Overcoming the Blood–Brain Barrier: Successes and Challenges in Developing Nanoparticle-Mediated Drug Delivery Systems for the Treatment of Brain Tumours

Chiara Ferraris1
Roberta Cavalli1
Pier Paolo Panciani2
Luigi Battaglia1

1Department of Drug Science and Technology, University of Turin, Turin, Italy; 2Clinic of Neurosurgery, Spedali Civili and University of Brescia, Brescia, Italy

Abstract: High-grade gliomas are still characterized by a poor prognosis, despite recent advances in surgical treatment. Chemotherapy is currently practiced after surgery, but its efficacy is limited by aspecific toxicity on healthy cells, tumour cell chemoresistance, poor selectivity, and especially by the blood–brain barrier (BBB). Thus, despite the large number of potential drug candidates, the choice of effective chemotherapeutics is still limited to few compounds. Malignant gliomas are characterized by high infiltration and neovascularization, and leaky BBB (the so-called blood–brain tumour barrier); surgical resection is often incomplete, leaving residual cells that are able to migrate and proliferate. Nanocarriers can favour delivery of chemotherapeutics to brain tumours owing to different strategies, including chemical stabilization of the drug in the bloodstream; passive targeting (because of the leaky vascularization at the tumour site); inhibition of drug efflux mechanisms in endothelial and cancer cells; and active targeting by exploiting carriers and receptors overexpressed at the blood–brain tumour barrier. Within this concern, a suitable nanomedicine-based therapy for gliomas should not be limited to cytotoxic agents, but also target the most important pathogenetic mechanisms, including cell differentiation pathways and angiogenesis. Moreover, the combinatorial approach of cell therapy plus nanomedicine strategies can open new therapeutical opportunities. The major part of attempted preclinical approaches on animal models involves active targeting with protein ligands, but, despite encouraging results, a few number of nanomedicines reached clinical trials, and most of them include drug-loaded nanocarriers free of targeting ligands, also because of safety and scalability concerns.

Keywords: glioma, blood–brain barrier, blood–brain tumour barrier, nanoparticles, targeting

Classification of Brain Tumours

The most frequent brain tumours (gliomas) originate from glial cells, and range from low infiltrating to highly aggressive. In the 2007 World Health Organization (WHO) classified gliomas within four grades, basing on histopathologic features, such as mitotic index, anaplasia, cytological atypia, microvascular proliferation, and necrosis: grade I (ie pilocytic astrocytoma), grade II (ie astrocytomas and oligodendrogliaomas), grade III (ie anaplastic astrocytomas and oligodendrogliomas), and grade IV (ie glioblastoma multiforme). In 2016 WHO included in the classification also molecular diagnostic criteria for infiltrating gliomas, including mutation of...
isoctinate dehydrogenase, deletion of 1p/19q chromosome, and histone mutations. However, malignant or high grade (III and IV) gliomas are characterized by very poor prognosis. Furthermore, 8–10% of the adult patients with cancer develop brain metastases, with considerably variable incidence among different primary cancers. Lung, breast, colon, kidney cancer or melanoma can lead to brain metastases, 70% of which originating from lung and breast cancer.

Current Therapy of Gliomas
Surgery is the first-line treatment both in low and high-grade gliomas and the extent of resection has demonstrated a positive prognostic effect. Several techniques have been designed to refine tumour resection: neuronavigation, use of 5-aminolevulinic acid, and intra-operative magnetic resonance imaging (MRI). There is evidence that the combined use of these techniques improves the rate of gross total resection. The choice and the timeframe of subsequent adjuvant chemotherapy and radiation therapy (alone or as combined treatments) is still considered controversial. A survey within the European Low-Grade Glioma Network showed a relevant heterogeneity in the usage of chemotherapy. Generally, oral temozolomide (TMZ) is the first-line treatment after surgery for high-risk low-grade gliomas, or at progression, although, according to the Radiation Therapy Oncology Group, combination of radiotherapy with procarbazine, lomustine and vincristine regimen has been indicated as the gold-standard treatment. While investigations are currently underway to evaluate the potential role of chemotherapy in low-grade gliomas, combined chemotherapy/radiotherapy approaches are currently practiced after surgery in high-grade gliomas. Radiotherapy is related to important side effects, such as post-radiation leuko-encephalopathy, nerve damage, hair loss, vomiting, infertility, and skin rash. Moreover, the effectiveness of chemotherapy is limited by toxic effects on healthy cells, tumour cell chemoresistance, and poor selectivity of anticancer drugs. Finally, the blood–brain barrier (BBB) is the major limit for the delivery of chemotherapeutic agents. Thus, the chemotherapeutics currently employed for high-grade gliomas are still limited to few chemical compounds. Currently, owing to the Food and Drug Administration (FDA), oral TMZ is the standard chemotherapy for glioblastoma and anaplastic astrocytoma. Bevacizumab (Avastin®) is a monoclonal antibody that specifically binds vascular endothelial growth factor (VEGF). Despite FDA accelerated approval for bevacizumab for brain tumours, basing on its efficacy towards recurrent glioblastoma, its use has been involved with many controversies. Indeed, this anti-angiogenic therapy failed to improve patient overall survival, despite showing efficacy in shrinking or halting tumour growth. In 1996, FDA approved biodegradable polyanhydride wafers loaded with carmustine (Gliadel®) for chemotherapy of recurrent high-grade gliomas. Patients with recurrent tumours benefit of an 8 weeks survival increase, when wafers were placed at the second surgery. Instead, the survival increase was 2.3 months in patients with early diagnosed tumours, undergoing primary resection followed by wafer placement.

Experimental Drugs for Gliomas
Apart from currently approved chemotherapy, several drugs belonging to various therapeutic categories are currently under investigation for high-grade glioma treatment: the main mechanisms underlying their activity towards glioma are summarized in Figure 1. Advantages and disadvantages of such therapeutic drugs are listed in Table 1. In the following sections, the most important attempts and findings at preclinical and clinical level concerning such drugs are briefly described.

Cytotoxic Agents
Different marketed cytotoxic drugs have been tested off-label in preclinical glioma models and clinical trials, including nitrosoureas (alkylating agents), platinum salts, inhibitors of topoisomerase I (etoposide) and II (camptothecin, irinotecan, topotecan), mitotic inhibitors that is taxanes derivatives (paclitaxel, docetaxel), anthracyclines such as doxorubicin (DNA intercalation and topoisomerase II inhibition), and paclitaxel–cisplatin–vincristine (PCV) combination.

Prodrugs of Cytotoxic Agents
Lipophilic prodrugs with molecular weight (MW) lower than 500 Da, and capable of forming less than 8 hydrogen bonds, should be able to overcome the BBB; the cytotoxic drug chlorambucil was modified accordingly, with improved brain delivery. However, recent interest has been growing concerning higher MW compounds, such as fatty acid – paclitaxel (PTX) prodrugs. In particular cis-linoleic acid conjugate with PTX (CLA-PTX) resulted in much higher plasmatic half-life and brain accumulation than free PTX, with encouraging therapeutic effect on brain tumour bearing rats.
Angiogenesis Inhibitors

The expression level of VEGF directly correlates with tumour grade, with a nearly 10-fold gap between high and low-grade gliomas. Thus, endothelial cells are a suitable target for high-grade glioma treatment. Apart from monoclonal antibody bevacizumab, that selectively binds VEGF, potential therapeutic agents include thalidomide and VEGF receptor (VEGFR) inhibitors, belonging to receptor tyrosine kinase (RTK) inhibitors category. Cediranib and vatalanib are orally bioavailable VEGFR inhibitors, with simultaneous inhibitory activity on tyrosine-protein kinase KIT (c-Kit) and platelet-derived growth factor receptor (PDGFR), that, currently, are undergoing clinical trials for high-grade gliomas.

Epidermal Growth Factor Receptor (EGFR) Inhibitors

EGFR, together with downstream signalling pathways (such as phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin - PI3K/Akt/mTOR and Ras mitogen-activated protein kinase - Ras/MAPK), regulates cell survival, proliferation, angiogenesis and migration. EGFR is overexpressed in over 40% of glioblastomas. Furthermore, 25% of glioblastomas are characterized by the expression of an EGFR mutant (EGFRvIII), which is defective of the extracellular ligand-binding domain. Erlotinib, lapatinib, and gefitinib, three RTK inhibitors acting on EGFR, have been tested at preclinical and clinical stage for malignant gliomas treatment, with limited efficacy. Also, cetuximab and nimotuzumab, two mouse
Table 1 Advantages and Disadvantages of Experimental Drugs Against High-Grade Gliomas

	Advantages	Disadvantages
Cytotoxic agents	• Complete oral bioavailability of TMZ\(^{149}\)	• Important side effects: nausea, myelosuppression, hepatotoxicity, DOX cardiotoxicity, cisplatin nephrotoxicity, etc
	• Capacity of nitrosoureas and temozolomide to cross the BBB	• Generally i.v. administered
	• Clinical efficacy of nitrosoureas chemotherapy combined with radiotherapy\(^{150}\)	
	• Clinical efficacy of the combination of etoposide and platinum salts\(^{149}\)	
	• Availability of newer platinum derivatives (eg oxaliplatin) with activity against resistant tumors\(^{10}\)	
VEGFR inhibitors	• Orally administered	• Continued tumour growth in monotherapy\(^{152}\)
	• Potential availability of biomarkers indicative of tumour responsiveness to VEGF inhibition\(^{151}\)	
	• Vascular normalization induced may reduce interstitial fluid pressure and allow better drug penetration\(^{16}\)	
	• Reduced tumour hypoxia\(^{16}\)	
	• Well tolerated	
Anti-VEGF antibodies	• Size reduction in xenograft models\(^{153}\)	• Severe toxicities, especially in combination with irinotecan\(^{71}\)
	• Good clinical efficacy also in monotherapy\(^{154}\)	• i.v. administration
EGFR inhibitors	• Potential identification of EGFR inhibition sensitive phenotypes\(^{155}\)	• Limited efficacy both as mono and combination therapy, or radiotherapy\(^{9}\)
		• Severe toxicities\(^{9}\)
Anti-EGFR antibodies	• Orally administered	• No difference in survival between normal and EGFR overexpressing patients\(^{156}\)
	• Binding to both wild-type and EGFRvIII receptors\(^{18}\)	• i.v. administration
	• Increased survival in combination with radiotherapy in mouse models\(^{157}\)	
	• Responsiveness as monotherapy in EGFR overexpressing patients refractory to standard chemotherapy\(^{158}\)	
	• Well tolerated	
PDGFR inhibitors	• Orally administered	• Poor clinical efficacy as monotherapy\(^{9}\)
	• Promising direct antitumor activity in preclinical models\(^{159}\)	
	• Sensitize glioma cells to radiation\(^{159}\)	
	• Through vascular normalization, it facilitates the tumor penetration of cytotoxic drugs\(^{159}\)	
	• Well tolerated	
Ras/MAPK inhibitors	• Orally administered	• No clinical efficacy of tipifarnib monotherapy\(^{160}\)
	• Safety and efficacy of tipifarnib in combination therapy\(^{9}\)	
PKC inhibitors	• Orally administered	• High doses are poorly tolerated with cardiovascular side effects\(^{62}\)
	• Well tolerated and promising efficacy in highly pretreated patients\(^{61}\)	
PI3K/Akt/mTOR inhibitors	• Everolimus and sirolimus orally administered	• Significant activation of Akt, potentially resulting in a reduced time to progression\(^{14}\)
	• Tumor growth was retarded in some patients\(^{14}\)	• No clinical efficacy as monotherapy\(^{63}\)
	• Well tolerated	
Multi target inhibitors	• Multiple target inhibition with a single agent	• No clinical benefit as monotherapy\(^{9}\)
	• Pazopanib, sorafenib, sunitinib, tandutinib, vandetanib orally administered	
	• Sorafenib overcomes BBB\(^{164}\)	

