More Membrane Matrix Model Solutions,
– and Minimal Surfaces in S^7

Joakim Arnlind and Jens Hoppe

Department of Mathematics
Royal Institute of Technology
Stockholm

December 2003

Abstract

New solutions to the classical equations of motion of a bosonic matrix-membrane are given. Their continuum limit defines 3-manifolds (in Minkowski space) whose mean curvature vanishes. Part of the construction are minimal surfaces in S^7, and their discrete analogues.
Some time ago [1], solutions of the bosonic matrix-model equations,

\[\dot{X}_i = -\sum_{j=1}^{d} \left[[X_i, X_j], X_j \right] \]

\[\sum_{i=1}^{d} [X_i, \dot{X}_i] = 0 \]

were found where

\[X_i(t) = x(t)R_{ij}(t)M_j, \]

with \(R(t) = e^{A\varphi(t)} \) a real, orthogonal \(d \times d \) matrix, \(x(t) \) and \(\varphi(t) \) being given via

\[\frac{1}{2} x^2 + \frac{\lambda}{4} x^4 + \frac{L^2}{2x^2} = \text{const.} \]

\[\varphi^2(t)x(t) = L(=\text{const}), \]

and the \(d \) hermitean \(N \times N \) matrices \(M_i \) satisfying

\[\sum_{j=1}^{d'} \left[[M_i, M_j], M_j \right] = \lambda M_i \]

\[i = 1, \ldots, d'. \]

The reason for \(d' \) (rather than \(d \)) appearing in [2] was that in order to satisfy the two remaining conditions,

\[A^2 \vec{M} = -\vec{M} \]

\[\sum_{j=1}^{d} [M_j, (A\vec{M})_j] = 0 \]

– which have to be fulfilled in order for [2] to satisfy [1] – in an “irreducible” way (the matrix valued \(d\)-component vector \(\vec{M} \) can, of course, always be broken up to contain pairs of identical pieces) half – or more – of the matrices \(M_j \) were chosen to be zero, and (permuting the \(M_i \)’s such that the first \(d' \leq \frac{d}{2} \) are the non-zero ones) the non-zero elements of \(\mathcal{A} \) as \(A_{i+d', j} = 1 = -A_{i,i+d'} \), \(i, j = 1, \ldots, d' \); in particular, [3] was satisfied by having, for each \(j \), either \(M_j \) or \((A\vec{M})_j \) be identically zero.

As, in the membrane context. \(d (\leq) 9 \), \(d' = 4 \) received particular attention, while the continuum limit of [1],

\[\sum_j \{m_i, m_j\}, m_j = -\lambda m_i, \]

\[\left\{ m_i, m_j \right\} := \frac{1}{\rho} (\partial_1 m_i \partial_2 m_j - \partial_2 m_i \partial_1 m_j) ; \quad g_{rs} := \partial_r \vec{m} \cdot \partial_s \vec{m} ; \quad \vec{m} = \vec{m}(\varphi^1, \varphi^2) \]

alias

\[\frac{1}{\rho} \frac{\partial}{\partial s} \frac{g_{rs}}{\rho} \partial_s \vec{m} = -\lambda \vec{m} \]
is related to
\[
\frac{1}{\sqrt{g}} \partial^s \sqrt{g} g^{rs} \partial_s m^r = -2 \vec{m},
\]
\[
\vec{m}^2 = 1,
\]
(9)
i.e the problem of finding minimal surfaces in higher dimensional spheres (which for \(d' = 4 \) was proven \(^2\) to admit solutions of any genus).

In this letter, we would like to enlarge the realm of explicit solutions (of \(\mathbf{1} \), resp. its \(N \to \infty \) limit, resp \(^9\) while shifting emphasis from \(d' = 4 \) to \(d' = 8 \) (the case \(d' = 6 \), which can be used to obtain nontrivial solutions in the BMN matrix-model, will be discussed elsewhere).

