Evolution of a domain wall in expanding universe: inflation and after it

S.I. Godunov
in collaboration with A.D. Dolgov and A.S. Rudenko

based on
JCAP 1610 (2016) №10, 026
arXiv:1711.04704

Quarks-2018
XXth International Seminar on High Energy Physics

May 27 — June 2, 2018 Valday, Russia
It is well known that a symmetry, which is broken in vacuum, at high temperatures tends to be restored. But in general, the situation is not that simple and straightforward. It is also possible that a symmetry is broken only in a particular range of temperatures, i.e. it is restored at the highest as well as at the lowest temperatures. This is just what is needed for a matter-antimatter domain generation without domain wall problem.

A.D. Dolgov, S.I. Godunov, A.S. Rudenko, I.I. Tkachev, JCAP 1510, 027 (2015)

- The model with spontaneous CP violation is suggested.
- CP violation appears due to interaction of additional scalar field with inflaton.
- BAU is generated just after inflation due to interaction of introduced scalar field with quarks and leptons.
- This scenario leads to the generation of matter-antimatter domains in the Early Universe.
- To avoid annihilation at the domain boundary, the distance between the domains should grow exponentially fast during inflation.
It is well known that a symmetry, which is broken in vacuum, at high temperatures tends to be restored. But in general, the situation is not that simple and straightforward. It is also possible that a symmetry is broken only in a particular range of temperatures, i.e. it is restored at the highest as well as at the lowest temperatures. This is just what is needed for a matter-antimatter domain generation without domain wall problem.

A.D. Dolgov, S.I. Godunov, A.S. Rudenko, I.I. Tkachev, JCAP 1510, 027 (2015)

- The model with spontaneous CP violation is suggested.
- CP violation appears due to interaction of additional scalar field with inflaton.
- BAU is generated just after inflation due to interaction of introduced scalar field with quarks and leptons.
- This scenario leads to the generation of matter-antimatter domains in the Early Universe.
- To avoid annihilation at the domain boundary, the distance between the domains should grow exponentially fast during inflation.

How fast the domain wall width can grow in the Early Universe?
Domain wall evolution in the de Sitter space-time

Metric:
\[ds^2 = dt^2 - e^{2Ht} \left(dx^2 + dy^2 + dz^2 \right). \]

Scalar field:
\[\mathcal{L} = \frac{1}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - \frac{\lambda}{2} (\varphi^2 - \eta^2)^2. \]

Equations of motion:
\[\frac{1}{\sqrt{-g}} \partial_\mu \left(\sqrt{-g} g^{\mu\nu} \partial_\nu \varphi \right) = -2\lambda \varphi (\varphi^2 - \eta^2). \]

\[H = 0 \text{ (static universe), 1d case } (\varphi = \varphi(z)): \]
\[\frac{d^2 \varphi}{dz^2} = 2\lambda \varphi (\varphi^2 - \eta^2). \]

Solution (wall at \(z = 0 \)):
\[\varphi(z) = \eta \tanh \frac{z}{\delta_0}, \]
where \(\delta_0 = 1/\sqrt{\lambda \eta} \) is the wall width.
Stationary solutions for $H > 0$

Ansatz for stationary solutions (φ depends only on $a(t) \cdot z$):

$$\varphi = \eta \cdot f(u), \quad \text{where} \quad u = H ze^{Ht}.$$

Equations of motion:

$$\left(1 - u^2\right) f'' - 4uf' = -2Cf \left(1 - f^2\right),$$

where $C = \frac{1}{(H \delta_0)^2} = \frac{\lambda \eta^2}{H^2} > 0$

Boundary conditions:

$$f(0) = 0,$$
$$f(\pm \infty) = \pm 1.$$
Stationary solutions

\[\frac{\phi}{\eta} \]

\[zH \exp(Ht) \]

C=10 C=4 C=2.5 C=2.05 C=2.0001
Beyond stationary limit

\[\frac{\partial^2 \varphi}{\partial t^2} + 3H \frac{\partial \varphi}{\partial t} - e^{-2Ht} \frac{\partial^2 \varphi}{\partial z^2} = -2\lambda \varphi \left(\varphi^2 - \eta^2 \right). \]

Introducing dimensionless parameters \(\tau = Ht, \ \zeta = Hz, \ f(\zeta, \tau) = \varphi(z, t)/\eta, \) we get

\[\frac{\partial^2 f}{\partial \tau^2} + 3 \frac{\partial f}{\partial \tau} - e^{-2\tau} \frac{\partial^2 f}{\partial \zeta^2} = 2Cf \left(1 - f^2 \right), \]

where \(C = \lambda \eta^2 / H^2 = 1/(H\delta_0)^2 > 0. \)

Boundary conditions:

\[f(0, \tau) = 0, \quad f(\pm \infty, \tau) = \pm 1, \]

Initial configuration:

\[f(\zeta, 0) = \tanh \frac{\zeta}{\delta_0} = \tanh \sqrt{C} \zeta, \quad \frac{\partial f(\zeta, \tau)}{\partial \tau} \bigg|_{\tau=0} = 0. \]
Wall width

![Graph of Wall width](image)

- **C=10**
- **C=4**
- **C=2.5**
- **C=1**
- **C=0.1**
- **C=0.01**
Let us consider a simple model of inflation with quadratic inflaton potential $U = \frac{m^2 \Phi^2}{2}$, then the Hubble parameter is

$$H = \sqrt{\frac{8\pi \rho}{3m_{pl}^2}} \approx \sqrt{\frac{8\pi}{3m_{pl}^2}} \frac{m^2 \Phi^2}{2} = \sqrt{\frac{4\pi}{3}} \frac{m}{m_{pl}} \Phi,$$

and the equation of motion of the inflaton in the slow-roll regime is the following:

$$\dot{\Phi} \approx -\frac{m^2 \Phi}{3H} \approx -\frac{m_{pl} m}{\sqrt{12\pi}},$$

where m_{pl} is the Planck mass, m is the inflaton mass.

$$\Phi(t) = \Phi_i - \frac{m_{pl} m}{\sqrt{12\pi}} t,$$

where Φ_i is the initial value of inflaton field.
The Hubble parameter and the scale factor can also be easily found:

\[H(t) = \sqrt{\frac{4\pi}{3} \frac{m}{m_{pl}} \Phi_i - \frac{1}{3} m^2 t}, \]

\[a(t) = a_0 \cdot \exp \left(\sqrt{\frac{4\pi}{3} \frac{m}{m_{pl}} \Phi_i t - \frac{1}{6} m^2 t^2} \right). \]

These formulas are valid only till the end of inflation, \(t < t_e \equiv \frac{\sqrt{12\pi \Phi_i}}{m_{pl}} m^{-1} \).

It is convenient to use \(1/m \) units in equation of motion:

\[\frac{\partial^2 f}{\partial (t \cdot m)^2} + m(t_e - t) \frac{\partial f}{\partial (t \cdot m)} - \frac{1}{a^2(t)} \frac{\partial^2 f}{\partial (z \cdot m)^2} = \frac{2}{(m \cdot \delta_0)^2} f (1 - f^2). \]

In numerical calculations the following parameters were used:

\[\Phi_i = 2 m_{pl}, \ t_i = 0, \ a_0 = 1. \]
Inflation: $C(t)$ dependence

$$C(t) = \frac{1}{(H(t)\delta_0)^2}.$$

Time t_C at which $C(t_C) = 2$:

$$m \cdot t_C = m \cdot t_e - \frac{3\sqrt{2}}{2m\delta_0}.$$

Parameter $C(t)$ can be equal 2 only if $t_C \geq 0$:

$$m \cdot \delta_0 \geq \frac{3\sqrt{2}}{2mt_e} = \frac{\sqrt{3}m_{pl}}{2\sqrt{2}\pi\Phi_i} \approx 0.173.$$
\[\delta_0 = 0.025 \cdot m^{-1}. \]

\[\delta_0 = 0.05 \cdot m^{-1}. \]

\[\delta_0 = 0.1 \cdot m^{-1}. \]

\[\delta_0 = 0.125 \cdot m^{-1}. \]
\[\delta_0 = 0.15 \cdot m^{-1}. \]

\[\delta_0 \approx 0.173 \cdot m^{-1}. \]

\[\delta_0 = 0.2 \cdot m^{-1}. \]

\[\delta_0 = 0.4 \cdot m^{-1}. \]
\[
\delta_0 = 10 \cdot m^{-1}.
\]

For the parameter \(\delta_0 = 100 \cdot m^{-1}\), the behavior of the domain wall evolves similarly to the previous case.
Universe with $p = w \rho$

\[a(t) = a_0 \cdot \left(\frac{t}{t_i} \right)^\alpha, \]

\[H(t) = \frac{\dot{a}}{a} = \frac{\alpha}{t}, \text{ where } \alpha = \frac{2}{3(1 + w)} > 0, \]

The values $w = 0$ ($\alpha = 2/3$) and $w = 1/3$ ($\alpha = 1/2$) correspond to the matter-dominated and radiation-dominated universe, respectively.

The equation of motion

\[\frac{\partial^2 f}{\partial t^2} + 3H(t) \frac{\partial f}{\partial t} - \frac{1}{a^2(t)} \frac{\partial^2 f}{\partial z^2} = \frac{2}{\delta_0^2} f (1 - f^2), \]

where $f(z, t) = \varphi(z, t)/\eta$.
Feature of the $p = w\rho$ universe

Since

$$H(t)\delta_0 = H\left(\frac{t}{\delta_0}\right),$$

after the substitution $\tau = t/\delta_0$, $\zeta = z/\delta_0$ we get:

$$\frac{\partial^2 \tilde{f}}{\partial \tau^2} + \frac{3}{\sqrt{C(\tau)}} \frac{\partial \tilde{f}}{\partial \tau} - \frac{1}{\tilde{a}^2(\tau)} \frac{\partial^2 \tilde{f}}{\partial \zeta^2} = 2\tilde{f} \left(1 - \tilde{f}^2\right),$$

where $\tilde{f}(\zeta, \tau) = f(\zeta \cdot \delta_0, \tau \cdot \delta_0)$, $\tilde{a}(\tau) = a(\tau \cdot \delta_0) = a_0 \cdot (\tau/\tau_i)^\alpha$, and

$$C(\tau) = \left(H(\tau \cdot \delta_0) \cdot \delta_0\right)^{-2} = H^{-2}(\tau).$$

No explicit dependence on δ_0!
The parameter $C(t)$ increases as

$$C(t) = \frac{1}{(H(t)\delta_0)^2} = \frac{t^2}{(\alpha\delta_0)^2} \propto t^2.$$

The time t_C at which $C(t_C) = 2$:

$$\frac{t_C}{\delta_0} = \sqrt{2}\alpha.$$

We obtain that $t_C > t_i$ for

$$w < \frac{2\sqrt{2}}{3} \frac{\delta_0}{t_i} - 1.$$
\[t_i / \delta_0 = 0.5 \]
\(t_i/\delta_0 = 1.0 \)

Graph showing the evolution of a domain wall in an expanding universe, with various lines indicating the time at which the wall collapses for different values of the parameter \(w \). The graph includes lines at specific values of \(t/\delta_0 \) for different values of \(w \):

- Blue line: \(w = 7/8 \)
- Orange line: \(w = 1/3 \)
- Green line: \(w = 0 \)
- Red line: \(w = -1/3 \)
- Purple line: \(w = -2/3 \)
- Brown line: \(w = -7/9 \)

The graph illustrates the time evolution of the universe from inflation to the present day.
Conclusions

The evolution of the domain walls was considered in the following cases:

- **de Sitter universe**
 - For $C = \lambda \eta^2 / H^2 = 1 / (H \delta_0)^2 > 2$ the solutions tend to the stationary ones.
 - For $C = \lambda \eta^2 / H^2 = 1 / (H \delta_0)^2 < 2$ the wall width grows rapidly. For $C \lesssim 0.1$ the growth is practically exponential, so the wall expands with the universe.

- **during inflation:**
 - For $m \cdot \delta_0 \lesssim 0.173$ the deviation of the wall width from δ_0 is small.
 - For $0.173 \lesssim m \cdot \delta_0 \lesssim 1$ the wall width can reach cosmologically large values, but then it quickly diminishes and reaches δ_0.
 - For $m \cdot \delta_0 \gg 1$ the wall width grows with the scale factor and by the end of inflation it reaches cosmologically large size.

- **$p = \omega \rho$ universe:**
 - Domain walls with cosmologically large width can exist only in the beginning of this phase.
 - For $t/\delta_0 \gg \sqrt{2} \alpha$ the wall width is close to δ_0.