LFV and exotics at the NA62 experiment

To cite this article: Viacheslav Duk 2014 J. Phys.: Conf. Ser. 556 012067

View the article online for updates and enhancements.

Related content

- Searches for New Physics with the TREK Detector
 C Djalali and the Trek Collaboration

- Rare and forbidden B and tau decays in the Belle
 Hyo Jung Hyun and the Belle Collaboration

- Measurement of the absolute branching ratio of the K^+ decay with the KLOE detector
 Patrizia de Simone and the Kloe/Kloe-2 Collaboration

Recent citations

- Performance and advantages of a soft-core based parallel architecture for energy peak detection in the calorimeter Level 0 trigger for the NA62 experiment at CERN
 R. Ammendola et al
LFV and exotics at the NA62 experiment

Viacheslav Duk 1
INFN Perugia, Italy
E-mail: Viacheslav.Duk@cern.ch

Abstract. The NA62 experiment at the CERN SPS is aimed at measuring the branching fraction of the ultrarare decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with $\sim 10\%$ precision by collecting $\sim 10^{13}$ kaon decays in two years of data taking. This amount of data will allow to carry out a wide program of searching for rare and forbidden (within the Standard Model) K^+ and π^0 decays, including sterile neutrinos, lepton flavor violating modes, exotic particles (e.g. “dark photons”). The expected performances of the NA62 setup will allow to improve existing limits for several decay modes.

1. Introduction

Although the lepton flavor violation (LFV) was observed in neutrino mixing, the predictions for the branching ratios (BR) of LFV meson decays within SM are very small. On the other side, many extensions of the SM give rise to the lepton flavor and/or number violation. This leads to a straightforward conclusion that any observation of a LFV process in the meson decays is a clear signal of the New Physics beyond the SM.

The high intensity of kaon beams and clear experimental signature allow to have a good sensitivity to LFV processes. At present the upper limits reach $10^{-11} – 10^{-12}$. Upper limits for the main decay modes are summarized in Table 1.

1 for the NA62 collaboration: G. Aglieri Rinella, R. Aliberti, F. Ambrosino, B. Angelucci, A. Antonelli, G. Anzivino, R. Arcidiacono, A. Azhinenko, S. Balev, J. Bendotti, A. Blik, B. Bloch-Devaux, V. Bolotov, V. Bonaiuto, M. Dragadireanu, D. Britton, G. Britvich, N. Brook, F. Buccu, V. Buescher, F. Butin, E. Capitolo, C. Capoccia, T. Capussela, V. Carassiti, N. Cartiglia, A. Catinaccio, A. Cecchetti, A. Cecuzzi, P. Cenci, V. Cere, C. Cerri, O. Chikilev, R. Ciorba, G. Collazuol, F. Cooke, P. Cooper, G. Corradi, E. Cortina Gil, F. Costantini, A. Cotta Ramusino, D. Coward, G. D’Agostini, J. Dainton, P. Dalpiaz, H. Danielsson, J. Degrange, N. De Simone, D. Di Filippo, L. Di Lella, N. Dixon, D. Doble, V. Duk, V. Elisha, J. Engelbrecht, T. Enik, V. Falaleev, R. Fantechi, L. Federici, M. Fiorini, J. Fry, A. Fucci, L. Fulton, S. Gallorini, L. Gatignon, A. Gianoli, S. Giudici, L. Glonti, A. Goncalves Martins, F. Gonnella, E. Gough, R. Guida, E. Gushchin, P. Hahn, B. Hallgren, H. Heath, P. Herman, D. Hutchcroft, E. Iacopini, O. Jamet, P. Jarron, K. Kampf, P. Kaplon, V. Karajan, V. Kekez, S. Kholodenko, G. Khoriauli, A. Khudyakov, Yu. Kiryushin, K. Klein, M. Koval, V. Kozhuharov, M. Krivda, Y. Kudenko, J. Kunze, G. Lamanca, C. Lazzeroni, R. Leitner, R. Lenci, M. Lentini, E. Leonardi, P. Lichard, P. Litov, D. Lomidze, A. Lonardo, N. Lukin, D. Majidzinho, G. Mair, A. Makarov, I. Mannelli, G. Manocchi, A. Mapelli, F. Marchetto, P. Massarotti, K. Massri, P. Matak, G. Mazza, E. Menichetti, M. Mira, M. Misheva, N. Molokanova, J. Morant, M. Moulson, M. Mousion, S. Mocah, D. Munday, M. Napolitano, P. Newsom, J. Norton, M. Noy, G. Nueske, V. Obratsov, P. Padovani, M. Pedroni, E. Pepe, F. Perez, M. Perrin-Terrin, P. Petrov, F. Petrucci, R. Pietroni, M. Piccioli, P. Pirota, J. Polenkovitch, I. Popov, Y. Pu, D. Protopopescu, F. Raffaelli, M. Raggi, P. Rieder, A. Romanov, P. Rubini, G. Ruggiero, V. Russo, V. Ryjov, A. Salamon, G. Salina, V. Samsonov, E. Santovetti, G. Saracino, S. Sargen, S. Schifano, V. Semenov, A. Sergi, M. Serra, S. Shkarovskiy, A. Sotnikov, V. Soudzilovskaia, M. Sozzini, T. Spadaro, F. Spinella, R. Staley, M. Statera, P. Sutcliffe, N. Szalasi, T. Tagnani, M. Valdata-Nappi, P. Valente, M. Vasile, V. Vassiliev, B. Velge, M. Viol, S. Venditti, M. Vormstein, H. Wahl, R. Wanke, P. Wertelaers, A. Winhart, R. Winston, P. Wynne, O. Yushchenko, M. Zamkovsky, A. Zinchenko.
Table 1. Current limits on the branching fractions of the main LFV decay modes in charged kaon decays.