(Continued)
anti-human EGFR antibodies, were employed in clinical trials for recurrent high-grade glioma patients.\(^9,19\)

PDGFR Inhibitors

PDGFR is an RTK, which is overexpressed in more than 20% of glioblastomas,\(^20\) and, like EGFR, it is upstream of Ras/MAPK and PI3K/Akt/mTOR signalling pathways.\(^21\) Imatinib, an inhibitor of PDGFR, c-Kit, Abelson murine leukemia viral oncogene (Abl), and arginase (ARG), was tested in several clinical studies involving high-grade glioma patients.\(^15,22\)

Ras/MAPK Inhibitors

The Ras/MAPK signalling pathway is downstream to several RTK inhibitors, such as fibroblast growth factor receptor (FGFR), insulin-like growth factor (IGFR), and the aforementioned EGFR, VEGFR, PDGFR. Therefore, it is responsible for cell proliferation and migration processes, as well as for cell cycle progression, and malignant transformation. Ras/MAPK is also upstream to PI3K/Akt/mTOR signalling pathway.\(^15,21,23\) Furthermore, malignant gliomas are characterized by Ras/MAPK up-regulation.\(^23\) Oral tipifarnib, a farnesyl transferase inhibitor with demonstrated radio-sensitizing effect is currently undergoing several clinical trials for high-grade gliomas.\(^24\)

Protein Kinase C (PKC) Inhibitors

PKC enzymes belong to a serine/threonine kinases family, and it is downstream to different RTKs, including VEGFR and PDGFR.\(^25\) PKC is involved in chemo-resistance and radioresistance in malignant gliomas.\(^26\) Furthermore, PKC is frequently overexpressed in malignant gliomas.\(^26-28\) Enzastaurin, a lipophilic, orally administered PKC inhibitor, underwent different clinical trials as mono or combination therapy, but with limited clinical benefit.\(^9\)

PI3K/Akt/mTOR Pathway Inhibitors

PI3K/Akt/mTOR is down-regulated by phosphatase and tensin homolog (PTEN), which, in turn, is altered (deleted, inactivated, or mutated) in nearly 40–70% glioblastomas.\(^29,30\) Sirolimus, an orally bioavailable peptide macrolide, which is able to overcome the BBB and acts as mammalian target of rapamycin (mTOR) inhibitor, is currently employed in clinical trials for malignant gliomas.\(^31\) Also, everolimus and temsirolimus, two analogs of sirolimus, respectively, orally and i.v administered, have been tested in clinical trials.\(^32,33\) However, mTOR inhibitors induce significant activation of protein kinase B (Akt) in 50% of the patients, potentially causing a reduced time to progression: simultaneous inhibition of mTOR and Akt could overcome this limitation.\(^34\)

Multi-Target Inhibitors

The simultaneous inhibition of different aberrant signalling pathways should result in great clinical benefit for targeted therapies. Apart from the combination of different drug therapies, multiple-target inhibition can be achieved through employment of small molecule inhibitors of newer-generation.\(^15\) Dasatinib, pazopanib, sunitinib, sorafenib, vandetanib, tandutinib are currently in evaluation in clinical trials for glioblastoma, alone or in combination therapy.\(^9\)

Matrix Metalloproteinase (MMP) Inhibitors

MMPs are proteolytic enzymes active also in physiological conditions. In tumours, they promote basal membrane invasion, metastatization and angiogenesis, being directly secreted by tumour cells or by the surrounding stroma, under tumoural stimulus. Marimastat, the most studied MMP inhibitor, showed promising in vitro inhibition of

MMP inhibitors	Advantages	Disadvantages
	MMP overexpression in gliomas	· Negligible clinical efficacy\(^{165}\)
	Minimal toxicity also at high doses\(^{166}\)	· Severe toxicities \(^{165}\)

Integrin inhibitors

Advantages	Disadvantages
Minimal toxicity also at high doses\(^{166}\)	Limited clinical efficacy as monotherapy\(^{166}\)

Table 1 (Continued).

MMP inhibitors	Advantages	Disadvantages
	MMP overexpression in gliomas	· Negligible clinical efficacy\(^{165}\)
	Minimal toxicity also at high doses\(^{166}\)	· Severe toxicities \(^{165}\)

Abbreviations: Akt, protein kinase B; BBB, blood–brain barrier; DOX, doxorubicin; EGFR, epidermal growth factor receptor; EGFRvIII, mutant EGFR; MMP, matrix metalloproteinase; PDGFR, platelet-derived growth factor receptor; PI3K/Akt/mTOR, phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin; PKC, protein kinase C; Ras/MAPK, Ras mitogen-activated protein kinase; TMZ, temozolomide; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
malignant glioma, but no advantage in clinical trials with glioblastoma patients.35,36

Integrin Inhibitors

The expression of avβ3 and avβ5 heterodimers is increased in malignant gliomas, and it has been hypothesized that they contribute to regulate angiogenesis and migration.37 Cilengitide is a potent antagonist of both avβ3 and avβ5. Several clinical trials testing cilengitide in combination therapy regimens are currently ongoing.9

Rationale for Employment of Nanomedicines in Glioma Therapy

The main mechanisms underlying the rationale of employing nanomedicines for glioma treatment are summarized below (Figure 2).

Passive Targeting

The permeability of adjacent brain vasculature changes during the growth of brain tumours. At their early stage, the growth of tumour cells depends only on normal brain vessels and the BBB is intact. With tumour progression, glioma cells invade the surrounding healthy tissues. When a large enough volume (\(>0.2 \text{ mm}^3\)) is reached by the tumour cell cluster, a structural damage will affect the BBB, and blood–brain tumour barrier (BBTB) will be formed.38 Within this concern, claudin-1, a protein specifically expressed in the tight junctions of endothelial cells, is down-regulated in vessels surrounding high-grade gliomas, thus increasing the permeability of the BBB.39,40 This “leaky” BBTB is a common feature of high-grade gliomas, because of their increased metabolic requirements. Furthermore, it has been demonstrated that VEGF, associated with the high angiogenic nature of high-grade gliomas, induces the expression of proteins involved in the permeability of the BBB and in angiogenesis.

Figure 2 Rationale of employing nanomedicines for glioma treatment.

Abbreviations: BBB, blood–brain barrier; BBTB, blood–brain tumour barrier; CMT, carrier-mediated transport; EPR, enhanced permeation and retention; HIF, hypoxia-induced factors; P-gp, P-glycoprotein; RMT, receptor-mediated transport.
gliomas, increases the BBB permeability, by stimulating angiogenesis in response to hypoxia.41,42 The “leaky” BBB can be targeted for drug delivery purposes, by exploiting the so-called enhanced permeability and retention (EPR) effect. Since the pores cut-off size at the BBB is highly variable, the size of nanocarriers largely influences the extent and efficacy of drug delivery. In fact, the vascular leakage is significantly reduced in the tumours within the brain microenvironment compared with other districts, and it is affected by the tumour stage and/or to the tumour model employed.43 For instance, the critical cut-off size of the BBB for intracranial U87MG xenografts ranges between 7 and 100 nm.44 Despite the reduced size of vessel fenestrations may limit the potential of passive targeting strategy to address brain cancer, drug-loaded nanocarriers free of targeting ligands showed promising efficacy in orthotopic brain glioma models, thus allowing a translation to clinical therapy.45

Active Targeting

However, high-grade gliomas rapidly infiltrate the surrounding healthy tissue, where the BBB is not altered and the EPR effect cannot be achieved.46 Indeed, in human patients, contrarily to animal tumour models, chemotherapy is only adjuvant, and it should mainly be addressed towards the eradication of residual tumour cells after surgery or radiotherapy. This cell population includes cells migrating from the tumour into healthy tissue or that feed the tumour from distant sites still active. Thus, the most relevant area for chemotherapy is the one surrounding the glioma, the so-called BAT (Brain Adjacent to Tumour), including cells in the invasion phase, that do not still affect the integrity of the BBB. Since BAT should be the main target of chemotherapy, the development of formulations easily crossing the intact BBB is essential.47 In this case, suitable active targeting of nanocarriers is needed to reach the target tissue, by exploiting carrier and/or receptors overexpressed at the BBB. Carrier-mediated transporters (CMTs) are entailed in the transport of essential small molecules into the brain. Receptor-mediated transporters (RMTs) are abundantly expressed at the BBB, being exploited by large endogenous biomolecules.2,48 Specific peptide receptors are included in RMT, eg low-density lipoprotein (LDL) receptor, transferrin (Tf) receptor, lactoferrin (Lf) receptor, insulin receptor, and receptors for insulin-like growth factors (IGF-1 and IGF-2).49 CMT and RMT ligands have been frequently exploited for drug delivery as molecular “Trojan horses” for nanocarriers.50–55

Overcoming Extrusion Mechanisms at the BBB

Additionally, in the BBB endothelial cells (on the luminal side), as well as in glioma cells, the P-glycoprotein (P-gp) is present. P-gp is a 170-kDa glycoprotein associated to the cell membrane, belonging to the superfamily of ATP binding cassette (ABC) transporters, that actively extrudes from cells chemically different substrates. P-gp can hamper BBB overcoming by chemotherapeutic drugs, and it is responsible for chemoresistance in glioma cells.56,57 Thus, P-gp inhibition can be considered as a potential dual strategy, suitable both to enhance drug penetration in the brain, and to reduce glioma chemoresistance. Thus, specific inhibitors of ABC subfamily member 1, such as elacridar and tariquidar, and anti-estrogen tamoxifen, were investigated for glioma treatment, owing to their anti-extrusion effect at the BBB.58,59 Apart from chemical modulators, also nanoparticulate systems can inhibit the P-gp drug efflux mechanism: indeed they can deliver the drug within the cells by endocytosis, therefore making it less susceptible to the membrane-bound drug efflux mechanisms, since it is in the form of drug-matrix aggregates. Also, some ingredients employed in the formulation of nanocarriers, such as surfactants, can contribute to the P-gp inhibition.60 Furthermore, co-delivery in the same nanocarriers of cytotoxic drugs and P-gp inhibitors (such as ketoconazole) has also been attempted in preclinical models.61

