LARGE 2-COLOURED MATCHINGS IN 3-COLOURED COMPLETE HYPERGRAPHS

TAMÁS TERPAI

Abstract. We prove the generalized Ramsey-type result on large 2-coloured matchings in a 3-coloured complete 3-uniform hypergraph, supporting a conjecture by A. Gyárfás.

1. Introduction and statement of result

In [3], the authors consider generalisations of Ramsey-type problems where the goal is not to find a monochromatic subgraph, but a subgraph that uses “few” colours. In particular, the following theorem is proven:

Theorem 1 ([3, Theorem 13]). For \(k \geq 1 \), in every 3-colouring of a complete graph with \(f(k) = \left\lceil \frac{2k-1}{3} \right\rceil \) vertices there is a 2-coloured matching of size \(k \). This is sharp for every \(k \geq 2 \), i.e. there is a 3-colouring of \(K_{f(k)-1} \) that does not contain a 2-coloured matching of size \(k \).

The example that shows the sharpness of the estimate is close to the colouring obtained by first colouring the vertices with the available colours in proportion close to 1 : 2 : 4 and then colouring the edges by the lowest index colour among its endpoints. The analogous question and construction make sense in the case of complete hypergraphs instead of \(K_n \). At the 1. Emléktábla workshop held at Gyöngyöstatján in July 2010, the first nontrivial case of this question (with 3-uniform hypergraphs and 3 colours) was considered. The best known construction in this case is based on the proportion 1 : 3 : 9, and leads to the following conjecture by A. Gyárfás:

Conjecture 1.1. For any \(t \)-colouring of the complete \(r \)-uniform hypergraph on \(n \geq kr + \left\lceil \frac{(k-1)(t-s)}{1 + r + \cdots + rs-1} \right\rceil \) vertices, there exists a \(s \)-coloured matching of size \(k \).

While it is known that the conjecture fails for e.g. \(t = 6 \) and \(s = 2 \), several particular cases are open. We consider here only \(t = 3, r = 3 \) and \(s = 2 \), in which case the conjecture has the form

Theorem 2. For any 3-colouring of the complete 3-uniform hypergraph on \(n \geq 3k + \left\lceil \frac{k-1}{4} \right\rceil \) vertices, there exists a 2-coloured matching of size \(k \).

2000 Mathematics Subject Classification. 05C55.
Key words and phrases. generalized Ramsey theory on hypergraphs.
Supported by OTKA grant NK 81203.
The case $k = 4$ (the first case that is not a trivial consequence of the existing results for the monochromatic problem, see e.g. [1]) was confirmed at the workshop by a team consisting of N. Bushaw, A. Gyárfás, D. Gerbner, L. Merchant, D. Piguet, A. Riet, D. Vu and the author:

Theorem 3 ([2]). For any 3-colouring of the complete 3-uniform hypergraph on 12 vertices there exists a perfect matching that uses at most 2 colours.

In this paper, we prove Theorem 2 in the following equivalent form:

Theorem 4. For any 3-colouring of the complete 3-uniform hypergraph on n vertices, there exists a 2-coloured matching of size

$$m(n) = \left\lfloor \frac{4(n+1)}{13} \right\rfloor .$$

It is easy to check that these indeed are formulations of the same result as

$$n = 3k + \left\lfloor \frac{k-1}{4} \right\rfloor = \left\lfloor \frac{13k-1}{4} \right\rfloor$$

is the smallest integer for which \(\left\lfloor \frac{4(n+1)}{13} \right\rfloor \geq k \) holds.

2. Proof

In the proof, the set of vertices of the hypergraph will be denoted by V, the colouring will be a function $c : \binom{\mathbb{V}}{3} \rightarrow \{1, 2, 3\}$, and α, β, γ will be an arbitrary permutation of the colours 1, 2, 3. The colours are shifted cyclically, e.g. if $\alpha = 3$, then $\alpha + 1$ denotes the colour 1 and if $\alpha = 1$, then $\alpha 1$ denotes the colour 3. A matching on n vertices is near perfect, if it has size $\left\lfloor \frac{n}{3} \right\rfloor$.

