Barberry in the treatment of obesity and metabolic syndrome: possible mechanisms of action

Safieh Firouzi1,2,*
Mahsa Malekahmadi1,2,*
Majid Ghayour-Mobarhan1,3
Gordon Ferns4
Hamid Reza Rahimi3,5

1Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
2Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran;
3Department of Modern Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran;
4Department of Medical Education, Brighton and Sussex Medical School, University of Brighton Falmer Campus, Brighton, UK;
5Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

*These authors contributed equally to this work

Abstract: Obesity is a consequence of an imbalance between energy intake and energy expenditure. It affects people of both genders and all age groups, ethnicity and socioeconomic groups, and in developed and developing countries. Obesity is often accompanied by the metabolic syndrome (MetS). MetS is characterized by a clustering of cardiovascular risk factors, including high blood pressure, adiposity, dyslipidemia and glucose intolerance, which together increase the risk of atherosclerotic cardiovascular disease, type 2 diabetes mellitus and other causes of mortality. Nowadays, there is a growing interest in the use of plant-based agents instead of synthetic drugs to manage chronic diseases such as MetS; one such example is Berberis vulgaris. B. vulgaris contains isoquinoline alkaloids such as berberine, berberrubine and berbamine. Recent studies have proved that berberine exhibits pharmacological activities and positive effects on the risk factors of obesity and MetS. We have reviewed original articles related to the possible mechanisms of action of berberine on obesity and MetS. Berberine suppresses adipocyte differentiation and decreases obesity. It also regulates glucose metabolism via decreasing insulin resistance and increasing insulin secretion. Other effects of berberine include antihyperlipidemic and antihypertensive activities and endothelial protection.

Keywords: berberine, syndrome metabolic, obesity

Introduction

Obesity is a consequence of an imbalance between energy intake and energy expenditure. The WHO has identified obesity as a major public health problem because of its associated risk for a number of noncommunicable diseases, which include type 2 diabetes mellitus, hypertension, dyslipidemias and cardiovascular disease, and a reduction in life expectancy.1 Overweight, obesity and morbid obesity are usually defined using body mass index (defined as the weight in kilograms divided by the height in meters squared) of 25–29.9, 30–39.9 and >40, respectively. Other more sophisticated methods for directly assessing body fat, or adiposity, include bioelectrical impedance analysis, computed tomography and MRI.2 Abdominal obesity is an independent predictor of several cancer- and cardiovascular-related outcomes and can be assessed relatively simply by measuring waist circumference or waist-to-hip ratio.3 Obesity is a common public health problem, which is causing an estimated around 2.6 million deaths in the world.2 It affects all age, sex, ethnic and socioeconomic groups in both developed and developing countries.4 Obesity is a multifactorial disorder due to an interaction between genetic, socioeconomic, environmental and behavioral influences.5 Differences in energy metabolism may play a role in long-term body weight regulation.

*These authors contributed equally to this work

Correspondence: Majid Ghayour-Mobarhan Khorasan Razavi, Mashad, Azadi Square, University of Pardis, Faculty of Medicine, 91777, Mashhad, Iran Tel +98 51 3800 2301 Fax +98 51 83 800 2287 Email Ghayourm@mums.ac.ir
Hamid Reza Rahimi Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran Tel +98 51 3800 2301 Fax +98 51 83 800 2287 Email Rahimihr@mums.ac.ir

© 2018 Firouzi et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
and the pathogenesis of human obesity. Several prospective studies have shown that relatively low energy expenditure and high respiratory quotient due to a low fat to carbohydrate oxidation rate predict body weight gain. Obesity is often accompanied by the metabolic syndrome (MetS). MetS is determined by a series of factors including physiological, biochemical, clinical and metabolic parameters that together enhance the risk of atherosclerotic cardiovascular disease, type 2 diabetes mellitus and other causes of mortality. There are several definitions of MetS, but some of the most popular definitions are from the WHO and the National Cholesterol Education Program Adult Treatment Panel III.

