Action of progesterone on contractile activity of isolated gastric strips in rats

Fang Wang, Tian-Zhen Zheng, Wei Li, Song-Yi Qu, Di-Ying He

INTRODUCTION
Nausea and vomiting are extremely common complaints of pregnancy and may precede even the patients are aware that she is pregnant[1-4]. However, its mechanism is poorly understood. The questions of whether gastric emptying of solids and liquids differs in men and women and whether emptying is influenced by the action of sex hormones on gastric smooth muscle remain unresolved[5-8]. Whether gastric emptying of solids and liquids differs in women during the menstrual cycle is controversial[9-12]. The results of several clinical and physiological studies have suggested that the aforementioned complaints of pregnancy may be related, at least in part, to decrease of resting tension within the lower esophageal sphincter and changes in gastric motility[13-15]. The fact that a high serum sex hormone concentration is the characteristic of pregnancy tempts researchers to investigate the hormonal factor associated with gastrointestinal dysmotility. However, so far, the effect of pregnancy and sex hormone on gastric motility remains controversial. We studied the action of progesterone on the gastric strips in rats and explored the possible mechanism concerned.

MATERIALS AND METHODS

Materials
Progesterone, purchased from sigma, was dissolved and diluted in 1, 2-propanecol; hexamethonium and Nw-Nitro-L-Arginine (L-NNA), Sigma; indomethacin, Jiangsu Taicang Pharmaceutical Factory; propranolol, Beijing Thirteen Pharmaceutical Factory; Phentolamine, Beijing Thirteen Pharmaceutical Factory; 1, 2-propanecol, Tianjing Chemical Pharmaceutical Factory; 1, 2-propanecol, Tianjing Chemical Factory; Krebs buffer solution [(mmol·L\(^{-1}\)]: NaCl 120. 6, KCl 5. 9, NaH\(_2\)PO\(_4\) 1. 2, MgCl\(_2\) 1. 2, NaHCO\(_3\) 15. 4, CaCl\(_2\) 2. 5, Ca\(_2\)(H\(_2\)O\(_4\)) 11. 5, pHe=7.4)].

Methods
Wistar rats were fasted with free access to water for 24 h, and sacrificed to remove whole stomach. Then, the stomach was opened along the great curvature, and rinsed with Krebs solution. The stomach was pinned on a wax block with mucosa side up, and the mucosal layer was gently rubbed with a tweezers. Parellel to either the circular or the longitudinal fibers, muscle strips were cut from fundus, body, antrum and pylorus. Each muscle strip was suspended in a tissue chamber containing 5 mL Krebs solution. Then the motility of gastric strips in tissue chambers were simultaneously recorded. The preparations were subjected to 1 g load tension and washed with 5 mL Krebs solution every 20 min. After 1 h equilibration, progesterone or antagonists were added in the tissue chamber separately. The antagonists were added 3 min before using progesterone (50 µmol·L\(^{-1}\)).

RESULTS:
Progesterone decreased the resting tension of fundus and body longitudinal muscle (LM) (P<0.05). It inhibited the mean contractile amplitude of body and antrum LM and circular muscle (CM), and the motility index of pyloric CM (P<0.05). The inhibition of progesterone on the mean contractile amplitude could be partially blocked by phentolamine in LM of the stomach body (the mean contractile amplitude of body LM decreased from -7.5±5.5 to -5.2±4.5 P=0.01), and by phentolamine or indomethacin in CM of body (the inhibition of progesterone on the mean contractile amplitude of body CM decreased from -5.6±3.0 to -3.6±2.7 by phentolamine and from -5.6±3.0 to -3.5±2.5 by indomethacin, P=0.01). Hexamethonium, propranolol and L-NNA (inhibitor of NO synthetase) didn’t affect the action of progesterone (P>0.05).

CONCLUSION:
The study suggested that progesterone can inhibit the contractile activity of isolated gastric strips in rats and the mechanism seems to be a direct one except that the action on gastric body is mediated through prostaglandin and adrenergic \(\alpha\) receptor partly.

Wang F, Zheng TZ, Li W, Qu SY, He DY. Action of progesterone on contractile activity of isolated gastric strips in rats. World J Gastroenterol 2003; 9(4): 775-778
http://www.wjgnet.com/1007-9327/9/775.htm
solution every 20 min. After 1 h equilibration, progesterone (5, 10, 50 μmol·L\(^{-1}\)) or antagonist was added in the tissue chamber (all were the final concentration) separately 3 min before using progesterone (50 μmol·L\(^{-1}\))[16-20].

