Tandem Duplication and Random Loss for mitogenome rearrangement in *Symphurus* (Teleost: Pleuronectiformes)

Wei Shi, Li Gong, Shu-Ying Wang, Xian-Guang Miao and Xiao-Yu Kong*

Abstract

Background: The mitochondrial genomes (mitogenomes) of flatfishes (Pleuronectiformes) exhibit highly diversified types of large-scale gene rearrangements. We have reported that the mitogenomes of *Crossorhombus azureus* (Bothidae), *Samariscus latus* (Samaridae) and *Cynoglossus* fishes (Cynoglossidae) show different types of gene rearrangements.

Results: In the present study, the complete mitogenomes of two *Symphurus* species (Cynoglossidae), *Symphurus plagiusa* and *Symphurus orientalis*, were determined. The gene order in the *S. plagiusa* mitogenome is the same as that of a typical vertebrate (without any gene rearrangements). Surprisingly, large-scale gene rearrangements have occurred in *S. orientalis*. In the rearranged fragment from the control region (CR) to the WANCY tRNA cluster (tRNA cluster of tRNA-W, tRNA-A, tRNA-N, tRNA-C and tRNA-Y) in the *S. orientalis* mitogenome, tRNA-V and tRNA-M have been translocated to the 3’ end of the 16S rRNA gene, with six large intergenic spacers over 20 bp in length. In addition, an origin for light-strand replication (O_L) structure that is typically located in the WANCY region was absent in both the *S. plagiusa* and *S. orientalis* mitogenomes. It is generally recognized that a sequence in the WANCY region that encodes tRNAs forms a hairpin structure (O_L-like structure) and can act as the O_L when the typical locus is lost. Moreover, an additional O_L-like structure was identified near the control region in the *S. plagiusa* mitogenome.

Conclusions: The positions of the intergenic spacers and the rearranged genes of the *S. orientalis* mitogenome strongly indicate that the mechanism underlying the rearrangement of this mitogenome was Tandem Duplication and Random Loss. Additionally, two O_L-like regions substituting for the typical locus were found in the *S. plagiusa* mitogenome. We speculate that the ancestral mitogenomes of *S. plagiusa* and *S. orientalis* also had this characteristic, such that if both O_L-like structures functioned during mitochondrial replication, they could initiate duplicate replications of the light strand (L-strand), leading to duplication of the region between the two structures. We consider that this mechanism may account for the gene duplication that occurred during the gene rearrangement process in the evolution of the ancestral mitogenome to the *S. orientalis* mitogenome.

Keywords: Flatfish, Mitogenome, Gene rearrangement, O_L-like structure, Mitochondrial replication

Background

Vertebrate mitochondrial genomes (mitogenomes) typically contain the same 37 genes [1]. The order of these genes is generally considered conservative in most vertebrate genomes; however, gene rearrangements also have been found in many taxa, such as birds [2-4], reptiles [5,6], amphibians [7,8], and fishes [9-11]. Teleosts, with the largest number of published complete mitogenome sequences, show only a few gene rearrangement events [9-13]. In most cases, a teleostean group has only one type or a set of similar gene rearrangements [9-14]. However, the flatfish (Pleuronectiformes) mitogenomes exhibit the most diversified types of large-scale gene rearrangements. In the mitogenomes of *Cynoglossus* fishes (tongue soles, Cynoglossidae), the control region is translocated, and a tRNA (transfer ribonucleic acid) gene is inverted [10]. In contrast, no gene rearrangements have been found in soles (Soleidae), the closest family to Cynoglossidae fishes [15-17]. The mitogenome of *Crossorhombus azureus* (Bothidae) contains genomic-scale

* Correspondence: xykong@iscio.ac.cn
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
© 2015 Shi et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
gene rearrangements characterized by the protein-coding gene ND6 and seven tRNA genes encoded on the light strand (L-strand; H- versus L-strands are defined by studies on AT- and GC-skewing [18,19]) that are clustered together [20]. A third type of gene rearrangement was detected in the Samariscus latus (Samaridae) mitogenome [21]. Distinct from the above-mentioned flatfishes, the gene rearrangement in this species is characterized by the duplication and translocation of the control region (CR); simultaneously, the genes located between the two CRs are divided into two clusters in which their relative gene orders have been maintained [21].

