Gerbes for the Chow.

You can try to stop me, but it wont do a thing no matter what you do, I’m still gonna be here Through all your lies and silly games I’m still remain the same, I’m unbreakable

Michael Joseph Jackson, unbreakable.

Abstract.

Finding coherent relations to define non Abelian cohomology is a thriller which entertains the mathematical community since fifty one years. The purpose of this paper is to simplify the attempt to beat it defined by the author which used the notion of sequences of fibred categories and to apply the resulting theory to higher divisors and Chow theory.

Introduction.

The A.B.C of non Abelian cohomology has been created by Grothendieck and his collaborators in the purpose of giving a geometric interpretation of characteristic classes. Let (C, J) be a Grothendieck site, and L a sheaf defined on (C, J), we know that $H^0(X, L)$ is the set of global sections of L, and $H^1(X, L)$ is the set of isomorphism classes of torsors bounded by L. In his book [5], Giraud has defined the notion of gerbes bounded by a sheaf L, objects which are classified by $H^2(X, L)$. Many concrete problems have created the need to provide a geometric interpretation of higher cohomology classes. Specialists who wanna be starting something have developed many attempts to find a theory which interprets higher cohomology classes, all of these theories face at this time, the combinatoric problems which arise when one try to pin out coherence relations for n-gerbes, $n > 2$.

In [17], is developed the notion of sequences of gerbes which provides a partial answer by attaching to a sequence of fibred categories endowed with nice properties a cohomology class, this construction can also be viewed as a geometric interpretation of the connecting morphism in cohomology. Remark that this approach gives a complete satisfaction in the geometric study of the Brauer group as shows [14]. This theory has been successfully applied in many areas, like in symplectic geometry, where it has enabled to give new insights on quantization and symplectic fibrations. It has also been applied to the study of moduli spaces in differential geometry [19].
The purpose of this paper is to simplify the notion of sequences of fibred categories studied in [17]. The main tool used here is the topos of the site of sheaves $Sh(C,J)$ defined on the Grothendieck site (C,J). In [7], Grothendieck defines on $Sh(C,J)$ a Grothendieck topology, which can be used to define notions of varieties and algebraic spaces for any Grothendieck site (see also [16]). This topology allows us to define here fibred categories on the basis (C,J) for which the objects of the fibres are varieties, thus are naturally endowed with a Grothendieck topology; we study such 2-sequences of fibred categories, and apply our results to define and study higher divisors in algebraic geometry.

Notations.
In this paper all categories are stable by finite limits and colimits. Let C be a category. We denote by C/X, the comma category of morphisms of C whose target is X. Let $U_{i_1},...,U_{i_p}$ be objects of C, we denote by $U_{i_1}...i_p$, the fiber product of $U_{i_1},...,U_{i_p}$ over the terminal object of C. Let $p : F \rightarrow C$ be a fibred category (see definition 1, paragraph 2), and a morphism $h_{i_1...i_p} : e_{i_1...i_p} \rightarrow e'_{i_1...i_p}$ between objects of the fibre $F_{U_{i_1}...i_p}$, we denote by $h_{i_1...i_p}^{j_1...j_l} : e_{i_1...i_p}^{j_1...j_l}$ the restriction of $h_{i_1...i_p}$ between the respective restrictions $e_{i_1...i_p}^{j_1...j_l}$ and $e'_{i_1...i_p}$ to $U_{i_1...i_p}$.

1. Grothendieck topologies, varieties and geometric spaces.

Definition 1. Let C be a category, a sieve S defined on C, is a subclass of the class $ob(C)$, of objects of C such that: if $X \in S$, and $Y \rightarrow X$ is a morphism of C, then $Y \in S$.

A Grothendieck topology J, defined on the category C, is a correspondence which assigns to every object X of C, a non empty class of sieves $J(X)$ of C/X such that:

- Let $S \in J(Y)$, and $f : X \rightarrow Y$ a morphism of C, the pullback $S^f = \{ h : Z \rightarrow X, f \circ h \in S \}$ is an element of $J(X)$.
- A sieve S of C/X is an element of $J(Y)$ if for every morphism $f : X \rightarrow Y$, $S^f \in J(X)$.

A category equipped with a Grothendieck topology is called a site or a Grothendieck site. We write it (C,J).

Definitions 2. Let C be a category, a presheaf F on C is a functor $F : C^0 \rightarrow Set$, where C^0 is the opposite category of C, and Set the category of sets. We denote by $PreSh(C)$ the category of presheaves defined on the category C.

A presheaf on the Grothendieck site (C,J) is called a sheaf if and only if for every object X of C, and every element S of $J(X)$, $\lim_{Y \rightarrow X \in S} F(Y) = F(X)$.

Let C be a site, a trivial sheaf F defined on C, is a sheaf F such that there exists a set E such that for every object X of C, $F(X) = E$, and the restriction maps are the identity of E.

We denote by $Sh(C,J)$ the category of sheaves on the Grothendieck site (C,J). We have an full imbedding $C \rightarrow PreSh(C)$ defined by the Yoneda imbedding which associates to the object X of C, the presheaf h_X defined by
\[h_X(Z) = \text{Hom}_C(Z, X). \] We say that the topology is subcanonical if the presheaf \(h_X \) is a sheaf for every \(X \in C \). In the sequel, we will consider only subcanonical topologies. If there is no confusion, we will often denote \(h_X \) by \(X \).

Examples.

Let \(Op \) be the category whose objects are open subsets of \(\mathbb{R}^n, n \in \mathbb{N} \), and whose morphisms are local homeomorphisms; for every object \(X \) of \(Op \), an element of \(J(X) \) is a family of local homeomorphisms \((h_i : U_i \to X)_{i \in I} \) such that \(\bigcup_{i \in I} h(U_i) = X \). Every topological space \(T \) defines a sheaf \(h_T \) of \(Op \) by assigning to \(X \) the set of continuous maps: \(h_T(X) = \text{Hom}(X, T) \).

Let \(Aff \) be the category of affine schemes: it is the category opposite to the category of commutative rings with a unit. We endow \(Aff \) with the etale topology. For every object \(X \) of \(Aff \), an element of \(J(X) \) is a finite family of etale morphisms \((h_i : U_i \to X)_{i \in I} \) such that \(\bigcup_{i \in I} h(U_i) = X \). Every scheme \(S \) defines a sheaf \(h_S \) of \(Aff \) by assigning to \(X \) the set of morphisms of schemes: \(h_S(X) = \text{Hom}(X, S) \). See [8], VIII. proposition 5.1.