Inhibition of Tumour Differentiation, Migration and Neo-Vascularization

Lastly, from a histological point of view, in malignant gliomas, areas of necrosis, hypoxia and microvascular hyperplasia are present, with pseudo-palisades of cells migrating from the original necrosis area.62,63 Accordingly, it has been recently shown that cancer stem cells (CSC) are responsible for the initiation step of human glioblastoma and medulloblastoma in intracranial mouse xenografts.64 Unfortunately, the CSC location has yet to be precisely disclosed, but it has been demonstrated that hypoxia-induced factors (HIF) are responsible for CSC phenotype and can even shift normal cells to CSC.65,66 Since HIF are involved both in angiogenesis and in maintaining CSC, a suitable treatment for high-grade gliomas
should be able to down-regulate their expression. This can occur by scavenging of reactive oxygen species (ROS). Indeed, during hypoxia, rising intracellular ROS concentration overcomes glutathione (GSH) guard levels. ROS can stabilize HIF, allowing VEGF transcription and consequent angiogenesis.67–70 This mechanism underlies the rationale for employing anti-oxidant and anti-VEGF agents in glioma therapy. Indeed, the combination of anti-angiogenic bevacizumab and cytotoxic irinotecan is approved for recurrent glioblastoma.71,72 Furthermore, in mice bearing intracerebral glioblastoma, pre-treatment with Tempol, a ROS scavenger, followed by TMZ chemotherapy, suppressed tumour growth and increased survival rate.73 Within this concern, nanocarriers should be able to achieve co-delivery of anti-VEGF drugs and anti-oxidants, together to cytotoxic agents within the tumour tissue, owing to the aforementioned mechanisms. A recent experimental study showed an increase in bevacizumab activity and permeation through the BBB, when loaded within solid lipid nanoparticles (SLN).74 Also treatment cerium oxide nanoparticles (nanoceria), with ROS scavenging properties, caused decreased expression levels of VEGF in a human astrocytoma cell line, associated with reduced motility and capacity of endothelial cells to form new capillaries.75 Recently, camptothecin (CPT), a topoisomerase inhibitor, was employed in a co-delivery nanoparticulate system, that could stop the stabilization of HIF in brain tumours. For this, a suitable CPT prodrug was synthesized, by linkage with a tetraethylene glycol (TEG) spacer and α-lipoic acid (ALA). The obtained CPT-TEG-ALA prodrug can be cleaved by oxidation, thus acting as a ROS scavenger, and release CPT in its active form within glioblastoma cells. CPT-TEG-ALA was loaded in nanoemulsion along with α-tocopherol, an additional ROS scavenger, thus preventing HIF production.76

Preclinical Nanomedicines

Several approaches involve the alteration of the BBB, in order to increase brain penetration of nanocarriers loaded with chemotherapeutic drugs against glioma tumours. They include both invasive methods,77 such as convection-enhanced delivery78,79 and post-surgical implantation,80–82 and noninvasive BBB opening through focused ultrasound (FUS).83 Indeed, ultrasound with a frequency below 1 MHz can induce reversible and temporary BBB opening with the aid of microbubbles (Figure 3). This technique can be employed to deliver theranostic agents for the detection and treatment of various brain diseases, and it

![Figure 3](https://www.dovepress.com/figure3-scheme-of-brain-delivery-of-nanoparticles-with-focused-ultrasound-fus-technique-abbreviation-sf6-sulfur-hexafluoride-downloaded-from-httpswww.dovepress.comby207.241.225.139on09-May-2020)
has been already subject of clinical trials. In particular, Cu-Se ultrasmall nanoparticles and rare earth nanoparticles, labelled with near-infrared (NIR) dyes, have been employed, at preclinical level, to monitor FUS-induced temporary opening of the BBB and following recovery, as well as to detect glioma in orthotopic animal models. In further studies, the aforementioned Cu-Se ultrasmall nanoparticles, loaded with doxorubicin (DOX) and labelled with NIR dyes, were used concurrently with FUS and photodynamic therapy, and demonstrated good efficacy against orthotopic tumour models.

Anyway, the nanocarriers discussed here below include only those used to overcome the BBB/BBTB without disruption, aiming to deliver anti-cancer drugs to the brain tumours. They can be made of different matrixes, including metals (ie calcium phosphate, iron oxide), lipids (SLN), phospholipids (liposomes), proteins (bovine serum albumin – BSA), synthetic polymers (ie poly-lactide – PLA; poly-lactide-glycolide – PLGA; PEG: polyethyleneglycol), natural polymers (ie chitosan) and polymer-lipid hybrid nanoparticles (PLN).

Requested features of such nanomedicines are the following:

- They should stabilize the drug from physicochemical or biological standpoints;
- They should avoid opsonization and, therefore, clearance by the reticuloendothelial system (RES), prolonging plasma circulation time and allowing EPR effect;
- They should be endowed with selective targeting strategies to the brain;
- They should not stimulate immune response.

However, the fact that almost 98% of drugs are unable to overcome the BBB is the main reason for employment of nanocarriers in high-grade glioma treatment. Two approaches have been documented in literature: the first employs plain nanocarriers, the second exploits active targeting, in order to enhance uptake of the nanocarriers by the endothelial cells at the BBB/BBTB.

Within this concern, a huge number of nanocarriers aiming to glioma treatment have been engineered in the last decades. However, the following discussion will be focused only on the ones that underwent preclinical in vivo testing. Indeed, despite the presence of several in vitro investigation methods, only preclinical animal models can be predictive of the real potential of administered nanomedicines, because of the simultaneous presence of biological barriers and metabolism/distribution. Pharmacokinetic and biodistribution experiments are relevant in order to foresee the metabolic fate of nanocarriers and loaded drugs, while glioma models allow to predict in vivo efficacy. Different mouse and rat glioma models are described in literature, ethyl-nitrosourea induced orthotopic models in allogeneic or syngeneic healthy animals, orthotopic xenografts, or genetically engineered models. Within this concern, it should be pointed out that the glioma model employed can affect in a relevant manner the measured efficacy of the therapeutic drug delivery system under investigation, with the immune system playing a key role. In fact, today the so-called “immune privilege” of the brain is no more a retained concept. Thus, if the absence of the immune system could cause an under-estimation of the therapeutic effect in xenografts, on the other side, the presence of the immunity in immuno-competent models can hamper the reproducibility of the glioma model itself. Indeed, the superior reproducibility of syngeneic models over allogeneic has been documented, owing to a lower graft rejection. Furthermore, despite surgical resection is the primary approach for high-grade gliomas, the majority of preclinical models focus solely on drug treatment of solid intracranial tumours. Within this concern, recently a resection and recurrence orthotopic model has been developed, with potential for the investigation of tumour ablation combined with local and systemic chemotherapy.

Plain Nanocarriers

Plain nanocarriers can improve drug delivery to gliomas by stabilizing the drug in the bloodstream, such as in the case of TMZ, which suffer from pH-dependent nonenzymatic chemo-degradation at the neutral pH, despite being the most employed drug for the treatment of brain cancers. Published reports demonstrated the therapeutic advantage of loading TMZ inside nanostructured lipid carriers (NLC), which is an optimized form of SLN with higher drug loading capacity. Naked nucleic acid delivery is also associated with fast degradation, aspecific biodistribution and poor cell internalization. In fact, small interfering RNA (siRNA) and microRNA (miRNA) are promising tools to treat various diseases, but, due to their instability and poor delivery within target tissues, naked RNA is not robustly used. Thus, entrapment in positively charged nanocarriers can prevent from degradation/metabolism,
and favour cell internalization, both at the BBTB and in glioma cells.98

Nanocarriers can also increase drug half-life (for EPR effect), and/or favour endocytosis across BBTB endothelial cells, also owing to P-gp inhibition. In particular, this mechanism has been well documented for lipid nanocarriers, such as liposomes and SLN.99 The physiological nature of the lipid matrix employed should improve natural brain uptake, and the employment of surfactants, such as Brij 78 or Polysorbate 80, to coat SLN can improve the nanoparticle brain uptake and drug activity, being the two molecules associated to P-gp inhibition.100,101 However, SLN mechanism of action excludes any significant toxic effect on the BBB, as assessed by the absence of alterations to cell integrity and permeability, vessel blood flow, and choline active transport. Indeed, Western blot analyses of occludin and claudin-1 in the BBB cells, run following SLN administration, showed no modifications in protein expression.102 Interestingly, in the case of the insoluble prototype anticancer drug named edelfosine (EDF) and of ion-paired idarubicin, also oral administration of drug-loaded SLN was effective against glioma subcutaneous models101 and in enhancing drug concentration in the brain,103 respectively.

Finally, plain nanocarriers can also be employed for stimuli-responsive formulations. Indeed, the combination of silver nanoparticles (AgNPs) with magnetic nanoparticle hyperthermia (MNPH) was used as a treatment in the glioma model.104

The most important plain nanocarriers, employed in in vivo preclinical studies for glioma non-invasive treatment, are shown in Table 2.

Functionalized Nanocarriers

Nanocarriers can be functionalized on their surface with suitable ligands, in order to exploit RMT and CMT at the BBB. As previously mentioned, several specific receptors, in particular for endogenous proteins and peptides, were employed as molecular “Trojan horse” for nanocarrier systems.99 LDL receptor is overexpressed both at the BBB and in glioma cells and, therefore, it is a potential target to be exploited for the delivery of therapeutic agents. Apolipoproteins (Apo) are usually employed to target LDL receptors, but Apo being a high MW protein, usually shorter chimera peptides including the receptor-binding domain are employed.50,105 Angiopet-2 (TFFYGGSRGKNNFKTEEY, molecular weight 2.4 kDa), a peptide belonging to the Kunitz domain-derived family, is a potent ligand of LDL on the BBB employed for nanocarriers functionalization.106 Within this concern, it should be pointed out that Polysorbate 80 is frequently employed as suspending agent for plain nanocarriers aiming to drug brain delivery. Indeed, it has been hypothesized that this nonionic surfactant can adsorb endogenous Apo E present in serum on the surface of nanoparticles.107,108 Mammalian Lf is a cationic iron transporting glycoprotein (80 kDa), whose receptor is expressed on the endothelial side of the BBB. Studies with membrane preparations of mouse brain have shown that the Lf receptor at the BBB has two classes of binding sites: a high-affinity, with a dissociation constant K_d of 10.61 nM, and a low-affinity with a K_d of 2228 nM. Plasmatic concentration of endogenous Lf (~5 nM) is lower than the K_d of Lf receptors at the BBB. Thus, the competitive inhibition with endogenous Lf is avoided, allowing employment of Lf functionalized nanocarriers for drug delivery in glioma models.109 Finally, apart from protein ligands, nanocarriers can be functionalized also with small molecules, recognized at the BBB from specific receptors/carriers, such as GSH receptor,110 folate receptor and monocarboxylic acid transporter (MCT-1).61,111

