Efficiencies of inhomogeneity-detection algorithms: comparison of different detection methods and efficiency measures

Peter Domonkos

University of Rovira i Virgili, Centre for Climate Change, Campus Terres de l’Ebre, Av. Remolins 13-15, 43500-Tortosa (Tarragona), Spain. e-mail: peter.domonkos@urv.cat

Abstract

An efficiency evaluation of the change-point Detection methods used in nine major Objective Homogenization Methods (DOHMs) is presented. The evaluation is conducted using ten different simulated datasets and four measures of efficiency: detection skill, skill of linear trend estimation, sum of squared error, and a combined efficiency measure. The test datasets were developed to have a diverse set of inhomogeneity (IH) characteristics, and include one dataset that is similar to the monthly benchmark temperature datasets developed as part of the European benchmarking effort known by the acronym COST HOME. While the objective is to find the DOHMs whose detection algorithms are the most effective in practice, the performance of DOHMs is highly dependent on the characteristics of test-datasets and efficiency measures. Measures of skills differ markedly according to the frequency and mean duration of inhomogeneities, and vary with the ratio of IH-magnitudes and background noise. The study focuses on cases when high quality relative time series (i.e., the difference between a candidate and reference series) can be created, but the frequency and intensity of inhomogeneities is high. Results show that in these cases the Caussinus – Mestre method is the most effective, although appreciably good results can also be achieved by the use of several other DOHMs, such as the Multiple Analysis of Series for Homogenisation, Bayes-method, Multiple Linear Regression, and the Standard Normal Homogeneity Test.

Key words: time series, homogenization, multiple inhomogeneities, efficiency measure, efficiency test

Introduction

The underlying climate signal in observed in situ climatic data is often masked either by changes in observational practices, exposure and instrumentation or by local changes in the environment where the observations are taken. If these changes (called inhomogeneities [IH]) have a significant impact on the statistical characteristics of the observed data, then the time series are inhomogeneous, and their usefulness is limited in assessments of observed climate change. Given that almost any long climate series is potentially inhomogeneous, various techniques have been developed to detect and adjust series where necessary (see, among others, the seminar series of Homogenisation and Quality Control in Climatological Databases, WMO - HMS 1996, 1999, 2001, 2004, 2008, 2010).

There are several options to eliminate the IHs from observed time series. The timing and cause of many potential IHs are documented in network management documents (so-called metadata). Good metadata information greatly facilitates the development of appropriate corrections for inhomogeneous time series, so that the time series can be made more suitable for climate studies. However, metadata is generally incomplete (Brunet et al.)
2006, Rayner 2007, Staudt et al. 2007, Rusticucci and Renom 2008, Sherwood et al. 2008, Menne et al. 2009, etc.) or at least cannot be assumed to be comprehensive. Thus, the benefit of metadata (Auer et al. 2005) cannot always be fully exploited in practice and “even with the best possible metadata, some statistical inhomogeneity detection is advised” (Aguilar et al. 2003).

The need for efficient homogenization methods has encouraged researchers to create and use various statistical tools. As a result, nearly twenty statistical homogenization methods are in use. Taking into consideration the number of options available in how these methods are used and the parametric choices within a particular DOHM, the diversity of the applied DOHMs is even greater in practice.

Although several reviewing papers about homogenization methods have been published in the recent years (Peterson et al. 1998, Aguilar et al. 2003, Auer et al. 2005, Menne and Williams Jr. 2005, Reeves et al. 2007, Brunet et al. 2008, etc.) a realistic evaluation of the advantages and possible disadvantages of homogenization procedures remains elusive. Sometimes even the principles are questioned. For example, in an investigation of real and simulated time series of radiosonde data with some arbitrary selected DOHMs, Sherwood (2007) found that the rate of false detections was usually higher than that of the correct IH detections. While this example is relevant only to the special properties of radiosonde data, results like this may lower confidence more generally in homogenization procedures.

Detection of IHs is usually conducted via relative homogeneity testing (e.g. the differences between two series are examined for breaks). In that case, detected IHs are supposed to belong to the so-called candidate series, although the chance that they at least partly belong to some reference series usually cannot be ruled out. To keep this risk low, application of statistical homogenization can be recommended only when several time series of the same geographical-climatic region are available (Alexandrov et al. 2004, Brunet et al. 2006, Kuglitsch et al. 2009, Costa and Soares 2009, Yan et al. 2010), and many of the spatial correlations are higher than 0.7 (Peterson and Easterling 1994, Auer et al. 2005, Begert et al. 2005, DeGaetano 2006, Brunet et al. 2008, Gonzalez-Hidalgo et al. 2009, Vicente-Serrano et al. 2010). These conditions are generally true for the surface air temperature datasets in the extratropical land areas, and in most cases also for precipitation datasets. Monthly and annual temperature time series in Europe and the USA have usually dense networks, and the spatial correlations are often around or above 0.9 for them (Domonkos and Stépánek 2009, Menne and Williams 2009). In these networks the use of relative time series is advantageous since there is no comparable alternative for eliminating the impacts of local IHs from observed datasets.

Here, we examine the efficiencies of DOHMs as applied to series simulated to represent the test series in a relative homogenization approach. Only objective methods are tested that can be applied in fully automated way. The study does not address the mechanics of creating relative time series (differences or ratios) from raw climate observations nor do we consider the implications of using iteration in detection and correction even though these aspects may significantly impact the ultimate efficiency in practice. Rather, the rationale is that the change-point detection components of DOHMs should be analyzed separately from the complete homogenization procedures, because (i) the most efficient detection parts can then likely be paired with spatial comparison and iteration segments of any other homogenization methods, and (ii) considering only the complete homogenization procedure without addressing specific components tends towards a “black box” approach whereby the advantages and disadvantages of particular elements are difficult to identify. Although there have been made some comparative examinations aiming to reveal the capability of detecting IHs by different homogenization methods (Buishand 1982, Easterling
and Peterson 1995, Lanzante 1996, Ducré-Robitaille et al. 2003, Syrakova 2003, Drogue et al. 2005, Menne and Williams Jr. 2005, 2009, DeGaetano 2006, Domonkos 2008, 2011a, Gérard-Marchant et al. 2008, Beaulieu et al. 2008, Titchner et al. 2009), all these studies examine some arbitrary selections of DOHMs, and the test-datasets used mostly have not realistic statistical properties. One of the fundamental open questions is the role of similarities and dissimilarities between the statistical properties of real and simulated time series, a topic which has only been discussed by Menne and Williams Jr. (2005, 2009), Domonkos (2008, 2011a), Titchner et al. (2009) and Venema et al. (2012). This topic is intensively discussed in this study relying on the empirical efficiencies from various simulated datasets.

The methodology of the present study mostly follows the rules introduced in Domonkos (2011a). The new lines of investigations in the present study in revealing the performances of DOHMs are as follows: i) Comparisons between test series with randomly positioned change-points on the one hand and those with short-term, platform shaped biases on the other hand; ii) Comparisons between test series with relatively large shift-sizes (as they are in Venema et al. 2012) on the one hand, and those with mostly moderate shift-sizes (as which were found empirically in Domonkos, 2011a), on the other hand; iii) The role of empirical autocorrelation in relative time series; iv) Experiments with moving signal-to-noise ratio. After presenting the results, the reality of the test datasets used will be discussed along with some peculiarities of the results, as well as we will make some comparisons between the blind test results of Venema et al. (2012) and our results.

2. Methods

2.1. Concepts and definitions

The efficiencies of DOHMs are quantified using ten test-datasets as benchmarks. All the simulated time series that comprise the benchmarks were generated to mimic the properties of time series of differences derived by the comparison of one candidate series with some IHs and a reference series of “good quality” (i.e. without IHs). They referred as relative time series (X). Specifically, each dataset comprises N relative time series of n year length (Eq. 1).

$$X_p = [x_{p,1}, x_{p,2}, \ldots x_{p,n}]^T, \ p = 1,2,\ldots,N$$

In this study $n = 100$, and $N = 10,000$. All the time series contain a standard white noise process (W) whose standard deviation equals 1, as well as a term for cumulated effects of IHs, named also station effect (H).

The origin of the noise is the natural fluctuation of spatial differences of climatic elements. The relative time series generally do not contain low frequency noise, because in a particular observing network of the same climatic region the low frequency climatic changes tend to be common. However, this assumption is not exactly true, so two of the test datasets were simulated to have characteristics with slight deviations from this rule (see Sec. 2.3).

