CASE REPORT

Adult hereditary fructose intolerance

Mohamed Ismail Yasawy, Ulrich Richard Folsch, Wolfgang Eckhard Schmidt, Michael Schwend

Hereditary fructose intolerance (HFI) is an autosomal recessive inborn error of metabolism that results from a deficiency of fructose 1-phosphate aldolase in the liver, intestine and kidney. The estimated incidence is 1 in 20 000 live births and the carrier frequency is 1 in 70, but the prevalence of HFI in adults is unknown. The clinical symptoms were first described by Chambers and Pratt in 1956.

Affected individuals fail to metabolize fructose completely in the liver, intestine and kidneys because of deficiency of fructose 1-phosphate aldolase and ingestion of fructose, sorbitol or sucrose causes abdominal pain, vomiting and symptomatic hypoglycemia. The syndrome typically appears in the newborn at the time of weaning from the breast when food containing sucrose or fructose is given. Continued ingestion results in poor feeding, growth retardation, gradual liver and kidney failure, acidosis, and eventually death. Affected children soon develop an aversion to all foods and protect themselves by self-imposed fructose and sucrose restriction.

The strict dietary exclusion leads to normal growth and longevity. Nevertheless, complete elimination of this sugar from the diet is difficult to achieve, especially for undiagnosed adults, without professional advice. These people may suffer symptoms throughout life and represent a diagnostic challenge for attending physicians. Furthermore, potentially lethal complications may result from inadvertent infusion of fructose- or sorbitol-containing solutions in a hospital setting.

CASE REPORT

A 50-year-old German woman presented with a long life history of aversion to sugary foods. She reported being breast fed until the age of 2 years, and her mother said that she refused the usual sucrose-containing formulas. She described nausea, vomiting, diffuse abdominal pain and hypoglycemic symptoms even after the smallest amount of sugar or fruit. Her 2-year-old brother died after receiving an intravenous infusion in hospital, while her parents and three siblings are asymptomatic.

She takes no regular medications. On examination, she was noted to be wearing glasses and an eyepatch. She described nausea, vomiting and diffuse abdominal pain while on the hospital ward. Her parents and three siblings are asymptomatic.

Fructose intolerance test, demonstration of aldolase B activity can only be suspected by taking a careful dietary history, and this can present serious complications.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Adults; Fructose intolerance; Diet; Fructose; Sorbitol

Peer reviewer: Cíntia Siqueira, PhD, Center of Gastroenterology, Institute of Molecular Medicine, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
had mild thoracic scoliosis with no neurological defect. Otherwise, physical examination was unremarkable.

Results of laboratory investigations including full blood count, urea, creatinine, electrolytes, full biochemical profile, amylase lipase and lipid studies, liver function tests and insulin level were within normal ranges. A fructose tolerance test (FTT) using 250 mg fructose per kilogram body weight was performed. At 0, 15, 30, 45 and 60 min after fructose injection, blood samples were taken for analysis of glucose, phosphate, uric acid and magnesium. A typical abnormal FTT was observed after the infusion, i.e. a drop in serum glucose and serum phosphate and rise in serum uric acid and magnesium concentration occurred (Table 1).

Thirty minutes after fructose injection, she developed significant dizziness, sweating, tremor and abdominal pain that were closely observed, and by 60 min her symptoms improved. The diagnosis was further confirmed by histochemical analysis of an endoscopic biopsy specimen from the small intestine, which showed 70% reduction in aldolase B activity in the mucosa, and molecular analysis of leukocyte DNA extracted from a blood sample using PCR amplification revealed that she had inherited two doses of the mutant gene, one from each parent, as the cause of the disease.

DISCUSSION

Fructose is a natural component of many plants and is distributed widely among most fruits and vegetables. Fructose is metabolized primarily in the liver and to some extent in the kidney, small intestine and adipose tissue. Deficiency in aldolase B in the liver, kidney and small intestine causes fructose intolerance. After ingestion, fructose rapidly enters the hepatocytes where fructokinase phosphorylates it to fructose 1-phosphate. Fructose 1-phosphate accumulates in HFI because of deficiency of the enzyme fructose 1-phosphate aldolase, which splits fructose 1-phosphate into glyceraldehydes and dihydroxyacetone phosphate.

