PAPER

pQCD running couplings finite and monotonic in the infrared: when do they reflect the holomorphic properties of spacelike observables?

Carlos Contreras¹, Gorazd Cvetič ² and Oscar Orellana²

¹ Department of Physics, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
² Department of Mathematics, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

Abstract

We investigate a large class of perturbative QCD (pQCD) renormalization schemes whose beta functions \(\beta(\alpha) \) are meromorphic functions of the running coupling and give finite positive value of the coupling \(\alpha(Q^2) \) in the infrared regime ('freezing'), \(\alpha(Q^2) \to \alpha_0 \) for \(Q^2 \to 0 \). Such couplings automatically have no singularities on the positive axis of the squared momenta \(Q^2 (\equiv -q^2) \). Explicit integration of the renormalization group equation (RGE) leads to the implicit (inverted) solution for the coupling, of the form \(\ln(Q^2/Q_0^2) = \mathcal{H}(\alpha) \). An analysis of this solution leads us to an algebraic algorithm for the search of the Landau singularities of \(\alpha(Q^2) \) on the first Riemann sheet of the complex \(Q^2 \)-plane, i.e., poles and branching points (with cuts) outside the negative semiaxis. We present specific representative examples of the use of such algorithm, and compare the found Landau singularities with those seen after the 2-dimensional numerical integration of the RGE in the entire first Riemann sheet, where the latter approach is numerically demanding and may not always be precise. The specific examples suggest that the presented algebraic approach is useful to find out whether the running pQCD coupling has Landau singularities and, if yes, where precisely these singularities are.

1. Introduction

According to general principles of Quantum Field Theories, the physical spacelike observables \(\mathcal{D}(Q^2) \) (such as the quark current correlators) and even unphysical amplitudes (such as the dressing functions of quark and transverse gluon propagators in QCD) are holomorphic (analytic) functions in the complex \(Q^2 \)-plane (where \(Q^2 \equiv -q^2 = -(q^1)^2 + q^2 \)) except on the negative \(Q^2 \) semiaxis [1, 2]. On the other hand, QCD running coupling \(\alpha(Q^2) \equiv \alpha_s(Q^2)/\pi \) can be defined, in a specific renormalization scheme, as a product of the Landau gauge gluon dressing function and the square of the ghost dressing function [3]. Further, the leading-twist part of the complex physical QCD amplitudes \(\mathcal{D}(Q^2) \) is a function of the running coupling, \(\mathcal{D}(Q^2) = \mathcal{F}(\alpha_s(Q^2); \kappa) \) (where \(\kappa \sim 1 \) is a positive renormalization scale parameter). Therefore, a natural consequence of the holomorphic behaviour of QCD amplitudes \(\mathcal{D}(Q^2) \) would be that QCD running coupling \(\alpha(Q^2) \) reflected these properties, i.e., that \(\alpha(Q^2) \) were a holomorphic function in the complex \(Q^2 \)-plane with the exception of a negative semiaxis, \(Q^2 \in \mathbb{C} \setminus [\kappa \sim 1] \), where \(\mathcal{M}_{\text{th}} \), \(\kappa \mathcal{M}_{\text{th}} \), where \(\mathcal{M}_{\text{th}} \) is a threshold mass, \(0 < \mathcal{M}_{\text{th}} < 0.1 \text{ GeV}^2 \).

However, the QCD coupling \(\alpha(Q^2) \) is evaluated often in such renormalization schemes in which it is not an observable, and consequently \(\alpha(Q^2) \) is not a holomorphic [on \(\mathbb{C} \setminus [\kappa \sim 1] \)] function, but it may have singularities in the mentioned region, called Landau singularities. These singularities are a serious problem especially in evaluations of low-energy QCD observables, where the coupling often has to be evaluated in the regimes of the complex \(Q^2 \)-plane which are close to those singularities and thus the obtained values lose predictability. Therefore, it is important to have a reliable method to find whether such Landau singularities exist, and if they exist, where in the complex \(Q^2 \)-plane they are situated and what is their nature.

Specifically, if the considered observable \(\mathcal{D}(Q^2) \) is spacelike and the spacelike momentum \(Q^2 \) is positive, the leading-twist part of \(\mathcal{D}(Q^2) \) is evaluated as a perturbation series in powers of \(\alpha_s(Q^2) \) where \(\kappa \) is a positive

© 2021 The Author(s). Published by IOP Publishing Ltd
renormalization scale parameter ($\kappa \sim 1$); if the coupling $a(Q^2)$ has Landau singularities in the complex Q^2-plane at values on or close to the positive semiaxis, then the evaluation of $\mathcal{D}(Q^2)$ becomes unreliable for Q^2 close to such Landau singularities.

Further, if the considered QCD observable $\mathcal{R}(s)$ is timelike ($s = -Q^2 > 0$), then it is usually evaluated as a contour integral involving the corresponding spacelike quantity $\Pi(Q^2)$ in the complex Q^2-plane, with a contour of radius $|Q^2| \sim s$. In such a case, there are at least two problems appearing when $a(Q^2)$ has Landau singularities in the complex Q^2-plane. The first is the following: the quantity $\mathcal{R}(s)$ is originally expressed as an integral involving the corresponding physical (measured) spectral function $\omega(\sigma) = \text{Im} (\sigma - \sigma^* - i\epsilon)$ along the physical cut $0 < \sigma < s$; this integral cannot be evaluated directly in pQCD; it is transformed via the Cauchy theorem into a contour integral involving $\Pi(Q^2)$ along a circle of radius $|Q^2| \sim s$ (a form of sum rules). In pQCD, the leading-twist part of the spacelike quantity $\Pi(Q^2)$ in this contour integral is usually expressed as a perturbation series in powers of $a(\kappa Q^2)$ where κ is a positive renormalization scale parameter, $\kappa \sim 1$. If the pQCD coupling has Landau singularities, the evaluated $\Pi(Q^2) = \mathcal{F}(a(\kappa Q^2))$ function does not possess the holomorphic properties in the complex Q^2-plane (outside the negative axis) which it was assumed to possess when applying the Cauchy theorem. The mentioned sum rule relation is thus inconsistent in the case of pQCD with Landau singularities. The second problem that can appear here is more of a practical nature: if there are Landau singularities Q^2_0 in the complex Q^2-plane such that $|Q^2_0| \sim s$, then the contour integral may come close to such singularities and the evaluation may turn numerically unstable.

The perturbative QCD (pQCD) frameworks usually used in the literature are the $\overline{\text{MS}}$-type mass independent renormalization schemes (such as $\overline{\text{MS}}$, 't Hooft, MiniMOM, Lambert schemes), which give the running coupling $a(Q^2)$ which is not holomorphic in the mentioned sense, but has a (Landau) branching point at $Q^2_0 > 0$ ($\sim 0.1-1$ GeV2) for the cut, i.e., the cut reaches beyond the negative semiaxis to the positive IR regime, i.e., there is a Landau ghost cut ($0, Q^2_0$). Further, the coupling often diverges at the branching point, $a(Q^2_0) = \infty$ (Landau pole). These properties are mathematical consequences of the form of the beta function $\beta(a)$ which appears in the RGE determining the flow of $a(Q^2)$ with the squared momentum Q^2. These properties contradict the earlier mentioned holomorphic properties for $a(Q^2)$ which are motivated physically. If the Landau branching point Q^2_0 is on the (positive) real axis, it is relatively straightforward to encounter it in practice, for example by one-dimensional numerical integration of the RGE along the positive Q^2-axis. On the other hand, if there are no Landau singularities on the positive real semiaxis, they could still appear within the complex plane $Q^2 \in \mathbb{C} \setminus \mathbb{R}$; in such a case, it may be practically more difficult to find whether such singularities exist, and if they do exist, where they are and what is their nature. In this work we will concentrate on this problem, in the case of pQCD couplings in large classes of mass-independent renormalization schemes.

In our work, the considered QCD coupling $a(Q^2) \equiv \alpha_s(Q^2)/\pi$ will be such that it has so called freezing in the infrared regime, i.e., $a(0) = a_0$ is finite positive. This behaviour is suggested by the scaling solutions for the gluon and ghost propagators in the Landau gauge in the Dyson-Schwinger equations (DSE) approach [3–7], in the functional renormalization group (FRG) approach [8–10], stochastic quantization [11], and by Gribov-Zwanziger approach [12, 13]. Further, $0 < a(0) \equiv a_0 < +\infty$ is also obtained in various physically motivated models for the running QCD coupling, among them the minimal analyticity dispersive approach [14–35] and its modifications or extensions [36–55], and the AdS/CFT correspondence modified by a dilaton background [56, 57]. For reviews, we refer to [58, 59]. Such a behaviour has also been suggested in [60], where the running coupling definition involves explicitly the dynamical gluon mass and thus gives positive (nonzero) $a(0)$ even in the case of so called decoupling solution of DSE [61–65] for gluon and ghost propagator in the Landau gauge. All these approaches lead to nonperturbative (NP) running coupling $A(Q^2)$, which in general differs from the underlying perturbative coupling $a(Q^2)$ (i.e., the pQCD coupling in the same renormalization scheme) by power terms $\sim 1/(Q^2)^n$, i.e., terms of the type $\exp(-C/a)$ which cannot be Taylor-expanded around the pQCD point $a = 0$.

However, there are also pure pQCD frameworks (beta functions) in which the running coupling achieves a finite positive value in the infrared limit $a(0) \equiv a_0 < \infty$. Among such couplings are those where the coupling is a physical observable, such as in the effective (physical) charge approach [102–105] (cf. also [106]) where the coupling is a (spacelike or timelike) observable; such an observable can have variable and even very low

3. Similar dispersive approaches have been applied also directly to spacelike QCD amplitudes and observables [66–74]. Dispersive approach leading to $a(0) = +\infty$ has been constructed in [75–78].

4. Some newer lattice results [79–84] suggest the so called decoupling solution, i.e., that in the Landau gauge the gluon propagator is finite in the infrared and the ghost propagator is not infrared enhanced, indicating that the running coupling, if defined as the mentioned product of dressing functions, at very low positive Q^2 goes to zero as $A(Q^2) \sim Q^2$. Such a behaviour of the running coupling is also suggested or obtained in the works [89–96]. A holomorphic coupling $A(Q^2)$ respecting this behaviour in the infrared, $A(0) = 0$, and perturbative QCD in the ultraviolet regime, has been constructed in [97]. When defining a lattice coupling which involves the lattice-calculated 3-gluon Green function [98–101], a different but qualitatively similar behaviour $[A_{\text{lat}}(Q^2) \rightarrow 0$ when $Q^2 \rightarrow 0]$ is obtained. We will not pursue these lines in this work.
momentum scales $|Q^2| < 1 \text{ GeV}^2$, and such physical charges can even be related at the perturbative level to each other analytically. Application of the principle of minimal sensitivity also leads to schemes which give finite positive value of $a(0)$. There exist yet other renormalization schemes with $a(0) > 0$, namely such that the resulting pQCD coupling $a(Q^2)$ is holomorphic in $Q^2 \in \mathbb{C}\ (-\infty, -M_{\text{thr}}^2)$ with $0 < M_{\text{thr}}^2 \sim 0.1 \text{ GeV}^2$ and reproduces the correct high- and low-energy QCD phenomenology.

In section 2 we define the class of considered pQCD beta functions $\beta(a)$ (i.e., renormalization schemes), which are meromorphic functions leading to a finite positive $a(0)$, present the implicit solution of the RGE in the complex Q^2-plane, and discuss the renormalization scheme parameters β_i ($j \geq 2$) that such beta functions generate. In section 3 we then present a practical algebraic procedure which allows us to find for a chosen beta function (in the considered class) the Landau singularities in the complex Q^2-plane, i.e., the points where the behaviour of the running coupling $a(Q^2)$ does not reflect the holomorphic properties of the spacelike Green functions $D(Q^2)$ as required by the general principles of Quantum Field Theories. In section 4 we present some practical examples, and check with (2-dimensional) numerical integration of the RGE in the complex Q^2-plane that the algebraic procedure gives us the correct answer. In section 5 we summarize our results.