Each element of time series (the index p will not be in use hereafter) can be expressed as a sum of the inter-station noise (w) and station-specific IH effects (h) (Eq. 2).

$$x_i = w_i + h_i, \ i = [1,2,\ldots,n]$$
X always represents raw time series (before homogenization), while U represents homogenized time series. If homogenization is perfect, then $U = W$.

Always the first moment (section-average) of the time series biased by the imposed IHs in the simulations. Three types of IHs are used, namely: (i) change-point (sudden shift), (ii) trend (gradual changes) and (iii) platform (pair of sudden shifts). These are defined in more detail as follows.

(i) Change-point: If $h_{i+1} \neq h_i$ and the change is not a part of a gradual change (cf. (iii)), then a change-point type IH exists at time i.

(ii) Trend: Gradual change of h over a period $[j,k]$ ($1 \leq j < k \leq n$). The artificial trends are always linear ($h_{i+1} - h_i = h_j - h_{i+1}$ for each $i (i \in [j+1, k-1])$), and their minimum duration is 5 years.

(iii) Platform: A pair of change-points of the same magnitude, but with different signs. If $h_{i+1} \neq h_i$ and $\exists k (k \in [i+1, n])$ for which $h_{k+1} - h_k = -(h_{i+1} - h_i)$, then a platform exists whose first year is $i+1$ and last year is k. When $k-i$ represents a relatively short time period (say, $k-i \leq 10$), platforms are also referred as short-term IHs. From this point of view, outliers are also platforms with 1 year duration.

Note that although from the combination of IHs type (i) and type (ii), IH of any shape could be constructed, type (iii) is included as a distinct type in the simulation process, because an earlier study (Domonkos 2011a) showed that the shifts of successive change-points often have the opposite signs.

The absolute value of an IH is considered to be its “magnitude”, while the magnitude with the sign is considered to be its “size”. During the simulation, IH magnitudes (m) and other statistical characteristics are expressed with their ratio to the standard deviation of the white noise (s_e), while detected magnitudes (m^*) are expressed with their ratio to the estimated standard deviation of the white noise (s_{e*}, Eq. 3).

$$s_{e*} = \sqrt{1 - R^2} \cdot s_T \quad \text{if } R > 0$$
$$s_{e*} = s_T \quad \text{if } R \leq 0$$

In Eq. 3 R denotes 1-year lag autocorrelation, and s_T means the empirical standard deviation of the time series. The application of the unit s_{e*} follows from the fact that during the detection process s_e is known only for simulated time series, while for relative time series from real observations this characteristic is unknown. In contrast, s_{e*} can easily be calculated for any time series. s_{e*} is usually higher than s_e, but never higher than s_T. Thus s_{e*} is a better estimation of s_e than s_T would be.

The detection processes are always paired with a standard adjustment procedure (SA) in this study. Let us suppose that Q change-points have been detected with timings t_1, t_2, \ldots, t_Q, as well as $t_0 = 0$ and $t_{Q+1} = n$ by definition. The segment between adjacent change-points t_k and t_{k+1} is denoted with K and segment means with upper stroke. For the SA, $m^*(t_k)$ is calculated as the difference of the adjacent segment means around t_k. If there is a detected trend with e_K annual change for section K, it is taken into account in the calculation according to Eq. 4.
\[m^* (t_k) = x_k - x_{k-1} - 0.5(e_K (t_{k+1} - t_k) + e_{K-1} (t_k - t_{k-1})) \] \hfill (4)

Then the adjustment of \(m^* \) is applied for all \(x_i \) of \(i \leq t_k \). Derivation of \(m^* \) and SA is applied for trend IHs with the same logic, but taking into account the gradualness. Note that the estimation of \(m^* \) in the various homogenization approaches may differ from the SA used here; however, the uniformity of adjustment technique applied in this study is essential for testing the performance of detection parts separately from other properties of homogenization methods.

Finally, in the discussion below \(f \) stands for the average frequency of IHs (i.e. the number of events in 100 years), while \(s \) equals the standard deviation of the IH sizes.

2.2. DOHMs examined

The nine DOHMs that we examine (Table 1) are widely used in climatology. All they are objective methods, hence they can be applied automatically to find IHs in time series. Only one non-parametric method, the Wilcoxon Rank Sum test was selected because the efficiencies of non-parametric methods are more limited (see e.g. Ducré-Robitaille et al. 2003).

DOHM	Abbrev.	Reference
Bayes method	Bay	Ducré-Robitaille et al. 2003
Caussinus - Mestre method (PRODIGE)	C-M	Caussinus and Mestre 2004
Easterling - Peterson method	E-P	Easterling and Peterson 1995
Multiple Analysis of Series for Homogenisation	MAS	Szentimrey 1999
Multiple Linear Regression	MLR	Vincent 1998
Standard Normal Homogeneity Test for shifts only	SNH	Alexandersson 1986
Standard Normal Homogeneity Test for shifts and trends	SNT	Alexandersson and Moberg 1997
t-test	tts	Ducré-Robitaille et al. 2003
Wilcoxon Rank Sum test	WRS	Wilcoxon 1945

Table 1. DOHMs with their abbreviations used in the study.
methods. In SNT the detected IHs are always trends when the estimated duration of change is at least 5 years and always change-points in the reverse case. The version of MLR used here differs in one more detail from the original description, i.e. only 1 year lag autocorrelations are considered in calculating FTE (instead of all lags between 1 year and 3 year). This modification has no substantial effect on the performance of MLR (not shown).

A uniform pre-filtering of outliers is applied before the use of any DOHM. Anomalies from the average of the time series are considered to be outliers if their absolute values are higher than 4 standard deviations of the time series elements. This threshold is often used in practice (e.g. Vincent et. al. 2005, Staudt et al. 2007, Kuglitsch et al. 2009). Detected outliers are replaced with an anomaly value of zero.

2.3. Test-datasets

Obviously, the higher the resemblance between the simulated and real statistical properties, the higher the confidence that the assessed efficiencies based on simulated datasets are valid for real climatic datasets. Unfortunately, the exact statistical properties of IHs occurring in real climatic time series is not known. In the benchmark surrogated dataset of the COST HOME project (hereafter: Benchmark, Venema et al. 2012) the mean frequency of IHs is 5 per 100 years in artificial test-datasets. It is based on the experience that the frequency of detected IHs in long climatic time series is approximately 5 per 100 years (Peterson 2003, Auer et al. 2005), and considering that the IHs with low magnitudes are more frequent than those with high magnitudes (Menne and Williams 2005, 2009, Domonkos 2011a), the IH sizes have normal distribution with 0 expected value. However, it is only a rough approach to the true properties of observational time series, see more discussion about this problem in Sec. 4.1 of this study and in Domonkos (2011a), as well.

The mathematical description of ten test-datasets is presented below, together with some ideas about the motivation of creating them. When no specification for IH-type is given, the type is always change-point. Trends are included in three datasets only, but in those three their role is much greater (about 25% of long-term biases) than in the Benchmark (2% of all IHs).

A) CH1B0 refers to 1 Big CHange-point without any restriction for R (0). In this dataset, exactly one IH is included in each time series. Its timing (j) is 40 or 60, and m = 3. In this simple case it is easy to demonstrate the time function of station effect (Eq. 5).

\[h_i = 0, \text{ if } i \leq j, \text{ and } h_i = 3, \text{ if } i > j, \quad 1 \leq i < n, \quad j = 40 \text{ or } j = 60 \]

B) CH5B0: The intension of this dataset is to mimic the Benchmark (note that f = 5 and s = 0.8°C are the key characteristics for the raw time series of the Benchmark). In the simulation process of this dataset, the probability of the introduction of a new change-point was 0.05 at each year. Thus the average number of change-points in time series is 5, and the mean frequency per time series has binomial distribution. The sizes are normally distributed with a mean of zero and s of 3.5. The value of s came from the estimation that 0.8°C is likely 3-4 times higher than the typical se for true relative time series in dense observing networks.