Several models have been proposed to explain gene rearrangements in animal mitogenomes. The Recombination model involves the breakage and rejoining of participating DNA strands [22]. The Tandem Duplication and Random Loss (TDRL) model posits that rearrangements of mitochondrial gene order occurred via tandem duplications of certain genes followed by random deletion of some of the duplications [23,24]. Two additional hypotheses are described in the Tandem Duplication and Non-Random Loss (TDNRL) [25] and tRNA mis-priming models [26,27]. For the gene rearrangements in flatfishes, none of the models mentioned above can provide a perfect explanation. Thus, Kong et al. [10] developed a model of inverse duplication and deletion of redundant genes to explain the gene rearrangements in tongue soles. Subsequently, Shi et al. [20] proposed the Dimer-Mitogenome and Non-Random Loss model (DMNR), which inferred the course of gene rearrangements in C. azureus. Recently, for the rearrangement events in the S. latus mitogenome, Shi et al. [21] proposed the Double Replications and Random Loss model.

Of these mechanisms proposed to explain mitochondrial gene rearrangements, the TDRL model is generally considered the most popular and important in vertebrates [9,23,24,28,29]. Generally, when decrypting gene rearrangements with the TDRL model, it is always necessary to propose multiple duplication and loss steps. It is therefore difficult to trace which steps preserved the functional genes and which DNA segments degenerated to pseudogenes or intergenic spacers. In other words, large-scale gene rearrangements cannot readily yield integrated evidence for the TDRL model [9,23,24,28,29]. San Mauro et al. [29] also indicated that the evidence for this model in the form of duplicated genes that either remain functional or have become pseudogenes in the process of being eliminated is rather limited.

In the present study, the complete mitogenomes of two flatfishes, Symphurus plagiusa and Symphurus orientalis, were sequenced. Surprisingly, the gene order of the S. plagiusa mitogenome resembles that of a typical vertebrate (un-rearranged gene order), whereas that of S. orientalis shows large-scale gene rearrangements. This is the first report of mitogenomes with a typical gene order and large-scale gene rearrangements within the same teleost genus. The characteristics of the gene order and intergenic spacers in S. orientalis provide clear evidence for the TDRL model, accounting for the gene rearrangements in the S. orientalis mitogenome.

Methods

Ethics statement

Ethical approval was not required for the present study because the examined specimens were commonly captured marine economic fishes, and all of the fish specimens were already dead when we obtained them and were sourced from commercial fisheries. Additionally, these species were not included in the IUCN list of endangered species (http://www.iucnredlist.org).

Sampling, DNA extraction, PCR and sequencing

Specimens of S. plagiusa and S. orientalis were collected from Tampa Bay, Florida (USA) and Taiwan (China), respectively. A portion of the epaxial musculature was excised from fresh specimens and immediately stored at −70°C. Total genomic DNA was extracted using the SQ Tissue DNA Kit (OMEGA) following the manufacturer’s protocol. Based on alignments and comparisons of complete mitochondrial sequences from flatfishes, dozens of primer pairs were designed for amplification of the mtDNA genomes (Additional file 1: Table S1 and Additional file 2: Table S2). More than 30 bp of overlapping fragments between tandem regions were used to ensure correct assembly and integrity of the complete sequence.

PCR (polymerase chain reaction) was performed in a 25 μl reaction volume containing 2.0 mM MgCl₂, 0.4 mM of each dNTP, 0.5 μM of each primer, 1.0 U Taq polymerase (Takara, China), 2.5 μl of 10× Taq buffer, and approximately 50 ng of DNA template. PCR cycling conditions included an initial denaturation at 95°C for 3 min, followed by 30–35 cycles of denaturation at 94°C for 45 s, annealing at 45–55°C for 45 s, and elongation at 68–72°C for 1.5–5 min. The PCR reactions were completed by a final extension at 72°C for 5 min. The PCR products were purified with the Takara Agarose Gel DNA Purification Kit (Takara, China) and used directly as templates for cycle sequencing reactions. Sequence-specific primers were further designed and used as walking primers for both strands of each fragment on an ABI 3730 DNA sequencer (Applied Biosystems, USA). The mtDNA sequences of S. plagiusa and S. orientalis have been submitted to GenBank under the accession numbers JQ639061 and KP992899, respectively.

Sequence analysis

Sequenced fragments were assembled to create complete mitochondrial genomes using CodonCode Aligner v3 and BioEdit v7 [30]. During the processing of
large fragments and walking sequences, regular manual examinations were performed to ensure reliable assembly of the genome sequence. Annotation and boundary determination of protein-coding and tRNA (Ribosomal ribonucleic acid) genes were performed using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov). tRNA genes and their secondary structures were identified using tRNAscan-SE 1.21 [31], setting the cut-off values to 1 when necessary.

