Dynamic Complexity of Planar 3-connected Graph Isomorphism

Jenish C. Mehta
Dynamic Complexity

Fixed Problem

- Input

- *slight* change

- Computed Solution

Complexity of updating the solution?
Dynamic Complexity

Fixed Problem

Input
A Relation filled with tuples

slight change
Insertion/Deletion of a tuple

Computed Solution
A set of Relations

Complexity of updating the solution?
Complexity Class in which the Relations can be updated?
Definition. For any static complexity class C, we define its dynamic version, DynC as follows: Let $\rho = \langle R_1^{a_1}, ..., R_s^{a_s}, c_1, ..., c_t \rangle$, be any vocabulary and $S \subseteq \text{STRUC}(\rho)$ be any problem. Let $R_{n,\rho} = \{\text{ins}(i, a'), \text{del}(i, a'), \text{set}(j, a) \mid 1 \leq i \leq s, \ a' \in \{0, ..., n - 1\}^{a_i}, 1 \leq j \leq t\}$ be the request to insert/delete tuple a' into/from the relation R_i, or set constant c_j to a.

Let $\text{eval}_{n,\rho} : R_{n,\rho}^* \to \text{STRUC}(\rho)$ be the evaluation of a sequence or stream of requests. Define $S \in \text{DynC}$ iff there exists another problem $T \subseteq \text{STRUC}(\tau)$ (over some vocabulary τ) such that $T \in \text{C}$ and there exist maps f and g:

$$f : R_{n,\rho}^* \to \text{STRUC}(\tau), \ g : \text{STRUC}(\tau) \times R_{n,\rho} \to \text{STRUC}(\tau)$$

satisfying the following properties:

1. **(Correctness)** For all $r' \in R_{n,\rho}^*$, $(\text{eval}_{n,\rho}(r') \in S) \iff (f(r') \in T)$

2. **(Update)** For all $s \in R_{n,\rho}$, and $r' \in R_{n,\rho}^*$, $f(r's) = g(f(r'), s)$

3. **(Bounded Universe)** $\|f(r')\| = \|\text{eval}_{n,\rho}(r')\|^O(1)$

4. **(Initialization)** The functions g and the initial structure $f(\emptyset)$ are computable in C as functions of n.
Problem: Vertex-colouring a graph using 3 colours?

Input: Relation (graph) $G(x,y)$
(a,b), (b,c), (c,d), (d,e), (e,f),
(a,c), (b,e), (b,f), (c,f), (g,h)

Solution:
$R = a,e,g$ $B = b,d,h$ $G = c,f,i$

Change: Insertion/Deletion of an edge, or tuple in G
Dynamic Complexity

Problem: Vertex-colouring a graph using 3 colours?

Relations Maintained:
A(x,y), B(x,y,z,w), R(p,q,r),
D(a,b,c,d,e), C(s,r)

Dynamic Complexity:
Complexity class C, to update the relations A,B,C,D,R and find the solution from them after insertion/deletion

Problem is in DynC
Dynamic Complexity

Problem: Parity of the String?

Input: Relation (string) $S(p,b)$

Relations:
$B(z) = \text{To find the parity of the string.}$
$\text{The only tuple in the relation will be the parity of the string.}$

Simple $DynP, DynL$ solution
Dynamic Complexity

Problem: Parity of the String?

Input: Relation (string) $S(p,b)$

Relations:
- $A(x,y) =$ To store the old string
- $B(z) =$ To find the parity of the string.

The only tuple in the relation will be the parity of the string.

0	1	2	3	4	5	6	7	8	9
1	0	1	1	1	0	*	0	*	1
Dynamic Complexity

Problem: Parity of the String?

\[S(p,b) = (0,1), (1,0), (2,1), (3,1), (4,1), (5,0), (7,0), (9,1) \]

\[A(x,y) = (0,1), (1,0), (2,1), (3,1), (4,1), (5,0), (7,0), (9,1) \]

\[B(z) = (1) \]
Problem: Parity of the String?

