The Mothers, Infants, and Lactation Quality (MILQ) Study: A multi-center collaboration

Allen, Lindsay H; Hampel, Daniela; Shahab-Ferdows, Setareh; Andersson, Maria; Barros, Erica; Doel, Andrew M; Eriksen, Kamilla Gehrt; Christensen, Sophie Hilario; Islam, Munirul; Kac, Gilberto; Keya, Farhana Khanam; Michaelsen, Kim F.; de Barros Mucci, Daniela; Njie, Fanta; Peerson, Janet M; Moore, Sophie E

Published in:
Current Developments in Nutrition

DOI:
10.1093/cdn/nzab116

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Allen, L. H., Hampel, D., Shahab-Ferdows, S., Andersson, M., Barros, E., Doel, A. M., Eriksen, K. G., Christensen, S. H., Islam, M., Kac, G., Keya, F. K., Michaelsen, K. F., de Barros Mucci, D., Njie, F., Peerson, J. M., & Moore, S. E. (2021). The Mothers, Infants, and Lactation Quality (MILQ) Study: A multi-center collaboration. Current Developments in Nutrition, 5(10), [nzab116]. https://doi.org/10.1093/cdn/nzab116

Download date: 21. nov. 2023
The Mothers, Infants, and Lactation Quality (MILQ) Study: A Multi-Center Collaboration

Lindsay H Allen,1,2 Daniela Hampel,1,2 Setareh Shahab-Ferdows,1,2 Maria Andersson,3 Erica Barros,4 Andrew M Doel,5 Kamilla Gehrt Eriksen,6 Farhana Khanam Keya,7 Kim F Michaelsen,6 Daniela de Barros Mucci,4 Fanta Njie,8 Sophie Hilario Christensen,6 Munirul Islam,7 Gilberto Kac,4 Farhana Khanam Keya,7 Kim F Michaelsen,6 Daniela de Barros Mucci,4 Fanta Njie,8 Janet M Peerson,1 and Sophie E Moore4,8

1USDA, Agricultural Research Service (ARS) Western Human Nutrition Research Center, Davis, CA, USA; 2Department of Nutrition, University of California, Davis, CA, USA; 3Nutrition Research Unit, University Children’s Hospital Zurich, Zurich, Switzerland; 4Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; 5King’s College London, London, United Kingdom; 6Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark; 7Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh; and 8Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia, West Africa

ABSTRACT

Little valid information is available on human milk nutrient concentrations, especially for micronutrients (MNs), and there are no valid reference values (RVs) across lactation. In this multi-center collaborative study, RVs will be established for human milk nutrients across the first 8.5 mo postpartum. Well-nourished, unsupplemented women in Bangladesh, Brazil, Denmark, and The Gambia (n = 250/site) were recruited during the third trimester of pregnancy. Milk, blood, saliva, urine, and stool samples from mothers and their infants are collected identically at 3 visits (1–3.49, 3.5–5.99, 6.0–8.49 mo postpartum). Milk analyses include macronutrients, selected vitamins, trace elements and minerals, iodine, metabolomics, amino acids, human milk oligosaccharides, and bioactive peptides. We measure milk volume; maternal and infant diets, anthropometry, and morbidity; infant development, maternal genome, and the infant and maternal microbiome. RVs will be constructed based on methods for the WHO Child Growth Standards and the Intergrowth-21st Project. This trial was registered at clinicaltrials.gov as NCT03254329.

Keywords: human milk, macronutrients, micronutrients, composition, reference values

© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

For the first 6 mo of life, the WHO recommends exclusive breastfeeding (EBF) (1). However, human milk is not only essential for optimal infant health and development during the first 6 mo, but it can also be an important source of nutrients and other factors for the following ≈18 mo (2), yet we lack valid information on its nutrient content (3, 4), especially for micronutrients (MNs). Many human milk MN concentrations are much lower where women consume poor diets (5, 6), including MNs of major public health importance, such as vitamin A, thiamin (B-1), B-12, and iodine (7–9). These low milk concentrations caused by maternal deficiency and/or low intake have documented adverse effects on infant health and development (10), e.g. growth faltering and developmental delays have been linked to low milk concentrations in conjunction with severe maternal-infant deficiencies of vitamin B-12, B-1, B-6, D, iodine, and choline (9, 11).

In 2006, the new WHO International Child Growth Standards exposed that growth faltering starts shortly after birth with a much higher prevalence during the first 6 mo than previously assumed (12). During the same timeframe for infancy, the high prevalence of MN deficiency has been reported in exclusively or predominantly breastfed infants (6), e.g. thiamin status in Cambodia, which expands to mothers and milk, and low status of several MNs in Bangladesh (13, 14), suggesting poor milk quality could contribute to the growth faltering and MN deficiency.

The last and only global data on milk composition with a focus on MNs were collected in the 1985 WHO Collaborative Study on Breast-Feeding, over 30 y ago, with limited data collection (15). Our recent literature review on human milk revealed the general lack of a
systematic sample collection and of appropriate consideration of factors affecting milk nutrient concentrations, e.g. stage of lactation, maternal nutritional status and diet, or smoking and alcohol use, among others (4, 16, 17). Moreover, inadequate methods for analyzing nutrients in the human milk matrix and lack of reported validation data added to the unreliability of many past reports (3, 18). Therefore, the literature on human milk composition is very difficult to interpret and practically impossible to use for the purposes for which such information is needed.

Due to all these limitations, there are no adequately established reference values (RVs) for nutrient concentrations in milk, and recommended nutrient intakes of infants, young children, and lactating women are based on many unvalidated and incorrect estimates of milk MN concentrations. Given the lack of RVs there is no benchmark against which to evaluate human milk quality in different populations, or the possible need for or effects of nutrient interventions on human milk MNs.