2. Implicit solution of the renormalization group equation

The renormalization group equation (RGE) for the coupling parameter $F(z) \equiv a(Q^2) \equiv \alpha_s(Q^2)/\pi$, where $z \equiv \ln(Q^2/Q_m^2)$ is in general complex (and the initial scale is $Q_m^2 > 0$), can be written in the following way:

$$\frac{dF(z)}{dz} = \beta(F(z)),$$

where the beta function $\beta(F)$ characterizes a mass independent renormalization scheme in perturbative QCD (pQCD), i.e., it has a well defined expansion around $F = 0$

$$\beta(F)_{\exp} = -\beta_0 F^2 - \beta_1 F^3 - \beta_2 F^4 - \ldots .$$

Here, β_0 and β_1 are universal constants, $\beta_0 = (11 - 2n_f/3)/4$ and $\beta_1 = (102 - 38n_f/3)/16$, where n_f is the number of active quark flavours. In the low-momentum regime ($|Q^2| \lesssim 10^4 \text{ GeV}^2$), this number is usually taken to be $n_f = 3$, corresponding to the three lightest, almost massless, active quarks u, d and s. The coefficients β_j ($j \geq 2$) characterize the pQCD renormalization scheme.

As mentioned in the Introduction, there exist several theoretical arguments which suggest that the running coupling $F(z) \equiv a(Q^2)$ is a finite function for all positive Q^2 and that it possibly acquires a finite positive value in the infrared limit, $0 < a(0) \equiv a_0 < +\infty$. In this case, it turns out that $\beta(F)$ for positive couplings $F \equiv a$ has a root at $F = a_0$ [and double root at $F = 0$ according to equation (2)], and for $0 < F < a_0$ it has no roots. In view of this, we will consider the following class of beta functions:

$$\beta(F) \equiv \beta(F_{\text{JM/N}}) = -\beta_0 F^2 (1 - Y) \left. \frac{T_M(Y)}{U_N(Y)} \right|_{F = F/a_0},$$

where $T_M(Y)$ and $U_N(Y)$ are polynomials of degree M and N, respectively, both normalized in such a way that $T_M(0) = 1 = U_N(0)$. Specifically, we denote as $1/t_j$ the roots of $T_M(Y)$, and $1/u_k$ the roots of $U_N(Y)$

$$T_M(Y) = (1 - t_1 Y) \cdots (1 - t_M Y),$$

$$U_N(Y) = (1 - u_1 Y) \cdots (1 - u_N Y).$$

The parameters t_j and u_k are such that the polynomials $T_M(Y)$ and $U_N(Y)$ have real coefficients; this means that some of these parameters t_j and u_k can be real, and others complex conjugate pairs. We will restrict ourselves, for physical reasons, to such beta functions of the form (3) in which those t_j and u_k which are real and positive are all below unity: $0 < t_j < 1$ and $0 < u_k < 1$. This means that:

- $a = a_0$ is the smallest positive root of the beta function;
- and that all those poles of the beta function which are positive are larger than a_0.

If the latter conditions were not fulfilled, the running coupling $a(Q^2)$ would obviously have (Landau) singularities on the positive Q^2-axis, contradicting the theoretical arguments mentioned in the Introduction. The former condition only means that we define a_0 as the smallest positive root of the beta function, and demand that at least one such positive root exist. An important practical consequence of these restrictions will be highlighted in section 3 (the first paragraph).

The first universal coefficient β_0 in the expansion of the beta function (2) is reproduced automatically by our construction. The second universal coefficient β_1 in equation (2) imposes the following restriction on the polynomials $T_M(Y)$ and $U_N(Y)$:

...
\[-\sum_{j=1}^{M} t_j + \sum_{k=1}^{N} u_k = 1 + \beta_1 a_0 / \beta_0, \tag{5}\]

In addition, we will restrict the considered class of meromorphic beta functions to \(M + 1 \geq N \). In such a case, it turns out that the RGE (1) can be integrated algebraically and leads to an implicit solution of the form \(z = G(F) \) [for \(F \equiv F(z) \)]. Namely, the integration of the RGE (1) gives

\[z = \int_{a_0}^{F} \frac{dF'}{\beta(F')}, \tag{6} \]

and if we introduce a new integration variable \(t \equiv a_0 / F \), this can be written as

\[z = \frac{1}{\beta_0 a_0} \int_{a_0/F}^{a_0} dt \frac{t U_N(1/t)}{(t - t_1)(t - t_2) \cdots (t - t_M)}, \tag{7} \]

where \(a_{in} = a(Q_{in}^2) = F(z = 0) \) has a real positive value, \(0 < a_{in} < a_0 \). When \(M + 1 \geq N \), the integrand can be written as a sum of simple partial fractions \(1 / (t - t_j) \), where \(t_0 = 1 \) and \(t_j (j = 1, \ldots, M) \) are the roots of the \((M-\)degree) polynomial \(t^M T_M(1/t) \)

\[t^M T_M(1/t) \equiv t^M (1 - t_1 / t) \cdots (1 - t_M / t) = (t - t_1) \cdots (t - t_M). \tag{8} \]

Namely, we have

\[t U_N(1/t) \frac{t^M + 1}{(t - t_1)(t - t_2) \cdots (t - t_M)} = 1 + \sum_{j=0}^{M} B_j \frac{1}{(t - t_j)}, \tag{9a} \]

where the \(M + 1 \) constants \(B_j \) are

\[B_j = \frac{t_j^{M+1} U_N(1/t)}{(t_j - t_0) \cdots (t_j - t_{j-1})(t_j - t_{j+1}) \cdots (t_j - t_M)}. \tag{9b} \]

As a special case, we see that

\[B_0 = U_N(1) / T_M(1), \tag{11} \]

which is a real number. Using this, and the expression (3), we also obtain the following relation:

\[\beta'(a) \big|_{a = a_0} = \beta_0 a_0 \frac{T_M(1)}{U_N(1)} = \frac{\beta_0 a_0}{B_0}. \tag{12} \]

Incidentally, in the limit of large \(t \) the relations (9a) imply the following sum rule:

\[\sum_{j=0}^{M} B_j = 1 - t_1^{(M+1)} + t_1^{(N+1)} = - \frac{\beta_0 a_0}{\beta_0}, \tag{13} \]

where the last equality is obtained by using the relation (5). Using the form (9b) for the integrand in equation (7) leads us immediately to the implicit solution of the RGE

\[z = \frac{1}{\beta_0 a_0} \left(\frac{a_0}{F(z)} - \frac{a_0}{a_{in}} + \sum_{j=0}^{M} B_j \ln \left(\frac{a_0/F(z) - t_j}{a_0/a_{in} - t_j} \right) \right). \tag{14} \]

Each logarithm has an ambiguity (winding number) because

\[\ln A = \ln_{\text{ph}} A + i2\pi n_{A} = \ln|A| + i \text{Arg}(A) + i2\pi n_{A}, \quad (n_{A} = 0, \pm 1, \pm 2, \ldots), \tag{15} \]

where \(\ln_{\text{ph}} \) is the principal branch: \(- \pi \leq \text{Arg}(A) \leq +\pi\); further, \(n_A \) is the winding number representing the ambiguity. When \(A \) is positive, we consider that \(\ln A \) is automatically the principal branch. This would then suggest that the right-hand side of equation (14) has \(M + 1 \) independent winding numbers \(n_j \) correspondig to each logarithm there. The physically acceptable winding numbers of the logarithms on the right-hand side of equation (14) are such that they give for the expression (14) a number \(z = \ln(Q^2/Q_{\text{in}}^2) \) corresponding to the squared impulse \(Q^2 \) on the first Riemann sheet, i.e., \(|\ln z| \leq \pi \) (cf. also the discussion in the beginning of section 3.1).

However, in general some of the roots \(t_j \) of the polynomial \(T_M(Y) \), equation (4a), are not real, but form complex conjugate pairs. For example, if the first complex conjugate pair is \((t_1, t_2 = t_1^*)\), then it is straightforward to check that the corresponding coefficients \(B_1 \) and \(B_2 \) are mutually complex conjugate, and the corresponding two terms in the sum (9b) are
In general, the use of relation

\[(t - t_0) \Rightarrow \text{principal branch} \]

where we regard as the principal branch.

We note that among the terms in equation (14) can be rewritten more explicitly, for the case when \(t_j \) are complex conjugate pairs and \(t_j \) are real, we consider that

\[A = \exp(i\theta) \quad (|\theta| \leq \pi) \]

\[\text{ArcTan}(A) = \text{ArcTan}(\exp(i\theta)) = \pi n_k, \quad (n_k = 0, \pm 1, \pm 2, \ldots), \]

where we regard as the principal branch \(\text{ArcTan}(A) \) the one which fulfills the inequality \(-\pi/2 < \text{ReArcTan}(\exp(i\theta)) \leq +\pi/2 \). When \(A \) is real, we consider that \(\text{ArcTan} \) is automatically the principal branch.

Further, each of the \(M + 1 \) z-dependent logarithmic appearing in equation (18) has a winding number according to the relation (15). This means that we have in general in total \(M + 1 \) winding numbers. This realization will play a role in the next section 3.

We recall that the considered \(\beta(a) \) functions are such that \(a(Q^2) \) is a holomorphic function in and around any positive point \(Q^2 > 0 \). However, at \(Q^2 = 0 \), where \(a = a_0 < \infty \), the function \(a(Q^2) \) could be nonholomorphic (nonanalytic), i.e., certain (high enough) derivative \(d/dQ^2)^n a(Q^2) \) at \(Q^2 = 0 \) could be infinite. In our considered cases we have for the Taylor expansion around \(Q^2 = 0 \)

\[a(Q^2) = a_0 + C_0 \left(\frac{Q^2}{\mathcal{N}} \right)^n + C_1 \left(\frac{Q^2}{\mathcal{N}} \right)^{2n} + \ldots \]

This implies

\[\beta(a(Q^2)) = \kappa (a(Q^2) - a_0) + \mathcal{O}((a(Q^2) - a_0)^2), \]

\[\Rightarrow \beta'(a)|_{a=a_0} = \kappa. \] (21b)

The use of relation (12) then gives the power index \(\kappa \) in terms of the parameters contained in the considered beta function equation (3)

\[\kappa = \beta_0 a_0 \frac{T_0(1)}{C_N(1)} = \beta_0 a_0 \frac{T_0(1)}{B_0}. \] (22)

In general, \(\kappa \) is noninteger, and consequently the coupling is in general not analytic at \(Q^2 = 0 \) (\(\varepsilon = -\infty \)).

We wish to point out that the class of the \(\beta \)-functions considered here, equation (3), in addition to having a Padé form \(P/M + 3/N)(a) \), have specific restrictions which result in a finite positive and monotonically decreasing running coupling \(a(Q^2) < a_0 \) on the entire nonnegative \(Q^2 \)-axis \(Q^2 \geq 0 \) with \(a(Q^2) \to a_0 \) when

\[\text{the corresponding contribution to the integral (17) is} \]

\[\frac{1}{\beta_0 a_0} \int_{a_0/a_n}^{a_n/F} dt \frac{t \text{Re}(B_i) - \text{Re}(t_i^* B_i)}{t^2 - 2t \text{Re}(t_i) + |t_i|^2} \]

\[= \frac{1}{\beta_0 a_0} \left\{ \text{expression on the right-hand side of equation (14)} \right\} \]

\[+ (\text{realization will play a role in the next section 3}). \]

Therefore, the expression on the right-hand side of equation (14) can be rewritten more explicitly, for the case
$Q^2 \to 0$. This is reflected in the formal requirement that those of the parameters t_j and u_k of equations (4a) which are not complex and are positive must fulfill the restrictions $0 < u_k < 1$ and $0 < t_j < 1$.

