Studies on the Enantioselective Synthesis of E-Ethylidene-bearing Spiro[indolizidine-1,3'-oxindole] Alkaloids

Nihan Yayik 1, Maria Pérez 2, Elies Molins 3, Joan Bosch 1 and Mercedes Amat 1,*

1 Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain; nhnyyk93@gmail.com (N.Y.); joanbosch@ub.edu (J.B.)
2 Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramanet, Spain; mariaperez@ub.edu
3 Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain; elies.molins@icmab.es
* Correspondence: amat@ub.edu; Tel.: +34-93-402-4540

Abstract: A synthetic route for the enantioselective construction of the tetracyclic spiro[indolizidine-1,3'-oxindole] framework present in a large number of oxindole alkaloids, with a cis H-3/H-15 stereochemistry, a functionalized two-carbon substituent at C-15, and an E-ethylidene substituent at C-20, is reported. The key steps of the synthesis are the generation of the tetracyclic spirooxindole ring system by stereoselective spirocyclization from a tryptophanol-derived oxazolopiperidone lactam, the removal of the hydroxymethyl group, and the stereoselective introduction of the E-ethylidene substituent by acetylation at the α-position of the lactam carbonyl, followed by hydride reduction and elimination. Following this route, the 21-oxo derivative of the enantiomer of the alkaloid 7(S)-geissoschizol oxindole has been prepared.

Keywords: oxindoles; alkaloids; spiro compounds; ethylidene

1. Introduction

The spiro[pyrrolidine-3,3'-oxindole] ring system is a structural moiety found in a large number of natural products, pharmaceuticals, and biologically active compounds. This moiety is present in oxindole alkaloids, which constitute a large group of monoterpenoid alkaloids characterized by a spiro-fusion to a pyrrolidine ring at the 3-position of the indole core [1–3]. Oxindole alkaloids possess a variety of pharmacological properties [4–12] and have served as an inspiration for the development of new therapeutic agents [13]. One of the most important substructural classes of these alkaloids incorporates a tetracyclic spiro[indolizidine-1,3'-oxindole] framework, in which the pyrrolidine nucleus is embedded in an indolizidine ring. Structurally, these tetracyclic oxindole alkaloids differ in the functionalized substituent at C-15 and the two-carbon substituent at C-20 (usually ethyl, vinyl or E-ethylidene), as well as in the configuration at the C-3, C-7, C-15, and (in some cases) C-20 stereocenters (biogenetic numbering) [14], thus giving rise to a diversified array of relative stereochemical relationships. Some representative examples are depicted in Figure 1.
Figure 1. Representative tetracyclic spiro[indolizidine-1,3’-oxindole] alkaloids.

The members of this group of alkaloids often occur in nature as pairs of C-7 epimers [15,16], interconvertible under acidic or basic conditions by retro-Mannich/Mannich reactions via a ring-opened intermediate [17–20]. Scheme 1 illustrates this equilibrium for geissoschizol oxindoles [16].

Scheme 1. Equilibrating a C-7 epimeric pair of geissoschizol oxindoles.

The appealing structure of these alkaloids and their significant biological activities have attracted considerable synthetic attention, resulting in a large number of total syntheses, both in the racemic series and in enantiopure form [21–24]. However, the access to E-ethylidene-bearing spiro[indolizidine-1,3’-oxindoles] with a cis H-3/H-15 stereochemistry has been little explored and to our knowledge no total syntheses of tetracyclic oxindole alkaloids with this substitution and stereochemical pattern have been reported so far. In fact, although the oxidative rearrangement of tetrahydro-β-carbolines is one of the most frequently used methods to assemble the spiro[pyrrolidine-3,3′-oxindole] system [18,19,21], its application to either cis or trans E-ethylidene-bearing Corynanthe-type indolo[2,3-α]quinolizidine amines (but not amides) leads only to C-7 epimeric mixtures of tetracyclic spirooxindoles with a trans H-3/H-15 stereochemistry due to an equilibration of the C-3 and C-7 stereocenters via a reversible Mannich reaction (Scheme 2) [25,26]. The severe A1,3-interaction between the C-15 side chain and the methyl group on the ethylidene moiety in the cis isomers, which is absent in the trans isomers, could account for the exclusive formation of the latter [26].

Scheme 2. Oxidative rearrangements of indolo[2,3-α]quinolizidines reported by S. F. Martin [26].
2. Results and Discussion

We present herein a procedure for the enantioselective construction of cis H-3/H-15 tetracyclic spiro[indolizidine-1,3′-oxindoles] bearing an E-ethylidene substituent at the C-20 position. The cis H-3/H-15 relationship was secured using the spirocyclization procedure we have recently reported for the direct generation of spirooxindoles from tryptophanol-derived oxazolopiperidone lactams [27], whereas the E-ethylidene substituent was stereoselectively installed, taking advantage of the piperidine carbonyl present in the resulting tetracyclic spirooxindole. Scheme 3 outlines the initial steps of the synthesis.

![Scheme 3. Initial steps of the synthesis.](image)

The required bicyclic lactam 2 was prepared, as previously reported [28], by cyclocondensation of prochiral aldehyde-diester 1 with (S)-tryptophanol in a process that involves the stereoselective desymmetrization of two enantiotopic acetate chains. A subsequent bromination with pyridinium perbromide, with careful control of the reaction time (10 s) and operating under strictly anhydrous conditions to minimize the formation of the corresponding oxindole, afforded 2-bromoindole 3 in an improved yield (92%). The latter underwent smooth spirocyclization on treatment with TFA to provide (71%) tetracyclic spirooxindole 4 as a single stereoisomer, whose absolute configuration was unambiguously confirmed by X-ray crystallographic analysis (Figure 2; see Supplementary Materials).

![Figure 2. ORTEP plot of the X-ray structure of spiro[indolizidine-1,3′-oxindole] 4.](image)

Removal of the hydroxymethyl substituent, which plays a decisive role as an element of stereocntrol in the spirocyclization reaction, was initially accomplished in four steps: oxidation to carboxylic acid 6 via the corresponding aldehyde 5, subsequent generation of selenoester 7, and finally radical reductive decarbonylation (Scheme 4) [29,30]. Following this procedure, tetracyclic oxindole 8 was obtained in 45% overall yield from aldehyde 5.
Scheme 5. Previous synthesis of oxindole 8 via oxidation of the indoline moiety.

Having secured an efficient and reliable sequence to access the tetracyclic scaffold 8, we focused on the introduction of the C-20 two-carbon substituent. Chemoselective LiBH₄ reduction of the ester group and subsequent successive protection of the resulting primary alcohol 9 with tert-butylimidemethylsilyle chloride (TBDMSCl) and the indole nitrogen with either methoxymethyl chloride (MOMCl) or di-tert-butyl dicarbonate (Boc₂O) afforded the diprotected intermediates 12 and 13 (Scheme 6). Under the LiBH₄ reduction conditions, only minor amounts (5%) of the corresponding indoline 10 were formed.
Initial attempts to directly introduce a 1-hydroxyethyl chain by an aldol-type reaction between 12 or 13 and acetaldehyde (LDA, –78 °C) were unsuccessful, and the corresponding alcohols were only formed in trace amounts. Satisfactorily, the E-ethylidene substituent was installed by acylation at the α-position of the lactam carbonyl of 12, followed by hydride reduction and stereoselective elimination. Thus, acetylation of 12 with methyl acetate in the presence of LDA afforded ketone 14 as a single stereoisomer in 52% yield, with 29% of the starting material being recovered. Although a subsequent reduction with NaBH₄ gave a nearly equimolecular mixture of epimeric alcohols 15a and 15b, they could be separated by column chromatography and independently converted to the E-ethylidene derivative 16 in excellent overall yield.

