HTM: A Topic Model for Hypertexts

Congkai Sun∗
Department of Computer Science
Shanghai Jiaotong University
Shanghai, P. R. China
martinsck@hotmail.com

Bin Gao
Microsoft Research Asia
No.49 Zhichun Road
Beijing, P. R. China
bingao@microsoft.com

Zhenfu Cao
Department of Computer Science
Shanghai Jiaotong University
Shanghai, P. R. China
zfcao@cs.sjtu.edu.cn

Hang Li
Microsoft Research Asia
No.49 Zhichun Road
Beijing, P. R. China
hangli@microsoft.com

Abstract
Previously topic models such as PLSI (Probabilistic Latent Semantic Indexing) and LDA (Latent Dirichlet Allocation) were developed for modeling the contents of plain texts. Recently, topic models for processing hypertexts such as web pages were also proposed. The proposed hypertext models are generative models giving rise to both words and hyperlinks. This paper points out that to better represent the contents of hypertexts it is more essential to assume that the hyperlinks are fixed and to define the topic model as that of generating words only. The paper then proposes a new topic model for hypertext processing, referred to as Hypertext Topic Model (HTM). HTM defines the distribution of words in a document (i.e., the content of the document) as a mixture over latent topics in the document itself and latent topics in the documents which the document cites. The topics are further characterized as distributions of words, as in the conventional topic models. This paper further proposes a method for learning the HTM model. Experimental results show that HTM outperforms the baselines on topic discovery and document classification in three datasets.

1 Introduction
Topic models are probabilistic and generative models representing contents of documents. Examples of topic models include PLSI (Hofmann, 1999) and LDA (Blei et al., 2003). The key idea in topic modeling is to represent topics as distributions of words and define the distribution of words in document (i.e., the content of document) as a mixture over hidden topics. Topic modeling technologies have been applied to natural language processing, text mining, and information retrieval, and their effectiveness have been verified.

In this paper, we study the problem of topic modeling for hypertexts. There is no doubt that this is an important research issue, given the fact that more and more documents are available as hypertexts currently (such as web pages). Traditional work mainly focused on development of topic models for plain texts. It is only recently several topic models for processing hypertexts were proposed, including Link-LDA and Link-PLSA-LDA (Cohn and Hofmann, 2001; Erosheva et al., 2004; Nallapati and Cohen, 2008).

We point out that existing models for hypertexts may not be suitable for characterizing contents of hypertext documents. This is because all the models are assumed to generate both words and hyperlinks (outlinks) of documents. The generation of the latter type of data, however, may not be necessary for the tasks related to contents of documents.

In this paper, we propose a new topic model for hypertexts called HTM (Hypertext Topic Model), within the Bayesian learning approach (it is similar to LDA in that sense). In HTM, the hyperlinks of hypertext documents are supposed to be given. Each document is associated with one topic distribution. The word distribution of a document is defined as a mixture of latent topics of the document itself and latent topics of documents which the document cites. The topics are further defined as distributions

∗ This work was conducted when the first author visited Microsoft Research Asia as an intern.
of words. That means the content (topic distributions for words) of a hypertext document is not only determined by the topics of itself but also the topics of documents it cites. It is easy to see that HTM contains LDA as a special case. Although the idea of HTM is simple and straightforward, it appears that this is the first work which studies the model.

We further provide methods for learning and inference of HTM. Our experimental results on three web datasets show that HTM outperforms the baseline models of LDA, Link-LDA, and Link-PLSA-LDA, in the tasks of topic discovery and document classification.

The rest of the paper is organized as follows. Section 2 introduces related work. Section 3 describes the proposed HTM model and its learning and inference methods. Experimental results are presented in Section 4. Conclusions are made in the last section.

2 Related Work

There has been much work on topic modeling. Many models have been proposed including PLSI (Hofmann, 1999), LDA (Blei et al., 2003), and their extensions (Griffiths et al., 2005; Blei and Lafferty, 2006; Chemudugunta et al., 2007). Inference and learning methods have been developed, such as variational inference (Jordan et al., 1999; Wainwright and Jordan, 2003), expectation propagation (Minka and Lafferty, 2002), and Gibbs sampling (Griffiths and Steyvers, 2004). Topic models have been utilized in topic discovery (Blei et al., 2003), document retrieval (Xing Wei and Bruce Croft, 2006), document classification (Blei et al., 2003), citation analysis (Dietz et al., 2007), social network analysis (Mei et al., 2008), and so on. Most of the existing models are for processing plain texts. There are also models for processing hypertexts, for example, (Cohn and Hofmann, 2001; Nallapati and Cohen, 2008; Gruber et al., 2008; Dietz et al., 2007), which are most relevant to our work.

