ON FUNCTION THEORY IN QUANTUM DISC:
A q-ANALOGUE OF BEREZIN TRANSFORM

D. Shklyarov S. Sinel’shchikov L. Vaksman

Institute for Low Temperature Physics & Engineering
National Academy of Sciences of Ukraine

Let α be a positive number.

Section 1 of this work contains a study of Toeplitz-Bergman operators with finite symbols in the quantum disc, and section 4 deals already with Toeplitz-Bergman operators with bounded symbols. An alternate way of producing Toeplitz-Bergman operators with polynomial symbols is described in section 7 (lemma 7.2).

Section 2 introduces a Berezin transform $B_{q,\alpha}$ for finite functions in the quantum disc; the same is done in section 4 for bounded functions. An alternate way of constructing a Berezin transform for a polynomial function is described in sections 6, 7 (proposition 6.6 and lemma 7.2).

An asymptotic expansion (3.2), (3.6) for a Berezin transform for a finite function is obtained in section 3; a similar expansion (5.2) for the case of a bounded function can be found in section 5. An application of the latter result to formal series with polynomial coefficients in section 8 affords the main result of this work (theorem 8.4).

We use the background and notation used in [8, 9, 10].

1 Toeplitz-Bergman operators with finite symbols

Consider the covariant algebra $\mathbb{C}[z]_q$ (see [6]). Algebraically it is isomorphic to the polynomial algebra $\mathbb{C}[z]$, and the $U_q\mathfrak{sl}_2$-action is determined by the relations

$$K^{\pm 1}z = q^{\pm 2}z, \quad Fz = q^{1/2}.$$

We also follow [12] in using a covariant (left) $\mathbb{C}[z]_q$-module with the generator \mathbb{T} and the relations

$$K^{\pm 1}\mathbb{T} = q^{\pm(2\alpha+1)}\mathbb{T}, \quad F\mathbb{T} = 0.$$

Denote this covariant module by $\mathbb{C}[z]_{q,\alpha}$.

Let $F_{q,\alpha} \subset \text{End}(\mathbb{C}[z]_{q,\alpha})$ be the covariant algebra of linear operators $A : z^j \mapsto \sum_{m \in \mathbb{Z}_+} a_{mj}z^m$, $j \in \mathbb{Z}_+$, with finitely many nonzero matrix elements a_{mj}. In virtue of this definition, $F_{q,\alpha} \mapsto \mathbb{C}[z]_{q,\alpha} \otimes \mathbb{C}[z]_{q,\alpha}$

Our immediate purpose is to construct a morphism of $U_q\mathfrak{sl}_2$-modules $D(U)_q \to F_{q,\alpha}$ which is normally called a Toeplitz quantization.
Remind the notation (see [8]):

\[
\int_U q \, f \, d\nu_\alpha = \frac{1 - q^{4\alpha}}{1 - q^2} \int_U (1 - zz^*)^{2\alpha + 1} d\nu,
\]

\[
(f_1, f_2)_{q, \alpha} = \int_U f_2^* f_1 d\nu_\alpha.
\] (1.1)

Form a completion of the linear space \(D(U)_q \) with respect to the norm \(\|f\|_{q, \alpha} = (f, f)_{q, \alpha}^{1/2} \). It is easy to show that this Hilbert space admits an embedding into \(D(U)'_q \) and is canonically isomorphic to the space \(L^2_{q, \alpha} \) defined in [8].

Let \(P_{q, \alpha} \) be the orthogonal projection in \(L^2_{q, \alpha} \) onto the closure \(H^2_{q, \alpha} \) of the subspace \(\mathbb{C}[z]_{q, \alpha} \subset L^2_{q, \alpha} \). Given \(\hat{f} \in D(U)_q \), we call the linear operator

\[
\hat{f} : \mathbb{C}[z]_{q, \alpha} \to \mathbb{C}[z]_{q, \alpha}; \quad \hat{f} : \psi \mapsto P_{q, \alpha}(\hat{f} \psi), \quad \psi \in \mathbb{C}[z]_{q, \alpha}
\]
a Toeplitz-Bergman operator with the finite symbol \(\hat{f} \). This is well defined, as one can see from

Proposition 1.1 With \(\hat{f} \in D(U)_q \), for all but finitely many \(m, j \in \mathbb{Z}_+ \) the integral

\[
I_{m,j} = \int_{U_q} z^m \hat{f} z^j d\nu_\alpha
\]
is zero.

Proof. It was shown in [8] that for any \(\hat{f} \in D(U)_q \) one has \(z^N \hat{f} = \hat{f} z^N = 0 \) for some \(N \in \mathbb{N} \). Hence \(I_{m,j} = 0 \) if \(\max(m, j) \geq N \).

A straightforward consequence of proposition 1.1 is that the Toeplitz-Bergman operator with a finite symbol belongs to the covariant algebra \(F_{q, \alpha} \).

Proposition 1.2 Toeplitz quantization \(D(U)_q \to F_{q, \alpha} \), \(f \mapsto \hat{f} \), is a morphism of \(U_q \mathfrak{sl}_2 \)-modules.

Proof. One can deduce from the invariance of the scalar product in \(\mathbb{C}[z]_{q, \alpha} \) and the covariance of the left \(\mathbb{C}[z]_{q} \)-module \(\mathbb{C}[z]_{q, \alpha} \) that the linear map

\[
D(U)_q \otimes \mathbb{C}[z]_{q, \alpha} \to \mathbb{C}[z]_{q, \alpha}; \quad \hat{f} \otimes \psi \mapsto P_{q, \alpha}(\hat{f} \psi)
\]
is a morphism of \(U_q \mathfrak{sl}_2 \)-modules. On the other hand, we need to demonstrate that the linear map

\[
D(U)_q \to \mathbb{C}[z]_{q, \alpha} \otimes \mathbb{C}[z]_{q, \alpha}^*; \quad \hat{f} \mapsto \hat{f}
\]
(the tensor product here requires no completion due to proposition 1.1). Observe that the two statements are equivalent to \(U_q \mathfrak{sl}_2 \)-invariance of the same element of the corresponding completion of the tensor product \(F_{q, \alpha} \otimes D(U)'_q \), which is determined by the canonical isomorphisms \(\text{End}_\mathbb{C}(V_1, V_2) \simeq V_2 \hat{\otimes} V_1^* \), \((V_1 \otimes V_2)^* \simeq V_2^* \hat{\otimes} V_1^* \).
Remind the notation $\text{Fun}(U)_q = \text{Pol}(\mathbb{C})_q + D(U)_q$. A very important construction of \[8\] was the representation T of $\text{Fun}(U)_q$ in the infinitely dimensional vector space H. A basis in H was formed by the vectors $v_j = T(z^j)v_0$, $j \in \mathbb{Z}_+$ (see \[8\]). T provides a one-to-one map between the space of finite functions $D(U)_q$ and the space of linear operators in H whose matrices in the basis $\{v_j\}_{j \in \mathbb{Z}_+}$ have finitely many non-zero entries. For $j \in \mathbb{Z}_+$, let f_j stand for such finite function that $T(f_j)v_k = \delta_{jk}v_k$, $k \in \mathbb{Z}_+$.

The relation $(1 - zz^*)(v_j = q^{2j}v_j$, $j \in \mathbb{Z}_+$, motivates the following definition:

$$
(1 - zz^*)^\lambda \overset{\text{def}}{=} \sum_{n=0}^\infty q^{2n\lambda} f_n, \quad \lambda \in \mathbb{C}.
$$

(The series converges in the topological space $D(U)_q'$.)

The work \[9\] presents an explicit form of the invariant integral in the quantum disc. It is easy to show that for any finite function f

$$
\int_{U_q} f d\nu = (1 - q^2) \text{tr} T(f(1 - zz^*)^{-1}).
$$

Remark 1.3. Let \hat{f}_0 be the Toeplitz-Bergman operator with symbol f_0. It follows from the relations $z^* f_0 = f_0 z = 0$, $\int_{U_q} f_0 d\nu = 1 - q^2$ that

$$
\hat{f}_0 : z^j \mapsto \begin{cases} 1 - q^{4j} & , \ j = 0 \\ 0 & , \ j \neq 0 \end{cases}.
$$

Now the relation (1.1), the trace properties and the definition of $D(U)_q'$ imply

Lemma 1.4

1. For all $f \in D(U)_q$, $\lambda \in \mathbb{C}$

$$
\int_{U_q} f(z)(1 - zz^*)^\lambda d\nu = \int_{U_q} (1 - zz^*)^\lambda f(z) d\nu,
$$

2. $\int_{U_q} f_1(z)f_2(z)(1 - zz^*)d\nu(z) = \int_{U_q} f_2(z)f_1(z)(1 - zz^*)d\nu(z)$

for all $f_1(z) \in D(U)_q'$, $f_2(z) \in D(U)_q$. The following proposition describes an integral representation for matrix elements of Toeplitz-Bergman operator.

\[98x672\]
Proposition 1.5 Let $\hat{\circ} f \in D(U)_q$ and $\hat{f} : \mathbb{C}[z]_{q, \alpha} \to \mathbb{C}[z]_{q, \alpha}; \hat{f} : z^j \mapsto \sum_{m \in \mathbb{Z}_+} \hat{f}_{mj} z^m$ be a Toeplitz-Bergman operator with symbol $\circ f$. Then

$$\hat{f}_{mj} = \frac{1 - q^{4\alpha}}{1 - q^2} \int_{U_q} P_{z,mj} \hat{f} (z) d\nu(z),$$

with

$$P_{z,mj} = \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m} q^{2j} z^j (1 - z z^*)^{2\alpha+1} z^m.$$ \hspace{1cm} (1.2)

