Reverse Engineering Glioma Radiomics to Conventional Neuroimaging

Manabu KINOSHITA,1,2,3 Yonehiro KANEMURA,4 Yoshitaka NARITA,5 and Haruhiko KISHIMA2

1Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
2Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
3Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
4Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Osaka, Japan
5Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan

Abstract

A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.

Keywords: glioma, radiomics, quantitative imaging, T2-FLAIR mismatch

Introduction

A novel radiological research field pursuing quantitative comprehensive image analysis started to gain traction along with the advancement of computational technology and artificial intelligence. The concept of “quantitative comprehensive image analysis” is meant to analyze radiological images with the least qualitative assessment processes and retrieve as many image features as possible. The term “radiomics” was submitted to the research community, which was thought to best describe this novel concept for radiological analysis. “Radiomics” first appeared in the review article by Lambin et al. and Kumar et al. in 2012, in which they clearly state that “Radiomics focuses on improvements of image analysis, using an automated high-throughput extraction of large amounts (200+) of quantitative features of medical images.”1,2 Since then, radiomics has been applied mainly to cancer imaging studies spanning from lung cancers, gliomas, and to others. Although glioma is an uncommonly encountered malignant disease, the discovery of isocitrate dehydrogenase (IDH) mutation and its predictive and prognostic value on glioma treatment drove the research community to explore imaging surrogates that manifest the genetic state of gliomas.

Furthermore, it has become more apparent than ever that glioma’s biological behavior is heavily modified by isocitrate dehydrogenase (IDH) and
TERT promoter mutation status, 1p19q co-deletion status, and MGMT promoter methylation status. The neuroradiological research community bet their hope on radiomics to build a diagnostic framework that enables to provide genetic status of gliomas to clinicians in the frontline of medicine to choose the most appropriate treatment strategy for each patient in line with the concept of personalized medicine. Glioma is the second leading malignant disease following lung cancer that radiomics have challenged. The number of publications as of early 2020 was 303 for lung cancer, 215 for glioma, and 157 for breast cancer (Fig. 1A). It is also noted that the number of publications is increasing each year. More than 20 research results are published annually on radiomics and prediction of IDH mutation status of gliomas (Fig. 1B). Although extensive research has been published for the last 5 years regarding radiomics on predicting the genetic status of gliomas, no technology that suits clinical application has yet been proposed.

In this review paper, the authors will first discuss the recent advancements and encountering issues of radiomics on predicting IDH mutation status of gliomas. Secondly, the authors will discuss how we can apply the knowledge provided by radiomics to standard clinical images and clinicians in the frontline, mainly focusing on the T2-FLAIR mismatch sign. Finally, the authors will discuss further expected technological advancements in the realm of radiomics and glioma.

Radiomics for Predicting IDH Mutation Status of Gliomas

Prediction of IDH mutation status of glioma using MRI was first attempted via magnetic resonance spectroscopy (MRS).2-5 2-hydroxyglutarate (2HG), an oncometabolite product of the mutated IDH gene,6 was targeted for detection by MRS. If one can detect elevated tissue concentration of 2HG using MRS, this would indicate that the tumor harbors IDH mutation. Although some reports shed hope that this concept holds a promising future for MRI-based genetic diagnosis of gliomas,7-9 the technology has not yet been commercialized. Several possible causes are hindering the clinical application of this technique. One would be the difficulty of accurately measuring the tissue concentration of 2HG. The chemical structure of 2HG is similar to that of glutamate and glutamic acid (Fig. 2A), making it challenging to reduce the potential signal contamination of these two molecules on 2HG (Fig. 2B). Some reports raised concern on the false positive detection of 2HG in IDH wild-type gliomas.7,10

