Two cases with fulminant type 1 diabetes that developed long after cessation of immune checkpoint inhibitor treatment

Satoko Hatayama1, Shinjiro Kodama1, Yohei Kawana1, Sonoko Otake1, Daiki Sato1, Takahiro Horiuchi1, Kei Takahashi1, Keizo Kaneko1, Junta Imai1, Hideki Katagiri1*

1Department of Diabetes and Metabolism, Tohoku University Hospital, Sendai, Japan

Keywords
Immune checkpoint inhibitors, Immune-related adverse events, Fulminant type 1 diabetes

*Correspondence
Hideki Katagiri
Tel.: +81 22 717 7611
Fax: +81 22 717 7179
E-mail address: katagiri@med.tohoku.ac.jp

J Diabetes Investig 2022; 13: 1458--1460
doi: 10.1111/jdi.13807

INTRODUCTION

While immune checkpoint inhibitors (ICIs), such as anti-programmed cell death 1 (PD-1), anti-PD-ligand 1 (PD-L1), and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)-antibodies, are effective for treating numerous malignancies, several immune-related adverse events (irAEs), such as thyroid dysfunction, pneumonitis, colitis, cutaneous toxicities, have been reported. Type 1 diabetes (T1D), especially fulminant type 1 diabetes (FT1D), is also reportedly associated with ICI treatments2. Because fulminant type 1 diabetes results from acute and near-total destruction of pancreatic \(\beta\) cells, it can be life-threatening if unrecognized3. Therefore, it is important to detect its onset. Clinical ICI treatment guidelines generally recommend repeated laboratory tests, including the measurement of blood glucose levels during the treatment period4--6. However, the necessity of monitoring glucose levels in patients in whom the ICI therapy had been terminated is not clearly described in most guidelines. One of the guidelines notes that another measurement 4--6 weeks after the last cycle of immunotherapy may be necessary7.

We experienced two cases who developed fulminant type 1 diabetes more than 6 weeks after their last ICI treatments. In particular, one developed fulminant type 1 diabetes approximately 6 months after the last ICI infusion.

CASE PRESENTATION 1

A 74-year-old male with no history of diabetes was diagnosed as having lung adenocarcinoma with metastases in the liver, bone, and brain. He received first-line chemotherapy with gefitinib for 6 months, but with little therapeutic response. Thereafter, second-line chemotherapy with nivolumab every 2 weeks was started. Before the first infusion of nivolumab, the postprandial plasma glucose was 103 mg/dL, glycated hemoglobin (HbA1c) was 6.1%, the postprandial serum C-peptide immunoreactivity (CPR) level was 2.1 ng/mL. Computed tomography demonstrated an abnormal pericardial effusion and growth of the primary tumor. Since malignant pericarditis had worsened, nivolumab administration was terminated after its sixth cycle.

Six weeks after the last infusion of nivolumab, he became aware of thirst, polydipsia, and polyuria. His weight decreased by 3.7 kg. Laboratory data on day 44 after ICI cessation
revealed marked hyperglycemia and ketonuria and he was transferred to our hospital as an emergency.

While his postprandial plasma glucose was elevated to 507 mg/dL, HbA1c was 7.1%. Fasting serum C-peptides were below the lower limit of detection. He had ketonuria with markedly elevated 3-hydroxybutyrate and acetacetate in the blood (Table 1). Autoantibodies to glutamic acid decarboxylase (GAD) and insulinoma-associated antigen-2 (IA-2) were both negative. We diagnosed fulminant type 1 diabetes with diabetic ketosis, and suspected nivolumab to be associated with its development. Ketosis showed a prompt improvement and his blood glucose was well controlled on intensive insulin therapy. Human leukocyte antigen (HLA) typing identified no specific alleles known to be related to type 1 diabetes (Table 1).

CASE PRESENTATION 2

An 85-year-old male with no history of diabetes was diagnosed as having lung adenocarcinoma with carcinomatous pleurisy. He started on a treatment regimen with carboplatin, pemetrexed, and atezolizumab every 3 weeks. Before the first infusion of atezolizumab, the fasting plasma glucose and HbA1c were 86 mg/dL and 5.7%, respectively. After the sixth cycle, this treatment was stopped because of a renal function decline. On day 171 after the last infusion of atezolizumab, he complained of appetite loss and thirst. Four days later, the postprandial plasma glucose was 735 mg/dL and he had lost 1.4 kg. He was transferred to our hospital.

