Species diversity of *Ganoderma* (Ganodermataceae, Polyporales) with three new species and a key to *Ganoderma* in Yunnan Province, China

Jun He¹, Xiao Han², Zong-Long Luo², E-Xian Li³, Song-Ming Tang¹, Hong-Mei Luo¹, Kai-Yang Niu², Xi-jun Su² and Shu-Hong Li*¹

¹Yunnan Academy of Agricultural Sciences, Biotechnology and Germplasm Resources Institute, Kunming, China, ²College of Agronomy and Biosciences, Dali University, Dali, Yunnan, China

Ganoderma is a globally distributed genus that encompasses species with forestry ecological, medicinal, economic, and cultural importance. Despite the importance of this fungus, the studies on the species diversity of *Ganoderma* in Yunnan Province, China (YPC) have poorly been carried out. During this study, opportunistic sampling was used to collect 21 specimens of *Ganoderma* from YPC. Morphology and multigene phylogeny of the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nrLSU), the translation elongation factor 1-α gene (TEF1-α), and the second largest subunit of RNA polymerase II (RPB2) were used to identify them. Morphological and molecular characterization of the 21 specimens showed that they belong to 18 species of *Ganoderma* in Yunnan Province, China. With the help of an extensive literature survey and the results of this study, a checklist of 32 *Ganoderma* species from YPC was established, which accounts for 71.11% of the known species in China. In addition, a key to the *Ganoderma* in YPC is also provided.

KEYWORDS
3 new taxa, basidiomycetes, Lingzhi, medicinal mushroom, multigene phylogeny, taxonomy
Introduction

Ganoderma P. Karst. 1881 is a genus of white rot fungi in the Polyporales and Ganodermataceae containing species that were originally described in the United Kingdom (Moncalvo and Ryvarden, 1997). _Ganoderma_ worldwide distribution from warm temperate to tropical, and is a facultative parasite on living, dead or rotting trees (Zhou et al., 2015). _Ganoderma_ species cause white rot of hardwoods by decomposing lignin, cellulose, and related polysaccharides. Generally associated with the decay of roots and the lower trunk or stems flare, which can lead to hazardous tree conditions and tree failures, resulting in serious damage to property and life (Loyd et al., 2017). Previous studies have reported that some species of _Ganoderma_ can cause diseases as pathogens of living trees such as Areca catechu (betel nut palm), Elaeis guineensis (oil palm), Hevea brasiliensis (rubber), and cause wood rot of forest trees and can contribute to tree mortality and failure by wind throw (Adaskaveg et al., 1991; Elliott and Broschat, 2001; Tonjock and Afui, 2015). Several species are responsible for stem and butt rots of commercially important crops such as stem rot of betel nut palm and oil palm caused by _G. boninense_ or _G. zonatum_ (Elliott and Broschat, 2001; Nur et al., 2019), and rubber root rot caused by _G. philippi_ (Glen et al., 2009). Other species, such as _G. australis_, _G. sessile_ and _G. curtisi_ seem to be opportunistic pathogens and typically only cause serious decay in old or stressed trees (Sinclair and Lyon, 2005). On the other hand, some of _Ganoderma_ have been shown to selectively delignify wood and are recognized as a potentially important source of lignin degrading enzymes (Otjen et al., 1997). Obviously, _Ganoderma_ are ecologically indispensable, but some of them are pathogenic and can cause diseases in forest trees.

Moreover, most _Ganoderma_ species have biologically active components with nutritional and medicinal effects, which are economically important (Dai et al., 2009). _Ganoderma_ has been used in Asian countries for over two millennia as a traditional medicine for maintaining vivacity and longevity, for its perceived health benefits, has gained wide popular use as a dietary supplement (Hapuarachchi et al., 2018a). _Ganoderma lucidum_ ("lingzhi") and _G. sinense_ have been included in the Chinese Pharmacopoeia, and are used for anti-cancer treatment, lowering blood pressure, and improving immunity (Dai et al., 2009; Sun et al., 2022). Research of _Ganoderma_ is a hot topic since its high potential to use in biotechnology.

As a consequence of several taxonomic and molecular phylogenetic studies on _Ganoderma_, an unexpectedly high level of species diversity has been uncovered worldwide, with the description of many new species (Cao et al., 2012; Cao and Yuan, 2013; Li et al., 2015; Xing et al., 2016, 2018; Hapuarachchi et al., 2018b, 2019; Liu et al., 2019; Wu et al., 2020; He et al., 2021). However, many taxonomy confusions have resulted from the great variability in the macroscopic characters of the _Ganoderma_ basidiomata. As of 20 September 2022, there were 488 records of _Ganoderma_ recorded in Index Fungorum,¹ and 529 records in MycoBank.² Nearly two-thirds of these records have been identified as synonyms. Up to now, 181 species are taxonomically accepted in _Ganoderma_, making it as one of the most species-rich genera in Ganodermataceae (Costa-Rezende et al., 2020). The genus is unique with characteristic double-walled basidiospores with a thin hyaline exosporium and ornamented endospore (Karsten, 1881; Moncalvo and Ryvarden, 1997).

China has a complex and diverse plant diversity, and a diversified three-dimensional climate environment that breeds abundant wild _Ganoderma_ resources, thus, a total of 40 species of _Ganoderma_ have been reported in China (Cao et al., 2012; Cao and Yuan, 2013; Li et al., 2015; Xing et al., 2018; Hapuarachchi et al., 2018b, 2019; Liu et al., 2019; Wu et al., 2020; He et al., 2021; Sun et al., 2022). Yunnan is an inland Province with low latitude and high altitudes in southwest China, which is a hotspot of global biodiversity and has abundant wildlife resources Nine type species of _Ganoderma_ viz. _Ganoderma alpinum_, _G. chuxiongensis_, _G. dianzhongensis_, _G. esculetum_, _G. mutabile_, _G. puerensis_, _G. subangustisporum_, _G. weixiensis_ and _G. yunlingensis_ have been reported in this region. In addition, several researchers have reported the diversity of _Ganoderma_ in southwestern China, such as Luangharn et al. (2021), which reported 13 _Ganoderma_ species viz. _G. applanatum_, _G. australis_, _G. calidophilum_, _G. flexipes_, _G. gibbous_, _G. leucocontextum_, _G. lucidum_, _G. multiplicatum_, _G. resinaceum_, _G. sanduense_, _G. sichuanensis_, _G. sinensis_, and _G. tsgae_ from YPC based on comprehensive morphological characteristics and molecular analyses. Apparently, there are many economically and medicinally important _Ganoderma_ species in YPC (Figure 1; He et al., 2021; Luangharn et al., 2021; Sun et al., 2022). However, with the exception of the taxonomic and new species description studies, very little efforts have been made to identify the _Ganoderma_ species diversity in YPC. Thus, the objectives of this research are, to identify and describe different species of _Ganoderma_ including three new species in YPC based on morphology and multigene phylogeny, and to prepare a checklist of _Ganoderma_ and a key to _Ganoderma_ in YPC.

Materials and methods

Specimen collection

Twenty-one _Ganoderma_ specimens were collected during the rainy season from July 2016 to September 2021 from jungle hill forests in Yunnan Province, China. They were photographed in the field, then collected and wrapped in aluminium foils or kept separately in a plastic collection box. Macro-morphology of fresh basidiomata was described, on the same day of collection. Specimens were then thoroughly dried at 40°C in a food drier, stored in sealed

1. http://www.indexfungorum.org/
2. http://www.mycobank.org/
plastic bags with anhydrous silica gel, and deposited in the herbarium of Kunming Institute of Botany, Chinese Academy of Sciences (HKAS section, KUN). MycoBank numbers were obtained as described in Jayasiri et al. (2015).