The radiomic approach was another research avenue pursuing the prediction of IDH mutation using MRI. As of the end of April 2021, one can find 67 publications by searching PubMed using the keyword “IDH AND (radiomics OR radiogenomics)” (https://pubmed.ncbi.nlm.nih.gov/?term=IDH+AND+radiomics+OR+radiogenomics&). We consider 37 reports to be relevant to the topic of IDH mutation status prediction in glioma.11-47 Either by manual or automated segmentation of the tumor on MRI, various imaging features are extracted from different MR sequences. Some reports, including ours, restricted the analyzed images to conventional structural MRI, and others widened to use advanced imaging such as diffusion- and perfusion-weighted images. The type of tool used for image analysis is also different among reports. The most conservative method will be to analyze images based on predefined

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Number of publications regarding radiomics. (A) Publication searched on February 1, 2020, by PubMed regarding each cancer type with the term “radiomics OR radiogenomics” is shown. (B) The number of annual publications searched on PubMed using the search term “IDH AND (radiomics OR radiogenomics)” is displayed. We searched on October 1, 2020.}
\end{figure}
Reverse Engineering Radiomics for Glioma

radiomics, which are well described in the past literature. Other challenging research tested the hypothesis that convolutional neural network (CNN)-based image analysis will improve the diagnostic accuracy of IDH mutation status for gliomas. For this type of analysis, machine learning is heavily incorporated within the process of image analysis. A recent meta-analysis revealed that the pooled sensitivity and specificity for predicting IDH mutation in training datasets were 0.88 and 0.86, and 0.83 and 0.85 in the validation datasets. Considering that image analysis based on conventional radiomics can achieve similar diagnostic accuracy, the value of incorporating machine learning is still controversial and should be understood with caution. Our previous research also raised this issue by comparing diagnostic accuracy between analysis done with conventional radiomics and machine learning using the same raw dataset. The result clearly showed that mere incorporation of machine learning into the image analysis pipeline would not dramatically improve diagnostic accuracy, and more ingenuity is required for this means.

Another issue that must be acknowledged with the machine learning-based and non-based radiomic approach is the need to standardize images acquired from different institutions and MR vendors. Structural MRI is a qualitative imaging modality; thus, it does not provide quantitative information within the image, a feature fundamentally different from CT. As radiomics is defined as improvements of image analysis, using an automated high-throughput extraction of large amounts (200+) of “quantitative” features of medical images, it is necessary to convert qualitative images into quantitative images employing image standardization technique. Although several methods were proposed, one cannot ignore that the required process will limit the amount and quality of the information retrieved.

Fig. 2 (A) The chemical structures of glutamine, glutamate, and 2HG are shown. Note that these three molecules resemble their chemical structures. (B) MR spectroscopies of glutamine, glutamate, and 2HG are shown. We analyzed solutions containing 1 nM of each molecule under an 11.7 T MRI (Bruker, Ettlingen, Germany).
from the images. Furthermore, each research achievement is based on in-house software and algorithms, making it difficult to generalize their findings to real-world clinics. A recent publication further highlights the importance of solving this issue. The study’s authors revealed that the diagnostic accuracy of an algorithm trained with an in-house database deteriorates when it is applied to an external dataset. The area under the receiver operating characteristics curve (AUROC) dropped from 0.96 to 0.84 when the in-house database trained algorithm was applied to The Cancer Imaging Archive (TCIA) dataset.

The Discovery of the T2-FLAIR Mismatch Sign in Gliomas with IDH Mutation

Along with researchers striving to build diagnostic algorithms to predict IDH mutation status in gliomas, the neuro-radiological community searched for qualitative radiological features specific to IDH mutation that can be easily incorporated into the real-world clinical workflow. It has long been known that there is a tight correlation between 1p19q codeletion and calcification detected on MRI. This feature is not sensitive but has been considered significant to identify 1p19q codeletion when the imaging abnormality was suspected to be a glioma. Similar to this approach, researchers investigated TCIA and discovered a radiological feature specific for IDH mutation, namely the “T2-FLAIR mismatch sign.” Their findings were further validated by European researchers strengthening its clinical value. When we compare the results from radiomics based researches and the discovery of the T2-FLAIR mismatch sign, we can observe a correlation between the two. One of the advantages of non-machine learning-based radiomics analysis is that it enables us to identify essential imaging features necessary to build the algorithm. The raw data shows that T2-weighted image was the critical imaging feature to construct a diagnostic algorithm for detecting IDH mutation.