C) PF5B0 was generated in the same way as CH5B0, but instead of individual change-points platforms were introduced to the time series, again with probability of 0.05 at each year. The length of the platform has uniform distribution between 1 year and 10 years. The sizes of IHs have normal distribution with a mean of zero and s of 3.5.
D) HUSTR: This dataset is the “Hungarian standard”, because its characteristics were provided by an empirical procedure in which the statistical properties of the detected IHs in test datasets were approached via series of experiments to the same properties for true relative time series (Domonkos 2011a). Those relative time series were constructed from observed temperature series in Hungary. The time series of HUSTR include rather complex structures of randomly distributed IHs of different types (change-points, platforms, trends) and magnitudes, as well as noise that differs from white noise. In this dataset the number of IHs is high, and short-term platforms are particularly frequent. Some IH-sizes are large, but the majority of them is small. $R \geq 0.4$ in each time series. The full description of its generation is presented in Domonkos (2011a). The change-point frequency and the standard deviation of the change-point magnitudes are: $f = 31.1$, $s = 1.20$.

E) HUST0: Like HUSTR, but with no restriction for R. $f = 30.3$, $s = 1.02$.

For the following four datasets s was set to be similar to the s of HUSTR and HUST0.

F) CH5S0: The same as CH5B0, but $s = 1$.

G) PF5S0: The same as PF5B0, but $s = 1$.

H) CH5SR It was generated in the same way as CH5S0, but only time series with $R \geq 0.4$ were retained.

I) PF5SR: It was generated in the same way as PF5S0, but only time series with $R \geq 0.4$ were retained.

	f(CH)	f(trend)	f(PfA)	f(PfB)	f'	f	s	R
CH1B0	1.0	0	0	0	1.0	1.0	0	-
CH5B0	5.0	0	0	0	5.0	5.0	3.50	-
PF5B0	0	0	2.5	2.5	5.0	9.2	3.50	-
HUSTR	3.1	2.3	5.4	17.9	16.2	31.1	1.20	$R \geq 0.4$
HUST0	2.9	2.4	5.1	17.9	15.5	30.3	1.02	-
CH5S0	5.0	0	0	0	5.0	5.0	1.00	-
PF5S0	0	0	2.5	2.5	5.0	9.2	1.00	-
CH5SR	5.8	0	0	0	5.8	5.8	1.15	$R \geq 0.4$
PF5SR	0	0	3.9	2.7	7.8	12.2	1.34	$R \geq 0.4$
CHPF0	3.3	1.5	1.4	1.4	7.6	10.4	0.0...4.0	-

Table 2. Properties of the test datasets. f(CH): frequency of change-points that do not parts of platforms, f(trend): frequency of trends, f(PfA): Frequency of platforms with longer than 5 years duration, f(PfB): Frequency of platforms with maximum 5 years duration, f': frequency of all but PfB IHs, f: frequency of all IHs, s: standard deviation of IH-sizes, R: restriction for the autocorrelation. Each frequency characteristic is shown as number per time series. Frequency characteristics show the frequency of introduced IHs during the generation, except for column f, where the empirical total frequencies are presented. (f is often slightly lower than the frequency of all introduced IHs, due to superposition of IHs or stretch-out over the end of the time series.)
J) CHPF0: “Compromise dataset”. The term compromise is used because this dataset contains both long-term IHs and short-term platforms, as well as a few trend IHs. The frequency of IHs ($f = 10.4$) is higher than in the Benchmark, but much lower than in the Hungarian standard. During its simulation a new IH is introduced with 7% probability at each year, more specifically with 3, 3 and 1% probability for change-points, platforms and trends, respectively. Data were simulated from 50 years before the starting point of time series until 50 years after the end of time series for ensuring the temporal uniformity of occurrences of IHs within the examined 100 years. The duration of trends has even distribution between 5 and 99 years, while that of the platforms is the same as in PF5B0. This dataset is examined with moving s.

Table 2 summarizes the properties of the IHs in the ten test datasets. The diversity of the shown characteristics serves well the objective of the paper, i.e. to find conclusions that are not related to the specific IH-properties of a given test dataset.

2.4. Measures of efficiency

Four kinds of measures are examined: (a) Detection skill, (b) Skill of linear trend estimation, (c) Sum of squared errors (SSE) and (d) Combined maximal bias (CMB).

Let the sum of correct detections, that of false detections and the total number of change-points be denoted by S_R, S_F and S, respectively. Although these concepts are clear in case of one or a few of fairly large IHs, their occurrences are not easy to be identified in complex structures. Therefore the concepts “change-point”, “correct detection” and “false detection” must be defined for a quantitative and objective evaluation. The application of some arbitrary parameters is unavoidable for these definitions.

A true change-point exists in time series X at year j ($3 \leq j \leq n-3$), if

$$
\frac{1}{k} \left| \sum_{i=j-k+1}^{j} x_i - \sum_{i=j+1}^{j+k} x_i \right| \geq 2, \text{ for each } k \in \{1,2,3\}
$$

Equation (6) means that change-points with magnitude (m^*) at least 2 are considered only, and the shift of this magnitude must be apparent comparing each symmetric half-window pairs, up to window-width of 6 years.

Correct detection: There is a detected change-point at year j with $m^* \geq 1.5$, and a true change-point with a shift of the same sign as the detected IH has, really exists in section $[j-1, j+1]$ of X.

False detection: There is a detected change-point at year j with $m^* \geq 1.5$, but no true change with the same direction occurs at all, taking into account any of the possible comparisons of section-means for symmetric half-windows around j up to window-width of 6 years in X. There is no minimum threshold here for the magnitudes of true changes, only their signs are considered.

(a) Detection skill (E_D):

$$
E_D = \frac{S_R - S_F}{S}
$$
Pieces of the detection result that do not meet with the conditions of either the correct
detection or the false detection are not taken into account in the calculation of the detection
skill. For perfect detection \(E_D = 1 \). In case of half of the detected change-points are false, \(E_D = 0 \). Note that in datasets with very few change-points (\(S \) is small) \(E_D \) can easily be negative.

For the following three measures error-terms will be defined first, following them
the way of their conversion to efficiency-measures:

(b) **Error of linear trend estimation:** Linear trends are fitted to the time series with minimizing
the SSE between the trend line and the annual values of time series. The fitting is
accomplished both for \(U \) and \(W \), and the one for \(W \) is considered to be perfect. The
differences between these two slopes are error-terms. The procedure was accomplished for
the whole (100 year long) time series, as well as for the last 50 years of the series. Thereafter the
arithmetical average of these two errors is taken.

(c) **Sum of squared errors (SSE):**

\[
SSE = \sum_{i=1}^{n} (u_i - w_i)^2
\]

(d) **Combined maximal bias (CMB):** This measure evaluates the maximum difference
between \(U \) and \(W \), but in a way where detections with time-lapse error only are considered as
partially right detections. When true IHs of \(X \) are detected right but with some time-lapse, in
CMB the detection is considered good, but a penalty-term is applied for the time-lapse. The
penalization depends on the size of the time-lapse. Following this idea and comparing the
annual values of \(U \) and \(W \), the annual series of a combined error-term \(B \) (the combination of
size-errors and time-lapses) can be calculated. Naturally, when \(u_i = w_i \) \(b_i = 0 \). The below
formula shows the case, when \(u_i > w_i \) (the reverse case is handled with the same logic rules).

\[
b_i = \min_k \left(g_k + u_i - \min_j \left(u_i, \max_j (w_j) \right) \right)
\]

where \(g_k \) is the penalty-term of \(k \)-year lapse:

\[
g_k = \exp(c_1(k - c_2)) - c_3,
\]

\[
c_1 = 0.369, \ c_2 = 3.297, \ c_3 = 0.2962; \ j \in [j_1, j_2].
\]

\[
 j_1 = \max(1, i - k), \ j_2 = \min(i + k, n) \ \text{and} \ k = [0,1,2,\ldots,15].
\]

In Eq. 9, the term \(\max(w_j) \) indicates that each homogenized value (\(u_i \)) is compared with a true
value for which the bias is minimal in the \(2k \) wide window around \(i \). This optimization is
repeated applying different window-width, but the penalty for time-lapse exponentially
increases with \(k \). With the present parameterization the penalty for 3-day (4-day) lapse is 0.6
(1.0). After having \(b_i \) for each \(i \), CMB is calculated as the difference between the extremes of
\(b_i \) values (Eq. 11).
The transformation of the error-terms in Eqs. (7), (8) and (9) to efficiency measures is as follows. Let the error-terms and the efficiencies be denoted with \(q \) and \(E \) respectively, then the general form of the connection between the error-terms and efficiencies is given by Eq. 12:

\[
E = \frac{q(X) - q(U)}{q(X)}
\]

In this way the maximal achievable value of \(E \) is always 1, and the sign of \(E \) shows whether a homogenization has resulted in quality improvement or not. Efficiency measures of trend-detection, SSE and CMB are denoted by \(E_T, E_S \) and \(E_C \), respectively.