Definition 3. Let \((C, J) \) be a site, we say that the morphism \(F \to G \) between elements of \(\text{Sh}(C, J) \) is a covering morphism if and only if for every object \(X \) in \(C \), and every morphism \(X \to G \), the canonical projection \(X \times_G F \to X \) is a covering sieve of \(X \); the family of morphisms \((F_i \to G)_{i \in I} \) is a covering family of \(G \) if and only if the morphism \(\coprod_{i \in I} F_i \to G \) is a covering morphism, see [7], p 251-252. These covering families define on \(\text{Sh}(C, J) \) a Grothendieck topology (See [7] proposition 5.4 p. 254).

Definition 4. Let \(C \) be a category, a monomorphism of \(C \) is a morphism \(f : X \to Y \), such that for every object \(Z \) of \(C \), the map \(\text{Hom}(Z, X) \to \text{Hom}(Z, Y) \) which sends the element \(h \in \text{Hom}(Z, X) \) to \(f \circ h \) is injective.

Suppose that \(C \) is a site, denote by \(e \) the final object of \(\text{Sh}(C, J) \). The object \(X \) of \(C \) is an open subset of \(e \) if and only if there exists a monomorphism \(i : X \to e \) (see [1] p. 20 and [7] definition 8.3 p. 421). The morphism \(i \) is called an open immersion.

The object \(U \) of \(C/X \) is an open subset of \(X \), if and only if it is an open subset of the final object of \(C/X \) for the induced topology.

Definition 5. Let \((C, J) \) be a site, we suppose that for every object \(X \) of \(C \), every open subset \(f : U \to X \), of \(C/X \) is contained in a sieve of \(X \), a geometric space is a sheaf \(F \) of \((C, J) \) such that:

There exists a family \((U_i)_{i \in I} \) of objects of \(C \) and a sieve \(p : \coprod_{i \in I} U_i \to F \) of \(F \), for the Grothendieck topology on \(\text{Sh}(C, J) \).

The family \((U_i)_{i \in I} \) is called an atlas.

Let \(p_i : U_i \to F \) be the composition of the canonical imbedding \(U_i \to \coprod_{i \in I} U_i \) and \(p \). If for every \(i \), the map \(p_i \) is an open immersion, then \(F \) is called a variety.

Examples.
A geometric space in Op is defined by a sheaf on Op, and a covering morphism $p : \coprod_{i \in I} U_i \to F$. In particular a topological manifold is a geometric space, it is in fact a variety.

A geometric space F in Aff is defined by a sheaf on Aff, and a covering morphism $p : \coprod_{i \in I} U_i = \text{Spec}(A_i) \to F$. In particular a scheme is a geometric space, in fact it is a variety.

Let F, be a geometric space, suppose that the covering $p : \coprod_{i \in I} U_i \to F$ is 1-connected: (this is equivalent to saying that for every $i \in I$, every sheaf on U_i is trivial). The pullback F_i of F by p_i is trivial. Let F_i^j be the pullback of F_i on $U_i \times_F U_j$ by the projection $U_i \times_F U_j \to U_i$. There exists an isomorphism $g_{ij} : F_i^j \to F_i$. The morphism $c_{ijk} = g_{ki}g_{ij}g_{jk}^{-1}$ is an automorphism of F_i^{kl}, the restriction of F_k to $U_i \times_F U_j \times_F U_k$. Which can be identified with an automorphism of $F(U_i \times_F U_j \times_F U_k)$.

The family c_{ijk} verifies the relation: $c_{ijl}^{jk}g_{lk}^{ij}c_{ijkl}^{kl} = c_{ijk}^{kl}g_{lk}^{ij}c_{ijkl}$, we say that it is a (non commutative) 2-cocycle.

Suppose that F is a variety; recall that this is equivalent to saying that $U_i \to F$ is an open immersion for every i. Thus F_i is the restriction of F to U_i. Let $h_i : F_i \to E_i$, the trivialization of the restriction of F on U_i, on $U_i \times_F U_j$, we can define the map $h_i^{-1} \circ h_j^i$ which is an automorphism of E_{ij}, the fibre of the restriction of F to $U_i \times_F U_j$. We have the relation: $c_{ijk}^{kl} = c_{ijkl}^{kl}$.

Definition 6. Let C be a category, X, P objects of C, a P-point of X is a morphism $x : P \to X$.

In a category stable by finite limits, and colimits, a group object (See [1] p.35) is defined by:

- An object G endowed with a morphism $p : G \times G \to G$ called the product, which is associative,
- The neutral element, which is a global point, that is a morphism $e : 1 \to G$, (where 1 is the final object).
- The inverse is a morphism $i : G \to G$.

This data must satisfy the following conditions:

Let $x, y : P \to G$ be two P-points of G, by the universal property of the product, x and y define a morphism $(x, y) : P \to G \times G$, we write $p \circ (x, y) = xy$, we must have $x(yz) = (xy)z$.

Let $i(x)$ be the point $i \circ x$, the fact that i is the inverse map is equivalent to saying that $p(x, i(x))$ is the composition of the unique map $p_P : P \to 1$ with e, we must also have $p(x, e \circ p_P) = (e \circ p_P, x) = x$.

An action of the group object G on X is defined by a morphism $A : G \times X \to X$. The universal property of the product and the action induces a morphism: $h_{T,X} : \text{Hom}(T, G) \times \text{Hom}(T, X) \to \text{Hom}(T, X)$; for every points $g, g' : T \to G$, and $x : T \to X$, $(gg')x = g(g'x)$.

The action is free if and only if for every T-point, g of G, $h_{T,X}(g, .)$ is injective.
Remark that by using the Yoneda imbedding, if h_G is a group object of $Sh(C, J)$, then G is also a group object of C.

Proposition 1. Let G be a group object of $Sh(C, J)$ which acts freely on the geometric space X, and such that for every object $Y \in C$, the projection $Y \times G \to Y \in J(Y)$ then the sheaf h_X/G is a geometric space.