Cohn and Hofmann (2001) introduced a topic model for hypertexts within the framework of PLSI. The model, which is a combination of PLSI and PHITS (Cohn and Chang, 2000), gives rise to both the words and hyperlinks (outlinks) of the document in the generative process. The model is useful when the goal is to understand the distribution of links as well as the distribution of words. Erosheva et al (2004) modified the model by replacing PLSI with LDA. We refer to the modified mode as Link-LDA and take it as a baseline in this paper. Note that the above two models do not directly associate the topics of the citing document with the topics of the cited documents.

Nallapati and Cohn (2008) proposed an extension of Link-LDA called Link-PLSA-LDA, which is another baseline in this paper. Assuming that the citing and cited documents share similar topics, they explicitly model the information flow from the citing documents to the cited documents. In Link-PLSA-LDA, the link graph is converted into a bipartite graph in which links are connected from citing documents to cited documents. If a document has both inlinks and outlinks, it will be duplicated on both sides of the bipartite graph. The generative process for the citing documents is similar to that of Link-LDA, while the cited documents have a different generative process.

Dietz et al (2007) proposed a topic model for citation analysis. Their goal is to find topical influence of publications in research communities. They convert the citation graph (created from the publications) into a bipartite graph as in Link-PLSA-LDA. The content of a citing document is assumed to be generated by a mixture over the topic distribution of the citing document and the topic distributions of the cited documents. The differences between the topic distributions of citing and cited documents are measured, and the cited documents which have the strongest influence on the citing document are identified.

Note that in most existing models described above the hyperlinks are assumed to be generated and link prediction is an important task, while in the HTM model in this paper, the hyperlinks are assumed to be given in advance, and the key task is topic identification. In the existing models for hypertexts, the content of a document (the word distribution of the document) are not decided by the other documents. In contrast, in HTM, the content of a document is determined by itself as well as its cited documents. Furthermore, HTM is a generative model which can generate the contents of all the hypertexts in a collection, given the link structure of the collection. Therefore, if the goal is to accurately learn and pre-
dict contents of documents, the use of HTM seems more reasonable.

3 Hypertext Topic Model

3.1 Model

In topic modeling, a probability distribution of words is employed for a given document. Specifically, the probability distribution is defined as a mixture over latent topics, while each topic is future characterized by a distribution of words (Hofmann, 1999; Blei et al., 2003). In this paper, we introduce an extension of LDA model for hypertexts. Table 1 gives the major notations and their explanations.

The graphic representation of conventional LDA is given in Figure 1(a). The generative process of LDA has three steps. Specifically, in each document a topic distribution is sampled from a prior distribution defined as Dirichlet distribution. Next, a topic is sampled according to the word distribution of the topic. HTM naturally mimics the process of writing a hypertext document by humans (repeating the processes of writing native texts and anchor texts).

The formal definition of HTM is given below. Hypertext document \(d \) has \(N_d \) words \(w_d = w_{d1} \cdots w_{dN_d} \) and \(L_d \) cited documents \(I_d = \{i_{d1}, \ldots, i_{dL_d}\} \). The topic distribution of \(d \) is \(\theta_d \) and topic distributions of the cited documents are \(\theta_i, i \in I_d \). Given \(\lambda, \theta, \) and \(\beta \), the conditional probability distribution of \(w_d \) is defined as:

\[
p(w_d | \lambda, \theta, \beta) = \prod_{n=1}^{N_d} \sum_{b_{dn}} p(b_{dn} | \lambda) \sum_{c_{dn}} p(c_{dn} | \xi_d) \sum_{z_{dn}} p(z_{dn} | \theta_d)^{b_{dn} \cdot p(z_{dn} | \theta_d)} (1 - b_{dn})^{p(w_{dn} | z_{dn}, \beta)}.
\]

Here \(\xi_d, b_{dn}, c_{dn}, \) and \(z_{dn} \) are hidden variables. When generating a word \(w_{dn} \), \(b_{dn} \) determines whether it is from the citing document or the cited documents. \(c_{dn} \) determines which cited document it

\(d \)	Number of topics
\(D \)	Documents in corpus
\(D \)	Number of documents
\(\alpha_d, \alpha_s \)	Hyperparameters for \(\theta \) and \(\beta \)
\(\lambda \)	Hyperparameter to control the weight between the citing document and the cited documents
\(\theta \)	Topic distribution for all documents
\(\beta \)	Word distribution for topic
\(b, c, z \)	Hidden variables for generating word
\(d \)	Document (index)

Table 1: Notations and explanations.

