Geometric zeta functions for higher rank \(p \)-adic groups

Anton Deitmar & Ming-Hsuan Kang *

Abstract: The higher rank Lefschetz formula for \(p \)-adic groups is used to prove rationality of a several-variable zeta function attached to the action of a \(p \)-adic group on its Bruhat-Tits building. By specializing to certain lines one gets one-variable zeta functions, which then can be related to geometrically defined zeta functions.

Contents

1 The Lefschetz formula 2

2 The zeta function 8

3 Geometric zeta functions 10

4 PGL\(_3\) 13

5 Riemann Hypothesis 16

*This research was supported by NSC grant 100-2115-M-009-008-MY2 (M-H. Kang). The research was performed while the first author was visiting the Shing-Tung Yau Center in National Chiao Tung University and the National Center for Theoretical Sciences, Mathematics Division, in Hsinchu, Taiwan. The authors would like to thank both institutions for their support and hospitality.
Introduction

Introduction to be written.

1 The Lefschetz formula

Let F be a nonarchimedean local field with valuation ring \mathcal{O} and uniformizer ϖ. Let $| \cdot |$ be the absolute value on F normalized by the rule $\mu(xA) = |x|\mu(A)$, where μ is any additive Haar measure on F. Denote by G a semisimple linear algebraic group over F. Let $K \subset G$ be a good maximal compact subgroup. Choose a parabolic subgroup $P = LN$ of G with Levi component L. Let $A = A_L$ denote the largest split torus in the center of L. Then A is called the split component of P. There exists a reductive subgroup $M = M_L$ of L, containing the derived group L_{der}, such that AM has finite index in L. Let $\Phi = \Phi(G,A)$ be the root system of the pair (G,A), i.e. Φ consists of all homomorphisms $\alpha : A \to \text{GL}_1$ such that there is X in the Lie algebra of G with $\text{Ad}(a)X = a^\alpha X$ for every $a \in A$. Given α, let n_α be the Lie algebra generated by all such X and let N_α be the closed subgroup of N corresponding to n_α. Let $\Phi^+ = \Phi(P,A)$ be the subset of Φ consisting of all positive roots with respect to P. Let $\Delta \subset \Phi^+$ be the subset of simple roots. Let $A^- \subset A$ be the set of all $a \in A$ such that $|a^\alpha| < 1$ for any $\alpha \in \Delta$.

An element g of G is called elliptic if it is contained in a compact torus. Let M_{ell} denote the set of elliptic elements of M.

Let $X^*(A) = \text{Hom}(A, \text{GL}_1)$ be the group of all homomorphisms as algebraic groups from A to GL_1. This group is isomorphic to \mathbb{Z}^r with $r = \text{dim } A$. Likewise let $X^*_s(A) = \text{Hom}(\text{GL}_1, A)$. There is a natural \mathbb{Z}-valued pairing

$$X^*(A) \times X^*_s(A) \to \text{Hom}(\text{GL}_1, \text{GL}_1) \cong \mathbb{Z}$$

$$(\alpha, \eta) \mapsto \alpha \circ \eta.$$

For every root $\alpha \in \Phi(A,G) \subset X^*(A)$ let $\bar{\alpha} \in X^*_s(A)$ be its coroot. Then $(\alpha, \bar{\alpha}) = 2$. The valuation v of F gives a group homomorphism $\text{GL}_1(F) \to \mathbb{Z}$. Let A_c be the unique maximal compact subgroup of A. Let $\tilde{A} = A/A_c$; then \tilde{A} is a \mathbb{Z}-lattice of rank $r = r(P) = \text{dim } A$. By composing with the valuation v the group $X^*(A)$ can be identified with

$$\tilde{A}^* = \text{Hom}(\tilde{A}, \mathbb{Z}).$$
Let

\[a^*_0 = \text{Hom}(\tilde{A}, \mathbb{R}) \cong X^*(A) \otimes \mathbb{R} \]

be the real vector space of all group homomorphisms from \(\tilde{A} \) to \(\mathbb{R} \) and let \(a^* = a^*_0 \otimes \mathbb{C} = \text{Hom}(\tilde{A}, \mathbb{C}) \cong X^*(A) \otimes \mathbb{C} \). For \(a \in A \) and \(\lambda \in a^* \) let

\[a^\lambda = q^{-\lambda(a)}, \]

where \(q \) is the number of elements in the residue class field of \(F \). In this way we get an identification

\[a^*/2\pi i \log q \tilde{A}^* \cong \text{Hom}(\tilde{A}, \mathbb{C}^\times). \]

A quasicharacter \(\nu : A \to \mathbb{C}^\times \) is called \textit{unramified} if \(\nu \) is trivial on \(A_c \). The set \(\text{Hom}(\tilde{A}, \mathbb{C}^\times) \) can be identified with the set of unramified quasicharacters on \(A \). Any unramified quasicharacter \(\nu \) can thus be given a unique real part

\[\text{Re}(\nu) \in a^*_0. \]

This definition extends to not necessarily unramified quasi characters \(\chi : A \to \mathbb{C}^\times \) as follows. Choose a splitting \(s : \tilde{A} \to A \) of the exact sequence

\[1 \to A_c \to A \to \tilde{A} \to 1. \]

Then \(\nu = \chi \circ s \) is an unramified character of \(A \). Set

\[\text{Re}(\chi) = \text{Re}(\nu). \]

This definition does not depend on the choice of the splitting \(s \). For quasicharacters \(\chi, \chi' \) and \(a \in A \) we will frequently write \(a^\lambda \) instead of \(\chi(a) \) and \(a^{\lambda+\lambda'} \) instead of \(\chi(a)\chi'(a) \). Note that the absolute value satisfies \(|a^\lambda| = a^{\text{Re}(\lambda)} \) and that a quasicharacter \(\chi \) actually is a character if and only if \(\text{Re}(\chi) = 0 \).

