Abstract—This paper presents a multi-bit reconfigurable intelligent surface with high-resolution beam steering capability in the azimuthal plane for deployment at sub-6 Gigahertz (GHz) band. Field trials in realistic indoor deployments have been carried out, with coverage enhancement performance ascertained for three common wireless communication scenarios. Namely, serving users in an open lobby with mixed line of sight and non-line of sight conditions, communication via a junction between long corridors, and a multi-floor scenario with propagation via windows. This work explores the potential for reconfigurable intelligent surface (RIS) deployment to mitigate non-line of sight effects in an indoor wireless communications. In a single transmitter, single receiver non-line of sight link, received power improvement of as much as 40 dB is shown to be achievable by suitable placement of an RIS, with an instantaneous bandwidth of at least 100 MHz possible over a 3 to 4.5 GHz range. In addition, the effects of phase resolution on the optimal power reception for the multi-bit RIS have been experimentally verified, with a 2.65 dB improvement compared to a 1-bit case.

Index Terms—Reconfigurable Intelligent Surfaces, Intelligent Reflecting Surfaces, Programmable Metasurfaces, Wireless Coverage, Smart Radio Environments

I. INTRODUCTION

RECONFIGURABLE wireless propagation environments may become a key enabler of ubiquitous reliable communications in future mobile networks. Recent advancements in reconfigurable metasurfaces have shown promising electromagnetic (EM) wave transformation capability without the need for complex and high power-consuming electronics [1][2]. The required nature of these wave transformations is subject to a great deal of research, with the distinction between what is possible and what is useful is still open research problem. Reconfigurable intelligent surfaces (RISs) have recently achieved significant attention from wireless communications researchers and industry due to their programmable beam focusing and anomalous reflection capability [3], with the European Telecommunications Standards Institute (ETSI) recently launching an industry specification group (ISG) for RISs to begin standardisation efforts.

A. Reconfigurable Intelligent Surface Architecture

RISs are essentially reflecting-type reconfigurable metasurfaces with a means of being programmed via a control link. A RIS can selectively excite spatial harmonics from incident EM waves by varying the periodicity of the phase-gradient presented by its constituent unit cell elements. These two-dimensional structures could easily be integrated into our built environment, to extend the coverage of mobile base stations to blind spots as well as selectively smoothing out achievable data rates at cell edges [4][5].

Reflecting-type reconfigurable metasurfaces typically consist of hundreds of unit cell elements made up of microstrip patches printed on a dielectric substrate with a thickness below λ/10 [6], backed by a ground plane. The periodicity of the unit cells is usually less than λ/2 in order to ensure excitation of parasitic spatial harmonics is kept to a minimum [7]. In the microwave region, the local reflection coefficient of a RIS element can be varied by placing a tunable load between sets of microstrip patches, such as a varactor diode or a positive-intrinsic-negative (PIN) diode switch [8][9]. PIN diodes are desirable for their low voltage requirements, enabling interfacing with off-the-shelf shift registers. At sub-6 GHz, PIN diodes are utilised as switches, with forward-biased states acting as a series resistance of a few ohms and a reverse-biased state with a series capacitance typically below 1 pF. A single PIN diode can be employed to realise a single pair of local reflection coefficients, which can be represented by a single, 1-bit, binary state. Similarly, a varactor diode interfaced with voltage level shifter circuitry can be utilised to the same effect [9]. A greater number of unit cell reflection states can be realised by employing more PIN diodes per unit cell or interfacing varactor diodes with digital to analog converter (DAC) channels [10]. The former can be realised with more shift registers and results in higher current consumption per unit cell, whereas the later requires more expensive biasing circuitry. The application-dependent trade offs of unit cell resolution versus control circuitry complexity and power consumption is an open research area.

