Role of exosomal long non-coding RNAs in colorectal cancer

Ru Sun, Xiao-Yun He, Cheng Mei, Chun-Lin Ou

ORCID number: Ru Sun 0000-0001-6483-2779; Xiao-Yun He 0000-0003-0620-420X; Cheng Mei 0000-0002-7660-7306; Chun-Lin Ou 0000-0003-2313-4186.

Author contributions: Ou CL designed the structure of the manuscript; Sun R, He XY, Mei C, and Ou CL drafted the manuscript; Sun R and Ou CL reviewed the literature; Sun R, Mei C, and Ou CL critically revised the manuscript.

Supported by National Natural Science Foundation of China, No. 81903032; China Postdoctoral Science Foundation, No. 2020M672520; Research Program of Hunan Health Commission, China, No. 202103030659; and Youth Fund of Xiangya Hospital, No. 2018Q011.

Conflict-of-interest statement: The authors declare no conflicts of interest for this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the

Abstract

Exosomes are a class of small extracellular vesicles, 30-150 nm in diameter, that transfer biological information (e.g., DNA, RNA, and protein) via cell-to-cell communication. Exosomes play critical roles in the occurrence and development of human cancers, including colorectal cancer (CRC). Recent studies have shown that long non-coding RNAs (lncRNAs) can be encapsulated in exosomes, which transfer lncRNAs from secretory cells into recipient cells. This process affects the progression of CRC, since exosomal lncRNAs display special and extensive functions in CRC tumorigenesis, including malignant proliferation, metastasis, chemoresistance, and inflammatory response. Moreover, due to their specificity and sensitivity, exosomal lncRNAs are released into body fluids (e.g., urine, sputum, and plasma), which have the potential to be biomarkers of CRC tumorigenesis within screening efforts and medical and epidemiologic research. In this review, we aim to clarify the function and mechanism of exosomal lncRNAs in CRC tumorigenesis and provide a strategy for early diagnosis and medical treatment of this malignancy.

Key Words: Exosomes; Long non-coding RNAs; Colorectal cancer; Chemoresistance; Inflammatory response; Therapy

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Recent studies have shown that exosomal long non-coding RNAs (lncRNAs) play critical roles in the occurrence and development of colorectal cancer (CRC).
Exosomal lncRNAs display special and extensive functions in CRC tumorigenesis, including malignant proliferation, metastasis, chemoresistance, and inflammatory response. Moreover, due to their specificity and sensitivity, exosomal lncRNAs are released into body fluids, which have the potential to be biomarkers of CRC tumorigenesis within screening efforts and medical and epidemiologic research. In this review, we aim to clarify the function and mechanism of exosomal lncRNAs in CRC tumorigenesis and provide a strategy for early diagnosis and treatment of this malignancy.

INTRODUCTION

Colorectal cancer (CRC) is one of the most common gastrointestinal cancers and is currently the fourth most common malignant cancer worldwide in terms of incidence. CRC has an extremely high morbidity and mortality, with almost 1.8 million newly diagnosed cases and nearly 900000 deaths worldwide each year[1-3]. With the rapid progress of cancer therapeutics, the survival time of patients with early-stage CRC has been significantly prolonged. However, the 5-year survival rate for patients with advanced CRC remains low[4-6]. Therefore, exploring the molecular mechanisms of CRC tumorigenesis and identifying early and intermediate stage molecular markers are key processes in the screening and treatment of CRC.

In 1983, Harding et al[7] and Pan and Johnstone[8] were the first to identify and define exosomes, which were considered metabolic waste of cells. With the popularization of electron microscopy, researchers discovered that exosomes, which are 40-160 nm in diameter, are produced by almost all cell types and are released freely in all body fluids (e.g., urine, saliva, sputum, and plasma). Exosomes can transfer RNA, DNA, proteins, lipids, and metabolites via cell-to-cell communication, transferring these molecules from secretory cells to recipient cells and thereby inducing tumors and a range of other human diseases. In recent years, exosomes have become a potentially effective method for disease diagnosis and treatment because of their extensive presence in the body and convenience of acquisition, which may provide a promising prospect in the development of precision medicine[9-11].

With the completion of the Human Genome Project and the arrival of the post-genome era, noncoding RNAs (ncRNAs) have become a hot “star” in the era of life science[12-15]. Long ncRNAs (lncRNAs) are a subset of ncRNAs, which have a transcribing length of 200-100000 nt, lack a complete functional open reading frame, and rarely encode a functional short peptide[16-19]. Recent studies have shown that lncRNAs play an important role in human pathophysiological processes, including tissue differentiation, immunity, and reproduction, and thereby induce a range of human diseases, including diabetes mellitus (DM), Parkinson’s disease, and tumors[20-23].

An increasing number of studies have shown that lncRNAs can be encapsulated into exosomes, which transfer the lncRNAs from secretory cells into recipient cells, thereby affecting the progression of CRC[24-27]. These exosomal lncRNAs can enter receptor cells through humoral circulation and participate in multiple phenotypes of tumor progression, including malignant proliferation, metastasis, chemoresistance, and inflammatory response. In addition, due to their specificity and sensitivity, exosomal-derived lncRNAs released into the tumor microenvironment have the potential to become biomarkers of CRC. Therefore, this review aims to provide a new direction for finding new CRC biomarkers and therapeutic targets by pooling and summarizing related studies of the role of exosomal lncRNAs in CRC tumorigenesis.
BIOLOGICAL CHARACTERISTICS AND MECHANISMS OF EXOSOMAL LNCRNAS

According to their size, extracellular vesicles (EVs) can be divided into small EVs (sEVs; with a diameter less than 200 nm) and large EVs (lEVs; with a diameter more than 200 nm). Exosomes are a class of sEVs, with a diameter of approximately 40-160 nm, derived from almost all types of human cells. After being released by secretory cells, exosomes are widely distributed to all types of human body fluids, including saliva, breast milk, cerebrospinal fluid, ascites, urine, and semen[28-30]. Exosomes enter target cells through humoral circulation and cell receptors in three ways: Direct fusion, endocytosis, and receptor ligand binding. Exosomes carry proteins, nucleic acids, lipids, and other important signal carriers, forming a cell-cell information transmission system that participates in cell communication, cell migration, angiogenesis, and tumor cell growth[31-33].