On the other hand, there are special classes of Padé-type QCD β-functions which do not fulfill the above restrictions [i.e., they do not give finite $a(Q^2)$ on the entire positive Q^2-axis], but give explicit solutions $a(Q^2)$ of the RGE where $a(Q^2)$ involves the Lambert function W. Specifically, when $\beta(a)$ is of a Padé-form $P[2/1](a)$ such that it reproduces the correct β-coefficients up to two-loop (β_0, β_1) [113–117]; when $\beta(a)$ is of a Padé-form $P[3/1](a)$ such that it reproduces the chosen β-coefficients up to three-loop ($\beta_j, j = 0, 1, 2$) [115]; when $\beta(a)$ is of a Padé-form $P[4/4](a)$ reproducing the chosen β-coefficients up to four-loop ($\beta_{j}, j = 0, 1, 2, 3$) [118] and even up to five-loop [118] [in that case $\beta(a)$ is of a Padé-form $P[5/6](a)$].

In the considered class of β-functions (3)–(4a), with the mentioned restrictions $t_j < 1$ and $u_k < 1$ when t_j or u_k are real, the following question may arise: when expanding the β-function in powers of F, equation (2), which values of the renormalization scheme parameters $c_n \equiv \beta_n/\beta_0 (n \geq 2)$ can be generated? Direct expansion gives the relations

$$c_n^{(f)} \equiv a_0^{(f)} c_n = \sum_{k=0}^{n} (-1)^{n-k} \sum_{i_1, \ldots, i_{n-k}} t_{i_1} \cdots t_{i_{n-k}} \sum_{k} u_{k_1} \cdots u_{k_n}$$

where the sum is over $0 \leq j_1 < \ldots < j_{n-k} \leq M$ (taking $t_0 = 1$ and $1 \leq k_1 < \ldots < k_n \leq N$. For $n = 1$ this relation reduces to the condition (5), where $c_1 \equiv \beta_1/\beta_0$ is a universal coefficient ($c_1 = 51/22$ when $n_1 = 0$; $c_1 = 16/9$ when $n_2 = 3$). In a considered β-function form (3), for chosen M and N and a chosen value of $a_0 \equiv a(0) > 0$, the relation (5) relates the $(M + N)$ parameters $t_j (1 \leq j \leq M)$ and $u_k (1 \leq k \leq N)$, and consequently we have $(M + N - 1)$ degrees of freedom (d.o.f.). These $(M + N - 1)$ d.o.f. then give us the first $(M + N - 1)$ independent scheme parameters c_{j1}, \ldots, c_{jM+N}. It turns out that in general the values of the latter scheme parameters cover the entire real axis (i.e., all the values) once the $(M + N - 1)$ independent coefficients t_j and u_k are varied across all the allowed range; the only exception may be the last scheme coefficient c_{jM+N} which may vary only over a part of the real axis.

For example, if $M + N = 2$, only the first scheme parameter $c_2 \equiv \beta_2/\beta_0$ is independent. More specifically, there are three cases

$$M = N = 1 \Rightarrow c_2 < \frac{3\beta_1}{a_0}, \quad (24a)$$
$$M = 2 \& N = 0 \Rightarrow \frac{1}{a_0} \left(\frac{3}{a_0} + 2\beta_1 \right) < c_2. \quad (24b)$$
$$M = 0 \& N = 2 \Rightarrow c_2 < \max \left[\frac{1}{4} \left(\frac{1}{a_0} + \beta_1 \right), \frac{1}{a_0} + \frac{3\beta_1}{a_0} \right] \quad (24c)$$

When $M = N = 1$, the coefficients t_1 and u_1 must be real and are thus both below unity ($t_1, u_1 < 1$), which gives us the restriction (24a). When $M = 2$ and $N = 0$, and t_1 and t_2 are mutually complex conjugate, the restriction on c_2 is $1/4(1/a_0 + \beta_1)(-3/a_0 + c_1) \leq c_2$; and when t_1 and t_2 are real (and thus below unity), the restriction is $-1/(a_0)(3/a_0 + c_1) < c_2 < 1/(a_0)(1/a_0 + c_1)(3/a_0 + c_1)$; combining these two restrictions gives us the restriction (24b). When $M = 0$ and $N = 2$, a similar analysis leads to the restriction (24c).

The infrared limit $a(0) \equiv a_0 (> 0)$ can be, in principle any number. Nonetheless, the QCD phenomenology requires in practice that $a_0 > (a_0)_{\text{min}}$. In such case, in all the restrictions (24a) we must replace a_0 by $(a_0)_{\text{min}}$.

We can see from the restrictions (24a) that in the case $M + N = 2$ the first (two-loop) scheme parameter c_2 covers all possible (real) values once we allow, for example, in addition to the form $M = N = 1$ also the form $M = 2$ and $N = 0$.

Alternatively, if enlarge the $M = N = 1$ form to the form $M = 2$ and $N = 1$, we can also see that this generates all possible values of c_2 (and a restricted range of values of c_3).

In general, for the first $(n - 1)$ scheme parameters $c_{j_n} \ldots c_{j_n}$ (where $n \geq 2$ is fixed), all their values can be generated if we consider a sufficiently large set of β-functions of the type (3), i.e., with various choices for the values of the indices M and N and with full variation of the parameters t_j and u_k under the mentioned restrictions.

3. Singularities (Landau) outside the real Q^2-axis

We note that, by restrictions on the beta function mentioned in the previous section, the running coupling $a(Q^2) \equiv F(z)$ has no singularities on the real positive Q^2-axis, i.e., there are no positive-Q^2 Landau singularities. This is so because $a(Q^2)$ is constrained there to run between the value $a(0) = a_0 (> 0)$ and $a(+\infty) = 0$, the latter equality being valid by the asymptotic freedom of QCD reflected in the form (2) of beta function when $F \to 0$. Namely, by our

6 Stated otherwise, there are Landau singularities on the positive Q^2-axis in such cases.
7 In the context of the $N = 1$ supersymmetric Yang-Mills theory, cf [119–121].
8 For a practical application, in a specific (MinMOM) scheme, cf [97].
restrictions on the class of considered $\beta(a)$ functions, when $a(Q^2)$ is RGE-running with increasing positive Q^2, beta function $\beta(a(Q^2))$ will be negative finite all the time, since no new roots or poles of the beta function are encountered. Therefore, by the mentioned restrictions on the roots and poles of the beta function (3) we ensured in advance that the positive-Q^2 Landau singularities (poles and/or cuts) do not exist.9

3.1. Landau poles

We will now construct an algebraic algorithm which allows us to verify whether in the (first Riemann sheet of the) complex Q^2-plane the solution (14) has poles outside the real Q^2-axis (Landau poles). We assume that only the first sheet of the complex Q^2-plane has physical meaning,10 i.e., $Q^2 = \sqrt{Q^2}$ exp(iϕ) where $-\pi < \phi < +\pi$. This corresponds for the $z \equiv \ln(Q^2/Q^2_0)$ variable to be a band in the complex z-plane with $-\pi \leq \Im z < +\pi$, cf. figures 1 (a), (b). As argued in the Introduction, if $a(Q^2)$ is to reflect the holomorphic properties of spacelike Green functions and observables, such as current correlators or structure functions, then $a(Q^2)$ can have singularities (cut) only along the negative Q^2-axis: $-\infty < Q^2 \leq -M_{th}^2$, where the threshold mass M_{th}^2 is either positive (~ 0.1 GeV2) or zero. This cut corresponds in the z-strip to the cut along the $\Im z = -\pi$ border line.

As explained, the possible Landau singularities in the considered pQCD renormalization schemes are within the Q^2-complex plane outside the real Q^2-axis. In the z-plane this corresponds to the possible Landau singularities within the interior of the z-stripe, $-\pi < z < +\pi$, but not along the real axis, $z \in \mathbb{R}$.

Landau pole z_* = $x_* + iy_*$ ($z_* < -M_{th}^2$, $x_* < 0$) is usually a branching point of a cut singularity of $F(z)$, such that $F(z_*) = \infty$, and it is situated on the first Riemann sheet outside the timelike semiaxis ($\Im z_* > \pi$). Let us denote $a_\theta(z) = F(z_*)$ ($0 < a_\theta < a_\theta$). We then apply the implicit solution equation (18) to the points $z_1 = x_*$ and $z_2 = x_* + iy_*$, and subtract the two equations; this then gives us the equation

\[y_\theta = \mathcal{G}_\theta(a_\theta) \]

where

\[
\mathcal{G}_\theta(a_\theta) \equiv \left[-i \frac{\beta_0}{a_\theta} \right] \left[-a_\theta + B_0 \left[\pi - \ln \left(\frac{a_\theta}{a_\theta - 1} \right) \right] + \sum_{j=2P+1}^{M} B_j \left[\ln(t_{j+1}) - \ln \left(\frac{a_\theta}{a_\theta - t_j} \right) \right] \right]
\]

\[
+ \frac{1}{\Im t_{j+1}} \left[(\Re B_{2P+1}) - \Re(t_{j+1} B_{2P+1}) \right] \left[\arctan \left(\frac{\Re t_{j+1}}{\Im t_{j+1}} \right) - \arctan \left(\frac{a_\theta/a_\theta - \Re t_{j+1}}{\Im t_{j+1}} \right) \right]
\]

\[
+ \frac{2\pi}{\beta_0 a_0} \left[B_0 n_0 + \sum_{j=2P+1}^{M} B_j n_j \right]
\]

\[
+ \frac{2\pi}{\beta_0 a_0} \sum_{k=0}^{P-1} (\Re B_{2P+1}) N_k + \frac{2\pi}{\beta_0 a_0} \sum_{k=0}^{P-1} (\Re(t_{j+1} B_{2P+1}) - (\Re B_{2P+1})(\Re t_{j+1})) N_k
\]

(26)

Here, we accounted for the nonuniqueness of the (z-dependent) logarithms equation (15) and ArcTan equation (19)

9 See also figure 8 at the end of section 4 for three representative cases of the running of $a(Q^2)$ for $Q^2 > 0$.

10 This assumption is related with the usual dispersive integral representation of the coupling $a(Q^2)$ = $\mathcal{G}(z)$, which is applicable in the first Riemann sheet.

Figure 1. (a) Complex Q^2-plane; (b) complex z-plane where $z = \ln(Q^2/Q^2_0)$; the physical stripe is $-\pi \leq \Im z < +\pi$.
\[
\lim_{y \to y_c} \ln \left(\frac{a_0}{F(x_a + iy)} - t_j \right) = \ln (\text{Re} \, a_0) - i2\pi n_j \quad (j = 0; \, 2P + 1, \ldots, M), \quad (27a)
\]

\[
\lim_{y \to y_c} \ln \left[\left(\frac{a_0}{F(x_a + iy)} \right)^2 - 2(\text{Re} \, t_{2k+1} - \text{Re} \, t_{2k+1}^*) + \left| t_{2k+1} \right|^2 \right] = \ln \left| t_{2k+1} \right|^2 + i2\pi N_k \quad (k = 0, \ldots, P - 1), \quad (27b)
\]

\[
\lim_{y \to y_c} \text{ArcTan} \left(\frac{a_0}{F(x_a + iy)} - \text{Re} \, t_{2k+1} \right) = \text{ArcTan} \left(\frac{-\text{Re} \, t_{2k+1}}{\text{Im} \, t_{2k+1}} \right) + \pi N_k, \quad (27c)
\]

where \((k = 0, \ldots, P - 1)\), and we denoted the \(M + 1\) winding numbers
\[
\vec{n} \equiv \{ n_0, n_{2P+1}, \ldots, n_M; \, N_0, \ldots, N_{P-1}; \, \bar{N}_0, \ldots, \bar{N}_{P-1} \}, \quad (28)
\]

where \(n_j, \, N_j, \, \bar{N}_j = 0, \pm 1, \pm 2, \ldots\). We note that the terms \(\ln (\text{Re} \, a_0) - t_j\) may have \(t_j\) either negative or positive, and therefore
\[
\ln (\text{Re} \, a_0) - t_j = \ln |t_j| + \Theta(t_j)i\pi. \quad (29)
\]

As a special case, we used in equation (26): \(\ln (-t_j) = \ln (-1) = i\pi\). We note that, since the real roots \(t_j\) fulfill the inequality \(t_j \leq 1\) [our initial physical restrictions on \(\beta\)-function, cf. comments after equations (4a)], the logarithm \(\ln (\text{Re} \, a_0 / a_a - t_j)\) in equation (26) is a real number because it has positive argument. For the same reason, also the \(P\)logarithms of the trinomials in \((a_0 / a_a)\) in equation (26) are real. We point out that that winding numbers \(\vec{n}\) appear when integrating the RGE (1) from \(z_1 = x_a\) to \(z_2 = x_a + iy^*\).

