Explainable Patterns for Distinction and Prediction of Moral Judgement on Reddit

Ion Stagkos Efstathiadis
Department of Computing
Imperial College London
UK
istagkos@outlook.com

Guilherme Paulino-Passos
Department of Computing
Imperial College London
UK
g.passos18@imperial.ac.uk

Francesca Toni
Department of Computing
Imperial College London
UK
ft@imperial.ac.uk

Abstract

The forum r/AmITheAsshole in Reddit hosts discussion on moral issues based on concrete narratives presented by users. Existing analysis of the forum focuses on its comments, and does not make the underlying data publicly available. In this paper we build a new dataset of comments and also investigate the classification of the posts in the forum. Further, we identify textual patterns associated with the provocation of moral judgement by posts, with the expression of moral stance in comments, and with the decisions of trained classifiers of posts and comments.

1 Introduction

This paper focuses on predicting and distinguishing moral judgement using data from Reddit’s r/AmITheAsshole subreddit, a forum where users pseudonymously recount their confrontational experiences in posts and then ask commenters for their opinions on whether they were ‘in the wrong’ (i.e. using the subreddit terminology, the ‘assholes’) in their stories. The subreddit includes more than 800K labelled posts and 30M labelled comments, thus providing a unique window into the rendering of moral judgement in the anonymous global setting of social media.

Example excerpts from a post and a comment addressing it are shown in Figure 1. Each comment is instructed to begin with one of four pre-set tags revealing its verdict: i) NTA (Not The Asshole); ii) YTA (You are The Asshole); iii) NAH (No Assholes Here); iv) ESH (Everyone Sucks Here). 18 days after its creation, each post is officially labelled by the tag corresponding to its top comment. Hence, comments are labelled by their composers with the verdicts that they advocate, while posts inherit their verdict labels from their most popular comments.

Existing work on r/AmITheAsshole [4] develops classifiers from the comments (but not from the posts), achieving best accuracy of 89% by fine-tuning BERT [5], and then explores out-of-distribution uses of the classifiers. Instead, in this paper, we classify posts as well as comments, and explore patterns emerging from the data and from the classifiers.

In summary, our contributions in this paper are as follows. Firstly, we support the prediction of moral judgement in Reddit by predicting the verdicts assigned to posts, achieving best accuracy of 62% using BERT. This low accuracy compared with that in classifying the comments, highlights the...
challenges of the task. Secondly, we construct a novel dataset of comments and build a classifier of moral stance in Reddit by predicting the verdicts that comments advocate, achieving 86% accuracy using BERT. Thirdly, we apply GrASP [20, 13], to identify textual patterns associated with (i) the provocation and expression of moral judgement and (ii) the decisions of trained moral judgement classifiers. The first type of patterns have sociological value by documenting wordings that are judged in the context of social media. The second renders the decisions of classifiers more transparent, thus encouraging trust in them [8] and potentially facilitating their debugging [12].

2 Related Work

The classification of comments of the r/AmITheAsshole subreddit has recently been achieved in [4], with best accuracy of 89% using (fine-tuned) BERT with dropout and a fully connected layer on top. We adopt the same approach for classifying comments, but fine-tuning on our novel dataset of comments, and achieving a similar accuracy.

In general, stance classification has been largely ignited by [15], which has inspired classifiers of two families: feature-engineering-based as in [9, 11, 6, 18, 17], and word-embedding based as in [26, 23, 21, 7]. Our approach belongs to the second category, as our models are based on BERT.

Work involving judgement prediction is found in legal prediction, where the outcome of legal trials is predicted based on court judgements, i.e. documents which contain facts about cases. Several works [1, 14, 19, 3] use BoW-based (Bag-of-Words) classifiers to predict the decisions of various courts. These works can leverage on the standardised formulation of case facts and consistent labels by courts, possibly including the implicit/explicit judgment [1]. Reddit posts instead lack strict standards.

3 Datasets

Posts. We download 97K post data from the repository published in [16]. Each datum consists of a text (post title + body) and a label, derived from the post’s verdict as follows: NTA and NAH map to 0 for sweethearts (i.e. non-assholes); YTA and ESH map to 1 for assholes. Figure 2 shows post length distribution, with a considerable number of long posts (over 500 tokens). Further inspection reveals a class imbalance: around 75% sweethearts and 25% assholes.