Alcohol 15a was dehydrated by treatment with DCC and CuCl as a catalyst in refluxing toluene [33–35] to stereoselectively provide the E-ethylidene derivative 16 in 91% yield. This is a useful method for the syn elimination of β-hydroxy carbonyl compounds that proceeds via an isourea intermediate through a six-membered cyclic transition state [36]. In turn, alcohol 15b was subjected to an anti-elimination sequence [34,35] by treatment of the corresponding mesylate with DBU to give the expected E-ethylidene derivative 16 (60% yield) along with minor amounts of its Z isomer (20% yield). The stereochemistry of both isomers was assigned from their 1H-NMR spectra, in which the olefinic proton of the E isomer appears at a lower field (δ 6.67) than that of the Z isomer (δ 5.94) due to the anisotropic effect of the lactam carbonyl group. A final treatment of 16 under smooth conditions brought about the simultaneous deprotection of the oxindole and alcohol moieties to provide the cis H-3/H-15, E-ethylidene-bearing spiro[indolizidine-1,3′-oxindole] 17.

In summary, we have developed a procedure for the stereoselective construction of the spiro[indolizidine-1,3′-oxindole] framework characteristic of tetracyclic oxindole alkaloids, bearing a cis H-3/H-15 stereochemistry and incorporating a functionalized two-carbon substituent at C-15 and an E-ethylidene substituent at C-20. These studies could open synthetic routes to tetracyclic oxindole alkaloids featuring this substitution and stereochemical pattern, for instance, 7(S)-kopsiresine A or 7(S)-isositsirikine oxindole. In fact, compound 17 can be envisaged as the enantiomer of 21-oxo-7(S)-geissoschizol...
oxindole. The use of (R)-tryptophanol instead of the S enantiomer in the synthetic sequence outlined in Scheme 6 would provide access to the natural enantiomeric series.

3. Experimental Section
3.1. General Information

All air sensitive manipulations were carried out under a dry argon or nitrogen atmosphere. THF and CH₂Cl₂ were dried using a column solvent purification system. Analytical thin-layer chromatography was performed on SiO₂ (Merck silica gel 60 F254), and the spots were located with 1% aqueous KMnO₄. Chromatography refers to flash chromatography and was carried out on SiO₂ (SDS silica gel 60 ACC, 35–75 mm, 230–240 mesh ASTM). NMR spectra were recorded at 400 (H) and 100.6 (C), and chemical shifts are reported in δ values downfield from TMS or relative to residual chloroform (7.26 ppm, 77.0 ppm) as an internal standard. Data are reported in the following manner: Chemical shift, multiplicity, coupling constant (J) in hertz (Hz), integrated intensity, and assignment (when possible). Assignments and stereochemical determinations are given only when they are derived from definitive two-dimensional NMR experiments (HSQC-COSY). IR spectra were performed in a spectrophotometer Nicolet Avantar 320 FT-IR, and only noteworthy IR absorptions (cm⁻¹) are listed. High resolution mass spectra (HRMS) were performed by Centres Científics i Tecnològics de la Universitat de Barcelona.

3.2. Improved Preparation of Tetracyclic Oxindole 4

(3S,7R,8a)-3-[(2-Bromo-3-indolyl)methyl]-7-(methoxycarbonylmethyl)-5-oxo-2,3,6,7,8,8a-hexahydro-5H-oxazolo[3,2-a]pyridine (3). A solution of pyridinium tribromide (PyHBr₃, 4.20 g, 13.1 mmol) in anhydrous THF (57 mL) was added at 0 °C by a large transfer, under an argon atmosphere, to a stirred solution of lactam 2 [28] (3.21 g, 9.36 mmol) in anhydrous CH₂Cl₂ (57 mL). Saturated aqueous solutions of Na₂S₂O₃ (19 mL) and NaHCO₃ (10 mL) were added 10 s later. Distilled H₂O (10 mL) was added, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous mgSO₄, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc) of the resulting residue gave spirooxindole 4 (3.15 mL, 40.9 mmol) as a solution of bromo derivative 3 (556 mg, 1.32 mmol) in anhydrous CH₂Cl₂ (25 mL). The resulting mixture was stirred at room temperature for 16 h and then concentrated under reduced pressure. Flash chromatography (silica previously washed with Et₃N; 1:1 to 1.9 hexane-EtOAc) of the resulting residue gave spirooxindole 4 (337 mg, 71%) as a white foam: [α]22D = + 46.1 (c 1.0, CHCl₃). IR (KBr): 3401 (NH), 1617, 1724 (CO) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃, COSY, δ-HSQC): δ = 3.63–3.69 (m, 2H, CH₂), 4.64 (m, 1H, H-5), 6.92 (d, J = 12.4, 7.6 Hz, 1H, H-14), 1.96 (dd, J = 12.0, 7.2 Hz, 1H, CH₂OH), 3.89 (dd, J = 12.0, 7.2 Hz, 1H, CH₂OH), 4.10 (dd, J = 12.4, 4.4 Hz, 1H, H-3), 4.64 (m, 1H, H-5), 6.92 (d, J = 7.6 Hz, 1H, H-AR).
1H, H\textsubscript{AR}), 7.07 (td, J = 7.6, 0.8 Hz, 1H, H\textsubscript{AR}), 7.29 (td, J = 7.6, 1.2 Hz, 1H, H\textsubscript{AR}), 7.88 (br. s, 1H, NH); 13C-NMR (100.6 MHz, CDCl\textsubscript{3}): \(\delta\) = 29.0 (C-15), 29.6 (C-14), 36.7 (C-6), 37.5 (C-20), 39.6 (CH\textsubscript{2}CO), 51.7 (CH\textsubscript{3}O), 56.2 (C-7), 60.0 (C-5), 64.5 (C-3), 66.5 (CH\textsubscript{2}OH), 110.7 (CH\textsubscript{AR}), 123.2 (CH\textsubscript{AR}), 125.3 (CH\textsubscript{AR}), 128.9 (CH\textsubscript{AR}), 129.4 (CH\textsubscript{AR}), 140.3 (CH\textsubscript{AR}), 170.9 (CO), 171.6 (CO), 177.2 (CO); HRMS (ESI) calcd for [C\textsubscript{19}H\textsubscript{22}N\textsubscript{2}O\textsubscript{5} + H+]: 359.1601, found: 359.1601.