Results

Features of the genomes

The complete mitogenomes of S. plagiusa and S. orientalis were 17040 bp and 17498 bp in length, respectively, and contained 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes as well as one CR. Most of these genes were encoded by the heavy strand (H-strand), except ND6 and eight tRNA genes, which were encoded on the L-strand (Table 1). The 22 tRNA genes were interspersed among rRNAs and protein-coding genes, and all tRNAs can be folded into typical cloverleaf structures. The location of the CR was between the tRNA-P and tRNA-F genes, as is typical for teleosts. Compared with the CR sequences of the other flatfishes, the symbolic structures of the two Symphurus CRs were present as in other bony fishes [16,20,21,32,33]. The typical origin for L-strand replication (Oₜ), which is usually located inside the WANCY cluster (tRNA cluster of tRNA-W, tRNA-A, tRNA-N, tRNA-C and tRNA-Y), was not found in either of the two Symphurus mitogenomes at this location.

Two different mitochondrial gene orders in the genus Symphurus

The gene order of the S. plagiusa mitogeneome is the same as that of a typical vertebrate, while that of S. orientalis contains large-scale gene rearrangements. This phenomenon is rare in vertebrates and the first report in teleosts. The difference between the two mitogenomes lies between the CR and the WANCY region. The gene order of this region in the S. plagiusa mitogenome is CR-F-12S-V-16S-L1-ND1-I-Q-M-ND2-WANCY, which is the same as that of a typical vertebrate, while this region has been rearranged to CR-F-12S-16S-M-V-L1-ND1-I-Q-ND2-WANCY in the S. orientalis mitogenome.

In the rearranged fragment spanning the region from the CR to the WANCY region in the S. orientalis mitogenome, six large intergenic spacers greater than 20 bp in length remain: Gap A, between 12S and 16S (65 bp); Gap B, between 16S and tRNA-M (98 bp); Gap C, between tRNA-M and tRNA-V (100 bp); Gap D, between tRNA-V and tRNA-L1 (31 bp); Gap E, between tRNA-Q and ND2 (117 bp); and Gap F, between ND2 and tRNA-W (37 bp).

Discussion

Which mechanisms account for the gene rearrangements in S. orientalis mitogenome?

To date, approximately 1,500 complete mtDNA sequences have been determined in teleosts, and several types of gene rearrangements have been reported [17,33-36]. In the taxa showing gene rearrangements, species across the entire taxon typically show the same or similar rearrangement events [4,6,14]. That is, at the intra-family or intra-genus level, few groups include species with the typical (unchanged) gene order together with species with large-scale gene rearrangements. Nevertheless, this unique phenomenon occurs in the flatfish genus Symphurus, as described above.

Of the models that have been proposed to explain gene rearrangements in animal mitogenomes, which model most likely applies to the S. orientalis mitogenome? The recombination model is only suitable for block interchanges of small fragments, and this model is quite rare in the mitochondrial genome. As for the tRNA mis-priming [26,27] and TDNL models [25], there are no obvious corresponding model rules in the S. orientalis mitogenome.

Several species within three flatfish groups (Bothidae, Samaridae and Cynoglossidae) have been reported to possess different types of gene rearrangements. Among them, Cynoglossus fishes belong to Cynoglossidae, the same family as Symphurus. However, the rearrangements in the Cynoglossus mitogenomes are characterized by inverted tRNA genes, which were not present in the S. orientalis mitogenome. The rearrangement characteristics of the other flatfish groups also differ from those of S. orientalis.

We numbered the gene order of the S. plagiusa mitogenome (typical gene order) from CR to WANCY in the following series: CR–F (1)–12S (2)–V (3)–16S (4)–L1 (5)–ND1 (6)–I (7)–Q (8)–M (9)–ND2 (10)–W (11)–A (12)–N (13) CY. Following this scheme, the corresponding sequence of S. orientalis would be CR–F (1)–12S (2)–16S (4)–M (9)–V (3)–L1 (5)–ND1 (6)–I(7)–Q (8)–ND2 (10)–W (11)–A (12)–N (13) CY. Based on this numeric order, the genes from F to N (1–13) in S. orientalis can be divided into two gene clusters: 1–2–(4–9) and (3–5–6–7–8)–10–11–12–13, each of which retains the conserved relative gene order, from low to high. It is reasonable to assume that the two clusters were derived from a tandem-duplicated DNA fragment that spanned genes from at least V (3) to M (9) in the typical gene order. Thereafter, one of each pair of duplicated genes was randomly lost: 1–2–(3–4–5–6–7–8–9) (3–4–5–6–7–8–9)–10–11–12–13. Within the scope of our current knowledge, this rearrangement process represents the most parsimonious and reasonable hypothesis.
Table 1 Features of the mitogenomes of Symphurus plagiusa (Left) and Symphurus orientalis (Right)