Proof. Let $(U_i)_{i \in I}$ be an atlas of X; Denote by p'_i the composition of p_i with the map $X \to X/G$ (see definition 5 for p_i). Then $(U_i, p'_i)_{i \in I}$ defines an atlas of X/G. To show this, firstly we consider an object Z of C, and a morphism $h : h_Z \to X/G$. The pullback of $X \to X/G$ by h is $h_Z \times h_G$; to show this, consider an element of $Hom(T, Z) \times _{Hom(T, X)/G} Hom(T, X)$ which is defined by an element u of $Hom(T, Z)$, and an element v of $Hom(T, X)$ which have the same image in $Hom(T, X)/G$. The elements of $Hom(T, Z) \times _{Hom(T, X)/G} Hom(T, X)$ whose image by the first projection is u are of the form $(u, gv), g \in Hom(T, G)$. Since the action of G is free, we deduce that $h_Z \times _{X/G} h_X = h_Z \times h_G$.

Since $(U_i)_{i \in I}$ is an atlas of X, the pullback of $h_Z \times h_G \to X$ by $\prod_{i \in I} h_U_i \to X$ is in $J(Z \times G)$, since the map $Z \times G \to Z \in J(Z)$. We deduce that $(U_i, p'_i)_{i \in I}$ is an atlas of X/G.

2. Sheaves of categories $(2, 2)$-gerbes, $(2, 1)$-gerbes, $(1, 2)$-gerbes.

Let (C, J) be a category equipped with a Grothendieck topology, and $p : F \to C$ a functor. For every object X of C, we denote F_X, the subcategory of objects of F such that for every object x of F_X, $p(x) = X$. A morphism $h : x \to x'$ between objects of F_X is an element of $h \in Hom_F(x, x')$, such that $p(h) = Id_X$. The category F_X is called the fibre of X. Let $f : X \to Y$ be a morphism of C, and $x \in F_X, y \in F_Y$. We denote by $Hom_f(x, y)$ the subset of the set of $Hom_F(x, y)$ such that for every element $h \in Hom_f(x, y), p(h) = f$.

Definitions 1. The morphism $h \in Hom_f(x, y)$ is Cartesian if and only if for every element $z \in F_X$, the canonical map $Hom_{Id_X}(z, x) \to Hom_f(z, y)$ which sends $l \to h \circ l$ is bijective.

We say that the category F is a fibred category over C, if and only if for every morphism $f : X \to Y$ in C, and every element $y \in F_Y$, there exists a Cartesian morphism $cf_f : x \to y$ such that $p(cf_f) = f$.

Examples: the forgetful functor $C/X \to C$, which sends $Y \to X$ to Y, is Cartesian, as well as its restriction to any sieve of X. Let $p : F \to C$ and $p' : F' \to C$ be Cartesian functors, we denote by $Cart(F, F')$ the class of morphisms between F and F' such that for every element $h \in Cart(F, F')$, we have $p' \circ h = p$, and h sends Cartesian morphisms to Cartesian morphisms.

Definition 2. Let $p : F \to C$ be a Cartesian functor. We say that F is a sheaf of categories, if and only if:
- For every sieve $R \in J(X)$, the forgetful functor $Cart(E/X, F) \to Cart(R, F)$ is an equivalence of categories.

We say that the sheaf of categories is connected if for every object X of C, there exists a sieve $R \in J(X)$, such that for every morphism $Y \to X \in R, F_Y$
is not empty, and the objects of F_Y are isomorphic each others. We are going to study only connected sheaves of categories here.

Let $f : X \to Y$ be a morphism of C, and y an object of F_Y, a restriction map of f is a Cartesian map $c_f : x \to y$, we say often that x is a restriction of y.

Suppose that the topology of C is generated by the family $(U_i)_{i \in I}$, we can assume that for every $i \in I$, the object of the fibre of U_i are isomorphic each other. Choose an object $x_i \in F_{U_i}$, on U_{ij}, there exists a morphism $g_{ij} : x^i_j \to x^i_i$; the morphism $c_{ijk} = g^i_{ki}g^i_{ij}g^i_{jk}$ is an automorphism of x^i_j. Which satisfies the relation:

$$c_{ijk}g_{ij}^l = c_{ikl}g_{lk}^i$$

We have seen that geometric spaces satisfy the condition above, in fact, there are examples of sheaves of categories.

Definition 3. A sheaf of categories on the Grothendieck site (C, J) is a gerbe, if and only if:

- there exists a sheaf L on (C, J) such that for every object $x \in F_X$, $\text{Aut}_{id_X}(x) \simeq L(U)$, and this identification commutes with morphisms between objects and with restrictions. We say that the sheaf of categories $p : F \to C$ is bounded by L.

Definition 4. Suppose that the site (C, J) has a final object e; a gerbe is trivial if and only if it has a global section. This is equivalent to saying that the fibre F_e is not empty.

A global section is called a torsor; equivalently a torsor is a gerbe $p : F \to C$ such that for every object X of C, the fibre F_X contains a unique object.

Definition 5. Let (C, J) be a Grothendieck site. Consider a variety X defined on (C, J). An n-sequence of fibred categories over X, is a sequence of functors $p_n : F_n \to F_{n-1}$...$p_1 : F_1 \to C/X = F_0$ which satisfies the following conditions:

- The functors $p_l, l = 1, \ldots, n$ are fibred categories.
- For every object U of F_l, the fibre $F_{l+1}U$ is a category whose objects are varieties of C, and its morphisms are morphisms of varieties over U.

To define the notion of n-sequence of gerbes, we are going to associate firstly, to an automorphism above the identity of a gerbe bounded by a commutative sheaf, a 1-cocycle. Let h be an automorphism above the identity of the gerbe $p : F \to C/X$. Let $(U_i)_{i \in I}$ be 1-connected cover of X (This is equivalent to saying that the restriction of every sheaf to U_i is trivial), let x_i be an object of F_{U_i}, there exists an arrow $l_i : x_i \to h(x_i)$. Let $u_{ij} : x^i_j \to x^i_i$ be a connecting morphism, on U_{ij} we have the morphism $h_{ij} = l^{-1}_j \circ h(u_{ij})^{-1} \circ l^i_i \circ u_{ij}$ of x^i_j.