Analysis of data

We measured the resting tension of all strips, the mean contractile amplitude of body and antrum strips, and the motility index (MI= Σ[amplitude×duration]) of pyloric strip. Frequencies of contraction were determined by counting the contraction waves. Values of the results was presented as ±s. Statistical significances were measured by t test[16,17].

RESULTS

Effect of progesterone on spontaneous contraction of gastric strips

Progesterone significantly decreased the resting tension of fundus and body LM (Table 1). It decreased the mean contractile amplitude of body and antrum, and the motility index of pylorus (Table 2). However it didn’t influence the gastric contractile frequency (P>0.05).

Progesterone μmol·L\(^{-1}\)	Fundus	Body	Antrum	Pylorus	
	LM	CM	LM	CM	
5	-0.08±0.12\(a\)	-0.006±0.08	0	0.01±0.05	0
10	-0.08±0.08\(b\)	-0.05±0.11	-0.03±0.06	0.04±0.09	0
50	-0.09±0.06\(d\)	-0.12±0.04	0.01±0.15	0.02±0.04	0 -0.03±0.10

The values were expressed as differences in resting tension between 3 min before and after the addition of progesterone (5, 10 and 50 μmol·L\(^{-1}\)) (The same in Tab 2). The resting tension of each strip in control (progesterone 0 μmol·L\(^{-1}\)) or antagonist was added 3 min before admistration (Pr: progesterone, I: indomethacin, Ph: phentolamine).

Effect of antagonists added progesterone on spontaneous contraction of gastric strips

Hexamethonium (10 μmol·L\(^{-1}\)), L-NNA (100 μmol·L\(^{-1}\)) or propranolol (1 μmol·L\(^{-1}\)) added 3 min before admistration progesterone didn’t influence the decreasing effect of progesterone on the gastric strips in rats (P>0.05), but phentolamine (1 μmol·L\(^{-1}\)) partly blocked its effect on the mean contractile amplitude of body LM and CM, and indomethacin (10 μmol·L\(^{-1}\)) also decreased the effect on the mean contractile amplitude of body CM (Table 3).

DISCUSSION

It has been shown from humans and animals that pregnancy is associated with alternations in the motor activity of the gastrointestinal tract, such as decreased gallbladder contractility and lower esophageal sphincter pressure, reduced gastric emptying, small intestine and colonic transis[13-15,21-29]. Although the factors responsible for the impaired gastric motility are obscure, there is evidence to suggest that pregnancy is associated with disturbances in the myoelectric and mechanical properties of gastrointestinal smooth muscle.

Progesterone μmol·L\(^{-1}\)	Contractile amplitude/mm	Motility index/cm·s\(^{-1}\)				
	Body	Antrum		Body	Antrum	Pylorus
5	13.4±17.0	12.0±13.2	13.6±8.6	14.1±15.0	92.4±16.2	
10	0.2±0.4	-0.9±0.10	-0.5±0.8	-0.8±1.7	1.7±0.8	
50	12.8±17.6	11.2±14.0	14.0±7.1	13.6±12.9	98.5±20.0	
	-2.1±3.8	-1.5±0.6	-1.8±0.6	-3.1±1.8	-22.5±16.6	
	12.0±16.9	11.8±12.9	12.6±8.0	12.6±14.8	110.2±22.8	

Phentolamine (1 μmol·L\(^{-1}\)) or indomethacin (10 μmol·L\(^{-1}\)) was added 3 min before the addition of progesterone (50 μmol·L\(^{-1}\)). The values were expressed as differences in contractile amplitude of body before and after administration of progesterone (Pr) and indomethacin (I) or phentolamine (Ph). The values were expressed as differences in contractile amplitude of body before and after administration of progesterone (Pr) and indomethacin (I) or phentolamine (Ph). The values were expressed as differences in contractile amplitude of body before and after administration of progesterone (Pr) and indomethacin (I) or phentolamine (Ph). The values were expressed as differences in contractile amplitude of body before and after administration of progesterone (Pr) and indomethacin (I) or phentolamine (Ph). The values were expressed as differences in contractile amplitude of body before and after administration of progesterone (Pr) and indomethacin (I) or phentolamine (Ph).
In our study, progesterone decreased the resting tension of fundus, which might be a cause of changed gastric motility during pregnancy. It had been agreed that decreased fundic resting tension mainly influenced the gastric emptying of liquids. Ryan also reported[30] that pregnancy was associated with decreased gastric emptying of liquids in the guinea pig. The observation in our study that hexamethionium, L-NNA and propranolol didn’t influence the effect of progesterone suggesting that the action of progesterone was not mediated via NO, β or N receptors. Since phentolamine blocked partly the effect of body LM and CM, and indomethacin decreased that of body CM showed that the effect of the hormone on body LM partly via a receptor, and on body CM via prostaglandin and a receptor. In addition, the effect of progesterone might act on gastric smooth muscle cells directly. Progesterone receptor had been found in normal human gastric tissues. Another evidence was addition of progesterone to isolated denervated gallbladder muscle strips inhibited contraction in response to both acetylcholine or cholecystokinin[34].