Proof. Apply the relation

$$(z^m, z^l)_{q, \alpha} = \frac{(q^2; q^2)_m}{(q^{4\alpha+2}; q^2)_m} \delta_{ml}, \quad m, l \in \mathbb{Z}_+$$

to get

$$\hat{f}_{mj} = \frac{(\hat{f} z^m, z^j)_{q, \alpha}}{(z^m, z^m)_{q, \alpha}} = \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m} \int_{U_q} z^m \hat{f} z^j d\nu_{\alpha} =$$

$$= \frac{1 - q^{4\alpha}}{1 - q^2} \cdot \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m} \int_{U_q} z^m \hat{f} z^j (1 - z z^*)^{2\alpha+1} d\nu.$$ \hspace{1cm} (1.3)

Hence, by lemma 1.4,

$$\hat{f}_{mj} = \frac{1 - q^{4\alpha}}{1 - q^2} \cdot \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m} \int_{U_q} (1 - z z^*) z^j (1 - z z^*)^{2\alpha} z^m \hat{f} d\nu. \hspace{1cm} (1.4)$$

It remains to apply the relation

$$(1 - z z^*) z = q^2 z (1 - z z^*). \hspace{1cm} \square$$

Remark 1.6. The matrix $P_z = (P_{z,mj})_{m,j \in \mathbb{Z}_+}$ is a q-analogue for the matrix of a one-dimensional orthogonal projection onto the subspace generated by the vector k_z from an overfull system (see [1]). A q-analogue of the overfull system itself is presented in the Appendix.

Remark 1.7. It follows from proposition 1.2 and the relation $U_q \mathfrak{sl}_2 \cdot \hat{f}_0 = F_{q, \alpha}$ to be proved later on (see proposition 6.4) that the map $D(U)_q \to F_{q, \alpha}, f \mapsto \hat{f}$, given by Toeplitz quantization is onto.

2 Berezin transform: finite functions

Consider a $U_q \mathfrak{sl}_2$-module V and the covariant algebra $\text{End}_\mathbb{C}(V)_f \simeq V \otimes V^*$. There is a well known (see [2, 3]) formula for an invariant integral

$$\text{tr}_q : \text{End}_\mathbb{C}(V)_f \to \mathbb{C}, \quad \text{tr}_q : A \mapsto \text{tr}(A \cdot K^{-1}).$$
In the case $V = \mathbb{C}[z]_{q, \alpha}$ and $A : z^j \mapsto \sum_{m \in \mathbb{Z}_+} a_{mj}z^m$ being an element of the covariant algebra $F_{q, \alpha} \subset \text{End}_\mathbb{C}(\mathbb{C}[z]_{q, \alpha})$, one has $\text{tr}_q(A) = \sum_{k \in \mathbb{Z}_+} a_{kk}q^{-2k}$.

Given a linear operator $\hat{f} \in F_{q, \alpha}$, a distribution $f \in D(U)''_q$ is said to be a symbol of \hat{f} if for all $\psi \in D(U)_q$
\[
\int_{U_q} f \cdot \psi \, d\nu = \frac{1 - q^{2\alpha}}{1 - q^2} \text{tr}_q(\hat{f} \psi). \tag{2.1}
\]
(Here $\hat{\psi}$ is the Toeplitz-Bergman operator with symbol ψ.)

This definition is a q-analogue of the Berezin’s definition, as one can observe from relation (3.15) in [1].

Proposition 2.1 The covariant symbol of a linear operator $\hat{f} : z^j \mapsto \sum_{m \in \mathbb{Z}_+} \hat{f}_{jm}z^m$, $j \in \mathbb{Z}_+$, from the algebra $F_{q, \alpha}$, is given by
\[
f = \text{tr}_q(\hat{f} \cdot P_z) = \sum_{j, m \in \mathbb{Z}_+} \hat{f}_{jm}P_{z, mj}q^{-2j}. \tag{2.2}
\]

Proof. By a virtue of (1.2)
\[
\text{tr}_q(\hat{f} \psi) = \sum_{j, m \in \mathbb{Z}_+} \hat{f}_{jm} \psi_{mj}q^{-2j} = \sum_{j, m \in \mathbb{Z}_+} \hat{f}_{jm} \frac{1 - q^{4\alpha}}{1 - q^2} \int_{U_q} P_{z, mj} \psi \, d\nu(z) \cdot q^{-2j} = \\
= \int_{U_q} \left(\frac{1 - q^{4\alpha}}{1 - q^2} \sum_{j, m \in \mathbb{Z}_+} \hat{f}_{jm}P_{z, mj} \cdot q^{-2j} \right) \psi \, d\nu(z). \quad \square
\]

Note that the integral representation (2.2) is a q-analogue of the relation (3.4) in [1].

On can deduce from the covariance of algebras $D(U)''_q$, $F_{q, \alpha}$, the invariance of the integrals $\nu : D(U)_q \to \mathbb{C}$, $\text{tr}_q : F_{q, \alpha} \to \mathbb{C}$, the “integration in parts” formula [1, proposition 2.1], and proposition 1.2 the following

Proposition 2.2 The linear map $F_{q, \alpha} \to D(U)''_q$, $\hat{f} \mapsto f$, which takes a linear operator to its covariant symbol, is a morphism of $U_q \mathfrak{sl}_2$-modules.

As in [13], we call the covariant symbol f for the Toeplitz-Bergman operator \hat{f} with symbol $\hat{f} \in D(U)_q$ a Berezin transform of the function \hat{f}. The associated transform map will be denoted by $B_{q, \alpha}$:
\[
B_{q, \alpha} : D(U)_q \to D(U)''_q; \quad B_{q, \alpha} : \hat{f} \mapsto f.
\]

Propositions 1.2 and 2.2 imply

Proposition 2.3 The Berezin transform is a morphism of $U_q \mathfrak{sl}_2$-modules.
Example 2.4. Let $\hat{f} \in F_{q,\alpha}$ be given by $\hat{f}z^j = \begin{cases} 1, & j = 0 \\ 0, & j \neq 0 \end{cases}$. Then one has $f = (1 - zz^*)^{2\alpha + 1}$.

Hence, $B_{q,\alpha}f_0 = (1 - q^{4\alpha})(1 - zz^*)^{2\alpha + 1}$ since $\hat{f}_0 : z^j \mapsto \begin{cases} 1 - q^{4\alpha}, & j = 0 \\ 0, & j \neq 0 \end{cases}$ (see Example 1.3).

To conclude, we prove that Berezin transform is an integral operator, and find its kernel. In this way, a q-analogue of the relation (4.8) from [1] is to be obtained.

Proposition 2.5 For all $\hat{f} \in D(U)_q^+$, $$(\hat{B}_{q,\alpha} \hat{f})(z) = \int_{U_q} b_{q,\alpha}(z, \zeta) \hat{f}(\zeta) d\nu(\zeta),$$

with $b_{q,\alpha} \in D(U \times U)'_q$ being given by

$$b_{q,\alpha}(z, \zeta) = \frac{1 - q^{4\alpha}}{1 - q^2} (1 - zz^*)^{2\alpha + 1}(1 - \zeta \zeta^*)^{2\alpha + 1} \{(q^2 z^* \zeta; q^2)^{-2\alpha + 1} \cdot (z \zeta^*; q^2)^{-2\alpha + 1}\}.$$ (See [10] for the definition of $\{\cdot, \cdot\}$.)

Proof. Consider the linear operator

$$\hat{B}_{q,\alpha} : D(U)_q \to D(U)'_q, \quad \hat{B}_{q,\alpha} : \hat{f} \mapsto \int_{U_q} b_{q,\alpha}(z, \zeta) \hat{f}(\zeta) d\nu(\zeta).$$

Its kernel coincides up to a constant multiple to the invariant kernel $k_{22}^{-(2\alpha + 1)} \cdot k_{11}^{-(2\alpha + 1)}$ (see [10]). Hence, $\hat{B}_{q,\alpha}$ is a morphism of $U_q\mathfrak{sl}_2$-modules by [4, proposition 4.5]. Note that $B_{q,\alpha}$ possesses the same property. It was shown in [9] that $f_0 \in D(U)_q$ generates the $U_q\mathfrak{sl}_2$-module $D(U)_q$. In this context, the desired equality $\hat{B}_{q,\alpha}f_0 = B_{q,\alpha}f_0$ becomes a consequence of $\hat{B}_{q,\alpha}f_0 = (1 - q^{4\alpha})(1 - zz^*)^{2\alpha + 1} = B_{q,\alpha}f_0$. \qed

3 Berezin transform and Laplace-Beltrami operator

The following lemma is deduced from the relation

$$(1 - zz^*)^\lambda = \sum_{n=0}^{\infty} q^{2n\lambda} f_n, \quad \lambda \in \mathbb{C}$$

and (1.3):

Lemma 3.1 For all $m, j \in \mathbb{Z}_+$ the following decomposition is valid in $D(U)^+_q$:

$$P_{z,mj} = \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m} \sum_{n=0}^{\infty} q^{4\alpha n} P^{(n)}_{z,mj},$$

with $P^{(n)}_{z,mj} = q^{2(j+n)} z^j \cdot f_n \cdot z^m \in D(U)_q$.