The primary study outcome and analysis objective of the Mothers, Infants, and Lactation Quality (MILQ) Study is the construction of reference ranges for values of vitamin and mineral concentrations in human milk from well-nourished mothers and their healthy infants. The reference range curves, between the 2.5 and 97.5 percentiles, will be constructed between 1 and 8.5 mo by combining data from the 4 study sites, using nutrient and volume data from milk samples obtained from each mother during 3 visits postpartum. This article describes the methodologies and protocols implemented for conducting the MILQ Study.

Methods
Study design and settings
The MILQ Study is a multi-center, collaborative project with data and sample collection in 4 countries, Bangladesh, Brazil, Denmark, and The Gambia. Samples and data (e.g. anthropometry, questionnaires) are collected from 250 mother-infant dyads per country site (n = 1000 mothers and 1000 infants) in a systematic, identical way across sites for colostrum (1–2 d postpartum), and at 3 subsequent time points: 1.0–3.49 mo (visit 2), 3.5–5.99 mo (visit 3), and 6.0–8.5 mo (visit 4) postpartum (n = 1000 dyads). Within each time window the collection of samples is randomized so that some samples and data are available for almost every day between 1 and 8.5 mo postpartum, enabling smoothing of reference curves. Visits 2 through 4 are divided into 3- or 4-wk time periods. If a participant’s first visit is randomly assigned to the first week of a time period, then their second and third visits are also scheduled in the first week of the time block. To evaluate the effect of intraperson variability on outcome variables, a subset of 50 women in Bangladesh, Brazil, and The Gambia are providing a second milk sample on visits 2 and 3. Details about each study location and analytical site are provided in Tables 1 and 2.

Inclusion criteria
Participant’s inclusion and exclusion criteria vary across the study periods but are focused mainly on the nutritional status and health of the mother and infant, and the requirement for EBF during the first 3.5 mo postpartum. Detailed information about the inclusion and exclusion criteria are provided in Table 3.

Data and sample collection
Data and biological samples are collected during recruitment (28 weeks of gestation), at 1–3 d postpartum (within 72 h of delivery), and at scheduled visits 2, 3, and 4 (1.0–3.49 mo, 3.5–5.99 mo, 6.0–8.5 mo postpartum). Samples collected include human milk, and maternal and infant blood, urine, and stool. Additional data collected includes maternal and infant anthropometry, dietary intakes, and morbidity. A detailed timeline of data and sample collection is provided in Figures 1 and 2.

Questionnaires.
The field staff use standardized questionnaires designed for the MILQ Study. Participant’s information, pregnancy screening, maternal dietary data, and socioeconomic data is retrieved during recruitment (at visit 2 in Denmark). Each of the following visits is equipped with their unique set of questionnaires (Figure 1).

Anthropometry.
Anthropometry measures are especially important for excluding mothers who are under- or overweight and excluding malnourished infants with abnormal birth size and Z scores ≤ 2. The methods that are used to perform accurate, precise, and standardized anthropometric measurements are carried out by standard methods, with regularly validated equipment. The anthropometric measurements include:

- Mother: weight, height, midupper arm circumference (MUAC) during pregnancy; (Denmark only at visit 2). Body composition using bioimpedance analysis (BIA) in Denmark and Brazil. BMI is calculated.
- Infant: weight, length, knee-heel length (in Denmark and The Gambia), MUAC, head circumference. Body composition is estimated from birth weight and length reported in health records, and by bioimpedance at visits 2, 3, and 4, in Brazil and Denmark, and by air displacement plethysmography until the infant reaches 8 kg. (PEAPOD, COSMED) in The Gambia. Z scores are calculated by the database system using WHO, 2006 growth standards

Milestones.
Developmental milestones are evaluated at visits 3 and 4 to identify any infants with poor development, and to support the evidence that the milk MN concentrations are adequate for normal development. The final assessments at visit 4 includes Milestones (also collected at visit 3) and the Ages and Stages Questionnaires (19) (also administered at visits 2 and 3 in Brazil). Failure to meet normal developmental milestones in ≥ 2 domains will be considered abnormal during data analysis.

Dietary data.
Dietary assessment of the mother is made by 2, 24-h recalls per period (visits 2, 3, and 4), and during pregnancy in Brazil and Denmark. One is taken during the study visits and the other during the week (≤ 10 d) before or after the study visit but not on an adjacent day. Data is
TABLE 1
Study settings, and participant information in the Mothers, Infants, and Lactation Quality (MILQ) Study