The described four efficiency measures characterize DOHMs in different ways. Only \(E_D \) evaluates directly the detection results, while the other measures can be applied on adjusted time series. However, the usefulness of \(E_D \) is limited by the facts that i) the calculation of \(E_D \) contains arbitrary parameters, ii) the general purpose of homogenization is to achieve the highest reliability of trends and other characteristics of variability that are present in true time series (Sherwood 2007), and not the identification of change-points. Therefore the use of efficiency characteristics showing the performance in preserving or reconstructing the true climatic characteristics of time series such as \(E_T, E_S \) and \(E_C \) are preferred rather than that of the detection skill (Domonkos, 2011b, Venema et al., 2012). When \(E_T, E_S \) and \(E_C \) are applied on evaluating DOHMs, the meaning of the obtained characteristics slightly differ from those for whole homogenization methods. The similarities and differences are characterized by the following peculiarities of time series homogenization: i) The application of SA is optimal when the reference series is homogeneous. ii) Although reference series are seldom homogeneous when real time series are homogenized, the bias in candidate series is often substantially larger than in reference series. Therefore the good performance of DOHM + SA is a necessary, although not satisfactory requirement from any homogenization method. iii) The lack of the detection of IHs leaves the station-effect to be inhomogeneous between two adjacent detected IHs on the one hand, while false detections shorten the sections between adjacent IHs unnecessarily reducing the sub-samples for calculating sub-section-means on the other hand. The mentioned two problems reduce efficiencies, any kind of correction method is applied. The potential impact of these errors on the final homogenization results can be quantified by the remaining SSE after homogenization when the remaining SSE is influenced by detection errors only.

3. Results

3.1. Case studies

Figure 1 presents the efficiencies showing the four kinds of characteristics in four distinct sections. The presentation starts with the characteristics of \(E_S \) followed by those of \(E_T, E_C \) and \(E_D \), in this order.

The simplest case is when only 1 change-point is included in each time series. These time series can be treated most easily, but, unfortunately, the appearance of this case is not
ES (SSE)	Bay	C-M	E-P	MAS	MLR	SNH	SNT	tts	WRS
CH1B0	98.6	97.0	95.8	98.6	98.9	98.7	98.6	(43.1)	98.8
CH5B0	97.3	97.4	94.3	97.2	94.2	97.0	95.2	(74.8)	94.5
PF5B0	(26.3)	60.3	31.6	58.7	48.6	(20.5)	(11.1)	(-24)	(-15)
HUSTR	76.7	78.8	73.2	77.9	76.8	76.4	75.0	(39.3)	73.3
HUST0	64.3	65.0	61.8	62.1	64.7	63.7	62.4	53.1	60.9
CH5S0	85.0	82.4	73.4	80.0	78.4	84.4	83.8	(18.1)	83.2
PF5S0	-51	-55	-66	-56	-56	-54	-56	-75	-61
CH5SR	91.9	90.2	83.8	89.8	88.5	91.4	90.9	(22.7)	90.7
PF5SR	5.3	23.5	11.4	19.5	20.3	1.6	-4	(-48)	(-17)

Et (Trend)	Bay	C-M	E-P	MAS	MLR	SNH	SNT	tts	WRS
CH1B0	93.0	92.7	86.7	93.5	93.5	93.1	92.9	(39.1)	93.2
CH5B0	92.9	93.7	89.3	92.5	89.8	92.5	98.3	(57.3)	91.0
PF5B0	55.5	74.2	63.1	71.8	69.4	52.5	47.3	(23.5)	38.8
HUSTR	73.3	76.7	69.4	74.0	74.4	72.3	69.8	(22.9)	71.3
HUST0	59.2	62.7	56.7	56.5	59.6	58.9	57.8	44.1	57.7
CH5S0	73.7	75.2	60.7	68.7	66.6	72.9	71.2	(9.4)	72.5
PF5S0	11.0	20.3	3.2	12.9	11.6	10.1	9.1	-1	7.5
CH5SR	83.7	84.5	73.7	81.5	79.9	83.2	81.1	(14.4)	82.8
PF5SR	42.4	57.6	48.8	53.4	53.6	38.5	34.6	(8.1)	33.7

Ec (CMB)	Bay	C-M	E-P	MAS	MLR	SNH	SNT	tts	WRS
CH1B0	91.2	87.2	72.6	86.4	92.0	91.3	88.3	(38.5)	91.8
CH5B0	81.1	81.4	75.0	80.0	81.2	72.4	(41.6)	77.5	
PF5B0	20.9	35.3	24.5	31.9	24.0	19.5	16.5	(-6)	5.9
HUSTR	45.5	44.8	42.0	44.2	45.2	45.5	45.3	(14.8)	43.8
HUST0	34.7	32.1	31.0	26.1	34.1	34.8	34.4	26.2	33.6
CH5S0	46.2	40.5	31.1	35.6	40.3	45.9	44.7	(6.7)	45.1
PF5S0	1.7	-2	-9	-6	1.2	1.2	1.0	-4	-1
CH5SR	59.1	55.1	47.4	52.7	53.7	58.7	56.7	(10.4)	57.8
PF5SR	22.0	26.7	25.8	26.5	26.7	20.6	20.1	1.2	14.0

E0 (Detection)	Bay	C-M	E-P	MAS	MLR	SNH	SNT	tts	WRS
CH1B0	96.1	91.6	90.4	84.0	96.2	96.2	88.2	(39.0)	94.7
CH5B0	86.8	92.7	81.8	88.8	67.8	86.1	(54.4)	46.5	74.9
PF5B0	(44.6)	92.6	62.6	88.2	62.7	(42.5)	(40.1)	18.2	18.4
HUSTR	54.8	79.3	53.1	77.1	58.7	52.1	(49.1)	24.0	39.7
HUST0	(25.8)	60.0	25.3	56.5	34.2	(29.0)	(27.2)	(9.5)	20.0
CH5S0	3.1	-13	-17	-17	1.4	26.8	13.5	-1	
PF5S0	17.9	18.7	17	18.6	18.2	5.8	5.5		
CH5SR	23.5	(47)	(24)	(65)	(6)	23.2	46.2	20.4	11.8
PF5SR	43.8	62.6	56.6	65.1	55.5	42.2	41.3	(12.9)	17.3

Fig. 1. Four efficiency characteristics for each DOHM with each test dataset. Bold and underlined: best DOHM of a particular test (BDOHM hereafter), bold: less than 5% lag behind BDOHM, italics: more than 15% lag behind BDOHM, italics with brackets: more than 30% lag behind BDOHM. Lightness of cell-background improves with growing efficiency.
common in climatic datasets. Figure 1 shows that for CH1B0 all the DOHMs perform well, except for tts. The weakness of tts arises from its low detection power. As tts examines parts of time series separately, a relatively strict significance threshold has to be applied to keep the rate of FTE low, but it results in relatively poor detection power.

The results show that DOHMs usually perform well also for CH5B0. The largest IHs of CH5B0 can relatively easily be identified, owing to their characteristic magnitude and duration. Yet the average performance is usually lower than for CH1B0. The highest performances are produced by C-M, but Bay, MAS and SNH are nearly as good and almost all DOHMs have an efficiency above 50%. E_S values are particularly high, they are usually well above 90%. The detection skill is relatively poor for SNT and MLR, its likely reason is that using these DOHMs sometimes trends are identified instead of two or more change-points.

The results show that DOHMs usually perform well also for CH5B0. The largest IHs of CH5B0 can relatively easily be identified, owing to their characteristic magnitude and duration. Yet the average performance is usually lower than for CH1B0. The highest performances are produced by C-M, but Bay, MAS and SNH are nearly as good and almost all DOHMs have an efficiency above 50%. E_S values are particularly high, they are usually well above 90%. The detection skill is relatively poor for SNT and MLR, its likely reason is that using these DOHMs sometimes trends are identified instead of two or more change-points.