6
Let \(f, \psi \in D(U)_q \). Consider the integral \(\int_{U_q} \psi^* \cdot B_{q,\alpha} \circ f \ d\nu \) as a function of \(t = q^{4\alpha} \). Now proposition 2.1 and lemma 3.1 imply the analyticity of this function as \(t \in [0,1) \). Hence, one has

Proposition 3.2 There exists a unique sequence of \(U_q \mathfrak{sl}_2 \)-module morphisms \(B^{(n)}_{q} : D(U)_q \rightarrow D(U)'_q, n \in \mathbb{Z}_+ \), such that for all \(\circ f \in D(U)_q \)

\[
B_{q,\alpha} \circ f = \sum_{n=0}^{\infty} q^{4\alpha n} B^{(n)}_{q} \circ f. \tag{3.2}
\]

Our purpose is to prove that the linear operators \(B^{(n)}_{q} \) are polynomials of Laplace-Beltrami operator in the quantum disc.

Let \(p_j(t) = \sum_{k=0}^{j} \frac{(q^{-2j};q^2)_k}{(q^2;q^2)_k} q^{2k} \cdot \prod_{i=0}^{k-1} \left(1 - q^{2i} \left((1-q^2)^2 t + 1 + q^2 \right) + q^{4i+2} \right). \tag{3.3} \)

Lemma 3.3 \(p_j(\square)f_0 = q^{2j} \cdot f_j \) for all \(j \in \mathbb{Z}_+ \).

Proof. Remind [8] that for all \(l \in \mathbb{C} \) the basic hypergeometric series

\[
\varphi_l = _3\Phi_2 \left[(1 - z z^*)^{-1}, q^{-2l}, q^{2(l+1)}; q^2, q^2 \right],
\]

converge in \(D(U)'_q \), and

\[
\square \varphi_l = - \frac{(1 - q^{-2l})(1 - q^{2l+2})}{(1 - q^2)^2} \varphi_l.
\]

By a virtue of [8, §6], it suffices to show that for all \(l \in \mathbb{C} \)

\[
q^{-2j} \cdot \int_{U_q} \varphi_l^* \cdot p_j(\square)f_0 d\nu = \int_{U_q} \varphi_l^* f_j d\nu. \tag{3.4}
\]

After substituting \(l \) by \(T \) we find out that (3.4) is equivalent to

\[
p_j \left(- \frac{(1 - q^{-2l})(1 - q^{2(l+1)})}{(1 - q^2)^2} \right) = _3\Phi_2 \left[q^{-2j}, q^{-2l}, q^{2(l+1)}; q^2, q^2 \right].
\]

Prove this relation. By the definition of \(_3\Phi_2 \) one has

\[
= \sum_{k=0}^{j} \frac{(q^{-2j};q^2)_k}{(q^2;q^2)_k} \cdot \prod_{i=0}^{k-1} \left(1 - q^{2i} \cdot q^{2(l+1)} \right) \cdot q^{2k} =
\]

7
\[\sum_{k=0}^{j} \left(\frac{q^{2j}}{(q^2;q^2)_k} \right) \prod_{i=0}^{k-1} \left(1 + q^{2i} \cdot u + q^{4i+2} \right) \cdot q^{2k} \]

It remains to prove that

\[q^j \sum_{k=0}^{j-1} \left(\frac{q^{2k}}{(q^2;q^2)_k} \right) \prod_{i=0}^{k-1} \left(1 + q^{2i} \cdot u + q^{4i+2} \right) \cdot q^{2k} \]

For that, it suffices to exclude \(u \) by a substitution \(u = -(1-q^2) t - 1 - q^2 \).

The next statement refines essentially proposition 3.2.

Proposition 3.4 For all \(f \in D(U)_q \) the following expansion in \(D(U)'_q \) is valid:

\[B_{q,\alpha} f = (1 - q^{4\alpha}) \sum_{j \in \mathbb{Z}_+} q^{4\alpha \cdot j} \cdot p_j(\square) f. \] (3.5)

Proof. One has the relation \(B_{q,\alpha} f_0 = (1 - q^{4\alpha}) \sum_{k \in \mathbb{Z}_+} q^{(4\alpha+2)k} f_k \) (see example 2.4). Hence, in the special case \(\tilde{\circ} f = f_0 \) our statement follows from lemma 3.3. It remains to take into account that \(f_0 \) generates the \(U_q \mathfrak{sl}_2 \)-module \(D(U)'_q \), and the operators \(B_{q,\alpha}, \square \) are morphisms of \(U_q \mathfrak{sl}_2 \)-modules (see [8, proposition 2.1]). \(\square \)

Corollary 3.5

\[B_q^{(n)} = \begin{cases}
I & , n = 0 \\
p_n(\square) - p_{n-1}(\square) & , n \in \mathbb{N}
\end{cases} \] (3.6)

4 **Toeplitz-Bergman operators with bounded symbols**

It is very well known [5, 6] that the \(\ast \)-algebra \(\text{Pol}(\mathbb{C})_q \) has a unique up to unitary equivalence faithful irreducible representation. As it was described in [8], this representation \(T \) lives in a Hilbert space \(H \) constructed as a completion of the pre-Hilbert space \(H \). Let \(L(H) \) be the algebra of all bounded operators in \(H \) and \(H' \) the vector space of all bounded antilinear functionals on \(H \). One has

\[\text{End}_{\mathbb{C}}(H) \subset L(H) \subset \text{Hom}_{\mathbb{C}}(H, H'). \]

It was demonstrated in [8] that the map \(T : \text{Pol}(\mathbb{C})_q \rightarrow L(H) \) is extendable by a continuity up to the isomorphism \(T : D(U)'_q \cong \text{Hom}_{\mathbb{C}}(H, H') \).

We call a distribution \(f \in D(U)'_q \) bounded if \(T(f) \in L(H) \). Impose the notation

\[L^\infty_q = \{ f \in D(U)'_q \mid T(f) \in L(H) \}, \quad \| f \|_\infty = \| T(f) \|. \]

(It is easy to show that the algebra \(L^\infty \) defined in this way is isomorphic to the enveloping von Neumann algebra of the \(C^* \)-algebra of continuous functions in the quantum disk, which was considered, in particular, in [4]).
Consider the subspaces
\[C[z]_{q,\infty} = \{ f \in D(U)_q \mid f \cdot z = 0 \}, \]
\[H^2_{q,\infty} = \{ f \in L^2(U)_q \mid f \cdot z = 0 \}, \]
\[\mathbb{C}[[z]]_{q,\infty} = \{ f \in D(U)'_q \mid f \cdot z = 0 \}. \]

It follows from [9, proposition 3.3] that
\[C[z]_{q,\infty} = C[z] \cdot f_0, \quad \mathbb{C}[[z]]_{q,\infty} = \mathbb{C}[[z]] \cdot f_0, \]
and hence
\[H \simeq C[z]_{q,\infty}, \quad \Pi \simeq H^2_{q,\infty}, \quad H' \simeq \mathbb{C}[[z]]_{q,\infty}. \]

\(T \) is unitarily equivalent to the representation \(\hat{T} \) of \(\text{Pol}(\mathbb{C})_q \) in \(H^2_{q,\infty} \) given by
\[\hat{T} : \psi \mapsto f \cdot \psi; \quad f \in \text{Pol}(\mathbb{C})_q, \quad \psi \in H^2_{q,\infty} \subset D(U)'_q. \]

Thus, a distribution \(f \in D(U)'_q \) is bounded iff the linear operator \(\hat{T}(f) \) is in \(L(H^2_{q,\infty}) \); in this case \(\|f\|_{\infty} = \|\hat{T}(f)\|_{\infty} \).

The following proposition justifies the use of the symbol \(\infty \) in the notation for the vector spaces \(C[z]_{q,\infty}, H^2_{q,\infty}, \mathbb{C}[[z]]_{q,\infty} \).

Proposition 4.1 For any polynomial \(\psi \in \mathbb{C}[z]_q \)
\[\lim_{\alpha \to \infty} (\psi, \psi)_{q,\alpha} = \frac{1}{1-q^2} (\psi f_0, \psi f_0). \]

Proof.
\[(\psi, \psi)_{q,\infty} \overset{\text{def}}{=} \lim_{\alpha \to \infty} \frac{1-q^2}{1-q^{4\alpha}} (\psi, \psi)_{q,\alpha} = \lim_{\alpha \to \infty} \int_{U_q} \psi^* \psi \sum_{n=0}^{\infty} q^{4n+4\alpha} f_{n\alpha} d\nu = \int_{U_q} \psi^* \psi f_0 d\nu = (\psi f_0, \psi f_0). \]

The following remark will not be used in the sequel. Proposition 4.1 allows one to prove that the covariant algebra \(D(U)_q \) is isomorphic to a "limit \(F_{q,\infty} \) of covariant algebras \(F_{q,\alpha} \) as \(\alpha \to \infty \)". This leads to an alternate scheme of producing the covariant algebra \(D(U)_q \) of finite functions in the quantum disk. Under this scheme, at the first step a unitarizable Harish-Chandra module \(V_\alpha \) with lowest weight \(\alpha > 0 \) and the covariant algebras \(V_\alpha \otimes V_\alpha^* \to \text{End}_{\mathbb{C}}(V_\alpha) \) are constructed. The second step is in "passage to the limit" \(\lim_{\alpha \to +\infty} V_\alpha \otimes V_\alpha^* \) which is to be declared the algebra of finite functions in the quantum disk.

Finally, impose the notation
\[F_{q,\infty} \overset{\text{def}}{=} \text{End}_{\mathbb{C}}(C[z]_{q,\infty}, \mathbb{C}[[z]]_{q,\infty}). \]

It follows from the definitions that the representation \(\hat{T} \) is extendable up to a bijection \(\hat{T} : D(U)' \to F_{q,\infty} \).
It should be noted that $\text{Pol}(\mathbb{C})_q \subset L_q^\infty$. This can be deduced, for example, from the fact that the representation \hat{T} of $\text{Pol}(\mathbb{C})_q$ in the pre-Hilbert space $\mathbb{C}[z]_{q,\infty}$ is a *-representation of this algebra. Hence, $I - \hat{T}(z)\hat{T}(z^*) \geq 0$, $\|\hat{T}(z)\| = \|\hat{T}(z^*)\| = 1$.