We call a sextuple A of points α-dominated for a colour $\alpha = 1, 2, 3$, if for all splittings $A = B_1 \cup B_2$ into two disjoint triples at least one of $c(B_1) = \alpha$ or $c(B_2) = \alpha$ holds. If A is not α-dominated for any α, we call it universal. Similarly, we call a set X of 13 points universal if it admits a near perfect matching in any pair of colours.

The proof proceeds by taking a maximal set of disjoint universal sets $A_1, \ldots, A_i, X_1, \ldots, X_m$ with $|A_i| = 6$ and $|X_j| = 13$. If we can now construct a 2-colour matching on $W = V \setminus (A_1 \cup \cdots \cup X_m)$ of the size $m(|W|)$, then we can extend it by the appropriately coloured near perfect matchings in the universal sets A_i and X_j and keep the size of the matching at least $m(|V|)$. Indeed, in the case of an A_i decreasing n by 6 decreases $m(n)$ by at most $\left\lfloor 4 \cdot 6/13 \right\rfloor = 2$ and in the case of an X_j decreasing n by 13 decreases $m(n)$ by 4. Thus by switching to W we may assume that there are no universal sets of size 6 or 13, and the resulting structural properties of the colouring will give us the necessary large 2-colour matching.

If a vertex sextuple is α-dominated, and there are splittings of it into hyperedges of colours α and $\alpha + 1$ as well as into those of colours α and $\alpha + 2$, we call this sextuple a spread in colour α, and the splittings are its demonstration splittings. Depending of whether the hyperedges of colour α in the demonstration splittings overlap in 1 or 2 vertices, we assign the spread (with a fixed demonstration splitting implied) a level of 1 or 2 respectively.

Lemma 4.1. Assume that there are two disjoint spreads A in colour α and B in colour β such that $\alpha \neq \beta$, and let v be an arbitrary vertex in the complement
Figure 1. If the substitution of a single vertex v can change the colour of a dominant triple in two spreads of different colour, we have a universal set of size 13. Example: case when $c(E_1) = \beta$ and $c(E_2) = \alpha$.

$V \setminus (A \cup B)$ of their union. Then the following property holds for $X = A$ or for $X = B$ (or both): if we substitute v for any vertex of the dominantly coloured triple in either demonstration splitting of the spread X, the colour of that triple stays the same, the dominating colour of X.

Proof. Indirectly assume that $A = M_1 \cup E_1$ and $B = M_2 \cup E_2$ are splittings which v “spoils”. That is, M_1 has the dominant colour α of A and $M_1 \cup \{v\}$ contains a triple F_1 of colour different from $c(M_1) = \alpha$, and analogously $c(M_2) = \beta$ and $M_2 \cup \{v\}$ contains a triple F_2 of colour different from β (see example on Figure 1). Then $A \cup B \cup \{v\}$ is a universal set of size 13. Indeed, it has a matching of size 4 that contains only colours α and β since both A and B admit perfect matchings in these colours. It also has a matching of size 4 that avoids the colour α: the spread B has such a matching of size 2, the triple E_1 has a colour different from α, and the remainder $M_1 \cup \{v\}$ contains F_1, also a triple of a colour different from α. The same argument with A and B reversed produces a near perfect matching that avoids the colour β, proving our claim and arriving at the contradiction that proves the lemma.

This coupling property implies a very rigid structure of the colouring:

Proposition 4.1. If there is a pair of disjoint spreads in two different colours, then there is a nearly perfect matching avoiding one colour.

Proof. Without loss of generality we may assume that the two colours are 1 and 2. Let the two spreads be $A^{(1)}$ (colour 1) and $A^{(2)}$ (colour 2), and out of all disjoint pairs of spreads of colours 1 and 2 this one contains the most level 2 spreads. Then each of them is either level 2 or it is level 1 and there are no level 2 spreads of their colour that would be disjoint from the other spread.