According to the National Cholesterol Education Program Adult Treatment Panel III definition for MetS, the presence of any three of the following five features including waist circumference ≥102 cm in men or ≥88 cm in women, ≥130/85 mmHg (includes hypertensive patients and patients who received antihypertensive medications), triglyceride (TGs) ≥150 mg/dL, high-density lipoprotein cholesterol <40 mg/dL in men or <50 mg/dL in women and fasting blood glucose ≥100 mg/dL (includes diabetes).

The prevalence of MetS varies widely (10%–84%) and depends on the region, urban or rural setting, individual characteristics, including sex, age, race and ethnicity of the population studied, and the definition of the syndrome used. The International Diabetes Federation estimates that MetS affects approximately one-quarter of the world’s adult population. Therefore, many strategies for prevention are being developed to reduce the future MetS burden. Nowadays, there is a growing preference to use plant-based agents instead of synthetic drugs to manage chronic diseases such as MetS because plant-based agents have fewer adverse effects and lesser costs and are more accessible than synthetic drugs in some countries. Studies show that formulations of one-quarter of the world’s adult population were reviewed. Subsequently, the eligible trials were selected. These are papers reporting original studies on the antidiabetic, antihyperlipidemic and anti-adipogenic mechanisms of action of berberine and almost all available clinical trials. But we mentioned this study is not systematic review.

Inclusion of studies

The keywords including “berberine”, “diabetes”, “insulin-resistance”, “glucose”, hemoglobin A1C”, “dislipidemia”, “obesity” and “atherosclerosis” were used for an electronic search strategy. All the identified studies and review articles were reviewed. The polyphenols in barberry juice have been reported to have a positive effect on lipid profiles and diabetes complications.

The chemical structure of berberine is shown in Figure 1.

The mechanisms of action of berberine in obesity

Adipocyte differentiation requires several transcription factors, and key regulators in the process are two adipogenic factors, CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ). The PPARs function as lipid sensors and regulate lipid and lipoprotein metabolism, glucose homeostasis, adipocyte proliferation and differentiation. C/EBPα-deficient cells are capable of adipocyte differentiation and are also insulin resistant. It has been discovered that GATA factors play a role in adipogenesis. GATA-2 and GATA-3 are expressed in adipocyte precursors and control the preadipocyte to adipocyte transition. Berberine reduces the expression of C/EBPα and PPARγ and it has been shown to inhibit

![Image](https://example.com/image.png)

Figure 1 Chemical structure of berberine.
the differentiation of 3T3-L1 cells in murine-derived pre-adipocytes and human white preadipocytes.26 Furthermore, berberine increases the expression of GATA-2 and GATA-3 and these suppress adipocyte differentiation.24 This mechanism is directly through binding to the PPAR\(\gamma\) promoter and suppression of basal activity of PPAR\(\gamma\). Also, GATA-2 and GATA-3 form a protein complex with C/EBP\(\alpha\) that suppresses the transcriptional activity of PPAR\(\gamma\).27 It has been reported that berberine reduces weight, the food intake, the ratio of epididymal fat to total weight, as well as the ratio of liver weight to total weight in a murine model. In addition, blood glucose, TG and total cholesterol levels were all reduced in high fat–fed obese mouse, revealing that berberine acts as a potential natural compound for the treatment of obesity.26 The accumulation of TG in adipose tissue leads to obesity, and therefore, reducing the amount of TG in adipocytes may be a way for decreasing obesity. One study showed that berberine increased the adipose tissue lipase expression in 3T3-L1 adipocytes and it led to reduced TG accumulation in adipocytes. Berberine also reduced the numbers and size of lipid droplets in 3T3-L1 adipocytes.28

Several studies have shown that berberine regulates TG, cholesterol and glucose metabolism via AMP-activated protein kinase (AMPK) expression,29 an important regulator of lipolysis in adipose tissue. Hormone-sensitive lipase and adipose TG lipase are phosphorylated by AMPK.30,31