Let A be a compact linear operator in a Hilbert space and $|A| \overset{\text{def}}{=} (A^*A)^{1/2}$. Consider the sequence of eigenvalues of $|A|$, with their multiplicities being taken into account:

$$s_1(A) \geq s_2(A) \geq \ldots .$$

The numbers $s_p(A)$, $p \in \mathbb{N}$, are called s-values of A.

Remind the notation S_∞ for the ideal of all compact operators in a Hilbert space, together with the notation

$$\|A\|_p = \left(\sum_{n \in \mathbb{N}} s_n(A)^p\right)^{1/p}, \quad S_p = \{A \in S_\infty | \|A\|_p < \infty\}, \quad p > 0,$$

for the normed ideals of von Neumann-Schatten (see [3]).

Lemma 4.2 For any function $\psi \in D(U)_q$

$$\|\psi\| = (1 - q^2)^{1/2} \cdot \|\hat{T}(\psi(1 - zz^*)^{-1})\|_2,$$

with $\|\psi\| = \left(\int_{U_q} |\psi|^2 d\nu\right)^{1/2}$.

Proof. It follows from (1.1) and the well known tracial properties of an operator $A \in S_1$ that

$$\|\psi\|^2 = (1 - q^2)\text{tr} \hat{T}(\psi^*\psi(1 - zz^*)^{-1}) = (1 - q^2)\text{tr} \hat{T}((1 - zz^*)^{-1/2}\psi^*\psi(1 - zz^*)^{-1/2}). \quad \Box$$

Corollary 4.3 Let $f \in L_q^\infty$, $\psi \in D(U)_q$, then $\hat{f} \psi \in L^2(d\nu)_q$ and $\|\hat{f} \psi\| \leq \|f\|_\infty \cdot \|\psi\|$.

Proof.

$$\|\hat{f} \psi\| = (1 - q^2)^{1/2}\|\hat{T}(f)\hat{T}(\psi(1 - zz^*)^{-1})\|_2 \leq (1 - q^2)^{1/2}\|\hat{T}(f)\| \cdot \|\hat{T}(\psi(1 - zz^*)^{-1/2})\|_2 = \|f\|_\infty \cdot \|\psi\|. \quad \Box$$

It follows from the boundedness of the multiplication operator by a bounded function \hat{f}:

$$D(U)_q \rightarrow L^2(d\nu)_q, \quad \psi \mapsto \hat{f} \psi$$

that it admits an extension by a continuity onto the entire space $L^2(d\nu)_q$. This allows one to define a Toeplitz-Bergman operator \hat{f} with symbol $\hat{0}f \in L_q^\infty$:

$$\hat{f} : H^2_{q,\alpha} \rightarrow H^2_{q,\alpha}; \quad \hat{f} : \psi \mapsto P_{q,\alpha}(\hat{0}f \psi).$$
By a virtue of corollary 4.3 one has

\[\| \hat{f} \| \leq \| \hat{f} \|_\infty, \]

with \(\| \hat{f} \| \) being the norm of the operator \(\hat{f} \) in \(H^2_{q,a} \). Thus we get a norm decreasing linear map \(L^\infty_q \to L(H^2_{q,a}), \hat{f} \mapsto \hat{f} \). This definition generalizes that of a Toeplitz-Bergman operator with finite symbol (see section 2).

5 Berezin transform: bounded functions

The \(U_q \mathfrak{sl}_2 \)-module \(\mathbb{C}[z]_{q,\alpha} \) is formed by polynomials \(\psi = \sum_{i \in \mathbb{Z}_+} a_i(\psi)z^i \). Consider a completion \(\mathbb{C}[[z]]_{q,\alpha} \) of this vector space in the topology of coefficientwise convergence, and impose the notation \(F_{q,\alpha} \overset{\text{def}}{=} \text{Hom}_\mathbb{C}(\mathbb{C}[z]_{q,\alpha}, \mathbb{C}[[z]]_{q,\alpha}) \) for the corresponding completion of \(F_{q,\alpha} \). Equip \(F_{q,\alpha} \) with the topology of pointwise (strong) convergence:

\[\lim_{n \to \infty} A_n = A \iff \forall \psi \in \mathbb{C}[z]_{q,\alpha} \lim_{n \to \infty} A_n \psi = A \psi. \]

Evidently, \(\mathbb{C}[z]_{q,\alpha} \subset H^2_{q,a} \subset \mathbb{C}[[z]]_{q,\alpha} \), and so

\[F_{q,\alpha} \subset L(H^2_{q,a}) \subset F_{q,\alpha}. \]

The representation operators of \(E, F, K^\pm \) in \(\mathbb{C}[z]_{q,\alpha} \) have degrees +1, −1, 0 respectively. Hence they are extendable by a continuity from \(\mathbb{C}[z]_{q,\alpha} \) onto \(\mathbb{C}[[z]]_{q,\alpha} \), and from \(F_{q,\alpha} \) onto \(F_{q,\alpha} \).

Of course, \(F_{q,\alpha} \) is a covariant bimodule over the covariant algebra \(F_{q,\alpha} \). It is easy to show that the linear functional

\[F_{q,\alpha} \otimes F_{q,\alpha} \to \mathbb{C}, \quad \hat{f} \otimes \hat{\psi} \mapsto \text{tr}_q(\hat{f} \hat{\psi}) \]

is extendable by a continuity up to a morphism of \(U_q \mathfrak{sl}_2 \)-modules \(F_{q,\alpha} \otimes F_{q,\alpha} \to \mathbb{C} \).

Define a covariant symbol \(f \in D(U)'_q \) of a linear operator \(\hat{f} \in F_{q,\alpha} \) by (2.1). The map \(F_{q,\alpha} \to D(U)'_q \) arising this way is a \(U_q \mathfrak{sl}_2 \)-module morphism.

In the following proposition we use notation \(\hat{f} \) for a linear operator without assuming it to be a Toeplitz-Bergman operator.

Proposition 5.1 Let \(\hat{f} \) be a linear operator

\[\hat{f} : \mathbb{C}[z]_{q,\alpha} \to \mathbb{C}[[z]]_{q,\alpha}, \quad \hat{f} : z^j \mapsto \sum_{m \in \mathbb{Z}_+} \hat{f}_{mj} z^m, \quad j \in \mathbb{Z}_+. \]

The series \(\sum_{j,m \in \mathbb{Z}_+} \hat{f}_{jm} P_{z,mj} q^{-2j} \) converges in \(D(U)'_q \) to the covariant symbol of \(\hat{f} \).

Proof. It follows from the results of section 1 that for any \(\hat{\psi} \in D(U)_q \) all but finitely many of integrals \(\int_{U_q} P_{z,mj} \hat{\psi} (z) d\nu(z) \) are zero. This allows one to reproduce literally the argument used in the proof of proposition 2.1. \(\square \)
Let \(\hat{\omega} \in L_q^\infty \), and \(\hat{f} \in L(H_{q,\alpha}^2) \subset \mathcal{F}_{q,\alpha} \) be the Toeplitz-Bergman operator with symbol \(\hat{\omega} \). We follow [13] in using the term "Berezin transform of the function \(\hat{f} \)" for the covariant symbol of the linear operator \(\hat{f} \).

Our purpose is to decompose the operator-function \(B_{q,\alpha} : L_q^\infty \to D(U'_q) \) into series in powers of \(t = q^{4\alpha} \) (cf. (3.5)).

One can use again the argument of proposition 1.5 to get (1.4) for all bounded symbols \(\hat{f} \in L_q^\infty \). An application of (1.1) and the fact that \(\hat{T}((1-zz^*)^{2\alpha}) \) is a trace class operator for all \(\alpha > 0 \), yields also

Proposition 5.2 For all \(\hat{\omega} \in L_q^\infty \), \(m, j \in \mathbb{Z}_+ \)

\[
\hat{f}_{mj} = \frac{(q^{4\alpha+2};q^2)_m}{(q^2;q^2)_m} \cdot (1 - q^{4\alpha}) \cdot \text{tr}\left(\hat{T}(z^j(1-zz^*)^{2\alpha}z^{*m})\hat{T}(\hat{f}) \right).
\]

Let \(\Theta \) be the vector space of holomorphic functions in the unit disc with values in the Banach algebra \(S_1 \) of trace class operators in \(\mathcal{M} \). (Each function \(Q(t) \) from \(\Theta \) admits an expansion into the power series \(Q(t) = \sum_{n \in \mathbb{Z}_+} t^n \cdot Q^{(n)} \) with \(\lim_{n \to \infty} ||Q^{(n)}||_1^n \leq 1 \)).