3.3. Removal of the Hydroxymethyl Substituent

\((1'R,3'S,7'R,8a'R)-3'-Formyl-7'-(methoxycarbonylmethyl)-2,5'-dioxospiro[indoline-3,1'-indolizidin]-1\)′. Dess-Martin periodinane (DMP, 649 mg, 1.53 mmol) and NaHCO\textsubscript{3} (200.5 mg, 2 mmol) were added at room temperature under an argon atmosphere to a solution of crude acid \(\text{spirooxindole} (367 \text{ mg, } 1.02 \text{ mmol})\) in anhydrous CH\textsubscript{2}Cl\textsubscript{2} (38 mL). The resulting mixture was stirred at room temperature for 4 h. Saturated aqueous solutions of Na\textsubscript{2}SO\textsubscript{4} (30 mL) and NaHCO\textsubscript{3} (30 mL) were added and the mixture was stirred for 30 min. The aqueous layer was extracted with CH\textsubscript{2}Cl\textsubscript{2}. The combined organic extracts were dried, filtered, and concentrated under reduced pressure. Flash chromatography (1:1 hexane-EtOAc to EtOAc) of the resulting residue gave aldehyde 5 (280 mg, 77%) as a white foam: 1H-NMR (400 MHz, CDCl\textsubscript{3}), COSY, g-HSQC): \(\delta\) = 0.75 (q, J = 12.4 Hz, 1H, H-14), 1.73 (dm, J = 12.4 Hz, 1H, H-14), 1.99 (dd, J = 17.8, 12.0 Hz, 1H, H-20), 2.14–2.33 (m, 3H, CH\textsubscript{2}CO, H-6), 2.44–2.53 (m, 2H, H-6, H-15), 2.70 (ddd, J = 17.8, 5.4, 1.9 Hz, 1H, H-15), 3.63 (s, 3H, CH\textsubscript{3}O). The combined organic extracts were dried, filtered, and concentrated under reduced pressure. Flash chromatography (1:1 hexane-EtOAc to EtOAc) of the resulting residue gave aldehyde 5 (280 mg, 77%) as a white foam: 1H-NMR (400 MHz, CDCl\textsubscript{3}), COSY, g-HSQC): \(\delta\) = 0.75 (q, J = 12.4 Hz, 1H, H-14), 1.73 (dm, J = 12.4 Hz, 1H, H-14), 1.99 (dd, J = 17.8, 12.0 Hz, 1H, H-20), 2.14–2.33 (m, 3H, CH\textsubscript{2}CO, H-6), 2.44–2.53 (m, 2H, H-6, H-15), 2.70 (ddd, J = 17.8, 5.4, 1.9 Hz, 1H, H-15), 3.63 (s, 3H, CH\textsubscript{3}O). The combined organic extracts were dried, filtered, and concentrated under reduced pressure. Flash chromatography (1:1 hexane-EtOAc to EtOAc) of the resulting residue gave aldehyde 5 (280 mg, 77%) as a white foam: 1H-NMR (400 MHz, CDCl\textsubscript{3}), COSY, g-HSQC): \(\delta\) = 0.75 (q, J = 12.4 Hz, 1H, H-14), 1.73 (dm, J = 12.4 Hz, 1H, H-14), 1.99 (dd, J = 17.8, 12.0 Hz, 1H, H-20), 2.14–2.33 (m, 3H, CH\textsubscript{2}CO, H-6), 2.44–2.53 (m, 2H, H-6, H-15), 2.70 (ddd, J = 17.8, 5.4, 1.9 Hz, 1H, H-15), 3.63 (s, 3H, CH\textsubscript{3}O).
(1'R,7'R,8a'R)-7'-(Methoxycarbonylmethyl)-2,5'-dioxospiro[indoline-3,1'-indolizidine] (8).

Method A: from seleno derivative 7: Azobisisobutyronitrile (AIBN, 9 mg, 0.05 mmol) was added under an argon atmosphere to a solution of seleno derivative 7 (216 mg, 0.43 mmol) in anhydrous benzene (20 mL). The mixture was heated to reflux, and a solution of tributyltin hydride (TBTH, 180 μL, 0.65 mmol) in anhydrous benzene (4 mL) was added very slowly (over 30 min). The resulting mixture was stirred at reflux for 1 h, and the solvent was evaporated. Flash chromatography (64 hexane-EtOAc to 100% EtOAc) of the resulting residue gave spirooxindole 8 (127 mg, 90%). Method B: from aldehyde 5: Argon was bubbled through anhydrous diglyme (3.2 mL) for 30 min. Chloro(1,5-cyclooctadiene)rhodium(I) dimer (3 mg, 0.006 mmol) and 1,3-bis(diphenylphosphino)propane (dppe, 10 mg, 0.023 mmol) were weighed in corning tubes and introduced into the reaction flask under an argon flow using inert glovebox equipment. Anhydrous diglyme (2.2 mL) was transferred into the reaction flask and the bubbling of argon was continued for 15 min. Aldehyde 5 (80 mg, 0.23 mmol) was dissolved in anhydrous diglyme and transferred into the flask. The mixture was stirred at reflux for 24 h. Distilled H₂O (2.2 mL) and CH₂Cl₂ (2.2 mL) were added, the layers were separated, and the aqueous phase was extracted with CH₂Cl₂. The combined organic extracts were washed with brine, dried over anhydrous mgSO₄, filtered, and concentrated under reduced pressure. Flash chromatography (1:1 to 1.9 hexane-EtOAc) of the resulting residue gave compound 8 (57 mg, 75%) as a white foam and minor amounts of its 5,6-dehydro derivative, which was hydrogenated (10% Pd/C, absolute EtOH) to give additional compound 8 (3 mg, 4%) after flash chromatography: [α]₂²²_D = + 63.0 (c 0.55, CHCl₃); IR (film): 3194 (NH), 1777, 1619 (CO) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃, COSY, g-HSQC): δ = 0.72 (q, J = 12.4 Hz, 1H, H-14), 1.67 (dm, J = 12.4 Hz, 1H, H-14), 1.95 (dd, J = 17.6, 12.0 Hz, 1H, H-20), 2.09 (dd, J = 12.4, 8.4 Hz, 1H, H-6), 2.14 (dd, J = 15.6, 7.6 Hz, 1H, CH₂CO), 2.23 (dd, J = 15.6, 6.4 Hz, 1H, CH₂CO), 2.35 (m, 1H, H-15), 2.52 (q, J = 12.4 Hz, 1H, H-6), 2.61 (dd, J = 17.6, 4.8 Hz, 1H, H-6), 3.61 (s, 3H, CH₃O), 3.83 (t, J = 11.2 Hz, 1H, H-5), 3.99 (mm, J = 11.2 Hz, 1H, H-5), 4.04 (dd, J = 11.2, 4.4 Hz, 1H, H-3), 6.91 (d, J = 7.2 Hz, 1H, H_AR), 6.99 (d, J = 7.6 Hz, 1H, H_AR), 7.05 (t, J = 7.6 Hz, 1H, H_AR), 7.28 (t, J = 7.6 Hz, 1H, H_AR), 8.92 (br s, 1H, NH); ¹³C-NMR (100.6 MHz, CDCl₃): δ = 29.6 (C-15), 29.7 (C-14), 33.3 (C-6), 37.3 (C-20), 39.9 (CH₂CO), 43.9 (C-5), 51.7 (CH₃O), 64.3 (CH₂), 64.3 (C-3), 110.5 (CH_AR), 121.3 (CH_AR), 123.7 (CH_AR), 128.6 (CH_AR), 129.7 (CH_AR), 140.2 (CH_AR), 168.4 (CO), 171.7 (CO), 177.5 (CO); HRMS (ESI) calcd for [C₁₉H₂₀N₂O₄ + H⁺]: 329.1496, found: 329.1497.