The accumulation of fructose 1-phosphate results in inhibition of other enzymes, namely phosphorylase, liver fructose 1-6 bisphosphate aldolase and fructokinase. This results in impaired glycoenerolysis and glycogenogenesis, and may induce hypoglycemia. Early exclusion of fructose and sucrose from the diet is accompanied by dramatic improvement; otherwise, growth is retarded and progressive liver and renal disease are likely, and may lead to death. Diagnosis can be achieved by FTT and tissue diagnosis by direct assay of aldolase B activity in the liver, intestine or renal tissue. Recently, the use of PCR-based procedures has made the diagnosis simpler.

The infusion of fructose- or sorbitol-containing solutions in patients with unsuspected disease leads to potentially fatal hepatorenal failure. More than 20 cases have been reported in Germany where the use of fructose or sorbitol solutions is long established. Our patient is alive at the age of 50 years with previously undiagnosed HFI, and did not have complications of the disease. This patient illustrates the importance of a careful dietary history and awareness of disease symptoms. In contrast, incorrect diagnosis and unawareness of possible pediatric problems in adult life may lead to catastrophic complications, while early recognition leads to effective management.

ACKNOWLEDGMENTS

We thank Professor Timothy M Cox from the Department of Medicine at University of Cambridge Clinical School, UK for performing DNA analysis from the blood samples.

REFERENCES

1. Gitzelmann R, Baerlocher K. Vorteile und Nachteile der Fruktose in der Nahrung. Pädiat Fortbild Praxis 1973; 37: 40-55
2. Chambers RA, Pratt RT. Idiiosyncrasy to fructose. Lancet 1956; 271: 340
3. Gitzelmann R, Steinmann B, Van den Berghe G. Disorders of fructose metabolism. In: Scriv CR, Beaudet AL, Sly WS, Valle D. eds. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989: 399-424
4. Ali M, Rosien U, Cox TM. DNA diagnosis of fatal fructose intolerance from archival tissue. J Med Genet 1993; 30: 25-30
5. Cox TM. Fructose intolerance. Arch Dis Child 1993; 69: 413-415
6. Frosch ER. Disorders of fructose metabolism. Clin Endocrinol Metab 1976; 5: 599-611
7. Hers HG, Joassin G. [Anomaly of hepatic aldolase in intolerance to fructose.] Enzymol Biol Clin (Basel) 1961; 1: 4-14
8. Burmeister LA, Valdivia T, Nuttall FQ. Adult hereditary fructose intolerance. Arch Intern Med 1991; 151: 773-776
9. Collins J. Metabolic disease. Time for fructose solutions to go. Lancet 1993; 341: 600
10. Krebs HA, Woods HF, Alberti KGMM. Hyperlactataemias and lactic acidosis. Essays Med Biochem 1975; 1: 81-104
11. Lameire N, Mussche M, Baele G, Kint J, Ringoir S. Hereditary fructose intolerance: a difficult diagnosis in the adult. Am J Med 1978; 65: 416-423
12. Cox TM. An independent diagnosis. BMJ 1990; 300: 1512-1514
13. Steinmann B, Gitzelmann R, Van den Berghe G. Disorders of fructose metabolism. In: Scriv CR, Beaudet A, Sly W, Valle D, eds. The metabolic and molecular basis of inherited disease. New York: McGraw-Hill, 2001: 1489-1520
14. Steegmanns I, Rittmann M, Bayerl JR, Gitzelmann R. [Adults with hereditary fructose intolerance: risks of fructose infusion] Dtsch Med Wochenschr 1990; 115: 539-541
15. Jamar S, Evenepoel P, Kuypers D, Maes B, Vanrenterghem Y. A young patient with unexplained acute hepatoportal dysfunction. Nephrol Dial Transplant 2003; 18: 1220-1222