\(w_d \)	Word sequence in document \(d \)
\(N_d \)	Number of words in document \(d \)
\(L_d \)	Number of documents cited by document \(d \)
\(I_d \)	Set of cited documents for document \(d \)
\(i_{dl} \)	Index of \(l^{th} \) cited document of document \(d \)
\(\xi_d \)	Distribution on cited documents of document \(d \)
\(\theta_d \)	Topic distribution associated with document \(d \)
\(b_{dn} \)	Decision on way of generating \(n^{th} \) word in document \(d \)
\(c_{dn} \)	Cited document that generates \(n^{th} \) word in document \(d \)
\(z_{dn} \)	Topic of \(n^{th} \) word in document \(d \)

Algorithm 1 Generative Process of HTM

for each document \(d \) do
 Draw \(\theta_d \sim Dir(\alpha_d) \).
 end for

for each word \(w_{dn} \) do
 if \(L_d > 0 \) then
 Draw \(b_{dn} \sim Ber(\lambda) \)
 Draw \(c_{dn} \sim Uni(\xi_d) \)
 if \(b_{dn} = 1 \) then
 Draw \(z_{dn} \sim Multi(\theta_d) \)
 else
 Draw \(z_{dn} \sim Multi(\theta_{1c_{dn}}) \)
 end if
 else
 \(\theta_d \)
 \(\lambda \)
 \(\beta \)
 end if
 Draw a word \(w_{dn} \sim P(w_{dn} | z_{dn}, \beta) \)
end for

(Raw text continues...)
is when \(b_{dn} = 0 \). In this paper, for simplicity we assume that the cited documents are equally likely to be selected, i.e., \(\xi_{di} = \frac{1}{I_d} \).

Note that \(\theta \) represents the topic distributions of all the documents. For any \(d \), its word distribution is affected by both \(\theta_d \) and \(\theta_i, i \in I_d \). There is a propagation of topics from the cited documents to the citing document through the use of \(\theta_i, i \in I_d \).

For a hypertext document \(d \) that does not have cited documents. The conditional probability distribution degenerates to LDA:

\[
p(w_d|\theta_d, \beta) = \frac{N_d}{\sum_{n=1}^{N_d} z_{dn}} \sum_{n=1}^{N_d} p(z_{dn}|\theta_d) p(w_{dn}|z_{dn}, \beta).
\]

By taking the product of the marginal probabilities of hypertext documents, we obtain the conditional probability of the corpus \(D \) given the hyperparameters \(\lambda, \alpha_q, \beta \),

\[
p(D|\lambda, \alpha_q, \beta) = \int \prod_{d=1}^{D} p(\theta_d|\alpha_q) \prod_{n=1}^{N_d} p(b_{dn}|\lambda) \sum_{c_{dn}} p(c_{dn}|\xi_{d}) \sum_{z_{dn}} p(z_{dn}|\theta_d)^{b_{dn}} p(w_{dn}|\theta_d) \prod_{n=1}^{N_d} \theta_{dn}^{1-b_{dn}},
\]

\[
p(w_{dn}|z_{dn}, \beta) d\theta.
\]

Note that the probability function (1) also covers the special cases in which documents do not have cited documents.

In HTM, the content of a document is decided by the topics of the document as well as the topics of the documents which the document cites. As a result, contents of documents can be ‘propagated’ along the hyperlinks. For example, suppose web page A cites page B and page B cites page C, then the content of page A is influenced by that of page B, and the content of page B is further influenced by the content of page C. Therefore, HTM is able to more accurately represent the contents of hypertexts, and thus is more useful for text processing such as topic discovery and document classification.