Study setting	Bangladesh	Brazil	Denmark	The Gambia
Location	Mirpur	Madureira and São Cristóvão (periurban area of Dhaka)	Copenhagen Rigshospitalet urban Gambia near Banjul	
Average income, USD/mo	245	456	3120	247
Literacy, %	69	93	100	>65
Maternity leave, mo	6	4–6	9–12	6
EBF, %	2 mo	50	71	70
Infant stunting at 6 mo, %	18.6	<1	4.8	9
Usual diet	Rice	Rice and beans	Typical Western diet	Rice and maize
Fruit and vegetables	Fruit and vegetables	Animal source foods, dairy	Fruit and vegetables	Groundnuts
Some animal source foods	Pasta, high-processed foods	Animal source foods, dairy	Some animal source foods	
MMN supplementation	No, unless prescribed	Some, but not in this study	No	
Government mandates or recommendations				
Perinatal			Iron and folic acid	
Pregnancy			Vitamin D Iron and folic acid	
Fortification programs	No	Iron and folic acid (flour)	Iodine (salt) No	
Facilities	icddr, b, Dhaka	Maternity Hospital Hervulio Pinheiro Municipal Center of Health Ernesto Zeferino Tibau Junir	Hvidovre Hospital, Clinic Herlev Hospital Rigshospitalet Bakoteh	
Write consent by study participant	Written consent by study participant²	Sample use is explained and consented to in the informed consent document		
Sample storage and use	Samples are available for 5 y	Samples are available for 10 y	Samples are available for 5 y	Samples may be used for other projects but may require additional consent
Deidentification and data security	All data is collected by study ID only into a secure database, at which point it cannot be linked back to the study participants			
Bangladesh	Brazil	Denmark	The Gambia	
------------	--------	---------	------------	
Compensation	Separate, password-protected participant log is maintained by research team	compensation	Travel costs	
	Free treatment of any conditions by study physician	Travel costs	Breastfeeding counseling by phone, if desired	
			A small gift for the infant upon study completion	
Follow-up	If needed, referrals are provided to government specialized hospitals for further management	If needed, determined by study nurse, referrals are provided to specialized care facilities for further management	If needed, determined by study nurse, referrals are provided to MRCG@LSHTM, Fajara, clinic for further management	

1 For government employees, varies for private entities.
2 If women are unable to read the consent form, it is read to them in their mother tongue and full informed consent is confirmed by 1) the research staff (Bangladesh, Brazil), and 2) by a literate, independent witness (The Gambia).
3 Issues related 1) to illness: public Basic Health Unit, 2) to breastfeeding issues: human milk bank at study site, 3) to depression: Psychiatric Institute at the University. EBF, exclusive breastfeeding; icddr, b; International Centre for Diarrhoeal Disease Research, Bangladesh; MRCG@LSHTM, The MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine; MMN, multiple micronutrients; PI, principal investigator; USD, US dollars.
Saliva and milk intake measurements.

In the same periods that milk is collected, milk volume is measured in all women at each site, to determine how usual milk volume, which varies greatly among women, is related to nutrient concentrations and to enable estimation of total daily nutrient intake by the infant. Three of the field sites (Bangladesh, Brazil, and The Gambia) are using the International Atomic Energy Agency (IAEA) mother to child deuterium (D2M) method (https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1429_web.pdf). Deuterated water (30 g) is administered to the mothers at visits 2, 3, and 4 and maternal and infant saliva samples collected at baseline, 1, 2, 3, 4, 13, and 14 d after dosing. Saliva samples are obtained from both mothers and infants, who are both weighed at baseline and day 14. Cotton balls are placed in the infant’s mouth which are then squeezed by a syringe to retrieve the saliva. Denmark is estimating milk volume via 24-h test weighing of the infant before and after every feed for 24 h, plus 1 extra feed, to determine the 24-h intake. The infants are weighed with the same clothes and diaper at both weighings. Mothers are instructed by study personnel.

Blood.

A venous blood sample is collected into an EDTA vacutainer from the mother on visits 2, 3, and 4. Fasting overnight or for 3–4 h prior to blood collection was ideal if possible. The mother’s recall of the time of her last meal is recorded. A venous sample is collected from all infants at visit 2, and to reduce the number of infant blood draws to a total of 2, from 50% of infants at visit 3 and the other 50% at visit 4, randomly selected. In The Gambia, however, 100% of infants are sampled at each visit as well as the mother during pregnancy. The mother’s recall of the time of the infant’s last meal is also recorded.

Plasma is obtained by centrifugation of the blood sample at 1500 × g for 10 min at 4°C. The plasma is stored in aliquots in amber tubes. Theuffy coat is collected into a DNase/RNase-free, sterile tube. The volume of the remaining RBCs is determined in order to wash the RBCs with an equal volume of 0.9% saline solution. The RBCs are centrifuged again and the supernatant is removed. This procedure is repeated until the supernatant is clear. After diluting with equal amounts of deionized water, the washed RBCs are aliquoted into amber tubes for storage. All aliquots are then frozen and stored at 70°C until analysis.

Dried blood spots.

Dried blood spots (DBS) are obtained for iodine status assessment. Four (infant) or 6 (mother) spots are prepared on filter paper cards using 50 μL of whole blood from the EDTA vacutainer used for blood collection. If insufficient blood volume is obtained, 1 DBS is prepared. The blood is dispensed onto the filter paper without touching the paper, and after a drying period of 24 h at ≤25°C, the cards are stored in bags without the DBS touching each other. The DBS can be stored at –20°C until shipment.

Urine.

Maternal and infant urine is collected to assess iodine status across sites, which will likely vary depending on consumption of locally fortified foods, e.g. iodized salt. Population daily iodine intake will be estimated from spot urinary iodine and creatinine concentrations. A midstream clean catch specimen is collected from the mother at the first voiding of the bladder during each visit. Infant urine collection is enabled using a cotton ball, pads, or urine collection bags that are placed inside a disposable diaper. The wet but not soiled (with feces) cotton ball or pad is removed from the diaper and the urine is obtained by squeezing the cotton balls in a syringe, or by squeezing the pad in a plastic bag with a missing corner. The urine is collected into a beaker and 2 aliquots from both the mother and infant urine are stored for iodine assessment.

Stool.