Gene	Position From	To	Length (bp)	Intergenic region*	Strand	Gene	Position From	To	Length (bp)	Intergenic region	Strand
tRNA-Phe (F)	1	69	69	0	H	tRNA-Phe	1	71	71	0	H
12S	70	1016	947	0	H	12S	72	1020	949	65	H
tRNA-Val (V)	1017	1086	70	0	H	16S	1086	2796	70	100	H
16S	1087	2793	1707	0	H	tRNA-Met	2895	2964	70	100	H
tRNA-Leu^{LCA} (L)	2794	2866	73	0	H	tRNA-Val	3065	3136	72	31	H
ND1	2867	3841	975	2	H	tRNA-Leu^{LCA}	3168	3240	73	0	H
tRNA-Ile (I)	3844	3913	70	-2	L	ND1	3241	4212	972	7	H
tRNA-Gln (Q)	3912	3982	71	-1	L	tRNA-Ile	4220	4289	70	-2	H
tRNA-Met (M)	3982	4050	69	124	H	tRNA-Gln	4288	4358	71	117	L
ND2	4175	5227	1053	42	H	ND2	4476	5522	1047	37	H
tRNA-Trp (W)	5270	5339	70	0	H	tRNA-Trp	5560	5628	69	0	H
tRNA-Ala (A)	5340	5408	69	0	H	tRNA-Ala	5629	5697	69	0	L
tRNA-Asn (N)	5409	5479	71	2	L	tRNA-Asn	5698	5770	73	3	L
tRNA-Cys (C)	5482	5546	65	3	L	tRNA-Cys	5774	5839	66	4	L
tRNA-Tyr (Y)	5550	5616	67	1	L	tRNA-Tyr	5844	5910	67	10	L
COI	5618	7168	1551	19	L	COI	5921	7471	1551	0	H
tRNA-Ser^{LCA} (S1)	7169	7239	71	19	L	tRNA-Ser^{LCA}	7472	7542	71	19	L
tRNA-Asp (D)	7259	7327	69	4	L	tRNA-Asp	7562	7630	69	5	H
COII	7332	7925	594	96	H	COII	7636	8326	691	0	H
tRNA-Lys (K)	8022	8097	76	1	H	tRNA-Lys	8327	8400	74	2	H
ATP8	8099	8266	168	-10	H	ATP8	8403	8570	168	-10	H
ATP6	8257	8940	684	2	H	ATP6	8561	9244	684	-1	H
COIII	8943	9731	789	65	H	COIII	9244	10029	786	-1	H
tRNA-Gly (G)	9797	9864	68	0	H	tRNA-Gly	10029	10096	68	0	H
ND1	9865	10215	351	-2	H	ND1	10097	10447	351	-2	H
tRNA-Arg (F)	10214	10282	69	0	H	tRNA-Arg	10446	10514	69	0	H
ND4	10523	11953	1381	0	H	ND4	10805	12184	1380	1	H
tRNA-His (H)	11954	12022	69	0	H	tRNA-His	12186	12253	68	0	H
tRNA-Ser^{LSC} (S2)	12023	12090	68	2	H	tRNA-Ser^{LSC}	12254	12321	68	2	H
tRNA-Leu^{LCA} (L2)	12093	12164	72	0	H	tRNA-Leu^{LCA}	12324	12397	74	0	H
ND5	12165	13985	1821	-4	H	ND5	12398	14233	1836	4	H
ND6	13982	14500	519	0	L	ND6	14238	14756	519	0	L
tRNA-Glu (E)	14501	14569	69	2	L	tRNA-Glu	14757	14825	69	3	L
Cytb	14572	15711	1140	1	H	Cytb	14829	15969	1141	0	H
tRNA-Thr (T)	15713	15781	69	-1	H	tRNA-Thr	15970	16042	73	-1	H
tRNA-Pro (P)	15781	15849	69	0	L	tRNA-Pro	16042	16110	69	0	L
O₁-like Seq.	16983	17034	52 /	L	D-loop	16111	17498	1388	0	H	
D-loop	15850	17040	1191	0	H						

*Intergenic region: non-coding bases between the feature on the same line and the line below, with a negative number indicating an overlap.

The process of gene duplication

How did the duplication occur? Moreover, was the fragment from V (3) to M (9) or a longer fragment duplicated?

