RESEARCH LETTER

Ambulatory and Home Blood Pressure Monitoring in Hemodialysis Patients: A Mixed-Methods Study Evaluating Comparability and Tolerability of Blood Pressure Monitoring

To the Editor:

Out-of-dialysis unit blood pressure (BP) measurement is a better predictor of adverse outcomes compared with traditional dialysis unit BP measurement among patients receiving thrice-weekly in-center hemodialysis.4–6 Forty-four–hour ambulatory BP monitoring in maintenance hemodialysis patients provides valuable prognostic information but is often not practical in clinical practice.5 Home BP monitoring may be better suited for longitudinal BP monitoring to guide hypertension management.6,7 However, limited evidence exists regarding the tolerability of ambulatory versus home BP in hemodialysis patients.6,9

We evaluated data from the Blood Pressure Lowering in Dialysis (BOLD) Trial (NCT03459807), a pilot randomized trial in which participants were randomly assigned to targeting a home systolic BP (SBP) versus predialysis SBP < 140 mm Hg.10 Fifty hemodialysis patients were recruited, of whom 31 (N = 16 in the home BP arm, N = 15 in the dialysis-unit BP arm) agreed to optional 44-hour ambulatory BP monitoring (Item S1). Participants completed questionnaires about their experience with ambulatory and home BP monitoring. Data were obtained in the 2 weeks before the intervention, including mean predialysis BP (up to 6 treatments), 2 midweek home BP measurements (each the mean of 3 readings), and 44-hour ambulatory BP monitoring. The study received institutional review board approval at both sites (USCF IRB #16–20963 and UW IRB #00003248), and all participants provided informed consent.

Mean age of participants who performed ambulatory BP monitoring was 56 ± 14 years and 13 (42%) were Black (Table 1). Mean predialysis SBP was 146 ± 19 mm Hg, 44-hour ambulatory SBP was 140 ± 21 mm Hg, daytime SBP was 141 ± 20 mm Hg, and nighttime SBP was 134 ± 25 mm Hg. Twenty-four (77%) participants did not experience an appropriate 10% nocturnal BP decline (non-dippers), including 7 (23%) who experienced an increase in nocturnal BP (reverse dippers). The mean number of successful ambulatory BP readings was 67 ± 16 over 44 hours. Three (10%) of the 31 participants had fewer than 15 BP readings and did not wear the monitor beyond the first day.

In participants who performed both ambulatory and home BP monitoring (N = 16), when asked to provide unstructured comments about their BP monitoring experiences (Table 2), participants most commonly described ambulatory BP monitoring as uncomfortable (eg, “… at times the pressure was way too high and unbearable”), intrusive (eg, “Hard to perform daily tasks within the 30-minute interval during the day. I had to stop what I was doing and I lost my train of thought”), or difficult to use (eg, “The cord is too long, I kept sitting on it”). In contrast, participants described home BP monitoring more positively, praising the ease of using the monitors and the new knowledge gained (eg, “It was fun and gave me knowledge of my own BPs”) and referencing planned ongoing use (eg, “I really liked the home BP monitor! I’d like to own one as a result of the study”). While some

Table 1. Characteristics of BOLD Trial Participants Who Underwent Ambulatory and Home BP Monitoring at Baseline

Characteristic	All Participants Who Underwent 44-h Ambulatory BP Monitoring (n = 31)	Subset of Participants Who Underwent Both Ambulatory and Home BP Monitoring (n = 16)
Mean age, y	55.5 ± 13.5	56.6 ± 13.6
Black race	13 (42%)	7 (44%)
Mean home SBP, mm Hg; n = 16	142.1 ± 25.0	142.1 ± 25.0
Mean predialysis SBP, mm Hg	145.7 ± 18.9	142.3 ± 14.9
44-h ambulatory BP monitoring		
No. of readings	66.8 ± 15.7	69.5 ± 15.4
44-hmean SBP, mm Hg	139.7 ± 20.7	140.5 ± 20.7
44-h mean DBP, mm Hg	75.7 ± 12.4	73.9 ± 13.3
44-h mean heart rate, beats/min	79.1 ± 9.5	76.6 ± 9.5
44-h SBP average real variability	13.7 ± 3.7	13.7 ± 3.1
Daytime mean SBP, mm Hg	141.4 ± 20.0	142.2 ± 20.0
Daytime mean DBP, mm Hg	77.2 ± 12.4	75.3 ± 13.8
Nighttime mean SBP, mm Hg	133.7 ± 24.7	136.9 ± 24.6
Nighttime mean DBP, mm Hg	71.2 ± 13.6	70.2 ± 13.9
Nondippers	24 (77%)	14 (88%)
Reverse dippers	7 (23%)	4 (25%)