The T2-FLAIR mismatch sign refers to regions described on MRI presenting high signal intensity on T2-weighted image but low on FLAIR (Fig. 3). The presence of the T2-FLAIR mismatch is indicative of an IDH mutant astrocytoma, and IDH wild-type tumors or 1p19q codeleted tumor usually do not present this imaging feature. The tumor will usually harbor a high signal intensity rim on both T2-weighted image and FLAIR. The definition of the T2-FLAIR mismatch sign proposed in the original article is a complete or near-complete hyperintense signal on T2-weighted image and relatively hypointense signal on FLAIR except for hyperintense peripheral rim. The original report of the T2-FLAIR mismatch sign reported that 15 out of 125 (12%) subjects from the TCIA dataset presented the T2-FLAIR mismatch sign, all of which were astrocytoma with IDH mutation. The authors further validated their finding using a different dataset and reported a 100% specificity but 22%–46% sensitivity of the T2-FLAIR mismatch sign to detect astrocytoma with IDH mutation. They noted that interobserver reliability was substantial but not perfect (κ = 0.728–0.747). The validation of the T2-FLAIR mismatch sign performed by the European multicenter study reported a similar result with the original article with 100% specificity and 50% sensitivity of the T2-FLAIR mismatch sign for identifying astrocytoma with IDH mutation.

However, the T2-FLAIR mismatch sign interpretation could vary between investigators, and interobserver variability is always an issue when applying qualitative image features, which radiomics strove to solve. The authors of the original article referred to this issue in their review article. For example, a validation study from Juratli et al. reported a much higher presence (73%) of the T2-FLAIR mismatch sign within astrocytoma with IDH mutation. Personal communication between the authors of the original article and the authors of this specific article found that Juratli et al. adopted a more “relaxed” diagnostic criteria of the T2-FLAIR mismatch sign. The relatively low sensitivity of the T2-FLAIR mismatch sign could be caused by various unknown factors, including biological differences of the tumor among different patients and untuned image acquisition parameters. For example, our raw data deriving from radiomic analysis indicated that the image feature of FLAIR significantly differed between institutions (Fig. 4). Extensive variability of FLAIR could be problematic when detecting a qualitative imaging feature such as the T2-FLAIR mismatch sign. This observation motivated us to “reverse engineer” our findings from radiomic research to conventional neuroimaging, such as the T2-FLAIR mismatch sign.

Quantitative Analysis of the T2-FLAIR Mismatch Sign and Reverse Engineering it to Conventional Neuroimaging

We first performed a quantitative analysis of the T2-FLAIR mismatch sign. This analysis was possible as glioma patients were routinely examined with quantitative MRI at Osaka International Cancer Institute from 2017 to 2018. We noted that astrocytomas with IDH mutation harbored tumor tissues...
Reverse Engineering Radiomics for Glioma

with extensively long T1- and T2-relaxation time (longer than 3000 and 300 msec, respectively). These tissues were the leading cause of the T2-FLAIR mismatch sign. On the other hand, IDH wild-type tumors harbored tumor tissues with short T1- and T2-relaxation time (shorter than 2500 and 200 msec, respectively). 1p19q codeleted oligodendrogial tumors had tissues with longer T1- and T2-relaxation time than IDH wild-type tumors but did not reach a point comparable to IDH mutated astrocytoma. 20

Image characteristics of the FLAIR sequence rely on the parameter called “inversion time.” Inversion time defines the tissue where the recovered signal will be suppressed as a function of the T1-relaxation time.
time. In stroke imaging, the FLAIR sequence is tuned to suppress signals derived from the cerebrospinal fluid (CSF). CSF mainly consists of water, and as water’s T1-relaxation time is 4000 msec under 3T, FLAIR for stroke imaging targets to suppress tissues that exhibit T1-relaxation time longer than 4000 msec. However, suppressing tissues with T1-relaxation time longer than 4000 msec could be under suppressing signals if one wants to efficiently detect the T2-FLAIR mismatch sign in gliomas, as the cut-off between IDH-mutant astrocytoma and other types of glioma is 3000 msec in T1-relaxation time. We tested this hypothesis by investigating the image acquisition parameters of the TCIA dataset and found that differences in inversion time played a critical role in the presence or absence of the T2-FLAIR mismatch sign for astrocytoma with IDH mutation. AUROC increased from 0.63 to 0.87 if the inversion time was correctly adjusted for FLAIR acquisition aiming at glioma imaging (Fig. 5).