Morphological study

Macro-morphological studies were conducted following the protocols provided by Torres-Torres and Guzmán-Dávalos (2012). Key colors were obtained from Kornerup and Wanscher (1978). Micro-morphological data were obtained from the dried specimens and observed under a light microscope (Nikon). The temporary prepared microscope slides were placed under magnification up to 1,000 × using Nikon ECLIPSE80i (Nikon, Japan) compound stereomicroscope for observation and microscopic morphological photography. Microscopic observations were made from slide preparations stained with 10% potassium hydroxide (KOH), Melzer’s reagent, and Cotton Blue. Measurements were made using the Image Frame work v.0.9.7. To represent variation in the size of basidiospores, 5% of measurements were excluded from each end of the range and extreme values were given in parentheses (He et al., 2021).

The following abbreviations are used: IKI = Melzer’s reagent, IKI – = neither amyloid nor dextrinoid, KOH = 10% potassium hydroxide, CB = Cotton Blue, CB + = cyanophilous, L = mean spore length (arithmetic average of all spores), W = mean spore width (arithmetic average of all spores). The abbreviation for spore measurements (x/y/z) denote “x” spores measured from “y” basidiocarps of “z” specimens. Basidiospore dimensions (and “Q” values) are given as (a) b–av–c (d). Where “a” and “d” refer to the lower and upper extremes of all measurements, respectively, b-c are the range of 95% of the measured values, and Q is the length/width ratio of basidiospores, which is given as Qm ± standard deviation, where Qm is the average Q of all basidiospores.

DNA extraction, PCR amplification, and sequencing

Genomic DNA isolation and PCR of the studied material were performed at the Yunnan Academy of Agricultural Sciences,
TABLE 1 PCR primers and conditions used in this study.

Locus	Primers	PCR conditions*	References
ITS	ITS1F, ITS4	94°C: 30 s, 53°C: 30s, 72°C: 50 s. (38 cycles)	White et al. (1990)
nrLSU	LR0R, LR5	94°C: 30 s, 52°C: 30 s, 72°C: 1 min. (38 cycles)	Vilgalys and Hester (1990)
TEF1-α	983E, 1567R	94°C: 30 s, 52°C: 1 min, 72°C: 1 min. (38 cycles)	Matheny et al. (2007)
RPB2	RPB2-6f, fRPB2-7cR	94°C: 30 s, 58°C: 30 s, 72°C: 1 min. (38 cycles)	Liu et al. (1999)

*The three steps given for each primer pair were repeated for 38 cycles, preceded by an initial denaturation step of 5 min at 94°C, and followed by a final elongation step of 10 min at 72°C and a final hold at 4°C.

Chin. Genomic DNA was extracted from dried specimens using Ezup Column Fungi Genomic DNA Purification Kit (Sangon Biotech Limited Company, Kunming, Yunnan, China) based on the manufacturer’s protocol. Primer pairs used for PCR were ITS1F/ITS5 (White et al., 1990) for ITS, L5R/L0R (Vilgalys and Hester, 1990) for nrLSU, TEF1–983/TEF1–1567R (Matheny et al., 2007) for TEF1–α, and RPB2–6f/RPB2–7cR (Liu et al., 1999) for RPB2. Primer sequences of the primers used in this study are available in the WASABI database of the AFTOL website (aftol.org). Gene regions were amplified in 30 μl reactions containing 15 μl 2 × Taq Plus Master Mix II (Sangon Biotechnology Co., Kunming, China), 13 μl ddH2O, 0.5 μl 10 μM of forward and reverse primers, 1 μl DNA. PCR conditions were used as in the Table 1, using a C1000 thermal cycler (Bio-Rad China). The PCR amplicons were sent to Sangon Biotech (China) for Sanger sequencing. Raw DNA sequences were assembled, and edited in Sequencher 4.1.4 and the assembled DNA sequences were deposited in GenBank (Table 2).

Sequencing and sequence alignment

The sequences of the new species were subjected to standard BLAST searches in GenBank to find the most closely related sequences. All the sequences except those obtained from this study (Table 2), were retrieved from GenBank for phylogenetic analyses. Sequences were aligned using the online version of MAFFT v7 (Katoh and Standley, 2013) and adjusted using BioEdit v.7.0.9 by hand (Hall, 1999) to minimize gaps and align properly. Ambiguous regions were excluded from the analyses and gaps were treated as missing data. The phylogeny website tool “ALTER” (Glez-Peña et al., 2010) was used to convert the Fasta alignment file to Phylip format for RAxML analysis and, AliView and PAUP 4.0b 10 were used to convert the Fasta alignment file to a Nexus file for Bayesian analysis (Swoford, 2003).

Phylogenetic analyses

Maximum likelihood (ML) analysis was performed for both gene regions separately using RAxML-HPC2 v. 8.2.12 (Stamatakis, 2014) as implemented on the CIPRES portal (Miller et al., 2010), with the GTR + G model for both genes and 1,000 rapid bootstrap (BS) replicates. Since no supported conflict (BS ≥ 60%) was detected among the topologies, the four single-gene alignments were concatenated using SequenceMatrix (Vaidya et al., 2011).

Bayesian analysis was performed in MrBayes 3.2 (Ronquist et al., 2012) and the best-fit model of sequences evolution was estimated via MrModeltest 2.3 (Guindon and Gascuel, 2003; Nylander, 2004; Darriba et al., 2012). The Markov Chain Monte Carlo (MCMC) sampling approach was used to calculate posterior probabilities (PP; Rannala and Yang, 1996), Bayesian analysis of six simultaneous Markov chains was run for 10,000,000 generations and trees were sampled every 1,000 generations. The first 5,000 trees, representing the burn-in phase of the analyses, were discarded, while the remaining 1,500 trees were used for calculating posterior probabilities in the majority rule consensus tree (the critical value for the topological convergence diagnostic is 0.01).

Phylogenetic trees were visualized using FigTree v1.4.0, editing and typesetting using Adobe Illustrator CS5 (Adobe Systems Inc., United States). Sequences derived in this study were deposited in GenBank.5 The final sequence alignments and the phylogenetic trees are available at TreeBase (http://www.treebase.org, accession number: 29691).

Results

Phylogenetic analyses

In this study, 71 Ganoderma sequences were newly generated from the specimens collected from YPC, and were deposited in GenBank (Table 2), i.e., 19 sequences of ITS, 21 sequences of nLSU, 18 sequences of tef1, and 13 sequences of rpb2. The combined two-gene dataset ITS + nLSU (Figure 2) included sequences from 174 Ganodermaeae specimens representing 86 species. The dataset had an aligned length of 1,463 characters including gaps (ITS: 1–611; nLSU: 612–1,463), of which Amauroderma ragusum Cui 9,011 and Sanguinoderma rude Cui 16,592 as the outgroup taxa (Figure 2; Sun et al., 2020, 2022). The Maximum likelihood analysis based on the concatenated ITS + nLSU dataset resulted in a similar topology as Bayesian Inference analysis. The RAxML analysis of the
TABLE 2: Specimens used for phylogenetic analyses and their corresponding GenBank accession numbers.

