Stress and the commensal microbiota: importance in parturition and infant neurodevelopment

Tamar L. Gur, Brett L. Worly, and Michael T. Bailey

INTRODUCTION

The hypothesis that the origins of adult disease are developmental, beginning in utero is called the "Barker hypothesis" after one of its leading proponents and the author of a study demonstrating increased risk of cardiovascular disease in infants born underweight (1). It states that adverse influences early in development, such as poor nutrition or infection, result in permanent physiologic changes and in increased disease risk in adulthood. This is an area of increasing research in many fields, including Psychiatry, Immunology, and Endocrinology, which are now exploring whether development of diseases such as asthma, diabetes, and anxiety contains a developmental, intrauterine element. Neurodevelopment is exquisitely sensitive to perturbations in the maternal milieu, including diet, infection, and stress, with potentially long-lasting behavioral consequences. Disorders such as schizophrenia, anxiety, depression, and autism have been found to be associated with in utero and early neonatal exposure to these stimuli (2). Infants exposed to antenatal stress demonstrate increased risk of developing a host of childhood and adult diseases. While alterations in the hypothalamic–pituitary–adrenal (HPA) axis and immune function have been the target of investigation as underlying mechanisms conferring increased risk, the microbiome is an emerging candidate as a potential mediator of stress-induced pathogenesis (Figure 1).

Every surface of the body naturally harbors unique microbial communities comprised of archa, protists, viruses, and bacteria. To date, bacteria residing on mucosal surfaces, including the oral cavity, reproductive tract, and gastrointestinal tract, are the best characterized. These bacteria form highly ordered microbial communities as a result of ecological successions that select microbes that are best adapted for their given niche. Although these microbial communities are relatively resistant to change, it is recognized that factors such as alterations in diet and the administration of antibiotics can result in modifications in microbial community structure. Studies from this laboratory, as well as others, have demonstrated that psychosocial stressors can also impact microbial community structure in the gut. This review will briefly describe studies that have linked stressor-induced alterations in gut microbial community structure to alterations in immune system activity and behavioral responses. The potential impact of these interactions on pregnancy outcome and on infant development will also be discussed.

NEUROENDOCRINE-BACTERIAL INTERACTIONS

The field of psychoneuroimmunology has amply demonstrated that the physiological response to different types of stressor significantly impacts immune system reactivity to antigenic challenge [reviewed in Ref. (3)]. Primary mediators of the stress response, including endogenous glucocorticoids such as cortisol in humans and corticosterone in rodents, can affect immune system reactivity by suppressing the expression and activity of key transcription factors, such as NF-kB (4). Likewise, stressor-induced
activation of the sympathetic nervous system, resulting in the release of endogenous catecholamine hormones (namely epinephrine from the adrenal medulla, and norepinephrine from adrenergic nerve terminals), can significantly increase or decrease immune cell activity depending on the leukocyte subset and the adrenergic receptor that is bound. As details of the importance of neuroendocrine mediators for leukocyte reactivity emerged (5), findings demonstrating that bacterial pathogens themselves also respond to neuroendocrine hormones began to emerge (6–12).

The growth of many types of bacteria, including both infectious and commensal organisms can be significantly impacted by neuroendocrine hormones. For example, the growth of commensal and of pathogenic E. coli can be increased over 10,000-fold by simply adding norepinephrine to a serum-based microbial medium (8, 10, 12–14). It is now recognized that a wide variety of neuroendocrine hormones can impact a vast array of bacteria in culture [reviewed in Ref. (10, 13)], however, demonstrating that direct neuroendocrine–bacterial interactions occur in vivo has been more challenging.

One of the first studies assessing the effects of neuroendocrine hormones on bacterial growth involved increasing norepinephrine levels in vivo using 6-hydroxydopamine, which lyases sympathetic nerve terminals. This resulted in an approximately 10,000-fold increase in commensal E. coli levels in the cecum of mice (11). The effects of norepinephrine on bacterial growth was also evident in an ileal loop model, where growing Salmonella enterica with norepinephrine prior to inoculation into the ileal loop significantly increased pathogen growth and associated disease (15). Findings that neuroendocrine mediators associated with the stress response could significantly impact bacterial growth led us to test whether stressor exposure could significantly change the levels of bacteria cultured from the intestines.