The effects of berberine on insulin resistance and glycemic control

Berberine has been shown to regulate glucose and lipid metabolism in vitro and in vivo (see Table 1). It enhances insulin secretion, stimulating glycolysis, suppressing adipogenesis by inhibiting PPAR\(\gamma\) and C/EBP\(\alpha\) function,32 activating the AMPK pathway and increasing glycokine activity. Berberine stimulates pancreatic G protein-coupled receptor 40 (GPR40), reduces intestinal glucose absorption by inhibiting \(\alpha\)-glucosidase activity, and also upregulates the expression of glucose transporter-4 (GLUT-4) and stimulates glucose uptake, and upregulates glucagon like peptide-1 (GLP-1) genes.33,34

Secretagogue effect of berberine on insulin

Berberine increases glucose-stimulated insulin secretion in a dose-dependent manner, enhancing both mRNA expression of hepatic nuclear factor 4-alpha (HNF-4\(\alpha\)) and glycokine activity; this provides an insulinoergic effect different from sulfonylureas.35

Table 1 Glycemic control mechanisms of berberine

Mechanism	Description
Upregulation of GLUT-4	Berberine increases the expression of GLUT-4, which stimulates glucose uptake
Activation of AMPK	Berberine activates AMPK, an important regulator of lipolysis in adipose tissue
Suppression of adipogenesis by inhibiting PPAR\(\gamma\) and C/EBP\(\alpha\) function	Berberine inhibits PPAR\(\gamma\) and C/EBP\(\alpha\) function, reducing lipolysis
Suppression of human protein tyrosine phosphatase 1B	Berberine inhibits this enzyme, which dephosphorylates proteins
Stimulation of GLP-1	Berberine stimulates GLP-1, which is a secretagogue for insulin secretion
Stimulation of the pancreatic GPR40	Berberine activates GPR40, which stimulates GLP-1 expression
Reduction of intestinal glucose absorption by inhibiting \(\alpha\)-glucosidase activity	Berberine inhibits \(\alpha\)-glucosidase activity, reducing glucose absorption

Antihyperlipidemic activity of berberine

Berberine stabilizes low-density lipoprotein (LDL)-R mRNA by reducing the LDL-R mRNA 3′ UTR binding of heterogeneous nuclear ribonucleoprotein I and KH-type splicing regulatory protein, which are key modulators of LDL-R mRNA stability in liver cells.39 Berberine also enhances the transcriptional activity of LDL-R promoter by c-Jun N-terminal kinase (JNK) pathway40 and reduces the transcription of the PCSK9 gene, the product of which induces LDL-R degradation.41 Furthermore, berberine decreases the activities of PPAR-\(\gamma\), fatty acid synthase, acetyl-CoA carboxylase, acyl-CoA synthase and lipoprotein lipase.42 Also, berberine decreases lipids profiles by improving the liver function and bile acid secretion, and polyphenolic compound in barberry juice can justify the positive effects on lipid profiles.43

Antihypertensive and endothelium protection effects of berberine

The effects of berberine on vasodilation of vessels has been shown in different rat models.44,45 Berberine affects both endothelium and vascular smooth muscle. The vasorelaxant effect of berberine is endothelium dependent at low concen-
trations (<1×10^6 M), but endothelium independent at higher concentrations.46-47 Barberry juice contains some vasodilator factors such as berberine, this substance effects on the central nervous system and reduce blood pressure.43 Regarding factors such as berberine, this substance effects on the conversion of cytochrome P450 into cytochrome P450, converting enzyme.50