Proposition 5.3 For all \(j, m \in \mathbb{Z}_+ \)

\[
\sum_{n \in \mathbb{Z}_+} t^n \cdot \hat{T}(z^j \cdot f_n \cdot z^{*m}) \in \Theta.
\]

Proof. Remind that \(\hat{T}(z) \hat{T}(z^*) = 1 - \sum_{n \in \mathbb{Z}_+} q^{2n} \hat{T}(f_n) \), and that \(\hat{T}(f_n) \) are one-dimensional projections, \(n \in \mathbb{Z}_+ \). Hence \(||\hat{T}(z)|| = ||\hat{T}(z^*)|| = ||\hat{T}(f_n)||_1 = 1 \). Finally,

\[
||\hat{T}(z^j f_n z^{*m})||_1 \leq ||\hat{T}(z)||^j \cdot ||\hat{T}(f_n)||_1 \cdot ||\hat{T}(z^*)||^m = 1.
\]

Propositions 5.2, 5.3 and the definition of Berezin transform imply

Corollary 5.4 Let \(\psi \in D(U)_q \). There exists a unique function \(Q_\psi(t) \in \Theta \) such that

\[
\int_{U_q} (B_{q,\alpha} \hat{\omega}) \psi d\nu = \text{tr}\left(\hat{T}(\hat{\omega}) Q_\psi(q^{4\alpha}) \right) \tag{5.1}
\]

for all \(\hat{\omega} \in L_q^\infty \).

Proof. The uniqueness of \(Q_\psi(t) \) is evident. In fact, given such \(A \in L(\mathcal{M}) \) that for all \(\hat{f} \in D(U)_q \) one has \(\text{tr}\left(\hat{T}(\hat{\omega}) A \right) = 0 \), then surely \(A = 0 \). The existence of \(Q_\psi \in \Theta \) follows from propositions 5.2, 5.3 and the definition of Berezin transform.

The coefficients of the Taylor series for the holomorphic function \(Q_\psi(t) \) at \(t = 0 \) are trace class operators. One can use (3.5) and (1.1) to express those coefficients via the operators \(\hat{T}(p_j(\hat{\square})\psi) \), \(j \in \mathbb{Z}_+ \). Thus we get the following
Proposition 5.5 Let $\hat{f} \in L_\infty^q$.

1. For all $\alpha > 0$ one has an expansion in $D(U)'_q$

 $$B_{q,\alpha} \hat{f} = \sum_{n \in \mathbb{Z}_+} q^{4\alpha n} B_q^{(n)} \hat{f}.$$

2. For all $\psi \in D(U)_q$ one has the asymptotic expansion

 $$\int_{U_q} \left(B_{q,\alpha} \hat{f} \right) \psi \, d\nu \sim_{\alpha \to +\infty} \sum_{n=0}^{\infty} q^{4\alpha n} \int_{U_q} \left(B_q^{(n)} \hat{f} \right) \psi \, d\nu. \tag{5.2}$$

Here $B_q^{(n)} : D(U)'_q \to D(U)'_q$ are polynomial functions of the Laplace-Beltrami operator, given explicitly by (3.6).

6 Covariant symbols

The notation \hat{z}, \hat{z}^* in \cite{8} stand for the Toeplitz-Bergman operators with symbols z, z^*. Those are defined in the graded vector space $\mathbb{C}[z]_{q,\alpha}$, with $\deg(\hat{z}) = +1, \deg(\hat{z}^*) = -1$. Hence for any matrix $(a_{ij})_{i,j \in \mathbb{Z}_+}$ with numerical entries, series

$$\hat{f} = \sum_{i,j \in \mathbb{Z}_+} a_{ij} \hat{z}^i \hat{z}^{*j} \tag{6.1}$$

converge in the topological vector space $\mathcal{F}_{q,\alpha} = \text{Hom}_\mathbb{C}(\mathbb{C}[z]_{q,\alpha}, \mathbb{C}[[z]]_{q,\alpha})$.

Proposition 6.1 $\hat{f} z^n = \sum_{m \in \mathbb{Z}_+} b_{mn} z^m, \ n \in \mathbb{Z}_+$,

with $b_{mn} = \min(m,n) \sum_{j=0}^{\min(m,n)} \frac{(q^{2m};q^{-2})_n \cdot (q^{2n};q^{-2})_j}{(q^{4\alpha+2m};q^{-2})_n \cdot (q^{4\alpha+2n};q^{-2})_j} a_{m-j,n-j}$.\[\]

Proof. It suffices to apply the relations

$$\hat{z}(z^m) = z^{m+1}, \quad \hat{z}^*(z^m) = \begin{cases} \frac{1-q^{2m}}{1-q^{4\alpha+2m}} \cdot z^{m-1}, & m \neq 0 \\ 0, & m = 0 \end{cases} \tag{6.2}$$

which were established in \cite{8, section 7} (see also \cite{5}). \[\]

Corollary 6.2 For any linear operator $\hat{f} \in \mathcal{F}_{q,\alpha}$ there exists a unique decomposition (6.1).
EXAMPLE 6.3. Consider the linear operator \(\hat{f}_0 : z^j \mapsto \begin{cases} 1 - q^{4\alpha}, & j = 0 \\ 0, & j \neq 0 \end{cases} \), \(j \in \mathbb{Z}_+ \). Prove that
\[
\hat{f}_0 = (1 - q^{4\alpha}) \sum_{k=0}^{\infty} \frac{(q^{-4\alpha-2}; q^2)_k}{(q^2; q^2)_k} q^{(4\alpha+2)k} z^k \bar{z}^{*k}.
\] (6.3)

Pass from the equality of operators to the equalities of their matricial elements with respect to the base \(\{z^n\}_{n \in \mathbb{Z}_+} \). Of course, all the non-diagonal elements are zero. An identification of the diagonal elements yields
\[
\sum_{k=0}^{j} \frac{(q^{-4\alpha-2}; q^2)_k}{(q^2; q^2)_k} \cdot \frac{(q^{2j}; q^{-2})_k}{(q^{4\alpha+2}; q^{-2})_k} \cdot q^{(4\alpha+2)k} = \delta_{j0}.
\] (6.4)

It suffices to consider the case \(j > 0 \). Multiply (6.4) by \(\frac{(q^{4\alpha+2j}; q^{-2})_j}{(q^2; q^2)_j} \) to get
\[
\sum_{k=0}^{j} \frac{(q^{-4\alpha-2}; q^2)_k}{(q^2; q^2)_k} \cdot \frac{(q^{4\alpha+2}; q^2)_j-k}{(q^2; q^2)_j-k} \cdot q^{(4\alpha+2)k} = 0.
\]

That is,
\[
\sum_{k+m=j} \frac{(q^{-4\alpha-2}; q^2)_k}{(q^2; q^2)_k} \cdot q^{(4\alpha+2)k} \cdot \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m} = 0.
\]

So, it remains to consider the q-binomial series (see [4]):
\[
a(t) = \sum_{k \in \mathbb{Z}_+} \frac{(q^{-4\alpha-2}; q^2)_k}{(q^2; q^2)_k} \cdot q^{(4\alpha+2)k} \cdot t^k = \frac{(t; q^2)_{\infty}}{(q^{4\alpha+2}t; q^2)_{\infty}},
\]
\[
b(t) = \sum_{m \in \mathbb{Z}_+} \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m} \cdot t^m = \frac{(q^{4\alpha+2}t; q^2)_{\infty}}{(t; q^2)_{\infty}},
\]
and to observe that \(a(t) \cdot b(t) = 1 \).

It was noted in section 1 that \(\hat{f}_0 \) is a Toeplitz-Bergman operator with symbol \(f_0 \). This element generates the topological 2-module \(F_{q,\alpha} \), as one can see from

Proposition 6.4 \(U_q \mathfrak{sl}_2 \hat{f}_0 = F_{q,\alpha} \).

Proof. Since for all \(i, j, n \in \mathbb{Z}_+ \), \(\hat{z}^i \hat{f}_0 \hat{z}^n = z^j \mapsto (1 - q^{4\alpha}) \cdot \frac{(q^j; q^2)_n}{(q^{4\alpha}; q^2)_n} \cdot \delta_{jn} z^i \), the linear operators \(\{\hat{z}^i \hat{f}_0 \hat{z}^n\}_{i, n \in \mathbb{Z}_+} \) generate \(F_{q,\alpha} \) as a vector space. It remains to show that all those operators are in the \(U_q \mathfrak{sl}_2 \)-module generated by \(\hat{f}_0 \). For that, it suffices to reproduce the proof of [1] theorem 3.9]. One has only to alter the notation for the generators (now they are \(\hat{z}, \hat{z}^*, \hat{f}_0 \)), together with the constants in formulae which describe the action of \(X^\pm \) on \(f_0 \):
\[
X^+ \hat{f}_0 = c' \hat{z} \cdot \hat{f}_0; \quad X^- \hat{f}_0 = c'' \hat{f}_0 \cdot \hat{z}^*; \quad c', c'' \neq 0.
\]

These relations follow from proposition 1.2, [2] proposition 3.8], and
\[
C \hat{z} \hat{f}_0 = C \hat{z} \hat{f}_0, \quad C \hat{f}_0 \hat{z}^* = C \hat{f}_0 \hat{z}^*.
\]
The latter relations can be deduced from
\[\text{Im} \ f_0 = \text{Im} \ f_0 z^* = \mathbb{C}; \quad \text{Ker} \ f_0 = \text{Ker} \ f_0 z^* = \mathbb{C}^\perp. \]

It was shown in [section 1] that for any \(f \in D(U)_q \) there exists a unique decomposition
\[
a = \sum_{j,k \in \mathbb{N}_+} a_{jk} z^j z^k \]
similar to (6.1).

Example 6.5. Prove that
\[
(1 - q^{4\alpha})(1 - z^*)^{2n+1} = (1 - q^{4\alpha}) \sum_{k \in \mathbb{N}_0} \left(\frac{q^{-(4\alpha+2)}; q^2}{q^2; q^2} \right)_k q^{4\alpha+2k} z^k z^k.
\]

Apply the operator \(\hat{T} \) to the both parts of (6.5) and identify the matricial elements with respect to the base \(\{ z^m \} \) (it suffices to consider the diagonal elements).