We are going to show that $h^i_{kj}u_{kj}h^i_{ji}u_{jk} = h^i_{ki}$.
\[h_{kj}^i u_{kj}^i h_{jk}^i u_{jk} = l_{jk}^{-1} h(l_{kj}^i) l_{ij}^k l_{jk}^{-1} h(l_{kj}^i) l_{ij}^k u_{ij}^i u_{jk} = l_{jk}^{-1} h(l_{ij}^i) l_{ij}^k u_{ij}^i u_{jk}. \]

By writing that \(c_{ijk} = u_{kj}^i u_{jk}^i u_{ij}^i \), we obtain that:

\[h_{kj}^i u_{kj}^i h_{jk}^i u_{jk} = l_{jk}^{-1} h(l_{ij}^i) l_{ij}^k u_{ij}^i u_{jk} = h(l_{ij}^i) l_{ij}^k u_{ij}^i u_{jk}. \]

Since the group \(L \) is commutative and \(h \) commutes with morphisms between objects, \(h^{-1}(u_{ij}^i) l_{ij}^k u_{ij}^i u_{jk} = c_{ijk}^{-1} h^{-1}(u_{ij}^i) l_{ij}^k u_{ij}^i u_{jk} = h^{-1}(u_{ij}^i) l_{ij}^k u_{ij}^i u_{jk} \). This implies that \(h_{kj}^i u_{kj}^i h_{jk}^i u_{jk} = h_{kj}^i \).

The cohomology class of the cocycle that we have just defined doesn’t depend of the choices made. Suppose that we fix the \(x_i \), but replace \(l_i \) by \(l_i' \), then there exists \(u_i \in L(U_i) \) such that \(l_i' = u_i l_i \), and \(h_{ij} \) is replaced by \(u_{ij}^{-1} h_{ij} u_{ij} \).

Suppose that we replace \(x_i \) by \(x_i' \), let \(v_i : x_i' \rightarrow x_i \) be a connecting morphism, \(h(v_i)^{-1} l_i v_i \) is a connecting morphism \(l_i' \) between \(x_i' \) and \(h(x_i') \), \(u_{ij} = v_i^{-1} u_{ij} v_i' \) is a connecting morphism between \(x_i' \) and \(x_i'' \). We can write \(l_i' = h^{-1}(u_{ij}^i) l_{ij}^k u_{ij}^i = (h(v_i)^{-1} l_i v_i)^{-1} h(v_i)^{-1} u_{ij} v_i^i l_{ij}^k u_{ij}^i u_{ij}^{-1} u_{ij} v_i^i = v_i^{-1} h_{ij} v_i^i = h_{ij} \) since the elements of the band commute with morphisms between objects.

Definition 6. A \(n \)-sequence of fibred categories \(p_n : F_n \rightarrow F_{n-1} \ldots p_1 : F_1 \rightarrow C/X = F_0 \) is a \(n \)-sequence of gerbes, if and only if:

- For every object \(U \) of \(F_{n-2} \), and \(e_U \) of \(F_{n-1} \), the fiber \(F_{n e_U} \) is a gerbe bounded by a sheaf \(L_{e_U} \) defined on \(C/e_U \).

- Let \(U \) be an object of \(F_1 \). There exists a cover \((U_i)_{i \in I}\) of \(U \), such that for every object \(e_i, e_i' \) of \(F_{i+1} U_i \), and there exists an isomorphism between \(F_{i+2} e_i \) and \(F_{i+2} e_i' \):

- There exists a commutative sheaf \(L \) on \(C \) called the band such that the trivial automorphisms (those corresponding to trivial bundles) of \(F_{n e_U} \) are the sections of \(L \).

The classifying 4-cocycle.

In the sequel, we will consider only 2-sequences of fibred categories that we call also \((2,2)\)-gerbes, the general situation will be studied in a forthcoming paper.

We are going to associate a 4-cocycle to a 2-sequence \(p_2 : F_2 \rightarrow p_1 : F_1 \rightarrow X \) bounded by a sheaf of commutative groups \(L \).

Let \((U_i)_{i \in I}\) be a cover of \(X \), and \(x_i \) an object of \(F_1 U_i \), we denote by \(g_{ij} : x_i^j \rightarrow x_i^j \) a connecting morphism. The morphism \(c_{ijk} = g_{ij}^k g_{ij}^k g_{ij}^k \) is an automorphism of \(x_i^k \). Let \(U \) be an object of \(C/x_i^j \). For every object \(U' \in F_2 U \) we can lift the pullback of \(c_{ijk} \) by \(U \rightarrow x_i^j \), to a Cartesian morphism \(U'' \rightarrow U' \). If \(h' : U' \rightarrow V' \) is a morphism above the morphism \(h : U \rightarrow V \), \(x_i^j \), we can lift the pullback of \(h \) by \(c_{ijk} \) to a morphism \(h'' : U'' \rightarrow V'' \) in such a way that \(h'' : U'' \rightarrow V'' \rightarrow V' \) coincide with \(U'' \rightarrow h' : U' \rightarrow V' \). This shows that the correspondence which associates \(U'' \) to \(U' \) defines an automorphism \(c_{ijk} \), of the germ \(F_{2 x_i^j} \). (See also Giraud [6] Scholie 1.6 p.3)

On \(U_{ijkl} \), we have the morphisms \(c_{ijl}^k, c_{ikl}^j, c_{ijk}^l, u_{ikl}^j c_{ijl}^k u_{ikl}^j = c_{ijl}^k \) of \(x_i^{jk} \).

The automorphism \(c_{ijl}^k \) is an automorphism above the identity
of x^{ijk}_i. We identify it with an element $c_{ijkl} \in C^1(x^{ijk}_i, L)$ up to a boundary. The cohomology class of the Čech boundary c_{ijkl} of c_{ijkl} is trivial. Thus we can identify c_{ijkl} with an element of $L(U_{ijkl})$. The family c_{ijkl} is the classifying 4-cocycle of the $(2, 2)$-gerbe.

$(2, 1)$-gerbe, and $(1, 2)$-gerbe.

We will often need a particular 2-sequence of gerbes:

Definition 7. A gerbe-torsor or a $(2, 1)$-gerbe is a $(2, 2)$-gerbe $p_2 : F_2 \to p_1 : F_1 \to X$, such that:

- For every object U of C/X, there exists a covering $(U_i)_{i \in I}$ of X such that for every object e_{U_i} of F_1U_i, the category $F_{2e_{U_i}}$ is a trivial gerbe over e_{U_i}.
- There exists a sheaf L such for every global section V of $F_{2e_{U_i}}$, we can identify $\text{Aut}_{e_{U_i}}(V)$, the group of automorphisms of V over the identity of e_{U_i} with $L(U_i)$, and this identification commutes with morphisms between objects and with restrictions.