Infant feces are used for microbiome profiling. Once the infant has a bowel movement, the stool is scored by the mother for consistency, color, and volume. About 1 g of the specimen is collected with the spoon (attached to the cap) of the feces collection tube. The spoon is placed into the collection tube and stored at –80°C. If the specimen is collected outside the clinic (not applicable in The Gambia), all stool sample collection here is conducted at the study site, it must be stored in the home freezer and delivered frozen, on ice, for –80°C storage as soon as possible.
TABLE 3 Inclusion and exclusion criteria in the Mothers, Infants, and Lactation Quality (MILQ) Study
Bangladesh
Recruitment
Enrollment
Mothers inclusion criteria
Age, y
Height, cm
BMI, kg/m²
<2 wk postpartum
Prepregnancy
MUAC, cm
Hemoglobin, g/L
Smoking
Alcohol intake, mL
Diet
MMN use
3rd trimester
lactation
Fortified foods
Delivery
Weeks of gestation
Breastfeeding
≤3.5 mo
≥8.5 mo
Infant inclusion criteria
Birthweight, g
Infant health
Visit 2 exclusion criteria
Visits 3 and 4 exclusion criteria

1 Hemoglobin determined during the third trimester, or by maternal questionnaire in Denmark.
2 Using a locally appropriate and validated FFQ.
MMN, multiple micronutrients; MUAC, midupper arm circumference.
FIGURE 1 Mothers, Infants, and Lactation Quality Study timeline, questionnaires, and data and sample collection form schedule. 1 3rd trimester. 2 Late 3rd trimester, not done in Bangladesh. 3 Maternal stool samples are not collected in Bangladesh. 4 Not collected in Denmark. 5 Only at visit 4 in The Gambia.

possible. All participants have been instructed by the field study staff and have confirmed the availability of a freezer for eligibility of at-home stool collection. All times of collection and storage are recorded.

Laboratory analyses
All samples except those to be used for iodine and milk volume determination are shipped to the USDA, Agricultural Research Service-Western Human Nutrition Research Center (USDA, ARS-WHNRC), Davis, CA, USA. At each site, the research personnel prepare the aliquots for the following analyses (Table 3). Samples for human milk vitamin D analysis will be sent from the USDA/ARS-WHNRC to the Nutritional Biomarker Laboratory, MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.

Data management.
A dedicated, REDCap database was developed at a single site (The Gambia) to be used across all study settings. Unique α-numeric study ID codes are generated and given to each participant. These will link all data collected from a specific individual. ID codes include a check letter to minimize ID errors. Data collection is carried out electronically, or on paper forms when necessary, by study staff. All forms in the field were designed specifically for the MILQ Study. Research assistants and supervisors review data on a daily basis before data from each field site is securely integrated into The Gambia REDCap database by a data manager. A copy of the final data obtained from the laboratory/analytical sites is reviewed by the study statistician before being securely integrated in a WHNRC-housed REDCap database. Both databases will be merged at the end of the field site data collection and integration. Data management and security procedures, including assurance of confidentiality, adhere to the Collaborative Institutional Training Initiative (CITI) and the Canadian Tri-Council Policy Statement on Ethical Conduct for Research Involving Humans (TCPs2 CORE) guidelines, and are outlined in full in the protocol at clinicaltrials.gov (NCT03254329, 18 August, 2017).

Statistical analysis
Sample size calculations.
Since the primary outcome is estimated key centiles of the distributions of nutrient concentrations in human milk, and centiles are invariant to monotonic transformation, sample sizes for constructing RV’s are based on: 1) estimating the 50th and 5th percentiles of each breast milk nutrient across time periods within each site and 2) being able to establish equivalency among study sites before pooling data.

Estimating centiles.
We aim for a monotonic transformation for each variable across all study sites to attain normal (Gaussian) distribution, from which parametric estimates of the centiles will be constructed. Regression models will be used to estimate the parameters of the distribution at each time period, but since such models will not be determined until the data are available, the sample size is based on a generic estimate for the pth centile:

$$
X + Z_p \times s \times CF_i
$$

(1)
FIGURE 2 Mothers, Infants, and Lactation Quality Study participant flow chart, for all 4 study sites. 1Denmark will use 24-h test weighing, instead of the Dose-to Mother deuterium method and saliva collections, for milk volume measurements. C, child; DBS, dried blood spots; M, mother.

where:

\[\bar{X} = \text{sample mean (or estimated predicted value from the regression model)} \]

\[Z_{p} = \text{p}^{th} \text{ centile of the standard normal distribution (negative for } P < 0.50) \]

\[s = \text{sample SD (or estimated SD from regression model)} \]

\[CF_{s} = \text{correction factor for bias of } s \text{ as an estimator of population SD (negligible for } n > 50). \]

The SE of this estimate, if \(n \) is >50, is approximately:

\[\hat{\sigma} \sqrt{\frac{1}{n} + 0.5 \times Z_{p}^{2}} \]

(2)

The desired width of the CI is based on the distance of the 50th and 5th centiles from neighboring centiles, which yields a sample size invariant to the location, scale, or shape of the underlying distribution, as long as the variable can be normalized. This requires an overall sample size of 255 per time point to avoid overlap between the 95% CIs around the 5th and 10th centiles, and to estimate the sample median within 5 centiles with 95% confidence (Table 4). Once the centiles of interest are estimated for the transformed variable, they will be back-transformed to be expressed in the original units.

For maternal and infant blood variables, it is likely that blood samples will not be available from all participants, so the sample size will be reduced by necessity. However, if it is determined that it’s acceptable to pool information from \(\geq 2 \) study sites to construct RVs for infant blood variables, the precision of the estimate will be acceptable.

Establishing equivalency among study sites.