Use the relations \(\bullet \)
\[
\hat{T}(z) z^m = z^{m+1}, \quad \hat{T}(z^*) z^m = \begin{cases} (1 - q^{2m}) z^{m-1}, & m \neq 0 \\ 0, & m = 0 \end{cases}
\]
to get
\[
\sum_{k=0}^j \frac{q^{4\alpha-2}; q^2}{q^2; q^2} \cdot \frac{q^{4\alpha+2k} q^{4\alpha+2k}}{q^2; q^2} = q^{2j(2\alpha+1)},
\]
\[
\sum_{k+m=j} \frac{q^{4\alpha-2}; q^2}{q^2; q^2} \cdot \frac{1}{q^2; q^2} = q^{2j(2\alpha+1)}.
\]

It remains to pass to the q-binomial decompositions (see [4]) in the both sides of the obvious relation \(a(t) b(t) = c(t) \), with
\[
a(t) = \frac{t; q^2}{(q^{4\alpha+2t}; q^2)_\infty}, \quad b(t) = \frac{1}{(t; q^2)_\infty}; \quad c(t) = \frac{1}{(q^{4\alpha+2t}; q^2)_\infty}.
\]

Proposition 6.6 The covariant symbol of the operator \(\hat{f} = \sum_{j,k \in \mathbb{N}_+} a_{jk} z^j z^k \) is
\[
f = \sum_{j,k \in \mathbb{N}_+} a_{jk} z^j z^k.
\]

Proof. Let \(S'_{\alpha,q} : F_{q,\alpha} \rightarrow D(U)'_q \) be the map which takes a linear operator \(\hat{f} \in F_{q,\alpha} \) to its covariant symbol. We have to prove that this map coincides with the map \(S''_{\alpha,q} : F_{q,\alpha} \rightarrow D(U)'_q \), given by \(S''_{\alpha,q} : \sum_{j,k \in \mathbb{N}_+} a_{jk} z^j z^k \rightarrow \sum_{j,k \in \mathbb{N}_+} a_{jk} z^j z^k \). The linear operators \(S' \), \(S'' \) are morphisms of \(U_q \mathfrak{sl}_2 \)-modules, and the element \(f_0 \) generates the topological \(U_q \mathfrak{sl}_2 \)-module \(F_{q,\alpha} \) by proposition 6.4. Thus it suffices to obtain the relation \(S'(f_0) = S''(f_0) \). It was shown in section 2 that \(S''(f_0) = (1 - q^{4\alpha})(1 - z^*)^{2n+1} \). So it remains to see that \(S''(f_0) = (1 - q^{4\alpha})(1 - z^*)^{2n+1} \).

This follows from (6.3), (6.5). \(\Box \)

1These relations can be deduced from (6.2) via passage to the limit as \(\alpha \rightarrow \infty \).
Corollary 6.7 The map $F_{q, \alpha} \to D(U)_q'$ which takes a linear operator to its covariant symbol is one-to-one.

To conclude, we give another illustration of corollary 6.2. Our immediate purpose is to get the expansion $\hat{z}^* \hat{z} = \sum_{k \in \mathbb{Z}_+} c_k \hat{z}^k \hat{z}^*^k$ and to find a generating function $c(u) = \sum_{k \in \mathbb{Z}_+} c_k u^k$.

By (6.2), the coefficients c_k can be found from the system of equations
\[
\sum_{k=0}^m c_k \frac{(q^{2m}; q^{-2})_k}{(q^{4\alpha+2m}; q^{-2})_k} = \frac{1 - q^{2(m+1)}}{1 - q^{4\alpha+2(m+1)}}, \quad m \in \mathbb{Z}_+. \tag{6.6}
\]

Apply an expansion of the right hand side of (6.6) as series:
\[
\frac{1 - q^{2(m+1)}}{1 - q^{4\alpha+2(m+1)}} = 1 + \sum_{j \in \mathbb{N}} (1 - q^{-4\alpha}) q^{(2\alpha+1+m)2j}.
\]

For a fixed $j \in \mathbb{N}$ consider the system of equations
\[
\sum_{k=0}^m \gamma_k \frac{(q^{4\alpha+2}; q^2)_i}{(q^2; q^2)_i} = q^{2mj}, \quad m \in \mathbb{Z}_+. \tag{6.7}
\]

Multiply (6.7) by $\frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m}$ and convert it to the form
\[
\sum_{i+k=m} \gamma_k \frac{(q^{4\alpha+2}; q^2)_i}{(q^2; q^2)_i} = q^{2mj} \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m}. \tag{6.8}
\]

Introduce the generating functions
\[
\alpha(u) = \sum_{m \in \mathbb{Z}_+} \frac{(q^{4\alpha+2}; q^2)_m}{(q^2; q^2)_m} q^{2mj} u^m = \frac{(q^{4\alpha+2+2j}; q^2)_\infty}{(q^2; q^2)_\infty},
\]
\[
\beta(u) = \sum_{i \in \mathbb{Z}_+} \frac{(q^{4\alpha+2}; q^2)_i}{(q^2; q^2)_i} u^i = \frac{(q^{4\alpha+2}; q^2)_\infty}{(u; q^2)_\infty}.
\]

It follows from (6.8) that
\[
\gamma(u) \overset{\text{def}}{=} \sum_{k \in \mathbb{Z}_+} \gamma_k u^k = \frac{\alpha(u)}{\beta(u)} = \frac{(u; q^2)_j}{(q^{4\alpha+2}; q^2)_j}.
\]

Turn back to the initial system (6.6) to obtain
\[
c(u) = 1 + \sum_{j \in \mathbb{N}} (1 - q^{-4\alpha}) q^{(2\alpha+1)2j} \frac{(u; q^2)_j}{(q^{4\alpha+2}; q^2)_j}. \tag{6.9}
\]
7 *- Product

Let A be an algebra over \mathbb{C}. Impose the notation

$$C[[q^{4\alpha}]] = \left\{ \sum_{n \in \mathbb{Z}_+} q^{4\alpha} u_n | u_n \in \mathbb{C}, n \in \mathbb{Z}_+ \right\},$$

$$A[[q^{4\alpha}]] = \left\{ \sum_{n \in \mathbb{Z}_+} q^{4\alpha} a_n | a_n \in A \right\}$$

for the ring of formal series with complex coefficients and the $C[[q^{4\alpha}]]$-algebra of formal series with coefficients from A.

Our goal is to derive a new "distorted" multiplication in the $C[[q^{4\alpha}]]$-algebra $\text{End}(C[z; q, \infty])[[q^{4\alpha}]]$ from an ordinary multiplication in the $C[[q^{4\alpha}]]$-algebra $\text{End}(C[z; q, \infty])[[q^{4\alpha}]]$.

The presence of the base $\{z^m\}_{m=0}^{\infty}$ in each vector space $C[z; q, \alpha]$, $C[z; q, \infty]$ allows one to "identify" them via the isomorphisms $i_{i\alpha} : C[z; q, \infty] \rightarrow C[z; q, \alpha]$; $i_{i\alpha} : z^m \mapsto z, m \in \mathbb{Z}_+$.

Consider the linear operators $i_{i\alpha}^{-1} z^j z^{*k} i_{i\alpha}, j, k \in \mathbb{Z}_+$ in $C[z; q, \infty]$. It follows from (6.2) that

$$i_{i\alpha}^{-1} z^j z^{*k} i_{i\alpha} : z^m \mapsto \frac{(q^2 m; q^2)^{k}}{(q^{4\alpha+2m}; q^2)^{k}} z^{m-k+j}, \quad m \in \mathbb{Z}_+. \quad (7.1)$$

From now on we shall identify the rational function $\frac{1}{(q^{4\alpha+2m}; q^2)^{k}}$ of an indeterminate $t = q^{4\alpha}$ with its q-binomial series (see [3])

$$\left(\frac{q^{4\alpha+2m+2}; q^2}{q^{4\alpha+2m+2-2k}; q^2} \right)_{\infty} = \sum_{n \in \mathbb{Z}_+} \left(\frac{(q^{2k}; q^2)^{n}}{(q^2; q^2)^n} \cdot q^{2(m-k+1)n} \right) q^{4\alpha n}.$$

The construction of *-product will be done via the $C[[q^{4\alpha}]]$-linear map

$$Q : \text{Pol}(C)_q[[q^{4\alpha}]] \rightarrow \text{End}(C[z; q, \infty])[[q^{4\alpha}]]$$

defined as follows:

$$Q : \sum_{n \in \mathbb{Z}_+} q^{4\alpha n} \sum_{j,k=1}^{N(n)} a^{(n)}_{j,k} z^j z^{*k} \mapsto \sum_{n \in \mathbb{Z}_+} q^{4\alpha n} \sum_{j,k=1}^{N(n)} a^{(n)}_{j,k} i_{i\alpha}^{-1}(z^j z^{*k}) i_{i\alpha}$$

for all numbers $a^{(n)}_{j,k} \in \mathbb{C}$.

Lemma 7.1 The map Q is injective.

Proof. In the case Q has a non-trivial kernel, there should be for some $j, k \in \mathbb{Z}_+$, $\sum_{n \in \mathbb{Z}_+} c_n z^j z^{*k} = 0$, with $c_n \in C[[q^{4\alpha}]]$, $n \in \mathbb{Z}_+$, and $c_0 \neq 0$. An application of the operator $\sum_{n \in \mathbb{Z}_+} c_n z^j z^{*k}$ to the vector z^k yields $c_0 \cdot \frac{(q^{2k}; q^2)^{k}}{(q^{4\alpha+2k}; q^2)^{k}} \cdot z^j = 0$, which is a contradiction. \(\square\)
Lemma 7.2 Let \(j, k \in \mathbb{Z}_+ \) and \(\hat{f} = z^j z^k \). The Toeplitz-Bergman operator \(\hat{f} \) with symbol \(\hat{f} \) is \(\hat{z}^j \hat{z}^k \).