Although his postprandial plasma glucose was 705 mg/dL, HbA1c was 7.4%. Fasting serum C-peptide was beneath the lower limit of detection. He had ketonuria and the blood levels of both 3-hydroxybutyrate and acetacetate were increased (Table 2). Autoantibodies to GAD and IA-2 were both negative. The glucagon loading test showed no increase in CPR levels (Table 2), indicating complete β cell loss.

Based on these findings, we diagnosed fulminant type 1 diabetes and suspected atezolizumab to be involved in its development. He had type 1 diabetes-susceptible HLA types, i.e., DRB1*09:01-DQ81*03:03. He initially received continuous insulin infusion intravenously. Thereafter, he was managed with basal-bolus insulin therapy.

DISCUSSION

In both of our cases, the criteria for diagnosing fulminant type 1 diabetes, established by the committee of the Japanese Diabetes Society, were all met. Related findings, including undetectable islet-related autoantibodies and a diabetes duration of less than 1 week before the start of insulin treatment were also met in these two cases. Therefore, both patients were diagnosed as having fulminant type 1 diabetes. Of course, we cannot rule out the possibility that the fulminant type 1 diabetes development in these two patients was unrelated to their ICI treatments. However, neither patient exhibited symptoms suggesting viral infection, a known trigger of fulminant type 1 diabetes, just prior to its onset. In addition, pharmacodynamics reportedly indicated a sustained high occupancy of PD-1 on circulating T cells of more than 2 months following nivolumab infusion. Thus, ICIIs were deemed to be the most likely cause of their fulminant type 1 diabetes development.

Most cases who developed ICI-associated irAEs were reported during the period of ICI treatment, while several irAEs, such as pneumonitis, hepatitis, colitis, and cutaneous toxicities, were reported to have developed despite ICI treatments having already been discontinued. Clinical ICI treatment guidelines recommend repeated laboratory tests, including the measurement of blood glucose levels, during the treatment period. In many guidelines, however, a concrete description is lacking of how long these laboratory tests should be continued after treatment cessation. The guidelines promulgated by the European Society for Medical Oncology note that another measurement 4–6 weeks after the last cycle of immunotherapy may be necessary. However, our two patients developed fulminant type 1 diabetes more than 6 weeks after receiving their last ICI.

Table 1 | Laboratory results of case 1

Biochemistry	TSH	FT4	FT3	Lipase	Amylase	Elastase 1	Acetacetate	3-Hydroxybutyric acid	Total ketone bodies	Complete blood count
T-Bil (mg/dL)	0.8	1.1	1.25	26 U/L	57 U/L	326 ng/dL	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count
γ-GTP (U/L)	33	125	26 U/L	57 U/L	326 ng/dL	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count	
AST (U/L)	23	26 U/L	57 U/L	326 ng/dL	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count		
ALT (U/L)	25	26 U/L	57 U/L	326 ng/dL	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count		
LDH (U/L)	161	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
BUN (mg/dL)	26	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
Cre (mg/dL)	0.69	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
UA (mg/dL)	5.8	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
TP (mg/dL)	68.9	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
Alb (g/dL)	3.4	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
Na (mmol/L)	137	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
K (mmol/L)	3.6	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
Cl (mmol/L)	98	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
Ca (mg/dL)	9	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
P (mg/dL)	3.5	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
CRP (mg/dL)	0.89	1,144 mol/L	1,894 mol/L	3,038 mol/L	Complete blood count					
Arterial blood gas analysis	0.439 μU/mL	11.9 g/dL	119.9 g/dL	160 × 10^3 {L}	Complete blood count					
pH	7.369	119.9 g/dL	160 × 10^3 {L}	Complete blood count						
PCO₂	39.8 mmHg	119.9 g/dL	160 × 10^3 {L}	Complete blood count						
HCO₃⁻	22.4 mmol/L	119.9 g/dL	160 × 10^3 {L}	Complete blood count						
Base Excess	−2.1 mmol/L	119.9 g/dL	160 × 10^3 {L}	Complete blood count						
Diabetes-related data	HbA1c (7.1%)	5.0 U/mL	0.01 ng/mL	Complete blood count						
GA	29%	5.0 U/mL	0.01 ng/mL	Complete blood count						
FPG	227 mg/dL	5.0 U/mL	0.01 ng/mL	Complete blood count						
Serum CPR	<0.1 ng/mL	5.0 U/mL	0.01 ng/mL	Complete blood count						
Anti-GAD antibody	<5.0 U/mL	5.0 U/mL	0.01 ng/mL	Complete blood count						
Anti-IA-2 antibody	<0.6 U/mL	5.0 U/mL	0.01 ng/mL	Complete blood count						
HLA typing (day 11)	HLA-A31, A01	Complete blood count	Complete blood count	Complete blood count						
HLA-B54, B39	Complete blood count	Complete blood count	Complete blood count	Complete blood count						
HLA-DRB1*1302	Complete blood count	Complete blood count	Complete blood count	Complete blood count						
HLA-DQB1*0604	Complete blood count	Complete blood count	Complete blood count	Complete blood count						
Table 2 | Laboratory results of case 2