In both $A^{(1)}$ and $A^{(2)}$, fix two demonstration splittings

$$A^{(i)} = M_+^{(i)} \cup P^{(i)} = M_-^{(i)} \cup N^{(i)}$$

such that $c(M_+^{(i)}) = c(M_-^{(i)}) = i$, $c(P^{(i)}) = i + 1$ and $c(N^{(i)}) = i - 1$. Depending on the level of $A^{(i)}$, we can label the vertices of $A^{(i)} = \{a_1^{(i)}, \ldots, a_6^{(i)}\}$ to satisfy the following equalities:
That is, \hat{A}^i is bounded by D sets exist (for example, following properties:

- The vertex set A there is a vertex \hat{A} for the spreads \hat{A} for \hat{A} we have by definition of \hat{A} the property that z forms triples of colour i with all the critical vertex pairs of $C \cup \{x, y\}$, in particular, with $\{x, y\}$, and we are done.

Proof. We suppress for brevity the indices i. If A is level 2, then for any $\{x, y, z\} \subseteq A$ we have by definition of \hat{A} the property that z forms triples of colour i with all the critical vertex pairs of $C \cup \{x, y\}$, in particular, with $\{x, y\}$, and we are done.

We will call the vertex v_1^i the dominating vertex and the rest of the vertices the core vertices.

We will call the vertices v_1^i and v_2^i the dominating vertices and the rest of the vertices the core vertices.

In both cases, $D^{(i)}$ will denote the set of the dominating vertices and $C^{(i)}$ will denote the set of the core vertices. A pair of vertices will be called critical, if they are contained in either $M_+^{(i)}$ or $M_-^{(i)}$.

We choose sets $\hat{A}^{(1)}$ and $\hat{A}^{(2)}$ to be a maximal disjoint pair of sets satisfying the following properties:

- $D^{(i)} \subseteq \hat{A}^{(i)} \subseteq V \setminus (C^{(i)} \cup A^{(3-i)})$ for $i = 1, 2$.
- For any subset D of $\hat{A}^{(i)}$ of size $|D| = |D^{(i)}|$, the triples of the sextuple $C^{(i)} \cup D = (A^{(i)} \setminus D^{(i)}) \cup D$ complementary to $P^{(i)}$ and $N^{(i)}$ have colour i.
- For any subset D of $\hat{A}^{(i)}$ of size $|D| = |D^{(i)}|$, any pair of vertices $(u, v) \in V$ that is covered by the complement of either $P^{(i)}$ or $N^{(i)}$ in the sextuple $C^{(i)} \cup D = (A^{(i)} \setminus D^{(i)}) \cup D$, and any vertex $w \in \hat{A}^{(i)} \setminus D$, the triple $\{u, v, w\}$ has colour i.

That is, $\hat{A}^{(i)}$ is a maximal set of vertices (outside of $A^{(3-i)}$) extending the set of dominant vertices of $A^{(i)}$ such that we can switch the dominant vertices of $A^{(i)}$ with any two vertices of $\hat{A}^{(i)}$ and still be unable to change the colour of the dominant triples of the modified sextuple by a single vertex change within the set $\hat{A}^{(i)}$. Such sets exist (for example, $D^{(i)}$ satisfies the requirements for $A^{(i)}$), and their total size is bounded by $|V|$, so we can choose a maximal pair.

We claim that the sets $\hat{A}^{(1)} \cup \hat{A}^{(2)}$ cover $V \setminus (C^{(1)} \cup C^{(2)})$. Indeed, assume that there is a vertex $w \in V \setminus \left(C^{(1)} \cup C^{(2)} \cup \hat{A}^{(1)} \cup \hat{A}^{(2)} \right)$ such that it cannot be added to either $\hat{A}^{(1)}$ or $\hat{A}^{(2)}$ without violating their defining properties. This means that for $i = 1, 2$ we can switch the vertices in $D^{(i)}$ to some other vertices in $\hat{A}^{(i)}$ in such a way that for the resulting spread $\hat{A}^{(i)}$ there is a pair of vertices $(u^{(i)}, v^{(i)})$ of a dominating triple such that $c(u^{(i)}, v^{(i)}, w) \neq i$.

This contradicts Lemma 4.1 for the spreads $\hat{A}^{(1)}$ and $\hat{A}^{(2)}$ and the vertex w.

