PV Module Parameters Estimation Using Newton Raphson

Ranjith Dharmarajan1*, Rajeswari Ramachandran2

1PG Scholar, Department of Electrical Engineering, Government College of Technology, Coimbatore, TN, India
2Associated Professor, Department of Electrical Engineering Government College of Technology, Coimbatore, TN, India

*Corresponding author E-Mail ID: ranjithgct17@gmail.com, Mobile: +91 9790978785

DOI: https://doi.org/10.34256/irjmt19219

ABSTRACT

The estimation of solar photovoltaic (PV) system with help of electrical model parameters, such as photon generated current, the diode saturation current, series resistance, shunt resistance, and diode ideality factor, are desirable to predict the real performance characteristics of solar PV under varying environmental conditions. Finally, performance indices, such as PV characteristics curve are estimated for the various solar PV panels, using Newton Raphson (NR) to reveal the effectiveness of the proposed method. Also, validation with experimental data has been considered. Finally, through the comparative analysis of the results, it is revealed that the proposed method offers solar PV characteristics closer to the real characteristics.

Keywords: Newton Raphson (NR), Photovoltaic (PV).

1. INTRODUCTION

Solar panels harness the sun energy in the form of light and convert the energy into electricity. Although the average consumer might associate solar panels with residential rooftop assemblies, solar panels are available for a wide range of applications, including powering individual gadgets, electronic devices and vehicle batteries.

The reserves of fossil fuels are rapidly decreasing at present due to the increased use of thermal power plants and air pollution associated with the combustion of fossil fuels is increasing. Hence, in the present scenario, there is an urgent need to speed up the research and development of renewable energy technology, especially solar energy, to meet the world energy demand.

The goal of this dissertation is to develop and apply an integrated assessment framework, for one of the sustainable electricity options, solar photovoltaic (PV) technology. In this dissertation different types of photovoltaic modules are considered that are widely manufactured in the market at present, and the future implications of using PV technology in the electricity sector is evaluated.

The word ‘Sustainable’ in this context implies energy, environmental and economic sustainability. Higher output energy generated by the PV panels during their lifetime when compared to the input energy for manufacturing and end of life management constitutes energy sustainability. Generating cleaner (lower criteria pollutants and greenhouse gas emissions
released) electricity when compared to the grid electricity sources constitutes environmental sustainability.

PV electricity mitigates emissions from thermal power plants to the grid. Inclusion of such monetary benefits from mitigation into the evaluation of the economic performance, PV technology encourage economic sustainability.

2. ANALYSIS OF SINGLE DIODE PV MODULE

A single diode model of the solar PV module is have the unknown parameters from figure 1, namely I_{lg}, I_{sat}, A, R_{se}, and R_{sh}. By taking the datasheet information provided by the manufacturer of the PV module at standard test conditions (STCs), the PV module's parameters are estimated.

2.1. Single Diode Solar PV Module

A single diode model of the PV module is shown in Figure 1. Using Kirchhoff’s current law, the $I−V$ relationship of the PV module can be written as follows [10, 11]. By using the PV module parameters obtained at STCs, the values of the five parameters and the MPP of the PV module can be estimated at any temperature and irradiance condition.

Fig 1. Equivalent circuit of PV module

\[
I = I_{lg} - I_{sat} \left[e^{\left(\frac{V + \frac{IR_{se}}{N_sV_t}}{R_{sh}}\right)} - 1 \right] - \frac{V + IR_{se}}{R_{sh}} \tag{1}
\]

Where,

I_{lg} - Light generated current in amps

N_s - Number of solar cells connected in series

I_{sat} - Diode reverse saturation current in amps

R_{se} - Series resistance of solar module in ohms

R_{sh} - Shunt resistance of solar module in ohms

The thermal voltage of diode, V_t, is expressed as,

\[
V_t = \frac{A k T_c}{q} \tag{2}
\]
Where,

A- Diode ideality factor

k - Boltzmann constant (1.3806 * 10^-23 J/K)

T_c - PV module temperature (STC) in K

q - Electronic charge (1.602 * 10^-19 C)

The important parameters to be noted from the manufacturer's datasheet are short circuit current (I_sc), open circuit voltage (V_oc), and maximum power point are (V_mpp & I_mpp). The values at STCs, for which the irradiance (G_stc) is 1000 W/m^2 and the cell temperature (T_stc) is 25 °C. The data sheet also provides temperature coefficients for short circuit current (k_i), open circuit voltage (k_v), and maximum power (k_p).