B. Reconfigurable Intelligent Surface Field Trials

In the last few years, details on several RIS experimental testbeds have been published, with experiments performed in a diverse set of scenarios at microwave and millimetre-wave (mmWave) bands [3][9][11][12]

Pei et al. [9] performed indoor and long-range outdoor field trials with a varactor diode-based 1-bit RIS consisting of 1100 unit cell elements in a 20 row by 55 column arrangement. Operating at 5.8 GHz, the lateral dimensions of the RIS were...
78.65 cm (15.2λ) in width and 20.54 cm (4λ) in height. To reduce feed network complexity and power consumption, unit cells were grouped in columns consisting of 5 unit cells each. A greedy fast beamforming algorithm was introduced, iteratively increasing the received power at a single receiver (Rx) antenna from a single-antenna transmitter (Tx), facilitated by an Rx-RIS feedback loop. In an indoor non-line-of-sight (NLoS) scenario, a receive horn antenna and RIS form a reflectarray-type architecture and iteratively increase the power received from a transmitter placed behind a thick concrete wall. Compared to a copper plate of similar dimensions to the RIS, the received power improvement was as much as 26 dB. Experiments performed on a rooftop, with a receiver horn antenna placed within a few meters from the RIS and a transmitter located at 50 m and 500 m. Thus, with the Tx-RIS-Rx forming a virtual line of sight (VLoS) link, the authors demonstrated received power improvements of 27 dB and 14 dB, respectively with an RIS power consumption of only 1W. Although the rooftop trials in this work did not involve realistic blockages, a directional antenna on the receiver ensured a limited direct path between the transmitter and receiver.

Trichopoulos et al. [11] introduced a monoplanar reconfigurable metasurface operating at 5.8 GHz with 160 individually-addressable 1-bit PIN diode-based unit cells in a 10 row by 16 column arrangement. The lateral dimensions of the prototype were 41.4 cm (8λ) in width and 25.9 cm (5λ) in height. The VIAless approach of this design, as well as a wide unit cell periodicity of λ/2 ensures scalability to operation at mmWave, at the expense of additional parasitic spatial modes. The authors utilised a codebook-based beamforming algorithm. A realistic outdoor measurement campaign was performed in a line-of-sight scenario and a scenario with significant blockage between the transmitter and receiver antennas. The authors mapped coverage improvement for reception from an omnidirectional antenna placed in the blockage region 35 meters from the RIS. Compared to the case of no RIS, average received power improvement of 6 dB and a maximum improvement of 8 dB was demonstrated.

Operating at mmWave bands presents challenges of high susceptibility to blockages, limiting reliable communication to LoS scenarios. RISs may provide significant coverage enhancement at mmWave for their ease of scalability means that they can provide large effective aperture gains via VLoS paths which can follow the user equipment in the region of interest. Greenerwave have been commercially developing PIN diode-based dual-polarised 1-bit reconfigurable metasurfaces for use as passive access point extenders at mmWave frequencies, as is detailed in the work by Gros et al. [3]. The authors introduced a 400-element RIS in a 20 by 20 arrangement with lateral dimensions of 10cm × 10cm (∼ 10λ × 10λ) with a center operating frequency of 28.5 GHz. In their experimental setup, a blockage is created with a right-angled barrier which could equally be the corner of a building. Introducing a VLoS link via the outside corner of the barrier resulted in a 25 dB improvement compared to a copper plate of similar dimensions, with a 3dB bandwidth of over 250 MHz. A 1600 element (40 × 40) version of this RIS design was also utilised by Popov et al. in [12] as a passive range extender to serve a user in a room from a transmitter antenna in a corridor. The RIS was placed in the corridor on a wall opposite the room doorway, forming a VLoS link and realising a 30 dB received power improvement at 29.5 GHz over a 3 GHz bandwidth, with a power consumption below 6W.

Most published RIS experimental testbeds have only considered a 1-bit individually-addressable unit cell design due to the low complexity and small configuration overhead compared to higher resolution designs. In most of the cases in an indoor communication scenarios, user equipment is co-located in the same horizontal plane. In these cases, beamsteering capability in the elevation is underutilised. Similarly, when network equipment is situated at distances outside of the radiative near-field of the RIS, as well as in the same horizontal plane, the optimal RIS configuration often resembles columns of unit cells with similar reflection states. For the 1-bit RIS case, this usually results in the generation of spurious beams, therefore wasting transmitted power and the potential to cause interference with nearby user equipment. Beam pattern purity is greatly enhanced for 2-bit and 3-bit designs [13]. By utilising the column-connected approach to RIS design, elevation beam steering capability has been swapped for high reflection state resolution, thereby enabling performance enhancement in indoor communication scenarios without significant additional control circuit complexity.