For each nutrient and time period, pairwise comparisons using the 2, 1-sided test (TOST) method will be used to compare the means of the 4 sites for equivalence (20). If differences >0.3 SD are detected, a follow-up test will be conducted to compare each mean to the combined means of the other 3 sites, to determine which sites can be pooled. A sample size of 200 per site in each time period is sufficient to detect differences of 0.25 SD with 80% power or differences of 0.30 SD with 90% power. Therefore, the planned sample size of 250 per site and time period will
TABLE 4 Planned analyses in the Mothers, Infant, and Lactation Quality (MILQ) Study

Analyte Category	Analytes	Milk	Blood	Urine	Stool	Method	Ref.
Fat-soluble vitamins and carotenoids	Vitamin A, Vitamin E, α-carotene, β-carotene, β-cryptoxanthin, Lycopene, Lutein/zeaxanthin, Ergocalciferol (D$_2$), Cholecalciferol (D$_3$), 25-OH-D$_2$, 25-OH-D$_3$	X	X	P	P	HPLC-MWL (31)	
Water-soluble vitamins	Thiamin (B-1), Thiamin monophosphate (B-1), Thiamin diphosphate (B-1), Riboflavin (B-2), FAD (B-2), FMN (B-2), Nicotinamide (B-3), Nicotinic acid (B-3), Nicotinamide mononucleotide (B-3), NAD (B-3), NAD(P) (B-3), Nicotinamide riboside (B-3), Tryptophan (amino acid, B-3-related), Pantothenic acid (B-5), Pyridoxal (B-6), Pyridoxine (B-6), Pyridoxamine (B-6), Pyridoxal 5-phosphate (B-6), Biotin (B-7), Folic acid (B-9), S-methyl tetrahydrofolate (B-9), Cobalamin (B-12), Choline, Phosphocholine, Glycerophospho choline, Betaine, Carnitine, Creatinine, Dimethylglycine, Methionine, Trimethylamine N-oxide	X	X		P	UPLC-MS/MS (27)	
Choline and related metabolites	Choline, Phosphocholine, Glycerophospho choline, Betaine, Carnitine, Creatinine, Dimethylglycine, Methionine, Trimethylamine N-oxide	X	X			UPLC-MS/MS (36)	
B-12 biomarkers	Methylmalonic acid, Homocysteine	X			P	UPLC-MS/MS (37)	

(Continued)
TABLE 4 (Continued)

Analyte Category	Analytes	Milk	Blood	Urine	Stool	Method	Ref.
Minerals and trace elements	Iron	X	X			ICP-MS	(39)
	Copper						
	Zinc						
	Selenium						
	Sodium						
	Potassium						
	Magnesium						
	Calcium						
Iodine status	Iodine	X		X		ICP-MS	(40)
	Thyroglobulin					ELISA	(41)
	Thyroid-stimulated hormone						
	Total thyroxine						
Macronutrients	Protein	X				NIR-spectroscopy	(42)
	Fat						
	Carbohydrates						
Glycomics	Human milk oligosaccharides³	X				HPLC Chip/TOF-MS	(43)
	Human milk proteomics³	X				UPLC-QqQ-MS	(44)
Metabolomics	Biocrates MxP® QUANT 500³	X	X			CPBA	(45)
Inflammation markers	α-1-acid glycoprotein (AGP)	X					
	C-reactive protein (CRP)						
	IL-1β, IL-4, IL-6, IL-10, IL-33,	X				MSD immunoassay plates	(48)
	TNF-α, IFN-γ						
Iron status	Soluble transferrin receptors	X				CPBA	(49)
	Ferritin						
Hormones	Leptin, insulin, and adiponectin	X		X		MSD immunoassay plates	(48)
Genetics	Single nucleotide polymorphism	X				GWAS	(51)
	CpG methylation patterns	X				EWAS	(52)
Microbiome	Microbial community					16s RNA sequencing	(53)
						Shotgun metagenomics	(54)
Translationalomics	mRNA transcriptome	X				RNA seq	(55, 56)

Analyzed in:⁶ buffy coat,⁶dried blood spots,⁶plasma,⁶RBCs,⁶RNA-RNA.

1. References that describe methods used for the analysis or on which the nonpublished methods are based on: CPBA, competitive protein binding assay; EWAS, epigenome-wide association; FLD, fluorescence detection; GWAS, genome-wide associations; ICP, inductively coupled plasma MS/MS; MSD, Meso Scale Discovery; MWL, multi-wavelength detection; NIR, near infra red; QqQ-MS, triple quad MS; TOF, time of flight; UPLC, ultra-performance-LC.

2. Plasma folate is analyzed by CPBA.

3. https://lebrilla.faculty.ucdavis.edu/research/nutritional-glycomics/.

4. https://biocrates.com/mxp-quant-500-kit/.
provide adequate power to determine whether 1 site is different from the others (Table 5).

Sample size estimates for other analyses.

For some secondary outcome variables, e.g. free amino acids (FAA) in infant plasma, a complete sample set for analyses is not feasible or available. In such cases, only 100 samples for each site and time point are analyzed, assuming a priori that the values are similar enough to pool between ≥2 of the sites. If this is not possible, within-site percentiles will be presented with a caveat that these should not be considered as RVs, as precision is limited. However, 100 per time point is ample for looking at relations between secondary outcome variables and other outcomes, such as growth. Nevertheless, banked samples are available if initial data analyses show that analysis of >100 samples per point is needed.

Future exploratory analyses will also assess the relations between milk nutrient concentrations and other collected information, including milk volume, child growth, child developmental milestones, and maternal and infant plasma values. A sample size of 140 paired data points per site and time period is adequate to detect a correlation between continuous variables of 0.30 or higher with 95% power within each site, assuming a 2-sided alternative hypothesis, and therefore the planned sample size of 250 per site and time point is more than sufficient for these analyses.

Data analysis plan.