Let \(\Delta_P : P \to \mathbb{R}_+ \) be the modular function of the group \(P \). Then the element \(\rho_P = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha \) satisfies \(\Delta_P(a) = |a^{2\rho_P}|. \) For \(\nu \in a^* \) and a root \(\alpha \) let

\[\nu_\alpha = (\nu, \hat{\alpha}) \in X^*(\text{GL}_1) \otimes \mathbb{C} \cong \mathbb{C}. \]

Note that \(\nu \in a^*_0 \) implies \(\nu_\alpha \in \mathbb{R} \) for every \(\alpha \). For \(\nu \in a^*_0 \) we say that \(\nu \) is positive, \(\nu > 0 \), if \(\nu_\alpha > 0 \) for every positive root \(\alpha \).

Example. Let \(G = \text{GL}_n(F) \) and let \(\varpi_j \in G \) be the diagonal matrix \(\varpi_j = \text{diag}(1, \ldots, 1, \varpi, 1, \ldots, 1) \) with the \(\varpi \) on the \(j \)-th position. Let \(\nu \in a^* \) and let

\[\nu_j = \nu(\varpi_j A_c) \in \mathbb{C}. \]
Let α be a root, say α(diag(a_1, ..., a_n)) = a_i / a_j. Then
\[\nu_\alpha = \nu_i - \nu_j. \]

Hence \(\nu \in a_0^* \) is positive if and only if \(\nu_1 > \nu_2 > \cdots > \nu_n \).

We will fix Haar-measures of \(G \) and its reductive subgroups as follows. For \(H \subset G \) being a torus there is a unique maximal compact subgroup \(U_H \) which is open. Then we fix a Haar measure on \(H \) such that \(\text{vol}(U_H) = 1 \). If \(H \) is connected semisimple with compact center then we choose the unique positive Haar-measure which up to sign coincides with the Euler-Poincaré measure \[\mathcal{E}. \] So in the latter case our measure is determined by the following property: For any discrete torsionfree cocompact subgroup \(\Gamma_H \subset H \) we have
\[\text{vol}(\Gamma_H \setminus H) = (-1)^{r(H)} \chi(\Gamma_H, \mathbb{Q}), \]
where \(r(H) \) is the \(k \)-rank of \(H \) and \(\chi(\Gamma_H, \mathbb{Q}) \) the Euler-Poincaré characteristic of \(H^*(\Gamma_H, \mathbb{Q}) \). For the applications recall that centralizers of tori in connected groups are connected \[\mathbf{1}. \]

Assume we are given a discrete subgroup \(\Gamma \) of \(G \) such that the quotient space \(\Gamma \setminus G \) is compact. Let \((\omega, V_\omega) \) be a finite dimensional unitary representation of \(\Gamma \) and let \(L^2(\Gamma \setminus G, \omega) \) be the Hilbert space consisting of all measurable functions \(f : G \to V_\omega \) such that \(f(\gamma x) = \omega(\gamma) f(x) \) and \(|f| \) is square integrable over \(\Gamma \setminus G \) (modulo null functions). Let \(R \) denote the unitary representation of \(G \) on \(L^2(\Gamma \setminus G, \omega) \) defined by right shifts, i.e. \(R(g) \varphi(x) = \varphi(xg) \) for \(\varphi \in L^2(\Gamma \setminus G, \omega) \). It is known that as a \(G \)-representation this space splits as a topological direct sum:
\[L^2(\Gamma \setminus G, \omega) = \bigoplus_{\pi \in \hat{G}} N_{\Gamma, \omega}(\pi) \pi \]
with finite multiplicities \(N_{\Gamma, \omega}(\pi) < \infty \).

Suppose \(\gamma \in \Gamma \) is \(G \)-conjugate to some \(a_\gamma b_\gamma \in A^{-M_{ell}} \). We want to compute the covolume
\[\text{vol}(\Gamma_\gamma \setminus G_\gamma). \]

An element of \(\text{GL}_n(F) \) is called neat, if the subgroup of \(\bar{F}^* \) generated by its eigenvalues, is torsion-free. An element \(x \) of \(G \) is called neat if for some injective representation \(\rho : G \to \text{GL}_n(F) \) of \(G \) the matrix \(\rho(x) \) is neat. It is easy to check that in this case the same holds for every representation \(\rho \), injective or not. A subset \(A \) of \(G \) is called neat if each element of it is. If the
characteristic of F is zero, then every arithmetic group Γ has a finite index subgroup which is neat [2].

We suppose that Γ is neat. Since Γ is cocompact, this implies that for every $\gamma \in \Gamma$ the Zariski closure of the group generated by γ is a torus. It then follows that G_{γ} is a connected reductive group [1].

An element $\gamma \in \Gamma$ is called primitive if $\gamma = \sigma^n$ with $\sigma \in \Gamma$ and $n \in \mathbb{N}$ implies $n = 1$. It is a property of discrete cocompact torsion free subgroups Γ of G that every $\gamma \in \Gamma$, $\gamma \neq 1$ is a positive power of a unique primitive element. In other words, given a nontrivial $\gamma \in \Gamma$ there exists a unique primitive γ_0 and a unique $\mu(\gamma) \in \mathbb{N}$ such that

$$\gamma = \gamma_0^{\mu(\gamma)}.$$

Let Σ be a group of finite cohomological dimension $cd(\Sigma)$ over \mathbb{Q}. We write

$$\chi(\Sigma) = \chi(\Sigma, \mathbb{Q}) := \sum_{p=0}^{cd(\Sigma)} (-1)^p \dim H^p(\Sigma, \mathbb{Q}),$$

for the Euler-Poincaré characteristic. We also define the higher Euler characteristic as

$$\chi_r(\Sigma) = \chi_r(\Sigma, \mathbb{Q}) := \sum_{p=0}^{cd(\Sigma)} (-1)^{p+r} \binom{p}{r} \dim H^p(\Sigma, \mathbb{Q}),$$

for $r \in \mathbb{N}$ as Γ acts freely on the Bruhat-Tits building B of G, which is contractible, the quotient $\Gamma \backslash B$ is a classifying space for Γ, hence the cohomological dimension of Γ is bounded by the dimension of B, hence finite.