Proof. For all \(\psi_1, \psi_2 \in H^2_{q, \alpha} \) one has
\[
(\hat{f}\psi_1, \psi_2)_{q, \alpha} = (P_{q, \alpha}(z^j z^k \psi_1), \psi_2)_{q, \alpha} = (z^j z^k \psi_1, z^i \psi_2)_{q, \alpha} = (z^k \psi_1, z^i \psi_2)_{q, \alpha} = (\hat{z}^j \hat{z}^k \psi_1, \psi_2)_{q, \alpha}.
\]

The main result of this section is

Proposition 7.3 There exists a unique \(\mathbb{C}[[q^{4\alpha}]] \)-bilinear map
\[
*: \text{Pol}(\mathbb{C})_q[[q^{4\alpha}]] \times \text{Pol}(\mathbb{C})_q[[q^{4\alpha}]] \rightarrow \text{Pol}(\mathbb{C})_q[[q^{4\alpha}]]
\]
such that \(Q(f_1 \ast f_2) = (Qf_1) \cdot (Qf_2) \) for all \(f_1, f_2 \in \text{Pol}(\mathbb{C})_q[[q^{4\alpha}]] \).

Proof. The uniqueness follows from lemma 7.1. The existence of this \(\mathbb{C}[[q^{4\alpha}]] \)-bilinear map will be established via verifying an explicit formula (7.4). We start with considering the case \(f_1 = z^*, f_2 = z \).

In section 6 a generating function \(c(u) = \sum_{k \in \mathbb{Z}_+} c_k u^k \) for the coefficients of the expansion
\[
\hat{z}^* \hat{z} = \sum_{k \in \mathbb{Z}_+} c_k \hat{z}^k \hat{z}^* \tag{7.2}
\]
was derived. Prove that
\[
B_{q, \alpha}(z^* z) = \sum_{k \in \mathbb{Z}_+} c_k z^k z^* \tag{7.3}
\]
In fact, the distribution \(B_{q, \alpha}(z^* z) \) coincides with the covariant symbol of the Toeplitz-Bergman operator with symbol \(z^* \hat{z} \). This operator is \(\hat{z}^* \hat{z} \) by a virtue of corollary 7.2. Its covariant symbol is \(\sum_{k \in \mathbb{Z}_+} c_k z^k z^* \) due to proposition 6.6.

It should be noted that \(B_{q, \alpha}(z^* z) \in \text{Pol}(\mathbb{C})_q[[q^{4\alpha}]] \). In fact, (6.9) implies
\[
c(u) = c(u, q^{4\alpha}) = \sum_{n \in \mathbb{Z}_+} q^{4\alpha n} \cdot P_n(u),
\]
with \(P_n(u) \) being a polynomial of a degree at most \(n + 1 \). Now our statement in the case \(f_1 = z^*, f_2 = z \) follows from (7.2) and (7.3):
\[
z^* \ast z = B_{q, \alpha}(z^* z).
\]

In a more general setting \(f_1 = z^{m} \), \(f_2 = z^{k} \), \(m, k \in \mathbb{Z}_+ \), one can use a similar argument. One has:
\[
z^{m} \ast z^{k} = B_{q, \alpha}(z^{m} z^{k}).
\]
The relations \(Q(zf) = zQ(f), Q((zf)^*) = Q(f)z^* \), \(f \in \text{Pol}(\mathbb{C})_q[[q^{4\alpha}]] \), allow one to consider even more general case of \(f_1, f_2 \in \text{Pol}(\mathbb{C})_q \):
\[
z^i z^m \ast z^j z^k = z^i B_{q, \alpha}(z^{m} z^{k}) z^* z^j, \quad i, j, k, m \in \mathbb{Z}_+. \tag{7.4}
\]
To complete the proof of proposition 7.3, it remains to define the $*$-product of formal series:
\[
\sum_{i \in \mathbb{Z}_+} q^{4\alpha_i} f_1^{(i)} \ast \sum_{j \in \mathbb{Z}_+} q^{4\alpha_j} f_2^{(j)} \overset{\text{def}}{=} \sum_{n \in \mathbb{Z}_+} q^{4\alpha n} \left(\sum_{i+j=n} f_1^{(i)} \ast f_2^{(j)} \right),
\]
with $f_1^{(i)}, f_2^{(j)} \in \text{Pol}(\mathbb{C})_q$, $i, j \in \mathbb{Z}_+$.

Remark 7.4. The polynomials $P_n(u), n \in \mathbb{Z}_+$, could be found without application of the explicit formula for generating function (6.9). In fact, if one sets up $c_k = \sum_{n \in \mathbb{Z}_+} q^{4\alpha n} c_k^{(n)}$,
\[
\hat{z}^* \hat{z} = \sum_{n \in \mathbb{Z}_+} q^{4\alpha n} \sum_{k=0}^{n+1} c_k^{(n)} \hat{z}^k \hat{z}^* k.
\]
The constants $c_k^{(n)}$ could be found from the relation (see [8])
\[
\hat{z}^* \hat{z} = q^2 \hat{z} z^* + 1 - q^2 + q^{4\alpha} \cdot \frac{1 - q^2}{1 - q^{4\alpha}} \cdot (1 - \hat{z}^* \hat{z}).
\]
(For example, $P_0 = c_0^{(1)} u + c_0^{(0)} = q^2 u + 1 - q^2$.) This kind of description for coefficients in (7.5) was used in [8]. We observe that the $*$-product introduced here coincides with the $*$-product considered in [8].

8 *-Product and q-differential operators

The operators $\Box, \partial^{(l)}_z, \partial^{(r)}_z, \partial^{(l)}_z, \partial^{(r)}_z$ were introduced in [8].

Lemma 8.1 Let φ, ψ be polynomials of one indeterminate. Then
\[
\frac{\partial^{(r)}}{\partial z^*} (\varphi(z^*) \psi(z)) = \frac{\partial^{(r)} \varphi(z^*)}{\partial z^*} \cdot \psi(q^2 z).
\]

Proof. Since $dz^* \cdot z = q^2 z \cdot dz^*$, one has
\[
\frac{\partial^{(r)}}{\partial z^*} (\varphi(z^*) \psi(z)) \cdot dz^* = \partial (\varphi(z^*) \psi(z)) = (\partial \varphi(z^*)) \psi(z) = \\
\frac{\partial^{(r)}}{\partial z^*} \varphi(z^*) \cdot dz^* \cdot \psi(z) = \frac{\partial^{(r)} \varphi(z^*)}{\partial z^*} \cdot \psi(q^2 z) \cdot dz^*.
\]

Lemma 8.2 For all $\psi(z) \in \mathbb{C}[z]_q$, $\partial^{(r)} \psi(z) \frac{dz}{\partial z} = \frac{\partial^{(l)} \psi(q^2 z)}{\partial z}$.

Proof. Since $dz \cdot z = q^2 z \cdot dz$, one has
\[
\frac{\partial^{(r)} \psi(z)}{\partial z} \cdot dz = \partial \psi = dz \cdot \frac{\partial^{(l)} \psi(z)}{\partial z} = \frac{\partial^{(l)} \psi(q^2 z)}{\partial z} \cdot dz.
\]
Proposition 8.3 Let f_1, f_2 be polynomials of one indeterminate. Then

$$\Box((f_2(z^*)f_1(z)) = q^2 \frac{\partial^{(r)} f_2}{\partial z^*} \cdot (1 - zz^*)^2 \cdot \frac{\partial^{(l)} f_1}{\partial z}. \quad (8.1)$$

Proof. It follows from [11, corollary 2.9] that

$$\Box(f_2(z^*)f_1(z)) = q^2 \left(\frac{\partial^{(r)} f_2}{\partial z^*} \frac{\partial^{(r)} (f_2(z^*)f_1(z))}{\partial z} \right) (1 - zz^*)^2 =$$

$$= q^{-2} \left(\frac{\partial^{(r)} f_2}{\partial z^*} \frac{\partial^{(r)} f_1(z)}{\partial z} \right) (1 - z^*z)^2.$$

Apply lemmas 8.1, 8.2 to conclude that

$$\Box(f_2(z^*)f_1(z)) = q^{-2} \frac{\partial^{(r)} f_2(z^*)}{\partial z^*} \cdot \frac{\partial^{(l)} f_1(q^4z)}{\partial z} (1 - z^*z)^2.$$

It remains to apply the commutation relation $z(1 - z^*z)^2 = q^{-4}(1 - z^*z^2)z$. □

Remind the notation from [8]:

$$\tilde{\Box} = q^{-2} (1 - (1 + q^{-2})z^* \otimes z + q^{-2}z^2 \otimes z^2) \cdot \frac{\partial^{(r)}}{\partial z^*} \otimes \frac{\partial^{(l)}}{\partial z}.$$

$m : \text{Pol}(\mathbb{C})_q \otimes \text{Pol}(\mathbb{C})_q \rightarrow \text{Pol}(\mathbb{C})_q, m : \psi_1 \otimes \psi_2 \mapsto :\psi_1\psi_2.$

Now we are in a position to prove [8, theorem 7.3].