However, different critical issues are associated with active targeting to the BBB. First of all, most of the RMT are not present exclusively at the BBB. For example, Tf receptor is expressed in monocytes, red blood cells, lungs, hepatocytes, and in the gut, along with the BBB. Within this concern, it is reported that active targeting of nanocarriers should benefit from employment of a “spacer” between the nanoparticles’ surface and the grafted protein, and that grafting a low amount of protein should enhance selectivity for the BBB rather than nontarget tissues.51 Moreover, nanocarriers grafted with physiological ligands (ie Tf) undergo binding competition with the corresponding endogenous protein, which can decrease targeting efficacy;46 then, most of the available targeting proteins can cause immunogenic reactions; finally, some receptors on the BBB, such as insulin and Tf, control homeostasis of iron and glucose within the brain, and nanocarriers grafted with monoclonal antibodies against these receptors may down-regulate their activity and raise safety concerns.112

Functionalization of nanocarriers can be exploited also to target specific receptors overexpressed in glioma and/or at the BBTB. Previously mentioned overexpression of EGFR and EGFRvIII mutant at the BBTB allows a selective targeting.113 Also, integrins play important
Nanocarriers	Drug	Experimental in vivo Model	Achievements in vivo	References
AgNPs combined with MNPH	Ag⁺	Efficacy in glioma rat model	Enhanced Bcl-2-associated X protein expression	[104]
Cationic SLN	PEGylated c-Met siRNA	Efficacy in U87 xenografts	Enhanced accumulation in brain tumour and down-regulation of c-Met levels	[93]
Liposomes	Oxaliplatin	Biodistribution and survival analysis in F98/Fischer glioma model	Increased brain oxaliplatin concentration and median survival time of glioma models	[167]
NLC	TMZ; GFP encoding pDNA	Efficacy in U87 xenografts	Gene transfection and enhanced antitumor activity	[96]
PLGA nanoparticles, SLN, NLC	TMZ	Efficacy in U87 xenografts	Best efficacy obtained with NLC formulation	[168]
Polymer nanogel	miRNA miR.34a	Efficacy in U87 xenografts	Significant tumor growth inhibition	[169]
Polysorbate 80 coated PBCA nanoparticles	DOX	Biodistribution in glioma models	Increased accumulation of DOX in brain tumour	[170]
Polysorbate 80 coated PBCA nanoparticles	TMZ	Biodistribution in healthy rats	Increased brain uptake of TMZ	[171]
Polysorbate 80 coated PBCA nanoparticles	Gemcitabine	Survival analysis in C6/Sprague Dawley rat glioma models	Prolonged survival of glioma models	[172]
Polysorbate 80 coated PLA nanoparticles	TMZ	Pharmacokinetic and biodistribution in rats	Enhancement in half-life of TMZ with higher deposition in the brain	[173]
Polysorbate 80 coated SLN	CPT	Pharmacokinetic and biodistribution in rats	Increased brain accumulation of CPT	[108]
Polysorbate 80 coated SPION	DOX	Biodistribution and efficacy in C6/ Sprague Dawley glioma model	Enhanced brain accumulation of SPION and increased anti-tumour efficacy under magnetic field	[174]
SLN	PTX	Rat brain perfusion experiment after intra-carotid administration	Enhanced PTX accumulation in brain; P-gp overcoming	[100]
SLN	EDF	Biodistribution and efficacy in subcutaneous mouse model	Good drug accumulation in brain after oral administration; P-gp overcoming	[101]
SLN	DOX	Pharmacokinetic and biodistribution in rats and rabbits	Enhanced DOX accumulation in brain	[175,176]
SLN	Idarubicin	Pharmacokinetic and biodistribution in rats	Enhanced idarubicin accumulation in brain after SLN oral administration	[103]
SLN, NLC	TMZ; vincristine	Efficacy in U87 xenografts	Improved glioma inhibition with NLC and drug co-delivery	[97]

Abbreviations: AgNPs, silver nanoparticles; Bd-2, B-cell lymphoma 2; c-Met, tyrosine-protein kinase Met; C6, C6 cells; CPT, camptothecin; DOX, doxorubicin; EDF, edelfosine; GFP, green fluorescent protein; miRNA, microRNA; MNPH, magnetic nanoparticle hyperthermia; NLC, nanostructured lipid carriers; PBCA, poly(butyl cyanoacrylate); pDNA, plasmid DNA; PEG, polyethylene glycol; P-gp, P-glycoprotein; PLA, poly-lactide; PLGA, poly-lactide-glycolide; PTX, paclitaxel; siRNA, small interfering RNA; SLN, solid lipid nanoparticles; SPION, superparamagnetic iron oxide nanoparticles; U87, U87 cells; TMZ, temozolomide.
roles in tumour invasion and angiogenesis: in glioblastoma avb3 and avb5 integrin receptors are overexpressed on brain tumour cells and neo-vessels, favouring interaction with the extracellular matrix. Integrins can be specifically targeted by employing arginine-glycine-aspartic acid (RGD) peptides, such as cilengitide (cyclo [RGDFV]), a cyclic RGD peptide. Nucleolin, instead, exists only in the nucleus of cells, thus offering an attractive target for cells characterized from a high internalization rate. F3 peptide, that specifically binds to nucleolin, was utilized to decorate nanocarriers, in order to realize glioma cell and neo-vasculature dual-cellular targeting. Furthermore, as previously mentioned, MMPs are a group of zinc-dependent proteins acting as key modulators of tumour invasion and metastatization, due to their degrading capacity of the extracellular matrix. In addition, MMP-2/9 is also required for the tumoural angiogenic switch. Thus, MMP-2/9 conjugated low-molecular-weight protamine (ALMWP) was employed for glioma targeting of nanocarriers. Also chlorotoxin (CTX), a small peptide (36-amino acid) derived from Leiurus quinquestriatus (scorpion) venom, can bind to MMP-2, and it was employed for nanocarriers functionalization. Finally, IL-13Ra2 receptor is overexpressed in pilocytic astrocytomas and glioblastoma. Therefore, interleukin-13 (IL-13) can be used to target nanocarriers to glioblastoma tissue.

A summary of the most important functionalized nanocarriers employed in in vivo preclinical studies is shown in Table 3, and a scheme of the main active targeting strategies is displayed in Figure 4.

Nanocarrier-Mediated Cell Therapy

In addition to the selective BBB, glioma chemotherapy can be hampered from the fact that it is difficult to obtain a sufficiently high drug concentration in the tumour, in order to kill infiltrative malignant cells, without hampering healthy brain tissue. Thus, even if a relatively high drug accumulation within brain tissue is obtained, chemotherapy may undergo unwanted distribution in the extracellular matrix, or within intratumoral necrotic pockets, but without exerting the desired effects on target glioma cells. These limitations may be overcome by using stem cells as carriers of nanoparticulate delivery systems. Indeed, cell-based therapies represent an innovative and valuable tool for cancer treatment, and recent interest is growing also for high-grade glioma therapy. A number of cells have been recently studied, either in preclinical or clinical trials for brain tumour targeting, and can be exploited also in combination with nanocarrier systems.

In particular, adult mesenchymal stem cells (MSC) show a tumour tropic ability, that can be exploited simultaneously to target tumour and deliver therapeutic agents. With genetic modification, MSC are able to home cancer tissues and affect the tumor growth by the secretion of cytotoxic molecules. Moreover, MSC are able to trespass the BBB in physiological and pathological conditions, and preclinical studies showed that MSC engineered to express suicide gene enhance the antitumor response in glioblastoma animal models. Within this concern, the combinatorial approach of cell therapy, small-molecule chemotherapy and nanomedicine strategies can open new opportunities for glioma treatment (Figure 5). Internalization/binding of drug-loaded nanoparticles into MSC can be exploited to increase the antitumor efficacy by targeted delivery to the tumour microenvironment. Indeed, PTX loaded PLGA nanoparticles showed an enhanced activity in brain tumor, which is ascribed to the sustained release of the drug. In a recent work, a hybrid system consisting of MSC spheroids and methotrexate (MTX)-loaded nanoparticles was engineered, in order to increase retention at tumour site: this system improved tumour inhibition in a heterotopic glioblastoma murine model. Even though drug-loaded MSC are a promising strategy, some major issues should be considered, such as the fact that the conjugation of nanodrugs to MSC surface could affect the tumour homing ability, as demonstrated by a lot of studies carried out on brain tumour xenografts.

Interestingly, also adipose-derived stem cells (ADSC) show tumour homing ability. This behaviour can be exploited to design drug delivery systems for brain tumours, such as cell-based carriers for nanoparticulate systems. Moreover, it is possible to endow such nanoparticles with stimuli-responsive properties for targeted drug delivery. Indeed, superparamagnetic iron oxide nanoparticles (SPION) were loaded with PTX and subsequently taken up by ADSC via endocytosis. Drug release was then activated by high-frequency magnetic field in a glioblastoma murine model. The dual-modality therapeutic strategy including ADSC and smart nanoparticles may be further investigated in the near future for clinical translation.