2.1.1. Extraction of PV Module Parameters

The five unknown parameters are to be estimate of the PV module from the nonlinear equation (1), five independent equations are required. The first three equations, (4), (7), and (9), are derived from Eq. (1) by applying short circuit, open circuit, and MPP conditions. The remaining two equations, (12) and (14), are derived by differentiating the values of power and current with respect to voltage.

2.2. Short Circuit Condition (SCC)

Under the short circuit condition,

\[I_{sc} = I_{lg} I_{sat} \left[e^{\left(\frac{I_{lg} R_{sh}}{N_g V_t}\right)} - 1 \right] - \left(\frac{I_{lg} R_{se}}{R_{sh}}\right) \]

(3)

After some approximation, the light generated current (I_{lg}) can be written as

\[I_{lg} = \frac{I_{sc} (R_{se} + R_{sh})}{R_{sh}} \]

(4)

2.3. Open Circuit Condition (OCC)

Under the open circuit condition,

\[0 = I_{lg} - I_{sat} e^{\left(\frac{V_{oc}}{N_g V_t}\right)} - \frac{V_{oc}}{R_{sh}} \]

(5)

This equation is rearranged and the reverse saturation current is expressed as

\[I_{sat} = \left(I_{lg} - \frac{V_{oc}}{R_{sh}}\right) e^{\left(-\frac{V_{oc}}{N_g V_t}\right)} \]

(6)

Substituting I_{lg} from short circuit, the saturation current can be derived as,

\[I_{sat} = \left(\frac{I_{sc} (R_{se} + R_{sh}) - V_{oc}}{R_{sh}}\right) e^{\left(-\frac{V_{oc}}{N_g V_t}\right)} \]

(7)
2.4. Maximum Power Point (MPP) Condition

The maximum power point calculation are as follows:

\[I_{mpp} = I_{ig} - I_{sat} \left[e^{(V_{mpp} + I_{mpp} R_{se})/N_s V_t} - 1 \right] - \frac{V_{mpp} + I_{mpp} R_{se}}{R_{sh}} \] \hspace{1cm} (8)

Inserting \(I_{ig} \) and \(I_{sat} \) into this equation, we get the equation as

\[I_{mpp} = \frac{I_{sc}(R_{se} + R_{sh}) - (V_{mpp} + I_{mpp} R_{se})}{R_{sh}} - \frac{I_{sc}(R_{se} + R_{sh}) - V_{oc}}{R_{sh}} e^{(V_{mpp} + I_{mpp} R_{se} - V_{oc})/N_s V_t} \] \hspace{1cm} (9)

2.5. Calculation of Initial Values

To select the initial value for \(R_{se} \) and \(R_{sh} \), the following equations are considered. Because of high sensitivity, the numerical methods may fail to converge due to improper selection of the initial value of the PV module parameters.

\[R_{se initial} = \frac{V_{oc}}{I_{sc}} - \frac{V_{mpp}}{I_{mpp}} \] \hspace{1cm} (10)

\[R_{sh initial} = \frac{V_{mpp}}{I_{sc} - I_{mpp}} \] \hspace{1cm} (11)

The \(V_t, R_{se} \) and \(R_{sh} \) are given by the equations,

\[V_t = \frac{V_{mpp} + I_{mpp} R_{se} - V_{oc}}{(N_s \ln \left(\frac{I_{sc}(R_{se} + R_{sh}) - V_{oc}}{(I_{sc} - I_{mpp})(R_{se} + R_{sh}) - V_{mpp}} \right))} \] \hspace{1cm} (12)

\[R_{se} = \frac{V_{oc} - V_{mpp} + N_s V_t S}{I_{mpp}} \] \hspace{1cm} (13)