Our contributions to the literature are as follows. Firstly, we have introduced a multi-bit RIS design with 7 distinct phase shifts for operation at 3.75 GHz and verified its global reflection performance. Secondly, we document here results of a measurement campaign with the fabricated RIS in three common indoor communication scenarios. Namely, serving users in an open lobby with mixed line of sight and non-line of sight conditions, communication via a junction between long corridors, and a multi-floor scenario with propagation via windows. Thirdly, we have verified and compared, in the field, received power enhancement via increased phase resolution.

II. MULTI-BIT RECONFIGURABLE METASURFACE

A. Unit Cell Design

The unit cell employed in this work is the multi-bit column-driven planar design depicted in Fig. [1] which was recently introduced by the authors [14]. Each unit cell consists of 5 patches connected by 3 PIN diodes and a capacitor, mounted on a 5mm PTFE-based F4BM-2 substrate with relative permittivity εr = 2.65 and loss tangent tanδ = 0.001. Unit cells are biased in a column-wise fashion by applying DC voltages to 3 of the patches, with the remaining two patches connected to ground. The patch widths and spacing were optimised through a particle swarm optimisation algorithm in order to maximise the achievable phase resolution whilst keeping the average reflection loss below 1dB. The components used in this unit cell design are Skyworks SMP1321-040LF PIN diodes and an AVX U-Series 3.6 pF 0402 capacitor. In order to increase the accuracy of simulations during design, the S-parameter data from the manufacturers of the PIN diodes and capacitors were incorporated in the simulations. The logic 0 state was simulated as that of 0 V PIN diode reverse bias voltage, whilst the logic 1 state is that of forward biased with 5 mA current.
Fig. 1. Multi-bit unit cell design used in this work. The unit cell consists of 5 rectangular patches on an F4B substrate, connected by 3 PIN diodes and a capacitor.

TABLE I

Parameter	Dimensions (mm)
Periodicity, P_x, P_y	22.5 15.0
Patch width, W_1 to W_5	6.0 0.9 0.5 6.0 2.9
Patch spacing, g_1 to g_4	0.9 0.4 1.0 0.4
Substrate thickness, h	5.0

Compared to unit cell designs with VIAs, the planar structure of this design is desirable for its low fabrication complexity and wide bandwidth. This approach, however, could make maintaining signal integrity difficult due to the inflexibility of the shape of the bias feed traces (i.e., the columns of connected patches), particularly for applications that might require high-speed switching such as with recently introduced space-time modulation schemes [15]. With a change in the type of PIN diodes employed and modifications to the pad spacing, this design is easily scalable for mmWave applications.

The fabricated RIS can be seen in Fig. 3. Due to fabrication constraints on the lateral dimensions, the RIS was split into 6 tiles, each containing an arrangement of 16×24 unit cells. The lateral dimensions of this design are 1.08 m (13.5λ) in width and 0.72 m (9λ) in height. The total number of addressable columns on each tile is 32 (i.e., two rows of 16 columns), each controlled by 3 digital values for a total of 96 bits per tile. Accordingly, each tile contains 12 shift registers, which are interfaced by an external controller consisting of an FPGA and Raspberry Pi single-board computer. The control link is maintained over a 2.4 GHz WiFi connection between a PC and the Raspberry Pi.

The PIN diodes require a bias voltage of 0.85 V at the design current of 5 mA. On a per-unit cell basis, this voltage is easily accommodated by off-the-shelf shift registers. However, source drivers were necessary in order to supply enough current to drive 12 PIN diodes per digital output. These are connected in series with the shift register outputs. At full load (i.e., all outputs at digital high), each source driver consisting of 8 output pins is required to source 480 mA. Assuming on average half of the PIN diodes are on at any one moment, the PIN diodes alone consume 19.4 W. By no means does this meet the definition of ultra-low power required to justify the deployment of RISs, but this does not pose limitations on the investigation of the benefits of a higher phase resolution presented here. Varactor diodes should be employed if low power consumption is required, such as the testbed recently demonstrated by Pei et al. [9].