STRESSOR EXPOSURE AND THE COMMENSAL MICROBIOTA

Tannock and Savage demonstrated almost 40 years ago that moving mice into a cage lacking bedding, food, and water reduced the number of lactobacilli that could be cultured from the gastrointestinal tract (16). While this suggested that the stress response associated with new housing led to the differences, it was difficult to interpret these data due to the food and water deprivation. Thus, infant rhesus monkeys, with ad libitum access to food and water were exposed to a maternal separation stressor and the number of lactobacilli that could be cultured from the intestines was assessed. Exposure to the stressor significantly reduced lactobacilli levels, and the magnitude of the reduction was associated with stress-indicative behaviors. In general, monkeys which showed the greatest behavioral signs of distress also had the lowest levels of lactobacilli (17).

Stressor-induced reductions in lactobacilli have also been identified in humans during the stress of school examinations (18) and in murine studies utilizing prolonged restraint (19) or a short-lasting social stressor (19). The biological importance of stressor-induced alterations of the microbiota is not well understood. However, studies demonstrate that some aspects of stressor-induced increases in immune system reactivity are dependent upon the microbiota. For example, exposure to a social stressor, known as social disruption (SDR), significantly increases IL-6 levels in the blood and increases the reactivity of splenic macrophages to microbial stimulation. These effects, however, did not appear in germ-free (GF) mice or mice treated with antibiotics to reduce the microbiota (20). Similarly, exposing rats to repeat tail shock significantly increases cytokine levels in the blood; treatment with antibiotics to reduce the microbiota attenuated stressor-induced increases, but only for cytokines whose activation is dependent upon the inflammasome (21, 22). When considered together, these studies demonstrate the importance of the microbiota for stressor-induced immunopotentiation, and suggest that microbial products act as a danger signal to prime the immune system for enhanced reactivity (23).

STRESS, THE MICROBIOME, AND PRETERM BIRTH

While it is becoming increasing evident that stressor-induced alterations in the microbiota of adult animals can significantly impact host physiology, these effects are transient and return to baseline after termination of the stressor. However, the microbiota have exaggerated and prolonged effects when perturbed during gestation or early in infancy. Interest in the connection between stress and the human microbiome, and its impact specifically on female...
reproduction and the developing fetus is evolving, but still in a nascent stage (Figure 2).

Preterm birth (PTB) is the first critical juncture to look at in the reproductive cycle when trying to discern the effects of stress and the microbiome on women, as stress is a well-known risk factor that affects the pillars of PTB: immune response/inflammation, and the HPA axis (24). There is considerable debate about stress, inflammation, cortisol, and PTB, and exact mechanisms are ripe for evaluation. Microbial invasion of the amniotic cavity and the associated host inflammatory response is a leading etiology of PTB (25–28). The mechanisms by which micro-organisms gain access to the decidua and amniotic cavity are not completely known, but are thought to involve invasion from microbes locally (e.g., lower gut or genital tract) or hematogenously (25). The ability of genetic pathogens to invade the amnion and induce PTB has been well studied. However, the source of hematogenous microbes and their ability to invade the amniotic cavity remains unclear. Oral microbes have been proposed as a key source of microbes passed to the amniotic cavity, or during/after birth when maternal microbes are passed to the infant. Either alterations in infant physiology (including epigenetic modifications) or colonization with dysbiotic microbial communities may lead to deficiencies in infant neurodevelopment.