Recent investigations on radiomics clarified that quantitative analysis of qualitative images poses a significant limitation in pursuing higher diagnostic accuracy for molecular imaging of gliomas. The example mentioned above where the image characteristics of FLAIR is significantly different between different institution highlights the problem of quantitative analysis using qualitative images. Although the future of radiomics seems to be rather pessimistic for molecular imaging of gliomas, the research community is expanding the use of radiomics to provide information on the microenvironments of the tumor tissue. Many reports attempt to distinguish between radiation necrosis and tumor recurrence or between brain tumor-related cerebral edema and non-enhancing tumor tissue. Radiomics enables the detection of subtle changes in texture which are challenging for human observation. Thus, radiomics may significantly contribute to these unmet clinical needs in the near future.

On the other hand, the expected breakthrough of radiomics relies on quantitative structural MR imaging advancement. Direct measurement and imaging of the T1- and T2-relaxation time of the entire brain are technically possible within a clinically acceptable scan time. However, suppose one wants to collect all the data required for presurgical planning, such as three-dimensional contrast-enhanced MRI for the navigation system and diffusion tensor imaging for evaluating white matter fiber-tracts. In that case, there will be no reasonable scan time to preserve to perform quantitative MR imaging for glioma patients. A novel technology that enables rapid acquisition of the tissue’s T1- and T2-relaxation time has been reported. This technology would allow us to perform a more direct and object radiomic analysis without sacrificing scan time. This type of technology could truly fulfill for the first time the original concept of radiomics proposed in 2012, stating improvements of image analysis, using an automated high-throughput extraction of large amounts of quantitative features of medical images. Findings deriving from quantitative MRI technology could re-reverse the science of neuroradiology once again from improving qualitative imaging to identifying quantitative molecular diagnosis of gliomas.

Acknowledgments

The authors thank all the MRI technicians at the Osaka International Cancer Institute, especially...
Mr. Souichiro Tateishi and Mr. Shohei Miyazaki. The authors would also like to thank all the Kansai Molecular Diagnosis Network investigators for CNS tumors.

Conflicts of Interest Disclosure

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. This research was funded by the Japan Society for the Promotion of Science (19K09526), Takeda Science Foundation, and MSD Life Science Foundation. All scientific grants were for Manabu Kinoshita.