Additionally, these sets are already easy to colour with 2 colours:

Lemma 4.2. The vertex set $\hat{A}^{(i)}$ is a clique of colour i.

Proof. We suppress for brevity the indices i. If A is level 2, then for any $\{x, y, z\} \subseteq A$ we have by definition of \hat{A} the property that z forms triples of colour i with all the critical vertex pairs of $C \cup \{x, y\}$, in particular, with $\{x, y\}$, and we are done.
If A is level 1, recall first that we also assume that there are no spreads of colour i and level 2 in $A \cup C$. Indirectly assume furthermore that there is a triple $X = \{x_1, x_2, x_3\} \subseteq \hat{A}$ such that its colour is not i. For symmetry reasons it is enough to check the case when $c(X) = i + 1$. Then $P \cup X$ is covered by two disjoint triples of colour $i + 1$ and must be therefore $i + 1$-dominated - otherwise it would form a universal sextuple contrary to our assumptions. But $P \setminus N = \{v_4, v_5\}$ is a critical pair of vertices and hence $\{x_1, v_4, v_5\}$ has colour i; therefore its complement $Y = \{x_2, x_3, v_6\}$ has colour $i + 1$. This implies that the sextuple $X \cup N = Y \cup \{x_1, v_2, v_3\}$ can be split into colours $c(Y) = i + 1$ and $c(N) = i - 1$ as well as into colours $c(Y) = i + 1$ and $c(\{x_1, v_2, v_3\}) = i$ (the set $\{v_2, v_3, x_1\}$ is the complement of P in $C \cup \{x_1\}$ with $x_1 \in \hat{A}$), so this sextuple is $i + 1$-dominated.

Now use the fact that $\{x_2, v_3\}$ is a critical pair of vertices in $C \cup \{x_2\}$ (it lies in the complement of P). This implies that $c(\{x_2, x_3, v_3\}) = i$, and consequently its complement in $X \cup N$ has colour $i + 1$:

$$c(\{x_1, v_2, v_6\}) = i + 1.$$

By definition of \hat{A}, the sextuple $\{x_1\} \cup C$ is i-dominant as it cannot be dominant in any other colour. Hence the complement of $\{x_1, v_2, v_6\}$ in it has to have colour i:

$$c(\{v_3, v_4, v_5\}) = i.$$

Also, $\{v_4, v_5\}$ is a critical pair of vertices, so we have

$$c(\{x_1, v_4, v_5\}) = i$$

as well. But this means that $C \cup \{x_1\}$ is a level 2 spread of colour i as evidenced by splitting into $\{x_1, v_4, v_5\} \cup N$ (colours i and $i - 1$ respectively) and into $\{v_3, v_4, v_5\} \cup \{x_1, v_2, v_6\}$ (colours i and $i + 1$ respectively) - a contradiction with our initial assumption, hence \hat{A} is indeed a clique of colour i as claimed.

This also implies that $\hat{A}^{(1)} \cup M^{(1)}_1$ is a clique of colour 1 and $\hat{A}^{(2)} \cup M^{(2)}_1$ is a clique of colour 2 (we are adding a vertex or a critical pair of vertices to the appropriate $\hat{A}^{(i)}$). Notice that their complement is the union of the 2-coloured hyperedge $P^{(1)}$ and the 1-coloured hyperedge $N^{(2)}$.

Lemma 4.3. If U and W are disjoint cliques of colours 1 and 2 respectively such that $|U| \geq 3$ and $|W| \geq 3$, then there exists an almost perfect matching in $U \cup W$ in colours 1 and 2.

Proof. If $|U| + |W| \mod 3 = |U| \mod 3 + |W| \mod 3$, that is, $|U| \mod 3 + |W| \mod 3 \leq 2$, then taking maximal disjoint sets of hyperedges in U and W separately gives an almost perfect matching in colours 1 and 2.