B. Performance Analysis

The RIS was placed in an anechoic chamber to ascertain its global reflection characteristics. Two identical standard gain horn antennas in a horizontal polarisation configuration were placed in the horizontal plane from the center of the RIS. The antennas were placed at a distance of 2.5 meters, 20 degrees from normal to the RIS and aligned to the RIS center with a laser pointer and spirit level. A Rohde and
\[P_r = P_t \frac{G_t G_r d_x d_y \lambda^2}{64\pi^3} \times \left| \frac{M/2 \times N/2}{\sum_{m=1-\frac{M}{2}}^{N/2} \sqrt{F_{\text{combine}}(\Gamma_{n,m})}} \Gamma_{n,m} e^{-j\frac{\lambda}{2}(r_{n,m}^r + r_{n,m}^r)} \right|^2 \]

with \(P_t \) the transmit power, \(G_t \) and \(G_r \) the respective Tx and Rx antenna gains, \(r_{n,m}^r \) and \(r_{n,m}^r \) the distance between unit cell \((n, m)\) and the transmitter and receiver, respectively. The term \(F_{\text{combine}} \) takes into account the angle-dependent nature of the radiation patterns of the transmitter, unit cell reception, unit cell reradiation, and receiver, respectively.

The derivation of this channel model and similar recent advances in physics-compliant RIS channel models can be found in [16] and [17], respectively. To maximise received power at the user equipment, the task is to find, within constraints of the operating environment (e.g., a wall-mounted RIS so as not to present an obstruction), the RIS dimensions, position, and set of unit cell bias states to maximise (1). For the case of the multi-bit RIS presented here, each set of column-connected unit cells is set to one of the 8 biasing configurations, \(\rho_k e^{j\phi_k} \) where \(k \) is an integer \(k \in [1, 8] \), \(\rho_k \) and \(\phi_k \) are the respective reflection magnitude and phase shift of configuration \(k \).

The algorithm adopted for these field trials is based on the adaptive optics-inspired approach employed by Gros et al. [3]. For each controllable column of 12 unit cells, the set of 8 unit cell biasing configurations is iterated through and received power measurements are taken for each. The configuration which results in the highest received power is then selected for that column and the process continues for the remaining columns. This process is then repeated until received power improvement is negligible.

Algorithm 1 Maximise Rx signal power

Input: Average received signal power, \(P_r \), in

Output: RIS configuration, \(\Gamma \), out

1: for \(n = 1 \) to \(N \) do
2: \hspace{1em} for \(m = 1 \) to \(M \) do
3: \hspace{2em} for \(k = 1 \) to \(K \) do
4: \hspace{3em} \(\Gamma_{n,m} \leftarrow \rho_k e^{j\phi_k} \);
5: \hspace{3em} \(s_k \leftarrow P_r \);
6: \hspace{2em} end for
7: \hspace{1em} \(q \leftarrow \text{index of maximum of } s \);
8: \hspace{1em} \(\Gamma_{n,m} \leftarrow \rho_q e^{j\phi_q} \);
9: end for
10: end for
11: return configuration matrix \(\Gamma \)

III. OPTIMISATION ALGORITHM

The simple RIS optimisation algorithm presented here has been designed to find an RIS configuration which maximises the receiver power at a fixed location. When a VLoS link between the Tx and Rx via the RIS is established, the dominant path can be considered a combination of two LoS paths. That is, the LoS path between the transmitter and the RIS, and the LoS path between the RIS and the receiver. We adopt here the physics-compliant path loss model recently verified by Tang et al. [16] to approximate the received power at Rx for a given RIS configuration and Tx position. The model assumes any LoS link between the Tx and Rx is negligible. The received power, \(P_r \), at the position of Rx via the \(N \times M \) set of RIS elements, with unit cell dimensions \(d_x \times d_y \), can be approximated by:

IV. INDOOR FIELD TRIALS

For an existing network equipment deployment, such as a 5G New Radio (NR) small cell, it may be desirable to extend coverage to adjacent rooms, corridors, or floors without significant investment in additional infrastructure, such as a
Fig. 5. Diagram representing USRP-based communication link with RIS feedback loop. The RIS and receiver form a feedback loop via a WiFi control link to iteratively increase the received signal strength.

backhaul link and multiple RF chains [18]. The strategic placement of an RIS on interior walls could be a cost-effective solution to circumventing indoor blockages, in theory, but there are currently relatively few measurement campaigns in the literature to confirm this. Three indoor coverage enhancement scenarios have been considered in this work and are representative of situations where an additional small cell would usually be employed [3]. Namely, an open lobby area adjacent to a common room, a junction between two long corridors, and a multi-floor scenario.

A. Experimental Setup

The 5G NR standard employs OFDM on uplink and downlink for its high spectral efficiency and resilience to fading. In each experiment performed here, similar to previous field trial works [9][11], we utilised an OFDM signal with 20 MHz bandwidth and 312.5 kHz subcarrier spacing. The transmitted data was a randomly generated bit stream, with the signal processing performed by GNU Radio Companion (GRC) software on laptop PCs. A block diagram of the RIS-aided communication link can be seen in Fig. 5.

National Instruments Universal Software Radio Peripheral (USRP) X300 devices were used at the transmitter and receiver side. The USRP transmit power was fixed at 0 dBm and the receive gain set to 15 dB for all scenarios. The antennas employed were a monopole antenna with a gain of 2 dBi, as well as a pair of Aaronia PowerLOG 70180 standard gain horn antennas with a gain of approximately 10 dBi in the operating region of interest. These were arranged in a horizontal polarisation configuration in order to facilitate interaction with the horizontally polarised RIS. In each scenario, the RIS position and orientation were selected so as to be parallel to an adjacent wall, emulating wall-mounted indoor deployment.

The measurements were performed as follows. All PIN diodes of the RIS were initially set to the off (000) state. The receiver was placed with its antenna directed towards the RIS with the aid of a laser pointer. The transmitter continuously transmits the aforementioned OFDM-modulated signal towards the RIS, and the receiver continuously samples the average squared magnitude of the received signal via GRC. These power measurements are polled by the RIS optimisation algorithm and the connected columns were iteratively optimised until 5 iterations of the algorithm had passed. The received power was then averaged over 1 second intervals for 2 minutes. In order to ascertain a reference case, the measurements were repeated with the RIS replaced by an aluminium plate of similar dimensions.

B. Scenario I - Lobby

Scenario I is depicted in Fig. 6. The transmitter USRP connected to a horn antenna is placed in the common room at a height of 1 m and is directed towards the RIS placed in the lobby, forming a LoS link. The RIS is positioned at a height of 1 m to its centre and, utilising algorithm 1, was optimised to maximise the received power at 10 different locations within the lobby, denoted A to J, the coordinates of which can be found in table II. The origin (0, 0) is considered at the centre of the RIS and the Tx is positioned at (20, 0) (i.e., 20 meters broadside to the RIS). This setup is a typical indoor coverage extension scenario, with some locations benefiting from a strong LoS link from the transmitter (i.e., positions G and F). On the other hand, the path towards positions A, B, and C results in attenuation and scattering via propagation through the adjacent rooms, as well as potentially not being served by the main lobe of the transmit horn antenna.

Two different antennas were deployed at the receiver in order to compare the received power improvement performance, namely, an omnidirectional monopole antenna and a standard gain horn antenna. The monopole was found to exhibit acceptable (i.e., -10dB) return loss around 3.9 GHz which is within the operating region of the fabricated RIS, and therefore the experiment was performed at this frequency. The receiver PC, USRP, and antennas were placed on a 1m high trolley, as depicted in the photo in Fig. 6. The receiver was placed in one of the 10 locations throughout the lobby, with the receive antenna directed towards the RIS with the aid of a laser pointer.
TABLE II
RECEIVED POWER IMPROVEMENT FOR SCENARIO I