We denote by $\mathcal{E}_p(\Gamma)$ the set of all conjugacy classes $[\gamma]$ in γ such that γ is in G conjugate to an element $a_{\gamma}m_{\gamma} \in AM$, where m_{γ} is elliptic and $a_{\gamma} \in A^-$. Let $\gamma \in \mathcal{E}_p(\Gamma)$. To simplify the notation let’s assume that $\gamma = a_{\gamma}m_{\gamma} \in A^-Md_l$. Let C_{γ} be the connected component of the center of G_{γ} then $C_{\gamma} = AB_{\gamma}$, where B_{γ} is the connected center of $M_{m_{\gamma}}$ the latter group will also be written as M_{γ}. Let M_{γ}^{der} be the derived group of M_{γ}. Then $M_{\gamma} = M_{\gamma}^{der}B_{\gamma}$.

Let $\Gamma_{\gamma,A} = A \cap \Gamma_{\gamma}B_{\gamma}$ and $\Gamma_{\gamma,M} = M_{\gamma}^{der} \cap \Gamma_{\gamma}AB_{\gamma}$. Similar to the proof of Lemma 3.3 of [7], one shows that $\Gamma_{\gamma,A}$ and $\Gamma_{\gamma,M}$ are discrete cocompact
subgroups of A and M_{γ}^{der} resp. Let

$$\lambda_{\gamma} \overset{\text{def}}{=} \text{vol}(\Gamma_{\gamma} \backslash A).$$

Proposition 1.1. (a) Assume Γ neat and let $\gamma \in \Gamma$ be G-conjugate to an element of $A^{-}M_{\text{ell}}$. Then we get

$$\text{vol}(\Gamma_{\gamma} \backslash G_{\gamma}) = \lambda_{\gamma} |\chi_r(\Gamma_{\gamma})|,$$

where $r = \dim A$.

(b) Let Γ, Λ be of finite cohomological dimension over \mathbb{Q}. Let C_r be a group isomorphic to \mathbb{Z}^r and assume there is an exact sequence

$$1 \to C_r \to \Gamma \to \Lambda \to 1.$$

Assume that C_r is central in Γ. Then

$$\chi(\Lambda, \mathbb{Q}) = \chi_r(\Gamma, \mathbb{Q}).$$

Proof. [4]

For a representation π of G let π^{∞} denote the subrepresentation of smooth vectors, i.e., π^{∞} is the representation on the space $\bigcup_{H \subset G} \pi^H$, where H ranges over the set of all open subgroups of G. Further let π_N denote the Jacquet module of π. By definition π_N is the largest quotient MAN-module of π^{∞} on which N acts trivially. One can achieve this by factoring out the vector subspace consisting of all vectors of the form $v - \pi(n)v$ for $v \in \pi^{\infty}$, $n \in N$. It is known that if π is an irreducible admissible representation, then π_N is a admissible MA-module of finite length. For a smooth M-module V let $H^*_c(M, V)$ denote the continuous cohomology with coefficients in V as in [3].

Let σ be an element of a group S acting on a finite dimensional F vector space V. Then we write $\lambda_{\min}(\sigma|V)$ for the minimal norm of an eigenvalue of σ in the algebraic closure \overline{F} of F. Likewise, $\lambda_{\max}(\sigma|V)$ is the maximal norm of such an eigenvalue. The Lie algebra \mathfrak{g} of G has a direct sum decomposition $\mathfrak{g} = \mathfrak{n} + \mathfrak{m} + \mathfrak{n}$, where \mathfrak{m} is the Lie algebra of M and \mathfrak{n} is the Lie algebra of N as well as \mathfrak{n} is the Lie algebra of the opposite of N. Then let \tilde{M} denote the set of all $m \in M$ such that

$$\lambda_{\min}(m|\mathfrak{m}) > \lambda_{\max}(m|\mathfrak{m} + \mathfrak{n}).$$
Theorem 1.2. (Lefschetz Formula)
Let Γ be a neat discrete cocompact subgroup of G. Let φ be a uniformly smooth function on A with support in A^\times. Suppose that the function $a \mapsto \varphi(a)|a^{2\rho}|$ is integrable on A. Let σ be a finite dimensional unitary representation of M. Let q be the F-splitrank of G and $r = \dim A$. Then

$$
\sum_{\pi \in \hat{G}} N_{\Gamma,\omega}(\pi) \sum_{q=0}^{\dim M} (-1)^q \int_{A^-} \varphi(a) \operatorname{tr}(a|H^q_c(M, \pi_N \otimes \sigma)) \, da
$$

equals
$$
\sum_{[\gamma] \in E_P(\Gamma)} \lambda_\gamma |\chi_\Gamma(\Gamma_\gamma)| \operatorname{tr} \omega(\gamma) \operatorname{tr} \sigma(m_\gamma) a^{2\rho}_\gamma \varphi(a_\gamma).
$$

Both outer sums converge absolutely and the sum over $\pi \in \hat{G}$ actually is a finite sum, i.e., the summand is zero for all but finitely many π. For a given compact open subgroup U of A both sides represent a continuous linear functional on the space of all functions φ as above which factor over A/U, where this space is equipped with the norm $||\varphi|| = \int_A |\varphi(a)| a^{2\rho} \, da$.