The only difference between PF5B0 and CH5B0 is that times series in PF5B0 include short-term platforms instead of long-term IHs. The frequency and the magnitude-distribution of the events are unchanged (although the number of change-points is doubled in this way, since a platform consists of two change-points). This change of dataset-properties has dramatic effect on the performances of DOHMs. For PF5B0 the majority of the efficiencies calculated are lower than 50%, although they are still positive with few exceptions. C-M and MAS have considerably higher efficiencies than the other DOHMs have, MLR shows the third best performance, while tts and WRS produced the poorest results.

Examining the results of the Hungarian standard (HUSTR) one can see that the performances of the DOHMs are generally better than for PF5B0, but poorer than for CH5B0. C-M has the best results again, but the advantage of C-M and MAS is much smaller than for dataset PF5B0, moreover, Bay and MLR have similar or slightly better performance than MAS has for E_T and E_C. Considerably poorer results occur only with tts.

When the simulation method of the standard dataset is applied without limiting autocorrelation values (HUST0), the performances are poorer than for HUSTR, but the mean difference is moderated. The order of the skills does not change much either. In detection skill the C-M and MAS are much better than the other DOHMs, while for other skills the differences are small.

The results for CH5S0 show a spectacularly big difference in comparison with the previously analyzed results, namely the detection skill of C-M and MAS is not the best in this case, but just the opposite relation can be seen. While most of the DOHMs perform near zero detection skill, that of MAS, C-M and E-P are strongly negative. To understand this phenomenon, consider that: i) In CH5S0 the frequency of IHs of considerable size ($m^* > 2$) is very low, it is only 0.064 per 100 years on average; ii) MAS, C-M and E-P often have higher false alarm rate than the other DOHMs have (not shown). While in case of usual frequency of large IHs the high power of detection overbalances the drawback of relatively high false alarm rate, it does not operate for cases of rare IH occurrences. Interestingly, in spite of the large negative skills in E_D, the performances of C-M and MAS are still good for E_S, E_T and E_C, and in trend detection skill C-M is the best.

Very different results were obtained using PF5S0. In this case most of the efficiencies scattered around zero, while SSE-reduction is not achieved by any of the DOHMs. This is a kind of results that would be good to avoid in the practical application of homogenization methods. Although the skills in preserving long-term linear trends are still slightly positive, the E_S results show the disruption of short-term variability. An interesting feature is the very big difference between the results of CH5S0 and PF5S0 (similarly, as between CH5B0 and PF5B0), since the magnitude-distribution of the inserted IHs is the same for the two datasets. In PF5S0 the mean frequency of IHs with $m^* > 2$ is 0.166 per 100 years which is although significantly higher than that for CH5S0, it still indicates that most of the time series are free
from IHs of large magnitudes. It can be seen that the change of the IH-form from solely shifts to short-term platforms resulted in the complete cessation of negative detection skills of C-M and MAS, but, on the other hand, dominant E_S values are dropped 140% approximately (from +80% to −60% at most of the methods).

The results with CH5SR and PF5SR prove that limiting the autocorrelation at 0.4 has a significant positive impact on the efficiencies. Although E_D values of MAS, C-M and E-P are still negative, its importance seems to be minor relative to the high efficiencies in E_S and E_T. Large negative efficiencies related to platform type IHs of small size, as like with PF5S0, are not present with PF5SR except for tts and most of the efficiencies are significantly positive.

The general differences between the performances of individual DOHMs when they are applied to the same test-datasets in the nine case studies are as follows. Apart from tts the DOHMs tend to show similar efficiencies concerning E_T, E_S and E_C, while the differences are generally larger in detection skill. C-M has generally the highest performance, except when there is only one IH in the time series or when the signal to noise ratio is very unfavorable. The skill of C-M is particularly good in preserving long-term climatic trends, which is given by the fact that the E_T of C-M is always positive, and it is always the highest in comparison with the E_T values of other DOHMs with the only exception of CH1B0. MAS is most often the second best DOHM, while the following three places in the rank order are for Bay, MLR and SNH. Bay often, SNH several times produced better results than MLR, but the performance of MLR seems to be more uniform for different datasets than that of Bay and SNH. tts (WRS) performs markedly (slightly) poorer than the other DOHMs examined.

3.2. Sensitivity to IH magnitudes

Experiments with Compromise-form datasets (CHPF0) were performed applying increasing s from 0 to 4, and the remaining SSE after homogenization were calculated in relation to the background noise (s_e^*). In Fig. 2 the results of tts is not included, because the SSE of tts are excessively large. For large signal to noise ratio ($s > 2$) the rank order is similar to what was dominant in the case studies: C-M has the best performance, followed by MAS, Bay, SNH and MLR. For moderate signal to noise ratio ($1 < s < 2$) C-M is still the best, it is followed by Bay, but all the performances have little variation, i.e. they hardly depend on the choice of the DOHM. When the signal to noise ratio is small ($s < 1$), the C-M is not the best, but SSE are generally small with any of the examined DOHMs, except with E-P they are slightly larger.

4. Discussion

4.1. Appropriateness of test datasets

The creation of test datasets with realistic statistical properties needs the knowledge of the relation between the characteristics of detected and true IHs. This relation is examined applying various DOHMs on two test datasets (Fig. 3). Although the detected frequency (f^*) depends on the DOHM applied, the difference from the true frequency is always negative, because very small IHs cannot be detected by any of the DOHMs. This negative difference is even more striking when the IHs are short-term platforms (Fig. 3b). From these results it is clear that the direct observation of the “best” IH-properties through the examination of observational datasets is not possible. The properties of Benchmark were set by expert decisions of experienced homogenizers, but when time series contain large number of hardly
Fig. 2. Remaining sum of squared errors (SSE) after the homogenization of CHPF0 with various DOHMs and using ideal reference series. The unit of SSE is the estimated standard deviation of background noise (s_e^*).

Fig. 3. Magnitude-distribution of true and detected IHs in test datasets, a) (upper) CH5B0, b) (bottom) PF5B0. Frequencies (f^*) are shown using an arbitrary unit.
detectable IHs, experts’ estimations might be biased. When HUSTR was constructed, a
distinct approach to the assessment of IH-properties was applied relative to the Benchmark.
The main idea was to find IH-populations for which the detection results are similar to the
detection results from real climatic time series. This approach could provide more reliable
assessments of true IH properties than earlier studies, but further examination is probably
needed because the very high frequency of detected short-term platforms in HUSTR may
have origins other than IHs, e.g. the natural variability of spatial temperature-gradients.

Figure 4 shows the magnitude distributions for change-point type IHs in three datasets.
It can be seen that the amount of small IHs is the highest in HUSTR, though it must be noted
that there is no way to be assured about the reality of the amount of very small IHs \(m^* < 1\),
because they have little impact on the detection results. For \(m^* > 2\) the relation between
CH5B0 and HUSTR is reversed, i.e. CH5B0 contains more medium-size and large IHs than
HUSTR does. Note that the differences are large, since the scale is logarithmic. Fig. 4
illustrates also that the general failure with homogenizing CH5B0 is due to the lack of large
IHs, beyond the short duration of IH caused biases in that dataset.

Relying on the results of Domonkos (2011a), the use of HUSTR-like test-datasets can
be favored. Taking into account that an unknown portion of IHs in HUSTR might have other
sources than true IHs, datasets with smaller frequency of platforms than in HUSTR but with
higher frequency of them than in the Benchmark could be closer to the reality and CHPF0 is a
realization of this idea. Anyhow, the author does not state that all kinds of climatic time series
could be well represented with one or two test-datasets of specific properties, but he suggests
that the use of different kind test-datasets, especially ones including large number of short-
term IHs is essentially important in testing efficiencies of IH detection algorithms.

4.2. Efficiency of DOHMs

The most important finding is that the performance of DOHMs strongly depends on the
properties of the used test datasets, and thus the results are varied. (A similarly high diversity
of results using simulated radiosonde datasets is described by Titchner et al. 2009).
Nevertheless, some consistencies are evident in the results shown here. For example,
efficiencies are always higher a) for datasets with random sequences with only change-points
than for those with short-term platforms; b) for datasets with time series of high
autocorrelation than for datasets without restriction of \(R\); c) for datasets with large IHs
compared to those with low spread of IH-magnitudes. The apparent diversity of efficiencies is
likely realistic, first because the frequency and intensity of IHs are diverse in practice, and secondly, because the networks of observed data have different spatial correlations causing strong diversity of signal/noise ratios.

