The Prospective Use of Essential Oil from Herbs as Feed Additive for Laying Poultry: A Review

E Widodo

1 Faculty of Animal Science, University of Brawijaya, Jl. Veteran, Malang 65145, Indonesia
eko.widodo@ub.ac.id

Abstract. Entering the era of AGP replacer has made researchers to find alternative products which are comparable to AGP. Some attempts have been made, but it seems the use of herb essential oil (EO) to be very prospective. Some commonly used herbs products evaluated are for example cinnamon, aniseed, olive and oregano. The products are often used in the form of essential oil mixture (EOM) rather than single product. This paper aimed to review the utilization of herb EO and ground herb containing EO toward poultry laying performance. The mechanism of action related to antimicrobial action assessed toward the possible improvement in laying performance. It is concluded that the use of herb EO and ground herb containing EO might replace the use of AGP, but it should be carefully done, because the success in improving laying performance is influenced by the type and dose of herb EO and ground herb containing EO used in the feed.

1. Introduction
Demand of animal protein has significantly increased to support the world human population. Increase income of people also contributes to demand of animal protein, especially if considering the relatively cheap price of poultry meat and egg. In term of laying poultry, increase egg production and quality becomes priority. Therefore, entering new era of policy in Indonesia which banned the use of Antibiotic Growth Promoter (AGP) has stimulated development on the use of antibiotic replacers.

Among antibiotic replacers, the use of essential oils (EO) is prospective. It might be used simply by using ground herb or could be extracted from different parts of plants and resulted some aromatic oils. EO has been reported to play a role as antibacterial, antifungal, antioxidant, digestive enhancer, and heat stress alleviation. Elaborative research emphasizing on antimicrobial effect of herb EO had been summarized by Krisnan and Narang [1], and specific for clove oil had been reported by Ayoola et al [2]. The effects of some EO and ground herb containing EO as AGP replacer and its effect on laying performance of poultry is summarized and reviewed in this paper.

2. Essential oil (EO)
The term of essential oil (EO) explains mixture of volatile substances obtained from plant or plant parts by the use of steam or destillation [3]. The composition of EO could be analyzed by using gas chromatography and mass spectrometry. However, the composition are quite diverse among different plant containing EO. The contents of essential oils could be mixture of hidrocarbons (terpenes,
sesquiterpenes, etc.) and oxygenated compounds (alcohol, esters, aldehydes, ketone, etc). The two or three compounds are usually dominant and present at fairly high concentration (up to 85%) in a specific ground herb or EO product. This information was summarized by Brenes and Roura [4]. In fact, unlike the ground herb or plant part or the commercial product of EO is sometime sold as mixture of two or more different EO sources.

3. Properties of essential oil (EO)
Related to laying productive traits, EO or EO containing herb or plant part has been widely known to exert antibacterial, antioxidant, digestive enhancer, lipid metabolism, etc. The current review only discusses about the antimicrobial properties of EO. It is believed that the main factors that could influence production of laying poultry is related to antimicrobial effect of EO. This oil is able to partly or totally kill pathogenic bacteria, for example an essential oil from cinnamon plant known as cinnamaldehyde was reported to strongly inhibit Clostridium perfringens and Bacteroides fragilis [5]. The mechanism by which essential oil kill pathogenic bacteria is not clearly understood. It might involve several mechanisms and its effectiveness seem to depend on pH, chemical structure of active substance(s), concentration, population and type of affected intestinal microorganism [1]. The antimicrobial inhibition activities, for example coumarin and alkaloids, might include disruption of cell membrane by terpenoids, phenolics, metal chelation by phenol and flavonoid [6]. EO beside limit or kill pathogenic bacteria, might also stimulate beneficial non-pathogenic microflora in poultry [7]. Loss of pathogenic bacteria would enhance absorption of nutrient from the intestine. In addition, population of non-pathogenic bacteria would also increase resulted better digestion and absorption of nutrient from the intestine. Such a mechanism would cause an increase in poultry production. Due to the work of EO might be support by low pH condition, low dose of EO combined with sodium butyrate effectively control Salmonella in broiler [8].

4. Effects of essential oil in laying poultry
Table 1. summarized the effect of different EO on laying poultry. The result indicates that effect of EO on laying performance varies among the experiments, so it has to be carefully justified before implementing the result into practice. The use of cinnamon oil, bergamot oil, myrtle oil, clove oil and some EOM seem to be promising to replace the use of AGP in poultry. Though the result indicates improvement in HDP for example, it still needs to be tested in commercial scale.