If this is not the case, then both $|U| \mod 3$ and $|W| \mod 3$ are at least 1 and at least one of them is equal to 2; without loss of generality, we may assume that $|U| \equiv 2 \mod 3$. We claim that there is a hyperedge $E \subseteq U \cup W$ of colour 1 or 2 with the property that $|U \cap E| = 2$. Indeed, assume indirectly that all triples intersecting U in 2 vertices and W in 1 vertex have colour 3. Since $|U| \geq 3$ and $|U| \mod 3 = 2$, we have $|U| \geq 5$. Consider any four distinct vertices $u_1, u_2, u_3, u_4 \in U$ and any two distinct vertices $w_1, w_2 \in W$. Then the set $X = \{u_1, u_2, u_3, u_4, w_1, w_2\}$ is covered by the triples $\{u_1, u_2, w_1\}$ and $\{u_3, u_4, w_3\}$, both of which have to have colour 3. Hence X can only be 3-dominated, consequently at least one of the members of the matching $\{u_1, w_1, w_2\} \cup \{u_2, u_3, u_4\}$ has colour 3. But the triple $\{u_2, u_3, u_4\}$ lies in
Figure 2. If there are no spreads, then only two colours may be used.

the clique \(U \) and therefore has colour 1, so \(c(\{u_1, w_1, w_2\}) = 3 \). This implies that for any choice of a vertex \(w_3 \in W \setminus \{w_1, w_2\} \) we have on one hand
\[
c(\{u_1, w_1, w_2\}) = 3 \quad \text{and} \quad c(\{u_2, u_3, w_3\}) = 3
\]
due to the latter triple intersecting \(U \) in 2 vertices, and on the other hand
\[
c(\{u_1, u_2, u_3\}) = 1 \quad \text{and} \quad c(\{w_1, w_2, w_3\}) = 2
\]
due to \(U \) and \(V \) being cliques. Hence \(\{u_1, u_2, u_3, w_1, w_2, w_3\} \) would be a universal sextuple, a contradiction that proves our claim.

Given a hyperedge \(E \subset U \cup W \) of colour 1 or 2 with the property that \(|U \cap E| = 2 \), we can just add it to the union of any maximal matching of \(U \setminus E \) and any maximal matching of \(W \setminus E \) to get a nearly perfect matching of \(U \cup W \) in colours 1 and 2.

\[\square\]

Applying Lemma 4.3 to the cliques \(\tilde{A}^{(1)} \cup M^{(1)}_+ \) and \(\tilde{A}^{(2)} \cup M^{(2)}_- \) and adding the triples \(P^{(1)} \) and \(N^{(2)} \) yields a near perfect matching in colours 1 and 2 on \(V \). This finishes the proof of Proposition 4.1.

\[\square\]

Once we can exclude two disjoint spreads of different colours, we have two possibilities: either there are no spreads at all, or there is a spread of, say, colour 1, and any spread in its complement is also of colour 1. We will also assume that \(|V| \geq 9 \) as otherwise the 2-colour condition is trivially fulfilled by any near perfect matching.

Case 1: there are no spreads. If there are no spreads, then no sextuple can contain triples of all three colours: one of them would be dominating, and any two instances of the other two colours could be chosen to be \(P \) and \(N \) of a spread. We will first look for a pair of triples of different colours that share two vertices, \(c(A) \neq c(B) \), \(|A \cap B| = 2 \). If there are no such pairs, then all triples have the same colour and any nearly perfect matching is monochromatic, we are done. If, on the other hand, such triples \(A \) and \(B \) exist, we may assume without loss of generality that \(c(A) = 1 \) and \(c(B) = 2 \). Could there be triples of colour 3 (see Figure 2)? Any such triple \(C \) would have to be disjoint from \(A \cup B \), because otherwise their union \(A \cup B \cup C \) (together with any other vertex if it has only 5 elements) would form a sextuple of vertices that contains all the three colours. Then for any vertex \(v \in C \) the triple \(T = (A \cap B) \cup \{v\} \) is covered by both \(A \cup C \) (covering only triples of colour 1 and 3) and \(B \cup C \) (covering only triples of colour 2 and 3) and therefore
can only be of colour 3. But then $A \cup B \cup \{v\}$ together with any other vertex form a sextuple that contains triples of all three colours, A, B and T - a contradiction.