Comments. We use the Pushshift API [2] to scrape around 30M comment data from the beginning of r/AmITheAsshole until the end of 2020.¹ We then discard deleted comments and comments rated lower than 3 for quality control. We use regular expressions to identify the verdicts of comments (by pinpointing YTA, ESH, NAH, NTA), we store the verdicts separately, we discard comments without verdicts, and erase the tags to avoid giving the verdicts away. We finally only keep primary comments to be left with around 600K data. Each datum consists of a comment body (i.e. a text) and a binary label giving the verdict. Figure 2 shows that comments are generally shorter than posts. Further inspection reveals around 66% sweetheart advocates and 33% asshole advocates.

¹available at https://github.com/CLArg-group/moral-judgement-reddit-whmd-2021
4 Classifying the Posts

Classification with BERT. For classifying the posts, we employ the bert-base-cased model from the Hugging Face library [24], with its built-in pre-processing of texts (implementation hyper-parameters are shown in the Appendix). Importantly, many posts are longer than 512 words, the maximum sequence length handled by BERT, and thus are truncated.

The results are shown in Table 1. The task is proven challenging with the classifier unable to outperform the baseline method of always predicting the majority class. Consequently, to ensure that performance is not boosted by the classifier’s favouritism towards sweethearts, we also report results on a rebalanced dataset. An accuracy of 62% is reported on both test sets. This is higher than the accuracies we achieved with simpler classifiers such as the Multinomial Naive Bayes and LogReg. We believe that further hyperparameter tuning and longer training can further increase it. Moreover, the F1 scores on the rebalanced dataset reveal equitable handling of the two classes.

Class	Unbalanced test set	Rebalanced test set						
	Precision	Recall	F1	Accuracy	Precision	Recall	F1	Accuracy
assholes	0.38	0.62	0.47	0.62	0.59	0.62	0.61	0.62
sweethearts	0.81	0.62	0.70	0.62	0.64	0.61	0.63	0.62

Qualitative Analysis with GrASP. We identify textual patterns associating posts with their actual or predicted labels. We do this using GrASP [20], an algorithm for extracting rich patterns from textual data. Specifically, we use the GrASP library from [13]. Examples of the outputs of GrASP for an input post are shown in Figure 3 (more examples are given in the Appendix). Here, the score for the resulting patterns is given by their information gain, reflecting their classification value.

Meaning (Click here to see the pattern)	Class	#Pos	#Neg	Cov	Score	Prec.
A type of ma (n)	Pos	829	204	0.207	0.005	0.803
The word “edit”	Pos	564	305	0.174	0.005	0.649

Figure 3: Patterns identified by GrASP to associate posts with their actual labels. GrASP is applied on random 5000 posts. ‘Pos’/‘Neg’ stand for sweethearts/assholes. ‘Score’ refers to information gain.

In patterns associating posts with their actual labels, the highest information gain by a pattern is 0.005 (as in Figure 3), a very small value compared to gains of 0.06 identified in use cases of GrASP in [13]. Such small information gains are in line with the difficulty of BERT in classifying the posts. Also, note that GrASP blindly associates each pattern with the class that contains it the most but this may be misleading in cases of class imbalance. For example, in Figure 3, even though the word “edit” is reported as indicative of sweetheart, a text containing the word “edit” is more likely to be asshole than one picked at random from the 5000 samples.

In patterns associating posts with their labels as predicted by BERT (see the Appendix for some examples), information gains are significantly larger, suggesting that classes assigned by BERT are
more consistent than actual classes. Reassuringly, BERT patterns generally agree with actual patterns. Notably, BERT did not pick up on the word “edit” being associated with assholes, perhaps because in its pre-training, BERT did not associate a polarity with this word, which in other contexts is more neutral, and thus very far from other class indicative words.

5 Classifying comments

Classification with BERT. We employ the same BERT model as for the posts (implementation hyperparameters are shown in the Appendix). Results are shown in Table 2.

Table 2: Results on test dataset for the classification of comments. Accuracy is over the entire test set.

Class	Precision	Recall	F1	Accuracy
assholes	0.78	0.83	0.80	0.86
sweethearts	0.91	0.88	0.90	

Here, the classifier outperforms the baseline method of always predicting the majority class. Thus, results are only reported on the unbalanced test set representative of class proportions in the population. We report an accuracy of 86%, which verifies that comments are easier to classify than posts. Our accuracy is slightly lower than the 89% reported in [4] possibly due to a differently constructed dataset (not publicly available). We believe that further hyperparameter tuning and longer training can further increase it. The bias conveyed by the deviation in F1 scores with respect to the two classes may be the result of the imbalance in the test set.

Qualitative analysis with GrASP. Some top patterns associating comments with their actual labels are shown in Figure 4 (for more patterns see Figure 7(a) in the Appendix). In general, patterns drawn from the comments offer slightly higher information gains than patterns drawn from the posts, which agrees with the classification of comments being easier. There is also greater balance in patterns associated with the two classes, which benefits the classification of the comments.

