Benchmarking computer platforms for lattice QCD applications

M. Hasenbuscha, K. Jansena, D. Pleitera, H. St"ubenb, P. Wegnerc, T. Wettigd, H. Wittige

aNIC/DESY-Zeuthen, 15738 Zeuthen, Germany
bKonrad-Zuse-Zentrum f"ur Informationstechnik Berlin, 14195 Berlin, Germany
cDESY-Zeuthen, 15738 Zeuthen, Germany
dDepartment of Physics, Yale University, New Haven, CT 06520–8120, USA
eDESY, 22603 Hamburg, Germany

We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E, Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC.

1. INTRODUCTION

Simulations of lattice QCD require powerful computers. We have benchmarked computers that are under consideration by the German Lattice Forum (LATFOR) \cite{1} to realize the future physics program. The machines we have tested fall into three categories: (1) machines that are custom-designed for lattice QCD (apeNEXT and QCDOC), (2) PC-clusters, and (3) commercial supercomputers (CRAY, Hitachi, IBM).

2. COMPUTER PLATFORMS

2.1. apeNEXT

The apeNEXT project \cite{2} was initiated with the goal to build custom-designed computers with a peak performance of more than 5 TFlops and a sustained efficiency of about 50\% for key lattice gauge theory kernels. apeNEXT machines should be suitable for both large-scale simulations with dynamical fermions and quenched calculations on very large lattices. The apeNEXT processor is a 64-bit architecture with an arithmetic unit that can at every clock cycle perform the APE normal operation $a \times b + c$, where a, b, and c are IEEE 128-bit complex numbers. The apeNEXT processors have a very large register file of 256 (64+64)-bit registers. On-chip network devices connect the nodes by a three-dimensional network.

2.2. QCDOC

QCDOC ("QCD on a Chip") \cite{3} is a massively parallel computer optimized for lattice QCD, developed by a collaboration of Columbia University, UKQCD, the RIKEN-BNL Research Center, and IBM. Individual nodes are based on an application-specific integrated circuit (ASIC) which combines IBM’s system-on-a-chip technology (including a PowerPC 440 CPU core, a 64-bit FPU, and 4 MB on-chip memory) with custom-designed communications hardware. The nodes communicate via nearest-neighbor connections in six dimensions. The low network latency and built-in hardware assistance for global sums enable QCDOC to concentrate computing power in the TFlops range on a single QCD problem.

2.3. PC-cluster

In recent years, commodity-off-the-shelf (COTS) Linux cluster computers have become cost-efficient, general-purpose, high-performance computing devices. QCD simulations on cluster computers can be boosted considerably by exploiting the SIMD and data prefetch functionality of Intel Pentium processors via SSE/SSE2 instructions by means of assembler coding. The benchmarked PC-cluster has 1.7 GHz Xeon Pentium 4 CPUs with 1 GB of Rambus memory. The nodes communicate via a Myrinet2000 interconnect.
2.4. CRAY T3E-900
The CRAY T3E is a classic massively parallel computer. It has single CPU nodes and a three-dimensional torus network. The T3E architecture is rather well balanced. Therefore, the overall performance of parallel applications scales to much higher numbers of CPUs than on machines that were built later. The peak performance of a T3E-900 is 900 MFlops per CPU, the network latency is 1 μs, and the bidirectional network bandwidth is 350 MByte/s.

2.5. Hitachi SR8000-F1
The Hitachi SR8000 is a parallel computer with shared memory nodes. Each node has 8 CPUs. The key features of the CPUs are the high memory bandwidth and the availability of 160 floating point registers. These features are accompanied by pseudo-vectorization, an intelligent prefetch mechanism that allows to overlap computation and fetching data from memory. Pseudo-vectorization is done by the compiler. The peak performance of an SR8000 CPU is 1500 MFlops, vectorization is done by the compiler. The peak performance of an SR8000 CPU is 1500 MFlops, the network latency is 19 μs, and the bidirectional network bandwidth between nodes is 950 MByte/s.

2.6. IBM p690-Turbo
The IBM p690 is a cluster of shared memory nodes. Its CPUs (and nodes) have the highest peak performance of the machines considered but only a relatively slow network. In order to increase the bandwidth of the interconnect people divide the 32-CPU nodes into 8-CPU nodes. This increases the bandwidth per CPU by a factor of 4. The performance depends to a large extent on the configuration of the machine. For benchmarking this architecture it has also to be taken into account that the performance drops by a factor of 3–5 when using all CPUs instead of only one. The peak performance of a Power4 CPU is 5400 MFlops, the network latency (of the so-called colony network) is 20 μs, and the bidirectional network bandwidth between nodes is 450 MByte/s.

3. BENCHMARK SUITE
In this contribution we concentrate on one particular application: large-scale simulations of dynamical Wilson fermions with $O(a)$-improvement on lattices of size $V = 32^3 \times 64$. We assume that these simulations are performed using the Hybrid Monte Carlo algorithm [4] or the Polynomial Hybrid Monte Carlo algorithm [5], as was done in simulations with dynamical fermions in recent years [4].