Many studies have reported similar duplications. For example, Fujita et al. [37] found that several lineages of parthenogenetic lizards harbor large, tandem duplications.
which are hypothesized to represent intermediate stages in gene rearrangement. These authors suggested that the slipped-strand mispairing mechanism could have been responsible for generating the duplications in the mitogenomes of these lizards.

A special phenomenon observed in the *Symphurus* mitogenomes indicates that the underlying mechanism is different from slipped-strand mispairing and can help us to explain this duplication process. Generally, there are only two stable non-coding regions in vertebrate mitogenomes: the CR and an approximately 40 nucleotide-long segment containing the origin for L-strand replication (O₁), which is usually located inside the WANCY cluster at approximately two thirds of the genomic distance away from the CR. At O₁, the parental H-strand is displaced as a single strand by the nascent H-strand and adopts a stable hairpin structure (Figure 1A) that serves as the initiation site for L-strand DNA synthesis. We searched all of the complete mitogenome sequences of flatfishes in the GenBank database and found that most contained conserved O₁ sequences, including *Cynoglossus* fishes (Figure 1A), which are in the same family as the *Symphurus* species and also show gene rearrangements. However, neither of the two *Symphurus* fish mitogenomes contains a typical O₁ region in the WANCY cluster.

O₁ sequence loss has been reported in some other vertebrate mitogenomes, and it was suggested that a sequence in the WANCY region that encodes a tRNA forms a hairpin structure (O₁-like structure) and acts as the O₁ [38-40]. Seligmann and Labra [41] tested whether a natural absence of an O₁ is associated with a greater capacity for the formation of O₁-like structures by WANCY tRNA genes in lepidosaurian taxa. These authors concluded that WANCY tRNA genes form more O₁-like structures in the absence of a regular O₁ than in its presence.

More interestingly, in the *S. plagiusa* mitogenome, within the CR and very close to tRNA-F, we found a hairpin structure that is very similar to the typical O₁ of vertebrate mitogenomes (Table 1 and Figure 1B). This finding means that while no typical O₁ region is present in the *S. plagiusa* mitogenome, there are two regions with the potential ability to form O₁-like structures and initiate the replication of the L-strand. The existence of multiple O₁s in vertebrate mitochondria has been demonstrated in many studies [42-44]. These features of multiple replication origins most likely also appeared in the mitogenome of the common ancestor of *S. plagiusa* and *S. orientalis* and were inherited by *S. plagiusa* due to its stable mitogenome structure. In contrast, these features would have been lost in the *S. orientalis* mitogenome because of the large-scale gene rearrangements. Therefore, in the ancestral mitogenome with the aforementioned dual O₁-like structures, if only one is functioning, mitochondrial replication would occur normally, but if both structures functioned at the same time, the region between the two structures could be duplicated.

Accordingly, we speculate that the two ends of the duplicated fragment fall in the WANCY region and at the 3’ end of the CR, which both contain O₁-like sequences. The duplication process would occur when both O₁-like structures are functional. During a mitochondrial replication, after the replication fork arising from the initiation of H-strand synthesis (Figure 2A) passed the WANCY region, where the typical O₁ is located in most vertebrates, the parental H-strand in this region was exposed as a single strand, and the WANCY tRNA sequence formed an O₁-like structure (O₁-like structure 1 in Figure 2B). This structure then initiated an L-strand DNA synthesis event at this site (Nascent L-strand 1 in Figure 2B). Coincidentally, when the replication fork continued to expand and passed the CR, the other O₁-like sequence was exposed and also formed a O₁-like structure (O₁-like structure 2 in Figure 2C), which then initiated a second round of L-strand DNA synthesis (Nascent L-strand 2 in Figure 2C). If both L-strand DNA synthesis events terminated at the WANCY region, the normal termination site, the fragment between the two O₁-like sequences would be synthesized twice (Figure 2D). By a circular closure event or mitochondrial repair, the 5’ end of Nascent L-strand 1 would connect to the 3’ end of Nascent L-strand 2, while the 3’ end of Nascent L-strand 1 would connect to the 5’ end of Nascent L-strand 2 (Figure 2E). In the next round of mitochondrial
replication, the duplication would be made permanent (Figure 2F).