![Figure 4: Patterns identified by GrASP to associate comments with their actual labels. GrASP is applied on random 5000 comments. sweethearts/ assholes. ‘Score’ refers to information gain. Manual corrections are applied on patterns that have been associated with sweetheart although they are arguably indicative of asshole.](image)

Examples of patterns associating comments with their labels as predicted by BERT can be found in the Appendix. Reassuringly, upon closer inspection, patterns are found to agree with those associating comments with their actual labels. Notably, as with BERT patterns for posts, the information gains of patterns spotted by GrASP to associate comments with their BERT-predicted labels, are significantly higher than gains from the patterns of actual labels.

6 Conclusions

We show that the prediction of moral judgement by classifying the posts of the r/AmITheAsshole subreddit is challenging, with the best accuracy of 62% achieved using BERT. The main challenges of the task are the following: i) long texts exceeding the limit of 512 tokens; ii) non-obvious classification requiring deductive thought by humans; iii) noisy labels coming from subjective views of different voters; iv) class imbalance; v) non-standard texts written by different users. For the classification of moral stance in Reddit comments, we construct a new dataset of 600K data and achieve an accuracy of 86% using BERT. We identify textual patterns associated with actual and predicted Reddit moral judgement in posts and comments using GrASP.
The most obvious improvement for classifications is to use better computational resources to: i) conduct more exhaustive hyperparameter search; ii) completely unfreeze BERT. The noisiness of post labels due to subjectivity could be internalised by assigning each post an assholeness score based on its top comments and predicting it in a regression task. Techniques for robust training with noisy data presented in [22] or multi-task learning techniques to leverage the information in the comments could improve the classification of the posts. An improvement in pattern identification (as in GrASP) could be to augment texts with additional custom attributes, like their pertinence to the moral foundations dictionary [10]. Lastly, we could explain BERT decisions with other techniques such as dictionary learning [25].

References
[1] Nikolaos Aletras, Dimitrios Tsarapatsanis, Daniel Preotiuc-Pietro, and Vasileios Lampos. Predicting judicial decisions of the european court of human rights: A natural language processing perspective. PeerJ Computer Science, 2:e93, 2016.
[2] Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. The pushshift reddit dataset. In Proceedings of the international AAAI conference on web and social media, volume 14, pages 830–839, 2020.
[3] Vithor Gomes Ferreira Bertalan and Evandro Eduardo Seron Ruiz. Predicting judicial outcomes in the brazilian legal system using textual features. In DHandNLP@ PROPOR, pages 22–32, 2020.
[4] Nicholas Botzer, Shawn Gu, and Tim Weninger. Analysis of moral judgement on reddit. CoRR, abs/2101.07664, 2021. URL https://arxiv.org/abs/2101.07664
[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[6] Kuntal Dey, Ritvik Shrivastava, and Saroj Kaushik. Twitter stance detection—a subjectivity and sentiment polarity inspired two-phase approach. In 2017 IEEE international conference on data mining workshops (ICDMW), pages 365–372. IEEE, 2017.
[7] Shalmoli Ghosh, Prajwal Singhana, Siddharth Singh, Koustav Rudra, and Saptarshi Ghosh. Stance detection in web and social media: a comparative study. In International Conference of the Cross-Language Evaluation Forum for European Languages, pages 75–87. Springer, 2019.
[8] Christophe Giraud-Carrier. Beyond predictive accuracy: what. In Proceedings of the ECML-98 Workshop on Upgrading Learning to Meta-Level: Model Selection and Data Transformation, pages 78–85, 1998.
[9] Yaakov HaCohen-Kerner, Ziv Ido, and Ronen Ya’akov. Stance classification of tweets using skip char ngrams. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 266–278. Springer, 2017.
[10] Frederic R Hopp, Jacob T Fisher, Devin Cornell, Richard Huskey, and René Weber. The extended moral foundations dictionary (emfd): Development and applications of a crowd-sourced approach to extracting moral intuitions from text. Behavior Research Methods, 53(1): 232–246, 2021.
[11] Dilek Küçük and Fazli Can. Stance detection on tweets: An svm-based approach. arXiv preprint arXiv:1803.08910, 2018.
[12] Piyawat Lertvittayakumjorn, Lucia Specia, and Francesca Toni. Find: human-in-the-loop debugging deep text classifiers. arXiv preprint arXiv:2010.04987, 2020.
[13] Piyawat Lertvittayakumjorn, Leshem Choshen, Eyal Shnarch, and Francesca Toni. Grasp: A library for extracting and exploring human-interpretable textual patterns. arXiv preprint arXiv:2104.03958, 2021.
[14] Yi-Hung Liu and Yen-Liang Chen. A two-phase sentiment analysis approach for judgement prediction. Journal of Information Science, 44(5):594–607, 2018.
[15] Saif Mohammad, Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu, and Colin Cherry. Semeval-2016 task 6: Detecting stance in tweets. In Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016), pages 31–41, 2016.
[16] Elle O’Brien. Aita for making this? a public dataset of reddit posts about moral dilemmas, 2020. URL https://dvc.org/blog/a-public-reddit-dataset

