Using the WHO Safe Childbirth Checklist to Improve Essential Care Delivery as Part of the District-Wide Maternal and Newborn Health Quality Improvement Initiative, a Time Series Study

Befikadu Bitewulign (mailto:bbitewulign@ihi.org)
Institute for Healthcare Improvement https://orcid.org/0000-0001-9006-4873

Dereje Abdissa
Ethiopian Ministry of Health

Zewdie Mulissa
Institute for Healthcare Improvement

Abiyou Kiflie
Institute for Healthcare Improvement

Mehiret Abate
Institute for Healthcare Improvement

Abera Biadgo
Institute for Healthcare Improvement

Haregeweyni Alemu
Institute for Healthcare Improvement

Meseret Zelalem
Ethiopian Ministry of Health

Munir Kassa
Ethiopian Ministry of Health

Gareth Parry
Institute for Healthcare Improvement

Hema Magge
Bill and Melinda Gates Foundation

Research article

Keywords: Quality of care, clinical bundle, World Health Organization Safe Childbirth Checklist, Ethiopia, maternal and newborn health

Posted Date: August 12th, 2020
Abstract

Background: Care bundles are a set of three to five evidence-informed practices which, when performed collectively and reliably, may improve health system performance and patient care. To date, many studies conducted to improve the quality of essential birth care practices (EBPs) have focused primarily on provider-level and have fallen short of the predicted impact on care quality, indicating that a systems approach is needed to improve the delivery of reliable quality care.

This study evaluates the effectiveness of integrating the use of the World Health Organization Safe Childbirth Checklist (WHO-SCC) into a district-wide system improvement collaborative program designed to improve and sustain the delivery of EBPs as measured by “clinical bundle” adherence over-time.

Methods: The WHO-SCC was introduced in the context of a district-wide Maternal and Newborn Health (MNH) collaborative quality of care improvement program in four agrarian Ethiopia regions. Three "clinical bundles" were created from the WHO-SCC: On Admission, Before Pushing, and Soon After Birth bundles. The outcome of each bundle was measured using all-or-none adherence. Adherence was assessed monthly by reviewing charts of live births.

A time-series analysis was employed to assess the effectiveness of system-level interventions on clinical bundle adherence. STATA version 13.1 was used to analyze the trend of each bundle adherence over-time.

Autocorrelation was checked to assess if the assumption of independence in observations collected over-time was valid. Prais-Winsten was used to minimize the effect of autocorrelation.

Findings: Quality improvement interventions targeting the three clinical bundles resulted in improved adherence over time across the four regions. In Tigray region, adherence to “On Admission” bundle was increased monthly on average by $B = 1.39$ (95% CI; 0.47 - 2.32; $P<0.005$).

Similarly, adherence to the “Before Pushing” bundle in Southern Nations, Nationalities and People’s (SNNP) region increased monthly on average by $B = 2.3$ (95% CI; 0.89 - 3.74; $P<0.005$).

Conclusion: Use of the WHO-SCC paired with a system-wide quality improvement approach improved and sustained quality of EBPs delivery. Further studies should be conducted to evaluate the impact on patient-level outcomes.

Introduction

Poor quality care during institutional births, particularly in low and middle-income countries (LMIC), has been recognized as a major contributing factor to childbirth-related harms as care providers may fail to execute essential birth practices (EBPs) in real time (1).

The ‘know-do’ gap – the difference between a provider’s knowledge and behavior – has often been cited as a phenomenon in care delivery, which many believe may relate to the failure to remember critical steps
during clinical care (2–5).

Checklists have been used as a tool to improve healthcare worker practices to deliver high quality essential care during institutional births (6,7). However, evidence shows that when implemented alone they may not result in change or improvement in quality of care (8).

In complex health system, determining the best way to translate novel checklists to improve adherence to evidence based practices by the end users may require system redesign at multiple interconnected levels, including behavioral change interventions (9–11).

To help skilled birth attendants (end-users) remember EBPs in real time and adhere to it, the World Health Organization Safe Childbirth Checklist (WHO-SCC) was developed by WHO and partners (12). The Checklist is an organized list of evidence-based essential birth practices which guides the end-users to pause and check at four critical points during childbirth: On Admission, Before Pushing (or before Caesarian), Soon After Birth (within one hour), and Before Discharge. The checklist was designed to address the major causes of maternal and neonatal deaths (12,13).