FIGURE 2 | Maternal stress can impact infant neurodevelopment through both microbiota-dependent and -independent pathways. The maternal physiological stress response can directly impact fetal development and may be involved with epigenetic changes in the offspring. In addition, the maternal physiological stress response may impact the commensal microbiota. Infants may become colonized with altered maternal microbes either in utero, through bacterial invasion of the amniotic cavity, or during/after birth when maternal microbes are passed to the infant. Either alterations in infant physiology (including epigenetic modifications) or colonization with dysbiotic microbial communities may lead to deficiencies in infant neurodevelopment.

NEONATAL MICROBIOME AND NEURODEVELOPMENT

There is accumulating evidence that the microbiome can influence behavior [Reviewed in Ref. (49)], supporting the concept of a microbiome–gut–brain axis. While specific mechanisms underlying this influence remain unknown, the presence of the microbiome in the placenta and amnion suggest proximity and capacity to influence the developing fetus. Studies examining the impact of microbiome on the developing central nervous system (CNS) have utilized GF mice that have decreased anxiety, as well as increased motor activity compared to conventional mice. These behavioral changes were accompanied by increased turnover of dopamine, norepinephrine, and serotonin in the striatum, though not, it
While it is not yet clear how this occurs, sex difference mechanisms in influenced offspring gut architecture (54) and high-fat diet in rat this effect (53). Further evidence of maternal influence on the neurodevelopment, these findings have tantalizing implications regarding the influence of stress, alterations in the microbiome, neonatal colonization, and neurodevelopmental disorders.

Not all aspects of neurodevelopment are influenced by the microbiota, and some components of microbial influences on neurodevelopment are gender-specific. For example, GF mice have also demonstrated significant deficits in social behavior (51), some of which, specifically social avoidance, were reversed with re-colonization post-weaning. However, social cognition did not improve with re-colonization, suggesting that social cognition is as amenable to microbial-based interventions.

The effects that the microbiota have on the developing CNS appear to be gender-dependent. GF male mice have increased levels of serotonin and its metabolites in their hippocampus, and these did not normalize with introduction of a regular microbiome following weaning. Immunological and neuroendocrine effects were also found, with GF mice demonstrating a blunted immune response, based on TNF-α production, with a larger effect in female mice. GF animals also had a stronger corticosterone response in relation to stress, with female mice showing a smaller response. Male GF mice showed decreased expression of BDNF; however, female mice did not (52).

When considered together, data from laboratory animals indicate that maternal microbes that are passed to the infant are necessary for normal neurodevelopment. Disrupting these microbial communities, or their passage to the infant, can in turn impact neurodevelopment. Moreover, there are significant sex differences in the impact of microbial colonization on neurodevelopment. While it is not yet clear how this occurs, sex difference mechanisms in mice may be due to estrous cycle hormones and the CNS serotonergic system, as the estrogen receptor (ER beta) has a role in the hippocampal serotonin concentration. It is unclear whether the estrogen and estrogen receptor have a larger impact, or whether the microbiome has a larger impact on serotonin, and further studies are needed.

NEONATAL MICROBIOME AND HEALTH OUTCOMES

Animal studies support the idea that alterations in neonatal life and gut microbiome can have substantial impact on long-lasting health. Rat offspring deprived of their mother showed increased permeability of the colonic mucosa and a 10- to 100-fold increase in bacterial adherence to colonic tissue and spleen translocation. Of note, these changes were prevented by injecting rat pups with a corticotropin-releasing hormone receptor antagonist daily during maternal separation, suggesting that the HPA axis mediated this effect (53). Further evidence of maternal influence on the offspring is provided by the finding that, in rats, maternal diet influenced offspring gut architecture (54) and high-fat diet in rat mothers led to decreases in maltase and sucrase in offspring, while E. coli introduced to rat mothers in pregnancy and lactation led to increased offspring intestinal permeability, systemic inflammation, and obesity for this next generation (55). Furthermore, E. coli introduced in rat mothers led to changes in offspring weight and gut microbiota (56). Maternal administration of antibiotics in the prenatal period was associated with increased gut permeability and systemic inflammation (54) as well as increased visceral sensitivity (57). In rodents, maternal separation, a highly validated model of early-life stress, also lead to an increase in visceral sensitivity, with concomitant alterations in stress response and microbial community structure (58). A swine model for perinatal disturbance was adopted with oral antibiotics to sows. Short- and long-term changes were seen in paracellular permeability (59). Together, these studies suggest that altering either the maternal or perinatal flora has long-lasting implications on the gut of the offspring, as well as immunological repercussions. Mechanisms for this change are still being evaluated, but one potential route is that perinatal changes in bacterial colonization alter gastrointestinal heat shock protein expression with permanent implications on health (60).