Type of Poultry	Level of inclusion	Effect	Reference
Laying Chicken	From 0 to 600 ppm EOM	Egg mass, egg weight and egg shell strength improved, but had no effect on body weight, feed intake and FCR	Olgun [9]
Laying Chicken	EOM 36 ppm with or without addition of 2 g organic acid	No effect on feed intake, FCR, egg production and egg weight. Immune responses were also not significantly different.	Özek et al., [10]
Laying Chicken	Cinnamon oil 40 ppm	No effect on feed intake and BWG but improved HDP, egg weight, egg mass and FCR under cold stress condition	Torki et al., [11]
Laying Chicken	Nigella sativa oil 1 to 3 ppm	No effect on feed intake, FCR, HDP and egg weight and quality, but with significant reduction of E coli in feces	Bölükbaş et al., [12]
Laying Chicken	Bergamot oil 1 to 3 ppm	No effect on feed intake, but significantly increased FCR, HDP and egg weight and egg breaking strength	Bölükbaş et al., [13]
Laying Chicken
EOM 24 g
No effect on HDP, egg weight and FCR, but significantly improved egg shell weight and oxidative stability of stored egg significantly improved by the use of 200 ppm Cinnamon oil. All treatments significantly improved fertility, but not hatchability.
Bozkurt et al., [14]

Laying Chicken
EOM 24 g
No effect on feed intake and FCR, but significantly improved egg weight and HDP
Bozkurt et al., [15]

Laying Quail
EOM 24 g
No effect on feed intake, egg weight, but significantly improved HDP and FCR
Çabuk et al., [16]

Laying Quail
Cinnamon oil 200 ppm, Rosemary oil 200 ppm or combination of Cinnamon and Rosemary oils of 100 ppm each
No effect on feed intake and egg weight, but HDP and FCR improved significantly by the use of 200 ppm Cinnamon oil. All treatments significantly improved fertility, but not hatchability.
Şimşek et al., [17]

Laying Quail
Myrtle oil from 500 to 5000 ppm
HDP significantly improved with up to 1000 ppm myrtle oil added, but at highest level (5000 ppm) FCR decreased significantly. No significant effect on fertility and hatchability
Bulbul et al., [18]

Laying Quail
0-600 ppm EO mixture
No effect on BWG, feed intake, FCR, egg production, fertility and hatchability, but with 50 ppm EO improved egg breaking streng without impairing shell thickness
Olgun and Yıldız [19]

Laying Quail
Oregano oil 5%
No effect on feed intake, FCR, egg weight
Cetingul et al., [20]

Laying Quail
Oregano oil 200 ppm, Rosemary oil 200 ppm, combination of Oregano and Rosemary oil
Significantly increased feed intake and FCR, improved HDP, but had no effect on egg weight if Oregano and Rosemary oil is combined in feed
Yesilbag et al., [21]

Laying Duck
Clove oil 200 ppm
Improved HDP, FCR and IOFC, but had no effect on feed intake and digestibility of nutrients
Widodo, et al., [22]

Note: EOM: essential oil mixture without information on ratio of each EO used

In this review, ground herbs which contains EO might affect laying performance of poultry is also summarized in Table 2. The current result indicates that leaves of anise, oregano, olive and their mixture might improve poultry laying performance, but again it has to be tested at commercial level before being commercialized.

Type of Poultry	Doses	Effect	Reference
Laying chicken	1 – 3% Olive ground leaf	No effect on HDP, egg weight and quality, but significantly improved yolk colour	Cayan and Erener [23]
Laying quail	Until 5% ground aniseed	No effect on egg production and egg quality, but increased feed intake and FCR. Immune response improved with increasing level of inclusion. Suggestion level was 4%	Baryam et al., [24]

Table 2. Summary of results on the effect of ground herb on laying poultry
5. Conclusion

It might be concluded that some EO and ground herb might be used as alternative for AGP, but it should take into account effective dose and careful justification of implementing the result in commercial poultry farm. The hygiene and more stable condition of poultry house and other means which could prevent outbreak of diseases should be important consideration of antibiotic removal policy from poultry farm.

References

[1] Krisnan G and Narang A 2014 Use of essential oils in poultry nutrition: a new approach Journal of Advance Veterinary Animal Research 1(4) 156-162
[2] Ayoola G A, Lawore F M, Adelowotan T, Aibinu I E, Adenipekun E, Coker H A B and Odugbemi T O 2008 Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove) African Journal of Microbiology Research 2 162-166
[3] Losa R 2001 The use of essential oils in animal nutrition Cahiers Options Mediterraneennes 54 39-44
[4] Brenes A and Roura E 2010 Essential oils in poultry nutrition: Main effects and modes of action Animal Feed Science and Technology 158(1-2) 1-14
[5] Lee H S and Ahn Y J 1998 Growing–inhibiting effects of Cinnamomum cassia bark derived materials on human intestinal bacteria Journal of Agriculture, Food and Chemistry 46 8–12
[6] Cowan M M 1999 Plant products as antimicrobial agents Clinical Microbiology Review 12 564-582
[7] Wenk C 2000 Recent advances in animal feed additives such as metabolic modifiers, antimicrobial agents, probiotics, enzymes and highly available minerals Asian Australasian Journal of Animal Sciences 13 86-95
[8] Cerisuelo A, Marin C, Sánchez-Vizcaino F, Gómez E A, de-la-Fuente J M, Durán R and Fernández C 2014 The impact of a specific blend of essential oil components and sodium butyrate in feed on growth performance and Salmonella counts in experimentally challenged broilers Poultry Science 93 599-606
[9] Olgun O 2016 The effect of dietary essential oil mixture supplementation on performance, egg quality and bone characteristics in laying hens Annals of Animal Science 16(4) 1115-1125
[10] Özek K, Wellmann K T, Ertekin B and Tamm B 2011 Effects of dietary herbal essential oil mixture and organic acid preparation on laying traits, gastrointestinal tract characteristics, blood parameters and immune response of laying hens in a hot summer season Journal of Animal and Feed Sciences 20(4) 575-586
[11] Torki M, Akkari M and Kaviani K 2015 Single and combined effects of zinc and cinnamon essential oil in diet on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition International Journal of Biometeorology 59(9) 1169-1177
[12] Bölükbaşi S C, Kaynar O, Erhan M K and Urupan H 2009 Effect of feeding Nigella sativa oil on laying hen performance, cholesterol and some proteins ratio of egg yolk and Escherichia coli count in feces Archiv für Geflügelkunde 73(3) 167-172
[13] Bolükbasi ŞC, Ürüşan H, Erhan M K and Kızıltuńç A 2010 Effect of dietary supplementation with bergamot oil (Citrus bergamia) on performance and serum metabolic profile of hens, egg quality and yolk fatty acid composition during the late laying period European Journal of Poultry Science 74 172-177