The biological function of IncRNAs depends on their subcellular localizations. When IncRNAs are mainly localized in the nucleus, they play a role in regulating epigenetic modification, which regulates the expression of downstream target genes through histone modification by binding the enhancer region of the gene. Cytoplasmic IncRNAs, in contrast, not only sponge microRNAs (miRNAs) to form competing endogenous RNAs (ceRNAs) to regulate the expression of miRNA target genes, but can also block the phosphorylation level of targeted proteins, thereby affecting the protein expression of molecules and downstream signaling pathways[34-36]. Therefore, when IncRNAs are encapsulated into exosomes, they transfer from secretory cells to recipient cells to exert their biological function, thereby affecting the progression of tumors. After entering the recipient cells, IncRNAs regulate the target gene expression of miRNAs through sponge miRNAs and affect the phosphorylation level or transcription expression of proteins by binding to proteins after entry into the target cells. Exosomal IncRNAs further regulate core molecules and signaling pathways, leading to tumor progression (Figure 1). In CRC, numerous studies have shown that exosomal IncRNAs, after entry into the target cells, not only regulate the target gene expression of miRNAs through sponge miRNAs[37-43] (Table 1), but also affect the phosphorylation level or transcription expression of proteins by binding to proteins [44-49] (Table 2). Therefore, a systematic understanding of the role of exosomal IncRNAs in cancer metastasis may provide improved diagnostic and prognostic biomarkers and therapeutic targets for malignant tumors.

EXOSOMAL LNCRNAS AND CRC

Hanahan and Weinberg[50] published a landmark review entitled “Hallmarks of cancer: the next generation” in the journal Cell, which summarized and clarified the ten defining characteristics of tumors, including self-sufficiency in growth signals, sustained angiogenesis, insensitivity to anti-growth signals, resisting cell death, limitless replicative potential, tissue invasion and metastasis, avoiding immune destruction, tumor promotion through inflammation, genome instability and mutation, and deregulation of cellular energetics. Recent studies have shown that exosomal IncRNA levels are closely related to the occurrence and development of tumors and that exosomal IncRNAs are involved in malignant proliferation, invasion and metastasis, chemoresistance, and inflammatory response (Figure 2).

Exosomal IncRNAs and malignant proliferation of CRC cells

Malignant proliferation of tumor cells is the most common malignant phenotype in the development of tumors. Tumor cells usually lack contact inhibition and show enhanced proliferation. Thus, tumors are classified as a type of progressive hyperplastic disease[31,52]. Although starting from the direction of cutting off the malignant proliferation of tumors is a good choice for cancer treatment, the current basic research and clinical results are still unsatisfactory. Identifying key effective and broad-spectrum targets for inhibiting malignant tumor proliferation remains a difficult problem for scientists[53-55].

In recent years, exosomal IncRNAs have attracted wide attention as targets for the malignant proliferation of CRC. Exosomal IncRNA-UCA1 can be transmitted into CRC cells, thereby increasing the expression of myosin VI (MYO6) by sponging with miR-143, thus promoting CRC cell proliferation[38]. Moreover, Zhao et al[42] demonstrated that circulating IncRNA-LINC02418 can be transmitted into CRC cells via exosomes, and IncRNA-LINC02418 can function as a ceRNA to regulate the expression of...
Table 1 Relationship between exosomal long non-coding RNAs and microRNAs in colorectal cancer

Exosomal lncRNA	Expression	miRNA	Target gene	Functions	Ref.
H19	↑	miR-141	β-catenin	Promotes the stemness and chemoresistance of CRC cells	Ren et al [37]
UCA1	↑	miR-143	MYO6	Promotes CRC cell proliferation and migration	Luan et al [38]
LINC00659	↑	miR-342-3p	ANXA2	Promotes CRC cell proliferation, invasion, and migration	Zhou et al [39]
MALAT1	↑	miR-26a/26b	FUT4	Promotes the metastasis of CRC	Xu et al [40]
HOTTIP	↑	miR-214	KPNA3	Increases resistance of CRC cells to mitomycin	Chen et al [41]
LINC02418	↑	miR-1273g-3p	MELK	Promotes the viability of CRC cells	Zhao et al [42]
GAS5	↑	-	-	Promotes CRC cell proliferation	Liu et al [43]

LncRNA: Long non-coding RNA; CRC: Colorectal cancer; miRNAs: MicroRNAs.

Table 2 Relationship between exosomal long non-coding RNAs and their binding molecules in colorectal cancer

Exosomal lncRNA	Expression	Interaction gene/protein	Signaling pathway	Functions	Ref.
RPPH1	↑	TUBB3	-	Promotes metastasis and proliferation of CRC cells	Liang et al [44]
APC1	↓	Rab5b	MAPK pathway	Inhibits metastasis, and angiogenesis of CRC	Wang et al [45]
CCAL	↑	HuR	β-catenin pathway	Suppresses cell apoptosis and promotes chemoresistance of CRC cells	Deng et al [46]
ADAMTS9-AS1	↓	β-catenin	Wnt signaling pathway	Suppresses the CRC tumorigenesis	Li et al [47]
91H	↑	HNRNPK	-	Promotes migration and invasion of CRC cells	Gao et al [48]
CRNDE-h	↑	RORγt	-	Promotes Th17 cell differentiation	Sun et al [49]

LncRNA: Long non-coding RNA; CRC: Colorectal cancer; Th: T helper.

maternal embryonic leucine zipper kinase (MELK) by competing for miR-1273g-3p binding. Li et al [47] revealed that exosomal lncRNA-ADAMTS9-AS1 can promote the malignant proliferation of CRC cells by increasing the expression of β-catenin and activating the Wnt signaling pathway. Interestingly, exosomal lncRNA-APC1 was also found to be able to inhibit CRC cell proliferation by activating the MAPK pathway through directly binding to Ras-related protein rab-5b (Rab5b) mRNA and hence reducing its stability [45]. These findings show that exosomal lncRNAs play a key regulatory role in CRC cells; hence, lncRNAs may provide a new target for CRC therapy.