Equation (25) for the poles represents two equations, one for the imaginary and one for the real parts
\[
\text{Im} \, G_\beta(a_a) = 0, \quad \text{Re} \, G_\beta(a_a) = y^*_a, \quad (30)
\]

where
\[
\text{Im} \, G_\beta(a_a) \equiv \frac{1}{\beta_0 a_0} \left[B_0 \ln \left(\frac{a_0}{a_a} - 1 \right) + \sum_{j=2P+1}^M B_j \left(-\ln (\text{Re} \, a_0) - t_j \right) \right] + \sum_{k=0}^{P-1} 2(\text{Re} \, t_{2k+1}^* B_{2k+1} - (\text{Re} \, B_{2k+1}) (\text{Re} \, t_{2k+1})) - \text{ArcTan} \left(\frac{-\text{Re} \, t_{2k+1}}{\text{Im} \, t_{2k+1}} \right) \right) + \sum_{k=0}^{P-1} (\text{Re} B_{2k+1}) \left(-\ln |t_{2k+1}|^2 + \ln \left(\left(\frac{a_0}{a_a} \right)^2 - 2(\text{Re} \, t_{2k+1}) \frac{a_0}{a_a} + |t_{2k+1}|^2 \right) \right) + \sum_{k=0}^{P-1} \frac{2\pi}{\beta_0 a_0} \left(\text{Re} B_{2k+1} \right) N_k, \quad (31a)
\]

\[
\text{Re} \, G_\beta(a_a) \equiv \frac{2\pi}{\beta_0 a_0} \left(B_0 \left(\frac{n_0 + 1}{2} \right) + \sum_{j=2P+1}^M B_j \left(n_j + \frac{1}{2} \Theta(t_j) \right) + \sum_{k=0}^{P-1} (\text{Re} B_{2k+1}) N_k \right). \quad (31b)
\]

We note that \(\text{Im} \, G_\beta(a_a)\) depends only on the winding numbers \(N_k (k = 0, \ldots, P - 1)\) coming from ArcTan; and \(\text{Re} \, G_\beta(a_a)\) depends on the winding numbers \(n_j (j = 0, \, 2P + 1, \, 2P + 2, \ldots, M)\) and \(N_k (k = 0, \ldots, P - 1)\), both coming from logarithms.

The necessary conditions for the existence of a Landau pole are

1. \(\text{Im} \, G_\beta(a_a) = 0\) for a chosen set \(N_\vec{k} (k = 0, \ldots, P - 1)\), and the value \(a_a\) lies between 0 and \(a_0 \) \((0 < a_a < a_0)\);
2. and simultaneously, \(\text{Re} \, G_\beta(a_a) (= y^*_a)\) is within the interior of the first Riemann sheet, i.e., inside the first stripe of \(z_i | \text{Re} \, G_\beta(a_a) | < \pi\), for certain choices of \(n_j (j = 0, \, 2P + 1, \, 2P + 2, \ldots, M)\) and \(N_k (k = 0, \ldots, P - 1)\).

If, for example, all \(B_j\) coefficients are real, then \(\text{Im} \, G_\beta(a_a) = \text{Im} \, G_\beta(a)\); if in such a case \(\text{Im} \, G_\beta(a_a)\) has no zero in the positive interval \(0 < a_a < a_0\), then one necessary condition for the existence of Landau poles is not fulfilled, i.e., there are no Landau poles.
3.2. Landau branching points

In the previous Subsection we presented an algorithm which allows us to find, inside the complex \(z \)-stripe, the (Landau) poles where the coupling is infinite \(F(z) = \infty \). However, the complex function \(F(z) \) can have also another type of Landau singularities, namely a cut with a finite-valued branching point \(z_\beta \).

One illustrative mathematical example is \(F(z) = (z - z_\beta)^{1/2} \), where \(z_\beta = x_\beta + iy_\beta \) is such a branching point, \(F(z_\beta) = 0 \) and \(F'(z) = \infty \). The cut in this case is usually defined along the semiaxis to the left of \(z_\beta \) for \(x < x_\beta \).

However, we may worry at first that other, even more `finite,' type of Landau branching points \(z_\beta \not\in \mathbb{R} \) may appear, such as \(F(z) = (z - z_\beta)^{1/2} \), for which \(F'(z_\beta) < \infty \) and \(F''(z_\beta) = \infty \). We show that this does not occur for the considered class of meromorphic beta functions (3)–(4a). Namely,

\[
F''(z) = \frac{d}{dz} \beta(F(z)) = \beta(F(z)) \frac{\partial}{\partial F} \beta(F(z)).
\]

The poles of the right-hand side are at the same values \(F = a_0/a_j (j = 1, \ldots, N) \) as in the beta function \(\beta(F) \) itself, cf. equations (3)–(4a). This means that, if \(F'(z_\beta) = \infty \), then \(F''(z_\beta) = \infty \). We can continue this argumentation, by applying further derivatives \((d/\partial z)^n\) to equation (32). E.g., if \(F^{(3)}(z_\beta) = \infty \), then \(F''(z_\beta) = \infty \).

Therefore, the only relevant situation of finite-valued Landau branching points \(z_\beta \) for the considered beta functions is: \(F'(z_\beta) = \infty \) and \(F''(z_\beta) < \infty \). Since \(F'(z_\beta) = \beta(F(z_\beta)) \), such a branching point is one of the poles of the beta function, \(z_\beta^{(i)} = a^{(i)}_0 + i y^{(i)}_0 \) such that \(F(z_\beta^{(i)}) = a_0/a_j (j = 1, \ldots, N) \), cf. equations (3)–(4a).

This means, in analogy with equations (25)–(26) and using the notations (28), that we have the relation

\[
y^{(i)}_\beta = K_{\beta}(a^{(i)}_0; u_j),
\]

where \(a^{(i)}_0 \equiv F(x^{(i)}_\beta) \) (0 < \(a^{(i)}_0 < a_0 \)), and

\[
K_{\beta}(a^{(i)}_0; u_j) \equiv \frac{(-i)}{\beta_0 a_0} \left(u_j - \frac{a_0}{a^{(i)}_0} \right) + B_0 \left[\ln\beta_0(u_j - 1) - \ln\left(\frac{a_0}{a^{(i)}_0} - 1 \right) \right] + \sum_{j=2P+1} M B_j \left[\ln\beta_0(u_j - t_j) - \ln\left(\frac{a_0}{a^{(i)}_0} - t_j \right) \right] + \sum_{k=0}^{P-1} \left(\frac{2}{\ln t_{2k+1}} \right) \left[\ln \left(u_j^2 - 2(\Re t_{2k+1})u_j + |t_{2k+1}|^2 \right) - \ln \left(\frac{a_0}{a^{(i)}_0} - 2(\Re t_{2k+1}) + |t_{2k+1}|^2 \right) \right] + \frac{2\pi}{\beta_0 a_0} \left[B_0 n_0^{(i)} + \sum_{j=2P+1} M B_j n_j^{(i)} \right] + \frac{2\pi}{\beta_0 a_0} \left(\frac{2}{\ln t_{2k+1}} \right) \left(\frac{\Re t_{2k+1}}{\ln t_{2k+1}} \right) N_k^{(i)} \right.
\]

The winding numbers are generated in a limiting process analogous to that in equations (27a)

\[
\lim_{r \to r^{(i)}_\beta} \ln \frac{a_0}{F(x^{(i)}_\beta) + iy} = \ln(u_j - t_j) = \ln\beta_0(u_j - t_j) + i2\pi n_j^{(i)} \quad (j = 0; 2P + 1; 2P + 2; \ldots; M),
\]

\[
\lim_{r \to r^{(i)}_\beta} \ln \left(\frac{a_0}{F(x^{(i)}_\beta) + iy} \right)^2 = 2(\Re t_{2k+1}) \frac{a_0}{F(x^{(i)}_\beta) + iy} + |t_{2k+1}|^2 = \ln(u_j^2 - 2(\Re t_{2k+1})u_j + |t_{2k+1}|^2) + i2\pi N_k^{(i)} \quad (k = 0, \ldots, P - 1),
\]
The procedures described in this section for
\[\text{Im} \mathcal{K}_R(a^{(i)}_s; u_i) = 0, \quad \text{Re} \mathcal{K}_R(a^{(i)}_s; u_i) = y^{(i)}_s, \]
(37)
where

\[
\text{Im} \mathcal{K}_R(a^{(i)}_s; u_i) \equiv \frac{1}{\beta a_0} \left(-u_i - \frac{a_0}{a^{(i)}_s} + B_0 \left[-\text{ln}_{\text{phb}}(u_i - 1) + \ln \left(\frac{a_0}{a^{(i)}_s} - 1 \right) \right] \right)
+ \sum_{j=2^{p+1}}^{M} B_j \left[-\text{ln}_{\text{phb}}(u_i - t_j) + \ln \left(\frac{a_0}{a^{(i)}_s} - t_j \right) \right]
+ \sum_{k=0}^{p-1} \frac{2(\text{Re} B_{2k+1})(\text{Re} t_{2k+1} - \text{Re}(t^{(i)}_{2k+1} + B_{2k+1})]}{\text{Im} t_{2k+1}}
\times \left[-\text{Arctan} \left(\frac{u_i - \text{Re} t_{2k+1}}{\text{Im} t_{2k+1}} \right) + \text{Arctan} \left(\frac{a_0/a^{(i)}_s - \text{Re} t_{2k+1}}{\text{Im} t_{2k+1}} \right) \right]
+ \sum_{k=0}^{p-1} \text{Re} B_{2k+1} \left[-\ln (u_i^2 - 2(\text{Re} t_{2k+1})u_i + \text{Re}(t^{(i)}_{2k+1})) \right]
+ \ln \left(\left| \frac{a_0}{a^{(i)}_s} \right|^2 - 2(\text{Re} t_{2k+1})a_0 + \text{Re}(t^{(i)}_{2k+1}) \right)
+ \frac{2\pi}{\beta a_0} \sum_{k=0}^{p-1} \left(\text{Re}(t^{(i)}_{2k+1} B_{2k+1}) - \text{Re} B_{2k+1} \text{Re}(t_{2k+1}) \right) \left| \mathcal{N}^{(i)}_k \right|^2,
\]
(38)
and

\[
\text{Re} \mathcal{K}_R(a^{(i)}_s; u_i) \equiv \frac{2\pi}{\beta a_0} \left(B_0 n^{(i)}_0 + \sum_{j=2^{p+1}}^{M} B_j n^{(i)}_j + \sum_{k=0}^{p-1} \text{Re} B_{2k+1} \mathcal{N}^{(i)}_k \right).
\]
(39)

We notice that \(\text{Im} \mathcal{K}_R(a^{(i)}_s; u_i) \) depends only on the winding numbers \(\mathcal{N}^{(i)}_k \), cf. equation (34). The existence of a Landau branching point means that equations (37) have a solution, for an \(s \), and \(a^{(i)}_s \) and \(y^{(i)}_s \) such that:

\(0 < a^{(i)}_s < a_0 \) and \(|y^{(i)}_s| < \pi \).