Note: Values expressed as mean ± standard deviation or number (percent).
Abbreviations: BOLD, Blood Pressure Lowering in Dialysis; BP, blood pressure; DBP, diastolic blood pressure; SBP, systolic blood pressure
participants expressed minor concerns regarding the home BP monitoring device (e.g., “It is just heavy and bulky”), none of the participants described it as uncomfortable or intrusive. On being asked to perform repeat ambulatory BP monitoring 4 months after randomization, 10 (32%) participants did not agree to repeat the monitoring.
Home BP demonstrated the strongest correlation with ambulatory daytime SBP in the initial 24 hours post-dialysis (Fig S1; r=0.76; 95% CI, 0.43 to 0.91; Fig S2, mean difference, 3.8; 95% limits, −27.9 to 35.5 mm Hg). Predialysis SBP did not correlate well with 44-hour ambulatory SBP (r=0.47; 95% CI, −0.03 to 0.78). Comparing ambulatory versus home BP (Table S1), 2 participants were reclassified from controlled (normal out-of-dialysis and normal predialysis BP) to masked (elevated out-of-dialysis, normal predialysis BP) hypertension, 1 was reclassified from white-coat (normal out-of-dialysis, elevated predialysis BP) to uncontrolled (elevated out-of-dialysis and elevated predialysis BP) hypertension, and 1 was reclassified from masked to controlled hypertension; concordance was seen in 12 of 16 participants.

In conclusion, we observed that home BP monitoring was better tolerated than ambulatory monitoring and identified several themes regarding the tolerability and acceptability of home and ambulatory BP monitoring in hemodialysis patients. Of the subset of participants who agreed to undergo ambulatory BP monitoring, many were unwilling to have repeat monitoring. Ambulatory BP monitoring was described by several participants as uncomfortable and intrusive in daily activities. Alternatively, home BP monitoring was described as easy to perform, with individuals demonstrating high rates of adherence (97.4% during 16 weeks10) and expressing motivation to continue monitoring after the study. BP values obtained by home monitoring were better correlated with those obtained by ambulatory monitoring than predialysis BP. Nonetheless, there may be differences in BP values obtained by home versus ambulatory BP monitoring. Home BP monitoring may be a practical alternative to ambulatory BP monitoring for longitudinal monitoring and management of hypertension in hemodialysis patients.7,9

Jordana B. Cohen, Chi-yuan Hsu, David Glidden, Lori Linke, Farshad Palad, Hanna L. Larson, Rajnish Mehrotra, Raymond R. Townsend, Nisha Bansal

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

Figure S1: Correlation of baseline ambulatory, home, and predialysis systolic BP measurements using: (A) 44-hour ambulatory BP monitoring and (B) initial 24-hour postdialysis ambulatory BP monitoring

Figure S2: Bland-Altman plots demonstrating patient-level differences between home BP values and (A) 44-hour ambulatory BP values and (B) daytime ambulatory BP values in the initial 24-hours post-dialysis

Item S1: Supplementary methods

Table S1: Changes in classification of out-of-office BP parameters compared with predialysis BP between home and ambulatory BP monitoring.

ARTICLE INFORMATION

Authors’ Full Names and Academic Degrees: Jordana B. Cohen, MD, MSCE, Chi-yuan Hsu, MD, MSc, David Glidden, PhD, Lori Linke, BS, Farshad Palad, MPH, Hanna L. Larson, MS, Rajnish Mehrotra, MD, MS, Raymond R. Townsend, MD, and Nisha Bansal, MD, MAS.