Given that the “immune privilege” of the brain is no more a retained concept, also the recent advances in immunotherapy strategies offer new opportunities for a synergistic
Nanocarriers	Drug	Functionalization	Experimental in vivo Model	Achievements in vivo	References
Polymeric nanoparticles	TMZ	Angiopep-2	Biodistribution of liposomes and efficacy in C6/ICR mouse glioma models	Enhanced brain distribution of DOX and promising efficacy in glioma models	[177]
Dendrimers	TRAIL DNA	Angiopep-2	Biodistribution of dendrimers and survival analysis in C6 mouse xenografts	Increased survival of xenografts	[106]
PCL nanoparticles	DOX	Angiopep-2	Pharmacokinetics, biodistribution and survival analysis in C6/Wistar rat glioma models	Enhanced brain uptake of DOX, prolonged survival of glioma models	[178]
PLGA nanoparticles	IP10	Angiopep-2; EGFRvIII scFv	Efficacy in U87-EGFRvIII cells xenografts	Reduced tumour growth, prolonged survival of glioma models	[179]
Liposomes	Daunomycin	Anti Tf Receptor antibody	Pharmacokinetic & biodistribution in rats	Increased daunomycin accumulation in brain	[180]
Calcium phosphate nanoparticles	ATFS siRNA	Apo E	Glioma distribution, ATFS expression and survival analysis in C6 mouse xenografts	Efficient tumour targeting and increased survival of xenografts	[181]
Polymersomes	Saporin	Apo E	Biodistribution and efficacy in U87 mouse xenografts	Specific brain accumulation of polymersomes, encouraging efficacy towards brain tumours	[182]
SLN	MTX prodrug	Apo E chimera peptide	Biodistribution and survival analysis in F98/Fischer rat glioma model	Increased brain accumulation of MTX; encouraging efficacy	[50]
Lipid nanoparticles	Porphyrin	Apo E	Pharmacokinetics and biodistribution in mice, efficacy in U87 mouse xenografts	Selective drug accumulation in brain tumour compared to healthy parenchyma	[183]
Liposomes	–	Cetuximab	Biodistribution in U87 mouse xenografts	Increased brain accumulation of liposomes	[113]
Liposomes	DOX	Chlorotoxin	Biodistribution of liposomes and efficacy in U87 mouse xenografts	Brain accumulation of liposomes, reduced tumour growth	[117]
Polyionic micelles	Cilengitide	Cilengitide	Survival analysis in C6/Wistar rat glioma models	Prolonged survival of glioma models	[184]
Polymeric micelles	DACHPt	Cilengitide	Efficacy in U87 mouse xenografts	Reduced tumour growth	[185]
Liposomes	DOX	Cilengitide and Peptide 22 (LDL receptor)	Biodistribution and survival analysis in intracranial glioma-bearing mice	Prolonged survival time of glioma models	[114]
PEG–PLA micelles	PTX	EGFR/EGFRvIII targeting peptide	Pharmacokinetics in healthy rats, biodistribution and efficacy in U87 mouse xenografts	Specific micelles distribution to the brain, reduced tumour growth in glioma models	[186]

(Continued)
Nanocarriers	Drug	Functionalization	Experimental in vivo Model	Achievements in vivo	References
PEG-PLA nanoparticles	PTX	F3 peptide (targeting nucleolin) and tLyp-1 peptide (targeting neuropilin)	Pharmacokinetics in rats; biodistribution and survival analysis in C6 mouse xenografts	Enhanced PTX accumulation and deep penetration at the tumour location; prolonged survival in xenografts	[115]
			Pharmacokinetics, biodistribution and efficacy in U87 mouse xenografts	Enhanced brain retention of DOX; strong inhibition of brain tumour growth	[110]
			Pharmacokinetics in rats, biodistribution in C6/Wistar rat glioma model	Increased brain uptake of DOX	[188]
			Pharmacokinetics & biodistribution in mice	Increased brain accumulation	[189]
			Pharmacokinetics in healthy mice; biodistribution and efficacy in GL261/C57BL/6 mouse models	Enhanced brain distribution of TMZ and promising efficacy towards glioma	[190]
			Pharmacokinetics, biodistribution and efficacy in C6/Wistar rat glioma model	Improved DOX distribution in brain, reduced tumour growth and increased survival in glioma models	[192]
			Pharmacokinetics in healthy rats, biodistribution and efficacy in C6 mouse xenografts	Enhanced tumour accumulation of PTX and increased survival of glioma models	[53]
			Biodistribution and efficacy in U87 xenografts	Specific brain distribution of the drugs, promising efficacy in glioma models	[193]
			Biodistribution of liposomes and efficacy in C6/ICR mouse glioma models	Enhanced brain distribution of liposomes and promising efficacy in glioma models	[194]
			Biodistribution of radio-labelled liposomes in healthy rats	Increased brain uptake of liposomes	[195]

(Continued)
combination of cell therapy with chemotherapeutic drug delivery systems, in order to target brain tumours. The combination of dendritic cell-targeted vaccines with nanoparticles loaded with anticancer drugs should lead to a superior anticancer activity. Combination with nanocarrier loaded with checkpoint inhibitors could be another valuable therapeutic approach. Furthermore, neutrophils (NE) have a native ability to traverse BBB/BBTB and penetrate the glioma site, where the tumour associated NE favour the continuous recruitment of circulating NE; in addition, local brain inflammation, following surgical tumour removal, activates NE migration towards to the inflamed brain. This amplification of inflammatory signals supports an enhanced brain tumour targeting of nanocarriers loaded in NE, such as PTX loaded liposomes and DOX loaded magnetic mesoporous silica nanoparticles, which is evident also in resection and recurrence orthotopic models. Finally, chimeric antigen receptor (CAR) T cells should be considered, too. They are T cells, generally autologous, ex vivo artificially engineered on their surfaces in order to recognize tumour-associated antigens. The CAR shows both an antigen-binding and a T cell activating function. These modified CAR T cells can produce the lysis of the cells presenting the associated tumor antigen when administered intravenously in patients. Currently, CAR-T cell therapy has been approved in B-cell lymphoma and leukemia, but clinical trials are ongoing for glioblastoma. Very recently CAR T cell administration showed to improve anti-glioma response. Also in this case, CAR-T cells could be associated with nanocarriers in order to improve the therapeutic outcome, and CAR-T cell surface can also be modified to targeting purposes. Indeed, human epidermal growth factor receptor 2 (HER-2) functionalized CAR T cells demonstrated increased persistence over time.

Within this context, suitable attention should be devoted also to cell membrane-coated nanoparticulate systems. Wrapping nanoparticles with cell-derived membranes provide nanocarriers of a natural surface coating with complex biological entities, which are nearly impossible to synthetically replicate via ligand attachment. This allows to overcome some of the previously mentioned shortcomings of actively targeted nanocarriers, such as opsonization and incorrect ligand recognition. Cell
membrane coating technology was firstly introduced by employing red blood cell membranes, in order to provide "stealth" properties to synthetic nanoparticles. Currently, it has been applied to many cell types, including cancer cells. Indeed, cancer cells possess the unique ability to self-target homologous cells (the so-called homotypic targeting), which can be translated to wrapped nanocarriers, showing also reduced immune clearance compared to uncoated ones (Figure 6). Recently, in a study involving PLGA nanoparticles coated with U87 glioma cell membrane fractions, an induction of cancer cell-specific immune response was demonstrated.

Clinical Nanomedicines

Despite relevant evidences at the preclinical level, and several clinical studies addressing the employment of nanocarriers for brain tumours chemotherapy, particularly for glioblastoma, till now no new nano-drug has yet approved for brain tumour therapy. In general, the approval rate for novel nanomedicines is below 10%, mainly because of safety and efficacy profile failures during preclinical and clinical studies. Indeed, regulatory agencies require manufacturers to perform accurate preauthorization studies to assess the quality, safety, and efficacy profiles of a new nanomedicine. Furthermore, the difficulty to find out suitable preclinical models that truly represent what happens in the humans is a major flaw, that hampers clinical translation of nanomedicines.

Within this concern, according to the European Commission Recommendation (2011/696/EU), 100 nm is the demarcating upper size limit where the properties of materials can change significantly from conventional equivalents, and the European Medicines Agency (EMA) also included an official definition of nanomedicine as being up to a size of 100 nm. However, frequently nanomedicines have broader size range than the proposed...
definition, inducing the EMA to include all “structures” with sizes of less than 1000 nm, that are designed to have specific properties, can improve site-specific drug delivery and significantly alter toxicological profiles, thus allowing to perform a case-by-case evaluation.

Nonetheless, despite the numerous guidelines existing for the validation methods of chemical parameters in such matrixes, suitable implementation of this legislation should require validated analytical methods for nanoparticles’ characterization, that, so far, do not exist.

Some of the most important clinical trials with new emerging nanomedicines are here reported. Few of them involve active targeting mechanisms. In fact, despite the existence of good manufacturing practices for nanodrug delivery systems, that can be employed for translation to clinical trials, actively targeted nanomedicines are associated with high costs and scale-up issues. A Phase I clinical study involving patients with recurrent glioma (grade 2–4) has been carried out by administering PTX-Angiopep-2 peptide–drug conjugate (GRN1005). Even if GRN1005 improved PTX permeation into tumour tissue, Phase II trial interim analysis did not show therapeutic response. Tf conjugated diphtheria toxin (Tf-CRM107) showed in vitro toxicity towards glioma cells and it was effective in xenografts after local administration. Moreover, in phase I and II clinical trials, local administration of Tf-CRM107 resulted in low toxicity, encouraging response rate (35%) and promising overall survival (74 weeks) in patients with recurrent high-grade brain tumours. However, early Phase III clinical trials employing this approach were terminated due to disappointing preliminary results.

In another interesting phase I study, EnGeneIC delivery vehicle loaded with DOX was tested in patients with recurrent glioblastoma. The anti-EGFR monoclonal antibody Vectibix was used to target EGFR on cancer cells, thus leading to DOX release.

However, the most important clinical evidences were obtained with off-label employment of already marketed liposomal DOX, acting mainly owing to the EPR effect. In a clinical study liposomal DOX administered in patients with high-grade gliomas improved overall survival. Moreover, DOX loaded in pegylated liposomes (PEG-DOX) was efficacious and well tolerated in patients with recurrent high-grade glioma. Indeed, encouraging results were obtained with PEG-DOX alone (mOS 26 weeks) or in combination with TMZ (median overall survival 32 weeks, 6-months progression-free survival 32%). Owing to the available studies, PEG-DOX, alone or in combination regimens, can actually be considered as a treatment option for recurrent high-grade gliomas, but only if no further chemotherapy is available; however, it should be further evaluated in larger clinical trials.
Conclusions
Malignant gliomas are still associated with a poor prognosis, despite recent advances in surgical treatment. Despite the large number of potential drug candidates, the efficacy of adjuvant chemotherapy remains unsatisfactory, primarily because of the BBB. Nanocarriers can favour delivery of chemotherapeutics to malignant gliomas owing to different mechanisms, including chemical stabilization of the drug in the bloodstream, EPR effect (because of the leaky BBTB), P-gp inhibition, active targeting through CMT and RMT, inhibition of cell differentiation and angiogenesis, cell-mediated targeting, or stimuli-responsive delivery. In particular, different and efficient active targeting approaches have been attempted in preclinical studies on animal models, mainly by employing protein targeting moieties. Nevertheless, a few number of nanomedicines reached the clinical trials, and most of them include drug-loaded nanocarriers free of targeting ligands, probably because of safety and scalability concerns.

Acknowledgment
The authors acknowledge Università degli Studi di Torino (Ricerca Locale 2018-2019) for funding.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14:284–297. doi:10.1007/s13311-017-0519-x
2. Cerna T, Stiborova M, Adam V, Kizek R, Eckschlager T. Nanocarrier drugs in the treatment of brain tumors. J Cancer Metastasis Treat. 2016;2(10):407. doi:10.20517/2394-4722.2015.95
3. Forst DA, Nahed BV, Loeffler JS, Batchelor TT. Low-grade gliomas. Oncologist. 2014;19:403–413. doi:10.1634/theoncologist.2013-0345
14. Norden AD, Young GS, Setayesh K, et al. Bevacizumab for Ras signaling pathways. 1997–2003.

15. Rich JN, Bigner DD. Development of novel targeted therapies in glioblastoma multiforme: part 1: growth factor approaches for the treatment of glioblastoma. 2008–2010.