Identifier	Coordinates (meters)	Rx Power Improvement (dB)
A	(5, 11)	4.27
B	(1, 8.5)	8.93
C	(3, 6.4)	9.95
D	(1, 4.6)	7.01
E	(3, 2.5)	9.53
F	(3, 0)	16.10
G	(6, -2)	13.39
H	(11, -2)	3.97
I	(17, -2)	0.21
J	(23, -2)	2.54

The resulting power improvement over the metal plate for the monopole and horn antenna cases is shown in Table II. The horn antenna placed at positions A to E appears to benefit most from the introduction of the RIS due to the blockage caused by the adjacent rooms. The notable difference in improvement between the monopole and horn cases is due to the differing directivity of these antennas. Prior to optimisation of the RIS, the monopole receives power via NLoS paths from a more diverse set of directions compared to the horn antenna, resulting in a larger apparent improvement. Position I does not significantly benefit from the RIS in the monopole case and only marginal improvement of 1.51 dB for the horn case. This is likely due to the proximity of the transmitter to the adjacent wall, resulting in a much stronger non-LoS signal path over the short distance.

C. Scenario II - Corridor Junction

In this experiment, a similar system setup to scenario I was adopted via a corridor junction, as depicted in Fig. 7. The RIS was placed at the junction between a wide and narrow corridor, with the surface normal to the narrow corridor, and can be considered point (0, 0). The transmitter, directed towards the RIS, was placed in the narrow corridor at a distance of 20 m (20, 0) from the RIS. Four receiver locations were selected, denoted positions 1 to 4, placed at 5 m intervals along the y axis, starting from (2, 2). The coordinates of the receiver positions alongside the resulting received power improvement at 3.9 GHz can be found in Table III. It can be seen that there is notable received power improvement in both the monopole and horn antenna cases, with up to 30.6 dB improvement at position 4. For positions 1 and 3, the received power improvement appears to exhibit similar behaviour for both monopole and horn cases, whereas there is a significantly larger improvement for the horn antenna case at positions 2 and 4. This could be due to the monopole antenna benefiting from a greater diversity of paths through the waveguide-like channel from the transmitter at these positions, as well as NLoS paths via the adjacent rooms, resulting in a lower relative improvement [19].

In order to investigate the useful bandwidth of the RIS in this scenario, the experiment was repeated with the horn antenna placed at positions A to E and optimised at 3.3 GHz, 3.8 GHz, and 4.3 GHz, with a clear improvement over the metal plate of the same dimension. In plot (a) it can be seen that a received power improvement as much as 40 dB is achieved in the 4.3 GHz optimised configuration.

Fig. 7. Experiment setup for scenario II. Transmitter is placed in a connecting corridor, pointing directly towards the RIS at a distance of 20 m. Locations 1 to 4 indicate receiver positions. Regarding the coordinates listed in Table III, the RIS is considered point (0, 0), with x broadside to the surface.

Fig. 8. Received power versus frequency for scenario II. (a) to (d) show received power at positions 1 to 4, respectively. Optimisation of the RIS was performed at 3.3 GHz, 3.8 GHz, and 4.3 GHz, with a clear improvement over the metal plate of the same dimension. In plot (a) it can be seen that a received power improvement as much as 40 dB is achieved in the 4.3 GHz optimised configuration.
TABLE III
RECEIVED POWER IMPROVEMENT FOR SCENARIO II

Location	Rx Power Improvement (dB)		
Identifier	Coordinates (meters)	Monopole	Horn
1	(2, 3)	20.41	22.23
2	(2, 8)	15.70	27.68
3	(2, 13)	15.9	16.84
4	(2, 18)	11.8	30.60

Fig. 9. Envelope of the full set of curves from Fig. 8. Maximum received power in scenario II at positions 1 to 4 for steps of 100 MHz for the cases of no RIS, the aluminium reference plate, the path loss model of (1) for an optimised RIS, and measured optimised RIS. Received power improvement can clearly be achieved at intervals across the 1.5 GHz range.

antenna at the receiver between 3 and 4.5 GHz at 100 MHz intervals. At each location, the RIS was optimised for a single frequency point, \(f_{\text{opt}} \), followed by performing a sweep from 3 to 4.5 GHz at 20 MHz intervals and measuring the average received power for each interval. This was then repeated to obtain 16 frequency sweeps per location. The resulting received power versus frequency for \(f_{\text{opt}} = 3.3, 3.8, \) and 4.3 GHz, as well as for the aluminium plate, can be seen in Fig. 8. The 3 dB bandwidths for each case are highlighted by grey bars. Referring to Fig. 8 the aluminium plate case can be seen to be highly frequency-selective, as can be expected for a NLoS scenario. This selectivity can be eliminated over finite regions of the band when the RIS is optimised at the carrier frequency of interest.