References

1) Lambin P, Velazquez ER, Leijenaar R, et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48: 441–446, 2012
2) Kumar V, Gu Y, Basu S, et al.: Radiomics: the process and the challenges. Magn Reson Imaging 30: 1234–1248, 2012
3) Choi C, Ganji SK, DeBenardis RJ, et al.: 2-hydroxyglutamate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18: 624–629, 2012
4) Andronesi OC, Kim GS, Gerstner E, et al.: Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4: 116ra4, 2012
5) Andronesi OC, Rapalino O, Gerstner E, et al.: Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J Clin Invest 123: 3659–3663, 2013
6) Dang L, White DW, Gross S, et al.: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462: 739–744, 2009
7) Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ: Imaging prediction of isocitrate dehydrogenase (IDH) mutation in patients with glioma: a systemic review and meta-analysis. Eur Radiol 29: 745–758, 2019. [Internet]. https://www.researchgate.net/
8) Nagashima H, Tanaka K, Sasayama T, et al.: Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma. Neuro Oncol 18: 1559–1568, 2016
9) Pope WB, Prins RM, Thomas MA, et al.: Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 107: 197–205, 2012
10) Suh CH, Kim HS, Paik W, et al.: False-positive measurement at 2-hydroxyglutarate MR spectroscopy in isocitrate dehydrogenase wild-type glioblastoma: a multifactorial analysis. Radiology 291: 752–762, 2019
11) Taha B, Li T, Boley D, Chen CC, Sun J: Detection of isocitrate dehydrogenase mutated glioblastomas through anomaly detection analytics. Neurosurgery 89: 323–328, 2021
12) Jian A, Jang K, Manuguerra M, Liu S, Magnussen J, Ieva AD: Machine learning for the prediction of molecular markers in Glioma on magnetic resonance imaging: a systematic review and meta-analysis. Neurosurgery 89: 31–44, 2021
13) Verduin M, Primakov S, Compter I, et al.: Prognostic and predictive value of integrated qualitative and quantitative magnetic resonance imaging analysis in Glioblastoma. Cancers (Basel) 13: 722, 2021
14) Park CJ, Han K, Kim H, et al.: MRI features may predict molecular features of glioblastoma in isocitrate dehydrogenase wild-type lower-grade gliomas. AJNR Am J Neuroradiol 42: 448–456, 2021
15) Zhang S, Sun H, Su X, et al.: Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O6-methylguanine-DNA methyltransferase promoter methylation in patients with glioma. J Magn Reson Imaging 54: 197–205, 2021
16) Bhandari AP, Liong R, Koppen J, Murthy SV, Lasocki A: Noninvasive determination of IDH and 1p19q status of lower-grade gliomas using MRI radiomics: a systematic review. AJNR Am J Neuroradiol 42: 94–101, 2021
17) Kong Z, Jiang C, Zhang Y, et al.: Thin-slice magnetic resonance imaging-based radiomics signature predicts chromosomal 1p/19q co-deletion status in grade II and III gliomas. Front Neurol 11: 551771, 2020
18) Peng H, Hoo J, Li B, et al.: Predicting isocitrate dehydrogenase (IDH) mutation status in gliomas using multiparameter MRI radiomics features. J Magn Reson Imaging 53: 1399–1407, 2021
19) Niu L, Feng W, Duan C, Liu Y, Liu J, Liu X: The value of enhanced MR radiomics in estimating the IDH1 genotype in high-grade gliomas. Biomed Res Int 2020: 4630218, 2020
20) Lasocki A, Anjari M, Örs Kokurcan S, Thust SC: Conventional MR features of adult diffuse glioma molecular subtypes: a systematic review. Neuroradiology 63: 353–362, 2021
21) Choi YS, Bae S, Chang JH, et al.: Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 23: 304–313, 2021
22) Calabrese E, Villanueva-Meyer JE, Cha S: A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas. Sci Rep 10: 11852, 2020
23) Zhang L, Giuste F, Vizcarra JC, Li X, Gutman D: Radiomics features predict CIC mutation status in lower grade glioma. Front Oncol 10: 937, 2020
24) Feraco P, Bacci A, Ferrazza P, et al.: Magnetic resonance imaging derived biomarkers of IDH mutation status and overall survival in grade III astrocytomas. Diagnostics (Basel) 10: 247, 2020
25) Jiang C, Kong Z, Zhang Y, et al.: Conventional magnetic resonance imaging-based radiomic signature...
predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Neuroradiology 62: 803–813, 2020

26) Gihr GA, Horvath-Rizea D, Hekeler E, et al.: Histogram analysis of diffusion weighted imaging in low-grade gliomas: in vivo characterization of tumor architecture and corresponding neuropathology. Front Oncol 10: 206, 2020

27) Beig N, Bera K, Prasanna P, et al.: Radiogenomic-based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in glioblastoma. Clin Cancer Res 26: 1866–1876, 2020

28) Fukuma R, Yanagisawa T, Kinoshita M, et al.: Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network. Sci Rep UK 9: 20311, 2019

29) Matsui Y, Maruyama T, Nitta M, et al.: Prediction of lower-grade glioma molecular subtypes using deep learning. J Neurooncol 146: 321–327, 2020

30) Park JE, Kim HS, Park SY, et al.: Prediction of core signaling pathway by using diffusion- and perfusion-based MRI radiomics and next-generation sequencing in isocitrate dehydrogenase wild-type glioblastoma. Radiology 294: 388–397, 2020