The classifying cocycle of a $(2, 1)$-gerbe.

We are going to associate to a gerbe-torsor, a 3-cocycle defined as follows:

Let x_i be an object of F_1U_i, and $u^i_{ij} : x^i_j \to x^i_j$ a morphism, we can define the cocycle $c_{ijkl} = u^i_{ki}u^i_{lj}u^i_{jk}$ of x^{ij}_k. Since the gerbe $F_{2x^i_j}$ is trivial, we can pick V, a global section over x^i_j, in this situation, let c'_{ijk} be a morphism of V above c_{ijk}. The Čech boundary of c'_{ijk} is an automorphism above the identity of x^{ijk}_i that we identify with an element of $L(U_{ijkl})$. The family of morphisms c_{ijkl} defines a 3-cocycle which is L-valued.

Remark.

Suppose that the cohomology class of c_{ijkl} is zero, thus up to a boundary, we can assume that $c_{ijkl} = 0$. This is equivalent to saying that c'_{ijk} is the classifying cocycle of a gerbe $p' : F' \to C/X$, such that for every object U of C/X, the objects of $F'U$ are torsors over e_U, where e_U is an object of F_1U. The classifying cocycle of the $(2, 1)$-gerbe can be viewed as an obstruction to obtain such a gerbe, that this to reduce the trivial gerbe F_{2e_U} to a torsor.

Let $p_2 : F_2 \to p_1 : F_1 \to C/X$ be a $(2, 2)$-gerbe, we are going to associate to it a $(2, 1)$-gerbe $p'_2 : F'_2 \to p_1 : F_1 \to C/X$ defined as follows: Let U, be an object of C/X, and e_U an object of F_1U, the trivial gerbe F_{2e_U} is the gerbe whose objects are the automorphisms of F_{2e_U} above morphisms of e_U. Remark that the classifying cocycle of this $(2, 1)$-gerbe is the class c_{ijkl} that we have used to define the classifying cocycle of (p_2, p_1). Thus (p_2, p_1) is trivial if and only if (p'_2, p_1) is trivial. This allows to interpret a $(2, 2)$-gerbe as a geometric obstruction.

Definition 8. A $(1, 2)$-gerbe is a $(2, 2)$-gerbe $p_2 : F_2 \to p_1 : F_1 \to C$, such that the gerbe $p_1 : F_1 \to C$ is trivial.
The classifying 3-cocycle of a $(1, 2)$-gerbe.

Suppose that the covering $(U_i)_{i \in I}$ is a good covering, and $x_i = F_1 U_i$ is isomorphic to the trivial $L(U_i)$-torsor L_i on U_i. Let $h_i : x_i \to L_i$ be an isomorphism, consider the automorphism $c_{ij} = h_i^{x_i} h_j^{-1}$ of x_{ij}. Let U be an object of $C/\{x_{ij}\}$. We can lift c_{ij} to an automorphism c'_{ij} of $F_{2x_{ij}}$. The Čech boundary of c'_{ij} is an automorphism of the gerbe $F_{2x_{ij}}$ above the identity that we identify with an element of $c_{ij} \in C^1(U_{ijk}, L)$ up to a boundary. The cohomology class of the boundary c_{ijkl} of c_{ij} is trivial. We can thus identify c_{ijkl} to an element of $L(U_{ijkl})$. The family c_{ijkl} is the classifying cocycle of the $(1, 2)$-gerbe.

Examples: The lifting obstruction.

Let (C, J) be a site, and $0 \to L \to M \to N \to 0$ an exact sequence of commutative sheaves defined on C. It defines the following exact sequence in cohomology:

$$H^n(X, L) \to H^n(X, M) \to H^n(X, N) \to H^{n+1}(X, L)$$

Let $[c^n]$ be an element of $H^n(X, N)$, represented by the n-cocycle c^n of the sheaf N. A natural problem is to find obstructions to lift $[c^n]$ to a $H^n(X, M)$.

Recall the construction of the boundary operator $H^n(X, N) \to H^{n+1}(X, L)$. Let $(U_i)_{i \in I}$ be a good cover of (C, J), the restriction of M and N on U_i are trivial. This implies the existence of a global section $b^n_i \in M(U_{i_1..i_n+1})$ over c^n_i, the restriction of c_n to $U_{i_1..i_n+1}$. We can write the boundary c^{n+1}_i of the chain b^n_i it is an L-cocycle whose cohomology class is the image of $[c^n]$ by the boundary operator.

The cohomology classes of the $n+1$-L-cocycles which are in the image of the connecting morphism $H^n(X, N) \to H^{n+1}(X, L)$ are in bijection with the quotient of $H^n(X, N)$ by the image of the morphism $H^n(X, M) \to H^n(X, N)$.

If $n = 0$, $H^0(X, N)$ classifies the global sections of the sheaf N, and $H^1(X, L)$ the L-torsors, we obtain that isomorphism classes L-torsors whose classifying cocycles are in the image of the connecting morphism $H^0(X, N) \to H^1(X, L)$ are in bijection with the quotient of $H^0(X, N)$ by the image of the morphism $H^0(X, M) \to H^0(X, N)$.

If $n = 1$, $H^1(X, N)$ classifies the torsors of the sheaf N, and $H^2(X, L)$ the L-gerbes, we obtain that isomorphism classes of L-gerbes whose classifying cocycles are in the image of the connecting morphism $H^1(X, N) \to H^2(X, L)$ are in bijection with the quotient of $H^1(X, N)$ by the image of the morphism $H^1(X, M) \to H^1(X, N)$.

Let $p^1_i : F^1 \to p^1_i : F^1 \to C/X, i = 1, 2$ be two $(2, 1)$-gerbes such that p^1_i is a gerbe bounded by N, and (p^1_i, p^2_i) by L. We say that they are isomorphic if and only if the respective 3-cohomology classes associated to these gerbes are equal.
Proposition 1. Suppose that the morphism of sheaves $M \to N$ has local sections. Then the isomorphism classes of $(2,1)$-gerbes $p_2 : F_2 \to p_1 : F_1 \to C/X$ such that p_1 is a gerbe bounded by L, and (p_1, p_2) by N, whose classifying cocycles are in the image of the connecting morphism $l_2 : H^2(X, N) \to H^3(X, L)$ are in bijection with the quotient of $H^2(X, N)$ by the image of the morphism $H^2(X, M) \to H^2(X, N)$.