HOW THE MICROBIOME MAY IMPACT NEURODEVELOPMENT AND FUTURE DIRECTIONS

While clear lines of evidence exist supporting an effect of stress on the microbiome, as well as the ability of stress to modulate neurodevelopment and behavioral changes, a delineated mechanism of action by the microbiome upon the CNS is an area of intense scrutiny and investigation (61–63). To date, the HPA axis and alterations in the immune response have accumulated the strongest evidence of associations with alterations in the microbiome.

The immune system, in addition to being directly influenced by stress, is a direct target of both microbiota and probiotic agents, and also has bidirectional communication with the CNS, making it an appealing candidate. The microbiome, through the innate immune system, alters levels of both pro- and anti-inflammatory cytokines, which are capable of directly impacting CNS function (64, 65). Stress also has a clear impact on the HPA axis, which is capable of regulating the inflammatory cascade, and growth of microbiota, as discussed above. However, directly tethering this phenomenon to the developing CNS is a more arduous task. While studies reviewed above demonstrate alterations in important players in CNS development, such as BDNF, with alterations (or lack of) microbiota, many steps in this process remain elusive.

Another potential mediator of the effect of stress on neurodevelopment, via the microbiome, is epigenetic regulation (66). This refers to heritable changes in gene expression not due to changes in DNA sequence, and epigenetic modification is a process known to be especially sensitive to early-life experiences. Thus, in utero and early-life alterations in microbiota could potentially utilize epigenetic processes to exert long-term behavioral changes, such as those described following psychosocial stressors. Indeed, a growing body of literature supports a major role of epigenetic modification in the neurobiology of psychiatric disorders (67). How might the microbiome influence epigenetics? Microbiotas are involved in the breakdown of nutrients, and in that process create metabolites with neuroactive properties, including amino acids and monoamines (68). Moreover, they are a key source of butyrate, which is a histone deacetylase (HDAC) inhibitor, a key
16. Tannock GW, Savage DC. Influences of dietary and environmental stress on the CNS. *Brain Behav Immun* (2011) 25:397–407. doi:10.1016/j.bbi.2010.10.023

17. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. *Brain Behav Immun* (2011) 25:397–407. doi:10.1016/j.bbi.2010.10.023

18. Knowles SR, Nelson EA, Palombo EA. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness. *Biol Psychol* (2008) 77:132–7. doi:10.1016/j.biopsycho.2007.09.010

19. Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. *BMC Microbiol* (2014) 14:189. doi:10.1186/1471-2180-14-189

20. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. *Brain Behav Immun* (2011) 25:397–407. doi:10.1016/j.bbi.2010.10.023

21. Maslanik T, Tannura K, Mahaffey L, Loughridge AB, Beninson L, Ursell L, et al. Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1beta and IL-18 but not IL-6, IL-10 or MCP-1. *PLoS One* (2012) 7:e50636. doi:10.1371/journal.pone.0050636

22. Maslanik T, Mahaffey L, Tannura K, Beninson L, Greenwood BN, Fleischer N. The inflammasome and danger associated molecular patterns (DAMPs) are implicated in cytokine and chemokine responses following stressor exposure. *Brain Behav Immun* (2013) 27:54–62. doi:10.1016/j.bbi.2012.10.014

23. Fleischer N. Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbially associated molecular patterns (MAMPs) and the inflammasome. *Brain Behav Immun* (2013) 27:1–7. doi:10.1016/j.bbi.2012.08.012