User: insert(p,b)

A'(x,y) = A(x,y) OR
 x=p AND y=b

101110 * 0 * 1
0123456789
User: $insert(p, b)$
[assume insert(6, 1)]

$B'(z) = A(p, b) \land B(z) \lor \neg A(p, b) \land b = 0 \land B(z) \lor b = 1 \land z = 1 \land B(0) \lor z = 0 \land B(1)$
\[R_2(v, x) = \text{BFS} \text{Edge}(v, a, b) \land \text{Path}(v, v, x, \{a, b\}) \]
\[R_1(v, y) = \neg R_2(v, y) \]
\[PR(v, s, t) = R_1(v, s) \land R_2(v, t) \land \text{Edge}(s, t) \quad \{\text{All edges connecting } R_1 \text{ and } R_2\} \]
\[l_{\text{min}}(v, w) \leftarrow \min\{\text{level}_v(s) + 1 + \text{level}_t(w) : \ PR(v, s, t)\} \quad \{\text{Length of the new shortest path from } v \text{ to } w\} \]
\[PR_{\text{min}}(v, w, s, t) = R_2(v, w) \land PR(v, s, t) \land (\text{level}_v(s) + 1 + \text{level}_t(w) = l_{\text{min}}(v, w)) \quad \{\text{Set of edges that lead to the shortest path}\} \]
\[PR_{\text{lex}, \text{min}}(v, w, s, t) = PR_{\text{min}}(v, w, s, t) \land (s \leq t) \land (\forall p, q, PR_{\text{min}}(v, w, p, q) \Rightarrow (s < p) \lor ((s = p) \land (t \leq q))) \]
\{Choosing the lexicographically smallest edge. \(PR_{\text{lex}, \text{min}} \) is the set of new edges that will be added. The queries are now exactly similar to insertion of edges\}