3.4. Introduction of the E-Ethylidene Ether

(1'R,7'R,8a'R)-7'-(2-Hydroxyethyl)-2,5'-dioxospiro[indoline-3,1'-indolizidine] (9): Lithium borohydride (LiBH₄, 20 mg, 0.9 mmol) was added at 0 °C under an argon atmosphere to a solution of compound 8 (49 mg, 0.15 mmol) in anhydrous THF (5 mL). The resulting mixture was stirred at room temperature for 72 h. The reaction was quenched at 0 °C by distilled H₂O (5 mL), and the mixture was concentrated under reduced pressure using a rotary evaporator with a dry ice condenser. Flash chromatography (95:5 EtOAc-MeOH) of the resulting residue gave oxindole 9 (34 mg, 76%) as a white foam and minor amounts of indoline 10 (3 mg, 5%). Oxindole 9: [α]₂²²_D = + 58.0 (c 1.12, MeOH); IR (film): 3100–3600 (NH, OH), 1731, 1714 (CO) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃, COSY, g-HSQC): δ = 0.64 (q, J = 12.0 Hz, 1H, H-14), 1.43 (m, 2H, CH₂CH₂O), 1.64 (dm, J = 12.0 Hz, 1H, H-14), 1.90 (dd, J = 17.6, 12.0 Hz, 1H, H-20), 2.05 (m, 2H, H-6, H-15), 2.49 (dt, J = 10.4 Hz, 1H, H-6), 2.58 (dd, J = 17.6, 5.2 Hz, 1H, H-20), 3.60 (t, J = 6.4 Hz, 2H, CH₂O), 3.80 (dd, J = 11.6, 9.2 Hz, 1H, H-5), 3.98 (m, 2H, H-5, H-3), 6.91 (d, J = 7.6 Hz, 1H, H_AR), 6.97 (d, J = 8.0 Hz, 1H, H_AR), 7.04 (t, J = 7.6 Hz, 1H, H_AR), 7.26 (td, J = 7.6, 1.2 Hz, 1H, H_AR), 8.83 (br s, 1H, NH); ¹³C-NMR (100.6 MHz, CDCl₃): δ = 29.5 (C-15), 29.9 (C-14), 33.2 (C-6), 37.9 (C-3), 63.4 (C-1), 64.3 (C-3), 110.3 (CH_AR), 121.3 (CH_AR), 123.8 (CH_AR), 128.6 (CH_AR), 129.9 (CH_AR), 140.1 (CH_AR), 162.9 (CO); HRMS (ESI) calcd for [C₁₇H₁₉N₂O₃ + Na⁺]: 323.1366, found: 323.1371. (1'S,7'S,8a'R)-7'-(2-Hydroxyethyl)-5'-oxospiro[indoline-3,1'-indolizidine] (10): IR (film): 3346 (NH, OH), 1606
Molecules 2021, 26, 428

(1H, H-5), 3.96–4.03 (m, 2H, H-5, H-3), 5.15 (s, 2H, NCH)

124.0 (CHAR), 128.5 (CHAR), 131.0 (CAR), 151.2 (CAR), 169.2 (CO); HRMS (ESI) calcd for

\[\text{[C}_{17}\text{H}_{22}\text{N}_2\text{O}_2 + \text{H}^+}\]: 287.1754, found: 287.1758.

(1R,7R,S,8a'R)-7-[2-[(tert-Butyldimethylsilyl)oxy]ethyl]-1-(methoxymethyl)-2,5'-dioxospiro[indoline-3,1'-indolizidine] (11). tert-Butyldimethylsilyl chloride (TBDMSCl, 27 mg, 0.18 mmol) and imidazole (25 mg, 0.36 mmol) were added at 0 °C under an argon atmosphere to a solution of alcohol 9 (27 mg, 0.09 mmol) in anhydrous DMF (1 mL). The resulting mixture was stirred at room temperature for 16 h. Brine was added, and the mixture was extracted with EtOAc. The combined organic extracts were dried over anhydrous mgSO_4, filtered, and concentrated under reduced pressure. Flash chromatography (7:3 hexane-EtOAc to 1:1 hexane-EtOAc) of the resulting residue gave silyl derivative 11 (30 mg, 80%) as a white foam: [α]_D^22 = +37.09 (c 0.23, CHCl_3); IR (film): 3181 (NH), 1725, 1620 (CO) cm^{-1}; 1H-NMR (400 MHz, CDCl_3, COSY, g-HSQC): δ = −0.01 (s, 3H, CH_3Si), 0.65 (qd, J = 12.4, 3.6 Hz, 1H, H-14), 0.83 [s, 9H, C(CH_3)_3], 1.39 (m, 2H, CH_2CH_2O), 1.65 (dm, J = 12.4 Hz, 1H, H-14), 1.89 (dd, J = 16.4, 11.6 Hz, 1H, H-20), 2.03–2.09 (m, 2H, H-15, H-6), 2.50–2.58 (m, 2H, H-6, H-20), 3.55 (m, 2H, CH_2O), 3.81 (t, J = 12.4 Hz, 1H, H-5), 3.95–4.03 (m, 2H, H-5, H-3), 6.91–6.95 (m, 2H, HAR), 7.03–7.07 (m, 1H, HAR), 7.27 (m, 1H, HAR), 7.68 (br. s, 1H, NH); 13C-NMR (100.6 MHz, CDCl_3); δ = −5.5 (2CH_2Si), 18.2 [C(CH_3)_2], 25.8 [C(CH_3)_3], 29.7 (C-15), 30.1 (C-14), 33.3 (C-6), 37.9 (C-20), 38.5 (CH_2CH_2O), 43.8 (C-5), 57.0 (C-7), 60.1 (CH_2O), 64.8 (C-3), 110.2 (CAR), 123.1 (CHAR), 123.9 (CHAR), 128.5 (CHAR), 129.9 (CAR), 140.0 (CAR), 169.2 (CO), 177.5 (CO); HRMS (ESI) calcd for [C_{23}H_{34}N_2O_5Si + H^+]: 415.2411, found: 415.2419.