Based on promising preliminary results to improve EBP delivery, “The Better Birth Trial”- was designed to measure the impact of the WHO-SCC. There was no significant effect found on maternal or perinatal mortality or maternal morbidity despite having positive effects on EBPs during the intervention. Furthermore, adherence to EBPs was not sustained beyond the intervention period when the coaches were absent (14,15). The authors suggest that provider-level interventions may not fully translate into improved patient outcomes if not incorporated into a broader system-level improvement across facilities and referral systems.

A study implemented in Rwanda using WHO-SCC found an overall improvement in the EBPs compliance rate. Significant improvements were seen in 11 out of 29 EBPs. The reasons for low compliance to other EBPs were not identified even though clinical care providers received training on the use of WHO-SCC prior to implementation(16). These results indicate that systems improvement efforts may be required to close remaining gaps and achieve high enough reliability of adherence to achieve change in patient outcomes.

Clinical bundles have been developed and used in improvement science efforts as an approach to achieve system level change. A clinical bundle is defined as a small set of evidence-based interventions for a defined clinical domain that when implemented together at high reliability, will result in significantly better outcomes than when implemented individually(17).

Bundles are thought to promote awareness that an entire care team must work together in a system designed for reliability. Bundles also promote the use of improvement methods to redesign care processes (17).

Using standard quality improvement (QI) methods, bundles have been found to drive performance to new levels with the theory that in order to achieve high levels of reliable bundle implementation it will require
fundamental system change which lead to better and sustained results (18–22). For instance, if each of five bundle elements are delivered at 90 percent reliability, then the bundle is reliably delivered at 59 percent, as bundle reliability is the product of each element’s reliability (90% x 90% x 90% x 90% x 90%) (23). Studies indicate that all-or-none bundle measurement can help achieve new levels of performance and improved patient outcomes (18,24).

The Institute for Healthcare Improvement (IHI) in partnership with the Ethiopian Ministry of Health (MOH) integrated the Ethiopian-adapted WHO-SCC checklist into a broader district-wide MNH quality of care (QoC) improvement effort, with the ultimate aim of improving QoC and reducing maternal and newborn mortality.

This study evaluates the effectiveness of integrating the MOH-adapted WHO-SCC into a broader district-wide system improvement collaborative program. The program was measured by clinical bundle adherence over time in four districts of Ethiopia's major regions: Oromia, Amhara, Southern Nations Nationalities People (SNNP), and Tigray.

Methods

Program Description

The WHO-SCC was introduced in the context of a large-scale QI program being tested within the Ethiopian public health system. This intervention used a district-wide improvement collaborative designed to improve the quality of maternal and newborn health (MNH) care. The collaborative design was based on IHI's Breakthrough Series collaborative model. The goal of the collaborative is to convene a group of facilities around accelerating improvement in a common priority area using improvement methods and an established learning network (25).

The improvement collaborative were aligned to the administrative structure of the district, and had the following basic elements: selection of priority area and target indicators, QI training for QI teams, baseline data collection, and action plans to address key gaps in essential commodities and clinical skills. IHI was requested by the Ethiopian MOH to include WHO-SCC introduction as part of the Maternal and Newborn Health (MNH) QI effort. This checklist was introduced to collaborative health care facilities during the initiation of the program as a reminder for clinical care providers to practice evidenced-based EBPs in real-time. Coaching teams included support for WHO-SCC use with patients and QI support for projects aimed to improve system performance measured by clinical bundles. Adequate orientation for the proper use of the WHO-SCC was given to facility QI teams as part of the QI initiative and implemented in line with similar studies in LMIC(16,26,27).

The program team collaborated with professional associations to support clinical trainings such as Helping Babies Survive (HBS) and Basic Emergency Obstetric Newborn Care (BEmONC) as needed. Subsequently, QI teams from health centers and hospitals within each district convened in a series of “learning sessions”. This is intermittent face-to-face meetings with facility QI teams and leaders to share
their progress, challenges, receive targeted QI support and share critical learnings from the testing process.

Between learning sessions, facility teams implemented their QI projects using the Model for Improvement (MFI) as a framework for developing, testing, and implementing changes in a system to improve process reliability and outcomes of interest(28).

Teams tested newly developed change ideas and received on-site integrated clinical/QI coaching support from joint IHI-district leadership coaches. The collaborative was organized in four sessions during a 12-15-month period in the selected districts.