31) Kim M, Jung SY, Park JE, et al.: Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur Radiol 30: 2142–2151, 2020

32) Park CJ, Choi YS, Park YW, et al.: Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status. Neuroradiology 62: 319–326, 2020

33) Wu CC, Jain R, Neto L, et al.: MR imaging phenotype correlates with extent of genome-wide copy number abundance in IDH mutant gliomas. Neuroradiology 61: 1023–1031, 2019

34) Tan Y, Zhang ST, Wei JW, et al.: A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. Eur Radiol 29: 3325–3337, 2019

35) Wu S, Meng J, Yu Q, Li P, Fu S: Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas. J Cancer Res Clin Oncol 145: 543–550, 2019

36) Li Z-C, Bai H, Sun Q, et al.: Multiregional radiomics profiling from multiparametric MRI: identifying an imaging predictor of IDH1 mutation status in glioblastoma. Cancer Med-us 7: 5999–6009, 2018. [Internet]. https://www.researchgate.net/

37) Tejada Neyra MA, Neuberger U, Reinhardt A, et al.: Voxel-wise radiogenomic mapping of tumor location with key molecular alterations in patients with glioma. Neuro Oncol 20: 1517–1524, 2018

38) Arita H, Kinoshita M, Kawaguchi A, et al.: Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade II/III gliomas. Sci Rep 8: 11773, 2018

39) Liang S, Zhang R, Liang D, et al.: Multimodal 3D denseNet for IDH genotype prediction in gliomas. Genes (Basel) 9: 382, 2018

40) Lu CF, Hsu FT, Hsieh KLC, et al.: Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24: 4429–4436, 2018

41) Hong EK, Choi SH, Shin DJ, et al.: Radiogenomics correlation between MR imaging features and major genetic profiles in glioblastoma. Eur Radiol 28: 4350–4361, 2018

42) Zhang X, Tian Q, Wang L, et al.: Radiomics strategy for molecular subtype stratification of lower-grade glioma: detecting IDH and TP53 mutations based on multimodal MRI. J Magn Reson Imaging 48: 916–926, 2018

43) Shofty B, Artzi M, Bashat DB, et al.: MRI radiomics analysis of molecular alterations in low-grade gliomas. Int J Comput Assist Radiol Surg 13: 563–571, 2018

44) Eichinger P, Alberts E, Delbridge C, et al.: Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas. Sci Rep 7: 13396, 2017

45) Liu X, Mangla R, Tian W, et al.: The preliminary radiogenomics association between MR perfusion imaging parameters and genomic biomarkers, and their predictive performance of overall survival in patients with glioblastoma. J Neurooncol 135: 553–560, 2017

46) Mazurowski MA, Clark K, Czarnek NM, Shames-fandabadi P, Peters KB, Saha A: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J Neurooncol 133: 27–35, 2017

47) Kickinge reder S, Saeh F, Radbruch A, et al.: IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 5: 16238, 2015

48) Akbari H, Bakas S, Pipas JA, et al.: In vivo evaluation of EGFRVII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 20: 1068–1079, 2018

49) Akkus Z, Ali I, Sedlář J, et al.: Predicting deletion of chromosomal arms 1p/19q in low-grade Gliomas from MR images using machine intelligence. J Digit Imaging 30: 469–476, 2017

50) Hu LS, Ning S, Eschbacher JM, et al.: Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol 19: 128–137, 2017

51) Jiang C, Kong Z, Liu S, et al.: Fusion radiomics features from conventional MRI predict MGMT promoter methylation status in lower grade gliomas. Eur J Radiol 121: 108714, 2019

52) Kanas VG, Zacharakis EI, Thomas GA, Zinn PO, Megaloookonomou V, Colen RR: Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma. Comput Methods Programs Biomed 140: 249–257, 2017
53) Kickingeder P, Bonekamp D, Nowosielski M, et al.: Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. *Radiology* 281: 907–918, 2016