Let A^* denote the set of all continuous group homomorphisms $\lambda: A \to \mathbb{C}^\times$, which we write in the form $a \mapsto a^\lambda$. For $\lambda \in A^*$ and an A-module V let V_λ denote the generalized λ-eigenspace, i.e,

$$
V_\lambda \defeq \bigcup_{k=1}^{\infty} \{ v \in V \mid (a - a^\lambda)^k v = 0 \ \forall a \in A \}.
$$

Then

$$
\int_{A^-} \varphi(a) \operatorname{tr}(a|H^q_c(M, \pi_N \otimes \sigma)) \, da
$$

equals
$$
\sum_{\lambda \in A^*} \dim H^q_c(M, \pi_N \otimes \sigma)_\lambda \int_{A^-} \varphi(a) a^\lambda \, da.
$$

For $\lambda \in A^*$ define

$$
m^{\sigma,\omega}_\lambda \defeq \sum_{\pi \in \hat{G}} N_{\Gamma,\omega}(\pi) \sum_{q=0}^{\dim M} (-1)^q \dim H^q_c(M, \pi_N \otimes \sigma)_\lambda.
$$

The sum is always finite. The theorem is equivalent to the following Corollary.
Corollary 1.3. (Lefschetz Formula)
As an identity of distributions on A^- we have
$$\sum_{\lambda \in \tilde{A}^*} m^{\sigma, \omega}_\lambda \lambda = \sum_{[\gamma] \in E_P(\Gamma)} \lambda_\gamma |\chi_\gamma(\Gamma_\gamma)| a_\gamma^{2\rho} \text{tr} \omega(\gamma) \text{tr} \sigma(m_\gamma) \delta_{u_\gamma}.$$

2 The zeta function

Let q denote the residue field cardinality and let $r = r(P)$ and $\alpha_1, \ldots, \alpha_r$ be the simple roots. Then $\rho_P = \alpha_1 + \cdots + \alpha_r$ is the modular weight. For $a \in \tilde{A}^-$ we write
$$l_j(a) = -\log_q (a^{\alpha_j}), \quad j = 1, \ldots, r.$$
Then $l_j(a)$ is an integer which is equal to or bigger than zero. For $\gamma \in E_P(\Gamma)$ we also write $l_j(\gamma) = l_j(\alpha_{\gamma})$. For $u \in \mathbb{C}^n$ we write
$$u^{l(a)} = u_1^{l_1(a)} \cdots u_r^{l_r(a)}$$
and likewise $u^{l(\gamma)}$. For $u \in \mathbb{C}^r$ consider the series
$$S_{\Gamma}(u) = S_{\Gamma,P,\omega,\sigma}(u) = \sum_{[\gamma] \in E_P(\Gamma)} \lambda_\gamma |\chi_\gamma(\Gamma_\gamma)| \text{tr} \omega(\gamma) \text{tr} \sigma(m_\gamma) u^{l(\gamma)}.$$

Theorem 2.1. The series $S_{\Gamma}(u)$ converges locally uniformly in the set
$$\{u \in \mathbb{C}^r : |u_j| < 1, \quad j = 1, \ldots, r\}.$$
It is a rational function in u. More precisely, there exists a finite subset $F \subset \tilde{A}$, elements $a_1, \ldots, a_r \in \tilde{A}$ and natural numbers k_1, \ldots, k_r as well as $n_1(v), \ldots, n_r(v)$ for each $v \in F$ such that
$$S_{\Gamma}(u) = \sum_{\lambda \in \tilde{A}^*} m^{\sigma, \omega}_\lambda \prod_{v \in F} u_1^{n_1(v)} \cdots u_r^{n_r(v)} \frac{1}{1 - a_1^{\lambda} u_1^{k_1}} \cdots \frac{1}{1 - a_r^{\lambda} u_r^{k_r}}.$$ The outer sum is finite, i.e., the coefficient $m^{\sigma, \omega}_\lambda$ is zero for almost all $\lambda \in \tilde{A}^*$.

Proof. For \(u \in \mathbb{C} \) consider the function \(\varphi_u : A \to \mathbb{C} \) defined by

\[
\varphi_u(a) = \begin{cases}
(uq^2)^{l(a)} = u^{l(a)}a^{-2\rho P} & a \in A^-, \\
0 & a \not\in A^-.
\end{cases}
\]

The function \(\varphi \) factors over \(\bar{A} \), therefore is uniformly smooth. It is easy to see that \(\varphi(a)|a^{2\rho P} \) is integrable on \(A \) if and only if \(|u_j| < 1 \) for every \(j = 1, \ldots, r \). Assume this, then \(\varphi_u \) satisfies the Lefschetz formula, the geometric side of which equals \(S_T(u) \). The spectral side is

\[
\sum_{\lambda \in A^*} m_{\sigma, \omega}^{\lambda} \int_A \varphi_u(a) a^\lambda \, da.
\]

Note that \(a \mapsto u^{l(a)}a^{-2\rho P} \) is the restriction of a character on \(A \) to \(A^- \) which we write as \(a \mapsto a^{s_j} \). Also, we write \(a^s \) for \(a^{s_1} \cdots a^{s_r} \).

Lemma 2.2. Let \(V \) denote a \(\mathbb{Q} \) vector space of dimension \(r \in \mathbb{N} \). Let \(V_\mathbb{R} = V \otimes \mathbb{R} \) and let \(C \subset V_\mathbb{R} \) be an open rational sharp cone with \(r \) sides, i.e., its closure \(\overline{C} \) does not contain a line and there exist \(\alpha_1, \ldots, \alpha_r \in \text{Hom}(V, \mathbb{Q}) \) such that

\[
C = \{ v \in V_\mathbb{R} : \alpha_1(v) > 0, \ldots, \alpha_r(v) > 0 \}.
\]

Let \(\Sigma \subset V \) be a lattice, i.e., a finitely generated subgroup which spans \(V \). Then there exists a finite subset \(F \subset \Sigma \) and elements \(a_1, \ldots, a_r \in \Sigma \) such that \(C \cap \Sigma \) is the set of all \(v \in V \) of the form

\[
v = v_0 + k_1a_1 + \cdots + k_ra_r,
\]

where \(v_0 \in F \) and \(k_1, \ldots, k_r \in \mathbb{N}_0 \). The vector \(v_0 \) and the numbers \(k_j \in \mathbb{N}_0 \) are uniquely determined by \(v \).