The procedures described in this section for \(\text{Im} \mathcal{G}_R(a_s) \) and \(\text{Re} \mathcal{G}_R(a_s) \), and for \(\text{Im} \mathcal{K}_R(a^{(i)}_s; u_i) \) and \(\text{Re} \mathcal{K}_R(a^{(i)}_s; u_i) \), represent a relatively simple algebraic instrument for practical verification of whether the pQCD scheme with a given beta function of the form (3) described in section 2 has Landau singularities or has no such singularities, and where these singularities are.

4. Practical examples

We will consider three specific cases of application of the above algebraic formalism: (a) when the \(\beta(F) \) function (3) has (cubic) polynomial structure and only real roots: \(M = 2, N = 0; t_1, t_2 \in \mathbb{R} \); (b) \(\beta(F) \) has (cubic)
polynomial structure and complex roots: $M = 2, N = 0$; $t_2 = t_2^* \not\in \mathbb{R}$; (c) $\beta(f)$ has a Padé structure with (one) pole: $M = N = 1$. Although these are cases with low indices M and N, we believe that they are representative to a certain degree, and show in practice how the presented formalism works. The cases (a) and (b) are specific low-index cases belonging to the set of beta-functions discussed in section 3.1 where Landau poles are expected to appear in the complex Q^2-plane. The case (c) is a specific low-index case belonging to the set of beta-functions discussed in section 3.2 where a cut structure of Landau singularities is expected.

4.1. Polynomial β with real roots

Here we consider the case of $(M = 2, N = 0)$

\[
\beta(f) = -\beta_0 F^*(1 - Y) \times P[2/0](Y)\big|_{Y = f/a_0} = -\beta_0 F^*(1 - Y)(1 - t_1 Y)(1 - t_2 Y)|_{Y = f/a_0},
\]

(40)

where t_1 and t_2 are real [and $t_1, t_2 < 1$ by physical requirements, cf. the text after equations (40a)]. In order to present numerical results, we choose specific numerical input values for $a_0 (> 0)$ and t_1 (which we choose to be positive)

\[
a_0 = 0.4; \quad t_1 = +0.3.
\]

(41)

The condition (3) then gives

\[
t_2 = -1 - (\beta_1/\beta_0)a_0 - t_1 (\approx -2.0111),
\]

(42)

where the numerical value is obtained by using in the universal β-coefficients β_0 and β_1 the number of active quark flavours $N_f = 3$. The resulting renormalization scheme parameters $c_j \equiv \beta_j/\beta_0 (j \geq 2)$ are then $c_2 = -14.4653, c_3 = 9.4271$ and $c_4 = 0$ (in MS scheme, for $N_f = 3$, they are: $c_2 = 4.4711, c_3 = 20.990, c_4 = 56.588$). The κ coefficients of equations (20)–(22) then has the value

\[
\kappa = \frac{\beta_0 a_0}{\beta_0} \approx 1.897.
\]

(43)

Since t_1 and t_2 are real (hence: $M = 2; P = 0$), the only winding numbers (28) are $\tilde{n} = (n_0, n_1, n_2)$, and thus $\text{Im} \tilde{G}(a)$ is independent of \tilde{n}. The first condition of equation (30) then immediately gives for a_0 (we recall: $0 < a_0 < a_0$)

\[
\text{Im} \tilde{G}(a) = 0 \Rightarrow a_0 \approx 0.320816;
\]

(44)

and the corresponding x_n is\(^{12}\)

\[
x_n = -5.03423,
\]

(45)

as can be easily checked by the implicit solution (18) when using there for $F(z)$ the value of a_0 equation (44).

When we now numerically integrate the RGE (1) along the line $\text{Re}(z) = x_n$ in the z-plane,\(^{11}\) we obtain for the real and imaginary part of the coupling $F(z = x_n + iy)$ the values presented in figures 2, which clearly show that there are singularities (poles) of the running coupling $a(Q^2) \equiv F(z)$ at $z_{n, \pm}^{(i)} = x_n \pm iy_n^{(i)}$

\[
y_n^{(1)} = 1.59783; \quad y_n^{(2)} = 1.71434.
\]

(46)

The obtained points $z_{n, \pm}^{(i)}$ are the Landau poles. We can cross-check that these points are really the Landau poles by evaluating the algebraic expression $\tilde{G}(a)$, equation (26), for various winding numbers $\tilde{n} = (n_0, n_1, n_2)$, and we find that

\[
\tilde{G}(a) = +y_n^{(1)}(= +1.59783) \quad \text{for} \quad \tilde{n} = (0, 0, 0); \quad \text{(47a)}
\]

\[
\tilde{G}(a) = -y_n^{(1)}(= -1.59783) \quad \text{for} \quad \tilde{n} = (-1, -1, 0); \quad \text{(47b)}
\]

\[
\tilde{G}(a) = +y_n^{(2)}(= +1.71434) \quad \text{for} \quad \tilde{n} = (0, -1, 0); \quad \text{(47c)}
\]

\(^{11}\) When varying, at fixed a_0, the (real) t_1 ($t_2 < 1$), the (leading) scheme coefficient c_2 will vary according to the relation (23), and will be restricted in the range between $-(1/a_0)(+3/a_0 + 2c_2) < c_2 < -(1/4)(1/a_0 + c_2K - 3/a_0 + c_1)$. [cf. discussion just after equations (24a)], i.e., in our case of $a_0 = 0.4$ this is the range $-27.64 < c_2 < -6.12$.

\(^{12}\) We use throughout the reference value $a_0(M_Z^2, \text{MS}) = 0.1179$ [122]. This corresponds to the $N_f = 3$ regime at $Q^2_0 = (2m_t)^2 = 2.54 \text{GeV}^2$ to $a(Q^2_{\text{pole}}, \text{MS}) \simeq 0.0834921$. We will use this reference value throughout (although, by using a different reference value is equivalent to changing the value of Q^2_0 which does not affect our conclusions). The RGE running from M_Z^2 down to $(2m_t)^2$ in MS is performed by using the five-loop RGE [123] with four-loop quark threshold conditions at $s = (2m_t)^2$ [124, 125], where the MS quark mass values for $\bar{n}_q \equiv \bar{n}_q(\mu_0^2)$ taken $\bar{n}_q = 4.20 \text{GeV}$ and $\bar{n}_u = 1.27 \text{GeV}$. The transition from the (five-loop) MS scheme to the scheme of the considered \bar{J}-function was performed at the scale $Q^2 = (2m_t)^2$ and $N_f = 3$, according to the approach as explained, e.g., in [97] (equation (13) there). This gives, in the considered scheme of the \bar{J}-function (40), the value $a(Q^2_m) = 0.0737597$.

\(^{13}\) This integration is 1-dimensional, much simpler and considerably more stable than the integration in the entire physical complex-z stripe of figure 1(b). We refer to this 1-dimensional integration as a seminumeric part of the procedure.
When varying, at \(t_1 \) and \(\beta_1 \), the complex seminumeric approach described above, it would be difficult to find the (four) Landau poles on the first Riemann sheet of \(Q^2 \). In figures 3(a), (b) we present \(|\beta(F(z))| \) for the considered couplings, obtained by the 2-dimensional numerical integration of the RGE in the complex \(z \)-stripe. In figure 3(a) it is difficult to see that there are two Landau poles close to each other, at \(z^0_{x+y} = x_0 + iy_{x+y} \) \((j = 1, 2)\), as clearly obtained in equations (47d) by our algebraic seminumeric analysis.

4.2. Polynomial \(\beta \) with complex roots

Here we consider the case of \((M = 2, N = 0)\):

\[
\beta(F) = -\beta_0 F^2 (1 - Y) \times P[2/0] \left(\frac{Y}{F_{i=0}} \right) = -\beta_0 F^2 (1 - Y)(1 - t_1 Y)(1 - t_2 Y) \left(\frac{Y}{F_{i=0}} \right)
\]

(48)

where \(t_1 \) and \(t_2 \) are complex nonreal and thus mutually complex conjugate \(|t_2| = (n)^{1/2} \). Since we want to present numerical results, we choose as an example the following specific input values:

\[
a_0 = 0.5; \quad \text{Im} \, t_1 = +0.60.
\]

(49)

The condition (5) then gives

\[
\text{Re} \, t_1 = \frac{1}{2} (1 + \frac{\beta_1}{\beta_0} a_0) \approx -0.9444,
\]

(50)

where, as in section 4.1, the numerical value is obtained by using in the universal \(\beta \)-coefficients \(\beta_0 \) and \(\beta_1 \) with \(N_f = 3 \). The renormalization scheme parameters \(c_j \equiv \beta_j / \beta_0 \) \((j \geq 2)\) are in this case \(c_2 = -2.5477, c_3 = -10.0158 \) and \(c_4 = 0 \).\(^{14}\)

The coefficient \(\kappa \) of equations (20)–(22), has now the value

\[
\kappa = \frac{\beta_0 a_0}{B_0} \approx 4.6585
\]

(51)

Since \(t_1 \) and \(t_2 \) are complex nonreal (hence: \(M = 2; P = 1 \)), the winding numbers (28) are \(\vec{n} = (n_0, N_0, N_0) \), and thus \(\text{Im} \, G_\beta(a_0) \) depends on \(N_0 \) and \(\text{Re} \, G_\beta(a_0) \) depends on \(n_0 \) and \(N_0 \).

The first condition of equation (30) then gives for \(a_0 \) the acceptable solution (i.e., in the interval \(0 < a_0 < a_0 \)) only when \(N_0 > -1 \):

\[
\text{Im} \, G_\beta(a_0) = 0 \Rightarrow \quad a_0 \approx 0.492 \, 229(N_0 = -1); \quad 0.433 \, 899(N_0 = 0); \quad 0.305 \, 849(N_0 = 1); \quad 0.215 \, 326(N_0 = 2); \quad \text{etc.}
\]

(52a)

and the corresponding \(x_0 \) \((\text{we use } a_0, (M_0^2); \text{MS}) = 0.1179 \) as described in section 4.1) is obtained from the implicit solution (18) with \(F(z) = a_0 \):

\[
x_0 = -4.73364(N_0 = -1); \quad -4.18465(N_0 = 0); \quad -3.63565(N_0 = 1); \quad -3.08666(N_0 = 2); \quad \text{etc.}
\]

(52b)

When we now perform the simple (1-dimensional) numerical integration of the RGE (1) along the line \(\text{Re}(z) = x_0 \) in the \(z \)-plane, we obtain for the real and imaginary part of the coupling \(F(z = x_0 + iy) \) on the first

\[14\] When varying, at fixed \(a_0 \), the complex \(t_1 \) in this case (here \(\text{Im} \, t_1 \) can be regarded as the only free parameter), the leading scheme coefficient \(c_2 \) will vary according to the relation (23), and will be restricted in the range between \((1/4)(1/a_0 + c_1(-3/a_0 + c_1) \leq c_2 \) [cf. discussion just after equations (24a)], i.e., in our case of \(a_0 = 0.5 \) this is the range \(-3.988 \leq c_2 \).
When varying, at where, as in the previous examples, we use the values of the condition

\[\text{Here, both} \quad \beta \] among the running coupling \(a(Q^2) \equiv F(z) \) at \(z_{\pm}^{(j)} = x_{\pm}^* \pm i y_{\pm}^{(j)} \)

\[y_{\pm}^{(1)} = 0.67438; \quad y_{\pm}^{(2)} = 2.02315. \] (54)

As in section 4.1, we conclude that the obtained points \(x_{\pm}^{(j)} \) are the Landau poles. We cross-check that these points are really the Landau poles by evaluating the algebraic expression \(G_n(a_\beta) \), equation (26), for various values of the winding numbers \(\bar{n} = (n_0, \bar{N}_0, \bar{N}_0) \), and we find

\[G_n(a_\beta) = + y_{\pm}^{(1)}(= + 0.67438) \quad \text{for} \quad \bar{n} = (0, 0, 0); \] (55a)

\[G_n(a_\beta) = - y_{\pm}^{(1)}(-0.67438) \quad \text{for} \quad \bar{n} = (-1, 0, 0); \] (55b)

\[G_n(a_\beta) = + y_{\pm}^{(2)}(= + 2.02315) \quad \text{for} \quad \bar{n} = (1, 0, 0); \] (55c)

\[G_n(a_\beta) = - y_{\pm}^{(2)}(-2.02315) \quad \text{for} \quad \bar{n} = (-2, 0, 0); \] (55d)

On the other hand, the fully numerical (2-dimensional) integration of the RGE (1) in the first Riemann sheet of the complex squared momenta \(Q^2 \) (i.e., in the complex \(z \) -stripe with \(\Im z \geq \pi \)) gives us the results in figures 3(a), (b) where we present \(|F(z)| \) for the considered couplings. In figure 3(a) it is hard to see two of the four mentioned Landau poles, namely those with \(\Im z = \pm 2.02315 \). Only the strongly ‘zoomed’ figure 3(b) suggests that there are Landau poles also at \(z = x_{\pm}^* \pm i 2.02315 \).