(1R,7R,S,8a'R)-7-[2-[(tert-Butyldimethylsilyl)oxy]ethyl]-1-(methoxymethyl)-2,5'-dioxospiro[indoline-3,1'-indolizidine] (12). A solution of compound 11 (386 mg, 0.93 mmol) in anhydrous THF (2.5 mL) was transferred at 0 °C under an argon atmosphere to a suspension of NaH (95%, 36 mg, 1.4 mmol) in anhydrous DMF (2.5 mL). The resulting mixture was stirred at 0 °C for 30 min. Methoxymethyl chloride (MOMCl, 0.12 mL, 1.4 mmol) was added, and the resulting mixture was stirred at room temperature for 1.5 h. The mixture was cooled to 0 °C and saturated aqueous NaHCO_3 (11.2 mL) was added. The mixture was extracted with EtOAc and the combined organic extracts were dried over anhydrous mgSO_4, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc) of the resulting residue gave the N-MOM derivative 12 (283 mg, 67%) as a white foam: [α]_D^22 = +50.6 (c 2.26, CHCl_3); IR (film): 1725, 1651 (CO) cm^{-1}; 1H-NMR (400 MHz, CDCl_3, COSY, g-HSQC): δ = −0.02 (s, 3H, CH_3Si), −0.03 (s, 3H, CH_3Si), 0.64 (q, J = 12.4 Hz, 1H, H-14), 0.82 [s, 9H, C(CH_3)_3], 1.37 (dd, J = 12.8, 6.4 Hz, 2H, CH_2CH_2O), 1.55 (dm, J = 12.4 Hz, 1H, H-14), 1.89 (dd, J = 17.6, 12.0 Hz, 1H, H-20), 2.00–2.07 (m, 2H, H-15, H-6), 2.50–2.57 (m, 2H, H-20, H-6), 3.32 (s, 3H, CH_3O), 3.54 (t, J = 6.0 Hz, 2H, CH_2CH_2O), 3.81 (t, J = 11.6 Hz, 1H, H-5), 3.96–4.03 (m, 2H, H-5, H-3), 5.15 (s, 2H, NCH), 6.94 (d, J = 7.6 Hz, 1H, HAR), 7.08–7.11 (m, 2H, HAR), 7.32 (t, J = 7.6 Hz, 1H, HAR); 13C-NMR (100.6 MHz, CDCl_3); δ = −5.5 (2CH_2Si), 18.2 [C(CH_3)_2], 25.8 [C(CH_3)_3], 29.6 (C-15), 30.2 (C-14), 33.3 (C-6), 37.8 (C-20), 38.6 (CH_2CH_2O), 43.8 (C-5), 56.3, 56.9 (C-7, CH_2O), 60.0 (CH_2CH_2O), 64.8 (C-3), 71.5 (NCH_2O), 110.0 (CHAR), 123.6 (CHAR), 123.7 (CHAR), 128.6 (CHAR), 129.1 (CAR), 141.2 (CAR), 169.1 (CO), 176.3 (CO); HRMS (ESI) calcd for [C_{25}H_{36}N_2O_5Si + H^+]: 459.2674, found: 459.2675.

(1R,7R,S,8a'R)-7-[2-[(tert-Butyldimethylsilyl)oxy]ethyl]-1-(tert-butoxycarbonyl)-2,5'-dioxospiro[indoline-3,1'-indolizidine] (13). NaH (95%, 25 mg, 0.64 mmol) and (Boc)_2O (70 mg, 0.32 mmol) were added at 0 °C under an argon atmosphere to a solution of compound 11 (33 mg, 0.08 mmol)
in anhydrous DMF (1 mL). The mixture was stirred at room temperature for 16 h. The reaction was quenched by the addition of a few drops of distilled H₂O, and the resulting residue was dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 4:1 EtOAc-MeOH) gave N-Boc derivative 13 (26 mg, 64%): [α]D²⁰ = + 56.7 (c 0.92, CHCl₃); IR (film): 1794, 1766, 1733 (CO) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃, COSY, g-HSQC): δ = −0.28 (s, 3H, CH₃Si), −0.21 (s, 3H, CH₂Si), 0.60 (q, J = 12.0 Hz, 1H, CH₂), 1.06 (s, 3H, CH₃), 3.14–3.18 (m, 2H, H-6, H-20), 3.32 (s, 3H, CH₃), 33.7 (C-6), 36.6 (CH₂), 61.7 (C-20), 64.3 (C-3), 71.5 (NCH₂(O)), 56.9 (C-7), 60.2 (CH₂), 65.5 (C-3), 84.9 [C(CH₃)₃], 115.3 (C-AR), 123.3 (C-AR), 125.1 (C-AR), 128.5 (C-AR), 138.9 (C-AR), 148.9 (CO), 174.6 (CO); HRMS (ESI) calcd for [C₂₈H₄₂N₂O₃Si + H⁺]: 515.2936, found: 515.2941.

(1'R,6'R,7'S,8a'R,9'R)-6'-Acetyl-7'-[2-{(tert-butylidimethylsilyl)oxy}ethyl]-1-{(methoxymethyl)-2,5'-dioxospiro[indoline-3,1'-indolizidine] (14). Lithium disopropylamide (LDA, 0.26 mL of a 2.0 M solution in THF/heptane/ethylbenzene, 0.42 mmol) was added at −78 °C under an argon atmosphere to a solution of spiro compound 12 (62 mg, 0.14 mmol) in anhydrous THF (0.7 mL), and the mixture was stirred at −78 °C for 1 h. Methyl acetate (0.05 mL, 0.56 mmol) was added at −78 °C, and the resulting mixture was stirred at room temperature for 4 h. Saturated aqueous NH₄Cl was added, and the mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 4:1 EtOAc-MeOH) gave diacylated derivative 14 (35 mg, 52%) as a white foam: [α]D²⁰ = + 26.2 (c 0.82, CHCl₃); IR (film): 1723, 1642, 1613 (CO) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃, COSY, g-HSQC): δ = −0.07 (s, 3H, CH₃Si), −0.06 (s, 3H, CH₂Si), 0.70–0.84 (m, 1H, H-14), 0.79 [s, 9H, C(CH₃)₃], 1.19–1.25 (m, 1H, CH₂CH₂O), 1.41–1.49 (m, 1H, CH₂CH₂O), 1.64–1.70 (m, 1H, H-14), 2.05 (dd, J = 12.8, 2.8 Hz, 1H, H-6), 2.37 (s, 3H, COCH₃), 2.40–2.46 (m, 1H, H-15), 2.55 (dt, J = 12.8, 10.8 Hz, 1H, H-6), 3.21 (d, J = 10.8 Hz, 1H, H-15), 3.96–4.02 (m, 1H, H-3), 4.09 (dd, J = 11.6, 4.0 Hz, 1H, H-3), 5.13 (d, J = 10.8 Hz, 1H, H-20), 3.32 (s, 3H, CH₃), 3.47 (t, J = 6.4 Hz, 2H, CH₂CH₂O), 3.81 (dd, J = 12.8, 10.8 Hz, 1H, H-5), 3.96–4.02 (m, 1H, H-3), 4.09 (dd, J = 11.6, 4.0 Hz, 1H, H-5), 5.13 (d, J = 10.8 Hz, 1H, H-20), 5.15 (d, J = 10.8 Hz, 1H, NCH₂O), 6.92 (d, J = 7.6 Hz, 1H, H-14), 7.08–7.12 (m, 2H, H-AR), 7.33 (td, J = 9.2, 1.2 Hz, 1H, H-14), 7.33 (td, J = 9.2, 1.2 Hz, 1H, H-14). C-NMR (100.6 MHz, CDCl₃, δ = −5.6 (CH₃Si), −5.5 (CH₃Si), 25.8 [C(CH₃)₃], 28.8 (C-14), 31.1 (C-CH₂O), 32.7 (C-15), 33.7 (C-6), 36.6 (CH₂CH₂O), 44.3 (C-5), 56.3 (CH₃O), 56.9 (C-7), 60.2 (CH₂CH₂O), 61.7 (C-20), 64.3 (C-3), 71.5 (NCH₂O), 110.1 (C-AR), 123.6 (C-AR), 123.7 (C-AR), 128.7 (C-AR), 128.8 (C-AR), 141.2 (C-AR), 165.8 (CO), 176.0 (CO), 205.2 (CO); HRMS (ESI) calcd for [C₂₇H₃⁸N₂O₅Si + H⁺]: 501.2797, found: 501.2791.