Decay mode	Upper limit (at 90% CL)	Experiment	Ref.
$K^+ \rightarrow \pi^+ \mu^+ e^-$	1.3×10^{-11}	BNL E777/865	[1]
$K^+ \rightarrow \pi^+ \mu^- e^+$	5.2×10^{-10}	BNL E865	[2]
$K^+ \rightarrow \pi^- \mu^+ e^+$	5.0×10^{-10}	BNL E865	[2]
$K^+ \rightarrow \pi^- e^+ e^+$	6.4×10^{-10}	BNL E865	[2]
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	1.1×10^{-9}	NA48/2	[3]
$K^+ \rightarrow e^- \nu e^+ e^-$	2.0×10^{-8}	Geneva-Saclay	[4]
$K^+ \rightarrow e^- \mu^+ \mu^+$	no data		

2. The NA62 experiment

The main goal of the experiment is to measure the branching ratio of the decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with $\sim 10\%$ precision [5]. In two years of data taking it is supposed to have about 10^{13} kaon decays inside the fiducial volume [6]. This statistics provides good opportunities for improving the existing limits on the LFV decay modes listed in Table 1. In addition, there will be $\sim 2 \times 10^{12}$ π^0 decays from the decay mode $K^+ \rightarrow \pi^- \pi^0$ (BR $\sim 21\%$) which can be used in other studies.

Figure 1. NA62 experimental setup.

The layout of the experimental setup is shown in Fig. 1. The high-intensity (750 MHz) unseparated ($\sim 6\%$ of positively charged kaons) hadron beam with a 75 GeV/c momentum is obtained from the SPS primary beam (protons with 400 GeV/c momentum) impinging on a Be target. Kaons are identified by a differential Cerenkov counter (CEDAR). The momentum and direction of beam particles are measured by a silicon pixel beam spectrometer (Gigatracker) with a space resolution $\sim 0.2\%$. The decay region has a length of ~ 65 m and is evacuated to 10^{-6} mbar. The momentum of secondary charged particles (produced in kaon decays) is measured by a magnetic spectrometer composed of straw tubes (four stations) and a magnet with $p_T \sim 270$ MeV/c. The energy of secondary photons and electrons flying at small angles with respect to the beam axis is measured by a liquid krypton electromagnetic calorimeter, while large angle photons are detected by a system of 12 rings of lead-glass blocks. The identification of secondary particles (muon-pion separation at the level better than 1%) in the momentum range 15–35 GeV/c is done in a RICH detector filled with Ne at atmospheric pressure. A highly segmented muon identification system (Muon veto) is located behind the krypton calorimeter.
3. The decay $K^+ \rightarrow \pi^- \mu^+ \mu^+$

Among various processes from Table 1 the decay $K^+ \rightarrow \pi^- \mu^+ \mu^+$ provides a unique possibility to study the neutrinoless double beta decay in the second generation, since it implies the exchange of a virtual Majorana neutrino (Fig. 2).