Species	Voucher/strain	Origin	GenBank accession numbers
Gomphus acaciicola	Cui 16,815	Australia	MZ354895
G. acaciicola	Cui 16,813	Australia	MZ354893
G. aconetxstum	JV 0611/21G	Guatemala	KF605667
G. aconetxstum	JV 1208/111	Guatemala	KF605668
G. adspersum	HSRU-200894	China	MG279154
G. adspersum	Dai 13,191	China	MG279153
G. alpinum	Cui 17,467	Yunnan, China	MZ354912
G. alpinum	Dai 15,402	Yunnan, China	MZ354910
G. angustisporum	Cui 13,817	Fujian, China	MZ354917
G. angustisporum	Dai 18,245	Malaysia	MZ354979
G. applanatum	L5370	Yunnan, China	ON994241
G. applanatum	SFC20150930-02	Inje gun,Gangwon do	KY364258
G. arctocarpica	HL173	Yunnan, China	ON994239*
G. arctocarpica	HL188	Yunnan, China	ON994240*
G. aridica	Dai 12,588	South Africa	KU572491
G. australae	DHCR417 HUEFS	Australia	MF436674
G. australae	DHCR411 HUEFS	Australia	MF436675
G. australophyllum	CBS138724	South Africa	KM507324
G. australophyllum	CMW25884	South Africa	MH571693
G. bambusicolor	Wu 1,207-1	Taiwan, China	MN957782
G. bambusicolor	Wu 1,207-151	Taiwan, China	MN957781
G. boninense	WD 2085	Japan	KI43906
G. boninense	WD 2028	Japan	KI43905
G. brownii	JV 1105/9J	United States	MG279159
G. brownii	JV 0709/109	United States	MG056562
G. bublaminomarginatum	Dai 20,075	Guangxi, China	MZ354926
G. bublaminomarginatum	Dai 20,074	Guangxi, China	MZ354927
G. calidophyllum	MFLU 19-2,174	Yunnan, China	MN398337
G. calidophyllum	H36	Yunnan, China	MW750241
G. carnarius	JV 8709/8	Czech R, Europe	KU572493
G. carnarius	MJ 21/08	Czech R, Europe	KU572492
G. carocallacrum	DMC 513	Cameroon	EU089970
G. carocallacrum	DMC 322	Cameroon	EU089969
G. casasianicornica	HKAS 104639	Thailand	MK817650
G. casasianicornica	Dai 16,336	Guangdong, China	MG279173
G. choconense	QCAM5123	Ecuador	MH890527
G. constrictogonse	Cui 17,262	MZ354907	–
G. cocoicola	Cui 16,791	Australia	MZ354984
G. cocoicola	Cui 16,792	Australia	MZ354985
G. concinnum	Robledo 3,235	Brazil	MN077523
G. concinnum	Robledo 3,192	Brazil	MN077522
G. curtissi	CBS 100132	NC, United States	JQ781849
G. curtissi	CBS 100131	NC, United States	JQ781848
G. destructans	CBS 130979	South Africa	NR132919
G. destructans	Dai 16,431	South Africa	MG279177
G. dianzhongense	L4331	Yunnan, China	MW750237
G. dianzhongense	L4969	Yunnan, China	MW750240
G. dianzhongense	L4759	Yunnan, China	MW750239

(Continued)
Species	Voucher/strain	Origin	GenBank accession numbers			
			ITS	nLSU	TEF1–α	RPB2
G. dunense	CMW 42150	South Africa	MG020249	–	MG020228	–
G. dunense	CMW 42157 T	South Africa	MG020255	–	MG020227	–
G. ecuadorense	URM 89449	Ecuador	MK119828	MK119908	MK121577	MK121535
G. ecuadorense	URM 89441	Ecuador	MK119827	MK119907	MK121576	MK121534
G. eickeri	CMW 49692 T	South Africa	MHS71690	–	MHS76278	–
G. eickeri	CMW 50325	South Africa	MHS71689	–	MHS76290	–
G. ellipsoidesum	GACP1408966 T	Hainan, China	–	–	–	–
G. ellipsoidesum	Dai 20,544	China	MZ354971	MZ355033	MZ221654	MZ245400
G. enigmaticum	L4954	Yunnan, China	ON994242	OP380257	OP508446	–
G. enigmaticum	Dai 15,977	Africa	KU572487	–	KU572497	MG367514
G. enigmaticum	Dai 15,970	Africa	KU572486	–	KU572496	MG367513
G. esculentum	L4935 T	Yunnan, China	MW750242	–	MW838998	MW839004
G. esculentum	HL 107	Yunnan, China	ON994243	OP380258	OP508437	OP508424
G. fallax	JV 1009/27 T	United States	KF605655	–	–	–
G. fallax	JV 0709/39	United States	KF605658	–	–	–
G. flexipes	Cui 13,841	Hainan, China	MZ354923	MZ355063	MZ221655	MZ245401
G. flexipes	HL 137	Yunnan, China	ON994244	OP380259	OP508439	OP508426
G. fornicatum	BCRC35374	Taiwan	JX840349	–	–	–
G. gibbosum	Cui 13,940	China	MZ354972	MZ355021	MZ221658	MZ245404
G. gibbosum	HL 10	Yunnan, China	ON994245	OP380260	OP508434	OP508421
G. guangxiense	Cui 14,453 T	Guangxi, China	MZ354939	MZ355037	MZ221661	MZ245407
G. guangxiense	Cui 14,454	Guangxi, China	MZ354941	MZ355039	MZ221662	MZ245408
G. leucocitatum	Cui 13,982	Guangxi, China	MG279178	–	MG675750	MG675715
G. leucocitatum	Dai 11,995	Yunnan, China	KU219988	KU220016	MG675550	MG67497
G. hochiminhense	MFLU 19–2,225	Vietnam	MN396662	MN396391	MN423177	–
G. hochiminhense	MFLU 19–2,224 T	Vietnam	MN398324	MN396390	MN423176	–
G. knysnamense	CMW 47756	South Africa	MHS71684	–	MHS67274	–
G. knysnamense	CMW 47755 T	South Africa	MHS71681	–	MHS67261	–
G. leucocontextum	GDGM 40200	Vietnam	KP11548	–	–	–
G. leucocontextum	L4913	Yunnan, China	ON994246	OP380261	OP508445	OP508431
G. longhi	Dai 20,895	Liaoning, China	MZ354904	MZ355006	MZ221668	MZ245413
G. longhi	HL 56	Yunnan, China	ON994247	OP380262	–	OP508423
G. lobatum	JV 1008 32	United States	KF605670	–	MG675544	MG675000
G. lobatum	JV 1008 31	United States	KF605671	–	MG675553	MG674999
G. lucidum	Cui 14,404	Sichuan, China	MG279181	MZ355051	MG675753	MG67519
G. lucidum	LS 478	Yunnan, China	ON994248	OP380263	OP508449	OP508433
G. magniporum	Zhou 439	Guangxi, China	MZ354936	MZ355097	–	–
G. magniporum	Dai 19,966	Yunnan, China	–	MZ355098	MZ221670	MZ345728
G. martinicense	246TX	TX, United States	MG654185	–	MG754737	MG754858
G. martincense	LIP SW-Mart08-35 T	Martinique, France	KP66256	–	–	–
G. mastoporium	TNM-F0018838	China	JX840350	–	–	–
G. mexicanum	MCUL 55832	Martinique	MK31815	–	MK31829	MK31839
G. mexicanum	MCUL 49453	Martinique	MK31811	–	MK31825	MK31836
G. mizohamadai	Cui 18,271	Malaysia	MZ354958	MZ355067	MZ221672	MZ345729
G. mizohamadai	Cui 18,283	Malaysia	MZ354959	MZ355069	MZ221673	MZ345730
G. mizoramense	UMN MZ5	India	KY643751	KY747490	–	–
G. mizoramense	UMN MZ4 T	India	KY643750	–	–	–