\[|P_2| < |P_1| \text{ or } |P_1| = |P_2| \land P_2 <_c P_1, \text{ and } \{x, y, z\} \text{ are on } |P_2| \]
\[(l_{\text{old}} > l_{\text{new}}) \lor (l_{\text{old}} = l_{\text{new}} \land n_1 > n_2) \text{ and} \]
\[\forall (C\text{Path}(v, v_e, v, \alpha, \{x, y, z\}) \land C\text{Path}(v, v_e, x, y, z)) \quad \{\text{All on the path from } v \text{ to } \alpha\} \]
\[\forall (C\text{Path}(\beta, \beta_e, w, \{x, y, z\}) \land C\text{Path}(\beta, \beta_e, x, y, z)) \quad \{\text{All on the path from } \beta \text{ to } w\} \]
\[\forall (C\text{Path}(v, v_e, v, \alpha, \{x\}) \land C\text{Path}(\beta, \beta_e, \beta, w, \{y, z\}) \land C\text{Path}(\beta, \beta_e, \beta, y, z)) \quad \{x \text{ on } \text{path}_{v, v_e}(v, \alpha) \text{ and } y, z \text{ on } \text{path}_{\beta, \beta_e}(\beta, w)\} \]
\[\forall (C\text{Path}(v, v_e, v, \alpha, \{x, z\}) \land C\text{Path}(v, v_e, v, z, x) \land C\text{Path}(\beta, \beta_e, \beta, w, y)) \quad \{x, z \text{ on } \text{path}_{v, v_e}(v, \alpha) \text{ and } y \text{ on } \text{path}_{\beta, \beta_e}(\beta, w)\} \]
\{\text{EmbPar}(v, v_e, x, n_p) \text{ denotes that the embedding number of } x\text{'s parent in } [v, v_e] \text{ is } n_p\}
\[\text{EmbPar}(v, v_e, x, n_p) = \exists x_p, \text{Parent}(v, v_e, x_p, x) \land \text{Emb}(x, x_p, n_p) \]
\[\text{Emb}_p(v, v_e, t, x, n_x) = \text{Edge}(x, t) \land \exists n_p, d_t, n_{\text{old}}, \text{Deg}(t, d_t) \land \text{EmbPar}(v, v_e, t, n_p) \land \text{Emb}(t, x, n_{\text{old}}) \land (n_{\text{old}} \geq n_p \Rightarrow n_x = n_{\text{old}} - n_p) \land (n_{\text{old}} < n_p \Rightarrow n_x = n_{\text{old}} + d_x - n_p) \]
\[\text{Emb}_f(v, x, n_x) = \exists n_{\text{old}}, d_v, \text{Emb}(v, x, n_{\text{old}}) \land \text{Deg}(v, d_v) \land (n_x = d_v - 1 - n_{\text{old}}) \]
\[R_2(v, x) = BFSEdge(v, a, b) \land Path(v, x, \{a, b\}) \]
\[R_1(v, y) = \neg R_2(v, y) \]
\[PR(v, s, t) = R_1(v, s) \land R_2(v, t) \land Edge(s, t) \] \{All edges connecting \(R_1\) and \(R_2\)\}
\[l_{\text{min}}(v, w) \leftarrow \min\{level_v(s) + 1 + level_t(w) : PR(v, s, t)\} \] \{Length of the new shortest path from \(v\) to \(w\)\}
\[PR_{\text{min}}(v, w, s, t) = R_2(v, w) \land PR(v, s, t) \land (level_v(s) + 1 + level_t(w) = l_{\text{min}}(v, w)) \] \{Set of edges that lead to the shortest path\}
\[PR_{\text{lex}, \text{min}}(v, w, s, t) = PR_{\text{min}}(v, w, s, t) \land (s \leq t) \land (\forall p, q. PR_{\text{min}}(v, w, p, q) \Rightarrow (s < p) \lor ((s = p) \land (t \leq q))) \] \{Choosing the lexicographically smallest edge. \(PR_{\text{lex}, \text{min}}\) is the set of new edges that will be added. The queries are now exactly similar to insertion of edges\}
\[||P_2|| < ||P_1|| \text{ or } ||P_1|| = ||P_2|| \land P_2 <_e P_1, \text{ and } \{x, y, z\} \text{ are on } ||P_2|| \]
\[l_{\text{old}} > l_{\text{new}} \lor (l_{\text{old}} = l_{\text{new}} \land n_1 > n_2) \]
\[(CPath(v, v_e, v, \alpha, \{x, y, z\}) \land CPath(v, v_e, x, y, z)) \] \{All on the path from \(v\) to \(\alpha\)\}
\[\forall(CPath(\beta, \beta_e, w, \{x, y, z\}) \land CPath(\beta, \beta_e, x, y, z)) \] \{All on the path from \(\beta\) to \(w\)\}
\[\forall(CPath(v, v_e, v, \alpha, \{x\}) \land CPath(\beta, \beta_e, 3, w, \{y, z\}) \land CPath(\beta, \beta_e, 3, w, y)) \] \{\(x\) on \(path_{\alpha,v_e}(v, \alpha)\) and \(y, z\) on \(path_{\beta,\beta_e}(\beta, w)\)\}
\[\forall(CPath(v, v_e, v, \alpha, \{x\}) \land CPath(v, v_e, v, z, v) \land CPath(\beta, \beta_e, 3, w, y)) \] \{\(x, z\) on \(path_{\alpha,v_e}(v, \alpha)\) and \(y\) on \(path_{\beta,\beta_e}(\beta, w)\)\}
\{\(EmbPar(v, v_e, v, \alpha, n_p)\) denotes that the embedding number of \(v\)'s parent in \([v, v_e]\) is \(n_p\)\}
\[EmbPar(v, v_e, v, x, n_p) = \exists x_p. Parent(v, v_e, x_p, x) \land Emb(x, x_p, n_p) \]
\[Emb_p(v, v_e, t, x, n_x) = Edge(x, t) \land \exists n_p, d_t, n_{\text{old}}, Dcg(t, d_t) \land EmbPar(v, v_e, t, n_p) \land Emb(t, x, n_{\text{old}}) \land (n_{\text{old}} \geq n_p \Rightarrow n_x = n_{\text{old}} - n_p) \land (n_{\text{old}} < n_p \Rightarrow n_x = n_{\text{old}} + d_x - n_p) \]
\[Emb_f(v, x, n_x) = \exists n_{\text{old}}, d_v, Emb(v, x, n_{\text{old}}) \land Dcg(v, d_v) \land (n_x = d_v - 1 - n_{\text{old}}) \]
Dynamic Complexity

Parity is NOT in FO (uniform AC^0)

Parity is in $DynFO$!