Proof. For \(j = 1, \ldots, r \) let \(a_j \in \Sigma \) be the unique element such that \(\alpha_i(a_j) = 0 \) for \(i \neq j \) and \(\alpha_j(a_j) \) is \(> 0 \) and minimal. Then \(a_1, \ldots, a_r \) is a basis of \(V \) inside \(\Sigma \), hence it generates a sublattice \(\Sigma' \subset \Sigma \). Let \(F \) be a set of representatives of \(\Sigma/\Sigma' \) which may be chosen such that each \(v_0 \in F \) lies in \(C \), but for every \(j = 1, \ldots, r \) the vector \(v_0 - a_j \) lies outside \(C \). It is clear that every \(v \) of the form given in the lemma is in \(C \cap \Sigma \).

For the converse, let \(v \in C \cap \Sigma \). Then there are uniquely determined \(v_0 \in F \), \(k_1, \ldots, k_r \in \mathbb{Z} \) such that \(v = v_0 + k_1a_1 + \cdots + k_ra_r \). We have to show that \(k_1, \ldots, k_r \geq 0 \). Assume that \(k_j < 0 \). Then

\[
0 < \alpha_j(v) = \alpha_j(v_0) + k_j\alpha_j(a_j) \leq \alpha_j(v_0) - \alpha_j(a_j) = \alpha_j(v_0 - a_j)
\]
and the latter is \(\leq 0 \), as \(v_0 - a_j \) lies outside \(C \), a contradiction! \(\square \)
We apply this lemma to $V = \bar{A} \otimes \mathbb{Q}$, the lattice \bar{A} and the cone A^-. Writing the groups multiplicatively, we get

$$\int_{A^-} \varphi_u(a) a^\lambda \, da = \int_{A^-} a^{\lambda+s} \, da$$

$$= \sum_{y \in F} \sum_{k_1, \ldots, k_r = 0}^\infty \left(\frac{ya_1^{k_1} \cdots a_r^{k_r}}{1-a_1^{\lambda+s_1}} \cdots \frac{1}{1-a_r^{\lambda+s_r}} \right).$$

Writing $v^{\alpha_j} = q^{-n_j(v)}$ and $a_j^{\alpha_j} = q^{-k_j}$ we get the theorem. \qed

3 Geometric zeta functions

Let G be a reductive linear group over a nonarchimedean local field and let $\Gamma \subset G$ be a torsion-free uniform lattice.

Proposition 3.1. (a) Every $\gamma \in \Gamma \setminus \{1\}$ closes a geodesic in \mathcal{B}.

(b) This sets up a bijection

$$\psi : (\Gamma \setminus \{1\})/\text{conjugation} \to \{\text{closed geodesics}\}/\text{homotopy}$$

with the property that

$$\psi([\gamma^n]) = \psi([\gamma])^n$$

for every $\gamma \in \Gamma \setminus \{1\}$ and every $n \in \mathbb{N}$.

(c) If two closed geodesics c, c' in $\Gamma \setminus \mathcal{B}$ are homotopic, then there are preimages \tilde{c}, \tilde{c}' in \mathcal{B} which are closed by the same $\gamma \in \Gamma$.

(d) For a given $\gamma \in \Gamma$ let

$$P_\gamma = \{ x \in \mathcal{B} : d(x, \gamma x) \text{ is minimal} \}.$$

Then P_γ is a convex subset of the building \mathcal{B} which is a union of parallel geodesics and γ acts by translation along these geodesics. The set P_γ equals the set of all geodesics in \mathcal{B} which are closed by γ. Consequently, the closed geodesics closed by a given γ all have the same length.
Proof. (a) Let $\Gamma \in \Gamma \setminus \{1\}$. As Γ is torsion-free, the element γ has no fixed point in B. As γ preserves the simplicial structure on B, the function $p \mapsto d(p, \gamma p)$ attains a minimal value $m > 0$. The set $P = P_{\gamma}$ defined above therefore is well-defined and non-empty. We first claim that P is a union of γ-stable geodesic lines on each of which γ acts by a translation. So let $p \in P$ and let z be in the line segment between p and γp. Then we have

$$d(z, \gamma z) \leq d(z, \gamma p) + d(\gamma p, \gamma z)$$
$$= d(z, \gamma p) + d(p, z)$$
$$= d(p, \gamma p) = m.$$

As m is minimal, we have equality and the geodesic from z to γz is the composite of $\overline{z, \gamma p}$ and $\overline{\gamma p, \gamma z}$, which means that the line segment $\overline{p, \gamma z}$ is geodesic. We repeat this construction with z in place of p and in this way extend $\overline{p, \gamma p}$ to a geodesic line which is preserved by γ and on which γ acts by translation. This proves (a) and parts of (d).

(b) As Γ is the fundamental group of $B_{\Gamma} = \Gamma \setminus B$ we have a natural bijection

$$\Gamma / \text{conjugation} \rightarrow [S^1, B_{\Gamma}],$$

where the right hand side is the set of free homotopy classes of loops. Also, there is a trivial injection

$$\{\text{closed geodesics} \}/\text{homotopy} \rightarrow [S^1, B_{\Gamma}].$$

These maps compose to give the desired injective map

$$\psi : \{\text{closed geodesics} \}/\text{homotopy} \hookrightarrow \Gamma / \text{conjugation}.$$

By the first part, the image of this map is $\Gamma \setminus \{1\} / \text{conjugation}$.

(c) Let γ and γ' be elements of Γ closing some preimages \tilde{c} and \tilde{c}' of c and c'. By (b), the elements γ and γ' must be conjugate, which means that the preimages \tilde{c} and \tilde{c}' can be chosen in a way that $\gamma = \gamma'$.

(d) We already know that P_{γ} is a union of geodesic lines. By construction, for $p \in P$, the convex hull L_p of the set $\gamma^x p$ is the unique geodesic line closed by γ and containing p. Now let q be another point of P, then the distance of point on the geodesic line L_q to the line L_p is bounded, which can only happen if the two geodesics L_p and L_q lie in a common apartment and are parallel in that apartment. The convex hull of these two lines is preserved.
by \(\gamma \) and as \(\gamma \) is a translation on both lines, it is a translation on this convex hull. This proves the convexity of \(P_\gamma \).