Speculated TDRL process
The process of tandem duplication followed by random loss discussed above is typical of the TDRL model. Therefore, we applied the TDRL model to describe the rearrangement events that altered the typical gene order (as found in *S. plagiusa*) to that observed in the *S. orientalis* mitogenome. The hypothesized intermediate steps are as follows. First, the above-mentioned double O₁-like structures initiated DNA synthesis twice during mitochondrial replication, causing tandem duplication of the genes located between the CR and the WANCY region (1–13) (Figure 3A, B) in the ancestral mitogenome (Figure 3A: typical gene order). In this case, the mitogenome would then have contained two sets of the same gene cluster (Figure 3B: 1–13 and 1’–13’). Because the mitogenome only maintains one set of functional genes, during subsequent evolutionary events, one of each of the 13 duplicated gene pairs randomly lost its function and became a pseudogene (Figure 3B; gray boxes). These pseudogenes then accumulated additional mutations to become shorter non-coding sequences or even be lost from the genome. Eventually, the existing gene order of the *S. orientalis* mitogenome was established (Figure 3C).

Intergenic spacers provide evidence supporting the model
In the speculated process, after the five duplicated genes or gene clusters lost their functions, as shown in Figure 3B, they would have degraded to form five successive pseudogene fragments or shorter intergenic spacers (Figure 3B, gray boxes). In general, intergenic spacers vanish quickly because the degradation rate of non-functional genes is high to maintain the parsimony of mitogenomes. Interestingly, the speculated intergenic spacers did not disappear, and the positions of the five degraded gene fragments occur in one-to-one correspondence with those of the five residual intergenic spacers in the *S. orientalis* mitogenome: loss A in Figure 3B between 12S and 16S, which corresponds to Gap A in Figure 3C; loss B between 16S and

Figure 2 A duplication between the CR and the \(N \) gene caused by two O₁-like structures. (A) H-strand synthesis is initiated at an origin for light-strand replication (O₁). (B) L-strand synthesis is initiated at O₁-like structure 1 when the replication fork reaches approximately two thirds of the genomic distance from the CR. (C) H-strand synthesis is terminated, and O₁-like structure 2 initiates a second round of L-strand synthesis. (D) Both L-strand synthesis events are terminated at the WANCY region. (E) Connection of the 5’ end of Nascent L-strand 1 to the 3’ end of Nascent L-strand 2 and of the 3’ end of Nascent L-strand 1 to the 5’ end of Nascent L-strand 2. (F) The genes between the CR and \(N \) are, thus, duplicated.
tRNA-M, which corresponds to Gap B; loss C between tRNA-M and tRNA-V, which corresponds to Gap C; loss D between tRNA-V and tRNA-L1, which corresponds to Gap D; and loss E between tRNA-Q and ND2, which corresponds to Gap E. The one-to-one correspondence between the loss-of-function fragments and the residual intergenic spacers offers strong evidence supporting the speculated steps of gene duplication and loss in our model (Figure 3).

Conclusions
In summary, we determined the complete mitochondrial genomes of two Symphurus fishes, S. plagiusa and S. orientalis. The gene order of the S. plagiusa mitogenome is the same as that of a typical vertebrate, while that of S. orientalis features large-scale gene rearrangements. In the rearranged fragment from the CR to WANCY in the S. orientalis mitogenome, six large intergenic spacers more than 20 bp in length remain. The positions of these intergenic spacers occur at a one-to-one correspondence with the loss-of-function fragments in our speculated gene rearrangement model based on TDRL, providing strong evidence for both our model and the TDRL.

The two Symphurus fish mitogenomes share another special characteristic: they lack the typical O2 region that is conserved in most vertebrates. In addition, in the S. plagiusa mitogenome, there are two regions with the potential ability to form O2-like structures, which means that both could initiate replication of the L-strand. Accordingly, we speculate that the ancestral mitogenome also possessed these two O2-like structures and that during an ancient mitochondrial replication event, both O2-like structures initiated DNA synthesis and induced the doubled replication of the L-strand, leading to the duplication of the region between the two structures. The findings of this study are based only on the primary sequence structures of mitogenomes. To substantiate the speculations presented herein, it will be necessary to observe replication intermediates via electron microscopy or 2D-gel analysis.

Data accessibility
DNA sequences: GenBank accessions JQ639061 and KP992899.

Additional files

Additional file 1: Table S1. The primers used for fragment amplification of the Symphurus plagiusa mitogenome.

Additional file 2: Table S2. The primers used for fragment amplification of the Symphurus orientalis mitogenome.

Abbreviations
CR: Control region; WANCY: tRNA cluster of tRNA-W, tRNA-A, tRNA-N, tRNA-C and tRNA-Y; rRNA: Ribosomal ribonucleic acid; O1: Origin for light-strand replication; tRNA: Transfer ribonucleic acid; Mitogenome: mitochondrial genome; TDRL: Tandem Duplication and Random Loss; TDNL: Tandem Duplication and
Non-random Loss; DMNR: Dermer-Mitogenome and Non-Random Loss; mtDNA: Mitochondrial DNA; PCR: Polymerase chain reaction; H-strand: Heavy strand; L-strand: Light strand.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
WS collected the datasets, carried out a portion of the experiments, and drafted the manuscript. LG, SYW and XGM carried out a portion of the experiments. XXY directed the entire research project. All authors read and approved the final manuscript. All authors read and approved the final manuscript.