Table 2 Clinical efficacy of barberry

Author (publication year)	Country	Patient (number)	Study design	Intervention	Duration	Results/Significant reduction (P<0.05)
Lazavi et al (2018)34	Iran	Patients with type 2 diabetes (n=45)	Randomized clinical trial	200 mL of barberry juice/day	8 weeks	FBG, TC, blood pressure: both systolic and diastolic, TGs
Ziae et al (2015)39	Iran	Subjects with metabolic syndrome (n=106)	Double-blind controlled trial	200 mg (capsule) three times per day	6 weeks	FBG, BMI, blood pressure: both systolic and diastolic
Ilooon Kashkooli et al (2015)44	Iran	Patients with NAFLD (n=80), including 32 males and 48 females	Case and control	Case group received two capsules (750 mg) every day	3 months	Weight, TGs and TC
Li et al (2015)33	China	Rat model of metabolic syndrome (n=20)	Randomized clinical trial	Case group received 50 mg/kg/day berberine	16 weeks	p38 MAPK, ATF-2 and MMP-2
Mojdeh Moazzemi and Qujeq (2014)46	Iran	Patients with type 2 diabetes (n=30)	Double-blind controlled trial	1 mg barberry extracts (capsule) two times per day	8 weeks	FBG, HbA1c
Pérez-Rubio et al (2013)57	USA	Patients with a diagnosis of metabolic syndrome (n=24)	Double-blind controlled clinical trial	Twelve patients received 500 mg berberine three times daily and 12 patients received placebo	3 months	Waist circumference, SBP, TGs and total insulin secretion
Continetti et al (2012)18	Italy	Patients with suboptimal glycemic control (n=22)	Pilot clinical trial	An oral tablet containing 588 mg of Berberis aristata extract titered as 85% berberine and 105 mg of Silybum marianum extract titered as 60% flavonolignans	90 days	HbA1c, TC, LDL-C, TGs, basal insulin, HOMA-R
Hu and Davies (2010)26	USA	Nine-week-old C57BL/6J male mice (n=36)	Randomized clinical trial	Group1: normal diet with 3 mg/kg/day berberine Group 2: subgroup 1: high-fat diet; subgroups 2–4: high-fat diet mice treated with 0.75, 1.5, 3 mg/kg/day berberine, respectively	36 days	Weight gain and food intake, serum glucose, TG and TC. Also, downregulation of PPAR-γ expression and upregulation of GATA-3 expression
Ebrahimi-Mamaghani et al (2009)18	Iran	Patients with type 2 diabetes (n=57)	Randomized controlled clinical trial	–	8 weeks	LDL-c and TC/HDL-c ratio
Yin et al (2009)38	China	Patients with type 2 diabetes (n=36)	Randomized controlled clinical trial	500 mg berberine three times daily	3 months	HbA1c, FBG, postprandial blood glucose and TGs

Abbreviations: ATF-2, activating transcription factor 2; BMI, body mass index; FBG, fasting blood glucose; HbA1c, hemoglobin A1c; HDL-c, high-density lipoprotein cholesterol; HOMA-R, homeostatic model assessment-insulin resistance; LDL-c, low-density lipoprotein-cholesterol; MMP-2, matrix metalloproteinase 2; NAFLD, nonalcoholic fatty liver disease; TC, total cholesterol; TGs, triglycerides.
stimulated vascular smooth muscle cell proliferation and inhibiting PDGF-stimulated migration by Rac1 and also inhibiting Cdc42, resulting in antiproliferative and antimigratory activity. Berberine suppresses the synthesis of fibronectin and collagen by p38 MAPK pathway and prevents the migration and regrowth of smooth muscle cells via inactivating mitogen-activated protein kinase/extracellular signal regulated kinase/early growth response gene 1 (MEK1,2/ERK/Egr1 signaling pathway) and decreasing Erg1, cFos, cyclin-D and PDGF-A levels. Lysophosphatidylcholine-stimulated vascular smooth muscle cell proliferation and migration is inhibited by activation of ERK1/2 pathway (one of the three MAPK groups).

In Table 2, some human and animal studies related to the effect of berberine and barberry in obesity and MetS are summarized. Some clinical trials used berbeine and some used barberry juice. Most of the studies that explained the molecular mechanisms were conducted in animal models and the molecular mechanisms in humans are not explained.