(1'R,6'R,7'S,8a'R,9'R)-7'-[2-{(tert-butylidimethylsilyl)oxy}ethyl]-1-(methoxymethyl)-2,5'-dioxospiro[indoline-3,1'-indolizidine] (15a) and (15b). NaBH₄ (10 mg, 0.24 mmol) was added at −10 °C under an argon atmosphere to a solution of ketone 14 (60 mg, 0.12 mmol) in anhydrous MeOH (2 mL). The resulting mixture was stirred at −10 °C for 1 h. Saturated aqueous NaHCO₃ (1.3 mL) and CH₂Cl₂ were added, and the mixture was stirred for 5 min. The organic solvent was evaporated, and the resulting aqueous mixture was extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Flash chromatography (7:3 hexane-ETOAc to 1:1 hexane-ETOAc) of the resulting residue gave alcohols 15a (28 mg, 46%) and 15b (27 mg, 46%) as white foams. 15a: [α]D²⁰ = + 30.3 (c 1.16, CHCl₃); IR (film): 3427 (OH), 1725, 1614 (CO) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃, COSY, g-HSQC): δ = −0.05 (s, 3H, CH₃Si), −0.04 (s, 3H, CH₂Si), 0.65–0.81 (m, 1H, H-14), 0.81 [s, 9H, C(CH₃)₃], 1.24–1.32 (m, 1H, CH₂CH₂O), 1.39 (d, J = 6.4 Hz, 3H, CH₃CHOH), 1.58 (dt, J = 13.2, 3.9 Hz, 1H, H-14), 1.76–1.85 (m, 1H, CH₂CH₂O), 1.92–1.95 (m, 1H, H-15), 2.00–2.05
Molecules 2021, 26, 428

(m, 1H, H-6), 2.11 (dd, J = 9.2, 4.8 Hz, 1H, H-20), 2.54 (td, J = 12.4, 9.6 Hz, 1H, H-6), 3.32 (s, 3H, CH3O), 3.45–3.56 (m, 2H, CH2CH2O), 3.81 (dd, J = 12.4, 9.6 Hz, 1H, H-5), 3.96–4.03 (m, 3H, H-3, H-5, CHO), 5.15 (s, 2H, NCH2O), 6.96 (dm, J = 8.0 Hz, 1H, H-AR), 7.08–7.12 (m, 2H, H-AR), 7.33 (td, J = 8.0, 1.2 Hz, 1H, H-AR); 13C-NMR (100.6 MHz, CDCl3): δ = −5.5 (2CH3Si), 18.1 [C(CH3)2], 22.1 (CH3CHOH), 25.8 [C(CH3)3], 30.4 (C-14), 32.4 (C-15), 33.9 (C-6), 38.0 (CH2CH2O), 44.7 (C-5), 53.3 (C-20), 56.3 (CH3O), 57.2 (C-7), 60.7 (CH2CH2O), 63.6 (C-3), 69.7 (CHOH), 71.5 (NCHO), 110.1 (CHAR), 123.6 (CHAR), 123.8 (CHAR), 128.7 (CHAR, C-AR), 141.2 (C-AR), 171.2 (CO), 176.2 (CO); HRMS (ESI) calcd for [C27H42N2O3Si + H+]*: 503.2936, found: 503.2937.

15b: [α]D22 = +14.0 (c 1.13, CHCl3); IR (film): 3418 (OH), 1725, 1614 (CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = −0.07 (s, 3H, CH3Si), −0.05 (s, 3H, CH3Si), 0.70–0.84 (m, 1H, H-14), 0.80 [s, 9H, C(CH3)3, 1.18–1.20 (m, 1H, CH2CH2O), 1.19 (d, J = 6.4 Hz, 3H, CH3CHOH), 1.61–1.75 (m, 3H, H-14, H-15, CH2CH2O), 2.06 (dd, J = 12.8, 6.4 Hz, 1H, H-6), 2.34 (dd, J = 10.8, 3.6 Hz, 1H, H-20), 2.55 (tm, J = 12.8 Hz, 1H, H-6), 3.32 (s, 3H, CH3O), 3.44–3.54 (m, 2H, CH2CH2O), 3.84 (dd, J = 12.8, 10.8 Hz, 1H, H-5), 3.96–4.01 (m, 3H, H-3, H-5, CHO), 5.15 (s, 2H, NCH2O), 6.94 (d, J = 7.2 Hz, 1H, H-AR), 7.09–7.13 (m, 2H, H-AR), 7.34 (t, J = 7.6 Hz, 1H, H-AR); 13C-NMR (100.6 MHz, CDCl3): δ = −5.5 (2CH3Si), 18.0 [C(CH3)3], 18.6 (CH3CHOH), 25.8 [C(CH3)3], 29.3 (C-14), 32.2 (C-15), 33.8 (C-6), 36.3 (CH3CH2O), 44.1 (C-5), 52.3 (C-20), 56.3 (C-7), 57.0 (CH52CH2O), 59.9 (CH2CH2O), 64.1 (C-3), 67.1 (CHOH), 71.5 (NCHO), 110.2 (CHAR), 123.7 (CHAR), 123.8 (CHAR), 128.7 (CHAR), 128.8 (CHAR), 141.2 (C-AR), 172.2 (CO), 176.1 (CO); HRMS (ESI) calcd for [C27H42N2O3Si + H+]*: 503.2936, found: 503.2937.