16. Darlix A, Mandonnet E, Freyschlag CF, et al. Chemotherapy and diffuse low-grade gliomas: a survey within the European Low-Grade Glioma Network. 2019;6(4):264–273. doi:10.1038/s41562-019-0327-y

17. Caffo M, Cardali S, Fazzari E, Barresi V, Caruso G. Nanoparticles drug-delivery systems and antiangiogenic approaches in the treatment of gliomas. Glioma. 2018;16(8):183. doi:10.4103/glioma.glioma_43_18

18. Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front Physiol. 2018;9:1–14. doi:10.3389/fphys.2018.00170

19. Arko L, Katsyv I, Park GE, Luan WP, Park JK. Experimental approaches for the treatment of malignant gliomas. Pharmacol Ther. 2010;128:1–36. doi:10.1016/j.pharmthera.2011.04.015

20. Mathieu D, Fortin D. The role of chemotherapy in the treatment of malignant astrocytomas. Can J Neurol Sci. 2000;37(2):127–140. doi:10.1017/S0317167100004881

21. Pardridge WM. Drug transport across the blood–brain barrier. Physicochemical and pharmacokinetic parameters of seven lipo-philic carbamoylcholine esters designed for brain penetration. J Cereb Blood Flow Metab. 2012;32:1959–1972. doi:10.1007/bf00668229

22. Greig NH, Genka S, Daly EM, Sweeney DJ, Rapoport SL. Physicochemical and pharmacokinetic parameters of seven lipo-philic carbamoylcholine esters designed for brain penetration. Cancer Chemother Pharmacol. 1999;25:311–319. doi:10.1007/bf00662229

23. Ke XY, Zhao BJ, Zhao X, et al. The therapeutic efficacy of conjugated linoleic acid - paclitaxel on glioma in the rat. Biomaterials. 2010;31(22):5855–5864. doi:10.1016/j.biomaterials.2010.03.079

24. Norden AD, Young GS, Setayesh K, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 2008;70(10):779. doi:10.1212/01.wnl.0000304121.57857.38

25. Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant gliomas. Nat Rev Drug Discov. 2004;3(5):430–446. doi:10.1038/nrd1380

26. Dietrich J, Wang J, Batchelor TT. Cediranib: profile of a novel anti-angiogenic agent in patients with glioblastoma. Expert Opin Investig Drugs. 2009;18(10):1549–1557. doi:10.1517/13543790.903183528

27. Maher EA, Fumari FB, Bachoo RM, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15(11):1311–1333. doi:10.1101/gad.891601

28. Fukuji J, Nishio K, Itakura T, Koizumi F. Antitumor activity of cetuximab against malignant glioma cells overexpressing EGFR deletion mutant variant III. Cancer Sci. 2008;99(10):2062–2069. doi:10.1111/j.1349-7006.2008.00945.x

29. Crochetet T, Torres O, Rodriguez V, et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma. 2001;20(2):131–136. doi:10.1089/02724570152057634

30. Joensuu H, Pupputi M, Sihto H, Tynniinen O, Nupponen NN. Amplification of genes encoding KIT, PDGFRalpha and VEGF(R2) receptor tyrosine kinases is frequent in glioblastoma multiforme. J Pathol. 2005;207(2):224–231. doi:10.1002/path.1823

31. Holmen SL, Williams BO. Essential role for Ras signaling in glioblastoma maintenance. Cancer Res. 2005;65(18):8250–8255. doi:10.1158/0008-5472.can-05-1173

32. Dresenmann G, Weller M, Rosenthal MA, et al. Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide. J Neurooncol. 2010;96(3):393–402. doi:10.1007/s11060-009-9976-3

33. Argyriou AA, Kalofonos HP. Molecularly targeted therapies for malignant gliomas. Mol Med. 2009;15(3–4):115–122. doi:10.2193/0804.2008.00123

34. Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: growth factor and Ras signaling pathways. Expert Rev Anticancer Ther. 2003;3(5):595–614. doi:10.1586/14737140.3.5.595

35. Graff JR, McNulty AM, Hanna KR, et al. The protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res. 2005;65(16):7462–7469. doi:10.1158/0008-5472.can-05-0071

36. Da Rocha AB, Mans DR, Regner A, Schwartsmann G. Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas? Oncologist. 2002;7(1):17–33. doi:10.1634/theoncologist.7-1-17

37. Breidel M, Pollack IF. The role of protein kinase C (PKC) in the evolution and proliferation of malignant gliomas, and the application of PKC inhibition as a novel approach to anti-glioma therapy. Acta Neurolochir (Wien). 1999;137(11):1000–1013. doi:10.1007/bf01411552

38. Sharif TR, Sharif M. Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. 1999;15(2):237–243.

39. Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia. 2005;7(4):356–368. doi:10.1593/neo.04095

40. Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM. Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res. 2009;29(12):5171–5184.

41. Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7(4):209–219. doi:10.1038/nrclinonc.2010.21

42. Yuan R, Kay A, Berg W, Lebwohl D. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol. 2009;2(1):45. doi:10.1186/1756-8722-2-45

43. Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2005;23(23):5294–5304. doi:10.1200/JCO.2005.23.622

44. Cloughesy TF, Yoshimoto K, Nghiempu P, et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 2008;5(1):e8. doi:10.1371/journal.pmed.0050008

45. Tonn JC, Kerka S, Hanke A, et al. Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer. 1999;80:764–772. doi:10.1002/(sici)1097-0215(19990301)80:5<764::aid-ijc22>3.0.co;2-j

46. Brown PD. Ongoing trials with matrix metalloproteinase inhibitors. Exp Opin Invest Drugs. 2000;9:2167–2177. doi:10.1517/13543748.9.9.2167

47. Bello L, Francolini M, Marthyn P, et al. Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery. 2001;49(2):380–389. doi:10.1093/0006123-20010800-000022
38. Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol. 2000;2:45–59. doi:10.1093/neuonc/2.1.45
39. Liebner S, Fischmann A, Rascher G, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100:323–331. doi:10.1007/s004010000180
40. Li M, Deng H, Peng H, Wang Q. Functional nanoparticles in targeting glioma diagnosis and therapies. J Nanosci Nanotechnol. 2014;14(1):415–432. doi:10.1166/jnn.2014.8757
41. Argaw AT, Zhang Y, Snyder BJ, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol. 2006;177:55–558. doi:10.4049/jimmunol.177.8.5574
42. Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106:829–838. doi:10.1172/JCI39169
43. Schlager KE, Molnar P, Lapin GD, et al. MicrovesSEL organization and structure in experimental brain tumors: microvesSEL populations with distinctive structural and functional properties. Microvasc Res. 1999;58:312–328. doi:10.1006/mvre.1999.2188
44. Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv. 2012;6:671–676. doi:10.1517/17425247.2012.682726
45. Gaoe H, Pang Z, Pan S, et al. Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res. 2012;35(2):333–341. doi:10.1007/s12272-012-0214-8
46. Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Release. 2016;227:23–37. doi:10.1016/j.jconrel.2016.02.026
47. Schiffer D, Annavazi L, Caldera V, Mellal M. On the origin and growth of gliomas. Anticancer Res. 2010;30:1977–1998.
48. Allhenn D, Boushehri MAS, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm. 2012;436:299–310. doi:10.1016/j.ijpharm.
49. Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci. 2016;4:219–229. doi:10.1039/c5bm00383k
50. Battaglia L, Muntoni E, Chirio D, et al. Solid lipid nanoparticles by co-sorption loaded with a methotrexate prodruk: preliminary study for glioma treatment. Nanomedicine. 2017;12(6):639–656. doi:10.2217/nmm-2016-0380
51. Muntoni E, Martina K, Marini E, et al. Methotrexate-loaded solid lipid nanoparticles: protein functionalization to improve brain biodistribution. Pharmaceuticals. 2019;11:2. doi:10.3390/pharmaceuticals11020065
52. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247:291–307. doi:10.1007/s00232-014-9637-0
53. Miao D, Jiang M, Liu Z, et al. Co-administration of dual-targeting nanoparticles with penetration enhancement peptide for antiglioblastoma therapy. Mol Pharm. 2014;11:90–101. doi:10.1021/mp400189j
54. Kuo YC, Shih-Huang CY. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood-brain barrier through insulin receptor-mediated pathway. J Drug Target. 2013;21:730–738. doi:10.3109/1061116X.2013.810994
55. Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale. 2014;6:2146–2152. doi:10.1039/c3nr04878k
56. Tsui A, Tami I. Blood–brain barrier function of P-glycoprotein. Adv Drug Deliv Rev. 1997;25:287–298. doi:10.1016/S0169-409X(97)00504-8
57. Schinkel AH. P-glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev. 1999;36:179–194. doi:10.1016/s0169-409x(98)00085-4
58. Kuntner C, Bankstahl JP, Bankstahl M, et al. Dose–response assessment of tarixefur and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood–brain barrier using (R)-[11C]verapamil PET. Eur J Nucl Med Mol Imaging. 2010;37:942–953. doi:10.1007/s00259-009-1335-2
59. Mastronardi L, Puzzilli F, Ruggeri A. Tamoxifen as a potential treatment of glioma. Anticancer Drugs. 1999;8:581–586. doi:10.1097/00001813–199808000-00001
60. Miller DS, Bauer B, Hartz AMS. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60:196–209. doi:10.1124/pr.107.071019
61. Venishetty VK, Komuravelli R, Kuncha M, Sistla R, Diwan PV. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine. 2013;9:111–121. doi:10.1016/j.nano.2012.03.003
62. Brat DJ, Castellano-Sanchez AA, Hunter SB, et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004;64:920–927. doi:10.1158/0008-5472.can-03-2073
63. Michael JS, Lee B, Zhang M, Yu JS. Nanotechnology for treatment of glioblastoma multiforme. J Transl Intern Med. 2018;6(3):128–133. doi:10.2478/jtim-2018-0025
64. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. doi:10.1038/nature03128
65. Seidel S, Garvalov BK, Wirta V, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain. 2010;133:983–995. doi:10.1093/brain/awq042
66. Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009;8:3274–3284. doi:10.4161/cc.8.20.9701
67. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–845. doi:10.1038/359843a0
68. Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem. 1993;268:21513–21518.
69. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc Natl Acad Sci USA. 1991;88:5680–5684. doi:10.1073/pnas.88.13.5680
70. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1 alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130–25138. doi:10.1074/jbc.M001914200
71. Vendenburgh JJ, Desjardins A, Herndon JE 2nd, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res. 2007;13:1253–1259. doi:10.1158/1078-0432.CCR-06-2309
72. Vendenburgh JJ, Desjardins A, Herndon JE 2nd, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722–4729. doi:10.1200/JCO.2007.12.2440
73. Chen WL, Wang CC, Lin YJ, Wu CP, Hsieh CH. Cycling hypoxia induces chemoresistance through the activation of reactive oxygen species-mediated B-cell lymphoma extra-long pathway in glioblastoma multiforme. J Transl Med. 2015;13:389. doi:10.1186/s12974-015-0756-8
74. Battaglia L, Gallarate M, Peira E, et al. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies. *Nanotechnology*. 2015;26(25):255102. doi:10.1088/0957-4484/26/25/255102