Exosomal lncRNAs and CRC metastasis

The term tumor metastasis usually refers to the process by which malignant tumor cells detach from the primary tumor site and are transferred through the circulatory system to secondary tissues or organs, where they colonize and form secondary tumors. Tumor metastasis is a complex process that involves cytoskeletal reconstruction, decreased cell adhesion, extracellular matrix degradation, and so on, thereby inducing angiogenesis and the epithelial-mesenchymal transition (EMT) of tumors [56]. Tumor metastasis is a major problem with regard to cancer therapy because it affects the prognosis and survivorship of tumor patients and represents the leading cause of tumor-related deaths [57]. Therefore, it is of great significance to study the mechanisms of tumor metastasis for the sake of improved treatment and prevention of tumors.

Exosomal lncRNAs are a class of molecules that, in recent years, have been shown to play an important role in the CRC metastasis. A study [40] demonstrated that exosomal lncRNA-MALAT1 derived from highly metastatic CRC cells can enhance the metastatic abilities of primary CRC cells. The underlying mechanism is that exosomal
Figure 1 The process of exosomal long non-coding RNAs secretion, transportation, and ingestion. A: Exosomal long non-coding RNAs (lncRNAs) are secreted by colorectal cancer (CRC) cells, carcinoma-associated fibroblasts, and chemoresistant CRC cells; B: Exosomal lncRNAs are released into circulatory system; C: Exosomal lncRNAs are transferred from the secretory cell into recipient cell to exert their biological function, thereby affecting the progression of tumors. CRC: Colorectal cancer; CAF: Carcinoma-associated fibroblast.

Figure 2 Summary chart of exosomal long non-coding RNAs in colorectal cancer. Exosomal long non-coding RNAs are closely related to the occurrence and development of tumors, involved in malignant proliferation, invasion and metastasis, chemoresistance, and the inflammatory response. Orange arrows: High expression in colorectal cancer; green arrows: Low expression in colorectal cancer. LncRNA: Long non-coding RNA; CRC: Colorectal cancer; HuR: Human antigen R.

In lncRNA-MALAT absorbs miR-26a/26b, hence increasing the expression of fucosyltransferase 4 (FUT4) and activating the PI3K/AKT/mTOR pathway. Meanwhile, exosomal lncRNA 91H was also found to be able to directly interact with heterogeneous ribosomal protein K (HNRNPK) in CRC cells, thereby positively regulating the expression of HNRNPK to enhance CRC metastasis[48]. Furthermore, exosomal lncRNAs are closely related to EMT in CRC cells. Zhou et al.[39] found that cancer-associated fibroblast-derived exosomal LINC00659 can promote the progression of...
EMT in CRC cells via the miR-342-3p/ANXA2 axis. These studies indicate that exosomal lncRNAs might be potential biomarkers and therapeutic targets for the prediction, screening, and treatment of CRC.

Exosomal lncRNAs and CRC chemoresistance

The chemoresistance of tumors is caused by interaction between internal and external factors. Internal factors include protective autophagy, EMT, oxidative stress, and metabolic reprogramming. External factors include hypoxia and the tumor microenvironment. Corresponding molecules and the signaling pathways of cancer cells are changed through both internal and external factors, reducing the drug sensitivity of cancer cells and ultimately inducing the chemoresistance of cancer cells[58-60]. The mechanism of chemoresistance has not been fully elucidated. Thus, chemoresistance is still one of the key reasons for the failure of tumor treatment.

Recent studies have demonstrated the important role of exosomal lncRNAs in CRC chemoresistance. The chemotherapy drugs for CRC contain cetuximab, mitomycin, and oxaliplatin. Yang et al[61] reported that cetuximab-resistant CRC cells secrete the exosomal lncRNA-UCA1, which can transmit cetuximab resistance to sensitive cells, and that the expression of exosomal lncRNA-UCA1 is closely related to the clinical outcome of cetuximab therapy in CRC patients. Interestingly, Chen et al[41] revealed that lncRNA-HOTTIP is highly expressed in mitomycin-resistant CRC cells and can be encapsulated into exosomes, transferring lncRNAs from mitomycin-resistant cells to sensitive cells; after entering the sensitive cells, lncRNA-HOTTIP can upregulate the expression of karyopherin subunit alpha 3 (KPNAA) by binding to miR-214, thereby promoting drug resistance in sensitive cells. Moreover, Deng et al[46] found that carcinoma-associated fibroblasts (CAFs) can secrete exosomal lncRNA-CCAL to promote oxaliplatin resistance in CRC cells. Functional studies revealed that lncRNA-CCAL can interact directly with the mRNA stabilizing protein HuR (human antigen R) to increase the expression of β-catenin, thereby inducing chemoresistance in CRC. Targeting exosomal lncRNAs might thus be a promising strategy for overcoming drug resistance in CRC.