The most time-consuming operation is the fermion matrix multiplication. We denote the fermion matrix by $M[U] = T[U] - H[U]$, where H is the Wilson hopping term

$$
H[U]_{xy} = \kappa \sum_\mu (1 - \gamma_\mu) U_\mu(x) \delta_{x+\mu,y} + (1 + \gamma_\mu) U_\mu(x - \mu) \delta_{x-\mu,y} \tag{1}
$$

and T is the clover term $T[U] = 1 - \frac{i}{2} \kappa c_{sw} F_{\mu\nu} \sigma_{\mu\nu}$. Here we only consider the even-odd preconditioned version $\psi = H_{eo} \phi$.

Basic operations of linear algebra are needed in iterative solvers. We have considered the scalar product

$$
\langle \psi, \phi \rangle = \sum_{x=1}^{V} \sum_{i=1}^{3} \sum_{\alpha=1}^{4} \psi^*_i(x) \phi_i(x) \tag{2}
$$

the vector norm

$$
||\psi||^2 = \sum_{x=1}^{V} \sum_{i=1}^{3} \sum_{\alpha=1}^{4} |\psi_i(x)|^2 \tag{3}
$$

the zaxpy operation

$$
\psi_{i,\alpha}(x) \leftarrow \psi_{i,\alpha}(x) + c \phi_{i,\alpha}(x), \quad c \in \mathbb{C}, \tag{4}
$$

and the daxpy operation

$$
\psi_{i,\alpha}(x) \leftarrow \psi_{i,\alpha}(x) + r \phi_{i,\alpha}(x), \quad r \in \mathbb{R}. \tag{5}
$$

Two basic operations involving link variables are part of our benchmark, the multiplication of an $SU(3)$ matrix by a vector

$$
\psi = U \ast \phi; \quad \psi_i = \sum_{j=1}^{3} U_{ij} \phi_j \tag{6}
$$

and the multiplication of two $SU(3)$ matrices

$$
W = U \ast V; \quad W_{ij} = \sum_{k=1}^{3} U_{ik} V_{kj}. \tag{7}
$$

Finally, the benchmark contains the basic operations involving the clover term, $\psi = T \phi$ and
3

Table 1
Benchmark results in MFlops per CPU. All numbers refer to 64bit floating point arithmetic. *Italic* numbers indicate that communications overhead has been included. Further details are given in the text.

Peak [MFlops]	apeNEXT	QCDOC	PC-Cluster	CRAY	Hitachi	IBM				
$H_{eo} \phi$	1600	1000	3400	148	1500	5200				
(ψ, ϕ)	656	450	530	148	680	303				
$		\psi		^2$	592	384	510	98	789	187
$zaxpy$	464	450	358	114	479	234				
$daxpy$	116	190	183	57	241	115				
$U^\ast \phi$	1264	780	307	104	811	261				
$U^\ast V$	1040	800	763	118	1182	413				
$T \phi$	1136	790	800	111	1137	608				

$\psi = T^{-1} \phi$. These were implemented with 6 × 6 block matrices,

$$\psi = \frac{1}{2} \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right) \phi.$$

(8)

4. BENCHMARK RESULTS

Our benchmark results are listed in Table 1. The values for apeNEXT and QCDOC were obtained from cycle-accurate simulations of the forthcoming hardware. All the other performance numbers were measured on existing machines.

On apeNEXT and QCDOC the hopping term was benchmarked by distributing the problem over the maximum number of nodes for the given problem size. For the PC-cluster, where a C code with SSE/SSE2 instructions based on the benchmark program of M. Lüscher [7] has been used, only single-node numbers (for $V = 16^4$) are quoted because there is still some debate over which network to use (e.g., Myrinet, Infiniband, Gigabit-Ethernet). The commercial machines have been benchmarked using 256, 64 and 64 CPUs on CRAY, Hitachi and IBM, respectively. We used the Fortran90 production code of the QCDSF collaboration that is parallelized with MPI and OpenMP. For the linear algebra routines we used Fortran loops on the Hitachi and the vendors’ high-performance libraries on CRAY and IBM.

In case of the scalar product and the vector norm we quote only the single-processor performance, since the performance including the global sum depends on the number of nodes. We estimated the overhead for computing the global sum on some platforms, since it will affect scalability of the considered application when going to a very large number of nodes:

- apeNEXT: 5.2 μs on 4 × 8 × 8 = 256 CPUs
- QCDOC: 10 (15) μs on 4.096 (32.768) CPUs
- PC-cluster: 138 (166) μs on 256 (1.024) CPUs

5. CONCLUSIONS

We presented a selection of benchmarks relevant for doing large-scale simulations of QCD with dynamical fermions and provided initial benchmark results for a range of platforms. A more detailed comparison of these platforms in terms of price/performance ratio, hardware reliability, software support, etc. is beyond the scope of this contribution. These questions will be addressed in a future publication.

REFERENCES

1. R. Alkofer et al., http://www-zeuthen.desy.de/latfor
2. F. Bodin et al., [hep-lat/0306018](http://www-zeuthen.desy.de/latfor)
3. P.A. Boyle et al., [hep-lat/0306023](http://www-zeuthen.desy.de/latfor) and these proceedings.
4. S. Duane et al., Phys. Lett. B 195 (1987) 216
5. P. de Forcrand and T. Takaishi, Nucl. Phys. (Proc. Suppl.) 53 (1997) 968; R. Frezotti and K. Jansen, Phys. Lett. B 402 (1997) 328
6. E.g. (previous) proceedings of this conference.
7. M. Lüscher, Nucl. Phys. (Proc. Suppl.) 106 & 107 (2002) 21 [hep-lat/0110007](http://www-zeuthen.desy.de/latfor)