Conclusion

According to this study, berberine as a major antioxidant component of B. vulgaris, suppresses adipocyte differentiation and decreases obesity. Also, it regulates glucose metabolism via decreasing insulin resistance and increasing insulin secretion. Berberine also has anti-hyperlipidemic and antihypertensive effects and protects the endothelium, thereby reducing the risk factors of MetS. In conclusion, B. vulgaris may be effective in treatment of obesity and MetS, but more human clinical trials are needed to judge about its effectiveness in this issue because most of the studies explaining the molecular mechanisms were conducted in animal models. Also, some clinical trials used berbeine and some others used barberry juice, so we suggest that studies should be conducted to compare the efficacy of berbeine and barberry juice. We do not know whether these effects of berberine are dose dependent or not; therefore, to clarify the effective doses, more studies are needed.

The perspective studies work on the isolation or neo-synthesis of berberine analogs with a higher bioavailability. The scientist can then clarify the mechanism of action of berberine on glucose and lipid metabolism. The possible action of berberine is as a modulator of a gene involved in more processes or as a gene regulator (e.g. the upstream stimulatory factors). Anyway, the effect of berberine on PCSK9 modulation is another potential therapeutic target, because berberine strengthens the effects of available antihyperlipidemic drugs. The anti-hyperlipidemic and anti-diabetic effects of berberine are studied through improvement in organ damage in humans (i.e., by evaluating their effect on microalbuminuria or arterial stiffness).

Disclosure

The authors report no conflicts of interest in this work.

References

1. Larsen MA, Goll R, Lekahl S, Moen OS, Flørholmen J. Delayed clearance of triglyceride-rich lipoproteins in young, obese subjects. Clin Obes. 2015;5(6):349–357.
2. Kral JG, Heymsfield S. Morbid obesity: definitions, epidemiology, and methodological problems. Gastroenterol Clin North Am. 1987;16(2):197–205.
3. Kumanyika SK, Obarzanek E, Stettler N, et al. Population-based prevention of obesity: the need for comprehensive promotion of healthful eating, physical activity, and energy balance: a scientific statement from American Heart Association Council on Epidemiology and Prevention, Interdisciplinary Committee for Prevention (formerly the expert panel on population and prevention science). Circulation. 2008;118(4):428–464.
4. Nguyen DM, El-Serag HB. The epidemiology of obesity. Gastroenterol Clin North Am. 2010;39(1):1–7.
5. Macdonald KG. Overview of the epidemiology of obesity and the early history of procedures to remedy morbid obesity. Arch Surg. 2003;138(4):357–360.
6. Galgani J, Ravussin E. Energy metabolism, fuel selection and body weight regulation. Int J Obes. 2008;32(Suppl 7):S109–S119.
7. Gibson TM, Ehrhardt MJ, Ness KK. Obesity and metabolic syndrome among adult survivors of childhood leukemia. Curr Treat Options Oncol. 2016;17(4):17.
8. Alberti KG, Zimmet PZ, Pf Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–553.
9. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–2497.
10. Desroches S, Lamarche B. The evolving definitions and increasing prevalence of the metabolic syndrome. Appl Physiol Nutr Metab. 2007;32(1):23–32.
11. Kolovou GD, Anagnostopoulou KK, Salpea KD, Mikhailidis DP. The prevalence of metabolic syndrome in various populations. Am J Med Sci. 2007;333(6):362–371.
12. Anis KV, Rajeshkumar NV, Kuttan R. Inhibition of chemical carcinogenesis by berberine in rats and mice. J Pharm Pharmacol. 2001;53(5):763–768.
13. Gurb-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006;27(1):1–93.
14. Roussaville TJ, Ranney TG. Ploidy levels and genome sizes of Berberis L. and Mahonia Nutt. species, hybrids, and cultivars. HorticScience. 2010;45(7):1029–1033.
15. Mokhber-Dezfuli N, Sacidina S, Gohari AR, Kurepaz-Mahmoodabadi M. Phytochemistry and pharmacology of Berberis species. Pharmacogn Rev. 2014;8(15):8.
16. Arayne MS, Sultana N, Bahadur SS. The berberis story: Berberis vulgaris in therapeutics. Pak J Pharm Sci. 2007;20(1):83–92.
17. Abd El-Wahab AE, Ghareeb DA, Sarhan EE, Abur-Serie MM, El Demelawy MA. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement Altern Med. 2013;13:218.
18. di Pierro F, Villanova N, Agostini F, Marzocchi R, Soverini V, Marchesini G. Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. Diabetes Metab Syndr Obes. 2012;5:213.