Setting and Site Selection

The first phase of the program was implemented in one district improvement collaborative at Tankua Abergele, Dugna Fango, Lemmu Bilbilo and Fogera districts located in the regions of Tigray, SNNP, Oromia, and Amhara respectively (four of Ethiopia's most populous regions).

All facilities in each district were included to ensure a district-wide approach, which consisted of three primary hospitals and twenty-seven health centers across the four district improvement collaborative. Districts were selected by regional leadership based on need for improvement, lack of other MNH partner-supported initiatives and the local leadership's desire for the approach. Leaders from the districts also demonstrated commitment to generate honest data for improvement.

Outcome Measures

In consultation with MOH-MNCH Directorate, we designed three clinical bundles (selected from the WHO-SCC) which were measured using all-or-none bundle adherence (adherence = yes if all bundle elements achieved) to include among the collaborative target indicators. The outcome measures for this study are all-or-none adherence to On Admission, Before Pushing and Soon After Birth bundles.

Table 1. Elements of the clinical bundle extracted from MOH adapted Safe Childbirth Checklist.
Clinical Bundles

Safe Childbirth Checklist Bundle Element
On Admission Bundle
Danger sign assessment
Partograph initiated when cervical dilation at least 4 cm
Availability of soap, water, alcohol hand rub and gloves
Birth companion encouraged to be present during labor and at birth
Mothers privacy maintained during labor and delivery
Before Pushing Bundle
Availability of gloves, soap/savlon and clean water
Preparation of 10 IU IV/IM Oxytocin in syringe
Availability of two clean, dry, warm towels and suction device
Availability of bag and mask (size 0 and 1)
Helper/Assistant identified and informed for resuscitation
Soon After Birth Bundle (within 1 hour)
Newborn assessment
Immediate skin to skin and initiate breastfeeding within the 1st hour
Baby weighed and recorded
Administer Vitamin K1
Administer tetracycline eye ointment

Data Collection

The data sources included audits of WHO-SCC and medical records. In health facilities where the number of monthly deliveries were greater than 30, a systematic random sampling method was used to retrieve 30 charts to calculate all-or-none bundle adherence using an excel template design as part of the program monitoring tool. In health centers where the number of facility births was less than 30, the total number of monthly deliveries was selected to calculate bundle adherence by regional IHI senior project officers.

Periodic data quality assessments were performed by coaches comparing clinical observation with recorded data. On a monthly basis, the data from respective collaborative health facilities were aggregated to create collaborative wide all-or-none bundle adherence—a dependent variable of our study.

The study period in Oromia, Tigray and SNNP was from November 2016 to December 2018. Unlike other regions, the start date of collaborative in the Amhara region was delayed by 7 months due to political instability in the region. Consequently, the study period was June 2017 to December 2018. No baseline
data were collected before the start of the intervention (study period) because the WHO-SCC was introduced for the first time as part of the quality improvement program.

Analysis

The trend of adherence to each clinical bundle over time was analyzed from the collaborative start date to the end of the project. Sustainability was assessed using a follow-up period of twelve months for all districts except Fogera (Amhara region).

For each clinical bundle, a time series analysis using STATA version 13.1 was used to assess the effectiveness of system-level interventions on all-or-none bundle adherence over time for the four districts.

Durbin Watson statics—a test for autocorrelation in the residuals from a statistical regression analysis was used to check if the assumption of independence in observations collected over time was valid. To fit the purpose, monthly collaborative-wide clinical bundle adherence mean was calculated and equally spaced for respective district. Furthermore, Prais-Winsten — a procedure meant to take care of the serial correlation of type Auto-regression (AR (1)) in a linear model — was used to minimize the effect of autocorrelation.

Results

Table 2 describes the characteristics of study districts and the interventions. Facility-level QI teams received an average of about 20 coaching visits throughout the intervention period with some variability. This achieved the program’s target which was to hold at least one joint coaching visit per month per district.

All-or-none bundle adherence to On Admission, Before Pushing, and Soon After Birth bundles in all districts have shown a positive monthly adherence increment. For instance, in Tigray region, Tankua Abargele district, adherence to on Admission bundle increased monthly on the average by $\beta=1.4$ (95% CI; 0.47 - 2.3) (Table 3). Similarly, adherence to Before Pushing in SNNP region, Dugna Fango was increased monthly on the average by $\beta=2.3$ (95% CI; 0.89 - 3.7) (Table 4) and adherence to the Soon After Birth bundle in Amhara region (Fogera district) and Oromia region (Lemmu Bilbilo district) was increased monthly on average by $\beta=0.15$ (95% CI; -0.45 - 0.74) and $\beta=0.7$ (95% CI; -1.2 - 2.5) respectively (Table 5).