The measured human milk nutrient concentrations and milk volume will be used to estimate daily nutrient intakes of the infants. The RVs will be based on these infant nutrient intakes, and developed and expressed as percentiles in these well-nourished, but nonsupplemented, population groups, following the principles used by the Intergrowth-21st Project (21), which are based on methods developed in the construction of the WHO Child Growth Standards (22) (illustrated in Figure 3). Criteria will be created for normal growth and development, and adequate nutritional status for each nutrient in question. Data from children who do not meet these criteria will be removed from the construction of the RVs.

For each nutrient and time period, the distribution of the human milk variable will be examined and extreme outliers will be investigated and, if needed, removed. Box–Cox and other transformations will be used to normalize each variable, preferably using the same transformation across study sites, and the Shapiro–Wilk statistic to assess normality; skewness, kurtosis. The general shape of the distribution will also be examined. Parameters will be compared among study sites as described above, and information from the sites will be combined if the sites are deemed to be equivalent, or if differences have no material effect on key percentiles; otherwise, different sets of RV centiles may be constructed per site, or with only 2 or 3 pooled sites.

Parameters from the identified distribution will be estimated from the data, and centiles of interest (5th, 25th, 50th, 75th, 95th) will be estimated for each nutrient based on the theoretical percentiles of the underlying distribution, as described above. Smoothing techniques such as cubic splines will be employed, assuming the centiles follow smooth and continuous functions. Tables and curves of estimated centiles will be created for each nutrient and time period. SAS for Windows Release 9.4 (SAS Institute) will be used for all analyses.

Additional study outcomes

Besides the primary study outcome, the construction of the RVs, secondary study outcomes are included in the study design and categorized into outcomes that: 1) will be used for the construction of the RVs, 2) will not be used to construct RVs, and 3) country-specific measurements that are not used for RV development. These outcomes are summarized by category in Table 6.

Ethics, dissemination, and trial status

Full ethical approvals at all study sites were obtained from:

- The Institutional Review Board of the University of California, Davis, CA, USA (IRB ID: 920618–1, Protocol HRP-503-MILQ IRB, Department of Health and Human Services FWA No: 00004557).
- The Internal Review Boards of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b; PR-17085).
- The National Commission for Research Ethics (2.086.708, 2.875.218, 4.865.685), the Research Ethics Committees of the Municipal Secretariat of Health and Civil Defense of the State of Rio de Janeiro and of the Maternity School of Rio de Janeiro Federal University, (1.948.992, 2.769.611, 4.449.007); and the Municipal Secretary of Health and Civil Defense of the State of Rio de Janeiro (2.100.255), Brazil; Project number: 64767717.4.0000.5275.
- The Committees on Biomedical Research Ethics for the Capital Region of Denmark (H-17015174).
- The joint Gambia Government/MRC The Gambia Ethics Committee (SCC 1572v1.1, Project ID/ethics ref: 22768).
- The joint Gambia Government/MRC The Gambia Ethics Committee (SCC 1572v1.1, Project ID/ethics ref: 22768).

The MILQ Study was registered at clinicaltrials.gov as NCT03254329 (18 August, 2017). Study progress was discussed among all field sites and the USDA/ARS-WHNRC, the main analytical site, and location of the Principal Investigator (PI), in biweekly meetings.
TABLE 6 Secondary outcomes of the Mothers, Infants, and Lactation Quality (MILQ) Study

Outcome category¹	Bangladesh	Brazil	Denmark	The Gambia
Used for constructing RVs	Macronutrients, human milk oligosaccharides, peptides, and proteins, metabolomics	Micronutrient status of mothers and infants assessed in blood samples	Milk volume by D₂O	Milk volume by D₂O
		24-h infant test weighing		
Not used for constructing RVs				
TABLE 7 Trial status

Recruitment start	Bangladesh	Brazil	Denmark	The Gambia	USA 1
04/2018	01/2018	09/2017	05/2018	—	—
Completion of field site work	Expected by 03/2022	Expected by 12/2019	Expected by 03/2022	—	—
Sample analyses start	—	—	—	—	05/2019
Completion of sample analyses	—	—	—	—	Expected by 12/2022

1 Additional analytical sites are Bengaluru, India (milk volume); Cambridge, UK (vitamin D in human milk); Zürich, Switzerland (iodine and iodine status in milk, dried blood spots, and urine).

The longitudinal data obtained by the staggered sample collection protocol will allow for the development of new dynamic RVs, providing percentile ranges for every stage of lactation covered in this study. These carefully developed RVs, in conjunction with the milk volume data, will be available for re-evaluating intake recommendations for infants, young children, and lactating women, and as benchmarks against which to evaluate human milk quality, and the effects of future nutrient intervention trials on milk composition.

Acknowledgments

We thank Linda Adair (University of North Carolina) and Leila Cheikh Ismail (University of Sharjah) for their participation in the initial Technical Advisory Group.

The authors’ responsibilities were as follows—LHA, DH, SS, AD, KGE, MI, GK, KFM, and SEM: designed the research; DH, SSF, EB, AD, DF, KGE, SHC, FKK, and FN: conducted the research; JMP: performed the statistical analysis; LHA and DH: wrote the manuscript; LHA: had primary responsibility for final content; and all authors: read and approved the final manuscript.