(Continued)
TABLE 2 (Continued)

Species	Voucher/strain	Origin	GenBank accession numbers		
			ITS nLSU	TEF1–α	RPB2
G. multipileum	Cui 13,597	Hainan, China	MZ354899, MZ355043, MZ221675, MZ345732		
G. multipileum	L4989	Yunnan, China	ON994249, OP380264, OP508447, OP508432		
G. multiplicatum	CC8	China	KU569515, KU570915		
G. multiplicatum	Dai 17,395	Brazil	MZ354903 –, MZ221678, MZ345734		
G. mutabile	Yuan 2,289	Yunnan, China	MN957785 –, MZ345734		
	Dai 20,414	China	MZ354977 –, MZ345734		
G. myanmarense	MFLU 19–2,167	Myanmar	MN963330, MN28672		
G. nasalanense	GACP17060211	Laos	MZ354903, MZ221678, MZ345734		
	CC8	China	KU569515, KU570915		
G. neojaponicum	FFPRI WD 1532	Chiba, Japan	MN957785 –, MZ345734		
	FFPRI WD 1285	Tokyo, Japan	MN957785 –, MZ345734		
G. obscuratum	Lsh88	Yunnan, China	ON994237*, OP508450*, OP508451*		
G. obscuratum	Lsh89	Yunnan, China	ON994237*, OP508450*, OP508451*		
G. orbiforme	Cui 13,918	Hainan, China	MG279186 –, MG367576, MG367522		
G. orbiforme	HL43	Yunnan, China	ON994250, OP380265, OP508435		
G. oreogense	CBS 266.88	United States	JQ/81876, –, –, KJ143975		
G. oreogense	CBS 265.88	United States	JQ/81875, KJ143933, KJ143974		
G. ovisporum	HKAS 123193	China	MZ354903, MZ221678, MZ345734		
G. parvulum	MFLU 52655	Guiana, French	MM545770, MM545747, MM545745		
	MFLU 47096	Cuba	MM545783, MM545721, MM545742		
G. pfeifferi	JV 0511/11	United States	KF605660 –, –, –		
	120,818	British	AY884185 –, –, –		
	Yunnan, China	–	MG279188 –, MG367576, MG367522		
G. philippinum	Cui 14,443	Hainan, China	ON994250, OP380265, OP508435		
	L4989	Yunnan, China	ON994249, OP380264, OP508447, OP508432		
	L4951	Yunnan, China	ON994249, OP380264, OP508447, OP508432		
G. polychromum	330OR	OR, United States	MG654196, MG654197, –, –		
	MS343OR	OR, United States	MG654196, MG654197, –, –		
G. psiarum	Dai 20427	Yunnan, China	–, MZ35012, MZ221688, MZ345738		
G. ravenelli	MS187FL	FL, United States	MG654211, MG754745, MG345865		
G. ravenelli	NC-8349	United States	AY456341 –, –, –		
	LGA462	Greece	MG706250, MG706196, MG387858, MG387821		
	LGA448	Greece	MG706249, MG706195, MG387857, MG387820		
G. ryvardenii	HKAS 58053	South Africa	HM138670 –, –, –		
G. ryvardenii	HKAS 58054	South Africa	HM138671 –, –, –		
	Yunnan, China	–	MG279188 –, MG367576, MG367522		
G. sandanense	GACP 18012501	China	MK345450 –, –, –		
	L4906	Yunnan, China	ON994251, OP380266, OP508444, OP508430		
G. sessile	113FL	FL, United States	MG654307, MG754748, MG345866		
	111TX	TX, United States	MG654306, MG754747, MG345866		
G. shaxiensis	BJTC FM423	Shangxi, China	MK764268, MK783937, MK783940		
G. shaxiensis	Dai 18,921	Shangxi, China	MZ354909, MZ355044, MZ221691, MZ345740		
G. shunanense	Cui 16,343	China	MZ354928, MZ355011, MZ221692, MZ345741		
G. sinense	Wei 5,327	Hainan, China	MF499988, MF49976, MF49976, MG367529		

(Continued)
TABLE 2 (Continued)

Species	Voucher/strain	Origin	GenBank accession numbers	ITS	nLSU	TEF1-α	RPB2
G. steyaraeum	MEL 2382783	Australia		KPO12964	–	–	–
G. steyaraeum	6 WN 208	Indonesia		KJ654462	–	–	–
G. subangustissporum	Cui 18,592 T	Yunnan, China		MZ354981	MZ355027	MZ221697	–
G. subangustissporum	Cui 18,597	Yunnan, China		MZ354980	MZ355025	MZ221700	MZ345746
G. thailandicum	HKAS 10460 T	Thailand		MK848681	MK848879	MK875829	MK875831
G. thailandicum	HKAS 10461	Thailand		MK848682	MK848880	MK875830	MK875832
G. tongshanense	Cui 17,168 T	Hubei, China		MZ354975	MZ355024	MZ221706	–
G. tornatum	TBJG01AM2009	Brazil		JQ514108	JX310808	–	–
G. tornatum	URM 82776	Brazil		JQ514110	JX310800	–	–
G. tropicum	Dai 16,434	Hainan, China		MG279194	MZ355026	MG367585	MG367532
G. tropicum	Dai 19,679	China		MZ354900	MZ355009	MZ221707	MZ358825
G. yunlingense	MZ354932	Yunnan, China		Yunnan, China			
G. yunlingense	MZ354930	Yunnan, China		Yunnan, China			
G. yunlingense	Cui 16,592	Yunnan, China		Yunnan, China			
G. yunlingense	Cui 19,043	Yunnan, China		Yunnan, China			
G. yunlingense	MZ354916	Yunnan, China		Yunnan, China			
G. yunnanense	HL45 T	Yunnan, China		Yunnan, China			
G. yunnanense	L4812	Yunnan, China		Yunnan, China			
G. zonatum	FL 03	FL, United States		KJ143922	–	KJ143940	KJ143978
G. zonatum	FL 02	FL, United States		KJ143921	–	KJ143941	KJ143979
Amauroderma rugosum	Cui 9,011	Guangdong, China		KJ31664	–	KU357204	MG367506
Sanguinoderma rude	Cui 16,592	Australia		MK119836	MK119916	MK121586	MK121521

The newly generated sequences are shown in black bold. Superscript “T” is used after the number to show the type specimens. *New species sequences generated in this study.

Combined dataset yielded the best scoring tree with a final ML likelihood value of −8472.680716 (Figure 2). The matrix had 475 distinct alignment patterns, with 33.97% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.230978, C = 0.222798, G = 0.276648, T = 0.269576; substitution rates AC = 1.230871, AT = 1.401201, CG = 1.020212, CT = 9.538270, GT = 1.000000, α = 0.177171, Tree-Length: 1.586199. The best model for the ITS + nLSU dataset estimated and applied in the Bayesian analysis was HKY + I + G for ITS [Lset nst = 2, rates = invgamma; Prset statefreqpr = Dirichlet (1,1,1,1)] and GTR + I + G for nLSU. The RAxML analysis of the combined dataset yielded the best scoring tree with a final ML likelihood value of −33599.741722 (Figure 3). The matrix had 1.087 distinct alignment patterns, with 36.13% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.223924, C = 0.253042, G = 0.274308, T = 0.248726; substitution rates AC = 1.353439, AG = 6.944619, AT = 1.408316, CG = 1.653377, CT = 9.538270, GT = 1.000000, α = 0.194286, Tree-Length: 1.880697. Best model for the ITS + nLSU + TEF1-α + RPB2 dataset estimated and applied in the Bayesian analysis were HKY + I + G for ITS [Lset nst = 2, rates = invgamma; Prset statefreqpr = Dirichlet (1,1,1,1)] and GTR + I + G for nLSU, TEF1-α and RPB2 [Lset nst = 6, rates = invgamma; Prset statefreqpr = Dirichlet (1,1,1,1)]. ML and BI analyses generated nearly identical tree topologies with minimal
variations in statistical support values. Thus, only a ML tree is shown. Bootstrap support values in maximum likelihood (ML) equal to or greater than 60%, and Bayesian posterior probabilities (PP) equal to or greater than 0.90 are given above the nodes (Figures 2, 3).