The best upper limit on the BR of this decay was obtained by the NA48/2 experiment [3]. The result is based on 52 events in the signal region and a background estimation 52.6 ± 19.8 obtained from Monte Carlo simulation. The upper limit was found to be $\text{BR}(K^\pm \rightarrow \pi^\mp \mu^\pm \mu^\pm) < 1.1 \times 10^{-9}$ (90% CL). The expected NA62 single-event sensitivity can reach 10^{-12}.

4. Search for heavy neutrinos in $K^+ \rightarrow \mu^+ \nu_h$ decay

Searches for heavy neutrino in $K^+ \rightarrow \mu^+ \nu_h$ decay can be of two types: production and decay. In the former case the peaks in the muon momentum (or missing mass) distribution are searched for regardless of the neutrino lifetime, while in the latter case the lifetime should be short enough to have a relatively large acceptance for the decay of interest. The current status of heavy neutrino searches (limit on the mixing matrix element squared $|U_{\mu h}|^2$ vs ν_h mass) is shown in Fig. 3.

The ongoing analysis of the 2007 NA62 R_{K} data [12] shows that in the absence of background the upper limit could be set at the level of 10^{-7} for the mass region $100 < m_h < 400$ MeV/c². Preliminary studies including systematics (which is mostly due to the background subtraction) indicate that the limits from Fig. 3 in the high mass region ($300 < m_h < 350$ MeV/c²) can be improved.

5. Search for “dark photons” in π^0 decays

The U boson (or “dark photon”, or A') is a new light gauge boson that could mediate interactions with dark matter constituents explaining several unexpected astrophysical...
measurements (see [13], [14]) and the so called \((g−2)_\mu\) anomaly (> 3σ discrepancy between measured and predicted values, see [15]). If the U boson mass is smaller than \(m_{\pi^0}\) and greater than \(2m_e\) it can be searched for in the decay \(\pi^0 \rightarrow U\gamma, U \rightarrow e^+e^-\) (Fig. 4) with the same final state as the \(\pi^0\) Dalitz decay. Kaon decays are an abundant source of \(\pi^0\)'s tagged with the charged pion in \(K^+ \rightarrow \pi^+\pi^0\) decay. Fig. 5 illustrates the current status of the U boson search.

Figure 4. Contribution to the the \(\pi^0 \rightarrow e^+e^-\gamma\) decay from U boson.

Figure 5. Constraints on the U boson search (\(\epsilon\) is a mixing parameter). Grey regions are excluded.

The preliminary result of NA48/2 analysis based on \(\sim 5 \times 10^6\) \(\pi^0\) Dalitz decays improves existing limits in the range 10–60 MeV/c^2. The NA62 experiment can collect \(\sim 50\) times more \(\pi^0\) Dalitz decays with a mass resolution of \(\sim 1\) MeV/c^2 for the \(e^+e^-\) pair. The sensitivity on the \(\epsilon^2\) in the mass range \(m_U < 100\) MeV/c^2 can reach \(\sim 10^{-7}\).

6. Conclusions

The NA62 provides a wide spectrum of studies beyond the baseline: LFV kaon decays, \(\pi^0\) decays. These decays allow to study various phenomena like neutrinoless double beta decay in the second generation, heavy neutrinos, “dark photons” and more.

References

[1] A. Sher et al., Phys. Rev. D72 (2005) 012005.
[2] R. Appel et al., Phys. Rev. Lett. 85 (2000) 2877.
[3] NA48 collaboration, J. Batley et al., Phys. Lett. B 697 (2011) 107.
[4] A. Diamant-Berger et al., Phys. Lett. B62 (1976) 485.
[5] G. Anelli et al. CERN-SPSC-2005-013, SPSC-P326.
[6] NA62 Technical Design Document, NA62-10-07; https://cdsweb.cern.ch/record/1404985.
[7] R. Abela, Phys. Lett. B105 (1981) 263.
[8] R. Hayano et al., Phys. Rev. Lett. 49 (1982) 1305.
[9] C. Pang et al., Phys. Rev. D8 (1973) 1989.
[10] V. Duk et al., Phys. Lett. B710 (2012) 307.
[11] G. Bernardi et al., Phys. Lett. B203 (1988) 332.
[12] NA62 collaboration, C. Lazzeroni et al., Phys. Lett. B719 (2013) 326.
[13] PAMELA collaboration, O. Adriani et al., Nature 458 (2009) 607.
[14] DAMA collaboration, R. Bernabei et al., Eur. Phys. J. C56 (2008) 333.
[15] F. Jegerlehner and A. Nyffeler, Phys. Rept. 477 (2009) 1.