Our first observation is that \(^9\) rather naturally admits solutions which avoid the “doubling mechanism”. While \(\mathcal{A} \) is kept to be an “antisymmetric permutation”-matrix in a maximal even-dimensional space, \(^9\) can be realized if \(\mathbf{M} := \{ M_j \}_{j=1}^d \) (with \(M_d = 0 \) if \(d \) is odd) can be written as a union of even-dimensional subsets of mutually commuting members. In order to give a first example, let us, for later convenience, define (for arbitrary odd \(N > 1 \)) \(N^2 \) independent \(N \times N \) matrices
\[
\begin{align*}
U^{(N)}_m &=: \frac{N}{4\pi M(N)} \omega^{m_1 m_2} g^{m_3} h^{m_2} \\
\end{align*}
\]
where \(\omega := e^{\frac{i \pi M(N)}{N}}, \vec{m} = (m_1, m_2), \)
\[
g = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & \omega & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \omega^{N-1}
\end{pmatrix}, \quad h = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{pmatrix}
\]
\(^10\) provides a basis of the Lie-algebra \(\text{gl}(N, \mathbb{C}) \), with
\[
\left[U^{(N)}_m, U^{(N)}_n \right] = \frac{-iN}{2\pi M(N)} \sin \left(\frac{2\pi M(N)}{N} (m \times \vec{n}) \right) U^{(N)}_{\vec{m}+\vec{n}}
\]
(12)
(for the moment, we will put \(M(N) = 1 \), as only when \(N \to \infty \), \(\frac{M(N)}{N} \to \Lambda \in \mathbb{R} \), this “degree of freedom” is relevant).

Let now \(N = 3 \),
\[
\begin{align*}
\vec{M} &= \frac{1}{2} \left(U_{1,0} + U_{-1,0}, U_{1,0} - U_{-1,0}, U_{0,1} + U_{0,-1}, U_{0,1} - U_{0,-1}, U_{1,1} + U_{-1,-1}, U_{1,1} - U_{-1,-1} \right) \\
&=: (M_1, M_2, M_3, M_4, M_5, M_6, M_7, M_8).
\end{align*}
\]
\(^13\) satisfies \(^1\), \([M_1, M_2] = 0, [M_3, M_4] = 0, [M_5, M_6] = 0 \) and \([M_7, M_8] = 0 \) (note that we have implicitly reordered the elements of \(\mathcal{A} \)), and \(\vec{M}^2 = \mathbb{1} \).
One can rewrite the 8 M_j's, being a basis of $\text{su}(3)$, in terms of the Cartan-Weyl basis \{h_1, h_2, e_\alpha, e_{-\alpha}, e_\beta, e_{-\beta}, e_{\alpha+\beta}, e_{-\alpha-\beta}\},

\begin{align*}
[h_1, h_2] &= 0 \\
h_{i}, e_{\alpha} &= \alpha_i e_{\alpha} \\
h_{i}, e_{-\alpha} &= -\alpha_i e_{-\alpha} \\
h_{i}, e_{\beta} &= \beta_i e_{\beta} \\
h_{i}, e_{-\beta} &= -\beta_i e_{-\beta} \\
h_{i}, e_{\alpha+\beta} &= (\alpha + \beta_i) e_{\alpha+\beta} \\
h_{i}, e_{-\alpha-\beta} &= -(\alpha + \beta_i) e_{-\alpha-\beta} \\
[e_\alpha, e_{-\alpha}] &= 4h_1 \\
[e_\beta, e_{-\beta}] &= -2h_1 + 2\sqrt{3}h_2 \\
[e_\alpha, e_{\alpha+\beta}] &= 2e_{\alpha+\beta} \\
[e_\alpha, e_{-\alpha-\beta}] &= -2e_{\alpha-\beta} \\
[e_{-\alpha}, e_{\alpha+\beta}] &= 2e_{\beta} \\
[e_{-\alpha}, e_{-\alpha-\beta}] &= -2e_{-\alpha-\beta} \\
[e_{\beta}, e_{\alpha+\beta}] &= 2e_{\alpha} \\
[e_{-\beta}, e_{\alpha+\beta}] &= -2e_{\alpha}.
\end{align*}

obtaining

\begin{align*}
M_1 &= \frac{3}{32\pi}(3h_1 + \sqrt{3}h_2) \\
M_2 &= \frac{3}{32\pi}(\sqrt{3}h_1 - 3h_2) \\
M_3 &= \frac{3}{32\pi}(e_\alpha + e_{-\alpha} + e_\beta + e_{-\beta} + e_{\alpha+\beta} + e_{-\alpha-\beta}) \\
M_4 &= \frac{3}{32\pi i}(e_\alpha - e_{-\alpha} + e_\beta - e_{-\beta} - e_{\alpha+\beta} + e_{-\alpha-\beta}) \\
M_5 &= \frac{3}{32\pi}(\sqrt{\omega}e_\alpha + \frac{1}{\sqrt{\omega}} e_{-\alpha} + e_\beta + e_{-\beta} + \sqrt{\omega}e_{\alpha+\beta} + \omega e_{-\alpha-\beta}) \\
M_6 &= \frac{3}{32\pi i}(\sqrt{\omega}e_\alpha - \frac{1}{\sqrt{\omega}} e_{-\alpha} + e_\beta - e_{-\beta} - \sqrt{\omega}e_{\alpha+\beta} + \omega e_{-\alpha-\beta}) \\
M_7 &= \frac{3}{32\pi}(\frac{1}{\sqrt{\omega}} e_\alpha + \sqrt{\omega}e_{-\alpha} + e_\beta + e_{-\beta} + \frac{1}{\sqrt{\omega}} e_{\alpha+\beta} + \frac{1}{\omega} e_{-\alpha-\beta}) \\
M_8 &= \frac{3}{32\pi i}(\frac{1}{\sqrt{\omega}} e_\alpha - \sqrt{\omega}e_{-\alpha} + e_\beta - e_{-\beta} - \frac{1}{\sqrt{\omega}} e_{\alpha+\beta} + \frac{1}{\omega} e_{-\alpha-\beta})
\end{align*}