4.3. Padé \(\beta \) with a real pole

Here we consider a numerical example for the types of \(\beta \)-function of section 3.2 where a finite-valued Landau branching point is realized. We will take the simplest case \(M = 1 \) and \(N = 1 \) (and \(P = 0 \)) where \(\beta \)-function equation (3) has a Padé form with one real pole

\[\beta(F) = - \beta_0 F^2(1 - Y) \times P[1/1](Y) = a_0(1 - Y) \left(\frac{1 - \eta Y}{1 - u_1 Y} \right). \] (56)

Here, both \(u_1 \) and \(t_1 \) are real and related via the relation (5). The \(\beta \)-function has a pole at the coupling value \(F(z_B) = a_0/\eta_1 \). We will present numerical results, so we choose as a representative example the following specific input values:

\[a_0 = 0.3; \quad u_1 = +0.50. \] (57)

The condition (3) then gives

\[\eta_1 = 1 + (\beta_1/\beta_0)a_0 = 0.5 - (1 + (\beta_1/\beta_0)a_0) \approx 0.5 - 1.0333, \] (58)

where, as in the previous examples, we use the values of \(\beta_0 \) and \(\beta_1 \) with \(N_f = 3 \). The resulting renormalization scheme parameters \(\beta_j \equiv \beta_j/\beta_0 \) \((j > 2) \) are then \(\epsilon_2 = -8.5185, \epsilon_3 = -14.1975, \epsilon_4 = -23.6626 \), etc.\(^\dagger\) The \(\kappa \) coefficient of equations (20)–(22) has in this case the value

\[\dagger \] When varying, at fixed \(a_0, \) the (real) \(\eta_1, \) \(t_1 \) \(< 1; \) \(n_1 \) \(\) is the only free degree of freedom, the (leading) scheme coefficient \(c_2 \) will vary according to the relation (23), and will be restricted according to equation (24a).
This is consistent with the results of equations (37), (38) and (39). Indeed, the evaluation of the algebraic expression gives

$$\text{Im} K_z(a_g^{(1)}, u_1) = 0 \Rightarrow a_g^{(1)} = 0.268253.$$

The corresponding value of $x_b^{(1)}$ is found from the implicit solution (18) with $F(z) = a_g$ at $z = x_b^{(1)}$

$$x_b^{(1)} = -4.38168.$$

Now performing the simple (1-dimensional) numerical integration of the RGE (1) along the line $\text{Re}(z) = x_b^{(1)}$ in the z-plane, gives us the real and imaginary part of the coupling $F(z = x_b^{(1)} + iy)$ on the first Riemann sheet ($|y| \leq \pi$) with the values presented in figures 6. These figures clearly show that, for $\text{Re}(z) = x_b^{(1)} = -4.38168$, there is a singular behaviour of the running coupling $a(Q^2) \equiv F(z)$ in the Riemann sheet only at the points $z_{a,\pm} = x_b^{(1)} \pm iy_b^{(1)}$ where

$$y_b^{(1)} \approx 1.14448.$$

On the other hand, the second condition in equation (37) should give us in this case the same values $\pm y_b^{(1)} = \pm 1.14448$. Indeed, the evaluation of the algebraic expression $K_{11}(a_g^{(1)}, u_1)$, equation (34), gives

$$K_{11}(a_g^{(1)}, u_1) \approx 1.14448, \quad K_{1-11}(a_g^{(1)}, u_1) \approx -1.14448.$$

This is consistent with the results (62), and clearly shows that in the considered case the Landau branching point is achieved in the first Riemann sheet only at the two complex conjugate points $z_{a,\pm} = x_b^{(1)} \pm iy_b^{(1)}$ with

![Figure 4](https://example.com/figure4.png)

Figure 4. (a) The real part of the running coupling $F(z)$ for $z = x_a + iy$ for $x_a = -4.18465$ and $0 < y \leq \pi$, for the considered case of equations (48)-(49); (b) the same as in (a), but for the imaginary part of $F(z)$.

![Figure 5](https://example.com/figure5.png)

Figure 5. (a) The numerical values of $|\beta F(z)|$ in the upper half of the physical z-strip ($0 \leq y \equiv \text{Im} z < \pi$), corresponding to the upper half of the first Riemann sheet of the complex momenta Q^2. The numerical results suggest the existence of a Landau pole at $z = x_a + i0.67438$ where $x_a = -4.18465$ (and at its complex conjugate $z = x_a - i0.67438$). (b) ‘Zoomed’ numerical calculation indicates the existence of an additional Landau pole at $z = x_a + 2.02315$ (and its complex conjugate).
\(z_{k}^{(1)} = -4.38168 \) and \(z_{s}^{(1)} = 1.14448 \), and with the corresponding winding numbers \(\{ n_{i} \} \equiv \{ n_{0}^{(1)}, n_{1}^{(1)} \} \) equal to \{0, 0\} and \{−1, 0\}, respectively. Further, figures (6) indicate that the coupling \(F(z_{k}^{(1)}) \) at this point achieves the (real) value 0.60 which coincides with the value \(a_{0}/u_{1} \), i.e., the value where \(\beta \)-function diverges (but not the coupling).

The fully numerical (two-dimensional) integration of the RGE (1) in the first Riemann sheet of the complex squared momenta gives us the results in figures 7. Figure 7(a) shows \(\beta(F(z)) \) and indicates the Landau singularities at \(z_{k}^{(1)} = x_{k}^{(1)} + iy \). Figure 7(b) shows \(\text{Im} F(z) \) and indicates that the previously mentioned singularities are indeed branching points, with the cut in the complex-\(z \)-stripe extending from \(z_{k}^{(1)} = x_{k}^{(1)} + iy \) along the line \(z = x_{k}^{(1)} + iy \) with \(y > z_{k}^{(1)} \), and the complex-conjugate cut from \(z_{s}^{(1)} = x_{s}^{(1)} - iy \) along the line \(z = x_{s}^{(1)} + iy \) with \(y < z_{s}^{(1)} \); the same indication can be obtained when evaluating \(\text{Re} F(z) \) in the \(z \)-complex stripe.\(^{16}\) For example, at \(z = x_{s}^{(1)} + iy \) we have numerically:

\[
F(x_{s}^{(1)} + i1.5) - F(x_{s}^{(1)} + i1.5)
\approx -0.189 - i 0.327 \quad (\text{when } \epsilon \approx 10^{-5} - 10^{-3}).
\]

On the other hand, the algebraic seminumeric analysis above, equations (60)–(63) and figures 6, shows that the Landau singularities \(z_{k}^{(1)} = x_{k}^{(1)} + iy \) are indeed branching points (with cuts) and correspond to specific winding numbers, and that no other branching points exist in the first Riemann sheet.

We present in figure 8 the behaviour of the couplings \(a(Q^{2}) \) for positive \(Q^{2} \) in all three cases considered in this section. This figure confirms that the considered class of running couplings has qualitatively similar behaviour in the regime \(Q^{2} > 0 \), i.e., \(a(Q^{2}) \) is a continuous and monotonically decreasing function of \(Q^{2} \), with finite values in the IR limit at \(Q^{2} = 0 \).

Finally, we present in figures 9, for the case of the coupling of section 4.2, the discontinuity (spectral) function \(\rho_{\sigma}(\sigma) = \text{Im} a(Q^{2} = -\sigma - i\epsilon) \) and the corresponding timelike coupling \(\mathcal{H}(s) (s = q^{2} \equiv -Q^{2} > 0) \). The timelike coupling is defined in the usual form [127] (cf. also [19, 128, 129])

\[
\mathcal{H}(s) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{d\sigma}{\sigma} \rho_{\sigma}(\sigma),
\]

and fulfills the relation \(\pi s d\mathcal{H}(s)/ds = -\rho_{s}(s) \). We notice in figure 9(b) that \(\mathcal{H}(0) \approx 0.168 \) which is less than \(a(0) = 0.5 \); this is a consequence of the Landau singularities of the coupling \(a(Q^{2}) \). Only if \(a(Q^{2}) \) had no Landau singularities, would we obtain \(\mathcal{H}(0) = a(0) \) [19].

5. Summary

In this work we presented an algebraic algorithm for finding possible Landau singularities of the pQCD running coupling \(a(Q^{2}) \) in the complex plane of the squared momenta \(Q^{2} \) (first Riemann sheet). We considered a large class of \(\beta \)-functions, representative of the scenarios where the running coupling \(a(Q^{2}) \) is a monotonic function of \(Q^{2} \) at positive \(Q^{2} \) and ‘freezes’ in the IR sector, \(a(Q^{2}) \rightarrow a_{0} \) for \(Q^{2} \rightarrow 0 \), where the IR freezing value \(a_{0} \) is considered positive finite. The consideration of the running coupling \(a(Q^{2}) \equiv F(z) \) was performed on the corresponding complex \(z \)-stripe, \(-\pi \leq \text{Im}(z) < \pi \), where \(z = \text{Im}(Q^{2}/Q_{m}^{2}) \) and \(Q_{m}^{2} > 0 \) was an initial scale for the integration of the RGE. The analysis was performed by explicit integration of the RGE which led to the implicit (inverted) solution of the form \(z = \mathcal{H}(F) \). An analysis of this implicit solution than led us to an

\[^{16}\text{In practice, the 2-dimensional numerical integration of the RGE in the } z \text{-complex stripe } | \text{Im} z | < \pi \text{ [corresponding to the first Riemann sheet in the squared momentum plane } Q^{2} (= -q^{2} + Q_{m}^{2} \exp(z(x))) \text{was always performed first along the entire real } z \text{ axis, and then at each fixed real value of } z = x \text{ the RGE was integrated along the imaginary } (y) \text{ direction of } z = x + iy (-\pi \leq y < \pi).\]