Exosomal lncRNAs and inflammatory response in CRC

The connection of inflammation with tumorigenesis and tumor promotion, progression, and metastasis has been a major concern in recent years. Studies have shown that inflammation can accelerate the inflammation-tumor transformational reaction chain, thereby increasing the risk of the occurrence of tumors. Therefore, this type of tumor is referred to as an inflammation-associated tumor. Inflammation is an important biological risk factor for malignancy, and is considered the seventh defining characteristic of tumors[62-64]. Emerging evidence suggests that exosomal lncRNAs participate in inflammatory tumor response, which is closely related to the tumor microenvironment, comprised of immune cells, inflammatory factors, chemokines, etc.[65,66].

The association between inflammatory bowel disease (IBD) and CRC has long been recognized[64]. Colitis-associated cancer (CAC) is a CRC subtype that is associated with IBD[67]. By constructing an AOM/DSS-induced CAC mouse model, Ren et al[37] found that CAF-derived exosomal H19 can act as a ceRNA to increase the expression of β-catenin via sponging with miR-141, thereby contributing to the stemness and development of CRC.

Furthermore, proinflammatory conditions can be reflected in the tumor microenvironment, which contains a series of immune cells, such as dendritic cells, natural killer cells, macrophages, and T helper (Th) cells[68,69]. Recent studies have shown that exosomal lncRNAs play a crucial role in the differentiation of CRC immune cells. For example, Sun et al[49] demonstrated that serum exosomal lncRNA-CRNDE-h can be transmitted into CD4+ T cells to increase the Th17 cell proportion and promote Th17 cell differentiation by inhibiting the E3 ubiquitin ligase Itch-mediated ubiquitination and degradation of RAR-related orphan receptor γt (ROTYt) in CRC. Moreover, Liang et al[44] found that CRC cells-derived exosomal lncRNA-RPH1 can be transmitted into tumor-associated macrophages to mediate macrophage M2 polarization, which is associated with CRC inflammatory response. Taken together, exosomal lncRNAs may serve as a promising target for tumor immune therapy.

EXOSOMAL LNCRNAS AS NOVEL CRC BIOMARKERS AND TARGETS

Exosomal miRNAs have a higher specificity compared to proteins and are easier to
extract and detect. Thus, testing exosomal miRNAs by quantitative reverse transcription-polymerase chain reaction and \textit{in situ} hybridization assays is more specific and sensitive than detecting proteins by an antigen-antibody reaction\cite{70,71}. Exosomal lncRNAs can be detected in body fluids, and the content of lncRNAs can provide significant information about physiological and/or pathological changes in tumor patients\cite{72,73}. Therefore, exosomal lncRNAs have been widely studied as CRC markers in recent years\cite{37,38,40,42,44,45,47,48,74-78} (Table 3).

Many clinical studies have indicated a close association between exosomal lncRNAs and various clinical symptoms. Li et al\cite{74} found that elevated expression of exosomal lncRNA-SPINT1-A51 was associated with regional lymph node metastasis, distant metastasis, and short recurrence-free survival of CRC patients. Liu et al\cite{43} showed that elevated expression of exosomal lncRNA-GAS5 was correlated with TNM stage, Dukes stage, local recurrence rate, and distant metastasis in CRC. In addition, elevated expression of CCAT2 was associated with local invasion and lymph node metastasis in CRC\cite{79}.

Exosomal lncRNAs serve as novel potential diagnostic and prognostic biomarkers of CRC. Using exosomal lncRNA-CRNDE-h as a diagnostic biomarker\cite{76}, receiver operating characteristic (ROC) curve analysis showed that lncRNA-CRNDE-h expression was a good candidate for distinguishing CRC patients from healthy control participants providing serum samples (sensitivity 70.3\%, specificity 94.4\%). The area under the ROC curve was 0.892 [95\% confidence interval (CI): 0.860-0.918, \(P < 0.05\)]. Moreover, exosomal miRNAs act as prognostic biomarkers, and Chen et al\cite{78} found that low expression of exosomal lncRNA-HOTTIP was positively correlated with a poor overall survival (OS) in CRC patients \((P = 0.0009)\), and further found that low expression of lncRNA-HOTTIP was an independent prognostic marker for OS (hazard ratio: 4.5, 95\%CI: 1.69-11.98, \(P = 0.0027\)) within a multivariate analysis. With the widespread use and development of new technologies, the detection of exosomal lncRNAs may provide a novel strategy for the screening, early diagnosis, and therapy of CRC.

\section*{FUTURE PERSPECTIVES}

To summarize, an increasing number of studies have shown that exosomal lncRNAs are closely associated with the progression of CRC. Exosomal lncRNAs have been recognized as ‘new stars’ in the research field of tumors, and, as a class of novel regulatory molecules, they participate in the progression of CRC. Therefore, we can silence or activate exosomal lncRNAs in CRC patients \textit{via} an exogenous means. For example, we can wrap the silenced or active lentiviral vector of lncRNAs into exosomes \textit{in vitro}, then perform a targeted injection into the corresponding organs of humans through fluid circulation. This can be developed as a therapy for CRC. With the development of high-throughput sequencing and related technologies in recent decades\cite{80}, an increasing number of exosomal lncRNAs have been discovered and identified in human diseases. Because the extraction and detection of exosomal lncRNAs present a higher specificity and sensitivity compared to exosomal proteins, lncRNAs have great potential as biological tools for the diagnosis or treatment of tumors\cite{81}. However, there is a long road from scientific research on exosomal lncRNAs to clinical applications. Recently, research on exosomal lncRNAs has faced a series of challenges and limitations: (1) Although high-throughput sequencing has shown that many exosomal lncRNAs are abnormally expressed in tumor body fluids (e.g., urine, sputum, and plasma), the specific mechanisms and functions of exosomal lncRNAs have not been fully understood; (2) The technology and methods for isolation and purification of exosomes, including ultra-high-speed centrifugation, filtration, precipitation, and immunoconcentration, are not mature\cite{82,83}. Existing purification methods can hardly distinguish exosomes from non-vesicle components, which may affect the subsequent functional experiments of exosomal lncRNAs \textit{in vivo} and \textit{in vitro}; (3) Although exosomal lncRNAs have been shown to play a role in tumor treatment in many animal models, there is still a lack of clinical trials to confirm the accuracy and safety of these findings; and (4) There are still some difficulties in developing exosome-based drug delivery systems and functionally introducing them to specific cells.