Proof. We need only to construct for every cohomology class $[c_3] \in H^3(X, L)$ in the image of the connecting morphism $l_2 : H^2(X, N) \to H^3(X, L)$, a $(2,1)$-gerbe classified by $[c_3]$. Set $[c_3] = l_2([c_2])$. Let $p : F \to C$ be an N-gerbe bounded by $[c_2]$. We can suppose that for every object U of C, the objects of the fiber F_U are N-torsors. Let e_U be an object of F_U, we define F_{2e_U} to be the category whose objects are M-torsors $p_U : V_U \to e_U$ whose quotient by L is e_U. A morphism between two objects of F_{2e_U} is a morphism of M-bundles which projects to the identity of e_U.

If $(U_i)_{i \in I}$ is a good cover of C, and e_i an object of F_{U_i}. The objects of F_{2e_i} are isomorphic; they are trivial bundles since the map $M \to N$ has local sections.

The projection $F_2 \to F_1$ is the projection which sends the M-bundle $V_U \to e_U$ to e_U, this projection is Cartesian. Let $p : V_U' \to e_U'$ be an element of $F_{2e_U'}$, an $f : e_U \to e_U'$, a morphism, the pullback of p by f is a Cartesian morphism above f.

Remark.

Let $p : F \to C/X$ and $p' : F' \to C/X$ two gerbes bounded by N, we can define the summand $F + F'$ of F and F': The objects of $(F + F')_U$ are sum of N-bundles e_U and e_U', where U is an object of C/X, and e_U (resp. e_U') an object an object of F_U (resp. F'_U).

Consider the $(2,1)$-gerbes $p_2 : F_2 \to p_1 : F_1 \to C/X$ and $p_2' : F_2' \to p_1' : F_1' \to C/X$ whose classifying cocycle are image of l_2; they are isomorphic if and only if there exists a N-gerbe F_1'' whose classifying cocycle is in the image of $H^2(X, M) \to H^2(X, N)$ such that $F_1 = F_1'' + F_1'''$.

3. Applications to algebraic geometry: Chow groups and higher divisors.

In the sequel, X will be a quasi-projective variety of dimension n defined on the field k, L_X the sheaf of non zero rational functions defined on X. We endow X with the Zariski topology. Let U be an open subset of X, and $f \in L_X(U)$, we denote by (f) the principal divisor associated to f. The multiplicative group $L_X(U)$ is a Z-group, for the action defined by $(a, f) \to f^a$, $a \in Z$, $f \in L_X(U)$. Let h be an element of $L_X^1(U)$, $h = (h_1, ..., h_l)$, where $h_i = \frac{a_i}{b_i}$, $i = 1, ..., l$ and a_i, b_i are regular functions. Denote by $CH_X^1(U)$ the linear space generated by the set of irreducible closed subvarieties of U of codimension l which are local complete intersections; We define $ch_1(U) : L_X^1(U) \to CH_X^1(U)$ which sends h to the intersection product $(a_1 - b_1) ...(a_l - b_l) \in CH_X^1(U)$. Remark that the theorem 1 V.21 of Serre [15] describes the elements of the image of $ch_1(U)$.
as complete intersections codimension \(l\) subvarieties, since it implies that if a component of \((a_i - b_i)\) and a component of \((a_j - b_j)\) do not intersect properly, their coefficient in \((a_i - b_i), (a_j - b_j)\) is zero.

The map \(h_l(U)\) is \(l\)-multilinear for the multiplicative structure, it thus factors by a linear map \(h_l(U) : L_X(U)^{\otimes l} \rightarrow CH^1_X(U)\) which factors by the quotient map \(L_X(U)^{\otimes l} \rightarrow M^1_X(U)\), where \(M^1_X(U)\) is the symmetric functions in \(l\)-variables on \(L_X(U)\) for the multiplicative structure, that is the quotient of \(L_X(U)\) by its subset generated by elements \((x_1 \otimes \ldots \otimes x_l) - \sigma(x_1 \otimes \ldots \otimes x_l), \sigma \in S_l\).

Since the element of \(CH_X(U)\) are local complete intersections, for each integer \(l\), we have an exact sequence of sheaves:

\[
1 \to Z_X(l) \to M^l_X \to CH^1_X \to 1.
\]

Where \(Z_X(l)\) is the kernel of the morphism \(M^l_X \to CH^1_X\); we deduce the existence of the following exact sequence in cohomology:

\[
H^p(X, Z_X(l)) \to H^p(X, M^l_X) \to H^p(X, CH^1_X) \to H^{p+1}(X, Z_X^l(l)).
\]

Let \(p = 0, 1, 2, 3\), we define a \(p\)-gerbe bounded by the sheaf \(L\), to be a global section of \(L\) if \(p = 0\), a \(L\)-bundle if \(p = 1\), a \(L\)-gerbe if \(p = 2\), and a \((2,1)\)-\(L\)-gerbe if \(p = 3\). In the sequel \(p\) is an integer equal to 0, 1 or 2. This restriction is due to the fact that for \(n > 3\), we cannot provide at this time a geometric interpretation of this notion.

Definition 1. A \((p, l)\)-Cartier divisor, is defined by a \(p\)-chain \((U_{i_1 \ldots i_{p+1}}, f_{i_1 \ldots i_{p+1}})\) of sections of \(M^l_X\) such that the image of the Cech boundary \(d(f_{i_1 \ldots i_{p+1}}) \in Z_X(l)(U_{i_1 \ldots i_{p+2}})\). This boundary is thus the classifying cocycle of a \(p + 1\)-\(Z_X(l)\)-gerbe \(A(p, l)\). We can also define \(p\)-gerbe bounded by \(M^l_X/Z_X(l)\) whose classifying cocycle is defined by the classes of \(f_{i_1 \ldots i_{p+1}} \in M^l_X(U_{i_1 \ldots i_{p+2}})/Z_X(l)(U_{i_1 \ldots i_{p+2}})\).