(1R,6′E,7′S,8′aR)-7′-[2-(tert-Butyldimethylsilyl)oxyethyl]-6′-ethyldiene-1-(methoxymethyl)-2,5′-dioxospiro[indoline-3,1′-indolizidine] (16). From alcohol 15a: N,N′-Dicyclohexylcarbodiimide (DCC, 54 mg, 0.26 mmol) and copper(II) chloride (CuCl, 52 mg, 0.52 mmol) were added under an argon atmosphere to a solution of alcohol 15a (26 mg, 0.05 mmol) in anhydrous toluene (1.6 mL), and the resulting mixture was stirred at reflux for 5 h. The suspension was filtered through Celite®, and the residue was washed with CH3CN. The resulting filtrate was kept in the freezer overnight and filtered again through Celite®, washing with minimal amounts of cold CH3CN. The organic filtrate was concentrated under reduced pressure. Flash chromatography (1:9 hexane-EtOAc) of the resulting residue gave the E-ethyldiene derivative 16 (22 mg, 91%). From alcohol 15b: First step: Et2N (18 µL, 0.13 mmol) and mesyl chloride (MsCl, 9 µL, 0.11 mmol) were added at 0 °C under an argon atmosphere to a solution of alcohol 15b (21 mg, 0.04 mmol) in anhydrous CH2Cl2 (0.6 mL). The resulting mixture was stirred at 0 °C for 4 h. Saturated aqueous NH4Cl (1.2 mL) was added, and the mixture was extracted with CH2Cl2. The combined organic extracts were dried over anhydrous mgSO4, filtered, and concentrated under reduced pressure to give the corresponding mesylate, which was used in the next step without further purification. Second step: Diazabicycloundecene (DBU, 27 µL, 0.18 mmol) was added under an argon atmosphere to a solution of the above mesylate in anhydrous THF (0.6 mL), and the resulting mixture was stirred at reflux overnight. Distilled H2O was added, and the mixture was extracted with EtOAc. The combined organic extracts were dried over anhydrous mgSO4, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc) of the residue gave the Z isomer of compound 16 (4 mg, 20%) and the E-ethyldiene derivative 16 (12 mg, 60%) as white foams. 16: [α]D22 = −2.9 (c 0.76, CHCl3); IR (film): 1725, 1613 (CO) cm−1; 1H-NMR (400 MHz, CDCl3, COSY, g-HSQC): δ = −0.07 (s, 3H, CH3Si), −0.05 (s, 3H, CH3Si), 0.78 [s, 9H, C(CH3)3, 0.94–1.05 (q, J = 12.0 Hz, 1H, H-14), 1.29–1.36 (m, 1H, CH2CH2O), 1.65–1.70 (m, 1H, H-14), 1.77–1.85 (m, 4H, CH2CH2O, =CHCH3), 1.87–1.95 (dm, J = 12.4 Hz, 1H, H-6), 2.51 (m, 1H, H-6), 2.87–2.96 (m, 1H, H-15), 3.32 (s, 3H, CH3O), 3.36–3.52 (m, 2H, CH2CH2O), 3.88–4.30 (m, 3H, H-5, H-3), 5.14 (d, J = 10.8 Hz, 1H, NCH2O), 5.17 (d, J = 10.8 Hz, 1H, NCHO), 6.67 (m, 1H, =CHCH3), 7.09–7.16 (m, 3H, H-AR), 7.33 (td, J = 7.2, 1.6 Hz, H-AR); 13C-NMR (100.6 MHz, CDCl3): δ = −5.5 (2CH3Si), 14.4 (=CHCH3), 18.1 [C(CH3)3], 25.8 [C(CH3)3], 30.8 (C-15), 31.1 (C-14), 34.8 (C-6), 39.4 (CH2CH2O), 44.6 (C-5), 56.3 (CH3O), 57.4 (C-7), 60.4 (CH2CH2O), 61.6 (C-3), 71.5 (NCHO), 110.1 (CHAR), 123.5 (CHAR), 124.3 (CHAR), 128.7 (CHAR), 128.8 (C=AR), 133.5 (=CHCH3), 135.7 (C-20), 141.2
Molecules, 26, 428

1H, CH (11 mg, 68%) as a white foam: δ = −0.05 (s, 3H, CH₃Si), −0.04 (s, 3H, CH₂Si), 0.81 [s, 9H, C(CH₃)₃], 1.54–1.64 (m, 1H, H-14), 1.83 (m, 1H, CH2CH₂O), 2.04 (ddd, J = 12.4, 7.6, 1.6 Hz, 1H, H-6), 2.20 (dd, J = 7.2, 2.0 Hz, 3H, =CHCH₃), 2.54–2.60 (m, 1H, H-6), 3.32 (s, 3H, CH₃O), 3.48–3.60 (m, 2H, CH₂CH₂O), 3.83–3.89 (m, 1H, H-5), 4.02–4.08 (m, 2H, H-3, H-5), 5.15 (s, 2H, NCH₂O), 5.94 (qd, J = 7.2, 2.0 Hz, 1H, =CHCH₃), 6.99 (dd, J = 8.0, 1.2 Hz, 1H, HAR), 7.07–7.11 (m, 2H, H₃AR), 7.31 (td, J = 7.6, 1.2 Hz, 1H, HAR); ¹³C-NMR (100.6 MHz, CDCl₃, selected resonances): δ = 3.80 (CH₃), 100.6 (CH₂), 122.9 (CH₃), 128.6 (CH₂), 134.2 (=CHCH₂O), 141.2 (CH₃), 153.7 (C-3), 176.4 (CO); HRMS (ESI) calcd for [C₂₇H₄₉N₂O₃Si + H⁺]: 485.2830, found: 485.2825.

Acknowledgments: Financial support from the MICIU/FEDER, Spain (RTI2018-093974-B-I00) is gratefully acknowledged. Thanks are also due to the AGAUR (Generalitat de Catalunya) for a fellowship to N.Y. (AP2010-1663). We also acknowledge the networking contribution from the COST Action CM1407.

Supplementary Materials: The following are available online. Copies of ¹H and ¹³C NMR spectra and crystallographic data for spirooxindole 4 (CCDC 2052158). CCDC 2052158 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Author Contributions: M.A. designed and planned the research; M.P. supervised the experimental work; N.Y. performed the experimental work and characterized the compounds; E.M. carried out the X-ray analysis; J.B. discussed the results and prepared the manuscript for publication. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MICIU/FEDER, Spain (RTI2018-093974-B-I00).

Data Availability Statement: The data presented in this study are available in the article and the Supplementary Materials section.

Supplementary Materials: The following are available online. Copies of ¹H and ¹³C NMR spectra and crystallographic data for spirooxindole 4 (CCDC 2052158). CCDC 2052158 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Author Contributions: M.A. designed and planned the research; M.P. supervised the experimental work; N.Y. performed the experimental work and characterized the compounds; E.M. carried out the X-ray analysis; J.B. discussed the results and prepared the manuscript for publication. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MICIU/FEDER, Spain (RTI2018-093974-B-I00).

Data Availability Statement: The data presented in this study are available in the article and the Supplementary Materials section.

Acknowledgments: Financial support from the MICIU/FEDER, Spain (RTI2018-093974-B-I00) is gratefully acknowledged. Thanks are also due to the AGAUR (Generalitat de Catalunya) for a fellowship to N.Y. (AP2010-1663). We also acknowledge the networking contribution from the COST Action CM1407.
Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References