In some earlier studies (Domonkos, 2008, 2011a) it was found that DOHMs with joint detection of multiple IHs perform better than other DOHMs. In this respect the present study confirms the earlier findings. The results presented here show that C-M is generally the best DOHM, but there are several other DOHMs whose performances are usually not much poorer. DOHMs of the best performances include joint detection of multiple IHs (C-M and MAS) or cutting algorithm (Bay, MLR, SNH). By contrast, sequential detection of IHs using moving windows cannot be recommended which is proven by the fact that the performance of tts is always substantially poorer than using DOHMs with joint detection or cutting algorithm. The cause of the failure with tts is that the use of time-windows results in distinct decisions about the significances of individual IHs, disregarding the data in other parts of the time series. Note that E-P also includes examinations for sections of limited length, and likely it does not effect positively its final performance. The traditional way of correcting inhomogeneous series is to apply the bias term on the candidate series with the opposite sign as it was detected in the relative time series. In examinations with limited window width the biases are usually assessed also with such windows (Easterling and Peterson 1995, Staudt et al. 2007) and the adjustments are derived from such assessments. However, as the temporal coherence of such bias-estimations is poor, it often results in particularly poor final performance in preserving the true climatic variability of time series, in spite of the detection skill of change-points can be better than applying the SA (not shown). Examinations of arbitrary separated sections can be useful when the final objective is to make decisions about the significance of one or few potential IHs, but not for the task of general statistical homogenization. Among DOHMs with cutting algorithm the non-parametric WRS performed poorest.

All the results show that the performance of MAS is very similar to that of C-M. Note that the performance of MAS is not better with its originally suggested correction technique than with SA (not shown), at least in the model task of this study (i.e. in case of homogeneous reference series).

An interesting feature of Fig. 2 is that when time series are homogenized with C-M or MAS the increase of SSE with rising \(s \) stops around \(s = 2 \). It promises that applying one of these DOHMs the remaining uncertainty of homogenized time series can be assessed, since that does not depend on the magnitudes of IHs in the raw dataset. However, it should be noted that that problem is still complex, since the remaining SSE depends on the frequency, shape and temporal structure of IHs.

In an earlier study (Domonkos, 2008) moving parameter examinations were performed for DOHMs, in which significance thresholds and the shortest period allowed between two adjacent change-points were varied in homogenizing HUSTR. The main findings of that study are that when time series are presumed to have large IHs, the optimal significance thresholds are lower than that are generally applied, and the optimal shortest period is 2-3 years for C-M and MAS (1 year in this study), and 3-5 years (most often 4 years) for other DOHMs (5 years in this study). On the other hand, that study also showed that the optimization of parameters does not have robust effect on the performance of DOHMs. In this study we did not apply the parameters optimized on HUSTR by Domonkos (2008) because the true optimums obviously depend on the properties of test datasets.

Most of the examined test-datasets do not contain trend-type IHs. MLR and SNT might be expected to perform better when time series contain more trends. However, the variation of trend-frequency in HUSTR (not shown) indicated that raising the trend-ratio within long-term IHs hardly influences the rank-order of efficiencies. Even with a 70% trend-
ratio the MLR and SNT did not perform better than C-M, the only exception being that the E_C of SNT became to be the best among DOHMs. On the other hand, the performance of SNT is generally slightly poorer than that of C-M, MAS, Bay, MLR and SNH.

Most DOHMs are applied with 0.05-0.10 FTE except E-P. In E-P the significance thresholds that are suggested by Easterling and Peterson (1995) are applied. Lund and Reeves (2002) presented the mathematical explanation why these thresholds are not restrictive enough for keeping FTE low. However, the application of stricter significance thresholds substantially worsens the performance of E-P in E_S, E_T and E_C (not shown), therefore we did not change the original parameterization.

Our results indicate that DOHMs with joint detection of multiple IHs, and particularly C-M perform better than the other DOHMs except when the signal to noise ratio is too low. However, the methodological development of DOHMs has not been terminated with the creation of C-M. The further improvement of performance is expected from the network-wide joint detection of IHs (Picard et al. 2011) and from the harmonization of work on monthly and annual time-scales (Domonkos 2011c), not mentioning here the problem of daily data homogenization which requires the development of distinct methods relative to the homogenization of annual and monthly data.

While in the COST HOME project full homogenization methods were tested, in this study only the detection parts are examined. The comparison of the results show that the efficiencies of complete methods are usually much lower (Venema et al., 2012) than the efficiencies of detection methods with idealized reference series. This difference indicates that the time series comparison, the calculation of correction-terms, as well as the treatment of data-gaps and outliers may also be substantial sources of homogenization-errors. This finding confirms the need of further investigations into strategies for minimizing the risk of negative efficiencies. Optimally the best segments of homogenization methods should be put together (i.e. the best detection method with the best correction method, etc.), and the performance of the best methods should be repeatedly checked applying test datasets of varied properties.

4.3. Reduction of the risk of negative efficiency

Given that almost all results indicate positive efficiency, the expectation that the application of DOHMs generally results in improvement in the quality of observed climatic time series is realistic. However, under certain conditions alterations from the natural climatic characteristics are relatively frequent (e.g. with PF5S0). It is important to note that obviously no improvement can be achieved using any DOHM on a homogeneous time series, thus the fact, that test-datasets with negative efficiencies of DOHMs for them can be constructed is not a discouraging indication in itself. On the other hand, a general expectation from DOHMs that their procedures should indicate with fairly high probability if there is no realistic chance to make quality improvement on time series. The application of DOHMs for time series with low signal to noise ratio is problematic because of the increasing proportion of false alarms and the possible disruption of the natural variability structure shown by raw observed time series. For time series comprising pure white noise, the traditional expectation of preserving time series without adjustments is 90 – 95%. Figure 5 shows the FTE values for the examined DOHMs. It can be seen that 100 year long series of white noise are not subjected to adjustments with 89 – 96% probability, except for E-P the ratio is 82% only. When time series contain IHs, but the signal to noise ratio is insufficient for their correct detection, these series should be treated in the same way as homogeneous series. Unfortunately, in case of PF5S0 25 – 50% of the series are adjusted (the ratio depends on DOHM, see Fig. 6), and their quality worsened, since the detection results are generally poor due to the low signal to noise
ratio. The signal to noise ratio can be low due to the too small size of IHs, short duration of biases, high level of background noise, or the existence of other noise than white noise (see also Slonosky and Graham 2005, Sherwood 2007). The frequent adjustment of time series in low signal to noise conditions is a kind of over-homogenization. For instance, when the dataset properties are changed from CH5S0 to PF5S0 it resulted in the mean decline of E_S from +80% to −60%, which might seem to be shocking at the first glance. Notwithstanding, the degree of disruption by over-homogenization is usually much less serious in absolute scale. Examining more the differences between CH5S0 and PF5S0, the mean SSE of raw time series in s_e unit (which is common for all datasets) is 254.4 for CH5S0, but only 26.8 for PF5S0. Calculating with +80% E_S for CH5S0 and −60% E_S for PF5S0, the remaining mean SSE after adjustments is 50.9 (42.8) for CH5S0 (PF5S0). The latter results show that the possible over-homogenization has usually little true impact on the quality of observed time series, but one has to keep in mind that the undesired impacts can be great when the background noise of relative time series is high (e.g. due to relatively low spatial correlations in network), as well as additional error-terms should be added due to the imperfectness of reference time series, a problem that is not examined in this study.

A crucial question is that how often low signal to noise ratio occurs in relative time series of true observed datasets, because if its occurrence is frequent, the problem of over-homogenization can be serious. Unfortunately, short-term IHs are likely frequent in true
observed time series, because they easily can be produced i) when the cause of the IH is temporal, ii) when technical problems are discovered with some delay, and the elimination of the problem is not paired with the backward correction of the data, iii) If two shifts of the same direction and significant magnitude are consecutives, the chance that the bias will be realized and corrected increases, therefore the probability of two consecutive shifts with the opposite directions is higher than that with the same direction.

Another problem is that homogenizations are often step-by-step procedures, searching and correcting inhomogeneous time series from the ones with the highest biases proceeding towards the ones with smaller biases. Results of Fig. 6 indicate that the chance that such homogenization procedures do not stop at the best stage is unfavorably high.