where $\sqrt{\omega} = e^{2\pi i/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ (in this equation, (15)).

By considering arbitrary representations of $\text{su}(3)$ one can, also for higher $N (N \to \infty)$, obtain a set of matrices, given by (15), satisfying (4). When checking that (13) solves (4), one uses that, (N arbitrary)

\begin{align*}
&\left[\left(\epsilon_{(N)}^{(\vec{m})}, \Gamma_{(N)}^{(\vec{n})}, U_{(N)}^{(\vec{n})} \right), \frac{N^2}{4\pi^2} \sin^2 \frac{2\pi}{N} \frac{2\pi}{\overline{\vec{m}} \times \overline{\vec{n}}} U_{(N)}^{(\vec{m})}\right],
\end{align*}

and $\sin^2 \frac{2\pi}{N} = \sin^2 \frac{2\pi}{N}$.

Similarly, one may take

\begin{align*}
\vec{M} = \frac{1}{2} \left(\frac{U_{\vec{m}} + U_{-\vec{m}}}{2}, \frac{U_{\vec{m}} - U_{-\vec{m}}}{2i}, \frac{U_{\vec{m}}' + U_{-\vec{m}}'}{2}, \frac{U_{\vec{m}}' - U_{-\vec{m}}'}{2i}, \frac{U_{\vec{n}} + U_{-\vec{n}}}{2}, \frac{U_{\vec{n}} - U_{-\vec{n}}}{2i}, \frac{U_{\vec{n}}' + U_{-\vec{n}}'}{2}, \frac{U_{\vec{n}}' - U_{-\vec{n}}'}{2i} \right),
\end{align*}

(17)
with
\[\vec{m}' = \begin{pmatrix} -m_2 \\ m_1 \end{pmatrix} \quad \vec{n}' = \begin{pmatrix} -n_2 \\ n_1 \end{pmatrix}, \]

which is a solution of (14) for \(N = \hat{N} := \hat{m}^2 + \hat{n}^2 \) (which we assume to be odd), write the \(M_j \)'s (8 \(\hat{N} \times \hat{N} \) matrices) as \((\hat{N}^2\text{-dependent})\ linear combinations of a (\(\hat{N} \text{ “independent”}) basis of \(\text{gl}(\hat{N}, \mathbb{C}) \))

\[M_j^{(\hat{N})} = \sum_{a=1}^{\hat{N}^2-1} \mu_j^a(\hat{N}) T_a^{(\hat{N})}, \]

and then define

\[M_j^{(N)} := \sum_{a=1}^{\hat{N}^2-1} \mu_j^a(\hat{N}) T_a^{(N)} \]

(20)
to obtain corresponding solutions for \(N > \hat{N} \) (by letting \(T_a^{(N)} \) be \(N \)-dimensional representations of (19)).

In the case of \(\hat{m}^2 \) being equal to \(\hat{n}^2 \), this detour is not necessary, and (17) directly gives solutions of (4) for any (odd) \(N \). The reason is that, by using (16) the “discrete Laplace operator”

\[\Delta_{\vec{M}}^{(N)} := \sum_{j=1}^{d} \left[\cdot, M_j \right], M_j \]

when acting on any of the components of \(\vec{M} \), in each case yields the same scalar factor (“eigenvalue”)

\[\frac{N^2}{4\pi^2} \left(\sin^2 \frac{2\pi}{N} (\vec{m} \times \vec{n}) + \sin^2 \frac{2\pi}{N} \vec{m}^2 + \sin^2 \frac{2\pi}{N} (\vec{m} \cdot \vec{n}) \right). \]

(22)
The \(N \to \infty \) limit of this construction gives (a solution of (7))/8, resp. (9)

\[\vec{m}(\varphi^1, \varphi^2) = \frac{1}{2} \left(\cos \vec{m} \varphi, \sin \vec{m} \varphi, \cos \vec{m}' \varphi, \sin \vec{m}' \varphi, \cos \vec{n} \varphi, \sin \vec{n} \varphi, \cos \vec{n}' \varphi, \sin \vec{n}' \varphi, \right), \]

(23)
which for each choice
\[\vec{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} \quad \vec{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} \quad \vec{m}' = \begin{pmatrix} -m_2 \\ m_1 \end{pmatrix} \quad \vec{n}' = \begin{pmatrix} -n_2 \\ n_1 \end{pmatrix} \]

describes a minimal torus in \(S^7 \).