Therefore in this case only two colours may be used at all, so any near perfect matching automatically satisfies our desired condition.

Case 2: there exists a spread (of colour 1, say). We first investigate what happens if there are no spreads of other colour at all. This results in a highly ordered structure:

Proposition 4.2. If a colouring is such that all spreads are of colour 1, then either
- there exists a near perfect matching avoiding colour 2 or colour 3, or
- there are no triples of colour 1 at all.

Proof. First note that the condition on the spreads means that whenever a sextuple contains triples of all three colours, it is 1-dominated. In particular, if a triple is covered by a disjoint union of a 2-coloured and a 3-coloured triple, it cannot have colour 1 - the union in question can only be 2- or 3-dominated. We show that this statement can also be used for non-disjoint pairs of triples of colours 2 and 3.

Lemma 4.4. Assume that all spreads in the colouring are of colour 1. Then either
- there are no triples of colour 1 covered by the union of a triple of colour 2 and a triple of colour 3, or
- there exists a near perfect matching avoiding colour 2 as well as one avoiding colour 3.

Proof. Assume $A = \{v_1, v_2, v_3\}$ is a colour 1 triple that is covered by triples B and C of colours 2 and 3 respectively. At least one of these has to cover 2 vertices of A, so after a renumbering of colours, triples and vertices we may assume that $B = \{v_2, v_3, v_4\}$ and $v_1 \in C$. We now have three cases for the situation of C with respect to A and B:

1. $C \cap B = \emptyset$. Then B and C are disjoint triples of colour 2 and 3 respectively which cover A, a triple of colour 1 - a contradiction.
2. $C \cap B = \{v_2, v_4\}$ (or analogously $\{v_3, v_4\}$): that is, C is covered by $A \cup B$ (see Figure 3). The union $A \cup B = A \cup B \cup C$ has 4 elements and contains all three colours, so adding any pair of vertices x, y makes it a 1-dominated sextuple. In this sextuple, the triples $\{x, y, v_1\}$ and $\{x, y, v_3\}$ have non-1-coloured complements, so they have to have colour 1 themselves. Now assume there is a triple $D = \{w_1, w_2, w_3\}$ of colour 2 disjoint from $A \cup B$ (the case of $c(D) = 3$ is similar). Then $D \cup C$ is a disjoint union of a
2-coloured triple and a 3-coloured one, and it covers the 1-coloured triple \(\{ w_1, w_2, v_1 \} \) - a contradiction. Hence all triples disjoint from \(A \cup B \) have colour 1. Consequently we can choose a near perfect matching either in colour 1 only, or at will in colours 1 and 2, or in colours 1 and 3 - if the total number of vertices is congruent to 1 or 2 modulo 3, we take a near perfect matching in the complement of \(A \cup B \) and add \(A \), otherwise we take a near perfect matching in the complement of \(A \cup B \), add the triple \(B \) or \(C \) depending on which colour out of 2 and 3 is wanted and match up the remaining two vertices with either \(v_1 \) or \(v_3 \) (whichever is left out).

(3) \(| C \cap B | = 1 \); let \(w \) denote the single vertex in \(C \setminus (A \cup B) \) (see Figure 4). By the same argument as before, for any vertex \(x \) not in \(A \cup B \cup C \) we have that \(A \cup B \cup C \cup \{ x \} \) is 1-dominated, so the complements of the non-1-coloured triples \(B \) and \(C \) must have colour 1:

\[
\begin{align*}
c(\{ x \} \cup ((A \cup B \cup C) \setminus B)) &= 1, \\
c(\{ x \} \cup ((A \cup B \cup C) \setminus C)) &= 1.
\end{align*}
\]