The resulting maximum power improvement for each \(f_{\text{opt}} \) have been plotted in Fig. 9 where the aluminium plate case and the case of no RIS have been plotted for comparison, as well as the predicted Rx power from (1). It can be seen that the introduction of the RIS offers selective improvement across the entire 40% bandwidth of the investigation, with each configuration offering between 105 and 240 MHz instantaneous 3dB-bandwidth. Equation (1), subject to algorithm 1, can be seen to offer an excellent prediction of the maximum achievable power in this scenario for the cases of positions 1 to 3.

D. Scenario III - Floor to Floor

Due to the column-connected architecture of the RIS design introduced here, wave transformation capability in elevation is limited when compared to designs where unit cells are individually addressable. This does not pose a significant problem in scenarios where both the electrical distance of antennas from the RIS is such that plane wave incidence can be approximated and when the antennas are located in the same horizontal plane as the RIS. For indoor communication scenarios, the latter case is quite likely to occur when user equipment is located on the same floor. In order to ascertain whether this RIS architecture can offer coverage improvement when the latter criteria is not met, a multi-floor experiment was devised and is depicted in Fig. 10.

The receiver was placed in the first floor lobby from scenario 1, whilst the RIS was placed in the common room with a LoS link to the Rx horn antenna. The transmitter antenna was placed on a mezzanine two floors above, where a wireless link was formed to the RIS via two windows, highlighted by dashed rectangles. In order to avoid interference with a nearby small cell operating at 3.75 GHz, the carrier frequency was set to 3.9 GHz and a frequency sweep was performed over a 200 MHz bandwidth.

So as to demonstrate the benefit of the high phase resolution of this RIS design, measurements were performed for 1-bit, 2-bit, and 3-bit cases. The digital states available to the optimisation algorithm in each case are listed in table IV. The resulting received power has been plotted in Fig. 11, where it can be seen that a 21.13 dB improvement over the aluminium plate case was possible in this scenario with the 3-bit phase resolution. When limiting the phase resolution to 2-bit and 1-bit, the optimised received power reduces by 0.68 dB and 2.65 dB, respectively. According to [13], the average directivity reduction for a large reflectarray subject to plane
wave excitation compared to a 3-bit design is approximately 0.67 dB and 3.66 dB for 2-bit and 1-bit designs, respectively. However, this approximation does not take into account phase-dependent magnitude and instead assumes an ideal unity reflection magnitude. The combination of phase-dependent magnitude and limited phase range of this design compared to an ideal 3-bit case may explain the 1 dB difference between the measured directivity reduction in the 1-bit case to its theoretical value.

V. Conclusion

The paper presents indoor field trials using a 3-bit azimuthal-steering RIS. The wealth of literature on RIS channel models and optimisation algorithms should be complemented by rigorous field trials in realistic communication scenarios. The high-resolution reconfigurable metasurface introduced and employed in this work shows significant NLoS channel improvement over and beyond the 3.4 to 3.8 GHz 5G commercial services band. Indoor received power improvement of up to 40 dB with an instantaneous bandwidth of at least 100 MHz has been realised, easily meeting the demands of network providers for TDD operation at sub-6 GHz. The benefits of increased phase resolution have been demonstrated in a multiple-floor channel improvement experiment, where nearly double the power is received for the same RIS surface area by inclusion of additional reflection phase states. The RIS design explored here demonstrates that we do not necessarily require individually addressable unit cells to greatly benefit from this technology. Future works might explore more complex groupings of unit cells than a column-connected approach in order to further reduce the control network complexity, potentially rendering large RISs feasible in practice.