The multigene phylogenetic analyses showed that 18 of our new specimens are nested in *Ganoderma*, of which three are described as new species. *Ganoderma artocarpicola* sp. nov. was sister to *G. bubalinomarginatum* B.K. Cui, J.H. Xing and Y.F. Sun with high statistical supports (−ML/1.00PP, Figure 3). *Ganoderma obscuratum* sp. nov. clustered as a sister clade with *G. yunlingense* B.K. Cui, J.H. Xing & Y.F. Sun and *G. acontextum* B.K. Cui, J.H. Xing & Vlasák with high statistical support (100%ML/1.00PP, Figure 3). The third species, *G. yunnanense* sp. nov. closely clustered with *G. ovisporum* H.D. Yang, T.C. Wen, *G. magniporum* J.D. Zhao & X.Q. Zhang and *G. sandunense* Hapuar., T.C. Wen and K.D. Hyde with high statistical support (100%ML/1.00PP), and a distinct lineage.

Taxonomy

Ganoderma artocarpicola J. He and S.H. Li, sp. nov. (Figure 4). MycoBank number: MB845720

Diagnosis: *Ganoderma artocarpicola* is characterized by its sessile and concrescent basidiomata, reddish brown to yellowish brown pileus surface with shallow concentric furrows and radial rugose, heterogeneous context, wavy margin and ellipsoid to ovoid basidiospores (8.0–10.5 × 5.0–7.5 μm).

Etymology: The epithet ‘*artocarpicola*’ refers to the host tree genus *Artocarpus*.

Holotype: CHINA. Yunnan Province., Lincang City, Yongde County (24°54′1″N, 99°15′31″E), on living tree of *Artocarpus pithecogallus*, alt. 1,506 m, Jun He, 21 September 2021, HL188 (HKAS 123782).

Description: Basidiomata: annual, sessile and broadly attached, usually concrescent, woody hard. Pileus: imbricate, flabelliform to reniform, slightly convex to applanate, projecting up to 9 cm, 8 cm wide and 2 cm thick at the base. Pileus surface reddish brown (9E8) to yellowish brown (5C7), weakly to strongly laccate, with shallowly concentric furrows and radial rugose, concentrically zonate or azonate. Margin: buff (1A3) to grayish orange (6D8), entire, obtuse, irregularly wavy. Context: up to 1.8 cm thick, heterogeneous, the upper layer greyish white (2B1), the lower layer cinnamon brown (6D7) to chestnut brown (8E5), without black melanoid lines, hard corky and fibrous. Tubes: 0.2–0.5 cm long, dark brown (6E8), woody hard, unstratified. Pores: 5–7 per mm, circular to angular, dissepiments thick, entire; pores surface cream (2B2) to greyish white (2B1) when fresh, golden grey to greyish brown when bruising and drying.
Hyphal system trimitic: generative hyphae 2.0–3.5 μm in diameter, colorless, thin-walled, with clamp connections; skeletal hyphae 2.0–5.0 μm in diameter, thick-walled with a narrow lumen to sub-solid, arboriform and flexuous, pale yellow to yellowish brown; binding hyphae 1.5–3.0 μm in diameter, thick-walled, frequently branched, interwoven, colorless, scarce; all the hyphae IKI–, CB+; tissues darkening in KOH.

Pileipellis: a crustohymeniderm, cells 35–50 × 5–10 μm, thick-walled to sub-solid, apical cells clavate, inflated and flexuous, pale yellow to golden yellow, without granulations in the apex, moderately amyloid at maturity.

Basidiospores: ellipsoid to ovoid, not obviously truncated, with apical germ pore, yellowish to golden yellow, IKI–, CB+, inamyloid; double walled with slightly thick walls, exospore wall smooth, endospore wall with inconspicuous spinules; (60/3/2) 8.0 (8.5)–9.3–10.0 (10.5) × 5.0 (5.5)–6.2–7.0 (7.5) μm, L = 9.25 μm, W = 6.20 μm, Q = (1.23) 1.31–1.50–1.72 (1.78), Qm = 1.50 ± 0.14 (including myxosporium). Basidia: barrel-shaped to utriform, colorless, with a clamp connection and four sterigmata, thin-walled, 10–15 × 5–9 μm; basidioles pear-shaped to fusiform, colorless, thin-walled, 8–10 × 4–7 μm.

Additional specimen examined: China, Yunnan Province, Lincang City, Yongde County, Dedang Town (24°01’12”N, 99°15’34”E), on a living tree of Artocarpus pithecogallus, alt. 1,484 m, Qian-Qiu Luo, 22 August 2021, HL173 (HKAS 123783).

Notes: In the phylogenetic analyses, G. artocarpicola is sister to G. bubalinomarginatum, which was described from the southwest Guangxi Province in China (Figure 3; Sun et al., 2022). Morphologically, both species share similar characteristics of the connate and sessile basidiomata, reddish brown to yellowish brown pileus surface, and non-stratified tubes. However, G. bubalinomarginatum differs from G. artocarpicola in having buff and obtuse pileus margin, smaller basidiospores (7.0–8.8 × 4.3–5.8 μm), and larger basidia (15–22 × 7–11 μm, Sun et al., 2022).

Ganoderma weberianum and G. artocarpicola are similar in having imbricate, sessile and hard basidiomata. However, G. weberianum has a pale-yellow pore surface when dry, homogeneous greyish brown context, smaller basidiospores (6.0–7.0 × 4.0–6.0 μm), and longer pileipellis (60.0–90.0 × 6.0–12.0 μm, Steyaert, 1972; Pan and Dai, 2001). In addition, the pileus of G. weberianum is more laccate than G. artocarpicola. The comparison of the ITS sequences of G. weberianum and G. artocarpicola showed 2.12% (13/614 bp) nucleotide differences.

Ganoderma obscuratum J. He and S.H. Li, sp. nov. (Figure 5). MycoBank number: MB845721.
Diagnosis: *Ganoderma obscuratum* is characterized by its small and dorso-laterally stipitate basidiomata, dark brown to greyish brown and laccate pileus surface, small pores (6–9 per mm), corky context, and almond-shaped to narrow ellipsoid basidiospores (8.0–9.5 × 4.5–5.5 μm).

Etymology: The epithet 'obscuratum' refers to the obscure pileus surface when dry.