This makes it impossible to have triples of colour other than 1 disjoint from \(A \cup B \cup C \), as they would cover a 1-coloured triple together with either \(B \) or \(C \) (whichever has the colour other from that of the selected triple). Now taking a maximal matching outside \(A \cup B \cup C \), we can extend it to a near perfect matching avoiding the colour 2 or the colour 3 as follows. If there are no vertices left outside the matching, add \(A \) to get a 1-coloured matching. If there is 1 vertex left, join it to \((A \cup B \cup C) \setminus B \) and add \(B \) to avoid the colour 3; do the same with \(B \) and \(C \) switched to avoid the colour 2. Finally, if there are 2 vertices left, join them respectively to the disjoint vertex pairs \((A \cup B \cup C) \setminus B \) and \((A \cup B \cup C) \setminus C \) to obtain a matching of colour 1.

\[\square\]

Thus we may restrict our attention to the case when the union of a triple of colour 2 and a triple of colour 3 cannot cover a triple of colour 1, even if they are not disjoint.

We now try to find a vertex such that all triples containing it are of colour 1; we will call such a vertex 1-\textit{forcing}. If there are no triples of colours 1 and 2 or 1 and 3 such that they intersect in two vertices, then either there are no triples of colour 1 - in which case there is a near perfect matching in colours 2 and 3 - or there are no triples of colour different from 1 - in which case there is a near perfect matching in colour 1. Hence we might assume that there is a pair of triples of the form \(A = \{ v_1, v_2, v_3 \} \), \(B = \{ v_2, v_3, v_4 \} \) with \(c(A) = 1 \) and \(c(B) = 2 \), say. By our

![Figure 4. Case \(| C \cap B | = 1 \).](image-url)
previous lemma there are no triples of colour 3 that contain \(v_1 \). If there are no such triples disjoint from \(A \cup B \) either, then any near perfect matching containing \(A \) or \(B \) will be 1 and 2-coloured. Assume therefore that there is a triple \(C \) of colour \(c(C) = 3 \) in the complement of \(A \cup B \). No triple covered by \(B \cup C \) can have colour 1, in particular the triple \(D = \{v_2, v_3, x\} \) with some \(x \in C \) has to have colour 2 or 3. If \(c(D) = 3 \), then we can repeat the argument with \(A \) and \(D \) instead of \(A \) and \(B \) to get that no colour 2 triples contain \(v_1 \) either, so \(v_1 \) is 1-forcing. If \(c(D) = 2 \), then \(A \cup C \) contains triples of all three colours and thus is 1-dominated, in particular the triple \(E = \{v_1\} \cup (C \setminus \{x\}) = (A \cup C) \setminus D \) has to have colour 1 due to its complement having colour 2. In this case, the application of the same argument to \(E \) and \(C \) gives us the same result of no triples of colour 2 containing \(v_1 \) and \(v_1 \) is 1-forcing again.

Putting such a 1-forcing vertex aside and repeating the procedure, we end up with a set of 1-forcing vertices and a remainder set where either there are no triples of colour 1 or there is a near perfect matching in colours 1 and 2 or 3. In the latter case, we can just complete the matching with 1-forcing vertices at will, so we assume now that the remainder, denoted henceforth by \(R \), only has triples of colours 2 and 3.

If \(R = V \), then we get the second conclusion of our proposition, so we may assume that there is at least one 1-forcing vertex. If, moreover, \(R \) had three disjoint pairs of triples of colours 2 and 3 that intersect in 2 vertices, we could add a 1-forcing vertex and get a universal 13-vertex set (see Figure 5) - a contradiction. If there are no three disjoint pairs like that, then after picking at most two of them the rest (denoted by \(R' \)) has to be a clique, of colour 2, say. We can then take a 1-forcing vertex and add to it those vertices of the triples of colour 3 among the chosen pairs of colour 2 and 3 that are not covered by the corresponding triples of colour 2, and add another vertex from \(R' \) if we still don’t have three vertices. Choose a near perfect matching from the rest of \(R \) containing the selected triples of colour 2 and then cover the rest with 1-forcing vertices if there are any left. This yields a near perfect matching in colours 1 and 2, and finishes the proof of the proposition.