Authors’ Affiliations: Renal-Electrolyte and Hypertension Division (JBC, RRT) and Department of Biostatistics, Epidemiology, and Informatics (JBC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Division of Nephrology (CyH, FP) and Department of Biostatistics (DG), University of California-San Francisco, San Francisco, CA; and Kidney Research Institute, Division of Nephrology, Department of Medicine (LL, HLL), and Division of Nephrology (RM, NB), University of Washington, Seattle, WA.

Address for Correspondence: Jordana B. Cohen, MD, MSCE, University of Pennsylvania School of Medicine, 423 Guardian Drive, Blockley 831, Philadelphia, PA 19104. Email: jco@pennmedicine.upenn.edu

Authors’ Contributions: Research idea and study design: CyH, NB; data acquisition: CyH, NB, RM, LL, FP, HLL; data analysis/interpretation: JBC, DG, RRT. Each author contributed important intellectual content during manuscript drafting and revision, accepts personal accountability for the author’s own contributions, and agrees to ensure that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Support: K23-HL133843 (Dr Cohen), R21-DK114213 (Drs Hsu/Bansal), Satellite Health Care (Drs Hsu/Bansal).

Financial Disclosure: The authors declare that they have no relevant financial interests.

Acknowledgements: Northwest Kidney Centers, UCSF Mt. Zion Dialysis unit, San Francisco Satellite, Drs Stephen Gluck, Raymond Hsu, Lowell Lo.

Peer Review: Received August 19, 2020. Evaluated by 2 external peer reviewers with direct editorial input from the Statistical Editor and the Editor-in-Chief. Accepted in revised form December 27, 2020.

Publication Information: © 2021 The Authors. Published by Elsevier Inc. on behalf of the National Kidney Foundation, Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Published online February 23, 2021 with doi: 10.1016/j.kmed.2020.12.013

REFERENCES

1. Alborzi P, Patel N, Agarwal R. Home blood pressures are of greater prognostic value than hemodialysis unit recordings. Clin J Am Soc Nephrol. 2007;2:1228-1234.
2. Agarwal R, Peixoto AJ, Santos SF, Zoccali C. Pre- and post-dialysis blood pressures are imprecise estimates of interdialytic ambulatory blood pressure. Clin J Am Soc Nephrol. 2006;1:389-398.
3. Bansal N, McCulloch CE, Lin F, et al. Blood pressure and risk of cardiovascular events in patients on chronic hemodialysis: the CRIC Study (Chronic Renal Insufficiency Cohort). Hypertension. 2017;70:435-443.
4. Bansal N, McCulloch CE, Rahman M, et al. Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis: the Chronic Renal Insufficiency Cohort Study. Hypertension. 2015;65:99-100.
5. Jardine AG. Con: ambulatory blood pressure measurement in patients receiving haemodialysis: a sore arm and a waste of time? Nephrol Dial Transplant. 2015;30:1438-1441.
6. Anstey DE, Muntner P, Bello NA, et al. Diagnosing masked hypertension using ambulatory blood pressure monitoring, home blood pressure monitoring, or both? Hypertension. 2018;72:1200-1207.

7. Shimbo D, Artinian NT, Basile JN, et al. American Heart Association and the American Medical Association. Self-measured blood pressure monitoring at home: a joint policy statement from the American Heart Association and American Medical Association. Circulation. 2020;146:e42-e63.

8. da Silva GV, de Barros S, Abensur H, Ortega KC, Mion D Jr. Cochrane Renal Group Prospective Trial Register. Home blood pressure monitoring in blood pressure control among haemodialysis patients: an open randomized clinical trial. Nephrol Dial Transplant. 2009;24:3805-3811.

9. Shimbo D, Abdalla M, Falzon L, Townsend RR, Muntner P. Studies comparing ambulatory blood pressure and home blood pressure on cardiovascular disease and mortality outcomes: a systematic review. J Am Soc Hypertens. 2016;10:224-234 e17.

10. Bansal N, Glidden DV, Mehrotra R, et al. Treating home versus predialysis blood pressure among in-center hemodialysis patients: a pilot randomized trial. Am J Kidney Dis. 2020;77:12-22.