19. Choi BH, Ahn IS, Kim YH, et al. Berberine reduces the expression of adipsogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med. 2006;38(6):599–605.

20. Zhao W, Xue R, Zhou ZX, Kong WJ, Jiang JD. Reduction of blood lipid by berberine in hyperlipidemic patients with chronic hepatitis or liver cirrhosis. Biomed Pharmacother. 2008;62(10):730–731.

21. Mohammadi A, Sahebkar A, Kermani T, Zilaeae M, Tavallaei S, Hedayati M. The berberru juice effects on metabolic factors and oxidative stress in patients with type 2 diabetes: a randomized clinical trial. Complement Ther Clin Pract. 2018;31:170–174.

22. Potdar D, Hirwani RR, Dhubal S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia. 2012;83(5):817–830.

23. Giri S, Rattan R, Haq E, et al. AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr Metab. 2006;3:31.

24. Hu Y, Davies GE. Berberine increases expression of GATA-2 and GATA-3 during inhibition of adipocyte differentiation. Phytomedicine. 2009;16(9):864–873.

25. Tong Q, Tsai J, Leng SH, et al. Facilitating effects of berberine on rat adipogenesis. World J Gastroenterol. 2010;16(9):2177–2185.

26. Hu Y, Davies GE. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia. 2010;81(1):358–366.

27. Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS. Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol. 2005;25(2):706–715.

28. Wang H, Zhu C, Ying Y, Luo L, Huang D, Luo Z. Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget. 2018;9(11):10135–10146.

29. Xie M, Roy R. AMP-activated kinase regulates lipid droplet localization and stability of adipose triglyceride lipase in C. elegans Dauer Larvae. PLoS One. 2015;10(6):e0130480.

30. Jiang SJ, Dong H, Li JB, et al. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J Gastroenterol. 2015;21(25):7777–7785.

31. Fan X, Wang J, Hou J, et al. Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. J Transl Med. 2015;13:92.

32. di Pierro F, Putignano P, Villanova N, Montesi L, Moscatello S, Marchesini G. Preliminary study on the possible glycemic clinical advantage in using a fixed combination of Berberis aristata and Silibum marianum standardized extracts versus only Berberis aristata in patients with type 2 diabetes. Clin Pharmacol. 2013;5:167.

33. Derosa G, Maffioli P, Cicero AF. Berberine on metabolic and cardiovascular risk factors: an analysis from preclinical evidences to clinical trials. Expert Opin Biol Ther. 2012;12(8):1113–1124.

34. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 2008;57(5):712–717.

35. Wang QZ, Lu FE, Leng SH, et al. Facilitating effects of berberine on rat pancreatic islets through modulating hepatic nuclear factor 4 alpha expression and glucokinase activity. World J Gastroenterol. 2008;14(39):6004.

36. Yi P, Lu FE, Xu LJ, Chen G, Hong H, Wang KF. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol. 2008;14(6):876.

37. Zhou JY, Zhou SW, Zhang KB, et al. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats. Biol Pharm Bull. 2008;31(6):1169–1176.