In addition, adherence to the clinical bundles was sustained in all districts beyond the intervention period (December 2017 to December 2018) (Fig.1,2,3).

Table 2: Characteristics of MNH quality improvement collaborative prototype districts with interventions. November 2016-December 2018, Ethiopia
Characteristics	Tigray Region	Amhara Region	Oromia Region	SNNPR Region
District	Tankua Abargele	Fogera	Lemmu Bilbilo	Dugna Fango
Total number health centers	5	10	7	5
Total number primary hospitals	1	0	1	1
Geographical characteristics	Agrarian	Agrarian	Agrarian	Agrarian
Total population (beginning of project)	115,841	296,844	213,032	122,316
Total number of learning sessions conducted	4	4	4	4
Average number of coaching/mentoring visits received per QI team/facility/month	2.1	1.3	1.2	1.8
Number of health care providers trained on BEmONC* per collaborative district	15	11	0	6
Number of health care providers trained on HBS* per collaborative district	16	30	24	15
Number of health care providers trained on NICU* per hospital	5	4	5	5
Number of system leaders trained on QILM* per collaborative district	27	52	14	36
Number of healthcare providers trained on QI*	19	33	15	27

*BEmONC- Basic Emergency Obstetrics and Newborn Care *HBS- Helping Baby Survive *NICU- Neonatal Intensive Care Unit *QILM-Quality Improvement and Leadership Management *QI –Quality Improvement

Table 3. Prais-Winsten AR (1) regression coefficients result of On Admission Bundle across district. November 2016- December 2018, Ethiopia.
District	Constant	Slope		
	Coefficient	P	Coefficient	P
	(95% CI)		(95% CI)	
Tankua Abergele	69.7	< 0.001	1.4	0.005
	(55.4,83.9)		(0.47, 2.32)	
Dugna Fango	46.1	< 0.001	2.3	< 0.005
	(26.9, 65.3)		(1.1, 3.5)	
Lemmu Bilbilo	26.2	0.18	2.9	0.020
	(-13.63, 66.04)		(0.86, 4.8)	
Fogera	50.1	22.85	0.12	1.4
	(22.85, 77.4)		(1.6, 1.9)	

Table 4. Prais-Winsten AR (1) regression coefficients result of Before Pushing Bundle across district. November 2016- December 2018, Ethiopia.

District	Constant	Slope		
	Coefficient	P	Coefficient	P
	(95% CI)		(95% CI)	
Tankua Abergele	69.6	< 0.001	1.5	< 0.005
	(51.5,81.8)		(0.47, 2.32)	
Dugna Fango	44.24	< 0.001	2.3	< 0.005
	(21.8, 66.6)		(0.89, 3.7)	
Lemmu Bilbilo	26.27	0.088	2.8	0.008
	(-4.31,57.86)		(0.86, 4.8)	
Fogera	53.2	< 0.001	0.31	0.579
	(22.85, 77.4)		(-.83,1.4)	

Table 5. Prais-Winsten AR (1) regression coefficients result of Soon After Birth Bundle
across district. November 2016- December 2018, Ethiopia.

District	Constant Coefficient (95% CI)	P (95% CI)	Slope Coefficient (95% CI)	P (95% CI)
Tankua Abergele	55.65 (5.6,97.7)	0.030	1.4 (-1.41, 4.3)	0.308
Dugna Fango	57.3 (9.53, 105)	0.021	0.3 (-2.7,3.3)	0.841
Lemmu Bilbilo	58.7 (29.2,88.2)	< 0.001	0.7 (-1.2,2.54)	0.464
Fogera	58.1 (47.5, 68.8)	< 0.001	0.1 (-.45,0.74)	1.4

Discussion

To the best of our knowledge, using the all-or-none bundle approach to measure adherence to evidence-based EBPs extracted from the WHO-SCC is the first of its kind. System-level interventions through the integration of the WHO-SCC into the district-wide MNH QI collaborative program has led to a marked increase in delivery of EBPs over time.