Remarks.

The classifying cocycle of the \(p + 1\)-gerbe \(A(p, l)\), is the image of the classifying cocycle of \(B(p, l)\) by the connecting morphism \(H^p(X, M^l_X/Z_X(l)) \to H^{p+1}(X, Z_X(l))\). By comparing (2) with the exact sequence \(H^p(X, M^l_X/Z_X(l)) \to H^p(X, M^l_X) \to H^p(X, CH^1_X) \to H^{p+1}(X, Z_X(l))\) deduced from the exact sequence \(1 \to Z_X(l) \to M^l_X \to M^1_X/Z_X^l(l)\). We deduce that \(H^p(X, M^l_X/Z_X(l))\) is isomorphic to \(H^p(X, CH^1_X)\). The isomorphism classes of the \((p, l)\)-Cartier divisors is the quotient \(H^p(X, CH^1_X)\) by the image of the morphism \(h_{p,l} : H^p(X, M^l_X) \to H^p(X, CH^1_X)\). The elements of \(H^p(X, CH^1_X)\) are called \((p, l)\)-Weil divisors. Two \((p, l)\)-Weil divisors \(D_W\) and \(D'_W\) are equivalent if and only if \(D_W - D'_W\) is an element of the image of \(h_{p,l}\).

The \(p+1\)-chain \(d(f_{i_1 \ldots i_{p+1}})\) is a boundary of elements of \(M^l_X\). Thus correspond to a trivial \(M^l_X\) bundle if \(p = 0\), a trivial \(M^l_X\)-gerbe if \(p = 1\), and a trivial \(M^l_X\)-2-gerbe if \(p = 2\). (See Brylinski-McLaughlin [3] for the definition of 2-gerbe).

If \(p = 0\), and \(l = 1\) a \((0, 1)\)-Cartier (resp. a \((0, 1)\)-Weil divisor) divisor is nothing but a Cartier divisor (resp. a Weil divisor) in the classical sense.
Two $(0,1)$-Weil divisors are equivalent if and only if they are equivalent in the classical sense.

More generally two $(0, l)$-divisors which are equivalent are rationally equivalent: this follows from the following argument: let D_W and D'_W be two Weil divisors, suppose that: $D'_W = D_W + (a_1)\ldots(a_l)$, where a_1,\ldots,a_l are regular functions. Then $D'_W - D_W$ is a principal divisor of $(a_1)\ldots(a_{l-1})$, it follows from Hartshorne [9] p. 426, that D_W and D'_W are rationally equivalent.

Suppose that X is an affine variety; since the sheaf of rational functions L_X is constant, we deduce that $H^p(X, M_X) = 0$, $p > 0$, and $H^0(X, M_X) = K(X)$ the field of rational functions of X. This implies that $H^p(X, CH^*_X) = H^{p+1}(X, Z_X(l))$.

Suppose that $l = 1$, then $Z_X(1) = O_X^*$ the sheaf of invertible regular functions, we have: $H^0(X, O_X^*) = O_X^*(X)$, $H^1(X, O_X^*) = Pic(X)$ the Picard group of X, and $H^p(X, O_X^*) = 0$ if $p > 1$.

The Cartier divisor associated to a local complete intersection subvariety.

Let Y be a closed subvariety of the quasi-projective variety X of codimension l which is a local complete intersection, consider an open cover $(U_i)_{i \in I}$ by affine subsets, such that $U_i \cap Y$ is the locus l functions (f_1^i, \ldots, f^l_i) which defines the element $F_i \in M_X^l(U)$ obtained by projecting the image of (f_1^i, \ldots, f^l_i). The element $h_{ij} = F_j - F_i$ is in $Z_X^1(U_i \times_X U_j)$.

Proposition 1. The element h_{ij} is a 1-Cech Z_X^l cocycle. If Y is irreducible, its cohomological class vanishes if and only if Y is a global intersection.

Proof. The Cech cocycle h_{ij} is the boundary of the M_X^l 0-cocycle $F_i - F_j$, this implies that $(h_{ij})_{i,j \in I}$ is a 1-Cech Z_X^l-cocycle. Suppose that the class $[h_{ij}]$ of (h_{ij}) vanishes, this implies the existence of a 0-chain f_i of $Z_X(l)$, such that $h_{ij} = f^j_i - f^l_i$. The boundary of $(F_i - f_i)$ is zero, this implies that $F_i - f_i$ is the restriction of a global section F of M_X^l; we can suppose that F is the class of (h_1, \ldots, h_c) since Y is irreducible. This implies that Y is the locus of h_1, \ldots, h_c.

Conversely, suppose that Y is the complete intersection of (f_1, \ldots, f_l). Then we can take F_i to be the restriction to U_i of the projection of (f_1, \ldots, f_l) to M_X. This implies the result.

Examples.

Suppose that $X = Spec(k)$, $L_X = k^*$ the set of non zero elements of k, for every element $a \in k^*$, $(a) = 0$. This implies that $Z_X(l) = k^* \otimes l$.

Suppose that X is a curve; if $l > 1$, $CH^*_X = 0$.

Proposition 2. Let $X = P^2 k$ there exists a non trivial $Z_X(2)$-gerbe defined on X.

Proof. First we construct a non trivial element of $H^1(X, CH^*_X)$. We can cover X with the three open subsets $U_i = \{[X_1, X_2, X_3], X_i \neq 0\}$, $i = 1, 2, 3$.

12
On $U_i \cap U_j$, c_{ij} is the homogeneous element whose i and j coordinates are 1, and the other is 0; it is the intersection of the lines defined by $X_i - X_j$ and $X_k, k \neq i,j$. Since $U_{ijk} = \{ [X_1, X_2, X_3] : X_i \neq 0, i = 1, 2, 3 \}$, it implies that $c_{ij} = 0$. Thus the family (c_{ij}) defines a cocycle. This cocycle is not a boundary: Suppose that there exists a chain $(c_i)_{i \in I}$ such that $c_{ij} = c_i - c_j$. Write $c_i = l_i^1 h_1^i + .. + l_i^{ij} h_{ij}^i$, $i = 1, 2, 3$, $l_i^1, .., l_i^{ij} \in \mathbb{Z}$, $h_{ij}^i \in U_i$. Suppose that the second homogeneous coordinate of a component h_{ij}^i is not zero, then its third homogeneous coordinate is not zero since $c_{ij} = c_i - c_j$, if its third homogeneous coordinate is not zero, then its second homogeneous coordinate is not zero also. Since its first coordinate is not zero, we deduce that the coordinates of h_{ij}^i are not zero, this argument implies that $h_{ij}^i \in U_{ijk}, i = 1, 2, 3$. This is in contradiction with the fact that $c_{ij} = c_j - c_i$. Thus the class $(c_{ij})_{i,j \in I}$ defines a non trivial $Z_p^{2k}(2)$-gerbe on P^2k.