Now finally, let \(L \) be any geodesic which is closed by \(\gamma \) and let \(z \) be a point of \(L \). Let \(p \) be a point of \(P_\gamma \), then again the lines \(L \) and \(L_p \) are parallel and thus lie in the same apartment, \(\gamma \) must act by the same translation and thus \(L \) belongs to \(P_\gamma \).

Lemma 3.2. Assume that \(\Gamma \) is torsion-free and let \(\gamma \in \Gamma \). Let \(S \subset B \) be a \(\Gamma \)-stable affine subset. Then there can be found an origin \(0 \) in \(S \), a linear orthogonal transformation \(T : S \to S \) and a point \(b \in S \setminus \{0\} \) with \(Tb = b \) such that \(\gamma x = Tx + b \).

Proof. As \(\gamma \) fixes the euclidean structure on \(S \), it acts, after choosing an arbitrary origin, as \(\gamma x = Tx + b \) for some linear orthogonal \(T \) and some \(b \in S \). Let \(U \) be the eigenspace of the eigenvalue 1 for \(T \) and let \(V \) be its orthocomplement. We have the orthodecomposition \(b = Bu + bv \). As \(1 - T : V \to V \) is surjective, there exists \(v_0 \in V \) with \((1 - T)v_0 = bv \), or \(\gamma v_0 - b = Tv_0 = v_0 - bv \), which amounts to \(\gamma v_0 = v_0 + bv \). Since \(\Gamma \) is torsion-free, \(\gamma \) fixes no point in \(B \) and so \(bv \neq 0 \). Relocating the zero to the point \(v_0 \) gives the claim. \(\square \)

An element \(g \) of \(G \) is called **admissible**, if there exists a parabolic group \(P = LN \) defined over \(F \), such that \(g \) lies in \(A^\text{reg}_L M_L \). As the group \(A^\text{reg}_L M_L \) has finite index in \(L \) and there are only finitely many conjugacy classes of parabolic subgroups, there exists \(N \in \mathbb{N} \) such that \(g^N \) is admissible for every semisimple, non-elliptic element \(g \). A subgroup \(\Gamma \subset G \) is called admissible, if every \(\gamma \in \Gamma \setminus \{1\} \) is.

For simplicity of exposition, we will now assume that \(G \) is simple, which implies that the Bruhat-Tits building \(B \) is a simplicial complex. Let \(r \in \mathbb{N} \). By an \(r \)-dimensional path we understand a sequence \(\ldots, S_{-1}, S_0, S_1, \ldots \) of \(r \)-dimensional simplices such that \(S_j \) and \(S_{j+1} \) have a common face of dimension \(r - 1 \) for each \(j \in \mathbb{Z} \). We say that the path is **geodesic**, if there exists a geodesic line \(L \) with \(L \cup S_j \neq \emptyset \) for every \(j \in \mathbb{Z} \). Here \(S \) denotes the interior of the simplex \(S \). If this is the case, then all \(S_j \) lie in a common apartment \(A \). We say that a given \(\gamma \in \Gamma \) **closes** the path \((S_j) \) if \(\gamma S_j = S_{j+n} \) holds for all \(j \in \mathbb{Z} \) and some \(n \in \mathbb{N} \). If this is the case, then \(\gamma \) stabilizes the union of the \(S_j \). This union lies in a common apartment, so it carries an euclidean structure, so, after fixing an origin in \(S \), the element \(\gamma \) acts as \(\gamma x = Tx + b \), where \(T \) is linear orthogonal and \(b \in S \setminus \{0\} \). Actually,
T fixes b and thus can be considered an orthogonal transformation of the orthogonal space of b.

4 PGL$_3$

The vertices of the building of $G = \text{PGL}_3(F)$ are parametrized by homothety classes of O-lattices in F^3. The group G acts transitively on the latter, but the index three subgroup G' of all $g \in G$ with $v_F(\det(g)) \equiv 0 \mod (3)$ has three orbits, which are given by the representatives

$$L_0 = \langle e_1, e_2, e_3 \rangle$$
$$L_1 = \langle e_1, e_2, \pi e_3 \rangle$$
$$L_2 = \langle e_1, \pi e_2, \pi e_3 \rangle$$

We say a vertex v is of type $j \mod (3)$, if it is in the G'-orbit of L_j. We assume from now on, that Γ is contained in G', so that Γ preserves types of vertices.

A geodesic c in B or $\Gamma \backslash B$ is called rational, if it contains a point of the zero skeleton and is called integral, if it is contained in the 1-skeleton of B or $\Gamma \backslash B$. Every integral geodesic is rational. The vertices on an integral geodesic either have consecutive types $0, 1, 2$ or $2, 1, 0$. In the first case, the geodesic is called positive in the latter it is negative. The inverse of a positive geodesic is negative and vice versa. A geodesic parallel to an integral positive geodesic is also called positive.

An element $\gamma \in \Gamma \setminus \{1\}$ is called positive, if it closes a positive geodesic, i.e., if for one and thus every point p in P_{γ} the geodesic line through γ^p is positive.

Let $C_{\text{int}}(\Gamma)$ denote the set of all integral geodesics in $\Gamma \backslash B$. Then every element of $C_{\text{int}}(\Gamma)$ is actually closed, as we show below.

For $G = \text{PGL}_3(F)$ there are three different classes of proper parabolics, P_0 is the group of all upper triangular matrices, then there is

$$P_1 = \begin{pmatrix} * & \; & \; \\ 0 & 0 & \; \end{pmatrix} \quad \text{and} \quad P_2 = \begin{pmatrix} 0 & * \\ 0 & \; \end{pmatrix}.$$

We write $P_j = L_j N_j$ for the Levi decomposition and we fix subgroups $M_j A_j \subset L_j$ as in Section [4] We choose A_0 to be the group of all diago-
nal matrices, A_1 to be the subgroup of all matrices of the form diag(a, a, b) with $a, b \in F$, and A_2 to consist of all matrices diag(a, b, b).

An element diag(a, b, c) of A_0 is called strongly regular, if the absolute values $|a|, |b|, |c|$ are all different.

