bush	0.7	0.2	0.1
举行 了 会谈	held a talk	0.1	0.1	0.8
与 沙龙	with Sharon	0.7	0.1	0.2
举行 了	held a	0.6	0.1	0.3
会谈	talk	0.4	0.3	0.3
Challenge #1: Sparsity

- Probability distributions are estimated by MLE
Challenge #2: Ambiguity

(a) 提高 信用卡 营运 的 透明度，
...... enhanced transparency of credit card business .

(b) 以及 营运 模式 转为 制造
...... the changing mode of business towards a more

(c) 进一步 改善 建造业 的 营运 。
...... further improve business in the construction industry .
Challenge #3: Context

Insensitivity

How to resolve the three challenges?

Bush held a talk with Sharon.
Including More Contexts

Sparsity

Ambiguity

Context Insensitivity

held a talk with Sharon
Sparsity

- Including more contexts leads to severer sparsity

Reordering as Classification
Neural Reordering Model

- A neural classifier for predicting reordering orientations
- Conditioned on both the current and previous phrase pairs
 - Improves context sensitivity
 - Reduces reordering ambiguity
- A single classifier for all phrase pairs
 - Uses vector space representations
 - Alleviates the data sparsity problem
Recursive Autoencoder (RAE)

\[\|x_1 - x'_1\|^2 \]

\[x'_1, x'_2 = f^{(2)}(W^{(2)}y_1 + b^{(2)}) \]

\[y_1 = f^{(1)}(W^{(1)}x'_2 \| x_1, x'_2 \|^2 + b^{(1)}) \]

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

\[[y'_1; x'_3] = f^{(2)}(W^{(2)}y_2 + b^{(2)}) \]

\[||y_1y_2 \neq f^{(1)}(W^{(1)}[y_1; x_3] + b^{(1)}) ||^2 \]

\[||x_3 - x'_3||^2 \]

(Pollack; 1990; Socher et. al, 2011)
Neural Classifier

current phrase pair

previous phrase pair
Training

Reordering error on predicting orientations

Reconstruction error on recovering training examples
Reconstruction Error

• Reconstruction error

\[E_{\text{rec}}([c_1; c_2]; \theta) = \frac{1}{2} \| [c_1; c_2] - [c'_1; c'_2] \|^2 \]

• Source side average reconstruction error

\[E_{\text{rec},s}(S; \theta) = \frac{1}{N_s} \sum_i \sum_{p \in T^6_R(t_i,s)} E_{\text{rec}}([p.c_1, p.c_2]; \theta) \]

• Total reconstruction error

\[E_{\text{rec}}(S; \theta) = E_{\text{rec},s}(S; \theta) + E_{\text{rec},t}(S; \theta) \]
Reordering Error

- Average cross-entropy error

\[E_{\text{reo}}(S; \theta) = \frac{1}{|S|} \sum_{i} \left(-\sum_{o} d_{t_i}(o) \cdot \log(P_{\theta}(o|t_i)) \right) \]

- Joint training objective

\[J = \alpha E_{\text{rec}}(S; \theta) + (1 - \alpha) E_{\text{reo}}(S; \theta) + R(\theta) \]

\[R(\theta) = \frac{\lambda_{L}}{2} \|\theta_{L} - \theta_{L_0}\|^2 + \frac{\lambda_{\text{rec}}}{2} \|\theta_{\text{rec}}\|^2 + \frac{\lambda_{\text{reo}}}{2} \|\theta_{\text{reo}}\|^2 \]
Optimization

• Hyper-parameters optimization

 • $\alpha, \lambda_L, \lambda_{rec}, \lambda_{reo}$

 • Optimized by random search (Bergstra and Bengio, 2012)

• Training objective optimization: L-BFGS

 • Using backpropagation through structures to compute the gradients (Goller and Kuchler, 1996)
Experiments

- Chinese–English translation
- Training: 1.2M sentence pairs
- LM: 4-gram, 397.6M words
- Dev. set: NIST 06
- Test set: NIST 02–05, 08
- Case-insensitive BLEU

- Baselines
 - Distance-based model
 - Lexicalized model
 \[
 \begin{cases}
 \text{word-based} \\
 \text{phrase-based} \\
 \text{hier. phrase-based}
 \end{cases}
 \times \begin{cases}
 \text{M/S/D} \\
 \text{left/right}
 \end{cases}
 \]
M/S/D Orientations

• Care about relative position and adjacency
Left/Right Orientations

- Only care about relative position
Translation

![Bar chart showing BLEU scores for different MT models.]

- **MT06 (dev)**
 - Baseline: 30.75
 - Neural M/S/D: 33
 - Neural left/right: 24

- **MT02**
 - Baseline: 30.75
 - Neural M/S/D: 33
 - Neural left/right: 24

- **MT03**
 - Baseline: 30.75
 - Neural M/S/D: 33
 - Neural left/right: 24

- **MT04**
 - Baseline: 30.75
 - Neural M/S/D: 33
 - Neural left/right: 24

- **MT05**
 - Baseline: 30.75
 - Neural M/S/D: 33
 - Neural left/right: 24

- **MT08**
 - Baseline: 30.75
 - Neural M/S/D: 33
 - Neural left/right: 24
Non-Separability

- The unaligned Chinese word “de” makes a big difference in determining M/S/D orientations

金门有六万的常住人口

Kinmen has 60000 resident population
Non-Separability

The unaligned Chinese word “de” makes a big difference in determining M/S/D orientations.

Kinmen has 60,000 resident population.
Non-Separability

六万的常住人口

60000 resident population

六万的常住人口

60000 resident population

M S D
Non-Separability

- Left/right orientations are not so sensitive to unaligned words

Kinmen has 60000 resident population

金门有六万的常住人口
Non-Separability

- Left/right orientations are not so sensitive to unaligned words

```
jinmen you liu wan de changzhu renkou
金门 有 六 万 的 常住

Kinmen has 60000 resident population
```
Non-Separability

The diagram illustrates the concept of non-separability with a visual representation of 'left' and 'right' categories.
Non-Separability
Distortion Limit

![Graph showing BLEU scores against Distortion Limit for neural and lexicalized models.](image)
Word Vectors

- Task-oriented vectors
- word2vec vectors

BLEU	MT06	MT02	MT03	MT04	MT05	MT08
30.5	34	30.5	30.5	30.5	30.5	23.5
	MT06	MT02	MT03	MT04	MT05	MT08

MT06 (dev)
Vector Space Representations
Conclusion

• We propose a neural reordering model for phrase-based translation

• It improves the context sensitivity, reduces ambiguity and alleviates the data sparsity problem

• Future work

 • Train MT system and neural classifier jointly

 • Develop more efficient models to leverage larger contexts

 • Extend our work to syntax-based and n-gram based models
Thanks!