Holotype: CHINA. Yunnan Province., Zhaotong City, Yiliang County (104°14'55"E, 27°47'56"N), on a dead tree of *Acer* sp. alt. 1,859 m, Shu-Hong Li, 12 August 2019, Lsh88 (HKAS 123786).
Description: Basidiomata: annual, sessile to subsessile, coriaceous to woody hard, light in weight. Pileus: single, flabelliform to reniform or shell-shaped, appinate, projecting up to 6 cm, 4.5 cm wide and 1 cm thick at the base. Pileus surface dark brown (8E8) when fresh becoming greyish brown (7E8) when dry, and covered by a thin hard crust, laccate, glabrous and shiny, with dense concentric furrows. Margin: buff (8B2) to generally concolorous, entire, subacute to obtuse, slightly wavy; cracked when dry. Context: up to 0.7 cm thick, homogeneous, yellowish brown (5D5) to chestnut brown (6E8), with black melanoid lines, hard corky. Tubes: 0.2–0.4 cm long, concolorous with the base of the context, corky, unstratified. Pores: 6–9 per mm, circular, disseminations slightly thick, entire; pores surface white to greyish white (2B1) when fresh, pale brown (6D6) to dark brown (7E7) when bruising and drying. Stipe: up to 6.5 cm long and 2.2 cm diam, flattened to cylindrical, fibrous to spongy, concolorous with pileus surface.

Hyphal system trimitic: generative hyphae 2.0–4.0 μm in diameter, colorless, thin-walled, with clamps connections; skeletal hyphae 2.0–8.0 μm in diameter, thick-walled with a wide to narrow lumen or sub-solid, arboriform with few branches, yellowish brown to golden yellow; binding hyphae 1.0–3.0 μm in diameter, thick-walled, branched and flexuous, colorless to pale yellow, scarce; all the hyphae IKI−, CB+, tissues darkening in KOH.

Basidiospores: almond-shaped to narrow ellipsoid, apex subacute, with apical germ pore, yellowish to yellowish brown, IKI−, CB+, inamyloid; double-walled with moderately thick walls, exospore wall smooth, endospore wall with inconspicuous spinules; (40/2/2; 8.0) 8.5–9.0–9.0 (9.5) × 4.5–5.2–5.0 (5.5) μm, L = 9.09 μm, W = 5.22 μm, Q = (1.58) 1.61–1.75–1.87 (2.08), Qn = 1.75 ± 0.11 (including myxosporium). Basidia: broadly clavate, colorless, with a clamp connection and four sterigmata, thin-walled, 15–25 × 5–9 μm; basidioles in shape like the basidia, colorless, thin-walled, 10–21 × 4–8 μm.

Additional specimens examined: China, Yunnan Province, Zhaotong City, Yiliang County, Xiaocaoaba Town (104°14′18″E, 27°47′59″N), on a dead tree of Acer sp., alt. 1,905 m, Shu-Hong Li, 12 August 2019, Lsh89 (HKAS 123772).

Notes: Phylogenetic analyses showed that *Ganoderma obscuratum* clusters as a sister taxon to *G. yunlingense* with good statistical support (100% ML/1.00 PP, Figure 3). Morphologically, *G. obscuratum* differs from *G. yunlingense* by having thin basidiomata, dark brown and laccate pileus surface when fresh, homogeneous context and non-stratified tubes, smaller pores (6–9 per mm), and narrow ellipsoid basidiospores with spinules on the endospore wall (Sun et al., 2022).

Ganoderma alpinum described from Yunnan Province is morphologically similar to *G. obscuratum* by having the hard basidiomata with greyish brown pileus surface, homogeneous context and non-stratified tubes. However, *G. alpinum* differs by the larger pores (5–7 per mm), and smaller basidiospores (6.2–7.8 × 4–5.5 μm, Sun et al., 2022). *Ganoderma applanatum* also has sessile basidiomata and homogeneous context, but it differs from *G. obscuratum* by having a perennial basidiomata with pale pileus surface and smaller basidiospores (5–8 × 4–6 μm, Moncalvo and Ryvarden, 1997; Hapuarachchi et al., 2019; Sun et al., 2022). Besides, *G. applanatum* and *G. obscuratum* were well separated in the phylogenetic analyses (Figure 3).

Ganoderma yunnanense J. He and S.H. Li, sp. nov. (Figure 6).

Description. Basidiomata: annual, centrally to laterally stipitate basidiomata with reddish brown to violet brown and strongly laccate pileus surface, cream color pore surface and context, and broadly ellipsoid basidiospores (8.0–12.5 × 7.0–9.0 μm).

Etymology: The epithet ‘yunnanense’ refers to Yunnan Province from where the holotype was collected.

Holotype: CHINA. Yunnan Province, Puer City, Jingdong County, Wuliang Mountains (100°48′48″E, 24°19′36″N), on a rotten broad-leaved tree, alt. 2,129 m, Song-Ming Tang, 8 August 2021, HL45 (HKAS 123771).

Description. Basidiomata: annual, centrally to laterally stipitate, hard corky. Pileus: single, flabelliform to reniform or suborbicular, projecting up to 9 cm, 6.5 cm wide and 0.5 cm thick at base. Pileus surface reddish brown (10F8) to violet brown (11F8), weakly to strongly laccate, glossy, with shallowly concentric furrows and radial rugose. Margin: pale yellow (3B2) to concolorous, entire, acute, incurred when dry. Context: up to 0.3 cm thick, homogeneous, white to cream (1B2), fibrous, corky, without black melanoid lines. Tubes: 0.1–0.2 cm long, concolorous with the base of the context, corky, unstratified. Pores: 4–6 per mm, round to angular, disseminations thick, entire; pore surface white when fresh, lead grey (3B1) when bruising and drying. Stipe: 15.0–17.5 × 1.0–2.0 cm, dorsally lateral to nearly dorsal, cylindrical and solid, concolorous with pileus surface, strongly laccate, fibrous to woody.

Hyphal system trimitic: generative hyphae 2.0–3.0 μm in diameter, colorless, thin-walled, with clamps connections; skeletal hyphae 2.0–6.0 μm in diameter, non-septate, arboriform with few branches, colorless to pale yellow; binding hyphae 0.7–1.5 μm, slightly thick-walled, with clamps connections; skeletal hyphae 2.0–8.0 μm in diameter, thick-walled, with a wide to narrow lumen or sub-solid, arboriform with few branches, yellowish brown to golden yellow; binding hyphae 1.0–3.0 μm in diameter, thick-walled, branched and flexuous, colorless to pale yellow, scarce; all the hyphae IKI−, CB+, tissues darkening in KOH.

Pileipellis: a crustohymeniderm, composed of a palisade of vertical, cells 23–40 × 6–9 μm, slightly thick-walled, clavate to cylindrical, slightly inflated, straw yellow to golden-yellow, granulations in the apex, moderately clavate to cylindrical amyloid at maturity.

Basidiospores: broadly ellipsoid to ellipsoid, apex not obviously truncated, with apical germ pore, yellowish to pale yellowish brown, IKI−, CB+, inamyloid; double-walled with distinctly thick walls, exospore wall smooth, endospore walls with inter-wall pillars; (40/2/2) (8.0) 9.0–10.7–12.0 (12.5) × 7.0–7.6–8.0 (8.5) μm, Q = (11.0) 1.25–1.41–1.55 (1.60), Qn = 1.41 ± 0.12 (including myxosporium). Basidia: widely clavate to...
barrel-shaped, colorless, with a clamp connection and four sterigmata, thin-walled, 15–18 × 8–11 μm; basidioles clavate, colorless, thin-walled, 10–14 × 6–9 μm.

Additional specimens examined: China, Yunnan Province, Puer City, Jingdong County, Ailao Mountains (101°01’29”E, 24°30’03”N), on a rotten broad-leaved tree, alt. 2,326 m, Jun He, 4 August 2019, L4812 (HKAS 123769).