3.2 Inference and Learning

An exact inference of the posterior probability of HTM may be intractable, we employ the mean field variational inference method (Wainwright and Jordan, 2003; Jordan et al., 1999) to conduct approximation. Let \(I[\cdot] \) be an indicator function. We first define the following factorized variational posterior distribution \(q \) with respect to the corpus:

\[
q = \prod_{d=1}^{D} q(\theta_d | \gamma_d) \prod_{n=1}^{N_d} q(x_{dn}|\rho_{dn})(q(c_{dn}|\psi_{dn}))^{I[L_d>0]} q(z_{dn}|\phi_{dn}) ,
\]

where \(\gamma, \psi, \phi, \) and \(\rho \) denote free variational parameters. Parameter \(\gamma \) is the posterior Dirichlet parameter corresponding to the representations of documents in the topic simplex. Parameters \(\psi, \phi, \) and \(\rho \) correspond to the posterior distributions of their associated random variables. We then minimize the KL divergence between \(q \) and the true posterior probability of the corpus by taking derivatives of the loss function with respect to variational parameters. The solution is listed as below.

Let \(\beta_{iv} \) be \(p(w^v_{di} = 1|z^i = 1) \) for the word \(v \). If \(L_d > 0 \), we have

E-step:

\[
\begin{align*}
\gamma_{di} & = \alpha_{ti} + \sum_{n=1}^{N_d} \rho_{dn} \phi_{dni} + \sum_{d'=1}^{D} \sum_{l=1}^{L_d'} I[i'd' = d] \\
& \quad \sum_{n=1}^{N_d'} (1 - \rho_{d'n}) \phi_{d'n} \phi_{dni} ,
\end{align*}
\]

\[
\phi_{dni} \propto \beta_{iv} \exp \left\{ \rho_{dn} E_q \left[\log(\theta_{di}) | \gamma_d \right] \\
+ (1 - \rho_{dn}) \sum_{l=1}^{L_d} \psi_{dnl} E_q \left[\log(\theta_{il}) | \gamma_{I_{dl}} \right] \right\} .
\]

\[
\rho_{dn} = \left(1 + \left(\exp \left\{ \sum_{i=1}^{k} (\phi_{dni} E_q[\log(\theta_{di})|\gamma_d] \\
- \sum_{l=1}^{L_d} \psi_{dnl} \phi_{dni} E_q[\log(\theta_{il})|\gamma_{I_{dl}}]) \\
+ \log \lambda - \log (1 - \lambda) \right\} \right)^{-1} \right)^{-1}.
\]
Figure 1: Graphical model representations

In order to cope with the data sparseness problem due to large vocabulary, we employ the same technique as that in (Blei et al., 2003). To be specific, we treat β as a $K \times V$ random matrix, with each row being independently drawn from a Dirichlet distribution $\beta_i \sim \text{Dir}(\alpha)$. Variational inference is modified appropriately.

4 Experimental Results

We compared the performances of HTM and three baseline models: LDA, Link-LDA, and Link-PLSA-LDA in topic discovery and document classification. Note that LDA does not consider the use of link information; we included it here for reference.

4.1 Datasets

We made use of three datasets. The documents in the datasets were processed by using the Lemur Took kit (http://www.lemurproject.org), and the low frequency words in the datasets were removed.

The first dataset WebKB (available at http://www.cs.cmu.edu/~webkb) contains six subjects (categories). There are 3,921 documents and 7,359 links. The vocabulary size is 5,019.
The second dataset Wikipedia (available at http://www.mpi-inf.mpg.de/~angelova) contains four subjects (categories): Biology, Physics, Chemistry, and Mathematics. There are 2,970 documents and 45,818 links. The vocabulary size is 3,287.

The third dataset is ODP composed of homepages of researchers and their first level outlinked pages (cited documents). We randomly selected five subjects from the ODP archive. They are Cognitive Science (CogSci), Theory, NeuralNetwork (NN), Robotics, and Statistics. There are 3,679 pages and 2,872 links. The vocabulary size is 3,529.

WebKB and Wikipedia are public datasets widely used in topic model studies. ODP was collected by us in this work.