1. Saxton, J.E. Alkaloids of Mitragyna and Ourouparia species. In The Alkaloids; Manske, R.H.F., Ed.; Academic Press: New York, NY, USA, 1965; Volume 8, pp. 59–91.
2. Bindra, J.S. Oxindole alkaloids. In The Alkaloids; Manske, R.H.F., Ed.; Academic Press: New York, NY, USA, 1973; Volume 14, pp. 83–121.
3. Brown, R.T.O. Indole alkaloids. In The Chemistry of Heterocyclic Compounds; Saxton, J.E., Weissberger, A., Taylor, E.C., Eds.; Wiley: New York, NY, USA, 1983; Volume 25, pp. 85–97.
4. Shi, J.-S.; Yu, J.-X.; Chen, X.-P.; Xu, R.-X. Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline. Acta Pharmacol. Sin. 2003, 24, 97–101. [PubMed]
5. Heitzman, M.E.; Neto, C.C.; Winiarz, E.; Vaisberg, A.J.; Hammond, G.B. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochemistry 2005, 66, 5–29. [CrossRef] [PubMed]
6. Zhou, J.; Zhou, S. Antihypertensive and neuroprotective activities of rhynchophylline: The role of rhynchophylline in neurotransmission and ion channel activity. J. Ethnopharmacol. 2010, 132, 15–27. [CrossRef] [PubMed]
7. Tang, W.; Eisenbrand, G. Handbook of Chinese Medicinal Plants; Wiley: Weinheim, Germany, 2011; Volume 2, pp. 1213–1221.
8. Zhou, J.-Y.; Zhou, S.-W. Isorhynchophylline: A plant alkaloid with therapeutic potential for cardiovascular and central nervous system diseases. Fitoterapia 2012, 83, 617–626. [CrossRef]
9. Ndagijimana, A.; Wang, X.; Pan, G.; Zhang, F.; Feng, H.; Olaleye, O. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies. Fitoterapia 2013, 86, 35–47. [CrossRef]
10. Zhang, Q.; Zhao, J.J.; Xu, J.; Feng, F.; Qu, W. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria. J. Ethnopharmacol. 2015, 173, 48–80. [CrossRef]
11. Yu, B.; Yu, D.-Q.; Liu, H.-M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem. 2015, 97, 673–698. [CrossRef]
12. Ye, N.; Chen, H.; Wold, E.A.; Shi, P.-Y.; Zhou, J. Therapeutic potential of spirooxindoles as antiviral agents. ACS Infect. Dis. 2016, 2, 382–392. [CrossRef]
13. Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. 2007, 46, 8748–8758. [CrossRef]
14. Le Men, J.; Taylor, W.I. A uniform numbering system for indole alkaloids. Experientia 1965, 21, 508–510. [CrossRef]
15. Ban, Y.; Seto, M.; Oishi, T. The synthesis of 3-spirooxindole derivatives. VII. Total synthesis of alkaloids (±)-rhynchophylline and (±)-isorhynchophylline. Chem. Pharm. Bull. 1975, 23, 2605–2613. [CrossRef]
16. Lim, K.-H.; Sim, K.-M.; Tan, G.-H.; Kam, T.-S. Four tetracyclic oxindole alkaloids and a taberpsychine derivative from a Malayian Tabernaemontana. Phytochemistry 2009, 70, 1182–1186. [CrossRef] [PubMed]
17. Seaton, J.C.; Nair, M.D.; Edwards, O.E.; Marion, L. The structure and stereoisomerism of three mitragyna alkaloids. Can. J. Chem. 1960, 38, 1035–1042. [CrossRef]
18. Finch, N.; Taylor, W.I. Oxidative transformations of indole alkaloids. I. The preparation of oxindoles from yohimbine; the structures and partial syntheses of mitraphylline, rhynchophylline and corynoxeine. J. Am. Chem. Soc. 1962, 84, 3871–3877. [CrossRef]
19. Deiters, A.; Pettersson, M.; Martin, S.F. General strategy for the syntheses of corynanthe, tacaman, and oxindole alkaloids. J. Org. Chem. 2006, 71, 6547–6561. [CrossRef]
20. Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H. Total synthesis of the spirocyclic oxindole alkaloids Corynoxine, Corynoxine B, Corynoxeine, and Rhynchophylline. Eur. J. Org. Chem. 2013, 1100–1106. [CrossRef]
21. Marti, C.; Cereira, E.M. Construction of spiro[pyrrolidine-3,3ˊ]-oxindoles—Recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem. 2003, 2209–2219. [CrossRef]
22. Trost, B.M.; Brennan, M.K. Asymmetric syntheses of oxindole and indole spirocyclic alkaloid natural products. Synthesis 2009, 3003–3025. [CrossRef]
23. Zhou, F.; Liu, Y.-L.; Zhou, J. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C-3 position. Adv. Synth. Catal. 2010, 352, 1381–1407. [CrossRef]
24. Santos, M.M.M. Recent advances in the synthesis of biologically active spirooxindoles. Tetrahedron 2014, 70, 9735–9757. [CrossRef]
25. Martin, S.F.; Mortimore, M. New methods for the synthesis of oxindole alkaloids. Total syntheses of isopodine and pteropodine. Tetrahedron Lett. 1990, 31, 4557–4560. [CrossRef]
26. Ito, M.; Clark, C.W.; Mortimore, M.; Goh, J.B.; Martin, S.F. Biogenetic approach to the Strychnos alkaloids. Concise syntheses of (±)-Acuminicine and (±)-Strychnine. J. Am. Chem. Soc. 2001, 123, 8003–8010. [CrossRef]
27. Pérez, M.; Ramos, C.; Massi, L.; Gazzola, S.; Taglianti, C.; Yayik, N.; Molins, E.; Viayna, A.; Luque, F.J.; Bosch, J.; et al. Enantioselective synthesis of spiro[indolizidine-1,3ˊ]-oxindoles. Org. Lett. 2017, 19, 4050–4053. [CrossRef] [PubMed]
28. Amat, M.; Ramos, C.; Pérez, M.; Molins, E.; Florindo, P.; Santos, M.M.M.; Bosch, J. Enantioselective formal synthesis of ent-rhynchophylline and ent-isorhynchophylline. Chem. Commun. 2013, 49, 1954–1956. [CrossRef] [PubMed]
29. Allin, S.M.; Thomas, C.I.; Allard, J.E.; Doyle, K.; Elsegood, M.R.J. Highly stereoselective synthesis of the indolo[2,3-a]quinolizine ring system and application to indole natural product synthesis. *Tetrahedron Lett.* **2004**, *45*, 7103–7105. [CrossRef]

30. Amat, M.; Santos, M.M.M.; Bassas, O.; Llor, N.; Escolano, C.; Gómez-Esqué, A.; Molins, E.; Allin, S.M.; McKee, V.; Bosch, J. Straightforward methodology for the enantioselective synthesis of benzo[a]- and indolo[2,3-a]quinolizidines. *J. Org. Chem.* **2007**, *72*, 5193–5201. [CrossRef]

31. Breman, A.C.; van der Heijden, G.; van Maarseveen, J.H.; Ingemann, S.; Hiemstra, H. Synthetic and organocatalytic studies of quinidine analogues with ring-size modifications in the quinuclidine moiety. *Chem. Eur. J.* **2016**, *22*, 14247–14256. [CrossRef]

32. Kikukawa, K.; Westcott, S.A.; Croatt, M.P.; Williams, T.J.; Wender, P.A.; Li, Y.; Jiang, X. Carbonyl(chloro)bis(triphenylphosphine)rhodium(I). *Encycl. Reag. Org. Synth.* **2015**, *1–22*. [CrossRef]

33. Corey, E.J.; Andersen, N.H.; Carlson, R.M.; Paust, J.; Vedejs, E.; Vlattas, I.; Winter, R.E.K. Total synthesis of prostaglandins. Synthesis of the pure dl-E_1, -F_1α, -F_1β, -A_1, and -B_1 hormones. *J. Am. Chem. Soc.* **1968**, *90*, 3245–3247. [CrossRef]

34. Fox, D.N.A.; Lathbury, D.; Mahon, M.F.; Molloy, K.C.; Gallagher, T. Enantioselective synthesis of pumiliotoxin 25ID. A strategy employing an allene-based electrophile-mediated cyclization. *J. Am. Chem. Soc.* **1991**, *113*, 2652–2656. [CrossRef]

35. Liu, Y.; Wang, Q.; Zhang, Y.; Huang, J.; Nie, L.; Chen, J.; Cao, W.; Wu, X. Enantioselective synthesis of indoloquinolizidines via asymmetric catalytic hydrogenation/lactamization of imino diesters. *J. Org. Chem.* **2013**, *78*, 12009–12017. [CrossRef] [PubMed]

36. Sai, H.; Ogikub, T.; Hiroshi Ohmizu, H. Facile stereoselective synthesis of (E)- and (Z)-α-substituted cinnamates: Stereospecific dehydration reaction with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and copper(II) chloride. *Tetrahedron* **2007**, *63*, 10345–10353. [CrossRef]