24. Shapiro GD, Fraser WD, Frash MG, Seguin JR. Psychosocial stress in pregnancy and preterm birth: associations and mechanisms. *J Perinat Med* (2013) 41:631–45. doi:10.1515/jpm-2012-0295

25. DiGiulio DB. Diversity of microbes in amniotic fluid. *Semin Fetal Neonatal Med* (2012) 17:2–11. doi:10.1016/j.siny.2011.10.001

26. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. *N Engl J Med* (2000) 342:1500–7. doi:10.1056/NEJM200005183422007

27. Goncalves LF, Chiavaraponga T, Romero R. Intrauterine infection and premature delivery. *Ment Retard Dev Disabil Res Rev* (2002) 8:5–13. doi:10.1002/med.10008

28. Romero R, Gomez R, Chiavaraponga T, Consolgoni G, Kim JC, Kim YM. The role of infection in preterm labour and delivery. *Paediatr Perinat Epidemiol* (2001) 15:Suppl 2:41–56. doi:10.1046/j.1365-3016.2001.00807.x

29. Cetin I, Pateri P, Villa A, Calabrese S, Ostolenghi L, Abati S. Pathogenic mechanisms linking periodontal diseases with adverse pregnancy outcomes. *Reprod Sci* (2012) 19:633–41. doi:10.1177/1933719111413287

30. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. *Sci Transl Med* (2014) 6:237ra65. doi:10.1126/scitranslmed.3008599

31. Abati S, Villa A, Cetin I, Desolle S, Luglie PF, Stromghem L, et al. Lack of association between maternal periodontal status and adverse pregnancy outcomes: a multicentric epidemiologic study. *J Matern Fetal Neonatal Med* (2013) 26:369–72. doi:10.3109/14767058.2012.737736

32. Madians PN, Lieff S, Murtha AP, Boggess KA, Auten RL Jr, Beck JD, et al. Maternal periodontitis and prematurity. Part II: maternal infection and fetal exposure. *Am Periodontol* (2001) 6:175–82. doi:10.1907/annals.2001.6.1.175

33. Bailey MT, Engler H, Sheridan JF. Stress induces the translocation of cutaneous and gastrointestinal microflora to secondary lymphoid organs of C57BL/6 mice. *J Neuroimmunol* (2006) 180:130–5. doi:10.1016/S0165-5728(05)00314-1

34. Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by *Citrobacter rodentium*. *Infect Immun* (2010) 78:1359–9. doi:10.1128/IAI.00862-09

35. Reber SO, Peters S, Slattery DA, Hofmann C, Scholmerich J, Neumann ID, et al. Mcm6a is necessary for suppression of microbial proliferation and epithelial barrier defects are key events in murine psychosocial stress-induced colitis. *Brain Behav Immun* (2011) 25:1153–61. doi:10.1016/j.bbi.2011.03.004

36. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. *Early Hum Dev* (2010) 86(Suppl 1):13–5. doi:10.1016/j.earlhumdev.2010.01.004

37. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. *Proc Natl Acad Sci USA* (2010) 107:1971–5. doi:10.1073/pnas.1002601107
Gur et al. Stress, microbiota, parturition, and neurodevelopment

Frontiers in Psychiatry | Affective Disorders and Psychosomatic Research

February 2015 | Volume 6 | Article 5 | 6

38. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between caesarean section and childhood asthma. *Clin Exp Allergy* (2008) 38:629–33. doi:10.1111/j.1365-2222.2007.02780.x

39. Fallani M, Young D, Scott J, Norin E, Amarsi S, Adam R, et al. Intestinal microbiota of 6-week-old infants across Europe: geographical influence beyond delivery mode, breast-feeding, and antibiotics. *J Pediatr Gastroenterol Nutr* (2010) 51:77–84. doi:10.1097/MPG.0b013e3181d1b1e

40. Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL. Examination of faecal *Bifidobacterium* populations in breast- and formula-fed infants during the first 18 months of life. *Microbiology* (2010) 156:3329–41. doi:10.1099/muc.0.043224-0

41. Shen Q, Tseby KM, Gibson GR, Ward RE. In vitro measurement of the impact of human milk oligosaccharides on the faecal microbiota of weaned formula-fed infants compared to a mixture of prebiotic fructooligosaccharides and galactooligosaccharides. *Lett Appl Microbiol* (2011) 52:337–43. doi:10.1111/j.1472-765X.2011.03005.x

42. Albesharat R, Ehrmann MA, Korakli M, Yazaji S, Vogel RF. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. *Syst Appl Microbiol* (2011) 34:48–55. doi:10.1016/j.syapm.2010.12.001

43. Ryding EL, Wijma K, Wijma B. Psychological impact of emergency caesarean section in comparison with elective caesarean section, instrumental and normal vaginal delivery. *J Psychosom Obstet Gynaecol* (1998) 19:135–44. doi:10.3109/01674829809025691

44. Scheinin M, Scheinin H, Ekblad U, Kanto J. Biological correlates of mental stress related to anticipated caesarean section. *Acta Anaesthesiol Scand* (1990) 34:640–4. doi:10.1111/j.1399-6576.1990.tb03163.x

45. Cabrera-Rubio R, Collado MC, Latinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. *Am J Clin Nutr* (2012) 96:534–51. doi:10.3945/ajcn.112.037382

46. Bedford Russell AR, Murch SH. Could peripartum antibiotics have delayed health consequences for the infant? *BJOG* (2006) 113:758–65. doi:10.1111/j.1470-000x.2006.00194.x

47. Loughran PG, Moore J, Dundee JW. Maternal stress response associated with caesarean delivery under general and epidural anaesthesia. *Br J Obstet Gynaecol* (1986) 93:934–9. doi:10.1111/j.1471-0528.1986.tb08113.x

48. Scheinin M, Scheinin H, Eklad U, Kanto J. Biological correlates of mental stress related to anticipated caesarean section. *Acta Anaesthesiol Scand* (1990) 34:640–4. doi:10.1111/j.1399-6576.1990.tb03163.x

49. Boudry G, Morisse A, Seve B, Hucourt-Luron LE. Effect of milk formula protein content on intestinal barrier function in a porcine model of LBW neonates. *Pediatr Res* (2011) 69:4–9. doi:10.1203/PDR.0b013e31821f6d13

50. Dantzer R, O’Connor JC, Lawson MA, Kelley KW. Inflammation-associated sickness and depression: when the immune system subjugates the brain. *Nat Rev Neurosci* (2008) 9:46–56. doi:10.1038/nrn2297

51. Falck JR, O’Connor JC, Lawson MA, Kelley KW. Inflammation-associated depression: from serotonin to kynurenicine. *Psychoneuroendocrinology* (2011) 36:426–36. doi:10.1016/j.psyneuen.2010.09.012

52. Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour – epi- genetic regulation of the gut-brain axis. *Genes Brain Behav* (2014) 13:69–86. doi:10.1111/gbb.12109

53. Vanhoutte NM, Renthal W, Kumar A, Nestler EI. Epigenetic regulation in psychiatric disorders. *Nat Rev Neurosci* (2010) 11:885–901. doi:10.1038/nrn2952

54. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. *Bioessays* (2011) 33:574–81. doi:10.1002/bies.201100024

Conflicting Interest of Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 02 October 2014; accepted: 12 January 2015; published online: 02 February 2015.

Citation: Gur TL, Worly BL and Bailey MT (2015) Stress and the commensal microbiota: importance in parturition and infant neurodevelopment. *Front. Psychiatry* 6:5. doi: 10.3389/fpsyt.2015.00005

This article was submitted to Affective Disorders and Psychosomatic Research, a section of the journal Frontiers in Psychiatry. Copyright © 2015 Gur, Worly and Bailey. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.