[14] Bozkurt M, Küçüküyilmaz K, Catlı A U, Çınar M, Bintaş E and Çöven F 2012 Performance, egg quality, and immune response of laying hens fed diets supplemented with mannan-oligosaccharide or an essential oil mixture under moderate and hot environmental conditions Poultry Science 91(6) 1379-1386

[15] Bozkurt M, Küçüküyilmaz K, Pamukçu M, Çabuk M, Alcicceck A and Catlı A U 2012 Long-term effects of dietary supplementation with an essential oil mixture on the growth and laying performance of two layer strains Italian Journal of Animal Science 11(1) e5

[16] Çabuk M, Ertaş S, Alciceck A and Bozkurt M 2014 Effects of herbal essential oil mixture as a dietary supplement on egg production in quail The Scientific World Journal 2014 573470

[17] Şimşek U, Ciftci M, Özcélilik M, Azman M A, Tonbak F and Özhan N 2015 Effects of cinnamon and rosemary oils on egg production, egg quality, hatchability traits and blood serum mineral contents in laying quails (Coturnix coturnix Japonica) Ankara Üniv Vet Fak Derg 62 229-236

[18] Bulbul T, Yesilbag D, Ulutas E, Biricik H, Gezen S S and Bulbul A 2014 Effect of myrtle (Myrtus communis L.) oil on performance, egg quality, some biochemical values and hatchability in laying quails Revue de Medecine Veterinaire 165 280-288

[19] Olgun O and Yıldız A Ö 2014 Effect of dietary supplementation of essential oil mixture on performance, eggshell quality, hatchability, and mineral excretion in quail breeders Environmental Science and Pollution Research 21(23) 13434-13439

[20] Cetingul I S, Bayram I, Akkaya A B, Uyarlar C, Yardımcı M, Şahin E H and Şengör E 2007 Utilisation of oregano (Origanum onites) in laying quails (Coturnix coturnix japonica) (2): The effects of oregano on performance, carcass yield, liver and some blood parameters Arch. Zootech 10 57-65

[21] Yesilbag D, Gezen S S, Biricik H and Meral Y 2013 Effects of dietary rosemary and oregano volatile oil mixture on quail performance, egg traits and egg oxidative stability British Poultry Science 54(2) 231-237

[22] Widodo E, Natsir M H, Djunaidi I H and Pitono R 2019 Effect of sardine oil and tomato powder with or without addition of clove oil on laying duck performances and digestibilities of nutrients International Journal of Engineering and Applied Science. 8(3s) 361-363

[23] Cayan H and Erener G 2015 Effect of olive leaf (Olea europaea) powder on laying hens performance, egg quality and egg yolk cholesterol levels Asian-Australasian Journal of Animal Sciences 28(4) 538

[24] Bayram I, Cetingul I S, Akkaya B and Uyarlar C 2007 Effects of aniseed (Pimpinella anisum L.), on egg production, quality, cholesterol levels, hatching results and the antibody values in blood of laying quails (Coturnix coturnix japonica) Archiva Zootecnia 10 73-77

[24] Christaki E V, Bonos E M and Florou-Paneri P C 2011 Comparative evaluation of dietary oregano, anise and olive leaves in laying Japanese quails Brazilian Journal of Poultry Science 13(2) 97-101

[25] Christaki E, Bonos E and Florou-Paneri P 2011 Effect of dietary supplementation of olive leaves and/or α-tocopheryl acetate on performance and egg quality of laying Japanese quail (Coturnix japonica) Asian Journal of Animal and Veterinary Advances 6(12) 1241-1248

[26] Cetingul I S, Bayram I, Yardımcı M, Şahin E H, Sengör E, Akkaya A B and Uyarlar C 2009 Effects of oregano (Origanum onites) on performance, hatchability and egg quality parameters of laying quails (Coturnix coturnix japonica) Italian Journal of Animal Science 8(3) 467-477