Figure 6. (a) The real part of the running coupling \(F(z) \) for \(z = x_{k}^{(1)} + iy \) for \(x_{k}^{(1)} = -4.38168 \) and \(0 < y < \pi \) for the considered case of equations (56)–(57); (b) the same as in (a), but for the imaginary part of \(F(z) \).
algebraic procedure for the search of the Landau singularities of \(F(z)\) on the \(z\)-stripe. We considered two types of such singularities, the poles \(F(z) = \infty\) and the branching points (for cuts) \(\beta(F(z)) = \infty\). For illustration, we then presented the mentioned algebraic (and seminumeric) analysis for three specific representative cases of the \(\beta\)-function, and compared the found Landau singularities with those seen directly by the numerical 2-dimensional integration of the RGE in the entire complex \(z\)-stripe, the latter approach being numerically demanding. The presented specific cases suggest that our algebraic seminumeric approach is reliable and has high precision in

\[\text{Figure 7.} \quad \text{(a) The numerical values of } |\beta(F(z))| \text{ in the physical } z\text{-stripe } (-\pi \leq y \equiv \text{Im } z < \pi; z = x + iy) \text{, corresponding to the first Riemann sheet of the complex momenta } Q^2. \text{ The numerical results indicate a complex conjugate pair } z = -4.382 \pm i 1.144 \text{ for the Landau singularities. (b) The numerical values of } \text{Im } F(z).\]

\[\text{Figure 8.} \quad \text{The running coupling } a(Q^2) \text{ at spacelike positive } Q^2, \text{ for the three specific cases considered in this section. The labels } P[M/N] \text{ refer to the Padé structure of the factor } T_d(x)/U_n(x) \text{ in the } \beta\text{-function for each case, cf. equation (3).}\]

\[\text{Figure 9.} \quad \text{(a) The spectral function } \rho_s(Q^2) = \text{Im } a(Q^2 = -\sigma - i \epsilon) \text{ of the coupling } H(s), \text{ as a function of } \ln(\sigma/Q^2) h; (b) the timelike coupling } H(s), \text{ as a function of } \ln(\sigma/Q^2) h. \text{ We recall that } Q_{\text{in}}^2 = (2m_c)^2 = 2.54^2 \text{ GeV}^2.\]
finding the Landau singularities, while the 2-dimensional integration of the RGE gives these singularities with less precision and sometimes we may miss some of the singular points with this purely numerical method, especially if the numerical scanning over the entire z-stripe is made with limited density. Therefore, the presented algebraic seminumeric formalism appears to be useful when we want to find out whether the pQCD running coupling has Landau singularities, and if there are any, to find the location of these singularities with high precision.

Acknowledgments

This work was supported in part by the FONDECYT (Chile) Grants No. 1191434 (C.C.), 1180344 (G.C.) and 1181414 (O.O.).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Gorazd Cvetič
https://orcid.org/0000-0003-4564-5796

References

[1] Oehme R 1995 Analytic structure of amplitudes in gauge theories with confinement Int. J. Mod. Phys. A 10 1995–2014
[2] Bogoliubov N N and Shirkov D V 1980 Introduction to the Theory of Quantum Fields (New York: Wiley) p 1959
[3] Lërche C and von Smekal L 2002 On the infrared exponent for gluon and ghost propagation in Landau gauge QCD Phys. Rev. D 65 125006
[4] von Smekal L, Alkofer R and Hauck A 1997 The Infrared behavior of gluon and ghost propagators in Landau gauge QCD Phys. Rev. Lett. 79 3591–4
[5] Alkofer R, Fischer C S and Llanes-Estrada F J 2005 Vertex functions and infrared fixed point in Landau gauge SU(N) Yang-Mills theory Phys. Lett. B 611 279–88
Alkofer R, Fischer C S and Llanes-Estrada F J 2009 Phys. Lett. B 670 460–1
[6] Fischer C S and Pawlowski J M 2007 Uniqueness of infrared asymptotics in Landau gauge Yang-Mills theory Phys. Rev. D 75 025012
[7] Fischer C S, Maas A and Pawlowski J M 2009 On the infrared behavior of Landau gauge Yang-Mills theory Annals Phys. 324 2408–37
[8] Gies H 2002 Running coupling in Yang-Mills theory: a flow equation study Phys. Rev. D 66 025006
[9] Braun J and Gies H 2006 Chiral phase boundary of QCD at finite temperature JHEP 06 024
[10] Pawlowski J M, Litim D F, Nеделко S and von Smekal L 2004 Infrared behavior and fixed points in Landau gauge QCD Phys. Rev. Lett. 93 152002
[11] Zwanziger D 2002 Nonperturbative Landau gauge and infrared critical exponents in QCD Phys. Rev. D 65 094039
[12] Gribov N V 1978 Quantization of nonabelian gauge theories Nucl. Phys. B 139 1
[13] Zwanziger D 2004 Nonperturbative Faddeev-Popov formula and infrared limit of QCD Phys. Rev. D 69 016002
[14] Shirkov D V and Solovtsov I L 1996 Analytic QCD running coupling with finite IR behaviour and universal αs(0) value JINR Rapid Comm. 276 5–10
[15] Shirkov D V and Solovtsov I L 1997 Analytic model for the QCD running coupling with universal alpha(s)-bar(0) value Phys. Rev. Lett. 79 1209–12
[16] Milton K A and Solovtsov I L 1997 Analytic perturbation theory in QCD and Schwinger’s connection between the beta function and the spectral density Phys. Rev. D 55 5295–8
[17] Shirkov D V 2001 Analytic perturbation theory for QCD observables Eur. Phys. J. C 22 391–9
[18] Karanikas A, Land Stefanis N G 2001 Analyticity and power corrections in hard scattering hadronic functions Phys. Lett. B 504 225–34
[19] Karanikas A and Stefanis N G 2005 Phys. Lett. B 636 330–1 erratum
[20] Shirkov D V 2001 Analytic perturbation theory in analyzing some QCD observables Eur. Phys. J. C 22 331–40
[21] Milton K A, Solovtsov I L and Solovtsova O P 1998 The Bjorken sum rule in the analytic approach to perturbative QCD Phys. Lett. B 439 421–7
[22] Pasechnik R S, Shirkov D V, Teryaev O V, Solovtsova O P and Khandramai V I 2010 Nucleon spin structure and pQCD frontier on the move Phys. Rev. D 81 016010
[23] Pasechnik R S, Teryaev O V 2010 Nucleon spin structure at low momentum transfers Phys. Rev. D 82 076007
[24] Khandramai V L, Pasechnik R S, Shirkov D V, Solovtsova O P and Teryaev O V 2012 Four-loop QCD analysis of the Bjorken sum rule vs data Phys. Lett. B 706 340–4
[25] Cvetič G, Ilarionov A Y, Kniehl B A and Kotikov A V 2009 Small-x behavior of the structure function F2 and its slope δln F2/ln(1/x) for ‘frozen’ and analytic strong-coupling constants Phys. Lett. B 679 350–4
[26] Kotikov A V, Krivokhizhin V G and Shakhkhatenov B G 2012 Analytic and ‘frozen’ QCD coupling constants up to NNLO from DIS data Phys. Atom. Nucl. 75 507–24
[27] Allendes P, Ayala C and Cvetič G 2014 Gluon propagator in fractional analytic perturbation theory Phys. Rev. D 89 054016
[28] Ayala C and Mikhaliov S V 2015 How to perform a QCD analysis of DIS in analytic perturbation theory Phys. Rev. D 92 014028
[29] Bakulev A P, Mikhaliov S V and Stefanis N G 2005 QCD analytic perturbation theory. From integer powers to any power of the running coupling Phys. Rev. D 72 074014
Bakulev A P, Mikhaliov S V and Stefanis N G 2005 Phys. Rev. D 72 119908 erratum
Bakulev A P, Mikhailov S V and Stefanis N G 2007 Fractional Analytic Perturbation Theory in Minkowski space and application to Higgs boson decay into a b anti-b pair Phys. Rev. D 75 056005

Bakulev A P, Mikhailov S V and Stefanis N G 2008 Phys. Rev. D 77 079901 erratum

Bakulev A P, Mikhailov S V and Stefanis N G 2010 Higher-order QCD perturbation theory in different schemes: From FPTQ to CIPT JHEP 1006 085

Bakulev A P and Khandramal V L 2013 FAPT: a mathematica package for calculations in QCD fractional analytic perturbation theory Comput. Phys. Commun. 184 183–95

Prosperi G M, Raciti M and Simolo C 2007 On the running coupling constant in QCD Prog. Part. Nucl. Phys. 58 387–438

Shirkov D V and Solotvostov I L 2007 Ten years of the analytic perturbation theory in QCD Theor. Math. Phys. 150 132–52

Bakulev A P 2009 Global fractional analytic perturbation theory in QCD with selected applications Phys. Part. Nucl. 40 715–56

Stefanis N G 2013 Taming landau singularities in QCD perturbation theory: the analytic approach Phys. Part. Nucl. 44 494–509

Webber B R 1998 QCD power corrections from a simple model for the running coupling JHEP 1001 012

Nesterenko A V and Papavassiliou J 2003 The massive analytic invariant charge in QCD Phys. Rev. D 71 016009

Nesterenko A V and Simolo C 2010 QCDMAPT: Program package for Analytic approach to QCD Comput. Phys. Commun. 181 1769–75

Nesterenko A V and Simolo C 2011 QCDMAPT: Fortran implementation of QCDMAPT package Comput. Phys. Commun. 182 2363–4

Aleksiev A I and Arbusov B A 2005 An invariant charge model for all q^2 > 0 in QCD and gluon condensate Mod. Phys. Lett. A 20 103–16

Aleksiev A I 2005 Analytic invariant charge in QCD with suppression of nonperturbative contributions at large Q^2 Theor. Math. Phys. 145 1559–75

Aleksiev A I 2006 Synthetic running coupling of QCD Few Body Syst. 40 57–70

Cveti G and Valenzuela C 2006 An approach for evaluation of observables in analytic versions of QCD J. Phys. G 32 L27

Cveti G and Valenzuela C 2008 Various versions of analytic QCD and skeleton-motivated evaluation of observables Phys. Rev. D 74 114030

Cveti G and Valenzuela C 2011 Phys. Rev. D 84 019902 erratum

Contreras C, Cveti G, Espinosa O and Martínez H E 2010 Simple analytic QCD model with perturbative QCD behavior at high momenta Phys. Rev. D 82 074005

Ayala C, Contreras C and Cveti G 2012 Extended analytic QCD model with perturbative QCD behavior at high momenta Phys. Rev. D 85 114043

Cveti G and Villavicencio C 2012 Operator Product Expansion with analytic QCD in tau decay physics Phys. Rev. D 86 116001

Ayala C and Cveti G 2013 Calculation of binding energies and masses of quarkonia in analytic QCD models Phys. Rev. D 87 054008

Shirkov D V 2013 ‘Massive’ Perturbative QCD, regular in the IR limit Phys. Part. Nucl. Lett. 10 186–92

Ayala C and Cveti G 2015 anQCD: A Mathematica package for calculations in general analytic QCD models Comput. Phys. Commun. 190 182–99

Ayala C and Cveti G 2016 anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models Comput. Phys. Commun. 199 114–7

Luna E G S, dos Santos A L and Natale A A 2011 QCD effective charge and the structure function F2 at small-x Phys. Rev. D 83 076003

Fagundes D A, Luna E G S, Menon M J and Natale A A 2012 Aspects of a dynamical gluon mass approach to elastic hadron scattering at LHC Nucl. Phys. A 886 68–70

Bahia C A S, Brolo M and Luna E G S 2016 Energy-dependent dipole form factor in a QCD-inspired model J. Phys. Conf. Ser. 706 052006

Bahia C A S, Brolo M and Luna E G S 2015 Nonperturbative QCD effects in forward scattering at the LHC Phys. Rev. D 92 074039

Brodsky S J, de Teramond G F and Deur A 2010 Nonperturbative QCD coupling and its J-function from light-front holography Phys. Rev. D 81 096010

Gutsche T, Lyubovitskij V E, Schmidt I and Vega A 2012 Dilaton in a soft-wall holographic approach to mesons and baryons Phys. Rev. D 85 076003