Where,

\[S = \ln \left(\frac{(N_s V_t(I_{mpp}(R_{se} + R_{sh}) - V_{mpp}))}{(I_{sc}V_{mpp}(R_{se} + R_{sh}) + I_{mpp}R_{se}(V_{oc} - I_{sc}R_{se} - I_{sc}R_{sh}) - V_{mpp}V_{oc})} \right) \]

\[R_{sh} = \frac{(N_s V_t(R_{se} + R_{sh}) + R_{se}(I_{sc}(R_{sc} + R_{sh}) - V_{oc}))}{(N_s V_t + (I_{sc}(R_{se} + R_{sh}) - V_{oc})) e^{(I_{sc}R_{se} - V_{oc})/N_s V_t}} \] \hspace{1cm} (14)
The PV module parameters I_{lg}, I_{sat}, A, R_{se} and R_{sh} can be obtained by open and short circuit test. First, these three equations are solved by newton Raphson method and the values of V_t, R_{se}, R_{sh} are obtained.

The remaining parameters are obtained from short and open circuit test using the values of V_t, R_{se}, R_{sh}.

2.6. Effect of Varying Irradiance and Temperature

The light generated current and short circuit current are directly proportional to irradiance and depends on temperature.

$$I_{lg(G)} = I_{lg(stc)} \times \frac{G}{G_{stc}}$$ \hspace{1cm} (15)

$$I_{sc(G)} = I_{sc(stc)} \times \frac{G}{G_{stc}}$$ \hspace{1cm} (16)

Where,

G_{stc} – Irradiance at STC (w/m²)

G – Irradiance under given operating condition

The open circuit voltage equation can be described as the function of irradiance as given by and this equation is solved by Newton Raphson.

$$V_{oc(G)} = N_s V_T \ln \left(\frac{I_{lg(G)} R_{sh} - V_{oc(G)}}{I_{sat} R_{sh}} \right)$$ \hspace{1cm} (17)

The short circuit current and open circuit voltage can be evaluated for the given operating temperature as given by

$$I_{sc(T)} = I_{sc(stc)} + k_i (T_c - T_{stc})$$ \hspace{1cm} (18)

$$V_{oc(T)} = V_{oc(stc)} + K_v (T_c - T_{stc})$$ \hspace{1cm} (19)

Where,

T_{stc} — Cell temperature at STC, K.

The light generated current can be determined as a function of temperature and is given by,

$$I_{lg(T)} = I_{sc(T)} \left(R_{se} + R_{sh} \right) / (R_{sh})$$ \hspace{1cm} (20)
The short circuit current, open circuit voltage and light generated current can be estimated at any temperature and irradiance using the following three equations.

\[I_{\text{sc}(GT)} = (I_{\text{sc}(stc)} + k_i(T_c - T_{stc})) \left(\frac{G}{G_{stc}} \right) \]

(21)

\[I_{\text{sc}(GT)} = (I_{\text{sc}(stc)} + k_i(T_c - T_{stc})) \left(\frac{G}{G_{stc}} \right) \]

(22)

\[V_{\text{oC}(GT)} = V_{\text{oC}(stc)} + K_v(T_c - T_{stc}) \]

(23)

The thermal voltage \(V_t \) is directly proportional to PV panel cell temperature and is given by,

\[V_{t(T)} = V_t(stc) \left(\frac{T}{T_{stc}} \right) \]

(24)

The diode reverse saturation current, which is a function of irradiance and temperature can be calculated from the equation,

\[I_{\text{sat}(GT)} = i_{sc(G)}(R_{se} + R_{sh}) - V_{oc(G)} \left(R_{sh} \right) e^{-\frac{V_{oc(G)}}{N_i V_t(T)}} \]

(25)

2.7. Estimation of Maximum Power Point

The proper initial values of \(V_{mpp} \) and \(I_{mpp} \) should be chosen to estimate the accurate MPP by using the well-known values of \(V_{oc} \) and \(I_{sc} \) under given operating conditions. Under varying irradiance and temperature, \(V_{t(GT)}, R_{se(GT)} \) and \(R_{sh(GT)} \) are obtained by using the estimated parameters of the PV module such as \(I_{lg}, I_{sat}, A, R_{se}, \) and \(R_{sh} \) at STC’s.

In general, the PV module parameters change considerably due to various environmental conditions.

\[R_{se(GT)} = R_{se(stc)} \left(\frac{I_{lg(GT)}}{I_{lg(stc)}} \right) \]

(27)

The value of shunt resistance is considered a constant in [10] but the value of shunt resistance of the PV module is indirectly proportional to the short circuit current under varying operating conditions in this paper, anew equation is introduced for the shunt resistance variation with respect to temperature and irradiance and is expressed as

\[R_{sh(GT)} = R_{sh(stc)} \left(\frac{I_{sc(stc)}}{I_{sc(GT)}} \right) \]

(28)

In order to find MPP, The maximum voltage is found as a function of temperature and irradiance and is given by,

\[V_{mpp} = V_{oc(GT)} - I_{mpp} R_{se(GT)} + N_s V_{t(GT)} U \]

(29)
Where,

\begin{equation}
U = \ln \left(\frac{(I_{sc(GT)} - I_{mpp}) (R_{se(GT)} + R_{sh(GT)}) - V_{mpp}}{I_{se(GT)} (R_{se(GT)} + R_{sh(GT)} - V_{oc(GT)})} \right)
\end{equation}

The maximum current serves as a function of temperature and irradiance and is given by,

\begin{equation}
I_{mpp} = \frac{V_{mpp} Q}{R_{sh(GT)}} + \frac{(V_{mpp} + I_{mpp} R_{se(GT)} - V_{oc(GT)})}{\frac{1}{N_s V_t(GT)}}
\end{equation}

Where,

\begin{equation}
Q = \left(I_{sc(GT)} (R_{se(GT)} + R_{sh(GT)}) - V_{oc(GT)} \right) e^{\left(\frac{V_{mpp} + I_{mpp} R_{se(GT)} - V_{oc(GT)}}{N_s V_t(GT)} \right)}
\end{equation}

These three equations can be solved using the Newton Raphson method and Generalised Hopfield Neural Network method. In these two method the error value is taken as the 1×10^{-10}. These are all the mathematical modelling of the 80W PV module that can be used for extracting the five parameters and finding the maximum power point of the prescribed PV module.

3. ESTIMATION OF PV MODULE PARAMETERS

The parameters of PV module are namely I_{lg}, I_{sat}, A, R_{se}, and R_{sh}. By taking the datasheet information Table 1, provided by the manufacturer of the PV module at standard test conditions (STCs), the PV module’s parameters are estimated. By using the PV module parameters obtained at STCs, the values of the five parameters and the MPP of the PV module can be estimated at any temperature and irradiance condition.

3.1. PV Module Parameters Estimation Under STCs Using Newton-Raphson Method

In this section about the solution of a set of nonlinear equations through Newton-Raphson method. Let us consider that a set of n nonlinear equations of a total number of n variables x_1, x_2, \ldots, x_n. Let these equations be given by

\begin{equation}
\begin{align*}
f_1(x_1, \ldots, x_n) &= \eta_1 \\
f_2(x_1, \ldots, x_n) &= \eta_2 \\
&\vdots \\
f_n(x_1, \ldots, x_n) &= \eta_n
\end{align*}
\end{equation}
Where f_1, \ldots, f_n are functions of the variables x_1, x_2, \ldots, x_n. Then another set of functions g_1, \ldots, g_n as given below

\begin{equation}
\begin{align*}
g_1(x_1, \ldots, x_n) = f_1(x_1, \ldots, x_n) - \eta_1 = 0 \\
g_2(x_1, \ldots, x_n) = f_2(x_1, \ldots, x_n) - \eta_2 = 0 \\
\vdots \\
g_n(x_1, \ldots, x_n) = f_n(x_1, \ldots, x_n) - \eta_n = 0
\end{align*}
\end{equation}

(3.2)

Let us assume that the initial estimates of the n variables are $x_1^{(0)}, x_2^{(0)}, \ldots, x_n^{(0)}$. Let us add corrections $\Delta x_1^{(0)}, \Delta x_2^{(0)}, \ldots, \Delta x_n^{(0)}$ to these variables such that the correct solution of these variables defined by

\begin{equation}
\begin{align*}
x_1 &= x_1^{(0)} + \Delta x_1^{(0)} \\
x_2 &= x_2^{(0)} + \Delta x_2^{(0)} \\
\vdots \\
x_n &= x_n^{(0)} + \Delta x_n^{(0)}
\end{align*}
\end{equation}

(3.3)

The functions in (3.1)

\begin{equation}
\begin{align*}
g_k(x_1, \ldots, x_n) = \frac{\partial g_k}{\partial x_1} x_1^{(0)} + \frac{\partial g_k}{\partial x_2} x_2^{(0)} + \cdots + \frac{\partial g_k}{\partial x_n} x_n^{(0)}
\end{align*}
\end{equation}

(3.4)

Expand the above equation in Taylor's series around the nominal values of $x_1^{(0)}, x_2^{(0)}, \ldots, x_n^{(0)}$. Neglecting the second and higher order terms of the series, the expansion of $g_k, k = 1, \ldots, n$ is given as

\begin{equation}
\begin{align*}
\frac{\partial g_k}{\partial x_1} x_1^{(0)} + \frac{\partial g_k}{\partial x_2} x_2^{(0)} + \cdots + \frac{\partial g_k}{\partial x_n} x_n^{(0)}
\end{align*}
\end{equation}

(3.5)

Where is the partial derivative of g_k evaluated at $x_2^{(1)}, \ldots, x_n^{(1)}$.

Equation (3.5) can be written in vector-matrix form as

\begin{equation}
\begin{align*}
\begin{bmatrix}
\frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\
\frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial g_n}{\partial x_1} & \frac{\partial g_n}{\partial x_2} & \cdots & \frac{\partial g_n}{\partial x_n}
\end{bmatrix}
\begin{bmatrix}
\Delta x_1^{(0)} \\
\Delta x_2^{(0)} \\
\vdots \\
\Delta x_n^{(0)}
\end{bmatrix}
=
\begin{bmatrix}
0 - g_1(x_1^{(0)}, \ldots, x_n^{(0)}) \\
0 - g_2(x_1^{(0)}, \ldots, x_n^{(0)}) \\
\vdots \\
0 - g_n(x_1^{(0)}, \ldots, x_n^{(0)})
\end{bmatrix}
\end{align*}
\end{equation}

(3.6)
The square matrix of partial derivatives is called the Jacobian matrix \(J \) with \(J^{(1)} \) indicating that the matrix is evaluated for the initial values of \(x_2^{(0)}, \ldots, x_n^{(0)} \). Then write the solution of (3.6) as

\[
\begin{bmatrix}
\Delta x_1^{(0)} \\
\Delta x_2^{(0)} \\
\vdots \\
\Delta x_n^{(0)}
\end{bmatrix} = \begin{bmatrix}
J_{11}^{(0)} & \cdots & J_{1n}^{(0)} \\
J_{21}^{(0)} & \cdots & J_{2n}^{(0)} \\
\vdots & \ddots & \vdots \\
J_{n1}^{(0)} & \cdots & J_{nn}^{(0)}
\end{bmatrix}^{-1} \begin{bmatrix}
\Delta g_1^{(0)} \\
\Delta g_2^{(0)} \\
\vdots \\
\Delta g_n^{(0)}
\end{bmatrix} \\
\Delta x_2^{(0)} \\
\Delta x_3^{(0)} \\
\vdots \\
\Delta x_n^{(0)}
\end{bmatrix}^{(0)}
\]

(3.7)

\[
\Delta g_k^{(0)} = g_k(x_1^{(0)}, \ldots, x_n^{(0)}) - g_k(x_1^{(0)}, \ldots, x_n^{(0)})
\]

Since the Taylor's series is truncated by neglecting the 2\(^{nd}\) and higher order terms, It cannot expect to find the correct solution at the end of first iteration. So that go for further iterations.

(3.8)

These are then used to find \(J^{(1)} \) and \(\Delta g_k^{(1)} \), \(k = 1, \ldots, n \). Then find \(\Delta x_2^{(1)}, \ldots, \Delta x_n^{(1)} \) from an equation like (3.7) and subsequently calculate \(x_2^{(1)}, \ldots, x_n^{(1)} \). The process continues till \(\Delta g_k \), \(k = 1, \ldots, n \) becomes less than a small quantity.

3.2 Algorithm

Step 1: Assign the input values for \(I_{SC}, V_{OC}, V_{MPP}, I_{MPF}, N_S \).

Step 2: Initialize iter = 1, \(Vt^{(old)}=0 \) & Calculate \(Rsh^{(old)}, Rse^{(old)} \) For initialization.