This has been made evident by improved adherence to On Admission, Before Pushing and Soon After Birth bundles both during the intervention period and for twelve months after the intervention period. The sustained improvement could indicate integration of changes into the routine system and ownership of the quality improvement approach.

Our study has several strengths. A standardized WHO-SCC was used to facilitate quality care in the context of a guided approach with clinical mentorship, measurement introduction, data collection, monitoring and response in a variety of health facilities across a large geographic area of rural Ethiopia. Monthly data was collected allowing for a time-series analytic approach, which can be a rigorous way of assessing change using routine programmatic data.

The On Admission and Before Pushing bundles were highly reliable in all study districts. However, a marked drop in adherence to the Soon after birth bundle was observed from October 2017-December 2017 at Lemmu Bilbilo, which we believe was due to political instability in the district which caused disruption in the supply chain of Vitamin K and tetracycline eye ointment from the regional capital to the district.
One possible explanation for the higher levels of reliability of the On Admission and Before Pushing bundles could be due to the fact that both bundles do not include any elements related to supply chain management; whereas the Soon After Birth bundle elements required stock management of Vitamin K and tetracycline.

All-or-none adherence to the Soon After Birth bundle across all regions took a considerable time to achieve a higher level of reliability. This is primarily due to the shortage of Vitamin K and the lengthy procurement process to purchase Vitamin K from private drug vendors. In response, facility QI teams have shifted focus of QI efforts onto supply chain measurement as a result significant improvement was observed after the period of low compliance (October- December 2017) across all districts.

Following the introduction of the WHO-SCC in the MNH QoC improvement collaborative facilities, the health care workers were able to identify and document newborns with complications and initiate higher level care in the effort to reduce mortality, a common recommendation of many studies (29–31). This, in turn, led to the establishment of level II neonatal intensive care units (NICU) and implementation of feasible evidence-based interventions such as kangaroo mother care at 3 primary Hospitals of the three districts.

While we used bundle adherence to reliably improve EBPs extracted from the WHO-SCC, adherence to individual EBPs also significantly improved during the intervention period and was consistent with other studies (6,16,32). However, unlike other studies (14,15), adherence to EBPs was sustained in our program beyond the intervention period.

This could be attributed to the engagement of local leadership from the baseline assessment to the fourth learning session, enablement of local ownership via joint coaching visits, ensuring local relevance and acceptability by running multiple Plan-Do-Study-Act cycles (PDSAs) before initial implementation of the WHO-SCC, and creating the intrinsic motivation of the end-users for successful adaptation of the WHO-SCC. This comprehensive behavior change strategy facilitated by our program has led to habits of continuous QI across the system as evidenced by incremental and sustained adherence to the three clinical bundles over time.

Our study has a number of limitations. Due to feasibility constraints and the nature of the quality improvement methodology in which QI teams ideally own the data collection and analysis themselves, we were limited to the use of routinely available data. Comparison facilities were not included in this study due to feasibility. Finally, due to the small volume of facilities, measuring impact on neonatal mortality was not feasible, and is the subject of a larger program evaluation.

Conclusion

Embedding the use of the WHO-SCC with rigorous measures and system improvement methods to address system gaps beyond the individual provider-patient interaction could be a promising approach to
improving the delivery of essential MNH interventions. Further study is underway to evaluate impact on patient-level outcomes.

Keywords: Quality, Bundle, WHO Safe Childbirth Checklist, Ethiopia, System

Abbreviations

AC: autocorrelation; BEmONC: basic emergency obstetric and newborn care; EBP: essential birth practice; MOH: Ministry of Health; HBS: Helping Babies Survive; IHI: Institute for Healthcare Improvement; LMIC: low and middle income countries; MFI: Model for Improvement; MNH: maternal and newborn health; QILM: quality improvement, leadership and management; QI: quality improvement; QoC: quality of care; SNNP: Southern Nations Nationalities and People; WHO-SCC: World Health Organization Safe Childbirth Checklist

Declarations

Ethical approval and consent to participate

The study proposal was reviewed by the Institutional Review Board (IRB) and was approved by University of North Carolina and Addis Ababa University.

Availability of data and material

Data used to synthesize the analysis is available from the authors and permission from the Institute for Healthcare Improvement should be obtained.

Competing interests

We declare no competing interests.

Funding

This work was funded by a generous support of the Bill & Melinda Gates Foundation.