38. Huang C, Zhang Y, Gong Z, et al. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway. Biochem Biophys Res Commun. 2006;348(2):571–578.

39. Li H, Chen W, Zhou Y, et al. Identification of mRNA binding proteins that regulate the stability of LDL receptor mRNA through AU-rich elements. J Lipid Res. 2009;50(5):820–831.

40. Liu W, Tang F, Deng Y, et al. Berberine reduces fibronectin and collagen accumulation in rat glomerular mesangial cells cultured under high glucose condition. Mol Cell Biochem. 2009;325(1–2):99–105.

41. Cameron J, Ranheim T, Kulseth MA, Leren TP, Berge KE. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis. 2008;201(2):266–273.

42. Choi BH, Ahn IS, Kim YH, et al. Berberine reduces the expression of adipsogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med. 2006;38(6):599–605.

43. Lazzari P, Mirmiran P, Sohrab G, Nikpayam O, Angoorani P, Mirmiran M. The antihyperglycemic and vasodilator effects of aqueous extract from Berberis vulgaris fruit on hypertensive rats. Phytother Res. 2005;19(3):222–225.

44. Peychov L. Pharmacological investigation on the cardiovascular effects of Berberis vulgaris on tested animals. Pharmacia. 2005;52(1–2):118–121.

45. Ko WH, Yao XQ, Lau CW, et al. Vasorelaxant and antiproliferative effects of berberine. Eur J Pharmacol. 2000;399(2–3):187–196.

46. Wong KK. Mechanism of the aortic relaxation induced by low concentrations of berberine. Planta Med. 1998;64(8):756–757.

47. Zilaeae M, Safarian M, Kermany T, Emanian M, Moharan M, Ferns G. Effect of berberru juice on blood pressure in patients with metabolic syndrome. J Nat Prod. 2015;8:59–63.

48. Pan LR, Tang Q, Fu Q, Hu BR, Xing JZ, Qian JQ. Roles of nitric oxide in protective effect of berberine in ethanol-induced gastric ulcer mice. Acta Pharmacol Sin. 2005;26(11):1334–1338.

49. Kang DG, Sohn EJ, Kwok EK, Han JH, Oh H, Lee HS. Effects of berberine on angiotensin-converting enzyme and NO/cGMP system in vessels. Vasc Pharmacol. 2002;39(6):281–286.

50. Liang KW, Yen SC, Ting CT, et al. Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. Eur J Pharmacol. 2008;590(1–3):343–354.

51. Liang KW, Ting CT, Yen SC, et al. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem Pharmacol. 2006;71(6):806–817.

52. Cho BI, Im EK, Kwok JH, et al. Berberine inhibits the production of lysophosphatidylcholine-induced reactive oxygen species and the ERK1/2 pathway in vascular smooth muscle cells. Mol Cells. 2005;20(3):429–434.

53. Iloob Khashkooli R, Najafi SS, Sharif F, et al. The effect of Berberis vulgaris extract on transaminase activities in non-alcoholic fatty liver disease. Hepat Mon. 2015;15(2):e25067.

54. Li XX, Li CB, Xiao J, et al. Berberine ameliorates cerebral ischemia-reperfusion injury and inflammation in a rat model of metabolic syndrome. Biol Pharm Bull. 2015;38(6):862–866.

55. Moazzemi Z, Qiuq Q. Berberis fruit extract and biochemical parameters in patients with type II diabetes. Jundishapour J Nat Pharm Prod. 2014;9(2):13490.

56. Pérez-Rubio KG, González-Ortiz M, Martínez-Abundis E, Robles-Cervantes JA, Espinel-Bermúdez MC. Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab Syndr Relat Disord. 2013;11(5):366–369.

57. Ebrahimim-Mamaghani M, Areffosheimi S, Golzarand M, Liashgarzadeh A, Agha-Jababie M. Long-term effects of processed Berberis vulgaris on some metabolic syndrome components. Iran J Endocrinol Metab. 2009;11(1).