4.2 Topic Discovery
We created four topic models HTM, LDA, Link-LDA, and Link-PLSA-LDA using all the data in each of the three datasets, and evaluated the topics obtained in the models. We heuristically set the numbers of topics as 10 for ODP, 12 for WebKB, and 8 for Wikipedia (i.e., two times of the number of true subjects). We found that overall HTM can construct more understandable topics than the other models. Figure 2 shows the topics related to the subjects created by the four models from the ODP dataset. HTM model can more accurately extract the three topics: Theory, NN, and Statistics than the other models. Both LDA and Link-LDA had mixed topics, labeled as ‘Mixed’ in Figure 2. Link-PLSA-LDA missed the topic of Statistics. Interestingly, all the four models split Cognitive Science into two topics (showed as CogSci-1 and CogSci-2), probably because the topic itself is diverse.

4.3 Document Classification
We applied the four models in the three datasets to document classification. Specifically, we used the word distributions of documents created by the models as feature vectors of the documents and used the subjects in the datasets as categories. We further randomly divided each dataset into three parts (training, validation, and test) and conducted 3-fold cross-validation experiments. In each trial, we trained an SVM classifier with the training data, chose parameters with the validation data, and conducted evaluation on classification with the test data. For HTM, we chose the best λ value with the validation set in each trial. Table 2 shows the classification accuracies. We can see that HTM performs better than the other models in all three datasets.

We conducted sign-tests on all the results of the datasets. In most cases HTM performs statistically significantly better than LDA, Link-LDA, and Link-PLSA-LDA (p-value < 0.05). The test results are shown in Table 3.

4.4 Discussion
We conducted analysis on the results to see why HTM can work better. Figure 3 shows an example homepage from the ODP dataset, where superscripts denote the indexes of outlinked pages. The homepage contains several topics, including Theory, Neural network, Statistics, and others, while the cited pages contain detailed information about the topics. Table 4 shows the topics identified by the four models for the homepage. We can see that HTM can really more accurately identify topics than the other models.

The major reason for the better performance by HTM seems to be that it can fully leverage the infor-

Table 2: Classification accuracies in 3-fold cross-validation.

Dataset	LDA	HTM	Link-LDA	Link-PLSA-LDA
ODP	0.640	0.698	0.535	0.581
WebKB	0.786	0.795	0.775	0.774
Wikipedia	0.845	0.866	0.853	0.855

Table 3: Sign-test results between HTM and the three baseline models.

Dataset	LDA	Link-LDA	Link-PLSA-LDA
ODP	0.0237	2.15e-05	0.000287
WebKB	0.0235	0.0114	0.00903
Wikipedia	1.79e-05	0.00341	0.00424

Table 4: Comparison of topics identified by the four models for the example homepage. Only topics with probabilities > 0.1 and related to the subjects are shown.

Model	Topics	Probabilities
LDA	Mixed	0.537
HTM	Theory	0.229
	NN	0.278
	Statistics	0.241
Link-LDA	Statistics	0.281
Link-PLSA-LDA	Theory	0.527
	CogSci-2	0.175
Figure 2: Topics identified by four models

(a) LDA
(b) HTM
(c) Link-LDA
(d) Link-PLSA-LDA

Figure 3: An example homepage: http://www.cs.utoronto.ca/~radford/
Table 5: Word assignment in the example homepage.

Word	b_{dn}	c_{dn}	Topic	Probability
mcmc	0.544	2	Stat	0.949
experiment	0.546	2	Stat	0.956
Neal	0.547	8	NN	0.985
likelihood	0.550	2	Stat	0.905
Sample	0.557	2	Stat	0.946
Statistic	0.559	2	Stat	0.888
Parameter	0.563	2	Stat	0.917
Perform	0.565	2	Stat	0.908
Carlo	0.568	2	Stat	0.813
Monte	0.570	2	Stat	0.802
Toronto	0.572	8	NN	0.969
Distribution	0.578	2	Stat	0.888
Slice	0.581	2	Stat	0.957
Energy	0.581	13	NN	0.866
Adaptation	0.591	7	Stat	0.541

The table also gives the values of c_{dn}, indicating which cited documents have the strongest influence. Furthermore, the topics having the largest posterior probabilities for the words are also shown. We can see that the words 'experiment', 'sample', 'parameter', 'perform', and 'energy' are accurately classified. Table 6 gives the most salient topics of cited documents. It also shows the probabilities of the topics given by HTM. We can see that there is a large agreement between the most salient topics in the cited documents and the topics which are affected the most in the citing document.