Although our existing understanding of exosomal lncRNAs is just the tip of the iceberg, novel approaches and techniques will ultimately shed light on these processes. It is likely that in the near future, detection kits and therapeutic drugs targeting exosomal lncRNAs will be used in clinical research for CRC screening, diagnosis, and treatment.
LncRNA: Long non-coding RNA; AUC: Area under the curve; OS: Overall survival; TNM: Tumor-node-metastasis; DFS: Disease-free survival.

CONCLUSION

Recent studies have shown that exosomal lncRNAs play critical roles in the occurrence and development of CRC. Exosomal lncRNAs display special and extensive functions in CRC tumorigenesis, including malignant proliferation, metastasis, chemoresistance, and inflammatory response. Moreover, due to their specificity and sensitivity, exosomal lncRNAs are released into body fluids, which have the potential to be biomarkers of CRC tumorigenesis within screening efforts and medical and epidemiologic research. In this review, we aim to clarify the function and mechanism of exosomal lncRNAs in CRC tumorigenesis and provide a strategy for early diagnosis and treatment.

REFERENCES

1. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A. Colorectal cancer statistics, 2017. *CA Cancer J Clin* 2017; 67: 177-193 [PMID: 28248415 DOI: 10.3322/caac.21395]
2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. *CA Cancer J Clin* 2021; 71: 7-33 [PMID: 33433946 DOI: 10.3322/caac.21654]
3. Tejpar S, Shen L, Wang X, Schilsky RL. Integrating biomarkers in colorectal cancer trials in the West and China. *Nat Rev Clin Oncol* 2015; 12: 553-560 [PMID: 25963094 DOI: 10.1038/nrclinone.2015.88]
4. Walsh JM, Terdiman JP. Colorectal cancer screening: scientific review. *JAMA* 2003; 289: 1288-1296 [PMID: 12633191 DOI: 10.1001/jama.289.10.1288]
5. Ou C, Sun Z, Li S, Li G, Li X, Ma J. Dual roles of yes-associated protein (YAP) in colorectal cancer. *Oncotarget* 2017; 8: 75727-75741 [PMID: 29088905 DOI: 10.18632/oncotarget.20155]
6. Wang Y, He X, Nie H, Zhou J, Cao P, Ou C. Application of artificial intelligence to the diagnosis and therapy of colorectal cancer. *Am J Cancer Res* 2020; 10: 3575-3598 [PMID: 33294256 DOI: 10.7150/thno.49168]
7. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. *J Cell Biol* 1983; 97: 329-339 [PMID: 6309857 DOI: 10.1083/jcb.97.2.329]
8. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. *Cell 1983; 33: 967-978 [PMID: 6307529 DOI: 10.1016/0092-8674(83)90040-5]
9. Tyner JW. Functional genomics for personalized cancer therapy. *Sci Transl Med* 2014; 6: 243fs26 [PMID: 24990879 DOI: 10.1126/scitranslmed.3009586]
10. Zhou R, Chen KK, Zhang J, Xiao B, Huang Z, Ju C, Sun J, Zhang F, Lv XB, Huang G. The decade of exosomal long RNA species: an emerging cancer antagonist. *Mol Cancer* 2018; 17: 75 [PMID: 3009586]
Noncoding RNA

Klinge CM

2020;

Exosomes in Cancer: Exosomes as Efficient Nanocommunicators for Cancer Therapy.

Choi JU

[PMID:32759948]

2012;

composition, biological functions, and diagnostic and therapeutic potentials.

Vlassov AV

DOI:

Hashemipour M

32759948

Dai J

2018;

10.1128/mbio.03108-17

Cheng J

Yuan W. The Biological Effect and Clinical Application of Long Noncoding RNAs in Colorectal Cancer.

Sun Z

Mol Cancer

M, Li X, Li G, Xiong W, Zeng Z. Role of long non-coding RNAs in glucose metabolism in cancer.

PLoS Genet

MacDonald WA

10.1186/s12943-018-0823-z

signaling in cancer metastasis.

Y, Li G, Zeng Z, Xiong W, Guo C. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis.

Tang Y

[PMID:32760061]

10.1186/s12943-021-01318-6

perspectives of circular RNAs in colorectal cancer.

Long F

155

Dempsey JL, Cui JY. Long Non-Coding RNAs: A Novel Paradigm for Toxicology. Toxicol Sci 2017; 155: 3-21 [PMID:27864543 DOI:10.1093/toxsci/kfw203]

Ou C, Sun Z, He X, Li X, Fan S, Zheng X, Peng Q, Li G, Ma J. Targeting YAP1/LINC00152/FSCN1 Signaling Axis Prevents the Progression of Colorectal Cancer. Adv Sci (Weinh) 2020; 7: 1901380 [PMID:32042551 DOI:10.1002/ads.201901380]

Tang Y, He Y, Zhang P, Wang J, Fan C, Yang L, Xiong F, Zhang S, Gong Z, Nie S, Liao Q, Li X, Li Y, Li G, Zeng Z, Xiong W, Guo C. LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis. Mol Cancer 2018; 17: 77 [PMID:29518366 DOI:10.1186/s12943-018-0825-x]

MacDonald WA, Mann MRW. Long non-coding RNA functionality in imprinted domain regulation. PLoS Genet 2020; 16: e1008930 [PMID:32760061 DOI:10.1371/journal.pgen.1008930]

Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Zhang S, Gong Z, Wei F, Yang L, He Y, Zhou M, Li X, Li G, Xiong W, Zeng Z. Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer 2017; 16: 130 [PMID:28738810 DOI:10.1186/s12943-017-0699-3]

Sun Z, Liu J, Chen C, Zhou Q, Yang S, Wang G, Song J, Li Z, Zhang Z, Xu J, Sun X, Chang Y, Yuan W. The Biological Effect and Clinical Application of Long Noncoding RNAs in Colorectal Cancer. Cell Physiol Biochem 2018; 46: 431-441 [PMID:29614491 DOI:10.1159/000488610]

Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics 2013; 193: 651-669 [PMID:23463798 DOI:10.1534/genetics.112.146704]

Cheng J, Meng J, Zhu L, Peng Y. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications. Mol Cancer 2020; 19: 66 [PMID:32213181 DOI:10.1186/s12943-020-01139-3]

Galamb O, Barták BK, Kalmár A, Nagy ZB, Szigeti KA, Tulassay Z, Igaz P, Molnár B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J Gastroenterol 2019; 25: 5026-5048 [PMID:31558855 DOI:10.3748/wjg.v25.i34.5026]

Francavilla A, Turoczi S, Tarallo S, Vodicka P, Pardini B, Naccarati A. Exosomal microRNAs and other non-coding RNAs as colorectal cancer biomarkers: a review. Mutagenesis 2020; 35: 243-260 [PMID:31784760 DOI:10.1093/mutage/gez038]

Camacho CV, Choudhari R, Gadad SS. Long noncoding RNAs and cancer, an overview. Steroids 2018; 133: 93-95 [PMID:29317255 DOI:10.1016/j.steroids.2017.12.012]

Cheshomi M, Matin MM. Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer. J Cell Biochem 2018 [PMID:30246315 DOI:10.1002/jcb.27582]

Zhang HG, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 2014; 184; 28-41 [PMID:24269592 DOI:10.1016/j.ajpath.2013.09.027]

Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther 2020; 5; 145 [PMID:32759948 DOI:10.1038/s41392-020-00261-0]

Hashemipour M, Boroumand H, Mollazadeh S, Tajiknia V, Nourollahzadeh Z, Rohani Borj M, Pourghadamyari H, Rahimian N, Hamblin MR, Mirzaei H. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol Oncol 2021; 161: 314-327 [PMID:33581845 DOI:10.1016/j.ygyno.2021.02.004]

Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012; 1820: 940-948 [PMID:22537388 DOI:10.1016/j.bbagen.2012.03.017]

Xu K, Zhang C, Du T, Gabriel ANA, Wang X, Li X, Sun L, Wang N, Jiang X, Zhang Y. Progress of exosomes in the diagnosis and treatment of lung cancer. Biomed Pharmacother 2021; 134: 111111 [PMID:33352449 DOI:10.1016/j.biopha.2020.111111]

Choi JU, Park IK, Lee YK, Hwang SR. The Biological Function and Therapeutic Potential of Exosomes in Cancer: Exosomes as Efficient Nanocommunicators for Cancer Therapy. Int J Mol Sci 2020; 21 [PMID:33028046 DOI:10.3390/ijms21193763]

Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4 [PMID:30545127 DOI:10.3390/ncrna4040040]
Sun R et al. Exosomal IncRNAs and CRC

35 Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer: A New Paradigm. *Cancer Res* 2017; 77: 3965-3981 [PMID: 28701486 DOI: 10.1158/0008-5472.CAN-16-2634]

36 He X, Yu B, Kuang G, Wu Y, Zhang M, Cao P, Ou C. Long noncoding RNA DLEU2 affects the proliferative and invasive ability of colorectal cancer cells. *J Cancer* 2021; 12: 428-437 [PMID: 33391439 DOI: 10.7150/jca.48423]

37 Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T, Hou Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal IncRNA H19. *Theranostics* 2018; 8: 3932-3948 [PMID: 30083277 DOI: 10.7150/thno.25541]

38 Luan Y, Li X, Luan Y, Zhao R, Li Y, Liu L, Hao Y, Oleg Vladimir B, Jia L. Circulating IncRNA UCA1 Promotes Malignancy of Colorectal via the miR-143/MY06 Axis. *Mol Ther Nucleic Acids* 2020; 19: 790-803 [PMID: 31955010 DOI: 10.1016/j.omtn.2019.12.009]

39 Zhou L, Li J, Tang Y, Yang M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. *J Transl Med* 2021; 19: 8 [PMID: 34307456 DOI: 10.1186/s12967-020-02648-7]

40 Xu J, Xiao Y, Liu B, Pan S, Liu Q, Shan Y, Li S, Qi Y, Huang Y, Jia L. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway. *J Exp Clin Cancer Res* 2020; 39: 54 [PMID: 32209115 DOI: 10.1186/s13046-020-01562-6]

41 Chen X, Liu Y, Zhang Q, Liu B, Cheng Y, Zhang Y, Sun Y, Liu J, Gen H. Exosomal Long Non-coding RNA HOTTIP Increases Resistance of Colorectal Cancer Cells to Mitomycin via Impairing MiR-214-Mediated Degradation of KPN3. *Front Cell Dev Biol* 2020; 8: 582723 [PMID: 33585440 DOI: 10.3389/fcell.2020.582723]

42 Zhao Y, Du T, Du L, Li P, Li J, Duan W, Wang Y, Wang C. Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic biomarker for colorectal cancer. *Cell Death Dis* 2019; 10: 568 [PMID: 31358733 DOI: 10.3389/fcell.2020.00568]

43 Liu L, Meng T, Yang XH, Sayim P, Lei C, Jin B, Ge L, Wang HJ. Prognostic and predictive value of long non-coding RNA GAS5 and miRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. *Cancer Biomark* 2018; 22: 283-299 [PMID: 2963052] [DOI: 10.3233/CBM-171011]