Notes: Our multi-locus phylogenetic analyses show that *Ganoderma yunnanense* is sister to *G. ovisporum* with high statistical support (84% ML/0.98 PP, Figure 3), and together they group with...
G. sandunense and G. magniporum (Zhao et al., 1984; Hapuarachchi et al., 2019; Yang et al., 2022). Ganoderma yunnanense resembles G. ovisporum in having reddish-brown pileus and broadly ellipsoid basidiospores. However, G. ovisporum has heterogeneous context, shorter pileipellis cells (18–29 × 6–11 μm) and larger basidiospores (12.5–15.5 × 9.0–11.5 μm, Yang et al., 2022). Moreover, Ganoderma sandunense has a larger basidiospores (10.8–15.7 × 8.6–12.5 μm) and thicker context than those of G. yunnanense (Hapuarachchi et al., 2019; Yang et al., 2022). Ganoderma magniporum can be easily distinguished from G. yunnanense by the larger pores (2–2.5 per
mm), black-brown to black pileus surface and ovoid basidiospores with truncated apex (8.7–10.4 × 5.2–7.0 μm, Zhao et al., 1984).

Morphologically, G. yunnanense resembles G. leucocontextum by white pore surface and context. However, G. leucocontextum has red to red brown pileus surface, white to yellowish margin, shorter stipe (5–10 cm) and broadly ellipsoid basidiospores with truncated apex (8.0–12.5 × 5.5–9.0 μm, Li et al., 2015). Among the species in the G. lucidum complex, G. yunnanense looks very similar to G. tsugae and G. weixiense morphologically, although they can be easily distinguished by phylogenetic analyses and ecological distribution (Murrill, 1902; Ye et al., 2019).

In addition, G. yunnanense also shares similarities with G. dianzhongense but the latter has dark-brown to putty context and wider pileipellis cells than those of G. yunnanense. The nucleotide comparison of ITS sequences of G. yunnanense and G. dianzhongense revealed 26 bp (26/614 bp, 4.23%) nucleotides differences (He et al., 2021).

Key to the species of Ganoderma in Yunnan Province, China

1. Pileal surface non-laccate	2
1*. Pileal surface laccate	11
2. Pileus imbricate, margin lacerated like petals	G. puerense
2*. Pileus solitary, margin entire	3
3. Basidiospores subglobose	G. hoehnelianum
3*. Basidiospores broadly ellipsoid to ellipsoid or ovoid	4
4. Tubes stratified	5
4*. Tubes non-stratified	6
5. Context homogeneous; basidiospores 5.5–7 × 4.1–5.2 μm	G. applanatum
5*. Context heterogeneous; basidiospores 7–12 × 5–8 μm	G. australe
6. Pores > 6 per mm	G. obscuratum
6*. Pores < 6 per mm	7
7. Context without black melanoid lines; apical cells in cuticle branched	8
7*. Context with black melanoid lines; apical cells in cuticle unbranched	9
8. Distributed in higher altitudes	G. alpinum
8*. Distributed in lower altitudes	9
9. Apical cells in cuticle irregularly branched or with protuberances	G. williamsianum
9*. Apical cells in cuticle unbranched or without protuberances	10
10. Pileus surface reddish brown to greyish brown, pores angular	G. gibbusum
10*. Pileus surface greyish brown to grey, pores circular	G. yunningsense
11. Basidiomata sessile	12
11*. Basidiomata stipitate or with constricted short stipe	14
12. Apical cells in cuticle irregularly branched or with protuberances	G. mutable
12*. Apical cells in cuticle unbranched or without protuberances	13
13. Pileus surface reddish brown to yellowish brown; basidiospores > 8 μm in length	G. artocarpicola
13*. Pileus surface pale brown to purplish black; basidiospores < 8 μm in length	G. philippi
14. Pores < 3 per mm	G. magniporum
14*. Pores > 3 per mm	15
15. Pileus surface dark red to nearly black	16
15*. Pileus surface pale brown to yellowish brown or reddish brown	20
16. Stipe short or constricted at base, < 4 cm in length	17
16*. Stipe obviously long, > 4 cm in length	18
17. Basidiospores subglobose to broadly ellipsoid, < 6 μm in width	G. weberianum
17*. Basidiospores ellipsoid to ovoid, > 6 μm in width	G. oribiforme
18. Basidiomata central stipitate; basidiospores truncated	G. sanduense
18*. Basidiomata laterally stipitate; basidiospores not obviously truncated	19
19. Context homogeneous, pores 5–6 per mm; basidiospores > 7 μm in width	G. dianzhongense
19*. Context heterogeneous, pores 3–5 per mm; basidiospores 11.0–13.7 × 7.0–8.8 μm	G. sibangustiaporium
20. Pore surface yellowish to buff when fresh	21
20*. Pore surface white to greyish white or cream when fresh	22
21. Pileus surface oxblood red to violet brown; basidiospores > 7 μm in width	G. lucidum
21*. Pileus surface reddish brown to yellowish brown; basidiospores < 7 μm in width	23
22. Distributed in temperate areas	28
22*. Distributed in tropical areas	28
23. Growing on coniferous trees	G. tsugae
23*. Growing on broad-leaf trees	24
24. Basidiospores < 5 μm in width	G. weixiense
24*. Basidiospores > 5 μm in width	25
25. Context with black melanoid lines	G. sibangustiaporium
25*. Context without black melanoid lines	26
26. Context heterogeneous, buff to dark brown	G. lucidum
26*. Context homogeneous, white to cream or greyish white	27
27. Pileus surface red to red brown; basidiospores truncated	G. leucocontextum
27*. Pileus surface violet brown; basidiospores not obviously truncated	G. yunnanense
28. Stipe short or constricted at base, < 6 cm in length	G. tropicam
28*. Stipe obviously long, > 6 cm in length	29
29. Pileus imbricate, upper surface orange yellow to orange red	G. multipileum
29*. Pileus solitary, upper surface reddish brown to black brown	30
30. Growth on broad-leaved forests	G. flexipes
30*. Growth on bamboo forests.	31
31. Context heterogeneous, pores 4–6 per mm; basidiospores 8.0–10.5 × 5.5–9.1 μm	G. calidophilum
31*. Context homogeneous, pores 5–8 per mm; basidiospores 8.0–12.5 × 5.0–8.0 μm	G. esculentum
TABLE 3 Species, hosts, and geographical locations and corresponding references of *Ganoderma* in Yunnan Province, China.

Species	Host plant	Location	References
G. alpinum	*Populus* sp.	Shangri-La	Sun et al. (2022)
G. applanatum	*Eriobotrya japonica*	Nujiang Prefecture	This study
G. artocarpicola	*Artocarpus* sp.	Lincang City	This study
G. austrole	*Fagus* sp.	Kunming City	Luangharn et al. (2021)
G. calidophilum	On bamboo roots	Dehong Prefecture	This study, He et al. (2021)
G. dianzhongense	*Cyclobalanopsis glauca*	Central Yunnan Province	This study, He et al. (2021)
G. ellipsoideum	Broad-leaved tree	Honghe Prefecture	This study
G. esculentum	*Bambusa intermedia*	Honghe Prefecture	He et al. (2021)
G. flexipes	*Castanopsis fargesii*	Puer City	This study
G. gibbosum	*Carya cathayensis*	Zhaotong City	This study, Wang and Wu (2010), Xing (2019)
G. hoehnelianum	Broad-leaved tree	Jinghong City	This study
G. leucocontextum	*Cyclobalanopsis glauca*	Dali Prefecture	This study
G. lingzhi	Broad-leaved tree	Kunming City	This study
G. lucidum	*Quercus* sp.	Chuxiong Prefecture	This study
G. magniporum	Broad-leaved tree	Yunnan Province	Sun et al. (2022)
G. multiplexum	*Acacia farnesiana*	Yuxi City	This study
G. mutabile	*Angiosperm tree*	Chuxiong Prefecture	Cao (2013)
G. otsunum	*Acer* sp.	Zhaotong City	This study
G. philippii	*Hevea brasiliensis*	Sipsongpanna	Zhao (1988)
G. puerense	*Cinnamomum sp.*	Puer City	Sun et al. (2022)
G. sandanense	*Quercus* sp.	Honghe Prefecture	This study
G. sienense	*Cyclobalanopsis sp.*	Kunming City	Luangharn et al. (2021)
G. subangustiporum	Broad-leaved tree	Wenshan Prefecture	This study
G. tsugae	*Picea* sp.	Wenshan Prefecture	Sun et al. (2022)
G. tropicum	*Acacia* sp.	Kunming City	Luangharn et al. (2021)
G. weixiensis	coniferous forest	Puer City	This study
G. weberianum	*Ficus* sp.	Dingqin Prefecture	Ye et al. (2019)
G. yunnanense	Broad-leaved tree	Jinghong City	Pan and Dai (2001)
G. yunlingense	*Quercus* sp.	Puer City	Cao and Yuan (2013)