Contributors

Befikadu Bitewulign and Dereje Abdissa contributed to the analytic design, managed the data and performed data analysis with Samir Awol, and wrote the first draft of the manuscript. Dr. Hema Magge, Prof. Alemayehu Worku, Prof. Yemane Berhane, Dr. Jane Roessner, and Dr. Gareth Parry conceptualized the study, contributed to the development of the research questions, reviewed the data analytical methods, and contributed to writing the manuscript. All coauthors reviewed and commented on the subsequent versions of the manuscript. All authors have read and approved the final manuscript.

Acknowledgements
First and foremost, praises and thanks to God, the Almighty, for His showers of blessings throughout our work to complete the manuscript successfully.

We would like to express our deep and sincere gratitude to Prof. Alemayehu Worku and Prof. Yemane Berhane for providing priceless technical guidance on the methodology and data analysis which enabled us to present this work as clearly as possible. Their dynamism, vision, sincerity and motivation have deeply inspired us. We extend our heartfelt thanks to Naomi Fedna for her unreserved support throughout the process. Finally, special thanks goes to the health workers, system leaders, mothers and newborns who allowed us to learn from them.

References

1. Spector JM, Lashoher A, Agrawal P, Lemer C, Dziekan G, Bahl R, et al. Designing the WHO Safe Childbirth Checklist program to improve quality of care at childbirth. Int J Gynaecol Obstet. 2013 Aug;122(2):164–8.
2. Dieckmann P, Reddersen S, Wehner T, Rall M. Prospective memory failures as an unexplored threat to patient safety: results from a pilot study using patient simulators to investigate the missed execution of intentions. Ergonomics. 2006 Apr 15;49(5–6):526–43.
3. Kuhlmann S, Piel M, Wolf OT. Impaired Memory Retrieval after Psychosocial Stress in Healthy Young Men. J Neurosci. 2005 Mar 16;25(11):2977–82.
4. Cooper J, Newbower R, Long C, McPeek B. Preventable anesthesia mishaps: a study of human factors*. Qual Saf Health Care. 2002 Sep;11(3):277–82.
5. Marcus R. Human factors in pediatric anesthesia incidents. Pediatric Anesthesia. 2006;16(3):242–50.
6. Perry WRG, Nejad SB, Tuomisto K, Kara N, Roos N, Dilip TR, et al. Implementing the WHO Safe Childbirth Checklist: lessons from a global collaboration. BMJ Global Health. 2017 Aug 1;2(3): e000241.
7. Spector JM, Agrawal P, Kodkany B, Lipsitz S, Lashoher A, Dziekan G, et al. Improving Quality of Care for Maternal and Newborn Health: Prospective Pilot Study of the WHO Safe Childbirth Checklist Program. PLOS ONE. 2012 May;7(5): e35151.
8. Cooper JB, Newbower RS, Long CD, McPeek B. Preventable anesthesia mishaps: a study of human factors*. BMJ Quality & Safety. 2002 Sep 1;11(3):277–82.
9. Bosk CL, Dixon-Woods M, Goeschel CA, Pronovost PJ. Reality check for checklists. The Lancet. 2009 Aug;374(9688):444–5.
10. Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-DeWan S, et al. High-quality health systems in the Sustainable Development Goals era: time for a revolution. The Lancet Global Health. 2018 Nov;6(11):e1196–252.
11. Grol R, Grimshaw J. From best evidence to best practice: effective implementation of change in patients’ care. The Lancet. 2003 Oct 11;362(9391):1225–30.
12. WHO safe childbirth checklist implementation guide: improving the quality of facility-based delivery for mothers and newborns. World Health Organization; 2015. 61 p.

13. Effectiveness of the WHO Safe Childbirth Checklist program in reducing severe maternal, fetal, and newborn harm in Uttar Pradesh, India: study protocol for a matched-pair, cluster-randomized controlled trial. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5142140/

14. Semrau KEA, Hirschhorn LR, Marx Delaney M, Singh VP, Saurastri R, Sharma N, et al. Outcomes of a Coaching-Based WHO Safe Childbirth Checklist Program in India. New England Journal of Medicine. 2017 Dec 14;377(24):2313–24.

15. Delaney MM, Maji P, Kalita T, Kara N, Rana D, Kumar K, et al. Improving Adherence to Essential Birth Practices Using the WHO Safe Childbirth Checklist with Peer Coaching: Experience from 60 Public Health Facilities in Uttar Pradesh, India. Global Health: Science and Practice. 2017 Jun 27;5(2):217–31.