Cveti G and Valenzuela C 2008 Analytic QCD: a short review Braz. J. Phys. 38 371–80

Deur A, Brodsky S J and de Teramond G F 2016 The running coupling Phys. Prog. Part. Nucl. Phys. 90 1–74

Aguiar A C, Binosi D, Papavassiliou J and Rodriguez-Quintero J 2009 Non-perturbative comparison of QCD effective charges Phys. Rev. D 80 085018

Aguiar A C and Papavassiliou J 2006 Gluon mass generation in the PT-BFM scheme JHEP 12 012

Aguiar A C, Binosi D and Papavassiliou J 2008 Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations Phys. Rev. D 78 025010

Aguiar A C and Papavassiliou J 2008 Power-law running of the effective gluon mass Eur. Phys. J. A 35 189–205

Boucaud P, Leroy J P, Le Yaouanc A, Michel I, Pene O and Rodriguez-Quintero J 2008 On the IR behaviour of the Landau-gauge ghost propagator JHEP 09 099

Binosi D and Papavassiliou J 2009 Pinch Technique: theory and applications Phys. Rept. 479 1–152

Solotvostov I L and Shirkov D V 1998 Phys. Lett. B 442 344–8

Milton K A, Solotvostov I L and Solotvostova O P 1997 Analytic perturbation theory and inclusive tau decay Phys. Lett. B 415 104–10

Milton K A, Solotvostov I L and Solotvostova O P 2001 The Adler function for light quarks in analytic perturbation theory Phys. Rev. D 64 016005

Peris S, Perrotte M and de Rafael E 1998 Matching long and short distances in large-N_c QCD JHEP 05 011

Magradze B A 2010 Testing the concept of Quark-Hadron duality with the ALEPH τ decay data Few Body Syst. 48 143–69

Magradze B A 2012 Few Body Syst. 53 365–7 erratum

Magradze B A 2012 Strong coupling constant from τ decay within a dispersive approach to perturbative QCD Proceedings of A. Razmadze Mathematical Institute 160 91–111

Nesterenko A V and Papavassiliou J 2006 A novel integral representation for the Adler function J. Phys. G 32 1025–34

Nesterenko A V 2013 Dispersive approach to QCD and inclusive tau lepton hadronic decay Phys. Rev. D 88 056009

Nesterenko A V 2015 Hadronic vacuum polarization function within dispersive approach to QCD J. Phys. G 42 085004

Nesterenko A V 2000 Quark—antiquark potential in the analytic approach to QCD Phys. Rev. D 62 094028

Nesterenko A V 2001 New analytic running coupling in spacelike and timelike regions Phys. Rev. D 64 116009

Nesterenko A V 2003 Analytic invariant charge in QCD Int. J. Mod. Phys. A 18 5475–520
[78] Aguilar A C, Nesterenko A V and Papavassiliou J 2005 Infrared enhanced analytic coupling and chiral symmetry breaking in QCD J. Phys. G 31 997

[79] Cucchieri A and Mendes T 2007 What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices PoS LATTICE2007 297

[80] Sternbeck A, von Smekal L, Leinweber D B and Williams A G 2007 Comparing SU(2) to SU(3) gluodynamics on large lattices PoS LATTICE2007 042 340 arXiv:0710.1982

[81] Cucchieri A and Mendes T 2008 Constraints on the IR behavior of the gluon propagator in Yang-Mills theories Phys. Rev. Lett. 100

[82] Cucchieri A and Mendes T 2008 Constraints on the IR behavior of the ghost propagator in Yang-Mills theories Phys. Rev. D 78 094503

[83] Bogolubsky I I, Ilgenfritz E M, Müller-Preussker M and Sternbeck A 2007 The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, PoS LATTICE2007 290 arXiv:0710.1968

[84] Ilgenfritz E M, Müller-Preussker M, Sternbeck A and Schiller A Gauge-variant propagators and the running coupling from lattice QCD arXiv:hep-lat/0601027

[85] Bogolubsky I I, Ilgenfritz E M, Müller-Preussker M and Sternbeck A 2009 Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared Phys. Lett. B 676 69–73

[86] Blossier B et al 2012 The Strong running coupling at τ and Z0 mass scales from lattice QCD Phys. Rev. Lett. 108 262002

[87] Blossier B et al 2012 Ghost-gluon coupling, power corrections and ∆χ2 from lattice QCD with a dynamical charm Phys. Rev. D 85 034503

[88] Zafeiropoulos S, Boucaud P, De Soto F and Rodri J 2019 gue–Quintero and J. Segovia, Strong running coupling from the gauge sector of Domain Wall Lattice QCD with physical quark masses Phys. Rev. Lett. 122 162002

[89] Dudal D, Sorella S P, Vandervenne N and Verschelde H 2008 New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach Phys. Rev. D 77 071501

[90] Dudal D, Gracey J A, Sorella S P, Vandervenne N and Verschelde H 2008 A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results Phys. Rev. D 78 065007

[91] Dudal D, Sorella S P and Vandervenne N 2011 The dynamical origin of the refinement of the gribov-zwanziger theory Phys. Rev. D 84 065039

[92] Arbusov B A and Zaitsev V Elimination of the Landau pole in QCD with the spontaneously generated anomalous three-gluon interaction arXiv:1303.0622

[93] Boucaud P, De Soto F, Le Yaouanc A, Leroy J P, Micheli J, Moutarde H, Pene O and Rodriguez-Quintero J 2003 The strong coupling constant at small momentum as an instanton detector JHEP 04 005

[94] Boucaud P, De Soto F, Le Yaouanc A, Leroy J P, Micheli J, Pene O and Rodriguez-Quintero J 2004 Modified instanton profile effects from lattice Green functions Phys. Rev. D 70 114503

[95] Baldicchi M, Nesterenko A V, Prosperi G M, Shirzov D V and Simolo C 2007 Bound state approach to the QCD coupling at low energy scales Phys. Rev. Lett. 99 242001

[96] Baldicchi M, Nesterenko A V, Prosperi G M and Simolo C 2008 QCD coupling below 1 GeV from quarkonium spectrum Phys. Rev. D 77 034013

[97] Ayala C, Cvetic G, Kogler R and Kondrashuk I 2018 Nearly perturbative lattice-motivated QCD coupling with zero IR limit J. Phys. G 45 035001

[98] Athenodorou A, Boucaud P, De Soto F, Rodriguez-Quintero J and Zafeiropoulos S 2016 Gluon Green functions free of quantum fluctuations Phys. Lett. B 760 354–8

[99] Athenodorou A, Binosi D, Boucaud P, De Soto F, Papavassiliou J, Rodriguez-Quintero J and Zafeiropoulos S 2016 On the zero crossing of the three-gluon vertex Phys. Lett. B 761 444–9

[100] Boucaud P, De Soto F, Rodriguez-Quintero J and Zafeiropoulos S 2017 Refining the detection of the zero crossing for the asymmetric three-gluon vertices Phys. Rev. D 95 114503

[101] Athenodorou A, Boucaud P, De Soto F, Rodriguez-Quintero J and Zafeiropoulos S 2018 Instanton liquid properties from lattice QCD JHEP 02 140

[102] Grunberg G 1980 Phys. Lett. B 95 70

[103] Grunberg G 1982 Phys. Lett. B 110 501 erratum

[104] Grunberg G 1984 Renormalization scheme independent QCD and QED: the method of effective charges Phys. Rev. D 29 7315–38

[105] Kataev A L, Krasnikov N V and Novoselov A A 1982 Two-loop calculations for the propagators of gluonic currents Nucl. Phys. B 198 508–18

[106] Kataev A L, Krasnikov N V and Novoselov A A 1997 Nucl. Phys. B 490 505–7 erratum

[107] Dhar A and Gupta V 1984 A new perturbative approach to renormalizable field theories Phys. Rev. D 29 2822

[108] Chyla J, Kataev A and Larin S 1991 Renormalization scheme dependence and infrared behavior in e−e+ annihilation and tau lepton decay at the next-to-next-to-leading order of perturbative QCD Phys. Lett. B 267 269–76

[109] Brodsky S J, Menke S, Merino C and Rathman J 2003 On the behavior of the effective QCD coupling αs(Q) at low scales Phys. Rev. D 67 053008

[110] Brodsky S J, Gabadadze G T, Kataev A L and Lu H J 1996 The generalized cwringer relation in QCD and its experimental consequences Phys. Lett. B 372 133–40

[111] Shen J M, Wu X G, Ma Y and Brodsky S J 2017 The generalized scheme-independent cwringer relation in QCD Phys. Lett. B 770 494–9

[112] Garkusha A V, Kataev A L and Molokoedov V S 2018 Renormalization scheme and gauge (in)dependence of the generalized cwringer relation: what are the real grounds of the β-factorization property? JHEP 02 161

[113] Stevenson P M 1981 Optimized perturbation theory Phys. Rev. D 23 2916

[114] Cvetic G, Kogler R and Valenzuella C 2010 Analytic QCD coupling with no power terms in UV regime J. Phys. G 37 075001

[115] Cvetic G, Kogler R and Valenzuella C 2010 Reconciling the analytic QCD with the ITEP operator product expansion philosophy Phys. Rev. D 82 114004

[116] Contreras C, Cvetic G, Kogler R, Kröger P and Orellana O 2015 Perturbative QCD in acceptable schemes with holomorphic coupling Int. J. Mod. Phys. A 30 1530082

[117] Gardi E, Grunberg G and Karliner M 1998 Can the QCD running coupling have a causal analyticity structure? JHEP 07 007

[118] Magradze A B 1999 The Gluon propagator in analytic perturbation theory Conf. Proc. C 980518 158–69

[119] Boito D, Jamin M and Miravvillias R 2016 Scheme variations of the QCD coupling and hadronic τ decays Phys. Rev. Lett. 117 152001

[120] Cvetic G and Kondrashuk I 2011 Explicit solutions for effective four- and five-loop QCD running coupling JHEP 12 019
[119] Novikov V A, Shifman M A, Vainshtein A I and Zakharov V I 1983 Exact gell-mann-low function of supersymmetric yang-mills theories from instanton calculus Nucl. Phys. B 229 381–93
[120] Jones D R T 1983 More on the axial anomaly in supersymmetric yang-mills theory Phys. Lett. B 123 45–6
[121] Goriachuk I O and Kataev A L 2020 Exact β-function in abelian and non-abelian $\mathcal{N} = 1$ supersymmetric gauge models and its analogy with QCD β-function in C-scheme Pisma Zh. Ekspr. Teor. Fiz. 111 789–93
[122] Tanabashi M et al (Particle Data Group) 2018 Review of particle physics Phys. Rev. D 98 030001
[123] Baikov P A, Chetyrkin K G and Kühn J H 2017 Five-loop running of the QCD coupling constant Phys. Rev. Lett. 118 082002
[124] Schröder Y and Steinhauser M 2006 Four-loop decoupling relations for the strong coupling JHEP 01 051
[125] Kniehl B A, Kotikov A V, Onishchenko A I and Veretin O L 2006 Strong-coupling constant with flavor thresholds at five loops in the anti-MS scheme Phys. Rev. Lett. 97 042001
[126] Mathematica 11.1, Wolfram Co., 100 Trade Center Drive, Champaign, IL 61820-7237, USA.
[127] Radyushkin A V 1996 Optimized Λ - parametrization for the QCD running coupling constant in space-like and time-like regions JINR Rapid Commun. 78 96–9
[128] Schrempp B and Schrempp F 1980 QCD at low Q^2: a correspondence relation for moments of structure functions Z. Phys. C 6 7
[129] Krasnikov N V and Pivovarov A A 1982 The influence of the analytical continuation effects on the value of the QCD scale parameter Λ extracted from the data on Charmonium and Upsilon hadron decays Phys. Lett. B 116 166–70