Undirected Reachability is in $DynFO$!
Dynamic Complexity

DST (’93) – FOIES, Acyclic Reach
IP (’97) – Dynamic Complexity, Undirected Reach
Hesse (’01) – Reach in DynTC⁰
HI (’02) – Complete problems for DynC
DHK (‘14) – Triangulated PlanarReach in DynFO
Schwentick (‘13) – Perspectives
Isomorphism in PlanarLand

	Trees	3-connected planar graphs	Planar Graphs
Quadratic/Linear time	Elementary	Weinberg (‘66); Hopcroft, Tarjan (‘73)	Hopcroft, Wong (‘74)
Logspace	Lindell (‘92)	Datta, Limaye, Nimbhorkar (‘08)	Datta, Limaye, Nimbhorkar, Thierauf, Wagner (‘09)
DynFO	Etessami (‘98)	**This work**	?
This work

Main Results:

1. Breadth-First Search for general undirected graphs is in $DynFO$

2. Isomorphism for Planar 3-connected graphs is in $DynFO+$
Breadth-First Search in DynFO

(general undirected graphs)
Breadth-First Search in DynFO
(general undirected graphs)

Main Idea:
Maintain BFS-tree from every vertex in the graph
Breadth-First Search in DynFO
(general undirected graphs)

- **Edge** (x, y)
 - $(a, b), (b, a), (b, c), (c, b), ...$

- **Level** (v, x, l)
 - $(a, b, 1), (a, d, 2), ...$

- **BFSEdge** (v, x, y)
 - $(a, a, b), (a, b, e), ...$

- **Path** (v, x, y, z)
 - $(a, e, d, b), (a, a, d, c), ...$
Breadth-First Search in DynFO
(general undirected graphs)

Lemma 1:
After the insertion of edge \(\{a,b\}\), the level of a vertex \(x\) cannot change both in the BFS trees of \(a\) and \(b\).
Lemma 2: If any vertex t lies on $\text{path}(b,b,w)$ and on $\text{path}(v,v,a)$, then the shortest path from v to x does not change after the insertion of (a,b).
Breadth-First Search in DynFO
(general undirected graphs)

insert \((a,b)\)

- Find the shorter path:
 \(\text{path}(a,a,x)\) or \(\text{path}(b,b,x)\)
 [Lemma 1]

- Only New path to consider:
 \(\text{path}(v,v,a) + (a,b) + \text{path}(b,b,x)\)
Breadth-First Search in DynFO
(general undirected graphs)

insert (a,b)

- Find the shorter path:
 - \(\text{path}(v,v,x) \) or
 - \(\text{path}(v,v,a) + (a,b) + \text{path}(b,b,x) \)

 [Lemma 2]

- Update the relations if new path is shorter
Breadth-First Search in DynFO
(general undirected graphs)

BFSEdge(v,x,y):

Edge \((x,y)\) belongs to the BFS tree of vertex \(v\), if:
There exists a vertex \(w\) in BFS tree of \(v\) whose level has not changed AND \((x,y)\) lies on the path from \(v\) to \(w\) OR ...

![Graph diagram](image)
Breadth-First Search in DynFO (general undirected graphs)

BFSEdge(v,x,y):

... OR
There exists a vertex \(w \) in BFS tree of \(v \) whose level has changed AND \((x,y)\) lies on the path from \(v \) to \(a \) OR the path from \(b \) to \(w \) OR is \((a,b)\).
Breadth-First Search in DynFO
(general undirected graphs)

Path(v,x,y,z):
Breadth-First Search in DynFO
(general undirected graphs)

delete(a,b):
Breadth-First Search in DynFO
(general undirected graphs)

Lemma 3:
When an edge \((a, b)\) separates a set of vertices \(T\) from the BFS tree of \(v\), and \(r\) and \(x\) are vertices belonging to \(T\), then \(\text{path}(r, r, x)\) cannot pass through \((a, b)\)
Breadth-First Search in DynFO
(general undirected graphs)

Consistency?
A Theorem of Whitney

Theorem (Whitney, 1933):
A planar 3-connected graph has a unique embedding on the sphere

Anti/clockwise from d:
$e \ b \ a \ f \ e$

Impossible to re-draw such that ordering is:
$e \ a \ f \ b \ e$
Embedding a planar 3-connected graph

Emb \((v, x, n)\):
(d, a, 1),
(g, e, 3), ...