[17] Matheus C Pavan, Vitor G Dos Santos, Alex GJ Lan, Joao Martins, Wesley R Santos, Caio Deutsch, Pablo B Costa, Fernando C Hsieh, and Ivandre Paraboni. Morality classification in natural language text. *IEEE Transactions on Affective Computing*, 2020.

[18] Anirban Sen, Manjira Sinha, Sandya Mannarswamy, and Shourya Roy. Stance classification of multi-perspective consumer health information. In *Proceedings of the ACM India Joint International Conference on Data Science and Management of Data*, pages 273–281, 2018.

[19] Rafe Athar Shaikh, Tirath Prasad Sahu, and Veena Anand. Predicting outcomes of legal cases based on legal factors using classifiers. *Procedia Computer Science*, 167:2393–2402, 2020.

[20] Eyal Shnarch, Ran Levy, Vikas Raykar, and Noam Slonim. Grasp: Rich patterns for argumentation mining. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 1345–1350, 2017.

[21] Umme Aymun Siddiqua, Abu Nowshed Chy, and Masaki Aono. Tweet stance detection using an attention based neural ensemble model. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 1868–1873, 2019.

[22] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy labels with deep neural networks: A survey. *arXiv preprint arXiv:2007.08199*, 2020.

[23] Wan Wei, Xiao Zhang, Xuqin Liu, Wei Chen, and Tengjiao Wang. pkudblab at semeval-2016 task 6: A specific convolutional neural network system for effective stance detection. In *Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016)*, pages 384–388, 2016.

[24] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

[25] Zeyu Yun, Yubei Chen, Bruno A Olshausen, and Yann LeCun. Transformer visualization via dictionary learning: contextualized embedding as a linear superposition of transformer factors. *arXiv preprint arXiv:2103.13949*, 2021.

[26] Guido Zarrella and Amy Marsh. Mitre at semeval-2016 task 6: Transfer learning for stance detection. *arXiv preprint arXiv:1606.03784*, 2016.
Appendix

Table 3: Important hyperparameters for the classification of post texts using unfrozen BERT’s pooler output.

Implementation Part	Hyperparameter	Value
data processing	train/valid/test proportions	0.8/0.1/0.1
data processing	text truncation length	512
data processing	rebalancing method	reweighting
model architecture	BERT output used	pooler
model architecture	num unfrozen layers	10 + pooler layer
model architecture	output layer type	fully connected
model architecture	dropout	NA
training	batch normalisation	NA
training	batch size	8
training	learning rate	0.0000003
training	optimiser	AdamW
training	weight decay	0.15
training	num training epochs	6

Figure 5: Patterns identified by GrASP to associate post texts with their (a) actual and (b) predicted labels. GrASP is applied on random samples of 5000 posts. Class ‘Pos’ is that of sweethearts. Class ‘Neg’ is that of assholes. ‘Score’ refers to information gain.
Figure 6: Three examples of insightful excerpts from posts containing the pattern described by GrASP as “a type of religious, closely followed by a type of jurisprudence” (see last pattern in Figure 5(a)).

Table 4: Important hyperparameters for the classification of comment bodies using unfrozen BERT’s pooler output.

Implementation Part	Hyperparameter	Value
data processing	train/valid/test proportions	0.8/0.1/0.1
data processing	text truncation length	80
data processing	rebalancing method	reweighting
model architecture	BERT output used	pooler
model architecture	num unfrozen layers	8 + pooler layer
model architecture	output layer type	fully connected
model architecture	dropout	NA
model architecture	batch normalisation	NA
training	batch size	16
training	learning rate	0.0000008
training	optimiser	AdamW
training	weight decay	0.1
training	num training epochs	6

Figure 7: Patterns identified by GrASP to associate comment bodies with their (a) actual and (b) predicted labels. GrASP is applied on random samples of 5000 comments. Class ‘Pos’ is that of sweethearts. Class ‘Neg’ is that of assholes. ‘Score’ refers to information gain. Manual corrections are applied on patterns that have been associated with sweetheart although they are arguably indicative of asshole.