16. Tuyishime E, Park PH, Rouleau D, Livingston P, Banguti PR, Hong R. Implementing the World Health Organization safe childbirth checklist in a district Hospital in Rwanda: a pre- and post-intervention study. Matern Health Neonatol Perinatol Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883338/

17. IHIUsingCareBundlesWhitePaper2012-1.pdf [Internet]. [cited 2019 Mar 22]. Available from: https://emergencylaparotomy.org.uk/wp content/uploads/2015/11/IHIUsingCareBundlesWhitePaper2012-1.pdf

18. Bloom FJ, Graf T, Anderer T, Stewart WF. Redesign of a Diabetes System of Care Using an All-or-None Diabetes Bundle to Build Teamwork and Improve Intermediate Outcomes. Diabetes Spectrum. 2010 Jul 1;23(3):165–9.

19. Lavallée JF, Gray TA, Dumville J, Russell W, Cullum N. The effects of care bundle on patient outcomes: a systematic review and meta-analysis. Implementation Science. 2017 Nov 29;12(1):142.

20. Bird D, Zambuto A, O’Donnell C, Silva J, Korn C, Burke R, et al. Adherence to Ventilator-Associated Pneumonia Bundle and Incidence of Ventilator-Associated Pneumonia in the Surgical Intensive Care Unit. Arch Surg. 2010 May 1;145(5):465–70.

21. Koek MBG, Hopmans TEM, Soetens LC, Wille JC, Geerlings SE, Vos MC, et al. Adhering to a national surgical care bundle reduces the risk of surgical site infections. PLOS ONE. 2017 Sep 6;12(9):e0184200.

22. Batura D, Hashemzehi T, Colemeadow J. A care bundle to improve perioperative mitomycin use in non-muscle-invasive bladder cancer. International Urology and Nephrology. 2018; 50:1053–9.

23. IHL_How-to-Guide Prevent Obstetrical Adverse Events.pdf. Available from: https://health.usf.edu/nocms/publichealth/chiles/fpqc/resources/IHL_How-to-Guide%20Prevent%20Obstetrical%20Adverse%20Events.pdf

24. Nolan T, Berwick DM. All-or-none measurement raises the bar on performance. JAMA. 2006 Mar 8;295(10):1168–70.
25. Improvement IHI. The breakthrough series: IHI’s collaborative model for achieving breakthrough improvement. 2003;

26. Kabongo L, Gass J, Kivondo B, Kara N, Semrau K, Hirschhorn LR. Implementing the WHO Safe Childbirth Checklist: lessons learnt on a quality improvement initiative to improve mother and newborn care at Gobabis District Hospital, Namibia. BMJ Open Qual [Internet]. 2017 Aug 9 [cited 2018 Nov 10];6(2).

27. Kara N, Firestone R, Kalita T, Gawande AA, Kumar V, Kodkany B, et al. The BetterBirth Program: Pursuing Effective Adoption and Sustained Use of the WHO Safe Childbirth Checklist Through Coaching-Based Implementation in Uttar Pradesh, India. Glob Health Sci Pract. 2017 Jun 27;5(2):232–43.

28. The Improvement Guide: A Practical Approach to Enhancing Organizational Performance, 2nd Edition [Internet]. Wiley.com. [cited 2019 Jun 6].

29. Small babies, big numbers: global estimates of preterm birth - The Lancet Global Health [Internet]. [cited 2019 Apr 16].

30. Chawanpaiboon S, Vogel JP, Moller A-B, Lumbiganon P, Petzold M, Hogan D, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019 Jan;7(1): e37–46.

31. WHO | Every Newborn Action Plan [Internet]. WHO. [cited 2019 Aug 21]. Available from: http://www.who.int/maternal_child_adolescent/newborns/every-newborn/en/

32. Senanayake HM, Patabendige M, Ramachandran R. Experience with a context-specific modified WHO safe childbirth checklist at two tertiary care settings in Sri Lanka. BMC Pregnancy and Childbirth. 2018 Oct;18(1):411.

Figures
Figure 1

Trend of all or none bundle adherence to On Admission bundle across the four regions.
Figure 2

Trend of all or none bundle adherence to Before Pushing bundle across the four regions.
Figure 3

Trend of all or none bundle adherence to Soon After Birth bundle across the four regions.