Parkman reported[29] that spontaneous and bethanechol induced phasic antrum contraction of pregnant guinea pigs were significantly reduced in force compared with control virgin animals, and intracellular electrical recordings were obtained from antral smooth muscle cells to investigate the mechanism of the decreased contractility of antral smooth muscle during pregnancy. The results showed that there were similar resting membrane potentials, slow wave frequency and slow wave duration vs those of the control, but the upstroke amplitude, plateau amplitude and number of spike per slow wave decreased significantly. Further study suggested that the decreased force of spontaneous antral contractions was associated with a reduction in the underlying electrical slow wave depolarization. Electrogastrogram recordings also suggested that gastric dysrhythmias were objective pathophysiologic event associated with symptoms of nausea and vomiting during pregnancy[14,32,33].

Exogeneous progesterone also inhibited the myoelectric and mechanical activity of gastrointestinal smooth muscle. Electrical spike potentials recorded from chronically implanted electrodes in the antrum and jejunum of ovariecotomized dogs by Milenory decreased after 4 d of progesterone addition (2 mg·kg⁻¹·d⁻¹) and the propagation velocity of the basic electrical rhythm from the antral region of the progesterone-treated animals also decreased[31]. In another example, progesterone had been shown to reduce the propagation velocity of gastrointestinal slow waves possibly by decreasing the degree of electrical coupling between smooth muscle cells[35]. Dysrhythmias were also induced in healthy, nonpregnant women by administration of progesterone in the dose that reproduces plasma level seen in pregnancy. The above results suggested that the inhibitory effect of progesterone on the gastric smooth muscle may contribute to the gastric dysmotility during pregnancy.