There are several options for minimizing the chance of over-homogenization. The intensive use of metadata information in the homogenization process is a widely applied alternative (Feng et al. 2004, Aguilar et al. 2005, Begert et al. 2005, Brunetti et al. 2006, Camuffo et al. 2006, Brunet et al. 2008, Brázdil et al. 2009, Türkes et al. 2009, Syrakova and Stefanova 2009, etc.). In spite of that metadata usually do not provide quantitative information (Brunetti et al. 2006), the building of metadata information into the numerical evaluation process is one of the most promising ways of improving efficiency of homogenization methods (Christy et al. 2006, De Gaetano 2006, Haimberger 2007, McCarthy et al. 2008, Menne and Williams 2009). Another option of possible developments is to think out again the parameterization of DOHMs. When some introductory pieces of information (e.g. autocorrelation) clearly indicate that a time series under examination is inhomogeneous, conventional significance thresholds often turn out to be too strict (Domonkos 2008). On the other hand, the problem of potential over-homogenization indicates that traditional significance thresholds may be too low for deciding about the usefulness of applying adjustments. The results of this study show that the over-homogenization effects cease when 0.4 minimum threshold is applied for the autocorrelation of relative time series. The author does not suggest that it is an optimal solution, but point to the fact that some problems exist around the basic mathematical model applied in homogenization procedures, i.e. relative time series cannot be modeled well by one or several randomly situated IHs plus white noise.

Some homogenization procedures apply a kind of moderation of correction-terms to reduce the chance of over-homogenization. Examples for such treatments are the USHCN homogenization method in which adjustments are applied only when the data of at least three nearby stations concordantly indicate the existence and sign of a local shift in the candidate series (Menne and Williams 2009), as well as Multiple Analysis of Series for Homogenization (MASH, Szentimrey 1998) in which always the lowest threshold of the confidence interval of shift-size is applied in particular adjustments. Naturally, a moderation of correction-terms like these might sometimes cause under-homogenization (i.e. lack of adjustments application or too small adjustments). Thus the proper way of the minimization of over-homogenization is still an open question.

5. Conclusions

In this study the efficiency for detection algorithms of nine DOHMs is tested using ten different test-datasets and four measures of efficiency. The statistical properties of the examined datasets are varied, one of them is similar to the benchmark surrogated dataset of COST HOME project (CH5B0), another is derived empirically to reproduce statistical characteristics of IH-detection results from real climatic time series (HUSTR) and a third one forms a compromise around the halfway between the Benchmark-like CH5B0 and the
Hungarian standard (CHPF0). The diversity of test-dataset properties and the different kinds of efficiency measures are necessary because the efficiency of homogenization strongly depends on the properties of real observed time series (which are truly diverse) and on the preferred purpose(s) of the homogenization. Our main findings are as follows:

• The application of DOHMs is generally beneficial for the quality of time series. When DOHMs are used for time series containing at least one large IH relative to the noise level, the bias of adjusted time series is usually smaller than half of that in raw time series. The mean error of linear trend estimation can be reduced by 75% in the Hungarian standard and by 90% in the Benchmark dataset with the application of DOHMs. Note that this estimation is valid only when all the errors out of the detection-segment (i.e. time series comparison, assessment of correction-terms, and treatment of data-gaps and outliers) are insignificantly small.

• Short-term, platform-shaped IHs are much more difficult to detect precisely than randomly scattered solely IHs are, particularly when the IH-magnitudes are small. Differences between efficiencies for different kinds of datasets are often larger than those for different DOHMs.

• Results of different efficiency measures often strongly differ, indicating different skills even applying the same DOHM and for the same test-dataset.

• Efficiencies of individual DOHMs do usually not have the same rank-order when different efficiency measures or results from different test-datasets are compared, although several relationships seem to be stable. The results presented show that C-M is often the most effective DOHM, although the performance of further 4-5 DOHMs (MAS, Bay, MLR, SNH) are still not much poorer. DOHMs capable of detecting both change-points and trends (MLR and SNT) have no better performance than C-M has, even when time series contain trends. The efficiency of SNT is usually slightly lower than that of the earlier version of Standard Normal Homogeneity Test (SNH), and it is not among the best five. DOHMs have to treat multiple IHs either with cutting algorithm or (optimally) through the joint detection of all IHs. DOHMs do not apply any of these techniques, and thus it does not capable of preserving real climatic characteristics of time series. Consequently, DOHMs with sequential tests cannot be recommended for homogenizing time series.

• Observed climatic time series cannot be modeled well with the composition of a white noise process plus one or several randomly scattered change-points. Not considering the differences between such simple models and the true world may result in unnecessary disruption in the real climatic characteristics of time series. On the other hand, the results show that the degree of the potential disruption is small, at least when some conservative conditions of DOHM application are given, i.e. when relative time series of low noise-level can be built from the time series of networks of high spatial correlations.

Acknowledgements: The author thanks Matthew Menne, Manola Brunet, Phil Jones and three anonymous reviewers for their useful comments. The research was supported by the European projects COST ES0601 and EURO4M FP7-SPACE-2009-1/242093, and by the Spanish project “Tourism, Environment and Politics” ECO 2010-18158.

References

Aguilar, E., I. Auer, M. Brunet, T.C. Peterson, and J. Wieringa, 2003: *WMO Guidelines on climate metadata and homogenization*. WCDMP-No. 53, WMO-TD No 1186, WMO, Geneva.

Aguilar, E., and 34 coauthors, 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. *J. Geoph. Res.*, 110, D23107, doi:10.1029/2005JD006119.
Alexandersson, H., 1986: A homogeneity test applied to precipitation data. *J. Climatol.*, 6, 661-675.

Alexandersson, H., and A. Moberg, 1997: Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. *Int. J. Climatol.*, 17, 25-34.

Alexandrov, V., M. Schneider, E. Koleva, and J.-M. Moisselin, 2004: Climate variability and change in Bulgaria during the 20th century. *Theor. Appl. Climatol.*, 79, 133-149, doi: 10.1007/s00704-004-0073-4, 2004.

Auer, I., and 24 coauthors, 2005: A new instrumental precipitation dataset for the greater Alpine region for the period 1800-2002. *Int. J. Climatol.*, 25, 139-166, doi: 10.1002/joc.1135.

Beaulieu, C., O. Seidou, T.B.M.J. Ouarda, X. Zhang, G. Boulet, and A. Yagouti, 2008: Intercomparison of homogenization techniques for precipitation data. *Water Resources Research*, 44, W02425, doi:10.1029/2006WR005615.

Begert, M., T. Schlegel, and W. Krichhofer, 2005: Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. *Int. J. Climatol.*, 25, 65-80, doi: 10.1002/joc.1118.

Brázdil, R., K. Chromá, P. Dobrovolný, and R. Tolasz, 2009: Climate fluctuations in the Czech Republic during the period 1961-2005. *Int. J. Climatol.*, 29, 223-242, doi: 10.1002/joc.1718.

Brunet, M., O. Saladié, P. Jones, J. Sigró, E. Aguilar, A. Moberg, D. Lister, A. Walther, D. Lopez, and C. Almarza, 2006: The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850-2003). *Int. J. Climatol.*, 26, 1777-1802, doi: 10.1002/joc.1338.

Brunet, M., O. Saladié, P. Jones, J. Sigró, E. Aguilar, A. Moberg, D. Lister, A. Walther, and C. Almarza, 2008: A case-study/guidance on the development of long-term daily adjusted temperature datasets. *WC-DMP-66/WMO-TD-1425*, WMO, Geneva.

Brunetti, M., M. Maugeri, F. Monti, and T. Nanni, 2006: Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. *Int. J. Climatol.*, 26, 345-381, doi: 10.1002/joc.1251.

Buishand, T.A., 1982: Some methods for testing the homogeneity of rainfall records. *J. Hydrology*, 58, 11-27.

Camuffo, D., C. Cocheo, and G. Sturaro, 2006: Corrections of systematic errors, data homogenisation and climatic analysis of the Padova pressure series (1725-1999). *Climatic Change*, 78, 493-514, doi:10.1007/s10584-006-9052-3.

Caussinus, H. and O. Mestre, 2004: Detection and correction of artificial shifts in climate series. *Ann. Inst. Statist. Math.*, 49/4, 761-775.

Caussinus, H., and O. Mestre, 2004: Detection and correction of artificial shifts in climate series. *J. Roy. Stat. Soc.*, Series C 53, 405-425.

Christy, J.R., W.B. Norris, K. Redmond, and K.P. Gallo, 2006: Methodology and results of calculating central California surface temperature trends: evidence of human-induced climate change? *J. Climate*, 19, 548-563.

Costa, A.C., and A. Soares, 2009: Trends in extreme precipitation indices derived from a daily rainfall database for the south of Portugal. *Int. J. Climatol.*, 29, 1956-1975, doi: 10.1002/joc.1834.

DeGaetano, A.T., 2006: Attributes of several methods for detecting discontinuities in mean temperature series. *J. Climate*, 19, 838-853, doi: 10.1175/JCLI3662.1.

Domonkos, P., 2008: Testing of homogenisation methods: purposes, tools and problems of implementation. Proceedings of the 5th Seminar and Quality Control in Climatological Databases, WCDMP-No. 71, WMO-TD 1493, WMO, Geneva, 126-145.

Domonkos, P., 2011a: Efficiency evaluation for detecting inhomogeneities by objective homogenisation methods. *Theor. Appl. Climatol.*, 105, 455-467, doi: 10.1007/s00704-011-0399-7.

Domonkos, P., 2011b: Homogenising time series: beliefs, dogmas and facts. *Adv. Sci. Res.*, 6, 167-172, doi: 10.5194/asr-6-167-2011.

Domonkos, P. 2011c: Adapted Caussinus-Mestre Algorithm for Networks of Temperature series (ACMANT). *Int. J. Geosci.*, 2, 293-309, doi: 10.4236/ijg.2011.23032.

Domonkos, P., and P. Štěpánek, 2009: Statistical characteristics of detectable inhomogeneities in observed meteorological time series. *Studia Geoph. et Geod.*, 53, 239-260, doi: 10.1007/s11200-009-0015-9.

Drogue, G., O. Mestre, L. Hoffmann, J-F. Iffly, and L. Pfister, 2005: Recent warming in a small region with semi-oceanic climate, 1949-1998: what is the ground truth? *Theor. Appl. Climatol.*, 81, 1-10, doi: 10.1007/s00704-004-0088-x.

Ducré-Robitaille, J-F., L.A. Vincent, and G. Boulet, 2003: Comparison of techniques for detection of discontinuities in temperature series. *Int. J. Climatol.*, 23, 1087-1101, doi: 10.1002/joc.924.

Easterling, D.R., and T.C. Peterson, 1995: A new method for detecting undocumented discontinuities in climatological time series. *Int. J. Climatol.*, 15, 369-377.

Feng, S., Q. Hu, and W. Quian, 2004: Quality control of daily meteorological data in China, 1951-2000: a new dataset. *Int. J. Climatol.*, 24, 853-870. doi: 10.1002/joc.1047.

Gérard-Marchant, P.G.F., D.E. Stooksbury, and L. Seymour, 2008: Methods for starting the detection of undocumented multiple changepoints. *J. Climate*, 21, 4887-4899. doi: 10.1175/2008JCLI1956.1.
of daily maximum temperature series in the Mediterranean.

Lanzante, J.R., 1996: Resistant, robust and non-parametric techniques for the analysis of climate data: theory and applications, including applications to historical radiosonde station data. *Int. J. Climatol.*, 16, 1197-1226.

McCarthy, M.P., H.A. Titchner, P.W. Thorne, S.F.B. Tett, L. Haimberger, and D.E. Parker, 2008: Assessing bias and uncertainty in the HadAT-adjusted radiosonde climate record. *J. Climate*, 21, 2547-2554.

Menne, M.J., and C.N. Williams Jr., 2005: Detection of undocumented changepoints using multiple test statistics and composite reference series. *J. Climate*, 18, 4271-4286, doi: 10.1175/JCLI3524.1.

Menne, M.J., and C.N. Williams Jr., 2009: Homogenization of temperature series via pairwise comparisons. *J. Climate*, 22, 1700-1717, doi: 10.1175/2008JCLI2263.1.

Menne, M.J., C.N. Williams Jr. and R.S. Vose, 2009: The U.S. Historical Climatology Network monthly temperature data, version 2. *Bull. Amer. Meteor. Soc.*, 90, 993-1007.

Moberg, A. and H. Alexandersson, 1997: Homogenization of Swedish temperature data. Part II: Homogenized temperature data, version 2. *Int. J. Climatol.*, 17, 35-54.

Peterson, T.C., 2003: Assessment of urban versus rural in situ surface temperatures in the contiguous United States: no difference found. *J. Climate*, 16, 2941-2959.

Peterson, T.C., and D.R. Easterling, 1994: Creation of homogeneous composite climatological reference series. *Int. J. Climatol.*, 14, 671-679.

Peterson, T.C., and 20 co-authors, 1998: Homogeneity adjustments of in situ atmospheric climate data: a review. *Int. J. Climatol.*, 18, 1493-1517.

Sneyers, R., 1997: Climate chaotic instability. Statistical determination – theoretical backgrounds. *Environmetrics*, 8, 517-532.

Staudt, M., M.J. Esteban-Parra, and Y. Castro-Díez, 2007: Homogenization of long-term monthly Spanish temperature data. *Int. J. Climatol.*, 27, 1809-1823, doi: 10.1002/joc.1493.

Syrrakou, M., 2003: Homogeneity analysis of climatological time series – experiments and problems. *Időjárás*, 107, 31-48.

Syrrakou, M., and M. Stefanova, 2009: Homogenization of Bulgarian temperature series. *Int. J. Climatol.*, 29, 1835-1849, doi: 10.1002/joc.1829.

Turchin, T., 2007: Homogenization of surface radiosonde temperature data. *J. Climate*, 20, 4047-4062, doi: 10.1175/JCLI4215.1.

Türk, M., and M. Stefanova, 2009: Spatiotemporal variability of precipitation total series over Turkey. *J. Climate*, 22, 465-485, doi: 10.1175/2008JCLI2419.1.

Venema, V., O. Mestre, and the COST HOME Team, 2012: Benchmarking monthly homogenization algorithms. *Climate of the Past*, 8, 89-115, doi:10.5194/cp-8-89-2012.
Vicente-Serrano, S.M., S. Beguería, J.I. López-Moreno, M.A. Garcia-Vera, and P. Štěpánek, 2010: A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. *Int. J. Climatol.*, 30, 1146-1163, doi: 10.1002/joc.1850.

Vincent, L.A., 1998: A technique for the identification of inhomogeneities in Canadian temperature series. *J. Climate*, 11, 1094-1104.

Vincent, L.A., and 24 co-authors, 2005: Observed trends in indices of daily temperature extremes in South America 1960-2000. *J. Climate*, 18, 5011-5023, doi: 10.1175/JCLI3589.1.

Wilcoxon, F., 1945: Individual comparisons by ranking methods. *Biometrics Bull.*, 1, 80-83. WMO and Hungarian Meteorological Service, 1996: Proceedings of the First Seminar for Homogenization of Surface Climatological Data, S. Szalai Ed., Hungarian Meteorological Service, Budapest, Hungary, 144pp.

WMO and Hungarian Meteorological Service, 1999: Proceedings of the Second Seminar for Homogenization of Surface Climatological Data, S. Szalai, T. Szentimrey, and Cs. Szinell Eds., WCDMP-41, WMO-TD 932.

WMO, Geneva, 214pp.

WMO and Hungarian Meteorological Service, 2001: Third Seminar for Homogenization and Quality Control in Climatological Databases, S. Szalai Ed., Hungarian Meteorological Service, www.met.hu.

WMO and Hungarian Meteorological Service, 2004: Fourth Seminar for Homogenization and Quality Control in Climatological Databases, S. Szalai Ed., WCDMP-56, WMO-TD, 1236, WMO, Geneva, 243pp.

WMO and Hungarian Meteorological Service, 2008: Proceedings of the Fifth Seminar for Homogenization and Quality Control in Climatological Databases, M. Lakatos, T. Szentimrey, Z. Bihari, and S. Szalai Eds., WCDMP-No. 71, WMO-TD 1493, WMO, Geneva, 203pp.

WMO and Hungarian Meteorological Service, 2010: Proceedings of the Sixth Seminar for Homogenization and Quality Control in Climatological Databases, M. Lakatos, T. Szentimrey, Z. Bihari, and S. Szalai Eds., WCDMP-No. 76, WMO-TD. 1576, WMO, Geneva, 116pp.

Yan, Z., Z. Li, Q. li, and P. Jones, 2010: Effects of site change and urbanisation in the Beijing temperature series, 1977-2006. *Int. J. climatol.*, 30, 1226-1234, doi: 10.1002/joc.1971.