75. Sack-Zchauer M, Bader S, Brenneisen P. Ceriumoxide nanoparticles as novel tool in glioma treatment: an in vitro study. *J Nanomol Nanotechnol*. 2017;8:474. doi:10.4172/2157-7439.1000474

76. Pizzolato JF, Saltz LB. The camptothecins. *Lancet*. 2003;361:2235–2242. doi:10.1016/S0140-6736(03)17380-4

77. Guizzi C, Zullino S, Priano L, Cavalli L. The physics of drug delivery across the blood brain barrier. *Ther Deliv*. 2016;7(3):153–155. doi:10.4155/tde-2016-0001

78. Lollo G, Vincent M, Ullio-Gamboa G, et al. Development of multifunctional lipid nanoparticles for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma. *Int J Pharm*. 2015;495(2):972–980. doi:10.1016/j.ijpharm.2015.09.062

79. Lopez-Berti H, Kozieleski Kl., Rui Y, et al. Biodegradable polymer nanocarriers containing multiplexed cancer stem cell regulating miRNAs inhibit glioblastoma growth and prolong survival. *Nano Lett*. 2018;18(7):4086-4094. doi:10.1021/acs.nanolett.8b00390

80. Bastianich C, Vanvarenberg K, Ucakar B, et al. Laurorylgemcitabine-loaded lipid nanoparticle hydrogel for the treatment of glioblastoma. *J Control Release*. 2016;225:283–293. doi:10.1016/j.jconrel.2016.01.054

81. Bastianich C, Lemaire L, Bianco J, et al. Evaluation of laurorylgemcitabine-loaded hydrogel efficacy in glioblastoma rat models. *Nanomedicine*. 2018;13:1999–2013. doi:10.2217/nmm-2018-0057

82. Bastianich C, Bozzato E, Luyten U, et al. Drug combination of paclitaxel and CpG-ODN in the treatment of glioblastoma. *J Neurosci Methods*. 2017;269:119364. doi:10.1016/j.jconrel.2016.01.054

83. Landhuis E. Ultrasound for the brain. *Nature*. 2017;551:257–259. doi:10.1038/d41586-017-05479-7

84. Carpenter A, Canney M, Vignon A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. *Sci Transl Med*. 2016;8:343re222016. doi:10.1126/scitranslmed.aaf6086

85. Zhang H, Wang T, Qiu W, et al. Monitoring the opening and recovery of the blood – brain barrier with noninvasive molecular imaging by biodegradable ultrasound Cu2–Se nanoparticles. *Nano Lett*. 2018;18(8):4985–4992. doi:10.1021/acs.nanolett.8b01818

86. Liu Z, Ren F, Zhang H, et al. Biomaterials boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma. *Biomaterials*. 2019;219:119364. doi:10.1016/j.biomaterials.2019.119364

87. Zhang H, Wang T, Liu H, et al. Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu2–Se nanoparticles. *Nanoscale*. 2019;7:6600–7608. doi:10.1039/c9nr01789e.

88. Frosina G. Nanoparticle-mediated drug delivery to high-grade gliomas. *Nanomed Nanotechnol Biol Med*. 2016;12(4):1083–1093. doi:10.1016/j.nano.2015.12.375

89. Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. *Eur J Pharm Biopharm*. 2014;87(3):433–444. doi:10.1016/j.ejpb.2014.05.004

90. Grant GA, Abbott NJ, Janigro D. Understanding the physiology of the blood-brain barrier: in vitro models. *News Physiol Sci*. 1998;13:287–293. doi:10.1152/physiolonomy.1998.13.6.287

91. Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. *Acta Neuropathol*. 2017;133(2):263–282. doi:10.1007/s00401-017-1671-4

92. Becker B, Prat A, Antel JP. Brain–immune connection: immunoregulatory properties of CNS-resident cells. *Glia*. 2000;29:293–304.

93. Hickey WF. Basic principles of immunologic surveillance of the normal central nervous system. *Glia*. 2001;36:118–124. doi:10.1002/glia.1101

94. Biasibetti E, Valazza A, Capuccioni MT, et al. Comparison of allogeneic and syngeneic rat glioma models by using MRI and histopathologic evaluation. *Comp Med*. 2017;67(2):147–156.

95. Ferraris E, Bastiancich C, Lemaire L, et al. Novel model of orthotopic U-87 MG glioblastoma resection in athymic nude mice. *J Neurosci Methods*. 2017;284:96–102. doi:10.1016/j.jneumeth.2017.04.019

96. Chen Z, Lai X, Song S, Zhu X, Zhu J. Nanostructured lipid carriers based temozolomide and gene co-encapsulated nanomedicine for gliomatosis cerebri combination therapy. *Drug Deliv*. 2015;23:1369–1373. doi:10.3109/10717544.2015.1038857

97. Wu M, Fan Y, Lv S, Xiao B, Ye M, Zhu X. Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. *Drug Deliv*. 2016;23:2720–2725. doi:10.1080/10717544.2015.1058434

98. Jin J, Bae KH, Yang H, et al. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. *Bioconjug Chem*. 2012;23:2568–2572. doi:10.1021/bc200406n.

99. Tapicinos C, Battaglini M, Ciofani G. Advancements in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. *J Control Release*. 2017;264:306–332. doi:10.1016/j.jconrel.2017.08.013

100. Zara GP, Bargoni A, Cavalli R, et al. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. *J Pharm Sci*. 2002;91(5):1334–1335. doi:10.1021/ps010229a

101. Estella-hermoso De Mendoza A, Prett A, Vellinodino F, Blanaco-Prieto MJ. In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma. *J Control Release*. 2011;156(3):421–426. doi:10.1016/j.jconrel.2011.07.030

102. Lockman PR, Koziaj JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. *J Controlled Release*. 2004;99:259–269. doi:10.1016/j.jconrel.2004.07.006

103. Zara GP, Bargoni A, Cavalli R, et al. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. *J Pharm Sci*. 2002;91(5):1334–1335. doi:10.1021/ps010229a

104. Dal Magro R, Albertini B, Beretta S, et al. Artificial apolipoprotein corona enables nanoparticle brain targeting. *Nanomed*. 2017;14(2):429–438. doi:10.1016/j.nano.2017.11.008

105. Martins SM, Sarmento B, Nunes C, Lúcio M, Reis S, Ferreira DC. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. *Eur J Pharm Biopharm*. 2013;85:488–502. doi:10.1016/j.ejpb.2013.08.011

106. Chen H, Qin Y, Zhang Q, et al. Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. *Eur J Pharm Sci*. 2011;44:164. doi:10.1016/j.ejps.2011.07.007
10. Gaillard PJ, Appeldoorn CCM, Dorland R, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PloS One. 2014;9(1):e82331. doi:10.1371/journal.pone.0082331

11. Venishetty VK, Samala R, Komaravelli R, Kuncha M, Sistla R, Diwan PV. β-hydroxybutyric acid grafted solid lipid nanoparticles: a novel platform to improve drug delivery to brain. Nanomedicine. 2013;9:388–397. doi:10.1016/j.nano.2012.08.004

12. De Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 2007;47:323–355. doi:10.1146/annurev.pharmtox.47.120505.102377

13. Mortensen JH, Jeppesen M, Pilgaard L, et al. Targeted antiangiogenic therapy with a novel carboxypeptidase Y receptor-targeted liposome for treatment of glioblastoma. J Drug Deliv. 2013;2013:209205. doi:10.1155/2013/209205

14. Chen C, Duan Z, Yuan Y, et al. Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl Mater Interfaces. 2017;9:5864–5873. doi:10.1021/acsami.6b15831

15. Hu Q, Gu G, Liu Z, et al. F3 peptide-functionalized PEG-PLA nanoparticles co-administered with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials. 2013;34:1135. doi:10.1016/j.biomaterials.2012.10.048

16. Gu G, Xia H, Hu Q, et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials. 2013;34:196. doi:10.1016/j.biomaterials.2012.09.044

17. Xiang Y, Liang L, Wang X, Wang J, Zhang X, Zhang Q. Chloride channel-mediated brain glioma targeting of chlorotoxin-modified doxorubicin-loaded liposomes. J Control Release. 2011;152:402. doi:10.1016/j.jconrel.2011.03.014

18. Long W, Yi Y, Chen S, et al. Potential new therapies for pediatric diffuse intrinsic pontine glioma. Front Pharmacol. 2017;8:1–13. doi:10.3389/fphar.2017.00495

19. Altaner C, Altanerova C. Stem cell based glioblastoma cell therapy. Neoplasma. 2012;59(6):756–760. doi:10.1419/ne.2012_95

20. Kwon S, Yoo KH, Sym SJ, Khang D. Mesenchymal stem cell therapy assisted by nanotechnology: a possible combinational treatment for brain tumor and central nerve regeneration. Int J Nanomedicine. 2019;14:5925–5942. doi:10.2147/IJN.S217923

21. Wang X, Gao J, Ouyang X, et al. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomedicine. 2018;13:52–5248. doi:10.2147/IJN.S167142

22. Surayaprakash S, Lao YH, Cho HY, et al. Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Lett. 2019;19(3):1701–1705. doi:10.1021/acs.nanolett.8b04697

23. Huang W-C, Lin L, Chiang W-H, et al. Tumor-specific adipose-derived stem cells carrying smart nanotherapeutics for targeted delivery and dual-modality therapy of orthotopic glioblastoma. J Control Release. 2017;254:119–130. doi:10.1016/j.jconrel.2017.03.035

24. McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current state of immunotherapy for treatment of glioblastoma. Curr Treat Options Oncol. 2019;20(3):24. doi:10.1007/s11864-019-0619-4

25. Eagles ME, Nassiri F, Badhiwala JH, et al. Dendritic cell vaccines for high-grade gliomas. Ther Clin Risk Manag. 2018;14:1299–1313. doi:10.2147/TCRM.S135865

26. Huang J, Liu F, Liu Z, et al. Immune checkpoint in glioblastoma: promising and challenging. Front Pharmacol. 2017;8:242. doi:10.3389/fphar.2017.00242

127. Xue J, Zhao Z, Zhang L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12:692–700. doi:10.1038/nnano.2017.54

128. Wu M, Zhang H, Tie C, et al. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat Commun. 2018;9:4777. doi:10.1038/s41467-018-07250-6

129. Bagley SJ, Desai AS, Linette GP, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol. 2018;20(11):1429–1438. doi:10.1093/neuonc/noy032

130. Migliorini D, Dietrich PY, Stupp R, et al. CAR T-cell therapies in glioblastoma: a first look. Clin Cancer Res. 2017;24(3):535–540. doi:10.1158/1078-0432.CCR-17-2871