Since in both cases of Proposition 4.2 we get a near perfect matching in 2 colours, we only need to consider the case where there exist spreads of a different colour. By symmetry, assume that \(U \) is a spread of colour 1 and \(W \) is a spread of colour 2. By Proposition 4.1, we can apply Proposition 4.2 to \(V \setminus U \), so we either get a near perfect matching avoiding colour 2 or 3 or no triples of colour 1 at all. In the first case, we can add one of the demonstration splittings of \(U \) to get a near perfect matching of \(V \) avoiding either colour 2 or colour 3. The same argument of applying Proposition 4.2 to \(V \setminus W \) yields either a near perfect matching on \(V \) in 2 colours or
no triples of colour 2 at all. We may hence assume that we got the second result in both attempts, and the colouring is such that all triples of colour 1 intersect U while all triples of colour 2 intersect W.

We see that in such a setup, the vertex set $V \setminus (U \cup W)$ is a clique in colour 3. Additionally, there is at least one triple of colour 3 in U (and in W, but it may not be disjoint from those in U), so if we take a maximal matching in colour 3 extending an exhausting of $V \setminus (U \cup W)$, we end up with at most $2 + |U| + |W| - |U \cap W| - 3 \leq 10$ vertices not covered by this matching and consequently only containing triples of colours 1 and 2. We distinguish between three possibilities for the number m of vertices left out:

- $m \leq 8$ and $m \neq 6$. By the theorem of Alon, Frankl and Lovász ([1]) there is an almost perfect monochromatic matching in this 2-coloured subgraph: 3 vertices needed for 1 triple, 7 for two triples. Adding it to the initial colour 3 matching, we obtain a near perfect matching of V in 2 colours.
- $m = 6$ or $m = 9$. In this case $|V|$ is a multiple of 3, so either it is at most 12, in which case we apply Theorem 3 or $|V|$ is at least 15, hence the prediction ([1]) gives a size at least one less than that of a perfect matching. In this latter case, the result of ([1]) is sufficient (a size 1 matching for $m = 6$ and a size 2 matching for $m = 9$).
- $m = 10$. Here all of our estimates have to be sharp, that is, $|U \cap W| = 1$ and we must have 2 vertices from $V \setminus (U \cup W)$ and 8 vertices from $U \cup W$ not covered by the matching in colour 3. If choosing a different maximal matching in colour 3 leads to a different case, we are done, so we may assume that no matter which 2 vertices a and b of $V \setminus (U \cup W)$ are left out from the initial matching, there do not exist 2 disjoint triples of colour 3 in $U \cup W \cup \{a, b\}$. But any vertex in $U \cup W \setminus (U \cap W)$ lies in the complement of a triple of colour 3 - the elements of $U \setminus W$ miss the colour 3 triple in W and vice versa. Therefore any vertex in $U \cup W \setminus (U \cap W)$ together with any two vertices in $V \setminus (U \cup W)$, and any two vertices in $U \setminus W$ (or $W \setminus U$) together with any vertex in $V \setminus (U \cup W)$, give a hyperedge of colour 1 or 2.

If now $|V| \geq 31$, we can cover all of $V \setminus (U \cap W)$ (at most 30 vertices) by at most 10 such hyperedges (adding a suitable splitting of W or applying Theorem 3 if $|V| = 13$). If, on the other hand, $|V| \geq 32$, then the formula ([1]) predicts a matching at least 1 less than a near perfect one. Such a matching can be found with direct application of ([1]) to the 10-vertex remainder as before.

In all three cases we arrive at a matching in 2 colours of size at least that predicted by ([1]), finishing the proof of Theorem 4.

References

[1] N. Alon, P. Frankl, L. Lovász: The chromatic number of Kneser hypergraphs, Transactions of the AMS, 298 (1986), 359–370.
[2] N. Bushaw, P. Csorba, L. Erickson, D. Gerbner, D. Piguet, A. Riet, T. Terpai, D. Vu: 2-Colored Matchings in a 3-Colored K_{12}^3, [arXiv:1209.2033]
[3] A. Gyárfás, G. Sárközy, S. Sehlōw: Coverings by few monochromatic pieces – a transition between two Ramsey problems, preprint

Université de Genève, rue du Lièvre 2-4, Case postale 64, 1211 Genève 4, Switzerland
E-mail address: terpai@math.elte.hu