54) Kocak B, Durmaz ES, Ates E, et al.: Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status. *Eur Radiol* 30: 877–886, 2020

55) Korfiatis P, Kline TL, Coufalova L, et al.: MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. *Med Phys* 43: 2835–2844, 2016

56) Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ: Residual deep convolutional neural network predicts MGMT methylation status. *J Digit Imaging* 30: 622–628, 2017

57) Li Y, Liu X, Qian Z, et al.: Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. *Eur Radiol* 28: 2960–2968, 2018

58) Alis D, Bagcilar O, Senli YD, et al.: Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. *Jpn J Radiol* 38: 135–143, 2020

59) Li Y, Qian Z, Xu K, Wang K, Fan X, Li S, et al.: MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. *Neurolmage Clin* 17: 306–311, 2018

60) Li Y, Liang Y, Sun Z, et al.: Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging. *Neuroradiology* 61: 1229–1237, 2019

61) Li Z, Wang Y, Yu J, Guo Y, Cao W: Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. *Sci Rep* 7: 5467, 2017

62) Li ZC, Bai H, Sun Q, et al.: Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. *Eur Radiol* 28: 3640–3650, 2019

63) Liu C, Zhang H, Pan Y, Huang F, Xia S: Towards MIB-1 and p53 detection in glioma magnetic resonance image: a novel computational image analysis method. *Phys Med Biol* 57: 8393–8404, 2012

64) Ozturk-Islık E, Congiz S, Ozcan A, et al.: Identification of IDH and TERTp mutation status using 1H-MRS in 112 hemispheric diffuse gliomas. *J Magn Reson Imaging* 51: 1799–1809, 2020

65) Ren Y, Zhang X, Rui W, et al.: Noninvasive prediction of IDH1 mutation and ATRX expression loss in low-grade gliomas using multiparametric MR radiomic features. *J Magn Reson Imaging* 49: 808–817, 2018

66) van der Voort SR, Incokara F, Wijnenga MMJ, et al.: Predicting the 1p/19q codeletion status of presumed low-grade glioma with an externally validated machine learning algorithm. *Clin Cancer Res Official J Am Assoc Cancer Res* 25: 7453–62, 2019

67) Wu G, Chen Y, Wang Y, et al.: Sparse representation-based radiomics for the diagnosis of brain tumors. *IEEE Trans Med Imaging* 37: 893–905, 2017

68) Xi YB, Guo F, Xu ZL, et al.: Radiomics signature: a potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. *J Magn Reson Imaging* 47: 1380–1387, 2018

69) Yamashita K, Hatae R, Hiwatashi A, et al.: Predicting TERT promoter mutation using MR images in patients with wild-type IDH1 glioblastoma. *Diagn Interv Imag* 100: 411–419, 2019

70) Yogananda CGB, Shah BR, Vejdani-Jahromi M, et al.: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. *Neuro Oncol* 22: 402–411, 2019

71) Yu J, Shi Z, Lian Y, et al.: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. *Eur Radiol* 27: 3509–3522, 2017

72) Zhou H, Vallières M, Bai HX, et al.: MRI features predict survival and molecular markers in diffuse lower-grade gliomas. *Neuro Oncol* 19: 862–870, 2017

73) Bisdas S, Shen H, Thust S, et al.: Texture analysis and support vector machine-assisted diffusion kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction: a preliminary study. *Sci Rep* 8: 6108, 2018

74) Choi KS, Choi SH, Jeong B: Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network. *Neuro Oncol* 21: 1197–1209, 2019

75) Chen L, Zhang H, Lu J, et al.: Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas. *IEEE Trans Med Imaging* 37: 1775–1787, 2018

76) Hajianfar G, Shiri I, Maleki H, et al.: Noninvasive O6 methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. *World Neurosurg* 132: e140–e161, 2019

77) Looze CD, Beausang A, Cryan J, et al.: Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status. *J Neuro Oncol* 139: 491–499, 2018

78) Fellah S, Caudal D, De Paula AM, et al.: Multimodal MR imaging (diffusion, perfusion, and spectroscopy): is it possible to distinguish oligodendrogial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis? *AJNR Am J Neuroradiol* 34: 1326–1333, 2013