References

1. World Health Organization. Guidelines on HIV and Infant Feeding 2010: Principles and Recommendations for Infant Feeding in the Context of HIV and a Summary of Evidence. Geneva (Switzerland): WHO, 2010.
2. World Health Organization [Internet]. Geneva (Switzerland): Breastfeeding c2021 [cited 7 Aug, 2021]. Available from: https://www.who.int/health-topics/breastfeeding#tab=tab_2.
3. Hampel D, Dror DK, Allen LH. Micronutrients in human milk: methodological approaches. Adv Nutr 2018;9(suppl_1):313S–315.
4. Allen LH, Dror DK. Introduction to current knowledge on micronutrients in human milk: adequacy, analysis, and need for research. Adv Nutr 2018;9(suppl_1):275S–277S.
5. Allen LH. Maternal micronutrient malnutrition: effects on breast milk and infant nutrition, and priorities for intervention. SCN News 1994;11:21–4.
6. Allen LH. B vitamins in breast milk: relative importance of maternal status and intake, and effects on infant status and function. Adv Nutr 2012;3(3):362–9.
7. Dror DK, Allen LH. Retinol-to-fat ratio and retinol concentration in human milk show similar time trends and associations with maternal factors at the population level: a systematic review and meta-analysis. Adv Nutr 2018;9(suppl_1):332S–465.
8. Dror DK, Allen LH. Vitamin B-12 in human milk: a systematic review. Adv Nutr 2018;9(suppl_1):358S–665.
9. Dror DK, Allen LH. Iodine in human milk: a systematic review. Adv Nutr 2018;9(suppl_1):347S–57S.
10. Allen LH, Graham JM. Assuring micronutrient adequacy in the diets of young infants. In: Delange FM, West KP, editors. Micronutrient Deficiencies in the First Months of Life. Basel (Switzerland): Nestlé Ltd./S. Karger AG, 2003. p. 55–88.
11. Dror DK, Allen LH. Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr Rev 2008;66(5):250–5.
12. Victoria CG, de Onis M, Hallal PC, Blössner M, Shrimpton R. Worldwide timing of growth faltering: revisiting implications for interventions. Pediatrics 2010;125(3):e473–80.
13. Gallant J, Chan K, Green TJ, Wieringa FT, Leemaqz S, Ngik R, Measelle JR, Baldwin DA, Borath M, Sophonney P, et al. Low-dose thiamine supplementation of lactating Cambodian mothers improves human milk thiamine concentrations: a randomized controlled trial. Am J Clin Nutr 2021;114(1):90–100.
14. Eneroth H, El Arifeen S, Persson LÅ, Lönnerdal B, Hossain MB, Stephensen CB, Ekström EC. Maternal multiple micronutrient supplementation has limited impact on micronutrient status of Bangladeshi infants compared with standard iron and folic acid supplementation. J Nutr 2010;140(3):618–24.
15. World Health Organization. The quality and quantity of breast milk: report on the WHO collaborative study on breast-feeding. Geneva (Switzerland) 1985.
16. Dror DK, Allen LH. Overview of nutrients in human milk. Adv Nutr 2018;9(suppl_1):278S–94S.
17. Allen LH, Donohue JA, Dror DK. Limitations of the evidence base used to set recommended nutrient intakes for infants and lactating women. Adv Nutr 2018;9(suppl_1):295S–312S.
18. Hampel D, Allen LH. Analyzing B-vitamins in human milk: methodological approaches. Crit Rev Food Sci Nutr 2016;56(3):494–511.
19. Squires J, Bricker D. Ages and stages questionnaire [Internet]. Third edition. 2009. Brookes Publishing. Available from: www.brookespublishing.com.
20. Walker E, Nowacki AS. Understanding equivalence and noninferiority testing. J Gen Intern Med 2011;26(2):192–6.
21. Altman D, Ohuma E, Fetal I, Century NGCfts. Statistical considerations for the development of prescriptive fetal and newborn growth standards in the INTERGROWTH-21st project. BJOG: An International Journal of Obstetrics & Gynaecology 2013;120:71–76.
22. Borghi E, de Onis M, Garza C, Van den Broeck J, Frongillo EA, Grummer-Strawin L, Van Buuren S, Pan H, Molinari L, Martorell R. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. Stat Med 2006;25(2):247–65.
23. Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academies Press, 1998.
24. Hampel D, Shahab-Ferdows S, Gertz E, Flax VL, Adair LS, Bentley ME, Jamieson DJ, Tehga G, Chasela CS, Kamwendo D, et al. The effects of a lipid-based nutrient supplement and antiretroviral therapy in a randomized controlled trial on iron, copper, and zinc in milk from HIV-infected Malawian mothers and associations with maternal and infant biomarkers. Maternal & Child Nutrition 2018;14(2):e12503.
25. Whitfield KC, Shahab-Ferdows S, Kroeun H, Sophonney P, Green TJ, Allen LH, Hampel D. Macro- and micronutrients in milk from healthy Cambodian mothers: status and interrelations. J Nutr 2020;150(6):1461–9.
26. Oshin O, Hampel D, Ichadcha F, Atayero A. The first 1,000 days: trends towards biosensing in assessing micronutrient deficiencies. J Phys Conf Ser 2019;1299:012136.
27. Hampel D, York ER, Allen LH. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) for the rapid, simultaneous analysis of thiamin, riboflavin, flavin adenine dinucleotide, nicotinamide and pyridoxal in human milk. J Chromatogr B 2012;903:7–13.
28. Hampel D, Shahab-Ferdows S, Domek JM, Siddiqua T, Raqib R, Allen LH. Competitive chemiluminescent enzyme immunoassay for vitamin B12 analysis in human milk. Food Chem 2014;153:60–65.