Theorem 8.4 For all $f_1, f_2 \in \text{Pol}(\mathbb{C})_q$

$$f_1 \ast f_2 = (1 - q^{4\alpha}) \cdot \sum_{j \in \mathbb{Z}_+} q^{4\alpha - j} m(p_j(\tilde{\Box}) f_1 \otimes f_2),$$

with $p_j, j \in \mathbb{Z}_+$, being the polynomials determined by (3.3).

Proof. With $f_1, f_2, f_3, f_4 \in \mathbb{C}[z]_q$, one can deduce from the results of section 7 that

$$(f_1(z)f_2(z^*) \ast (f_3(z)f_4(z)^*) = f_1(z)B_{q,\alpha}(f_2(z^*)f_3(z))f_4(z^*). \quad (8.1)$$

An application of the results of section 5 to the bounded function $f_2(z^*)f_3(z)$ yields:

$$B_{q,\alpha}(f_2(z^*)f_3(z)) \sim (1 - q^{4\alpha}) \sum_{j \in \mathbb{Z}_+} q^{4\alpha - j} p_j(\Box)(f_2(z^*)f_3(z)).$$

It remains to apply proposition 8.3 and the definition of $\tilde{\Box}$. □

Remark 8.5. One can observe from proposition 2.5 that (8.1) is a q-analogue of relation (4.7) from [8].
Appendix. Overflowing vector systems

Unlike the main text where α was allowed to be an arbitrary positive number, let us assume now $\alpha \in \frac{1}{2}\mathbb{N}$.

Remind the notation \tilde{X} for the quantum principal homogeneous space, and $i: D(U)_q' \hookrightarrow D(\tilde{X})_q$ for the canonical embedding of distribution spaces (see [10]).

Consider the embedding of vector spaces

$$i_\alpha: \text{Pol}(\mathbb{C})_q \hookrightarrow D(\tilde{X})_q; \quad i_\alpha: f \mapsto i(f) \cdot t_{12}^{-2\alpha - 1}.$$

Equip $\text{Pol}(\mathbb{C})_q$ with a new $U_q\mathfrak{sl}_2$-module structure given by $i_\alpha \xi f = \xi i_\alpha f$ for all $f \in \text{Pol}(\mathbb{C})_q$, $\xi \in U_q\mathfrak{sl}_2$. Denote this $U_q\mathfrak{sl}_2$-module by $\text{Pol}(\mathbb{C})_{q, \alpha}$. There exists an embedding $\mathbb{C}[z]_{q, \alpha} \hookrightarrow \text{Pol}(\mathbb{C})_{q, \alpha}$.

The results of [11, section 6] imply

Proposition A.1. *The linear map $D(\tilde{X})_q \to \mathbb{C}[z]_{q, \alpha}$ given by*

$$\psi \mapsto \int_{\tilde{X}_q} \tau_{12}^{*(2\alpha - 1)} \cdot (z\zeta^*; q^2)_{2\alpha + 1}^{-1} \cdot \psi d\nu,$$

is a morphism of $U_q\mathfrak{sl}_2$-modules.

Proposition A.1 allows one to treat the function $\tau_{12}^{*(2\alpha - 1)} \cdot (z\zeta^*; q^2)_{2\alpha + 1}^{-1}$ as a q-analogue of a coherent state in the sense of Perelomov [12].

Corollary A.2. *For all $\psi \in D(U)_q$*

$$P_{q, \alpha} \psi(z) = \int_{\tilde{U}_q} (z\zeta^*; q^2)_{2\alpha + 1}^{-1} \psi(\zeta) d\nu_{\alpha}(\zeta). \quad (A.1)$$

Proof. Consider the integral operator

$$P: D(U)_q \to \mathbb{C}[z]_{q, \alpha}; \quad P: \psi(z) \mapsto \int_{\tilde{U}_q} (z\zeta^*; q^2)_{2\alpha + 1}^{-1} \psi(\zeta) d\nu_{\alpha}.$$

It is a morphism of $U_q\mathfrak{sl}_2$-modules, as one can deduce from proposition A.1. The orthoprojection $P_{q, \alpha}$ is also a morphism of $U_q\mathfrak{sl}_2$-modules, due to the invariance of the scalar product in $H^2_{q, \alpha}$. It remains to use the relations $P f_0 = 1 - q^{4\alpha}$, $P_{q, \alpha} f_0 = 1 - q^{4\alpha}$, together with the fact that f_0 generates the $U_q\mathfrak{sl}_2$-module $D(U)_q$ (see [11]).

Remark A.3. (A.1) means that the distribution $(z\zeta^*; q^2)_{2\alpha + 1}^{-1}$ is a reproducing kernel.

Let us find the kernel of the integral operator $P_{q, \alpha} \overset{\circ}{\circ} P_{q, \alpha}$. For $\overset{\circ}{\circ} f, \psi \in D(U)_q$ one has by corollary A.2

$$P_{q, \alpha} \overset{\circ}{\circ} P_{q, \alpha}: \psi(z) \mapsto \int_{\tilde{V}_q} K_q(f_{\circ}; z, z') \psi(z') d\nu_{\alpha}(z'),$$

with

$$K_q(f_{\circ}; z, z') = \int_{\tilde{V}_q} (z\zeta^*; q^2)_{2\alpha + 1}^{-1} f_{\circ}(\zeta) \cdot (\zeta z^*; q^2)_{2\alpha + 1}^{-1} d\nu_{\alpha}(\zeta).$$
Now an application of lemma 1.4 yields

\begin{equation*}
K_q(\circ f; z, z') = \frac{1 - q^{4\alpha}}{1 - q^2} \int_{U_q} (z^*; q^2)^{-1}_{2\alpha+1} (1 - \zeta^*; q^2)^{-1}_{2\alpha+1} f(\zeta^*; q^2) d\nu(\zeta) =
\end{equation*}

\begin{equation*}
= \frac{1 - q^{4\alpha}}{1 - q^2} \int_{U_q} \frac{1}{(\zeta^*; q^2)^{-1}_{2\alpha+1}} (1 - \zeta^*)^{2\alpha}(z^*; q^2)^{-1}_{2\alpha+1} f(1 - \zeta^*) d\nu(\zeta) =
\end{equation*}

\begin{equation*}
= \frac{1 - q^{4\alpha}}{1 - q^2} \int_{U_q} (1 - \zeta^*)(\zeta^*; q^2)^{-1}_{2\alpha+1} (1 - \zeta^*)^{2\alpha}(z^*; q^2)^{-1}_{2\alpha+1} \circ f d\nu(\zeta).
\end{equation*}

Finally, use the relation

\begin{equation*}
(1 - \zeta^*)\zeta = q^2\zeta(1 - \zeta^*)
\end{equation*}

to obtain

Proposition A.4. \(P_{q,\alpha} \circ f P_{q,\alpha} \) is an integral operator:

\begin{equation*}
P_{q,\alpha} \circ f P_{q,\alpha} \psi(z) = \int_{U_q} K_q(\circ f; z, z')\psi(z') d\nu_{\alpha}(z'),
\end{equation*}

whose kernel is given by

\begin{equation*}
K_q(\circ f; z, z') = \frac{1 - q^{4\alpha}}{1 - q^2} \int_{U_q} k_\zeta(q^2z')^* \cdot k_\zeta(z) \circ f(\zeta) d\nu(\zeta),
\end{equation*}

with \(k_\zeta(z) = (1 - \zeta^*)^{\alpha+1/2} \cdot (\zeta^*; q^2)^{-1}_{2\alpha+1} \in D(U \times U)'_q\).

Proposition A.4 allows one to treat the distribution \(k_\zeta(z)\) as a q-analogue of an overflowing vector system.

References

[1] F. Berezin, *General concept of quantization*, Commun. Math. Phys., 40 (1975), 153 – 174.

[2] V. Chari, A. Pressley. *A Guide to Quantum Groups*, Cambridge Univ. Press, 1995.

[3] N. Danford, J. T. Schwartz. *Linear Operators*, Part II, Interscience Publisher, N.-Y., London, 1963.

[4] G. Gasper, M. Rahman. *Basic Hypergeometric Series*, Cambridge University Press, Cambridge, 1990.

[5] S. Klimec, A. Lesniewski, *A two-parameter quantum deformation of the unit disc*, J. Funct. Anal. 115, (1993), 1 – 23.

[6] G. Nagy, A. Nica. *On the "quantum disc" and a "non-commutative circle"*, in: Algebraic Methods on Operator Theory, R. E. Curto, P. E. T. Jorgensen (eds.), Birkhauser, Boston, 1994, p. 276 – 290.
[7] A. Perelomov. Generalized Coherent States and their Applications. Berlin, Heidelberg, New York: Springer, 1986.

[8] D. Shklyarov, S. Sinel’shchikov, L. Vaksman. On function theory in quantum disc: integral representations, E-print: math.QA/9808015.

[9] D. Shklyarov, S. Sinel’shchikov, L. Vaksman. On function theory in quantum disc: covariance, E-print: math.QA/9808037.

[10] D. Shklyarov, S. Sinel’shchikov, L. Vaksman. On function theory in quantum disc: invariant kernels, E-print: math.QA/9808047.

[11] D. Shklyarov, S. Sinel’shchikov, L. Vaksman. On function theory in quantum disc: q-differential equations and Fourier transform, E-print: math.QA/9809002.

[12] S. Sinel’shchikov, L. Vaksman. On q-analogues of Bounded Symmetric Domains and Dolbeault Complexes, Mathematical Physics, Analysis and Geometry; Kluwer Academic Publishers, V.1, No.1, 1998, 75–100, E-print: q-alg/9703005.

[13] A. Unterberger, H. Upmeier, The Berezin transform and invarian differential operators, Comm. Math. Phys., 164 (1994), 563 – 598.