79) Han Y, Xie Z, Zang Y, et al.: Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. *J Neurooncol* 140: 297–306, 2018

80) Haubold J, Demircioglu A, Gratz M, et al.: Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI

Neurol Med Chir (Tokyo) 61, September, 2021
and MR fingerprinting. *Eur J Nucl Med Mol Imaging* 47: 1435–1445, 2020

81) Kickingereder P, Burth S, Wick A, et al.: Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. *Radiology* 280: 880–889, 2016

82) Megyesi JF, Kachur E, Lee DH, et al.: Imaging correlates of molecular signatures in oligodendrogliomas. *Clin Cancer Res* 10: 4303–4306, 2004

83) Kim JW, Park CK, Park SH, et al.: Relationship between radiological characteristics and combined 1p and 19q deletion in World Health Organization grade III oligodendroglial tumours. *J Neurology Neurosurg Psychiatry* 82: 224–227, 2011

84) Jenkinson MD, du Plessis DG, Smith TS, Joyce KA, Warnke PC, Walker C: Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. *Brain* 129: 1884–1891, 2006

85) Patel SH, Poisson LM, Brat DJ, et al.: T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas: a TCGA/TCIA Project. *Clin Cancer Res* 23: 6078–6085, 2017

86) Broen MPG, Smits M, Wijnenga MMJ, et al.: The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. *Neuro Oncol* 20: 1393–1399, 2018

87) Jain R, Johnson DR, Patel SH, et al.: Real world’ use of a highly reliable imaging sign: ‘T2-FLAIR mismatch’ for identification of IDH mutant astrocytomas. *Neuro Oncol* 22: 936–943, 2020

88) Juratli TA, Tummala SS, Riedl A, et al.: Radiographic assessment of contrast enhancement and T2/FLAIR mismatch sign in lower grade gliomas: correlation with molecular groups. *J Neurooncol* 141: 327–35, 2019

89) Takahashi S, Takahashi M, Kinoshita M, et al.: Fine-tuning approach for segmentation of gliomas in brain magnetic resonance images with a machine learning method to normalize image differences among facilities. *Cancers* 13: 1415, 2021

90) Kinoshita M, Uchikoshi M, Sakai M, Kanemura Y, Kishima H, Nakanishi K: T2-FLAIR mismatch sign is caused by long T1 and T2 of IDH-mutant, 1p19q non-codeleted astrocytoma. *Magn Reson Med Sci* 20: 119–123, 2021

91) Kinoshita M, Arita H, Takahashi M, et al.: Impact of inversion time for FLAIR acquisition on the T2-FLAIR mismatch detectability for IDH-mutant, non-CODEL astrocytomas. *Front Oncol* 10: 596448, 2021

92) Dasgupta A, Geraghty B, Maralani PJ, et al.: Quantitative mapping of individual voxels in the peritumoral region of IDH-wildtype glioblastoma to distinguish between tumor infiltration and edema. *J Neuro Oncol* 153: 251–261, 2021

93) Park YW, Choi D, Park JE, et al.: Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. *Sci Rep* 11: 2913, 2021

94) Cai J, Zheng J, Shen J, et al.: A radiomics model for predicting the response to bevacizumab in brain necrosis after radiotherapy. *Clin Cancer Res* 26: 5438–5447, 2020

95) Ma D, Gulani V, Seiberlich N, et al.: Magnetic resonance fingerprinting. *Nature* 495: 187–192, 2013

96) Assländer J: A perspective on MR fingerprinting. *J Magn Reson Imaging* 53: 676–685, 2021

97) Badve C, Yu A, Dastmalchian S, et al.: MR fingerprinting of adult brain tumors: initial experience. *AJNR Am J Neuroradiol* 38: 492–499, 2017

Corresponding author: Manabu Kinoshita, MD, PhD
Department of Neurosurgery, Asahikawa Medical University, 2-1-1-1 Midorigaokahigashi, Asahikawa, Hokkaido 078-8510, Japan.
e-mail: mail@manabukinoshita.com