Face \((f, x, y, z)\):
(F, e, g, f),
(F, d, f, d),
(F, g, d, e), ...
Embedding a planar 3-connected graph

Lemma:
Two distinct vertices lie on at most one face in a 3-connected planar graph.
Canonical Breadth-First Search
(Thierauf, Wagner, 2007)
Canonical Breadth-First Search in DynFO+
(planar 3-connected graphs)

Key Idea:
Maintain CBFS-trees from every vertex, for every edge taken as the starting embedding edge
Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

Edge \((x, y)\), Level \((v, x, l)\)

CBFSEdge \((v, q, x, y)\):
\((b, d, c, g),\)
\((b, d, b, a), \ldots\)

CPath \((v, q, x, y, z)\):
\((b, d, f, g, c),\)
\((b, d, e, f, d), \ldots\)
Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

 Canonical Ordering on Paths: $P_1 \prec_c P_2$ if

- $|P_1| < |P_2|$ OR
- $|P_1| = |P_2|$ AND
 $d = \text{lca}(x,y)$,
 $\text{emb}(d,dp) = 0$,
 $\text{emb}(d,dx) < \text{emb}(d,dy)$
Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

insert (a,b)
Canonical Breadth-First Search in DynFO+ (planar 3-connected graphs)

\textbf{delete}(a,b):
Use $<_c$ relation to find the edge (p,r)
Canon from a CBFS tree

Canon(v,q,x) =
{
 (l, m) :
 for some ancestor w of x, let pw be the parent of w, ppw be the parent of pw, emb (v, q, pw, ppw) = 0, l = level (v, w) AND m = emb (v, q, pw, w)
}
Canon from a CBFS tree

Starting vertex: b
Starting edge: (b,d)

Pre-canon:
\[
\begin{align*}
(a) &= \{ (b,0), (a,2) \} \\
(b) &= \{ (b,0) \} \\
(c) &= \{ (b,0), (c,1) \} \\
(d) &= \{ (b,0), (d,0) \} \\
(e) &= \{ (b,0), (d,0), (e,3) \} \\
(f) &= \{ (b,0), (d,0), (f,2) \} \\
(g) &= \{ (b,0), (c,1), (g,2) \}
\end{align*}
\]
Canon from a CBFS tree

Starting vertex: b
Starting edge: (b,d)

Canon:
(a) = \{(0,0), (1,2)\}
(b) = \{(0,0)\}
(c) = \{(0,0), (1,1)\}
(d) = \{(0,0), (1,0)\}
(e) = \{(0,0), (1,0), (2,3)\}
(f) = \{(0,0), (1,0), (2,2)\}
(g) = \{(0,0), (1,1), (2,2)\}
Canon from a CBFS tree

Canon:
(a) = \{ (0,0), (1,2) \}
(b) = \{ (0,0) \}
(c) = \{ (0,0), (1,1) \}
(d) = \{ (0,0), (1,0) \}
(e) = \{ (0,0), (1,0), (2,3) \}
(f) = \{ (0,0), (1,0), (2,2) \}
(g) = \{ (0,0), (1,1), (2,2) \}

Canon for the Graph: \[Canon(G,b,d) = \{ \{ (0,0), (1,2) \}, \{ (0,0), (1,0) \} \}, \ldots \} \]
Isomorphism

Testing for isomorphism between G and H:
Graphs G and H are isomorphic if and only if:
For some starting vertex/edge pair (v,q) in G,
There exists a vertex/edge pair (w,r) in H,
Such that, $\text{Canon}(G,v,q) = \text{Canon}(H,w,r)$
Open Problems

Is Planar Graph Isomorphism decidable in $DynFO$?
Yes

Does the dynamic version of every language in L belong to $DynFO$?
No

(Static Complexity) Upper Bound for $DynFO$?
Thank You