REFERENCES

1. Chandra K, Magee L, Koren G. Discorance between physical symptoms versus perception of severity by women with nausea and vomiting in pregnancy (NVP). BM C Pregnancy Childbirth 2002; 2: 5-8
2. Chandra K, Einason A, Koren G. Taking ginger for nausea and vomiting during pregnancy. Can Fam Physician 2002; 48: 1441-1442
3. Singer AJ, Brandt LJ. Pathophysiology of the gastrointestinal tract during pregnancy. Am J Gastroenterology 1993; 86: 1695-1712
4. DiLorio C, van Lier D, Manteuffel B. Patterns of nausea during first trimester of pregnancy. Clin Nurs Res 1992; 1: 127-140
5. Hutson WR, Roehrkas RL, Wald A. Influence of gender and menopause on gastric emptying and motility. Gastroenterology 1989; 96: 11-17
6. Degen LP, Phillips SF. Variability of gastrointestinal transit in healthy women and men. Gut 1996; 39: 299-305
7. Bennink R, Peeters M, Van den Maegdenbergh V, Geypens B, Rutgers P, DeRoo M, Mortelmans L. Comparison of total and compartmental gastric emptying and antral motility between healthy men and women. Eur J Nutr 1996; 25: 1293-1299
8. Dratz FL, Christian PE, Moore J. Gender-related differences in gastric emptying. J Nutr Metab 1987; 28: 1204-1207
9. Horowitz M, Maddern GJ, Chatterton BE, Collins PJ, Petrucco OM, Seaman R, Shearman DJ. The normal menstrual cycle has no effect on gastric emptying. Br J Obstet Gynaecol 1985; 92: 743-746
10. Gill RC, Murphy PD, Hooper HR, Bowes KL, Kingma YJ. Effect of the menstrual cycle on gastric emptying. Digestion 1987; 36: 169-174
11. Saballero-Plasencia AM, Valenzuela-Barranco M, Martin-Ruiz JL, Herreras-Gutierrez JM, Esteban-Carretero JM. Are there changes in gastric emptying during the menstrual cycle? Scand J Gastroenterol 1999; 34: 772-776
12. Bovo P, Paola Brunori M, di Francesco V, Frulloni L, Montesi G, Cavallini G. The menstrual cycle has no effect on gastrointestinal transit time. Evaluation by means of the lactulose H2 breath test. Ital J Gastroenterol 1992; 24: 449-451
13. Koch KL. Gastrointestinal factors in nausea and vomiting of pregnancy. Am J Obstet Gynecol 2002; 185: S198-203
14. Parkman HP, Wang MB, Ryan JP. Decreased electromechanical activity of guinea pig circular muscle during pregnancy. Gastroenterology 1993; 105: 1306-1312
15. Jones MJ, Mitchell RW, Hindochna N, James RH. The lower oesophageal sphincter in the first trimester of pregnancy: comparison of supine with lithotomy positions. Br J Anaesth 1988; 61: 475-476
16. Qu SY, Zheng TZ, Li W. Comparative study of ranitidine and cimetidine on contractile activity of isolated gastric muscle strips in rats. Xin Xiaobuangong Zazhi 1997; 5: 75-76
17. Wang F, Luo QJ, Zhen TZ, Qu SY, Li W, He DY. Effect of oxytocin on the contractile activity of gastric strips of rats in vitro. Zhongguo Yi Li Xue Yu Xue Zai 1999; 13: 285-287
18. Qu SY, Zhen TZ, Li W. Effect of cholecystokinin and secretin on contractile activity of isolated gastric muscle strips in guinea pigs. Shenlixuebao 1995; 47: 306-309
19. Xie DP, Li W, Qu SY, Zhen TZ, Yang YL, Ding YH, Wei YL, Chen LB. Effect of arca on contractile activity of colorectal muscle strips in rats. World J Gastroenterol 2002; 8: 350-352
20. Li W, He DY, Zhen TZ, Wang F, Qu SY. Effect of estradiol on the contractile activity of bladder strips of rats in vitro. Jichuyixue Yu Lingchuang 2001; 21: 186-187
21. Ryan JP. Effect of pregnancy on intestinal transit: comparison of results using radioactive and non-radioactive test meals. Life Sci 1985; 37: 2635-2640
22. Scott LD, Lester R, Van Thiel DH, Wald A. Pregnancy-related changes in small intestinal myoelectric activity in the rat. Gastroenterology 1983; 84: 301-305
23. Baron TH, Ramirez B, Richter JE. Gastrointestinal motility disorders during pregnancy. Ann Intern Med 1993; 118: 366-375
24. Shah S, Hobbas A, Singh R, Cuevas J, Ignarro LJ, Chaudhuri G. Gastrointestinal motility during pregnancy: role of nitricergic component of NANC nerves. Am J Physiol Regul Integr Comp Physiol 2000; 279: R1478-R1485
25. Bainbridge ET, Nicholas SD, Newton JR, Temple G. Gastro-oesophageal reflux in pregnancy. Altered function of the barrier to reflux in asymptomatic women during early pregnancy. Scand J Gastroenterol 1984; 19: 85-89
26. Ryan JP. Bhojwani A. Colonic transit in rats: effect of ovariecotomy, sex steroid hormones, and pregnancy. Am J Physiol 1986; 251 (3Pt1): G46-G50
27. Brock-Utne JG, Dow TG, Dimopoulos GE, Welmans S, Downing JW, Mosalig. Gastric and lower oesophageal sphincter (LOS) pressures in early pregnancy. Br J Anaesth 1981; 51: 381-384
28. Everson GT, Mckinley C, Lawson M, Johnson M, Kern FJ. Gallbladder function in the human female: effect of the ovulatory cycle, pregnancy, and contraceptive steroids. Gastroenterology 1982; 82: 711-719
29 Braverman DZ, Johnson ML, Kern F Jr. Effects of pregnancy and contraceptive steroids on gallbladder function. N Engl J Med 1980; 302: 362-364

30 Ryan JP, Bhojwani A, Wang MB. Effect of pregnancy on gastric motility in vivo and in vitro in the guinea pig. Gastroenterology 1987; 93: 29-34

31 Everson GT. Gastrointestinal motility in pregnancy. Gastroenterol Clin North Am 1992; 21: 751-776

32 Chen JD, Mittal RK. Nausea and vomiting in pregnancy and cutaneous electrogastrogram. Gastroenterology 1993; 104: 1569-1571

33 Abell TL. Nausea and vomiting of pregnancy and the electrogastrogram: old disease, new technology. Am J Gastroenterol 1992; 87: 689-691

34 Milenary K. Effect of estradiol, progesterone and oxytocin on smooth muscle activity. In: Physiology of Smooth Muscle, edited by Bulbring E, Shuba MF. New York: Raven 1976: 395-402

35 Bortoff A. Progesterone reduces slow wave propagation velocity and decrease electrical coupling between intestinal muscle cells. In: Weinbeek M. Motility of Digestive Tract. New York: Raven 1982: 445-450

Edited by Wu XN