Acknowledgment

James Rains’ PhD is funded by EPSRC ICASE studentship (EP/V519686/1) with British Telecom. Tie Jun Cui acknowledges support from the National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202, and 2017YFA0700203).
REFERENCES

[1] T. J. Cui, S. Liu, and L. Zhang, “Information metamaterials and metasurfaces,” Journal of Materials Chemistry C, vol. 5, no. 15, pp. 3644–3668, 2017.

[2] L. Zhang, X. Q. Chen, R. W. Shao, J. Y. Dai, Q. Cheng, G. Castaldi, V. Galdi, and T. J. Cui, “Breaking reciprocity with space-time-coding digital metasurfaces,” Advanced Materials, vol. 31, p. 1904069, aug 2019.

[3] J.-B. Gros, V. Popov, M. A. Odit, V. Lenets, and G. Lerosey, “A reconfigurable intelligent surface at mmWave based on a binary phase tunable metasurface;” IEEE Open Journal of the Communications Society, vol. 2, pp. 1055–1064, 2021.

[4] M. D. Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tret’yakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE Journal on Selected Areas in Communications, vol. 38, pp. 2450–2525, nov 2020.

[5] E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti, and E. de Carvalhalo, “Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications,” arXiv preprint arXiv:2102.00742.

[6] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programming metamaterials,”

[7] Munk, Frequency Selective Surfaces. John Wiley and Sons, 2000.

[8] L. Zhang and T. J. Cui, “Angle-insensitive 2-bit programmable coding metasurface with wide incident angles,” in 2019 IEEE Asia-Pacific Microwave Conference (APMC), IEEE, dec 2019.

[9] X. Pei, H. Yin, L. Tan, L. Cao, Z. Li, K. Wang, K. Zhang, and E. Björnson, “Ris-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” arXiv preprint arXiv:2103.00534.

[10] B. O. Zhu, J. Zhao, and Y. Feng, “Active impedance metasurface with full 360° reflection phase tuning,” Scientific Reports, vol. 3, oct 2013.

[11] G. C. Trichopoulos, P. Theofanopoulos, B. Kashyap, A. Shekhawat, A. Modi, T. Osman, S. Kumar, A. Sengar, A. Chang, and A. Alkhateeb, “Design and evaluation of reconfigurable intelligent surfaces in real-world environment,” arXiv preprint arXiv:2109.07763.

[12] V. Popov, M. Odit, J.-B. Gros, V. Lenets, A. Kumagai, M. Fink, K. Enomoto, and G. Lerosey, “Experimental demonstration of a mmwave passive access point extender based on a binary reconfigurable intelligent surface,” Front. Comms. Net 2:733891.

[13] B. Wu, A. Sutinjo, M. Potter, and M. Okoniewski, “On the selection of the number of bits to control a dynamic digital MEMS reflectarray,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 183–186, 2008.

[14] J. Rains, J. ur Rehman Kazim, A. Tukmanov, L. Zhang, Q. H. Abbasi, and M. Imran, “Reflecting metasurface unit cell design with multi-bit azimuthal control,” in 1st International Conference on Microwave, Antennas and Circuits (ICMAC), 2021.

[15] W. Tang, M. Z. Chen, J. Y. Dai, Y. Zeng, X. Zhao, S. Jin, Q. Cheng, and T. J. Cui, “Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design,” IEEE Wireless Communications, vol. 27, pp. 180–187, apr 2020.

[16] W. Tang, M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. D. Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, “Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement,”

[17] V. D. Esposti, E. M. Vitucci, M. D. Renzo, and S. Tret’yakov, “Reradiation and scattering from a reconfigurable intelligent surface: A general macroscopic model,” arXiv preprint arXiv:2107.12773.

[18] E. Björnson, O. Ozdogan, and E. G. Larsson, “Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying?,” IEEE Wireless Communications Letters, vol. 9, pp. 244–248, feb 2020.

[19] X. Zhao, S. Geng, and B. M. Couliba, “Path-loss model including LOS-NLOS transition regions for indoor corridors at 5 GHz [wireless corner],” IEEE Antennas and Propagation Magazine, vol. 55, pp. 217–223, jun 2013.