Definition 4.1. Let

$$Z_{1,+}(u) = \prod_c \left(1 - u^{l(c)}\right),$$

where the product is extended over all closed integral positive primitive geodesics in $\Gamma \backslash \mathcal{B}$. Here a closed geodesic c is called primitive, if it is not a power of a shorter one.

Lemma 4.2. The infinite product $Z_{1,+}(u)$ actually is a polynomial in u.

Proof. A standard calculation shows that $Z_{1,+}(u) = \det(1 - uT)$, where T is the operator on the free complex vector space generated by the edges of $\Gamma \backslash \mathcal{B}$ which is defined by $T(e) = \sum_{e'} e'$, where the sum ranges over all edges connected to e such that the path ee' is positive. \hfill \square

Definition 4.3. Let

$$Z_{2,+}(u) = \prod_p \left(1 - u^{l(p)}\right),$$

where the product ranges over all positive primitive closed geodesic paths in $\Gamma \backslash \mathcal{B}$ of dimension 2 and the length is the number of chambers such a path contains.

Similar to the above, it can be shown that $Z_{2,+}(u)$ is a polynomial.

Theorem 4.4. After replacing the group Γ with a finite index subgroup, we have the identity of rational functions,

$$\frac{Z_{2,+}(u)}{Z_{1,+}(u^2)} = \exp \left(- \int_0^u S_{\Gamma,P_1}(z) \, dz\right).$$

Or, otherwise stated, $S_{\Gamma,P_1}(u) = \frac{F'}{F}(u)$, where $F(u) = \frac{Z_{1,+}(u^2)}{Z_{2,+}(u)}$.

For the proof of the theorem, we will need the following lemma.
Lemma 4.5. After replacing the group Γ with a finite index subgroup, we can assume Γ to be regular in the sense that every $\gamma \in \Gamma \setminus \{1\}$ lies in the regular set G^{reg}.

Proof. By Margulis’s arithmeticity result we know that Γ is arithmetic, so there exists a global field κ, of which F is a local completion, and a division algebra M over κ of degree 3, which splits at F, such that Γ is commensurable with the image of $M(\mathcal{O})^\times$ in $G(F)$, where \mathcal{O} is some order in κ. Replacing Γ by a finite index subgroup, we may assume that Γ lies in that image. For a given $\gamma \in \Gamma \setminus \{1\}$ fix a preimage $\tilde{\gamma} \in M(\mathcal{O})$. The centralizer $M_{\tilde{\gamma}}$ of $\tilde{\gamma}$ in M is a proper subalgebra, whose degree must divide the degree of M, which is a prime, therefore the degree of $M_{\tilde{\gamma}}$ is one, so $M_{\tilde{\gamma}}$ is a field, hence commutative and so is G_{γ} which is the image of $M_{\tilde{\gamma}}(F)$. Therefore γ is regular. \square

Proof of the theorem. By the lemma we can assume Γ to be regular. In this case, each centralizer G_{γ} is a torus, so Γ_{γ} will be isomorphic to \mathbb{Z}, so that $\chi_1(\Gamma_{\gamma}) = 1$. By the normalizations of Haar measures we see that $\lambda_{\gamma} = l(\gamma_0)$, where γ_0 is the underlying primitive element. Thus the Selberg zeta function equals

$$S_{\Gamma, P_1}(u) = \sum_{[\gamma] \in E_{P_1}(\Gamma)} l(\gamma_0) u^{l(\gamma_)}.$$

So that for small enough u,

$$\exp \int_0^u S_{\Gamma, P_1}(z) \, dz = \exp \sum_{[\gamma]} l(\gamma_0) \frac{1}{l(\gamma)} u^{l(\gamma)}$$

$$= \exp \sum_{[\gamma_0]} \sum_{n=1}^{\infty} \frac{u^{l(\gamma_0)n}}{n}$$

$$= \exp \left(- \sum_{\gamma_0} \log(1 - u^{l(\gamma_0)}) \right)$$

$$= \prod_{[\gamma_0] \in E_{P_1, \text{prim}}(\Gamma)} \left(1 - u^{l(\gamma_0)} \right)^{-1},$$

where the product extends over all primitive elements in $E_{P_1}(\Gamma)$. Taking inverses, it remains to show

$$\frac{Z_{1,+}(u^2)}{Z_{2,+}(-u)} = \prod_{[\gamma_0] \in E_{P_1, \text{prim}}(\Gamma)} \left(1 - u^{l(\gamma_0)} \right).$$
To prove this, we will make use of the following phenomenon: If \(p \) is a closed gallery path in \(\Gamma \backslash B \), then the boundary of \(p \) consists of two or one closed integral geodesics, depending on whether \(p \) is orientable or not. In the orientable case, the length of \(p \) will be twice the length of either of the geodesics, so the contribution of \(p \) to the product \(Z_{1,+}(u) \) will equal the contribution of either of the two geodesics in \(Z_{1,+}(u^2) \). The minus sign will not play a role as the length of the gallery path is even. In the non-orientable case, one gets only one closed geodesic and this has the same length as \(p \), which is an odd number and one gets the contribution \(\frac{1-u^{2l(\gamma)}}{1+u^{l(\gamma)}} = 1-u^{l(\gamma)} \).

This kind of reduction is used in the sequel.

Start with a positive closed primitive integral geodesic \(c \), choose a preimage \(\tilde{c} \) in \(B \) and let \(\gamma \in \Gamma \) be closing \(\tilde{c} \).

First case. Assume that \(G_\gamma \) is a split torus. Then \(\gamma \) induces a translation on the apartment \(S \) attached to \(G_\gamma \). This apartment therefore lies in \(P_\gamma \). It follows that \(\gamma \) is primitive. We let \(\mathbb{R} \) act on \(P_\gamma \) via the geodesic action and see that \(P_\gamma / \mathbb{R} \) is a tree which contains a line \(L \). We claim that the structure of this tree is as such that \(P_\gamma / \mathbb{R} \) is a union of disjoint finite trees. This is a consequence of the fact that \(\Gamma_\gamma \backslash P_\gamma \) is compact. So, modulo geodesic gallery paths, one can reduce each of the finite trees to a point and be reduced to the apartment \(S \). The image of \(S \) in \(\Gamma \backslash B \) is a union of closed geodesics or of closed gallery paths and both occur in the same number, so that they cancel in the quotient \(\frac{Z_{1,+}(u^2)}{Z_{2,+}(u)} \).