Acknowledgments
This work was supported by the Natural Science Foundation of China (grant numbers 31471979, 31071890 and 41206134). We thank Dr. Richard Paperno and his colleagues of the Florida Fish and Wildlife Commission and Dr. Kiwag-Tsao Shao and Dr. Maoying Li, who provided the samples.

Received: 15 January 2015 Accepted: 24 April 2015
Published online: 06 May 2015

References

1. Boore J. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–80.
2. Schmitzler EE, Tavera ES, Gonzales LA, Eberhard JR, Miyaki CY, Sanchez JJ, et al. Multiple independent origins of mitochondrial control region duplications in the order Plesiididae. Mol Phylogenet Evol. 2012;62(2):342–56.
3. Bensch S, Harild A. Mitochondrial genomic rearrangements in songbirds. Mol Biol Evol. 2000;17(1):107–13.
4. Verkuil Y, Piersma T, Baker AJ. A novel mitochondrial gene order in shorebirds (Scolopacidae, Charadriiformes). Mol Phylogenet Evol. 2010;57(1):141–6.
5. Mueller RL, Boore JL. Molecular mechanisms of extensive mitochondrial gene rearrangement in pleodontid salamanders. Mol Biol Evol. 2005;22(10):2104–12.
6. Okajima Y, Kumazawa Y. Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol. 2010;10:141.
7. Macey JR, Lason A, Ananjeva NB, Fang Z, Papenfuss TJ. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol. 1997;14(19):1–104.
8. Sano N, Kurabayashi A, Fujii T, Yonekawa H, Sumida M. Complete nucleotide sequence of the mitochondrial genome of Schlegel's tree frog Rhacophorus schlegelii (Family Rhacophoridae); duplicated control regions and gene rearrangements. Genes Genet Syst. 2005;80(3):213–24.
9. Inoue JS, Miya M, Tsukamoto K, Nishida M. Evolution of the deep sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated within the eels. Mol Biol Evol. 2003;20(11):1917–24.
10. Kong XY, Dong XL, Zhang YC, Shi W, Wang ZM, Yu ZY. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: control region translocation and a tRNA gene inversion. Genome. 2009;52(12):975–84.
11. Ponce M, Infante C, Jimenez-Cantizano RM, Perez L, Manchado M. Complete mitochondrial genome of the blackspot seabream, Pagrus bogaraveo (Perciformes: Sparidae), with high levels of length heteroplasy in the WANCY region. Gene. 2008;409(1–2):44–52.
12. Mabuchi K, Miya M, Satoh TP, Nishida M. Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae). J Mol Evol. 2004;59(3):287–97.
13. Ni JS, Jung SQ, Hwang DS, Lee YM, Lee JS. Unusual mitochondrial genome structure of the freshwater goby Odontobutis platypiscus: rearrangement of the rRNAs and an additional non-coding region. J Fish Biol. 2008;73(4):2414–28.
14. Gong L, Shi W, Li LZ, Kong XY. Rearrangement of mitochondrial genome in fishes. Zool Res. 2013;34(6):666–73.
15. Shi W, Jiang JX, Xiao XG, Kong XY. The complete mitochondrial genome sequence of Heteromyscentis japonicus (Pleuronectiformes: Soleidae). Mitochondrial DNA. 2013;1:1–2.
16. Manchado M, Catanese G, Ponce M, Funes V, Infante C. The complete mitochondrial genome of the Senegal sole, Solea senegalensis Kaup. Comparative analysis of tandem repeats in the control region among soles. DNA Seq. 2007;18(3):169–75.
17. Wang SH, Shi W, Wang ZM, Gong L, Kong XY. The complete mitochondrial genome sequence of Aesopus conirostris (Pleuronectiformes: Soleidae). Mitochondrial DNA. 2013;21:1–2.
18. Fonseca MM, Posada D, Harris DJ. Inverted replication of vertebrate mitochondria. Mol Biol Evol. 2008;25(5):805–8.
19. Fonseca MM, Harris DJ, Posada D. The Inversion of the Control Region in Three Mitogenomes Provides Further Evidence for an Asymmetric Model of Vertebrate mtDNA Replication. PLoS One. 2014;9(8), e106654.
20. Shi W, Dong XL, Wang ZM, Xiao XG, Wang S-Y, Kong XY. Complete mtgenome sequences of four flatfishes (Pleuronectiformes) reveal a novel gene arrangement of L-strand coding genes. BMC Evol Biol. 2013;13:173.