We have to show that the class c defined by (c_{ij}) is not in the image of $H^1(X, M_X^2) \rightarrow H^1(X, CH^2)$. Suppose it is in that image, and let h be an element in its preimage. We denote by h_{ij}, the value of h on U_{ij}. Suppose $i = 1, j = 2$ we can represent it by a couple $(f_{12}, g_{12}) \in L^2_X$ such that the intersection of the divisors of f_{12} and g_{12} is $[1, 1, 0]$. Since on U_{123}, we can write h_{12}^3 as a combination of h_{13}^3 and h_{23}^3 by applying the cocycle condition, this combination can be written in U_{12}, but this is impossible, since the locus of the components of h_{13} and h_{23} does not contain in c_{12}.

The Étale topology.

Suppose that X is an integral quasi-compact scheme equipped with the étale topology, we denote respectively by U_X and Div_X the sheaves of non zero rational functions and the quotient of U_X by O_X, the sheaf of non zero regular functions defined on the étale topology. Let $Z_X(1)$ be the kernel of the map $U_X \rightarrow U_X/O_X$, we have an exact sequence: $H^1_{et}(X, Z_X(1)) \rightarrow H^1_{et}(X, U_X) \rightarrow H^1_{et}(X, Div_X) \rightarrow H^1_{et}(X, Z_X(1))$.

We can define the notion of p-Cartier étale gerbe to be the quotient of $H^p(X, Div_X)$ by the image of the map $H^p(X, U_X) \rightarrow H^p(X, Div_X)$. It is shown that if $p = 1$, $H^1_{et}(X, Z_X(1)) = H_{zar}(X, Z_X(1)) = Pic(X)$.

If X is smooth, then the sheaf of étale Cartier divisors can be identified with the sheaf of Weil étale divisors whose sections are summands of irreducible codimension 1 varieties. This implies that $H^i(X, Div_X) = \sum_{x \in X^1} H^i(k(x), Z), i = 1, 2$, where X^1 is a closed point of codimension 1, and $k(x)$ its residue field. The Hilbert 90 theorem implies that $H^1(k(x), Z) = 0$. This implies that the 1-étale Cartier gerbes are trivial if X is smooth.

The Brauer group.

Let k be a field, the Brauer group of k is $H^2_{et}(Spec(k), \bar{k}^*)$, where \bar{k} is the algebraic closure of k. Let $Gl(n, \bar{k})$ be the linear group of invertible n-matrices, and $PGL(n, \bar{k})$ the corresponding projective group. The exact sequence $1 \rightarrow k^* \rightarrow Gl(n, k) \rightarrow PGL(n, k) \rightarrow 1$, induces an exact sequence $H^2_{et}(Spec(k), k^*) \rightarrow H^2_{et}(Spec(k), Gl(n, \bar{k})) \rightarrow H^2_{et}(Spec(k), PGL(n, \bar{k})) \rightarrow H^2_{et}(Spec(k), k^*)$. If
$p = 1$, it is shown in Serre [14] (proposition 9. p. 166) that every class in $H^2_\text{et}(\text{Spec}(k), \bar{k}^*)$ are in the image of a morphism $H^1_\text{et}(\text{Spec}(k), \text{PGL}(n, \bar{k})) \to H^2_\text{et}(\text{Spec}(k), \bar{k}^*)$, for a given n, thus every element of the Brauer group is the classifying cocycle of a gerbe, which is the geometric obstruction to lift a torsor on the étale topos $\text{Spec}(k)$.

References.

[1] Barr, M. Topos, triples and theories Springer (1985).
[2] Bloch, S. Algebraic cycles and higher K-theory. Advances in Mathematics. 61 3 (1986) 267-304.
[3] Brylinski, J.-L. McLaughlin, D.A. The geometry of degree-4 characteristic classes and of line bundles on loop spaces II. Duke Math. Journal 83 (1996) 105-139.
[4] E. Friedlander, A. Suslin, V. Voedvodsky. Cycles transfer and motivic homology theories. Princeton University Press. (2000).
[5] Giraud, J. Cohomologie non Abélienne, Springer (1971).
[6] Giraud, J. Méthode de la descente. Bulletin de la Société Mathématiques de France (1964).
[7] Grothendieck, A. Théorie des topos et cohomologie étale des schémas. I. Lectures Notes in Mathematics (269) 1972.
[8] Grothendieck, A. Revêtements étals et groupe fondamental, Lectures Notes in Math. 224 (1971).
[9] Hartshorne, R. Algebraic geometry, Graduate Text in Math. Springer (1977).
[10] Jackson, A. As If Summoned from the Void. Notice A.M.S (2004).
[11] Jackson, Michael, A. A quotient of the set $[BG, BU(n)]$ for a finite group G of small rank. J. Pure and Applied Algebra 161-174 (2004).
[12] Knutson, D. Algebraic space. Lecture Notes in Math. 203 (1971).
[13] Laumon, G. Moret-Bailly, L. Champs algébriques. (1999)
[14] Serre, J-P. Corps locaux. Publications de l’institut universitaire de Nangano. Hermann Paris (1968).
[15] Serre, J-P. Algèbre locale et multiplicités. Lectures Notes in Math. 11 (1965)
[16] Toen, B. Champs algébriques. Cours.
[17] Tsemo, A. Non Abelian cohomology: the point of view of gerbed towers. African Diaspora Journal of Math. 4. 67-85 (2005).
[18] Tsemo, A. Gerbes, 2-gerbes and symplectic fibrations. Rocky Journal of Math. 38. 727-777 (2008).
[19] Tsemo, A. Differentiable categories, gerbes and G-structures, International Journal of Contemporary Mathematical Sciences. 4. 1547-1590 (2009).