Second case. If \(G_\gamma \) is a non-split torus, then \(P_\gamma \) will not contain an apartment. Then \(P_\gamma / \mathbb{R} \) is compact and contains \(P_{\gamma_0} / \mathbb{R} \), where \(\gamma_0 \) is the primitive underlying \(\Gamma \). Modulo gallery paths, one reduces to \(P_{\gamma_0} \), and we have two situations. The first is that \(P_{\gamma_0} \) contains an integral geodesic, so we can reduce to that one and get one remaining contribution of the form \((1-u^{2l(\gamma_0)}) \). If \(P_{\gamma_0} \) does not contain an integral geodesic, this implies that \(P_\gamma \) is a single line going through the interior of a gallery path, which is not closed by \(\gamma \), but by \(\gamma^2 \). In the quotient, this is exact the non-orientable case and the argument given above proves the Theorem.

\[\square \]

5 Riemann Hypothesis

Recall that \(Z_{1,+}(u) \) and \(Z_{2,+}(u) \) are polynomials so that \(Z_{1,+}(u) = \det(I - L_{E}u) \) for some parahoric Hecke operator \(L_{E} \); \(Z_{2,+}(u) = \det(I - L_{B}u) \) for
some Iwahori Hecke operator L_B \[5\]. Given a smooth unramified representation V of G, consider
\[
Q(V, u) = \frac{\det(I + L_B u)}{\det(I - L_E u^2)}
\]
where the determinant take over on parahoric and Iwahori fixed vectors of V respectively. Then we have
\[
\frac{Z_{2,+}(-u)}{Z_{1,+}(u^2)} = \prod_V Q(V, u)^{m_V}
\]
where V runs through all irreducible unitary Iwahori-spherical subrepresentations of $L^2(\Gamma\backslash G)$ and m_V is its multiplicity. From Table 1 and Table 2 in \[5\], we have

(a) If V is a principal series representation, then $Q(V, u) = 1$.

(b) If V is the trivial representation twisted by a cubic unramified character χ of F, then $Q(V, u) = \frac{1}{1-\chi(\pi)u}$ and $m_V = 1$.

(c) If V is the Steinberg representation twisted by a cubic unramified character χ of F, then $Q(V, u) = 1 - \chi(\pi)u$ and $m_V = \chi(X_\Gamma) - 1$.

(d) If V the irreducible subrepresentation of $\text{Ind}(\chi|^{-1/2}, \chi|^{1/2}, \chi^{-2})$, where χ is an unramified unitary character of F^\times. Then $Q(V, u) = 11 - q^{1/2}\chi(\pi)u$. Moreover, V is not tempered.

(e) The irreducible subrepresentation of $\text{Ind}(\chi|^{1/2}, \chi|^{-1/2}, \chi^{-2})$, where χ is an unramified unitary character of F^\times. Then we have $Q(V, u) = 1 - q^{1/2}\chi(\pi)u$.

We summarize the above in the following theorem

Theorem 5.1. $\frac{Z_{2,+}(-u)}{Z_{1,+}(u^2)} = \frac{(1-u^3)^{\chi-1}P_1(u)}{(1-q^3u^3)P_2(u)}$ where $P_1(u) = \prod_\alpha (1 - \alpha u)$ and $P_2(u) = \prod_\beta (1 - \beta u)$ with $|\alpha| = |\beta| = q^{1/2}$.

Corollary 5.2. When X_Γ is a Ramanujan complex so that all irreducible unramified subrepresentations of $L^2(\Gamma\backslash G)$ are tempered, then
\[
\frac{Z_{2,+}(-u)}{Z_{1,+}(u^2)} = (1-u^3)^{\chi} \frac{P_1(u)}{(1-u^3)(1-q^3u^3)}
\]
where $P_1(u) = \prod_\alpha (1 - \alpha u)$ with $|\alpha| = q^{1/2}$ of degree $N_1 - 3N_0 + 6$. Here N_i is the number of i-simplex in X_Γ.
References

[1] Armand Borel, *Linear algebraic groups*, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR1102012 (92d:20001)

[2] ———, *Introduction aux groupes arithmétiques*, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). MR0244260 (39 #5577)

[3] A. Borel and N. Wallach, *Continuous cohomology, discrete subgroups, and representations of reductive groups*, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR1721403 (2000j:22015)

[4] Anton Deitmar, *Lefschetz formulae for p-adic groups*, Chin. Ann. Math. Ser. B 28 (2007), no. 4, 463–474, DOI 10.1007/s11401-005-0234-5. MR2348458 (2008g:11192)

[5] Ming-Hsuan Kang, Wen-Ching Winnie Li, and Chian-Jen Wang, *The zeta functions of complexes from PGL(3): a representation-theoretic approach*, Israel J. Math. 177 (2010), 335–348, DOI 10.1007/s11856-010-0049-2. MR2684424 (2012a:11138)

[6] Robert E. Kottwitz, *Tamagawa numbers*, Ann. of Math. (2) 127 (1988), no. 3, 629–646, DOI 10.2307/2007007. MR942522 (90e:11075)

[7] Joseph A. Wolf, *Discrete groups, symmetric spaces, and global holonomy*, Amer. J. Math. 84 (1962), 527–542. MR0148013 (26 #5523)

Anton Deitmar
Mathematisches Institut
Auf der Morgenstelle 10
72076 Tübingen, Germany
deitmar@uni-tuebingen.de

Ming-Hsuan Kang
Department of Applied Mathematics
National Chiao-Tung University
Hsinchu, Taiwan
mhkang@math.nctu.edu.tw

February 7, 2014