Biochemistry	Lipase	29 U/L
	Amylase	124 U/L
	Elastase 1	180 ng/dL
	Acetoacetate	729 μmol/L
	3-Hydroxybutyric acid	2,688 μmol/L
	Total ketone bodies	3,417 μmol/L
Complete blood count	WBC	6,100/μL
	Hb	11.4 g/dL
	Plt	167 x 10^3/μL

Arterial blood gas analysis

pH	7.406
PCO2	38.3 mmHg
HCO3^-	23.5 mmol/L
Base excess	-0.4 mmol/L

Diabetes-related data

HbA1c	7.4%
GA	29%
FPG	223 mg/dL
Serum CPR	<0.01 ng/mL
Anti-GAD antibody	<5.0 U/mL
Anti-IA-2 antibody	<0.6 U/mL
Urinary CPR (day 8)	0.61 μg/day

Glucagon loading test (day 13)

| CPR 0 min | <0.01 ng/mL |
| CPR 6 min | <0.01 ng/mL |

HLA typing (day 12)

| HLA-A24*02, 31:01 |
| HLA-B35*01, 44:03 |
| HLA-DRB1*09:01, 13:02 |
| HLA-DQB1*03:03, 06:04 |

Informed consent: We informed the patient or patient’s family of the case report, and they gave their consent.

Approval date of registry and the registration No. of the study/trial: October 19, 2021, No. 23579.

Animal studies: N/A.

Approval of the research protocol: N/A.

DISCLOSURE

The authors declare no conflict of interest.

REFERENCES

1. Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat Rev Clin Oncol 2019; 16: 563–580.

2. Stamatouli AM, Quandt Z, Perdigoto AL, et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 2018; 67: 1471–1480.

3. Hanafusa T, Imagawa A, Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab 2007; 3: 36–45.

4. Brahmer JR, Abu-Sbeih H, Ascierto PA, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer 2021; 9: e002435.

5. Thompson JA, Schneider BJ, Brahmer J, et al. Management of immunotherapy-related toxicities, version 1.2019. J Natl Compr Canc Netw 2019; 17: 255–289.

6. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 2018; 36: 1714–1768.

7. Paschou SA, Stefanaki K, Psaltopoulou T, et al. How we treat endocrine complications of immune checkpoint inhibitors. ESMO Open 2021; 6: 100011.

8. Imagawa A, Hanafusa T, Awata T, et al. Report of the Committee of the Japan Diabetes Society on the research of fulminant and acute-onset type 1 diabetes mellitus: new diagnostic criteria of fulminant type 1 diabetes mellitus (2012). J Diabetes Investig 2012; 3: 536–539.

9. Brahmer JR, Drake CG, Woliner I, et al. Phase 1 study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010; 10: 7: 3167–3175.

10. Couey MA, Bell RB, Patel AA, et al. Delayed immune-related events (DIRE) after discontinuation of immunotherapy: diagnostic hazard of autoimmunity at a distance. J Immunother Cancer 2019; 7: 165.