Interestingly, the \(N \to \infty \) limit, (28), allows for non-trivial deformations (apart from the arbitrary constant that can be added to each of the 4 different arguments), namely

\[\vec{m}_\gamma = \frac{1}{2} \left(\cos \gamma \cos \vec{m} \varphi, \cos \gamma \sin \vec{m} \varphi, \cos \gamma \cos \vec{m}' \varphi, \cos \gamma \sin \vec{m}' \varphi, \sin \gamma \cos \vec{n} \varphi, \sin \gamma \sin \vec{n} \varphi, \sin \gamma \cos \vec{n}' \varphi, \sin \gamma \sin \vec{n}' \varphi \right). \]

(24)
It is easy to check that (24) solves (9) (and (8), with an appropriate choice of \(\rho \), constant), but when “checking” (7) (which is identical to (8)) via the \(N \to \infty \) limit of (12), the \(\gamma \)-dependence of the \(m_j \) at first looks as if leading to a “contradiction” (it would, in the finite \(N \)-case), but the rationality of the structure-constants (\(\vec{m} \times \vec{n} \) instead of \(\frac{N}{2\pi} \sin \frac{2\pi}{N} (\vec{m} \times \vec{n}) \)) comes at rescue.

To come to the final observation of this note, rewrite (24) as

\[
\vec{m}_\gamma = \frac{1}{\sqrt{2}} \vec{x}^\gamma_+ + \frac{1}{\sqrt{2}} \vec{x}^\gamma_-
\]

with

\[
\begin{align*}
\vec{x}^\gamma_+ &= \frac{1}{2} \left(\cos(\vec{m} \cdot \vec{\varphi} + \gamma), \sin(\vec{m} \cdot \vec{\varphi} + \gamma), \cos(\vec{m}' \cdot \vec{\varphi} + \gamma), \sin(\vec{m}' \cdot \vec{\varphi} + \gamma), \\
& \quad \sin(\vec{n} \cdot \vec{\varphi} + \gamma), -\cos(\vec{n} \cdot \vec{\varphi} + \gamma), \sin(\vec{n}' \cdot \vec{\varphi} + \gamma), -\cos(\vec{n}' \cdot \vec{\varphi} + \gamma) \right) \\
\vec{x}^\gamma_- &= \frac{1}{2} \left(\cos(\vec{m} \cdot \vec{\varphi} - \gamma), \sin(\vec{m} \cdot \vec{\varphi} - \gamma), \cos(\vec{m}' \cdot \vec{\varphi} - \gamma), \sin(\vec{m}' \cdot \vec{\varphi} - \gamma), \\
& \quad -\sin(\vec{n} \cdot \vec{\varphi} - \gamma), \cos(\vec{n} \cdot \vec{\varphi} - \gamma), -\sin(\vec{n}' \cdot \vec{\varphi} - \gamma), \cos(\vec{n}' \cdot \vec{\varphi} - \gamma) \right)
\end{align*}
\]

While \(\gamma \), in this form, becomes irrelevant (insofar each of the 4 arguments in \(\vec{x}_+ := \vec{x}^{[0]}_+ \), as well as those in \(\vec{x}_- := \vec{x}^{[0]}_- \) can have an arbitrary phase-constant), not only their sum, (25), but (due to the mutual orthogonality of \(\vec{x}_+, \partial_1 \vec{x}_+, \partial_2 \vec{x}_+, \vec{x}_-, \partial_1 \vec{x}_- \) and \(\partial_2 \vec{x}_- \)) both \(\vec{x}_+ \) and \(\vec{x}_- \) separately, in fact any linear combination

\[
\vec{x}_\theta = \cos \theta \vec{x}_+ + \sin \theta \vec{x}_-
\]

gives a minimal torus in \(S^7 \).

Acknowledgement

We would like to thank M.Bordemann, as well as F.Pedit, for discussions, and S.T.Yau for correspondence.

References

[1] J. Hoppe. “Some Classical Solutions of Membrane Matrix Model Equations”, [hep-th/9702169](https://arxiv.org/abs/hep-th/9702169), Proceedings of the Cargèse Nato Advanced Study Institute, May 1997, Kluwer 1999.

[2] H. B. Lawson, Jr. “Complete minimal surfaces in \(S^3 \)”, Ann. of Math. (2) 92 (1970), p 335–374.