29. Hampel D, Shahab-Ferdows S, Islam MM, Peerson JM, Allen LH. Vitamin concentrations in human milk vary with time within feed, circadian rhythm, and single-dose supplementation. J Nutr 2017;147(4):603–11.
30. Hampel D, Shahab-Ferdows S, Bossain M, Islam MM, Ahmed T, Allen LH. Validation and application of Biocrates AbsoluteIDQ® p180 targeted metabolomics kit using human milk. Nutrients 2019;11(8):1733.
31. Turner T, Burri BJ. Rapid isocratic HPLC method and sample extraction procedures for measuring carotenoid, retinoid, and tocopherol concentrations in human blood and breast milk for intervention studies. Chromatographia 2012;75(5–6):241–52.
32. Roche Diagnostics. Vitamin D total II for cobase 411 analyzer Mannheim (Germany): Roche Diagnostics GmbH, 2017.
33. Hampel D, Shahab-Ferdows S, Adair LS, Bentley ME, Flax VL, Jamieson DJ, Ellington SR, Tegha G, Chasela CS, Kamwendo D, et al. Thiamin and riboflavin in human milk: effects of lipid-based nutrient supplementation and stage of lactation on vitamin secretion and contributions to total vitamin content. PLoS One 2016;11(2):e0149479.
34. Roche Diagnostics. Elecsys folate III. Mannheim (Germany): Roche Diagnostics GmbH, 2018.
35. Roche Diagnostics. Vitamin B12 II. Mannheim (Germany): Roche Diagnostics GmbH, 2017.
36. Hampel D, Shahab-Ferdows S, Nguyen N, Kac G, Allen LH. High-throughput analysis of water-soluble forms of choline and related metabolites in human milk by UPLC-MS/MS and its application. Frontiers in Nutrition 2021;7:604570.
37. Pedersen TL, Keyes WR, Shahab-Ferdows S, Allen LH, Newman JW. Methylmalonic acid quantification in low serum volumes by UPLC-MS/MS. J Chromatogr B 2011;879(19):1502–6.
38. Gilfix BM, Blank DW, Rosenblatt DS. Novel reductant for determination of total plasma homocysteine. Clin Chem 1997;43(4):687–8.
39. Astolfi ML, Marconi E, Protano C, Vitali M, Schiavi E, Mastromarino P, Canepari S. Optimization and validation of a fast digestion method for the determination of major and trace elements in breast milk by ICP-MS. Anal Chim Acta 2018;1040:49–62.
40. Dold S, Baumgartner J, Zeder C, Krzystek A, Osei J, Haldimann M, Zimmermann M, Andersson M. Optimization of a new mass spectrometry method for measurement of breast milk iodine concentrations (BMIC) and an assessment of the effect of analytic method and timing of within-feed sample collection on BMIC. Thyroid 2016;26(2):287–95.
41. Stica S, Andersson M, Weibel S, Herter-Aeberli I, Fingerhut R, Gowachirapant S, Hess SY, Jaiswal N, Jukić T, Kusic Z. Dried blood spot thyroglobulin as a biomarker of iodine status in pregnant women. The Journal of Clinical Endocrinology & Metabolism 2017;102(1):23–32.
42. Unity Scientific. Neonatal Analyzer Package. Milford (MA): Unity Scientific; 2017.
43. Wu LD, Ruhaak LR, Lebrilla CB. Analysis of milk oligosaccharides by mass spectrometry. In: Lauc G, Wuhrer M editors. High-Throughput Glycomics and Glycoproteomics. New York: Springer; 2017. p.121–9.
44. Huang J, Kailemia MJ, Goonatilleke E, Parker EA, Hong Q, Sabia R, Smilowitz JT, German JB, Lebrilla CB. Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM). Anal Bioanal Chem 2017;409(2):589–606.
45. Hampel D, Shahab-Ferdows S, Kac G, Allen LH. Human milk metabolic profiling using biocrates mxp® quant 500 kit. Current Developments in Nutrition 2021;5(Supplement_2):874.
46. Roche Diagnostics. AAGP2-Tina-quant alpha-acid glycoprotein Gen.2. Mannheim (Germany): Roche Diagnostics GmbH; 2017.
47. Roche Diagnostics. CRPHS-Cardiac C-reactive protein (Latex) high sensitivity. Mannheim (Germany): Roche Diagnostics GmbH; 2016.
48. mesoscale.com [Internet]. Rockville (MD): Meso Scale Diagnostics, LLC; c2021 [cited 4 Aug, 2021]. Available from: https://www.mesoscale.com/.
49. Roche Diagnostics. STFR-Tina-quant Soluble Transferrin Receptor. Mannheim (Germany): Roche Diagnostics GmbH; 2021.
50. Roche Diagnostics. Elecsys® Ferritin. Rotkreuz (Switzerland): Roche Diagnostics International Ltd; 2014.
51. Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C, Derks EM. A tutorial on conducting genome-wide association studies: quality control and statistical analysis. Int J Methods Psychiatr Res 2018;27(2):e1608.
52. Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med 2017;49(4):e322.
53. Hald S, Schioldan AG, Moore ME, Dige A, Lærke HN, Agnholt J, Bach Knudsen KE, Hermansen K, Marco ML, Gregersen S. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS One 2016;11(7):e0159223.
54. Treiber ML, Taft DH, Korf I, Mills DA, Lemay DG. Pre- and post-sequencing recommendations for functional annotation of human fecal metagenomes. BMC Bioinformatics 2020;21(1):1–15.
55. Lemay DG, Hovey RC, Hartono SR, Hinde K, Smilowitz JT, Ventimiglia F, Schmidt KA, Lee JW, Islas-Trejo A, Silva PI. Sequencing the transcriptome of milk production: milk trumps mammary tissue. BMC Genomics 2013;14(1):1–17.
56. Westreich ST, Ardesthi A, Alkan Z, Kable ME, Korf I, Lemay DG. Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization. Microbiome 2019;7(1):1–17.