44 Liang ZX, Liu HS, Wang FW, Xiong L, Zhou C, Hu T, He XW, Xu XJ, Xie D, Wu XR, Lan P. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. *Cell Death Dis* 2019; 10: 829 [PMID: 31658807 DOI: 10.1038/s41419-019-2077-0]

45 Wang FW, Cao CH, Han K, Zhao XY, Cai MY, Xiang ZC, Zhang JX, Chen JW, Zhang LP, Huang Y, Zhou SF, Jin XH, Guan XY, Xu RH, Xie D. APC-activated long noncoding RNA inhibits colorectal carcinoma pathogenesis through reduction of exosome production. *J Clin Invest* 2021; 131: DOI: 10.1172/JCI149666]

46 Deng X, Ruan H, Zhang X, Xu X, Zhu Y, Peng H, Kong F, Guan M. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. *Int J Cancer* 2020; 146: 1700-1716 [PMID: 31381140 DOI: 10.1002/ijc.32609]

47 Li N, Li J, Mi Q, Xie Y, Li P, Wang L, Binang H, Wang Q, Wang Y, Chen Y, Mao H, Du L, Wang C. Long non-coding RNA ADAMTS9-AS1 suppresses colorectal cancer by inhibiting the Wnt/b-catenin signalling pathway and is a potential diagnostic biomarker. *J Cell Mol Med* 2020; 24: 11318-11329 [PMID: 32897985 DOI: 10.1111/jcmm.15713]

48 Gao T, Liu X, He B, Nie Z, Zhu C, Zhang P, Wang S. Exosomal IncRNA 91H is associated with poor development in colorectal cancer by modifying HNRNPK expression. *Cancer Cell Int* 2018; 18: 11 [PMID: 29410604 DOI: 10.1186/s12935-018-0506-2]

49 Sun J, Jia H, Bao X, Wu Y, Zhu T, Li R, Zhao H. Tumor exosome promotes Th17 cell differentiation by transmitting the IncRNA CRNDE-h in colorectal cancer. *Cell Death Dis* 2021; 12: [PMID: 3339453] [DOI: 10.1038/s41419-020-03376-y]

50 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* 2011; 144: 646-674 [PMID: 21376230 DOI: 10.1016/j.cell.2011.02.013]

51 Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. *Exp Cell Res* 2010; 316: 1324-1331 [PMID: 20211171 DOI: 10.1016/j.yexcr.2010.02.045]

52 Balkwill F, Mantovani A. Cancer and inflammation: implications for pharmacology and therapeutics. *Clin Pharmacol Ther* 2010; 87: 401-406 [PMID: 20200512 DOI: 10.1386/clpt.2009.312]

53 Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. *J Clin Oncol* 2005; 23: 9408-9421 [PMID: 16361640 DOI: 10.1200/JCO.2005.01.5994]

54 Ou C, Sun Z, Li X, Ren W, Qin Z, Zhang X, Yuan W, Wang J, Yu W, Zhang S, Peng Q, Yan Q, Xiong W, Li G, Ma J. MiR-590-5p, a density-sensitive microRNA, inhibits tumorigenesis by targeting YAP1 in colorectal cancer. *Cancer Lett* 2017; 379: 53-63 [PMID: 28435398 DOI: 10.1016/j.canlet.2017.04.011]

55 Li J, Tian H, Yang J, Gong Z. Long Noncoding RNAs Regulate Cell Growth, Proliferation, and Apoptosis. *DNA Cell Biol* 2016; 35: 459-470 [PMID: 27213978 DOI: 10.1089/dna.2015.3187]

56 Liu C, Wu Y, Ma J. Interaction of non-coding RNAs and Hippo signaling: Implications for tumorigenesis. *Cancer Lett* 2020; 493: 207-216 [PMID: 32822816 DOI: 10.1016/j.canlet.2020.08.012]

57 Mantovani A. Cancer: Inflaming metastasis. *Nature* 2009; 457: 36-37 [PMID: 19122629 DOI: 10.1038/457036b]
Shao Y, Li H, Du R, Meng J, Yang G. Involvement of non-coding RNAs in chemotherapy resistance of ovarian cancer. *J Cancer* 2018; 9: 1966-1972 [PMID: 29896281 DOI: 10.7150/jca.24550]

Karagiannis GS, Condeelis JS, Oktay MH. Chemotherapy-induced metastasis: mechanisms and translational opportunities. *Clin Exp Metastasis* 2018; 35: 269-284 [PMID: 29307118 DOI: 10.1007/s10585-017-9870-x]

Wambeke A, Ahmad M, Lambert B, Joly F, Poulin J, Denoyelle C, Meryet-Figuier M. The influence of long non-coding RNAs on the response to chemotherapy in ovarian cancer. *Gynecol Oncol* 2020; 156: 726-733 [PMID: 31883617 DOI: 10.1016/j.ygyno.2019.12.020]

Yang YN, Zhang R, Du JW, Yuan HH, Li YJ, Wei XL, Du XX, Jiang SL, Han Y. Predictive role of UC1-containing exosomes in cetuximab-resistant colorectal cancer. *Cancer Cell Int* 2018; 18: 164 [PMID: 30377411 DOI: 10.1186/s12935-018-0660-6]

Zhang X, Ai F, Li X, She X, Li N, Tang A, Qin Z, Ye Q, Tian L, Li G, Shen S, Ma J. Inflammation-induced S100A8 activates I3d and promotes colorectal tumorigenesis. *Int J Cancer* 2015; 137: 2803-2814 [PMID: 26155667 DOI: 10.1002/ijc.29671]

Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, Li X, Sun Z. Roles of circRNAs in the tumor microenvironment. *Mol Cancer* 2020; 19: 14 [PMID: 31973726 DOI: 10.1186/s12943-019-1125-9]