Step 3: The condition \(\text{Iter} = \text{maxiter} \) satisfies go fot next step if not stop.

Step 4: Evaluate values \(Vt^{(new)}, Rsh^{(new)}, Rse^{(new)} \) & \(A \).

Step 5: Calculate error values \(1*\text{e}-10 \).

Step 6: The old values are updated \(Vt^{(old)} = Vt^{(new)}, Rsh^{(old)} = Rsh^{(new)}, \)

\(Rse^{(old)} = Rse^{(new)} \).

Step 7: It cannot expect to find the correct solution at the end of first iteration.

So that go for further iterations \(\text{Iter} = \text{Iter}+1 \).

Step 8: The end of iterations final values are updated as follows \(Vt^{(final)}=Vt^{(new)}, \)

\(Rsh^{(final)}=Rsh^{(new)} \) & \(Rse^{(final)}=Rse^{(new)} \).
Step 9: Evaluate I_{lg}, I_{sat} & A and stop the program.

The N-R method for estimate five parameters of PV module with help of equations (12), (13) & (14) in STCs. The flowchart for evaluation of the five parameters of the PV module is shown in Figure 2.
These values are given at STCs, for which the irradiance (Gstc) is 1000 W/m² and the cell temperature (Tstc) is 25 °C.

Table 1. Datasheet of PV modules

PV Module	Datasheet values				
	I_sc (A)	I_mpp (A)	V_oc (V)	V_mpp (V)	N_s
KD245GX	8.91	8.23	36.9	29.80	60
U5-80	5.21	4.58	21.34	17.46	36
Shell SP70	4.7	4.25	21.4	16.5	36
HST60FXXXM	8.82	8.39	37.9	31.03	60
HST36FXXXP	4.65	4.30	21.5	17.5	36
HST60FXXXP	8.80	8.27	37.6	30.23	60

Table 2. Estimated parameters for various PV modules at STCs

PV Module	Estimated parameters				
	A	Rsse (Ω)	Rsh(Ω)	ILG (A)	Isat (A)
KD245GX	1.4290	0.1562	623.2350	8.9122	4.6709e-07
U5-80	1.6043	0.0086	66.6312	5.2107	2.7593e-06
Shell SP70	1.5536	0.3242	321.2234	4.2543	1.4181e-06
HST60FXXXM	0.9485	0.3242	321.2234	4.2543	1.4181e-06
HST36FXXXP	1.3862	0.1385	671.3679	4.6510	2.3925e-07
HST60FXXXP	1.1452	0.2893	4956.62	8.8005	4.9002e-09

The parameters are estimated in standard test conditions (STCs) and tabulated different PV modules of 250W solar panel KD245GX, HST60FXXXM, HST60FXXXP and 80W solar panels of U5-80, Shell SP70, HST36FXXXP.

The N-R method for estimated five parameters of PV modules with help of equations (12),(13) & (13) in STCs are shown in Table 2.

Table 3. Estimated parameters for various PV modules at varying irradiance and temperature

PV Module Parameters	G (W/m²)	Tc (°C)	A	Rse (Ω)	Rsh (Ω)	ILG (A)	Isat (A)	Vmpp (V)	Impp (A)	Pmpp (W)
KD24	1000	30	1.48346	0.1562	623.2831	8.9122	6.16E-07	29.8017	8.2304	245.3275
	1000	50	1.39161	0.1562	623.2756	8.9123	1.71E-06	29.799	8.2304	245.2597
	1000	70	1.31046	0.1562	623.2682	8.9124	4.22E-06	29.7962	8.2304	245.2404
The initial values from the series and shunt resistance, particularly, considering the varying nature of shunt resistance, series resistance, and ideality factor. In equations. The SUR method is used to extract the MPP at different environmental conditions by coding, due to the selection of appropriate modules at STCs. Here, good convergence is achieved in the N
HST60FXXXP. The N
HST60FXXXM, HST60FXXXP and also depend on temperature. The unknown parameters of PV module namely R
U5
-80, Shell SP70, HST60FXXXM, HST36FXXXP and 80W, Shell SP70 are taken estimated parameters at any temperature and irradiance conditions are shown in Table 3.