131. Zhu H, You Y, Shen Z, et al. EGFRVIII-CAR-T cells with PD-1 knockout have improved anti-glioma activity. Pathol Oncol Res. 2020. doi:10.1007/s12253-019-00759-1

132. Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers. 2019;11:1836. doi:10.3390/cancers11121836

133. Jin J, Krishnamachary B, Barnett JD, et al. Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl Mater Interfaces. 2019;11(8):7850–7861. doi:10.1021/acsami.8b22309

134. Hay M, Thomas DW, Craighead JL, et al. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51. doi:10.1038/nbt.2786

135. Musazzi UM, Marin V, Casiraghi A, Minghetti P. Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanoparticles? Drug Discov Today. 2017;22(6):870–882. doi:10.1016/j.drudis.2017.01.016

136. Hafner A, Lovric J, Lukos GP, Pepich I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine. 2014;9:1005–1023. doi:10.2147/IJN.S55359

137. EMA. Reflection Paper on Nanotechnology-Based Medicinal Products for Human Use; 2006.

138. Etheridge ML, Campbell SA, Erdman AG, et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14. doi:10.1016/j.nano.2012.05.013

139. Battaglia L, Ugazio E. Lipid nano- and microparticles: an overview of patent-related research. J Nanomater. 2019;2834941. doi:10.1155/2019/2834941

140. Linsinger TP, Chaudhry Q, Dehalu V, et al. Validation of methodologies for the detection and quantification of engineered nanoparticles in food. Food Chem. 2013;138(2–3):1959–1966. doi:10.1016/j.foodchem.2012.11.074

141. Corner J, Owen A, Kwa A, Van de Voorde M. Scale-up and cGMP manufacturing of nanodrug delivery systems for clinical investigations. Pharm Nanotechnol. 2016. doi:10.1002/9783527800681.ch12

142. Drappatz J, Brenner A, Wong ET, et al. Phase I study of Gron1005 in recurrent malignant glioma. Clin Cancer Res. 2013;19:1567–1576. doi:10.1158/1078-0432

143. Osonokoko TK, Arbiser J, Zelnak A, et al. Current approaches to the treatment of metastatic brain tumours. Nat Rev Clin Oncol. 2014;11:203–222. doi:10.1038/nrclinonc.2014.25

144. Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (TF-CRM107) for therapy of malignant gliomas. J Neurooncol. 2003;65:3–13. doi:10.1023/A:1026246500788

145. Whittle JR, Lickliter JD, Gan HK, et al. First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma. J Clin Neurosci. 2015;22:1889–1894. doi:10.1016/j.jocn.2015.06.005
146. Kreisel TN, Kim L, Moore K, et al. A phase I trial of enzastaurin in patients with recurrent gliomas. *Clin Cancer Res*. 2009;15(10):3617–3623. doi:10.1177/1078043209337437

147. Chang SM, Wen P, Cloughesy T, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. *Invest New Drugs*. 2005;23(4):357–361. doi:10.1007/s10637-005-1444-0

148. Kane RC, Farrell AT, Saber H, et al. Soraferib for the treatment of advanced renal cell carcinoma. *Clin Cancer Res*. 2006;12(24):7271–7278. doi:10.1158/1078-0432.CCR-06-1249

149. Levin VA, Phuphanich S, Yung WKA, et al. Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. *J Neurooncol*. 2006;78(3):295–302. doi:10.1007/s10663-005-0908-5

150. Reardon DA, Fink KL, Mikkelson T, et al. Randomized Phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. *J Clin Oncol*. 2008;26(34):5610–5617. doi:10.1200/JCO.2008.16.7510

151. Charest G, Sanche L, Fortin D, Mathieu D, Paquette B. Glioblastoma treatment: bypassing the toxicity of platinum compounds by using liposomal formulation and increasing treatment efficiency with concomitant radiotherapy. *Int J Radiat Oncol Biol Phys*. 2012;84:244–249. doi:10.1016/j.ijrobp.2011.10.054

152. Qu J, Zhang L, Chen Z, et al. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy? *Drug Deliv*. 2016;23:3408–3416. doi:10.1080/10717544.2016.1189465

153. Shatsberg Z, Zhang X, Ofek P, et al. Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. *J Control Release*. 2016;239:159–168. doi:10.1016/j.jconrel.2016.08.029

154. Ambroisi U, Khalansky AS, Yamamoto H, Gelperina SE, Begley DJ, Kreuter J. Biodistribution of polysorbate 80-coated doxorubicin-loaded 14C-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. *J Drug Target*. 2006;14(2):97–105. doi:10.1080/10707550500536313

155. Tian XH, Lin XN, Wei F, et al. Enhanced brain targeting of temozolomide in polystyrene-80 coated polybutylcyanoacrylate nanoparticles. *Int J Nanomedicine*. 2011;6:445–452. doi:10.2174/137487311795435094

156. Wang CY, Huang LS, Hou LB, et al. Antitumor effects of polysorbate-80 coated gencatibine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. *Brain Res*. 2009;1261:91–99. doi:10.1016/j.brainres.2009.01.011

157. Jain D, Bujaj A, Athawale R, et al. Surface-coated PLA nanoparticles loaded with temozolomide for improved brain deposition and potential treatment of gliomas: development, characterization and in vivo studies. *Drug Deliv*. 2016;23(3):999–1016. doi:10.1080/10717544.2014.926574

158. Xu HL, Mao KL, Huang YP, et al. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. *Nanoscale*. 2016;8(29):14222–14236. doi:10.1039/c6nr02448e

159. Fundaro A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. *Pharmacol Res*. 2000;42(4):337–343.

160. Zara GP, Cavalli R, Bargoni A, et al. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. *J Drug Target*. 2002;10(4):327–335. doi:10.1080/10618602031868021

161. Fine HA, Kim L, Royce C, et al. Results from phase II trial of enzastaurin (LY317615) in patients with recurrent high grade gliomas. *J Clin Oncol*. 2005;23(16_suppl):1504. doi:10.1200/JCO.2005.23.16_suppl.
177. Zong Z, Hua L, Wang Z, et al. Self-assembled angiopep-2 modified lipid-poly (hyposialic sialosylated polyprodrug) nanoparticles delivery TMZ for glioma synergistic TMZ and RT therapy. Drug Deliv. 2019;26(11):34–44. doi:10.1080/10717544.2018.1534897

178. Lu F, Pang Z, Zhao J, et al. Poly (ε-Caprolactone) polymersomes for dual-targeting drug delivery to glioma in rats. Int J Nanomedicine. 2017;12:2117–2127. doi:10.2147/IJN.S123422

179. Wang X, Xiong Z, Liu Z, Huang X, Jiang X. Angiopep-2/EGFRvIIIscFv modified nanoparticles and CTL synergistically inhibit malignant glioblastoma. Sci Rep. 2018;8(1):1–11. doi:10.1038/s41598-018-30072-x

180. Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA. 1996;93:14164–14169. doi:10.1073/pnas.93.24.14164

181. Huang JL, Jiang G, Song QX, et al. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macrophagocytosis. Nat Commun. 2017;8:1–18. doi:10.1038/ncomms15144

182. Jiang Y, Zhang J, Meng F, Zhong Z. Apolipoprotein e peptide-directed chimeric polymersomes mediate an ultrahigh-efficiency targeted protein therapy for glioblastoma. ACS Nano. 2018;12(11):11070–11079. doi:10.1021/acsnano.8b05265

183. Rajora MA, Ding L, Valic M, et al. Tailored theranostic apolipoprotein E3 porphyrin-lipid nanoparticles target glioblastoma. Chem Sci. 2017;8(8):5371–5384. doi:10.1039/c7sc00732a

184. Liu X, Cui W, Li B, Hong Z. Targeted therapy for glioma using cyclic RGD-entrapped polyionic complex nanomicelles. Int J Nanomedicine. 2012;7:2853. doi:10.2147/IJN.S29788

185. Miura Y, Takenaka T, Toh K, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano. 2013;7:8583–8592. doi:10.1021/nn402662d

186. Mao J, Ran D, Xie C, Shen Q, Wang S, Lu W. EGFR/EGFRvIII dual-targeting peptide-mediated drug delivery for enhanced glioma therapy. ACS Appl Mater Interfaces. 2017;9(29):24 462–24475. doi:10.1021/acsami.7b05617

187. Madhankumar AB, Slagle-Webb B, Mintz A, Sheehan JM, Connor JR. Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther. 2006;5:3162. doi:10.1158/1535-7163.MCT-06-0480

188. Su Z, Xing L, Chen Y, et al. Lactoferrin-modified poly(ethylene glycol)-grafted BSA nanoparticles as a dual-targeting carrier for treating brain gliomas. Mol Pharm. 2014;11(6):1823–1834. doi:10.1021/mp500238m

189. Huang FYJ, Chen WJ, Lee WY, Lo ST, Lee TW, Lo JM. In vitro and in vivo evaluation of lactoferrin-conjugated liposomes as a novel carrier to improve the brain delivery. Int J Mol Sci. 2013;14(2):2862–2874. doi:10.3390/ijms14022862

190. Kumari S, Ahsan SM, Kumar JM, Kondapi AK, Rao NM. Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433). Sci Rep. 2017;7(1):1–13. doi:10.1038/s41598-017-06888-4

191. Kumari S, Bhattacharya D, Rangaraj N, Chakravarty S, Kondapi AK, Rao NM. Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine. 2018;13(20):2579–2596. doi:10.2217/nmn-2018-0110

192. Pang Z, Feng L, Hua R, et al. Lactoferrin-conjugated biodegradable polymersome holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol Pharm. 2010;7(6):1995–2005. doi:10.1021/mp100277h

193. Zhang J, Xiao X, Zhu J, et al. Lactoferrin- and RGD-comodified, temozolomide and vincristine-loaded nanostructured lipid carriers for gliomasis cerebi combination therapy. Int J Nanomedicine. 2018;13:3039–3051. doi:10.2147/IJN.S161163

194. Zhang Y, Zhai M, Chen Z, et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv. 2017;24(1):1045–1055. doi:10.1080/10717544.2017.1344334

195. Soni V, Kohli D, Jain S. Transferrin coupled liposomes as drug delivery carriers for brain targeting of 5-fluorouracil. J Drug Target. 2005;13:245–250. doi:10.1080/10613040500107401

196. Lam FC, Morton SW, Wyckoff J, et al. Enhanced efficacy of combined temozolomide and bdomodain inhibitor therapy for gliomas using targeted nanoparticles. Nat Commun. 2018;9(1):1991. doi:10.1038/s41467-018-04315-4

197. Wang X, Zhao Y, Dong S, et al. Cell-penetrating peptide and transferrin co-modified liposomes for targeted therapy of glioma. Molecules. 2019;24:3540. doi:10.3390/molecules24193540