Zhang X, Wei L, Wang J, Qin Z, Lu Y, Zheng X, Peng Q, Ye Q, Ai F, Liu P, Wang S, Li G, Shen S, Ma J. Suppression Colitis and Colitis-Associated Colon Cancer by Anti-S100a9 Antibody in Mice. *Front Immunol* 2017; 8: 1774 [PMID: 29326691 DOI: 10.3389/fimmu.2017.01774]

Sun Z, Yang S, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Xu J, Xia K, Chang Y, Liu J, Yuan W. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. *Mol Cancer* 2018; 17: 82 [PMID: 29678180 DOI: 10.1186/s12943-018-0831-2]

Drak Alsibai K, Meseure D. Tumor microenvironment and noncoding RNAs as co-drivers of epithelial-mesenchymal transition and cancer metastasis. *Dev Dyn* 2018; 247: 405-431 [PMID: 28691356 DOI: 10.1002/dvdy.24540]

Lakatos PL, Lakatos L. Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. *World J Gastroenterol* 2008; 14: 3937-3947 [PMID: 18609676 DOI: 10.3748/wjg.v14.i39.3937]

Guo Y, Ji X, Liu J, Fan D, Zhou Q, Chen C, Wang W, Wang G, Wang H, Yuan W, Ji Z, Sun Z. Effects of exosomes on pre-metastatic niche formation in tumors. *Mol Cancer* 2019; 18 [PMID: 30857545 DOI: 10.1186/s12943-019-0995-1]

Que RS, Lin C, Ding GP, Wu ZR, Cao LP. Increasing the immune activity of exosomes: the effect of mRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. *J Zhejiang Univ Sci B* 2016; 17: 352-360 [PMID: 27143262 DOI: 10.1631/jzus.B1500305]

Baassiri A, Nassar F, Mukherji D, Shamseddine A, Nasr R, Temraz S. Exosomal Non Coding RNA in LIQUID Biopsies as a Promising Biomarker for Colorectal Cancer. *Int J Mol Sci* 2020; 21 [PMID: 32092975 DOI: 10.3390/jms21041398]

Jiang N, Tian H, Pan J, Gong Z. [Circulating long noncoding RNAs as biomarkers in tumor diagnosis]. *Sheng Wu Gong Cheng Xue Bao* 2017; 33: 910-922 [PMID: 28895533 DOI: 10.13345/j.cjb.160463]

Kahroba H, Hejazi MS, Samadi N. Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer. *Cell Mol Life Sci* 2019; 76: 1747-1758 [PMID: 30734835 DOI: 10.1007/s00018-019-03035-2]

Zhou J, Li XL, Chen ZR, Chng WJ. Tumor-derived exosomes in colorectal cancer progression and their clinical applications. *Oncotarget* 2017; 8: 100781-100790 [PMID: 29246022 DOI: 10.18632/oncotarget.20117]

Li C, Li W, Zhang Y, Zhang X, Liu T, Yang Y, Wang L, Pan H, Ji J, Wang C. Increased expression of antisense lncRNA SPINT1-AS1 predicts a poor prognosis in colorectal cancer and is negatively correlated with its sense transcript. *Onco Targets Ther* 2018; 11: 3969-3978 [PMID: 30023840 DOI: 10.2147/OTT.S163883]

Wang L, Duan W, Yan S, Xie Y, Wang C. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer. *Biomed Pharmacother* 2019; 113: 108758 [PMID: 30877883 DOI: 10.1016/j.biopha.2019.108759]

Liu T, Zhang X, Gao S, Jing F, Yang Y, Du L, Zheng G, Li P, Li C, Wang C. Exosomal long noncoding RNA CRNE-D-h as a novel serum-based biomarker for diagnosis and prognosis of colorectal cancer. *Oncotarget* 2016; 7: 85551-85563 [PMID: 27888803 DOI: 10.18632/oncotarget.13465]

Yu B, Du Q, Li H, Liu HY, Ye X, Zhu B, Zhai Q, Li XX. Diagnostic potential of serum exosomal colorectal neoplasia differentially expressed long non-coding RNA (CRNDE-p) and microRNA-217 expression in colorectal carcinoma. *Oncotarget* 2017; 8: 83745-83753 [PMID: 29137379 DOI: 10.18632/oncotarget.19407]

Oehme F, Krali S, Gyorylf B, Muessele B, Rao V, Greif H, Ziegler N, Lin K, Thepksayone ML, Polster H, Tonn T, Schneider M, Weitz J, Banke F, Kahler C. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer. *RNA Biol* 2019; 16: 1339-1345 [PMID: 31211214 DOI: 10.1080/15476286.2019.1637697]

Hu D, Zhan Y, Zhu K, Bai M, Han J, Si Y, Zhang H, Kong D. Plasma Exosomal Long Non-Coding RNAs Serve as Biomarkers for Early Detection of Colorectal Cancer. *Cell Physiol Biochem* 2018; 51: 2704-2715 [PMID: 30562751 DOI: 10.1159/000495961]
80 Huang X, Sun L, Wen S, Deng D, Wan F, He X, Tian L, Liang L, Wei C, Gao K, Fu Q, Li Y, Jiang J, Zhai R, He M. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. *Cancer Sci* 2020; 111: 3338-3349 [PMID: 32506598 DOI: 10.1111/cas.14516]

81 Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, Tian Y, Rao S, Oyang L, Liang J, Lin J, Su M, Shi Y, Cao D, Zhou Y, Liao Q. Exosomal miRNAs in tumor microenvironment. *J Exp Clin Cancer Res* 2020; 39: 67 [PMID: 3229460 DOI: 10.1186/s13046-020-01570-6]

82 Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. *Proc Natl Acad Sci USA* 2016; 113: E968-E977 [PMID: 26858453 DOI: 10.1073/pnas.1521230113]

83 van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. *Nat Rev Mol Cell Biol* 2018; 19: 213-228 [PMID: 29339798 DOI: 10.1038/nrm.2017.125]