Parameter λ is the only parameter in HTM which needs to be tuned. We found that the performance of HTM is not very sensitive to the values of λ, which reflects the degree of influence from the cited documents to the citing document. HTM can perform well with different λ values. Figure 4 shows the classification accuracies of HTM with respect to different λ values for the three datasets. We can see that HTM works better than the other models in most of the cases (cf., Table 2).

5 Conclusion

In this paper, we have proposed a novel topic model for hypertexts called HTM. Existing models for processing hypertexts were developed based on the assumption that both words and hyperlinks are stochastically generated by the model. The generation of latter type of data is actually unnecessary for representing contents of hypertexts. In the HTM model, it is assumed that the hyperlinks of hyper-
texts are given and only the words of the hypertexts are stochastically generated. Furthermore, the word distribution of a document is determined not only by the topics of the document in question but also from the topics of the documents which the document cites. It can be regarded as ‘propagation’ of topics reversely along hyperlinks in hypertexts, which can lead to more accurate representations than the existing models. HTM can naturally mimic human’s process of creating a document (i.e., by considering using the topics of the document and at the same time the topics of the documents it cites). We also developed methods for learning and inferring an HTM model within the same framework as LDA (Latent Dirichlet Allocation). Experimental results show that the proposed HTM model outperforms the existing models of LDA, Link-LDA, and Link-PLSA-LDA on three datasets for topic discovery and document classification.

As future work, we plan to compare the HTM model with other existing models, to develop learning and inference methods for handling extremely large-scale data sets, and to combine the current method with a keyphrase extraction method for extracting keyphrases from web pages.

6 Acknowledgement

We thank Eric Xing for his valuable comments on this work.

References

Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval. ACM Press/Addison-Wesley.

David Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet allocation. Journal of machine Learning Research, 3:993–1022.

David Blei and John Lafferty. 2005. Correlated Topic Models. In Advances in Neural Information Processing Systems 12.

David Blei and John Lafferty. 2006. Dynamic topic models. In Proceedings of the 23rd international conference on Machine learning.

Chaitanya Chemudugunta, Padhraic Smyth, and Mark Steyvers. 2007. Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model. In Advances in Neural Information Processing Systems 19.

David Cohn and Huan Chang. 2000. Learning to Probabilistically Identify Authoritative Documents. In Proceedings of the 17rd international conference on Machine learning.

David Cohn and Thomas Hofmann. 2001. The missing link - a probabilistic model of document content and hypertext connectivity. In Neural Information Processing Systems 13.

Laura Dietz, Steffen Bickel and Tobias Scheffer. 2007. Unsupervised prediction of citation influences. In Proceedings of the 24th international conference on Machine learning.

Elena Erosheva, Stephen Fienberg, and John Lafferty. 2004. Mixed-membership models of scientific publications. In Proceedings of the National Academy of Sciences, 101:5220–5227.

Thomas Griffiths and Mark Steyvers. 2004. Finding Scientific Topics. In Proceedings of the National Academy of Sciences, 101 (suppl. 1).

Thomas Griffiths, Mark Steyvers, David Blei, and Joshua Tenenbaum. 2005. Integrating Topics and Syntax. In Advances in Neural Information Processing Systems, 17.

Amit Gruber, Michal Rosen-Zvi, and Yair Weiss. 2008. Latent Topic Models for Hypertext. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence.

Thomas Hofmann. 1999. Probabilistic Latent Semantic Analysis. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence.

Michael Jordan, Zoubin Ghahramani, Tommy Jaakkola, and Lawrence Saul. 1999. An Introduction to Variational Methods for Graphical Models. Machine Learning, 37(2):183–233.

QiaoZhu Mei, Deng Cai, Duo Zhang, and ChengXiang Zhai. 2008. Topic Modeling with Network Regularization. In Proceeding of the 17th international conference on World Wide Web.

Thomas Minka and John Lafferty. 2002. Expectation-Propagation for the Generative Aspect Model. In Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence.

Ramesh Nallapati and William Cohen. 2008. Link-PLSA-LDA: A new unsupervised model for topics and influence of blogs. In International Conference for Weblogs and Social Media.

Martin Wainwright, and Michael Jordan. 2003. Graphical models, exponential families, and variational inference. In UC Berkeley, Dept. of Statistics, Technical Report, 2003.

Xing Wei and Bruce Croft. 2006. LDA-based document models for ad-hoc retrieval. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval.