Production and interaction of the η meson with nucleons and nuclei

Wojciech Krzemień1, Oleksandr Khreptak2, Paweł Moskal2, Iryna Ozyrianska-Schätt2, Oleksandr Rundel2, Magdalena Skurzok2, and Marcin Zielinski2 for the WASA-at-COSY Collaboration

1National Centre for Nuclear Research, 05-400 Otwock, Świerk, Poland
2Faculty of Physics, Astronomy and Computer Science, Jagiellonian University, 30-348 Cracow, Poland

Abstract. We report on the status of the search for η-mesic nuclei and the studies of the interaction of the η meson with nucleons. Recently we have completed the analysis of the new WASA-at-COSY data on the production of the η meson with polarized proton beam. New results on the analyzing power for the $\vec{p}p \rightarrow pp\eta$ reaction with more than an order of magnitude improved precision shed a new light on the production mechanism of the η meson in nucleon-nucleon collisions. Also, the latest results of the search for η-mesic nuclei are discussed.

1 Introduction

The η particle together with isoscalar η' and isovector π^0 lay in the origin ($S = 0$, $I_3 = 0$) of the nonet of pseudoscalar mesons representation. However, its behaviour is very different with respect to its interaction with nucleons [1]. In the low energy region, the η meson interaction with nucleons is dominated by the S_{11} resonance, which with its mass of 1535 MeV lays very close to the η-N threshold. This makes the s-wave $\eta-N$ interaction very strong and - as shown the analysis of Bhalerao and Liu - attractive [2]. This can be contrasted with the pion case which, dominated by the p-wave interaction from the $\Delta(1232)$ resonance, is much weaker [3]. Also, the measurement of the $\eta'N$ scattering length shows that its interaction is rather weak [4]. The large value of the $\eta-N$ scattering length led to the hypothesis, proposed by the Haider and Liu, who postulated that the total interaction in a nucleus- system is strong enough to form a bound-state - the so called mesic nuclei [5]. The second question raised and not unequivocally answered by the earlier measurements was about the η production mechanism in the nucleon-nucleon collisions.

Due to the short lifetime of the meson ($t \approx 10^{-18}$ s) it is not feasible to create the η beam. Therefore, its interaction with nucleons or nuclei must be studied via the observation of final states of nuclear reactions including the η-nucleon (or η-nuclei) pair. The Final State Interaction between produced particles can strongly influence the production cross-sections and, in this way, can be used for studies of the interaction itself [6].
In this contribution we discuss the η production mechanism in the interaction with nucleons and the search for the η-mesic nuclei in the context of the recent experimental results from WASA-at-COSY collaboration.

2 η production mechanism in the interaction with nucleons

The measurements of the large total cross-section of $NN \rightarrow NN\eta$ reaction near the η production threshold [7–18] motivated the two-step η production model proposed in [19]. In this scenario one of the proton is firstly excited through the exchange of a single meson and forms the S_{11} resonance, which in the second step deexcites via the emission of η and nucleon. In principle, the excitation to S_{11} state can occur by exchanging π, η, ω or/and ρ mesons. The measurements of total cross-section isospin dependence by WASA/PROMICE and COSY-11 showed that the η production in the total isosinglet state is much higher that in the isotriplet state [18, 20]. This result strongly suggest the isovector meson exchange, reducing the candidates to π and ρ particles [19, 21, 22]. To further distinguish between the π and ρ meson exchange models, the determination of the analysing power in the polarization measurement was required. The first measurement by COSY-11 gave an indication in favour of the pseudoscalar exchange model, although due to the limited statistics the decisive conclusions could not be done [23–25]. The WASA-at-COSY performed a high-statistics measurement of the $\vec{p}p \rightarrow pp\eta$ with the polarized beam. The spin of the polarization was flipped from cycle to cycle. The data was gathered for two separated beam momenta 2026 MeV/c and 2188 MeV/c, which correspond to excess energy over the η production threshold of 15 MeV and 72 MeV, respectively. More details of the analysis can be found in [26].

3 Search for the η-mesic nuclei

The recent reviews on the search for mesic nuclei can be found in [3, 27–33]. The WASA-at-COSY collaboration [34] performed three dedicated experiments with aim to search for the η-mesic nuclei in ^4He and ^3He systems in the deuteron-deuteron and proton-deuteron collisions, respectively [35–39]. The choice of the light nuclei was motivated by both theoretical considerations (see e.g. [40, 41]) as well as the earlier measurements by SATURNE, ANKE and COSY-11 [42–46], that provided strong experimental hints for the existence of the bound state in the $^3\text{He} - \eta$ and $^4\text{He} - \eta$ systems. The main experimental idea for the ^4He is based on the measurement of the excitation function of the $dd \rightarrow ^3\text{He}N\pi$ reaction for energies in the vicinity of the η production threshold and on the selection of events with low ^3He center-of-mass (CM) momenta. In the case of existence of the $^4\text{He} - \eta$ bound state we expect to observe a resonance-like structure in the excitation function below the threshold for the production of the $^4\text{He} - \eta$ system. The ^3He state is investigated in proton on deuteron collisions. The details can be found in [47].

4 Summary

The latest preliminary results from the 2010 experiment in $^4\text{He} - \eta$ system, do not confirm the existence of the η-mesic nuclei. The preliminary value of the upper limit obtained from the simultaneous fit, taking into account the isospin dependence of the $dd \rightarrow (^4\text{He}-\eta)_{\text{bound}} \rightarrow ^3\text{He}n\pi^0$ and $dd \rightarrow (^4\text{He}-\eta)_{\text{bound}} \rightarrow ^3\text{He}p\pi^-$ excitation functions , of order of few nb can be compared to the theoretical estimate of 4 nb [48]. In case of the $^3\text{He} - \eta$ system, the analysis is ongoing. The current experimental upper limit for the production of $pd \rightarrow (^3\text{He}-\eta)_{\text{bound}} \rightarrow pp\pi\pi^-$ comes from the COSY-11 measurement and is equal to about 270 nb [49]. Due to the high statistics the expected sensitivity in current WASA
analysis is of order of 10 nb, which, taking into account the theoretical estimate of 80 nb [50], should be sufficient to confirm or rule out the hypothesis of existence of the $^3\text{He} - \eta$ mesic nuclei.

The WASA-at-COSY determined the analysing power in the $\bar{p}p \rightarrow pp\eta$ reaction with two order of magnitude higher precision than the previous COSY-11 measurement. The preliminary results of the angular dependency of the analysing power is in disagreement with the prediction by both the pseudo-scalar and the vector exchange models. For higher energy ($Q = 72$ MeV), the Ps-Pp interference is clearly observed.

We acknowledge support by the Polish National Science Center through grant No. 2011/03/B/ST2/01847,2011/01/B/ST2/00431, 2013/11/N/ST2/04152, by the FFE grants of the Research Center Juelich, by the EU Integrated Infrastructure Initiative HadronPhysics Project under contract number RI3-CT-2004-506078 and by the European Commission under the 7th Framework Programme through the Research Infrastructures action of the Capacities Programme, Call: FP7- INFRASTRUCTURES-2008-1, Grant Agreement N. 227431.

References

[1] P. Moskal et al., Phys. Lett. B 482, 356 (2000)
[2] R. S. Bhalerao and L. C. Liu, Phys. Rev. Lett. 54, 865 (1985)
[3] B. Krusche and C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2014)
[4] E. Czerwiński et al., Phys. Rev. Lett. 113, 062004 (2014)
[5] Q. Haider and L. C. Liu, Phys. Lett. B 172, 257 (1986)
[6] P. Moskal et al., Prog. Part. Nucl. Phys. 49, 1 (2002)
[7] E. Chiavassa et al., Phys. Lett. B 322, 270 (1994)
[8] H. Calén et al., Phys. Lett. B 366, 39 (1996)
[9] H. Calén et al., Phys. Rev. Lett. 79, 2642 (1997)
[10] F. Hibou et al., Phys. Lett. B 438, 41 (1998)
[11] J. Smyrski et al., Phys. Lett. B 474, 182 (2000)
[12] A M. Bergdolt et al., Phys. Rev. D 48, 2969 (1993)
[13] M. Abdel-Bary et al., Eur. Phys. J. A 16, 127 (2003)
[14] P. Moskal et al., Phys. Rev. C 69, 025203 (2004)
[15] P. Moskal et al., Eur. Phys. J. A 43, 131 (2010)
[16] H. Petren et al., Phys. Rev. C 82, 055206 (2010)
[17] H. Calén et al., Phys. Rev. C 58, 2667 (1998)
[18] P. Moskal et al., Phys. Rev. C 79, 015208 (2009)
[19] G. Fäldt and C. Wilkin, Phys. Scripta 64, 427 (2001)
[20] H. Calen et al., Phys. Rev. C 58, 2667 (1998)
[21] K. Nakayama et al., Phys. Rev. C 68, 045201 (2003)
[22] K. Nakayama et al., Phys. Rev. C 65, 045210 (2002)
[23] P. Winter et al., Eur. Phys. J. A 18, 355 (2003)
[24] P. Winter et al., Phys. Lett. B 544, 251 (2002)
[25] R. Czyzykiewicz et al., Phys. Rev. Lett. 98, 122003 (2007)
[26] I. Ozerianska-Schatti arXiv:1607.07261 (2016)
[27] A. Gal et al., Acta Phys. Polon. B 45, 673 (2014)
[28] H. Machner, J. Phys. G 42, 043001 (2015)
[29] C. Wilkin, Acta Phys. Polon. B 47, 249 (2016)
[30] N. G. Kelkar et al., Rept. Prog. Phys. 76, 066301 (2013); Acta Phys. Polon. B 46, 113 (2015)
[31] S. Bass et al., Acta Phys. Polon. B 47, 373 (2016)
[32] Q. Haider, L. C. Liu, Int. J. Mod. Phys. E 24, 1530009 (2015)
[33] P. Moskal, Few Body Syst. 55, 667 (2014); Acta Phys. Polon. B 47, 97 (2016)
[34] WASA-at-COSY Collaboration: H. -H. Adam et al., arXiv:nucl-ex/0411038 (2004)
[35] P. Adlarson et al., Phys. Rev. C 87, 035204 (2013)
[36] W. Krzemienie, P. Moskal, M. Skurzok, Acta Phys. Polon. B 45, 689 (2014)
[37] M. Skurzok, W. Krzemienie, O. Rundel and P. Moskal, Acta. Phys. Polon. B 47, 503 (2016)
[38] W. Krzemienie, arXiv:1202:5794, Ph.D. thesis, Jagiellonian University (2011)
[39] M. Skurzok, arXiv:1509:01385, Ph.D. thesis, Jagiellonian University (2015)
[40] S. Wycech, A. M. Green, J. A. Niskanen, Phys. Rev. C 52, 544 (1995)
[41] C. Wilkin, Phys. Rev. C 47, 938 (1993)
[42] N. Willis et al., Phys.Lett. B 406, 14 (1997)
[43] P. Moskal, J. Smyrski, Acta. Phys. Polon. B 41, 2281 (2010)
[44] J. Smyrski et al., Phys. Lett. B 649, 258 (2007)
[45] T. Mersmann et al., Phys. Rev. Lett. 98, 242301 (2007)
[46] W. Krzemienie et al., Int. J. Mod. Phys. A 24, 576 (2009)
[47] O. Rundel et al. these proceedings, (2016)
[48] S. Wycech, W. Krzemienie, Acta Phys. Polon. B 45, 745 (2014)
[49] P. Moskal, J. Smyrski, Acta Phys. Polon. B 41, 2281 (2010)
[50] C. Wilkin, Acta Phys. Polon. B 45, 603 (2014)