Discussion

Sun et al. (2022) revealed the species diversity, taxonomy and phylogeny of *Ganoderma* with emphasis on Chinese collections, which showed that 40 species of *Ganoderma* in China were confirmed by morphology and DNA sequence data. Among the 40 species, five new species of *Ganoderma* were discovered in YPC, namely *G. alpinum*, *G. chuxiongense*, *G. puerense*, *G. subangustiporum*, and *G. yunlingense*. Besides, Sun et al. (2022) summarized known species of *Ganoderma* in YPC viz. *G. ellipsoideum*, *G. flexipes*, *G. hoehnelianum*, *G. lingzhi*, and *G. magniporum*. However, results of our research showed that *Ganoderma* chuxiongense and *G. dianzhongense* are similar in morphology and phylogeny, and based on the time priority, *G. chuxiongense* is considered as a synonym of *G. dianzhongense*. In consideration of the authors’ contributions, it is suggested to use the sample Cui 17,262 (BJFC034120) as a paratype of *Ganoderma dianzhongense* (He et al., 2021; Sun et al., 2022).

To date, 25 species of *Ganoderma* have been recorded in YPC (Cao et al., 2012; Ye et al., 2019; He et al., 2021; Sun et al., 2022), however, the species diversity of *Ganoderma* is still not well known, especially in the subtropical and tropical areas. According to our survey of different sample sites in Yunnan Province from 2016 to 2021, a total of 268 samples of *Ganoderma* were collected. Based on comprehensive morphological characteristics and phylogenetic evidence, we report 15 known species of *Ganoderma* from YPC viz. *Ganoderma applanatum*, *G. calidophilum*, *G. dianzhongense*, *G. ellipsoideum*, *G. esculentum*, *G. flexipes*, *G. gibbosum*, *G. magniporum*. In consideration of the authors’ contributions, it is suggested to use the sample Cui 17,262 (BJFC034120) as a paratype of *Ganoderma dianzhongense* (He et al., 2021; Sun et al., 2022).
G. leucocontextum, G. lingzhi, G. lucidum, G. multiplex, G. orbiforme, G. sandunense, G. sinense and G. tricolor. In addition, three new species viz. G. articarpola, G. obscuratum and G. yunnanense are proposed in this study. Up to now, 183 species of Ganoderma have been described all over the world, of which 42 species have been recorded in China (Wu et al., 2020; Sun et al., 2022; Yang et al., 2022). The discovery of three new species of Ganoderma in this study raises the known Ganoderma species in Yunnan Province to 32, accounting for 71.11% of the known Ganoderma species in China. Thus, Yunnan Province can be considered as one of the biodiversity center hot spots for Ganoderma.

A checklist of Ganoderma in YPC is given in Table 3. In addition, a key to Ganoderma in YPC is also provided. This paper enriches the knowledge of Ganoderma in YPC, and it is likely that more new taxa will be discovered in the future with extensive sampling in different areas and comprehensive molecular analyses.

Data availability statement

The original contributions presented in the study are included in the article-supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

S-HL and Z-LL: conceptualization. JH: methodology, formal analysis, data curation, and writing—original draft preparation. JH and XH: investigation. S-HL and Z-ZL: resources. K-YN, S-MT, E-XL, H-ML, and S-HL: writing—review and editing. S-HL: funding acquisition. All authors contributed to the article and approved the final version of the manuscript.

References

Adaskaveg, J. E., Blanchette, R. A., and Gilbertson, R. L. (1991). Decay of date palm wood by white–rot and brown–rot fungi. Can. J. Bot. 69, 615–629. doi: 10.1139/b91-083

Cao, Y. (2013). Taxonomy and phylogeny of Ganoderma in China. Ph.D. dissertation. China: The University of Chinese Academy of Sciences in Shenyang.

Cao, Y., Wu, S. H., and Dai, Y. C. (2012). Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers. 56, 49–62. doi: 10.1007/s13225-012-0178-5

Cao, Y., and Yuan, H. S. (2013). Ganoderma mutabile sp. nov. from southwestern China based on morphological and molecular data. Mycol. Prog. 12, 121–126. doi: 10.1007/s11557-012-0819-9

Costa-Rezende, D. H., Robleó, G. L., Drechsler-Santos, E. R., Glen, M., Gates, G., de Madrigrac, B. R., et al. (2020). Taxonomy and phylogeny of polyopes with ganodermatoid basidiomycetes (Ganodermitaceae). Mycol. Prog. 19, 725–741. doi: 10.1007/s11557-020-03589-1

Dai, Y. C., Yang, Z. L., Cui, B. K., Yu, C. J., and Zhou, L. W. (2009). Species diversity and utilization of medicinal mushrooms and fungi in China. Int. J. Med. Mushrooms. 11, 287–302. doi: 10.1615/IntJMedMushr.v11.i3.80

Darrha, D., Taboada, G. L., Douallo, R., and Posada, D. J. (2012). ModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9,772. doi: 10.1038/nmeth.2109

Elliott, M., and Broschat, T. (2001). Observations and pathogenicity experiments on Ganoderma zonatum in Florida. Palms 45, 62–73.

Glen, M., Bougher, N. L., Francis, A. A., Nigg, S. Q., Lee, S. S., Irianto, R., et al. (2009). Ganoderma and Amauroderma species associated with root-rot disease of Acacia mangium plantation trees in Indonesia and Malaysia. Australas. Plant Pathol. 38, 345–356. doi: 10.1071/AP09008

Glez-Peña, D., Gómez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F., and Posada, D. (2010). ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Res. 38, W14–W18. doi: 10.1093/nar/gkq321

Guindon, S., and Gascuel, O. A. (2003). Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704. doi: 10.1080/10635150390235520

Hall, T. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. In Nucleic Acids Symposium Series. 95–98.

Funding

This research was supported by the earmarked fund for CARS (Project ID: CARS-20) and the National Natural Science Foundation of China (Project ID: 32060006).

Acknowledgments

We would like to thanks Qian-Qiu Luo, Li Wang, Xin-Yu Ran, Cui-Qin Zhou, and Ying-Guo Shan for their help on sample collection, DNA extraction, and PCR amplification. Thanks to Shu-Qin Cao for her help in specimens’ preservation. We also thank Samantha C. Karunarathna at Qing Normal University, China, and the reviewers for their helpful suggestions to improve this manuscript. At the same time, we would like to thank Hong-Yan Su for her support to our research work and the cultivation during our master’s degree before she passed away.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