U5-80	Shell SP70	HST60FXXXP	HST60FXXXM
841	14775	8.2802	1.687E+04
868	14775	6.666E+04	8.5064
872	14775	8.5456	4.85E-05
881	14775	8.6338	4.87E-05
882	14775	8.6436	4.87E-05
887	14739	8.6926	4.74E-05
908	14559	8.8394	4.39E-05
832	13809	3.67E+03	7.9543
835	13809	3.66E+03	7.983
840	13809	3.63E+03	8.0308
845	13809	3.61E+03	8.0786
849	13809	3.59E+03	8.1168

The light generated current and short circuit current are directly proportional to irradiance and also depend on temperature. The unknown parameters of PV module namely I
lg, I
sat, A, R
se, and R
sh., can be estimated at any temperature and irradiance condition.

PV modules of 250W solar panel KD245GX, HST60FXXXM, HST60FXXXP and 80W solar panels of U5-80, Shell SP70 are taken estimated parameters at any temperature and irradiance conditions are shown in Table 3.

4. CONCLUSION

In this work, the following PV modules are taken for estimate the five unknown parameters of KD245GX, U5-80, Shell SP70, HST60FXXXM, HST36FXXXP and HST60FXXXP. The N-R method is used to estimate the five unknown parameters of the PV modules at STCs. Here, good convergence is achieved in the N-R method during MATLAB coding, due to the selection of appropriate initial values from the series and shunt resistance equations. The SUR method is used to extract the MPP at different environmental conditions by considering the varying nature of shunt resistance, series resistance, and ideality factor. In particular, through the proposed equations of shunt resistance and ideality factor of the PV model,
accurate MPP value is obtained. For a wide range of operating conditions, the MPP and the five unknown parameters of various PV modules are estimated.

5. FUTURE SCOPE

The proposed methodology estimate the five unknown parameters of the PV module at STCs and variable temperature and irradiance conditions. Five unknown parameters of the PV module can be obtained with the GHNN based optimization technique.

Solar power from the PV module the converter will help to get maximum power by taking PV module references of voltage and current. Instead of taking reference from the PV module, for different environment conditions five parameters are determined and can be used for generating pulse signal for driving converter for deliver maximum power from PV module.

REFERENCES

[1] Rauschenbach HS, 1976, “Solar Cell Array Design Handbook”, Vol. 1, JPL, Pasadena, CA, USA: Van Nostrand Reinhold.

[2] Celik AN, Acikgoz N, 2007, “Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four and five parameter models”, Appl Energ; 84: 1-15.

[3] Alonso-Garcia MC, Ruiz JM, 2006, “Analysis and modelling the reverse characteristic of photovoltaic cells”, Sol Energ Mat Sol C; 90: 1105-1120.

[4] Carrero C, Ramirez D, Rodríguez A, Platero CA, 2011, “Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I-V curve”, Renew Energ; 36: 2972-2977.

[5] Zhu XG, Fu ZH, Long XM, Li X, 2011, “Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters”, Sol Energy; 85: 393-403.

[6] Saloux E, Teyssedou A, Sorin M, 2011, “Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point”, Sol Energy; 85: 713-722.

[7] Cotfas D, Cotfas P, Kaplanis S, Ursutiu D, 2008, “Results on series and shunt resistances in a c-Si PV cell, Comparison using existing methods and a new one”, J Optoelectron Adv M ; 10: 3124-3130.

[8] Ly Diallo H, Dieng B, Ly I, Dione MM, Ndiaye M, Lemrabott OH, Bako ZN, Wereme A, Sissoko G, 2012, “Determination of the recombination and electrical parameters of a vertical multi junction silicon solar cell”, Res J Appl Sci Eng Technol; 4: 2626-2631.
[9] Chatterjee A, Keyhani A, Kapoor D, 2011, “Identification of photovoltaic source models”, IEEE T Energy Conver; 26: 883-889.

[10] Kulaksiz AA, 2013, “ANFIS-based estimation of PV module equivalent parameters: application to a stand-alone PV system with MPPT controller”, Turk J Elec Eng & Comp Sci 2013; 21: 2127-2140.

[11] De Soto W, Klein SA, Beckman WA, 2006, “Improvement and validation of a model for photovoltaic array performance”, Sol Energy; 80: 78-88.