21. Shi W, Miao X-G, Kong X-Y. A novel model of double duplications and random loss accounts for rearrangements in the Mitogenome of Samaniscus latus (Teleostei: Pleuronectiformes). BMC Genomics. 2014;15(1):1352.
22. Lunt DH, Hyman BC. Animal mitochondrial DNA recombination. Nature. 1997;387(6630):247.
23. Arndt A, Smith MJ. Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. Mol Biol Evol. 1998;15(8):1009–16.
24. Moritz C, Dowling TE, Brown WM. Evolution of Animal Mitochondrial-DNA - Relevance for Population Biology and Systematics. Annu Rev Ecol Syst. 1987;18:269–92.
25. Lavrov DV, Boore JL, Brown WM. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol. 2002;19(2):163–9.
26. Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature. 1987;329(6142):853–5.
27. Jacobs HT, Herbert ER, Rankine J. Sea urchin egg mitochondrial DNA contains a short displacement loop (D-loop) in the replication origin region. Nucleic Acids Res. 1989;17(22):8049–65.
28. Beckenbach AT. Mitochondrial Genome Sequences of Nematocora (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly. Genome Biol Evol. 2012;4(2):89–101.
29. San Mauro D, Gower DJ, Zardoya R, Wilkinson M. A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Biol Evol. 2006;23(1):227–34.
30. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. 1999;41:95–8.
31. Lowe TM, Eddy SR. T-RNAScan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):555–64.
32. Guo XH, Liu SJ, Liu Y. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level. Aquaculture. 2003;234(1–2):45–38.
33. Shi W, Kong XY, Wang ZM, Jiang JX. Utility of tRNA genes from the complete mitochondrial genome of Pietsza maxima for implying a possible sister-group relationship to the Pleuronectiformes. Zool Stud. 2011;50(5):666–81.
34. Miya M, Piatetski TW, Orr JW, Arnold RJ, Satoh TP, Shedlock AM, et al. Evolutionary history of angelfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evol Biol. 2010;10:58.
35. Yasuhita N, Miya M, Yamanoue Y, Shirai SM, Nakayama K, Suzuki K, et al. Mitogenomic evaluation of the unique facial nerve pattern as a phylogenetic marker within the perciform fishes (Teleostei: Perciformes). Mol Phylogenet Evol. 2009;53(1):258–66.
36. Wang Z-M, Shi W, Jiang J-X, Wang S-Y, Xiao X-G, Huang L-M, et al. The complete mitochondrial genome of a striped sole Zebrias zebra (Pleuronectiformes: Soleidae). Mitochondrial DNA. 2013;24(6):633–5.
37. Fujita MK, Boore JL, Moritz C. Multiple origins and rapid evolution of duplicated mitochondrial genes in parthenogenetic geckos (Heteronota binoei). Squamata, Gekkonidae). Mol Biol Evol. 2007;24(12):2775–86.
38. Desjardins P, Morris R. Sequence and gene organization of the chicken mitochondrial rRNA genes. Nucleic Acids Res. 1989;17(22):8049–65.
39. Seligmann H, Krishnan NM, Rao BJ. Possible multiple origins of replication in primate mitochondria: Alternative role of tRNA sequences. J Theor Biol. 2006;241(2):321–32.
40. Seligmann H, Krishnan NM. Mitochondrial replication origin stability and propensity of adjacent tRNA genes to form putative replication origins increase developmental stability in lizards. J Exp Zool B Mol Dev Evol. 2006;306(5):433–49.
41. Seligmann H, Labra A. The relation between hairpin formation by mitochondrial WANCY tRNAs and the occurrence of the light strand replication origin in Lepidosauria. Gene. 2014;542(2):248–57.
42. Seligmann H. Hybridization between mitochondrial heavy strand tDNA and expressed light strand tRNA modulates the function of heavy strand tDNA as light strand replication origin. J Mol Biol. 2008;379(1):188–99.
43. Clayton DA, Brown TA. Replication of mammalian mitochondrial DNA occurs by strand displacement with alternative light-strand origins. FASEB J. 2006;20(4):A453–3.
44. Yasukawa T, Reyes A, Cluett TJ, Yang MY, Bowmaker M, Jacobs HT, et al. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 2006;25(22):5358–71.